hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
11 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
251
max_stars_repo_name
stringlengths
4
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
251
max_issues_repo_name
stringlengths
4
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
251
max_forks_repo_name
stringlengths
4
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.05M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.04M
alphanum_fraction
float64
0
1
f87b501fc4a702c459b5a826cf1537ec0638bb2a
1,855
py
Python
core/migrations/0001_initial.py
SanjaLV/Tenis
ea714da10207723c27ff7204b4285ea6a773521b
[ "MIT" ]
null
null
null
core/migrations/0001_initial.py
SanjaLV/Tenis
ea714da10207723c27ff7204b4285ea6a773521b
[ "MIT" ]
null
null
null
core/migrations/0001_initial.py
SanjaLV/Tenis
ea714da10207723c27ff7204b4285ea6a773521b
[ "MIT" ]
null
null
null
# Generated by Django 2.1.7 on 2019-03-31 10:31 from django.conf import settings from django.db import migrations, models import django.db.models.deletion
37.1
132
0.581132
f87cfb9c6282ebda75b44ea58b3afec144dcbcf4
448
py
Python
generator.py
iomintz/python-snippets
982861c173bf4bcd5d908514a9e8b1914a580a5d
[ "CC0-1.0" ]
2
2020-04-10T07:29:56.000Z
2020-05-27T03:45:21.000Z
generator.py
iomintz/python-snippets
982861c173bf4bcd5d908514a9e8b1914a580a5d
[ "CC0-1.0" ]
null
null
null
generator.py
iomintz/python-snippets
982861c173bf4bcd5d908514a9e8b1914a580a5d
[ "CC0-1.0" ]
2
2018-11-24T08:16:59.000Z
2019-02-24T04:41:30.000Z
#!/usr/bin/env python3 # encoding: utf-8 # Douglas Crockford's idea for making generators # basically "why do you need a `yield` keyword when you can just maintain some state" # in my view, a class would be a better way to do this, and indeed, in python, # that's how Iterators are defined. gen = iter([1,2,3]) for _ in range(4): print(gen())
22.4
85
0.683036
f87d14c4254943a1783a77600bab62106f89c898
6,336
py
Python
pddlstream/ss/algorithms/fast_downward.py
zerongxi/Kitchen2D
2cbaa6c8ea8fbf5f5c3a5de34cb11efde4121793
[ "MIT" ]
35
2018-03-15T14:26:33.000Z
2022-02-09T15:37:59.000Z
pddlstream/ss/algorithms/fast_downward.py
zerongxi/Kitchen2D
2cbaa6c8ea8fbf5f5c3a5de34cb11efde4121793
[ "MIT" ]
1
2020-11-03T04:49:43.000Z
2020-11-17T16:42:48.000Z
pddlstream/ss/algorithms/fast_downward.py
zerongxi/Kitchen2D
2cbaa6c8ea8fbf5f5c3a5de34cb11efde4121793
[ "MIT" ]
12
2018-04-28T20:11:21.000Z
2021-09-18T22:24:46.000Z
from time import time from ss.utils import INF import sys import os import shutil TEMP_DIR = 'temp/' DOMAIN_INPUT = 'domain.pddl' PROBLEM_INPUT = 'problem.pddl' TRANSLATE_OUTPUT = 'output.sas' SEARCH_OUTPUT = 'sas_plan' ENV_VAR = 'FD_PATH' FD_BIN = 'bin' TRANSLATE_DIR = 'translate/' SEARCH_COMMAND = 'downward --internal-plan-file %s %s < %s' SEARCH_OPTIONS = { 'dijkstra': '--heuristic "h=blind(transform=adapt_costs(cost_type=NORMAL))" ' '--search "astar(h,cost_type=NORMAL,max_time=%s,bound=%s)"', 'max-astar': '--heuristic "h=hmax(transform=adapt_costs(cost_type=NORMAL))"' ' --search "astar(h,cost_type=NORMAL,max_time=%s,bound=%s)"', 'ff-astar': '--heuristic "h=ff(transform=adapt_costs(cost_type=NORMAL))" ' '--search "astar(h,cost_type=NORMAL,max_time=%s,bound=%s)"', 'ff-wastar1': '--heuristic "h=ff(transform=adapt_costs(cost_type=NORMAL))" ' '--search "lazy_wastar([h],preferred=[h],reopen_closed=true,boost=100,w=1,' 'preferred_successors_first=true,cost_type=NORMAL,max_time=%s,bound=%s)"', 'ff-wastar3': '--heuristic "h=ff(transform=adapt_costs(cost_type=PLUSONE))" ' '--search "lazy_wastar([h],preferred=[h],reopen_closed=false,boost=100,w=3,' 'preferred_successors_first=true,cost_type=PLUSONE,max_time=%s,bound=%s)"', 'ff-wastar5': '--heuristic "h=ff(transform=adapt_costs(cost_type=PLUSONE))" ' '--search "lazy_wastar([h],preferred=[h],reopen_closed=false,boost=100,w=5,' 'preferred_successors_first=true,cost_type=PLUSONE,max_time=%s,bound=%s)"', 'cea-wastar1': '--heuristic "h=cea(transform=adapt_costs(cost_type=PLUSONE))" ' '--search "lazy_wastar([h],preferred=[h],reopen_closed=false,boost=1000,w=1,' 'preferred_successors_first=true,cost_type=PLUSONE,max_time=%s,bound=%s)"', 'cea-wastar3': '--heuristic "h=cea(transform=adapt_costs(cost_type=PLUSONE))" ' '--search "lazy_wastar([h],preferred=[h],reopen_closed=false,boost=1000,w=3,' 'preferred_successors_first=true,cost_type=PLUSONE,max_time=%s,bound=%s)"', 'cea-wastar5': '--heuristic "h=cea(transform=adapt_costs(cost_type=PLUSONE))" ' '--search "lazy_wastar([h],preferred=[h],reopen_closed=false,boost=1000,w=5,' 'preferred_successors_first=true,cost_type=PLUSONE,max_time=%s,bound=%s)"', 'ff-eager': '--heuristic "hff=ff(transform=adapt_costs(cost_type=PLUSONE))" ' '--search "eager_greedy([hff],max_time=%s,bound=%s)"', 'ff-eager-pref': '--heuristic "hff=ff(transform=adapt_costs(cost_type=PLUSONE))" ' '--search "eager_greedy([hff],preferred=[hff],max_time=%s,bound=%s)"', 'ff-lazy': '--heuristic "hff=ff(transform=adapt_costs(cost_type=PLUSONE))" ' '--search "lazy_greedy([hff],preferred=[hff],max_time=%s,bound=%s)"', }
34.064516
94
0.646938
f881c0e0b875dfcd895b81b936783f36c735935f
564
py
Python
backend/external/docgen/request_token.py
bcgov-c/wally
264bc5d40f9b5cf293159f1bc0424cfd9ff8aa06
[ "Apache-2.0" ]
null
null
null
backend/external/docgen/request_token.py
bcgov-c/wally
264bc5d40f9b5cf293159f1bc0424cfd9ff8aa06
[ "Apache-2.0" ]
null
null
null
backend/external/docgen/request_token.py
bcgov-c/wally
264bc5d40f9b5cf293159f1bc0424cfd9ff8aa06
[ "Apache-2.0" ]
null
null
null
import requests from api import config
21.692308
64
0.615248
f88205db59ac35f6745b81386eb53c57775a1972
3,164
py
Python
gcode_gen/gcode.py
tulth/gcode_gen
d6e276f2074d4fe66755b2ae06c5b4d85583c563
[ "BSD-3-Clause" ]
null
null
null
gcode_gen/gcode.py
tulth/gcode_gen
d6e276f2074d4fe66755b2ae06c5b4d85583c563
[ "BSD-3-Clause" ]
null
null
null
gcode_gen/gcode.py
tulth/gcode_gen
d6e276f2074d4fe66755b2ae06c5b4d85583c563
[ "BSD-3-Clause" ]
null
null
null
''' Library for gcode commands objects that render to strings. ''' from .number import num2str from .point import XYZ
24.913386
71
0.60335
f8825ad47b75cf630d4ad3f98bb97cd2847d852d
619
py
Python
tAPP/2/P3.py
ArvinZJC/UofG_PGT_PSD_Python
d90e9bb0b53b14c6b1d7e657c3c61e2792e0d9c4
[ "MIT" ]
null
null
null
tAPP/2/P3.py
ArvinZJC/UofG_PGT_PSD_Python
d90e9bb0b53b14c6b1d7e657c3c61e2792e0d9c4
[ "MIT" ]
null
null
null
tAPP/2/P3.py
ArvinZJC/UofG_PGT_PSD_Python
d90e9bb0b53b14c6b1d7e657c3c61e2792e0d9c4
[ "MIT" ]
null
null
null
''' Description: Problem 3 (rearrange the code) Version: 1.0.1.20210116 Author: Arvin Zhao Date: 2021-01-14 22:51:16 Last Editors: Arvin Zhao LastEditTime: 2021-01-16 04:11:18 ''' if __name__ == '__main__': # It is strongly recommended to add this line. main()
20.633333
74
0.646204
f8825cac93ae51da9c9e342930c13e66cd5b1a63
1,046
py
Python
tf_trees/demo.py
hazimehh/google-research
81ff754d88f9ad479448c78d7ab615bef140423d
[ "Apache-2.0" ]
null
null
null
tf_trees/demo.py
hazimehh/google-research
81ff754d88f9ad479448c78d7ab615bef140423d
[ "Apache-2.0" ]
null
null
null
tf_trees/demo.py
hazimehh/google-research
81ff754d88f9ad479448c78d7ab615bef140423d
[ "Apache-2.0" ]
null
null
null
from tensorflow import keras # Make sure the tf_trees directory is in the search path. from tf_trees import TEL # The documentation of TEL can be accessed as follows print(TEL.__doc__) # We will fit TEL on the Boston Housing regression dataset. # First, load the dataset. from keras.datasets import boston_housing (x_train, y_train), (x_test, y_test) = boston_housing.load_data() # Define the tree layer; here we choose 10 trees, each of depth 3. # Note output_logits_dim is the dimension of the tree output. # output_logits_dim = 1 in this case, but should be equal to the # number of classes if used as an output layer in a classification task. tree_layer = TEL(output_logits_dim=1, trees_num=10, depth=3) # Construct a sequential model with batch normalization and TEL. model = keras.Sequential() model.add(keras.layers.BatchNormalization()) model.add(tree_layer) # Fit a model with mse loss. model.compile(loss='mse', optimizer='adam', metrics=['mse']) result = model.fit(x_train, y_train, epochs=100, validation_data=(x_test, y_test))
38.740741
82
0.772467
f88367f68dcb96f708907ba780b8dfe0c11ecea5
725
py
Python
tests/utils_test.py
MartinThoma/nntoolkit
1f9eed7b6d6fdacc706060d9cbfefaa9c2d0dbf8
[ "MIT" ]
4
2015-01-26T17:56:05.000Z
2020-04-01T05:52:00.000Z
tests/utils_test.py
MartinThoma/nntoolkit
1f9eed7b6d6fdacc706060d9cbfefaa9c2d0dbf8
[ "MIT" ]
11
2015-01-06T10:34:36.000Z
2021-03-22T18:29:45.000Z
tests/utils_test.py
MartinThoma/nntoolkit
1f9eed7b6d6fdacc706060d9cbfefaa9c2d0dbf8
[ "MIT" ]
6
2015-01-02T15:02:27.000Z
2021-05-12T18:09:35.000Z
#!/usr/bin/env python # Core Library modules import argparse import os # Third party modules import pytest # First party modules import nntoolkit.utils as utils
20.714286
62
0.704828
f8837ac94ce790820bfbaf796665ce3cc290523c
101
py
Python
ex1.py
luismachado/python_project_euler
79798ee00c18f4f8cc1b397aa7c92f8175a3ed33
[ "MIT" ]
null
null
null
ex1.py
luismachado/python_project_euler
79798ee00c18f4f8cc1b397aa7c92f8175a3ed33
[ "MIT" ]
null
null
null
ex1.py
luismachado/python_project_euler
79798ee00c18f4f8cc1b397aa7c92f8175a3ed33
[ "MIT" ]
null
null
null
sum = 0 for x in range(1,1000): if x%3 == 0 or x%5 == 0: sum += x print ("Total is:", sum)
14.428571
26
0.485149
f885cb85cd328a59b1d3f0d46e987b871f1a5d6d
1,977
py
Python
apiser/10-grpc/src/utils/tools/zemail.py
hyhlinux/demo_vue
cf61d0ba21cce93b04951076c8c23c0fe693bb5b
[ "Apache-2.0" ]
null
null
null
apiser/10-grpc/src/utils/tools/zemail.py
hyhlinux/demo_vue
cf61d0ba21cce93b04951076c8c23c0fe693bb5b
[ "Apache-2.0" ]
2
2022-02-10T12:00:22.000Z
2022-03-02T02:31:40.000Z
apiser/10-grpc/src/utils/tools/zemail.py
hyhlinux/demo_vue
cf61d0ba21cce93b04951076c8c23c0fe693bb5b
[ "Apache-2.0" ]
null
null
null
import smtplib import os from email.mime.text import MIMEText from email.utils import formataddr from email.mime.image import MIMEImage from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from email.header import Header try: from src.config import CONFIG except ImportError: Zemail = SendEmail(CONFIG.EMAIL.get("user"), CONFIG.EMAIL.get("passwd")) if __name__ == '__main__': main()
29.954545
107
0.630754
f8885de2c1bf956e3ffc0a2b8c32753cd240d5eb
2,679
py
Python
can_decoder/Frame.py
justinwald99/can_decoder
abfdd839856745f88b3fc3a58c8bedbdd05d5616
[ "MIT" ]
17
2020-08-18T02:34:57.000Z
2022-03-16T16:26:53.000Z
can_decoder/Frame.py
justinwald99/can_decoder
abfdd839856745f88b3fc3a58c8bedbdd05d5616
[ "MIT" ]
4
2020-09-09T04:18:28.000Z
2022-02-23T10:29:14.000Z
can_decoder/Frame.py
justinwald99/can_decoder
abfdd839856745f88b3fc3a58c8bedbdd05d5616
[ "MIT" ]
3
2021-08-18T18:30:43.000Z
2022-02-21T07:11:09.000Z
from typing import List, Optional from can_decoder.Signal import Signal
29.43956
117
0.528182
f888a9124299142dae94af378de65454815c28dd
268
py
Python
Curso_de_Python_ Curso_em_Video/PythonTeste/operadoresAritmeticosEx007.py
DanilooSilva/Cursos_de_Python
8f167a4c6e16f01601e23b6f107578aa1454472d
[ "MIT" ]
null
null
null
Curso_de_Python_ Curso_em_Video/PythonTeste/operadoresAritmeticosEx007.py
DanilooSilva/Cursos_de_Python
8f167a4c6e16f01601e23b6f107578aa1454472d
[ "MIT" ]
null
null
null
Curso_de_Python_ Curso_em_Video/PythonTeste/operadoresAritmeticosEx007.py
DanilooSilva/Cursos_de_Python
8f167a4c6e16f01601e23b6f107578aa1454472d
[ "MIT" ]
null
null
null
largura = float(input('Digite a largura da parede: ')) altura = float(input('Digite a altura da parede: ')) area = largura * altura tinta = area / 2 print('A rea da parede de {}'.format(area)) print('Ser necessrio para pintar {} litros de tinta'.format(tinta))
29.777778
69
0.697761
f888dc9c7ee0e666487347bc03cdcb3278274bed
174
py
Python
terraform.py
kyleslater/254-space-log
7496ff4e134b1a916580d8c0f8a0493e4863e9a2
[ "MIT" ]
null
null
null
terraform.py
kyleslater/254-space-log
7496ff4e134b1a916580d8c0f8a0493e4863e9a2
[ "MIT" ]
null
null
null
terraform.py
kyleslater/254-space-log
7496ff4e134b1a916580d8c0f8a0493e4863e9a2
[ "MIT" ]
null
null
null
#Kyle Slater import re
24.857143
61
0.752874
f88a9c72050c19a376ad171a7a2391d21f7e3ac6
256
py
Python
bugzilla_service/bzservice_flask/app/tests/test_flaskr.py
5GEVE/5G-EVE-PORTAL-BACKEND-tsb
3fe3140b26d30e7e7ff1a034315183eaed60a599
[ "MIT" ]
null
null
null
bugzilla_service/bzservice_flask/app/tests/test_flaskr.py
5GEVE/5G-EVE-PORTAL-BACKEND-tsb
3fe3140b26d30e7e7ff1a034315183eaed60a599
[ "MIT" ]
3
2021-02-08T20:38:29.000Z
2021-06-02T00:55:43.000Z
file_storage_service/tests/test_flaskr.py
5GEVE/5G-EVE-PORTAL-BACKEND-fs
27d5d10fa39e3007cfee2e48e3b95047abf2c144
[ "MIT" ]
null
null
null
import os import tempfile import requests api_url = "http://127.0.0.1:8989" def test_no_token(): """Request home without token""" response = requests.get(api_url+"/isvalid") print(response.status_code) assert response.status_code == 401
23.272727
47
0.707031
f88aa3fcd8cfa698889ea39a72ffe01decd8c2ea
6,279
py
Python
translator-v2.py
g-h-0-S-t/translator
9e55b5b3a7d68b85aa718bc9eef064599b75f914
[ "MIT" ]
1
2021-07-22T14:06:08.000Z
2021-07-22T14:06:08.000Z
translator-v2.py
g-h-0-S-t/translator
9e55b5b3a7d68b85aa718bc9eef064599b75f914
[ "MIT" ]
null
null
null
translator-v2.py
g-h-0-S-t/translator
9e55b5b3a7d68b85aa718bc9eef064599b75f914
[ "MIT" ]
null
null
null
#!/usr/bin/python3 # MIT License # # Copyright (c) 2021 gh0$t # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. ############################################################################################################################ # imports ############################################################################################################################ import sys import urllib.request from bs4 import BeautifulSoup from urllib.request import Request from selenium import webdriver import os import time from stem import Signal from stem.control import Controller ############################################################################################################################ # Pass URL, extract text, translate ############################################################################################################################ URL = str(sys.argv[1]) GTURL = 'https://translate.google.com/' # this is important, drives the whole translation process. # if google updates the translate.google.com page selectors, this HORRIBLE selector needs to be updated GTXpathSel = '//*[@id="yDmH0d"]/c-wiz/div/div[@class="WFnNle"]/c-wiz/div[@class="OlSOob"]/c-wiz/div[@class="hRFt4b"]/c-wiz/div[@class="ykTHSe"]/div/div[@class="dykxn MeCBDd j33Gae"]/div/div[2]/div/div[@class="Llmcnf"]' print('\nConnecting to ' + URL + ' ...' + '\nExtracting text...') req = Request(URL) html = BeautifulSoup(urllib.request.urlopen(req).read(), 'html.parser') text = html.find('div', {'id': 'bodyContent'}).get_text() with open('out/English.txt', 'w', encoding='utf-8') as f: f.write(text) print('\nExtracted -> out/English.txt') print('\nStarting translation job...') options = webdriver.ChromeOptions() options.add_argument('--incognito') options.add_argument('--headless') driver = webdriver.Chrome(executable_path='driver/chromedriver', options=options) print('\nConnecting to ' + GTURL + ' ...') driver.get(GTURL) time.sleep(1) try: # accept Google's cookies driver.find_elements_by_xpath ('//span[contains(text(), "I agree")]')[0].click() except: pass time.sleep(2) driver.find_element_by_xpath('//*[@aria-label="Document translation"]').click() driver.find_element_by_name('file').send_keys(os.path.abspath('out/English.txt')) langEle = driver.find_elements_by_xpath(GTXpathSel) i = 0 totLang = len(langEle) print('\nTotal languages = ' + str(totLang) + ' [press CTRL + C once or twice or thrice or any number of times you like to press to quit anytime]') print('\nTranslating text...') while i < totLang: init(driver) i += 1 print('\nTranslations completed. Check "/out" for the files.') driver.quit() exit()
34.5
218
0.645963
f88ab7cb09ff4cce53f828728ecd959e4a4ca37a
955
py
Python
djangoBackend/payment_module/migrations/0005_auto_20210924_0054.py
muhanzi/Django-REST-API
08b8b2bbd08a74589cca7b5fd4e1d604d9a6d7eb
[ "Apache-2.0" ]
null
null
null
djangoBackend/payment_module/migrations/0005_auto_20210924_0054.py
muhanzi/Django-REST-API
08b8b2bbd08a74589cca7b5fd4e1d604d9a6d7eb
[ "Apache-2.0" ]
null
null
null
djangoBackend/payment_module/migrations/0005_auto_20210924_0054.py
muhanzi/Django-REST-API
08b8b2bbd08a74589cca7b5fd4e1d604d9a6d7eb
[ "Apache-2.0" ]
null
null
null
# Generated by Django 3.1.2 on 2021-09-23 21:54 from django.db import migrations
24.487179
54
0.536126
f88e5bdd49e9b79ee78760de491336a0c465e929
935
py
Python
general/tfHelper.py
jbroot/SHGAN
9ed83f8356145adcbda219c0d9673e36109b0cb2
[ "MIT" ]
null
null
null
general/tfHelper.py
jbroot/SHGAN
9ed83f8356145adcbda219c0d9673e36109b0cb2
[ "MIT" ]
null
null
null
general/tfHelper.py
jbroot/SHGAN
9ed83f8356145adcbda219c0d9673e36109b0cb2
[ "MIT" ]
null
null
null
import tensorflow as tf import keras import numpy as np
32.241379
73
0.698396
f88f6e13c4185abcf8cceff79dbfda6d0f9a19ba
486
py
Python
wsgi/settings.py
zhemao/speakeasy
793bcca6d30fe31b1579bb8464f1eafacd6eb593
[ "BSD-2-Clause" ]
1
2022-02-02T10:40:59.000Z
2022-02-02T10:40:59.000Z
wsgi/settings.py
zhemao/speakeasy
793bcca6d30fe31b1579bb8464f1eafacd6eb593
[ "BSD-2-Clause" ]
null
null
null
wsgi/settings.py
zhemao/speakeasy
793bcca6d30fe31b1579bb8464f1eafacd6eb593
[ "BSD-2-Clause" ]
null
null
null
import os MONGO_HOST = os.getenv('OPENSHIFT_NOSQL_DB_HOST') MONGO_PORT = os.getenv('OPENSHIFT_NOSQL_DB_PORT') MONGO_USERNAME = os.getenv('OPENSHIFT_NOSQL_DB_USERNAME') MONGO_PASSWORD = os.getenv('OPENSHIFT_NOSQL_DB_PASSWORD') MONGO_DBNAME = 'speakeasy' PRIV_KEY_FILE = os.getenv('OPENSHIFT_DATA_DIR') + '/server_private.pem' PUB_KEY_FILE = os.getenv('OPENSHIFT_DATA_DIR') + '/server_public.pem' PRIV_KEY = open(PRIV_KEY_FILE).read() PUB_KEY = open(PUB_KEY_FILE).read() DEBUG = True
30.375
71
0.790123
f8900e5fac4e08162311478b3ed9cf017f5cb02c
10,047
py
Python
perl_io.py
hariguchi/perl_io
1deb367faa56081b68c4eda99d364f5b533a331e
[ "MIT" ]
null
null
null
perl_io.py
hariguchi/perl_io
1deb367faa56081b68c4eda99d364f5b533a331e
[ "MIT" ]
null
null
null
perl_io.py
hariguchi/perl_io
1deb367faa56081b68c4eda99d364f5b533a331e
[ "MIT" ]
null
null
null
r''' perl_io - Opens a file or pipe in the Perl style Copyright (c) 2016 Yoichi Hariguchi Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Usage: from perl_io import PerlIO Example 1: pio = PerlIO('/proc/meminfo') # open `/proc/meminfo' for input Example 2: pio = PerlIO('> /tmp/foo.txt') # open '/tmp/foo.txt' for output Example 3: pio = PerlIO('>> /tmp/foo.txt') # open '/tmp/foo.txt' for appending Example 4: pio = PerlIO('| cmd arg1 ...') # we pipe output to the command `cmd' Example 5: pio = PerlIO('cmd arg1 ... |') # execute `cmd' that pipes output to us You can access the Python file object as `pio.fo' after PerlIO object `pio' was successfully created. `pio.fo' is set to `None' if PelIO failed to open a file or pipe. Example6 : Read the output of `strings /usr/bin/python' from a pipe with PerlIO('strings /usr/bin/python |') as pio: for line in pio.fo.xreadlines(): # # do something... # Example7 : Write to a file with PerlIO('>/tmp/.tmpfile-%d' % (os.getpid())) as pio: print >> pio.fo, 'This is an example' pio.fo.write('This is another example') pio.fo.write('\n') Note: PerlIO parses the parameter as follows in the case it indicates to input from or output to a pipe. 1. Strips the first or last `|' (which indicates to open a pipe) 2. If the remaining string includes shell special characters like `|', `>', `;', etc., PerlIO calls Popen() with "sh -c 'remaining_string'", which means it can be a security hazard when the remaining string includes the unsanitized input from an untrusted source. 3. If the remaining string includes no shell special characters, PerlIO does not invoke shell when it calls Popen(). How to test: python -m unittest -v perl_io ''' import os import platform import re import sys import syslog import time import subprocess import shlex import unittest class TestPerlIO(unittest.TestCase): # # 1. Open a file to write using PerlIO # 2. Open a pipe outputting to us with a complex command line # PerlIO('strings `which ls` | sort | uniq | ') # so that shell is invoked with Popen(). # 3. Write all the input to the file created in No. 1 # 4. Check the contents # # # 1. Open a pipe to write with a complex command line # PerlIO('| cat > /tmp/.pio_pipe_rt_test-XXXX') # so that shell is invoked with Popen(). # The output to the pipe is redirected to a file # 2. Open the file to read using PerlIO # 3. Check the contents # # # Read from a pipe with a simple command line # so that shell is not invoked with Popen(). # Confirm the contents of the file is correct. # Must be called after file_test(). #
33.602007
78
0.54902
f89039eac3e7b46b0d707c6f7b3927ce103b2914
919
py
Python
app/controllers/config/system/logs.py
grepleria/SnitchDNS
24f98b01fd5fca9aa2c660d6ee15742f2e44915c
[ "MIT" ]
152
2020-12-07T13:26:53.000Z
2022-03-23T02:00:04.000Z
app/controllers/config/system/logs.py
grepleria/SnitchDNS
24f98b01fd5fca9aa2c660d6ee15742f2e44915c
[ "MIT" ]
16
2020-12-07T17:04:36.000Z
2022-03-10T11:12:52.000Z
app/controllers/config/system/logs.py
grepleria/SnitchDNS
24f98b01fd5fca9aa2c660d6ee15742f2e44915c
[ "MIT" ]
36
2020-12-09T13:04:40.000Z
2022-03-12T18:14:36.000Z
