id
stringlengths
14
16
text
stringlengths
13
2.7k
source
stringlengths
57
178
0597fd79f5a2-2
Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output[source]¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.retry.RunnableRetry.html
0597fd79f5a2-3
The jsonpatch ops can be applied in order to construct state. async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Any) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) → List[Output][source]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.retry.RunnableRetry.html
0597fd79f5a2-4
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.retry.RunnableRetry.html
0597fd79f5a2-5
Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. invoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output[source]¶ Transform a single input into an output. Override to implement. Parameters input – The input to the runnable. config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. classmethod is_lc_serializable() → bool¶
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.retry.RunnableRetry.html
0597fd79f5a2-6
Returns The output of the runnable. classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.retry.RunnableRetry.html
0597fd79f5a2-7
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Any) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Parameters fallbacks – A sequence of runnables to try if the original runnable fails. exceptions_to_handle – A tuple of exception types to handle. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.retry.RunnableRetry.html
0597fd79f5a2-8
fallback in order, upon failures. with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Parameters retry_if_exception_type – A tuple of exception types to retry on wait_exponential_jitter – Whether to add jitter to the wait time between retries stop_after_attempt – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. property InputType: Type[langchain.schema.runnable.utils.Input]¶ The type of input this runnable accepts specified as a type annotation. property OutputType: Type[langchain.schema.runnable.utils.Output]¶ The type of output this runnable produces specified as a type annotation.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.retry.RunnableRetry.html
0597fd79f5a2-9
The type of output this runnable produces specified as a type annotation. property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[pydantic.main.BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property output_schema: Type[pydantic.main.BaseModel]¶ The type of output this runnable produces specified as a pydantic model.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.retry.RunnableRetry.html
c957e6bc73a3-0
langchain.schema.runnable.config.get_callback_manager_for_config¶ langchain.schema.runnable.config.get_callback_manager_for_config(config: RunnableConfig) → CallbackManager[source]¶ Get a callback manager for a config. Parameters config (RunnableConfig) – The config. Returns The callback manager. Return type CallbackManager
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.config.get_callback_manager_for_config.html
9a7db9277062-0
langchain.schema.runnable.config.patch_config¶ langchain.schema.runnable.config.patch_config(config: Optional[RunnableConfig], *, callbacks: Optional[BaseCallbackManager] = None, recursion_limit: Optional[int] = None, max_concurrency: Optional[int] = None, run_name: Optional[str] = None, configurable: Optional[Dict[str, Any]] = None) → RunnableConfig[source]¶ Patch a config with new values. Parameters config (Optional[RunnableConfig]) – The config to patch. copy_locals (bool, optional) – Whether to copy locals. Defaults to False. callbacks (Optional[BaseCallbackManager], optional) – The callbacks to set. Defaults to None. recursion_limit (Optional[int], optional) – The recursion limit to set. Defaults to None. max_concurrency (Optional[int], optional) – The max concurrency to set. Defaults to None. run_name (Optional[str], optional) – The run name to set. Defaults to None. configurable (Optional[Dict[str, Any]], optional) – The configurable to set. Defaults to None. Returns The patched config. Return type RunnableConfig
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.config.patch_config.html
4d9ffa7b7672-0
langchain.schema.runnable.config.acall_func_with_variable_args¶ async langchain.schema.runnable.config.acall_func_with_variable_args(func: Union[Callable[[Input], Awaitable[Output]], Callable[[Input, RunnableConfig], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]]], input: Input, config: RunnableConfig, run_manager: Optional[AsyncCallbackManagerForChainRun] = None, **kwargs: Any) → Output[source]¶ Call function that may optionally accept a run_manager and/or config. Parameters (Union[Callable[[Input] (func) – AsyncCallbackManagerForChainRun], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]]]): The function to call. Awaitable[Output]] – AsyncCallbackManagerForChainRun], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]]]): The function to call. Callable[[Input – AsyncCallbackManagerForChainRun], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]]]): The function to call. :paramAsyncCallbackManagerForChainRun], Awaitable[Output]], Callable[[Input,AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]]]): The function to call. Parameters input (Input) – The input to the function. run_manager (AsyncCallbackManagerForChainRun) – The run manager to pass to the function. config (RunnableConfig) – The config to pass to the function. **kwargs (Any) – The keyword arguments to pass to the function. Returns The output of the function. Return type Output
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.config.acall_func_with_variable_args.html
101615e42447-0
langchain.schema.runnable.config.get_config_list¶ langchain.schema.runnable.config.get_config_list(config: Optional[Union[RunnableConfig, List[RunnableConfig]]], length: int) → List[RunnableConfig][source]¶ Get a list of configs from a single config or a list of configs. It is useful for subclasses overriding batch() or abatch(). Parameters config (Optional[Union[RunnableConfig, List[RunnableConfig]]]) – The config or list of configs. length (int) – The length of the list. Returns The list of configs. Return type List[RunnableConfig] Raises ValueError – If the length of the list is not equal to the length of the inputs.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.config.get_config_list.html
879f059862af-0
langchain.schema.runnable.utils.SupportsAdd¶ class langchain.schema.runnable.utils.SupportsAdd(*args, **kwargs)[source]¶ Protocol for objects that support addition. Methods __init__(*args, **kwargs) __init__(*args, **kwargs)¶
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.utils.SupportsAdd.html
06fd57af7112-0
langchain.schema.runnable.configurable.RunnableConfigurableAlternatives¶ class langchain.schema.runnable.configurable.RunnableConfigurableAlternatives[source]¶ Bases: DynamicRunnable[Input, Output] A Runnable that can be dynamically configured. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param alternatives: Dict[str, Union[langchain.schema.runnable.base.Runnable[langchain.schema.runnable.utils.Input, langchain.schema.runnable.utils.Output], Callable[[], langchain.schema.runnable.base.Runnable[langchain.schema.runnable.utils.Input, langchain.schema.runnable.utils.Output]]]] [Required]¶ param default: langchain.schema.runnable.base.RunnableSerializable[langchain.schema.runnable.utils.Input, langchain.schema.runnable.utils.Output] [Required]¶ param default_key: str = 'default'¶ param which: langchain.schema.runnable.utils.ConfigurableField [Required]¶ async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableAlternatives.html
06fd57af7112-1
Subclasses should override this method if they can run asynchronously. async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs invoke in parallel using a thread pool executor.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableAlternatives.html
06fd57af7112-2
Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output][source]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableAlternatives.html
06fd57af7112-3
Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”]
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableAlternatives.html
06fd57af7112-4
namespace is [“langchain”, “llms”, “openai”] get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. invoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output¶ Transform a single input into an output. Override to implement. Parameters input – The input to the runnable. config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict().
