id
stringlengths 14
16
| text
stringlengths 13
2.7k
| source
stringlengths 57
178
|
---|---|---|
0597fd79f5a2-2 | Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output[source]¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.retry.RunnableRetry.html |
0597fd79f5a2-3 | The jsonpatch ops can be applied in order to construct state.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Any) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) → List[Output][source]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.retry.RunnableRetry.html |
0597fd79f5a2-4 | classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate input to the runnable. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.retry.RunnableRetry.html |
0597fd79f5a2-5 | Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
invoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output[source]¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶ | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.retry.RunnableRetry.html |
0597fd79f5a2-6 | Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.retry.RunnableRetry.html |
0597fd79f5a2-7 | classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Any) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.retry.RunnableRetry.html |
0597fd79f5a2-8 | fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Type[langchain.schema.runnable.utils.Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[langchain.schema.runnable.utils.Output]¶
The type of output this runnable produces specified as a type annotation. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.retry.RunnableRetry.html |
0597fd79f5a2-9 | The type of output this runnable produces specified as a type annotation.
property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.retry.RunnableRetry.html |
c957e6bc73a3-0 | langchain.schema.runnable.config.get_callback_manager_for_config¶
langchain.schema.runnable.config.get_callback_manager_for_config(config: RunnableConfig) → CallbackManager[source]¶
Get a callback manager for a config.
Parameters
config (RunnableConfig) – The config.
Returns
The callback manager.
Return type
CallbackManager | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.config.get_callback_manager_for_config.html |
9a7db9277062-0 | langchain.schema.runnable.config.patch_config¶
langchain.schema.runnable.config.patch_config(config: Optional[RunnableConfig], *, callbacks: Optional[BaseCallbackManager] = None, recursion_limit: Optional[int] = None, max_concurrency: Optional[int] = None, run_name: Optional[str] = None, configurable: Optional[Dict[str, Any]] = None) → RunnableConfig[source]¶
Patch a config with new values.
Parameters
config (Optional[RunnableConfig]) – The config to patch.
copy_locals (bool, optional) – Whether to copy locals. Defaults to False.
callbacks (Optional[BaseCallbackManager], optional) – The callbacks to set.
Defaults to None.
recursion_limit (Optional[int], optional) – The recursion limit to set.
Defaults to None.
max_concurrency (Optional[int], optional) – The max concurrency to set.
Defaults to None.
run_name (Optional[str], optional) – The run name to set. Defaults to None.
configurable (Optional[Dict[str, Any]], optional) – The configurable to set.
Defaults to None.
Returns
The patched config.
Return type
RunnableConfig | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.config.patch_config.html |
4d9ffa7b7672-0 | langchain.schema.runnable.config.acall_func_with_variable_args¶
async langchain.schema.runnable.config.acall_func_with_variable_args(func: Union[Callable[[Input], Awaitable[Output]], Callable[[Input, RunnableConfig], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]]], input: Input, config: RunnableConfig, run_manager: Optional[AsyncCallbackManagerForChainRun] = None, **kwargs: Any) → Output[source]¶
Call function that may optionally accept a run_manager and/or config.
Parameters
(Union[Callable[[Input] (func) – AsyncCallbackManagerForChainRun], Awaitable[Output]], Callable[[Input,
AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]]]):
The function to call.
Awaitable[Output]] – AsyncCallbackManagerForChainRun], Awaitable[Output]], Callable[[Input,
AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]]]):
The function to call.
Callable[[Input – AsyncCallbackManagerForChainRun], Awaitable[Output]], Callable[[Input,
AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]]]):
The function to call.
:paramAsyncCallbackManagerForChainRun], Awaitable[Output]], Callable[[Input,AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]]]):
The function to call.
Parameters
input (Input) – The input to the function.
run_manager (AsyncCallbackManagerForChainRun) – The run manager
to pass to the function.
config (RunnableConfig) – The config to pass to the function.
**kwargs (Any) – The keyword arguments to pass to the function.
Returns
The output of the function.
Return type
Output | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.config.acall_func_with_variable_args.html |
101615e42447-0 | langchain.schema.runnable.config.get_config_list¶
langchain.schema.runnable.config.get_config_list(config: Optional[Union[RunnableConfig, List[RunnableConfig]]], length: int) → List[RunnableConfig][source]¶
Get a list of configs from a single config or a list of configs.
It is useful for subclasses overriding batch() or abatch().
Parameters
config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – The config or list of configs.
length (int) – The length of the list.
Returns
The list of configs.
Return type
List[RunnableConfig]
Raises
ValueError – If the length of the list is not equal to the length of the inputs. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.config.get_config_list.html |
879f059862af-0 | langchain.schema.runnable.utils.SupportsAdd¶
class langchain.schema.runnable.utils.SupportsAdd(*args, **kwargs)[source]¶
Protocol for objects that support addition.