from .. import bp from flask import request, render_template, flash, redirect, url_for from flask_login import current_user, login_required from app.lib.base.provider import Provider from app.lib.base.decorators import admin_required
26.257143
68
0.688792
f8905d54c870fed2c5b2b1831a4130a25651f566
5,539
py
Python
MR-OCP/mrcap/utils/downsample_atlas.py
justi/m2g
09e8b889889ee8d8fb08b9b6fcd726fb3d901644
[ "Apache-2.0" ]
12
2015-03-11T22:07:17.000Z
2016-01-29T21:24:29.000Z
MR-OCP/mrcap/utils/downsample_atlas.py
youngmook/m2g
09e8b889889ee8d8fb08b9b6fcd726fb3d901644
[ "Apache-2.0" ]
213
2015-01-30T16:02:57.000Z
2016-01-29T21:45:02.000Z
MR-OCP/mrcap/utils/downsample_atlas.py
youngmook/m2g
09e8b889889ee8d8fb08b9b6fcd726fb3d901644
[ "Apache-2.0" ]
5
2015-02-04T13:58:12.000Z
2016-01-29T21:24:46.000Z
#!/usr/bin/env python # Copyright 2014 Open Connectome Project (http://openconnecto.me) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # create_atlas.py # Created by Disa Mhembere on 2014-04-10. # Email: [email protected] # Copyright (c) 2014. All rights reserved. # This simply takes a (182, 218, 182) atlas and creates # a ~30-non-zero k region atlas by relabelling each # 3x3x3 region with a new label then masking # using a base atlas import argparse import nibabel as nib import numpy as np from math import ceil from copy import copy import sys, pdb from time import time import os from packages.utils.setup import get_files def create(roifn=os.path.join(os.environ["M2G_HOME"],"data","Atlas", "MNI152_T1_1mm_brain.nii"), start=2): """ Downsamples an atlas from a template brain. Create a new atlas given some scaling factor determined by the start index. Can be useful if looking for parcellation of certain scale for graph generation. **Positional Arguments** roifn: [.nii; nifti image] (default = MNI152) - Nifti roi mask file name start: [int] (default = 2) - The x,y,z start position which determines the scaling. **Returns** atlas: [.nii; nifti image] - Atlas labels in MNI space. """ start_time = time() atlmap = None print "Loading rois as base ..." if not os.path.exists(roifn): get_files() img = nib.load(roifn) base = img.get_data() aff = img.get_affine() fm = img.file_map true_dim = base.shape # Labelling new label_used = False print "Labeling new ..." region_num = 1 step = 1+(start*2) mstart = -start mend = start+1 # Align new to scale factor xdim, ydim, zdim = map(ceil, np.array(base.shape)/float(step)) if step == 1: assert xdim == base.shape[0] and ydim == base.shape[1] and zdim == base.shape[2] resized_base = np.zeros((xdim*step, ydim*step, zdim*step), dtype=int) resized_base[:base.shape[0], :base.shape[1], :base.shape[2]] = base base = resized_base del resized_base # Create new matrix new = np.zeros_like(base, dtype=np.int) # poke my finger in the eye of bjarne # TODO: Cythonize for z in xrange(start, base.shape[2]-start, step): for y in xrange(start, base.shape[1]-start, step): for x in xrange(start, base.shape[0]-start, step): if label_used: region_num += 1 # only increase counter when a label was used label_used = False # set other (step*step)-1 around me to same region for zz in xrange(mstart,mend): for yy in xrange(mstart,mend): for xx in xrange(mstart,mend): if (base[x+xx,y+yy,z+zz]): # Masking label_used = True new[x+xx,y+yy,z+zz] = region_num new = new[:true_dim[0], :true_dim[1], :true_dim[2]] # shrink new to correct size print "Your atlas has %d regions ..." % len(np.unique(new)) img = nib.Nifti1Image(new, affine=img.get_affine(), header=img.get_header(), file_map=img.file_map) del new print "Building atlas took %.3f sec ..." % (time()-start_time) return img def validate(atlas_fn, roifn): """ Validate that an atlas you've created is a valid based on the masking you have @param atlas_fn: the new atlas you've created @param roifn: nifti roi file name """ base = nib.load(roifn).get_data() try: new = nib.load(atlas_fn).get_data() except: sys.stderr.write("[Error]: Loading file %s failed!\n" % atlas_fn); exit(-1) # This is a mapping from base to new where if we get any conflicting regions we failed to make a valid atlas old_to_new = {} for i in xrange(new.shape[2]): for ii in xrange(new.shape[1]): for iii in xrange(new.shape[0]): if old_to_new.has_key(base[i,ii,iii]): if old_to_new[base[i,ii,iii]] != new[i,ii,iii]: print "[Error]; Index [%d,%d,%d] Should be: {0}, but is {1}".format(i, ii, iii, old_to_new[base[i,ii,iii]], new[i,ii,iii]) exit(911) else: if start == 0 and new[i,i,iii] in old_to_new.values(): import pdb; pdb.set_trace() old_to_new[base[i,ii,iii]] = new[i,i,iii] print "Success! Validation complete." if __name__ == "__main__": main()
32.582353
157
0.667268
f890b528c3dd1757b9098304393522baa32267a2
2,241
py
Python
tensorforce/agents/random_agent.py
matthewwilfred/tensorforce
0ba3d39ed88fb0a0a0bf4bf03e79150c0fe0d54c
[ "Apache-2.0", "MIT" ]
1
2021-08-23T19:49:03.000Z
2021-08-23T19:49:03.000Z
tensorforce/agents/random_agent.py
matthewwilfred/tensorforce
0ba3d39ed88fb0a0a0bf4bf03e79150c0fe0d54c
[ "Apache-2.0", "MIT" ]
null
null
null
tensorforce/agents/random_agent.py
matthewwilfred/tensorforce
0ba3d39ed88fb0a0a0bf4bf03e79150c0fe0d54c
[ "Apache-2.0", "MIT" ]
null
null
null
# Copyright 2017 reinforce.io. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Random agent that always returns a random action. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division from random import gauss, random, randrange from tensorforce.agents import Agent
30.283784
96
0.622936
f891f4ca2c23bac0817312243666f8fd196ddfcf
9,970
py
Python
selinum_basics.py
elithaxxor/craiglist_scraper
db35d06004e306229cd10d7678574763cf48c625
[ "MIT" ]
null
null
null
selinum_basics.py
elithaxxor/craiglist_scraper
db35d06004e306229cd10d7678574763cf48c625
[ "MIT" ]
null
null
null
selinum_basics.py
elithaxxor/craiglist_scraper
db35d06004e306229cd10d7678574763cf48c625
[ "MIT" ]
null
null
null
import os import re import time from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver import Chrome from selenium.webdriver.support.expected_conditions import presence_of_element_located from selenium import webdriver from selenium.webdriver.chrome.options import Options ## ORIGINAL CODE ### # OS = os.name # # s.environ['PATH'] += '/Users/macbook/Documents/CS/PROJECT/AutoDownloader/TEST_DOWNLOADS/fileexteniontest.torrenttorrent.torrent' # driver = webdriver.Chrome(r'/Users/macbook/Documents/CS/PROJECT/AutoDownloader/TEST_DOWNLOADS/fileexteniontest.torrenttorrent.torrent/chromedriver') # driver.get('https://1337x.to/') ## To Load Extensions:: try: OS = os.name chrome_options = Options() chrome_options.add_extension('/Users/macbook/Documents/CS/PROJECT/AutoDownloader/TEST_DOWNLOADS/Selenium_Project/ad_blocker.crx') driver = webdriver.Chrome(options=chrome_options, executable_path= r'/Users/macbook/Documents/CS/PROJECT/AutoDownloader/TEST_DOWNLOADS/fileexteniontest.torrenttorrent.torrent/chromedriver') time.sleep(2) driver.get('https://1337x.to/') driver.implicitly_wait(25) ### no need to call more than once print(OS) print(driver) #print(driver.text) except Exception as e: print('ERROR IN PARSING CHROME EXTENSION', str(e)) try: search_box = driver.find_element_by_id('autocomplete') print(search_box.text) search_box.click() search_box.send_keys('chopper') click_search_box = driver.find_element_by_class_name('flaticon-search') #click_seach_box.click() #click_search_box.send_keys(Keys.ENTER) search_box.send_keys(Keys.ENTER) #driver.find_element_by_xpath("html/xxxxx").send_keys('keys.ENTER') except Exception as e: print('Element not found CANNOT FIND SEARCH BOX ', str(e)) try: search_box01 = driver.find_element_by_id('autocomplete') print(search_box01.text) search_box01.click() search_box01.send_keys(Keys.CONTROL, "a") search_box01.clear() search_box01.send_keys('the titanic') search_box01.send_keys(Keys.ENTER) except Exception as e: print('Element not found 2nd search', str(e)) ### IMPLIMENT EXPLICIT WAIT ## SINCE THE WEBPAGE MAY TAKE LONG TO LOAD, AND TIME TO PARSE, SET UP AN EXPLICIT WAIT--> THIS WILL WAIT UNTIL THE DEFINED THING IS LOADED ## SET UP LOOP TO ITERATE THROUGH LIST OF ELEMENTS try: body = WebDriverWait(driver, 15).until( EC.presence_of_element_located((By.CLASS_NAME, 'table-list-wrap')) #EC.presence_of_all_elements_located((by.CLASS, 'table-list table table-responsive table-striped')) ## ) print(body.text) print(),print() print('1111111111') href_link = body.find_element_by_xpath("/html/body/main/div/div/div/div[2]/div[1]/table/tbody/tr[1]/td[1]") print(href_link.text) except Exception as e: print('Element not found body search', str(e)) try: click_link = driver.find_element_by_link_text('The Titanic Secret by Clive Cussler, Jack Du Brul EPUB') print(click_link.text) click_link.click() except Exception as e: print('Element not found click test', str(e)) try: # magnet = driver.find_element magnet_pull =WebDriverWait(driver, 15).until( EC.presence_of_element_located((By.CLASS_NAME, "l4702248fa49fbaf25efd33c5904b4b3175b29571 l0e850ee5d16878d261dd01e2486970eda4fb2b0c l8680f3a1872d2d50e0908459a4bfa4dc04f0e610")) ) print('magnetpull info') print(magnet_pull.text) magnet_link = driver.find_element_by_xpath("/html/body/main/div/div/div/div[2]/div[1]/ul[1]/li[1]/a") print(magnet_link.text) magnet_link.click() except Exception as e: print('MAGNET PULL ERROR', str(e)) driver.quit() ###### GOOOD CODE ###### ##### TO LOOP THROUGH A LIST WHILE IN IMPLICIT WAIT # sm_table = body.find_element_by_class_name('"table-list table table-responsive table-striped"') # # sm_table = body.find_element_by_class_name('coll-1 name') # #sm_table = body.find_element_by_xpath("/html/body/main/div/div/div/div[2]/div[1]/table/tbody/tr[1]/td[1]") # # for cell in sm_table: # href_link = cell.find_element_by_xpath("/html/body/main/div/div/div/div[2]/div[1]/table/tbody/tr[1]/td[1]") # print(href_link.text) ## ORIGINAL CODE ### # OS = os.name # # s.environ['PATH'] += '/Users/macbook/Documents/CS/PROJECT/AutoDownloader/TEST_DOWNLOADS/fileexteniontest.torrenttorrent.torrent' # driver = webdriver.Chrome(r'/Users/macbook/Documents/CS/PROJECT/AutoDownloader/TEST_DOWNLOADS/fileexteniontest.torrenttorrent.torrent/chromedriver') # driver.get('https://1337x.to/') #################### EXPLICIT WAIT ########################### ###### USE WHEN DOWNLOAD COMPLETES ######### (23:00) #### use when you want to wait some to for executution ## explicit wait -- waits until condition is returned true. ## driver, 30 --> how long to wait till true # ## use body class to find element # ## nest elements in a tuple # print(f"my_element") # WebDriverWait(driver, 30).until( # EC.text_to_b_present_in_element( # (by.CLASS_NAME, 'progress-label'),## element filtration (class name, class name vaue as a tuple # 'complete' ## expected text as a string # # ) # # ) # my_element00 = driver.find_element_by_class_name('') ## <--- pass in class value #-> class styling method # print(my_element00) # # #### DROP DOWN CLASSES FOR MAGNET / TORRENT DOWNLOAD ## # <ul class="lfa750b508ad7d04e3fc96bae2ea94a5d121e6607 lcafae12a818cf41a5873ad374b98e79512c946c6"> # <li><a class="l4702248fa49fbaf25efd33c5904b4b3175b29571 l0e850ee5d16878d261dd01e2486970eda4fb2b0c l8680f3a1872d2d50e0908459a4bfa4dc04f0e610" href="magnet:?xt=urn:btih:F5BC20E9AA709CFC32BE63B2F6BEE56882EB7BD2&amp;dn=The+Titanic+Secret+by+Clive+Cussler%2C+Jack+Du+Brul+EPUB&amp;tr=udp%3A%2F%2Ftracker.coppersurfer.tk%3A6969%2Fannounce&amp;tr=udp%3A%2F%2Ftracker.leechers-paradise.org%3A6969%2Fannounce&amp;tr=udp%3A%2F%2F9.rarbg.to%3A2710%2Fannounce&amp;tr=udp%3A%2F%2Fexodus.desync.com%3A6969%2Fannounce&amp;tr=udp%3A%2F%2Ftracker.uw0.xyz%3A6969%2Fannounce&amp;tr=udp%3A%2F%2Fopen.stealth.si%3A80%2Fannounce&amp;tr=udp%3A%2F%2Ftracker.tiny-vps.com%3A6969%2Fannounce&amp;tr=udp%3A%2F%2Fopen.demonii.si%3A1337%2Fannounce&amp;tr=udp%3A%2F%2Ftracker.nibba.trade%3A1337%2Fannounce&amp;tr=udp%3A%2F%2Fopentracker.sktorrent.org%3A6969%2Fannounce&amp;tr=udp%3A%2F%2Fexplodie.org%3A6969%2Fannounce&amp;tr=udp%3A%2F%2Fbt.xxx-tracker.com%3A2710%2Fannounce&amp;tr=udp%3A%2F%2Fzephir.monocul.us%3A6969%2Fannounce&amp;tr=udp%3A%2F%2Famigacity.xyz%3A6969%2Fannounce&amp;tr=udp%3A%2F%2Ftracker.zer0day.to%3A1337%2Fannounce&amp;tr=udp%3A%2F%2Ftracker.leechers-paradise.org%3A6969%2Fannounce&amp;tr=udp%3A%2F%2Fcoppersurfer.tk%3A6969%2Fannounce" onclick="javascript: count(this);"><span class="icon"><i class="flaticon-ld08a4206c278863eddc1bf813faa024ef55ce0ef"></i></span>Magnet Download</a> </li> # <li class="dropdown"> # <a data-toggle="dropdown" class="l4702248fa49fbaf25efd33c5904b4b3175b29571 l0e850ee5d16878d261dd01e2486970eda4fb2b0c le41399670fcf7cac9ad72cbf1af20d76a1fa16ad" onclick="javascript: count(this);" href="#"><span class="icon"><i class="flaticon-le9f40194aef2ed76d8d0f7f1be7fe5aad6fce5e6"></i></span>Torrent Download</a> # <ul class="dropdown-menu" aria-labelledby="dropdownMenu1"> # <li><a class="l4702248fa49fbaf25efd33c5904b4b3175b29571 l0e850ee5d16878d261dd01e2486970eda4fb2b0c l13bf8e2d22d06c362f67b795686b16d022e80098" target="_blank" href="http://itorrents.org/torrent/F5BC20E9AA709CFC32BE63B2F6BEE56882EB7BD2.torrent"><span class="icon"><i class="flaticon-lbebff891414215bfc65d51afbd7677e45be19fad"></i></span>ITORRENTS MIRROR</a> </li> # <li><a class="l4702248fa49fbaf25efd33c5904b4b3175b29571 l0e850ee5d16878d261dd01e2486970eda4fb2b0c l13bf8e2d22d06c362f67b795686b16d022e80098" target="_blank" href="http://torrage.info/torrent.php?h=F5BC20E9AA709CFC32BE63B2F6BEE56882EB7BD2"><span class="icon"><i class="flaticon-lbebff891414215bfc65d51afbd7677e45be19fad"></i></span>TORRAGE MIRROR</a></li> # <li><a class="l4702248fa49fbaf25efd33c5904b4b3175b29571 l0e850ee5d16878d261dd01e2486970eda4fb2b0c l13bf8e2d22d06c362f67b795686b16d022e80098" target="_blank" href="http://btcache.me/torrent/F5BC20E9AA709CFC32BE63B2F6BEE56882EB7BD2"><span class="icon"><i class="flaticon-lbebff891414215bfc65d51afbd7677e45be19fad"></i></span>BTCACHE MIRROR</a></li> # <li><a class="l4702248fa49fbaf25efd33c5904b4b3175b29571 l0e850ee5d16878d261dd01e2486970eda4fb2b0c l8680f3a1872d2d50e0908459a4bfa4dc04f0e610" href="magnet:?xt=urn:btih:F5BC20E9AA709CFC32BE63B2F6BEE56882EB7BD2&amp;dn=The+Titanic+Secret+by+Clive+Cussler%2C+Jack+Du+Brul+EPUB&amp;tr=udp%3A%2F%2Ftracker.coppersurfer.tk%3A6969%2Fannounce&amp;tr=udp%3A%2F%2Ftracker.leechers-paradise.org%3A6969%2Fannounce&amp;tr=udp%3A%2F%2F9.rarbg.to%3A2710%2Fannounce&amp;tr=udp%3A%2F%2Fexodus.desync.com%3A6969%2Fannounce&amp;tr=udp%3A%2F%2Ftracker.uw0.xyz%3A6969%2Fannounce&amp;tr=udp%3A%2F%2Fopen.stealth.si%3A80%2Fannounce&amp;tr=udp%3A%2F%2Ftracker.tiny-vps.com%3A6969%2Fannounce&amp;tr=udp%3A%2F%2Fopen.demonii.si%3A1337%2Fannounce&amp;tr=udp%3A%2F%2Ftracker.nibba.trade%3A1337%2Fannounce&amp;tr=udp%3A%2F%2Fopentracker.sktorrent.org%3A6969%2Fannounce&amp;tr=udp%3A%2F%2Fexplodie.org%3A6969%2Fannounce&amp;tr=udp%3A%2F%2Fbt.xxx-tracker.com%3A2710%2Fannounce&amp;tr=udp%3A%2F%2Fzephir.monocul.us%3A6969%2Fannounce&amp;tr=udp%3A%2F%2Famigacity.xyz%3A6969%2Fannounce&amp;tr=udp%3A%2F%2Ftracker.zer0day.to%3A1337%2Fannounce&amp;tr=udp%3A%2F%2Ftracker.leechers-paradise.org%3A6969%2Fannounce&amp;tr=udp%3A%2F%2Fcoppersurfer.tk%3A6969%2Fannounce"><span class="icon"><i class="flaticon-ld08a4206c278863eddc1bf813faa024ef55ce0ef"></i></span>None Working? Use Magnet</a></li> #
57.298851
1,381
0.768907
f893a81b68249d96ab59017996d9f35493423f0f
8,644
py
Python
training/MNISTFashionMicroservice/src/server/training.py
UMass-Rescue/CombinedTechStack
b3447b174d9798f3baf9bf6509b4cc14a5bd225a
[ "MIT" ]
null
null
null
training/MNISTFashionMicroservice/src/server/training.py
UMass-Rescue/CombinedTechStack
b3447b174d9798f3baf9bf6509b4cc14a5bd225a
[ "MIT" ]
32
2021-03-17T13:17:22.000Z
2021-05-04T14:25:31.000Z
training/MNISTFashionMicroservice/src/server/training.py
UMass-Rescue/CombinedTechStack
b3447b174d9798f3baf9bf6509b4cc14a5bd225a
[ "MIT" ]
1
2021-03-24T13:47:44.000Z
2021-03-24T13:47:44.000Z
import os import tempfile import shutil import requests import sys import logging import json from src.server.dependency import ModelData import tensorflow as tf def train_model(training_id, model_data: ModelData): """ Train model(s) based on a given model and hyperparameters Now supporting two hyperparameters which are - Optimizer and learning_rate """ # SET LOGGER TO PRINT TO STDOUT AND WRITE TO FILE logging.basicConfig( level=logging.DEBUG, format="%(asctime)s [%(levelname)s] %(message)s", handlers=[ logging.FileHandler("/log/{}.log".format(training_id)), logging.StreamHandler(sys.stdout) ] ) log = logging.getLogger('db_microservice_logger') sys.stdout = StreamToLogger(log,logging.INFO) sys.stderr = StreamToLogger(log,logging.ERROR) # get API KEY from the environment file API_KEY = os.getenv('API_KEY') best_acc = -1 best_val_acc = -1 best_loss = -1 best_val_loss = -1 best_model = None best_config = None best_optimizer = None best_loss_fn = None # print("Save:" + str(model_data.save)) logging.info("Save:" + str(model_data.save)) try: # print('[Training] Starting to train model ID: ' + training_id) logging.info('[Training] Starting to train model ID: ' + training_id) dataset_root = '/app/src/public_dataset' img_height = 28 img_width = 28 train_ds = tf.keras.preprocessing.image_dataset_from_directory( dataset_root, validation_split=model_data.split, subset="training", seed=model_data.seed, image_size=(img_height, img_width), batch_size=model_data.batch_size ) validation_ds = tf.keras.preprocessing.image_dataset_from_directory( dataset_root, validation_split=model_data.split, subset="validation", seed=model_data.seed, image_size=(img_height, img_width), batch_size=model_data.batch_size ) autotune_buf_size = tf.data.AUTOTUNE train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=autotune_buf_size) validation_ds = validation_ds.cache().prefetch(buffer_size=autotune_buf_size) optimizer_dict = model_data.optimizer.dict() config = {} if "config" in optimizer_dict and optimizer_dict["config"]: # convert all float config from string to float convert_data_type(optimizer_dict["config"]) config = optimizer_dict["config"] # if learning_rate is not defined, it will use the optimizor's default value learning_rate_list = [None] if model_data.optimizer.learning_rate: learning_rate_list = model_data.optimizer.learning_rate # get loss function object loss_dict = model_data.loss_function.dict() if loss_dict["config"] is None: loss_dict["config"] = {} else: convert_data_type(loss_dict["config"]) loss_fn = tf.keras.losses.get(loss_dict) logging.info(loss_fn) # create all hyperparameters combination optimizer_class = model_data.optimizer.dict() hyperparameters = [[o,lr] for o in optimizer_dict["class_name"] for lr in learning_rate_list] # loop through all hyperparameters for hp in hyperparameters: # load model from json file model = tf.keras.models.model_from_json(model_data.model_structure) optimizer_obj = { "class_name": hp[0], "config": config } # set learning rate if not None if hp[1]: optimizer_obj["config"]["learning_rate"] = hp[1] optimizer = tf.keras.optimizers.get(optimizer_obj) n_epochs = model_data.n_epochs # train the model (acc, val_acc, loss, val_loss, model) = fit(model, loss_fn, optimizer, train_ds, validation_ds, n_epochs) # CHECK FOR THE BEST MODEL (from validation accuracy) if val_acc > best_val_acc: best_acc = acc best_val_acc = val_acc best_loss = loss best_val_loss = val_loss best_model = model best_optimizer = optimizer.get_config() best_loss_fn = loss_fn.get_config() # END LOOP logging.info('[Training] Completed training on model ID: ' + training_id) # If we are saving the model, we must save it to folder, zip that folder, # and then send the zip file to the server via HTTP requests if model_data.save: # print('[Training] Preparing to save Model data on model ID: ' + training_id) logging.info('[Training] Preparing to save Model data on model ID: ' + training_id) # Create temp dir and save model to it tmpdir = tempfile.mkdtemp() model_save_path = os.path.join(tmpdir, training_id) # Save model nested 1 more layer down to facilitate unzipping tf.saved_model.save(best_model, os.path.join(model_save_path, training_id)) shutil.make_archive(model_save_path, 'zip', model_save_path) print(tmpdir) files = {'model': open(model_save_path+'.zip', 'rb')} requests.post( 'http://host.docker.internal:' + str(os.getenv('SERVER_PORT')) + '/training/model', headers={'api_key': API_KEY}, params={'training_id': training_id}, files=files ) # print('[Training] Sent SavedModel file data on model ID: ' + training_id) logging.info('[Training] Sent SavedModel file data on model ID: ' + training_id) except: # print('[Training] Critical error on training: ' + training_id) logging.exception('[Training] Critical error on training: ' + training_id) result = { 'training_accuracy': best_acc, 'validation_accuracy': best_val_acc, 'training_loss': best_loss, 'validation_loss': best_val_loss, 'optimizer_config': str(best_optimizer), 'loss_config': str(best_loss_fn) } logging.info('[Training] results: ' + str(result)) # Send HTTP request to server with the statistics on this training r = requests.post( 'http://host.docker.internal:' + str(os.getenv('SERVER_PORT')) + '/training/result', headers={'api_key': API_KEY}, json={ 'dataset_name': os.getenv('DATASET_NAME'), 'training_id': training_id, 'results': result }) r.raise_for_status() # print("[Training Results] Sent training results to server.") logging.info("[Training Results] Sent training results to server.")
