hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
11 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
251
max_stars_repo_name
stringlengths
4
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
251
max_issues_repo_name
stringlengths
4
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
251
max_forks_repo_name
stringlengths
4
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.05M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.04M
alphanum_fraction
float64
0
1
cd037892f04f2a0ec86c850579b001591ee90f88
1,381
py
Python
libkol/request/clan_rumpus.py
danheath/pykol-lib
bdc9aa8dbae64ead07e7dbc36f9d6ba802f65ddc
[ "BSD-3-Clause" ]
6
2019-06-11T19:25:32.000Z
2022-01-21T17:05:01.000Z
libkol/request/clan_rumpus.py
danheath/pykol-lib
bdc9aa8dbae64ead07e7dbc36f9d6ba802f65ddc
[ "BSD-3-Clause" ]
8
2019-06-17T11:41:14.000Z
2019-08-07T17:28:50.000Z
libkol/request/clan_rumpus.py
python-kol/pykollib
bdc9aa8dbae64ead07e7dbc36f9d6ba802f65ddc
[ "BSD-3-Clause" ]
9
2019-06-09T22:23:06.000Z
2021-07-10T00:49:00.000Z
import re from enum import Enum from typing import List import libkol from .request import Request furniture_pattern = re.compile(r"rump([0-9])_([0-9])\.gif")
23.40678
85
0.569153
cd03952161db20fd79bc08d5412273256911f00a
2,155
py
Python
utils/utils.py
ZhenqiSong/OCR_Pytorch
df4e8c53353b6c515509241d4c9af3b153224a10
[ "MIT" ]
null
null
null
utils/utils.py
ZhenqiSong/OCR_Pytorch
df4e8c53353b6c515509241d4c9af3b153224a10
[ "MIT" ]
null
null
null
utils/utils.py
ZhenqiSong/OCR_Pytorch
df4e8c53353b6c515509241d4c9af3b153224a10
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # __author__:Song Zhenqi # 2021-01-20 import os import sys import yaml import logging import functools logger_initialized = set() def get_config(file): """ yaml :param file: yaml/yml :return: dict """ _, ext = os.path.splitext(file) assert ext in ['.yaml', '.yml'], "yaml/yml" config = yaml.load(open(file, 'rb'), Loader=yaml.Loader) return config
27.278481
91
0.645476
cd0601891b2dad5746ac7c08ac9655b6e8d13ab9
2,130
py
Python
monitoring/uss_qualifier/webapp/tasks.py
interuss/InterUSS-Platform
099abaa1159c4c143f8f1fde6b88956c86608281
[ "Apache-2.0" ]
null
null
null
monitoring/uss_qualifier/webapp/tasks.py
interuss/InterUSS-Platform
099abaa1159c4c143f8f1fde6b88956c86608281
[ "Apache-2.0" ]
1
2021-11-29T21:53:39.000Z
2021-11-29T21:53:39.000Z
monitoring/uss_qualifier/webapp/tasks.py
interuss/InterUSS-Platform
099abaa1159c4c143f8f1fde6b88956c86608281
[ "Apache-2.0" ]
null
null
null
from monitoring.uss_qualifier.test_data import test_report from monitoring.uss_qualifier.utils import USSQualifierTestConfiguration from monitoring.uss_qualifier.main import uss_test_executor from monitoring.uss_qualifier.rid.simulator import flight_state_from_kml from monitoring.uss_qualifier.rid.utils import FullFlightRecord from monitoring.uss_qualifier.rid.utils import FullFlightRecord import json from typing import List import redis import rq import uuid from . import resources from monitoring.monitorlib.typing import ImplicitDict def remove_rq_job(job_id): """Removes a job from the queue.""" try: rq_job = resources.qualifier_queue.remove(job_id) except (redis.exceptions.RedisError, rq.exceptions.NoSuchJobError): return None return rq_job
30.869565
88
0.746948
cd06e20fb3a5b8f7301bbddc6604a232ac3d8294
11,853
py
Python
grenades_services/modules/basket.py
Parveen3300/Reans
6dfce046b01099284a8c945a04600ed83e5099a4
[ "Apache-2.0" ]
null
null
null
grenades_services/modules/basket.py
Parveen3300/Reans
6dfce046b01099284a8c945a04600ed83e5099a4
[ "Apache-2.0" ]
null
null
null
grenades_services/modules/basket.py
Parveen3300/Reans
6dfce046b01099284a8c945a04600ed83e5099a4
[ "Apache-2.0" ]
null
null
null
""" BasketManagementRelated modules """ # import basket models from basket.models import Basket from basket.models import BasketProductLine # import configuration models from grenades_services.all_configuration_data import get_currency_instance from grenades_services.all_configuration_data import get_customer_instance_from_request_user from grenades_services.all_configuration_data import product_price_calculator # import home modules from grenades_services.modules.home import Home # import serializers modules from grenades_services.separate_serializers.basket_serializers import \ BasketProductSerializer def collect_basket_product_values(self): """collect_basket_product_values This 'collect_basket_product_values' method used to collect the all basket related value data to entered in basket table with customer and session maintain instance """ home_instance = self._use_common_module(dict( product_get_data={ 'product_alias_name': self.basket_data['product_alias_name'] } ) ) product_instance = home_instance.get_product_instance() if product_instance: home_instance = self._use_common_module( dict(filter_input_data={'mapped_products__id__in': [product_instance.id]})) category_product_mapping_instance = \ home_instance.category_product_mapping_instance() home_instance = self._use_common_module( dict(filter_input_data={ 'included_products__id__in': [product_instance.id], 'offer_type': 'offer' }) ) product_offer_instance = home_instance.offer_products() payable_amount = self.calculate_offer_value( product_offer_instance, product_instance.price) if product_offer_instance else product_instance.price return (product_instance, category_product_mapping_instance, payable_amount) def collect_basket_details(self, basket_instance): """ This 'collect_basket_details' method collect the basket common code details """ product_instance, category_product_mapping_instance, payable_amount = \ self.collect_basket_product_values() return { 'basket': basket_instance, 'line_reference': str(product_instance.id), 'product': product_instance, 'category': category_product_mapping_instance.last( ).category if category_product_mapping_instance else None, 'quantity': self.basket_data.get('quantity', 1), 'price_currency': get_currency_instance(), 'price_excl_tax': None, 'price_incl_tax': None, 'payable_amount': payable_amount } def add_new_basket(self): """ This 'add_new_basket' method used to create a fresh basket for a customer or user """ if self.customer_instance: self.filter_query_data['owner'] = self.customer_instance create_basket = Basket.objects.create(**self.filter_query_data) print("63546735435463543564", create_basket) if create_basket: if self.create_basket_product_line(self.collect_basket_details(create_basket)): self._request.session['basket_id'] = create_basket.id return True return False def update_product_basket(self): """ This 'update_product_basket' method used to update the product in the basket """ if self.basket_id: self.filter_query_data['id'] = self.basket_id if self.customer_instance: self.filter_query_data['owner'] = self.customer_instance basket_instance = self.get_basket_instance() if basket_instance: if self.create_basket_product_line(self.collect_basket_details( basket_instance)): return True else: return False def add_to_basket(self): """ This 'add_to_basket' method used to add the product in the basket """ self.customer_instance = get_customer_instance_from_request_user( self._request.user) if 'basket_id' in self._request.session.keys(): self.basket_id = self._request.session['basket_id'] return self.update_product_basket() else: return self.add_new_basket() class DisplayProductsBasket(UpdateProductsBasket): """ DisplayProductsBasket return: { 'products_description': { 'id': 14, 'products_list': [], 'line_reference': '2', 'quantity': 1, 'price_currency': 'INR', 'price_excl_tax': None, 'price_incl_tax': None, 'payable_amount': '1000.00', 'date_created': '2021-11-01T10:29:50.091484Z', 'date_updated': '2021-11-01T10:29:50.091502Z', 'basket': 5, 'product': 2, 'category': 5, 'collection': None }, 'product_price_details': {'total_item': 0}, 'random_products_list': <QuerySet [<Product: Instruments>]> } """ def basket_product_description(self): """basket_product_description This 'basket_product_description' method used to get the all product description with all products details from baskets """ if self.basket_id: self.filter_data['id'] = self.basket_id if self.customer_instance: self.filter_data['owner'] = self.customer_instance basket_instance = self.get_basket_instance(self.filter_data) if basket_instance: product_line_last_obj = self.get_basket_product_lines( {'basket': basket_instance}).last() self.products_description_data = BasketProductSerializer( product_line_last_obj).data def create_product_order_summary_dict(self, order_summary_dict): """ This 'create_product_order_summary_dict' method used to create dict for product order summary total_price, coupon_price, offer_price """ self.product_price_details['total'] = order_summary_dict['total_price'] self.product_price_details['sub_total'] = order_summary_dict['total_price'] self.product_price_details['estimate_tax'] = self.estimate_tax self.product_price_details['coupon_name'] = self.coupon_name self.product_price_details['coupon_price'] = order_summary_dict['coupon_price'] self.product_price_details['offer_name'] = self.offer_name self.product_price_details['offer_price'] = order_summary_dict['offer_price'] def order_product_price_details(self): """order_product_price_details This 'order_product_price_details' method used to get the all product order summary with price calculation and manage the all coupon and offers """ self.product_price_details['total_item'] = len( self.products_description_data['products_list']) for _products_details in self.products_description_data['products_list']: order_summary_dict = product_price_calculator(_products_details, self.coupon_details, self.offer_details) # create product order summary # return total_price, coupon_price, offer_price self.create_product_order_summary_dict(order_summary_dict) def display_products(self): """ This 'display_products' method used to get the all session and customer related basket products for help on display """ if 'basket_id' in self._request.session.keys(): self.basket_id = self._request.session.get('basket_id') else: self.basket_id = None self.customer_instance = get_customer_instance_from_request_user( self._request.user) self.basket_product_description() self.order_product_price_details() home_instance = Home() random_products_list = home_instance.random_products_list() return { 'products_description': self.products_description_data, 'product_price_details': self.product_price_details, 'random_products_list': random_products_list if random_products_list else [] }
40.731959
114
0.651312
cd08e29c15d2756e6bc4a870585c434ad2c07d7a
2,935
py
Python
plots.py
klowrey/speed_arch
edb002b6d57915fa5e2024b36eb66acf30a7130a
[ "MIT" ]
null
null
null
plots.py
klowrey/speed_arch
edb002b6d57915fa5e2024b36eb66acf30a7130a
[ "MIT" ]
null
null
null
plots.py
klowrey/speed_arch
edb002b6d57915fa5e2024b36eb66acf30a7130a
[ "MIT" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt acc = np.array([7.95549917, 7.46641684, 8.16141701, 8.80025005, 7.29208231, 7.73391724, 8.16333294, 9.02033329, 7.60566664, 7.88175011, 7.77574968, 8.79116631, 8.24524975, 8.98549938, 7.3717494 , 7.32324982, 8.14583302, 8.53608322, 9.30125046, 8.53458309, 8.01708317, 8.36941624, 8.23241711, 8.93550014, 8.73683262, 8.05008316, 8.68758297, 8.59083271, 9.0852499 , 9.07924938, 7.3904171 , 8.82283497, 9.41650009, 8.45791626, 8.04416656, 7.70391607, 9.05191612, 7.78883314, 8.56858349, 9.07366657, 8.77991581, 7.94008255, 8.1746664 , 8.28074932, 7.91550064, 7.4872508 , 8.59158325, 9.33758259, 8.21591663, 8.64350033, 9.00899982, 9.26983356, 8.7885828 , 9.43066692, 9.09299946, 8.55266666, 8.73725033, 7.50575018, 7.99300003, 8.16366673, 8.97633266, 8.19683361, 7.71091652, 8.65974998, 8.97108364, 8.03375053, 8.99700069, 9.18599987, 8.26491737, 8.64508343, 8.00825024, 7.80483294, 7.45008326, 8.23791695, 8.90425014, 9.47108269, 8.0963335 , 8.88658333, 7.99116659, 7.48541689, 8.23633289, 8.61583424, 7.75775003, 8.10883331, 8.57058334, 7.72616577, 7.29199982, 8.26725006, 7.80841637, 8.8257494 , 9.35824871, 8.85208321, 7.50433302, 8.03266716, 8.77825069, 8.94516659, 8.56558323, 8.64266682, 8.70541668, 8.4321661 ]) spd = np.array([-15.733922 , -17.69332123, -15.09789562, -14.98722076, -19.22259712, -20.7837429 , -19.90324211, -13.48655987, -13.42676544, -10.76375103, -18.15335083, -9.28313065, -11.35249805, -12.09126663, -13.63445187, -17.17600822, -11.39536953, -13.01688385, -14.5902586 , -9.40825558, -11.72452641, -9.74875546, -15.47906494, -17.58286476, -13.81764889, -15.5894928 , -9.33745289, -11.58790493, -12.6633606 , -12.95300007, -6.5169816 , -15.54349899, -9.18311691, -11.59814739, -11.74293232, -18.68121147, -12.44590282, -13.20860291, -8.75187683, -23.9044342 , -10.90840054, -11.39770985, -14.83057499, -13.2543335 , -13.18600559, -13.31662369, -12.91320515, -9.9495573 , -10.87206936, -11.35480595, -13.06026745, -10.52530384, -13.57276917, -13.95710754, -9.0244627 , -12.21132755, -9.00012493, -9.07794476, -12.50325108, -9.44294643, -12.86182499, -8.95974827, -10.34585476, -16.70100594, -7.63287163, -11.60797215, -11.73308086, -10.89833736, -11.40105438, -8.59499645, -11.1452837 , -11.61797333, -9.25040531, -9.30110741, -8.68466759, -10.68533611, -11.68466282, -10.05351353, -11.61765003, -9.72268772, -9.05587578, -10.88561535, -11.85619068, -12.46191692, -8.43530369, -6.79801893, -9.91088772, -9.89115238, -16.34910393, -12.32227421, -13.36759472, -17.33267021, -10.66337585, -10.35019398, -11.29328632, -9.45415211, -10.61021137, -14.06766415, -8.31783295, -11.77228069])
56.442308
79
0.65247
cd08e9d07146abb0712c59ab83d9a3d247ba38c2
27
py
Python
tool/klint/bpf/__init__.py
kylerky/klint
77be216ec3f4315a835b7bcdaef1b66ed3144603
[ "MIT" ]
2
2022-03-08T16:10:27.000Z
2022-03-11T14:14:04.000Z
tool/klint/bpf/__init__.py
kylerky/klint
77be216ec3f4315a835b7bcdaef1b66ed3144603
[ "MIT" ]
null
null
null
tool/klint/bpf/__init__.py
kylerky/klint
77be216ec3f4315a835b7bcdaef1b66ed3144603
[ "MIT" ]
1
2022-03-24T09:27:41.000Z
2022-03-24T09:27:41.000Z
""" BPF-related stuff. """
6.75
18
0.555556
cd094ee5dcfd76a9bf766f06eb8cdcb0b8027094
4,485
py
Python
tests/test_geojson.py
geographika/mappyfile-geojson
9525bb840ae243a0f5072730f6432bf98dcacbe9
[ "MIT" ]
8
2018-08-08T06:47:38.000Z
2022-01-30T13:25:35.000Z
tests/test_geojson.py
geographika/mappyfile-geojson
9525bb840ae243a0f5072730f6432bf98dcacbe9
[ "MIT" ]
4
2020-09-24T05:28:19.000Z
2022-03-29T22:18:13.000Z
tests/test_geojson.py
geographika/mappyfile-geojson
9525bb840ae243a0f5072730f6432bf98dcacbe9
[ "MIT" ]
1
2018-08-08T06:47:42.000Z
2018-08-08T06:47:42.000Z
import os import json import geojson import mappyfile_geojson import mappyfile import pytest def test_pointZ(): """ Z-values are simply removed as they are not supported by inline MapServer Features """ gj = get_geojson("PointZ.json") layer = mappyfile_geojson.convert(gj) s = mappyfile.dumps(layer) print(s) assert s == """LAYER EXTENT 102 0.5 102 0.5 STATUS ON TYPE POINT PROCESSING "ITEMS=prop0" FEATURE POINTS 102.0 0.5 END ITEMS "value0" END END""" if __name__ == '__main__': # test_multipolygon() run_tests() print("Done!")
19.933333
68
0.515942
cd0b619e6db23ae007998ba9f088e9c319778c9d
517
py
Python
230.py
BYOUINZAKA/LeetCodeNotes
48e1b4522c1f769eeec4944cfbd57abf1281d09a
[ "MIT" ]
null
null
null
230.py
BYOUINZAKA/LeetCodeNotes
48e1b4522c1f769eeec4944cfbd57abf1281d09a
[ "MIT" ]
null
null
null
230.py
BYOUINZAKA/LeetCodeNotes
48e1b4522c1f769eeec4944cfbd57abf1281d09a
[ "MIT" ]
null
null
null
''' @Author: Hata @Date: 2020-05-24 15:30:19 @LastEditors: Hata @LastEditTime: 2020-05-24 15:32:04 @FilePath: \LeetCode\230.py @Description: https://leetcode-cn.com/problems/kth-smallest-element-in-a-bst/ '''
22.478261
77
0.558994
cd0c0c186a507173da38fb9c91812fd94be9043a
3,430
py
Python
Scripts/TestParsers/PyUnittestTestParser.py
davidbrownell/v3-Common_Environment
8f42f256e573cbd83cbf9813db9958025ddf12f2
[ "BSL-1.0" ]
null
null
null
Scripts/TestParsers/PyUnittestTestParser.py
davidbrownell/v3-Common_Environment
8f42f256e573cbd83cbf9813db9958025ddf12f2
[ "BSL-1.0" ]
1
2018-06-08T06:45:16.000Z
2018-06-08T06:45:16.000Z
Scripts/TestParsers/PyUnittestTestParser.py
davidbrownell/v3-Common_Environment
8f42f256e573cbd83cbf9813db9958025ddf12f2
[ "BSL-1.0" ]
1
2018-06-08T04:15:17.000Z
2018-06-08T04:15:17.000Z
# ---------------------------------------------------------------------- # | # | PythonUnittestTestParser.py # | # | David Brownell <[email protected]> # | 2018-05-22 07:59:46 # | # ---------------------------------------------------------------------- # | # | Copyright David Brownell 2018-22. # | Distributed under the Boost Software License, Version 1.0. # | (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) # | # ---------------------------------------------------------------------- """Contains the TestParser object""" import os import re import CommonEnvironment from CommonEnvironment.Interface import staticderived, override, DerivedProperty from CommonEnvironment.TestParserImpl import TestParserImpl # ---------------------------------------------------------------------- _script_fullpath = CommonEnvironment.ThisFullpath() _script_dir, _script_name = os.path.split(_script_fullpath) # ---------------------------------------------------------------------- # ----------------------------------------------------------------------
38.539326
159
0.473178
cd0c8d9af792a61f23cb21cb4b226023ec5c2f1f
7,116
py
Python
fairseq/models/transformer_xlm_iwslt_decoder.py
jm-glowienke/fairseq
ca45353322f92776e34a7308bf3fab75af9c1d50
[ "MIT" ]
null
null
null
fairseq/models/transformer_xlm_iwslt_decoder.py
jm-glowienke/fairseq
ca45353322f92776e34a7308bf3fab75af9c1d50
[ "MIT" ]
null
null
null
fairseq/models/transformer_xlm_iwslt_decoder.py
jm-glowienke/fairseq
ca45353322f92776e34a7308bf3fab75af9c1d50
[ "MIT" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from typing import Any, Dict from fairseq import checkpoint_utils from fairseq.data.legacy.masked_lm_dictionary import MaskedLMDictionary from fairseq.models import register_model, register_model_architecture from fairseq.models.transformer import ( TransformerDecoder, TransformerEncoder, TransformerModel, base_architecture as transformer_base_architecture, ) def upgrade_state_dict_with_xlm_weights( state_dict: Dict[str, Any], pretrained_xlm_checkpoint: str ) -> Dict[str, Any]: """ Load XLM weights into a Transformer encoder or decoder model. Args: state_dict: state dict for either TransformerEncoder or TransformerDecoder pretrained_xlm_checkpoint: checkpoint to load XLM weights from Raises: AssertionError: If architecture (num layers, attention heads, etc.) does not match between the current Transformer encoder or decoder and the pretrained_xlm_checkpoint """ if not os.path.exists(pretrained_xlm_checkpoint): raise IOError( "Model file not found: {}".format(pretrained_xlm_checkpoint)) state = checkpoint_utils.load_checkpoint_to_cpu(pretrained_xlm_checkpoint) xlm_state_dict = state["model"] for key in xlm_state_dict.keys(): for search_key in ["embed_tokens", "embed_positions", "layers"]: if search_key in key: subkey = key[key.find(search_key):] if "in_proj_weight" in subkey or \ "in_proj_bias" in subkey: continue else: assert subkey in state_dict, ( "{} \nTransformer encoder / decoder " "state_dict does not contain {}. \nCannot " "load {} from pretrained XLM checkpoint " "{} into Transformer.".format( str(state_dict.keys()), subkey, key, pretrained_xlm_checkpoint ) ) state_dict[subkey] = xlm_state_dict[key] return state_dict # class TransformerDecoderFromPretrainedXLM(TransformerDecoder): # def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False): # super().__init__(args, dictionary, embed_tokens, no_encoder_attn) # if getattr(args, "init_encoder_only", False): # # Don't load XLM weights for decoder if --init-encoder-only # return # assert hasattr(args, "pretrained_xlm_checkpoint"), ( # "--pretrained-xlm-checkpoint must be specified to load Transformer " # "decoder from pretrained XLM" # ) # # xlm_loaded_state_dict = upgrade_state_dict_with_xlm_weights( # state_dict=self.state_dict(), # pretrained_xlm_checkpoint=args.pretrained_xlm_checkpoint, # ) # self.load_state_dict(xlm_loaded_state_dict, strict=True)
40.662857
82
0.647274
cd0d1977c612b5942005c2d4eceddb8039516a10
7,249
py
Python
test/unit/mysql_db_admin/process_request.py
mjpernot/mysql-mysql-db-admin
4821d6923155a48362869a6f2bf8c69fe3e533d4
[ "MIT" ]
null
null
null
test/unit/mysql_db_admin/process_request.py
mjpernot/mysql-mysql-db-admin
4821d6923155a48362869a6f2bf8c69fe3e533d4
[ "MIT" ]
null
null
null
test/unit/mysql_db_admin/process_request.py
mjpernot/mysql-mysql-db-admin
4821d6923155a48362869a6f2bf8c69fe3e533d4
[ "MIT" ]
null
null
null
#!/usr/bin/python # Classification (U) """Program: process_request.py Description: Unit testing of process_request in mysql_db_admin.py. Usage: test/unit/mysql_db_admin/process_request.py Arguments: """ # Libraries and Global Variables # Standard import sys import os if sys.version_info < (2, 7): import unittest2 as unittest else: import unittest # Third-party import mock # Local sys.path.append(os.getcwd()) import mysql_db_admin import lib.gen_libs as gen_libs import version __version__ = version.__version__ def func_holder(server, dbs, tbl): """Method: func_holder Description: Function stub holder for a generic function call. Arguments: server dbs tbl """ status = True if server and dbs and tbl: status = True return status if __name__ == "__main__": unittest.main()
26.36
76
0.646986
cd0e89b4b693cd65319eaacf6298dcfed09dbd78
594
py
Python
fsttest/__init__.py
eddieantonio/fsttest
8ff71a9aa41a70a30832fa219b72e7478872c16f
[ "MIT" ]
null
null
null
fsttest/__init__.py
eddieantonio/fsttest
8ff71a9aa41a70a30832fa219b72e7478872c16f
[ "MIT" ]
1
2020-01-27T21:43:04.000Z
2020-01-28T15:57:05.000Z
fsttest/__init__.py
eddieantonio/fsttest
8ff71a9aa41a70a30832fa219b72e7478872c16f
[ "MIT" ]
1
2021-04-26T17:46:19.000Z
2021-04-26T17:46:19.000Z
