content
stringlengths
1
1.04M
input_ids
listlengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
''' undecorate_for_profiling.py Explore all the python functions in the user-specified directory, and remove decoration @profile from appropriate functions ''' import os if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('rootdir') args = parser.parse_args() main(args.rootdir)
[ 7061, 6, 198, 917, 721, 16262, 62, 1640, 62, 5577, 4386, 13, 9078, 198, 198, 35433, 477, 262, 21015, 5499, 287, 262, 2836, 12, 23599, 8619, 11, 198, 392, 4781, 42050, 2488, 13317, 422, 5035, 5499, 198, 7061, 6, 198, 11748, 28686, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1330, 1822, 29572, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 15763, 15908, 11537, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 1388, 7, 22046, 13, 15763, 15908, 8, 198 ]
3.135135
111
## classification.py __all__ = ["Lazy",] from .lazy import LazyClassifier from .utils import * from sklearn.model_selection import train_test_split import pandas
[ 2235, 17923, 13, 9078, 198, 198, 834, 439, 834, 796, 14631, 43, 12582, 1600, 60, 198, 198, 6738, 764, 75, 12582, 1330, 406, 12582, 9487, 7483, 220, 198, 6738, 764, 26791, 1330, 1635, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 4512, 62, 9288, 62, 35312, 198, 11748, 19798, 292, 628, 198, 220, 220, 220, 220, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628 ]
2.54321
81
# Python import logging from os import path # Abstract from genie.abstract import Lookup # Parser from genie.libs import parser from genie.metaparser.util.exceptions import SchemaEmptyParserError # unicon from unicon.eal.dialogs import Statement, Dialog log = logging.getLogger(__name__) def save_device_information(device, **kwargs): """Install the commit packages. This is for IOSXR devices. Args: Mandatory: device (`obj`) : Device object. Returns: True: Result is PASSED False: Result is PASSX Raises: None Example: >>> save_device_information(device=Device()) """ # Checking the config-register has 0x2 # if not configure 0x2 # RP/0/RSP1/CPU0:PE1#admin config-register 0x2 if device.is_ha: conn = device.active else: conn = device # Install commit ( when thre are package to bring up features) # from admin prompt conn.admin_execute('install commit') def get_default_dir(device): """ Get the default directory of this device Args: Mandatory: device (`obj`) : Device object. Returns: default_dir (`str`): Default directory of the system Raises: Exception Example: >>> get_default_dir(device=device) """ try: lookup = Lookup.from_device(device) parsed_dict = lookup.parser.show_platform.Dir(device=device).parse() if ":" in parsed_dict['dir']['dir_name']: default_dir = parsed_dict['dir']['dir_name'] else: default_dir = '' except SchemaEmptyParserError as e: raise Exception("No output when executing 'dir' command") from e except Exception as e: raise Exception("Unable to execute 'dir' command") from e # Return default_dir to caller log.info("Default directory on '{d}' is '{dir}'".format(d=device.name, dir=default_dir)) return default_dir def configure_replace(device, file_location, timeout=60, file_name=None): """Configure replace on device Args: device (`obj`): Device object file_location (`str`): File location timeout (`int`): Timeout value in seconds file_name (`str`): File name Returns: None Raises: pyATS Results """ if file_name: file_location = '{}{}'.format( file_location, file_name) try: # check if file exist device.execute.error_pattern.append('.*Path does not exist.*') device.execute("dir {}".format(file_location)) except Exception: raise Exception("File {} does not exist".format(file_location)) dialog = Dialog([ Statement(pattern=r'\[no\]', action='sendline(y)', loop_continue=True, continue_timer=False)]) device.configure("load {}\ncommit replace".format(file_location), timeout=timeout, reply=dialog)
[ 2, 11361, 198, 11748, 18931, 198, 6738, 28686, 1330, 3108, 198, 198, 2, 27741, 198, 6738, 2429, 494, 13, 397, 8709, 1330, 6803, 929, 198, 198, 2, 23042, 263, 198, 6738, 2429, 494, 13, 8019, 82, 1330, 30751, 198, 6738, 2429, 494, 13, 4164, 499, 28198, 13, 22602, 13, 1069, 11755, 1330, 10011, 2611, 40613, 46677, 12331, 198, 198, 2, 555, 4749, 198, 6738, 555, 4749, 13, 2287, 13, 38969, 18463, 1330, 21983, 11, 21269, 519, 198, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 4299, 3613, 62, 25202, 62, 17018, 7, 25202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 15798, 262, 4589, 10392, 13, 770, 318, 329, 314, 2640, 55, 49, 4410, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 47018, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3335, 357, 63, 26801, 63, 8, 1058, 16232, 2134, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6407, 25, 25414, 318, 41752, 1961, 198, 220, 220, 220, 220, 220, 220, 220, 10352, 25, 25414, 318, 41752, 55, 628, 198, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6045, 628, 220, 220, 220, 17934, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 3613, 62, 25202, 62, 17018, 7, 25202, 28, 24728, 28955, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 39432, 262, 4566, 12, 30238, 468, 657, 87, 17, 198, 220, 220, 220, 1303, 611, 407, 17425, 657, 87, 17, 198, 220, 220, 220, 1303, 25812, 14, 15, 14, 49, 4303, 16, 14, 36037, 15, 25, 11401, 16, 2, 28482, 4566, 12, 30238, 657, 87, 17, 628, 220, 220, 220, 611, 3335, 13, 271, 62, 3099, 25, 198, 220, 220, 220, 220, 220, 220, 220, 48260, 796, 3335, 13, 5275, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 48260, 796, 3335, 628, 220, 220, 220, 1303, 15545, 4589, 357, 618, 294, 260, 389, 5301, 284, 2222, 510, 3033, 8, 198, 220, 220, 220, 1303, 422, 13169, 6152, 198, 220, 220, 220, 48260, 13, 28482, 62, 41049, 10786, 17350, 4589, 11537, 628, 198, 4299, 651, 62, 12286, 62, 15908, 7, 25202, 2599, 198, 220, 220, 220, 37227, 3497, 262, 4277, 8619, 286, 428, 3335, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47018, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3335, 357, 63, 26801, 63, 8, 1058, 16232, 2134, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 15908, 357, 63, 2536, 63, 2599, 15161, 8619, 286, 262, 1080, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35528, 628, 220, 220, 220, 220, 220, 220, 220, 17934, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13163, 651, 62, 12286, 62, 15908, 7, 25202, 28, 25202, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 35847, 796, 6803, 929, 13, 6738, 62, 25202, 7, 25202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 44267, 62, 11600, 796, 35847, 13, 48610, 13, 12860, 62, 24254, 13, 35277, 7, 25202, 28, 25202, 737, 29572, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 11097, 287, 44267, 62, 11600, 17816, 15908, 6, 7131, 6, 15908, 62, 3672, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 15908, 796, 44267, 62, 11600, 17816, 15908, 6, 7131, 6, 15908, 62, 3672, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 15908, 796, 10148, 198, 220, 220, 220, 2845, 10011, 2611, 40613, 46677, 12331, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 2949, 5072, 618, 23710, 705, 15908, 6, 3141, 4943, 422, 304, 198, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 3118, 540, 284, 12260, 705, 15908, 6, 3141, 4943, 422, 304, 628, 220, 220, 220, 1303, 8229, 4277, 62, 15908, 284, 24955, 198, 220, 220, 220, 2604, 13, 10951, 7203, 19463, 8619, 319, 705, 90, 67, 92, 6, 318, 705, 90, 15908, 92, 6, 1911, 18982, 7, 67, 28, 25202, 13, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26672, 28, 12286, 62, 15908, 4008, 198, 220, 220, 220, 1441, 4277, 62, 15908, 628, 198, 4299, 17425, 62, 33491, 7, 25202, 11, 2393, 62, 24886, 11, 26827, 28, 1899, 11, 2393, 62, 3672, 28, 14202, 2599, 198, 220, 220, 220, 37227, 16934, 495, 6330, 319, 3335, 628, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3335, 357, 63, 26801, 63, 2599, 16232, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 24886, 357, 63, 2536, 63, 2599, 9220, 4067, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26827, 357, 63, 600, 63, 2599, 3862, 448, 1988, 287, 4201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 357, 63, 2536, 63, 2599, 9220, 1438, 628, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 628, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12972, 33586, 15691, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 2393, 62, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 24886, 796, 705, 90, 18477, 92, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 24886, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 8, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 611, 2393, 2152, 198, 220, 220, 220, 220, 220, 220, 220, 3335, 13, 41049, 13, 18224, 62, 33279, 13, 33295, 7, 4458, 9, 15235, 857, 407, 2152, 15885, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 3335, 13, 41049, 7203, 15908, 23884, 1911, 18982, 7, 7753, 62, 24886, 4008, 198, 220, 220, 220, 2845, 35528, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 8979, 23884, 857, 407, 2152, 1911, 18982, 7, 7753, 62, 24886, 4008, 628, 220, 220, 220, 17310, 796, 21269, 519, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 21983, 7, 33279, 28, 81, 6, 59, 58, 3919, 59, 60, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 11639, 21280, 1370, 7, 88, 8, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9052, 62, 43043, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 62, 45016, 28, 25101, 8, 12962, 198, 220, 220, 220, 3335, 13, 11250, 495, 7203, 2220, 23884, 59, 77, 41509, 6330, 1911, 18982, 7, 7753, 62, 24886, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26827, 28, 48678, 11, 10971, 28, 38969, 519, 8, 198 ]
2.316143
1,338
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models import django.core.validators
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 7295, 13, 12102, 2024, 628 ]
2.978261
46
import unittest from unittest.mock import ( AsyncMock, call, ) from uuid import ( UUID, ) from minos.saga import ( SagaExecution, SagaExecutionRepository, ) from tests.utils import ( ADD_ORDER, SagaTestCase, ) if __name__ == "__main__": unittest.main()
[ 11748, 555, 715, 395, 198, 6738, 555, 715, 395, 13, 76, 735, 1330, 357, 198, 220, 220, 220, 1081, 13361, 44, 735, 11, 198, 220, 220, 220, 869, 11, 198, 8, 198, 6738, 334, 27112, 1330, 357, 198, 220, 220, 220, 471, 27586, 11, 198, 8, 198, 198, 6738, 949, 418, 13, 82, 8126, 1330, 357, 198, 220, 220, 220, 19743, 23002, 1009, 11, 198, 220, 220, 220, 19743, 23002, 1009, 6207, 13264, 11, 198, 8, 198, 6738, 5254, 13, 26791, 1330, 357, 198, 220, 220, 220, 27841, 62, 12532, 1137, 11, 198, 220, 220, 220, 19743, 14402, 20448, 11, 198, 8, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.301587
126
import numpy as np from scipy.integrate import solve_ivp import matplotlib.pyplot as plt
[ 11748, 299, 32152, 355, 45941, 198, 6738, 629, 541, 88, 13, 18908, 4873, 1330, 8494, 62, 452, 79, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198 ]
2.966667
30
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function """ sample using "by" keyword """ import click # import matplotlib # matplotlib.use("Agg") # import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np import pandas as pd from windrose import (WindroseAxes, FIGSIZE_DEFAULT, DPI_DEFAULT) class Layout(object): """ Inspired from PdfPages https://github.com/matplotlib/matplotlib/blob/master/lib/matplotlib/backends/backend_pdf.py - PdfPages http://matplotlib.org/api/backend_pdf_api.html http://matplotlib.org/examples/pylab_examples/multipage_pdf.html Inspired also from FFMpegWriter http://matplotlib.org/examples/animation/moviewriter.html https://github.com/matplotlib/matplotlib/blob/master/lib/matplotlib/animation.py MovieWriter """ @property S_FIGSIZE_DEFAULT = ",".join(map(str, FIGSIZE_DEFAULT)) @click.command() @click.option("--filename", default="samples/sample_wind_poitiers.csv", help="Input filename") @click.option("--filename_out", default="windrose_animation.mp4", help="Output filename") @click.option("--dpi", default=DPI_DEFAULT, help="Dot per inch for plot generation") @click.option("--figsize", default=S_FIGSIZE_DEFAULT, help="Figure size x,y - default=%s" % S_FIGSIZE_DEFAULT) @click.option("--fps", default=7, help="Number of frame per seconds for video generation") @click.option("--bins_min", default=0.01, help="Bins minimum value") @click.option("--bins_max", default=20, help="Bins maximum value") @click.option("--bins_step", default=2, help="Bins step value") if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 37811, 198, 39873, 1262, 366, 1525, 1, 21179, 198, 37811, 198, 198, 11748, 3904, 198, 198, 2, 1330, 2603, 29487, 8019, 198, 2, 2603, 29487, 8019, 13, 1904, 7203, 46384, 4943, 198, 2, 1330, 2603, 29487, 8019, 355, 285, 489, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 2603, 29487, 8019, 13, 11215, 355, 12067, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 6738, 2344, 13698, 1330, 357, 8731, 13698, 31554, 274, 11, 19697, 33489, 62, 7206, 38865, 11, 360, 11901, 62, 7206, 38865, 8, 628, 198, 198, 4871, 47639, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 45827, 422, 350, 7568, 47798, 198, 220, 220, 220, 220, 220, 220, 220, 3740, 1378, 12567, 13, 785, 14, 6759, 29487, 8019, 14, 6759, 29487, 8019, 14, 2436, 672, 14, 9866, 14, 8019, 14, 6759, 29487, 8019, 14, 1891, 2412, 14, 1891, 437, 62, 12315, 13, 9078, 532, 350, 7568, 47798, 198, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 6759, 29487, 8019, 13, 2398, 14, 15042, 14, 1891, 437, 62, 12315, 62, 15042, 13, 6494, 198, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 6759, 29487, 8019, 13, 2398, 14, 1069, 12629, 14, 79, 2645, 397, 62, 1069, 12629, 14, 16680, 541, 496, 62, 12315, 13, 6494, 628, 220, 220, 220, 45827, 635, 422, 18402, 44, 22071, 34379, 198, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 6759, 29487, 8019, 13, 2398, 14, 1069, 12629, 14, 11227, 341, 14, 76, 709, 769, 43407, 13, 6494, 198, 220, 220, 220, 220, 220, 220, 220, 3740, 1378, 12567, 13, 785, 14, 6759, 29487, 8019, 14, 6759, 29487, 8019, 14, 2436, 672, 14, 9866, 14, 8019, 14, 6759, 29487, 8019, 14, 11227, 341, 13, 9078, 198, 220, 220, 220, 220, 220, 220, 220, 15875, 34379, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 26745, 628, 198, 198, 50, 62, 16254, 33489, 62, 7206, 38865, 796, 366, 553, 13, 22179, 7, 8899, 7, 2536, 11, 19697, 33489, 62, 7206, 38865, 4008, 628, 628, 198, 198, 31, 12976, 13, 21812, 3419, 198, 31, 12976, 13, 18076, 7203, 438, 34345, 1600, 4277, 2625, 82, 12629, 14, 39873, 62, 7972, 62, 7501, 270, 3183, 13, 40664, 1600, 1037, 2625, 20560, 29472, 4943, 198, 31, 12976, 13, 18076, 7203, 438, 34345, 62, 448, 1600, 4277, 2625, 7972, 13698, 62, 11227, 341, 13, 3149, 19, 1600, 1037, 2625, 26410, 29472, 4943, 198, 31, 12976, 13, 18076, 7203, 438, 67, 14415, 1600, 4277, 28, 6322, 40, 62, 7206, 38865, 11, 1037, 2625, 35, 313, 583, 11111, 329, 7110, 5270, 4943, 198, 31, 12976, 13, 18076, 7203, 438, 5647, 7857, 1600, 4277, 28, 50, 62, 16254, 33489, 62, 7206, 38865, 11, 1037, 2625, 11337, 2546, 2124, 11, 88, 532, 4277, 28, 4, 82, 1, 4064, 311, 62, 16254, 33489, 62, 7206, 38865, 8, 198, 31, 12976, 13, 18076, 7203, 438, 29647, 1600, 4277, 28, 22, 11, 1037, 2625, 15057, 286, 5739, 583, 4201, 329, 2008, 5270, 4943, 198, 31, 12976, 13, 18076, 7203, 438, 65, 1040, 62, 1084, 1600, 4277, 28, 15, 13, 486, 11, 1037, 2625, 33, 1040, 5288, 1988, 4943, 198, 31, 12976, 13, 18076, 7203, 438, 65, 1040, 62, 9806, 1600, 4277, 28, 1238, 11, 1037, 2625, 33, 1040, 5415, 1988, 4943, 198, 31, 12976, 13, 18076, 7203, 438, 65, 1040, 62, 9662, 1600, 4277, 28, 17, 11, 1037, 2625, 33, 1040, 2239, 1988, 4943, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.692552
631
import numpy as np import os, sys sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) import utility from epipolar import EPIPOLAR import cv2 if __name__ == '__main__': from option import args import pickle with open('/home/sap/frcnn_keras/mv_train_two_reid.pickle', 'rb') as f: reid_pickle = pickle.load(f) pred_box, pred_box_emb, pred_box_prob, reid_box_gt = reid_pickle reid = REID(args) reid_box_pred, is_valid = reid.get_reid_box(pred_box, pred_box_emb, pred_box_prob) print('reid_box_pred.shape', reid_box_pred.shape, 'is_valid', is_valid.shape) pred_box_batch, pred_box_emb_batch, pred_box_prob_batch = list(map(lambda a : np.expand_dims(a, 0), [pred_box, pred_box_emb, pred_box_prob])) reid_box_pred_batch, is_valid_batch = reid.get_batch(pred_box_batch, pred_box_emb_batch, pred_box_prob_batch) print('reid_box_pred_batch.shape', reid_box_pred_batch.shape, 'is_valid_batch', is_valid_batch.shape) print(np.array_equal(reid_box_pred_batch[0], reid_box_pred), np.array_equal(is_valid_batch[0], is_valid)) ''' is_valid = np.ones((self.num_nms, self.num_valid_cam)) with open('/home/sap/frcnn_keras/pred_box_is_valid.pickle', 'wb') as f: pickle.dump(is_valid, f) for i in range(10) : print('gt', reid_box_gt[i]) print('pred', reid_box_pred[i]) print('valid', is_valid[i]) if(np.array_equal(reid_box_gt, reid_box_pred)) : print('good') else : print('bad') '''
[ 11748, 299, 32152, 355, 45941, 198, 11748, 28686, 11, 25064, 198, 17597, 13, 6978, 13, 33295, 7, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 35514, 198, 11748, 10361, 198, 6738, 2462, 49133, 1330, 14724, 4061, 3535, 1503, 198, 11748, 269, 85, 17, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 422, 3038, 1330, 26498, 198, 220, 220, 220, 1330, 2298, 293, 198, 220, 220, 220, 351, 1280, 10786, 14, 11195, 14, 82, 499, 14, 69, 6015, 20471, 62, 6122, 292, 14, 76, 85, 62, 27432, 62, 11545, 62, 260, 312, 13, 27729, 293, 3256, 705, 26145, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 302, 312, 62, 27729, 293, 796, 2298, 293, 13, 2220, 7, 69, 8, 198, 220, 220, 220, 2747, 62, 3524, 11, 2747, 62, 3524, 62, 24419, 11, 2747, 62, 3524, 62, 1676, 65, 11, 302, 312, 62, 3524, 62, 13655, 796, 302, 312, 62, 27729, 293, 198, 220, 220, 220, 220, 198, 220, 220, 220, 302, 312, 796, 4526, 2389, 7, 22046, 8, 198, 220, 220, 220, 302, 312, 62, 3524, 62, 28764, 11, 318, 62, 12102, 796, 302, 312, 13, 1136, 62, 260, 312, 62, 3524, 7, 28764, 62, 3524, 11, 2747, 62, 3524, 62, 24419, 11, 2747, 62, 3524, 62, 1676, 65, 8, 198, 220, 220, 220, 3601, 10786, 260, 312, 62, 3524, 62, 28764, 13, 43358, 3256, 302, 312, 62, 3524, 62, 28764, 13, 43358, 11, 705, 271, 62, 12102, 3256, 318, 62, 12102, 13, 43358, 8, 198, 220, 220, 220, 2747, 62, 3524, 62, 43501, 11, 2747, 62, 3524, 62, 24419, 62, 43501, 11, 2747, 62, 3524, 62, 1676, 65, 62, 43501, 796, 1351, 7, 8899, 7, 50033, 257, 1058, 45941, 13, 11201, 392, 62, 67, 12078, 7, 64, 11, 657, 828, 685, 28764, 62, 3524, 11, 2747, 62, 3524, 62, 24419, 11, 2747, 62, 3524, 62, 1676, 65, 60, 4008, 198, 220, 220, 220, 302, 312, 62, 3524, 62, 28764, 62, 43501, 11, 318, 62, 12102, 62, 43501, 796, 302, 312, 13, 1136, 62, 43501, 7, 28764, 62, 3524, 62, 43501, 11, 2747, 62, 3524, 62, 24419, 62, 43501, 11, 2747, 62, 3524, 62, 1676, 65, 62, 43501, 8, 198, 220, 220, 220, 3601, 10786, 260, 312, 62, 3524, 62, 28764, 62, 43501, 13, 43358, 3256, 302, 312, 62, 3524, 62, 28764, 62, 43501, 13, 43358, 11, 705, 271, 62, 12102, 62, 43501, 3256, 318, 62, 12102, 62, 43501, 13, 43358, 8, 198, 220, 220, 220, 3601, 7, 37659, 13, 18747, 62, 40496, 7, 260, 312, 62, 3524, 62, 28764, 62, 43501, 58, 15, 4357, 302, 312, 62, 3524, 62, 28764, 828, 45941, 13, 18747, 62, 40496, 7, 271, 62, 12102, 62, 43501, 58, 15, 4357, 318, 62, 12102, 4008, 628, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 318, 62, 12102, 796, 45941, 13, 1952, 19510, 944, 13, 22510, 62, 77, 907, 11, 2116, 13, 22510, 62, 12102, 62, 20991, 4008, 198, 220, 220, 220, 351, 1280, 10786, 14, 11195, 14, 82, 499, 14, 69, 6015, 20471, 62, 6122, 292, 14, 28764, 62, 3524, 62, 271, 62, 12102, 13, 27729, 293, 3256, 705, 39346, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2298, 293, 13, 39455, 7, 271, 62, 12102, 11, 277, 8, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 940, 8, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 13655, 3256, 302, 312, 62, 3524, 62, 13655, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 28764, 3256, 302, 312, 62, 3524, 62, 28764, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 12102, 3256, 318, 62, 12102, 58, 72, 12962, 628, 220, 220, 220, 611, 7, 37659, 13, 18747, 62, 40496, 7, 260, 312, 62, 3524, 62, 13655, 11, 302, 312, 62, 3524, 62, 28764, 4008, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 11274, 11537, 198, 220, 220, 220, 2073, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 14774, 11537, 198, 220, 220, 220, 705, 7061, 198 ]
2.167614
704
__author__ = 'godq' import os import sys from dagflow.flow_operation import send_start_flow_msg as sdk_send_start_flow_msg, \ send_finish_step_msg as sdk_send_finish_step_msg from dagflow.loader import get_DagRepo_Object dag_repo = get_DagRepo_Object()
[ 834, 9800, 834, 796, 705, 25344, 80, 6, 198, 11748, 28686, 198, 11748, 25064, 198, 198, 6738, 48924, 11125, 13, 11125, 62, 27184, 1330, 3758, 62, 9688, 62, 11125, 62, 19662, 355, 264, 34388, 62, 21280, 62, 9688, 62, 11125, 62, 19662, 11, 3467, 198, 220, 220, 220, 3758, 62, 15643, 680, 62, 9662, 62, 19662, 355, 264, 34388, 62, 21280, 62, 15643, 680, 62, 9662, 62, 19662, 198, 6738, 48924, 11125, 13, 29356, 1330, 651, 62, 35, 363, 6207, 78, 62, 10267, 198, 67, 363, 62, 260, 7501, 796, 651, 62, 35, 363, 6207, 78, 62, 10267, 3419, 628, 628, 628, 628, 628, 628, 198 ]
2.54717
106
from common import compare_array from prepare_hash import run_binary_hasher import psycopg2 import tempfile from psycopg2 import sql TABLE_NAME='runs' TABLE_TEXT_MATCHES= 'text_matches' COLUMNS=('id', 'content', 'ASTHash') COLUMNS_MATCH=('first_runs_id', 'second_runs_id', 'match_AST_v1') PROBLEM_ID=3 COUNT_LIMIT = 100
[ 6738, 2219, 1330, 8996, 62, 18747, 198, 6738, 8335, 62, 17831, 1330, 1057, 62, 39491, 62, 10134, 372, 198, 11748, 17331, 22163, 70, 17, 198, 11748, 20218, 7753, 198, 6738, 17331, 22163, 70, 17, 1330, 44161, 628, 198, 38148, 62, 20608, 11639, 48381, 6, 198, 38148, 62, 32541, 62, 44, 11417, 1546, 28, 705, 5239, 62, 6759, 2052, 6, 198, 25154, 5883, 8035, 28, 10786, 312, 3256, 705, 11299, 3256, 705, 1921, 4221, 1077, 11537, 198, 25154, 5883, 8035, 62, 44, 11417, 28, 10786, 11085, 62, 48381, 62, 312, 3256, 705, 12227, 62, 48381, 62, 312, 3256, 705, 15699, 62, 11262, 62, 85, 16, 11537, 198, 4805, 9864, 2538, 44, 62, 2389, 28, 18, 198, 34, 28270, 62, 43, 3955, 2043, 796, 1802, 198 ]
2.596774
124
"""Define a custom static storage class.""" from django.contrib.staticfiles.storage import ManifestStaticFilesStorage class RyrManifestStaticFilesStorage(ManifestStaticFilesStorage): """Define a custom static storage class.""" manifest_strict = False
[ 37811, 7469, 500, 257, 2183, 9037, 6143, 1398, 526, 15931, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 12708, 16624, 13, 35350, 1330, 36757, 45442, 25876, 31425, 628, 198, 4871, 371, 2417, 5124, 8409, 45442, 25876, 31425, 7, 5124, 8409, 45442, 25876, 31425, 2599, 198, 220, 220, 220, 37227, 7469, 500, 257, 2183, 9037, 6143, 1398, 526, 15931, 628, 220, 220, 220, 10561, 62, 301, 2012, 796, 10352, 198 ]
3.797101
69
# Create your tests here. import json from django.contrib.auth.models import User from django.test import TestCase, Client from .models import Todo from django.utils import timezone import datetime class TestTodosModel(TestCase): """测试数据库model""" class TestTodosViews(TestCase): """测试视图函数""" # TODO test def test_todo_put(self): """测试更新土豆""" data = { 'title': '抽烟', } uuid = self.user1.todos.all()[0].uuid rsp = self.client.put('/api/v1/todos/{}/'.format(uuid), data=data, content_type='application/json') self.assertEqual(rsp.status_code, 200) todo = self.user1.todos.all()[0] self.assertEqual(todo.title, data['title']) def test_todo_delete(self): """测试删除土豆""" uuid = self.user1.todos.all()[0].uuid rsp = self.client.delete('/api/v1/todos/{}/'.format(uuid)) print(rsp.content) self.assertEqual(rsp.status_code, 200) with self.assertRaises(Todo.DoesNotExist) as e: self.user1.todos.get(uuid=uuid) def test_todo_field_error(self): """测试字段不正确情况下报错""" data = { 'titl': '抽烟', } uuid = self.user1.todos.all()[0].uuid rsp = self.client.put('/api/v1/todos/{}/'.format(uuid), data=data, content_type='application/json') self.assertEqual(rsp.status_code, 400) class TestAuth(TestCase): """测试jwt认证"""
[ 2, 13610, 534, 5254, 994, 13, 198, 11748, 33918, 198, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 198, 6738, 42625, 14208, 13, 9288, 1330, 6208, 20448, 11, 20985, 198, 6738, 764, 27530, 1330, 309, 24313, 198, 6738, 42625, 14208, 13, 26791, 1330, 640, 11340, 198, 11748, 4818, 8079, 628, 198, 4871, 6208, 51, 375, 418, 17633, 7, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 38184, 233, 46237, 243, 46763, 108, 162, 235, 106, 41753, 241, 19849, 37811, 628, 198, 4871, 6208, 51, 375, 418, 7680, 82, 7, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 38184, 233, 46237, 243, 164, 100, 228, 32368, 122, 49035, 121, 46763, 108, 37811, 628, 220, 220, 220, 1303, 16926, 46, 1332, 628, 220, 220, 220, 825, 1332, 62, 83, 24313, 62, 1996, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38184, 233, 46237, 243, 162, 249, 112, 23877, 108, 28839, 253, 164, 109, 228, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7839, 10354, 705, 162, 232, 121, 163, 225, 253, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 334, 27112, 796, 2116, 13, 7220, 16, 13, 83, 375, 418, 13, 439, 3419, 58, 15, 4083, 12303, 312, 198, 220, 220, 220, 220, 220, 220, 220, 374, 2777, 796, 2116, 13, 16366, 13, 1996, 10786, 14, 15042, 14, 85, 16, 14, 83, 375, 418, 14, 90, 92, 14, 4458, 18982, 7, 12303, 312, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 28, 7890, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2695, 62, 4906, 11639, 31438, 14, 17752, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 81, 2777, 13, 13376, 62, 8189, 11, 939, 8, 198, 220, 220, 220, 220, 220, 220, 220, 284, 4598, 796, 2116, 13, 7220, 16, 13, 83, 375, 418, 13, 439, 3419, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 83, 24313, 13, 7839, 11, 1366, 17816, 7839, 6, 12962, 628, 220, 220, 220, 825, 1332, 62, 83, 24313, 62, 33678, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38184, 233, 46237, 243, 26344, 254, 165, 247, 97, 28839, 253, 164, 109, 228, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 334, 27112, 796, 2116, 13, 7220, 16, 13, 83, 375, 418, 13, 439, 3419, 58, 15, 4083, 12303, 312, 198, 220, 220, 220, 220, 220, 220, 220, 374, 2777, 796, 2116, 13, 16366, 13, 33678, 10786, 14, 15042, 14, 85, 16, 14, 83, 375, 418, 14, 90, 92, 14, 4458, 18982, 7, 12303, 312, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 81, 2777, 13, 11299, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 81, 2777, 13, 13376, 62, 8189, 11, 939, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 51, 24313, 13, 13921, 3673, 3109, 396, 8, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7220, 16, 13, 83, 375, 418, 13, 1136, 7, 12303, 312, 28, 12303, 312, 8, 628, 220, 220, 220, 825, 1332, 62, 83, 24313, 62, 3245, 62, 18224, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38184, 233, 46237, 243, 27764, 245, 162, 106, 113, 38834, 29826, 96, 163, 94, 106, 46349, 227, 37863, 113, 10310, 233, 162, 232, 98, 165, 242, 247, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 83, 270, 75, 10354, 705, 162, 232, 121, 163, 225, 253, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 334, 27112, 796, 2116, 13, 7220, 16, 13, 83, 375, 418, 13, 439, 3419, 58, 15, 4083, 12303, 312, 198, 220, 220, 220, 220, 220, 220, 220, 374, 2777, 796, 2116, 13, 16366, 13, 1996, 10786, 14, 15042, 14, 85, 16, 14, 83, 375, 418, 14, 90, 92, 14, 4458, 18982, 7, 12303, 312, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 28, 7890, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2695, 62, 4906, 11639, 31438, 14, 17752, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 81, 2777, 13, 13376, 62, 8189, 11, 7337, 8, 628, 198, 4871, 6208, 30515, 7, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 38184, 233, 46237, 243, 73, 46569, 164, 106, 97, 46237, 223, 37811, 628 ]
1.741282
889
import bisect from scipy.spatial.distance import euclidean from common import (NO_QUADRANT, NORTH_EAST, NORTH_WEST, SOUTH_EAST, SOUTH_WEST, Boundary, Point, belongs, compute_knn, intersects, quadrants) from node import TreeNode # Constants for tuple access optimization BOUNDARY = 0 POINTS = 1
[ 11748, 47457, 478, 198, 198, 6738, 629, 541, 88, 13, 2777, 34961, 13, 30246, 1330, 304, 36616, 485, 272, 198, 198, 6738, 2219, 1330, 357, 15285, 62, 10917, 2885, 32506, 11, 25273, 4221, 62, 36, 11262, 11, 25273, 4221, 62, 54, 6465, 11, 30065, 4221, 62, 36, 11262, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30065, 4221, 62, 54, 6465, 11, 30149, 560, 11, 6252, 11, 14448, 11, 24061, 62, 15418, 77, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36177, 82, 11, 15094, 15087, 8, 198, 6738, 10139, 1330, 12200, 19667, 198, 198, 2, 4757, 1187, 329, 46545, 1895, 23989, 198, 33, 15919, 13153, 796, 657, 198, 16402, 1268, 4694, 796, 352, 628 ]
2.397163
141
# N, a, b, c, d = list(map(int, input().split())) # # # def jc(x): # r = 1 # for i in range(1, x + 1): # r *= i # return r # # res = int(jc(N * N) / (jc(a) * jc(b) * jc(c) * jc(d))) % # print(res) from collections import defaultdict n = int(input()) edges = defaultdict(list) for _ in range(n - 1): u, v = list(map(int, input().split())) edges[u].append(v) print(subtree(1))
[ 2, 399, 11, 257, 11, 275, 11, 269, 11, 288, 796, 1351, 7, 8899, 7, 600, 11, 5128, 22446, 35312, 3419, 4008, 198, 2, 198, 2, 198, 2, 825, 474, 66, 7, 87, 2599, 198, 2, 220, 197, 81, 796, 352, 198, 2, 220, 197, 1640, 1312, 287, 2837, 7, 16, 11, 2124, 1343, 352, 2599, 198, 2, 220, 197, 197, 81, 1635, 28, 1312, 198, 2, 220, 197, 7783, 374, 198, 2, 198, 2, 581, 796, 493, 7, 48055, 7, 45, 1635, 399, 8, 1220, 357, 48055, 7, 64, 8, 1635, 474, 66, 7, 65, 8, 1635, 474, 66, 7, 66, 8, 1635, 474, 66, 7, 67, 22305, 4064, 198, 2, 3601, 7, 411, 8, 198, 6738, 17268, 1330, 4277, 11600, 198, 198, 77, 796, 493, 7, 15414, 28955, 198, 198, 276, 3212, 796, 4277, 11600, 7, 4868, 8, 198, 1640, 4808, 287, 2837, 7, 77, 532, 352, 2599, 198, 220, 220, 220, 334, 11, 410, 796, 1351, 7, 8899, 7, 600, 11, 5128, 22446, 35312, 3419, 4008, 198, 220, 220, 220, 13015, 58, 84, 4083, 33295, 7, 85, 8, 628, 198, 198, 4798, 7, 7266, 21048, 7, 16, 4008, 198 ]
2.046875
192
#!/usr/bin/env python # -*- encoding: utf-8 -*- # Copyright (c) 2002-2015 "Neo Technology," # Network Engine for Objects in Lund AB [http://neotechnology.com] # # This file is part of Neo4j. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import unicode_literals from argparse import ArgumentParser from json import loads as json_loads import logging from sys import stdout, stderr from neo4j.session import GraphDatabase, CypherError class ColourFormatter(logging.Formatter): """ Colour formatter for pretty log output. """ class Watcher(object): """ Log watcher for debug output. """ handlers = {} if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 21004, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 15069, 357, 66, 8, 6244, 12, 4626, 366, 8199, 78, 8987, 553, 198, 2, 7311, 7117, 329, 35832, 287, 33609, 9564, 685, 4023, 1378, 710, 31201, 13, 785, 60, 198, 2, 198, 2, 770, 2393, 318, 636, 286, 21227, 19, 73, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 628, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 1822, 29572, 1330, 45751, 46677, 198, 6738, 33918, 1330, 15989, 355, 33918, 62, 46030, 198, 11748, 18931, 198, 6738, 25064, 1330, 14367, 448, 11, 336, 1082, 81, 198, 198, 6738, 19102, 19, 73, 13, 29891, 1330, 29681, 38105, 11, 48881, 372, 12331, 628, 198, 4871, 38773, 8479, 1436, 7, 6404, 2667, 13, 8479, 1436, 2599, 198, 220, 220, 220, 37227, 38773, 1296, 1436, 329, 2495, 2604, 5072, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 12242, 2044, 7, 15252, 2599, 198, 220, 220, 220, 37227, 5972, 4383, 2044, 329, 14257, 5072, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 32847, 796, 23884, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
3.395415
349
import tensorflow as tf class Trainer(object): """ Object representing a TensorFlow trainer. """
[ 11748, 11192, 273, 11125, 355, 48700, 628, 198, 4871, 31924, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9515, 10200, 257, 309, 22854, 37535, 21997, 13, 198, 220, 220, 220, 37227, 198 ]
3.083333
36
from dpconverge.data_set import DataSet import numpy as np import pandas as pd from matplotlib import pyplot from sklearn.datasets.samples_generator import make_blobs n_features = 2 points_per_feature = 100 centers = [[2, 1.35], [2, 2], [2, 3], [2.5, 1.5], [2.5, 2], [2.5, 2.5]] blob1, y1 = make_blobs( n_samples=1000, n_features=1, centers=centers[0], cluster_std=[0.1, 0.15], random_state=1 ) blob2, y2 = make_blobs( n_samples=6000, n_features=1, centers=centers[1], cluster_std=[0.2, 0.3], random_state=2 ) blob3, y3 = make_blobs( n_samples=3000, n_features=1, centers=centers[2], cluster_std=[0.2, 0.1], random_state=2 ) blob4, y4 = make_blobs( n_samples=250, n_features=1, centers=centers[3], cluster_std=[0.1, 0.1], random_state=2 ) blob5, y5 = make_blobs( n_samples=250, n_features=1, centers=centers[4], cluster_std=[0.1, 0.1], random_state=3 ) ds = DataSet(parameter_count=2) ds.add_blob(1, blob1) ds.add_blob(2, blob2) ds.add_blob(3, blob3) ds.add_blob(4, blob4) ds.add_blob(5, blob5) # ds.plot_blobs(ds.classifications, x_lim=[0, 4], y_lim=[0, 4]) component_count = 128 iteration_count = 5000 # use multiple runs of BEM to estimate the number of components # and get initial conditions max_log_like = None # the highest value for all runs converged = False results = [] # will be a list of dicts to convert to a DataFrame while not converged: print component_count new_comp_counts = [] for seed in range(1, 17): ds.results = None # reset results ds.cluster( component_count=component_count, burn_in=0, iteration_count=iteration_count, random_seed=seed, model='bem' ) log_like = ds.get_log_likelihood_trace()[0] print log_like if log_like > max_log_like: max_log_like = log_like # if the new log_like is close to the max (within 1%), # see if there are any empty components (pi < 0.0001) if abs(max_log_like - log_like) < abs(max_log_like * 0.01): tmp_comp_count = np.sum(ds.raw_results.pis > 0.0001) new_comp_counts.append(tmp_comp_count) # save good run to our results results.append( { 'comp': component_count, 'true_comp': tmp_comp_count, 'seed': seed, 'log_like': log_like, 'pis': ds.raw_results.pis, 'mus': ds.raw_results.mus, 'sigmas': ds.raw_results.sigmas } ) # ds.plot_classifications(0) if len(new_comp_counts) > 0: if int(np.mean(new_comp_counts)) < component_count: component_count = int(np.mean(new_comp_counts)) else: converged = True else: converged = True results_df = pd.DataFrame( results, columns=['comp', 'true_comp', 'seed', 'log_like'] ) min_comp_count = results_df.comp.min() best_index = results_df[results_df.comp == min_comp_count].log_like.argmax() best_run = results[best_index] ds.results = None ds.cluster( component_count=best_run['comp'], burn_in=0, iteration_count=iteration_count, random_seed=best_run['seed'], model='bem' ) log_like = ds.get_log_likelihood_trace()[0] print log_like ds.plot_classifications(0) # Re-run a chain using the initial conditions from the last iteration last_iter = ds.raw_results.get_iteration(0) initial_conditions = { 'pis': last_iter.pis.flatten(), 'mus': last_iter.mus, 'sigmas': last_iter.sigmas } # reset DataSet results ds.results = None ds.cluster( component_count=best_run['comp'], burn_in=0, iteration_count=iteration_count, random_seed=1, initial_conditions=initial_conditions ) ds.plot_log_likelihood_trace() pyplot.show() valid_components = ds.get_valid_components() for i in range(best_run['comp']): ds.plot_iteration_traces(i) ds.plot_animated_trace() pass
[ 6738, 288, 79, 1102, 332, 469, 13, 7890, 62, 2617, 1330, 6060, 7248, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 198, 6738, 1341, 35720, 13, 19608, 292, 1039, 13, 82, 12629, 62, 8612, 1352, 1330, 787, 62, 2436, 8158, 198, 198, 77, 62, 40890, 796, 362, 198, 13033, 62, 525, 62, 30053, 796, 1802, 198, 1087, 364, 796, 16410, 17, 11, 352, 13, 2327, 4357, 685, 17, 11, 362, 4357, 685, 17, 11, 513, 4357, 685, 17, 13, 20, 11, 352, 13, 20, 4357, 685, 17, 13, 20, 11, 362, 4357, 685, 17, 13, 20, 11, 362, 13, 20, 11907, 198, 198, 2436, 672, 16, 11, 331, 16, 796, 787, 62, 2436, 8158, 7, 198, 220, 220, 220, 299, 62, 82, 12629, 28, 12825, 11, 198, 220, 220, 220, 299, 62, 40890, 28, 16, 11, 198, 220, 220, 220, 10399, 28, 1087, 364, 58, 15, 4357, 198, 220, 220, 220, 13946, 62, 19282, 41888, 15, 13, 16, 11, 657, 13, 1314, 4357, 198, 220, 220, 220, 4738, 62, 5219, 28, 16, 198, 8, 198, 198, 2436, 672, 17, 11, 331, 17, 796, 787, 62, 2436, 8158, 7, 198, 220, 220, 220, 299, 62, 82, 12629, 28, 43434, 11, 198, 220, 220, 220, 299, 62, 40890, 28, 16, 11, 198, 220, 220, 220, 10399, 28, 1087, 364, 58, 16, 4357, 198, 220, 220, 220, 13946, 62, 19282, 41888, 15, 13, 17, 11, 657, 13, 18, 4357, 198, 220, 220, 220, 4738, 62, 5219, 28, 17, 198, 8, 198, 198, 2436, 672, 18, 11, 331, 18, 796, 787, 62, 2436, 8158, 7, 198, 220, 220, 220, 299, 62, 82, 12629, 28, 23924, 11, 198, 220, 220, 220, 299, 62, 40890, 28, 16, 11, 198, 220, 220, 220, 10399, 28, 1087, 364, 58, 17, 4357, 198, 220, 220, 220, 13946, 62, 19282, 41888, 15, 13, 17, 11, 657, 13, 16, 4357, 198, 220, 220, 220, 4738, 62, 5219, 28, 17, 198, 8, 198, 198, 2436, 672, 19, 11, 331, 19, 796, 787, 62, 2436, 8158, 7, 198, 220, 220, 220, 299, 62, 82, 12629, 28, 9031, 11, 198, 220, 220, 220, 299, 62, 40890, 28, 16, 11, 198, 220, 220, 220, 10399, 28, 1087, 364, 58, 18, 4357, 198, 220, 220, 220, 13946, 62, 19282, 41888, 15, 13, 16, 11, 657, 13, 16, 4357, 198, 220, 220, 220, 4738, 62, 5219, 28, 17, 198, 8, 198, 198, 2436, 672, 20, 11, 331, 20, 796, 787, 62, 2436, 8158, 7, 198, 220, 220, 220, 299, 62, 82, 12629, 28, 9031, 11, 198, 220, 220, 220, 299, 62, 40890, 28, 16, 11, 198, 220, 220, 220, 10399, 28, 1087, 364, 58, 19, 4357, 198, 220, 220, 220, 13946, 62, 19282, 41888, 15, 13, 16, 11, 657, 13, 16, 4357, 198, 220, 220, 220, 4738, 62, 5219, 28, 18, 198, 8, 198, 198, 9310, 796, 6060, 7248, 7, 17143, 2357, 62, 9127, 28, 17, 8, 198, 198, 9310, 13, 2860, 62, 2436, 672, 7, 16, 11, 44812, 16, 8, 198, 9310, 13, 2860, 62, 2436, 672, 7, 17, 11, 44812, 17, 8, 198, 9310, 13, 2860, 62, 2436, 672, 7, 18, 11, 44812, 18, 8, 198, 9310, 13, 2860, 62, 2436, 672, 7, 19, 11, 44812, 19, 8, 198, 9310, 13, 2860, 62, 2436, 672, 7, 20, 11, 44812, 20, 8, 198, 198, 2, 288, 82, 13, 29487, 62, 2436, 8158, 7, 9310, 13, 4871, 6637, 11, 2124, 62, 2475, 41888, 15, 11, 604, 4357, 331, 62, 2475, 41888, 15, 11, 604, 12962, 198, 198, 42895, 62, 9127, 796, 13108, 198, 2676, 341, 62, 9127, 796, 23336, 198, 198, 2, 779, 3294, 4539, 286, 347, 3620, 284, 8636, 262, 1271, 286, 6805, 198, 2, 290, 651, 4238, 3403, 198, 198, 9806, 62, 6404, 62, 2339, 796, 6045, 220, 1303, 262, 4511, 1988, 329, 477, 4539, 198, 1102, 332, 2004, 796, 10352, 198, 198, 43420, 796, 17635, 220, 1303, 481, 307, 257, 1351, 286, 8633, 82, 284, 10385, 284, 257, 6060, 19778, 198, 198, 4514, 407, 6718, 2004, 25, 198, 220, 220, 220, 3601, 7515, 62, 9127, 628, 220, 220, 220, 649, 62, 5589, 62, 9127, 82, 796, 17635, 628, 220, 220, 220, 329, 9403, 287, 2837, 7, 16, 11, 1596, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 288, 82, 13, 43420, 796, 6045, 220, 1303, 13259, 2482, 628, 220, 220, 220, 220, 220, 220, 220, 288, 82, 13, 565, 5819, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7515, 62, 9127, 28, 42895, 62, 9127, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4245, 62, 259, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24415, 62, 9127, 28, 2676, 341, 62, 9127, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 28826, 28, 28826, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 11639, 65, 368, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 2339, 796, 288, 82, 13, 1136, 62, 6404, 62, 2339, 11935, 62, 40546, 3419, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 2604, 62, 2339, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2604, 62, 2339, 1875, 3509, 62, 6404, 62, 2339, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 6404, 62, 2339, 796, 2604, 62, 2339, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 262, 649, 2604, 62, 2339, 318, 1969, 284, 262, 3509, 357, 33479, 352, 15920, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 766, 611, 612, 389, 597, 6565, 6805, 357, 14415, 1279, 657, 13, 18005, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2352, 7, 9806, 62, 6404, 62, 2339, 532, 2604, 62, 2339, 8, 1279, 2352, 7, 9806, 62, 6404, 62, 2339, 1635, 657, 13, 486, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 62, 5589, 62, 9127, 796, 45941, 13, 16345, 7, 9310, 13, 1831, 62, 43420, 13, 79, 271, 1875, 657, 13, 18005, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 5589, 62, 9127, 82, 13, 33295, 7, 22065, 62, 5589, 62, 9127, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3613, 922, 1057, 284, 674, 2482, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2482, 13, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5589, 10354, 7515, 62, 9127, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7942, 62, 5589, 10354, 45218, 62, 5589, 62, 9127, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28826, 10354, 9403, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6404, 62, 2339, 10354, 2604, 62, 2339, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 79, 271, 10354, 288, 82, 13, 1831, 62, 43420, 13, 79, 271, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 14664, 10354, 288, 82, 13, 1831, 62, 43420, 13, 14664, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 82, 328, 5356, 10354, 288, 82, 13, 1831, 62, 43420, 13, 82, 328, 5356, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 288, 82, 13, 29487, 62, 4871, 6637, 7, 15, 8, 628, 220, 220, 220, 611, 18896, 7, 3605, 62, 5589, 62, 9127, 82, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 493, 7, 37659, 13, 32604, 7, 3605, 62, 5589, 62, 9127, 82, 4008, 1279, 7515, 62, 9127, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7515, 62, 9127, 796, 493, 7, 37659, 13, 32604, 7, 3605, 62, 5589, 62, 9127, 82, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6718, 2004, 796, 6407, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6718, 2004, 796, 6407, 198, 198, 43420, 62, 7568, 796, 279, 67, 13, 6601, 19778, 7, 198, 220, 220, 220, 2482, 11, 198, 220, 220, 220, 15180, 28, 17816, 5589, 3256, 705, 7942, 62, 5589, 3256, 705, 28826, 3256, 705, 6404, 62, 2339, 20520, 198, 8, 198, 198, 1084, 62, 5589, 62, 9127, 796, 2482, 62, 7568, 13, 5589, 13, 1084, 3419, 198, 13466, 62, 9630, 796, 2482, 62, 7568, 58, 43420, 62, 7568, 13, 5589, 6624, 949, 62, 5589, 62, 9127, 4083, 6404, 62, 2339, 13, 853, 9806, 3419, 198, 198, 13466, 62, 5143, 796, 2482, 58, 13466, 62, 9630, 60, 198, 198, 9310, 13, 43420, 796, 6045, 198, 198, 9310, 13, 565, 5819, 7, 198, 220, 220, 220, 7515, 62, 9127, 28, 13466, 62, 5143, 17816, 5589, 6, 4357, 198, 220, 220, 220, 4245, 62, 259, 28, 15, 11, 198, 220, 220, 220, 24415, 62, 9127, 28, 2676, 341, 62, 9127, 11, 198, 220, 220, 220, 4738, 62, 28826, 28, 13466, 62, 5143, 17816, 28826, 6, 4357, 198, 220, 220, 220, 2746, 11639, 65, 368, 6, 198, 8, 198, 198, 6404, 62, 2339, 796, 288, 82, 13, 1136, 62, 6404, 62, 2339, 11935, 62, 40546, 3419, 58, 15, 60, 198, 4798, 2604, 62, 2339, 198, 198, 9310, 13, 29487, 62, 4871, 6637, 7, 15, 8, 198, 198, 2, 797, 12, 5143, 257, 6333, 1262, 262, 4238, 3403, 422, 262, 938, 24415, 198, 12957, 62, 2676, 796, 288, 82, 13, 1831, 62, 43420, 13, 1136, 62, 2676, 341, 7, 15, 8, 198, 198, 36733, 62, 17561, 1756, 796, 1391, 198, 220, 220, 220, 705, 79, 271, 10354, 938, 62, 2676, 13, 79, 271, 13, 2704, 41769, 22784, 198, 220, 220, 220, 705, 14664, 10354, 938, 62, 2676, 13, 14664, 11, 198, 220, 220, 220, 705, 82, 328, 5356, 10354, 938, 62, 2676, 13, 82, 328, 5356, 198, 92, 198, 198, 2, 13259, 6060, 7248, 2482, 198, 9310, 13, 43420, 796, 6045, 198, 198, 9310, 13, 565, 5819, 7, 198, 220, 220, 220, 7515, 62, 9127, 28, 13466, 62, 5143, 17816, 5589, 6, 4357, 198, 220, 220, 220, 4245, 62, 259, 28, 15, 11, 198, 220, 220, 220, 24415, 62, 9127, 28, 2676, 341, 62, 9127, 11, 198, 220, 220, 220, 4738, 62, 28826, 28, 16, 11, 198, 220, 220, 220, 4238, 62, 17561, 1756, 28, 36733, 62, 17561, 1756, 198, 8, 198, 198, 9310, 13, 29487, 62, 6404, 62, 2339, 11935, 62, 40546, 3419, 198, 9078, 29487, 13, 12860, 3419, 198, 198, 12102, 62, 5589, 3906, 796, 288, 82, 13, 1136, 62, 12102, 62, 5589, 3906, 3419, 198, 198, 1640, 1312, 287, 2837, 7, 13466, 62, 5143, 17816, 5589, 20520, 2599, 198, 220, 220, 220, 288, 82, 13, 29487, 62, 2676, 341, 62, 2213, 2114, 7, 72, 8, 198, 198, 9310, 13, 29487, 62, 11227, 515, 62, 40546, 3419, 198, 198, 6603, 198 ]
2.083714
1,971
from vit_pytorch.vit import ViT from vit_pytorch.vit3d import ViT3d from vit_pytorch.dino import Dino
[ 6738, 9090, 62, 9078, 13165, 354, 13, 85, 270, 1330, 16049, 51, 198, 6738, 9090, 62, 9078, 13165, 354, 13, 85, 270, 18, 67, 1330, 16049, 51, 18, 67, 198, 6738, 9090, 62, 9078, 13165, 354, 13, 67, 2879, 1330, 39430, 198 ]
2.428571
42
# Copyright Pincer 2021-Present # Full MIT License can be found in `LICENSE` at the project root. from __future__ import annotations from dataclasses import dataclass from typing import TYPE_CHECKING from ...utils.api_object import APIObject from ...utils.types import MISSING if TYPE_CHECKING: from typing import List from ..app.select_menu import SelectOption from ..message.button import ButtonStyle from ..message.emoji import Emoji from ...utils.types import APINullable @dataclass(repr=False) class MessageComponent(APIObject): """Represents a Discord Message Component object Attributes ---------- type: :class:`int` Component type options: List[:class:`~pincer.objects.app.select_menu.SelectOption`] The choices in the select, max 25 custom_id: APINullable[:class:`str`] A developer-defined identifier for the component, max 100 characters disabled: APINullable[:class:`bool`] Whether the component is disabled, defaults to `False` style: APINullable[:class:`~pincer.objects.message.button.ButtonStyle`] One of button styles label: APINullable[:class:`str`] Text that appears on the button, max 80 characters emoji: APINullable[:class:`~pincer.objects.message.emoji.Emoji`] ``name``, ``id``, and ``animated`` url: APINullable[:class:`str`] A url for link-style buttons placeholder: APINullable[:class:`str`] Custom placeholder text if nothing is selected, max 100 characters min_values: APINullable[:class:`int`] The minimum number of items that must be chosen; |default| ``1``, min ``0``, max ``25`` max_values: APINullable[:class:`int`] The maximum number of items that can be chosen; |default| ``1``, max ``25`` components: APINullable[List[:class:`~pincer.objects.message.component.MessageComponent`]] A list of child components """ # noqa: E501 type: int options: List[SelectOption] = MISSING custom_id: APINullable[str] = MISSING disabled: APINullable[bool] = False style: APINullable[ButtonStyle] = MISSING label: APINullable[str] = MISSING emoji: APINullable[Emoji] = MISSING url: APINullable[str] = MISSING placeholder: APINullable[str] = MISSING min_values: APINullable[int] = 1 max_values: APINullable[int] = 1 components: APINullable[List[MessageComponent]] = MISSING
[ 2, 15069, 350, 1939, 263, 33448, 12, 34695, 198, 2, 6462, 17168, 13789, 460, 307, 1043, 287, 4600, 43, 2149, 24290, 63, 379, 262, 1628, 6808, 13, 198, 198, 6738, 11593, 37443, 834, 1330, 37647, 198, 198, 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 198, 6738, 19720, 1330, 41876, 62, 50084, 2751, 198, 198, 6738, 2644, 26791, 13, 15042, 62, 15252, 1330, 7824, 10267, 198, 6738, 2644, 26791, 13, 19199, 1330, 49684, 2751, 198, 198, 361, 41876, 62, 50084, 2751, 25, 198, 220, 220, 220, 422, 19720, 1330, 7343, 628, 220, 220, 220, 422, 11485, 1324, 13, 19738, 62, 26272, 1330, 9683, 19722, 198, 220, 220, 220, 422, 11485, 20500, 13, 16539, 1330, 20969, 21466, 198, 220, 220, 220, 422, 11485, 20500, 13, 368, 31370, 1330, 2295, 31370, 198, 220, 220, 220, 422, 2644, 26791, 13, 19199, 1330, 3486, 1268, 724, 540, 628, 198, 31, 19608, 330, 31172, 7, 260, 1050, 28, 25101, 8, 198, 4871, 16000, 21950, 7, 17614, 10267, 2599, 198, 220, 220, 220, 37227, 6207, 6629, 257, 39462, 16000, 35100, 2134, 628, 220, 220, 220, 49213, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2099, 25, 1058, 4871, 25, 63, 600, 63, 198, 220, 220, 220, 220, 220, 220, 220, 35100, 2099, 198, 220, 220, 220, 3689, 25, 7343, 58, 25, 4871, 25, 63, 93, 79, 1939, 263, 13, 48205, 13, 1324, 13, 19738, 62, 26272, 13, 17563, 19722, 63, 60, 198, 220, 220, 220, 220, 220, 220, 220, 383, 7747, 287, 262, 2922, 11, 3509, 1679, 198, 220, 220, 220, 2183, 62, 312, 25, 3486, 1268, 724, 540, 58, 25, 4871, 25, 63, 2536, 63, 60, 198, 220, 220, 220, 220, 220, 220, 220, 317, 8517, 12, 23211, 27421, 329, 262, 7515, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 1802, 3435, 198, 220, 220, 220, 10058, 25, 3486, 1268, 724, 540, 58, 25, 4871, 25, 63, 30388, 63, 60, 198, 220, 220, 220, 220, 220, 220, 220, 10127, 262, 7515, 318, 10058, 11, 198, 220, 220, 220, 220, 220, 220, 220, 26235, 284, 4600, 25101, 63, 198, 220, 220, 220, 3918, 25, 3486, 1268, 724, 540, 58, 25, 4871, 25, 63, 93, 79, 1939, 263, 13, 48205, 13, 20500, 13, 16539, 13, 21864, 21466, 63, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1881, 286, 4936, 12186, 198, 220, 220, 220, 6167, 25, 3486, 1268, 724, 540, 58, 25, 4871, 25, 63, 2536, 63, 60, 198, 220, 220, 220, 220, 220, 220, 220, 8255, 326, 3568, 319, 262, 4936, 11, 3509, 4019, 3435, 198, 220, 220, 220, 44805, 25, 3486, 1268, 724, 540, 58, 25, 4871, 25, 63, 93, 79, 1939, 263, 13, 48205, 13, 20500, 13, 368, 31370, 13, 36, 5908, 7285, 63, 60, 198, 220, 220, 220, 220, 220, 220, 220, 7559, 3672, 15506, 11, 7559, 312, 15506, 11, 290, 7559, 11227, 515, 15506, 198, 220, 220, 220, 19016, 25, 3486, 1268, 724, 540, 58, 25, 4871, 25, 63, 2536, 63, 60, 198, 220, 220, 220, 220, 220, 220, 220, 317, 19016, 329, 2792, 12, 7635, 12163, 198, 220, 220, 220, 46076, 25, 3486, 1268, 724, 540, 58, 25, 4871, 25, 63, 2536, 63, 60, 198, 220, 220, 220, 220, 220, 220, 220, 8562, 46076, 2420, 611, 2147, 318, 6163, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 1802, 3435, 198, 220, 220, 220, 949, 62, 27160, 25, 3486, 1268, 724, 540, 58, 25, 4871, 25, 63, 600, 63, 60, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5288, 1271, 286, 3709, 326, 1276, 307, 7147, 26, 198, 220, 220, 220, 220, 220, 220, 220, 930, 12286, 91, 7559, 16, 15506, 11, 949, 7559, 15, 15506, 11, 3509, 7559, 1495, 15506, 198, 220, 220, 220, 3509, 62, 27160, 25, 3486, 1268, 724, 540, 58, 25, 4871, 25, 63, 600, 63, 60, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5415, 1271, 286, 3709, 326, 460, 307, 7147, 26, 198, 220, 220, 220, 220, 220, 220, 220, 930, 12286, 91, 7559, 16, 15506, 11, 3509, 7559, 1495, 15506, 198, 220, 220, 220, 6805, 25, 3486, 1268, 724, 540, 58, 8053, 58, 25, 4871, 25, 63, 93, 79, 1939, 263, 13, 48205, 13, 20500, 13, 42895, 13, 12837, 21950, 63, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 317, 1351, 286, 1200, 6805, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 2099, 25, 493, 628, 220, 220, 220, 3689, 25, 7343, 58, 17563, 19722, 60, 796, 49684, 2751, 198, 220, 220, 220, 2183, 62, 312, 25, 3486, 1268, 724, 540, 58, 2536, 60, 796, 49684, 2751, 198, 220, 220, 220, 10058, 25, 3486, 1268, 724, 540, 58, 30388, 60, 796, 10352, 198, 220, 220, 220, 3918, 25, 3486, 1268, 724, 540, 58, 21864, 21466, 60, 796, 49684, 2751, 198, 220, 220, 220, 6167, 25, 3486, 1268, 724, 540, 58, 2536, 60, 796, 49684, 2751, 198, 220, 220, 220, 44805, 25, 3486, 1268, 724, 540, 58, 36, 5908, 7285, 60, 796, 49684, 2751, 198, 220, 220, 220, 19016, 25, 3486, 1268, 724, 540, 58, 2536, 60, 796, 49684, 2751, 198, 220, 220, 220, 46076, 25, 3486, 1268, 724, 540, 58, 2536, 60, 796, 49684, 2751, 198, 220, 220, 220, 949, 62, 27160, 25, 3486, 1268, 724, 540, 58, 600, 60, 796, 352, 198, 220, 220, 220, 3509, 62, 27160, 25, 3486, 1268, 724, 540, 58, 600, 60, 796, 352, 198, 220, 220, 220, 6805, 25, 3486, 1268, 724, 540, 58, 8053, 58, 12837, 21950, 11907, 796, 49684, 2751, 198 ]
2.669189
925
#!/usr/bin/env python # coding=utf-8 """ """ import click import os from collections import defaultdict from hundo.fasta import read_fasta, format_fasta_record @click.group() @click.pass_context def cli(obj): """ """ @cli.command("tax-to-newick") @click.argument("tax", type=click.File("r")) @click.argument("fasta", type=click.File("r")) @click.argument("outfasta", type=click.File("w")) @click.argument("outmap", type=click.File("w")) @click.argument("outtre", type=click.File("w")) def tax_to_newick(tax, fasta, outfasta, outmap, outtre): """ Tax and FASTA input files represent clusters at 99%% identity via: https://unite.ut.ee/sh_files/sh_mothur_release_10.10.2017.zip """ t = tree() saved = set() for line in tax: toks = line.strip().split("\t") taxonomies = toks[1].strip(";").split(";") if not taxonomies[0] == "k__Fungi": continue assert(len(taxonomies) == 7) tree_add(t, taxonomies) print(toks[0], taxonomies[6], sep="\t", file=outmap) saved.add(toks[0]) tree_str = tree_to_newick(t) print(tree_str, file=outtre) for name, seq in read_fasta(fasta): if name in saved: print(format_fasta_record(name, seq), file=outfasta) if __name__ == '__main__': cli()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 19617, 28, 40477, 12, 23, 198, 37811, 198, 37811, 198, 11748, 3904, 198, 11748, 28686, 198, 6738, 17268, 1330, 4277, 11600, 198, 6738, 289, 41204, 13, 7217, 64, 1330, 1100, 62, 7217, 64, 11, 5794, 62, 7217, 64, 62, 22105, 628, 198, 31, 12976, 13, 8094, 3419, 198, 31, 12976, 13, 6603, 62, 22866, 198, 4299, 537, 72, 7, 26801, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 37227, 628, 198, 31, 44506, 13, 21812, 7203, 19290, 12, 1462, 12, 3605, 624, 4943, 198, 31, 12976, 13, 49140, 7203, 19290, 1600, 2099, 28, 12976, 13, 8979, 7203, 81, 48774, 198, 31, 12976, 13, 49140, 7203, 7217, 64, 1600, 2099, 28, 12976, 13, 8979, 7203, 81, 48774, 198, 31, 12976, 13, 49140, 7203, 448, 7217, 64, 1600, 2099, 28, 12976, 13, 8979, 7203, 86, 48774, 198, 31, 12976, 13, 49140, 7203, 448, 8899, 1600, 2099, 28, 12976, 13, 8979, 7203, 86, 48774, 198, 31, 12976, 13, 49140, 7203, 448, 33945, 1600, 2099, 28, 12976, 13, 8979, 7203, 86, 48774, 198, 4299, 1687, 62, 1462, 62, 3605, 624, 7, 19290, 11, 3049, 64, 11, 503, 7217, 64, 11, 503, 8899, 11, 503, 33945, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9241, 290, 376, 1921, 5603, 5128, 3696, 2380, 23163, 379, 7388, 16626, 5369, 2884, 25, 198, 220, 220, 220, 3740, 1378, 403, 578, 13, 315, 13, 1453, 14, 1477, 62, 16624, 14, 1477, 62, 76, 849, 333, 62, 20979, 62, 940, 13, 940, 13, 5539, 13, 13344, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 256, 796, 5509, 3419, 198, 220, 220, 220, 7448, 796, 900, 3419, 198, 220, 220, 220, 329, 1627, 287, 1687, 25, 198, 220, 220, 220, 220, 220, 220, 220, 284, 591, 796, 1627, 13, 36311, 22446, 35312, 7203, 59, 83, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1687, 6326, 444, 796, 284, 591, 58, 16, 4083, 36311, 7203, 26, 11074, 35312, 7203, 26, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1687, 6326, 444, 58, 15, 60, 6624, 366, 74, 834, 37, 2150, 72, 1298, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 7, 11925, 7, 19290, 6326, 444, 8, 6624, 767, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5509, 62, 2860, 7, 83, 11, 1687, 6326, 444, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 83, 28194, 58, 15, 4357, 1687, 6326, 444, 58, 21, 4357, 41767, 2625, 59, 83, 1600, 2393, 28, 448, 8899, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7448, 13, 2860, 7, 83, 28194, 58, 15, 12962, 628, 220, 220, 220, 5509, 62, 2536, 796, 5509, 62, 1462, 62, 3605, 624, 7, 83, 8, 198, 220, 220, 220, 3601, 7, 21048, 62, 2536, 11, 2393, 28, 448, 33945, 8, 628, 220, 220, 220, 329, 1438, 11, 33756, 287, 1100, 62, 7217, 64, 7, 7217, 64, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 287, 7448, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 18982, 62, 7217, 64, 62, 22105, 7, 3672, 11, 33756, 828, 2393, 28, 448, 7217, 64, 8, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 537, 72, 3419, 198 ]
2.331541
558
# -*- coding: utf-8 -*- """Abstract base classes. These are necessary to avoid circular imports between core.py and fields.py. """ import copy class FieldABC(object): """Abstract base class from which all Field classes inherit. """ parent = None name = None class SchemaABC(object): """Abstract base class from which all Schemas inherit."""
