|
---
|
|
license: apache-2.0
|
|
task_categories:
|
|
- object-detection
|
|
tags:
|
|
- COCO
|
|
- Detection
|
|
- '2017'
|
|
pretty_name: COCO detection dataset script
|
|
size_categories:
|
|
- 100K<n<1M
|
|
dataset_info:
|
|
config_name: '2017'
|
|
features:
|
|
- name: id
|
|
dtype: int64
|
|
- name: objects
|
|
struct:
|
|
- name: bbox_id
|
|
sequence: int64
|
|
- name: category_id
|
|
sequence:
|
|
class_label:
|
|
names:
|
|
'0': N/A
|
|
'1': person
|
|
'2': bicycle
|
|
'3': car
|
|
'4': motorcycle
|
|
'5': airplane
|
|
'6': bus
|
|
'7': train
|
|
'8': truck
|
|
'9': boat
|
|
'10': traffic light
|
|
'11': fire hydrant
|
|
'12': street sign
|
|
'13': stop sign
|
|
'14': parking meter
|
|
'15': bench
|
|
'16': bird
|
|
'17': cat
|
|
'18': dog
|
|
'19': horse
|
|
'20': sheep
|
|
'21': cow
|
|
'22': elephant
|
|
'23': bear
|
|
'24': zebra
|
|
'25': giraffe
|
|
'26': hat
|
|
'27': backpack
|
|
'28': umbrella
|
|
'29': shoe
|
|
'30': eye glasses
|
|
'31': handbag
|
|
'32': tie
|
|
'33': suitcase
|
|
'34': frisbee
|
|
'35': skis
|
|
'36': snowboard
|
|
'37': sports ball
|
|
'38': kite
|
|
'39': baseball bat
|
|
'40': baseball glove
|
|
'41': skateboard
|
|
'42': surfboard
|
|
'43': tennis racket
|
|
'44': bottle
|
|
'45': plate
|
|
'46': wine glass
|
|
'47': cup
|
|
'48': fork
|
|
'49': knife
|
|
'50': spoon
|
|
'51': bowl
|
|
'52': banana
|
|
'53': apple
|
|
'54': sandwich
|
|
'55': orange
|
|
'56': broccoli
|
|
'57': carrot
|
|
'58': hot dog
|
|
'59': pizza
|
|
'60': donut
|
|
'61': cake
|
|
'62': chair
|
|
'63': couch
|
|
'64': potted plant
|
|
'65': bed
|
|
'66': mirror
|
|
'67': dining table
|
|
'68': window
|
|
'69': desk
|
|
'70': toilet
|
|
'71': door
|
|
'72': tv
|
|
'73': laptop
|
|
'74': mouse
|
|
'75': remote
|
|
'76': keyboard
|
|
'77': cell phone
|
|
'78': microwave
|
|
'79': oven
|
|
'80': toaster
|
|
'81': sink
|
|
'82': refrigerator
|
|
'83': blender
|
|
'84': book
|
|
'85': clock
|
|
'86': vase
|
|
'87': scissors
|
|
'88': teddy bear
|
|
'89': hair drier
|
|
'90': toothbrush
|
|
- name: bbox
|
|
sequence:
|
|
sequence: float64
|
|
length: 4
|
|
- name: iscrowd
|
|
sequence: int64
|
|
- name: area
|
|
sequence: float64
|
|
- name: height
|
|
dtype: int64
|
|
- name: width
|
|
dtype: int64
|
|
- name: file_name
|
|
dtype: string
|
|
- name: coco_url
|
|
dtype: string
|
|
- name: image_path
|
|
dtype: string
|
|
splits:
|
|
- name: train
|
|
num_bytes: 87231216
|
|
num_examples: 117266
|
|
- name: validation
|
|
num_bytes: 3692192
|
|
num_examples: 4952
|
|
download_size: 20405354669
|
|
dataset_size: 90923408
|
|
---
|
|
## Usage
|
|
For using the COCO dataset (2017), you need to download it manually first:
|
|
```bash
|
|
wget http://images.cocodataset.org/zips/train2017.zip
|
|
wget http://images.cocodataset.org/zips/val2017.zip
|
|
wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
|
|
```
|
|
|
|
Then to load the dataset:
|
|
```python
|
|
COCO_DIR = ...(path to the downloaded dataset directory)...