#!/usr/bin/env python3 # -*- coding: UTF-8 -*- """ FST test -- test your Foma finite-state transducers! """ from .__version__ import VERSION as __version__ from ._fst import FST from ._results import FailedTestResult, PassedTestResult, TestResults from ._run import execute_test_case, run_tests from ._test_case import TestCase from .exceptions import FSTTestError, TestCaseDefinitionError __all__ = [ "FST", "FSTTestError", "FailedTestResult", "PassedTestResult", "TestCase", "TestCaseDefinitionError", "TestResults", "execute_test_case", "run_tests", ]
22.846154
69
0.725589
cd0ff0154f3a2ed2059c34dae1964cf271d9a2e1
3,674
py
Python
analysis/sharpness.py
sanketvmehta/lifelong-learning-pretraining-and-sam
2fee18a4b13c918f6005f88c19089b86f4a8aae2
[ "Apache-2.0" ]
null
null
null
analysis/sharpness.py
sanketvmehta/lifelong-learning-pretraining-and-sam
2fee18a4b13c918f6005f88c19089b86f4a8aae2
[ "Apache-2.0" ]
null
null
null
analysis/sharpness.py
sanketvmehta/lifelong-learning-pretraining-and-sam
2fee18a4b13c918f6005f88c19089b86f4a8aae2
[ "Apache-2.0" ]
null
null
null
import copy import numpy as np import torch from scipy import optimize import logging def sharpness(model, criterion_fn, A, epsilon=1e-3, p=0, bounds=None): """Computes sharpness metric according to https://arxiv.org/abs/1609.04836. Args: model: Model on which to compute sharpness criterion_fn: Function that takes in a model and returns the loss value and gradients on the appropriate data that will be used in the loss maximization done in the sharpness calculation. A: Projection matrix that defines the subspace in which the loss maximization will be done. If A=1, no projection will be done. epsilon: Defines the size of the neighborhood that will be used in the loss maximization. p: The dimension of the random projection subspace in which maximization will be done. If 0, assumed to be the full parameter space. """ run_fn = create_run_model(model, A, criterion_fn) if bounds is None: bounds = compute_bounds(model, A, epsilon) dim = flatten_parameters(model).shape[0] if p == 0 else p # Find the maximum loss in the neighborhood of the minima y = optimize.minimize( lambda x: run_fn(x), np.zeros(dim), method="L-BFGS-B", bounds=bounds, jac=True, options={"maxiter": 10}, ).x.astype(np.float32) model_copy = copy.deepcopy(model) if A is 1: flat_diffs = y else: flat_diffs = A @ y apply_diffs(model_copy, flat_diffs) maximum = criterion_fn(model_copy)["loss"] loss_value = criterion_fn(model)["loss"] sharpness = 100 * (maximum - loss_value) / (1 + loss_value) return sharpness def flatten_parameters(model): """Returns a flattened numpy array with the parameters of the model.""" return np.concatenate( [ param.detach().cpu().numpy().flatten() for param in model.parameters() if param.requires_grad ] ) def compute_bounds(model, A, epsilon): """Computes the bounds in which to search for the maximum loss.""" x = flatten_parameters(model) if A is 1: bounds = epsilon * (np.abs(x) + 1) else: b, _, _, _ = np.linalg.lstsq(A, x) bounds = epsilon * (np.abs(b) + 1) return optimize.Bounds(-bounds, bounds) def create_run_model(model, A, criterion_fn): """Creates a run function that takes in parameters in the subspace that loss maximization takes place in, and computes the loss and gradients corresponding to those parameters. """ return run def apply_diffs(model, diffs): """Adds deltas to the parameters in the model corresponding to diffs.""" parameters = model.parameters() idx = 0 for parameter in parameters: if parameter.requires_grad: n_elements = parameter.nelement() cur_diff = diffs[idx : idx + n_elements] parameter.data = parameter.data + torch.tensor( cur_diff.reshape(parameter.shape) ).to(device=parameter.device) idx += n_elements
32.803571
80
0.631464
cd10ef939588bc49c75df0d3a2c4ba2f987aa04b
1,164
py
Python
benchmark_runner.py
mamrehn/simplification
cb43ccadcbe011b89845142910d844b0bf7ca510
[ "MIT" ]
null
null
null
benchmark_runner.py
mamrehn/simplification
cb43ccadcbe011b89845142910d844b0bf7ca510
[ "MIT" ]
null
null
null
benchmark_runner.py
mamrehn/simplification
cb43ccadcbe011b89845142910d844b0bf7ca510
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Standalone benchmark runner """ import cProfile import pstats import profile import numpy as np print("Running Rust + Cython benchmarks") # calibrate pr = profile.Profile() calibration = np.mean([pr.calibrate(100000) for x in xrange(5)]) # add the bias profile.Profile.bias = calibration cProfile.run(open('simplification/test/cprofile_rust_cython.py', 'rb'), 'simplification/test/output_stats_rust_cython') rust_cython = pstats.Stats('simplification/test/output_stats_rust_cython') cProfile.run(open('simplification/test/cprofile_rust_cython_complex.py', 'rb'), 'simplification/test/output_stats_rust_cython_complex') rust_cython_c = pstats.Stats('simplification/test/output_stats_rust_cython_complex') cProfile.run(open('simplification/test/cprofile_rust_cython_shapely.py', 'rb'), 'simplification/test/output_stats_rust_cython_shapely') shapely = pstats.Stats('simplification/test/output_stats_rust_cython_shapely') print("Rust Cython Benchmarks\n") rust_cython.sort_stats('cumulative').print_stats(5) rust_cython_c.sort_stats('cumulative').print_stats(5) shapely.sort_stats('cumulative').print_stats(5)
35.272727
135
0.803265
cd13a01142ccf63d717a89caf8e588ed9c337f8d
850
py
Python
D_QuickS.py
rut999/Algo
9180f66452597a758a31073cb2b8fa4a3e6a93fe
[ "MIT" ]
null
null
null
D_QuickS.py
rut999/Algo
9180f66452597a758a31073cb2b8fa4a3e6a93fe
[ "MIT" ]
null
null
null
D_QuickS.py
rut999/Algo
9180f66452597a758a31073cb2b8fa4a3e6a93fe
[ "MIT" ]
null
null
null
import time from random import randint random_list = random_int(100000) #list2 = [0,0,99,34,56,54,-1,-1,32,2.5,-1.1,1000,1000,-2,30,21,24,15,10,6] t1 = time.time() Quick_sort(random_list) t2 = time.time() print(t2-t1) # def Quick_Sort(list1): # if (list1[0]<list1[-1]): # partition_index =partition(list1) # quicksort(list1,) # quicksort()
22.368421
74
0.583529
cd18f52d3cd9d807fe305ade001766cc89245405
1,929
py
Python
cride/circles/views/circles.py
LhernerRemon/Rider
30783cf58513698d23730f5fa477dfeddda8ee6b
[ "MIT" ]
null
null
null
cride/circles/views/circles.py
LhernerRemon/Rider
30783cf58513698d23730f5fa477dfeddda8ee6b
[ "MIT" ]
null
null
null
cride/circles/views/circles.py
LhernerRemon/Rider
30783cf58513698d23730f5fa477dfeddda8ee6b
[ "MIT" ]
null
null
null
#REST from rest_framework import viewsets,mixins from rest_framework.permissions import IsAuthenticated #Filters from rest_framework.filters import SearchFilter,OrderingFilter from django_filters.rest_framework import DjangoFilterBackend #Models, serializers from cride.circles.models import Circle,Membership from cride.circles.serializers import CircleModelSerializer #Permission from cride.circles.permissions import IsCircleAdmin
32.694915
83
0.690513
cd18f82e759c1f805c2c156a96b2d6d4fe352c3d
780
py
Python
api/service/cidades_atendimento_service.py
FinotelliCarlos/ewipesimple-adminweb-python
3bf779250efeb9f85b4283ffbf210bf227aa8e8c
[ "MIT" ]
1
2021-06-17T06:13:33.000Z
2021-06-17T06:13:33.000Z
api/service/cidades_atendimento_service.py
FinotelliCarlos/ewipesimple-adminweb-python
3bf779250efeb9f85b4283ffbf210bf227aa8e8c
[ "MIT" ]
null
null
null
api/service/cidades_atendimento_service.py
FinotelliCarlos/ewipesimple-adminweb-python
3bf779250efeb9f85b4283ffbf210bf227aa8e8c
[ "MIT" ]
null
null
null
from adminweb.services import cep_service from adminweb.models import Profissional from rest_framework import serializers import json
32.5
91
0.75
cd190e09b3c36d0f4700cf8693b8dfde027f164e
6,680
py
Python
초보를 위한 셀레니움/#1 Google Screenshots Scrapping/main.py
donddog/Nomad_Academy_Online_Course_Codes
391fde26052a67f7b533219ab0de6096830697b6
[ "MIT" ]
1
2021-02-11T16:45:22.000Z
2021-02-11T16:45:22.000Z
초보를 위한 셀레니움/#1 Google Screenshots Scrapping/main.py
donddog/Nomad_Academy_Online_Course_Codes
391fde26052a67f7b533219ab0de6096830697b6
[ "MIT" ]
null
null
null
초보를 위한 셀레니움/#1 Google Screenshots Scrapping/main.py
donddog/Nomad_Academy_Online_Course_Codes
391fde26052a67f7b533219ab0de6096830697b6
[ "MIT" ]
null
null
null
from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.ui import WebDriverWait import shutil import os domain_competitors = GoogleKeywordScreenshooter("buy domain", "screenshots") domain_competitors.start() domain_competitors.finish() domain_competitors.tozipfile() # python_competitors = GoogleKeywordScreenshooter("python book", "screenshots") # python_competitors.start() # python_competitors.finish()
38.171429
107
0.572156
cd1a66acf2cfd6c3c481c4c94e53d436215cbbe7
9,414
py
Python
omicron/core/numpy_extensions.py
evimacs/omicron
abe77fd25a93cf3d0d17661ae957373474724535
[ "MIT" ]
4
2020-11-09T02:23:51.000Z
2021-01-24T00:45:21.000Z
omicron/core/numpy_extensions.py
evimacs/omicron
abe77fd25a93cf3d0d17661ae957373474724535
[ "MIT" ]
14
2020-11-09T02:31:34.000Z
2021-12-22T10:15:47.000Z
omicron/core/numpy_extensions.py
evimacs/omicron
abe77fd25a93cf3d0d17661ae957373474724535
[ "MIT" ]
2
2021-01-24T00:45:25.000Z
2021-12-24T06:18:37.000Z
"""Extension function related to numpy """ from __future__ import annotations from typing import List, Tuple import numpy as np import pandas from numpy.typing import ArrayLike def dict_to_numpy_array(d: dict, dtype: List[Tuple]) -> np.array: """convert dictionary to numpy array Examples: >>> d = {"aaron": 5, "jack": 6} >>> dtype = [("name", "S8"), ("score", "<i4")] >>> dict_to_numpy_array(d, dtype) array([(b'aaron', 5), (b'jack', 6)], dtype=[('name', 'S8'), ('score', '<i4')]) Args: d (dict): [description] dtype (List[Tuple]): [description] Returns: np.array: [description] """ return np.fromiter(d.items(), dtype=dtype, count=len(d)) def dataframe_to_structured_array( df: pandas.DataFrame, dtypes: List[Tuple] = None ) -> ArrayLike: """convert dataframe (with all columns, and index possibly) to numpy structured arrays `len(dtypes)` should be either equal to `len(df.columns)` or `len(df.columns) + 1`. In the later case, it implies to include `df.index` into converted array. Args: df: the one needs to be converted dtypes: Defaults to None. If it's `None`, then dtypes of `df` is used, in such case, the `index` of `df` will not be converted. Returns: ArrayLike: [description] """ v = df if dtypes is not None: dtypes_in_dict = {key: value for key, value in dtypes} col_len = len(df.columns) if len(dtypes) == col_len + 1: v = df.reset_index() rename_index_to = set(dtypes_in_dict.keys()).difference(set(df.columns)) v.rename(columns={"index": list(rename_index_to)[0]}, inplace=True) elif col_len != len(dtypes): raise ValueError( f"length of dtypes should be either {col_len} or {col_len + 1}, is {len(dtypes)}" ) # re-arrange order of dtypes, in order to align with df.columns dtypes = [] for name in v.columns: dtypes.append((name, dtypes_in_dict[name])) else: dtypes = df.dtypes return np.array(np.rec.fromrecords(v.values), dtype=dtypes) def find_runs(x): """Find runs of consecutive items in an array.""" # ensure array x = np.asanyarray(x) if x.ndim != 1: raise ValueError("only 1D array supported") n = x.shape[0] # handle empty array if n == 0: return np.array([]), np.array([]), np.array([]) else: # find run starts loc_run_start = np.empty(n, dtype=bool) loc_run_start[0] = True np.not_equal(x[:-1], x[1:], out=loc_run_start[1:]) run_starts = np.nonzero(loc_run_start)[0] # find run values run_values = x[loc_run_start] # find run lengths run_lengths = np.diff(np.append(run_starts, n)) return run_values, run_starts, run_lengths def count_between(arr, start, end): """`start``end` arr Examples: >>> arr = [20050104, 20050105, 20050106, 20050107, 20050110, 20050111] >>> count_between(arr, 20050104, 20050111) 6 >>> count_between(arr, 20050104, 20050109) 4 """ pos_start = np.searchsorted(arr, start, side="right") pos_end = np.searchsorted(arr, end, side="right") counter = pos_end - pos_start + 1 if start < arr[0]: counter -= 1 if end > arr[-1]: counter -= 1 return counter def shift(arr, start, offset): """numpyarrstart(offset `arr``offset``offset` Examples: >>> arr = [20050104, 20050105, 20050106, 20050107, 20050110, 20050111] >>> shift(arr, 20050104, 1) 20050105 >>> shift(arr, 20050105, -1) 20050104 >>> # shift >>> shift(arr, 20050120, 1) 20050120 Args: arr : start : numpy offset (int): [description] Returns: """ pos = np.searchsorted(arr, start, side="right") if pos + offset - 1 >= len(arr): return start else: return arr[pos + offset - 1] def floor(arr, item): """ arritemitemarrarr[0];item arrarr[-1] `minute_frames_floor`. Examples: >>> a = [3, 6, 9] >>> floor(a, -1) 3 >>> floor(a, 9) 9 >>> floor(a, 10) 9 >>> floor(a, 4) 3 >>> floor(a,10) 9 Args: arr: item: Returns: """ if item < arr[0]: return arr[0] index = np.searchsorted(arr, item, side="right") return arr[index - 1] def join_by_left(key, r1, r2, mask=True): """ `r1`, `r2` by `key` `r1``r2``r2``fill` same as numpy.lib.recfunctions.join_by(key, r1, r2, jointype='leftouter'), but allows r1 have duplicat keys [Reference: stackoverflow](https://stackoverflow.com/a/53261882/13395693) Examples: >>> # to join the following >>> # [[ 1, 2], >>> # [ 1, 3], x [[1, 5], >>> # [ 2, 3]] [4, 7]] >>> # only first two rows in left will be joined >>> r1 = np.array([(1, 2), (1,3), (2,3)], dtype=[('seq', 'i4'), ('score', 'i4')]) >>> r2 = np.array([(1, 5), (4,7)], dtype=[('seq', 'i4'), ('age', 'i4')]) >>> joined = join_by_left('seq', r1, r2) >>> print(joined) [(1, 2, 5) (1, 3, 5) (2, 3, --)] >>> print(joined.dtype) (numpy.record, [('seq', '<i4'), ('score', '<i4'), ('age', '<i4')]) >>> joined[2][2] masked >>> joined.tolist()[2][2] == None True Args: key : join r1 : 1 r2 : 2 fill : cell Returns: a numpy array """ # figure out the dtype of the result array descr1 = r1.dtype.descr descr2 = [d for d in r2.dtype.descr if d[0] not in r1.dtype.names] descrm = descr1 + descr2 # figure out the fields we'll need from each array f1 = [d[0] for d in descr1] f2 = [d[0] for d in descr2] # cache the number of columns in f1 ncol1 = len(f1) # get a dict of the rows of r2 grouped by key rows2 = {} for row2 in r2: rows2.setdefault(row2[key], []).append(row2) # figure out how many rows will be in the result nrowm = 0 for k1 in r1[key]: if k1 in rows2: nrowm += len(rows2[k1]) else: nrowm += 1 # allocate the return array # ret = np.full((nrowm, ), fill, dtype=descrm) _ret = np.recarray(nrowm, dtype=descrm) if mask: ret = np.ma.array(_ret, mask=True) else: ret = _ret # merge the data into the return array i = 0 for row1 in r1: if row1[key] in rows2: for row2 in rows2[row1[key]]: ret[i] = tuple(row1[f1]) + tuple(row2[f2]) i += 1 else: for j in range(ncol1): ret[i][j] = row1[j] i += 1 return ret def numpy_append_fields(base, names, data, dtypes): """`base` `numpy.lib.recfunctions.rec_append_fields``rec_append_fields` `data`Object Example: >>> # >>> import numpy >>> old = np.array([i for i in range(3)], dtype=[('col1', '<f4')]) >>> new_list = [2 * i for i in range(3)] >>> res = numpy_append_fields(old, 'new_col', new_list, [('new_col', '<f4')]) >>> print(res) ... # doctest: +NORMALIZE_WHITESPACE [(0., 0.) (1., 2.) (2., 4.)] >>> # >>> data = [res['col1'].tolist(), res['new_col'].tolist()] >>> print(numpy_append_fields(old, ('col3', 'col4'), data, [('col3', '<f4'), ('col4', '<f4')])) ... # doctest: +NORMALIZE_WHITESPACE [(0., 0., 0.) (1., 1., 2.) (2., 2., 4.)] Args: base ([numpy.array]): name ([type]): data (list): list dtypes ([type]): dtype """ if isinstance(names, str): names = [ names, ] data = [ data, ] result = np.empty(base.shape, dtype=base.dtype.descr + dtypes) for col in base.dtype.names: result[col] = base[col] for i in range(len(names)): result[names[i]] = data[i] return result def ffill_na(s: np.array) -> np.array: """np.NaN snp.NaNnp.NaN Examples: >>> arr = np.arange(6, dtype=np.float32) >>> arr[3:5] = np.NaN >>> ffill_na(arr) ... # doctest: +NORMALIZE_WHITESPACE array([0., 1., 2., 2., 2., 5.], dtype=float32) >>> arr[0:2] = np.nan >>> ffill_na(arr) ... # doctest: +NORMALIZE_WHITESPACE array([nan, nan, 2., 2., 2., 5.], dtype=float32) Args: s (np.array): [description] Returns: np.array: [description] """ mask = np.isnan(s) idx = np.where(~mask, np.arange(len(mask)), 0) np.maximum.accumulate(idx, out=idx) return s[idx]
26.222841
161
0.546633
cd1bfaec0e66cc493fec447100454ceabadeff14
838
py
Python
pepy/domain/read_model.py
daghan/pepy
11e15e0a7af922cf72647dde95b6cc26760ee8ab
[ "MIT" ]
null
null
null
pepy/domain/read_model.py
daghan/pepy
11e15e0a7af922cf72647dde95b6cc26760ee8ab
[ "MIT" ]
null
null
null
pepy/domain/read_model.py
daghan/pepy
11e15e0a7af922cf72647dde95b6cc26760ee8ab
[ "MIT" ]
null
null
null
from datetime import date from typing import List from attr import attrs, attrib
22.052632
85
0.657518
cd1c390db89d68211aa13e58ba3a2a89676c5247
3,039
py
Python
finetuning/pretrain_scripts/create_sentiment_mask.py
tatsu-lab/mlm_inductive_bias
2d99e2477293036949ba356c88513729244dc1f9
[ "MIT" ]
10
2021-04-14T22:06:19.000Z
2022-01-12T19:41:12.000Z
finetuning/pretrain_scripts/create_sentiment_mask.py
tatsu-lab/mlm_inductive_bias
2d99e2477293036949ba356c88513729244dc1f9
[ "MIT" ]
null
null
null
finetuning/pretrain_scripts/create_sentiment_mask.py
tatsu-lab/mlm_inductive_bias
2d99e2477293036949ba356c88513729244dc1f9
[ "MIT" ]
3
2021-06-06T09:43:14.000Z
2022-02-20T00:40:42.000Z
""" This script computes word masks based on sentiment lexicons """ import os import torch import argparse from tqdm import tqdm from transformers import AutoTokenizer from transformers import GlueDataTrainingArguments as DataTrainingArguments from transformers import GlueDataset as Dataset parser = argparse.ArgumentParser() parser.add_argument("--data-dir", type=str, default="./data/SST-2", help="path to the dir containing lm data.") parser.add_argument("--lexicon-dir", type=str, default="./data/sentiment_lexicon", help="path to the dir containing sentiment lexicon.") parser.add_argument("--tokenizer-name", type=str, default="bert-base-uncased", help="name of the tokenizer to use.") parser.add_argument("--block_size", type=int, default=72, help="maximum length of the mask") args = parser.parse_args() positive_words = set() with open(os.path.join(args.lexicon_dir, "positive-words.txt"), "r", encoding="ISO-8859-1") as f: for line in f: line = line.strip() # skip the initial comments with ; and empty lines if not line.startswith(";") and len(line) > 0: positive_words.add(line.lower()) negative_words = set() with open(os.path.join(args.lexicon_dir, "negative-words.txt"), "r", encoding="ISO-8859-1") as f: for line in f: line = line.strip() # skip the initial comments with ; and empty lines if not line.startswith(";") and len(line) > 0: negative_words.add(line.lower()) salient_words = positive_words | negative_words tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name) splits = ["train", "dev", "test"] for split in splits: with open(os.path.join(args.data_dir, f"{split}.lm"), "r") as f: all_sens = [s.strip() for s in f.readlines()] salient_word_masks = torch.zeros(len(all_sens), args.block_size, dtype=torch.bool) total_word_count = 0 salient_word_count = 0 # Main loop that handles subword tokenization for i, sen in tqdm(enumerate(all_sens), total=len(all_sens)): words = sen.split() curr_idx = 1 # skip the [CLS] token total_word_count += len(words) for word in words: tokens = tokenizer.tokenize(word) # Need to truncate SQuAD if curr_idx + len(tokens) > args.block_size: raise ValueError("Encountered examples longer than block size.") if word in salient_words: salient_word_count += 1 for j in range(len(tokens)): salient_word_masks[i, curr_idx + j] = 1 curr_idx += len(tokens) print(f"{(salient_word_count/total_word_count):.2%} salient words") salient_pct = salient_word_masks.any(dim=1).sum().float() / len(all_sens) print(f"{split} {salient_pct:.2%} documents have salient words") torch.save( salient_word_masks, os.path.join( args.data_dir, f"cached_{split}_{args.tokenizer_name.replace('-', '_')}_{args.block_size}.sentiment_mask", ), )
37.518519
136
0.66535
cd26104c6eb130ab45214eda4f1934869ef8a4f2
3,524
py
Python
src/data_reader.py
jazzsewera/mops-projekt
75924546eb73c266ba81e8e22c68ad939dea19d6
[ "MIT" ]
null
null
null
src/data_reader.py
jazzsewera/mops-projekt
75924546eb73c266ba81e8e22c68ad939dea19d6
[ "MIT" ]
null
null
null
src/data_reader.py
jazzsewera/mops-projekt
75924546eb73c266ba81e8e22c68ad939dea19d6
[ "MIT" ]
null
null
null
from logger import Logger from numpy import average log = Logger(None)
24.136986
86
0.638763
cd2798a9ad4d90fcc9bb40c5df39c9d1117edd80
5,946
py
Python
fetch.py
kirillvarn/grocerycomparator-stat
861f90a2d5b4c2b52d89b6cdb574b722eae2327d
[ "MIT" ]
null
null
null
fetch.py
kirillvarn/grocerycomparator-stat
861f90a2d5b4c2b52d89b6cdb574b722eae2327d
[ "MIT" ]
null
null
null
fetch.py
kirillvarn/grocerycomparator-stat
861f90a2d5b4c2b52d89b6cdb574b722eae2327d
[ "MIT" ]
null
null
null