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableAlternatives.html
06fd57af7112-5
Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableAlternatives.html
06fd57af7112-6
Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Parameters fallbacks – A sequence of runnables to try if the original runnable fails. exceptions_to_handle – A tuple of exception types to handle. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableAlternatives.html
06fd57af7112-7
added to the run. with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Parameters retry_if_exception_type – A tuple of exception types to retry on wait_exponential_jitter – Whether to add jitter to the wait time between retries stop_after_attempt – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. property InputType: Type[langchain.schema.runnable.utils.Input]¶ The type of input this runnable accepts specified as a type annotation. property OutputType: Type[langchain.schema.runnable.utils.Output]¶ The type of output this runnable produces specified as a type annotation. property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[pydantic.main.BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property output_schema: Type[pydantic.main.BaseModel]¶
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableAlternatives.html
06fd57af7112-8
property output_schema: Type[pydantic.main.BaseModel]¶ The type of output this runnable produces specified as a pydantic model.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableAlternatives.html
91e216eb5365-0
langchain.schema.runnable.base.RunnableLambda¶ class langchain.schema.runnable.base.RunnableLambda(func: Union[Union[Callable[[Input], Output], Callable[[Input, RunnableConfig], Output], Callable[[Input, CallbackManagerForChainRun], Output], Callable[[Input, CallbackManagerForChainRun, RunnableConfig], Output]], Union[Callable[[Input], Awaitable[Output]], Callable[[Input, RunnableConfig], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]]]], afunc: Optional[Union[Callable[[Input], Awaitable[Output]], Callable[[Input, RunnableConfig], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]]]] = None)[source]¶ RunnableLambda converts a python callable into a Runnable. Wrapping a callable in a RunnableLambda makes the callable usable within either a sync or async context. RunnableLambda can be composed as any other Runnable and provides seamless integration with LangChain tracing. Examples # This is a RunnableLambda from langchain.schema.runnable import RunnableLambda def add_one(x: int) -> int: return x + 1 runnable = RunnableLambda(add_one) runnable.invoke(1) # returns 2 runnable.batch([1, 2, 3]) # returns [2, 3, 4] # Async is supported by default by delegating to the sync implementation await runnable.ainvoke(1) # returns 2 await runnable.abatch([1, 2, 3]) # returns [2, 3, 4] # Alternatively, can provide both synd and sync implementations
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableLambda.html
91e216eb5365-1
# Alternatively, can provide both synd and sync implementations async def add_one_async(x: int) -> int: return x + 1 runnable = RunnableLambda(add_one, afunc=add_one_async) runnable.invoke(1) # Uses add_one await runnable.ainvoke(1) # Uses add_one_async Create a RunnableLambda from a callable, and async callable or both. Accepts both sync and async variants to allow providing efficient implementations for sync and async execution. Parameters func – Either sync or async callable afunc – An async callable that takes an input and returns an output. Attributes InputType The type of the input to this runnable. OutputType The type of the output of this runnable as a type annotation. config_specs List configurable fields for this runnable. input_schema The type of input this runnable accepts specified as a pydantic model. output_schema The type of output this runnable produces specified as a pydantic model. Methods __init__(func[, afunc]) Create a RunnableLambda from a callable, and async callable or both. abatch(inputs[, config, return_exceptions]) Default implementation runs ainvoke in parallel using asyncio.gather. ainvoke(input[, config]) Invoke this runnable asynchronously. astream(input[, config]) Default implementation of astream, which calls ainvoke. astream_log(input[, config, diff, ...]) Stream all output from a runnable, as reported to the callback system. atransform(input[, config]) Default implementation of atransform, which buffers input and calls astream. batch(inputs[, config, return_exceptions]) Default implementation runs invoke in parallel using a thread pool executor. bind(**kwargs) Bind arguments to a Runnable, returning a new Runnable.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableLambda.html
91e216eb5365-2
bind(**kwargs) Bind arguments to a Runnable, returning a new Runnable. config_schema(*[, include]) The type of config this runnable accepts specified as a pydantic model. get_input_schema([config]) The pydantic schema for the input to this runnable. get_output_schema([config]) Get a pydantic model that can be used to validate output to the runnable. invoke(input[, config]) Invoke this runnable synchronously. map() Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. stream(input[, config]) Default implementation of stream, which calls invoke. transform(input[, config]) Default implementation of transform, which buffers input and then calls stream. with_config([config]) Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks, *[, ...]) Add fallbacks to a runnable, returning a new Runnable. with_listeners(*[, on_start, on_end, on_error]) Bind lifecycle listeners to a Runnable, returning a new Runnable. with_retry(*[, retry_if_exception_type, ...]) Create a new Runnable that retries the original runnable on exceptions. with_types(*[, input_type, output_type]) Bind input and output types to a Runnable, returning a new Runnable.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableLambda.html
91e216eb5365-3