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 23839, 2779, 6097, 13, 198, 198, 4711, 389, 3306, 284, 3368, 18620, 17944, 1022, 4755, 13, 9078, 290, 7032, 13, 9078, 13, 198, 37811, 198, 11748, 4866, 628, 198, 4871, 7663, 24694, 7, 15252, 2599, 198, 220, 220, 220, 37227, 23839, 2779, 1398, 422, 543, 477, 7663, 6097, 16955, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2560, 796, 6045, 198, 220, 220, 220, 1438, 796, 6045, 628, 198, 4871, 10011, 2611, 24694, 7, 15252, 2599, 198, 220, 220, 220, 37227, 23839, 2779, 1398, 422, 543, 477, 1446, 4411, 292, 16955, 526, 15931, 198 ]
3.306306
111
import torch from torchvision import transforms import os import cv2 import time import numpy as np # alphabetfrom .keys import alphabet import params from torch.autograd import Variable from PIL import Image from utils import strLabelConverter,resizeNormalize converter = strLabelConverter(params.alphabet) # converter = strLabelConverter(''.join(alphabet))
[ 11748, 28034, 198, 6738, 28034, 10178, 1330, 31408, 198, 11748, 28686, 198, 11748, 269, 85, 17, 198, 11748, 640, 198, 11748, 299, 32152, 355, 45941, 198, 2, 24830, 6738, 764, 13083, 1330, 24830, 198, 11748, 42287, 198, 6738, 28034, 13, 2306, 519, 6335, 1330, 35748, 198, 6738, 350, 4146, 1330, 7412, 198, 6738, 3384, 4487, 1330, 965, 33986, 3103, 332, 353, 11, 411, 1096, 26447, 1096, 198, 198, 1102, 332, 353, 796, 965, 33986, 3103, 332, 353, 7, 37266, 13, 17307, 8380, 8, 198, 2, 38394, 796, 965, 33986, 3103, 332, 353, 10786, 4458, 22179, 7, 17307, 8380, 4008, 628, 628 ]
3.594059
101
peers = { ("54.95.16.98", "hxdabfd26d6c01038acae8081580fcce86c802fd01"), ("54.184.241.211", "hx016401bba6a5474e08c925b6390e1ef1d8e0adc9"), ("35.170.9.187", "hx9fa9d224306b0722099d30471b3c2306421aead7"), ("65.108.47.101", "hx54d6f19c3d16b2ef23c09c885ca1ba776aaa80e2"), ("13.91.36.115", "hxc5e0b88cb9092bbd8b004a517996139334752f62"), ("3.139.211.90", "hx9780bfcd8d33c50f56e37f5b27313433c28eb8d8"), ("18.142.22.234", "hx4e39d214d1e682f2acba7a08c4f7591fb5baaade"), ("44.231.211.22", "hx5f5c750fef3fb5cbce15951bf2266f1e412a7797"), ("174.138.3.225", "hx6f89b2c25c15f6294c79810221753131067ed3f8"), ("3.37.81.62", "hxaf33a0c15dbf52b76590422cbb7e2d835034cdf6"), ("44.198.151.153", "hxc72bb8230e602072dc8e1b3abf9a08fd1db7464b"), ("44.235.153.121", "hxfdcd12d6cab5d684859076ded73c726f29b1ea7b"), ("144.91.102.161", "hxd2de5d155251ff62bf2f6c2aa616da6472886165"), ("35.76.191.119", "hxd0f86e4f465dadbb722b8946fcc3ce192f9298d2"), ("35.226.20.97", "hxf08bd5835fdb53dc7c764a5f4dd4e2e6359324e8"), ("3.224.23.76", "hx711c1fcab52461209a2961771fa46476c551fd84"), ("35.74.215.99", "hxfa4996155a6b3805ca2eb1a1abd8b9b488b2413d"), ("50.116.33.7", "hxff6437443e7ed76d2d7f97f0d28d7ae1071bd0bb"), ("3.35.62.17", "hx4e73ac54f410e485f203d6694178cad65df53afb"), ("52.42.174.154", "hxaea3a212ace02dfd68e5c2723d54147978940658"), ("18.162.72.204", "hxffcef8242394d121c3ab4cfb79798f54d295ed6c"), ("52.26.81.40", "hx95248f3757afcb50efa99f529183ba401a82273c"), ("13.37.8.70", "hx262afdeda4eba10fe41fa5ef21796ac2bdcc6629"), ("34.195.17.217", "hxda945d2d1dd8c8882181c1aea066e11137aa87c7"), ("51.38.62.198", "hxfac9169f5ee9d3c85c190cfa1208ca45540dcf38"), ("52.86.145.94", "hx5dc25b8845476fc50efc05f94937376e335d1840"), ("52.78.28.201", "hx76b08e824065d613f46e75445d8d0cfa5f325b33"), ("52.14.174.162", "hxa69031aef1bbb11ea0ee3647b278c158ecdab767"), ("84.201.175.168", "hx3aa778e1f00c77d3490e9e625f1f83ed26f90133"), ("52.196.159.184", "hx9c63f73d3c564a54d0eed84f90718b1ebed16f09"), ("54.185.246.89", "hxdc35f82a3a943e040ae2b9ab2baa2118781b2bc9"), ("44.228.193.64", "hxa0a2eed7b58a8659d9403152c23bd06d210becd8"), ("5.57.248.130", "hx69d49e8365659d7771f7e721d7f9b04367212557"), ("3.37.49.139", "hx280d1e165371820efc9ad431c8153f10e65febd5"), ("3.66.254.197", "hxea200f0408a2283bcd5115abd453ac55a5d15896"), ("95.217.62.85", "hxa30a0e0f59956381a02f8010eab27491026c5c33"), ("52.11.52.137", "hxbf6b8faf021972ae542b8552aa082b794d391fc0"), ("52.207.115.126", "hxf0bc67e700af57efc0a9140948c5678c50669f36"), ("35.157.211.62", "hx8f93620ffddca61bd2c6174dc8d1f55c08b1f7b3"), ("44.239.209.49", "hx9799064f00bd7f95299e3f3a291f2ebcd0d16de8"), ("44.231.14.116", "hx18268e3ab81b3b1e8bf935616aa1f2adc26887e1"), ("175.45.149.84", "hx2f3fb9a9ff98df2145936d2bfcaa3837a289496b"), ("18.162.80.224", "hxfe9762e5a426c7a5ab6775722aa137e5dbcfe8a1"), ("65.21.79.94", "hx3e9deb93255877805d8d81681b41bd2c14d65d0b"), ("3.211.83.18", "hx5b51d3e174559142875a5a2dc74696d8108190a2"), ("52.197.93.207", "hx406c9d6fa4b8a51dba98797610fe5935f613fb07"), ("138.68.63.35", "hxc97bc2b6863b5f0094de7f0e5bcf82a404c4199b"), ("3.213.22.31", "hxbc9c73670c79e8f6f8060551a792c2cf29a8c491"), ("13.213.114.126", "hxf1f6b652925692e3ff2bc394dc593aeaf19b1828"), ("44.193.171.25", "hx0315df35eef97e1e73f1a72b1e78ff7f28ba3176"), ("122.62.140.208", "hxd622e807af0e4c728be88913763ae7907e46cf34"), ("13.115.205.52", "hxfae3b72029950802a4d5721d998d6231f6594ec7"), ("44.230.104.155", "hxede3590816c42131570cf4caa5ee3bce250511fe"), ("54.179.251.173", "hx2b63a793c5b592e66ebb999fbe1fbe9f1715253d"), ("95.216.246.114", "hx1cb5883939f2fd478e92da1260438aa1f03440ca"), ("54.184.11.33", "hxdeee3ad7f5d20c58b22eb340835dbcee092dc943"), ("88.99.95.232", "hx21a916b7a01b900861ca3f3b7ac76ba316169f8c"), ("18.130.92.113", "hx2bbb1b0300f5dc0caa0e1a3ba1701a22e7590763"), ("44.237.21.74", "hxed7175f73f63ce8dfeede1db8c4b66179eb7a857"), ("13.124.96.54", "hx004783f10b0bd56764535cf931650dfe6d42cd9e"), ("23.88.64.232", "hx5b97bbec2e555289351806103833a465b7fbbd47"), ("18.168.74.158", "hx5dff0f5953e8cb0d50aaabff041a524e27718bd2"), ("54.151.184.244", "hx3d5c3ce7554f4d762f6396e53b2c5de07074ec39"), ("162.55.0.172", "hx5cb1e6d96eb1db986cee37a0a23a796de802a4bc"), ("3.86.106.108", "hx28c08b299995a88756af64374e13db2240bc3142"), ("3.37.14.12", "hx05583ffcc9a4be7ee1f72b28309d9849909f1d83"), ("54.199.171.19", "hx099b1e6b271bc6cd67d930a1c62ee5f3ed0e2c7d"), ("52.43.50.168", "hx46b5ae2cff977dba31bfd9e2de5b7b6138ee603f"), ("18.177.69.75", "hxc4abe579eb41603338b282ecaccfdd9d0b8d4501"), ("44.226.200.169", "hxa0a99a5e7036b7ed439fbbdb35f8d66f2177a2ae"), ("54.69.244.180", "hxb729903aeb2712cb0bbb3adcb10594fdf999eb11"), ("3.222.186.210", "hx80c0b58520091237df582f7adbca00425d6acf28"), ("35.75.153.60", "hx24de62ec990fc542ea36e3d4251e25ba97081b57"), ("54.68.57.186", "hx02abcab8308e2bee00b25131830fcb9f7924a71c"), ("18.118.232.28", "hx81719dcfe8f58ca07044b7bede49cecd61f9bd3f"), ("88.99.242.253", "hx35a0a985a9abd8cbbc71bec1aba74ca204369c8a"), ("34.133.160.215", "hxda4e0b39fb6df66af8a4e39942c49662a890f320"), ("135.181.27.43", "hx55f2cc3244350085734f4e405f761ecf3d2095b3"), ("54.248.178.76", "hx716c8792459d0070e6893ec57ed9f1a1bfb7ba26"), ("44.195.4.233", "hxe92a411b1b24975c4b04ea761d9a046bdc721810"), ("18.176.163.230", "hx398797e9867f859c017224627f0baf3a57268bc8"), ("44.237.243.143", "hx25b967b38d1bd23e43977eeac7363c9d6c24b873"), ("54.221.253.207", "hxd9b992f15ac1e757f4bbfc4eb9b072644eb2c269"), ("203.249.225.11", "hx157dabb9e156e5ea53af3ca33a5931257b9c9699"), ("210.104.190.246", "hxf9a10ec8d5810c49de6c1dff5f940fc5bfcd2006"), ("185.214.135.246", "hx9571df0bd727ce18adc177e8fd6bc45f885b3382"), ("44.234.218.52", "hxb03cca443a0ce9e21d343973626b2b3377a5cc36"), ("144.76.203.165", "hx554ea6c0c56e6f30682dcaa79a326da3a364899f"), ("185.172.110.75", "hxe4c008b838e8a9a7c065f20f393974de4c86f917"), ("3.94.191.92", "hx9960c2b06fbe238ffcc239fe16b3ef052d5712ce"), ("44.238.168.211", "hx49ce06eab947cb5ba2475781044d305af9d8d9d5"), ("3.143.205.135", "hxd5059fec8665bc7b769f4893aef65cf00049377a"), }
[ 431, 364, 796, 1391, 198, 220, 220, 220, 5855, 4051, 13, 3865, 13, 1433, 13, 4089, 1600, 366, 71, 24954, 397, 16344, 2075, 67, 21, 66, 20943, 2548, 330, 3609, 28362, 1314, 1795, 16072, 344, 4521, 66, 30863, 16344, 486, 12340, 198, 220, 220, 220, 5855, 4051, 13, 22883, 13, 28872, 13, 21895, 1600, 366, 71, 87, 486, 2414, 486, 65, 7012, 21, 64, 20, 38652, 68, 2919, 66, 46351, 65, 21, 25964, 68, 16, 891, 16, 67, 23, 68, 15, 324, 66, 24, 12340, 198, 220, 220, 220, 5855, 2327, 13, 17279, 13, 24, 13, 23451, 1600, 366, 71, 87, 24, 13331, 24, 67, 24137, 20548, 65, 2998, 17572, 2079, 67, 1270, 38339, 65, 18, 66, 19214, 2414, 2481, 64, 1329, 22, 12340, 198, 220, 220, 220, 5855, 2996, 13, 15711, 13, 2857, 13, 8784, 1600, 366, 71, 87, 4051, 67, 21, 69, 1129, 66, 18, 67, 1433, 65, 17, 891, 1954, 66, 2931, 66, 44230, 6888, 16, 7012, 39509, 46071, 1795, 68, 17, 12340, 198, 220, 220, 220, 5855, 1485, 13, 6420, 13, 2623, 13, 15363, 1600, 366, 71, 25306, 20, 68, 15, 65, 3459, 21101, 44675, 17, 11848, 67, 23, 65, 22914, 64, 48170, 38565, 20219, 31380, 43665, 69, 5237, 12340, 198, 220, 220, 220, 5855, 18, 13, 20219, 13, 21895, 13, 3829, 1600, 366, 71, 87, 5607, 1795, 19881, 10210, 23, 67, 2091, 66, 1120, 69, 3980, 68, 2718, 69, 20, 65, 27367, 19880, 2091, 66, 2078, 1765, 23, 67, 23, 12340, 198, 220, 220, 220, 5855, 1507, 13, 23726, 13, 1828, 13, 24409, 1600, 366, 71, 87, 19, 68, 2670, 67, 22291, 67, 16, 68, 43950, 69, 17, 330, 7012, 22, 64, 2919, 66, 19, 69, 2425, 6420, 21855, 20, 7012, 64, 671, 12340, 198, 220, 220, 220, 5855, 2598, 13, 25667, 13, 21895, 13, 1828, 1600, 366, 71, 87, 20, 69, 20, 66, 15426, 69, 891, 18, 21855, 20, 21101, 344, 1314, 50119, 19881, 1828, 2791, 69, 16, 68, 39226, 64, 3324, 5607, 12340, 198, 220, 220, 220, 5855, 22985, 13, 20107, 13, 18, 13, 18182, 1600, 366, 71, 87, 21, 69, 4531, 65, 17, 66, 1495, 66, 1314, 69, 21, 27696, 66, 3720, 40215, 1828, 1558, 4310, 1485, 940, 3134, 276, 18, 69, 23, 12340, 198, 220, 220, 220, 5855, 18, 13, 2718, 13, 6659, 13, 5237, 1600, 366, 71, 87, 1878, 2091, 64, 15, 66, 1314, 9945, 69, 4309, 65, 29143, 24, 3023, 1828, 66, 11848, 22, 68, 17, 67, 5999, 1120, 2682, 66, 7568, 21, 12340, 198, 220, 220, 220, 5855, 2598, 13, 22337, 13, 24309, 13, 21395, 1600, 366, 71, 25306, 4761, 11848, 6469, 1270, 68, 1899, 1238, 4761, 17896, 23, 68, 16, 65, 18, 397, 69, 24, 64, 2919, 16344, 16, 9945, 4524, 2414, 65, 12340, 198, 220, 220, 220, 5855, 2598, 13, 22370, 13, 21395, 13, 19244, 1600, 366, 71, 87, 16344, 10210, 1065, 67, 21, 66, 397, 20, 67, 3104, 2780, 3270, 2998, 21, 9395, 4790, 66, 22, 2075, 69, 1959, 65, 16, 18213, 22, 65, 12340, 198, 220, 220, 220, 5855, 18444, 13, 6420, 13, 15377, 13, 25948, 1600, 366, 71, 24954, 17, 2934, 20, 67, 18742, 28072, 487, 5237, 19881, 17, 69, 21, 66, 17, 7252, 44214, 6814, 33981, 2078, 4521, 20986, 12340, 198, 220, 220, 220, 5855, 2327, 13, 4304, 13, 26492, 13, 16315, 1600, 366, 71, 24954, 15, 69, 4521, 68, 19, 69, 42018, 47984, 11848, 22, 1828, 65, 4531, 3510, 69, 535, 18, 344, 17477, 69, 24, 27728, 67, 17, 12340, 198, 220, 220, 220, 5855, 2327, 13, 24909, 13, 1238, 13, 5607, 1600, 366, 71, 26152, 2919, 17457, 3365, 2327, 69, 9945, 4310, 17896, 22, 66, 22, 2414, 64, 20, 69, 19, 1860, 19, 68, 17, 68, 48250, 6052, 1731, 68, 23, 12340, 198, 220, 220, 220, 5855, 18, 13, 24137, 13, 1954, 13, 4304, 1600, 366, 71, 87, 22, 1157, 66, 16, 16072, 397, 20, 26912, 1065, 2931, 64, 27137, 1558, 4869, 13331, 44578, 4304, 66, 43697, 16344, 5705, 12340, 198, 220, 220, 220, 5855, 2327, 13, 4524, 13, 23349, 13, 2079, 1600, 366, 71, 87, 13331, 28324, 21, 18742, 64, 21, 65, 23734, 20, 6888, 17, 1765, 16, 64, 16, 397, 67, 23, 65, 24, 65, 33646, 65, 1731, 1485, 67, 12340, 198, 220, 220, 220, 5855, 1120, 13, 18298, 13, 2091, 13, 22, 1600, 366, 71, 47596, 2414, 2718, 34938, 68, 22, 276, 4304, 67, 17, 67, 22, 69, 5607, 69, 15, 67, 2078, 67, 22, 3609, 940, 4869, 17457, 15, 11848, 12340, 198, 220, 220, 220, 5855, 18, 13, 2327, 13, 5237, 13, 1558, 1600, 366, 71, 87, 19, 68, 4790, 330, 4051, 69, 33289, 68, 32642, 69, 22416, 67, 2791, 5824, 23188, 66, 324, 2996, 7568, 4310, 1878, 65, 12340, 198, 220, 220, 220, 5855, 4309, 13, 3682, 13, 22985, 13, 21526, 1600, 366, 71, 87, 44705, 18, 64, 21777, 558, 2999, 7568, 67, 3104, 68, 20, 66, 1983, 1954, 67, 4051, 1415, 3720, 40401, 1821, 38431, 12340, 198, 220, 220, 220, 5855, 1507, 13, 25061, 13, 4761, 13, 18638, 1600, 366, 71, 47596, 344, 69, 23, 1731, 1954, 5824, 67, 19244, 66, 18, 397, 19, 12993, 65, 3720, 43240, 69, 4051, 67, 25710, 276, 21, 66, 12340, 198, 220, 220, 220, 5855, 4309, 13, 2075, 13, 6659, 13, 1821, 1600, 366, 71, 87, 3865, 23045, 69, 22318, 22, 1878, 21101, 1120, 891, 64, 2079, 69, 49721, 24839, 7012, 21844, 64, 23, 1828, 4790, 66, 12340, 198, 220, 220, 220, 5855, 1485, 13, 2718, 13, 23, 13, 2154, 1600, 366, 71, 87, 29119, 1878, 9395, 64, 19, 1765, 64, 940, 5036, 3901, 13331, 20, 891, 24591, 4846, 330, 17, 17457, 535, 2791, 1959, 12340, 198, 220, 220, 220, 5855, 2682, 13, 22186, 13, 1558, 13, 24591, 1600, 366, 71, 87, 6814, 24, 2231, 67, 17, 67, 16, 1860, 23, 66, 3459, 6469, 27057, 66, 16, 44705, 15, 2791, 68, 1157, 19708, 7252, 5774, 66, 22, 12340, 198, 220, 220, 220, 5855, 4349, 13, 2548, 13, 5237, 13, 22337, 1600, 366, 71, 26152, 330, 24, 22172, 69, 20, 1453, 24, 67, 18, 66, 5332, 66, 19782, 12993, 64, 1065, 2919, 6888, 30505, 1821, 67, 12993, 2548, 12340, 198, 220, 220, 220, 5855, 4309, 13, 4521, 13, 18781, 13, 5824, 1600, 366, 71, 87, 20, 17896, 1495, 65, 3459, 2231, 35435, 16072, 1120, 891, 66, 2713, 69, 48581, 2718, 32128, 68, 27326, 67, 1507, 1821, 12340, 198, 220, 220, 220, 5855, 4309, 13, 3695, 13, 2078, 13, 1264, 1600, 366, 71, 87, 4304, 65, 2919, 68, 23, 16102, 2996, 67, 47512, 69, 3510, 68, 41874, 2231, 67, 23, 67, 15, 12993, 64, 20, 69, 26582, 65, 2091, 12340, 198, 220, 220, 220, 5855, 4309, 13, 1415, 13, 22985, 13, 25061, 1600, 366, 71, 27865, 3388, 43637, 64, 891, 16, 11848, 65, 1157, 18213, 15, 1453, 26780, 22, 65, 25870, 66, 21273, 21142, 397, 32059, 12340, 198, 220, 220, 220, 5855, 5705, 13, 1264, 13, 17430, 13, 14656, 1600, 366, 71, 87, 18, 7252, 39761, 68, 16, 69, 405, 66, 3324, 67, 2682, 3829, 68, 24, 68, 26704, 69, 16, 69, 5999, 276, 2075, 69, 46815, 2091, 12340, 198, 220, 220, 220, 5855, 4309, 13, 25272, 13, 19707, 13, 22883, 1600, 366, 71, 87, 24, 66, 5066, 69, 4790, 67, 18, 66, 20, 2414, 64, 4051, 67, 15, 2308, 5705, 69, 24, 2998, 1507, 65, 16, 1765, 276, 1433, 69, 2931, 12340, 198, 220, 220, 220, 5855, 4051, 13, 21652, 13, 26912, 13, 4531, 1600, 366, 71, 87, 17896, 2327, 69, 6469, 64, 18, 64, 24, 3559, 68, 36676, 3609, 17, 65, 24, 397, 17, 7012, 64, 17, 16817, 49703, 65, 17, 15630, 24, 12340, 198, 220, 220, 220, 5855, 2598, 13, 23815, 13, 24943, 13, 2414, 1600, 366, 71, 27865, 15, 64, 17, 2308, 22, 65, 3365, 64, 23, 36445, 67, 24, 31552, 17827, 66, 1954, 17457, 3312, 67, 21536, 9423, 67, 23, 12340, 198, 220, 220, 220, 5855, 20, 13, 3553, 13, 23045, 13, 12952, 1600, 366, 71, 87, 3388, 67, 2920, 68, 23, 24760, 36445, 67, 3324, 4869, 69, 22, 68, 22, 2481, 67, 22, 69, 24, 65, 3023, 2623, 4761, 1065, 41948, 12340, 198, 220, 220, 220, 5855, 18, 13, 2718, 13, 2920, 13, 20219, 1600, 366, 71, 87, 21033, 67, 16, 68, 20986, 2718, 1507, 1238, 891, 66, 24, 324, 50080, 66, 23, 21395, 69, 940, 68, 2996, 69, 1765, 67, 20, 12340, 198, 220, 220, 220, 5855, 18, 13, 2791, 13, 24970, 13, 24991, 1600, 366, 71, 87, 18213, 2167, 69, 15, 26200, 64, 1828, 5999, 65, 10210, 20, 15363, 397, 67, 36625, 330, 2816, 64, 20, 67, 1314, 48712, 12340, 198, 220, 220, 220, 5855, 3865, 13, 24591, 13, 5237, 13, 5332, 1600, 366, 71, 27865, 1270, 64, 15, 68, 15, 69, 43452, 3980, 36626, 64, 2999, 69, 23, 20943, 68, 397, 1983, 2920, 940, 2075, 66, 20, 66, 2091, 12340, 198, 220, 220, 220, 5855, 4309, 13, 1157, 13, 4309, 13, 19708, 1600, 366, 71, 87, 19881, 21, 65, 23, 69, 1878, 2999, 41023, 3609, 20, 3682, 65, 23, 40427, 7252, 2919, 17, 65, 50242, 67, 37710, 16072, 15, 12340, 198, 220, 220, 220, 5855, 4309, 13, 22745, 13, 15363, 13, 19420, 1600, 366, 71, 26152, 15, 15630, 3134, 68, 9879, 1878, 3553, 891, 66, 15, 64, 24, 1415, 2931, 2780, 66, 20, 30924, 66, 1120, 36657, 69, 2623, 12340, 198, 220, 220, 220, 5855, 2327, 13, 18458, 13, 21895, 13, 5237, 1600, 366, 71, 87, 23, 69, 24, 2623, 1238, 487, 1860, 6888, 5333, 17457, 17, 66, 21, 22985, 17896, 23, 67, 16, 69, 2816, 66, 2919, 65, 16, 69, 22, 65, 18, 12340, 198, 220, 220, 220, 5855, 2598, 13, 23516, 13, 22567, 13, 2920, 1600, 366, 71, 87, 5607, 34155, 2414, 69, 405, 17457, 22, 69, 3865, 22579, 68, 18, 69, 18, 64, 33551, 69, 17, 1765, 10210, 15, 67, 1433, 2934, 23, 12340, 198, 220, 220, 220, 5855, 2598, 13, 25667, 13, 1415, 13, 18298, 1600, 366, 71, 87, 1507, 25022, 68, 18, 397, 6659, 65, 18, 65, 16, 68, 23, 19881, 24, 32066, 1433, 7252, 16, 69, 17, 324, 66, 2075, 46660, 68, 16, 12340, 198, 220, 220, 220, 5855, 17430, 13, 2231, 13, 19442, 13, 5705, 1600, 366, 71, 87, 17, 69, 18, 21855, 24, 64, 24, 487, 4089, 7568, 22291, 3270, 2623, 67, 17, 19881, 6888, 64, 2548, 2718, 64, 27693, 37747, 65, 12340, 198, 220, 220, 220, 5855, 1507, 13, 25061, 13, 1795, 13, 24137, 1600, 366, 71, 87, 5036, 24, 48194, 68, 20, 64, 42780, 66, 22, 64, 20, 397, 3134, 39251, 1828, 7252, 19708, 68, 20, 9945, 66, 5036, 23, 64, 16, 12340, 198, 220, 220, 220, 5855, 2996, 13, 2481, 13, 3720, 13, 5824, 1600, 366, 71, 87, 18, 68, 24, 11275, 6052, 1495, 3365, 3324, 28256, 67, 23, 67, 23, 1433, 6659, 65, 3901, 17457, 17, 66, 1415, 67, 2996, 67, 15, 65, 12340, 198, 220, 220, 220, 5855, 18, 13, 21895, 13, 5999, 13, 1507, 1600, 366, 71, 87, 20, 65, 4349, 67, 18, 68, 1558, 2231, 3270, 1415, 2078, 2425, 64, 20, 64, 17, 17896, 4524, 38205, 67, 23, 15711, 19782, 64, 17, 12340, 198, 220, 220, 220, 5855, 4309, 13, 24991, 13, 6052, 13, 22745, 1600, 366, 71, 87, 29703, 66, 24, 67, 21, 13331, 19, 65, 23, 64, 4349, 67, 7012, 4089, 3720, 4304, 940, 5036, 3270, 2327, 69, 47512, 21855, 2998, 12340, 198, 220, 220, 220, 5855, 20107, 13, 3104, 13, 5066, 13, 2327, 1600, 366, 71, 25306, 5607, 15630, 17, 65, 3104, 5066, 65, 20, 69, 405, 5824, 2934, 22, 69, 15, 68, 20, 65, 12993, 6469, 64, 26429, 66, 19, 19104, 65, 12340, 198, 220, 220, 220, 5855, 18, 13, 26427, 13, 1828, 13, 3132, 1600, 366, 71, 87, 15630, 24, 66, 49150, 2154, 66, 3720, 68, 23, 69, 21, 69, 1795, 1899, 43697, 64, 48156, 66, 17, 12993, 1959, 64, 23, 66, 41289, 12340, 198, 220, 220, 220, 5855, 1485, 13, 26427, 13, 16562, 13, 19420, 1600, 366, 71, 26152, 16, 69, 21, 65, 2996, 1959, 1495, 46589, 68, 18, 487, 17, 15630, 34626, 17896, 49051, 3609, 1878, 1129, 65, 1507, 2078, 12340, 198, 220, 220, 220, 5855, 2598, 13, 24943, 13, 27192, 13, 1495, 1600, 366, 71, 87, 3070, 1314, 7568, 2327, 68, 891, 5607, 68, 16, 68, 4790, 69, 16, 64, 4761, 65, 16, 68, 3695, 487, 22, 69, 2078, 7012, 18, 24096, 12340, 198, 220, 220, 220, 5855, 18376, 13, 5237, 13, 15187, 13, 21315, 1600, 366, 71, 24954, 21, 1828, 68, 36928, 1878, 15, 68, 19, 66, 48524, 1350, 39121, 1485, 49641, 3609, 3720, 2998, 68, 3510, 12993, 2682, 12340, 198, 220, 220, 220, 5855, 1485, 13, 15363, 13, 21261, 13, 4309, 1600, 366, 71, 26152, 3609, 18, 65, 23906, 22579, 1120, 30863, 64, 19, 67, 3553, 2481, 67, 34808, 67, 21, 25667, 69, 2996, 5824, 721, 22, 12340, 198, 220, 220, 220, 5855, 2598, 13, 19214, 13, 13464, 13, 18742, 1600, 366, 71, 87, 18654, 30743, 2919, 1433, 66, 3682, 1485, 1314, 2154, 12993, 19, 6888, 64, 20, 1453, 18, 65, 344, 9031, 41647, 5036, 12340, 198, 220, 220, 220, 5855, 4051, 13, 21738, 13, 28072, 13, 25399, 1600, 366, 71, 87, 17, 65, 5066, 64, 44750, 66, 20, 65, 45839, 68, 2791, 1765, 65, 17032, 69, 1350, 16, 69, 1350, 24, 69, 1558, 1314, 28592, 67, 12340, 198, 220, 220, 220, 5855, 3865, 13, 20666, 13, 26912, 13, 16562, 1600, 366, 71, 87, 16, 21101, 39118, 2670, 2670, 69, 17, 16344, 29059, 68, 5892, 6814, 1065, 31916, 2548, 7252, 16, 69, 49841, 1821, 6888, 12340, 198, 220, 220, 220, 5855, 4051, 13, 22883, 13, 1157, 13, 2091, 1600, 366, 71, 24954, 1453, 68, 18, 324, 22, 69, 20, 67, 1238, 66, 3365, 65, 1828, 1765, 23601, 23, 2327, 9945, 344, 68, 2931, 17, 17896, 24, 3559, 12340, 198, 220, 220, 220, 5855, 3459, 13, 2079, 13, 3865, 13, 24339, 1600, 366, 71, 87, 2481, 64, 48894, 65, 22, 64, 486, 65, 12865, 4521, 16, 6888, 18, 69, 18, 65, 22, 330, 4304, 7012, 33400, 22172, 69, 23, 66, 12340, 198, 220, 220, 220, 5855, 1507, 13, 12952, 13, 5892, 13, 16616, 1600, 366, 71, 87, 17, 11848, 65, 16, 65, 3070, 405, 69, 20, 17896, 15, 6888, 64, 15, 68, 16, 64, 18, 7012, 1558, 486, 64, 1828, 68, 38314, 2998, 5066, 12340, 198, 220, 220, 220, 5855, 2598, 13, 24693, 13, 2481, 13, 4524, 1600, 366, 71, 87, 276, 22, 17430, 69, 4790, 69, 5066, 344, 23, 7568, 2308, 68, 16, 9945, 23, 66, 19, 65, 2791, 21738, 1765, 22, 64, 23, 3553, 12340, 198, 220, 220, 220, 5855, 1485, 13, 17464, 13, 4846, 13, 4051, 1600, 366, 71, 87, 405, 2857, 5999, 69, 940, 65, 15, 17457, 20, 42548, 2231, 2327, 12993, 6052, 1433, 1120, 67, 5036, 21, 67, 3682, 10210, 24, 68, 12340, 198, 220, 220, 220, 5855, 1954, 13, 3459, 13, 2414, 13, 24339, 1600, 366, 71, 87, 20, 65, 5607, 65, 9423, 17, 68, 31046, 27693, 2327, 1507, 3312, 940, 2548, 2091, 64, 42018, 65, 22, 69, 11848, 67, 2857, 12340, 198, 220, 220, 220, 5855, 1507, 13, 14656, 13, 4524, 13, 21273, 1600, 366, 71, 87, 20, 67, 487, 15, 69, 3270, 4310, 68, 23, 21101, 15, 67, 1120, 7252, 397, 487, 50049, 64, 48057, 68, 27019, 1507, 17457, 17, 12340, 198, 220, 220, 220, 5855, 4051, 13, 24309, 13, 22883, 13, 25707, 1600, 366, 71, 87, 18, 67, 20, 66, 18, 344, 2425, 4051, 69, 19, 67, 48194, 69, 21, 34107, 68, 4310, 65, 17, 66, 20, 2934, 43509, 4524, 721, 2670, 12340, 198, 220, 220, 220, 5855, 25061, 13, 2816, 13, 15, 13, 23628, 1600, 366, 71, 87, 20, 21101, 16, 68, 21, 67, 4846, 1765, 16, 9945, 49087, 344, 68, 2718, 64, 15, 64, 1954, 64, 41060, 2934, 30863, 64, 19, 15630, 12340, 198, 220, 220, 220, 5855, 18, 13, 4521, 13, 15801, 13, 15711, 1600, 366, 71, 87, 2078, 66, 2919, 65, 1959, 2079, 3865, 64, 3459, 38219, 1878, 2414, 31020, 68, 1485, 9945, 17, 16102, 15630, 18, 23726, 12340, 198, 220, 220, 220, 5855, 18, 13, 2718, 13, 1415, 13, 1065, 1600, 366, 71, 87, 2713, 46239, 487, 535, 24, 64, 19, 1350, 22, 1453, 16, 69, 4761, 65, 2078, 26895, 67, 4089, 28324, 2931, 69, 16, 67, 5999, 12340, 198, 220, 220, 220, 5855, 4051, 13, 19104, 13, 27192, 13, 1129, 1600, 366, 71, 87, 15, 2079, 65, 16, 68, 21, 65, 28977, 15630, 21, 10210, 3134, 67, 45418, 64, 16, 66, 5237, 1453, 20, 69, 18, 276, 15, 68, 17, 66, 22, 67, 12340, 198, 220, 220, 220, 5855, 4309, 13, 3559, 13, 1120, 13, 14656, 1600, 366, 71, 87, 3510, 65, 20, 3609, 17, 66, 487, 24, 3324, 67, 7012, 3132, 65, 16344, 24, 68, 17, 2934, 20, 65, 22, 65, 21, 20107, 1453, 35642, 69, 12340, 198, 220, 220, 220, 5855, 1507, 13, 22413, 13, 3388, 13, 2425, 1600, 366, 71, 25306, 19, 11231, 41734, 1765, 19, 14198, 2091, 2548, 65, 32568, 721, 4134, 69, 1860, 24, 67, 15, 65, 23, 67, 2231, 486, 12340, 198, 220, 220, 220, 5855, 2598, 13, 24909, 13, 2167, 13, 22172, 1600, 366, 71, 27865, 15, 64, 2079, 64, 20, 68, 2154, 2623, 65, 22, 276, 47106, 69, 11848, 9945, 2327, 69, 23, 67, 2791, 69, 17, 22413, 64, 17, 3609, 12340, 198, 220, 220, 220, 5855, 4051, 13, 3388, 13, 25707, 13, 15259, 1600, 366, 71, 30894, 22, 22579, 3070, 64, 1765, 1983, 1065, 21101, 15, 11848, 65, 18, 324, 21101, 940, 46438, 69, 7568, 17032, 1765, 1157, 12340, 198, 220, 220, 220, 5855, 18, 13, 23148, 13, 25096, 13, 21536, 1600, 366, 71, 87, 1795, 66, 15, 65, 38905, 10531, 1065, 2718, 7568, 46044, 69, 22, 324, 65, 6888, 22914, 1495, 67, 21, 330, 69, 2078, 12340, 198, 220, 220, 220, 5855, 2327, 13, 2425, 13, 21395, 13, 1899, 1600, 366, 71, 87, 1731, 2934, 5237, 721, 34155, 16072, 20, 3682, 18213, 2623, 68, 18, 67, 19, 28072, 68, 1495, 7012, 43587, 6659, 65, 3553, 12340, 198, 220, 220, 220, 5855, 4051, 13, 3104, 13, 3553, 13, 25096, 1600, 366, 71, 87, 2999, 39305, 397, 23, 21495, 68, 17, 20963, 405, 65, 1495, 1485, 1507, 1270, 16072, 65, 24, 69, 3720, 1731, 64, 4869, 66, 12340, 198, 220, 220, 220, 5855, 1507, 13, 16817, 13, 24339, 13, 2078, 1600, 366, 71, 87, 23, 1558, 1129, 17896, 5036, 23, 69, 3365, 6888, 43509, 2598, 65, 22, 3077, 68, 2920, 344, 10210, 5333, 69, 24, 17457, 18, 69, 12340, 198, 220, 220, 220, 5855, 3459, 13, 2079, 13, 27877, 13, 28592, 1600, 366, 71, 87, 2327, 64, 15, 64, 42250, 64, 24, 397, 67, 23, 66, 11848, 66, 4869, 9423, 16, 15498, 4524, 6888, 18638, 30803, 66, 23, 64, 12340, 198, 220, 220, 220, 5855, 2682, 13, 16945, 13, 14198, 13, 23349, 1600, 366, 71, 87, 6814, 19, 68, 15, 65, 2670, 21855, 21, 7568, 2791, 1878, 23, 64, 19, 68, 28771, 3682, 66, 2920, 39380, 64, 23, 3829, 69, 19504, 12340, 198, 220, 220, 220, 5855, 17059, 13, 27057, 13, 1983, 13, 3559, 1600, 366, 71, 87, 2816, 69, 17, 535, 18, 25707, 2327, 25257, 3553, 2682, 69, 19, 68, 26598, 69, 4304, 16, 721, 69, 18, 67, 1238, 3865, 65, 18, 12340, 198, 220, 220, 220, 5855, 4051, 13, 23045, 13, 23188, 13, 4304, 1600, 366, 71, 87, 22, 1433, 66, 23, 3720, 1731, 3270, 67, 405, 2154, 68, 3104, 6052, 721, 3553, 276, 24, 69, 16, 64, 16, 19881, 65, 22, 7012, 2075, 12340, 198, 220, 220, 220, 5855, 2598, 13, 22186, 13, 19, 13, 25429, 1600, 366, 71, 27705, 5892, 64, 42224, 65, 16, 65, 21626, 2425, 66, 19, 65, 3023, 18213, 4304, 16, 67, 24, 64, 45438, 17457, 66, 4761, 1507, 940, 12340, 198, 220, 220, 220, 5855, 1507, 13, 24096, 13, 24136, 13, 19214, 1600, 366, 71, 87, 31952, 44673, 68, 4089, 3134, 69, 23, 3270, 66, 486, 4761, 26912, 1983, 69, 15, 65, 1878, 18, 64, 3553, 25022, 15630, 23, 12340, 198, 220, 220, 220, 5855, 2598, 13, 24693, 13, 26660, 13, 21139, 1600, 366, 71, 87, 1495, 65, 24, 3134, 65, 2548, 67, 16, 17457, 1954, 68, 47106, 3324, 1453, 330, 22, 35447, 66, 24, 67, 21, 66, 1731, 65, 23, 4790, 12340, 198, 220, 220, 220, 5855, 4051, 13, 26115, 13, 28592, 13, 22745, 1600, 366, 71, 24954, 24, 65, 41561, 69, 1314, 330, 16, 68, 39251, 69, 19, 11848, 16072, 19, 1765, 24, 65, 2998, 2075, 2598, 1765, 17, 66, 26276, 12340, 198, 220, 220, 220, 5855, 22416, 13, 21626, 13, 18182, 13, 1157, 1600, 366, 71, 87, 18458, 67, 6485, 24, 68, 21599, 68, 20, 18213, 4310, 1878, 18, 6888, 2091, 64, 3270, 27970, 3553, 65, 24, 66, 4846, 2079, 12340, 198, 220, 220, 220, 5855, 21536, 13, 13464, 13, 19782, 13, 26912, 1600, 366, 71, 26152, 24, 64, 940, 721, 23, 67, 3365, 940, 66, 2920, 2934, 21, 66, 16, 67, 487, 20, 69, 46899, 16072, 20, 19881, 10210, 13330, 12340, 198, 220, 220, 220, 5855, 21652, 13, 22291, 13, 17059, 13, 26912, 1600, 366, 71, 87, 24, 42875, 7568, 15, 17457, 47760, 344, 1507, 324, 66, 22413, 68, 23, 16344, 21, 15630, 2231, 69, 44230, 65, 2091, 6469, 12340, 198, 220, 220, 220, 5855, 2598, 13, 24409, 13, 28727, 13, 4309, 1600, 366, 71, 30894, 3070, 13227, 34938, 64, 15, 344, 24, 68, 2481, 67, 2682, 33372, 2623, 2075, 65, 17, 65, 2091, 3324, 64, 20, 535, 2623, 12340, 198, 220, 220, 220, 5855, 18444, 13, 4304, 13, 22416, 13, 20986, 1600, 366, 71, 87, 44218, 18213, 21, 66, 15, 66, 3980, 68, 21, 69, 1270, 43950, 67, 6888, 64, 3720, 64, 39195, 6814, 18, 64, 26780, 44093, 69, 12340, 198, 220, 220, 220, 5855, 21652, 13, 23628, 13, 11442, 13, 2425, 1600, 366, 71, 27705, 19, 66, 25257, 65, 23, 2548, 68, 23, 64, 24, 64, 22, 66, 15, 2996, 69, 1238, 69, 2670, 2670, 4524, 2934, 19, 66, 4521, 69, 24, 1558, 12340, 198, 220, 220, 220, 5855, 18, 13, 5824, 13, 26492, 13, 5892, 1600, 366, 71, 87, 2079, 1899, 66, 17, 65, 3312, 69, 1350, 23721, 487, 535, 23516, 5036, 1433, 65, 18, 891, 37841, 67, 3553, 1065, 344, 12340, 198, 220, 220, 220, 5855, 2598, 13, 23721, 13, 14656, 13, 21895, 1600, 366, 71, 87, 2920, 344, 3312, 68, 397, 24, 2857, 21101, 20, 7012, 1731, 2425, 3695, 940, 2598, 67, 22515, 1878, 24, 67, 23, 67, 24, 67, 20, 12340, 198, 220, 220, 220, 5855, 18, 13, 21139, 13, 21261, 13, 17059, 1600, 366, 71, 24954, 1120, 3270, 69, 721, 23, 36879, 15630, 22, 65, 22, 3388, 69, 2780, 6052, 64, 891, 2996, 12993, 830, 2920, 26514, 64, 12340, 198, 92, 198 ]
1.676198
3,777
import numpy as np import torch import torch.nn.functional as F import torch.nn as nn
[ 11748, 299, 32152, 355, 45941, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 11748, 28034, 13, 20471, 355, 299, 77, 628, 628 ]
3.296296
27
"""RealNVP bijector.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import numpy as np ConditionalBijector = tf.contrib.distributions.bijectors.ConditionalBijector __all__ = [ "RealNVPBijector", ] def checkerboard(shape, parity='even', dtype=tf.bool): """TODO: Implement for dimensions >1""" if len(shape) > 1: raise NotImplementedError( "checkerboard not yet implemented for dimensions >1") unit = (tf.constant((True, False)) if parity == 'even' else tf.constant((False, True))) num_elements = np.prod(shape) tiled = tf.tile(unit, ((num_elements // 2) + 1, ))[:num_elements] return tf.cast(tf.reshape(tiled, shape), dtype) class CouplingBijector(ConditionalBijector): """TODO""" def __init__(self, parity, translation_fn, scale_fn, event_ndims=0, validate_args=False, name="coupling_bijector"): """Instantiates the `CouplingBijector` bijector. Args: TODO event_ndims: Python scalar indicating the number of dimensions associated with a particular draw from the distribution. validate_args: Python `bool` indicating whether arguments should be checked for correctness. name: Python `str` name given to ops managed by this object. Raises: ValueError: if TODO happens """ self._graph_parents = [] self._name = name self._validate_args = validate_args self.parity = parity self.translation_fn = translation_fn self.scale_fn = scale_fn super().__init__(event_ndims=event_ndims, validate_args=validate_args, name=name) # TODO: Properties def _maybe_assert_valid_x(self, x): """TODO""" if not self.validate_args: return x raise NotImplementedError("_maybe_assert_valid_x") def _maybe_assert_valid_y(self, y): """TODO""" if not self.validate_args: return y raise NotImplementedError("_maybe_assert_valid_y") class RealNVPBijector(ConditionalBijector): """TODO""" def __init__(self, num_coupling_layers=2, translation_hidden_sizes=(25,), scale_hidden_sizes=(25,), event_ndims=0, validate_args=False, name="real_nvp"): """Instantiates the `RealNVPBijector` bijector. Args: TODO event_ndims: Python scalar indicating the number of dimensions associated with a particular draw from the distribution. validate_args: Python `bool` indicating whether arguments should be checked for correctness. name: Python `str` name given to ops managed by this object. Raises: ValueError: if TODO happens """ self._graph_parents = [] self._name = name self._validate_args = validate_args self._num_coupling_layers = num_coupling_layers self._translation_hidden_sizes = tuple(translation_hidden_sizes) self._scale_hidden_sizes = tuple(scale_hidden_sizes) self.build() super().__init__(event_ndims=event_ndims, validate_args=validate_args, name=name) # TODO: Properties def _maybe_assert_valid_x(self, x): """TODO""" if not self.validate_args: return x raise NotImplementedError("_maybe_assert_valid_x") def _maybe_assert_valid_y(self, y): """TODO""" if not self.validate_args: return y raise NotImplementedError("_maybe_assert_valid_y")
[ 37811, 15633, 45, 8859, 3182, 752, 273, 526, 15931, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 299, 32152, 355, 45941, 198, 25559, 1859, 23286, 752, 273, 796, 48700, 13, 3642, 822, 13, 17080, 2455, 507, 13, 8482, 752, 669, 13, 25559, 1859, 23286, 752, 273, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 366, 15633, 45, 8859, 23286, 752, 273, 1600, 198, 60, 628, 198, 4299, 2198, 263, 3526, 7, 43358, 11, 34383, 11639, 10197, 3256, 288, 4906, 28, 27110, 13, 30388, 2599, 198, 220, 220, 220, 37227, 51, 3727, 46, 25, 48282, 329, 15225, 1875, 16, 37811, 198, 220, 220, 220, 611, 18896, 7, 43358, 8, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9122, 263, 3526, 407, 1865, 9177, 329, 15225, 1875, 16, 4943, 628, 220, 220, 220, 4326, 796, 357, 27110, 13, 9979, 415, 19510, 17821, 11, 10352, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 34383, 6624, 705, 10197, 6, 2073, 48700, 13, 9979, 415, 19510, 25101, 11, 6407, 22305, 628, 220, 220, 220, 997, 62, 68, 3639, 796, 45941, 13, 1676, 67, 7, 43358, 8, 198, 220, 220, 220, 256, 3902, 796, 48700, 13, 40927, 7, 20850, 11, 14808, 22510, 62, 68, 3639, 3373, 362, 8, 1343, 352, 11, 15306, 58, 25, 22510, 62, 68, 3639, 60, 198, 220, 220, 220, 1441, 48700, 13, 2701, 7, 27110, 13, 3447, 1758, 7, 83, 3902, 11, 5485, 828, 288, 4906, 8, 628, 198, 4871, 15062, 11347, 23286, 752, 273, 7, 25559, 1859, 23286, 752, 273, 2599, 198, 220, 220, 220, 37227, 51, 3727, 46, 37811, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34383, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11059, 62, 22184, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5046, 62, 22184, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 358, 12078, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26571, 62, 22046, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 66, 280, 11347, 62, 8482, 752, 273, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 6310, 17096, 689, 262, 4600, 34, 280, 11347, 23286, 752, 273, 63, 3182, 752, 273, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16926, 46, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 358, 12078, 25, 11361, 16578, 283, 12739, 262, 1271, 286, 15225, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3917, 351, 257, 1948, 3197, 422, 262, 6082, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26571, 62, 22046, 25, 11361, 4600, 30388, 63, 12739, 1771, 7159, 815, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10667, 329, 29409, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 25, 11361, 4600, 2536, 63, 1438, 1813, 284, 39628, 5257, 416, 428, 2134, 13, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11052, 12331, 25, 611, 16926, 46, 4325, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 34960, 62, 23743, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 3672, 796, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 12102, 378, 62, 22046, 796, 26571, 62, 22046, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1845, 414, 796, 34383, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 41519, 62, 22184, 796, 11059, 62, 22184, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9888, 62, 22184, 796, 5046, 62, 22184, 628, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 15596, 62, 358, 12078, 28, 15596, 62, 358, 12078, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26571, 62, 22046, 28, 12102, 378, 62, 22046, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 3672, 8, 628, 220, 220, 220, 1303, 16926, 46, 25, 24946, 628, 220, 220, 220, 825, 4808, 25991, 62, 30493, 62, 12102, 62, 87, 7, 944, 11, 2124, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 51, 3727, 46, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13, 12102, 378, 62, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2124, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7203, 62, 25991, 62, 30493, 62, 12102, 62, 87, 4943, 628, 220, 220, 220, 825, 4808, 25991, 62, 30493, 62, 12102, 62, 88, 7, 944, 11, 331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 51, 3727, 46, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13, 12102, 378, 62, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 331, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7203, 62, 25991, 62, 30493, 62, 12102, 62, 88, 4943, 198, 198, 4871, 6416, 45, 8859, 23286, 752, 273, 7, 25559, 1859, 23286, 752, 273, 2599, 198, 220, 220, 220, 37227, 51, 3727, 46, 37811, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 66, 280, 11347, 62, 75, 6962, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11059, 62, 30342, 62, 82, 4340, 16193, 1495, 11, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5046, 62, 30342, 62, 82, 4340, 16193, 1495, 11, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 358, 12078, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26571, 62, 22046, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 5305, 62, 77, 36133, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 6310, 17096, 689, 262, 4600, 15633, 45, 8859, 23286, 752, 273, 63, 3182, 752, 273, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16926, 46, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 358, 12078, 25, 11361, 16578, 283, 12739, 262, 1271, 286, 15225, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3917, 351, 257, 1948, 3197, 422, 262, 6082, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26571, 62, 22046, 25, 11361, 4600, 30388, 63, 12739, 1771, 7159, 815, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10667, 329, 29409, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 25, 11361, 4600, 2536, 63, 1438, 1813, 284, 39628, 5257, 416, 428, 2134, 13, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11052, 12331, 25, 611, 16926, 46, 4325, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 34960, 62, 23743, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 3672, 796, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 12102, 378, 62, 22046, 796, 26571, 62, 22046, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22510, 62, 66, 280, 11347, 62, 75, 6962, 796, 997, 62, 66, 280, 11347, 62, 75, 6962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 41519, 62, 30342, 62, 82, 4340, 796, 46545, 7, 41519, 62, 30342, 62, 82, 4340, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9888, 62, 30342, 62, 82, 4340, 796, 46545, 7, 9888, 62, 30342, 62, 82, 4340, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11249, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 15596, 62, 358, 12078, 28, 15596, 62, 358, 12078, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26571, 62, 22046, 28, 12102, 378, 62, 22046, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 3672, 8, 628, 220, 220, 220, 1303, 16926, 46, 25, 24946, 628, 220, 220, 220, 825, 4808, 25991, 62, 30493, 62, 12102, 62, 87, 7, 944, 11, 2124, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 51, 3727, 46, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13, 12102, 378, 62, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2124, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7203, 62, 25991, 62, 30493, 62, 12102, 62, 87, 4943, 628, 220, 220, 220, 825, 4808, 25991, 62, 30493, 62, 12102, 62, 88, 7, 944, 11, 331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 51, 3727, 46, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13, 12102, 378, 62, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 331, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7203, 62, 25991, 62, 30493, 62, 12102, 62, 88, 4943, 198 ]
2.137894
1,842
# politician/views.py # Brought to you by We Vote. Be good. # -*- coding: UTF-8 -*- from django.http import HttpResponseRedirect from django.shortcuts import get_object_or_404, render from django.contrib import messages from django.contrib.messages import get_messages from django.core.urlresolvers import reverse from django.views import generic from django.views.generic import TemplateView from django.utils import timezone from politician.forms import TagNewForm from politician.models import Politician, PoliticianTagLink from tag.models import Tag # TODO Next step is to get Twitter vacuum working so we can pull in Tweets automatically based on tags/handles def politician_tag_new_view(request, politician_id): """ Form to add a new link tying a politician to twitter tags :param request: :return: """ messages_on_stage = get_messages(request) # for message in messages_on_stage: # if message.level is ERROR: politician_on_stage = get_object_or_404(Politician, id=politician_id) try: tag_link_list = politician_on_stage.tag_link.all() except PoliticianTagLink.DoesNotExist: tag_link_list = None template_values = { 'politician_on_stage': politician_on_stage, 'tag_link_list': tag_link_list, 'messages_on_stage': messages_on_stage, } return render(request, 'politician/politician_tag_new.html', template_values) def politician_tag_new_test_view(request, politician_id): """ Form to add a new link tying a politician to twitter tags :param request: :return: """ tag_new_form = TagNewForm() politician_on_stage = get_object_or_404(Politician, id=politician_id) # TODO Find the tags attached to this politician try: tag_list = PoliticianTagLink.objects.get(politician=politician_on_stage) except PoliticianTagLink.DoesNotExist: tag_list = None template_values = { 'tag_new_form': tag_new_form, 'politician_on_stage': politician_on_stage, 'tag_list': tag_list, } return render(request, 'politician/politician_tag_new_test.html', template_values) def politician_tag_new_process_view(request, politician_id): """ Process the form to add a new link tying a politician to twitter tags """ politician_on_stage = get_object_or_404(Politician, id=politician_id) new_tag = request.POST['new_tag'] # If an invalid tag didn't come in, redirect back to tag_new if not is_tag_valid(new_tag): messages.add_message(request, messages.INFO, 'That is not a valid tag. Please enter a different tag.') return HttpResponseRedirect(reverse('politician:politician_tag_new', args=(politician_id,))) new_tag_temp, created = Tag.objects.get_or_create(hashtag_text=new_tag) new_tag_link = PoliticianTagLink(tag=new_tag_temp, politician=politician_on_stage) new_tag_link.save() return HttpResponseRedirect(reverse('politician:politician_detail', args=(politician_id,)))
[ 2, 14971, 14, 33571, 13, 9078, 198, 2, 347, 2909, 284, 345, 416, 775, 19175, 13, 1355, 922, 13, 198, 2, 532, 9, 12, 19617, 25, 41002, 12, 23, 532, 9, 12, 198, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 31077, 7738, 1060, 198, 6738, 42625, 14208, 13, 19509, 23779, 1330, 651, 62, 15252, 62, 273, 62, 26429, 11, 8543, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 6218, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 37348, 1095, 1330, 651, 62, 37348, 1095, 198, 6738, 42625, 14208, 13, 7295, 13, 6371, 411, 349, 690, 1330, 9575, 198, 6738, 42625, 14208, 13, 33571, 1330, 14276, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 1330, 37350, 7680, 198, 6738, 42625, 14208, 13, 26791, 1330, 640, 11340, 198, 198, 6738, 14971, 13, 23914, 1330, 17467, 3791, 8479, 198, 6738, 14971, 13, 27530, 1330, 7793, 6749, 11, 7793, 6749, 24835, 11280, 198, 6738, 7621, 13, 27530, 1330, 17467, 628, 198, 198, 2, 16926, 46, 7406, 2239, 318, 284, 651, 3009, 17076, 1762, 523, 356, 460, 2834, 287, 24205, 1039, 6338, 1912, 319, 15940, 14, 4993, 829, 628, 198, 4299, 14971, 62, 12985, 62, 3605, 62, 1177, 7, 25927, 11, 14971, 62, 312, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5178, 284, 751, 257, 649, 2792, 28379, 257, 14971, 284, 17044, 15940, 198, 220, 220, 220, 1058, 17143, 2581, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6218, 62, 261, 62, 14247, 796, 651, 62, 37348, 1095, 7, 25927, 8, 198, 220, 220, 220, 1303, 329, 3275, 287, 6218, 62, 261, 62, 14247, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 611, 3275, 13, 5715, 318, 33854, 25, 628, 220, 220, 220, 14971, 62, 261, 62, 14247, 796, 651, 62, 15252, 62, 273, 62, 26429, 7, 39866, 6749, 11, 4686, 28, 34470, 6749, 62, 312, 8, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7621, 62, 8726, 62, 4868, 796, 14971, 62, 261, 62, 14247, 13, 12985, 62, 8726, 13, 439, 3419, 198, 220, 220, 220, 2845, 7793, 6749, 24835, 11280, 13, 13921, 3673, 3109, 396, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7621, 62, 8726, 62, 4868, 796, 6045, 198, 220, 220, 220, 11055, 62, 27160, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 34470, 6749, 62, 261, 62, 14247, 10354, 14971, 62, 261, 62, 14247, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 12985, 62, 8726, 62, 4868, 10354, 7621, 62, 8726, 62, 4868, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 37348, 1095, 62, 261, 62, 14247, 10354, 6218, 62, 261, 62, 14247, 11, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 1441, 8543, 7, 25927, 11, 705, 34470, 6749, 14, 34470, 6749, 62, 12985, 62, 3605, 13, 6494, 3256, 11055, 62, 27160, 8, 628, 198, 4299, 14971, 62, 12985, 62, 3605, 62, 9288, 62, 1177, 7, 25927, 11, 14971, 62, 312, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5178, 284, 751, 257, 649, 2792, 28379, 257, 14971, 284, 17044, 15940, 198, 220, 220, 220, 1058, 17143, 2581, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7621, 62, 3605, 62, 687, 796, 17467, 3791, 8479, 3419, 198, 220, 220, 220, 14971, 62, 261, 62, 14247, 796, 651, 62, 15252, 62, 273, 62, 26429, 7, 39866, 6749, 11, 4686, 28, 34470, 6749, 62, 312, 8, 198, 220, 220, 220, 1303, 16926, 46, 9938, 262, 15940, 7223, 284, 428, 14971, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7621, 62, 4868, 796, 7793, 6749, 24835, 11280, 13, 48205, 13, 1136, 7, 34470, 6749, 28, 34470, 6749, 62, 261, 62, 14247, 8, 198, 220, 220, 220, 2845, 7793, 6749, 24835, 11280, 13, 13921, 3673, 3109, 396, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7621, 62, 4868, 796, 6045, 198, 220, 220, 220, 11055, 62, 27160, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 12985, 62, 3605, 62, 687, 10354, 7621, 62, 3605, 62, 687, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 34470, 6749, 62, 261, 62, 14247, 10354, 14971, 62, 261, 62, 14247, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 12985, 62, 4868, 10354, 7621, 62, 4868, 11, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 1441, 8543, 7, 25927, 11, 705, 34470, 6749, 14, 34470, 6749, 62, 12985, 62, 3605, 62, 9288, 13, 6494, 3256, 11055, 62, 27160, 8, 628, 198, 4299, 14971, 62, 12985, 62, 3605, 62, 14681, 62, 1177, 7, 25927, 11, 14971, 62, 312, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10854, 262, 1296, 284, 751, 257, 649, 2792, 28379, 257, 14971, 284, 17044, 15940, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 14971, 62, 261, 62, 14247, 796, 651, 62, 15252, 62, 273, 62, 26429, 7, 39866, 6749, 11, 4686, 28, 34470, 6749, 62, 312, 8, 198, 220, 220, 220, 649, 62, 12985, 796, 2581, 13, 32782, 17816, 3605, 62, 12985, 20520, 628, 220, 220, 220, 1303, 1002, 281, 12515, 7621, 1422, 470, 1282, 287, 11, 18941, 736, 284, 7621, 62, 3605, 198, 220, 220, 220, 611, 407, 318, 62, 12985, 62, 12102, 7, 3605, 62, 12985, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 6218, 13, 2860, 62, 20500, 7, 25927, 11, 6218, 13, 10778, 11, 705, 2504, 318, 407, 257, 4938, 7621, 13, 4222, 3802, 257, 1180, 7621, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 367, 29281, 31077, 7738, 1060, 7, 50188, 10786, 34470, 6749, 25, 34470, 6749, 62, 12985, 62, 3605, 3256, 26498, 16193, 34470, 6749, 62, 312, 11, 22305, 628, 220, 220, 220, 649, 62, 12985, 62, 29510, 11, 2727, 796, 17467, 13, 48205, 13, 1136, 62, 273, 62, 17953, 7, 17831, 12985, 62, 5239, 28, 3605, 62, 12985, 8, 198, 220, 220, 220, 649, 62, 12985, 62, 8726, 796, 7793, 6749, 24835, 11280, 7, 12985, 28, 3605, 62, 12985, 62, 29510, 11, 14971, 28, 34470, 6749, 62, 261, 62, 14247, 8, 198, 220, 220, 220, 649, 62, 12985, 62, 8726, 13, 21928, 3419, 628, 220, 220, 220, 1441, 367, 29281, 31077, 7738, 1060, 7, 50188, 10786, 34470, 6749, 25, 34470, 6749, 62, 49170, 3256, 26498, 16193, 34470, 6749, 62, 312, 11, 22305, 628 ]