import repo import export.csv as csv # CONSTANTS milk_q = "SELECT * FROM \"%s\" WHERE price != 0 AND discount = false AND (name ILIKE '%%1l%%' OR name ILIKE '%%1 l%%') AND (name ILIKE '%%piim %%' OR name ILIKE '%%piim,%%') AND name NOT ILIKE '%%juust%%' AND name NOT ILIKE '%%kohupiim%%' AND name NOT ILIKE '%%laktoos%%' AND name NOT ILIKE '%%tis%%' AND name NOT ILIKE '%%kookos%%' AND name NOT ILIKE '%%latte%%'" wheat_kilos = 1 query_to_parse: dict = { "milk": milk_q, "cookies": "SELECT * FROM \"%s\" WHERE price != 0 AND discount = false AND (name ILIKE '%%kpsised %%' OR name ILIKE '%%kpsis %%') AND name NOT ILIKE '%%koer%%';", "sugar": "SELECT * FROM \"%s\" WHERE price != 0 AND discount = false AND name ILIKE '%%suhkur%%'", #"rimi milk": f"{milk_q} AND shop ILIKE '%%rimi%%'", #"other shop milk": f"{milk_q} AND shop NOT ILIKE '%%rimi%%'", #"eggs": f"SELECT * FROM \"%s\" WHERE price != 0 AND discount = false AND (name ILIKE '%%munad %%' OR name ILIKE '%%munad, %%' OR name ILIKE '%%muna,%%') AND name NOT ilike '%%salvrt%%' AND name NOT ILIKE '%%okolaad%%' AND name NOT ILIKE '%%Martsipani%%' AND name NOT ILIKE '%%SELVERI KK%%' AND name NOT ILIKE '%%kitkat%%'" , "wheat": f"SELECT * FROM \"%s\" WHERE price != 0 AND discount = false AND (name ILIKE '%%{wheat_kilos}kg%%' OR name ILIKE '%%{wheat_kilos} kg%%') AND (name ILIKE '%%nisujahu %%' OR name ILIKE '%%nisujahu,%%')", "beef": f"SELECT * FROM \"%s\" WHERE price != 0 AND discount = false AND (name ILIKE '%%veise %%' OR name ILIKE '%%veisepraad%%' OR name ILIKE '%%lihaveise%%') AND name NOT ILIKE '%%koera%%' AND name NOT ILIKE '%%pelmeen%%' AND name NOT ILIKE '%%pltsama%%' AND name NOT ILIKE '%%sink%%'", "tomatoes": "SELECT * FROM \"%s\" WHERE price != 0 AND discount = false AND (name ILIKE '%%tomat %%' OR name ILIKE '%%tomat, %%') AND name NOT ILIKE '%%pasta%%' AND name NOT ILIKE '%%0g%%' AND name NOT ILIKE '%%0 g%%' AND name NOT ILIKE '%%harilik%%' AND name NOT ILIKE '%%krpsud%%' AND name NOT ILIKE '%%marinaad%%' AND name NOT ILIKE '%%eine%%'", #"cucumber": "SELECT * FROM \"%s\" WHERE price != 0 AND discount = false AND name ILIKE '%%kg%%' AND (name ILIKE '%%kurk %%' OR name ILIKE '%%kurk,%%')", #"banana": "SELECT * FROM \"%s\" WHERE price != 0 AND discount = false AND (name ILIKE '%%kg%%' OR name ILIKE '%%chiq%%') AND (name ILIKE '%%banaan %%' OR name ILIKE '%%banaan,%%')", "apple": "SELECT * FROM \"%s\" WHERE price != 0 AND discount = false AND name ILIKE '%%kg%%' AND (name ILIKE '%%un %%' OR name ILIKE '%%un,%%')", "pear": "SELECT * FROM \"%s\" WHERE price != 0 AND discount = false AND name ILIKE '%%kg%%' AND (name ILIKE '%%pirn %%' OR name ILIKE '%%pirn,%%')", "pizza": "SELECT * FROM \"%s\" WHERE price != 0 AND discount = false AND (name ILIKE '%%pizza%%' OR name ILIKE '%%pitsa%%' AND name NOT ILIKE '%%pitsamaitseline%%')", "pig meat": f"SELECT * FROM \"%s\" WHERE price != 0 AND discount = false AND (name ILIKE '%%sea kaela%%' OR name ILIKE '%%sea vlisfilee%%' OR name ILIKE '%%sea sisefilee%%')", "cake": f"SELECT * FROM \"%s\" WHERE price != 0 AND discount = false AND (name ILIKE '%%kook,%%' OR name ILIKE '%%kook%%') AND name NOT ILIKE '%%van kook%%' AND name NOT ILIKE '%%selveri kk%%' AND name NOT ILIKE '%%kookos%%' AND name NOT LIKE '%%smuuti%%' AND name NOT ILIKE '%%pannkook%%'", "chicken": "SELECT * FROM \"%s\" WHERE price != 0 AND discount = false AND (name ILIKE '%%broileri rinnafilee%%' OR name ILIKE '%%pooltiivad%%' OR name ILIKE '%%poolkoivad%%' OR name ILIKE '%%kanafilee%%' OR name ILIKE '%%broilerifilee%%') AND name NOT ILIKE '%%HAU-HAU%%'" } # def save_to_excel(dataset, sheet_name: str = "Sheet") -> None: # tables = [i[0] for i in main.get_tables(main.connect(db="naive_products"))] # # tables.remove("initial_products") # header = ["Product name", "Shop name"] + tables # data = [] # for item in dataset: # prices = get_normalized_price( # [dataset[item]["prices"][value] # for value in dataset[item]["prices"]] # ) # prices = get_trend(prices) # value = [item, dataset[item]["shop"]] + prices # data.append(value) # table.append_header(header, sheet_name) # table.put_data(data, sheet_name) for i in query_to_parse: products = get_products_by_name(query=query_to_parse[i]) save_to_csv(i, products)
58.871287
365
0.601245
cd27a3a7d166518d8d7678101792de0e23b578ef
1,755
py
Python
code1.py
roshangol/executed-path-visualize
1759c12b0048fe117205990b151d2f5f57ad9616
[ "MIT" ]
null
null
null
code1.py
roshangol/executed-path-visualize
1759c12b0048fe117205990b151d2f5f57ad9616
[ "MIT" ]
null
null
null
code1.py
roshangol/executed-path-visualize
1759c12b0048fe117205990b151d2f5f57ad9616
[ "MIT" ]
null
null
null
# EX1 # if x < y: # y = 0 # x = x + 1 # else: # x = y max(30, 28, 18) # def triangleType(a, b, c): # isATriangle = False # if (a < b + c) and\ # (b < a + c) and\ # (c < a + b): # isATriangle = True # if isATriangle: # if (a == b) and (b == c): # print("the triangle was a EQUILATERAL") # elif (a != b) and \ # (a != c) and \ # (b != c): # print("the triangle was a SCALENE") # else: # print("invalid") # # triangleType(3, 5, 8) # def testfunc(x, y): # if x >= 0 and y >= 0: # if y*y >= x*10 and y <= math.sin(math.radians(x*30))*25: # if y >= math.cos(math.radians(x*40))*15: # print('oooookk') # testfunc(2, 3) # EX2 # if (x < y): # y = 0 # x = x + 1 # EX3 # if x < y: # return # print(x) # return # EX4 # x = 0 # while (x < y): # y = f(x,y) # x = x + 1 # EX5 # for x in range(10): # y = f(x,y) # a = [2 * x for x in y if x > 0 for y in z if y[0] < 3] # # digits = [0, 1, 5] # a = 0 # # for i in digits: # a += i # if i == 5: # print("5 in list") # break # else: # print("out of the loop") # try: # b = b + 5 # except KeyError: # a += 1 # except ZeroDivisionError: # a += 2 # else: # a += 3 # finally: # b += 1 # a = a - b # # x = 0 # while(x < y): # y = f(x, y) # if(y == 0): # break # elif(y < 0): # y = y * 2 # continue # x = x + 1
16.25
66
0.4
cd28f531641b97aa10ded06e3c6b7fdb2de0d2e7
1,193
py
Python
GameProject/dice.py
CreativeUsernameThatWontInsultAnyone/GameProject
998274e4587d93ff0564af174f4fc1e3a3e60174
[ "CC0-1.0" ]
1
2021-11-13T17:14:03.000Z
2021-11-13T17:14:03.000Z
GameProject/dice.py
CreativeUsernameThatWontInsultAnyone/GameProject
998274e4587d93ff0564af174f4fc1e3a3e60174
[ "CC0-1.0" ]
null
null
null
GameProject/dice.py
CreativeUsernameThatWontInsultAnyone/GameProject
998274e4587d93ff0564af174f4fc1e3a3e60174
[ "CC0-1.0" ]
null
null
null
import random import time while (1): wmsg = "Good morning!" events = { 1 : "calm", 2 : "calm", 3 : "rainy", 4 : "rainy", 5 : "rainy", 6 : "thunder", } array = [1,2,3,4,5,6] ## Array used to get events or smth output = random.choice(array) defevent = events[output] if defevent == "calm": print(wmsg ,"It's a sunny day outside.") clear() elif defevent == "rainy": print(wmsg, "You can hear the droplets falling onto your tent.") clear() else: print(wmsg,"You hear thunder rumbling outside") clear() del array[output - 1] if len(array) == 0: ##Array reset array.append('1','2','3','4','5','6') ##Actually, we could throw out them specifics outta window and use it's skelly as ##our primary dice. def could take out the variables from other files and juggle them to our delight break
28.404762
105
0.506287
cd2c1598eaae27b2b8504f6e96bc81711b260dde
774
py
Python
multivision/oa_image_io.py
olaals/tpktools
50416ca554809e3d2f364b25531c78cf4751311c
[ "MIT" ]
null
null
null
multivision/oa_image_io.py
olaals/tpktools
50416ca554809e3d2f364b25531c78cf4751311c
[ "MIT" ]
null
null
null
multivision/oa_image_io.py
olaals/tpktools
50416ca554809e3d2f364b25531c78cf4751311c
[ "MIT" ]
null
null
null
import numpy as np import OpenEXR as exr import cv2 import Imath import matplotlib.pyplot as plt
29.769231
90
0.630491
cd314573d937025d1a50953b27cb47b89f485e85
2,972
py
Python
yggdrasil/serialize/FunctionalSerialize.py
astro-friedel/yggdrasil
5ecbfd083240965c20c502b4795b6dc93d94b020
[ "BSD-3-Clause" ]
22
2019-02-05T15:20:07.000Z
2022-02-25T09:00:40.000Z
yggdrasil/serialize/FunctionalSerialize.py
astro-friedel/yggdrasil
5ecbfd083240965c20c502b4795b6dc93d94b020
[ "BSD-3-Clause" ]
48
2019-02-15T20:41:24.000Z
2022-03-16T20:52:02.000Z
yggdrasil/serialize/FunctionalSerialize.py
astro-friedel/yggdrasil
5ecbfd083240965c20c502b4795b6dc93d94b020
[ "BSD-3-Clause" ]
16
2019-04-27T03:36:40.000Z
2021-12-02T09:47:06.000Z
from yggdrasil.serialize.SerializeBase import SerializeBase
43.072464
84
0.654778
cd3156dd0e4a0a15e50945d8d1d506c7eefae69c
2,046
py
Python
wordy_chat.py
thecodingchannel/wordy-discord-bot-tutorial
be70d237abcb302b6516f985ae900c61b598296a
[ "Apache-2.0" ]
null
null
null
wordy_chat.py
thecodingchannel/wordy-discord-bot-tutorial
be70d237abcb302b6516f985ae900c61b598296a
[ "Apache-2.0" ]
null
null
null
wordy_chat.py
thecodingchannel/wordy-discord-bot-tutorial
be70d237abcb302b6516f985ae900c61b598296a
[ "Apache-2.0" ]
1
2022-03-09T04:55:56.000Z
2022-03-09T04:55:56.000Z
''' This file is the glue between the Discord bot and the game logic. ''' from wordle_logic import evaluate_guess, generate_new_word from wordy_types import ActiveGame, EndResult, LetterState def begin_game() -> ActiveGame: """ Begin a game for a user. """ # Select a word answer = generate_new_word() # Create and store new game state new_game = ActiveGame(answer=answer) return new_game def enter_guess(guess: str, game: ActiveGame) -> EndResult: """ Enter a guess for a user's game, updating the game state. >>> game=ActiveGame(answer="abcd") >>> enter_guess("aaaa", game) == EndResult.PLAYING True >>> render_result(game.results[-1]) '' >>> game=ActiveGame(answer="abca") >>> enter_guess("aaaz", game) == EndResult.PLAYING True >>> render_result(game.results[-1]) '' >>> game=ActiveGame(answer="abca") >>> enter_guess("aaab", game) == EndResult.PLAYING True >>> render_result(game.results[-1]) '' """ if game.state != EndResult.PLAYING: return game.state # Evaluate guess result = tuple(evaluate_guess(guess, game.answer)) # Update game state game.board_state.append(guess) game.results.append(result) # Check if game is over if result == (LetterState.CORRECT,)*len(game.answer): game.state = EndResult.WIN elif len(game.board_state) > len(game.answer): game.state = EndResult.LOSE return game.state def render_result(result: tuple[LetterState]) -> str: """ Render a result to a string. >>> render_result((LetterState.ABSENT, LetterState.PRESENT, LetterState.CORRECT)) '' >>> render_result((LetterState.ABSENT,)*4) '' """ absent, present, correct = '', '', '' return "".join( absent if state == LetterState.ABSENT else present if state == LetterState.PRESENT else correct for state in result )
26.230769
86
0.608504
cd318b68f4231a08be74b1a2c64d0b4969b29c51
2,422
py
Python
NNet/utils/readNNet.py
noyahoch/Marabou
03eb551498287e5372d462e3c2ad4fcc3210a5fa
[ "BSD-3-Clause" ]
7
2020-01-27T21:25:49.000Z
2022-01-07T04:37:37.000Z
NNet/utils/readNNet.py
noyahoch/Marabou
03eb551498287e5372d462e3c2ad4fcc3210a5fa
[ "BSD-3-Clause" ]
1
2022-01-25T17:41:54.000Z
2022-01-26T02:27:51.000Z
NNet/utils/readNNet.py
noyahoch/Marabou
03eb551498287e5372d462e3c2ad4fcc3210a5fa
[ "BSD-3-Clause" ]
3
2020-03-14T17:12:17.000Z
2022-03-16T09:50:46.000Z
import numpy as np def readNNet(nnetFile, withNorm=False): ''' Read a .nnet file and return list of weight matrices and bias vectors Inputs: nnetFile: (string) .nnet file to read withNorm: (bool) If true, return normalization parameters Returns: weights: List of weight matrices for fully connected network biases: List of bias vectors for fully connected network ''' # Open NNet file f = open(nnetFile,'r') # Skip header lines line = f.readline() while line[:2]=="//": line = f.readline() # Extract information about network architecture record = line.split(',') numLayers = int(record[0]) inputSize = int(record[1]) line = f.readline() record = line.split(',') layerSizes = np.zeros(numLayers+1,'int') for i in range(numLayers+1): layerSizes[i]=int(record[i]) # Skip extra obsolete parameter line f.readline() # Read the normalization information line = f.readline() inputMins = [float(x) for x in line.strip().split(",")[:-1]] line = f.readline() inputMaxes = [float(x) for x in line.strip().split(",")[:-1]] line = f.readline() means = [float(x) for x in line.strip().split(",")[:-1]] line = f.readline() ranges = [float(x) for x in line.strip().split(",")[:-1]] # Initialize list of weights and biases weights = [np.zeros((layerSizes[i],layerSizes[i+1])) for i in range(numLayers)] biases = [np.zeros(layerSizes[i+1]) for i in range(numLayers)] # Read remainder of file and place each value in the correct spot in a weight matrix or bias vector layer=0 i=0 j=0 line = f.readline() record = line.split(',') while layer+1 < len(layerSizes): while i<layerSizes[layer+1]: while record[j]!="\n": weights[layer][j,i] = float(record[j]) j+=1 j=0 i+=1 line = f.readline() record = line.split(',') i=0 while i<layerSizes[layer+1]: biases[layer][i] = float(record[0]) i+=1 line = f.readline() record = line.split(',') layer+=1 i=0 j=0 f.close() if withNorm: return weights, biases, inputMins, inputMaxes, means, ranges return weights, biases
27.83908
103
0.562758
cd336f08882633e139c7b8cf8e6bbf9503123d24
13,668
py
Python
models/model.py
hearai/hearai
2f2bc2923fa2bb170d9ed895c3f638e99811442f
[ "MIT" ]
16
2021-12-16T20:19:31.000Z
2022-03-19T15:59:23.000Z
models/model.py
hearai/hearai
2f2bc2923fa2bb170d9ed895c3f638e99811442f
[ "MIT" ]
34
2021-12-21T19:33:31.000Z
2022-03-31T19:04:39.000Z
models/model.py
hearai/hearai
2f2bc2923fa2bb170d9ed895c3f638e99811442f
[ "MIT" ]
5
2021-12-18T22:35:20.000Z
2022-02-20T12:26:39.000Z
from typing import Dict import neptune.new as neptune import numpy as np import pytorch_lightning as pl import torch import torch.nn as nn from config import NEPTUNE_API_TOKEN, NEPTUNE_PROJECT_NAME from sklearn.metrics import classification_report, f1_score from utils.summary_loss import SummaryLoss from math import ceil from models.feature_extractors.multi_frame_feature_extractor import ( MultiFrameFeatureExtractor, ) from models.model_loader import ModelLoader from models.common.simple_sequential_model import SimpleSequentialModel from models.landmarks_models.lanmdarks_sequential_model import LandmarksSequentialModel from models.head_models.head_sequential_model import HeadClassificationSequentialModel # initialize neptune logging
41.92638
136
0.592479
cd33abe036b992ac7ac194a0541c5439617437c4
2,305
py
Python
solutions/day09/solution.py
dbjohnson/advent-of-code-2021
2ed1d30362afa0a73c890730cea46de3291be21f
[ "MIT" ]
null
null
null
solutions/day09/solution.py
dbjohnson/advent-of-code-2021
2ed1d30362afa0a73c890730cea46de3291be21f
[ "MIT" ]
null
null
null
solutions/day09/solution.py
dbjohnson/advent-of-code-2021
2ed1d30362afa0a73c890730cea46de3291be21f
[ "MIT" ]
null
null
null
from functools import lru_cache from collections import defaultdict import pandas as pd import numpy as np with open('input.txt') as fh: depthmap = pd.DataFrame([{ 'row': row, 'col': col, 'height': int(d) } for row, line in enumerate(fh) for col, d in enumerate(line.strip()) ]).pivot_table( index='row', columns='col', values='height' ).values idx = ( # right neighbor np.pad( depthmap[:, :-1] < depthmap[:, 1:], ((0, 0), (0, 1)), 'constant', constant_values=1 ) & # left neighbor np.pad( depthmap[:, 1:] < depthmap[:, :-1], ((0, 0), (1, 0)), 'constant', constant_values=1 ) & # lower neighbor np.pad( depthmap[:-1, :] < depthmap[1:, :], ((0, 1), (0, 0)), 'constant', constant_values=1 ) & # upper neighbor np.pad( depthmap[1:, :] < depthmap[:-1, :], ((1, 0), (0, 0)), 'constant', constant_values=1 ) ) print('part 1', (depthmap[np.where(idx)] + 1).sum()) # lru_cache here is essentially cheap DP - once we've calculated # the basin for any point A, we know the basin for any point B that # flows through point A lowpoint_to_basin = defaultdict(list) for r in range(depthmap.shape[0]): for c in range(depthmap.shape[1]): lowpoint_to_basin[lowpoint(r, c)].append((r, c)) print( 'part 2', np.prod(sorted([ len(points) for basin, points in lowpoint_to_basin.items() if basin ])[-3:]) ) # part 1 now that we solved part 2... print( 'part 1 redux', sum([ depthmap[lowpoint] + 1 for lowpoint in lowpoint_to_basin if lowpoint ]) )
21.342593
67
0.516269
cd3470135bfe7a2b8866c6a268c9e629dad7a8b7
3,467
py
Python
docs/conf.py
ocefpaf/pystac-client
ddf0e0566b2b1783a4d32d3d77f9f51b80270df3
[ "Apache-2.0" ]
52
2021-04-15T23:24:12.000Z
2022-03-09T23:02:27.000Z
docs/conf.py
ocefpaf/pystac-client
ddf0e0566b2b1783a4d32d3d77f9f51b80270df3
[ "Apache-2.0" ]
119
2021-04-13T11:42:01.000Z
2022-02-24T10:02:35.000Z
docs/conf.py
ocefpaf/pystac-client
ddf0e0566b2b1783a4d32d3d77f9f51b80270df3
[ "Apache-2.0" ]
14
2021-04-13T19:00:19.000Z
2022-02-23T09:17:30.000Z
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html import re import subprocess import sys from pathlib import Path # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, str(Path(__file__).parent.parent.parent.resolve())) from pystac_client import __version__ # noqa: E402 git_branch = ( subprocess.check_output(["git", "rev-parse", "--abbrev-ref", "HEAD"]) .decode("utf-8") .strip() ) # -- Project information ----------------------------------------------------- project = 'pystac-client' copyright = '2021, Jon Duckworth' author = 'Matthew Hanson, Jon Duckworth' github_user = 'stac-utils' github_repo = 'pystac-client' package_description = 'A Python client for the STAC and STAC-API specs' # The full version, including alpha/beta/rc tags version = re.fullmatch(r'^(\d+\.\d+\.\d).*$', __version__).group(1) release = __version__ # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.viewcode', 'sphinx.ext.intersphinx', 'sphinx.ext.napoleon', 'sphinx.ext.extlinks', 'sphinxcontrib.fulltoc', 'nbsphinx', 'myst_parser' ] extlinks = { "tutorial": ( "https://github.com/stac-utils/pystac-client/" "tree/{}/docs/tutorials/%s".format(git_branch), "tutorial", ) } nbsphinx_allow_errors = True # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. source_suffix = [".rst", "*.md", "*.ipynb"] exclude_patterns = ['build/*'] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' html_theme_options = { # 'sidebar_collapse': False, 'fixed_sidebar': True, 'github_button': True, 'github_user': github_user, 'github_repo': github_repo, 'description': package_description } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = [] # -- Options for intersphinx extension --------------------------------------- intersphinx_mapping = { 'python': ('https://docs.python.org/3', None), 'requests': ('https://requests.readthedocs.io/en/master', None), 'pystac': ('https://pystac.readthedocs.io/en/latest', None), 'dateutil': ('https://dateutil.readthedocs.io/en/stable/', None), } # -- Options for autodoc extension ------------------------------------------- autodoc_typehints = "none"
33.660194
97
0.654168
cd358b914861d3a881968cfd805aae9c0f7bed42
1,345
py
Python
modules/lexer/token.py
DavidMacDonald11/sea-to-c-transpiler-python-based
20c41931346b13d4bf2a12e96037f44b1add8145
[ "MIT" ]
null
null
null
modules/lexer/token.py
DavidMacDonald11/sea-to-c-transpiler-python-based
20c41931346b13d4bf2a12e96037f44b1add8145
[ "MIT" ]
11
2021-04-22T13:09:34.000Z
2022-01-29T22:53:58.000Z
modules/lexer/token.py
DavidMacDonald11/sea-to-c-transpiler-python-based
20c41931346b13d4bf2a12e96037f44b1add8145
[ "MIT" ]
null
null
null
from .token_types import TT from .token_types import BadTT from .position import Position from .keywords import is_keyword from .keywords import keyword_declared_type from ..lexer import errors
33.625
80
0.665428
cd36eb6513428b0c0f981f91eaea0aa21154992a
689
py
Python
cb_scripts/nums_square_cube.py
christopher-burke/python-scripts
bdbea2456130e0958b6a6ab8d138f4f19b39b934
[ "MIT" ]
1
2022-02-05T06:39:05.000Z
2022-02-05T06:39:05.000Z
cb_scripts/nums_square_cube.py
christopher-burke/python-scripts
bdbea2456130e0958b6a6ab8d138f4f19b39b934
[ "MIT" ]
null
null
null
cb_scripts/nums_square_cube.py
christopher-burke/python-scripts
bdbea2456130e0958b6a6ab8d138f4f19b39b934
[ "MIT" ]
1
2021-06-10T22:04:35.000Z
2021-06-10T22:04:35.000Z
#!/usr/bin/env python3 """Squares and Cubes for a range of numbers. Given a start and end, calucate the Square x**2 and the Cube x**3 for all numbers. Example of generator and functools.partial. """ from functools import partial def power(base, exponent): """Raise a base to the exponent.""" return base ** exponent square = partial(power, exponent=2) cube = partial(power, exponent=3) if __name__ == "__main__": print("number\tsquare\tcube") for x in main(1, 10): print("{}\t{}\t{}".format(*x))
20.264706
63
0.651669
cd36ecd76329e8d74ce6fdd1bc24ac05a02cc921
101
py
Python
Darlington/phase2/LIST/day 41 solution/qtn2.py
CodedLadiesInnovateTech/-python-challenge-solutions
430cd3eb84a2905a286819eef384ee484d8eb9e7
[ "MIT" ]
6
2020-05-23T19:53:25.000Z
2021-05-08T20:21:30.000Z
Darlington/phase2/LIST/day 41 solution/qtn2.py
CodedLadiesInnovateTech/-python-challenge-solutions
430cd3eb84a2905a286819eef384ee484d8eb9e7
[ "MIT" ]
8
2020-05-14T18:53:12.000Z
2020-07-03T00:06:20.000Z
Darlington/phase2/LIST/day 41 solution/qtn2.py
CodedLadiesInnovateTech/-python-challenge-solutions
430cd3eb84a2905a286819eef384ee484d8eb9e7
[ "MIT" ]
39
2020-05-10T20:55:02.000Z
2020-09-12T17:40:59.000Z
#program to find the index of an item in a specified list. num =[10, 30, 4, -6] print(num.index(30))
25.25
58
0.683168
cd36fd075f7cd95707b64e346e7a7db96e365eac
1,748
py
Python
mozdns/txt/tests.py
jlin/inventory
c098c98e570c3bf9fadfd811eb75e1213f6ea428
[ "BSD-3-Clause" ]
22
2015-01-16T01:36:32.000Z
2020-06-08T00:46:18.000Z
mozdns/txt/tests.py
jlin/inventory
c098c98e570c3bf9fadfd811eb75e1213f6ea428
[ "BSD-3-Clause" ]
8
2015-12-28T18:56:19.000Z
2019-04-01T17:33:48.000Z
mozdns/txt/tests.py
jlin/inventory
c098c98e570c3bf9fadfd811eb75e1213f6ea428
[ "BSD-3-Clause" ]
13
2015-01-13T20:56:22.000Z
2022-02-23T06:01:17.000Z
from django.test import TestCase from django.core.exceptions import ValidationError from mozdns.txt.models import TXT from mozdns.domain.models import Domain
29.627119
69
0.587529
cd39f1397ad328542fed8bb62d6c47dc4c191597
6,698
py
Python
xtesting/tests/unit/core/test_behaveframework.py
collivier/functest-xtesting
17739d718901a10f7ec0aaf9a6d53141294a347d
[ "Apache-2.0" ]
1
2020-05-15T12:58:58.000Z
2020-05-15T12:58:58.000Z
xtesting/tests/unit/core/test_behaveframework.py
collivier/functest-xtesting
17739d718901a10f7ec0aaf9a6d53141294a347d
[ "Apache-2.0" ]
null
null
null
xtesting/tests/unit/core/test_behaveframework.py
collivier/functest-xtesting
17739d718901a10f7ec0aaf9a6d53141294a347d
[ "Apache-2.0" ]
3
2018-02-28T15:55:14.000Z
2022-02-24T15:46:12.000Z
#!/usr/bin/env python # Copyright (c) 2019 Orange and others. # # All rights reserved. This program and the accompanying materials # are made available under the terms of the Apache License, Version 2.0 # which accompanies this distribution, and is available at # http://www.apache.org/licenses/LICENSE-2.0 """Define the classes required to fully cover behave.""" import logging import os import unittest import mock from xtesting.core import behaveframework __author__ = "Deepak Chandella <[email protected]>" def test_parse_results_exc_console(self): self.test_parse_results_exc(console=True) if __name__ == "__main__": logging.disable(logging.CRITICAL) unittest.main(verbosity=2)
37.418994
77
0.640042
cd3a28ba018f4c08dd5b0ec2fb2ba69c859e803c
963
py
Python
data/test/python/cd3a28ba018f4c08dd5b0ec2fb2ba69c859e803cdjango.py
harshp8l/deep-learning-lang-detection
2a54293181c1c2b1a2b840ddee4d4d80177efb33
[ "MIT" ]
84
2017-10-25T15:49:21.000Z
2021-11-28T21:25:54.000Z
data/test/python/cd3a28ba018f4c08dd5b0ec2fb2ba69c859e803cdjango.py
vassalos/deep-learning-lang-detection
cbb00b3e81bed3a64553f9c6aa6138b2511e544e
[ "MIT" ]
5
2018-03-29T11:50:46.000Z
2021-04-26T13:33:18.000Z