32.618868
117
0.614762
f894286d87c8139bf9e7bda1448f050c5b02eb70
3,287
py
Python
app.py
pythonlittleboy/python_gentleman_crawler
751b624d22a5024746c256080ea0815a9986e3d7
[ "Apache-2.0" ]
1
2017-05-03T12:18:31.000Z
2017-05-03T12:18:31.000Z
app.py
pythonlittleboy/python_gentleman_crawler
751b624d22a5024746c256080ea0815a9986e3d7
[ "Apache-2.0" ]
null
null
null
app.py
pythonlittleboy/python_gentleman_crawler
751b624d22a5024746c256080ea0815a9986e3d7
[ "Apache-2.0" ]
1
2020-10-29T04:00:04.000Z
2020-10-29T04:00:04.000Z
from flask import Flask from flask import render_template from flask import request from model import MovieWebDAO import json from ml import Forcast app = Flask(__name__) if __name__ == '__main__': print("http://localhost:15001") app.run(host='0.0.0.0', debug=True, port=15001)
31.009434
79
0.703377
f89a1bc1e1f90da376a0c1761bee56b1db485561
1,438
py
Python
remove_negative_from_positive_augmented_samples.py
DarkElement75/object-detection-experiments
fc638f361f76d7bbb6e5cde9a3480c656b486ad6
[ "MIT" ]
null
null
null
remove_negative_from_positive_augmented_samples.py
DarkElement75/object-detection-experiments
fc638f361f76d7bbb6e5cde9a3480c656b486ad6
[ "MIT" ]
null
null
null
remove_negative_from_positive_augmented_samples.py
DarkElement75/object-detection-experiments
fc638f361f76d7bbb6e5cde9a3480c656b486ad6
[ "MIT" ]
null
null
null
import h5py import numpy as np import cv2 """ Just gets rid of the negatives by only reading the positives, then writing them to replace the existing archive """ archive_dir="positive_augmented_samples.h5" x,y = read_new(archive_dir) write_new(archive_dir, x, y)
35.95
112
0.632823
f89ade1e452186e4d101ccde6adaccc57996d66d
646
py
Python
Automate_Whatsapp_Sending_Text.py
IshvinaKapoor/Automate-WhatsApp
f499db0540c56b74152a368af1fa361ecea69806
[ "MIT" ]
null
null
null
Automate_Whatsapp_Sending_Text.py
IshvinaKapoor/Automate-WhatsApp
f499db0540c56b74152a368af1fa361ecea69806
[ "MIT" ]
null
null
null
Automate_Whatsapp_Sending_Text.py
IshvinaKapoor/Automate-WhatsApp
f499db0540c56b74152a368af1fa361ecea69806
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Automate WhatsApp - Sending WhatsApp message @author: DELL Ishvina Kapoor """ #importing the necessary modules import pywhatkit as pkt import getpass as gp #displaying a welcome message print("Automating Whatsapp!") #capturing the target phone number from the user phone_num = gp.getpass(prompt = 'Enter the phone number(with country code) : ', stream = None) #capture the message message = "Hi IK this side" #call the method #the time is in 24 hr format pkt.sendwhatmsg(phone_num, message, 22 , 33) #will be displayed once whatsapp is automated print("Delivered to the target user")
23.925926
96
0.716718
f89c748dd51197d30a5af7af230eb9f70959fb01
894
py
Python
transonic/analyses/beniget.py
fluiddyn/transonic
a460e9f6d1139f79b668cb3306d1e8a7e190b72d
[ "BSD-3-Clause" ]
88
2019-01-08T16:39:08.000Z
2022-02-06T14:19:23.000Z
transonic/analyses/beniget.py
fluiddyn/transonic
a460e9f6d1139f79b668cb3306d1e8a7e190b72d
[ "BSD-3-Clause" ]
13
2019-06-20T15:53:10.000Z
2021-02-09T11:03:29.000Z
transonic/analyses/beniget.py
fluiddyn/transonic
a460e9f6d1139f79b668cb3306d1e8a7e190b72d
[ "BSD-3-Clause" ]
1
2019-11-05T03:03:14.000Z
2019-11-05T03:03:14.000Z
import gast as ast from beniget import Ancestors, DefUseChains as DUC, UseDefChains from beniget.beniget import Def __all__ = ["Ancestors", "DefUseChains", "UseDefChains"] # this import has to be after the definition of DefUseChains from transonic.analyses.extast import CommentLine # noqa: E402
29.8
64
0.659955
f89ffb26ee589ce79dc400f7f5cf4afa16b557b3
88
py
Python
view/resources/__init__.py
surfaceanalytics/inelasticscattering
da549dde788a55084c565bbc5f89ebf9cbae4263
[ "MIT" ]
null
null
null
view/resources/__init__.py
surfaceanalytics/inelasticscattering
da549dde788a55084c565bbc5f89ebf9cbae4263
[ "MIT" ]
3
2021-09-08T03:02:25.000Z
2022-03-12T01:00:06.000Z
view/resources/__init__.py
surfaceanalytics/inelasticscattering
da549dde788a55084c565bbc5f89ebf9cbae4263
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Thu Sep 3 16:43:28 2020 @author: nicholls """
11
35
0.568182
f8a219513d5df677c7712f374a4d0f79bdc2f13b
2,401
py
Python
2020/python/16.py
gcp825/advent_of_code
b4ea17572847e1a9044487041b3e12a0da58c94b
[ "MIT" ]
1
2021-12-29T09:32:08.000Z
2021-12-29T09:32:08.000Z
2020/python/16.py
gcp825/advent_of_code
b4ea17572847e1a9044487041b3e12a0da58c94b
[ "MIT" ]
null
null
null
2020/python/16.py
gcp825/advent_of_code
b4ea17572847e1a9044487041b3e12a0da58c94b
[ "MIT" ]
null
null
null
from collections import Counter print(main('day16.txt'))
24.752577
96
0.43107
f8a565676ba40410367b887bd52120b87f5a4d60
9,512
py
Python
MODEL3.CNN.py
alhasacademy96/finalyearproject
1f8f21dea55e45807767e465c27b225e2fc5c082
[ "MIT" ]
2
2020-09-15T18:10:12.000Z
2021-01-25T21:54:04.000Z
MODEL3.CNN.py
alhasacademy96/finalyearproject
1f8f21dea55e45807767e465c27b225e2fc5c082
[ "MIT" ]
null
null
null
MODEL3.CNN.py
alhasacademy96/finalyearproject
1f8f21dea55e45807767e465c27b225e2fc5c082
[ "MIT" ]
null
null
null
# Author: Ibrahim Alhas - ID: 1533204. # MODEL 3: CNN with built-in tensorflow tokenizer. # This is the final version of the model (not the base). # Packages and libraries used for this model. # ** Install these if not installed already **. import numpy as np import pandas as pd import matplotlib.pyplot as plt import datetime from time import time import re from sklearn.metrics import accuracy_score, confusion_matrix, precision_score, recall_score, f1_score, roc_curve, \ classification_report from tensorflow import keras from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.utils import to_categorical from keras import layers from keras.models import Sequential from sklearn.model_selection import train_test_split, cross_validate import tensorflow as tf import seaborn as sns import warnings import keras from keras.models import Sequential, Model from keras.layers import Dense, Dropout, Flatten, Activation, BatchNormalization from keras.layers.noise import GaussianNoise from keras.layers import Conv2D, MaxPooling2D warnings.filterwarnings('ignore') # plt.style.use('ggplot') # Basic data visualisation and analysis ------------------------------------------------------------------------------ # We see that the title column is from news articles, and the text column forms the twitter tweet extracts. true = pd.read_csv('True.csv') false = pd.read_csv('Fake.csv') # We drop the columns we do not need. See chapter 3, model CNN for more details. true = true.drop('title', axis=1) true = true.drop('subject', axis=1) true = true.drop('date', axis=1) false = false.drop('title', axis=1) false = false.drop('subject', axis=1) false = false.drop('date', axis=1) # We set the labels for each data instance, where factual = 1, otherwise 0. false['label'] = 0 true['label'] = 1 # We merge the two divided datasets (true and fake) into a singular dataset. data = pd.concat([true, false], ignore_index=True) texts = data['text'] labels = data['label'] x = texts y = labels # We incorporate the publishers feature from title and text instances, and place it into the dataset manually. # First Creating list of index that do not have publication part. We can use this as a new feature. unknown_publishers = [] for index, row in enumerate(true.text.values): try: record = row.split(" -", maxsplit=1) # if no text part is present, following will give error print(record[1]) # if len of piblication part is greater than 260 # following will give error, ensuring no text having "-" in between is counted assert (len(record[0]) < 260) except: unknown_publishers.append(index) # We print the instances where publication information is absent or different. print(true.iloc[unknown_publishers].text) # We want to use the publication information as a new feature. publisher = [] tmp_text = [] for index, row in enumerate(true.text.values): if index in unknown_publishers: # Append unknown publisher: tmp_text.append(row) publisher.append("Unknown") continue record = row.split(" -", maxsplit=1) publisher.append(record[0]) tmp_text.append(record[1]) # Replace text column with new text + add a new feature column called publisher/source. true["publisher"] = publisher true["text"] = tmp_text del publisher, tmp_text, record, unknown_publishers # Validate that the publisher/source column has been added to the dataset. print(true.head()) # Check for missing values, then drop them for both datasets. print([index for index, text in enumerate(true.text.values) if str(text).strip() == '']) true = true.drop(8970, axis=0) fakeEmptyIndex = [index for index, text in enumerate(false.text.values) if str(text).strip() == ''] print(f"No of empty rows: {len(fakeEmptyIndex)}") false.iloc[fakeEmptyIndex].tail() # - # For CNNs, we have to vectorize the text into 2d integers (tensors). MAX_SEQUENCE_LENGTH = 5000 MAX_NUM_WORDS = 25000 EMBEDDING_DIM = 300 TEST_SPLIT = 0.2 epochs = 1 # We tokenize the text, just like all other models-------------------------------------------------------------------- tokenizer = Tokenizer(num_words=MAX_NUM_WORDS) tokenizer.fit_on_texts(texts) sequences = tokenizer.texts_to_sequences(texts) word_index = tokenizer.word_index num_words = min(MAX_NUM_WORDS, len(word_index)) + 1 data = pad_sequences(sequences, maxlen=MAX_SEQUENCE_LENGTH, padding='pre', truncating='pre') # Print the total number of tokens: print('Found %s tokens.' % len(word_index)) # We partition our dataset into train/test. x_train, x_val, y_train, y_val = train_test_split(data, labels.apply(lambda x: 0 if x == 0 else 1), test_size=TEST_SPLIT) log_dir = "logs\\model\\" # A custom callbacks function, which initially included tensorboard. mycallbacks = [ tf.keras.callbacks.ReduceLROnPlateau(monitor='val_accuracy', patience=2, verbose=1, factor=0.5, min_lr=0.00001), tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=2, restore_best_weights=True), # Restoring the best # ...weights will help keep the optimal weights. # tf.keras.callbacks.TensorBoard(log_dir="./logs"), # NEWLY ADDED - CHECK. # tf.keras.callbacks.TensorBoard(log_dir=log_dir.format(time())), # NEWLY ADDED - CHECK. # tensorboard --logdir logs --> to check tensorboard feedback. ] # Parameters for our model. We experimented with some combinations and settled on this configuration------------------ model = Sequential( [ # Word/sequence processing: layers.Embedding(num_words, EMBEDDING_DIM, input_length=MAX_SEQUENCE_LENGTH, trainable=True), # The layers: layers.Conv1D(128, 5, activation='relu'), layers.GlobalMaxPooling1D(), # We classify our model here: layers.Dense(128, activation='relu'), layers.Dense(1, activation='sigmoid') ]) # We compile our model and run, with the loss function crossentropy, and optimizer rmsprop (we experimented with adam, # ...but rmsprop produced better results). model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy']) model.summary() print("Model weights:") print(model.weights) # tensorboard_callback = keras.callbacks.TensorBoard(log_dir="./logs") history = model.fit(x_train, y_train, batch_size=256, epochs=epochs, validation_data=(x_val, y_val), callbacks=mycallbacks) # Produce a figure, for every epoch, and show performance metrics. epochs = [i for i in range(1)] fig, ax = plt.subplots(1, 2) train_acc = history.history['accuracy'] train_loss = history.history['loss'] val_acc = history.history['val_accuracy'] val_loss = history.history['val_loss'] fig.set_size_inches(20, 10) ax[0].plot(epochs, train_acc, 'go-', label='Training Accuracy') ax[0].plot(epochs, val_acc, 'ro-', label='Testing Accuracy') ax[0].set_title('Training & Testing Accuracy') ax[0].legend() ax[0].set_xlabel("Epochs") ax[0].set_ylabel("Accuracy") ax[1].plot(epochs, train_loss, 'go-', label='Training Loss') ax[1].plot(epochs, val_loss, 'ro-', label='Testing Loss') ax[1].set_title('Training & Testing Loss') ax[1].legend() ax[1].set_xlabel("Epochs") ax[1].set_ylabel("Loss") plt.show() ''' history_dict = history.history acc = history_dict['accuracy'] val_acc = history_dict['val_accuracy'] loss = history_dict['loss'] val_loss = history_dict['val_loss'] epochs = history.epoch plt.figure(figsize=(12, 9)) plt.plot(epochs, loss, 'r', label='Training loss') plt.plot(epochs, val_loss, 'b', label='Validation loss') plt.title('Training and validation loss', size=20) plt.xlabel('Epochs', size=20) plt.ylabel('Loss', size=20) plt.legend(prop={'size': 20}) plt.show() plt.figure(figsize=(12, 9)) plt.plot(epochs, acc, 'g', label='Training acc') plt.plot(epochs, val_acc, 'b', label='Validation acc') plt.title('Training and validation accuracy', size=20) plt.xlabel('Epochs', size=20) plt.ylabel('Accuracy', size=20) plt.legend(prop={'size': 20}) plt.ylim((0.5, 1)) plt.show() ''' # We evaluate our model by predicting a few instances from our test data (the first 5)-------------------------------- print("Evaluation:") print(model.evaluate(x_val, y_val)) # We predict a few instances (up to 5). pred = model.predict(x_val) print(pred[:5]) binary_predictions = [] for i in pred: if i >= 0.5: binary_predictions.append(1) else: binary_predictions.append(0) # We print performance metrics: print('Accuracy on test set:', accuracy_score(binary_predictions, y_val)) print('Precision on test set:', precision_score(binary_predictions, y_val)) print('Recall on test set:', recall_score(binary_predictions, y_val)) print('F1 on test set:', f1_score(binary_predictions, y_val)) # We print the classification report (as an extra): print(classification_report(y_val, pred.round(), target_names=['Fact', 'Fiction'])) # We print the confusion matrix. cmm = confusion_matrix(y_val, pred.round()) print(cmm) print("Ibrahim Alhas") cmm = pd.DataFrame(cmm, index=['Fake', 'Original'], columns=['Fake', 'Original']) plt.figure(figsize=(10, 10)) sns.heatmap(cmm, cmap="Blues", linecolor='black', linewidth=1, annot=True, fmt='', xticklabels=['Fake', 'Original'], yticklabels=['Fake', 'Original']) plt.xlabel("Predicted") plt.ylabel("Actual") plt.show() # End----------------------------------------------------
37.746032
120
0.700694
f8a57061a44b4ce6c14481e8a79c00cddf4bc7c8
40,857
py
Python
tn/old_scripts/old_md_to_pdf/export_md_to_pdf.py
unfoldingWord-dev/tools
7251d64b4750f1615125dab3c09d6d00a9c284b4
[ "MIT" ]
6
2015-07-27T21:50:39.000Z
2020-06-25T14:32:35.000Z
tn/old_scripts/old_md_to_pdf/export_md_to_pdf.py
unfoldingWord-dev/tools
7251d64b4750f1615125dab3c09d6d00a9c284b4
[ "MIT" ]
89
2015-06-24T09:35:40.000Z
2022-02-13T14:40:31.000Z
tn/old_scripts/old_md_to_pdf/export_md_to_pdf.py
unfoldingWord-dev/tools
7251d64b4750f1615125dab3c09d6d00a9c284b4
[ "MIT" ]
12
2015-07-13T17:31:04.000Z
2021-08-06T06:50:21.000Z
#!/usr/bin/env python2 # -*- coding: utf8 -*- # # Copyright (c) 2017 unfoldingWord # http://creativecommons.org/licenses/MIT/ # See LICENSE file for details. # # Contributors: # Richard Mahn <[email protected]> """ This script generates the HTML tN documents for each book of the Bible """ from __future__ import unicode_literals, print_function import os import sys import re import pprint import logging import argparse import tempfile import markdown import shutil import subprocess import csv import codecs import markdown2 import json from glob import glob from bs4 import BeautifulSoup from usfm_tools.transform import UsfmTransform from ...general_tools.file_utils import write_file, read_file, load_json_object, unzip, load_yaml_object from ...general_tools.url_utils import download_file from ...general_tools.bible_books import BOOK_NUMBERS, BOOK_CHAPTER_VERSES from ...general_tools.usfm_utils import usfm3_to_usfm2 _print = print def main(ta_tag, tn_tag, tw_tag, ust_tag, ult_tag, ugnt_tag, lang_code, books, working_dir, output_dir): """ :param ta_tag: :param tn_tag: :param tw_tag: :param ust_tag: :param ult_tag: :param ugnt_tag: :param lang_code: :param books: :param working_dir: :param output_dir: :return: """ tn_converter = TnConverter(ta_tag, tn_tag, tw_tag, ust_tag, ult_tag, ugnt_tag, working_dir, output_dir, lang_code, books) tn_converter.run() if __name__ == '__main__': parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('-l', '--lang', dest='lang_code', default='en', required=False, help="Language Code") parser.add_argument('-b', '--book_id', dest='books', nargs='+', default=None, required=False, help="Bible Book(s)") parser.add_argument('-w', '--working', dest='working_dir', default=False, required=False, help="Working Directory") parser.add_argument('-o', '--output', dest='output_dir', default=False, required=False, help="Output Directory") parser.add_argument('--ta-tag', dest='ta', default='v10', required=False, help="tA Tag") parser.add_argument('--tn-tag', dest='tn', default='v13', required=False, help="tN Tag") parser.add_argument('--tw-tag', dest='tw', default='v9', required=False, help="tW Tag") parser.add_argument('--ust-tag', dest='ust', default='master', required=False, help="UST Tag") parser.add_argument('--ult-tag', dest='ult', default='master', required=False, help="ULT Tag") parser.add_argument('--ugnt-tag', dest='ugnt', default='v0.4', required=False, help="UGNT Tag") args = parser.parse_args(sys.argv[1:]) main(args.ta, args.tn, args.tw, args.ust, args.ult, args.ugnt, args.lang_code, args.books, args.working_dir, args.output_dir)
49.46368
254
0.548303
f8a59fce72ffcde75ac9e9b378c6906ab092d7dd
2,565
py
Python
mudi/interp/bootstrap_aucell.py
getzlab/mudi
eda170119708e59920c23a03834af915ecca24ce
[ "MIT" ]
1
2021-11-04T00:08:00.000Z
2021-11-04T00:08:00.000Z
mudi/interp/bootstrap_aucell.py
getzlab/mudi
eda170119708e59920c23a03834af915ecca24ce
[ "MIT" ]
null
null
null
mudi/interp/bootstrap_aucell.py
getzlab/mudi
eda170119708e59920c23a03834af915ecca24ce
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np from tqdm import tqdm import argparse from pyscenic.aucell import aucell from .aucell import create_gene_signatures from .aucell import assign_bootstrap if __name__ == "__main__": main()
28.5
91
0.617934
f8a65542e1ebb18eabea4f393380c912f8314bfc
696
py
Python
network/topo-custom.py
kstough/pox
152625fcd40fc5ddfce87b7632fd40777507205c
[ "Apache-2.0" ]
null
null
null
network/topo-custom.py
kstough/pox
152625fcd40fc5ddfce87b7632fd40777507205c
[ "Apache-2.0" ]
null
null
null
network/topo-custom.py
kstough/pox
152625fcd40fc5ddfce87b7632fd40777507205c
[ "Apache-2.0" ]
null
null
null
"""Custom topology example s7 ---- s8 ---- s9 / \ / \ / \ h1 h2 h3 h4 h5 h6 """ from mininet.topo import Topo print('Loading MyTopo') topos = {'mytopo': (lambda: MyTopo())}
19.885714
79
0.570402
f8a77e8060730c4c9bc76d9c5c083f084aed00b7
2,383
py
Python
test_alarms.py
ajaynema/rule-engine
99cd5d54dd45e1223d0eec2a65bc6d5f0ef3da51
[ "MIT" ]
null
null
null
test_alarms.py
ajaynema/rule-engine
99cd5d54dd45e1223d0eec2a65bc6d5f0ef3da51
[ "MIT" ]
null
null
null
test_alarms.py
ajaynema/rule-engine
99cd5d54dd45e1223d0eec2a65bc6d5f0ef3da51
[ "MIT" ]
null
null
null
from rule_condition import Condition from rule_action import Action from rule_template import RuleTemplate from rule_engine import RuleEngine from rule import Rule from rule_data import Data from rule_scope import Scope from action_handler_send_email import SendEmailHandler from action_handler_report_alarm import ReportAlarmHandler if __name__=="__main__": main()
29.419753
81
0.660512
f8a7cc80262619abcc2b85bf1530f105f8f8ce34
362
py
Python
agri/urls.py
Bhavesh0327/Agriblock
72015e1765214b153771dbc3868eae01fe8898b3
[ "MIT" ]
1
2020-10-01T08:28:57.000Z
2020-10-01T08:28:57.000Z
agri/urls.py
Bhavesh0327/Agriblock
72015e1765214b153771dbc3868eae01fe8898b3
[ "MIT" ]
14
2020-06-05T20:37:13.000Z
2022-02-26T22:51:36.000Z
agri/urls.py
Bhavesh0327/Agriblock
72015e1765214b153771dbc3868eae01fe8898b3
[ "MIT" ]
3
2020-01-29T04:34:28.000Z
2020-09-30T21:48:30.000Z
from django.urls import path from .views import * rest_urls = list(map(lambda x: path(x[0], x[1], name=x[2]), [ ('login/', login, 'login'), ('issue_asset/', issue_asset, 'issue_asset'), ('buy/', buy, 'buy'), ('get_assets/', get_assets, 'get_assets'), ('get_transactions/', get_transactions, 'get_transactions') ])) urlpatterns = rest_urls
25.857143
63
0.638122
f8a96eee4517afeca4532922b8ea2f6d38dc101a
4,898
py
Python
lib/utils_monai.py
octaviomtz/Growing-Neural-Cellular-Automata
a6f91661e35f7bd0d7b90ac4347f4d56c9351d0b
[ "MIT" ]
null
null
null
lib/utils_monai.py
octaviomtz/Growing-Neural-Cellular-Automata
a6f91661e35f7bd0d7b90ac4347f4d56c9351d0b
[ "MIT" ]
null
null
null
lib/utils_monai.py
octaviomtz/Growing-Neural-Cellular-Automata
a6f91661e35f7bd0d7b90ac4347f4d56c9351d0b
[ "MIT" ]
null
null
null
import os import numpy as np import monai import math import torch import glob from skimage.morphology import remove_small_holes, remove_small_objects from monai.transforms import ( LoadImaged, AddChanneld, Orientationd, Spacingd, ScaleIntensityRanged, SpatialPadd, RandAffined, RandCropByPosNegLabeld, RandGaussianNoised, RandFlipd, RandFlipd, RandFlipd, CastToTyped, ) def get_xforms_scans_or_synthetic_lesions(mode="scans", keys=("image", "label")): """returns a composed transform for scans or synthetic lesions.""" xforms = [ LoadImaged(keys), AddChanneld(keys), Orientationd(keys, axcodes="LPS"), Spacingd(keys, pixdim=(1.25, 1.25, 5.0), mode=("bilinear", "nearest")[: len(keys)]), ] dtype = (np.int16, np.uint8) if mode == "synthetic": xforms.extend([ ScaleIntensityRanged(keys[0], a_min=-1000.0, a_max=500.0, b_min=0.0, b_max=1.0, clip=True), ]) dtype = (np.float32, np.uint8) xforms.extend([CastToTyped(keys, dtype=dtype)]) return monai.transforms.Compose(xforms) def get_xforms_load(mode="load", keys=("image", "label")): """returns a composed transform.""" xforms = [ LoadImaged(keys), ScaleIntensityRanged(keys[0], a_min=-1000.0, a_max=500.0, b_min=0.0, b_max=1.0, clip=True), ] if mode == "load": dtype = (np.float32, np.uint8) xforms.extend([CastToTyped(keys, dtype=dtype)]) return monai.transforms.Compose(xforms)
39.5
111
0.669661
f8ab0286f449987129eeade795e566330ff36d18
867
py
Python
api/leaderboard/tests/test_views.py
individuo7/wololo-tournaments-api
5be6284064373e99346d39c78844e454c41c501d
[ "MIT" ]
2
2019-12-09T10:19:36.000Z
2020-01-11T11:48:41.000Z
api/leaderboard/tests/test_views.py
individuo7/wololo-tournaments-api
5be6284064373e99346d39c78844e454c41c501d
[ "MIT" ]
null
null
null
api/leaderboard/tests/test_views.py
individuo7/wololo-tournaments-api
5be6284064373e99346d39c78844e454c41c501d
[ "MIT" ]
null
null
null
import json import pytest from unittest import TestCase from rest_framework.test import APIClient from ..models import Group, Prediction
27.967742
63
0.704729
f8ab70b04aa64ecaf4843be345aba0efec2cfc69
414
py
Python
sapextractor/utils/string_matching/distances.py
aarkue/sap-meta-explorer
613bf657bbaa72a3781a84664e5de7626516532f
[ "Apache-2.0" ]
2
2021-02-10T08:09:35.000Z
2021-05-21T06:25:34.000Z
sapextractor/utils/string_matching/distances.py
aarkue/sap-meta-explorer
613bf657bbaa72a3781a84664e5de7626516532f
[ "Apache-2.0" ]
null
null
null
sapextractor/utils/string_matching/distances.py
aarkue/sap-meta-explorer
613bf657bbaa72a3781a84664e5de7626516532f
[ "Apache-2.0" ]
3
2021-11-22T13:27:00.000Z
2022-03-16T22:08:51.000Z
import stringdist def levenshtein(stru1, stru2): """ Measures the Levenshtein distance between two strings Parameters --------------- stru1 First string stru2 Second string Returns --------------- levens_dist Levenshtein distance """ return stringdist.levenshtein(stru1, stru2)
16.56
57
0.601449
f8acaa7460d221225a0bd79d4a5ca48dc091b0af
2,873
py
Python
components/aws/sagemaker/delete_simulation_app/src/robomaker_delete_simulation_app_spec.py
Strasser-Pablo/pipelines
a1d513eb412f3ffd44edf82af2fa7edb05c3b952
[ "Apache-2.0" ]
2,860
2018-05-24T04:55:01.000Z
2022-03-31T13:49:56.000Z
components/aws/sagemaker/delete_simulation_app/src/robomaker_delete_simulation_app_spec.py
Strasser-Pablo/pipelines
a1d513eb412f3ffd44edf82af2fa7edb05c3b952
[ "Apache-2.0" ]
7,331
2018-05-16T09:03:26.000Z
2022-03-31T23:22:04.000Z
components/aws/sagemaker/delete_simulation_app/src/robomaker_delete_simulation_app_spec.py
Strasser-Pablo/pipelines
a1d513eb412f3ffd44edf82af2fa7edb05c3b952
[ "Apache-2.0" ]
1,359
2018-05-15T11:05:41.000Z
2022-03-31T09:42:09.000Z