Bind input and output types to a Runnable, returning a new Runnable. __init__(func: Union[Union[Callable[[Input], Output], Callable[[Input, RunnableConfig], Output], Callable[[Input, CallbackManagerForChainRun], Output], Callable[[Input, CallbackManagerForChainRun, RunnableConfig], Output]], Union[Callable[[Input], Awaitable[Output]], Callable[[Input, RunnableConfig], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]]]], afunc: Optional[Union[Callable[[Input], Awaitable[Output]], Callable[[Input, RunnableConfig], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun], Awaitable[Output]], Callable[[Input, AsyncCallbackManagerForChainRun, RunnableConfig], Awaitable[Output]]]] = None) → None[source]¶ Create a RunnableLambda from a callable, and async callable or both. Accepts both sync and async variants to allow providing efficient implementations for sync and async execution. Parameters func – Either sync or async callable afunc – An async callable that takes an input and returns an output. async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Output[source]¶ Invoke this runnable asynchronously.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableLambda.html
91e216eb5365-4
Invoke this runnable asynchronously. async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs invoke in parallel using a thread pool executor.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableLambda.html
91e216eb5365-5
Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶ The pydantic schema for the input to this runnable. get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. invoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Output[source]¶ Invoke this runnable synchronously. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs,
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableLambda.html
91e216eb5365-6
Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Parameters fallbacks – A sequence of runnables to try if the original runnable fails. exceptions_to_handle – A tuple of exception types to handle. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableLambda.html
91e216eb5365-7
on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Parameters retry_if_exception_type – A tuple of exception types to retry on wait_exponential_jitter – Whether to add jitter to the wait time between retries stop_after_attempt – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. Examples using RunnableLambda¶ sql_db.md Run arbitrary functions
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableLambda.html
bbf66f0b0d50-0
langchain.schema.runnable.base.RunnableEach¶ class langchain.schema.runnable.base.RunnableEach[source]¶ Bases: RunnableEachBase[Input, Output] A runnable that delegates calls to another runnable with each element of the input sequence. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param bound: langchain.schema.runnable.base.Runnable[langchain.schema.runnable.utils.Input, langchain.schema.runnable.utils.Output] [Required]¶ async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. async ainvoke(input: List[Input], config: Optional[RunnableConfig] = None, **kwargs: Any) → List[Output]¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableEach.html
bbf66f0b0d50-1
Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableEach.html
bbf66f0b0d50-2
e.g., if the underlying runnable uses an API which supports a batch mode. bind(**kwargs: Any) → RunnableEach[Input, Output][source]¶ Bind arguments to a Runnable, returning a new Runnable. config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableEach.html
bbf66f0b0d50-3
Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableEach.html
bbf66f0b0d50-4
Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. invoke(input: List[Input], config: Optional[RunnableConfig] = None, **kwargs: Any) → List[Output]¶ Transform a single input into an output. Override to implement. Parameters input – The input to the runnable. config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableEach.html
bbf66f0b0d50-5
classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. classmethod update_forward_refs(**localns: Any) → None¶
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableEach.html
bbf66f0b0d50-6
classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → RunnableEach[Input, Output][source]¶ Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Parameters fallbacks – A sequence of runnables to try if the original runnable fails. exceptions_to_handle – A tuple of exception types to handle. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → RunnableEach[Input, Output][source]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableEach.html
bbf66f0b0d50-7
added to the run. with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Parameters retry_if_exception_type – A tuple of exception types to retry on wait_exponential_jitter – Whether to add jitter to the wait time between retries stop_after_attempt – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. property InputType: Any¶ The type of input this runnable accepts specified as a type annotation. property OutputType: Type[List[langchain.schema.runnable.utils.Output]]¶ The type of output this runnable produces specified as a type annotation. property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[pydantic.main.BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property output_schema: Type[pydantic.main.BaseModel]¶
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableEach.html
bbf66f0b0d50-8
property output_schema: Type[pydantic.main.BaseModel]¶ The type of output this runnable produces specified as a pydantic model.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableEach.html
e2e1b5ce1d7c-0
langchain.schema.runnable.utils.ConfigurableFieldSingleOption¶ class langchain.schema.runnable.utils.ConfigurableFieldSingleOption(id: str, options: Mapping[str, Any], default: str, name: Optional[str] = None, description: Optional[str] = None)[source]¶ A field that can be configured by the user with a default value. Create new instance of ConfigurableFieldSingleOption(id, options, default, name, description) Attributes default Alias for field number 2 description Alias for field number 4 id Alias for field number 0 name Alias for field number 3 options Alias for field number 1 Methods __init__() count(value, /) Return number of occurrences of value. index(value[, start, stop]) Return first index of value. __init__()¶ count(value, /)¶ Return number of occurrences of value. index(value, start=0, stop=9223372036854775807, /)¶ Return first index of value. Raises ValueError if the value is not present.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.utils.ConfigurableFieldSingleOption.html
c5797a5da699-0
langchain.schema.runnable.configurable.StrEnum¶ class langchain.schema.runnable.configurable.StrEnum(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]¶ A string enum.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.StrEnum.html
acd8f82bbabe-0
