hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
11 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
251
max_stars_repo_name
stringlengths
4
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
251
max_issues_repo_name
stringlengths
4
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
251
max_forks_repo_name
stringlengths
4
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.05M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.04M
alphanum_fraction
float64
0
1
f249ee34b1745d4a243c396362c75f872d9af531
687
py
Python
Software_Carpentry/Conway/test_conway.py
dgasmith/SICM2-Software-Summer-School-2014
af97770cbade3bf4a246f21e607e8be66c9df7da
[ "MIT" ]
2
2015-07-16T14:00:27.000Z
2016-01-10T20:21:48.000Z
Software_Carpentry/Conway/test_conway.py
dgasmith/SICM2-Software-Summer-School-2014
af97770cbade3bf4a246f21e607e8be66c9df7da
[ "MIT" ]
null
null
null
Software_Carpentry/Conway/test_conway.py
dgasmith/SICM2-Software-Summer-School-2014
af97770cbade3bf4a246f21e607e8be66c9df7da
[ "MIT" ]
null
null
null
from conway import *
28.625
87
0.513828
f24a5dc578f63a0c2e113a798ce9969cd7ed080c
5,426
py
Python
app_backend/__init__.py
zhanghe06/bearing_project
78a20fc321f72d3ae05c7ab7e52e01d02904e3fc
[ "MIT" ]
1
2020-06-21T04:08:26.000Z
2020-06-21T04:08:26.000Z
app_backend/__init__.py
zhanghe06/bearing_project
78a20fc321f72d3ae05c7ab7e52e01d02904e3fc
[ "MIT" ]
13
2019-10-18T17:19:32.000Z
2022-01-13T00:44:43.000Z
app_backend/__init__.py
zhanghe06/bearing_project
78a20fc321f72d3ae05c7ab7e52e01d02904e3fc
[ "MIT" ]
5
2019-02-07T03:15:16.000Z
2021-09-04T14:06:28.000Z
#!/usr/bin/env python # encoding: utf-8 """ @author: zhanghe @software: PyCharm @file: __init__.py @time: 2018-03-06 00:00 """ from __future__ import unicode_literals import eventlet eventlet.monkey_patch() from logging.config import dictConfig from config import current_config from flask import Flask from flask_wtf.csrf import CSRFProtect from flask_login import LoginManager from flask_moment import Moment from flask_oauthlib.client import OAuth from flask_mail import Mail from flask_principal import Principal import flask_excel as excel # from flask_socketio import SocketIO from flask_sqlalchemy import SQLAlchemy from flask_babel import Babel, gettext as _ from app_common.libs.redis_session import RedisSessionInterface from app_backend.clients.client_redis import redis_client app = Flask(__name__) app.config.from_object(current_config) app.config['REMEMBER_COOKIE_NAME'] = app.config['REMEMBER_COOKIE_NAME_BACKEND'] app.session_cookie_name = app.config['SESSION_COOKIE_NAME_BACKEND'] app.session_interface = RedisSessionInterface( redis=redis_client, prefix=app.config['REDIS_SESSION_PREFIX_BACKEND'], ) # CSRF Protection AJAX requests csrf = CSRFProtect(app) login_manager = LoginManager() login_manager.init_app(app) # setup_app login_manager.login_view = 'auth.index' login_manager.login_message = _('Please log in to access this page.') login_manager.login_message_category = 'warning' # login_manager.localize_callback = _ # login_manager.session_protection = 'basic' # basicstrongNone # IP User Agent MD5 hash # basic # strong # Moment moment = Moment(app) # principals = Principal(app, skip_static=True) # babel = Babel(app) excel.init_excel(app) # SocketIO # socketio = SocketIO() # socketio.init_app(app, async_mode='eventlet', message_queue=app.config['REDIS_URL']) # oauth = OAuth(app) # mail = Mail(app) # GitHub oauth_github = oauth.remote_app( 'github', **app.config['GITHUB_OAUTH'] ) # QQ oauth_qq = oauth.remote_app( 'qq', **app.config['QQ_OAUTH'] ) # WeiBo oauth_weibo = oauth.remote_app( 'weibo', **app.config['WEIBO_OAUTH'] ) # Google # # dictConfig(app.config['LOG_CONFIG']) # import , views, models importimport from app_backend import views from app_backend.views.permissions import bp_permissions from app_backend.views.captcha import bp_captcha from app_backend.views.customer import bp_customer from app_backend.views.customer_contact import bp_customer_contact from app_backend.views.customer_invoice import bp_customer_invoice from app_backend.views.supplier import bp_supplier from app_backend.views.supplier_contact import bp_supplier_contact from app_backend.views.supplier_invoice import bp_supplier_invoice from app_backend.views.user import bp_user from app_backend.views.user_auth import bp_auth from app_backend.views.production import bp_production from app_backend.views.production_sensitive import bp_production_sensitive from app_backend.views.quotation import bp_quotation from app_backend.views.quotation_items import bp_quotation_items from app_backend.views.enquiry import bp_enquiry from app_backend.views.enquiry_items import bp_enquiry_items from app_backend.views.buyer_order import bp_buyer_order from app_backend.views.purchase import bp_purchase from app_backend.views.sales_order import bp_sales_order from app_backend.views.delivery import bp_delivery from app_backend.views.warehouse import bp_warehouse from app_backend.views.rack import bp_rack from app_backend.views.inventory import bp_inventory from app_backend.views.futures import bp_futures from app_backend.views.purchase import bp_purchase from app_backend.views.delivery import bp_delivery from app_backend.views.system import bp_system # from app_backend.views.socket_io import bp_socket_io from app_backend.views.price import bp_price from app_backend.views.bank import bp_bank from app_backend.views.cash import bp_cash from app_backend.views.bank_account import bp_bank_account # app.register_blueprint(bp_permissions) app.register_blueprint(bp_captcha) app.register_blueprint(bp_customer) app.register_blueprint(bp_customer_contact) app.register_blueprint(bp_customer_invoice) app.register_blueprint(bp_supplier) app.register_blueprint(bp_supplier_contact) app.register_blueprint(bp_supplier_invoice) app.register_blueprint(bp_user) app.register_blueprint(bp_auth) app.register_blueprint(bp_production) app.register_blueprint(bp_production_sensitive) app.register_blueprint(bp_quotation) app.register_blueprint(bp_quotation_items) app.register_blueprint(bp_enquiry) app.register_blueprint(bp_enquiry_items) app.register_blueprint(bp_buyer_order) app.register_blueprint(bp_purchase) app.register_blueprint(bp_sales_order) app.register_blueprint(bp_delivery) app.register_blueprint(bp_warehouse) app.register_blueprint(bp_rack) app.register_blueprint(bp_inventory) app.register_blueprint(bp_futures) app.register_blueprint(bp_purchase) app.register_blueprint(bp_delivery) app.register_blueprint(bp_system) # app.register_blueprint(bp_socket_io) app.register_blueprint(bp_price) app.register_blueprint(bp_bank) app.register_blueprint(bp_cash) app.register_blueprint(bp_bank_account) # from app_backend import filters
30.483146
86
0.838555
f24ac29d015f11200dad8879234dd7ab9c174313
2,003
py
Python
N50.py
kstatebioinfo/stanford_swc
daa3f37bcbbe4a8a3cbe59a48b380603b9794634
[ "CC0-1.0" ]
null
null
null
N50.py
kstatebioinfo/stanford_swc
daa3f37bcbbe4a8a3cbe59a48b380603b9794634
[ "CC0-1.0" ]
null
null
null
N50.py
kstatebioinfo/stanford_swc
daa3f37bcbbe4a8a3cbe59a48b380603b9794634
[ "CC0-1.0" ]
null
null
null
#!/usr/bin/env python3 ########################################################################## # USAGE: import N50 # help(N50) # N50.main(~/stanford_swc/fasta-o-matic/fasta/normal.fa) # DESCRIPTION: Function that calculates N50 for a FASTA file # Created by Jennifer M Shelton ########################################################################## import sys import re def n50(lengths): ''' Reverse sort list of lengths and return N50 ''' lengths = sorted(lengths, reverse = True) # reverse sort lengths large # to small cumulative_length = sum(lengths) # get total length fraction = cumulative_length # set fraction of total to 100% my_n50 = 0 # initialize n50 for seq_length in lengths: if fraction > (cumulative_length/2.0): fraction = fraction - seq_length my_n50 = seq_length else: # when the fraction has passed 50% total length get N50 return(my_n50) def main(): ''' calculates N50 for a FASTA file ''' script = sys.argv[0] filename = sys.argv[1] fasta = open(filename, 'r') header_pattern = re.compile('^>.*') # pattern for a header line ## Initialize strings for headers and sequences and a list for lengths lengths = [] dna = '' header = '' for line in fasta: line = line.rstrip() if header_pattern.match(line): if not dna == '': # skip the first (empty record) lengths.append(len(dna)) dna = '' else: dna = dna + line else: lengths.append(len(dna)) my_n50 = n50(lengths) print(my_n50) ########################################################################## ##### Execute main unless script is simply imported ############ ##### for individual functions ############ ########################################################################## if __name__ == '__main__': main()
34.534483
74
0.495756
f24b0ee4bbb24e050ab403a0d1e6bf087f8143ee
34,017
py
Python
ColDoc/latex.py
mennucc/ColDoc_project
947a79592b689f57e59652b37868cc22e520f724
[ "BSD-3-Clause" ]
null
null
null
ColDoc/latex.py
mennucc/ColDoc_project
947a79592b689f57e59652b37868cc22e520f724
[ "BSD-3-Clause" ]
null
null
null
ColDoc/latex.py
mennucc/ColDoc_project
947a79592b689f57e59652b37868cc22e520f724
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 __all__ = ('main_by_args','latex_main','latex_uuid','latex_tree') cmd_help=""" Command help: blob compile the blob(s) with --uuid=UUID, tree compile all the blobs starting from --uuid=UUID main_public compile the whole document, for the general public main_private compile the whole document, including protected material, visible to the editors all all of the above """ import os, sys, shutil, subprocess, json, argparse, pathlib, tempfile, hashlib, pickle, base64, re, json, dbm from os.path import join as osjoin if __name__ == '__main__': for j in ('','.'): if j in sys.path: sys.stderr.write('Warning: deleting %r from sys.path\n',j) del sys.path[sys.path.index(j)] # a = os.path.realpath(sys.argv[0]) a = os.path.dirname(a) a = os.path.dirname(a) assert os.path.isdir(a), a if a not in sys.path: sys.path.insert(0, a) del a # from ColDoc import loggin import logging logger = logging.getLogger(__name__) ############## ColDoc stuff # ColDoc_latex_engines=[ ('pdflatex','LaTeX'), ('xelatex','XeLaTeX'), ('lualatex','LuaLaTeX'), ] #from ColDoc import config, utils import ColDoc, ColDoc.utils, ColDoc.config, ColDoc.transform import plasTeX import plasTeX.TeX, plasTeX.Base.LaTeX, plasTeX.Context , plasTeX.Tokenizer , plasTeX.Base from plasTeX.TeX import TeX from plasTeX import TeXDocument, Command import plasTeX.Base as Base from plasTeX.Packages import amsthm , graphicx # the package ColDocUUID.sty defines a LaTeX command \uuid , that can be overriden in the preamble environments_we_wont_latex = ColDoc.config.ColDoc_environments_we_wont_latex standalone_template=r"""\documentclass[varwidth=%(width)s]{standalone} %(latex_macros)s \def\uuidbaseurl{%(url_UUID)s} \input{preamble.tex} \usepackage{ColDocUUID} \begin{document} %(begin)s \input{%(input)s} %(end)s \end{document} """ preview_template=r"""\documentclass %(documentclass_options)s {%(documentclass)s} %(latex_macros)s \def\uuidbaseurl{%(url_UUID)s} \input{preamble.tex} \usepackage{hyperref} \usepackage{ColDocUUID} \begin{document} %(begin)s \input{%(input)s} %(end)s \end{document} """ ## TODO investigate, this generates an empty PDF ##\setlength\PreviewBorder{5pt} ##%\usepackage[active]{preview} plastex_template=r"""\documentclass{article} %(latex_macros)s \def\uuidbaseurl{%(url_UUID)s} \input{preamble.tex} \usepackage{hyperref} \usepackage{ColDocUUID} \begin{document} %(begin)s \input{%(input)s} %(end)s \end{document} """ def latex_uuid(blobs_dir, uuid, lang=None, metadata=None, warn=True, options = {}): " `latex` the blob identified `uuid`; if `lang` is None, `latex` all languages; ( `metadata` are courtesy , to avoid recomputing )" log_level = logging.WARNING if warn else logging.DEBUG if metadata is None: uuid_, uuid_dir, metadata = ColDoc.utils.resolve_uuid(uuid=uuid, uuid_dir=None, blobs_dir = blobs_dir, coldoc = options.get('coldoc'), metadata_class= options['metadata_class']) else: uuid_dir = None # if metadata.environ in environments_we_wont_latex : ## 'include_preamble' is maybe illegal LaTeX; 'usepackage' is not yet implemented logger.log(warn, 'Cannot `pdflatex` environ=%r',metadata.environ) return True # if metadata.environ == 'main_file': logger.log(log_level, 'Do not need to `pdflatex` the main_file') return True # if lang is not None: langs=[lang] else: langs=metadata.get('lang') if not langs: logger.debug('No languages for blob %r in blobs_dir %r',uuid,blobs_dir) return True # res = True for l in langs: rh, rp = latex_blob(blobs_dir, metadata=metadata, lang=l, uuid_dir=uuid_dir, options = options) res = res and rh and rp if lang is None: # update only if all languages were recomputed metadata.latex_time_update() metadata.save() return res def latex_blob(blobs_dir, metadata, lang, uuid_dir=None, options = {}, squash = True): """ `latex` the blob identified by the `metadata`, for the given language `lang`. ( `uuid` and `uuid_dir` are courtesy , to avoid recomputing ) Optionally squashes all sublevels, replacing with \\uuidplaceholder """ uuid = metadata.uuid if uuid_dir is None: uuid_dir = ColDoc.utils.uuid_to_dir(uuid, blobs_dir=blobs_dir) # if lang is None or lang == '': _lang='' else: _lang = '_' + lang # if squash is None: squash = options.get('squash') # note that extensions are missing save_name = os.path.join(uuid_dir, 'view' + _lang) save_abs_name = os.path.join(blobs_dir, save_name) fake_texfile = tempfile.NamedTemporaryFile(prefix='fakelatex' + _lang + '_' + uuid + '_', suffix='.tex', dir = blobs_dir , mode='w+', delete=False) fake_abs_name = fake_texfile.name[:-4] fake_name = os.path.basename(fake_abs_name) # D = {'uuiddir':uuid_dir, 'lang':lang, 'uuid':uuid, '_lang':_lang, 'width':'4in', 'begin':'','end':'', 'url_UUID' : options['url_UUID'], 'latex_macros' : options.get('latex_macros',metadata.coldoc.latex_macros_uuid), } # b = os.path.join(uuid_dir,'blob'+_lang+'.tex') s = os.path.join(uuid_dir,'squash'+_lang+'.tex') if squash: ColDoc.transform.squash_latex(b, s, blobs_dir, options, helper = options.get('squash_helper')(blobs_dir, metadata, options)) D['input'] = s else: D['input'] = b # environ = metadata.environ if environ[:2] == 'E_' and environ not in ( 'E_document', ): env = environ[2:] D['begin'] = r'\begin{'+env+'}' D['end'] = r'\end{'+env+'}' if 'split_list' in options and env in options['split_list']: D['begin'] += r'\item' ## ## create pdf logger.debug('create pdf for %r',save_abs_name) env = metadata.environ if env == 'main_file': # never used, the main_file is compiled with the latex_main() function logger.error("should never reach this line") fake_texfile.write(open(os.path.join(blobs_dir, uuid_dir, 'blob'+_lang+'.tex')).read()) fake_texfile.close() else: # ltclsch = metadata.get('latex_documentclass_choice') ltclsch = ltclsch[0] if ltclsch else 'auto' ltcls = options.get('documentclass') if ltclsch == 'auto': if env in ColDoc.config.ColDoc_environments_sectioning or env == 'E_document': ltclsch = 'main' else: ltclsch = 'standalone' if ltclsch == 'main' and not ltcls: logger.warning('When LaTeXing uuid %r, could not use latex_documentclass_choice = "main"', uuid) ltclsch = 'standalone' if ltclsch == 'main': latextemplate = preview_template D['documentclass'] = ltcls elif ltclsch == 'standalone': latextemplate = standalone_template elif ltclsch in ('article','book'): latextemplate = preview_template D['documentclass'] = ltclsch else: raise RuntimeError("unimplemented latex_documentclass_choice = %r",ltclsch) # from metadata or from coldoc ltclsopt = metadata.get('documentclassoptions') if ltclsopt: ltclsopt = ltclsopt[0] else: ltclsopt = options.get('documentclassoptions') ltclsopt = ColDoc.utils.parenthesizes(ltclsopt, '[]') D['documentclass_options'] = ltclsopt # fake_texfile.write(latextemplate % D) fake_texfile.close() rp = pdflatex_engine(blobs_dir, fake_name, save_name, environ, options) ## # rewrite log to replace temporary file name with final file name for ext in '.log','.fls': try: a = open(save_abs_name+ext).read() b = a.replace(fake_name,save_name) open(save_abs_name+ext,'w').write(b) except Exception as e: logger.warning(e) ## create html logger.debug('create html for %r',save_abs_name) main_file = open(fake_abs_name+'.tex', 'w') D['url_UUID'] = ColDoc.config.ColDoc_url_placeholder main_file.write(plastex_template % D) main_file.close() rh = plastex_engine(blobs_dir, fake_name, save_name, environ, options) # paux is quite large and it will not be used after this line if os.path.isfile(save_abs_name+'_plastex.paux'): os.unlink(save_abs_name+'_plastex.paux') # TODO there is a fundamental mistake here. This function may be called to # update the PDF/HTML view of only one language. This timestamp # does not record which language was updated. We should have different timestamps # for different languages. if len(metadata.get('lang')) == 1: metadata.latex_time_update() # retcodes = ColDoc.utils.json_to_dict(metadata.latex_return_codes) j = (':'+lang) if (isinstance(lang,str) and lang) else '' ColDoc.utils.dict_save_or_del( retcodes, 'latex'+j, rp) ColDoc.utils.dict_save_or_del( retcodes, 'plastex'+j, rh) metadata.latex_return_codes = ColDoc.utils.dict_to_json(retcodes) # metadata.save() return rh, rp def latex_main(blobs_dir, uuid='001', lang=None, options = {}, access=None, verbose_name=None, email_to=None): "latex the main document, as the authors intended it ; save all results in UUID dir, as main.* " # assert access in ('public','private') assert isinstance(blobs_dir, (str, pathlib.Path)), blobs_dir assert os.path.isdir(blobs_dir) # if isinstance(options, (str,bytes) ): # base64 accepts both bytes and str options = pickle.loads(base64.b64decode(options)) # metadata_class = options.get('metadata_class') coldoc_dir = options.get('coldoc_dir') coldoc = options.get('coldoc') # if coldoc_dir is not None: options = prepare_options_for_latex(coldoc_dir, blobs_dir, metadata_class, coldoc, options) # uuid_, uuid_dir, metadata = ColDoc.utils.resolve_uuid(uuid=uuid, uuid_dir=None, blobs_dir = blobs_dir, coldoc = coldoc, metadata_class = metadata_class) environ = metadata.environ # if access =='public': options['plastex_theme'] = 'blue' latex_macros = metadata.coldoc.latex_macros_public else: options['plastex_theme'] = 'green' latex_macros = metadata.coldoc.latex_macros_private if lang is not None: langs=[lang] else: langs=metadata.get('lang') # ret = True coldoc = options.get('coldoc') if coldoc is not None: retcodes = ColDoc.utils.json_to_dict(coldoc.latex_return_codes) # for lang in langs: # _lang = ('_'+lang) if (isinstance(lang,str) and lang) else '' lang_ = (':'+lang) if (isinstance(lang,str) and lang) else '' # uuid_dir = ColDoc.utils.uuid_to_dir(uuid, blobs_dir=blobs_dir) # note that extensions are missing save_name = os.path.join(uuid_dir, 'main' + _lang) save_abs_name = os.path.join(blobs_dir, save_name) fake_name = 'fakemain' + _lang fake_abs_name = os.path.join(blobs_dir, fake_name) # a = os.path.join(blobs_dir, uuid_dir, 'blob'+_lang+'.tex') prologue, preamble, body, epilogue = ColDoc.utils.split_blob(open(a)) if not(preamble): logger.warning(r" cannot locate '\begin{document}' ") if True: preamble = [latex_macros] + preamble import re r = re.compile(r'\\usepackage{ColDocUUID}') if not any(r.match(a) for a in preamble): preamble += ['\\usepackage{ColDocUUID}\n'] logger.debug(r" adding \usepackage{ColDocUUID}") a = (r'\def\uuidbaseurl{%s}'%(options['url_UUID'],)+'\n') f_pdf = ''.join(prologue + preamble + [a] + body + epilogue) a = (r'\def\uuidbaseurl{%s}'%(ColDoc.config.ColDoc_url_placeholder,)+'\n') f_html = ''.join(prologue + preamble + [a] + body + epilogue) # open(fake_abs_name+'.tex','w').write(f_pdf) rp = pdflatex_engine(blobs_dir, fake_name, save_name, environ, options) ColDoc.utils.dict_save_or_del(retcodes, 'latex'+lang_+':'+access, rp) try: ColDoc.utils.os_rel_symlink(save_name+'.pdf','main'+_lang+'.pdf', blobs_dir, False, True) except: logger.exception('while symlinking') open(fake_abs_name+'.tex','w').write(f_html) rh = plastex_engine(blobs_dir, fake_name, save_name, environ, options, levels = True, tok = True, strip_head = False) parse_plastex_html(blobs_dir, osjoin(blobs_dir, save_name+'_html'), save_abs_name+'_plastex.paux') # paux is quite large and it will not be used after this line os.unlink(save_abs_name+'_plastex.paux') ColDoc.utils.dict_save_or_del(retcodes, 'plastex'+lang_+':'+access, rh) try: ColDoc.utils.os_rel_symlink(save_name+'_html','main'+_lang+'_html', blobs_dir, True, True) except: logger.exception('while symlinking') # for e in ('.aux','.bbl','_plastex.paux'): # keep a copy of the aux file # TODO should encode by language a,b = osjoin(blobs_dir,save_name+e), osjoin(blobs_dir,'main'+e) if os.path.isfile(a): logger.debug('Copy %r to %r',a,b) shutil.copy(a,b) # ret = ret and rh and rp # if coldoc is not None: if lang is None: # update only if all languages were updated coldoc.latex_time_update() coldoc.latex_return_codes = ColDoc.utils.dict_to_json(retcodes) coldoc.save() return ret def plastex_engine(blobs_dir, fake_name, save_name, environ, options, levels = False, tok = False, strip_head = True, plastex_theme=None): " compiles the `fake_name` latex, and generates the `save_name` result ; note that extensions are missing " save_abs_name = os.path.join(blobs_dir, save_name) fake_abs_name = os.path.join(blobs_dir, fake_name) # plastex_theme = options.get('plastex_theme','green') # fake_support=[] for es,ed in ColDoc.config.ColDoc_plastex_fakemain_reuse_extensions: a = osjoin(blobs_dir,'main'+es) if os.path.exists(a): logger.debug("Re-using %r as %r",a,fake_abs_name+ed) shutil.copy2(a,fake_abs_name+ed) fake_support.append((a,fake_abs_name+ed)) elif os.path.exists(save_abs_name+es): logger.debug("Re-using %r as %r",save_abs_name+es,fake_abs_name+ed) shutil.copy(save_abs_name+es,fake_abs_name+ed) fake_support.append((save_abs_name+es,fake_abs_name+ed)) # F = fake_name+'.tex' d = os.path.dirname(F) #assert os.path.isfile(F),F if d : logger.warning("The argument of `plastex` is not in the blobs directory: %r", F) # a,b = os.path.split(save_abs_name+'_html') save_name_tmp = tempfile.mkdtemp(dir=a,prefix=b) # argv = ['-d',save_name_tmp,"--renderer=HTML5", '--theme-css', plastex_theme] if not levels : argv += [ '--split-level', '-3'] if tok is False or (environ[:2] == 'E_' and tok == 'auto'): argv.append( '--no-display-toc' ) #n = osjoin(blobs_dir,save_name+'_paux') #if not os.path.isdir(n): os.mkdir(n) ## do not use ['--paux-dirs',save_name+'_paux'] until we understand what it does argv += ['--log',F] stdout_ = osjoin(blobs_dir,save_name+'_plastex.stdout') ret = ColDoc.utils.plastex_invoke(cwd_ = blobs_dir , stdout_ = stdout_, argv_ = argv, logfile = fake_name+'.log') if os.path.exists(save_abs_name+'_html') : shutil.rmtree(save_abs_name+'_html') os.rename(save_name_tmp, save_abs_name+'_html') extensions = '.log','.paux','.tex','.bbl' if ret : logger.warning('Failed: cd %r ; plastex %s',blobs_dir,' '.join(argv)) for e in extensions: if os.path.exists(save_abs_name+'_plastex'+e): os.rename(save_abs_name+'_plastex'+e,save_abs_name+'_plastex'+e+'~') if os.path.exists(fake_abs_name+e): s,d = fake_abs_name+e,save_abs_name+'_plastex'+e os.rename(s,d) if ret: logger.warning(' rename %r to %r',s,d) if os.path.isfile(osjoin(blobs_dir, save_name+'_html','index.html')): logger.info('created html version of %r ',save_abs_name) else: logger.warning('no "index.html" in %r',save_name+'_html') return False # replacements = dedup_html(osjoin(blobs_dir, save_name+'_html'), options) # replace urls in html to point to dedup-ed stuff for f in os.listdir(osjoin(blobs_dir, save_name+'_html')): f = osjoin(blobs_dir, save_name+'_html', f) if f[-5:]=='.html': L = O = open(f).read() # ok, regular expressions may be cooler for p in 'href="' , 'src="' : for e in '"', '#': for o,r in replacements: L = L.replace(p+o+e , p+r+e) if L != O: os.rename(f,f+'~') open(f,'w').write(L) # if strip_head: for f in os.listdir(osjoin(blobs_dir, save_name+'_html')): f = osjoin(blobs_dir, save_name+'_html', f) if f[-5:]=='.html': logger.debug('stripping <head> of %r ',f) os.rename(f,f+'~~') L=open(f+'~~').readlines() try: ns, ne = None,None for n,s in enumerate(L): s = s.strip() if s == '<body>': ns = n if s == '</body>': ne = n assert ns,ne L = L[ns+1:ne] F = open(f,'w') for l in L: if l[:7] != '<script': F.write(l) except: logger.exception('ARGH') return ret == 0 def pdflatex_engine(blobs_dir, fake_name, save_name, environ, options, repeat = None): " If repeat is None, it will be run twice if bib data or aux data changed" save_abs_name = os.path.join(blobs_dir, save_name) fake_abs_name = os.path.join(blobs_dir, fake_name) # 'main.aux' and 'main.bbl' are saved latex_main() for e in ColDoc.config.ColDoc_pdflatex_fakemain_reuse_extensions: a = os.path.join(blobs_dir,'main'+e) if os.path.exists(save_abs_name+e): logger.debug("Re-using %r for %r",save_abs_name+e,fake_abs_name+e) shutil.copy2(save_abs_name+e, fake_abs_name+e) elif os.path.exists(a): logger.debug("Re-using %r for %r (hoping for the best)",a,fake_abs_name+e) shutil.copy2(a,fake_abs_name+e) else: logger.debug("No %r file for this job",e) # extensions = ColDoc.config.ColDoc_pdflatex_fakemain_preserve_extensions # ## dunno what this may be useful for #for e in extensions: # if e not in ('.tex','.aux','.bbl') and os.path.exists(fake_abs_name+e): # logger.warning('Overwriting: %r',fake_abs_name+e) # engine = options.get('latex_engine','pdflatex') logger.debug('Using engine %r',engine) args = [engine,'-file-line-error','-interaction','batchmode', '-recorder','-no-shell-escape','-no-parse-first-line', ##TODO may use -output-directory directory ## TODO TEST THIS ##( r"\def\uuidbaseurl{%s}" % (options['url_UUID'],)), r"\input", ## TODO for luatex may add --nosocket --safer fake_name+'.tex'] # p = subprocess.Popen(args,cwd=blobs_dir,stdin=open(os.devnull), stdout=open(os.devnull,'w'),stderr=subprocess.STDOUT) r=p.wait() logger.debug('Engine result %r',r) # if r != 0: logger.debug('LaTeX failed %r will not run BiBTeX',r) elif environ in ( 'main_file', 'E_document') and \ os.path.isfile(fake_abs_name+'.aux') and \ '\\bibdata' in open(fake_abs_name+'.aux').read(): logger.debug('Running BiBTeX') if os.path.isfile(fake_abs_name+'.bbl'): file_md5 = hashlib.md5(open(fake_abs_name+'.bbl','rb').read()).hexdigest() else: file_md5 = None p = subprocess.Popen(['bibtex',fake_name], cwd=blobs_dir,stdin=open(os.devnull), stdout=subprocess.PIPE ,stderr=subprocess.STDOUT) a = p.stdout.read() if p.wait() != 0: logger.warning('bibtex fails, see %r'%(save_abs_name+'.blg',)) logger.warning('bibtex output: %r',a) else: if os.path.isfile(fake_abs_name+'.bbl'): if file_md5 is None or file_md5 != hashlib.md5(open(fake_abs_name+'.bbl','rb').read()).hexdigest(): if repeat is None: logger.debug('BibTeX changed the .bbl file, will rerun') repeat = True else: logger.debug('BibTeX changed the .bbl file') else: logger.debug('BibTeX did not change the .bbl file') else: logger.warning('BiBTeX did not generate %r',fake_abs_name+'.bbl') # a = 'Rerun to get cross-references right' if r == 0: if repeat is None and a in open(fake_abs_name+'.log').read(): logger.debug('%r reports %r in log, will rerun',engine,a) repeat = True elif repeat is None: logger.debug('%r does not report %r in log, will not rerun',engine,a) # if r == 0 and repeat: logger.debug('Rerunning engine %r',engine) p = subprocess.Popen(args,cwd=blobs_dir,stdin=open(os.devnull), stdout=open(os.devnull,'w'),stderr=subprocess.STDOUT) r = p.wait() logger.debug('Engine result %r',r) # res = r == 0 if not res: logger.warning('%r fails, see %r'%(engine,save_abs_name+'.log')) # for e in extensions: if os.path.exists(save_abs_name+e): os.rename(save_abs_name+e,save_abs_name+e+'~') if os.path.exists(fake_abs_name+e): if e == '.pdf': siz=os.path.getsize(fake_abs_name+e) if siz : logger.info("Created pdf %r size %d"%(save_abs_name+e,siz)) else: logger.warning("Created empty pdf %r "%(save_abs_name+e,)) a,b=fake_abs_name+e,save_abs_name+e logger.debug('Rename %r to %r',a,b) os.rename(a,b) else: if e not in ( '.pdf', '.aux' ) : logger.debug("Missing :%r"%(fake_abs_name+e,)) else: logger.warning("Missing :%r"%(fake_abs_name+e,)) if e=='.pdf': res=False return res def latex_tree(blobs_dir, uuid=None, lang=None, warn=False, options={}, verbose_name=None, email_to=None): " latex the whole tree, starting from `uuid` " log_level = logging.WARNING if warn else logging.DEBUG # if isinstance(options, (str,bytes) ): # base64 accepts both bytes and str options = pickle.loads(base64.b64decode(options)) # metadata_class = options.get('metadata_class') coldoc_dir = options.get('coldoc_dir') coldoc = options.get('coldoc') # if coldoc_dir is not None: options = prepare_options_for_latex(coldoc_dir, blobs_dir, metadata_class, coldoc, options) # if uuid is None: logger.warning('Assuming root_uuid = 001') uuid = '001' uuid_, uuid_dir, metadata = ColDoc.utils.resolve_uuid(uuid=uuid, uuid_dir=None, blobs_dir = blobs_dir, coldoc = coldoc, metadata_class=metadata_class) # ret = True if metadata.environ in environments_we_wont_latex: logger.log(log_level, 'Cannot `latex` environ %r , UUID = %r'%(metadata.environ, uuid,)) else: r = latex_uuid(blobs_dir, uuid=uuid, metadata=metadata, lang=lang, warn=warn, options=options) ret = ret and r for u in metadata.get('child_uuid'): logger.debug('moving down from node %r to node %r',uuid,u) r = latex_tree(blobs_dir, uuid=u, lang=lang, warn=warn, options=options) ret = ret and r return ret if __name__ == '__main__': ret = main(sys.argv) sys.exit(0 if ret else 13)
39.010321
135
0.587559
f24b88cb32a898b91b261cd705b2ad3fcd5d1287
2,950
py
Python
extension/visualizer/generate_visualizer_header.py
AldoMyrtaj/duckdb
3aa4978a2ceab8df25e4b20c388bcd7629de73ed
[ "MIT" ]
2,816
2018-06-26T18:52:52.000Z
2021-04-06T10:39:15.000Z
extension/visualizer/generate_visualizer_header.py
AldoMyrtaj/duckdb
3aa4978a2ceab8df25e4b20c388bcd7629de73ed
[ "MIT" ]
1,310
2021-04-06T16:04:52.000Z
2022-03-31T13:52:53.000Z
extension/visualizer/generate_visualizer_header.py
AldoMyrtaj/duckdb
3aa4978a2ceab8df25e4b20c388bcd7629de73ed
[ "MIT" ]
270
2021-04-09T06:18:28.000Z
2022-03-31T11:55:37.000Z
# this script generates visualizer header import os visualizer_dir = 'extension/visualizer' visualizer_css = os.path.join(visualizer_dir, 'visualizer.css') visualizer_d3 = os.path.join(visualizer_dir, 'd3.js') visualizer_script = os.path.join(visualizer_dir, 'script.js') visualizer_header = os.path.join(visualizer_dir, 'include', 'visualizer_constants.hpp') create_visualizer_header()
36.419753
92
0.737627
f24c7bebfc50062402e4f3d020937fffe8042def
1,945
py
Python
kivyx/uix/aspectratio.py
gottadiveintopython/kivyx.uix.aspectratio
e8b049fe76c9350b8c167ff1fb32299b8feceba7
[ "MIT" ]
null
null
null
kivyx/uix/aspectratio.py
gottadiveintopython/kivyx.uix.aspectratio
e8b049fe76c9350b8c167ff1fb32299b8feceba7
[ "MIT" ]
null
null
null
kivyx/uix/aspectratio.py
gottadiveintopython/kivyx.uix.aspectratio
e8b049fe76c9350b8c167ff1fb32299b8feceba7
[ "MIT" ]
null
null
null
__all__ = ('KXAspectRatio', ) from kivy.uix.layout import Layout from kivy.properties import BoundedNumericProperty, OptionProperty HALIGN_TO_ATTR = { 'center': 'center_x', 'middle': 'center_x', 'left': 'x', 'right': 'right', } VALIGN_TO_ATTR = { 'center': 'center_y', 'middle': 'center_y', 'bottom': 'y', 'top': 'top', }
29.469697
68
0.5491
f24e4b499348b1e6839320b71759fce8e46d5cc8
4,006
py
Python
src/analyze_img.py
IW276/IW276SS21-P13
851e220c34d55caa91f0967e02dc86c34deee2fa
[ "MIT" ]
null
null
null
src/analyze_img.py
IW276/IW276SS21-P13
851e220c34d55caa91f0967e02dc86c34deee2fa
[ "MIT" ]
null
null
null
src/analyze_img.py
IW276/IW276SS21-P13
851e220c34d55caa91f0967e02dc86c34deee2fa
[ "MIT" ]
null
null
null
import cv2 import numpy as np from matplotlib import pyplot as plt brightness = {"DARK": 0, "NORMAL": 1, "LIGHT": 2} contrast = {"HIGH": 2, "NORMAL": 1, "LOW": 0}
30.120301
92
0.595856
f2503cce75279fee15a3fc46cd4a46df58314fef
3,799
py
Python
models/game/bots/RandoMaxBot.py
zachdj/ultimate-tic-tac-toe
b8e6128d9d19628f6f889a3958d30854527a8645
[ "MIT" ]
null
null
null
models/game/bots/RandoMaxBot.py
zachdj/ultimate-tic-tac-toe
b8e6128d9d19628f6f889a3958d30854527a8645
[ "MIT" ]
null
null
null
models/game/bots/RandoMaxBot.py
zachdj/ultimate-tic-tac-toe
b8e6128d9d19628f6f889a3958d30854527a8645
[ "MIT" ]
null
null
null
import random from models.game.bots.Bot import Bot from models.game.Board import Board
36.528846
120
0.589102
f251f3a1ac391e245be08c921c85c8b349b00732
1,924
py
Python
fineDinner.py
SMartQi/whose-treat
85f1d27dfb2b728a33cf8b6fcd73213ca24edb0b
[ "MIT" ]
1
2020-01-30T11:09:31.000Z
2020-01-30T11:09:31.000Z
fineDinner.py
SMartQi/whose-treat
85f1d27dfb2b728a33cf8b6fcd73213ca24edb0b
[ "MIT" ]
null
null
null
fineDinner.py
SMartQi/whose-treat
85f1d27dfb2b728a33cf8b6fcd73213ca24edb0b
[ "MIT" ]
null
null
null
#!/usr/bin/env python #-*- encoding:UTF-8 -*- """ Background: JJ and MM want to have a fine dinner, celebrating their annual bonuses. They make this rule: This dinner is on the person who gets more annual bonus. And the cost of the dinner is the diff of money they make mod 300, per capita. Requirement: Decide the money amount and the money provider, without letting one know how much the other's annual bonus is. Method: Hide the input. Use the method "Best two out of three" in case of any typo, since the input strings are hidden. """ import getpass def cal(): """ Decide the money amount and the money provider. """ incomejj = validInput("JJ: ") incomemm = validInput("MM: ") diff = incomejj - incomemm onWhom = "JJ" if diff < 0: onWhom = "MM" result = int(round(abs(diff) % 300)) return result, onWhom def validInput(prompt): """ Get a valid input and convert it to a float number. """ while 1: inputStr = getpass.getpass(prompt) try: inputFloat = float(inputStr) return inputFloat except ValueError: print("Invalid input. Try again.") pass if __name__ == "__main__": """ Use the method "Best two out of three" in case of any typo, since the input strings are hidden. """ (result1, onWhom1) = cal() print("Let's double check.") (result2, onWhom2) = cal() if result1 == result2 and onWhom1 == onWhom2: if result1 == 0: print("No dinner at all. But go to buy some lottery~") else : print("OK. Let's have dinner. " + str(result1) + " yuan per person on " + onWhom1 + ".") else : print("Something's wrong. Let's triple check.") (result3, onWhom3) = cal() if (result1 == result3 and onWhom1 == onWhom3) or (result2 == result3 and onWhom2 == onWhom3): if result3 == 0: print("No dinner at all. But go to buy some lottery~") else : print("OK. " + str(result3) + " it is. It's on " + onWhom3 + ".") else: print("Are you kidding me? I quit!")
29.6
135
0.670478
f25714dd2e5fb95e7b87e1b330afecfe7458cf18
49
py
Python
libs/pytvmaze/__init__.py
Sparklingx/nzbhydra
e2433e1155255ba37341cc79750b104e7dd8889a
[ "Apache-2.0" ]
674
2015-11-06T04:22:47.000Z
2022-02-26T17:31:43.000Z
libs/pytvmaze/__init__.py
Sparklingx/nzbhydra
e2433e1155255ba37341cc79750b104e7dd8889a
[ "Apache-2.0" ]
713
2015-11-06T10:48:58.000Z
2018-11-27T16:32:18.000Z
libs/pytvmaze/__init__.py
Sparklingx/nzbhydra
e2433e1155255ba37341cc79750b104e7dd8889a
[ "Apache-2.0" ]
106
2015-12-07T11:21:06.000Z
2022-03-11T10:58:41.000Z
#!/usr/bin/python from pytvmaze.tvmaze import *
12.25
29
0.734694
f25ce39acdbb3d945528b6cb2be68ac5895f77bb
1,241
py
Python
backend/server.py
mugeshk97/billing-api
3bf6899f62bee6db7870c3b6008a10c887eb3aa3
[ "MIT" ]
null
null
null
backend/server.py
mugeshk97/billing-api
3bf6899f62bee6db7870c3b6008a10c887eb3aa3
[ "MIT" ]
null
null
null
backend/server.py
mugeshk97/billing-api
3bf6899f62bee6db7870c3b6008a10c887eb3aa3
[ "MIT" ]
null
null
null
from flask import Flask, request, jsonify from connection import get_sql_connection from product import get_all_products, insert_product, delete_product import json from flask_cors import CORS app = Flask(__name__) CORS(app) cnx = get_sql_connection() if __name__ == '__main__': app.run(host= '0.0.0.0', port=5050, debug= True)
29.547619
68
0.709106
f25fca280607b95bdb378b87fdab5966ef3e46d2
555
py
Python
api/restaurant_helper_functions.py
daniellespencer/stfu-and-eat
cb82b364ba226dd61f11547720a20a132c1562f6
[ "MIT" ]
1
2020-05-15T01:36:59.000Z
2020-05-15T01:36:59.000Z
api/restaurant_helper_functions.py
daniellespencer/stfu-and-eat
cb82b364ba226dd61f11547720a20a132c1562f6
[ "MIT" ]
null
null
null
api/restaurant_helper_functions.py
daniellespencer/stfu-and-eat
cb82b364ba226dd61f11547720a20a132c1562f6
[ "MIT" ]
2
2020-05-15T01:31:37.000Z
2020-05-20T00:04:41.000Z
import random from api.config import restaurant_collection as restaurants
26.428571
59
0.567568
f26337b1b3af5eb32cdd87718a2212d8a63d5996
6,187
py
Python
nz_snow_tools/eval/brewster_calibration_TF.py
jonoconway/nz_snow_tools
7002fb401fb48225260fada6fd5b5b7ca5ad1184
[ "MIT" ]
3
2020-09-01T07:53:05.000Z
2021-02-02T20:28:37.000Z
nz_snow_tools/eval/brewster_calibration_TF.py
jonoconway/nz_snow_tools
7002fb401fb48225260fada6fd5b5b7ca5ad1184
[ "MIT" ]
null
null
null
nz_snow_tools/eval/brewster_calibration_TF.py
jonoconway/nz_snow_tools
7002fb401fb48225260fada6fd5b5b7ca5ad1184
[ "MIT" ]
null
null
null
""" code to call the snow model for a simple test case using brewster glacier data """ from __future__ import division import numpy as np import matplotlib.pylab as plt import datetime as dt from nz_snow_tools.util.utils import resample_to_fsca, nash_sut, mean_bias, rmsd, mean_absolute_error, coef_determ seb_dat = np.genfromtxt( 'S:\Scratch\Jono\Final Brewster Datasets\SEB_output\cdf - code2p0_MC_meas_noQPS_single_fixed output_fixed_B\modelOUT_br1_headings.txt', skip_header=3) sw_net = seb_dat[:, 14 - 1] lw_net = seb_dat[:, 17 - 1] qs = seb_dat[:, 19 - 1] ql = seb_dat[:, 20 - 1] qc = seb_dat[:, 21 - 1] qprc = seb_dat[:, 22 - 1] qst = seb_dat[:, 24 - 1] qm = seb_dat[:, 25 - 1] t_dep_flux = lw_net + qs + ql + qc + qst qm_wo_sw_prc = qm - sw_net - qprc qm_wo_sw_prc[(qm == 0)] = 0 ta = seb_dat[:, 8 - 1] ea = seb_dat[:, 10 - 1] ws = seb_dat[:, 7 - 1] r2_ea = coef_determ(qm_wo_sw_prc, ea) r2_ta = coef_determ(qm_wo_sw_prc, ta) r2_ea_ws = coef_determ(qm_wo_sw_prc, ea*ws) r2_ea_pos = coef_determ(qm_wo_sw_prc[(qm_wo_sw_prc > 0)], ea[(qm_wo_sw_prc > 0)]) r2_ta_pos = coef_determ(qm_wo_sw_prc[(qm_wo_sw_prc > 0)], ta[(qm_wo_sw_prc > 0)]) r2_ea_ws_pos = coef_determ(qm_wo_sw_prc[(qm_wo_sw_prc > 0)], ea[(qm_wo_sw_prc > 0)]*ws[(qm_wo_sw_prc > 0)]) print(r2_ea) print(r2_ta) print (r2_ea_ws) print(r2_ea_pos) print(r2_ta_pos) print (r2_ea_ws_pos) print( np.sum(ta>0), np.sum(np.logical_and(ta>0,qm_wo_sw_prc > 0)), np.sum(qm_wo_sw_prc > 0), np.sum(np.logical_and(ta>0,qm_wo_sw_prc > 0))/np.sum(ta>0), ) print( np.sum(ea>6.112), np.sum(np.logical_and(ea>6.1120,qm_wo_sw_prc > 0)), np.sum(qm_wo_sw_prc > 0), np.sum(np.logical_and(ea>6.1120,qm_wo_sw_prc > 0))/np.sum(ea>6.112), ) plt.figure() plt.hexbin(qm_wo_sw_prc[(qm_wo_sw_prc > 0)], ta[(qm_wo_sw_prc > 0)], cmap=plt.cm.inferno_r) plt.plot(range(200), np.arange(200) / 14.7,'k') plt.plot(range(100), np.arange(100) / 8.7,'r') plt.xlabel('QM - SWnet - Qprecip') plt.ylabel('Air temperature (C)') plt.savefig(r'D:\Snow project\Oct2018 Results\qm_wo_sw_prc vs ta posQM.png') plt.figure() plt.hexbin(qm_wo_sw_prc[(qm_wo_sw_prc > 0)], ea[(qm_wo_sw_prc > 0)], cmap=plt.cm.inferno_r) plt.plot(range(200), 6.112 + np.arange(200) / 42.0,'k') plt.xlabel('QM - SWnet - Qprecip') plt.ylabel('Vapour pressure (hPa)') plt.savefig(r'D:\Snow project\Oct2018 Results\qm_wo_sw_prc vs ea posQM.png') plt.figure() plt.hexbin(qm_wo_sw_prc[~(qm_wo_sw_prc == 0)], ta[~(qm_wo_sw_prc == 0)], cmap=plt.cm.inferno_r) plt.plot(range(200), np.arange(200) / 14.7,'k') plt.plot(range(100), np.arange(100) / 8.7,'r') plt.xlabel('QM - SWnet - Qprecip') plt.ylabel('Air temperature (C)') plt.savefig(r'D:\Snow project\Oct2018 Results\qm_wo_sw_prc vs ta.png') plt.figure() plt.hexbin(qm_wo_sw_prc[~(qm_wo_sw_prc == 0)], ea[~(qm_wo_sw_prc == 0)], cmap=plt.cm.inferno_r) plt.plot(range(200), 6.112 + np.arange(200) / 42.0,'k') plt.xlabel('QM - SWnet - Qprecip') plt.ylabel('Vapour pressure (hPa)') plt.savefig(r'D:\Snow project\Oct2018 Results\qm_wo_sw_prc vs ea.png') #plt.show() print( np.sum(qm_wo_sw_prc[qm>0])/sw_net.shape,# average positive melt energy from temp dep fluxes np.sum(sw_net[qm>0])/sw_net.shape, # average melt energy from sw_net np.sum(qprc[qm>0])/sw_net.shape # average melt energy from precipitation ) qm_wo_sw_prc[qm_wo_sw_prc<0] = 0 # set all negative melt energy to zero # find optimal parameters for ea and ta from scipy.optimize import curve_fit # sum melt energy from ea and ta # melt factor was 0.025 mm w.e. per hour per hPa ea_pos = ea-6.112 ea_pos[ea_pos<0] = 0 A = curve_fit(f,ea_pos, qm_wo_sw_prc)[0] # find optimal ea_q factor = 41.9 np.median(qm_wo_sw_prc[qm_wo_sw_prc>0]/ea_pos[qm_wo_sw_prc>0]) # median Wm^-2 per K = 41.7 ea_q = ea_pos * 42 # Wm^-2 per K (melt rate of 0.05 mm w.e. per hour per K = 4.6 Wm^-2 per K) ta_pos = ta - 0. ta_pos[ta_pos<0] = 0 A = curve_fit(f,ta_pos, qm_wo_sw_prc)[0]# find optimal ta_q factor = 8.7 np.median(qm_wo_sw_prc[qm_wo_sw_prc>0]/ta_pos[qm_wo_sw_prc>0]) # median Wm^-2 per K = 14.7 ta_q = ta_pos * 8.7 #K * / (mm w.e. W) * print( np.sum(qm_wo_sw_prc[qm>0])/sw_net.shape,# average positive melt energy from temp dep fluxes np.sum(ea_q)/sw_net.shape, # average calculated melt energy from temp dep fluxes using ea np.sum(ta_q)/sw_net.shape, # average calculated melt energy from temp dep fluxes using ta np.sum(sw_net[qm>0])/sw_net.shape, # average melt energy from sw_net np.sum(sw_net[np.logical_and(qm>0,ta<0)])/sw_net.shape, # average melt energy from sw_net when temperature below 0 np.sum(sw_net[np.logical_and(qm>0,ta>0)])/sw_net.shape, # average melt energy from sw_net when temperature above 0 np.sum(qprc[qm>0])/sw_net.shape # average melt energy from precipitation ) plt.figure() plt.hexbin(qm_wo_sw_prc[np.logical_and(ta_q>0,qm_wo_sw_prc>0)],ta_q[np.logical_and(ta_q>0,qm_wo_sw_prc>0)]) plt.plot(range(300),range(300),'b--') plt.ylabel('mod'),plt.xlabel('obs'),plt.title('ta_q vs qm_wo_sw_prc') plt.savefig(r'D:\Snow project\Oct2018 Results\qm_wo_sw_prc vs ta_q.png') plt.figure() plt.hexbin(qm_wo_sw_prc[np.logical_and(ea_q>0,qm_wo_sw_prc>0)],ea_q[np.logical_and(ea_q>0,qm_wo_sw_prc>0)]) plt.ylabel('mod'),plt.xlabel('obs'),plt.title('ea_q vs qm_wo_sw_prc') plt.plot(range(300),range(300),'b--') plt.savefig(r'D:\Snow project\Oct2018 Results\qm_wo_sw_prc vs ea_q.png') plt.figure() plt.hist(qm_wo_sw_prc[np.logical_and(ta_pos>0.5,qm_wo_sw_prc>0)]/ta_pos[np.logical_and(ta_pos>0.5,qm_wo_sw_prc>0)],20) plt.xlabel('ta_q_factor (W m-2 K-1)') plt.savefig(r'D:\Snow project\Oct2018 Results\ta_q_factor_hist.png') #plt.show() print( rmsd(qm_wo_sw_prc,ta_q), rmsd(qm_wo_sw_prc,ea_q) ) es = 6.1121 * np.exp(17.502*ta/(240.97+ta)) rh = (ea/es) * 100 plt.scatter(rh[np.logical_and(ta_pos>0.5,qm_wo_sw_prc>0)]*ws[np.logical_and(ta_pos>0.5,qm_wo_sw_prc>0)]/10.,qm_wo_sw_prc[np.logical_and(ta_pos>0.5,qm_wo_sw_prc>0)]/ta_pos[np.logical_and(ta_pos>0.5,qm_wo_sw_prc>0)],3) plt.scatter(rh[np.logical_and(ta_pos>0.5,qm_wo_sw_prc>0)],qm_wo_sw_prc[np.logical_and(ta_pos>0.5,qm_wo_sw_prc>0)]/ta_pos[np.logical_and(ta_pos>0.5,qm_wo_sw_prc>0)]) plt.scatter(ql,qm_wo_sw_prc-ta_q) plt.scatter(ta,qm_wo_sw_prc-ta_q)
38.66875
216
0.725715
f263d10e4b0315d66a52d4a47d9ce8cba72ce9a2
336
py
Python
Task1F.py
momopmoXZ/1a-flood-coding
13d2f6387e136f046b07a045eadfe654e9c2c27f
[ "MIT" ]
null
null
null
Task1F.py
momopmoXZ/1a-flood-coding
13d2f6387e136f046b07a045eadfe654e9c2c27f
[ "MIT" ]
null
null
null
Task1F.py
momopmoXZ/1a-flood-coding
13d2f6387e136f046b07a045eadfe654e9c2c27f
[ "MIT" ]
1
2022-02-07T17:04:41.000Z
2022-02-07T17:04:41.000Z
from floodsystem.stationdata import build_station_list from floodsystem.station import inconsistent_typical_range_stations stations = build_station_list() incon_station=inconsistent_typical_range_stations(stations) incon_names=[] for station in incon_station: incon_names.append(station.name) incon_names.sort() print (incon_names)
33.6
67
0.863095
f263dc6e6df0ca9888bd8e9bcfdb5d8ed564b445
507
py
Python
yaga_ga/evolutionary_algorithm/operators/base.py
alessandrolenzi/yaga
872503ad04a2831135143750bc309188e5685284
[ "MIT" ]
null
null
null
yaga_ga/evolutionary_algorithm/operators/base.py
alessandrolenzi/yaga
872503ad04a2831135143750bc309188e5685284
[ "MIT" ]
null
null
null
yaga_ga/evolutionary_algorithm/operators/base.py
alessandrolenzi/yaga
872503ad04a2831135143750bc309188e5685284
[ "MIT" ]
null
null
null
from typing import Generic, TypeVar from typing_extensions import Final from yaga_ga.evolutionary_algorithm.individuals import IndividualStructure IndividualType = TypeVar("IndividualType") GeneType = TypeVar("GeneType")
24.142857
81
0.792899
f2647ec6e2d3b985a5cc52948c24f37ae5751457
3,973
py
Python
stimuli.py
lieke2020/workmate_match
803f4e3b1fa62280cc0d6a7cd61eb80929dae918
[ "MIT" ]
null
null
null
stimuli.py
lieke2020/workmate_match
803f4e3b1fa62280cc0d6a7cd61eb80929dae918
[ "MIT" ]
null
null
null
stimuli.py
lieke2020/workmate_match
803f4e3b1fa62280cc0d6a7cd61eb80929dae918
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Wed Dec 1 13:21:44 2021 This file holds the stimuli that are used in the world to represent cues. obs_time --> Stimulus representing time match_cifar --> Natural scenes for phase 1 learning obs_cifar --> Natural scenes for phase 2 learning match_alpha --> Alphabetic letters for phase 1 learning obs_alpha --> Alphabetic letters for phase 2 learning Detailed information on the stimuli can be found in README.txt @author: Lieke Ceton """ #%% Dependencies import numpy as np import string from random import sample import csv from sklearn.preprocessing import normalize #%% Time cell coding maxtime = 10 # Time vectors are created by convolving a response vector # with an identity matrix, yielding [maxtime] rows of time cell responses, # each peaking at a unique, consecutive time. z = [0.1, 0.25, 0.5, 1, 0.5, 0.25, 0.1] crop = int((len(z)-1)/2) # the '3'-cropping here removes edge artefacts from convolution; # Time cell 0 (at row 0) peaks at the first moment in time (column 0). tmat = np.vstack([np.convolve(z, t)[crop:maxtime + crop] for t in np.eye(maxtime)]) def obs_time(t=0): """Vector that represents time""" return tmat[t] #%% CIFAR-10 observations for both learning phases #CIFAR-10 features are extracted from a pre-trained CNN (Caley Woy, see README) #They are the activity vectors of the second fully connected layer. #load .csv file with open("CIFAR_10_kaggle_feature_2.csv", 'r') as f: csv_features = list(csv.reader(f, delimiter=",")) all_feat = np.array(csv_features[1:], dtype=np.float) #get the first row out match_dict = normalize(all_feat[:,1:-2]) #normalize feat_sample = all_feat[0:500,1:-2] #Sample the first 500 features/images cifar_dict = normalize(feat_sample) #normalise def match_cifar(): """Stimuli for phase 1 learning, random natural scenes from CIFAR-10 dataset""" a = np.random.choice(match_dict.shape[1]) return match_dict[a] def obs_cifar(obs=1): """Stimuli for phase 2 learning, a specific set of CIFAR-10 stimuli is selected""" return cifar_dict[obs] #%% Alpha observations for both learning phases #Construct stimulus dictionary stimbits = 10 #length of stimuli #Construct binary stim_repres binstr = '0{}b'.format(stimbits) binstrings = [format(i, binstr) for i in range(2**stimbits)] tobinarr = lambda s : np.array([float(c) for c in s]) Dx = np.vstack([tobinarr(i) for i in binstrings]) #--> a shuffle = sample(range(len(Dx)),len(Dx)) #shuffle the rows randomly Dx = Dx[shuffle,:] # Dx now is a matrix of 128 x 7 bits. 'stimbits' is a dict that will order the # first 52 of these in a lookup table, #why not choose 2**6 when you only use the first 52? (LJC) chars = string.ascii_lowercase + string.ascii_uppercase stimdict = dict(list(zip( chars, Dx ))) # Stimuli with these 5 letters are used in prosaccade/antisaccade, and here made # linearly separable, cf. Rombouts et al., 2015 stimdict['g'] = np.zeros(stimbits) stimdict['p'] = np.eye(stimbits)[0] stimdict['a'] = np.eye(stimbits)[1] stimdict['l'] = np.eye(stimbits)[2] stimdict['r'] = np.eye(stimbits)[3] #why? this ruins the neat dictionary that you just made.. (LJC) # digits, used in 12-AX, are added to the stimdict in a similar manner digdict = dict( [(d,Dx[i + 2**(stimbits-1) ]) for i,d in enumerate(string.digits) ]) stimdict.update(digdict) len_Dx = Dx.shape[0] def match_alpha(): """Stimuli for phase 1 learning, random vector selected from binary stimuli""" rand_int = np.random.choice(len_Dx) return Dx[rand_int,:] def obs_alpha(obs='A'): """Stimuli for phase 2 learning, all lower and uppercase letters (52 stimuli)""" # return the row of activity from the selected stimdict index as the observation return stimdict[obs]
37.838095
100
0.683614
f2661fcc769c20d3c2e052ada4cb40f950039d1a
675
py
Python
tallerestructurasselectivas/14.py
juandab07/Algoritmos-y-programacion
f3c10f5c4620b15432ecfe2b9f5831437a49ace9
[ "MIT" ]
null
null
null
tallerestructurasselectivas/14.py
juandab07/Algoritmos-y-programacion
f3c10f5c4620b15432ecfe2b9f5831437a49ace9
[ "MIT" ]
null
null
null
tallerestructurasselectivas/14.py
juandab07/Algoritmos-y-programacion
f3c10f5c4620b15432ecfe2b9f5831437a49ace9
[ "MIT" ]
null
null
null
print('ingrese el monto a pagar en aseo urbano') aseo=float(input()) print('ingrese el valor de lectura del mes anterior') ant=float(input()) print('ingrese el valor de lectura del mes actual') act=float(input()) cons=act-ant if 0<cons<=100: pago=cons*4600 print('debera pagar $',pago,'en luz electrica y',aseo,'en aseo urbano') if 101<cons<=300: pago=cons*80000 print('debera pagar $',pago,'en luz electrica y',aseo,'en aseo urbano') if 301<cons<=500: pago=cons*100000 print('debera pagar $',pago,'en luz electrica y',aseo,'en aseo urbano') if cons>500: pago=cons*120000 print('debera pagar $',pago,'en luz electrica y',aseo,'en aseo urbano')
35.526316
75
0.694815
f2684fd08fdc8ebf74875458af9886f1554c5e7c
1,040
py
Python
meilisearch/tests/test_synonyms_meilisearch.py
jtmiclat/meilisearch-python
b6a48a62bb64ae58181550a0ddc793dcdc0a2b06
[ "MIT" ]
null
null
null
meilisearch/tests/test_synonyms_meilisearch.py
jtmiclat/meilisearch-python
b6a48a62bb64ae58181550a0ddc793dcdc0a2b06
[ "MIT" ]
null
null
null
meilisearch/tests/test_synonyms_meilisearch.py
jtmiclat/meilisearch-python
b6a48a62bb64ae58181550a0ddc793dcdc0a2b06
[ "MIT" ]
null
null
null
import time import meilisearch from meilisearch.tests import BASE_URL, MASTER_KEY
28.888889
64
0.674038
f2689ab69abc970864477a6211da1d0af11f1927
168
py
Python
main.py
dansoliveira/pasc-compiler
642f2745395dcc5b4ebbdd1fa83169362f863e61
[ "MIT" ]
null
null
null
main.py
dansoliveira/pasc-compiler
642f2745395dcc5b4ebbdd1fa83169362f863e61
[ "MIT" ]
1
2018-05-10T13:03:04.000Z
2018-05-10T13:03:04.000Z
main.py
dansoliveira/pasc-compiler
642f2745395dcc5b4ebbdd1fa83169362f863e61
[ "MIT" ]
null
null
null
from lexer import Lexer from parser import Parser if __name__ == "__main__": lexer = Lexer("exemplos/teste2.pasc") parser = Parser(lexer) parser.executa()
21
41
0.702381
f26a6e2aee87a0b97e130dc33aaab4654d6c6049
69
py
Python
microdevices/connector/__init__.py
lmokto/microdevices
75a129d1c32f64afe9027338c4be304322ded857
[ "MIT" ]
null
null
null
microdevices/connector/__init__.py
lmokto/microdevices
75a129d1c32f64afe9027338c4be304322ded857
[ "MIT" ]
1
2021-06-02T00:01:14.000Z
2021-06-02T00:01:14.000Z
microdevices/connector/__init__.py
lmokto/microdevices
75a129d1c32f64afe9027338c4be304322ded857
[ "MIT" ]
null
null
null
from .mqtt import MQTTClient from .sql import * from .redis import *
17.25
28
0.753623
f26a8afeac7319e72d66512791f4976ac936a01f
1,275
py
Python
examples/1-marshmallow/server/resources/user/schema.py
FlyingBird95/openapi_generator
df4649b9723eb89fa370b02220356b7596794069
[ "MIT" ]
3
2022-01-10T12:43:36.000Z
2022-01-13T18:08:15.000Z
examples/1-marshmallow/server/resources/user/schema.py
FlyingBird95/openapi_generator
df4649b9723eb89fa370b02220356b7596794069
[ "MIT" ]
6
2022-02-06T19:00:05.000Z
2022-03-22T14:22:21.000Z
examples/1-marshmallow/server/resources/user/schema.py
FlyingBird95/openapi-builder
df4649b9723eb89fa370b02220356b7596794069
[ "MIT" ]
2
2021-12-17T17:26:06.000Z
2021-12-17T17:39:00.000Z
from marshmallow import Schema, fields
19.615385
71
0.620392
f26cee0b9842c7bd2fa3f00e76d7e1a08850c951
450
py
Python
coloredterm/__init__.py
hostedposted/coloredterm
72d07a0bd12eb797e4b2772dfe45aca5234d27b6
[ "MIT" ]
1
2021-02-12T01:21:44.000Z
2021-02-12T01:21:44.000Z
coloredterm/__init__.py
hostedposted/coloredterm
72d07a0bd12eb797e4b2772dfe45aca5234d27b6
[ "MIT" ]
4
2021-07-07T04:09:58.000Z
2022-02-03T04:05:30.000Z
coloredterm/__init__.py
hostedposted/coloredterm
72d07a0bd12eb797e4b2772dfe45aca5234d27b6
[ "MIT" ]
1
2021-02-20T22:58:31.000Z
2021-02-20T22:58:31.000Z
"""Collection of tools for changing the text of your terminal.""" from coloredterm.coloredterm import ( Back, bg, colored, colors, cprint, fg, Fore, names, pattern_input, pattern_print, rand, Style ) __version__ = "0.1.9" __all__ = [ 'Back', 'bg', 'colored', 'colors', 'cprint', 'fg', 'Fore', 'names', 'pattern_input', 'pattern_print', 'rand', 'Style' ]
14.516129
65
0.542222
f26e13939dbd7efae31817537aae9cd55a260550
1,706
py
Python
src/export_as_csv.py
mustilica/tt-history
1bb60cb81e97ef1abecf657cfa078798bb29cace
[ "MIT" ]
26
2015-02-12T20:33:01.000Z
2018-04-25T05:29:52.000Z
src/export_as_csv.py
mustilica/tt-history
1bb60cb81e97ef1abecf657cfa078798bb29cace
[ "MIT" ]
3
2019-11-27T18:19:23.000Z
2020-11-26T08:53:13.000Z
src/export_as_csv.py
mustilica/tt-history
1bb60cb81e97ef1abecf657cfa078798bb29cace
[ "MIT" ]
8
2015-01-11T00:12:40.000Z
2018-04-01T22:34:45.000Z
# Run from GAE remote API: # {GAE Path}\remote_api_shell.py -s {YourAPPName}.appspot.com # import export_as_csv import csv from google.appengine.ext import db from google.appengine.ext.db import GqlQuery # Query for items query = GqlQuery("SELECT * FROM Trend WHERE name = '#JeSuisCharlie'") exportToCsv(query, '/home/mustilica/remote.csv', ',')
28.433333
74
0.622509
f26f15c108eabe8ae9328cc4ea34ff13c08d0947
950
py
Python
main.py
AbhigyanRanjan0505/dvigyuoixfhybiocthgnkfi
db1b5198f1a0902aff21c74c58578dcb1feda39d
[ "MIT" ]
null
null
null
main.py
AbhigyanRanjan0505/dvigyuoixfhybiocthgnkfi
db1b5198f1a0902aff21c74c58578dcb1feda39d
[ "MIT" ]
null
null
null
main.py
AbhigyanRanjan0505/dvigyuoixfhybiocthgnkfi
db1b5198f1a0902aff21c74c58578dcb1feda39d
[ "MIT" ]
null
null
null
import plotly.figure_factory as figure_factory import statistics import random import pandas df = pandas.read_csv("data.csv") data = df["reading_time"].tolist() population_mean = statistics.mean(data) print("Population mean :", population_mean) setup()
22.093023
52
0.648421
f26f70f686db6ff49ef92baf12b70818b5613277
209
py
Python
ddtrace/contrib/sqlite3/connection.py
sharov/dd-trace-py
d0995b49cf7147ab463d0a67a38779fad3f539b4
[ "BSD-3-Clause" ]
1
2019-11-24T23:09:29.000Z
2019-11-24T23:09:29.000Z
ddtrace/contrib/sqlite3/connection.py
sharov/dd-trace-py
d0995b49cf7147ab463d0a67a38779fad3f539b4
[ "BSD-3-Clause" ]
null
null
null
ddtrace/contrib/sqlite3/connection.py
sharov/dd-trace-py
d0995b49cf7147ab463d0a67a38779fad3f539b4
[ "BSD-3-Clause" ]
2
2017-05-27T05:58:36.000Z
2019-02-07T13:38:53.000Z
from sqlite3 import Connection from ddtrace.util import deprecated
26.125
76
0.76555
f27341117d08bd618bf3ac5014feb6d7ff7d069e
801
py
Python
kafka_client_decorators/util/logging_helper.py
cdsedson/kafka-decorator
f2c958df88c5698148aae4c5314dd39e31e995c3
[ "MIT" ]
null
null
null
kafka_client_decorators/util/logging_helper.py
cdsedson/kafka-decorator
f2c958df88c5698148aae4c5314dd39e31e995c3
[ "MIT" ]
null
null
null
kafka_client_decorators/util/logging_helper.py
cdsedson/kafka-decorator
f2c958df88c5698148aae4c5314dd39e31e995c3
[ "MIT" ]
null
null
null
#!/usr/bin/python3 # -*- coding: utf-8 -*- """Define function used on logging.""" import logging __KAFKA_DECORATOR_DEBUG__ = None def set_debug_level(level): """Set the level of log. Set logging level for all loggers create by get_logger function Parameters ---------- level: log level define in logging module """ global __KAFKA_DECORATOR_DEBUG__ __KAFKA_DECORATOR_DEBUG__ = level def get_logger(name): """Create and return a logger. Parameters ---------- name: str Logger name Returns ------- logging.Logger A standard python logger """ logger = logging.getLogger(name) if __KAFKA_DECORATOR_DEBUG__ is not None: logger.setLevel(__KAFKA_DECORATOR_DEBUG__) return logger
19.536585
67
0.636704
f2738d7e2edb6f5a98849ea7773345dc1a404833
1,409
py
Python
hseling_lib_diachrony_webvectors/hseling_lib_diachrony_webvectors/strings_reader.py
wadimiusz/hseling-repo-diachrony-webvectors
5488d74141df360a6a721637ae7c7577136172d7
[ "MIT" ]
null
null
null
hseling_lib_diachrony_webvectors/hseling_lib_diachrony_webvectors/strings_reader.py
wadimiusz/hseling-repo-diachrony-webvectors
5488d74141df360a6a721637ae7c7577136172d7
[ "MIT" ]
null
null
null
hseling_lib_diachrony_webvectors/hseling_lib_diachrony_webvectors/strings_reader.py
wadimiusz/hseling-repo-diachrony-webvectors
5488d74141df360a6a721637ae7c7577136172d7
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding:utf8 """ this module reads strings.csv, which contains all the strings, and lets the main app use it """ import sys import csv import os from flask import Markup import configparser config = configparser.RawConfigParser() path = '../hseling_api_diachrony_webvectors/hseling_api_diachrony_webvectors/webvectors.cfg' assert os.path.isfile(path), "Current path: {}".format(os.getcwd()) config.read(path) root = config.get('Files and directories', 'root') l10nfile = config.get('Files and directories', 'l10n') # open the strings database: csvfile = open("../hseling_lib_diachrony_webvectors/hseling_lib_diachrony_webvectors/" + l10nfile, 'rU') acrobat = csv.reader(csvfile, dialect='excel', delimiter=',') # initialize a dictionary for each language: language_dicts = {} langnames = config.get('Languages', 'interface_languages').split(',') header = next(acrobat) included_columns = [] for langname in langnames: language_dicts[langname] = {} included_columns.append(header.index(langname)) # read the csvfile, populate language_dicts: for row in acrobat: for i in included_columns: # range(1, len(row)): # Markup() is used to prevent autoescaping in templates if sys.version_info[0] < 3: language_dicts[header[i]][row[0]] = Markup(row[i].decode('utf-8')) else: language_dicts[header[i]][row[0]] = Markup(row[i])
32.022727
104
0.721079
f274273a939d4c8377fbaeb7efafd00e9604432e
1,077
py
Python
day 5&6/linked list.py
yogeshkhola/100daysofDSA
93f0d30d718795e4e3eb5d8e677b87baebd0df7c
[ "MIT" ]
3
2021-03-01T17:04:33.000Z
2021-03-01T17:44:23.000Z
day 5&6/linked list.py
yogeshkhola/100daysofDSA
93f0d30d718795e4e3eb5d8e677b87baebd0df7c
[ "MIT" ]
null
null
null
day 5&6/linked list.py
yogeshkhola/100daysofDSA
93f0d30d718795e4e3eb5d8e677b87baebd0df7c
[ "MIT" ]
null
null
null
mylist=LinkedList() mylist.insertLast(10) mylist.insertLast(20) mylist.insertLast(17) mylist.insertLast(18) mylist.insertLast(60) mylist.viewList() print() mylist.deleteFirst() mylist.viewList()
21.54
58
0.571959
f2765c1d1962f66a204431e4dc547e6e1d4a52be
40,603
py
Python
detex/getdata.py
d-chambers/Detex
46602eb8e05e080a23111c8f2716065a016613c2
[ "BSD-3-Clause" ]
39
2015-08-15T20:10:14.000Z
2022-03-17T00:41:57.000Z
detex/getdata.py
d-chambers/Detex
46602eb8e05e080a23111c8f2716065a016613c2
[ "BSD-3-Clause" ]
39
2015-09-28T23:50:59.000Z