"""Specification for the RoboMaker delete. simulation application component.""" # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import List from common.sagemaker_component_spec import SageMakerComponentSpec from common.common_inputs import ( COMMON_INPUTS, SageMakerComponentCommonInputs, SageMakerComponentInput as Input, SageMakerComponentOutput as Output, SageMakerComponentBaseOutputs, SageMakerComponentInputValidator as InputValidator, SageMakerComponentOutputValidator as OutputValidator, ) class RoboMakerDeleteSimulationAppSpec( SageMakerComponentSpec[ RoboMakerDeleteSimulationAppInputs, RoboMakerDeleteSimulationAppOutputs ] ): INPUTS: RoboMakerDeleteSimulationAppInputs = RoboMakerDeleteSimulationAppInputs( arn=InputValidator( input_type=str, required=True, description="The Amazon Resource Name (ARN) of the simulation application.", default="", ), version=InputValidator( input_type=str, required=False, description="The version of the simulation application.", default=None, ), **vars(COMMON_INPUTS), ) OUTPUTS = RoboMakerDeleteSimulationAppOutputs( arn=OutputValidator( description="The Amazon Resource Name (ARN) of the simulation application." ), )
32.280899
88
0.725374
f8aeac4c82055a9ca0856652e23d45a0af0bcf39
7,595
py
Python
ckanext-hdx_theme/ckanext/hdx_theme/util/jql_queries.py
alexandru-m-g/hdx-ckan
647f1f23f0505fa195601245b758edcaf4d25985
[ "Apache-2.0" ]
null
null
null
ckanext-hdx_theme/ckanext/hdx_theme/util/jql_queries.py
alexandru-m-g/hdx-ckan
647f1f23f0505fa195601245b758edcaf4d25985
[ "Apache-2.0" ]
null
null
null
ckanext-hdx_theme/ckanext/hdx_theme/util/jql_queries.py
alexandru-m-g/hdx-ckan
647f1f23f0505fa195601245b758edcaf4d25985
[ "Apache-2.0" ]
null
null
null
DOWNLOADS_PER_DATASET = ''' /* VER 1.2 used for total downloads from 2016-08-01 which is used to sort datasets by "most downloads" for the "XXX downloads" counter on /search and on each individual dataset gets all download events and counts occurrences of unique combinations of user, resource, and dataset, and day, then counts the number of occurrences of dataset by week. In other words, if a user downloaded all 3 resources on a dataset 2 different times on the same day (6 total downloads), the result of this query would be 3. It answers the question "What is the total number of downloads of any resource on a given dataset, ignorning repeated downloads from the same user the same day?"*/ function main() {{ return Events({{ from_date: '{}', to_date: '{}', event_selectors: [{{event: "resource download"}}] }}) .groupBy(["distinct_id","properties.resource id","properties.dataset id",mixpanel.numeric_bucket('time',mixpanel.daily_time_buckets)],mixpanel.reducer.count()) .groupBy(["key.2"], mixpanel.reducer.count()) .map(function(r){{ return {{ dataset_id: r.key[0], value: r.value }}; }}); }} ''' PAGEVIEWS_PER_DATASET = ''' /* VER 1.0 gets all page view events and counts the occurrence of each unique dataset. It answers the question "How many times has this dataset page been viewed?"*/ /* Note: as of 12-july-2017, this query fails (or at least doesn't return what is expected), because there are no dataset IDs being sent with the page view event.*/ function main() {{ return Events({{ from_date: '{}', to_date: '{}', event_selectors: [{{event: "page view"}}] }}) .groupBy(["properties.dataset id"],mixpanel.reducer.count()) .map(function(r){{ return {{ dataset_id: r.key[0], value: r.value }}; }}); }} ''' DOWNLOADS_PER_DATASET_PER_WEEK = ''' /* VER 1.0 selects all download events, counts unique combinations of week, user, resource, and dataset, then counts the number of those unique combinations by dataset. That is to say if a single user downloaded 10 different resources two times each (20 total downloads) from a single dataset in a given week, the count returned by this query would be 10*/ function main() {{ return Events({{ from_date: '{}', to_date: '{}', event_selectors: [{{event: "resource download"}}] }}) .groupBy(["distinct_id","properties.resource id","properties.dataset id",mixpanel.numeric_bucket('time',mixpanel.daily_time_buckets)],mixpanel.reducer.count()) .groupBy(["key.2",(mixpanel.numeric_bucket('key.3',mixpanel.weekly_time_buckets))],mixpanel.reducer.count()) .sortAsc(function(row){{return row.key[1]}}) .map(function(r){{ return {{ dataset_id: r.key[0], date: new Date(r.key[1]).toISOString().substring(0,10), value: r.value }}; }}); }} ''' PAGEVIEWS_PER_ORGANIZATION = ''' /* VER 1.0 gets all page view events and counts unique combinations of user and org. This is to say, if a single user looked at 3 different datasets from a single organization and then looked at the organization page as well (4 total page views), the count returned by this query would be 1. It answers the question "How many individuals looked at one or more of an organization's content."*/ function main() {{ return Events({{ from_date: '{}', to_date: '{}', event_selectors: [{{event: "page view"}}] }}) .groupBy(["distinct_id","properties.org id"],mixpanel.reducer.count()) .groupBy([function(row) {{return row.key.slice(1)}}],mixpanel.reducer.count()) .map(function(r){{ return {{ org_id: r.key[0], value: r.value }}; }}); }} ''' DOWNLOADS_PER_ORGANIZATION = ''' /* VER 1.0 gets all download events and counts unique combinations of user and org. This is to say, if a single user downloaded 5 resources 2 times from datasets belonging to a given organization (10 total downloads), the count returned by this query would be 1. It answers the question "How many individuals one or more resources from an organization's datasets."*/ function main() {{ return Events({{ from_date: '{}', to_date: '{}', event_selectors: [{{event: "resource download"}}] }}) .groupBy(["distinct_id","properties.org id"],mixpanel.reducer.count()) .groupBy([function(row) {{return row.key.slice(1)}}],mixpanel.reducer.count()) .map(function(r){{ return {{ org_id: r.key[0], value: r.value }}; }}); }} ''' PAGEVIEWS_PER_ORGANIZATION_PER_WEEK = ''' /* VER 1.0 gets all page view events and counts unique combinations of week and org. This is to say, if a single user looked at 3 different datasets from a single organization and then looked at the organization page as well (4 total page views) in a given week, the count returned by this query for that week would be 4. It answers the question "How many page views did an organization's content receive in a given week."*/ function main() {{ return Events({{ from_date: '{}', to_date: '{}', event_selectors: [{{event: "page view", selector: 'properties["org id"] != ""'}}] }}) .groupBy(["properties.org id",mixpanel.numeric_bucket('time',mixpanel.weekly_time_buckets)],mixpanel.reducer.count()) .sortAsc(function(row){{return row.key[1]}}) .map(function(r){{ return {{ org_id: r.key[0], date: new Date(r.key[1]).toISOString().substring(0,10), value: r.value }}; }}); }} ''' DOWNLOADS_PER_ORGANIZATION_PER_WEEK = ''' /* VER 1.0 selects all download events, counts unique combinations of week, user, resource, and org, then counts the number of those unique combinations by org. That is to say if a single user downloaded 10 different resources two times each (20 total downloads) from a given org in a given week, the count returned by this query would be 10*/ function main() {{ return Events({{ from_date: '{}', to_date: '{}', event_selectors: [{{event: "resource download"}}] }}) .groupBy(["distinct_id","properties.resource id","properties.org id",mixpanel.numeric_bucket('time',mixpanel.daily_time_buckets)],mixpanel.reducer.count()) .groupBy(["key.2",(mixpanel.numeric_bucket('key.3',mixpanel.weekly_time_buckets))],mixpanel.reducer.count()) .sortAsc(function(row){{return row.key[1]}}) .map(function(r){{ return {{ org_id: r.key[0], date: new Date(r.key[1]).toISOString().substring(0,10), value: r.value }}; }}); }} ''' DOWNLOADS_PER_ORGANIZATION_PER_DATASET = ''' /* VER 1.0 unique (by distinct id, resource id, dataset id, org id) downloads by dataset id (24 weeks, used for top downloads on org page)*/ /*selects all download events, counts unique combinations of day, user, resource, dataset, and org, then counts the number of those unique combinations by dataset. That is to say if a single user downloaded 10 different resources two times each (20 total downloads) from a single dataset in a given day (and on no other days), the count returned by this query would be 10*/ function main() {{ return Events({{ from_date: '{}', to_date: '{}', event_selectors: [{{event: "resource download"}}] }}) .groupBy(["distinct_id","properties.resource id",mixpanel.numeric_bucket('time',mixpanel.daily_time_buckets),"properties.dataset id", "properties.org id"],mixpanel.reducer.count()) .groupBy([function(row) {{return row.key.slice(4)}}, function(row) {{return row.key.slice(3)}}],mixpanel.reducer.count()) .map(function(r){{ return {{ org_id: r.key[0], dataset_id: r.key[1], value: r.value }}; }}) .sortDesc('value'); }} '''
42.194444
493
0.688743
f8afd1b0a1d62c5e20c07db83d59c2c494f17348
13,343
py
Python
source/rttov_test/profile-datasets-py/div83/077.py
bucricket/projectMAScorrection
89489026c8e247ec7c364e537798e766331fe569
[ "BSD-3-Clause" ]
null
null
null
source/rttov_test/profile-datasets-py/div83/077.py
bucricket/projectMAScorrection
89489026c8e247ec7c364e537798e766331fe569
[ "BSD-3-Clause" ]
1
2022-03-12T12:19:59.000Z
2022-03-12T12:19:59.000Z
source/rttov_test/profile-datasets-py/div83/077.py
bucricket/projectMAScorrection
89489026c8e247ec7c364e537798e766331fe569
[ "BSD-3-Clause" ]
null
null
null
""" Profile ../profile-datasets-py/div83/077.py file automaticaly created by prof_gen.py script """ self["ID"] = "../profile-datasets-py/div83/077.py" self["Q"] = numpy.array([ 3.01408100e+00, 3.40341800e+00, 3.94918400e+00, 4.08209300e+00, 4.65722800e+00, 5.59385900e+00, 5.96882400e+00, 5.96578400e+00, 6.02361400e+00, 6.13266200e+00, 5.61561800e+00, 5.17541300e+00, 4.73120800e+00, 4.38244100e+00, 4.13858300e+00, 3.94732400e+00, 3.82339500e+00, 3.74146600e+00, 3.68389600e+00, 3.64322700e+00, 3.61384700e+00, 3.58783700e+00, 3.57544700e+00, 3.57424700e+00, 3.57814700e+00, 3.57652700e+00, 3.56295700e+00, 3.53513800e+00, 3.51090800e+00, 3.50409800e+00, 3.51977800e+00, 3.54417700e+00, 3.53987700e+00, 3.51452800e+00, 3.48830800e+00, 3.47651800e+00, 3.48119800e+00, 3.49274800e+00, 3.50137800e+00, 3.50850800e+00, 3.52815800e+00, 3.56910700e+00, 3.61097700e+00, 3.71830600e+00, 3.89014500e+00, 3.89370500e+00, 3.85655500e+00, 3.87925500e+00, 3.95365400e+00, 4.00917400e+00, 4.16308300e+00, 4.52899900e+00, 5.18923300e+00, 6.26899100e+00, 7.92153700e+00, 1.00846000e+01, 1.24507400e+01, 1.47046800e+01, 1.67259200e+01, 1.84705600e+01, 1.96999100e+01, 2.08678600e+01, 2.23955000e+01, 2.44190000e+01, 2.71340600e+01, 3.11191300e+01, 3.80605500e+01, 4.93422700e+01, 7.03837500e+01, 1.05079000e+02, 1.47056400e+02, 1.80304500e+02, 2.22368500e+02, 2.73803000e+02, 3.33293900e+02, 4.05331600e+02, 4.94623200e+02, 6.04438400e+02, 7.36045800e+02, 8.86931700e+02, 1.05317000e+03, 1.23561100e+03, 1.43888700e+03, 1.66709600e+03, 1.91848200e+03, 2.17581600e+03, 2.42905500e+03, 2.65031700e+03, 2.83038600e+03, 2.95328200e+03, 2.87015800e+03, 2.97041000e+03, 3.22605900e+03, 3.13244700e+03, 3.04276300e+03, 2.95681100e+03, 2.87439400e+03, 2.79532400e+03, 2.71943500e+03, 2.64656700e+03, 2.57657400e+03]) self["P"] = numpy.array([ 5.00000000e-03, 1.61000000e-02, 3.84000000e-02, 7.69000000e-02, 1.37000000e-01, 2.24400000e-01, 3.45400000e-01, 5.06400000e-01, 7.14000000e-01, 9.75300000e-01, 1.29720000e+00, 1.68720000e+00, 2.15260000e+00, 2.70090000e+00, 3.33980000e+00, 4.07700000e+00, 4.92040000e+00, 5.87760000e+00, 6.95670000e+00, 8.16550000e+00, 9.51190000e+00, 1.10038000e+01, 1.26492000e+01, 1.44559000e+01, 1.64318000e+01, 1.85847000e+01, 2.09224000e+01, 2.34526000e+01, 2.61829000e+01, 2.91210000e+01, 3.22744000e+01, 3.56505000e+01, 3.92566000e+01, 4.31001000e+01, 4.71882000e+01, 5.15278000e+01, 5.61260000e+01, 6.09895000e+01, 6.61253000e+01, 7.15398000e+01, 7.72396000e+01, 8.32310000e+01, 8.95204000e+01, 9.61138000e+01, 1.03017000e+02, 1.10237000e+02, 1.17778000e+02, 1.25646000e+02, 1.33846000e+02, 1.42385000e+02, 1.51266000e+02, 1.60496000e+02, 1.70078000e+02, 1.80018000e+02, 1.90320000e+02, 2.00989000e+02, 2.12028000e+02, 2.23442000e+02, 2.35234000e+02, 2.47408000e+02, 2.59969000e+02, 2.72919000e+02, 2.86262000e+02, 3.00000000e+02, 3.14137000e+02, 3.28675000e+02, 3.43618000e+02, 3.58966000e+02, 3.74724000e+02, 3.90893000e+02, 4.07474000e+02, 4.24470000e+02, 4.41882000e+02, 4.59712000e+02, 4.77961000e+02, 4.96630000e+02, 5.15720000e+02, 5.35232000e+02, 5.55167000e+02, 5.75525000e+02, 5.96306000e+02, 6.17511000e+02, 6.39140000e+02, 6.61192000e+02, 6.83667000e+02, 7.06565000e+02, 7.29886000e+02, 7.53628000e+02, 7.77790000e+02, 8.02371000e+02, 8.27371000e+02, 8.52788000e+02, 8.78620000e+02, 9.04866000e+02, 9.31524000e+02, 9.58591000e+02, 9.86067000e+02, 1.01395000e+03, 1.04223000e+03, 1.07092000e+03, 1.10000000e+03]) self["CO2"] = numpy.array([ 376.9289, 376.9267, 376.9235, 376.9185, 376.9102, 376.8979, 376.8878, 376.8858, 376.8987, 376.9157, 376.9379, 376.967 , 377.0032, 377.0483, 377.0994, 377.1415, 377.1806, 377.2196, 377.2566, 377.2936, 377.3406, 377.4116, 377.4967, 377.5807, 377.6576, 377.7326, 377.7957, 377.8617, 377.9087, 377.9647, 378.0677, 378.1777, 378.3247, 378.4827, 378.5467, 378.5667, 378.6177, 378.7377, 378.8647, 379.1987, 379.5707, 379.8876, 380.1336, 380.3936, 380.7865, 381.1975, 381.5395, 381.8335, 382.1145, 382.2825, 382.4564, 382.5853, 382.705 , 382.8186, 382.922 , 383.0401, 383.2172, 383.4014, 383.6806, 383.9769, 384.2704, 384.569 , 384.8374, 385.0826, 385.3235, 385.554 , 385.7733, 385.971 , 386.1468, 386.2794, 386.3942, 386.4873, 386.57 , 386.6411, 386.7101, 386.7782, 386.8426, 386.902 , 386.948 , 386.9845, 387.009 , 387.0222, 387.0443, 387.0946, 387.2027, 387.3873, 387.5952, 387.7785, 388.0156, 388.3936, 388.8278, 389.5115, 390.0167, 390.5358, 390.9229, 391.1729, 391.2791, 391.3101, 391.3399, 391.3685, 391.3959]) self["CO"] = numpy.array([ 0.4988025 , 0.4837694 , 0.4549212 , 0.4091083 , 0.3466384 , 0.2724125 , 0.2529705 , 0.3556049 , 0.3436299 , 0.3118041 , 0.2360657 , 0.1332083 , 0.06529029, 0.04917818, 0.04630671, 0.04344553, 0.04531133, 0.04861692, 0.05090421, 0.05133911, 0.05167021, 0.04959452, 0.04651663, 0.04325405, 0.04006766, 0.03693337, 0.03511297, 0.03345558, 0.03285768, 0.03228319, 0.03236039, 0.03244319, 0.03296888, 0.03355668, 0.03477178, 0.03638897, 0.03844617, 0.04135936, 0.04467554, 0.05192792, 0.06128788, 0.07390404, 0.09132347, 0.1136636 , 0.1258555 , 0.1400065 , 0.1455584 , 0.1438834 , 0.1412344 , 0.1340595 , 0.1269835 , 0.1253564 , 0.1252244 , 0.1268982 , 0.131127 , 0.1360076 , 0.1437272 , 0.1521708 , 0.1615463 , 0.1718538 , 0.1819464 , 0.192305 , 0.2043344 , 0.2183397 , 0.2317967 , 0.2427394 , 0.2529074 , 0.2590382 , 0.2647594 , 0.2679568 , 0.2707162 , 0.2713961 , 0.2720315 , 0.2725024 , 0.2734588 , 0.2752834 , 0.2772678 , 0.279404 , 0.2813058 , 0.2830447 , 0.2835061 , 0.2839138 , 0.2842594 , 0.2847725 , 0.2852078 , 0.2855673 , 0.2859427 , 0.2860628 , 0.2855026 , 0.2845641 , 0.2836705 , 0.2825133 , 0.28085 , 0.2789235 , 0.2766895 , 0.2739117 , 0.2711194 , 0.2683139 , 0.265496 , 0.262667 , 0.2598288 ]) self["T"] = numpy.array([ 197.478, 204.431, 217.518, 232.024, 240.06 , 241.488, 237.615, 229.648, 222.059, 220.002, 221.016, 222.004, 224.079, 226.704, 229.151, 230.726, 232.026, 233.278, 234.389, 235.37 , 236.325, 237.27 , 238.285, 239.125, 239.562, 239.408, 239.074, 238.623, 237.788, 236.618, 235.366, 234.287, 233.649, 232.492, 231.082, 230.178, 230.011, 230.065, 229.721, 228.916, 227.9 , 226.942, 226.202, 225.266, 224.187, 223.613, 222.971, 222.094, 221.208, 220.74 , 220.537, 220.284, 219.887, 219.382, 218.843, 218.328, 217.832, 217.287, 216.618, 215.885, 215.461, 215.505, 215.981, 216.806, 217.881, 219.112, 220.38 , 221.707, 223.156, 224.773, 226.616, 228.678, 230.824, 232.99 , 235.092, 237.21 , 239.397, 241.632, 243.87 , 246.04 , 248.097, 250.061, 251.959, 253.803, 255.582, 257.221, 258.709, 259.968, 261.008, 261.803, 262.785, 263.963, 265.207, 265.207, 265.207, 265.207, 265.207, 265.207, 265.207, 265.207, 265.207]) self["N2O"] = numpy.array([ 0.00386999, 0.00306999, 0.00246999, 0.00239999, 0.00190999, 0.00132999, 0.00145999, 0.00159999, 0.00196999, 0.00296998, 0.00447997, 0.00696996, 0.01015995, 0.01528993, 0.02053991, 0.02663989, 0.03359987, 0.04270984, 0.05238981, 0.06860975, 0.0840797 , 0.1006696 , 0.1174596 , 0.1335495 , 0.1466895 , 0.1590294 , 0.1708994 , 0.1853993 , 0.2003893 , 0.2148792 , 0.2275592 , 0.2346592 , 0.2415291 , 0.2481891 , 0.2543991 , 0.2593091 , 0.2640791 , 0.2687091 , 0.272769 , 0.276369 , 0.279779 , 0.282829 , 0.285849 , 0.2887289 , 0.2917289 , 0.2947289 , 0.2977089 , 0.3006588 , 0.3035488 , 0.3063688 , 0.3090987 , 0.3116986 , 0.3141584 , 0.316448 , 0.3185375 , 0.3203968 , 0.321996 , 0.3226453 , 0.3232446 , 0.323774 , 0.3242236 , 0.3245932 , 0.3248727 , 0.3250421 , 0.3251012 , 0.3250999 , 0.3250976 , 0.325094 , 0.3250871 , 0.3250758 , 0.3250622 , 0.3250514 , 0.3250377 , 0.325021 , 0.3250016 , 0.3249782 , 0.3249492 , 0.3249135 , 0.3248707 , 0.3248216 , 0.3247676 , 0.3247083 , 0.3246422 , 0.324568 , 0.3244863 , 0.3244026 , 0.3243203 , 0.3242484 , 0.3241898 , 0.3241499 , 0.3241769 , 0.3241443 , 0.3240612 , 0.3240916 , 0.3241208 , 0.3241487 , 0.3241755 , 0.3242012 , 0.3242259 , 0.3242496 , 0.3242723 ]) self["O3"] = numpy.array([ 0.4650166 , 0.3722967 , 0.25801 , 0.3565255 , 0.5657804 , 0.8310854 , 1.275442 , 1.941668 , 2.751043 , 3.509408 , 4.226426 , 4.982314 , 5.571684 , 5.950054 , 6.172944 , 6.354005 , 6.459525 , 6.548995 , 6.644776 , 6.735845 , 6.790695 , 6.827586 , 6.854715 , 6.862505 , 6.844556 , 6.799816 , 6.769176 , 6.719646 , 6.545257 , 6.195258 , 5.70893 , 5.274831 , 4.976922 , 4.668544 , 4.294395 , 3.893666 , 3.566958 , 3.348398 , 3.139029 , 2.84919 , 2.451261 , 2.077143 , 1.888043 , 1.731914 , 1.409245 , 1.303475 , 1.292365 , 1.148696 , 0.9682352 , 0.8581456 , 0.728699 , 0.5758034 , 0.4443007 , 0.3535498 , 0.2938877 , 0.2527305 , 0.2229512 , 0.1999561 , 0.178937 , 0.1568281 , 0.1353713 , 0.1190565 , 0.1065156 , 0.09549277, 0.08532788, 0.07889094, 0.07722016, 0.07431793, 0.06841198, 0.05924887, 0.04912847, 0.04243675, 0.03862361, 0.03721341, 0.03721039, 0.03694232, 0.03630673, 0.03556769, 0.03509875, 0.03521114, 0.03578028, 0.03636931, 0.03676782, 0.03692234, 0.03683649, 0.03651109, 0.03619457, 0.03624089, 0.03710717, 0.03880576, 0.04014684, 0.03936333, 0.03682412, 0.03682758, 0.03683089, 0.03683407, 0.03683711, 0.03684003, 0.03684284, 0.03684553, 0.03684811]) self["CH4"] = numpy.array([ 0.3005231, 0.2351152, 0.1864963, 0.1572414, 0.1760812, 0.1975499, 0.2255547, 0.2531465, 0.2866593, 0.31921 , 0.3721429, 0.4494437, 0.5428354, 0.6650551, 0.7814038, 0.8957425, 0.9909472, 1.054496 , 1.115956 , 1.182386 , 1.245675 , 1.300155 , 1.349285 , 1.396355 , 1.424055 , 1.448405 , 1.471845 , 1.501435 , 1.532305 , 1.537285 , 1.542625 , 1.548345 , 1.554454 , 1.551955 , 1.549555 , 1.547285 , 1.545195 , 1.543345 , 1.549515 , 1.556025 , 1.562874 , 1.570084 , 1.577644 , 1.617574 , 1.657994 , 1.700273 , 1.730303 , 1.751553 , 1.771163 , 1.779313 , 1.787803 , 1.793322 , 1.798201 , 1.802289 , 1.805406 , 1.808492 , 1.811087 , 1.813773 , 1.81631 , 1.818906 , 1.821484 , 1.824092 , 1.826669 , 1.829225 , 1.83172 , 1.834133 , 1.83637 , 1.838309 , 1.84005 , 1.841406 , 1.842689 , 1.843857 , 1.84505 , 1.846294 , 1.847644 , 1.84909 , 1.850584 , 1.85209 , 1.853525 , 1.854883 , 1.856113 , 1.857182 , 1.858302 , 1.859615 , 1.861771 , 1.864195 , 1.866575 , 1.868445 , 1.869743 , 1.871178 , 1.873019 , 1.875702 , 1.877623 , 1.879713 , 1.881288 , 1.882308 , 1.882753 , 1.882902 , 1.883045 , 1.883183 , 1.883315 ]) self["CTP"] = 500.0 self["CFRACTION"] = 0.0 self["IDG"] = 0 self["ISH"] = 0 self["ELEVATION"] = 0.0 self["S2M"]["T"] = 265.207 self["S2M"]["Q"] = 2576.57411645 self["S2M"]["O"] = 0.0368481128494 self["S2M"]["P"] = 876.30151 self["S2M"]["U"] = 0.0 self["S2M"]["V"] = 0.0 self["S2M"]["WFETC"] = 100000.0 self["SKIN"]["SURFTYPE"] = 0 self["SKIN"]["WATERTYPE"] = 1 self["SKIN"]["T"] = 265.207 self["SKIN"]["SALINITY"] = 35.0 self["SKIN"]["FOAM_FRACTION"] = 0.0 self["SKIN"]["FASTEM"] = numpy.array([ 3. , 5. , 15. , 0.1, 0.3]) self["ZENANGLE"] = 0.0 self["AZANGLE"] = 0.0 self["SUNZENANGLE"] = 0.0 self["SUNAZANGLE"] = 0.0 self["LATITUDE"] = 60.824 self["GAS_UNITS"] = 2 self["BE"] = 0.0 self["COSBK"] = 0.0 self["DATE"] = numpy.array([2006, 12, 10]) self["TIME"] = numpy.array([0, 0, 0])
57.512931
92
0.566739
f8b003880b2b0c817a1e02d7db8475b7ea56eada
2,624
py
Python
xos/synchronizers/monitoring_channel/templates/sflow_pub_sub/sflow_sub_records.py
xmaruto/mcord
3678a3d10c3703c2b73f396c293faebf0c82a4f4
[ "Apache-2.0" ]
null
null
null
xos/synchronizers/monitoring_channel/templates/sflow_pub_sub/sflow_sub_records.py
xmaruto/mcord
3678a3d10c3703c2b73f396c293faebf0c82a4f4
[ "Apache-2.0" ]
null
null
null
xos/synchronizers/monitoring_channel/templates/sflow_pub_sub/sflow_sub_records.py
xmaruto/mcord
3678a3d10c3703c2b73f396c293faebf0c82a4f4
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python import fnmatch import logging sflow_sub_database=[]
41
91
0.62843
f8b2fa45ad6aa0b508fe2d6b2b81fce66e566e4c
3,148
py
Python
scripts/gcorr/run_xfaster.py
SPIDER-CMB/xfaster
1b8e56d775f2c3a8693d1372ae461392c21da7ca
[ "MIT" ]
1
2021-03-25T14:15:44.000Z
2021-03-25T14:15:44.000Z
scripts/gcorr/run_xfaster.py
annegambrel/xfaster
03d5a2971d3cc19ae360d78995e3575f3f678d6e
[ "MIT" ]
7
2021-04-20T23:34:38.000Z
2021-08-24T00:00:53.000Z
scripts/gcorr/run_xfaster.py
SPIDER-CMB/xfaster
1b8e56d775f2c3a8693d1372ae461392c21da7ca
[ "MIT" ]
1
2021-05-18T16:43:54.000Z
2021-05-18T16:43:54.000Z
""" A script to run XFaster for gcorr calculation. Called by iterate.py. """ import os import xfaster as xf import argparse as ap from configparser import ConfigParser # Change XFaster options here to suit your purposes opts = dict( likelihood=False, residual_fit=False, foreground_fit=False, # change options below for your purposes tbeb=True, bin_width=25, lmin=2, lmax=500, ) # Change submit options here to fit your system submit_opts = dict(nodes=1, ppn=1, mem=6, omp_threads=10, wallt=4) P = ap.ArgumentParser() P.add_argument("--gcorr-config", help="The config file for gcorr computation") P.add_argument("-f", "--first", default=0, type=int, help="First sim index to run") P.add_argument("-n", "--num", default=1, type=int, help="Number of sims to run") P.add_argument( "-o", "--output", default="xfaster_gcal", help="Name of output subdirectory" ) P.add_argument( "--no-gcorr", dest="gcorr", default=True, action="store_false", help="Don't apply a g-gcorrection", ) P.add_argument( "--reload-gcorr", default=False, action="store_true", help="Reload the gcorr factor" ) P.add_argument("--check-point", default="bandpowers", help="XFaster checkpoint") P.add_argument( "--no-submit", dest="submit", action="store_false", help="Don't submit, run locally" ) P.add_argument( "--omp", default=None, type=int, help="Number of omp threads, if submit. Overwrites value in config file", ) args = P.parse_args() # start by loading up gcorr config file and parsing it assert os.path.exists(args.gcorr_config), "Missing config file {}".format( args.gcorr_config ) g_cfg = ConfigParser() g_cfg.read(args.gcorr_config) # set all user-specific xfaster opts for k, v in g_cfg["xfaster_opts"].items(): opts[k] = v null = g_cfg.getboolean("gcorr_opts", "null") tags = g_cfg["gcorr_opts"]["map_tags"].split(",") # null tests should use noise sims. signal shouldn't. if null: opts["noise_type"] = g_cfg["xfaster_opts"]["noise_type"] opts["sim_data_components"] = ["signal", "noise"] else: opts["noise_type"] = None opts["sim_data_components"] = ["signal"] opts["output_root"] = os.path.join(g_cfg["gcorr_opts"]["output_root"], args.output) # update opts with command line args opts["apply_gcorr"] = args.gcorr opts["reload_gcorr"] = args.reload_gcorr opts["checkpoint"] = args.check_point seeds = list(range(args.first, args.first + args.num)) for tag in tags: opts["sim_data"] = True opts["output_tag"] = tag opts["gcorr_file"] = os.path.abspath( os.path.join( g_cfg["gcorr_opts"]["output_root"], "xfaster_gcal", tag, "gcorr_{}_total.npz".format(tag), ) ) opts["data_subset"] = os.path.join( g_cfg["gcorr_opts"]["data_subset"], "*{}".format(tag) ) if args.omp is not None: submit_opts["omp_threads"] = args.omp if args.submit: opts.update(**submit_opts) for s in seeds: opts["sim_index_default"] = s if args.submit: xf.xfaster_submit(**opts) else: xf.xfaster_run(**opts)
28.618182
88
0.661055
f8b309e5e28868df32235aef95ba627c1ca50e48
1,888
py
Python
tests/examples/c_decisions/tests_decisions.py
MSGP117/acc-cosc-1336-spring-2022-MSGP117
46fdfa5da8f8eb887d2c79fe205b8a0064d6903d
[ "MIT" ]
null
null
null
tests/examples/c_decisions/tests_decisions.py
MSGP117/acc-cosc-1336-spring-2022-MSGP117
46fdfa5da8f8eb887d2c79fe205b8a0064d6903d
[ "MIT" ]
null
null
null
tests/examples/c_decisions/tests_decisions.py
MSGP117/acc-cosc-1336-spring-2022-MSGP117
46fdfa5da8f8eb887d2c79fe205b8a0064d6903d
[ "MIT" ]
1
2022-02-12T03:50:32.000Z
2022-02-12T03:50:32.000Z