2.816822
1,070
import sys sys.path.insert(0, '..') import updates_msbm_vi_iter import updates_msbm_vi import updates_msbm2_vi_iter import updates_msbm2_vi import os import util import init_msbm_vi as im import numpy as np import numpy.random as npr import pdb # ########################################################### # ########################################################### # ########################################################### if __name__ == '__main__': file_url = os.path.join('..', 'experiments', 'two_prototype', 'data', 'twoprototype_105_250.pickle') remove_self_loops = False updater_einsum = updates_msbm_vi updater_iter = updates_msbm_vi_iter runner = TestUpdates(updater_einsum, updater_iter, file_url, remove_self_loops) runner.test_all() updater_einsum = updates_msbm2_vi updater_iter = updates_msbm2_vi_iter runner = TestUpdates(updater_einsum, updater_iter, file_url, remove_self_loops) runner.test_all() remove_self_loops = True updater_einsum = updates_msbm_vi updater_iter = updates_msbm_vi_iter runner = TestUpdates(updater_einsum, updater_iter, file_url, remove_self_loops) runner.test_all() updater_einsum = updates_msbm2_vi updater_iter = updates_msbm2_vi_iter runner = TestUpdates(updater_einsum, updater_iter, file_url, remove_self_loops) runner.test_all()
[ 11748, 25064, 198, 17597, 13, 6978, 13, 28463, 7, 15, 11, 705, 492, 11537, 198, 11748, 5992, 62, 907, 20475, 62, 8903, 62, 2676, 198, 11748, 5992, 62, 907, 20475, 62, 8903, 198, 11748, 5992, 62, 907, 20475, 17, 62, 8903, 62, 2676, 198, 11748, 5992, 62, 907, 20475, 17, 62, 8903, 198, 198, 11748, 28686, 198, 11748, 7736, 198, 11748, 2315, 62, 907, 20475, 62, 8903, 355, 545, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 299, 32152, 13, 25120, 355, 299, 1050, 198, 11748, 279, 9945, 628, 198, 2, 1303, 29113, 14468, 7804, 2235, 198, 2, 1303, 29113, 14468, 7804, 2235, 198, 2, 1303, 29113, 14468, 7804, 2235, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 220, 220, 220, 2393, 62, 6371, 796, 28686, 13, 6978, 13, 22179, 10786, 492, 3256, 705, 23100, 6800, 3256, 705, 11545, 62, 38124, 3256, 705, 7890, 3256, 705, 4246, 404, 10599, 8690, 62, 13348, 62, 9031, 13, 27729, 293, 11537, 628, 220, 220, 220, 4781, 62, 944, 62, 5439, 2840, 796, 10352, 628, 220, 220, 220, 2325, 729, 62, 68, 1040, 388, 796, 5992, 62, 907, 20475, 62, 8903, 198, 220, 220, 220, 2325, 729, 62, 2676, 796, 5992, 62, 907, 20475, 62, 8903, 62, 2676, 628, 220, 220, 220, 17490, 796, 6208, 4933, 19581, 7, 929, 67, 729, 62, 68, 1040, 388, 11, 2325, 729, 62, 2676, 11, 2393, 62, 6371, 11, 4781, 62, 944, 62, 5439, 2840, 8, 198, 220, 220, 220, 17490, 13, 9288, 62, 439, 3419, 628, 220, 220, 220, 2325, 729, 62, 68, 1040, 388, 796, 5992, 62, 907, 20475, 17, 62, 8903, 198, 220, 220, 220, 2325, 729, 62, 2676, 796, 5992, 62, 907, 20475, 17, 62, 8903, 62, 2676, 628, 220, 220, 220, 17490, 796, 6208, 4933, 19581, 7, 929, 67, 729, 62, 68, 1040, 388, 11, 2325, 729, 62, 2676, 11, 2393, 62, 6371, 11, 4781, 62, 944, 62, 5439, 2840, 8, 198, 220, 220, 220, 17490, 13, 9288, 62, 439, 3419, 628, 220, 220, 220, 4781, 62, 944, 62, 5439, 2840, 796, 6407, 628, 220, 220, 220, 2325, 729, 62, 68, 1040, 388, 796, 5992, 62, 907, 20475, 62, 8903, 198, 220, 220, 220, 2325, 729, 62, 2676, 796, 5992, 62, 907, 20475, 62, 8903, 62, 2676, 628, 220, 220, 220, 17490, 796, 6208, 4933, 19581, 7, 929, 67, 729, 62, 68, 1040, 388, 11, 2325, 729, 62, 2676, 11, 2393, 62, 6371, 11, 4781, 62, 944, 62, 5439, 2840, 8, 198, 220, 220, 220, 17490, 13, 9288, 62, 439, 3419, 628, 220, 220, 220, 2325, 729, 62, 68, 1040, 388, 796, 5992, 62, 907, 20475, 17, 62, 8903, 198, 220, 220, 220, 2325, 729, 62, 2676, 796, 5992, 62, 907, 20475, 17, 62, 8903, 62, 2676, 628, 220, 220, 220, 17490, 796, 6208, 4933, 19581, 7, 929, 67, 729, 62, 68, 1040, 388, 11, 2325, 729, 62, 2676, 11, 2393, 62, 6371, 11, 4781, 62, 944, 62, 5439, 2840, 8, 198, 220, 220, 220, 17490, 13, 9288, 62, 439, 3419, 198 ]
2.724206
504
import networkx as nx
[ 11748, 3127, 87, 355, 299, 87, 628 ]
3.285714
7
# -*- coding:utf8 -*- r''' TODO: remove all tensorflow graph construction in `build_op_info` ''' import os import numpy as np import idx2numpy as idx2np import tensorflow as tf from utensor_cgen.ir import OperationInfo, TensorInfo from utensor_cgen.ir.converter import (AttrValueConverter, DataTypeConverter, GenericTensorConverterMixin) from utensor_cgen.logger import logger from utensor_cgen.matcher import OpEqualityDelegate, _morphism from utensor_cgen.transformer.optimizer import RefCntOptimizer from utensor_cgen.utils import NamescopedKWArgsParser from .snippets import * # pylint: disable=W0401,W0614 __all__ = ['OperatorFactory', 'OpNotSupportedError'] @OperatorFactory.register @OpEqualityDelegate.is_compatible_with("Inline", _morphism.Const2InlineMorphism) @OperatorFactory.register @OpEqualityDelegate.is_associative( permutations=((0, 1), (1, 0)) ) @OperatorFactory.register @OperatorFactory.register @OperatorFactory.register @OperatorFactory.register @OperatorFactory.register @OperatorFactory.register @OperatorFactory.register @OperatorFactory.register @OperatorFactory.register @OperatorFactory.register @OperatorFactory.register @OperatorFactory.register @OperatorFactory.register @OperatorFactory.register @OperatorFactory.register @OperatorFactory.register @OperatorFactory.register @OperatorFactory.register @OperatorFactory.register @OperatorFactory.register @OperatorFactory.register @OperatorFactory.register @OperatorFactory.register @OperatorFactory.register #hard coding to uint8_t uint8_t int32_t for now @OperatorFactory.register @OperatorFactory.register @OpEqualityDelegate.is_compatible_with("Const", _morphism.Inline2ConstMorphism) @OperatorFactory.register @OperatorFactory.register @OperatorFactory.register @OperatorFactory.register @OperatorFactory.register @OperatorFactory.register
[ 2, 532, 9, 12, 19617, 25, 40477, 23, 532, 9, 12, 198, 81, 7061, 6, 198, 51, 3727, 46, 25, 4781, 477, 11192, 273, 11125, 4823, 5103, 287, 4600, 11249, 62, 404, 62, 10951, 63, 198, 7061, 6, 198, 11748, 28686, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 11748, 4686, 87, 17, 77, 32152, 355, 4686, 87, 17, 37659, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 6738, 3384, 22854, 62, 66, 5235, 13, 343, 1330, 14680, 12360, 11, 309, 22854, 12360, 198, 6738, 3384, 22854, 62, 66, 5235, 13, 343, 13, 1102, 332, 353, 1330, 357, 8086, 81, 11395, 3103, 332, 353, 11, 6060, 6030, 3103, 332, 353, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42044, 51, 22854, 3103, 332, 353, 35608, 259, 8, 198, 6738, 3384, 22854, 62, 66, 5235, 13, 6404, 1362, 1330, 49706, 198, 6738, 3384, 22854, 62, 66, 5235, 13, 6759, 2044, 1330, 8670, 36, 13237, 5005, 34637, 11, 4808, 24503, 1042, 198, 6738, 3384, 22854, 62, 66, 5235, 13, 7645, 16354, 13, 40085, 7509, 1330, 6524, 34, 429, 27871, 320, 7509, 198, 6738, 3384, 22854, 62, 66, 5235, 13, 26791, 1330, 28531, 66, 19458, 42, 54, 42035, 46677, 198, 198, 6738, 764, 16184, 3974, 1039, 1330, 1635, 220, 1303, 279, 2645, 600, 25, 15560, 28, 54, 3023, 486, 11, 54, 3312, 1415, 198, 198, 834, 439, 834, 796, 37250, 18843, 1352, 22810, 3256, 705, 18257, 3673, 48181, 12331, 20520, 628, 628, 198, 31, 18843, 1352, 22810, 13, 30238, 198, 31, 18257, 36, 13237, 5005, 34637, 13, 271, 62, 38532, 62, 4480, 7203, 818, 1370, 1600, 4808, 24503, 1042, 13, 34184, 17, 818, 1370, 44, 13425, 1042, 8, 628, 198, 31, 18843, 1352, 22810, 13, 30238, 198, 31, 18257, 36, 13237, 5005, 34637, 13, 271, 62, 562, 1733, 876, 7, 198, 220, 9943, 32855, 16193, 7, 15, 11, 352, 828, 357, 16, 11, 657, 4008, 198, 8, 628, 198, 31, 18843, 1352, 22810, 13, 30238, 628, 198, 31, 18843, 1352, 22810, 13, 30238, 628, 198, 31, 18843, 1352, 22810, 13, 30238, 628, 198, 31, 18843, 1352, 22810, 13, 30238, 628, 198, 31, 18843, 1352, 22810, 13, 30238, 628, 198, 31, 18843, 1352, 22810, 13, 30238, 628, 198, 31, 18843, 1352, 22810, 13, 30238, 628, 198, 31, 18843, 1352, 22810, 13, 30238, 628, 198, 31, 18843, 1352, 22810, 13, 30238, 628, 198, 31, 18843, 1352, 22810, 13, 30238, 628, 198, 31, 18843, 1352, 22810, 13, 30238, 628, 198, 31, 18843, 1352, 22810, 13, 30238, 628, 198, 31, 18843, 1352, 22810, 13, 30238, 628, 220, 220, 220, 220, 198, 31, 18843, 1352, 22810, 13, 30238, 628, 198, 31, 18843, 1352, 22810, 13, 30238, 628, 198, 31, 18843, 1352, 22810, 13, 30238, 628, 198, 31, 18843, 1352, 22810, 13, 30238, 628, 198, 31, 18843, 1352, 22810, 13, 30238, 628, 198, 31, 18843, 1352, 22810, 13, 30238, 628, 198, 31, 18843, 1352, 22810, 13, 30238, 198, 198, 31, 18843, 1352, 22810, 13, 30238, 628, 198, 31, 18843, 1352, 22810, 13, 30238, 628, 198, 31, 18843, 1352, 22810, 13, 30238, 628, 198, 31, 18843, 1352, 22810, 13, 30238, 628, 198, 2, 10424, 19617, 284, 20398, 23, 62, 83, 20398, 23, 62, 83, 493, 2624, 62, 83, 329, 783, 198, 31, 18843, 1352, 22810, 13, 30238, 628, 198, 31, 18843, 1352, 22810, 13, 30238, 198, 31, 18257, 36, 13237, 5005, 34637, 13, 271, 62, 38532, 62, 4480, 7203, 34184, 1600, 4808, 24503, 1042, 13, 818, 1370, 17, 34184, 44, 13425, 1042, 8, 628, 198, 31, 18843, 1352, 22810, 13, 30238, 628, 198, 31, 18843, 1352, 22810, 13, 30238, 628, 198, 31, 18843, 1352, 22810, 13, 30238, 628, 198, 31, 18843, 1352, 22810, 13, 30238, 628, 198, 31, 18843, 1352, 22810, 13, 30238, 198, 198, 31, 18843, 1352, 22810, 13, 30238, 198 ]
2.966412
655
#!/usr/bin/env python """Unit tests for WSGI HTTP Basic Auth handler NERC DataGrid Project """ __author__ = "P J Kershaw" __date__ = "13/10/09" __copyright__ = "(C) 2009 Science and Technology Facilities Council" __license__ = "BSD - see LICENSE file in top-level directory" __contact__ = "[email protected]" __revision__ = '$Id$' import logging logging.basicConfig(level=logging.DEBUG) import unittest import urllib.request, urllib.error, urllib.parse import base64 import paste.fixture from paste.httpexceptions import HTTPUnauthorized from ndg.security.server.test.base import BaseTestCase from ndg.security.server.wsgi.httpbasicauth import HttpBasicAuthMiddleware class TestAuthnApp(object): '''Test Application for the Authentication handler to protect''' response = b"Test HTTP Basic Authentication application" if __name__ == "__main__": unittest.main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 37811, 26453, 5254, 329, 25290, 18878, 14626, 14392, 26828, 21360, 198, 198, 21479, 34, 6060, 41339, 4935, 198, 37811, 198, 834, 9800, 834, 796, 366, 47, 449, 49521, 26615, 1, 198, 834, 4475, 834, 796, 366, 1485, 14, 940, 14, 2931, 1, 198, 834, 22163, 4766, 834, 796, 30629, 34, 8, 3717, 5800, 290, 8987, 48939, 4281, 1, 198, 834, 43085, 834, 796, 366, 21800, 532, 766, 38559, 24290, 2393, 287, 1353, 12, 5715, 8619, 1, 198, 834, 32057, 834, 796, 366, 18673, 541, 13, 42, 364, 26615, 31, 301, 16072, 13, 330, 13, 2724, 1, 198, 834, 260, 10178, 834, 796, 705, 3, 7390, 3, 6, 198, 11748, 18931, 198, 6404, 2667, 13, 35487, 16934, 7, 5715, 28, 6404, 2667, 13, 30531, 8, 198, 198, 11748, 555, 715, 395, 198, 11748, 2956, 297, 571, 13, 25927, 11, 2956, 297, 571, 13, 18224, 11, 2956, 297, 571, 13, 29572, 198, 11748, 2779, 2414, 198, 11748, 17008, 13, 69, 9602, 198, 6738, 17008, 13, 2804, 24900, 11755, 1330, 7154, 51, 5105, 2616, 1457, 1143, 198, 198, 6738, 299, 67, 70, 13, 12961, 13, 15388, 13, 9288, 13, 8692, 1330, 7308, 14402, 20448, 198, 6738, 299, 67, 70, 13, 12961, 13, 15388, 13, 18504, 12397, 13, 4023, 12093, 3970, 1071, 1330, 367, 29281, 26416, 30515, 34621, 1574, 198, 220, 220, 220, 220, 198, 198, 4871, 6208, 30515, 77, 4677, 7, 15252, 2599, 198, 220, 220, 220, 705, 7061, 14402, 15678, 329, 262, 48191, 21360, 284, 1805, 7061, 6, 198, 220, 220, 220, 2882, 796, 275, 1, 14402, 14626, 14392, 48191, 3586, 1, 628, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419 ]
2.941748
309
"""methods for liners and domes""" import numpy as np from tankoh2 import pychain from tankoh2.service import log from tankoh2.exception import Tankoh2Error from tankoh2.utilities import updateName, copyAsJson # ######################################################################################### # Create Liner # ######################################################################################### def domeContourLength(dome): """Returns the contour length of a dome""" contourCoords = np.array([dome.getXCoords(), dome.getRCoords()]).T contourDiffs = contourCoords[1:,:] - contourCoords[:-1] contourLength = np.sum(np.linalg.norm(contourDiffs, axis=1)) return contourLength def getDome(cylinderRadius, polarOpening, domeType=None, x=None, r=None): """ :param cylinderRadius: radius of the cylinder :param polarOpening: polar opening radius :param domeType: pychain.winding.DOME_TYPES.ISOTENSOID or pychain.winding.DOME_TYPES.CIRCLE :param x: x-coordinates of a custom dome contour :param r: radius-coordinates of a custom dome contour. r[0] starts at cylinderRadius """ if domeType is None: domeType = pychain.winding.DOME_TYPES.ISOTENSOID elif isinstance(domeType, str): domeType = domeType.lower() if domeType == 'isotensoid': domeType = pychain.winding.DOME_TYPES.ISOTENSOID elif domeType == 'circle': domeType = pychain.winding.DOME_TYPES.CIRCLE else: raise Tankoh2Error(f'wrong dome type "{domeType}". Valid dome types: [isotensoid, circle]') # build dome dome = pychain.winding.Dome() dome.buildDome(cylinderRadius, polarOpening, domeType) if x is not None and r is not None: if not np.allclose(r[0], cylinderRadius): raise Tankoh2Error('cylinderRadius and r-vector do not fit') if not np.allclose(r[-1], polarOpening): raise Tankoh2Error('polarOpening and r-vector do not fit') dome.setPoints(x, r) return dome def getLiner(dome, length, linerFilename=None, linerName=None, dome2 = None, nodeNumber = 500): """Creates a liner :param dome: dome instance :param length: zylindrical length of liner :param linerFilename: if given, the liner is saved to this file for visualization in µChainWind :param linerName: name of the liner written to the file :return: """ # create a symmetric liner with dome information and cylinder length liner = pychain.winding.Liner() # spline for winding calculation is left on default of 1.0 if dome2: contourLength = length + domeContourLength(dome) + domeContourLength(dome2) else: contourLength = length / 2 + domeContourLength(dome) # use half model (one dome, half cylinder) deltaLengthSpline = contourLength / nodeNumber # just use half side if dome2 is not None: log.info("Creat unsymmetric vessel") liner.buildFromDomes(dome, dome2, length, deltaLengthSpline) else: log.info("Create symmetric vessel") liner.buildFromDome(dome, length, deltaLengthSpline) if linerFilename: liner.saveToFile(linerFilename) updateName(linerFilename, linerName, ['liner']) copyAsJson(linerFilename, 'liner') liner.loadFromFile(linerFilename) return liner
[ 37811, 24396, 82, 329, 9493, 364, 290, 2401, 274, 37811, 198, 198, 11748, 299, 32152, 355, 45941, 628, 198, 6738, 6873, 1219, 17, 1330, 12972, 7983, 198, 6738, 6873, 1219, 17, 13, 15271, 1330, 2604, 198, 6738, 6873, 1219, 17, 13, 1069, 4516, 1330, 15447, 1219, 17, 12331, 198, 6738, 6873, 1219, 17, 13, 315, 2410, 1330, 4296, 5376, 11, 4866, 1722, 41, 1559, 628, 198, 2, 1303, 29113, 29113, 14468, 7804, 198, 2, 13610, 5164, 263, 198, 2, 1303, 29113, 29113, 14468, 7804, 198, 198, 4299, 29500, 4264, 454, 24539, 7, 67, 462, 2599, 198, 220, 220, 220, 37227, 35561, 262, 542, 454, 4129, 286, 257, 29500, 37811, 198, 220, 220, 220, 542, 454, 7222, 3669, 796, 45941, 13, 18747, 26933, 67, 462, 13, 1136, 55, 7222, 3669, 22784, 29500, 13, 1136, 49, 7222, 3669, 3419, 35944, 51, 198, 220, 220, 220, 542, 454, 35, 10203, 796, 542, 454, 7222, 3669, 58, 16, 45299, 47715, 532, 542, 454, 7222, 3669, 58, 21912, 16, 60, 198, 220, 220, 220, 542, 454, 24539, 796, 45941, 13, 16345, 7, 37659, 13, 75, 1292, 70, 13, 27237, 7, 3642, 454, 35, 10203, 11, 16488, 28, 16, 4008, 198, 220, 220, 220, 1441, 542, 454, 24539, 198, 198, 4299, 651, 35, 462, 7, 38801, 5540, 15546, 3754, 11, 13559, 43093, 11, 29500, 6030, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 28, 14202, 11, 374, 28, 14202, 2599, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1058, 17143, 24911, 15546, 3754, 25, 16874, 286, 262, 24911, 198, 220, 220, 220, 1058, 17143, 13559, 43093, 25, 13559, 4756, 16874, 198, 220, 220, 220, 1058, 17143, 29500, 6030, 25, 12972, 7983, 13, 86, 6020, 13, 35, 13649, 62, 9936, 47, 1546, 13, 1797, 2394, 1677, 15821, 2389, 393, 12972, 7983, 13, 86, 6020, 13, 35, 13649, 62, 9936, 47, 1546, 13, 34, 4663, 29931, 198, 220, 220, 220, 1058, 17143, 2124, 25, 2124, 12, 37652, 17540, 286, 257, 2183, 29500, 542, 454, 198, 220, 220, 220, 1058, 17143, 374, 25, 16874, 12, 37652, 17540, 286, 257, 2183, 29500, 542, 454, 13, 374, 58, 15, 60, 4940, 379, 24911, 15546, 3754, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 29500, 6030, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 29500, 6030, 796, 12972, 7983, 13, 86, 6020, 13, 35, 13649, 62, 9936, 47, 1546, 13, 1797, 2394, 1677, 15821, 2389, 198, 220, 220, 220, 1288, 361, 318, 39098, 7, 67, 462, 6030, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 29500, 6030, 796, 29500, 6030, 13, 21037, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 29500, 6030, 6624, 705, 271, 313, 268, 568, 312, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29500, 6030, 796, 12972, 7983, 13, 86, 6020, 13, 35, 13649, 62, 9936, 47, 1546, 13, 1797, 2394, 1677, 15821, 2389, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 29500, 6030, 6624, 705, 45597, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29500, 6030, 796, 12972, 7983, 13, 86, 6020, 13, 35, 13649, 62, 9936, 47, 1546, 13, 34, 4663, 29931, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 15447, 1219, 17, 12331, 7, 69, 6, 36460, 29500, 2099, 45144, 67, 462, 6030, 92, 1911, 48951, 29500, 3858, 25, 685, 271, 313, 268, 568, 312, 11, 9197, 60, 11537, 198, 220, 220, 220, 1303, 1382, 220, 29500, 198, 220, 220, 220, 29500, 796, 12972, 7983, 13, 86, 6020, 13, 35, 462, 3419, 198, 220, 220, 220, 29500, 13, 11249, 35, 462, 7, 38801, 5540, 15546, 3754, 11, 13559, 43093, 11, 29500, 6030, 8, 628, 220, 220, 220, 611, 2124, 318, 407, 6045, 290, 374, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 45941, 13, 439, 19836, 7, 81, 58, 15, 4357, 24911, 15546, 3754, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 15447, 1219, 17, 12331, 10786, 38801, 5540, 15546, 3754, 290, 374, 12, 31364, 466, 407, 4197, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 45941, 13, 439, 19836, 7, 81, 58, 12, 16, 4357, 13559, 43093, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 15447, 1219, 17, 12331, 10786, 79, 6192, 43093, 290, 374, 12, 31364, 466, 407, 4197, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 29500, 13, 2617, 40710, 7, 87, 11, 374, 8, 198, 220, 220, 220, 1441, 29500, 198, 198, 4299, 651, 43, 7274, 7, 67, 462, 11, 4129, 11, 35940, 35063, 28, 14202, 11, 35940, 5376, 28, 14202, 11, 29500, 17, 796, 6045, 11, 10139, 15057, 796, 5323, 2599, 198, 220, 220, 220, 37227, 16719, 274, 257, 35940, 198, 220, 220, 220, 1058, 17143, 29500, 25, 29500, 4554, 198, 220, 220, 220, 1058, 17143, 4129, 25, 1976, 2645, 521, 8143, 4129, 286, 35940, 198, 220, 220, 220, 1058, 17143, 35940, 35063, 25, 611, 1813, 11, 262, 35940, 318, 7448, 284, 428, 2393, 329, 32704, 287, 31324, 35491, 8731, 198, 220, 220, 220, 1058, 17143, 35940, 5376, 25, 1438, 286, 262, 35940, 3194, 284, 262, 2393, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 2251, 257, 23606, 19482, 35940, 351, 29500, 1321, 290, 24911, 4129, 198, 220, 220, 220, 35940, 796, 12972, 7983, 13, 86, 6020, 13, 43, 7274, 3419, 628, 220, 220, 220, 1303, 4328, 500, 329, 28967, 17952, 318, 1364, 319, 4277, 286, 352, 13, 15, 198, 220, 220, 220, 611, 29500, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 542, 454, 24539, 796, 4129, 1343, 29500, 4264, 454, 24539, 7, 67, 462, 8, 1343, 29500, 4264, 454, 24539, 7, 67, 462, 17, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 542, 454, 24539, 796, 4129, 1220, 362, 1343, 29500, 4264, 454, 24539, 7, 67, 462, 8, 220, 1303, 779, 2063, 2746, 357, 505, 29500, 11, 2063, 24911, 8, 198, 220, 220, 220, 25979, 24539, 26568, 500, 796, 542, 454, 24539, 1220, 10139, 15057, 1303, 655, 779, 2063, 1735, 628, 220, 220, 220, 611, 29500, 17, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 10951, 7203, 16719, 555, 1837, 3020, 19482, 8837, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 35940, 13, 11249, 4863, 35, 2586, 7, 67, 462, 11, 29500, 17, 11, 4129, 11, 25979, 24539, 26568, 500, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 10951, 7203, 16447, 23606, 19482, 8837, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 35940, 13, 11249, 4863, 35, 462, 7, 67, 462, 11, 4129, 11, 25979, 24539, 26568, 500, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 35940, 35063, 25, 198, 220, 220, 220, 220, 220, 220, 220, 35940, 13, 21928, 2514, 8979, 7, 24683, 35063, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4296, 5376, 7, 24683, 35063, 11, 35940, 5376, 11, 37250, 24683, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 4866, 1722, 41, 1559, 7, 24683, 35063, 11, 705, 24683, 11537, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 35940, 13, 2220, 4863, 8979, 7, 24683, 35063, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 35940, 628, 220, 220, 220, 220, 198, 220, 220, 220, 220 ]
2.657299
1,281
import syft as sy import torch as th from grid.client import GridClient
[ 11748, 827, 701, 355, 827, 198, 11748, 28034, 355, 294, 198, 198, 6738, 10706, 13, 16366, 1330, 24846, 11792, 628 ]
3.7
20
import unittest import pytest import tensorkit as tk from tensorkit import tensor as T from tensorkit.arg_check import * from tests.helper import *
[ 11748, 555, 715, 395, 198, 198, 11748, 12972, 9288, 198, 198, 11748, 11192, 967, 270, 355, 256, 74, 198, 6738, 11192, 967, 270, 1330, 11192, 273, 355, 309, 198, 6738, 11192, 967, 270, 13, 853, 62, 9122, 1330, 1635, 198, 6738, 5254, 13, 2978, 525, 1330, 1635, 628 ]
3.145833
48
#from stockfighter import Stockfighter import os, time # sf = Stockfighter() # # level = sf.levels['chock_a_block'] # info = level.start() # print(info) # # sf = Stockfighter() # print(sf.heartbeat()) # # venue = sf.venues['PVIEX'] # # stock = venue.stocks['SOF'] # for stock in venue.stocks: # print(stock) # # ORDER_SIZE = 50 # remaining = 100000 - 42823 # goal = 9103 # # def run(): # while(remaining > 0): # quote = stock.quote() # size = quote['askSize'] # if(size < 1): # continue # time.sleep(1) # ask = quote['ask'] # if(ask > goal): # continue # time.sleep(1) # order = min(remaining, size, ORDER_SIZE) # if order > 0: # print('Placing order for {} at {}. Remaining: {}'.format(order, ask, remaining)) # stock.buy(ACCOUNT, ask, order) # remaining -= order #(venue='CENOEX', account='SAS22786391')
[ 2, 6738, 4283, 24733, 1330, 10500, 24733, 198, 11748, 28686, 11, 640, 198, 198, 2, 264, 69, 796, 10500, 24733, 3419, 198, 2, 198, 2, 1241, 796, 264, 69, 13, 46170, 17816, 354, 735, 62, 64, 62, 9967, 20520, 198, 2, 7508, 796, 1241, 13, 9688, 3419, 198, 2, 3601, 7, 10951, 8, 198, 2, 198, 2, 264, 69, 796, 10500, 24733, 3419, 198, 2, 3601, 7, 28202, 13, 11499, 12945, 28955, 198, 2, 198, 2, 14359, 796, 264, 69, 13, 574, 947, 17816, 47, 12861, 6369, 20520, 198, 2, 198, 2, 4283, 796, 14359, 13, 29522, 17816, 15821, 37, 20520, 198, 2, 329, 4283, 287, 14359, 13, 29522, 25, 198, 2, 220, 220, 220, 3601, 7, 13578, 8, 198, 2, 198, 2, 38678, 62, 33489, 796, 2026, 198, 2, 5637, 796, 1802, 830, 532, 45063, 1954, 198, 2, 3061, 796, 860, 15197, 198, 2, 198, 2, 825, 1057, 33529, 198, 2, 981, 7, 2787, 1397, 1875, 657, 2599, 198, 2, 220, 220, 220, 220, 9577, 796, 4283, 13, 22708, 3419, 198, 2, 220, 220, 220, 220, 2546, 796, 9577, 17816, 2093, 10699, 20520, 198, 2, 220, 220, 220, 220, 611, 7, 7857, 1279, 352, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 16, 8, 198, 2, 220, 220, 220, 220, 1265, 796, 9577, 17816, 2093, 20520, 198, 2, 220, 220, 220, 220, 611, 7, 2093, 1875, 3061, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 16, 8, 198, 2, 220, 220, 220, 220, 1502, 796, 949, 7, 2787, 1397, 11, 2546, 11, 38678, 62, 33489, 8, 198, 2, 220, 220, 220, 220, 611, 1502, 1875, 657, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 3646, 4092, 1502, 329, 23884, 379, 23884, 13, 3982, 1397, 25, 23884, 4458, 18982, 7, 2875, 11, 1265, 11, 5637, 4008, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 4283, 13, 17846, 7, 26861, 28270, 11, 1265, 11, 1502, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 5637, 48185, 1502, 198, 2, 7, 4080, 11639, 34, 1677, 46, 6369, 3256, 1848, 11639, 50, 1921, 1828, 46302, 37710, 11537 ]
2.29563
389
######################################################################## # # License: BSD # Created: October 11, 2013 # Author: Francesc Alted # ######################################################################## """ Implementation of an out of core matrix-matrix multiplication for PyTables. """ import sys, math import numpy as np import tables as tb _MB = 2**20 OOC_BUFFER_SIZE = 32*_MB """The buffer size for out-of-core operations. """ def dot(a, b, out=None): """ Matrix multiplication of two 2-D arrays. Parameters ---------- a : array_like First argument. b : array_like Second argument. out : array_like, optional Output argument. This must have the exact kind that would be returned if it was not used. Returns ------- output : CArray or scalar Returns the dot product of `a` and `b`. If `a` and `b` are both scalars or both 1-D arrays then a scalar is returned; otherwise a new CArray (in file dot.h5:/out) is returned. If `out` parameter is provided, then it is returned instead. Raises ------ ValueError If the last dimension of `a` is not the same size as the second-to-last dimension of `b`. """ if len(a.shape) != 2 or len(b.shape) != 2: raise (ValueError, "only 2-D matrices supported") if a.shape[1] != b.shape[0]: raise (ValueError, "last dimension of `a` does not match first dimension of `b`") l, m, n = a.shape[0], a.shape[1], b.shape[1] if out is not None: if out.shape != (l, n): raise (ValueError, "`out` array does not have the correct shape") else: f = tb.openFile('dot.h5', 'w') filters = tb.Filters(complevel=5, complib='blosc') out = f.createCArray(f.root, 'out', tb.Atom.from_dtype(a.dtype), shape=(l, n), filters=filters) # Compute a good block size buffersize = OOC_BUFFER_SIZE bl = math.sqrt(buffersize / out.dtype.itemsize) bl = 2**int(math.log(bl, 2)) for i in range(0, l, bl): for j in range(0, n, bl): for k in range(0, m, bl): a0 = a[i:min(i+bl, l), k:min(k+bl, m)] b0 = b[k:min(k+bl, m), j:min(j+bl, n)] out[i:i+bl, j:j+bl] += np.dot(a0, b0) return out if __name__ == "__main__": """Small benchmark for comparison against numpy.dot() speed""" from time import time # Matrix dimensions L, M, N = 1000, 100, 2000 print "Multiplying (%d, %d) x (%d, %d) matrices" % (L, M, M, N) a = np.linspace(0, 1, L*M).reshape(L, M) b = np.linspace(0, 1, M*N).reshape(M, N) t0 = time() cdot = np.dot(a,b) print "Time for np.dot->", round(time()-t0, 3), cdot.shape f = tb.openFile('matrix-pt.h5', 'w') l, m, n = a.shape[0], a.shape[1], b.shape[1] filters = tb.Filters(complevel=5, complib='blosc') ad = f.createCArray(f.root, 'a', tb.Float64Atom(), (l,m), filters=filters) ad[:] = a bd = f.createCArray(f.root, 'b', tb.Float64Atom(), (m,n), filters=filters) bd[:] = b cd = f.createCArray(f.root, 'c', tb.Float64Atom(), (l,n), filters=filters) t0 = time() dot(a, b, out=cd) print "Time for ooc dot->", round(time()-t0, 3), cd.shape np.testing.assert_almost_equal(cd, cdot) f.close()
[ 29113, 29113, 7804, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 13789, 25, 347, 10305, 198, 2, 220, 220, 220, 220, 220, 220, 15622, 25, 3267, 1367, 11, 2211, 198, 2, 220, 220, 220, 220, 220, 220, 6434, 25, 220, 27025, 66, 978, 1513, 198, 2, 198, 29113, 29113, 7804, 198, 198, 37811, 198, 3546, 32851, 286, 281, 503, 286, 4755, 17593, 12, 6759, 8609, 48473, 329, 9485, 51, 2977, 13, 198, 37811, 198, 198, 11748, 25064, 11, 10688, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 8893, 355, 256, 65, 198, 198, 62, 10744, 796, 362, 1174, 1238, 198, 46, 4503, 62, 19499, 45746, 62, 33489, 796, 3933, 9, 62, 10744, 198, 37811, 464, 11876, 2546, 329, 503, 12, 1659, 12, 7295, 4560, 13, 198, 37811, 198, 198, 4299, 16605, 7, 64, 11, 275, 11, 503, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 24936, 48473, 286, 734, 362, 12, 35, 26515, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 257, 1058, 7177, 62, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 3274, 4578, 13, 198, 220, 220, 220, 275, 1058, 7177, 62, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 5498, 4578, 13, 198, 220, 220, 220, 503, 1058, 7177, 62, 2339, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 25235, 4578, 13, 770, 1276, 423, 262, 2748, 1611, 326, 561, 307, 198, 220, 220, 220, 220, 220, 220, 220, 4504, 611, 340, 373, 407, 973, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 5072, 1058, 327, 19182, 393, 16578, 283, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 16605, 1720, 286, 4600, 64, 63, 290, 4600, 65, 44646, 220, 1002, 4600, 64, 63, 290, 4600, 65, 63, 389, 198, 220, 220, 220, 220, 220, 220, 220, 1111, 16578, 945, 393, 1111, 352, 12, 35, 26515, 788, 257, 16578, 283, 318, 4504, 26, 198, 220, 220, 220, 220, 220, 220, 220, 4306, 257, 649, 327, 19182, 357, 259, 2393, 16605, 13, 71, 20, 14079, 448, 8, 318, 4504, 13, 220, 1002, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 448, 63, 11507, 318, 2810, 11, 788, 340, 318, 4504, 2427, 13, 628, 220, 220, 220, 7567, 2696, 198, 220, 220, 220, 40103, 198, 220, 220, 220, 11052, 12331, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 938, 15793, 286, 4600, 64, 63, 318, 407, 262, 976, 2546, 355, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1218, 12, 1462, 12, 12957, 15793, 286, 4600, 65, 44646, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 18896, 7, 64, 13, 43358, 8, 14512, 362, 393, 18896, 7, 65, 13, 43358, 8, 14512, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 357, 11395, 12331, 11, 366, 8807, 362, 12, 35, 2603, 45977, 4855, 4943, 628, 220, 220, 220, 611, 257, 13, 43358, 58, 16, 60, 14512, 275, 13, 43358, 58, 15, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 357, 11395, 12331, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12957, 15793, 286, 4600, 64, 63, 857, 407, 2872, 717, 15793, 286, 4600, 65, 63, 4943, 628, 220, 220, 220, 300, 11, 285, 11, 299, 796, 257, 13, 43358, 58, 15, 4357, 257, 13, 43358, 58, 16, 4357, 275, 13, 43358, 58, 16, 60, 628, 220, 220, 220, 611, 503, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 503, 13, 43358, 14512, 357, 75, 11, 299, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 357, 11395, 12331, 11, 366, 63, 448, 63, 7177, 857, 407, 423, 262, 3376, 5485, 4943, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 277, 796, 256, 65, 13, 9654, 8979, 10786, 26518, 13, 71, 20, 3256, 705, 86, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 16628, 796, 256, 65, 13, 11928, 1010, 7, 785, 1154, 626, 28, 20, 11, 2299, 571, 11639, 2436, 17500, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 503, 796, 277, 13, 17953, 34, 19182, 7, 69, 13, 15763, 11, 705, 448, 3256, 256, 65, 13, 2953, 296, 13, 6738, 62, 67, 4906, 7, 64, 13, 67, 4906, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5485, 16193, 75, 11, 299, 828, 16628, 28, 10379, 1010, 8, 628, 220, 220, 220, 1303, 3082, 1133, 257, 922, 2512, 2546, 198, 220, 220, 220, 39334, 1096, 796, 440, 4503, 62, 19499, 45746, 62, 33489, 198, 220, 220, 220, 698, 796, 10688, 13, 31166, 17034, 7, 36873, 364, 1096, 1220, 503, 13, 67, 4906, 13, 23814, 1096, 8, 198, 220, 220, 220, 698, 796, 362, 1174, 600, 7, 11018, 13, 6404, 7, 2436, 11, 362, 4008, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 15, 11, 300, 11, 698, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 15, 11, 299, 11, 698, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 2837, 7, 15, 11, 285, 11, 698, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 15, 796, 257, 58, 72, 25, 1084, 7, 72, 10, 2436, 11, 300, 828, 479, 25, 1084, 7, 74, 10, 2436, 11, 285, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 15, 796, 275, 58, 74, 25, 1084, 7, 74, 10, 2436, 11, 285, 828, 474, 25, 1084, 7, 73, 10, 2436, 11, 299, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 58, 72, 25, 72, 10, 2436, 11, 474, 25, 73, 10, 2436, 60, 15853, 45941, 13, 26518, 7, 64, 15, 11, 275, 15, 8, 628, 220, 220, 220, 1441, 503, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 37227, 18712, 18335, 329, 7208, 1028, 299, 32152, 13, 26518, 3419, 2866, 37811, 198, 220, 220, 220, 422, 640, 1330, 640, 628, 220, 220, 220, 1303, 24936, 15225, 198, 220, 220, 220, 406, 11, 337, 11, 399, 796, 8576, 11, 1802, 11, 4751, 198, 220, 220, 220, 3601, 366, 15205, 541, 3157, 37633, 67, 11, 4064, 67, 8, 2124, 37633, 67, 11, 4064, 67, 8, 2603, 45977, 1, 4064, 357, 43, 11, 337, 11, 337, 11, 399, 8, 628, 220, 220, 220, 257, 796, 45941, 13, 21602, 10223, 7, 15, 11, 352, 11, 406, 9, 44, 737, 3447, 1758, 7, 43, 11, 337, 8, 198, 220, 220, 220, 275, 796, 45941, 13, 21602, 10223, 7, 15, 11, 352, 11, 337, 9, 45, 737, 3447, 1758, 7, 44, 11, 399, 8, 628, 220, 220, 220, 256, 15, 796, 640, 3419, 198, 220, 220, 220, 22927, 313, 796, 45941, 13, 26518, 7, 64, 11, 65, 8, 198, 220, 220, 220, 3601, 366, 7575, 329, 45941, 13, 26518, 3784, 1600, 2835, 7, 2435, 3419, 12, 83, 15, 11, 513, 828, 22927, 313, 13, 43358, 628, 220, 220, 220, 277, 796, 256, 65, 13, 9654, 8979, 10786, 6759, 8609, 12, 457, 13, 71, 20, 3256, 705, 86, 11537, 628, 220, 220, 220, 300, 11, 285, 11, 299, 796, 257, 13, 43358, 58, 15, 4357, 257, 13, 43358, 58, 16, 4357, 275, 13, 43358, 58, 16, 60, 628, 220, 220, 220, 16628, 796, 256, 65, 13, 11928, 1010, 7, 785, 1154, 626, 28, 20, 11, 2299, 571, 11639, 2436, 17500, 11537, 198, 220, 220, 220, 512, 796, 277, 13, 17953, 34, 19182, 7, 69, 13, 15763, 11, 705, 64, 3256, 256, 65, 13, 43879, 2414, 2953, 296, 22784, 357, 75, 11, 76, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16628, 28, 10379, 1010, 8, 198, 220, 220, 220, 512, 58, 47715, 796, 257, 198, 220, 220, 220, 275, 67, 796, 277, 13, 17953, 34, 19182, 7, 69, 13, 15763, 11, 705, 65, 3256, 256, 65, 13, 43879, 2414, 2953, 296, 22784, 357, 76, 11, 77, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16628, 28, 10379, 1010, 8, 198, 220, 220, 220, 275, 67, 58, 47715, 796, 275, 198, 220, 220, 220, 22927, 796, 277, 13, 17953, 34, 19182, 7, 69, 13, 15763, 11, 705, 66, 3256, 256, 65, 13, 43879, 2414, 2953, 296, 22784, 357, 75, 11, 77, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16628, 28, 10379, 1010, 8, 628, 220, 220, 220, 256, 15, 796, 640, 3419, 198, 220, 220, 220, 16605, 7, 64, 11, 275, 11, 503, 28, 10210, 8, 198, 220, 220, 220, 3601, 366, 7575, 329, 267, 420, 16605, 3784, 1600, 2835, 7, 2435, 3419, 12, 83, 15, 11, 513, 828, 22927, 13, 43358, 628, 220, 220, 220, 45941, 13, 33407, 13, 30493, 62, 28177, 62, 40496, 7, 10210, 11, 22927, 313, 8, 628, 220, 220, 220, 277, 13, 19836, 3419, 628 ]
2.198227
1,579
## Helper functions to clean up Clubes de Ciencia notebooks ## 5 July 2019 EHU import xarray as xr import pandas as pd import numpy as np from oggm import utils def ice_to_freshwater(icevol, rho_ice=900, rho_water=1000): """Cleanly convert volume of glacial ice (km3) to equivalent volume fresh water (liter). Arguments: icevol = volume of ice to convert, in km3 rho_ice = density of glacial ice (default 900 kg/m3) rho_water = density of freshwater (default 1000 kg/m3) """ km3_to_ltr = 1E12 water_vol_km3 = icevol * rho_ice / rho_water return water_vol_km3 * km3_to_ltr def read_run_results(gdir, filesuffix=None): """Reads the output diagnostics of a simulation and puts the data in a pandas dataframe. Parameters ---------- gdir : the glacier directory filesuffix : the file identifier Returns ------- a pandas Dataframe with monthly temp and precip """ with xr.open_dataset(gdir.get_filepath('model_diagnostics', filesuffix=filesuffix)) as ds: ds = ds.load() # Lemgth needs filtering ts = ds.length_m.to_series() ts = ts.rolling(12*3).min() ts.iloc[0:12*3] = ts.iloc[12*3] # Volume change delta_vol = np.append(ds.volume_m3.data[1:] - ds.volume_m3.data[0:-1], [0]) if ds.calendar_month[0] == 10 and gdir.cenlat < 0: # this is to cover up a bug in OGGM _, m = utils.hydrodate_to_calendardate(ds.hydro_year.data, ds.hydro_month.data, start_month=4) ds.calendar_month[:] = m odf = pd.DataFrame() odf['length_m'] = ts odf['volume_m3'] = ds.volume_m3 odf['delta_water_m3'] = delta_vol * 0.9 odf['month'] = ds.calendar_month return odf def read_climate_statistics(gdir): """Reads the annual cycle of climate for [1985-2015] at the glacier terminus elevation. Parameters ---------- gdir : the glacier directory Returns ------- a pandas Dataframe with monthly average temp and precip """ with xr.open_dataset(gdir.get_filepath('climate_monthly')) as ds: ds = ds.load() ds = ds.sel(time=slice('1985', '2015')) dsm = ds.groupby('time.month').mean(dim='time') odf = pd.DataFrame() odf['temp_celcius'] = dsm.temp.to_series() odf['prcp_mm_mth'] = dsm.prcp.to_series() # We correct for altitude difference d = utils.glacier_statistics(gdir) odf['temp_celcius'] += (ds.ref_hgt - d['flowline_min_elev']) * 0.0065 return odf def plot_xz_bed(x, bed, ax=None, ylim=None): """This function implements a glacier bed, prepared axes and a legend in altitude vs. distance along a glacier plot. Based on function of the same name in OGGM-Edu, but adds explicit axes argument. Parameters ---------- x : ndarray distance along glacier (all steps in km) bed : ndarray bed rock Parameters (Optional) ---------- ax : matplotlib axes instance on which to plot If None, calls plt.gca() ylim : tuple, y-limits of plot If None, calls ax.get_ylim() """ if ax is None: ax = plt.gca() if ylim is None: ylim = ax.get_ylim() ax.plot(x, bed, color='k', label='Bedrock', linestyle=':', linewidth=1.5) ax.set_xlabel('Distance along glacier [km]') ax.set_ylabel('Altitude [m]') ax.set_ylim(ylim) ax.legend(loc='best', frameon=False)
[ 2235, 5053, 525, 5499, 284, 3424, 510, 6289, 274, 390, 327, 2013, 33743, 43935, 198, 2235, 642, 2901, 13130, 220, 412, 39, 52, 198, 11748, 2124, 18747, 355, 2124, 81, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 267, 1130, 76, 1330, 3384, 4487, 198, 198, 4299, 4771, 62, 1462, 62, 48797, 7050, 7, 501, 10396, 11, 374, 8873, 62, 501, 28, 12865, 11, 374, 8873, 62, 7050, 28, 12825, 2599, 198, 220, 220, 220, 37227, 32657, 306, 10385, 6115, 286, 1278, 18150, 4771, 357, 13276, 18, 8, 284, 7548, 6115, 4713, 1660, 357, 17201, 737, 198, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4771, 10396, 796, 6115, 286, 4771, 284, 10385, 11, 287, 10571, 18, 198, 220, 220, 220, 220, 220, 220, 220, 374, 8873, 62, 501, 796, 12109, 286, 1278, 18150, 4771, 357, 12286, 15897, 14211, 14, 76, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 374, 8873, 62, 7050, 796, 12109, 286, 40941, 357, 12286, 8576, 14211, 14, 76, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 10571, 18, 62, 1462, 62, 75, 2213, 796, 352, 36, 1065, 198, 220, 220, 220, 1660, 62, 10396, 62, 13276, 18, 796, 4771, 10396, 1635, 374, 8873, 62, 501, 1220, 374, 8873, 62, 7050, 198, 220, 220, 220, 1441, 1660, 62, 10396, 62, 13276, 18, 1635, 10571, 18, 62, 1462, 62, 75, 2213, 628, 198, 4299, 1100, 62, 5143, 62, 43420, 7, 70, 15908, 11, 3696, 1648, 844, 28, 14202, 2599, 198, 220, 220, 220, 37227, 5569, 82, 262, 5072, 6689, 34558, 286, 257, 18640, 290, 7584, 262, 1366, 287, 257, 19798, 292, 1366, 14535, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 308, 15908, 1058, 262, 44539, 8619, 198, 220, 220, 220, 3696, 1648, 844, 1058, 262, 2393, 27421, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 257, 19798, 292, 6060, 14535, 351, 9651, 20218, 290, 18812, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 198, 220, 220, 220, 351, 2124, 81, 13, 9654, 62, 19608, 292, 316, 7, 70, 15908, 13, 1136, 62, 7753, 6978, 10786, 19849, 62, 47356, 34558, 3256, 3696, 1648, 844, 28, 16624, 1648, 844, 4008, 355, 288, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 288, 82, 796, 288, 82, 13, 2220, 3419, 198, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 20607, 70, 400, 2476, 25431, 198, 220, 220, 220, 40379, 796, 288, 82, 13, 13664, 62, 76, 13, 1462, 62, 25076, 3419, 198, 220, 220, 220, 40379, 796, 40379, 13, 18886, 7, 1065, 9, 18, 737, 1084, 3419, 198, 220, 220, 220, 40379, 13, 346, 420, 58, 15, 25, 1065, 9, 18, 60, 796, 40379, 13, 346, 420, 58, 1065, 9, 18, 60, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 14701, 1487, 198, 220, 220, 220, 25979, 62, 10396, 796, 45941, 13, 33295, 7, 9310, 13, 29048, 62, 76, 18, 13, 7890, 58, 16, 47715, 532, 288, 82, 13, 29048, 62, 76, 18, 13, 7890, 58, 15, 21912, 16, 4357, 685, 15, 12962, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 288, 82, 13, 9948, 9239, 62, 8424, 58, 15, 60, 6624, 838, 290, 308, 15908, 13, 66, 268, 15460, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 428, 318, 284, 3002, 510, 257, 5434, 287, 440, 11190, 44, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 11, 285, 796, 3384, 4487, 13, 15511, 305, 4475, 62, 1462, 62, 9948, 437, 446, 378, 7, 9310, 13, 15511, 305, 62, 1941, 13, 7890, 11, 288, 82, 13, 15511, 305, 62, 8424, 13, 7890, 11, 923, 62, 8424, 28, 19, 8, 198, 220, 220, 220, 220, 220, 220, 220, 288, 82, 13, 9948, 9239, 62, 8424, 58, 47715, 796, 285, 198, 220, 220, 220, 220, 198, 220, 220, 220, 267, 7568, 796, 279, 67, 13, 6601, 19778, 3419, 198, 220, 220, 220, 267, 7568, 17816, 13664, 62, 76, 20520, 796, 40379, 198, 220, 220, 220, 267, 7568, 17816, 29048, 62, 76, 18, 20520, 796, 288, 82, 13, 29048, 62, 76, 18, 198, 220, 220, 220, 267, 7568, 17816, 67, 12514, 62, 7050, 62, 76, 18, 20520, 796, 25979, 62, 10396, 1635, 657, 13, 24, 198, 220, 220, 220, 267, 7568, 17816, 8424, 20520, 796, 288, 82, 13, 9948, 9239, 62, 8424, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 267, 7568, 628, 198, 4299, 1100, 62, 42570, 62, 14269, 3969, 7, 70, 15908, 2599, 198, 220, 220, 220, 37227, 5569, 82, 262, 5079, 6772, 286, 4258, 329, 685, 29110, 12, 4626, 60, 379, 262, 44539, 5651, 385, 22910, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 308, 15908, 1058, 262, 44539, 8619, 198, 220, 220, 220, 220, 198, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 257, 19798, 292, 6060, 14535, 351, 9651, 2811, 20218, 290, 18812, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 198, 220, 220, 220, 351, 2124, 81, 13, 9654, 62, 19608, 292, 316, 7, 70, 15908, 13, 1136, 62, 7753, 6978, 10786, 42570, 62, 8424, 306, 6, 4008, 355, 288, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 288, 82, 796, 288, 82, 13, 2220, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 288, 82, 796, 288, 82, 13, 741, 7, 2435, 28, 48369, 10786, 29110, 3256, 705, 4626, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 288, 5796, 796, 288, 82, 13, 8094, 1525, 10786, 2435, 13, 8424, 27691, 32604, 7, 27740, 11639, 2435, 11537, 198, 220, 220, 220, 267, 7568, 796, 279, 67, 13, 6601, 19778, 3419, 198, 220, 220, 220, 267, 7568, 17816, 29510, 62, 5276, 28599, 20520, 796, 288, 5796, 13, 29510, 13, 1462, 62, 25076, 3419, 198, 220, 220, 220, 267, 7568, 17816, 1050, 13155, 62, 3020, 62, 76, 400, 20520, 796, 288, 5796, 13, 1050, 13155, 13, 1462, 62, 25076, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 775, 3376, 329, 20334, 3580, 198, 220, 220, 220, 288, 796, 3384, 4487, 13, 4743, 330, 959, 62, 14269, 3969, 7, 70, 15908, 8, 198, 220, 220, 220, 267, 7568, 17816, 29510, 62, 5276, 28599, 20520, 15853, 357, 9310, 13, 5420, 62, 71, 13655, 532, 288, 17816, 11125, 1370, 62, 1084, 62, 68, 2768, 6, 12962, 1635, 657, 13, 405, 2996, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 267, 7568, 198, 198, 4299, 7110, 62, 87, 89, 62, 3077, 7, 87, 11, 3996, 11, 7877, 28, 14202, 11, 331, 2475, 28, 14202, 2599, 198, 220, 220, 220, 37227, 1212, 2163, 23986, 257, 44539, 3996, 11, 5597, 34197, 290, 257, 8177, 287, 198, 220, 220, 220, 20334, 3691, 13, 5253, 1863, 257, 44539, 7110, 13, 220, 13403, 319, 2163, 286, 262, 976, 220, 198, 220, 220, 220, 1438, 287, 440, 11190, 44, 12, 36, 646, 11, 475, 6673, 7952, 34197, 4578, 13, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2124, 1058, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 5253, 1863, 44539, 357, 439, 4831, 287, 10571, 8, 198, 220, 220, 220, 3996, 1058, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 3996, 3881, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 40117, 357, 30719, 8, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 7877, 1058, 2603, 29487, 8019, 34197, 4554, 319, 543, 284, 7110, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 6045, 11, 3848, 458, 83, 13, 70, 6888, 3419, 198, 220, 220, 220, 331, 2475, 1058, 46545, 11, 331, 12, 49196, 286, 7110, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 6045, 11, 3848, 7877, 13, 1136, 62, 88, 2475, 3419, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 7877, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 796, 458, 83, 13, 70, 6888, 3419, 198, 220, 220, 220, 611, 331, 2475, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 331, 2475, 796, 7877, 13, 1136, 62, 88, 2475, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 7877, 13, 29487, 7, 87, 11, 3996, 11, 3124, 11639, 74, 3256, 6167, 11639, 45896, 10823, 3256, 9493, 10992, 28, 10354, 3256, 9493, 413, 5649, 28, 16, 13, 20, 8, 198, 220, 220, 220, 7877, 13, 2617, 62, 87, 18242, 10786, 45767, 1863, 44539, 685, 13276, 60, 11537, 198, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 10786, 29161, 3984, 685, 76, 60, 11537, 198, 220, 220, 220, 7877, 13, 2617, 62, 88, 2475, 7, 88, 2475, 8, 198, 220, 220, 220, 7877, 13, 1455, 437, 7, 17946, 11639, 13466, 3256, 5739, 261, 28, 25101, 8, 198 ]