Methods
__init__(*args, **kwargs)
__init__(*args, **kwargs)¶ | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.utils.SupportsAdd.html |
06fd57af7112-0 | langchain.schema.runnable.configurable.RunnableConfigurableAlternatives¶
class langchain.schema.runnable.configurable.RunnableConfigurableAlternatives[source]¶
Bases: DynamicRunnable[Input, Output]
A Runnable that can be dynamically configured.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param alternatives: Dict[str, Union[langchain.schema.runnable.base.Runnable[langchain.schema.runnable.utils.Input, langchain.schema.runnable.utils.Output], Callable[[], langchain.schema.runnable.base.Runnable[langchain.schema.runnable.utils.Input, langchain.schema.runnable.utils.Output]]]] [Required]¶
param default: langchain.schema.runnable.base.RunnableSerializable[langchain.schema.runnable.utils.Input, langchain.schema.runnable.utils.Output] [Required]¶
param default_key: str = 'default'¶
param which: langchain.schema.runnable.utils.ConfigurableField [Required]¶
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableAlternatives.html |
06fd57af7112-1 | Subclasses should override this method if they can run asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableAlternatives.html |
06fd57af7112-2 | Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output][source]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableAlternatives.html |
06fd57af7112-3 | Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”] | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableAlternatives.html |
06fd57af7112-4 | namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
invoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict(). | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableAlternatives.html |
06fd57af7112-5 | Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableAlternatives.html |
06fd57af7112-6 | Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableAlternatives.html |
06fd57af7112-7 | added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Type[langchain.schema.runnable.utils.Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[langchain.schema.runnable.utils.Output]¶
The type of output this runnable produces specified as a type annotation.
property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶ | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableAlternatives.html |
06fd57af7112-8 | property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableAlternatives.html |
91e216eb5365-0 | langchain.schema.runnable.base.RunnableLambda¶
class langchain.schema.runnable.base.RunnableLambda(func: Union[Union[Callable[[Input], Output], Callable[[Input, RunnableConfig], Output], Callable[[Input, CallbackManagerForChainRun], Output], Callable[[Input, CallbackManagerForChainRun, RunnableConfig], Output]], Union[Callable[[Input], Awaitable[Output]], Callable[[Input, RunnableConfig], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]]]], afunc: Optional[Union[Callable[[Input], Awaitable[Output]], Callable[[Input, RunnableConfig], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]]]] = None)[source]¶
RunnableLambda converts a python callable into a Runnable.
Wrapping a callable in a RunnableLambda makes the callable usable
within either a sync or async context.
RunnableLambda can be composed as any other Runnable and provides
seamless integration with LangChain tracing.
Examples
# This is a RunnableLambda
from langchain.schema.runnable import RunnableLambda
def add_one(x: int) -> int:
return x + 1
runnable = RunnableLambda(add_one)
runnable.invoke(1) # returns 2
runnable.batch([1, 2, 3]) # returns [2, 3, 4]
# Async is supported by default by delegating to the sync implementation
await runnable.ainvoke(1) # returns 2
await runnable.abatch([1, 2, 3]) # returns [2, 3, 4]
# Alternatively, can provide both synd and sync implementations | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableLambda.html |
91e216eb5365-1 | # Alternatively, can provide both synd and sync implementations
async def add_one_async(x: int) -> int:
return x + 1
runnable = RunnableLambda(add_one, afunc=add_one_async)
runnable.invoke(1) # Uses add_one
await runnable.ainvoke(1) # Uses add_one_async
Create a RunnableLambda from a callable, and async callable or both.
Accepts both sync and async variants to allow providing efficient
implementations for sync and async execution.
Parameters
func – Either sync or async callable
afunc – An async callable that takes an input and returns an output.
Attributes
InputType
The type of the input to this runnable.
OutputType
The type of the output of this runnable as a type annotation.
config_specs
List configurable fields for this runnable.
input_schema
The type of input this runnable accepts specified as a pydantic model.
output_schema
The type of output this runnable produces specified as a pydantic model.
Methods
__init__(func[, afunc])
Create a RunnableLambda from a callable, and async callable or both.
abatch(inputs[, config, return_exceptions])
Default implementation runs ainvoke in parallel using asyncio.gather.
ainvoke(input[, config])
Invoke this runnable asynchronously.
astream(input[, config])
Default implementation of astream, which calls ainvoke.
astream_log(input[, config, diff, ...])