import unittest from src.examples.c_decisions.decisions import is_letter_consonant, logical_op_precedence, num_is_not_in_range_or, number_is_in_range_and, test_config from src.examples.c_decisions.decisions import get_letter_grade from src.examples.c_decisions.decisions import logical_op_precedence from src.examples.c_decisions.decisions import number_is_not_in_range
46.04878
150
0.743114
f8b46b6ff72b56497017d6f934899df81b96c51a
32
py
Python
badge/__init__.py
krisgesling/swag-badge-skill
7640264880d8ae14f9c49c3ba40c6e388e58dcaf
[ "Apache-2.0" ]
1
2021-01-24T01:42:15.000Z
2021-01-24T01:42:15.000Z
badge/__init__.py
krisgesling/swag-badge-skill
7640264880d8ae14f9c49c3ba40c6e388e58dcaf
[ "Apache-2.0" ]
null
null
null
badge/__init__.py
krisgesling/swag-badge-skill
7640264880d8ae14f9c49c3ba40c6e388e58dcaf
[ "Apache-2.0" ]
null
null
null
from .client import MQTT_Client
16
31
0.84375
f8b5ae0ccaf93b252b0712f888f73a49ece568a6
23,824
py
Python
easy_server/_server_file.py
andy-maier/secureserveraccess
24f4817b2066401451840b3c7b308e1792eb3e60
[ "Apache-2.0" ]
1
2021-03-29T22:09:47.000Z
2021-03-29T22:09:47.000Z
easy_server/_server_file.py
andy-maier/secureserveraccess
24f4817b2066401451840b3c7b308e1792eb3e60
[ "Apache-2.0" ]
49
2021-03-29T20:13:28.000Z
2021-05-01T10:38:19.000Z
easy_server/_server_file.py
andy-maier/secureserveraccess
24f4817b2066401451840b3c7b308e1792eb3e60
[ "Apache-2.0" ]
null
null
null
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Support for server files. """ from __future__ import absolute_import, print_function import os import yaml import jsonschema from ._server import Server from ._vault_file import VaultFile __all__ = ['ServerFile', 'ServerFileException', 'ServerFileOpenError', 'ServerFileFormatError', 'ServerFileUserDefinedFormatError', 'ServerFileUserDefinedSchemaError', 'ServerFileGroupUserDefinedFormatError', 'ServerFileGroupUserDefinedSchemaError'] # JSON schema describing the structure of the server files SERVER_FILE_SCHEMA = { "$schema": "http://json-schema.org/draft-07/schema#", "title": "JSON schema for easy-server server files", "definitions": {}, "type": "object", "required": [ "servers", ], "additionalProperties": False, "properties": { "vault_file": { "type": "string", "description": "Path name of vault file. Relative path names are relative to " "the directory of the server file", }, "servers": { "type": "object", "description": "The servers in the server file", "additionalProperties": False, "patternProperties": { "^[a-zA-Z0-9_]+$": { "type": "object", "description": "Nickname of the server", "required": [ "description", ], "additionalProperties": False, "properties": { "description": { "type": "string", "description": "Short description of the server", }, "contact_name": { "type": "string", "description": "Name of technical contact for the server", }, "access_via": { "type": "string", "description": "Short reminder on the " "network/firewall/proxy/vpn used to access the " "server", }, "user_defined": { "type": "object", "description": "User-defined properties of the server. " "This object can have an arbitrary " "user-defined structure", }, }, }, }, }, "server_groups": { "type": "object", "description": "The server groups in the server file", "additionalProperties": False, "patternProperties": { "^[a-zA-Z0-9_]+$": { "type": "object", "description": "Nickname of the server group", "required": [ "description", "members", ], "additionalProperties": False, "properties": { "description": { "type": "string", "description": "Short description of the server group", }, "members": { "type": "array", "description": "List of members of the server group. " "Those can be servers or other server groups.", "items": { "type": "string", "description": "Nickname of server or server group in " "this file", }, }, "user_defined": { "type": "object", "description": "User-defined properties of the server group. " "This object can have an arbitrary " "user-defined structure", }, }, }, }, }, "default": { "type": "string", "description": "Nickname of default server or server group", }, }, } def get_server(self, nickname): """ Get server for a given server nickname. Parameters: nickname (:term:`unicode string`): Server nickname. Returns: :class:`~easy_server.Server`: Server with the specified nickname. Raises: :exc:`py:KeyError`: Nickname not found """ try: server_dict = self._servers[nickname] except KeyError: new_exc = KeyError( "Server with nickname {!r} not found in server " "file {!r}". format(nickname, self._filepath)) new_exc.__cause__ = None raise new_exc # KeyError if self._vault: try: secrets_dict = self._vault.get_secrets(nickname) except KeyError: secrets_dict = None else: secrets_dict = None return Server(nickname, server_dict, secrets_dict) def list_servers(self, nickname): """ List the servers for a given server or server group nickname. Parameters: nickname (:term:`unicode string`): Server or server group nickname. Returns: list of :class:`~easy_server.Server`: List of servers. Raises: :exc:`py:KeyError`: Nickname not found """ if nickname in self._servers: return [self.get_server(nickname)] if nickname in self._server_groups: sd_list = list() # of Server objects sd_nick_list = list() # of server nicknames sg_item = self._server_groups[nickname] for member_nick in sg_item['members']: member_sds = self.list_servers(member_nick) for sd in member_sds: if sd.nickname not in sd_nick_list: sd_nick_list.append(sd.nickname) sd_list.append(sd) return sd_list raise KeyError( "Server or server group with nickname {!r} not found in server " "definition file {!r}". format(nickname, self._filepath)) def list_default_servers(self): """ List the servers for the default server or group. An omitted 'default' element in the server file results in an empty list. Returns: list of :class:`~easy_server.Server`: List of servers. """ if self._default is None: return [] return self.list_servers(self._default) def list_all_servers(self): """ List all servers. Returns: list of :class:`~easy_server.Server`: List of servers. """ return [self.get_server(nickname) for nickname in self._servers] def _load_server_file( filepath, user_defined_schema=None, group_user_defined_schema=None): """ Load the server file, validate its format and default some optional elements. Returns: dict: Python dict representing the file content. Raises: ServerFileOpenError: Error opening server file ServerFileFormatError: Invalid server file content ServerFileUserDefinedFormatError: Invalid format of user-defined portion of server items in the server file ServerFileUserDefinedSchemaError: Invalid JSON schema for validating user-defined portion of server items in the server file ServerFileGroupUserDefinedFormatError: Invalid format of user-defined portion of group items in the server file ServerFileGroupUserDefinedSchemaError: Invalid JSON schema for validating user-defined portion of group items in the server file """ # Load the server file (YAML) try: with open(filepath, 'r') as fp: data = yaml.safe_load(fp) except (OSError, IOError) as exc: new_exc = ServerFileOpenError( "Cannot open server file: {fn}: {exc}". format(fn=filepath, exc=exc)) new_exc.__cause__ = None raise new_exc # ServerFileOpenError except yaml.YAMLError as exc: new_exc = ServerFileFormatError( "Invalid YAML syntax in server file {fn}: {exc}". format(fn=filepath, exc=exc)) new_exc.__cause__ = None raise new_exc # ServerFileFormatError # Schema validation of server file content try: jsonschema.validate(data, SERVER_FILE_SCHEMA) # Raises jsonschema.exceptions.SchemaError if JSON schema is invalid except jsonschema.exceptions.ValidationError as exc: if exc.absolute_path: elem_str = "element '{}'". \ format('.'.join(str(e) for e in exc.absolute_path)) else: elem_str = 'top-level element' new_exc = ServerFileFormatError( "Invalid format in server file {fn}: Validation " "failed on {elem}: {exc}". format(fn=filepath, elem=elem_str, exc=exc)) new_exc.__cause__ = None raise new_exc # ServerFileFormatError # Establish defaults for optional top-level elements if 'server_groups' not in data: data['server_groups'] = {} if 'default' not in data: data['default'] = None if 'vault_file' not in data: data['vault_file'] = None # Schema validation of user-defined portion of server items if user_defined_schema: for server_nick, server_item in data['servers'].items(): user_defined = server_item.get('user_defined', None) if user_defined is None: new_exc = ServerFileUserDefinedFormatError( "Missing user_defined element for server {srv} " "in server file {fn}". format(srv=server_nick, fn=filepath)) new_exc.__cause__ = None raise new_exc # ServerFileUserDefinedFormatError try: jsonschema.validate(user_defined, user_defined_schema) except jsonschema.exceptions.SchemaError as exc: new_exc = ServerFileUserDefinedSchemaError( "Invalid JSON schema for validating user-defined portion " "of server items in server file: {exc}". format(exc=exc)) new_exc.__cause__ = None raise new_exc # ServerFileUserDefinedSchemaError except jsonschema.exceptions.ValidationError as exc: if exc.absolute_path: elem_str = "element '{}'". \ format('.'.join(str(e) for e in exc.absolute_path)) else: elem_str = "top-level of user-defined item" new_exc = ServerFileUserDefinedFormatError( "Invalid format in user-defined portion of item for " "server {srv} in server file {fn}: " "Validation failed on {elem}: {exc}". format(srv=server_nick, fn=filepath, elem=elem_str, exc=exc)) new_exc.__cause__ = None raise new_exc # ServerFileUserDefinedFormatError # Schema validation of user-defined portion of group items if group_user_defined_schema: for group_nick, group_item in data['server_groups'].items(): user_defined = group_item.get('user_defined', None) if user_defined is None: new_exc = ServerFileGroupUserDefinedFormatError( "Missing user_defined element for group {grp} " "in server file {fn}". format(grp=group_nick, fn=filepath)) new_exc.__cause__ = None raise new_exc # ServerFileGroupUserDefinedFormatError try: jsonschema.validate(user_defined, group_user_defined_schema) except jsonschema.exceptions.SchemaError as exc: new_exc = ServerFileGroupUserDefinedSchemaError( "Invalid JSON schema for validating user-defined portion " "of group items in server file: {exc}". format(exc=exc)) new_exc.__cause__ = None raise new_exc # ServerFileGroupUserDefinedSchemaError except jsonschema.exceptions.ValidationError as exc: if exc.absolute_path: elem_str = "element '{}'". \ format('.'.join(str(e) for e in exc.absolute_path)) else: elem_str = "top-level of user-defined item" new_exc = ServerFileGroupUserDefinedFormatError( "Invalid format in user-defined portion of item for " "group {grp} in server file {fn}: " "Validation failed on {elem}: {exc}". format(grp=group_nick, fn=filepath, elem=elem_str, exc=exc)) new_exc.__cause__ = None raise new_exc # ServerFileGroupUserDefinedFormatError # Check dependencies in the file server_nicks = list(data['servers'].keys()) group_nicks = list(data['server_groups'].keys()) all_nicks = server_nicks + group_nicks default_nick = data['default'] if default_nick and default_nick not in all_nicks: new_exc = ServerFileFormatError( "Default nickname '{n}' not found in servers or groups in " "server file {fn}". format(n=default_nick, fn=filepath)) new_exc.__cause__ = None raise new_exc # ServerFileFormatError for group_nick in group_nicks: sg_item = data['server_groups'][group_nick] for member_nick in sg_item['members']: if member_nick not in all_nicks: new_exc = ServerFileFormatError( "Nickname '{n}' in server group '{g}' not found in " "servers or groups in server file {fn}". format(n=member_nick, g=group_nick, fn=filepath)) new_exc.__cause__ = None raise new_exc # ServerFileFormatError return data
37.815873
80
0.580423
f8b628877707fa6132110ae047367879935e3268
444
py
Python
mezzanine_pagedown/defaults.py
eht16/mezzanine-pagedown
e6090f5713097e664e85b279a4a17febb73b00a1
[ "BSD-2-Clause" ]
94
2015-01-28T15:46:02.000Z
2020-11-02T12:56:15.000Z
mezzanine_pagedown/defaults.py
eht16/mezzanine-pagedown
e6090f5713097e664e85b279a4a17febb73b00a1
[ "BSD-2-Clause" ]
56
2015-04-05T03:18:41.000Z
2021-08-29T00:50:57.000Z
mezzanine_pagedown/defaults.py
eht16/mezzanine-pagedown
e6090f5713097e664e85b279a4a17febb73b00a1
[ "BSD-2-Clause" ]
38
2015-08-26T08:10:12.000Z
2021-06-11T19:36:31.000Z
from mezzanine.conf import register_setting register_setting( name="PAGEDOWN_SERVER_SIDE_PREVIEW", description="Render previews on the server using the same " "converter that generates the actual pages.", editable=False, default=False, ) register_setting( name="PAGEDOWN_MARKDOWN_EXTENSIONS", description="A tuple specifying enabled python-markdown extensions.", editable=False, default=(), )
24.666667
73
0.725225
f8b864241fa615529ec19943c7bf44bcc5c33cfb
4,274
py
Python
solutions/2021/day5/day5.py
teije01/adventofcode
2742985f8437e9784e7ec5430e3846a755b5d386
[ "MIT" ]
null
null
null
solutions/2021/day5/day5.py
teije01/adventofcode
2742985f8437e9784e7ec5430e3846a755b5d386
[ "MIT" ]
null
null
null
solutions/2021/day5/day5.py
teije01/adventofcode
2742985f8437e9784e7ec5430e3846a755b5d386
[ "MIT" ]
null
null
null
""" --- Day 5: Hydrothermal Venture --- You come across a field of hydrothermal vents on the ocean floor! These vents constantly produce large, opaque clouds, so it would be best to avoid them if possible. They tend to form in lines; the submarine helpfully produces a list of nearby lines of vents (your puzzle input) for you to review. For example: 0,9 -> 5,9 8,0 -> 0,8 9,4 -> 3,4 2,2 -> 2,1 7,0 -> 7,4 6,4 -> 2,0 0,9 -> 2,9 3,4 -> 1,4 0,0 -> 8,8 5,5 -> 8,2 Each line of vents is given as a line segment in the format x1,y1 -> x2,y2 where x1,y1 are the coordinates of one end the line segment and x2,y2 are the coordinates of the other end. These line segments include the points at both ends. In other words: An entry like 1,1 -> 1,3 covers points 1,1, 1,2, and 1,3. An entry like 9,7 -> 7,7 covers points 9,7, 8,7, and 7,7. For now, only consider horizontal and vertical lines: lines where either x1 = x2 or y1 = y2. So, the horizontal and vertical lines from the above list would produce the following diagram: .......1.. ..1....1.. ..1....1.. .......1.. .112111211 .......... .......... .......... .......... 222111.... In this diagram, the top left corner is 0,0 and the bottom right corner is 9,9. Each position is shown as the number of lines which cover that point or . if no line covers that point. The top-left pair of 1s, for example, comes from 2,2 -> 2,1; the very bottom row is formed by the overlapping lines 0,9 -> 5,9 and 0,9 -> 2,9. To avoid the most dangerous areas, you need to determine the number of points where at least two lines overlap. In the above example, this is anywhere in the diagram with a 2 or larger - a total of 5 points. Consider only horizontal and vertical lines. At how many points do at least two lines overlap? --- Part Two --- Unfortunately, considering only horizontal and vertical lines doesn't give you the full picture; you need to also consider diagonal lines. Because of the limits of the hydrothermal vent mapping system, the lines in your list will only ever be horizontal, vertical, or a diagonal line at exactly 45 degrees. In other words: An entry like 1,1 -> 3,3 covers points 1,1, 2,2, and 3,3. An entry like 9,7 -> 7,9 covers points 9,7, 8,8, and 7,9. Considering all lines from the above example would now produce the following diagram: 1.1....11. .111...2.. ..2.1.111. ...1.2.2.. .112313211 ...1.2.... ..1...1... .1.....1.. 1.......1. 222111.... You still need to determine the number of points where at least two lines overlap. In the above example, this is still anywhere in the diagram with a 2 or larger - now a total of 12 points. Consider all of the lines. At how many points do at least two lines overlap? """ import numpy as np if __name__ == "__main__": with open("solutions/2021/day5/input.txt", "r") as f: lines = [Line.from_puzzle_input(line) for line in f.readlines()] straight_field = np.zeros((1000, 1000), dtype=int) diagonal_field = straight_field.copy() for line in lines: field_index = (slice(line.ymin, line.ymax + 1), slice(line.xmin, line.xmax + 1)) if line.x1 == line.x2 or line.y1 == line.y2: straight_field[field_index] += 1 else: is_identity = (line.x2 - line.x1 > 0) == (line.y2 - line.y1 > 0) diag_slice = slice(None, None, None if is_identity else -1) diagonal_field[field_index] += np.diag(np.ones((line.xmax - line.xmin + 1), dtype=int))[diag_slice] field = straight_field + diagonal_field print(f"Answer 1: {np.sum(straight_field > 1)}") print(f"Answer 2: {np.sum(field > 1)}")
31.426471
111
0.653486
f8b88aa220e765ebad5849f646d7fa3f22e031df
1,316
py
Python
sort_array_by_parity_ii_alt.py
tusharsadhwani/leetcode
a17a8a7587c5654f05fcd13ae7cdf47263ab2ea8
[ "MIT" ]
6
2021-05-21T01:10:42.000Z
2021-12-16T16:12:30.000Z
sort_array_by_parity_ii_alt.py
tusharsadhwani/leetcode
a17a8a7587c5654f05fcd13ae7cdf47263ab2ea8
[ "MIT" ]
null
null
null
sort_array_by_parity_ii_alt.py
tusharsadhwani/leetcode
a17a8a7587c5654f05fcd13ae7cdf47263ab2ea8
[ "MIT" ]
null
null
null
from typing import Callable tests = [ ( ([4, 2, 5, 7],), [4, 5, 2, 7], ), ( ([2, 3],), [2, 3], ), ( ([2, 3, 1, 1, 4, 0, 0, 4, 3, 3],), [2, 3, 4, 1, 4, 3, 0, 1, 0, 3], ), ]
24.830189
77
0.50152
f8ba3fd25de458d4df99e4ca579804ce22c8dbdc
112
py
Python
database.py
anthonypang99/TakeNote
7da668d48b72ee825f3fb9f503f8d4d6fe2ff644
[ "MIT" ]
null
null
null
database.py
anthonypang99/TakeNote
7da668d48b72ee825f3fb9f503f8d4d6fe2ff644
[ "MIT" ]
null
null
null
database.py
anthonypang99/TakeNote
7da668d48b72ee825f3fb9f503f8d4d6fe2ff644
[ "MIT" ]
null
null
null
from flask_sqlalchemy import SQLAlchemy # Initialize the Flask-SQLAlchemy extension instance db = SQLAlchemy()
22.4
52
0.830357
f8ba6e975ac143461562e6b418e4b0a0aee2b105
4,285
py
Python
alfred/Alfred.alfredpreferences/workflows/user.workflow.99DE3F5C-7CB4-4E0B-9195-7782AADC167B/converter/constants.py
karamfil/saphe
f1c56dcf11613808e07f462d50f20881aef7fbdc
[ "MIT" ]
2
2019-09-17T10:20:20.000Z
2020-02-10T11:46:33.000Z
alfred/Alfred.alfredpreferences/workflows/user.workflow.99DE3F5C-7CB4-4E0B-9195-7782AADC167B/converter/constants.py
karamfil/saphe
f1c56dcf11613808e07f462d50f20881aef7fbdc
[ "MIT" ]
null
null
null
alfred/Alfred.alfredpreferences/workflows/user.workflow.99DE3F5C-7CB4-4E0B-9195-7782AADC167B/converter/constants.py
karamfil/saphe
f1c56dcf11613808e07f462d50f20881aef7fbdc
[ "MIT" ]
null
null
null
import re UNITS_XML_FILE = 'poscUnits22.xml' UNITS_PICKLE_FILE = 'units.pickle' OUTPUT_DECIMALS = 6 SOURCE_PATTERN = r'^(?P<quantity>.*[\d.]+)\s*(?P<from>[^\d\s]([^\s]*|.+?))' SOURCE_RE = re.compile(SOURCE_PATTERN + '$', re.IGNORECASE | re.VERBOSE) FULL_PATTERN = r'(\s+as|\s+to|\s+in|\s*>|\s*=)\s(?P<to>[^\d\s][^\s]*)$' FULL_RE = re.compile(SOURCE_PATTERN + FULL_PATTERN + '$', re.IGNORECASE | re.VERBOSE) ICONS = { 'length': 'scale6.png', 'height': 'scale6.png', 'distance': 'scale6.png', 'area': 'scaling1.png', 'time': 'round27.png', 'thermodynamic temperature': 'thermometer19.png', 'volume': 'measuring3.png', 'mass': 'weight4.png', 'velocity': 'timer18.png', 'level of power intensity': 'treble2.png', 'digital storage': 'binary9.png', } DEFAULT_ICON = 'ruler9.png' ANNOTATION_REPLACEMENTS = { 'litre': ('liter', 'liters', 'l'), 'metre': ('meter', 'm'), 'm2': ('meter^3',), 'dm': ('decimeter',), 'dm2': ('dm^2', 'decimeter^2',), 'dm3': ('dm^3', 'decimeter^3',), 'cm': ('centimeter',), 'cm2': ('cm^2', 'centimeter^2',), 'cm3': ('cm^3', 'centimeter^3',), 'mm': ('milimeter',), 'mm2': ('mm^2', 'milimeter^2'), 'mm3': ('mm^3', 'milimeter^3'), 'degF': ('f', 'fahrenheit', 'farhenheit', 'farenheit'), 'degC': ('c', 'celsius', 'celcius'), 'byte': ('B', 'bytes',), 'bit': ('b', 'bits',), 'kbyte': ('KB', 'kB', 'kb', 'kilobyte',), 'Mbyte': ('MB', 'megabyte',), 'ozm': ('oz', 'ounce', 'ounces'), 'lbm': ('lb', 'lbs', 'pound', 'pounds'), 'miPh': ('mph',), 'ftPh': ('fps',), 'foot': ("'",), 'square': ('sq',), 'ft2': ('ft^2', 'foot^2'), 'ft3': ('ft^3', 'foot^3'), 'inch': ('inches', '"'), 'inch2': ('inch^2', 'square inch'), 'inch3': ('inch^3', 'cube inch'), 'flozUS': ('flus', 'floz', 'fl', 'fl oz', 'fl oz uk'), 'flozUK': ('fluk', 'fl oz uk', 'fl uk'), } EXPANSIONS = { 'foot': ('feet', 'ft'), 'mili': ('milli',), 'meter': ('metres', 'meter', 'meters'), '^2': ('sq', 'square'), '^3': ('cube', 'cubed'), } for annotation, items in ANNOTATION_REPLACEMENTS.items(): items = set(items) items.add(annotation) for key, expansions in EXPANSIONS.iteritems(): for expansion in expansions: for item in set(items): items.add(item.replace(key, expansion)) ANNOTATION_REPLACEMENTS[annotation] = sorted(items) # Mostly for language specific stuff, defaulting to US for now since I'm not # easily able to detect the language in a fast way from within alfred LOCALIZED_UNITS = ( ('metre', 'meter'), ('litre', 'liter'), ) RIGHT_TRIMABLE_OPERATORS = '/+*- (.^' FUNCTION_ALIASES = { 'deg': 'degrees', 'rad': 'radians', 'ln': 'log', 'arccos': 'acos', 'arcsin': 'asin', 'arctan': 'atan', } FUNCTION_ALIASES_RE = re.compile(r'\b(%s)\(' % '|'.join(FUNCTION_ALIASES)) FOOT_INCH_RE = re.compile(r'''(\d+)'(\d+)"?''') FOOT_INCH_REPLACE = r'(\1*12)+\2 inch' POWER_UNIT_RE = re.compile(r'([a-z])\^([23])\b') POWER_UNIT_REPLACEMENT = r'\g<1>\g<2>' PRE_EVAL_REPLACEMENTS = { '^': '**', } # Known safe math functions MATH_FUNCTIONS = [ # Number theoretic and representation functions 'ceil', 'copysign', 'fabs', 'factorial', 'floor', 'fmod', 'frexp', 'isinf', 'isnan', 'ldexp', 'modf', 'trunc', # Power and logarithmic functions 'exp', 'expm1', 'log', 'log1p', 'log10', 'pow', 'sqrt', # Trigonometric functions 'acos', 'asin', 'atan', 'atan2', 'cos', 'hypot', 'sin', 'tan', # Angular conversion functions 'degrees', 'radians', # Hyperbolic functions 'acosh', 'asinh', 'atanh', 'cosh', 'sinh', 'tanh', # Special functions 'erf', 'erfc', 'gamma', 'lgamma', # Missing functions won't break anything but won't do anything either 'this_function_definitely_does_not_exist', ]
22.792553
76
0.54189
f8bab3dc683ade4a29b7e25ca1a99e68f49ac849
462
py
Python
30/00/1.py
pylangstudy/201707
c1cc72667f1e0b6e8eef4ee85067d7fa4ca500b6
[ "CC0-1.0" ]
null
null
null
30/00/1.py
pylangstudy/201707
c1cc72667f1e0b6e8eef4ee85067d7fa4ca500b6
[ "CC0-1.0" ]
46
2017-06-30T22:19:07.000Z
2017-07-31T22:51:31.000Z
30/00/1.py
pylangstudy/201707
c1cc72667f1e0b6e8eef4ee85067d7fa4ca500b6
[ "CC0-1.0" ]
null
null
null
print('----- or -----') RetT() or RetF() RetF() or RetT() # print('----- and -----') RetT() and RetF() # RetF() and RetT() # print('----- not -----') print(not True and True) print(False or not True) print(not True == True) #print(True == not True) #SyntaxError: invalid syntax print(True == (not True))
25.666667
53
0.645022
f8bc9f66b7afd106a2727f0668012f3210c6ab27
1,548
py
Python
tests/test_click.py
maxmouchet/mtoolbox
977f3af1e3fe6e6403a26fcca3a30a1285eb28c2
[ "MIT" ]
null
null
null
tests/test_click.py
maxmouchet/mtoolbox
977f3af1e3fe6e6403a26fcca3a30a1285eb28c2
[ "MIT" ]
2
2020-07-19T21:03:34.000Z
2020-09-11T14:56:34.000Z
tests/test_click.py
maxmouchet/mtoolbox
977f3af1e3fe6e6403a26fcca3a30a1285eb28c2
[ "MIT" ]
null
null
null
from enum import Enum from pathlib import Path import click from mbox.click import EnumChoice, ParsedDate, PathParam
24.1875
72
0.623385
f8bdfba3ce0bde25189979ebc289968a2512c766
1,400
py
Python
util/plot_pbt.py
Linus4world/3D-MRI-style-transfer
6747f0b235b8a6e773a941c222d594d9eedc6a35
[ "BSD-3-Clause" ]
1
2022-01-03T16:08:35.000Z
2022-01-03T16:08:35.000Z
util/plot_PBT.py
Linus4world/mrs-gan
64669251584a7421cce3a5173983a2275dcb438a
[ "BSD-2-Clause" ]
null
null
null
util/plot_PBT.py
Linus4world/mrs-gan
64669251584a7421cce3a5173983a2275dcb438a
[ "BSD-2-Clause" ]
1
2022-02-11T13:26:38.000Z
2022-02-11T13:26:38.000Z
import math import matplotlib.pyplot as plt import json import os import warnings warnings.filterwarnings("ignore") if __name__ == "__main__": plotPBT('/home/kreitnerl/mrs-gan/ray_results/test_feat/')
31.111111
96
0.594286
f8bec2e6574c370927ccaaf8971ce34b58a52c44
497
py
Python
Cap_9/ex9.23/ex9.23.py
gguilherme42/Livro-de-Python
465a509d50476fd1a87239c71ed741639d58418b
[ "MIT" ]
4
2020-04-07T00:38:46.000Z
2022-03-10T03:34:42.000Z
Cap_9/ex9.23/ex9.23.py
gguilherme42/Livro-de-Python
465a509d50476fd1a87239c71ed741639d58418b
[ "MIT" ]
null
null
null
Cap_9/ex9.23/ex9.23.py
gguilherme42/Livro-de-Python
465a509d50476fd1a87239c71ed741639d58418b
[ "MIT" ]
1
2021-04-22T02:45:38.000Z
2021-04-22T02:45:38.000Z
import agenda23 agenda23.le('Agenda.txt') while True: opcao = agenda23.menu() if opcao == 0: break elif opcao == 1: agenda23.novo() elif opcao == 2: agenda23.altera() elif opcao == 3: agenda23.apaga() elif opcao == 4: agenda23.lista() elif opcao == 5: agenda23.grava() elif opcao == 6: agenda23.le() elif opcao == 7: agenda23.ordena() else: print('Opo invlida! Digite novamente.')