data/test/python/cd3a28ba018f4c08dd5b0ec2fb2ba69c859e803cdjango.py
vassalos/deep-learning-lang-detection
cbb00b3e81bed3a64553f9c6aa6138b2511e544e
[ "MIT" ]
24
2017-11-22T08:31:00.000Z
2022-03-27T01:22:31.000Z
# coding=utf-8 from fabric.api import env, run COMMAND_COLLECTSTATIC = 'collectstatic' COMMAND_SYNCDB = 'syncdb' COMMAND_MIGRATE = 'migrate' _default_command = '{python} {manage} {command}' _commands_list = { COMMAND_COLLECTSTATIC: 'yes yes | {python} {manage} {command}', COMMAND_MIGRATE: '{python} {manage} {command} --noinput', }
24.075
67
0.677051
cd3da08c421072d75aa5562437930fcd09889489
8,820
py
Python
commercialoperator/components/bookings/utils.py
wilsonc86/ledger
a60a681e547f37e4ac81cb93dffaf90aea8c8151
[ "Apache-2.0" ]
null
null
null
commercialoperator/components/bookings/utils.py
wilsonc86/ledger
a60a681e547f37e4ac81cb93dffaf90aea8c8151
[ "Apache-2.0" ]
null
null
null
commercialoperator/components/bookings/utils.py
wilsonc86/ledger
a60a681e547f37e4ac81cb93dffaf90aea8c8151
[ "Apache-2.0" ]
null
null
null
from django.http import HttpResponseRedirect from django.core.urlresolvers import reverse from django.conf import settings from django.core.exceptions import ValidationError from datetime import datetime, timedelta from commercialoperator.components.main.models import Park from commercialoperator.components.proposals.models import Proposal from ledger.checkout.utils import create_basket_session, create_checkout_session, calculate_excl_gst from ledger.payments.models import Invoice from ledger.payments.utils import oracle_parser import json from decimal import Decimal from commercialoperator.components.bookings.models import Booking, ParkBooking, ApplicationFee import logging logger = logging.getLogger('payment_checkout') def create_booking(request, proposal_id): """ Create the ledger lines - line items for invoice sent to payment system """ #import ipdb; ipdb.set_trace() booking = Booking.objects.create(proposal_id=proposal_id) tbody = json.loads(request.POST['payment'])['tbody'] for row in tbody: park_id = row[0]['value'] arrival = row[1] no_adults = int(row[2]) if row[2] else 0 no_children = int(row[3]) if row[3] else 0 no_free_of_charge = int(row[4]) if row[4] else 0 park = Park.objects.get(id=park_id) if any([no_adults, no_children, no_free_of_charge]) > 0: park_booking = ParkBooking.objects.create( booking = booking, park_id = park_id, arrival = datetime.strptime(arrival, '%Y-%m-%d').date(), no_adults = no_adults, no_children = no_children, no_free_of_charge = no_free_of_charge, cost = no_adults*park.adult_price + no_children*park.child_price ) if not park_booking: raise ValidationError('Must have at least one person visiting the park') return booking def get_session_application_invoice(session): """ Application Fee session ID """ if 'cols_app_invoice' in session: application_fee_id = session['cols_app_invoice'] else: raise Exception('Application not in Session') try: #return Invoice.objects.get(id=application_invoice_id) #return Proposal.objects.get(id=proposal_id) return ApplicationFee.objects.get(id=application_fee_id) except Invoice.DoesNotExist: raise Exception('Application not found for application {}'.format(application_fee_id)) def set_session_application_invoice(session, application_fee): """ Application Fee session ID """ session['cols_app_invoice'] = application_fee.id session.modified = True def delete_session_application_invoice(session): """ Application Fee session ID """ if 'cols_app_invoice' in session: del session['cols_app_invoice'] session.modified = True def create_fee_lines(proposal, invoice_text=None, vouchers=[], internal=False): """ Create the ledger lines - line item for application fee sent to payment system """ #import ipdb; ipdb.set_trace() now = datetime.now().strftime('%Y-%m-%d %H:%M') price = proposal.application_type.application_fee line_items = [{ 'ledger_description': 'Application Fee - {} - {}'.format(now, proposal.lodgement_number), 'oracle_code': proposal.application_type.oracle_code, 'price_incl_tax': price, 'price_excl_tax': price if proposal.application_type.is_gst_exempt else calculate_excl_gst(price), 'quantity': 1, }] logger.info('{}'.format(line_items)) return line_items def create_lines(request, invoice_text=None, vouchers=[], internal=False): """ Create the ledger lines - line items for invoice sent to payment system """ #import ipdb; ipdb.set_trace() lines = [] tbody = json.loads(request.POST['payment'])['tbody'] for row in tbody: park_id = row[0]['value'] arrival = row[1] no_adults = int(row[2]) if row[2] else 0 no_children = int(row[3]) if row[3] else 0 no_free_of_charge = int(row[4]) if row[4] else 0 park= Park.objects.get(id=park_id) if no_adults > 0: lines.append(add_line_item(park, arrival, 'Adult', price=park.adult_price, no_persons=no_adults)) if no_children > 0: lines.append(add_line_item(park, arrival, 'Child', price=park.child_price, no_persons=no_children)) if no_free_of_charge > 0: lines.append(add_line_item(park, arrival, 'Free', price=0.0, no_persons=no_free_of_charge)) return lines
40.090909
175
0.675057
cd3eb5a68afae376fb0cdba9c6455dc19c74e74f
3,552
py
Python
src/application/models.py
Chitrank-Dixit/WikiG
74d99a16afc635a991c17de8d237eb4f6eccbe86
[ "CNRI-Python" ]
1
2015-11-05T03:51:44.000Z
2015-11-05T03:51:44.000Z
src/application/models.py
Chitrank-Dixit/WikiG
74d99a16afc635a991c17de8d237eb4f6eccbe86
[ "CNRI-Python" ]
null
null
null
src/application/models.py
Chitrank-Dixit/WikiG
74d99a16afc635a991c17de8d237eb4f6eccbe86
[ "CNRI-Python" ]
null
null
null
""" models.py App Engine datastore models Documentation: https://developers.google.com/appengine/docs/python/ndb/entities """ from google.appengine.ext import ndb from google.appengine.ext import blobstore from google.appengine.api import users import functools import flask from flaskext import login from flaskext.login import current_user from flaskext import oauth from hashlib import md5 import util import model import config from application import app import urls # from application.metadata import Session, Base ################################################################################ # Flaskext Login ################################################################################ login_manager = login.LoginManager() login_manager.anonymous_user = AnonymousUser login_manager.init_app(app) login_manager.login_view = 'signin'
23.368421
155
0.677928
cd3ebb35376a9ad6bb35907b043a70f74ff3d06d
2,488
py
Python
driver.py
Nobregaigor/Robot-path-tracking-and-obstacle-avoidance-simulation
23ab060316c5978724b3f109d851ea33206d0e10
[ "MIT" ]
6
2020-05-01T23:33:13.000Z
2021-12-18T08:13:50.000Z
driver.py
Nobregaigor/Robot-path-tracking-and-obstacle-avoidance-simulation--Python
23ab060316c5978724b3f109d851ea33206d0e10
[ "MIT" ]
null
null
null
driver.py
Nobregaigor/Robot-path-tracking-and-obstacle-avoidance-simulation--Python
23ab060316c5978724b3f109d851ea33206d0e10
[ "MIT" ]
2
2020-05-06T11:54:10.000Z
2020-07-30T01:58:06.000Z
import pygame import math import path_planning as pp
35.542857
123
0.63545
cd423af6c5271daa0eac7f6a8ca5e2cf87ffc2fe
2,752
py
Python
test/test_api_v1_module.py
feizhihui/deepnlp
cc6647d65ec39aadd35e4a4748da92df5b79bd48
[ "MIT" ]
null
null
null
test/test_api_v1_module.py
feizhihui/deepnlp
cc6647d65ec39aadd35e4a4748da92df5b79bd48
[ "MIT" ]
null
null
null
test/test_api_v1_module.py
feizhihui/deepnlp
cc6647d65ec39aadd35e4a4748da92df5b79bd48
[ "MIT" ]
1
2019-05-13T14:24:15.000Z
2019-05-13T14:24:15.000Z
#coding:utf-8 ''' Demo for calling API of deepnlp.org web service Anonymous user of this package have limited access on the number of API calling 100/day Please Register and Login Your Account to deepnlp.org to get unlimited access to fully support api_service API module, now supports both windows and linux platforms. ''' from __future__ import unicode_literals import json, requests, sys, os if (sys.version_info>(3,0)): from urllib.parse import quote else : from urllib import quote from deepnlp import api_service login = api_service.init() # registration, if failed, load default empty login {} with limited access login = {} # use your personal login {'username': 'your_user_name' , 'password': 'your_password'} conn = api_service.connect(login) # save the connection with login cookies # API Setting text = ("").encode('utf-8') # convert text from unicode to utf-8 bytes, quote() function # Segmentation url_segment = "http://www.deepnlp.org/api/v1.0/segment/?" + "lang=zh" + "&text=" + quote(text) web = requests.get(url_segment, cookies = conn) tuples = json.loads(web.text) wordsList = tuples['words'] # segmentation json {'words', [w1, w2,...]} return list print ("Segmentation API:") print (" ".join(wordsList).encode("utf-8")) # POS tagging url_pos = "http://www.deepnlp.org/api/v1.0/pos/?"+ "lang=zh" + "&text=" + quote(text) web = requests.get(url_pos, cookies = conn) tuples = json.loads(web.text) pos_str = tuples['pos_str'] # POS json {'pos_str', 'w1/t1 w2/t2'} return string print ("POS API:") print (pos_str.encode("utf-8")) # NER tagging url_ner = "http://www.deepnlp.org/api/v1.0/ner/?" + "lang=zh" + "&text=" + quote(text) web = requests.get(url_ner, cookies = conn) tuples = json.loads(web.text) ner_str = tuples['ner_str'] # NER json {'ner_str', 'w1/t1 w2/t2'} return list print ("NER API:") print (ner_str.encode("utf-8")) # Pipeline annotators = "segment,pos,ner" url_pipeline = "http://www.deepnlp.org/api/v1.0/pipeline/?" + "lang=zh" + "&text=" + quote(text) + "&annotators=" + quote(annotators) web = requests.get(url_pipeline, cookies = conn) tuples = json.loads(web.text) segment_str = tuples['segment_str'] # segment module pos_str = tuples['pos_str'] # pos module ner_str = tuples['ner_str'] # ner module ner_json = tuples['ner_json'] # ner result in json # output print ("Pipeline API:") print (segment_str.encode("utf-8")) print (pos_str.encode("utf-8")) print (ner_str.encode("utf-8")) print ("NER JSON:") print (json_to_str(ner_json).encode("utf-8"))
38.222222
133
0.682776
cd448e3854b74fee56a6672cdae1ce1e148e593d
1,195
py
Python
spring_cloud/commons/client/loadbalancer/round_robin.py
haribo0915/Spring-Cloud-in-Python
0bcd7093869c797df14428bf2d1b0a779f96e573
[ "Apache-2.0" ]
5
2020-10-06T09:48:23.000Z
2020-10-07T13:19:46.000Z
spring_cloud/commons/client/loadbalancer/round_robin.py
haribo0915/Spring-Cloud-in-Python
0bcd7093869c797df14428bf2d1b0a779f96e573
[ "Apache-2.0" ]
5
2020-10-05T09:57:01.000Z
2020-10-12T19:52:48.000Z
spring_cloud/commons/client/loadbalancer/round_robin.py
haribo0915/Spring-Cloud-in-Python
0bcd7093869c797df14428bf2d1b0a779f96e573
[ "Apache-2.0" ]
8
2020-10-05T06:34:49.000Z
2020-10-07T13:19:46.000Z
# -*- coding: utf-8 -*- """ The built-in Round-Robin algorithm. """ # standard library from typing import Union # scip plugin from spring_cloud.commons.client.service_instance import ServiceInstance from spring_cloud.utils.atomic import AtomicInteger from .loadbalancer import LoadBalancer from .supplier import ServiceInstanceListSupplier __author__ = "Waterball ([email protected])" __license__ = "Apache 2.0"
30.641026
88
0.738075
cd46541bba89d45678808a7b911ed3c9f61dd510
4,245
py
Python
utils/dataset_utils.py
dpaiton/DeepSparseCoding
5ea01fa8770794df5e13743aa3f2d85297c27eb1
[ "MIT" ]
12
2017-04-27T17:19:31.000Z
2021-11-07T03:37:59.000Z
utils/dataset_utils.py
dpaiton/DeepSparseCoding
5ea01fa8770794df5e13743aa3f2d85297c27eb1
[ "MIT" ]
12
2018-03-21T01:16:25.000Z
2022-02-10T00:21:58.000Z
utils/dataset_utils.py
dpaiton/DeepSparseCoding
5ea01fa8770794df5e13743aa3f2d85297c27eb1
[ "MIT" ]
12
2017-02-01T19:49:57.000Z
2021-12-08T03:16:58.000Z
import os import sys import numpy as np import torch from torchvision import datasets, transforms ROOT_DIR = os.path.dirname(os.getcwd()) if ROOT_DIR not in sys.path: sys.path.append(ROOT_DIR) import DeepSparseCoding.utils.data_processing as dp import DeepSparseCoding.datasets.synthetic as synthetic
42.878788
107
0.660306
cd4856841cf209c6c31d8cf4b1d4a02e1669fe87
1,051
py
Python
adi_study_watch/nrf5_sdk_15.2.0/adi_study_watch/cli/m2m2/inc/master_definitions/led_interface.py
ArrowElectronics/Vital-Signs-Monitoring
ba43fe9a116d94170561433910fd7bffba5726e7
[ "Unlicense" ]
5
2021-06-13T17:11:19.000Z
2021-12-01T18:20:38.000Z
adi_study_watch/nrf5_sdk_15.2.0/adi_study_watch/cli/m2m2/inc/master_definitions/led_interface.py
ArrowElectronics/Vital-Signs-Monitoring
ba43fe9a116d94170561433910fd7bffba5726e7
[ "Unlicense" ]
null
null
null
adi_study_watch/nrf5_sdk_15.2.0/adi_study_watch/cli/m2m2/inc/master_definitions/led_interface.py
ArrowElectronics/Vital-Signs-Monitoring
ba43fe9a116d94170561433910fd7bffba5726e7
[ "Unlicense" ]
1
2022-01-08T15:01:44.000Z
2022-01-08T15:01:44.000Z
#!/usr/bin/env python3 from ctypes import * import m2m2_core
30.028571
53
0.726927
cd485ea8847607e1b8262b17b33a7d95c7b05c48
2,327
py
Python
src/empirical_study.py
arshajithwolverine/Recommentation-System_KGNN-LS
82ad10633a56794bbc38dc7e6c40a3636c7d570a
[ "MIT" ]
133
2019-06-20T08:38:04.000Z
2022-03-30T07:57:14.000Z
src/empirical_study.py
piaofu110/KGNN-LS
3afd76361b623e9e38b822861c79bcd61dae41aa
[ "MIT" ]
10
2019-07-06T12:53:01.000Z
2021-11-10T12:58:50.000Z
src/empirical_study.py
piaofu110/KGNN-LS
3afd76361b623e9e38b822861c79bcd61dae41aa
[ "MIT" ]
40
2019-08-07T06:02:31.000Z
2022-01-05T15:19:29.000Z
import networkx as nx import numpy as np import argparse if __name__ == '__main__': np.random.seed(555) NUM = 10000 parser = argparse.ArgumentParser() parser.add_argument('-d', type=str, default='music') args = parser.parse_args() DATASET = args.d kg_np = np.load('../data/' + DATASET + '/kg_final.npy') kg = nx.Graph() kg.add_edges_from([(triple[0], triple[2]) for triple in kg_np]) # construct knowledge graph rating_np = np.load('../data/' + DATASET + '/ratings_final.npy') item_history = dict() item_set = set() for record in rating_np: user = record[0] item = record[1] rating = record[2] if rating == 1: if item not in item_history: item_history[item] = set() item_history[item].add(user) item_set.add(item) item_pair_num_no_common_rater = 0 item_pair_num_with_common_rater = 0 sp_no_common_rater = dict() sp_with_common_rater = dict() while True: item1, item2 = np.random.choice(list(item_set), size=2, replace=False) if item_pair_num_no_common_rater == NUM and item_pair_num_with_common_rater == NUM: break if item_pair_num_no_common_rater < NUM and len(item_history[item1] & item_history[item2]) == 0: item_pair_num_no_common_rater += 1 if not nx.has_path(kg, item1, item2): sp = 'infinity' else: sp = nx.shortest_path_length(kg, item1, item2) if sp not in sp_no_common_rater: sp_no_common_rater[sp] = 0 sp_no_common_rater[sp] += 1 print(item_pair_num_no_common_rater, item_pair_num_with_common_rater) if item_pair_num_with_common_rater < NUM and len(item_history[item1] & item_history[item2]) > 0: item_pair_num_with_common_rater += 1 if not nx.has_path(kg, item1, item2): sp = 'infinity' else: sp = nx.shortest_path_length(kg, item1, item2) if sp not in sp_with_common_rater: sp_with_common_rater[sp] = 0 sp_with_common_rater[sp] += 1 print(item_pair_num_no_common_rater, item_pair_num_with_common_rater) print(sp_no_common_rater) print(sp_with_common_rater)
36.359375
104
0.621401
cd48bacc37dd1b8304c3c30daa2f346ee7aa4309
6,317
py
Python
Survival_Pygame/data.py
Lily-Li828/effective-octo-fiesta
4dbfeaec6158141bb03005aa25240dd337694ee3
[ "Apache-2.0" ]
null
null
null
Survival_Pygame/data.py
Lily-Li828/effective-octo-fiesta
4dbfeaec6158141bb03005aa25240dd337694ee3
[ "Apache-2.0" ]
null
null
null
Survival_Pygame/data.py
Lily-Li828/effective-octo-fiesta
4dbfeaec6158141bb03005aa25240dd337694ee3
[ "Apache-2.0" ]
null
null
null
import pygame from pygame.locals import* from pygame import mixer pygame.init() # loading in background image backgroundClassic_image=pygame.image.load('image/WallPaper.png') backgroundAncient_image=pygame.image.load('image/WallPaper2.png') # loading in player image player_imageClassic=pygame.image.load('image/player.png') player_imageAncient=pygame.image.load('image/player2.png') player_imageClassicR=pygame.image.load('image/playerR.png') player_imageAncientR=pygame.image.load('image/player2R.png') #loading sound for bullet BulletSound=mixer.Sound('sound/bullet.wav') #Loading sound for collision with enemy: CollidewithEnemy=mixer.Sound('sound/Collide.wav') #Loading sound for opening of game: Opening_Sound=mixer.Sound('sound/opening.wav') Mouse_Sound=mixer.Sound('sound/mouseclick.wav') Selection_Sound=mixer.Sound('sound/selection.wav') #loading sound for end of game: End_GameSound=mixer.Sound('sound/gameover.wav') #loading sound for win game: Win_GameSound=mixer.Sound('sound/wingame.wav') Door_GameSound=mixer.Sound('sound/doorappear.wav') #Loading in image for opening animation: Opening_Image= [pygame.image.load('image/opening.png'),pygame.image.load('image/opening.png'), pygame.image.load('image/opening.png'),pygame.image.load('image/opening.png'), pygame.image.load('image/opening.png'),pygame.image.load('image/opening.png'), pygame.image.load('image/opening.png'),pygame.image.load('image/opening.png'), pygame.image.load('image/opening.png'),pygame.image.load('image/opening.png'), pygame.image.load('image/opening.png'),pygame.image.load('image/opening.png'), pygame.image.load('image/opening.png'),pygame.image.load('image/opening.png'), pygame.image.load('image/opening.png'),pygame.image.load('image/opening.png'), pygame.image.load('image/opening.png'),pygame.image.load('image/opening1.png'), pygame.image.load('image/opening1.png'),pygame.image.load('image/opening1.png'), pygame.image.load('image/opening.png')] #loading in image for opening game mode selection: OpeningSelect_BG=pygame.image.load('image/ModeSelection.png') ClassicMode_image=pygame.image.load('image/ClassicMode.png') AncientMode_image=pygame.image.load('image/AncientMode.png') Glow_image=pygame.image.load('image/glow.png') #Loading image for win game: Won_Light=pygame.image.load('image/light.png') Won_Door=pygame.image.load('image/door.png') #Loading win game page: Escape_image=pygame.image.load('image/Wingame.png') #loading in image: direction_key=pygame.image.load('image/direction1.png') direction_arrow=pygame.image.load('image/direction2.png') #loading in endgame page: End_image=pygame.image.load('image/gameover.png') # load in image of platform platformClassic_img= pygame.image.load('image/icicle.png') platformAncient_img=pygame.image.load('image/brickwall.png') #Game map for two different game modes: Classic_map = [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0], [1,1,1,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,0,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0], [0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] Ancient_map=[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,0,0,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,1,0,0,0], [1,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,1,1,1,0,1,0,0,1,0,0,0,0,1,1,1,1,0,0,0], [1,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0,1,0,0,0,0,1,1,0,1,0,1,0,0,1,1,1,0,1,0,0,1,0,0,0,0,1,1,0,0,0,0,0], [1,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0,1,0,0,0,0,1,1,0,1,0,1,0,0,1,1,1,0,1,0,0,1,0,1,0,0,1,1,0,0,0,0,0], [1,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0,1,0,0,0,0,1,1,0,1,0,1,0,0,1,1,1,0,1,0,0,1,0,1,0,0,1,1,0,0,0,0,0]] #Upload font type: fontd1= pygame.font.Font('font/Pieces.ttf',32) fontd2= pygame.font.Font('font/OldeEnglish.ttf',18) fontdO= pygame.font.Font('font/Opening.ttf',28) # Font (Opening) fontdS= pygame.font.Font('font/Pieces.ttf',30) # Font (For Game Mode Selection)
54.930435
114
0.625139
cd4c852bd50c3ecb65653b4479673255f18bc5fa
8,170
py
Python
test/filters_iso_test.py
todofixthis/filters-iso
da6052b49a2f71a3b3d6b66e2633debbb64f5b16
[ "MIT" ]
null
null
null
test/filters_iso_test.py
todofixthis/filters-iso
da6052b49a2f71a3b3d6b66e2633debbb64f5b16
[ "MIT" ]
null
null
null
test/filters_iso_test.py
todofixthis/filters-iso
da6052b49a2f71a3b3d6b66e2633debbb64f5b16
[ "MIT" ]
null
null
null
import filters as f from filters.test import BaseFilterTestCase # noinspection PyProtectedMember from iso3166 import Country, countries_by_alpha3 from language_tags import tags from language_tags.Tag import Tag from moneyed import Currency, get_currency
31.914063
75
0.623745
cd4d5dd7883050a254679a4b1f93de18a8465561
1,179
py
Python
datacamp-master/22-introduction-to-time-series-analysis-in-python/04-moving-average-ma-and-arma-models/08-equivalance-of-ar(1)-and-ma(infinity).py
vitthal10/datacamp
522d2b192656f7f6563bf6fc33471b048f1cf029
[ "MIT" ]
1
2020-06-11T01:32:36.000Z
2020-06-11T01:32:36.000Z
22-introduction-to-time-series-analysis-in-python/04-moving-average-ma-and-arma-models/08-equivalance-of-ar(1)-and-ma(infinity).py
AndreasFerox/DataCamp
41525d7252f574111f4929158da1498ee1e73a84
[ "MIT" ]
null
null
null
22-introduction-to-time-series-analysis-in-python/04-moving-average-ma-and-arma-models/08-equivalance-of-ar(1)-and-ma(infinity).py
AndreasFerox/DataCamp
41525d7252f574111f4929158da1498ee1e73a84
[ "MIT" ]
1
2021-08-08T05:09:52.000Z
2021-08-08T05:09:52.000Z
''' Equivalence of AR(1) and MA(infinity) To better understand the relationship between MA models and AR models, you will demonstrate that an AR(1) model is equivalent to an MA( ) model with the appropriate parameters. You will simulate an MA model with parameters 0.8,0.82,0.83, 0.8 , 0.8 2 , 0.8 3 , for a large number (30) lags and show that it has the same Autocorrelation Function as an AR(1) model with =0.8 = 0.8 . INSTRUCTIONS 100XP Import the modules for simulating data and plotting the ACF from statsmodels Use a list comprehension to build a list with exponentially decaying MA parameters: 1,0.8,0.82,0.83, 1 , 0.8 , 0.8 2 , 0.8 3 , Simulate 5000 observations of the MA(30) model Plot the ACF of the simulated series ''' # import the modules for simulating data and plotting the ACF from statsmodels.tsa.arima_process import ArmaProcess from statsmodels.graphics.tsaplots import plot_acf # Build a list MA parameters ma = [0.8**i for i in range(30)] # Simulate the MA(30) model ar = np.array([1]) AR_object = ArmaProcess(ar, ma) simulated_data = AR_object.generate_sample(nsample=5000) # Plot the ACF plot_acf(simulated_data, lags=30) plt.show()