Stream all output from a runnable, as reported to the callback system.
atransform(input[, config])
Default implementation of atransform, which buffers input and calls astream.
batch(inputs[, config, return_exceptions])
Default implementation runs invoke in parallel using a thread pool executor.
bind(**kwargs)
Bind arguments to a Runnable, returning a new Runnable. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableLambda.html |
91e216eb5365-2 | bind(**kwargs)
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*[, include])
The type of config this runnable accepts specified as a pydantic model.
get_input_schema([config])
The pydantic schema for the input to this runnable.
get_output_schema([config])
Get a pydantic model that can be used to validate output to the runnable.
invoke(input[, config])
Invoke this runnable synchronously.
map()
Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input.
stream(input[, config])
Default implementation of stream, which calls invoke.
transform(input[, config])
Default implementation of transform, which buffers input and then calls stream.
with_config([config])
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks, *[, ...])
Add fallbacks to a runnable, returning a new Runnable.
with_listeners(*[, on_start, on_end, on_error])
Bind lifecycle listeners to a Runnable, returning a new Runnable.
with_retry(*[, retry_if_exception_type, ...])
Create a new Runnable that retries the original runnable on exceptions.
with_types(*[, input_type, output_type])
Bind input and output types to a Runnable, returning a new Runnable. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableLambda.html |
91e216eb5365-3 | Bind input and output types to a Runnable, returning a new Runnable.
__init__(func: Union[Union[Callable[[Input], Output], Callable[[Input, RunnableConfig], Output], Callable[[Input, CallbackManagerForChainRun], Output], Callable[[Input, CallbackManagerForChainRun, RunnableConfig], Output]], Union[Callable[[Input], Awaitable[Output]], Callable[[Input, RunnableConfig], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]]]], afunc: Optional[Union[Callable[[Input], Awaitable[Output]], Callable[[Input, RunnableConfig], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]]]] = None) → None[source]¶
Create a RunnableLambda from a callable, and async callable or both.
Accepts both sync and async variants to allow providing efficient
implementations for sync and async execution.
Parameters
func – Either sync or async callable
afunc – An async callable that takes an input and returns an output.
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Output[source]¶
Invoke this runnable asynchronously. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableLambda.html |
91e216eb5365-4 | Invoke this runnable asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableLambda.html |
91e216eb5365-5 | Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶
The pydantic schema for the input to this runnable.
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
invoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Output[source]¶
Invoke this runnable synchronously.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs, | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableLambda.html |
91e216eb5365-6 | Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableLambda.html |
91e216eb5365-7 | on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
Examples using RunnableLambda¶
sql_db.md
Run arbitrary functions | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableLambda.html |
bbf66f0b0d50-0 | langchain.schema.runnable.base.RunnableEach¶
class langchain.schema.runnable.base.RunnableEach[source]¶
Bases: RunnableEachBase[Input, Output]
A runnable that delegates calls to another runnable
with each element of the input sequence.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param bound: langchain.schema.runnable.base.Runnable[langchain.schema.runnable.utils.Input, langchain.schema.runnable.utils.Output] [Required]¶
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async ainvoke(input: List[Input], config: Optional[RunnableConfig] = None, **kwargs: Any) → List[Output]¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableEach.html |
bbf66f0b0d50-1 | Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableEach.html |
bbf66f0b0d50-2 | e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → RunnableEach[Input, Output][source]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableEach.html |
bbf66f0b0d50-3 | Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableEach.html |
bbf66f0b0d50-4 | Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
invoke(input: List[Input], config: Optional[RunnableConfig] = None, **kwargs: Any) → List[Output]¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶ | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableEach.html |
bbf66f0b0d50-5 | classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶ | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableEach.html |
bbf66f0b0d50-6 | classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → RunnableEach[Input, Output][source]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → RunnableEach[Input, Output][source]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableEach.html |
bbf66f0b0d50-7 | added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Any¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[List[langchain.schema.runnable.utils.Output]]¶
The type of output this runnable produces specified as a type annotation.
property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶ | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableEach.html |
bbf66f0b0d50-8 | property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableEach.html |
e2e1b5ce1d7c-0 | langchain.schema.runnable.utils.ConfigurableFieldSingleOption¶
class langchain.schema.runnable.utils.ConfigurableFieldSingleOption(id: str, options: Mapping[str, Any], default: str, name: Optional[str] = None, description: Optional[str] = None)[source]¶
A field that can be configured by the user with a default value.
Create new instance of ConfigurableFieldSingleOption(id, options, default, name, description)
Attributes
default
Alias for field number 2
description
Alias for field number 4
id
Alias for field number 0
name
Alias for field number 3
options
Alias for field number 1
Methods
__init__()
count(value, /)
Return number of occurrences of value.
index(value[, start, stop])
Return first index of value.
__init__()¶
count(value, /)¶
Return number of occurrences of value.
index(value, start=0, stop=9223372036854775807, /)¶
Return first index of value.