20.708333
50
0.539235
f8c2cf6aa69e132e2490580fb1e86b3b369033e8
192
py
Python
src/qualtrutils/__init__.py
emanuele-albini/qualtrutils
7f1fb08221edb220738445bf3e8a92a1a037bb76
[ "MIT" ]
null
null
null
src/qualtrutils/__init__.py
emanuele-albini/qualtrutils
7f1fb08221edb220738445bf3e8a92a1a037bb76
[ "MIT" ]
null
null
null
src/qualtrutils/__init__.py
emanuele-albini/qualtrutils
7f1fb08221edb220738445bf3e8a92a1a037bb76
[ "MIT" ]
null
null
null
try: import os import pkg_resources # part of setuptools __version__ = pkg_resources.get_distribution(os.path.dirname(__file__)).version except: pass from .qualtrics import *
24
83
0.744792
f8c3a6ea72bf6a5606bd1c07a86991ac84f55edc
97
py
Python
image_web/image_app/apps.py
datasciencee/Image_web
28d0d8a3006e64da05bb6ede03b037daaa2897b2
[ "MIT" ]
null
null
null
image_web/image_app/apps.py
datasciencee/Image_web
28d0d8a3006e64da05bb6ede03b037daaa2897b2
[ "MIT" ]
null
null
null
image_web/image_app/apps.py
datasciencee/Image_web
28d0d8a3006e64da05bb6ede03b037daaa2897b2
[ "MIT" ]
null
null
null
from django.apps import AppConfig
16.166667
34
0.721649
f8c595e3b1f5711087075fef4510b16d73d51d2b
9,650
py
Python
pyramboia/tasks/views.py
bicofino/Pyramboia
1c291b8fdc71f057a99e7ffbfaa8ba4e713346fd
[ "MIT" ]
1
2016-03-09T13:40:06.000Z
2016-03-09T13:40:06.000Z
pyramboia/tasks/views.py
bicofino/Pyramboia
1c291b8fdc71f057a99e7ffbfaa8ba4e713346fd
[ "MIT" ]
null
null
null
pyramboia/tasks/views.py
bicofino/Pyramboia
1c291b8fdc71f057a99e7ffbfaa8ba4e713346fd
[ "MIT" ]
1
2018-03-24T18:03:09.000Z
2018-03-24T18:03:09.000Z
import time import requests import xml.dom.minidom from lxml import etree from django.shortcuts import render from django.http import HttpResponse from django.contrib import messages from django.core.urlresolvers import reverse_lazy from django.views.generic import ListView, DetailView from django.views.generic.edit import CreateView, UpdateView, DeleteView from django.template import RequestContext, loader from .models import Project, Target, Header, Argument, Task, History from django.shortcuts import render, render_to_response, RequestContext, HttpResponseRedirect from .forms import TaskForm, ProjectForm, ArgumentForm, HeaderForm, TargetForm from django.views.generic.edit import FormView from django.db.models import Count from jsonrpc import jsonrpc_method from django.views.generic.edit import CreateView, UpdateView, DeleteView # Create your views here. class ProjectDeleteView(DeleteView): model = Project success_url = reverse_lazy('project-list') class ProjectListView(ListView): model = Project template_name_suffix = '_list' class ProjectCreateView(CreateView): template_name_suffix = '_create' model = Project form_class = ProjectForm class ProjectDetailView(DetailView): model = Project class ProjectUpdateView(UpdateView): template_name_suffix = '_create' model = Project form_class = ProjectForm def all_projects(request): projects = Project.objects.all() return render_to_response('all_projects.html', locals(), context_instance=RequestContext(request)) def addTask(request): form = TasksForm(request.POST or None) if form.is_valid(): save_it = form.save(commit=False) save_it.save() message = 'Add a new task' messages.success(request, 'Your task has been added.') return HttpResponseRedirect('/') return render_to_response('addtask.html', locals(), context_instance=RequestContext(request)) def addArguments(request): form = ArgumentsForm(request.POST or None) if form.is_valid(): save_it = form.save(commit=False) save_it.save() message = 'Add a new argument' messages.success(request, 'Your argument has been added.') return HttpResponseRedirect('/') return render_to_response('addargs.html', locals(), context_instance=RequestContext(request)) class HeaderDeleteView(DeleteView): model = Header success_url = reverse_lazy('header-list') class HeaderListView(ListView): model = Header template_name_suffix = '_list' class HeaderCreateView(CreateView): template_name_suffix = '_create' model = Header form_class = HeaderForm class HeaderDetailView(DetailView): model = Header class HeaderUpdateView(UpdateView): template_name_suffix = '_create' model = Header form_class = HeaderForm # Target Views # Argument Views # Task Views
31.129032
108
0.684249
f8c5dfc6d0cdbf14f1da548855e712503b3de0e5
230
py
Python
frameworks/MLNet/__init__.py
Ennosigaeon/automlbenchmark
bd3e529d641b64300a075d59408203d537311b7e
[ "MIT" ]
282
2018-09-19T09:45:46.000Z
2022-03-30T04:05:51.000Z
frameworks/MLNet/__init__.py
Ennosigaeon/automlbenchmark
bd3e529d641b64300a075d59408203d537311b7e
[ "MIT" ]
267
2018-11-02T11:43:11.000Z
2022-03-31T08:58:16.000Z
frameworks/MLNet/__init__.py
Ennosigaeon/automlbenchmark
bd3e529d641b64300a075d59408203d537311b7e
[ "MIT" ]
104
2018-10-17T19:32:36.000Z
2022-03-19T22:47:59.000Z
from amlb.utils import call_script_in_same_dir
20.909091
66
0.721739
f8c6b59947b8e1e01fbc267420d89e101ab3f722
932
py
Python
util_test.py
svennickel/itunes-app-scraper
14b857bd40a237825cb6bd93be388e6bcd083c01
[ "MIT" ]
10
2020-08-12T06:47:04.000Z
2021-12-04T03:06:19.000Z
util_test.py
svennickel/itunes-app-scraper
14b857bd40a237825cb6bd93be388e6bcd083c01
[ "MIT" ]
5
2020-11-19T07:53:19.000Z
2022-03-16T15:06:37.000Z
util_test.py
iaine/itunes-app-scraper
de60c8c0b369e78d4c87a0cb11284b2ef576c090
[ "MIT" ]
11
2020-08-12T06:47:31.000Z
2022-03-19T23:36:18.000Z
from itunes_app_scraper.util import AppStoreException, AppStoreCollections, AppStoreCategories, AppStoreUtils import json import pytest import os
33.285714
109
0.769313
f8c6f95465da9e6fd5b7017053c85eda97db68b6
802
py
Python
natasha/span.py
baltachev/natasha
b326631c510384b1ce3ac198bce8ed11818ec784
[ "MIT" ]
822
2017-09-05T08:38:42.000Z
2022-03-31T16:08:48.000Z
natasha/span.py
baltachev/natasha
b326631c510384b1ce3ac198bce8ed11818ec784
[ "MIT" ]
81
2017-09-12T12:49:00.000Z
2022-03-25T18:21:12.000Z
natasha/span.py
baltachev/natasha
b326631c510384b1ce3ac198bce8ed11818ec784
[ "MIT" ]
90
2017-09-05T08:38:49.000Z
2022-03-29T12:09:22.000Z
from .record import Record
21.105263
52
0.516209
f8c7ce0b20cdca0b81d121ae696bffeb609cd523
7,297
py
Python
bingads/v13/bulk/entities/bulk_offline_conversion.py
pawelulita/BingAds-Python-SDK
e7b5a618e87a43d0a5e2c79d9aa4626e208797bd
[ "MIT" ]
86
2016-02-29T03:24:28.000Z
2022-03-29T09:30:21.000Z
bingads/v13/bulk/entities/bulk_offline_conversion.py
pawelulita/BingAds-Python-SDK
e7b5a618e87a43d0a5e2c79d9aa4626e208797bd
[ "MIT" ]
135
2016-04-12T13:31:28.000Z
2022-03-29T02:18:51.000Z
bingads/v13/bulk/entities/bulk_offline_conversion.py
pawelulita/BingAds-Python-SDK
e7b5a618e87a43d0a5e2c79d9aa4626e208797bd
[ "MIT" ]
154
2016-04-08T04:11:27.000Z
2022-03-29T21:21:07.000Z
from __future__ import print_function from bingads.service_client import _CAMPAIGN_OBJECT_FACTORY_V13 from bingads.v13.internal.bulk.string_table import _StringTable from bingads.v13.internal.bulk.entities.single_record_bulk_entity import _SingleRecordBulkEntity from bingads.v13.internal.bulk.mappings import _SimpleBulkMapping from bingads.v13.internal.extensions import *
34.582938
139
0.628752
f8c98cbdffeb6bc1eca9320791dd78a1cefdb9cd
4,320
py
Python
Part-03-Understanding-Software-Crafting-Your-Own-Tools/models/edx-platform/lms/djangoapps/lti_provider/tests/test_tasks.py
osoco/better-ways-of-thinking-about-software
83e70d23c873509e22362a09a10d3510e10f6992
[ "MIT" ]
3
2021-12-15T04:58:18.000Z
2022-02-06T12:15:37.000Z
Part-03-Understanding-Software-Crafting-Your-Own-Tools/models/edx-platform/lms/djangoapps/lti_provider/tests/test_tasks.py
osoco/better-ways-of-thinking-about-software
83e70d23c873509e22362a09a10d3510e10f6992
[ "MIT" ]
null
null
null
Part-03-Understanding-Software-Crafting-Your-Own-Tools/models/edx-platform/lms/djangoapps/lti_provider/tests/test_tasks.py
osoco/better-ways-of-thinking-about-software
83e70d23c873509e22362a09a10d3510e10f6992
[ "MIT" ]
1
2019-01-02T14:38:50.000Z
2019-01-02T14:38:50.000Z
""" Tests for the LTI outcome service handlers, both in outcomes.py and in tasks.py """ from unittest.mock import MagicMock, patch import ddt from django.test import TestCase from opaque_keys.edx.locator import BlockUsageLocator, CourseLocator import lms.djangoapps.lti_provider.tasks as tasks from common.djangoapps.student.tests.factories import UserFactory from lms.djangoapps.lti_provider.models import GradedAssignment, LtiConsumer, OutcomeService
31.532847
92
0.634491
f8c9d560d993e370d3b1363238c43807ccc5dfd5
1,954
py
Python
agents/dumbagent.py
dbelliss/Starcraft2AI
a3044f0eb3c1bb18084fa59265a430ddcdfab80b
[ "MIT" ]
2
2018-04-17T00:37:40.000Z
2018-04-30T03:04:20.000Z
agents/dumbagent.py
dbelliss/Starcraft2AI
a3044f0eb3c1bb18084fa59265a430ddcdfab80b
[ "MIT" ]
null
null
null
agents/dumbagent.py
dbelliss/Starcraft2AI
a3044f0eb3c1bb18084fa59265a430ddcdfab80b
[ "MIT" ]
null
null
null
from loser_agent import * if __name__ == '__main__': main()
41.574468
129
0.666837
f8caa3e778c29557bd6611746d149fdf5e4f18a9
113
py
Python
juno/server/http/handler/api.py
DSciLab/juno
1d572c8d3fd06a6c1fcc51b42a6539dd3ae0927e
[ "MIT" ]
null
null
null
juno/server/http/handler/api.py
DSciLab/juno
1d572c8d3fd06a6c1fcc51b42a6539dd3ae0927e
[ "MIT" ]
null
null
null
juno/server/http/handler/api.py
DSciLab/juno
1d572c8d3fd06a6c1fcc51b42a6539dd3ae0927e
[ "MIT" ]
null
null
null
from .base.api_handler import APIBaseHandler
16.142857
44
0.725664
f8cc12080c230a16858bbc18a05bcd5b93430fe7
317
py
Python
Python/mathematics/find_missing_number.py
RCubedClub/cp_algo
ec254055ef745224b0a1c766ef16709a3eea7087
[ "MIT" ]
null
null
null
Python/mathematics/find_missing_number.py
RCubedClub/cp_algo
ec254055ef745224b0a1c766ef16709a3eea7087
[ "MIT" ]
null
null
null
Python/mathematics/find_missing_number.py
RCubedClub/cp_algo
ec254055ef745224b0a1c766ef16709a3eea7087
[ "MIT" ]
null
null
null
import random if __name__ == '__main__': main()
14.409091
43
0.577287
f8cda283a32c2452d1728b137c6f236a6921d3ec
1,099
py
Python
091. Decode Ways.py
joshlyman/Josh-LeetCode
cc9e2cc406d2cbd5a90ee579efbcaeffb842c5ed
[ "MIT" ]
null
null
null
091. Decode Ways.py
joshlyman/Josh-LeetCode
cc9e2cc406d2cbd5a90ee579efbcaeffb842c5ed
[ "MIT" ]
null
null
null
091. Decode Ways.py
joshlyman/Josh-LeetCode
cc9e2cc406d2cbd5a90ee579efbcaeffb842c5ed
[ "MIT" ]
null
null
null
# Problem Reduction: variation of n-th staircase with n = [1, 2] steps. # Approach: We generate a bottom up DP table. # The tricky part is handling the corner cases (e.g. s = "30"). # Most elegant way to deal with those error/corner cases, is to allocate an extra space, dp[0]. # Let dp[ i ] = the number of ways to parse the string s[1: i + 1] # For example: # s = "231" # index 0: extra base offset. dp[0] = 1 # index 1: # of ways to parse "2" => dp[1] = 1 # index 2: # of ways to parse "23" => "2" and "23", dp[2] = 2 # index 3: # of ways to parse "231" => "2 3 1" and "23 1" => dp[3] = 2
28.921053
95
0.497725
f8cddb9ef6bd722c93b8a3657d1eaf9e8803d45f
4,525
py
Python
Scripts/Cutter.py
rhong3/CPTAC-UCEC
ec83fbee234b5ad3df6524cdd960b5f0f3da9ea9
[ "MIT" ]
4
2019-01-04T21:11:03.000Z
2020-12-11T16:56:15.000Z
Scripts/Cutter.py
rhong3/CPTAC-UCEC
ec83fbee234b5ad3df6524cdd960b5f0f3da9ea9
[ "MIT" ]
null
null
null
Scripts/Cutter.py
rhong3/CPTAC-UCEC
ec83fbee234b5ad3df6524cdd960b5f0f3da9ea9
[ "MIT" ]
null
null
null
""" Tile svs/scn files Created on 11/01/2018 @author: RH """ import time import matplotlib import os import shutil import pandas as pd matplotlib.use('Agg') import Slicer import staintools import re # Get all images in the root directory # cut; each level is 2 times difference (20x, 10x, 5x) # Run as main if __name__ == "__main__": if not os.path.isdir('../tiles'): os.mkdir('../tiles') cut()
29.769737
106
0.478232
f8cde62d3add298d347b197159cd3ef0fad71443
2,850
py
Python
brake.py
tensorpro/AutonomousBraking
9861e5c0423d8ca1a2f3f640003b3581a3074459
[ "MIT" ]
8
2017-05-04T22:04:48.000Z
2020-03-27T13:06:39.000Z
brake.py
tensorpro/AutonomousBraking
9861e5c0423d8ca1a2f3f640003b3581a3074459
[ "MIT" ]
null
null
null
brake.py
tensorpro/AutonomousBraking
9861e5c0423d8ca1a2f3f640003b3581a3074459
[ "MIT" ]
2
2019-07-22T02:19:57.000Z
2020-09-29T21:00:00.000Z
from __future__ import division import numpy as np import matplotlib.pyplot as plt m = 4 b = -.2 bl = -.1 br = -.1 sh = .13 from visualizations import show_bboxes
26.635514
75
0.561404
f8d06ccac9f1d3cb709d0653c37332224ffae6f4
20,941
py
Python
pysnmp/DPS-MIB-V38.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
11
2021-02-02T16:27:16.000Z
2021-08-31T06:22:49.000Z
pysnmp/DPS-MIB-V38.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
75
2021-02-24T17:30:31.000Z
2021-12-08T00:01:18.000Z
pysnmp/DPS-MIB-V38.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
10
2019-04-30T05:51:36.000Z
2022-02-16T03:33:41.000Z
# # PySNMP MIB module DPS-MIB-V38 (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/DPS-MIB-V38 # Produced by pysmi-0.3.4 at Mon Apr 29 18:39:21 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, OctetString, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "Integer", "OctetString", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") SingleValueConstraint, ValueRangeConstraint, ConstraintsIntersection, ConstraintsUnion, ValueSizeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "SingleValueConstraint", "ValueRangeConstraint", "ConstraintsIntersection", "ConstraintsUnion", "ValueSizeConstraint") NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance") iso, ModuleIdentity, Unsigned32, Counter64, Gauge32, ObjectIdentity, IpAddress, enterprises, NotificationType, Integer32, Bits, TimeTicks, MibScalar, MibTable, MibTableRow, MibTableColumn, MibIdentifier, Counter32 = mibBuilder.importSymbols("SNMPv2-SMI", "iso", "ModuleIdentity", "Unsigned32", "Counter64", "Gauge32", "ObjectIdentity", "IpAddress", "enterprises", "NotificationType", "Integer32", "Bits", "TimeTicks", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "MibIdentifier", "Counter32") TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString") dpsInc = MibIdentifier((1, 3, 6, 1, 4, 1, 2682)) dpsAlarmControl = MibIdentifier((1, 3, 6, 1, 4, 1, 2682, 1)) tmonXM = MibIdentifier((1, 3, 6, 1, 4, 1, 2682, 1, 1)) tmonIdent = MibIdentifier((1, 3, 6, 1, 4, 1, 2682, 1, 1, 1)) tmonIdentManufacturer = MibScalar((1, 3, 6, 1, 4, 1, 2682, 1, 1, 1, 1), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmonIdentManufacturer.setStatus('mandatory') tmonIdentModel = MibScalar((1, 3, 6, 1, 4, 1, 2682, 1, 1, 1, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmonIdentModel.setStatus('mandatory') tmonIdentSoftwareVersion = MibScalar((1, 3, 6, 1, 4, 1, 2682, 1, 1, 1, 3), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmonIdentSoftwareVersion.setStatus('mandatory') tmonAlarmTable = MibTable((1, 3, 6, 1, 4, 1, 2682, 1, 1, 2), ) if mibBuilder.loadTexts: tmonAlarmTable.setStatus('mandatory') tmonAlarmEntry = MibTableRow((1, 3, 6, 1, 4, 1, 2682, 1, 1, 2, 1), ).setIndexNames((0, "DPS-MIB-V38", "tmonAIndex")) if mibBuilder.loadTexts: tmonAlarmEntry.setStatus('mandatory') tmonAIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 2682, 1, 1, 2, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmonAIndex.setStatus('mandatory') tmonASite = MibTableColumn((1, 3, 6, 1, 4, 1, 2682, 1, 1, 2, 1, 2), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(30, 30)).setFixedLength(30)).setMaxAccess("readonly") if mibBuilder.loadTexts: tmonASite.setStatus('mandatory') tmonADesc = MibTableColumn((1, 3, 6, 1, 4, 1, 2682, 1, 1, 2, 1, 3), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(40, 40)).setFixedLength(40)).setMaxAccess("readonly") if mibBuilder.loadTexts: tmonADesc.setStatus('mandatory') tmonAState = MibTableColumn((1, 3, 6, 1, 4, 1, 2682, 1, 1, 2, 1, 4), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(8, 8)).setFixedLength(8)).setMaxAccess("readonly") if mibBuilder.loadTexts: tmonAState.setStatus('mandatory') tmonASeverity = MibTableColumn((1, 3, 6, 1, 4, 1, 2682, 1, 1, 2, 1, 5), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(8, 8)).setFixedLength(8)).setMaxAccess("readonly") if mibBuilder.loadTexts: tmonASeverity.setStatus('mandatory') tmonAChgDate = MibTableColumn((1, 3, 6, 1, 4, 1, 2682, 1, 1, 2, 1, 6), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(8, 8)).setFixedLength(8)).setMaxAccess("readonly") if mibBuilder.loadTexts: tmonAChgDate.setStatus('mandatory') tmonAChgTime = MibTableColumn((1, 3, 6, 1, 4, 1, 2682, 1, 1, 2, 1, 7), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(8, 8)).setFixedLength(8)).setMaxAccess("readonly") if mibBuilder.loadTexts: tmonAChgTime.setStatus('mandatory') tmonAAuxDesc = MibTableColumn((1, 3, 6, 1, 4, 1, 2682, 1, 1, 2, 1, 8), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(30, 30)).setFixedLength(30)).setMaxAccess("readonly") if mibBuilder.loadTexts: tmonAAuxDesc.setStatus('mandatory') tmonADispDesc = MibTableColumn((1, 3, 6, 1, 4, 1, 2682, 1, 1, 2, 1, 9), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(14, 14)).setFixedLength(14)).setMaxAccess("readonly") if mibBuilder.loadTexts: tmonADispDesc.setStatus('mandatory') tmonAPntType = MibTableColumn((1, 3, 6, 1, 4, 1, 2682, 1, 1, 2, 1, 10), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmonAPntType.setStatus('mandatory') tmonAPort = MibTableColumn((1, 3, 6, 1, 4, 1, 2682, 1, 1, 2, 1, 11), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmonAPort.setStatus('mandatory') tmonAAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 2682, 1, 1, 2, 1, 12), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmonAAddress.setStatus('mandatory') tmonADisplay = MibTableColumn((1, 3, 6, 1, 4, 1, 2682, 1, 1, 2, 1, 13), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmonADisplay.setStatus('mandatory') tmonAPoint = MibTableColumn((1, 3, 6, 1, 4, 1, 2682, 1, 1, 2, 1, 14), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmonAPoint.setStatus('mandatory') tmonCommandGrid = MibIdentifier((1, 3, 6, 1, 4, 1, 2682, 1, 1, 3)) tmonCPType = MibScalar((1, 3, 6, 1, 4, 1, 2682, 1, 1, 3, 1), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: tmonCPType.setStatus('mandatory') tmonCPort = MibScalar((1, 3, 6, 1, 4, 1, 2682, 1, 1, 3, 2), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: tmonCPort.setStatus('mandatory') tmonCAddress = MibScalar((1, 3, 6, 1, 4, 1, 2682, 1, 1, 3, 3), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: tmonCAddress.setStatus('mandatory') tmonCDisplay = MibScalar((1, 3, 6, 1, 4, 1, 2682, 1, 1, 3, 4), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: tmonCDisplay.setStatus('mandatory') tmonCPoint = MibScalar((1, 3, 6, 1, 4, 1, 2682, 1, 1, 3, 5), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 64))).setMaxAccess("readwrite") if mibBuilder.loadTexts: tmonCPoint.setStatus('mandatory') tmonCEvent = MibScalar((1, 3, 6, 1, 4, 1, 2682, 1, 1, 3, 6), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: tmonCEvent.setStatus('mandatory') tmonCAction = MibScalar((1, 3, 6, 1, 4, 1, 2682, 1, 1, 3, 7), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 17, 18, 19))).clone(namedValues=NamedValues(("latch", 1), ("release", 2), ("momentary", 3), ("ack", 17), ("tag", 18), ("untag", 19)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: tmonCAction.setStatus('mandatory') tmonCAuxText = MibScalar((1, 3, 6, 1, 4, 1, 2682, 1, 1, 3, 8), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(30, 30)).setFixedLength(30)).setMaxAccess("readwrite") if mibBuilder.loadTexts: tmonCAuxText.setStatus('mandatory') tmonCResult = MibScalar((1, 3, 6, 1, 4, 1, 2682, 1, 1, 3, 9), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("success", 1), ("failure", 2), ("pending", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: tmonCResult.setStatus('mandatory') dpsRTU = MibIdentifier((1, 3, 6, 1, 4, 1, 2682, 1, 2)) dpsRTUIdent = MibIdentifier((1, 3, 6, 1, 4, 1, 2682, 1, 2, 1)) dpsRTUManufacturer = MibScalar((1, 3, 6, 1, 4, 1, 2682, 1, 2, 1, 1), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(30, 30)).setFixedLength(30)).setMaxAccess("readonly") if mibBuilder.loadTexts: dpsRTUManufacturer.setStatus('mandatory') dpsRTUModel = MibScalar((1, 3, 6, 1, 4, 1, 2682, 1, 2, 1, 2), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(30, 30)).setFixedLength(30)).setMaxAccess("readonly") if mibBuilder.loadTexts: dpsRTUModel.setStatus('mandatory') dpsRTUFirmwareVersion = MibScalar((1, 3, 6, 1, 4, 1, 2682, 1, 2, 1, 3), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(20, 20)).setFixedLength(20)).setMaxAccess("readonly") if mibBuilder.loadTexts: dpsRTUFirmwareVersion.setStatus('mandatory') dpsRTUDateTime = MibScalar((1, 3, 6, 1, 4, 1, 2682, 1, 2, 1, 4), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(23, 23)).setFixedLength(23)).setMaxAccess("readwrite") if mibBuilder.loadTexts: dpsRTUDateTime.setStatus('mandatory') dpsRTUSyncReq = MibScalar((1, 3, 6, 1, 4, 1, 2682, 1, 2, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1))).clone(namedValues=NamedValues(("sync", 1)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: dpsRTUSyncReq.setStatus('mandatory') dpsRTUDisplayGrid = MibTable((1, 3, 6, 1, 4, 1, 2682, 1, 2, 2), ) if mibBuilder.loadTexts: dpsRTUDisplayGrid.setStatus('mandatory') dpsRTUDisplayEntry = MibTableRow((1, 3, 6, 1, 4, 1, 2682, 1, 2, 2, 1), ).setIndexNames((0, "DPS-MIB-V38", "dpsRTUPort"), (0, "DPS-MIB-V38", "dpsRTUAddress"), (0, "DPS-MIB-V38", "dpsRTUDisplay")) if mibBuilder.loadTexts: dpsRTUDisplayEntry.setStatus('mandatory') dpsRTUPort = MibTableColumn((1, 3, 6, 1, 4, 1, 2682, 1, 2, 2, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dpsRTUPort.setStatus('mandatory') dpsRTUAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 2682, 1, 2, 2, 1, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dpsRTUAddress.setStatus('mandatory') dpsRTUDisplay = MibTableColumn((1, 3, 6, 1, 4, 1, 2682, 1, 2, 2, 1, 3), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dpsRTUDisplay.setStatus('mandatory') dpsRTUDispDesc = MibTableColumn((1, 3, 6, 1, 4, 1, 2682, 1, 2, 2, 1, 4), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(20, 20)).setFixedLength(20)).setMaxAccess("readonly") if mibBuilder.loadTexts: dpsRTUDispDesc.setStatus('mandatory') dpsRTUPntMap = MibTableColumn((1, 3, 6, 1, 4, 1, 2682, 1, 2, 2, 1, 5), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(71, 71)).setFixedLength(71)).setMaxAccess("readonly") if mibBuilder.loadTexts: dpsRTUPntMap.setStatus('mandatory') dpsRTUControlGrid = MibIdentifier((1, 3, 6, 1, 4, 1, 2682, 1, 2, 3)) dpsRTUCPort = MibScalar((1, 3, 6, 1, 4, 1, 2682, 1, 2, 3, 1), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: dpsRTUCPort.setStatus('mandatory') dpsRTUCAddress = MibScalar((1, 3, 6, 1, 4, 1, 2682, 1, 2, 3, 2), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: dpsRTUCAddress.setStatus('mandatory') dpsRTUCDisplay = MibScalar((1, 3, 6, 1, 4, 1, 2682, 1, 2, 3, 3), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: dpsRTUCDisplay.setStatus('mandatory') dpsRTUCPoint = MibScalar((1, 3, 6, 1, 4, 1, 2682, 1, 2, 3, 4), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 64))).setMaxAccess("readwrite") if mibBuilder.loadTexts: dpsRTUCPoint.setStatus('mandatory') dpsRTUCAction = MibScalar((1, 3, 6, 1, 4, 1, 2682, 1, 2, 3, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("latch", 1), ("release", 2), ("momentary", 3)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: dpsRTUCAction.setStatus('mandatory') dpsRTUAlarmGrid = MibTable((1, 3, 6, 1, 4, 1, 2682, 1, 2, 5), ) if mibBuilder.loadTexts: dpsRTUAlarmGrid.setStatus('mandatory') dpsRTUAlarmEntry = MibTableRow((1, 3, 6, 1, 4, 1, 2682, 1, 2, 5, 1), ).setIndexNames((0, "DPS-MIB-V38", "dpsRTUAPort"), (0, "DPS-MIB-V38", "dpsRTUAAddress"), (0, "DPS-MIB-V38", "dpsRTUADisplay"), (0, "DPS-MIB-V38", "dpsRTUAPoint")) if mibBuilder.loadTexts: dpsRTUAlarmEntry.setStatus('mandatory') dpsRTUAPort = MibTableColumn((1, 3, 6, 1, 4, 1, 2682, 1, 2, 5, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dpsRTUAPort.setStatus('mandatory') dpsRTUAAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 2682, 1, 2, 5, 1, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dpsRTUAAddress.setStatus('mandatory') dpsRTUADisplay = MibTableColumn((1, 3, 6, 1, 4, 1, 2682, 1, 2, 5, 1, 3), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dpsRTUADisplay.setStatus('mandatory') dpsRTUAPoint = MibTableColumn((1, 3, 6, 1, 4, 1, 2682, 1, 2, 5, 1, 4), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dpsRTUAPoint.setStatus('mandatory') dpsRTUAPntDesc = MibTableColumn((1, 3, 6, 1, 4, 1, 2682, 1, 2, 5, 1, 5), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(21, 21)).setFixedLength(21)).setMaxAccess("readonly") if mibBuilder.loadTexts: dpsRTUAPntDesc.setStatus('mandatory') dpsRTUAState = MibTableColumn((1, 3, 6, 1, 4, 1, 2682, 1, 2, 5, 1, 6), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(8, 8)).setFixedLength(8)).setMaxAccess("readonly") if mibBuilder.loadTexts: dpsRTUAState.setStatus('mandatory') tmonCRalarmSet = NotificationType((1, 3, 6, 1, 4, 1, 2682, 1, 1) + (0,10)).setObjects(("DPS-MIB-V38", "tmonASite"), ("DPS-MIB-V38", "tmonADesc"), ("DPS-MIB-V38", "tmonAState"), ("DPS-MIB-V38", "tmonASeverity"), ("DPS-MIB-V38", "tmonAChgDate"), ("DPS-MIB-V38", "tmonAChgTime"), ("DPS-MIB-V38", "tmonAAuxDesc"), ("DPS-MIB-V38", "tmonADispDesc"), ("DPS-MIB-V38", "tmonAPntType"), ("DPS-MIB-V38", "tmonAPort"), ("DPS-MIB-V38", "tmonAAddress"), ("DPS-MIB-V38", "tmonADisplay"), ("DPS-MIB-V38", "tmonAPoint"), ("DPS-MIB-V38", "tmonCEvent")) tmonCRalarmClr = NotificationType((1, 3, 6, 1, 4, 1, 2682, 1, 