langchain.schema.runnable.configurable.DynamicRunnable¶ class langchain.schema.runnable.configurable.DynamicRunnable[source]¶ Bases: RunnableSerializable[Input, Output] A Serializable Runnable that can be dynamically configured. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param default: langchain.schema.runnable.base.RunnableSerializable[langchain.schema.runnable.utils.Input, langchain.schema.runnable.utils.Output] [Required]¶ async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output][source]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output[source]¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output][source]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.DynamicRunnable.html
acd8f82bbabe-1
Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output][source]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output][source]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.DynamicRunnable.html
acd8f82bbabe-2
e.g., if the underlying runnable uses an API which supports a batch mode. bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.DynamicRunnable.html
acd8f82bbabe-3
exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. classmethod get_lc_namespace() → List[str][source]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.DynamicRunnable.html
acd8f82bbabe-4
Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. invoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output[source]¶ Transform a single input into an output. Override to implement. Parameters input – The input to the runnable. config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. classmethod is_lc_serializable() → bool[source]¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.DynamicRunnable.html
acd8f82bbabe-5
classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output][source]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output][source]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. classmethod update_forward_refs(**localns: Any) → None¶
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.DynamicRunnable.html
acd8f82bbabe-6
classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Parameters fallbacks – A sequence of runnables to try if the original runnable fails. exceptions_to_handle – A tuple of exception types to handle. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.DynamicRunnable.html
acd8f82bbabe-7
added to the run. with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Parameters retry_if_exception_type – A tuple of exception types to retry on wait_exponential_jitter – Whether to add jitter to the wait time between retries stop_after_attempt – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. property InputType: Type[langchain.schema.runnable.utils.Input]¶ The type of input this runnable accepts specified as a type annotation. property OutputType: Type[langchain.schema.runnable.utils.Output]¶ The type of output this runnable produces specified as a type annotation. property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[pydantic.main.BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property output_schema: Type[pydantic.main.BaseModel]¶
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.DynamicRunnable.html
acd8f82bbabe-8
property output_schema: Type[pydantic.main.BaseModel]¶ The type of output this runnable produces specified as a pydantic model.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.DynamicRunnable.html
ca2fc64fbb6d-0
langchain.schema.runnable.utils.ConfigurableField¶ class langchain.schema.runnable.utils.ConfigurableField(id: str, name: Optional[str] = None, description: Optional[str] = None, annotation: Optional[Any] = None)[source]¶ A field that can be configured by the user. Create new instance of ConfigurableField(id, name, description, annotation) Attributes annotation Alias for field number 3 description Alias for field number 2 id Alias for field number 0 name Alias for field number 1 Methods __init__() count(value, /) Return number of occurrences of value. index(value[, start, stop]) Return first index of value. __init__()¶ count(value, /)¶ Return number of occurrences of value. index(value, start=0, stop=9223372036854775807, /)¶ Return first index of value. Raises ValueError if the value is not present.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.utils.ConfigurableField.html
be314d7bb5ec-0
langchain.schema.runnable.base.RunnableBindingBase¶ class langchain.schema.runnable.base.RunnableBindingBase[source]¶ Bases: RunnableSerializable[Input, Output] A runnable that delegates calls to another runnable with a set of kwargs. Use only if creating a new RunnableBinding subclass with different __init__ args. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param bound: langchain.schema.runnable.base.Runnable[langchain.schema.runnable.utils.Input, langchain.schema.runnable.utils.Output] [Required]¶ param config: langchain.schema.runnable.config.RunnableConfig [Optional]¶ param config_factories: List[Callable[[langchain.schema.runnable.config.RunnableConfig], langchain.schema.runnable.config.RunnableConfig]] [Optional]¶ param custom_input_type: Optional[Any] = None¶ param custom_output_type: Optional[Any] = None¶ param kwargs: Mapping[str, Any] [Optional]¶ async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output][source]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Output[source]¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableBindingBase.html
be314d7bb5ec-1
the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output][source]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Any) → AsyncIterator[Output][source]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableBindingBase.html
be314d7bb5ec-2
input is still being generated. batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output][source]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableBindingBase.html
be314d7bb5ec-3
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableBindingBase.html
be314d7bb5ec-4
Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. classmethod get_lc_namespace() → List[str][source]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. invoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Output[source]¶ Transform a single input into an output. Override to implement. Parameters input – The input to the runnable. config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. classmethod is_lc_serializable() → bool[source]¶ Is this class serializable?