Raises ValueError if the value is not present. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.utils.ConfigurableFieldSingleOption.html |
c5797a5da699-0 | langchain.schema.runnable.configurable.StrEnum¶
class langchain.schema.runnable.configurable.StrEnum(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]¶
A string enum. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.StrEnum.html |
acd8f82bbabe-0 | langchain.schema.runnable.configurable.DynamicRunnable¶
class langchain.schema.runnable.configurable.DynamicRunnable[source]¶
Bases: RunnableSerializable[Input, Output]
A Serializable Runnable that can be dynamically configured.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param default: langchain.schema.runnable.base.RunnableSerializable[langchain.schema.runnable.utils.Input, langchain.schema.runnable.utils.Output] [Required]¶
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output][source]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output[source]¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output][source]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.DynamicRunnable.html |
acd8f82bbabe-1 | Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output][source]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output][source]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.DynamicRunnable.html |
acd8f82bbabe-2 | e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.DynamicRunnable.html |
acd8f82bbabe-3 | exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
classmethod get_lc_namespace() → List[str][source]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶ | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.DynamicRunnable.html |
acd8f82bbabe-4 | Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
invoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output[source]¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool[source]¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶ | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.DynamicRunnable.html |
acd8f82bbabe-5 | classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output][source]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output][source]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶ | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.DynamicRunnable.html |
acd8f82bbabe-6 | classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.DynamicRunnable.html |
acd8f82bbabe-7 | added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Type[langchain.schema.runnable.utils.Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[langchain.schema.runnable.utils.Output]¶
The type of output this runnable produces specified as a type annotation.
property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶ | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.DynamicRunnable.html |
acd8f82bbabe-8 | property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.DynamicRunnable.html |
ca2fc64fbb6d-0 | langchain.schema.runnable.utils.ConfigurableField¶
class langchain.schema.runnable.utils.ConfigurableField(id: str, name: Optional[str] = None, description: Optional[str] = None, annotation: Optional[Any] = None)[source]¶
A field that can be configured by the user.
Create new instance of ConfigurableField(id, name, description, annotation)
Attributes
annotation
Alias for field number 3
description
Alias for field number 2
id
Alias for field number 0
name
Alias for field number 1
Methods
__init__()
count(value, /)
Return number of occurrences of value.
index(value[, start, stop])
Return first index of value.
__init__()¶
count(value, /)¶
Return number of occurrences of value.
index(value, start=0, stop=9223372036854775807, /)¶
Return first index of value.
Raises ValueError if the value is not present. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.utils.ConfigurableField.html |
be314d7bb5ec-0 | langchain.schema.runnable.base.RunnableBindingBase¶
class langchain.schema.runnable.base.RunnableBindingBase[source]¶
Bases: RunnableSerializable[Input, Output]
A runnable that delegates calls to another runnable with a set of kwargs.
Use only if creating a new RunnableBinding subclass with different __init__ args.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param bound: langchain.schema.runnable.base.Runnable[langchain.schema.runnable.utils.Input, langchain.schema.runnable.utils.Output] [Required]¶
param config: langchain.schema.runnable.config.RunnableConfig [Optional]¶
param config_factories: List[Callable[[langchain.schema.runnable.config.RunnableConfig], langchain.schema.runnable.config.RunnableConfig]] [Optional]¶
param custom_input_type: Optional[Any] = None¶
param custom_output_type: Optional[Any] = None¶
param kwargs: Mapping[str, Any] [Optional]¶
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output][source]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Output[source]¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableBindingBase.html |
be314d7bb5ec-1 | the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output][source]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Any) → AsyncIterator[Output][source]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableBindingBase.html |
be314d7bb5ec-2 | input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output][source]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableBindingBase.html |
be314d7bb5ec-3 | Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableBindingBase.html |
be314d7bb5ec-4 | Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
classmethod get_lc_namespace() → List[str][source]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
invoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Output[source]¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool[source]¶
Is this class serializable? | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableBindingBase.html |
be314d7bb5ec-5 | classmethod is_lc_serializable() → bool[source]¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableBindingBase.html |
be314d7bb5ec-6 | classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output][source]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Any) → Iterator[Output][source]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableBindingBase.html |
be314d7bb5ec-7 | fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Type[langchain.schema.runnable.utils.Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[langchain.schema.runnable.utils.Output]¶
The type of output this runnable produces specified as a type annotation. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableBindingBase.html |
be314d7bb5ec-8 | The type of output this runnable produces specified as a type annotation.
property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableBindingBase.html |
dad58b6aa148-0 | langchain.schema.runnable.passthrough.aidentity¶
async langchain.schema.runnable.passthrough.aidentity(x: Other) → Other[source]¶
An async identity function | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.passthrough.aidentity.html |
25c4de52b9b8-0 | langchain.schema.runnable.utils.GetLambdaSource¶
class langchain.schema.runnable.utils.GetLambdaSource[source]¶
Get the source code of a lambda function.