19.983051
136
0.74894
cd4e4c3a86cc4a31b024c46ddddde1fa3e66e93b
3,752
py
Python
imutils.py
shimoda-uec/ssdd
564c3e08fae7a158516cdbd9f3599a74dc748aff
[ "MIT" ]
33
2019-11-05T07:15:36.000Z
2021-04-27T06:33:47.000Z
imutils.py
shimoda-uec/ssdd
564c3e08fae7a158516cdbd9f3599a74dc748aff
[ "MIT" ]
1
2019-11-18T13:02:40.000Z
2019-11-18T13:02:54.000Z
imutils.py
shimoda-uec/ssdd
564c3e08fae7a158516cdbd9f3599a74dc748aff
[ "MIT" ]
3
2019-11-25T11:00:39.000Z
2021-03-27T06:53:21.000Z
import PIL.Image import random import numpy as np import cv2 def HWC_to_CHW(img): return np.transpose(img, (2, 0, 1))
32.068376
91
0.567697
cd503144da89b34c7f7e0c6f7d30f63249106454
398
py
Python
dfmt/svg/run.py
wangrl2016/coding
fd6cd342cade42379c4a0447d83e17c6596fd3a3
[ "MIT" ]
4
2021-02-20T03:47:48.000Z
2021-11-09T17:25:43.000Z
dfmt/svg/run.py
wangrl2016/coding
fd6cd342cade42379c4a0447d83e17c6596fd3a3
[ "MIT" ]
null
null
null
dfmt/svg/run.py
wangrl2016/coding
fd6cd342cade42379c4a0447d83e17c6596fd3a3
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import os import subprocess if __name__ == '__main__': out_dir = 'out' if not os.path.exists(out_dir): os.mkdir(out_dir) subprocess.run(['cargo', 'build', '--release']) exe = 'target/release/svg' subprocess.run([exe, '-i', 'test/simple-text.svg', '-o', 'out/simple-text.png', '--perf', '--dump-svg', 'out/simple-text.svg'])
26.533333
93
0.585427
cd517441104b9bb84c95422e46c5a618c55415fc
79
py
Python
project/enums/string_types_enum.py
vinibiavatti1/PythonFlaskCms
e43a4db84d1f77a5f66b1f8fcb9dc96e05e6c023
[ "MIT" ]
null
null
null
project/enums/string_types_enum.py
vinibiavatti1/PythonFlaskCms
e43a4db84d1f77a5f66b1f8fcb9dc96e05e6c023
[ "MIT" ]
null
null
null
project/enums/string_types_enum.py
vinibiavatti1/PythonFlaskCms
e43a4db84d1f77a5f66b1f8fcb9dc96e05e6c023
[ "MIT" ]
null
null
null
""" String format type value enumeration. """ TRUE = '1' FALSE = '0' NONE = ''
11.285714
37
0.594937
cd52a473787d5199c37a49a98543ea8b45caa074
90
py
Python
LTA/museums/admin.py
valeriimartsyshyn/lviv_tourist_adviser
e8ce0c7ba97262b2d181e3373eb806f4dcc9bbf1
[ "MIT" ]
null
null
null
LTA/museums/admin.py
valeriimartsyshyn/lviv_tourist_adviser
e8ce0c7ba97262b2d181e3373eb806f4dcc9bbf1
[ "MIT" ]
1
2021-09-27T06:33:26.000Z
2021-09-27T06:33:26.000Z
LTA/museums/admin.py
valeriimartsyshyn/lviv_tourist_adviser
e8ce0c7ba97262b2d181e3373eb806f4dcc9bbf1
[ "MIT" ]
null
null
null
from django.contrib import admin from .models import Museums admin.site.register(Museums)
22.5
32
0.833333
cd537e30b909d9612963bfa8b8f1c4d920b60f98
1,584
py
Python
grailapp-osc-6a60f9376f69/setup.py
yuan7407/TD_OpenCV_PythonOSC
f4424b1f7155f7942397212b97183cb749612f50
[ "MIT" ]
20
2018-12-06T21:35:10.000Z
2022-02-08T23:22:35.000Z
grailapp-osc-6a60f9376f69/setup.py
phoebezhung/TD_OpenCV_PythonOSC
f4424b1f7155f7942397212b97183cb749612f50
[ "MIT" ]
null
null
null
grailapp-osc-6a60f9376f69/setup.py
phoebezhung/TD_OpenCV_PythonOSC
f4424b1f7155f7942397212b97183cb749612f50
[ "MIT" ]
4
2019-02-27T08:13:45.000Z
2021-11-02T15:14:41.000Z
#!/usr/bin/env python # -*- coding: UTF-8 -*- """ setup ~~~~~ Setup Script Run the build process by running the command 'python setup.py build' :copyright: (c) 2018 by Oleksii Lytvyn. :license: MIT, see LICENSE for more details. """ import osc.osc as osc try: from setuptools import setup except ImportError: from distutils.core import setup setup( name='osc', version=osc.__version__, author='Oleksii Lytvyn', author_email='[email protected]', description='OSC implementation in pure Python', long_description=open('README.rst').read(), url='https://bitbucket.org/grailapp/osc', download_url='https://bitbucket.org/grailapp/osc/get/default.zip', platforms='any', packages=['osc'], keywords=['osc', 'protocol', 'utilities', 'osc-1.0', 'network', 'communication', 'udp'], zip_safe=False, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Programming Language :: Python :: 3', "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", 'Programming Language :: Python :: 3 :: Only', 'Programming Language :: Python :: Implementation :: CPython', 'Topic :: Multimedia :: Sound/Audio', 'Topic :: System :: Networking', 'License :: OSI Approved :: MIT License' ], install_requires=[] )
31.058824
92
0.621212
cd5534b9b393b4ca6ad72c44a3438fcc6e74b3d0
2,501
py
Python
socketshark/utils.py
Play2Live/socketshark
9b1e40654bf629c593079fb44c548911d4c864af
[ "MIT" ]
null
null
null
socketshark/utils.py
Play2Live/socketshark
9b1e40654bf629c593079fb44c548911d4c864af
[ "MIT" ]
null
null
null
socketshark/utils.py
Play2Live/socketshark
9b1e40654bf629c593079fb44c548911d4c864af
[ "MIT" ]
null
null
null
import asyncio import ssl import aiohttp from . import constants as c def _get_rate_limit_wait(log, resp, opts): """ Returns the number of seconds we should wait given a 429 HTTP response and HTTP options. """ max_wait = 3600 wait = opts['wait'] header_name = opts['rate_limit_reset_header_name'] if header_name and header_name in resp.headers: header_value = resp.headers[header_name] try: new_wait = float(header_value) # Make sure we have a valid value (not negative, NaN, or Inf) if 0 <= new_wait <= max_wait: wait = new_wait elif new_wait > max_wait: log.warn('rate reset value too high', name=header_name, value=header_value) wait = max_wait else: log.warn('invalid rate reset value', name=header_name, value=header_value) except ValueError: log.warn('invalid rate reset value', name=header_name, value=header_value) return wait
35.225352
78
0.551779
cd592812165ebec71f40378868573e5f9eda72b9
252
py
Python
download_and_create_reference_datasets/v02/create_ht__clinvar.py
NLSVTN/hail-elasticsearch-pipelines
8b895a2e46a33d347dd2a1024101a6d515027a03
[ "MIT" ]
15
2017-11-22T14:48:04.000Z
2020-10-05T18:22:24.000Z
download_and_create_reference_datasets/v02/create_ht__clinvar.py
NLSVTN/hail-elasticsearch-pipelines
8b895a2e46a33d347dd2a1024101a6d515027a03
[ "MIT" ]
94
2020-10-21T17:37:57.000Z
2022-03-29T14:59:46.000Z
download_and_create_reference_datasets/v02/create_ht__clinvar.py
NLSVTN/hail-elasticsearch-pipelines
8b895a2e46a33d347dd2a1024101a6d515027a03
[ "MIT" ]
7
2019-01-29T09:08:10.000Z
2020-02-25T16:22:57.000Z
#!/usr/bin/env python3 from kubernetes.shell_utils import simple_run as run run(( "python3 gcloud_dataproc/v02/run_script.py " "--cluster create-ht-clinvar " "download_and_create_reference_datasets/v02/hail_scripts/write_clinvar_ht.py"))
28
83
0.77381
cd597b04327e251c7079f983fdc1e98e38cf4a8a
4,324
py
Python
cogs/member_.py
himo1101/NFlegel
7621f5d71b41b71faaf44d142f3b903b0471873a
[ "MIT" ]
null
null
null
cogs/member_.py
himo1101/NFlegel
7621f5d71b41b71faaf44d142f3b903b0471873a
[ "MIT" ]
null
null
null
cogs/member_.py
himo1101/NFlegel
7621f5d71b41b71faaf44d142f3b903b0471873a
[ "MIT" ]
null
null
null
from discord.ext import commands from flegelapi.pg import default, server from distutils.util import strtobool import discord member_table= """ member_( id serial PRIMARY KEY, server_id interger NOT NULL, role_ld interger, channel_id interger, custom_mes character varying DEFAULT , on_off boolean DEFAULT False)"""
32.757576
102
0.56568
cd59d9b93bd906d8d50478926274bfcb5696cb98
4,388
py
Python
old/policy_grads2.py
DarkElement75/cartpole-policy-gradients
ca6b7fb826fa023e2d845408d3d16d8032b07508
[ "MIT" ]
null
null
null
old/policy_grads2.py
DarkElement75/cartpole-policy-gradients
ca6b7fb826fa023e2d845408d3d16d8032b07508
[ "MIT" ]
null
null
null
old/policy_grads2.py
DarkElement75/cartpole-policy-gradients
ca6b7fb826fa023e2d845408d3d16d8032b07508
[ "MIT" ]
null
null
null
import gym import numpy as np import sys import theano import theano.tensor as T import layers from layers import FullyConnectedLayer, SoftmaxLayer env = gym.make('CartPole-v0') #Number of actions action_n = env.action_space.n #Number of features observed feature_n = env.observation_space.shape[0] epochs = 100 mini_batch_size = 10 timesteps = 100 learning_rate = 1.0 epsilon_decay_rate = -0.04 initial_epsilon = 1.0 #avg_solved_perc = 97.5 #avg_solved_threshold = (avg_solved_perc/100*timesteps) render = False #Initialize network layers = [ FullyConnectedLayer(n_in=4, n_out=10), FullyConnectedLayer(n_in=10, n_out=10), SoftmaxLayer(n_in=10, n_out=2) ] params = [param for layer in layers for param in layer.params] iterations = mini_batch_size x = T.vector("x") y = T.ivector("y") init_layer = layers[0] init_layer.set_inpt(x, 1) for j in xrange(1, len(layers)): prev_layer, layer = layers[j-1], layers[j] layer.set_inpt( prev_layer.output, 1) cost = T.argmax(T.log(layers[-1].output)) R = 0 #iter_grads = [theano.shared([np.zeros(shape=param.get_value().shape, dtype=theano.config.floatX) for param in params])] #grads = [theano.shared([np.zeros(shape=param.get_value().shape, dtype=theano.config.floatX) for param in params])] grads = T.grad(cost, params) iter_grads = [T.zeros_like(grad) for grad in grads] t_updates = [] iter_updates = [] mb_updates = [] #t_updates.append((iter_grads, iter_grads+T.grad(cost, params))) #iter_updates.append((iter_grads, T.dot(T.dot(iter_grads, R), 1/mini_batch_size))) #iter_updates.append((grads, grads+iter_grads)) #mb_updates.append((params, params+learning_rate*grads)) for param, grad in zip(params, grads): mb_updates.append((param, param+learning_rate*grad))#Update our params as we were #To execute our updates when necessary exec_t_updates = theano.function([], None, updates=t_updates) exec_iter_updates = theano.function([], None, updates=iter_updates) #exec_mb_updates = theano.function([], None, updates=mb_updates) """ mb = T.iscalar() train_mb = theano.function( [], cost, updates=mb_updates) """ #To get our action a possibilities from state s s = T.vector() NN_output = theano.function( [s], layers[-1].output, givens={ x: s }) for e in range(epochs): #grads = T.set_subtensor(grads, T.zeros_like(grads)) grads = grads * 0 epsilon = exp_decay(initial_epsilon, epsilon_decay_rate, e) for mb in range(mini_batch_size): s = env.reset() R = 0 #iter_grads = T.set_subtensor(iter_grads, T.zeros_like(iter_grads)) iter_grads = grads * 0 for t in range(timesteps): if render: env.render() if epsilon_greedy(epsilon): #Random action action = env.action_space.sample() tmp = T.scalar("tmp") max_action = T.ones_like(tmp) else: #Policy Action a = NN_output(s) action = np.argmax(a, axis=1)[0] max_action = T.max(a) #exec_t_update() iter_grads = iter_grads + T.grad(max_action, params) s, r, done, info = env.step(action) R += r if done: break #exec_iter_update() iter_grads = [iter_grad * R / mini_batch_size for iter_grad in iter_grads] grads += iter_grads print "Epoch: %i, Reward: %i, Epsilon: %f" % (e, R, epsilon) #exec_mb_updates() #cost_asdf = train_mb() #print "Updating params..." for param, grad in zip(params, grads): param = param + learning_rate * grad
26.756098
120
0.635369
cd5a19f0cbafdf639c273ea9eebb620d7cbc509e
7,720
py
Python
client.py
andreidorin13/cs544-messaging-protocol
40d26cb20234a4ad58095150795946aceaf9e4d4
[ "MIT" ]
null
null
null
client.py
andreidorin13/cs544-messaging-protocol
40d26cb20234a4ad58095150795946aceaf9e4d4
[ "MIT" ]
null
null
null
client.py
andreidorin13/cs544-messaging-protocol
40d26cb20234a4ad58095150795946aceaf9e4d4
[ "MIT" ]
null
null
null
#!/usr/bin/python ''' Andrei Dorin 06/10/2018 User interface for WISP chat implementation ''' import argparse import logging import signal import sys import time import queue import select import getpass from wisp_client import WispClient from wisp_common import State, WispRequest, WispResponse, WispMessage, WISP_DEFAULT_PORT def signal_sigint(_, __): ''' Signal handler for KeyboardInterrupt or SIGINT ''' print('SIGINT Received, shutting down') sys.exit(0) def main(): ''' Main entry point of client Argument parsing and initializing client ''' parser = argparse.ArgumentParser(description='WISP protocol chat client') parser.add_argument('-H', '--host', type=str, help='IP of server, if none is specified, service discovery will be attempted') parser.add_argument('-p', '--port', type=int, default=32500, help='Port of server to connect, if none is specified, protocol default 32500 will be used') parser.add_argument('-v', '--verbosity', type=int, default=4, choices=[4, 3, 2, 1], help='Verbosity of logger, 4: Error, 3: Warning, 2: Info, 1: Debug') args = parser.parse_args() logging.basicConfig() logging.getLogger().setLevel(args.verbosity * 10) signal.signal(signal.SIGINT, signal_sigint) # CLIENT client = Client() if args.host: client.connect(args.host, args.port) else: client.discover() client.start() if __name__ == '__main__': main()
32.166667
116
0.584197
cd5a2073c9ceff87b49af728a52895c0f1961f0b
61
py
Python
newpy/loggers/__init__.py
janithPet/newpy
feb264f4e3da371c3f2ddc7633f3fdd5a25db661
[ "MIT" ]
null
null
null
newpy/loggers/__init__.py
janithPet/newpy
feb264f4e3da371c3f2ddc7633f3fdd5a25db661
[ "MIT" ]
4
2021-09-03T06:18:29.000Z
2021-09-03T08:36:25.000Z
newpy/loggers/__init__.py
janithPet/newpy
feb264f4e3da371c3f2ddc7633f3fdd5a25db661
[ "MIT" ]
null
null
null
from newpy.loggers.colored_formatter import ColoredFormatter
30.5
60
0.901639
cd5d8710df3d01c40879c8b39d50c6ffb79da254
181
py
Python
putao/source/__init__.py
ongyx/putao
e901402308b9b4c3c9acf8dae15eb4781ddfcede
[ "MIT" ]
7
2021-06-29T00:50:46.000Z
2021-10-14T23:31:12.000Z
putao/source/__init__.py
ongyx/putao
e901402308b9b4c3c9acf8dae15eb4781ddfcede
[ "MIT" ]
2
2021-08-28T05:34:01.000Z
2021-08-29T05:03:34.000Z
putao/source/__init__.py
ongyx/putao
e901402308b9b4c3c9acf8dae15eb4781ddfcede
[ "MIT" ]
null
null
null
# coding: utf8 """Sources provide an abstraction between a source of music notes and putao projects.""" from . import mml # noqa from .reg import formats, loads, register # noqa
30.166667
88
0.734807
cd5dd7dda160122dc7f0149e4f5abf4d8e95ebe4
206
py
Python
parser/src/test/test-data/math_csc.py
luciansmith/sedml-script
d891645d0b3f89ff190fc7e719659c8e229c07da
[ "MIT" ]
null
null
null
parser/src/test/test-data/math_csc.py
luciansmith/sedml-script
d891645d0b3f89ff190fc7e719659c8e229c07da
[ "MIT" ]
null
null
null
parser/src/test/test-data/math_csc.py
luciansmith/sedml-script
d891645d0b3f89ff190fc7e719659c8e229c07da
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created by libsedmlscript v0.0.1 """ from sed_roadrunner import model, task, plot from mpmath import csc #---------------------------------------------- csc(0.5)
15.846154
48
0.475728
cd5e1e26e39c56d3ae62b8fd2032ab324293acc8
526
py
Python
lib/redis_set_get.py
InformaticsResearchCenter/ITeung
2e3f76294c3affca07934293cdeb46d6d618180a
[ "MIT" ]
null
null
null
lib/redis_set_get.py
InformaticsResearchCenter/ITeung
2e3f76294c3affca07934293cdeb46d6d618180a
[ "MIT" ]
37
2020-03-22T23:21:14.000Z
2020-09-16T15:07:06.000Z
lib/redis_set_get.py
InformaticsResearchCenter/ITeung
2e3f76294c3affca07934293cdeb46d6d618180a
[ "MIT" ]
1
2020-09-08T11:31:30.000Z
2020-09-08T11:31:30.000Z
import redis
21.04
48
0.579848
cd5e82adedde50cba3e364b3ccb25d0a6e80401a
18,185
py
Python
FTDISPI.py
g-i-wilson/spi-tools
1c961a97572a366235f9f3b0517d8201fa8be371
[ "MIT" ]
1
2022-03-22T20:44:01.000Z
2022-03-22T20:44:01.000Z
FTDISPI.py
g-i-wilson/spi-tools
1c961a97572a366235f9f3b0517d8201fa8be371
[ "MIT" ]
null
null
null
FTDISPI.py
g-i-wilson/spi-tools
1c961a97572a366235f9f3b0517d8201fa8be371
[ "MIT" ]
null
null
null
from pyftdi.spi import SpiController from pyftdi.gpio import GpioSyncController import serial import time import sys import JSONFile dbg = False def ui_hex(str): return int(str,16) def uiLoopHelp(): print() print("Command set:") print() print("write <REG_NAME> XXXX1010 1XXXXXX0 | Write bits (any char not 0 or 1 is a don't-care)") print("writeRaw 0xXX 0xXX 0xXX | Write a raw sequence of bytes") print("read <REG_NAME> | Read register") print("all | Read all registers") print("save <fileName> | Save registers to JSON file") print("load <fileName> | Load and write registers from JSON file") print("loadCSV <fileName> | Write bytes from CSV file (each line is one transaction)") print("loadDefault | Load datasheet default JSON configuration") print("help | Print this command set") print("exit | Exit the program") def uiLoop(spiObject, printHelp=True): if printHelp: uiLoopHelp() jsonObject = None ui = [""] while (ui[0] != "exit"): print("\n> ", end='') ui = sys.stdin.readline().rstrip().split(' ') if (ui[0] == "read"): spiObject.readStruct({ ui[1] : {} }, display=True) if (ui[0] == "write"): dataRegs = [] for i in range(2,len(ui)): dataRegs.append( ui[i] ) spiObject.writeBits( ui[1], dataRegs ) if (ui[0] == "all"): spiObject.readState() if (ui[0] == "compare"): spiObject.compare() if (ui[0] == "trigger"): while(1): spiObject.trigger(pre_display=chr(27)+"[2J") time.sleep(1) if (ui[0] == "save"): if jsonObject is None: if len(ui) > 1: jsonObject = JSONFile.new(ui[1]) else: jsonObject = JSONFile.new(input("\nSave as: ")) jsonObject.write( spiObject.readState() ) if (ui[0] == "load"): if jsonObject is None: jsonObject = JSONFile.load(ui[1]) spiObject.writeStruct(jsonObject.read()) spiObject.readState() if (ui[0] == "loadCSV"): spiObject.writeCSV(ui[1]) print("Comparing changes...") spiObject.compare() if (ui[0] == "writeRaw"): print("Writing raw bytes...") byteList = [] for i in range(1,len(ui)): byteList.append( int(ui[i],16) ) print(byteList) spiObject.writeRaw( byteList ) if (ui[0] == "loadDefault"): spiObject.writeDefault() if (ui[0] == "help"): uiLoopHelp()
36.081349
144
0.534451
cd63c34fbdfbd183f707a4b54997655b51643809
3,417
py
Python
src/onegov/gazette/views/groups.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/gazette/views/groups.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/gazette/views/groups.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
from morepath import redirect from onegov.core.security import Private from onegov.gazette import _ from onegov.gazette import GazetteApp from onegov.gazette.forms import EmptyForm from onegov.gazette.layout import Layout from onegov.user import UserGroup from onegov.user import UserGroupCollection from onegov.user.forms import UserGroupForm
23.244898
66
0.605502
cd6412162ab8b14b43aaaa41358897ddfe50fe48
136
py
Python
dlpt/__init__.py
damogranlabs/dlpt
e4cdbaf4b5496ed985eb255b17294aa7cf3d35e4
[ "MIT" ]
5
2021-08-09T19:39:06.000Z
2022-03-22T11:21:29.000Z
dlpt/__init__.py
damogranlabs/dlpt
e4cdbaf4b5496ed985eb255b17294aa7cf3d35e4
[ "MIT" ]
null
null
null
dlpt/__init__.py
damogranlabs/dlpt
e4cdbaf4b5496ed985eb255b17294aa7cf3d35e4
[ "MIT" ]
null
null
null
from . import utils from . import pth from . import proc from . import log from . import json from . import time from . import importer
17
22
0.742647
cd64ffc5e28a3c1d060e7cdf2e73c1f3c1f202dd
1,466
py
Python
personal_utilities/fourier_filters.py
dbstein/personal_utilities
3a4c7d2416b13a87f88fc0e400b299d648e1e541
[ "Apache-2.0" ]
null
null
null
personal_utilities/fourier_filters.py
dbstein/personal_utilities
3a4c7d2416b13a87f88fc0e400b299d648e1e541
[ "Apache-2.0" ]
null
null
null
personal_utilities/fourier_filters.py
dbstein/personal_utilities
3a4c7d2416b13a87f88fc0e400b299d648e1e541
[ "Apache-2.0" ]
null
null
null
import numpy as np
34.093023
78
0.563438
cd67c54b1e46edcb715070c6ab83abb9ea55fa6d
1,178
py
Python
sloth/simple.py
codacy-badger/sloth
a4f2118b2f19e55271613d43c785aaf4ab030b5e
[ "MIT" ]
1
2021-02-11T12:14:23.000Z
2021-02-11T12:14:23.000Z
src/sloth/simple.py
Legorooj/sloth
47f6358349f8545fc475efab19edd6efda3ffbcd
[ "MIT" ]
null
null
null
src/sloth/simple.py
Legorooj/sloth
47f6358349f8545fc475efab19edd6efda3ffbcd
[ "MIT" ]
null
null
null
# ---------------------------------------------------------------------------- # Copyright (c) 2020 Legorooj <[email protected]> # Copyright (c) 2020 FluffyKoalas <github.com/fluffykoalas> # This file and all others in this project are licensed under the MIT license. # Please see the LICENSE file in the root of this repository for more details. # ---------------------------------------------------------------------------- from .timers import Timer from .raw import tests, runners __all__ = [ 'call_after', 'time_callable', 'time_eval', 'time_exec' ]
32.722222
78
0.616299
cd682359aededb5fca5a5b75e857cce2e964a4f3
1,385
py
Python
Final/P2Pchat.py
cainanBlack/csc321
9cebf9c3b61befda932732316b7406f1462c0bee
[ "MIT" ]
null
null
null
Final/P2Pchat.py
cainanBlack/csc321
9cebf9c3b61befda932732316b7406f1462c0bee
[ "MIT" ]
null
null
null
Final/P2Pchat.py
cainanBlack/csc321
9cebf9c3b61befda932732316b7406f1462c0bee
[ "MIT" ]
null
null
null
import netifaces import argparse import os import zmq import threading if __name__ == '__main__': main()
26.634615
102
0.626715
cd68c50658ac006c458874597809bf7939658dff
83
py
Python
examples/object/reference/change_list.py
zqmillet/kinopico_python_book
0db4b0a904a1ba1b7e90cf971871e134941aeb65
[ "MIT" ]
null
null
null
examples/object/reference/change_list.py
zqmillet/kinopico_python_book
0db4b0a904a1ba1b7e90cf971871e134941aeb65
[ "MIT" ]
null
null
null
examples/object/reference/change_list.py
zqmillet/kinopico_python_book
0db4b0a904a1ba1b7e90cf971871e134941aeb65
[ "MIT" ]
null
null
null
a = [1, 2, 3] b = a a[0] = 'gouliguojiashengsiyi' print('a =', a) print('b =', b)
11.857143
29
0.506024
cd6940cd949b8d012c79a302492e17dd59770ba1
2,267
py
Python
source/CTRW.py
tangxiangong/ClassTop
fdafdafd165672ae464210fb8c66c70256d50956
[ "MIT" ]
null
null
null
source/CTRW.py
tangxiangong/ClassTop
fdafdafd165672ae464210fb8c66c70256d50956
[ "MIT" ]
null
null
null
source/CTRW.py
tangxiangong/ClassTop
fdafdafd165672ae464210fb8c66c70256d50956
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- encoding: utf-8 -*- # @Time : 2021/12/1 13:27 import numpy as np from numpy import random import matplotlib.pyplot as plt from trajectory import Trajectory from rnd import stable_rnd, skewed_stable_rnd if __name__ == "__main__": m1 = CTRW(100, 1, 2) t1, x1 = m1.get() fig1 = plt.figure(1) plt.step(t1, x1, where="post") plt.xlabel("t") plt.ylabel("x") fig1.savefig("../figures/ctrw1.png") m2 = CTRW(100, 0.7, 2) t2, x2 = m2.get() fig2 = plt.figure(2) plt.step(t2, x2, where="post") plt.xlabel("t") plt.ylabel("x") fig2.savefig("../figures/ctrw2.png") m3 = CTRW(100, 1, 1.5) t3, x3 = m3.get() fig3 = plt.figure(3) plt.step(t3, x3, where="post") plt.xlabel("t") plt.ylabel("x") fig3.savefig("../figures/ctrw3.png") m4 = CTRW(100, 0.7, 1.5) t4, x4 = m4.get() fig4 = plt.figure(4) plt.step(t4, x4, where="post") plt.xlabel("t") plt.ylabel("x") fig4.savefig("../figures/ctrw4.png")