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableBindingBase.html
be314d7bb5ec-5
classmethod is_lc_serializable() → bool[source]¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableBindingBase.html
be314d7bb5ec-6
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output][source]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Any) → Iterator[Output][source]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Parameters fallbacks – A sequence of runnables to try if the original runnable fails. exceptions_to_handle – A tuple of exception types to handle. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableBindingBase.html
be314d7bb5ec-7
fallback in order, upon failures. with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Parameters retry_if_exception_type – A tuple of exception types to retry on wait_exponential_jitter – Whether to add jitter to the wait time between retries stop_after_attempt – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. property InputType: Type[langchain.schema.runnable.utils.Input]¶ The type of input this runnable accepts specified as a type annotation. property OutputType: Type[langchain.schema.runnable.utils.Output]¶ The type of output this runnable produces specified as a type annotation.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableBindingBase.html
be314d7bb5ec-8
The type of output this runnable produces specified as a type annotation. property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[pydantic.main.BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property output_schema: Type[pydantic.main.BaseModel]¶ The type of output this runnable produces specified as a pydantic model.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableBindingBase.html
dad58b6aa148-0
langchain.schema.runnable.passthrough.aidentity¶ async langchain.schema.runnable.passthrough.aidentity(x: Other) → Other[source]¶ An async identity function
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.passthrough.aidentity.html
25c4de52b9b8-0
langchain.schema.runnable.utils.GetLambdaSource¶ class langchain.schema.runnable.utils.GetLambdaSource[source]¶ Get the source code of a lambda function. Initialize the visitor. Methods __init__() Initialize the visitor. generic_visit(node) Called if no explicit visitor function exists for a node. visit(node) Visit a node. visit_Constant(node) visit_Lambda(node) Visit a lambda function. __init__() → None[source]¶ Initialize the visitor. generic_visit(node)¶ Called if no explicit visitor function exists for a node. visit(node)¶ Visit a node. visit_Constant(node)¶ visit_Lambda(node: Lambda) → Any[source]¶ Visit a lambda function.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.utils.GetLambdaSource.html
e3ac21010b3e-0
langchain.schema.runnable.passthrough.RunnableAssign¶ class langchain.schema.runnable.passthrough.RunnableAssign[source]¶ Bases: RunnableSerializable[Dict[str, Any], Dict[str, Any]] A runnable that assigns key-value pairs to Dict[str, Any] inputs. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param mapper: langchain.schema.runnable.base.RunnableParallel[Dict[str, Any]] [Required]¶ async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. async ainvoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Dict[str, Any][source]¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. async astream(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → AsyncIterator[Dict[str, Any]][source]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.passthrough.RunnableAssign.html
e3ac21010b3e-1
Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. async atransform(input: AsyncIterator[Dict[str, Any]], config: Optional[RunnableConfig] = None, **kwargs: Any) → AsyncIterator[Dict[str, Any]][source]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.passthrough.RunnableAssign.html
e3ac21010b3e-2
e.g., if the underlying runnable uses an API which supports a batch mode. bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.passthrough.RunnableAssign.html
e3ac21010b3e-3
exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. classmethod get_lc_namespace() → List[str][source]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.passthrough.RunnableAssign.html
e3ac21010b3e-4
Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. invoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Dict[str, Any][source]¶ Transform a single input into an output. Override to implement. Parameters input – The input to the runnable. config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. classmethod is_lc_serializable() → bool[source]¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.passthrough.RunnableAssign.html
e3ac21010b3e-5
classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ stream(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Iterator[Dict[str, Any]][source]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ transform(input: Iterator[Dict[str, Any]], config: Optional[RunnableConfig] = None, **kwargs: Any) → Iterator[Dict[str, Any]][source]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.passthrough.RunnableAssign.html
e3ac21010b3e-6
input is still being generated. classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Parameters fallbacks – A sequence of runnables to try if the original runnable fails. exceptions_to_handle – A tuple of exception types to handle. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.passthrough.RunnableAssign.html
e3ac21010b3e-7
added to the run. with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Parameters retry_if_exception_type – A tuple of exception types to retry on wait_exponential_jitter – Whether to add jitter to the wait time between retries stop_after_attempt – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. property InputType: Type[langchain.schema.runnable.utils.Input]¶ The type of input this runnable accepts specified as a type annotation. property OutputType: Type[langchain.schema.runnable.utils.Output]¶ The type of output this runnable produces specified as a type annotation. property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[pydantic.main.BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property output_schema: Type[pydantic.main.BaseModel]¶
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.passthrough.RunnableAssign.html
e3ac21010b3e-8
property output_schema: Type[pydantic.main.BaseModel]¶ The type of output this runnable produces specified as a pydantic model.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.passthrough.RunnableAssign.html
ec7aa9c77030-0