2.283563
1,527
# -*- coding: utf-8 -*- import re import config import surllib # Map of children => urlPrefix # 'Andrea 0A' => '/parent/1234/Andrea/' _children = None def getChildren(): '''Returns of list of "available" children in the system''' global _children if not _children: _children = dict() seen = set() config.log(u'Henter liste af børn') data = surllib.skoleLogin() # Name of "First child" fst = data.find(id="sk-personal-menu-button").text.strip() for a in data.findAll('a', href=re.compile('^(/[^/]*){3}/Index$')): url = a['href'].rsplit('/', 1)[0].rstrip('/') if url in seen: continue seen.add(url) name = a.text.strip() or fst if name not in _children: config.log(u'Barn %s => %s' % (name, url), 2) _children[name] = url cns = sorted(_children.keys(), key=ckey) config.log(u'Følgende børn blev fundet: ' + u', '.join(cns)) return sorted(_children.keys(), key=ckey)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 302, 198, 198, 11748, 4566, 198, 11748, 969, 297, 571, 198, 198, 2, 9347, 286, 1751, 5218, 19016, 36698, 844, 198, 2, 705, 1870, 21468, 657, 32, 6, 5218, 31051, 8000, 14, 1065, 2682, 14, 1870, 21468, 14, 6, 198, 62, 17197, 796, 6045, 628, 198, 4299, 651, 26829, 33529, 198, 220, 220, 220, 705, 7061, 35561, 286, 1351, 286, 366, 15182, 1, 1751, 287, 262, 1080, 7061, 6, 198, 220, 220, 220, 3298, 4808, 17197, 628, 220, 220, 220, 611, 407, 4808, 17197, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 17197, 796, 8633, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1775, 796, 900, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 4566, 13, 6404, 7, 84, 6, 39, 9255, 1351, 68, 6580, 275, 24172, 35906, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 969, 297, 571, 13, 8135, 2305, 47790, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6530, 286, 366, 5962, 1200, 1, 198, 220, 220, 220, 220, 220, 220, 220, 277, 301, 796, 1366, 13, 19796, 7, 312, 2625, 8135, 12, 22682, 12, 26272, 12, 16539, 11074, 5239, 13, 36311, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 329, 257, 287, 1366, 13, 19796, 3237, 10786, 64, 3256, 13291, 28, 260, 13, 5589, 576, 10786, 61, 7, 14, 58, 61, 14, 60, 9, 19953, 18, 92, 14, 15732, 3, 11537, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 796, 257, 17816, 33257, 6, 4083, 3808, 489, 270, 10786, 14, 3256, 352, 38381, 15, 4083, 81, 36311, 10786, 14, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 19016, 287, 1775, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1775, 13, 2860, 7, 6371, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 257, 13, 5239, 13, 36311, 3419, 393, 277, 301, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 407, 287, 4808, 17197, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 13, 6404, 7, 84, 6, 47359, 4064, 82, 5218, 4064, 82, 6, 4064, 357, 3672, 11, 19016, 828, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 17197, 58, 3672, 60, 796, 19016, 198, 220, 220, 220, 220, 220, 220, 220, 269, 5907, 796, 23243, 28264, 17197, 13, 13083, 22784, 1994, 28, 66, 2539, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 13, 6404, 7, 84, 6, 37, 24172, 75, 70, 38396, 275, 24172, 35906, 275, 2768, 1814, 316, 25, 705, 1343, 334, 3256, 45302, 22179, 7, 66, 5907, 4008, 628, 220, 220, 220, 1441, 23243, 28264, 17197, 13, 13083, 22784, 1994, 28, 66, 2539, 8, 628, 198 ]
2.073501
517
""" Decobrir se um numero é impar oou par """ print(25*"-") while True: numero = int(input("Digite um numero: ")) if (numero % 2) == 0: print(f"Numero digitado, {numero} é PAR: ") elif(numero % 2) != 0: print(f"Numero digitado, {numero} é IMPAR: ") print(25*"-")
[ 37811, 198, 10707, 672, 29283, 384, 23781, 997, 3529, 38251, 848, 283, 267, 280, 1582, 198, 37811, 198, 198, 4798, 7, 1495, 9, 26793, 4943, 198, 4514, 6407, 25, 198, 220, 220, 220, 997, 3529, 796, 493, 7, 15414, 7203, 19511, 578, 23781, 997, 3529, 25, 366, 4008, 628, 220, 220, 220, 611, 357, 22510, 3529, 4064, 362, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 33111, 3529, 16839, 4533, 11, 1391, 22510, 3529, 92, 38251, 29463, 25, 366, 8, 198, 220, 220, 220, 1288, 361, 7, 22510, 3529, 4064, 362, 8, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 33111, 3529, 16839, 4533, 11, 1391, 22510, 3529, 92, 38251, 30023, 1503, 25, 366, 8, 198, 220, 220, 220, 3601, 7, 1495, 9, 26793, 4943, 198 ]
2.106383
141
import json import numpy as np import xgboost as xgb import testing as tm import pytest try: import matplotlib matplotlib.use('Agg') from matplotlib.axes import Axes from graphviz import Source except ImportError: pass pytestmark = pytest.mark.skipif(**tm.no_multiple(tm.no_matplotlib(), tm.no_graphviz())) dpath = 'demo/data/agaricus.txt.train'
[ 11748, 33918, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2124, 70, 39521, 355, 2124, 22296, 198, 11748, 4856, 355, 256, 76, 198, 198, 11748, 12972, 9288, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 2603, 29487, 8019, 198, 220, 220, 220, 2603, 29487, 8019, 13, 1904, 10786, 46384, 11537, 198, 220, 220, 220, 422, 2603, 29487, 8019, 13, 897, 274, 1330, 12176, 274, 198, 220, 220, 220, 422, 4823, 85, 528, 1330, 8090, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1208, 198, 198, 9078, 9288, 4102, 796, 12972, 9288, 13, 4102, 13, 48267, 361, 7, 1174, 17209, 13, 3919, 62, 48101, 7, 17209, 13, 3919, 62, 6759, 29487, 8019, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 76, 13, 3919, 62, 34960, 85, 528, 3419, 4008, 198, 198, 67, 6978, 796, 705, 9536, 78, 14, 7890, 14, 32452, 24552, 13, 14116, 13, 27432, 6, 628 ]
2.1875
192
# -*- coding: utf-8 -*- import unittest import six import tensorflow as tf from tfsnippet.components import DictMapper, Linear, Dense from tests.helper import TestCase if __name__ == '__main__': unittest.main()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 555, 715, 395, 198, 198, 11748, 2237, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 198, 6738, 256, 9501, 77, 3974, 316, 13, 5589, 3906, 1330, 360, 713, 44, 11463, 11, 44800, 11, 360, 1072, 198, 6738, 5254, 13, 2978, 525, 1330, 6208, 20448, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.650602
83
from flask import Flask from flask_restful import Resource from flask_restful import Api import numpy as np import cv2 import werkzeug from flask_restful import reqparse parser = reqparse.RequestParser() parser.add_argument("file", type = werkzeug.datastructures.FileStorage, location = "files") app = Flask(__name__) api = Api(app) import base64 api.add_resource(ImageServer, "/") if __name__ == "__main__": app.run(debug = True, port = 5000)
[ 6738, 42903, 1330, 46947, 198, 6738, 42903, 62, 2118, 913, 1330, 20857, 198, 6738, 42903, 62, 2118, 913, 1330, 5949, 72, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 269, 85, 17, 628, 198, 11748, 266, 9587, 2736, 1018, 198, 6738, 42903, 62, 2118, 913, 1330, 43089, 29572, 628, 198, 48610, 796, 43089, 29572, 13, 18453, 46677, 3419, 198, 48610, 13, 2860, 62, 49140, 7203, 7753, 1600, 2099, 796, 266, 9587, 2736, 1018, 13, 19608, 459, 1356, 942, 13, 8979, 31425, 11, 4067, 796, 366, 16624, 4943, 628, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 198, 15042, 796, 5949, 72, 7, 1324, 8, 198, 198, 11748, 2779, 2414, 628, 628, 628, 198, 15042, 13, 2860, 62, 31092, 7, 5159, 10697, 11, 12813, 4943, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 598, 13, 5143, 7, 24442, 796, 6407, 11, 2493, 796, 23336, 8, 198 ]
2.987097
155
import logging logger = logging.getLogger() logger.setLevel(logging.INFO) import boto3 #Evaluate Risk Level #Return True to raise alert if risk level exceeds threshold #Return False to Archive finding
[ 11748, 18931, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 3419, 198, 6404, 1362, 13, 2617, 4971, 7, 6404, 2667, 13, 10778, 8, 198, 198, 11748, 275, 2069, 18, 198, 198, 2, 36, 2100, 4985, 19602, 5684, 198, 2, 13615, 6407, 284, 5298, 7995, 611, 2526, 1241, 21695, 11387, 198, 2, 13615, 10352, 284, 20816, 4917, 198 ]
3.5
58
#Pluginname="GLS Tracking (Android)" #Type=App import os import json import tempfile
[ 2, 37233, 3672, 2625, 38, 6561, 37169, 357, 25934, 16725, 201, 198, 2, 6030, 28, 4677, 201, 198, 201, 198, 11748, 28686, 201, 198, 11748, 33918, 201, 198, 11748, 20218, 7753, 201, 198, 201 ]
2.735294
34
# Module for UTF-7 encoding from base64 import b64encode from utf16 import utf16_encode, UTF16_MAXIMUM_CODEPOINT DIRECT_CHARACTERS = '\'(),-./:?' UTF7_MAXIMUM_CODEPOINT = UTF16_MAXIMUM_CODEPOINT
[ 2, 19937, 329, 41002, 12, 22, 21004, 198, 198, 6738, 2779, 2414, 1330, 275, 2414, 268, 8189, 198, 198, 6738, 3384, 69, 1433, 1330, 3384, 69, 1433, 62, 268, 8189, 11, 41002, 1433, 62, 22921, 3955, 5883, 62, 34, 3727, 8905, 46, 12394, 198, 198, 17931, 23988, 62, 38019, 10659, 4877, 796, 705, 43054, 22784, 12, 19571, 25, 8348, 198, 48504, 22, 62, 22921, 3955, 5883, 62, 34, 3727, 8905, 46, 12394, 796, 41002, 1433, 62, 22921, 3955, 5883, 62, 34, 3727, 8905, 46, 12394, 628 ]
2.313953
86
# -*- coding: utf-8 -*- """Command line execution listener module of ping-me""" from __future__ import print_function from dateutil import parser import argparse import datetime import getpass import hashlib import os import parsedatetime import sys import time import ping_me.authenticate import ping_me.engine home = os.path.expanduser("~") cal = parsedatetime.Calendar() def main(): """Parse the arguments using argparse package""" argparser = argparse.ArgumentParser(description='ping-me') argparser.add_argument("-e", action="store_true", default=False) argparser.add_argument("-V", "--version", action="store_true", default=False) argparser.add_argument("-d", "--date", action="store", dest="DATE", default=None, nargs="+") argparser.add_argument("-t", "--time", action="store", dest="TIME", default=None, nargs="+") argparser.add_argument("message", action="store", help="Message", default=None, nargs="*") argparser.add_argument("-v", action="store_true", default=False) args = argparser.parse_args() process(args) def process(args): """Process the arguments. Call engine if flags are used.""" if args.e: detailed_usage() sys.exit(2) if args.version: import release print(release.__version__) sys.exit(2) if args.DATE is not None and args.TIME is not None: message = ' '.join(args.message).lstrip('to ') date_time = parser.parse(' '.join(args.DATE) + ' ' + ' '.join(args.TIME)) if len(message) == 0: print("What is the message of your reminder?\n") print("Use ping-me -h for help\n") sys.exit(2) ping_me.engine.engine(message, date_time.year, date_time.month, date_time.day, date_time.hour, date_time.minute, args.v) elif args.TIME is not None: m_time = parser.parse(' '.join(args.TIME)) c_time = datetime.datetime.now() if (m_time - c_time).days == -1: m_time += datetime.timedelta(1) message = ' '.join(args.message).lstrip('to ') if len(message) == 0: print("What is the message of your reminder?\n") print("Use ping-me -h for help\n") sys.exit(2) ping_me.engine.engine(message, m_time.year, m_time.month, m_time.day, m_time.hour, m_time.minute, args.v) elif args.DATE is not None: c_time = repr(time.localtime().tm_hour) + ":" + \ repr(time.localtime().tm_min) m_date = parser.parse(' '.join(args.DATE) + ' ' + c_time) message = ' '.join(args.message).lstrip('to ') if len(message) == 0: print("What is the message of your reminder?\n") print("Use ping-me -h for help\n") sys.exit(2) ping_me.engine.engine(message, m_date.year, m_date.month, m_date.day, m_date.hour, m_date.minute, args.v) else: if len(args.message) == 0: sys.stderr.write("Use ping-me -h for help\n") sys.exit(2) elif len(args.message) == 1 and args.message == ['config']: ping_me.authenticate.newuser() elif len(args.message) == 1 and args.message == ['reconfig']: reconfig() else: nlp_process(args) def nlp_process(args): """Process arguments using Natural Language Processing.""" # If there is something like "to do something in 2 mins" try: mins_index = args.message.index('mins') args.message[mins_index] = 'minutes' except ValueError: pass to_parse = ' '.join(args.message) try: m_date = cal.nlp(to_parse)[0][0] except TypeError: print("Sorry, couldn't understand your message. Try again.") sys.exit(2) # Remove the keywords keywords = cal.nlp(to_parse)[0][-1].split() for word in keywords: args.message.remove(word) # Remove redundant word 'this' try: args.message.remove('this') except ValueError: pass if 'to' in args.message: args.message.remove('to') message = ' '.join(args.message) ping_me.engine.engine(message, m_date.year, m_date.month, m_date.day, m_date.hour, m_date.minute, args.v) def detailed_usage(): """Detailed documentation of ping-me.""" print("Welcome to the detailed documentation of ping-me !") # Inspired from 'import this' s = " "; l = "_ "; r = " _"; f = "/"; b = "\\"; p = "|"; d = "— " print(s*6 + l*5 + s + l*4 + r + s*12 + l + r*5 + s*2 + r + s*8 + l + s*7 + l*4) print(s*5 + f + s*8 + f + s*5 + f + s*4 + f + s + b + s*10 + f + s + f + s*12 + f + s + b + s*6 + f + s + p + s*6 + f + s*7) print(s*4 + f + s*8 + f + s*5 + f + s*4 + f + s*3 + b + s*8 + f + s + f + s*12 + f + s*3 + b + s*4 + f + s*2 + p + s*5 + f + s*7) print(s*3 + f + r*4 + f + s*5 + f + s*4 + f + s*5 + b + s*6 + f + s + f + s*2 + r*4 + s*2 + f + 5*s + b + s*2 + f + s*3 + p + s*4 + f + l*4) print(s*2 + f + s*14 + f + s*4 + f + s*7 + b + s*4 + f + s + f + s*9 + f + s*2 + f + s*7 + b + f + s*4 + p + s*3 + f + s*7) print(s + f + s*14 + f + s*4 + f + s*9 + b + s*2 + f + s + f + s*9 + f + s*2 + f + s*14 + p + s*2 + f + s*7) print(f + s*11 + d*4 + f + s*11 + b + f + s + f + (r*5)[1:] + f + s*2 + f + s*15 + p + s + f + (r*4)[1:]) print("") print("ping-me works well with time and date flags already. " + "Use 'ping-me -h' for that option. " + "However, ping-me is smart enough to work without flags.\n") print("Examples : ") print("\t\t1. ping-me to call mom tonight") print("\t\t2. ping-me to buy milk early today") print("\t\t3. ping-me to go home seven days from now") print("\t\t4. ping-me to take a nap this afternoon") print("\t\t5. ping-me to go workout next month") print("") print("Report (and track process on fixing) bugs on " + "https://github.com/OrkoHunter/ping-me. Or simply write a mail " + "to Himanshu Mishra at himanshumishra[at]iitkgp[dot]ac[dot]in") def reconfig(): """Reconfigure the user. Removes all the information of existing one.""" if not os.path.exists(home + "/.pingmeconfig"): ping_me.authenticate.newuser() else: old_pass = hashlib.md5(getpass.getpass("Old Password : " + "").rstrip()).hexdigest() if old_pass == ping_me.authenticate.extract_password(): ping_me.authenticate.newuser() else: print("Authentication failed.") sys.exit(2) if __name__ == "__main__": main()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 21575, 1627, 9706, 24783, 8265, 286, 29400, 12, 1326, 37811, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 6738, 3128, 22602, 1330, 30751, 198, 11748, 1822, 29572, 198, 11748, 4818, 8079, 198, 11748, 651, 6603, 198, 11748, 12234, 8019, 198, 11748, 28686, 198, 11748, 44267, 265, 8079, 198, 11748, 25064, 198, 11748, 640, 198, 198, 11748, 29400, 62, 1326, 13, 41299, 5344, 198, 11748, 29400, 62, 1326, 13, 18392, 198, 198, 11195, 796, 28686, 13, 6978, 13, 11201, 392, 7220, 7203, 93, 4943, 198, 9948, 796, 44267, 265, 8079, 13, 9771, 9239, 3419, 198, 198, 4299, 1388, 33529, 198, 220, 220, 220, 37227, 10044, 325, 262, 7159, 1262, 1822, 29572, 5301, 37811, 198, 220, 220, 220, 1822, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 11639, 13886, 12, 1326, 11537, 628, 220, 220, 220, 1822, 48610, 13, 2860, 62, 49140, 7203, 12, 68, 1600, 2223, 2625, 8095, 62, 7942, 1600, 4277, 28, 25101, 8, 198, 220, 220, 220, 1822, 48610, 13, 2860, 62, 49140, 7203, 12, 53, 1600, 366, 438, 9641, 1600, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 25101, 8, 198, 220, 220, 220, 1822, 48610, 13, 2860, 62, 49140, 7203, 12, 67, 1600, 366, 438, 4475, 1600, 2223, 2625, 8095, 1600, 2244, 2625, 35, 6158, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 299, 22046, 2625, 10, 4943, 198, 220, 220, 220, 1822, 48610, 13, 2860, 62, 49140, 7203, 12, 83, 1600, 366, 438, 2435, 1600, 2223, 2625, 8095, 1600, 2244, 2625, 34694, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 299, 22046, 2625, 10, 4943, 198, 220, 220, 220, 1822, 48610, 13, 2860, 62, 49140, 7203, 20500, 1600, 2223, 2625, 8095, 1600, 1037, 2625, 12837, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 299, 22046, 2625, 9, 4943, 198, 220, 220, 220, 1822, 48610, 13, 2860, 62, 49140, 7203, 12, 85, 1600, 2223, 2625, 8095, 62, 7942, 1600, 4277, 28, 25101, 8, 628, 220, 220, 220, 26498, 796, 1822, 48610, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 1429, 7, 22046, 8, 628, 198, 4299, 1429, 7, 22046, 2599, 198, 220, 220, 220, 37227, 18709, 262, 7159, 13, 4889, 3113, 611, 9701, 389, 973, 526, 15931, 198, 220, 220, 220, 611, 26498, 13, 68, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6496, 62, 26060, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 17, 8, 198, 220, 220, 220, 611, 26498, 13, 9641, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 2650, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 20979, 13, 834, 9641, 834, 8, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 17, 8, 628, 220, 220, 220, 611, 26498, 13, 35, 6158, 318, 407, 6045, 290, 26498, 13, 34694, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3275, 796, 705, 45302, 22179, 7, 22046, 13, 20500, 737, 75, 36311, 10786, 1462, 705, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3128, 62, 2435, 796, 30751, 13, 29572, 10786, 45302, 22179, 7, 22046, 13, 35, 6158, 8, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 705, 1343, 705, 45302, 22179, 7, 22046, 13, 34694, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 20500, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 2061, 318, 262, 3275, 286, 534, 15438, 30, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 11041, 29400, 12, 1326, 532, 71, 329, 1037, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 29400, 62, 1326, 13, 18392, 13, 18392, 7, 20500, 11, 3128, 62, 2435, 13, 1941, 11, 3128, 62, 2435, 13, 8424, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3128, 62, 2435, 13, 820, 11, 3128, 62, 2435, 13, 9769, 11, 3128, 62, 2435, 13, 11374, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 85, 8, 198, 220, 220, 220, 1288, 361, 26498, 13, 34694, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 2435, 796, 30751, 13, 29572, 10786, 45302, 22179, 7, 22046, 13, 34694, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 269, 62, 2435, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 76, 62, 2435, 532, 269, 62, 2435, 737, 12545, 6624, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 62, 2435, 15853, 4818, 8079, 13, 16514, 276, 12514, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3275, 796, 705, 45302, 22179, 7, 22046, 13, 20500, 737, 75, 36311, 10786, 1462, 705, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 20500, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 2061, 318, 262, 3275, 286, 534, 15438, 30, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 11041, 29400, 12, 1326, 532, 71, 329, 1037, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 29400, 62, 1326, 13, 18392, 13, 18392, 7, 20500, 11, 285, 62, 2435, 13, 1941, 11, 285, 62, 2435, 13, 8424, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 62, 2435, 13, 820, 11, 285, 62, 2435, 13, 9769, 11, 285, 62, 2435, 13, 11374, 11, 26498, 13, 85, 8, 198, 220, 220, 220, 1288, 361, 26498, 13, 35, 6158, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 269, 62, 2435, 796, 41575, 7, 2435, 13, 12001, 2435, 22446, 17209, 62, 9769, 8, 1343, 366, 11097, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41575, 7, 2435, 13, 12001, 2435, 22446, 17209, 62, 1084, 8, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 4475, 796, 30751, 13, 29572, 10786, 45302, 22179, 7, 22046, 13, 35, 6158, 8, 1343, 705, 705, 1343, 269, 62, 2435, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3275, 796, 705, 45302, 22179, 7, 22046, 13, 20500, 737, 75, 36311, 10786, 1462, 705, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 20500, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 2061, 318, 262, 3275, 286, 534, 15438, 30, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 11041, 29400, 12, 1326, 532, 71, 329, 1037, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 29400, 62, 1326, 13, 18392, 13, 18392, 7, 20500, 11, 285, 62, 4475, 13, 1941, 11, 285, 62, 4475, 13, 8424, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 62, 4475, 13, 820, 11, 285, 62, 4475, 13, 9769, 11, 285, 62, 4475, 13, 11374, 11, 26498, 13, 85, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 22046, 13, 20500, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 301, 1082, 81, 13, 13564, 7203, 11041, 29400, 12, 1326, 532, 71, 329, 1037, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 18896, 7, 22046, 13, 20500, 8, 6624, 352, 290, 26498, 13, 20500, 6624, 37250, 11250, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29400, 62, 1326, 13, 41299, 5344, 13, 3605, 7220, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 18896, 7, 22046, 13, 20500, 8, 6624, 352, 290, 26498, 13, 20500, 6624, 37250, 260, 11250, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8195, 5647, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 34431, 62, 14681, 7, 22046, 8, 198, 198, 4299, 299, 34431, 62, 14681, 7, 22046, 2599, 198, 220, 220, 220, 37227, 18709, 7159, 1262, 12068, 15417, 28403, 526, 15931, 198, 220, 220, 220, 1303, 1002, 612, 318, 1223, 588, 366, 1462, 466, 1223, 287, 362, 23550, 1, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 23550, 62, 9630, 796, 26498, 13, 20500, 13, 9630, 10786, 42951, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 20500, 58, 42951, 62, 9630, 60, 796, 705, 1084, 1769, 6, 198, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 284, 62, 29572, 796, 705, 45302, 22179, 7, 22046, 13, 20500, 8, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 4475, 796, 2386, 13, 21283, 79, 7, 1462, 62, 29572, 38381, 15, 7131, 15, 60, 198, 220, 220, 220, 2845, 5994, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 14385, 11, 3521, 470, 1833, 534, 3275, 13, 9993, 757, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 17, 8, 198, 220, 220, 220, 1303, 17220, 262, 26286, 198, 220, 220, 220, 26286, 796, 2386, 13, 21283, 79, 7, 1462, 62, 29572, 38381, 15, 7131, 12, 16, 4083, 35312, 3419, 198, 220, 220, 220, 329, 1573, 287, 26286, 25, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 20500, 13, 28956, 7, 4775, 8, 198, 220, 220, 220, 1303, 17220, 30806, 1573, 705, 5661, 6, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 20500, 13, 28956, 10786, 5661, 11537, 198, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 611, 705, 1462, 6, 287, 26498, 13, 20500, 25, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 20500, 13, 28956, 10786, 1462, 11537, 198, 220, 220, 220, 3275, 796, 705, 45302, 22179, 7, 22046, 13, 20500, 8, 198, 220, 220, 220, 29400, 62, 1326, 13, 18392, 13, 18392, 7, 20500, 11, 285, 62, 4475, 13, 1941, 11, 285, 62, 4475, 13, 8424, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 62, 4475, 13, 820, 11, 285, 62, 4475, 13, 9769, 11, 285, 62, 4475, 13, 11374, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 85, 8, 628, 198, 4299, 6496, 62, 26060, 33529, 198, 220, 220, 220, 37227, 32080, 10314, 286, 29400, 12, 1326, 526, 15931, 198, 220, 220, 220, 3601, 7203, 14618, 284, 262, 6496, 10314, 286, 29400, 12, 1326, 220, 2474, 8, 198, 220, 220, 220, 1303, 45827, 422, 705, 11748, 428, 6, 198, 220, 220, 220, 264, 796, 366, 366, 26, 300, 796, 45434, 366, 26, 374, 796, 366, 4808, 8172, 277, 796, 12813, 8172, 275, 796, 366, 6852, 8172, 279, 796, 366, 91, 8172, 288, 796, 366, 960, 366, 198, 220, 220, 220, 3601, 7, 82, 9, 21, 1343, 300, 9, 20, 1343, 264, 1343, 300, 9, 19, 1343, 374, 1343, 264, 9, 1065, 1343, 300, 1343, 374, 9, 20, 1343, 264, 9, 17, 1343, 374, 1343, 264, 9, 23, 1343, 300, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 9, 22, 1343, 300, 9, 19, 8, 198, 220, 220, 220, 3601, 7, 82, 9, 20, 1343, 277, 1343, 264, 9, 23, 1343, 277, 1343, 264, 9, 20, 1343, 277, 1343, 264, 9, 19, 1343, 277, 1343, 264, 1343, 275, 1343, 264, 9, 940, 1343, 277, 1343, 264, 1343, 277, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 9, 1065, 1343, 277, 1343, 264, 1343, 275, 1343, 264, 9, 21, 1343, 277, 1343, 264, 1343, 279, 1343, 264, 9, 21, 1343, 277, 1343, 264, 9, 22, 8, 198, 220, 220, 220, 3601, 7, 82, 9, 19, 1343, 277, 1343, 264, 9, 23, 1343, 277, 1343, 264, 9, 20, 1343, 277, 1343, 264, 9, 19, 1343, 277, 1343, 264, 9, 18, 1343, 275, 1343, 264, 9, 23, 1343, 277, 1343, 264, 1343, 277, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 9, 1065, 1343, 277, 1343, 264, 9, 18, 1343, 275, 1343, 264, 9, 19, 1343, 277, 1343, 264, 9, 17, 1343, 279, 1343, 264, 9, 20, 1343, 277, 1343, 264, 9, 22, 8, 198, 220, 220, 220, 3601, 7, 82, 9, 18, 1343, 277, 1343, 374, 9, 19, 1343, 277, 1343, 264, 9, 20, 1343, 277, 1343, 264, 9, 19, 1343, 277, 1343, 264, 9, 20, 1343, 275, 1343, 264, 9, 21, 1343, 277, 1343, 264, 1343, 277, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 9, 17, 1343, 374, 9, 19, 1343, 264, 9, 17, 1343, 277, 1343, 642, 9, 82, 1343, 275, 1343, 264, 9, 17, 1343, 277, 1343, 264, 9, 18, 1343, 279, 1343, 264, 9, 19, 1343, 277, 1343, 300, 9, 19, 8, 198, 220, 220, 220, 3601, 7, 82, 9, 17, 1343, 277, 1343, 264, 9, 1415, 1343, 277, 1343, 264, 9, 19, 1343, 277, 1343, 264, 9, 22, 1343, 275, 1343, 264, 9, 19, 1343, 277, 1343, 264, 1343, 277, 1343, 264, 9, 24, 1343, 277, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 9, 17, 1343, 277, 1343, 264, 9, 22, 1343, 275, 1343, 277, 1343, 264, 9, 19, 1343, 279, 1343, 264, 9, 18, 1343, 277, 1343, 264, 9, 22, 8, 198, 220, 220, 220, 3601, 7, 82, 1343, 277, 1343, 264, 9, 1415, 1343, 277, 1343, 264, 9, 19, 1343, 277, 1343, 264, 9, 24, 1343, 275, 1343, 264, 9, 17, 1343, 277, 1343, 264, 1343, 277, 1343, 264, 9, 24, 1343, 277, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 9, 17, 1343, 277, 1343, 264, 9, 1415, 1343, 279, 1343, 264, 9, 17, 1343, 277, 1343, 264, 9, 22, 8, 198, 220, 220, 220, 3601, 7, 69, 1343, 264, 9, 1157, 1343, 288, 9, 19, 1343, 277, 1343, 264, 9, 1157, 1343, 275, 1343, 277, 1343, 264, 1343, 277, 1343, 357, 81, 9, 20, 38381, 16, 47715, 1343, 277, 1343, 264, 9, 17, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1343, 264, 9, 1314, 1343, 279, 1343, 264, 1343, 277, 1343, 357, 81, 9, 19, 38381, 16, 25, 12962, 198, 220, 220, 220, 3601, 7203, 4943, 198, 220, 220, 220, 3601, 7203, 13886, 12, 1326, 2499, 880, 351, 640, 290, 3128, 9701, 1541, 13, 366, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11041, 705, 13886, 12, 1326, 532, 71, 6, 329, 326, 3038, 13, 366, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4864, 11, 29400, 12, 1326, 318, 4451, 1576, 284, 670, 1231, 9701, 13, 59, 77, 4943, 198, 220, 220, 220, 3601, 7203, 27730, 1058, 366, 8, 198, 220, 220, 220, 3601, 7203, 59, 83, 59, 83, 16, 13, 29400, 12, 1326, 284, 869, 1995, 9975, 4943, 198, 220, 220, 220, 3601, 7203, 59, 83, 59, 83, 17, 13, 29400, 12, 1326, 284, 2822, 7545, 1903, 1909, 4943, 198, 220, 220, 220, 3601, 7203, 59, 83, 59, 83, 18, 13, 29400, 12, 1326, 284, 467, 1363, 3598, 1528, 422, 783, 4943, 198, 220, 220, 220, 3601, 7203, 59, 83, 59, 83, 19, 13, 29400, 12, 1326, 284, 1011, 257, 25422, 428, 6672, 4943, 198, 220, 220, 220, 3601, 7203, 59, 83, 59, 83, 20, 13, 29400, 12, 1326, 284, 467, 17578, 1306, 1227, 4943, 198, 220, 220, 220, 3601, 7203, 4943, 198, 220, 220, 220, 3601, 7203, 19100, 357, 392, 2610, 1429, 319, 18682, 8, 11316, 319, 366, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5450, 1378, 12567, 13, 785, 14, 5574, 7204, 38803, 14, 13886, 12, 1326, 13, 1471, 2391, 3551, 257, 6920, 366, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1462, 10978, 504, 13415, 39523, 430, 379, 683, 504, 17047, 680, 430, 58, 265, 60, 72, 270, 10025, 79, 58, 26518, 60, 330, 58, 26518, 60, 259, 4943, 628, 198, 4299, 8195, 5647, 33529, 198, 220, 220, 220, 37227, 6690, 261, 26875, 262, 2836, 13, 3982, 5241, 477, 262, 1321, 286, 4683, 530, 526, 15931, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 11195, 1343, 366, 11757, 13886, 76, 721, 261, 5647, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 29400, 62, 1326, 13, 41299, 5344, 13, 3605, 7220, 3419, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1468, 62, 6603, 796, 12234, 8019, 13, 9132, 20, 7, 1136, 6603, 13, 1136, 6603, 7203, 19620, 30275, 1058, 366, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11074, 81, 36311, 3419, 737, 33095, 12894, 395, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1468, 62, 6603, 6624, 29400, 62, 1326, 13, 41299, 5344, 13, 2302, 974, 62, 28712, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29400, 62, 1326, 13, 41299, 5344, 13, 3605, 7220, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 47649, 3299, 4054, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 17, 8, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.091951
3,317
"""Test workflow of forecasting model.""" import sys sys.path.append("../Forecasting") import model def test_forecast(): """Optimize an ARIMA model and predict a few data points.""" START = 5 END = 10 print("Forecasting...") f = model.Forecast("../Forecasting/blockchain.csv") f.optimizeARIMA(range(5), range(5), range(5), f.endog, f.exog) pred = f.predictARIMA(START, END) assert len(pred) == (END - START)
[ 37811, 14402, 30798, 286, 41164, 2746, 526, 15931, 198, 11748, 25064, 198, 198, 17597, 13, 6978, 13, 33295, 7203, 40720, 16351, 19913, 4943, 198, 11748, 2746, 628, 198, 4299, 1332, 62, 754, 2701, 33529, 198, 220, 220, 220, 37227, 27871, 48439, 281, 5923, 3955, 32, 2746, 290, 4331, 257, 1178, 1366, 2173, 526, 15931, 198, 220, 220, 220, 33303, 796, 642, 198, 220, 220, 220, 23578, 796, 838, 198, 220, 220, 220, 3601, 7203, 16351, 19913, 9313, 8, 198, 220, 220, 220, 277, 796, 2746, 13, 16351, 2701, 7203, 40720, 16351, 19913, 14, 9967, 7983, 13, 40664, 4943, 198, 220, 220, 220, 277, 13, 40085, 1096, 1503, 3955, 32, 7, 9521, 7, 20, 828, 2837, 7, 20, 828, 2837, 7, 20, 828, 277, 13, 437, 519, 11, 277, 13, 1069, 519, 8, 198, 220, 220, 220, 2747, 796, 277, 13, 79, 17407, 1503, 3955, 32, 7, 2257, 7227, 11, 23578, 8, 198, 220, 220, 220, 6818, 18896, 7, 28764, 8, 6624, 357, 10619, 532, 33303, 8, 198 ]
2.652695
167
# prototxt_basic # ----------------------------------------------------------------
[ 2, 1237, 313, 742, 62, 35487, 628, 198, 198, 2, 16529, 628, 628, 198 ]
6.5
14
""" Tests for checking gregorian calendar date. Astronomical year contains 365,2425 days: 365 for usual year and 366 for leap Leap years: 0.2425 is 97 / 400 or 1/4 - 1/100 + 1/400 It means: - each 4th year is leap, except 3 of 4 round dates - 2004, 2008, 2012 and etc are leap - 2000, 2400, 2800 and etc. is leap - 2100, 2200, 2300, 2500, 2600, 2700, 2900 and etc. are NOT leap - for 400 years 97 are leap """ import pytest from src.calendar import date_to_gregorian, GregorianDate @pytest.mark.parametrize( "day, month, year", [ pytest.param(1, 1, 1, id="Minimum supported date"), pytest.param(31, 12, 9999, id="Maximum supported date"), pytest.param(29, 2, 4, id="First supported usual 4th leap year"), pytest.param(29, 2, 2020, id="Usual 4th leap year"), pytest.param(29, 2, 9996, id="Last supported usual 4th leap year"), pytest.param(29, 2, 400, id="First supported round leap year"), pytest.param(29, 2, 2000, id="Usual round leap year"), pytest.param(29, 2, 9600, id="Last supported round leap year"), ], ) def test_correct_date_format(day, month, year): """Check correct date""" result: GregorianDate = date_to_gregorian(day=day, month=month, year=year) assert ( result.correct ), f"Correct date '{day}-{month}-{year}'(day-month-year) is recognized as incorrect" def test_400_years_contain_97_leap_years(): """Check property of count leap years for 400 consecutive years""" start_year = 2000 leap_years = [ year for year in range(start_year, start_year + 400) if date_to_gregorian(year=year, month=2, day=29).correct ] actual_count = len(leap_years) expected_count = 97 assert actual_count == expected_count, ( f"For 400 consecutive years '{expected_count}' should be leap. " f"But actual count: '{actual_count}'. " f"Years, recognized as leap:\n{leap_years}" ) @pytest.mark.parametrize( "day, month, year", [ # 29th february for not leap years pytest.param(29, 2, 1, id="First supported usual year"), pytest.param(29, 2, 2021, id="Usual year"), pytest.param(29, 2, 9999, id="Last supported usual year"), pytest.param(29, 2, 100, id="First supported round usual year"), pytest.param(29, 2, 2100, id="Usual round year"), pytest.param(29, 2, 9900, id="Last supported round usual year"), # day format pytest.param(32, 1, 1900, id="Nonexistent 32th day"), pytest.param(31, 4, 1900, id="Nonexistent 31th day"), pytest.param(0, 1, 1900, id="Nonexistent 0th day"), pytest.param(-1, 1, 1900, id="Negative day"), # month format pytest.param(1, 0, 1900, id="Nonexistent 0th day"), pytest.param(1, 13, 1900, id="Nonexistent 13th month"), pytest.param(1, -1, 1900, id="Negative month"), ], ) def test_incorrect_date_format(day, month, year): """Check incorrect date""" result: GregorianDate = date_to_gregorian(day=day, month=month, year=year) assert ( not result.correct ), f"Incorrect date '{day}-{month}-{year}'(day-month-year) is recognized as correct" @pytest.mark.parametrize( "day, month, year", [ pytest.param(31, 1, 0, id="Unsupported bottom boundary year"), pytest.param(1, 1, 10_000, id="Unsupported top boundary year"), pytest.param(31, 1, -1, id="Negative year"), ], ) def test_unsupported_date_format(day, month, year): """Check unsupported date""" result: GregorianDate = date_to_gregorian(day=day, month=month, year=year) assert ( not result.supported ), f"Unsupported date '{day}-{month}-{year}'(day-month-year) is recognized as supported"
[ 37811, 198, 51, 3558, 329, 10627, 308, 2301, 22618, 11845, 3128, 13, 198, 198, 33751, 1313, 22545, 614, 4909, 21268, 11, 1731, 1495, 1528, 25, 198, 24760, 329, 6678, 614, 290, 44856, 329, 16470, 198, 198, 3123, 499, 812, 25, 198, 15, 13, 1731, 1495, 318, 10111, 1220, 7337, 393, 352, 14, 19, 532, 352, 14, 3064, 1343, 352, 14, 7029, 198, 198, 1026, 1724, 25, 198, 12, 1123, 604, 400, 614, 318, 16470, 11, 2845, 513, 286, 604, 2835, 9667, 198, 12, 5472, 11, 3648, 11, 2321, 290, 3503, 389, 16470, 198, 12, 4751, 11, 48548, 11, 2579, 405, 290, 3503, 13, 318, 16470, 198, 12, 38123, 11, 362, 2167, 11, 2242, 405, 11, 33507, 11, 47197, 11, 2681, 405, 11, 2808, 405, 290, 3503, 13, 389, 5626, 16470, 198, 12, 329, 7337, 812, 10111, 389, 16470, 198, 37811, 198, 11748, 12972, 9288, 198, 198, 6738, 12351, 13, 9948, 9239, 1330, 3128, 62, 1462, 62, 9903, 22618, 11, 8547, 22618, 10430, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 820, 11, 1227, 11, 614, 1600, 198, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 7, 16, 11, 352, 11, 352, 11, 4686, 2625, 44046, 4855, 3128, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 7, 3132, 11, 1105, 11, 860, 17032, 11, 4686, 2625, 40541, 4855, 3128, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 7, 1959, 11, 362, 11, 604, 11, 4686, 2625, 5962, 4855, 6678, 604, 400, 16470, 614, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 7, 1959, 11, 362, 11, 12131, 11, 4686, 2625, 5842, 723, 604, 400, 16470, 614, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 7, 1959, 11, 362, 11, 36006, 21, 11, 4686, 2625, 5956, 4855, 6678, 604, 400, 16470, 614, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 7, 1959, 11, 362, 11, 7337, 11, 4686, 2625, 5962, 4855, 2835, 16470, 614, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 7, 1959, 11, 362, 11, 4751, 11, 4686, 2625, 5842, 723, 2835, 16470, 614, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 7, 1959, 11, 362, 11, 860, 8054, 11, 4686, 2625, 5956, 4855, 2835, 16470, 614, 12340, 198, 220, 220, 220, 16589, 198, 8, 198, 4299, 1332, 62, 30283, 62, 4475, 62, 18982, 7, 820, 11, 1227, 11, 614, 2599, 198, 220, 220, 220, 37227, 9787, 3376, 3128, 37811, 198, 220, 220, 220, 1255, 25, 8547, 22618, 10430, 796, 3128, 62, 1462, 62, 9903, 22618, 7, 820, 28, 820, 11, 1227, 28, 8424, 11, 614, 28, 1941, 8, 198, 220, 220, 220, 6818, 357, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 13, 30283, 198, 220, 220, 220, 10612, 277, 1, 42779, 3128, 705, 90, 820, 92, 12, 90, 8424, 92, 12, 90, 1941, 92, 6, 7, 820, 12, 8424, 12, 1941, 8, 318, 8018, 355, 11491, 1, 628, 198, 4299, 1332, 62, 7029, 62, 19002, 62, 3642, 391, 62, 5607, 62, 293, 499, 62, 19002, 33529, 198, 220, 220, 220, 37227, 9787, 3119, 286, 954, 16470, 812, 329, 7337, 12785, 812, 37811, 198, 220, 220, 220, 923, 62, 1941, 796, 4751, 198, 220, 220, 220, 16470, 62, 19002, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 614, 198, 220, 220, 220, 220, 220, 220, 220, 329, 614, 287, 2837, 7, 9688, 62, 1941, 11, 923, 62, 1941, 1343, 7337, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3128, 62, 1462, 62, 9903, 22618, 7, 1941, 28, 1941, 11, 1227, 28, 17, 11, 1110, 28, 1959, 737, 30283, 198, 220, 220, 220, 2361, 198, 220, 220, 220, 4036, 62, 9127, 796, 18896, 7, 293, 499, 62, 19002, 8, 198, 220, 220, 220, 2938, 62, 9127, 796, 10111, 198, 220, 220, 220, 6818, 4036, 62, 9127, 6624, 2938, 62, 9127, 11, 357, 198, 220, 220, 220, 220, 220, 220, 220, 277, 1, 1890, 7337, 12785, 812, 705, 90, 40319, 62, 9127, 92, 6, 815, 307, 16470, 13, 366, 198, 220, 220, 220, 220, 220, 220, 220, 277, 1, 1537, 4036, 954, 25, 705, 90, 50039, 62, 9127, 92, 4458, 366, 198, 220, 220, 220, 220, 220, 220, 220, 277, 1, 40630, 11, 8018, 355, 16470, 7479, 77, 90, 293, 499, 62, 19002, 36786, 198, 220, 220, 220, 1267, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 820, 11, 1227, 11, 614, 1600, 198, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2808, 400, 730, 65, 3728, 329, 407, 16470, 812, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 7, 1959, 11, 362, 11, 352, 11, 4686, 2625, 5962, 4855, 6678, 614, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 7, 1959, 11, 362, 11, 33448, 11, 4686, 2625, 5842, 723, 614, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 7, 1959, 11, 362, 11, 860, 17032, 11, 4686, 2625, 5956, 4855, 6678, 614, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 7, 1959, 11, 362, 11, 1802, 11, 4686, 2625, 5962, 4855, 2835, 6678, 614, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 7, 1959, 11, 362, 11, 38123, 11, 4686, 2625, 5842, 723, 2835, 614, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 7, 1959, 11, 362, 11, 7388, 405, 11, 4686, 2625, 5956, 4855, 2835, 6678, 614, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1110, 5794, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 7, 2624, 11, 352, 11, 21489, 11, 4686, 2625, 14202, 87, 7609, 3933, 400, 1110, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 7, 3132, 11, 604, 11, 21489, 11, 4686, 2625, 14202, 87, 7609, 3261, 400, 1110, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 7, 15, 11, 352, 11, 21489, 11, 4686, 2625, 14202, 87, 7609, 657, 400, 1110, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 32590, 16, 11, 352, 11, 21489, 11, 4686, 2625, 32863, 876, 1110, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1227, 5794, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 7, 16, 11, 657, 11, 21489, 11, 4686, 2625, 14202, 87, 7609, 657, 400, 1110, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 7, 16, 11, 1511, 11, 21489, 11, 4686, 2625, 14202, 87, 7609, 1511, 400, 1227, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 7, 16, 11, 532, 16, 11, 21489, 11, 4686, 2625, 32863, 876, 1227, 12340, 198, 220, 220, 220, 16589, 198, 8, 198, 4299, 1332, 62, 1939, 47315, 62, 4475, 62, 18982, 7, 820, 11, 1227, 11, 614, 2599, 198, 220, 220, 220, 37227, 9787, 11491, 3128, 37811, 198, 220, 220, 220, 1255, 25, 8547, 22618, 10430, 796, 3128, 62, 1462, 62, 9903, 22618, 7, 820, 28, 820, 11, 1227, 28, 8424, 11, 614, 28, 1941, 8, 198, 220, 220, 220, 6818, 357, 198, 220, 220, 220, 220, 220, 220, 220, 407, 1255, 13, 30283, 198, 220, 220, 220, 10612, 277, 1, 818, 30283, 3128, 705, 90, 820, 92, 12, 90, 8424, 92, 12, 90, 1941, 92, 6, 7, 820, 12, 8424, 12, 1941, 8, 318, 8018, 355, 3376, 1, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 820, 11, 1227, 11, 614, 1600, 198, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 7, 3132, 11, 352, 11, 657, 11, 4686, 2625, 3118, 15999, 4220, 18645, 614, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 7, 16, 11, 352, 11, 838, 62, 830, 11, 4686, 2625, 3118, 15999, 1353, 18645, 614, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 7, 3132, 11, 352, 11, 532, 16, 11, 4686, 2625, 32863, 876, 614, 12340, 198, 220, 220, 220, 16589, 198, 8, 198, 4299, 1332, 62, 403, 15999, 62, 4475, 62, 18982, 7, 820, 11, 1227, 11, 614, 2599, 198, 220, 220, 220, 37227, 9787, 24222, 3128, 37811, 198, 220, 220, 220, 1255, 25, 8547, 22618, 10430, 796, 3128, 62, 1462, 62, 9903, 22618, 7, 820, 28, 820, 11, 1227, 28, 8424, 11, 614, 28, 1941, 8, 198, 220, 220, 220, 6818, 357, 198, 220, 220, 220, 220, 220, 220, 220, 407, 1255, 13, 15999, 198, 220, 220, 220, 10612, 277, 1, 3118, 15999, 3128, 705, 90, 820, 92, 12, 90, 8424, 92, 12, 90, 1941, 92, 6, 7, 820, 12, 8424, 12, 1941, 8, 318, 8018, 355, 4855, 1, 198 ]
2.484509
1,517
import math a = int(input("a = ")) b = int(input("b = ")) c = a + b d = a - b e = a * b f = a / b g = a % b h = math.log10(a) i = a**b print(c,d,e,f,g,h,i)
[ 11748, 10688, 198, 198, 64, 796, 493, 7, 15414, 7203, 64, 796, 366, 4008, 198, 65, 796, 493, 7, 15414, 7203, 65, 796, 366, 4008, 198, 198, 66, 796, 257, 1343, 275, 198, 67, 796, 257, 532, 275, 198, 68, 796, 257, 1635, 275, 198, 69, 796, 257, 1220, 275, 198, 70, 796, 257, 4064, 275, 198, 71, 796, 10688, 13, 6404, 940, 7, 64, 8, 198, 72, 796, 257, 1174, 65, 198, 198, 4798, 7, 66, 11, 67, 11, 68, 11, 69, 11, 70, 11, 71, 11, 72, 8, 198 ]
1.747253
91
# -*- coding: utf-8 -*- # !/usr/bin/env python3
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 5145, 14, 14629, 14, 8800, 14, 24330, 21015, 18 ]
1.958333
24