Initialize the visitor.
Methods
__init__()
Initialize the visitor.
generic_visit(node)
Called if no explicit visitor function exists for a node.
visit(node)
Visit a node.
visit_Constant(node)
visit_Lambda(node)
Visit a lambda function.
__init__() → None[source]¶
Initialize the visitor.
generic_visit(node)¶
Called if no explicit visitor function exists for a node.
visit(node)¶
Visit a node.
visit_Constant(node)¶
visit_Lambda(node: Lambda) → Any[source]¶
Visit a lambda function. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.utils.GetLambdaSource.html |
e3ac21010b3e-0 | langchain.schema.runnable.passthrough.RunnableAssign¶
class langchain.schema.runnable.passthrough.RunnableAssign[source]¶
Bases: RunnableSerializable[Dict[str, Any], Dict[str, Any]]
A runnable that assigns key-value pairs to Dict[str, Any] inputs.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param mapper: langchain.schema.runnable.base.RunnableParallel[Dict[str, Any]] [Required]¶
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async ainvoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Dict[str, Any][source]¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
async astream(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → AsyncIterator[Dict[str, Any]][source]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.passthrough.RunnableAssign.html |
e3ac21010b3e-1 | Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
async atransform(input: AsyncIterator[Dict[str, Any]], config: Optional[RunnableConfig] = None, **kwargs: Any) → AsyncIterator[Dict[str, Any]][source]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.passthrough.RunnableAssign.html |
e3ac21010b3e-2 | e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.passthrough.RunnableAssign.html |
e3ac21010b3e-3 | exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
classmethod get_lc_namespace() → List[str][source]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶ | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.passthrough.RunnableAssign.html |
e3ac21010b3e-4 | Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
invoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Dict[str, Any][source]¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool[source]¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.passthrough.RunnableAssign.html |
e3ac21010b3e-5 | classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Iterator[Dict[str, Any]][source]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Dict[str, Any]], config: Optional[RunnableConfig] = None, **kwargs: Any) → Iterator[Dict[str, Any]][source]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.passthrough.RunnableAssign.html |
e3ac21010b3e-6 | input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.passthrough.RunnableAssign.html |
e3ac21010b3e-7 | added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Type[langchain.schema.runnable.utils.Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[langchain.schema.runnable.utils.Output]¶
The type of output this runnable produces specified as a type annotation.
property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶ | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.passthrough.RunnableAssign.html |
e3ac21010b3e-8 | property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.passthrough.RunnableAssign.html |
ec7aa9c77030-0 | langchain.schema.runnable.base.RunnableGenerator¶
class langchain.schema.runnable.base.RunnableGenerator(transform: Union[Callable[[Iterator[Input]], Iterator[Output]], Callable[[AsyncIterator[Input]], AsyncIterator[Output]]], atransform: Optional[Callable[[AsyncIterator[Input]], AsyncIterator[Output]]] = None)[source]¶
A runnable that runs a generator function.
Attributes
InputType
The type of input this runnable accepts specified as a type annotation.
OutputType
The type of output this runnable produces specified as a type annotation.
config_specs
List configurable fields for this runnable.
input_schema
The type of input this runnable accepts specified as a pydantic model.
output_schema
The type of output this runnable produces specified as a pydantic model.
Methods
__init__(transform[, atransform])
abatch(inputs[, config, return_exceptions])
Default implementation runs ainvoke in parallel using asyncio.gather.
ainvoke(input[, config])
Default implementation of ainvoke, calls invoke from a thread.
astream(input[, config])
Default implementation of astream, which calls ainvoke.
astream_log(input[, config, diff, ...])
Stream all output from a runnable, as reported to the callback system.
atransform(input[, config])
Default implementation of atransform, which buffers input and calls astream.
batch(inputs[, config, return_exceptions])
Default implementation runs invoke in parallel using a thread pool executor.
bind(**kwargs)
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*[, include])
The type of config this runnable accepts specified as a pydantic model.
get_input_schema([config])
Get a pydantic model that can be used to validate input to the runnable.
get_output_schema([config]) | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableGenerator.html |
ec7aa9c77030-1 | get_output_schema([config])
Get a pydantic model that can be used to validate output to the runnable.
invoke(input[, config])
Transform a single input into an output.
map()
Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input.
stream(input[, config])
Default implementation of stream, which calls invoke.
transform(input[, config])
Default implementation of transform, which buffers input and then calls stream.
with_config([config])
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks, *[, ...])