langchain.schema.runnable.base.RunnableGenerator¶ class langchain.schema.runnable.base.RunnableGenerator(transform: Union[Callable[[Iterator[Input]], Iterator[Output]], Callable[[AsyncIterator[Input]], AsyncIterator[Output]]], atransform: Optional[Callable[[AsyncIterator[Input]], AsyncIterator[Output]]] = None)[source]¶ A runnable that runs a generator function. Attributes InputType The type of input this runnable accepts specified as a type annotation. OutputType The type of output this runnable produces specified as a type annotation. config_specs List configurable fields for this runnable. input_schema The type of input this runnable accepts specified as a pydantic model. output_schema The type of output this runnable produces specified as a pydantic model. Methods __init__(transform[, atransform]) abatch(inputs[, config, return_exceptions]) Default implementation runs ainvoke in parallel using asyncio.gather. ainvoke(input[, config]) Default implementation of ainvoke, calls invoke from a thread. astream(input[, config]) Default implementation of astream, which calls ainvoke. astream_log(input[, config, diff, ...]) Stream all output from a runnable, as reported to the callback system. atransform(input[, config]) Default implementation of atransform, which buffers input and calls astream. batch(inputs[, config, return_exceptions]) Default implementation runs invoke in parallel using a thread pool executor. bind(**kwargs) Bind arguments to a Runnable, returning a new Runnable. config_schema(*[, include]) The type of config this runnable accepts specified as a pydantic model. get_input_schema([config]) Get a pydantic model that can be used to validate input to the runnable. get_output_schema([config])
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableGenerator.html
ec7aa9c77030-1
get_output_schema([config]) Get a pydantic model that can be used to validate output to the runnable. invoke(input[, config]) Transform a single input into an output. map() Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. stream(input[, config]) Default implementation of stream, which calls invoke. transform(input[, config]) Default implementation of transform, which buffers input and then calls stream. with_config([config]) Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks, *[, ...]) Add fallbacks to a runnable, returning a new Runnable. with_listeners(*[, on_start, on_end, on_error]) Bind lifecycle listeners to a Runnable, returning a new Runnable. with_retry(*[, retry_if_exception_type, ...]) Create a new Runnable that retries the original runnable on exceptions. with_types(*[, input_type, output_type]) Bind input and output types to a Runnable, returning a new Runnable. __init__(transform: Union[Callable[[Iterator[Input]], Iterator[Output]], Callable[[AsyncIterator[Input]], AsyncIterator[Output]]], atransform: Optional[Callable[[AsyncIterator[Input]], AsyncIterator[Output]]] = None) → None[source]¶ async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently;
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableGenerator.html
ec7aa9c77030-2
Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output[source]¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → AsyncIterator[Output][source]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableGenerator.html
ec7aa9c77030-3
The jsonpatch ops can be applied in order to construct state. atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Any) → AsyncIterator[Output][source]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableGenerator.html
ec7aa9c77030-4
This method allows to get an input schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. invoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output[source]¶ Transform a single input into an output. Override to implement. Parameters input – The input to the runnable. config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Iterator[Output][source]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableGenerator.html
ec7aa9c77030-5
Subclasses should override this method if they support streaming output. transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Any) → Iterator[Output][source]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Parameters fallbacks – A sequence of runnables to try if the original runnable fails. exceptions_to_handle – A tuple of exception types to handle. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableGenerator.html
ec7aa9c77030-6
added to the run. with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Parameters retry_if_exception_type – A tuple of exception types to retry on wait_exponential_jitter – Whether to add jitter to the wait time between retries stop_after_attempt – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.RunnableGenerator.html
5614e378e6d6-0
langchain.schema.runnable.configurable.make_options_spec¶ langchain.schema.runnable.configurable.make_options_spec(spec: Union[ConfigurableFieldSingleOption, ConfigurableFieldMultiOption], description: Optional[str]) → ConfigurableFieldSpec[source]¶ Make a ConfigurableFieldSpec for a ConfigurableFieldSingleOption or ConfigurableFieldMultiOption.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.make_options_spec.html
c288d11208ee-0
langchain.schema.runnable.configurable.RunnableConfigurableFields¶ class langchain.schema.runnable.configurable.RunnableConfigurableFields[source]¶ Bases: DynamicRunnable[Input, Output] A Runnable that can be dynamically configured. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param default: langchain.schema.runnable.base.RunnableSerializable[langchain.schema.runnable.utils.Input, langchain.schema.runnable.utils.Output] [Required]¶ param fields: Dict[str, Union[langchain.schema.runnable.utils.ConfigurableField, langchain.schema.runnable.utils.ConfigurableFieldSingleOption, langchain.schema.runnable.utils.ConfigurableFieldMultiOption]] [Required]¶ async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of astream, which calls ainvoke.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableFields.html
c288d11208ee-1
Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently;
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableFields.html
c288d11208ee-2
Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output][source]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableFields.html
c288d11208ee-3
Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableFields.html
c288d11208ee-4
Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. invoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output¶ Transform a single input into an output. Override to implement. Parameters input – The input to the runnable. config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableFields.html
c288d11208ee-5
classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. classmethod update_forward_refs(**localns: Any) → None¶
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableFields.html
c288d11208ee-6
classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Parameters fallbacks – A sequence of runnables to try if the original runnable fails. exceptions_to_handle – A tuple of exception types to handle. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableFields.html
c288d11208ee-7
added to the run. with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Parameters retry_if_exception_type – A tuple of exception types to retry on wait_exponential_jitter – Whether to add jitter to the wait time between retries stop_after_attempt – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. property InputType: Type[langchain.schema.runnable.utils.Input]¶ The type of input this runnable accepts specified as a type annotation. property OutputType: Type[langchain.schema.runnable.utils.Output]¶ The type of output this runnable produces specified as a type annotation. property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[pydantic.main.BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property output_schema: Type[pydantic.main.BaseModel]¶