""" This is a helper script meant to generate a working config.py file from the config template. """ from getpass import getpass import json import os.path from random import choice import string import sys from urllib2 import urlopen import argparse el = string.ascii_letters + string.digits rand_str = lambda n: ''.join(choice(el) for _ in range(n)) if __name__ == '__main__': generate_config()
[ 37811, 198, 1212, 318, 257, 31904, 4226, 4001, 284, 7716, 257, 198, 16090, 4566, 13, 9078, 2393, 422, 262, 4566, 11055, 13, 198, 37811, 198, 198, 6738, 651, 6603, 1330, 651, 6603, 198, 11748, 33918, 198, 11748, 28686, 13, 6978, 198, 6738, 4738, 1330, 3572, 198, 11748, 4731, 198, 11748, 25064, 198, 6738, 2956, 297, 571, 17, 1330, 19016, 9654, 198, 198, 11748, 1822, 29572, 628, 198, 417, 796, 4731, 13, 292, 979, 72, 62, 15653, 1343, 4731, 13, 12894, 896, 198, 25192, 62, 2536, 796, 37456, 299, 25, 705, 4458, 22179, 7, 25541, 7, 417, 8, 329, 4808, 287, 2837, 7, 77, 4008, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 7716, 62, 11250, 3419, 198 ]
3.256
125
import time import aiohttp import traceback import discord import textwrap import io import json from dhooks import Webhook from utils.chat_formatting import pagify from contextlib import redirect_stdout from copy import copy from typing import Union from utils import repo, default, http, dataIO from discord.ext import commands
[ 11748, 640, 198, 11748, 257, 952, 4023, 198, 11748, 12854, 1891, 198, 11748, 36446, 198, 11748, 2420, 37150, 198, 11748, 33245, 198, 11748, 33918, 198, 198, 6738, 288, 25480, 82, 1330, 5313, 25480, 198, 6738, 3384, 4487, 13, 17006, 62, 18982, 889, 1330, 42208, 1958, 198, 6738, 4732, 8019, 1330, 18941, 62, 19282, 448, 198, 6738, 4866, 1330, 4866, 198, 6738, 19720, 1330, 4479, 198, 6738, 3384, 4487, 1330, 29924, 11, 4277, 11, 2638, 11, 1366, 9399, 198, 6738, 36446, 13, 2302, 1330, 9729, 628, 198 ]
3.872093
86
''' @Authors: Harrison Leece, James Hribal, Max Fung, Nils Heidenreich @Purpose: Explore 6DOF rocket trajectory, esspecially quaternion rotation Learning resources: https://eater.net/quaternions ''' import numpy as np import oyaml as yaml import math class Rotator: ''' https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#Using_quaternions_as_rotations This function should take inputs: 'Cartesian, unit rotation-axis (Vector), Rotation Angle in radians (Theta) and form a quaternion vector ''' ''' https://math.stackexchange.com/questions/40164/how-do-you-rotate-a-vector-by-a-unit-quaternion ''' ''' https://en.wikipedia.org/wiki/Quaternion#Hamilton_product https://math.stackexchange.com/questions/40164/how-do-you-rotate-a-vector-by-a-unit-quaternion ''' ''' Convert some arbitrary vector to a unit vector (divide components by the magnitude) ''' ''' Checker function to verify a vector of arbitrary length is a unit vector Tolerance variable to allow 'close enough' cases to succeed ''' ''' https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#Using_quaternions_as_rotations q' = q2q1 q1 first, then q2 USE QUATERNION MULTIPLICATION RULE: v*w where v and w are both quaternions with no real part v*w = v x w - v * w v*w where v and w are both quaternions with real part s and t (see wikipedia) v*w = (s + v)*(t + w) = (st - v * w)+(sw + tv + v x w) ''' class Rocket(Rotator): ''' Calculate the angle of attack (alpha) in radians using the rocket's velocity direction and rotation state. Return alpha ''' ''' Use environmental data regarding gust velocity and rocket geometry to estimate the rotation axis and rotation magnitude (radians) of a rocket Return a rotation quaternion for this axis and magnitude ''' ''' Use the angle of attack, drag+lift coefficients and rocket geometry to estimate the rotation axis and rotation magnitude (radians) of a rocket Return a rotation quaternion for this axis and magnitude ''' ''' Place holder - calcultes tvc rotation Not needed for final version Return a rotation quaternion for this axis and magnitude ''' ''' lock rotation of the craft despite forces acting on the body useful for constraining rocket to a rail at launch for example (Prevents integration of accelerations to velocities) ''' ''' Unlocks rotation ''' class Environment(): ''' The environment object helps compartmentalize environmental data (atmospheric temperature, pressure, gusts etc...). The object can then be accessed to fetch atmospheric or environmental data for the rotator object desired ''' ''' For these be sure to check which altitude you are working with. For now I have it as altitude relative to center of the earth ''' ''' The Reference object is a Fixed Earth, centered at 0,0,0 with no rotation ''' ''' Inherits the Reference (Non-rotating earth) and creates a rotating earth ''' class Launchpad(RotatingEarth): ''' Turn the coordinates of the launch site into spherical coordinates and set as the position of the object RRS coordinates: fmt=dms 35 degrees, 21 minutes, 2 seconds North 117 degrees, 48 minutes, 30 seconds West fmts:>> 'dd' << decimal degree, >> 'dmm' << degree + decimal minutes >> dms << degrees, minutes, and seconds Format input as nested lists, North first, then west list = [[35,21,2],[117,48,39]] ''' if __name__ == '__main__': with open('rocket_info.yaml') as rocket_info: rocket_data = yaml.load(rocket_info, Loader=yaml.FullLoader) rot_tester = Rotator() rot_tester.report_body_vector() rot_quaternion = np.array([[-.707],[0], [.707],[0]]) rot_tester.rotate_body(rot_quaternion) rot_tester.report_body_vector() rocenv = Environment(None, None) rocket = Rocket(rocket_data, rocenv)
[ 7061, 6, 198, 31, 30515, 669, 25, 17281, 5741, 344, 11, 3700, 367, 822, 282, 11, 5436, 376, 2150, 11, 399, 4487, 679, 14029, 260, 488, 198, 31, 30026, 3455, 25, 41401, 718, 18227, 37, 10701, 22942, 11, 3209, 2333, 627, 9205, 295, 13179, 198, 41730, 4133, 25, 3740, 1378, 68, 729, 13, 3262, 14, 421, 9205, 507, 198, 7061, 6, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 35104, 43695, 355, 331, 43695, 198, 11748, 10688, 198, 198, 4871, 18481, 1352, 25, 628, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 3740, 1378, 268, 13, 31266, 13, 2398, 14, 15466, 14, 4507, 9205, 507, 62, 392, 62, 2777, 34961, 62, 10599, 341, 2, 12814, 62, 421, 9205, 507, 62, 292, 62, 10599, 602, 198, 220, 220, 220, 770, 2163, 815, 1011, 17311, 25, 705, 43476, 35610, 11, 4326, 13179, 12, 22704, 357, 38469, 828, 198, 220, 220, 220, 371, 14221, 42375, 287, 2511, 1547, 357, 464, 8326, 8, 290, 1296, 257, 627, 9205, 295, 15879, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 3740, 1378, 11018, 13, 301, 330, 365, 87, 3803, 13, 785, 14, 6138, 507, 14, 21844, 2414, 14, 4919, 12, 4598, 12, 5832, 12, 10599, 378, 12, 64, 12, 31364, 12, 1525, 12, 64, 12, 20850, 12, 421, 9205, 295, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 3740, 1378, 268, 13, 31266, 13, 2398, 14, 15466, 14, 4507, 9205, 295, 2, 45405, 62, 11167, 198, 220, 220, 220, 3740, 1378, 11018, 13, 301, 330, 365, 87, 3803, 13, 785, 14, 6138, 507, 14, 21844, 2414, 14, 4919, 12, 4598, 12, 5832, 12, 10599, 378, 12, 64, 12, 31364, 12, 1525, 12, 64, 12, 20850, 12, 421, 9205, 295, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 38240, 617, 14977, 15879, 284, 257, 4326, 15879, 357, 7146, 485, 6805, 416, 262, 14735, 8, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 6822, 263, 2163, 284, 11767, 257, 15879, 286, 14977, 4129, 318, 257, 4326, 15879, 198, 220, 220, 220, 309, 37668, 7885, 284, 1249, 705, 19836, 1576, 6, 2663, 284, 6758, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 3740, 1378, 268, 13, 31266, 13, 2398, 14, 15466, 14, 4507, 9205, 507, 62, 392, 62, 2777, 34961, 62, 10599, 341, 2, 12814, 62, 421, 9205, 507, 62, 292, 62, 10599, 602, 198, 220, 220, 220, 10662, 6, 796, 10662, 17, 80, 16, 198, 220, 220, 220, 10662, 16, 717, 11, 788, 10662, 17, 198, 220, 220, 220, 23210, 19604, 23261, 45, 2849, 337, 16724, 4061, 43, 2149, 6234, 371, 24212, 25, 198, 220, 220, 220, 410, 9, 86, 220, 810, 410, 290, 266, 389, 1111, 627, 9205, 507, 351, 645, 1103, 636, 198, 220, 220, 220, 410, 9, 86, 796, 410, 2124, 266, 532, 410, 1635, 266, 198, 220, 220, 220, 410, 9, 86, 220, 810, 410, 290, 266, 389, 1111, 627, 9205, 507, 351, 1103, 636, 264, 290, 256, 357, 3826, 47145, 11151, 8, 198, 220, 220, 220, 410, 9, 86, 796, 357, 82, 1343, 410, 27493, 7, 83, 1343, 266, 8, 796, 357, 301, 532, 410, 1635, 266, 8, 33747, 2032, 1343, 31557, 1343, 410, 2124, 266, 8, 198, 220, 220, 220, 705, 7061, 198, 198, 4871, 16920, 7, 24864, 1352, 2599, 628, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 27131, 378, 262, 9848, 286, 1368, 357, 26591, 8, 287, 2511, 1547, 1262, 262, 10701, 338, 15432, 4571, 198, 220, 220, 220, 290, 13179, 1181, 13, 198, 220, 220, 220, 8229, 17130, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 5765, 6142, 1366, 5115, 35253, 15432, 290, 10701, 22939, 284, 8636, 198, 220, 220, 220, 262, 13179, 16488, 290, 13179, 14735, 357, 6335, 1547, 8, 286, 257, 10701, 198, 220, 220, 220, 8229, 257, 13179, 627, 9205, 295, 329, 428, 16488, 290, 14735, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 5765, 262, 9848, 286, 1368, 11, 6715, 10, 26282, 44036, 290, 10701, 22939, 284, 198, 220, 220, 220, 8636, 262, 13179, 16488, 290, 13179, 14735, 357, 6335, 1547, 8, 286, 257, 10701, 198, 220, 220, 220, 8229, 257, 13179, 627, 9205, 295, 329, 428, 16488, 290, 14735, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 8474, 15762, 532, 2386, 40820, 274, 256, 28435, 13179, 198, 220, 220, 220, 1892, 2622, 329, 2457, 2196, 198, 220, 220, 220, 8229, 257, 13179, 627, 9205, 295, 329, 428, 16488, 290, 14735, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 5793, 13179, 286, 262, 5977, 3805, 3386, 7205, 319, 262, 1767, 198, 220, 220, 220, 4465, 329, 1500, 24674, 10701, 284, 257, 6787, 379, 4219, 329, 1672, 198, 220, 220, 220, 357, 36854, 658, 11812, 286, 8320, 602, 284, 11555, 420, 871, 8, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 791, 28860, 13179, 198, 220, 220, 220, 705, 7061, 198, 4871, 9344, 33529, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 383, 2858, 2134, 5419, 26247, 282, 1096, 6142, 1366, 357, 265, 6384, 15011, 198, 220, 220, 220, 5951, 11, 3833, 11, 35253, 82, 3503, 986, 737, 220, 383, 2134, 460, 788, 307, 17535, 198, 220, 220, 220, 284, 21207, 20938, 393, 6142, 1366, 329, 262, 5724, 1352, 2134, 10348, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1114, 777, 307, 1654, 284, 2198, 543, 20334, 345, 389, 1762, 351, 13, 220, 1114, 783, 314, 423, 198, 220, 220, 220, 340, 355, 20334, 3585, 284, 3641, 286, 262, 4534, 198, 220, 220, 220, 705, 7061, 198, 7061, 6, 198, 464, 20984, 2134, 318, 257, 10832, 3668, 11, 19254, 379, 657, 11, 15, 11, 15, 351, 645, 13179, 198, 7061, 6, 198, 7061, 6, 198, 818, 372, 896, 262, 20984, 357, 15419, 12, 10599, 803, 4534, 8, 290, 8075, 257, 24012, 4534, 198, 7061, 6, 198, 198, 4871, 21225, 15636, 7, 24864, 803, 22840, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 6756, 262, 22715, 286, 262, 4219, 2524, 656, 43180, 22715, 290, 198, 220, 220, 220, 900, 355, 262, 2292, 286, 262, 2134, 628, 220, 220, 220, 371, 6998, 22715, 25, 198, 220, 220, 220, 46996, 28, 67, 907, 198, 220, 220, 220, 3439, 7370, 11, 2310, 2431, 11, 362, 4201, 2258, 198, 220, 220, 220, 19048, 7370, 11, 4764, 2431, 11, 1542, 4201, 2688, 198, 220, 220, 220, 277, 76, 912, 25, 4211, 705, 1860, 6, 9959, 32465, 4922, 11, 9609, 705, 67, 3020, 6, 9959, 4922, 1343, 32465, 2431, 198, 220, 220, 220, 9609, 288, 907, 9959, 7370, 11, 2431, 11, 290, 4201, 628, 220, 220, 220, 18980, 5128, 355, 28376, 8341, 11, 2258, 717, 11, 788, 7421, 198, 220, 220, 220, 220, 1351, 796, 16410, 2327, 11, 2481, 11, 17, 38430, 17657, 11, 2780, 11, 2670, 11907, 198, 220, 220, 220, 705, 7061, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 351, 1280, 10786, 30431, 62, 10951, 13, 88, 43695, 11537, 355, 10701, 62, 10951, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10701, 62, 7890, 796, 331, 43695, 13, 2220, 7, 30431, 62, 10951, 11, 8778, 263, 28, 88, 43695, 13, 13295, 17401, 8, 198, 220, 220, 220, 5724, 62, 4879, 353, 796, 18481, 1352, 3419, 198, 220, 220, 220, 5724, 62, 4879, 353, 13, 13116, 62, 2618, 62, 31364, 3419, 198, 220, 220, 220, 5724, 62, 421, 9205, 295, 796, 45941, 13, 18747, 26933, 58, 34507, 24038, 38430, 15, 4357, 685, 13, 24038, 38430, 15, 11907, 8, 198, 220, 220, 220, 5724, 62, 4879, 353, 13, 10599, 378, 62, 2618, 7, 10599, 62, 421, 9205, 295, 8, 198, 220, 220, 220, 5724, 62, 4879, 353, 13, 13116, 62, 2618, 62, 31364, 3419, 628, 220, 220, 220, 686, 66, 24330, 796, 9344, 7, 14202, 11, 6045, 8, 198, 220, 220, 220, 10701, 796, 16920, 7, 30431, 62, 7890, 11, 686, 66, 24330, 8, 198 ]
2.90634
1,388
import Framework.Utils as Utils from Framework.Utils import data_utils from Fremework.Utils.testcase_Utils import pNote class MyActions(object): """" Default __init__ field must be used when using classes for keywords """ def full_name(self, student, first_name= 'first', last_name= 'last', full_name= 'first last'): """ combine first and last name """ # status will be used to save the status of the test that wheather it is failed or pass status = True # we will return the dictionary of keys and value to maintain the logs log_dic={} wdesc= 'combine first and last name' full_name = None data = data_Utils.get_credentials(self.datafile, student, [first_name, last_name, full_name]) if first_name and last_name: pNote("first name is {0}".format(first_name)) pNote("last name is {0}".format(last_name)) temp_full_name = first_name + ' ' + last_name if temp_full_name != full_name: status= False pNote('full name is {0}'.format(full_name)) else: pNote("names are not provided") status = False log_dic["student"]= student log_dic["first_names"]= first_name log_dic["second_name"]= second_name log_dic["full_name"]= full_name return status, log_dic
[ 11748, 25161, 13, 18274, 4487, 355, 7273, 4487, 198, 6738, 25161, 13, 18274, 4487, 1330, 1366, 62, 26791, 198, 6738, 38433, 6433, 13, 18274, 4487, 13, 9288, 7442, 62, 18274, 4487, 1330, 279, 6425, 628, 628, 198, 4871, 2011, 32, 2733, 7, 15252, 2599, 628, 220, 220, 220, 13538, 15931, 15161, 11593, 15003, 834, 2214, 1276, 307, 973, 618, 1262, 6097, 329, 26286, 37227, 628, 220, 220, 220, 825, 1336, 62, 3672, 7, 944, 11, 3710, 11, 717, 62, 3672, 28, 705, 11085, 3256, 938, 62, 3672, 28, 705, 12957, 3256, 1336, 62, 3672, 28, 705, 11085, 938, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 12082, 717, 290, 938, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3722, 481, 307, 973, 284, 3613, 262, 3722, 286, 262, 1332, 326, 483, 1032, 340, 318, 4054, 393, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 3722, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 356, 481, 1441, 262, 22155, 286, 8251, 290, 1988, 284, 5529, 262, 17259, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 67, 291, 34758, 92, 198, 220, 220, 220, 220, 220, 220, 220, 266, 20147, 28, 705, 24011, 500, 717, 290, 938, 1438, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1336, 62, 3672, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1366, 62, 18274, 4487, 13, 1136, 62, 66, 445, 14817, 7, 944, 13, 7890, 7753, 11, 3710, 11, 685, 11085, 62, 3672, 11, 938, 62, 3672, 11, 1336, 62, 3672, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 717, 62, 3672, 290, 938, 62, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 6425, 7203, 11085, 1438, 318, 1391, 15, 92, 1911, 18982, 7, 11085, 62, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 6425, 7203, 12957, 1438, 318, 1391, 15, 92, 1911, 18982, 7, 12957, 62, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 12853, 62, 3672, 796, 717, 62, 3672, 1343, 705, 705, 1343, 938, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 20218, 62, 12853, 62, 3672, 14512, 1336, 62, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 28, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 6425, 10786, 12853, 1438, 318, 1391, 15, 92, 4458, 18982, 7, 12853, 62, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 6425, 7203, 14933, 389, 407, 2810, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 67, 291, 14692, 50139, 8973, 28, 3710, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 67, 291, 14692, 11085, 62, 14933, 8973, 28, 717, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 67, 291, 14692, 12227, 62, 3672, 8973, 28, 1218, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 67, 291, 14692, 12853, 62, 3672, 8973, 28, 1336, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 3722, 11, 2604, 62, 67, 291, 198 ]
2.367174
591
'''显示结果''' import numpy from helpers.drawer import draw_heatmap def main(): '''入口''' lval = 5.20 rpath = 'heatmap8/avsb' uval = numpy.load('{0}/{1:.2f}U.npy'.format(rpath, lval)) draw_heatmap(uval[0, 0, 0, 0, :, :, 0]) draw_heatmap(uval[1, 1, 1, 1, :, :, 0]) draw_heatmap(uval[1, 0, 0, 1, :, :, 0]) draw_heatmap(uval[0, 1, 1, 0, :, :, 0]) if __name__ == '__main__': main()
[ 7061, 6, 23626, 122, 163, 97, 118, 163, 119, 241, 162, 252, 250, 7061, 6, 198, 198, 11748, 299, 32152, 198, 6738, 49385, 13, 19334, 263, 1330, 3197, 62, 25080, 8899, 198, 198, 4299, 1388, 33529, 198, 220, 220, 220, 705, 7061, 17739, 98, 20998, 96, 7061, 6, 198, 220, 220, 220, 300, 2100, 796, 642, 13, 1238, 198, 220, 220, 220, 374, 6978, 796, 705, 25080, 8899, 23, 14, 615, 36299, 6, 198, 220, 220, 220, 334, 2100, 796, 299, 32152, 13, 2220, 10786, 90, 15, 92, 14, 90, 16, 25, 13, 17, 69, 92, 52, 13, 77, 9078, 4458, 18982, 7, 81, 6978, 11, 300, 2100, 4008, 198, 220, 220, 220, 3197, 62, 25080, 8899, 7, 84, 2100, 58, 15, 11, 657, 11, 657, 11, 657, 11, 1058, 11, 1058, 11, 657, 12962, 198, 220, 220, 220, 3197, 62, 25080, 8899, 7, 84, 2100, 58, 16, 11, 352, 11, 352, 11, 352, 11, 1058, 11, 1058, 11, 657, 12962, 198, 220, 220, 220, 3197, 62, 25080, 8899, 7, 84, 2100, 58, 16, 11, 657, 11, 657, 11, 352, 11, 1058, 11, 1058, 11, 657, 12962, 198, 220, 220, 220, 3197, 62, 25080, 8899, 7, 84, 2100, 58, 15, 11, 352, 11, 352, 11, 657, 11, 1058, 11, 1058, 11, 657, 12962, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
1.780172
232
import unittest import pytest import sys import os from util4tests import enable_test_logging, run_single_test, log from pykg2tbl import KG2TblService, KGFileSource, KG2EndpointSource, J2SparqlBuilder ALL_TRIPLES_SPARQL = "SELECT * WHERE { ?s ?p ?o. } LIMIT 10" BODC_ENDPOINT = "http://vocab.nerc.ac.uk/sparql/sparql" if __name__ == "__main__": run_single_test(__file__)
[ 11748, 555, 715, 395, 198, 11748, 12972, 9288, 198, 11748, 25064, 198, 11748, 28686, 198, 6738, 7736, 19, 41989, 1330, 7139, 62, 9288, 62, 6404, 2667, 11, 1057, 62, 29762, 62, 9288, 11, 2604, 198, 198, 6738, 12972, 10025, 17, 83, 2436, 1330, 509, 38, 17, 51, 2436, 16177, 11, 509, 38, 8979, 7416, 11, 509, 38, 17, 12915, 4122, 7416, 11, 449, 17, 50, 1845, 13976, 32875, 628, 198, 7036, 62, 5446, 4061, 28378, 62, 4303, 1503, 9711, 796, 366, 46506, 1635, 33411, 1391, 5633, 82, 5633, 79, 5633, 78, 13, 1782, 27564, 2043, 838, 1, 198, 33, 3727, 34, 62, 1677, 6322, 46, 12394, 796, 366, 4023, 1378, 18893, 397, 13, 1008, 66, 13, 330, 13, 2724, 14, 82, 1845, 13976, 14, 82, 1845, 13976, 1, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1057, 62, 29762, 62, 9288, 7, 834, 7753, 834, 8 ]
2.461039
154
""" .. _tut-erp: EEG processing and Event Related Potentials (ERPs) ================================================== This tutorial shows how to perform standard ERP analyses in MNE-Python. Most of the material here is covered in other tutorials too, but for convenience the functions and methods most useful for ERP analyses are collected here, with links to other tutorials where more detailed information is given. As usual we'll start by importing the modules we need and loading some example data. Instead of parsing the events from the raw data's :term:`stim channel` (like we do in :ref:`this tutorial <tut-events-vs-annotations>`), we'll load the events from an external events file. Finally, to speed up computations so our documentation server can handle them, we'll crop the raw data from ~4.5 minutes down to 90 seconds. """ import os import numpy as np import matplotlib.pyplot as plt import mne sample_data_folder = mne.datasets.sample.data_path() sample_data_raw_file = os.path.join(sample_data_folder, 'MEG', 'sample', 'sample_audvis_filt-0-40_raw.fif') raw = mne.io.read_raw_fif(sample_data_raw_file, preload=False) sample_data_events_file = os.path.join(sample_data_folder, 'MEG', 'sample', 'sample_audvis_filt-0-40_raw-eve.fif') events = mne.read_events(sample_data_events_file) raw.crop(tmax=90) # in seconds; happens in-place # discard events >90 seconds (not strictly necessary: avoids some warnings) events = events[events[:, 0] <= raw.last_samp] ############################################################################### # The file that we loaded has already been partially processed: 3D sensor # locations have been saved as part of the ``.fif`` file, the data have been # low-pass filtered at 40 Hz, and a common average reference is set for the # EEG channels, stored as a projector (see :ref:`section-avg-ref-proj` in the # :ref:`tut-set-eeg-ref` tutorial for more info about when you may want to do # this). We'll discuss how to do each of these below. # # Since this is a combined EEG+MEG dataset, let's start by restricting the data # to just the EEG and EOG channels. This will cause the other projectors saved # in the file (which apply only to magnetometer channels) to be removed. By # looking at the measurement info we can see that we now have 59 EEG channels # and 1 EOG channel. raw.pick(['eeg', 'eog']).load_data() raw.info ############################################################################### # Channel names and types # ^^^^^^^^^^^^^^^^^^^^^^^ # # In practice it's quite common to have some channels labelled as EEG that are # actually EOG channels. `~mne.io.Raw` objects have a # `~mne.io.Raw.set_channel_types` method that you can use to change a channel # that is labeled as ``eeg`` into an ``eog`` type. You can also rename channels # using the `~mne.io.Raw.rename_channels` method. Detailed examples of both of # these methods can be found in the tutorial :ref:`tut-raw-class`. In this data # the channel types are all correct already, so for now we'll just rename the # channels to remove a space and a leading zero in the channel names, and # convert to lowercase: channel_renaming_dict = {name: name.replace(' 0', '').lower() for name in raw.ch_names} _ = raw.rename_channels(channel_renaming_dict) # happens in-place ############################################################################### # Channel locations # ^^^^^^^^^^^^^^^^^ # # The tutorial :ref:`tut-sensor-locations` describes MNE-Python's handling of # sensor positions in great detail. To briefly summarize: MNE-Python # distinguishes :term:`montages <montage>` (which contain sensor positions in # 3D: ``x``, ``y``, ``z``, in meters) from :term:`layouts <layout>` (which # define 2D arrangements of sensors for plotting approximate overhead diagrams # of sensor positions). Additionally, montages may specify *idealized* sensor # positions (based on, e.g., an idealized spherical headshape model) or they # may contain *realistic* sensor positions obtained by digitizing the 3D # locations of the sensors when placed on the actual subject's head. # # This dataset has realistic digitized 3D sensor locations saved as part of the # ``.fif`` file, so we can view the sensor locations in 2D or 3D using the # `~mne.io.Raw.plot_sensors` method: raw.plot_sensors(show_names=True) fig = raw.plot_sensors('3d') ############################################################################### # If you're working with a standard montage like the `10-20 <ten_twenty_>`_ # system, you can add sensor locations to the data like this: # ``raw.set_montage('standard_1020')``. See :ref:`tut-sensor-locations` for # info on what other standard montages are built-in to MNE-Python. # # If you have digitized realistic sensor locations, there are dedicated # functions for loading those digitization files into MNE-Python; see # :ref:`reading-dig-montages` for discussion and :ref:`dig-formats` for a list # of supported formats. Once loaded, the digitized sensor locations can be # added to the data by passing the loaded montage object to # ``raw.set_montage()``. # # # Setting the EEG reference # ^^^^^^^^^^^^^^^^^^^^^^^^^ # # As mentioned above, this data already has an EEG common average reference # added as a :term:`projector`. We can view the effect of this on the raw data # by plotting with and without the projector applied: for proj in (False, True): fig = raw.plot(n_channels=5, proj=proj, scalings=dict(eeg=50e-6)) fig.subplots_adjust(top=0.9) # make room for title ref = 'Average' if proj else 'No' fig.suptitle(f'{ref} reference', size='xx-large', weight='bold') ############################################################################### # The referencing scheme can be changed with the function # `mne.set_eeg_reference` (which by default operates on a *copy* of the data) # or the `raw.set_eeg_reference() <mne.io.Raw.set_eeg_reference>` method (which # always modifies the data in-place). The tutorial :ref:`tut-set-eeg-ref` shows # several examples of this. # # # Filtering # ^^^^^^^^^ # # MNE-Python has extensive support for different ways of filtering data. For a # general discussion of filter characteristics and MNE-Python defaults, see # :ref:`disc-filtering`. For practical examples of how to apply filters to your # data, see :ref:`tut-filter-resample`. Here, we'll apply a simple high-pass # filter for illustration: raw.filter(l_freq=0.1, h_freq=None) ############################################################################### # Evoked responses: epoching and averaging # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # # The general process for extracting evoked responses from continuous data is # to use the `~mne.Epochs` constructor, and then average the resulting epochs # to create an `~mne.Evoked` object. In MNE-Python, events are represented as # a :class:`NumPy array <numpy.ndarray>` of sample numbers and integer event # codes. The event codes are stored in the last column of the events array: np.unique(events[:, -1]) ############################################################################### # The :ref:`tut-event-arrays` tutorial discusses event arrays in more detail. # Integer event codes are mapped to more descriptive text using a Python # :class:`dictionary <dict>` usually called ``event_id``. This mapping is # determined by your experiment code (i.e., it reflects which event codes you # chose to use to represent different experimental events or conditions). For # the :ref:`sample-dataset` data has the following mapping: event_dict = {'auditory/left': 1, 'auditory/right': 2, 'visual/left': 3, 'visual/right': 4, 'face': 5, 'buttonpress': 32} ############################################################################### # Now we can extract epochs from the continuous data. An interactive plot # allows you to click on epochs to mark them as "bad" and drop them from the # analysis (it is not interactive on the documentation website, but will be # when you run `epochs.plot() <mne.Epochs.plot>` in a Python console). epochs = mne.Epochs(raw, events, event_id=event_dict, tmin=-0.3, tmax=0.7, preload=True) fig = epochs.plot() ############################################################################### # It is also possible to automatically drop epochs, when first creating them or # later on, by providing maximum peak-to-peak signal value thresholds (pass to # the `~mne.Epochs` constructor as the ``reject`` parameter; see # :ref:`tut-reject-epochs-section` for details). You can also do this after # the epochs are already created, using the `~mne.Epochs.drop_bad` method: reject_criteria = dict(eeg=100e-6, # 100 µV eog=200e-6) # 200 µV _ = epochs.drop_bad(reject=reject_criteria) ############################################################################### # Next we generate a barplot of which channels contributed most to epochs # getting rejected. If one channel is responsible for lots of epoch rejections, # it may be worthwhile to mark that channel as "bad" in the `~mne.io.Raw` # object and then re-run epoching (fewer channels w/ more good epochs may be # preferable to keeping all channels but losing many epochs). See # :ref:`tut-bad-channels` for more info. epochs.plot_drop_log() ############################################################################### # Another way in which epochs can be automatically dropped is if the # `~mne.io.Raw` object they're extracted from contains :term:`annotations` that # begin with either ``bad`` or ``edge`` ("edge" annotations are automatically # inserted when concatenating two separate `~mne.io.Raw` objects together). See # :ref:`tut-reject-data-spans` for more information about annotation-based # epoch rejection. # # Now that we've dropped the bad epochs, let's look at our evoked responses for # some conditions we care about. Here the `~mne.Epochs.average` method will # create and `~mne.Evoked` object, which we can then plot. Notice that we\ # select which condition we want to average using the square-bracket indexing # (like a :class:`dictionary <dict>`); that returns a smaller epochs object # containing just the epochs from that condition, to which we then apply the # `~mne.Epochs.average` method: l_aud = epochs['auditory/left'].average() l_vis = epochs['visual/left'].average() ############################################################################### # These `~mne.Evoked` objects have their own interactive plotting method # (though again, it won't be interactive on the documentation website): # click-dragging a span of time will generate a scalp field topography for that # time span. Here we also demonstrate built-in color-coding the channel traces # by location: fig1 = l_aud.plot() fig2 = l_vis.plot(spatial_colors=True) ############################################################################### # Scalp topographies can also be obtained non-interactively with the # `~mne.Evoked.plot_topomap` method. Here we display topomaps of the average # field in 50 ms time windows centered at -200 ms, 100 ms, and 400 ms. l_aud.plot_topomap(times=[-0.2, 0.1, 0.4], average=0.05) ############################################################################### # Considerable customization of these plots is possible, see the docstring of # `~mne.Evoked.plot_topomap` for details. # # There is also a built-in method for combining "butterfly" plots of the # signals with scalp topographies, called `~mne.Evoked.plot_joint`. Like # `~mne.Evoked.plot_topomap` you can specify times for the scalp topographies # or you can let the method choose times automatically, as is done here: l_aud.plot_joint() ############################################################################### # Global field power (GFP) # ^^^^^^^^^^^^^^^^^^^^^^^^ # # Global field power :footcite:`Lehmann1980,Lehmann1984,Murray2008` is, # generally speaking, a measure of agreement of the signals picked up by all # sensors across the entire scalp: if all sensors have the same value at a # given time point, the GFP will be zero at that time point; if the signals # differ, the GFP will be non-zero at that time point. GFP # peaks may reflect "interesting" brain activity, warranting further # investigation. Mathematically, the GFP is the population standard # deviation across all sensors, calculated separately for every time point. # # You can plot the GFP using `evoked.plot(gfp=True) <mne.Evoked.plot>`. The GFP # trace will be black if ``spatial_colors=True`` and green otherwise. The EEG # reference does not affect the GFP: # sphinx_gallery_thumbnail_number=11 for evk in (l_aud, l_vis): evk.plot(gfp=True, spatial_colors=True, ylim=dict(eeg=[-12, 12])) ############################################################################### # To plot the GFP by itself you can pass ``gfp='only'`` (this makes it easier # to read off the GFP data values, because the scale is aligned): l_aud.plot(gfp='only') ############################################################################### # As stated above, the GFP is the population standard deviation of the signal # across channels. To compute it manually, we can leverage the fact that # `evoked.data <mne.Evoked.data>` is a :class:`NumPy array <numpy.ndarray>`, # and verify by plotting it using matplotlib commands: gfp = l_aud.data.std(axis=0, ddof=0) # Reproducing the MNE-Python plot style seen above fig, ax = plt.subplots() ax.plot(l_aud.times, gfp * 1e6, color='lime') ax.fill_between(l_aud.times, gfp * 1e6, color='lime', alpha=0.2) ax.set(xlabel='Time (s)', ylabel='GFP (µV)', title='EEG') ############################################################################### # Analyzing regions of interest (ROIs): averaging across channels # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # # Since our sample data is responses to left and right auditory and visual # stimuli, we may want to compare left versus right ROIs. To average across # channels in a region of interest, we first find the channel indices we want. # Looking back at the 2D sensor plot above, we might choose the following for # left and right ROIs: left = ['eeg17', 'eeg18', 'eeg25', 'eeg26'] right = ['eeg23', 'eeg24', 'eeg34', 'eeg35'] left_ix = mne.pick_channels(l_aud.info['ch_names'], include=left) right_ix = mne.pick_channels(l_aud.info['ch_names'], include=right) ############################################################################### # Now we can create a new Evoked with 2 virtual channels (one for each ROI): roi_dict = dict(left_ROI=left_ix, right_ROI=right_ix) roi_evoked = mne.channels.combine_channels(l_aud, roi_dict, method='mean') print(roi_evoked.info['ch_names']) roi_evoked.plot() ############################################################################### # Comparing conditions # ^^^^^^^^^^^^^^^^^^^^ # # If we wanted to compare our auditory and visual stimuli, a useful function is # `mne.viz.plot_compare_evokeds`. By default this will combine all channels in # each evoked object using global field power (or RMS for MEG channels); here # instead we specify to combine by averaging, and restrict it to a subset of # channels by passing ``picks``: evokeds = dict(auditory=l_aud, visual=l_vis) picks = [f'eeg{n}' for n in range(10, 15)] mne.viz.plot_compare_evokeds(evokeds, picks=picks, combine='mean') ############################################################################### # We can also easily get confidence intervals by treating each epoch as a # separate observation using the `~mne.Epochs.iter_evoked` method. A confidence # interval across subjects could also be obtained, by passing a list of # `~mne.Evoked` objects (one per subject) to the # `~mne.viz.plot_compare_evokeds` function. evokeds = dict(auditory=list(epochs['auditory/left'].iter_evoked()), visual=list(epochs['visual/left'].iter_evoked())) mne.viz.plot_compare_evokeds(evokeds, combine='mean', picks=picks) ############################################################################### # We can also compare conditions by subtracting one `~mne.Evoked` object from # another using the `mne.combine_evoked` function (this function also allows # pooling of epochs without subtraction). aud_minus_vis = mne.combine_evoked([l_aud, l_vis], weights=[1, -1]) aud_minus_vis.plot_joint() ############################################################################### # .. warning:: # # The code above yields an **equal-weighted difference**. If you have # imbalanced trial numbers, you might want to equalize the number of events # per condition first by using `epochs.equalize_event_counts() # <mne.Epochs.equalize_event_counts>` before averaging. # # # Grand averages # ^^^^^^^^^^^^^^ # # To compute grand averages across conditions (or subjects), you can pass a # list of `~mne.Evoked` objects to `mne.grand_average`. The result is another # `~mne.Evoked` object. grand_average = mne.grand_average([l_aud, l_vis]) print(grand_average) ############################################################################### # For combining *conditions* it is also possible to make use of :term:`HED` # tags in the condition names when selecting which epochs to average. For # example, we have the condition names: list(event_dict) ############################################################################### # We can select the auditory conditions (left and right together) by passing: epochs['auditory'].average() ############################################################################### # see :ref:`tut-section-subselect-epochs` for details. # # The tutorials :ref:`tut-epochs-class` and :ref:`tut-evoked-class` have many # more details about working with the `~mne.Epochs` and `~mne.Evoked` classes. # # .. _ten_twenty: https://en.wikipedia.org/wiki/10%E2%80%9320_system_(EEG) # # # References # ---------- # .. footbibliography::
[ 37811, 198, 492, 4808, 83, 315, 12, 263, 79, 25, 198, 198, 6500, 38, 7587, 290, 8558, 19809, 6902, 14817, 357, 1137, 12016, 8, 198, 10052, 4770, 855, 198, 198, 1212, 11808, 2523, 703, 284, 1620, 3210, 13793, 47, 13523, 287, 337, 12161, 12, 37906, 13, 4042, 286, 198, 1169, 2587, 994, 318, 5017, 287, 584, 27992, 1165, 11, 475, 329, 15607, 262, 198, 12543, 2733, 290, 5050, 749, 4465, 329, 13793, 47, 13523, 389, 7723, 994, 11, 351, 198, 28751, 284, 584, 27992, 810, 517, 6496, 1321, 318, 1813, 13, 198, 198, 1722, 6678, 356, 1183, 923, 416, 33332, 262, 13103, 356, 761, 290, 11046, 617, 1672, 198, 7890, 13, 5455, 286, 32096, 262, 2995, 422, 262, 8246, 1366, 338, 1058, 4354, 25, 63, 42003, 6518, 63, 198, 7, 2339, 356, 466, 287, 1058, 5420, 25, 63, 5661, 11808, 1279, 83, 315, 12, 31534, 12, 14259, 12, 34574, 602, 29, 63, 828, 356, 1183, 3440, 198, 1169, 2995, 422, 281, 7097, 2995, 2393, 13, 9461, 11, 284, 2866, 510, 2653, 602, 523, 198, 454, 10314, 4382, 460, 5412, 606, 11, 356, 1183, 13833, 262, 8246, 1366, 422, 5299, 19, 13, 20, 198, 1084, 1769, 866, 284, 4101, 4201, 13, 198, 37811, 198, 198, 11748, 28686, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 285, 710, 198, 198, 39873, 62, 7890, 62, 43551, 796, 285, 710, 13, 19608, 292, 1039, 13, 39873, 13, 7890, 62, 6978, 3419, 198, 39873, 62, 7890, 62, 1831, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 39873, 62, 7890, 62, 43551, 11, 705, 44, 7156, 3256, 705, 39873, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 39873, 62, 3885, 4703, 62, 69, 2326, 12, 15, 12, 1821, 62, 1831, 13, 32041, 11537, 198, 1831, 796, 285, 710, 13, 952, 13, 961, 62, 1831, 62, 32041, 7, 39873, 62, 7890, 62, 1831, 62, 7753, 11, 662, 2220, 28, 25101, 8, 198, 198, 39873, 62, 7890, 62, 31534, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 39873, 62, 7890, 62, 43551, 11, 705, 44, 7156, 3256, 705, 39873, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 39873, 62, 3885, 4703, 62, 69, 2326, 12, 15, 12, 1821, 62, 1831, 12, 44655, 13, 32041, 11537, 198, 31534, 796, 285, 710, 13, 961, 62, 31534, 7, 39873, 62, 7890, 62, 31534, 62, 7753, 8, 198, 198, 1831, 13, 31476, 7, 83, 9806, 28, 3829, 8, 220, 1303, 287, 4201, 26, 4325, 287, 12, 5372, 198, 2, 27537, 2995, 1875, 3829, 4201, 357, 1662, 14084, 3306, 25, 30940, 617, 14601, 8, 198, 31534, 796, 2995, 58, 31534, 58, 45299, 657, 60, 19841, 8246, 13, 12957, 62, 82, 696, 60, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 2, 383, 2393, 326, 356, 9639, 468, 1541, 587, 12387, 13686, 25, 513, 35, 12694, 198, 2, 7064, 423, 587, 7448, 355, 636, 286, 262, 7559, 13, 32041, 15506, 2393, 11, 262, 1366, 423, 587, 198, 2, 1877, 12, 6603, 29083, 379, 2319, 26109, 11, 290, 257, 2219, 2811, 4941, 318, 900, 329, 262, 198, 2, 48749, 9619, 11, 8574, 355, 257, 43396, 357, 3826, 1058, 5420, 25, 63, 5458, 12, 615, 70, 12, 5420, 12, 1676, 73, 63, 287, 262, 198, 2, 1058, 5420, 25, 63, 83, 315, 12, 2617, 12, 1453, 70, 12, 5420, 63, 11808, 329, 517, 7508, 546, 618, 345, 743, 765, 284, 466, 198, 2, 428, 737, 775, 1183, 2112, 703, 284, 466, 1123, 286, 777, 2174, 13, 198, 2, 198, 2, 4619, 428, 318, 257, 5929, 48749, 10, 44, 7156, 27039, 11, 1309, 338, 923, 416, 28267, 262, 1366, 198, 2, 284, 655, 262, 48749, 290, 412, 7730, 9619, 13, 770, 481, 2728, 262, 584, 1628, 669, 7448, 198, 2, 287, 262, 2393, 357, 4758, 4174, 691, 284, 19972, 15635, 9619, 8, 284, 307, 4615, 13, 2750, 198, 2, 2045, 379, 262, 15558, 7508, 356, 460, 766, 326, 356, 783, 423, 7863, 48749, 9619, 198, 2, 290, 352, 412, 7730, 6518, 13, 198, 198, 1831, 13, 27729, 7, 17816, 1453, 70, 3256, 705, 68, 519, 20520, 737, 2220, 62, 7890, 3419, 198, 1831, 13, 10951, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 2, 11102, 3891, 290, 3858, 198, 2, 10563, 39397, 39397, 39397, 39397, 39397, 18237, 198, 2, 198, 2, 554, 3357, 340, 338, 2407, 2219, 284, 423, 617, 9619, 30538, 355, 48749, 326, 389, 198, 2, 1682, 412, 7730, 9619, 13, 4600, 93, 76, 710, 13, 952, 13, 27369, 63, 5563, 423, 257, 198, 2, 4600, 93, 76, 710, 13, 952, 13, 27369, 13, 2617, 62, 17620, 62, 19199, 63, 2446, 326, 345, 460, 779, 284, 1487, 257, 6518, 198, 2, 326, 318, 15494, 355, 7559, 1453, 70, 15506, 656, 281, 7559, 68, 519, 15506, 2099, 13, 921, 460, 635, 36265, 9619, 198, 2, 1262, 262, 4600, 93, 76, 710, 13, 952, 13, 27369, 13, 918, 480, 62, 354, 8961, 63, 2446, 13, 4614, 6255, 6096, 286, 1111, 286, 198, 2, 777, 5050, 460, 307, 1043, 287, 262, 11808, 1058, 5420, 25, 63, 83, 315, 12, 1831, 12, 4871, 44646, 554, 428, 1366, 198, 2, 262, 6518, 3858, 389, 477, 3376, 1541, 11, 523, 329, 783, 356, 1183, 655, 36265, 262, 198, 2, 9619, 284, 4781, 257, 2272, 290, 257, 3756, 6632, 287, 262, 6518, 3891, 11, 290, 198, 2, 10385, 284, 2793, 7442, 25, 198, 198, 17620, 62, 918, 3723, 62, 11600, 796, 1391, 3672, 25, 1438, 13, 33491, 10786, 657, 3256, 10148, 737, 21037, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 287, 8246, 13, 354, 62, 14933, 92, 198, 62, 796, 8246, 13, 918, 480, 62, 354, 8961, 7, 17620, 62, 918, 3723, 62, 11600, 8, 220, 1303, 4325, 287, 12, 5372, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 2, 11102, 7064, 198, 2, 10563, 39397, 39397, 39397, 39397, 198, 2, 198, 2, 383, 11808, 1058, 5420, 25, 63, 83, 315, 12, 82, 22854, 12, 17946, 602, 63, 8477, 337, 12161, 12, 37906, 338, 9041, 286, 198, 2, 12694, 6116, 287, 1049, 3703, 13, 1675, 11589, 35743, 25, 337, 12161, 12, 37906, 198, 2, 45482, 1058, 4354, 25, 63, 8691, 1095, 1279, 8691, 496, 29, 63, 357, 4758, 3994, 12694, 6116, 287, 198, 2, 513, 35, 25, 7559, 87, 15506, 11, 7559, 88, 15506, 11, 7559, 89, 15506, 11, 287, 10700, 8, 422, 1058, 4354, 25, 63, 10724, 5269, 1279, 39786, 29, 63, 357, 4758, 198, 2, 8160, 362, 35, 14752, 286, 15736, 329, 29353, 27665, 16965, 37067, 198, 2, 286, 12694, 6116, 737, 12032, 11, 40689, 1095, 743, 11986, 1635, 485, 282, 1143, 9, 12694, 198, 2, 6116, 357, 3106, 319, 11, 304, 13, 70, 1539, 281, 7306, 1143, 43180, 1182, 43358, 2746, 8, 393, 484, 198, 2, 743, 3994, 1635, 5305, 2569, 9, 12694, 6116, 6492, 416, 16839, 2890, 262, 513, 35, 198, 2, 7064, 286, 262, 15736, 618, 4624, 319, 262, 4036, 2426, 338, 1182, 13, 198, 2, 198, 2, 770, 27039, 468, 12653, 16839, 1143, 513, 35, 12694, 7064, 7448, 355, 636, 286, 262, 198, 2, 7559, 13, 32041, 15506, 2393, 11, 523, 356, 460, 1570, 262, 12694, 7064, 287, 362, 35, 393, 513, 35, 1262, 262, 198, 2, 4600, 93, 76, 710, 13, 952, 13, 27369, 13, 29487, 62, 82, 641, 669, 63, 2446, 25, 198, 198, 1831, 13, 29487, 62, 82, 641, 669, 7, 12860, 62, 14933, 28, 17821, 8, 198, 5647, 796, 8246, 13, 29487, 62, 82, 641, 669, 10786, 18, 67, 11537, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 2, 1002, 345, 821, 1762, 351, 257, 3210, 40689, 496, 588, 262, 4600, 940, 12, 1238, 1279, 1452, 62, 4246, 3787, 49029, 63, 62, 198, 2, 1080, 11, 345, 460, 751, 12694, 7064, 284, 262, 1366, 588, 428, 25, 198, 2, 7559, 1831, 13, 2617, 62, 8691, 496, 10786, 20307, 62, 940, 1238, 11537, 15506, 13, 220, 4091, 1058, 5420, 25, 63, 83, 315, 12, 82, 22854, 12, 17946, 602, 63, 329, 198, 2, 7508, 319, 644, 584, 3210, 40689, 1095, 389, 3170, 12, 259, 284, 337, 12161, 12, 37906, 13, 198, 2, 198, 2, 1002, 345, 423, 16839, 1143, 12653, 12694, 7064, 11, 612, 389, 7256, 198, 2, 5499, 329, 11046, 883, 16839, 1634, 3696, 656, 337, 12161, 12, 37906, 26, 766, 198, 2, 1058, 5420, 25, 63, 25782, 12, 12894, 12, 8691, 1095, 63, 329, 5114, 290, 1058, 5420, 25, 63, 12894, 12, 687, 1381, 63, 329, 257, 1351, 198, 2, 286, 4855, 17519, 13, 4874, 9639, 11, 262, 16839, 1143, 12694, 7064, 460, 307, 198, 2, 2087, 284, 262, 1366, 416, 6427, 262, 9639, 40689, 496, 2134, 284, 198, 2, 7559, 1831, 13, 2617, 62, 8691, 496, 3419, 15506, 13, 198, 2, 198, 2, 198, 2, 25700, 262, 48749, 4941, 198, 2, 10563, 39397, 39397, 39397, 39397, 39397, 39397, 198, 2, 198, 2, 1081, 4750, 2029, 11, 428, 1366, 1541, 468, 281, 48749, 2219, 2811, 4941, 198, 2, 2087, 355, 257, 1058, 4354, 25, 63, 16302, 273, 44646, 775, 460, 1570, 262, 1245, 286, 428, 319, 262, 8246, 1366, 198, 