27.313253
70
0.549625
cd6b149fb6473adbe7fd7149968a3e8e9f36d8bd
901
py
Python
src/conversion_spec_file_reader.py
Eldar1205/exchanger-python-demo-app
6733ff6044555f8c4639dc6e25baf4ef51401fd9
[ "MIT" ]
7
2021-08-31T09:03:39.000Z
2021-09-27T13:45:58.000Z
src/conversion_spec_file_reader.py
Eldar1205/exchanger-python-demo-app
6733ff6044555f8c4639dc6e25baf4ef51401fd9
[ "MIT" ]
null
null
null
src/conversion_spec_file_reader.py
Eldar1205/exchanger-python-demo-app
6733ff6044555f8c4639dc6e25baf4ef51401fd9
[ "MIT" ]
null
null
null
import aiofiles import asyncstdlib from pydantic.types import PositiveFloat from conversion_parameters import ConversionParameters from conversion_spec import ConversionSpec, Currency from conversion_spec_provider import ConversionSpecProvider
37.541667
109
0.783574
cd6b1d33d27551aa6e7a920f48a0b7633b6280b3
3,931
py
Python
Paris_G_1-2-3_v2.py
Gaspe-R/Rendez-vous-prefecture-Paris
e24d1bf0ae6ca5860ad858957c5e923c0ac3d85a
[ "MIT" ]
null
null
null
Paris_G_1-2-3_v2.py
Gaspe-R/Rendez-vous-prefecture-Paris
e24d1bf0ae6ca5860ad858957c5e923c0ac3d85a
[ "MIT" ]
null
null
null
Paris_G_1-2-3_v2.py
Gaspe-R/Rendez-vous-prefecture-Paris
e24d1bf0ae6ca5860ad858957c5e923c0ac3d85a
[ "MIT" ]
null
null
null
from sqlite3 import Date from twilio.rest import Client from datetime import datetime from playsound import playsound from selenium import webdriver from webdriver_manager.chrome import ChromeDriverManager import csv import time ################################ "PREFCTURE DE PARIS" ##################################### ######################## "Remise d'un titre de sjour tranger" ########################### while True: # New instance for Chrome browser = webdriver.Chrome(ChromeDriverManager().install()) # Open the webpage try: browser.get('https://pprdv.interieur.gouv.fr/booking/create/989') time.sleep(3) # Save the window opener (current window, do not mistaken with tab... not the same) main_window = browser.current_window_handle # Accepter les cookies : browser.find_element_by_xpath("//a[@onclick='javascript:accepter()']").click() time.sleep(2) # Click in checkbox "Veuillez cocher la case pour..." : browser.find_element_by_xpath("//input[@name='condition']").click() time.sleep(3) # Click in the submit button : browser.find_element_by_xpath("//input[@name='nextButton']").click() time.sleep(3) # Click in the radio button "Guichets 1-2 &3" : browser.find_element_by_xpath("//input[@id='planning990']").click() time.sleep(3) # Click in the submit button 1 : browser.find_element_by_xpath("//input[@type='submit']").click() time.sleep(4) ################################################## # Variables : textNo = "Il n'existe plus de plage horaire libre pour votre demande de rendez-vous" textOui = "Choix d'une plage horaire" son = "./alert.wav" # ajouter le chemin de votre fichier audio pour l'alerte url = browser.current_url now = datetime.now() Heure = now.strftime("%H:%M:%S") Date = datetime.now().strftime("%d/%m/%Y") #account Twilio : account_sid = 'SID' # ajouter le SID Twilio auth_token = 'token' # ajouter le Token Twilio client = Client(account_sid, auth_token) #log CSV: header = ['Date', 'Heure', 'Prfecture', 'Disponibilit'] DataNo = [Date, Heure,'Paris G 1-2 et 3', 'Pas de Rendez-vous'] DataOui = [Date, Heure, 'Paris G 1-2 et 3', 'Rendez-vous Disponible'] ################################################## #Conditions : if (textOui in browser.page_source): browser.find_element_by_xpath("//input[@type='submit']").click() print("") print("RDV Disponible") print("") with open('./log.csv', 'a', newline='') as f: #ajouter le chemin de votre fichier log writer = csv.writer(f) writer.writerow(DataOui) """ # Send SMS Alert : message = client.messages.create( from_='votre numero twilio', body = 'Rendez-vous prefecture disponible, https://pprdv.interieur.gouv.fr/booking/create/989', to ='votre numero perso' ) print(message.sid) """ #alert sound : playsound(son) time.sleep(900) break elif (textNo in browser.page_source): playsound(son) print("") print("Pas de RDV") print("") with open('./log.csv', 'a', newline='') as f: #ajouter le chemin de votre fichier log writer = csv.writer(f) writer.writerow(DataNo) time.sleep(30) browser.quit() except: browser.quit() time.sleep(60)
36.738318
126
0.522768
cd6d9b2b982fd93ff60ad7ad2c61547c26a40708
3,022
py
Python
movo_common/si_utils/src/si_utils/my_tf_listener.py
ALAN-NUS/kinova_movo
05a0451f5c563359ae0ffe3280e1df85caec9e55
[ "BSD-3-Clause" ]
1
2021-03-26T06:33:28.000Z
2021-03-26T06:33:28.000Z
movo_common/si_utils/src/si_utils/my_tf_listener.py
ALAN-NUS/kinova_movo
05a0451f5c563359ae0ffe3280e1df85caec9e55
[ "BSD-3-Clause" ]
null
null
null
movo_common/si_utils/src/si_utils/my_tf_listener.py
ALAN-NUS/kinova_movo
05a0451f5c563359ae0ffe3280e1df85caec9e55
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python import rospy import math import tf import geometry_msgs.msg from geometry_msgs.msg import PoseStamped from si_utils.lx_transformerROS import my_transformer if __name__ == '__main__': rospy.init_node('my_tf_listener') listener = tf.TransformListener() # my_trans = my_transformer() rate = rospy.Rate(10.0) while not rospy.is_shutdown(): try: # look1 = listener.lookupTransform('/left_ee_link', '/link1', rospy.Time(0)) # look2 = listener.lookupTransform('/base_link', '/left_ee_link', rospy.Time(0)) # look3 = listener.lookupTransform('/base_link', '/link1', rospy.Time(0)) # rospy.loginfo(look3) # rospy.loginfo(look2) pose = PoseStamped() pose.header.frame_id = '/link1' pose2 = listener.transformPose('/base_link', pose) rospy.loginfo(pose2) # (trans,rot) = listener.lookupTransform('/base_link', '/ar_marker_1', rospy.Time(0)) # (trans,rot) = listener.lookupTransform('/base_link', '/left_ee_link', rospy.Time(0)) # (trans1,rot1) = listener.lookupTransform('/movo_camera_color_optical_frame', '/ar_marker_17', rospy.Time(0)) # (trans,rot) = listener.lookupTransform('/base_link', '/movo_camera_color_optical_frame', rospy.Time(0)) # (trans,rot) = listener.lookupTransform('/movo_camera_color_optical_frame', '/base_link', rospy.Time(0)) # (trans,rot) = listener.lookupTransform('/base_link', '/ar_marker_1', rospy.Time(0)) # pose = PoseStamped() # pose.header.frame_id = 'ar_marker_1' # rospy.loginfo("========== First trans ===========") # pose1 = listener.transformPose('/movo_camera_color_optical_frame', pose) # rospy.loginfo(pose1) # rospy.loginfo("========== Second trans ===========") # rospy.loginfo(listener.transformPose('/base_link', pose1)) # print(trans) # print(rot) except (tf.LookupException, tf.ConnectivityException, tf.ExtrapolationException): print('test') # rate.sleep() ''' pose = PoseStamped() pose.header.frame_id = '/ar_marker_17' rospy.loginfo("========== First trans ===========") listener.waitForTransform("/ar_marker_17", "/movo_camera_color_optical_frame", rospy.Time(), rospy.Duration(4.0)) pose1 = listener.transformPose('/movo_camera_color_optical_frame', pose) rospy.loginfo(pose1) rospy.loginfo("========== Second trans ===========") rospy.loginfo(listener.transformPose('/base_link', pose1)) pose_nutStart_nut = PoseStamped() pose_nutStart_nut.header.frame_id = '/nutStart' pose_nutStart_ar = my_trans.tf.transformPose('/ar_marker_17', pose_nutStart_nut) rospy.loginfo(pose_nutStart_ar) pose_nutStart_ca = listener.transformPose('/movo_camera_color_optical_frame', pose_nutStart_ar) rospy.loginfo(pose_nutStart_ca) '''
35.139535
122
0.634348
cd6e8efff351684ee42b6f8c78aec9644cacd755
8,661
py
Python
acme_tiny.py
dennydai/docker-letsencrypt
898fa70665d321e527c7fcc463a57a66dbbdab26
[ "MIT" ]
22
2015-12-06T06:19:43.000Z
2016-03-10T06:44:34.000Z
acme_tiny.py
dennydai/docker-letsencrypt
898fa70665d321e527c7fcc463a57a66dbbdab26
[ "MIT" ]
1
2016-09-11T07:38:45.000Z
2016-09-11T10:50:26.000Z
acme_tiny.py
dennydai/docker-letsencrypt
898fa70665d321e527c7fcc463a57a66dbbdab26
[ "MIT" ]
4
2015-12-22T01:25:16.000Z
2016-01-14T13:24:27.000Z
#!/usr/bin/env python import argparse, subprocess, json, os, os.path, urllib2, sys, base64, binascii, time, \ hashlib, re, copy, textwrap #CA = "https://acme-staging.api.letsencrypt.org" CA = "https://acme-v01.api.letsencrypt.org" if __name__ == "__main__": parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description=textwrap.dedent("""\ This script automates the process of getting a signed TLS certificate from Let's Encrypt using the ACME protocol. It will need to be run on your server and have access to your private account key, so PLEASE READ THROUGH IT! It's only ~200 lines, so it won't take long. ===Example Usage=== python acme_tiny.py --account-key ./account.key --csr ./domain.csr --acme-dir /usr/share/nginx/html/.well-known/acme-challenge/ > signed.crt =================== ===Example Crontab Renewal (once per month)=== 0 0 1 * * python /path/to/acme_tiny.py --account-key /path/to/account.key --csr /path/to/domain.csr --acme-dir /usr/share/nginx/html/.well-known/acme-challenge/ > /path/to/signed.crt 2>> /var/log/acme_tiny.log ============================================== """) ) parser.add_argument("--account-key", required=True, help="path to your Let's Encrypt account private key") parser.add_argument("--csr", required=True, help="path to your certificate signing request") parser.add_argument("--acme-dir", required=True, help="path to the .well-known/acme-challenge/ directory") args = parser.parse_args() signed_crt = get_crt(args.account_key, args.csr, args.acme_dir) sys.stdout.write(signed_crt)
43.522613
221
0.592772
cd6f36cb0dc0dd674280cb84b43ef766b0e9c395
14,691
py
Python
Draft/08_compare_original_GBS_Exome_biallelic_variation_alle_count.py
peipeiwang6/Genomic_prediction_in_Switchgrass
1fba3508c0d81d16e0629e3cf94ff4d174a85b13
[ "MIT" ]
null
null
null
Draft/08_compare_original_GBS_Exome_biallelic_variation_alle_count.py
peipeiwang6/Genomic_prediction_in_Switchgrass
1fba3508c0d81d16e0629e3cf94ff4d174a85b13
[ "MIT" ]
null
null
null
Draft/08_compare_original_GBS_Exome_biallelic_variation_alle_count.py
peipeiwang6/Genomic_prediction_in_Switchgrass
1fba3508c0d81d16e0629e3cf94ff4d174a85b13
[ "MIT" ]
null
null
null
''' imput1: exome capture, biallelic indel matrix input2: exome capture, biallelic SNP matrix input3: GBS, biallelic indel matrix input4: GBS, biallelic SNP matrix input5: allele count file for exome homozygous or heterozygous genotype input6: allele count file for GBS homozygous or heterozygous genotype input7: tetraploid or octaploid ''' import sys,os import numpy as np exome_indel = open(sys.argv[1],'r').readlines() exome_snp = open(sys.argv[2],'r').readlines() gbs_indel = open(sys.argv[3],'r').readlines() gbs_snp = open(sys.argv[4],'r').readlines() EP = {} #EP[pos] = 1 for inl in exome_indel[1:]: tem = inl.split('\t') EP[tem[0] + '_' + tem[1]] = 1 for inl in exome_snp[1:]: tem = inl.split('\t') EP[tem[0] + '_' + tem[1]] = 1 S = {} #shared position, S[pos] = 1 for inl in gbs_indel[1:]: tem = inl.split('\t') if tem[0] + '_' + tem[1] in EP: S[tem[0] + '_' + tem[1]] = 1 for inl in gbs_snp[1:]: tem = inl.split('\t') if tem[0] + '_' + tem[1] in EP: S[tem[0] + '_' + tem[1]] = 1 E = {} # E[pos][ind] = A/T G = {} # G[pos][ind] = A/T EN = {} # EN[i] = ind GN = {} # GN[i] = ind IND = {} # IND[ind] = 1 tem = exome_indel[0].strip().split('\t') for i in range(4,len(tem)): EN[i] = tem[i] IND[tem[i]] = 1 tem = gbs_indel[0].strip().split('\t') for i in range(4,len(tem)): GN[i] = tem[i] for inl in exome_indel[1:]: tem = inl.strip().split('\t') if tem[0] + '_' + tem[1] in S: pos = tem[0] + '_' + tem[1] E[pos] = {} E[pos]['ref'] = tem[2] E[pos]['alt'] = tem[3] for i in range(4,len(tem)): E[pos][EN[i]] = tem[i] for inl in exome_snp[1:]: tem = inl.strip().split('\t') if tem[0] + '_' + tem[1] in S: pos = tem[0] + '_' + tem[1] E[pos] = {} E[pos]['ref'] = tem[2] E[pos]['alt'] = tem[3] for i in range(4,len(tem)): E[pos][EN[i]] = tem[i] for inl in gbs_indel[1:]: tem = inl.strip().split('\t') if tem[0] + '_' + tem[1] in S: pos = tem[0] + '_' + tem[1] G[pos] = {} G[pos]['ref'] = tem[2] G[pos]['alt'] = tem[3] for i in range(4,len(tem)): G[pos][GN[i]] = tem[i] for inl in gbs_snp[1:]: tem = inl.strip().split('\t') if tem[0] + '_' + tem[1] in S: pos = tem[0] + '_' + tem[1] G[pos] = {} G[pos]['ref'] = tem[2] G[pos]['alt'] = tem[3] for i in range(4,len(tem)): G[pos][GN[i]] = tem[i] out = open('Biallelic_variation_%s_Exome_VS_GBS.txt'%sys.argv[7],'w') Ind = sorted(IND.keys()) title = 'Chr\tPos\tRef\tAlt' for ind in Ind: title = title + '\t' + ind out.write(title + '\n') for pos in S: res = pos.split('_')[0] + '\t' + pos.split('_')[1] if E[pos]['ref'] == G[pos]['ref']: res = res + '\t' + E[pos]['ref'] else: res = res + '\t' + E[pos]['ref'] + '|' + G[pos]['ref'] if E[pos]['alt'] == G[pos]['alt']: res = res + '\t' + E[pos]['alt'] else: res = res + '\t' + E[pos]['alt'] + '|' + G[pos]['alt'] for ind in Ind: if E[pos][ind] == G[pos][ind] or (E[pos][ind].split('/')[0] == G[pos][ind].split('/')[1] and E[pos][ind].split('/')[1] == G[pos][ind].split('/')[0]): res = res + '\t' + E[pos][ind] else: res = res + '\t' + E[pos][ind] + '|' + G[pos][ind] out.write(res + '\n') out.close() ori_exome_indel = open(sys.argv[1],'r').readlines() ori_exome_snp = open(sys.argv[2],'r').readlines() ori_gbs_indel = open(sys.argv[3],'r').readlines() ori_gbs_snp = open(sys.argv[4],'r').readlines() ori_out = open('Shared_Biallelic_variation_%s_original_Exome_VS_GBS.txt'%sys.argv[7],'w') out = open('Distribution_of_discrepancy_Biallelic_variation_%s_between_exome_and_GBS.txt'%sys.argv[7],'w') ori_out.write(title + '\n') O_exome = {} O_gbs = {} EN = {} # EN[i] = ind GN = {} # GN[i] = ind tem = ori_exome_indel[0].strip().split('\t') for i in range(4,len(tem)): EN[i] = tem[i] IND[tem[i]] = 1 tem = ori_gbs_indel[0].strip().split('\t') for i in range(4,len(tem)): GN[i] = tem[i] for inl in ori_exome_indel[1:]: tem = inl.strip().split('\t') if tem[0] + '_' + tem[1] in S: pos = tem[0] + '_' + tem[1] O_exome[pos] = {} O_exome[pos]['ref'] = tem[2] O_exome[pos]['alt'] = tem[3] for i in range(4,len(tem)): O_exome[pos][EN[i]] = tem[i] for inl in ori_exome_snp[1:]: tem = inl.strip().split('\t') if tem[0] + '_' + tem[1] in S: pos = tem[0] + '_' + tem[1] O_exome[pos] = {} O_exome[pos]['ref'] = tem[2] O_exome[pos]['alt'] = tem[3] for i in range(4,len(tem)): O_exome[pos][EN[i]] = tem[i] for inl in ori_gbs_indel[1:]: tem = inl.strip().split('\t') if tem[0] + '_' + tem[1] in S: pos = tem[0] + '_' + tem[1] O_gbs[pos] = {} O_gbs[pos]['ref'] = tem[2] O_gbs[pos]['alt'] = tem[3] for i in range(4,len(tem)): O_gbs[pos][GN[i]] = tem[i] for inl in ori_gbs_snp[1:]: tem = inl.strip().split('\t') if tem[0] + '_' + tem[1] in S: pos = tem[0] + '_' + tem[1] O_gbs[pos] = {} O_gbs[pos]['ref'] = tem[2] O_gbs[pos]['alt'] = tem[3] for i in range(4,len(tem)): O_gbs[pos][GN[i]] = tem[i] if sys.argv[7] == 'octaploid': N1 = 0 ### Exome has variation, GBS is ./. N2 = 0 ### have same variation N3 = 0 ### Exome has heteo(AATT), GBS has homo N3_02 = 0 ### Exome has heteo(ATTT or AAAT), GBS has homo N3_03 = 0 ### Exome has heteo(ATTT or AAAT), GBS has hetero(AATT) N4 = 0 ### Exome is ./., GBS has variation N5 = 0 ### Exome has homo, GBS has heteo(AATT) N5_02 = 0 ### Exome has homo, GBS has heteo(ATTT or AAAT) N5_03 = 0 ### Exome has hetero(AATT), GBS has heteo(ATTT or AAAT) N5_04 = 0 ### Exome has hetero(ATTT), GBS has heteo(TTTA) N6 = 0 ### both are ./. N7 = 0 ### both homo but different variation out.write('Chr\tpos\tID\tExome_SNP\tGBS_SNP\tType\n') for pos in S: res = pos.split('_')[0] + '\t' + pos.split('_')[1] if O_exome[pos]['ref'] == O_gbs[pos]['ref']: res = res + '\t' + O_exome[pos]['ref'] else: res = res + '\t' + O_exome[pos]['ref'] + '|' + O_gbs[pos]['ref'] print(pos) if O_exome[pos]['alt'] == O_gbs[pos]['alt']: res = res + '\t' + O_exome[pos]['alt'] else: res = res + '\t' + O_exome[pos]['alt'] + '|' + O_gbs[pos]['alt'] print(pos) for ind in Ind: if O_exome[pos][ind] == O_gbs[pos][ind] or sorted(O_exome[pos][ind].split('/')) == sorted(O_gbs[pos][ind].split('/')): res = res + '\t' + O_exome[pos][ind] else: res = res + '\t' + O_exome[pos][ind] + '|' + O_gbs[pos][ind] ### have same SNPs, AATT == TTAA, ATTT == TTTA if (O_exome[pos][ind] == O_gbs[pos][ind] or sorted(O_exome[pos][ind].split('/')) == sorted(O_gbs[pos][ind].split('/'))) and O_exome[pos][ind]!= './././.': N2 += 1 ### both are ./. elif O_exome[pos][ind] == O_gbs[pos][ind] and O_exome[pos][ind]== './././.': N6 += 1 ### Exome has SNPs, GBS is ./. elif O_exome[pos][ind] != './././.' and O_gbs[pos][ind] == './././.': N1 += 1 ### Exome is ./., GBS has SNPs elif O_exome[pos][ind] == './././.' and O_gbs[pos][ind] != './././.': N4 += 1 ### Exome has homo, GBS has hetero(AATT) elif len(np.unique(O_exome[pos][ind].split('/'))) == 1 and len(np.unique(O_gbs[pos][ind].split('/'))) == 2 and O_exome[pos][ind]!= './.' and O_gbs[pos][ind].split('/')[1] != O_gbs[pos][ind].split('/')[2]: N5 += 1 out.write('%s\t%s\t%s\t%s\t%s\tExome_homo_GBS_hetero_AATT\n'%(pos.split('_')[0],pos.split('_')[1],ind,O_exome[pos][ind],O_gbs[pos][ind])) ### Exome has homo, GBS has hetero(ATTT or AAAT) elif len(np.unique(O_exome[pos][ind].split('/'))) == 1 and len(np.unique(O_gbs[pos][ind].split('/'))) == 2 and O_exome[pos][ind]!= './.' and O_gbs[pos][ind].split('/')[1] == O_gbs[pos][ind].split('/')[2]: N5_02 += 1 out.write('%s\t%s\t%s\t%s\t%s\tExome_homo_GBS_hetero_ATTT\n'%(pos.split('_')[0],pos.split('_')[1],ind,O_exome[pos][ind],O_gbs[pos][ind])) ### Exome has AATT, GBS has hetero(ATTT or AAAT) elif len(np.unique(O_exome[pos][ind].split('/'))) == 2 and len(np.unique(O_gbs[pos][ind].split('/'))) == 2 and O_gbs[pos][ind].split('/')[1] == O_gbs[pos][ind].split('/')[2] and O_exome[pos][ind].split('/')[1] != O_exome[pos][ind].split('/')[2]: N5_03 += 1 out.write('%s\t%s\t%s\t%s\t%s\tExome_hetero_AATT_GBS_hetero_ATTT\n'%(pos.split('_')[0],pos.split('_')[1],ind,O_exome[pos][ind],O_gbs[pos][ind])) ### Exome has ATTT, GBS has heteroTTTA elif len(np.unique(O_exome[pos][ind].split('/'))) == 2 and len(np.unique(O_gbs[pos][ind].split('/'))) == 2 and O_gbs[pos][ind].split('/')[1] == O_gbs[pos][ind].split('/')[2] and O_exome[pos][ind].split('/')[1] == O_exome[pos][ind].split('/')[2] and sorted(O_exome[pos][ind].split('/')) != sorted(O_gbs[pos][ind].split('/')): N5_04 += 1 out.write('%s\t%s\t%s\t%s\t%s\tExome_hetero_ATTT_GBS_hetero_AAAT\n'%(pos.split('_')[0],pos.split('_')[1],ind,O_exome[pos][ind],O_gbs[pos][ind])) ### Exome has hetero(AATT), GBS has homo elif len(np.unique(O_exome[pos][ind].split('/'))) == 2 and len(np.unique(O_gbs[pos][ind].split('/'))) == 1 and O_exome[pos][ind].split('/')[1] != O_exome[pos][ind].split('/')[2] and O_gbs[pos][ind] != './.': N3 += 1 out.write('%s\t%s\t%s\t%s\t%s\tExome_hetero_AATT_GBS_homo\n'%(pos.split('_')[0],pos.split('_')[1],ind,O_exome[pos][ind],O_gbs[pos][ind])) ### Exome has hetero(ATTT or AAAT), GBS has homo elif len(np.unique(O_exome[pos][ind].split('/'))) == 2 and len(np.unique(O_gbs[pos][ind].split('/'))) == 1 and O_exome[pos][ind].split('/')[1] == O_exome[pos][ind].split('/')[2] and O_gbs[pos][ind] != './.': N3_02 += 1 out.write('%s\t%s\t%s\t%s\t%s\tExome_hetero_ATTT_GBS_homo\n'%(pos.split('_')[0],pos.split('_')[1],ind,O_exome[pos][ind],O_gbs[pos][ind])) ### Exome has hetero(ATTT or AAAT), GBS has hetero(AATT) elif len(np.unique(O_exome[pos][ind].split('/'))) == 2 and len(np.unique(O_gbs[pos][ind].split('/'))) == 2 and O_exome[pos][ind].split('/')[1] == O_exome[pos][ind].split('/')[2] and O_gbs[pos][ind].split('/')[1] != O_gbs[pos][ind].split('/')[2] : N3_03 += 1 out.write('%s\t%s\t%s\t%s\t%s\tExome_hetero_ATTT_GBS_hetero_AATT\n'%(pos.split('_')[0],pos.split('_')[1],ind,O_exome[pos][ind],O_gbs[pos][ind])) ### both homo, but diff elif len(np.unique(O_exome[pos][ind].split('/'))) == 1 and len(np.unique(O_gbs[pos][ind].split('/'))) == 1 and O_exome[pos][ind]!=O_gbs[pos][ind] and O_exome[pos][ind] != './././.' and O_gbs[pos][ind]!= './././.': N7 += 1 print([O_exome[pos][ind],O_gbs[pos][ind]]) out.write('%s\t%s\t%s\t%s\t%s\tBoth_homo_differ\n'%(pos.split('_')[0],pos.split('_')[1],ind,O_exome[pos][ind],O_gbs[pos][ind])) ori_out.write(res + '\n') ori_out.close() out.close() print([N1,N2,N3,N3_02,N3_03,N4,N5,N5_02,N5_03,N5_04,N6,N7]) if sys.argv[7] == 'tetraploid': N1 = 0 ### Exome has SNPs, GBS is ./. N2 = 0 ### have same SNPs N3 = 0 ### Exome has heteo, GBS has homo N4 = 0 ### Exome is ./., GBS has SNPs N5 = 0 ### Exome has homo, GBS has heteo N6 = 0 ### both are ./. N7 = 0 ### both homo but different SNPs out.write('Chr\tpos\tID\tExome_SNP\tGBS_SNP\tType\n') for pos in S: res = pos.split('_')[0] + '\t' + pos.split('_')[1] if O_exome[pos]['ref'] == O_gbs[pos]['ref']: res = res + '\t' + O_exome[pos]['ref'] else: res = res + '\t' + O_exome[pos]['ref'] + '|' + O_gbs[pos]['ref'] if O_exome[pos]['alt'] == O_gbs[pos]['alt']: res = res + '\t' + O_exome[pos]['alt'] else: res = res + '\t' + O_exome[pos]['alt'] + '|' + O_gbs[pos]['alt'] for ind in Ind: if O_exome[pos][ind] == O_gbs[pos][ind] or (O_exome[pos][ind].split('/')[0] == O_gbs[pos][ind].split('/')[1] and O_exome[pos][ind].split('/')[1] == O_gbs[pos][ind].split('/')[0]): res = res + '\t' + O_exome[pos][ind] else: res = res + '\t' + O_exome[pos][ind] + '|' + O_gbs[pos][ind] ### have same SNPs if (O_exome[pos][ind] == O_gbs[pos][ind] or (O_exome[pos][ind].split('/')[0] == O_gbs[pos][ind].split('/')[1] and O_exome[pos][ind].split('/')[1] == O_gbs[pos][ind].split('/')[0])) and O_exome[pos][ind]!= './.': N2 += 1 ### both are ./. elif O_exome[pos][ind] == O_gbs[pos][ind] and O_exome[pos][ind]== './.': N6 += 1 ### Exome has SNPs, GBS is ./. elif O_exome[pos][ind] != './.' and O_gbs[pos][ind] == './.': N1 += 1 ### Exome is ./., GBS has SNPs elif O_exome[pos][ind] == './.' and O_gbs[pos][ind] != './.': N4 += 1 ### Exome has homo, GBS has hetero elif O_exome[pos][ind].split('/')[0] == O_exome[pos][ind].split('/')[1] and O_exome[pos][ind]!= './.' and O_gbs[pos][ind].split('/')[0] != O_gbs[pos][ind].split('/')[1]: N5 += 1 out.write('%s\t%s\t%s\t%s\t%s\tExome_homo_GBS_hetero\n'%(pos.split('_')[0],pos.split('_')[1],ind,O_exome[pos][ind],O_gbs[pos][ind])) ### Exome has hetero, GBS has homo elif O_exome[pos][ind].split('/')[0] != O_exome[pos][ind].split('/')[1] and O_gbs[pos][ind].split('/')[0] == O_gbs[pos][ind].split('/')[1] and O_gbs[pos][ind] != './.': N3 += 1 out.write('%s\t%s\t%s\t%s\t%s\tExome_hetero_GBS_homo\n'%(pos.split('_')[0],pos.split('_')[1],ind,O_exome[pos][ind],O_gbs[pos][ind])) else: N7 += 1 print([O_exome[pos][ind],O_gbs[pos][ind]]) out.write('%s\t%s\t%s\t%s\t%s\tBoth_homo_differ\n'%(pos.split('_')[0],pos.split('_')[1],ind,O_exome[pos][ind],O_gbs[pos][ind])) ori_out.write(res + '\n') ori_out.close() out.close() print([N1,N2,N3,N4,N5,N6,N7]) inp = open('Distribution_of_discrepancy_Biallelic_variation_%s_between_exome_and_GBS.txt'%sys.argv[7],'r').readlines() out = open('Distribution_of_discrepancy_Biallelic_variation_%s_between_exome_and_GBS_alle_count.txt'%sys.argv[7],'w') P = {} for inl in inp[1:]: tem = inl.split('\t') chr = tem[0] pos = tem[1] ind = tem[2] if chr not in P: P[chr] = {} if pos not in P[chr]: P[chr][pos] = {} if ind not in P[chr][pos]: P[chr][pos][ind] = [0,0,0,0] Exome = open(sys.argv[5],'r') inl = Exome.readline() inl = Exome.readline() while inl: tem = inl.split('\t') chr = tem[0] pos = tem[1] ind = tem[2] if chr in P: if pos in P[chr]: if ind in P[chr][pos]: P[chr][pos][ind][0] = int(tem[6]) P[chr][pos][ind][1] = int(tem[7]) inl = Exome.readline() GBS = open(sys.argv[6],'r') inl = GBS.readline() inl = GBS.readline() while inl: tem = inl.split('\t') chr = tem[0] pos = tem[1] ind = tem[2] if chr in P: if pos in P[chr]: if ind in P[chr][pos]: P[chr][pos][ind][2] = int(tem[6]) P[chr][pos][ind][3] = int(tem[7]) inl = GBS.readline() out.write('Chr\tPos\tInd\tExome_SNP\tGBS_SNP\tType\tExome_alle_count\tExome_read_count\tGBS_alle_count\tGBS_read_count\n') for inl in inp[1:]: tem = inl.split('\t') chr = tem[0] pos = tem[1] ind = tem[2] if chr not in P: P[chr] = {} if pos not in P[chr]: P[chr][pos] = {} if ind not in P[chr][pos]: P[chr][pos][ind] = [0,0,0,0] out.write('%s\t%s\t%s\t%s\t%s\n'%(inl.strip(),P[chr][pos][ind][0],P[chr][pos][ind][1],P[chr][pos][ind][2],P[chr][pos][ind][3])) out.close()