1) + (0,11)).setObjects(("DPS-MIB-V38", "tmonASite"), ("DPS-MIB-V38", "tmonADesc"), ("DPS-MIB-V38", "tmonAState"), ("DPS-MIB-V38", "tmonASeverity"), ("DPS-MIB-V38", "tmonAChgDate"), ("DPS-MIB-V38", "tmonAChgTime"), ("DPS-MIB-V38", "tmonAAuxDesc"), ("DPS-MIB-V38", "tmonADispDesc"), ("DPS-MIB-V38", "tmonAPntType"), ("DPS-MIB-V38", "tmonAPort"), ("DPS-MIB-V38", "tmonAAddress"), ("DPS-MIB-V38", "tmonADisplay"), ("DPS-MIB-V38", "tmonAPoint"), ("DPS-MIB-V38", "tmonCEvent")) tmonMJalarmSet = NotificationType((1, 3, 6, 1, 4, 1, 2682, 1, 1) + (0,12)).setObjects(("DPS-MIB-V38", "tmonASite"), ("DPS-MIB-V38", "tmonADesc"), ("DPS-MIB-V38", "tmonAState"), ("DPS-MIB-V38", "tmonASeverity"), ("DPS-MIB-V38", "tmonAChgDate"), ("DPS-MIB-V38", "tmonAChgTime"), ("DPS-MIB-V38", "tmonAAuxDesc"), ("DPS-MIB-V38", "tmonADispDesc"), ("DPS-MIB-V38", "tmonAPntType"), ("DPS-MIB-V38", "tmonAPort"), ("DPS-MIB-V38", "tmonAAddress"), ("DPS-MIB-V38", "tmonADisplay"), ("DPS-MIB-V38", "tmonAPoint"), ("DPS-MIB-V38", "tmonCEvent")) tmonMJalarmClr = NotificationType((1, 3, 6, 1, 4, 1, 2682, 1, 1) + (0,13)).setObjects(("DPS-MIB-V38", "tmonASite"), ("DPS-MIB-V38", "tmonADesc"), ("DPS-MIB-V38", "tmonAState"), ("DPS-MIB-V38", "tmonASeverity"), ("DPS-MIB-V38", "tmonAChgDate"), ("DPS-MIB-V38", "tmonAChgTime"), ("DPS-MIB-V38", "tmonAAuxDesc"), ("DPS-MIB-V38", "tmonADispDesc"), ("DPS-MIB-V38", "tmonAPntType"), ("DPS-MIB-V38", "tmonAPort"), ("DPS-MIB-V38", "tmonAAddress"), ("DPS-MIB-V38", "tmonADisplay"), ("DPS-MIB-V38", "tmonAPoint"), ("DPS-MIB-V38", "tmonCEvent")) tmonMNalarmSet = NotificationType((1, 3, 6, 1, 4, 1, 2682, 1, 1) + (0,14)).setObjects(("DPS-MIB-V38", "tmonASite"), ("DPS-MIB-V38", "tmonADesc"), ("DPS-MIB-V38", "tmonAState"), ("DPS-MIB-V38", "tmonASeverity"), ("DPS-MIB-V38", "tmonAChgDate"), ("DPS-MIB-V38", "tmonAChgTime"), ("DPS-MIB-V38", "tmonAAuxDesc"), ("DPS-MIB-V38", "tmonADispDesc"), ("DPS-MIB-V38", "tmonAPntType"), ("DPS-MIB-V38", "tmonAPort"), ("DPS-MIB-V38", "tmonAAddress"), ("DPS-MIB-V38", "tmonADisplay"), ("DPS-MIB-V38", "tmonAPoint"), ("DPS-MIB-V38", "tmonCEvent")) tmonMNalarmClr = NotificationType((1, 3, 6, 1, 4, 1, 2682, 1, 1) + (0,15)).setObjects(("DPS-MIB-V38", "tmonASite"), ("DPS-MIB-V38", "tmonADesc"), ("DPS-MIB-V38", "tmonAState"), ("DPS-MIB-V38", "tmonASeverity"), ("DPS-MIB-V38", "tmonAChgDate"), ("DPS-MIB-V38", "tmonAChgTime"), ("DPS-MIB-V38", "tmonAAuxDesc"), ("DPS-MIB-V38", "tmonADispDesc"), ("DPS-MIB-V38", "tmonAPntType"), ("DPS-MIB-V38", "tmonAPort"), ("DPS-MIB-V38", "tmonAAddress"), ("DPS-MIB-V38", "tmonADisplay"), ("DPS-MIB-V38", "tmonAPoint"), ("DPS-MIB-V38", "tmonCEvent")) tmonSTalarmSet = NotificationType((1, 3, 6, 1, 4, 1, 2682, 1, 1) + (0,16)).setObjects(("DPS-MIB-V38", "tmonASite"), ("DPS-MIB-V38", "tmonADesc"), ("DPS-MIB-V38", "tmonAState"), ("DPS-MIB-V38", "tmonASeverity"), ("DPS-MIB-V38", "tmonAChgDate"), ("DPS-MIB-V38", "tmonAChgTime"), ("DPS-MIB-V38", "tmonAAuxDesc"), ("DPS-MIB-V38", "tmonADispDesc"), ("DPS-MIB-V38", "tmonAPntType"), ("DPS-MIB-V38", "tmonAPort"), ("DPS-MIB-V38", "tmonAAddress"), ("DPS-MIB-V38", "tmonADisplay"), ("DPS-MIB-V38", "tmonAPoint"), ("DPS-MIB-V38", "tmonCEvent")) tmonSTalarmClr = NotificationType((1, 3, 6, 1, 4, 1, 2682, 1, 1) + (0,17)).setObjects(("DPS-MIB-V38", "tmonASite"), ("DPS-MIB-V38", "tmonADesc"), ("DPS-MIB-V38", "tmonAState"), ("DPS-MIB-V38", "tmonASeverity"), ("DPS-MIB-V38", "tmonAChgDate"), ("DPS-MIB-V38", "tmonAChgTime"), ("DPS-MIB-V38", "tmonAAuxDesc"), ("DPS-MIB-V38", "tmonADispDesc"), ("DPS-MIB-V38", "tmonAPntType"), ("DPS-MIB-V38", "tmonAPort"), ("DPS-MIB-V38", "tmonAAddress"), ("DPS-MIB-V38", "tmonADisplay"), ("DPS-MIB-V38", "tmonAPoint"), ("DPS-MIB-V38", "tmonCEvent")) dpsRTUPointSet = NotificationType((1, 3, 6, 1, 4, 1, 2682, 1, 2) + (0,20)).setObjects(("DPS-MIB-V38", "sysDescr"), ("DPS-MIB-V38", "sysLocation"), ("DPS-MIB-V38", "dpsRTUDateTime"), ("DPS-MIB-V38", "dpsRTUAPort"), ("DPS-MIB-V38", "dpsRTUAAddress"), ("DPS-MIB-V38", "dpsRTUADisplay"), ("DPS-MIB-V38", "dpsRTUAPoint"), ("DPS-MIB-V38", "dpsRTUAPntDesc"), ("DPS-MIB-V38", "dpsRTUAState")) dpsRTUPointClr = NotificationType((1, 3, 6, 1, 4, 1, 2682, 1, 2) + (0,21)).setObjects(("DPS-MIB-V38", "sysDescr"), ("DPS-MIB-V38", "sysLocation"), ("DPS-MIB-V38", "dpsRTUDateTime"), ("DPS-MIB-V38", "dpsRTUAPort"), ("DPS-MIB-V38", "dpsRTUCAddress"), ("DPS-MIB-V38", "dpsRTUADisplay"), ("DPS-MIB-V38", "dpsRTUAPoint"), ("DPS-MIB-V38", "dpsRTUAPntDesc"), ("DPS-MIB-V38", "dpsRTUAState")) dpsRTUsumPSet = NotificationType((1, 3, 6, 1, 4, 1, 2682, 1, 2) + (0,101)).setObjects(("DPS-MIB-V38", "sysDescr"), ("DPS-MIB-V38", "sysLocation"), ("DPS-MIB-V38", "dpsRTUDateTime")) dpsRTUsumPClr = NotificationType((1, 3, 6, 1, 4, 1, 2682, 1, 2) + (0,102)).setObjects(("DPS-MIB-V38", "sysDescr"), ("DPS-MIB-V38", "sysLocation"), ("DPS-MIB-V38", "dpsRTUDateTime")) dpsRTUcomFailed = NotificationType((1, 3, 6, 1, 4, 1, 2682, 1, 2) + (0,103)).setObjects(("DPS-MIB-V38", "sysDescr"), ("DPS-MIB-V38", "sysLocation"), ("DPS-MIB-V38", "dpsRTUDateTime")) dpsRTUcomRestored = NotificationType((1, 3, 6, 1, 4, 1, 2682, 1, 2) + (0,104)).setObjects(("DPS-MIB-V38", "sysDescr"), ("DPS-MIB-V38", "sysLocation"), ("DPS-MIB-V38", "dpsRTUDateTime")) mibBuilder.exportSymbols("DPS-MIB-V38", tmonAlarmEntry=tmonAlarmEntry, tmonAIndex=tmonAIndex, tmonAChgDate=tmonAChgDate, tmonCAddress=tmonCAddress, tmonSTalarmClr=tmonSTalarmClr, dpsRTUFirmwareVersion=dpsRTUFirmwareVersion, tmonAChgTime=tmonAChgTime, dpsRTUCPoint=dpsRTUCPoint, dpsRTU=dpsRTU, dpsRTUPntMap=dpsRTUPntMap, dpsRTUsumPSet=dpsRTUsumPSet, tmonASite=tmonASite, tmonAlarmTable=tmonAlarmTable, dpsRTUcomFailed=dpsRTUcomFailed, tmonCRalarmSet=tmonCRalarmSet, dpsRTUDisplayEntry=dpsRTUDisplayEntry, dpsRTUAlarmGrid=dpsRTUAlarmGrid, tmonAAddress=tmonAAddress, dpsRTUADisplay=dpsRTUADisplay, dpsRTUDisplayGrid=dpsRTUDisplayGrid, tmonADispDesc=tmonADispDesc, dpsRTUManufacturer=dpsRTUManufacturer, dpsRTUModel=dpsRTUModel, dpsRTUDispDesc=dpsRTUDispDesc, tmonCPoint=tmonCPoint, tmonMJalarmSet=tmonMJalarmSet, dpsRTUAPntDesc=dpsRTUAPntDesc, dpsInc=dpsInc, dpsAlarmControl=dpsAlarmControl, tmonAPort=tmonAPort, dpsRTUAlarmEntry=dpsRTUAlarmEntry, dpsRTUSyncReq=dpsRTUSyncReq, tmonIdent=tmonIdent, tmonASeverity=tmonASeverity, tmonMNalarmClr=tmonMNalarmClr, dpsRTUcomRestored=dpsRTUcomRestored, tmonCAction=tmonCAction, tmonIdentSoftwareVersion=tmonIdentSoftwareVersion, tmonIdentModel=tmonIdentModel, dpsRTUCAction=dpsRTUCAction, tmonMNalarmSet=tmonMNalarmSet, tmonADesc=tmonADesc, tmonCEvent=tmonCEvent, tmonSTalarmSet=tmonSTalarmSet, tmonADisplay=tmonADisplay, dpsRTUIdent=dpsRTUIdent, dpsRTUAPort=dpsRTUAPort, dpsRTUAAddress=dpsRTUAAddress, dpsRTUAddress=dpsRTUAddress, dpsRTUCPort=dpsRTUCPort, tmonAPntType=tmonAPntType, dpsRTUCAddress=dpsRTUCAddress, dpsRTUCDisplay=dpsRTUCDisplay, dpsRTUAState=dpsRTUAState, tmonCResult=tmonCResult, tmonXM=tmonXM, dpsRTUDateTime=dpsRTUDateTime, dpsRTUAPoint=dpsRTUAPoint, dpsRTUsumPClr=dpsRTUsumPClr, tmonCommandGrid=tmonCommandGrid, tmonCPType=tmonCPType, tmonAState=tmonAState, dpsRTUPort=dpsRTUPort, tmonMJalarmClr=tmonMJalarmClr, dpsRTUDisplay=dpsRTUDisplay, dpsRTUPointSet=dpsRTUPointSet, dpsRTUPointClr=dpsRTUPointClr, tmonAPoint=tmonAPoint, tmonCRalarmClr=tmonCRalarmClr, tmonIdentManufacturer=tmonIdentManufacturer, tmonCAuxText=tmonCAuxText, dpsRTUControlGrid=dpsRTUControlGrid, tmonAAuxDesc=tmonAAuxDesc, tmonCPort=tmonCPort, tmonCDisplay=tmonCDisplay)
146.440559
2,200
0.719641
f8d0c7ea7f201118a072a6fce98f54b42edb4e97
524
py
Python
Lab5/load_graph.py
YuryMalyshev/CAD-with-Python
ecbb82b8efb436e7089b0895dc898cf956351046
[ "MIT" ]
null
null
null
Lab5/load_graph.py
YuryMalyshev/CAD-with-Python
ecbb82b8efb436e7089b0895dc898cf956351046
[ "MIT" ]
null
null
null
Lab5/load_graph.py
YuryMalyshev/CAD-with-Python
ecbb82b8efb436e7089b0895dc898cf956351046
[ "MIT" ]
null
null
null
import numpy as np
32.75
101
0.532443
f8d0d6ecca8d12cee0a53f9628644c363e8839b3
1,055
py
Python
python/smqtk/utils/simple_timer.py
jbeezley/SMQTK
e6b00f94be95f39bbca52a7983ac3d6d1f86f847
[ "BSD-3-Clause" ]
82
2015-01-07T15:33:29.000Z
2021-08-11T18:34:05.000Z
python/smqtk/utils/simple_timer.py
jbeezley/SMQTK
e6b00f94be95f39bbca52a7983ac3d6d1f86f847
[ "BSD-3-Clause" ]
230
2015-04-08T14:36:51.000Z
2022-03-14T17:55:30.000Z
python/smqtk/utils/simple_timer.py
DigitalCompanion/SMQTK
fc9404b69150ef44f24423844bc80735c0c2b669
[ "BSD-3-Clause" ]
65
2015-01-04T15:00:16.000Z
2021-11-19T18:09:11.000Z
import time from smqtk.utils import SmqtkObject
27.051282
74
0.525118
f8d1533d26da78b1c9ff1203760b4a5ae33a69c7
206
py
Python
1546.py
ShawonBarman/URI-Online-judge-Ad-Hoc-level-problem-solution-in-python
9a0f0ad5efd4a9e73589c357ab4b34b7c73a11da
[ "MIT" ]
1
2022-01-14T08:45:32.000Z
2022-01-14T08:45:32.000Z
1546.py
ShawonBarman/URI-Online-judge-Ad-Hoc-level-problem-solution-in-python
9a0f0ad5efd4a9e73589c357ab4b34b7c73a11da
[ "MIT" ]
null
null
null
1546.py
ShawonBarman/URI-Online-judge-Ad-Hoc-level-problem-solution-in-python
9a0f0ad5efd4a9e73589c357ab4b34b7c73a11da
[ "MIT" ]
null
null
null
arr = ['', 'Rolien', 'Naej', 'Elehcim', 'Odranoel'] n = int(input()) while n != 0: n -= 1 k = int(input()) while k != 0: k -= 1 num = int(input()) print(arr[num])
22.888889
52
0.417476
f8d1e3f53857745560685cc9254effe945b354f9
3,314
py
Python
portl.py
blackc8/portl
8be36d67db2041071d5169204902ec9fff6aabe9
[ "MIT" ]
null
null
null
portl.py
blackc8/portl
8be36d67db2041071d5169204902ec9fff6aabe9
[ "MIT" ]
1
2020-10-31T15:32:31.000Z
2020-10-31T15:33:11.000Z
portl.py
blackc8/portl
8be36d67db2041071d5169204902ec9fff6aabe9
[ "MIT" ]
null
null
null
import socket, time, sys import argparse __version__="0.1" min_port=0 #max_port=65535 max_port=10000 parser = argparse.ArgumentParser(description="a simple python port scanner",epilog="author: blackc8") parser.add_argument("hostname",metavar="<hostname>",help="host to scan") parser.add_argument("-dp","--ddport",help="do not display port",action="store_true") parser.add_argument("-sF","--show_filtered",help="show filtered ports",action="store_true") parser.add_argument("-b","--banner",help="grab the banners of ports",action="store_true") parser.add_argument("-v","--version",help="dispaly version",action="version",version="%(prog)s ("+__version__+")") args=parser.parse_args() if __name__ == "__main__": scan(args.hostname,args.ddport,args.banner,args.show_filtered)
30.971963
114
0.624925
f8d25c456ce1d78680f761522a288c787f746b68
4,730
py
Python
Python/MachineLearning_Ng/examples/ex2.py
Ritetsu/lizhe_Notes
4c465b5e23c1e520f9508314cfda7f26517d6dd3
[ "MIT" ]
null
null
null
Python/MachineLearning_Ng/examples/ex2.py
Ritetsu/lizhe_Notes
4c465b5e23c1e520f9508314cfda7f26517d6dd3
[ "MIT" ]
null
null
null
Python/MachineLearning_Ng/examples/ex2.py
Ritetsu/lizhe_Notes
4c465b5e23c1e520f9508314cfda7f26517d6dd3
[ "MIT" ]
1
2021-07-07T12:01:42.000Z
2021-07-07T12:01:42.000Z
# -*- coding: utf-8 -*- """ Created on Mon Sep 16 20:15:55 2019 @author: Shinelon """ import numpy as np import pandas as pd import matplotlib.pyplot as plt path='ex2data1.txt' data=pd.read_csv(path,header=None,names=['Exam1','Exam2','Admitted']) data.head() # positive=data[data['Admitted'].isin([1])] negative=data[data['Admitted'].isin([0])] fig,ax=plt.subplots(figsize=(12,8)) #c=colors20 ax.scatter(positive['Exam1'],positive['Exam2'],c='b',marker='o',label='Admitted') ax.scatter(negative['Exam1'],negative['Exam2'],c='r',marker='o',label='Unadimitted') ax.legend(loc=4) ax.set_xlabel('Exam1 Score');ax.set_ylabel('Exam2 Score') plt.show()# #sigmoid #/sigmoid nums=np.arange(-10,10,1) fig,ax=plt.subplots(figsize=(12,8)) ax.plot(nums,sigmoid(nums),'r') plt.show() data.insert(0,'ones',1)#011 cols=data.shape[1] X=data.iloc[:,0:cols-1] y=data.iloc[:,cols-1:cols] X=np.array(X.values) y=np.array(y.values) theta=np.zeros(3) cost(theta,X,y) gradientDescent(theta,X,y)#theta #SciPyTruncatedNewton import scipy.optimize as opt result=opt.fmin_tnc(func=cost,x0=theta,fprime=gradientDescent,args=(X,y)) result#theta cost(result[0],X,y) # theta_min=np.matrix(result[0])#theta_min1x3 predictions=predict(theta_min,X) correct=[1 if((a==1 and b==1) or (a==0 and b==0))\ else 0 for (a,b) in zip(predictions,y)] accuracy=(sum(map(int,correct))/len(correct)) print('accuracy={}'.format(accuracy))# path2='ex2data2.txt' data2=pd.read_csv(path2,header=None,names=['Test1','Test2','Accepted']) data2.head() positive=data2[data2['Accepted'].isin([1])] negative=data2[data2['Accepted'].isin([0])] fig,ax=plt.subplots(figsize=(12,8)) ax.scatter(positive['Test1'],positive['Test2'],s=50,c='b',\ marker='o',label='Accepted') ax.scatter(negative['Test1'],negative['Test2'],s=50,c='r',\ marker='x',label='Rejected') ax.legend() ax.set_xlabel('Test1 Score') ax.set_ylabel('Test2 Score') plt.show() # degree=5 x1=data2['Test1'] x2=data2['Test2'] data2.insert(3,'ones',1) for i in range(1,degree): for j in range(0,i): data2['F'+str(i)+str(j)]=np.power(x1,i-j)*np.power(x2,j) data2.drop('Test1',axis=1,inplace=True)#axis=01TRUE data2.drop('Test2',axis=1,inplace=True) data2.head() # #theta cols=data2.shape[1] X2=data2.iloc[:,1:cols] y2=data2.iloc[:,0:1] X2=np.array(X2.values) y2=np.array(y2.values) theta2=np.zeros(11) learningRate=1 costReg(theta2,X2,y2,learningRate) gradientReg(theta2,X2,y2,learningRate) result2=opt.fmin_tnc(func=costReg,x0=theta2,fprime=gradientReg,\ args=(X2,y2,learningRate)) result2 # theta_min=np.matrix(result2[0]) predictions=predict(theta_min,X2) correct=[1 if ((a==1 and b==1) or (a==0 and b==0))\ else 0 for (a,b) in zip(predictions,y2)] accuracy=(sum(map(int,correct))/len(correct)) print('accuracy2={}%'.format(accuracy*100)) #sklearn from sklearn import linear_model model=linear_model.LogisticRegression(penalty='l2',\ C=1.0,solver='liblinear') model.fit(X2,y2.ravel()) model.score(X2,y2)
31.533333
84
0.679281
6ef1130a48a6b7d1320ed14916f6226e73d226a4
855
py
Python
questioning/trade/migrations/0003_auto_20190901_1710.py
PythonerKK/questioning
c30fb2d31a221398df392f4b8faab539d6921ac0
[ "MIT" ]
6
2019-12-31T05:23:27.000Z
2021-03-12T19:23:34.000Z
questioning/trade/migrations/0003_auto_20190901_1710.py
PythonerKK/questioning
c30fb2d31a221398df392f4b8faab539d6921ac0
[ "MIT" ]
4
2020-05-12T13:39:40.000Z
2021-02-08T20:35:18.000Z
questioning/trade/migrations/0003_auto_20190901_1710.py
PythonerKK/questioning
c30fb2d31a221398df392f4b8faab539d6921ac0
[ "MIT" ]
1
2019-09-02T07:15:16.000Z
2019-09-02T07:15:16.000Z
# Generated by Django 2.1.9 on 2019-09-01 09:10 from django.conf import settings from django.db import migrations, models import django.db.models.deletion
29.482759
129
0.661988
6ef13886b158bd50cda282a2108b24f47033b23c
3,557
py
Python
Ch5/rbf.py
jason-168/MLCode
429c17e004fb41ba16c371416c8f73833ab8fc1d
[ "Xnet", "X11" ]
146
2016-05-24T02:55:53.000Z
2022-03-23T14:54:42.000Z
Ch5/rbf.py
coky/MarslandMLAlgo
4277b24db88c4cb70d6b249921c5d21bc8f86eb4
[ "Xnet", "X11" ]
1
2017-08-17T23:07:39.000Z
2017-08-18T08:27:19.000Z
Ch5/rbf.py
coky/MarslandMLAlgo
4277b24db88c4cb70d6b249921c5d21bc8f86eb4
[ "Xnet", "X11" ]
94
2016-05-06T12:34:33.000Z
2022-03-30T03:31:04.000Z
# Code from Chapter 5 of Machine Learning: An Algorithmic Perspective (2nd Edition) # by Stephen Marsland (http://stephenmonika.net) # You are free to use, change, or redistribute the code in any way you wish for # non-commercial purposes, but please maintain the name of the original author. # This code comes with no warranty of any kind. # Stephen Marsland, 2008, 2014 import numpy as np import pcn import kmeans
34.872549
127
0.576047
6ef1936814cf84ad0a8d2c89da28ee0ee1c74c44
929
py
Python
_correlation_grad.py
jgorgenucsd/corr_tf
ad777821283f7d18d8bdd04d584e12df9a3fba69
[ "BSD-2-Clause" ]
22
2017-12-27T07:37:14.000Z
2021-11-15T05:51:44.000Z
_correlation_grad.py
jgorgenucsd/corr_tf
ad777821283f7d18d8bdd04d584e12df9a3fba69
[ "BSD-2-Clause" ]
4
2018-04-03T17:08:43.000Z
2019-08-07T08:55:24.000Z
_correlation_grad.py
jgorgenucsd/corr_tf
ad777821283f7d18d8bdd04d584e12df9a3fba69
[ "BSD-2-Clause" ]
12
2018-02-06T02:35:12.000Z
2022-03-02T07:18:19.000Z
#!/usr/bin/env python3 """ Gradients for inner product. """ import tensorflow as tf from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import sparse_ops correlation_grad_module = tf.load_op_library('./build/libcorrelation_grad.so')
38.708333
163
0.750269
6ef32ce891baec71eb1386e2c2b81b8e89a8b9a4
123
py
Python
src/hcrystalball/metrics/__init__.py
betatim/hcrystalball
693b9b406f05afa23cfc4647c43260166a7076fe
[ "MIT" ]
1
2021-04-12T17:08:17.000Z
2021-04-12T17:08:17.000Z
src/hcrystalball/metrics/__init__.py
betatim/hcrystalball
693b9b406f05afa23cfc4647c43260166a7076fe
[ "MIT" ]
null
null
null
src/hcrystalball/metrics/__init__.py
betatim/hcrystalball
693b9b406f05afa23cfc4647c43260166a7076fe
[ "MIT" ]
1
2022-01-03T16:02:35.000Z
2022-01-03T16:02:35.000Z
from ._scorer import make_ts_scorer from ._scorer import get_scorer __all__ = [ "get_scorer", "make_ts_scorer", ]
15.375
35
0.723577
6ef9b4082cb1779ade1e3f88552ad789562c6383
2,776
py
Python
tests/selenium/auth/test_user.py
bodik/sner4-web
cb054d79c587b2f8468c73a88754b7c0d5cd5a95
[ "MIT" ]
9
2019-05-15T11:33:43.000Z
2022-02-17T04:05:28.000Z
tests/selenium/auth/test_user.py
bodik/sner4
cb054d79c587b2f8468c73a88754b7c0d5cd5a95
[ "MIT" ]
1
2019-03-01T11:48:13.000Z
2019-03-01T11:48:13.000Z
tests/selenium/auth/test_user.py
bodik/sner4-web
cb054d79c587b2f8468c73a88754b7c0d5cd5a95
[ "MIT" ]
3
2020-03-03T21:06:37.000Z
2021-01-11T14:40:56.000Z
# This file is part of sner4 project governed by MIT license, see the LICENSE.txt file. """ auth.views.user selenium tests """ from flask import url_for from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as EC from sner.server.auth.models import User from sner.server.extensions import db from tests.selenium import dt_inrow_delete, dt_rendered, webdriver_waituntil def test_user_list_route(live_server, sl_admin, user): # pylint: disable=unused-argument """simple test ajaxed datatable rendering""" sl_admin.get(url_for('auth.user_list_route', _external=True)) dt_rendered(sl_admin, 'user_list_table', user.username) def test_user_list_route_inrow_delete(live_server, sl_admin, user): # pylint: disable=unused-argument """delete user inrow button""" user_id = user.id db.session.expunge(user) sl_admin.get(url_for('auth.user_list_route', _external=True)) # in this test-case there are multiple items in the table (current_user, test_user), hence index which to delete has to be used dt_inrow_delete(sl_admin, 'user_list_table', 1) assert not User.query.get(user_id) def test_user_apikey_route(live_server, sl_admin, user): # pylint: disable=unused-argument """apikey generation/revoking feature tests""" sl_admin.get(url_for('auth.user_list_route', _external=True)) dt_rendered(sl_admin, 'user_list_table', user.username) # disable fade, the timing interferes with the test sl_admin.execute_script('$("div#modal-global").toggleClass("fade")') sl_admin.find_element_by_xpath('//a[@data-url="%s"]' % url_for('auth.user_apikey_route', user_id=user.id, action='generate')).click() webdriver_waituntil(sl_admin, EC.visibility_of_element_located((By.XPATH, '//h4[@class="modal-title" and text()="Apikey operation"]'))) sl_admin.find_element_by_xpath('//div[@id="modal-global"]//button[@class="close"]').click() webdriver_waituntil(sl_admin, EC.invisibility_of_element_located((By.XPATH, '//div[@class="modal-global"'))) dt_rendered(sl_admin, 'user_list_table', user.username) db.session.refresh(user) assert user.apikey sl_admin.find_element_by_xpath('//a[@data-url="%s"]' % url_for('auth.user_apikey_route', user_id=user.id, action='revoke')).click() webdriver_waituntil(sl_admin, EC.visibility_of_element_located((By.XPATH, '//h4[@class="modal-title" and text()="Apikey operation"]'))) sl_admin.find_element_by_xpath('//div[@id="modal-global"]//button[@class="close"]').click() webdriver_waituntil(sl_admin, EC.invisibility_of_element_located((By.XPATH, '//div[@class="modal-global"'))) dt_rendered(sl_admin, 'user_list_table', user.username) db.session.refresh(user) assert not user.apikey
46.266667
139
0.747839
6efaa56371bdc91af714b2ef343d987547b208e3
936
py
Python
isobmff/media_file.py
kentoku24/isobmff
6877505a75915caf440bbb80b6024ba6bf9f3baa
[ "MIT" ]
6
2017-08-31T01:55:37.000Z
2018-12-26T03:03:24.000Z
isobmff/media_file.py
kentoku24/isobmff
6877505a75915caf440bbb80b6024ba6bf9f3baa
[ "MIT" ]
4
2017-08-29T03:47:16.000Z
2017-09-05T09:00:17.000Z
isobmff/media_file.py
m-hiki/isbmff
0724b9892884ae35bdd0796a97a9506098c4cd25
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from .box import indent from .box import read_box
26.742857
53
0.459402
6efc120e05e2c5cbca1587bd26026c11c811582c
2,257
py
Python
python homework 2.py
pkpatricia/python34
5ee4f864444b8835f8ee6cf416bc9fd1d969595b
[ "bzip2-1.0.6" ]
null
null
null
python homework 2.py
pkpatricia/python34
5ee4f864444b8835f8ee6cf416bc9fd1d969595b
[ "bzip2-1.0.6" ]
null
null
null
python homework 2.py
pkpatricia/python34
5ee4f864444b8835f8ee6cf416bc9fd1d969595b
[ "bzip2-1.0.6" ]
null
null
null
Python 3.4.1 (v3.4.1:c0e311e010fc, May 18 2014, 10:38:22) [MSC v.1600 32 bit (Intel)] on win32 Type "copyright", "credits" or "license()" for more information. >>> ================================ RESTART ================================ >>> >>> ================================ RESTART ================================ >>> What is your favorite color?blue I like that color too >>> ================================ RESTART ================================ >>> What is your favorite color?black I do not care too much for that color >>> ================================ RESTART ================================ >>> What is your favorite color?green That is my favorite color. >>> ================================ RESTART ================================ >>> What is your favorite color?green That is my 2nd favorite color. >>> ================================ RESTART ================================ >>> What is your favorite color?violet Traceback (most recent call last): File "C:/Users/P/Desktop/two_b.py", line 7, in <module> rank = color.index(pick) + 1 ValueError: 'violet' is not in list >>> ================================ RESTART ================================ >>> What is your favorite color?violet I do not care too much for that color >>> ================================ RESTART ================================ >>> What is your favorite color?yello I do not care too much for that color >>> ================================ RESTART ================================ >>> What is your favorite color?yellow That is my 6th favorite color. >>> ================================ RESTART ================================ >>> Bach Antheil Chopin Mozart Handel >>> ================================ RESTART ================================ >>> Please enter a lower bound: 4 Please enter an upper bound: 23 2**4=16 2**5=32 2**6=64 2**7=128 2**8=256 2**9=512 2**10=1024 2**11=2048 2**12=4096 2**13=8192 2**14=16384 2**15=32768 2**16=65536 2**17=131072 2**18=262144 2**19=524288 2**20=1048576 2**21=2097152 2**22=4194304 >>> ================================ RESTART ================================ >>> Please enter a lower bound: 0 Please enter an upper bound: 6 2**0 = 1 2**1 = 2 2**2 = 4 2**3 = 8 2**4 = 16 2**5 = 32 2**6 = 64 >>>
27.52439
94
0.438635
6efc25feb8365613f08bcea149b9338afcb635e2
3,690
py
Python
mlw/build_database.py
imjoseangel/hacktheplanet2021
bffc4f9a4f821fcfe2215244f5b563effe6982e5
[ "MIT" ]
1
2021-02-24T12:05:06.000Z
2021-02-24T12:05:06.000Z
mlw/build_database.py
imjoseangel/hacktheplanet2021
bffc4f9a4f821fcfe2215244f5b563effe6982e5
[ "MIT" ]
null
null
null
mlw/build_database.py
imjoseangel/hacktheplanet2021
bffc4f9a4f821fcfe2215244f5b563effe6982e5
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import (division, absolute_import, print_function, unicode_literals) from glob import glob import logging import os from os.path import abspath, dirname, normpath import re from shutil import rmtree import sqlite3 import sys import folium from folium.plugins import FastMarkerCluster from zipfile import ZipFile import pandas as pd import requests from config import db from models import MarinaLitterWatch CLEAN_FILES = ('./CSV_1', './CSV_2') ZIP_FILE = 'fme.zip' DB_FILE = 'mlw.db' MAP_FILE = 'locations.html' # Set Logging logging.basicConfig(format="%(asctime)s %(levelname)s: %(message)s", datefmt="%d-%b-%y %H:%M:%S", stream=sys.stdout, level=logging.INFO) # Set local path here = normpath(abspath(dirname(__file__))) # Download data logging.info("Downloading data...") response = requests.get( 'http://fme.discomap.eea.europa.eu/fmedatadownload/MarineLitter/MLWPivotExport.fmw' '?CommunityCode=&FromDate=2010-01-01&ToDate=2022-12-31' '&opt_showresult=false&opt_servicemode=sync') downloadlink = re.search( r"<a\s+(?:[^>]*?\s+)?href=([\"'])(.*?)\1>", response.content.decode()).group(2) logging.info("Saving data...") zipfile = requests.get(downloadlink) open(f'{here}/{ZIP_FILE}', 'wb').write(zipfile.content) logging.info("Uzipping data...") zipObject = ZipFile(f'{here}/{ZIP_FILE}', 'r') zipObject.extractall(path=here) logging.info("Loading data...") # Data to initialize database with data = pd.read_csv( f'{here}/CSV_1/MLW_PivotExport/MLW_Data.csv', encoding="ISO-8859-1") # Delete database file if it exists currently if os.path.exists(f'{here}/{DB_FILE}'): os.remove(f'{here}/{DB_FILE}') # Create the database db.create_all() # populate the database conn = sqlite3.connect(f'{here}/{DB_FILE}') data.to_sql('mlw', conn, if_exists='append') db.session.commit() # Create Map folium_map = folium.Map(location=[40.416729, -3.703339], zoom_start=3, min_zoom=3, tiles='Stamen Terrain') callback = ('function (row) {' 'var marker = L.marker(new L.LatLng(row[0], row[1]), {color: "red"});' 'var icon = L.AwesomeMarkers.icon({' "icon: 'info-sign'," "iconColor: 'white'," "markerColor: 'red'," "prefix: 'glyphicon'," "extraClasses: 'fa-rotate-0'" '});' 'marker.setIcon(icon);' "var popup = L.popup({maxWidth: '300'});" "const display_text = {text: row[2]};" "var mytext = $(`<div id='mytext' class='display_text' style='width: 100.0%; height: 100.0%;'> ${display_text.text}</div>`)[0];" "popup.setContent(mytext);" "marker.bindPopup(popup);" 'return marker};') FastMarkerCluster(data=list( zip(data['lat_y1'].values, data['lon_x1'].values, data['BeachName'].values)), callback=callback).add_to(folium_map) folium.LayerControl().add_to(folium_map) folium_map.save(f'{here}/templates/{MAP_FILE}') # Clean files logging.info("Cleaning files...") for path_spec in CLEAN_FILES: # Make paths absolute and relative to this path abs_paths = glob(os.path.normpath( os.path.join(here, path_spec))) for path in [str(p) for p in abs_paths]: if not path.startswith(here): # Die if path in CLEAN_FILES is absolute + outside this directory raise ValueError( "%s is not a path inside %s" % (path, here)) logging.info(f'removing {os.path.relpath(path)}') rmtree(path) logging.info(f'removing {ZIP_FILE}') os.remove(f'{here}/{ZIP_FILE}')