2, 416, 29353, 351, 290, 1231, 262, 43396, 5625, 25, 198, 198, 1640, 386, 73, 287, 357, 25101, 11, 6407, 2599, 198, 220, 220, 220, 2336, 796, 8246, 13, 29487, 7, 77, 62, 354, 8961, 28, 20, 11, 386, 73, 28, 1676, 73, 11, 16578, 654, 28, 11600, 7, 1453, 70, 28, 1120, 68, 12, 21, 4008, 198, 220, 220, 220, 2336, 13, 7266, 489, 1747, 62, 23032, 7, 4852, 28, 15, 13, 24, 8, 220, 1303, 787, 2119, 329, 3670, 198, 220, 220, 220, 1006, 796, 705, 26287, 6, 611, 386, 73, 2073, 705, 2949, 6, 198, 220, 220, 220, 2336, 13, 2385, 457, 2578, 7, 69, 6, 90, 5420, 92, 4941, 3256, 2546, 11639, 5324, 12, 11664, 3256, 3463, 11639, 36575, 11537, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 2, 383, 32578, 7791, 460, 307, 3421, 351, 262, 2163, 198, 2, 4600, 76, 710, 13, 2617, 62, 1453, 70, 62, 35790, 63, 357, 4758, 416, 4277, 14051, 319, 257, 1635, 30073, 9, 286, 262, 1366, 8, 198, 2, 393, 262, 4600, 1831, 13, 2617, 62, 1453, 70, 62, 35790, 3419, 1279, 76, 710, 13, 952, 13, 27369, 13, 2617, 62, 1453, 70, 62, 35790, 29, 63, 2446, 357, 4758, 198, 2, 1464, 953, 6945, 262, 1366, 287, 12, 5372, 737, 383, 11808, 1058, 5420, 25, 63, 83, 315, 12, 2617, 12, 1453, 70, 12, 5420, 63, 2523, 198, 2, 1811, 6096, 286, 428, 13, 198, 2, 198, 2, 198, 2, 7066, 20212, 198, 2, 10563, 39397, 39397, 198, 2, 198, 2, 337, 12161, 12, 37906, 468, 7667, 1104, 329, 1180, 2842, 286, 25431, 1366, 13, 1114, 257, 198, 2, 2276, 5114, 286, 8106, 9695, 290, 337, 12161, 12, 37906, 26235, 11, 766, 198, 2, 1058, 5420, 25, 63, 15410, 12, 10379, 20212, 44646, 1114, 8472, 6096, 286, 703, 284, 4174, 16628, 284, 534, 198, 2, 1366, 11, 766, 1058, 5420, 25, 63, 83, 315, 12, 24455, 12, 411, 1403, 44646, 3423, 11, 356, 1183, 4174, 257, 2829, 1029, 12, 6603, 198, 2, 8106, 329, 20936, 25, 198, 198, 1831, 13, 24455, 7, 75, 62, 19503, 80, 28, 15, 13, 16, 11, 289, 62, 19503, 80, 28, 14202, 8, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 2, 4319, 6545, 9109, 25, 36835, 278, 290, 20430, 198, 2, 10563, 39397, 39397, 39397, 39397, 39397, 39397, 39397, 39397, 39397, 18237, 61, 198, 2, 198, 2, 383, 2276, 1429, 329, 37895, 819, 6545, 9109, 422, 12948, 1366, 318, 198, 2, 284, 779, 262, 4600, 93, 76, 710, 13, 13807, 5374, 82, 63, 23772, 11, 290, 788, 2811, 262, 7186, 36835, 82, 198, 2, 284, 2251, 281, 4600, 93, 76, 710, 13, 15200, 6545, 63, 2134, 13, 554, 337, 12161, 12, 37906, 11, 2995, 389, 7997, 355, 198, 2, 257, 1058, 4871, 25, 63, 33111, 20519, 7177, 1279, 77, 32152, 13, 358, 18747, 29, 63, 286, 6291, 3146, 290, 18253, 1785, 198, 2, 12416, 13, 383, 1785, 12416, 389, 8574, 287, 262, 938, 5721, 286, 262, 2995, 7177, 25, 198, 198, 37659, 13, 34642, 7, 31534, 58, 45299, 532, 16, 12962, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 2, 383, 1058, 5420, 25, 63, 83, 315, 12, 15596, 12, 3258, 592, 63, 11808, 19451, 1785, 26515, 287, 517, 3703, 13, 198, 2, 34142, 1785, 12416, 389, 27661, 284, 517, 35644, 2420, 1262, 257, 11361, 198, 2, 1058, 4871, 25, 63, 67, 14188, 1279, 11600, 29, 63, 3221, 1444, 7559, 15596, 62, 312, 15506, 13, 770, 16855, 318, 198, 2, 5295, 416, 534, 6306, 2438, 357, 72, 13, 68, 1539, 340, 12497, 543, 1785, 12416, 345, 198, 2, 7690, 284, 779, 284, 2380, 1180, 11992, 2995, 393, 3403, 737, 1114, 198, 2, 262, 1058, 5420, 25, 63, 39873, 12, 19608, 292, 316, 63, 1366, 468, 262, 1708, 16855, 25, 198, 198, 15596, 62, 11600, 796, 1391, 6, 3885, 37765, 14, 9464, 10354, 352, 11, 705, 3885, 37765, 14, 3506, 10354, 362, 11, 705, 41464, 14, 9464, 10354, 513, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41464, 14, 3506, 10354, 604, 11, 705, 2550, 10354, 642, 11, 705, 16539, 8439, 10354, 3933, 92, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 2, 2735, 356, 460, 7925, 36835, 82, 422, 262, 12948, 1366, 13, 1052, 14333, 7110, 198, 2, 3578, 345, 284, 3904, 319, 36835, 82, 284, 1317, 606, 355, 366, 14774, 1, 290, 4268, 606, 422, 262, 198, 2, 3781, 357, 270, 318, 407, 14333, 319, 262, 10314, 3052, 11, 475, 481, 307, 198, 2, 618, 345, 1057, 4600, 538, 5374, 82, 13, 29487, 3419, 1279, 76, 710, 13, 13807, 5374, 82, 13, 29487, 29, 63, 287, 257, 11361, 8624, 737, 198, 198, 538, 5374, 82, 796, 285, 710, 13, 13807, 5374, 82, 7, 1831, 11, 2995, 11, 1785, 62, 312, 28, 15596, 62, 11600, 11, 256, 1084, 10779, 15, 13, 18, 11, 256, 9806, 28, 15, 13, 22, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 662, 2220, 28, 17821, 8, 198, 5647, 796, 36835, 82, 13, 29487, 3419, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 2, 632, 318, 635, 1744, 284, 6338, 4268, 36835, 82, 11, 618, 717, 4441, 606, 393, 198, 2, 1568, 319, 11, 416, 4955, 5415, 9103, 12, 1462, 12, 36729, 6737, 1988, 40885, 357, 6603, 284, 198, 2, 262, 4600, 93, 76, 710, 13, 13807, 5374, 82, 63, 23772, 355, 262, 7559, 260, 752, 15506, 11507, 26, 766, 198, 2, 1058, 5420, 25, 63, 83, 315, 12, 260, 752, 12, 538, 5374, 82, 12, 5458, 63, 329, 3307, 737, 220, 921, 460, 635, 466, 428, 706, 198, 2, 262, 36835, 82, 389, 1541, 2727, 11, 1262, 262, 4600, 93, 76, 710, 13, 13807, 5374, 82, 13, 14781, 62, 14774, 63, 2446, 25, 198, 198, 260, 752, 62, 22213, 5142, 796, 8633, 7, 1453, 70, 28, 3064, 68, 12, 21, 11, 220, 1303, 1802, 31324, 53, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 519, 28, 2167, 68, 12, 21, 8, 220, 1303, 939, 31324, 53, 198, 62, 796, 36835, 82, 13, 14781, 62, 14774, 7, 260, 752, 28, 260, 752, 62, 22213, 5142, 8, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 2, 7406, 356, 7716, 257, 2318, 29487, 286, 543, 9619, 8639, 749, 284, 36835, 82, 198, 2, 1972, 8606, 13, 1002, 530, 6518, 318, 4497, 329, 6041, 286, 36835, 4968, 507, 11, 198, 2, 340, 743, 307, 24769, 284, 1317, 326, 6518, 355, 366, 14774, 1, 287, 262, 4600, 93, 76, 710, 13, 952, 13, 27369, 63, 198, 2, 2134, 290, 788, 302, 12, 5143, 36835, 278, 357, 32146, 263, 9619, 266, 14, 517, 922, 36835, 82, 743, 307, 198, 2, 33887, 284, 5291, 477, 9619, 475, 6078, 867, 36835, 82, 737, 4091, 198, 2, 1058, 5420, 25, 63, 83, 315, 12, 14774, 12, 354, 8961, 63, 329, 517, 7508, 13, 198, 198, 538, 5374, 82, 13, 29487, 62, 14781, 62, 6404, 3419, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 2, 6023, 835, 287, 543, 36835, 82, 460, 307, 6338, 5710, 318, 611, 262, 198, 2, 4600, 93, 76, 710, 13, 952, 13, 27369, 63, 2134, 484, 821, 21242, 422, 4909, 1058, 4354, 25, 63, 34574, 602, 63, 326, 198, 2, 2221, 351, 2035, 7559, 14774, 15506, 393, 7559, 14907, 15506, 5855, 14907, 1, 37647, 389, 6338, 198, 2, 18846, 618, 1673, 36686, 803, 734, 4553, 4600, 93, 76, 710, 13, 952, 13, 27369, 63, 5563, 1978, 737, 4091, 198, 2, 1058, 5420, 25, 63, 83, 315, 12, 260, 752, 12, 7890, 12, 2777, 504, 63, 329, 517, 1321, 546, 23025, 12, 3106, 198, 2, 36835, 17927, 13, 198, 2, 198, 2, 2735, 326, 356, 1053, 5710, 262, 2089, 36835, 82, 11, 1309, 338, 804, 379, 674, 819, 6545, 9109, 329, 198, 2, 617, 3403, 356, 1337, 546, 13, 3423, 262, 4600, 93, 76, 710, 13, 13807, 5374, 82, 13, 23913, 63, 2446, 481, 198, 2, 2251, 290, 4600, 93, 76, 710, 13, 15200, 6545, 63, 2134, 11, 543, 356, 460, 788, 7110, 13, 17641, 326, 356, 59, 198, 2, 2922, 543, 4006, 356, 765, 284, 2811, 1262, 262, 6616, 12, 1671, 8317, 6376, 278, 198, 2, 357, 2339, 257, 1058, 4871, 25, 63, 67, 14188, 1279, 11600, 29, 63, 1776, 326, 5860, 257, 4833, 36835, 82, 2134, 198, 2, 7268, 655, 262, 36835, 82, 422, 326, 4006, 11, 284, 543, 356, 788, 4174, 262, 198, 2, 4600, 93, 76, 710, 13, 13807, 5374, 82, 13, 23913, 63, 2446, 25, 198, 198, 75, 62, 3885, 796, 36835, 82, 17816, 3885, 37765, 14, 9464, 6, 4083, 23913, 3419, 198, 75, 62, 4703, 796, 36835, 82, 17816, 41464, 14, 9464, 6, 4083, 23913, 3419, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 2, 2312, 4600, 93, 76, 710, 13, 15200, 6545, 63, 5563, 423, 511, 898, 14333, 29353, 2446, 198, 2, 357, 2016, 757, 11, 340, 1839, 470, 307, 14333, 319, 262, 10314, 3052, 2599, 198, 2, 3904, 12, 7109, 16406, 257, 11506, 286, 640, 481, 7716, 257, 39287, 2214, 1353, 4867, 329, 326, 198, 2, 640, 11506, 13, 3423, 356, 635, 10176, 3170, 12, 259, 3124, 12, 66, 7656, 262, 6518, 20675, 198, 2, 416, 4067, 25, 198, 198, 5647, 16, 796, 300, 62, 3885, 13, 29487, 3419, 198, 5647, 17, 796, 300, 62, 4703, 13, 29487, 7, 2777, 34961, 62, 4033, 669, 28, 17821, 8, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 2, 34529, 79, 1353, 41480, 460, 635, 307, 6492, 1729, 12, 3849, 33329, 351, 262, 198, 2, 4600, 93, 76, 710, 13, 15200, 6545, 13, 29487, 62, 4852, 296, 499, 63, 2446, 13, 3423, 356, 3359, 1353, 296, 1686, 286, 262, 2811, 198, 2, 2214, 287, 2026, 13845, 640, 9168, 19254, 379, 532, 2167, 13845, 11, 1802, 13845, 11, 290, 7337, 13845, 13, 198, 198, 75, 62, 3885, 13, 29487, 62, 4852, 296, 499, 7, 22355, 41888, 12, 15, 13, 17, 11, 657, 13, 16, 11, 657, 13, 19, 4357, 2811, 28, 15, 13, 2713, 8, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 2, 12642, 540, 31344, 286, 777, 21528, 318, 1744, 11, 766, 262, 2205, 8841, 286, 198, 2, 4600, 93, 76, 710, 13, 15200, 6545, 13, 29487, 62, 4852, 296, 499, 63, 329, 3307, 13, 198, 2, 198, 2, 1318, 318, 635, 257, 3170, 12, 259, 2446, 329, 19771, 366, 4360, 353, 12254, 1, 21528, 286, 262, 198, 2, 10425, 351, 39287, 1353, 41480, 11, 1444, 4600, 93, 76, 710, 13, 15200, 6545, 13, 29487, 62, 73, 1563, 44646, 4525, 198, 2, 4600, 93, 76, 710, 13, 15200, 6545, 13, 29487, 62, 4852, 296, 499, 63, 345, 460, 11986, 1661, 329, 262, 39287, 1353, 41480, 198, 2, 393, 345, 460, 1309, 262, 2446, 3853, 1661, 6338, 11, 355, 318, 1760, 994, 25, 198, 198, 75, 62, 3885, 13, 29487, 62, 73, 1563, 3419, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 2, 8060, 2214, 1176, 357, 38, 5837, 8, 198, 2, 10563, 39397, 39397, 39397, 39397, 39397, 18237, 61, 198, 2, 198, 2, 8060, 2214, 1176, 1058, 5898, 66, 578, 25, 63, 3123, 71, 9038, 23664, 11, 3123, 71, 9038, 28296, 11, 49998, 11528, 63, 318, 11, 198, 2, 4143, 5486, 11, 257, 3953, 286, 4381, 286, 262, 10425, 6497, 510, 416, 477, 198, 2, 15736, 1973, 262, 2104, 39287, 25, 611, 477, 15736, 423, 262, 976, 1988, 379, 257, 198, 2, 1813, 640, 966, 11, 262, 402, 5837, 481, 307, 6632, 379, 326, 640, 966, 26, 611, 262, 10425, 198, 2, 13238, 11, 262, 402, 5837, 481, 307, 1729, 12, 22570, 379, 326, 640, 966, 13, 402, 5837, 198, 2, 25740, 743, 4079, 366, 47914, 1, 3632, 3842, 11, 8084, 278, 2252, 198, 2, 3645, 13, 6550, 46558, 11, 262, 402, 5837, 318, 262, 3265, 3210, 198, 2, 28833, 1973, 477, 15736, 11, 10488, 13869, 329, 790, 640, 966, 13, 198, 2, 198, 2, 921, 460, 7110, 262, 402, 5837, 1262, 4600, 1990, 6545, 13, 29487, 7, 70, 46428, 28, 17821, 8, 1279, 76, 710, 13, 15200, 6545, 13, 29487, 29, 44646, 383, 402, 5837, 198, 2, 12854, 481, 307, 2042, 611, 7559, 2777, 34961, 62, 4033, 669, 28, 17821, 15506, 290, 4077, 4306, 13, 383, 48749, 198, 2, 4941, 857, 407, 2689, 262, 402, 5837, 25, 198, 198, 2, 599, 20079, 87, 62, 24460, 62, 400, 20566, 62, 17618, 28, 1157, 198, 1640, 819, 74, 287, 357, 75, 62, 3885, 11, 300, 62, 4703, 2599, 198, 220, 220, 220, 819, 74, 13, 29487, 7, 70, 46428, 28, 17821, 11, 21739, 62, 4033, 669, 28, 17821, 11, 331, 2475, 28, 11600, 7, 1453, 70, 41888, 12, 1065, 11, 1105, 60, 4008, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 2, 1675, 7110, 262, 402, 5837, 416, 2346, 345, 460, 1208, 7559, 70, 46428, 11639, 8807, 6, 15506, 357, 5661, 1838, 340, 4577, 198, 2, 284, 1100, 572, 262, 402, 5837, 1366, 3815, 11, 780, 262, 5046, 318, 19874, 2599, 198, 198, 75, 62, 3885, 13, 29487, 7, 70, 46428, 11639, 8807, 11537, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 2, 1081, 5081, 2029, 11, 262, 402, 5837, 318, 262, 3265, 3210, 28833, 286, 262, 6737, 198, 2, 1973, 9619, 13, 1675, 24061, 340, 14500, 11, 356, 460, 16094, 262, 1109, 326, 198, 2, 4600, 1990, 6545, 13, 7890, 1279, 76, 710, 13, 15200, 6545, 13, 7890, 29, 63, 318, 257, 1058, 4871, 25, 63, 33111, 20519, 7177, 1279, 77, 32152, 13, 358, 18747, 29, 47671, 198, 2, 290, 11767, 416, 29353, 340, 1262, 2603, 29487, 8019, 9729, 25, 198, 198, 70, 46428, 796, 300, 62, 3885, 13, 7890, 13, 19282, 7, 22704, 28, 15, 11, 49427, 1659, 28, 15, 8, 198, 198, 2, 36551, 2259, 262, 337, 12161, 12, 37906, 7110, 3918, 1775, 2029, 198, 5647, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 3419, 198, 897, 13, 29487, 7, 75, 62, 3885, 13, 22355, 11, 308, 46428, 1635, 352, 68, 21, 11, 3124, 11639, 27299, 11537, 198, 897, 13, 20797, 62, 23395, 7, 75, 62, 3885, 13, 22355, 11, 308, 46428, 1635, 352, 68, 21, 11, 3124, 11639, 27299, 3256, 17130, 28, 15, 13, 17, 8, 198, 897, 13, 2617, 7, 87, 18242, 11639, 7575, 357, 82, 8, 3256, 331, 18242, 11639, 38, 5837, 357, 126, 113, 53, 8, 3256, 3670, 11639, 6500, 38, 11537, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 2, 16213, 9510, 7652, 286, 1393, 357, 13252, 3792, 2599, 20430, 1973, 9619, 198, 2, 10563, 39397, 39397, 39397, 39397, 39397, 39397, 39397, 39397, 39397, 39397, 39397, 39397, 39397, 39397, 39397, 18237, 198, 2, 198, 2, 4619, 674, 6291, 1366, 318, 9109, 284, 1364, 290, 826, 38949, 290, 5874, 198, 2, 25973, 11, 356, 743, 765, 284, 8996, 1364, 9051, 826, 15107, 3792, 13, 1675, 2811, 1973, 198, 2, 9619, 287, 257, 3814, 286, 1393, 11, 356, 717, 1064, 262, 6518, 36525, 356, 765, 13, 198, 2, 15616, 736, 379, 262, 362, 35, 12694, 7110, 2029, 11, 356, 1244, 3853, 262, 1708, 329, 198, 2, 1364, 290, 826, 15107, 3792, 25, 198, 198, 9464, 796, 37250, 1453, 70, 1558, 3256, 705, 1453, 70, 1507, 3256, 705, 1453, 70, 1495, 3256, 705, 1453, 70, 2075, 20520, 198, 3506, 796, 37250, 1453, 70, 1954, 3256, 705, 1453, 70, 1731, 3256, 705, 1453, 70, 2682, 3256, 705, 1453, 70, 2327, 20520, 198, 198, 9464, 62, 844, 796, 285, 710, 13, 27729, 62, 354, 8961, 7, 75, 62, 3885, 13, 10951, 17816, 354, 62, 14933, 6, 4357, 2291, 28, 9464, 8, 198, 3506, 62, 844, 796, 285, 710, 13, 27729, 62, 354, 8961, 7, 75, 62, 3885, 13, 10951, 17816, 354, 62, 14933, 6, 4357, 2291, 28, 3506, 8, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 2, 2735, 356, 460, 2251, 257, 649, 4319, 6545, 351, 362, 7166, 9619, 357, 505, 329, 1123, 15107, 40, 2599, 198, 305, 72, 62, 11600, 796, 8633, 7, 9464, 62, 13252, 40, 28, 9464, 62, 844, 11, 826, 62, 13252, 40, 28, 3506, 62, 844, 8, 198, 305, 72, 62, 1990, 6545, 796, 285, 710, 13, 354, 8961, 13, 24011, 500, 62, 354, 8961, 7, 75, 62, 3885, 11, 686, 72, 62, 11600, 11, 2446, 11639, 32604, 11537, 198, 4798, 7, 305, 72, 62, 1990, 6545, 13, 10951, 17816, 354, 62, 14933, 6, 12962, 198, 305, 72, 62, 1990, 6545, 13, 29487, 3419, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 2, 3082, 1723, 3403, 198, 2, 10563, 39397, 39397, 39397, 39397, 18237, 61, 198, 2, 198, 2, 1002, 356, 2227, 284, 8996, 674, 38949, 290, 5874, 25973, 11, 257, 4465, 2163, 318, 198, 2, 4600, 76, 710, 13, 85, 528, 13, 29487, 62, 5589, 533, 62, 1990, 482, 5379, 44646, 2750, 4277, 428, 481, 12082, 477, 9619, 287, 198, 2, 1123, 819, 6545, 2134, 1262, 3298, 2214, 1176, 357, 273, 371, 5653, 329, 337, 7156, 9619, 1776, 994, 198, 2, 2427, 356, 11986, 284, 12082, 416, 20430, 11, 290, 4239, 340, 284, 257, 24637, 286, 198, 2, 9619, 416, 6427, 7559, 79, 3378, 15506, 25, 198, 198, 1990, 482, 5379, 796, 8633, 7, 3885, 37765, 28, 75, 62, 3885, 11, 5874, 28, 75, 62, 4703, 8, 198, 79, 3378, 796, 685, 69, 6, 1453, 70, 90, 77, 92, 6, 329, 299, 287, 2837, 7, 940, 11, 1315, 15437, 198, 76, 710, 13, 85, 528, 13, 29487, 62, 5589, 533, 62, 1990, 482, 5379, 7, 1990, 482, 5379, 11, 11103, 28, 79, 3378, 11, 12082, 11639, 32604, 11537, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 2, 775, 460, 635, 3538, 651, 6628, 20016, 416, 13622, 1123, 36835, 355, 257, 198, 2, 4553, 13432, 1262, 262, 4600, 93, 76, 710, 13, 13807, 5374, 82, 13, 2676, 62, 1990, 6545, 63, 2446, 13, 317, 6628, 198, 2, 16654, 1973, 7481, 714, 635, 307, 6492, 11, 416, 6427, 257, 1351, 286, 198, 2, 4600, 93, 76, 710, 13, 15200, 6545, 63, 5563, 357, 505, 583, 2426, 8, 284, 262, 198, 2, 4600, 93, 76, 710, 13, 85, 528, 13, 29487, 62, 5589, 533, 62, 1990, 482, 5379, 63, 2163, 13, 198, 198, 1990, 482, 5379, 796, 8633, 7, 3885, 37765, 28, 4868, 7, 538, 5374, 82, 17816, 3885, 37765, 14, 9464, 6, 4083, 2676, 62, 1990, 6545, 3419, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5874, 28, 4868, 7, 538, 5374, 82, 17816, 41464, 14, 9464, 6, 4083, 2676, 62, 1990, 6545, 3419, 4008, 198, 76, 710, 13, 85, 528, 13, 29487, 62, 5589, 533, 62, 1990, 482, 5379, 7, 1990, 482, 5379, 11, 12082, 11639, 32604, 3256, 11103, 28, 79, 3378, 8, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 2, 775, 460, 635, 8996, 3403, 416, 34128, 278, 530, 4600, 93, 76, 710, 13, 15200, 6545, 63, 2134, 422, 198, 2, 1194, 1262, 262, 4600, 76, 710, 13, 24011, 500, 62, 1990, 6545, 63, 2163, 357, 5661, 2163, 635, 3578, 198, 2, 5933, 278, 286, 36835, 82, 1231, 13284, 7861, 737, 198, 198, 3885, 62, 40191, 62, 4703, 796, 285, 710, 13, 24011, 500, 62, 1990, 6545, 26933, 75, 62, 3885, 11, 300, 62, 4703, 4357, 19590, 41888, 16, 11, 532, 16, 12962, 198, 3885, 62, 40191, 62, 4703, 13, 29487, 62, 73, 1563, 3419, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 2, 11485, 6509, 3712, 198, 2, 198, 2, 220, 220, 220, 220, 383, 2438, 2029, 19299, 281, 12429, 40496, 12, 6551, 276, 3580, 1174, 13, 1002, 345, 423, 198, 2, 220, 220, 220, 220, 545, 27753, 4473, 3146, 11, 345, 1244, 765, 284, 4961, 1096, 262, 1271, 286, 2995, 198, 2, 220, 220, 220, 220, 583, 4006, 717, 416, 1262, 4600, 538, 5374, 82, 13, 40496, 1096, 62, 15596, 62, 9127, 82, 3419, 198, 2, 220, 220, 220, 220, 1279, 76, 710, 13, 13807, 5374, 82, 13, 40496, 1096, 62, 15596, 62, 9127, 82, 29, 63, 878, 20430, 13, 198, 2, 198, 2, 198, 2, 5675, 25694, 198, 2, 10563, 39397, 39397, 39397, 61, 198, 2, 198, 2, 1675, 24061, 4490, 25694, 1973, 3403, 357, 273, 7481, 828, 345, 460, 1208, 257, 198, 2, 1351, 286, 4600, 93, 76, 710, 13, 15200, 6545, 63, 5563, 284, 4600, 76, 710, 13, 23936, 62, 23913, 44646, 383, 1255, 318, 1194, 198, 2, 4600, 93, 76, 710, 13, 15200, 6545, 63, 2134, 13, 198, 198, 23936, 62, 23913, 796, 285, 710, 13, 23936, 62, 23913, 26933, 75, 62, 3885, 11, 300, 62, 4703, 12962, 198, 4798, 7, 23936, 62, 23913, 8, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 2, 1114, 19771, 1635, 17561, 1756, 9, 340, 318, 635, 1744, 284, 787, 779, 286, 1058, 4354, 25, 63, 39, 1961, 63, 198, 2, 15940, 287, 262, 4006, 3891, 618, 17246, 543, 36835, 82, 284, 2811, 13, 1114, 198, 2, 1672, 11, 356, 423, 262, 4006, 3891, 25, 198, 198, 4868, 7, 15596, 62, 11600, 8, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 2, 775, 460, 2922, 262, 38949, 3403, 357, 9464, 290, 826, 1978, 8, 416, 6427, 25, 198, 198, 538, 5374, 82, 17816, 3885, 37765, 6, 4083, 23913, 3419, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 2, 766, 1058, 5420, 25, 63, 83, 315, 12, 5458, 12, 7266, 19738, 12, 538, 5374, 82, 63, 329, 3307, 13, 198, 2, 198, 2, 383, 27992, 1058, 5420, 25, 63, 83, 315, 12, 538, 5374, 82, 12, 4871, 63, 290, 1058, 5420, 25, 63, 83, 315, 12, 1990, 6545, 12, 4871, 63, 423, 867, 198, 2, 517, 3307, 546, 1762, 351, 262, 4600, 93, 76, 710, 13, 13807, 5374, 82, 63, 290, 4600, 93, 76, 710, 13, 15200, 6545, 63, 6097, 13, 198, 2, 198, 2, 11485, 4808, 1452, 62, 4246, 3787, 25, 3740, 1378, 268, 13, 31266, 13, 2398, 14, 15466, 14, 940, 4, 36, 17, 4, 1795, 4, 6052, 1238, 62, 10057, 41052, 6500, 38, 8, 198, 2, 198, 2, 198, 2, 31458, 198, 2, 24200, 438, 198, 2, 11485, 2366, 65, 45689, 3712, 198 ]
3.431481
5,254
""" * * Author: Juarez Paulino(coderemite) * Email: [email protected] * """ n,k=int(input()),0 s,x,t='',1,input() while k<n: s+=t[k];k+=x;x+=1 print(s)
[ 37811, 198, 1635, 198, 1635, 6434, 25, 220, 12585, 19655, 3362, 2879, 7, 19815, 567, 32937, 8, 198, 1635, 9570, 25, 7544, 19655, 13, 79, 2518, 2879, 31, 14816, 13, 785, 198, 1635, 198, 37227, 198, 77, 11, 74, 28, 600, 7, 15414, 3419, 828, 15, 198, 82, 11, 87, 11, 83, 11639, 3256, 16, 11, 15414, 3419, 198, 4514, 479, 27, 77, 25, 264, 47932, 83, 58, 74, 11208, 74, 47932, 87, 26, 87, 47932, 16, 198, 4798, 7, 82, 8 ]
2
82
# -*- coding: utf-8 -*- """Command line interface for Axonius API Client.""" from ....tools import json_dump from ...context import CONTEXT_SETTINGS, click from ...options import AUTH, add_options KEY_NAME = click.option( "--key-name", "-kn", "key_name", help="Key name of file object in [bucket_name] to restore", required=True, show_envvar=True, show_default=True, ) BUCKET_NAME = click.option( "--bucket-name", "-bn", "bucket_name", default=None, help="Name of bucket in S3 to get [key_name] from", show_envvar=True, show_default=True, ) ACCESS_KEY_ID = click.option( "--access-key-id", "-aki", "access_key_id", default=None, help="AWS Access Key Id to use to access [bucket_name]", show_envvar=True, show_default=True, ) SECRET_ACCESS_KEY = click.option( "--secret-access-key", "-sak", "secret_access_key", default=None, help="AWS Secret Access Key to use to access [bucket_name]", show_envvar=True, show_default=True, ) PRESHARED_KEY = click.option( "--preshared-key", "-pk", "preshared_key", default=None, help="Password to use to decrypt [key_name]", show_envvar=True, show_default=True, ) ALLOW_RE_RESTORE = click.option( "--allow-re-restore/--no-allow-re-restore", "-arr/-narr", "allow_re_restore", help="Restore [key_name] even if it has already been restored", is_flag=True, default=False, show_envvar=True, show_default=True, ) DELETE_BACKUPS = click.option( "--delete-backups/--no-delete-backups", "-db/-ndb", "delete_backups", help="Delete [key_name] from [bucket_name] after restore has finished", is_flag=True, default=None, show_envvar=True, show_default=True, ) OPTIONS = [ *AUTH, ACCESS_KEY_ID, SECRET_ACCESS_KEY, PRESHARED_KEY, ALLOW_RE_RESTORE, DELETE_BACKUPS, BUCKET_NAME, KEY_NAME, ] EPILOG = """ If values for these options are not provided, they will default to the settings under Global Settings > Amazon S3 Settings: \b * bucket-name: Amazon S3 bucket name * access-key-id: AWS Access Key Id * secret-access-key: AWS Secret Access Key * preshared-key: Backup encryption passphrase """ @click.command( name="restore-from-aws-s3", context_settings=CONTEXT_SETTINGS, epilog=EPILOG, ) @add_options(OPTIONS) @click.pass_context def cmd(ctx, url, key, secret, **kwargs): """Perform a manual restore of a backup in AWS S3.""" client = ctx.obj.start_client(url=url, key=key, secret=secret) with ctx.obj.exc_wrap(wraperror=ctx.obj.wraperror): data = client.system.central_core.restore_from_aws_s3(**kwargs) click.secho(json_dump(data))
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 21575, 1627, 7071, 329, 12176, 261, 3754, 7824, 20985, 526, 15931, 198, 6738, 19424, 31391, 1330, 33918, 62, 39455, 198, 6738, 2644, 22866, 1330, 22904, 13918, 62, 28480, 51, 20754, 11, 3904, 198, 6738, 2644, 25811, 1330, 37195, 11, 751, 62, 25811, 198, 198, 20373, 62, 20608, 796, 3904, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 2539, 12, 3672, 1600, 198, 220, 220, 220, 27444, 15418, 1600, 198, 220, 220, 220, 366, 2539, 62, 3672, 1600, 198, 220, 220, 220, 1037, 2625, 9218, 1438, 286, 2393, 2134, 287, 685, 27041, 316, 62, 3672, 60, 284, 11169, 1600, 198, 220, 220, 220, 2672, 28, 17821, 11, 198, 220, 220, 220, 905, 62, 24330, 7785, 28, 17821, 11, 198, 220, 220, 220, 905, 62, 12286, 28, 17821, 11, 198, 8, 198, 198, 33, 16696, 2767, 62, 20608, 796, 3904, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 27041, 316, 12, 3672, 1600, 198, 220, 220, 220, 27444, 9374, 1600, 198, 220, 220, 220, 366, 27041, 316, 62, 3672, 1600, 198, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 1037, 2625, 5376, 286, 19236, 287, 311, 18, 284, 651, 685, 2539, 62, 3672, 60, 422, 1600, 198, 220, 220, 220, 905, 62, 24330, 7785, 28, 17821, 11, 198, 220, 220, 220, 905, 62, 12286, 28, 17821, 11, 198, 8, 198, 198, 26861, 7597, 62, 20373, 62, 2389, 796, 3904, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 15526, 12, 2539, 12, 312, 1600, 198, 220, 220, 220, 27444, 8182, 1600, 198, 220, 220, 220, 366, 15526, 62, 2539, 62, 312, 1600, 198, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 1037, 2625, 12298, 50, 8798, 7383, 5121, 284, 779, 284, 1895, 685, 27041, 316, 62, 3672, 60, 1600, 198, 220, 220, 220, 905, 62, 24330, 7785, 28, 17821, 11, 198, 220, 220, 220, 905, 62, 12286, 28, 17821, 11, 198, 8, 198, 23683, 26087, 62, 26861, 7597, 62, 20373, 796, 3904, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 21078, 12, 15526, 12, 2539, 1600, 198, 220, 220, 220, 27444, 82, 461, 1600, 198, 220, 220, 220, 366, 21078, 62, 15526, 62, 2539, 1600, 198, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 1037, 2625, 12298, 50, 3943, 8798, 7383, 284, 779, 284, 1895, 685, 27041, 316, 62, 3672, 60, 1600, 198, 220, 220, 220, 905, 62, 24330, 7785, 28, 17821, 11, 198, 220, 220, 220, 905, 62, 12286, 28, 17821, 11, 198, 8, 198, 4805, 44011, 1503, 1961, 62, 20373, 796, 3904, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 79, 3447, 1144, 12, 2539, 1600, 198, 220, 220, 220, 27444, 79, 74, 1600, 198, 220, 220, 220, 366, 79, 3447, 1144, 62, 2539, 1600, 198, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 1037, 2625, 35215, 284, 779, 284, 42797, 685, 2539, 62, 3672, 60, 1600, 198, 220, 220, 220, 905, 62, 24330, 7785, 28, 17821, 11, 198, 220, 220, 220, 905, 62, 12286, 28, 17821, 11, 198, 8, 198, 198, 7036, 3913, 62, 2200, 62, 49, 6465, 6965, 796, 3904, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 12154, 12, 260, 12, 2118, 382, 14, 438, 3919, 12, 12154, 12, 260, 12, 2118, 382, 1600, 198, 220, 220, 220, 27444, 3258, 16327, 77, 3258, 1600, 198, 220, 220, 220, 366, 12154, 62, 260, 62, 2118, 382, 1600, 198, 220, 220, 220, 1037, 2625, 19452, 382, 685, 2539, 62, 3672, 60, 772, 611, 340, 468, 1541, 587, 15032, 1600, 198, 220, 220, 220, 318, 62, 32109, 28, 17821, 11, 198, 220, 220, 220, 4277, 28, 25101, 11, 198, 220, 220, 220, 905, 62, 24330, 7785, 28, 17821, 11, 198, 220, 220, 220, 905, 62, 12286, 28, 17821, 11, 198, 8, 198, 7206, 2538, 9328, 62, 31098, 52, 3705, 796, 3904, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 33678, 12, 1891, 4739, 14, 438, 3919, 12, 33678, 12, 1891, 4739, 1600, 198, 220, 220, 220, 27444, 9945, 16327, 358, 65, 1600, 198, 220, 220, 220, 366, 33678, 62, 1891, 4739, 1600, 198, 220, 220, 220, 1037, 2625, 38727, 685, 2539, 62, 3672, 60, 422, 685, 27041, 316, 62, 3672, 60, 706, 11169, 468, 5201, 1600, 198, 220, 220, 220, 318, 62, 32109, 28, 17821, 11, 198, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 905, 62, 24330, 7785, 28, 17821, 11, 198, 220, 220, 220, 905, 62, 12286, 28, 17821, 11, 198, 8, 198, 198, 3185, 51, 11053, 796, 685, 198, 220, 220, 220, 1635, 32, 24318, 11, 198, 220, 220, 220, 15859, 7597, 62, 20373, 62, 2389, 11, 198, 220, 220, 220, 10729, 26087, 62, 26861, 7597, 62, 20373, 11, 198, 220, 220, 220, 32552, 39, 1503, 1961, 62, 20373, 11, 198, 220, 220, 220, 11096, 3913, 62, 2200, 62, 49, 6465, 6965, 11, 198, 220, 220, 220, 5550, 2538, 9328, 62, 31098, 52, 3705, 11, 198, 220, 220, 220, 347, 16696, 2767, 62, 20608, 11, 198, 220, 220, 220, 35374, 62, 20608, 11, 198, 60, 198, 198, 8905, 4146, 7730, 796, 37227, 198, 1532, 3815, 329, 777, 3689, 389, 407, 2810, 11, 484, 481, 4277, 284, 198, 1169, 6460, 739, 8060, 16163, 1875, 6186, 311, 18, 16163, 25, 198, 198, 59, 65, 198, 220, 1635, 19236, 12, 3672, 25, 6186, 311, 18, 19236, 1438, 198, 220, 1635, 1895, 12, 2539, 12, 312, 25, 30865, 8798, 7383, 5121, 198, 220, 1635, 3200, 12, 15526, 12, 2539, 25, 30865, 3943, 8798, 7383, 198, 220, 1635, 906, 71, 1144, 12, 2539, 25, 35071, 15835, 1208, 34675, 198, 198, 37811, 628, 198, 31, 12976, 13, 21812, 7, 198, 220, 220, 220, 1438, 2625, 2118, 382, 12, 6738, 12, 8356, 12, 82, 18, 1600, 198, 220, 220, 220, 4732, 62, 33692, 28, 10943, 32541, 62, 28480, 51, 20754, 11, 198, 220, 220, 220, 2462, 346, 519, 28, 8905, 4146, 7730, 11, 198, 8, 198, 31, 2860, 62, 25811, 7, 3185, 51, 11053, 8, 198, 31, 12976, 13, 6603, 62, 22866, 198, 4299, 23991, 7, 49464, 11, 19016, 11, 1994, 11, 3200, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 5990, 687, 257, 10107, 11169, 286, 257, 11559, 287, 30865, 311, 18, 526, 15931, 198, 220, 220, 220, 5456, 796, 269, 17602, 13, 26801, 13, 9688, 62, 16366, 7, 6371, 28, 6371, 11, 1994, 28, 2539, 11, 3200, 28, 21078, 8, 628, 220, 220, 220, 351, 269, 17602, 13, 26801, 13, 41194, 62, 37150, 7, 29988, 525, 1472, 28, 49464, 13, 26801, 13, 29988, 525, 1472, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 5456, 13, 10057, 13, 31463, 62, 7295, 13, 2118, 382, 62, 6738, 62, 8356, 62, 82, 18, 7, 1174, 46265, 22046, 8, 628, 220, 220, 220, 3904, 13, 325, 6679, 7, 17752, 62, 39455, 7, 7890, 4008, 198 ]
2.387826
1,150
from algoanim.array import Array from algoanim.sort import Sort SORT_CLASS = YSlowSort
[ 6738, 435, 2188, 11227, 13, 18747, 1330, 15690, 198, 6738, 435, 2188, 11227, 13, 30619, 1330, 33947, 628, 628, 198, 50, 9863, 62, 31631, 796, 575, 36423, 42758, 198 ]
3.137931
29
from contextlib import contextmanager from io import BytesIO import hashlib from numpy import random import pytest from requests_toolbelt import MultipartEncoder from streaming_form_data import ParseFailedException, StreamingFormDataParser from streaming_form_data.targets import ( BaseTarget, FileTarget, SHA256Target, ValueTarget, ) from streaming_form_data.validators import MaxSizeValidator, ValidationError @contextmanager # The following tests have been added from tornado's # MultipartFormDataTestCase # https://github.com/tornadoweb/tornado/blob/master/tornado/test/httputil_test.py
[ 6738, 4732, 8019, 1330, 4732, 37153, 198, 6738, 33245, 1330, 2750, 4879, 9399, 198, 11748, 12234, 8019, 198, 198, 6738, 299, 32152, 1330, 4738, 198, 11748, 12972, 9288, 198, 6738, 7007, 62, 25981, 37976, 1330, 7854, 541, 433, 27195, 12342, 198, 198, 6738, 11305, 62, 687, 62, 7890, 1330, 2547, 325, 37, 6255, 16922, 11, 43124, 8479, 6601, 46677, 198, 6738, 11305, 62, 687, 62, 7890, 13, 83, 853, 1039, 1330, 357, 198, 220, 220, 220, 7308, 21745, 11, 198, 220, 220, 220, 9220, 21745, 11, 198, 220, 220, 220, 25630, 11645, 21745, 11, 198, 220, 220, 220, 11052, 21745, 11, 198, 8, 198, 6738, 11305, 62, 687, 62, 7890, 13, 12102, 2024, 1330, 5436, 10699, 47139, 1352, 11, 3254, 24765, 12331, 628, 198, 31, 22866, 37153, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628, 198, 2, 383, 1708, 5254, 423, 587, 2087, 422, 33718, 338, 198, 2, 7854, 541, 433, 8479, 6601, 14402, 20448, 198, 2, 3740, 1378, 12567, 13, 785, 14, 45910, 4584, 1765, 14, 45910, 4533, 14, 2436, 672, 14, 9866, 14, 45910, 4533, 14, 9288, 14, 2804, 1996, 346, 62, 9288, 13, 9078, 628, 628, 628, 628, 628, 628, 628, 628, 628, 198 ]
3.248756
201
#!/usr/bin/python import re import sys import os from subprocess import Popen,PIPE if __name__ == '__main__': push_rules()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 198, 11748, 302, 198, 11748, 25064, 198, 11748, 28686, 198, 6738, 850, 14681, 1330, 8099, 268, 11, 47, 4061, 36, 628, 197, 197, 197, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 197, 14689, 62, 38785, 3419, 197, 628, 197, 628, 628, 628, 628 ]
2.491228
57
import operator try: from collections import Counter except ImportError: from ._counter import Counter from .backend import Backend from ..query import Query
[ 11748, 10088, 198, 28311, 25, 198, 220, 220, 220, 422, 17268, 1330, 15034, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 422, 47540, 24588, 1330, 15034, 198, 198, 6738, 764, 1891, 437, 1330, 5157, 437, 198, 6738, 11485, 22766, 1330, 43301, 628 ]
3.906977
43
from mayavi import mlab n_mer, n_long = 6, 11 dphi = np.pi / 1000.0 phi = np.arange(0.0, 2 * pi + 0.5 * dphi, dphi) mu = phi * n_mer x = np.cos(mu) * (1 + np.cos(n_long * mu / n_mer) * 0.5) y = np.sin(mu) * (1 + np.cos(n_long * mu / n_mer) * 0.5) z = np.sin(n_long * mu / n_mer) * 0.5 t = np.sin(mu) mlab.plot3d(x, y, z, t, tube_radius=0.025, colormap='Spectral')
[ 6738, 743, 15820, 1330, 285, 23912, 198, 77, 62, 647, 11, 299, 62, 6511, 796, 718, 11, 1367, 198, 67, 34846, 796, 45941, 13, 14415, 1220, 8576, 13, 15, 198, 34846, 796, 45941, 13, 283, 858, 7, 15, 13, 15, 11, 362, 1635, 31028, 1343, 657, 13, 20, 1635, 288, 34846, 11, 288, 34846, 8, 198, 30300, 796, 872, 72, 1635, 299, 62, 647, 198, 87, 796, 45941, 13, 6966, 7, 30300, 8, 1635, 357, 16, 1343, 45941, 13, 6966, 7, 77, 62, 6511, 1635, 38779, 1220, 299, 62, 647, 8, 1635, 657, 13, 20, 8, 198, 88, 796, 45941, 13, 31369, 7, 30300, 8, 1635, 357, 16, 1343, 45941, 13, 6966, 7, 77, 62, 6511, 1635, 38779, 1220, 299, 62, 647, 8, 1635, 657, 13, 20, 8, 198, 89, 796, 45941, 13, 31369, 7, 77, 62, 6511, 1635, 38779, 1220, 299, 62, 647, 8, 1635, 657, 13, 20, 198, 83, 796, 45941, 13, 31369, 7, 30300, 8, 198, 198, 4029, 397, 13, 29487, 18, 67, 7, 87, 11, 331, 11, 1976, 11, 256, 11, 12403, 62, 42172, 28, 15, 13, 36629, 11, 951, 579, 499, 11639, 49738, 1373, 11537 ]
1.915789
190
#-*- coding: utf-8 -*- from __future__ import unicode_literals try: from urlparse import urljoin except ImportError: from urllib.parse import urljoin from django.contrib.sites.models import get_current_site
[ 2, 12, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 19016, 29572, 1330, 19016, 22179, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 422, 2956, 297, 571, 13, 29572, 1330, 19016, 22179, 198, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 49315, 13, 27530, 1330, 651, 62, 14421, 62, 15654, 628, 198 ]
2.857143
77
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, with_statement from cuisine import group_check as get from cuisine import group_create as create from cuisine import group_ensure as ensure from cuisine import group_user_add as user_add from cuisine import group_user_check as user_check from cuisine import group_user_ensure as user_ensure
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 7297, 11, 351, 62, 26090, 198, 198, 6738, 33072, 1330, 1448, 62, 9122, 355, 651, 198, 6738, 33072, 1330, 1448, 62, 17953, 355, 2251, 198, 6738, 33072, 1330, 1448, 62, 641, 495, 355, 4155, 198, 6738, 33072, 1330, 1448, 62, 7220, 62, 2860, 355, 2836, 62, 2860, 198, 6738, 33072, 1330, 1448, 62, 7220, 62, 9122, 355, 2836, 62, 9122, 198, 6738, 33072, 1330, 1448, 62, 7220, 62, 641, 495, 355, 2836, 62, 641, 495, 198 ]
3.67
100
''' Definitions 1. consuming service: is a network service that requires the consumption of additional VNF(s) that pertain to a different service, i.e., providing services. 2. CSC engaged VNFs (w.r.t. the consuming service): are exactly two distinct VNFs. One VNF forwards the traffic to the receiver CSC engaged VNF of the providing service, whereas the other VNF receives the traffic, which is now processed by (a subset of) the providing service. General assumptions 1. Every network service is modelled as a directed graph. Nodes represent VNFs, and edges represent virtual links. VNFs require CPU, and edges require bandwidth. 2. We consider sequential services, e.g., 'A->B->C' is OK, whereas 'A->B,A->C,B->C' is NOT OK Environment 1. CPU in [0.72, 1.44, 2.16, 2.88, 3.6GHz] (randomly) 2. bandwidth in [10Mbps, 200Mbps] (randomly) 3. length (i.e., number of VNFs per service) in [3,8] (randomly) 4. The two CSC engaged VNFs are randomly sampled (without replacement) 5. Duration in [3,10] time intervals ''' # dependencies import networkx as nx import random def initializeConsumingService(providing_services, service_index, time): ''' Function that generates a consuming service, in the form of a graph. The consuming service pairs with a providing service, and the corresponding consuming service graph adds VNFs and edges for the CSC, also. ''' # the providing service that the consuming service will pair with providing_service = random.choice(providing_services) # list of possible VNF CPU requirements CPUs = [0.72, 1.44, 2.16, 2.88, 3.6] CPUs = [round(cpu/7.2,2) for cpu in CPUs] # the length of the network service service_length = random.randint(3,8) # list of CSC VNF indices first_CSC_engaged_VNF = random.choice(range(service_length-1)) CSC_engaged_VNFs = [first_CSC_engaged_VNF, first_CSC_engaged_VNF+1] # create empty directional graph G = nx.DiGraph(id = service_index, type = 'consuming', provider_pair = providing_service.graph['id'], expires_in = time + random.randint(3,10)) # populate the consuming service graph with VNF nodes for j in range(service_length): if j not in CSC_engaged_VNFs: VNF_type = 'VNF' else: VNF_type = 'C_CSC_VNF' G.add_node("C{0}VNF{1}".format(service_index,j), type = VNF_type, cpu = random.choice(CPUs), serid = service_index, sertype = 'consumer') nodes = list(G.nodes()) # add edges between VNFs sequentially for j in range(service_length-1): G.add_edge(nodes[j],nodes[j+1], source = nodes[j], dest= nodes[j+1], bandwidth = random.randrange(10,100), sertype = 'consuming') # the corresponding CSC VNF indices of the providing service CSC_engaged_VNFs_provider = [n for n in providing_service.nodes if providing_service.nodes[n]['type'] == 'CSC_VNF'] # add the CSC nodes of the providing service to the consuming service for j in CSC_engaged_VNFs_provider: G.add_node(j, type = 'P_CSC_VNF', sertype = 'provider') # add the 2 CSC-engaged edges # from consuming to providing G.add_edge(nodes[CSC_engaged_VNFs[0]], CSC_engaged_VNFs_provider[0], source = nodes[CSC_engaged_VNFs[0]], dest = CSC_engaged_VNFs_provider[0], bandwidth = random.randrange(10,100), sertype = 'providing') # from providing to consuming if len(CSC_engaged_VNFs_provider) == 2: G.add_edge(CSC_engaged_VNFs_provider[1], nodes[CSC_engaged_VNFs[1]], source = CSC_engaged_VNFs_provider[1], dest = nodes[CSC_engaged_VNFs[1]], bandwidth = random.randrange(10,100), sertype = 'providing') else: G.add_edge(CSC_engaged_VNFs_provider[0], nodes[CSC_engaged_VNFs[1]], source = CSC_engaged_VNFs_provider[0], dest = nodes[CSC_engaged_VNFs[1]], bandwidth = random.randrange(10,100), sertype = 'providing') return G
[ 7061, 6, 220, 201, 198, 7469, 50101, 201, 198, 201, 198, 16, 13, 18587, 2139, 25, 318, 257, 3127, 2139, 326, 4433, 262, 7327, 286, 3224, 569, 21870, 7, 82, 8, 326, 583, 3153, 284, 257, 1180, 2139, 11, 1312, 13, 68, 1539, 4955, 2594, 13, 220, 201, 198, 17, 13, 327, 6173, 7953, 569, 21870, 82, 357, 86, 13, 81, 13, 83, 13, 262, 18587, 2139, 2599, 389, 3446, 734, 7310, 569, 21870, 82, 13, 1881, 569, 21870, 22052, 262, 4979, 284, 262, 9733, 327, 6173, 7953, 569, 21870, 286, 262, 4955, 2139, 11, 9472, 262, 584, 569, 21870, 11583, 262, 4979, 11, 543, 318, 783, 13686, 416, 357, 64, 24637, 286, 8, 262, 4955, 2139, 13, 220, 201, 198, 201, 198, 12218, 14895, 201, 198, 201, 198, 16, 13, 3887, 3127, 2139, 318, 953, 11978, 355, 257, 7924, 4823, 13, 399, 4147, 2380, 569, 21870, 82, 11, 290, 13015, 2380, 7166, 6117, 13, 569, 21870, 82, 2421, 9135, 11, 290, 13015, 2421, 19484, 13, 220, 201, 198, 17, 13, 775, 2074, 35582, 2594, 11, 304, 13, 70, 1539, 705, 32, 3784, 33, 3784, 34, 6, 318, 7477, 11, 9472, 705, 32, 3784, 33, 11, 32, 3784, 34, 11, 33, 3784, 34, 6, 318, 5626, 7477, 201, 198, 201, 198, 31441, 201, 198, 201, 198, 16, 13, 9135, 287, 685, 15, 13, 4761, 11, 352, 13, 2598, 11, 362, 13, 1433, 11, 362, 13, 3459, 11, 513, 13, 21, 23741, 60, 357, 25120, 306, 8, 220, 201, 198, 17, 13, 19484, 287, 685, 940, 47842, 11, 939, 47842, 60, 357, 25120, 306, 8, 201, 198, 18, 13, 4129, 357, 72, 13, 68, 1539, 1271, 286, 569, 21870, 82, 583, 2139, 8, 287, 685, 18, 11, 23, 60, 357, 25120, 306, 8, 201, 198, 19, 13, 383, 734, 327, 6173, 7953, 569, 21870, 82, 389, 15456, 35846, 357, 19419, 9014, 8, 201, 198, 20, 13, 22920, 287, 685, 18, 11, 940, 60, 640, 20016, 201, 198, 7061, 6, 201, 198, 201, 198, 2, 20086, 220, 201, 198, 11748, 3127, 87, 355, 299, 87, 220, 201, 198, 11748, 4738, 220, 201, 198, 201, 198, 4299, 41216, 9444, 12595, 16177, 7, 15234, 2530, 62, 30416, 11, 2139, 62, 9630, 11, 640, 2599, 201, 198, 197, 7061, 6, 220, 201, 198, 197, 22203, 326, 18616, 257, 18587, 2139, 11, 287, 262, 1296, 286, 257, 4823, 13, 383, 18587, 2139, 14729, 351, 257, 4955, 2139, 11, 290, 262, 11188, 18587, 2139, 4823, 6673, 569, 21870, 82, 290, 13015, 329, 262, 327, 6173, 11, 635, 13, 220, 201, 198, 197, 7061, 6, 201, 198, 197, 2, 262, 4955, 2139, 326, 262, 18587, 2139, 481, 5166, 351, 201, 198, 197, 15234, 2530, 62, 15271, 796, 4738, 13, 25541, 7, 15234, 2530, 62, 30416, 8, 201, 198, 197, 2, 1351, 286, 1744, 569, 21870, 9135, 5359, 201, 198, 197, 36037, 82, 796, 685, 15, 13, 4761, 11, 352, 13, 2598, 11, 362, 13, 1433, 11, 362, 13, 3459, 11, 513, 13, 21, 60, 201, 198, 197, 36037, 82, 796, 685, 744, 7, 36166, 14, 22, 13, 17, 11, 17, 8, 329, 42804, 287, 32340, 60, 201, 198, 197, 2, 262, 4129, 286, 262, 3127, 2139, 201, 198, 197, 15271, 62, 13664, 796, 4738, 13, 25192, 600, 7, 18, 11, 23, 8, 201, 198, 197, 2, 1351, 286, 327, 6173, 569, 21870, 36525, 220, 201, 198, 197, 11085, 62, 34, 6173, 62, 1516, 1886, 62, 53, 21870, 796, 4738, 13, 25541, 7, 9521, 7, 15271, 62, 13664, 12, 16, 4008, 220, 201, 198, 197, 34, 6173, 62, 1516, 1886, 62, 53, 21870, 82, 796, 685, 11085, 62, 34, 6173, 62, 1516, 1886, 62, 53, 21870, 11, 717, 62, 34, 6173, 62, 1516, 1886, 62, 53, 21870, 10, 16, 60, 201, 198, 197, 2, 2251, 6565, 47424, 4823, 220, 201, 198, 197, 38, 796, 299, 87, 13, 18683, 37065, 7, 312, 796, 2139, 62, 9630, 11, 2099, 796, 705, 35873, 3256, 10131, 62, 24874, 796, 4955, 62, 15271, 13, 34960, 17816, 312, 6, 4357, 27396, 62, 259, 796, 640, 1343, 4738, 13, 25192, 600, 7, 18, 11, 940, 4008, 201, 198, 197, 2, 48040, 262, 18587, 2139, 4823, 351, 569, 21870, 13760, 201, 198, 197, 1640, 474, 287, 2837, 7, 15271, 62, 13664, 2599, 201, 198, 197, 197, 361, 474, 407, 287, 327, 6173, 62, 1516, 1886, 62, 53, 21870, 82, 25, 201, 198, 197, 197, 197, 53, 21870, 62, 4906, 796, 705, 53, 21870, 6, 201, 198, 197, 197, 17772, 25, 201, 198, 197, 197, 197, 53, 21870, 62, 4906, 796, 705, 34, 62, 34, 6173, 62, 53, 21870, 6, 201, 198, 197, 197, 38, 13, 2860, 62, 17440, 7203, 34, 90, 15, 92, 53, 21870, 90, 16, 92, 1911, 18982, 7, 15271, 62, 9630, 11, 73, 828, 2099, 796, 569, 21870, 62, 4906, 11, 42804, 796, 4738, 13, 25541, 7, 36037, 82, 828, 1055, 312, 796, 2139, 62, 9630, 11, 1055, 4906, 796, 705, 49827, 11537, 201, 198, 197, 201, 198, 197, 77, 4147, 796, 1351, 7, 38, 13, 77, 4147, 28955, 201, 198, 197, 2, 751, 13015, 1022, 569, 21870, 82, 4726, 3746, 220, 201, 198, 197, 1640, 474, 287, 2837, 7, 15271, 62, 13664, 12, 16, 2599, 201, 198, 197, 197, 38, 13, 2860, 62, 14907, 7, 77, 4147, 58, 73, 4357, 77, 4147, 58, 73, 10, 16, 4357, 2723, 796, 13760, 58, 73, 4357, 2244, 28, 13760, 58, 73, 10, 16, 4357, 19484, 796, 4738, 13, 25192, 9521, 7, 940, 11, 3064, 828, 1055, 4906, 796, 705, 35873, 11537, 220, 201, 198, 201, 198, 197, 2, 262, 11188, 327, 6173, 569, 21870, 36525, 286, 262, 4955, 2139, 201, 198, 197, 34, 6173, 62, 1516, 1886, 62, 53, 21870, 82, 62, 15234, 1304, 796, 685, 77, 329, 299, 287, 4955, 62, 15271, 13, 77, 4147, 611, 4955, 62, 15271, 13, 77, 4147, 58, 77, 7131, 6, 4906, 20520, 6624, 705, 34, 6173, 62, 53, 21870, 20520, 201, 198, 197, 2, 751, 262, 327, 6173, 13760, 286, 262, 4955, 2139, 284, 262, 18587, 2139, 201, 198, 197, 1640, 474, 287, 327, 6173, 62, 1516, 1886, 62, 53, 21870, 82, 62, 15234, 1304, 25, 201, 198, 197, 197, 38, 13, 2860, 62, 17440, 7, 73, 11, 2099, 796, 705, 47, 62, 34, 6173, 62, 53, 21870, 3256, 1055, 4906, 796, 705, 15234, 1304, 11537, 201, 198, 197, 2, 751, 262, 362, 327, 6173, 12, 1516, 1886, 13015, 220, 201, 198, 197, 2, 422, 18587, 284, 4955, 220, 201, 198, 197, 38, 13, 2860, 62, 14907, 7, 77, 4147, 58, 34, 6173, 62, 1516, 1886, 62, 53, 21870, 82, 58, 15, 60, 4357, 327, 6173, 62, 1516, 1886, 62, 53, 21870, 82, 62, 15234, 1304, 58, 15, 4357, 2723, 796, 13760, 58, 34, 6173, 62, 1516, 1886, 62, 53, 21870, 82, 58, 15, 60, 4357, 2244, 796, 327, 6173, 62, 1516, 1886, 62, 53, 21870, 82, 62, 15234, 1304, 58, 15, 4357, 19484, 796, 4738, 13, 25192, 9521, 7, 940, 11, 3064, 828, 1055, 4906, 796, 705, 15234, 2530, 11537, 201, 198, 197, 2, 422, 4955, 284, 18587, 220, 201, 198, 197, 361, 18896, 7, 34, 6173, 62, 1516, 1886, 62, 53, 21870, 82, 62, 15234, 1304, 8, 6624, 362, 25, 201, 198, 197, 197, 38, 13, 2860, 62, 14907, 7, 34, 6173, 62, 1516, 1886, 62, 53, 21870, 82, 62, 15234, 1304, 58, 16, 4357, 13760, 58, 34, 6173, 62, 1516, 1886, 62, 53, 21870, 82, 58, 16, 60, 4357, 2723, 796, 327, 6173, 62, 1516, 1886, 62, 53, 21870, 82, 62, 15234, 1304, 58, 16, 4357, 2244, 796, 13760, 58, 34, 6173, 62, 1516, 1886, 62, 53, 21870, 82, 58, 16, 60, 4357, 19484, 796, 4738, 13, 25192, 9521, 7, 940, 11, 3064, 828, 1055, 4906, 796, 705, 15234, 2530, 11537, 201, 198, 197, 17772, 25, 201, 198, 197, 197, 38, 13, 2860, 62, 14907, 7, 34, 6173, 62, 1516, 1886, 62, 53, 21870, 82, 62, 15234, 1304, 58, 15, 4357, 13760, 58, 34, 6173, 62, 1516, 1886, 62, 53, 21870, 82, 58, 16, 60, 4357, 2723, 796, 327, 6173, 62, 1516, 1886, 62, 53, 21870, 82, 62, 15234, 1304, 58, 15, 4357, 2244, 796, 13760, 58, 34, 6173, 62, 1516, 1886, 62, 53, 21870, 82, 58, 16, 60, 4357, 19484, 796, 4738, 13, 25192, 9521, 7, 940, 11, 3064, 828, 1055, 4906, 796, 705, 15234, 2530, 11537, 197, 197, 201, 198, 201, 198, 197, 7783, 402, 201, 198, 201, 198, 201, 198, 197 ]
2.701717
1,398
from django.db import models from django.contrib.auth.models import User # Create your models here.