2019-07-16T20:38:31.000Z
detex/getdata.py
d-chambers/Detex
46602eb8e05e080a23111c8f2716065a016613c2
[ "BSD-3-Clause" ]
8
2015-10-08T20:43:40.000Z
2020-08-05T22:47:45.000Z
# -*- coding: utf-8 -*- """ Created on Thu Nov 10 20:21:46 2015 @author: derrick """ from __future__ import print_function, absolute_import, unicode_literals, division import glob import itertools import json import os import random import numpy as np import obspy import pandas as pd from six import string_types import detex # client imports import obspy.clients.fdsn import obspy.clients.neic import obspy.clients.earthworm conDirDefault = 'ContinuousWaveForms' eveDirDefault = 'EventWaveForms' # extension key to map obspy output type to extension. Add more here formatKey = {'mseed': 'msd', 'pickle': 'pkl', 'sac': 'sac', 'Q': 'Q'} def read(path): """ function to read a file from a path. If IOError or TypeError simply try appending os.set to start """ try: st = obspy.read(path) except (IOError, TypeError): try: st = obspy.read(os.path.join(os.path.sep, path)) except (IOError, TypeError): msg = 'Cannot read %s, the file may be corrupt, skipping it' % path detex.log(__name__, msg, level='warn', pri=True) return None return st def quickFetch(fetch_arg, **kwargs): """ Instantiate a DataFetcher using as little information as possible. Parameters ---------- fetch_arg : str or DataFetcher instance fetch_arg can be one of three things: 1. An instance of DataFetcher 2. A valid DataFetcher Method other than dir 3. A path to a directory containing waveform data fetch_arg is checked in that order, so if you are trying to use a data directory make sure it does not share names with a valid DataFetcher method kwargs are passed to the DataFetcher class, see DataFetcher docs for details Returns ------- An instance of DataFetcher Notes -------- For client methods (eg 'uuss', 'iris') remove response is assumed True with the default prelim. filter. If you don't want this make a custom instance of DataFetcher. """ if isinstance(fetch_arg, DataFetcher): dat_fet = fetch_arg elif isinstance(fetch_arg, string_types): if fetch_arg in DataFetcher.supMethods: if fetch_arg == 'dir': msg = 'If using method dir you must pass a path to directory' detex.log(__name__, msg, level='error') dat_fet = DataFetcher(fetch_arg, removeResponse=True, **kwargs) else: if not os.path.exists(fetch_arg): msg = 'Directory %s does not exist' % fetch_arg detex.log(__name__, msg, level='error') dat_fet = DataFetcher('dir', directoryName=fetch_arg, **kwargs) else: msg = 'Input not understood, read docs and try again' detex.log(__name__, msg, level='error') return dat_fet def makeDataDirectories(templateKey='TemplateKey.csv', stationKey='StationKey.csv', fetch='IRIS', formatOut='mseed', templateDir=eveDirDefault, timeBeforeOrigin=1 * 60, timeAfterOrigin=4 * 60, conDir=conDirDefault, secBuf=120, conDatDuration=3600, multiPro=False, getContinuous=True, getTemplates=True, removeResponse=True, opType='VEL', prefilt=[.05, .1, 15, 20]): """ Function designed to fetch data needed for detex and store them in local directories. StationKey.csv and TemplateKey.csv indicate which events to download and for which stations. Organizes ContinuousWaveForms and EventWaveForms directories. Parameters ------------ template_key : str or pd DataFrame The path to the TemplateKey csv station_key : str or pd DataFrame The path to the station key fetch : str or FetchData instance String for method argument of FetchData class or FetchData instance formatOut : str Seismic data file format, most obspy formats acceptable, options are: 'mseed','sac','GSE2','sacxy','q','sh_asc',' slist', 'tspair','segy', 'su', 'pickle', 'h5' (h5 only if obspyh5 module installed) tempalateDir : str The name of the template directory. Using the default is recommended else the templateDir parameter will have to be set in calling most other detex functions timeBeforeOrigin: real number The time in seconds before the reported origin of each template that is downloaded. timeAfterOrigin : real number(int, float, etc.) The time in seconds to download after the origin time of each template. conDir : str The name of the continuous waveform directory. Using the default is recommended secBuf : real number (int, float, etc.) The number of seconds to download after each hour of continuous data. This might be non-zero in order to capture some detections that would normally be overlooked if data did not overlap somewhat. conDatDuration : real number (int, float, etc.) The duration of the continuous data to download in seconds. multiPro : bool If True fork several processes to get data at once, potentially much faster but a bit inconsiderate on the server hosting the data getContinuous : bool If True fetch continuous data with station and date ranges listed in the station key getTemplates : bool If True get template data with stations listed in the station key and events listed in the template key removeResponse : bool If true remove instrument response opType : str Output type after removing instrument response. Choices are: "DISP" (m), "VEL" (m/s), or "ACC" (m/s**2) prefilt : list 4 real numbers Pre-filter parameters for removing instrument response, response is flat from corners 2 to 3. """ temkey = detex.util.readKey(templateKey, 'template') stakey = detex.util.readKey(stationKey, 'station') # Check output type if formatOut not in formatKey.keys(): msg = ('%s is not an acceptable format, choices are %s' % (formatOut, formatKey.keys())) detex.log(__name__, msg, level='error') # Configure data fetcher if isinstance(fetch, detex.getdata.DataFetcher): fetcher = fetch # Make sure DataFetcher is on same page as function inputs fetcher.opType = opType fetcher.removeResponse = removeResponse fetcher.prefilt = prefilt else: fetcher = detex.getdata.DataFetcher(fetch, removeResponse=removeResponse, opType=opType, prefilt=prefilt) ## Get templates if getTemplates: msg = 'Getting template waveforms' detex.log(__name__, msg, level='info', pri=True) _getTemData(temkey, stakey, templateDir, formatOut, fetcher, timeBeforeOrigin, timeAfterOrigin) ## Get continuous data if getContinuous: msg = 'Getting continuous data' detex.log(__name__, msg, level='info', pri=True) _getConData(fetcher, stakey, conDir, secBuf, opType, formatOut, duration=conDatDuration) ## Log finish msg = "finished makeDataDirectories call" detex.log(__name__, msg, level='info', close=True, pri=True) def _loadDirectoryData(fet, start, end, net, sta, chan, loc): """ Function to load continuous data from the detex directory structure """ # get times with slight buffer t1 = obspy.UTCDateTime(start).timestamp t2 = obspy.UTCDateTime(end).timestamp buf = 3 * fet.conDatDuration dfind = _loadIndexDb(fet.directoryName, net + '.' + sta, t1 - buf, t2 + buf) if dfind is None: t1p = obspy.UTCDateTime(t1) t2p = obspy.UTCDateTime(t2) msg = 'data from %s to %s on %s not found in %s' % (t1p, t2p, sta, fet.directoryName) detex.log(__name__, msg, level='warning', pri=False) return None # define conditions in which condata should not be loaded # con1 and con2 - No overlap (other than 10%) tra = t2 - t1 # time range con1 = ((dfind.Starttime <= t1) & (dfind.Endtime - tra * .1 < t1) & (dfind.Starttime < t2) & (dfind.Endtime < t2)) con2 = ((dfind.Starttime > t1) & (dfind.Endtime > t1) & (dfind.Starttime + tra * .1 > t2) & (dfind.Endtime >= t2)) df = dfind[~(con1 | con2)] if len(df) < 1: t1p = obspy.UTCDateTime(t1) t2p = obspy.UTCDateTime(t2) msg = 'data from %s to %s on %s not found in %s' % (t1p, t2p, sta, fet.directoryName) detex.log(__name__, msg, level='warning', pri=False) return None st = obspy.core.Stream() if len(df.Path) < 1: # if no event fits description return None for path, fname in zip(df.Path, df.FileName): fil = os.path.join(path, fname) st1 = read(fil) if not st1 is None: st += st1 # st.trim(starttime=start, endtime=end) # check if chan variable is string else iterate if isinstance(chan, string_types): stout = st.select(channel=chan) else: stout = obspy.core.Stream() for cha in chan: stout += st.select(channel=cha) loc = '*' if loc in ['???', '??'] else loc # convert ? to * stout = stout.select(location=loc) return stout def _assignClientFunction(client): """ function to take an obspy client FDSN, NEIC, EW, etc. return the correct loadFromClient function for getting data. """ if isinstance(client, obspy.clients.fdsn.Client): return _loadFromFDSN elif isinstance(client, obspy.clients.neic.Client): return _loadFromNEIC elif isinstance(client, obspy.clients.earthworm.Client): return _loadFromEarthworm else: msg = 'Client type not supported' detex.log(__name__, msg, level='error', e=TypeError) ## load from client functions, this is needed because the APIs are not the same def _loadFromNEIC(fet, start, end, net, sta, chan, loc): """ Use obspy.neic.Client to fetch waveforms """ client = fet.client # str reps of utc objects for error messages startstr = str(start) endstr = str(end) st = obspy.Stream() for cha in chan: try: # try neic client st += client.get_waveforms(net, sta, loc, cha, start, end) except: msg = ('Could not fetch data on %s from %s to %s' % (net + '.' + sta, startstr, endstr)) detex.log(__name__, msg, level='warning', pri=False) st = None return st def _loadFromFDSN(fet, start, end, net, sta, chan, loc): """ Use obspy.clients.fdsn.Client to fetch waveforms """ client = fet.client # str reps of utc objects for error messages startstr = str(start) endstr = str(end) # convert channels to correct format (list seperated by ,) if not isinstance(chan, string_types): chan = ','.join(chan) else: if '-' in chan: chan = ','.join(chan.split('-')) # try to get waveforms, else return None try: st = client.get_waveforms(net, sta, loc, chan, start, end, attach_response=fet.removeResponse) except: msg = ('Could not fetch data on %s from %s to %s' % (net + '.' + sta, startstr, endstr)) detex.log(__name__, msg, level='warning', pri=False) st = None return st ########## MISC functions ############# def _attachResponse(fet, st, start, end, net, sta, loc, chan): """ Function to attach response from inventory or client """ if not fet.removeResponse or fet.inventory is None: return st if isinstance(fet.inventory, obspy.core.inventory.Inventory): st.attach_response(fet.inventory) else: inv = obspy.core.inventory.Inventory([], 'detex') for cha in chan: inv += fet.inventory.get_stations(starttime=start, endtime=end, network=net, station=sta, loc=loc, channel=cha, level="response") st.attach_response(inv) return st def _getInventory(invArg): """ Take a string, Obspy client, or inventory object and return inventory object used to attach responses to stream objects for response removal """ if isinstance(invArg, string_types): if invArg.lower() == 'iris': invArg = obspy.clients.fdsn.Client('IRIS') elif not os.path.exists(invArg): msg = ('if inventoryArg is str then it must be a client name, ie ' 'IRIS, or a path to a station xml') detex.log(__name__, msg, level='error') else: return obspy.read_inventory(invArg) elif isinstance(invArg, obspy.station.inventory.Inventory): return invArg elif isinstance(invArg, obspy.clients.fdsn.Client): return invArg elif invArg is None: return None def _hasResponse(st): """ Test if all channels have responses of a stream, return bool """ return all([hasattr(tr.stats, 'response') for tr in st]) def _makePathFile(conDir, netsta, utc): """ Make the expected filename to see if continuous data chunk exists """ utc = obspy.UTCDateTime(utc) year = '%04d' % utc.year jd = '%03d' % utc.julday hr = '%02d' % utc.hour mi = '%02d' % utc.minute se = '%02d' % utc.second path = os.path.join(conDir, netsta, year, jd) fname = netsta + '.' + year + '-' + jd + 'T' + '-'.join([hr, mi, se]) return path, fname ###### Index directory functions ########## def indexDirectory(dirPath): """ Create an index (.index.db) for a directory with stored waveform files which also contains quality info of each file Parameters __________ dirPath : str The path to the directory containing waveform data (any structure) """ columns = ['Path', 'FileName', 'Starttime', 'Endtime', 'Gaps', 'Nc', 'Nt', 'Duration', 'Station'] df = pd.DataFrame(columns=columns) # DataFrame for indexing msg = 'indexing, or updating index for %s' % dirPath detex.log(__name__, msg, level='info', pri=True) # Create a list of possible path permutations to save space in database pathList = [] # A list of lists with different path permutations for dirpath, dirname, filenames in os.walk(dirPath): dirList = os.path.abspath(dirpath).split(os.path.sep) # Expand pathList if needed while len(dirList) > len(pathList): pathList.append([]) # loop and put info in pathList that isnt already there for ind, value in enumerate(dirList): if not isinstance(value, list): value = [[value]] for val in value: for va in val: if va not in pathList[ind]: pathList[ind].append(va) # Loop over file names perform quality checks for fname in filenames: if fname[0] == '.': continue fpath = os.path.join(*dirList) fullpath = os.path.join(fpath, fname) qualDict = _checkQuality(fullpath) if qualDict is None: # If file is not obspy readable msg = 'obspy failed to read %s , skipping' % fullpath detex.log(__name__, msg, level='warning', pri=True) continue # skip to next file pathInts = [pathList[num].index(x) for num, x in enumerate(dirList)] df.loc[len(df), 'Path'] = json.dumps(pathInts) for key, value in qualDict.iteritems(): df.loc[len(df) - 1, key] = value df.loc[len(df) - 1, 'FileName'] = fname # Create path index key if len(pathList) < 1: msg = 'No obspy readable files found in %s' % dirPath detex.log(__name__, msg, level='error') dfInd = _createIndexDF(pathList) detex.util.saveSQLite(df, os.path.join(dirPath, '.index.db'), 'ind') detex.util.saveSQLite(dfInd, os.path.join(dirPath, '.index.db'), 'indkey') def _checkQuality(stPath): """ load a path to an obspy trace and check quality """ st = read(stPath) if st is None: return None lengthStream = len(st) gaps = st.get_gaps() gapsum = np.sum([x[-2] for x in gaps]) starttime = min([x.stats.starttime.timestamp for x in st]) endtime = max([x.stats.endtime.timestamp for x in st]) duration = endtime - starttime nc = len(list(set([x.stats.channel for x in st]))) netsta = st[0].stats.network + '.' + st[0].stats.station outDict = {'Gaps': gapsum, 'Starttime': starttime, 'Endtime': endtime, 'Duration': duration, 'Nc': nc, 'Nt': lengthStream, 'Station': netsta} return outDict getAllData = makeDataDirectories
38.929051
102
0.582174
f2766a9a2df58d6c9fe0fc41dab441157d2a7a7d
4,850
py
Python
HouseHunter/core.py
JGBMichalski/House-Hunter
7ad1e866907545b8e2302c1a775cadbd8f807ad9
[ "MIT" ]
null
null
null
HouseHunter/core.py
JGBMichalski/House-Hunter
7ad1e866907545b8e2302c1a775cadbd8f807ad9
[ "MIT" ]
null
null
null
HouseHunter/core.py
JGBMichalski/House-Hunter
7ad1e866907545b8e2302c1a775cadbd8f807ad9
[ "MIT" ]
null
null
null
from tarfile import SUPPORTED_TYPES import requests import re from bs4 import BeautifulSoup import json import HouseHunter.globals as Globals from HouseHunter.ad import * from pathlib import Path
34.15493
142
0.583711
f27a87d9305d94ef4ecc93fe8c501738b9c6465e
582
py
Python
recipes/Python/474122_neat/recipe-474122.py
tdiprima/code
61a74f5f93da087d27c70b2efe779ac6bd2a3b4f
[ "MIT" ]
2,023
2017-07-29T09:34:46.000Z
2022-03-24T08:00:45.000Z
recipes/Python/474122_neat/recipe-474122.py
unhacker/code
73b09edc1b9850c557a79296655f140ce5e853db
[ "MIT" ]
32
2017-09-02T17:20:08.000Z
2022-02-11T17:49:37.000Z
recipes/Python/474122_neat/recipe-474122.py
unhacker/code
73b09edc1b9850c557a79296655f140ce5e853db
[ "MIT" ]
780
2017-07-28T19:23:28.000Z
2022-03-25T20:39:41.000Z
# nice and clean closure notation # traditional, not_so_neat closure notation #### EXAMPLE ########################################################### cnt_a = get_counter_neat() cnt_b = get_counter_neat() print cnt_a() # >>> 1 print cnt_a() # >>> 2 print cnt_a() # >>> 3 print cnt_b() # >>> 1 print cnt_a() # >>> 4 print cnt_b() # >>> 2 print cnt_b() # >>> 3
20.068966
72
0.487973
f27acd0b94f784d85a24a1358e2c015c3198e304
4,138
py
Python
keras_med_io/utils/intensity_io.py
jchen42703/keras_med_io
2113de64a448c90b66993d6ed4fdbba7971f3417
[ "MIT" ]
null
null
null
keras_med_io/utils/intensity_io.py
jchen42703/keras_med_io
2113de64a448c90b66993d6ed4fdbba7971f3417
[ "MIT" ]
6
2019-03-24T02:39:43.000Z
2019-04-10T01:15:14.000Z
keras_med_io/utils/intensity_io.py
jchen42703/keras_med_io
2113de64a448c90b66993d6ed4fdbba7971f3417
[ "MIT" ]
null
null
null
# coding: utf-8 # funcions for quick testing import numpy as np # helper functions def normalization(arr, normalize_mode, norm_range = [0,1]): """ Helper function: Normalizes the image based on the specified mode and range Args: arr: numpy array normalize_mode: either "whiten", "normalize_clip", or "normalize" representing the type of normalization to use norm_range: (Optional) Specifies the range for the numpy array values Returns: A normalized array based on the specifications """ # reiniating the batch_size dimension if normalize_mode == "whiten": return whiten(arr) elif normalize_mode == "normalize_clip": return normalize_clip(arr, norm_range = norm_range) elif normalize_mode == "normalize": return minmax_normalize(arr, norm_range = norm_range) else: return NotImplementedError("Please use the supported modes.") def normalize_clip(arr, norm_range = [0,1]): """ Args: arr: numpy array norm_range: list of 2 integers specifying normalizing range based on https://stats.stackexchange.com/questions/178626/how-to-normalize-data-between-1-and-1 Returns: Whitened and normalized array with outliers clipped in the specified range """ # whitens -> clips -> scales to [0,1] # whiten norm_img = np.clip(whiten(arr), -5, 5) norm_img = minmax_normalize(arr, norm_range) return norm_img def whiten(arr): """ Mean-Var Normalization (Z-score norm) * mean of 0 and standard deviation of 1 Args: arr: numpy array Returns: A numpy array with a mean of 0 and a standard deviation of 1 """ shape = arr.shape arr = arr.flatten() norm_img = (arr-np.mean(arr)) / np.std(arr) return norm_img.reshape(shape) def minmax_normalize(arr, norm_range = [0,1]): """ Args: arr: numpy array norm_range: list of 2 integers specifying normalizing range based on https://stats.stackexchange.com/questions/178626/how-to-normalize-data-between-1-and-1 Returns: Normalized array with outliers clipped in the specified range """ norm_img = ((norm_range[1]-norm_range[0]) * (arr - np.amin(arr)) / (np.amax(arr) - np.amin(arr))) + norm_range[0] return norm_img def clip_upper_lower_percentile(image, mask=None, percentile_lower=0.2, percentile_upper=99.8): """ Clipping values for positive class areas. Args: image: mask: percentile_lower: percentile_upper: Return: Image with clipped pixel intensities """ # Copyright 2017 Division of Medical Image Computing, German Cancer Research Center (DKFZ) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =================================================================================================== # Changes: Added the ability to have the function clip at only the necessary percentiles with no mask and removed the # automatic generation of a mask # finding the percentile values cut_off_lower = np.percentile(image[mask != 0].ravel(), percentile_lower) cut_off_upper = np.percentile(image[mask != 0].ravel(), percentile_upper) # clipping based on percentiles res = np.copy(image) if mask is not None: res[(res < cut_off_lower) & (mask !=0)] = cut_off_lower res[(res > cut_off_upper) & (mask !=0)] = cut_off_upper elif mask is None: res[(res < cut_off_lower)] = cut_off_lower res[(res > cut_off_upper)] = cut_off_upper return res
39.037736
121
0.656597
f27ae5b52fc981bd0a9765592021614aae946fe5
130
py
Python
day00/ex05/kata02.py
bcarlier75/python_bootcamp_42ai
916c258596f90a222f20329894048addb6f64dd9
[ "MIT" ]
1
2020-04-17T18:47:46.000Z
2020-04-17T18:47:46.000Z
day00/ex05/kata02.py
bcarlier75/python_bootcamp_42ai
916c258596f90a222f20329894048addb6f64dd9
[ "MIT" ]
null
null
null
day00/ex05/kata02.py
bcarlier75/python_bootcamp_42ai
916c258596f90a222f20329894048addb6f64dd9
[ "MIT" ]
null
null
null
import datetime t = (3, 30, 2019, 9, 25) x = datetime.datetime(t[2], t[3], t[4], t[0], t[1]) print(x.strftime("%m/%d/%Y %H:%M"))
21.666667
51
0.546154
f27c23356c06fcdc25ca581c0cf5398df4251dbf
8,654
py
Python
source/notebooks/sagemaker_predictive_maintenance/autoencoder_entry_point/autoencoder_entry_point.py
brightsparc/predictive-maintenance-using-machine-learning
fae69698750185bb58a3fa67ff8887f435f46458
[ "Apache-2.0" ]
null
null
null
source/notebooks/sagemaker_predictive_maintenance/autoencoder_entry_point/autoencoder_entry_point.py
brightsparc/predictive-maintenance-using-machine-learning
fae69698750185bb58a3fa67ff8887f435f46458
[ "Apache-2.0" ]
null
null
null
source/notebooks/sagemaker_predictive_maintenance/autoencoder_entry_point/autoencoder_entry_point.py
brightsparc/predictive-maintenance-using-machine-learning
fae69698750185bb58a3fa67ff8887f435f46458
[ "Apache-2.0" ]
null
null
null
# Autoencoder based on: https://towardsdatascience.com/predictive-maintenance-of-turbofan-engine-64911e39c367 import argparse import pandas as pd import numpy as np import itertools import logging import random import os from scipy.spatial.distance import pdist, squareform from sklearn.metrics import confusion_matrix, classification_report from sklearn.preprocessing import MinMaxScaler, StandardScaler import tensorflow as tf from tensorflow.keras.models import * from tensorflow.keras.layers import * from tensorflow.keras.optimizers import * from tensorflow.keras.utils import * from tensorflow.keras.callbacks import * if __name__ == '__main__': logging = get_logger(__name__) logging.info('numpy version:{} Tensorflow version::{}'.format(np.__version__, tf.__version__)) args = parse_args() # Read the first dataset train_df = read_train_data(args.training_dir, args.num_datasets)[0] test_df = read_test_data(args.training_dir, args.num_datasets)[0] # Get the training dataset as an image x_train_img, y_train, x_test_img, y_test = get_dataset(train_df, test_df, args.sequence_length) model = fit_model(x_train_img, y_train, batch_size=args.batch_size, epochs=args.epochs, validation_split=args.validation_split, patience=args.patience) logging.info('saving model to: {}...'.format(args.model_dir)) model.save(os.path.join(args.sm_model_dir, '000000001'))
39.336364
159
0.686388
f27c2659a6f08c68bf5a68b6f0434f1302972e63
437
py
Python
util/dump_cmudict_json.py
raygard/readability-rg
3e0820ee5def6ffccfdc1114e511bdf137ff9b04
[ "MIT" ]
null
null
null
util/dump_cmudict_json.py
raygard/readability-rg
3e0820ee5def6ffccfdc1114e511bdf137ff9b04
[ "MIT" ]
null
null
null
util/dump_cmudict_json.py
raygard/readability-rg
3e0820ee5def6ffccfdc1114e511bdf137ff9b04
[ "MIT" ]
null
null
null
#! /usr/bin/env python # vim: set fileencoding=utf-8 import sys import json main()
19.863636
62
0.533181
f27e08d8b8e21a50f9f19aef584ea000ba47242e
6,070
py
Python
app/loader.py
DFilyushin/librusec
fd6d7a99037aac4c1112f648397830284f4165f9
[ "Apache-2.0" ]
2
2017-12-14T11:50:16.000Z
2021-12-27T13:42:16.000Z
app/loader.py
DFilyushin/librusec
fd6d7a99037aac4c1112f648397830284f4165f9
[ "Apache-2.0" ]
null
null
null
app/loader.py
DFilyushin/librusec
fd6d7a99037aac4c1112f648397830284f4165f9
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import os import datetime import time import MySQLdb as mdb LIB_INDEXES = 'D:\\TEMP\\librusec' MYSQL_HOST = '127.0.0.1' MYSQL_BASE = 'books100' MYSQL_LOGIN = 'root' MYSQL_PASSW = 'qwerty' SQL_CHECK_BASE = "SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA WHERE SCHEMA_NAME = '%s'" SQL_CREATE_BASE = "CREATE DATABASE `%s` DEFAULT CHARACTER SET utf8 COLLATE utf8_unicode_ci;" SQL_USE_BASE = 'USE `%s`;' def create_schema(filename): """ Create database schema from sql-file :param filename: Input schema sql-file for MySql :return: """ start = time.time() f = open(filename, 'r') sql = " ".join(f.readlines()) print "Start executing: " + filename + " at " + str(datetime.datetime.now().strftime("%Y-%m-%d %H:%M")) + "\n" + sql conn = mdb.connect(MYSQL_HOST, MYSQL_LOGIN, MYSQL_PASSW) cur = conn.cursor() sql_check = SQL_CHECK_BASE % MYSQL_BASE cur.execute(sql_check) if cur.rowcount == 0: cur.execute(SQL_CREATE_BASE % MYSQL_BASE) cur.execute(SQL_USE_BASE % MYSQL_BASE) cur.execute(sql) else: print "Database exist. Stop!" end = time.time() print "Time elapsed to run the query:" print str((end - start)*1000) + ' ms' def process_index_files(path_to_index): """ Processing all files in path LIB_INDEXES :param path_to_index: path to LIB_ARCHIVE :return: """ book_db = BookDatabase() index = 0 indexes = filter(lambda x: x.endswith('.inp'), os.listdir(path_to_index)) cnt_files = len(indexes) os.chdir(path_to_index) for index_file in indexes: index += 1 print 'Process file %s. File %d from %d' % (index_file, index, cnt_files) start_time = time.time() process_file(index_file, book_db) elapsed = (time.time() - start_time) print "Ok. Processing in {:10.4f} s.".format(elapsed) if __name__ == "__main__": main()
33.351648
134
0.594728
f27e5faf956aa7b884e2d5afa37ca81bb25dcb92
1,328
py
Python
src/EvalShift.py
nekonyanneko/GA
328f37c421a8bd4857a0804b130c23bd7b98de19
[ "MIT" ]
null
null
null
src/EvalShift.py
nekonyanneko/GA
328f37c421a8bd4857a0804b130c23bd7b98de19
[ "MIT" ]
null
null
null
src/EvalShift.py
nekonyanneko/GA
328f37c421a8bd4857a0804b130c23bd7b98de19
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import Shift as shi import Enum as enu def evalShift(individual): """ This method is grobal method. This method is evaluation. If you need new evaluation method, you must define it as follows. RETURN: evaluation values """ shift = shi.Shift(individual) # Get indiviaual of shift shift.employees = enu.EMPLOYEES # Get employees list # people_count_sub_sum = sum(shift.abs_people_between_need_and_actual()) / enu.EVA_1 # not_applicated_count = shift.not_applicated_assign() / enu.EVA_2 # few_work_user = len(shift.few_work_user()) / enu.EVA_3 # 1 no_manager_box = len(shift.no_manager_box()) / enu.EVA_4 # a,b three_box_per_day = len(shift.three_box_per_day()) / enu.EVA_5 # (get_work_day_num()) work_day = shift.get_work_day_num() return ( not_applicated_count, people_count_sub_sum, few_work_user, no_manager_box, three_box_per_day, work_day[0], work_day[1], work_day[2], work_day[3], work_day[4], work_day[5], work_day[6], work_day[7], work_day[8], work_day[9], work_day[10] )
24.145455
83
0.652108
f27e8907ba835e5562beea72db0b2659774edc40
46
py
Python
calandarevent/__init__.py
YHallouard/adventofcode_yann
c6afb43c2af0bce74c5dee9c31e6eda2caa081d4
[ "MIT" ]
null
null
null
calandarevent/__init__.py
YHallouard/adventofcode_yann
c6afb43c2af0bce74c5dee9c31e6eda2caa081d4
[ "MIT" ]
null
null
null
calandarevent/__init__.py
YHallouard/adventofcode_yann
c6afb43c2af0bce74c5dee9c31e6eda2caa081d4
[ "MIT" ]
null
null
null
from .version import __version__ __version__
11.5
32
0.847826
f27f8a655e82f556df2399b3f99f4848f377c47b
375
py
Python
app/models/word.py
shiniao/soul-api
1438281c2dce237d735f7309c2ddb606c8d01e1e
[ "Apache-2.0" ]
1
2021-02-27T09:05:40.000Z
2021-02-27T09:05:40.000Z
app/models/word.py
shiniao/soulapi
1438281c2dce237d735f7309c2ddb606c8d01e1e
[ "Apache-2.0" ]
null
null
null
app/models/word.py
shiniao/soulapi
1438281c2dce237d735f7309c2ddb606c8d01e1e
[ "Apache-2.0" ]
null
null
null
from sqlalchemy import Column, Integer, String from app.database import Base
26.785714
74
0.733333
f280236c60f310af1d18ad0b782faeb404b108be
912
py
Python
anomaly/Read_img.py
Jun-CEN/Open-World-Semantic-Segmentation
a95bac374e573055c23220e299789f34292988bc
[ "MIT" ]
19
2021-08-09T15:34:10.000Z
2022-03-14T09:20:58.000Z
anomaly/Read_img.py
Jun-CEN/Open-World-Semantic-Segmentation
a95bac374e573055c23220e299789f34292988bc
[ "MIT" ]
4
2021-11-08T07:10:35.000Z
2022-01-16T01:53:06.000Z
anomaly/Read_img.py
Jun-CEN/Open-World-Semantic-Segmentation
a95bac374e573055c23220e299789f34292988bc
[ "MIT" ]
4
2021-10-06T09:28:16.000Z
2022-01-14T08:26:54.000Z
from PIL import Image import matplotlib.pyplot as plt import numpy as np import bdlb import torch import json # path_img = './data/test_result/t5/' # path_img = './results_18_ce_noshuffle/2_' # # image = Image.open(path_img + '100.png') # plt.imshow(image) # plt.show() # # overlay = Image.open(path_img + 'overlay.png') # plt.imshow(overlay) # plt.show() # # pred = Image.open(path_img + 'pred.png') # plt.imshow(pred) # plt.show() # # target = Image.open(path_img + 'target.png') # plt.imshow(target) # plt.show() # # scores = Image.open(path_img + 'scores.png') # scores = np.array(scores) / 255 # plt.imshow(scores) # plt.show() # # dis_sum = np.load(path_img + 'dis_sum.npy') # plt.imshow(dis_sum) # plt.show() with open('logit_dict.json','r',encoding='utf8')as fp: json_data = json.load(fp) for i in range(13): print(len(json_data[i])) plt.figure() plt.hist(json_data[i]) plt.show()
20.727273
54
0.667763
f280852bfea33f9eda7c3cbe87f494f3dbe4c0a3
238
py
Python
Bot.py
pythonNoobas/Python228
7c266acad5bb5ae45df10ac3fdea209831399729
[ "MIT" ]
null
null
null
Bot.py
pythonNoobas/Python228
7c266acad5bb5ae45df10ac3fdea209831399729
[ "MIT" ]
null
null
null
Bot.py
pythonNoobas/Python228
7c266acad5bb5ae45df10ac3fdea209831399729
[ "MIT" ]
null
null
null
import telebot bot = telebot.TeleBot("879497357:AAHxUAZR2ZMy7q1dsC12NoFOmvBnKo9a3FA") bot.polling( none_stop = True )
23.8
70
0.794118
f2808bb95000137789190b399e2a920a24f1f97a
2,980
py
Python
generator/address.py
leg020/python-training
f595b8b836ff60c68bdff9d881ca50c026762457
[ "Apache-2.0" ]
null
null
null
generator/address.py
leg020/python-training
f595b8b836ff60c68bdff9d881ca50c026762457
[ "Apache-2.0" ]
null
null
null
generator/address.py
leg020/python-training
f595b8b836ff60c68bdff9d881ca50c026762457
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from model.address import Address import random import string import os.path import json import getopt import sys import jsonpickle try: opts, args = getopt.getopt(sys.argv[1:], 'n:f:', ['number of address', 'file']) except getopt.GetoptError as err: getopt.usage() sys.exit(2) n = 5 f = 'data/address.json' for o, a in opts: if o == '-n': n = int(a) elif o == '-f': f = a testdata = [Address(firstname="", middlename="", lastname="", nickname="", photo="", title="", company="", address_home="", home="", mobile="", work="", fax="", email="", email2="", email3="", homepage="", bday="", bmonth="-", byear="", aday="", amonth="-", ayear="", address2="", phone2="", notes="")] + \ [Address(firstname=random_string("firstname", 10), middlename=random_string('middlename', 10), lastname=random_string('lastname', 10), nickname=random_string('nickname', 10), photo="C:\\fakepath\\title.gif", title=random_string('title', 10), company=random_string('company', 10), address_home=random_string('address_home', 10), home=random_string('8', 10), mobile=random_string('8', 10), work=random_string('8', 10), fax=random_string('8', 10), email=random_string('8', 10), email2=random_string('8', 10), email3=random_string('8', 10), homepage=random_string('8', 10), bday=str(random.randrange(1, 32)), bmonth="September", byear=random_string('8', 10), aday=str(random.randrange(1, 32)), amonth="May", ayear=random_string('8', 10), address2=random_string('8', 10), phone2=random_string('8', 10), notes=random_string('8', 10)) for i in range(n)] file = os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', f) with open(file, 'w') as out: jsonpickle.set_encoder_options('json', indent=2) out.write(jsonpickle.encode(testdata))
33.483146
94
0.451342
f2813fd14566cad91048d44239959b70b5b53e25
192
py
Python
tests/__init__.py
sjspielman/hyphyhelper
0291cd72f0ba6ccb76e97feef97431f677dde730
[ "BSD-3-Clause" ]
16
2017-12-04T14:52:36.000Z
2021-07-21T15:15:25.000Z
tests/__init__.py
sjspielman/hyphyhelper
0291cd72f0ba6ccb76e97feef97431f677dde730
[ "BSD-3-Clause" ]
11
2018-01-16T16:06:13.000Z
2021-12-07T14:14:15.000Z
tests/__init__.py
sjspielman/hyphyhelper
0291cd72f0ba6ccb76e97feef97431f677dde730
[ "BSD-3-Clause" ]
10
2017-12-03T19:54:53.000Z
2021-07-21T15:15:30.000Z
"""``phyphy`` package for automating and parsing HyPhy (>=2.3.7) standard analyses. Written by Stephanie J. Spielman. Test modules ---------------- * phyphy_test """ from phyphy import *
14.769231
83
0.651042
f283d91585cbb97de4ca77780a488265da69f263
613
py
Python
scripts/test.py
darkmatter2222/Agar.AI
a757544581239a7b4c2b00bb7befa9b649d73f7f
[ "MIT" ]
1
2020-01-02T13:49:51.000Z
2020-01-02T13:49:51.000Z
scripts/test.py
darkmatter2222/Agar.AI
a757544581239a7b4c2b00bb7befa9b649d73f7f
[ "MIT" ]
null
null
null
scripts/test.py
darkmatter2222/Agar.AI
a757544581239a7b4c2b00bb7befa9b649d73f7f
[ "MIT" ]
1
2020-01-24T19:17:38.000Z
2020-01-24T19:17:38.000Z
import scripts.screen_interface as si import scripts.game_interface as gi import ctypes import os import keyboard import uuid GI = gi.GameInterface() # find center of screen user32 = ctypes.windll.user32 screenSize = user32.GetSystemMetrics(0), user32.GetSystemMetrics(1) centerPoint = tuple(i/2 for i in screenSize) print('Screen Size X:%d y:%d' % screenSize) print('Targeting Center X:%d y:%d' % centerPoint) GI = gi.GameInterface() SI = si.ScreenInterface() GI.center_x = centerPoint[0] GI.center_y = centerPoint[1] GI.range_classifications = 10 while True: angle = GI.get_mouse_class() print(angle)
25.541667
67
0.761827
f284677f3d515ed6519b9b9782d95ab9e355ded5
4,052
py
Python
Controller/control/WorkerControl.py
th-nuernberg/ml-cloud
6d7527cbf6cceb7062e74dbc43d51998381aa6c8
[ "MIT" ]
null
null
null
Controller/control/WorkerControl.py
th-nuernberg/ml-cloud
6d7527cbf6cceb7062e74dbc43d51998381aa6c8
[ "MIT" ]
7
2020-07-19T03:29:21.000Z
2022-03-02T06:46:12.000Z
Controller/control/WorkerControl.py
th-nuernberg/ml-cloud
6d7527cbf6cceb7062e74dbc43d51998381aa6c8
[ "MIT" ]
null
null
null
import json import queue from control.WorkerQueue import WorkerQueue as WQ from data.StorageIO import StorageIO ''' The WorkerControl coordinates workers and assigns jobs. Worker register themself at startup. The controller queues workers as well as jobs in two seperate queues. As soon as a worker and a job are available, they are taken from the queues and the job_id is send to the worker via MQTT. After the worker finishes its job, it will be put back into the queue '''
38.226415
112
0.607601
f28467f33870630c6d980108ee2deecf6e265916
986
py
Python
spammer/groupdmspam.py
00-00-00-11/Raid-Toolbox
4d24841de5ef112dc15b858f62607e0d6b5277cd
[ "0BSD" ]
null
null
null
spammer/groupdmspam.py
00-00-00-11/Raid-Toolbox
4d24841de5ef112dc15b858f62607e0d6b5277cd
[ "0BSD" ]
null
null
null
spammer/groupdmspam.py
00-00-00-11/Raid-Toolbox
4d24841de5ef112dc15b858f62607e0d6b5277cd
[ "0BSD" ]
1
2021-05-15T11:32:24.000Z
2021-05-15T11:32:24.000Z
import discord import sys import random import aiohttp import logging token = sys.argv[1] group = sys.argv[2] tokenno = sys.argv[3] msgtxt = sys.argv[4] useproxies = sys.argv[5] logging.basicConfig(filename='RTB.log', filemode='w', format='Token {}'.format(str(tokenno))+' - %(levelname)s - %(message)s',level=logging.CRITICAL) if useproxies == 'True': proxy_list = open("proxies.txt").read().splitlines() proxy = random.choice(proxy_list) con = aiohttp.ProxyConnector(proxy="http://"+proxy) client = discord.Client(connector=con) else: client = discord.Client() try: client.run(token, bot=False) except Exception as c: logging.critical('Token {} Unable to login: {}'.format(str(tokenno),str(c))) print (c)
28.171429
150
0.649087
f2854a477097d46506783a017f1b2352a0421334
570
py
Python
school/migrations/0018_listemplois.py
Belaid-RWW/PFAEspaceParent
8fd0000d4ee1427599bcb7da5aa301050469e7a8
[ "MIT" ]
null
null
null
school/migrations/0018_listemplois.py
Belaid-RWW/PFAEspaceParent
8fd0000d4ee1427599bcb7da5aa301050469e7a8
[ "MIT" ]
null
null
null
school/migrations/0018_listemplois.py
Belaid-RWW/PFAEspaceParent
8fd0000d4ee1427599bcb7da5aa301050469e7a8
[ "MIT" ]
null
null
null
# Generated by Django 3.1.7 on 2021-05-07 03:50 from django.db import migrations, models
25.909091
114
0.568421
f28613b99f347cb3a0fc049c18db1898247d805e
522
py
Python
t2t_bert/distributed_encoder/gpt_encoder.py
yyht/bert
480c909e0835a455606e829310ff949c9dd23549
[ "Apache-2.0" ]
34
2018-12-19T01:00:57.000Z
2021-03-26T09:36:37.000Z
t2t_bert/distributed_encoder/gpt_encoder.py
yyht/bert
480c909e0835a455606e829310ff949c9dd23549
[ "Apache-2.0" ]
11
2018-12-25T03:37:59.000Z
2021-08-25T14:43:58.000Z
t2t_bert/distributed_encoder/gpt_encoder.py
yyht/bert
480c909e0835a455606e829310ff949c9dd23549
[ "Apache-2.0" ]
9
2018-12-27T08:00:44.000Z
2020-06-08T03:05:14.000Z
from model.gpt import gpt import tensorflow as tf import numpy as np
20.88
48
0.695402
f28637ac36ec4e4cf9bd05dd4661f26ee82946dd
900
py
Python
ejercicios_resueltos/t04/t04ejer03.py
workready/pythonbasic
59bd82caf99244f5e711124e1f6f4dec8de22141
[ "MIT" ]
null
null
null
ejercicios_resueltos/t04/t04ejer03.py
workready/pythonbasic
59bd82caf99244f5e711124e1f6f4dec8de22141
[ "MIT" ]
null
null
null
ejercicios_resueltos/t04/t04ejer03.py
workready/pythonbasic
59bd82caf99244f5e711124e1f6f4dec8de22141
[ "MIT" ]
null
null
null
import os # Codigo de pruebas para gcat print("Fichero linea a linea") print("-----------------------------") for line in gcat([os.path.join(os.path.dirname(os.path.realpath(__file__)), 'quijote.txt')]): print(line) print("-----------------------------") print() print() # Codigo de pruebas para ggrep print("Lineas del fichero que contienen la palabra 'los'") print("-----------------------------") for l in list(ggrep("los", [os.path.join(os.path.dirname(os.path.realpath(__file__)), 'quijote.txt')])): print(l) print("-----------------------------")
25
104
0.537778
f286492200c20b0ffd878c540e355986ac87e759
265
py
Python
__init__.py
Lukas-Dresel/dice22_breach_binja
7b481b9209e56203b17d24f4a03e567765cf77d7
[ "MIT" ]
null
null
null
__init__.py
Lukas-Dresel/dice22_breach_binja
7b481b9209e56203b17d24f4a03e567765cf77d7
[ "MIT" ]
null
null
null
__init__.py
Lukas-Dresel/dice22_breach_binja
7b481b9209e56203b17d24f4a03e567765cf77d7
[ "MIT" ]
null
null
null
import binaryninja from .breach_arch import BreachArch BreachArch.register() from .breach_programview import BreachProgramView BreachProgramView.register() from .breach_calling_convention import BreachCallingConvention from .breach_platform import BreachPlatform
26.5
62
0.879245
f2864bce946124a8b9383d4c53008de00cff4e49
2,460
py
Python
swot_item_vote/views.py
imranariffin/liveswot-api
a2acc05fd2c51adc30e8e1785b857a94af81677d
[ "MIT" ]
null
null
null
swot_item_vote/views.py
imranariffin/liveswot-api
a2acc05fd2c51adc30e8e1785b857a94af81677d
[ "MIT" ]
25
2018-03-25T05:25:22.000Z
2021-06-10T19:51:12.000Z
swot_item_vote/views.py
imranariffin/liveswot-api
a2acc05fd2c51adc30e8e1785b857a94af81677d
[ "MIT" ]
2
2018-07-02T02:59:24.000Z
2018-08-21T02:58:21.000Z
from django.core.exceptions import ObjectDoesNotExist from django.db import IntegrityError from rest_framework.decorators import api_view from rest_framework import status from swot_item_vote.models import Vote from swot_item.models import SwotItem from .serializers import serialize, get_item_confidence from swot.models import Swot from core.decorators import authenticate from core.serializers import deserialize
21.964286
64
0.605285
f2895989ed18fa1ea8643af23dca6836bad3cec9
30,553
py
Python
car2dc-kiran/Scripts/StartTraffic.py
kirannCS/MasterThesis
a12771dc40efe77ae7d6e1631ed66c4b9992afd8
[ "Unlicense" ]
null
null
null
car2dc-kiran/Scripts/StartTraffic.py
kirannCS/MasterThesis
a12771dc40efe77ae7d6e1631ed66c4b9992afd8
[ "Unlicense" ]
null
null
null
car2dc-kiran/Scripts/StartTraffic.py
kirannCS/MasterThesis
a12771dc40efe77ae7d6e1631ed66c4b9992afd8
[ "Unlicense" ]
null
null
null
#!/usr/bin/env python3 ################################################################################# ################# Helper Module ################################################# ################# Provides abstraction to car sensors and PHY layer ############# ################################################################################# from __future__ import absolute_import from __future__ import print_function import os import sys sys.path.append('../src/packets/header/') # Import proto modules import CARRequestToMT_pb2 import MTGPSResponse_pb2 import MTSpeedResponse_pb2 import MsgFromNodeToUDM_pb2 import MessageForwardFromUDM_pb2 import BigData_pb2 import DistributeProcesses_pb2 # Import other libraries import optparse import subprocess import random import time import zmq import thread import json import xml.etree.ElementTree as ET import netifaces as ni import math import sys import linecache import datetime import threading import base64 from threading import Lock, Thread import time from xmlr import xmliter # Uncomment when required debugging # debugger proc """def traceit(frame, event, arg): if event == "line": lineno = frame.f_lineno filename = frame.f_globals["__file__"] if (filename.endswith(".pyc") or filename.endswith(".pyo")): filename = filename[:-1] name = frame.f_globals["__name__"] line = linecache.getline(filename, lineno) print(name, lineno, line.rstrip()) return traceit""" # Global Vaiables ParserIP = "" ParserPort = "" UDMPort = "" Keys = [] SumoFloatingDataPath = "" VehInfoHashMap = {} APInfoHashMap = {} StartPort = 12000 Incrementor = 0 AllAddrTable = {} CommRange = 0.0 LogInfoEnable = "" LogInfoFile = "" LogInfoStdOutput = "" LogDebugEnable = "" LogDebugFile = "" LogDebugStdOutput = "" LogStatsEnable = "" LogStatsFILE = "" LogStatsStdOutput = "" LogErrorEnable = "" LogErrorFILE = "" LogErrorStdOutput = "" LogFilePath = "" ExperimentNumber = "" RunInForeGround = "" RunInForeGroundList = "" LogFile = "" UDMPublisher = "NULL" UDMExitPublisher = "NULL" SystemsIP = [] SystemsIPSubscript = 0 DistributedSystemsPublisher = "" NOTFinished = True lock = Lock() # Converts string into list which has literals separated by commas and returns it # Starts a car process in different terminal, takes vid(Vehicle ID) and starting port number helps car to spawn in-car processes # incrementor determines the number of ports could be reserved for each car # Sends message to Command Receiver running on remote machine with ID=-1 indicating one experiment run is completed # Server waits for the client(car process) requests - for position and speed Request = CARRequestToMT_pb2.CARREQUESTTOMT() GPSResponse = MTGPSResponse_pb2.MTGPSRESPONSE() SpeedResponse = MTSpeedResponse_pb2.MTSPEEDRESPONSE() while NOTFinished: # Wait for next request from client vehInfoReq = socket.recv() Request.ParseFromString(vehInfoReq) # parse the request VehID = Request.VID ReqType = Request.REQ # Check what is the request type (for position or speed) accordingly build the json reply if ReqType == "POS": LogsDebug("A request for Position is arrived for Vehicle ID " + VehID) if VehID in VehInfoHashMap: LogsDebug("Vehicle ID " + VehID + " exists and a response with updated Position data will be sent") GPSResponse.INFO_EXISTS = 1 GPSResponse.X = float(json.loads(VehInfoHashMap[VehID])["X"]) GPSResponse.Y = float(json.loads(VehInfoHashMap[VehID])["Y"]) GPSResponse.DIR = float(json.loads(VehInfoHashMap[VehID])["DIR"]) GPSResponse.LANE = json.loads(VehInfoHashMap[VehID])["LANE"] else: LogsDebug("Vehicle ID " + VehID + " do not exist in the network and response is sent") GPSResponse.INFO_EXISTS = 0 DataToSend = GPSResponse.SerializeToString() elif ReqType == "SPE": LogsDebug("A request for Speed is arrived for Vehicle ID " + VehID) if VehID in VehInfoHashMap: LogsDebug("Vehicle ID " + VehID + " exists and a response with updated Speed data will be sent") SpeedResponse.INFO_EXISTS = 1 SpeedResponse.SPEED = float(json.loads(VehInfoHashMap[VehID])["SPE"]) else: LogsDebug("Vehicle ID " + VehID + " do not exist in the network") SpeedResponse.INFO_EXISTS = 0 DataToSend = SpeedResponse.SerializeToString() socket.send(DataToSend) # Updates the speed and position information in the hashmap Message = MsgFromNodeToUDM_pb2.MSGFROMNODETOUDM() # udm module: server awaits the message forward requests from its clients (car or ap) # Called when udm recieves INIT messages # Stores IP and Port details of the Cars # Based on the MTYPE(message type) calls different message forwarding modules # Forwards unicast messages # Forwards broadcast messages # Detects if both are in the communication range(Do not consider obstacles) VehiclesExitList = [] import random # When vehicle exists network this method sends exit message to the vehicle # Deletes the car data when the car no longer exists in the network # Subscriber always misses the first message. FirstMsg is used to send first message twice FirstMsg = True i = 0 _list = [] _dict = {} # First proc called in the main() # Parse config file to extract details of base stations and rsu's and store them in 'APInfoHashMap' # 'APInfoHashMap' stores id versus (ip, port and type(rsu or bs)) # Creates a socket used by UDM to publish messages # Creates a socket used by UDM to send exit or termination messages # Parse config file to read parser and udm related details # this is the main entry point of this script if __name__ == "__main__": print("here1") global LogString, SystemsIP #Uncomment when debugging is required #sys.settrace(traceit) ReadConfigfile() print(SystemsIP) run()
37.1691
239
0.700717
f28ae939117634bfbb4da17376ebc5f47320b58f
879
py
Python
quick_sort.py
MichaelLenghel/Sorting-Algorithms
b0aba03a7e5d95b4ca4038e8b53a9d544adeefb1
[ "MIT" ]
null
null
null
quick_sort.py
MichaelLenghel/Sorting-Algorithms
b0aba03a7e5d95b4ca4038e8b53a9d544adeefb1
[ "MIT" ]
null
null
null
quick_sort.py
MichaelLenghel/Sorting-Algorithms
b0aba03a7e5d95b4ca4038e8b53a9d544adeefb1
[ "MIT" ]
null
null
null
if __name__ == '__main__': li = [65, 72, 23, 36, 99, 20, 1, 44] # [8, 2, 5, 13, 4, 19, 12, 6, 3, 11, 10, 7, 9] print("Unsorted list: ", li) quick_sort(li, 0, len(li) - 1) print("Sorted list: ", li)
22.538462
49
0.531286
f28b677805cf2bdfc02ec0d719ce0fad31f82786
5,787
py
Python
astacus/coordinator/plugins/clickhouse/parts.py
aiven/astacus
2d64e1f33e01d50a41127f41d9da3d1ab0ce0387
[ "Apache-2.0" ]
19
2020-06-22T12:17:59.000Z
2022-02-18T00:12:17.000Z
astacus/coordinator/plugins/clickhouse/parts.py
aiven/astacus
2d64e1f33e01d50a41127f41d9da3d1ab0ce0387
[ "Apache-2.0" ]
7
2020-06-24T05:16:20.000Z
2022-02-28T07:35:31.000Z
astacus/coordinator/plugins/clickhouse/parts.py
aiven/astacus
2d64e1f33e01d50a41127f41d9da3d1ab0ce0387
[ "Apache-2.0" ]
2
2020-09-05T21:23:08.000Z
2022-02-17T15:02:37.000Z
""" Copyright (c) 2021 Aiven Ltd See LICENSE for details Algorithms to help with redistributing parts across servers for tables using the Replicated family of table engines. This does not support shards, but this is the right place to add support for them. """ from astacus.common.ipc import SnapshotFile from astacus.coordinator.plugins.clickhouse.escaping import escape_for_file_name from pathlib import Path from typing import Dict, Iterable, List, Optional, Set, Tuple import dataclasses import re import uuid def group_files_into_parts(snapshot_files: List[List[SnapshotFile]], table_uuids: Set[uuid.UUID]) -> Tuple[List[Part], List[List[SnapshotFile]]]: """ Regroup all files that form a MergeTree table parts together in a `Part`. Only parts from the provided list of `table_uuids` are regrouped. Returns the list of `Part` and a separate list of list of `SnapshotFile` that were not selected to make a `Part`. The input and output list of lists will have the same length: the number of server in the cluster (the first list is for the first server, etc.) """ other_files: List[List[SnapshotFile]] = [[] for _ in snapshot_files] keyed_parts: Dict[PartKey, Part] = {} for server_index, server_files in enumerate(snapshot_files): for snapshot_file in server_files: if not add_file_to_parts(snapshot_file, server_index, table_uuids, keyed_parts): other_files[server_index].append(snapshot_file) return list(keyed_parts.values()), other_files def add_file_to_parts( snapshot_file: SnapshotFile, server_index: int, table_uuids: Set[uuid.UUID], parts: Dict[PartKey, Part] ) -> bool: """ If the `snapshot_file` is a file from a part of one of the tables listed in `table_uuids`, add it to the corresponding Part in `parts`. A file is from a part if its path starts with "store/3_first_char_of_table_uuid/table_uuid/detached/part_name". If a file already exists in a part, the `server_index` is added to the `server` set of the `PartFile` for that file. Raises a `ValueError` if a different file with the same name already exists in a part: a `PartFile` must be the identical on all servers where it is present. Returns `True` if and only if the file was added to a `Part`. """ path_parts = snapshot_file.relative_path.parts has_enough_depth = len(path_parts) >= 6 if not has_enough_depth: return False has_store_and_detached = path_parts[0] == "store" and path_parts[3] == "detached" has_uuid_prefix = path_parts[1] == path_parts[2][:3] has_valid_uuid = re.match(r"^[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}$", path_parts[2]) if not (has_store_and_detached and has_uuid_prefix and has_valid_uuid): return False table_uuid = uuid.UUID(path_parts[2]) if table_uuid not in table_uuids: return False part_key = PartKey(table_uuid=table_uuid, part_name=path_parts[4]) part = parts.setdefault(part_key, Part(files={}, total_size=0)) part_file = part.files.get(snapshot_file.relative_path) if part_file is None: part.files[snapshot_file.relative_path] = PartFile(snapshot_file=snapshot_file, servers={server_index}) part.total_size += snapshot_file.file_size elif part_file.snapshot_file.equals_excluding_mtime(snapshot_file): part_file.servers.add(server_index) else: raise ValueError( f"Inconsistent part file {snapshot_file.relative_path} of part {part_key} " f"between servers {part_file.servers} and server {server_index}:\n" f" {part_file.snapshot_file}\n" f" {snapshot_file}" ) return True def check_parts_replication(parts: Iterable[Part]): """ Checks that within a single part, all files are present on the same set of servers. """ for part in parts: part_servers: Optional[Set[int]] = None for file_path, file in part.files.items(): if part_servers is None: part_servers = file.servers elif part_servers != file.servers: raise ValueError( f"Inconsistent part, not all files are identically replicated: " f"some files are on servers {part_servers} while {file_path} is on servers {file.servers}" ) def distribute_parts_to_servers(parts: List[Part], server_files: List[List[SnapshotFile]]): """ Distributes each part to only one of the multiple servers where the part was during the backup. Parts are distributed to each server such as the total download size for each server is roughly equal (using a greedy algorithm). """ total_file_sizes = [0 for _ in server_files] for part in sorted(parts, key=lambda p: p.total_size, reverse=True): server_index = None for file in part.files.values(): if server_index is None: server_index = min(file.servers, key=total_file_sizes.__getitem__) total_file_sizes[server_index] += file.snapshot_file.file_size server_files[server_index].append(file.snapshot_file) def get_frozen_parts_pattern(freeze_name: str) -> str: """ Returns the glob pattern inside ClickHouse data dir where frozen table parts are stored. """ escaped_freeze_name = escape_for_file_name(freeze_name) return f"shadow/{escaped_freeze_name}/store/**/*"
39.101351
111
0.697598
f28ccbdb8a0ea7d42a8a232e4a98e01aac77cc9d
1,301
py
Python
tests/test_init.py
mds2/Rocket
53313677768159d13e6c2b7c69ad69ca59bb8c79
[ "MIT" ]
16
2015-12-16T10:50:42.000Z
2020-06-04T10:39:20.000Z
tests/test_init.py
mds2/Rocket
53313677768159d13e6c2b7c69ad69ca59bb8c79
[ "MIT" ]
6
2017-11-01T14:51:52.000Z
2019-01-01T22:12:27.000Z
tests/test_init.py
mds2/Rocket
53313677768159d13e6c2b7c69ad69ca59bb8c79
[ "MIT" ]
13
2016-04-22T20:14:39.000Z
2021-12-21T22:52:02.000Z
# -*- coding: utf-8 -*- # This file is part of the Rocket Web Server # Copyright (c) 2012 Timothy Farrell # # See the included LICENSE.txt file for licensing details. # Import System Modules import sys import unittest # Import Custom Modules import rocket # Define Constants PY3K = sys.version_info[0] > 2 # Define Tests if __name__ == '__main__': unittest.main()
32.525
275
0.647963
f2903e37d62a64c2678663ac58e60ba0efca0df6
206
py
Python
setup.py
hemanths933/Segmentation_Unet
701585b31df7e4159e2fdbe56aaca99d9a4a8ea9
[ "MIT" ]
null
null
null
setup.py
hemanths933/Segmentation_Unet
701585b31df7e4159e2fdbe56aaca99d9a4a8ea9
[ "MIT" ]
null
null
null
setup.py
hemanths933/Segmentation_Unet
701585b31df7e4159e2fdbe56aaca99d9a4a8ea9
[ "MIT" ]
null
null
null
from setuptools import setup setup( name='Unet', version='', packages=['models'], url='', license='', author='hemanth sharma', author_email='', description='' )
15.846154
29
0.538835
f2904abee88ac63551da7aa60f4599002d25cdcf
2,757
py
Python
side_scroller/game.py
pecjas/Sidescroller-PyGame
dfcaf4ff95a1733714eaaeb00dc00cd876ab1468
[ "MIT" ]
null
null
null
side_scroller/game.py
pecjas/Sidescroller-PyGame
dfcaf4ff95a1733714eaaeb00dc00cd876ab1468
[ "MIT" ]
null
null
null
side_scroller/game.py
pecjas/Sidescroller-PyGame
dfcaf4ff95a1733714eaaeb00dc00cd876ab1468
[ "MIT" ]
null
null
null
import pygame from side_scroller.constants import BLACK from side_scroller.settings import GameSettings, Fonts from side_scroller.player import Player, Hitbox from side_scroller.constants import GAME_NAME
31.329545
91
0.66848
f2909580065a2556ae0c58be271bee9537858bf1
366
py
Python
solutions/problem_230.py
ksvr444/daily-coding-problem
5d9f488f81c616847ee4e9e48974523ec2d598d7
[ "MIT" ]
1,921
2018-11-13T18:19:56.000Z
2021-11-15T14:25:41.000Z
solutions/problem_230.py
MohitIndian/daily-coding-problem
5d9f488f81c616847ee4e9e48974523ec2d598d7
[ "MIT" ]
2
2019-07-19T01:06:16.000Z
2019-08-01T22:21:36.000Z
solutions/problem_230.py
MohitIndian/daily-coding-problem
5d9f488f81c616847ee4e9e48974523ec2d598d7
[ "MIT" ]
1,066
2018-11-19T19:06:55.000Z
2021-11-13T12:33:56.000Z
# Tests assert get_min_drops(20, 2) == 6 assert get_min_drops(15, 3) == 5
20.333333
40
0.538251
f290ef8b6c3eb1ab597e06f8dc82e1806488e974
3,525
py
Python
src/advanceoperate/uploadthread.py
zengrx/S.M.A.R.T
47a9abe89008e9b34f9b9d057656dbf3fb286456
[ "MIT" ]
10
2017-07-11T01:08:28.000Z
2021-05-07T01:49:00.000Z
src/advanceoperate/uploadthread.py
YanqiangHuang/S.M.A.R.T
47a9abe89008e9b34f9b9d057656dbf3fb286456
[ "MIT" ]
null
null
null
src/advanceoperate/uploadthread.py
YanqiangHuang/S.M.A.R.T
47a9abe89008e9b34f9b9d057656dbf3fb286456
[ "MIT" ]
6
2017-05-02T14:27:15.000Z
2017-05-15T05:56:40.000Z
#coding=utf-8 import sys, os import socket import hashlib import virus_total_apis from PyQt4 import QtCore sys.path.append("..") from publicfunc.fileanalyze import PEFileAnalize, getFileInfo
34.558824
119
0.584681
f291aa8b92b2b817f77cb42f08e1e15a9557dcfe
240
py
Python
JaroEliCall/src/functionality/sending_activation_key.py
jaroslaw-wieczorek/Project_IP_Telephony_Python_Voip
05143356fe91f745c286db8c3e2432714ab122e7
[ "MIT" ]
null
null
null
JaroEliCall/src/functionality/sending_activation_key.py
jaroslaw-wieczorek/Project_IP_Telephony_Python_Voip
05143356fe91f745c286db8c3e2432714ab122e7
[ "MIT" ]
null
null
null
JaroEliCall/src/functionality/sending_activation_key.py
jaroslaw-wieczorek/Project_IP_Telephony_Python_Voip
05143356fe91f745c286db8c3e2432714ab122e7
[ "MIT" ]
1
2018-03-20T21:22:40.000Z
2018-03-20T21:22:40.000Z
import smtplib server = smtplib.SMTP('smtp.gmail.com', 587) server.starttls() server.login("[email protected]", "AureliaK1609") msg = "YOUR MESSAGE!" server.sendmail("[email protected]", "[email protected]", msg) server.quit()
21.818182
70
0.7375
f2925fa462ff21785df92756f554dc30e7733df7
1,450
py
Python
app/cipher_caesar.py
igorsilva3/cipher-of-caesar
2024dae7eb795f273785e9622d9e20a49cea089d
[ "MIT" ]
2
2020-09-30T00:04:59.000Z
2020-10-02T14:33:56.000Z
app/cipher_caesar.py
igorsilva3/cipher-of-caesar
2024dae7eb795f273785e9622d9e20a49cea089d
[ "MIT" ]
null
null
null
app/cipher_caesar.py
igorsilva3/cipher-of-caesar
2024dae7eb795f273785e9622d9e20a49cea089d
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import string
29
63
0.512414
f292addc6e3042f36d3fbfdde0bec8e8159cc0d4
193
py
Python
Desafio049.py
tmoura1981/Python_Exercicios
c873e2758dfd9058d2c2d83b5b38b522c6264029
[ "MIT" ]
1
2021-11-25T11:19:59.000Z
2021-11-25T11:19:59.000Z
Desafio049.py
tmoura1981/Python_Exercicios
c873e2758dfd9058d2c2d83b5b38b522c6264029
[ "MIT" ]
null
null
null
Desafio049.py
tmoura1981/Python_Exercicios
c873e2758dfd9058d2c2d83b5b38b522c6264029
[ "MIT" ]
null
null
null
# Informe um n e mostre sua tabuada print('-' * 36) n = int(input('Digite um n e veja sua tabuada: ')) print('=' * 36) for i in range(1, 11): print(n, 'x', i, '=', n * i) print('=' * 36)
24.125
51
0.554404
f292e080e8bc6567932c91ed5f7d509146d3ac76
473
py
Python
programming-logic/teste.py
raulrosapacheco/python3-udemy
b84e6f82417aecd0e2a28c3fb3cb222e057a660b
[ "MIT" ]
null
null
null
programming-logic/teste.py
raulrosapacheco/python3-udemy
b84e6f82417aecd0e2a28c3fb3cb222e057a660b
[ "MIT" ]
null
null
null
programming-logic/teste.py
raulrosapacheco/python3-udemy
b84e6f82417aecd0e2a28c3fb3cb222e057a660b
[ "MIT" ]
null
null
null
""" Split: dividir string Join: juntar uma lista (str) Enumerate: enumerar elementos da lista (iterveis) """ string ='O Brasil o pais do futebol, o Brasil penta.' lista_1 = string.split(' ') lista_2 = string.split(',') print(lista_1) print(lista_2) palavra = '' contagem = 0 for valor in lista_1: print(f'A palavra {valor} apareceu {lista_1.count(valor)}x na frase') qtd_vezes = lista_1.count(valor) if qtd_vezes > contagem: contagem = qtd_vezes
23.65
73
0.69556
f293d5631b8815a984d95fcfd9fd7e627ddefdd5
484
py
Python
tests/conftest.py
12rambau/commitizen
4309813974b6be72a246d47fc77f4c7f8ef64be1
[ "MIT" ]
866
2020-03-18T06:09:07.000Z
2022-03-30T15:46:17.000Z
tests/conftest.py
12rambau/commitizen
4309813974b6be72a246d47fc77f4c7f8ef64be1
[ "MIT" ]
364
2020-03-18T02:13:09.000Z
2022-03-31T01:57:12.000Z
tests/conftest.py
12rambau/commitizen
4309813974b6be72a246d47fc77f4c7f8ef64be1
[ "MIT" ]
136
2020-03-20T18:06:32.000Z
2022-03-31T00:02:34.000Z
import pytest from commitizen import cmd
23.047619
80
0.71281
f2957c2436185eaacb1c43fe2b6685f21c467731
188
py
Python
python/testData/inspections/PyStringFormatInspection/PackedRefInsideList.py
truthiswill/intellij-community
fff88cfb0dc168eea18ecb745d3e5b93f57b0b95
[ "Apache-2.0" ]
2
2019-04-28T07:48:50.000Z
2020-12-11T14:18:08.000Z
python/testData/inspections/PyStringFormatInspection/PackedRefInsideList.py
truthiswill/intellij-community
fff88cfb0dc168eea18ecb745d3e5b93f57b0b95
[ "Apache-2.0" ]
173
2018-07-05T13:59:39.000Z
2018-08-09T01:12:03.000Z
python/testData/inspections/PyStringFormatInspection/PackedRefInsideList.py
truthiswill/intellij-community
fff88cfb0dc168eea18ecb745d3e5b93f57b0b95
[ "Apache-2.0" ]
2
2020-03-15T08:57:37.000Z
2020-04-07T04:48:14.000Z
list = [3, 4] "{3}".format(*[1, 2, *list]) "{4}".format(*[1, 2, *list]) "{1}".format(*[1, 2, *list]) "{3}".format(*[*list, 1, 2]) "{4}".format(*[*list, 1, 2]) "{1}".format(*[*list, 1, 2])
23.5
28
0.446809
f296278ff7fbbd618f4bc706e8d6af3757d8034e
2,547
py
Python
grizzly_cli/argparse/__init__.py
mgor/grizzly-cli
00da1a5a822baefedf61497120fd52dbb5203f12
[ "MIT" ]
null
null
null
grizzly_cli/argparse/__init__.py
mgor/grizzly-cli
00da1a5a822baefedf61497120fd52dbb5203f12
[ "MIT" ]
null
null
null
grizzly_cli/argparse/__init__.py
mgor/grizzly-cli
00da1a5a822baefedf61497120fd52dbb5203f12
[ "MIT" ]
1
2021-11-02T09:36:21.000Z
2021-11-02T09:36:21.000Z