Add fallbacks to a runnable, returning a new Runnable.
with_listeners(*[, on_start, on_end, on_error])
Bind lifecycle listeners to a Runnable, returning a new Runnable.
with_retry(*[, retry_if_exception_type, ...])
Create a new Runnable that retries the original runnable on exceptions.
with_types(*[, input_type, output_type])
Bind input and output types to a Runnable, returning a new Runnable.
__init__(transform: Union[Callable[[Iterator[Input]], Iterator[Output]], Callable[[AsyncIterator[Input]], AsyncIterator[Output]]], atransform: Optional[Callable[[AsyncIterator[Input]], AsyncIterator[Output]]] = None) → None[source]¶
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently; | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableGenerator.html |
ec7aa9c77030-2 | Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output[source]¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → AsyncIterator[Output][source]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableGenerator.html |
ec7aa9c77030-3 | The jsonpatch ops can be applied in order to construct state.
atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Any) → AsyncIterator[Output][source]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableGenerator.html |
ec7aa9c77030-4 | This method allows to get an input schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
invoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output[source]¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Iterator[Output][source]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableGenerator.html |
ec7aa9c77030-5 | Subclasses should override this method if they support streaming output.
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Any) → Iterator[Output][source]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableGenerator.html |
ec7aa9c77030-6 | added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableGenerator.html |
5614e378e6d6-0 | langchain.schema.runnable.configurable.make_options_spec¶
langchain.schema.runnable.configurable.make_options_spec(spec: Union[ConfigurableFieldSingleOption, ConfigurableFieldMultiOption], description: Optional[str]) → ConfigurableFieldSpec[source]¶
Make a ConfigurableFieldSpec for a ConfigurableFieldSingleOption or
ConfigurableFieldMultiOption. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.make_options_spec.html |
c288d11208ee-0 | langchain.schema.runnable.configurable.RunnableConfigurableFields¶
class langchain.schema.runnable.configurable.RunnableConfigurableFields[source]¶
Bases: DynamicRunnable[Input, Output]
A Runnable that can be dynamically configured.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param default: langchain.schema.runnable.base.RunnableSerializable[langchain.schema.runnable.utils.Input, langchain.schema.runnable.utils.Output] [Required]¶
param fields: Dict[str, Union[langchain.schema.runnable.utils.ConfigurableField, langchain.schema.runnable.utils.ConfigurableFieldSingleOption, langchain.schema.runnable.utils.ConfigurableFieldMultiOption]] [Required]¶
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableFields.html |
c288d11208ee-1 | Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently; | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableFields.html |
c288d11208ee-2 | Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output][source]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableFields.html |
c288d11208ee-3 | Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableFields.html |
c288d11208ee-4 | Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
invoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶ | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableFields.html |
c288d11208ee-5 | classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶ | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableFields.html |
c288d11208ee-6 | classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableFields.html |
c288d11208ee-7 | added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Type[langchain.schema.runnable.utils.Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[langchain.schema.runnable.utils.Output]¶
The type of output this runnable produces specified as a type annotation.
property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶ | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableFields.html |
c288d11208ee-8 | property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableFields.html |
867445ce28eb-0 | langchain.schema.runnable.base.Runnable¶
class langchain.schema.runnable.base.Runnable[source]¶
A unit of work that can be invoked, batched, streamed, transformed and composed.
invoke/ainvoke: Transforms a single input into an output.
batch/abatch: Efficiently transforms multiple inputs into outputs.
stream/astream: Streams output from a single input as it’s produced.
astream_log: Streams output and selected intermediate results from an input.
Built-in optimizations:
Batch: By default, batch runs invoke() in parallel using a thread pool executor.Override to optimize batching.
Async: Methods with “a” suffix are asynchronous. By default, they executethe sync counterpart using asyncio’s thread pool.
Override for native async.
All methods accept an optional config argument, which can be used to configure
execution, add tags and metadata for tracing and debugging etc.
Runnables expose schematic information about their input, output and config via
the input_schema property, the output_schema property and config_schema method.
The LangChain Expression Language (LCEL) is a declarative way to compose Runnables
into chains. Any chain constructed this way will automatically have sync, async,
batch, and streaming support.
The main composition primitives are RunnableSequence and RunnableParallel.
RunnableSequence invokes a series of runnables sequentially, with one runnable’s
output serving as the next’s input. Construct using the | operator or by
passing a list of runnables to RunnableSequence.
RunnableParallel invokes runnables concurrently, providing the same input
to each. Construct it using a dict literal within a sequence or by passing a
dict to RunnableParallel.