31.810345
140
0.644986
6efcad9f388b05b3d7f79c0c4ad5c784bb1826e5
3,486
py
Python
domotica/configuration.py
jjmartinr01/gauss3
1c71c44430e0f15fb2f3f83d32ad66bb1b7e3e94
[ "MIT" ]
null
null
null
domotica/configuration.py
jjmartinr01/gauss3
1c71c44430e0f15fb2f3f83d32ad66bb1b7e3e94
[ "MIT" ]
null
null
null
domotica/configuration.py
jjmartinr01/gauss3
1c71c44430e0f15fb2f3f83d32ad66bb1b7e3e94
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals TIPO = 'selectable' # 'basic' or 'selectable'. 'basic': necesario para el funcionamiento del programa # 'selectable': No necesario. Aade nuevas funcionalidades al programa # Por ejemplo autenticar es 'basic', pero actas es prescindible # El code_menu debe ser nico y se configurar como un permiso del sistema MENU_DEFAULT = [ {'code_menu': 'acceso_domotica', 'texto_menu': 'Domtica', 'href': '', 'nivel': 1, 'tipo': 'Accesible', 'pos': 1, }, {'code_menu': 'acceso_grupos_domotica', 'texto_menu': 'Agrupaciones de dispositivos', 'href': 'grupos_domotica', 'nivel': 2, 'tipo': 'Accesible', 'pos': 1, 'parent': 'acceso_domotica' }, {'code_menu': 'acceso_configura_domotica', 'texto_menu': 'Configurar domtica', 'href': 'configura_domotica', 'nivel': 2, 'tipo': 'Accesible', 'pos': 2, 'parent': 'acceso_domotica' } ] # Se aaden otros permisos para el usuario PERMISOS = [{'code_nombre': 'crea_grupos_domotica', 'nombre': 'Permiso para crear un grupo de dispositivos domticos', 'menu': 'acceso_grupos_domotica' }, {'code_nombre': 'borra_grupos_domotica', 'nombre': 'Permiso para borrar cualquier grupo que contiene domtica', 'menu': 'acceso_grupos_domotica' }, {'code_nombre': 'edita_grupos_domotica', 'nombre': 'Permiso para modificar cualquier grupo que contiene domtica', 'menu': 'acceso_grupos_domotica' }, {'code_nombre': 'crea_dispositivos_domotica', 'nombre': 'Permiso para crear un dispositivo domtico', 'menu': 'acceso_configura_domotica' }, {'code_nombre': 'borra_dispositivos_domotica', 'nombre': 'Permiso para borrar cualquier dispositivo domtico', 'menu': 'acceso_configura_domotica' }, {'code_nombre': 'edita_dispositivos_domotica', 'nombre': 'Permiso para editar cualquier dispositivo domtico', 'menu': 'acceso_configura_domotica' }, {'code_nombre': 'crea_secuencias_domotica', 'nombre': 'Permiso para crear una secuencia domtica', 'menu': 'acceso_configura_domotica' }, {'code_nombre': 'borra_secuencias_domotica', 'nombre': 'Permiso para borrar cualquier secuencia domtica', 'menu': 'acceso_configura_domotica' }, {'code_nombre': 'edita_secuencias_domotica', 'nombre': 'Permiso para modificar cualquier secuencia domtica', 'menu': 'acceso_configura_domotica' }, {'code_nombre': 'crea_conjuntos_domotica', 'nombre': 'Permiso para crear un conjunto de dispositivos domticos', 'menu': 'acceso_configura_domotica' }, {'code_nombre': 'borra_conjuntos_domotica', 'nombre': 'Permiso para borrar cualquier conjunto de dispositivos domticos', 'menu': 'acceso_configura_domotica' }, {'code_nombre': 'edita_conjuntos_domotica', 'nombre': 'Permiso para modificar cualquier conjunto de dispositivos domticos', 'menu': 'acceso_configura_domotica' } ]
41.011765
103
0.592943
6efceaaf9fe7bf6e6a3d8409b3f03d38e6342a11
5,944
py
Python
eval.py
itisianlee/hawk-facedet
55774ac5619f9a4c76a3a872ff11940a874b32d1
[ "Apache-2.0" ]
null
null
null
eval.py
itisianlee/hawk-facedet
55774ac5619f9a4c76a3a872ff11940a874b32d1
[ "Apache-2.0" ]
null
null
null
eval.py
itisianlee/hawk-facedet
55774ac5619f9a4c76a3a872ff11940a874b32d1
[ "Apache-2.0" ]
null
null
null
import os import cv2 import fire import time import numpy as np import torch import torch.backends.cudnn as cudnn import torch.nn.functional as F from configs.common import config as cfg from hawkdet.models.build import build_detor from hawkdet.lib.numpy_nms import np_nms from hawkdet.lib.box_utils import decode, decode_landm from hawkdet.lib.prior_box import PriorBox if __name__ == '__main__': fire.Fire({"run": run}) exit()
33.206704
105
0.57924
6efe244e5a0524f99c737e6f3d3da045c5866cd7
101
py
Python
hello.py
zhuiyue568/test27
f96438c29711b62000eb363ff32c059529a0e142
[ "MIT" ]
null
null
null
hello.py
zhuiyue568/test27
f96438c29711b62000eb363ff32c059529a0e142
[ "MIT" ]
null
null
null
hello.py
zhuiyue568/test27
f96438c29711b62000eb363ff32c059529a0e142
[ "MIT" ]
null
null
null
name="zhuiyue" num="123456" num=111 num3=333 str="keep going" num4=666 num5=888 num5=777 num6=999
7.769231
16
0.722772
3e00ea020dca2ee0cd420f43a2015391aba2eabc
2,491
py
Python
src/keydra/providers/contentful.py
jangroth/keydra
9bab1b21e025ceb6ae074ea936d693e36efae5a4
[ "MIT" ]
12
2021-05-04T10:47:02.000Z
2022-03-10T13:25:04.000Z
src/keydra/providers/contentful.py
jangroth/keydra
9bab1b21e025ceb6ae074ea936d693e36efae5a4
[ "MIT" ]
17
2021-05-04T00:53:49.000Z
2022-01-18T10:01:49.000Z
src/keydra/providers/contentful.py
jangroth/keydra
9bab1b21e025ceb6ae074ea936d693e36efae5a4
[ "MIT" ]
9
2021-05-04T00:46:38.000Z
2022-02-16T02:55:50.000Z
from keydra.clients.contentful import ContentfulClient from keydra.providers.base import BaseProvider from keydra.providers.base import exponential_backoff_retry from keydra.exceptions import DistributionException from keydra.exceptions import RotationException from keydra.logging import get_logger LOGGER = get_logger() PW_FIELD = 'secret'
28.965116
79
0.566439
3e017ed1492cc6fe4bfc5ac25bc91b6acc5c2bd6
1,266
py
Python
numbas_lti/migrations/0063_auto_20210211_1307.py
jhoobergs/numbas-lti-provider
9d673e0ec8dcb085bd783e949c3ee179e507be5c
[ "Apache-2.0" ]
6
2016-12-12T14:41:33.000Z
2021-04-18T01:04:23.000Z
numbas_lti/migrations/0063_auto_20210211_1307.py
jhoobergs/numbas-lti-provider
9d673e0ec8dcb085bd783e949c3ee179e507be5c
[ "Apache-2.0" ]
206
2016-08-24T13:53:07.000Z
2022-03-31T09:14:43.000Z
numbas_lti/migrations/0063_auto_20210211_1307.py
jhoobergs/numbas-lti-provider
9d673e0ec8dcb085bd783e949c3ee179e507be5c
[ "Apache-2.0" ]
13
2016-10-23T04:53:30.000Z
2022-02-17T09:25:00.000Z
# Generated by Django 2.2.13 on 2021-02-11 13:07 from django.db import migrations, models import django.db.models.deletion
33.315789
156
0.650869
3e035da887a72ca05d47f4e04f4fd021e19671d0
1,356
py
Python
sahyun_bot/utils_session.py
TheGoodlike13/sahyun-bot
8ebc3d4e58a0acf9bde3c9ea8339145abcc53fcb
[ "MIT" ]
1
2022-02-21T18:55:34.000Z
2022-02-21T18:55:34.000Z
sahyun_bot/utils_session.py
TheGoodlike13/sahyun-bot
8ebc3d4e58a0acf9bde3c9ea8339145abcc53fcb
[ "MIT" ]
null
null
null
sahyun_bot/utils_session.py
TheGoodlike13/sahyun-bot
8ebc3d4e58a0acf9bde3c9ea8339145abcc53fcb
[ "MIT" ]
null
null
null
from requests import Session from requests.adapters import HTTPAdapter from urllib3 import Retry from sahyun_bot.utils_logging import HttpDump DEFAULT_RETRY_COUNT = 3 RETRY_ON_METHOD = frozenset([ 'HEAD', 'GET', 'POST', 'PUT', 'DELETE', 'OPTIONS', 'TRACE' ]) RETRY_ON_STATUS = frozenset([ 403, 429, 500, 502, 503, 504 ])
30.133333
117
0.668142
3e03fc65e12b6935503f8e6630624fed1809bd0e
5,763
py
Python
EzLibrarianApplication/DAO/BookCirculationDAO.py
coregameHD/SmartLib_Librarian
31b58a4aab648ee9110ba6a78d5fcab942267380
[ "MIT" ]
null
null
null
EzLibrarianApplication/DAO/BookCirculationDAO.py
coregameHD/SmartLib_Librarian
31b58a4aab648ee9110ba6a78d5fcab942267380
[ "MIT" ]
null
null
null
EzLibrarianApplication/DAO/BookCirculationDAO.py
coregameHD/SmartLib_Librarian
31b58a4aab648ee9110ba6a78d5fcab942267380
[ "MIT" ]
2
2018-10-01T14:08:25.000Z
2020-09-30T03:02:15.000Z
import json import requests from datetime import datetime, timedelta from BookCirculation import BookCirculation from DAO.AbstractDAO import AbstractDAO from DAO.BookDAO import BookDAO from DAO.UserDAO import UserDAO from constant import * from datetime import datetime if __name__ == "__main__": bookCirculationDAO = BookCirculationDAO() for circulation in bookCirculationDAO.getAllCirculations(): print(str(circulation))
39.472603
143
0.622245
3e063c3a08ca1b49f1f08adcb5b79cf09de3aefe
4,128
py
Python
flask_mm/managers/__init__.py
szkkteam/flask_mm
ea96899a41a0573e51792f1554550c6d77f22a07
[ "MIT" ]
1
2021-03-21T18:46:36.000Z
2021-03-21T18:46:36.000Z
flask_mm/managers/__init__.py
szkkteam/flask_mm
ea96899a41a0573e51792f1554550c6d77f22a07
[ "MIT" ]
null
null
null
flask_mm/managers/__init__.py
szkkteam/flask_mm
ea96899a41a0573e51792f1554550c6d77f22a07
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # Common Python library imports import os # Pip package imports from six.moves.urllib.parse import urljoin from flask import url_for, request, abort from werkzeug import secure_filename, FileStorage, cached_property # Internal package imports from flask_mm.utils import UuidNameGen from flask_mm.files import extension, lower_extension from flask_mm.storages import BaseStorage DEFAULT_MANAGER = 'file'
35.282051
107
0.66376
3e07225d9f986640eeceeb3fecfcd08a0bbf84a5
1,627
py
Python
web/api/user/core.py
cclrobotics/ARTBot
a0bffabebbc09361bf7748741fe3d30c78af8fbd
[ "MIT" ]
5
2020-12-04T19:28:42.000Z
2021-12-07T16:14:28.000Z
web/api/user/core.py
cclrobotics/ARTBot
a0bffabebbc09361bf7748741fe3d30c78af8fbd
[ "MIT" ]
50
2019-10-08T19:47:24.000Z
2021-07-26T05:43:37.000Z
web/api/user/core.py
cclrobotics/ARTBot
a0bffabebbc09361bf7748741fe3d30c78af8fbd
[ "MIT" ]
4
2019-10-23T04:14:49.000Z
2021-08-01T01:22:37.000Z
from functools import partial from marshmallow import ValidationError from web.extensions import db from .validators import validate_user_token from .serializers import SuperUserSchema from .exceptions import InvalidUsage from .user import SuperUser def delete_superuser(id, created_at_timestamp): """ Delete a user record from the SuperUser table For added security, must provide exact creation datetime of the user, in timestamp format """ s_user = SuperUser.get_by_id(id) validate_user_token(s_user, created_at_timestamp) s_user.delete() db.session.commit() return s_user.email, True
31.288462
95
0.761524
3e07f9fff3837dd41ad8b264e8c09d1d22e6939d
12,853
py
Python
digsby/src/util/auxencodings.py
ifwe/digsby
f5fe00244744aa131e07f09348d10563f3d8fa99
[ "Python-2.0" ]
35
2015-08-15T14:32:38.000Z
2021-12-09T16:21:26.000Z
digsby/src/util/auxencodings.py
niterain/digsby
16a62c7df1018a49eaa8151c0f8b881c7e252949
[ "Python-2.0" ]
4
2015-09-12T10:42:57.000Z
2017-02-27T04:05:51.000Z
digsby/src/util/auxencodings.py
niterain/digsby
16a62c7df1018a49eaa8151c0f8b881c7e252949
[ "Python-2.0" ]
15
2015-07-10T23:58:07.000Z
2022-01-23T22:16:33.000Z
''' Registers auxillary encodings in the codecs module. >>> 'x\x9cK\xc9L/N\xaa\x04\x00\x08\x9d\x02\x83'.decode('zip') 'digsby' ''' from peak.util.imports import lazyModule sys = lazyModule('sys') warnings = lazyModule('warnings') locale = lazyModule('locale') collections = lazyModule('collections') urllib = lazyModule('urllib') urllib2 = lazyModule('urllib2') codecs = lazyModule('codecs') StringIO = lazyModule('StringIO') zipfile = lazyModule('zipfile') gzip = lazyModule('gzip') htmlentitydefs = lazyModule('htmlentitydefs') base64 = lazyModule('base64') #pylzma = lazyModule('pylzma') HAVE_LZMA = False #until proven otherwise ENCODE_LZMA = False __simplechars_enc = { ord('<') : 'lt', ord('>') : 'gt', #ord("'") : 'apos', ord('"') : 'quot', ord('&') : 'amp', } __simplechars_dec = dict((v, unichr(k)) for k,v in __simplechars_enc.items()) __simplechars_dec['apos'] = unichr(ord("'")) _encodings = [ lambda: locale.getpreferredencoding(), lambda: sys.getfilesystemencoding(), lambda: sys.getdefaultencoding(), ] _to_register = [ ] def register_codec(name, encode, decode): 'An easy way to register a pair of encode/decode functions with a name.' global _to_register _to_register.append(_search) def fuzzydecode(s, encoding = None, errors = 'strict'): ''' Try decoding the string using several encodings, in this order. - the one(s) you give as "encoding" - the system's "preferred" encoding ''' if isinstance(s, unicode): import warnings; warnings.warn('decoding unicode is not supported!') return s encodings = [enc() for enc in _encodings] if isinstance(encoding, basestring): encodings.insert(0, encoding) elif encoding is None: pass else: encodings = list(encoding) + encodings assert all(isinstance(e, basestring) for e in encodings) for e in encodings: try: res = s.decode(e, errors) except (UnicodeDecodeError, LookupError), _ex: # LookupError will catch missing encodings import warnings; warnings.warn("Exception when fuzzydecoding %r: %r" % (s, _ex)) else: return res return s.decode(encoding, 'replace') register_codec('xml', _xml_encode, _xml_decode) _to_register.append(search) del search _to_register.append(search) del search _to_register.append(search) del search __locale_encoding = lambda: locale.getpreferredencoding() register_codec('locale', lambda s, errors = 'strict': (s.encode(__locale_encoding()), len(s)), lambda s, errors = 'strict': (s.decode(__locale_encoding()), len(s))) __filesysencoding = lambda: sys.getfilesystemencoding() register_codec('filesys', _filesys_encode, _filesys_decode) del _filesys_encode del _filesys_decode register_codec('url', _url_encode, _url_decode) # codec: utf8url # encode = utf8 encode -> url encode # decode = url decode -> utf8 decode register_codec('utf8url', _utf8url_encode, _utf8url_decode) b64_codecs = {} b64_names = frozenset(('b64', 'b32', 'b16')) _to_register.append(search_base64) del search_base64 register_codec('binary', _binary_encode, _binary_decode) __all__ = [] if __name__ == '__main__': install() strings = [gen_rand_str() for x in xrange(100)] results1 = [] results2 = [] from time import clock print 'xml', timeit(lambda: foo('xml', results1)) print 'xml2', timeit(lambda: foo('xml2', results2)) assert results1 == results2
29.821346
119
0.561503
3e08ccba7d47176de06f3bb412445c1550a56baf
463
py
Python
jaxfg/core/__init__.py
AvanDavad/jaxfg
6d1559126ba872b452eca6a13c2688349f1c5f7e
[ "MIT" ]
120
2020-11-28T19:43:31.000Z
2022-03-29T02:35:46.000Z
jaxfg/core/__init__.py
AvanDavad/jaxfg
6d1559126ba872b452eca6a13c2688349f1c5f7e
[ "MIT" ]
12
2021-05-24T09:02:12.000Z
2022-03-30T19:51:40.000Z
jaxfg/core/__init__.py
AvanDavad/jaxfg
6d1559126ba872b452eca6a13c2688349f1c5f7e
[ "MIT" ]
9
2021-05-06T15:31:23.000Z
2022-03-23T12:06:44.000Z
from ._factor_base import FactorBase from ._factor_stack import FactorStack from ._stacked_factor_graph import StackedFactorGraph from ._storage_metadata import StorageMetadata from ._variable_assignments import VariableAssignments from ._variables import RealVectorVariable, VariableBase __all__ = [ "FactorStack", "FactorBase", "StackedFactorGraph", "StorageMetadata", "VariableAssignments", "RealVectorVariable", "VariableBase", ]
27.235294
56
0.792657
3e09b3a92c71458b7e09905c1beec58ee515ed7a
106
py
Python
cython/wrap_c/test_cython_wrapper.py
tleonhardt/Python_Interface_Cpp
398eab0c6e7f5e0358edb6644c71b5fdc6b2606a
[ "MIT" ]
64
2017-03-10T09:32:22.000Z
2022-01-25T08:44:06.000Z
cython/wrap_c/test_cython_wrapper.py
tleonhardt/Python_Interface_Cpp
398eab0c6e7f5e0358edb6644c71b5fdc6b2606a
[ "MIT" ]
null
null
null
cython/wrap_c/test_cython_wrapper.py
tleonhardt/Python_Interface_Cpp
398eab0c6e7f5e0358edb6644c71b5fdc6b2606a
[ "MIT" ]
13
2017-03-13T23:28:56.000Z
2021-06-07T08:37:03.000Z
# coding=utf-8 import cyfib
15.142857
57
0.726415
3e0aba9a6fd99c2588436a872d706b50b1c4f2cd
1,612
py
Python
Server/server.py
mjbogusz/CCVR
65b11d39c1412134f8a695b30955368eb43c2518
[ "MIT" ]
null
null
null
Server/server.py
mjbogusz/CCVR
65b11d39c1412134f8a695b30955368eb43c2518
[ "MIT" ]
null
null
null
Server/server.py
mjbogusz/CCVR
65b11d39c1412134f8a695b30955368eb43c2518
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 from http.server import SimpleHTTPRequestHandler, HTTPServer from urllib.parse import parse_qs import time if __name__ == "__main__": from sys import argv if len(argv) == 3: run(port = int(argv[1]), hostName = str(argv[2])) elif len(argv) == 2: run(port = int(argv[1])) else: run()
25.587302
66
0.673077
3e0adca23e72763263f72a46a3ff5aad270ff8c2
4,907
py
Python
dags/dag_update.py
alyildiz/btc_forecast
b1e70431c9f18bee0afda71b96805f6194072548
[ "MIT" ]
5
2021-09-06T08:42:02.000Z
2021-11-15T15:04:57.000Z
dags/dag_update.py
alyildiz/sncf_forecast
b1e70431c9f18bee0afda71b96805f6194072548
[ "MIT" ]
null
null
null
dags/dag_update.py
alyildiz/sncf_forecast
b1e70431c9f18bee0afda71b96805f6194072548
[ "MIT" ]
null
null
null
import os from datetime import datetime, timedelta from airflow import DAG from airflow.operators.docker_operator import DockerOperator from docker.types import Mount default_args = { "owner": "airflow", "description": "Use of the DockerOperator", "depend_on_past": False, "start_date": datetime(2021, 5, 1), "email_on_failure": False, "email_on_retry": False, "retries": 1, "retry_delay": timedelta(minutes=5), } BASE_DIR = "/home/baris/PROJECTS/sncf_forecast/" dic_env = { "API_KEY": os.environ["API_KEY"], "API_KEY_SECRET": os.environ["API_KEY_SECRET"], "ACCESS_TOKEN": os.environ["ACCESS_TOKEN"], "ACCESS_TOKEN_SECRET": os.environ["ACCESS_TOKEN_SECRET"], "MONGODB_HOST": os.environ["MONGODB_HOST"], "MONGODB_PORT": os.environ["MONGODB_PORT"], "MONGO_INITDB_ROOT_USERNAME": os.environ["MONGO_INITDB_ROOT_USERNAME"], "MONGO_INITDB_ROOT_PASSWORD": os.environ["MONGO_INITDB_ROOT_PASSWORD"], } with DAG("daily_update_new", default_args=default_args, schedule_interval="0 2 * * *", catchup=False) as dag: update_db = DockerOperator( task_id="task_____daily_update_dbmongo", image="sncf_forecast_update", environment=dic_env, container_name="task_____daily_update_dbmongo", api_version="auto", auto_remove=True, command="python3 /workdir/update.py", docker_url="unix://var/run/docker.sock", working_dir="/workdir", mount_tmp_dir=False, mounts=[ Mount(source=BASE_DIR + "shared", target="/workdir/shared", type="bind"), Mount(source=BASE_DIR + "backend/modeling/src", target="/workdir/src", type="bind"), Mount(source=BASE_DIR + "backend/update", target="/workdir", type="bind"), ], network_mode="sncf_forecast_default", ) update_lstm = DockerOperator( task_id="task_____daily_update_lstm", image="sncf_forecast_modeling", environment=dic_env, container_name="task_____daily_update_lstm", api_version="auto", auto_remove=True, command="python3 /workdir/bin/train_model.py -m lstm", docker_url="unix://var/run/docker.sock", working_dir="/workdir", mount_tmp_dir=False, mounts=[ Mount(source=BASE_DIR + "backend/modeling/bin", target="/workdir/bin", type="bind"), Mount(source=BASE_DIR + "backend/modeling/src", target="/workdir/src", type="bind"), Mount(source=BASE_DIR + "shared", target="/workdir/shared", type="bind"), Mount(source=BASE_DIR + "mlflow/db", target="/workdir/data", type="bind"), Mount(source=BASE_DIR + "mlflow/artifacts", target="/workdir/artifacts", type="bind"), ], network_mode="sncf_forecast_default", ) update_baseline = DockerOperator( task_id="task_____daily_update_baseline", image="sncf_forecast_modeling", environment=dic_env, container_name="task_____daily_update_baseline", api_version="auto", auto_remove=True, command="python3 /workdir/bin/train_model.py -m baseline", docker_url="unix://var/run/docker.sock", working_dir="/workdir", mount_tmp_dir=False, mounts=[ Mount(source=BASE_DIR + "backend/modeling/bin", target="/workdir/bin", type="bind"), Mount(source=BASE_DIR + "backend/modeling/src", target="/workdir/src", type="bind"), Mount(source=BASE_DIR + "shared", target="/workdir/shared", type="bind"), Mount(source=BASE_DIR + "mlflow/db", target="/workdir/data", type="bind"), Mount(source=BASE_DIR + "mlflow/artifacts", target="/workdir/artifacts", type="bind"), ], network_mode="sncf_forecast_default", ) update_autoencoder = DockerOperator( task_id="task_____daily_update_autoencoder", image="sncf_forecast_modeling", environment=dic_env, container_name="task_____daily_update_autoencoder", api_version="auto", auto_remove=True, command="python3 /workdir/bin/train_model.py -m autoencoder", docker_url="unix://var/run/docker.sock", working_dir="/workdir", mount_tmp_dir=False, mounts=[ Mount(source=BASE_DIR + "backend/modeling/bin", target="/workdir/bin", type="bind"), Mount(source=BASE_DIR + "backend/modeling/src", target="/workdir/src", type="bind"), Mount(source=BASE_DIR + "shared", target="/workdir/shared", type="bind"), Mount(source=BASE_DIR + "mlflow/db", target="/workdir/data", type="bind"), Mount(source=BASE_DIR + "mlflow/artifacts", target="/workdir/artifacts", type="bind"), ], network_mode="sncf_forecast_default", ) update_db >> update_lstm update_db >> update_baseline update_db >> update_autoencoder
41.584746
109
0.651314
3e0b03ec64f84131a309427f748ab4fc729497d0
1,723
py
Python
sustainableCityManagement/main_project/Population_API/views_population.py
Josh-repository/Dashboard-CityManager-
6287881be9fb2c6274a755ce5d75ad355346468a
[ "RSA-MD" ]
null
null
null
sustainableCityManagement/main_project/Population_API/views_population.py
Josh-repository/Dashboard-CityManager-
6287881be9fb2c6274a755ce5d75ad355346468a
[ "RSA-MD" ]
null
null
null
sustainableCityManagement/main_project/Population_API/views_population.py
Josh-repository/Dashboard-CityManager-
6287881be9fb2c6274a755ce5d75ad355346468a
[ "RSA-MD" ]
1
2021-05-13T16:33:18.000Z
2021-05-13T16:33:18.000Z
from django.http import JsonResponse from django.http import HttpResponse from rest_framework.views import APIView from .store_population import StorePopulation import time as processTiming import uuid # API to fetch Ireland population used by frontend. The result consist of population estimate and year. # API to fetch Dublin population used by frontend. The result consist of population estimate and year.
39.159091
103
0.62101
3e105c7bee23ddd23731ff6b0bc65a97faa40678
2,536
py
Python
examples/tutorial7.py
fangj99/gifmaze
fd0f7fbf592537a26b13359ccf87dab836d9b1b3
[ "MIT" ]
7
2018-04-28T17:25:25.000Z
2021-08-15T17:52:11.000Z
examples/tutorial7.py
fangj99/gifmaze
fd0f7fbf592537a26b13359ccf87dab836d9b1b3
[ "MIT" ]
null
null
null
examples/tutorial7.py
fangj99/gifmaze
fd0f7fbf592537a26b13359ccf87dab836d9b1b3
[ "MIT" ]
2
2019-10-30T03:40:50.000Z
2022-01-02T05:44:33.000Z
# -*- coding: utf-8 -*- """ This script shows how to embed the animation into a background image (it's also possible to embed the animation into another animation, but that's too complicated to implement in a simple program ...) """ from colorsys import hls_to_rgb import gifmaze as gm from gifmaze.algorithms import wilson, bfs from gifmaze.utils import generate_text_mask # firstly define the size and color_depth of the image. width, height = 600, 400 color_depth = 8 # define a surface to draw on. surface = gm.GIFSurface.from_image('teacher.png', color_depth) # set the 0-th color to be the same with the blackboard's. palette = [52, 51, 50, 200, 200, 200, 255, 0, 255] for i in range(256): rgb = hls_to_rgb((i / 360.0) % 1, 0.5, 1.0) palette += [int(round(255 * x)) for x in rgb] surface.set_palette(palette) # next define an animation environment to run the algorithm. anim = gm.Animation(surface) # set the speed, delay, and transparent color we want. anim.set_control(speed=50, delay=2, trans_index=3) # add a maze instance. mask = generate_text_mask(surface.size, 'UST', 'ubuntu.ttf', 350) # specify the region that where the animation is embedded. left, top, right, bottom = 66, 47, 540, 343 maze = anim.create_maze_in_region(cell_size=4, region=(left, top, right, bottom), mask=mask) anim.pad_delay_frame(100) # paint the blackboard surface.rectangle(left, top, right - left + 1, bottom - top + 1, 0) # in the first algorithm only 4 colors occur in the image, so we can use # a smaller minimum code length, this can help reduce the file size significantly. surface.set_lzw_compress(2) # pad one second delay, get ready! anim.pad_delay_frame(100) # the animation runs here. wilson(maze, root=(0, 0)) # pad three seconds delay to see the result clearly. anim.pad_delay_frame(300) # now we run the maze solving algorithm. # this time we use full 256 colors, hence the minimum code length is 8. surface.set_lzw_compress(8) # the tree and wall are unchanged throughout the maze solving algorithm hence # it's safe to use 0 as the transparent color and color the wall and tree transparent. anim.set_colormap({0: 0, 1: 0, 2: 2, 3: 3}) anim.set_control(speed=30, delay=5, trans_index=0) # run the maze solving algorithm. bfs(maze, start=(0, 0), end=(maze.size[0] - 1, maze.size[1] - 1)) # pad five seconds delay to see the path clearly. anim.pad_delay_frame(500) # save the result. surface.save('wilson_bfs.gif') surface.close()
31.308642
86
0.714117