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableFields.html
c288d11208ee-8
property output_schema: Type[pydantic.main.BaseModel]¶ The type of output this runnable produces specified as a pydantic model.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.configurable.RunnableConfigurableFields.html
867445ce28eb-0
langchain.schema.runnable.base.Runnable¶ class langchain.schema.runnable.base.Runnable[source]¶ A unit of work that can be invoked, batched, streamed, transformed and composed. invoke/ainvoke: Transforms a single input into an output. batch/abatch: Efficiently transforms multiple inputs into outputs. stream/astream: Streams output from a single input as it’s produced. astream_log: Streams output and selected intermediate results from an input. Built-in optimizations: Batch: By default, batch runs invoke() in parallel using a thread pool executor.Override to optimize batching. Async: Methods with “a” suffix are asynchronous. By default, they executethe sync counterpart using asyncio’s thread pool. Override for native async. All methods accept an optional config argument, which can be used to configure execution, add tags and metadata for tracing and debugging etc. Runnables expose schematic information about their input, output and config via the input_schema property, the output_schema property and config_schema method. The LangChain Expression Language (LCEL) is a declarative way to compose Runnables into chains. Any chain constructed this way will automatically have sync, async, batch, and streaming support. The main composition primitives are RunnableSequence and RunnableParallel. RunnableSequence invokes a series of runnables sequentially, with one runnable’s output serving as the next’s input. Construct using the | operator or by passing a list of runnables to RunnableSequence. RunnableParallel invokes runnables concurrently, providing the same input to each. Construct it using a dict literal within a sequence or by passing a dict to RunnableParallel. For example, from langchain.schema.runnable import RunnableLambda # A RunnableSequence constructed using the `|` operator
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.Runnable.html
867445ce28eb-1
# A RunnableSequence constructed using the `|` operator sequence = RunnableLambda(lambda x: x + 1) | RunnableLambda(lambda x: x * 2) sequence.invoke(1) # 4 sequence.batch([1, 2, 3]) # [4, 6, 8] # A sequence that contains a RunnableParallel constructed using a dict literal sequence = RunnableLambda(lambda x: x + 1) | { 'mul_2': RunnableLambda(lambda x: x * 2), 'mul_5': RunnableLambda(lambda x: x * 5) } sequence.invoke(1) # {'mul_2': 4, 'mul_5': 10} All Runnables expose additional methods that can be used to modify their behavior (e.g., add a retry policy, add lifecycle listeners, make them configurable, etc.). These methods will work on any Runnable, including Runnable chains constructed by composing other Runnables. See the individual methods for details. For example, from langchain.schema.runnable import RunnableLambda import random def add_one(x: int) -> int: return x + 1 def buggy_double(y: int) -> int: '''Buggy code that will fail 70% of the time''' if random.random() > 0.3: print('This code failed, and will probably be retried!') raise ValueError('Triggered buggy code') return y * 2 sequence = ( RunnableLambda(add_one) | RunnableLambda(buggy_double).with_retry( # Retry on failure stop_after_attempt=10, wait_exponential_jitter=False ) ) print(sequence.input_schema.schema()) # Show inferred input schema print(sequence.output_schema.schema()) # Show inferred output schema
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.Runnable.html
867445ce28eb-2
print(sequence.output_schema.schema()) # Show inferred output schema print(sequence.invoke(2)) # invoke the sequence (note the retry above!!) As the chains get longer, it can be useful to be able to see intermediate results to debug and trace the chain. You can set the global debug flag to True to enable debug output for all chains: from langchain.globals import set_debug set_debug(True) Alternatively, you can pass existing or custom callbacks to any given chain: … code-block:: python from langchain.callbacks.tracers import ConsoleCallbackHandler chain.invoke(…, config={‘callbacks’: [ConsoleCallbackHandler()]} ) For a UI (and much more) checkout LangSmith: https://docs.smith.langchain.com/ Attributes InputType The type of input this runnable accepts specified as a type annotation. OutputType The type of output this runnable produces specified as a type annotation. config_specs List configurable fields for this runnable. input_schema The type of input this runnable accepts specified as a pydantic model. output_schema The type of output this runnable produces specified as a pydantic model. Methods __init__() abatch(inputs[, config, return_exceptions]) Default implementation runs ainvoke in parallel using asyncio.gather. ainvoke(input[, config]) Default implementation of ainvoke, calls invoke from a thread. astream(input[, config]) Default implementation of astream, which calls ainvoke. astream_log() Stream all output from a runnable, as reported to the callback system. atransform(input[, config]) Default implementation of atransform, which buffers input and calls astream. batch(inputs[, config, return_exceptions]) Default implementation runs invoke in parallel using a thread pool executor. bind(**kwargs)
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.Runnable.html
867445ce28eb-3
Default implementation runs invoke in parallel using a thread pool executor. bind(**kwargs) Bind arguments to a Runnable, returning a new Runnable. config_schema(*[, include]) The type of config this runnable accepts specified as a pydantic model. get_input_schema([config]) Get a pydantic model that can be used to validate input to the runnable. get_output_schema([config]) Get a pydantic model that can be used to validate output to the runnable. invoke(input[, config]) Transform a single input into an output. map() Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. stream(input[, config]) Default implementation of stream, which calls invoke. transform(input[, config]) Default implementation of transform, which buffers input and then calls stream. with_config([config]) Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks, *[, ...]) Add fallbacks to a runnable, returning a new Runnable. with_listeners(*[, on_start, on_end, on_error]) Bind lifecycle listeners to a Runnable, returning a new Runnable. with_retry(*[, retry_if_exception_type, ...]) Create a new Runnable that retries the original runnable on exceptions. with_types(*[, input_type, output_type]) Bind input and output types to a Runnable, returning a new Runnable. __init__()¶ async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output][source]¶ Default implementation runs ainvoke in parallel using asyncio.gather.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.Runnable.html
867445ce28eb-4
Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output[source]¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output][source]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: Literal[True] = 'True', include_names: Optional[Sequence[str]] = 'None', include_types: Optional[Sequence[str]] = 'None', include_tags: Optional[Sequence[str]] = 'None', exclude_names: Optional[Sequence[str]] = 'None', exclude_types: Optional[Sequence[str]] = 'None', exclude_tags: Optional[Sequence[str]] = 'None', **kwargs: Optional[Any]) → AsyncIterator[RunLogPatch][source]¶
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.Runnable.html
867445ce28eb-5
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: Literal[False], include_names: Optional[Sequence[str]] = 'None', include_types: Optional[Sequence[str]] = 'None', include_tags: Optional[Sequence[str]] = 'None', exclude_names: Optional[Sequence[str]] = 'None', exclude_types: Optional[Sequence[str]] = 'None', exclude_tags: Optional[Sequence[str]] = 'None', **kwargs: Optional[Any]) → AsyncIterator[RunLog] Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output][source]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output][source]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. bind(**kwargs: Any) → Runnable[Input, Output][source]¶
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.Runnable.html
867445ce28eb-6
bind(**kwargs: Any) → Runnable[Input, Output][source]¶ Bind arguments to a Runnable, returning a new Runnable. config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel][source]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. abstract invoke(input: Input, config: Optional[RunnableConfig] = None) → Output[source]¶ Transform a single input into an output. Override to implement. Parameters
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.Runnable.html
867445ce28eb-7
Transform a single input into an output. Override to implement. Parameters input – The input to the runnable. config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. map() → Runnable[List[Input], List[Output]][source]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output][source]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output][source]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output][source]¶ Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output][source]¶ Add fallbacks to a runnable, returning a new Runnable. Parameters fallbacks – A sequence of runnables to try if the original runnable fails. exceptions_to_handle – A tuple of exception types to handle. Returns
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.Runnable.html
867445ce28eb-8
exceptions_to_handle – A tuple of exception types to handle. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output][source]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output][source]¶ Create a new Runnable that retries the original runnable on exceptions. Parameters retry_if_exception_type – A tuple of exception types to retry on wait_exponential_jitter – Whether to add jitter to the wait time between retries stop_after_attempt – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output][source]¶ Bind input and output types to a Runnable, returning a new Runnable.
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.base.Runnable.html
be89f6ba731b-0
langchain.schema.runnable.history.RunnableWithMessageHistory¶ class langchain.schema.runnable.history.RunnableWithMessageHistory[source]¶ Bases: RunnableBindingBase A runnable that manages chat message history for another runnable. Base runnable must have inputs and outputs that can be converted to a list ofBaseMessages. RunnableWithMessageHistory must always be called with a config that contains session_id, e.g.:{"configurable": {"session_id": "<SESSION_ID>"}} Example (dict input):from typing import Optional from langchain.chat_models import ChatAnthropic from langchain.memory.chat_message_histories import RedisChatMessageHistory from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain.schema.runnable.history import RunnableWithMessageHistory prompt = ChatPromptTemplate.from_messages([ ("system", "You're an assistant who's good at {ability}"), MessagesPlaceholder(variable_name="history"), ("human", "{question}"), ]) chain = prompt | ChatAnthropic(model="claude-2") chain_with_history = RunnableWithMessageHistory( chain, RedisChatMessageHistory, input_messages_key="question", history_messages_key="history", ) chain_with_history.invoke( {"ability": "math", "question": "What does cosine mean?"}, config={"configurable": {"session_id": "foo"}} ) # -> "Cosine is ..." chain_with_history.invoke( {"ability": "math", "question": "What's its inverse"}, config={"configurable": {"session_id": "foo"}} ) # -> "The inverse of cosine is called arccosine ..." Initialize RunnableWithMessageHistory. Parameters runnable – The base Runnable to be wrapped. Must take as input one of: - A sequence of BaseMessages
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.history.RunnableWithMessageHistory.html
be89f6ba731b-1
Must take as input one of: - A sequence of BaseMessages - A dict with one key for all messages - A dict with one key for the current input string/message(s) and a separate key for historical messages. If the input key points to a string, it will be treated as a HumanMessage in history. Must return as output one of: - A string which can be treated as an AIMessage - A BaseMessage or sequence of BaseMessages - A dict with a key for a BaseMessage or sequence of BaseMessages get_session_history – Function that returns a new BaseChatMessageHistory given a session id. Should take a single positional argument session_id which is a string and a named argument user_id which can be a string or None. e.g.: ```python def get_session_history( session_id: str, *, user_id: Optional[str]=None ) -> BaseChatMessageHistory:… ``` input_messages_key – Must be specified if the base runnable accepts a dict as input. output_messages_key – Must be specified if the base runnable returns a dict as output. history_messages_key – Must be specified if the base runnable accepts a dict as input and expects a separate key for historical messages. **kwargs – Arbitrary additional kwargs to pass to parent class RunnableBindingBase init. param bound: Runnable[Input, Output] [Required]¶ param config: RunnableConfig [Optional]¶ param config_factories: List[Callable[[RunnableConfig], RunnableConfig]] [Optional]¶ param custom_input_type: Optional[Any] = None¶ param custom_output_type: Optional[Any] = None¶ param get_session_history: GetSessionHistoryCallable [Required]¶ param history_messages_key: Optional[str] = None¶ param input_messages_key: Optional[str] = None¶
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.history.RunnableWithMessageHistory.html
be89f6ba731b-2
param input_messages_key: Optional[str] = None¶ param kwargs: Mapping[str, Any] [Optional]¶ param output_messages_key: Optional[str] = None¶ async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Output¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
lang/api.python.langchain.com/en/latest/schema.runnable/langchain.schema.runnable.history.RunnableWithMessageHistory.html