39.176
327
0.571166
cd7225d8ec41e4d30a72fb83efb498273f5b3bbc
132
py
Python
platform/radio/efr32_multiphy_configurator/pyradioconfig/parts/viper/calculators/calc_frame.py
PascalGuenther/gecko_sdk
2e82050dc8823c9fe0e8908c1b2666fb83056230
[ "Zlib" ]
82
2016-06-29T17:24:43.000Z
2021-04-16T06:49:17.000Z
platform/radio/efr32_multiphy_configurator/pyradioconfig/parts/viper/calculators/calc_frame.py
PascalGuenther/gecko_sdk
2e82050dc8823c9fe0e8908c1b2666fb83056230
[ "Zlib" ]
6
2022-01-12T18:22:08.000Z
2022-03-25T10:19:27.000Z
platform/radio/efr32_multiphy_configurator/pyradioconfig/parts/viper/calculators/calc_frame.py
PascalGuenther/gecko_sdk
2e82050dc8823c9fe0e8908c1b2666fb83056230
[ "Zlib" ]
56
2016-08-02T10:50:50.000Z
2021-07-19T08:57:34.000Z
from pyradioconfig.parts.bobcat.calculators.calc_frame import Calc_Frame_Bobcat
33
79
0.863636
cd7529c73cff8550931b72e595537b4c1b291bee
1,940
py
Python
scripts/stats_wrapper.py
gpertea/regtools
a59d5dbd3268b0d83412e6fe81cf7e924c7bcb7c
[ "MIT" ]
70
2015-08-05T21:32:51.000Z
2021-11-26T13:26:33.000Z
scripts/stats_wrapper.py
gpertea/regtools
a59d5dbd3268b0d83412e6fe81cf7e924c7bcb7c
[ "MIT" ]
145
2015-08-05T22:27:58.000Z
2022-03-14T21:50:17.000Z
scripts/stats_wrapper.py
gpertea/regtools
a59d5dbd3268b0d83412e6fe81cf7e924c7bcb7c
[ "MIT" ]
29
2015-08-01T02:19:40.000Z
2021-12-16T20:02:40.000Z
import glob import subprocess import os import argparse import shutil input_parser = argparse.ArgumentParser( description="Run RegTools stats script", ) input_parser.add_argument( 'tag', help="Variant tag parameter used to run RegTools.", ) args = input_parser.parse_args() tag = args.tag cwd = os.getcwd() lines_per_file = 25000 smallfile = None with open(f'all_splicing_variants_{tag}.bed', 'r') as bigfile: header = bigfile.readline() for lineno, line in enumerate(bigfile): if lineno % lines_per_file == 0: if smallfile: smallfile.close() small_filename = 'small_file_{}.txt'.format(lineno + lines_per_file) smallfile = open(small_filename, "w") smallfile.write(header) smallfile.write(line) if smallfile: smallfile.close() #get chunks files = glob.glob('small_file_*') files.sort() number_of_in_files = len(files) for file in files: subprocess.run(f'Rscript --vanilla compare_junctions_hist_v2.R {tag} {file}', shell=True, check=True) output_files = glob.glob("*_out.tsv") output_files.sort()# glob lacks reliable ordering, so impose your own if output order matters number_of_out_files = len(output_files) if number_of_in_files == number_of_out_files: with open(f'compare_junctions/hist/junction_pvalues_{tag}.tsv', 'wb') as outfile: for i, fname in enumerate(output_files): with open(fname, 'rb') as infile: if i != 0: infile.readline() # Throw away header on all but first file # Block copy rest of file from input to output without parsing shutil.copyfileobj(infile, outfile) print(fname + " has been imported.") else: print("Number of output files doesn't match the number of input files that should have been processed") files = glob.glob('small_file_*') for file in files: os.remove(file)
33.448276
107
0.676804
cd7892510c7f345ccc184879db2d6bb6e417c44a
451
py
Python
lib/model/utils/plt_loss.py
PhoneSix/Domain-Contrast
5c674b581bce9beacf5bc0dd13113f33c4050495
[ "MIT" ]
4
2021-07-31T01:04:15.000Z
2022-03-09T07:23:10.000Z
lib/model/utils/plt_loss.py
PhoneSix/Domain-Contrast
5c674b581bce9beacf5bc0dd13113f33c4050495
[ "MIT" ]
null
null
null
lib/model/utils/plt_loss.py
PhoneSix/Domain-Contrast
5c674b581bce9beacf5bc0dd13113f33c4050495
[ "MIT" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt import os
25.055556
47
0.62306
cd78d6e1151155e18754cebc1cc2d5b9e9efa63f
3,267
py
Python
ocellaris/utils/alarm.py
TormodLandet/Ocellaris
6b4b2515fb881b1ed8d8fd8d8c23a8e1990ada58
[ "Apache-2.0" ]
1
2017-11-07T12:19:44.000Z
2017-11-07T12:19:44.000Z
ocellaris/utils/alarm.py
TormodLandet/Ocellaris
6b4b2515fb881b1ed8d8fd8d8c23a8e1990ada58
[ "Apache-2.0" ]
null
null
null
ocellaris/utils/alarm.py
TormodLandet/Ocellaris
6b4b2515fb881b1ed8d8fd8d8c23a8e1990ada58
[ "Apache-2.0" ]
2
2018-05-02T17:17:01.000Z
2019-03-11T13:09:40.000Z
# Copyright (C) 2018-2019 Tormod Landet # SPDX-License-Identifier: Apache-2.0 """ A timeout context manager based on SIGALRM, Permits multiple SIGALRM events to be queued. Uses a `heapq` to store the objects to be called when an alarm signal is raised, so that the next alarm is always at the top of the heap. Note: SIGALRM does not work on Windows! Code from ActiveState Python recipes http://code.activestate.com/recipes/577600-queue-for-managing-multiple-sigalrm-alarms-concurr/ modified by stackoverflow user "James": https://stackoverflow.com/a/34999808 """ import heapq import signal from time import time alarmlist = [] def __clear_alarm(): """ Clear an existing alarm. If the alarm signal was set to a callable other than our own, queue the previous alarm settings. """ oldsec = signal.alarm(0) oldfunc = signal.signal(signal.SIGALRM, __alarm_handler) if oldsec > 0 and oldfunc != __alarm_handler: heapq.heappush(alarmlist, (__new_alarm(oldsec, oldfunc, [], {}))) def __alarm_handler(*_args): """ Handle an alarm by calling any due heap entries and resetting the alarm. Note that multiple heap entries might get called, especially if calling an entry takes a lot of time. """ try: nextt = __next_alarm() while nextt is not None and nextt <= 0: (_tm, func, args, keys) = heapq.heappop(alarmlist) func(*args, **keys) nextt = __next_alarm() finally: if alarmlist: __set_alarm() def alarm(sec, func, *args, **keys): """ Set an alarm. When the alarm is raised in `sec` seconds, the handler will call `func`, passing `args` and `keys`. Return the heap entry (which is just a big tuple), so that it can be cancelled by calling `cancel()`. """ __clear_alarm() try: newalarm = __new_alarm(sec, func, args, keys) heapq.heappush(alarmlist, newalarm) return newalarm finally: __set_alarm() def cancel(alarm): """ Cancel an alarm by passing the heap entry returned by `alarm()`. It is an error to try to cancel an alarm which has already occurred. """ __clear_alarm() try: alarmlist.remove(alarm) heapq.heapify(alarmlist) finally: if alarmlist: __set_alarm()
25.724409
94
0.653811
cd79597c4dc624f2537254fe68c7bb39e5b6003c
2,549
py
Python
apps/insar.py
giswqs/streamlit-insar
e2c0897f01aeff96cd119cce8cf6dd3d8fb0e455
[ "MIT" ]
5
2021-12-14T23:28:36.000Z
2022-02-27T14:35:29.000Z
apps/insar.py
giswqs/streamlit-insar
e2c0897f01aeff96cd119cce8cf6dd3d8fb0e455
[ "MIT" ]
null
null
null
apps/insar.py
giswqs/streamlit-insar
e2c0897f01aeff96cd119cce8cf6dd3d8fb0e455
[ "MIT" ]
null
null
null
import folium import altair as alt import leafmap.foliumap as leafmap import pandas as pd import streamlit as st
25.747475
85
0.433503
cd7a330fb695d24e5d3e2270fbbe2e1e0d11d2dc
2,105
py
Python
solve_net.py
a1exwang/theano-cnn-intro
5f6ecdcb2908afb34a7d94e69b1d1ab13beb3c62
[ "MIT" ]
null
null
null
solve_net.py
a1exwang/theano-cnn-intro
5f6ecdcb2908afb34a7d94e69b1d1ab13beb3c62
[ "MIT" ]
null
null
null
solve_net.py
a1exwang/theano-cnn-intro
5f6ecdcb2908afb34a7d94e69b1d1ab13beb3c62
[ "MIT" ]
null
null
null
from utils import LOG_INFO import numpy as np
39.716981
116
0.443705
cd7b0a77a1f93e1e0546019ec5051874f1e448ee
1,199
py
Python
playground/test1.py
mathee92/unirentalz
803c58628ebda002e2c127db11fbaddf181ef394
[ "MIT" ]
null
null
null
playground/test1.py
mathee92/unirentalz
803c58628ebda002e2c127db11fbaddf181ef394
[ "MIT" ]
null
null
null
playground/test1.py
mathee92/unirentalz
803c58628ebda002e2c127db11fbaddf181ef394
[ "MIT" ]
null
null
null
# ----------- # User Instructions # # Modify the valid_month() function to verify # whether the data a user enters is a valid # month. If the passed in parameter 'month' # is not a valid month, return None. # If 'month' is a valid month, then return # the name of the month with the first letter # capitalized. # import string import cgi months = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December']
18.734375
46
0.539616
cd7da929a4d4176f292520c09ac6f877772c0b49
2,274
py
Python
hookio/logs.py
Marak/hook.io-sdk-python
722b04eb0832ef712d5dcd491899996088e1aa8b
[ "Unlicense" ]
1
2021-06-15T11:52:44.000Z
2021-06-15T11:52:44.000Z
hookio/logs.py
Marak/hook.io-sdk-python
722b04eb0832ef712d5dcd491899996088e1aa8b
[ "Unlicense" ]
null
null
null
hookio/logs.py
Marak/hook.io-sdk-python
722b04eb0832ef712d5dcd491899996088e1aa8b
[ "Unlicense" ]
null
null
null
import sys import weakref import json import logging from .utils import opt_json, Response2JSONLinesIterator from six import StringIO log = logging.getLogger(__name__)
35.53125
87
0.575638
cd7e21c2d43aa6b5ca80b05a26cc762c012f19a7
228
py
Python
data/__init__.py
opconty/keras_std
26cbe25c525128a067a97157bca0b060f40e5ec8
[ "Apache-2.0" ]
18
2019-07-16T10:54:29.000Z
2021-03-16T00:34:23.000Z
data/__init__.py
opconty/keras_std
26cbe25c525128a067a97157bca0b060f40e5ec8
[ "Apache-2.0" ]
2
2019-08-26T11:40:12.000Z
2019-12-07T13:18:48.000Z
data/__init__.py
opconty/keras_std
26cbe25c525128a067a97157bca0b060f40e5ec8
[ "Apache-2.0" ]
8
2019-07-17T08:26:10.000Z
2021-03-16T00:34:17.000Z
#-*- coding:utf-8 -*- #''' # Created on 19-7-16 2:14 # # @Author: Greg Gao(laygin) #''' from .synth_text import SynthTextConfig, SynthTextDataset from .icdar13 import IcdarConfig, IcdarDataset from .img_aug import resize_image
25.333333
57
0.736842
cd7f21d270d7885499684e88d3eb5ad2fac11de9
6,376
py
Python
alberto/annotation/train.py
lettomobile/DeepPoseKit
a922d2d99cd55d0a3909c1f3f8b2bf8c377ff503
[ "Apache-2.0" ]
1
2021-11-01T02:08:00.000Z
2021-11-01T02:08:00.000Z
alberto/annotation/train.py
albertoursino/DeepPoseKit
a922d2d99cd55d0a3909c1f3f8b2bf8c377ff503
[ "Apache-2.0" ]
null
null
null
alberto/annotation/train.py
albertoursino/DeepPoseKit
a922d2d99cd55d0a3909c1f3f8b2bf8c377ff503
[ "Apache-2.0" ]
null
null
null
from alberto.annotation import annotation_set from pandas import np from deepposekit.io import TrainingGenerator, DataGenerator from deepposekit.augment import FlipAxis import imgaug.augmenters as iaa import imgaug as ia from deepposekit.models import StackedHourglass from deepposekit.models import load_model import matplotlib.pyplot as plt from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping from deepposekit.callbacks import Logger, ModelCheckpoint import time from os.path import expanduser HOME = annotation_set.HOME IMAGE_SIZE = annotation_set.IMAGE_SIZE TYPE = annotation_set.TYPE data_generator = DataGenerator( datapath=HOME + '/deepposekit-data/datasets/{}/annotation_set_{}_{}.h5'.format(TYPE, IMAGE_SIZE[0], IMAGE_SIZE[1])) image, keypoints = data_generator[0] plt.figure(figsize=(5, 5)) image = image[0] if image.shape[-1] is 3 else image[0, ..., 0] cmap = None if image.shape[-1] is 3 else 'gray' plt.imshow(image, cmap=cmap, interpolation='none') for idx, jdx in enumerate(data_generator.graph): if jdx > -1: x1 = keypoints[0, idx, 0] x2 = keypoints[0, jdx, 0] if (0 <= x1 <= IMAGE_SIZE[0]) and (0 <= x2 <= IMAGE_SIZE[0]): plt.plot( [keypoints[0, idx, 0], keypoints[0, jdx, 0]], [keypoints[0, idx, 1], keypoints[0, jdx, 1]], 'r-' ) plt.scatter(keypoints[0, :, 0], keypoints[0, :, 1], c=np.arange(data_generator.keypoints_shape[0]), s=50, cmap=plt.cm.hsv, zorder=3) plt.show() # Augmentation augmenter = [] augmenter.append(FlipAxis(data_generator, axis=0)) # flip image up-down augmenter.append(FlipAxis(data_generator, axis=1)) # flip image left-right sometimes = [] sometimes.append(iaa.Affine(scale={"x": (0.95, 1.05), "y": (0.95, 1.05)}, translate_percent={'x': (-0.05, 0.05), 'y': (-0.05, 0.05)}, shear=(-8, 8), order=ia.ALL, cval=ia.ALL, mode=ia.ALL) ) sometimes.append(iaa.Affine(scale=(0.8, 1.2), mode=ia.ALL, order=ia.ALL, cval=ia.ALL) ) augmenter.append(iaa.Sometimes(0.75, sometimes)) augmenter.append(iaa.Affine(rotate=(-180, 180), mode=ia.ALL, order=ia.ALL, cval=ia.ALL) ) augmenter = iaa.Sequential(augmenter) # image, keypoints = data_generator[0] # image, keypoints = augmenter(images=image, keypoints=keypoints) # plt.figure(figsize=(5, 5)) # image = image[0] if image.shape[-1] is 3 else image[0, ..., 0] # cmap = None if image.shape[-1] is 3 else 'gray' # plt.imshow(image, cmap=cmap, interpolation='none') # for idx, jdx in enumerate(data_generator.graph): # if jdx > -1: # x1 = keypoints[0, idx, 0] # x2 = keypoints[0, jdx, 0] # if (0 <= x1 <= IMAGE_SIZE[0]) and (0 <= x2 <= IMAGE_SIZE[0]): # plt.plot( # [keypoints[0, idx, 0], keypoints[0, jdx, 0]], # [keypoints[0, idx, 1], keypoints[0, jdx, 1]], # 'r-' # ) plt.scatter(keypoints[0, :, 0], keypoints[0, :, 1], c=np.arange(data_generator.keypoints_shape[0]), s=50, cmap=plt.cm.hsv, zorder=3) # plt.show() train_generator = TrainingGenerator(generator=data_generator, downsample_factor=3, augmenter=augmenter, sigma=5, validation_split=0, use_graph=False, random_seed=1, graph_scale=1) train_generator.get_config() # n_keypoints = data_generator.keypoints_shape[0] # batch = train_generator(batch_size=1, validation=False)[0] # inputs = batch[0] # outputs = batch[1] # fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(10, 10)) # ax1.set_title('image') # ax1.imshow(inputs[0, ..., 0], vmin=0, vmax=255) # # ax2.set_title('posture graph') # ax2.imshow(outputs[0, ..., n_keypoints:-1].max(-1)) # # ax3.set_title('keypoints confidence') # ax3.imshow(outputs[0, ..., :n_keypoints].max(-1)) # # ax4.set_title('posture graph and keypoints confidence') # ax4.imshow(outputs[0, ..., -1], vmin=0) # plt.show() train_generator.on_epoch_end() # Define a model model = StackedHourglass(train_generator) model.get_config() # data_size = (10,) + data_generator.image_shape # x = np.random.randint(0, 255, data_size, dtype="uint8") # y = model.predict(x[:100], batch_size=100) # make sure the model is in GPU memory # t0 = time.time() # y = model.predict(x, batch_size=100, verbose=1) # t1 = time.time() # print(x.shape[0] / (t1 - t0)) # logger = Logger(validation_batch_size=10, # # filepath saves the logger data to a .h5 file # filepath=HOME + "/deepposekit-data/datasets/{}/log_densenet.h5".format(TYPE) # ) # Remember, if you set validation_split=0 for your TrainingGenerator, # which will just use the training set for model fitting, # make sure to set monitor="loss" instead of monitor="val_loss". reduce_lr = ReduceLROnPlateau(monitor="loss", factor=0.2, verbose=1, patience=20) model_checkpoint = ModelCheckpoint( HOME + "/deepposekit-data/datasets/{}/model_densenet.h5".format(TYPE), monitor="loss", # monitor="loss" # use if validation_split=0 verbose=1, save_best_only=True, ) early_stop = EarlyStopping( monitor="loss", # monitor="loss" # use if validation_split=0 min_delta=0.001, patience=100, verbose=1 ) callbacks = [early_stop, reduce_lr, model_checkpoint] model.fit( batch_size=5, validation_batch_size=10, callbacks=callbacks, # epochs=1000, # Increase the number of epochs to train the model longer epochs=50, n_workers=8, steps_per_epoch=None, ) # model = load_model( # HOME + "/deepposekit-data/datasets/{}/model_densenet.h5".format(TYPE), # augmenter=augmenter, # generator=data_generator, # ) # # model.fit( # batch_size=2, # validation_batch_size=10, # callbacks=callbacks, # epochs=50, # n_workers=8, # steps_per_epoch=None, # )
32.697436
132
0.606336
cd8237accaa927ddf6513747162736a47cc442f6
763
py
Python
northpole/settings/local_staging.py
mhotwagner/northpole
7d904d919aeb6a36549750ee0700578246896691
[ "MIT" ]
null
null
null
northpole/settings/local_staging.py
mhotwagner/northpole
7d904d919aeb6a36549750ee0700578246896691
[ "MIT" ]
null
null
null
northpole/settings/local_staging.py
mhotwagner/northpole
7d904d919aeb6a36549750ee0700578246896691
[ "MIT" ]
null
null
null
from .base import * from dotenv import load_dotenv load_dotenv(dotenv_path='northpole/.staging.env', verbose=True) ALLOWED_HOSTS = ['*'] EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': os.getenv('POSTGRES_DB', 'northpole-staging'), 'USER': os.getenv('POSTGRES_USER'), 'PASSWORD': os.getenv('POSTGRES_PASSWORD'), 'HOST': os.getenv('POSTGRES_HOST'), 'PORT': os.getenv('POSTGRES_PORT', '5432'), } } STATIC_ROOT = os.path.join(BASE_DIR, '..', 'static') STATICFILES_DIRS = ( os.path.join(BASE_DIR, '..', 'static_source'), ) MEDIA_ROOT = os.path.join(BASE_DIR, '..' 'media') MEDIA_URL = '/media/'
25.433333
64
0.651376
cd836f4eaf2d0f0894b304e6d9d109cacae91338
12,587
py
Python
bc4py/bip32/bip32.py
namuyan/bc4py
6484d356096261d0d57e9e1f5ffeae1f9a9865f3
[ "MIT" ]
12
2018-09-19T14:02:09.000Z
2020-01-27T16:20:14.000Z
bc4py/bip32/bip32.py
kumacoinproject/bc4py
6484d356096261d0d57e9e1f5ffeae1f9a9865f3
[ "MIT" ]
1
2020-03-19T16:57:30.000Z
2020-03-19T16:57:30.000Z
bc4py/bip32/bip32.py
namuyan/bc4py
6484d356096261d0d57e9e1f5ffeae1f9a9865f3
[ "MIT" ]
6
2018-11-13T17:20:14.000Z
2020-02-15T11:46:52.000Z
#!/usr/bin/env python # # Copyright 2014 Corgan Labs # See LICENSE.txt for distribution terms # from bc4py.bip32.base58 import check_decode, check_encode from bc4py_extension import PyAddress from ecdsa.curves import SECP256k1 from ecdsa.keys import SigningKey, VerifyingKey, square_root_mod_prime as mod_sqrt from ecdsa.ecdsa import generator_secp256k1, int_to_string from ecdsa.ellipticcurve import Point, INFINITY from os import urandom import hmac import hashlib import codecs import struct CURVE_GEN = generator_secp256k1 # Point class CURVE_ORDER = CURVE_GEN.order() # int FIELD_ORDER = SECP256k1.curve.p() # int MIN_ENTROPY_LEN = 128 # bits BIP32_HARDEN = 0x80000000 # choose from hardened set of child keys EX_MAIN_PRIVATE = [codecs.decode('0488ade4', 'hex')] # Version strings for mainnet extended private keys EX_MAIN_PUBLIC = [codecs.decode('0488b21e', 'hex'), codecs.decode('049d7cb2', 'hex')] # Version strings for mainnet extended public keys EX_TEST_PRIVATE = [codecs.decode('04358394', 'hex')] # Version strings for testnet extended private keys EX_TEST_PUBLIC = [codecs.decode('043587CF', 'hex')] # Version strings for testnet extended public keys WALLET_VERSION = b'\x80' def CKDpriv(self, i): """ Create a child key of index 'i'. If the most significant bit of 'i' is set, then select from the hardened key set, otherwise, select a regular child key. Returns a BIP32Key constructed with the child key parameters, or None if i index would result in an invalid key. """ # Index as bytes, BE i_str = struct.pack(">L", i) # Data to HMAC if i & BIP32_HARDEN: data = b'\0' + self.get_private_key() + i_str path = self.path + '/' + str(i % BIP32_HARDEN) + '\'' else: data = self.get_public_key() + i_str path = self.path + '/' + str(i) # Get HMAC of data (Il, Ir) = self._hmac(data) # Construct new key material from Il and current private key Il_int = int.from_bytes(Il, 'big') if Il_int > CURVE_ORDER: return None sec_int = int.from_bytes(self.secret.to_string(), 'big') k_int = (Il_int + sec_int) % CURVE_ORDER if k_int == 0: return None # Construct and return a new BIP32Key secret = SigningKey.from_string(int_to_string(k_int), SECP256k1) public = secret.verifying_key return Bip32(secret=secret, public=public, chain=Ir, depth=self.depth + 1, index=i, fpr=self.fingerprint(), path=path) def CKDpub(self, i): """ Create a publicly derived child key of index 'i'. If the most significant bit of 'i' is set, this is an error. Returns a BIP32Key constructed with the child key parameters, or None if index would result in invalid key. """ if i & BIP32_HARDEN: raise Exception("Cannot create a hardened child key using public child derivation") # Data to HMAC. Same as CKDpriv() for public child key. data = self.get_public_key() + struct.pack(">L", i) # Get HMAC of data (Il, Ir) = self._hmac(data) # Construct curve point Il*G+K Il_int = int.from_bytes(Il, 'big') if Il_int >= CURVE_ORDER: return None point = Il_int*CURVE_GEN + self.public.pubkey.point if point == INFINITY: return None public = VerifyingKey.from_public_point(point, SECP256k1) # Construct and return a new BIP32Key path = self.path + '/' + str(i) return Bip32( secret=None, public=public, chain=Ir, depth=self.depth + 1, index=i, fpr=self.fingerprint(), path=path) def child_key(self, i): """ Create and return a child key of this one at index 'i'. The index 'i' should be summed with BIP32_HARDEN to indicate to use the private derivation algorithm. """ if self.secret is None: return self.CKDpub(i) else: return self.CKDpriv(i) def get_address(self, hrp, ver) -> PyAddress: """Return bech32 compressed address""" return PyAddress.from_param(hrp, ver, self.identifier()) def identifier(self): """Return key identifier as string""" pk = self.get_public_key() return hashlib.new('ripemd160', hashlib.sha256(pk).digest()).digest() def fingerprint(self): """Return key fingerprint as string""" return self.identifier()[:4] def extended_key(self, is_private=True, encoded=True, is_testnet=False): """Return extended private or public key as string, optionally base58 encoded""" if self.secret is None and is_private is True: raise Exception("Cannot export an extended private key from a public-only deterministic key") if is_testnet: version = EX_TEST_PRIVATE[0] if is_private else EX_TEST_PUBLIC[0] else: version = EX_MAIN_PRIVATE[0] if is_private else EX_MAIN_PUBLIC[0] depth = self.depth.to_bytes(1, 'big') fpr = self.parent_fpr child = struct.pack('>L', self.index) chain = self.chain if self.secret is None or is_private is False: # startswith b'\x02' or b'\x03' data = self.get_public_key() else: # startswith b'\x00' data = b'\x00' + self.get_private_key() if encoded: return check_encode(version + depth + fpr + child + chain + data) else: return depth + fpr + child + chain + data def wallet_import_format(self, prefix=WALLET_VERSION): """Returns private key encoded for wallet import""" if self.secret is None: raise Exception("Publicly derived deterministic keys have no private half") raw = prefix + self.get_private_key() + b'\x01' # Always compressed return check_encode(raw) def dump(self): """Dump key fields mimicking the BIP0032 test vector format""" print(" * Identifier") print(" * (hex): ", self.identifier().hex()) print(" * (fpr): ", self.fingerprint().hex()) print(" * (main addr):", self.get_address('bc', 0)) print(" * (path): ", self.path) if self.secret: print(" * Secret key") print(" * (hex): ", self.get_private_key().hex()) print(" * (wif): ", self.wallet_import_format()) print(" * Public key") print(" * (hex): ", self.get_public_key().hex()) print(" * Chain code") print(" * (hex): ", self.chain.hex()) print(" * Serialized") print(" * (pub hex): ", self.extended_key(is_private=False, encoded=False).hex()) print(" * (pub b58): ", self.extended_key(is_private=False, encoded=True)) if self.secret: print(" * (prv hex): ", self.extended_key(is_private=True, encoded=False).hex()) print(" * (prv b58): ", self.extended_key(is_private=True, encoded=True)) def parse_bip32_path(path): """parse BIP32 format""" r = list() for s in path.split('/'): if s == 'm': continue elif s.endswith("'") or s.endswith('h'): r.append(int(s[:-1]) + BIP32_HARDEN) else: r.append(int(s)) return r def struct_bip32_path(path): """struct BIP32 string path""" s = 'm' for p in path: if p & BIP32_HARDEN: s += "/{}'".format(p % BIP32_HARDEN) else: s += "/{}".format(p) return s __all__ = [ "BIP32_HARDEN", "Bip32", "parse_bip32_path", "struct_bip32_path", ]