For example,
from langchain.schema.runnable import RunnableLambda
# A RunnableSequence constructed using the `|` operator | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.Runnable.html |
867445ce28eb-1 | # A RunnableSequence constructed using the `|` operator
sequence = RunnableLambda(lambda x: x + 1) | RunnableLambda(lambda x: x * 2)
sequence.invoke(1) # 4
sequence.batch([1, 2, 3]) # [4, 6, 8]
# A sequence that contains a RunnableParallel constructed using a dict literal
sequence = RunnableLambda(lambda x: x + 1) | {
'mul_2': RunnableLambda(lambda x: x * 2),
'mul_5': RunnableLambda(lambda x: x * 5)
}
sequence.invoke(1) # {'mul_2': 4, 'mul_5': 10}
All Runnables expose additional methods that can be used to modify their behavior
(e.g., add a retry policy, add lifecycle listeners, make them configurable, etc.).
These methods will work on any Runnable, including Runnable chains constructed
by composing other Runnables. See the individual methods for details.
For example,
from langchain.schema.runnable import RunnableLambda
import random
def add_one(x: int) -> int:
return x + 1
def buggy_double(y: int) -> int:
'''Buggy code that will fail 70% of the time'''
if random.random() > 0.3:
print('This code failed, and will probably be retried!')
raise ValueError('Triggered buggy code')
return y * 2
sequence = (
RunnableLambda(add_one) |
RunnableLambda(buggy_double).with_retry( # Retry on failure
stop_after_attempt=10,
wait_exponential_jitter=False
)
)
print(sequence.input_schema.schema()) # Show inferred input schema
print(sequence.output_schema.schema()) # Show inferred output schema | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.Runnable.html |
867445ce28eb-2 | print(sequence.output_schema.schema()) # Show inferred output schema
print(sequence.invoke(2)) # invoke the sequence (note the retry above!!)
As the chains get longer, it can be useful to be able to see intermediate results
to debug and trace the chain.
You can set the global debug flag to True to enable debug output for all chains:
from langchain.globals import set_debug
set_debug(True)
Alternatively, you can pass existing or custom callbacks to any given chain:
… code-block:: python
from langchain.callbacks.tracers import ConsoleCallbackHandler
chain.invoke(…,
config={‘callbacks’: [ConsoleCallbackHandler()]}
)
For a UI (and much more) checkout LangSmith: https://docs.smith.langchain.com/
Attributes
InputType
The type of input this runnable accepts specified as a type annotation.
OutputType
The type of output this runnable produces specified as a type annotation.
config_specs
List configurable fields for this runnable.
input_schema
The type of input this runnable accepts specified as a pydantic model.
output_schema
The type of output this runnable produces specified as a pydantic model.
Methods
__init__()
abatch(inputs[, config, return_exceptions])
Default implementation runs ainvoke in parallel using asyncio.gather.
ainvoke(input[, config])
Default implementation of ainvoke, calls invoke from a thread.
astream(input[, config])
Default implementation of astream, which calls ainvoke.
astream_log()
Stream all output from a runnable, as reported to the callback system.
atransform(input[, config])
Default implementation of atransform, which buffers input and calls astream.
batch(inputs[, config, return_exceptions])
Default implementation runs invoke in parallel using a thread pool executor.
bind(**kwargs) | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.Runnable.html |
867445ce28eb-3 | Default implementation runs invoke in parallel using a thread pool executor.
bind(**kwargs)
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*[, include])
The type of config this runnable accepts specified as a pydantic model.
get_input_schema([config])
Get a pydantic model that can be used to validate input to the runnable.
get_output_schema([config])
Get a pydantic model that can be used to validate output to the runnable.
invoke(input[, config])
Transform a single input into an output.
map()
Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input.
stream(input[, config])
Default implementation of stream, which calls invoke.
transform(input[, config])
Default implementation of transform, which buffers input and then calls stream.
with_config([config])
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks, *[, ...])
Add fallbacks to a runnable, returning a new Runnable.
with_listeners(*[, on_start, on_end, on_error])
Bind lifecycle listeners to a Runnable, returning a new Runnable.
with_retry(*[, retry_if_exception_type, ...])
Create a new Runnable that retries the original runnable on exceptions.
with_types(*[, input_type, output_type])
Bind input and output types to a Runnable, returning a new Runnable.