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 198, 2, 13610, 534, 4981, 994, 13, 628, 628, 198 ]
3.466667
30
#!/usr/bin/env python3 import sys import os import argparse import re import datetime import subprocess class EXIT(): """ Exit codes from: https://docs.icinga.com/latest/en/pluginapi.html """ OK = 0 WARN = 1 CRIT = 2 UNKOWN = 3 def commandline(args): """ Settings for the commandline arguments. Returns the parsed arguments. """ parser = argparse.ArgumentParser(description='Checks the timestamps for files in a directory.') parser.add_argument("-p", "--path", required=True, help="Path to offline backup list file or directory") parser.add_argument("-w", "--warning", help="Threshold for warnings in days. Default: 2 Days") parser.add_argument("-c", "--critical", help="Threshold for criticals in days. Default: 5 Days") parser.add_argument("-f", "--format", help="Format of the date in the file. Default: Y-m-d") parser.add_argument("-r", "--regex", help="Regular Expression to extract date from file. Default: [0-9]{4}-[0-9]{2}-[0-9]{2}") parser.add_argument("-v", "--verbose", help="Increase output verbosity", action="store_true") parser.set_defaults(verbose=False, critical=5, warning=2) return parser.parse_args(args) def readdata(path): """ Checks if the path exists, then reads the file or directory and returns the data. """ if not os.path.exists(path): print('No such path {0}'.format(path)) sys.exit(EXIT.WARN) if os.path.isfile(path): with open(path) as f: data = f.read() elif os.path.isdir(path): data = subprocess.check_output(['ls', '--full-time', path]) data = data.decode("utf-8").rstrip('\n') return data def extract_dates(data, date_format='%Y-%m-%d', date_regex='[0-9]{4}-[0-9]{2}-[0-9]{2}'): """ Extracts dates from a string using regular expressions, then converts the dates to datetime objects and returns a list. """ dates = [] regex = re.compile(date_regex) date_strings = regex.findall(data) for date_string in date_strings: dates.append(datetime.datetime.strptime(date_string, date_format).date()) return sorted(dates) def check_delta(delta, warn, crit): """ Checks the category of the calculated delta (OK, WARN, FAIL) and exits the program accordingly. """ last_backup = 'Last backup was {0} days ago'.format(delta.days) isokay = delta.days < warn iswarn = delta.days >= warn and delta.days < crit iscrit = delta.days >= crit if isokay: print('OK - ' + last_backup) sys.exit(EXIT.OK) elif iswarn: print('WARN - ' + last_backup) sys.exit(EXIT.WARN) elif iscrit: print('CRIT - ' + last_backup) sys.exit(EXIT.CRIT) else: print('UNKNOWN - Not really sure what is happening') sys.exit(EXIT.UNKOWN) def calculate_delta(dates): """ Calculates how far the gives dates deviate from today's date. Returns a datetime.timedelta object. """ today = datetime.datetime.today().date() delta = 0 for i in range(0, len(dates)): delta = -(dates[i] - today) # If there are to dates in the file for example if not isinstance(delta, datetime.timedelta): print('UNKNOWN - Probably error while reading the file') sys.exit(EXIT.UNKOWN) return delta if __name__ == "__main__": args = commandline(sys.argv[1:]) main(args)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 628, 198, 11748, 25064, 198, 11748, 28686, 198, 11748, 1822, 29572, 198, 11748, 302, 198, 11748, 4818, 8079, 198, 11748, 850, 14681, 628, 198, 4871, 7788, 2043, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 29739, 12416, 422, 25, 198, 220, 220, 220, 3740, 1378, 31628, 13, 6345, 64, 13, 785, 14, 42861, 14, 268, 14, 33803, 15042, 13, 6494, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 7477, 796, 657, 198, 220, 220, 220, 42660, 796, 352, 198, 220, 220, 220, 8740, 2043, 796, 362, 198, 220, 220, 220, 4725, 42, 14165, 796, 513, 628, 198, 4299, 3141, 1370, 7, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16163, 329, 262, 3141, 1370, 7159, 13, 198, 220, 220, 220, 16409, 262, 44267, 7159, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 11639, 7376, 4657, 262, 4628, 395, 9430, 329, 3696, 287, 257, 8619, 2637, 8, 628, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 79, 1600, 366, 438, 6978, 1600, 2672, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15235, 284, 18043, 11559, 1351, 2393, 393, 8619, 4943, 628, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 86, 1600, 366, 438, 43917, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 817, 10126, 329, 14601, 287, 1528, 13, 15161, 25, 362, 12579, 4943, 628, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 66, 1600, 366, 438, 34666, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 817, 10126, 329, 4688, 82, 287, 1528, 13, 15161, 25, 642, 12579, 4943, 628, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 69, 1600, 366, 438, 18982, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 26227, 286, 262, 3128, 287, 262, 2393, 13, 15161, 25, 575, 12, 76, 12, 67, 4943, 628, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 81, 1600, 366, 438, 260, 25636, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 40164, 41986, 284, 7925, 3128, 422, 2393, 13, 15161, 25, 685, 15, 12, 24, 60, 90, 19, 92, 49146, 15, 12, 24, 60, 90, 17, 92, 49146, 15, 12, 24, 60, 90, 17, 92, 4943, 628, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 85, 1600, 366, 438, 19011, 577, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 46890, 5072, 15942, 16579, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 4943, 628, 220, 220, 220, 30751, 13, 2617, 62, 12286, 82, 7, 19011, 577, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4688, 28, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6509, 28, 17, 8, 628, 220, 220, 220, 1441, 30751, 13, 29572, 62, 22046, 7, 22046, 8, 628, 198, 4299, 1100, 7890, 7, 6978, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 47719, 611, 262, 3108, 7160, 11, 788, 9743, 262, 2393, 393, 8619, 290, 5860, 262, 1366, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 2949, 884, 3108, 1391, 15, 92, 4458, 18982, 7, 6978, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 6369, 2043, 13, 37771, 8, 628, 220, 220, 220, 611, 28686, 13, 6978, 13, 4468, 576, 7, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 6978, 8, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 277, 13, 961, 3419, 198, 220, 220, 220, 1288, 361, 28686, 13, 6978, 13, 9409, 343, 7, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 850, 14681, 13, 9122, 62, 22915, 7, 17816, 7278, 3256, 705, 438, 12853, 12, 2435, 3256, 3108, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1366, 13, 12501, 1098, 7203, 40477, 12, 23, 11074, 81, 36311, 10786, 59, 77, 11537, 628, 220, 220, 220, 1441, 1366, 628, 198, 4299, 7925, 62, 19581, 7, 7890, 11, 3128, 62, 18982, 11639, 4, 56, 12, 4, 76, 12, 4, 67, 3256, 3128, 62, 260, 25636, 11639, 58, 15, 12, 24, 60, 90, 19, 92, 49146, 15, 12, 24, 60, 90, 17, 92, 49146, 15, 12, 24, 60, 90, 17, 92, 6, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 29677, 82, 9667, 422, 257, 4731, 1262, 3218, 14700, 11, 788, 26161, 262, 9667, 284, 4818, 8079, 5563, 290, 5860, 257, 1351, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 9667, 796, 17635, 628, 220, 220, 220, 40364, 796, 302, 13, 5589, 576, 7, 4475, 62, 260, 25636, 8, 198, 220, 220, 220, 3128, 62, 37336, 796, 40364, 13, 19796, 439, 7, 7890, 8, 628, 220, 220, 220, 329, 3128, 62, 8841, 287, 3128, 62, 37336, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9667, 13, 33295, 7, 19608, 8079, 13, 19608, 8079, 13, 2536, 457, 524, 7, 4475, 62, 8841, 11, 3128, 62, 18982, 737, 4475, 28955, 628, 220, 220, 220, 1441, 23243, 7, 19581, 8, 628, 198, 4299, 2198, 62, 67, 12514, 7, 67, 12514, 11, 9828, 11, 1955, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 47719, 262, 6536, 286, 262, 10488, 25979, 357, 11380, 11, 42660, 11, 9677, 4146, 8, 290, 30151, 262, 1430, 16062, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 938, 62, 1891, 929, 796, 705, 5956, 11559, 373, 1391, 15, 92, 1528, 2084, 4458, 18982, 7, 67, 12514, 13, 12545, 8, 628, 220, 220, 220, 318, 482, 323, 796, 25979, 13, 12545, 1279, 9828, 198, 220, 220, 220, 318, 40539, 796, 25979, 13, 12545, 18189, 9828, 290, 25979, 13, 12545, 1279, 1955, 198, 220, 220, 220, 318, 22213, 796, 25979, 13, 12545, 18189, 1955, 628, 220, 220, 220, 611, 318, 482, 323, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 11380, 532, 705, 1343, 938, 62, 1891, 929, 8, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 6369, 2043, 13, 11380, 8, 198, 220, 220, 220, 1288, 361, 318, 40539, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 37771, 532, 705, 1343, 938, 62, 1891, 929, 8, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 6369, 2043, 13, 37771, 8, 198, 220, 220, 220, 1288, 361, 318, 22213, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 9419, 2043, 532, 705, 1343, 938, 62, 1891, 929, 8, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 6369, 2043, 13, 9419, 2043, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 4944, 44706, 532, 1892, 1107, 1654, 644, 318, 5836, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 6369, 2043, 13, 4944, 42, 14165, 8, 628, 198, 4299, 15284, 62, 67, 12514, 7, 19581, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27131, 689, 703, 1290, 262, 3607, 9667, 1614, 9386, 422, 1909, 338, 3128, 13, 16409, 257, 4818, 8079, 13, 16514, 276, 12514, 2134, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1909, 796, 4818, 8079, 13, 19608, 8079, 13, 40838, 22446, 4475, 3419, 198, 220, 220, 220, 25979, 796, 657, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 15, 11, 18896, 7, 19581, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 25979, 796, 532, 7, 19581, 58, 72, 60, 532, 1909, 8, 628, 220, 220, 220, 1303, 1002, 612, 389, 284, 9667, 287, 262, 2393, 329, 1672, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 67, 12514, 11, 4818, 8079, 13, 16514, 276, 12514, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 4944, 44706, 532, 18578, 4049, 981, 3555, 262, 2393, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 6369, 2043, 13, 4944, 42, 14165, 8, 628, 220, 220, 220, 1441, 25979, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 628, 220, 220, 220, 26498, 796, 3141, 1370, 7, 17597, 13, 853, 85, 58, 16, 25, 12962, 198, 220, 220, 220, 1388, 7, 22046, 8, 198 ]
2.34421
1,563
# coding: utf-8 # # Copyright 2022 :Barry-Thomas-Paul: Moss # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http: // www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Interface Class # this is a auto generated file generated by Cheetah # Libre Office Version: 7.3 # Namespace: com.sun.star.xml.sax import typing from abc import abstractmethod from ...uno.x_interface import XInterface as XInterface_8f010a43 class XFastTokenHandler(XInterface_8f010a43): """ interface to translate XML strings to integer tokens. An instance of this interface can be registered at a XFastParser. It should be able to translate all XML names (element local names, attribute local names and constant attribute values) to integer tokens. A token value must be greater or equal to zero and less than FastToken.NAMESPACE. If a string identifier is not known to this instance, FastToken.DONTKNOW is returned. See Also: `API XFastTokenHandler <https://api.libreoffice.org/docs/idl/ref/interfacecom_1_1sun_1_1star_1_1xml_1_1sax_1_1XFastTokenHandler.html>`_ """ __ooo_ns__: str = 'com.sun.star.xml.sax' __ooo_full_ns__: str = 'com.sun.star.xml.sax.XFastTokenHandler' __ooo_type_name__: str = 'interface' __pyunointerface__: str = 'com.sun.star.xml.sax.XFastTokenHandler' @abstractmethod def getTokenFromUTF8(self, Identifier: 'typing.Tuple[int, ...]') -> int: """ returns an integer token for the given string """ @abstractmethod def getUTF8Identifier(self, Token: int) -> 'typing.Tuple[int, ...]': """ returns an identifier for the given integer token as a byte sequence encoded in UTF-8. """ __all__ = ['XFastTokenHandler']
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 2, 198, 2, 15069, 33160, 1058, 33, 6532, 12, 22405, 12, 12041, 25, 19935, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 4943, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 25, 3373, 7324, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 2, 26491, 5016, 198, 2, 428, 318, 257, 8295, 7560, 2393, 7560, 416, 2580, 316, 993, 198, 2, 44384, 4452, 10628, 25, 767, 13, 18, 198, 2, 28531, 10223, 25, 401, 13, 19155, 13, 7364, 13, 19875, 13, 82, 897, 198, 11748, 19720, 198, 6738, 450, 66, 1330, 12531, 24396, 198, 6738, 2644, 36909, 13, 87, 62, 39994, 1330, 1395, 39317, 355, 1395, 39317, 62, 23, 69, 20943, 64, 3559, 198, 198, 4871, 1395, 22968, 30642, 25060, 7, 55, 39317, 62, 23, 69, 20943, 64, 3559, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7071, 284, 15772, 23735, 13042, 284, 18253, 16326, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1052, 4554, 286, 428, 7071, 460, 307, 6823, 379, 257, 1395, 22968, 46677, 13, 632, 815, 307, 1498, 284, 15772, 477, 23735, 3891, 357, 30854, 1957, 3891, 11, 11688, 1957, 3891, 290, 6937, 11688, 3815, 8, 284, 18253, 16326, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 317, 11241, 1988, 1276, 307, 3744, 393, 4961, 284, 6632, 290, 1342, 621, 12549, 30642, 13, 45, 29559, 47, 11598, 13, 1002, 257, 4731, 27421, 318, 407, 1900, 284, 428, 4554, 11, 12549, 30642, 13, 35, 35830, 29132, 3913, 318, 4504, 13, 628, 220, 220, 220, 4091, 4418, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 17614, 1395, 22968, 30642, 25060, 1279, 5450, 1378, 15042, 13, 8019, 260, 31810, 13, 2398, 14, 31628, 14, 312, 75, 14, 5420, 14, 39994, 785, 62, 16, 62, 16, 19155, 62, 16, 62, 16, 7364, 62, 16, 62, 16, 19875, 62, 16, 62, 16, 82, 897, 62, 16, 62, 16, 55, 22968, 30642, 25060, 13, 6494, 29, 63, 62, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11593, 34160, 62, 5907, 834, 25, 965, 796, 705, 785, 13, 19155, 13, 7364, 13, 19875, 13, 82, 897, 6, 198, 220, 220, 220, 11593, 34160, 62, 12853, 62, 5907, 834, 25, 965, 796, 705, 785, 13, 19155, 13, 7364, 13, 19875, 13, 82, 897, 13, 55, 22968, 30642, 25060, 6, 198, 220, 220, 220, 11593, 34160, 62, 4906, 62, 3672, 834, 25, 965, 796, 705, 39994, 6, 198, 220, 220, 220, 11593, 9078, 36909, 39994, 834, 25, 965, 796, 705, 785, 13, 19155, 13, 7364, 13, 19875, 13, 82, 897, 13, 55, 22968, 30642, 25060, 6, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 651, 30642, 4863, 48504, 23, 7, 944, 11, 11440, 7483, 25, 705, 774, 13886, 13, 51, 29291, 58, 600, 11, 2644, 60, 11537, 4613, 493, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5860, 281, 18253, 11241, 329, 262, 1813, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 651, 48504, 23, 33234, 7483, 7, 944, 11, 29130, 25, 493, 8, 4613, 705, 774, 13886, 13, 51, 29291, 58, 600, 11, 2644, 60, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5860, 281, 27421, 329, 262, 1813, 18253, 11241, 355, 257, 18022, 8379, 30240, 287, 41002, 12, 23, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 198, 834, 439, 834, 796, 37250, 55, 22968, 30642, 25060, 20520, 628 ]
3.00554
722
import luigi import subprocess from os.path import join, dirname, basename from ..utils.cap_task import CapTask from ..config import PipelineConfig from ..utils.conda import CondaPackage from ..preprocessing.clean_reads import CleanReads from ..databases.amr_db import GrootDB, MegaResDB, CardDB
[ 198, 11748, 300, 84, 25754, 198, 11748, 850, 14681, 198, 6738, 28686, 13, 6978, 1330, 4654, 11, 26672, 3672, 11, 1615, 12453, 198, 198, 6738, 11485, 26791, 13, 11128, 62, 35943, 1330, 4476, 25714, 198, 6738, 11485, 11250, 1330, 37709, 16934, 198, 6738, 11485, 26791, 13, 66, 13533, 1330, 9724, 64, 27813, 198, 6738, 11485, 3866, 36948, 13, 27773, 62, 40779, 1330, 5985, 5569, 82, 198, 6738, 11485, 19608, 18826, 13, 321, 81, 62, 9945, 1330, 10299, 313, 11012, 11, 13421, 4965, 11012, 11, 5172, 11012, 628, 628 ]
3.420455
88
#coding=utf-8 # # Created on Mar 21, 2014, by Junn # # from django.contrib.auth.models import BaseUserManager from django.utils import timezone from utils import eggs, logs, http from django.core.cache import cache VALID_ATTRS = ('nickname', 'email', 'phone', 'gender', 'avatar')
[ 2, 66, 7656, 28, 40477, 12, 23, 198, 2, 198, 2, 15622, 319, 1526, 2310, 11, 1946, 11, 416, 7653, 77, 198, 2, 220, 198, 2, 198, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 7308, 12982, 13511, 198, 6738, 42625, 14208, 13, 26791, 1330, 640, 11340, 198, 6738, 3384, 4487, 1330, 9653, 11, 17259, 11, 2638, 198, 6738, 42625, 14208, 13, 7295, 13, 23870, 1330, 12940, 198, 198, 23428, 2389, 62, 1404, 5446, 50, 796, 19203, 17172, 3672, 3256, 705, 12888, 3256, 705, 4862, 3256, 705, 8388, 3256, 705, 615, 9459, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220 ]
2.528926
121
import cv2 import numpy as np import mediapipe as mp cap = cv2.VideoCapture(0) ret, frame = cap. read () while (True): ret, frame = cap. read () frame = cv2.flip(frame,1) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) cv2.imshow('Gray Filter', gray) if cv2.waitKey(10) & 0xFF==ord('q'): break if cv2.waitKey(10) & 0xFF==ord('s'): import email_sender cap. release () cv2.destroyAllWindows()
[ 11748, 269, 85, 17, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 16957, 499, 3757, 355, 29034, 198, 198, 11128, 796, 269, 85, 17, 13, 10798, 49630, 7, 15, 8, 198, 1186, 11, 5739, 796, 1451, 13, 1100, 7499, 198, 4514, 357, 17821, 2599, 198, 220, 220, 220, 1005, 11, 5739, 796, 1451, 13, 1100, 7499, 198, 220, 220, 220, 5739, 796, 269, 85, 17, 13, 2704, 541, 7, 14535, 11, 16, 8, 198, 220, 220, 220, 12768, 796, 269, 85, 17, 13, 33967, 83, 10258, 7, 14535, 11, 269, 85, 17, 13, 46786, 62, 33, 10761, 17, 38, 30631, 8, 198, 220, 220, 220, 269, 85, 17, 13, 320, 12860, 10786, 46130, 25853, 3256, 12768, 8, 198, 220, 220, 220, 611, 269, 85, 17, 13, 17077, 9218, 7, 940, 8, 1222, 657, 87, 5777, 855, 585, 10786, 80, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 611, 269, 85, 17, 13, 17077, 9218, 7, 940, 8, 1222, 657, 87, 5777, 855, 585, 10786, 82, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 3053, 62, 82, 2194, 198, 11128, 13, 2650, 7499, 198, 33967, 17, 13, 41659, 3237, 11209, 3419 ]
2.15
200
import datetime import uuid import pytest from docstore.models import Dimensions, Document, File, Thumbnail, from_json, to_json @pytest.mark.parametrize("documents", [[1, 2, 3], {"a", "b", "c"}])
[ 11748, 4818, 8079, 198, 11748, 334, 27112, 198, 198, 11748, 12972, 9288, 198, 198, 6738, 2205, 8095, 13, 27530, 1330, 41265, 11, 16854, 11, 9220, 11, 536, 20566, 11, 422, 62, 17752, 11, 284, 62, 17752, 628, 628, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 15390, 2886, 1600, 16410, 16, 11, 362, 11, 513, 4357, 19779, 64, 1600, 366, 65, 1600, 366, 66, 20662, 12962, 198 ]
2.833333
72
import setuptools with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setuptools.setup( name="metalabs_sdk", # Replace with your own username version="0.1.1", author="Jeffrey Annaraj", author_email="[email protected]", description="SDK for MetaLabs API ", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/JAnnaraj/meta-labs_sdk", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.6', keywords='metalabs', install_requires=['urllib3'] )
[ 11748, 900, 37623, 10141, 201, 198, 201, 198, 4480, 1280, 7203, 15675, 11682, 13, 9132, 1600, 366, 81, 1600, 21004, 2625, 40477, 12, 23, 4943, 355, 277, 71, 25, 201, 198, 220, 220, 220, 890, 62, 11213, 796, 277, 71, 13, 961, 3419, 201, 198, 201, 198, 2617, 37623, 10141, 13, 40406, 7, 201, 198, 220, 220, 220, 1438, 2625, 28469, 8937, 62, 21282, 74, 1600, 1303, 40177, 351, 534, 898, 20579, 201, 198, 220, 220, 220, 2196, 2625, 15, 13, 16, 13, 16, 1600, 201, 198, 220, 220, 220, 1772, 2625, 19139, 4364, 5506, 283, 1228, 1600, 201, 198, 220, 220, 220, 1772, 62, 12888, 2625, 73, 1236, 283, 1228, 31, 65, 2001, 992, 13, 7959, 1600, 201, 198, 220, 220, 220, 6764, 2625, 10305, 42, 329, 30277, 43, 8937, 7824, 33172, 201, 198, 220, 220, 220, 890, 62, 11213, 28, 6511, 62, 11213, 11, 201, 198, 220, 220, 220, 890, 62, 11213, 62, 11299, 62, 4906, 2625, 5239, 14, 4102, 2902, 1600, 201, 198, 220, 220, 220, 19016, 2625, 5450, 1378, 12567, 13, 785, 14, 41, 18858, 283, 1228, 14, 28961, 12, 75, 8937, 62, 21282, 74, 1600, 201, 198, 220, 220, 220, 10392, 28, 2617, 37623, 10141, 13, 19796, 62, 43789, 22784, 201, 198, 220, 220, 220, 1398, 13350, 41888, 201, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 366, 34156, 7904, 7294, 40, 20010, 1079, 7904, 17168, 13789, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18843, 803, 4482, 7904, 7294, 13362, 1600, 201, 198, 220, 220, 220, 16589, 201, 198, 220, 220, 220, 21015, 62, 47911, 11639, 29, 28, 18, 13, 21, 3256, 201, 198, 220, 220, 220, 26286, 11639, 28469, 8937, 3256, 201, 198, 220, 220, 220, 2721, 62, 47911, 28, 17816, 333, 297, 571, 18, 20520, 201, 198, 8 ]
2.454259
317
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft and contributors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class FileSystemApplicationLogsConfig(Model): """ Application logs to file system configuration :param level: Log level. Possible values include: 'Off', 'Verbose', 'Information', 'Warning', 'Error' :type level: str or :class:`LogLevel <azure.mgmt.web.models.LogLevel>` """ _attribute_map = { 'level': {'key': 'level', 'type': 'LogLevel'}, }
[ 2, 19617, 28, 40477, 12, 23, 198, 2, 16529, 35937, 198, 2, 15069, 357, 66, 8, 5413, 290, 20420, 13, 220, 1439, 2489, 10395, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 2, 6127, 7560, 416, 5413, 357, 49, 8, 11160, 19452, 6127, 35986, 13, 198, 2, 19179, 743, 2728, 11491, 4069, 290, 481, 307, 2626, 611, 262, 2438, 318, 198, 2, 16935, 515, 13, 198, 2, 16529, 35937, 198, 198, 6738, 13845, 2118, 13, 46911, 1634, 1330, 9104, 628, 198, 4871, 9220, 11964, 23416, 11187, 82, 16934, 7, 17633, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15678, 17259, 284, 2393, 1080, 8398, 628, 220, 220, 220, 1058, 17143, 1241, 25, 5972, 1241, 13, 33671, 3815, 2291, 25, 705, 9362, 3256, 705, 13414, 65, 577, 3256, 198, 220, 220, 220, 220, 705, 21918, 3256, 705, 20361, 3256, 705, 12331, 6, 198, 220, 220, 220, 1058, 4906, 1241, 25, 965, 393, 1058, 4871, 25, 63, 11187, 4971, 1279, 1031, 495, 13, 11296, 16762, 13, 12384, 13, 27530, 13, 11187, 4971, 29, 63, 198, 220, 220, 220, 37227, 220, 628, 220, 220, 220, 4808, 42348, 62, 8899, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 5715, 10354, 1391, 6, 2539, 10354, 705, 5715, 3256, 705, 4906, 10354, 705, 11187, 4971, 6, 5512, 198, 220, 220, 220, 1782, 198 ]
3.794944
356
from __future__ import absolute_import from . import teardrops
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 764, 1330, 573, 446, 305, 862, 198 ]
3.705882
17
import attr from ndk.construct import Construct from ndk.directives import * from ndk.options import contact as options @attr.s
[ 198, 198, 11748, 708, 81, 198, 6738, 299, 34388, 13, 41571, 1330, 28407, 198, 6738, 299, 34388, 13, 12942, 1083, 1330, 1635, 198, 6738, 299, 34388, 13, 25811, 1330, 2800, 355, 3689, 628, 198, 31, 35226, 13, 82, 198 ]
3.384615
39
#! -*- coding: utf-8 -*- # bert做Seq2Seq任务,采用UNILM方案 # 介绍链接:https://kexue.fm/archives/6933 from __future__ import print_function import glob import os import numpy as np import sys from bert4keras.backend import keras, K from bert4keras.layers import Loss from bert4keras.models import build_transformer_model, tf from bert4keras.tokenizers import Tokenizer, load_vocab from bert4keras.optimizers import Adam from bert4keras.snippets import sequence_padding, open from bert4keras.snippets import DataGenerator, AutoRegressiveDecoder from keras.models import Model from examples import modeling from examples.my_args import arg_dic from tensorflow.python.framework.graph_util import convert_variables_to_constants from keras import backend as K from tensorflow.python.platform import gfile # parameter ========================== wkdir = '/Users/xusijun/Documents/NLP009/bert4keras-master001/keras_to_tensorflow-master' pb_filename = 'model070.pb' # 基本参数 maxlen = 256 batch_size = 16 # steps_per_epoch = 1000 steps_per_epoch = 1000 # epochs = 10000 epochs = 10 # bert配置 # config_path = '/root/kg/bert/chinese_wwm_L-12_H-768_A-12/bert_config.json' # checkpoint_path = '/root/kg/bert/chinese_wwm_L-12_H-768_A-12/bert_model.ckpt' # dict_path = '/root/kg/bert/chinese_wwm_L-12_H-768_A-12/vocab.txt' # config_path = '/Users/xusijun/Documents/NLP009/bert4keras-master001/chinese_wwm_L-12_H-768_A-12/bert_config.json' # checkpoint_path = '/Users/xusijun/Documents/NLP009/bert4keras-master001/chinese_wwm_L-12_H-768_A-12/bert_model.ckpt' # dict_path = '/Users/xusijun/Documents/NLP009/bert4keras-master001/chinese_wwm_L-12_H-768_A-12/vocab.txt' config_path = '/Users/xusijun/Documents/NLP009/bert4keras-master001/albert_tiny_google_zh_489k/albert_config.json' checkpoint_path = '/Users/xusijun/Documents/NLP009/bert4keras-master001/albert_tiny_google_zh_489k/albert_model.ckpt' dict_path = '/Users/xusijun/Documents/NLP009/bert4keras-master001/albert_tiny_google_zh_489k/vocab.txt' # 训练样本。THUCNews数据集,每个样本保存为一个txt。 # txts = glob.glob('/root/thuctc/THUCNews/*/*.txt') # txts = glob.glob('/Users/xusijun/Documents/NLP009/bert4keras-master001/MyNews/*/*.txt') txts = glob.glob('/Users/xusijun/Documents/NLP009/bert4keras-master001/THUCNews/*/*.txt') # 加载并精简词表,建立分词器 # token_dict, keep_tokens = load_vocab( # dict_path=dict_path, # simplified=True, # startswith=['[PAD]', '[UNK]', '[CLS]', '[SEP]'], # ) token_dict = load_vocab( dict_path=dict_path, # startswith=['[PAD]', '[UNK]', '[CLS]', '[SEP]'], ) tokenizer = Tokenizer(token_dict, do_lower_case=True) class data_generator(DataGenerator): """数据生成器 """ class CrossEntropy(Loss): """交叉熵作为loss,并mask掉输入部分 """ model = build_transformer_model( config_path, checkpoint_path, application='unilm', # keep_tokens=keep_tokens, # 只保留keep_tokens中的字,精简原字表 keep_tokens=None, # 只保留keep_tokens中的字,精简原字表 ) output = CrossEntropy(2)(model.inputs + model.outputs) model = Model(model.inputs, output) model.compile(optimizer=Adam(1e-5)) model.summary() class AutoTitle(AutoRegressiveDecoder): """seq2seq解码器 """ @AutoRegressiveDecoder.wraps(default_rtype='probas') autotitle = AutoTitle(start_id=None, end_id=tokenizer._token_end_id, maxlen=32) # save model to pb ==================== def freeze_session(session, keep_var_names=None, output_names=None, clear_devices=True): """ Freezes the state of a session into a pruned computation graph. Creates a new computation graph where variable nodes are replaced by constants taking their current value in the session. The new graph will be pruned so subgraphs that are not necessary to compute the requested outputs are removed. @param session The TensorFlow session to be frozen. @param keep_var_names A list of variable names that should not be frozen, or None to freeze all the variables in the graph. @param output_names Names of the relevant graph outputs. @param clear_devices Remove the device directives from the graph for better portability. @return The frozen graph definition. """ graph = session.graph with graph.as_default(): freeze_var_names = list(set(v.op.name for v in tf.global_variables()).difference(keep_var_names or [])) output_names = output_names or [] output_names += [v.op.name for v in tf.global_variables()] input_graph_def = graph.as_graph_def() if clear_devices: for node in input_graph_def.node: node.device = "" frozen_graph = convert_variables_to_constants(session, input_graph_def, output_names, freeze_var_names) return frozen_graph class Evaluator(keras.callbacks.Callback): """评估与保存 """ if __name__ == '__main__': model.load_weights('./myFile70.h5') just_show() evaluator = Evaluator() train_generator = data_generator(txts, batch_size) model.fit( train_generator.forfit(), steps_per_epoch=steps_per_epoch, epochs=epochs, callbacks=[evaluator] ) else: model.load_weights('./best_model003.weights')
[ 2, 0, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 275, 861, 161, 223, 248, 4653, 80, 17, 4653, 80, 20015, 119, 27950, 94, 171, 120, 234, 34932, 229, 18796, 101, 4944, 4146, 44, 43095, 162, 94, 230, 198, 2, 220, 20015, 233, 163, 119, 235, 165, 241, 122, 162, 236, 98, 171, 120, 248, 5450, 1378, 365, 87, 518, 13, 38353, 14, 48814, 14, 3388, 2091, 198, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 11748, 15095, 198, 11748, 28686, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 25064, 198, 198, 6738, 275, 861, 19, 6122, 292, 13, 1891, 437, 1330, 41927, 292, 11, 509, 198, 6738, 275, 861, 19, 6122, 292, 13, 75, 6962, 1330, 22014, 198, 6738, 275, 861, 19, 6122, 292, 13, 27530, 1330, 1382, 62, 7645, 16354, 62, 19849, 11, 48700, 198, 6738, 275, 861, 19, 6122, 292, 13, 30001, 11341, 1330, 29130, 7509, 11, 3440, 62, 18893, 397, 198, 6738, 275, 861, 19, 6122, 292, 13, 40085, 11341, 1330, 7244, 198, 6738, 275, 861, 19, 6122, 292, 13, 16184, 3974, 1039, 1330, 8379, 62, 39231, 11, 1280, 198, 6738, 275, 861, 19, 6122, 292, 13, 16184, 3974, 1039, 1330, 6060, 8645, 1352, 11, 11160, 8081, 3314, 10707, 12342, 198, 6738, 41927, 292, 13, 27530, 1330, 9104, 198, 198, 6738, 6096, 1330, 21128, 198, 6738, 6096, 13, 1820, 62, 22046, 1330, 1822, 62, 67, 291, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 30604, 13, 34960, 62, 22602, 1330, 10385, 62, 25641, 2977, 62, 1462, 62, 9979, 1187, 198, 198, 6738, 41927, 292, 1330, 30203, 355, 509, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 24254, 1330, 308, 7753, 198, 198, 2, 11507, 36658, 2559, 28, 198, 43021, 15908, 796, 31051, 14490, 14, 40832, 2926, 403, 14, 38354, 14, 45, 19930, 28694, 14, 4835, 19, 6122, 292, 12, 9866, 8298, 14, 6122, 292, 62, 1462, 62, 83, 22854, 11125, 12, 9866, 6, 198, 40842, 62, 34345, 796, 705, 19849, 43509, 13, 40842, 6, 198, 198, 2, 10263, 253, 118, 17312, 105, 20998, 224, 46763, 108, 198, 9806, 11925, 796, 17759, 198, 43501, 62, 7857, 796, 1467, 198, 2, 4831, 62, 525, 62, 538, 5374, 796, 8576, 198, 20214, 62, 525, 62, 538, 5374, 796, 8576, 198, 2, 36835, 82, 796, 33028, 198, 538, 5374, 82, 796, 838, 198, 198, 2, 275, 861, 165, 227, 235, 163, 121, 106, 198, 2, 4566, 62, 6978, 796, 31051, 15763, 14, 10025, 14, 4835, 14, 354, 3762, 62, 1383, 76, 62, 43, 12, 1065, 62, 39, 12, 30610, 62, 32, 12, 1065, 14, 4835, 62, 11250, 13, 17752, 6, 198, 2, 26954, 62, 6978, 796, 31051, 15763, 14, 10025, 14, 4835, 14, 354, 3762, 62, 1383, 76, 62, 43, 12, 1065, 62, 39, 12, 30610, 62, 32, 12, 1065, 14, 4835, 62, 19849, 13, 694, 457, 6, 198, 2, 8633, 62, 6978, 796, 31051, 15763, 14, 10025, 14, 4835, 14, 354, 3762, 62, 1383, 76, 62, 43, 12, 1065, 62, 39, 12, 30610, 62, 32, 12, 1065, 14, 18893, 397, 13, 14116, 6, 198, 198, 2, 4566, 62, 6978, 796, 31051, 14490, 14, 40832, 2926, 403, 14, 38354, 14, 45, 19930, 28694, 14, 4835, 19, 6122, 292, 12, 9866, 8298, 14, 354, 3762, 62, 1383, 76, 62, 43, 12, 1065, 62, 39, 12, 30610, 62, 32, 12, 1065, 14, 4835, 62, 11250, 13, 17752, 6, 198, 2, 26954, 62, 6978, 796, 31051, 14490, 14, 40832, 2926, 403, 14, 38354, 14, 45, 19930, 28694, 14, 4835, 19, 6122, 292, 12, 9866, 8298, 14, 354, 3762, 62, 1383, 76, 62, 43, 12, 1065, 62, 39, 12, 30610, 62, 32, 12, 1065, 14, 4835, 62, 19849, 13, 694, 457, 6, 198, 2, 8633, 62, 6978, 796, 31051, 14490, 14, 40832, 2926, 403, 14, 38354, 14, 45, 19930, 28694, 14, 4835, 19, 6122, 292, 12, 9866, 8298, 14, 354, 3762, 62, 1383, 76, 62, 43, 12, 1065, 62, 39, 12, 30610, 62, 32, 12, 1065, 14, 18893, 397, 13, 14116, 6, 198, 198, 11250, 62, 6978, 796, 31051, 14490, 14, 40832, 2926, 403, 14, 38354, 14, 45, 19930, 28694, 14, 4835, 19, 6122, 292, 12, 9866, 8298, 14, 282, 4835, 62, 44152, 62, 13297, 62, 23548, 62, 35890, 74, 14, 282, 4835, 62, 11250, 13, 17752, 6, 198, 9122, 4122, 62, 6978, 796, 31051, 14490, 14, 40832, 2926, 403, 14, 38354, 14, 45, 19930, 28694, 14, 4835, 19, 6122, 292, 12, 9866, 8298, 14, 282, 4835, 62, 44152, 62, 13297, 62, 23548, 62, 35890, 74, 14, 282, 4835, 62, 19849, 13, 694, 457, 6, 198, 11600, 62, 6978, 796, 31051, 14490, 14, 40832, 2926, 403, 14, 38354, 14, 45, 19930, 28694, 14, 4835, 19, 6122, 292, 12, 9866, 8298, 14, 282, 4835, 62, 44152, 62, 13297, 62, 23548, 62, 35890, 74, 14, 18893, 397, 13, 14116, 6, 198, 198, 2, 5525, 106, 255, 163, 119, 225, 43718, 115, 17312, 105, 16764, 4221, 9598, 9980, 46763, 108, 162, 235, 106, 37239, 228, 171, 120, 234, 162, 107, 237, 10310, 103, 43718, 115, 17312, 105, 46479, 251, 27764, 246, 10310, 118, 31660, 10310, 103, 14116, 16764, 198, 2, 256, 742, 82, 796, 15095, 13, 4743, 672, 10786, 14, 15763, 14, 400, 4782, 66, 14, 4221, 9598, 9980, 15211, 15211, 13, 14116, 11537, 198, 2, 256, 742, 82, 796, 15095, 13, 4743, 672, 10786, 14, 14490, 14, 40832, 2926, 403, 14, 38354, 14, 45, 19930, 28694, 14, 4835, 19, 6122, 292, 12, 9866, 8298, 14, 3666, 9980, 15211, 15211, 13, 14116, 11537, 198, 198, 14116, 82, 796, 15095, 13, 4743, 672, 10786, 14, 14490, 14, 40832, 2926, 403, 14, 38354, 14, 45, 19930, 28694, 14, 4835, 19, 6122, 292, 12, 9866, 8298, 14, 4221, 9598, 9980, 15211, 15211, 13, 14116, 11537, 198, 198, 2, 10263, 232, 254, 164, 121, 121, 33176, 114, 163, 39333, 163, 106, 222, 46237, 235, 26193, 101, 171, 120, 234, 161, 119, 118, 44165, 233, 26344, 228, 46237, 235, 161, 247, 101, 198, 2, 11241, 62, 11600, 11, 1394, 62, 83, 482, 641, 796, 3440, 62, 18893, 397, 7, 198, 2, 220, 220, 220, 220, 8633, 62, 6978, 28, 11600, 62, 6978, 11, 198, 2, 220, 220, 220, 220, 27009, 28, 17821, 11, 198, 2, 220, 220, 220, 220, 923, 2032, 342, 28, 17816, 58, 47, 2885, 60, 3256, 44438, 4944, 42, 60, 3256, 44438, 5097, 50, 60, 3256, 44438, 5188, 47, 49946, 4357, 198, 2, 1267, 198, 30001, 62, 11600, 796, 3440, 62, 18893, 397, 7, 198, 220, 220, 220, 8633, 62, 6978, 28, 11600, 62, 6978, 11, 198, 220, 220, 220, 1303, 923, 2032, 342, 28, 17816, 58, 47, 2885, 60, 3256, 44438, 4944, 42, 60, 3256, 44438, 5097, 50, 60, 3256, 44438, 5188, 47, 49946, 4357, 198, 8, 198, 198, 30001, 7509, 796, 29130, 7509, 7, 30001, 62, 11600, 11, 466, 62, 21037, 62, 7442, 28, 17821, 8, 628, 198, 4871, 1366, 62, 8612, 1352, 7, 6601, 8645, 1352, 2599, 198, 220, 220, 220, 37227, 46763, 108, 162, 235, 106, 37955, 22755, 238, 161, 247, 101, 198, 220, 220, 220, 37227, 628, 198, 4871, 6372, 14539, 28338, 7, 43, 793, 2599, 198, 220, 220, 220, 37227, 12859, 97, 20998, 231, 163, 228, 113, 43291, 10310, 118, 22462, 171, 120, 234, 33176, 114, 27932, 162, 236, 231, 164, 122, 241, 17739, 98, 32849, 101, 26344, 228, 198, 220, 220, 220, 37227, 628, 198, 19849, 796, 1382, 62, 7645, 16354, 62, 19849, 7, 198, 220, 220, 220, 4566, 62, 6978, 11, 198, 220, 220, 220, 26954, 62, 6978, 11, 198, 220, 220, 220, 3586, 11639, 403, 346, 76, 3256, 198, 220, 220, 220, 1303, 1394, 62, 83, 482, 641, 28, 14894, 62, 83, 482, 641, 11, 220, 1303, 10263, 237, 103, 46479, 251, 45911, 247, 14894, 62, 83, 482, 641, 40792, 21410, 27764, 245, 171, 120, 234, 163, 39333, 163, 106, 222, 43889, 253, 27764, 245, 26193, 101, 198, 220, 220, 220, 1394, 62, 83, 482, 641, 28, 14202, 11, 220, 1303, 10263, 237, 103, 46479, 251, 45911, 247, 14894, 62, 83, 482, 641, 40792, 21410, 27764, 245, 171, 120, 234, 163, 39333, 163, 106, 222, 43889, 253, 27764, 245, 26193, 101, 198, 8, 198, 198, 22915, 796, 6372, 14539, 28338, 7, 17, 5769, 19849, 13, 15414, 82, 1343, 2746, 13, 22915, 82, 8, 198, 198, 19849, 796, 9104, 7, 19849, 13, 15414, 82, 11, 5072, 8, 198, 19849, 13, 5589, 576, 7, 40085, 7509, 28, 23159, 7, 16, 68, 12, 20, 4008, 198, 19849, 13, 49736, 3419, 628, 198, 4871, 11160, 19160, 7, 27722, 8081, 3314, 10707, 12342, 2599, 198, 220, 220, 220, 37227, 41068, 17, 41068, 164, 100, 96, 163, 254, 223, 161, 247, 101, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 27722, 8081, 3314, 10707, 12342, 13, 29988, 862, 7, 12286, 62, 81, 4906, 11639, 1676, 12093, 11537, 628, 198, 2306, 313, 2578, 796, 11160, 19160, 7, 9688, 62, 312, 28, 14202, 11, 886, 62, 312, 28, 30001, 7509, 13557, 30001, 62, 437, 62, 312, 11, 3509, 11925, 28, 2624, 8, 198, 198, 2, 3613, 2746, 284, 279, 65, 36658, 18604, 198, 4299, 16611, 62, 29891, 7, 29891, 11, 1394, 62, 7785, 62, 14933, 28, 14202, 11, 5072, 62, 14933, 28, 14202, 11, 1598, 62, 42034, 28, 17821, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3232, 12271, 262, 1181, 286, 257, 6246, 656, 257, 778, 40881, 29964, 4823, 13, 628, 220, 220, 220, 7921, 274, 257, 649, 29964, 4823, 810, 7885, 13760, 389, 6928, 416, 198, 220, 220, 220, 38491, 2263, 511, 1459, 1988, 287, 262, 6246, 13, 383, 649, 4823, 481, 307, 198, 220, 220, 220, 778, 40881, 523, 850, 34960, 82, 326, 389, 407, 3306, 284, 24061, 262, 9167, 198, 220, 220, 220, 23862, 389, 4615, 13, 198, 220, 220, 220, 2488, 17143, 6246, 383, 309, 22854, 37535, 6246, 284, 307, 12912, 13, 198, 220, 220, 220, 2488, 17143, 1394, 62, 7785, 62, 14933, 317, 1351, 286, 7885, 3891, 326, 815, 407, 307, 12912, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 6045, 284, 16611, 477, 262, 9633, 287, 262, 4823, 13, 198, 220, 220, 220, 2488, 17143, 5072, 62, 14933, 28531, 286, 262, 5981, 4823, 23862, 13, 198, 220, 220, 220, 2488, 17143, 1598, 62, 42034, 17220, 262, 3335, 34819, 422, 262, 4823, 329, 1365, 2493, 1799, 13, 198, 220, 220, 220, 2488, 7783, 383, 12912, 4823, 6770, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4823, 796, 6246, 13, 34960, 198, 220, 220, 220, 351, 4823, 13, 292, 62, 12286, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 16611, 62, 7785, 62, 14933, 796, 1351, 7, 2617, 7, 85, 13, 404, 13, 3672, 329, 410, 287, 48700, 13, 20541, 62, 25641, 2977, 3419, 737, 26069, 1945, 7, 14894, 62, 7785, 62, 14933, 393, 17635, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 14933, 796, 5072, 62, 14933, 393, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 14933, 15853, 685, 85, 13, 404, 13, 3672, 329, 410, 287, 48700, 13, 20541, 62, 25641, 2977, 3419, 60, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 34960, 62, 4299, 796, 4823, 13, 292, 62, 34960, 62, 4299, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1598, 62, 42034, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 10139, 287, 5128, 62, 34960, 62, 4299, 13, 17440, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 13, 25202, 796, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 12912, 62, 34960, 796, 10385, 62, 25641, 2977, 62, 1462, 62, 9979, 1187, 7, 29891, 11, 5128, 62, 34960, 62, 4299, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 14933, 11, 16611, 62, 7785, 62, 14933, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 12912, 62, 34960, 198, 198, 4871, 26439, 84, 1352, 7, 6122, 292, 13, 13345, 10146, 13, 47258, 2599, 198, 220, 220, 220, 37227, 46237, 226, 27670, 108, 10310, 236, 46479, 251, 27764, 246, 198, 220, 220, 220, 37227, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 220, 220, 220, 2746, 13, 2220, 62, 43775, 7, 4458, 14, 1820, 8979, 2154, 13, 71, 20, 11537, 198, 220, 220, 220, 655, 62, 12860, 3419, 628, 220, 220, 220, 5418, 84, 1352, 796, 26439, 84, 1352, 3419, 198, 220, 220, 220, 4512, 62, 8612, 1352, 796, 1366, 62, 8612, 1352, 7, 14116, 82, 11, 15458, 62, 7857, 8, 628, 220, 220, 220, 2746, 13, 11147, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 8612, 1352, 13, 1640, 11147, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 4831, 62, 525, 62, 538, 5374, 28, 20214, 62, 525, 62, 538, 5374, 11, 198, 220, 220, 220, 220, 220, 220, 220, 36835, 82, 28, 538, 5374, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 869, 10146, 41888, 18206, 84, 1352, 60, 198, 220, 220, 220, 1267, 198, 198, 17772, 25, 628, 220, 220, 220, 2746, 13, 2220, 62, 43775, 7, 4458, 14, 13466, 62, 19849, 11245, 13, 43775, 11537, 198 ]
2.305506
2,252
# check # lowercase letters # count all the letters of T which S contains # save indices of letters in T
[ 2, 2198, 198, 2, 2793, 7442, 7475, 198, 198, 2, 954, 477, 262, 7475, 286, 309, 543, 311, 4909, 198, 2, 3613, 36525, 286, 7475, 287, 309 ]
3.888889
27
__all__ = () from sys import platform as PLATFORM from os.path import join as join_paths from os import listdir as list_directory, environ as ENVIRONMENTAL_VARIABLES from tempfile import gettempdir as get_temporary_directory from scarletio import set_docs from .constants import PAYLOAD_KEY_EVENT, EVENT_ERROR, PAYLOAD_KEY_DATA from. exceptions import DiscordRPCError if PLATFORM in ('linux', 'darwin'): TEMPORARY_DIRECTORY = ENVIRONMENTAL_VARIABLES.get('XDG_RUNTIME_DIR', None) if (TEMPORARY_DIRECTORY is None): TEMPORARY_DIRECTORY = ENVIRONMENTAL_VARIABLES.get('TMPDIR', None) if (TEMPORARY_DIRECTORY is None): TEMPORARY_DIRECTORY = ENVIRONMENTAL_VARIABLES.get('TMP', None) if (TEMPORARY_DIRECTORY is None): TEMPORARY_DIRECTORY = ENVIRONMENTAL_VARIABLES.get('TEMP', None) if (TEMPORARY_DIRECTORY is None): TEMPORARY_DIRECTORY = get_temporary_directory() elif PLATFORM == 'win32': TEMPORARY_DIRECTORY = '\\\\?\\pipe' else: set_docs(get_ipc_path, """ Gets Discord inter process communication path. Parameters ---------- pipe : `None` or `str` # TODO Returns ------- path : `None` or `str` """) def check_for_error(data): """ Checks whether the given data contains an errors. Parameters ---------- data : `dict` of (`str`, `Any`) items Data received from Discord. Raises ------ DiscordRPCError """ try: event = data[PAYLOAD_KEY_EVENT] except KeyError: pass else: if event == EVENT_ERROR: error_data = data[PAYLOAD_KEY_DATA] error_code = error_data['code'] error_message = error_data['message'] raise DiscordRPCError(error_code, error_message)
[ 834, 439, 834, 796, 7499, 198, 198, 6738, 25064, 1330, 3859, 355, 9297, 1404, 21389, 198, 6738, 28686, 13, 6978, 1330, 4654, 355, 4654, 62, 6978, 82, 198, 6738, 28686, 1330, 1351, 15908, 355, 1351, 62, 34945, 11, 551, 2268, 355, 12964, 53, 4663, 1340, 10979, 1847, 62, 53, 1503, 3539, 9148, 1546, 198, 6738, 20218, 7753, 1330, 651, 29510, 15908, 355, 651, 62, 11498, 5551, 62, 34945, 198, 198, 6738, 10153, 1616, 952, 1330, 900, 62, 31628, 198, 198, 6738, 764, 9979, 1187, 1330, 38444, 35613, 62, 20373, 62, 20114, 3525, 11, 49261, 62, 24908, 11, 38444, 35613, 62, 20373, 62, 26947, 198, 6738, 13, 13269, 1330, 39462, 20031, 5222, 81, 1472, 198, 198, 361, 9297, 1404, 21389, 287, 19203, 23289, 3256, 705, 27455, 5404, 6, 2599, 198, 220, 220, 220, 309, 39494, 1581, 13153, 62, 17931, 23988, 15513, 796, 12964, 53, 4663, 1340, 10979, 1847, 62, 53, 1503, 3539, 9148, 1546, 13, 1136, 10786, 55, 35, 38, 62, 49, 4944, 34694, 62, 34720, 3256, 6045, 8, 198, 220, 220, 220, 611, 357, 51, 39494, 1581, 13153, 62, 17931, 23988, 15513, 318, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 309, 39494, 1581, 13153, 62, 17931, 23988, 15513, 796, 12964, 53, 4663, 1340, 10979, 1847, 62, 53, 1503, 3539, 9148, 1546, 13, 1136, 10786, 15972, 5760, 4663, 3256, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 51, 39494, 1581, 13153, 62, 17931, 23988, 15513, 318, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 309, 39494, 1581, 13153, 62, 17931, 23988, 15513, 796, 12964, 53, 4663, 1340, 10979, 1847, 62, 53, 1503, 3539, 9148, 1546, 13, 1136, 10786, 51, 7378, 3256, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 51, 39494, 1581, 13153, 62, 17931, 23988, 15513, 318, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 309, 39494, 1581, 13153, 62, 17931, 23988, 15513, 796, 12964, 53, 4663, 1340, 10979, 1847, 62, 53, 1503, 3539, 9148, 1546, 13, 1136, 10786, 51, 39494, 3256, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 51, 39494, 1581, 13153, 62, 17931, 23988, 15513, 318, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 309, 39494, 1581, 13153, 62, 17931, 23988, 15513, 796, 651, 62, 11498, 5551, 62, 34945, 3419, 198, 198, 417, 361, 9297, 1404, 21389, 6624, 705, 5404, 2624, 10354, 198, 220, 220, 220, 309, 39494, 1581, 13153, 62, 17931, 23988, 15513, 796, 705, 13426, 30, 6852, 34360, 6, 198, 198, 17772, 25, 628, 198, 2617, 62, 31628, 7, 1136, 62, 541, 66, 62, 6978, 11, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 29620, 39462, 987, 1429, 6946, 3108, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 12656, 1058, 4600, 14202, 63, 393, 4600, 2536, 63, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 198, 220, 220, 220, 220, 198, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 3108, 1058, 4600, 14202, 63, 393, 4600, 2536, 63, 198, 220, 220, 220, 13538, 4943, 628, 198, 4299, 2198, 62, 1640, 62, 18224, 7, 7890, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 47719, 1771, 262, 1813, 1366, 4909, 281, 8563, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 4600, 11600, 63, 286, 357, 63, 2536, 47671, 4600, 7149, 63, 8, 3709, 198, 220, 220, 220, 220, 220, 220, 220, 6060, 2722, 422, 39462, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 7567, 2696, 198, 220, 220, 220, 40103, 198, 220, 220, 220, 39462, 20031, 5222, 81, 1472, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 796, 1366, 58, 4537, 56, 35613, 62, 20373, 62, 20114, 3525, 60, 198, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1785, 6624, 49261, 62, 24908, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 7890, 796, 1366, 58, 4537, 56, 35613, 62, 20373, 62, 26947, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 8189, 796, 4049, 62, 7890, 17816, 8189, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 20500, 796, 4049, 62, 7890, 17816, 20500, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 39462, 20031, 5222, 81, 1472, 7, 18224, 62, 8189, 11, 4049, 62, 20500, 8, 628, 198 ]
2.212589
842
#!/usr/bin/env python # encoding=utf8 import os import re import sys import struct import pprint import random import argparse import datetime import tiddlywiki as tiddly import cdam_gen_files as gen import importlib import bitarray importlib.reload(sys) # sys.setdefaultencoding('utf8') VERSION = "1.0" BINARY_VER = "1.0.5" # For holding binary variable keys and values. VARIABLES = {} FLAGS = {} TITLE_MAP = {} STORY_MAP = {} PASSAGES = {} STORY_TITLE = "" STORY_AUTHOR = "" STORY_SUBTITLE = "" STORY_CREDITS = "" STORY_VERSION = "" STORY_CONTACT = "" STORY_LANGUAGE = "" REPORT = "" OPERATION_TEST = bytearray() TOTAL_OPS = 0 VERBOSE = False LINEAR = False HTML = False SEED = None PP = pprint.PrettyPrinter(indent = 4) kAppend = "<append>" kContinue = "<continue>" kContinueCopy = '<continue>' kGotoTempTag = "-GOTO-" if __name__ == '__main__': #global _UPDATE #global _FORCE main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 21004, 28, 40477, 23, 198, 198, 11748, 28686, 198, 11748, 302, 198, 11748, 25064, 198, 11748, 2878, 198, 11748, 279, 4798, 198, 11748, 4738, 198, 11748, 1822, 29572, 198, 11748, 4818, 8079, 198, 11748, 256, 1638, 306, 15466, 355, 256, 1638, 306, 198, 11748, 269, 11043, 62, 5235, 62, 16624, 355, 2429, 198, 11748, 1330, 8019, 198, 11748, 1643, 18747, 198, 198, 11748, 8019, 13, 260, 2220, 7, 17597, 8, 198, 2, 25064, 13, 2617, 12286, 12685, 7656, 10786, 40477, 23, 11537, 198, 198, 43717, 796, 366, 16, 13, 15, 1, 198, 198, 33, 1268, 13153, 62, 5959, 796, 366, 16, 13, 15, 13, 20, 1, 198, 198, 2, 1114, 4769, 13934, 7885, 8251, 290, 3815, 13, 198, 53, 1503, 3539, 9148, 1546, 796, 23884, 198, 38948, 50, 796, 23884, 198, 49560, 2538, 62, 33767, 796, 23884, 198, 2257, 15513, 62, 33767, 796, 23884, 198, 47, 1921, 4090, 48075, 796, 23884, 198, 2257, 15513, 62, 49560, 2538, 796, 13538, 198, 2257, 15513, 62, 32, 24318, 1581, 796, 13538, 198, 2257, 15513, 62, 50, 10526, 49560, 2538, 796, 13538, 198, 2257, 15513, 62, 9419, 24706, 50, 796, 13538, 198, 2257, 15513, 62, 43717, 796, 13538, 198, 2257, 15513, 62, 37815, 10659, 796, 13538, 198, 2257, 15513, 62, 43, 15567, 52, 11879, 796, 13538, 198, 2200, 15490, 796, 13538, 198, 31054, 6234, 62, 51, 6465, 796, 416, 83, 451, 2433, 3419, 198, 51, 27510, 62, 30737, 796, 657, 198, 5959, 33, 14058, 796, 10352, 198, 24027, 1503, 796, 10352, 198, 28656, 796, 10352, 198, 5188, 1961, 796, 6045, 198, 198, 10246, 796, 279, 4798, 13, 35700, 6836, 3849, 7, 521, 298, 796, 604, 8, 198, 198, 74, 4677, 437, 796, 33490, 33295, 24618, 198, 74, 29453, 796, 33490, 43043, 24618, 198, 74, 29453, 29881, 796, 705, 27, 43043, 29, 6, 198, 74, 38, 2069, 30782, 24835, 796, 27444, 38, 26631, 21215, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 1303, 20541, 4808, 16977, 198, 220, 220, 1303, 20541, 4808, 13775, 5222, 198, 220, 220, 1388, 3419 ]
2.57265
351
""" Common geometric primitives. Author: Jeff Mahler """ import numpy as np class Box(object): """A 2D box or 3D rectangular prism. Attributes ---------- dims : :obj:`numpy.ndarray` of float Maximal extent in x, y, and (optionally) z. width : float Maximal extent in x. height : float Maximal extent in y. area : float Area of projection onto xy plane. min_pt : :obj:`numpy.ndarray` of float The minimum x, y, and (optionally) z points. max_pt : :obj:`numpy.ndarray` of float The maximum x, y, and (optionally) z points. center : :obj:`numpy.ndarray` of float The center of the box in 2 or 3D coords. frame : :obj:`str` The frame in which this box is placed. """ def __init__(self, min_pt, max_pt, frame='unspecified'): """Initialize a box. Parameters ---------- min_pt : :obj:`numpy.ndarray` of float The minimum x, y, and (optionally) z points. max_pt : :obj:`numpy.ndarray` of float The maximum x, y, and (optionally) z points. frame : :obj:`str` The frame in which this box is placed. Raises ------ ValueError If max_pt is not strictly larger than min_pt in all dims. """ if np.any((max_pt - min_pt) < 0): raise ValueError('Min point must be smaller than max point') self._min_pt = min_pt self._max_pt = max_pt self._frame = frame @property def dims(self): """:obj:`numpy.ndarray` of float: Maximal extent in x, y, and (optionally) z """ return self._max_pt - self._min_pt @property def width(self): """float: Maximal extent in x. """ return int(np.round(self.dims[1])) @property def height(self): """float: Maximal extent in y. """ return int(np.round(self.dims[0])) @property def area(self): """float: Area of projection onto xy plane. """ return self.width * self.height @property def min_pt(self): """:obj:`numpy.ndarray` of float: The minimum x, y, and (optionally) z points. """ return self._min_pt @property def max_pt(self): """:obj:`numpy.ndarray` of float: The maximum x, y, and (optionally) z points. """ return self._max_pt @property def center(self): """:obj:`numpy.ndarray` of float: The center of the box in 2 or 3D coords. """ return self.min_pt + self.dims / 2.0 @property def ci(self): """float value of center i coordinate""" return self.center[0] @property def cj(self): """float value of center j coordinate""" return self.center[1] @property def frame(self): """:obj:`str`: The frame in which this box is placed. """ return self._frame class Contour(object): """ A set of pixels forming the boundary of an object of interest in an image. Attributes ---------- boundary_pixels : :obj:`numpy.ndarray` Nx2 array of pixel coordinates on the boundary of a contour bounding_box : :obj:`Box` smallest box containing the contour area : float area of the contour num_pixels : int number of pixels along the boundary """ @property
[ 37811, 198, 17227, 38445, 2684, 20288, 13, 198, 13838, 25, 5502, 8882, 1754, 198, 37811, 198, 11748, 299, 32152, 355, 45941, 198, 198, 4871, 8315, 7, 15252, 2599, 198, 220, 220, 220, 37227, 32, 362, 35, 3091, 393, 513, 35, 36954, 46475, 13, 628, 220, 220, 220, 49213, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 5391, 82, 1058, 1058, 26801, 25, 63, 77, 32152, 13, 358, 18747, 63, 286, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 5436, 4402, 6287, 287, 2124, 11, 331, 11, 290, 357, 18076, 453, 8, 1976, 13, 628, 220, 220, 220, 9647, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 5436, 4402, 6287, 287, 2124, 13, 628, 220, 220, 220, 6001, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 5436, 4402, 6287, 287, 331, 13, 628, 220, 220, 220, 1989, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 9498, 286, 20128, 4291, 2124, 88, 6614, 13, 628, 220, 220, 220, 949, 62, 457, 1058, 1058, 26801, 25, 63, 77, 32152, 13, 358, 18747, 63, 286, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5288, 2124, 11, 331, 11, 290, 357, 18076, 453, 8, 1976, 2173, 13, 628, 220, 220, 220, 3509, 62, 457, 1058, 1058, 26801, 25, 63, 77, 32152, 13, 358, 18747, 63, 286, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5415, 2124, 11, 331, 11, 290, 357, 18076, 453, 8, 1976, 2173, 13, 628, 220, 220, 220, 3641, 1058, 1058, 26801, 25, 63, 77, 32152, 13, 358, 18747, 63, 286, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 383, 3641, 286, 262, 3091, 287, 362, 393, 513, 35, 763, 3669, 13, 628, 220, 220, 220, 5739, 1058, 1058, 26801, 25, 63, 2536, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5739, 287, 543, 428, 3091, 318, 4624, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 949, 62, 457, 11, 3509, 62, 457, 11, 5739, 11639, 403, 23599, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 257, 3091, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 949, 62, 457, 1058, 1058, 26801, 25, 63, 77, 32152, 13, 358, 18747, 63, 286, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 5288, 2124, 11, 331, 11, 290, 357, 18076, 453, 8, 1976, 2173, 13, 628, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 457, 1058, 1058, 26801, 25, 63, 77, 32152, 13, 358, 18747, 63, 286, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 5415, 2124, 11, 331, 11, 290, 357, 18076, 453, 8, 1976, 2173, 13, 628, 220, 220, 220, 220, 220, 220, 220, 5739, 1058, 1058, 26801, 25, 63, 2536, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 5739, 287, 543, 428, 3091, 318, 4624, 13, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 198, 220, 220, 220, 220, 220, 220, 220, 40103, 198, 220, 220, 220, 220, 220, 220, 220, 11052, 12331, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 3509, 62, 457, 318, 407, 14084, 4025, 621, 949, 62, 457, 287, 477, 5391, 82, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 45941, 13, 1092, 19510, 9806, 62, 457, 532, 949, 62, 457, 8, 1279, 657, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 9452, 966, 1276, 307, 4833, 621, 3509, 966, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1084, 62, 457, 796, 949, 62, 457, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9806, 62, 457, 796, 3509, 62, 457, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 14535, 796, 5739, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 5391, 82, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 1298, 26801, 25, 63, 77, 32152, 13, 358, 18747, 63, 286, 12178, 25, 5436, 4402, 6287, 287, 2124, 11, 331, 11, 290, 357, 18076, 453, 8, 1976, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 9806, 62, 457, 532, 2116, 13557, 1084, 62, 457, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 9647, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 22468, 25, 5436, 4402, 6287, 287, 2124, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 493, 7, 37659, 13, 744, 7, 944, 13, 67, 12078, 58, 16, 60, 4008, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 6001, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 22468, 25, 5436, 4402, 6287, 287, 331, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 493, 7, 37659, 13, 744, 7, 944, 13, 67, 12078, 58, 15, 60, 4008, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1989, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 22468, 25, 9498, 286, 20128, 4291, 2124, 88, 6614, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 10394, 1635, 2116, 13, 17015, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 949, 62, 457, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 1298, 26801, 25, 63, 77, 32152, 13, 358, 18747, 63, 286, 12178, 25, 383, 5288, 2124, 11, 331, 11, 290, 357, 18076, 453, 8, 1976, 2173, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 1084, 62, 457, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 3509, 62, 457, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 1298, 26801, 25, 63, 77, 32152, 13, 358, 18747, 63, 286, 12178, 25, 383, 5415, 2124, 11, 331, 11, 290, 357, 18076, 453, 8, 1976, 2173, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 9806, 62, 457, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 3641, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 1298, 26801, 25, 63, 77, 32152, 13, 358, 18747, 63, 286, 12178, 25, 383, 3641, 286, 262, 3091, 287, 362, 393, 513, 35, 763, 3669, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 1084, 62, 457, 1343, 2116, 13, 67, 12078, 1220, 362, 13, 15, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 269, 72, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 22468, 1988, 286, 3641, 1312, 20435, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 16159, 58, 15, 60, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 269, 73, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 22468, 1988, 286, 3641, 474, 20435, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 16159, 58, 16, 60, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 5739, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 1298, 26801, 25, 63, 2536, 63, 25, 383, 5739, 287, 543, 428, 3091, 318, 4624, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 14535, 198, 198, 4871, 2345, 454, 7, 15252, 2599, 198, 220, 220, 220, 37227, 317, 900, 286, 17848, 14583, 262, 18645, 286, 281, 2134, 286, 1393, 287, 281, 2939, 13, 628, 220, 220, 220, 49213, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 18645, 62, 79, 14810, 1058, 1058, 26801, 25, 63, 77, 32152, 13, 358, 18747, 63, 198, 220, 220, 220, 220, 220, 220, 220, 399, 87, 17, 7177, 286, 17465, 22715, 319, 262, 18645, 286, 257, 542, 454, 198, 220, 220, 220, 5421, 278, 62, 3524, 1058, 1058, 26801, 25, 63, 14253, 63, 198, 220, 220, 220, 220, 220, 220, 220, 18197, 3091, 7268, 262, 542, 454, 198, 220, 220, 220, 1989, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 1989, 286, 262, 542, 454, 198, 220, 220, 220, 997, 62, 79, 14810, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 1271, 286, 17848, 1863, 262, 18645, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 2488, 26745, 628 ]
2.283156
1,508
import pytest import responses from sparkpost import SparkPost from sparkpost.exceptions import SparkPostAPIException @responses.activate @responses.activate @responses.activate @responses.activate
[ 11748, 12972, 9288, 198, 11748, 9109, 198, 198, 6738, 9009, 7353, 1330, 17732, 6307, 198, 6738, 9009, 7353, 13, 1069, 11755, 1330, 17732, 6307, 17614, 16922, 628, 198, 31, 16733, 274, 13, 39022, 628, 198, 31, 16733, 274, 13, 39022, 628, 198, 31, 16733, 274, 13, 39022, 628, 198, 31, 16733, 274, 13, 39022, 198 ]
3.763636
55
import sys
[ 11748, 25064, 198 ]
3.666667
3
""" Test that plugins that load commands work correctly. """ import os, time import re import unittest2 import lldb from lldbtest import * import lldbutil if __name__ == '__main__': import atexit lldb.SBDebugger.Initialize() atexit.register(lambda: lldb.SBDebugger.Terminate()) unittest2.main()
[ 37811, 198, 14402, 326, 20652, 326, 3440, 9729, 670, 9380, 13, 198, 37811, 198, 198, 11748, 28686, 11, 640, 198, 11748, 302, 198, 11748, 555, 715, 395, 17, 198, 11748, 32660, 9945, 198, 6738, 32660, 9945, 9288, 1330, 1635, 198, 11748, 32660, 67, 4360, 346, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1330, 379, 37023, 198, 220, 220, 220, 32660, 9945, 13, 50, 14529, 1765, 1018, 1362, 13, 24243, 1096, 3419, 198, 220, 220, 220, 379, 37023, 13, 30238, 7, 50033, 25, 32660, 9945, 13, 50, 14529, 1765, 1018, 1362, 13, 44798, 378, 28955, 198, 220, 220, 220, 555, 715, 395, 17, 13, 12417, 3419, 198 ]
2.730435
115
import rclpy from rclpy.node import Node from geometry_msgs.msg import PoseStamped from code_map_localization_msgs.msg import Localization from .convert_message import convert_to_ros_msgs from codemap.webcam import WebCamLocalization import ctypes import time libcodemap = ctypes.cdll.LoadLibrary('libcodemap.so') if __name__ == '__main__': main()
[ 11748, 374, 565, 9078, 198, 6738, 374, 565, 9078, 13, 17440, 1330, 19081, 198, 6738, 22939, 62, 907, 14542, 13, 19662, 1330, 37557, 1273, 13322, 198, 6738, 2438, 62, 8899, 62, 12001, 1634, 62, 907, 14542, 13, 19662, 1330, 10714, 1634, 198, 6738, 764, 1102, 1851, 62, 20500, 1330, 10385, 62, 1462, 62, 4951, 62, 907, 14542, 198, 6738, 14873, 368, 499, 13, 12384, 20991, 1330, 5313, 21701, 14565, 1634, 198, 11748, 269, 19199, 198, 11748, 640, 198, 198, 8019, 19815, 368, 499, 796, 269, 19199, 13, 10210, 297, 13, 8912, 23377, 10786, 8019, 19815, 368, 499, 13, 568, 11537, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.975
120
from contextlib import suppress from os import remove from os.path import islink, join from sys import exit from snakypy.helpers import FG, printer from snakypy.dotctrl.config.base import Base from snakypy.dotctrl.utils import check_init, join_two, listing_files, rm_garbage_config
[ 6738, 4732, 8019, 1330, 18175, 198, 6738, 28686, 1330, 4781, 198, 6738, 28686, 13, 6978, 1330, 318, 8726, 11, 4654, 198, 6738, 25064, 1330, 8420, 198, 198, 6738, 3013, 461, 4464, 88, 13, 16794, 364, 1330, 25503, 11, 20632, 198, 198, 6738, 3013, 461, 4464, 88, 13, 26518, 44755, 13, 11250, 13, 8692, 1330, 7308, 198, 6738, 3013, 461, 4464, 88, 13, 26518, 44755, 13, 26791, 1330, 2198, 62, 15003, 11, 4654, 62, 11545, 11, 13487, 62, 16624, 11, 42721, 62, 4563, 13866, 62, 11250, 628 ]
3.313953
86
# Copyright (c) 2019 Andres Gomez Ramirez. # All Rights Reserved. import sys import time import subprocess import logging import os.path import time from arhuaco.sensors.source.source import Source
[ 2, 15069, 357, 66, 8, 13130, 843, 411, 33231, 34783, 13, 198, 2, 1439, 6923, 33876, 13, 198, 198, 11748, 25064, 198, 11748, 640, 198, 11748, 850, 14681, 198, 11748, 18931, 198, 11748, 28686, 13, 6978, 198, 11748, 640, 198, 198, 6738, 610, 13415, 10602, 13, 82, 641, 669, 13, 10459, 13, 10459, 1330, 8090, 198 ]
3.571429
56
r""" http://github.com/in4lio/yupp/ __ __ _____ _____ /\ \ /\ \ /\ _ \ _ \ \ \ \_\/ \_\/ \_\ \ \_\ \ \ \__ /\____/\ __/\ __/ \/_/\_\/___/\ \_\/\ \_\/ \/_/ \/_/ \/_/ Python 'yupp' Codec Support """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from builtins import str from future import standard_library standard_library.install_aliases() import codecs from encodings import utf_8, search_function from .pp.yulic import VERSION, DESCRIPTION, HOLDER, EMAIL from .pp.yup import cli from .pp.yup import proc_file as translate # --------------------------------------------------------------------------- __pp_name__ = 'yupp' __version__ = VERSION __description__ = DESCRIPTION __author__ = HOLDER __author_email__ = EMAIL __url__ = 'http://github.com/in4lio/yupp/' # --------------------------------------------------------------------------- def read_header( fn ): ''' Read shebang and magic comment from the source file. ''' header = '' try: with open( fn, 'r' ) as f: header = f.readline() if 'coding:' not in header: header += f.readline() except: pass return header # --------------------------------------------------------------------------- # --------------------------------------------------------------------------- # --------------------------------------------------------------------------- # --------------------------------------------------------------------------- # --------------------------------------------------------------------------- # --------------------------------------------------------------------------- codecs.register( yupp_search_function )
[ 81, 37811, 198, 4023, 1378, 12567, 13, 785, 14, 259, 19, 48590, 14, 88, 7211, 14, 198, 11593, 220, 220, 220, 11593, 220, 220, 220, 220, 29343, 220, 29343, 198, 14, 59, 3467, 220, 1220, 59, 3467, 220, 1220, 59, 220, 4808, 220, 3467, 220, 4808, 220, 3467, 198, 59, 3467, 3467, 62, 11139, 220, 3467, 62, 11139, 220, 3467, 62, 59, 3467, 3467, 62, 59, 3467, 198, 3467, 3467, 834, 220, 1220, 59, 1427, 14, 59, 220, 11593, 14, 59, 220, 11593, 14, 198, 220, 3467, 47835, 14, 59, 62, 11139, 17569, 14, 59, 3467, 62, 11139, 59, 3467, 62, 11139, 198, 220, 220, 220, 220, 3467, 47835, 14, 220, 220, 220, 220, 220, 3467, 47835, 14, 220, 3467, 47835, 14, 198, 198, 37906, 705, 88, 7211, 6, 39298, 7929, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 3170, 1040, 1330, 965, 198, 198, 6738, 2003, 1330, 3210, 62, 32016, 198, 20307, 62, 32016, 13, 17350, 62, 7344, 1386, 3419, 198, 198, 11748, 40481, 82, 198, 6738, 2207, 375, 654, 1330, 3384, 69, 62, 23, 11, 2989, 62, 8818, 198, 198, 6738, 764, 381, 13, 88, 28575, 1330, 44156, 2849, 11, 22196, 40165, 11, 49707, 14418, 11, 412, 5673, 4146, 198, 6738, 764, 381, 13, 88, 929, 1330, 537, 72, 198, 6738, 764, 381, 13, 88, 929, 1330, 13834, 62, 7753, 355, 15772, 198, 198, 2, 220, 220, 16529, 32284, 198, 834, 381, 62, 3672, 834, 220, 220, 220, 220, 220, 796, 705, 88, 7211, 6, 198, 834, 9641, 834, 220, 220, 220, 220, 220, 796, 44156, 2849, 198, 834, 11213, 834, 220, 796, 22196, 40165, 198, 834, 9800, 834, 220, 220, 220, 220, 220, 220, 796, 49707, 14418, 198, 834, 9800, 62, 12888, 834, 796, 412, 5673, 4146, 198, 834, 6371, 834, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 705, 4023, 1378, 12567, 13, 785, 14, 259, 19, 48590, 14, 88, 7211, 14, 6, 198, 198, 2, 220, 220, 16529, 32284, 198, 4299, 1100, 62, 25677, 7, 24714, 15179, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 4149, 673, 36668, 290, 5536, 2912, 422, 262, 2723, 2393, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 13639, 796, 10148, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 24714, 11, 705, 81, 6, 1267, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 796, 277, 13, 961, 1370, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 66, 7656, 32105, 407, 287, 13639, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 15853, 277, 13, 961, 1370, 3419, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 1441, 13639, 198, 198, 2, 220, 220, 16529, 32284, 198, 198, 2, 220, 220, 16529, 32284, 198, 198, 2, 220, 220, 16529, 32284, 198, 198, 2, 220, 220, 16529, 32284, 198, 198, 2, 220, 220, 16529, 32284, 198, 198, 2, 220, 220, 16529, 32284, 198, 19815, 721, 82, 13, 30238, 7, 331, 7211, 62, 12947, 62, 8818, 1267, 198 ]
3.253076
569
import time HANDSHAKE_LENGTH = 1536 class Handshake(object): """ A handshake packet. @ivar first: The first 4 bytes of the packet, represented as an unsigned long. @type first: 32bit unsigned int. @ivar second: The second 4 bytes of the packet, represented as an unsigned long. @type second: 32bit unsigned int. @ivar payload: A blob of data which makes up the rest of the packet. This must be C{HANDSHAKE_LENGTH} - 8 bytes in length. @type payload: C{str} @ivar timestamp: Timestamp that this packet was created (in milliseconds). @type timestamp: C{int} """ first = None second = None payload = None timestamp = None def encode(self, stream_buffer): """ Encodes this packet to a stream. """ stream_buffer.write_ulong(self.first or 0) stream_buffer.write_ulong(self.second or 0) stream_buffer.write(self.payload) def decode(self, stream_buffer): """ Decodes this packet from a stream. """ self.first = stream_buffer.read_ulong() self.second = stream_buffer.read_ulong() self.payload = stream_buffer.read(HANDSHAKE_LENGTH - 8)
[ 11748, 640, 628, 198, 39, 1565, 5258, 7801, 7336, 62, 43, 49494, 796, 1315, 2623, 628, 198, 4871, 7157, 32431, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 42231, 19638, 13, 628, 220, 220, 220, 2488, 452, 283, 717, 25, 383, 717, 604, 9881, 286, 262, 19638, 11, 7997, 355, 281, 22165, 198, 220, 220, 220, 220, 220, 220, 220, 890, 13, 198, 220, 220, 220, 2488, 4906, 717, 25, 3933, 2545, 22165, 493, 13, 198, 220, 220, 220, 2488, 452, 283, 1218, 25, 383, 1218, 604, 9881, 286, 262, 19638, 11, 7997, 355, 281, 22165, 198, 220, 220, 220, 220, 220, 220, 220, 890, 13, 198, 220, 220, 220, 2488, 4906, 1218, 25, 3933, 2545, 22165, 493, 13, 198, 220, 220, 220, 2488, 452, 283, 21437, 25, 317, 44812, 286, 1366, 543, 1838, 510, 262, 1334, 286, 262, 19638, 13, 770, 198, 220, 220, 220, 220, 220, 220, 220, 1276, 307, 327, 90, 39, 1565, 5258, 7801, 7336, 62, 43, 49494, 92, 532, 807, 9881, 287, 4129, 13, 198, 220, 220, 220, 2488, 4906, 21437, 25, 327, 90, 2536, 92, 198, 220, 220, 220, 2488, 452, 283, 41033, 25, 5045, 27823, 326, 428, 19638, 373, 2727, 357, 259, 38694, 737, 198, 220, 220, 220, 2488, 4906, 41033, 25, 327, 90, 600, 92, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 717, 796, 6045, 198, 220, 220, 220, 1218, 796, 6045, 198, 220, 220, 220, 21437, 796, 6045, 198, 220, 220, 220, 41033, 796, 6045, 628, 220, 220, 220, 825, 37773, 7, 944, 11, 4269, 62, 22252, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 14711, 4147, 428, 19638, 284, 257, 4269, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4269, 62, 22252, 13, 13564, 62, 377, 506, 7, 944, 13, 11085, 393, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4269, 62, 22252, 13, 13564, 62, 377, 506, 7, 944, 13, 12227, 393, 657, 8, 628, 220, 220, 220, 220, 220, 220, 220, 4269, 62, 22252, 13, 13564, 7, 944, 13, 15577, 2220, 8, 628, 220, 220, 220, 825, 36899, 7, 944, 11, 4269, 62, 22252, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4280, 4147, 428, 19638, 422, 257, 4269, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11085, 796, 4269, 62, 22252, 13, 961, 62, 377, 506, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12227, 796, 4269, 62, 22252, 13, 961, 62, 377, 506, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15577, 2220, 796, 4269, 62, 22252, 13, 961, 7, 39, 1565, 5258, 7801, 7336, 62, 43, 49494, 532, 807, 8, 198 ]
2.536232
483
from typing import Dict import sys from mediocre_agent import agent if __name__ == "__main__": def read_input(): """ Reads input from stdin """ try: return input() except EOFError as eof: raise SystemExit(eof) step = 0 observation = Observation() observation["updates"] = [] observation["step"] = 0 player_id = 0 while True: inputs = read_input() observation["updates"].append(inputs) if step == 0: player_id = int(observation["updates"][0]) observation.player = player_id if inputs == "D_DONE": actions = agent(observation, None) observation["updates"] = [] step += 1 observation["step"] = step print(",".join(actions)) print("D_FINISH")
[ 6738, 19720, 1330, 360, 713, 198, 11748, 25064, 198, 6738, 29956, 62, 25781, 1330, 5797, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 220, 198, 220, 220, 220, 825, 1100, 62, 15414, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4149, 82, 5128, 422, 14367, 259, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 5128, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 412, 19238, 12331, 355, 304, 1659, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 4482, 30337, 7, 68, 1659, 8, 198, 220, 220, 220, 2239, 796, 657, 198, 220, 220, 220, 13432, 796, 11086, 13208, 3419, 198, 220, 220, 220, 13432, 14692, 929, 19581, 8973, 796, 17635, 198, 220, 220, 220, 13432, 14692, 9662, 8973, 796, 657, 198, 220, 220, 220, 2137, 62, 312, 796, 657, 198, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 17311, 796, 1100, 62, 15414, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 13432, 14692, 929, 19581, 1, 4083, 33295, 7, 15414, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2239, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2137, 62, 312, 796, 493, 7, 672, 3168, 341, 14692, 929, 19581, 1, 7131, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13432, 13, 7829, 796, 2137, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 611, 17311, 6624, 366, 35, 62, 35, 11651, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4028, 796, 5797, 7, 672, 3168, 341, 11, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13432, 14692, 929, 19581, 8973, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2239, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13432, 14692, 9662, 8973, 796, 2239, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 2430, 13, 22179, 7, 4658, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 35, 62, 20032, 18422, 4943, 198 ]
2.088517
418
class Agent(object): """ represents the agent who takes the calls from the queue """ def __init__(self, id, free, minutes_till_ready=0): """ constructor just sets the id :param name: string """ self.id = id self.free = free self.minutes_till_ready = minutes_till_ready @staticmethod def consume(caller_list): """ consumes callers from the queue and chats with the caller. :param caller_list: :return: """ temp_caller = caller_list.consume_caller() print("agent consumes - " + str(temp_caller.chat()))
[ 4871, 15906, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6870, 262, 5797, 508, 2753, 262, 3848, 422, 262, 16834, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 4686, 11, 1479, 11, 2431, 62, 83, 359, 62, 1493, 28, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23772, 655, 5621, 262, 4686, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1438, 25, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 312, 796, 4686, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5787, 796, 1479, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1084, 1769, 62, 83, 359, 62, 1493, 796, 2431, 62, 83, 359, 62, 1493, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 15000, 7, 13345, 263, 62, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 37225, 869, 364, 422, 262, 16834, 290, 40815, 351, 262, 198, 220, 220, 220, 220, 220, 220, 220, 24955, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 24955, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 13345, 263, 796, 24955, 62, 4868, 13, 5936, 2454, 62, 13345, 263, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 25781, 37225, 532, 366, 1343, 965, 7, 29510, 62, 13345, 263, 13, 17006, 3419, 4008, 198 ]
2.272727
286
from os import environ from pathlib import Path from django.core.wsgi import get_wsgi_application from config import get_project_root_path, import_env_vars import_env_vars(Path(get_project_root_path(), "envdir")) environ.setdefault("DJANGO_SETTINGS_MODULE", "config.settings.base") application = get_wsgi_application()
[ 6738, 28686, 1330, 551, 2268, 198, 6738, 3108, 8019, 1330, 10644, 198, 198, 6738, 42625, 14208, 13, 7295, 13, 18504, 12397, 1330, 651, 62, 18504, 12397, 62, 31438, 198, 198, 6738, 4566, 1330, 651, 62, 16302, 62, 15763, 62, 6978, 11, 1330, 62, 24330, 62, 85, 945, 198, 198, 11748, 62, 24330, 62, 85, 945, 7, 15235, 7, 1136, 62, 16302, 62, 15763, 62, 6978, 22784, 366, 24330, 15908, 48774, 198, 198, 268, 2268, 13, 2617, 12286, 7203, 35028, 1565, 11230, 62, 28480, 51, 20754, 62, 33365, 24212, 1600, 366, 11250, 13, 33692, 13, 8692, 4943, 198, 198, 31438, 796, 651, 62, 18504, 12397, 62, 31438, 3419, 198 ]
3
108
print("I'm Sexy")
[ 4798, 7203, 40, 1101, 49131, 4943, 198 ]
2.571429
7
import sys import os, os.path # May need this for the path issue for gpaw-python sys.path.append(os.path.dirname(os.path.abspath(__file__))) from src.structure import get_structure from src.supercell import make_super, add_adatom from src.neb import neb, calc_img import shutil from ase.parallel import paropen, parprint, world, rank, broadcast from ase.visualize import view # Name=Zn, Co if __name__ == "__main__": assert len(sys.argv) == 3 mater = sys.argv[1] imag = sys.argv[2] main(name=mater, imag=imag)
[ 11748, 25064, 198, 11748, 28686, 11, 28686, 13, 6978, 198, 2, 1737, 761, 428, 329, 262, 3108, 2071, 329, 27809, 707, 12, 29412, 198, 17597, 13, 6978, 13, 33295, 7, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 22305, 198, 6738, 12351, 13, 301, 5620, 1330, 651, 62, 301, 5620, 198, 6738, 12351, 13, 16668, 3846, 1330, 787, 62, 16668, 11, 751, 62, 324, 37696, 198, 6738, 12351, 13, 710, 65, 1330, 45508, 11, 42302, 62, 9600, 198, 11748, 4423, 346, 198, 6738, 257, 325, 13, 1845, 29363, 1330, 1582, 9654, 11, 1582, 4798, 11, 995, 11, 4279, 11, 7025, 198, 6738, 257, 325, 13, 41464, 1096, 1330, 1570, 628, 198, 2, 6530, 28, 57, 77, 11, 220, 1766, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 6818, 18896, 7, 17597, 13, 853, 85, 8, 6624, 513, 198, 220, 220, 220, 26910, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 220, 220, 220, 3590, 796, 25064, 13, 853, 85, 58, 17, 60, 198, 220, 220, 220, 1388, 7, 3672, 28, 76, 729, 11, 3590, 28, 48466, 8, 198 ]
2.690355
197
#!/usr/bin/env python # -*- coding: utf-8 -*- import plugins import sys if __name__ == '__main__': Plugin().execute()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 20652, 198, 11748, 25064, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 42636, 22446, 41049, 3419, 198 ]
2.530612
49
import tensorflow as tf import sonnet as snt from .build_utils import residual_stack, maybe_set_l2_conv_contractive_regularizer from .AbstractResNetLayer import AbstractResNetLayer class ResEnc(AbstractResNetLayer): """ res enc used in VQ """ #TODO remove biases before batch norm, see if it makes any difference. Remove dropouts?