37.573134
126
0.593072
cd83dd3751ba2089366bb8592c6a8484b3986736
1,167
py
Python
lib/utils/useragent.py
cckuailong/pocsploit
fe4a3154e59d2bebd55ccfdf62f4f7efb21b5a2a
[ "MIT" ]
106
2022-03-18T06:51:09.000Z
2022-03-31T19:11:41.000Z
lib/utils/useragent.py
cckuailong/pocsploit
fe4a3154e59d2bebd55ccfdf62f4f7efb21b5a2a
[ "MIT" ]
5
2022-03-27T07:37:32.000Z
2022-03-31T13:56:11.000Z
lib/utils/useragent.py
cckuailong/pocsploit
fe4a3154e59d2bebd55ccfdf62f4f7efb21b5a2a
[ "MIT" ]
30
2022-03-21T01:27:08.000Z
2022-03-31T12:28:01.000Z
import random from loguru import logger from lib.vars.vars import conf, th, paths from lib.vars.ua import UA_LIST
28.463415
184
0.685518
cd865fa7395cf48130baac47f65fb9a0acdb8fa6
1,378
py
Python
etapa 2/gaussJacobi.py
jlucartc/MetodosNumericos20182
d5610b95945ed6ec9b9bae6cd96672f4d616c1b9
[ "MIT" ]
null
null
null
etapa 2/gaussJacobi.py
jlucartc/MetodosNumericos20182
d5610b95945ed6ec9b9bae6cd96672f4d616c1b9
[ "MIT" ]
null
null
null
etapa 2/gaussJacobi.py
jlucartc/MetodosNumericos20182
d5610b95945ed6ec9b9bae6cd96672f4d616c1b9
[ "MIT" ]
null
null
null
import numpy as np from sympy import * from math import * from timeit import default_timer as timer start = None end = None A = np.matrix(eval(input("Digite uma matriz : "))) A = A.astype(float) X = np.matrix(eval(input("Digite X : "))) e = float(input("Digite a preciso: ")) B = np.copy(A[:,A.shape[1]-1]) A = np.delete(np.copy(A),A.shape[1]-1,1) C = np.asmatrix(np.zeros([A.shape[0],A.shape[1]])) C = C.astype(float) G = np.copy(B) for i in range(C.shape[0]): for j in range(C.shape[1]): if i != j: C[i,j] = (np.copy(A[i,j])/np.copy(A[i,i]))*(-1) G[i,0] = (np.copy(G[i,0]))/(np.copy(A[i,i])) C[i,i] = 0 Xn = None z = True print("Matriz C:\n",C) print("Matriz G:\n",G) start = timer() while(z): Xn = (np.copy(C) @ np.copy(X)) + np.copy(G) d = maxXi(np.copy(Xn),np.copy(X)) if(d < e): z = False else: X = np.copy(Xn) end = timer() print("Resposta de Gauss-Jacobi: ") print(Xn) print("Tempo de execucao total: %e segundos" % (end - start))
18.621622
78
0.523948
cd8770a9a9b49ceb88698ef2075f53487bd2aca7
8,139
py
Python
custom_libs/Project2/plotter.py
drkostas/COSC522
5731576301daf99ca7c3d382fe3ea8b1398008ff
[ "MIT" ]
1
2021-12-22T14:29:42.000Z
2021-12-22T14:29:42.000Z
custom_libs/Project2/plotter.py
drkostas/COSC522
5731576301daf99ca7c3d382fe3ea8b1398008ff
[ "MIT" ]
3
2021-10-13T02:14:30.000Z
2021-11-24T05:28:32.000Z
custom_libs/Project2/plotter.py
drkostas/COSC522
5731576301daf99ca7c3d382fe3ea8b1398008ff
[ "MIT" ]
null
null
null
import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap import numpy as np
44.966851
110
0.578327
cd887102450875f1d2f5fd98ea87c44fd4dd0888
303
py
Python
Python/8/SquareSum/square_sum.py
hwakabh/codewars
7afce5a7424d35abc55c350301ac134f2d3edd3d
[ "MIT" ]
null
null
null
Python/8/SquareSum/square_sum.py
hwakabh/codewars
7afce5a7424d35abc55c350301ac134f2d3edd3d
[ "MIT" ]
6
2020-02-21T17:01:59.000Z
2021-05-04T07:04:41.000Z
Python/8/SquareSum/square_sum.py
hwakabh/codewars
7afce5a7424d35abc55c350301ac134f2d3edd3d
[ "MIT" ]
null
null
null
import sys if __name__ == "__main__": if len(sys.argv) == 1: nums = [int(e) for e in input('>>> Enter the numbers with comma-separeted: ').split(',')] print(square_sum(numbers=nums)) else: sys.exit(1)
23.307692
97
0.590759
cd88a71325bc436cee432caaafbbae9750fb46b0
5,710
py
Python
spatial_ops/lazy_loader.py
LucaMarconato/spatial_ops
86e5b8557db9efa2ca263098ed47c16de05fab00
[ "MIT" ]
null
null
null
spatial_ops/lazy_loader.py
LucaMarconato/spatial_ops
86e5b8557db9efa2ca263098ed47c16de05fab00
[ "MIT" ]
null
null
null
spatial_ops/lazy_loader.py
LucaMarconato/spatial_ops
86e5b8557db9efa2ca263098ed47c16de05fab00
[ "MIT" ]
null
null
null
import os import pickle from abc import ABC, abstractmethod import h5py import numpy as np from .folders import get_pickle_lazy_loader_data_path, hdf5_lazy_loader_data_path from .unpickler import CustomUnpickler def load_data(self, store_precomputation_on_disk=True): if self.associated_instance is None: raise ValueError(f'self.associated_instance = {self.associated_instance}') if not self.has_data_already_been_precomputed(): # print('precomputing') data = self.precompute() if data is None: raise ValueError(f'data = {data}') if store_precomputation_on_disk: self._save_data(data) return data else: # print('loading') return self._load_precomputed_data() if not os.path.isfile(hdf5_lazy_loader_data_path): f = h5py.File(hdf5_lazy_loader_data_path, 'w') f.close() if __name__ == '__main__': from spatial_ops.data import JacksonFischerDataset as jfd from spatial_ops.data import Patient patient = jfd.patients[15] derived_quantity = NumberOfPlatesLoader0(patient) print(derived_quantity.load_data()) derived_quantity = NumberOfPlatesLoader1(patient) # derived_quantity.delete_precomputation() print(derived_quantity.load_data())
33.588235
117
0.680911
cd89017afbf663624d11e9b8f48f90440b465747
27,270
py
Python
connector/binance/websockets.py
firebird631/siis
8d64e8fb67619aaa5c0a62fda9de51dedcd47796
[ "PostgreSQL" ]
null
null
null
connector/binance/websockets.py
firebird631/siis
8d64e8fb67619aaa5c0a62fda9de51dedcd47796
[ "PostgreSQL" ]
null
null
null
connector/binance/websockets.py
firebird631/siis
8d64e8fb67619aaa5c0a62fda9de51dedcd47796
[ "PostgreSQL" ]
null
null
null
# @date 2020-01-31 # @author Frederic Scherma, All rights reserved without prejudices. # @license Copyright (c) 2020 Dream Overflow # Binance Websocket connector. import json import threading import traceback from autobahn.twisted.websocket import WebSocketClientFactory, WebSocketClientProtocol, connectWS from twisted.internet import ssl, reactor # , reactor from twisted.internet.protocol import ReconnectingClientFactory from connector.binance.client import Client from monitor.service import MonitorService import logging logger = logging.getLogger('siis.connector.binance.ws') error_logger = logging.getLogger('siis.error.connector.binance.ws') traceback_logger = logging.getLogger('siis.traceback.connector.binance.ws')
37.510316
136
0.541584
cd8a35bcbfb312cda1686fb97584510659ede9ae
669
py
Python
Basic Data Structures/array/ListSlicing.py
rush2catch/algorithms-leetcode
38a5e6aa33d48fa14fe09c50c28a2eaabd736e55
[ "MIT" ]
null
null
null
Basic Data Structures/array/ListSlicing.py
rush2catch/algorithms-leetcode
38a5e6aa33d48fa14fe09c50c28a2eaabd736e55
[ "MIT" ]
null
null
null
Basic Data Structures/array/ListSlicing.py
rush2catch/algorithms-leetcode
38a5e6aa33d48fa14fe09c50c28a2eaabd736e55
[ "MIT" ]
null
null
null
list_0 = [1, 2, 3, 6] print(list_slicing(list_0, 1, 4)) print(list_slicing(list_0, 2, 4)) list_1 = [1, 2, 4, 5, 6, 9, 4, 6, 5, 8, 1, 4] print(list_slicing(list_1, 3, 4)) print(list_slicing(list_1, 4, 3)) print(list_slicing(list_1, 2, 6)) print(list_slicing(list_1, 6, 2)) print(list_slicing(list_1, 5, 3)) print(list_slicing(list_1, 2, 5))
27.875
63
0.605381
cd8abd04dc151085122e27f4484b76ecb7ff52ac
225
py
Python
OnePy/sys_module/base_riskmanager.py
Chandlercjy/OnePyfx
9bd43b721d3f7352495b6ccab76bd533a3d2e8f2
[ "MIT" ]
321
2017-07-09T09:25:45.000Z
2022-03-29T16:51:35.000Z
OnePy/sys_module/base_riskmanager.py
sunzhouhong/OnePy
4e225945de297ba1211035a7b95b5094cdddc2a7
[ "MIT" ]
7
2017-08-23T12:10:29.000Z
2020-03-26T12:56:09.000Z
OnePy/sys_module/base_riskmanager.py
sunzhouhong/OnePy
4e225945de297ba1211035a7b95b5094cdddc2a7
[ "MIT" ]
134
2017-07-26T22:29:18.000Z
2022-03-23T09:22:10.000Z
from OnePy.sys_module.metabase_env import OnePyEnvBase
17.307692
70
0.715556
cd8aca443ef9f431942f1f2a5e259a12ad32107f
3,057
py
Python
tests/geographic/duplicates/test_find_grid_duplicates.py
PEM-Humboldt/regi0
0d64587d5d87f57cddfc7a67bb8baf74cd70adf2
[ "MIT" ]
null
null
null
tests/geographic/duplicates/test_find_grid_duplicates.py
PEM-Humboldt/regi0
0d64587d5d87f57cddfc7a67bb8baf74cd70adf2
[ "MIT" ]
15
2022-02-03T11:38:37.000Z
2022-03-09T23:23:04.000Z
tests/geographic/duplicates/test_find_grid_duplicates.py
PEM-Humboldt/regi0
0d64587d5d87f57cddfc7a67bb8baf74cd70adf2
[ "MIT" ]
null
null
null
""" Test cases for the regi0.geographic.duplicates.find_grid_duplicates function. """ import numpy as np import pandas as pd from regi0.geographic.duplicates import find_grid_duplicates
21.082759
83
0.446189
cd8b45d655ef0b191b537030a3d9f0b1784aa23f
772
py
Python
kolibri/core/public/utils.py
FollonSaxBass/kolibri
4cf820b14386aecc228fecff64c847bad407cbb1
[ "MIT" ]
2
2021-05-13T10:20:46.000Z
2021-11-15T12:31:03.000Z
kolibri/core/public/utils.py
camellia26/kolibri
7f1cb794c93f37e039be22f56a5ac1989ed22bde
[ "MIT" ]
8
2021-05-21T15:31:24.000Z
2022-02-24T15:02:14.000Z
kolibri/core/public/utils.py
camellia26/kolibri
7f1cb794c93f37e039be22f56a5ac1989ed22bde
[ "MIT" ]
1
2019-10-05T11:14:40.000Z
2019-10-05T11:14:40.000Z
import platform from django.core.exceptions import ObjectDoesNotExist from morango.models import InstanceIDModel import kolibri def get_device_info(): """Returns metadata information about the device""" instance_model = InstanceIDModel.get_or_create_current_instance()[0] try: device_name = kolibri.core.device.models.DeviceSettings.objects.get().name # When Koliri starts at the first time, and device hasn't been created except ObjectDoesNotExist: device_name = instance_model.hostname info = { "application": "kolibri", "kolibri_version": kolibri.__version__, "instance_id": instance_model.id, "device_name": device_name, "operating_system": platform.system(), } return info
28.592593
82
0.715026
cd8c005ad2ae492334e75e29d8ea3fae95bca95b
1,372
py
Python
mcpipy/cellcraft/config.py
cellcraft/cellcraft
1cb2b152bb6433250cec43e2586f1b5d093ec6e5
[ "MIT" ]
2
2016-01-21T12:05:36.000Z
2016-04-18T09:50:03.000Z
mcpipy/cellcraft/config.py
cellcraft/cellcraft
1cb2b152bb6433250cec43e2586f1b5d093ec6e5
[ "MIT" ]
1
2016-05-13T13:08:28.000Z
2016-05-13T13:08:28.000Z
mcpipy/cellcraft/config.py
cellcraft/cellcraft
1cb2b152bb6433250cec43e2586f1b5d093ec6e5
[ "MIT" ]
3
2015-12-14T19:28:42.000Z
2020-11-29T12:53:12.000Z
import os import json import logging # cellcraft node CELLCRAFT_NODE_URL="http://192.168.178.29:4534" # path to cache where pickle files will be stored PATH_RESOURCES='cellcraft/resources' PATH_CACHE='cellcraft/resources/cache/' PATH_TEST_CACHE='test/fixtures/cache/' # path to fixtures PATH_TO_FIXTURES="test/fixtures" # path to cellpack structures after processing them PATH_CELLPACK = 'cellcraft/resources/cellpack/' # cellpack parameters envelop_id = 22 # database name to store biological information and coordinates of structures DB='cellcraft' TEST_DB='test' # fix maximum amount of structures saved on cache MAXIMUM_NUM_STRUCTURES_CACHE = 8 # load block appear appearance json current_env = os.environ.get('app_env') root_logger = logging.getLogger() current_env = 'test' if current_env == 'cellcraft': DB_HOST = '127.0.0.1' DB_PORT = 27017 root_logger.setLevel(logging.INFO) elif current_env == 'test': DB_HOST = '127.0.0.1' DB_PORT = 27017 root_logger.setLevel(logging.DEBUG) else: logging.warning('Please configure a environment using now default dev environment for config') root_logger.setLevel(logging.DEBUG)
24.070175
98
0.764577
cd8c4a556bdf6a751d59f1d67ef4d0688f0e6844
9,123
py
Python
ftpsync/pyftpsync.py
wengzy/pyftpsync
db6decb02bf3535fe87d90b45a6cc974dd356b04
[ "MIT" ]
86
2015-03-02T17:40:03.000Z
2022-03-14T03:41:40.000Z
ftpsync/pyftpsync.py
wengzy/pyftpsync
db6decb02bf3535fe87d90b45a6cc974dd356b04
[ "MIT" ]
63
2015-04-12T19:01:52.000Z
2022-01-19T00:57:51.000Z
ftpsync/pyftpsync.py
wengzy/pyftpsync
db6decb02bf3535fe87d90b45a6cc974dd356b04
[ "MIT" ]
25
2015-04-12T18:07:25.000Z
2021-04-25T15:20:24.000Z
# -*- coding: utf-8 -*- """ Simple folder synchronization using FTP. (c) 2012-2021 Martin Wendt; see https://github.com/mar10/pyftpsync Licensed under the MIT license: https://www.opensource.org/licenses/mit-license.php Usage examples: > pyftpsync.py --help > pyftpsync.py upload . ftps://example.com/myfolder """ import argparse import platform import sys from pprint import pprint from ftpsync import __version__ from ftpsync.cli_common import ( common_parser, creds_parser, matcher_parser, verbose_parser, ) from ftpsync.run_command import add_run_parser, handle_run_command from ftpsync.scan_command import add_scan_parser from ftpsync.synchronizers import ( BiDirSynchronizer, DownloadSynchronizer, UploadSynchronizer, ) from ftpsync.targets import FsTarget, make_target from ftpsync.tree_command import add_tree_parser from ftpsync.util import ( DEBUG_FLAGS, PYTHON_VERSION, check_cli_verbose, namespace_to_dict, set_pyftpsync_logger, ) # =============================================================================== # run # =============================================================================== def run(): """CLI main entry point.""" # Use print() instead of logging when running in CLI mode: set_pyftpsync_logger(None) parser = argparse.ArgumentParser( description="Synchronize folders over FTP.", epilog="See also https://github.com/mar10/pyftpsync", parents=[verbose_parser], ) # Note: we want to allow --version to be combined with --verbose. However # on Py2, argparse makes sub-commands mandatory, unless `action="version"` is used. if check_cli_verbose(3) > 3: version_info = "pyftpsync/{} Python/{} {}".format( __version__, PYTHON_VERSION, platform.platform() ) else: version_info = "{}".format(__version__) parser.add_argument("-V", "--version", action="version", version=version_info) subparsers = parser.add_subparsers(help="sub-command help") # --- Create the parser for the "upload" command --------------------------- sp = subparsers.add_parser( "upload", parents=[verbose_parser, common_parser, matcher_parser, creds_parser], help="copy new and modified files to remote folder", ) sp.add_argument( "local", metavar="LOCAL", default=".", help="path to local folder (default: %(default)s)", ) sp.add_argument("remote", metavar="REMOTE", help="path to remote folder") sp.add_argument( "--force", action="store_true", help="overwrite remote files, even if the target is newer " "(but no conflict was detected)", ) sp.add_argument( "--resolve", default="ask", choices=["local", "skip", "ask"], help="conflict resolving strategy (default: '%(default)s')", ) sp.add_argument( "--delete", action="store_true", help="remove remote files if they don't exist locally", ) sp.add_argument( "--delete-unmatched", action="store_true", help="remove remote files if they don't exist locally " "or don't match the current filter (implies '--delete' option)", ) sp.set_defaults(command="upload") # --- Create the parser for the "download" command ------------------------- sp = subparsers.add_parser( "download", parents=[verbose_parser, common_parser, matcher_parser, creds_parser], help="copy new and modified files from remote folder to local target", ) sp.add_argument( "local", metavar="LOCAL", default=".", help="path to local folder (default: %(default)s)", ) sp.add_argument("remote", metavar="REMOTE", help="path to remote folder") sp.add_argument( "--force", action="store_true", help="overwrite local files, even if the target is newer " "(but no conflict was detected)", ) sp.add_argument( "--resolve", default="ask", choices=["remote", "skip", "ask"], help="conflict resolving strategy (default: '%(default)s')", ) sp.add_argument( "--delete", action="store_true", help="remove local files if they don't exist on remote target", ) sp.add_argument( "--delete-unmatched", action="store_true", help="remove local files if they don't exist on remote target " "or don't match the current filter (implies '--delete' option)", ) sp.set_defaults(command="download") # --- Create the parser for the "sync" command ----------------------------- sp = subparsers.add_parser( "sync", parents=[verbose_parser, common_parser, matcher_parser, creds_parser], help="synchronize new and modified files between remote folder and local target", ) sp.add_argument( "local", metavar="LOCAL", default=".", help="path to local folder (default: %(default)s)", ) sp.add_argument("remote", metavar="REMOTE", help="path to remote folder") sp.add_argument( "--resolve", default="ask", choices=["old", "new", "local", "remote", "skip", "ask"], help="conflict resolving strategy (default: '%(default)s')", ) sp.set_defaults(command="sync") # --- Create the parser for the "run" command ----------------------------- add_run_parser(subparsers) # --- Create the parser for the "scan" command ----------------------------- add_scan_parser(subparsers) # --- Create the parser for the "tree" command ----------------------------- add_tree_parser(subparsers) # --- Parse command line --------------------------------------------------- args = parser.parse_args() args.verbose -= args.quiet del args.quiet # print("verbose", args.verbose) ftp_debug = 0 if args.verbose >= 6: ftp_debug = 1 if args.debug: if args.verbose < 4: parser.error("'--debug' requires verbose level >= 4") DEBUG_FLAGS.update(args.debug) # Modify the `args` from the `pyftpsync.yaml` config: if getattr(args, "command", None) == "run": handle_run_command(parser, args) if callable(getattr(args, "command", None)): # scan_handler try: return args.command(parser, args) except KeyboardInterrupt: print("\nAborted by user.", file=sys.stderr) sys.exit(3) elif not hasattr(args, "command"): parser.error( "missing command (choose from 'upload', 'download', 'run', 'sync', 'scan')" ) # Post-process and check arguments if hasattr(args, "delete_unmatched") and args.delete_unmatched: args.delete = True args.local_target = make_target(args.local, {"ftp_debug": ftp_debug}) if args.remote == ".": parser.error("'.' is expected to be the local target (not remote)") args.remote_target = make_target(args.remote, {"ftp_debug": ftp_debug}) if not isinstance(args.local_target, FsTarget) and isinstance( args.remote_target, FsTarget ): parser.error("a file system target is expected to be local") # Let the command handler do its thing opts = namespace_to_dict(args) if args.command == "upload": s = UploadSynchronizer(args.local_target, args.remote_target, opts) elif args.command == "download": s = DownloadSynchronizer(args.local_target, args.remote_target, opts) elif args.command == "sync": s = BiDirSynchronizer(args.local_target, args.remote_target, opts) else: parser.error("unknown command '{}'".format(args.command)) s.is_script = True try: s.run() except KeyboardInterrupt: print("\nAborted by user.", file=sys.stderr) sys.exit(3) finally: # Prevent sporadic exceptions in ftplib, when closing in __del__ s.local.close() s.remote.close() stats = s.get_stats() if args.verbose >= 5: pprint(stats) elif args.verbose >= 1: if args.dry_run: print("(DRY-RUN) ", end="") print( "Wrote {}/{} files in {} directories, skipped: {}.".format( stats["files_written"], stats["local_files"], stats["local_dirs"], stats["conflict_files_skipped"], ), end="", ) if stats["interactive_ask"]: print() else: print(" Elap: {}.".format(stats["elap_str"])) return # Script entry point if __name__ == "__main__": # Just in case... from multiprocessing import freeze_support freeze_support() run()
31.350515
90
0.574044