__init__()¶
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output][source]¶
Default implementation runs ainvoke in parallel using asyncio.gather. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.Runnable.html |
867445ce28eb-4 | Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output[source]¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output][source]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: Literal[True] = 'True', include_names: Optional[Sequence[str]] = 'None', include_types: Optional[Sequence[str]] = 'None', include_tags: Optional[Sequence[str]] = 'None', exclude_names: Optional[Sequence[str]] = 'None', exclude_types: Optional[Sequence[str]] = 'None', exclude_tags: Optional[Sequence[str]] = 'None', **kwargs: Optional[Any]) → AsyncIterator[RunLogPatch][source]¶ | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.Runnable.html |
867445ce28eb-5 | async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: Literal[False], include_names: Optional[Sequence[str]] = 'None', include_types: Optional[Sequence[str]] = 'None', include_tags: Optional[Sequence[str]] = 'None', exclude_names: Optional[Sequence[str]] = 'None', exclude_types: Optional[Sequence[str]] = 'None', exclude_tags: Optional[Sequence[str]] = 'None', **kwargs: Optional[Any]) → AsyncIterator[RunLog]
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output][source]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output][source]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output][source]¶ | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.Runnable.html |
867445ce28eb-6 | bind(**kwargs: Any) → Runnable[Input, Output][source]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel][source]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
abstract invoke(input: Input, config: Optional[RunnableConfig] = None) → Output[source]¶
Transform a single input into an output. Override to implement.
Parameters | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.Runnable.html |
867445ce28eb-7 | Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
map() → Runnable[List[Input], List[Output]][source]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output][source]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output][source]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output][source]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output][source]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.Runnable.html |
867445ce28eb-8 | exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output][source]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output][source]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output][source]¶
Bind input and output types to a Runnable, returning a new Runnable. | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.Runnable.html |
be89f6ba731b-0 | langchain.schema.runnable.history.RunnableWithMessageHistory¶
class langchain.schema.runnable.history.RunnableWithMessageHistory[source]¶
Bases: RunnableBindingBase
A runnable that manages chat message history for another runnable.
Base runnable must have inputs and outputs that can be converted to a list ofBaseMessages.
RunnableWithMessageHistory must always be called with a config that contains session_id, e.g.:{"configurable": {"session_id": "<SESSION_ID>"}}
Example (dict input):from typing import Optional
from langchain.chat_models import ChatAnthropic
from langchain.memory.chat_message_histories import RedisChatMessageHistory
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.schema.runnable.history import RunnableWithMessageHistory
prompt = ChatPromptTemplate.from_messages([
("system", "You're an assistant who's good at {ability}"),
MessagesPlaceholder(variable_name="history"),
("human", "{question}"),
])
chain = prompt | ChatAnthropic(model="claude-2")
chain_with_history = RunnableWithMessageHistory(
chain,
RedisChatMessageHistory,
input_messages_key="question",
history_messages_key="history",
)
chain_with_history.invoke(
{"ability": "math", "question": "What does cosine mean?"},
config={"configurable": {"session_id": "foo"}}
)
# -> "Cosine is ..."
chain_with_history.invoke(
{"ability": "math", "question": "What's its inverse"},
config={"configurable": {"session_id": "foo"}}
)
# -> "The inverse of cosine is called arccosine ..."
Initialize RunnableWithMessageHistory.
Parameters
runnable – The base Runnable to be wrapped.
Must take as input one of:
- A sequence of BaseMessages | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.history.RunnableWithMessageHistory.html |
be89f6ba731b-1 | Must take as input one of:
- A sequence of BaseMessages
- A dict with one key for all messages
- A dict with one key for the current input string/message(s) and
a separate key for historical messages. If the input key points
to a string, it will be treated as a HumanMessage in history.
Must return as output one of:
- A string which can be treated as an AIMessage
- A BaseMessage or sequence of BaseMessages
- A dict with a key for a BaseMessage or sequence of BaseMessages
get_session_history – Function that returns a new BaseChatMessageHistory
given a session id. Should take a single
positional argument session_id which is a string and a named argument
user_id which can be a string or None. e.g.:
```python
def get_session_history(
session_id: str,
*,
user_id: Optional[str]=None
) -> BaseChatMessageHistory:…
```
input_messages_key – Must be specified if the base runnable accepts a dict
as input.
output_messages_key – Must be specified if the base runnable returns a dict
as output.
history_messages_key – Must be specified if the base runnable accepts a dict
as input and expects a separate key for historical messages.
**kwargs – Arbitrary additional kwargs to pass to parent class
RunnableBindingBase init.
param bound: Runnable[Input, Output] [Required]¶
param config: RunnableConfig [Optional]¶
param config_factories: List[Callable[[RunnableConfig], RunnableConfig]] [Optional]¶
param custom_input_type: Optional[Any] = None¶
param custom_output_type: Optional[Any] = None¶
param get_session_history: GetSessionHistoryCallable [Required]¶
param history_messages_key: Optional[str] = None¶
param input_messages_key: Optional[str] = None¶ | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.history.RunnableWithMessageHistory.html |
be89f6ba731b-2 | param input_messages_key: Optional[str] = None¶
param kwargs: Mapping[str, Any] [Optional]¶
param output_messages_key: Optional[str] = None¶
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Output¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ | lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.history.RunnableWithMessageHistory.html |
Subsets and Splits