|
|
ds = datasets.load_dataset(
|
|
"yonigozlan/coco_2017_detection_script",
|
|
"2017",
|
|
data_dir=COCO_DIR,
|
|
trust_remote_code=True,
|
|
)
|
|
```
|
|
|
|
## Benchmarking
|
|
Here is an example of how to benchmark a 🤗 Transformers object detection model on the validation data of the COCO dataset:
|
|
|
|
```python
|
|
import datasets
|
|
import torch
|
|
from PIL import Image
|
|
from torch.utils.data import DataLoader
|
|
from torchmetrics.detection.mean_ap import MeanAveragePrecision
|
|
from tqdm import tqdm
|
|
|
|
from transformers import AutoImageProcessor, AutoModelForObjectDetection
|
|
|
|
# prepare data
|
|
COCO_DIR = ...(path to the downloaded dataset directory)...
|
|
ds = datasets.load_dataset(
|
|
"yonigozlan/coco_2017_detection_script",
|
|
"2017",
|
|
data_dir=COCO_DIR,
|
|
trust_remote_code=True,
|
|
)
|
|
val_data = ds["validation"]
|
|
categories = val_data.features["objects"]["category_id"].feature.names
|
|
id2label = {index: x for index, x in enumerate(categories, start=0)}
|
|
label2id = {v: k for k, v in id2label.items()}
|
|
checkpoint = "facebook/detr-resnet-50"
|
|
|
|
# load model and processor
|
|
model = AutoModelForObjectDetection.from_pretrained(
|
|
checkpoint, torch_dtype=torch.float16
|
|
).to("cuda")
|
|
id2label_model = model.config.id2label
|
|
processor = AutoImageProcessor.from_pretrained(checkpoint)
|
|
|
|
|
|
def collate_fn(batch):
|
|
data = {}
|
|
images = [Image.open(x["image_path"]).convert("RGB") for x in batch]
|
|
data["images"] = images
|
|
annotations = []
|
|
for x in batch:
|
|
boxes = x["objects"]["bbox"]
|
|
# convert to xyxy format
|
|
boxes = [[box[0], box[1], box[0] + box[2], box[1] + box[3]] for box in boxes]
|
|
labels = x["objects"]["category_id"]
|
|
boxes = torch.tensor(boxes)
|
|
labels = torch.tensor(labels)
|
|
annotations.append({"boxes": boxes, "labels": labels})
|
|
data["original_size"] = [(x["height"], x["width"]) for x in batch]
|
|
data["annotations"] = annotations
|
|
return data
|
|
|
|
|
|
# prepare dataloader
|
|
dataloader = DataLoader(val_data, batch_size=8, collate_fn=collate_fn)
|
|
|
|
# prepare metric
|
|
metric = MeanAveragePrecision(box_format="xyxy", class_metrics=True)
|
|
|
|
# evaluation loop
|
|
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader)):
|
|
inputs = (
|
|
processor(batch["images"], return_tensors="pt").to("cuda").to(torch.float16)
|
|
)
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
target_sizes = torch.tensor([x for x in batch["original_size"]]).to("cuda")
|
|
results = processor.post_process_object_detection(
|
|
outputs, threshold=0.0, target_sizes=target_sizes
|
|
)
|
|
|
|
# convert predicted label id to dataset label id
|
|
if len(id2label_model) != len(id2label):
|
|
for result in results:
|
|
result["labels"] = torch.tensor(
|
|
[label2id.get(id2label_model[x.item()], 0) for x in result["labels"]]
|
|
)
|
|
# put results back to cpu
|
|
for result in results:
|
|
for k, v in result.items():
|
|
if isinstance(v, torch.Tensor):
|
|
result[k] = v.to("cpu")
|
|
metric.update(results, batch["annotations"])
|
|
|
|
metrics = metric.compute()
|
|
print(metrics)
|
|
```
|
|
|