[ 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 3367, 3262, 355, 264, 429, 198, 6738, 764, 11249, 62, 26791, 1330, 29598, 62, 25558, 11, 3863, 62, 2617, 62, 75, 17, 62, 42946, 62, 28484, 425, 62, 16338, 7509, 198, 6738, 764, 23839, 4965, 7934, 49925, 1330, 27741, 4965, 7934, 49925, 198, 198, 4871, 1874, 27195, 7, 23839, 4965, 7934, 49925, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 581, 2207, 973, 287, 569, 48, 198, 220, 220, 220, 37227, 198, 2, 51, 3727, 46, 4781, 29275, 878, 15458, 2593, 11, 766, 611, 340, 1838, 597, 3580, 13, 17220, 4268, 5269, 30, 628, 198 ]
3.295238
105
""" Represents a PaymentChannelFund transaction on the XRP Ledger. A PaymentChannelFund transaction adds additional XRP to an open payment channel, and optionally updates the expiration time of the channel. Only the source address of the channel can use this transaction. `See PaymentChannelFund <https://xrpl.org/paymentchannelfund.html>`_ """ from dataclasses import dataclass, field from typing import Optional from xrpl.models.required import REQUIRED from xrpl.models.transactions.transaction import Transaction, TransactionType from xrpl.models.utils import require_kwargs_on_init @require_kwargs_on_init @dataclass(frozen=True) class PaymentChannelFund(Transaction): """ Represents a PaymentChannelFund transaction on the XRP Ledger. A PaymentChannelFund transaction adds additional XRP to an open payment channel, and optionally updates the expiration time of the channel. Only the source address of the channel can use this transaction. `See PaymentChannelFund <https://xrpl.org/paymentchannelfund.html>`_ """ #: This field is required. channel: str = REQUIRED # type: ignore #: This field is required. amount: str = REQUIRED # type: ignore expiration: Optional[int] = None transaction_type: TransactionType = field( default=TransactionType.PAYMENT_CHANNEL_FUND, init=False, )
[ 37811, 198, 6207, 6629, 257, 28784, 29239, 24553, 8611, 319, 262, 1395, 20031, 22964, 1362, 13, 198, 32, 28784, 29239, 24553, 8611, 6673, 3224, 1395, 20031, 284, 281, 1280, 6074, 6518, 11, 198, 392, 42976, 5992, 262, 28385, 640, 286, 262, 6518, 13, 5514, 262, 2723, 2209, 198, 1659, 262, 6518, 460, 779, 428, 8611, 13, 198, 198, 63, 6214, 28784, 29239, 24553, 1279, 5450, 1378, 87, 81, 489, 13, 2398, 14, 37301, 17620, 10990, 13, 6494, 29, 63, 62, 198, 37811, 198, 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 11, 2214, 198, 6738, 19720, 1330, 32233, 198, 198, 6738, 2124, 81, 489, 13, 27530, 13, 35827, 1330, 4526, 10917, 37819, 198, 6738, 2124, 81, 489, 13, 27530, 13, 7645, 4658, 13, 7645, 2673, 1330, 45389, 11, 45389, 6030, 198, 6738, 2124, 81, 489, 13, 27530, 13, 26791, 1330, 2421, 62, 46265, 22046, 62, 261, 62, 15003, 628, 198, 31, 46115, 62, 46265, 22046, 62, 261, 62, 15003, 198, 31, 19608, 330, 31172, 7, 69, 42005, 28, 17821, 8, 198, 4871, 28784, 29239, 24553, 7, 48720, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1432, 6629, 257, 28784, 29239, 24553, 8611, 319, 262, 1395, 20031, 22964, 1362, 13, 198, 220, 220, 220, 317, 28784, 29239, 24553, 8611, 6673, 3224, 1395, 20031, 284, 281, 1280, 6074, 6518, 11, 198, 220, 220, 220, 290, 42976, 5992, 262, 28385, 640, 286, 262, 6518, 13, 5514, 262, 2723, 2209, 198, 220, 220, 220, 286, 262, 6518, 460, 779, 428, 8611, 13, 628, 220, 220, 220, 4600, 6214, 28784, 29239, 24553, 1279, 5450, 1378, 87, 81, 489, 13, 2398, 14, 37301, 17620, 10990, 13, 6494, 29, 63, 62, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 25, 770, 2214, 318, 2672, 13, 198, 220, 220, 220, 6518, 25, 965, 796, 4526, 10917, 37819, 220, 1303, 2099, 25, 8856, 198, 220, 220, 220, 1303, 25, 770, 2214, 318, 2672, 13, 198, 220, 220, 220, 2033, 25, 965, 796, 4526, 10917, 37819, 220, 1303, 2099, 25, 8856, 198, 220, 220, 220, 28385, 25, 32233, 58, 600, 60, 796, 6045, 198, 220, 220, 220, 8611, 62, 4906, 25, 45389, 6030, 796, 2214, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 48720, 6030, 13, 4537, 56, 10979, 62, 3398, 22846, 3698, 62, 42296, 35, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2315, 28, 25101, 11, 198, 220, 220, 220, 1267, 198 ]
3.39801
402
# # * The source code in this file is developed independently by NEC Corporation. # # # NLCPy License # # # Copyright (c) 2020-2021 NEC Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither NEC Corporation nor the names of its contributors may be # used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import numpy from nlcpy.ufuncs import ufuncs from nlcpy.ufuncs import casting from nlcpy.ufuncs import err from nlcpy.ufuncs import ufunc_docs # ---------------------------------------------------------------------------- # ufunc operations # see: https://docs.scipy.org/doc/numpy/reference/ufuncs.html # ---------------------------------------------------------------------------- # math_operations add = ufuncs.create_ufunc( 'nlcpy_add', numpy.add.types, err._add_error_check, doc=ufunc_docs._add_doc ) subtract = ufuncs.create_ufunc( 'nlcpy_subtract', casting._subtract_types, err._subtract_error_check, doc=ufunc_docs._subtract_doc ) multiply = ufuncs.create_ufunc( 'nlcpy_multiply', numpy.multiply.types, err._multiply_error_check, doc=ufunc_docs._multiply_doc ) true_divide = ufuncs.create_ufunc( 'nlcpy_true_divide', casting._true_divide_types, err._true_divide_error_check, doc=ufunc_docs._true_divide_doc ) # ufunc_operation(divide,orig_types,valid_error_check)dnl divide = true_divide logaddexp = ufuncs.create_ufunc( 'nlcpy_logaddexp', numpy.logaddexp.types, err._logaddexp_error_check, doc=ufunc_docs._logaddexp_doc ) logaddexp2 = ufuncs.create_ufunc( 'nlcpy_logaddexp2', numpy.logaddexp2.types, err._logaddexp2_error_check, doc=ufunc_docs._logaddexp2_doc ) floor_divide = ufuncs.create_ufunc( 'nlcpy_floor_divide', numpy.floor_divide.types, err._floor_divide_error_check, doc=ufunc_docs._floor_divide_doc ) negative = ufuncs.create_ufunc( 'nlcpy_negative', casting._negative_types, err._negative_error_check, doc=ufunc_docs._negative_doc ) positive = ufuncs.create_ufunc( 'nlcpy_positive', casting._positive_types, err._positive_error_check, doc=ufunc_docs._positive_doc ) power = ufuncs.create_ufunc( 'nlcpy_power', numpy.power.types, err._power_error_check, doc=ufunc_docs._power_doc ) remainder = ufuncs.create_ufunc( 'nlcpy_remainder', casting._remainder_types, err._remainder_error_check, doc=ufunc_docs._remainder_doc ) # ufunc_operation(mod,orig_types,valid_error_check)dnl mod = remainder fmod = ufuncs.create_ufunc( 'nlcpy_fmod', casting._fmod_types, err._fmod_error_check, doc=ufunc_docs._fmod_doc ) # ufunc_operation(divmod,numpy_types,valid_error_check)dnl absolute = ufuncs.create_ufunc( 'nlcpy_absolute', numpy.absolute.types, err._absolute_error_check, doc=ufunc_docs._absolute_doc ) fabs = ufuncs.create_ufunc( 'nlcpy_fabs', casting._fabs_types, err._fabs_error_check, doc=ufunc_docs._fabs_doc ) rint = ufuncs.create_ufunc( 'nlcpy_rint', numpy.rint.types, err._rint_error_check, doc=ufunc_docs._rint_doc ) sign = ufuncs.create_ufunc( 'nlcpy_sign', casting._sign_types, err._sign_error_check, doc=ufunc_docs._sign_doc ) heaviside = ufuncs.create_ufunc( 'nlcpy_heaviside', numpy.heaviside.types, err._heaviside_error_check, doc=ufunc_docs._heaviside_doc ) conjugate = ufuncs.create_ufunc( 'nlcpy_conjugate', numpy.conjugate.types, err._conjugate_error_check, doc=ufunc_docs._conjugate_doc ) # ufunc_operation(conj,numpy_types,valid_error_check)dnl conj = conjugate exp = ufuncs.create_ufunc( 'nlcpy_exp', numpy.exp.types, err._exp_error_check, doc=ufunc_docs._exp_doc ) exp2 = ufuncs.create_ufunc( 'nlcpy_exp2', numpy.exp2.types, err._exp2_error_check, doc=ufunc_docs._exp2_doc ) log = ufuncs.create_ufunc( 'nlcpy_log', numpy.log.types, err._log_error_check, doc=ufunc_docs._log_doc ) log2 = ufuncs.create_ufunc( 'nlcpy_log2', numpy.log2.types, err._log2_error_check, doc=ufunc_docs._log2_doc ) log10 = ufuncs.create_ufunc( 'nlcpy_log10', numpy.log10.types, err._log10_error_check, doc=ufunc_docs._log10_doc ) expm1 = ufuncs.create_ufunc( 'nlcpy_expm1', numpy.expm1.types, err._expm1_error_check, doc=ufunc_docs._expm1_doc ) log1p = ufuncs.create_ufunc( 'nlcpy_log1p', numpy.log1p.types, err._log1p_error_check, doc=ufunc_docs._log1p_doc ) sqrt = ufuncs.create_ufunc( 'nlcpy_sqrt', numpy.sqrt.types, err._sqrt_error_check, doc=ufunc_docs._sqrt_doc ) square = ufuncs.create_ufunc( 'nlcpy_square', numpy.square.types, err._square_error_check, doc=ufunc_docs._square_doc ) cbrt = ufuncs.create_ufunc( 'nlcpy_cbrt', casting._cbrt_types, err._cbrt_error_check, doc=ufunc_docs._cbrt_doc ) reciprocal = ufuncs.create_ufunc( 'nlcpy_reciprocal', numpy.reciprocal.types, err._reciprocal_error_check, doc=ufunc_docs._reciprocal_doc ) # ufunc_operation(gcd)dnl # ufunc_operation(lcm)dnl # bit-twiddling functions bitwise_and = ufuncs.create_ufunc( 'nlcpy_bitwise_and', casting._bitwise_and_types, err._bitwise_and_error_check, doc=ufunc_docs._bitwise_and_doc ) bitwise_or = ufuncs.create_ufunc( 'nlcpy_bitwise_or', casting._bitwise_or_types, err._bitwise_or_error_check, doc=ufunc_docs._bitwise_or_doc ) bitwise_xor = ufuncs.create_ufunc( 'nlcpy_bitwise_xor', casting._bitwise_xor_types, err._bitwise_xor_error_check, doc=ufunc_docs._bitwise_xor_doc ) invert = ufuncs.create_ufunc( 'nlcpy_invert', casting._invert_types, err._invert_error_check, doc=ufunc_docs._invert_doc ) left_shift = ufuncs.create_ufunc( 'nlcpy_left_shift', casting._left_shift_types, err._left_shift_error_check, doc=ufunc_docs._left_shift_doc ) right_shift = ufuncs.create_ufunc( 'nlcpy_right_shift', casting._right_shift_types, err._right_shift_error_check, doc=ufunc_docs._right_shift_doc ) # comparison functions greater = ufuncs.create_ufunc( 'nlcpy_greater', numpy.greater.types, err._greater_error_check, doc=ufunc_docs._greater_doc ) greater_equal = ufuncs.create_ufunc( 'nlcpy_greater_equal', numpy.greater_equal.types, err._greater_equal_error_check, doc=ufunc_docs._greater_equal_doc ) less = ufuncs.create_ufunc( 'nlcpy_less', numpy.less.types, err._less_error_check, doc=ufunc_docs._less_doc ) less_equal = ufuncs.create_ufunc( 'nlcpy_less_equal', numpy.less_equal.types, err._less_equal_error_check, doc=ufunc_docs._less_equal_doc ) not_equal = ufuncs.create_ufunc( 'nlcpy_not_equal', numpy.not_equal.types, err._not_equal_error_check, doc=ufunc_docs._not_equal_doc ) equal = ufuncs.create_ufunc( 'nlcpy_equal', numpy.equal.types, err._equal_error_check, doc=ufunc_docs._equal_doc ) logical_and = ufuncs.create_ufunc( 'nlcpy_logical_and', numpy.logical_and.types, err._logical_and_error_check, doc=ufunc_docs._logical_and_doc ) logical_or = ufuncs.create_ufunc( 'nlcpy_logical_or', numpy.logical_or.types, err._logical_or_error_check, doc=ufunc_docs._logical_or_doc ) logical_xor = ufuncs.create_ufunc( 'nlcpy_logical_xor', numpy.logical_xor.types, err._logical_xor_error_check, doc=ufunc_docs._logical_xor_doc ) logical_not = ufuncs.create_ufunc( 'nlcpy_logical_not', numpy.logical_not.types, err._logical_not_error_check, doc=ufunc_docs._logical_not_doc ) minimum = ufuncs.create_ufunc( 'nlcpy_minimum', numpy.minimum.types, err._minimum_error_check, doc=ufunc_docs._minimum_doc ) maximum = ufuncs.create_ufunc( 'nlcpy_maximum', numpy.maximum.types, err._maximum_error_check, doc=ufunc_docs._maximum_doc ) fmax = ufuncs.create_ufunc( 'nlcpy_fmax', numpy.fmax.types, err._fmax_error_check, doc=ufunc_docs._fmax_doc ) fmin = ufuncs.create_ufunc( 'nlcpy_fmin', numpy.fmin.types, err._fmin_error_check, doc=ufunc_docs._fmin_doc ) # trigonometric functions sin = ufuncs.create_ufunc( 'nlcpy_sin', numpy.sin.types, err._sin_error_check, doc=ufunc_docs._sin_doc ) cos = ufuncs.create_ufunc( 'nlcpy_cos', numpy.cos.types, err._cos_error_check, doc=ufunc_docs._cos_doc ) tan = ufuncs.create_ufunc( 'nlcpy_tan', numpy.tan.types, err._tan_error_check, doc=ufunc_docs._tan_doc ) arcsin = ufuncs.create_ufunc( 'nlcpy_arcsin', numpy.arcsin.types, err._arcsin_error_check, doc=ufunc_docs._arcsin_doc ) arccos = ufuncs.create_ufunc( 'nlcpy_arccos', numpy.arccos.types, err._arccos_error_check, doc=ufunc_docs._arccos_doc ) arctan = ufuncs.create_ufunc( 'nlcpy_arctan', numpy.arctan.types, err._arctan_error_check, doc=ufunc_docs._arctan_doc ) arctan2 = ufuncs.create_ufunc( 'nlcpy_arctan2', casting._arctan2_types, err._arctan2_error_check, doc=ufunc_docs._arctan2_doc ) hypot = ufuncs.create_ufunc( 'nlcpy_hypot', casting._hypot_types, err._hypot_error_check, doc=ufunc_docs._hypot_doc ) sinh = ufuncs.create_ufunc( 'nlcpy_sinh', numpy.sinh.types, err._sinh_error_check, doc=ufunc_docs._sinh_doc ) cosh = ufuncs.create_ufunc( 'nlcpy_cosh', numpy.cosh.types, err._cosh_error_check, doc=ufunc_docs._cosh_doc ) tanh = ufuncs.create_ufunc( 'nlcpy_tanh', numpy.tanh.types, err._tanh_error_check, doc=ufunc_docs._tanh_doc ) arcsinh = ufuncs.create_ufunc( 'nlcpy_arcsinh', numpy.arcsinh.types, err._arcsinh_error_check, doc=ufunc_docs._arcsinh_doc ) arccosh = ufuncs.create_ufunc( 'nlcpy_arccosh', numpy.arccosh.types, err._arccosh_error_check, doc=ufunc_docs._arccosh_doc ) arctanh = ufuncs.create_ufunc( 'nlcpy_arctanh', numpy.arctanh.types, err._arctanh_error_check, doc=ufunc_docs._arctanh_doc ) deg2rad = ufuncs.create_ufunc( 'nlcpy_deg2rad', casting._deg2rad_types, err._deg2rad_error_check, doc=ufunc_docs._deg2rad_doc ) rad2deg = ufuncs.create_ufunc( 'nlcpy_rad2deg', casting._rad2deg_types, err._rad2deg_error_check, doc=ufunc_docs._rad2deg_doc ) degrees = ufuncs.create_ufunc( 'nlcpy_degrees', casting._degrees_types, err._degrees_error_check, doc=ufunc_docs._degrees_doc ) radians = ufuncs.create_ufunc( 'nlcpy_radians', casting._radians_types, err._radians_error_check, doc=ufunc_docs._radians_doc ) # floating functions isfinite = ufuncs.create_ufunc( 'nlcpy_isfinite', numpy.isfinite.types, err._isfinite_error_check, doc=ufunc_docs._isfinite_doc ) isinf = ufuncs.create_ufunc( 'nlcpy_isinf', numpy.isinf.types, err._isinf_error_check, doc=ufunc_docs._isinf_doc ) isnan = ufuncs.create_ufunc( 'nlcpy_isnan', numpy.isnan.types, err._isnan_error_check, doc=ufunc_docs._isnan_doc ) # ufunc_operation(isnat,numpy_types,valid_error_check)dnl signbit = ufuncs.create_ufunc( 'nlcpy_signbit', numpy.signbit.types, err._signbit_error_check, doc=ufunc_docs._signbit_doc ) copysign = ufuncs.create_ufunc( 'nlcpy_copysign', numpy.copysign.types, err._copysign_error_check, doc=ufunc_docs._copysign_doc ) nextafter = ufuncs.create_ufunc( 'nlcpy_nextafter', numpy.nextafter.types, err._nextafter_error_check, doc=ufunc_docs._nextafter_doc ) spacing = ufuncs.create_ufunc( 'nlcpy_spacing', numpy.spacing.types, err._spacing_error_check, doc=ufunc_docs._spacing_doc ) # ufunc_operation(modf,numpy_types,valid_error_check)dnl ldexp = ufuncs.create_ufunc( 'nlcpy_ldexp', numpy.ldexp.types, err._ldexp_error_check, doc=ufunc_docs._ldexp_doc ) # ufunc_operation(frexp)dnl floor = ufuncs.create_ufunc( 'nlcpy_floor', casting._floor_types, err._floor_error_check, doc=ufunc_docs._floor_doc ) ceil = ufuncs.create_ufunc( 'nlcpy_ceil', casting._ceil_types, err._ceil_error_check, doc=ufunc_docs._ceil_doc ) trunc = ufuncs.create_ufunc( 'nlcpy_trunc', numpy.trunc.types, err._trunc_error_check, doc=ufunc_docs._trunc_doc ) # matmul matmul = ufuncs.create_ufunc( 'nlcpy_matmul', numpy.matmul.types, None, doc=ufunc_docs._matmul_doc ) # end of operator functions
[ 2, 198, 2, 1635, 383, 2723, 2438, 287, 428, 2393, 318, 4166, 14799, 416, 41804, 10501, 13, 198, 2, 198, 2, 1303, 399, 5639, 20519, 13789, 1303, 198, 2, 198, 2, 220, 220, 220, 220, 15069, 357, 66, 8, 12131, 12, 1238, 2481, 41804, 10501, 198, 2, 220, 220, 220, 220, 1439, 2489, 10395, 13, 198, 2, 198, 2, 220, 220, 220, 220, 2297, 396, 3890, 290, 779, 287, 2723, 290, 13934, 5107, 11, 351, 393, 1231, 198, 2, 220, 220, 220, 220, 17613, 11, 389, 10431, 2810, 326, 262, 1708, 3403, 389, 1138, 25, 198, 2, 220, 220, 220, 220, 1635, 2297, 396, 2455, 507, 286, 2723, 2438, 1276, 12377, 262, 2029, 6634, 4003, 11, 198, 2, 220, 220, 220, 220, 220, 220, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 13, 198, 2, 220, 220, 220, 220, 1635, 2297, 396, 2455, 507, 287, 13934, 1296, 1276, 22919, 262, 2029, 6634, 4003, 11, 198, 2, 220, 220, 220, 220, 220, 220, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 287, 262, 10314, 198, 2, 220, 220, 220, 220, 220, 220, 290, 14, 273, 584, 5696, 2810, 351, 262, 6082, 13, 198, 2, 220, 220, 220, 220, 1635, 16126, 41804, 10501, 4249, 262, 3891, 286, 663, 20420, 743, 307, 198, 2, 220, 220, 220, 220, 220, 220, 973, 284, 11438, 393, 7719, 3186, 10944, 422, 428, 3788, 198, 2, 220, 220, 220, 220, 220, 220, 1231, 2176, 3161, 3194, 7170, 13, 198, 2, 198, 2, 220, 220, 220, 220, 12680, 47466, 3180, 36592, 2389, 1961, 11050, 3336, 27975, 38162, 9947, 367, 15173, 4877, 5357, 27342, 9865, 3843, 20673, 366, 1921, 3180, 1, 5357, 198, 2, 220, 220, 220, 220, 15529, 7788, 32761, 6375, 8959, 49094, 34764, 11015, 11, 47783, 2751, 11, 21728, 5626, 40880, 5390, 11, 3336, 8959, 49094, 198, 2, 220, 220, 220, 220, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 5357, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 15986, 198, 2, 220, 220, 220, 220, 13954, 48778, 1961, 13, 3268, 8005, 49261, 50163, 3336, 27975, 38162, 9947, 49707, 14418, 6375, 27342, 9865, 3843, 20673, 9348, 43031, 19146, 198, 2, 220, 220, 220, 220, 7473, 15529, 42242, 11, 3268, 17931, 23988, 11, 19387, 25256, 1847, 11, 38846, 11, 7788, 3620, 6489, 13153, 11, 6375, 7102, 5188, 10917, 3525, 12576, 29506, 25552, 198, 2, 220, 220, 220, 220, 357, 1268, 39149, 2751, 11, 21728, 5626, 40880, 5390, 11, 41755, 11335, 10979, 3963, 28932, 2257, 2043, 37780, 21090, 50, 6375, 49254, 26, 198, 2, 220, 220, 220, 220, 406, 18420, 3963, 23210, 11, 42865, 11, 6375, 4810, 19238, 29722, 26, 6375, 43949, 44180, 23255, 49, 8577, 24131, 8, 29630, 36, 5959, 7257, 2937, 1961, 5357, 198, 2, 220, 220, 220, 220, 6177, 15529, 3336, 15513, 3963, 43031, 25382, 11, 7655, 2767, 16879, 3268, 27342, 10659, 11, 19269, 18379, 43031, 25382, 11, 6375, 309, 9863, 198, 2, 220, 220, 220, 220, 357, 1268, 39149, 2751, 399, 7156, 43, 3528, 18310, 6375, 25401, 54, 24352, 8, 5923, 1797, 2751, 3268, 15529, 34882, 16289, 3963, 3336, 23210, 3963, 12680, 198, 2, 220, 220, 220, 220, 47466, 11, 45886, 16876, 5984, 29817, 1961, 3963, 3336, 28069, 11584, 25382, 3963, 13558, 3398, 29506, 11879, 13, 198, 2, 628, 198, 11748, 299, 32152, 198, 6738, 299, 44601, 9078, 13, 3046, 403, 6359, 1330, 334, 12543, 6359, 198, 6738, 299, 44601, 9078, 13, 3046, 403, 6359, 1330, 13092, 198, 6738, 299, 44601, 9078, 13, 3046, 403, 6359, 1330, 11454, 198, 6738, 299, 44601, 9078, 13, 3046, 403, 6359, 1330, 334, 20786, 62, 31628, 628, 198, 2, 16529, 10541, 198, 2, 334, 20786, 4560, 198, 2, 766, 25, 3740, 1378, 31628, 13, 1416, 541, 88, 13, 2398, 14, 15390, 14, 77, 32152, 14, 35790, 14, 3046, 403, 6359, 13, 6494, 198, 2, 16529, 10541, 198, 198, 2, 10688, 62, 3575, 602, 198, 2860, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 2860, 3256, 198, 220, 220, 220, 299, 32152, 13, 2860, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 2860, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 2860, 62, 15390, 198, 8, 628, 198, 7266, 83, 974, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 7266, 83, 974, 3256, 198, 220, 220, 220, 13092, 13557, 7266, 83, 974, 62, 19199, 11, 198, 220, 220, 220, 11454, 13557, 7266, 83, 974, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 7266, 83, 974, 62, 15390, 198, 8, 628, 198, 16680, 541, 306, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 16680, 541, 306, 3256, 198, 220, 220, 220, 299, 32152, 13, 16680, 541, 306, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 16680, 541, 306, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 16680, 541, 306, 62, 15390, 198, 8, 628, 198, 7942, 62, 7146, 485, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 7942, 62, 7146, 485, 3256, 198, 220, 220, 220, 13092, 13557, 7942, 62, 7146, 485, 62, 19199, 11, 198, 220, 220, 220, 11454, 13557, 7942, 62, 7146, 485, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 7942, 62, 7146, 485, 62, 15390, 198, 8, 628, 198, 2, 334, 20786, 62, 27184, 7, 7146, 485, 11, 11612, 62, 19199, 11, 12102, 62, 18224, 62, 9122, 8, 67, 21283, 198, 7146, 485, 796, 2081, 62, 7146, 485, 198, 198, 6404, 2860, 11201, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 6404, 2860, 11201, 3256, 198, 220, 220, 220, 299, 32152, 13, 6404, 2860, 11201, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 6404, 2860, 11201, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 6404, 2860, 11201, 62, 15390, 198, 8, 628, 198, 6404, 2860, 11201, 17, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 6404, 2860, 11201, 17, 3256, 198, 220, 220, 220, 299, 32152, 13, 6404, 2860, 11201, 17, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 6404, 2860, 11201, 17, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 6404, 2860, 11201, 17, 62, 15390, 198, 8, 628, 198, 28300, 62, 7146, 485, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 28300, 62, 7146, 485, 3256, 198, 220, 220, 220, 299, 32152, 13, 28300, 62, 7146, 485, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 28300, 62, 7146, 485, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 28300, 62, 7146, 485, 62, 15390, 198, 8, 628, 198, 31591, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 31591, 3256, 198, 220, 220, 220, 13092, 13557, 31591, 62, 19199, 11, 198, 220, 220, 220, 11454, 13557, 31591, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 31591, 62, 15390, 198, 8, 628, 198, 24561, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 24561, 3256, 198, 220, 220, 220, 13092, 13557, 24561, 62, 19199, 11, 198, 220, 220, 220, 11454, 13557, 24561, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 24561, 62, 15390, 198, 8, 628, 198, 6477, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 6477, 3256, 198, 220, 220, 220, 299, 32152, 13, 6477, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 6477, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 6477, 62, 15390, 198, 8, 628, 198, 2787, 391, 1082, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 2787, 391, 1082, 3256, 198, 220, 220, 220, 13092, 13557, 2787, 391, 1082, 62, 19199, 11, 198, 220, 220, 220, 11454, 13557, 2787, 391, 1082, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 2787, 391, 1082, 62, 15390, 198, 8, 628, 198, 2, 334, 20786, 62, 27184, 7, 4666, 11, 11612, 62, 19199, 11, 12102, 62, 18224, 62, 9122, 8, 67, 21283, 198, 4666, 796, 17675, 198, 198, 69, 4666, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 69, 4666, 3256, 198, 220, 220, 220, 13092, 13557, 69, 4666, 62, 19199, 11, 198, 220, 220, 220, 11454, 13557, 69, 4666, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 69, 4666, 62, 15390, 198, 8, 628, 198, 2, 334, 20786, 62, 27184, 7, 7146, 4666, 11, 77, 32152, 62, 19199, 11, 12102, 62, 18224, 62, 9122, 8, 67, 21283, 198, 48546, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 48546, 3256, 198, 220, 220, 220, 299, 32152, 13, 48546, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 48546, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 48546, 62, 15390, 198, 8, 628, 198, 69, 8937, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 69, 8937, 3256, 198, 220, 220, 220, 13092, 13557, 69, 8937, 62, 19199, 11, 198, 220, 220, 220, 11454, 13557, 69, 8937, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 69, 8937, 62, 15390, 198, 8, 628, 198, 22272, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 22272, 3256, 198, 220, 220, 220, 299, 32152, 13, 22272, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 22272, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 22272, 62, 15390, 198, 8, 628, 198, 12683, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 12683, 3256, 198, 220, 220, 220, 13092, 13557, 12683, 62, 19199, 11, 198, 220, 220, 220, 11454, 13557, 12683, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 12683, 62, 15390, 198, 8, 628, 198, 258, 23401, 485, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 258, 23401, 485, 3256, 198, 220, 220, 220, 299, 32152, 13, 258, 23401, 485, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 258, 23401, 485, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 258, 23401, 485, 62, 15390, 198, 8, 628, 198, 1102, 31761, 378, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 1102, 31761, 378, 3256, 198, 220, 220, 220, 299, 32152, 13, 1102, 31761, 378, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 1102, 31761, 378, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 1102, 31761, 378, 62, 15390, 198, 8, 628, 198, 2, 334, 20786, 62, 27184, 7, 1102, 73, 11, 77, 32152, 62, 19199, 11, 12102, 62, 18224, 62, 9122, 8, 67, 21283, 198, 1102, 73, 796, 11644, 1018, 378, 198, 198, 11201, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 11201, 3256, 198, 220, 220, 220, 299, 32152, 13, 11201, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 11201, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 11201, 62, 15390, 198, 8, 628, 198, 11201, 17, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 11201, 17, 3256, 198, 220, 220, 220, 299, 32152, 13, 11201, 17, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 11201, 17, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 11201, 17, 62, 15390, 198, 8, 628, 198, 6404, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 6404, 3256, 198, 220, 220, 220, 299, 32152, 13, 6404, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 6404, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 6404, 62, 15390, 198, 8, 628, 198, 6404, 17, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 6404, 17, 3256, 198, 220, 220, 220, 299, 32152, 13, 6404, 17, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 6404, 17, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 6404, 17, 62, 15390, 198, 8, 628, 198, 6404, 940, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 6404, 940, 3256, 198, 220, 220, 220, 299, 32152, 13, 6404, 940, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 6404, 940, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 6404, 940, 62, 15390, 198, 8, 628, 198, 1069, 4426, 16, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 1069, 4426, 16, 3256, 198, 220, 220, 220, 299, 32152, 13, 1069, 4426, 16, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 1069, 4426, 16, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 1069, 4426, 16, 62, 15390, 198, 8, 628, 198, 6404, 16, 79, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 6404, 16, 79, 3256, 198, 220, 220, 220, 299, 32152, 13, 6404, 16, 79, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 6404, 16, 79, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 6404, 16, 79, 62, 15390, 198, 8, 628, 198, 31166, 17034, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 31166, 17034, 3256, 198, 220, 220, 220, 299, 32152, 13, 31166, 17034, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 31166, 17034, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 31166, 17034, 62, 15390, 198, 8, 628, 198, 23415, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 23415, 3256, 198, 220, 220, 220, 299, 32152, 13, 23415, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 23415, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 23415, 62, 15390, 198, 8, 628, 198, 66, 1671, 83, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 66, 1671, 83, 3256, 198, 220, 220, 220, 13092, 13557, 66, 1671, 83, 62, 19199, 11, 198, 220, 220, 220, 11454, 13557, 66, 1671, 83, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 66, 1671, 83, 62, 15390, 198, 8, 628, 198, 8344, 541, 43270, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 8344, 541, 43270, 3256, 198, 220, 220, 220, 299, 32152, 13, 8344, 541, 43270, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 8344, 541, 43270, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 8344, 541, 43270, 62, 15390, 198, 8, 628, 198, 2, 334, 20786, 62, 27184, 7, 70, 10210, 8, 67, 21283, 198, 2, 334, 20786, 62, 27184, 7, 75, 11215, 8, 67, 21283, 198, 2, 1643, 12, 4246, 41367, 5499, 198, 2545, 3083, 62, 392, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 2545, 3083, 62, 392, 3256, 198, 220, 220, 220, 13092, 13557, 2545, 3083, 62, 392, 62, 19199, 11, 198, 220, 220, 220, 11454, 13557, 2545, 3083, 62, 392, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 2545, 3083, 62, 392, 62, 15390, 198, 8, 628, 198, 2545, 3083, 62, 273, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 2545, 3083, 62, 273, 3256, 198, 220, 220, 220, 13092, 13557, 2545, 3083, 62, 273, 62, 19199, 11, 198, 220, 220, 220, 11454, 13557, 2545, 3083, 62, 273, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 2545, 3083, 62, 273, 62, 15390, 198, 8, 628, 198, 2545, 3083, 62, 87, 273, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 2545, 3083, 62, 87, 273, 3256, 198, 220, 220, 220, 13092, 13557, 2545, 3083, 62, 87, 273, 62, 19199, 11, 198, 220, 220, 220, 11454, 13557, 2545, 3083, 62, 87, 273, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 2545, 3083, 62, 87, 273, 62, 15390, 198, 8, 628, 198, 259, 1851, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 259, 1851, 3256, 198, 220, 220, 220, 13092, 13557, 259, 1851, 62, 19199, 11, 198, 220, 220, 220, 11454, 13557, 259, 1851, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 259, 1851, 62, 15390, 198, 8, 628, 198, 9464, 62, 30846, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 9464, 62, 30846, 3256, 198, 220, 220, 220, 13092, 13557, 9464, 62, 30846, 62, 19199, 11, 198, 220, 220, 220, 11454, 13557, 9464, 62, 30846, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 9464, 62, 30846, 62, 15390, 198, 8, 628, 198, 3506, 62, 30846, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 3506, 62, 30846, 3256, 198, 220, 220, 220, 13092, 13557, 3506, 62, 30846, 62, 19199, 11, 198, 220, 220, 220, 11454, 13557, 3506, 62, 30846, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 3506, 62, 30846, 62, 15390, 198, 8, 628, 198, 2, 7208, 5499, 198, 18223, 263, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 18223, 263, 3256, 198, 220, 220, 220, 299, 32152, 13, 18223, 263, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 18223, 263, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 18223, 263, 62, 15390, 198, 8, 628, 198, 18223, 263, 62, 40496, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 18223, 263, 62, 40496, 3256, 198, 220, 220, 220, 299, 32152, 13, 18223, 263, 62, 40496, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 18223, 263, 62, 40496, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 18223, 263, 62, 40496, 62, 15390, 198, 8, 628, 198, 1203, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 1203, 3256, 198, 220, 220, 220, 299, 32152, 13, 1203, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 1203, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 1203, 62, 15390, 198, 8, 628, 198, 1203, 62, 40496, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 1203, 62, 40496, 3256, 198, 220, 220, 220, 299, 32152, 13, 1203, 62, 40496, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 1203, 62, 40496, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 1203, 62, 40496, 62, 15390, 198, 8, 628, 198, 1662, 62, 40496, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 1662, 62, 40496, 3256, 198, 220, 220, 220, 299, 32152, 13, 1662, 62, 40496, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 1662, 62, 40496, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 1662, 62, 40496, 62, 15390, 198, 8, 628, 198, 40496, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 40496, 3256, 198, 220, 220, 220, 299, 32152, 13, 40496, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 40496, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 40496, 62, 15390, 198, 8, 628, 198, 6404, 605, 62, 392, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 6404, 605, 62, 392, 3256, 198, 220, 220, 220, 299, 32152, 13, 6404, 605, 62, 392, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 6404, 605, 62, 392, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 6404, 605, 62, 392, 62, 15390, 198, 8, 628, 198, 6404, 605, 62, 273, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 6404, 605, 62, 273, 3256, 198, 220, 220, 220, 299, 32152, 13, 6404, 605, 62, 273, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 6404, 605, 62, 273, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 6404, 605, 62, 273, 62, 15390, 198, 8, 628, 198, 6404, 605, 62, 87, 273, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 6404, 605, 62, 87, 273, 3256, 198, 220, 220, 220, 299, 32152, 13, 6404, 605, 62, 87, 273, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 6404, 605, 62, 87, 273, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 6404, 605, 62, 87, 273, 62, 15390, 198, 8, 628, 198, 6404, 605, 62, 1662, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 6404, 605, 62, 1662, 3256, 198, 220, 220, 220, 299, 32152, 13, 6404, 605, 62, 1662, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 6404, 605, 62, 1662, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 6404, 605, 62, 1662, 62, 15390, 198, 8, 628, 198, 39504, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 39504, 3256, 198, 220, 220, 220, 299, 32152, 13, 39504, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 39504, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 39504, 62, 15390, 198, 8, 628, 198, 47033, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 47033, 3256, 198, 220, 220, 220, 299, 32152, 13, 47033, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 47033, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 47033, 62, 15390, 198, 8, 628, 198, 69, 9806, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 69, 9806, 3256, 198, 220, 220, 220, 299, 32152, 13, 69, 9806, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 69, 9806, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 69, 9806, 62, 15390, 198, 8, 628, 198, 69, 1084, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 69, 1084, 3256, 198, 220, 220, 220, 299, 32152, 13, 69, 1084, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 69, 1084, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 69, 1084, 62, 15390, 198, 8, 628, 198, 2, 5192, 261, 16996, 5499, 198, 31369, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 31369, 3256, 198, 220, 220, 220, 299, 32152, 13, 31369, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 31369, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 31369, 62, 15390, 198, 8, 628, 198, 6966, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 6966, 3256, 198, 220, 220, 220, 299, 32152, 13, 6966, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 6966, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 6966, 62, 15390, 198, 8, 628, 198, 38006, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 38006, 3256, 198, 220, 220, 220, 299, 32152, 13, 38006, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 38006, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 38006, 62, 15390, 198, 8, 628, 198, 5605, 31369, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 5605, 31369, 3256, 198, 220, 220, 220, 299, 32152, 13, 5605, 31369, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 5605, 31369, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 5605, 31369, 62, 15390, 198, 8, 628, 198, 283, 535, 418, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 283, 535, 418, 3256, 198, 220, 220, 220, 299, 32152, 13, 283, 535, 418, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 283, 535, 418, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 283, 535, 418, 62, 15390, 198, 8, 628, 198, 283, 310, 272, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 283, 310, 272, 3256, 198, 220, 220, 220, 299, 32152, 13, 283, 310, 272, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 283, 310, 272, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 283, 310, 272, 62, 15390, 198, 8, 628, 198, 283, 310, 272, 17, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 283, 310, 272, 17, 3256, 198, 220, 220, 220, 13092, 13557, 283, 310, 272, 17, 62, 19199, 11, 198, 220, 220, 220, 11454, 13557, 283, 310, 272, 17, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 283, 310, 272, 17, 62, 15390, 198, 8, 628, 198, 36362, 313, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 36362, 313, 3256, 198, 220, 220, 220, 13092, 13557, 36362, 313, 62, 19199, 11, 198, 220, 220, 220, 11454, 13557, 36362, 313, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 36362, 313, 62, 15390, 198, 8, 628, 198, 31369, 71, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 31369, 71, 3256, 198, 220, 220, 220, 299, 32152, 13, 31369, 71, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 31369, 71, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 31369, 71, 62, 15390, 198, 8, 628, 198, 66, 3768, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 66, 3768, 3256, 198, 220, 220, 220, 299, 32152, 13, 66, 3768, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 66, 3768, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 66, 3768, 62, 15390, 198, 8, 628, 198, 38006, 71, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 38006, 71, 3256, 198, 220, 220, 220, 299, 32152, 13, 38006, 71, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 38006, 71, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 38006, 71, 62, 15390, 198, 8, 628, 198, 5605, 31369, 71, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 5605, 31369, 71, 3256, 198, 220, 220, 220, 299, 32152, 13, 5605, 31369, 71, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 5605, 31369, 71, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 5605, 31369, 71, 62, 15390, 198, 8, 628, 198, 283, 535, 3768, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 283, 535, 3768, 3256, 198, 220, 220, 220, 299, 32152, 13, 283, 535, 3768, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 283, 535, 3768, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 283, 535, 3768, 62, 15390, 198, 8, 628, 198, 283, 310, 272, 71, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 283, 310, 272, 71, 3256, 198, 220, 220, 220, 299, 32152, 13, 283, 310, 272, 71, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 283, 310, 272, 71, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 283, 310, 272, 71, 62, 15390, 198, 8, 628, 198, 13500, 17, 6335, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 13500, 17, 6335, 3256, 198, 220, 220, 220, 13092, 13557, 13500, 17, 6335, 62, 19199, 11, 198, 220, 220, 220, 11454, 13557, 13500, 17, 6335, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 13500, 17, 6335, 62, 15390, 198, 8, 628, 198, 6335, 17, 13500, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 6335, 17, 13500, 3256, 198, 220, 220, 220, 13092, 13557, 6335, 17, 13500, 62, 19199, 11, 198, 220, 220, 220, 11454, 13557, 6335, 17, 13500, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 6335, 17, 13500, 62, 15390, 198, 8, 628, 198, 13500, 6037, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 13500, 6037, 3256, 198, 220, 220, 220, 13092, 13557, 13500, 6037, 62, 19199, 11, 198, 220, 220, 220, 11454, 13557, 13500, 6037, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 13500, 6037, 62, 15390, 198, 8, 628, 198, 6335, 1547, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 6335, 1547, 3256, 198, 220, 220, 220, 13092, 13557, 6335, 1547, 62, 19199, 11, 198, 220, 220, 220, 11454, 13557, 6335, 1547, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 6335, 1547, 62, 15390, 198, 8, 628, 198, 2, 12462, 5499, 198, 4468, 9504, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 4468, 9504, 3256, 198, 220, 220, 220, 299, 32152, 13, 4468, 9504, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 4468, 9504, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 4468, 9504, 62, 15390, 198, 8, 628, 198, 271, 10745, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 271, 10745, 3256, 198, 220, 220, 220, 299, 32152, 13, 271, 10745, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 271, 10745, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 271, 10745, 62, 15390, 198, 8, 628, 198, 271, 12647, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 271, 12647, 3256, 198, 220, 220, 220, 299, 32152, 13, 271, 12647, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 271, 12647, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 271, 12647, 62, 15390, 198, 8, 628, 198, 2, 334, 20786, 62, 27184, 7, 271, 32353, 11, 77, 32152, 62, 19199, 11, 12102, 62, 18224, 62, 9122, 8, 67, 21283, 198, 12683, 2545, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 12683, 2545, 3256, 198, 220, 220, 220, 299, 32152, 13, 12683, 2545, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 12683, 2545, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 12683, 2545, 62, 15390, 198, 8, 628, 198, 22163, 893, 570, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 22163, 893, 570, 3256, 198, 220, 220, 220, 299, 32152, 13, 22163, 893, 570, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 22163, 893, 570, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 22163, 893, 570, 62, 15390, 198, 8, 628, 198, 19545, 8499, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 19545, 8499, 3256, 198, 220, 220, 220, 299, 32152, 13, 19545, 8499, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 19545, 8499, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 19545, 8499, 62, 15390, 198, 8, 628, 198, 2777, 4092, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 2777, 4092, 3256, 198, 220, 220, 220, 299, 32152, 13, 2777, 4092, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 2777, 4092, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 2777, 4092, 62, 15390, 198, 8, 628, 198, 2, 334, 20786, 62, 27184, 7, 4666, 69, 11, 77, 32152, 62, 19199, 11, 12102, 62, 18224, 62, 9122, 8, 67, 21283, 198, 335, 11201, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 335, 11201, 3256, 198, 220, 220, 220, 299, 32152, 13, 335, 11201, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 335, 11201, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 335, 11201, 62, 15390, 198, 8, 628, 198, 2, 334, 20786, 62, 27184, 7, 19503, 42372, 8, 67, 21283, 198, 28300, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 28300, 3256, 198, 220, 220, 220, 13092, 13557, 28300, 62, 19199, 11, 198, 220, 220, 220, 11454, 13557, 28300, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 28300, 62, 15390, 198, 8, 628, 198, 344, 346, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 344, 346, 3256, 198, 220, 220, 220, 13092, 13557, 344, 346, 62, 19199, 11, 198, 220, 220, 220, 11454, 13557, 344, 346, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 344, 346, 62, 15390, 198, 8, 628, 198, 2213, 19524, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 2213, 19524, 3256, 198, 220, 220, 220, 299, 32152, 13, 2213, 19524, 13, 19199, 11, 198, 220, 220, 220, 11454, 13557, 2213, 19524, 62, 18224, 62, 9122, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 2213, 19524, 62, 15390, 198, 8, 628, 198, 2, 2603, 76, 377, 198, 6759, 76, 377, 796, 334, 12543, 6359, 13, 17953, 62, 3046, 19524, 7, 198, 220, 220, 220, 705, 21283, 66, 9078, 62, 6759, 76, 377, 3256, 198, 220, 220, 220, 299, 32152, 13, 6759, 76, 377, 13, 19199, 11, 198, 220, 220, 220, 6045, 11, 198, 220, 220, 220, 2205, 28, 3046, 19524, 62, 31628, 13557, 6759, 76, 377, 62, 15390, 198, 8, 628, 198, 2, 886, 286, 10088, 5499, 198 ]
2.197422
6,362