import sys import re from typing import Any, Optional, IO, Sequence from argparse import ArgumentParser as CoreArgumentParser, Namespace, _SubParsersAction from .markdown import MarkdownFormatter, MarkdownHelpAction from .bashcompletion import BashCompletionAction, hook as bashcompletion_hook ArgumentSubParser = _SubParsersAction
38.014925
131
0.645465
f296a031d5f0c54dcf0daafc3b2597cd41d7d8ee
524
py
Python
sharedData.py
vidalmatheus/DS.com
47b8d3cbb6d9ecd30178c4ba76408191c0715866
[ "MIT" ]
null
null
null
sharedData.py
vidalmatheus/DS.com
47b8d3cbb6d9ecd30178c4ba76408191c0715866
[ "MIT" ]
null
null
null
sharedData.py
vidalmatheus/DS.com
47b8d3cbb6d9ecd30178c4ba76408191c0715866
[ "MIT" ]
null
null
null
from flask import Flask, render_template, request, redirect,Blueprint, json, url_for, session from modules import dataBase,usuario import psycopg2, os, subprocess, bcrypt # #def getData(): # DATABASE_URL = os.environ['DATABASE_URL'] # con = psycopg2.connect(DATABASE_URL, sslmode='require') # return con ### connect to the dataBase DATABASE_URL = os.environ['DATABASE_URL'] connectionData = dataBase.dataAccess() #### ###Usuario usersDataOnline = usuario.acessManager() #userData = usuario.acessoUser() ###
20.96
93
0.740458
f29854376d62be05bf8d63dd4375c7cfd29ed77c
6,192
py
Python
ipa_util/validate.py
koolspin/vipa
f5b79a6ab4ce60975ff5ee6f173b97eebaf99b14
[ "MIT" ]
null
null
null
ipa_util/validate.py
koolspin/vipa
f5b79a6ab4ce60975ff5ee6f173b97eebaf99b14
[ "MIT" ]
null
null
null
ipa_util/validate.py
koolspin/vipa
f5b79a6ab4ce60975ff5ee6f173b97eebaf99b14
[ "MIT" ]
null
null
null
import plistlib from pathlib import Path from datetime import datetime, timezone, timedelta def extract_plist(self): """ Extracts information from the Info.plist file :return: Dictionary representation of Info.plist contents """ with self._plist_file.open('rb') as plist_fp: p_dict = plistlib.load(plist_fp) self._bundle_id = p_dict.get('CFBundleIdentifier') self._executable_file = p_dict.get('CFBundleExecutable') return p_dict def extract_provisioning_plist(self, embedded_prov_plist_path): """ Extracts information from the Info.plist file :param embedded_prov_plist_path: Full path to the plist file which is embedded in the provisioning profile :return: Dictionary representation of embedded.mobileprovision contents """ with embedded_prov_plist_path.open('rb') as plist_fp: p_dict = plistlib.load(plist_fp) return p_dict def validate_provisioning_plist(self, plist_dict): """ Validate the embedded provisioning plist which was extracted in a previous step. :param plist_dict: Dictionary representation of the embedded.mobileprovision file :return: None """ app_id_prefix_array = plist_dict['ApplicationIdentifierPrefix'] entitlements_dict = plist_dict['Entitlements'] app_identifier_raw = entitlements_dict.get('application-identifier') ix = app_identifier_raw.find('.') if ix >= 0: app_identifier_prefix = app_identifier_raw[:ix] app_id = app_identifier_raw[ix+1:] else: app_identifier_prefix = app_identifier_raw app_id = '' get_task_allow = entitlements_dict.get('get-task-allow') keychain_groups = entitlements_dict.get('keychain-access-groups') # req-004 if app_identifier_prefix not in app_id_prefix_array: raise Exception('The entitlements application-identifier {0} does not match any of the given app id prefixes'.format(app_identifier_prefix)) # req-005 exp_date = plist_dict['ExpirationDate'] now = datetime.now() if exp_date < now: print('The embedded provisioning profile has expired on {0}'.format(exp_date)) # req-006 self._validate_app_id(self._bundle_id, app_id) def _validate_app_id(self, app_id_from_info_plist, app_id_from_provisioning_file): """ Validate the app ids from the Info.plist and provisioning profile to see if they match, taking wildcards into account. Examples: com.acme.app1, com.acme.app1 => match com.acme.app1, com.acme.app2 => fail com.acme.app1, com.acme.* => match com.acme.app1, * => match :param app_id_from_info_plist: Full appid from the Info.plist file, ex: com.acme.app1 :param app_id_from_provisioning_file: App id (possibly wildcard) from the provisioning profile :return: None """ has_wildcard = False ix = app_id_from_provisioning_file.find('*') if ix >= 0: has_wildcard = True match_app_id = app_id_from_provisioning_file[:ix] else: match_app_id = app_id_from_provisioning_file if has_wildcard: wc_len = len(match_app_id) match = (app_id_from_info_plist[:ix] == match_app_id) else: match = (app_id_from_info_plist == match_app_id) if not match: raise Exception('Bundle ID does not match app ID from provisioning profile: {0}'.format(app_id_from_provisioning_file))
41.837838
152
0.653424
f2995fcdd8762cd23c69c1f140cd16f1c0b58140
6,183
py
Python
merlin/analysis/sequential.py
greentea1079/MERlin
f4c50cb15722263ee9397561b9ce4b2eddc3d559
[ "MIT" ]
14
2019-08-19T15:26:44.000Z
2022-01-12T16:38:42.000Z
merlin/analysis/sequential.py
greentea1079/MERlin
f4c50cb15722263ee9397561b9ce4b2eddc3d559
[ "MIT" ]
60
2019-08-19T15:48:37.000Z
2021-11-11T19:19:18.000Z
merlin/analysis/sequential.py
epigen-UCSD/MERlin
3aa784fb28a2a4ebae92cfaf3a72f30a459daab9
[ "MIT" ]
13
2019-08-16T06:03:23.000Z
2021-08-02T15:52:46.000Z
import pandas import rtree import networkx import numpy as np import cv2 from skimage.measure import regionprops from merlin.core import analysistask from merlin.util import imagefilters
37.472727
80
0.603105
f29a992ba965f8e9cb047c742d3ca46176d0fa03
3,012
py
Python
netests/comparators/facts_compare.py
Netests/netests
1a48bda461761c4ec854d6fa0c38629049009a4a
[ "MIT" ]
14
2020-06-08T07:34:59.000Z
2022-03-14T08:52:03.000Z
netests/comparators/facts_compare.py
Netests/netests
1a48bda461761c4ec854d6fa0c38629049009a4a
[ "MIT" ]
null
null
null
netests/comparators/facts_compare.py
Netests/netests
1a48bda461761c4ec854d6fa0c38629049009a4a
[ "MIT" ]
3
2020-06-19T03:57:05.000Z
2020-06-22T22:46:42.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from nornir.core.task import Task from netests import log from netests.tools.file import open_file from netests.protocols.facts import Facts from netests.select_vars import select_host_vars from netests.comparators.log_compare import log_compare, log_no_yaml_data from netests.constants import NOT_SET, FACTS_WORKS_KEY, FACTS_DATA_HOST_KEY from netests.exceptions.netests_exceptions import ( NetestsOverideTruthVarsKeyUnsupported )
31.705263
75
0.60259
f29b2579ee8dd83fbc2ef37d5767b8505b228c21
1,579
py
Python
graph.py
shinmura0/tkinter_kouza
1617a01591bf3cee808c4b3e62dc785cc76381f2
[ "MIT" ]
null
null
null
graph.py
shinmura0/tkinter_kouza
1617a01591bf3cee808c4b3e62dc785cc76381f2
[ "MIT" ]
null
null
null
graph.py
shinmura0/tkinter_kouza
1617a01591bf3cee808c4b3e62dc785cc76381f2
[ "MIT" ]
null
null
null
# from tkinter import Tk, Button, X, Frame, GROOVE, W, E, Label, Entry, END import numpy as np import os from matplotlib import pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg # # # if __name__ == '__main__': # tkinter root = Tk() # 1 frame_1 = Frame(root, bd=4, relief=GROOVE) #1 frame_1.grid(row=0, column=0) #1 btn1 = Button(frame_1, text='', command=plot, font=("",20)) #1 btn1.pack(fill=X) #1 # frame_3 = Frame(root, bd=4, relief=GROOVE) #1 frame_3.grid(row=1, column=0) canvas = FigureCanvasTkAgg(graph([]), frame_3) # box1 = Entry(width=3) # box1.place(x=20, y=5) # box2 = Entry(width=3) # box2.place(x=50, y=5) # box3 = Entry(width=3) # box3.place(x=80, y=5) # # tkinter root.mainloop()
24.292308
82
0.60038
f29df525d2aaa21035a1c17e65dbb2cbbc6a88ba
1,326
py
Python
levis/encoding.py
rawg/levis
33cd6c915f51134f79f3586dc0e4a6072247b568
[ "MIT" ]
42
2016-06-29T21:13:02.000Z
2022-01-23T03:23:59.000Z
levis/encoding.py
rawg/levis
33cd6c915f51134f79f3586dc0e4a6072247b568
[ "MIT" ]
null
null
null
levis/encoding.py
rawg/levis
33cd6c915f51134f79f3586dc0e4a6072247b568
[ "MIT" ]
12
2016-07-18T20:46:55.000Z
2021-06-13T16:08:37.000Z
# coding=utf-8 """ """ from . import mutation from . import crossover from . import base
26.52
79
0.662142
f29ee11e7e85111e249a8c2b4d2fb8ce2bd1370b
1,230
py
Python
mopidy_monobox/__init__.py
oxullo/mopidy-monobox
3cf9077e49afb0f0171f990cc4205cc348dcda1d
[ "Apache-2.0" ]
null
null
null
mopidy_monobox/__init__.py
oxullo/mopidy-monobox
3cf9077e49afb0f0171f990cc4205cc348dcda1d
[ "Apache-2.0" ]
null
null
null
mopidy_monobox/__init__.py
oxullo/mopidy-monobox
3cf9077e49afb0f0171f990cc4205cc348dcda1d
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import unicode_literals import logging import os # TODO: Remove entirely if you don't register GStreamer elements below import pygst pygst.require('0.10') import gst import gobject from mopidy import config, ext __version__ = '0.1.0' # TODO: If you need to log, use loggers named after the current Python module logger = logging.getLogger(__name__)
26.170213
77
0.688618
f2a0401693fdb2fa350f876989f4e1cc6a3ea3c3
698
py
Python
im3agents/tests/test_farmers.py
IMMM-SFA/im3agents
544e89803379a44108227e9cd83ce09f6974fe2d
[ "BSD-2-Clause" ]
null
null
null
im3agents/tests/test_farmers.py
IMMM-SFA/im3agents
544e89803379a44108227e9cd83ce09f6974fe2d
[ "BSD-2-Clause" ]
4
2020-05-27T18:50:29.000Z
2020-09-24T14:27:00.000Z
im3agents/tests/test_farmers.py
IMMM-SFA/im3agents
544e89803379a44108227e9cd83ce09f6974fe2d
[ "BSD-2-Clause" ]
null
null
null
"""Farmer class tests. :author: Someone :email: [email protected] License: BSD 2-Clause, see LICENSE and DISCLAIMER files """ import unittest from im3agents import FarmerOne if __name__ == '__main__': unittest.main()
19.388889
56
0.659026
f2a1157fdb66b63890403106ad4f269358b5419e
1,744
py
Python
day-24/part-1/th-ch.py
evqna/adventofcode-2020
526bb9c87057d02bda4de9647932a0e25bdb3a5b
[ "MIT" ]
12
2020-11-30T19:22:18.000Z
2021-06-21T05:55:58.000Z
day-24/part-1/th-ch.py
evqna/adventofcode-2020
526bb9c87057d02bda4de9647932a0e25bdb3a5b
[ "MIT" ]
13
2020-11-30T17:27:22.000Z
2020-12-22T17:43:13.000Z
day-24/part-1/th-ch.py
evqna/adventofcode-2020
526bb9c87057d02bda4de9647932a0e25bdb3a5b
[ "MIT" ]
3
2020-12-01T08:49:40.000Z
2022-03-26T21:47:38.000Z
from tool.runners.python import SubmissionPy WHITE = 0 BLACK = 1 DIRECTIONS = { "e": (-1, 0), # (x, y) with axes right/bottom "se": (-0.5, 1), "sw": (0.5, 1), "w": (1, 0), "nw": (0.5, -1), "ne": (-0.5, -1), } def test_th_ch(): """ Run `python -m pytest ./day-24/part-1/th-ch.py` to test the submission. """ assert ( ThChSubmission().run( """ seeswwswswwnenewsewsw neeenesenwnwwswnenewnwwsewnenwseswesw seswneswswsenwwnwse nwnwneseeswswnenewneswwnewseswneseene swweswneswnenwsewnwneneseenw eesenwseswswnenwswnwnwsewwnwsene sewnenenenesenwsewnenwwwse wenwwweseeeweswwwnwwe wsweesenenewnwwnwsenewsenwwsesesenwne neeswseenwwswnwswswnw nenwswwsewswnenenewsenwsenwnesesenew enewnwewneswsewnwswenweswnenwsenwsw sweneswneswneneenwnewenewwneswswnese swwesenesewenwneswnwwneseswwne enesenwswwswneneswsenwnewswseenwsese wnwnesenesenenwwnenwsewesewsesesew nenewswnwewswnenesenwnesewesw eneswnwswnwsenenwnwnwwseeswneewsenese neswnwewnwnwseenwseesewsenwsweewe wseweeenwnesenwwwswnew """.strip() ) == 10 )
25.275362
78
0.614106
f2a14427a74c318066628e0e58bdecded62e08df
259
py
Python
Python/tais_formula.py
mimseyedi/Kattis
a99ea2112544e89cc466feb7d81ffe6eb017f7e2
[ "MIT" ]
null
null
null
Python/tais_formula.py
mimseyedi/Kattis
a99ea2112544e89cc466feb7d81ffe6eb017f7e2
[ "MIT" ]
null
null
null
Python/tais_formula.py
mimseyedi/Kattis
a99ea2112544e89cc466feb7d81ffe6eb017f7e2
[ "MIT" ]
null
null
null
n = int(input()) l1 = list() l2 = list() for _ in range(n): t, v = input().split() l1.append(int(t)) l2.append(float(v)) result = 0 for i in range(len(l1) - 1): result += ((l2[i] + l2[i + 1]) / 2) * (l1[i + 1] - l1[i]) print(result / 1000)
17.266667
61
0.505792
f2a16388d4271df1ce952f8cf5640d703d0a37c8
66
py
Python
nyoka/PMML44/doc/source/scripts/metadata.py
maxibor/nyoka
19f480eee608035aa5fba368c96d4143bc2f5710
[ "Apache-2.0" ]
71
2020-08-24T07:59:56.000Z
2022-03-21T08:36:35.000Z
nyoka/PMML44/doc/source/scripts/metadata.py
maxibor/nyoka
19f480eee608035aa5fba368c96d4143bc2f5710
[ "Apache-2.0" ]
16
2020-09-02T10:27:36.000Z
2022-03-31T05:37:12.000Z
nyoka/PMML44/doc/source/scripts/metadata.py
nimeshgit/nyoka
43bf049825922213eeb3e6a8f39864f9b75d01d5
[ "Apache-2.0" ]
16
2020-09-17T15:01:33.000Z
2022-03-28T03:13:25.000Z
__version__ = '3.1.0rc1' __license__ = "Apache Software License"
16.5
39
0.742424
f2a1b14f9c19a43e8614ebf25a3e38b7faa2cee4
126
py
Python
2375.py
ShawonBarman/URI-Online-judge-Ad-Hoc-level-problem-solution-in-python
9a0f0ad5efd4a9e73589c357ab4b34b7c73a11da
[ "MIT" ]
1
2022-01-14T08:45:32.000Z
2022-01-14T08:45:32.000Z
2375.py
ShawonBarman/URI-Online-judge-Ad-Hoc-level-problem-solution-in-python
9a0f0ad5efd4a9e73589c357ab4b34b7c73a11da
[ "MIT" ]
null
null
null
2375.py
ShawonBarman/URI-Online-judge-Ad-Hoc-level-problem-solution-in-python
9a0f0ad5efd4a9e73589c357ab4b34b7c73a11da
[ "MIT" ]
null
null
null
n = int(input()) a, l, p = map(int, input().split()) if a >= n and l >= n and p >= n: print("S") else: print("N")
21
36
0.460317
f2a1e765b746fab626eeae28ec0da8d5f9142f43
643
py
Python
modules/constant.py
aubravo/Clasificacion-de-actividad-volcanica
0f7be0d77509fa13948a0f714103ce6e6d8cb2ae
[ "MIT" ]
1
2021-10-20T02:42:20.000Z
2021-10-20T02:42:20.000Z
modules/constant.py
aubravo/ActividadVolcanica
0f7be0d77509fa13948a0f714103ce6e6d8cb2ae
[ "MIT" ]
null
null
null
modules/constant.py
aubravo/ActividadVolcanica
0f7be0d77509fa13948a0f714103ce6e6d8cb2ae
[ "MIT" ]
null
null
null
"""---------------------------------------------------------------------------- This is the core of the parsing stage: *re_find comments will search for everything between the $$ and EOL *re_findDataLabels will search for everything between the start of a tag (##) and the start of the next tag ignoring the contents of next tag, while grouping into tag name and tag contents ----------------------------------------------------------------------------""" re_findComments = r'\$\$[\s\S]*?(?=\n)' re_findBlocks = r'(##TITLE\=[\W\w]*?##END=)' re_findDataLabels = r'##([\w\W]*?)=([\w\W]*?(?=\n##[\w\W]))' FILE = True DIR = False
45.928571
79
0.494557
f2a2b6ab09a985aa72dfef0d5e15e51b49c536f0
607,382
py
Python
submission/custom_reinforcement_learning_geesenet.py
peterbonnesoeur/HandyRL
bb180677cb2d8268317b95c35c98d4536dd906f1
[ "MIT" ]
null
null
null
submission/custom_reinforcement_learning_geesenet.py
peterbonnesoeur/HandyRL
bb180677cb2d8268317b95c35c98d4536dd906f1
[ "MIT" ]
null
null
null
submission/custom_reinforcement_learning_geesenet.py
peterbonnesoeur/HandyRL
bb180677cb2d8268317b95c35c98d4536dd906f1
[ "MIT" ]
null
null
null
# This is a lightweight ML agent trained by self-play. # After sharing this notebook, # we will add Hungry Geese environment in our HandyRL library. # https://github.com/DeNA/HandyRL # We hope you enjoy reinforcement learning! import pickle import bz2 import base64 import numpy as np import torch import torch.nn as nn import torch.nn.functional as F # Neural Network for Hungry Geese # Input for Neural Network def make_input(obses): b = np.zeros((17, 7 * 11), dtype=np.float32) obs = obses[-1] for p, pos_list in enumerate(obs['geese']): # head position for pos in pos_list[:1]: b[0 + (p - obs['index']) % 4, pos] = 1 # tip position for pos in pos_list[-1:]: b[4 + (p - obs['index']) % 4, pos] = 1 # whole position for pos in pos_list: b[8 + (p - obs['index']) % 4, pos] = 1 # previous head position if len(obses) > 1: obs_prev = obses[-2] for p, pos_list in enumerate(obs_prev['geese']): for pos in pos_list[:1]: b[12 + (p - obs['index']) % 4, pos] = 1 # food for pos in obs['food']: b[16, pos] = 1 return b.reshape(-1, 7, 11) # Load PyTorch Model PARAM = b'QlpoOTFBWSZTWedCouYB+8H/////////////////////////////////////////////5KM/ADsu3A+LPRd1SuOq4cS5w4Oqt3md4pJ7r63vUi5x9u9VC872e8PRu71XgeS73pu8Ie8vbe9IOBGpY9XOpTui3FVe8r28PK7nk7wk469wePffD74fRcc3UtZ93j7vvhJ919c9Evvej74+k572uHiu6eu8SGPrdL6Lg+54g94+8eKe8vnnkj30+8PBx9ODi9zy54K7qveeUreHuHpPeU9w8NxXuei+1zx70gz6e7ykuPTuKjBhlR3Duqo9w7okw8w6ru+zc8Fd6e3PKne99ffSi76+OeCrdGdQu59cPUXuPvelS717bnqRj13Kks5c4R3Xs94Ku56uPJ93h3iVe4Y6q+6mcKdx9weqzkw4nd7b7z6qPvhuBXfeXnpLh3veKp49bhS8694HleHuD69d3nekGfTgdXznvPRTdTdKh3PePQfHmOF7vr7z4D76vvekV33nnkS91N0SvnPeHo94rDg3vfX30g98Pd5Bu+reHir76u6qk3r33nyV933z74lOPjjlVwWEu95e9Ace970Q71dyVHvPPB5N17vSDvePB6p4+YciDj77zxFvHu8qN0+96KDvDdCO5649QffeXeoVz64cQ+493otHG4dA76e4PT3r7e8SGd7h6R55nUke963Hg3D7x5UXPr3ePs1997PD1I7177757DXz63KdmPeG+9hfWt4d1XsMb3i71U+iOY6bb33vndx3avePauuy9e12Le9u83t109HKjttZBoGtGq5zdtve7p6Yaxp2JZ21sdasdcWu7N0dOzLk6tru7o0bsKaaNN2V1dW2rbZ22450ndjqgOh10tdddaZtLW3Z1buC62dYa11qSzOldaxpqFJrOqVWVObdCh1us6O6wy6adqbu7XHQNXMWwSbtdWm12d3Nu6V27VO7cu21bXTulaGIKLc067dasdtztldOuTdjuu4YQ7uq7ZjptVkQUbtdbt3ZumFONmtGG7bdy6x1ct1btcpjrFu5TssDpXdu7uburguzWNtdHdrGpdmgFdbu7pq3du2KKZkxqFN07lHburay7N3bmncs1bViqstFXYzrZq02xbWrLc7du7CuV1l1k21Trq3chVN2u1jVRdd2zFttN2WdcjTFslkrW3dy7btrrDtjmmyHbndzc3VU5dKxVdtLtldaG7u2w1K7dq2rrluXeAUDePbnoAqpCip7z3PClKHbPrfeLq06iq+96vH19Wxe9H3gC1C3ok703CGde95Jb3j731d9uz7xwer7vr74+Kbr7w9VeEYuu9fd8RXd7d4lV93r3hdn3j748J9573gq+8+7wD3nvPCXHXcIc73vKhxBqNzcKrhtUp7pnAXvV94eF7z7zxDcZyK9z3npRz73PKLzq7hD3juhKt6cdF9717wi+893oK77zd6qXuGdSrvPbh6q7rOqG694PU3G4g7n3vRD7z7eD1blupB49w4cNpFbnueKb3nPV0Tve8kc8970k+++33vqgJvJw6jnW6iN8udRPu+uB4sRj03fV3FK317npe24Rr2bnW5UPnPvDwzvu9SN77ePKPuruJTc+zvUqvObiC56wDu5Z0U73t3gPu+vvvhBve++Hwu9MA4O77775VN47ohX3fXPINy4Dn3H3j0XvvXgeV7594PVbp3EFudylZ8YOPu8fe+UTj24inHc6S+eYOox9joXfTuqSzu6qDvLjhN7zgePffO8IN5e71Sbz73iFe7156qm69wPVffV7vKTvrzgeVuO6VL7juCWGMAF77zvElxg191754fJNznKVvX3eATOe8eJcfcDqt89weLvnvPFR3FxyHPMOkbnveqL3nu8Qu69wPTvVnBXPWdE3TclJzve8UvfezjxHx53Sq7luIrdY5DHucqc73j0XvTnKRvTcSfffXj1R863KHu9XeoXvOcqLHvt9331IPHqd0Prz3zb56oOOvPPKX3nld5VG4+negWA+w6j3Xi8elXeg9z0K9999NvPn21vH1PPUjuH154pYFg7HeutuPCve+w95KG9RnVU+9Q3Kis9fTwD7eT3z4Sbh695RO4M4hg87iluPX33wL7vvj3wCd71O8VU9z6b3lVfePbcPB3eme9KjnervElnpXHB998+t8D6vvA3CGffbe9Kjzw93qJ717fb3yUeDu6JWfU9d4+xvvvtW70hg7hxWO9ffPkHffN998AJe8vs71Snu9V3oJ7qHHfWXx5nVFb6DOKs9XvDxXn0vePC99H3PULnr7730h4Hu6kcPrOFZ0+89RPevs96Kr3BxwNz77vvlKb5PvB4ueX3B499ffb76qo9yY4VuRhwx6fd6od6feHvrXvIcHKzr53qqrnr3eAveDnVFnr3vKK7333X30vR332t89C572d4Sd69T3pR3HuPJO55ueBb0MOp7j13iK3o3EJg7uFL7zzw8H3vX3efJPOn3vVB3p7niU517gPXeT7w8PveneEne99PvqF3fR3qEb77PvfFTvo+96hXBmkW7y889tMG1C+7754+Kt6vb3pVe95ueSjzvnh5OemcIu+8+++iO9NxC+evcepMO9x6qc97XeIffX2++HxX3nnnold0cOK7r33fA+Md9975FO+Lh1ODZSmBsKvuT73iF7qve8QcfMAd5476Gg2Oca+jV0u+8rfPd7vNvu1lbPNm+971GUjze2ene22J24dt27lGtjcY6V3Z3bWinZW1zu21twyp0rOzsddu67ttaaBkCkiSIV27qt2u7rZnbdOsqqq7NTYGlZVpW7GRyVNtrd1t3bcN3HG4wN3G7q7Na7rOpUmybroam63MtprAGtKaW1O2u1HWqOmVNzDqrc1ytu7JTSnO2mm2U1q2dHdYkVVaHTnbcu4tixjrltq7Y12zVN3LjrVVImbK7d2FWu422u2ms6N2G67tdl2dbQtVrJS2kVQ1iVi1pszW22wKHdccbbVrbWHEIiqN26U6Fdc1jrBdmXVtNMRdmugNk2uu7d13FOdyt1Toyq7VmlCgrUpzNzaqkibXa4wrrO2Z3JuNzW1W3adm7d3ORHV1w5pJusLpmmklOtI2yuru1ToWyjt12Oxo60VsWzLG7uSBdd2RrQFIoquptdNt0cutj0RFRdTncVIqiQHtM1I7nte7zXtqlFT7U8733j5Htvfe+PH0VvT255SrxzdSnfRuVKzr3npVveOHvTguIrfV3SpXHrdVLu+neFRjznVLfeeDw8+txCvvvvvfIT757e8qV93x3lJ3ffbfAfX3vr74+kc83JU33vr3xDu+fePke9HOkO+9vvnwu+X3vCHvetw9Ke77d4vouM5Kd3zvKQ3vvvfEWH3cSb3i4ePvet56E+8956Q4e7lB73rj0WdXOgcdupUc9955K+8+3nop33znkLeLuorvvOekPOtyF73vrwPlb328eSZ651K8713lFe97bg8W8ve8ivvfHeVD7i7pVPee4ei93nvVVMNqKsdzgrOu6oLnXdSoxhit6s5St6cdCvdXdEPvPueSq76dyku7zz1UuJkp3GOFb193hRuMOox93T208fccpvq4OWPc5KffXu8KmPucJ7vtveVHx3APbrz0HDDDH24qrne96n218IMO+9999VK3fd5SHvPePFd9fd5EuEySx7nUrvLcKnufd4k3333j5Kx7uKq4jIM+3Fo+9X33lK3333w+l9z3eSq526qNz3enWe4zoHdXdRGIaowjB3N1Qd3vPV0XW4VWOzpJcYMrFhR7vXvC+zjhqr5651Q3veD308e85Ke99we9vvu+vvqE773h4PnfePCnntyK+968G8T2Aedeck57OKPPvvPInvfc9RvHvehO+uOkbn3vSjvPcPUPe+95EKn4aAAAAAAAAAAAAAAAAAAAAAAAEyYAAJgAAU8AAAAAAAAAaACohVP9iNAAAAAAAAAAAAAAAAAAAAAAAMgAAGgAAMgAABMAAAAp4UYCnhUOqp/4CAAAAAAAAAAAAAAABoAAAAAAAp7QAAp4AAAp40AAAAATTKPKeBTxDRqniodVP8ATQAAADCZMjEyaaBoABkGRMAAAAATAJiYTJphGBME00ZMmEBpoyYhiGmQ0wEBpoZNDRoNGk1Cqn4EaAgAgAAAABMBNGgaDQ0A0AAAAAAAAAAAAA0AACYGgAAAAAAAACEU8gIIBAAJpo0AAAAAAAAAAAAAAAAAAAAAAAAAAACYAAAAAAAEEGCYBiQghghBgJIAIYBgQAACgCAMYAWAAFsAAMMPABh4DDDAMA2DAMMMBAYBhhgHTAMMMBCMAwwwDxgGGGAfMAwwwD9gGGGAZYYBgGADdrBgGAIABgGGGAdsMZEQEQARABGoCBCwIsCIAIgACIAEELDBCIgAiAB7t8lgBWQMMV4WKgIBRRBAsMAAT6c5w2dEGAY3gsBhBYClCwDFLa3u/3+AL+QVR3kPCNaf1wlB5DsH6reJBWbx2NejEtq05NAKPhQN3bLnKNikxLjbm6cniLl9SQP/eanH/r0gTscPoXnxeQtsWBt+UPuobxid3zcGy3w96o4qru0jOr8EpxBAsWx+Za+Vk9rmJoQAwzJ5sAMTgJ26eO8VNja7FXxX/brDsAxn2AYYYBZMAxosRlLKpMFnqV/pf+01RX5fYqsR9RAGHz2+MtvCIRo15jbG2nFCQvOKzsdacwvQYYBhWcxVGOAAwwwgE7/Z7e4UxN1sGyr/57/E94/yK5VAo8DRfEogD4segKfcA+Lh5zBgviXlMrFLVb2FlxlIjwT93znKYW3T2v80Ie4EFSzyTM5KaeDl+wT5mbRYcXwHIOPTDol/XLxMMG4Uo2kXbnBjeL0GnlYdG66veZ/xaLikRODWm84jyIRTmaJLMkniRM7O7JNLYf+I7+dJ1vE/nJHfLbLbWHmc1T6kWyhz7EmH08dNdQFPqhdsgwUkG6bJhwrO0x9873xqvZG22Zsve49ZUkwUrG91ChTJyy1+fzlBtzjaRyAxhXexF/NSTswE4qtx5SbS+0S2aYIPViFaiZhr6+sncA1DPvyhukl3fZHy8DP44o+9YXAnhzIltbPpvTk6VWz7GdNcjySlPTcKTkJXPRslD3IdrlHs5V3J16hnFM+w7h5Ib4HBGCZcwTcNBiM7Vi6//TH6UL3vS78i8DKUvqPITapraSu+gBgGAEGAAATQBp1poVj6bVLnVGubT4Z09p1urEWmUCIrVz9kSEZFgGGGAeqZ0G1h6o0DLVIMYETZtsDjL83Xdne2v2qsmCQYBhhgIJgGGGAJt6QEkfoPzkdIntyYlqCWm25neZlm/fMAwwwEN9m18GBLFAwDDDAEh3UFG6D3jCY62AYYYAbOJj8OD951AwDDDAQiVdfAIYBhhgHmJgpu3pmXbZaF2YDEhqC9SUJKuZSaznlozb6XdBoIMAAGA3e06R38l9XwwE690xo62QqAhAupEIxGcxp1Rfu2+dhf8miwFlPJ4vztqxMY9jDKLf8qBsSLCDn2/sQqDJjoyPC+oTEro9tYGfPKgP49tloOehB1863y1IwQz7Lonc/z5u/K1Od6UAtXta6q8vTwqBA0dBb/3Jskdges4p6MGryeRXJo46bo+xKVBi9Tj5jseq+LwzTaBksA677WiRqu+bjVraa3H4yRCzn/HcaCfN55EuadNL/tAQnJjq2YizzBVL98lNmXYPTNCYaj+jVnYECAe6ZYamtbf1juDAQf1jmxsa38dgSzHvsYXRA7UsmMvXIEaqeXqMYOaL115sFdbL+2QNH8MD9MlccujyxUygvi7Si2YB0tpnZt8J4dRLHonn6vb4nwjPzErKa7hDZiL9+PpjFD3F8mm/Qc0eNduqrYtXahxVzwUyIzFZcYSXQlMl+cWqJT+Wnzf4pR3U2aKk67W+z29JyYts9kSEpMxBFA7p/Q2JCjD1JTXwJkjhjCE/w0cJzw0Y75mONUiadIlxefaO6UgVMl210dJUkuWwZJZjZugkAiIYqnPSaZnSkFB+3wCf6mueF+ZC2OpW/oRkBzeXzQiZt/SqtcfH9UaKhHyaUT0Cyvk7qQoUcD8rZh/E5ZN1HE9u6thOLEdTxqtQi8EatxkkKX8THRuFYWFgHvijbbFNNPyXvjbBWzbu9q1cDigd1HBEIAmNQVD54bhZtv22NkbXgIAcGgKoRIIrLplkANPpmc4pNLIWrsPKdgusPi8vRV1NFlyK+xH7qjdUWYZ0ILTW30pOCkPBkHC/Y1H29Sbs1gvv0Xjsm6M8xGLrx9pE2ZS0AJBHcAONpFgjNWyPl2vqnUUw7jsr4YLnGy1jubS5aW+tblHO23v8S8lqDbX9E8SHX/bFoAls0xymAKuEHgrJv06AzaboDGPBhhgLSLDDFHAIybbqYYSLcicA/fheBRrtByHaJXyCBXq9RbzRbxL+QFkNNCnIGs8hePdzU35ieLm7Jye14s9mZQwEsMzG2D2uL4tUMjbhJeK/M+bkEAbnr41h/pDVeha1B6KW/weILD2yMHaNwwQnyZy7tt3l3q7I4xParbmpC7cN2EydKNUOb7PtHu5TP+wv1OL58EBrrfiCfiu99vfrutDIIu8rd71vmZvfSJ0i+oZUCQnG/zLGdlmKcthVQPeiEOoNjjtMVU1CIoaSvCpXip5v5HccaSuWtFbI6ZWn6TfDuuHDJ99mHHouiD/BTjdnTmaL1/kZCQwBhXuMbnBj7dXUAE6GzD9fxPHX54euRB7pFCjK+GXducP6D6xerzn5llTm0zprPTluzx4hvRWQj6yeaxWU7IGvSuUMw7T2TmXD99tsAe90zw6g29wEoOtBGdq8UBskdThDivgXau94X4x1wZvtqU5KEZRk9HvKB7XEzTaFYY19RD4xIndrhOP9mrVvPOL3Nqz7Rpic7+Zs8HUXKEAONooeVqEmVZKAMjZFDyUqTRz/aeHwsNeFSXqw7f69GAyikXxtpZ7jZwxw0Hz9CcBMq9NFP5d7Flnqvf76RsIO/fBytlWZ7lIZpbKD0S8v6or7006o2aw8ZPxpgzW8/seB5gK9Dv4y0OnFmtLW4YDw8u6Ln4aa/xaMSkfVp+S3boET2wKOFVp/DRqxiXNQtdNH3uHDc0srJn1Xj5Y+xvIzKwKo6v0QKNoWmNlg8LSzHaeTk6MNsfDgpI0pRDnYs/EpMW6Or2jwRnfdYD2ADG1qDNedVFlwMymLNHc7tsAwwwDbAMLCT/ierpM56ajyXLVXGHvYyTnlFSQoSluZQx5LCMAwwwE6tq2a6rez9pLgfdZ3vCZ1C5Yb46Bt9WxYBhhgNdbrBlK6p5tHAB6cOe/wT25QdYUDMp7RjMBqHd+ubr3qBQzuKMZYzbBaSagwwwcWAYmOidTcy21RQVA41O87l9Q8rMAH7fPWDxSGMzT7EViVNu8s1r1pjwtcgUGDDptCLaUlLjXaXhHQAAABadi87rQqN0AaG/j8pVIPxjis5SVnuu1VnG28vXP6FpHMfevzmTDdnLV9oW7Z1Fk5IT3xtnSZ9UGv02cYMCgi9JdVmbL3pNnQDpuHnA/DzXrtXj6S8HBTsgs3V6sCdwnQ4a5gcgG9FQY3CGxJ5ZaT8+Qx38achL5fHGgsVLhFBz+sScrr0+PhgWTVcf+ILZ+eD8T3eEeA38toY2kwi8DH2hrbeDLmVINqM5+BApKX/QcyV0zFpmft8V4S+o7bgMO9YBP3NpeeIwrqeVItqCe9yLQd/JdXJVY1uznjwj6v3syHZ6ObklBikTpHUn+kRu4qt44lM4drz3lrV/PnHhFjLctgOHiXqfhG/G+v8tRsGy+/hm0/CaCpJCDtWtfQ9lPghejp3b1q4RyPMnpJcbSB2nAKf2la1jBycefmWoCl9iowwdfgJyIc2U4kAUfeLCn9LyTw3gjFFTE52qXgnvfgvTHL+CH/xunJFoQPfzELVZb6teIFCFgEwm56nwpSPoVj5QbWTHGrfM0HPuhdAOqOViOk3vbxP2iUP3J2A12XfiSrQXhahWmdOLU+25oDLBrz7l2pZgy1IXu5W1pqa0QuCYM9rghSvftIm715gfk+Npu6iYUwy6C6hcbHwkIBGfbfI1YQbnLOBXDCGF4HsSI6QGrAUCX/wPoVYiP/d4QwLPbMwrJjkVC6h4Ny225OZyXB2Sl7zZ7mKi4tOAvNSChAjGkRB0RqAmPnffB72Mnrau+Pd55bq0Wu/5HKPlN0IuZ0/Um4OEFKZXviDa12i9f+sgmUFnmsOiFNao/B65n+UW47xkHVxUBhk5RQu3R0MFZSQBhCYmlfi48CVq4ke1gmiGRSUPaCMNPOT9RkEeHMBBiRRpeNqk9j7NmTFxBhmRTPyTBY3HCW3pP9OLUJlIMwnUJo3ElqfWWIk2kWD90m6CN/3m+Opje4nFNtI5LAMb5fvPQTJ59RhzUCs5QzK+F6OW4upk5btVetrfr155h8E6eyEEF8YXciFd+29/lI0QBTrpJrWH0Y6+fwrDUz0bli0ii9SQ82eKfKlcRCh0uimzLQIdX312QTfuIuKF5D2XnamN3CY8VvxIPT26mbY79HT4Rr4oqKoVvrqpL+8Wn3VkjpIuBpxauF8BwM5SeLMqIJf8EYDyOKIYJCFYhLXH7ha8KNapDAMMMAzD1IGGGGAzCz16pPWjz+gGxa0SsT/w4Zo05v+kSvFm4zTO1uNfb+1ZUjIBNcQs7gK9wWxjht47PZCwHAwmc/mITrPYtY43WOWfP5kwj++OmYmgyXToSUVFpJdsVWtApN87SNsTyM4xCxRVjRDRJQ1P6sNG53jfG4iCwjZYcS74I/J3nypQ+qXYua43dDy4mOcxMutrUWXtXjefs5JstIfvv/oaCBdzsZxX1TYaqouNX9JKNyAKEiTsQJtDy76KPB5cnTPY3fdllAwWcmd69J6LzBT/PdaOKOtjVoQfgE39PsJCGB5AZyd2InNqgrdWX2dmnwnptHxJLjx4N4m10JQftv07Eq608sSI4tn09kyPaNxjNGBdMs5IQT0mCw35996g5hQm2deu3pZpVBgA8IiW9KV1sGJX+6q4D2ySDgevmP8j+0+h2K1BNgWbwdRx2486epcDE6+4HAq4Ke/jYoTlb1YpvYehZfzq7q0EnLBOpqrCZkYpdOd6MmdRdXkWY2XvJMVoTxSxVB9Fqk9oHJR5+m7lO601PUoznRQzlr3nQ7s4fM9MWujNm9OPLYBhhgJrBg6iqoZXPt5BWN/XTdDdeCI+08f8MVvs/ujhzBicjR4OiMAwwwH0YBhhgPjzlHrviu9Y7dR6bx1DDhhmGDtUoYBhhgK/4OZ1o+rUa3R+sfBCXK+7A4fL91KGikeB9W868qfNVFtUkQZiS9IpTuCM1KP8X+P5fSnaZhCq590/MQGYiqpFmxmPFSpR0A6bzFVi9OqzcIN+lpBlaiv+mxW6tVCp2+edOdxzYj2UMAwwwD0pphqWbvd5ILgS/XaJC8KWImuAquDm4L30Mb6eM3Uh/jEs8pJQMtYobhprTAMMMBq9CjnyVgGGGA/vjk0XJxBU6TBOjv0l/BizZFAFs0F/1OwRMbchGSPS34m8JGtk/1ua43ROdUOs8RCVSIMQFRkyzmGiDHdEXnX5sZefhfsQgLkHH4cWd4XWdpw5gz0DDWM73nUUWrbb09WF2FyryUFglBgs/htlwL2MUqfP0PB3mr7kJbkF3tFQnMe5WzVju+Tn0GQvauHYSfOFOoU8uHW9okj+4kjSWTHMFIqxMP6HT2eM3jNDT/ZYpu4xiQiikerSLHsUXS1ebsZb35u7Tj6XvN3zSvavcoa/xx+vgNI7+7OXH1HjYe3trxpK+8foPZPWMaMPRbw6CYsMSe3naKZVRfmzVSXHJ4biRBw80BCoC6ijWETFvitQoxHnLdnLm9a9E2SLD9R6SPKfMl1zIkqhdaiFacx45b0tsq+aSYzn7SZCMMVlzdQfmIzifNz3P1EsgViv0P2W+i+OLHlyi0F8NsiOzAmlLRffRXZ5kvebIe6E7km6UkCj226b6xRBb8DeblkitZoHolsC77ppaa3fPxN7wkzZ+cnmjmPNZA+e+YVhqsvYEU7zX4zKF3ePrSeqH98M0zFYpjwvlizX95KVEctY8+JGQAXPZxtI4SKmDYh0qH5BaeacUmUZrN/rZxMVnxcbNOb+Njz5DVabSlEFONrtWqU/ejjdCOQViBQUVry+P5kVWRHA7CS9l6KtV7ZmbPvTADTMmPaBA+RC2HCAjjrDulKXrLXFVVLeO2epFkHpxpweqNvQ4xyfnJhwX7L6HKGQyPZ19yO+RJTY4euei7UoJ0VKHoQU6kyZilfgjlIyOG04NdOw8qsHIl8DJUiN+Q7r6auZ7msjgnO7oLwxzxlvYHU7D+UCK0LVIkpdR+G23uIn0Th1q3gnEIIDgRjaASsCNfDnU/QQzLM/bYJx64mKuIMAwwwESDAMAQZi0p08NqHz6843KTPHi9Tzbnjr1GAh7gYYDYNHNoyUe7aGDei5ll3xlMCKVCGIug0d2v9t2pFqqeLD/6n/7C/PnYTpSlPzVM3DcDo6MQMfSEWZqD09QU4I8AW/4tO176rmWKEFPjc4OD/O5GiwF7s5MDAsaLW0x1Yr6F4eb4K3G3WorM64bvVxw/h6rmoMhbSq1Hvus4agCAdOP2BgFnzZonA2xBubWwDDDAN1ZpBoWRYpiaf8kIHysmXMkbo89MwgXCATzM2IkSA/b+VAmhCkMDl5OGcnER23IqdUUIe89EtoF30HSTdfjNCCHFxL6tZfJzXNl8smbIYk6Eyo3bCkt3p4SsikiWcHBSIQxx7/HIy/lbap8d0UIl4ZPNu3RobTFJGgO4aGAS2T6QrsDdP9crAW8VWiGH9BUbK6yjEK4R7N+pR+BRhE1Ah8FqMFrWVNAv6t7Dn8jgzF1x0Tv5cpgU6HodgAht/nI/U+lmbkumrq3AaKCX9Sn2iG0iG1kTyOrpGpdFm3i0+o0RafndrmdcolECaJQxCxZeiWgGELhr1fpV0jp3bnQDv2Kimv14zmq2giO8SeFqEUXoku6RBqNTw/lSWKuD95UuTJR5boQ0meA/M2+NCVwrxl5CZMXWSEWwaSIv+uZ09jhXA6MMfe2xBefjeSGwLxde8JixyqBHAwlZII/6GKP2R02R8liMZBNqKF8XAVioYQewDAKor+Vu8nfwLo1QNyDDlQw14lh2ZyO4ll0aNUCyozXrbBsIvtJMLHjlzAMY4GAYFgAAAMJwoWYrmSI4pPWkd0A6FsXVtBdAZyunyJvtD2Jc8k4uTvNMkMTloRRgmAwmgj5EUGsrAMMMAX9/mUZ5KgWNPO8NDegzf3+nfnSjLSy2KoAXDgJZi6T4SHzzlMn1KyCMHKyTBrrLOwxSU6mmEBwNihvu3MQMDWsPJESOLTd0cth3c7YBhXp1u/0/r8lBs9RZC7D/3LgpdAfG3E3PFV8mmBEOQpG8PRGAYYYD3igYnlyL5JpoNnoWbaMWAb2Gpr7dMAjgshj3Eli3vv0BEm1WHIUq94B1u7a1ogpM870LVBezbQjIeuzUB4Drah4gMuRMk4qN4Iw1pEMboYgevtIst2WSiEP1UOFtYK85grUH9sTQeRKtYBeA1ByTcKGa17qZU6AfHu/9ctgkaRmrYRIEa0+jhHyXV5JQ9eAzOEtflVy67G3U0rZ3Eu3QbewVy+6nmOdPmbxMCm1xMwscPksQ3hXMD47LQ3anZJfVAt2Y+wbkcecvgWl2MjDNOO1f17zTJASNGGlkFJMT74ueamNhtkgOxYsI/gSFOMbMWoIzB573dN9F9DxsIgb4okvNeMpX9tbXon0z2OxaS0XHRkjBEWbNrOqbUlMlDIWGAd1YHvafp2IE/MMa4q890/vX2Yi+zg6P/lv/yocpYk+SKwBwiTell68/f9R6A/jT/RF/b44TbMxvRfJWr1bXFGUTin6QiyzWBOZOsJzcvwjiUkGLPMoym6WyW2UVARi7auXh8mx2X/7HTN278tNgNGoIWKHukgS/oUDvqF7Fwovw0ykXrj/wW+T84oI1PEYXQ0koKVQHYblWqdLJBfW22G9gFU61TAxslbuMWiuMf01gcR3E4CTxeQjOQHQutdo9svBfGtRoASBBWfKdFh3b9+5TMxt5eu7zRn7/5boQml+HrpJmKg2pRcJw1m6LtH5WyyfjiPTPyeK+DXkbCs4mlucDspsFp1QQUdozQzFp4TDEEmG9JSAs26yKL+XL2/Iz5IYbKSozpjdlpn5Wl8k7u5DXlPBMdewXqcTK4mXMk1HEanjgoyJrPPgmlUfSfxDpLq5WBHraRByK7SgKVViPXCWC7ogHZ62Yy/p1GTPCpbcMv2ONw/RZ3fuJC6xes+dhFt0Dh5UWifBMVwSszzJubAR/7XmbTnHTkVi/BN7Vi91fsBDNA3QJbx7AmKglQw1fo0zaJpfWeftTLmDiDTCmtsfxrjwhX5gGGGA+f2YhYBU01dWlGdOAqNiwR4J1HD3vFRGwYTNlyt0NRg4U/1yhQEvL9o6E45audzAApDO7EVbIuKfi6NWqPtouhCCFfelFNR9Qg36rj3XP9O5kpdqtXzvHqf27yQ8JkINzD3B4FdFQYtxRgOQVcmzT2eJ/EsRQTqeBeuAnCg4gzsMBfUHl3icYz3IKV3iomqLt2Dk22JncFeM8wDDDAYNCB6dV0B8vui4T95/mtrb1A1obEbsdBqd484pQ1w/4ei6IjEKe09V9RKHFxTkcYfCwKIMxXUPKhDYpAnk0uUjNZl3flXHFEdg45J4TjZPoC+KMn77Z8XuIhYH+Ceeu5YQrmz6czdDc3VmU4yCd0g9mobOecz38UKtoMKNwkzbkK8EgmskkhGv4XbkRYXnIL3zUSUyDYaPlUqH4hAv4pJxMXVLxsq08I7k1LDWOkFuCdT666bAe9ZjHO2pDXy4P8rzN+HcYr8Fjl0dp7ZMbR46SRV5x8XZgMCqSHJe49xFRLoguIMdn9oDg4pWlMI6ObweWX/nZgljMy2nZT5wyrRTHxXdlANgLehExGKEMqinGV1NgKneshNlmVuyTp4c0teClu6veVOgQpI/4uvIM23AMfzDN86/wjYSAyRF2WHmMtZBBYHyEa6tGRHM4ynxRenI89Uq/ED9QMLGmsGH6AuaE6w7hJQAVIY8+qZ8VrTi19Y9TRNbRk26jg4bIjlfNlbFwtdslBnIzlcf58/kpVXH5Zd3TzndSuLNv2qobNCC9kgxvVdj3lgGGGA6clTqMTq75fnJK/BWoq2AVaPSy6imAYYYBlw152SZ+2UildwhUSf881XInqp4soUrLeqyiZ95vbxswTc7OmEw8lNSRmuzgG0fzIECxeO5BQtvfK/B+JHQbczea+Sx0jmna/OvDuwOj+mKUimalHc9IGXHKKzDVBBL/AlK4iZsAwwwBvKqV0qW3CWqSNFeyGAKXwmdda9VoRZ5bzXWF1RBHnLCTqBq4/deVQB9oTr1BlHF4RXukYeFUGRSFvlVVok0EKumcb8r8UMbKTYqttCBTBa2drbT4ofDQXdzUioZQTJ+uPM/gywfY8iTCvZGG6z2uDP848Q9vjbqozaGlq3IVZNiezme9P3PVSeooGg/tN8UZbGEAqFtme/pymedTm7h36ahpv41ZVVgNX71gjNLopPJdYlNR8miy7IW1ri+Y4NQhAjl083ulhaH4PvB2C0HIKZ+3HTrKQHVoXJB1lFRCa1ZCmZew/TBp6r5oz6Jl5527Tgykam2CJXuT9rUJwcGw+NrnAoouAtGPpJ4iXUaj0R5/ePlgYfT+0LzIc+WgvmwS4IsdwuH3Pt2171B9U3Wpfvnu2lLvUP0dUcthx9AbQXvFI5Lfp3BtlK4l70FjfFbiLkGrNy+yByJ+wxSCXEv/yZidr0hfhRCG4oevouz3mbHem2tzpA7iXJNIcGXXmD4qfhHnawmuGcd2UqC/Ncseh65ou4GppSuRfab6JfA+1lDYl7AX5A1C++Ifr2fBgK0orw+Jz+18b/Q6t8I1xE1eSMD1SLL0of/Q6Uo7Y5W3U973eQPYEQY936wYTrkbqkHHcD963znSj77jEuvbyFXBnbI/oBakCR0oKGrCkh6no02PyBQUz1Dx4ZxSUiLWCDg+jy5XKXWijwcZeAADndtNzdr9e9p65FwhRXoOMzuCfVEfSA2ZTM9IibG8a4wMdB738VQPu760ysHM2i08bx9SS2DS+MISBXU43ztXZ5hOtuvqYA2ebBnQwHo9WKKvS9tdRHpoYnHErFehPYTlR6J5jVmsF2i7FX/DIU/yq8bkihtTdDP3osTOZyUwRGd+Blh/2TMaQEPzHaLXH74uCOdZ3nxPhIhAQOLCNOFEmSE5Ih4FBS5bkJ7SESJ0QZ0TpBkc/uU4086JKD00gtRl80k7x1+Hcin88RZho0ERmSA1QMcDh8yAgoszUfYzyWmfXhuTHb5cnMDIng3Dfo5mbkRkEd6vOzlgGGGAyRlyZ7eOv8p2nkfAuXR4nyfODg3i7bCHQI13hprOwKNvkfYNzZ9WyJYNrkLxu1XCeG0rZMhgDsTCX6Hvoj4/6/sYHt6V0ZPxfrTh2Wkp6SPTCKi52m7U1HmmR3eoicpj7Im1s6Fv7zdXB4Rq4J9RY9Qivd7UsWNkxTQUGArL8+xCRqBggWDUPj3JDg9ozYPi6Z4sxlEKvoEyrFrk4NGIm0B2no+X7xWVoLuv9mKfbCr6WI4wkg0SwRPPVfpdDXT1epUHas79J+sZdr7ekoXAiZDsDbbRh+rVYulBbH82JoQpKyqjY2PVQtbbMq8A4ch87cMgvnwyytj9gVjXACewiDDaj+Y+36M6Zp+iOgOodfa+H/SuyjFygS4QmG9Hr1wZaxSsMeGNi8+awGjdZqIMMyuJb6vJ0sez7Zbfcb85Jf6AMBrQblowLWC7JfmQM9Dxnxrh3h98P/zhXMKT99pKuxPJtjJ2PMdG4mj29fqwJ/kAxJVvM8h7szs2gjH3Jtrm2QGquIrUtfHA+S6DZ0ZoXJnhdyFmx7sOGwZ42XaO3/g1Zq6SVfu9n3qSo4KzPKoXnMpL8vOcYjkZGjs+aLYOVkZMDx6Q9IDUzmUcdZLr4RMXzQnImR6xip5G7yMfepK9cgXed8FfBCL6bbDNlBB5We/BHY+dGd+R5cqQ/nnfD7vo8J2aMz6k+3n9mcFiBIYKM/NvWilmXQ8v7XM8fN4axVx8vag4MOBLsTU/IQNduleEeZKmoyGPN0b1kI2tsAwwwCA4I4/jlY6F5H0OKIkcvEoE0rKJnVvQzMFycx0xR4cNXbjn/W6mA8qQXiesFpne55VnjeMtbtY5MuCsBv3Q+xQPH2ht7xe1A9B4bJEExpxMWD3fYzNrnMUfWt0YX8WWBa0izhYhiqSdIaWO2hkhhErOTGH6sQgNKNRFdQX7mwsyenaSDXPP5/Gqym+J+EswGRh+rLH7QnZwZwdHeXu++y60NI4Ivwsajw2Ho5sQM9e7DRVp89lvPqw+1n5N9Z6VW9BelxMsv38vw605p1UslRgJWrPHQqmGT94WchActsIOS47NzUZ0OQTdEflWGOOJypqm5PaZ9dRnndRwSqOZuzDHY3W/XNZ22jAHyS14QfiNBwr9KI+L7teVMsd+gqaPFct09F4opBHv9TDwFkQrKT7F1QtatkaNBkGveFiBqB6aCmFa9z0i+GT+/we1+OucIDshTd3IAoduFiBxcqyQ8l9D1LzVYwLIUHauN2H1FJrLAYj0EszeJOlqYrm8BCuUvR3el29zUe8J0tzGDBhj6W2WL/Zl8OWo2kGX64HBbdgQhYF1MwxqJEAb62eP1H4RgDy/K0saLsE1VL+pFFpSksqFzK6StWf8k+wvo/CYdB2NzcElF/0eiybAQxJ346ZIjPDILGWbglvr990ajGR1+i4LKMS6Ty/VguT+wWVuHC/CkMGDkZsefNBnJfMyVTxXMcRX/uB7I5wWGPQ+TIxHnN7rNw+ih7MOE0OHzFYTUpNN0FrgObj0xMUR9jyHzqkWr5tOVGojBlcQjOabfDuQSnf1jGzILx3ie62oEGbh9WPaWpzqlwU97dNlMWGpxjza9T/08s8Q8oy4CEUNrblKpjBJeVAIuyxhmut4flyvQjY000GQbTL8itoVZG4qJdY0vZqCx9ur03ea9dErYaAMGufzLcaEQn8myNWTaQm4BUQlI3ue36cTSuTpTgbhBok83H85bgo8jepXSNEVfWeAZOP5rbFsjOjrK9sb7JiT78JyB21L+xMqmkDwLgd0m8T31EayjtkdP4PgMttwHHIk7zCBEu0bY8vv4pDpTvYGjbWjNeh8Tv2rgk0d+Xux99d67thhB48BUwFREGRwPqe4MpgNcOZy5CBwwujYyRJkT3I0KKnSPMKolNlM0a2M4NpJrxc7774evexbEoHCJCBwAs0GY7AQQLdF+4jJqOM+aOcW3VUz1I7ofMNxhfzDVzqVz3trh17kpau1QxMKMs13vX9BjkkbL1OMpnlTA3rU66SHqaQk+fHKpp1GWYH6dXxatJVBeFgruzk2ai1BWVFeufYr2+R3771qOd30vEvt7z3a1a9YOcxp57TG4T7+XBzeUspB+HVZ4Uy7sQXwi1dJFcBQdo88MM4C01yMgSQYx59r2c77SpsUsLJFhQqUlO5AsEaOuhD1EbcRiAtNE5L9LXFnUYiBbiiQRkF8aBMKWf799nMtBLcpf19BYUH320jCX1dYAma4Trzkf0j0T/kfWQOjXxJCUVVL1pdxk5mLO82JYJ/GXjAdRvpURnuY657cOkePaGg5aenySKHq14yqTZ9Q+bt7mMaOHOcXAIUIO/wnalmDreP3Kw07xtmX4LU+bfrZ8nCpzldfAqsDZIlp5XpjfmkW+mxBJZu4sh4XLnlB6VFQypCUV83jnJ49vaufHTO2/5NeBi3vE/VgUOyW7yyLEWiq0EDTsExff3VQ2NYJXkP4/7ipn5mDEaVFjfk7YYmSNnCtR2FEykpuJ8lAwfW6p4XZQ8gQn8DtAFiNHgk3YW3YhslNgV9mSp+3Kz1Zuiy/0c/27CVPRQP4XQoQo3XcM5ZqtY6a1RPnvCzODvKy7xh0ds6vAIIuEwpGTYBhhgDovf8xTSicCxCqy6tW/0eSOpHoJcccHk+sBgSnzxMsx3Rg9mzldt73jm0JiTG8z0TcvSC/4sStfCCk0ddSJbtdLDPwF87mP+2O61/ZQzXQYgUk6ztNtpj4KoCfMlPd9MMEVdrep6CM7MHzmhjVHEObIPN+304BPh7AmenxDr7pl07J4L8tEycB58TpmlbCNYNYRRH7VaHT1SBRF2q/jZhgb/rjaOwxx8hKNIKx8JV524sdkneW3GWUnmImlqnNq+ldDZPX76f2vUaODn1OXHZTdGFxqLxyYL15QRT3ayU+pQpsWi5ODcnrG/jFwnL5vgn0H2nSp1r3xN9uxkxela43qWQtfXVnPhijxN0tD+TnHx83SdatlyAUAhZAsXb1P9L59GhPH4kN1uzI07hvMPD1VgTir42RYAz9aqJ97frAgQOmTBAfvIXb3NWc+iDwZp8v/AXOcDyPdiSGX6jZre3/ieyBvyQMLwfJlN7kUsj3BgXHRgQXAvIsDcE5vWlJfbCFC4QD0Fh363ZvnpUcKqX0SRi2xh4FTZGRrHNQNyXpo/DYNLhnTi6Ycl6ULB0nO2pcm4ycuUwatT32wklX+V8mCH2UO1Qv+9619UKmxdnp+BJkt/ksg87PZtQOIlK9fS3nHrS95y69I3PzTCQeA5WxD44z1Jyx+dL7RQSdB4dF/dnRBga26i/Gq9GfR/468pOFCFhV5wxH0c7UrAHC6L1Vx8ZL/lpsRC4Vjo6GBfuwkNSoU57MhKFgW5X95N0P9eMaI+7dX4UyDdmW0ReYwW1rrvQWMkISSF6bI8Un1QDhncxH45KXEMDpXnIpqD+v7oAzz/1vM+BfnBV3pGOTl6PfYikbvkMAGosSgAIowhLm3RDw0xHr+6Qf5cql1tn4sJCEmvHYc/jM2/9XR3Oq4tgN9o9vLfSXnbbOjyVrtggjZCZDFNJ5iT4ZgEVa3OPQaqany3ZkE/gehsOjvIdGvGlqnlXtM8ivdFwcW2L2QgGmNZ+Z1czIKtUdmJ5pF4kcEv487RGxWHltK5zSRgFDlfDgeiUqgaFQJgq4WxE/V7JA2cHQyafnnyZQZP3o2TPj9stawc2/hMvN3iXAd9nNxv20yvCrh3PPlII0AV2uayKq8hGXA+KJFcQ+y5cq2N7W502wwjkROXQDo6OgLGxTRTyp36IYckjKn4HqMKmZw2HWQjULQQdqQxnfOFR+JRXedw273yZmnMTCds4jjzpzBD38lQZB5k+IrmYZAMBwxXt/xCbOSd8WSYPuBVtghj+QOARUagN3TVUNZiiqEVkazY/lFL013dUpX7dk/WtmC5y/lR1eKQnaT+4qi1ULtZPpolGG+WaHh0oZo3MAGGGAwygRgdZHM87yo4FkRi0qWplB7z60D2f+GB+mGD2Ki3RtJvidOEudtIQLocFXIQiGjHrwnqRlGHmz/hFGoDyMxI5mU4IrHigOa1ATdOmjTxSAtshW4XdPxf2Fhp6BUriSefW6BpN3GZkYaxtj6KPWn1fyL5vLYKlZW7h1oxE1YfeZnVfLMWGdoNL2vKzLGNHzPKohP4N9L0/mdvQyhwbQe1BxKTg8jNIkJ2NsIJYl+rbyDUJJvZQQXNrpSiFhlM8yuRO9iOe1Xn1Wm8cAgbauY1MJ3GFoWQV10gMdb8kJ2mYp2tI2JjxsJWe2imfictypgAyhdsLj8sDimQ+3VJVuBuC2kcWlDvestdFiVLQjJOS65ayTyLypGRNsMiW+KwTA2to5J+PZQxqrIHyZ1a8WBYG0HCtkwoEvidA3IxnTdI2jO2zJ3z70ht17bBBZ1TY8aRDf9g7XfCTgwxswIeUv5+f0mdkyIgK6/JPNGwbfu9uEcRYurr2m/loALEuZDCAcoD2NvkDJTOJ5rJy+wev+HyBlnOYBhhgPBPzLCIklBWJxxKCTjew5X+F1HLI5x9r+Gf46slfJ1/IK3u/VJFPMTCDNjKHIcjDr/OGvEjyUeC4+jwu3djioW/naERGTlTCRCnodPP2V2G3q8WF5eE43hSyDuu1w82xFTfLzEQEmFtnxEV63CTU1nBNHpogdLhWWZbU3+zqXlv+tazHEQkPCRf9KSHguoqwI7FttMbDbttqdjhK+TYYjUGZGsQNV3JghqHTvX9yHFUMC3ZxPcrMzAZ2qucGSdVT88/FrtgNY1TwL7TYASboYIFePaUxvTIZruLObjCrU86Opqgl0mGEqw4QMHmad4v1b1m+Y8m8YV9XTBuEf4GuN0SrZFxZ7gbF2Yg166vj6FcG1B/XVZhbd7kuCuu4tXWQCFzHXXlq4Xn3WC8NTtyamsdtgSsoALjVyGWYth444NHS13XFqz5MUNEDqEiItZkiz/0+9NQOA1elLZ2yuK4MfGoMD5ALAWBdBFAIUHs+G3AXk54YP8fr1bQW8lw//NOmDb8CmKcHW/G/sMS3LPVBvknKzeHf/MG+TsALhk2IXwWr6DDp2g6RtElNtSGmFntccfcuBdbKtRrzTWJ9gN8o9m2pAGgso5y2e9UGhDznskpRJrEPegsMXaBvUhHzOkusCfj+j2cumjoZithwUab723WWN9eGOtNaa372ng4zLlXFyctzu4C9dJ/X+URNqTLHMHrSiecGUqaSAk9XZBTqmDK6KtIfnIdMyeb2cbS19YXoE9S/FYchP9Dez9bHjW6VvQ8LY6P6hEiiTgKiHPFwtbwJMjgnGtTNm4yJnhn9qHwd8IM3hzB4bGzQtn4WM5WObL4lAtfsxze5CgkyxtEbj2Ga7AzLEZuueLv2mHL9IKC646t3KaR8MB7/oVV68iQhWwMQ6eLE332Ykt5EPix0o0E8O97YNLDPgk6xELKw+diBc6sR2aOUApmKnco+cOR2uwOmmIDtVCDzwn0ZsCHkjL0YbSYTuPEpgco14LCq12v7cpT966IRuOG4Ln19SoRsmTc7BEZH2TNjE3Seko9PUmHP8W93VGYSWfxK+in+HD6oppr0Zj6qIPvySNx+yt5LxLVUDenxrTXHurJjpyPxjK/16jxlR4s0ttne0n6qeb5khb19nbOIsZOrqeIRVdZ+dK7mD9Wwh6wDDDAMBjsQ8d16Ua6Wobd5noOGrDcRxPHe4mrOVdYNGBLuLOX+8tf0B2WcmtoSJaa2JnKd06jVgoWuf1UCIKhc9QmoXpMLFca+t/b5V9gPfMbyqwCDsEr/HavdNWX+IWwXsIdDr90RdpvIIl9L0dy01mTkO2e/ezy+R62CZLwv4PftquqV386UKYjjHqp6yPhB8qjmQuaWg11vPAkJkgJTO3UNbidvCDfXnLPkNhy6kYwUh2avnlGrqf9TNVPTd6JiqHh8nqVQtT8i+e5AEVPykh3BuacumcB9vNmJ9oeZh+LUD+CbH9IswxNc4xf/Tqe2TX1FiqWi/p7OicpL4kcJNpa+2mduVzAhWmSRJRbv1b/zcI9G2RLUYzi56r1zcNVb2aIeyB5P1K6C5sHP9Lbj+mb0TiHHVjnPAnpI57/FvRsjue62DM2JEat4hb39qWlB7UWinae7ZKASE+6Emtvv921EzdtXB8UL7RVZHPwvu5IzFrMPvwci5HQ90OTZr2XQ3pH+SYvF1LRcUcoFxSYjjyVK8tcNYBR9jEFAtNa5gQDIkl7JRnpqLEBwMdgpOk0gJm86Ls0AilZtCoeWIXl6PON2Nhc74hunEQcPpFq+qmFlY3KtjmjKIgaBGxnJHvlMQuB9Lr2d6bQMDJScXxsiBqt/8BHq2wUBUAErYAJAPUAJYIHAx7oUR3GcVl4/my3lswBGeP3tO9jlanBTPwE396O6D3Q2ZtpxrbLIPhEMWYRNzChpGHdYpSQ389EndB4acdu5ljDsP7401BjkzbSdMMAgwUJlDJLK7J6UfSEAoN1Lu80ex6KrcQ/otZQONO2rhmyBME+I3G1aHvtwza2JISTCHeaMByDr0I+sU7Mn7FnBDsjZbAsw8/96g0RNLJtIdn7/2+swGvPYsBs9bwI/uxLTwQr39p+XoVaWD9d3a61+3uv6uJ3kt92zyv+cjfHv357XADauZb1UuYLDGjYn8lM28tUfLEL2nt/69EVthDbi7YbZvFzRY9E6bAs32BEqr7oiWwoOx2bfsFfytjUj+A02L2Z+z63acaoJq7ZzNEaXnufzK5zXJ+Kajq//x4R3R9TCBs9pGBsFSNOP/faZIC/bPQLwSGbS+KsyPg5sfzP7F9YiDb5WJGH94wZ/sI+RJSemNgEHtY43IQ40aVDUcQQOFZmoY/a4KeUKFGUQnxHkdbk03aL9r3Rokd5nVhb5hlr7tKRefXPQ2H5v3dpApFAQn55YM5yZaVxXV38046qkMB7MeiFLDP+vuAOqyyYHReUWOzoXaSODW8ubiloLTaJzsLYSkeynoxT880BLb/7hvvXQ2b175vSVkFwwheJ368r5zi4S5dg9rkKyhPq6NNGvK7g94HWpZHAKXUdLQQ6V9XYEArfgNF8kjxX9Q9U5i6dd6zsEcMtx+KoqZ28dz6ZEqsaP4Wr0hGaOF9B0bFWjmvhc7IFHRXkAGT2HnRtAYWokqxJrUHBpAO6iiMr0gE2IedsmO2KLBzI4VSgpeAn3acI+cUte2N+zDd/MMvup4By5Z8X6A7Oa0iVcGDM/L5jovkSxh6tq8uWxzUi3yqJepidMhGQvBv/dLjcsJCAl/rYxj8g9CB6qzPXT9KkZceDiX/pX9iduC0+vgzJ2QwCi4RdhBq7ySMiW3W5WhpKahUDQUvQmndfe0b1k9flc2ffGz5AHlHSzhumjCuH8L9ghCMFiIFHW9vq8Uoc3VY29+xMxk2K/dDew2Rjj+r+wnK7kCJlcs+5WxemSeNOEEdAsjHInJ4IRZHb+3ysr82eV0Rf4xV5XWUu4EZnjS+ExLZ+0Vohjg6l4uhBM5wCYhxRfYuIgtA1ohtziPjSl744XoMWzAPTtNTqlmSphDmXyVskmqDO14AHRqCBxoSneFd967Nw2kmzVdLnvaGfX/dpF9Ucwl55yP1C0QcksK0BVUlZ6yuUO+pFhbPgcGcmU39B/EbTm/yQ75rs/IO6QQ2zUGXTPBqkIVpSTJ87RtTVqdg4NlqjDjTeKMkngSh4JM8A87PoUgRxCBPa3de/sKL18J5vU2FGg909O9HKdCoGtdQk6/5a91hoZAcrpExhyvRomnfKCnO0KAAwiRv9HQG9XggqdSHHfQoAw0xxBmaCwQuwQn43UPNZfYTyWwq2x6FJoetpdA4hKVV/OL2zZo+0lS+Vnu/rOul7Lwu3lAQpAnTUYo79uU1Eqfm27q32dO/3lWT6t8C8eR9Ll1rIqZw3X4GMdcSlcmBxpNeWMl3JCSj3VI2II1xy4C9KLFGjjvmX9nhLmkLgvzJhop0TS8B+rPeW0yjOb/se7l7DEqiS6QHtca4ZYt7xzviQNa/apGlAoGcHYZNT5Cg5nFYcWJcWSgpHP58X++kFIPrZpB2ilZPL/HFLQkQJn4bc+v5KemBQRtwpFKe77SV/Lir8zSZpZRj6ZvfyrTE05+lPKj7ZnMFKBeje98LwxLOj6yncAO2lUanNQvVqKL0B6qmivH20orVbKX/M+eyy4BzvMRc9FQ9zGXW/WFzrKpdac5j7I/hU1uoWW+i5t4/zOhdVDPNgPiDGzr4XtZ5EkU3XOqYKemRFoIddxzS+ydQLYBhZWSJnOWzm4UpjW2W8H7N5vuIPmmMYPq/RssTju+tIQAW0r4tLTob7IYpisDXqD/JDEmH/QZ0lPMARxL/hGkIsFURZzXAerRau9x1LIOqoGgHo6Xcug4FdTHelnbHKmSBoYdtqHM+KcuzY2cpsm+Pl+/gKREt9Jekp74O+olYyoYrcnRhxCFXk77QESRD3wHDRFEniKNp+cXNH1VRY1t+waqH49A4de5upPz0DguF4mdRSuLI1rcCnEu9AU45GAMiPq6KkxNs59EnWQwD5Q6uQJI+uN/L5SI2tmkuQZX/FQ2XJX49S8UvM6DY677AHgGEGAA4oJ/qcC176VuizpVASSdgFx4TY6y6b7gaPZxusn2NC6s2eMxEDIlTh6vAe/zzaiAeBuVbd+/pQsZtmX3vkPzjYn5vanEe9sLVQv1o4byjT6dgto9blCuhLjo1w56JVE3ZQFU1GGG0Rv8tBp3VC8rWqtCjI1X01n2630t7PeZ4mzOaOKq2vle9PJLVKcQEPyzzQQc4dpkmSlBQgigdDT1D3KDjtHfkBlELdGo8O8GSEsbA4bvNM9wk30gVFgRIe9oUl4XbDMRtGwgSdp2kUSnX27+Z+1I4S0pjtAZpymMMf8STKTIuO0i7fGFD8b4LZgcBwFPRo5aoNcHcn0f32d5dgliULFcTMk4YOr+hYK9TaHJmxUeq/+uiHfRyZpn1BVdWbZVJZNsfqhB0MrcHWHdrGI1lRtgSJleVLDWhXHwKsoJl81i9fMS63qxXDHJaPsIVetBt4sCeqj29d5vb/vETtrcaJHHuXbMEkVJ/HIrpUZlOj30JZW9tD8Wv8X/vVCab+n2Cg1qWyz26cAw65ot0Xb2NoTN0RfNE9j+RT95PsTL3poLRogfV/yD1Bb58gwhP6U5P9O43sqV80+sZTtJn3aKbLSGVSm3sjmPTj6Vs3nvVPLcW9YQsn+QpGCqsKrQ01aLTl1D8J5JEJIFlO2Ic1WdpQuaMt9tCIBqZrU2y7m4BsHVMoV0pAuu15yPAv5mEnjT7MLl9rezky85b5wnrd5BWameQgJCqbgzgx+BL6KAmyLNmiXp9oKYXEq+2mRW+RRk5KPbUBxxZp8cv8qswi/IMMe2+fJYPZS91yxvdWfOhYg4swG7dlXK70hJwgD0xlyCAToAQzJGn1jTkqrTOx0KE6jHbqWvjOXhGmkvURfq4wDDDAUZmFh63d6U6pWWi4I4bp5ktRbN2dNUwmP3yIIUiDhZri3q81LnLqq7vhib25ciG10/umDuzr4HBtuGRFLDBtjNG88NAe0DmGvPztxWkAIVV3nhlDC7PK4GL9Tez09pWm6scsK6vohgS1g4Ws9TT5OGRQdNLfNjJEqPxEgvm896yWzAzkphvNaJxVdIbRc/mbiHw92aWd/s5Nw6xF9MnZt2kwmfS/YQDJFcNcpx3k8Cp+ty1evX2l2EO/DvuHMMf9bJHp6CmVn2FdMbg643iW1eyY3I6N5i+dhvp6HKF4IE4c0qbTwKvecLBcXQ0VqfB7vaJWm4TtaxkkesZ6eRyh+d5A6jg1VGYUs6xzIwNS33eKY+3TT5YfGOdS1cHlWm3Ge3nZXkDBMp+j1HCJW4CdEAbXDd4mQ2/CX14N1YRwj8b4ZjcUUgFMSMlPZ2us8WGuiiHQkZ0xZTMpaOOKWOE3BXrb52uHXV2xrV1W6vEQILzBUmpV/S4ioZpDbxJa1OQ21EwE6ntB2AYxQVdDdWnmZAnlD080mEVIRpf6aJfxRuTkFB3gzU7v+6qmHjWeIemLG9TJw9G8O07zWpd6tRzU1L3X/bhhX1Gak7o61xZ4K7q5cbHuPTQ315Vepw6CfYRc6koxjGqbwvjJ1z+TB0FVuGmlp5aAykRL2AAACS4p4YGGBPjOJ0EMAwyFjHvblllIAAMBSvaeDBC+iY7zOmhpvU0uMAwgNg2cQbeiYDXjYqRj0xNdGm98gKEL/d4HYkAn6cmMdEvAhAPGz5qlRGVF6SuFxPd14OKWLKiU8utGmA1cMlV5eZCs5/et3ZppwgfiAU7rsAwwwGj1Xia6m7987dZ526XLhRQ2AYYYDxpy4q/cLMfbOUAnbuFOHQEHAhSVHVf4GOIgOfJoGRtmQPBbpNxzkXYM/CpZIZK84gm5H8reJZ6t4264QGm/f5br5W0qG0W82YOEzSWMlBBpJ5NzStUsalyPfbI3O3zXClPnqOTmJBUyQuB1qUtdM37da2l6JBOv6Qe4vhXR7+y77IelavwjgavqVzFfXKbN+ip+CDw75Zf6kniXoasOxwowIbutqINPDsP4ipNI96tFjIstmPu+7+8ja3SdAPDqkdW067E3gz3SNXM8JFJ0ebUZ2/XNa3k/1F1ZKs4PXnJ7p6IqORAuhkH//iTqp/5G+aeKIqgJcl+Vc5oGmfPuiqbddoGD/VKyeNzS5c0QppE6z8uhOI0SJLZJBxkbpvcJkIfVPCKr5WhPwuKB80BzINlbZ+KgA4a9qaC9w922l1OTFj8m5IajNKvHeTfGYSDk6DP+a4xFOATPsyqGmZ4NDu/Q6OSxcvp1xyloSZbUkh2XqigmzBDx5wV/+ddsv+bwxSEDvBTk5b+H3jl0JSIsBbBXlJO1lyjBJPYCLFzF9GL0iscTKvyGd4NQXIFTKpXAYWt6MGr0g87P9FPW3saN1SpucPItnkmP3/rtdFP35v5EW9mq3xZe8QIe7qmv6LQxJUhOMkzIWl1fKZShDbH4w/PHyI+tFSzLTVX8cBPDVDbRYT7XO9yYe/6tQqkZG1kZdNaOT6vG+XWt8Ij9ThvXBStOYAHDWQe7lz4B6bxa/9wp/XVwMaDAQAUCHc2LVv2rKfFaQ/rbG1XI1TD0l2CmKjjKg5kYuzS+CXXL/V4EvQxRjkEIXlcyVoLLfD5D82H7Fbd1tOvxdXIJkA8hqZzls+34AwdrY31Pa8BLRdv8jNFYCAHMV67Nkcq43d5kKNvwUQC4ItZREAOZ/gx7m9W1qV/2tiGAiIo6zCHlrUanNSgNXOoqc85qnF1cS4kJPOY8/zKROL9AKYxIu+EtByeoOwYtfL+Ce4oLLq/x3xWWBEu/bapMrO8QbVr0L8OtNak7ZuIwnr9cC2VpkN3V0aG/F75co+Q7JuEEuug6T+QxwwQQYO/oC59IgtggzlNSsJCfgiZOUM47Fu9J5zeDdCznhsDffu0m5HijvY3m5vlrTuVAYDArgyapSfzbZTPT6dHwVM7TSmORE5t/LZF3Be9BxgS40rGuOgrOlnDjU8SbTCb9FY899Xp1sg7KWEeqEdGdmRjybgGS/EGanK66f6U97oVvdJhlXm8sflyaNo/T92lmKrTG4gUbkxfwiM3r+HJVkdkv/zckkIhGnz0V/nv/aGwge5bAdSs3YRZUQ6BmGG8bYVbik9n9irtplcsWYZSENrckyBuapwl2XnsVqkyGsPcrRBR8fA7gPBqxCSqqlZmHTjwMrMZ2xdN/jrzn8+yJSGU/wURgQZdm6BjJbe/WIRPvftkx96Lni/3mUjys4yTTcAu5Pu8Gr2mIAGyf900XwDW67/dVrF6034IlYkwQR3Whxa83WMnOCo03k5rS9ymt5xzTHcVaM86gNgy5Nh2aJuJz9BksXAf0N0EsnBXnTJoLVr3Cr6ILO3rlFrmJFnrfxlj1JaimKs58QtfP5L5uPhmiYoI7VpEs+unlI/MGJGwT137x2itXrKX29hgsH+rJq4Mzu8PvsVuPgp3ZlUGkTdH4QBNfy+HpLZJhJjIIPsvrqzZEXvQKu+YpbO7MbavnZu2ITAWNRT+OYKXqbdevYt5B9mwwr1ZJVqH8ui0ryve3qrrEQdo991spwbEIMGAIXVfP0EBvbC3QjzDV/iEPAbdTmDPuvwoFW3B0FlARiaIP6/RIdj5hNPun6THfBURMH4LM2lMQfAujisZbZP3UUsjtcxb2fzXUzy9Tk2D8K8jwSYjhcT1nGOJ/aFkktB47jr+zrlP4yjG5K3aRg/DaOxPDdrPw+fHU91UXv8EtVieOEJj7n1N2RQONOCUxN0KB37z3eyWmw+h4qLdavYgl7SiAvDXCZYQ4mMFTKgVZbd64i6PC+tJwzXSripyStOa2LV1HcPmWR2UpZa9iUW6oOTwksZTND7lozBZGe8VwE+vREqXxiQ9mPTl0F9Yu52LsNKecStPG8XyeF7ztaQstQPT9IcqGimhg4d4cGasrYJAmnxd+JXodA9c8pkigh/nwqrZq5Pnu9iF5l1a8QXnCL7b8cHRguuQarBCd2aGLgRIj+dGOJmtQlziykobLepjndB+DlN+RukV2x3wJ6NjuzGGAM0iiyxtuyhONBA9CieZbT9eT5PoRnj8Kfe2Y+tO6FHL5QmQOlfp8FBq+9zZ/1Mz4PZNIniHz6sdcx0hgc9ylFEz7DdqDBFYnnM/RzQRzRBiYOB6xiE0XmctAW+ORXK6JJODoCs014Jd3RCIWhR4i555FPagZ9qFXHyYiSkWlXqJd6bOyrmeKvAWAnarRNRnMCtetShc8N4IIBULN9BmFC1dDkEhFm+2xpSEZ798G+t1MQNtTafwxC6n68KniUaJrvGIndLb36RA+GctnGLt5YIrrFaxsP1lWwzrHqHvjPP9Z+ES4UFDjAKVs2v/GvT8VxY7ii7gYWZNvD9qsDf/xWaH06DxXbJ9o+UwtBu19MKvggsns7GHwbU1lJu5l/pwiUFoRANazjsgUJkmKGwWdLG7PvjcE3PNdR/QvIO8qrP1ifjFI+V4b4Az7xfCIeszeYFIoDGWhTbsVD99jxo1GShMIDVcaAkyJnhrZwNnXcgiTivIMkcm5BIImc2thkqICWSgHMWkkUNKbntGSdLA1RUysK/iD6sZDjR5l9g+JvPMc6ggGKF8E8c060MsYyGJG6eSeIMPDDUfQRtcr6JopbAmO+PV28xTdaMRaEEXi9oTnb7i+EyX+lB5Rkp9rSIZRaEQmEMS8jcdqHQuNKxSHZKpMLFHnoJ/ISm+o9nfGmWUB1s/sTf84wQjzctNeo1mVR/DJnbl7+N/rfkbbs5csIWLiHtvfJ0MBeJWp9Kk43YLjt72HVlOxCG90DhjzLvBxlQy1IanQoDMY80sMW+dAkZfkYBrZrl5kF6v+1kFyGM56pzc+kZQDJ6Gi3HtCWzBSukY+Zo8LrNjT+Mr7xE5d7IWgEbF/jJOEFgzbEce9VVcsrdev9Yu/ta/C+bXbn3vA+v0rkF1tLeYn127EezsbT5bVPDFZfbO9htDoMphuhPOREYYEJEw8cwleAA5HvCfQFweLMRx/hEu7r5dZovjZty2LwzJhmTcoQwRd4+2D6sNX5Z0ydcKOPm7YBebW5VFe1azXf8/spvhlGYadmquJtF/spc/vfpxHCTrNPNnsz+ceUkBGbZxqn/jQsmPuxApTB+mPGMqlXDKnW4H7CXSEmYE/2hLkNel/f/H7nrpLQbUQdn6ep+DaPoP1rsME1S2W1WbJX9dIuhu8KhXYh1zs42aLgfZVKVD8Yvx274msHMb+BfhU1xFfdTZ/iQvi8lYv4i8YYLrkpUzFLewlWgSIttae9xidJHvFYfFNfJzNfKdW2gcjH1SKs15Y6u2ltvP6tbeJgeojzBZnwkoN0OE/hGEJR4lBF+l9W1IAF6Gf5QCxveEDM9o0QjeXboYkPJfb3NHWSXt9mGyyymcgigL7MtilXsQj2NVkMQgygR3GstaNym5iw9HPNRVjcC6hi8s4DNW60vqLvi+5bz9kH4MWq7Br07Rg4I1XzKghFYHNFsq0lk6O2c3jt5jeUQLpCSwcMb6Rx0Y5BA2/P8XlBJSZkD+oZCEqkpa96SpGRoRXe13Mafr+LbLJKBc5AQH/32GV7TsdBBZ248CFaZnDxINBOkwFC/ybxMrkehRxEi0NAsLMBLv8VuSEROrOJwCU05pXyT0DMaZ70jqsKwj8u/v+uDDG9g1IrqF8wScb4oN6ZnxmfhCsRh2Wylp9yVN6FBxu/dSNkMN7dgUn8MtoiX/u8jWEgcJzf6QFRu110C2A1OFf7AVp8psdBaBVzq3llX8KsN6U3cQSsqVHRw1q/4EgjCFlDp1Qw06iOtEBNAp98KTPPWyJMhyvGQVQX9z2iADUfBhXxdrtOCLAIYdKfeQwi3HXS8+4hojJsBi/20GCsZevDWh1COhqEDYEBcE/wugO6EXZEZ5ynEMOHW+SOHeStjtslAAFd+DI0uzTk5FV1XRnM9tMmF6R4G09FYB5JuTnJLklcK3gr4et+JI/Jb+Zxq5oEs6YYqB2Z3pz41exybu5L6d8rTlRQHqIHULnjZJNCV7BIQ6SAgFRcHEvuIIdMHLNxn8/5/u8Uilp6ETlp/awl1dcvOjZuwM+JSCVqMItqmnkW3w1r+GyHHos/np4eqeqg1jX8x7/yiOR+LOtnEv/SV+Tj0dO5AE4LBJxduutudwhNhJZj8xN0Bo2mdnLuHpl5brWg/Q5kfJh3okBMchvi2+L1plP5LUtLTMmsMXGuQuVTXab54/eKzXUSeGF3nT7Udiz0UJ5AUawEfS5gSChOnsuR+MWl/lJ2ltTXs/bEHZm6+lmzeevh5tR/qGE8ek4ROfP7nCI9Pc5t/OWfgqMl2vV8GhXxNzTuHNuSGszqMt8EMdf1FsKBApgtwQdwViFvYlLvVIrVVqGGv9PI3Z0Ttf3cpdSFUaOFCBkDTSn99yNMNv3TkrHRZJ08+l2725bZ1a7hi++l6GE48kW8bKKUBBtTgaCqMIaGFQUHbrOx5tZFH8OCS1MLM5w97OfMu9et1o7bO24lbHcFQGEgmmCPVJz1abCLBkN6Id0wMys9BUHKT9J4/y42RuimBuC2hBNJs5nWdrwdwwDDDAT2pNLx7t5yIw2iQFRvmYG0mI0VjcQ1S3qmeZOgqs6zsSu59MmNFjdRD1IhZVMeSCJuWvMG45jYoRJ0HbYWsu43qCcfUxrEfhKsyYMK5MQj5wwDF7GgjD+0maS2qypbh/3YztXLYg1lfwUdPQoIZr5HZMdVZYTzQhiL/N8ETvl4Uixt0kIqAQw8KknhnFWatWLgSR0wh2vbE2wF7rR0QT8CjmCNtly5iylNxxX84m1ctbuUvL6D2wjvROvCJ/IiJxwzamFKyDS0HlPlXnoX03bP5bNODp+C2uRguJ1ElA+zTwc5r3NCbPO1ksjSbaJIxZwKtbLcXQdJlpmZTaZ//OYshIitKRfndRKSkpXiK7MQ8+E1IZ0PUuu1pTo100/3VuYKpOWVKwEhVN7Tx+C2KhuEVwNAntRzgLhUm4NFLx7ALS0vghis+rpKy4r/udoDyc9wteo+lBUSoag6ot4mKvlU8E3XQq/oq3YC1oEfMko3eGNe0VI4aW8MsCsKm6IAVJQVqYuyKP0cRtOYldw5LkLkmZY26NjBW7UPZOJeqWadi+hbzTHy6lCrYrWL+vEO084tUMrQGVnWb4eDyNEkg96LYfNR/vfgf+fUlXzvmg7NMkL6PPnNmyqpRusyOCBP24EMdS/dtFg2e8kyRZ5Lmkp7oDVPMeSrFy2iUDpcXmOipI8IWNVp+si6epNPcQYNh4yP2d98DatGFntshXNsIJMW2HCbdHMcex6vAnMm3/XlVRG5N1e8L57ZW8p/ZtDC6H8ZNTpqk44x5Z7AYDHwS8fwpBO+42BaXg6y6Ce0BEIJxhXAtJ1JT/CSrUpqtjetYEkPq8SnZrDwNAHGRW6BP2ZlLk4HK1R3Yu285I3vvJiY8NUWICY/mtMUBbtRdGyUkHDHw3GfE7tU1tii6jpn0RuxhRVyfkdrdBffCIwyyJiY/EYaIbsAVMKHLEt+qvWzSHmXZATEKP4W8Vqec/aNgYrcL5uw1htpDaNF1OzkX+zYHEUZXZeFx75U3UAOUSXDx8AkZVOEmZIgkw56gIIeg9N9zLXCGqVjVCRcJ6rvArgUDjpL1tOMxBwaeKB9KT/edGPOfRv998zHs3XPawtpDHhfEVe7Gb0vKQ4AFUT2lvQ4Sy3c1Hj6rc4BQ2JxQsaE91uyH+LNT+B3xuc83x99FFfphH7rb8b96QPjBdYMPjh7WWhb38DH/q8Y/cL5v3kHq5r0lhVDbxQ4rGSatFb6SnDnDdKYuQ+GNLN52pOhDcBLiaJ7CiahYFgQB/BNE1ZQ939+cXNhJUm3+F+AbojCEQptrySvry3rbKFYZc0+dKYZR7jD21V2/Nx60Q24f08TW69gxtoXWGc1LOkv+IQrqPSo8l+keAnQnqqN7zG15KU2OofM2n7xPmxcoOtjSkFFvvR+S7TCH38nvlRjM2D0ezklznFeOi9lrf8plZU3Ya5Bxei3RcwKk3UuyDaWmWjzkj16fWVh83UDEV+ImWK/4gB/raVPV9aZxZ/s382IXd+bjF2UWu7Q3rC7+rWFUHM0yZaJxszrdNylkeYjuX3hfw/85xhhrtILQutw9b18C77caFqMU1VFWG8vmA4Kmky0oLikbsldOsVWgL2xyH8ucWGhdf18JLlBlmgbz0UiJ1upFQQ8eTM9KxP2t2ckwmMI9ubzyuHlTm5UQZZ+3Cy+beGEz0E+/TTf23SNugqAGtT0JS8sRh7OfkC0QTBqSH4C6MyeswsTl7XEdc9gbHBESEmaShcf5bWqZLARn40rUtf6TJ0veSWUIgHZRnCkTGCaMEDprG68IhjHvxIdBynKZlc1o8SFjbZ6vMX/fSjvx6ApcvRENxUtP/QGKTdTEMT1/vDA07IUiCSK89rP8n2qVlFvD9zTOcVduWBzDnWehujt6WYLPbhaN1PUY8KyVdp6F4SEjf9ukBhvoyTI1lYtUC9C4E2Rx2L4vs+hY3Hffq+xQ2mDxUXt7kpTD2puC1Buqqn9IAT3YLrx5My6D3tnhR9mV7wSJbzkyti3Vdhxwi7le1pFFbI8C5pwKgL3UQL1XmZMnewmvtKZQWr355i39KDPOehrlFH6cyxcpmpC2KltnJFtegL79KF5Nwwj9Q61A/63XldWC9ajALQ+1X2C2qlCrPNHqoQ4zThZFLyEmfOohBn5u+dnLpT+8+FGBd+YeD9Pi7oD+668Rlkwmi+PGMkHopC7e344iwJruWUh6M+z3KcE9bzx4HzW5JrruMpa5Q4D1n3Zto51YT5BdgsnBLKnqMHofqStttbs8GQXX1jmDr+Xo5XCcaBZ81FUHt+ZfviHCTx+R8P/O5Z1jcbp7PbhgErmx3CFobKul937UQwHEv17X0ps1FiosqMMWAdf5sBMrLRez30Cnf8OBW09FskuH4dU4GrOPF1SPiMPuYauQFsEaFdiaF/NR/UKrdJ97AuvuI9ptmRXGLRclt8trM/xf4TmGt0/rWrAg1w1MxL/gzjbnMij/PKtKR915f61pvWQyeFMkeiWIjtzIGwD0lg+3xggOT1Mvk0wx20Xx+NUHke2nkxdEM+4aTKzVnPphnKVxHD+9MQrUqfGC2O5M1IbsFeFf7FoTjMxdJPO8UiMXQhAEnDkGjmvJq5YgLIsC1m9bNYrSk3QRhc/x9aekCoYEfk9Yhi0CnpiXkxNiiDvxCTF5hMkQVfxkHF+WpDIH51af5ElbdRaETuMTyYffBw+HnOvso94Yxy4NpXcJULwi0v/FP+CsOyhd8VV+Ug2qEUocE1EDBeaZQpRl+/4aFyl9f593vmMHZd8kmH1Nd6OlFBUK1WmJIOmLjv234GAjPVfO1S3CeN1/weG7ByASH92AiY6MtyCJRecIsJuj1SNm2cib1JE0wT2z9KzD1V60T54QX+CDixtn6ZGMhJW30Jt8P+Dnem9nIR43orBRe+5oWZ/QglAFDUyfreassD6tPSv+vKtv5ffhGLA4hfHJ1iBJR4/lxJDgNP6YjpDQ2V0d2Mj7QSvyFTFU1Zec/8ddC2TBDIT+pm6U6yJbHEaN9KXFuxPQ6TSnJTjz4uNjrgpG1ln2xynt9KH6TR3ESIy1sPrjjkj0eGlk251J+q8iatZswWu2PkI7gmPdYb5OX57PZXrmstuLiKrZDDLZe6tVod3Pv4kMBs/fLDvhhEHuodijrqvreofe5NfphzN+p4ZUJmL0d3j5OaxaHIfCrt/jRHBE/JumHAPmZhmW34oT0vk1qS2LRnOXhl3b4wX+ayuiV03i2MA8dw+JZ9OfiPWQk77yOM6n3qpGQU3e5ljg4+iZeA20B4Wt0HKXgkK7udjbAxwjeywrQ/J/QP9NITFz+9lWvzcwPH8B1ZCV81OFfJk2RuUv89w+vfUWCrQ/1LQbWSXGakcAVWgAlgifZ8f+2jNDHbTFq9WmX3Dqw7Ks1gMpCoAgmWWKWHYiGdSLbKM7yCPRRK3K8wncPb/QbjJ4NkmMXGfbYyvKvnrrWusqghDHU2IU7BBYw0jMNE0pRN0ixGZ0fZMv48H7YDTupkyyykxNiIsHTaZKUP+0pOQEPmzVAwKEbv5zM9/wPecPsbQTV4J9BKRUsqU5lMl0rTP6URp4Zyl7LMqVwcb6L+evQQfXBsggd684J1dwjpfWRPuwtQwvYZ4V/ss1ODrd2909v6PKKvUgmKnUfi5b0Pv8v5ey486VMshV0WfZ50+MD41qdLjrruKnZEMtb2Pzr1hgEGlnQheOIjQILZlX5u8K2DMwWX3sfRK87SigWNIFu3aiaQ2n3mHTQbhYJkcWhUlMKgbCaohGOfEy4/XkNSY3FWSpTNoBgg+7tcmdjb1kFE3nPxKqyLMeyVZD7222IweIsxTH9kuyRBfNAf7k5wfRyyio5UCub5OgQreb8kHf8seDaO8pSvpN7siVwqbzf2aFUpGTwMg46XAN9nUgITSDQIN4jgTO5CwMA7IlrP/nP6Q55b/LjVgCCO8GzrNncpLVwSzlzr7WqtfPjSbT6LrXDB79rA9FJFHT78iXIUZIpZqgVl9PhZmAwu9fmMiF54ohvF+6nl7ImpYKFM2ZQKGn3i5sLoFYMEdKs1reT8iu+Q14pIn0OxRYN5mydHpDzTpylnFZw99D7+rj5A1Kub/dOI43jMg4Ma+UVmY4AwnIrGMa+c/VKFRiVOtcmQDK5mPJ+eoNqNWDTk/CjyDTDmVqU113QlNFT4kznSxexXVxbTGYd1iUhbymNM0YhyiH+jlHdolM6oiZCkhmyfH4Cy6uHk7AfOH9CsBGQtffsPOwF6+DeE5317MWJoGgnTRWpbixMCP+MKPxVmmnajxDM62nc4ZA6PB5/zV7YUJTewejdpd6iCFU9vZyWu0no3YOgQP7ca1x0cscexNRR2qN6ORGc5MrlbaJk+TgIh3jkbfKnNHdsgcDq1zcaI66MNCWfHa7TmOMC3jEXb4ag6lCFVm+EMhax+pV6JbIpDehqIMRlBqTvVopBR4lUP2P+8FOJCREUD3T/DoIaPVKH0lSMoTMpJ0ZPBr6aelcjd6LMasyUVqXfc99iCPQUG1Z23gKlpt9ODf/n4GBC4LwIW5cVnh9xH9FyyVAj1hB3ZHXN9f4O6d5z0dkfJA+9Vg3zIeLOcYbGWd/jA3P2V16Wi18AxUK6VkMXly9Qj9/ZyB0JaXg1SpYby2F/LNmvtE97RaRtnH+YjF41OVsulEaUwKLX+wFplGtgg71VYtfMFYD0C+wfSeuc5Rlz3QKALjEPSEy791BLO37sjJBOiETLth8cjkbMslBd59PxdJC9M0NDn1xNPQdcxLimgso0UDqXOjKZu1PODTtPHr0F60kP1CBAcfDFr9WNdHarFce4LNA4RjduKIZGER01TFj67fI9PDvMkXHO36jQlD1wqJB/7xdQx5zsB8pHrHOJ6NhhQm/1PKY8H5e79wOuu8TnQs6rOu8bH8hQA1CyWvMb5/IBNPg6RTaMt6+j/hu4XzJFz/YIP+mdTgutHrcRZLbKieMejs4attDy+CnFEk7E+/q6RXvWlKcmb16ZVB75gcoiYb8r/JXBlwbOijkEqL5zSlrzz9eeofEphtFyPxaagQjV8SecLKcUrqeNjrr5vgCW8z/b4rxAk3SjsbRQgEBveYyhEGQYjdkBmJkteqv4jqZpM4VE8pY0NPSsU8Ce2I3xtXdaNPHvmGZlHOUiuOaiYiFBzXfgjdzkLBRdaNaCwMfc/GKHsHv5EhomJq2HX7A/yvlzo9rv2/LtjHdPjsONkSBMdCGhYadmwv4VR06kGYQvu+z+dNMtEq+5hF023eS5ok4MXQCcUFs/Va/H11BdBo+HtPcbDtJb/FORosK+UHTgJ25PeFnqjod02f5u23WtEHMfy9skGnmN57J2cJdbPN9OpSijXBV8havuXOry2rv6TlQH2Co29FRa1iTuCd46PN2hFdgLIDcj5QWNmZcS76fh8TOG3FSsdS3LC8hYMLKzH0+bgiTQZr5Cl9YeJfZntK44+IHkt2RJhhmllbCMIIqAZtRGsmY7fbyEAHSApfuWAX606tO2i2AYYYDbvl4oQhVY95GmpswUXZJNavQx8i04rM6E1XfZHyNx6cwIGKaALfBZv6C3U88pc6ubhkRTu3G0ZfW96yI97UCsxpLXBYVMV/w/ShXlwzVdtbv676ZcwHkIENRdP757lXqKBRpXUxDRUsn0LTCjbTFilh91jdS6coPD7L04eDm6EwUwdhDWK2UJ23dsGS4LPbCbOrBjtbGtIEBAWRHdtmUmblaLLlrbRnCkUvnB5HfjGTAwcQWsK0zsZXTkXZB1FJzrOp3LmyRuAcDtV8USBRXaCAGJC2hTubRs87xRhB1x8ditwWjqxp/0hmlD7YVYqI1GT5JCQkMzq/vBkiWoiQXepaxC1eDQNfuF6t53S8vOVNXi0A6GCfUu6mQDq7MKly2zAaHVu9r9WH53/0FC/TrVEboq9XXHAcGlMuz0rSknZKlS9PsvHU0Kcnpi/u8gC1uFQdG/rcRxKdpRwpIh/5IgYMnfuKg0c64jr0L2zm5g8ooaq607xst3geAvvH9QfQcr+sCtyI0l8x5+i3kwrftd9KmKw5vF1BKk6WzdYOHX6e1y9tqEpcR3G9OpnfX5EjhUM50HuxnpqneWSaNoKRbMZGwMUHqxFx8+ZJKfP5n9by8zG+nqDpXxDwHLbUTaL4FMhTLbbupWr52h5Hca6RvsQG7sgujEpuE8Wz5GmyE0vZ8164wBNWK9zeSsZgQmGdkZ/Lc0YNF/sbwf+vf0ZPi6QfQK7QivtI0Q44thBfQhDZwTSNRHiNIgDqatUYRWW2cXdWPxzyLXFR7FxE1S0NiNoys4+UysGbVJpDY5oIx1h3ppYJsYtRGIet4mcltKZu+JAdAcFVPhtTWP409P1wyQ/MspwBZR9jUDSxuUFemt7rgKmkwquMH3ggTp+DYQW286CZWGbIR6L5JCq0l89S6O1kh38W5V4Eo9uVWmKlZCYHSuIZ5YdzXlzzVf9H/jcNvAVeqsd9rSKsXfy7Tbem5yWI9Ov2TIAINZ0/T0xAVK0SGOecAk8S3cTsk9ALcxE6Ybb9jO2UQHfnZClfz15BBQDLS2OoNIP+oIwtZpv/EyqvjmAXC2euHVB7kZTk6+y12ERQDAvzKaL/CITvqfk9C1kx4GZ7lGmVW4eFdv+XvlOBnIIkgPqKd7RpjR42WrOLL1nNTHUeuF9tx065n5idZJ48EcLu+5IoX0+V5TUrQOv2MF9S+im7WR8boDQOTvqCeiK611aJpMcBgHSC+6mlBgzMp/zmZ7OQh6VU8n8LSDnrSR7FLBViPEDHaPOvi0t186k6ODa2wKgmAO7n/TUZVIdwK1b+g3nEhKuEI/+MlfuWDkmdhiGijJLpVSkoBINFXWcu0E76Jc0+CLp0GRyWfczO+pFk1LY/jrdqJVBlEAwGtHbR4KMNvVgBxUTeW4dPV8C/qoTxC9y6kMcXY7QWG74NXf9emF8Zvy9d56RN63ieL54t2D7f92qruZ5nWAhU3inLg5ccB2UT1Oc4MG8Dd7Id7gVihNiZkDbW4yts5vyeoycErJI6OmzFnrmEW+qqC6fVOPNvUvcHFCENPR95GzFT763+8kWcuXkY4ra+ghh9R+lfSazos/i9gBu5kTgCQQFW1QZ2Dy//x9xTKbAizOYrpa2F4r19Z6U2M2PGECs8fCEN5OD9tTS8uJku7fR+XU4NYndgyz0N7PBBCR1gilni8z83RCLwLNO5PA8xwnL9VLHhQibscJjh1oeDjJiz3EJuNVbqlibVVS79wJpEjJTNIQIcIx9k3hPwr/hSwKupdy2H5TGnwZgxIs07kJkBDYQSQUf1N/5BxGfDZ53xTehpswD1dkcw3vEepR3SZbmSOdBt3xsAjj2JXQZmVx8zjNwFgk0Hr37W/VM0UsXfSMjCn7/fOg6gN+z4LpSgwJTSlyH1IJJp7lpj3qFTfOErqKe/GPkmVq65LOGldxFR5DuJ7h9tUHd/ELFJ2SPfrcdYwurjMkN3dcuNzHbuj514YPIWjC1WstsVLarR3j2Hwm+xBVz7+O8qXtorOJNHtQCNpMMnKFxQwZ6bFo612uSOxPvXkBCRd2IwLYJVoUL7ZvbYyHDrI/lKezm2PXPEwah6qgwhbckS8okKc2PAPx0TZQkSMnLD/tELOl2ZiZZlVn5R+jckjHht+8QfkVwfAWCJiwlZnItyCwk7KUAFSomp25EcVyj25tuJGAewOAXCNWdpQJnsmmn/zz6zvVJId/R1tVU+9jbRcZO+psQ3nKgdpjQ1mIMylicEkxn0dBccSHjGF26wpmzGG/3uKOTuagO3e5vbJOoeqPS1oBo9+vNFHbBSvvwTEgZzEVZP91U2lrj/Kljy+FAC6f3BLxZb3QNhZZC77c5S9cxzaBtu4xBY1Of1LLROH+K35+3ATja22gFBiMXtQtGbHEG7+/NWC29dOtRdPhKb9WYkjZj4kfpt6PLA2oujgpWohDvr0BETXlVCcNkWU6nn6DaM4U6RmoF93zQcjtpQ1rpFD02rATy0q/QmxABpWbDzfpy5jpI0LoM8OJDOubm3dukiaZ12EiYpXO+VJhKB7vb9+3DB1GCR+ny6qRnMeHMvh+LIy8A+A2U0iQvkDCgT7bgJUO0r2rABRhPa5cbJ11JGzD1akancs42ZEwZ7ZCbgta168zWhMzV21EIG9k1TohU0JIaKw1O6JwIn8bmiTvxvCNHe6hmnXHCA356vts1BT/bNi5vvFMelhV9tsckgy7eecMPvlTKZzLcQHAgCkm0pz3fi3MtPxW82l8NWWQSgXQwWGP9EoRjip5o7d9FQU4eTOVXlq7ST3I4CP54/o+SDybO9WFxy72uoZTgswdupnAMAeaI4BsAv+pUHO3pAiul3XfLdXLRFZkKQHqcrQ4Bqg/7bejbFaxTIZay4s0cSBraaMwkoP9/4n513LOpF/poRI+a0E8fMZQTDyh8LvVh/jecW8sfqFPH9lnV2anA4lUQ3qILfyopZKDDJf0lqlrOrSrT0Iuimj9jOUbKmM8aMD07vRuBSOD6ooO0ykBfYji0bwRtYU/2Nm+a3Ae/UOwoWkGFWrXQ6wXEaktj/q7HBAFAQEzmhFQQeEhUfHoIX80mZdHyO3qaK+B7MIdQogOJ/r77NiursN5G1opVlBMdFB1uM0+WQRzG/yfs/JQVXW7irSOI+qDRa72MTjq2HmgyieCmBVu8LgMV6/0XjbeuTf5oLTkKbWdGxeZkpVDmlu6qYAY+2PR7r9QDX6r1xK/aglmCJ8VodfyUf8Okg/WgYchmX5KIz1FYyQAUkBnH7EoSHtu3Vd3gNAvWYXy+NSrA7WRF+6zd74oUIsUhSVGZK0Ba6RoSOSlSypXXDtCeOGyDKlcSz9ulGTW/ZjVK91bNm/QOcv8wF64c2jwVjDlwpvzpibUgD2d31j4dEGF98NUpFr4aCaQDOcBL7zEQq+/9k5KYkTHbxewrEiVqj9fBoGJlzS6Cwye8LvlSIi1cXkgLT/LCSb670rcSnTXV8LuW+lagfZiRyI18gyYg28y1yMAYADIRifYi+dLc+XlxSOJIP2kfwBxTRb7swS0GVjzgWoPj54ra4FHH0DQvdu7JlL8mT4rYhfT6VRSSSYE11RsLCdH5zxMbz9lJGVTvErj9+lYHUD58KWT/qFQIjg2qJvuKINWPnpksucAjVHbjH3IMWVIrbhN3+Z2Vnud2ZIgYqk52p1OjHEcoU6qZ1/3lP/bjOubGKlLjH6g/c63U5JYq8howb6iDjiyEVDOLp9sJicRpQmPbBw+8EG8At3WvYPnO0xKB3YhyWy8PiMBvN/sZ6UQaQcG9tOfWyIIcp+FLuSsd8Xgyy/SwSYM7/Sr5777HN464rqb9W8RWM+9hnzHCaq4X+YYzVr6Q6gbQeSHKUom3cbZji+USCaJmyIuMNMcD5yBgi8xhlcLbPTXcDSnii01UvDOxM6fiyYjcNXdNUfrwYykmWkaPX1zLPx/D1uTXMKiZ2DxwsOe6gXCEGdsZuHLu60mWfaZ4rjY9/cW+pNu5HtVFqALoNiRtovMIHr6hvhb8Ckhv9+JXDhOAZhfAnwzf3Qgs01mO4e6ZRY5AcoQHXvZmlqJ4YV1T2KUc7OKOi/NmwXugDY1ZYiZK853R9ovNOQ2fVtQmtu4op8lvdL+AxYCP4b5TKP/vG2gAzGwmB9e4IkvCDo45+CsvDW6K0uV3bfls2Um8xBtkiPJ6bUgI0wZV8TuqM1+NY53HpZQeej60vV83A9yO+4kDawngmQTpXHc6zjXgxdoIIobqbkmP+m78h7aGaU0Uj6zt+fEUqZWE8MLhSK0rp6R935Y9tWWwCS14Ut3dVhSvs/c8Hze3I62kV7QavptaWPcikBluDefwHyZyC8Fyrj5gddE92wouJR08a0Xmrr/fDKL9KfxNsnnJZEfLvjnQNLe7kDeU8EIloy1Ol0u5Jxz+XTQjmW6jmidQhPnrGoPO/lzNH/p2FQBDrvbSmG/1CLb+tBP6fMQ+bKegvTwAFK/4F5yeED0QQBGqQskLA4Mj3Zh39gm40gx2oJ7ZxZvd7CdMmiDnByK+t0tJNH6P38o0gcgTXjNEZ4dcguziFh+pKg2QL5c89EPtokhcQaeUXdb+xvGgBgKhl5dkPXYN880L0g1o9TN85B7uUJ7JTLDcjD1hm5IZA2Z+V/uE1QrNLMFlPkFXgyQ9as1DS2n0eHQRh0u1+jfXxlHkJ47BtTxD6dyPhwklQgb65Eb5lui4reSMg34PsIs23Q22QqqAtV6T6XRZpNtiydIuFheMya0f1d3nFO/joKG7DGMAw4z/ahP5A+bWaEPf2UBmXXc2hw3adfI7muOKlbZrXO4g54WP2puoiZmejnnUVEkgFaQDGDyS2R8On83QvZ+W7qwOKVymaKwP6JCAIWlG5dz++HeEXsIghQf0h4YghloL3ZDQJTY8X9+ySFqqXzx3g4IktF5hLddSMVrsh5qEnxczyiRfs599eemJkTJqdAtfTVR3tJRom0PdjLjbpD0aWJw8DRMDQLxsDOCGaq1mnN4RF2QqJItRHFXMJXnDghjcC8bV4vaf97oRGOL9R6nfavTTMRkgwogWyugegzqPCZsg9v/WL/G4zI4yOZeuEbFWZIVq5Tze1OgurW5w9EDEmvOBilqrza8PXHVqunsnOjlSV0avOpZa3zs3dqD3AxsJgew8h7S5gQIu+3fB845i/5OudyoqbvY1sIIvyStmIYcEVToLEUL6HOgBxFqIHqg26j1yTGRQLSR2/GXvv3q6Zwwwj2n7AqUPBDO+LvPMYTvpBdNfkxA7HBhbbKByMP2AZVyXCT5rLN1CHZzk38BdrVZHtB9NFMXWdg7oTOId6eg5r5rHUTLkZEbG2sWL4L4Lovtp5purlYdq00poMFwXnf1GXXwmHrFSBHKgV0MjR5fMeqTHY/W654oLCciJ78HMewxaBhjABU1qbNlT5CuyrHpU/b1+w4tb36q3+BvtlkGIaYV/rNPy8wZBC/HEkK3B99SzP4yl+Tt/VJjzNFXyDr9d6FtGh8ig6us82jQ37zhUT6uec8ojoY0Jh4Ql+VRp+PsSnvzc2Bzbi1WdNvenqGIhF6ZrxzybocaYKBDWy19CjWFU7tNWas07dqYihevfmbRSqChPy0lceTBhBH/U/nSmc+NYbLlzg0Q7dGA2KxjxAgIQZJEQzhzCHOEEMUFoMIUeL0CCAdqsdH99y6fLnNMLjErT29DdEGK0B3Z6vf5saf38t+ygLLCVOx2pkWLifLkv6mmpn+xpL4Kx5jx7MTy6cU9z7yBgiwHEyqDzou7E81FwncZENelbK3fD1RBAGf+jAA47637jO9gZznwWhzfxsqW4rgM1aA4JKrhcShkMRWtj3m5lLIoxIC5eG431nwEthh0kqj2X/lTOS3WGttbtnyYfHQ/P4EYu3J2ZKtpSm6woEIMY6149nxIjofUX3gqslXZxT1opgD1pceNy5WgdCVTxBp2ztsTDfhxauuv9Gv2VgQ6j8FZIgsxPj1/eHak/bP+6p4csXcQBOqNrUyr5fGW0Fo+3ZRhZHel8kwmepVlxGa38cBUBfjdxL124qSlh3n+x372gwOWFXA8ns050xQtXQgt14mQAwGcgVBtSFlourhtkmZfAcB0c1EcdTOaLHPWmXV+wf0Zs2YOPWsJbVDEgBPUMYozyvoqzkdfOm8h3a7vLFfaaAyNbL2V/y1Mtna5LtZ0udCBDFDuB73CUa+30qvg1phwJn2QtzHLE0hRg5UW1AC68xTiNGu7PG8/VHSY3ivg2K5i9iNRwFncRAiUUs9bwzFdAMPiodwhyFqozNIVjcFo4Jgnc+P5da+9fcROCZyVl1JMXOxF/2n4gzyI3jv9L6Cid3LPH2+IRa+dCMmVAo1TXDZHNNcBtsYSb0ZKJ/cFK7nMfn7ltLsC2DeLGcL9qKihQ4UUmsthJ2iFNrLJ8ck0rpxl7vDSBu2DgH4Q0S4fCkModx3V+r3ZCl0v9ZzJYLhaP4VdoGQqVqNggB3A/SPVGKhUwPH7ofOKB4N/IgWgYc7KDk81+BSdAI89A/06a2ldLT9ayKEByasquqV1Cw6Xr9HQ0lpf0dLzFgXDzzJgXp+pWJcYJoBuiDJi5Jm1WlUCGqPalQedT50X+RI1hfboltzMeypfepPyqKl7x4l+Fo3I0dA24DiMr87/mLH94VSCXKfbZRgO+8tb0CUeL3KA8Oj0tI3KeYY4mKRdYlnTTlfEPlmemaem6NGmfGyXYM2VZ5vFav6eahq6KTJqHvLqdDj5RDV7Le/ZR2VrlwhsC56uQ273rEOlN+ylJXXt42Y13SaFW6GGHmR8PvZPWcspC/Vl+i9+N02ql/rlt9KInCX17k5lSbVJ4Toh2oqCXfSbVl64Ad3DzO3U/OpeCEHiXoaGqV8xn/Ai2kQfPv/DpHNequL4169PLN0xVPpSZZ/+tNRgHsn1W+QgJud8Zsbgn15tT4/5VXLbWfTRqytTV1lG+kZkGrTS4ip2s313fYBAq44k1LMwpVuJ2X+vwT+IBuBTQ0dVxqguMV6CTRLphsL3ll/4ZttWUwq7OLhsWppZl61kOvl8s6shqodeOdmf0NK9c3c5Q7aFk8AwPZyHusD+N6iMSXpRFbVZc4rpfV7U8zwZWDmGaQL+jcKS/OtPCzlyykxSoh+SN+p3IAlMTf9zGitAW7wcA+ns7CytfuDcnU71YxRM9TCf85dRKzZnV6CJMpnldqYg4EyWgO9n9ekbNO6zxvPZFJVZ9mvwBmP1xoGAFhhnh/AmMP850MmCdEjtEs4575RvjnwUWrNzUdv7oAjsSFClSgHTZns+nuy6X9nr83/fnHpwuMzvmy3l+aVxmQdBLzxmcS3tj5Weq6ygOcprmADV5jrUd5ICfs/bZiu9JhdXuH37WnNCyMIXmqBVTKumOLiaRwW3nB+d33jpuPXlR4E276uD5rhFtgwf9a8K9vL22NWAX7erirEKp8FyE8otUALHXl2KEsUjK7dPdLl6XnRAqQCfEnvhSdEbL1gYKwUyjVSHSyZ091lwTA/ji0p8AYk0jsWqhouO7tLNLnJQYPaIXNri/+c4GMAhf92g6JOz4MzMObwvKRrhT7Tu5xghp4svNW50r02XQX6tYhbof4i9lvjobdlepmQhWrTnf2tVyVxu6ihxasIdq3Mo405g5MskmucRwT+ZKYggUXapBnSgjcPUdHDnNwTjaY/L3ZBjAVekPv0jOMLvqHPZqfv2hy/4oOHcIbQaaAzc81M1b9olk4unVN34s+/ptS5KG+NbvtB4ILHTI95O6epPhRUblCJ80OyWEEwRPZofqiJlMOKwbfepNcOI2SWL79smw6GYOlzjselTh36TnEahWc5xt5YPjfNfFD8gUA3gc8l6/NUafUJ2/DPAkOloTZgZ83vm035W3a01K4dUf2F2YykSNkiETEFLxk0/N36Bu4sYsGrdh8L7673qAse5h7cmHeS/XrufTCxeBV7kiLBuZiVsakw0Zd0w/OEkiz1mWylllLaRTcQ/zt9rhHn/Cnr3JJ4st0163VV9/RQ/KkxRbNE3kXJapc+pOqV5xwkk4nTOinGMe82ZU/nuwR+/NPxDvXRhCV/0ih2PUgDtoyaxkWkBX2VD+xvuddGHeCW72SbqEFYEmwqEUJKpkz4S3ESehKlYc7arddXvAxrIsGxqZgWaiQ/s5ExM1toWpZftO8DKRG4uvznLTS8JwkSzxrxf8JncR4LAzxOWbCgcruY13wBjTvS4U0wQyIn1a0cRXPXnUSAgE99NIfL19ZZLGuuViGUpC1hWggxOjnv7PN+DMf3E2v8oNXlSE5dbHxggN3MHj+q0hsgVJ6wYwYHgFce9Z0tMP3/13cwl6vrva7k5LiXygvGga7VEWq3jfQYCXwbYGuZzNZXQm4S7jFN3lLsQkp5OPvxqUNKxKqNMZ/YdDca410I12FGdkMThpZyWYyXwDCGZZI0N4GevOHJIpjvUx82P63FIM8RHEzvipFzTVjhPBJhvnfLV6eUhWoRfWtbvF4XwUKDTbPPVHovJ5mLKGjQvanLibNiecs5qyt22YiwckOmBcMvL+yUZ/yNp/bhSbP26gx0dWEUR6J+wkvkrItO4/g+ExLwL5rHOVWH+MItFwqYXJ8GENyhuNZi/xEV+vOBRO4VyiiCL9bbuPt6e+chYkVkb2V0jBNfR2qtsEpz3rrJpU/T2pM9SIVJE4Ui7kSUamT1Y3xFONnZg5+qaSfWmMNJKxj0grWAwxQECIRdB25HhmLZ+M5zqrr2Jzbe+FIty9gPNrkNWXKNtMgjNeBe9osLa4KoGYVOlMXDDQBIFPBF7L6b6Vp+qPH66AdNgJg7QCpcsDWZfjzl2pdgkxmWDULeu73vV2cyVIKD0fHKQAxG5umas+N9FFo429uIXOcBHt8ounth069O8FM6Ze7XN8bz+1zfarIE7W8bL0U2NEGBCGf4kNfEoGmr8e4R6ewRpVikGgfraVPb3M2c0CQnHm4jRDHMbqfCP9OLBwvx9lpnC2TN+pqNV+iQZ+AdXtfUH6vPzBH2C3yDOzDUO6jISDAZbWB5UkU7wEBZ3F0NG6YWUhRtq7TjMtkbX7UJ5JECseoYjwCRanX0GDz5v9lZIaEMy6XLrAC8FIAJX4oAFbQNh6ooQfX6X/GmeoVxXrId+yL7HUprwLL32TXclg6sWIM776TCJhCnkV2O1UBKwpA2HPbVLwRyVOthiqxstf9M6z4IW4GB/LxKjcN79JrfdS3kvVZbjArW7eg6z9N9p9JvHcdCM8ojDjyOZ4RYAbfOiw2AJYu/HIE0CP4Kf+nhPlB+K+R3gsdMa65RuIewi7DEEU1VKjHGFO69PFxavf7UgzT0Mwh7BHKJ5oxFDqHuua6eCpHU5zARBzqyQbrpdjG1bpeFBv3aQblh/y1iDkSXmQ2T0SWTBemqH/bc+a0eMy2PRTuJGOj4LtU6AcIARC86zj7rTEqWwBBRhyy0aWiqPaNWYgSW32RhU2W8QyLA1WpXYu6GRrDD7ntEW4VwW+zGlx71f3AN0v5g58Ek04wGfmosN0I5rEip3YMe/aRwBdrIOXFYE/SzJAkHT4182HbgI0/NyutrDVBz16lOiwqFYw+ed7NyupZnpqR3EHclUhNhbWoYfVS+9QpGgzDPSjNFfip1LTj/DhgBTwN4YR07VST2NylUAYz4qxejpFfOC7lhgFK1Cf7l7pbtxgOZDaA5FC+uj1a7DsLe81V7fwGoxjmAFdbc2hOqHvdvsxe3FQBXLgZ+iWXIPZua/3KcY7yMpr9Uzm3hIOEvowexMjw/Q8e9Hxo+bcqffboY+VQ33BTT4btedfzwf84J4KvvWvWlsnh1FtponQt8WtNfpQhheOdJ4ry/D5VI09u6HH/AU0msF8PNDLTpgNKrZFJrRGzxqlw/gDAMvn9/Kltrjrlbzt03/jtM/A/jKYaBkX9/GaMc/3QCXovcwTiMnKGwtHa0b7hARNsoSpoesAYFmsTF3GaVIP9zoq8CyHByZkIg4/VqDbC+WQeId1VmrVOc2Z3NJBk2fFzVFl7TCtW4QSzXPGzEJJtPiOFmMgRl8uNBpyzIIHgfN41bdtO5MdFtG8+s4PZkJTTDg/A4Ph/pkVAQeoJ8oT9vAu3nQLIhS80UVtcCrhfIFfFyB+6Gr087wwKGlu2ffi7oOB1fPV9ZT/4QFoPbOAD6nbHBv0MdrDXZLOkFPRe9I9yW1DsiIsNaHRcMn7CDkaGkQPyLR6nEk5TmfUO7eHbOqqwceglBK9rsELh+2d58xh1bMj8GRyafrC8f3hzOqVNztYNH3cAztkBWeFug8ilabCJylcaYQHathU0+X5Oqjf0IRCX40NfYDOJIK2wZbB31N2tA3u13y+b4/wYfYPY0+H9DPzmYB7lOxUi4b7DdJ4i6pj+/Cyj8gYFwTnDWL0u3ko26XaBCu12GmVlU01XVqug2tDa18RetRssvYW8M67WLcDiYd5cOXIPNSRAbh+cbOMFADj3+QOTuBQqWG+vS+qyCDtXrG/qmL0w0HuQes3bpPj/badkoDXiYrE49JTOSemlYzFbgrF0cf5/Sgenrdj3vMOWU6DjS2Vxw+K7owpD1Q9d+NF+WBazAf9NkNRrf9uyfH8Kn4jJT7FEqbIF+hNkkycb9Xrw885V1stPSOs7PESSrCykUfNbwqG/gUxYv44cXQVgV/9Qcm7OQtu8ooN/1JadRRfiJnr5cDoCEEcJa98IixRazfPsIicC3HRDPokgrqcRnfeyAm54L/8GPQscU3NNU1bDYVnZ6GnR/uLJykXzPeR1aQ/DUTnIOU4p7L0YnGrctV4NbdnVTCyXY03YDlHVK1pgYeC5yyA0bMfqYsWEpwnJS3SlgRGEepP2wE/5iTtdw26jbbqw2iXRRxvuiXQlTC+m3TkWnifeU51gEPpUE3JBcwDB++/BhuCGNi5Ith0a3TDBophv4SBCAMqM4Ch5dw0rD4Szyg0VRHVirAlma1odT4zD9hRLIbMeRtouGrRDUaXQqfN2QgdCX9qW+sfVfr8VfwLM6i+L77ovCHTr/m+37TB444As/455SJSoifwzNIQhoWMg2cy1EFPOpOIQcxeMxdXJKOPiQBTOymy/fUGvyxX8Q3Kj/qBQjv5UV77xfB0T/jrdnIiIsPX7hw/ZcZggmfyD56lrKKv/LA9/cfwiSFL5r0MFAEv97Pb0TC60q4zEkne1KSTdwTMqWUsHler89rynxeNAIsOl2kzRwQZr/HOcr7aT3T3lm6fU+9PmwT3utz7tQuP0n985KafZKPgCJ83fekNTDSDxqImz3A2zCyCBIHJ6g7fdrW/oTS7DJs6TFbWckl/w+qr09OWQLbMDMDAS1vo/18ojNqGDf0OM+iIWp12V6tjtlYZUm/xuby69zpbAYGUs6YMFheD10NAcZf7ClTkVtF5vNSR7MCCm6yjaHiNRSX+hu4JItIuec77X4KRPDmfqT5Z2T2dzw8+t1dgQhmBcdXJgFMJfcO8tEXYETBnZ8dRNpBPVgsUrmU5dNdoXjyJT0iiyZ+vuUmvUh2LaqXOJEF5l6+boZLLdD7RH3FW4aYVdaPyjAuw4t6iJU2ntyOx00q73KStxm+g8xYnfhl3zCjnOkI4xWly2xbLJX1GkWmocxUmqNzxYvaoV8wrB3EzDxtg3ILomVxm/fRst9Wv/x1Q8CBUwjA5/BD/CNbycaAj6xoZwpIrnWROW6gdwOhAuABertUakzSU/NSOb7jq+6Rv8NPEhB+HzcCAmBkTGfkBcpqtmD+RNINq5fdUNN6hWbiZOkyyOK7I2BrIbMKA7PaF/YCM77JN7T6J6ZBG30sLrtztQkT29kI33gc1UNzM6+UwXievRac8h6Sp+HA+pvyfoMninCD8JBHgd5A7PC9931r9pTgTXH2I1Lp5c9nttNQQNl3DkvYCQs63op9acgNDXI0ihvJo15eZBMnJsDDstCc5w1s8lWY7yPfZODXh76ni/VBEvujRZAC/UD8JxNBgv9AtaArKK+hx/SnsJ7iC8Nj/XwpfGzSge5uXRm3OHSvXWbjmsZQtR5rWhIJqBGtPCjzBHCe+23uSfs1hFp+TMjK6DEvsRsymnrZ2PMWGhvt3z3pzmTVlHbmEx3NVfu5JdPrmgaGYleJpyMQ+QCo6lVfkW1OCVI4OZdao7Dx7jL7Vymj96ZjcDaUQwRhaq7e+ieeSfNlcRPRA3XHQ51N8DNdSXPg3iEGHrCRwbX3+4sj8q7mCJoi7zlssE350/Ii2QwgKlK4Sab/DnGR6gT8ynwXjIANmI/MN7DIpJ6NsI6szI+2uJFkPw8DDDv+5D4fyByFO+rh7/mguiaYFneONGHTldk1gjXpyMsyyic2tNI9alUXNnnEBd7igAIH2GHtIdw2VA77MsRcSNyEjGFukQ6NnNQFQlts796Pt64MYTFG9/sULqm3HFTsBuqAk3HW2Xb40grMC4sA6M1HiOskMlIj8eWow5AgfNkmeny3zJ5ZV9KoIQ0dn4SU/KxgWnC61yklk2zryGQaqRVkLTMNe5k653SdOf8Vafgkz+qSCPW1yy8j5s6yOPilQNrfMci3G3Z5UpAdlSGl1NwfOJEWExwORghceIdUzROu2FHpJLUACZtJ9+zSm+7JPDItXC10+W0BWfP4q29JRiPXDkg4jScVjHql7Wk7iZ5h0WPpQ76byboMdNqTChhBWjfcSCN3JgkjnhAvSdlGDhBP8P9ix8jM9tTJ0iQ0NXut5QTHmZzlGe0vYsGjmxvmA/gmOxCzHn6Zmx6zvcGXVKFLrTUzfeAuj/18iTA/rBJmmy8JwCmPiSw+HJ+Yx6HnoVYH13Iw177aU/B3I0PHTDFa1IbZxrwObKkXqkpCgbPhWJ92YtUNRMjAzEq6Cvh6bANCOtyqFMD5XpHNcSVHksTROFveOZSEdNDTuJPdn6u+Kov0To+6fX0VYH9pB1gSSnVmdjhUQBmDKAGo0dZk5rJfL65fgN+rB1zYN9mSK7uRe7g8iM5wUVPnES4aL7NrIrRPo3IGA9bbVHI+Gm1ksgltVoQXLZojApxGzUiInjh+6MkW6jRfCl4cPgshCS+++G61SSlyMh9MQqAKb3iJW8FPhw7eBOOYDhg/2FgxzIdxya6NpxOOPBkoF0ghZgr1+2LKxHQLJUZdd19ULV2l0vAb+gHBSurvTtaokVrVmXRFGCckmQoVnO767UWFIn7yD4RZ5pnZaF+H4hwDo9Um8ayMS7L+03t1uf+9rvgGNH64PPk4zPeU3A8L3nPKfLrU0tomtfRAJC3ZtXmgNaxg4QLqcjLUQPYoYZt+3q/6//uTgLe9tRv6qUUoTGWj1j5NE6JoRmgY2Mx4V2cO+h55gZk20igP6T5wpIl9RhJFhK6GM+zBoj8kMfGMzKoLFrdDzLzq4QPtkKScTNLyELrVmQ44mCz8+Puvw8fCAiZyABHLPofpO4hh7DC4sK76t0Uw/tt9Mu1B2vM0ukTQIA5xuOgvVL44U+Mhauw/E+rzPEDRDHVmWcIaOp1vsGu1F3E2DxM9gM5ImzNDLNkCaDXtLBYvxq4q4P5AV+fvAHQcGZxpTd5vvPHrLQ3mLD4KdqgdI8joDGs6ds5SoxpUaVGI/K3Z0np6epvfHrm4Ihr18sEFiyWWMdGmjl6CK2nOuzytTDi4KWJCQgg1EbrSiD6zq4wcrjf63ODY6COJgd2yGvnBdzd8NRwF1bH4WVLb0+LxDvNTb4xQN03J4MGAMC8XmrIuIxsMtaKAU/2t88R0jBd7ZmP8ISt3aJa5Vf3Z0n2wYAhANQi+lPSqTSvva70m6JW7co13ed3uMYo0snPF4o1qTFdRHqGPxWbKQdu7rW/idSP0YwaPdOjdzkFdoJoLFVlthTpx1FNaZVjvX3rtyc7SiatBs7SLAkPu8K3SP0yFwZ3m9ZZdDFY00ZGpTx6iSaog2v3BAh8KBGGPXpp++SpSt0S2Dz66FVDl1NKYypZcTTzlVHpQcwfNrH9Gmd3LMPE3WSZ87SsD0O9Kvxyt8vNWk6W9aXoM+gt00R7YgjsUoQnI+EZ3w8irCfVpU0iK38+HzWpZ0tW2EkbZfTscplpXbbJ77GybOA9SJvhKczbGxFL1MgjX/jpH5e141bJHxG2QUf0KRAACjBY7tRBBcKVA0msZr8MYRLzHfcwN100qtWOGoyr5lAY04y+y1fCHOQ+NZrJRWAcJ/XFq0p6Rj5H5a4wBCVFRnwJJvwKO7/eI8cU1N2VOXDd0G/TGjtz8osfg7cXf50CL9NWc3Nm7FUs7jlN8/rROWhU74zCXMN8WptkmnsPXyo75Pabmkqasymlw1VMUpAj4YuqurX11zoM5touYyfRcFb8NwPL3RvsDX0pSqUVSSpFD88IKCE6Vhe2fXAWP8ZoFxlGEiFZvhvG80GquXKMYcPPJUsP/STZQ1NO1mvNx1YtsK0vjA//PoFYowlLCPF1KQbKCzMshA5IN1SqUKOktrc7NbZy+8Wm76ec/iYpMFeeLjsZteLiMsEHfzY0r1Zx+oP5MKoCBoYIBy4MMVzHfxWKdxHMulGu2CoHDDz2QX6iXveElE7/2ezUCGcgDPDVwtqLtat+X5lNfRXSuRdwRfDzR1IPph55+bMwtslVl8LUzcWX9y6AL/5VfyHD2eASRyXjQewtVdV/K+zrmZRtXtUGlLfVUcyxM9fHFm9JXS/Zv9nNbA/4LXmMGGlUFgkmJHo8IMtI4RoO5HOcR4ZiAzRGtRS2Y72o92NWpqpEGT5FXNCXTuLPuHGw5J9O8Oo7Z26LVHdbIgMFODIp/y0pyBgFlE7zeeurWv8Yes3o9jGKvFZR3+uRNlPrB7w83ZVhMz0Hes3s8MtoZj6ScpmfS7wrRlQpGs5UxZHEdtQevnUNDXXRG7ZFuuYVJ3d51FMWEviScGajEcWTVp2CByViwVbpWOwEYu0DuOPc4FW6TaoRD4hYNB8ZGG9Sld+3J8l9R/nFjI1yefGzJduTht6bMSYgVfN92IVnUbSADNg9/TYfI+XlDqByyxh1/1cGkOVqrpRskohwgXhCBvKfKljq1YUDwqi6QnZfnceiqAGwGZvPAVDBGavRa0/5c8y+DkjtstnRi3lH9+MVvmV+yRW5auMC+2cwiyOO3oimrtRp816WOX79c8W2ps6TgRbv4OEPf2/iUQdRRS36YaDQmWPVKutvj1LTOAIPdUqUUzm19FcP6yPCnl9Uh2OIEjRlDa8EiDF79H46lnzy5AyqJtMt5s/2uni6dU8No8l23Evt0Lexukmh1K3GNEp6QRXdiyYDtxGIYaLt3eqil1qNtaTmI02R/SZNzaMpwl5KH5Gm50x+cWorvUhnoqfIw5k5KHNv/1krqQfiZyxTCrSgZEmWEat3IUhsH1bUhYiW3qUGcSGFBnizoNpwy2GMLjJfm/FW5O4SjzdzwnYzNfwCoaDSxXMYXWF9M1uzlwvVWFc4UhKIbQNpJZczjeibdB096Fl9vi4VguacXgSirwXOoCASCJjheZEsDGmqzKhY2vtuneMM5t4TjgDCQVFwKjwmYRIK1Ftg0s0hKjjCCbJj9TFlcCrN5GPSFlXJMNn7HxW1hCPCgeMkIJ7hyA6eV0D+AXmI+L/2o7LTZhH5U3Yc9EiVlaAfOXrJO7K0ujtirEAQ84yYcXEQdYwyPnzN1U6eB4NQfFwYHJ0213YrpegxVeQyN11dudQkBj31vFXd3HAO1xpB/WuRxFolrfUNhs5sPU/8FMVObSVTj7AuI4qTVGVfsWhufRVsxdJtWLVPjYrpCxMHAWNEAgCD6veT83mGsTKKq7SqBq/o+9abvtpE1GBNoKVDhrkQeObWb+J7jlo9KvI8UMO4iEpDYtgXTDs8Xhc8xBU8ZjBxlcPsck1Ce3rcM2xcJPa8Wv7eZ0h+Ut2JiIZaP51pSn7QXKsaAsV0xUsrds+15e4bzd3XYDNrNOoPUqDbXkHXiE5i83Ekozk6b4lZ75F+wj5cHHJf2zFum4/sBU2riWvvDvPu6KHO6DRlh21pweZayHqSFxrO5f5m2Jfiv7csDfI6/3GoxdQok6jcOU7QBh2jfvSudlaPqrcg7qYixf6+CAbbuKzLCL95GAZhOVyfJ4GwKBBuddtVF5D82NMsIMEmYvdSIMMEET/rhosvr7zEc3GEKrIwc9N0dmp2gbD0+ar1nMjZ5fMd22YC1aeJZ/F3j9w+2gc2JLhMls/cVaCNUetEA3dGzfktj60QrYtRPXgXaPZurgUjpp2dUdCjhDP5TLcRWPzLQGUuTobT11geigWm9k4dI5q9fUMm1P39tGpz3IgYRslXYN0pR7JcI4HRjkjCaPkvFkdmWvk9BJ3Ou97VODWL61PNJb0XwYjWvqp6DootVIMccpHIYwz3C8mrxnI1s9XU7L+8l/s6/eRmmuPvQhkYIJzkdl+dBNaA0sB6FtqvIlydpIqxsVSB5GNybvLIApTqipFO0Ve98zjVVmswOUKtgkb+EhAXQIkqj1Mvh/dp0JF+fnzMWK1Z9FfGc1kk/cWaQU5w/cmUMaTFh75NxXcLM74srnsY4E5ZgvWcw/eW0BuOWkxIvRA+6wgml30ywOMy10EPIpTQ/cE72ICQ4sYvgLtnrNoRwFZgx5PJpLdLsdW8FsWDEwa1X3rFbeaVIj6OOh+Se4x8xwoofln0QTxAe72vvCtPWRB37BBVGnfbca5z26KrDBD7+Y3zdjRKMGsHG/tOBo1oXgaSzpV9yNUYLsdFUPbqSrl9kg3E1mJqrnc2/nHn0echLH24G/H+ZSr1daLJhfjP4p/V6xSLPEtnEsfZcGzSEpehqefvbrPkBWxaZufjkUUqXVbosAwwwB2LA+uVAZzGhR/y5tgLyZl+GFbvCA/BKeOfz14eLotIbzght9N4MCEc1GXsL6RzhVj/qy0QBE0WXskk/n5IKyVOYZ/OQu/zTbkuFplfnHYhEqY/U0iMETEBfC6hEr8om8cY+UQIRO8JirV3IHocUvhl0nM7TiaDG38AKxvD4d4GZ4tSW/48GsrLTMx/qvOWsR7PzjRXv8DiLCH/YroyI35PNmOr5fbfBf0kBm0aSKA6esJ3Uny6xpOdyDoiGrLRZHAkaRdAsnXy0KccPKk4osYqGXb2vwrwLuzXMj8q+OLmPAfORLbzvJmQQ9tLned0G8xdn2m8bZU89Jll0TSRCq2JqWiQlT+8nopn/1geKfj14mS2qxkXFSzQGFOC0V2hNd1V3zwNxrnnyehs9hd8JF56X7BzfDui6r1ftM/l2IYAGETgQ4mlsYuRR8aQM7q0sGGa5brQ6Utt1ajWbNeDpDIHzrp9aLnOTOxAEBuTF5rQjQeGEMm9LIHv+p+YliV65ZpmUpRU8F/2/st6eq9tUp6bpTlKZdgVCggNAwBZZePgzhlDnv52wHelrjnem4iAKqEfD171EWx90LD+SiQE50PO5OAH7gzTd0X4mSkrvAOy35ujhWNhX853gY2EYI5zCA2J/uDu+ParAuR1kPdGfAlhd3fvazZ0g8qeD3kJQnfpGZOcjSZUecpa+Eh5VO2S4n1B0aj1A6ppiYTbWqmkwPsZNHbNTKAaovetcK5ymnTTKJL1V7cDNxkBBH7VB3Tt/s1+e4TLfaM7mGXaPu3yysLdRA3uTanlP5lMqjpNd4f8dqxirxP65WaAFBaVwOS1WTsYfH13o1N/HVne+TaOrAOhdh2ff/m5tQl6ZfPeqFE/vWRsc40W4rDN/55OO3QWDtCQIHuvDKnCMJpyBraqp0QTNr5N6ZCe7OYrtiqQB78MQcWJEY3XDw89YNRIP/F5/Ee4LyU/psLOwZeEk0pi+1jLdWNkyJtLvuaphGUBEvB6I4TC5v5mKYYXpZivq20ZvXYLj7gxZ+iXyb3b3TI411S+g00IVZb6NYTJI9vG+G1HsYNCzM+S0nvKkosnwcaz678yGOqIOXv1izVSsi0ZZpW8kGC/5ZMTD7/IdvfphvRFcKVKtqzBO/jWlISfkIHEsopjhB30nNgOgSI09HP3bHtluuw3Ne+J8ORuVN+fB0k4yvJZzO33qs63Uz1FLFKJy/pAdjtFKZwK3RQ816O8wE9WeFqaibPSYol8HOuFZg1KFv3xCpMbUkadjRuObI/vBj1zFee1jWe/MoVIoC+uqku2+VwSRNU1wbQHs02cQCQA+vEDb/I8Alz+7/Y19xNIwC3lck07ZRl4eP0J5WnuTAj/aLLS756ul7RIMoC2xxW0/99Z4dc5zck4uVUm0c3uTY4U+tyddxQYRNnKAtEOT7NKRMptDcVKF3kawy+EA4L/h5NG2DoBqh2pxAcw084tqyB7h4P2P5tEVZoPjCx87QZwaxrwg1f1mZbZ6uyFyCbBTYgPVI9j+AUGMIO4E5mJfECNY7r2tsXoSpp8h/CuMIKuKlDxAxsGA6cZa/P2MF1SbaXZUruXtW4KikQtmO3i1idx2Rvxx1zXDdBqG0v3HsFF5e4aBDyIqA7wlQ6BO5Y7c+79JaNCyZ3l4kzW//eOcb3FZSjbPuSY/pUJelgYxiqr+yVrvF3JyWLCkfXUYv2L3DzB5jqzSiqSxc84Z4fQ/fWnvuom3D18PFYGjcJrzpevRCjxRoSjKMt8S7e7WZIGJHuysCZSjXddQfwYHXdA4H4ypJHbVgqoIHpUu/UxhHOYoy/tHXA5xiUmpw0CxJ1H3l91iFg08EHu/O0d3fTr8sTyXAXWUqNEE8UhkinwMlZksOPh0UUixJQp7hvg03hXIOTf7/wnHDY7TshQ9hQzsSOgJe/2CuWa/H5xG9Ti7EWtquIINP4qSzOYt74HuGN/slYX2+5t/u/xwh0xvQbcuQGXloxUnnvHYPt8sS4Hyh7PKeth3mGShea+rqexPDK1UB7xxe9UDcSW1bCN7JJwe75ofOC2eMJfWuyNfrwJ+qT227lWAQWSZhLMMKGYjjU0oR/7YyGqn6AiWaew/fKDhiIhGbsl6VSrnHH1+TPYkX/KCQ1rDAT9HjngE6Zv3CUL0zv4eWirfsUdA1NSgFW9V5TDOyDrglaep0BCaKetb8uUxTZqw+WRyhbAwaf73LR0HmVohjJO4xkT1TzJFiQ5gxoVZn7DSmoqCzM9kroXjalhkQbQtTw5BpMBV2LV6nm3pjqdPMwhQTeGaXggkYXCZofxMqENj3/7NEFTpKPIn5TxZipDhmaq/U4cosmVXwQlSQlaTzhw3gZJThAqtW9AI9ugxa1wXoenPrNPZjBRUZ0fdm+bi4uWpZEIHlN+bPCmGkQDGWu9VI1Z7FNjpFDXNG6Y/DOwPBa2lMhjEOJFW2Ev4oJYYlIEmKOsxh7CSsimDGRGj+9MczFWFQiAxGsJEZmu/z/N9/hsGYS2Owe+ZDvF++UnCWv4Y2ZWYIQvM84mL7XEW/12iaj511E2B8Cf+5D09pveB3y9a+Ua8CQOpJ7e4CAR8tnqlgdH1akuGWQ9xpphScLsTezrsStrGVX1Kg3RoA3m4La47UyIEOmIseWaCmGV3gh/5fX37n+ThBX0tRSc/FR8IqKS82s/eGSrqdQ2fQn8CcR4b+h4gq8IIGMvEcR8jOlTSboJw8mnQksyZyv6wKW8mF5dZynStm9pPnlrONrO/qfTWBVa1pccxrNwtAknuJ0jGw/cjfs8lty5iY8ymWTN9i5jM1RJ8vQMPfBPElHBgocE5ELWYnhbXzX4HbPtjjz+jpAx+ozfhoaOaXEPlP6WnEceAXAIPLToLLli5JwYwEZlik4GidYQRKDRZtrJcDasH+LKLJfBPyOOocopWthgHT0YSLc8lZwCLPhK/vfVYebNsOD9gz0CUeYJ5DHITtBKNkPN9XNtZFwypz8BHq3k4cEiiIaPBvXy64mzS2NQ2dCxiFfEfPnk0KduidmFJJS08AgIHMfKvXG6S8lP+TJMqB2s/oaeY+ocmYHFYxQQP7VysUJot8ksxfhGNqBKx7l3GJ+5Gb+btgxfYT8y128xZHOc4UM48sXRwXYZvdhuVNiPK4NsRaXeYtRgS0aIpbFRKlr8pVFh6WwtuWh080i9TugZbTTi0jlU6dsWEBkSlV7xlJTPIy5RYB3Yze+XAnNFIjL+pACMqdGAECZ2LjeEU6QbVon6AWxRloO8aaSglmu54h0gWvsoDntUwQ95XVAAiBFrhFhS1KMQYPCYaeOJTxucTOQ2ekHXjmK9/jnbQr/vZMatlXm7vVLeZB7DlzBftS7uLQIDLRpIsRSgvScJmtUsXaAUyAh38BS0Jkygt5n+B+G3is3bu5uLMTLulOwKAIs+SQQFN5clUHJQBYcY4zoDD8tRzngKcWYLkfiK+EzcLvd/NDydR6bSfwIksCITKKEBlxvqWL+uGMOm+cx07GgAYXguSocT1J7mpsk8Vlo3bKgXue84BwV3+THRR1SXbR4jC8MydHqM728Kob9EFHGFAUi+pBA8UNXuYWw9fQfiPdTT9xQgElVLCVwPf7R+Fef3CQdaI79aiPkTyzRRz11aIua0+OFDf4+yP7+5VNHSj2bqxBlV3QUTR6qqJb/4WFa7UmpHgeGsnFQARASIJNwYyyUUEdNDNELbBd4yKmaUs6zuyydZbjMZZm1CaX/wlAcu422OiVXPnvSNw/dHRESkSiaLiFGzivoXhnl8NAKacZ1ezDmfaz/bN1VtHiIwWxpkr9KtJx/Io3kzfI+0xuG2fBIla7FcCsKQFi76M2Mmzf99g+Cu75nCDwf8FMwzhygS55ctDO+qB7qCS1KVKoSCMO+N2PFQEXF+v0u1hO+ZWGW5ogRvD/Yg/B56GTEnL59dj0wQOpgxLxgxkgabWWORfwffw6GqCSLL/JpVf6bbDcFt/wyji/wWu8fs/H19sxlLtBWxSZ1TXqhpTL1BshJ/gkdycfQtUyVAyF8pGJAcDo5FmaSF01HGuzXOFx4BelsswUrEyBknwtdtuipssIjXbRTeHSt+Ql57PwrMeDapO8asA3Hq5Bc7qeHcW45IydmXKhCXuDEeNMkcQ0jKngac9rF5EtdSjUFxXmkjpoWQsNRgB6BOgad3M0ftCjbyWwHZCYEE4GzjfaQ0o5B1BLj0osk84/Kou9gZC/gQHvImXrnobzGhr00gKoICYQ32oLZqzmzkKJ/N7NPHYFXD636otw6E223V6/mSKx5E1os+QtbCuNYI+Lg6aTEiqLr0kQMLxQcUnu40lXOgusb9A+jUQbGXTZGQtzL6G9KyyWErl1nLhxp+5hX9PddjuOm39wp2n5yPh7frYzpVS9z4h75YxIUQKlzO89KyRk6DYb96VBnKdlM7rxpgT2PRpe0cqGwcNJ2DuqeNXtNfOCds9PKayVtNDUcU6sXx06VKOhQrYtC9K7jnjnU7AErd+C1TmWJkiCINIDb1A7GBJsECmjdiWPJtmsuGnlKfIcZWcA8nqhv7fdJnUzx13RtgJDFvp+4/NWpg0AA9qEVr/JgwAOUfSTHowB+VasZmkyhZQ1rSH4W6RGi2S6N9ZegoWIMnEbujOOTfZlF7KoHRL6HdexCehCVxL5PmyX9eOH4lHlj18nWPnDfGQFW/QHkdTEAQQ6R7xEZ6fMh3p6AC/aiMS6SIWFW1bfleKj8QaSx3exLihnSH1KgGUCdz7hVRfarwZ7ETlPUY/aSUqtSrTb3H+rAcLikh02fnRcXmsnOAznj02xI8n/rbgMnfE2kngKZ1Ab2tUMGQyDjl3pU1nb9WsZJHucEDbE2b2WA5SkeD606TtoDDfe38rDt3+AXVFql/A2YPQMU8zaUAAkbg2Kg8CU1/WsxoZ4gc4Q+KjlAR+8ZLd6dNzGCE2/8Lw05SkKCcxpfqL1QjsgrBwdJo6WxUUisEb9/a6WhmhiGfMFPpbrNDHIoezZkb6Uyt5SxqgwpNFehSixRiFLxw5Avi0Itp01vQiCoUgtBtBEcPLFRKd7bcoOZ37HLEe4t7UeoK6O/9u7TfPXcma+uPbCqVbZ27jvg0kgQNXQdzQTg4P2kDGAd/3yYB1fMh187PGPu4kTq5zFthWXNrKSeV2PIVIC6/t3YTkBmtT8YlLu4VVLDeb5ZGkNHuyLzOfb77/uqbM4AOfAQ3cUcJeLuf583mvPYW0hCz5LzS3OboUfqK0TjX9Esn2vUMjm3Tw1Kdp+E9dtL0DECCiQRHKh1XRV543bEO/i2adTVIYGZDFVuanUNyuhNjAKTXw+wVBgCZsvQNKDnAOTw4fkLMEf5WWZ+UW2ltlGU0wO4Kvg+viCTNHNHjIyfoSQcqk2JB8qTAbqhysiu7ed5vojGTBjpscuVgeszPV264cnqBbFxOudnuGRI8Ev7IBce/cbpDp3DYixwLMjJx9sXFX/n2PJpybP+Bo9WGYUAWQcCHXa0MAJoeye06yTLM7qmCwjveKBkloO6NpjU+KQkwr+v5XZ8fmEq6ejN1rQcgDHUL0ubDpxhpOvPmCp93MiqSqAnMh603DchYZ9IIzMELRjE2ohKFRPsjv2ExQzQQdx3oL8p8rk7RzmAWPud0pMxttlNxSL9evbel6v1/oKnjorQey/Z18Y1tlFWwMcB54VHvi05GG2uPlTJns5Xc5cc9FvUKICxiGEmHnEfSOiFnJsiZD5v/F8j2smCYuTDyffiQnmZMdwnDTyeuIaz3iuS74BGXpugZm8/UZg48zjll+lcupAwKXg3YvjJ3ajhYSNf15X8ICgHrw6SXobOQf5uN0KQmSpdT+zHejzLU65usrkzQgLE1HlurnZoetrdwpELZENweGPa/mSa+uuVlHjwGPMupiC6MRUKXa/coPKH8UdtnJEwYBdanA73VWX4rl1gd152efO5FcMZeN5snae4nbV+1tAkayXaqbwHya1lL/tMxTpThAaCIaB2FJ5F43ZZq0oHCDG1p7485WvJ0yzk6smHXZy96oiDKn7fxXb33xEGgCtcuxGX6tL815PbHEox5zCiZ5Wjdu+JiVdnG9a7k5C7dWyOQj5l1+endM+UgJ1HI6pHM3MZTYj8jDt2I2RxCcF/OeakM6oi0GELK93xrOIwZT/aEcYUkAYab1TQtEmZpdvlwYGs0bADYsFKz2YCL3fxVIn9nKVP91ZYEBJrTbMzknjMEik3qxSv3mSbEjCgwVHgmcW3XldpHa/taBykKfQ7yetOmpqdOqJrDXJJjt66/tYaG4YOmssfht4SptgAYA4Rihe2rOZRK1Lz7XWYcBDs63r5Heqg1h/tUSWGxyjclr6O6MB+FJAvwdfzt/LF2dZc7szDBvBlnndDZhOg3IopJEp9sKJ4alnXuZnmqU0F5hxFP4IvpIngBLtaQ3MBB4caTyNss8UhumG1GdwlddMC5TemG+TocQ0jbN6AMStTz5aP4FqLAOeK/t/k5yHzBKbQOK3hm0PNLyx1ebzG42p72/yu9R+rr/B9GauUj/q7ovBYbsrr0K3S4EjciDwjncQg2vhDGlDhjbqII1832B+2oRV6AsNzYEmdX3C31/4dkSldmx+x1HPsh+5i1eWySQCngnLuzhLSgeAJsAXiZ95i1aSmFlb1mqXtuIUJWfPh3OLfVA84P/dY0Nx0s7wi0WgtBlZxPwamKEgE9iiCsUmaTRv5zVpfm7dwUwje5mQM/zCek5pIDsFCmUkTJBqq6cMmiamebwliiaEWsOBOHMDThree2GS5OcHX3WQqyl64xBm3KCAJZbR2DJVVtsRkv19uqdgfuhUPIko3+itt/4w6iYBhgUV7tIRMNT9fdGls4DVQyGi8x39ttk9s74ECnq7+OOgZk+VaOEU0g4IVMynX61AROfnDmIdfpRbdVViVkwQL7yj6VGICHjQ9mlF0zGxtbX71oWq07maVJLGd26+My/nsWKv57OzF6Rbwzv3KnsVHxXk9dO00IxaHhC2XZ+r6k9jbrUKxzuCuCHw4XUqvEUnsKhYIqVwTo7rRcadjaDDCYlgWWQuFc4ksEyOJJMuFj4+8YHBWWXWmCnJsIBbzGDTsGTyYs0x08v/iHXDHwTic5JZ5mW8DSgA7e1KI6j1ALlRW4GdenMc2R+d3h/3B4/fBNbsdAqQjjnkJde/FTE3VljGmoT+Gx8wpYR8pB2yX/werLQ4Zeh/Y9Qlt3XncPMn1oXlTn9hFZlZ/k72N0lbfcDLGhwU+jBZXqjWGahQnbyr/WDh9/P/POe/4nvlS1ms1ygQph0wx+lkZsQMk/830JR5V9ITKXN0AzNoZdD1pOUxGthFYd1j9rtNUND2JuUvzaKxj9q8pWa6h20AZxtlS+IBIsqTjXpj+3gFxRAnZbk1qip3Aopr01mhnNii8vXFJ+3gyBKQnZzQDYUQH7ZO81HX8r9NvAyBxxBKst59CeshMnPAbI6DZ3y6Gy4i82nZ+lzg3/20SP2FhVA5xUITBlRLil24aG76bu9vG8wrWL3zTYtYSmK+HyxuOeMhWGsfOGmOyfGPH+nOYU0tsgyJHzvTUdN7IqtJCsqXSYhvCDuVqnpeJZ4u49bfZRCdJ5x2ZopwJnezmXwP+Iw9asyqifpMPQMtEnisbha2zRrZZlhcX7BC3QhhDZWnyV1IVBO9rZ56ufnl9i5s0GMP+YDwN0MV6eSzT4zrbHdcG/f6rrd3lJRUCJLdXdvANmS6zxw7koh2dfciZHXuNY0qUbNosp/M2izcA2RDvDqStFN+cjj9ORZm79oz6FagscUM8xxx+b1UtvPczhoOOi+KtWQjcnBGiyCvM5uLpTEugH8+ITC3qSzyDWHkrmd/DbI5qCHle5rZUD2ZG6z2ODYOVW67V/t77j4GFGauK/cssHltCNjT/R3nIJat7yKxRs9akvWeOaA5XRLjFsMAnf19HR3EpaVb/DkTYwXk9buv5vJvi5ct8XK0cQCvELuKLsIQjLCEBDgw+PSqomx+LCWAckL9eosi2PDPwVTWCKztqTIX9N60EOFTCZI5R9HPvkxDn/FEXZpQ7dPnUYuH4wiDeFpYHp/b9D/uH+PMhrbpvJvvTsnHoN65iXTwrt/NjtIH32Vk4YUmSzc7P4LkohrhwmsfWsnrISfZCbOvTM1Z+M5D343GK9BPHXbWzqDrUp/GsQwQqX+dQIgInwxIzttFaLTiY9mw8sNE/Qaq0oo+CKh6vLxc4lvVcl8r1oIhHGqXAeubMlYs3zRbca3udfOIk/GLmFtdOxbwyd42Yrb65PlJsNqa6ckR13+TEZyVwwfz8RxKRMzx32hd3AD8IoKJhErHv3zbjo9jhYhymvNdvda1ogDh3DAXRObLzVuJ5BWkOfb2vjuiCepuwOnAg1YL3VHC5xykYihGZ969rQOD3rpUIKQyQg3HbkSz8aYyCAiLcjYD+MYB/bhz2OWVt25z/tg1yGFiZGjZp9dYDPAp+DwOzW4rCDeD3KDPudsSLCg0zGtG0jXzbCs+WxHoHh9mGzEGFy7WzESzFCLD+irMm+eW8cZZ7ib8KaUOjm9ozUiQGABk+1iCPV0vFWRKlHvjXVsc/Lufl02FGjqqa2azs9l8xBdJuUMsTdMGYkFipJvBMMh1652UkqHXCpa0g+EQgHgo51/OgCGfm8Aa+H+H2X3gKp/GSyLcQlWXgoaD8J8BjDTpL+4g4B4xb8vuxLewqPiawUNm1OZsfrU58svK+bCEBcRgYnzk7yEyd9Lbq7bN04dbftcCqzTFoQ+PlNvPYi6bd5babMqo39a3ey9jBBKimWEnEqlwYhVW2w1gs2rM0rF7++uYK7bLDGCfqaY079fHjjl8tQ0KOWKDHhlCvB+JtMCzyf6n8vWfOZuELILRqyvpi64mrHqvJ1MNUiqo5CoCwni0dIRHk9H2kk+fX5WGkxghXSmcPdZ/sfz+y2d9kG06yrK6YdcAnGT350ZJzQYawEgKxc6iXAARhWn6YTRdZMlahAwY4ZAHhL9IVQALV+WBNNlxz/I4GtxRGpJlMLt5EhzjXv9cz1h5r2aMzrpo7cjuvOrW5WYvt2ZrX19DCvFcolq0Rdf3KRWEWDhYGPni/FNSeCRbm1GTSN8RMiN8I3ATAOFEpdQ+RfPX0HjXUaMKdzvM5kEC81XDS/mNxnhNk1qh2PEbL3m4XX8f2GF7MBtd3TEDEfst7hGrz2Z8hD5MJo+OztUy1beULhcVPUy85ogF5bQEsii8pV7sb8Nf5Cc+3DWXDI2y+i4kPequ1sjaB3NUq717u9zx8wu9iBejjUI0JK1CZAi2aX7LVf492swCp0O4vW6Wmr5nevUGH3NF5jqCia23OlBg3yjSU1PKDbOiNILycROZkcFbf4lyCwYz/JXN83HSxozA/gt18CpOctJnb2DEyzEbDFbd8h6NOQoxCPfxvrjzr166haoSFUqIvCDr1EKWtPdjXcxf0gKCZMH4yvgTtlYPk7bqtAgGwEukMGJrY2YD9mHSfvpN4B36GugmRlKAEwddfnmKdm/DNtTs2PvFj/uYqtHfUe7wA2sHBwAeGIqJycdDXi++eSMzoXBcIC9XZqqj+2D2ZgWaEH8riZUCdKLuHXo8K5zlABBjrrIn8Dqtqjh65ec1PMEO/PZX5C4nT6zuH2qvf5DjtykT1Vd3gLLLVLCqM1Z8xAPZNxlJFHju4svPgZA0qlh8HUqUFk37R3Kjg2zEQfjgalWUvvMX2ErYQe7DzYzpbrNUNUtsCwVnu1Ojhf3F8VZR4FLxCmCnPM4MA2e34pcT5Bso1GwZK3FID09CacxBaM92NJr/zsP+bn/orwIVJgUfipfz7eHwSAX/gHfJ6a5j4ymjEtbLwjVlX7KoG/GTLYI+qnrCq0gZetOyUU2+hvJ9ff68FtCYbI10vY0ef8qa9keXLGgefy1iiTU/EnJ1M2nIjadLItpvbocjQMS1WCx+Be30Ue0OIeyV6yN87Z2VThPDuuVuacbWuv5ZCxBO6HpDk/TDqFPQ0X8iwV4pnafDUUOLarv/E7yIZ2C0phfVVxYI4J/78dKMc1ZEjrKJS/t0Y8skVy6L6416qw4nrPjiq5h8fR+qv9r52jJLplcr3BKzuqQVZ3eGn9rM4O6U/AMJBR5ltIPL53ij3GCb1a/tWTFjcPOuIGtecMS3bVY7uyqSYM18u4VPae2gJyDihL6ucxR3/w2fWYHCmQBVaP5ZdUoPNehg3PAubXw9ATqkQjYiew9TRKROjTGj6I95Eevr63v+BxtnNF3DlbSINlvaQdY092menCoXWof7Vq1B6TXvkO1mODmGEbFesaawm6wteFEIDBvhc4iD+lMnauX36r9zHr7AGAGCIHbniyr7u/p0lQLtKcXFfrN3K+1lmn6mSSXvW+aJbDkt/tED6lzX6k7mdivpnYSrwl2XyI3aleLKhuNecY+IFxku/Sffo3iqRclhEcRutTa1QFaysqw3aLpUx4Zt7YLFOdJ6vrklUaltyoYOuD+rv6fZSVajQRZidgzJ+MZyQ+bOJ3KGwUDqBgwdFseveqnWC5npLVvdQvHblkiSiRE3/7DtSArp8pw6MdrvAnPDOwHCc23AAoA5nIQYfITnAQ+T0WUfG5HlKQ5T92QmksybGDIM7dIQHmLtfm40HqjDHeuf9k/omgSmBZLdGebK0/IITxIfC2HmSPPG17L9KFYHBda40uqLakAycoyv+Xb8dKj4rNXPv6mOz91ddCx3lZkU2+82MifWDXhSkQeOxuGPXCfQi2ZupR8HUnN+XICqUwOrxX3xGn8YiLcMkE6izdqnvI1djTf1g29pYpdBrsQQ9GB5TgwWZaelhJijoMEPPhnOLhaGhZaUAgzUr9lSp6dx2pc/qnTYDpG4+TlR6EBTo90ySfx8ZrVXS2oSlnEjfNKaUIwOng/boxMIe9x9saIExbHmnAUQSVFc9LJqShCltel7Mlfymr9Kn/974C3Thz4qTgdKBAEh8PHOMGFkRRrQzI7slAMOj9ce1ICvbqqrc2fiNW3VrHTAIYRGJx9pzHvfelnYdQ4Q2jiF0PIamjFrkW/kb/szUP8C7/0KOz0WeWPEHty7TeoFeotvDDRGbQOqMxWKdywOgLuVGsBFo75nHzBU/TISLtweq+NuHE6MgzsY+xX4hqUzeVz1XkNWAOCzjEAK+jZjdF2wpQSS3hOLbfFE7G9fPfkO/JeY83qHXMQJbpGdpisBYBmWq6zkleosk4KENXWxf6Nh8MrWQkJAuygj+7WJ81en0fWDttZqOVRU2N6Vk6lH2R1uZ8xKgPhaPiRAt1YUwJHDmNYpoIGhcYixpdOl2IHr4fntGa8jO2BZA6OIpgwXOq7Lns34DwlZ79EF5QxXpJGG+omGkc0shzYQDUJJOLk4tz8p1zyagYU12OTQidRzg3AQaO0O0CyKiCQrXeHlqhgRuO300yAh3cetsnfMUrX60n0GBWQ4fIeckomH9FdWxeHnBZb70XZR5Swr99t6l72zKKofvskwaNS212u9V+n1HOTtiFc0fH4DxigSejWXhZvCTXPg0yDqgBA8cqqaf5q+MkstEoJQ38DlwSWdRcgq5AQVlwcJgi6PlzInrR9DIS5hss7kxSKlXN7QeJ5SaPdnPvlE8RarYI7G+o/3RD1CyzskvdTcSNMoB9F9h4m7v7jAwW6qkYdnojfQd61TNDmvjrqRD43zKvFJepdoB3DjiUVj/buRzi+TXplkBPdkKjzBjUcp20hctncXoFhZhuY8hKRcfnzDX2YR0lQQOSwtDGCEpx1M9FeTA1kH/lNZG/kt5TFZuHzzBfuC6jEGDa9+g2BXSaKItpPRBkRQgiTpqv5MBXSfyB6FH/Z+o12oEHQybjhdOl1Cvy8NYqbpXmjjRah52Y7Vb4YEUCl1BuUngyghwAUtYSojxfSYuPQX6okGqHY1J8Ljj2tSANBiUlKr4l1vPUzq1FhcfQ+b4fU8exXHH02T4JxovKLvqH3EXmCYUMsKV8b9OAtKeM8x+OxNHdX0ViM0lkMBAZ0bvPzPdfSFL7KTfyN3vaydHxCpfrO3Ag45MXzSnVgnsBczHFSE63FsVghUAw/nM/3cYSXEPlkSB+pkhaxOvksAAAHS9/3AGEAm/UArJaYtL0UCI5J13T3u/9WJgqBpae4tRi6yjsM/uF7gga9aLlGSSQexO17nuyi9Qp/0iayEqiAatmnzkcLN6mIywodO0uNQCCGgBavJgWUgRQXdxdCPVfXcmT0F2aQOHrE12ILPGnGbSNii0KGCHHjJ8N1Xv1tvqjm7z9yopisGJJ7sHsIOMLvs1Z9SFA08t88aGQ+zy6f6xy5vRztpGBZ7WiyQKlWHENBUuQsu/TNlVO/UNDU6njj/5V3R7LEDYL3fj0FBpoe08AXJXIal+gCy4QQNR1W/p3PsU0ksL5yWCYeumQnBsTIjW4/8RkuMby/6aJu8POdSguSYQyF7gqoIkGKUxmwnBI92xy54Xty/9dneUPuXvb7JS0qs3bkFLbvqVue8FksNbGpNL9wGGg3vrPvZsnnlWgQCwgYIcn/k6T8Dxd5UhIcqxsH0lbcKEMmfvcf2JbfpE2B9JNIPeWTCNgwTnPwPXljRif0N8JBu+JxGZb0cCe60IJHei6HYDuGANhTRbKxU5+0kj9QqTdM0a6NoXvHAUY/ffw0IDzOwX0P2giY4eRb5U5n+msmVxzcaiqjMP9UsQS2Q/Tj+8Y5pDT27ddnltnljw6Q2+itd6o0ru8sWFCm4v6jV86c+OIpPIWFo6Cug/sxb2laCG6wMAwgrDdljX3JMlbAAABVz7Y/Q4jWQPaek85mX/tJV6PTq+gy+volGFHvi2RHiEuJD+SCln+gqPbzAXOoxjTK0Eqb5ryPETh3t2wRM7UF/Wq9bJ3pDq2DWDzDWq/v6M9Q5AwhIanbAMMMASpQdBhxvrOFxED0lCTYZkNpXyB5b+DJV8jiKD3neaA4Mu+PVDhxBPpYFvbO2QELwqpLkaOQQbwOGN062eXVmLT+74kLTvcHkuB5btSH2xord4PP+7Gosm+2sHWmAAAARmBQ0vvVCa+03B+tkkOEdQw1xzshJ2XsMmCoNgywz+xxLw5Gfxhs+6r0XdvJIu8rHpW7LNquQGLRYu1Ro5M+s5yM1+K0n21nrHCmaEXYqah37bsUAVegMS2QDZJExhVc/AvOskkGdYPRFbTFyTLhpI5qirNbqbd+bKUT4HXWiyZgTasszFEpUxhnGXsXfvhU9DoUd6jy1AfUNnzMf9sVcppmrvAtN52he4i1J6nxdPVnhc+KKWyH/UeRwUlrz4nKy1/hiX9g04iQcCLhNEl/eBuVPuCgV4JKusZluy1JRxhE1h8HMrVXaJgZ4CZsMcYWTtGVZBuBuKi7/KakD8ejdmq4mcK57Oy5IZ78MqRCK2SNYfniU7te1urcby0q4vE/R/I0Y+NQc79y8ZElVlRZRk6TF/oWMeOP/DAoaxQ602hjz33/51NZI4aHiqL21XBn2svySU8YQ/NxLaWukP1FRm5CtEG0cHKMZBihrK3qLRjxmaHHLwnQEHJwP8D/oTZBeJJdCJHBw/VjX8i+sb+IHEVo7JO5w26zGyyVzGRLZ2mL8+dSLYrr/D5SaInD31Mlc5IgkBZQdoelfXH4dX1mEsr/hzKexvyk9QVS7soj0JHEsB0HDvXY/xO8tmtNhRdK+NRJwQQBBvfxlFp1ogQi7/yzswXLMF3myJK54o89/Hc6+43k7mlHJ3S3QITwP6fyc3fVXF2h0do5DdBMLQ87mkqadVkxxr7JrecCHZEtXa9muVsuulbYlT2pBcAUCrvc9k/vpkUs6B5b5qPFKGBTuYuT9I4dFKjByI0gC3XDAKkMZ7s+tvkCQqlBWbvlJsem/GUvFqqRoi3asyPMV/+Cr55dm9o9FmrR3HY10Pq46/HVsS9MRLCspxphkIjBgICAs1WW7b6HDxNmWz9lCDAE3T7f+ufdkeIWhgD4iCAe65HeOyUGWMXnPEiyXU/VzXQZyqoskI7AYqcFtfKVRU80VOdyM52rKxA8aYFwq/6ZVbJ8aNskcrvOo99d+AyjmVsvPY7F4VMFw5lPhxtt0upCdeMabZO0dNYYInYvjaeIdN9IQMlIy0vOMJouvQ1eWs/Yy5pNb3pXoXWiPn7SLhdjzw/Sv1Oe2NK/nVJez26Yj+0wnTtezgQDKtqLIeZKzeUV5XxSAqYVxVdNLdXdnmtYxC07Y+GkLTdX82WpYkkzkmQjqzbOnETOyjXOlOgv2fsBpCGESS0zxDIp9xTi/R7mz4jNJPbekLzrYlyY1Jwiux/XA+U+6f143OGFMrh1rB6suRA1ngcwpfUN+aPU7ZK29OKI56R4wkpHNDFvE1T8KkMs/UWngBsDFPM9snjMpfwCL1fm7fwQz4+M1VkB9kpzYCdawM7YrMniEv7ZxPJptHr7tlN6xtgqfuzWYQmiRW6sVn2FDerE5VuQKfdMrYIjvFYk543IGR8dqnTh0FvetJf2aQPGF8CpOrN4QvwOQv9H8w/AkDhxAOFoHpTglDlxfSKDUkqUW3ZxODJAqWCYwpemSc3JOk6ASfUXKEUcVAqTCcxRJt0c4GAgwBjCovJtTHppEh0bnH+OIddk4afBSHM5jp+IqAhAQ4JuefdT6bZAlu6YaQPalG2WJ/fWrHRmEqnEprQJRAC8bwYN8Stu5mlNyxkQqLXblaU350TXB5NhIZCtYvtNc9n8w1tQmNPinZ4SLyQxH2NdFBB1kBMokHcOLcIhhVUEabpN14+lyjLQImWYqeKGaMCtyAyD1UVEVNa2GMCRx+zljKFhdsL0bSbXVrXfKq1vxsWMlqu4OM6W6XB8Qw5BVALiVFVXPSYGp9zxDAh/fXNF1sxKwdOR61Xs+DJbviLOMGsG/DKEgRF9hR3KANeaiLkuuP4kkVJ8EIOphcjZGduXBd5bIsD6LeZspT32XET9JzXuxiaVnVyUrSNWDml76zyxX8PHl1Nv9CRP4YjxraOBfkYGvqnoGjI81t3sjgmRHRzT3riLwPh4kWFpEqoh/oaUi3l9wFOOoEE54lzkHJ4dVyIP9HVZN10w6+QSyrPG/MGBk4SOcY9m1JGWgC+45dVmZrawS2UK2iKksGa/gcoqh1ynILzmlU5OvzsXVsPC5WTSBsUYuUtFoaywUb7PGmdwjVUYMbtJwIZTHpZTqhzJkfodQB0EFqT/6QB/dNtrtVy86vHBs7XbnfGbW27N59nvzPNfxjkWXhu/3DDmAFZqRafsJ7b37XaFpjy4iTSmjHRTCe8Y5vpZy6S+xKb6LdH0+MethQVTyIK6fFtQwBwweBSOUgrHrWsscqnu1WBHq0CqRKEO/UzgsZZjI/Aqj7gUMckjnBNgdeXZlOC4eHRFFIm2dZzR3lq5b3JatmMb/7CK9599qlbQTu9vBUz4MqVoBcGZl620qlCDPyX8cEbk2YkiH5fGot6Jrb91e+zYP9Nnismk7LZ2Xg605DCVw0n/MusRw0tdZYMEwluo7FtSD4M29D9NbKapoSl7CPz1B3OJ9ysA375r9jfmhFByUprXsBozhwtaqLexQmqpdvToMFWoZBf7/KUhs5mZPMRCGCuVqbHQiDirgbDCCdGkIB7FLccYPYKYjxO3gfNVIECQvBicpHqfS3yQ4icxd4UWiRChmvOS0+aQaA9WQHgN0Lqm5Q0jtnmde/SP1aGA1BCIPCKW/SerlVL5JozLs7Zv9uz87+9FqkChYYeCnP+Q33FGMJHS7MV7CQtMHI9/bQ8miBqFXJpgnA1RL07yEwWPuF4hWj/4s3vWci9tO/55ODuuofr44RepVpWXXwFepQ4sON3OF/Oo5g/UnedoCAaVRccXSJmfmwp8Ib5T7yJK8BafgvlpWdspWuiOhwjStZatEov6W1UAa9cG7hCQvta/CkOux71T7A+653/Ma6/8Cg/BUxROO3GwxTj4nxYfCpZ+xCp6F/fqdmRrYGyu66C1uPZwXr+FtJ38cAI6emKm78ibFic+1UNesfkHh4t6TIbaENLZCXh6J+RVpSXyOmz3ZQieag78SPK23Vj4coXw7uEcbdPsWDixe3O9o3NRF+02T5Xq8Lxeyhg+jWVsiROHRVPob9WoM5dC10QbqEEOwoRy7WdJJAJDVJUK9uRP0/4+p9qc7hwwy8xpVqm37y9bWDXdaazNElR1evUE7FaCNH7OCNUZc7Mz1GmrGinGwHGbNyU7sxR4nMEqvZHGui632/Nj7HwjQWDio/bQEz/cYy4PfDN9tY8bPcJwCsa1Pj2kQEqxA5w+xWjkCUO0vcbYC1FDw0tgXxegyzp0vrvY2PxmVbWModAXpFzuWYzS6gL8/clTJq4IdQzofl8Ucz2IbcQVPeGHIN2eg2xPIQXD2Vzn56qnsGegIVt/RIM4KPTqZJrC1kaOvuaZDbdV8RwxXORGnatBePut8Lm5Ku75dZkFvYThbhQPw80h0ZNwm41Vu+nNRsrrrJE4OvT95thoDyqU00JdC6WfoW1/63PhiF2LSvpmCDsSHcdawanPsiP6sWFB3WHj0ez1yTZrjHtu+oseOqkG9PjCyDKN0fU8Xqe1NZuxeWYPp9wMo+kfozHiAHgFBeLf0pH9HDcb94SMl/QVpa7XX0VY49jpHg/y1Zrkq7StaVor5PkIRhi4n8OCjlGmNyFx8znk0fx1wGP7SlY8+ItkTCcZ8AkvL5gn3dsvTzvVrHhNhssLQpy27GoPDyjfa5TnaoL+BUPyf0OEifWo2CtFfhqWpyr79A4murTsL1o7GQc1WYE6ZLOLlsZQrc1YJ18F0xj8lpNkN8rmZshUb+SmWoOUPYT+yA+UEQMMMiGaeXhQ+s2DnFQrYOe6f3GQ3RVRXnf7342FFmEl+bHUbjTSc0OMQSPjiLEV6vmylhvIXSby3/tWfmL+WtedOP2t3474/qUbJ8Vp6pc5kXS6zXAy48kiCIuLuryeDc7a+uHax6RFPAyq+lWQL74W6CiDKzJV9mXkS0lNboN1zpeANAALfHBz1UslEznY7xTWxOZs5av5lr1610pACIxZXkTZz5TScLFKTFsvMfdcYRdPf/NsFIg3hmz3TAq/558R0ANNj6W2n5y/suh+Typk++WB5tYjcjC0YrYhwMWSf7hlMSr2X8p5q4pqy8R1YasirDePpYMDc89CKCmD3FwkrO/tXTZhlAX5g1hD63m83Vog2qb8ZUYEBee1Ae+GYp55yFffU/PvRCieuwMnFkupdGmjo+N7K2J/njG+euJIhD30bll/EYjIQAsXVo9da5XJuuf6xujfCQoQSyjCOES+E/kEAfE0yMQi85pTA3QaAsHXzaP2dGEaxTNgoPmxaWwi/TQDHDtjBjLqP+6MTwsEP+SAqZ7ISIicsqRAKQZ3hjm5r5R9KSYpbO8pKua+JoTuHJJpYwZutUFjYEM50qPhK7NTR1vvJOmJ2WgoEWtbQkWxYyucCNZIg0MMfnBKV4GnygkCWmaI5cg/mrSxW/OV+2R6s65hzKBSBKjEzFcS6YvVDxbKX8sy4UkN3xKBV7V+yvHS5PAPDkcteH+PtxWF0+ft7nWLnR4ia+1uj2k3exS8vb+D0CifvawRo91s36DT6FL68rGd4znwT/ttDgMZ/u+CDXh+vfPcetIrhBvml2mDM2w0L8qEAQ37JyHkw1U6zlglwjPYZDoQvDuh/f1rjsVg/5GFsusgCt3xxhzyzYdFLcqHrjZIsCP+VJ3VkPnaNOP1dQI79A7Acwf8mEDdQHZViLpU0n57WXHv4l0wJIPwT3qxvirENRi98Pibk4vxT611P6dMFE4wGSceA5MH6QKwOpj2Jw7cz01vQCbHgl2w2NB6eGlSL+RAKQB3uRVf8vhmH15h6cWk1GxkyeMIVTy+LKDf5rbajOb5tFq+DRhHKxLgGtcrZMcJNc2bMLp/GeA9xmbjbnoEtNQzNyylGjpPmOtSPglz1VbGvhOIbdKz2iEI++HJng5YR74W7rmqaC3PXqu+Zpv0r6U4vjJx9t4M0LQRHHvUH/yFNUyM14tnvypRorg0CbUYCMMSHpBYoorXOpAzMpsImv7ZZen74W949WHZQ0H5E4Ymvki2JZP+cuh7aHXd6UOcLd0CxtO2smVMF6OuQwU/4fbOvhdDb4pF/w5UKruo2elXx8PitTnm3NL/C7Fypl48HmY30LYJPZhZKYZ0YybZIWfiY3RoS5luM2f1ZzePfBXb1PqrpmlDoGSNnck7NUFJbFFpSWRk07OGyRbDEC+AVrn09QGGtlGNlpHljy7F6uKt7Ls9K6sDqBNpWYwRFg+HYSmNxhAqCvJG1KuRQlGdQMAvSShDBvD9y1nmL16NUmxyDababELpZkQLUUFB3pswnqBqd5DmCOrnLw/ea8TyuiYHkU2Fk6i6PDPXYfzg0NwSzsOHQ8JJd3PBckroHttY1gB/m0Hb2sEjKLeAdDdRXXmlBgELhN9z94OezGV1Zi7qS4vsVVrr8Pe9B6AWtYdGTDNl/IrUbEGhiz/2qG5lIGIWLovZnZWuOTBXlrtjSmqqQHV2YSaXMyOedwT077zG9ElcBP4dq3ZCjsQGWdT8ozuVdZSfKEz2ctXRDqeTFffGvJnFpEkF59765QUdcWYU+p9UOrZHxRLcxKsWSZKs/jNP/tOZxQgGDWy8auXEj5u+7dkSuGohGPUlxSnxdyVDEHt2/5xz1/s/ALFfPcMXiRou6oboPWwESJgaAH2ku69Iav5B7ixU1sMrydsaH39nNxBW95kKfpy6x2nnDQ2tj5mbLjZnLPna034QcHeDTMZ98K97iS21GjzHsD2hHI9Ua3Vr/yH+lEmO0JDMGjGwLkoMSMaPUmKJN0bvx/y0n7C1FyR2nBqTVuMg01kzZ+FZ/H/EB0GmgkjMSZIdGMI+UxRknHGibU5bf8gqhhMBNSEoCdgebVBf7dYMJZ/y4ilu9tCbxgvArjDmSNBt9MogAwN4IzAnrAB0T2C22ZG+qHDbpxtCsX6LJP8JWZPMR14QT0yNmvHLyW2C0+LF6UUpB18nRLySiu9Zw2wbrbPJfBVlAXkird6iQycAqbIiFw/Ittr+WXlSsb3hR8uTw5yb3TwI7+/63d/69NE5c9+2Nj2XuQM3ieYNIrLBkr4b8i8XA6f60aakhe7FBk5Gh5BnBD2NPTCISgZzti1HTJ1933gNZbmkYmQMBVuAQKE4eTKFna39TJIy0bB1seP3otYjtfjwA2WX1b4ngV8D7KC+dZF8iaNQA7wjIITBIJ77Hb+ZO3WWF0IJmirRY32HMWbiHhaltaHO6V5qPtqhlMmUW22Jik6VtSeWQUqi+YWDoDCWmuc9yE2ppqptWiVFO1ewAV8l82CimXMbdMxb9Qe7P2ziSG6qKpf59jrXWpKtr08GIaDQcu543N1yGQAasBmKYpaCNThhYFN+jSFaRcbOWR5qhQgUMGTzlcgvdX4z1b3YLpI6x9cEC/eCf2POTU6w9o26lkv3fERRONtNMvgd2QlCT91LBtFP/S26WzoMeoBdtLSX50CoIEBEPHqBWkSDTihRqDEM4K0GQqkmLZ576ncqXzUHXaCfTDNfY9+r1SAGDOhkZeZz90vyw3rZUaM95js80v78iNWU18TiA4W451qO5s8W0LFKEMVQoyCa3vYyunIcII6pCB4GpR1q02jsPkbF7E7dLcD2f05mGr7m6dFFIKotZuBA3LfKjuyVWKRLaqwRZOmSaBAd1yNkSZGp9A0XBQKtwu2zRLRiv4UPXHrvYcwGLDfw3hylXVimyuZ4PRRqgQeN1SfMj+/q+ODUm0vb3DlWxYr52X7K90VP3jwk8Sq7LTepDixGtgYr8xSyKdQg3Ft+zevHzcVwqSRKkAIAhoxA6UzkOtgs9jmtA8X7YKWZ2+Hhmr7zgtf6HuuNCeR6KyvLmsum2CWuh58TqUgIBQ1uyyIyAi6IT1wOvLYIovqxGtWYAfnIKohtv0yY/ijJbOytmmfRsEfxfnj+pR8pFrqxAvi0xyBXO+IjqnqPYiPHtI+4IVeGKSTerfsKwba7hZvO9ixbNH4hcaSKZphZVIccGPe/VV8urYPRu7nufvs1FlDDsLdozqEUPCU2c8hA7mNiryiz0mRgAyDzWEtmVqP9PU/9Nydlp+0UrKGF+fbuDQ5e5LowijkwgGOXHXTwX8Lskw0oOI+frD5sidxlC0v4Rg+Sw7MNOOJ2WAtFwowlwWMcM4htgt3lT1Sdb5nhOlhgzYLZbNdHPr+BWUtWWCildY841WKWt72ajLw2on/Q2k0vYi60pbcnjXmlcirK4GNyad9397ektdOPr8QwUUTETVSuL2v9zzQAm23eQntDohgVd9by4ilPBDPN7918yXaHog2hQmj5tfdiBE0yfJuTjer1ZBRibcRFrzrDUBYW8D9lpXAU4NzKl9LlOfxlywtD99Uj6vLDV38wHgUQ5NidOHHGrk5pO0XFX2PEVsT6HVfHGp4GIKgpmtQ1SrH8f/ZeTYJLajAKTDJp9q+42GTs9gnxozztz15GkyvJej6fLoNZkOWkPiuC2Pfx3jsOFgpTEO5XvXSThLreQH3Y/YQMPV6BLCDhq9t8ckGamq5ngfir2+Bpfz1bk+0I4Z29AWvF6TveIMKYhGnEaEFrhftGw4OCrB6EzDDldhBa79t2aH+CK+3qn3sgJvKMR7RNxg/CC9LeOWSk/Xl035YwQdLVDzEXuXY7wwCTybDg6vJXDiLWdlw/cInGXGCoEmfRtxW42bR7cBX8t+ysqy7LpgKq8tSAK9f7jDAcop0UqPrdtUtKwIml61hw4zQVKO+TG3IoxannICpx2R5Z+bc/yiBv/Kl2mP1w0hnoAW4WwGCzbbR9pn1fpBIFFmrkvl/J0vLwH6chxcphGMFlHonez3FRrYskiDhh6we/AzKiOaeMr0S7zsprUOPHrTqZMO3TkZzy/iK5ti7FqobzrlMx99H9ZK2IJIGs+lTs+bp7l1B1XwF6YFAkCmTw9BewVoRhzxMw8SoaaaDeddKlO/9u25Sq8SsrXKnTh4iPoJcguzDjEZx0X8X3EelX994OOeKaU294trb9di6ylXjEpLpJPJnkrJ8EBn2aozVjakchoCghAH6whoQ3Whn6TzMOqEpFCdFlnoXbgp4azjJQQZ/O16J0qNbZ+l3q69bhS4MvdvaFggZPhAZH3FVrwgqunUwj8zl2Si+3742kSbY+TOSv3ejxN2wt4n4JEvfCl4+LvXZ1Ws/FI5Qbfd6SrfX1OTLtWysXt5efpAtNZu8a0Hyl9KvIHGtkQdvVU0YNAcY19t5wZDg442IWsyRzvkofEQCp4t9viCiN6Xvxvs1CKC0rU1FGA3uHTP5vosbXxm4IB19q2WDTjq/ppOV2vKnU73mR7cPLjvf+Xs1OUVQvitzGi7tVrCDlmdyisL5cFsHbqsgCNDAm0XJ/bcHt1jAeWs2kUqaizYSPukqwYpQRIjq3QpzlSGSTNxRtBvSAWg82f1/wIk688uT2Y4SJ3KvU4hKK08dLHaISF79Bcb+Id1X+tNrIQIUy93BnQHagzac692IHMUu9+J0cL5UrCvxJucPttqbAMlw3spS4jajLPeNfR6JrV7O7jBa2rmlPLZXPcH7K49DMcItn+C5sMUpH86R7Okz/ttnsIfrRA7V2q5tarWmD4BGzBlNQTVTDBq2LOHGyj8SOq9jNW5P/krxmx/z8rf2+2fbeH1XNxuPq26Er+pBs8mpbgVVIIYJoOhDeOnvAMXjvH8SPX5qF0Jhh6KBzKDY1ODL/VdbY2kWq/1TaziJ/N/zFoqkkytu9XF+zcIO3XwBOcC9FAiDToYMGJAe/BVjfU/Egji4xSj14OQY3xPKTvNbpKvLZqfkwVAD1Qf0xQ4CsLMtdJ47vnAL+qSNBU16+pC5phFIO6yBp3TBa0VFK7cpr8Rg5y6GXA15JyE7kWcAFmv1wvbpJOguMWkdZF8/iC8LaNwIbd5CBNR5ytPxfI8uWGDfOrifqLe7gxZDbAIiiHXjda3QsIuGnNlvMSTPV7+Ix+5g4X64aIrxd33IUn/1tjjs7sC0ABnbSj2kLNP3jFF9YsK9qN4DtnKA1+hPDRs15l+9n90kYsz/a6sHKtDOFD6T5svPz+pOkojYo8o37Yjb1uFZ9/Rd2Snli9Ir6QvzG03B3M0oMswckbr9J6y0prIkI6gg+s9OnVkGl0fMzML8rMCQ9dGl7SHjwwKxpbob0xvPvN3ROx3OQzXSUAajEvwFhlzXzr73gJFuil9qyzLTFLLwqqlUyoYyvQLMhAdVf4kLPEJQ+IxRHKc6vboHAaqmvLPOnnQO2cdZv76hD4X1WKTHC4G3ghXsRI/HerDC51+aSaqN5H0dwWjH/OpU2nOETVgXg6rDsqfM6hZw3twTQXSDJrromg9xWCYK1Rwo47FsAIB/whSN5B3I7ubvJrPWUtsj1bcWUuTnqRetQIEcW5XomRt7tYbU7m2juZPexGvIRr1TvN3WzeB5aJ4DkfbI2/tLIsHe4CTgO9YHN+4j52VJdbq6xXnh7hUBrz18+dw4KMCd/hiejUCtTsLAozcyJrdo+YqR5BTFt/f8Po5sT24WCzw2wh5JlHuguRNuP6BotPSqutO6pBA7k2XdYxaU0MxPCpA9ubFITWjnt87LrI5fN/cZOBK7TWTrX2oIh995khzuQExDr97261EF/75RuM6P5UzZ9NXYf1tdo5uxU4xPUrD54V9VwY/ejZRsGqkrffZxoB6EIz/WxMe2h2bfM8kmuU003dshCXkPoRvR1DEVwsryWo436yv5kDinBB5PN6cpJNuu/yOUY11ScIzMC6MJmDFXsVfj7XbQdMA10FNr83lX6EObqoxg0T1hdlfvOHUXdvHH0EsCymZkm4LciGa8QppfBIQcudWbBIgJqM3vExxwcAPPEcF7ckOsKxFJ+5UjjsOl44t0sjgKC5y831QG1Xuhno4EGdSjorpCJKayR3q9Ba7nTf7sg9ENldhe+SBfHdSGST4IdLwSPla0v/54/+WRhyGQAkjibbIzlcDnFMlS5wG717h30kVLae3teIVkiaKa9sudwXszTnTkUqj4ygpje85qfgW7S4H1smU+j9EGpmXyskyVBGCVCFWZtySv3clqgZTjlABAcoo3Hx+QmSuCJKkuYa9Yg7Vh7Kd6gEamlIAz4pNJlTLvVddD8Xk/B4zNuve575x+l7kVBqiIP7OroYJVfN6rmuwjPkeEED8P2Rs/+nbaW8rJFsrZC53heGYqCjZuTaRiq6GJ4QiXTGzKqNxt7rb7/nxzFZrx4r5cse20e82bFtOq049pDPx7sjhh8C1bv1y+orCID4NlyaUSNxSbio+e6NIqbUtTFThmHE4xRU2vkqZ4NUZ4fGVJwUH/aIsHIjScojgOXQEELHeuXjNo5To81C1FwLO4+rkwlaUV/ePAgsbn9UY0LwpO8XBQhTj2k9xIvuEcHceJCFFLvpOwZN9+slQWsv+pj55e2Xrg0Zskn7wgABdhQV6mkgcKnnWSECIl9nYj8UANN3oG21zy+S8qCKH78+iULXrYN5brnJMlXmUijai5kBXV/iS6EAIZzGt5pqFaU9EiTH2ZYFJfjbOp9a5DYnb62njrQ8UgNa1MSZgniz2qs6TBUvjUI3azPWN7TM4mENUTrz4IS2UYgRWk90dPLgYTIXq5smkn6X6nF/YnbHzJnmR+2pqPqJJfW7k+NcyBNDy4ZPy7vaap43JHfbWPIrcnFGsHZN3o8OxVMrQtOi4hWXtKooa38lQUfYMuZYYwnd32aMhu6x7ikwpPPf+9LuavtEt5tHRG3MXUhFJClWcUDwAshhM6gcH6xPdk+ATcpVpDPhlqH6h9EO3PL3U0TZMztRW7xn0HjpyJera59BoSDGQYTQa6iDse1gesZe0es9+slCpbXfUO6F/bkn0aCpt097VfeuTu740+D0JDsuYccUcKgZoV86zFyuzjpUfZj93KJRzhy/HAeWqXsgDyrWmStrAO4JC5WyhRCUa0gMlxBibuyEsHkEkau/rFUw6+9V2QOIf3upb7iQ2k/eG+Qpm5Bb+Hn7648WoMCNrMgMV6DB3hy0kXpcraEtBKL93LQyCOn2CNTYKUjIH75iU4qxSM4gnpfER0Kgk3C46JQFj/G4KaANekyZj2offIr6pauXRBWWxyM8Rbj4OXgNgbE8hEboGEn5N8KtcW9TjywHEEH4PahHMMwEAbtURjA/imwjD3dhLEPmKuMDe4peFN0pk4aLR+UaJVtDJDs1xfEGPkG3IC6vd07sWqDGdxfBSFt4PFWmkrF4lcCbDUFNw9njHUCiwmX2fFDNdzjxkDOs7OMGy6uEVJH9+ITWLAilujO3uC6td9zisb9UFzcrZF6L03sSVya7QLpXypTH1cEmWnxOVRVAn19liqdTXQBAUVvQ4j/A8KqqXe5BrHhXMm+I5WeIgSWUfUaZ8a+uQ8MaakZcBohmBxmnUPxSeftBXucg1QFVE/FWY1FRR2vVp9T2I7iIf2yjKHmTfgqF2fHYmKClPvcKq70Q8TwY7is8o3EJ6TBCG8v960xwNlG3PaBN9v1NFiJ1kAVtY4FVhlTWWjPek2jT+Qlslm0eg8jDi2K+bUm/Ro0SRwVJYl1OKT3PP0jJRoycV+xkOzOHyJKFBlucE83hQqT3+rROkdyjc/uAy/qnu2lGgVY9k/1uGX5GVxNUCxcSV7diLpqcZNgWl3oKlljMVx5hz2QDfRubV5cbq0aGxPNpQH/a/Zm717IRrBVCm5J1G116t7y84qa1ot6LHpQVmorNhOTpxtdp0xRNYI+klxUzYmuCytu8DtV1Y9DwBeyCsK6taV5Rq4EaIeYIYN8em4VPyQHcrzZJUcN7LtQaTh3oKsm34Z2n2pdQge6LbDSCTKxUejcmgnUm4qz0v8dZedVrst7RpyjHI1yVZpeWSGkuvjmeYj7OqYd2sXd6WbyFkTBl1ZuY/KYNv9mWti9A0dTeiw8YL5WOlw5PaQS6XSo6489vMWaSusnioyA4kUxpOF+RswhiQ6zNVx8NAL5oeIIcdmQutK5b9R/WPTf/laqxmM6wuNvSGxB9YOt+LiMsX4u0klfJN4w/4YG7O3V0OUUWTg8u8FyU2JZYSPQbPlDp4s4FCi7J9t1tt3UEDTsaKpBATFbdpQBLa21Oeo806VCW9JcKtzqd3O8vSrCf4qubBfGd27LTwNZ5Imf2mUcdExubfBAya20yHR3XrfEwUGEGmB3l8Torh63vSe6cSTCsALsN8WA7VZC+IwAxeHp12P2ZVPbrbb5StRBuDgIPgMwIVIyS1qFFUZvCjxRWydIuS6NB5cp/9FPnQ3Whh/L5/l4OAm2lf7myvD0LLPaOZsi2dD1ADiMRjsbLRfJ94hLmXT6yk1StRgP9H8N9K8ZEZ10442CUFvwiSEyA+DMMSzFavHe03pw0h63Dp4d3dbj+NZpTTVAzSKEZrYGdevqYDZh0wzzzXFx9jgMvTeb0ScWBZ2Ew7xOl67Pw386Uw62Qy5tbNfoeRXcNoSUfHqmsu+dDhoWwD1xn7vZmJWzLHLAkdkxRPGAy8k0EmMcYavQwVHSgSW/99+U+UNEvjgW+SOdDnR9c7eQCiW5OA8nrWWYdWrBpT+7EShTz0zJRkM7toqougXHtgEj0YoBQNNmkLJUBj7+RYH7gnR2G0jsANQL3zcmuWbN7uyVtSSZ4ALQlUpVnu7cBZcWm9aXL8fiVPdIbnNlChe13gd17qfdYNTYcYU3LOkHWaeERxt8Tu56lalCJU5fQncXgWWVgV/g2zeWDLKDtu4UXJ3JOWgxu1ePVXtyR/jrAq7JljCclB4QchCEfqLshoy+MyqLRymjGC2W44RfX8g6AOHCpTksfHZ5pqFTnIcO6OMviKb3foXsNyS9ND9YUwKuQEXFiIJN5bCI6awIKFAHV2mgSN6u91sMacVTt3hdidfZGTqzTv2A9ol80060pV8GtrfB3Jl+/L1oYhbDtse7kDxxEhMFLarCmfzRrbGfgyaBYILoMAQPcq1hKad+Yaepp+7qID0kcNr4F9pl41ozYcbA4p8qxkPkGs3vLDut1tnvhlGyjd1fE3lDC9RHO/8hezpqZDYQqoFwGF7dEPlF9kKtj/ckiTUvkvORmWVuGUFIWZ4U1KzQmhHM5ScaXRL0i6N1DvY3h4K80KObIJcOPAAf/w7Gx6DmmZ3dpCgYw1HCWUOtKRDCK/ZqeusqZntOeyZm1174gxRj+QKceSt5kghBDbE7Zu6+ZTtFN9eTX0nwevW9TUDWKb0ImJOtnyKfuqBWoFf1rIDRqDAdnBGXHPsLjgVbQUn6bfvi6zXnVbh4doSfTJXZ1mQr+VB8K8C3mT8q3dra9MtE8yjDr+t1TzU2wha8Xp8dLNRdbRuy5kWQHHFa0PvmKErWqA1apy0NpwqernI/GHXWf4vlZvJKSbFXdpjS0Ind8hSOWgmmfv5mMsUTE7VtOw0TS5TDWdxDATFrp6xfbZ6Cidgvi6/itrzf8SbDpZQgkIyn6ZBfrh/nXBwIvZAQcuGFBWYHjZVn+PpVEPkOO1quRJB8heAoiJ9FMAxjjH2MFfMDhmkADFZ7/anvobzsGDPwjbLcH8Mz7oKlIO114encZ4g6g4pr6gjsXPDsAwwwGAYBhhgI5gGGGAPCu5P5jtSa+OfAYu2eaFPxmv1wN89xakhNqztDhRyVoJzjWYTSMzTQwZv7ZV2R0F8rmNAGGGAwvy/y8ist69IKrgyhHxHypSLNMhj2xetTbkEArshLUPDKEpa/A6KVp78VaR+aiWnA/exe3GoxnRuO0JIJOHUjQfKK6bIYkDbW55T0bnq29JY/p/iFZvU55kNBXrYOpdT7c52LoO2t7HZq7oWzLDeNaUD8F2oeBz9tcHS/fJG/sEm0RuRAMXn0xX0ucZ5vol1pt1mw8dcUrbRAY1zjp93sFMTO+xOi5+A/vPyVUQTY6a9rEuOZQoiMkzNH+Rs72W1XzrG0zIS25OltYHKYAqwf49ZyRdoEZU7INkf8O+rqDravMiSBUgC7jUflDa19vxEizHx0+L+nfp+COd8+QstVNY30i8zqKOLsjxX1Y3HEprw+m+F1KyKhgGjTE3qicpGMhahDaiqHLmDRT37da7zbHmerqV61ZHlOfz77/geGy3HWT6sKYqghtx5LlhfzsdY8qfBt1Oq+IhiFVMS+/wlv9ZNxEQKNnL9+gazcC+UAImD1Bj7HQq4hgwOVAOb6yBzdlyMbk4VHxGngfrinD/Kb72hLLSyRuUskRpGzlYXJzF68fKomlh6NVlmF1RAkY8/zJ2hxExttRvEXKH7xsFQmk42cdQqO33yiB4c6A6/TnS5ibtzCDi1XzxdZ+V/m9fvFjYE6CLA/IT+CHQVElpDqYCy+DeTTDxEZFTDdjqaaKgdVkfZNEyKmi66DxWw9M2mOnWNzV3vq/cnxW2t1Oa+uqf8PH/DPbrU4TNAbZF36/hthtO8wYhgwI0gN7ZelAoOekCN6RMIxgnMRUfU76xJBAJyYzt+9MFktBH/Ekr1BbvHSoozubrNqFBLm+syK2Pl8+KMUAI/ggwjPl20kfBdRqhJNBEk4ecO4JV/jsb0dcwkbtcXaRE7AlNlbbdvrcp7kBDStc/jpRghgcqZLrQscQXzO6MGyg442z1Sw+skgOrdZX+mgp1qidj38ksUDsGxViEOQBgg661oLAmMqRohZzC9md0Eo/5TfYbaBwisvgdHs2177UXR5xSZHYNc6aW19tXP3/loAfAjqWzbn/tiifKZJKqzV7JJXHUtWKfeQHs321jAQ+s8NVYmk+Ftj6a8VtHfn9SBB1h3IOpenMla7S76GmHmxdXXqlC4bUA6SI1Gd253vLaKixNUUVeHKVN7vmGCvIg0Of+VOSK+A8xAa7Ndio6cyN19OmwDEEEJjZffXbXsiKcyyhI/AaKh4YhQAgkZJCdSqpBUKRSub/CJ1aUsCFfz9QfX7gU/pzHicLBuUd6cFw8+9mdmVqg8fNIr+WLnR2f7tf4yDEiyi/emZ9OGs4OoTQHTDgTELp3sRgyLGRdPH8Y5mR7kjvNc/kvy8WEakIEkY7MtXHR8rY8UbcMTV6TvbqFEZcRp5qIqguCQPR0Zhqhh/LV/T+KRj0Rc3noApc4ch8smuYBmoOZkIKGNsyLWRoPo+fThESN+mYCGYBWoROp/mzUqQ4PT+2rDCAd9nswDqwk/UImiMzRjevtojm50pq3eZVLYiMjLMUIdrF12GSENM5wB2QLw1JTP2RCJvsKe3u57RQkte3/75olhZeRw3/6OuSyxcvHVKRCcPzHwEWFD9lerH8RD4ILFrAQBHogRU9KoVogBiBYoX2azIs1EQ2bMMZ9Hmkd1itYdVLe66BfKShKR1/0FgGGGA07U3jW5guk+YlZmXugXzU6I8WIZXATxdOeSdXtbrBnvP43OMnNw5cU63LkSBD5DOZ3SYx+RJSXLMHcMAxf/XPkOxUPPgGNLjID1IOLb9fuQZL+MHYoOROEAaPv49w0gPcSsXMTTZi5fIF4jg864pz3o+ttmUHRinBa8Y3fd9PXathCcLR8i8rK3Sm18dKTo2llzhQdhLx9wgz3r3FBd/zpa+cO/ewDE8ob53vCLoRJDIcSsJXTFWWUyEQcM1uNPmJJqsZFLkBEi+F5N+uDQvnEeBrf0nKugvAgbDrwHORGgOfGq9h0EA/l79DLy0jUMtYDJZbz4vNtPuo6cAOuDfHXvjhpGgwX6pWXaLnBBxrq0D8i+j78vfPv8MvUxoPD1iLIJ2L9avw1QPWeFTNjMhReyZ5vxrK/Pd2VWqcGqbK01+O7mTSLQ4KjB+orrXtjvIDiMUeJk3II7oh2oe85q6tspG2dtyhyagECbiQJMkehuk8uqvRx+Ct7x0b6F09N/ImOjhYdbyFcjLJYvI6isIfMBPnWuga4lz3wBx8qu3lMbUzCZS47qefV7AnM1aeVRNXQunJDAwYeuTvJQ15WPLA01aeNsGJyHKIOsZsn8BcD1h0V4uXwL7q1OmrL2tcID8e+j6wsG4hV8FEXZ18ckhiMMRqj1CiWczn6dtpxHm5XxFKUVaS5VwJq55Hcx+NLhOjPIcMZwy+uQSa9XM8R5ZErwxcjxP0hOeg+crX+75s/1cpLAhDfmXVksr2jBnU6e2hfjc/djYp8BkJDbK23iID3yKP5J2dM84iVt9d2U5AfYW/wtruby8gryFcbChSlP0vEXnRDL9e9JzZZiG2mMcbX7IyoH3aXMEVEsL9m5cqbX5xiajq/Q4HgPo5Qd9kfLsDzK96FoD5TxkwZvUt6I5xjYuE+HMXKm8fwJ5+tNeao8kJTW+04gYMQnoykbFdCh948i6/IOUv1moMc3h1IMVYIDCYQ3leMse598rdd/Rne36juWVnXDBOrUofafE2uEDP9PXT/bKgomIYw3kQPo/EHTvrcY4samgOl9ceSKVsvwJTWG10UJitmqxxYNfH59fiO7S241sBxGMjWhlGNNKcFdR2EM7MlC/23jviUy9EWao6o+tVNHVv5j5AKucK/NyxBYvFRGP/4wHuVyUw0KCLWZEgPJhsewJ3ifZh+nZ5VaofDHYfjcBPGL2Y1hGBSPDrnayvOioaY30Lblpv6wnFdqxMB3TRiTIC1+xh6v6PYwHh5If8Zx+jp3nZ89kuMAQI22mKmJU0EO3TisCb81S1jSq2SxPq7YsfY4pss0NBUiBWXO8glan/TsxejjhIgTtQ+RvY7fu173Sb/oyxswx6lIaEHgJPvRMYONc+NK66CzPidBqQH4rFCSHdkodXG79A5se5mrIoegZjXtD7tV6Pn91by00CN9wv+7rTnPDWf5YBIdsqslD7UuLGKzWpR8QDsWcQuORmPKXbt0ISzQAR6tMoVrla+BSp9EUZ7oXL2BLCUDOx6kDMFFlqyDE9k/MmS40430dKZ2pHTGcLUpUQ/hIMRKZ26rN2sZrc9lmdLNBwd4lMWGyxWqk58i5FFLZFN41NxlG+xX63LFZgdQQOVciCQY/BGGwklONeIaOCRbtxVK64TLPpTQeEi58UEM9jrv4a9XVyHOcaeDq2mxeJ5MAfAoMDPggiOcPUAEvSbLG0gjIyuzVJz/zxlQmZDgNh8D/syjc7xROQqiL8Kgkfu0YMMX+m1g37amJSouN4fLKak/tEkX5fnWfHhBdw+GuP+agsyowZ0Sk/JJr75qbf9IL2v2LHZvXzrHOUfMt+TiX+GdCPTo6oboU7pmA4aeuMxSBEhbHWmOJh2K4/N2xRxTralVEvZXfGl1ypepOCIR9/teZzpWVjFoApg1OjGoED9aNekAsqfN6vmlad7coSeCsHPrkv9+5WlOroKm1WY1ifFNu9/4yhboIv/WeWvPUTXrCeliPc4vy2PgUX0gB8UX6naQukV6ukW7HGayhLz1sl8yXFORP5t2or9NvLkHES0bm/IBPdNueQc3Ruxnf0PEJgTDl/7Gm69kFPoNq7SVVRDOXH9Dfkmhs7y2iCHPqnwoaqoRDXvd22gDwSigub378c/DhTqxvgqi8wMJ+t/3zqeOZtxDtroaJFsfx6SFef6ZjfiVfH9XI6gW9ivMapv/Va7TH3cyHA6y3ozuS9/utTrxMRluKn0sih8HnQwbVEGbzQvKQX9JlhfQQgJY5vBDFuyWLpJkA20QqR3sWjwIfmWY8LggAQ6apjHFK5h9h6xiapBJDqItdE2TZOlvi1WMGfBlqU5jIM13GySuftl8+xCbmK0RHgxo6vq48aIYVzVa9rCxyAgmtj/byT3mMuptyLYDlTM5TyLzfu4xQX+CaL/cAJP4mQpk272Tq3QFpIKGD80HUGUN+klNp0hJ5UpqTogCOnAitlXXS7q5QhJnHhOv6U1yRWhL8y807ZIUWQdQzUdcB2O5ecuZIX0ptaSpSinDab26HHfaHszLswyfWzMmwh7Mn+hUXF63nu87jkhP5f4Ayg7ewuu2LuMB+wd0BdPrlux+LBSpm8Zys7HEZR5bizmlT7lXqg8KCqE21JDjs1GYysOEHS1QrjTkudnGzGmlC6ctTuKdXqq8r5EyvUfvm2VL8VKINnfvMjMIUZWnMfvCQIQIajVdmXKUkcL92ZRF+7lW5HAu7Wd1d3dqslKizQMXi21wdyrRjLCWmD5WqmR/b46XN7DuBkjoMQzN3Xsaf4KIcgRJwRZ31FNBS5WcYY/5wuy4NLQkHbX6G5D6xzbRcwWdBr8KY+3j3Z76QArVPdocO2LQS/h8w+jb5xk5Io3sOjUDHPzO8fpBE/e0mj6Ms9Q8xSvW5WP+TL+l7WUbTeD8zdVlz4oQCNmQl3ffiNPNtd3cqMugDeeIfp9abLU2LC34pOxdewKkbBDd4uqKOm2DOQ8cf+4kRpXsLLAyAmgQac5LWNpha7y6Xp/ZWNDvm27qJc14auPaQ9oy04XOK/BwKsJ89w4Gm7qgpEvWCcMgfoD1AmlakVnq6wZbgG43qlbvzddJFjHDtb3KLKa4p5frIqjQvt2oqiQ8uomc8623OHM8o+7MgTbupouVDDVklZpbS98+d4k4N5hC6dLzei/ODKBAvUTJjoetuS/wfB8yCzQspjQ1YG65k80U6S4bm0CF5ynR7udWQ42EtY/KObWhsFT2W4TvCHuHGYKugpSrbguGpWM3gK6kuKf3MTaVgF57sZt8wv4yrlZNzJSOWM26monwhotBiyjM4jnQFwWZKPPy10Fij0PTBg4y4melU3j40aE7mAvPZFI87siJ6pKQFNxmQDfrLi6o7WHX+/jMDRFEZ+W6tmoKVLDxQQmE9T100xjhBcrULCYt23SJdDTEhv05oPUkW/YVp69v+q32vdKs9teOU1h4N6EUTzlZfcKUEHo6PH1NsI3xWjnT1DVQsy6SiALyoTnGnDTRapN+0AsF10l7VICQp6YCZUPJ+/DXAcGyFnhnCvaDXnjvFETf0a6X4U+2mIw67Q2ogRSqD/W/i8fosGjTw7IKpQy967RS0x1m/q1lEGFscDBJrjgH2HXIVibbhGTR4zHWW6rIXkIBTwlXTk7N6t9Xx2wfHaf/jWkmbzDEYLNqHeeLK6TU1fTO7ZFRQNL612pGJwG5u48sE/FunQNfzmAFfURDvVjJgNCNLnbGdfxGMXqKkWHvPpZZ8KxIsPQBuRy8NC8x0Qzqeo5anndlMyEiLxO08mQmzAinapKZnOGvyTcN97Q43hMzdCHNZsZZquQGGmj4V1a7aYKDuvF2eVCyYcqEhe9hkHh9xVjPnTAKEFxpjYev1LZQiU/PPr3qRXTHH+7qlyVKbBCfRvJtIEoUgw/B98JUPGiCrn7VQq2ci805oLWT9BKhTagr/aSUjAVF+TLIpdu7Z6G5v7JZfFBlYES86K+2s6On+X44pM7sJpVJLQ89paH7T+lq8kEsAWdNYt5ChwUZwx6R+KpxHkcuhIGuDwM5xAqLIa5YV4cqZRqpschEocXT1qq4Uic6Ng4weITDHFOeZUK6KB99bCriUo9v7PoYm+3lLpCWm7hV02OieOGv+fs5cnA91X8LMfcqVBvQlW4E/te13bHBnZHKcKVWBngkl1AbPEzXPBUVx7c4pDkDiCNNJjyrNFp1HDFTcGrQs9i0KL7k9Bv/FFViwEXihSoocMqhJ5YFnxH7iXD8wp820NgYlFR0q7RqkupTYvra4SsanMJ73fTiMui41buWs8sQSw2n6I2cHwmDnW1dOmKrHRb3RKnFqA1VuFsn5rMiBp/t7B7b8cFFtrJTFEjJJ4TlnUDPNu6sYRDwBBzc8hkCIjIlIz7fmQhh7YmQ6P9v9SkFsaG0wNp7K24qCe26rfMyU0slQhzb/WmUnDeCIRB2Jr0HKSlxxsLmMdXT0nZWgFhrNdBUA4cXMNNf4SENaKRFwTh6CK4czxndIWYXokJi25g3F+JFZm9n4TW7pdJZdDjxIQ8r2ybmipe0xtXq1QnUwEACYVNdcwb2KkqBwYLq6t+0pQYVNIaw4DsFLMwUW1ByrdZ6JslXfzFxbl13zTtvig2mucLcbb51DWFRDyvUUgA6Mu6+hPk890YOqE9p9AxsrCiwL6LlqKGCvzOw6fYwMYXnpMlgRdptp4rKIdTWchVOguCD88ckM0RCN8vbGTOTQ34gN+kA9m/3MxnLaanTcyI9vY36oEfNt8/3230bCR8mWTitffuM7HYAtYjR85OSmzj5ANTTfSrCSb2hXZdIm+XyiRWkqQeeVfm+OdIIbgg+QbICtAvBg1tN3PSA2s0rxmlIPDgYFeRUFl6u59VgUtLCDuJ4NS7WCkiaueysmudyeRL8lyxoCHcKh+mIafEvE4edz3wR2JXXO7SuK3CWUy6az37B7waGhkP+8U58ek1heMjHDeHkiDcJvXlU0UN1zF+C47zZGpbPgMLIqRWg/7MeKbYDTypf+FdgVbsL4IZOWFE/mzRizRU43fVHz9WOaYHj0Xz7E5M5UjcvSba/zepc6bbi915M7rmEiN9DI9lsC71y25EHAwQkOHqVqnuIR1dgWeEOy+JOVy47WGzMtbVeEf2htdMPpvZ3xz2nfPTuOTvcXvT32SEBi7WAezitSVAtLbOh+OL0jFsze6am00L0ESCODXdmCCiMfo8mL4NPZ7eVj9lCpg/TBbQdHhQzdpDXP7KIFrTqzIosSCmdeRtP60FAXPDMxiEHcEJpHH4fSZpKugkJnJ30Z2uk0dTGwEJIPz2kG72Oknm751hSGYH4zx2+F5gUgcxBncNbpR58gkITRflpuI9iuPEzJSd73f8PCJJh3gQVkJ0nNn+pAVjRTu4es/q8PQcLDMmLrn8C44AX9yg9T/UHCwH0Bb+fOGmYhZM9yKclsNh61neWohIwVkaUYsRkPBlMohLWtuG8iDhntIJBgcAxfRpTO5laqipx/vyiPO7EveK9Ux6v5taysB84nBUzuw6e2/bzFufW8+P+W9ln27DW55tykcWw0/JS7sAcFWJ+R6u8WS2MgH8ZwDzb+wJrL9tnhePCDu5wSlkCaf5CtFyCjsAZizurNNWBci8hBdbzeHllOEEvs4sbK9f1nrtj6Mr86l6kPDeOiY4ub2s0N9UX2wJdK6wndf+HzZKOawL2MO+ZFSefYSa1xez9Z57+VMB0flGPvP3yzOc+v6S6uuVGoFp1RJXlgaFlz+WyAbO6H4gTYJqT4ElOt0X8L9cXwqvPNVZ8+76ZVlq0bzh9pdPScveI8s5neFisXCzPFdDLwKEli/QVxQ408yWqzTh8UFhsfVp1fM7X1p2lsh82yQa7sr0QaRM1NDMO6hZQZJDxeyDkcxu0r4SwJDpsG/Hph72+22W4MBicJZ8vpdFqQXJdcMwGvonwZN1Jy/+t2yRIqbr2ywti6JN2plPZV/460oqrAyVP7HwapNb6FMmZQTWq+R9HTm7fcwdM0klW7mu9fBLfWTUb3DautE5l/F4ffm0QX8WHQdgQ0Wx7mqxyK8IKTji0RP0A7yGe+GKO8wWUW56RKKyJTVkhv5S3xrRnyQL/04C4KRLKSo0pjWjUQS+A5y1L9CUOWPU6w6qGk0+WAVjlnQcC6dLI5y57RhN2SDjnUbwd9TLCBRvC2Yw4M6tdvMuyK7Jj0uaT2xa2KcfD1WjjgIpwHZ1VgaGNuthBmBXC8MoFcnWgVdb/2a4+DtNxcnuW/b7o6D7lzfPnrFGodB3OPxn8fe/GhqS23IxyniQpNsQGxv/ZNtxKbhBibN78c05FEnha6lVsOVAimA0vAphdiGZ9qvwSKnl9eTd6OM7iKPHiGtM2909iKn1JU51haXiO4LHk0TVbJJ/xSi5eEdblfv4yu+8JrIOjXgYK3eU0A8mlXxbPLuEs24jcopOa2inVPami0H7xaBSuBhnZ7M0TvQmXMTt1Py3FLEevZdBdXrnqmqhRgGjnu7/T4ZFXGXI9473WdvkPOnoNPQoS1Zp1YWdXHax5vh+8CnQo9Vj3AIPUy4+zDrgCbLKaX16CeI/hHN/9X1Gxw6L8AEYyYhKGWrZNoTUptQGr5XmsY1/XbNwVdS3/NcWfRXdN7JIMbhU9xku4ZFeKwAR5ewpFCSp67v5hbHiOyChVH8Oyu0IbF/Sj06r6MP5mGp7mqKGrrslNaY2PrwvLIVinWC4nrsOzWJgRl+zANDKNkjKjyaBNEeirbNqvy2FCgjuwqWh/EuTxSAtsm2/v+gDuogN84M9zFWxY4/5rGHhqdfSGp16+M4xaZdB7u00dCXBFs3p3h22M3uMOoPo0DTzFmQ1mbY7yO2qUkjPnviygKCuNdShAhN4FqSnEy+iSzR62Pws0Sh0gtKTSFz3X1L7gEDsxps4xj1P/VtTuJtApMdhsDGpQnATYQisBy+IsbLxndjiCoY/Sxl+nJUMRdS2gz9yGsBHnJcKLPl7JE7+GdJZuhEO+IsRHS7qH29LUbB2N0fE6dLNVMMBnrs3O0EI2E+Dkho4N8FaSisOiuPf1CffD2nf4N2Og68n7mF4zijf88bV3v7mP6EX3Yuw9P3N0Yna0FriXrFLdJ1Y8S33zrU2D7zKcryT41B5WGyD995yxzCEMld8r3KWipNIDZC7XG3UXUEAVnI1XckZ13Y/TqkfGEKNl7Z56d0KCRXPomovt8v419XAUQc4en8kpbNVh+SbZc6b7gzbLYxczUjLBQC+ezbwg3za3BPMnVNu+2qWOtwr2xAItYlfKNNje/Id1t+ftCHKvKCYWHe+fLJhT6RrE2eFoDeyHz3MyCPW96+pntlWOEclyw7PkX7zJCReJn18eT42ey47OLbvKxkohewk+TqNZW4z08eDXDWr0ejEcLxiQeeJM9aczpTwmiS30hMkUU7fYGVNkkYrpSS4dmaRf/n163S7LgXeL3HrrR42JkfHoFv5l5cjDcKeel+cM367/Xwu1xalP8vYLGluBZ1hX5o4Q7An+1aXcDwJigY+Mp4hlWHb1r0rxSf7DkLAkEb58+btQ9Og/yamuygHl3HSnWPQSt+Os3YSnrhC7ofa89eRotXpiRlLULHs1F5KFv9o+zv6cXm65ITc91D4Vii1t65lUni3W9rcD3enisIA3MzAWU1MjAH/2+J6ae7SvHBx3wzUk9xMEiatD7T6dksTtSkkSUvHJRdhgpc2TuU8ogy0dW9DRlu8X0zWuRJhEgTx1MRrRiDOqQkpNzSp6i+E0r24OyI0NW4doYRF/Iwdy2VHvWSqs39vXtA79hB36UUxAZrXoQzW3x+ayh0afKFXID53N91XW22VDtDBmTlPJUagjj+4yYtcsx2OTRjnyEA18I89OBpW3ZThNnI1U98Zm0UcUygAY+aeQ+kUMAxatzRGaZG9J048rNb52r17eBHdNYhqd/W9IyAhjYflN+z4d2WyYoLquLublRUrz0xHIiB+tsNwxDy5qikkM4pEb4qridRInyaRwRmyEwYYZZxHi3hnxrRrdesDUd+Ywyh9zfedI7fK1rrUeo6Z1PwYAAAcUNln8GaFXr1jGDm8qxNIVxnqHeRKqDosDoi+7ElmmslqkDxaDRbZS9M/7pGZWThKKqBBttxgIlEJzY013YALcRAwwxTxzH9JgA29YJ49WZgAtwgwGtEGATORhTLUQMAIsAEl55jaxsxmADaKJb2XbY7ABLIerq+iLNYT+N46eDJiAIv6vuXZIYC/vKDt/eMeBJAw2CEMp7j5G0sj9CrJmXRsilzXqf8G8PeqO98dfdw8uXUWn836vHiBTCTZu48z6Hz0XdXpD7OvHSIAEN1MK9M0qYxR2XgFscoyqzLxSuUHydA0FwuiRumkjRWfKrRzek9zl2xGyy3N7uojIb7f55s3d2CFw6O57iDPuL5WfJGwQU8cPrq1IlMnAG+AtftecyqdOTeVytOBd13CF665N410gIH4/KW7plX2OXBHVM1K43mJrxIdIZNVVjdrLK6310tX59lADGDvI4HEhWFewbKc6XOViG4qHcO+B7tloPXf1mppZOdErQK5M0qHGjgHHRqKjT85Go7isrcZnyzq/Y++ov0YvVYxVV4Je1FG3p75JOCYPG62Zrj0qvNU3G6ec0olxNRZTlzGGBGaFvOSTbzrn8HErBbUTyT7jvIDHbjsynJo3rMqEwiHJpKuAhADCKQYD+bga5B64JShSxtHH7R8LUiZ/Y4ro2bjgICIgIiAgwICIBod7GBP8CU3kcwece9alsrZOyyyyR1MkBmWRnOU5znEc5znOcggnMQaCAkDogOQAghMMqBjonPCMUzFRTRROmmM4TnOQhziGc5yOhDEIgY6Jznbxup1DQBA8LI6Pcl2AYII+PL03Gn45X8GlPKmJgtLZgOMkYBi8yql3a/Ppy42OrGutgwDEoeuMpyE/k1SvexglYd0wDEvtwsAw/vsBSxPsTdOolEeog2KyEMKTEMYoXfkBrTj2AYYYDaMAwwwFzYBhhgPkwDDDAUbzSSCrrpvu8vu7O4yxLNfokvuXxbmD7V6HWBE71MUAtJdTnUXb/T7a7Kdipa+w200c3/wc7WPUNJ2c66rUe9pWS3eWrmznHK/e3shIMzYjAS47R0LQ/IhQydR19DV7QjYj3Rau9T9fAzp3T68YgUmc8KYKsaOxnxKAntaJv1lfstBalLSpnDkJ4VTfr4igGk51fqzKJzYkabT3q2E9Tysj/MOP3tRBtuD9zFliUInPd3ZUur+mkT4FJtlANtTnZOtkb/ebrY8ZeeOojwH96RvV3lRgaIHe8juPbUlQSS8jo/7m7zzWKENQZYftzpaug68X4VfI23PUtG6f6O6nCUvN/wrjiwuh251adgD7E5V4+8t3AZ0OTQo5QpqDpraVsmo6GLKqLD6HuqmOotG7T/XNkJ4r3p+J/dlhQJm2mjBQYs0j7qHiAqYG8E492iuz2IsJrj9ma4kl9c4PKqx48Of951pikIz/hNsH3DfC1UlmpfIrgnc7XPx3lCt8Q4/Lj7bzquAE6yN/CHCYHpzaerR55sQ2wa89HJzWfZeL5AAtCpgPvL1NZgCYjXxYM0ImQmVekR+/OzaURBA+zRKD5WugXT1Xuc3UKGnHt+GuuT5SPjaqYYdUIB9X+kLEl2i6k/6hLxhlD753DN9aFhfFpr7nOPuShNBPANTd/2Bu/RUDfzGs5BvJXCHtWy0XlqXfhGrGRD3hCvaw8AQqyaEffeKDU1ZtmVmNmJGKsJejq/xze9px8A6WUWpT+JtygqrOLEOWT5HP69+U25KJmYIn4JSJ6+JUTwvyxV3TPR2WhjSaq/7WGHBC5v9tF9YM1PI+iml+kNAOHXWq5ADtK6BL4JD4np2iIVIMm3JSELNKPQ8VA/qwGbVCrJ6eua/yoq91kMHK7FHour6mlqklHXWiUnryJqwLTByGFvHPRj75U/4VQH+z9v6HnXcKsqrPb/OFBFyiO2Ja9qyUDyS7jyME4hU0Uim8z8GOFcJTNj/chYEgkcZNSa9voMbjW4y2B4mLq7V24yrBhPIaDme4/eY0OW70phNRsqZCyOyTihAzj12dQC+8eL9iLQgF/5b7aKCRu6GFcRFsP8MpwEHyr3EZJvapYVMfCaHSgRGVeiFTcfYmUHXZ7mQGEFiQcof1HdvCGAhE6Lo/rqMDahHlB3a+3o0C5l2mhgJe5z9P8ibIB0rnqd2Ptl+2X/c6veazc12o4rdS2oycXtRlCq5whuVDKNPNCqNblBdRHFaW27UOIB/CZeGbgZxw4179Lf20axLX5CoMpDpQ0drLAqASF/GpESrxASMM+5GVnqm6psaQLxSOKCo66z3p5C7TQXYj8cqut+R+qOiDMhlG8v7TKCFbDF0Lt/A+IpF1NfhPix0ftGDCH4wwk0d6B3SSEtjOvtZO63R47ctVTbgQJb4f1kULHw2M81yzhLzk9rlonNfEZ3Bk8rzjozlknDWTbaEbaZ25dGTWETVGs6NJmruWTmzjmXtQA0IuptSlPO15+v8nKkRgLbvmOrvHQz2AQgP7BpxjCoX/2DtNBUUqd+7mkJBzIBdni7FtarIYbETeKDfiJhHTNOhorGhfccjOwZfsyLlexydssAtNn3RuDBJ6WieJYo+A3VZXFzC5GgxZadMCA+uoGkWkMTLrWja0dtkH4r5Ag90hLqz426xDYXTownDmLIQcRuXH7VrUbHK5p3eYsTQR90yHMwCIMfv2UG84y2PXmCKhG0/ERIEaB4Vdy6OWK+gunrfUtpnmBCJHggi3ZDfQJKKY8wwTxZ3Knn4wkZBzzBs+Mar3ZxNqpt4q2VCuNXkYkYAPrYYIxAeQeAZW1hVa22oNN9QPTH1/FShetAtFARFepUHbux8tuivT3h2odAbPuAUbjWVsRs+YfbdhQfsu3i5smfGtoJJq/psAbWmwZnd3MA6vi8JPU466SD0Gp8WyXLkFQqKmFj2/2Zo+pCvk3447SQRc4c0oDji8uz7KN+a+LldOl2qeRWXWxH7J/SCimekRgplwoKmC1DtXcitx9WztEMdGStp6dZ5xPSFsB4YAjNPTqATdhaXrCCwvMg2tlCe43I7lwfi857QzByV9b02tG5FhreJYyX9rMsCEH37Tlb2LDuC0wxD/fgolQl+qTZun99ZwimirE5MD2waXOYzAWljHazJ/84lYqFCi3FTN3f8WMtqKabSpDjneJEtNHI/Zvbo1N0yrxhLFjX/CZMysPpOJyeB2vyPPaOVNtG1odHoNUtj88dGT5AHM/cvH4nON6UKAh50HmstrKHCa8FMFIP7VHuXUe5EdxA9NIOIVD7LtOI3auZ5yyWxQQkRlqy5gFq7rvCSxJY5nno5a71apclXs5paSh0M7J10NFfTVFAc7rU43T1l2NSvJcbHLkMwWr4T0DaobA4sUX+1J8L1KNyrAhvdqEfhCEwO97XDj2p0BsRahg/kUHHOHhHHX9MQ8ZEf9OKZ/N/5VOFsm2dX7N9Wfw3kGCx5ORnz46b3CazirRHQ4EQmNrL0f7RCZwKsiN/wt/nXqkOlErlERxcY+fwapp1irbLHeVZTIhAPX6GR+5Okq3Yv2jgpYiAoAbkcx4lGHrVimFGUmTkPZ4m03KLPzeyzGIr9DKVWLqwq6LYLDfKFjYCsZGMRuqobjfE9VDggbqlKFrmhVl6AZgh08A0z9ugEEnsNXCC+2ja5Ek4HC7hi07CqN3yVMfEO7K+ZNb/klcB7LsNvOr3EZlBDRe0UBxsXdUw8lxq5KtQzA+XasHoSgehwYKM4ybzKib35E97d/O/x2pyb5GPqNA+Rw6TqyZl0jJ/L/nT2FpoiQEQCQkRCQCQkQESgXKPTjAD5AE3CgZgDHIiK/RbNwBIE82gLvQDFeJl6+AGFAoBD8285yIjg4DwJohAjV2oAMAsBBhAGbfAcGwYAx79MTgDCQEBAQEAY83egjgDIAwwIA9SIiBgMDD0AtWuG48DubzzK9rnhCSQuc55GB8APYIZ9HCShC+2ijSYY9Z2hhBimpQ1awf+bZS/gsSp/KnNg6QOlikxkkANWIqyKYQhzycaIJq1PG4YPPNPhvo5ec/OyjMCcOGGYgi2dQJM2S3HK8xuv+UYDnK0RGRZow0LjCSXXS4gslIQpXPpgYLKj0NITWS/Gq6CNx0Uxr9tRkUfUh5zeU0JYuXZFJCuohP9R5T5RwAOBc2gcMnEXLIxTBlpdYkVTiKVHWOw/++Yry2PX1/sx5yyHcOHTz733jjGkgs/U6RqTSWLsrQnG9nVVo9etH6sm1CB2jepnY+wAFCgkEBaauz2ulOmZ5KPubPoDPW6IyHAVfX0q9rULj0GBVYPvT8H5JBR4czgmPcz8M50EBK9I5/1F5Vr6Y60mIL8WiV1hTAWeygvFfmigx8N+z6uJwG9ldWtTQgG7Waw41ywqDbSc5oao089lhQTGn0+IRrT7zLrcHGiiDOWa3dhuynOMoxvyRmajrsFZyEz8jCRCQnIDCYRA5gMRGoi5RCsuV+9JkrsMOa5ThbDI7uh530nQ0zZRALxDXpJ0qcw5s15yeKC+snNpdmdtCDULSH9wnRhZ5cevPEhkvIuN/dUNICFNsl9U1MNNEQDstX2G8cSqR1hLZ1JEAjXcu0cLwoBsZ64EJtsmOwxgsENMaQoLIfvna1C41tqNhtU5bj6/W4Df1PFcbu9rTqReAFkG+2FR9xs3QBtB3kj469RB9QF7uQN3sGq+8PJGyfelOpTtO0QzXQw4wMy+nz6zmQGHzx8Xvu4Ngq9jAtlREmuc/eus5zx9LVviW8vUp2mJQQVUu+VzPZtDmVhE6cpmqXknkFivBhlypEvebKp01C0bbvxUtJdgM8mLFJS+0uule4Y2WUtaLXZOsvWHWBFGU2CUq4PTh15Y7ZRD+pwaIamTR5z9Hg2yP2jlhTqkmHx1l/srAVOBs/rpF+KGvStB0b2k/XXlFHTBrxyVnrq7K4dh8YlXR1c2Ud6PVPDqJxK7qgGpuI8xRp9+0jrOc6FFay15bF33X9siyNPSZik0tIAu9leYClItLr1+W/fIdtXcBd0rJw1LT9Fj8DOMMVq4LVqmmPRJ7JTY8sHdHkSF3uAaQLHc7/kZyEfQR9o/F4gEX0PhoMR/ZfQk23CLNYa139PDqfOrlvMRfkGn4aD+9UlKhYq3T28ALK9l6WxEZVpkpQWpCl6PlSokK1F5Ngn7RflvZWQkkJnKrWaPhlAdA+zH+u5rtpiOgpCo7Ef36CuKh78Zr90sf9j/9wknginTiBq8sUS+FyeBpnwy7NOJkhqAYeQeTQWAM1lvYks+4wtw8x00wmDNcIrcNvVGPp1MgwBmbeNsPQdp8mtNyN8qsirm0eBBIqlX8/TlrtsBWMaUquNouCnQwuLjjN5wpGd3AzCz68DG/frAW3xF6FwwlU4mjbqgeb+kPsa75DBeLALK+xo6/TkrxKx3QNgnRy5n9O6783zEoULIKEeibBx55Z+MD5dWjFfAgcbMN499BeqmK65juGjIowv6dBtv+Vm3Cu1j7ywnb7+0cnkmd4y/ulJ5/8cB7JUAZyajNj19HDHscFTs96gHioj+Xv2IdswZTc1S/hSxRTQgv3jgwEBAQEBARERr7N4cQwAeQAYk4T0MaB9/iCYAJiARBPFBuwSDEUF+BoEPhEgjFMIEddziB83EGBYVp+yIyhX4+qgdgoJTnXQUD48uAB3KJzDYW2uBaoNiIAXwNt2xJXxqNLppTy/heB/aFCHcEsZMPMqMboZO//EPIQkg3hNUiU5PLQD12QJ6xzMgmiN50H0TdKqavwANCgcQrhd3St9oC+2CzXbSQ2aT5BVfUsMOiUb3TJrFg1auNZRD39pzmxeynGGVDvreXB8qi+PrcyYI5wB1XmRkD44cI6znvU1V0u1jIQW5UtHpJwk1E79xrlZaYyrUmgx7fjjnMWclzFOOVNp184V5Uf5gmR2ngi/IkzHsOiaChaEMypQLJInyqx1cMuMTadHV0efpfq04cpmgMu7pkEYq6xPgyoy2ropEaGBBAfieFH3pKXosGbSKmBt5h1hAkrHdHAtva5uF9hAW9ls0I9xmIbOfz6B8uS/BLzUomou6pFMuOmgHBEC2RaUQGXDcdoshd5dor+1KCJ+tCZZMGGZEnh2FPaY1E9q6EL2G3+pm6wXJZY4Kgc+Ig1sylHof1lIKyRfDZlL5CuqO2V96Th8Fm4RSF88gKYD/DIt1+NJtoo0cJAq1ddylQw1yGMl/2xEwXByaTJN7DVe1+q+9QJF6ltJ6buddidjL3Cgn6x3dz2El0sYpIN5W11hBX16n2wP66PTiT2zusQeDKczyqa3a/Ud1D3+U8QhMmqxAPwW8dmo38zTEYHPo7IP0QmPx5hI6HixdZtJ0L65oCQNYM03r4bptBBiq5TB+fzG4cBtdlm7BX0mJwsn7xEG2SQAiT2Zwm1l9/WseitZPqxU6bFDC6BeJgutGp/025jSYrcPngdwfb7mtke5tQRmJIJkkvpnPqNDrrezU58oLNZeFIHe+p9mxi8SmKHYB0BnTAgqc7bTFpBbQYl779EIDP49TBJWPs0PTvusib9Ex7P/p5LYftq4fcve39luqPldxD75sKcGSgNWjRWLqvCOwBAnDkuw7W53zlQWkwbCNHpXq9lg2eZW+vK/pFT8QiBsDu9yijbvcNhDL5dzmNlx1dIMYyRW4S/8hrEZRkvRUjJKzU+4YnbJts+gZgS28QGKk6ZGJ0RWwUKi6X8hxxY0Aymq13eupEcC2a5JN4iJBbNfWBUD5L+M0zy7OqOWRgQ+C6rR3lNmBTItPVGqTE82/8ncQGxh+f/I4v9Wjf6qyXhrvFKDPa7z3aFGah90/KLOEuBpy64vZX2rwlSWEfM6TgJRYz0fXCHRy0ZjrWh0IPBOvq883SxSgdaRnUCaDc7V4WjbT56f+S4vi4T51UcdtER6t2a9xstycAEKcIwwx82YgIQhtVjUH9qDBYcs18ThYR1wqZKBaXlJQ1oFP9OczQHvpgyiyuNT39BacjFxOv2WbtvpS/eMi3sm8riD4pbMrsF987gI6mPMwaoCQN8A24GNPj5GSLOO1fEYt3fiGkCuBBYQ5myHHBxCJ40SFdJimAj38IquccN77HcHdGV3jC08Jr+5G/+BIHho8onx0peZbXrpCcoxqpJnFCKn1I0f23P/GJbJ8YDhB+qx0nshfGEWLFYR24N4IqGr0vDG7xXL/Yyk0PTuCsjWdN70Z60sdXqOCu2RatADob7Usew0m9MnyfOraoLQJA+7ekYkQWRvpk0D78OaNIGsDvhB5jnaeNdSrsWuWbxASpH17KOAkJtpKGttGILTMABub2zpxnrnIBlgD+QtXxnxMYSMTrN+AotIIB00DfRAaxxXQKBhgHzIN2VbIAJWggQCwCVqXfTggEgIeF7dc0DnDEUgoM5RrFCO4AADsQFoIQHACSuGCIBIkAkZJwdAHLt7/xQg6eY4+C/r2GCSUnbRrhAk+dOu1q8Rm3knU9DfbYHkpJpnebefFG8pV+OO7dEOmXgYvJjukdvX6g2zs5UKPm7CrsT2IxVwk36fN+lJYjWrdiMIyTvKdGYK/ryljlHre+lcdhBGDMod7hZRs6gSU2IFOY4H1OifPngosVECOjpsWZMlrvrTFzPRq44r3V3OiJ2THg48pvGha7VFNvyaFN4sx6toH37oH0nCGpX2O/Egw1pnC5MDgNb/5dtPBG5O5mtRWikcTYCSqk2P7WxDU8Pjjc7MAiKsfesG6pLKXc2eavtKhlFIl/h+BfC+SnW0QJRyRwL2kPkAaUCEnxSOfL9ed1wT2kTZbwy8D8y1lmZ+9SIXi7FxKE9wqgaeQgsR28RSsAiKzdyHysmixCq7ShEAxUBiIdHcaDYJWgtVTB61RL9zg8QvqN7qZx1NsmycdlPAFFH/UxvcTQCA1XKIey3oqOoCBBgrkoyxrIOEsLf3G0tb6JJ2yPyqZjW/d7yMLDiF6ORzCAHAxxOYxiFg5zGETCJxE4HI5yIsY6XxvRFy51JfVe4ipzecQsU7a6Ytoj+EnlJIEIgGGjF9UkyJF0Vh/h98qS2qJ0zXagvnbSqQdZlGNp4KH9+gcONjr7/VCO4QJ2rv4TsNs69YRZLDJ52UXLgn53Au1wCl+kvCO+VQiJRO1Ocjp4HnV/ZUE1o6dENsu0kIaqLONl2LQUYA9eAOK443aqxES1f4E9ahtGiCrPE/82hTuk/RVqs9WC9qCgERMQgDjMCzvehgDe3MwfgTw97i/B9+xUEOUGdx+jdilYvb3DBicUbPkBSpFN8IYiYk84HgE1OvRBZqf5ljv8xultyFPRrXhYoUruW7uC6V5pu8jUQJMRCztBetjDebkPO2mGSv/b6Bcm2mEyfpxPOCVP623Xa+6FBanEYJLeI46vGIdPq1/bRVuBTuFHRnf+XuYCKvnr9I1zz0Fzqc/WVmZgJ72usKeMQy4djzI6g9To9qZ7qy6f6xe5Tdld3sbUKKquLoWwCQ/B0jenJjDnVWYBzZeEGW9QMHATtSpRR0Cnnk36eEczDB8dt7xH8rdC/TLkD3Mru1S+FH/olBa9b8TJzSPbuoL4jT8u1sxCPxpZ6Bub1f/rNjqHbswYyHiQ1Ez8LkNlaGQrkJIUckJCB4kCCSQB25+XV8iDwAf8FpHTLLCZjyZUztec2dw6Lo31VkxyzpItgQ4M1PmOyMuD6jNBdtoy9Zv+0Qii4fVt9LB/vWTtD8I0nIi+9MyEF6oZ8el586QEdQ4QGzhUfi1RLW4HBV5YPaOSsRNVnix7Nd3D8GfFClU15dM/NIKA+hPphA/AehM1YKw5WGlyO8ZuwETjeSMuTE2IKEcz3Mkd01tSDYNniAlHQOtQ4x8Z2NoSAMyWc1kl4uRHcL5qvvb4CzFYEkwYj2pUgAL8w7REnJyZXP8xplYu1oS9l36qBzJhzz4+dQl5o6HTER/CivC93sGtNK+q7X+b8tV18kobQ9SaqQRradBgV0Q5yL1mPSs+ngfU1jc9hkCCpv9im+iQbxSaFZbQBhSQr00jT/6hoQmfIvkzdBalRrzjtVaMh51n0UfIuqFTmAB1PD94KcDAMdUGAEBDBdeJpKoTihcq2I6KEbyaSElxO1B4BwEGBAEJESAAk+GhzAwoHQAD0BBQNpMCAaAgMoMMDYBnEA0wIDZSBYAAhOeH+Zc6BANBCvHj90CQEGACIA/aHM1SLZ4866X1lct4uHjrbkILT/J/39xQMM+yUfZOngcvFX+d/QSBGiXb+cbnuDFKkZR9O/Cjq8Xc8lGj05N0eXB2EChyaXbOo7e0bAHst5miq+E8lVnhjmpwboS+EyyUq2L/4DkOYAVpdyqwDm2/MRd2TU8LB8GpCb771aJs3aeQLzyXk/q0JuNW4ktuWXR9rt01dxBSaNdJM2RzV16P2G/zgtjOkXpQULiACIKo98LctE1czgjSJz40hX+G6Sat+Pfv0+HwXdLaSPhTOnmmct5D1ocFvdgHTz83XjYE6Py02Wviif5eVOjd7OiLMy+65NXyyTU7SqoSLRkm9TR7R/5LVV2C/7vvjCrqlt/77gQShE0hFXpkkMhRyrfCgqXUaU7MLz1Xk7CvQhOPOQypMZbjqfTmw+58iZx3+j+m27EHo/0rPZD/NzbGTJsVOehKkg6wd36lXHNu5Pzi9It/1t8F6xyMEh7VVSuyNgbXpAv1xa2l+hI4LAIeWz9yoyn2l3uYcoKUyojwZHqGZ5b1EAeZXSfV3cqZ7afEOzvcoqsCdD+6Ws2vGAMXsspDnQGVqhwutBwqnACofzT4JlITb6yXzztuVy1fRaRBFpZHGcWJnr2E4Wrss1rvi1zzVv6LkPd8oZD0iH/TsxptnjNCEeOD8hV+3lrfBL23Lrl0LMQVXFi/gQEHDwnNQKDdSOnhNFJoTyWpeE21Lb1eDAKglxXVF0+O+sjB+ShoKdsptLvLzr34TdP16h78am+Ru8AQPR4Ikh2YL3hzmRuJe28QHTyknMyyJDuEGvft8SjiKvtezhbEWy++ebwStlHr1Yyt30TQoVWLhn6I+jd6anpjT6f1LaDAIWoDAzNvBgDQYljD0ByEpCCphByqM/LCPvB2+dt4BMmK3/oj5Df+6OEmzJTBfWIhlEdJBHdG+ArYyQFfSGYjg+ieSdimi0EQKwIGM3sScgenvcGYFTCQtKoKZG10wLX48lIDcaxzupjV9iC12ke1dSdJK+1bb7VHXtAZrJjxTO9Bssgz5MLdrBkG5P6t+Hx1WfOObdMekgpRTKoc7ciS/thHVJTWjfolCD+d60RcSOMYvn+bl2s3uYX6L0fxdvfhjVjWfNMlmNJqTclFnBRiq73P6Tn4KcbdpU7mohVs8F46Wz9sA734sFXQLHAj6IN81a+viF/iRxopIFbMDveu9u5oT1zOyclxeSwys/HPqGjCCv/qJh+EyaauE6XjT9rF2DejlbkN/xY78Jxw8fxdL7dWw0hu7O4yazeOS7/7rR60D2EtHKSCWOTDiZJay0EpE7/bVS8Vh9C7ezye/if4+UnB4ipjX4GN1qmdt9qBleFQZwth6NBdGif060pwKzEE7ZOZRlmOVRED35AEa2TLR3VKRDTkqCbsY1lChGxDPBREFgsdDuSG/OhT9/d42JICirSydSKCO5z0PRBpz/L0upUqyXRFYGW70P0DPBgfh+vli+i8dDRGwFtGVHcFgV7uQ1jQsOlpQwKZRDVJiJfM9hdtXHilKWhZO3Z6JRz7A3+rWbSgflUwqpPUEuxUmuugSpTZ1Hq9e6C1LxwzuTMmSVAwhBtIbyS+EkzXr5DjQ4XrsABbfe6vj7SKuQbEIkAABCJzzE9FgUkBwBIBNA/0E+okAEgkBCI/sFrUBvAxYCoBEKuzAAwA6fEE1qcHBBBhHwbIc2oujN/xgRfhvLl+fDFICF8j4iLg4qcZ1691GrPnUcQZ7Gd5nyWLlcjCwy+lqN21xIN/jcPbiyZ5O1JNczlJSKA+RrDrn4wY8GW+EmqjUAkXPysSdTuEbB629b4LBlYXeoQwwBzd9EY9SnJ/dAB1KSLBpZ3gxXltWvlksQdfXa3PK5XbgW2dGaKVp0VTn7wa3xOGvNxBspiLC6G/UUPBcGFO5YAGipaEncXwLBHSumd3wq/2rYEVupJGEWSrC+UqRPAWeF3s1ar42shf0sEcTE1PhPeOXvtCBT7qaVHw3Yzh4bM/hom9gGKmql4lK9BSLDsn7HmGN9MGLrBCqEgMunPxueHcUuoLo35ZMEEu9hn0IyonmBzOF+70dI9bENqPWE9zPkcUgqDNYo7oqY+QrBzcEVZZ/np0q1a7w517raDXl17CFZOC49CGFH9LQd+omBDzU6FoEV+SEn0VAjX29lSXCCtNSQ4BJPrdTKRJjb2UoAzAZdkjcsQ6s22+7OmCMbPTDTUAcltpgdgwgImEjHCftwd/4zgcj1x+z7TL/MU9mbbc3p3rAxMmkIAdEMpAPZ9dlIs3nWwW206fIQrA5eowqhO7zBM1r5LalxEOt3zdMM7oDor5TNsfaKfGysPp7IfhqKt9mAfwMkhIXqx2XJHSKovAGMPK42/68TestsJNt5fzHvSEHcl5ZjGj6/QThFjyOaWsrKGQaEYf9j7uLlZl/kZzou+jRirhvpUIMdYx+hHX2lR3ajc27HxWCMiacYoRaQstr73gSY7mqohUKJ74onJS3sgqjKjqufnx3lUWf6MQqoYwsuMUMQFV/lOOaENPsP8aDqPJQiUrJZha6VpS7ZpVE7ly0p2wIv5HaQEIG7ShajE+4mUDimKnc/XCde6wmcX8mu617awTOT23gleL8qLHl1W4HeoVBmO+GziJyLGAPZaAq7xuEivRcY2J5KBZfCYZamC9jUQ2QA3N3fgzD2WBcSmiLYD1vV/pG2WTNJfavjnb7jTNlfTOn7atZlX5Hs2S0rUHshKh7GaRRHxODootbXb9sc0vyTRypbHl+3PWyFvtOAglAUCK+w4Pbavw9lpD271xIQ/MG4J0jrziFnnyAkzzm+qG4pE5x0GORO9C48VZvcj/yLPpEEmLE6pyQD20Z3qoT62BqqaQCcQeClRJvkJiwVfD7Y9/NYe2ZG9PljExpjHk3fhWnGK8zIJ4bT0+PZPtWnpxokCriYc0gwSgWOqfdLd0OuHCP1RdYKbs6yINzuqU83fjV9CEbJet7z7v9fibprdl1IBVQILs7xPem3wyIQrIsRGFc+xMjJr1iMBpnq3nfPrhY6vajGRfVUZefkcW0ma29EKEsPIbP1e3QeKQHWzKA1Zx7BxeVOmuaGRimfMw3LW8qRxgv4wDvs1FEx/umjyd1SHNVfqwxW535TGP8JvENpqKvFOjjfUx7epNTjM1GiNAnT4Zh6vb2HD9tdq6FnN03XQCEO/ORcIxD9MYUdHcGlb/FQignLoF3k+kofd+Es+12/0hCKS0c7rkvJX8eYucNKYNAcG2pFcGgsDhFKDPZrWaLhHic+5GokLLTlXYFbGAJoAQqvEi8f3hQK0hRB99yfskUG3khIVV1zm5Ky6fogYekcub1pInR7q9/JoBFhWwj6i1+4pXD62xhyiRahO6wAO5WaKQuarzb9nnBcw1ofWThiAx4CAAkKq/WnDgQkL30OMhxXqFHB2AgEugVyRUtwMWQdDBCLgTW2N8pUI8G2AQkIxl/hQbBAECgZe6rNkoAhAbBRwr8mQCQOiE9EB7nXaMTrpzQbnRdrYGwHrBEfGmnDq0WqsaOQMkKEyeH4q8/3PCpQ/Uh0uPjvHUSVb0DREC6kcJC83aHxZ7Um3CEWXOqyzhZXaBknUhjPD7TbxmYqiZSdcI4Q7TFOfzT+ell+16c5Vosmi6/WUZWn9E1hLET4eNZ6L+ec+I98D05Kg5jeATjM1xqZ0ekQZYO5DFEeKW9PawKTiuKIBXf8a6rx4ZRJIqlODik4q8wImPdNf/KdJruWZ4xmiDJSpuzRnznL8P+W2atqIbb6MlcYFrkOSQtg7/iW8t+m1+W6YNOYck4qQpB5dyDmhwqnjRoMAx7cbAAAgH4BDEnLwvc4hnUCEy1QE/10FOuwcZmzX1loRm2V1LNupZQzhBngb0qzJb5L4l9Tqn0Fx9Pn2i8+1tdd14EShRvjAMetDQ0lDSgwGSFiIP6a17WgI4SOwaMHazvhJyfCKq08ghOHjrB3p5g5zt3wcqkwX4S7CLEOFSs6eSIWLYh9B2eiOCqgRQor1vTZPw5v/aZVo2Is6x3euwSrYuB/xCKnGEITB7w+yEZBAExaktgavO7C6/im1KGYrYqLe60ykAvzZFq3tuMq2klH3iKPGLr2F4zFf6vmlkPH4lQVAJsDVHqTeGcLtr+kl3f9UbM/RiFb++mHDhAbM/gd6un/Z+tP0SkjI2tsRjWpnVo8KLeqhf9hFVKhOs6fYWm18Qzy9V1owITUziVMxy/hBkRNqqCnFKo/u3wsWc4yJUX9yRoQH5uDJ0+Bl45Ng3T1pFIsO+wQs8GpKir6w8OGW5sffidc7P8j95dsbAqV0az7uPmQBAheWvu3dalalB82hkAMxciWawVYA5g+nlCZ1Bgfln2CFQlfZwimg3/PdwFL348c/w/LhGgirCFFDdDYZkhm7/oFz/DmikVviY7tPtNn2BRmWrBdYreRCZQoEDBzevBf9do8q8i56wuZVF/pPH2ldDRVeG9hO7geG0xEgXpVVSNrVpMquQyHqXZUfgeTkO0+PyxYutJWqIc/5KX0FPzypRy9hGu+4uZn169MXD8r3pQZ9DKRSbhvAWUKBglzEZS5ie4FgGmY68LfX2ypmmVZkLZUWEpIuLpw4hx2/hYL4zvAuipYYXyZ7wAl6uQX8tBcgZFvy+oRrd/+1/h+K3M9Y/p2Vj6ptmeVeZHQA+MrMrcrkdvUODiBEpDQK6FAooaW1/0Jkjt8hiP/APWGrFusoolSwi+CQGnurnGklef8CtRFNUuASBYAbHNzBtkS7S5zkXOuLsWkZmD15PYunXKlp20lfmbiJbaTQjsP8oIFLOtXG72aRbJt9Wr6OUf0GNlDvVKYfjzN6QY5b1iRg2vMCkeJuENe1MHM+HsLCpdM4KH+l93K3v7upycFl7LBPLJN02aCIHKCF0jhadoUN+v0Hdbx2tfxslJ8GWbMGi+dzxOvydYgRv4rlDE2tal6gcoQVONHuXt/g2up2NrriiUt5xp/AT2VPSb5+NdLU/Kgt5QKwVENsrwuxf+H6Jo3k3dAnyQvdCMxkvg9g+USMbQC8kBTF2oHqcP7Fk70xQYCGfsrpQSR9a7bCtZKyyDrH1xL37pbUfv8nBXC+f2sDXoqF2962ik9Ag0Dq/HD3EgIKjtWNes+y+/FzXdJlGrqHu4GhMABk83Wg0HDAQCPsADJ+4HqQHIADBxmwMcBaAQAgYWGPMHtAFhTYyCBAHBp0FVODwHRwEwUWsapYPQQH1coW9lSAggEBB6D7DtgcDggCAQDwulOoMJoEQQGMYWlgyCAOEAEOx9T6Og1QSpp8Ys9z9FUkuQbd0J/AHfQsH77q+T/A3p6vdEcJEa1pjV9F4fRp3nq/e7rcw6LqSaec2f21YrSJnWQklPle3v398ivRQ70nU9E/M8qcFK2r2FX3sNRYXIykPu+omTnhhXil7NsjYKDAKzlCqSGuDbnJ8e/FILKXS/B7oHC4HYyZYCay8Vu4ovKSSQ+y1JxhnQugrs+W9h37xUiGduzBZjeKRr0FAvGH9k2dfmCa77sBbi3oSEq+Lv0ytKdsKb76UPsU09xsz1dyVCuUAKBcNyoR/uv63lvopiYbBktKtXP/ZodWxzr4SdABLBC5Cvczq+AYxT/wwuokRaVH4eacYeSViGGxW/sQWgjgJr0I+CgOpIKE1xhJ/+8kToOYL/PmwDlFY4LpFgAcISl7FRbo3fT9dXsAJerO39PBiWdyB8onYI2IhHylV+Z6iywIZqATHAl1J7Bmez7xk+nNEqUStLOQwkpe6xXKWBUkYoeKWh98CwLr6yYxNWJ36kUP1oslT9xnozcZEQiJtg014UpJ4QjzfUigbcBEQzuW1RAcSOYjiYTiRhIxCBwOcgOOvwEkb2N74Ok1fTltsjqhWmzWwoemEAX02b3ZwMoA5i5YVBKqLrwYvtPcGLgEaqGefRu5S0ghwBiYewr5V+YYXAS2v9AsXtHI5RCuwpzK0JwM4HskyBDh0ENCNeL2iJ/U8OSzp1bkrnpBHDUl/LbUI/g9bYYBPg1jlRaQLo/Hvh2UHX/6dzOenoYML1WuU+Uy/1uKn2a+i6OBxq1HzEEY7ycqam8PfXsHwuorH7/w+z6Hg4Eq9kO1goPLinxzrc6WOyk/lL8cVZKa5RnZQa/scKv+bCZU3Fd2I/BZJ5smteKbkh4viauW/xwYnK07wkaBdNxqvIzs+5oXNZqiSBIRQUJYdjy++3viXgvIUzJ+y2JnXNTxnZzw9BUQq+DjVoeIU3k6HSkN9h174SOSXpKGd38f8bEjH6p2segaayF+kXz8SUvDLpOV7cn2IYURpBldyFMsHzMUmj+p+Vw071ZsN3/ltQLpvGTyLBmseBSeEmurUHUmEO/SZcnwHwdfrf0cRSrtJr9yBGeeHRMkM2QIESgcd0205Bf/yVQhzKidTdLeBNFvwaouKBWUTlkPQ9XKHndUCJImGSVvwJDEcORwhzjKQLX8q3w3VoRz11TDlHbqrvptvHhF9i22tv+VzP1llBzVijL3MNNSqh8+asWp1nNKrn8NMaD7c4+naxXGBlGuUCKqDkxbC84bEWa99bBu8/5Nfoo+jpmwVEnr4epJSPMSihDRjbZKrKmtJmeAqbNWO1Zh+z9L8yrauUbgIhjy1v1V90qFKJMt+PDzx7Ie0G3LRBys+4o7ZEO1pxHi6Ao/keoNR2oxUiZ8PBH1Cwvydmo0Jqs68oms6hUI3ux3PzkPlPUBh3uY5hzDBj++UBqtey9Oz9JoSPkzegs6feJ4ai5zF3KK8WRksdTyjjEFcpd6M9pmxQseoj6r4+8fnuej7SfiFFpg09BkC+h/3Da2QxeTPCbpgq+oJBUeQGaoTn6f1tEktZcqQ9O3EfU2WhJL3T0H4Sz5HciqkFDgVqdxd9779tQ68i1nZK3CEPayiBBw+vU0kq30sKjpZGNdV21JeXcTryDJ8WpWPUT7BBq/BA895McYp8CRmWvSRKgpH2HyjcLTWIYXKhhjK74K9oUNpIr5V7IJ0HZ2PRpcQqukfaVh0ABl9yUO6sh7yCbBmg5ILrFA16gzmLAZEDAIXzt9ijAcEAIJERdA7rACDwCAhIBIEgFRhHwGDWAIMTB/FLZEUB7TvAWBwIEgDwoCBEQI3/TFQPQEFBDUR6cIACFGQd3gnYQiwEQbCD7ilzPZ6H80BPU9c28Ky99IjE+ppCNHiLh6kBugjinkepLsqN645uPecPtOpe7URe+tPTmLnTEY3z8YNdnUgps7rIQLO1r21SFu5FRmUCseSS+oydP5GheG/ifXmfQL8Cp9lffyij2/68Sd46NhfRa7biRf2gtk1ilNgGOvkIu6BTNQAt00wy7pTUKnqKSqzybOXbCbShg3rvXQGEWI6uhCyNZv7e8ohhlXjcxmlN6UHUDIcRNHKDAVCn47W9/7oPQetoqcqIchV6+RuvXnI/GiQpqsPE3epiyUBhP6EjfWfYcA/1Y86mpuM3VG9PQ3vUZUT592w/ku24FA/IlrgWPB7ixRQRXewpLzBnh0kXNZdmNd3jqSoU5uN4EL2b/ms+Sbm4x1AzwzXXExjNdsn/LI12aGCMDeVs/WfAjB1bg8TmwH93xJmo4Y7SGfxmGa8tY0jTe0SERHaCFyiAvRsTYf835fLMtotqZQy6tMfN5DqBcIvAbRB6+kDKKmXlnN9ZSX/vwTiBEceTJus6L1Wzp+QqWlghgCtUyf/yEI0oAW5qtpBnvOgvSD0lOiUjwx2mARISRq34iFuGxberyxk0loggq51a9ssm7ra9c7gXH0DwsD4IbwZbdBKEAZMXvnO6tVtWI1OPltGn82qFStMNETmMNzuTsl8atuNjeC07TzI72GvLCyTndq4/YIZ8m6PAjFtfuIe0f96kC/v3yiNv4EgbHA25JiquOq5skn5e05yKJ43wHqNendoPqak/lu9XV42dwQ3a3fL7ZjOxsq/d9ih11PUbjuzttSeTC2bmq1A9FhCdxmwBlSQ6MruRbrNMrqiJL3woyED/cqQW9slZ1RgDqiV6syZshHC8JoamEGs7dnk9LtvH8zrTNUexrQFWRFB6IiLPrsl1eanc0n9LDKJztrQ5JPmjk2WK4YqNok9h6W3ZRv3nsj5EWFu3K7ng9iDp7HZb7glyZQNYGL6DOTipfbUFk1ct+ySUwry4W3GhUg35R5xteVuaMhXieivLyKx8iG3rFJMnUfvm7f/tuMAWVY0+1CIocsmoo8E9typExiRoBZqMOmU1h6MoLifGqnuvVN49IrvuX98im6mvVNJYlNjVR+C0ds0qVW3GnKoas390uABqV7WXLeC+CkMoE+yi76GGnx0m9Qn9Lwdy0wy7oEHloPrS8WRjvS48UjX4oTsE7TLMyweLXyexqGxzlG+Cqa4uiC46/kNcVqmxlQU9dO3G06+5yuBqLs41jUP2xHCLOOu/tBAE3xdWMRL59cENaoQSNvW746Qi9IOgHlcHlxB0eKCsvghJM8jGdadqEA7BJeiaXc/5yHd3qVRHXN5zPuVA6VX+UMza3AgoNvX90yDoT9TsWSI4eBobpIMtEGRnfKNEiqbvS3zIX6nnpWRKmTQoNTyz7w3zeskbL0k6m18DxCjXb/4KY7v/vkpk7Glpw8KBSWRAKT7g7LFFH7pvvO8dvVKAhNPR0NWh0Bv6h+lHGDpaqObTJlHXTpKU1f4oI1vDDl5fTm5cZoJZSoLjQN0kgr03kZu93Kacbz9jYuJcGBU9AbnCi9+GVuvxIbqAtACLz1QQ4PVQ6904ASEFOPkKwv/9UYat3BiKv8BYaHJdAAoWwfHsSb/v7bM4zuBofEcKcyd3jz8O5QZHHAZwVwiBI47bv077zA17CrnW8Og+7QoCnBXs+5JAGhdyatVxLd/uaHcVu7GVAoFmErwIyvyCEH8e+3o0ysnVgTkCSH5usyyC6qSGtOQYEJ/FlIERONfvR1eq6Gbwscz/OvtPIegsACyisoFBAQYocm6hgCrPYCgOFrDnhQbFEcBIMhfebcX7QAwwGGD43qdAYNHM7qAvAfpATg1KGwZAIIBBgASoBIK55Mh2zg2p0IkyDQBQojOzCr7eJBYCIDYdt8sJxHQPtwAA//AKyAKe3zb+xxig340O9KzMcM6SBwBnFhZS7Eqf5P+SRrhvuOjGKl/6toLAXuQH3Qxo/UBFgJwvkUQvJuCtd176q+Cs+TlsPjpf3nKLr6CvdLeSP21PHMsGQeA+gUYEVoHnwzbteEnZ2kSE9dhjKmiAhuZwbnCf7mv17gawMrtpsUTbXPaV9rlVexupA2HiXIM/Lk08AuIfSncHjo7tBjxcnQQKbgfQWlD1FTe8YREL5evdV0uigN8FfgbolYe25Y5Gg1FWvO/zqBgCMPWn6H+F3jfM7ifC3o7xeZjI1TNKeDIe8oUlJFygg7RX4lggEjDQeZ/QgyBTzYciKZrgzT49Zy8hJ6Q4sHlwqp9RhkNfpAariZt64gsFWecrXobUoTGcBgWrty9YFPXhND9mB3kGTMyOf0p9Govd87kPQymLoJROidMU+MhkL/gNvUNCBc4IgA7WrWQejK9hfrjWjxtOHpyGQihJuH40TqUUO5Ux2ogrzZeEOoldnNIOPZ99HOwyTSUQhYM57lPTffRJYp7PSSxwrp3JlftwkMBQX28sOknYb0TCYwicDnATsEcQMRzHOcwEYDiBES5TfpjfYKxcOlVLyWJPzuGa5LyXphBtgx4USaWbGK/39WuduTbmIMK02orig9rXsKxRUpFoZM1Lzn6RbmcJ7PH55u0r4WK8oPvXs5v5LewnLCftUZHlFwNAWbu77YV/CJ2tgal9PvsrfNJC3VyzWLA8yrKpaJx+YnMfTI+uZZJNrS0tBXZy38Pf/eCtm8unZvMoR+VWJ08nX48GI6vS9nCT38yN+5DYJM8YKiRHDWyQnGCtoorjl4MdCCldPRb4S3OsTmSSMPmVC+cqQbI2WVwDgC5jmt+oVG54+FTBjaewqfHUsnZx5jsWdt3Fwwm2RUBXwv0zlhqyWBegcomDg0OEQCohVxXpeHWeydDPDjD67Wp0eIdzTRts34vAmnNX38U2l9/VNUobnw2nNdlsioLxrqwNBG2SRB7ZHyjqLqY+OZw3g86cRaMzAatMGJ3b/yZjIsvqFHzcHCyfI3kL0vFHlwlEtpVDHQqoUNlTKlBl7BC1wOX0b+00FzN/MtTw9tzQ3PExt818egNqWTP35hlhQOjXh46CB7aqPl4/44jeGV4pS48QE/p3OQ/jBTOq3GNxfFHTn7sWg1oIR55IAxGhfneXhqIQvL/hBzywePQPcnBe2lFTTg45F22X490cGyODZdAe/X+WVzaxAQcdvyEHnK/h7O/OTfnrKZHYN/x1BamMwAnCf0kkNSiwohnNZnXLyFFySj9SlkDPnXNS231mL2nDUw/+w8TqahuSIxRP3CCq7lHX0zVO9a17etfTe+34J7S127ydWQ2l5+dvk2LoULaijTofiQ2SfGH7er3tPd0VIFYKjXjIQFo8FZM8oJBwjeP5/StoctwruG1hLr6sUnb3VkKSJ3rPWevAJsBCbcZB/OYxlLM8kwtPF2YL/YC12nv+Fh/ErYrxIR8vTanpH+mavPBwUVVKItk8dG1eupDWpU/oG9Se26GUb93CqzYucof+EzZXXhmyaARpf52DyOQqQ8iwb7tNmEzgwK8T5mM9u+bRIDStcukKlRMkhejgaO1DoOynInxg9MkRc8SJxOQn6sYbD/9YTLsnx3Rptf5FTp2WA7uoRTc90nF2HXdjI2Jr78heGompZCVkiCSO5HlPqzGEgQXBAhMM/A6jqffZwOfsh7eK4ri6yHJINad7jvVkVIMmiOeiAyDv8MqUZQzHAhHDJ76C6UBbMpwmF3iGLxKfppI5K1+YjmDdr5yL4YC1MDjJyqt2T7Zb7/nm6O00rO8A09Yqxq+Kj29pksySpPX7Gu7iFYNFUmT2GIrEXfkD7FDIdivyg169jajWSTrzZ7Mr0dA3Aj9A0mIv7f7U+OU1ucFJvGNdmH0YFQCKj1Bp988/sk75tMFrQq2r0sI9HX73I0GESkOhg7tfdw7g4DwKz/W7vVsW2roAGBtGtQ0l5qo36611qsxtoakAYYD6hlQkEe1KQYNW4M/6EWQSDDDFBBlAczpKABIwNI5RE7bSCgD3g2DABvPazS9IgAAFBpZodPUv1zcCAD14DEGAh+7DJ4e3KfgCgABAQWDIRAdaLB10QICjvBDAg4CxxKHbbbg3gNhJ3rDQECLABAEue6U8JxwCM6LBM543BIN4rpzV/kZNKZ8OKUpOlb9r7MV1NlDlbFcLw1x4nwBly4kqi+wTleukAAzkis22OI4qKmO5z19nBeYy7Lffg2XWe4HAunkIyV5yNBEbv1nLr6e/tXVf64W2DKd0PR8KHLlKGS8PP4bu9Mrfs0g+gmqbQi3JvbP0BJVzPGRrFYysg4NmqlYQLP0eVqjosA2FCPBu7m6Z1SidY3EdGK/jx2pkBOQuAJOOLL1bZYsrVnjbl8yoXXIP4Vkow7ufFbUKu/JdXSKq1WWeekcDJxjc2m86In26hs8KAVBUkYqdbNS42cXMiSmthKDtMGzNlzZbCGFrTYlaYso+LM2/rIUm6NotpyEnj+eAGSwdpsCany3l3qi8STmQXg31Zed3nvc+IRr6lXc+TVCZqBiKLU+yzxM6o2/WQYuCrtGgaXc/b4RbrlzbL2+ORxEV5mC2Woao8On1LLcXF2tGz0+tNyKLNbQQDHq/i3jyhTyAge3gJOoSZnNI+brULpVFj5G9SuTYR66EbU03NOCkw0WiQbILy5dA342s5p521CF0Hz5E6N8XxhZ205UvdDabuLtc/n3x3QjYBFoy1PK8OS3Up57xyZ/ieVW80glwbH9jZX0om+7d8X2emm55JbJ8yJsneiCQebsQ5KuGM7HAj7mf+5tlaegqjK109hJXlrfgp+jSszFRzsuj6yMfAIH9aC1tRVnUbI5E6WQOXP8g5hpPMPpRnmzcwe5bfOyTaMI/JMfO3dsVVpNgSYDlxvFDimruWMF+RxQwJNH2eGDx5ea8qPxdWeA/uXNnEKtY7G0BCgSkWhwcU1tU3KnQsHA5K11SAQrl0qsM3ItaXqjsBgfMRE5kA9ybjCHyXQW4BaaRFxehtuus27nAbEDw4yBX01REaf9xk7kXNqQP19jdTHBfpVWg+Kasz1t8lbL7+CJlkbRNGieQ1yeZ/Gh31OmXXhuGLthRe0MZtBN4vKokJKiBn4ve/Hkl+DXEjwli4OdbaQ2c+rtpE0DC4/YGSM84xdHtDdTfDgiZ7ZexylQxmLTqlUm6jMFBRXQzzhUWV+PP9mCoajq/JaSw4n7scqVZZvjK9Ber+erG8v8Q+AJK7TkggAgAj9UNiQil+zCIkguaQjSelPdoGsjWL34uwG/kBnwLoVqqObsLom9L6P02PlQWpHFRIZ1aadpbzrEQjROms5Ge3vJOw0OidUNYOp1rNTOafUAfWmfcDPSg06C0VWE1gKP/uCj5FkUx/sv/ihRSN3SNTMkRo1K1IWCq83xFhtOntLwHFAmPV2JcYGRjInW5tJP03+VI+k69TpMLBp6ckeir48qUnyky4GTUIwBZR7tS/P3rzAMwH1mcGTQRnhLAlxtn1B7bSRWQ8LYt/8YYHkGrmTcTjqXo/HBwFIcb9OZUZI8Unyb3c5JrfPuiSBJiHVXMVqbObFXdP9ccwO8h5Lih0PyKYCoh1pbUl3mLu1pktHk+LS3lsY2xn7KX9czqH9Gwb82HPmcDOjAtEli9s7Q77UrVJp8B9uQ+fm7kN0tBrX7iRrrguD9YqzJcjaasdS7SdcaTMIN6KC/f65/vVSFwb6if70V7JRN3mWhqRRFovKIU0zMG7I5tB/2qn7U3sSwWeviF9PcDT0sq9rNP5ysSJ2dLyXP+n5QBO1lbO+nL1zFXEx/5T+7KNP8YT1in7UZP+sDIh3fERYQxpCq0a7gtSUr4wczwCvYXkyY1gh1v5E0ml35CLHv/S1zUOvqLvSfWmK5lB3fcBUYgtccXegbxQS3RtITd7klHoaHZ0XAq/pXGmoPLpn1YyyPO5EO0l1NDRbw9xGVJ7UFU65sqEiu6EAMFY9BqJnvAYBgJ75rtut3LbLc9HJJKaSbb+W/0/vONSE+szmTs7M/nfujq/yIAeLiZelEsf99UJ+H9vRI70DAGrf+p9Yxh+8IlNQ6ZiY2n+DfyXtabGTbY7NaDU2piv7IOQKukZ7pcGFUK1wXUkCK8hQdhEDc4DDIDZL+QqeZmSJM9wIqosAe5UKB0A7C8v0NtUskFixCtB/Oh49Sqi8vDCDvw5ok6THq3TxfQkjkDwOy2DlnHa/Kwpslc9kJpmpNDt+b6rKxekRx4oADPBEplYJyIKU5uWVATi77u71i2at4JQpR8fRl0rVbSxzNyACDP/mzwA6/qdGpxlRyiY9JaM28Nrfb1imoz24sTivA/sed9hPivZndcBlTh8LwCJiGA86RUZRhgg1a/zfF0fpBrssQ7paCmbQ+tq0J4cT5qy2wahZgM/WDH0ACmCxpvZnvojheMpqmfvCeEDqis2pecKwe7C5scqb0hTcIFcNTNyYwR5CsveAFJKxBFWhNIH/GIIQxz0CCO0QDb5BxyXXgoxlmQI5ru0wVo5ybWxP8qdJtLJSq4i2tMq07fe+5NJUs9rGMo0uZE+raAFGoj0ScdceOjrnC+cZEcC+Rj2VQRzxS+xqhREJO+WL0iPkYKGX4Cnvi3DWJwzyaWoJMkUM0wHmQAgi6CAqO6/tJt6FxgQIu+OR9vxrSIQDePCCAewo2J73lOTV29kl/eLLzFSfPqL5Kfg/Skl9LeHr7MgH7y0itZdXKd0tJE3zQmkiMgBGiC+JpGGRyHWJcMBjHc1163l11Bt/vu6nFnMVIrdRwxbgiyNxfV0Ml3F1WltKeV1vIgYN0syM3SmzkyEY0XDNt4e8Quy6Tkn7RY06GgqNdaMjmRyROiktkivPOZ39IGUrKWEf3Tbpu7h0H0cruBO2ZYl6O/DRnbvBMM/x64Z5tdyGhrJ9jMscvJRh7IYlsz2ctvNRNZbv0hFvrEmr/2Hc1eBML37XAKWWXQpSQi105mTbZpfpNcaZfI4L9RczPpKcyfKuRoSOaOEQOfCv+d4/zgRB3cIJcFCn96JaCDjFZ+3ojkpaTy6J/zHxAx6yFMSViSiVWwEmAw9uqasJy33yN+/1EWBwiD5Yb8s30n1ogH0hBS3UvVnOFCI7S2pY9/+BeFwfly0XM0pXE2pgwdf9ckDn01r4EvDcU18DV27JEfsQF8PnT6hodKooCdW2vYbOO78tRRmlb5TiLTkvHA3AE/wNH/aPaFowgiB+FLuvPMK9UYJ8XHBAIv6q2MJQkS3EHuOFe+lcAtcTX781AK50NhYaA3/FFWQd28P9hQwPz3LC814JBv4WjnIGbb6e9Tl+FT2RShqUVDWxVFzD4AJSFkrULIbFDMQPChKFr1K0C+joCromoifxphi2lzH78akq0O6fts/2SQRnO8/DQHP1GkgNtZzv7O6zCu48m0CgzBP7053yRvFGzfLKfchQKnHElmQi3Dxi+F9sWQVR+vMzlggypBoM55sNjfoxcKTH78lkSq1Is7RH8/EwxjofqXtMIkEDuUqckGmRsaMmz+eDjY839KLStY2uQ4YSoPw/j+xfRN93vJAf1x+9HwWNNfhEyGMgYQj3+6KppT4QJQU5reW9UyH9WtqcLhn1Znwmzlv4lovAqckhvu8pjDRyVqyUHoxvgJzd92jzgLQDSjEDAp7Y7lMc2MZQCPoRgNpSuCI3NZvrN3qvJ7r3BA/coKX01Kr16txvdbBPDnm/PlfCnEX7bv0heVSI+KY6atVOlv7E+dNvkjRWyBezCITCQzIbznxIEwVWsVbUvdSe6fsTT6gR+VP6BoIlg7xRMDELyw5sThhpRN+9+FzjVVPW5X1EV+5okqn4o+Zi67tCbc4YEzhVpfLxlZpZKOG9wHacN/kRuTE4cnU/mLZQRUsxRzGE+J9wAlqOOpRm6H1scC/5iL5xOU4cGmQR1fVpFi4AGpnVkQIwRuuhlSG2HggCU0c+ogOSlczzCdl7hUMIB88frNTijCg5j6v28UC48InxrrZ87fMlcTjn7km68yYA/CzRJGo1IkFQrx56Qasw1OPshlZrtTDBNVxihkNgIt5I+Kz2E23DhZSFxnG6bIae+tcKT93hkkZbNz6VxDAe5uNLmslvIh+lirANLth5dM/JABzsc6j9IOcx1HsBPxvtoOcXeDU+/sUcmML1AHWf6XMRYWcp9vL8W2QsHXTsaRezjkjAngF0rKflLxvUhslDwvOzK5nlFBSMZOeprHLhROUHRg3mnngrSCFnvUsZl5ZaGw3yUt8ta7oXC8QFAJxh8tAs/i4cW9jMH/U2GEnziD06WWvvqxCXnH41H+8XPCOQQdwp1aB/Sw9aZA59GbQ8ZZMAPks/UGYeQ3zY/yxS0aXSuipYbd+OQaSwzuN/D61I4kUsWxPJUX0s07PgMFcXaRKEfAk/TDg+aQuM2gBAhHTfNeBW9stN7QXh5+IhC6w2lzeZo9hiXlF62K7lZvT4+l4qWktc0spvypQlvHw0LRneTPzg9DGNVoPcIu0mXsEALXDAOXaNPeA+C1kg2F0NP/0nyxUM890zUW8CPiVwYhq1FYDh57KkVk2yC1ptIu3iBP5H+NXAoT2kWWEsmsLWQ9iSVKG55xGVOPKouTQX9IUmP8NwDYIDsdXdbPDAFm08zrX2BaDuQJi/MoqAIAdv7x8GwrOFVHkoQNPCl2xMdIGBNsifwvc66ZOOhoYffOol8Gb7SvzOS5XPioGvMwIS0jZ5HV905wYXjPoY8CAL0tEh4xadtqroaXWrHisbwHZUHp1HKXI/Pcnm8gjmiTgvBccr81PMjHZ/HFIEOQ9mddDbewEbaZOKPrazSQ0O/bJkaJB/9GtOumAMI6d2l+l5/5b0nG+J99Sy2UiUsL22qOcCUkZpAxdZLvlU/tJbtcBDxDEf6VA4Q2BOKgdkGI5BwHp2giX6d57rJ0ODAZ04waboKfTDSQu+m5IMqSMdM7DAnB+yBKq7P5X3I3gFsHYmTwNtqM5AtwrgSAWTZwBD9JYBKcGC0LZirRos3Q5vD2XxMEQjbws0LAxno+oHP+gTFgvg3pIL53SnCvxvH2t9XlI44huP9FMQYBXpUUacsr/mwQ237w/cQlZ2Lv0V2qF86DAA7iYN9r3OqyLNKmGtcpkEILs1f4H1fkWpUhcdMvMzH1Mo+oGWNZD1Gkq3HZ792Xdih0VDvz8adXaJcmXEpSZGSyNhVUYMAWwGJlLwzoflhszhYnprqm7mO9PmtEVBNeSlgoVoX0Si3Qkcnh1kYXYLbfoCBu9ALZTSAah0kGgwJrSlaXTbaGxgvvhsYOTLpo3MdEurCQ+UROpNWzsD09vM/X/fAbt3fnWMLwF8HRFqd2mL+GQeX6hxYhlfz1+wiBglhJ7552TWStoFUCXecAmPcASvGyk0MVHmPMbeg/hGrszNBHWfQdvXgmJJWOZtnWTloPCtXRltGMVnTTAyn3DJUGYsWHckLm0UwuGK9e7Hf3HK6cTDwDMDKTE2q+AAyeW0Wc3U+pM0az/Mb+nMXFhFMP/SWdO3tAY7j2LTpjKGBEE3TMXW78IHUj5EZZdRP8i+AXS/03vlolKJzqcCpA4Fm1kq4zqPOSD/saKjUvy56rSfQs2ZN4sgAZ4oFUAKtZ2qszZsI4Ki0Zo/6HJ9Thf4TNF2X0bpYkdn/3YtKDaSiCENNpTyBQRev/YPFVKVNy2jvXuDXogzUdI+6f/ZoJnhsAWmf8SYgpwMmrPWr5WHouwF+ifMpx0Wpsi7cAPaqwMGsz4T+1GVddalVQiP92mhky8/k/nygLejqf5HFTK00BX9oAAw6l/FHxQZy2twyL6s986Ti0pj4i6Eoek2oHjntSnTku+fZ7pbeN/0JlsLCohncgrt4my+hKuwh7iprH9JF46xDSEuS7MD5JHfcFbjzTe/ZwA2XnLVQNyutjS3KX7CrxB7DnfhRDI0Xw8YUI+I+Qor60X820/LCkNSvmFmNaJeR0Z5Xw/kz3YwtJVpmS+dljsM8GstJMQkhHX081oid5YgmywStt1XpAuzB25AFBE50TTIrbleXz6mzUB3Rm1nU941DzM6ouUL4ZAkLvhqYa6EonGWEgkx0LuFsWiY4pA+gloQNcHnJsVB+xMEFiCkHRSjw0lrXodBobqhboJUOMCZiBCXf27F0j8+4P+bYR6vFl/1PCpjv6YtFeyIITcbu0oxSZWpYzGxNTJFZtjZtLp2z4lL68Vj/3Pjuh+nVhhZBz7LgL05ZBwGtNRWrRJVcH7ACgo2Ge27MgF+2bQgPN9EAD9EJB13oiMwGZxy6cvEPDLnx8erovgkNGt2dRVcAnVY++VTd4YJrz5/kERaDsDSzjQCNH1plm2XbixUotI05GIUHYpY6NOY1rnLxqIacS65+EfUZ7kSDC16P4OjCOW3O6AK4ytGohmVGLwnexOxUUFvKqQqNAVDO8IpvAOLwSjGv+7uK3dvVwqlW1N+jMRs9a3tY72BjN9XFzyoTPhDGMPuM30PLlz2Qui4k49NMNKetoBZ768s+UQy+blyOuUNohXKZBxP5CEnGqDGz9KCI0/gxvkOVDpMychLGWoBce6FZpzTGSdiR96zqUHMm+IjgngBKjdT+V45yyb8d+uu9V59ntmPcg3Y4fR2wZYNxwDcmO21KCPrSN2O/l3Zi9Uo964yE+ktiWS132y/o+fYR/2oQluDZc/Ux6DZjIz16DMu2fosg+JyAtgBksdEoJmXaJg89UvCQtE4TmzNXb8S8w8Hts6uYzt29dtoSuuiYjcpGoSEkvpr+ednIKjYJEBsbGNFjV6hrA7ow9+TIjcNnJCf4OOkf3P43ZxpWbaY47ivBFjOnb9R1fZBr9hlE+2em8OSjvHaueNu5o8RvNyDdQVViAAqOSwlEVB7z/c0g4lOK9ABTlCG1fErJJYxGR8j82qI+p8ojyON6CguJ43O+wOeqiqiCloJiPfyNxasMUxzj6c3SDkgGJSwxTw0WcwkDXj6soji6UwDf5iF6k7wqKogE8eSSsFG8RpoigmkLvJEe06D2k2xnRpK97OcNsG9XdueoRzFVJz0qFR4qQFXLrfiKSGrUTgzw8AzF59t4WMB+kQcnucPtyjRBuMXkbqkocSnSjtuDBaB96lfaqGMROVHhZvPVOqvN8/iLl4YNVYSzDiY0o8vLF+jFjSD8/NP/hgsXSov2fE1OTFeN0UiTEL3Ez6oJ0zlD3JPgBMh7+/iUayGpuTQulqLTvz558vg0d5H119gcMWmeSESa5svktf4zont255PdpSWWP1Fz1gDx1qvmPfnO1d0sHpA/09wlan53O0acO43yDRZW6VUbYItknUNiIuuzAPcmNx003eVIBPi+OGKUIszGOP/FsW+lLl+UXZQlQm8BjNsJywNFybhOGQNaae6HOafezHWRrGBNk9HK8SHEH9tZko5qhgy/wtLCygob5BcLkbdEuhwps2HaxYh2ApnUwhCVw9x0akE1D1KdXCK+cCUnMUPQX5uB0W+g2M94udcqu4xkNya6GsmM9nle7eMxKAJHYWaQomNrwm2Blbqx045Qfpix7D3Z6cztzRlvogDywwN4BHbmiCbUSNamyOhrsa5oc+hi+qWIzv1+sCWRVW14JvXP4qLuaDwsjiWjE2H1OuPZa38gDfmbiS7MBKuaHUdbU0mT8oaNzgUBB6GPcxPBexNQck+1u7JulOiFqycnmm0WLsQSaC0AAV2xYuymXKeYwPoP96gry5TR0+/Ur4c96jPyhQQtSGgozsDeAXH161MCOrWlACFg8WAi+ITslK6ucmzHDOlpJDfOa5tupufvdGJ4YsPxVmAb3yX3+zx0pCgGS0KMBaZGJaZBwfDdlFzqwXDOXsWeZWhzGino2nHnHDdVnIzpH4flTrejUVltgbwBGtfwoLVjMPufHolpitW/nYHNcVe7NHp/qDadbViTsQvD7hwcMfO5X08YU2caerp2evcj7z398RvRy6wR98wU5SjEHL6dWQsyqRtNaGnTtSJvdi7HGswmRu68/WHVN4XHoRxDd86UaE83Iio3irKldvj9ZcSTSYMYfO2s8fVBPnWrDsQINqqcOlF7xTH9XkBRTMlFOlbfShYb7/EHHMMhTaFQ+TvUOucAMi0ZBQp2rLZQ6CzzLRhtUlBukIyVH1bs4VMlQ4kP1mV6eziUwPwoxugRduiUyoricdxnVfsAA4/TKCsHsV1Wd8ZMINlblXUxH102LhxpTqzLiqUSGpZKHRSghYjMFXspe9cc2sp8q2oPdQLPuo+ffcD1zisVmXeJQJsaJkDyKCYU5g95DtAVp6uRZ56ZveUBOJwWHdLYryDWDf+8odAsSr0L19norSfrYY3nm5t1GtBu54izHYmYoeFj8ofaVF9Xah17g2X2+rB9YLDHqBLAG/Vn9PaUeS1CoBlToTPzweea+6o95KiFTNHNxMLZxU+0/tVoOD9lXM+jvqWTYpbaG+Sdfbyr0agv+qTXwqVWNnlJv7dgRpaNBVpYMV5uMomceGBlQn06uka3ADg8Al7KqOlsVDMmPBuC1yPv3GCwv3j5MzSGik6X7BKh2Fp5QUC90kSpXTua3nBIVgJjZXfasn+czLGjApH+8vG74WC28GUpzjDmMdrqaaO/QPud8JyiVfRVcehBNvy4x8KnVXCAs0tYfCQLoJ+CU38BE8ve3u8RNeREKOHyDfOlLSSmyHsbQ9O3JLLVWpX5GDtvxlMXbGVeBxu5cGu3qXZaFZLBMlhbRZLQ6B9QrIMZzjdkidu3oCwQkcyynA4dKvNEBm1CK37f8n3aIGA3MNI30fv1c3rKT3p9L3GIAkKQg0Phf0ipGP6+QvDp16ri2FQ7aDfaXln1iNDEAkXmGiSWBbk28dWcNYfBDepirU+dbWSjnedXXp2B3KEbYL+o/A1omieUyLGvYuGb+bPXkKR4xaA5A+X7EiKegOoXToQ5TPdwvM3j0wvf7fJq2u6WnQsqeQ2P2d19o1Amji5+yYO+zPd1FjpFfpFu03GEqQ9M6aT8eLAt7MhXyGWoN5jmrQM/CfN6ZLHHe48ki5DRz8RNuw+I9qwYl4EHu12HvaOQmG5x5pQtdpEf9TieNFT9AOXTOE32wuN9lXoFLpCxEM5CB/twEBh4NV/eDUrMRqROyedx+kFPc3YgyW9xp2Jx6GvupxQlnVAupxV3Hiv59AQbiKwOeWM1VGpIy2PsgXL93SYVBgDw3xkt6U5y0znsopA6w/dTgPprHVAQwNKO4GLaglJQYb2BLlDuIG8bZNHwQ4oM0kPWglxuVE/hXcXO3PGEznhN8KETcPiZPZv2SYaIrikh1PFcfyZWLMXk34VSY0I4wCnFU82ORs/d+wfx2Ena2KE5UljQNA8dcWVF/QvrDCAHaRF8ZAnE47RU5LJw71SKeIkGzQyuZq6MUj/pnwNzWfmYi08psHrWt06dKk1+knhyNa5EoCKYYsITc7kx8HMBNzPPmcTGJ3Ip/Aq5WSwRKHKigAEEuHH5IiVel/S/UkekyUVrQx6iZrwxcVr1WO4wkypXRizw8yrVMQz1dbvXUhY8q9fRWdWbnFekizBRjA6TiZu0dqP14uXlYRqdIk6j19b1VEX5o4l8sk/RcesqxR6H2nbM4PrGujML7S/V3fXyow7vR7J+bmFPheW23PhAL+PV3BkGpPvLe9OcCU5YeAGb2VChXyo6XfyfnL2AErBWKgIcb0fOg2V36/ye+V2ZK0MmD2yADodc7QmpiaRy3LZZBmb0PK7SMgIq8QptNq9XHvu93EUxb9BOWufRI4omi+WhXWsq5A2aHWVVPExXih0yCkqHM+Pad4qD8uDKGY43lajnhanPX4YRPCayrF8PsfitPi/koz8I+PAuk2AclxHSZbkmAv3z9PHRxLNW8Vy6tti2un7QQYaUjIrsbc6qb1GFKmIK8VfYLLizM6jIfAAo15ooW+UaWtNdmpKCJXQLqE1DX95NIfkgkLnEJ0ZzNA5hd4ZiCi1WQJYPM4/Ol8a+PAUZAqkp6rSPpjecUVXclGsIYUQZmzd6C8BWCCHwUt+joZymZI6ghMXJw7q/JmFhiYqLC978/ECPeRK4xw6rIHhmWrU/d41sc5OljlioizhV3+9Ajp+jd9eAcWzkRqpHWJQCAaM3VrMVH5s9DtuIuKpZ4uQRDGltdtCSqrIssUXSI8jm4ytOX12pZB6seqQ4hEOD/n7xzI0YJjYl8OdTKmB2lUp1XQftzZwDcGlrG8Rq8tWSAS+GEjYXiQfQgjWWPOIaW1AkYcJey2dFQ8a677pdMz1ZKjG2Vakr+JO109iPYo5LpYS2RLf02Iol0A5j8du6dUfRzsX2BumOnbYYST1C/cMrZqaJeWzePK4WMV24w4ifjaLGFbwouJqS/fnK3Uc2ZDdl16eaEqUuAwYWFo5hZeuyvDE8eEDLdgs0DinMNBvxwhaepj/Nv1StLvhR6nBGdIA6EnNSdhwEAE3DuG7DBS78yDpod5RzkUTjcqIKTKo9gTlvGH+Lc6txl4Un0aV8QJtyEOoj+WMmBHFp3qiz5JaWdt3o63oaxqTmVrmnuQDapt/W7Cbn+bUs5Klp3379xjiIvSlROoeqJ3rPR870M2BQC/kpRumFP2C3t0/o6Xt5RDyIearMDxpJ+g0ht0TRWxNL5R6rfeNGW8ZgmnKtT04NgvlSZmVldvt9RfPedBNcxnCXC1QlOqdNmOcwObnPn0vyXS4ncBHAlFDLbgNtOWKb3o6+V6huVmNvESXPlM/dM/HfWbKboRtV/1ehQCy4CFng2BMxXHuiCSRr/lLu+B7IqboweKIkmJOISbG/8RxzZ/8t2x5xqxAlwbflIRKAkc6/L5tvErERdFNFJ+ZgZo+QcocCG+nUN5XKrGsrSpdo6LqkmMlAVU7L/e+M5QXDXypw9BCB1MkR+yxNWbCDIuopelIj/X2ysP9KmdnI7Rw4s1Jq2qO4YYP8qLs/oOUu6CVu+ksnlB5rSz0GWa9gWWeiA4ie60Z20iDg2Ob6Sq/eZelv4KYjjQ7KviN2I66vDYP4J0wFu7KsDAyWDZxClePLsNCfxrtwn7TRTIHYypLjrDn+BfQNbvxZhdOVqX/h79UhRiis9Mk12FYPcvNJOGs3k6ec6+Z0gmjxUY8UjL365cu6k2xAvcx7JRfFnrPwI6WLJwL4Ad4fcx9WDjXwlqTbjX1vblhviOzL7l0hcjVodYcLD2WDTHzmUBsrww1gM5UJ/0IKrEBjO6XLojS6dDYn+t4wYAWOLZ7edmpE/jvowdkGjUGKq4l1t+ZZxdHIO6VhTtJ3SwULwuVBwVZ3YAIjXEX06vrWP424sFK6nB14o97Zs4n+259sQ5QPiJGLyP6LqzQ+lWXrH3Xzf587tIQZwizoBS8Y3cTRZQ3p5nw0ZLhHhASIZQ/X2Rxl8SgItOX1oP0Nw6CIw4svyVqU78o/SGezCCr0TrFYkyGY2V32cQeruCZ1HZiaSV8opZx3bvDuqXkOHkPjCHPtzNeo9U1JYyLlwOtKgthloHisXcvon4CnaVN6Eb8QXxROob8iNlfwJ6odnokPpPSCXHt9UydX5taEs55wwvd+bjj8XAlxmylGPuvURgVoeimr0d89GXEcstAUa71OGMqTuOYPvPakE9WJMUEgd+0HA979MYRy7Y9bajN/MX+juoYZuSkNOtQxt7pdnU+UDtQJeIlOqug7mdtTCyxFEFYaYHeHk2wl3Q+dd5xlenB1M8pRupPK7erkTGPsriMCNH6mL+ha08BZr+RW5W32G240g0lkqTHCDH9xTGCXIFGYrB5mtrZDDD3B3B6ZjxkzWdeyQXw6sH4bAv3DZnc6t91TRb7DxPTcWOjZB4z3NH/CJZd3ZuChm4ZlWiRkDGPoMSuadEb1c0WbXHv+6W/lLH5J+SGWhKllMaSSE4a4mMSNxGxEc9wsVMetXaF1FvyBmyD+2bCtV8tywTCtJSXceStsidIWyjtRyVseQgGfjMZ6llPtG+igWo0hWXyX774j0Yzjt+/uCCeDNFyzEAwREwusJXcZPoNetAwFkWs3GdiQ4ycUO5WLY4vpFhrRINSpTzMJFfZ+BziRcaXROLcukffbgJ4xXbr656G36G8t2F82OwMZgepK/3BCqWLK5BWG6qajtYQtlFvzkR5inS89sl0W5eBduiVqj+LRKkX8QsALQh1DNsn0umqUCN55+guWYKdeBeAiWnbi6BXlhY0f9aK3pMETEl51vTFpAClp3VzGDNNXjheFJgAeTEC+0q4BQ0M0dK98Y080/cKS4n9MZ67kJUw8QE7touoYa9uxOjhO4cMOqnu58gkqJhg5YTv49RVhPHrG6UiQN67oHK2/kN8luSHdRFpAuziLWnxz7JQW/kCHR91FKaZcJuuWVJpAV+1CwzElo/Khz/KyY9n9YzohdMWJFxXQzciVpOLLBS94oAyy0xICfyMrZT+KlBdJ0ln4k+ZA6+Eaj0L68RpKnSxVN+XQPwFISM9TEs256WTjjCqY2xg8VfvVCB4dgLu1gxIwakuh5DvTsAokUZpS+cN46QzV1DeB0+pbVXpVFNgqC75sLc1Th1ukepSikuUnrhpmS6s/r0HExCVCMGtieoegmYW0FH+rwHjUikP+fX1GO8X969TnveYVvyDqMa5v6qvd/4ufkH50fY1Fr5WwRiYHlL0ckVUm1+hS2OxRdYmnSNv4T/TpMaiWeXmWzowIGpRzZdnVOtlir+L4D+Z4g42CucnkKcAaX50/FcNcvJTqp2ZlyRrQlw8KfpbNKRteeAq2unNBidvE5kUGrKbskwq4UfvW7QS9BbGDEJvVkvU4jL0thTETmVt0KAS8m/WC4eBgdYVxdul+DqiuGgIkf+n2MWuDL62aZmXV26lqNvxTLuKogTIo5art0VqK6UPL3hl0YN/noB6GNL2hx3HUj7gfeAbfCnwOdk6QmSGuk/+T5cyUB+riZP0LpQHTydvZE0dKWPRe6G/CFWp+kcka8wdPT4xBRPOKhhsUXV/G8tYbF34vJThjn0WfLEswwh+jybrvOl1+MJObP8NDqKhxGCGLDLTywWa7az1fHF1hOM0/0yad0x+3CIRVcof9L3AGufHTIbPQK11lwsC9hVWqhP3lJ+jCeFwJ38IPWKbHWBbcXJhRk8SjUqQ1TnFJEOQwWL3+a9fRH4o6EpFpVGxoE4yhySfhQDk88z/wPvYT7eq+OicTyXhQKFYnW1rtKlDHYzFjSJgy1j+ReyLGoBczrDs2F1O2RftyOCeunzFDQgOS1aLpIxG1DxwPDQCNVqLUCT6xOyfqaDzL6eq4tK5aFG2YgtBLTnWW5/ffG43SpPsbqUM1XBsdjhWUqnjMJ+dLnFRG082qwcAK36bpTB2We9x3ulutzOU7YngssunF/E9QG4GlQnm8rayerfhw50TGpgQcaDSmz/6W27MSnLAawCbN+DZIZaTdQrLbFg2n3lRcWUwwVo2xBZfRW1bH69s/DnFZJjbMI6z6O7EwU8YqQI7+r4OUqjpXbx6YKXUPQbJQCKbIZiHDkvl714NuqrXPPVtNENdwF9is3g7RAsa+UShiiwWj/NS05V3x8RyYJCZbziz8eGzj+S1qJotHLNaQ39dxXJKSUp/JvSHT/bVPkosht7D8UprKwD3Gy9chG8USfPnDZMWBr+kfU9dcHDGTN6qDkXSmuPtcYzpjMtWreHuXXDAs54+MzTdicZiGYkxU3wZ1BAl3RsahOulFGLzmk3LbBCbMcV8qlVcvgd3F+kPhXLHyr12hnIXGIVCnlK1KQ1Pl/rIeDtflg22WLO/beCOWthDpa56iIBPq1ol0ISS5NYojOnseFYdQlGUEWfKy1kNyw55NlSZjDod0xzcqPISuVRT8JjY866Yj80HjvsDRDSF1P2q0afexYSQKNQe/fP+0obHMRmZhoSLnUoQ17+jNbDpZ+G8DiVB0NS0QqMrbwG/RHDuiegvyZNJiEtXYHTjsUASBGEoiCdmUWbMpTlm8xyLq0mdomq6FLUF2DW/so1DCJaeYixiTfzaVhxJCC6yK1VZ7Qp7rJKqSHarKRxu1+1SZgwZA702lJ2t4jgW5erpIdVu/kH01akpE5zMujawnM64gpZkexRQzp5OnAyf4gt2uJvcihT5D1L0fuSmcvV1Ts/plL6jMk4gnpclb44rQrc/PmTAhMdq1ljSStH7YNMCIZyJ+95+R5xsZByNEnp0R0AJoRnrDMf6spc6/eUR1ldg4VttTRLAsqYi02ieknrC1JP/7FOclSPivD9a5xrUvrxq1tByWAgIPPyDkJ8gymNo1Hyx/XPBJKG3p496e9Wxvvz2OzEp+oGUNivMV21LIeRDSDA+jTGj7PtHtBIrVZ2iDbIYpA0osKdd6K3s+hUZ4bOwpYxuT908l6FVMQEP+Rpb6xdCnScev423KJvwB5FLvZEW94AWJ039yF9VFiEbGEZoyc2oMCSUNyrEZryXaVdtVAz/ljij+gqLLlhJtNj/g4rmCgxPV0P1sx9PjgC70lgZJb7rZ3kd6RuoTc/0NnhuSEb3RUxprbJY02OEPeyIcPQWxcMm5dMYhDOyQXN15cPjIxZBG3+lS4IcAqHLT+1tB92169gpipW+6y/InKbTHzWJI7KS76ogfCMzTfaTyhrxozdinViPID+sWVs5LWh3BtPhvSHKtjTemu5omy3H9DHxycrOa4rJw0S4NkuuWuIseRkkDFgbLozmB1iNBo1GHTsBH3cJhMqQ1kWPVUPmLGsnjZfbEpxjcVkDfG/0WNT8GOHj9AqZi+xTkQppsn4IFDGTYZeG8cUh6cs5wTDNiGchn4PDMVGi6TD2qkxDH17p5O1kesLWhFBO9cTYsX5sT+kDAX8BJQQyw6isWQvh4RR1oJ90KoXCGPffjuwPOI8O2imAQyLh+MkTrUsXCn7DFo5e5VwHo7ED8yvdgTZvcSWyVtjkfnzaYkmqjbR19RSuKLDaZByFtJIJ0qb2kwiGtEWSPHmwaodd56jHrZrYbJtvXAJuDRbD9dVWzFlmVlH4KR6HSjQ7h4W60yP4PkHcMNHVJ26BlfRA1QLA6N5rsnPRdC3BakBYAo6eBJyIdntuLqPguGuo3LZTMRMdnTnw6Zy5n8bl3oXyiKneiRldYpPROhWIr9XllfzuJz/aTJGzdpdZriMSPflDMl4M6XNJmWUsLwiXkgt4NY9V3Zh/1oGc/IpIFOQe6HjM8fbVCoq7LExzVvA5kJfipIh1FvjFOHYAM1dRYT9VmS1bFNKaxXJ/hPS3dEJR0Fl2RYciUEN98PgeRL5CEQYrze4pfM2CTzex+PStxOUW6MuSZilFRRXRuxikp03u0khuCSzYq6+tEE9adP/lNb8zw+Wm5R4mlWaNrwtsGYnErxLhtIDsHZMFCyb1w2BAfv3MdmHTYtZvujd4dKw++cKjxt07nA7vXlKoV34jRiZkdPi9WPJGfpHknV3MZ7sByaRkN79xRsmCOpQGa/1tA7cHvELpooMBW/5Ag/6CEcJ07pssiDRn2Mktubt24r1vONMbyw5D6lv5QbTaepR4ObPmC0K/6yTaLw8BlwjIt3X6apUcGQy811OQgBvQCLeuYt4h9tp6l+FhyCVziOZD9KIw0YJWFFibob2czCbeaudVtjeHx3VCVVeTSJPNYPjHl7SE+O3T0mfboej8fPWZNf5CyXn8tQbNGyHE4TcjTB8OlLeueRteEULj8aj5ZBfunhvNl8XLtScGz3WjqIWDjFOjHuAq9OCkf5iVLjsHbUfXYjngx+6X3I3O/FQ28GJi4zgCpkzsvXyHdJ7hobJLE8QjeomlKsnvYaOPcZObSPvDhSAG36IuxDj3qlx9lKJK3hU7Y8Rx2NcR4fck/j3DDRIeltfsw9BdCSvnFki1EAzzS2V0sTi5HVaEVa3kArWqZyO4W/JU1XSHEiwuduZdiPq7kppiJUAcPB9Hr/6qr1z9Z796uxCNMDDiAIpLCtrTT31PAgUzBxhKfxtTxF4ZC4ITVyxL8XDQNG6Ml6xvp9CEI7RuY9q7kKUA512pxHv474v8QY7ONOWDAjfd1itkk5ChCpfLF953dZ9um5KQuIbx8CMEtcGVAkrufn71tEKER2k4OV4W7cw2kpQiQJtihxrsgzYVAaubSx1muNEqWJdQXG5K1OXzUVpQTd3IVXOnQll+aW3Haxzk/e7lKU9kP1W83Dzl5RoqitrNLRWSyyvqRQldGVVoflAFgcVMsIveqj7/uIGkumC43Oaqlvr6hVF1XJMWkO03qwwyXUcdLGfb/qvODhOSV7/xQn3Mp3v6YpHYAzpPVLqJThQF3t6aIEJKrtBKnbLde7kPGg4Krqcrg97PLDmogoHzPzr6UkxdCkGIq6s6BOZfyL2Of+elmCcL5GY//roR7Ojoevl53D86UEjTttW9j09/IVPwvSlhvQKEFZ6DoEn1aT9ROM2lPsWgd0wtTtkKcPyRHeg3Rbbf/m8uoIkX1cCr9HKQKIvlVm2N7z7PyqpRkx+FmYCMtZUtsRSGF+xW4ymuHQJ3XglY1jGp4n0ZsQYEuGsuTv+AdkrQsy+XrLrxefWDZS9USFZjy2x9QXoeouiR3weyp012GVnq9n7aAWjaNMYCb/FdxHGmE1miM0fWlKZC9KYGTR6NeyE5B8HiwMGtGJDL2fUt8sUwCvvmu1J6a+ipEYILTJTTtfDzz/0+szkjpPulXU4jmGD8SHypd5KgXdFUKb1WmxUvNE7icw0lvQvC/4l+qb/gAdai2d4uoRoptqKBmf43tYpfWGWYdys/hirxA1HVaaugSJ7KNA2zpkoBoXxYgOVHciJyZ/Qif3R2PB587VRidO5CGrAajnPI7JAZ98dsIrX6mT73TXV4WlFvs/IThnCReLuoj1pH+0/RKbjmF7EDWkTd8ghw0xt7TqfJ8GfVzbMLHROGRJ7EXMDoEsf02ZpuItL6dXeZANP0ltZI5WKWr/X95dBvcZRETwWT1cCLy5NW66CumYkoTu6jT5VEFgSIJENgEt//HoTgPZ2kHD4Vfo77V8PhangwxzQx+Vej6UCWuzhSYy+59ufF3c/FvqM0Zq+ExHtrHsBB5AskkhDcfZ6VOWhgbo4F7/xPQowNS+q9lBHZbLbaDZF7ZeD6ZKFS0lftKETPLqoZyC36a4pJiMi6gQduzN+PIkuyHcOlToYSmf0YqJQl6JTUim00VTpHM/fHqQscp5mxBYXpvRCGKPbQJNCGZhmBgmSX46CR3Gh6jVdXvSoaWrFAUxFd22lyaEFKq7RfEli/Fma2cWfsKC75AVXANd44bvJcJURBwhM+kdi56NvQHBmTvfLwMRYmLXM6/tISqWl0Jlt3ahBIt4eI/qIVhk3QHsyDCGKRG3pHkqtPHJdRbQzOUn+Px8k0EPuHDxSHZp6TtXysGEpniciSt0fyIuFGs5CW1c0dCoRKyFWcUig4Wvkoc56mUWc/G96mS/eZrI3rGxXwQT+j7pITCnA7UJPxC/H3FSKSCNfqx74bxYfqzwMAaIQczerKCyeiLsg8cTXGbP9fyDfTyPrrvkh9JSgwPLarWnXeYctkWId6W6zhpd+Cg9Mc2/jNaTp4NmOs3haeE4mmxJWYwLzkxntCTQ1+PYixv8zaL6mVakBhhch7E2FjYV4kJVoV4ltOmiewdhxVu/FyKs4KmNSf2HQCCcNcdKJS2B6MQSFmisCWz4gi5PaY5ApAQ0az3YQM27ZH9rrT2qwhN+vPkmCUc4B5196Q87d/ttoKdvXmGxBNpknsZXO/1IycOFW/FoE40ZnSlKslriwx3aqIsP7U4xu4xdgh0mbfcURb0X4D5HihH56PPffItZthHSk604HEWO6Owwu9qho3m/40EohDYwrTj0eQqLMOM2iW9UuDF8ulG3YgYBB7MYepuNMStVMqDLzlAhedDxTQaF89QcRf6+6q9QVfAbJM1/p6SjXKZ3cwtnH7TKs1KDAowS0XzvKvp2hecervD08evBYs7CPnWe+gpcldE7gwQnj2j6jZPczb8CJ+4gDmWMSBHdiD899BKr9mFgx2lxJBx9Tx/GX420KXo0Kwl7mTTppiCGveqCPeohV++2a6hcFqkFSAlcTH6XLZpnzyCtfQyjFNvzfXdmQwzM6MdHOxsik0iPzfjcU+xwAXZaD07NA9vn7tobcO+GUBCV5YreIuPEYlUYVoIX9Vm9MxNmrOP42WNFQS/vFbAYxqSdWkGgZFSLcVhSblD3nU5NSC7hCfWqODBix3SoYczZ5WZIAo9xankkE9QakmAVAzZgVAL6fxQxrbjRfJWvcpu7ZXE5h7CAvt17KCgtWoj6Z00VxxHEFtgyyckyFZIHRwzbZDsjQXp3fWH94JfTmA5r5ynzaaofKuve8wPmQjQOtUTT3Ebhkl4r/Gs3W3SBm/kXl+ccyy1Tg9EvkLh+B+T5l9To/xJRMinpb0lDbTrWdwcCT4jlgjJjYW9uPmzwxIzwppswSpPhxkC1/S2HfnsBvRSvKaGMlEyamHVBwqaLKszAnheInnjPdbuUd8e7Jel4uOfbl7rX4kNF4m3K/J9SiuyWE9owZ6knLJCNQbm7clh6xyr+fahBzsCCG894S9pPtGF6HxygCTJ0c5cnDlGjHLXUsFRJizbNRh326vi8Hnn5t1vLt06YLidLOomPX59gYmC3tSZrkc8x0zF9z6WWE5X4iNhGnV9T20NSDhg3KXelY9ZFZzF7BZRkDowFTkYkLxlDk81tAcFpSPMxei08PEi69ELKWgd4+A0px/rQ7Afj/TdSChS2xkSRyVxF5pn+XOmKRB65irgYBgvx2zTxm2IVOGLtHeDo0wIwb1q7QU9MVPu8dhBxC1GwLupYEfrIl7pDz2xopEpI2+Rxtwk1dufc7xW9gXZZb4pBMUSEGOYXz2IrxtMtqixKEd82NvNz0PBldFRj3or4wIqlNnCkiQiYPV5wsHRILRNoCEB5pCSUpHTdcplt8DK8kapQK6saZZziFvNYr67+UQ0xO2OS8tGYcvovVn6bn8kHD5bTdtAXD1aJXagqh2WFZNkDGKGNAmTOkjXcngENrrbGAR3AnQsbzWzErv5RLWF6W8IZSfnWeClCi8q7CBJmScdmY9qTzhjB4mMuPCh51YjYu/Lxx6TV49/+zIctjlImPPq+WMvx5qE8lG0BCFedS2DZEQW+Yt6cQTQzKof8FoaA5CFHNBD+JxyTfSwkdrgWj9xv4q2thx8YDqxtVAYc5AxcDAiCcMAwCtHm+uTXU/MJEFtaTRFKkM2wnc6evFrcp6jTlkvYmtNMulttFuT9kDVgAiVil+CVw3Eok4/N7e7TFo21wRXddzin1tYwqvIryYOuDlXxMuApZrpNTD/v7yp0K2qhwAnOfvUK9mbM6G8K7JcLfzpP9cdeNfGEUg4gVfAFJjqHbX9ScT1nhYqcCDkGbRIj8NWKni+Pk53hGBhDx08gws793sOKH4AfXNXoMb4+yCo9MlS45gpLlpXqxI74l8JaiSxiohIbICK5JscOHD7s58OdVQ1gRs06FqK5fyxai3mVPRqJFzxz8Ir0yzMu5IIp3ql+sJ/zECHQEDzmuip2Pcb304ODMQ81pt94CnbGCNn3EkDsod6MJU+nLDIc2pufuqlMfEm2aHHizfAi3FYsJPNZS0xVAygOUJstqKcfY16u6hGkehTlPij6Mq9fCXQN2uwfj4munYYp/BZxwCusd7acVM2AJEWBFXQe3YB7fHbkd8Ayccmy1YElqzlN8ceQ6X10E/A4Tt6YaqcmMMbZGawSby/x4r6y8CF6EjFPac18CYiouISFpNeVuJN+0scYDzBiczBeljoz/+4NatKzEqCE7cnibv3vuQU7ODlxkXkJMsYAAgMpZvfri1DrOMgZ11Oq8R69zOB0xYCWbBKI/5yvWYiat3EW5g+7KZlpNsl47maBhHOBEx1F2sBKyZgDw3RPJMwArEbzLUkm8wGJLXNyByKlhqMO5u/IOovQNR79ZHYSGXUUh9vVsX5G2Pa85maZT7eSgyA26eb7wsfHJnleszF3ncHTQ+BMKiNhruDZB2gQgOS7Lx3qW6/Tf6Jvb3ULRrAo6rPOIC33+ie8a4hVSDeoFkVUCYF9Kz/kKu56hNvTEBOd1xLMAUJ9l1j2OoWSoGgkLpIZoQnlvr9bJqJYaFuvRU5VPva784XKU/qr+byY4oFpc90sPsi54vrv96V9h6PMQeegkMOp5JEGBamCrNvby8wMLjW3OuJdqo5MTqw8yCsLhJHuPmTsJAYioILZ+IhTujPKrDhkx1fqe6JltAHMtOY4fdycwyFT6nggOp2vEKQmKK3TlWZ537XRTYT+CFQDmkEN55GdeaeWwO9ES4mDjXXEvGqsNfOsAkt6ySe0qwpaBuy2/p+LAajxhizy/2HnNN9XL2AE5/QY6c8tJYLil4fG+tQaNaUAYTi7YcGir/8MYpKD506Y7lesEw8SXPum2CQISmE+bW78uP2cOsYRC+qwv8kwgLC89K9Ljs3XyfSBYzWanWcXAjS7uDszDGbAAiiJjzSXvcKpvs07Z0/PymU4VBD1y2CeipZm55vEhe2KcfjIAHTjH9Kaen1nsuk/u2VpXnQ0VSV0ryTFlmsY2HpDuNaHhrZHE9GIBN1exUxI54GB0IGkvPA2ZOsFft/N9BG+cjexViyPoC3uqeyA+6f9cGGzV9XDH1zX+FdPMHw4eilBPMtbOoz1o9e9OCa48CuR31RpfmR61mGO4+DSqWH63wnpShd0TYY9MKSiJJMndKP3W1f1KjRMtpIllw7K7O3oYOg8LpMw1C9r21+IW9aOVKGLlwNEf4PBL4CECcR3xFAUGnpivxVHgEszmI2g3cjFla8YZdlZE953DVlHx6k7fDINiOWfQi8a4HXkr6WRXjnNIyiFN30lAGbEAy00wc4ElN5XzKaKVLTC3OtNZfMa1gRrGRU0k+qOpN1kI2pIEWz/2AosA4YzURvCY67cJFD3ZcN8JR7jwMFxKBjWPXeFDSyYX8fm0Dmi/KKJQy3jvUs2swxHkzNNOWKBxamCp9tvUJ02PYUjHc0ReoUhgR40UmmX5+YFFjnB/ZJldtjt+aoPOlqzg+IxDBJxV3KOREBKCqRuz0oZp5DhjC/kN9kegTvV30DOQ5hLBgwUX1o4Z25XIzEKmE504v0kihZOxPuUrbO57Rb2AwM87PcNSBAVsalC7sVt0dCnV0HVGgxGE2bZMQ8x961q/aNSo2RS8RN6J0w03xWGXJ5VWle+XZwDjwX0EV2+j7Dt2R/glyEier2V0aDt1HPhLwJnEyM0uRrsUctkK1R3FukqrNwOIn3oW1EKeKavCilUmnU/Ygf/aHx9GWh2NyOESziA718ozsMLUWbf5xQXmJGYpLmwjClYypG5cy6DBeujOggX+QsiBk+tHHyr0KHISPegdE6jJlDHJ2jpota++jExTFz7uiqVjtXsMYwF6nLN3L+gvc7SUXO+2JCsxCC9ckIjyVEL9MdFUqW5wF8Z6kgE7UTYs26NVkf5G5YzJUIcIrk9f6RncjocrpFRvk/ONSBxW8Tc9nMPoOBBWN5Bb3vEaAlc7tjR+J2WqbQnW8uINqwgPDbdbmCZnk1VypC+B1IO1SB/Z0tL7uk09SXDqtDRcVR8UxJ3YIbwWPHh2A2OZPMHtEI3Dk0JQ9aHU/P8S1nq7LW5wbBf0XxrnZQ7l/YWm5+rY48zySXg8aQVupOD7mtouy6X1+C/0op9OgOLocnTOZLSaskWsaA0wWDxJDBOC8EUeLn4SzgKXkarfzNyx6tL9vv0+828J4V6VRuoDU0lf5qzpf5HJw17Qmy12EzuC5Hx1hcSLKVkXspJoGC/GRp9p+i6rQpNxKWeIha7t+zpTLFVFsnvBTlMry4q/MEaoTofpxEvJ/tAkFrcthJOqpphrBtNuBudnaVN3II84eCdR4MrJE1a6Cup4SaTrynHdEpC5QvwMLfMK64OkN3nLDOasvAaYTssN/5k1HZtgQ/gxWU/6E+GMbMPAvL2FQkFM9Xx8sdAcwPpuL6dI1wtE6Hs+0Uj5VkDIutS+NRdjKWlELXaMgHb9Cqdvr00IsXNBH2tQ7Ebd2bhwspH2IIbMyDcaNWFYxC9tgSqJ0zOFVjrRlKcYfsGn63rydM4es358MMhfonjBlQb6aymiN4dkmT1QQgf005tD9Ph2HwO7TqN5TrFfs6DVcVBKsZGHLPhoSo45KF4t6XSEyCVVPcp/gsSu9IaT2pfoXugfhtkumHpOsUNEa5h7XkS3CRdpL9WB9mgW0m+EOV6HFbJkHy6pdmxi5OOswO9E6UIdaHa+HRnuTxfmwEny/mQ3ip9j4CcNs08tqGVo1CFGpO7gBe26z46LVZsSGgHQiMhqoZkMHvOo213qhen1y2IFfJ2RPY626vDrXTRieUuVirtOeNus66E2gUCIvHV17vKk4d6+z4TTni/mJTSEiW5LGfo8FQJSTaJjYhZOn5EXD3w15qDnyBvR7zfsvHyEc831Kb9D3dtfySpEY6V/LzeZm/an8DX/q+65ttUcE4HpTfWqHW0qYVdElOTkqXgW3Xr7Na5IogXGPiDKB8aYEp24cAdj9Uz9RtBtpYlkWNdJhxhD2+PgqEHZo0fwIoieHpQbyuw9ecMBOwQqOpy/3oZj6FR5Eei9KqiVhknl1SIua11+DMgqhOqPhQylJ9xtuxoVwWT+xLrYiXGBBFdH+foa/beeqzHwmMqztOLc/1lbZFQ8vSspSgrqKU4xfnGQsvmK+GiRBp6sAkrst7+Jqh5LiT+i9xEn0u7fbMYVa/XxPtImRIjtstsZEmgqvOuZrktwLRViPs7Z5XVz1rRnZC85TcMvL7TN5QBj8LIBGltG3N/i4rV9vWX+lq0kMZCVc5oI3+t2u9KfYaJ8m1E4tv7giiNnyD+0QmiUs/D6RxpVPlwIn1ZIGPhLNIJqhKyRH0IBF63C4a5LuCtJv5BjxibLlKEO6lZ88MrCNK00AMVft56hKQ4nzfnWLJEz8YYCLydP1lzkFNxp3JN+q8uDCDj22a/FrsskId5oGRFv3YMR2HUC8uVtsb2st2/R1HRyOfF0Ep1LF0IXLJJ6lCo5bI8FdtudCyGHS5W4y+0wjKT6l9qOAMasnZIpBd4finyuBWK6ut7d5mi3+CyJamaFJDqglBgGpU8r+peY5nB5ZJ/pXDhJrDLfLRzbsMyTRANyqpAX3U/Tk9rHqGtsRkwLLvPPD6TiWkrrSx3FUES0FPityKJKgygSO/8NVcdmiJ9gg+QB030Zsqwd9w8NbkpPO8mMOz4GYrczZe02fIhcu+PzE6rBSAkCOnNdVZcNpIe5IDGEau7C/E6f1248blWW1l+jEpH6g8thlc80J+B5LVXFiYwUJsNVDRWOkzKQApW9qY7RhbTCnVHzQFM+d1+pLGcMYrQYr++Ysh4VUnAuTKBGMUaX6g/L3yLJcSDt/79F7o0vZxa0f9MwCl+UVh7lGwIh0tF9VnnpCMHOql4IYKWahEpQZTY/AqJUvUU0dWm4XgHyUfxuYkqdC9MmiV/AOh3YSRrAv+7rg8ovshFKPqFyk3CswmVMk6UjhkkYryq0KV6cdJPR/xl8RWu0nozpag12nhND6xVV2DvRWbd5AIJ0A4eOl0x65EkNoa5BcD7nvOWNC4kVoTZPiMAc7imygGPys8YBuwGzppUTerr3YyeEGvD9gVIWa3PPQJFp0+Y4F8LUHn9dG5Q+ENNrzPInYp3IIHQ34AfUzIonmnNrIn/UVO8av3yKjY7Zf6eWeP3Z0TVdOqrCprMPiSkLliwkOTJXBhlNFpOY0YSRUfLeA0BH7mYeUNo5ntNNqyHiTFx28MUwivXMWzP4uN5H5+o9XVyGveJUtiQK5YvO+1przwTDt6aSki2cYwjNkPc++yz7V3YqYK1s8f17xYmzW26eh/AxEwOImyVJ+yhT80zm+SG1GsZlIqSLJOFGi5mXjpwsqtjJh7+fWt540YQmnFAk63/Z8rzAySJXzMG8KYGXKqQ5hz1ZiWBIIwE0MXiQl8DKWojfY88KLMRfyuSjOSfcGz3Jhs/tuItrVYeGtKIvpKa2Pi9P6J6QJOkAxTp4n6UffSK9FXmNpVpUdY635D4It/mq4oYC0q3dGZn9OTHNCSJC87ncgvfLHyUtJ/l8vm1N6MO7OjVEbRr2KfY+MTjDUx20EQ9i7ds8zTSmRojOKhGQNQZPMyvgp82tNRKgwHg2c/ocu+iv659SV1zytmKrUTl6sQfW4XWEF4Hm48c+QiFci3dIoFkUptGMk5b9M/EhmeyIbGNkY8nZ/o30y+mJBageRtVKpnJB8/6r/K2JASyOjIip9Bunn9yiqpyl3CfbbA6ZtAE3MFZRTRmUWpr4Q7F+9OvTWWq1ykqX0aaWkHtQoWZFu0AKFAgVr+NSeC/aybtQmFQUfqnTn66Z3VmkTpDNDHuot9XMu+2qj0oeubGDyQk/zVJMkZhWyLPgBfBaK+ZdvX6mbFfv1tRWnTQo/ayaSbmUbfyUh73qCqms/AbKkAkhLGNDCawqt4S94JYtMzGyj0krY6wcCfXrW6vljKjNhNo/SsE5roWAEBwM0RRztjlOj9W0mrTyX+bDo5pJKuFUGAr+7GGs6B6TBbo7EPLtCPnlf/EA5lwu8f2YdZDY1vJIDOf+c5VARRKwzaOnFcaSE0/Ii4vpWKoNCQvK7xK0duUItR1ZHW+L7VV8cWvCs6l4ISsA81nj5SaVBaZ4TK+gieBb2eKm7IA3/RWLtE2WnZQsPpMInoa2wtx/2KIV57+vCp7zKGg7yqmLTEPwIH+0Qzfr3X426i7SdiAKRVXadI2fKuGdHV/P9i7PrkiTP2qGLAK+OsPaxRTrNOKNCxFyG2To56s3tDQzNxLhfZcYfNlvc1CgXF7EazHfQVBUtLRzIpfFhzBsItYkCIzqLD8qnoB3ZsCYcS4NbkHQqrzstIZF03Kyu33QyHslfkLihe63UrRroL1R5LU4J4qBp2TuV8hKpx20TL1gRmgrZ3h2FHZxEX0GM/5kIcCLCRnXG5y3JiVmFqiw+la6rxHXwE+5LHfoFVe9/G9oXJ7WmYdSd8qeIPWR1OuIkfGxjY1ngly4nH60ZfR/z4RVa+MxRiukLe/J9IY3SNMQR4c/erQuOZY+j08Aj/rTEwCIkTYIqMJtVcgKMENmHx8AwJLbgd4I6lWCSfusrJGF8wtZKboLyIetiravutQMLvJ814RY4NWNIh2V5GZzdxWR1QTQLHDd0yPM+ckSBzsky2uc32aPHH7mWdbThf9yl7oXJmwmVT6VKxIrIdLJgrzSDWdsSGarYAnPMHiYBd6D5xOI533KFgQZw7RkYC6tG8WnTHGCTnjoGXRUdhBu3HG+kPSl890uE7quTMuhjfD/goI5+7G1PC0BQVRkX2p5t9ExtkD3xcEUfDdh4E+WWtS2ut/HTzuXdvicm3LB6k4KI/NL/WfheeavRuQ1XKRK13yl5uJ+R40sAq2OnxR0Agdg/vt2otjd4UscjHmpOD1vU0Hd4SWL8CyjSOydoLoHlqacRmTJiQihND9wPlFDgz6N7lUzCVWWGRHaUHzl/lusNxIEePBSUqODZmZKu/PRoWBuDud9r1uqLVYAQUxqp2IV2xWFFhvAxWFksfM8ihhOUhCsfYaLw18nV+wrCENBlr2CqWQhsD/hzglVPpSlje+6TqliTsEb9uMEtgpX8MU/Nj7Ye6b8uw5SOY6df/q+UipoZa/kD7PLw+wZ8WHTzRTFshacJske5Q3b29fCBRswoSvPmXGHezjBMoz1eYj3cbgSkvk7xMSg27Vx4hD7gCuFp8dLVZ77DSSvKALFlAWpNjmYLf0neGJzyNaQkYJQE5Lt09/NKTrmvMf6Hk1JWLKPL1AZmODVN6BTejWZXypPa2UHIYYmkvNQti5Ips4qReFZrJhNOgGaZ+d0ORgxLS1e19KDzRYzLQ7SA5y/GXHiTM2heB1SPgRRgjwHkoOYpxsRHppMHhh17Mas6Fi81r2amkyZjbZYKUKX0XXK3oeSDMIA/a+bm74KhkR9wLOsiNwd4j6bfstkdk+cGnELE9c2z10jM0Y8NTVkDwptEUwTW4TasOCk7WFhSpKNEL+K3v9pnf1k3KIuj/N7ykkqOIbnk+MS4M0STMIT6byjDv1bJ8lApd1Knauv0DtKDcJeQEWkaiUzqjC0tONhYxhinDcL/S9ebSjmzQORbCJ1JwVdGWEZ2ZeW6j/NiSoN+sBqUEjY/8p/liy3cr+q4O1IsLOYXuFfLqUjm8lu64sfCKVw8H4rBbQBeBKtXGjQsmmsyGqQNuX9ecreipau14XAt8W2U4ypU20tU5XD2ChbJetLLbsbKJs6L858pXhY0PRh3O5k+ZKhoT9eusSMxCeMZztnedmJLTVnQOPgiaL8M1DEh00fciYnAdZkTVT/0VmUDyXRkK5MMylYZ4TN1f2vyL9dTylbpeENoAq1RTth/ekJygwZEsiUmX3XA5kfyOh8iNT5Vc/bl8fE9kSNgcXtebI9QtEUPjo4gVgZWTDW66v4kTMWrmsi/sKnm90VyQawn8uRazH/NL61UrSu7Da9/QDgNPAUlAHyyFb5Umig5wc7WHPhoVN22mCAMZWunOcWtK5xYBaCMvX71L37bbeidLvJ3rCTn0Ntg8/2sMs0ZKFEQTppYLpQEWomvmMLe0nrMBpE/MjcfkBqbHAcul1gvD+Umuh9YpxcFmoWcuz5AEQkvYa3LMGGt2RVcpmXtLRPqLEm2pU/p1gM0Y9k/2qy1HIUrbgvSGuztx32ZzuTSusnQNOMCRT/4q+loP1FhTpPletbX06TVArwf2RfB8t0EGUNeF3lZX93uh3A4dDNNSNwUyj52CuOaSOzYCJ+JGLYFOgqaBy890/Ynv38LyBJv16vqCpLYiqn4prjDhB8E4q8KdBkZj9NnxbCkN4Sl9TDido/wq5qwFU3WnFZL71hAU9T/q9z0ibkzdK0XtbCUc+xgyUj0ZWxDAZ+uHJdPa/W7JYmcEl7pdJwSzampgMc+sMbnBfLGQbsCKbax9eEG+g/8Ahdhw0o6162jTSQKoTA/PGFAjKeL7n8Z5ztmHLxx5JrjiM/FpyKfhajMGTO6y6jX/GnKkzO0p1IbneGQtBmOER/HgHnZuEhOljdJ3cGT0NnTksMcMoVXbFn4h3v0w9MJatAlIQqXQHqkJdUYK2e7+HYfcS8paWw362oYnQxoGfgljbNb4a9uSs1OFayvO5IfP7s6bLdDfLjk6gDLkoH24tfQ2jAsmZQyQLVxO9rYHOzZK/ImcycQwUQisIevFeheSSp/o5xNK4Ub8ige/4nNGdsUlyuJDeUhmMj/xUvdvhFCTf4SSkkwWOQtaX2XjqpKYsXAKrJwLx0tivOxodHHsphFTq3t2p6fLwsk1Lz7q2TgeBcKkPsste0+SqQRUJSnlrCOoIn87ILV/Uu3WUGo1GmfL2Sm55VEVC3QHMiR7KhdWnyPCxHvbruidsxIOE5NYC4/vi/0DblKYhv/hHNM7KzrrOgV3bVPv6qfaY65inm1WmmELKWqGAkOuC5kEfudg3kxak7MA+SoyxQF4DQ7eN1muWuJSjRcLg9Rjh9XMHBo0VUd2YrPBDo30AphDU4Odl2H/EjohhnGZzOb2IWX4jKZWdrci+YJvzj/PlqqQeB8QqiFK7QizBH6wvEvaBg4KfWyCeqviRtNOaTf6wQkviXU5xoC3d1eglkMX4lC0Af8S9xtmn83JW6jycxnohtaOxryPorX+wZL3LxuYSMr9aH0+3UZlgdW8W6bP7AP3NuJUYlJ25DYDw7vn7PSyZyxZpQ4QZXhbS9Tcyw0es03csVqNDwXCd7o1N5Edyl2RJ5SRYQUbwUc6ao1UzyQT6+TRJbhbDlmzDvAvB0qFC91+kM2tJUVadcG3Sy8r1pq0KYe8zXzW3zb0weWKxaEAUM4pXfkbwo9FxxD3L1UVbx/TyevAIXBAiOFCOj5O+9Ml1ITYlz68dsDq9F8+Mz0u/g9qHPG2g/qsJ1Nmo9x0SSS5MU28yfwAwMFCOY1MB9vxFvndR2iV3QQ7AIdqbJUmmzbqdkwHnr60QQIlMU46V4rk3PFQQReDybtlhPda9OWF41mMPDmfoIoXW87iYAxSXZNULUco3XpRP38jVGPROgAM3qnr+PXFniTpljSoMLCO2Y6YYhqGe2Le0IS9trm63sourxW65M/Td5Ms+of6jEN2jeKJs0WycGxCX6eO8AIrdR3ERPq/2eDG0AaKYMa6cOOv4RmYYntDOWh/fm4CyFXgbMXj/or++y8xMcFMsKbN/vRsXnXLAdCM/0OwYW9zp4PRsNpDxgJnT2/LpZ4Icz5lt8yIHxscRyVm+tczdhosetWABHNEKzAGLZrc5ZGoP/TvUIRQWLcUwE+zRVSJ8Gs6eC85XLga+ynYinbFnDdAxrRURxG2covFcMRL3WHJeVJ/NIMul5c9iHTuXeerqlB2oXY36sLr8VC5vP/ATrjza/7JNn1XDtI8A0lm7/KtM18NC3SDxBuS6FR1gXSBs5dZdPvk8QF8JdeXN5wrodKDInmPzapzGTh7bufw20XbMORAwMWd6/i8GsmkTeFw3yJeIV5BNuLnW5CLW3JSI01dqZ6StdCq+siK+F+NX5i7upheMwe6FkCcKnqM/PbmSKJUn0Wx5jv+0LH81nKBiI3jtFThrqgEtbtThl0m1TbkqQ+TGP/0CeYRb7G48mKjvV3pvyfbQtlzgh2KX7ZRpxA1PH8F/U+9wCYKtCtIerRajmpxUTP2+w87LP8A0vIdMLERZz3qRZm3px4W9MyrMKfwv6RTJbj5MnXmE7nAdHiRTjFI0Ga37esyg9FA/WWM1NWnZMLl4Co4BWT8Ysl3zVIYxG3eM3Fw/WBzZbpiw3q1GWZJsrg62efzZlFn9zHdPz5agLvI8yargM9Jee9MhKXTUHN0ru9KZySBoibB9lm3Tct/xlnFtWvxDBTyCwX7nqsFgduQd7b7Wpgic70CNioWCBQvCMWTDWsVpoR7caC4Vkf0UGoxlb0qGe7475Kp7NeQmk4EVIxYqTWUzXpZbpQWZlknC6mjdWDCIOjRC66Pn4+xaHr7gkZi0n13tvN2JLloSvw14+0agzTCtAEHjhUxA3IPHc8tCd1CPOqEYlZLneg4ZZc9kz/25/KT84pN3y8Rn6M+2X+GALPCVTi3gwXRW33Cmy7noBCsvxcvWyfmJwsh56huR37VyBFeWwgWWTbP6cU8o3LGEYgslwQPkFTVyv5NWWFbn5UqhW2xnqEnRXDDJccuERSguBzIEGZ+cufAWXlX0RkGQWOFkYuX9wGYj2gsmRtoohNKRF4OFquLhOp0YYcAN+KGTRri97ma/HJ++KT+vPKIriL4ItnYEeA9oLZCEkaDI4rL6KjQr9zz2ZMr1nRuQbRdPQ2LmXVqjxYeSMWRodLN76Aqucizg4++JZlpe079jyMP4HpR0ZkfUu8EgYocvptdQxChN+o7voP26sqQFEJRxeHa8Cc3G7m3R0V/q3XIX8WvRx4pjaoprnek6GYLjN+sJwmBY3tDsaQSoPxLrdxkrIO9CaMeqRktKNOM9khdj7WILWWvnwG+xllIhpR4oX3aEywisuf0FLOPLAsj5l16yrRcy2Lxb9QLQFjZDT746XYhsDYGmVPiE/FDsnAzFwe7DT0rWFzYzbjnpEnWTL/HSWMbe5XUZplA3pKi54YpQk6pWXiacMBF+k7T7y3tX5fm/Hz5WBmdlBxmzEa3OhJd6A9f7sBG3ssbJUK76D29nQbZBkq9wE07vlJ3jFEZ5bM/TE2IJWSqOFyfqh8MNQu1OXUjOWKdRxwDWsacbbPV+PpBeozRZvHMcWTFhHN038ywdddp9lNctSr4u7q2BgbLSS+BUroDcC6Rp/YItLbp8HnHBYdGNOKcX9y5/ZgSIua2lrabjpwZxRW9KyBGfhzIj6Jv4PJV+8sMFdW4h4bFSzId0kWs3u5AsikCAzZXreSF2MQj9XndNrPiHYmprf4Ca6x+i1OPBvCCbYW7XhAdFsmAyzmyP8QoqIuYLCzyiFG31u9pNDBRuU4Mo20Qkqqc8x5QrZJ0rL3rbTFqiPk9Rylz9RlfpoEsIDYWPRY3/V7sA3j9NxTJJ1YqybFrW8kRE0E0lYHFGtrU/EpST/LTIwbiMV0xWtx8RD+bU/ynDQ6dzh1WXnaaq9N5BZVnwb1GWg4oB7hmEzBFY+lIkNILd4xP0N6+TBfigZgYKPgxrYZlRma8Vuj7QkYqzYU1UU6m54qMhnEirAwldgWd+4gKc20VDEhobCwhEPfnxSxMtaugka1rzV+Qi6o8lGB404dr5WC3mFhtdm+ShMpNeIWSymRFSJjRJIvru/PhfjunbxxPlfkxye6NHWoOV30QoVgIfl6Y/w6YHZxtcsxKU+1BTPX8PbKa1e+29fOWkoxB8lGAVj9RyPBSo98SpgloVsxNuFqV+KuGxcJbMDoEsijWTgjT1F3TeQXbPuhc86L5TL0REF/VIgxdlbj++jcTKYdhbnns41cviH0lB4KL5RMwXyc/vGUFi4BStDVduCtUqZdI3cG+p7K5h/CbdJB13eli/f6EC2E8E0auFE3HXnS0GUocL7Z/YdkY7obTL/ocZW+nwaSO2Iml6iI0+2mHfA5osiyFQyi5TLgYv8hrGLzAqvEN0EP1yMliinkYW+WGceeZTK6+mlUT1bNZkKV+UYltEmL8Rx3irBXsogxTl+/HQE9O8SLg29yGWisZjFDTy0VgXA/B+PlSNYHDPh0tlSZicChlTCQbL75HeJOPLBhdO8Qw7vdy4Kn0672lFxz+Zys7IaZUx/lYS3PGM5hduF7MfGIOPrMlcKmKyCbtQH+V+O8ANjAZNjjEAIpBq2x35BnG8kYbO9B5Ccoem9V275MooySqS1RHTrl68K22Nhhi2E8R3IV2LfH6/QlvoqnS+zYbvtbygJZDAu2GcOlwNDEroDj0o8ZEulRjAzAfl2QWzMHyIOFHhrLW/96yp6kBBk1FNdmS5uwXYFrN1UBGDlkg/8XXvFrLCfj06KJPKubwSxdr2eaTHVFSc7wqhz7U8f0dko5P/1eMN9qHMHqL6GON7pbtU+CvgLSmWdlSUrshfDuiuCYt0YoJM/2R7nLAUexTXH0la4oN8Uml/78sYL3fGgi11BnWE9CtuIIHsV49M7pjCfSfUnDL+bbp1PeRARnuX5tqlbbKKQYXXKx/VQOGldGD6+Ujh1lx++OGOpvo8wR9JU2c/GzTzMyp1XgxDnxE0Ap+Xn+YB3lYM7a8tnBCcQ6GYmjVc2PlorZjsEojR8gO/x6kFgcO1i3XPhTAlvP5vPKkn73jRGoqWK6Y0WavkBtThAPVUneosNM4QnWlVMXNHCptvonxg3fNZ8+QeI+KxAKRc1xx5z3l+QhG2LQWSgpiFaSsQiRkCz3wqW2l8AroqGU0n282Ul+4fBek9R2IqnM776qdzlv87mvPul2nGDdj0Zg/8O3w0iD4D5MyJinyGXebmcDpxtA8dvsDnktsoPYYJrNyWRrbhPT/y4tdtA69/4xJmXCRWZ8W6Pn9mlBdBOcqKHvLP5zE1rSJclw7Kyfae1JI1+bEAqQFd9+hwCKBzQ24m/rWeBLfLGLYRb2sYUv4seHhvEOenajG8FVoF/3LRC+1+3m6INHqI3cketxIAfccVPLjT5E4HfqmVZ3MnVTczrnJm7MPh3gXoszxmAGrekvN9a3OQrFL1X0nQHkTlS48AOCvCzJkESMclfETe/aLFDJbS3QPrF70pTpEoU0HY96qFj87FGjqa3K+aUYIg3pMO/2XCJY7wI7l9YLm127KJl4Ck5RcOON7tCOUk0XKz0GTKavkQplVCCukj1lUGB1tkjqU3vuGKD/7fcCgYVXMDPYGVOPrdwkGfqSnc0xHTADQcQGYkeNGQo8dfhwORozOgkd5Q8bRFKQgYSs6L0LWT3JQKXUMTDF6wCZLrI96DxcBXx/liU53NK7ULNIoHpIWHl5TCrTQ9Tap2Yn+LYdqUDPkVjDv/6j4Xw9Rl0cZQDrVRWMvnp8XCI1GRaxgmMyBlqYvTKqxTF3uU/CmPQyUYgntsRChN9dg64CsbaiiAuBIHeM90wH/vllKA5bDU+WuQUtLlUpz2ZaE5vENk7vbHenizAHzDT0pr4pNngthxRPQ7HRwn9ugv1bzPycFvW0eex8Zh6bhezXQ1QAMkZDU7pKbH+r6s1rRIJzgay425DUJll6+Fqbnyx/wnvRqXZ7HlfsQPwDL8p35oALtNE6NPidITlwJFxPGcfnA+ee4LefWTBYCbSkj3ytKCf/AxqK7eqg6f/Bmk5awb5brPxsq4kzg5zSHNMh3ZYCfUVppNh3turXeVVDM1sQ/pXMv2SWRBAlVDqQJql65yH1nXQ9HjgO5ZJf9+za7dRo+VPMH9mnnnonLBPFpcB6+IJn8LPZ9CiLkrJsRW1x08gupwA1rlCuoS4ivUf1lE7ZHqpVWxZngO3dVuJt6i2jfjFgZI/USm2D7DMAcPByJo4zWIVNIOnV9voX7O7OsZIC0A4pgyMqfXWlFW/doPlzOIBEP2mMxFciT+kOs2yFqcSJR+RSndMGX+YMc9QtI/8v9AmZDeJO8zR027aaE472EQNzRwmczeZ1kJvqEez7QkI/eZrnCbWQKVbm7Ik6GF13uIn20WWuBX8x2H1kUEsD5elQkzDwujcmxDW1aT9278K2ZrRYGDxQe8nmM47VQcAgK9HE5/lOfEgbr1wMnxfZv4CSIwE0QXdwi9UJ+TyJjFRHMAjmqW4utFHOqQFNEDKBLtMLzt5Ray+QBnIN/Tu2iEgvkOSrvoxlZSWwuupToK9AyLZto2OsKheomxyEU2kdYkhBXlasRnEMialiS10BfOgZn4f2DLvEpON2w6XCd2Sh/bAH7KTAU8eVvc1Tqnw4pLpqj4J7ijxaKfDZ8WJimFcxibz7YZI5ejY/0V/orqZwgLllrMm6FO1ejpH2Pt0+HaSgaTcq1h9e0NM+Jus4rZ1zmLpleSiDaEl1TACnCMvU48AHP/xyk3R42iIFuwX0ZZKtJasOm0fxov3av3ItbOqhAsukq1ycZWeWzjHErlKhNBEdFalUA0tRlFwogBDM3lqOEO09MGRMFa3qRrJ+v0MDyH9iVSoTWW1FSlty4imBufGTr8m58WMC7lA+DdWmDrcx3vZuAnYx0Fao5MZpzY7WQ4tTARr2qo3OzYvfh27Cziqi2k/z8A1YrfcMnu9JiDGpq/uRnOzjSMJSbVjDh6gKS1e8hry9c4PTso36iVEZ2ZtvEE3EEexBRsj/lgweHVqwjACeiKSINRhhvtOWcoX8ooxKy4Lz/PtkCKKGwOezYKd+DCPMMdKC5IKxOL3hxgalErO9Sks1G5aZA3b3B92oh2JTyTdhXposSO3S3Sa6q+OskJ8V3+MJ9bbddTX2JkFmEYCxpOecga+1R9aoeHTJLItHHUx+smDX4PYgNLqYqhINFKXoB8Fwn8PH0c4pmJmmPNm4fk6+Bh9RN0VNsUlUlqzBYijmzXfWXs27SwF0Mi5/3PgPIQW8cFQVyJOlaV0gNrKRAlWxVO6AkYXcvzMbPMFcZOEUQHQxxaz+On4t4rszsIEAXb0n/N0gJczRfvXJt2Q3opkNVgsmTb+AOCa5or4pBxqTfkS81bflbGpNuOLbgknBmhKjbhyawjk8DngxktcZNi7qMvr6ZeUmUEVmYtUwg/zOKv05A9iM5HnN/TG/rmEvAjPN1H1FAJwLp/8BnRbrUpxGdsoqck4+vBE8D/VjkO2oUc85O4GZ5HK5z3f+gtGWQvq9yIvIZMqw4LsqcfrngVoIzJ0BypirjY/gDQFfwTUGxGGRO/NSj6Ta53xZnzBofTnpPR9GIHkpxecbhUXCiCrw+nf9pVqRXl5Xo0hcrdP2M/3A3d45otRhsvSzd+wOo4GAOiOZJjLrwi3dfRMeYVikt5hQKGz073BEl+6yuJ8FMXkWluyu/+IuazVn3s3dlby9j4cS9LTFH4G0H/K7PD+9Kk2nmYpvzH55P40VLo7uByTJDFoJYpoagkV5U16KPHk/cuXyAsmHixwP3q5K3ohy0wzZvbxWp4tm+DjK5zVoYOyUaO57BBg4JHo1p+U6g4tYadZ0fbuVgl63HpHUsw2tVcv9OAwtZHcj7p3okDfP22EGxUvfH/OcBS+8YSr5eW3KTRQdfxMFVFm681i7vl1oMq2vuITnV/WV7pxWCa/MjvhOyyn+8mFIJBUs9tBDEy6cd3FcK1T8Vpl0eOu4bupPSULrqsWW1Ce9Q093w04hTcSobXfvJwkPblOGt8mvR0hftskdrNdWV7HWEJ/WAvus9Tk53YRRvgBlx8uFP3ijjp3+/bvvEuttmlXrJ2+oWSC/JVhakAT3H+hPDzpX/v7bloBA77yEpfDca0t61B1u8Z/LjHGKmdpd1mN5hrwKy3NN6W0TbRMPcJRxRfFOqp4BWn/lAm0D4EdA6PhmABFwXukaKzoFTAbZUua1z85Du0gOzxNNezzSjP83UiS6PcoNYcBMVVPFTEZV2VKSZq4oITFd5p8D6xKljTeUlRo4S9jceERy12FubWNxrudWp+f9OZDomAlsZnt5eFM1f9XDsykhEToBLzA13gygmZIRcheUoTc+eakH7cMR53TCpkxMnEkMeVqOQWM5oel6LQnhxvXp7UVSqskRfDeUG3dFQB390dmXm1J1Vy189JoK1btMXLfpnQUUC5ItKtJiriNtO7UnXhyBlGNgT1ykf7GMBuka56sZ4lWzkx9qc4XarYi17kp9qtcyOekZD0cRCGBTHSxRLM+RbzW64hbZrdvrBHDq8dWJm52YVQNBdJkgNreDcAwudPhnfxQ5JlxfgiFFuEJoNY+5wj8Bk3u+u6fIT6sR+y4p7i17z3csxKbJhWciHTQMWYtgQKICy87Fbj2gbQuZbPDGX0w7NlT8E7Cflb52DPBmToZ6nthjwloEHw2ma667vW5oRUIGZU+MKQrP/r0Ocsqpqh3RBrlPvlOVF20p8TGNOsF4N5lNjR1izP/DiOXXh83c9ieE6ZkD5OaOJ/hyebeD2ya3MpV+bxjPgSV26T7nabIxR6vIKQv7Ngjpnp5K5b9t5FYhi1k7YljvlQvqO0a5ilbxS3pcjkpyx8DUw5lIq3kG6CZDmCMFbMfZDx6bir9LVIhCdnGKlw2HBP1G4M/PtziqFW3eYOGknaClratcoEfIDJPelDngy8ub2kOryz9H5LyRF4ntz/OExsUiGKV9GJWg8LZSVhEU7SlPYkyQKuSlL5VTLorzzOx7ZHPTfXgbbRQtBIv/YAkX+ZSsAlbknVp0yYbiJjEL8vyk58Y8gqDh3CoTuZnDN1dmnSAqbutgo8gf0JPn6d6s3T5wdqGcve0JlcIS6B1qP1rNpc4xOmISUq+2cSdOw9M0jSV8aTkL5iuA+u0GvVwfS0xqBUndsBrHc92Mb8m43S4Oz3rghBc7HwrAwbo8PPe8q+LbLLmIg7S/oxQmMfORzYPwwwaUFGz+z/fJX6mJlry3w7LcM/5CqrhyxogZjBU0eBBF5HD4u++FBMNNFFfhPYm4fqXJWq0eFJ9YBKpkG/gvZGWNdSm4kzBbtMJKZMb44LY7zyJ+ynblKZbyG/9+/yKu6cmeZdGGfPhiacJNhjxM1VuY0hLI3mG0w9oJ2ZZFBed4C8asTRKzPlCeTXx9TOeZTr98S8j07QiBDu/oW2eJDrLjGsitBgyS5lrEk18Se0Wld7s5czPZSehR5cxyz2mqCYQXyG+eFlxLMfM7SaQWjunHzxImxfgcj/omADi7ce9V5WJyi4yMTrZKYDNcRsZS0SN08xJatgbjeUBiXWeuv36eivh55BCNUhhyFhFOutAAzx1TOLzOlr3aYgzRz+KJn50E/mhyNmgyB0s0UXZilqbSkHJepGshMd7zc+W6LxPiHQhLljpgzgsKTXZ4/iN0vzIUAfp1yHLp1fY5cdEo5fQcBTcawHpuPqZ5UuAPudSujxkJ8HYNUYzpEMCq36V3T+YiZCjc2PP0SA7LF4ijw8lLCVyviieW6PvPqnWkIj++36UEMzbeK2m3ClVh0GT7+JiFnpzZWz2lE54p6K4JAltk1M+Mc+gsGDOBaAg9VWqDnc4He5jJNlKrUpm19TOcdxfaNf4aHIG8xgw2GCdze0iFFldxhUrHDyvcDpeKmIKqCvMDNAjoIAW1MKmIvhs+Kg3tW607H2JOCyig3x82Hl2sIBAsKrWe5d1oyrs88xm/mmlNB5hVZce8X+XNhm6di44BrWJRE53Pz0bH/pLr5IfcIe+iARGxcncfBObPzHdLvHNP0sX7GKPlH+CoKlSfue05S3sTgrnVImmbYKhSTKIpS1Ew6jwFTG8ctrL1l7f5/1V7WUxLgG3JAcomw1W2DsMSLc8WXmJ/mQDIbQgZS5D4re7wgPRoNyLp+6V+Jydkz+KX/y05ccyzYh31yshZFptKHZYlDjNEBjVqwBvlFaiz1HdLyvYuQqOSi9j036Fu2MRtaWZKNEo879tOBfI+evcJEIRbAoEnDVTxW6opG6eu65wsSP83LptBOgBB6rtA9Totf/LxK4j0iZJNs+oywMXeCJJG+5IppMzTHa1JFYKDZMHZ6Ckh4sXnHaJkiYcSMmAHJgTARQ7O1U1obNM+bLIqWr5jKq/Tj7n1SQ+sslTvJtPm5k8y/MOK2wqup4RpwqBn8VsvRTgDupForFNaROIF45VVcEyL1Zo1kINYbd7HsgjvVwN0F4SJZdphrvfm6FGsNoS8m6qqQCngUJvHp1B3Onm7BoBtPIPqAqQ5N/n5P7gpEMUWpM5GzrOQXBpo/OLLo3CUtKSSp8oHCDrXf7r7Ga2IphYoxxiMXFxfUWtMaWPAC3jLiPKrs1FwPWdss8V2S3fcDlPb+Ww483qlUNuxM57hSEQOlEWlvEWUMbSVL9UzP59Mn0W3s9mznZZoZRRWP9TGZ2hCI1y5vpb9nLRbboDID4jsuRz0l4cIMYjqL713mD+iiHpNkuYXE+nlfCIS+QvuR4bWZ8iDKV/f1ts+nX0aezE0Rx90T9XCgrBSMLvV4HSdjewIatcciyQzyPIpC1P6iKyBYi+BzcSOGbO3xGKSdO3OYL+PeEwJaALZpSPF/GZsW3M26RGBxkjD1iRxMfKjSH91NJq3rF2MiH+OwGh7evmf7zIev7HnMtkqEuYLAucoRiqgI0lChy6gphrnfBrEbLIrYVvTZgzaDJJliPtS0Fp/7mqph8WBw2Cb4cv2S+zOY/VjYMKEDFM54O3KZ1WKgUMhq81/kjVbEZtLRcI3TC/3FIItCqEuNFb3sVLKP6TyBJmW0pRNHY8NxzcbW8jVJy9KGZ3C0OMfXq03iCotModg/MeLTsKnAkAtjty5Gp0bPWE6gh/LxQljUh+VSKfGfxZgySJvhpwJRyg8qCArwnubVkvR4byBTHYtdOYUzgtTaJ9JxEJSYFkG5EzsD0MoFUYh/1uT9pQgDGptNxVicn+La3DRSmS1fh/ZAXDbflTIa6EBSQf7ZSr6qbAem8bzc6Lk0ElCOEbXJ40Tm047W7Y+I7PKecF8OTHPEZtqBdBzz4Mfdd2aZZBQNeqfflEsXhuJJ2mH7T4mrXi6ig8YM5CIMKliJyq3/W9N+lEhQWtc0+8G8XwO8d9HTdhJBCWhaJVo5UbuI1AsIOLi4oaLKDw3dmlGbibaOKD08ubOgl0xWOtGpwkAN+A7jrb2GiKE+F478+VKSPTGQeP9E0MwcJ03QkZvXdEOK+JewiaTjYX3ZR03aeG/4oIhgh32IzcO3r2ORQUqU0w29OzqWIsR7ftmS/9u3zWaIaw3zFpBIRuUoGW73LAwGA7tHH1gUoPcb6DOqAVC01YpmzUC0gIG/AJsY1euqc50rycfp/jA4EgkqrlcMEcdrGvT/Fp7UVALqE4G6kH5VnJhlvMaNh+2c3LZrPJVo3QIfH0IKP4C2APXHZeuOic0rln3NXKY2CgdLutgUNLwpf7aV3fSgDx2Nz2Dq33/3OsT52HFoynwUpXqd2u9EvS1ANI6JxfqvhOz1Z4K8/y0DpQztLr7J5zKHAEdAEq3zoWn/3vBqDHD2wGFbhptZCYbjeYhd/76i1tk+Tq15wFdDEf8XiaZS02CYP8WPSNG/unNHCkOYJkRtp+GvnKn8hyIRmhAaBTC02Ui40EdcsWAxFOGo3sVcFoW3zR7sN3OKEZKX8HZPKgMY0waQQybhozncedAGK4UDxsBTyVHD/38VdmDHdrAL85zBHZXQI4ndf+nPEly2MNBeiGzdeYS2jxfd1KD8ntBYMC5Kz1lGplQYtFj/CdLQ/Y7vgtaZVUHZMaTZpWEld5ZyporAvig4XIZQWfoqLBGXRN0DL4MWC3JcySpIuw6RhZ1e9G+1bgsA8h2c9V2arhjT+BbxG0hGD7NG9z/j40yXKVNVBCuGfGJRC1R5UwPypAxBc5hykOl7zf+XcR5HdADMAaj+pLhr9QDZJ3sbQBa17CLlMyxIFh6frLoKoAfCv80e4dQ5p/zKCfcaJ9SvQ3+bQrwJbg7gzRsfUoZ6SzYZdm5KPdDo3HngkHltNWnnw9uWEyMZUJyRZqhTvE/oGI3fmT8diBZh8fj3xVjWL4EKb7zUrMhWFRFItis7PQtunKgaJrsh4P10d//HprIIXzewBtXNFKsEf11M9P/HrWklxnRqspq2H2R1DCILsksijW3D90CHVz2Ybg/OnHAtFOGJqED5kXNBylGvweHhKLYNbwDRf/qm9bVx89WCZli7T6B/ERcf6w42+zPPjFFxqlfhwi0LvAfrwJQ4vwseMCw7YE6CZuMqqrLH+e2upyKMdKQdnhmWYAxM5lr5KnQLnlBghWbVTC0kuLI+T7KBxtAf3bicA2o7zkpdoAy2VyUkvjjgHi0raHG2VFn8h84W3QOJu7WOZspIojqcTNnBPt8L0bwKU5cZW8hq50QZu1ny5ZuJDSWuXUMF1Beymo9l+Vy5Ta/TkSUOMFk0w68ahssPo0BEOMfyP51b2RZ4S8hTFNCysD2QHPCjdGHJM3Q6HVSryaaYNnjPGC607T0oeF56/OTjUKV9f7x13TpclG+hfaOt27V2XuAqcIWAbqvPzaHdXtbQS2QURX1lkF4/ErY4AIySduf1JECptniQkWGWQ9A6wADtOeXG9cn9qqRoxE0vE1b68m9RF7Si4tjgkHxejp5ULmBASujQUigaTa9dwgCQ1HLsAX78tsDMQ/eFDnu+htE8S54dhNc0jemq//T4lRRLONM39ZckFJWO6AoofFPc16LdKJevVArSoGbrEdP6yuY6GblSZbgAOybNcYl4+4dXdQJjZPFq+H/LTkt5g+otb4/Q/HfN6bEQPBeMc7N2u3mbbWVxaYRh/zAfcsG9aQ9SEp666QxKiufyM7N+y3B5fsh1+7MF0eujTZkUbkOc9jL1jzHzVgShBPoMYGL2NfpcYDA5WcTJMFmB2uRvrOXAoNj96TyUUE0RM8QhIapTlvULqWXWhxCNP0LNY8x2Rb40p5mKsQCTX0ixOWnb5mMzEU8TBOYRJowFRTanu8X4kOuvB0xsRQ93NbCcjlHa3wWO3JKEYKHs84HUp+lc4DQZa51Ono4EpoN7q2znRb9QpT7tvTd706a9Qh2j5s0I6e5FZeD40mpfw25bLwDwLpP8Y5CZG47yNWPSA2SujZ5Oz+V3SmlFfXC46OYpKiya/B64uc/y3CabqOsWMI085onrqYpsCGW1ZCQRHiQbNc+7n42TpbmrRL7nw9T6oY/qYRujByxVfRCRIioe9GELDXRmSmaCdJV7ZNI8UAo+b2Iv2HEhye35Ohs7XYOGDn8m1bj5+Gy7X7LDJeaOWJG0cVJh9RVC2tH2y3DDVWsdrarB54TyDqMPhWRsDxfF0YIC2Kn6JEMhdjkURlNVWb93RlfnAND4iT4+IV67eOzuzdfG9yavdhZvEzRkL5hd1ZIB3y3u4XqCVO0e9q+R2BEvGBrmFo7hhyMTAfjBVXUV1k6aZ0Qyx4ATpKghl5rsWwmIs+wwSZnNR3EOrlFdIE6RcpHPodFWySKMIuCMuzywfE4/yNHe/Du72PdXR7bAwtWp4xqCGYuEMTx2RF3CSrrvpjvtcuRXJwElD+qNiVTl+4L/2mappnC5fosvO6O17EYofD+LLci+f6K5y14uYhTL/ThwsgTQ1cT/d1Edw0JxZsw5jd23RVpyEXd1p4WZWUFzAryitEpz64+D/WgTNYTyNj274ViG3G1OltMyP8XcP2HqsgLlxcQU42aw2peCwSK4r6gTRLu/5e95ssUOgVu8G8kbTPMfpa/YmGcdP7cAWKdplq0W+1iKVLyshCKp7Nb6Mk9tQQ1tMj7pKyslZxlM11RrYyb8IXpLNsEJuNFAUnQuagESgQH+QlhjDLTpRlXjkl4Dj4oEx2aJpyhA6pPPm0/QYXut1zz/bOYhruiJ02i9ScSQK7nVx96tsg4jGLe/vBbyWbeB8i3yBC9EhJtnIlSlg1ZyBkTkpJ+9nU58RriZqGx9isjML/Oth09Mkyzplj7G8od/5ysR8RzFYydjtAX7EeheltdHKfzhjVVy0Lcf9e1NPrZN5GiKbEWUEf0V0JI7HWDUVmLyLmuk7v4fNUFlU9g++/o9bYzJvS8Qrvbtguevw05VbkSkTFRERBomEyB11FHIYMDQwMxJJdwLjozM16iDrrTqmZ4J5ubVOw2AbQ1URKasQS1uylzkhl3BZWFiSZRJXCN8yyo3UuWiohYeVq8Zv3FEJ6Nk/phZdWGUyGMkkytMuZdTzCP4mhyQgH6GkuZarIDzNzzJCS21pdgut0mKgGhhE7H4QYRBl41j9fwo+guKl/mxs9t5bH32Cnh5+n/nuctGQjccUqpTa1EYF7XHrC3dlLmlDuw/pKWgrW/KTQjsbuhy0ELbzxH7SWhahK0N4dO2zgNos5hIobnDX9KzAdUaWAqY0ifznMldFIlEwBhVJBg5Ou0oXdg6mHehxoZng+2j/w29jrPCpbFlhlx0KbiHiGHIfnhbEnECj7f25TWXCFgsLRIISq6k0CxYVWqL3UjiFcpD95UsnSte4ip2Iz8DmuRgOsYyhjIBJnxBAJKS+sh9CKUCXuOJNSFscBKQUN8whWzzQPFc72O2fLGuGPWBuGuAIrJKw3uw0g0XfBDeoNDroQf9vm64jgGdBJc1RrMBWpbhOO59vzbMskjHjWfOcEdzZsMHT4wNza0/X+RaDgRKdmh4KcoIK9G6E9pU0O1EDqO2w9gk6IXv7KMe5vt4SqK1bQmAznXoeXvfryWOgi+tnjTYyxrqdaxIRnbaCPYl9HPt8ryxP4oYhf3Uljo/DN2hG1g9yqDaUcc2yjfOdaBpMGXl/61gh+FTKCYFJKgTnPr35GoQ9EiU0Iv6ti9CF3BjpDvsRpGJXyoUhvdEp7X/EReEr80zZy3F5IxaONHJmjMFmSzA531snzjFcs4osY97hZdk7+IOPMLp/fYh21bozAGpUGw9bMkSLrog5ILAiumkXgkutJ8QGnmFMAUg37EhITlur3Ythoaeq4SRWgKz4bzvmq6p7ZkEKFTz3D2fwhaBEGSK7Dklwrmy44wtzGeyjLEDB8Q+PivNolaQpmNboaZQLxk1FLNijRwdnNfZiNiaU5+mpbe+sL6t57Bm9Mj2I84F4szrnpNV/rPvGVxyfhSYTYkZu7lyIFa8i024tbbavDLdh6aGbUw6TZI+CXlOgk8cLS2mkmzjkTeWcLVk6GKKCjD73hDPZM6v1k7Vhwk+swSOxA5wZCYiknQGmYOXqwh5H3qpd+Z5NEHffv4VFLSdZ4UMCnE/klPGVg8JbJwvOISa4lWMt2Dh+V5iG4k4mGYHOIawfnG302z1zMQf4TkuZNVxHah0TRH/8eOTsZQdhgQRvck8SI7A5ERb+h97iIii03UsJWWso2qU42YCzrqo3G5yp6GuIEm0pOIfVevJyeEaU4W0mtGzOQ91Zj2xNBrmSY0LUiUWG5KwcXMT3BariHNKkCfqPZ56TK3+CseoxVeV0hp5Y8UowXWSeogF2Bm3rqYiuXG25ffcEvLJiA2gimfaITn5fmZUsshG/M5f0sWb3y8DQFzN9ciYAHUpe/URWtNoyINdixZoobYcxuIgiKqVLRFEed7onVWr6st/CESaHTaFb7K2PEbSeXx29ls5emz9k5v59i+7PNsrsoNttKJswmaxuP1uWZIsZPv11aJnaFXFR9QYc+XA5khF9NZARG0r61wocqwrPTy1ioiDqWCjSWuyFGrBmhzzwSjzmHMrhdw2qEgEmjONwh9A7Z8ZDAubK3D9k0Jq34L0l3VHeX48UfLjnMqbCXP+YHUfA4IzVcc2JwATrLj1m7dQhctL46AYoVFRqlGEnx+nbNjDG0dn9LNAus/RGGpWbwhAAbxYWNhEtWYfd8/bzUVwsYcBuMNSd6P/etJmWjAY8rXgPSiqK5elwMZM3ym+2VG77QhYlrgURsm45YtiRDC/SJqHViIZbnIpohdtl8osVCwXEFRtoNG3jnREmvibSVNvZrXhQSkLwpbMq+T99p2U0lQ3Dhb/IDlPpS0uF0pq35seQm0Y67uI1dj4YNLzLnwb/eXYDOxv/fChVFmCYh8iiixCVXUJ27ORnoGVLaYOz++31mdMq64rvQ4pE56DBCYETXBqw/Fd/Rxi7O8uD+xMXu1NnpO/500HI0rh2PWCLPkBArrTOWGQXuGkiEjYQvvQmAmTFrZv1ZDw9GcIiM4VL0ust+08bswIK339yZHemHsim6iTssgZGwqP6M82htL5CSmGh+1qGeVL0TvSDL0C2RhQIZgSfIqhBVN2lWEYbPZHMBzsTFQ5qIoDDrlJXrdPPUI5KzVs9y/WV/yAb0t8QviJfqklsXZ6VEZ/29zJ2306BYy1G0rBRhRBdRBexDiSvFHzRxzc4JPV+rO5h+HOPMdAjfOHYnTkQ07TaCtrQ7PnZ1lKnsE+nVJxiU7CK66L0cqZV59GQDTfewOBWTJ33rGw3p+FjbZMHOmOVoiifolM8/I4S117ERgzqjlWtq5jv14OyRyGa+JJLBH4eBe2NRkf6xUrUKHanDQT1Qoy791hLtwWly2lxOyH+SjKly8kIG6T1zDVhuPHoZTjHha860HaFBNvYiTjzq5cdRSN++UJ55dMg4yn86d6JGrh91VFwG2QQc8opjRN9lOQVIFkT4WjvzF9HQkHEJGTeNb4KKkwuBuxTYp/fG96srKCcpwxX7GFFc8IYZIUPF7gW3lZ+c7uL+V6U9AVj1cwLuSsbpPdfFOnPQaSFoqy+N9XsKcJNlxRflPT2+6CBaoeSD5A4cC/P0OA2urZpuda2eXlR+1Q0+AFiFZA1CKFXp18nzXHSA1rzHWIxqe1JzgxoBUBcvEIjEqyP03FZ/gStncFtClo4QutxI96BtkwzK1i/tbeGqetDdYIhiQ5HpoROMnOa3pTqwMF+VAGg2eCFmao9vIx3WgEnmOFlAplSiXS+50heuFlYrD5DufulEzxo7JcLXNDcZZUNiAeIAEb3n+gEN6omlJ6FGQzKmyBRzWXyxJlf06E/RF4jJVurTK/CKlb7mcz6uVuoLSUqHWDOlguAoYbjeMWJrE5NkJK3rpY8qqQZgbhU76WrNy6JsQBUQpnb/hT2G/Po0WXlm0mhLnC63jzEcX7hOmTAF6n0+CsgsfVEHZMUEmkRkIndL1e1tYF05BPZakdqeWlQkVyXdadhBySfJoT3lmlC255jYizFD9juDQaiQIfS3iTa+lOXocYmOQygRuZuVkBu87If+5QdMpuMxF2Y+3z7klZUMucMH2JR94m2PyV33ac6N7yMCykNzv5K2OjaLWuxhjETsHTxnC7eMCSIKv+L60JRaMe8UDfLv+FcNhDh1qv9TkzNMCv9B7NH4GxiT999X6quc2W1E87Tad5JrdNKMLEU20ltUGCcpB7gnHzFjPuLtUkS8hsOEnJ27SpgKWfXDeKFC2xW2bqDSUUISgdSqjQJ2GBvjHRlzkT2cLNNw4LYF5x2M9vXj5JyOGD9G7C+mB5J26CUG4d3K3Wfa0r/wB69iIe4qwV92JptCMUKWomKjOsnqKdxmuumpEJwHK1XRxNWpeLNubRKrLc8SSWphmaDqihI6AU2RualmCk3GmMhmq/mwZxw1Zi3nfDQfu1jMcJDDro3yOYbEef8vzWgQ/Zt0A1WGCTTKjpXpC3hrUNRvMihphRTkO1ITWF43uaiY0vbcjeAOWL+WBC658+h5MetO/KLv9IY5+63FU0/e8wodBfnVeosmVc3iwiBzq0b0WRJj3a0UxANLwJd1ziU1kHbwfc2b4Z3/ENw9Yj8saKUaVBoDS4/GZgJ6eMUrzcMJEG6dR2ZtvaSxrPIVLQ55g4RekL5GyeG2CKVCkoR9EpZ9eEOLnPoeUWJGjS11ZvD9CvcApCqnX4OvqVm1aYmgyJ3Ey7hhsko1bSNQm3kGq1NYENCxvK6TF8eCj7+lWPMabQupWTA0DjkQDagt9lAMhEbySaVJhKQ6paX+vmLYIpoi9Tg14/OKMXOPFrXYlmbM2YHDgqH18pqcI7bRAQ/GK8LQGX7LRfGys0daXtKjjo0SVHRysbb4RwU4IqXslKU3J4Shgq3IQD7GMgciesB8NqJwb1NGgftmw32IfjNyXEauWS+aglosM5OXE7lhqbRmzrsYQXaAb4dvyLnscXZRpthR3uInWm8k4jUU3JxxSRkXoI5ftrBkGU/CskRpTbChE37J2W2neZxpQk3cQ1EnqfhfjOWEeMXfL5zAHGF5NfGJfnPDhKQJj6BXfc0r2JDyz0LO6LphNFtc5UIYKgUMcFzoFhe21z8DySdgtbVxWhHLdk1oZSi/tVfQ09P5SwE502GwV3c4MGzrSCqUkLzVGXiKm/VmvpWdpfFnMDADcWImi9S3khvdiExUZnFoZcnFxY55jZ15hZBWd25MOGU5YspR62SEATOSrDRCvRUlJhas8vzUu+kPlYv79qOj2Y+n4cXAIbJ2/+faR7R6EmX4GPy9t3Xa9hobrnK0duA1WOwz/MmTbVMZDZZkpAm131V/PO8WfE3N+9ajdk+QtJ6olchaTWVvEK2aSZFpivjtDdS70QoAjaKcos3PbWgar2k+NrF5PMicZREPqBxlT0sgNCqzktK3Cq8dfwSHHk/wt3lxNC3JKQG0z/mHMT1ePmm21uq9DnE5CPNnMITY41W9sNVOBXtLQtpzLEZIqp6wZ2KdlXzVWIij/iy8z2ThM135qRMlrOXVRn1VDpEEuBI+VZVJIVpl3wCcNHGcwqf5H95AEJr0tlro66/Gv+6jaYT1uur7DodTgK4IYiU4WB7cMalKAp2ckbsACkn3dav/zLYLqQ2fyZon0taXdAV7FHbHkT/s0oGnIHNAR4ja6xRdYvAdn5P9KMDQWy5/FLnY/atbUAejctUD9hjPhunlHFN0IwfmjNoJfzbrXpE3islDFDalYaVZq8J/x3sB9eiSrR9ugtLlhepIh17rCgCb/DImrsMrhRCKsussNH3MEbSEMynL6nC93dQXhFK6vkZcDyMSHNtXBElTX0SB4yXa9Pnpft3Z8C9Emd0ob4JvEnQtMcy+1cDX6WRWymaaamwVxdgQ6KvuERkCVk7NfzD7M8dgPhA81R2JaQyVCp0W2mYrDlZ2DDQw0GuGMp0COUXZOG50KxYDV9Bgn1p0haJFkBaXnTGiGbKrbDG6I9O7U2bSLA4K2TnhcHctXDPVKRGgNYMnx86XSMqSy0gMfaKadV8ZyNo1hGirhH7wB3LMjQEiiLpQSeXob2UjNWOsoegUa2dVipvq+fA8sDCzWDIso7XwdL8DQGT2mkMDh/4V92R6S4NhehzHVYnRnrk2IX8aJ+6mfHUynbdtJCafzLB3rHDUOSh1/AKkHb7OHpmhCl6YtaxOX8c82Dm3LFJmWkCHr30BDja7FXyh0tvhNLKowGrD0lBarOmtTNEf7226aWBwJ1sRp91ILkcdGqKdfQDolxE1GJQNDIG4ATg0fTd3ydmYXPkQrVy+n0qxev3yD8QtCNFQT6wjgKs2sbAtlB4JfHiYNtYWxOom8y/GMMPZDYZWQdYvAnyqDn2Qmf+x01J7x2wcWxoKxqyQFP19TmVIhrAieyhwWoodgi4El+OtjBL6un8b9ddmSrJyYpFK5Ut8Kx6GxCj4IcYcB7nlqTcaI7T4D4CABbE0c0shG5GeSFlVbskk8D+yFaKhSDokCFpddxdO1lVueXtaboNGiC/6ogGt1yRJ0MiGvrDZl4fjsln1GXqg9KtqtK+h2bzEoRFGmbLIq/fxxQWjcrHAPvtFMooJkWw4bAZKpGIz/T2/urrREnpFk50c+K+VpdR3piloK40jlG+uD0vuE1AxctAFo8L0MdmXL60A58LaBr9/W4u01AI13L0YFg/nbDQ9EnIrzK5/+Pb2SvzMdlcn1tYTXIHUs41MoWeygJzBfE7Z5cdaUJExhK97NRibR1njzRzoIkl0HFEAwJFFNmtLz0zgzKHJFobGmIhiuZcqkuzas32WnwM4mCWihyuuU2vKnnJ1ZjwtKMTyPUfIxN4jo3+zBr1HzZ+VjKiDcy3hGa/GlDER+I4GJK9DR0b9MXUsf8f8qOdakCHtiuSJevuq+RN8O/qMNUfV0qYkgClXOwiXo2TvuAxDjDDhBAn/pemVVdNWo/xhlMkOqE43q+4aktf1UkfAmNK8NPUCy/Mv3bGnqJsRzRcaBTQyzpeJ0huTVPgZ1Ane7dPcW1mPmythnsiBzWiKkyuvUt+ljB5Yk6wpPDN0kCPbSA/jZmfCWWQhlyjDVxsSScowQvH1sDvDvcJiPEIhnJmZv8yvBHCDbdPyHaeXwTgKKMaI2jyfrJ0NqwVaiwK4vuTvfTr2QFzy4q0pN1tbcCuFQY91plOBbgzNXSVe55Z+Mu1BPsSLtrlykFyuxGAAQvtbACXKJDOmOxxK0RiTl/rdIAHz97VPkNxCo59LGEqobFZltNO0zmE/n4Ze8dLRQ20EnnhBp6qcxGUW8DsCk4G+NEcIY6pebEImDTUy52eVFRAFnrGLEwlxPiTdAsCnIincScGhAzeRy8WTEZ8K8JD+yMEZUt/YlPxmQiTWkPfrQU8qgcjWCTiZuMaFaR4LQKdpmP611+8nK1b/XdU1w12Hnn2pZYcOtQIW9bQjtC7ShVrtFIKJ5ck2wbplbvQssVSA8gXZ+Eg9cFYPon7lWRU7EQlxUCZNu4EIkkGyKyz9mmo477lV6MjNWjAVsCaFC8dy6PQ6mK/iiAToodtt55EBkAKVgR+beqtNHeHiKDbH2Ga21A6oH6DJU8pgOQt+bOOsEwzB48gIjoG8SBxbXn7ss8cr3v99xXWoT+mp6fMBzHhXKjj7X8T2Slefhjf8AfTAmKENGw42k4C/hugme3xktpGygbM/H5JSiJOfHOgz+n0/+5DlTtD20YC3KNo0MiHKWvtkFWCRh+8borQ5L7QctMOOt+lTAfO/p3pTAeIkMZxpkyE4hNgZqhNYsNNAI1zpZYweWhBUvm0csPNjwzeVRYlwWbPTih3KpjiuGVN2tE/FiHaKir93nneN/7bDp754fNmrYQGa2eTpxvaF2IlFYM1RQNvUu6SFrQSawws3hrVA1j6SgyZY9IQmsALS7/BZDsNhp5G+R2WApwA4QNdrsS6qRXm1F0rqNSrZkw6k91iNsSmbUnN5aEe06vMDGbdS/tOlOb6a8NBf8YoMszTvwfsPXsijUCI6Q6jySgc+EC2N7tBRdU2NX0aYPsf8kfDC8ZdtjCoQUdmoegGS0Fgb78+53xrTGF8RBVaw/1SyPiEkgh0AesVSVvg5zVQv+rHvzwfkqBzI/WuS79ZptZl2wDEtSfI0bCPjw6OktjZtiw9W43MADR+nUP2Qo0DMp++X0RjuyOxTvqG/0XZu2VuPh9XYTKpYO8FJinrlQsBd4wDSdjSeS6jrHXGjvbj6b6Ty4KbFBTZH/YMdhh6YTNGKKBJmIQgYunL6m3yoji2dR5WEihOI8R/Os3yHvGvaOZQSppvm3aNlkVytBtrmiijjpcuhLm0hKUcbsHmmnZNg9bkx4XgGUw9Vgm5Uvxtxe/Z7u+ACi8zB6s4nAqPqebbHO3cEZbcIB4uxOtmzK6/4au7I5rrgJ2i2A+lue5z2mjZhL/Aqc3IlW6f3hKuSKyDbW/ClLx8JeEIH+up24QyD3XBPPw3+UV6FpDA8H7uNh5CTecY5EldkHdhP0NcA9eISt3fkY6uD++K2ATrOAWQ1C/P3xOVEnu2P+221Hvx/Z795B9pCuUjQTI3o2mPxAaQ/Y40rSE46+AXi3/XwpuF1K1Jx6TWiCrc1Tllkj5t+XIbaJ5j8RrOPEOQu9M9CVCwK6Wm7vZbB7Vy2kIZXN7AShqrgGVPZnGRyKRVnfuKSBy6Nx6U/qe6PEHqoMNAULyWVLuoQd4sjo0OV42Tcd2ob4tJvUw9y2r7Boj/to8EZLCmEpO+No0RKx7lQBbg1Fvx9fKbC5Q6vlb2Q4nZJxbw1ulsdkYYkGnk9WJs4f/CL4aHJKvvYsG3CYqq3emamHk9BBp2i2tZr7lnACgKv8wSXy14OLI913Wr1QDq+M+3denuNZN1bWZ8u183cxITqfemJGBcc3CjxsdHoZ8UYiiK/lAlE+M5TRO8uMZE3ZX7bFYCeirc2nvxtCnOUhGNCG548znhDVnCxVwPxIhXhevQwwouHD3J+J8F2JbLxs57TsCOuryh+p9uBrxlcuPr1Q7XSCyUEWtbv2YoYqHZFqFNa9fWnqu0OiCyGXLoYF4f2LHkpia3ull+hvmoSe7fOJ1wWbmH3wE6YCOjs/4KMj/C0mYB7z5P5uB4hlwr307xf8zfys0GYbCyytBjSu6vq1FQGh/CMW3nEZSGsYHU1lOFR9vYA7evhubJNAOS8wYjAJBCOj/zDZFfOKr/aqKWKZTEz+wYwKY57/SoVDpvaDAad/g5QQiyT7pAOEuypJrX0AiBsNjl5dn0Y0NYvpKm+AJmE+R0wE4ZMg4gTYV/qUOymA7zCYN0Ul4k2dBjkftzmc9f1AD+EGoJiRfaO/wIBD/7gPJYw2zd/BWcRSz35bfy5ESNSIa+K5jLdnj/QoVs0/Sebe2XTPCR2PC6kls7IxblGqTYbit+0cCz5BNmDtQWIrzqiQ0ZPvMcfepMTPp874F1wDyCt68OJt3CQalESiNWdFz6a1LcTd+zJHdkITN2I3Ozk1iJD5sRMzLLDKsqmyipDYmaSRgWUTMSPkZqFV84+a40KSGDB3bcmyuGZhRRMuaip7s7SshPtIIp/Mm0p5hhZaO+Q0G5yHz0KkLZL0B/bFmvsrXekBNGhc5+GtYexx3B+Ls2Jq2rAgSvcGiK3ol3Gbnj/QrsxkGphcG0uyUu+O1RuNtG0aodkrzJO6rKyiYFQ/6N2YIFGMivpduGQ2eLFlzF1mwbZdto7xxph4NEnoiWsmJZRPDoNTabCFheHCNn11FqOq0d0SMaqDPD41vVMiFZLPuv+P/JNKqKOPGXrHih+cvZtADlnfs6PZcAnbgSpsFCgpAKvGeVQBQ0juVxb8Z2DW4qr5EwJIhEcSlgwsNGs/cRVOWStvIl7ECIKmGbnU1RXy8VJn7Lsn31Xs58DLxm3iVf1Wh96ORsbjfcpPEC30NOIiR7dWSXX0d7FdulOUDUIiaokzG3BM4bfdo6ZdDE3DHF46l7UONtsdtM+19ic+vrmLK4KInAv8hy/uU8zlste6N7y8/5SRt869a8b4y+GtwhKknl8IplWTUDhnJQPQxtdoR0PGg/Zp0lWv1It2V/sKI3tiRzBpaqsQmhXTDcR2EYvX0B5C41gE5+jg1947VWXaPIkPUudVhHnlSLHDB5lMmSWCYs8n/aKcRTSSEUZhoXI7NWeGWefAEFtd40YVZafSlXw+cf9l8RKGirAOKn5+D7fC5jSEkh7VgkU9uZoMnGE5b/71CsphlS+A9A2r8NJ29jfBn2gak6pFx7PQuy0P5V/qFUfRs0cbqI28uVUubdX3cmevAeMmCqchLTvJ+Wv6/LOI8PoGEdoRmwJQ68CJV9Hi3G0uWIMhxSX0RPrmaL5YU/mhENE3K0aFDQLSxYZJ3BULytvbfcpGQVYdRkSoXPhSaI4LwMdK3478ldRYT0oA7BN/bFtGmxE1NHgWb4HHhIUHkxy6APcBW8vHaZN6GIZZU8Xs8VX81jmJduKf4e2encLlbduyp1P++epDdMBg2RElk2DK/mg97f8sWwM/nFCjkjTIGo1xZBJJ/OiMoy6whoKXwO0cc/beRrU8UYYYXNMtItbIzhgQTLh/uUk3HCSHJpu+6eJTij4DgVVNj1hYDaETAupVrn+/xStQOl14x65ZXEIuKNw72NKLSz2wivzAwqPzN0mtPmmwSUtYxmE23+dKZ7VmxFRXrIMpXDUSe4u4sQuUbinmnvDgiWmCozW9O7RaE3Je2OBpenDS2uqD+PA6VE4mjl+U4MV6yAdxV/hDExJlMLJRRhrMtCMSFvMAMSo1AEVYak3Yxvu0hrTfuFSy6ll08WfWFEnuu3Ew4EstrRvOSSNbaloz2UutSEBoyyReY82R78N7Kl2/qqupWTKiSacnmREKx16GXRmc5KupMvzUpzAqKZNcidcjTath3B0XpChRTuVlnDk3P4dPuppGAUwgAZm2HNNnduR4vOFzepPRN3RA3dyoXAQPMHssp7LcKqIY1Stle2Ifa9qidV9zYqzN8S+8stiEAWfJbT8UfigBPn/FGCE5qaMTDKRmfxShyUezb+euYTmtBB4dawoOKPbJiPC4wxpfIwvqAhXMPVqLZ2yoAK0AkqHXbwC77MKj4qvbg/SGMHWL8MSChUPgLIyu/yxPC5ByMzCjOeQFRUUyYbu6bVJXM1zF5hBSVZ5ZpIOdYKhBguNMkfAGvpGL2JrVBig1Buy1Rrqne7Cxzg/MiFjjxnqVjGpr9Fp+URROcA5QK5DlqMB7BTcubPJgob/dp5u0AL19lw7nUQaSNTb07+apbwts1zJe5+IatRONg2vytBfsHHc/G4omUyjkZznT17YlP2YQCO7BlwKv8g9VmiNaQ7Xz4yqp0Ycg8Wx5B1jU4edewefIyXQQylobaUnFGX7YRzj88Qu+vDhv+KvDEpZcwIvXeMZ3TSzrgP9Lu6pSXeKvlCrThvUYrQCbVhv2lFiKiF8+GxeCrEpC0ZuGjoE5gseFop2KqYJFpC/gLcikRfieYPyllwpMAHHZ9cMJ/grna663aKTWf2jLA5pId9VrF87UUASIZZLXHZ9xzCliEFD6FWvfHCASlOhmGqzjObPdLWIqL8qlAKp31bAB8EnnBmrnplC6SaQCWxr5HCIChI3gXn1tcjqjSxUY2Xx7DcUbVopGv9FS7Vpwn0Ye/SXYX/ZpfK334GTa3QFvpF0QhuPlqH8KauTzG1jRVdQO55LZApeRsDbIyQazSvs93epmOCHhu9qu/DFhYQZGxEPYBw8ro6cEJYRc7a9EF1slSHQLbDoxLXvP/NYY6svnUz4Vv/g6ZanWYkPRKB14jK733Y7Fy5iXS1qb/DHq9MxSoMyWisXRfTaoWMdiiJm1YbGlRkDrevmKLFYPUNdTJ3KAZ93BkpVSg2AiuyMK8U2na61aVty7PFNoBLCsQfccCiCUt21Q8kmLr8E8pKOtWVtLrdfYc0xMikwMCjrRxk6+iumBlM8MbarMroUf1c5FkQmPsTahiUMd1zY1pTimcaZASPqXiZcvZPrkMkDcjbUKauSTrRHBGjEcuyB6Dpr5msR54Om61PxRnuZjpqqq9KFo931k1eH4IITJEX9XVS6q6G2Kaquzk8CLHp1qKA9pcQMVOYdyFBsQDD1AiuIge4x47Ss/muOR6rSgUsWrKl9Pb90MDEOnVcS1H463fcK/MgqRLipoWAAk+L8zNzjZKt0NFIeZCktkcc4upyTDJNXuq1Ows2MqaYXh33JMF61gdBaYoDtbi+8vGN9IHmqxwAzZeEJERzQDT2lO7dHCkZkwZHSNvgYrqUUUrgfu+e5rAFpIo26rCML1CHwHuM+pjQvrFMRPlZ+L8cL1mKbjifywamW8go13uR23u8v/GW+QoxNuzDA7J+cXk1GDDjT1bA3DoT+KNlVuWNgPrBPrZT7oY9rN6j1ZLfhGqanGwza4vrJ581kqUayuIbgQQ3JKMHt0n2+mfPYhWhnSBixxUdeHdbJqZMkXxXhOgQOs499C5GH5ErZ5BFQRNLm7IQPu31kl5sxuSK6sOwOhFFo7zsAr0vY0X7JfyarazXGeroE7KUETxdnaiK8AlBfcxB9ERm7FT1KlkpO+rQBn7T6iw02iUjTTl5nWA4Qrf1SJoLomyHUXmo7mNljeaQvjqrMlwR8oNrXZJ23qnklPUX2gbPlpsD18xkza0nSw7LKoLTKOMJrOgj3laIA26kWl62iJLj0AQc0LCmnbdNPIteMLe7lMVvdmUR9qxZaYUJdwe0FnaG7jtI0qvf6r4J6p/Qqt9HBDXr2FwfUEUv+2NoNlJPvHYh+JdxW7iyYTF0ySdn0V+KhKWiIJ7DAVNCASBvcPeB4HZ3XuaXhQDCDUf2PSWkKxhnPVNr/6zF0vYkWzUdZBdg7KN4QJal0+8NnrmecLc4TOnIBqit/h/LS2XgNLjZXMELuvZphJq9xJBm/KUMdZS6UYZZ8r1baiDjSUGCVJ9yfbOnQ3eCEkyJMydX7/8bzLJMlzDggKHYwJ3Y1b5Gkd1fWgUpbEfSi5728+DOr4N+A14vjDsUZ5hPft78qnmLI0TWTb/CpIyffp9Wsz7z0N1V9jslaeJkoaYTPgqf3Sis9LbjBSkOqERJShm0J9w21bDEqLlp17eRilU4j97RbmXPcvutrZy7DgDVJzBebmCIwBkxHmOeEfyydT6iUKbdHlDZ6L4vRLwRXwB6MuxGfm52q1fU5/ZuTUj+MYayA+WcOzNW7FnURsxpNlcQJy6W+tOE4Q+5LCvS4jjtS4kPDQzqT/HxSPHJQBQplbme8BgK72aybO2WY2v3hsiXe+zGwZs2Ovm+qu5XCR/9X7p8rt+k1lhaNxB0K3SbNF64CH1H5g8joLpyXyqrlgYiFFTTncjyfPD61ZcOGs8S+a7qnwArOkWoFaP4iL/BD/XEpiyMatqp4Oh6zEF+oC96KG0kRpgi8JNmt+sfFyBps4MaU5rxfvt3dX0nts3WlSznpynDU1OXXAgrfbAvEnG2s3c6rae8p4fSkvOFs6nrNz5ckBV9bKWbBbOvb2r8nYik5mWjFtxhl1jdqrtQLg4o1QbbF+ThQFTRp9htKB7BM5h16O6wkDaDmAUOIkypnWSJu+hHKu6q2XTsIX1W2mnjEd+QkirCgQrZSKOMk8kD04x9NMv0F0xHQ3tmfY4HIIEYieFskXAXOIysLH5e6L71kMg28bK0S0QABty7Fx9kcUepLJHBiFpP1A6Fh5zGbdnb04C9XSAQ2aaa8eW0wF4kCCpc4AWdnTP4OchAMkuoZLunGPgWKoneMv8mZqof2EZC2WmPfvfEh+Q+3L+49fIgPnAVvf7bggDgY/RiwL+EnBUzR/xAmveo15p/0XcN5unotRqxUEHCzE5vDQXnh7ywWvL43iYoVUXx/53pEDF1rfS4ilgwO85NSjt4y316Kl6MjGxknIpUG5qk9pa5PWFL6NXdw9RO+wdVherz0n69BF4FKLGCqHcqXs7JoXRzO04/jcLveRjvL0KwfgPVOORfz8EVuCOBkVq/XwBqfgmhdDGQ7tQSyNoJ8oFkou3wJcIwH5hM4Aqxr/VopBoL6u0l+XDoUJrtTLkPVuT+HGsKEoljWIXG0X02BmTxFQYxy9qsJohzuJJkCfidb+L8lcaHqxt5nmNgzswm1xXXJfZ25OJubiXXK7MD1sH/Iu3qwTSIB8BOubpFNtBYX/pK1gVcYBDO0GmUMLjph0oZh3wjaCluHa/4WJGAdjk8Uo3qgq8c7xhhnT6ByxXo7WRlNMq7Q34H/j240sS3PJ4ZRxuzJFZ1mK6z8nT0PeY8AYGCyMRO8bavimGupdBlLxPoppWsqp19fWWBmH7xfdwxqnddGhntr7J98i6E2JN0pnhoDSDua70ZX6ykraT+sGuVRd95eDj5BDKFF8wrwsH4uPPlHNapz6tbSDYSq5qbg33Ek4YxDK/MnWqwtm/l+vKVR81l9Jv0N+WmMbvtZKcHp/RZn4VHtapXzrCxyqgnnmWoDto+ZWr9h9K+QpKuIrdELdsevyNY7tvxXpRWsvTcpgcxhVntyB0nrrjix1LD5/szZkuIUL2Za3goIxQYSFI0k158WILSrS1uILfJSpfRcujc1lMHmQhzXqWh3yYTK9l7uZyzqEUYwyf6eyEk6Zg9HwmAI8ucDpZJPpbuyzie+6JWibVZ8R9izT9NVi0RHtLuYaP25+pbO8dXbQA07zDy6CHnese4iJeqjnjqF2nfbHBOFgttfEQC4fv28gX+TfFAiUuyW6len9OLIrfC4UfuUw8gcF6zXbcFp0DoQpb2Qygz2nyY3xRlAXEKNbiBPwdoihTCECZgzsa19RS/4zdhSnmS6PpdYnZWAL5Btoimnera6jPFccFqqz7ZcTti+Q31nR6NyBVJYKCakuLybtPlIYspEQ8XhcSOHO97LL2eAe+VCpESLz5eXynQp1j5bB0PIz+CJooeuHcZb9KLb/pN+cIih1RQ+MQUFYtmM90hzzi+ufILqEJu19vJGa63eEk6KacZT7obTCNVOmDQIizkOQXdZiJJiNnuOfEq1fMRW5bhlNnIIGh2dJrhs37rZaV/BfRgzUDHrJQ4KHlJMSFDHzSJL190PLS+tqVmkua4bUww3UGn33t7N0lFR5JLwZ+xM2KsQtxObgtNyqRrxA5eKh4Jlp4TY2BsWMD/24Imax8sHlIpOBEIhSSc4iLRsZp+B0dx7KzjMofJiRUC3urOoa6SVZu1XiM7gRKas1VTOT3LG/dldGKsSUcvNQBGICd1RM7tVboVaKr6dIy8tqQdvRTDFuLMBoFm76TKOLapm0X90A9MPbaYhVEJE11Bp21B2gMwoCx7oIPqJFNdYpQfRz2BehJaaKTH4NaAysqKxOJAL5CH+f8ziZtZbbwGwex9gkrYgOBUoEIN7709oLdRKvfwLItPWMvPVhC9VybxpBXn3XZxywybHkoH1K1hkRZUq1DJAvhRySv45EoPAnXSeL3TFYfekChRUVn/FsFKPR0Ha9XkunwTWWesV11URvFlLAtuJl10iGL18AodXwiyj89I5oubcwIeRttrtjX2H7PAuzSDZijM544ojOMxMVfk8JqMo2zgU9JUJVbcsV2zerQqqRIThxkAyYSwhHBF5DJq4WbRTD11O/62DbLnOn6lmiaH2/0eOLDBsGWgsUnvjzdAcZXoorSwU0jRvo4xZonGhlOsLYECYhBapwCTs1OTH5BCYJiopd1XTrAePs+kGNEwMn+UxHYIRQJ6zZVxkTNRHicUn01Ngj28O5sL1NkUNAmExOjLC91WpVU1BB9+Q8DhW3BRHQ0E3lMEcOXfzQp27rr2ZZoo2h61vvQL39HxteenJoCNuj8rek8X7Vxc9ZmQX/CBy57M7+ikvXcEvWmWRa2PYliZnLz4P3xyt3L7fP/MS+A+arUf5ZP0OSrZbUDqM8k+d4fNrttXNszhg5V/N5tZkkURJM8LutmFeHnYmYRDZFBYBrx8JWK4RO22/XuKlDe+vK2M5wWOPVH3jf4FgVmYxZel7rCNM3pinCjuqGSZOYFFTDb1nzBRJFRoh1+xVJE7SqLk6iq/kwdIZ7adah3W4PKmJDGYkvgKYb1Z5BP0D/Tmq49EumfkmKM4K1NGbtxdlOsQyclSmUfuG5uidL1HyRUFuKD798fE1/KssI47c0eiKPRhkYyN+AhdFTdDFQFRU1Y2iWeeQSH3kb9bZ1rB9e9pRXwGnUERAH2ymE2ObLjToc8H3NXpJcQBAGS/NP8Sg7+SFghO5lxG5gLX3FJAsjT7ngdeH3TgTBTRsdTPj18ClbcqZZt/T+qExoxAeeGp2FcWcjnXrgqCBwpHEMkOhOeD1n4W0Ll4RL6iRqo25QlAYL5xSHpRuQ7ZPsm2koOiRkc8cWlqbJCQvalH7oU1Sz6z6oRya5VcfCeU3/MfybahlzZDoFf99KrY++CwCpbCO9vH5pto2XyAJa96584Y89R4p29cB2eiw/Dd/u6/ZXZLhIwHzuDobq5Erkl/eLpNsQZoIGy8fbETKP7IodHa4yRwbkBYBumMj685JVBsy7AcKXcs/HtcPn6Pj2TQyX7dA4l2n6y8z2/SMUB3aJQ85oXG0EMGzANsNQDdtAcbHEcSPNL6j+6QZpxW/j+Lsmlfm6boc2EWFCp8Ytg24md0WBIHbhRyGXjhKS3IiIm6QgFJ1WO69LrmLCSYZeLebEwPAI7gGdmjCDQA2qh7VTTskLNzVVmc3cSZJmixiuy0E4Z0k1ux9bcjeI4Qf92xLZMYFCw56vTKSDi9HyUdSH71btnA/RyV6Xn+xHT0do6Z4ktvdo9XCZjda5oFZMrA6RfxGmwwoshe0xFCL1rsFlDRiSLw4japTG2oD3H4z+6F6+OlQ83OTZky7GKcNyzdhlSRWCpviCWAxo2ViRDtNwyJlw6L6LuJgMRSxgvPI2SJyYXW26+vrg/fzZzJbV+xPexV+UFQuUZ6CXE9iVIZaB5A7j+culAXt/YUvP002NN1sdzRm3GGSlSksApuEXZa/7sYqkLjoMNWt8eWRQzwTjnm3Y+s6dH4nosUL/9m6+p6dgrueEBYYr4wjf6gFmCljFpbn10ttdME0R3lu13F5xj11zvRnegXyf/Yww5FTOafqr+KPOSXhDal5MiwgP+u2zyKf1DzGzGblAjG7wECU018Oq0e/mIMRHS22bnNKXNq829YEQhHCsjIFeFYS1LP0v3+tzuxDfZr62k7Bfhtp6p2C5XD1ZKqyj1di2DV87yUg8C7Nu2KW9CsCZQjSBXozfHNNYxoVRXJYrLiP1AeCYxEFXxWxl9xFvCUqtE7GIuFh1hkJZUTMg9zyW8G8bC0/pvkVgaInY3CXRZ8uLT/KtNwnowxWx0wZ7U+SljM5eYYZntKON3fgoLmdswLFueZKLpeMZsHTDmUcmZXSOc7SK+9cYUE382jKfxDDdvnR/3L1JiR5UmhSExFikUwaQ+REO4npHFbNy3U+XkSGj5h3ZsFqeQl/EHQ5FhQcpticnEXEp+FUPrT/fucnxlZOeCUpmiinzJaTfVKZnwU1peDWvoTfHjon9X7gSbZioUqLpE8LPWppLsrChflawGvdRUdRZt5/k1wEzhqsM6o3FYneKeV+USwET8zvnRRQ/ye2LbCZOk4vEIb2jsqRM2Nu7DCDArAkJ3u2B/Ul+FhUwTZ7NTBT5qyf7A+JIipCkQMcM6LzXxWKpXRAjuA90EBuoX2R4DiN+lIuy36bkEuHZhB8m+LodvyDd6PP/Q31erZNaaHXiMvuBg/Jcslwpgb1bSXWpl7d0XPn3migC5ZbTno4Citsw0GyFGjt6z2GsDbbE3rtjO3Q7s5mFbXEGSy6coLiBIf1yeUO2QZssZDOMKzE0ByW+eAW0mFzXMHKYdou2o9yJVeKUy24+cZIiAT2jSwm8CFSMkku0ff+u1EElj2tbDMb2yFQzN1dbVr/udzMEmegV+vHb+DlefXcw401XWR1YmH/HKy3UwuB3a5g5yqJPqVaiITgyWEASAO6Uu8xDN/ZH7bY1wLg5Qq5/hxVTHtRawIjcsl8cc8NbwFcFknmOt8qskTSSnS5NNqZJqRbWp904FWJpJUtj8p2VJ8gkGyHo5StnGnx1Zu7Gg5oJ9Q3itIrlpDWMRtcmRXK6iLE0jeoFI+QRoV622d8reyf7Y8nbyth23ecWa+SghNcI+4Be8aiQ47+Q+hFs/Mxl/nI119MUs2znKjowFNaYSFK3nUOX081Rwnec9mTc1StTqe+MtyLti38pPB2rZI9MFsHBPVcctjCGmhFM1jKhivbn81Q3sh4xchIdpDCQn2HEbLHbR6PSoohEUSLgG4eb9l6PiRH50qY1SfhyO8dLJayiswyBAg5yLVJP8Ljncjo/AyPGa0i47kuXTvsEx3Cn+VcAX73LWQQn6FiwT4QN1XmfN+PFWeUJFJ8N62yPEm+7jikpUnYhuATXujejpEgr2CHxk/v7CXOHd5kBEQB6oGHph6PU04f0hdt/bfr5CZRfP142wb0RHleOHS+L4f45xdBokzfNSYRkxtD6FzUoLwsu/kFiPHyym1jiPR91YELl6hKu05mXJJLQ/4LCUOvE/YNEXn6pil2IPctHQnvohH/2hMvOT5GS0aN1kRjhrA5l/eMjTMIxAKwQsugJmQx7O0ommwNDd6f+LSCk70d4ioCntebFVC6u6csjMyP9DyMF55mWWt6OTsnrqDYFbOnjqcc083UtmvMlz/4LI8SkYkQvEii/48+YDRYTDGcIbqTEyhb0dwwYWm2hLwe1BSZI+0Q1u8sL8JZRq08+M13KZW4gBBDyK1dYUgIGPme0IFCT/OCQS4FEocemMtRki5Do4NLWtSCedzy3EEdNJnbxvRYRIIXDSY7XOpBUg0A94EWh0YAHFyHmhK9NgFK4f1NP9zPvw3h436hC5c+dNFUQZxN40MuRQnGQTs0OOHP1G41MJe0hwXHS4Y9a1ORwymd1UVS1k/XZKypHdNqBSgFH3pFlCzUrJ39d8K+ASiimDK3JJQ8N6oNyy9wBcBCCtgCUzaiuqdpjXmixxlmtoVpAJjxCHl56qLPuTspv1c7lqSvndn9RT0hMgyqZLip+tH6IqCLt4zEd76vkyDlHT+iWj69wdkX1lWlGfK0cszxD4QuKJgaGYIb0v29FfqggXnewEEm0+fbLUDUUxmkf4Xk+PbHhV2rVyc8MRgqnPXCSF5aGgoWctocqhQ2hYbL3T8O9J+FFI1/WkytlJOiQWHIbpheU6QkK0eEOTyiotCeKxqSpfYAX6K8Ron+6eRMDKGo6loRpFDMYSyY9D6cTJWDfoiobJbpAergkSSgWDideGDkdyLEhUdfGhC7yAOjZTRhcsFfcHWjnat44qKMwMppCbtg8+wHwnRHoxzrUWphqLo3eveNRX3sEdCXI0+pv1C6XUM1rVeahFLR+d7XKxaAMrxXFbLlqYj6WTqU25FTj8VT3VIUyRsvoOauN9pK5vlpg2KyAVvvgXziVeh7Nr4muFW+cZ7TqGA5isRu5qLQPouSVwdFa1vZDTMAEgbHMfM4NEjn1wcwmc1Sx+IBweeZ0pxJUkbrN7ucSKG6riYWKlUav7cgoRll02I/P5/y2rxOFAt+B7dxFgzeSJn5Q+6yehzZCtE2cJ/sbEVJMXZ734UAJ/H+PqPiKMAaVrLIIVED+I+WgwoBAMlVdzDEZlvhT3ts24f+tbDp3TxAlgZCZiz6NCX3uhVXIQsn7W4UcBZ/jL6s0t0lMA2eJL6ct2eMpDSuCo0trSSEe0Vq6X4c+6KO7/fQBzb3dOPVoApoJHL9sEEqHGq+ZcwfsdsnI3cVFxfnVsTLW6q3sP7jPSimYy6pWg3j1apLF34F8xbmi3F+x+5qqllEhdgIGBa7RgKnG4vS5e57ZXch4l2t36km4FxyXmwFNMGvQKWD3m3hWgqM8PjwnYkcGZhnSSSCX4s59JY7gFfHE1tgrIxMWsfaNZZrL01kCBDNRrB0oKDO2pfqtdELBz1nGoS/IGlyTjz7STwJx/XVzym16gYU44Eo3G0hvFZzG/Qrwet5jgiVrUnT02hWYS7Mg6DwXP/V00whnqvmP8mhosTHfBHPXSL43VnDwH3Vc9XudmvxZV4kQjNxz9JJQSIhkDazf+LcZHyZen8O9nm9YipVWFgWtaPxukKcdhdyQZu2SgFRJOfqnzNHgOe9viephwp2HJJSi1fKmdirRaDG7I4TFmL71Lvp8RURa8junGPXh+hH/Fqh7vEo0Eba4LkyKbGYdIrD6HIK+bMTdHdRAWPWA+RsfSHo5FCXEcuy1agJpeQsdBEsPy7DFXjcwZXNxAOgpArYA2zaSXZYsZUw/K5iGg+kfepJkE6A9irJIGNBQgewM4+/W/NPMWVH8UNc2a27eGubmphz1VFxteqokmmSUVSZo+9s+jWPTFIVypkbgSVs08O1tKCxZMyBz0LNs2c75I0hLJSI5LcQpMDeb0XDZK6Unx0ca8pAdDnA2rgeInu3s2pFEd9JKOm200rSVJogclLWe8BhaAvruQ4eTLZWD8rGe6PkT1vovJ9NqSNzYkSB5IZlg0pFYEhvgVWbUgS+4xs6Y7a5gKhv5vnYMkeHx15MbcOxXyi24cHTWkVMPkz1UrHO4zRI/vz59TQbtoXDH5vRH6jLwiwzA98QfCR6GdNQYFl0tN61Nepaq7KdPMqIThe/L97OUtYI+z3vPJ49gVqwgU1cwC6r8zCYnyAhssj9WWTRHPEneQ91theJMvNXALRg3gH3rRpVc9E2JeZfOCE2bfOde9iKgFj7NnePFW3MD1BYVC+S4ggWeRErUWkdZY9SXq5B9F5gLO9e+rfTLl3aOjPbWd0QGrL8nWkWCeS966kJiyRVbs16bPI0D3aS0BWJV2Vg97BIgxgirjnBmQbQA2igYUHnMI5Jf0polc1vZiq9KcvFtZlipkix+TtqGVDbuINHh8t3Y7QhlkUx75BC1WbMnVkrR2/bVmdqO/HNm0JssbMxzWpRuFGAyly/FKI7cRHO28ug4/EOlZTmpis0J0bi23pmbzBVEH/qRXu8YzDqgwHT/q/ID6UqeMuXd05T/jvYj0F3h5wXvQtehcPLQbCq3KojM7ag7gyxrdzFr9gSKHoCV1sid+DY1aVgVXntPCYMaNlhy8jG2ZcVV8FX7gGqtkQjAKOrZylUQHQVtvaklSiI7UBvkzXo2nzCUfGQKuSY0SbNqZPY0Il9NVBcoNvD3CrvqKAlqxOcSYfFGD/lVbaQqVXyvfkxqjlycleSnVDzIoyXw2Kyp1tVuIUkC0f7v+5v5rRMmK0f07RW8Vh5OtxgTTecd3Dl2jqnPJda2gBrH2t5PgyNiiXMkDf8syu5EWEprC27jjoNwMdFJHLBjYXYLGzfCBd/1kpPjHs+uTKubs1bwhZpgE2CiLlSwcilFq50pDaZNf3BVDkSv2aOLaZDDpReOIbbNdgYRJOte1dp7x1oP0hrnQa4XW3NyeEd+JrBVgrZSU7ZlAaqoey/Q7JrWWNyzJxDsRed9bc+uDgHTIXi9XC9W7ZPF0aEj8Thib/PBlYs/Le9w9yzD0hrWqtlU0gW6hZX8ebo6Itnq9mOp9YZBqb6aFwd7JwFxQQzoQ5t07f6TyXvY5XgfuV6Yr3X6jdcetp4e66RyAJO2wDrMO3rm4sO2HP7E74H5qTl3wmbQ7Q7ZlHLdmzlTvjYRor0Rgv+jkFYC0gR+HIQO+XIeXNaO2U3BWmMNChQr0pZg9zclRYqVv7Sn1+foYuOwI723AWB7sGgtLRSqmbCBx8NMC9anFTa8E9WCbr2sJs40qWzpV0Bjp21l9NppNNaGB4d8rLZQSSp5rbUL2+93iIIzg/rGC8iQpCIO1JNoG38NqGyydXU9eh7OIunG373piokdOtuwyaRHnq1GAmPiWyCEDtPakiXfjG2Ro8LUDkejIbQY9h0bD9ZDy4nrkNUc8JEWo++5MvDOFygiUjDveeaI0LCTWYnd+YENet+TqJQLJVmeGMMryM8PpcH7v7ecH0sGoSbZXWYIAgvtWuN/QlID67F7UD/Unw1cmNEwknmKkv50/bsb07f7BikDIVZiQ62Bv47ohbtk/WIJ9JRgdivrShTHdNXy8xjsHNASQ1ybG2W7O1V0iLQkiJ5MJyTnJ2zcIwkeUHtFC/oCknbclzdzTOY7do6nCTIZMViUdScBe9HxqtRMlXrmxWnaBvhzrRdhwO2iNZ3wK2WufTxJBMMYTH7bolvyppE9nrYbV1q6WemWQxB/Tp5bWnbgBCDWDzWWOuEla2bpJeEz3xmAwJe1FaGWNA/RtytfbvjYeT2aUw5j+Dy5sRDRequT1p6Xu18DQBpH/HFHpMxUrHEkJF177GYbCUVOxCmCEPR0JtPnt6rAc0mtDBA+YSU6xIwInK/wMSyMZcctqrr8VnuJBxpA0LxJ8Snz2b3utmFM4A5D1n72NuC2mS5iNRXJ+fPEiIT+P71k541AgJMe+1B5O5f1kN/JvAfZs5FYxBxWTYWeDzZbf0p6xA9skNahFc/+0KDLwBDca7/cKEt+me6JC3UAuTtQe4KlaVaq+1Jtea06lZcA11w/UA+A59HMX0nba2TwMzlyHVD/rIEtcU1Bp0r4B1pLJTRU+7G667FOZ4xJLh5Kx3qtB3jbOcQhjFOy84i6w2X8cFjqxerpJcQRV6CIHvQBA65lo0j5FXa7OrhGH84PUMrurP2y1K2Smp+EV6kkIMgJpz/tcrhSJ5ytCfRDib0i/Fib07Yug7MCRgWgvnvrKWa3ESJy03EdUayrWUu5obumcCmWkdloSwSWnmKO/3ubB8yi0tZRcMmQPvl5kVU5mH/2RdF7IMpeMM8Tum/JMP9Uj6QpIZvbDLP1VeJ65asWncFqvpaWeJBGaB4ZTe/wZ4losxgsoYLylTW3KgKqTtuWeGdUhpWWnisWCvx4hx0XxUITGWUOI5pva2+DQGSaD9W4XCP6sp5Cn1bJl9/9/hSc8YZISIXK0fCOpdjdocI3IKWAF33k3qPzY7BOhK+hwmDX+r5j0spxwCwfn97C+Ydg/vawDqGFM711gvGZrd8tpBsTkc/Hy0rxpYTD0BjKHYDCTme7lp4lE6j4bxWS2xAHiDuW8Sg2fVMZCx881Ip5F7/B60O79Uw2I8lqpdo/rRgJ/GYZJcJxUP0LtlGuw9aRFIVI1cX2GSWL9ZFxDRAn/urljytux55blctsUWbV3/snV7MwITfIZ49XEzc2mjk1FevqQTFgakcK9Z7jhrkGjANBbXEnDjGkD7GIUZj3cVn3MzZEqUMBbpTjXg+cii4EVhtEVb3dv6jc07RYDSqdHns0nH2aqmELiLCQwarnjTD93WaSstti2NVGvjZnMWQhI85Idj6MPYGOE8Tjx0kEKZP01Xdu/rSJ1FxVCCdh4rM8zTuYmnd4EQgFHRTIy5FvkOHus7RdtgSFCQhkuwNUUUwErj0VXEyHmva/+Otlw1SymXC4WqA38BkBIT+7ARhHVBeqkPbPf6ciDS8h2tJMxDOgJmWMMd3xBqfoKE492ktC3rI2yZDk2YB5W33nhVfiHWof1SDKUUfUjugX/LOdYeY4Sd+fdlYCInpbLt3CH26BJ7Ny7eeiwwfqj9vjQoUTyUxVrG/yOgtPllXGgwIfJ91tCEqu4z3J6/D6slYEdWXHQlxJ/HFiR3f6ypupTVFUleDS8wkvhbrHLNOPruQcIbsZjIoqUP4ZU6AFfQ0uS66kVMjBrc7SMw5NOqFo0W9JpdgihSOVpfU69HMpYi+yk4lFFz2Es4S/TlDa4jzgcnB+8vwlybJ01k5HugShBgp+ZtmjmCxRX1Y+1lYAOtTv0Cdb7wNP63hREA/GyxO8q6rRmtlG9OOtS+IAGruiLZyvsbV8eHKwXacXUZ0J+T9ptOeIa4+BP9zM9diuNlbgLtmcIfJ/ckeccvT+gIbFwvOgQrCQrW8cHTVF6YjIwgPaZbbmTob2BD234v6zU4/Msy6u0fcOuqNXZISds78WJpVkO7dRXTBvCvQ4Sx9NQ9laItANSoSLvECaFW3NPJZCfJ/76puWPjhwztATdEl+zqSts6prCsaPEO1AtmXfIByb5RThFIjmV8LZfHUoKm3y2gO/MRXImBEOWcrZYMXnh4OVJ/XIsNW3hclv93lgzRrbNlpsv39jk98/qzA82sIxIme4uPpQ3p032Oq+Ci92nC3aSVTwGFx68ZqtLZhJOAQJBaU/a5lGKboDZItJyIrfxV7bcND405Zj6A5d7jJJLBNUFRNHTtNqYjxxlzC0aCGEd5tZ/nI9yXbpLSNuNG5sSTnWroKdW5WC5QX3GtdhMuSFVpw44ssOsLzyKyjR94Kt6R6UIJq/Y9TEi4zjQsPvaiBhIzLs/ziXI9fJ058Fb9No403Woq5J9iEbb/5miERTFdxymRqMjHaEENE7Ubbp09a/zvnsi/O/U+ZpDD6LqTmCj6W1B3TJ7zts5PtwhwE/ErZcNUxQk3G4rVC010LnnOt+cYjc4z2j9CqkTuiKw3GGsAUXymP7cxB4FUdvw03ryZvMMjAGEwD/BjjuDon9SyEts5hOWNMdC33Ht+kilGsoeOhJsdo5Iu+ZNMKWEbLvx7wKxwqGXt2WT1G+TiG0/AN6sR1UZyjFxqeO2TXEq2BU2Wruw+72FWhZ/odk+yuSmircmJtkLA8Cp/pnWFZYQ0AdNVk+paInGkdyDCcrZZyGOh9jkdNeSBQQMh0mjma1CG/NeCMZXboZNzAvevHZRyNzYeG0ws8CAL8rx9onJmW5s/n0fooFHrj4BlrGANk7K/E1nVVgmIbAfz3gGNWbRjWN2gZI1EQW98xI0ZEN2bc3DF14eq7cv8wmM41fW5h1u+J0Mdg6Rf0ZVqi3lSy3Iq3HQvXVtaOxAc/MdKlwuDcbtA2ZWBk2sommLPodlhGiyxNPrd4uhTGMSmQ6uDRP8Ej5Mi7+BNML9bapQ6NGtA5GDp2yUmheqyfRQ+NXj1IeHF1YOYtzIV7pBTvDEdHGtw75qa68Icwx+x2nOkxuK3q99F7IH5klK80VLloC3D1bxRjgyoPUxOdfwB82WNa4iBA4J6i+JzE4W9qnMmdbPASMnhT2nmK2dmzMOl8uZDUMskDSe9zW8AF8RcR85l7H56pJ8P0hHMgrbxlNr05yyFb7ShmGHk6u5R4f8V2JcvGTTDdCDFcE4NQnICKlFq5q8lxc+hKpsaN4qmsZcqsg7w48Hzbi20A7DwOI/of/V042U44syT30hd7meld5mxX6ZEIl7HMSMofrPXWm5AOYyLU5j8PCm0jFfSGXigl+UPXkeQiuCnRFv15mILOVqlrr/vEmC4MNUZt76WNh8S46ofPgtCgPRIVvdR9yIb6cDgy+Nr1pOWUwt8fyjGf2UopUQJUzPQcmyEiBV+8j0zT0xCs2HW2E7QdnoVicelUcpCNOPM8NnnUA5aoQ9EwLBeSN2paXmMs5CYs0+w0HhAOXJjvqyP9/JVV3F7RhDuONvfjyzu5q/IqoYxkaYIOcsVKWHrgF9XuBbvtHnmSnGGCaalWmxqgE8SqOUjyQqky4SYSB/Ux8F0TDjELwwDKxc9iXD4GW57HHG1B8wXR5P5P/fPaqw0vkiNAM4zLBe5VXC4UfZTQaA47d4Uoxcat1t1UFTurL/qpdIQnrJq7vGqvTcApNI+TD7rmNdS9sG2tHQWm0g3ld2Pt94jsHc438MZpf/nFfwFItILzwHrvco7/Jplw7N3wq1EdksOMsEqOXxavgWCV0UDA0jB5HnqPTOSRv0Olw18Oj1RENj2u6ZWji2w0DxXNm81PDwOoK6qcv0phFR9Lv+xzd5Qwja0wsttkOgbGjCPY1jy2U7pxOR8XRy7QvAIOLBH1Y0KLy2nD1LoATIHmocqAh2ck5Tbkc98CORpXblO1/swYLalBQTgg+irn0jblFVmFtmcsocoHvVSALbQa8do0QsT7My1RiigZFXpJnw6SFr2VryZwqntvHve7OuWpfO4fx4mX9VhZ7uhtdbcPJjcoZfKcgjdB42ejV5ZfPVlAif8EFw4BObRwwlx/3zo0BMbkbwuyTupmM8npnfhblAfk+hTQs/rR2oWI/A3YV1aAcQvC4pBA5hXZTiVYdJYnH3UzeKUSOAyO9yCTXjOGAy1WY2SPKsbaPahAyyQ+TMjenmEqaKQg7IYgPK+jMKqEkWlGe/8v6JeF8o5XvtmzI91GnWzf8STc72ykDvWAhCPf1wGlECGKZhcqHoYdzWxpc2xTSsZ4p7r+jT5ohViXm+RcuMfcUwx8sbmaVhNRiCJlMXMZg3LdyEL96vxatM8qE8BjG0xyJFqk3SpWF868eJZLOjXvTWwh4v/O5kcSQRKioV4Y1ks5KddyznTCP0IwVcilGYNm4F5pN6f+AcSzulFCcvDyt59JYHH5jRyRFsU7dCTHFrgH++k4paGFH4WgVFojuylVMWuoThiZGmr0Y/4KHFPnq+/ZiYM5Mad1VwHbzuktHivwefryfKADzl/54plRk75DBXgFI/Tc3FnErlP4tkjKvso147F9ZIa75t+1nUUnOczlGByRHFb/JDm9E/x+a+25CYwccEO7dHPMiArPPNW3YYkw6uXUSRNWgFGOG3Sq/Bzz1rxrSjxKQ1GX77/L6HyLxGgGqUKozRyT3rZHVIuFmMHneTPe3Qyll2EQV+qBfhivDsE0OmXwqlYpB7WEgkWnhwR9kXwh6fFEDbEgq4fu0jmua1c0+57N4zvypSpTYZUZyo/EJidO7DcfRE1sU3jY9NYaBxh23pyRhx/hZlH2k1l+lr+vHM/9LDgI1+2ZRgFhc251L2M6rnppN9UGLzfBB/PbcXQYwG8X5u+iYJNtVI/m5OoViuRAKfE3U2py0Ip0Vy2++2hKMcDh3qPu6/1FrORrpEA6eBwG5P9scFeybrlRrQYTC30chSGY/xhQWcnf9WxwXyJ9EJuaXOaaTQWTXos8nmIzWSC2FHIf3bEFZS47wDpKbcximnlfkRm+MahzS+9JMraY76OFpdWSWb6BQzm1lK2EZVxTcRLAGNfMvveBki3yBDrnMYEXbhVYvLrgA7GJjdV8jMsthp1yubjt+Ru2BGALviMDh3Bsxf5aBHFeAyUN6yJH8OZK8TEyFQ3YOvHKrtxd3Uo0APcXvhHGOyL8+CyfAXcSL5F62QW2yaOBIjKT3CRLMqNzuh6NarvJdVuB0+3RlElqoKw8uV8jUaL5rJKkQJ5CjaZQWty1AA3UFZBFreznjM9Ki8vbmrOl/iYa0MkXyF0Xw2P+JLpqHELbmw+MdNJ7Fz34Q08qEAs1ZKRDMoIJDZEr91u/YKPvUjLhAYZUqsdVYvtkw5j4umSzIBhA7sNPkiBK7KlZ+R+/j6t8b/z7CbbxY7leOd5soAV88Q2WMrLM37c8leNKNGnnoU3fDvS2ZkYQBXVZRyikNcdb5gvDnqfLXJ9STj3Xd4vm6T8wgsyZkzQ83xYtBneujCqJ7ffgeMtk0/8KoSdnhWJf2HDHhNB42Wk4h+K1yY9CvkGy5N3APhm31WTVvjQeF/Wpe9HL7bT8Ugz74azzXiF41ATYAtS0VO8Jeqjke+mvblyOJvueuWPAzTLy9UiKDzcLYira8VPDcaedBHXhzcNXbpAalKLZTbJi4olu8KSR+VPzI2H3BItr+zIKI1e6eI9vsI0QbEPysak29HfFHNk+C2UV1n66JKY2snft1BE8Ub5bvuPeUi5VBFJUusokg2s4kPUOMwPPAJad9/Is8LCqce3DMlirBjbdaK5HsejmuuWJn1bLrD9eiNOU+csIIJSMIdnRe/yAKzb5KzXeyPb2RuMJpXj9gFlreK9A/yn6ATbdy4+VDNx7tN6COkW3KhMdm57ea1RaCZT/cH+Epso59hMr2bAdBXuXk1DuNVlwEM5nwLySmLS8m8QNqgibW4whrxtWGM0fmHE5Neu1xHCIu2hGm3X7hnoulyXUUYHbPdxPE6F1wlBkxM5ds/Wo5a346aB84lBrXk+0H8F/B3R9pb8FK0a0woJ7WuM7nApCvt2/r3XrFrfT7OFKBOWAdaXxoz1iq+BQ0xDeENbIH3JFU2jz+zCoTmPfx4c/OmypRsP+jhH3J5i0TFgfbx4WDoUNszsXefeQ2acEScJ4oqZ9gNgvQlUKu7LtmgXoXHpQVsWJUUatkWgJuf2WUx+eeto4w8Z/MY/DAEfMkr1xYhDi3JNZqGzE7jYboiaa6HlE645o7rJK56vXerrq5+NYBROc0t4vwelRe/DUpU2y7mWUxGF4RjvB/RyNvcMS1kkUf5ywK+RCrETYCMZHmqhDrTYA0Zres80SOLkQ6KdOSd8ObHzZnk+QOR8cIhb6zQK+K+Qfw7+45aW09O1g18XAvyf43xE8AZsZlyLhLSoC5WJDkchxK4PNOqCGzFBZIwthgo3c0SHdl2Zt3c72uk8i7cfNgqXd/FPxpHXgZEkxjcrEEV5WV5BWlNubfKB/JMgCx0c7jELMhWCK97cxIK6EpPBY5z4kf2/MuHRduGlOPoj3Q4Kr5Jg0TvzKiC17Qb/MkR7/2c7IsxdTNSewCBZrRxuapVf2UKETUV57Dajqewsd/KMufSIskYWIEu4KdmdZC0pRdUfkb+zcSdsZxPO1SIJR7BjgKs7B9wg6rNf39Y7N51eSob7Qv3FtfoaX+X+k8bcGYEKEER/g/zk5KrfcB8NerxWhFSQMm4sV2r4zh/mrHwAr5kI+kw7l2yOry2Z/dCHGyHJLejk52SRELKFyOMDAcx1vVJefHr2pBNFsREIdci7NZa2cRZIFOZbRZd3krILgumuGlLHeeQ+bGVsQ1l2StDnPWkq1jjqQJkZxSKTpq+mamKQniUKCAUV2uqEXPHtsWvC2m54xdpJ2VnzYxsca6KwiP0b/TEz2aaq9zWVyCs9LpSgzu5iz6ubNUrePhARDFqNx21sZ/wlgjzjnYqT9V6WjU7I815eWMZlVhU12r00261NJbxX+2caD3xpEBk2V6B+w/iZNChR3ErQ8/UBDeLPytU6E+2VXqxKtPOuyYFF96zaO8pmJ13YiTN0TUl5cBRccyWi3l4iAUCMVGLJHdTMWr1p0lwee4GtaMMpB6/ScGr4xYBVMbFVAeioUPcwzrLWJhIfbyXijuq3oZRme91EfoNWltEdAWZn/WpZCy3o25m318QE/OVdpTwNCYcZrUJrTDwm+1luKbzDFI90FKoMvO6DQ8Eibmu/BGwbhO7/o+PS9RWM6JmuMnG/mq6mRRJzZxERPAY2i5lRYM1DlhoXGP24RdyGswUXN4Njls7rh8jpJt1HSApNuKzHanjK+BHn9bsR9pgi5GX/cwSNduoUSrwnzJvJCSjHii3ooWwfjNqHMmio8kSeyG69H7jrHaBnrbN5CGxAzYcwNFVD1j2sqb4pDYB2PpiSpG06NET3bFMzDXaImj1rqVf3KbD53eIdq7Rphk/DPnGq1ZB4G6AzZtlLU678+rahSVGcBMmxR95mZOB/IywcuhYR8s8ObPRL54i/DescMPbtPweuPURAQCCXcx8y8PZuVlscH8G095py45ootB5FcLyWW17ETYkD7HH+1Q3UaSosOQaeI/Zk1ci6kqIFRKkjW/NtIXyN9VtizFrUVeHMHuXH6V/j3KfMOT904mw/sNkqvT+nP9ZyP5M+za3OThnDO7P1qay6RZC4vi29y+T2ZTAZbfvBsuIpqxoGiEfPVFkhBfRuZOIxUKzqe2WQSzY4JcVWXx1v3XKq2meroYpERNmRHOrQthVymTCldWsCCQoW226l8Rd2RerrSCLTfMNKi4s9bQ4mqoHWhzLQI4bxJWWac+4SqMqzZmSiapNw6oly0bjL4ccEtYKFi+Dt1sOau9UAj3bHoBvqWIfyBHml+gubN7ZV4L6aPeP0Vtq1JqsL3qMZ2LXh9gMcqqWs8j2d52W+U05FGwmx6cTt3fXXM6VnBFQ/hVqH7nnozzskIIjkvC8cvwSJsqCZjkFNSFR+qN5TJDWdgWmcrtKtViURF8auBaELLt+be2IMTfLkqzZf7gXfa3R6/8RP4HNEJ4XmzO93ef/A11RgpUDVlpqZ92V5PjEygOlHQNrvWvXgPFkDR/Lo1v0ZO/gB58PfyDaH1DBchTMWbGNFXEJOUYyvmWYB2Wqz223MTiZ/+YYkPxTg3p9Ok3CvOcsfg50ZhS32TQPppQsKr5NcUvEB6zAuMsHC2zNnVRyiWNaTQsHfftShlye5t/ePo/XQa6sxHU20xfNUbcmpFm613z8fCrrbbc3favD52IiBaRBPVT9B8pcM8aJRtb/LCUZyoGmBDH56vf4aWMnOTWi6bwn5MKLRjL6oqjVrbxRgGdIUvD6pRlk5USA/9oZ7+SDxDoJhAbLTJ+OPxdF2MWlT+ZovEQFkkCKWIqppYLb1Ruseod0mHnEDLQxKx25L7yeIh8d2Cpu1L9ffOjUCQD4cg7Vx9xX3mIZKuq/mUYZO3YgAlTk9E9wqNX6teyPRoX8ZKzgt31s5QbJ6bkEpwHDs4UzLkw/gG2ttVU2L+Yz03LZusKt2OI0nQprbtO5BpEqVkBLTaJwnz1GWB5A7lrzVzjarR/SSMENwGunKyUxnsg9V6+0YnMRPMOTNG+KChcRuMbnFNOCA2o1p+ftNcXhksFZpKG/cboVnwFLm+0wKno9wy5BQ4jXSDhWdKaWzKMFabrqXKKQzrVZ4KVBAP3c44q2X24KswaMXtvhPjDov7kY96iY2COWnh2bx8LsUqMnjLftWMbUu1GHLYEfZTeKW9knZRA8+iR7o1Clvsdp7/6USMHAei9B4DHd26swsd6037jfVUYKm0Z9gqQyVB166zd1wlkvJX6a9xYMs86FZ8LbeN8BldnIUKo7SfR+dIoMcpGAUFyyimYoQb3kWoHd4JgRJ25AW3O4U9lXwKfQiplzDTsIuEmRfV40QCZAdkpRdYaU5EXf1hqdMxDFaWFflNLhi2yrM1+DkMT9jLLC01Flk/Edg/rKtcqck1qlIo+jEKeMUNqDoWDXoEmECFLP7uV2krapwOsTrs6tbwbjrAC43djEnVspjeaudQe1ezGmxTi5n6O1CglUIPs9SpqvO/xrvTIYeyJ82R2BWiJLoU59U3EkUyGnVqKsJ27zebk+d6itrfq9EDzqJxdCyC/Ds14EkpEpIeo4EYutaT6FSBldbW4R9i9OE8SDRmfxnu2hvuOIvj1GyIIxyyQj151IsqR8p9OOXj/oGsiiNXWqwmCzcyxeL5/hdJVaaLYf7ChnZwps9R2lXSw9MBfg3MwZ0+FlfNyV3CI30n9kCpr1GQkePjqXo0HRU1IOpWNnTD/z4bzCpPQFwqHBcaxJa+YF5L70jxnsfNu3G5OsR6n1uxxpuk/Rwm3jUxqXNIb1nStP/C/bM5XEhGe29UUkvJhXOvZz9x70WmeTbgd+ejtCTgreIq9keDV1jn3CKhuKLQx776JpMGYau1S7rra731DmuePViQ1hR41L/nu7rdb9zG+xP+wLLquzc7SRsK0kJg0FxpHfjzFx44oCvObhWMVDPjRowlJcZLJFNo/z05ALzB4K1Nh/PfyGpnd3zxZZefRaofTcS6OE0LNyHlJjl+taoxEkG1ypVk/fLR0Y7FO6nMSSOrwjMPH+4BwzclaBIWPOvgkvgxmQQmsUkEWkJ2tmOsDISuQIC9zT9kQwdQ+H76P/L9haBCJtTfqDmv3WlPSDa0sU8NCJeMhGhNZJFv5E7SYPAzjGiWqvNETInX647tLZ0XXy+5jPxToIxhSN4TgIgzxoVWWKB2FI+q14vIk3FOe23HNfwxrpnINfYGp+odpto1PenIG1LYaR/SgEEqb/2yR80HB/mWEXUHtbUA0eflrtTQrYjZwyf35ca0g/w6yrovswxG2JHJdJTwJIt9BDyxPGMfYRQlo8ZMOU0XDPwD6Hn9DkUVw2Y4vAgoV3RtWF5eDcneVJgw7xvS0Pwrw0eD4E8yjjrWCEIzMljMSov2Sl2aFnMDqRr2LmJlKHlMGjJ1TOGHI3v300DfPibREW704jycBjZbR8T5nLFlnTY9F8cmrNq2pN9CxeIE6+dSuI7NUh68MODynWk/EX2isK82oCPdLLBRH5pJGJl5DleBzqsXmlxcoGJ9NibP6a8tSr6aRthFufbO8HE2jvDmwVoswj+Ut5kHwdslprPe8nw9htNbnzNa8fp96S7pTocyyk7XWU6277E93omQQ+HQ63Oxd5FioknpGWAE0Ks1k7phQEFN0F/kL0goMmd1Ega5vmpOt4FfBIlTZogB9gp4lMMQK3lrOAUhupZxbrKrkkTbrbpb5+WCPL5BB3HULfIZiNUgNBQW9rmObfOhjLGvUqO/chV6Qugy0UpHH3I0HNkdT5ipGFaNoC+QnIfi6Wttg67RCwbtJp84R6PEVTguR5XxI3s2XR3at9YNEALy7xvAfUPfVv9KWLR1ib6f+EEMOIcrZdRuD2IyJfS+UXsbW5Y/trKy68cwiW6WehveKyYbZWWJIYhx3s5aFU3W10Sg623rhyX7A0yYVNcwpRPiGtKOfc0WWLegMld7pw44LDsR7x2kS010B7LjBYofXpzww/q6z0pxTnRGmBGJibZrIatOEOwrdvrm20fMnWJtwKXG9BfTsuK4QjIMRbZhYXPmHtEbWYR/3zjYyIxfaXFGt2lL8I4Ib1HrWQjpbRNjlOJTrlp/J1KgK/xX1CPXgUtFsjMlP1JF0sG0uLLQDfsZaNKbTKxJyyi9xX4fOSlr7v+u2E1R0SB0EeA/Q+bfAcVtUdPHz3ktGgHrm8LvJ/iikq9ND29jHe+jYUOPkjNa2lBAmxtIqpTZBq4zgGf+vABbb8WSw28dUbLWXWw2UfSRRRl0hUq1gNbEKiLYUdLhbVNya6W27SSwK1N6VVHp0mqeHAQQvnM/s947rjyLyiD90G6gRpZDSHS+3XzPJIGITa4tF3k9EJl/KL08ke7l1+OOUrMbr45lUTEeETd53avSGpwQtNMya0F/oNpqdzYTva7H0+yGW97SbLX1aYz4RKkUXpUPNUSEIc5mO9jfZwPE0QSBX0ojf3Ph/IrHhYC6+r1YIyPLposswOztH8pQCQcfaM0f6kAEKJxzfnTWtEHRTnUh2tt1y408vn2yH/yT8EdhOzfoV1wxFtXAOxoVb3YCAFZDiOUJqgGv1jrFOc7iSVpfNREOx1gOBtu4iuXRo5DSNArguh9PjlUCvbCQg6TWHKSgbhn1v/0E854fHi44s/yRk7JBROt2AxpRfuKeBa9wJR/9JGxwixlr8MkP9pyiRY4WpM3CF43jECqC6hhr/HUyQk+x5lRMfxmfc81rDC1fOXVFDOaUufF0f25BcQqnGa7eMpbhSP6UoF53THt5jOrJSRdwfD9RWjNr4dWwqJ8R/0DE9ymBZuRH4rMkHAxNiUEgV9ERUWHsGzqEn0iyELdINFGVP225kTWFeuqhWkf8rwCX9osKQtp5CuHNl6IWURMfgDP/xdFsaYmNn9is+ZmCpZBjEtRK99Gi40TYp8YW7z6916E4X3zGBeuocJ7FZMw37yMRVWZYJPqlLlu0xRuDB0D2ZlOWw1Qp3k4+ijQKT15PEynQxKEQVWjjuhLZijnjUz7vqILrpvc94siQHOr7XuQx1wrRmqYoBGCZn+bjom5bWPCbIYbsQxcvE5xkd4N4rgl9sKPDXt1muBpMmAKadLU/Pg4FzPSCf9EYVYL7+zfe8inKb0tQxv/aTOZO58QeUf2edQHbJdak6k3D6MhTytnkBmEwC/kiLU6891AMu2G9xa0y/tTnMn0CvMY+xMRGS6yjlKupcYZU8tpBEU5O72nqI3fJX5MXipad2QmLFQB3vp6JEr33oBiXoxctGE1t3gSOV771XUw99NCkXVsIkiG0yXj8KoG/pP4DJKasWX+zwq0/9kvOYrztjvqzdApfSrQHATal+dhdZdJHKX4bJH17NJfWWZfRNykfvMglNCqTUI2ik2K/qiufEQ7r/nGNuTLmxqg1PMkwxHnOps3/uzYIxLZSvSK/++Zl0Tl+9BqXTKvUrQ27iYuLEy9NsuYrt4h5E4TF6Xn4Hxtk2h5oCFn7CcHmdXw8Yb/TWphibnVsahbJvA6dQo69BVFtb8vIApP0eTtYyDpdqIYzKR20MKqiS1CWK5xewfWvj2cRgXbmdrf6L80MvAT9sFIoFgT78SQWYFxHV/nvxkU4IJNNSwwAvQ9cPsnKplRmxBIc4nQzKr7a2FOboz64s79LWJzbMFWyW7YNHjh2em3orueW5YCG21O8LnQPO6HlBSRY09uWdNb9qF45Cz0xN4kO9K+NpIM32e+s7ku/0y639UbhVXCV9DNKaIMtiDL2jnMAUdwDb1Ca9lBYfXL8iWIvIaO5ai947msUquVhp2oD4eNE6waWprlehDD17iunwicxFK1dhqbsgMVjqnU2yDZLrwFUHZ8pu7uF5UxO0oKEJpNBkLpc+MMOuH7AyCgb79bB0+3MqrD6LQKUwj6Sep7ysL6bN67QLsHlTJrQeZ6ICd6blR6e+kqslsTt987G13rXTX4/Z0mpmiVoThft5VtBngRKfIgBanYqSNc70nCw5/gbbB8cP26hv/ID/2MtQNYmKHEkDStrprHqBgYY3YQ0/hU5tOgpR34nDg2njhoTERbKDC9D7SSt0BoAyGYHPgmP8D0yR0yMWcuZ+uzstcHtYXfNmWvUIxOavffqWXYfbVnyXhJjKcKWIdNsgP8Kq6h7lpIc4f7ukASxOBz8n+XyeD0+QWZaZjtMKyd6vgW1gDTHniZobX7ViA4iaORpnFNNCrNttyNLE2NDQV33lLUITrEr4qfJwnp7PbacDtEXo+7VCDJ6n1F1a/g5M5Oni3w1jCLKMFSy1WXwwBpCGKK6zYjeWb5EOJtVmjdc8I0Vcpf+0jzxoq/yDAvEjhEr8kWsQq5aTDV1KMsfM9fZ3ukidu4BwUV4/lZzlHvVVYfVaeHnDG3cIEcKO48B0ZDZv9CS9/RN5I8mpWxLsc3RtpYRp2ve/FPvLQOLl/TtE+vNSNK9SezZK2jcbTlf50AvvPhFAOG1Nxrray8Ff91RgQIPBy5nU34Ah0vdlNbX0jZhZKdaSyCcq12AosecC2sqUPyOGJNDF4BHBHstY/TjJKgLzPbpCelHgkIKtMJoQ9jnaK7dy2owHZsD7nGlolVlamBwsAd1RfmznZSyuB9TsozuRnSEaAn+0GLLydaFqFGFRJ96sIIbnB903graND8nsyD4iF+ko0mhiqHrGom3UZExsi29oAHafdiC5Qf8ZIuZf29mD8DxaO48nrJwRCEyMbwUoVIeVsIDXiiMzSlAmrGVVEq57ZjSRgTPm0CvVdDO+ESPGVOeeCx/EKYe3AhOsk1mF7fQJTtl6uZjwPaBy0rHlrXtXrTNgMZnFxea5JspTRtwZ1tkLi8vCEwxP1WW48qtVu91Aprb98IkyVTmIJSYVPkNvuaSjvYyHZU2pS5uldA80f3WNENWQ6U8vkjGblLHmbniGSRmRnzy5GI9S8XKLRz4z+9eTMJrVuqZXMdVRvTHWs003h9+ZnBTqOFi/dMes4xeLCjYSfhkl+1QNFq/TfjXlQyYOUt5p5hwD6E1uX7Ku8Rh6dpGglpyq34yXeC3cShEO7TcJyCqYdCKw/ECO93g2d6vCUKrvL1tt2EM7IkoxtWnDW2XHpEad6MaPy/vNK4dnlMqvwjonP6XpYKreMvYuL7MZ4H2P3XGBrRNOYDdfizZKzBal7OBTyzyC0qXqRPPFFE0VdUK2Fx8qu2NVRJmc8ZX+hjgC3GsQHfYHYekxHBQwEpFxLWM+jQ0298so3GPpUP9GKWcfEk7NKcsMnAi2M40bQLPgv69zI3fYArfBe128JY4mf0ERfJhtcqf1sGozaHTBk1cZJTDsLGsh1i9kBKNymHRTKY9iu7wjSPStwMjb63zoVyBWSw5btuE1Ph3r/yj0tiVxd6WamLGF5gDpoavEIOqm9Q2eiRf/QXEZECQd40R1X+GNfhnTZu8LuVKivm5hEmZ8yEiLV4EzhQEJnHpP23UVjkf4cNBpTVE0NBZNFia0GZTdIXFk4JCcTS9Lx9IjrRuiex+J0Q0HScvYWpRF3Yi3ymlzxRxuGqHY6cft7pwSXtW+XKIeTEaDgdxXZa6bCGrkFIH8CxCMx/UInPTqNc48lsgTSFY0jHNYA2ObRECYewx0kHnlytEuBnZMpFn8a+JbwS66vLnbSmQ927hGLjJoLpJRIuTQYwUID2oFe8/LaGLv35ECejLKfapLJaKHW9vJ2QUOyh7VGCSzPyT7QwJ+wkeYLwh9WJL4Py6ViKOLp+iOIaCy+R7ithBeYmRs6inbkyXbHvaERjSZXSjVC6xyZCDPAuBnFyE112svY38ndiVBwiDs2a9C2Rd7L24c2mcmCfVNzvz9mltj45xosnOo1mvUjNaifryQu3Z7nhuoWPbX9PgpjHnJ60xE4wneI17i9SxIUyzuS8Of/rel68NIIxBkC/yp73tPybByfNsY2dLbSDNGg+st9tdeyimu0c7GW3MLyKjkKywONDVvv6puvFeww5pP46N700dCJrSe5VJIhChxhb3OuVDby0knJ1dTTQKbIY3jduzmd0UNi8E5RBzK53WThUw6ZjDqDVL187xPIHlP3HzeDmWND1bbueXmPEkFTd+KyTdh2CLDaMtaaaZXOIu0penHwHvOr/zxWJ/b2/OkxXYCpMQJAuHpo0U5S1x48pwHPrGSLw6/Kgl9aFrqHY6g3vkBUGugFvV8QfjAxD40wd1deW24YCkOZu2h3L6flj4tiB8vJ/IS6/oYhtgbt5KXP3js5umlixx3bOoeahgRJHlHfdb5CbMZzTjIH0sQ5ppm3FpIpSkk4947/AKhVvwiwoR7hITKxRrJ37mad0mqbLTzN1qezEoE/x1aPR87ub9syfry5dyoYA4pRDYcCaAxnjbZksYD5FxHWf5TcMv1k213G4/+6SwtUWKS93g7Nmd292unByhoidGAAvo/ETDTCHCV3KWpqoHmUolWjoeOc+vyGJ2H6QhBc5ufvncKdsQ76gFBzQYHpELTNFg4zzIu/TAwmwuAkfoPwUZBytM8FOcxKgv0IBoJdN6Zw/maeANBCrUdLxnaLwIMR2lkOHwHnJDDVIxEQmhEyEmi+O3Rf3HhDp7Z9z3zyXrZkUfNxbb27nsSDOxQtScz4SW9HxnlyhWbO+RBIXEJofARyrMevoVWcEqNC8GjXQD4mRWBeIEuv/8znFwVyvb4PhXEfhQhZfoTrLZTs6RQCD6yB8REW1j7sefw+fhBa73l9XykyKtMnyGMI0Cdlfs5S6XkWHTuwyYAHoH+ah3eAkIoDst4YNlgsROkauRwV8zdCzIDx7g6nH5IxsU+TQEoxdNVb+9L6S4adt3mM0dRS2oJJQoaiTbrZt1WUqEU4RbJgWounajxN7FWMq0yQF2IN/iEi31hKdt4LNULe9OcnwwL1LoKglj7GzHZS40Xj8V6Ni7BFQIn4w6MtGb3jVGej7lHgOAvkCiCtZcTQHSUNOqrDLjGQtlCxR5lsix5zz9gXxI8yDty5LZO28+p/J4CiyVTxCTUNFOhgaMOQjuGL0NsRV88UHZhwzZlc0WbVZ9WQBs6ohxpVNTt1rPGNHRrpnDzSYZedcL/TK1tE0lmh8O8qmqPQn5d8o2wrjLtLvN/uYAJQOqcdn2OMmw50ecKY28M5ILhv7s4T4l7ya9EAOirpsgZLF1BEfSzN75e0K8k/CBa4ZW7wyvtnvbmdlE9ESzzOZ9wd1abOso4ooL6DZwcSHYEmlhfSPCP6sWvzrHLam8+vfyT6II+V3I3dyF9UbXqD7kw5ySxTFrNqaijBmHgkHVJ4I6tvhrtoR8xcDzUoc+Tnq/ICNCdzk/t7Y0hFahhos1Tw53R2YUBEb1NyAyGYK7v4dHOzEjXX6ZJ6f5i04cFufAjrF004HhH+FSybo1Y2+c/CNsSP8rxsYuYUTa/T5/psVJxeZWO5Y9E62FoCvvde9/vXd/W9EWzqZ/M4vwPFsOdcr6mJsleSNsyzHIrQT6jCgj76rv5w2ElU2zTeM1TldQNWKSoab6a1IuxjCVLVEOb5AhiHytMdDVd+D1ZbHHghA4fpmfyNoVMU9NE0TSKvK33DUrs5YRS6Y4R+MgjBU/zwYAKes3t7MZakEfUTiQ6DC5pqQNd8u+HriLPYy70MMeFKAbVMUuNjlErv2YkiLgHUCEM4O82ZE+9BL9cJz33lP04B18cVGKdbbrvwUiHfqh12K9tw+mRXfpqdJ5PanYEKXcPNWBSmRKG1qjT1N0cA8ZPJsFSWe6WDhlN45eWc2dOmpR3KCGO1eWdMy2Kr1qcRIy3eiQjY89fmsi/Ca3HBr2TjdKNAz+JIMjtVd7ImdXjq1ayoJMmAkFnCV/G+F4FBkscitL8FW+IxcWpvmL4PEnQ2H1PBxyI1RiGBl6U2gBx49m02/h1UsUoM+Gfh2MqcPC46elh3HJvYAr86JG1o3tr/UVYYCA1+wBwQtMkaAHrUAUjk9fHSVXgoxp8njEKlaBk/02KGItPgbSMbIUdCtmvUoFHndzcdcRtwdpM/th11yx6wtVlewByVzFUb/IdzJRUUQoV04muS593URfFlGy+pYKQKUBiLXtHeGaxs8b98JSM56gx3b/nwdohyIAyfdWaxD3TyvbM/L27kTzNp7gY2a2xjuw+sfEAzT1uCXVZCN+zW8QehBZjpbPkTMC5Bq96/JuGcDBztpWPlNf1LJBfjNS3QVzj51laWSikSxWhBd+knZ7rNFGh69NJdTGyGosq3OfGl9OmphjI2b89HTZcP+85UX46j4FQ0TRAmBmKJKEcL1loMVjQVyIn6aMOrDO5UQRFhIhcwvgG/60bCWC4oJalXVK4KKhK79d/OF3ERuMQHVoraAFYMkZfWg/ntiM5BbDt2koyaq/BUqHrzoSPW9uc/1PQofx3xlVUytZuH0gBnbknXAbUAdgfzFAw3Oj81HUhDgeftW7pnZooNETnY6MOjkrq+caig7UgZK60+6G4vN6WJUhYJepwy4aZkaekvwK+nu9emY82LvO6mSH6N4EnvorJef5q6248+8SbVyVyJN5zQGdyUt8NrheXunYkdVB6PXOojwUnHSl0t2188N7z6Lw+E+LEZoESLqkeS8apxuPei6b7PLTRI3uro9GIXBEs/Vvo6eZXTyo3MThkvdTKMMGiFFO5azoUr7W1xF/W7PQU5ffGurDI03a7i6Soz+1xFEy9H4O0wYsNvzVZaEq9D9h+9GhqjEDBlkYkMCG/KQD02fButi+YTaRA4vHHsvtd1lzC/NtUZFcRAAnMlid7GJGqLZyGYBgxgFygYRhdJ5B2EqYzJea+n+WELpnezH2ojWCwEMYthG+HUAzK5Ue8GnwtZw7HV8MHhV7Gs3Cna/WamWYN0JfZ5BX2ulgWWrwu1ICD2XThIlvF3w5/s3m3aCov+R1OTTXpO+82Humw6pbDBOwCdVaImJ/mBMyR0jCgfHQvrecVKFHA1kqQWLCde/6xLj/T8lP3+apmSWO7O5MfNOmY62kReAdQEPHtyqpeFoo/SLS6LCoTkJNSrzABYiMYB5d7tfz1ShzdJQ148dfnWyxpfSzMkR1w/QFuOUToQNjLEuklvf46FpgJeHU69gr9cIQT6wUXZZ0pvPKwx0S0jfRVz4OZkbGStQIwGdNpUVzBFjbsGoHDS5RBai37UeBNGSTZP8Z04WFVQj0uWVTe1UGMS4n6YKnjpAyqiBLsBcPD4FNnXQw7wxhT53c96xjgA4sLka4MbQTrO83b4yiJdfcIcz/r6LCMEqjq0WCf1Bzvj0vovg70fB80AbkBcdxIftTpXgpUnK182jtQmeq1BpkmWdo5QkVws6+mQWxFH9giN5qil0d7WYuLqOiZqBg+tbsx9+oXXs4Yw3SWG27R+XZGGp3ZKX7fz+0jSpZL5KFJnCXUsq6owBLItYBiliK7N/JmTRJ5LDsN66SHo8VpckCwpvQXFto+JXAMesrX6dAQpgNka3YV5c/CJAQaMRfCXOGTrDVnDoITGWxlfnplegKnXVaTwZhZeUSQy8XEJN6Ejdd4GbplY0UyNlULUfLI2XQHPVxmgXkNETAL6s4ZSs9WarfyrAZQ00y4LjV3aGvFwq+yvrUtUP/iMtrmdVYGsQyd6IDTeBLX8F7hPI7CMsSWZJMQd6UCp6RTaGmaZLk94G5kMIUFpD/BQin2cl8JKjajfmc4qNVHONx8xXNhP73WqmKoG1NluvjzlkTfUbtLfnhifKsFd0N5XoeG5DEzc4twzD4ZwIo/QXg3O2c3lhoa5MWaVoLVXBtqOs0wEl/p4ft3vtaTf6bOfxfTuV6exHQVVg22wHgKYfLAuObZipuCL9B6TTXp+LabEeYSKT23sgU03bU1KNqoxEVHx4sXBokVuLsgffTEvvJGI8OkNSPwlPjSZIjlY8Hi8CnzPF74GUgZHZnlTqYAiilE0hfF42j1Y5Q43L/RBEN0OeC2HEo+m/y4TLjZjSp/eSerHj8zpmUPDciA5u1fgLGbF3pIF19DgixvzLWDkDE1t15kFfJ7183EZl7qeOi32RLWpc2C+piiiMbwC3+S2ES/Myjhpdon3WykOs47e0RFDXjFLVHK6VAQJdld3PFTGbKadaa3yYdzMKsIHn7lAzHG+PTeKT3ZJRngT/5G8noxMbR2tSFHNxlXQ121hxHx0FVUBVdP+R8WUlHBf7yB53dm9byBJj+IP8HK/kthOhoKU1LuCi4ecun8xGqK4ZOQW25dTVIZwgRsrqU4aQylo0DKqME4d0p3+S4cwraTtXI+Ca994dKugpgZ4Tos24kw6g098EQO/AKNYWeACK8xKvm8SIByRTunTnqlRFqjeJ1ezvHUkUu6Pw+/03pN778U78bTtw0gszIKemfm+3dEL/HTTy5g897MC2w9DKqmq1cKjRceMBCbXxbzIpQqK3yHJnpKfhaavp7ALsyITpJLqSCtZLghhNf7nxnmeYHlWMmPXvaajGt7dwWMoUDvtaFJLSz+sDQ/jebdGrmQ8ndIZVK/qLtfNGn8M618xA4eJPqsk/hvLVT3tpxpV9ZU/+Mx0jV+vuc2F4IgvCWzB8EfQfJfBQfxoCPd5D6jJSUMAQU9DS5NRMLTyYB7dOOR5bOyGdMI0LJd20Ezlxq42dMds1ItKpR8vTiFTULCek5dE8Jv98h7DSPynl192zR/2+w5HB47PTJaYDBxVDUPnZItmi/vc/38vro0um/fqKtvdkHqULqfsPVJNjfVTxeUVz8DBiiOOn2ixk0+h1GqtFFp0X4R5pW11yM8kmNF7FADzOzES/t9RZXl1E/ZRU1FvnZuRd7PTUorWGsqBCg7ueKud6ZWjreZOBIX0tm0sRU1bHcTJDbawit+eJJSOd2d4qBJkG5wn5aZ4O2iFVb0L2DJzCQsIzrrrKyr8EH03ysG68SZTOJF9pIbliIPgOxbOp5EfG0ULjuj35TyK5Ms9kjOQPhxvvnhUhPJ1mS9+AjtnC4goeQ8qHh3PK3prEUYub2kP0ud64nXz64Czm5+DmJbRX20rSYURYeDisViULi9cZh0veHOEhiv1IarD+WKrsDAbCzPCmBuKyCvL+v/0AFfpBwnsei/+y3zrkIk9aJF4tqKtQ/uQvzp+uUanKASWrLY6CLWJqZpTozmmbnyJU02CXVAKF/L+d8SalnSZBrupbU5/8F5jVM08r/p9FXEjADtzRSSAIYum5dMHYIisMgpSGlFbjsUMwykKI9um9/JN4sCxZ/xeAn83VM6Wu2hM2c/GmMcLC9N8uGUsYD1xFS9pKhJkrJZi+2JUoAM2OgBOMucvT/LeSlK3baEqUe0lC3SHYbvuM3nyGoozDVmJqklRcy/jeLLIGWsGBfdKqbndO90siR+62Gp/FW19dIv9KhvDVcEvHiHVb8eICb+6lUNPT24t9hezDAjak4MryHQ3+AahSdEcRjFBujMLYFCAyC7UGt5XryXodXFWfe0yeFBd4mpuFVLC2S+bbW8xPuPeYe1UjSavWZW1oiYCVLOqhgtBPH+3a3b0S745DN67nmkZNzzP9Oas2s3rv3tFEx7KK5DjYv/ePqYGabQThzGBHvw7mJwT614GfZYm20p3e5hjz6VDa1eotKVqBKtg4uC9O5at5V82Wdpk1sUYrq+C+Cg65BzlS6dPeZElYp1WfoaRlatTHyirdYWlmmmoS0qMag/eG7yqySgNUjFhGGBqwrI91P4zs7DYWod5/pjN4gGYZV860L8pI0JTrZZ6VqjvMngOKm0LJO7Ve/KCBRQ4qxyUWLrUWMWsZ2Sxj0/NYuGsPSW4DBDLwKSEDrIgtDBWhy32Jo9q/XF3B0erEcFaoQ9fRiZ7zq1pNFjBQEFrrXfaU/rzSTu/vcgg38BRf8zUt5dUrEPEjyzXzAvDWvtR2EkmiQNZe2s/rxZN8TdrVX1XVDM/fxP0PIXu5QMgwa0V6fc6E0BA9R7pVKjggfn4SXQlNu9b+9Xjs1tyaGSUJGGfPvIaJWhVGICuphLt1J+ThoU6ZffvKKRpM11cFHjVDURjuNzXYxpJOAIx2xb05iDalgY1e8P34fkLQ4fWeApt5lbFROBylTDkk35cMfPSJ4l3C5uaF3SdeO84gFdfqhCM7W4Z3gw2LBlQtWPWvjCmM5R1SnqlYoAjU0mGcxDCsTHnWmIWCp7zCyhGNqVLSoJ8UhoG6TnVWQDEJwqj9Wqmzp3Jw7qR7bP0f6tHCQ1+cs42HWct1I/DzY2jrVmwJp+oXJgvWCwy0ZWHw0vENRxEYo65KwGeCwdAF3ryjdGbel30f7gKgxqsT0mVHiFJEKQYPesnZnMNRRwqpCuR4uceISTYGbXRlFuEJduu+JVFkvLSEH6WjA8s7AHvVEZGA68dgXbMdifrtOa+1Cp/yvPdihYWCn9loS0bbNEOSIITj56U5ckiL8HcknvilW92wgQKsUjubeqzwiviOOfJWvETtFNBDqgJwmbozcxvlqGerQt42H4zvCbL1YDo6Rhh7rMrr7CJx6kq+HEGc2Qnev/2ZYEX0Hw1c4JRJ7HZ7vZMKlvFC8c1kKg61nGfl8OYalORnVM1CtojyELDlPb14qb1I2hVLnVnPzbcphNUoBkrs17mqxGn3q+YYOKHeYleX9wnYMfBkVCYlHXZob+sESN4RlkZfYOHdh649niDrQVMPGZ+Airh0QG4np73d1vgXDn9VXf47dfewtg2K3yNGuKQ521nj03uqzPp1UTwqy3Bixl0uFeDJ7wOcKMZKEtbO1gp+RHEzbhckbrpmESYYKMvdscPalAKguPZlw3hMV+Gw7yVp+e15j2CdpQGuFjYFxPtdqoeWYRO/llBxa7eKNwv+pi27LK4Jzzcpurwx8nMVkphpNurKl0uldFXwPTd4XdwLd2zsJE/FHr+DuIe3ZZtItGeZpceguKDYXFuKvz8hE4WVxiS2kUpU+QwKOqx6wQblGBT/KDBfVdxWhfQxyWTT+Irg01LYhbgTSzU4NYk5ZEBylsQgmtaZXmLZQg3Dzh6Fm5P2JOEGxSsbzNN5dwBmjAVGFeoF9y61LeZWOZvC9UUBZSwNxlhxWzzn7qmrhGDGJ9kEzk2SR8wR71Tj0zlfdQPlKscMwhHqEpRRo2ju1uBI8TunjLWvSrCwgnbH9b18k1joIty0i1KpX3eN8biL+0QPX3+7Rt/axaAHx+2xHlqzH1ISfRf6FQ5EDVeeC606M6bA0HEWj5XWX2JdvwafASCEtEXpoap5Z5e3hyOMdnkMd2iZVF+Sxl2aw5vo66gvEqEKsB1StSDrgcj9I20OuBdn2+zUDY3wF0NWhTG4lFYIMtZHI3AGQ50yJilvOBn2LvC2PcwketEVSb+T3UqYyaP3Syw7c3hoF6iQSpmES7Np6D3Lh1ZtKtciUOn0Y27vA3hGBeWTywdoFR2VuE8ckLkWyJWRbK76WsXKgmgZNLOT5Wij+E0LTuSpBuTQ76OBdlHZBXe1qHeAO0BOAjNlWTTocozzc1XFVlGHdbuLErOkbPkS7931mB1g3K1I08Ny3T12MY3kIN1VrVkUnKdHnk3rDsJJ8SYv8YP58mDlmGMDPFmidpT9D9rPqaa65RPQwKoN9TGmB+WuGxJ92SxZWWfGHamVNWVAcvK/KqUpJt4QSUEzb0p2sEXYmL6zp1WlKZ67lPSrKBrjWCfbTCt2LJOWnoxvQvE5QJJwsKXYlB9AMW97uWJPo1AVKe4rGlNbHQSlH48MeVckkMJWz+TWHRBhWPhwREkTW2Q+R21KTbDkxER+TxosfTTL5mKe3uXRqkNdEAVmP4bsrHru0EGLp+x4p6raCy8hLyeNSizm0MLQVGaG38zLhnH6mgkU8O1FUOVJokWgwYprdj9dXFhYRlIqJQl1DcXUmaVnRcPj4pmECp6apXSZVl8bqqJ1GZ14grKF2rHpBCP+FHpSWnBEfWnkRmKPQgeDNAirfVqqgzY81v4sNX5ND1wFOnlLGqjQ1qXM0eo5rBIoNnEo3fwzSvFDdHhAtnHLRlff2jCluXqloz2IloRB6KnS5SgZRtneKKlu6tr+cvNow9YtsmV4TU3E4Z8fRPUS7vjioYCsVJtIMntJVbFipyxhpRx6qg+JRznG0zDxbay+do60z7xnum5KWyL7XbjbmzyEp14ppXZl9qp2AWQZCt/6uwLGKQkYudKhA0+nXU0K607SGh5qVlH1vXIx9fG8dEhTYdbEPSyybzSojFqJ2OElsCI4yTDBKqSfjCkS+0KfII6iYpL9BXSwAkUQY0oKANr/WL7qm9OM/rxzCLq+E3cBFSUdPKvEe39cO/SFyZApilSefI4l4Aw/e7R1EV5srZ12u5fNM1TreDbkcWmBzlOdWErUoFu0hlKc6wL69TL8+HJ0Q4V9JgG7RjXaryHp9GzdYSwiYTKivWgGrunsHArHVLrZ33N0TfVUqIplSujxXpIkc/OsCwMSYbVV3rPNok5MSFWU9BWElzUxuqBEXXlUUld2SY/j2SutCFCYTRkETkpVjSFRvRAbYtDAFoogIOdJUxxh7vUR3qYdQottMSBUWj5iGzrzLMolnFPd/qNiWYv72lx3LP34+Ef4tuN5mU/J/LknwIFzXk8EnFHBX+0HL3qiuP4dLjEMiYCO6cqFAJUaQPNSiwhWk+U4iI5DiTFHBRg+rl5aDIFwzKYRQW7huvQrGyrfXHQeImB0pRbjEIv7aA8DkMkyn6raQGGcVGJfDsUWRz0QAsGVNsiWMlN2TEgTjZNUM5rejFsJBnI4eE3s+gORgN9bSJA0QCtxoGOl7E4KFMEgmwHmY1yfRvHAlmRKLoFgp0bo9n1noXsJeR4auCqxz4YtpgHYFhb7QRcEfcIGBWtTZrrX0ulxz+pUPMLf7bmY+cljX7WHN3wO74b8R/khwnCYnMAW1R1kTw4kNoE9VoZm86XlMsz3ZkS6taoptN37kXD6nKnezOL2VyDWvTcEw3byX9CwoJl4d0J2M05tT9jWSk7rzjCuCEnFiyZ0qhxRE1Ss0MzcFv4v7g9GSMsapSxMUkR+uN1XmxpjK3zg7xUMfM8QPE87Um+UNWcOKrdy8PzqLc6MfEUVjIgA2W2A10YmhEBx8yBPIiUNjXi5gArkPtQtSw+obuyW6eWUJcxONdoWCj2f8bt14L6wPU1ktVrOrv0dZNPCHWaNsY7Aor2wZtqCoOzf4wuLRIz2jTZPGXZZyHSDohSrTLf88LNLDv/m2h5X3q61TpvyYehRzLq1Ubs3nhT048PA5fOldpWHyd1Tl5rhbbfOtad3LiWynHauKjmBpuzdrNxmig+4/Noetpq6+lKIu9NYuY65iLPwdQlsXMVciDFNJaXf3+XGwnW+FYwNinE1WsGzjZ3hlg5SatNouJhwrSMKAyq2SzIw4AiLqaETWiEDm0VJYnISftH7Y6MMmIgh24RNMRC62dKDRhVGIhYqoMRO0CuuFu8VhlOAJx4mrsWkAurvJVehU7MS8QVvbYThQjdC+O9EWbeUGNJRG775Toki9N0DVxAK1mgubHoRrZKSyT/NNYyOI7TNanqq7RmEgOPFR0OJGDPqCNWOYgBuT4qoKrFP8tSDCugesFMSsffoCMxkwl8E1eRxTK8jvcnaYZLQyAhiGNCKtbc7JrFRbdnlm9WW9mUqvFiqWON6sKxXz9RyMCmzNCQMlJ3J1d322Wlk2bbhjHFef7QNAYpjfD0qBZjtzQjzOQs/WaWukyucPIyd6kXhGAfE6CsXV6XbHZQmumMa9uYWdRRDDn94GxCVdULiFE+mEGLRM/WYkI0piOIKtak63zArtlWK9QloQ2kkN5i6IynDzRouRp65CSUFAVOlR8spJhqxErtn+xEWNesKxt/qK5p/dSsypg41BuSeuX4HOxcJDqvpivTxS9JMM1O3Fi/EZN093gWMpnP1MNZ1vHEogowCjilXXEIO9ofYB9RdUhQNPmC1NENdbsV7Oegq8BK15GasmqeoRjmqJVvcbsZmcboWNdvHXwxrOaevw3iYEv6wJ3tilLVicUUnYy6tSa3NbYdkdYeIaWx9eyLQ7mv13z/lc+Fqi3p2PU+k1tD687ZRvgAAMBCFLnPQ+kFDjQT9BBrSFKVFfQIpyKEiVS/R+joEBuWnB1lnBu/GozDpvLAUNW8NM5s4tQbQWoR+qE7KsKGAuVAfKe3O8ISSvKApWvdPpxQXLx2BfrYbPBYmE5NEVf0KotbIg3jBWfM2C1G/e6U5JzWCr92btlrqKPyfYfkLeKpyMgDWIsE+J7ql9q7s9bHLH36z16HzYvMG3tWexaR6zdloj3RlAoCr9KyvZp/E1JQHyYuU3rc4645CqpOnXrn1l3G3M+523jKnTOBDu72MKxDXUmzFx8GQSUeasqeR+VPEBjejt4eXMh+b343XW2KU20O7hyFtPU6t3kaCnnbYsNpu2VGW32e/W+3eTa/ziOP3Umiy0H6ZQbH/VzSEsORT0bM/d7PQuzOJhdvxVkuIJoDyGU8A6yJfHU+QqJ+oKtcPlBZcCAl3UQUPgr+ykhkWCd05oyvIItlM0KeLOg9SZxdHkIMD234NtfdbitLT6Eq27FqqHSrAWQqpxlDa7i5dQL+k9EywJUpG+q5CW2uKZPpvBle+QLL4knD/TMpAHJ0kXbfywJ/fzjK/vmePDQtVOfiOSHDchsCNp0m5jygHCSe0VupAvdn+0Z4mSsuPuc/8gPxtQaV3TACyCu1PEORNXHOK4VatO579zh605eyt0Pb85fI0NdBbi1chdz+izdWdgkxqI8r3z7eGGx+U4E3CSTKn0fX1KgnywfiLwdUu9qPjQWrzyMVAQojM2F56/THxidVkFupLwHjqhQbKThKfqAXOv5hX+xJji2Cymg9J81cAeHrdk8yUDmBagOXxEsqBz7WI7z/vLGxeMVeXxhTNLXH9CVqE5ZXYNKFsLyenQrOcIP4+Y0SEVx6aHCGI8/s5ejK21Ww1L1Mz6e28hVAXVU4qLlrfomAwGYurqyJNQ5FlAqBCH8KFd5zOXxDESM/94MuZ23CSdaC0Wh2s7MHJpczOwuew70zpvXEJhb1HpCd6h0z4m1U7p1OhuVABBgv7hAp4CAIKDGK5p6GZhxyACAPSAChjf0LP0+C7FGPDkfuphdqK6KAp34JSSt1w2fk5RK5YFKy9btYbP1+el8W7cRPQW2AY81AGFmnUtqj4n9olqgbhU4Uew1kI0xEjeRgmlS5TWVdBSVv1XTcxSjq07g9PUE/3KlV1OZy6EFQJCkdn0NjMLD41eksL9I7qMiIi5dzgN4XMCrgSPjXD805InYaCLVLJiLWEFQGFTDn3gfAhPhfro4lSOb9wxpLte4Rz6McKV6KMl9KDQXtO3wtab0yJ2zC6TuegKtK126SLHBUkypyEI2lgpGP4XMeJ9HSUCAwWRqoWS+R3ufHG3L4aExf91PkkdmMrcan32GPG2OuNOLu9+lAo0vaSA4x8kslQ6dB21jt8KSSL3RoMGQUwf4T0b5ytPOytwoXG9EdJJSSkDdJi1KO0xA5tSHxyqg28o0SVmoujRhUBuWq0BS2bSrN2if1OfJAhau+4s+F0lb+21HzQm5vKxconx3F7g+BCa+uRaPESBAfV6plTKxxlhyDUmVk6CTPeEK1tT0oJs7GA7Tt5MLMPCmYc4+sg19tQcYvqSB/XpIIBHHQ5EIfAf6xAxClqcSbpUQO0MgipmvN3s0x0+36OXre41GQb391nHbd4dVdoFxeRfeewWChlOqgKUiGdVfFpF50LKQU2AZrBAgEAfQM4PCod7+bpbJRhNrNLr2Z23mbZdNGIqaQuzlfxpPpBoFp6QM89GP6+o4bbgSgzaaKWRBYKdFLuBm5nvCf2SDKHLBL8a6Cfa7ojth0c24q5VJ3jME2nSVPHYuOwzX/ryzdrdEZQSRorH2ZsqMJaZ9NdTD5i1UAi46rmWk2iyx+I1ozAZ7Hftz0eaOc2XQDrQ7jA56FUQbikU/8zq636IRqgSihDkjjqbCK0TQXmZ8t+/9Mm6yp3lT16zp5mqef1XMsnvMy3g4Vyto/C65hOLRkpGuDX3w3jAUDxtjLmMdkF82MCo4mI5+3dwaFXU5SL/fTaK5Pn8g6jokp6Zuj8gDi5vhfQl1XvP/U6O2WByqbSsYEOBpZTmwvhKCsZ0OIoeNrWuuHgprI7UWsx+x8iVVrKG2DrFNpFE+q3QkpxmZh89uSEx4pC6I7T38Vs5Nh0Ov2ULZFq5vgojhJ6HZOpokLa14TTgXK2pf1bvVZcQGFvyjPzPcRkHXEuOeHp8K/M0dljrPu2rNYCK7sErYmwdW9NhUkLJMJ5wttnt7B5llheAkcDKmuyF2gnFdqv8SkEer67JQzsHLVZRfplfSp+SlALiBfEXDpdljlKV29VZUWLZ+PuaZ4FnbyvPiLTS/u/oc21n7ThXjoyJ7FVi0u0QRm3UhfUQHzam7VUo6CvImvAa8HmCqw/vs7iModeEB6xx7zrbEKZbfeqwApjH4Imtxgw4z4v6SCpaR5hUxkTwYPWXDADrvAtAzwVYQINi1iPq36IgonCPwrXzLvotsxB38AygaxEwThG2W63tOXmLo7GxqanH8jkaGkgfxTM2zBG9xVxuSrwn4ptV1pSgFcV0tVRNIMg+P6BOK8aAVPuSJyaH4QkoyGrc/FtrsgzlkCicFOij4LnMLM8ZeFz7EwzRxqBVnYO8vD7lO4HrwVWz/88UmrGpin1LcCsyWNygnDeEVeEtmKtpZQrx96zs0Vc5iOfqaUbX2OLqChfmEWP3DH6hzFokKh9b2ZsnP/IS19/rx0LKDuJoYFT35bp93EIMlUgHv5dMUl1D234hsc2HO4/+xdrTzSIqlC0AyOtUVJxvqPuasstzUvSRt4BZ03rtJJGJzsIkX4C5DLTlYvn7Zo06NrGZtqhkxBVCKXiTBQioQ3f5mone9i5Gk8/onqL6gG62q3OR791WquwYZWvxCfM9LoK7qfb1Mlk8YyPCYWjeDzoDgUA/QpaBMqcae4RAYjom2mkuXdMIqcJ8ILC9IqptusHJci0ZhhwiFdnjIFnP+tqXlhKuyp1LMhsspvcBQ1fFOh1+zSi9XBWa3HNRK8pvOy7bmUySUYZNumOwl6C/HyPTfqMgks1t1U5/deD/nBbI7VjA084rAt/ixgia+WZ5ttBhl1w69VhS1vg4iccJ7OnDMufNnTOErHLOAmEwm354SnYCZJS8YVorKHjfHxoUpB2F8ELVvAlRZHJhzauGi41iGiysVfLC8jDxL8a+T+9VKL+oBhap1UeSeXcR2GTqinz0J7hfURm2tmHp7/yP5EX2iv9wRuIppQF7VdgTPE/G+KvAhyhIDjuoEClIRWAgJJdXExKomVEN3AmffHj7x2wIq+XCDa+ytjI3cfe+bxig9alKq5+bTBQzCdb6ilauz70ktFVbO8OUsCLsYQnDCRqmrD/eq7VTW5pPYsxA+/W1e1is6a8Bk4L/m/ZC3Tk0Whfrr+Y7nXCbSNpLpDUjcZ70d6lzH8jRfKa4lLJvRnfKjpyMCiCpJCAy+1plfvvsftEUb/bhWj+/1htJYTJKLwowUx21/Z+8weLrnL7LRQO1Duw0EGP6f81xav5zyXCYp+duWF9VSHwo99YcMt6GKtxfZ/W3NypDsnrIQWisu0icBcMLUPJNe7XH8EyL1i8cRO/sUtPeUfY3PAJQO0YRkJVVIWulwqjGs3K99MqE0JW/iwHGxY2ocX1FTlTpXkR2hbcOH0gvlIJfQmhCdW8D3HOE9XfmUpF7MDArDjqVwGCGV96QwMrJP9h6hOJ685o8dyakPwaXX7P/ad3Z8Ho0M3h3JrhzbNY062b0VXODaUy6P5H4MqGxeztjZgcvI+fckxnpEaqXV8384W9OtUTSUxKYtm78e3oXdDx/C2eqcL789K4NMGz6rLNBB4udQ/DnXF4z7HwU3sHcX786iA/kRDB4DoO4ZQGAc0mlg20LRAPmEt0zrWen1mjQZ6yej2TmmDQJfrELEzkbe1FgO45rQ8DwvOghcMJZI5JrABZ8/ei5Gn2+el6oQqk8bVB0fUWj8Ct8qaCiBTJfN1Sanya555UdSwPnUjqPaqDMH2442GEc9kKw6NBgiYY3/zhQHI0yN09rcvo+M8welJxmDGCBxntv0WWFuMdYjPOwVLoMp6P/jWUpfo8ZUomZkZU7uy948h53lRD54ZPMeK/t0/Fg5pERuUFgyM/l9884yKloiUkIweBdhOu8vcrDiJJiBzQCOityuvdnoZciMDtOLwhvILh0ivVZzeGk0ftYaH1vL7sNWiEppZNrXKbzC58af9qmSN1pjZeMOJ5JJcS3KE/JuCchg7QzRClxsLxy0w4and5Zxz2Ek2f2gqgbwrRd2HnnQFtJ6OceUBIDbfQAiwIw5QcUB5OAoNgIAKRFyjHj/2nKf1mj5cvcUb4ar5hi2Hsc0SwlFpfEYOr8ysANFTV3jysGC7zE3LuZEB+Cjv4a9Xpjs3jiy2M6+TWRVweau43PIo+RStzcXV/1h8cviGPi44gQJzehkPfZKx/Bm06b8STA/uQ+73lHeYNzY5SK7+XoK+I4BM9WOKbF6MRyZ6znFtRwgWZkqZOcuDpcreSFDHBxXhsVfXQOhY8DUTbxwu5Rl4x9XJ1pVpDO2EN7q5xW+rWRYeRkkg1VFVJSctnDY+BPyqe2uW3+MCw0iJq16o558mx5el1P8mdt9I6au4sqYaxt7XsC6fHtowjPqu1Y1Fx0eCys6z23NSVBkXcZiAqMLiL0bBIIUt5Ea/0VuzhWLt+VSluDo6IPlGjUNcEgxtqbwQ9cYKDLkaXhGaHUldDAQVUsCPXuN+41T7VwhfZ49x31uWOFyD89syEccZJvG4u9HSIs0LnYbWV2V7XsfppjADe3H/n/2LMmBuDUnPWHAWM00dXkeUYO7zuw844LDGpD4NoGlDIG5xOPh4+rfrYdV9tOeVXBTtINa7sWvoozaBDnIuD1lDsoWHd7oeYNGDbguSo9hfq3ist395wM1r2zxBfv/nhratNj+XgO9Y1xW43OKdP7RqnrNz+fKb8/oXPFBwBiOT6pidwGLvjRtaciJxfVsEdpnyUBJqJ+jsHPAi5+3lSD3dJu/yhB5nmTmNB0UTBxi5D09TpdoxJwmwUvBsk41x2K/L+mUj3mi3tpCyb9zErZ8270CsX9hJmDhqWqnLi/rqfweLlgsKD/KkFBkcgjOk8MtIceeMsXt2WiabFaj4UQsgUNHgpx+8qj1MX/ryjGqGtyCdie1vy3kxrP93jge8Hhe7MgOMcaqa8cCcjc4gX4KL/rk1hehvkpmKK42Zg6S+UFV86I+vtXNuLe/fSgO7V1lJD9hcqlktCQbpc7QNnPVO3+A66CKoekGf6+UwFBI0r22bNzx0pyoTwzdbskJBHwWYs3IljpsLQuiiYu8gDZv5UA2Lag8DsS3DQIUN0e9jy5b3VOmtMg0BDMhhLqsyXsSY3zj4yV0OxaJ5iopTZze58e1odnA9P6PMQhoY2QsxrSG8ytpdUMXkYTFNc1A7rHbhYK2+rggPwINszHTgiuxNGnHEaxJ3ygVpDpxPaMGAi7c6bbCNwzc47O5ocd4tXlqVLz6bisNhdZQYBgDXDAmOYIv77E/VMH9vx7lr3lpCHfNW+snWNZ1mk0Mc47BncYvGwFefoZjUkaXWaWd5/f6jdMXT0zLL7lYzDpSOp7uZQQWxPeGDz3iBrJMOukN1DHbDMjA4baa+y5XTjJKKEKykR9dt1K5/mJIl9rkRa2DUMQsAY59myTBSt5ESh0Mx03mi5GJNz2GIcMykuvH6lxk9IigjuLgR0q4QZPkGb/14V5xH44hID7wMZXbbwHOMGWTsH4O4xdYUpTtyCNWFBI8vvUZdHL+KisGHu6ISKd0CBgTg98y/FtQuPU2zN7VnHcbSmpV4pGNRY6431k08TYWNNDCbs9d6tSyR3b6oKQQQhuPUnG+KwdfcMJtz0NUAZxLEqo2ItHqgkXg/TdqfIMlaoBoBzBgqlkHit+aPrFDZN53NWE/kjcJG7exbF/3Wdi46vBVzX7LIDLiaGp9eSw3G0pg8LmoPINhE7kQGvVz9Emp0RsxXAoV3h9B5FWF00OX/c5qVOmoNfURnstWMNB7CivDWaYQ8Rt714u98ubzwC5ChAFHNjoMABLar+xem4e9sOBdG8pnUa+VPKWP+Wkw58ePueI/D1iGwZUICbA276aStoSw3fmdBvLAkHxvtX58a3d68xYJLU+vDfSYsaX5RqZp8oIizGLs+mluAo5YTP6ZNGHls3ouE8sKqpXndmDJ2TXuL++nT0cMwqZLKrpMa8A2SMx1kPUtumR68bDmAL4+zhjIGzfO5G8MxczS0BfiPMSRAq1G73bSuM9cVpUAfVkX4uj4OXhkxg6gfqLKo7bn11IJ/aIJfgq5AGzcmVtrDe18MfBn6ExcCDEmSQPf6P02L0KWpQZs+ZOcAqekQODyKR4p73x/TWq++sF0BOqzfZ/YbIK5w9o4LlntHHI3ZwLA8b2UCrD3IYkjGsi4I8vn2nAPkPOJizsdQmrevcMJ3WIOLIq73+OrRD74ISpJE4MwW3IcsvXaalk279edhQ2SefLH2KgtQsBXvJm5kUhlHR/4ON3KsilAwg4j6ySqJBYqDvBoDrekOtC0NqswOldej0FwqeBBfwFySD8P4Z8HGScwR9ULDvZKash8fe2bnO1cGthUv+H2mTndin5e7btGNlgAiMfhywp34c9ud9bcn7B/9AU/b/Uc/NMYMCvgnymmchQomhBtU0EgVX3s0zeUrDhQghRQLu3CYa3OMt+KkaykLI2GCm56cOhdgjxKocqu/9252vmjWeCiP7Il4l/JIVk3sPdPE9wQ+IItW6UyVzcU3mPFCeT7DlPe8TxxJQNuZyJanECeERsTxr47YGBwbiq+A4ubfyekZcwXDnWftNN+QVhlZlLEgpntw0/QC6ffA9cq8iJfGyohMzPKsvBeYI+NYFyrJoD/Ur61YjzhqoBtkhPzJwXlEOwDXhOLLQAUBuZNBpo5LtxkQEZhZcb2PyG+DgDGq9eXqGvyrxXS1oVP3XwlnsaPoKfl9TW21A4MFtHs6O4Pe2Az6Xr6aj0PO1Cd9YiFzRqBtsUbZro8sgLPGi46SAL9GYNRbp1vArt7FOdP8MWnojrdpQj3WYlCqYX4Kh3Pxbl5//i/rJNRnBObioCTsAwwxrj0fwnAFJ1ehnof+pGvi/5IAQfPThO/Gx5gHozCDIvLL2hvZfP0IkckkCmcIR8rJ35OXnQ7nIw3+C7AEgi6Q2gnwbaTnjZDur7/QBv0CkEFPmJgehf9W4L9LFqQ/PLwbXwWxwUcMG2qcTfLmi8G4/gQNyPQnec23ebyQkcXGgpkfIyYAEDoUrdJ87tqItYp7UOcgHzHA8dDbzvEsiIkMuGhuJHGoKCN5jtdHGbHSV+EMTF9ll435iBfLCE6Wtn3qMpXSU/Ld2uJJeq5fNQjQv+Lpey0ph9v8W6uadUOn3a0q0T2DPZ3R9gf/UA+kF3bVhwPXeG4eyZeKnCfYaCMIWBtg/qH3hoIOgfTmQ2JfTiRfdjvVig13wtyVjPDkQ5BHYhemaVg8XfobwZZ+t/JV6zt5GJmCqEV1Zw32ylLfN+xTKS+CokVoafAtEpOLVXHUUWjOvbiaF7hUzkEZ6/NNz72vsNxLOpE4cwk6YzdFmpO0bZmfgzR1mDtXQ2RZJ4GicstBNFo7JmjM6TucS/NyEufIvOFffGC0K3uH3JvcGy4kB236PJFd167Q59KcilqGPajFM3oX6v/6W7TGBOjheFepo81gFOLvCWewEaSfnV3kT4cBPOPXtGCFVgJpymex1/Wu4tVAuSgfAq2WnSVT0XMFRLQPUaVlB/olktfLeGU30lQVvleBCphRvi161ZScXd7nougkpa/MfM6XnSBWLd4vITZScznf0tFIrpSbuuO5SgScthY8TXYUy2fGjcCoDWC5GyTZNAOgjd4brjlxbxOZaNMX4JE0YbqdLDPc3VLUpnl1W6SY70R9OtNlxZlUgFdPgtylvsEiGHHXgvOiFqWwRXq2SYMvRJCOHAipj+LKl+NAsfuM/GFcj8gcyA2lDC9nAgBiiISHhsy1HYCrC46KpozqO6ibmIEYQ1BlrwKtxELFeRzHpj5tWdrXltNFwNhJQe2xOd70rluvQ4PK6T156s0SgEVUKgvYygWfqLPKe31EisrbH6nbd9QYBDEyg/ZMYFi4+5xafE9pk7F6R7L1pH7fpqzO9hzxEncnrGAtGa7EwPWlTmabkUMtEmkFUqx8eytADl9oTQf15d5IcHaexKGzZPjY8jQvQ4dbjlGCPWXfORe4L7QSPtnNzV/F+oXesuw1xo2d/hXZhr9ReuKkX5PyfmVTMROfzmzoXDnhCTBKQaBqvd3flX4gcUw9wEAh5RKag9qmcltEyFpR9NDSM2W+dWaEulEIVZ/A4k9pvXyA88EgG2Q5YORQvSj1mRU51lLYkb9bH+IPGEfcypmgtbaiEXSdG2sK6dcZguF2/y2wL7ypgNPccxt6FwnjganNLcMVrn7tDRR+xMUbLhLch7CadSc5CQL/hhMeFVDIjEtjp6UafmcVr8QMp1Byvg0u/RQSOnxbNLgwcQsJ7ACZU1DYfG6HcoWWmrz/bk7p5k3ZMg8eeJJvP8JnSN/dZqm3TwkcabavMaFoSnr4B6bqEJCHTZPjVrHx8WXxrNYQKZNZ59U2ei22YdQUYux8hVyXyKdrZP9lc2Fd8s/p2EKkHW+fl1LO2ZTQaLimOjhltVEPivRjC7JepuiGhxY9kaMv9yujdry+nGvWnts1HTNen+Cx62DechaUaXICBnDoqokFWTrTcsUMb2lcLJTTNfd5WGr63NNDy56dK+JfNr0EBELQ6pHmyCedF035F8yFszVHYMKg2BolsvtX9rQd6Mp7qCHS7nv+JPpZDMQbINGbiI1goP3mDZKu4xTtQWQGhZ+/RN4j81iLPW4nC5uEbg2lsEDBsgb9PqWnNg2Bgea9+VbAK3Ewt69LT+EKe5ieQ3IPFeD6RAQLgG0H9tsik6rkWR/mHY6JCioKHwVFFxESDOT+sGZQqLSSYkH0EtUbTk5S2VxU3zyocQDqXrsvQaxUfKfboaRK1VHSCy29ys2ye3ejZZqCyHB8JUHrIyeRLKJIezj2NjY54XLcpgDmIMWAul9fDouOxaSdJzhEFGpgzMWV0r5GmB/xUQwr3WbZ6y9lMWLYW9zvOR5t/Bof1a/7dCx9mQ3H8oNZ6bDCu2T3Aon0toC7Rhheo13TvLZsSpl+DkwBzgqmbHeYpRFFd+rlC4GbrrbgIZthjhS9LJX5k1kYneMkjP3CSyJnnDkkfsoP4LkipNzJTAi8frQc6k8WjxG5K3aH+MX/IyDeJdtiX5Nna018vhXd8HYzpxrajM6cn0vHZi+aEd1CZeI+BbWV0RIx7Z5KI2xjhB5s/KjPYv3YsMXiid1xSrjCzt3xkuoWY1zAzHxYXI5Ncrak4/xuZVnPLb07hQD28EgSPnAzJqdJlM2Ovgepl7/1rK8Y1DuzXFyfH7yQQLJ5eoheUI2q3qUnYVXOjyv8mOF0OjGsWCVGbyxcnXs23YqsdwWboFZxx8n1hvGMgvxi7qEkKpd/DMhJFpUAnkgYquHpiMhmLdnm4wzpVMz22OeU9tkFPkdLCaKooYCw6RkJbk2qw28dUaHZtHWdgdrU6fHmpI5uq7E0kz8u3teYYBEpfvHoH+ohSEKBG270PyNK3E3aoZlJYDISD8uemIALW2Mrpig9p8pteCOdmfsxPDa24VHf3VBNoGQY8i+wJlNKudoZLvtP/cYl4IC9+MRHxkB2Cqc8NzYWQ3+HeB4qnZTM2MidXB1FPkm5JfrNtj5Xyd9utUlk+7RFB6OcLK1m4px0ORjX0VbKH/fj6sqs7qhy4SKX1L85N8nzX37cBZxCpXW9ndeOeZd1luLp7H9ex423KaT6o+WcWiTUCA0zidmSQ5yAIbrqYC+TmlBuQg5EFE3VXcLHCihG6j973P4SE2k4tc1N6MFVSKWEcm/WQxOk5jbf67+JvCTn5Ue3/KBg+qGAaa3YwkwbRFztbzks12zfocWLgeS0WQ4onHGAh+mSUh8wjfeOcrGOHPfFyznQe3aoMTcJyWK5jLdBmV34x/sm3OfawsR0CQ1vv6DcdPSJxaJa3D4iZXkF04/GmYBomPQtVQTAYk1808ghS65B9cIYZvbDfn2dNxwUHwNDkM721nTXjTRI0ocFBOKBq92zD00Tch/y082Hj2ArOow3wIAP6fth3VYf/lHJArLR4VG5H9nVzOS0JJ2igJg2pKRVixJPJHJWK6+/NPWbtUrcqaBJ+kiZp8Em6aXDD4dnKDAikv4bDTt/uGjR+SeaDkL/YWz/L/RACWbD2R/uvYcZX35wFPf4ZACUwJ4LcfqprqQX3k7WNqE6cKP3jIMP9rMGUos2YhOuEFkHFBkwkX7VxHicoqhtZjK5FQoTbXlvz7K2pBdtbdM4EvRlU19DBwExZbAiQWxGNsXvRt7Ukw0f0UU87pcHZerGJaCAJhuZ1gY/h63jXUvHUlnvGIc9HG8frst+SH0bDxOV3f1y7wzK/b3in0SQYPRars4z6qtzjTQn09Ph+d0VKEF+mAY0NOJcr79lHrwyFsjiZ5frnM21T//WpqY1x7dj+/2vl/Jj9DCvwMmxiUNlZRfEvYDCSb3+sK+rIcmrfLKk2N96SJOxUxPbKerSrZALAIc3HfYOXfw9XLIRJfkwYYejA/yE2/L7wdKm++H6wMppHXpQcfixCGP5q6HA7O6DGd7uO1aC/axb0HHy0gXjsaI135nZavzAwKivXL1tCzvkf/a/Yy+61FTvYa5+/hWbXayEvLlngOn+IbZ4b2TTdwiK2EdTTBWUjVQKSPK8IgneRQly+vjylIiL3fOgGu8cOwml704aN47cJCBJoE65pIxvCpr+vPpXYuiL4VK/re4B3Ay9tZT5x+L8pKdSrPUaRhfn3+v4/PRdwOzXTzRS6yzqwDKt3fDDFPDC8cZBQ6ibUDr33wU0FNshnzW3VXoYEvYcl380wDhi6QG+hQH3/2Q3xGynm/JruSz6Hug8ONtrcWhbp//XsqgzN3ClSSGS7zdnwTwBSaOhNToVBFKd1AoEMKPRBmt1rNahig6a0Ox1sitwY05suW56DrlB+ppFlzch0wV6qK6NvqtDnoMT7FRaKG5M07LYaeS7czVxoxo109mZBzEZhnBiCkwY6wxTaRZVbOGQcCPWnMYMkny2dLToCXJwh2nsloRMttbqkFrn+W8jOCaegsR58veNI2Cgwq0m6CYCHPaf34AsAnwC2NPcS8bRBU5NCkUwX+cmrjeNFVc1CFUKt8REC4Nnd0K0oZhXHkZ9eHc7Yn6fRAlU6DHu8mvFmZHD2f1hHZlZsF0iHLYu6DVoKoUUzGH0PV/o/dvVwYAibu8uF4f8UKXEaS6gGzyn/Ud30OXXJxBj1e8cbaAE97cU1BGdEhsJJoMeC9ypXS9nqBA1BUc9ASw9rP4HT2MFeqWfRmviuzthX38K6II4hMDMGiThNJvgqSkKqmjfEtfnSxPoXNJK9cwK+tBY5mqoDPml25+qstUVwDDfQ8bt2KoRlnpuNf2aj/eGlGy4bFHA+r/a5kXFXWnf6qemhtXga3xrYqd7Wi+7gPf2mzCkPE4XankWsSfbcR+od3kXIlwourt9g0+d1vWAqCz4aVMuoMXF3rL1g/VsfZOfhuoU051NUEu/3z8T0IhL8KCKuCzMuPihJQs+H/0GxGfoZW39jf4vtMEMVzpHCYLvmyxtYZ0+T43Mzr8v6/9Vby+KGjfdOFOCjXYdH/pAAUtvvpNIUEYXCJO4yffuUHzCRvS+RhBEo8cZQ77kDBSxYIZoEqkRvPctsL3gYZ+2NzD2BZ4XkEgFvHap+l/+h+8ZhIYLGIUwM4Qi1u10jVW5lw+RUQabmlBxb8PQ+LrsZhNpUEyfqgMnxrlWNKW3mqckw76gVaDV63+sqnwNwYCn564MQ3CkkIIQzXrVjDkG7ImIlThjiaMy/FRzEuvsT35nMAzJ06My5rVMGPqNUcyqBmFM+f/LnlQQCQalJAQ0tUsGHY0+l/MpR7rnEtuCCGttpUIFCTJMcpNT0AccmKM8fCfSZ8U6lD7KLJW8i4a27UE8TJKQofiTXb0RPmIExA22pWsDFsPx5J11ll9aKswH9XO4FlC+T1NhxgdRo2gONltL3ZqTwfVY7Kr3/p6mRSJ06ue+A6Xltv5cmA3gMN4y7cJYpx538tG4urdTJAe+9/h9QeJKWa5LBK5iPr6Tp8N1/qjDDBjRLE29DHkn6TJIPkaXJrgwVrbbCjK3TFhoDZkVmZdH2Z5K88m0Q33257xbzvoSY7SsfOG1yXrYPTdOlz4xnZB9qGQfKz5GbwW6/2703aiNBj80/iHpO6UY1BENDZ3y5XwCALfT+NDuN37I+bpRKb7hbad/ZKZnplapcV792gIbkB17tVig1+w82VUijeGZwdLblXvnO/n6vqfW6J+mj11E+H0Y7algEcn3s1N/tObTvzk+THoxoIHX+6cVtx+9qYK0Kv4EJXQbsHagEgunFZaOVvIh03ACT0vShWruOmfQPxJ6U2Rr6jknEHT2hoQrWVJlFpyPD8shGA4PsTcibk2uNLo2XMEY1xBDz2mcLWjUldcbq+yU+0iZTNpTNSTOYbcMclOnVPqNRXWetTorIdVpqjgrs8uhp08WYD5C3IfVHnRPjt+MHRlxinYaLs4Iro59KFvv1Zz0XRm4IAo72pKv9yvYbIT7pcEs/LPYmmc+5ZZdwIl/Wh/E3CwWO/3z/VVtvWZvuxKzYKNMwrHQOh/LMZE3Hqb8ky2qLy3K3JgHGmL/xTBdLjkuwO4wc+1SthqrRUVTn0bl/dJzH4vWfAchbeIyHC/fo/CB/w3rxAKB0r3ixmy8BqtCQDnafNxZfJjNiq0M7DTDBdcQ6UcYBgCFaAYDllDPdG7L/ENEfmo3QwpxsbEyW8N2WAtbaESBXrJrQHcWIWYaHGixq2V+njWf5iXr+eU5YQcW4H5uIN4UMYz5QRgadkaRLjDRq0u1MCDdhhGOFaA3GJwwEif3tHS11M8rNS5ZA3OvIYzzfVN0c17nc15LKlDL9GcMYPMzAa+1FLQ3Cwd+IhUvm6PscxwSIhM94u+w/I83CwtQwWpEg6UrcALCud37KeYcxB/CSfTTLBOynr+Dr68EtZqh8RuAYDhQ9mJEBAYNyKNitpR0AWmdtrbTJAxaDDaTzCvICZU0Y+myp4SEb3tUdOox8bSSaVKqguOlirxIp/tWRPYDmBaA5wogEJpSZgGG6CoGUAUsFDw+SDJzjzHcnzxwf423iqUCYNhiEDco38J4eaWYgtT98iH/W39uKeYhTCIYXr5gQOHAV+Dxy6QNEpIX26V+nZm35JIv2nF2GhCzjf8g0NINBeveXr77HylVEhrpXDJ5t27KPwoynxVvpEyRpGvEeSFP3JzhJo7nkiHvyVYhOr0SLxFzoBkB4knxhk60cq7hu2sVGI4fKLedeOIA5O5/NzXTASix9FYvdCWARwMk5roF+5KTflFJ+O7hJtr2ZuXo7LkGt/jq/lIXod3Xt5NPeTTn69ThEDiyjZphxECkKQNKtxXZCb4MGD9uYnBE0+H6/DS09Tzzq0w5Wp7Al9HNR9mSnB0piDxFFW4/xEFId8LAQ87qaYmZZuHO4NFwZV6xPEnx4gXOtxpnV/67u73I1PAen1Vp1ruRG6/XyEHoRhIQhYOooYTsS/6U44SmGWYddc2tzpJy63vlaurgFMWn+uAABgD+oWrBCJ01eR1reg1Ey0ppCSwVQ016Gy/6TxuWLL4ZIDHiXXcT3EjPNGVlLUu0QAf3tmfZkqtKdegVjftg72XM0vpQF3tFcrdYZgYyduzn0xTWgY7K1X9TFoCjnv0/KpMjIUO+HWYOufbEjKHrC64RZDgQdz71UxSR9NdBNMTr2w8f0sBPlBuKe2CmfdGXHexiCMs09xead1YixxpwKJ3nKQChAY3dSR1dqmO4Iv7bPlnGwqzZblBYR4eEnrnLpmjwzw2Q7sMEDkN4bHNYCH1dcpPE6s8S1WuBGn9GvSEYMpRPviWlh3v+WGynBT9lMMtDQgPaEH25PW77buqzdzZR/SHaQa+xAGMFB2KtnSjn0wVXOQmucHxJ0sUPciNBPPpSNxseYNa0VoKbSxF6g/+JsS7vlgcZWKD4PpTT/r2IqBTVdYmSW0pC3YUKoetSInX8FbyzWfI4KYWYB69Bte/YpnJIGp23VT43UKQ5MVhT08n8k7zM8PTaOkgLwryzxycFPvasT3yld0e/F7Xti0wA3PgwOOHm/ERqfIQHBpF7RuxsQ4Yw/t6a/imzwtVUOgJmYaLoF0PuiJJbRxIzH+mJv/FeKVw3MzM/iXCNFStGxK5Vd8dVAyzWdg9n/d+2RChdfyXvNlOck+GD7XnqkG/ynW/kHjzP1NZee1LSQNWPwd6CbJ67UjQkTA62RKGL3GZqxS3l5r5EiiQTo2GpE+kilYNT8TS9B7zJaAYJjTl1paNbvXNdGwDRiqA3da45k0x2ZUgB9jZZGiLA53/zLKWiapnooBwr/W9Tn95IXefSfyUz/TiavJ1WLHAazHjigvnAaVDSWVYcxwXJ6FO4OeSZxS60VbrVWcegh2sGz+bmuIVqVmUBBCywmhycxYBhhgGmvDbU39EjUzmd7ZrTQSOL7Fa0cz3L+q1YCeY+EZCYzWLNcZtJld+Gr5rnlX2GbVhuTAwJ1dXtTt1NG/XJFxBwhYq2PmqesFCOxpE6dqRXfEVSPSxiz7cE5cSrOzJ8QOG3ygioo7aetU9/yPcRerWSJImOlYYc2/M0Kmofllzsi0uZWFYaq7lmu0tszPX4VTSHnru9Uze4ixmh8f3Oz4XTWtXBByDhu75JkJRnK6QeGzYx3CR7/p2WKURDoQ4mpem4N/9ZmCM5yh75DHQdTGWIbjGy+8oraSAeg3w4YA8/O3GcUMLo76C9sGCBngXvN2Yy0GJyaIsoYa5kSGB/2TeVUqBpa4MNT+rzg4ncRdSi5I0e8FjCjc48OQ9G5AJ+zol++5UUoJuOJQ0rZi52MkPFRrwoE6zH1CYerEOwxZQ6znR4r2SfXxvbVMgCq6vlAL0qzXwoDs6A1f+Rnq4Z+Yu1gMEiev88CkJWK1hxNVURISvbNB2uke/JLI6cnifiL0vtk2MR0m3nc6kT6rrO7zybXrSdw+UvWxZzXvomVdI52/Zysbp4rGbKy6C63XI5Z+q4Rzl3V+P0LO6SO2qWPx3KVICEDB9rKDzQXS7QYiYA44hWgpyMNHSRk6rBDGbmvcMdN06p5sK7qN/l3sQxZajZ57FvOlt8JZ4GhEHGMp52X/c6KTUct4k5tYJg+baD+MiuWenpr5t0uh8iCxPblJnl5tzhqM+The3W+vjfh/n01cBpsDmph8Q+K44WENVeHyaW4D6tb7R0l/d6H+HZwag9UcDHDSSbp9pN8UShDDjTjNi49Kc7MmWEv5oJV1vhvdezLPikNfgmnX5mSTnlJnhmjBiPL/jr76aOsgHzE+NjMrE0M6OEQeJchWZVTTydUnGV3iC1fbteqmUocgOiKZxVlO8AUUwp4cgO8Kb56cmBnkR8hgUWyft1t2GhSccQ9n0ZX0+gVda/0nkOvi5+OfgoXCKD1vdHGPm5lulmGBDm9hymhe0Te8tNqPwYLvYNtOmXaa8IGmBHtOz84UH06SodVnDiDXW33IeWCcaKPXHj6iU3BpTz5UjQDbN6rs1ddGg8qBGtX4Ct8IGAPYcB4DciicEgzB+lfJiTwaS0OL9jTr4nXXJ1qWaWn+uMoxn3Iwrd5RtONcTVYaBD0qbPjFBdonz55JPIMXTI/+d8jA0DIpElJ0pqD400jroot5MBzW9mCS/seB1F5C9ii6DYsUmiSFnu14udn1Tfg2emufRmn8ShGXl7O0HG4RSDWVZ5LK/QyeuBdr1s5UJuvLDE8oMwcanA69pcFtDeHXv3VuL3VxvIdX0ugLz/jFkpZJ33DHWmjpLU8JirislhXgriuGTCteqsd9LStWI0zfBDAhcJej1ZgVzdHpR6uYDDQYhqYt0w+nZZHvGH1Fj73JL663InDhUdlHIlNG7YQ2cBL7UqcIgILXQiHrTQ5IHqGQAbL+aTyaTBRlFc5TZV2IdQxw240Om/JIQ4oGq4x4bUor2akqA5sS9gaRAMyTMoMw6QFfLDDjuSq7KciLY2HqQ0MqkyIii+JTQzDEKDAnei4NuKHwfH6SkWhqKaOxMJ4QPeKys5KBAnsVnJOU8d0MBxVDbr5GxWsTEiE2rLQZncM+37k3lmsANc5rYbLq/TP/WpOplGs5i4eQyRDkvbXVixqALndHpbQ8rl6ptgKwB61a/twIcJIhrF7jdzjDNuybyo9jN5wlHb2z0jmS2qyfkuwqGxw2RT+6eNPVSZlnkEdhEIlC9+gVqiSg8rf2Q15qi2M659p5bOONdZDQ55NoAuQmDgLO9xUdd91nag400VtGl/lDBm9Ka4/hkEgkfWRrpRcZizz5v61MpbDc6ous1ZbcsEIgAsD9Ik7QfUbl91g050dFKFDzIeJueZiFqXn2QHvXnIhkLUGc9Sbm436F5PcshmcojnIY8XuzL208gwK4pn8bhaq7RUd6i6R6CQ40oS8z9cr5kbG7LwxI3yg9dhSDa4tuFcFFuEptYIdDSvGhmlVYnF6QMSZDi/x7DRwA251nRQeEbwnf/RYtSs+UtWpAh+MCeGjIBmqIfuWEbmN1ctWghcA3vy+u2hsR7PS2XSlcinvLX6QwV+Ishf6RBvPKq5o+qhJ9iwucRLpSzoHkU3WdefUzjMBOM4G1aJfnl5RBNzhlng5VR6jWhcHWE6Ps/yQeif+BkEV/K7+yumemkt0+Dp0VonKNbH5LlR01LfMWzGtRy9V1mdGk6YK/jZaJMM6P6F29wikdqgGApa+wtBsWJIIM1xpzTk7sQg4pYS3Un93/chah49EtU4mSQmDspHZNUzZoeiztZZ+D5P9lonZLZ6kvwVsOCdQIbQZJWrBB0VYulHMc5rKIIEB5440WG0qHRHUNusdaVgUkE1JUbtzUCIPEcUzxahmBcc3w57tBx/ulMzlItxX8+U4W/7ZRmOofe+UhcLPcr1RqE5goBVQSmv9KI0sYHNa1GHz7cluVzb51ypeLR0Owd7z7sxCye7k3VPFuGWOI7Y7DjcwPWMRMQgHXICs7S7WsyKIea+vmdvOuw+yXdEksrgkST7jCMHbSVHV0vq+Fgws9O+acX/yG4Z0H8xdd22vXSkAVQsRsOXVbnLyNojdHnG7PBtxh+kAJqmBpFXswMnKMrx8/ip+R8FqxLlsjc6wq0Yfk4JVLmMfT8Ilg+UXSTSCrhqoOczXRHxULB8KcMqYrjQ5JnhDQiH3zeYd1DRccMH7fRfvfiA7g5/FynbMVuPZYJVeiNHfZ3xyKt2iPCIyiLUjcpRRa6q92CdE7zTPpJLNGEMeXTaygBuhnpSTi308EOWGm744faocSMfe0HYAR9nIePlvObo1DrvYymdsqY1VJrJRxmH3uNvKpWNUm3U4Ii4etwiNFiwHB5FufI83m2907fUsje0bIKS+nNPaV0Kn4KBuzikdRQG2KwGO1AGRrVUrrUvjEY8JECBEJqFJdYxZ2er3Dg9Pqwh7lMHPR3H9PZwVR7DbvF+2lyZwUFosRpOrd8TfL99eFrOZgk2qTzZusPiA1gFXLzN5PBCxHZZWFHXpbtqXpu5QT72wah9z9BZtv7WnNZi43jGxD1hc4Jn+vTulRQcWB29z6YusnbFVUTQfzYnIyXQhScORldkaWVlBunSW+QawrS1iAD3qtMYUhVRC2ARAwra1aGtxeQaH7AUsGkg/jxJwr6gssTSjYYUg0fDNmRRyijbVENlCOOb069gN+TnHjFVE0lSSWu9w4vPiM07LsMgDRYMDmVthsF97wtuaZSVqm8uiQGBWDsOyZB6mkQFjV7HIt5lQRWj3xoJksos12PNxksroaa6hgr7jv+uHx7qoYF+2bR33788vOCiWd753G5/wvMd70M80bp4kvhNl94YSupMNiLot5JHDWWXk9oUyCJWA1AQXGorBuZzktnS13rpdl4ZncMkubtTffSikx60pXVjX9GAMHxMWJZ2uBQwhqMx/T1KUBdBCY+8oXxNgWeWiKwO/Ocbuv8a1GIxulzmJaymIhTFB/fEPrNtJZ7OfvcYAR29a9BZQwhgUeb6vp6CItdRGzHUZ9Sa38v5KFsanw4t325Hw55UGxlcVYzJWG500J7CfTi4hcXTvBJ+LOzulu7LlzhbqgOYvB6/FnEYcmHCUVirmWZe13oVVx3Ojin6nnKjvJOGp+1G97HwqN05YErzcuLfG16h83GtyhQGBUyHumDNldWpVPoZ5rSgxtsfmygKpU86NKeZuLY60tI2XCh8jLqRfXV/prVT3vGq3JrOFjNxiciLQflRlH2ETj0sUnMLVQzZBISnN7n47F4DYKEBArP7DnP6SMaib4/XPh9Bl/1wftC/GFZlfk91qUinQMOMsZqPgg1plwCBXY5jIsEbJH6LT8C0O91EZLc191SLv7mfCIy/pEawF2+4Utgo74i5imny/Jg/mZF8Fk068xSQ+y6h9pjWTWJRzaTspMDRWI1C+errjahWowCY1kOcQiSIRD1XoyYLr+FzITrC3Nbksyj4wbbtGwx6KZ9BCxGVZTt5gcEk+zCKZ/UwwuVJ1Usj7M+Ot01Du1zD8Jxc+97sxcZkzeyWSxsizE+DQ6M8JMPas6ce8MDvnFOrecwLEIGs75v6ghz6jXk8zPaK7eWUoiymPd9lUvGJztiY2vXcxTEBoabQb52Sj+DeOiljSmh1dw/Vz9PMcfE3fvWmxUz0HRYA7P2HMbs3x2MXQuum+mlrGnmopcDTvv1s+bdZMOl1IhvePHdLki5XozA8mUjpVGrGFa0vr6lDa1UV6J8kgPtzEzrjCk/NcUtWLHebn+p7jPz6n6+TslqvlPHzeOTAenX5uRrVV0nfIIoTnNWqUtg9dRAvYCaJWL87zB/yv1ZEN5lyYNfCPH4Ln+BzaFJ/8EfscIa8+mEfOKaHPOjJy3OEjck5TfcwGnNyHRKTPvtEQpdLN3ral1+OkqvcW5GICW9owPhIpmN5Fa1ryL6XessTBIK7Vwbped71RoK3+RnBBNAEEMQPLy0TUFw6/JfASjE79kplStP/bMcNBmaXSuAb2/tvur+b4f1Wq8Jqjfqjthq4rKHhNgb+fFB019MdgG0Od3X8yxXhswCB4THM9R5r+Urp7RxpUlNRtFmEZ5nGM2G7+6cLceedbvJIRfFAkJaKAsp8bzOoa0yUqetwc5EIcyUy4sA4Gymv7XQzDt0t3Hi7+BJQP8uO5nJ6BelY1ljBTOs/bH3J932gdNCJe3qp86AQKbT1jdTuEtO1hmTd9IF4zyCypUdp1HEEAXLECtNXppzhPnX4UhHNkdaefoLsyf3vTpoqqle0POZzNwZTRXhU7OX6t9u3qNouk0PihPIWEeQ5Ft6f5zp0AMtr66RxszIBAEYJgY2mDqFobVDKatgCXcu5t3+9eyqa8crdwXDmdGpF7h6dv9WyDdyT9R1v1zr5+gJI0kesctlgfZqbOlPsh/0PXs1+Jg8wbUY2zOqyUmhT4YpgtAj37ZbnRHgQvGG4wlFodHuhRcCt9lQKKy9FOrtvSDWoHyLOxs6BejBOqtFvF5OmYyknHFXT6UieenTXy2VHpVTHzDzb+taab8G39z34RYmyKUl7XQIlKw7JKRQa1zDgcfbWqKPnZmsgoO8ckyzCrZ/JMwaigPUjJIRKZ2N/kQT3TQ5igLiHcumfZKYEHZaO+DlCK88oOW0M2HrEsTpc6vGaTd6OoQCSz4idtQPcdxR3Y7Gg0if1TnaWSrKcvomsExDEsAWZdReJMvS7tOZPoZKs3Zs3AZct/4EU/n3ThRoaKgKG+q2QTwXRkWCnowXZbAjHo01W12DTNu7abLNjj4snjvPJ1IiEoDE/sS1iaFZ+euntQ5wZ8LW0eFMBMB0wqglGQgN62jPknh3pg60fwKhsu0gxuEWb3zqOGtaG8npaZmJfgn6p/Ek/k0HMP8cEvM+IHWe/iUuJBpE3hQjJH5ijt9ZE2HBFOE2F3BxhFN1k1BfJ7p6bJpcDrizgQV7O2XmLZszPy8dyb34EV0DIH7tPphzpsQsEOV6Ejx6B/kwBll+a45yELF8sp0ET1+QeC5sgaJIgEJtqKjMGbv2Opgz7du/SZDrbOXrQ9d5NZSbDp7imqUlInY+6xHhioEiS1vy1nK6uITPtT/6kesYYoLFSubUi41o7redLJq2HucY9VsWtusR/vyypKww3hLB0vyz5aH+qCOLikBmDmR1+cR5Z9EVDjWilOaGuF6vwvkHL0bDSZDad7ELBUOUvhIdjIFKJXMTIOqSub6UMJk3x79rUUVM+Bw3MsekQgA+sL+iLM+WN4hC/5bTxNQ/KHjimznTw2VaomesZrIQzOyVAQ+2lCB4xaT/fMffN2rve6wxaExOjI59VQnbhDXRfVVBmOk2eqkKt1KldqeGmx44jiGV+5hdmiBNguCe2/Ivb6I8akGHePaNTB/pY6kpcG6Jjhcf+6w3jI3QfvrYKSa6+A6mnGSMrfZx5nWuZK/6DrFRgwqVnRl4iPlbYZSLGlwSIqPRuj7X8KmeMJv3I80CFRmxxxt98OiWcHHT13tYrC1kLIPy99b18ctkCQA6Yn7h9pD2p0lCwvGz/X79yGnev+cY4PcQJYX3JU1GEdFZExzuh1/6/flSgVRn0MZ+rmJx7AEfcAjraVr7zNHJi5XMrOlh4c3eeJBRWc0VulT/WTYsrk7fsCeli5Ti7TvRiAO22v/1Z3apbJjy7FgB5rzC+qQruJYbCm3WfccQ37vcadIlVidiVYwqNLp4sxdiUGT8EWOqhUtiisSmbQhFuOKP0uPjTKbwDOEQJH1XnXutxjGTDxrIVQyOP3lgXVX0MIaHtNwHJPdPKsIVWXX7etTdUmQ+SjccrG4f9Hqp6zUdMhTpJSWkI+qKpB7OdxeckgOrL5QzwiIiIiM2FgGN/oCYYAAB6HdZoMlzqe3UciwDAmEAYYJgGCYAAALn+G/NKGAYYYBTAMWqqduSB8PjH0ZgGK06AGJI+YBiEkr4am92bAMMMBKWAYYYCfvVXm7k00PQdUzSUhqANGyUqscqAGHd/cIKfjIRvp4YpKNrZJhm4/aeyeIoXZVIRbTF5IPruMe8+PtW0DIg6qTZgGtpMH7JI2C5q613XRJLVPp9ZFPukG3c/iQBjpsAxOGAAACbsAAAFc6v+lNDh7Sps3udu6T0oAQWG7R9A1Elb7cpVO41GqkE+aW3nZLmrsLwVztMoCI6w9+j/QvzGzgDyc4gihlfvznwIAF8EEmCwIAktX84XWCkKbkF37piOQb221wxqUMt5xgc9pSaqBjxcCpT7cQlb5lxm0/2rxWa3JWrQTcYBXCxAvVeYGQc5plMaTPRSa6A/X8dQcRiyfraZ87NGWvArwutEGicUrlUH+ElXesLteaVlOXbQq+ptEyaL0DvE88ln0AXiKO8InMNr/raVTldIDBcT4fhQ0IwFXTd1/Spkvz9yYJn+/8AWyKxjF8Awa7UDrUuTOOpW2oC35+GSPH5bdg31Xl3fQmSgSqTOBiaRVB5WTDmp9qZ2CnW/YvfwAG2/Z7UacE0uANCegxJAHdbtaI3M2MadEQE0TX5O4FbuiO4OasDOyZqDXnNLjM785LoHQ7ldWFdVf+41/cYVDHYbBoP7j3VFdUqn82hus87hQEcsybbCQ1Uuwl9ldGrcKrqi1P6yef9c02lonT0Gm3eBI5jkYZWR5vRyQcnswVxGaGm8IZRpM/HncGTUDAtoHYbBTZ4gv+McBT6Y42cHLNky/ZmZrGbdbBVa2iMAITFDIQpjuhCc/39nC3IomvJuTD4hBpvoqDJ0GQn4R1k3Jqjg7T/Mz6j2vqqJO2E2/8RvWRQumYeuxEYx6w/Xd94476oKW2erlpdMmnfKJx/bJG1p4Fy2M37WI1Qphmu5xCENSf8ODIfcCJ+MxO0ogA7FEb/cROhYqsnQTriEp5VS/S61w/syEymyfNPbl3d1366oMixUstiECH9Or90L8zMIA0otIrC7zHUD3iebyHfc0CdWdiPSaRqbaBp8M++zn4yaagfnzxSKi7CwWAhJ2nDUCBVG8HbI2GI66jrFkglLgfXrTeeU7KU32OZrKRXgyPL1k/udaa8XzheXEVxv2XPgXRoNhGxJhZ+zcgTutB9PIHfbZIwIPtwaiDfXZnuIXm/Udx2hN4i/ZnR/3ZslyJi0NkVUW4WZg2KyULeXByhf08Q9joC2FnLYyCDwN+ZWP4S52xNWgtK8U440HSNV3VcpwW5XOh+fd+lsl2IV4Qkwx511xQdaw6/yOi3NdTq+iWT2JyxBQ3Ou5RYySeowFDCi9NHzxRV5sF2yKEUPhaqjaleIz9ztmzCrS8yHHc8iNfH0c4fL1qB2Dy7YQhZYUZZ6BE7n+iJyyfW/bLi8WLnm/imJanrQLvwG2n2+WfdH/vrdNAGv/dG6B7RcG1JzwggCq4kg7HRjmQr+ZHP0XtnIr3KrJhYC2+VgSmxFh0bisKpo1QQL0lyQ1XSffCa7xnA7HcZ2IoNydz7l/uSG86q3rmpNCFmsm4Gr0L4PY4tIn1RNiHqRq9JDLZVBCw+X7LFOFZtQUeRy1Csbb5VN2L6re9Tddeco8O2Eg1+JoRx0fGm5gboTeBWwc2hMF4/hZfDY5uwIITNUo9eR/nQEfSDETTgprAygYfNXJ+/fJd1THmuvFL8/kjhdBtsmk37O4vDEjq82f62rD4RBS1704+h7+rCbjTu/vdleydMHOtU0ftoHGwhhphrZxcHJFoKRIc1bGM6Uvz/GNHp98Ma9OCLVH7mK1tPiNqxqe/nlRh6KlSHw5/QblMsAjbwkopnCrUq4CdYbE14Y0yWDNrMFwGriveHCl3/iVWgUFFSS8Dinfv8ysa5O6pCp2G9+ivOy2O0cxYU+3yoF9XqN2mPnaqihDup7X+SrgzdkFlAQ+ZogiSOHhgbl1LnL7AR3TiJ5888N7O++Yg+RBW2Zm832/lUeNUBNqdjEPDamrZXWdDBccRLSf35eeRazZAmEdc1y130MjzOpkgor1e8nvqhi4t10h11q6vOquA8IGNe9ZHlog2J4Cq8LPmcHxXn8UQTS6YzKHHak23M7BzI8wr5C2CtYzZ5htunLJ3X/KaExCp3b3LMPJ05pF5oXq306If5V/ErqZOa4EBh5aZW6+H0jrU2htUhP1adFmfKaXSctnM1bLs2KtG+MYzjbi2P2It+L63ixFX3PF4JGpzc0XHKIlDYhjtt7HTogWnnxW2mqV2l4xXQsxZPuJgOTUG9ld5qBuLv07nyp4aFr4x5bLv31QjsOk4dyn2gRAvN8ySwG9rZixadhhtOhvyySIudf6yoRY3OFftDLqgk+Jp/bUgYgvC4fez4k8288089vDszgC8t7rjMAwY4m6u3Ob48+baTBIw01d59oISTkoEfDBz1/JEGMVjpE66MoYTxt33H1J9YK67IIzhdIFr4oyFYSxrqhZAgwNNLFaC96pBMz19HHrI6UqP2n6PJSN+riyTpoocWFJ42EmWV5nw3JLt6pJOTRaApI4RcDoHoamzD3ESAUp3IuGm9v7x25wR+ZfnnYBWzbcQ/pO4srax6W5U09t9iAMj+P54qu0e+dacG256ljCPDtpzdxJWo7y9W1bUxUpZyo/pvUrjGt57WzNFhBr9MxKXeY0c7NPelyJO5NOLX9g/+/ne6aqiPza4x3qXYg2BezvTPZE8bQV8h1xIgJE/6u2qQIpDHd8BmIsyoHmoZLasqFT/4PzjAO4vX0CBXDZWbZaQTBupisxbSTbQpjFJU1Xl1p2mljxXysD4hNQ9/3UOCl3rum91le5Ghsk4r2x3RnQTuAgvWBLbRmneNUsZD+aJSPTCfVO2/XOrlenLLfa6UuTExEP/F8GR+SVTwRI+hm6oIlP8dcuQq77eWHWOSjca79Jeo5Rym442Ooc/ES8xdCpYPU8B+DyC3m/wbhw5WCdNJud6+x0V5Esvkk8enzhfx/b3aneZkWXJnIrHZU36IxxMmuyuf0NMj1f8t8lvl5KszUZ5CZ4nmK8FNydaCgCHp/ZTgXM6PMsB5bYuangSw6fDIEG2ffM2vaeiERXnrh6yld+fSZUrc3RoySOA07osId30E8XhcvLXNeozi4s+3fkxPUWVcjQXOGAZQa3cEGLRjQtdOF7wx+Y9jBM4Aiww1IvhQ5qltVRzRZOC36zrV7zSPYj5VItxg33UbciMHOMAhAeNYOz/vU3PaZbHZmqL236khoAhC4GqwAMcPeNokIKDzrnd7J/Y5EgDFJckRZUIpF/P9bnehkrW1uxbbxNb8sVc1Iirrrj+Xttc5+aS27bLyNgtuu8jNpC7d8JC894a1sWTxDcGwJE+LXlAo8C6EcSCJhxpIHG/dsojkyPChbw3D8kmebjCd2IgoU5K6r3RoL2jMTakQq8+vWowdmRY3T+GLsVMuV7dEm+cioADFNXALywZ/LYb+qg8ssRgK7CBzW9T4pXqZCFFeh8DuHbyPU1Wgmzmen2Ababd5Q5HLGTAwG7Y+TwYA2byfdfbPOp+EB7STqeI41tPxkR3RXxhLZV14BgigamqHQYBCmmG/yy5xQMAl6f5Tnlcc6MJCukAcf+b1oA6W4mDe0HAl4zbZL5xeYbLXbgvkK1eQ47CXSdFnsiDzahZGL4MB69QeyEV+dEyRPPku1l/q/ztDf3Me8OPA6EOdTh3N3vRxVWXMHaj8f7wlOV9S8F0L9q3BvW5eGM3ZMDblkaKeb74lgzy+AmiKITrndsE1r/AuJnUhnWRXi/YiV0xzn6pFO7uipI812T7S5mtFrAqiGHZ7/kt98xGy47yrcPDgaoO+xkJdIv7xts0FnXOuHFOg58CBBHAgXCc88DOoSJ8lb6vfYOlria1Pm71pNQo8JzMLxmn8L4vr67shsXN2JGzfoPVssT52JZ0xZ3OU/zUltNFaJfLaAC6EYwWyL5kSmDiMImMjFsePaFBp2qNE+/HmIaK8dga2r0+zkJ/oQzd1/7TtJ4lGvfXe0oCC1v/LHcyix64xrN7KqIPP09O2zydANpojgbTzygRfe67EudYgkh5MNsH75xJETwWY80PGza0ZSqLz/tnTnjGQ8U1fnHAlm5NwbU81DLK9/d3XsbnA2ZGDzDLz7Y/MTdzrifBa/vXsqur8PV8c1r04cJ+bctNMcrJvTU9WltPb6f5UJMAe5FXNMjxxXwgWwHwQ0r9q2+IRNm43K1vVTiU7l+ck0XaLb7r9rhc+4JOOZo/Heno1Nvcmdm49WIG93/dIJ4eAzs7pfdjUO4U84R7Gz9LHOzub/X/fVJnH271W57yqJVfNfG+5w+3B42d+Lqu+liVYnZQpk2cSEbBH+w8t/RBYfX+vNQ2dM4Cwr3kDigKAFAV1+Ti/I4YL0ZSHrYgJ7W4jUXEPnnxmJp5dpJWRzjf7xFpBMtRw/tSitY6TDv315xRONU0NAHVi3XTc1nIXiqFOb1z993JLiZA0Cme9ECrZSPQcweBMTFHU/ZaF6zpqQ5iJuWWiTFmxhicqV6k/XebtWAJjvCD/LuOYeF/78fuNYOVSftK0cBU6qrEtAUKsJoW5saYIoSwv3g6QlSbecF1Xa7ZuuXrw6DgRxc8QfjJR1voV5EFnllcB7vGr2Ygcfu5bEsJ48Z3Tclx6tWvHNxJP5In9E3QKCsqqP09iGNFb9xKHxwa8hN6rQ/+aZ41uscEHEqDHQf+c3QxXfvqurDlkrpdv7E43rurjg+1je/CusSqgPTQz/t2vHQ/QMNhSXB8bIOi8Z0vF79jZEf8raM6YYN+9Lbq53mo3f4VR2qnGO5pY/z35IdaVIl55kMDrQnUMdTstbKSNtIspSPtZZk6wKa35+s+wWx7FhumAYYYDFMAwwwCTIFRjDJDqh03rtFyreQO2y+DXQzGPzSrWzVFteFIRMEcZmaeH8/NZMGQcmBw+YzpwlR+pD0oOgOvac7o4KZWnf6nsZxx73yd8QgnvZfmHuXOP+p2f9A7nbungnhYgK2Nskh8/8sZBcQIkmfILThwGhs/CSzN7hfAqDWrqWapCYACTBiuo5xYjoaKLbMlxV71Ub7tkbzzRRz03Gv+u2Oll0Fc4xYRuAQMO9R43bQzWCiYsqSAKY0J/lPMhqeWbH41wDjVCfY/ATu9qo7Pq8ScambsbE4ruKUR1+W922TxyCrcOrwuu1rdZxSscferWUYL8FkcpdUkAdEg69SG9Zgf2p89gTavHufsKWDX18mTga3v6tJDe45jryUkx1EdDoWqQpsjPjsjwWIaG2fDBtreq5/aZKDDOexwW3809y5PoNJyrk/reKr4BsvONuUsoZS1Y1Mbw5+tRUdztCfuIH0uleNhPDRCTTp7lfvLsIcJItwqsiRmEvYts0yyfXcKgG8Y3amMmDCD4U3X+N8SaItuHTCPDgYlN4H1Vop+++9Ip/vgylNvhNKi5YzbbuDMviPNvVSm/0h6T8T3Xem0FUN12XsDe/82s3GH/tvAEiLBuwo8DvywXXNfVFXMz/EzanSR/r56kMFYigQNcbYfXf3mqKzER+P81cK4lQaMpVQT+AQ3DKhncOhn1wvmv+FfksnXgZqYUdKgqh4KnBy/RlDAWSlx28MeNQuKTjN+iAoTX/6KLVUt/pS2ROIEI/3V6Zo4XrTReG885cl2dZdjZKfn3Z5pL2liRzdc7dQJ71EmaL+oZCza9F26pcGm1rsSxqfC51nu+P2mGOnbyARABEAES/4gMLBiJgiIAIiAAICIGCEBoktMDBjkIgBETAEIiCYXDE43hoI8Yqjc2zbzKrfq0QsnBrKkXDJ35Se2dOiFLWM8U+uyGrhwJnqpCgxVQmUvn3naq58vsfutSNYS+9XPvDw/0y/wHSrCEcHqneOQ/DKC7CoPLki8nEGpfiL7dYKjVgxvo7SNJKJtzTuIgwEqhcPbYzLebMWdErQ2MDVeWJpipRGOe/LTSAdQKCzRT5GqvvzbaniGVi1mCA0sxiHUPFJOOiWkxSX+Tw1mig+5uSbb9/PSZL22fbvZ7H1ruenYY/r5VzHPAvm2ttO5NSnW4Ec+35lYTr19RXB0A5TiUPq7yxl7D+FiYq6pCu6pL3T7H4GBSNjfSnFP6alBJntb9i4tVz9Fsz+Z1Gk/nex2WplTX18U9NbvewhcRrs5BiDiSgbemjUoa3rO7ozatzKpSSQiYuyJEPptXNLYxXKTTntQ/lc7ibwTX3eVXPNdXFfu2QxljxAcFqzxqQGX50pwYfKeFnCbkCWRa7tgP7uUn2XdCSNR4OVIw6yPQWFI42nAzVJrgpnjqCgis+0MYn1Rm/zYvLVkvnvqb7hzJJypILRc8U7w5BmUnXASAFCDBLw/l0GlUoxkETyip9H2LkAvpQe+2Bww/e5FFoyet68WUnaPshbJ+T8WWJiNCEoyGDK13W2esY/Az1zK26SlXU19S8I7ME/8kXGC1PRZYezHg+2p3iPCFMtJiOM5zJQtnlq1sVM16xPTyrpNzXBq/JF4uFteoTZbS/q7xXCBen3S602ty7Fp5WiSBUxEdLaXufu9MSIwoaMKfgVWiM4m4Rko9kPeHkQkh2wjA1nCpiFTKKk9L0M+p+KAwu1vNEcmjGR8mv58D4qJVlnRL+GaIyxKu82ly86Aodggo3iIBI9AvPmyxQvDHltBsr9s49wlZWNPUk9hjL1zEotO7fJIDUFvSHFVBEeDCh8aH4G5vCYOnUASICq+u/B6JShWDaGAojlCGH43mUi2P8Ycuzpf91LNR/j1sGnOwC/PKKAE5QW9WWlTVmOlPbRFPt5kWk0zyMxA/5mLnYp/I0R29Q4jgyX77ogeMOShDA3tcWG7CeLET1XKEegI142FCJpqmtDjN6ZXV7DdsF9D9Rf0MDySFEZuau98qv2Mu1qQQ8W10qDVAoFqe49ERFR4FwoHQYUAH0W4z90y/C92WYkHVjUu8X5BXo69ytw/kXKA8/wRSB/ShKMfW9LuRGkt7w+ZvwdXD2B0jKZatty0bC1OW4LZNS16nELInONb+GQSq/XqRV2iR7ktEWCFuuifETGRUic8L9IX3HcdRS3Ba73sHap98QXprlnFWRfLEwdi4IYfxJ/q6onUSYTQsxYroGryIL5P8XA51pmgSBsW+7Uu5uQ+/1HmJ7PGe0PVLdnd5QEjgstUvNbHjZ7VRkbte0w82hZtrxN5bM8Ab75iQzgt2Cd0x2FnhqImHaBDzAT05joP6coR7PfkCuw3JxRis2bsl28iQw3EXCUWz+91/w4H1ljuXMrba3XM6ZU2AV6jSZOBecpNSfEiybHGGm+sZ7do4VGOAOhCwSj1Gszk+0/CkYVuSVky6cioncDheIlDIeVubo1/frpmNBvSfWllw8B+W6HU1cvbK/xCtNt7vEGN9NenJ2zKS47yeCw0YHhq+bJT4nbwg3qyy7TTEDvxKjyW6l3LQ3ZJwiidcqRXYI28F/jfcUf6Ua8RcAUvsyJ38lT+TNn1/nolL7nlGoef9Ww03ww7B4OAZMvPiBSZcho0wJXWFH/P+RSAAgHz2qZVn64kWfPjlo9QE+FZbpy8gp1UVN7msAOWUzwakkuYgs1NC8f8k4gnBb3xu6qmCvfbHXCJzePGjfO3mI1E1hsuedibMHy0YSK+qaqb8dA6uKXG1Ygss8gab/UKv33oMvHn+iiph/BuscZvTEp6GVph+s7mqtEOoTPLmnwBnw8fAMQIABf9RCH9xTLPzlI79KHzIxM2/rzZqdsemJnjLMuQqzL0I9Be3KYBeHzzf1bFraXYEup4GlnhrAh4VXQ53+6ySjTEH0bFAysptsZCYL9A57mVSeT4kQ7WUOy9rjwSD58JgkA+Rju23QQIENW6SAsj+9rfU3qYaE0egOU3VMNLnh6kspZdWuz0B1fmfiOej3ZrbpaxSgS3+p3GWACtk+Neahz8pMki/1+t2Qy969Su343w5ihCS+DsC8i9qMvZszq0HE0rKz6+5qeVPHZPH7Yd/2Heq2YXu+j0WzKECP9hacz5IScPgnrI0BgkgjweGHoeLfuDu9cwSpsWyudg6lyQKv/hCh3HDGaK4g8aQGdCPxNhTTsL9NvSw4yAOCz5aQfupUs67Pa7FJ92m+ehu37uFhHaHd0gc/koqCVQsUQYu8KNlG/BdcJrO8oPFmS972u6X8SaanyvPfQNo5qBA2BoBrrzVyoTylZn4PJcYEHCO3FsZZr1K0q2oAqUAHawsMhDB6jyFCKv19ot/FtvNQyHIlHmm0G/CwNVOo1PLH02b2b+/6J+6DWURrV7iPMIpFjAk3sSBAW3gTwx14rTlFSl8b8WsmaBzeSdhTkzI1zXeozfpkJlKWaIYmY50avkB46HtjAMMMB0FMuljj6uamd/hf36FwFT+CoKdTY22owNdw6LkLQwIvWDsRjAwFYLcss+muamN4ok/MLiByDiLbJ3XTqfSfRyjBLefdZbUjueLUuI8DpnG5oKi3Vl0syt22h2NY0itBvY7i73JGZogVcBbD0FAQPE0/sI7sB8XvU3wWwHdtv4XWYAHGsPEWmLyvbbRx46/5qw1RyNbiN7dmYkL8D3XgmyxK8ZhSrp9GSV2x3xh/v/7jwS2/aGvee2kurt/S3Qd/7exuxogaM1Ilx0vQozg2x9/qsLVrostfFaeyFNC6f9GKPJY4fQdXGiAIKRNX+trwM76VrzL7UFHlSweJkNT9yKg8lqzgyMDa8Oja5McQi/7bsiiFrUOSUmNScr38x7po/HEozJA94rm7bcyuROw8kOabqwYYqjPBGzQD1sjq6h+J4Bsgs9FCQ4M+0pBfVWV0R94PmFpR5I0Q+kJpOPQ0sDK0m7bzChj4h8qX4GIVoPd3Y2CnD5PWWAa1IdrTEfWvd0dkWBidfCS2NQ1LsJuLIQAZH8DV5DD7EI8E94/XKmnbBrbNWf013+8USD/hABifOxBTCUfqgDkwipRfGnRqhdIrBStum2BZhBX39Wc3MTof9o6+3EzKoGB35xLWxEfTXcqVfEgsQDomtgIQ2poLZLmMbfW8ZWojRTYSL4a1w5YnulB29OVRKumvIQF5T9HEx03KT5FfU+kNebzZk4WBA2ETWD+baPr60gzPjIwacTjQEm6QxqDmyEiZnCEV05yA+n/B/kJkaly8QSP8jmlknTkq2vqdXy+rYQVR/DVv7WGKooaw7e4K1BFsMAgcH0D1/cKCk0n1wyQLfTEka2GBotlw4DpvFySB53XhNK2s/VOHPaLJju3UoilVpSWNXqPgGhqpJF6ZkOOYFZ7zb3uIZ6w6B02ZrmcRZoLFGsZyzwFBUmy5P/lBkn6nakIUhIRJuABpnrVBzEK+gyIH/cADv6wM4ZLJ9u/vrnmeU6yo1WccJirkNF8/4POvE0a0RSAsCjjlUfnwF8TYSoMOvUxy2Yx1MsJjAb/Nl+rJxLDDY+znqAw7JnqbV+F7X7WRvvNqH4uzy/dRkIRIt2GlsJsV6f3wGnS9H0QJXOUKhXpU4OonzZZcMPfDnp4nrfnuhrtq5FDG88STOT9O0TCFneZwU4WJY6CpPEdsyWjDBglAWANSL8m04N/QPgkp0DX5Bf4rLuvCW+8DlS3EfRsXhhZMLRVzoMxIrTejCIu3G3+uoPjkK8OjMf6n1k4R8zE1Yw1D4AYfWZo39ruW0I7zvwZqNrL3NrLfn2mQTFwzhMX3ubFNQW7vA5RlMUVFuXmNT+3RWoTU5pxZnAJIh9LzK1Hroy0XnRjnG/J6e4sI1LnfMS4bmn2TxGn2eEZoc7BOfrrTL8zS6UgOC2n3wl1DnGgG9y5x467lG8325pqhDu7EPmtjg5TDCfzko9o6eGZbPxKSTZ6k+PMD+9IU2FvzjP3sKtO5lBckmsZUj2/rUqQhisWxeLT1pKLq/8eETnbkI+HvV16x+hg7QzIf4ps4twKKRfg6RISQlkufP5Oqs4tZCvrcEibt9Srf2qyRJAsVVLzTOIxq7Ct3wg/v7xPIVdDcR5J8vjRyjbpsTsoLI0mVdMeLakxq9iuE687SDdCSYNeLGqxmn8WbVWKlwjBEQtuNK3UzMlJBcY0jKEwr8yUmK0GlAS4KLIdiefmZLQgfnvlTTxOA+dgs3LMlJ1P9VJV5N8KYfbGE1E/MW+JZqNGvrukJS1H9m6T9gGGGAbVKIx36KXqEuJ7psUfKsluxLjpozvRngw32Bx0CAWAtkB72S5TGPep+CIdlY0Gg0U3nEupJ0m+i6/t594gdGzB1qzhFTWdoiVuUClrt8ksqfD8qe8Fe6A67e9oRIMLVkNi4zl6BEiRorxzyxw+jlHMUWX9PkmT4orOZVSL7oV+kOmX+HMXFEhxrtvF6NWvKoea+PyxbZaFslMKlkt/4SO9yRn9IJBIoQOqP4rOPZvyShM1teIpm+sxuKp3dvdmCRFc1MSQKx9Q/rOzcR8jULCi31J6Igv277ft6fmmUgIZN/7vlR+9qf2YFOhzdCJ5+wlHl1IUGZPX8DdTZVbV3PaKPAAIG6AvYIGH/mqNI37Zzvx68qLTobrBcSxvPz2qB7WQl8KX/ebLvASmLEFe9G5jiA4COMjFBxexdOwddS3NMP8KlW3cdlU/DJadISwe0Kafv9r10XX0qr5uE9zn5lUQuNIJZnVm8Lumdy6Orr+VqmDhskfXml5quKX9QFIHv29Lx8VHhhMUbYi1VSvYmF7KKKZkaI7CIHnfhnbCpab/C0RPP6SnoL/bX2lFPU4rGwZOQGucoo1O+MQfcTQYmKtMGTe6YQ3kMLcc1KO3Q6yyKl62YySqw2LbAO/lx9fRBAheXlKlKLNFG8fP2y8PguMpepxhgMSiwh3Ry0N+bQii0tn/VJo2YItBksb+UB6IpU91nhHz/lvMj7eZbm+6rqCjqxaodwJF8a/IeP68VGyfe4Oqmmk9xypii82hRaNGY2/O1Fbqq1cOpkE64P9M4HDEslFFiS43SkFJdgkd3JDm4MhNTeistfY7GvZqsOcFtcLWRiAuq514TASro3xnzHpDRNKvFbGqqoA2GL+W+hg13Pte/u97tbTf68+VPV4d4s+XWgvcdumEW6FDYaq3V+KcPj7Ozdx8dwgToxw06Gg9bqldBhXFypdws9QRcH5GqdOQf66th9cojis+wYPAnIPsc+OI2amaDccyTV09D+ovPwVW1ztIGErO/TcwO+t/7YmT0axGO0mMeH9rUhM0/2oq8PFE0MXb2pm/oRStTbL6ieN3yNsyh7pB+xVSYeHetuF0Sac/M53E+vHbV+t/Hyc9cf+g57GaXI11rZ0sbf7xNgZVYhqImwerwjjvMadSS+PBKTWBPf2IgcIkokL114zou3kJ7EV0xwfELHcBzUMbC1V6q5MvVN34fsoafXd/vvNmgDW91XeG11TKOnGSp0PSmUR5FrlGOfBnKZjxS0EvOjhxd82Z6pw4FBe9tIHWFblSG9o7op3eQYBw4umfLApGr6vV1qTR4Y1njFsVfw+FWnQpIMPDXjEYoAilGE1Ch6sYFAII8H3N8Gdm4VeeteG61HYYlypC90Wgdu7Nt/y8+mEJsIlf10Xb5u80u4tySdu1LMbbYe9DV+ziIfuZgH3SF52VybCn00y+oFXBgeuwJ+D2jFHE5fO9MvqeEP+25sNtnH6s7vYmIO+FdXTbuCHPTCHuki8MgHwNSE/Kub0aG2NIMvHqw5ZZILb9+b5czJnQ+dwEuHNc3RoE8bhO+tTEMKg6JB9euiwSNOOLbRsCRkVNO+O7zEGWrQSpWsf9nSla3bEjkizLPiFWx1HeiI5Oqu7111o5rG1W52uVD7RlSY+PsvPpTIXLpK09zssv6pHUUbS0H/btOen+PrzTixh7Qp6UKiww5B5Khr5G1s/g82wi0eALBCZRHYPJRHxUPWVjm7MSyGRQEAnNQeFRN2tqcTVzWsIGp9wcudEVJJjOXauOXz9upGzeKuRnNFJQyTiSQkPpEHL7XXjyRfgpYJMb9Ad23GR1I/nOp6ugJuvG7RCRnG5TKmJFxiST+b3N8CnHmOlBpNXXRz7Xmp0G/wPms9bK9zMeT3k2hKECYl6AgFrFvJrCuNq0CVtS6AVRHVsnAfV+UdrQoMl5XfEa6nYQEUdRz5ATGgxn0CXa86rwvKHZMVTIqRxTO6uglXlAa/Pas2aWvHifpH93ZL5UJVCFYIqcQby7GISuM5AnzNxcUx2/eULQOi8aRpTEEYTozH7rzq1HSMkFoRmLMDFzNKYz/ONgIInT/KGWMPNlmo/na+w3rwY5VLZCD7R8D3dnWbDAl4KmHscqZ3+oeBnDbiLn9MaqlUkDcl+Q00avAI/26Rp3Lv2umZWOprdXqN8yNyp7zERfWunMNIc5Q3/1j28TyHjzzO6U23REDnZB2YWiAvBKnf2eK5GYVvMWf2tWLBANaDxnhbrg3mjdGGAYBZmAYYYAmGAAGJpRep53rKxYGocyfdmsTz9wLbwnEDJK+71mqRJp8qcAX4VPMfjGIcinsR4ALt7VAbRuTWXYXp0oj2/wD9j7hFQIUq9YZ3LgOtJwnRWQQ2ygnYvjsoshitwP+oiwD4rLE0mT6bABrWaHTKGUu9xc6k3l5CnGI7f6vrvQmDKIYCB7jHlTcsbt8kmm4QkJ4jeIav7PglYgRQvaktCYJujgx/qbXjDo3sgWX79NOyL9mXFr/waI2ClfXnm048aYYYvDCAyckDmjXPm/rxMrdArVWM5qzuLhVMgfv+qNuujH+apPMvcPIVP1/kbxfaUHKR6sF5aHRiLBE3pNjgNtbxKapfZ7hpGZEIqmdvf623P+UJS86I3f2Diofj8K35MHxp9ebuXd+5/Hq/4kS3RVZdPNHg4aPebG98jo8KG3Q3SZWxjS99x1ptGomI8BYUIOb32SRiyHW4loZdPa9e9HSBaQ+BVuEt6KKV161cR+UgiUPRwqXFFJxcOGYJZiHYPPPi/bIyeYzN+3pfqT3DzMwfqec3ZZpEHnoUjB1oMvCf4dhUFlLN5oKFZbHUEBmb4YhG7pLlHCgmPnMlVDJ7qbgLnhq/NOrLTPWmOAN6WDu4ggdwnF3YvRlVG1o2wXB6aSTpSbw/WyHTjkxv3prvUi6qxG1P6YkjYrf5Xd/56RfOfzE8NJq+oKUVHDSRTFmm2H/3P0Jwa3M7LmHyyrRdMrx6f7v4ksjYGKT5kR1XJogtD2WVOUYg2GUFw+bjeu592kQBSBpc8tHwgTsBczYxObvVeVTueuzWFKal2Rkw71QsKp9+07RPpDUpDGBwM95JnNXRK7aM721fRg7XktZcKHvyt0Lpw/Txp2Y7tW4QYFa2VDdBA+G92G3mPhYA2UO6xBLxSuCa1KiqwY0LpAHx4ZaqLDAG4etFmQVEaoc8VW2VztlsP8PX8cvfJP732afdL/Ir0LXSlrffK9fivUl2S7trvSPBPjSBqmjfttIN7nxE9Drq3Qr0xA0JqBsmxYNXkbMUJgdDDCSyuKo944OFDW8OGpher/xbnXtNS0/l6eWGKb07XJx3x81c/8fT68s6w10n+QTJA1PMW0u59f3PXoUk4KUnfGvp6fkq1czoKHLWZpa3ge9ddSfXOWkuZ8EaMFapXFGs/A3+Pkb/ZJp7zq2h9JGsf7cOziZKtNmfwVrQU/HzW0GAx/3+xnngEaVcVH628esIluBQ6+UBADqGMBwP/Ew24X0szmp9j82neZ/ntUWY8R2cPDwbAaZOrYMFkdC6N8V77ozRBCtBDQCYbCklvcvA+h1jcIXqw4ld0FZCZKx73gQ3j7Ht6kEqIAqZMQBc6rjL+Z7gjIqHgUCH6yeOOy1K2ob0kwSSlfNO7yiK9MrQjPQXgU4HmJN7PwzujFaeIUC3I/5hhIsMMCLDAiACLACLAAICwwIgIgACLDAiDAiIghayH0Ek0kM4Y4CJqLaNslIJ74/yeMpg76n84GZW3xugS1KGzj5OqYHqKWJ/h3mtU//sqXJzEKmAkJr2bFgGwblEHA3aSGxLjfCvTDUix+PTswNxd1QM54VrzuXmm/aNxaLefmx3OFXoN1xw84WnZPAEFw9JyODvWGwBHzDftI4U/k/WqfIabkpb/iFS9K+5pd9a8/SJZVPg+TODW6lDnGBKWiMaCYxth3+7P1h0JThi0sNBcvBEucb8JxLuba7bPu6KNmuSc8yu7g5WcaoQBje/aNze6VeC1zHp6S2KDABDBMoEdG3fDHRZymIcX3uNS7RGatSI+QGpQUjaKZfdKe4GXvU7xVJcj60rNefXSZjDrosnJ6+xaUoj/PNvawKaBC1OnrnDW8LODMyPqbpXD/NUrq9nBtWGO1rTWf19OCg3QERljWasRr0ZF21sdszX/vxcg0Q/Xew0rZW1e+5lvhdYSyBbPfPeJiSW3TYu6rjM23V9Kw51yEj1ffki4bI2frMAPRtWS8+S0Dip2n3A2Rc7/Li05rCUNcIhxV4eAtFlXQlI5O9ZpfmGvKvAwWrhl8bLaFK2AY2X0SAs8rt4BnPww7LhO0sj4Xmq4yUSyi4uNrg69wQM5qm6ZY2Jl+3zmXq0TMWYpoyfLmDMhTh0qfGZYTE6gdixwcJu3kEq+9X4ZR2w3sBVZyxodWT/LiMwBxFHbyMM6dKbObpKs43sXtJZo58xv220urJHHOK4uKKrH/5pQcoW1RpiAcAsKJvOOjY8Qu2qYduWQSeMKfw1uMOi0jBQCEeRedsegRFOenW8K6JON6P55fLU0Vkli9WQxJtciUIyvhxu3WjmjJuy60WI8Rs4/XaBxlWLPxcT2at6K7V38SEbY7x0qbAsSq/dIwId0/JfTWX9lK+Pq1pDSO2tSKV+FN6Ipdj6xmR2mJxNTYpVQ7wMH+s5MDxmHOhYCWqnSaqhTwzq+eh423sq+9Za2oqHb14wGQBV77dV8BwRB2Qy7gm6bzt2aSYmwRsizvHNnqIEzfAhoJFrScM21MgMEt9BW5j1/I8AaLpotGtVHXsbCjYpfQSXv5V492WOZ1sR7PWgr9MiwDwX5LwCBwICFzwcOgRsRwxQZg+gLtiKwGYY9EziNVqE96TKxKvN56QJk/YQ9Mw9l+/+I6KhhlprLuWSuIs5rqO/JkJyyPP8U9a6l3w1qjrr5gEzC6zL0ng54TxRjGE/KfeC4sEQPeVHXVrWQLFfGgoJAP2gud9+IuEUewHaIfyqJXFSOjkwsVGPoW4XQSuSiz8CfEbLW7G2+OEvnkVBpn+gwJFBlKuvEH9KFG9r3Zd+WEOM0/bwer/ukH2wfRo3vVocXYdDNZz8fNZ86H9rJNttG94CCcZlb06zcj4zx9aGq7rvafVBudqawHIvpXn39RYoDbU091kkypJMoK9O9Uz99IUb82c2J2t3CZy+U5AXSx5X44boRTrgneZRsv3EKlL2+oETHJkdJ4PBJcR/dXvj08t1eZHro6i/DVssmmQCm81okkS8KzDIUoxnMXLNycFCPHFBqbFnCqYxDkeL4zufdOWGpigpYqDGEBOrXZzHrb4jNDOjFRjsENDfIO2YQ1Bjha5yk2P2mQbOGtb7/zptNoesqXE/jgd3GwboMk7mYkx97jp6zc5BGxvsPZLOrU3Mnxd4oZqG9XGhjXJUIlfpcPgF/COhcTlU/fwdzxEJjXxnvshRc+w0xi8/0R8KIGc5Ok3ZGdVp1q69WpiEDf7dx/xv2ZqguCXCMLcPhMJ21GFgoE1RtQmYdyzwF2NUtKuxsaaf2rjWOrVp5yaeMC/dkUhzN4PMB30pCM/t92wBgw3r8TIES3hrFh6LbmyKug+rV+gmE0zvrIQJpEQ2sr3fh6ysMJdl0nRZSZRxeSSeLGfSBBEcPWKI1NigPnF9khrezYcobzxP66CrkGvaYPutfLiNR/ftJpDrFyF7c/U9ygHxGP1ru9LDGQ2zQg2yGo/oYXyhnZZSWtAPibiXqayk6yuFqBclPuWxznjwDl9KNCyAOiOWxFcVnrN+mmRALyPAz/DEY9fvG+gg3iKVEWFGlLo/VFnH7M6NUHbJ9shIfQXCO6RHo9EzPzHLi3xAnlirZIr7z++jp1srZnnQa3rBNmhENhe+4RgaCUIkZK+ZRY1vLi+Kz8IyWsvYCxwl43U0/O8X2l1p/H1GDnjN5qhSKwB4jsJKFQsBZ0ICLAgvN4smXk5qU4lRfGdNvZoh3JpoRhhBYDKDLT1//HCEeiBZ4S6/Y6Zjvi/0/2hz5ezkrUQxJ2CGHJ0gIM8r+XrU5CxAu8oTYNB05pqKDlELqqzTZoNlz7DDWAQ7K1Mt+/WVmJQEvmnUMEc3/ZvvegeRbyRoD8NoM++zsIM5SwQ3YkKxZ7HDxLtCGayRqvei0XuRuqx43l+RPeG0YcruqqYIYIuBUZzrXeIndhdtw7MWTRvI6y808JyekOucVsoNoWwBkcrejQcO7eTL+dJ/xVf7eAbVKQXdMKEdVfk8BB5DeQ7Xp51pL94WFjdDc9xMSbZU4rBuR5Tx6oZjfimVJJJ16aPdL3XUPdqQzOgHNmwbEimuGDiQFATxIG6kgLmVQTM1MCOkCPXVaPXQ+gjUfELVHktBFK/tAtF4WVNQEU1jGJQnIMQ+7snYPzfchY67iTXC5ChYd3u29o9tUUf5xnix/Venv9yUGtivzQuMdpQ5jodzv7V3x3v6Lf9e7ERrUc0B/bMNuXm5BkrV0Dx0gDPm+qBqcT2iJvC/4oj2eL0bipOTKq3hkTa7+tUdeJ2JRhoxsd8j5Gt1bKHWfHF7CRaU4eQmfNrnxkPlgRyv5us6tlOrdzHYPK32NsMON6ZXLWgjgZAyGnwVihdhrtoJRpkcKBsg+4JkQEYUF7jCd/jDcbYIrvW53daaHj1tUA83U50cv/TPBP+CX96B03mLQcuK8Uf61vEZwN1+ZBg8XIJ7BXcJgOOBKdj3KMh5VOeYPgPInpAnLkQnqBrwLrIjR9A/1OmRMXGa1f/PuiUkXz/1BrLoAe+6K7b0zIF6ZXgJ7/2OnvS9A1hH1U2NzY4ym0sYCh2kqkehxKbSjavTuH7DOaxx0i9HzvyxvPTGNT3M1gyx+nE9OHODSREcyUcYJuZy3K8D9SdVIHY0/8RDCplJpdCFiN1JlnEBkeBE0mFQDjsinrJSc7u5daDPoQ4BJryhAG8pj04gQ9WwL1zkzMQzL+oVQBZCxlxRV1IzBbhuD7Ib+srjXBbt2PkSPXw+B8sDhUzhCNIIH62Psag0DZDwM2RLKtQQcBx19/1DdvoaKO68buNu3YtQM0Nb5YRkUG31CjCLUL/mmlkBWmHZsyLLp/7P1qGQRNeuH86pEqpldf6GduqXXRl9xM9CP4aoWkJNzLP5DP+oX7U4bhOK8KI+b3eFOHXMVs4VfMt5Oc9EVLf3cnt5r82czBq8kXcc98dblcD1ByH1JOQnO81I6htfgbAViFEIg94xwy7ydkUjg32oQT6MD2gVcu/sjnHMzBsmL582LYdAsZbZlyWw+rFnc/SSSiShbdUyW0uDPJiZGaroWo9PDKL/dnFHLzbrQLRaCdyBjzglMWrTjCe0XHyimcMaXKjXngYTLLFvAM75vP+mD9+Rj/wVrqgIR9sT9ju0JUs+J3a+krPiiVQBdtl6LrgbvWeRr3UzcVmGvz/wXpNIsOwKizY3HWb4U4wzrEyBFDxq2CYEDHN5xQ+xEpLFQ7fF9V+ErQyDdfDIH8IRHzx7y9BKH+dDLbGwyN7cpHv7IdDKiPhxaYILUhK0Dc1+zSKwG4TjEMe1i7Mfm5Tg2Dt06srK+u3DAuH0/0QNdsigatbttUBu+k4hK0o+FIK9WdUkq7j8510c+heYP1Olm/4gkBTD4ntxjmOICzKyHoRzx4ii9wlHJ3i5ai1ddBgdCBKDRVp6dEQHtUxZ5V7anfUBKN90XWsd7lVthnwTk96jloqSE0QloGuf10gt9jVHAZ3cCmWU0cGoJPkCVXNXJYRuv5+cN6/wZ+HVo5L9ID/uC3JCe9a8ttWEvwaz+18pjWCYFvYFv/rejw0HGVmY0jYPJ0nMSAwWQ5RMNdSPPIwCqHkECaLbMEWnC09GnSjwnlvG2EzUpjGwW48OQ+qZReYhp2QZ3fHkwsLQJMZkSHGWzpQgHBBCIhJeKc12K7+g5nGC8A3CxeP4Hlai1N6e+Byfe7lv2Vb0gA+Njd0B7uG0eP0Oro3ZLsjE1ot2A9BJCHrTBvH2oBgo3QDNh8SPWSjBaXHcTlpHjFa8PConAazfmZJY1TPfIlw0UZZcMxvouMlg8J+UutGsDM/2x8zh3gtfeKjNac5bPVUHzWBQPrTMkbjRigZ2bPTGar5HMuhocHLoCCUvW1z/1SxKY0+pdfdUhzNPP+4I8fS2BXIp9sWP8kHxx+DYVtka911qeZkaQ0ryMzJI2RbpMwetlYF6gFCIfB5gw1mE3DdDR69TqmzvG1HSxHHgTMJqXXxppReZzdz/DztZk4Y9J7uVEMi+gXwq585PvIkDiCnt2zZzuVdR+zx2VBlFhT1kfUs4T37CZ8Y2mjmqo41YZ16TPFaop5ha0bEp5FJPirmvTqLza5gnjggF1URcYgg38LkZQ5Bx3G3twdNhk9uHapCssONUi0C0H6zhXYtSJ1gTyZQki+yhaeIlQ3BFuG3TaV2p1XcYQKdFYt6BOgVb8tR0Mg2X9w4+t5zDq/2vlSJ0qtRb4lB22o4H+Pq9fCDUmEDnPP1+HXcfvWcNgi0l12SwlTMc8eWONKVn0ADQ3If92bduAYEfsbXusszApudzmU6BG+qQgiKy4xEFQmeL0hFIMWzGILDvouyH2dOKNUEjB9xBHp4epqPTd/yVKR5KXr/Ks3D6G3XgtL21XWymud2RKYLlbVnGbPrmX6aF4pbVV65XKKktZ1ES1bTIekvICgyvO1UvDMN0RgthRZld3WAhu82KKCYorRmREvZnvRPReXxOBzhOC8Gxe5by9aAl6fj3GS817QfIGf6K1QwVH1VUDVsswZGKgen/no4JFn7Rz2m/mqF1Cw+NX2vb6OmRYI1KrIPGENPDOeg8xokVUb8VJWOHsRjtCAcLVCLlh553SniSI4wmbqyantyqA+BMm9fBp6SmnLZROU3jytDbsGw9OerX06m4s7Yb4gyF4ZP0a+394ZmWkYW5+jm8j+G6i+zJVYNAuLOEC/zqFF/FNULwdYMN8+27QytnscP3QgGwzbJflY5njCHpm8g088/ki3TwdntVAlAj/FdYTwxyALJH4ZlCVIQmbfkZzkr40PfZNGzTimcPiiSfOMlG8EgTkRQReQQvZ5em+DV+CqEuWPnJ2fT/LT45LrKAxjL9YfeNPTAC6lgRBWifqnSa0JraQbVEEWN5tb2YxcAhsXJYYL3jXXY8/fU9VViLyBnlJHsiZ1Q374nW2XkfqjRo/tgqbeO2U5rEpnsNjC7aCzJUis6uDxB5SMAfcyZ30EZ0QsLokiGaGSm5qDheSsyCxKALsOvel4OQEPAsrTjafa59sVBDvKUNjtqHkljZ/KJB/Etze4HnW4yDs8g8IDL6BGHadux+s5aOwyVb97bpobiW3Pv4zqRsngK24TQ9jh2xEs3iJ1NpkMMk3WdpNpeDRckIJPWPMUsWFyLXjN3WlJujGy+rY31Vz/RXLcHHW1ew7k+As92qaySq9rrbs7YNdAF/VzOxqxv0s6PWgHHwWflc96zuwcXiuQR8DWgujbzRQr60Bd5kiDrqejnmzZCqJ+oT/7jbxtQv7YYQ9JEBgo2pHZAk8VrtmUU3GXT9m46XL0bPxIbi7/fO7POMl+6+LO12zml9CK1eWdNWZicAzlsxszSwGiwm8LI7zg+HmHH+wIfCVcMxVg0WnBviy5U1l+OJjD1zZztkEIHJjMJeghUPWnKkHcyOwMlf1LxcoovOKiuyHfMbnv6+tKy/lHyYYOhpfL0yTCmK/T/MyuTUBSSTSqAhf3vWpozm5iA0QD28inYChDdIODNxP/gfjPh2oibxnNmxhE/iLvhb7Wj/00eM33/ViUIsPIbDCMIzM92rtPtC+kE0/LAiklGrAEkEIHNdgz49hxB1EBoKSQ8wqB+Q0Ezwi3t1w63Lvi8M3GiDSr4NNFhmFUVAbQz6xBAmiSk2C9pSAWuVT1iWiQgNGcocaK8DAZMiAb3OfPoo8XdfCQ0ednrGuf6L/PCFZwM7p4pe36CnJgNr4xwnevmHgtC8Z15Yyz8eRCTEam0SmNVB40/Wj0qAQj1GzpqzbsFba2zCtzb0n0+8hngR9p+pn0wZMO+EPx1C8cM4YPBEs46SoC3LB2F+XZBr4+wjqcGZWU6ChA7LqO8kj3KMQFW4ZkOYJ2M6IxQZd83BbT255pdrWld+4buOfABS4pn2vLKPkeUWEpYv3rIeteOp/vjqsGde+Z/4sUyFuqnoAbPhecWu/EAnRt35qRC2F8vrP/Pqyr8sJIKd59y0pTi6d5/IcJ6ITRyhZGVaH3ooOI5M+fCLnWKi6c5o3HmMMgUTy/K28CPltgaCLRkJk3rEl2+PQ3qIx53XEZB4qp9DO2nbCHF05atvg0GvNRaME9WOmg5FBZqCmzd4PMcj4b9ZEI57kjQZ5UR9tjJ5/QTHE/5i4+JtIvyChixoZ5TsYACf/5NLK7d5sFAfnZYFPsFjTNqm9rmZ0ldEvU3pe9p00vKiqj739WtuIGz2bicZ4LAEFjTDM02cFFU7kvrm1+zrEH4viYR5QRUlfe7ZZrbrgrR7lC44bz5bhCXrHz0UN1V5Ng4Pe5YRt3P9WEMkwrpwqeb02zcz6G77aqypMvIvQW6BpFAlhaNz3Pj/prcIwlfVSkVRc2WcMf5a9I1HnvCR8ZOnL9YdHb8pfhLjjLqPrSCCAKLbGAYCKMwS2s9lspbdmphTvHFybFpZJqeem4XHJwt+j3ivbuqC/Q7GnqITkA9CINbEAYPTzBbqQWsh3iR9NtWR5EUksGrlMGui5heredmVDj09Af05bWboDsEbsOU6Qtb0rSZ2FEZJg0HnyOFSEEVDORyfwm0qzPVbqfl0f0hhKmM5h3S1ZU3rS9jlR9s6B35CuHdJg+bTOMLoc3z8f8gomJj+gtEwaddWqt413jNsPlU2t2buNerP8e6Ts9aW07+EMZMx3MryHfZaXrhNQOKDAMMMBNU75gGGGAlvmksnovJVrmAYYYDhO7/s+un4U/5SEvhOXGO2AYYYCWW+OkH1x1kskwiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIuBtBxhziIiIiIjBA9RMcFBaeJYBhhgKN8mYRnvYi7xMb0mAYYYBNFhrXsHHK4qDPHMAwwwFKZuMrRo+oy3KULt8xtrSAiZiVKb3PciC5ij7SG3qeG09z9Tf9PmTrmk6iruEAQsggsMO/lrJjAVwsEWlzxOqadOifz3NZ1pJ9FBJ54m+alNhlv3Nap2+yFp6te9WAVAoFBs9Y6wkOG7+jeOUi6KRuWtVXh9LcGPpm2o5ytZyPpkOCHQ62DRTxPd4dxKsKQWBgM0sygEHDJMKSD1eqWTdm77Fc45afAolI1WR+hXhe+zDRTRjeRSfSB3pHAEPY1ZOvkn5xvxa3IwwnU5a1N+V//K5v6taCNCaVfRqYGa0Y1tKH8HRuGaPZ6Tw8LbgspzEl6nYZya//Rh9xRgQgEBqUA8fj7zi1+YE9VRaMj2sc3lTUQ2s6mfIUzq4O48cfa4FtyXRjV5MwVTGfo9j/x3sYtpPXOOUbW12T9wchcP45kHemFDuB/Pa7fZGgUSb3rytckT4fQvtRw1RbuDseEImSDt4qyPBAkpJDoJKC2OY9NmxN8sKk/GoSXrUa4KD6EBSzASo56iWYyMo5V4UhGuNcFh0UHDGUGWVbdVuuyhDLObzZXeKIEinHlAM+z+aUZKJAgxkRf5R9+P6W0DMG4904YRvhFZi9CHdLIDgkfvksQ6s+qlq+vmGug4ywJpeRCYfBQSDne+7mSoZ/MSvR8V3lGCVSEDecdpIKReeZ+EIRLumY4iC/703U/dJwzsgctA6kTDr+bzVwMHWFQ1xcvYcWMQWytxu4uH4211V10qhB0/NGVO7LsTgM88AWG1XNrBNBupiZxvdYggNbEEh9naB1uaqEXINsG3HV3+MUnHPLCZmA5KxpKJ7cSUNiFwNPRw65AfS6P+NIP8YRMmOv1pHx1zDC8sPuHs4A3z9KM3qhOIEU/L3NJtXcpEkv/g6XPlFb7S421Qha10heKtwoB7mYZVmtluMAAW2t1h3BGPSFOWsNHcCbKGYjciFkBcDk+0rm19i4dnsQ5sZ3jqt23ZfnkuISEij2qpcarUzK/b0XLF2lSn2BdmrfoLRgxrVaZQWm3cY96wMD8BPQ2i3hnDpTSRdyuqPNU8WJVARBLMJiKQhcA0o6JbRKjeTshq0EjDRMw5aW4YP6yGgIbqz+BE8wBHPnmUvcVhsBNGj4txe4tDLgll5c07oBNryY4eXS7jQoamT786yWfWsNaMjaElcyLukbKjrzHsyg/13SKvnUd6l8iAoOZcUYFA/gQsWdf0C9vmpoY40W1qmlom6wMM+EVYH9YsJr+sL6hKsnys/6QfepXZwytjjUDG1HfJvWtXWvWX2o2XamGbbYwdXZiNzdoQBtx8DIXjOZUbpfeezo70dUGFWPNRGnpOoUDg96kN42aSqmPkPxjpqj8jFOXC/enexUUywyK3gkPWpVTm/hy/FxSpK5ubBF0kK33MDJjBbNW0aGKnjxDgIeIck3Hge6VUJEyxQ44IFQEFhowYHxW+a/qI2VrTU4o15EXI79mvGevuUY3CPnFNoHrDPZJJ+cmUNEoSst5NFDlqopgz7fMuGhUFQTmM/SSwEGzliJIn7rQDOsLJXAn7plZdv0GNVnhjA/ps4MjnOd1cUbZybIUPl+ewqwXjW2ceINYhMZH+RTG2rvAzZwxMQG0M6EOXOrKfrlF+GwxgyCorF+BYj/slA0++swcEkUfdtxWJAQOTDUW2W7KfYoz57JPze+5BogCX/onTrfPPTpIrPigABiNbVB1r6r91GmAnCPuAaP08oB+50POebwJrwEeJJeRCKjNtaBAu1CtI1hImmQEHF5zcWx8RZ0Fae6LcRWKsVd6ORrDT2dD2crNZLs8LPWA9hkNOk1s/R6ObyViqHYtKeRkl5KcobvLVHFmyIbk0KTTINJSs2b7lmQ3WHbVZpGoTIrSWVnK4KQjf9Cld8I0iQIX1mfrR4MQuH5aDqDHv0fTRbEo9RjqlkIagokdiW9szJOJXmcDjzbkQdfPMCXwo3eveDidC6si3uz7tcIV1W7+Foav5kN4nnBAx9B0XbVTwg8K3X/zTnzjp9s/UPiLRKJWq9qzdq0aTsnzHz0mcCmCYxEfBMSVH6312atHBJ8IKGGfW8zgQ73nW1ZPcmf84Ni3TYWS2vVntbYaYykgXuQxeDULnnzkcV092FWceWMW7I+j41MNVOeoygG4mMDJyIoLMZCawlQZUplTJ40puotuQIDkaFEz4mpi1lCqLc/8Ovao23WKCaaDUzanprCO1TR3ZL4EEpSYDOx2Fq5gb+msdHql2Hr2h1Wp8oDR/26cghAYEmRBctIhiNV4np8iSrueo49rrO3RkgzcDfgTjHxxkHAI9wijuRC/Ye3fJ8YE8R3fZ8Of60PNalo7aCyEbfBrnhP29dIkvjoTypYUyd3JQtyc6nZwaKDov5O6MnUMKEqPHMDa1FP4yWRlJXDY/BYLFK835tcWQGMiHDiIe9z1iegnhledRKgfPE8rAm+oNUHcRG6BfPJs7XGmTO9BGcQbTubRtN4ZAFZUrrru8jw7v/VT1ftMbIY40dOiDJbwpHZWR9Fwqbvka/O0W6DVdtC1uobkQex9vaadfCW0Nr4/5KhiMvKzn50bPQpT/EinJiGa6P5bqF4TVrzaI2BYIzD6T/ck1n9aB2ks/AQRg0HwbrkmeF1kQYgOPZx/slYKjoMQrkHjxLzQc5E4U9zj17hLDF7jKeLjIKZN/6rftrBZ0rhGXGLEioKR4dT54MGHWvLbjDmxrwAz9QTr47HPoYZPCgUZWqU7AibuUWg91lQgxRrL3C/1aaimGc7xSlTzGRpd20pWsGfGGEzxrZlqFgQJ5w+fcHaggHT3iGsJpBY+/5BD2hnl15habhsT3XjbYm4nO6FlQlzeMv6h+NSK+rtaxsYhm6VEFwy6AZCzwq2y5GEpYYau9iyZpniTa6NB6ca5jtrVyCL1GPosUz9lBlukXFTvzBcnzJrbTM4tISI0evzTZH7lmWYed77EcMu9glEBxscbVoU9jjEGUI3EizRA1oLdRD8bzpYlNpIGr5oyyLPke3SXnv5wJ0ISXgVJ2lBU0guJiQRO7bEHnc5nSgUMztCj8Uo1JDm3qQuhIRoRLUa5VakEJ1A68wNGndHZ5Inww5POFckdevHYbHoCgDC5zXZgRE8kwep2hmFR46HijXnb2PGwtvbfBDu52chb1f2zKJULNK2/8ZsyQubh7hZdvXotdRUQCsZJQCOIbqTJlUdeoONWmdznhuUqs5ahRBT65KqOxconWrSYav7nsqWXMC7BGnqfNmC/q42LpE3D1T5cUAWleyofdkBB+rTxOti6MMLrLeOMTYIi+9MpUM1q+dxP4TpNPW5DaKmW5LJlcGmZ5jNMWbhTOLCxEOusFcv1hMAeno/Kc9hlAJA8ATkVuz9reH3zc4NmiuCpotS9UFe7FJz0a3+IMzQsbzGPqrqooK6Ktmk3swO+ytg9CWZl+djSUY302WR+O1/OikNzn6b46p7+LFVp9GIEcWMBTJXrbUyhgH80nu2lG9uM+eZQM7xU/5iQeNt9ARkzA8nm6qx6YBiXNWKo9ulRhaRUdOK95/Rnn6SALT4ZwPVwaFSKll2sh8BYil0GBiAVuljjqoXb7P+vvwbHX3llFUUPo7SKfutLHRWu/8f3ltr6wB5a/V5y9k2FBt89T94up5Fj3xMxYVmzcdAdwBSprAhVvHldvf/CqoCX4d06AZQSBE2KRkRQ/RGVA65fCkCTlvuLQ5jsph5Hnuf4B06Nw3ZgPrfL0WkJT+P0bPIIUBBmAttZiRtB41BVrZ8QXwQq+FamD8Fyb/beTPA8rhLlQmbyZjD0eb+Uor7KvaQHE2+I1e6dZ4iIK7TlZ6OLzlPS18ZSXz3ThIC6InkX85EeW/MgK5XYCLxRNgp1eINoA6OBEp/npp+scZnl/RFZaIw94a41IGiRFUKs/0kK763R1VV1LezuSFuYFhP3Pq3/JrVe0n4kVZ1Pni2F2Ru28IhjhJUTAeQCd0i/E/8HD27xftGoRHyku7FR8VsPH4WylnTF6e7C6h1LYuf4RymIrv2npogfF7jbBDEdjDp1vViuqhgLxup9VDTQEtqKQ64RQxo2xJDGifVk/6Zvv8nRmFXBqNV5O2tTDcq2dxprQzED1kdmmbOhNsOeWyvRhxKHIGn9oPhaImquWgyRNTNrgW9wZJd7L/NjdUkdooh+CZOFr8ZU9oiCGgpAbuGPYfWTuUJgWX206UG3EDyKKzHlpmNLIeW/JQ9H28N0gD8C8ci9Hgs4qa571sq3IykbT/NrNHVrfzpV8xFEhJpExP8q9rV70Eeq9jp0uJed074X+Aw6C26Uyqoc4nApvvDP68JzouQoQ1ySy4LtSJZkuRTydqwk4Hey94+dhGJfbB0O1blmgEjxSoU5mF/5fm/XOB2/iAhe9o+EzZUVFy4vTx/G57PV9pEvDCb5iguzCLPgrosV6j0fyywub9AZ8Pl122juCnqxmLRwSuLKlOpUVxvH/QmSl5hv5dMhGPkEj3UwcaISt0Utsecaau6lJOVoRPaPgf1bry7233Qo2atLl7BFsVygYPthE3AGnl+I8SYnRq+FpZfCYUJ0+XPLyma+P76697Zo5pbAbNjPZKqzCD596/cui7eMOCEuKSX44Ozk4oiGX8ktZLiQm3r5FYslbSuSMlxtSQPabMzf13TGaZb0zK92agqpnC8e0dTCrPLSeF4bb0B520uxjj30EYIS7EakiQYoi2zrZD8USX6KuBzgJp4EcYjDlIPzopydSyC/Md2Mpx5tAdrF8UzsLlFZZBaZDv4zD1NfpxHk7u9Ys9gvobNdR1XScyU/eWqn0BvLFTk4Bk8DsnE16pSoO+v/KTiu+OH37RcaV+Lmuqdir311S3bedfFoMF7hOD4t0/PdEFx21fOI4BkouGFZ5/tUH7+qm5JO7Z9NK8dN/o0m1vQMilCodeKnmJtpn7vCXW1YTvunGRG6++sWE5nTKIC1Im/V6SBM7cMSPGJdjlkm8TUNa5wL9ddmxrEaVLf+VbqzeuaUzYbJAFv6jD5DJRetKL9HCUSHiVkhfLmEbcu9J+6sKRqfJTJI63uVgghORhtTjB4me7LlYnLfQ1gUGzWuiH1ZmjALIAe4A5ArpllSbDs/KQ2YLci0BeHLur6hyaN4+V0e605tMP9O7/dcQlhBHmXxs4IfH8TCFL/lB3RklpH0Dl3BYQF65oKw1IxQRQ+Lo5xSxOWu/GSxhn/qznfka4U4Wn/qxqrPvUYo8TMOVZ97rdfkTGalrGWUtwcmPz830D6FmbKMeh0/BIjr+C1u5Vn+b/ikZnf4X4CTED22LHZQk4V3eYI+S1Fc/WzUgUsajoXh1KxEHPoVjhaNnkMAAHHXuTIoWMSYBCz3PB+OPSFHuVkNi7ySIJ+PHEnc/JPEl8cmc9+mG3T9qv4VAXZqoOwWt7hF6hMJeNXXUZWSx+3dNbYXeTf0zCY1IJ2owGgG8jBJsV+SYrjF37V+EwOlWEfOG+uTLk4/ey39rKLc6PiaKuC1QV595OjkPBDucEcCHAXr3ZOeOfCnCCCBFiUQGjHmpbSYW50lEjUsRbKI4q1PzaDvmZ7rgd101XKogDLhvRqDO/9/X8fLae25R2S5t+NNzxSid/qZ6taUiI4TTGv5yZEJ0RMFq7Hz9Emh5z8lJvHGUIYEvakiZHX9ZCODlL6giG8ccy3FLgsPwT4OQwv0l+UlS20EOju06doQBbvBYVVsIM+PFY6nT/D9l7qqWEGvuE72rgnDnDlxMqFSzMewyOidb35TxlakcWPWupT7zbpkNbU4px8iyGIoswfhxNVPQYy1Wn2GQuSOsejTvlGF1K6RIr2nrR8y+6DCqAr5nlkR28m7vKDAwggymY3w6aaW6udri+ovzxPxvidWXSuj34ZDV/NSLersbTimlLFgZLp1U8SYD1BXpGzwklmN2MyvHGMJ3ucJJaJPytivXhO1tPobG3+FyORX0vNq1uBFRnqmshl/iCF0U2XiQksIbkqya2Sa2jVEYT5SF/RTv4S9Pms64Pt/QWoOcjQRiH358BIb7rQ0Q7IVWUXz9kzf6T+H7IlkkZBzWmq5N8Tw5gg+H02m/7NE6XmaihrfGaemir23Le03SeRTEHvTeNdiaV5ttNIU+/V+zP49CPzF2T4oMOosFywwENteIvvFJ5GdTsTCD4K/Uw0gpvtra6rkNckguJwEAhd9dMgNgghVGUyODrv8VebHG7qml7z1VyKc0NW5bNuRIAQ1ppiTAcFEa4fohFruMZgXfWP2Utl7kmvAPY3+vTvbLU5IVzZOHUIsAaEpxbbiuB2de3ThAuGvpTVK7hZhdxjHW8SQhkTG1fK8kh0kEmQ4rxsZrW+6ZnjCyJvbGkaZExmvBRDLq95WD/VCiBbfVmZ3NPVHJ0gc/c8+/scxFoPdqZ/s5ae5uxmSvFjnun1WnIkf+Vi1wZKsMHh+ovsu63ZpuI2yUWFavITIJ0i3+XhiwpM4pJNkfn5FxeWduAMnzIDTSMSDPZGBuRCjTtxXqjQl3ibXsn76ZQnz7NIftKEC+4y/0YszEht8k80NqS3vuxu92sOsmDFdb1FdUlLCSpnYMf1CUN2Fq0kpNy1VwwOGEWL8dugyWFT2lJWNLxEepwEGfkYeyfKEtVxyd0vi13VRjKHiVmyMQmYZ7dtN3YZBguKiStCphzw8tlSWza3Py1JHGbqEV9VbGbE57Tup3X0QzHCYV+u71KcAyZwW8RidFNZrbicKV3x84OgbfU0qoGhHbrMuAE1dqvvkRCR+jVvGihi57UTlnTlwolJh3uyTwMlBcaaFmIp+071qlzoNltct/a1bFtUveOXXkvBhd4nbRspxo54ff8BYDmEb/dmC5dRtpBBrst86D/DpQzcUx59JPTSz2bf6vHQR4OgeWSfmc9+a8BGeq2Dku+Sc+T4v8dLXgb3qY/AGBBnr0JNoN88LmMJQKCb/7mnPd0yhlnMzZbBPaAc+PB+O0XDbaZEaAr3xByLkvfhxKfdJ39faF5Gd8HUVHO5i+RzOSx/18fX23u4fru5nARTCcAw6rfac1gbrsWdYcnqJ+X15aoOXbGzrfiDdNLNsuxyUsxPePkEk84c7gn+Imk5/l4ftOVDnOw6p7pYlgjNXOK0R4zdtWh4SCEOntT/COvsXqynD7UoMOqYlr1E2APk9V+ltZrU8BqPRn09CHFBahCG2YRqyhqcYgAoCRWf4Hl9ClqjxeYZMwNQ9pz09F49HLsaa+PFnrrUpRbfRK5E4Z4QqEfGQoPF0E1w8udC1iLabIiCmh5Xpo9cnUZDcqr6W1sHeZw+xRqe97Ltht6ZrgPqN2ZvQ70xsmrdQTP2e759nvrQkQdCwa3WsQZ3hxWR2iUD/A/4Lv5k1+16ZsiSIg+HzqdW7Gm4MWw6aa5v1A2upkLnUvLd6tZDIYAXXrHg6tDuFdwV4xOD5kH/pKiYI7tQbPme16ANsWthnPzUTe0tVGI96KMavCY7kpA5GmIX/smoczk9t1UXxQHdfnXvFUMpAAOnVAn7WmviphQCaB7+X3PQUfzr51Q4m6lPynoqLvwBdZWBofTyJ9BeuHZttwBLOVEmwHhI0EUs2fssiZD3mn1hb9hphJDPuvVv5xzmhK/WmBYHvwqduarvrc8xb8TxrJtwnLK1gOw8YLpEDkiVeKYVLCl1wAhzaYdDrBKfLNOMz4lhgCf0ThnCh1BiVcUuiZu9KOqjR6d58k/21emzsD+N7dbBAhfJKaH/EcxH0VufTn4U4arLGEvv/BRM/wo80AWREqJV6NV7pLVA7z2HkggClXAjgBcNgRW88cQDIty9FRajaalJ1FErw0pjaZWHyTTberZlouoiflOK5rYtAF0awvS1e/fOgf73vYfAtRA0GAQb2TwIS9N2xwJwIVK2SWvxWHkOVnSZlHn+OvhOMIVufuoKEbMl+c5oowGGG2JA8u266KlfnmyRxQvBBuYzZ5pN2hxS6q2d68RWkKDYojt8pMMo7hNhrCZyi6KpCODqWTcYUJ6JsKY8ZmCfTS56fCNJ05O9YeTi6yGro51AsuxIEt68qeN/DLUy0nUNgxbH/IYuTJ4iMvwjUKw1kPelJbL08n5LA+eI5257OmfZsLSUq2gICp6+3721QJkg1oOK6TUcTs+nXl+XPoKTIUsG/WYfQ5tmtVkp6KXoP9grcLx1twc17qsBW+9b0MojlG+SYQFWEDeH8gd04JZMRy1iyFnyV1njGrFdWsRWVs3ZfXyDb+m/ExHIFvUSBfwY/9Eq31pfFUUmbdpbusmgBD+PfQwJNGvdWmaL+3FLn1tAbreog0GjUmQ5ugQXKLdAqP6fLPo5wMWJvwD0i8GNhR3FfIocdv1DrioqGQ+YP7qj7gZc5Un5DdKjyXI4Krsy61xBVBIAWVsFiuZj+k2G1h1eFfypdR50ELQVpoPZkBbbZdhbCUv2kV9rDCoRQnmYMNXpp2alY8BlRNv61jokgxgKf/gRo9ST4uoexh8uc+OOo2y4Y+49/fk3bzvm2JbEi/nb2Wy2275/MG3zHQ87EBa0VZY+gMk4fD7gxrA4HbgsdbgS/PFnZYcOqecFBOni+TOuMLolfhcYnMXKtfq/YjV+bCDz/lmicO2Q+X1B7rFZLo6HRb5bYnkZZikAguULAhG6YoIOLfYuCtSkvxbEIG0LWY5nIsrnmCdcVDQCAiOA1vOfIBHC4BuPOdIk6dqg/kYger7K6wpcfseSqsAu0jyE+D2w/6eqOPfQHbw95+arhmyP9bpZLRAnWCGtdos0KBQF6Kwf3kGi7A9fMjqmAYYYB8ZQD8RQM5p8ezKdozb6OTNiEmM4JOAUibh0E+TxVjqB3oL7VxPYR9s17XtpyAZfDRLhoaho8TTX7QTXmk3OK4/ZJsV6bC7kOfB97CKsEd8HtySv9yjwe6ffdzRUwbvL0dr+kwZmqxB/LZrleO54f1Tr8qoqF1yXXNvrsYHE9DTxdHtqL3/5e3/T5XdNbbklU7/iOiUiAJYfi7mCGVwgpVH/qGe79aOZ4iUKas1ef3uyYR2OsHdCZG581vUfH4m+7RB8E2Y9lSThIh6B7oIivhgUHgXzL+6GiTjAsRgkdaGRR5U8yuAp6/gHvWSU5FOE2Fqv/U4nmUqLRJ8ywTtlJ5SwWq8uM+DE9XfdW2PWLQCvX7iyVOkFvQUaEtzbCznpxRTF3iV5GZWr4oru3Ll8kGs/CjZNjS6MNmaPBgHfwyOhBL7YHyBpg9QT/HN2Jet4VL2JXgBS3rgCfYKlXo2wC7cFhX1kKYFiosVsNDDeHYqVigPIe/wkqzgNmICm4NwPBmtd1ZvoRbo7eD3YSZkl1D/D53EsLWZkZHGc/1/pZW3Ta+637BFidtcwMabyXJ0zcph6EVLFI8Hn1Xd7Z5kFF1CqFNPAOQcM0L49YhNGyS9Qea6tTdOLSGLpqMBpLKp8hFCFII3NAggzVQV5byZtI/lWYOGWorv1Z9m4xW4N5ny26BarwfP/O3WtuCl3wjnSL68cMAhLhEvnfuOncwwHoy6SpQBREyESd2lmjoopmmUSJKqiGpeEWzfH/wVb4YDHAFIrYX13JqWEDVCVOjJ+rSO4EJ2mpgPmM5Teze1pbfqMfam9A5xVm4f04JBDyhD2M5rEcKV5fqwem4PgfHk1Ql3zhg/auL35GE+ygJLg3AZdlXqrp35cysI0wPO+8QF/EZdwJkG/7Yv16CncXA9h0iW80VR/nTg0es0P6uZbxxkbZvTV5HbOts/AgUu0qPoWJeoPphdIJ7rn6Jsw8aGlhgBQ+16HivXXdyVpSL7D+SBU+ZqGvoxdtG7v1M3z2mAptfXLUVfjTCBAaXAORg8ZdoMG7zbj6kvdz58jA4n0UvhLpZ2yPYRrAJVjUuCSSSjBPbdm1giUsajqe0PvX3LzN2irOxekRDOWwnPUOtlYrOG2Aon7XqSsNNKtAROdej+dG3F7vDUKa+IT1inuhkZebsGkOdHrRVxmpv3mvFq9ziwQ//muRlslcetvecKiwUJyNMhQbc5vgCfEEQA0bDh7qk9VQi3NNcZIOWd0akvMhy6ziMGy3XSGHzk1OSMBG4j8tk0wDTvzWGalu2pBc0Jll9xnYWT67VFNgYiRyPpPBp16neIuUbxp6gwHDI4g0wlWmNzb9l+wfVxkl5p2Po5fJZw59wh71JyuFaJDTYj3Btw1d15NdpFh31fsYiewIJuqGklUPBrrZ1SUO+ZeDGLqZ9G0uWmtCJqVkEjs+YTYFRxvf5xz39jUNd3H9NLSqg653XFXkq2+sLHyV/PePR31Z4ZnOEmzuNdyUgZrWemm1KqEX1D1xgL+/9W2BPn4ndEG7L4x6OJcMaPOwZyJn3Mk1rwcKV1thBgW5ty4nS0BjADTJrNMRy3E7mEKDOU5Ih3LkZObZdFK0Y+2i1FnDYtd+uMut/WW5UVv6e3MEh+1dNcRnfS2vtYstpGaeS9PT1OxvHIVsueecduBk6LgPsdmoVy5lv6VJrzfnr9sd0M3PELrF+7U306f+7qV5OYGtlBgawIl4sB+Ro6ZY1Aes8GjkK8KHQj/TTBsN+q6a3a7lS6Xb+kfiVzt9x11XqJrY4egx/xZ93baCdjbqUQWJ3kZ/B3C/KMNJ2+pfQQRlBrcylrekT64/TPAS20PpM5VeNscChQy0i7/F/1lour+k0fykdCktw4/4g7zfRNMiIBTdYwOvLKB584VpEBZdaKH0qeS/UjuA+koLBKy+DI+nRQDVK0kfSVCJP6eOC5dEtxr18Xpo0z8o0qLlvo/1i7ml2HOc4MMX3G5bBYlTVvEoVhyrF2gpy5446H6sf56/NDAX2d1rBPXJmlIsWs4piSjMdUwU7vkQsZZ1NwngiCCbGKEwxBDFIjWIUrVBE56dYjpn8YQmGHKZQirlMDfSMCVPQr2LXYyXdcBM823qDF70e7SLd+jrfUCrJP0p8XTxhjOkjoucpkpqCjUZU4Dl15di2+5Y0vVMyxTFpzgHuhbxjyWCt9Xa+WBBtQuwfqTNu2MmdEAzpNFhPFhNbPsqS7YqVFhVUuBTlytr/kn1POmbepaL0xtjngEJCJwMK//bgNIsIMDJUJUkxv19DjzOfrTLc6snLaXonduGue3Yu/spIewnXPpxS461EchMAlqZAYyClGJCba6jAbBx9fndZPm0b3bmRKYJcHw4sIww1lfUlODwhqZJ1baZgbwbt5mmitMaXZtBBCtcsxQWgad7okhrlXc2jEwKh5iuDOcQ3E7orJxDJYQYByFpxrlUJRSk89HXIYwegUs7jitUJG6anqpOiRkP2R0PdMh7aTqGtDrrhnuVtEDXni3giHIro2bhoOpYDmKWCkrap5VfA9O0QkHEAZ9MOrTU26xe2QoYSel2+BV8hHqSL6Zuapwkpn1BpmqOpIdrklB/jO4NSAXGD23+qnB36q7BndOyX23tq0Pgvf+BqqX+6kA9bpsuQWO2LOg7+XGhe8Jdaymbo7SDuREg3+n8bWOyZNAIJeLIjSHhtEL1ASCBpesOembeQmeFv/8dLB38m2nRYJRborxozhRcaq8tB0dsfOY3KaaMAp9UZxP8qAVC464vgle6R/6PRoeH5NLZ8tU/bF1GJafjo+ZmzJ9wb9+sAxuRHlQIyRDdnK7VD/hItuYCiFcv4SjeVl7YHvOj7v8nvrZ2bJNWj9AeWGlXAMmq/QJcDRI9kk4HZISCoqOcf6z4S09T4XKRSdOZSDeajFqz+aJDl1/iGKq093CZW5VJ4woSRmd6GnAR9Y4GS0NF774zXDRmpK+SNls19j/zmaKhvIxws0qX9IJUdB76pXDKP27pDnC8+BWoVuYF/nmdCge//eB9tIEQN8YH2cc2HHyPtJggLn+sgBBPtSbNUQ/vrEdJC3QbYHAYab63yfNX+QqNXAuM1HXtZFIwqYK/pbJzgENVmBWVjD3zFjKmL0GIakIcrkZM3ISWNEt8ISep47Uw6O57H0RFufa3gwwg5+hPi+sXyqewDDDAFre6y9+dzJhpmtp8aNZoda/Pi8oQN1BpiKUEkllTYBjvYCITxnKMIQzgyUtxTVvoxgGGGAw2Cpkk/TkWwDC7nxPZeXyrlfPr/p9FsAxz2AYYYBWWh291dqdjNoZxetnlkShfJJ2AjTi/1DrYEmclvk03FS3/mqqhtdfRDmFb0HMX8oB+5u3ysvZFPLm95985AXtCefaWOZZ+LMtYzQi4HF3LkmGCoG1aiy89dkZB9kPRgsi3NjPXJZJmC5FEvB/dTIJ501j+2LjeLb1T2jMsfnna3I+B4uKaXC3bTt5lgN24tj4cF6LDV165rrShGVxsbyYTOYNEieqqWynDTbm++JqP11x4eY/zpgwxYHnQLblcMze/zc0y6NMvOcY5FwJPSfphdq98YL5QtuUUbTawBUVVsF+r026rY9RId4HO3Wm7UnW4156bpGbsZqMchAev+od/dtqqljScrdHtOZB9WiCZchrXH00PgWn/e0fs513k6rN7zKEb3ZTHzh0GjTQQDjiMkAS4RWAIRPUoUuAZQXPJMlTUbRH8kmnCtBxXa3FoDTDp/aMH/GD4VZ9DYfaOgcIZo73oap5ETHilVfsfJxCKrEhGpYFwgtJFQ9EHqHRqt4YM05CDLcuD+OXwuX7v3RGG8FfHeQCmUCyEAdUCGIYTLr1ikvCkxK2j7N1d0xniVnkWdDe0N7gyQCLRp2e3aiX3GOfVorr9U3El32SWaSSk3gGil6ZQt2QGCQrJ43GqLOSYV576uLGeJz8tl83ifFvcFyho2KVpC4MC9Tw8+4SDC1mvR8NyjpjAEMqZXaPearTZpfEPRxUT/IExxj38n9L7UZvQOoippCenZNRxLfEW+iprqjrEaE5zusR0ciwyw3csT75XFm1CCvkNo5UOax9wr6t5it8it7F4rkxsioMzPMaqKpNHUBxEBHhESDUxunpBJilFSrXpafy7dra7SZd3HQIH2IN4hu7MOgPyuVN39TIKEUkYQEwhic5NWTsWnekqHK0CZLQfbEuvK5xI9lrED3B8rJYDCeq+nXL7lVa+hh13gleDhToII68FM6Py5nB+nHqCCsjn7dz8bDdG0iAnGWd2hmjxTNpYt4gPRwubvcJfO/xNoy2OPNxXWk3kgCunyP547wjEtcugHiRwqAf/Q76UNpA/Ok/uo8GmkX1YeDCY6IgB7L3X4O0y/RqWDwhz1bnrP0FDpQFRX6klwt6kzgoEQ8XTvkMwLjXRj9mNGDeP1YoqTVWNACUn62ldK5vsuNEIGX3wi2+/fd3hwddvLwp1gz6IeiCHILXg2nS9XINGw3udcULniAUJ7K8VPNH9VtiETGa0gyZyL7wklTsvJ/7Flm0R6jcrtCWwk5koO0TRkcHEU7IUVqd7n6Lp2RgpfdWSvCtJdoDH/Y5GyW0pEqfOyW0lsj/9OlgJpyqxwdEUP4tqBwzqYad7+B0sQer8de582P5CMIKyOVw6S3fb1NDNXoBUuMaPQfynX6DNumDfj0vG6DOMWnRdHp7RIg/+osoNDK4vNI/xA3iB0t0ZjQnADBFNeHgs8Q3IQZEByXz7co3qXwUxsp6Ixa2QJDzIlAYvXXgZGgtkndWpn4OHsmhsNE+KWAOZsvuGrYO1NEdgwac1uRMwPNSUI54ph+ZMQdkJcvm55AGYPRn2GHT9otZxFX0qhzDE4Mu6qDZUg40Y7EQ1xVSAotJBOTHwR2quNMTNKsfCtFhgrgUAKJ63qw7UwGTyL1ES48lad07rL2M6eDwJvfpS8mGK4UDS/omzMeZElt8sM19+bKmB0CdvuPMKkXEkI917NmxRV3E2O8Evwxc3oqL7FQ31yr7aE2stZtJnf+7uEifMlJ/u3xcRXOA5RtFeckLqXbEwzwbfqxMiiAy36HTfulj6bu3mJW1KYMNAY87FKCzxEgPdoZs8BCIBBRxXfB8WLPoR8UQTQDEOWYQshBTn14xHMgZKpVxLBz56HXCAm8peySrm2XBm9CJ4RAn05DWq/TrZFB6DkuDZh+/G45Nh+FW+BZ4N2UfRN+c2KPP6kXI/RU1eSxGDjCpDCWbGs7uLDaNB/720vcYA7hkXWdgqyPjVQB0xCCsQMH3Us6n4iLcTqEhISSP5amKrmigMLnzFiCr5B7OxyruvMG6Gt8QApfKVnX6CDpsQ9QR7yjaggGxrrdUCfrNMXIDFRiYZM/HwUzAv/Pu1gH793TFDbp2v6FB7GDkA9thS30aR3223vJhVZ3RX631Mu38icahspFr76lhDpO9prKQKJlnoL3Kg80rdW0m7nuITEPYlopzYcbxRxeu9tFM6Zvc2xBQ6NHSFefNiXgww0c3LMhdremm5D16XzmS+gJ9r46jrF0khgUdAHx6tjt+p9XcRY6iWpEVa63QHQlytJs2aHc9WWz+yT2VOtZBfg97qtIr8HU2quspU3ptlDI8ZI8g8tAcnPnMPb6mDh+29V+S7MW0CMXdGpbv8M6vWg5bcLrSB6IXUQjKUTQvvT6Ewb/QK7Ki8HybyPm42O1U7msHWhm7oINws+is5U8UkPis6ghTICdfggwCgV/BWtjqfToemwafHNvhCY/HtPnWJpF5rn0QmOEmOjX/V8Mxgk8+ydyC6NpP1/F4sRc10dyto+5mNnglSmtx2XvyIoQk2/SZg0R4JedWa1hnpxxVC2S4yDUuMxotS3Q0+qLr+YoJp84TQPDMd9/7UVy1bVa2PDF9lbnmH6GklpV82lBRBzawddfBGY3jWvrhzUFbkTEO899mUsD8qCZi9tzg1tYYBhgOSIO7XiUYTB6tLubf2rf9vM0lvsFWxkvpj3UafAhgHMWAkL6gqAbuv4/bdQoXy3Z3wqWwnh08LfxyO6KDrZHOtFBWP8kpyB6pNpGb7ZI3dVt5YdMbT3SbsQbjDFX+5GKWPyIO2+dh7JLOe6dDonbu37ffz6qAIejDLOEAB0Dayf5JNNfCUO1CGEuJQQ/p3OrqQMDihD+Aq+R4qOAEKMJ/loFIkwNXFVDtX7lnTlCfVBk9EWlKrn7lbS0q2c9aS0/DxwnBVtmfD3EdRJU3ZmijK76NAFm3aZCmEqAXONOemRnQUz+dO+JHul7VZpuFhoXP8oWUbOx5o2PBHfPUc/+MbpeqAz86t9a2z1k/Ny2JC9qICgSr7g6jfMwNxZ06zLt6IlW/aO/vG5U45fMnbbihw8+gfF2m05zbbBDRhW534HOhBxvx0uHJITelzZk9aPYSlGZsKAPmORy/rFwqVkuDlCUsQXeUbYahIGHoRkF5aJz+d6nAa6EmKLddPcsAwoyB/kq8wBvFXFKhqhVTLdifpWwwDDDAXCwmwvjfNifAmk1CKtiEYMbZdxJ60wDDDAKh2AY9jqVOiwd6pr8+pe7ZmPYBh1ARuXoMAxO8XJgAAYDGXZgGIGRZdGe/XJG2AnDvKCM3cqQmjK3UbQUM+4kUBlGJWLmRKt9/uLYbctyBpLtBzFP8q4IvQJT4adG8u4WC8Wd7zJwbqRI8+y7e1B4dA9J+eB2lNK2ezrGSKtX/6Mdglbpq/rt0k/NdgDofoKA1i4OnrEta4VU7VUJVeUtYYH3DvTRY4Kt5jO4Wlwro+9fBSwbsbNDdPn4lwJ9N/4zKZdchi93oehM15iBYC9wyYrTvTL93YMhpAR8mjIOZOJsLldnCd1OoN8KpT3/I+rrWFdrFviCRFusF2r0zmjcJ1fRxNVUYXQqo+kcVPzAqu88Di+Tw4zgP0akwBxlx7jsUIHzTe5C3Me5+PyNAt1PwAn1zQM6Kw7Zyi9dy7jOgtj7n87MnddN+SGReJB5OrM9v5jxaVFZt33MxdAiCy3fsLyt3a9fXxr0ZtPT1iYq7JVbNEkvAqZwcgkyjcUZ14v61yDygswshr8aL3eFY18W98LalrvcWK723VT7k0xtZX8G0/X8z8gXugOIq8UnWCZs2vQ9Tc2Qd7DT0OgvT6LyPyTmtgtnJ46SuZmxgrTsT3tm5ynIAWRaF8WviEA/yoP494k+JzcwpFjzsQA+AHmY4g0/2dV+fcWnL0y6nzXdn9OFus8TM3tl5Q3nT/0InSjJU0Ue7l8klaAEvmJn8gjdjLI1QQF0MzJlGQVSpKTdlKhDBDMZTc206wk240ZiHEd9fPzR5E7yrP5mer7peT2HXea1Ae5kPOYhEZoWXMQqKKl0Tsjpx9w2FteJ9v6XRWy8AzTa2llvZX7DtIvpE1RoUwCByt+uZQFqRZ4po3t/M5sVjaSrFZog4SCgvbv1/R9eoY6Qq575qTyaG61d5Ge9V0eTh2r8QNRhRgacASYa6Kbz90LM8sSmtCIEngszYyaoJgasWQkdANuHA/no07aVO87b99aT47LePK8CGaymGQ5+MbDouofAQZQjuutc/XZFgqBEGpkRZ7wuFt1MGwCnnwBEAr/fmD9fI6GZ6/8X0QXdhsYizDwS2gZ+aZNI42I/ENROejJclcFRw4rBIyvZsOyq68YFHm+h1UQC2ttqw3WvKKAaboI/SQc/qq2OkezemTheG4yxSL0Eg3ppkY0/us0jpJ9CUGZGxyN9uqeZjIm5ZzxVh6vzzbi4PY9GGxutS6OJh0Z8eqHfoJ0mMIQq5GZIs0kLdOB3eLuQi8cmsgd2TQCEXiqSo62cxAUcZgDjx0VTYy0J0FG1Eyv/NnKrmF9eNdWEe+G7RpE/lUWDVWUyyUDcepmpqL/c/IqekxgcUDRyowpiuujm2tx63CWROwUlg2uSr/FNI9PIirBB4J60T0ihFeNbqee2fu7bjVeCoCLnm3ISD3/h+UTUfh72iEFtLfyCj7OfW68IgTv7F9/niQvNkftciIMzifZ2sFgrx1Bc+fpQZ/vd7n9nhGpHL0RuHwCuDMquc/+bINTCWIwZpBZdbocPnURqNOkFxEKoN+8OZolCqZr9uYPt8DLaQ05bHXZZPw0/R6d+VnMoJmKkRyDGVDpO2ntiChQVUxd9YBjrXNnu20YwGRGsO5b7Pvvbtmn6hxLXbrwMAxCBRbjKZ+7XC7DiR2andns+zHi270LWtalitds/2aXJegOCr85Wta1LFa1vXr1b149F69Wta1qWK1rWta1LFa1rWtalita1rWtSxWta1rWpYrWta1rUsVrWta1qWK1r9MHNedXo/VyBMBHgwwwAR4EHA70ebji5RC4qWsy1v8FM8qdlQjJd13zzpJBiVVDEdHIKCZOoNeutt1iFu0jfx7ZqeJoVM7Gg7soOWKe3uP3fQs9y5L3p9SLceetLuH1OaVflqvHhzbLq5w4NXq6xXJZytKjfZptI2yzrHsoaTW8DzmLWqgKlkB5Sf0eE4SD4GudM12DtNNfhoF2oxzDq9vJcFgDV/Z/oyVCzFeK0XtqlHeJB48jJCs7XMVRK6N1XAQQXP99Uqxqaunt3P/d1fnRFi+7LmRSiZs0Nh/ch49qimD3dhrp6w+GDUCeyTzQan/sWd8afljlw5zsentuyKQAy3Czc7qKN2P9kkk9r8t//yNI0OxeRFTpK50Bl534QqHb1kKhWjNMbvP+ZFWRB4ZIdhDG6K+w9LK++Ljv6u2DovjVe/Y+Oprqn+P73bZ7VnwLLfNsKn/Vgh8sngBmQTrckjjsENPkHvJi9bf4I9bxT6eu5Ak7RH6sDMTGzg4O6+es2Pn38aC9yRPEsd58BVfefZ3dTodWAu834tUEAJ4foOZdIkeGXYzdkZTB3eZq+xrW3tlNz80HQhGkQNbUCJOoMY2bH4AZULUVPfIixrDxDmPopMVthu3LHQtrvinogFlgVSYjN/02vmsJNYMA63jKFLLStK8dDjEQ6g/StZNZr2MYZixawVYEPgBNlMgwH3XI0PW/sHEq5G+1y8rQVqfEV+zKrShASUo70ZdW+QShD+zLF2XfWhQUnpWaL3tArCncRrxMai7VZt085Xt9aENAlM45gkEE3Wc920jstdqrgkBn7PgODho1NPWa7daPnFY0p4PuKpB1jW696QTBEBfXM+X6IfaK/VwM8A2TZ1dvGWVCxRqQsQHiY948SpWyWLMRwHzzp8g9KLfjzHyjALMsWDYgk/Uyywz3VLgbqdLk7ZY2qqx8LNPTjjukZfWg8KEV1/jeo931cdHpuddz/2PRdKWxb4pI70auVi651fwtdkv78Uuq+io7cvdfCoOB7/Hdu02H1Tp5oBduYpq5wRJuWg/K6IfKwIWG3oldmsZx64ZbpnYbD7myEYh/UdElCvhMelbzgy9MgkORaL48o31d+yfQcmuPklGfMLksWQeaZiAHkzsxMchQFPpaY+YmCHb8yOoOsYrxk74QjQAvaF1eohzXaVZJJNOr0qRnzLVTtC1mhOSfOYVxtYdMUsSMWk0oTBXJbnm6DvJDaOP3YCoG7wR1/gH6VCO8Q2FNWJIzjRv8wOz83bBtze/iyvRMOTOzCvhCK2VF95SHBlCVx24PkaU8+wxoqp3ptVFmdGJzpoyKKD0LwBy6WX4AKB5gyhTi4JSSqcKkXYSunxxMl4sdfsKziYj3DpO4T0QZyP+zyvqpRJJJhRan8aIdMWu4QNPJ+BOnYFgZb24KVHm5VTRp1G1+jnQFLDrGDL71CdmblunwM/4qEokFIRyWSfFtIBtynnZpX636pOL9wjTF2YDLnpGGHPl893zPdCstNysHCIxfZJDJr4mVAIhVRzvxJvPfnh4M+YCfQ4Sps62yvMX0CgStjTyahi00jHUBzCRw7Dq+w3XUnJ/Hnn64vFkWQX98MbIKhVVIS3RHEwllMq32GGGGGA+uWePGAYsbbWs+RGdHmxwx7AMeZgAYYYdzTyUycrW1LirXB2yHGAYYYD6UHFAwDGI3Eu2m8+w+LceRlgGH0noPmg2AYYYD+wD1jNeLEx33Um+RqN64wDDDAbBBhNrIDMUY7EIHBwJBxVJI0SBjh+qY0c8EQNd1lK4w1Gcg+kcDCQ083352dgWLLlPAuBZ5+1NrI1eHP4TG6NfIWYDbvl2tkiUO62L0NDFPaFQcc4xak2DWi4NM0Hlafg9H8bow6HNZ5mSEDr6dYGTp3uitc12fqTA3o6jdhkfLDhuRYYQyqAaS8SVT528jZtEHv+rJQj0LdE5jQ1+qfbpvuotiliu5eR2eoipArRz0MHAt7wb77fwy9dgaimhuI8FKKfZs9NlJCcXhe31CYB1FBfMyD0y46M6MKM0nWBR8hm9eUAGfD16XoBsAv+ztg6zdM8P7/M964PFjHqYOhD5jVDIZUbny178k3pYpEnfzkvf449hos2Dtqo6Fxq+YBnr3rHN4noiNNykja6GbCKHyYAbJvKind8z7sP82HZrnZgfbG9frtfTpHaOCh1tx37rj9n8i2aiNt+bVOzcVfUrpF+lhdp8YjhRnuRakV0fe6KUejQDCE/lGKi/WXDHNXfT2hjDA/kcxYsUlwsJVc8xR+Zkt9XRC5NjIut2aWYxeGuDuLh2o1eEdGK03jSZQssAT9JNVh8E2DAeS7dk3f7v7FITJo+sdnC9Ewyk08ZnB574JcWNG0lRNyPdemMtVxDgLVUF8Zvsr79b7+n4GSrL1ZaqkJafoz9+NfaaB9lUgA9qJU7MXXfG3Rc3V+F3eyRP7BEFl8FwDa20wGD+EsX2CzJxa4KHgiBWAM2gD9PHwWgJVQ6yHLkmPs1n+y/cmtxVvcgh0EY7YsjP0SB5to7XyThpBW+obJ6hSfnEIo7IUy2sofWJMa7AtSog0pawTM3vf1ZzO1Jc9F16m92b2oIPuQa2RVNvzRl4+0GdP+4Iivr25xzO2YK29aeNpWu25UjIvftdwbB79g+24a76GdbWgbtyImBwQENJo41P7K8Vw9ZP8nqDAC467RRH8kC88OzCqlj9llWpgNQ2MNvrR/8TL1NO9mbGzsKMYJiEGbAxN7J6x+LwfAr0+uU9o0YOiG4vqsr+rVLfdWtJ6KRZLMZyqitSKTltuJooMk4j4ckP2dBe/LBMQNadb7j01AENiUhRPyMUrj363GrWjhMMV84NgnsM9f/0XtyQtva7E3AD5KxPXvNnS/c2LPpCPwfQSpqN46k4lS/OJVZ8bOqgu89ZkP8jw06EAAuS3QbYsZC9hgyeSuaC8b6qTZG2TTkVc9nsjvMmz/QobsbaSwWCksCHI3Hf8FY0eqJX99dHwVO5/wv3svLMwVWjQiEcYd7qAqx/US5HIh+fwxDIfrRmHf5AFvv1CAx3LzSs3Qh6SvsQGbXcP0g8U89E7pR6pEfetD2nWCt3yH4u7V9DyPrAArsP0k7b9IcPv3YdBjRacWMWGWLz6+/H/66eVKbGjRnTUmrmu8iNz9xG2jgnsqds0x0x74G6vMY2InHc2RpORiP5HnNlrcT4DkAwU2NxtLejTAbZaHpokfbbL+7Pfocgg8vuUg9gkhkmsjYasld7fmsI3dDeQTsT8AUKsNVIwPbvQTqlQ7gcjaiWlmU1fD0hjniCwmLyMZpn2U/9aHsW3l9/B2GmIzO1aNKoafHGjF8BOKQktTi38BgGGGAUj653lfvJOJ9boDQzRkH4j33ZBFYxcpv/TurjDmQVcmtwjDyVaBf9V0qonQGudSFv4FCca7GQLQX1JnAdCsRJuGy6zuqQu21mumcyuXMxhrUSPURdS+capQdx5r2+wtxmlOdxXKrjhxq5A/wQhDV+aTE6JHiR+pRrbb6ex3EVq2sAwUB/GFv47f8hSr275ZmZlGGVKLJjk8fN7BqGa885xLqmjqErMShLZHovIvdGPILEy8nPpzGRMsiEEiIY9PsOUqC8oe2nvZzcewY8kNazD53l4vIZyQ50cO3V3NxL8MYs3YPowGILYQQ2u7gKiND25hmjrlJZHBZ5JDJ7rRburF9lMrbByVP4PnR+wUOeLA64fRpiXwr9DAOSfk6a6r+hzEF0N9c88q2b6V6Z37Tfl6FEMeJaN6qNXs5xqfBOpNjB2tRlIHXacr/GyHjwbd0xt/Tm1GKGVOUPTrmejHJevfvKyD4q/TjpJ3sB0L+XeIIpZolbbzd+Eud6fG4butsFODV5L3x8w3nBxWNC266qdogf98kshxx/37LdfpMmqtLvZvt70O+L080TCoK6HySg3t24OS6MxGYZ1plvyR2eYI3Xkw+lNVeuA60YimBuniVb4X6ll3/l0F0PlKPhUqOxBzJp/VhQtjZALBKh62UYBZYHs3AQlJl4pFAgpP1DIGyBqr55aiXv0uC0deruBk3gpZejgz79QTubwrs9zof53MocSssVIRHN0pKBI/tDv1igKlCqBmDTG2pxQqpYtNrSY+tPPTHy2eIwjb5PTD8XYJ2TaHp+CczyxSdJh64kIysvTLJJXm7QmgDr2lGKnPv2fDtHwpyMQyX3swcJnVOnIdIhEzuRFCAvMES4UPkI/W9IYH/gp1YhRvQnbwu5aNewmYtGkUnbg9xdAgjllWHesFvI+KSbvD+/1aumOtWwDDDAD3uJB/eZOpJJyRSOZlqieNhIYHnhLb90j2z0+0zXn6VVXafHL1L3+HV+8rke66XyK3tsbG5SsPVz3O5kx/jLaByNamEAcIM4HWcBB5+/ndUeMV9oOLl+UYGYSzyxnV4hP1X+xfu0G8BcGsJdpcMU4CKFbvJtdpUlIgqvR1iTxfuRhGILb4t5Nf9mTAb9MKo9vOjIzdxGrupESsFAG7KnfVSwFnSvlTwhPHFoB7iJ96ufGz31N00+LmQwTYW69TT+buZoFOUiXpY33qG6o/YL145AIh/fzdL2dJaFNkdK0jMlbW5z3/zdKLvoMEEJs7aPUYuTbBqbTY3zcnlnxmXjU6iQz8uMSeoSgFDOAjl9ntCgvozCiKt5y+DBdUBQbTJ3qSkTMVk1MkYWVyyWN9Rb4t9Hi4Bs61ZfZIVbwObx626H6PRUZ5e49KLGAwBbaIM5HxiRZFwE+gH2mxAo34joQDYjGU2y5+lFPopvGOkEFYggJXeNzRn9vhFHUb7RpdhKbTs9wyCIVZGV+q46naJSkobFRhvgOdyjpbGLFAAd5lhjD38Q8/DYBhhgKgwDDDASVzU/Fp16UbzlAHKYBhMWg/xp8c+bF7LTan1dFfoYBj4/WhwrNbyT+COH4N3sKAMMa+CSCq78bsfBWC8GcZpOWYBhhgNHMvZYyCVq5nt08C4MAwwwES8eVbhAwwwwGvVK2AY+7AMMMAl+cJcbYZfJa11AklHnjPjSma/k0vksFVu2h8y3SjkBhjiMOp4CPBhPgosqU3HXtFfbvvLr801XR2Z9C6ByBgMZKI5zMy6SYTGNQXZRVBsuZq5b0m4XmZDO5VylbyzE1DgffR1/Q8fIMqZQViztGeJsa42IZQ2T6FAWc3Bh873vQILFfFbXUwQNtI6Uf6m13Sm/K2jkwoAzTEYUyXmQISuGTQbvjSxROG8oMuX0d/ND8HSO09CtphUev6/lFwR8RaPCF5TSapyWLVXxpN4JtnKj7BzZFpglaCO3bc3B2X/DQCrztkPt8sx79MUKGyjKXjNs0H4va8TKT72utbpWHa/REDC6JgsNPuXMEdN9Sv1wLUMel7kecgFwjCsV2H1VyNSMnMWgnQyKBngkWQFs6AK9no8K4dlnOO9UEY8Tt9Sgto/zpQuQ7Y+ET0zIjAH8LudOS1LbgntM2nKFflV+Id/aYGWxZbAkG3VNViTIzHK7IhxinTTcE/3fS33P8zY5292FinR9nzbp7UMH2OACc3JvZH6iXyV/h/rV8ZrB1gh+bWHjGy4UH1rkha2vTEkzHoAHInT6pK6AEJSqv8pw6YS6KRPgX4TEosTGE0koOceFh6MYeDdUgN9z0d9eSzzLyvURDdjsqF6gv7oZaiKHeDg218mGQY/9klTOHJFInyyuUOTS0qKNaD+s3Own49CtNNtLatG7274nlhGZCbGIq2fP1mS1MH5K1njetspGK0fP/kqty1y/0+N9vqYk0OAxiCNvEGjyn1q4hnZhSaDLw8sglKUczEu8/elyp4yd67MnFmKHh8P7HqwVU6U95h4e8EcVY6uEH+eoCtwhAuh+BL1CO0do+d9NG0nr5y7ddmeroCZSVwKQM9rFMlJ+P917ieIhguwY++oA7Qeo4gdDiIf5IVXZRqxATdz5VD7y5nUC/4Jww71YIG4ErHcyOoOX0Z8zkqHC+3uGkUyPOWbA1ugG79+egZsboVc52ncSjiPOJa+ThksYkywobwP1kvhVToAXD35wZygCIrvt61hSVVwDIeTpzCoFdvWafmGKu986JyST1SImKnllnRVDG/X5MAVLJzDxuIjBLlCUL1os0d9skp77ybCAUBmPNipNwEWdv7Kgo0BwjcORgrt2ntY9KMvFzanHGWsTmChXuu+nwoNKGz2Te7qJk/fk5y4Uf6roqlTkwmQaLeA6h+G33M/wsO5X0j3fOYso5g0QB69CNFKZcUlfQKeAAeLTJ3LCHDI4lqDe80zYl5hdv8V2Ln1pEluSxpAXrTsEutvtpOs1qG9JgeAnhS4Y1qOUXKffcyX0usZGXyzZ3BpZpqpzTiDBmj6J0GirELteZZoV16OwwpA3I9ydbJqVmjaDPD6EXkTMBzIvmko2J3jL35KGSgL1HBebe59zXHVCV+8M8Xr16RHHAWa6e3eMkyHVhdOkalzZDJwQqsSyDZaFXRay5hXXWQ1WkOapK+gnD06nF+7QViVaLhOpW5zv34bu/q6/O+48Y3BptkeaQXbjesaSIBZGg+EnwWDt6kyfgv+6eW3LcaGvoaWNnt+VQe55qZnPr/BBmyo0iOLSLsvmpT+YKpY8iZRTT8akyUsHVvSAMuUvpO3z2MvO6u+5dwWyrMCc5BG+yoianrNCcP/XOypJF6LsjgcCszKUFXDSsxsBl1Gabjxz2KYl3YYLZxqM79zMRfXs+gh1u/ce31Kh9nnfuyoxU3MVt+irbwEKiGUriY293pldIApQC5wvNuhWPmyg0GUvv6CD8nPN49AxzOgVdMo8/9XGPfCBIkxfeUW2bnyssxWkx0fExHxTi9K9wx6AO5zjyfQ0TR5RM6/9RD4j3nkFN1wEAVoogQ1nGgRb9yhHT6h4EtsTnicFIqfkNC5EjRq15OWrgkAtQmu5BaiE62ztpbhO905MfCCVtZcv2LqWU2TtpyVhqFR2H1DPcTPoWIx/vtMY+umk3r9MPatl2LBOeHKFCztoU4VMvVxD72nfntnC+uD29290UybHO58lki8SC4rEY0UP5eHFwkOYxxERpCF+4Xs0JMgksKcZCfVDR3aSLh0F4wK05XhdMeTeJAnP/q9YzB/vxg34hjGOTM96Q+xEXclSNr6vAXNa/D13qcgwpwm0cPTntMOXbbZxs8R9nDH+V4rrOBt0WCIlTst0fCI95bDyOmQhRkFqMUEuFWbKBXi5c96CznUtP6y9+9xS7VA7rP1lOCsGC/BbzaJFrz/aXuQWPH8aqMYNSKhzJL8sAQjem2LYHBYm0eextsban+jf3V7zpaQ45mFEdL207U6DeWgmzq4iOgjLT6CuJi2EP5Ev8lolg+C08R6zWvznNa9dNEHkFxj3nLHnY0krXLVI6Cw7C0Whau8OYmhZqOeuLLmupzyg2gSmWUVITNC+em3b2ZKGbb/W1axmmkd5nbLEmK1AJvdhWCHbDJmpHSyd7kpbyPY8z+LyUB7Re9EnXADSCodhhjI3fqSZoexRTt5kSgC1wrNGXJv1RC1/0QImzCH/TtYJQP2PIabQITHj8dq5UHFDKNuWzg0SxsEXZe2PLWUTp7uxv07G6ip/Et4+rBiZMqSUXFSdpAhg6h+E2IDT9NOWO/eTk2+l2bceWDD9X2UPnQVyCUB44ZCO9y9UtctGDo5HAZaGh0BsxSZf/1RQ/sPvfA6Gnbf3CqIG7wWHFwbFz4rWj4CWBWSC3maOAZ7Fpg/GZuYzuEKzH9LMF3lreEJwm0mtiIL5UePFV12Yi+5kxwhnFfee9X1w20cA/jiXkqWqVCInNi/WkBnkbFW1BfljvqyJONr18gkfK2aYoycABRWBtxD+pG70wbLrHOqAvi/jd8qD9qVct9epgeJY8ydEYJRawAe/TfJsISi+59NsHVvrzjnT7py7RB5GeqLIKpShhGUvWvY+CaGfuVR6/YxfVEaiGKNSRXyqsOqpdgWzzzEN6piXN8Pq1wEVfs86i4dy3lvfazpK3Yefmw/kG9uQttSyoGn0QWlusGAMfcKDHT3WvgloCjXNMtiX5fmQbVV4t1XGdUqs/fVVu9uKRp8Ir7pSOHz64YUItsx/qIiLpRitLNFYBit3JILcwhKufcohkxE6d6tGyM4GoOEL8EOzlwFOVqCBgGC6SkN5svf3rM6xKwTjdBwcxQmAYYYCjCDDDDAbep9qFyzfgAGGBz9Pv1mfdNITAZ5cIUIzdSBvic0MT4Z06zlhPZfrIsAwwwEM+2hXA28bPMJrucurWCrM7Pgwp20iIQ5XkTeSXFutsuGPo56Y/jacNHGIIQUs1ZRwJ7HPKuZukgnKXjN3r6Kmr1WYpAp/bNDPfNxsMzSyMjThpccVvDWuOxaPFqqmDiLXe9Kj+6jaXzDe014oGI2/62OZ5tsdcOF8x9vwKtxxi40Y8I9WEQQ39R1QxuYbQ9DyDQ9P6OpfFzaz6iZBIEQvRi+7C4NBaRFR5m+ad/bLIdVoEQOISoYhpt7c7uUDGSK+VS5ME+spu9PiWdAAApFf1tC8gdOiEf88cB8ETYu3Uh/xUQ/tWAUX5libTqnqfwWgTP7S8DgkXoLXRF7IcEbBw4IsAE4LXcCrNmdZ4XBn18UIaauru8SMdfiuGn+EmKwjEtDjFAIKs/HL/yS6wlre8i5UNmO+2sv3uWkXEqXpqH0J+lB6OLYjbwc89jMnZi+2htWm3JuCEJSQ8PJPZufpgExrVkYX50cFPXf1sVWZBn35SUtCrVHshgljp6MQWU+rONmeBn8D9yUOEfuU2+0mJr8nNClck0c53xzGcp/atC3SpFrR4fkBnNpZvP/TQ/q0Dqp8BgNT6U82+61C/2LhpTujkEvHRdgspBj0N6hVWHCwy/CaQo3SAB6t/alAz/nH2vgVDHS5gPT1sYP9uaDKWBKtcHpYZer5ueT+ONdXR5KJlqcFur7Yc3174udyHxKa3zFHpJR1/egmDneWxZvtAM+eE+F4W1IKw2gN9kiUP1w5JHyGQz7zGSmoJNCX3fHUwrDSBwMhacGPX5pKBQDoPkT1nu+lS56KMMeFNszVPLxhsKLIu8cWr3W1NDVwywbIEUYmO3WilDIGM5wh1r3eLg/IxjCfIfAjLqTNeFU7ln0YfTL8ePR2NIwDDDARRvXweO9zU99ypX5kweJJFKmb0AYYYDXP+h3qm+xfKknqlmLAGGGAhWAYYYC+8uAqi8jl9Azcu3alv6TzfxkIbm6SUMtR1xzx9M8QrHomEcQNXCvLA2zRbHxXYUpK0xp3HfCgKBEo/MUrTR2IX7/m4aG9jpfNpkFh6Elmj1MY7X5WOLTK6flR/GAEbuLrg8etQoHd4DEbEZUMM6+wpYHaOZc4Qqheuze99wGVcV1YfGHiJiY4tbuE5ErClRKiPrEx2KLCIfy6+/pEtvRy2Y8WRpWzV1Vg/e4s9Av0QoOR69imTEptL0IvuaRIMptmn3KBVhivXxNJ4EKpatdGt6OTZiSqhfv0jxUCvt9Us/MVHuTxsh/mLGfqDJIpXYOO+b87eAQIsXYLh/wkgJJEw8jNiP4UQeLBDXy07sIROLni+j7PVVxRiRN8xbH18P9PYy4ReUCvrS+VQ01wcoj9NrYwKWfQ/XobJI+tcIB9YHF6oIV5Q631IZg568S+7HH9xnhCg3UJYrhxxApk2PYXvxG5k+sL+iZfphyTrfqPmwVBlQmPJ7OoIDYqrv96UaxO0GMEMwBkB9ZMigN9NGoduKl6eQg0ihTB28UrDXRBn+diyDV/HipPbBuyAIWN8RWqO7T0viVcxdfRYmgsauQ5Yn0IpOHK8WX4WzrNhnlMtMmoIpd5e6Hw1iEShmAYx3G1B/VzNY9PoxeBgsTnUhHRZY5YHzFfasLAMMMAP8/7+V778KouDMGTBtgBhgXom3/MpOWTxo3/l2CZt3n9S6xKutfqI1u6kJDPi2JAGH1W0DaOPqYo7FIGyCBO5o9uEr0SwiN92VgPAleOHqxtfDfOSzxqEOjVUnC0rrEd3MttHXbpf6dV65pU+7m2D1oMWv0mv2qrwoCeKINSv9v70Tr3VG4Vf8f9Qqt0AfWjHPv2BimyM0Jrv3ewp/yzaHMbtm6J1mLXuPRE3rvyx6WJ7twX6pdG+M/4F/EQ+NuFK+XgVn8Vv/e5v4RXUhfsdPFfBCTImD59NNZLuI1g4Bex7DDhaWnGTuiQEA+XydAxJWpVsYPHj1Lpe855eBNG1KTq1YAYfRqaOWSrTD72zeo/nde8amd3GlIBldFXlg05oYUfZ2a2Hxu2vDt+5nKfWrUG3+ijb9YhLxW/iYN4cbSh6vCPy338Onl4WIxE+RhOmr9uY6fPG1Fv0yfuOLPyJOuwTxDCgc3ZYAxCYPobivesvOHukebSqKByQSh9xzq4FlBpJnU4WMyMPjfYQ1DER+ExTG1LxZOmy4/3b9Y+yWRuX1kG1byn8c08TS/swrgoirn1QOL03v7xfQNnGrjQ57g/EdRjY1cqshGv2zfY/AWVvAJIlZwkl4L/UI2M4D/vOI9fCKwDFxxMb3h0GG1QQHE55kc/ROf4Ei2+zuziyVNiTRs8UJlHQEjac291Gb9qF9meNPRw+HTtHdgy9eQvMVLVcvRatMIOa0T8ya/+DKDNOwNBcoV/FxCQ7BXtLXSlzRt9uqccGY6IM6Df5IkiElprhocQlX4U+OQyA4g3zHXBiSmhZgjmVIOyUp3+fwmoBB16SVi6JW+zKBAgqTPZoZKhphxcEc2CEJCyKwjLYuJ6E/ll7UlmfFtDAd7yWj8lUcp8bmiab765Hqv1kl1WmrTt5p8l78JVUA79ZoAHm8dS87+mUyeqQNWMAZAcVPrK001wkXZ99r1qnJ6Ld1tBbaqPJHqdQz3PvWvRVGGNvD5xyxpkExAc7U3HciL9b0je/zmBqVFr2oXnl1QVsB16JiQsOr9czzUKaEDELt+sdoCEU4wfd9hc5cAsmymJFhb4lahS9iYNf58huEWnsEHvml0lbseP9TTE8Rteg4GLdAqQm3u/R4dJa28+13mksFcRqt2qsswcn8VHvFuqCqQb/j/gEDaNIq80j58MMbN4t8AII2U34ctNg3vxaR5NXvb/oyUf1FmbH/K5VTEUBMnX/OpJ4IHzep6Wrv1wZPQrWwEk9fq1LYmzdSwUKryF01DH65bB7QoXRiuAq0unXfPtblXGRGO/ydvhMhn6K6zpohz6IBeiT3DT+sYHSaP3+G2uRBntW09FXRAklAaoif8P0I3Q+FhgR1epqoOsVishOlWCnAP1gTyKUYJprGOBCCRBrI8p5pIEHMjMAIAtCbojRPAoCw8XF02BWfUkCQxcKUx45Np6d/xK02DUkpP752StDns+dkNNWmPBTrx+jhjOdl/3tPLBQfxGV7638iX2Fd/z+Xy7cCvc6hnZmr5VjHfJjdYRL32j4xgp9nhV4tmmsAwwwHdBgGIytpRM31T6MmdqB4IXGWl3qto7mAMMTlESLtoJ4++MjZYw8euXmhwYBiysAwwwFmYBhhgGRdSp3zhaODI5s5qqgs+JVdqhMAwwwB1IwGyzGVg0JzXue6oQRhRxqojLOzScVv2AYYYAbEzLEH2ldvsOVuYdqO6cyMa4T5nMeUFgbw+lWu1Dwka2UWWgJbbVxPG8KxSPrgKor6A7pymG/8OBVJQuUCoNHwPdcvGl17H5jQKNh9REv+sOnv+S/EExJ4CtJLaPxH6cdBXZtoZwPEpR6V0BfLeb68T5UltCsOzccoBquJslzmrM/6WxRWdvjIlWFLBYBts9tmcQUQdtm2jn7hj8ioN35ln3lRrNOlWt6Dup5pzGcXbP8ysCRgegMlvK1btZLelhbkwKgTrQ6F6gcNr0KrnTKZW/7rOI3WYqq0ZfPdo2wL0kC8dFi4zk9YbwVKsQvguec5F5lS4tmxl9R9yhhhJLeAFDIDHCbPaNlujkf8ld+7HmUUSQYxHYkZlBJ3PxldhQCvWXvtPs93ahb1y+fKOcBg1XLahmGSgrBLG7+XK4CKfAMYXtOGd3NOET0TJrQFf959v6rftfYQ+h/QUDzOePw6dnCCEJsylnRJ1vqmkMdbhNjU6Dpg51oul0ClYbnKzKztIQnEsCs9SvaF+NzIp2yxXiYYv1wjG7zpH84DBNFN4xKDPdTviyQDsZ2mWYDH9UkliWjUKEaww7Vlm0sv+H6VHaQTuewtTuSOlTxh8j4Fo+loZmqVPkbf3M0PCn8a6yzGbKgC7t+VV8ntthvIvN8hO7q5OJ3q5gBtlY/zR/M3Tyw5Oe39sXWOHXfvjJA/JQZN8EBEK/NFgdOKppdYYKDRE+c+K78XwweZYaW6R52UmBhNYAVc9stu9ydKKsl0emWED2uuuPHJYU64F1MHoTROGfefRFeE45WnvDRgoD9Us/LOiulKBr88g0gcpMzxN0j6WyjtyQGXqrKd66nqpaKIdHNr9+d3FogHbKRaLq7LLYCifnsuyMefODGb3eFuewRpA2PDCgaY7Y5LNhZMBOKKS6efKq+nHqNrZW8oiAkIv782xqne6K/Yqmb7Sz6FohT8RWhkYhpl8ixlLEJA4IWkbVBy/lxUi9Ff/Zcb95i3z+cOdfyvLe0uSB8wesO+5v18OrFePhGJKvxosJIwQgOxrxA9soCBAhshKnxVAhGeK9oq9iFtZE4emkYBrBd7vRuLtGwh6kO/ZbHbyMLHTRJp1muhV3KNOgYBgIp2H00Oan+aw1Imc/AHww91ZGJV60EgnaixOSayUWSUL31dzGaL2hjlJrZOZOfjStK+9CPzUkmoivzXfu0IzcSJTiu3NGMdixlbk1Ssp3GqSuso2KJ+Nxaefn8xJNPrQZdF6ddLrgtDZ2ZviPSDfWLJzXIyo9Cxsg/l/fXaolNMo6ALnqT6YkZ/ZZw8/Ag6aU9lSFJI94k/xJepHaJu51ve2FMw5WxXfqrWwjOYf53kyUB03s7FcVQmKzFm+HwH/S4fJPnVCAkF7Y6G/YysW3wENDyOisiWxZ3lOZNn0+PvDkD6a4PeVW/JgI/I/UcBVqUUH1LSrvjrAoVZGlDsYQDEdKmXSJ69vlIxqsWo+ItFxTkv70bM5tdATHD7brWPApemOYNI8vzQEG/u3VQluB/LAQEQFWoTVZG8vgjA1bC9aGcaaRDMa7PDKn+xw9aIWF3JpdABbIhr60oJBJQceYI5dttkrx8TUFlXC7FldmB5gKS+1OBbfL1fYbmX8xRkrIszhTAT+JmyOUkOf9NOZJIMsO+jmgs+VqB+qspDCEFLp/2rtu8VmuCJ9xgbAP13d+4NfRPc8Xmn8mAylNKV7NZGwwOG+10iJZ2Cu9qcl3qAcsvNSwjPNgOOqYxPm5+ESVks31pR8MC7UsPWNFtXalkfpn2rVRhtPbdwv0ufwPn8n6s5FzaeQt8qctYBhhgMn5JjGhcJkzfq2UvSMN/w2WxpTQcJERy5NgVYhyHM2GF2LZ0b9Jm/8Rq4PJX4ImHQMcBuBuSti6QObhfsk9o0PY0U9WmG/jMvqKPQqTocm4tGJ8MNWNY0xnerGh4rBz1o5jfr4StUUHkLs+ih70v2XRco4zOs9Ou3F5sUfPY4pAi7jWR4UUnhnwHu+GohZc8GFTFkFsceEcNAkITm6IkSRlGppklMzx+1E+eAxaHSaiyMKftGiAcknoTGTgQmtte49+8ZYV7NhFSOzKzg4HPaqB+b9/brfoAurqTWzb7UJbxAZQkn7KFWP+2lq2k3OkVx1th89ZnVea/GsxUq2FM61Ry1GDwbeTTWp15NFfENwHzO+AhhQ10pyU1rnY9arsOcG3JAodxT6Mxwmacfe5UllMYILfH70wI3nC4uZ19IR2TfxjfPFEsCFLefkczjFLhum0pVgfenw+lpawlFPM1tvb5j7VfSFXxkDazkO5Nl+4n1tOlacwY61SdJsvd86mfy5nfk2lowqmrsFW0jA5opYY/R0hkkqrjOEskk+nU10NBKoA+aAKDsEEM13LJuXEoFvlbg4ap3f/vBMn7MUZeBrdZt9tnjS+u41TfOjuymsXpT8ao1SlepBGq99+j3VNaffhwnWcQDfQ8vyqd+GTB7eP+q4/8T8ILXGi2zIDj8Ha3hm843G4lZem5/LWIp+gIWw3Xmt0YPJoN1vUJ3rBCwReDmRWW4+XnHpdc0Cjasyn8JjaSgYI7T4LQ1d8ley/AmV0dfBDAYKwbyaTYEHmM7VqzujGszbtNNzSbBii9pC4XCGN6EDwb9qAfAcYjzVo1dQdeNY+/pWaLFhXrgpYYdBAE9treO0254gOXazd+uubjRnHTPh/hw1fTG0FPHFYqsLJ5He6dKWuEsz3anH0uF1vSpNsro2eJyORyWYh4rJ13YVs+CFUciqT6TQ/3h3UYpiVIsQbb4lGpbWttv1i7BBFQ1liKqYPoZyuZufLs9T2YKEWxBMTR4Ih4ugaNnirJNmOLU1t1uzsLYcjxayYPdJAoeVXpa2s5jQxCwTpkW8lNFXwZ2yvb/uSC2jQUWS0vg99n7QH74pvjz1/ln0py6RGfktnwSAcEvZw5VRxBaKEYZw2XEt88R/+vtc7M+fYqXMrERDWjAlzSQlh+0FlbFnHBT/gRxxk5bLVwAsCGmC/R/7RIqCRaXMDQeiVlV/N6LW8UKQk+c56ENlaImR6YRFbf1HvYxzr6B0avJ2sTB8wfZ9CDnfpqgxxOsbCJXBRaTZa6GpmOQ2fJasjVBAcL52kwIylGIHcgX71rAME53qC0EVbel5T20YiqWFuMyKfm/7GH5EkgnQsZnd1525wIcABhhj95omU2N2Yw4QbTmKswVBlDOCA7A6piIE2qWNnvazGCKWMMAg5Pje0uCdb/yj7n8cpuz1WlyKKoc/q0eHICwNNyY/VbxL13xR5AaSgM9Z2BrA89ac63TRsgvDMWnnrvtHyf3Bq3/QZ8e1XcUIv3ZP9C3VrR8xEz4qiLSPeN2tRGgcUg73/PFUvSAESVqKJd8ajvOecb7cNjuJrs9lFFhZZk4yE8pr92bbPEa9ihSilBaNdFhtDG0xRDv8Z7yUxd0EC6FHpLsMycxf6ZfN2fmuaE9CyLWSvs5XMURA2HS9z+vQoMwqK8c/LAkqPlxP9lV0pEJkyCpuS8Bh86vntF933ZqZ6x3HRoifFOo6ABm1Bnzx25Tz7z4qreSf24t5fxbilsPQQql9GeHCD9R8WmBy8RJibD9nYW+sy/YolaHEgLVrg1vtu31t/gqUaoW6lgEAdWcJqWc3BT+o7JXt9AWxjQLOmpFI0zbRo8ucoLzqvY+ZIlV3b+aaRzmx+Ri4lJ3Y7bUJkPPmgBen6GLyVHNtqi3aJjZdE/p9V5nWST38JapQMUL3EOeQq1ltB6VYMA5Hkaajw4bhsnUwbp8H6N/jr6Km8TbFz8smScunMP6iPVMSc0fRo4tMt4sCyZaouI4Fco1HvHeqvfnV0mV7tvnslQv2enPPetiPGrhjc7Lbv1HDJDRxYyfbo2+PuelTGTuwvn5K0fLt+H65lq1rzcSQOsPE2r4IplmrRd/9FK27zZuLq28NsSnmGZMv3yqV1ZAVV5leC1GDyKcQUBnyimdjTvDhTI0fVIGpvEGCew2S9HPwXDaXDZ/tf53/2WVA7ZNGLpDRyWj+3aDU11JeL91cK2pjrzKcZGoIfK21oiYJA+1RgMHVGHMP0NZfKdQHsF/6RuDcF3aVwcPCi496L9zwCw9fRsky6KVQbj03S3/g5vTyCQvvA1echQ4OXfweH9r1WT2nuX6c/Ld8ejZmOtJr8VLdqAckPenWC4h4zvUI0QENYL7bjk0eyZcpkqgnxtzEcmw8qA7KaQFb+NiFUuQCGrYw1eWiDs9oTFj5u8zF1IuFz12UMECslWhIBBZHzEDeoXYTZCdeRSBM05mNA4x9GkuCd8sLVECV2bjICvBAWOkX/Elu3S+OGPngggeR7DkAEFq+cldnc24QA0gmwXGCrlOP+s7zNXC2jYLk4k86DYvYQ1Gojl8GRd+T/ydmUDIm/b+MDLHjDGpN2LLgY3XBEvtgOBch/5O5iLpKB7kHy9sfkoGAN77NB3r1pvSQtiB62WFnOm+rCGsnx/EtxItyuxuViWX2Yu5S6Iz7EnGtyZ7qynb+9KtfykDmmNTIpcOqsTfDkkBl838z15bNNhLSKJcqg/cdh5DRZ1AFdWm0Hg1kV7ZL7By5BpHXf13uCedIILZC+V6DqxnH+HqftNb5Z3tQu26K7KNjsXHPG4jOdWxAi5B0m/rbPBhX2M88PkJj1pWGPYLg6ogYSZv+rz6JgNAZXpXH+bhZGD8lesBSqSgWHA8mdvqsWrzG3MG1oJ1Llqwv8fAYBPHkya09Q7Hr19rNwfs4ax99zZcW39C/1mCgQ1U7+xeUbc4KxHz7AMMMA1JNFojBNZK9limaFTTIrYo4TZSLAMMMB3ipmHecZlF4ZvZocOqs0og7OwDDDADWEKnKoERrZE4SmvyZo1czMhabJG3n4AAAwFwYAGGGIRgGGGAbDi6ZRobhPH8nQkxScrP6Su9DZWcA1IsM/YU3bcr6/uhAeXVJrpjW0Q3rjJDY51zkSZqO/aAgPkbjUwWHDX7L0BNOs5/Tssy6d6Hgq514dPf66pDzrarVeoVsmvCg9VnHbvDeR1okW+EvmTmmhny+o9AllZMwXaLL/GsDe02a7S6TD8nVJtalJgqnxQxjSUxdAg97mCTZ1gWfVAJSpBEBgIlBlNQ+cIzW/s+GlcUvNhzunH3H4Gtiq+NO1C43AvLs501qOiFQtM1lpTKgBjwqHN6JPuX9H7Y4QNgxV2DqWDthbVrio1Ho0jGkMwlePLk+3e7FUeL3T2LS3U74EUZQwsL3wTGGDPdcFlRtL1q8ztqHmFJpDSHJ338L73bJVZqJuU4TtrReMPbcZTnDc3FvDZze5BltwQTIEPyhF7QGcE51JwMEPJJE4QvFDMptI/Z7vn46El7UEDCgwqqtelah8tvaldLwySc7gKo+BKLNpRz57L6AleimGLb81I4si+2f9m6xB3fKT+u+YZ45Kvc0PajXjXkPaq/BjqwzHOEpbcTUD3/9Phc/7RG/RiTeoN1LIHfS7VU/n3w18VKGPe+WtmCjsf0xqniIUhyMuJSv8ptPwv7gdBq759KVRsU5A1LR8iokrRU0uF2gK5EnoIFXgSe/KBe7L9tNE8cjvNNCLKBYg1i2nH4rkgUnurmJU0NjNH5LqjtTG3jyl6uA6QzkGe81QMRrkxD3sn/JkzVsyvnMiDn2q648+Nl/laPy569M7kEsFmZHX9fm2NU9htiPGPCwxVF2Bg9XUFAylYKUHjp6rWqRPinK31STrsuLSPFjT0ncG9+enGA8Kukoq7jKAQb6IF3RI8ARgj6yWIBKEmoeC8ecQjzrMPpE4sCGEjaUc/AG3MAwwwDn5QpAhCDaYoYJCsFTyzjifivnfv+0vthw/LXpxC9rwW2reaXBRQxz/ZuZhNi/A4CGJ8nG9HI/WlrARCDFdftqHngm1k7VYcu+6WgRxNA6u7JeRgFPgTxut0M6VKqIXADHtSGlZTjia/b5YnrqLhvE4xpQQqjAiQ5BZOLrKeTwCZ0NDK+ZUpeODpl/MFwGc3LYUiG7iQKEi+hYoIOuKlEE4nxj3mw6ajnWGur5TlkuYCBNKL+8gFWCtqM1z70lbHd94krOmM9C6waKY3AnYha/cFA9F8/jz/paMGsdL2lu4FUVypZiPuvfQZmD9XS3g5rMH/b30KG/Lhf34YrU++25dGv6Pu9TBBI77N79Pf4dXm8mpzTMsPbYNVVDKeSgx0VZjcYwZH/2z5uLY4xQ561zc6nMxNzMq1VnDXAOY/TjNAbWJSBV6zdtRHRERQA89TdX5z0ukhueZ4o1ws0hxqF6jQzkVu8QalUKj+SX/hYGxdPrtK5rTW2wZnr/Kf9bjUtq7lOUsjyhUGDa48nMoka/LV8eM6odkfrhKALz3hae0CKjBsAbGnHuNGIJCUtVqvlnUt1TJ66T+RKV38bny0Ah53snEGhraprBoR3z0z4qRbEd0+aeXhrb6BgGLA3E7ZbgS2uJgpZfzBbB+oMMP3zUKYqsl08eXAlqsPFMaTYtJuM60pgdCFlJkN6cCvsagD3zoGaaKjM6n94qc31DgX/Rbw8U4BVy5e8lOZPz7yZZdAPptHRf0l6H4TrTZ6NXf/x26+W3rZKJz6Va7zMH2rDH/vI7+xJzfP7eMuUFQ0kNbYHqM1sn1RjvdDSh6yTaJsLtnc2XqS30c/zppLb6K5fSUhMhtJ734WVV538Elm+F0KjW953JLxfSqqVnl06IjZx7AzDXuRT0EC3Afe/BFsvgJWtk+nySkyFF0R+VNdDHVyiLsN/YKrcnVJDlkxo3RcoddIkBEZEo/+0PAcwqf7vnMS5lmhbniuQkIMfZqJT0j8WEbizsPz0TZeQdpheJMne+40Y26eWGzGOA/5XAN4hqCYMzQedbVXrjoJMxxbbJpgtTQVzRFnqfaib4KYvN8UY9OQv3H5qeX1+jzX8itGvx2M/8I6j/dabUjkisb0YU0Fk9Ip+bkmwSJUBNL3dlMHe/j3A0rl2IUn3OR+hWDW8elyceJOmBZMn6P8la5mDRxiFiIt3/qDDuDBe9MfpW07AYlIiCknD0JuR/go/w4l2ygVZbKxecK+aJjMD3tfSdDhR/lDZa+XBVwKiPphlqldJ8k6TU+8h45XjuWRYrWmJfHM1JCmycuxs/LD2P0ZkuqoGtApn+QIjY3E7IqtnTSE4r0JIT3oFBY3roCiD0PZArF/APiAKmAuT7m+OTrueRL9FaMAELDP29FYfJSPGyBGHNjpvEfX3G5manhA+2ZFS0Sza169HCAEzIJpEvnJ16M72j9tkob3lfINBhAYMsYYw7o4LwEu2qYpNZZjz0ZX0BdJyRASiTDCB4OLwKFt5UfGSIRV92zkawczT/mGvrnzQcbc9/JwQy07GZuPPhk2KGBRmLb8CYmuwqyfpMybGuaWPhOklNJO9O7QBhGOLiChPdDAwdAkYCGrwT/HO2IIhgzbjhJM3z/luslhJD4lA1VeX7FWdden6qtdKtU5BYDu2421no3SvZnnwpbYfbc6DjLx0bWTNyz/Wg6b5yKH/qwlofN44B2sLd6wf7bjJLZ3hJ9ICih0mEz7za+tFLHQpkQ7jZDQiXozXilHohAsuJgUtb9Lry3pMDiY9vLOFuGNkxA6pL+S0hAVzuEiO09vo/UkHg5h4yYgaD7NwrAAAAZau2aRFIzn5bDix/R6DwHPKRem4aHDMS1AWb3kuDrpuxBFiI4rfgEGh5HAT2wS6h1QWooQwMVYIheBzAdbW4f7QdyM/HkbMoReoer0xMKAsE5PM57ySzrdWzKMJNR9jQaP0Rv8f2mglhpBxkDxEd+bx7oLdAJ2MmHktetmeQNDQk+GDFYVdWzSX14Z4mbv9KE6noVQWgsZSZw8sC/U6TN44t5yKht6G2fOAzEMnOKLrZPJ4zCxoQ7FE4htF4YDEMj4LzxTRw3J8Oum9a8bgTf8qTfGtJSYx2UQ/29EcpzN/vIswfaDZbnjKH+F7lo/0FShp3FDPIKdpdtoe+3BPUPfxccynPNZBkGdTUeV6ld/bqCtCeH9tdO4EbiYR+dK8sbQ2VpTktofGz0WrhTWdGfIeuBnhdBL70/N+BIQat9V5liO6FIbykQX1OGU8Bbt3NDYxgGGGA9E7uXkwOPVtxB/GD7rpJ2AY4YMAwLAMMMAmsaHQ+iWQbTa6YDAMSTpyNBt95nV1fWtDuEGInIMAw29/TPXtsroFx6DkLFsAwwwFvYBhhgKxiUAiWPDJhDSplFnOqWMyZgGGGAK3p3aJKwDCyaAGADfkTAMbuaInugJ4MWU/I3k7m70Kv43GmZDn8flPwlw2YcZorBedQ5ioMK7nL1A5WV4WEUyin8y56oRouHQh2dxpT58XusXlJPV63an5ZvImiuCDP6oWgMA/Eqwjgg7p+FHCmwiog804R4LyK9mxWCf1Jp7SGAYPwGAYGUdbUMyvdp2Dt5wY7/M3hfy4tAu+VDketYZ/MN9BWabYx+7f/a/NC4nS12PEvW1/I4PBsK6r8I2iUJZad+B8drIPlwQRf+/PEotYm3zpdRoz8zqTQLvXj0EaFmVfdaMqN4MUhxEGiIiYypZxXtVdQMNnhozuF+E7eaP6zU6Ovryk+Lz1n+QfCnqkcc7vo3D03/dj+nRXylPeMIRcNi7Nj713widD4mVIgsvw3lMrX8tpVoZ5r/SQGapLcdBzYXOCwXlAsz/7TgeNJ6UZYXfjN9kefvle0x5rLUfNxVcw1NCqXPX51aH5CMIn1I1TqFmgGwt6Vshk1yIrE7BL/a5nbcR4OF6PlaNXk1BNsu0fn5BvanQW5IEgV1HpaI2y2jz/99ag95dtNYIUirv3xOT1TOflKme6KV1Mp87/MF9ycrjNiWI/qyrfJ2hf0hZWmiBVmvgkWPs/mohf7dcDqJA3DK/IIlWfgWj42sZ5m8IcCBoKf07O3ztWmW8X0FAtCA1OUs+Te87Wveg+BoZWcoNaLeeLP1CgauDQZuGNLIC2tH0ygJPPehHQpuhpaDljYUIJKhFRtsEF2f78sBCiprC+E4w6FNN9z74ocKIgXMYHXIWE/aUOcOmCfel0QwvHUxdloPi/x77P0jF119wo99psVGQ0IELzDaYctzOsqW6qoWm6yVoBshUKG31Gfm06SAWLlxjeXjdF6wDo6OhyvIfHTs/vNKth6pNVa7nNEaNfeZvAe7r0EP89p2dy5dFAwzA/N8DbilRyMBnUyBBzwmY1yXJZr6iOKW7owcpxMjQ6PjFh8DxG+FRaO940OCbGaXW1/efxkgq6QKgNkzJdkXT0cP6KS0/s0IqbW3b1o6BynYpDesiiC8LNH9BoLPKK4zm/mZrfCu3yMezYMiUd0Vm3mKNg/5fHfKxubcXGi5JjmoJfRDUYfOZy22JqrTuh+xwM00BQPyQQN28YaKhXvHjXtnc+H19LhT0h+Ir4kTCwwuBBv6/SYqa0T0340yugx+GxqW/bjBIVggXZSyjK7Rd6BLOzAmQlIc08P3eEvej8pVbhFZccSDXcimbnRjnaaR5DkWxv9A2yfONG6v+Adj0U48thxFnAkGPcIQAUf3qO962NGkUPcKUKrY5G5d+LmQsSA7yLNnqbdswUHINSIs/l8L5Tl7zBjzsvqXEy4vL/bowhwUCZSCkQssSvzPt2NxF7cO0YCeCVUZqOxseUzOoRoWaAaNjfSUTzTD2ye3cp4byxfVkJ6qynNKa0HuBqFAVw0wKJJ4QXbgksM3S8U9/SkywlmQZcqLlH+X8yi5KgJWYukWz+H2d7G4rB4u7GrB+4jjCiqk1w9PBwD+bq/Ww95xucRBtkM6RAcEMl1UoQJZmE3WRPDi6WsNVy7U73A5+wNYZks43BMAAMBoxYAGGGOqwDDDAJoCqP8lwlLQ8lBBysP03A+kvJalbwGGGGAkERY4roPGVIfMAxBsAwwwH3BhhhgDsAAMC4lqJNXvVff7EgwDDAAEIwDDDAO93JmYnGQGAYYYD8+1L4Gcq/NNTt0kj3U5goO1NG5Fp9vltXJCJlBtPl15JPtVTDBHD7LWXX/bPRdPXH861xK+VOJeb0osf/GG2xFZmUPmnDZ6/dFjrGbvn8ekxnTP7+QbwI2FwbqTFobfYH2005kMXuoK008yln6g3T/kmMaPYNyVkPH7JKa25Ns6+GX81gF7KLcr5XbUSEb5g6wfjaH6ytuGQ7ySJtGSaDtW1ZhghlvFaKlzFT8XUxXf9JmG5jUKKzi/tTOvyuPw33Szd6NV2ryZiArsvwiQnzMUHj8g5iDukGomDY83g6nYJ4CfO6WL5C5hgc2eWL/IIV8J9wMxNbjp3ZITFiK3RRFX2MnPSJB3GikCI3/9ZcAae6gJEPTW8GpeJp0z3I7Pijr+0NDMg25Op8gRrsfB0kh3mRergJXOmo+1vondBiD5KXpwsoITN3Vjq5c4SBdWf8lWgPWUT0jQq12SYrnFg24ApYrmS85WoiLgqeijfNH+NHWgOU4Tc7TXsyifIGc2Z5RmNrg/RV65s9SOkASzPRIm3ZBx650jrBEC+IV87KsrOpPaTU88ah2HLe8zOf8jPPnfj44BRP32QdtlY29LtxBoUlSw5htXWRthfIYp0IvZ/Sd/DgLgoGfk7Qa/Fed9GWqSqDrzYlmfo45GBfjxCdM+if/MxNkbMmPgIdYf1hyYnCZpUn19Ip578g+kzvP2ZgYz79eq+f+MySpshsOHKXqvzEqCT0NBsK7m2fI9jJNkHio1hnKOpDAxmW8qv0mAbe2w11/CabtdTx749vrotCJDFjKrbkRkruHf8teU9JfrMlNRYeBIEQ8Zo0DjVFf98p/RSKnCP14N+EGyIsAWxD2bL/huyN/RlN9j1dUGTunOS5ThgC5SDEFs/TszI/R+aZNmGl+PUzpDL6ym7z/zfAldEnjf9Iwse0ttrfBGUSeuXcrsay+GjWA4KJXIGH+dA8DXCyvgkh4Gh785yyzaNexArv/TLK1Smf6/nkAoh6/Odh6L5Os0sW+7jbjjSyOc+G1boO6EZaR5740hePwdt1X/Tzy0CvqRx8j6MzZ8e7wRkmQMJccgNxz0U00Q/mlqV/FJ12fZTpp1W1UJ+13CqMwLq9ik2roSh6oQe2MFtD0qGOQoAJfGIIKPhmlBUy7f2HzJYhuNSsWUtNCM1hsjuVn1vez0QHtvUpHRwcxf7tpkwD8tLu7xKS66r4kY600VuXvJSiZzMA8rcp8vuan5G1dCBPjY2QJyRgoyo3b1CW436hdXXZWQ0s6dlK55D8YaJ8YnRiRz6f2Dbt/mLWrLjIRuO8R961Ciol8iWWv752IWaaZDL/LMcimHn9b6herehDA53I8lhmDZlOBHMFhs4jKe493XA3n2DMCNMErVkCcM4ApePI2TA5tzXbNphAt2P2KZFQg5OFIPjaMwwk+lUnfib70wWGtMv7iWNVH5LTPN02qOyRF47fdaWi1pkuuP0MLOkruLtR4IQkRAd/h4WVICry9RmfAYp+ObZOLBvXoWAYYYDu+j/kNvmSD6NXM6DUoYt/dbbqdu9dRdoLVO9toDuxk0ER7Zmfe7YBhhgL9/zi2Qz/uMaQRhmAYYYAwQLRWvY/tsn07gZlzj848JDvEkcPyT0To9Diq4OEGgeS2rPF26yyL9PgmEmM+mxN6AZ1gaTe5fr4pnjZD3O/KgKrXM09w6pfzD9UTWWR6MWsMI7CzbmW2+ZIBTqjPdL90g9sz5Z8GMC2n1RAfQI6hLfUfI6eozSzHEIYYILA4cIZgfahiaEn57DPJtpx+XltcpK9ft1BB9iIp8OzAvDu4yU3EzEl3ustfeLJsgQKxtmsWk5LHRY/yNgQaMl2ng5FEJ3uEwbEqrggwHlRX3XSHidL0POcamv5czjtJuzQrLukBMBd7cQTqKc0/76VnuDvVq4fKWR4xZDsg5qi+CcbBrEjul2ml1Ag/2djgl6QADe3hwu6YyGwVMsYriBWCcc8SncvFitK6Kn0UCQiT/ovk01PaIxHsoC4H17iq4zq23meLw7ELyOAV0gXLVmVuSDIImDua2JXfY2w3DfHJWcTLDgcfWGVV6czDPDspTH8mTrX+0kIJPEwu1VBbRMtkEdNId6HP5fYBXuu+0sMmOq5JizYEi62n5jwc3hbsflyzgokyl929y3W8B6BosQfpa1Rk91cQcaBt8DHgHvf7vjf30Vej52M1t2TxV4xdPvhcsGmhNzBjpUDy8lHt5dAIF+N3cg9HrKOTCusUfFqBFSgChOdbBZRCnIHGt+Kpr4lQywPqLE/3jD4TX8UHE2v3QNuGNvXgXs0ISq6uW+akQG6MXpMGw5wkEKeOnfDRHmY9lT0UjYJ/GqGmu2FtdHcZ5QBwnBC5+jZKrPkqEJ3/p3CB3kymzJMt9RVyihU/LqYx1fJUR7Sv5/NfeAjiY1+ob0RV0ohVKRhhR0uwYwVOO7c0OGWaIP4/4ptmINj7SDJjx7rlDZBwno5BqwQtagk6peSx2RnLeoYBhhgL68YBhhgEsAwwwFboiriATRgGGGAnLAMMMA8vv8wJQPKBzERiAgIRAxjCYxjnOR2DiByMQGISMYxAY5iExEJxMcjmEjGIROREJGOYgOYxmDhA3SEIEEEBCTBGAQMZJAcAMdgxjHOBCAmMciORziBAc5yAwGEiITmOQiYRAWBMJGEROBhN22mAYYYDs47sz5gGGGAfXBgGGGAhgpW9iGAYYYDG1HHMAwwwGsv2Nu52AYYYDKe9ySXpDAMMMBBXGNwzAMMMB2e6ZnCeeKPL0VHMfa6HTOafY5Yja5qTLPISxqZMhPbIT+1u9edsJDe/JZ/sWb/R34iDPmsXKOFbHCDF7qS1bz3+Qnmpnb7N7gqPBBys0czW6NQLbuoMA/UZIuYZvsKD0qK94U1ieI51kLXW8r2Mwpi1YiHNHbKdsljPwgNjA/cgKCLPRX05o7QVBAqgQTImpNHaU8EElJbOoPTB5EAC2v9A1MyAeqhR6gi/0AekjOdKQJgRwx+9e1OvSzTw6gHXE3+J3uJ6ojO3+ZZ4tHxkSdcMw+EHAANQeSrsyz4Sndcwo9caL6GQG+iBOov4opLJ7sl4+NscOfw5PqcRrJRdbgm/qy1SrvC4Z6IgekyTqIwj4OD6JOSonlCn51dFJhHpvzjbqWb70SM4hzeiOlGrBcPm4xVeYDT2O3kJpsxObo13MoczGMdAz0uuO/wgszZy54rsMl72XVoWcrN4oLASyHDG1oK8yDivOrwkiGbvGYsnquycBiGGVHbdtj8UnAmRSD8wgiGpdKfTm9uQSOQptj/kgVzxnNdC+vTn6KbAk+APAvb1E8qWZc5uh0d8cDECltt4AiwcSzA1+PNO8KrOCC2RwhpqJ4H0lGOQuWKwrw9k0UDlbVoMkcveLbOHEyBIOGWSnc9tzII7lu5dbqfZdBhhvbNaMQjE3eBRESSGUo89flcMhe64gFyZ14xyCCxzaZuS0gV9oJjNvSeVgjpESEOsjImX8SREAkyLtUhkj1WUVgzLRTDbLAwZjB+EyWhlJulTO48SfN34m78IVaYaGdcjBXiCg7KiBVTmD46oM0EH1kBdfSVd3OvbG2imbj+XFZ7lmaPabeed12HTiUUG5v+GkHBoQqix1ZpNWppq4kFD0SUBpS5TTsIH378lDoMcnvsypXSXUa2leQKbp90yPYhOMVhSCkPEbvVW9MPA2KuZs5i0iQ0UIgCEgXePQxRtFqGF7t+8qm/e+4pmHInVAXoeFfD7ldbiq5l7fH+hfrdaEl3qV64fA1ChBr4bQ26Hf8LF7/DOWaQ4Rc55qL0Mlz3ecyQQN18KD8jR1TqZtIxvAECym685lnhXFtQsV8nKBK0R8v2ldvT30S5Ddpa1ijJEaK3fiuL/aygoSvjOHBXoE7rkVsq2WFNvh86V7y+9wSkva/dnR3RgcOsbGrb8G2mdkQobQC8m1PrfHibcS6tbpT65NrHyPOvT263qhzvU3Dl3/Bz/K0cmrV6eVqpClDdsJSHu1OgW/CLndp9eUD3SpNdZabm89RhTs6g+350fus/fKoQMAdxKjh2LFrHtiFiZDOfjSXMBzy5P849p7WvS4e9WrxHb9hXOIJiadSGc8pyRwVF3CuFskYjDM7pUe1shxxv7OfeyHSUDLrC4o/575L3uAdhHx/INYaYh4en8kzjgeYYOAvoUZWuyM23Cmk8LLEBhLCZLXbxKQiSKuiGKpDng8pd9ZX+8s0CU6OgmXwt7SF4+mg6MqmCQCasDmjnpQwvMQk2mnqSS+ZYkFjpqpGurHvMuitarhuq7pT3fPUXnrjH0hA/eLbUbHFM1v77bQ7oNBY531Pg36z6SyWN54XVwNWVllCbMQiN0sRmxkd2rQZFlP5dkYc3uLfNN/aV6mucdbHsjZAUggA9WLx+x4eZ2URIMLa9+AesOAKZyBAOLF9fueOJbYm6Ui3H08VyD/MuAlGZtkivs4e15qg9AT+XaXOpanqsy6YT53PcZOLPt4oSMbtv9Uv6rfc8muNKQ433P54bd16pr+RJuY4Il/WBdm8f5k735O2cCcfk5Pr24q2iZL3wzOCd7JKaUfE09dGUaCOB75iDe/evdNT314unZPT/DFhnoSjQzcEv4NbGlKboksYAK1cdvh7gu4IHFDey9Nos/wI69qu9ap/ucttkS2uuWdydhtTWgfyf2MqzWFKmPlWYdOO04YeeiC7UqsQTKC6uzpqXBmsOm81LsyZQkJQhkEvxnC3z8uKDt1kov0+h+7+KIC5Iy28tCPX+xqIdkI0AHQJFQCf1Zh1mO6DKMkUvMzp3OUkODrDg5Q4alPYgQ+VybNBtPaefiGiK/tNjyVMi2w+G3mCnVj1qg5WSaG92zAMNrYYBhhgK5P1xh2GGGGA45sOXShJLnup/us/Du7Nx8JwrEEazHBAjdykR5I29335c232MswDDDAFBSTr/TvIReS81VrTnKQUSDDDDADUZA+xkzAMMMBChJD6oGAYHQntzTPM7v+UdSY8whgHNYgab+LyoCBXEf3ghQakTo6q8cekyTtWtFb2oI1K/fJh+6tgHFt0mmilYiyj1OMeKk9bD5caAkP3SHAozYf3QPBA3zSooFplsJMltrAmSD619mPwZXvOVyh8PvoJ4P7b8wOlvcf4YRNbFVy7zAMT60IbEI+m1bAoVS+XYracGoCqN+JrJj2kVMUaDKhyfa8xVbxNgX2Ly7VQf+e7M81hFPWwpNRL0+aIal2G/qg7vfTxPU9MlwNh5WVfMUIR6vMy+kTyhkV6ckKt4yyTaWS8WrH9FRdCiF1VmHJmow5CyUNhKZSG8FuuusoLGy/qIF7wtv8p8kaRFHTCR0383+w6fdTxXbmoVaS9UIjad5ivvDea+uyoMXd7rfO49cDXrflVE4cGTBr7SFbPEeFLydX5sv6pzjvZJ/LJCioGsUjXLZPhlFi16y7q/14LitWhkNn1vWYOf85yyw+C4/l7JFTK+mjCopZdR9qGyCAannwBX/LizBjSJYJ+e57IDKDyMLuERaj3PN41fc8KPIrQUnaMDcepE5nNqXz1/IR1A1tq+XWTeNYETag/L3k3G0eAym+3mS0lNrgqzMCzWBA7+LNwT+WgtIiq5p+af93VVtq6A2WtKr6bCGDmXl5UXh29+7p49gclp4515uX3zArCDNeRYqrHoG05SBBt1ZUzFH4JkBk9JIJ9nPdvcGq296LUmSykbV3u8IsgeB1SJlm4nj0DLL/Orpsygzb9bFSZjLojv4mFz2f5c7HoIOqQDtXyFISpvQ9KS2KrpQvlRVCRYeJHSJ8kM99ZsaSU/Y0svlzGVC3V7iUovR5/daulIhfyB7rbl007ZsnoDtux+Kjj9Qupz/2TLO5GBUVvaD1m4Mp1bUO/zQnHhDkNUureZaWx3Iv9Ty+B2LBNS0fcjGqhLE0x4kuyU2NDk109LdrfufXlUEE0sK1ZDtT/bKnVJ2YQ1nsZSru7m/ttq9087czVvV7tjjGDVcxQDb5EQGlB5icPPZxZEHBQ0W6bR4fkpYVZtijlCCIkq5htZmztakABhhgYKSNDCUZKwN04E5GoEcO8YckEa1bxjdyOLTsk9Gz9CqIMoKxsOoh0OKSO6URpul31pGy9velgKovDDEC6HaClhRbiG57kxoWwqjSrghCXGSIRmbE6PhDHbZOO/gnGSLD+/jLAaES5Gu4cFtUku/325aWt2ZpDYwiWHuZm0Bb159NZKCepk0gGwXZ3BAem5Hw6tH6BEYVSPhU6kX5KsqNcaa24+FVOd6NsoyAQQMjCVsiIZAvZ9qNvAupOOl779mT5W4xJdWZPsG2yN44VnJ8SZw06hcBlekyL8TeY0acDSLJ1sXraM6V509SmdjDWuhGIDM6EHvFulC7VGe5fOefBoq87Pxe8raMGLcCT+cwW+BQmZodlDTgvM1jEUMOZjFB4F7Mlu7UY2Gs0fYqa+q3Me1etPnVk3ScEgLRrSyDnWdxIcdpUZa0POD3k7kViPaldnUcFgKRHEE9PejadgGJJNMyy9X9iMvbFUMurBJYgsFDbs+7vy24t2nFukAZCfvfd4wDDDAUTCI5Fg34MMMMA3y2AYYYCzWUzuzQ0DJP3VqWubjuDFIMAwwwCZOa5D6D7L8+hnpySKYBhhgM0tp9N3+JgpdILwvyo7Zx4twf8kbnBxhn+j2TbdgFMOvWVLbflIXJpUTzfpt8+hYqApGQ/h2uZbzXRe/g2Ln6zuhf+M3S4XNrTVeZBX6uGC2SH8womZXRXFQnAwpgm28AQFgAEQFgAY9yj3ciCXlJaB6u5Jcf4YTS1jKceko/DyOenzGiBgGNbT6K11oamWpsOn+pnR3j0dLPY4D2/car+8XZ1Rb0Pa6IIT4IDaWqJUEctNGIJ+KHEZk54KzICx2Z91iWI/SqAoXRWPpzy8NMKH/m+FqbRhzocw2tgRUylGw0uUestA/m+Kmzu6QmS1uEzCPG+goiUUz5PVTpR5lqJsg0a6odURFIBvyMWMEDiX7Jqak3h6r0P2G0mvoDLKP2tx40tj39js0ZSt62lIljeKIUzUf0iWHRrpNvSycg9wSodgBCp31OCi4ZbQvzf3xeEKWERdWQJdiCaN+x0TZBXjtT4xLw+Nv6M00Ge86BlSPcYDoA4T8YQuK5p2fWcCeGR2IZEmR5neOraSd46zTbVXaKT/PrGIpqICuZPbiXCzemOuiKfMxaeWFdYyfSqLQ0wm1WqPvuJ9mf1L++jHZDYUxp5fd3Tbo5B5OduLLPc8sRcRaMv4eSwb+geRttxTNj7BEqQ3LvN8pe1P8CTxP3xqtOLBEubiK+e86FZTvLVGACFLZn6gpEjpkiFwYACYo4u1jOOoK4sDNI4hRi90NaE+EtTIQpwyVzV/11SbS8s1NftNq3fpwKJt++EtcxLRdOs4A7T0dzmdmc+XcINCVZN/rQRxbzfZs577h8A7tOTSdtGXcl0T+sEnOcv8Ym0u+ooYl0e61rdHDxCscQKpZBkZA5XfnY3hySAlDcv8Go6Ew+2y9NHXpWH+CC6RF/tHiam0mqFHzN8Zkf1zQYq0W1SgnTPlWSJ/RzpEf7PqkwKCiTEI+KrI1QhQYtKcUtRtlmkRoQw9FCy1oQnu01Z4voVW4Y1xQVG+HZPGd1PV+7t5Muz9VrT6z1epQkSR4Hjrpo43/r0h8Fq4NLe4GV8T+9ZoLpXfwudZQwQNLysJ+KK7Oqq151qgubujO7Z+vSsOklguQUcYn3xx2MpEaSf0IOZVk0s+MZzDhR/y9xHMK4hG1FeQ7M9mGfVD+L5y50iDIKdUnaJmVeSDllwGfWr7xgFVbyRsGVlcuTJNgH5lADIMhJYXbqpE/F5TI580JUb+ai8u30TXsyPppkvwnH+ulJnvB0PXsnPp3E6E7YuOBu/7Q/Kk48FxqTP18kca3FqpiGfGkXT6d424ywXFq8SswhZONGZzb2gApNHebMfk/xu43vqxKiseZFLVfTl9mItnM+s0n1UWYHPzQGLzG9qag0zDNH5Zq7NVvmk3sDXlfsFrb/wB93cf6EOQ6En8ll0NUnNEU4O3P/J91Ye33XsTwOr+iW+sVNCK4AZVb4x6lsbO45AouQb9IYXh0/TLenhfdMs2QsKdN6C/Iho5qZfNoAz+AQDxrpiGCdESv41xcg3/pLNkp/CNYHJnMckj8h+kZYkApuZ9CXG0dwSpsd0bVH9RgJD8jPxqCMsAADAD0h1cZ9rst8CW6wYxqdo07sQT2bKRlrz1TRUK9soVSl65rAjAheXjTsGYBhQUXCk5gMLoeszBfCQZP5JveYTSp3SpN0IprR8DbaaYNvxC3RBjQ5e5gGGGA3VTzCbgwDDDARbAMMMBOwYYYYCAwDDDAe2rt0L7MAwwwGmYBhhgKAwDDDAQTkgwDHXKGxjAMMMA1JITrpuFFRbteS8navMzIpyLq7sAwwwGqP0Eq0eqrfSpqHt9W0b1002klj02eylaifFlHQKRRDSSpT99A/kpk0XpGCPBSX9trg6rIK4T6apFs7jSIOk5bxbZSm6iYGn+uOjRkBjhiMBndPkeSTjimTDOfttMnyiZQ7TiqcwDD9gGGGAtjDAMeJgGBpbI85pp8+3acXLUbCijgKDT5il4JlchUWKLo9YzLLEBxVPDoDq8FGruSaeqYb252BQ1IWOLFlMuV5gnd3k5aJ3yXGUPtnhUH+9qsxot5elA2g5hzhGejOrMcIxuIxCka2iOwqic0IBMCWGDewZ+5xIJQCfN+NKwYnAKDqE7SSs38IUv2jtkkaq2/W5mkvZ2KF7walaJ3S/cmxsSCKskiLB1k0tsrqliX5ZMhoRMC6EQdKqJFkvllkaonxUg37rro2sib6lXT5OtKnRJ/kV2OD6twKBIU0fOeEHNHbT2Nnacttv8/1f4T7JGWj7hRv5GleuAw5sqscf92ZC4LVN3zajItVGCXmX6GvQdUpEEITJjcfjiJfuX6pGzkqQ5XrdLMfZnrRpttd5TyG+l2Wlqr1RpRgeFY+6GsXUeJNNzJLBgC6ZdfrTIxIxFNWikIxwmEMgicQj1EBF7zZcZFsFdccxe5yOtxkbVWuNV4SS2byN415BZYWwERmo2c1tl5adBO+TDnPhXJxdThKcP8qy6sLamj3Ir/lrQYMkpeMKT2PCIPBzMyaPHXk6px5EPTg1HZi0/FCpoTCIa0bhLsPUr++xFZeBcKiXHn3gaCOlpfrbOzV1AJAX23QU42P3y9rQkBBl8QGC1mMYKMhiRdXyipBaV9kQMK17p3NV4399CEPgdIoutl+PyrTikANfzY4ZMG6CAa7FbIfCBnngoMvI75NjUXYQFwyckAY2OCqluKhNeZCUL+vBaiKw9VRbHAQdb3ZeaSPG0bRmkMtl9+KtcIWJin6lM2igVWDPmXUoGaG0FU7vQ8NBv4cEvl/9rWbhHLv1tKoBi5fhokF4J52H3LUZDCWw099TpPTXxW/y5kzkAvMN4HwC3huewDDDAGlryi95y+Joj6ortqiFhJEQwQuAkfYVAkw/ERwosKA1oQ89/w85fFtVFQWm7i9xLOpQuXHZ+Sx4qWBs190EsqxkrPNWFtf37VPP7vu1n7pk9laocSlr1nZhmAHEEmOWv4/yZ36ZUUjZ+zIPcCDbhPCnknQHNycxNayzwdY6x1SyKXUxlTNMaXa9Nc57OX9uvh9sjP60irEoo+vYEMbGxxurZ1W2Ez3OPguFcMHvMm/16Cmh/OMY6T3n9Jae+M500F4+wRFywVq5Kd0/IBgDZ3JjVrZePRvKPOZVYx92fOHIadz2bK/SiONr+mL363QmBjxsB9rjZ0unyuID3/MU/X9yqDv+iyBbJEwo0aNR7+JBFWp1bGBAJPO+dtbDaKp5mAb6xip5brwLtzto9pfds2vggSSq3ECS6T4zWyaBI3EQRZhkl9vdnSgZxsOj3nEJf2Kqo4wot3ujWT2lqROHTZufOuvcaZWdWK5xzBEKJ0wDGF3sbpLCrdAwDDKpwczbY/9qKIaOYBhhgEcY3jsLTBoSKKzHOBtUa+MAwwwCztTzzGWokVC8nDwQQK/5KODSaEbTM5RbKFTB/bHbUpSRY/TjzH5cfB7XRqAovbrItDU8Y3TKcX/DbwlbF3NLcLRIIuj+FWb7Hzv10eLPCDo4NppuO+plVe01P+spaGnYpnyifARZgNWfYVhaJuy+tEFu1MN8DnviFvHbYB5WeMlguRerobvw/IcLMAhuKwvxDaJMBKdcuUkAlYFusR6y9Cop8Ij2n1ph/L1Pmuj2tk/EVDJhMCz21OhQMOw2zDH7HWRfcgfgPvd4F0oJ26op+u+vOQ0W3cfLKvrixftaTXp8sKDEip14Ijzik8bZUz3OvGJoBZRFZGxPFB8ggUAkIgxJkHCRjzSBBBxcYs4WbzFZnlNixF7Osmc9bGikwps7mKufllPrYuXPIup96CMgTuYETCLXCj0vsn5PxYnxi3gnSdvAalVLgsFLvDHjSpZ5axEBGzomEV5equYTtzn/C8g5LMuDq46JcQf1IWHYSOLCDfQnweSboM2Hw2x/iYny3dhlVy/iN4zGzShoVgNsmInsRt7cyTadhGQo1L8DyUfCbiyuns7fMC7NLNUKgTPiRI+gOugeR1nhBrziqF0Mwo70b5be+iLHMwD1Tdo6A3nTBnHaCkvcpB0gQGMAagHKVbnuhsRakAZoF+YwnDfRXONcvtrpGx92XOisU+dO9XFKELAtk5CHamaYfhIi+vZTB4sS+ZAPNNCd6gV1+Ylc0oscBB3LLD/yIC7/pfiisNW3NZGa+pM1/pq58J0jMhfX3gTFNwQPyKNEEDiy81uOtQEgiAQn1v8fdxeVzvUXNoNxw4FCTj6bpCU3dQGfhWqtRuQd8sAgWrE1OTIqvUlzjFXBV0JkCmGTFi+OvJykZjqCXwsC8p+mVYI+qKrPGm5s1yZynzJrl+AG+txYGy/D1qFSFP0vUlKXoDH4q48E0b0IFLh/EPrJQGO1+UuaJOsLbCGDqjcbVy1HEQmjNuPMbWeKOoxpyRH5Zsak8UHE/PgPfhXZMFLTVtDZoblRu023bfKY/mtab7tK6VUgmle34ev5O2IwYFleaI4av5HDLZh3G/5x8NCz7LnSZ6JnQoqkt658c52Tb6aMAxOxYBg1CbptSZAyWACbiq2QkD0KcEtvZf65Q22CVBWU9p0smLA2k/DaU+bXcLinqKKmJwsCGRCvs5QtrIV7w+1X/SFBG7/wpOpOOaV7iSRUx3x9k3UfNQy1wqf6xiXXfzVDi1mpxSt1Qbw6vKEF/Ju8z73TIWixffFutYRBLn6ERkbsCj9fLDHDHDzZ4beg+rTHGJqxwf6f+A5yy63nhxbN2SyWkUNS4QjLoCkcSAC4WFL4HoPR/WIJRiH/lVj0GZOOwlmA7197eDlx6YgCtsm+GIgr4bPuLorXG2gjJF6lSRcQm8bgMLVbt2+ED9vmzqf4CU6QSsFrQ18j+yZ++hJ95XhkrmlpPqqBcii6mw4zHaQptOsNY25Wim3slhO8kqS5NEi0iVnAsu0yYeLDZJ/o8ums5Bo2st1dOcdK7sJ470wP9r7kZ+y3Uz6IxQHAMNGOo4WYodO45le6mR607curAMRblPnb17OygdOkr/cETjAMMMBgFhHoKNjbk/CvtbEXnzrD+/ZyjO1ybB844LsM2UdRYHCEfkz1s8NvS4RtFJj4oYhu5UHu82pNqBVM0ZoNsO1VFOm+Zc+/XmzX1CI2qgOZnPYM2aDAj7OpI1l7uLkxvi3uBs8P9Ezz2xrZKVrha2Vsvt3EsT4qsUseBLelF56NDb6olDyLVmfE9e99RpSQTCUwJQOR1WSU9vOonhl9mQiLrwENB6pKg2oiYQwK9Doub0LrJkIr9OYBibtt7uyFkBZ7BNaa4lmK4SAb2ArG/k3BBfUUHfIz1kY6pza9oTV5WgTZtodjYLguMGRp6LCqab2IpWmrDT5dTTJfJJuCufs+04O+pcvm3iod89PY+N+t7FohMDkyVU4Fh/lEXcs4n4JKxvH1VUyfHh6mRcNg3o5qSLWVMYxQyVlrJLR8WfMQ+y0JuK7XWEOsth6fjevEWjX6wN909e3Gt1msa6WR//ZfFyTOctIG7e0Crd18pGoYnV97gSqVkCQPx1rbOvOh1R/lv6UFkDj8SYtHapVgMm5J5Ga0Uuw00/lPw/rlEAxyM/Li/iNyQG6f2b/2KEmDt+8ma59fUMOKzb9zy4ryWCLZzOPaJEjuGYHrhrZgraCUx5KSfg2g0a0iSq3vBUpL13tcTuqa0iG46Y0K1G0+0UFuewuX8CJ4FGyRPEZZ4S9EbAKrc2XmAxGo2nTahaFZDJrYHSlB1f0xgo24kMPAI2vEafDsY0mnycT06il2OtHvDb6gXAt1MNfxuNlvXRkt26FqfQYXuuKcRDl5d2QYSQRwe0f0s2FezHOK92LMtzGBBi/PTO/mXNyxgF0wg+S6h63KWxA4KiKRwdw9x3kZy2b7xya4L77Ms3n8ZxeR3tiXtEBq+3+4LwIer7NcLv3SECC35ZQyQG7zjjVzK+RM6TVnqrfp+fRom8QVg9ScKRo0MMP1IOvC9Txtz7Dp77JWjF6Zv+bmdb6qoyTO5xfThpwqTmBX5gpjEwo5i8ksdmQWq0ukC0Okx3BhkhZ2tHMsBDN8oVyfc3g7SCGM2VK43uQGdUGQcLfa6mK9Q+HaKDgSGzMkBm42iMTsNNPrh+GoQsoaKBsqZ7dwbaWPfvwduFgvHAD2tFE1FWexpBilS+DKajWkixKgoCfF7XMUlq6UaxdNMeDxAlyMaflsISxziIEA2/kzMnB9DQP3Qu+Q7Hn59+sJUQHhQJAGkOu/DpjX6eLGJ8ROya/7qWa0FmQZcN6C9IofZvPh1N42UnjXQdS/NNV7k6dwXhWtXwRRV17+ek0pLv3VLmRaM25SVVdSXS/gxl+Uv+23b2FIgjjSm/rzlN5HieXrElAKtb2SmnLCeRdcvgOmYgSei7G+a6Ra31r/qmgFTMwgywfP6OWM6f3GWTDxz8GRjCXBJVDyhVQuOXelC8DeIk9ToA/SGkksfEQvOXMNVhlAsHSYqkQEdtDfuHFjItC4/CGBgaeAK1vJd7i2v/GxF3r9eddEjX1MvEc+hZbN7x2FIzfPIo5LQLsNVhZffIPluQHxn4sp+SyqXgZ5lPtR7l0mCKWNMJE7c0MYUwadflMsbQCsMWVA20ZFOSOrfNHOyg8xNFGC4yXFzI9J/uhuYAww0Ey5/QlB6Y1G/goOEgdxap/1oXjNBeW565RUNots+PJ3fQBnjIexLe3WQZB0SRFV7SZlNfOCb5ckGnu1vkIK44bxgCI/Ph7uOpzXA2BHG7yzThMY2XrogVIYrEcar9B3dPM741uu/P+caUC4LLrhpuaLwhQwONN4t+IFLMCZHlh/Gvcx16xUPt9l6tqmtZUY5BN9UfgQZ+X5OfFnr9J3bb/e9wVszwsxy2ZVbjZiNtu2s/ZxXTPc4uUVsqovAGqMeneHVA3O5GgRL2a6tNebjJwx6jURVQuOC99rJ+Unui+B9ycrFQ0ITNL68btrHWkH/2pMCzsRKGyARXwaGMPkkRSyrBTGu21lSqMOwNpTTw3NbCa57fmRa73UKBrXtkXU3kq40sRmPt1g/nVYcO/AyPFpwF1QiohAhhOUCXEoniAnPk0mEs6dvCI0tPTqzFCpk0UsWuZKO5u8Epoy4GBn4BKPf1C3UUxfm3PKd0sFERc9mK0/Rufa0Nhrdi/jEiY3AAjRuaosGa+jUMzrsk8HNC7biLpuC3AzCfjla5RgKUBWZ1X9uUgP7PMGkprvrw4L6V/abi/Z0gK6P/Sd3tkdjf6CTKOg5fLQ+qg1uQ03DLHsOHnnEneDBhk3+bzTsqgldyou44MxxI9+o8YyK8oxJTTJlpLmS71YzYX7I+jNhszpbcZcjHHd5AqOcLlzj5LyQzCZK/iTdS/8pVNbG2+NouLPq8fwLXiiaGOLNGtusjH+3cT7xaoxQgOFTDSg150uU/HB1U0tOwZdXTLFbad47/VV1bcRHuGFG3DHGUFq8OnhH0aOmaZBkSGmylJjk8TEH6Ci7nB+6qJNaz9unHTbIP7OMq1dmykBEDTd9Z38OJAPCuKwo39TUcOSxTfpLn3AVfVcKiXfQtudOJMZfmhjSzZVQ71SxUzIEyLHV8EKqTDSIbwOZV59HFsfOTvKwj0YnALcR3uBUzUauUevRbSRHwtlX4qEr87RcsetvEvIzm8cqZfsIsIXFu8RMPsig5fnaVIc+kQ+Gv0v/TLqgkkskI2O1JPehdxoW2/XuTbFqoTo+8QuKHOo39lqCq/QlyJy7QxAtbSshh/uhc10GwMevwt7O5kcr5Ik4M9vVcqJ5qJLhqNT2kRRZF8eII+DEpAmECEJ0al920d78PpzaW7SqV97IdT/bvLd31auuZLjM+qj/alIHr6IbJM5BM/pVilQEd4a+wm4+/PyUcWqROlMvQ4Yb8vCzEKpyP1e+XoLxNQtCPIvA092CmvFe26p/OpDpn6ZmIuoFJpSdHNj5ORbWi5+XxTdBOI/m5AI2mYW5KxFe6ZuzWNGBgOV5tqMvvgI0yoYy8Rn02jOyAI8HMW7COWf2ysJQTokuW2c4pxffG8Rgnb7Bk/mbS5s3hSFm72LHEXE2wnIpAuCsb2C9rNUBvjWN/9Xqr+qKKcCMAFlLMGMALF4BjATZGvYwYOlHWdYsaSDuKdhuEyWcs0yekjNec0OLoMeJOiUYjZEwFeLSQTfAqxQ8lBPyD56snXFdcwTf7fE1eb7Darg4103YuDDX6JTJ81k879fUiCiydxXMJPM9WgIede4+OI8pRsSL6c6i9u9HUue/JgUxdOUIHE6h13+JvHzVUAB15HlGNYWY6Il4SBHzYj/Gbp+4YGjc5bUP6zPsKDeHx0P+igT6MZaSIgwARLIi65xAKWqsu+YwIS7++qZQwaI9uOoqK9Ijl7P/I7nmRoWIBgn+pr5Z48/8ZMffz0x6iy8zK+G/tE5j51sinq8w6UQFNtrEvkDq4PqItMmLMn29AkUDRyOwfEtuPPDsVA/YOvISlQwHwjGWnmajnXfEfVfDr0/sSNA8L17P1PwF6yYgA5k8OBgivXmeTbC0JCK+t0yPLWHMVwpXRaiRxiCKBPJUbGi2OjEPMJq6yzjSo3RiTXO1kDWl43Cp2Qe7r84Ws4viqq061ggO7sX1Jt/0OlXjUEYRtfuP4mu1ps0c9MC3AGJZwQ3AAA3k4ZCalUi9IGhRw7B/EPneYSBDF7ynhqzx6bUdu+ZXAiEet87IWpYJbQLED7E1sZSA2wi2PevuqEVj7oXoOJo4VHa7RTcOerZ0hf9O8xjwCNpo+BCX3DKP6X1oAUa5yRTAW3+MJwN8ThnSm8syXnXhEihPOs2vOdl+/i+enLTKsrt+frU24tWkJ/YLpwjzdpDclAF4Z+Y/FzcEakRrTQ64MSt9OYtCb2StDa1H36PbAmkkkDEoPeAZ6yhRApPU8NmEfBnO3aoX4Y7pvYmdvDvMZpEBHXK5KnfbfaHNGS4dnTjqWtuvOVEHwhjNde9Gs8PrcUgXN8ZJ02vzF3tbGIH3txWaTsAv7lQTrVAohKIm9XdQKYG2bEVu3USZAR3ktlDvWvzul8WxVBJ3FmI2o/JZie1s2JybLIey4PznY+e0ovzwril96aNfO+oui9JfJKRP7dqtgTph9Pyw5nVKNCNPDpe+wqRxA/IZwU3lwpIVO6oAIAMxL6SbKyAvONH1Lo2HGf3qy+UQ5OEMuAlJB93bMmYDW57P2CCa7IfEeK36iJ+CxDA+7bYjN4WQ5xc1HyigRjp3iRmPMkoKJ7vIToO0hodljMHCX3crNJUUWmLoL4Yd9rhHS2WPweeck6pYISQnLl7eJGOrFHTdliVwEzOK86QlotjSFLNthI2dN9MRm4VSAVfPie+oSbJe867t1+z0zxHXamcQXETJqDO3cSPUNz85rMqpyvjz/CiewnuXYmDrY9P1ceP5IkTbPjfhH5Px6IXvuuZbYWM1SP2YgrFkP42GI/bnBJX9wUKxnm+/dwvbtxc2/B7O5HeEzaQ1Bb+v7TWusra/7STpUjT0Am7zGg90SD+79hZd8G5/UY8qEJ0k+/J5nRoV8Yt/VWVOXzB25F1sx6s3efwfh8QOpc5bH37qJRLKUl7RoDIFAjAT2VhE8L2iA0GrpCLoM3a3hfbr3nBtEhzSp+xj/ZQ1OV8psrsC5h3G4V8xlhkDCFshWV5DWvlN9ovqwrcrxvzmdjklFUFQNSzPzExaO+7HyPkVTLT05wDPiDQsV3qyV5muO5svaPGoX0YvtbvUP1UInWerTZKirfP3f11IUL4j3CKF0ent6FcquOQ4saaBJAjuVNi3XciF8c5L6Cg0Kuaza4Mlw2N2x5V/9zkyAQDEYEYMIXkDBOeDrwLanynqSkH4iTZWN9CxtTyaVUG7/Bm3uAQCKhlUsYBhhgCA5y9rQXY0IPmFiwcguuMk1Nri4zfvA1DyJ8kBHwFHNh5Gp7dDoZtYOlbIRGeUXiqkx23zXbqBkPm2hTVi5O3ThCsawp0yYH69avkpUolCLP3GiS/Ju8UotXq/483FaLIsnLZ5w8kJldffbTdWSNq4rswiCfRZDJg7i9oaFvVZY5+5fPt3uTJ3ylxBjVEj00g70nOClZAxPaOuE9iHt1WBoEw8Zp3XsPwVzJ/IL4KIyC0kP6oRcy9KjCNG+nZU5Y/6gNiHKDAkPXjvhMcuJOsvfxZ2jnqqNvfyJfSGBFL8XPk8tJ/WhMlXB9TjF81xnL8TjawWI/e+sEU8L9BxbyOiUoEFaCDIfYXD6WGR7XB8fdYNe4zuHGSoH6vSPdNiiINXNzwhpKNzgq+UczESjxd5nAofBZzAFwCEI5GZ+NPv+fLbRP1emFeW3WtOaUhFuAPRIbmJ0iTuPNpQJuvijWkFK1XjVzwE8cexMJDXrj+Iu6ujcwXjACGxvKKzvVAq9cxyitIhWwq16XHvLJaiJuIUNyWaPcvFojjjdfHSj3a6RdjHnSNtVwL/RUcyyDFXslhs9lqgy28OtHEfGVwuv/FE4DOTfjiLxwzpRjh6Ro5CYBu8gIMsePWWdroNzlBChCUCAlR90s+0ef6bUT3VpCgzo5xrKm0MGSuVbCUtE87z/zpBNTF2g4MifJ7zFeLMdNxhjsfgtvpnW38zEPaOASQtkUToQNZsI2HmKt6uRFa0oMpoOI2eaJ2q6OHW74dxvT0Ya12zwJBYZyOhxf+1xUDbi3iW0dps3rXgbnr3xZaREDMLE3FIKLeEDZ25SaACBXM1YyvFwCMOd5piVtCS+YDokbBdbkf+v+xXIojH3DI211dVIU49LOm7uLt2NEMWZEl2X3QkcG8Q7bp9lzFUkPaqX3Invefmng2Ab7xEGtb80sFqOuoBDRZAzkAU3dNzE+bwb9ZVJ0uInReq5CR+N/86GvpfwibZZ95mV9p5P47KtcrNWUl511yURfHO6RqtMWRd4JGiupwaFDH9kjInfS69pokF2mXGf9aYXe+t37FFkm71lHboW0Bh6KM2OmOVHcrrIr+n3bLod5KCUMycjTu1pETZ6nmNkM5+QWdBDAFzFNGTb/sPJXfQkJhv46qf1+4QTcJAbzns133CF+ifMz/YJPpon744K3wCjbPZcNOVeqT+T1fbj4Xf8jwkFMhOJHIb0dQ3nkCF435POkOYZ7IDjqb0tDDmnPzbZz4dTFj3yXOyuYfFX5+q0HDQnFrTM1pzB3iEUzTxcTghyD7K1fbWBJZ63bV8TdcMU0txwV36cIEFMGfxnwSH3bq/BN6MJR8xRO2K/PD2cs/wo4RY6JlVMRVeiIiqIyVBb+8GP+5BFp9kTg/veSU/G30GWRO/7BVNS8+24vHRrDYUiOTB5KczaOyAwyFgwUkYACJAFZcz4EhFVBMxN+8YhtFZ8Nyl28mC/+GyMwBvdoaScQHE1FXgpcCXLgxZ3XEKzj/NtxdYt38xVduwgMCdBhorwg89wxJoJYSFto05cpP121wrEj4FP3js1EHpU3E+9PH+isWcpeIbF1cEbgdEfdKtxvZ0JpalMAwwwEItocPC9Y4a9CUcX2bmDTUTqjPJ/2nkAbebjPTjFxbmHlWXUNvZspJX/r6Nj1d3zWByqe39iPs8MbU/Cja4x8SHqKuoRdMYBZYIgDBsuzupgpYBC4YjBqT6G+PVYD4IGTzbrj1JbMursjMMpYeqCsG4cb6w0lKuNA2Bz/cIiYQ+EYPYQnxtDD/RGvuyJbCevobUba2TP89c+97mfdh3/X+dXF3HiFXrvGNSzjFTobE4KVY+dNJWFX9Fbjjj8Vd75HMI0MWMCpem83GnypYMM3Z2oFIi6NS4oZk21LhIJW+NKl1cr3Z9wzLa9a6hoUADnUsjld0nr8gz5lh/pCjAcnWS2vh+uhUFaZkd5AQ583hjSxYEb3I9y6tW8dTuR/VSwfAvTta4qGUFWMy6YGRbD7iKT7okdy7XqOvyKtVY55FwKn61yDHqyJxLaIzX2NKPR7LI21G7DIWMNaLvu4wcjdlOYo5WWqdBJEEntqN9IWW6thHQjMup6taGGO/isR+OEGUHhON6Kc/UebKZ3h+hE/5Oet4LOMD247592+R8QhusL9s+refbElvyYkzsoxCHkftWj0dtLDoot9G213A2nKfpL9OjEow9LS/Q8wcJFtfGxAtsmTrvuErbeTEqwtnaNypps6xRSbuz3YaNlf0cdO60jIIuJyV7YMRwZ5CVoElawIXmkV9UnYoXWqMkV9Cpyh6NFzCtgufCzsw3v8SxdYWsZRxU/S7M0ffLDtVxYAWILmbwYPWRyO2MCDTwomtDdM6hBr9IyhW2PngzH5iLueVpAjmSVTnpVHozplkX/NUAdoWwSK7DMD2DZSxerOBWsWKjv6Dx+dYPvV3qqEYsBC4PK4b0h3EBjf6E47axRJBl+g76PCDUUJcnZvU0NUHkoU0PNsZ58i3VmLGx2jR47jDX8jJTdlh+yp0miU++9b6IP9y7NtJR2uiNKntCjnuuTOeGiBg5gn3DrRArFDuCy/I2As9qZVAERl6i4Ykf1T9tdp3Wo3NgTaX1JJK9UXh6E4bGxLQ/g8NbGQIa4L5jFw2Yg52n4SCxWT3yGVZtE395zJpCWXUzG929w2WMeMjE8m0xyN25X1h8jFGYpGTRfIdUPoM1JVZDnqk7OGThDXULBXMnqyXBS+fCFZE3U6NQxVEoUGnyExzCJXFRQBKMejITQbmGNPNtghsmXvzh6VOhwwWx0ep0lPeEhf+H4KL6L6XJ3tDQvsL6iEc0r5qqQedFsLL/G67Dk8iHNVrDn1m+u/CQpgxoX23EdCEGa3DF/lvI3R+qEjFrznWJqYy42TCeYCiG7Q6f7mK8KLlXcFV88PNTvO/MwH5uceu9j2mfXF9nSEkG1Skm9bqzaXYWfqxQSpEQaAwuIT3aZq9RrI7SP8Q0aAyjzdrE+NBSDFHlB0d+3iYyKZGd+jCNo4Bzzbe6HMiMDxYxU6NHbmGZSAVTW4b4X4uNutEvrL/Ne9z+64cu9CtmCXXq6mq3aw95ADhO4+0kFanjE5QoPbjK2yrXaWQB2xeGEiCBn9d3VcqZrtM3bMMvB5BmwooOJC829ROGyyKM+ISTw7NTca086d7aCQF6zp7aYJohnBCU9QQ2wmTH92pMpMF8jgaQzfvyf0ytPUscoUbDFbhcSQwCAuuq+dE8NMufgIW0p7brX7Bt54Oznj6LbQFC79VSus5qVvS+2ujTdN5XG8fgH43bLL+klWysbmLBFHs4UXgNgfW/I/mtvRM0iDhR039Ztc0/xIYYCW/ysuUQC82+jGEFhE0GCRsf2liOkfYbzv0lM6a9fRhH51ueorAjguNZOS31LAHBPJybIWYKIMtXawhQNLzxzg9ASB59ahf5E1aBbWz3VeMIBsssOWaJjSCAtwxh+6ySbHh41aKDB884M71JuHatEbBKwMi9qsY3+VdQ1U29Z1Lug7eyLEAFecGqCZrhp/719D2ZYRwGkP81/elNkQ/jCmV5vocPmjq/Po1MS04tsk9bBBG/ZbfwqBj48lNLW/OINInS5O6RF/So+24iknjPXdlx+VVqyDJmOmqXUo2zW5ABaxq2YPlXl/Pp2tXU8aTgFm9yaVZuigDaDeHwqnbN2Lzt02k+ySqf6i3JFidgys4uLCNXe+BmmloYUcv8mf1Rc9CPrHWH7LRiXip7bUqbQJs7EjQoBEl/nJTP7kxN0s47szS8+sTPwK7m4ba84zp3uEq1/3WNLSVWevN0Vqq+FOIIPkqID+x7E9B5bloq6v2p7zuUXQRc+5ICLO9N0Nc1ZDMDziPl0kyGrIqZodPD2k6qjR+0ZSa8TbP228mYfwKD8S3tbrac2XYMbals4nAZXqfBJCdXTZegoCesknCfYpg6jY6Tt0hUvsHYYbTJs83CmdZitcz7uTHUkxVZdLaI6Vj4iN2z6a2O/xOcviXzosea96jQGA6AizY0WxuBF8JwoD9cohPZQ9r5/gKpRRytD3PjJVc/PUuOeBYb3xLC0jevA8f2lVhvgWqo9eio0nuW84nNjqd5cu0VOQD2BWQ4Mg73nkpXBH9ZnBoqagPkQA2AWzuH0oGN4pEeN6xAsu7RhyOZdcd4Ca0MK4RcP+d/NZ8Uj6VXJ/jke7EMW/JEfEngZpCrWmS+zFNMOByAnQdyEB84OyimPpRQCCN/UVJlAtaDtzHUQxXF0EMfiGP0bz0TkLmAnoVh1jASI6CSlrEpdaWn+6xH4RSRDfEqB2qpRI1htGLfy3aFe9dSwsvmvWqCJwSi+cRlf0E4gj8vDZRi6ySZ7IRlgy915VBQ17dpw15h1EPNUaFUCEbiDZJ5F7ELah8KxWb3d0OltHssWd29Vqqv5BVdn3CSUnCLBeu6lHQdxE35KqYND9DWyfj0d48NJ6Y7Ks8+HXfKR1A5p6gxlIlysWutO+t7uM9C/cxlCIgLHi8GrqVYfZ+JoHB2GMV44x7IhjW+hKTifdbEG7ldsEZ+Unv9qC6hhMvFICGjageOI7FhyDxnxtdXEMjzrMiraYARhGQaGxe87MLXhRSI/3MrMITvP2I7Gwu+Wcq0N0s3anst72hNQbtJtXTUP3gS20F0ocJr1tGZY1hpYYtEpF8cmkheFng2udP2UB0mTcc+jMfWIRohQ1HxE24Rra3UZYz5DTU8359uV1ZVQoiA5t4idrLs9lQcVBBmh11NMVnRe6OSW8J0YZiYCUQHB0yG1yUiECL0VS3tYaE4bBfYWHhJYPPUgEPpjZrnoznqe28TrsVcVdFB0dhjvELfMGdM2WjQAs3C73z+qAvfGquWp8Lc7xpKnBBn+dByAhcbLX383mX6qblIGip1DnWBOyoYalesuUKkD9fJuYtLNrYntFmy/ii0iT+FC2usu938029Uo9YexGZyUicNUOFqlclWR+dAQZtr4wVG9qGq+PqlxBy+8TrAS2StBushjtehFrLyzig+50qYy1ciiZj3Dkwr7Z/KXvFqn+8fsgeLLYyotL50msfVuHx/O60UPf67KZjkcbAVhjXEjFEDOohICVBnGUtCC3VmPhyES1tSkglRlM2AQQykSToEIqUtDHcy/c40xZEszYLLjxAXoOR/x3molt90C2BbYs7uf34MPCUtfJ8fNipaEYhgthxqCEi7RYQFtpDyjeXwlx8bb1TF1f6bSukdFLkpsAvQNOezlMZgvmDDvlx8aA80tqGRomFYaIts0mXGFDcNbcHLt0KMKWMpqiQ86xikk/qFyDyp6BDT7wpi3r+4bfsLuTRDMpY2VAcXGBDIEA/O4Mutc5g/U7MgRDxPfZaOe8xtm1qqnXVaD1Cc/fDAMYW49AgWMm04vldTAwgXgIH9cH7/RbHuv6jUqYi0ynNNYpDVUZPpxnOlInb4aJG6mcc5F07voiS1QJfBTR76ykGCrprAHFWbTb61cCPQXdPqJ1q2GLQFol0Oh/R11FAIeVZf7mIKM5nFW/Sl5563TecIQXL+CUCW1eW59u1d0qjMqjkW+Ri1GfFt3h+ohDD6BvzJ2BFkbpKbq1U+fOj3lYXHirXgenmsRiP3hWmj0ktbI+xOz8yALFyA88R/1QnFLtGtwUmlm/Mc82Er9ubc6vxQGEMccGG5Jr2ZSySL7r70UCR+tjFeiohs8s1JTeW+IdTn+4e6RYDBOWmegagojAHnXDY0zpjVVc1aDiwjrogVB1021MkYXW5JCM3lIRIGoC1+KW2ID+9eatDmvMyqrICf6e+mepYxpqvDx813tU3lia2jT4fQNa8KQe89F3XKilyDihrUVXAH/+ECfLJ8DcAB/jvg4sEHE32AAGYVHon568BRgVp9pcwwg6lSxaJq+ZA9Ks4gRLUVs/AwF2/BtpZZ/SRQyoxKPBlr6qqBtil5+O2WaoVsAgWbp1aER2zGUjQlrUbnB9jsLjSB2q3EPCWOEt5ELZScIU9dO93Ymjh7s5n2AgtzOLw55Hl/OJli+SnjOxH2unnBOxu8AtabrVdFiR++dkBXJ46z8pzu5ZflOZ2HojjASVn+43dYxrMrpQv8rYl79GiU1kL4GPMGEKuDCjwe101eQXW+D72y78pa/dI/ZJ/B2blygiwwelbWw6MosLW4znU8z+ivj2onouaV3QcelJbfypGzUGJD3+vuYdEq6FgHknrOd3K7JFIEz6LH/HLIoZsu6nB8YtGqF/pThBBZNIlZ5yWhU3OZ8iVXu+UVaxSI8nu23JStCa2TBAN8xfGo+3YBhhgHrAMMMAre+BmGF8pJ8T8iNdlKivbYa6pfs940DlbEzRAFDcuSUHk+Ceji2CqaYMln7hWuLX/+tkzkuhSu4uBZsCXpmkeCKKCp+tnu9Ogrs+1KfCw5KXDUK0KnyItXHzdmewaKa7IbBq8C4+9lIhgmtwKUqVdjmEoSz1n0Jgl/hhgGA9jvE3x052vDVNg3tfOuM2MZEKgZ0aualGhq2tuVIajUcyLNm6cgP8c6rw85sDdivQ7XF0wSt8jhY7spj6NYYuu35CCCgaa9EA9dHnDdPnQnMf1GAL367ObQkhMXnERVR6W2ezSs0zwDR4L2OpxoGpKuU2oqAcCQBNwRYjnRm8EeUZhIBu1hHK9d8Hl8yAoEtbbOS7i/xc65FWJ3sVNoxrAHuQqdrkKyRsHFDEHNLIpJmh3Z6Umfs1+aUkg8038pdGutDazrRdn/Sx8w1dHQRF7B1py448vcYL38nfSNsyyjbTYlw0/a8TNvkq20TyT5kBG4KifRZTxGm63zRGwM0qgVZYaD3RnIgif3e9mKCo8s/Plx9dLQSwfOlHtERFvNVxYqOKc6VfzWIVhI/KUZ1z6HCqmR5rfyZxU9bA+vHOT4u67m+YYCH7DUYdepoDpR2ur2T1qCVDza9bNKmnAS81ytmbNKAfnFAY5J6oQHSEZkaoaZmuxjM2guhfBNyCq1zNus1vEGza+ZaVxioJaKVzidTw5M64+UWSn4I14Wm4hEXLVJZp+xsHxgIx+b+xvBr6p7Vun3M5Rc9AYzrxbq7oaWFmlRJI99SQIncph1LsexJayZwxAqQPr+33ceoME3R3JQig1QU1i3bubM71kHyynBogxSWhKOGXENFdWv2ME6lxrzismjzii42t+G2O8nKg+RpsPvjKd8G1pKWyq+vPe+qdNvmSpV+WaX3EwDgDLSY3yNa18dEqA+Bswxqidrm3KR3tkMVA+DEgzgNOTVvj7MZB4ytAinkmA3RpqJQT6yKAd/8IsB1CqdjuVxIDu+SQ0IM4PS03K4CBKOjyHSAbvio4T2QpvAOBlDoXxcXn3tWylzOqZZGDGVSB06HzMmrnQL5Y1fAqroHx89vMacNCluhZRlM4RW8dSWZytcYtBw9nz7G2To4wqNsHO/YScq3LZEELc3odA0Pyt1bSJox/vh4IL5tnEycNURd/aXTOX1K9X/pzwT1zFDVAu8H87hSzGTB+wgbBk2iyKw9S5eU/E1r7R6YFi9oa7ghlJ0kVl/Gcily0D6a5UTXj+MwSc5iDPd6cGc4Zb7+hXpvwL7Ks108zTJiXXk0stp72sOtDfGOY8919XT3+8CFW3OjqKRdZnUxL4fuFzoSIjreu468DHGcmA8wh20Xr5/4lpI1F6M5v2TTBjskAiB4uAiX3K5/wy9YaVAhtvPtesFrbMwzGEbgreGhu/ZygTC6XlKOCPu8rvD7exFleKtiZPPQb1MZ9mxgOX2vrXUjMfOjSDxgVnHvEAb9XhRbFTmiidHyEkfBqugz16iFvvavTzZnz6LaNIo0w/v1bm6617PdmB1TlBGqlKSbI2RYAQIGl3we0I/KEHpqgPtcd2H1mvpCdm+UT4/4Z4y7Sg+Ntze/1WUV9Zy8BRwm7ZzTaHdICEW9Xip/GnVbST6ZXDDXilujyUuGpcGftGkzePl0xgJpG/oZQDxtqarM9Piqfu9DMS3BYDA7eCsjz/PqCl/DCPpjufUrFVHQYCKQE+yz989LaXv92rg37XUyb8qQbqD+Z/Avh5OiZWpXzdbCQgTdbuTNLerFaxV49NCwTqx6oEaPN9XnOU+7S3GS+xvEFEKzqM+/7Jtu79hcmm/Tb44CumA/NrIMG/9DMeLqu3qVckq8wwNWpKpKLAOGlUYobmYkbf7Nf+dygKAnhfCVUgw2/a+3qWDTm+6QGQR04QvTSpcxN3BsHr0SFvtP4g61QRHLZ57b37xaRMk/tG6R3BKxct9HjTY8sc8g+hJ5snfhcxG+/4ypPooNj00G1Ka0Esfcxbr3TKE99WwNacdZhMJJF2TWp+7BorzKTXvwCMvVsYPyNWu9KEJjIov17w20kZXWCLzEnXMw0riQv9POyWxXs2DLZmhHY0MjE85dA5boOm6fn6WYU9x/OKKXQtL5TpMuXH8wLmpsC3XRFlQC+Yv7ip+aQVSwaH9CTLqvLGHOlvezU9B3XsGKUbzRXGjf94Ix8hXyeHyYLPZg7h+RKL3eqzeqbG7STYawc9ohjsBgKhI+AtP0OTZIbH4nGUGNfsEMBbnhRKzwgeW6+VzNNPpsQbuQyEOEXDlgNnO2eU/hhAwveoYOu0mXauD+KMp5Zne2w5dqeA9ZYJHb6R3Q40UhoR14ks470ZhFOaXOv12FbfvOUH+UAaV+9Lm3RLpWLEs4k7DZjBYPLzCU+9m7naXrd3Bhh98M82vza7/XtQDbQ2+k6qbS0hEFwwEMckjjiJTGxIdIXZyKpiFdkyQjU8RIdTJvJdfettFZBo7kznSze/L9C5btoKM6z0mw0V7UKEQ4Alyu1Xfm/y8jucfZDRDnVWDowZY5jdoepWPbXdrrMYpwFwhGlL2VHdhVCgajfsgmyDoml8nw9njqYSjmmKptvjpEwGk+4c2juQXyxa4xAr3pMbLlVRCtVPUTd/VZtt++yD3rS+HOzuDlJVFZ+P/pmfeNbcWs6Pk4Aj2xfUHTGgBBxlYhAQS+cF1c/WuOB5P6db2KY3RQCuNLJjRVrNVrStsxxyp4Vk+m5/B8vljp3hPQFis/ptlzxUNj5dSafl1lOGUI9xkscJ7pbaGDiKOJHm/jXUaeMre52KB+E8txWqmRHQzpOPtrScOLdR3DkvEJ/fAsIWRmHZeNtO+hGYsCohgM0lBT5Fjh1Whp8IO3SVvZae8jfzUtqbmT+45nan1RnoHfEe6UUPRmH57xwf6mUWrNWv+PC+XV7FizhvzVbHz3JMS3N3G9JmLgX9I0WfzyW6e5ntTGRJ/YsOk6WQ5DC1zWgO7vALCSAFA5cVf/cSWq0kkTJRVKE2Ga3VaaUKdJULJdYCReu/WygM5htnl1JwO7bs026pgchyDuDyAwCZhufvqe2IYK63q5TKvoGdvD2hgjCC/Kiw7FzWwJa0SD2wvrioKvTSSwjD0ZXalMavE18yoS8Wfgo8LtiMaJ3YyBN+v5nQjhEGkgY3lW/pepRmeocgAyXHqzZDYNd98PJn1Ae1zPr6AIMFzWvN7yWbq3hkSYvWN1WG0te+HT6NlzjnUE8bLrUpM1RlWZEvcJP+8oV8pVX7tsruw4NujlQLswydwE1wXcNUN+aFRYDN+8o/ONrfc4jbqwk+W5YeUbcoZlXA05rj0/NE6NNJFI4+qSflu7W2U9Vj6uKQajQrtM7D3pA61fq99xDzll9O6sLX32YDenCCGBK49KxFZphi5G3RaZYehehkt9M9F1Rv3gPMLX0fFCM9XK0Z2El1jOWeJzyiDR/nz3c7IpDWVaSoB+Ib8cwbq6L+wYfM8Qe7j0IB8Hg/O9yiKS/Gvw0kJ4Xp5OLl5Hlr/QaN+V/DXwTfYmTiKneI5OknIUcCGevR4v4lr6HsXrizpjJdC1EBWbuCCy9WvJwdut6aZIFP7kfAxkCPuJcjg+yA6nvdcnvfM2WC6SwLsrYWmvlpSZZEAtUi92+jsZMm6m2+8lOwfk0gYbJxgam2cwZ3P6SrlNLdRB/vpMnPxuFqWzvHc/nN1u3wkMxuuhyr47VU2BxTDEUDsFUkgODHXAi272ND/s750DrXrXIk8YcBf85NMF+5htavLln6VR89jG6Bk9ZARe8s02dMtTBDdr/XJXrWu1Mo1o+0APTOSePIwc74+8dNmzfaXyxSmnbMj/DdO/gKB6xVSRu5ujQfuZzwjOx3cd0II7A39c0tB0BuP7yJpQkcgVdVuHGGFHGwBS0b0P5918gvuiChOl1DvQlCvxaxxuYQuob076QBtl5VcKkcYjDCCyMCFgSg2tSLXSQFgGR8oNVefidlhhgGAAFCwDDDASwAAGAimGAmAIfPi/Wng2qzHVV1j+e+Ux6fJJVs+xFh4ySrj4z2tkLKW5gne4vk79721zl5q+tsNAceBFDt/1jNnemtdU4qLgeIN/gl/usT0JfpT9Ump2zCDjBfDdLb00pZiZjffjKIJ4SCYdTJmAvaCnj+bKKXPRmGdkIEc9J5L+6HXW4t+SrXNgK/aHGaib2zAevSOOz52Gs9QwBOBj4MgKbpRQXpX0mhhzT7cSZ44yo1rENx1oJCS7A9VCH66HClzssXnVG9A5g09EQesDBWr0UUjo4kQOLYr9JRy8jp0iPtatc1rQGh0+Fv2kUAKGWDcopsiBWj99E2n3pK1GdmGU60rA4Eyj4ghPjimBX5Z59HBI+2ruUyZCPH3f082nHtzVIcCTgmgVjymW8j2de+qVxlLzjWveXzaq7a1TmVlesYjdyZeigHBK618jKh7SgrbzW1sPA2owzBZr+vIzo5Hhn/hSijUzZCFaP+7U2PtkcKD87O8eefd/FrYqArLfaq3nVGcHzBp3XcEkfnyJO+fNToNjV6lnUIOug1NYow9RuXIFEkubbV+aZcXAkr6XbT2s5xcQdOUQsrFSrDL0aO+6Q71v8LQdpN46JpD4mRigXkEW9GKs7k1MFR6RwXWj+rsm7IcxPTXf3WT2d8yh7H9TTQa3GtJQc6MgiKS4e/Lm5INpbYX3qV+ULH3089Z7VfSQvHCjYQjHCRmlpuiZxOwcm3H806nprbCFWby2yryhG+kFy7VcupUB+Pj0EpjpgJTsc558Czz9i2P78oDw4kU3EhxMo9nR6AXo+ZE5o7lPy184Ntc9fme3O+FTkF2GqYgdYjLzBJoPTdRWpG3+Q+v4jI/AibQNYPVga8RVyHSq6SAI+pjTGw08MBoXgiH6zMLEtKwjKzFZxsx3gh+sNTDL4E6ZaylC8+JVm93x+aSp3cS+q3bZmUobnskiFC+maY3xcYaH1u0GT0NVB3BTAE06YgmEh7LS5/VUoMfK5wcFUEsnRV19/e10FaYg/cNmhfPFZDwIoGii0wP9kXa4i9KMD+qx00Phsph9/uZBMiMYNDurxPTKKucEuJt/e2aFrVwqW5jYiKXlMfb2lomvBDP6+Ezh+pZJW1kp6y0NbMvlOxdnHTRT09OHzEdTnV9NrfNyNykqHbU+JGlOCFU7NI7IjczUVhyPXin+54lqR7agUvulH2ajsT6tE09zRg6QUReOoZ1y4BEBAvy48aqiE5kHXWMnd195zxxhY5MZbHrjE/uKQhZop6lisCPGFrFn9ftXVNPZG83qc2Cx1BXzOkeGs0HuEthbUPcT7RR03UtR+jnfgyTrt6nTI3MlGFDqomgoVygQLwIQXi9jSAe7hxdu4hd3Oee8JPgY2six2ESiF/AHUUUdSIcq+qS3HLp9vqK6d9fpiG7wwcZz7dJc6iZXD8ptyjMRYHWe/qbueHT9r87gXZUtSyB3qaJ3WhgidePdoxKP47VhtEn4FbT372ccPfKM7MvvX7UZ3GZsN+gMKByixhU+czc5gxPbTLtbk9qizsjT/r2NItreCpIUmqcdC5UFfhmR6xKdvatc4aS4m5vk38X8ZWt/fTs5fXWD7QuV7jCEyMfciM5aH6PPIXDokQEMniTp4wxb1b6G/zF4zoVW+G1f8Dyt6+avnFyRrfMtL0PCSp96dXTRbZj3EpeAon12XNg6XouStNwK4ejUmXlGORd1HqqbRrCePlPujXrRruBw+QbOqQufaHEe205onkLenB2KLD+7uLHJarIMCLELf6a+iWHhDmn88FeiKIluYBpZb2lY68Op3N41k7d+K7GAeizh3Ld1C1/1911/GnYV/3EHj0olDU556PuupY6VGB3mq86jW4ci4PL8An0xeXUdIEVTk56FrruZVKK+5Ut2d3PT5B+Vm5zZ/K6I2qEsziipgz+H+Mv6Pj69j2t5ScTDb3EBf9pTGpGNY0V7IAoe+HA4X41aCZRWhRikw923DA844quu8ViO6Fsd4QNRWOEoBy4KihbBPOOj/TlQT+Xtwap4Pfo5IXzn/hbPc/EpIfx2lri0SoHYP4bpAv6JJnyBVMK/4o8xwqKRBSL4ff8U4iJgva6Q07GCiDiia3hs3ombjptFHiNXv99PdbqP7ADG7Ug7u3LmLLWaZ98ImC676PCkqaUChHC2eJSe2YK38VoLVylSSiFbK69dZJDUDA7UxwVXI8159n8mSwrI0W7Nm9PYNcaqLRv9SpI+tPz5L3LIlo+Wn09THzlJWAo/UBA0Mjvd60mHMRX04np7dVzb2t7Mhs+N+dyW5OwpQ223WjCHX32Y3+Ilx5jhT0TYk1IcnympWtbVzSIPzbobjergZPx/d2BTcAzqID29qUGFqiyIDo1b6/RB7olhYEJR4V/OPaIzlWuqQLQlHokUqI44S5+dGYc07klNn66uvMQEWU1BN1sepwnRP0HHEyWSePRG/fdvLaqqw6OlalgfkosyXR1f0Kwr11DsSsQN2UNzteQNQLJRjeRpxfMVeS2D1HNKSmbmwbzw1xV3S+OhLGcH3ghW69NWOtlmGz8w4K7f8/I07+bCLSsP0++27vYe0ixdwsJfFjMFBH7KGdwLyyQPqZsY5lAHT8vourlycEQW73RR/0X5M1xmrIw8GgKw/kW9tgfH8aDJ9Y//yYpunDfBw7j1rGNrnVrIEZ6l7+8hibF1HzU9F3NDSiSPbF5wZHL4e8Nr1A4xm2aY4eqm/+0h6i2/wByM25vhg2TSrZkgS0qrkt802gW0giuNfnl/ueANVeZBYs4EUp7vXP3oZ4gYzHZaSMIhpo0Yr2su5ztWyV5YuMu198URMX7f+LCVlsvW4TKuqf13b7iGDg5L/xMCldPFkXneKAdxINwkHQh6WbnrhwWbzw1rXp+suq328r+yhP/Z9r9LrNooQhikIMO5vy412fPJD7/Cb9EqmP7znN8bE/y/stCeiy5yi5TmQ9KwiZFxwfnvCjTkIUdRv0K0l3FMJA3n7DtCjASCPYBR+L7eHUkBxbhviz3W3zHL/fcPzHjbeJ0jLYGcAtwQKjBmk5vXziVwOBAILo0rJutJ0motSN0oJs8K+eKvPHdkd45+gDeB3hLzNZTLuf0MF621qqmDyCvNnmZ9S5FSnYCNSgvoSCzfp1dU4qXy8mTfU1bd2VWRQedfcj2XR4CBFIvpUcuWOMoOtX7Y26WbAnbui+JvBhZKdi2roxv0auRSDtKryq9PqJfRk0gDfxUnrE8UPI/4ia2vFQRhVXIkDf5ecISi8iA8aV5dkyunEqmekkCunwsd2yrRcwfIFcYBOoW8Vx9Uh8P3Biv9QWVZq1sIwBB/RbbAEis/7MKnDHvTPQFsIel93YcIdcGYSjeiKLzKFoR/71fOdfNK9obZIXg1Hl25YmTQofvra8h26dTVKl6W34vHDkVPbqjTeanVr7huwMKRd+pMvwunrRWx54yMZEYgA/Cc2WWMjv3xW4eYkqXqfCvsy5xZU8VYrWRLCAfQxA+TPi255BkB2PuJQR8PRAmElvV66nnQB3GyA/1WF/qQNg2aFV/OlRVtREyEJFZLKH9Z/N9ZFbZNAV2p+Kt1zjnRyl4Gfcx+x0r4ly5AOWsk2eUEbLNlyBD/bSGML8JLzsGVOjaleidtfLTmIyQ4CNneREqZObCspqoeEA5pQkQo/kxquS8fwXAcW2ZqclkTbtTs1nKctQ/nJwLvaFfTOpopFJH6V5Ea88kIiaup+KLkbuDC8SBsXdZEln0st2H/yUPjZm7D4wuH8t25mY7SemxlIdTaF+8UyAarmkTt7JaxT7pY839I81cTJSQmHiSalC1c6FSF7ufAak48rT1GdZG7WkVUCgaxbxTceTy8wzcCOo3VEku4U+M4pEQFaqdHS2Y4VCemxO/1ly6Vtm1TwvHNh3BA3fklBWkBA+Fsb1mLtq4nfIgC7QOhscIfOpKkUzCo3uCg4x00GObQYQOGFEqL4OXuZpOJJdlti4Qjn7uRgeI6pqXN+jrj2zqRjMiVisox8oW+2/PHa8M45py62NGAub1uUJUeMJ4S21dIB+IKwwgm2w7JnQnkTcoP57eijurINd2QH06qq5o0zWPEnJ+auY4FQyAcdiKccBEOd4IhyXQK4RrDuv9s3Fbq29LNfNu8eOdaui8in1aZPZO2+PNc6STjE/nReZEo06tUPO4BfgUAL7JSaqPkg+Tikt47KDU5dmHQdSL+0tMy2U/b7n+6wAirfsXuSgJX7/6ZjSd7/PUAlnx8iHV/WA58i/b/CVm8SqZtQgp+bQ8antfA8xD9lL6WbK+XD0wBnoIAp5cUa2RpzmNrbOQGlpIiCP48O4kB5Cb+8XSf1f9Aq025Wk/tbrEp6bKsRY8VEQlNSoiBqYEH8d0DBaNggI9uKoXV0R+mR/4dL4iJ4q35IKFG+J06v48qjep78eyT4HUfAQNYpADc/NMiw1WSKf/Edc8T3y4oQFz1NLGCZBL0PMZQGzOLOTAIa1QWAZAjHamiOs6R0+hyfR9F25egnz4arknTh+JwlXVejW7VoY2rA0AWaMA0bgpe4e3b0/KAkHuJ9Oqjh7gzeiij9valvCTmfxyjaLdd6lNcbZPmp8dhK6sB3AruIeJDgrmXpcxUt3+RSpMRuXCZirTNnt4M8+PC7Y/0HuGSu3WRNMJa6sffgLj2ervClZUGnQeSE74LpMNtSo/u8CiC62H6DSBX+GhT5u2s1J0S6hkfccWXeT6PvMCjY1vPd8yLVaJnUwLXoMjxTa5ibDnyiPsPkiWoXhr2Ij2sjjmxz1w8FpuxY1RuGtLQ9um48jP8Tg+s1VViBZ318pdLqiog5VK7YMK26n2/JM27W2Vkp2xmsWayD3WaysCDaoDMFJh297SmeEQRnuLr0pCbfnaC7fYjK0HPS5a2ExM8V4sZrlRu/DJcXiMISo58vrR2KxLIREgbIXf9HUGA8ItOokWrCBcenZoQi1BlsLJxa+hl81LPzLXhOpjbsmWEsYmPKZwBLh1tn1E/tXf+/iqiYbE1xCRIIb9ZLYe8MkKKoz2I0P0xiaTm/caoYYgpo33WPIAn78NYs/C6hSl7YQiklfDYHY3jMK62vJpyXi5273NR/WDvAJ9apKW2ZqDV20r7cUnm3oAEEdgkfbirKmNt81qOsPg6TToYNHT86rvQEmESGzZwkYxBh9d+8tU9Gjm3G4zzfSSdmi3jL9CWU1tMJmd4x9jLOceQHNnBBcPYZFC2tWGsD78OqAveVHnEKtMoX+o74eBdo+peXbbpdZ82N3ZqhBBh0u0gn0ijRTxfVf01w4DVNId7MwMX/XT716R/dtUiMkxw8C7e9qX856qeLU9kgjNt/6B0NeKN3aPXaKCoeL/DBOPPITuwVAXCdRgS1Ue9E1Yswbz1csV/xOkYOj5x7uv57y/vksbsg1Pv180Fx7HFSFIBX53oXIl5g7Lo6I8Ii3py2/NkHz4PQJqMPtyFt6RlLCGCAC3+3iKwNIPKYDqT6zVPP24r+Hd/z/xjvPKARPj8MrHfD+1rQ13SCv79G92IsfkIs9KEVXXc6JyyXN7HCf9x32vLNKF6Yj95HMXd8Q6bvDcP0v1R+NWWwuoZbqSr9xaqysjc3r2HuvzgkWjOI085eLzvZfdsiKfiV/4O9xmKkQe1EfoPL7xcLVlgzN0j4b5P7x7fOCAVvsYuZRadAiDU8sok7LHPM+YqmoHk1h/2o1TFuq4fa8Y1loauSapjD271V7oI1lRWc+qmCcCGthZV0CHDyH3Sd2Cc4MdNAJ3CXhNxauhupOPSX59KZ3ymqzyoR3HY2mT+DI08jwd+4wxvYIXWCvtxKPf2znTUIEt5HkWMCmkoDoK/PQo0/hePXfTw+P0KSt8zXpAQxjETdfOmse4FvvZbdraTswyvUkB7P+Cvod+szD9KxiIWZ+Eg8XvJfShZkYL26oRWUy5PXoBhWdAdM1AQBWJBjaEgxeu+Bg/HEtqPNoHqt2K5e7PqA04WUa4G4h+ANJheh4fHx6lOC1DagsbZY0gYmBWZiWx8/jr/jWuRziqX5LcFf6uLla85/83QJ/ER1fDS/evpUTuRQJM8W4WrJGNvQov7D1fpPStkUu1FPEdjXu09jy9yqSUm2AuyC9YgYPX1xfW5GQ7xfjooAsJJUtcnPxnfGQFRUFbw6JZ8s2AUtz4oA7LawJGXSWgS12goU3itY1Qj4EHYZx1lvRQToQay5i7sTE2FrIu7GHyjAZoGwERzcql6GAr8JD6Rw7HYoWHcEwrNB3FKPEY3IB70dQUIBkmFw13maNfZWro2PvY5DIP1DlMcv2cNl+/vD7L5pONflsYOptrAkR4zNoI3ZFMON3kx70pDGUq7lrmL7GNMi/sVMcRpEm5JAWhyWbU1qsBKcHu5S3WtQQM3x3s5oUV0Afa0PSTRGId8Zd4AmO2fboojjom01loWL5hPinBKG+mrC3p0BQkvdroPxqB+AoQAwsKgZb1+yUro7+mAG6FmaWOcguGnx94FN40VA6piaNRklhAAyGhi6lE/me9BzZWkVSjGhgYpOriyDFlZ067+1jCmIlyCSMiLfDk3uN+Sa26Q4+/HWf8qW5JSt5Hd1h12Jpg4ay7GtQm4K2Ob0HLBnb6h8TVdF0bTjxyYHkRvWn2lGudje57W9rGO38dmhTjoBcIKtJaZW4FyK+gaWGo0RbyqX77aAvBTNwnFbSlXOgR4GCDVuEHhxKlYvolM5eLd3p41BdjV4Sy6acdPAiHHUTcc7nuYDl02gR3MttnHHKudJjRMyNerE1V43v34dA2l0BRIMS4j2PUglP7lkNzSN9nU0nRiVd3f0obMmLXdg5SotCkp2A/dIjGzsmjm7he6V2zU2eKsmS2nRybF0GiKhGQhc7f4fdfhWtznLumG1GDonT5UK2BgtwdEAAi05g6F8KUQRC2YNQd1x1Er6aM5qN6ZQ0rtuwn6GhHMVWOZYmEM9XJGahzDmFdmnxWzcPt1hdQ1jkePvur+/ff3y099F2ubGa+AvcRNNynTLSYQGoiv0S32G0YrGG383tx+wggbEZTwTJOCOAcsWd77USA7OWlj8x9me0KJNL4kIZADnyQMVD1v0Ig28/J3DVRst0Jd7wcA6t7gplWmQSLojKB3DiQ/ZQXAQmNZgioZ9ELI/nqi+DRg6P+w1tuxjP39yeOvFGFLU+yYyR9LrWsgJRuENBUsavKsEAVvAXUjuUW93f9lSJc9BWEE5vWVreotSv30bmnzXKndXTvKirSj5RqnMSBhthcj072x6COXDTXlcJ8S+dD0He99+PMfO0nkQ8jF1gHwq6Wm2GoL4r2Zn4SqjwTchNVIeZDEPyaE/pdmmAgUcbVdyT1jqdpQRoaAYOjSVGAJtlX+0otfnbjS54/cuGRsEUVq93L5LGT6KoNqpbbWpmXW1X99xPil8rePBPWTublk0pTJx3BSJhGDA2UnOLr5VC65oR94MC1Tdgvk/gjSza4yrCjc4WApAepEip2WD+x+AGHQ+2Zna+LIyx610kaSwceKZiZCLfy8W10G82jq+g5u/Ds8t5UwUkVljqr5i3IJKTrJE9as63frn1AyyJlmlze3ZZWIwNOf8W/WFE2kvDN+cO3zwKba4fLtBxb9afAutWqD+Mrl73VWQsYhH1LALu5fRNn4uve85pt3BFNXxpYqj4loDZDM6k4Atf2sRJpLMY3Zj2wN9p6r8Gk51CCd/rjrsXN71gHl+V+aeCJZc9KNI+mSMkseq+tbSfNJjjg2aKkYBDlWfYKaF7lH6r3oXCZq4dxrYb9U+pA1iCA4JbqNOibvzu0/z9h54exF3kyPADTZ4NrIh/wCAolkuUDz7JRpaPXm9uH9q2K0aPhYSdDvmVCfosdv88qXx99tHWQnafRqKat2odmDQ3n2CZaGPOpmMZ3zg5oq9OoapIlix7NbYebrafTnffa97l2j+9XtaLb8vty3BzO/9MuFoc2oG0NmIfL6tMnbNAn5W6NMebfpwOpl8cmhCuC/k/fnzQ2gdwLp6RQRE6cuPOwes9+F07IK8NsM43c/VKfehniLYKRLKwXFlPpQy7kyg8eNs5khzuxL+ihtPUGaYiWYO0KWCvVroG4scSm2ivkdkQ/rsklcisLlBsF1tyRNIcX268ciuiCBCgMBIXzSpEze8W9P6svAyxHhT/CHcOL/WE7XwLIrf3uO+WFZde5Xx5p2g6Ly+j8muDpiWsoMoIx/OISXB7kjaH++HnXdxIiG5Io21moGFJAYnpED+GDUwrw2iZ4q15jiUvSYrfqVvlB/6mfanYCZwLLF7BXl0kK812pMmVYeUqH/i/0PijY9mupXdRsSW5YBgp30/7+pZWcsiXmyvER7MXRfst3P6KbvTVpLEBFzsp/nW1Kre3JlTV9P8+YynV+qqn06PMGbvqaaG3HPsPNbkukakhC37nVC8YXvv7D48xm6MsOEzLdYzTNMRaMxqn+aTsPIvEs16YoYAud4DQmEBvZpbQ5c/InXRTbuomP5JfD401lvFVPVR9bjqnT7bRVQlotDy2eVERhvxO/q6uyW1cCN/2Vt44bmCzEj+fbjCUr7pV4VtYajvVjfIFc5u5xn9yM8OS0jm4H/fXzyuOXYj1w2E9XE3xh7UObm/iBOjlXmoqUpjfi4A1HWCraYTmMv/WcRRoS5+2lPJaadEIsyDl0U2md+p5l9aV03Bws60DdGeaTko02Svi/qDtkk3LlyLugxkS+G3OabO/wikA9q8az7T89FYyaR5n6hH0fHviHId62bFEg+0i7dWZbiYFA3wYy5Y9g1iFP4U95KeGJo1TqIon/TSl6ykkv5xWV+FdB9b0UT5z4i3WmsBXYWpmcZ2ulvT27eLRcmI59p53s2xnP+PObbDbq0In7BOT4unPkSwcLX7Q9df+wVHnu0EyqBY85UY1uWjkgU12pfu+PpjkHvns/sw2fmVoM65KZdnBc64hxXe5nk1Djg5ADUkpsW36WAQOBVaAZCXQXzJghLlS7/duiFIp9sSRV3eq3ZGBn0KHw8EkaFamlCA4p8bMks6KP5JAVs4B/4XhQgOwI2T+4jktXZSWjbwkS3hdNX4VLXH6pNZEUnpiDtBRg0csIajJCN9BXXkyx94VHTlBTDmGRCDEs9P9ZpFB6bLkq4zSjlGYomM2e9GYryjyHj/yQ33U9FyXudl27zrrTsP8j969Sml6ZGpwfj5lHvZlOiR6yBBgDk7XFkRip3F5otEqDDStO279Y9Ye3QqToUPW7cvSvoh13zvO7lMGpC20NeHIUbS/0+UGC1ISg6qGsoQMH1C+xt3WunarAQ0YnA977M7dJ+fRiD4ukExU0/NRZaXe3LK+0rXoBRfs9V4h2bby/NT7cJtnC/szb9qfB197uJtU65wGEh0YJEmFehQ2ULoFS0mhGUgOB4xF3hjAI55E1/Zf20rUBL7REGNl2QoG88KuNyo+VnomAsTumYmp9pYXv85ezJQFNaizRBphFZsYKKdQGAOuw7ZqU5reNyMBKKn13z2h5wyCR2nIzI/iX+cOLRI+oJUD4DKM20ZRO9sl/UfP4MwfAh8Smt6SGtMLgI+UM+SBWu0iszmu/PoW7t/7O1oL9/0UXL8IMi5LmL7i2UGUZhfEpcuFGpP/L0Fpfg1D84TDkFoRhUIlfSn1nMtGmdJUqbUXi1gdGb6BdeLhjSHKp0/WTW2vO4zHvnR1SUtdWp3c/t0yDAeG2i/0EJ0kIjuq0+la8grjnWrzc0USKaV/cPVkQp3fM7VlfM4xyzRFiB1u88WK9vrf+L7LeluuOeltrK4Hc4BS56d6n0KXr3O9fpJsKZvJq4bJ8R5Gat4EDB28ATUoaLIdxcNjSYlgZtn02PqfONFOCWSjzkmmdUHFCXNAVfXhuSQ0DpLOvN+SBwVgXy+zup+tIGjnllgTlMEfmZ4JkRSxEMUi4GP8LlHqOu53aPXN04wt4GmjssHM1Jl75ZwmTW5GZXO1nk8zJUmxJcAbPuKOLPkFfZ1B0Yg4Rlcq/zkneApQ4JgA8qS6x96sgvkdzutbcUICsq4ADMCwdzQIDW7zAYU30M79I30hwVoZc15+ZlMG1Mu17HNtOI55TB9/N7RCMve0zjqY29eT92z8NZBNl1rf17eZ1aBR3m0FYudjzV5ZLObSC3vnefW9ohtTAf0W5bUlhYH9Zy5g4B/TraI920UReFc/XNbZFQIjtbi4CH4AnpGpOt6KOwhXVhu2mbuBvpzyzBJPaUW5RDNGdCDmCK72zF6NlmilkFuhCTyoghVirvanRXtD+l2k0M31s3mDOndLMYO36C8A52RStyTW8OvBw7lyn4mEisgE47GeXzQqcYRwZQtJ7QVW1yC8ze/jiriHQRQlfxnh3DYHekYlLfzBTttZWLFhpllqliKWZxkmN0WCDoxilGxNn+Uzm7AJ6vE/+CKZGzL7+ZLxPvBpCXjcxBMqSkD0vD5g+wh7hW9GyCdLWcfVGXqVFjs6gM/YCFKjQxm+t/h+m933o1usmwsF/Hphkq51mbSUMmzts1LEkTCAjRQ30reWM+4QOy6qbLndodm9frRa+EDV/mBAIh3/5GCAfpdZRVO1CCZ18ry+76e+zLjAfbnDhBp1itFRVuy7vdjwZ5SaYXic8mxck3u6N4JfKgze/n2IZR3zx3bfaIq6hGg3cyqoisJZlBsPuKXleGWyuilb3/Egs/ynYBfSkCaeo10dUXGlGPdHHXX+6vo9vISNGEjZXP6z5KU4lblVXJKoBxBCDzBMbHaoM27bE4sQUy17Bd3tY8QKKfiUb7s6DcrF4PKcJ2d9sV0kxJmf3jEy9C5bn6fyUZ378F4Iju+/mnw3RoaqiVh5Kly/+3SRdh5Gf5TjU0m10kSHJ9fykBTh3dJNxubJhHgRqBy9U8m/ZS6vxfGwMJzfX/JRmRiObuH+PVoHde3b5INassDhn4jU/NP9BQGhVSvDC5EGwyF3ombU2NPbmlTjAyR9RFnYz9A1sVOoItqEv0MidpAOWniCls8ZpATZwo4AUILOFeVtKds/WZMM58buBs1yrMWsmaV6LAwt0ousICZMxHDCzSkLT5UY5oB46DiEPb22tcu1JpNBhuLc7pQ5k9sHyOjhtWTVrCoVBYXrRoMICPXyPGNmBQMfC2ebw+LTBMNVWpnbtGE0sLskg7bXEHovOv9zoODWi0LNgSbtpZjjzE035Fu5mvl6cx9Y6QqglPQ99lMX6lbfbyJVuSB21Slz6ODL2vgKruBAvNxH9SZlfQDoL0IDLKnqtO5Y/om2Z0OWKQbkVBeI5JnwsSVU5dnSgXU7lSEzSr8FZxokrUcP05vVBTLAdPXRBUgxGcFhw5fSbc8oUElZ+CxuMJS5rswHmZNj03iDZ3QoB+wUDb/yWGWm6vjsrgd0p3Gz08lt96JfO/0EGSdUHTRkgblKYHbFVrFMpevTkMskdOjz7HIl8j3sLB864dNBgyfZlV9wHEu1cuTAAABsWAYYYDjMAAAFF3fd7cM8fB6TcI8CnkRjQ6IXxK4MaQIpw8ht0if8GEunNnP8nDlinxBcezq3r0Qtk/0cDW8vwuMBqrAXo3y65b5omdYiqzaSbGDS+2+Kd8VLkiIHBqIt1t7Xw7F4W3rh61vdIA4lchHGIAKD3VFikyKi52OTfkHg1T+caW2Pg3RDBy2SrskdeQ11Til38zp9mMTJCbRZdNvhMeYIZUG9lbgkzYg4Pe/kZbj9DU3pPTGE/oBhI9sK/UfxF/5ultvpXbnsiuIO1ojZDumg4hKbSXnBKjR3fqRVOyOsNfRkViXG3mnifCwueOl/m04pk+OmKNtFUW6ZeaPmyUXkjdZyj0hDymI+mfKXlWXOPPt/yPcYobRkG5IbEoH1ZXfcDJBTS0M2UrAdLlIBj6WCDrr8YyaeTEEnn4vaYnHGsFhlWaej6yjbDZrWkREp7X9LMAiVN12mYff8/PVV7vwwUumUaLiNDNcCPVPSfjrPDClr1smfWOM/Q7hLK4RrrwkfzE0dlP0stzteihbBidz5hnoyMH6RkSelsKjjAvu+jviLMHP8SVcJP21N5eFiPrJMz2OpiVcVtC2TrRCjMKEro2RIhE14iQJiqWwav+7jamoA/B2o/9u3q2rPye49DcaM09jtUinXpwWiEbHYWcudLLDN7ux5it/w6IG/dOAwNnsaG1Eif1zG0ipK7X+sGrCbHNN7ENgG6EAPdhAiCfMAZW5T4bokYUCGFkZx3Tydu3GZBkiER2QzcwerGFPYVeOWHnxbs3BFwFETQ60wbnQ10yeSPBEDQMS2G6hdF9OpnO1WKi5SZWQcx09AwDWru/ezVDQ+HwNGD4C3MWmjXOnuzI7iwNUrrlZPfJR+dB9tnqOH5HQO+XpYRj7niKQqOvBZPTY2x6SBWQSQcbdWxrxviJaiAFnwC+P5nMGvV6U7TMMSG29cs1Uhs5RRKzNqGkG9PwDBGpiTYcY/W2WkNrbrjtk0fOVUiJZjRp462bylw4YLmMtu0MCSTTLbGA2QLoSWhmwqap7W9KliRd6L2aKNqzOZyZcmYWWNiFPIAYba2KR3Fr0i3gLE7oO3CuNSnjZxpFSz8U+l14lW3dcJ9VRB9gt2L5+bm3nUXLl8WyPjazV98Pwtnut0IiApZyUdlHBSbqGsouskSfDI7WhLZVtsezCK2J/OEfBwpNBygrlEnY38WVn0Vm76MGu/0w2S8dyLDu5P1tI+XflJc0RgvdmBK2pgWWszX0DBeE4oFFohKl/4NkRYGbu5Dl7ObzZIIQlXnu32A26FvvKMUCmXGDYvSzJTXH32M8UacThNa8/Xm5vqhvMclX8fal4Txy/hY/8Q02cnyn19BuZidr17uaebj4xIsxf4ItyZY9u/vyWVxAaUw9f2l7sBZMdzcc3v21EIbrUSL1SsV+J0EmmfLk7n+BJokb3LtP60mNLbehC+HXwkvJXx1ynnlu6ytd6LmXgpQhz++Vri3KDzph4OWTdARl4+imS8L3IFMgJ0zfQxSFU9xmS5pOTnB68omZviI0CqlLHH+7UO0M4karK0GrpOix9X6qyWU/ayD58jL13EDui41OXgjTl729NJiXyqH+2E4UutxfJIuBolEFij82yc/5qCrTeldt/nKfR6Qm48/ybh8h42WU4xXisZvYzlcJ5LEyEssXVzJ31rhsn4OM6rmjWZUs9jZ9VqjeIax2bSbljtRk2aKK4Pr8b+ACcUNmEwhwKMkzGhEDiifOFWT2sTj10MmspjD9KvF4RmstKXJ1NnA+Y+EsTUhSIgBKASMrNz+1qqylycqgiqKpcOmdeiWmewudbNvbZa1IDOvdPdOinSRC2OdfC6idQYKiJgGR+Zge+S5SGqzjMl4kjsNJUYN2MvKNH+cCWOafOVDaHTUEhGMuOBkETrwSYGOZEiRlm030+5SvQfLQGv+xqPCAO1BMXjHBHUA5g438VneVJFH8mvV1+NxNRfqSbcg/doYAeCAe4Mf0ZZ4apRdiVkmruG5SaIwK6J8x/zL0Vjp8GpNdvfT9SmiS9STMfzcVZRyfpUp5dUi1L4ixKibdFL3xmkJ/tRQ4ZgCA8RamixNXnZjSpyw8VACLAQPvbbqWLTdeeT7WLKYPDK8/3/t+7UU5MgNUQdlS9czgpiQCgQ8eapE7N8bTxx1FfWlPZrn20wl7RU4kg0X8B4YiAyTmPtnbUkPN+fN0OItf52TG1a0D/XI79JZxblo0LRhP0k0yB43dzDbc4ocF56Il5U5f2I7WPenO7vpuMeon5q2erDRwVaVlRNoTCJnWztxUcO38m/Hwu+ceaXGwMwl/WR870UQx4x4sg9iyyvl00NO0jAteayDZ1C/Qy9YDu81wgV8fqsBy6XNoacyM2Bl4yCHrKVuiCF028/CeViwjO+aN1fYfK/t7Z1OAIpciqAnWibDjSJIkxA0yoVY7izJN3ZyGvJZwqrMqAZPnqVGcqMaQyIhzC0wx/MrCPt8aZkyK/14WpoPsyKUEZbwrOLxAgvLxx2D4vu+RPoVUERgw9UtR+doiJUcJjCOS0orHzJMHj3/rhvj/lPWF1uWaKPjsySrUZu+WSEq2y6SqeLim8l/quE2I38GDc1gkMmek86GGrOTfKvjTPgXXUS9oIQ2ItahAD7YW5CIICiycWkXtyTvkL2j00xXtZQ5dJkCvoYrN51PsaqCG+B2RxfBa2Q7EZZjDPNdn+tZ0VQVFMXx7LsMHntgjcMR2MrviYhJEF5l+Y161UsaX+4hh8xPzb/l6/WoGbCFBikyUvWGdTF5fZGWu5tA6v9Pqfb2UXjG4P5nquVcrOwq8R9UQcCT8w0yfu5KpfBPvLOf1icRl4kwNnXa+JvnbtYeEemsLNUTuegbEOo1aF3eV3FUEnCmVOhA4PjkIaO0ScTAnVJVGXfZJmNNUEE0HzyvM7UR/UvGJRcjdQ7y2uzXEQkkUSXQ3lrDKPpLE8ukY3dXgVc1n5rsEVAQ9hs1kCW+JMOK5pjDB4F+LR4Wg35WZhCiXgjVQ+2dq5WHM2XYyHhT2uDWyhFa8LPLA4uUdtzJpup5Ko/6AU4Yr1aVU8XNKR2PTMvWI2n7VmuNFI1Cn2d8h0Rb8aF3CRCi8M4vqQEy4x03aDT3ere/BSMRz+xuI0fHi6VJKS5rpm7XlLwhpI9LgriHRVFzYXSk8qhZp8gVb7IVOBjWtxhjGKCxFMc9PdT+HVO7U479jlab1LKBRajJU3bEeaMtceFxnEo+vs8vMemfEp4l6RUGxf25HpjQGtTmG1Ey1Y/uYZ8oU39kouZzS3aYo8AeCLeXEGG3Lkg+lUZR5gqOBYlPNdG8H7ULDhl27FmwvBzdLY6NA/wNj2qpuoYhvGQ802X8QGqt6fC2xoso017I5twSfo0SG2vxa7M9BNo/p6N8BIBlaX7YPNupEONRd6QP3k1gOVQ/mxa1kWIjleaX5NXhEgZS8cQDwIRA8jsVqhP+rWWwKBePkSkJ1eZkHTmZsRoRhy5RWsth5ggxWqxH4z5RlBwk72v2a7RTal1HjqKWRvUWL2US3vgjgg4NN7BN8p3RQkLSBoRU+xS+l02ccwU2mq5wLo+S0QQn32MtENHJCBOp8WiMxLByY6lpI2lQ+uQ30Xde1zS+riuHpp3mQmOWubr8tMVAGrR24RhcU0d+85aPDlakE8OFeBRk6cSMKW6pDWwypBbZ1Juc7eulGAuNacE8SKaXV13dqpyVnFcxpsQFjgCjKnZFseOIIxqvzUHnDZ4cArLiycDQOr5/r7p1Yx9C8eLa9X4h3TyfUXtPdULtWIo2mcX3sLyhieJ0K+Ryo0/1pb1dUzR3FVbaPTm1xoWGFmZhlZyCRyf5E17VKtOyPi6NuNG1pWUIElohjoOYb1UMbGxIugvMcCLfZ5QBuE2UJnBDHUQ99Eur7PvEkrH8kQfjdlFDCCvUjdNVgqzp7FYvo5P2p9y/p47J9+FGxTcPwafHLWuvm67TfQryXObD4u2F3TJflJDDtu0/zaxXT60WYH6kjeu55MerpEbxuxSGqVuD0kZva+/9i/zy3lECLXSS9FFaOY+V+WrVS7Hy14+cZgBjitZSykaACxDHwpSaL2tCVq+tYwDAp1eAFanhFbEEB4G1M82Wd4Fveybmv1Ee8geGO33FpOhsgZ+w8EdbO6CcQf5dqk8h3l1saR+UnnSESyobH9C8Dk16eP1ODLzW3S9+KyEvrcDWPje7XpQ6qi8TYdfYLlOATFPo0inUhM5QsJfefi6FRJdyt26KAUseDGmlEa9nw3/9S/QJFeY5DbbeQ9y17zj91VAfz0A7TPUSZctmUPKd2AMtWQFtFEuy/9mJgv1UWODWsy5H1m1ilvX1WOM3e3dg2eBTw7+f6Wsk+t/RYFi4q1lgWH602XzMKAaNmKLWf1MAo0ybluv/pWKL4jLFYPlqS7VkAaiYVN15uzen/as6IryeMg2jEO4b9462RpSrWp4fJRpohDwPIIPysAETldzrHcwrBcXQ9ZXy1b7OgCCaw1/pZ6C09x0g6btE11fPpBbikR/R+u3ktLf+0xdTU8nZ36ag9qIKnFJDY5T3Ab88vfORkoIJGlEOVdG9gli2ggUsD3b2hLtwtU0rumerH+zAHOS9d5erymOf6fq+Llt/mrjjqym5gA0FoJdJ1COQ3W7EAnwREA8kXD8HrVPLI/ir3p/SUCz4jRglclYvnnL6f7ZczDF7lb9WbWZs9x2WbAoQagajTfRxG/jEAywaHcuK8m0XeNk9VVW9qrEWSwLrCFPWoX+yzIJTbtOvuWn9Gdut3RjZNHNobtC7ibh07FZSq37e1NI6bqGBJhJARgX7ptMeQ+AhZAfZSyU51c9hZIyK0Roev4jQ50RroM9Oc+SMbHbVUKpIjqZ1SDIuUmiDyWub7fPQQFladgGhEIQ1gVCabroXRFcYEb/k9VEk1SivcjheZWI1xPcxcXPYLAPu0RJadGlaF/3ER4IBW6T7jBU5i+/M4qfIOCIGM77sziJqaF0uxRsbS5UDl2cUZoHX15hgODwJYZIHKJ3fRUwpTBkLf8SEARIYcp99MrbLsY/yu3VxSnqmm/oxvxM3rlL4q5w5D+O0VSMzXhtm76wtyrEYHVAeSJb+aHBmNxVtgm8yBIaFVOFCUNIsbxdL3P4THcvxfT+1D1sC8CQA8cil8tGHlIo440OOjW413tRN+rT4IOKKxv2oVZP/0vHA2grTLZ9fEaLfGftAWb691bm/y37MGkk/PSKkqE9T4L5e+bP/2wOMCT60CyVTvkk6Td0J2E9VUOlV/zjMKytEhMTpRt2RKUh6o31WXVjfjWARRDBomc5K1+cedJTyV0viMzplsiJ+yG4wyMib3v67dzNeKMw0cXjBaT/pk1wbrOpKgIwyVYUR0PL8DJiPSaBTeC9FigdT6I+GKqWLTMnwW7Pbk8fOA1j0XcyY0ja5XyMDi57WbH0NU8T5FL4ljDOTvMMoPfRadpDIRS45yZWMUVmyOS4drv01O4TYeRHeE712TSRTe2mER6FNA0LG/BxZnr35d84X1LAlraNMz59zYzSMgu0y/mjeljT2PRp8cKx32J+ouct5Sa9/X9Frf0lBsoj2fG0tWJy3MTc3cpLeMFMikA8BVbGCkVFdz+WKb2BdAmq6X2GsHj4NV9HG2TkH6q64Hov/ammcpleuMU6gCtUsOUPHKPOim9U+PBhEbR06aEPzXq3Kdiln7Py3cFbjy7BdZ6sHzAMMMAVYM/nMsCrnvckW/DuFbc+q6cYqmmNha6ZFpP5XVKtRJUBSvqzlE55PtvDIdmOwzLMWKXQTMQh4K1t52f11iOAEDL4mOI6QXXwaD3i6JdEHkSFFNZfe9myueoZFb7sDE+sYNiCepSI8AQhcQqo8RE3qCPnMufnVQXX4ts5U86rqCzMTPp661whAQP+8hwfI5s9JdGcfckjgK4tucyL1WnSsa5/nVjrxFW/0pcqQvU9+QwLBKbmBAqT3nmCmFMVMsaZyYGZENBpWxqIN2yPVwN2XHM1T3T853IDSsW9uEy2x+jdPK0q/MEcGWcxpFgFVFkzEk3wQUAYe80KVCFMFZyIxpVLublwbbyCCMIwH+1hA7k9sDN7o06OGcnBzV4tdi3+9miAehN3zrHnA5uFSPFAetRuJW1Aa4Nd68W2oicougW6fN7i6RzAHxLvub/6zA65PdHJl6eQGq+LCrH1eG/WTtPAvXPqnUxG9zfIZ660ZgJZoI/THZVxiTyF9agxU+6w76nxC8lHKo5OSRQgRqjq12QDlzWPNkx+NIvVl1CDuahA8mL+97yJkNFPMbiEliy0JUfrezgWqOcDIf51JuA53mfRF5oVayHed2FRQvj4eZa5/yuWpOE3Au6fVjjFFFTuf2durQ2M4aL0YcoCodLeDun3RdBtE2riKhclrLEkFpYTVWCuUmbim5DMgQ7tO3yshgxR3vY+5+gg37QEcr42exl/DSIj0AtQcz8VLuZJYpyeT6Ppc51AnlqNaCGc74etwzOZdB3NusFuAsNL29XR7Sex7/nPtfn1vtNQVDkUsJXHtakHJQ1uZBOI7IR23tgneLusx6EYI+JIfwOgSKUntd+ov0LtShgJZkSf1wcUI26LjF4CXHqXph+vmm/L8mUD0N7YCMDXlZuAJj9O59vXyYwToToMEEgkJtiN2966+fb8Qprjb/AVNicIlCJAZc6AgQXcSca9k8ofI/viaBdqcU51CC93SFr1/XjNBSTHAccJfOnKorxdqn7+445yAK+gZuxFOEE9+X/as+CMQZuTKhn25bDiDHP9G3b9MdMUg57si4M7uXz6Ya4LKnTDSmtMbW0qF9qQkvz80LCgj8QpDRRIMmkzvdLSwYG5PlszAV02vXJm8bfeEb1TUqdQn1FgPDF1Ih69aIShf8yhkgJkfitjbfkDh529z0N637p2TfeICvI5nWFA5Gqh/dxUtMZY0NuJQlM/l34+h7vXYut09q+fhGHyGrT5eVK+OJ71ziCte5yAxOxRoL61mkUeayReGbTcGUfsjzXZK9x5GXDRmjjP67pL9iU1C91OzZeGTtRwnogvg+7SSAQstj3WCWhzOGMFhZmp7XMExYBwIZMVr5N9KwfcZ/1OA9H3eb6nA90mT85/yWtfkeFg+jZUUkWhnXo/W1Po3OlndJ1bX9i1d9a+/KL2mqsoXyCUFmgRkZfcRFlSi0LkOBmU3RpIiZVeTyMwUHd1MBC1Wx3o1akSEqhOcsUU0vIFH3N3Ss2sJ1T0y5E0liyInqEMov9A8NRyNYHm1kyByh9/LMulyjV9tCPUxvnLZ3LAkvVhlx24r90rra28oviYIgpga0uzTKtNsNK+ECK6ozGw3GhaYEncPMDjBlfPNOXdzon7x6Pa3a6Hdzmzu0FjbMT0SHNXXdJwADLp1BzZjaUMjjpZZGEyrOUpq/whDQkly7GB1OjEDxg3wcwkZ+Zuk2IMQdsCzvdb78H3ESVZLiRq3AbWkquH5WEXReU9u1rExCEBQHCgk+Khkd6nwc0GBeVo2h0bG+g0Nzq6pCtIUtyJhIjsWeJl72r/F65I15nVL5HnfTAJeU4uZqSF/JvnfCvm7tsah3bLA80oYzn3CFt1ylLtx3ZwE4stcuQ5mkEjgRQdt3b6mmVrnpHsm4/tb8FJLTS7W1fDoj5wVaXzvSmobwD4VROCvd4QO3hXyF5igPxyFV/imN2gUmJEAcEVjDTZmGY75U6EHbIb1e9siiiMcxK0BdbvRAXm5mYLvxa97LtATYKzAjiOGV7GwhH1p6CjHhzELYlcX/TpGZmPRXQfgFfFhhgAEGAEQEGGADV15DoHZBlrPMToy1vJ/2LlCHbGdzb2TZCdKp0YMQYPt8Dqs1qMsKevSfBeGFlwpX77BRKai60Wd/Q+T55PpvBYafkj1jk1e6IOZNINS9NImY8HNpuMZvWasuvP8+u9zmidzGZLSFWktuvS8L4S6nlnDaB9m5VFO2N9n68al9Cgm4Xcq0al9DXlWIPiB3FAa7naSveDw39VpnUaGe8huy9w/cshQPP93ba7zHfQI5YZ+Ca7b6sqn97oLY7WTXXw88MH0Z07hEYd/l87XM2q2FwggY643NUgQh81+aBrGIYu0l8QmGL/VExqus03uMFYMFoqc83keT6EcvRzZWSfE71u5mZqxBVhxKrh+3Tyy4zTRtRbzKmMpbXSGNtSTLOHINe+fZkHn9m+9Oouf5a7R7uj6aNc8jgjEU+/0uUD3cB7AytjL/yRwcJaTayhijGhwm1mFrcJsXpCGlyFsQmP4iI9Iy7nLvphAesb8PBkrOmV0kkbjFri8Hd5xC9DVyDrZkDdQhXjGqxo5Y6aYPJH56nlmw82rzKYuCOp55Uk1eWdMAh9C1UnSV7zMkZu3q5g4kG/nYyI3uGKKWEnL+TCfooReC3ClnDk+Rn5cv4O0eo/BDyXeftGFLkBeXhi17MmO/rblcgslhS6tfkNJV30Tju+I+oDQOk0tUtOzHMdH7UX7BCh17uozWG+2sthP/N3OHoCJZ7Pl+VmPm1UhcnyNuvrWxDzjRhlWsOWlstAEYK78XkcXrr+UiSaoiQ5W9Uh/uQ6HMoofnO0SMJ30jS90bjlyfXbB9PXHDrEDIGvafLRjNeoEksdkyxS3Ow49PaOCxMlVLEdD+gA9I6W2/8OecJH5wFaDuU0UOTU7l21dzAzMDou5G/qcPVIDX73c3fM87z1KExmoy0TbfjxNtdrAgC3nFlhcq+RZSYiPuLc2vMg/tvSYB82nn2iRjeUrxZOY5/Y+ZLtirzzvPZv2Pz9JMy0d+X7taA2aClwphHUBPCpKmFapazMHyBc8TdmUNv5IX+pMZg2mnWBLusk+SUr3tjThZpaH89tTQa3jMmfYMsgwAKrID/Hv5aSW6ECT8J9VO9W9r9ngQhHVbQrM8qtS5LUZDDw6Z7WcY02tPrZwTxhIE48xn9HLdy7S7pX2Fh4VMlp+raagZyf5qywKOkud6yXf3rymQiUj+qaUlFY8BgGGGAFNn9VCTPETHmxsMHQy/4dNDaRCHHrHrr3TWB7laVWjLa300Mf9QFcYjruk7IwrLBT/S+ye82Ov8RYHALtOjDNiHf+mRmD9XMJFtIeh9/WROi/Bv7R10iuJ1KHxbwXrg2Jv5hM9nqv8+rx35k4428u5FovcvuzIXFYq8qzmtXqAeh9kwf4IEWkPvCWPE6gaaMKJzyiM/zat9/1y26NMvSv3O+xeu1UlkceHzp3AZMzwokDswcLVxWzb1Z86+qrecdTdFw+n5VXPOH34alVoeI/PJSGUcYS+AD9M66JwQ816ruwdBMPayKVrcavQrT4WnWpa687dGX0JAgzkj9r118nzf7qKCZTb6NrBmyb9ChR8Tstfc378uqPuUeXmeSJI/luNDPT2dGgAoE4x6yEZsrHMQ3h/l3NHvAspwKCZfOy4+iUkOBTB8Wib6ks2Epm1iGNgDH3aCzLH8P6ajHQ6wV8nW47xvVenG3BZbRBaVyw+iEj+31TMpmW7TDhxjrnmjE25iiT6P7mHgeDhpVFm9mjJjf5vAuI2qpggmR59Ze4LaqYOKmLYHuIfyeSQM4qW5+7ZUkd+h8ZwC1yg8UUVFfOYjmPpLVK7YK4P9bSI6e2TWQmmM8Vb780vr3s8dXNq2oYS+7vIV7D7WP8z3kd81CPa0GXR8pbyhiX33IPSBh1PfiUt5qYQQNIHA7bUVtlVk6Uw07GCfohDufme2flPA0zRtgQTrrWUiVf5Qgu/4hFxT5Rj1GmLF0uRNCNSqInBIC7DHUkvDS2qNaYGvVg/AeSnrwmEP+otm63+Rwrca0RHavbsw5SqaRFR9b9d0yeuhDoCfjNv+oOZsCbFTpBnRSqPMDqMsgqE4jjRffPBGSF3ILMvymAujxXWqx5IGlbheOFDy9dd6ejEQJpXcm+5jL6nxR83Nh4LS/x+vYbRUunqVL99rm14lhUBE5LpDA1lWYh5J5ek7R0K73dU0+74tPLPex0eZ/C+V5Ta/zWWUBOW5aL+Re6kUYA+14hSyo38epR0u2nXbBdbAoL+O82/s2u4U78wXzTBnsDKja+/c04lgZuwHjpu46OmC8ULLO8DLKe5rTGKdjY18juXwbARDCBgFBc6W4/vokbLFpgjJAVehMUtZbOaE0JQHZyS5ELdgdqaI9Hkr3ZhP9iVbrhqcpr3M6gLzvGdMx3STVoLZSRr+MmUvDbQJZ/FNk+NHH8Uw2cf9iPVdbK9q87edKcbiA6k0J1Ht09f/njWHwqRmOxup/UeGN0V6YnirU0sIpVEeUdn1hPxenZKRpz2ityGyrDZkfAGUZzTTpfc+FBjxDnHICrgesJKSJfX37KNu+A/hXvVvh75O0kfiIQDgX+/6BfD1Em7jBSSj1DlnHb9hLSd8r8aFGG67KeTKzgI/K7s2AowZaX+q8zb+mDuhwWwdPhSfiLy7Pwt/5mOQofnWncXJzt4kbN2C+r/SDb8Pxnxcl2YrEltKpmgJY4w2IAIVPXaMP+n64I4GTEY/ebOoMR04pOY++ef3vlRN3TMTRsakvnZF/+VL8Zdyg66/nkJIv6AtbzE9gUnM4PmQV/NDzLRLkmrbTjMNxN9z8ozL/G963xPpetXwBt/eECQklbBs+jkfT4H21WiAYAzXgtUeF0v8JCd8TK4/wt/ZLe7/SWr0urZ1bBvS0jHGRME1xSkER2AfAedEimluE4N5rmdWdFABGAiB8dniSGLkApH7BWLaC7twOmBCYhbXhCOzYCK+Kok+dXPUPFGacBXuXJUaOoWqAYL0GdZqtJQ+WodV2pmHWRC7qK6eNcGZF+cvGuFEJJDDEL6utuh1JlIvV5Ln0lJQQg4wOx0Ld3aALwURAcmG7kVgqyMeWa6rnFb1qWGtLJTc5S2iUeBAdK/owh9nXvIaSOsb4Nm0CVpnOHtdMdqDZq1TXV1qlAIDICrHWXWmOUWSCgDza0rvCvJ+JSVfSEpM1ZlLtUTVhl+GLFmHaYaoRhUdxAKUdeUv3SiuOn7v1VB99cCWaJ7QguZY7IC7JWbnrp96Mfb1Ro90bymq/76nIkKHpXAgxecgp5KKFkU/1dOyWEaOAwCeB2jkrui5gD0OjziVVPwpp3X/538307hT6sQar0iwBEDgqAdkd/boEDw2Uc+P2PBq38r9a0QWY82205Pd76oPnzkvl5HLr2De+OUH1kfBCW0gVL8nx0NfA2nJrvu3LTyXzU68d6TxCfjcup8uixUUvY7iiCTP/CA2S+aiQrbtXr1t3S3PyBPMVPMSeII4fht192DfaCefeEkg28w4WtR6hv1trvmclrn1nWJevK0yrDShOq18tuSXvkD3ykYrWDbIEIFVuvzpOVa1dLu4+WEhWjw0vGPBMIeubKuwIFo+Uu5C71kJ7FATHFluU/YxYecB/o8H99flYtWJEzyLtKWo7qOuZKDnMOrkfDweHCBr1jo51KNWbDdzcarVijXrRt8unOz7KFCzHNbVX4W6XKQJXQqYhe8ZaIzDPSf8iLZ5KfLj4dC6NHgyYUOd2MG7IF9D23z8NCkrCpN32jXLPcANyM4uVNJyqouLhw5OchQU3DlCk7pxvhp6VXaHXW3uSZdiHixTiH/Fd6Ll3yS8PhT1AyYeHXepfWKOrmUdrtNoNtePYulmuVffmUPyKRpwh+/I6kjELuXeQuvgVvGw7hSlt5wDFKlowJszy0S6FW6YZrSQ8U6bpK17zKlaWdQ+JQOrcrvzdJhg1OYzpNTAOAS9Q0YWRODQleyDImkIOOZSbu0zhWlmnjxNE59ca4kHW5gHCx8NL8QOMlXnOr80pBpIEHGkdX3s9WE1lbTUcTJrtKObsDm+GMg+Bh+44vu2LRYTaVj/WPRYT9NtV90xKNTFXXad6SZNcV6zhvL4iwPUBGH6xoM3I4SjYLHVa9aOETy6wTLwkGEujy6ROkUGAqhFPhodX0/b1VnZ93l5rU/kMc+j2c0YAoo8XP+OjqcpBKDsdSOumC2ij39k3OabNNYGTfg6k3Qwyrb9VDDKo7gK4+ZYsLTC9ua/m6S4GgwapN9wh27Vlb03IsCE9QXrn6+xPzHhc3wxQxEZt+LVXj9S3+DAiy3dNthj7BXpTGrFi9itDtJRu3SRG54Eh7tNTDbu9NRveZNC7kbIaV38ut8QpeCto1M9F5uwN4q5LGfAwmnJK61oHq99lDfS0jb7QNVwqu4Q2Va3uPAXBpTMQ8Z85cEHw776hlL/7MUlbZk2AolZ0vLunOTeeboPyLRRLIIn2evWLVdyG/G74DL1mZteymzMQmkAfPRpf4zixYkGfgs6E9oCrr3z+qOgQSMqC7G995mAn77YJbzUPVRhyQH75hVO6itO7dxwC9ExIv0SMYCJJghibOieqiaMSUvQmvAlttyd+LucdKldQs8dhruKgmgyXy5Ks/wN4B8AwxEOeke8kS5horZTUq2FIvmdEMQZVoHHVVutlGVXA/m8b2+7bVs6Zws4DvOa5e3yE8tctkVckkNiUWZVJeLOYBLIx2PokauCicrIUNXlzIMLAXCM5Dx7b53BtA6tl9qdAj2sC5hDOex/mM89AyZ0yerk/2OGzhkrAtPQbb7cY3vh4s5fNtuTuzmQKL3iv637lay+1O1pbFjCTonvi7/YfIdBJ+UY0Z2JHEomF5IFVktlxSA+RKgef8oCi+yBC/xGr/bYGSIdLBxskaQoeBykwDoaIosHRGs1dMuk/ONV26M6zll8k327p9tf7voat2iZ1SVsAxC2ztxdEhnq+DWomI+KGIVeul7gcRLDAOJDxAk4eQeVls1KUzlIMBk2qzTijd6kFvN9C4VAMAhiQjWpqUckC4GVcCWNAjXWrD2mZpYYBYg8XBWf6JmimAYCqwyDAEGziDMMAb5H/47EH4s1k1hQ0gwCzPDADD6Sn/tuSkES1OA/r9UJNFKBnq2uwHCxikUgwE8otSn2WQH1hKNMn+DobpI0q4aLNHfj1hLV+o0e6J2ayzmb3VZsyMKHWV9ROwLbGrOKYaXh1PQmCOG9jSHF79YBUwxwbQHyE6ATQbOpklVENckdzuGEkzy9z2T1x8WpCcyJtGwFTusz6x9S6v1iyPyhbLDzHcU0LS2Ge/ft5QJVOG64wMc6vvx55IvtLjYXpaVVsshijPrtei8xTxJnBUb042vQGP8Yw2tePujrhv1kBlt5S331c4PasZqDjkvWO6O22sMrt+B2ezND5AFdq+jO0R9mlZLS4agKMSLYxpvid3de+bCPNDZ4exMUyLeeef4n8o90E2HpchABcw5jdVxLCiPxql4vrxbw5pu5NUtspiyL2EnuCZM5HrQV2d8ir02/9s+mB9p/wr2gIfGHZq8LjuBlYTExAeLYWnzz5dnq6wcqvXxnskNLNxuKB31Eb8VK9TTGNdQ7QKVKwuLus+AALuCJ3U2PYOM5MvYprBPo1gX3IiD8kdvQe0xZ5nuDhWHMqM526QRU+zytDmWsRjHxh87gag3F5OMQYKio6q0OdQJ480L2ebLiYq8S5K5eCIzF4NKZfEjyoQpSoVrRVTE5TXQSSeeUpe5SHqhJhV/wxlvuLm5wsIpHG7m4uqelMzfEbf0Kv5zpJ16obcwu3PGfF794gP8knLoK2iqu3lx2OYu2GlKyQ9z3IjE1HLtvqoRWd9sJWy8s8PcKLcdCpzTX8g33TQZzKRJw7YluUmul2heBryghCZZnL5ppCMOY1vF1D/m3nTUxmMgviyH9WUaj5SvHGq1JdPldDJR3QWhbh3pBJVJkGT8YoQybRr2En9DJPk1Xb/yFa8HTtPxkiOi3t0owOefz3akVKaySrQiMsNyXFhwZtYZUgPjZunGWskA4FpHmbg+QXBLlK00LwWW5oDYZaLx7lU3+m4LqmRBTq2+6IsA0U9drSH+wiC6Pj6LW9GjU0UmDdrEDGCP7cXG2ay8JMa1EDBDR0AVOTFYWipDsYbu8FroSFH5/BaoMxo18x7LfaWEuE2DsBL7bh2hiv8YHnDEsh4SQS3Z+oYt+/Pr4B90ssyAQF5EICuSEC5vFuHDBp+EFrfyICtP6/Od+122IGgeIER0uFAEjIflV6O8Ftp6ljWAm9fETeo3zkmu+6imORcfscUFy2KUcFzOFTfDQ21Lr4iqNLGGav29Qq5wbImkKnucbWfYV+s2qRQFDA3kgWxHGAW44STF5ACfl+aBwBAHObPUkaWRp6e+Ug5C2DfIHITzaGrbNtAVJ8TQjxM/du/HKU8v5LvQGM76adxNSVqeoKUKpTwUUJJfW14aFthCuhFhFQvQ+B5UaxVmsdkHTeMZ9cMtbPi/YywD7RkNqjF7SlMwEMcMi7ZNoSzbbhEb0SLy+TExGJXH1kfBOKkh0NC4e7x0/zsxEJ69DgcGCRsoUOP+5U9nHwMEnLf4H0JpHIjmAQnqLX7irTtcRBP0jN6W8qiQP+scLp9LWXgRN3gZxYccro0+DiestUPhXB/ypDavoTRat4Uoh/on6rxWs+UUsLtWp5WfUvR6qO/B0Sda8/xFA1OWazSiQTp8fvh1Uns7lBb1SQnXCTJpvlbf9WadH8c1b0oKASxmTgKwCn1Z4xu3izbsdhoMXRurYa3nFvH+YiOpl1PwX4WX1Y2lg63ESy0WA0hJQ4pVG4WZMiy1h6rbedrZG8rPFf5zFfdMNll2DW5KGtJIwyRcDHdyoJSt16/zu82vEcc9j3ccxFbvwZoVqEEWOGJOFyXlYHjC1xG4Rd07yKCoZnLkPv+sbWpzd8npm5oOMh3/puNCnFPrXKqVB6ZUD9dekUlV/cWACMAq0MpMfmnKurIDEgrvHeKrKB3g6AL2ikMEpff9b2sbJ6TVdmsx3jp6ztwMvTmgFQgpAvFkOAbR5H0HKo6dgcpwvxYVuLgdkjPSzP+uaEabdlPhsghNdNb/lxrvMVbZ1buxehhYMRU3cKIfjWimDj1j1sk2KQGR2d44ZGgcn3CZCMTH1220+6Y6ZVR5haLCDSeu5OfN5TKfys6Lg9d4rn242Ch6BhD0EcFo2owTkCJn4znYHtfzkHOFMGFsUdX7NVPwp7QNkhhBsLm0wTzw/yG4ws8LyZy3060Hg/Vlk651ddPHsHW7dL7EauvTlIJ7DzLnC4lBR0WGS4q/4YUXpPlloFTwr34wHJ+Zbmht7bz7g7t/y1sEy+zr9Dt5riAQnqJSuqiomytTWHVZ4S7x99W7wH9Jo/iVQSFIe4FxP9LF/n70UCG64weCzj2WDSZfK8nrjP0euZK1WTyLfuATv097X/m5FUQW3bGrL666XZMCx9JCaQqJoAMYJjW+w8wiEYlFodGbKOd1Wi6edTBJcsh2v6ma6kC9un5WUNnuLSOG9Q6Cs2a445TDoYE0PEQ0TdfAYho/i5MIKNhxwenDTgifeIfrfF1utY/ObbaTZCNIDoCWh6L7tJZLU3wTcd8e5iwUA6sfW/Y45Mn/1h/84v+jIcumZovnB8LILnA2rYR16rASJr5egn6O5j3FT/ArCGB1t/V89994DR/9ABH1ggOTdur0zwMLFdw9lF5GlPpsd8d+HKjranvJUMESwgERx+lcX6vaTHwaZC4ecnqXPfoF2V/ZlU8Qs7MvzH2MHaeEqccgocad3UqPwTYenYpEm86TfCksm/6LT4DsRT45+QRujj8Iu0/ZQVIcRhLAZWUEIgzoocjQN7vZV/f1WW2KtOLotxFQk7uSicRYF8QmLOzk+rmKmgUFENT+eGrsf3XKJLFNhg8OWBdPv6emS63yKyEqdHnYpgPJtzPP5F3dNCKLY8K6ClPn9MbFvCI4/EnSDEdzgD8sR0cYiUGSVdcFm6qhX7uJC7ucg2clW3vX9jgpd9VI4G5TA5mPDcWf9jvf5LRKEXQgQw/gTacV3x2lz3qik0dv/rm68uDcI0HS2hiPVD3RpVon5/bEvN9vH5j3sIBFtjUoC/Cg4hvkztYubbOUfIV85RR6dhFlvlUpVCZffpYS45ilNXJgvv/cIbgrpicITyyDDJo9QZwICswZA1pumkKypvRw8orLwa45C7JkTvIvygQYAxD3iSlsP1eCN9XURhjt3t78O+Qs/zxkCqZFgQtKtg+T2Lu6hcuIk+LwC9ML9S+MfF7bB0e2bJsM8n4aZamXLjBKEms8w6msQXFARcjg/utBThdnHFWQItFazosVVB2q/nEWGg7RGI36hKjI/GkxXqSoGXrsZkD8O6WLRftIgiHVOg47x3+y7MjClzNJrBPqJEu2MN6THuz8XWEVSaasnJN2hDESv2zLKo1gPfVkkuVzH3nGMnD7zQTZbpiw2SoXK/UuQFWjuRJT0oI31Mn9pnPc2T6cmqD4phA6IJPlHQUlIkOb9a4BL6yPP0JE//bCU7/hZA9zyVD3LTpzl4CM8L1GueAuUqEAdYDc1xdYspAaB6GZom9hORt6RzX0fjfJvTXOZfwkIwLwzuT1XmyHK+b1NxtUIOU5vyMf0nSsdoEq+GG0cnqsbhWi+R391DRR5mQYDRtD6St9OLgwwUDDOYwb92CDAY7fRtNaUSeBzLSftdCnOHG687yNn2c4NhsVgKBxsVOVXF4TrElX8S9A30VVDd25RCl/zKWSvhxs1N/l32Fv1gPYNlZb69u/bg29+th9Sz8Czs3lB5UYJ0Lf7BT3Dule+/vWQ6DqwNnqg9wTQEhxpz/cqdHZn9TNGenmaaZs/7G8t+0i4GYtA1ioTVPuGGT/uKZs9ymkIZAWvCGapwkDNRMaAJB+2rX3eznr3YnGga05GfF+/+/Wp/vzryGRSErsMDeWC5tm3BDSxDBpEBYiE6ZF8223CMMnH4XB+8yei0v5J2rTU9m69H6rJnGS/d681xwGQ3ilhOCCqDcKOU+6inwhH+US1EAOdnDmaKqv4hngwFzQfTxKdNrYkvnmcV0pyW7imuCv5+f1lo6wG6bLnJMy5HjxdZkL3U0fyl6Zj0xW7axQaa//GGJouCrOMOG5f0VFEShJlenkbjC8y55Yq5wpiyglAkBi792tEbn6+NlkgZMLp0eMLPLei7i3uKnR87ON0mVixxLQR+nUMR8r7e1gYDoIaG3zspgrWv1tgi0FBC1h1MX0xQj40tjJ2cSPde/kuHLjoXc6ZPnkLBdSN9DJcI+F5Rz2Kl+Uceq5s/f0od+zgVw1NF1Y7gZTdMBxRURLQCgR8IgG49j8oBuGFGt8HJIjTmKfmjY3D0MEwO0yrM8s0UCSTMzhv8cvV+6MhP2ekgwjxljc8faM+xiSM3trTL3GldrzsTwFyx9/hvKxlplq5lPpKrjxw79peDPVp5CPgPl/rncmMjmzJcAMy9m7/Xm8qy62gKTAt1NANtv8PuRmInfdFVvS533Z/GM4/10owedIkB62p66oUAMe3ObFpiyaZGyur2LmXbQ+aCPl2dhgSfgx6onb1uH0vZln7NcOYa3QsA5gOLtAdi7HtKupAg/9FyJEXVtTkjyMI/7L1R1dQ33S4WO9qbj7jk8mrtQ0j9Cw9w4tsynmuA98nceAlS61rNCcGOIYBKmXMD59HZqk7zrFDoyA3R62RAIGddUnSETgixCiWRXI2+sA9yEtiucyThfnqnibE9SB8kSx5meg/H570yJ2gV29/Ay9/rW8eAcXdwem0j2ImBPh3uR9XN8Vy1EcsLk1gDRL2uyhPg0j3Js9r+l5GwJnZC6OE44N3wEr7bWZHGtd6YH+w6V41j3rIn9JB8rNuRsdIuqpHR97RW6efaE1bLYDAKPlYogNThKYN0ZUi4unEL2VB+j+zc93UYziK5OCEDpWSS8vDyFgbwB272SBJ1HAPcURKYi3U6HMUQevNfX60yN8UX36QgfC2fugog4KGsD9pJ0hFnOI1QSDrj3khP7xbmbNvGk+zattDLufQ6LU00/IziMO1UHgcP+bXTJVFQlKpk3T0au67dZQHYcC+DkjkoIkSMIkJE89eR4Rzfy6XPGn3FutR1W+2l0ZouBF44k/Wt8d0z1y6xtIcvlq4gWCLa7PGF2Ic9G3bJk7A5mMf90sssBBIIYnyDGPyhFHd8ad1pvcaEnDXjpfyY/PZ16Mh47I6tPQ/V+Y5pEbcd7fIrSaCpEcHgTw6L9sNiAe+lZjuqUmIXCj+y05UKgtZJw7xrN1qYT9YO4n6ipbRYNBhR9L/2rmvDcVWPXgj/1vBMUIVckngX8HEDANf1wRVZUP9PN7/4DILWcCMOAlPgDF1u1CQQrM0fZz7GkOTDrsXXbg4pa85yXd8ItZtyg2ABdUAxqxn1boqEXnCglWWfYuNCgdjGAmA8EItQrcf3cE+5PiUVlRy22wMc8/K9XPznw1IMCLPA+eS0G5lnQc0wY8AKnYTIVdbR9SWzirtpJ07eWBkSY7DSLvI/fXwoTp4d7PCHyyyBxRULYu4faDJNx1w5N3pyTv4nCaLzdhfKvEUK/TJiNnttHEDf7m1ug8KGw77Uo/4Ih9jpxE26UIQxDyVgJa0WASgZFNtVMPnvWTdDT1D3pZXuqPNrlXyfuQLNrKD8Kw+sS1WyhkxfdTd/+1NZ5z7DD8Zt+J3Wn0dqh6DkHACWShIfMWdyUl12ot7nPcUYW8Jg3InBJh9XUEhVM3aVWd5hlLMQjqilH4StxF9HHtoCJ5HyT/p5foPwih+Vn8x9rs42UbZkHygIdSSCOgpYtzIRwlP6wqG+mEWSxvJmPZ3tCWlqQo+eO8W4ncDHMAKDXv9dSv3dwaFDVqPnWjuZGAetysayCaKgxyOakhZUJn9AH1ukZBqdKSSRzvMN3YReoyPqs3PgD2PzXrjchjtHOz6GjKeuXV7uUJEQEjzJBrmlZ/Obi0Gdcoel3JLZXGZO1CUkWKNzFdMT2BBxvDkikCGIS8ScTofCMGXk4c7L0KOWtdNiCsefXO8Pe4dKeCRlzGW/IWm+B7H5ddMNGcjPbEegnnke23bFboi+ePlvnhErVqkgHILFXUlnBrndC1P4s4gCDK/zUvhEhAzrsA+hYxx+09LRa/uf6hAoaOvGShXkEEk71FuTipeReI6fGNES3UTkxTj6Ax/b4iot+ctlmzpOQzDDF+F65xGmb+CfPxTdM+7Gq7Ot1ioQGXFrJyNSCuVn6uwiA5h1tdshRbN7TD1yEPqq4n3S2nSHqqPo6qTaNgK56qtKPdbJYuLXgyhhKOZJMx75rOBm9amA343oxbbqBHvLIfn61u6idIJvzwFsOUlofjUMzYm8M164+s59qHoKGvPgemmKqOgZ7pu88GPW35rZF+GAhcvjNZF0Xc3wMpghkV6OE9xQ2r9fe7H8UI0eEpTlHrYaw9+rZIeYsTbGiVWHgcj8Temh+2ojG+N+cVc+BNGRxZ9wG1FjltkBmxJ9LZL/fzALi+r1Gv9wXzQxLgQ5fvARq5ejXYZ/k7ZUY2b/1P4eBYVlBiIJCV5s6OgG9loiS1CAAvIFChNge7my6eqzCuW9cGrJlyToDSwhzN7cjJ7Zq+YJnWzgsLxD3v9pQ350Lbgi1aaIlymn4yqKYh0jo0tIvgMFtLsSBOC1yU3RG+WJULcPA22v0VY+NhEzJ3vWVe5OOOxc9q/U/tBFT1dVr/GayhBSL8mHz0nMbbX94yEoFNvPeP73cUpWDpcLHf7bpCPXr+USkSt61VDpOOeEJvYDwJ/DriP+wLrCORSiklWkceh4OMG9mg+vnnb7xC7DT7GwxVLcjFPMbvIZ3gsktV1GW61Tn6RULMSHm5U/RfhtqUIt0QfnyZvYi0gQIYieFy3E9c7vp5mnt2qmtQt4+3iV1/C7wFl0JuU1nHm9WjgOXJ9Q0EGMqAzB2E0whfi3BmUUa3E6Oq7vHTrLwayup8qYEZZLl+OxGe7dgehChiLkrn4HU6HTr/5RP/ANR+CL8OTR/sqcws7krhLCrQ1BUb1Tm0FDb9tT6w6h1ropaFIDh45c2GD3JZU5tYF6gyFzlXNkA7HKWdB4cau696OofT4fjpGr1R1yzHaggaL+7px7uu2IZ+Sk+1XpbWzLjc2Ct6l+2yZiYEJzsfvcD1aieaS2PeiKbGxNefY8MsxBIEfrmPmnBAehDEtNi+o3NWtfVClnbmvEr09Ziv4QLzjcmxSxqfEIGPpj5tHK9dodT9X69eGR5cypKRn/FYgL5FUV/+Ao68wpjvpq/6PiVzInPAem8lsRCYtXdbOYKPWN+vQyHerVqESjKIrE6heeO+UWIga7PDi7/3T2vf/DajtRrDBjqg9q5r+0rdvwPvbpa9eQBptubpvF18n2ZoihZ8QYjTIzu2QGVoUhpUx8WUhGR6vYs5s8TygAQa2kEfKXlSexI+De8NK/RMx4eTcMaaKM2TBQ8YsYoJXfTph4SgbBMTRysKn7MCmTGHqi60Bc9/MSakTRcXo4bwVNfWNqWEmCv2xQ/9sRfeU3MP6VnA5zocXBZCXUqdPRlZpr6cBz4pnvaltHvVwaGqZbavymgo8RWqk9ldMbgxL6uT/cZeIGwf1KuWK1IKgsj0PRhbsO76CZvxCBylF/w8p11a/vKDfFVpog8Hgh9lc+XRFyiaeVs4rf2nAW/C8jZpCyutbcHIFKVa7X8Vx+3TrL23hZDlxz6K5EUvWT3dOwdJ4kL+MW0rD5ElhJpMo8nLIdM6okoIXDk7nJ9RCkkhIiCx1ZZxQiLMybKwR54qZGD5Db3qGGtGM6ofneMgpIkL6mdt+wlBFFOjgs47OUfsyFkfvADB9StCT5MWj8Mbx60faxdpO2gCibwwfd3768sjwH7S1zt9R2G5ekb16GeZzt55Hc7HbaA4mh47dQq9Ze5WoY/zooGL6eG95dNQ+aSfY30D+RishdI4KbSiLHFpQiwcrDjD5rhaly46A1aediPoOgRRGdsIO47sZ1vMf6Tiv7I8KCzAgS4VyWLnCBM3+ljwjU4YWYvl6eCo+kN6OzviaBgeasDg5suinMA98VXaBQDw47OEZfxqwz+Ob3twVO1ZiA63uWXDU660+RKN7cyq24Ks8Oe1wBjs+U06Gnc7tknisuOCsrHlnKRENjj6U3fkxbbAl8NLvQOnum60GL9R4CPiNIDBHkVv83Lq3BzmHt8t62oQGf5msoxRnv3MdnxfJFWb+f49p67S8CJ81xTjJD9Dru2CcYj/PoJU1XE6za1uZ0sWZUx28nfm8PyNfEt3WP6ujCptHuIZl7VnUYmQ6IQV+lxJasVx+3RNmw3qIZ5Nb9Cw4tWS4dpSgEVnGbI3hl8vcUqCsp36PXjUbsbHf2kE4qWrUEnETLahfs9PYLX3st4UGd0cddIypqz7J84oXgsBksPgmbaLG+uljwmvvgd1g8oZMnEOr9ZTmBx4TFEeXjuBtrApkSiiG9bHoYy1CYA/8FavkXnl0hCIbG+Sa+fW7VJM2506gnu3ddDPTvM1xxnfLouaVcFF003Tky1GD2FtVZ6iSasJQJKRhGBJDMAkZDFq/EXAdi/jkfRPnJqcwo8MC/xCwBHSKDh/x+Op+7ea08vntOazZUiLQIL5uEwGlqEmV9Zgb181DuK3uuOG9tm2SEGvakXQJdZE4mhbgXK5TQZBRbVnlm2BtKtp/ryQ0twSoZyNBcf7HoIs3VRpzbzGuAl7PuYPp6C0KX275BeiURJQdYhbMbtl57e4snbRI6gb4pdEyJYarkeZ5MFhHf4rijtULgDpU1P6Mjm0GDgZrQk7DgaSim8jNUcWIS90W3ENdUWjaQgK40/PXK5dafPKPk6jUjft1X+VUm1MTkIUl7e0gcZ+nzcAIaC3IVsO4evGi2PIjLNdu7dVM3YwU6cHhnzO3+zr5TctG+JtFJMQ47IDmNJfxu+oCqdrkhOiqEV6P2UjhJwNIPPHq7mKsmq/M7x32zaGifMmadVwKrQHdE5ejCqpDAIiyFdvFvbeTXADNpMA84vy2q3aQtgwAgIGqA/kk9Af7oMbVmxErPlg4hSfe1jtWlf0OG92MgCLYkHPQxGXGiZ5dkMR+0JICGHuBb3miDIyiYNE3c1mHeOrNKG7rX5QVI7NTBCoKkI6exrrvyHyrWzeRl8gj8dg/C2VXzogYU8NW+mBa2iENreo9x6GVPhwvWWUq9TNLwGj7LH+5u3icwgOTkzt9lvlW6MfyEsqUj4XHIR2i4cEdnYLRfyV5Pqy7n8soVaU1vcsyfakXbT7yfWrBjp5CjyqldgYtz3kwlCEVZVJZmgAPYCn/pNAli1pMcFjsIjX5DecpgUOguhvx6H70MgbM+e+f654COatYH29EclDALfYIS7kPZDCry1BHP92cIryQn3/rQWtITIS1MPPVtTqI2QEPFKzuHJC5xTzW+lNSfKKk8oEsDakDSZ6hyac4Svuk1X7nXlmfuY+JSmKyiseAs5CAFTNdOW2Ozl6vhVXtXr/ctNuslzt4nZ/8N/cYyt6HXXJapw5KnHc+59tF9rPxs9rK053hWdNKUQNnT8oPX4Em8n5twcHYUQmMBU6vzTvXOkbx6JEF/yKfh5yZD1QynB/8Y8KoJDN6uq37bVLEppunD5ShOXfMqhrQ3jkfQ7ih3Q7qs/fux3BUhd4MGpxTNNAtoD3B+RpnPxm5teuHmZzfRx3IKxmhBA4j95SVKRB/iFzP/XR2lROXLefW91NYXFVMkxMS9vDdOcopbXN29Qx3A4Kwp1UJ3PNqRuXlywwkl5KITvGTkynQt/zD+7Po88t3fccNVm6MNsoqQSO2bKGzN/ztkl34jq+y0F0J1bhpVkgIC6Y/tWWs7ZTpYthjukdQJbLI0W3iOIYHDVEH2zMBqekaCSr7y1Yv/IfdXyY3VeB1AD3eVvhv60YfjYpkZVh7ENK3Lbuli+NpeRsGpx3W38toXUVmAR7pRbGAEPRBEFqLJJ9BCOc3F2wjdssqcdHYYe85Q0tSEKAWhYA6OcMzqJQdz1X5ep0klprqjxnj6UK5M/trJ2LFHc8bvk0Zaxq+6IayUDvNSw/ocJsv80h1kqChfQPkoNr+4QxzhUqClfjJfRqWn9CZM+QOThTB9rqsglsJmR0yttY5MBPgWKKwzbf6aJtwbR731JnO3PcLYhvR+uoi5k4Ijbb6OVV4h5zTwv4a0fodMXEY9ahscN/8lAsfnrLTrooR12V+oHTLezeEvyd1yVeE79Zx9GVYp5moIt1X99SpCopH2NTdBfQJ7oYpiELJ7/XR3aE392AiXQfTm+L4dXYC+929wFvKexElQVRrqhb3KKIv6zGeCmTycjVM+5dXM7nfP0ESZpd/Pvj80daHzC24mAUXk0v2nS247XkpsSIeUPwShoEewW3ikcvWEDY05F5O6osgcByPTH3L7Zy2NHyT8CSlbDBGcAZFwOmBtQIATjURWmfPmf8/fLoFB2T1bhC+G0WBtLTYaFNpJ5lMj1o8T+NodBwEjucGy0YioARRREYi+gySr66bZf1/zNNN1BuXOyOM9wF8QvSpyJyCkoZzhZ8Z82g9C0VhPxs2Lo3JbdgIIFH4SCdQSgR4cCYLw9lNbOoLr8nfjlWXU7m5zcGXEiG27K28lKo00D5gZ9opp/1t9EUqnh2MEzBSkPjiHgbS3X5FXnC16xJXHWBOU4aqCQMVIzA0S4IeQtVuNLSgsWhq7jCUrK92NznNsGxcA9qS8azZVfj3PYwTufr/WHZsSc6IK63dn2ermJiLJg2ncZqCMDo5WUxQ3AiVVaRcjjgIMonF+RHUxXS7R75cUWPVCrZL+fh7x3PVPws4UkDTo2ZsfeRGKib02PnzRoNHzjo7VbVSSmpW1pUrwHHcEiJ74cSAIl16OfxFGZBONHwBksH4UGaZ4g9wlKWdDcmIHe3k2kQ3Fp6HPzJQOwbp1mA2+bx1gHLNvM1wf5gfxAw3g1ihguUrPauu1vJcwjOzWgzON7GxDEdoe994s38qEbuL4WHYwGB8OJyNCrD+pRtcoMsM/C9aJVVPAPoENwFfPwSHD17U+XIII+hC+ivX/fSd+vg9k5BanMqVz4BJv3OuK6OiXwZ1E1YgNS6GeJmKbGMDVdhXgKQFDgArDIpJSd7G6WoeSI8H18rssp/Q1BYgrUz3e0V3bbrkaW3xn3fpHHh7r6C657kf/c6RlwaBI4dhwaHbFuYqZyMIUAoa2NwQuIyaGlDuc074xJwbP7iCZ/M3GwMQaTx8RHNJzItb/TmrYc3OXlbQ7tBM3i2JlRguHfNhY3onhksDnVnKajNYDRjIsPrvsA+N0BIvXMN9n97X+o1FctTW88VxCajtRtB9LUdd6Sxh+BIlzSe6vQr3JOUR/ueTRoPnB1rbRNhHk3nexnx+1o8sr+v9/vx70ntirIHS6VC5PEquNaD60pvni+g+v2F1ntY4yw6ApGT8wQAYLDipAaK1eXDldsl+dCws0/O2qZSNjOkIzVjr6r1ekhkE8RIEhk1PBPPhDAmdCIG6OynOos5reo4XTFmRxZbEGn44YTpjctjzA4D0RJP/HMApCq8cxwE4ce4z42n8SQiWyehWixjkgYAi57XvOl3EDqKTeHc986Q1jNNi7ZkTg/qQk2NuMb1eJnTV1FQs5Auu99+amjQB6/l3jOq1kEG5Wj5XMb1t7W+VroWQLr+SoBYFzELJpaSQwHcppUNLfbVAk9T5ye/JvbKAD+tOLQwSngDstGdCm3JrN9DJTvNUrOnzLG6WE2BduS+g8XYvLft4wwI5nOmJ/zvGhYQ88YFnJhfxueWolrqf5bw5y1OdAflgUh93OxaNQsJDheN01wRT6s/tXRw3NeAlMtQVJyCASMHyyzoadJm0a9zvFpYGP4x6bC3Czt7TTopMB7GoAHPCMpf2Sh89fa1iwCdd5x3xRbu8DtV8hwZ4oBohPQFEkBLvDwFfIBIBWj9uZXHuu7yKOYBd5jkz7+b5JzS4D8yRsuotbRCw4iJF2dTAuvsKtc5pM5vhEXbAOalxTp5LQ3d7qOeFsP8rSV6Vwh/PgGYjI2qwmZmBFt00WA8CAjRBUOaZHN9PR8/StEu1sG1PRpzv8xdmg7Bikt2kM2Fl0ZEtsWe7DoTJnTRJ0APWbcX+OXLeXSW8pqfmkTP/mVvND+KhCGqEnlBKV31huNevD7zW2KS4H/NAOPDkZecFM0x0646fdnsf2HINoYlMAD8zgsIjBppLH1Wdnb1/VMNBgzoIfq65OOyPc/GIoZQOrFtboTenObSukVMOL6a0WlFngjG7pdp/QlXEKlXHWJ31hE4UkzD2xI/gJVflDdfhjSutpOpn1tNHhJgWzFdjTUbQnqjXifuSN8UMVrh54Cvxjw5t103l8YHxiaTrJVWzBVPHkZLKrgfDUxXWFSrJSxNWq6MS8C9S75I54t3SVTAc6BLyUbAgkBKqPEMALg1ThhBjL6kd/bRQzriknvQEIEIC/EWy+fa+BFtyJ2C3gfsNXHUVKJnODaPNfldRZ1N20EnHED5fmk0VdiK9kDcP5reledl286UxfRXI0bxy8bLdGs/gw3wXBwB1FHI4nJsq73p7ZP2+o1bszYQNg7u8chiYkfsZHpur3BZKdFYM+9N8vg7dg9iTNaNecFMoTmi0lO66QxeH7TQHW8N81mcEaxu7cZkFi6gj0qzoo1DhO62+S4IBCTPkDCSC0ODzIE5t70jMldfKTKiYHwdm5o/6AzI0E8gdECkKYyAxkQopFG2BBimpaZ26YkhR4ur3MkPJ+1FasGB0OXY/qghJZycxJEnoUr1D8u7oIWPNiOQKD5+hUUP369Y10rNhRAzv6E6LAsPe20VoMe12N3P3a8JvNCrc5UR4JO5capvsVRfGmw1WTxrxgtbPfDIlcM4Gq6lvl7HBcjEYLuKWvV3ZcjDiVulMIOmCRCBibonASF6QRAiNHCaQ++rbJpIPAeZqJ56vbRv2Zi/NQxqZVSzfSfwykLextwmmVRsu2qOOnETcDXFjqrCDoeLNP7ZrMo0NoH0SnkJKWZoCXvQtnWeNa1743/LrBKGG2QVWknNkxVKn8W6p6zXAeZObZ3aB41pmP+jl8LR0/mksqMEiySL5GrPJsFHR8laMpoghfUzlVNEorWzdo4jEoa8696L0OS2BOzbizaNmCxYg1riapjCYwcIihHGf95ng6d9jPR6qJay22xR3oaN2T8nct4IEh60Gkq1yPldFMuu6lA3RP5pQaaiusOxSS3f1fRFkje92Wt6Q/XLpZizNx4wIItvXFfFh8N0MTbFbeLt1M5fOUCqqcPrQfVCAekNRDc8x3O3TE0CRN+3LeAL9Z2IhTJRKk4iKiZnQHJUH+fnt5DZRSE/T9fdGHZntYHVsk0+qS0eaFgz2BHX23zwb/VV7hjOhiQKB96s5bCVtF/ToboMHi+vartZE3jBD6mfM42mP9d2qu1BWCKLv3QCBDZw6F/+mTBW+2t/mzaIkWGeWJJviLVpEZ/sLDcM2Fvr+tnMrw3E9rXzFChIiTJIoxw4YIg9sMm27A5HLKI0kOM1jKCFwsl3CflTmxFQq0MqiIO6eGpWJQUBBYLscHnqR47yvBif3uOu2Ubw5Ou0yaRq0Ld38S4QjKH2RvD7WKhxTIz6BVYK7u/QLLJALhiEyTX4QK1Egfz5dJ88TDq7w1jx4Jt5w0xZnqJQJCahVPmmPvGsknpOYbZrHB7iahcUPshppWwQ3IrBvxcomPoEOFofQy/wcKde8nBc4tBcEw5Fwyiu0saf2yJ7ojea+9ecgusJOWrg+lXxWCotxg402xxLg9ctJ6WGeCi4UciE/U4xX61bKluwE66jS3AiYg0CNG061iYPcplZJ0iqPvVEMoICvShJJwKYZfGYOkYIYnCZIhNHz/qmCL7T5ZUdQ8Rw0Q7P7tuEGDuTJCL+Y87/22zX1YSa9Hon57LhNwVLlaf4344NSQE+jt5SuPjBEI2hDQw28jXm1qBxg+77LIRBHO1FHJE7xzQ8/3B2tBg3Ii9YcvloCke4zhrJdns3ZDBT68BVCyENEnzNwol+kNJ9SLJ0C0ZODqrvNODS/8IlEr7q8ES6bHOgnepLYSy5pJckeHF4rIXifUotiLr5y+YjoeU1mGjoJUjYHBWGw0J0ZNMPaLTqXBuHJ6fU22imyx9kQ/VzBqY8xBKlCTJWxUwLncRiL6HKga8u169dWg5aPD4cc1K7yKG+30uTLFn5DO1fV/EDI28Fww6TTFznMuZPIfP6BEnjfJAtK8H4dpoP3d5Pkwa5NUS1/xu3TiZPXmiMYylGEt1X1ILm4XgiP2ak8YUBNB3bJcmu3KEaQMOxo874KbK5xBmeQ6QmHu3K2GxH1qWYwSFMme9TQnTj41YGlpMcpJ6ieD2jux48phQ9k34flDZMnm0eK+zdXOxLRdiH6Li6pRuC0G9jSZ+g7z2FikdyAVI2tB2nPT61Ws2mM5AO/GZHLaHQciut7Xj6UVo/pNrx3RMFd50ZSGvq9k+IdafYFhjlhY2GeiNgRZjn6B4QDH1njNkZC8R2G9jTSxz3F7Mo6L3teHfbltCbc5MNcIwVwgahHvLWO0ySiKFdGKmoQcOw852uNN+51TUK4AIP63KnTkWBOVG9IhP+EiEAfzXRsI7uawnFsjr4uXLKrt6Bkm9Ftb/cj3DFwp/Bzc9+clcTQGQadQIP6Vd+dGgC26yXuskR/uFk/C7Teo8Er1E/oz/o9M2wF0J3qZ86cQEC3zcut5jFdNpZykg1sKqY1KHzCxTh+8Q6hqSqsjAoaa9zS49tJOj+54VjsPtmaV52pI5w7tV135Klye9cbnxTbujvB3AGfbFQEmLFY0Gf4VeyCusg/juAYdXSTX1sZnTBMGHkD3w+DE/gSmjJXfiEa+joL7/Yuj4KYhmxCeX0lef6RAEOZn4+Sf+cuusAitK4vktUlf5vE30IyjPmpC5ba+xxNNet75QRq794xRorRKJAaZIEuxVO5lEEu8+DGFh9zcbic5LZv8+qN+qZYm/dISp+X8c6itMWCrc+t7Cm+n6NNIbB+iPEOgmizUyO56ahQB3ufIKFEib2UyTQ7oe9iu9b/lHINaUIQLxi1WcnJFyeAdxnAQNqDYRDIWU1z7x+aLQ3EbjompI8tTrXXqd0zM2/KSW70eXDani/j0CDsIFYOEyhn2Krc9LCF6UvZ+LymR6hP3pUXeA1vhx+NNGg92FcPAWNjHjo2Be9KrI7A5aXxocTGln/b+lYx2CnF0O6uFEys1GMG+aWAFXZA+lSeZKnhsyY1ksk4Se60smetxVLI+4MAmwNAtAn2P57teftxpRm0n3Z+yWh/sIob5fOS6PY3mcXfxqjwhAI4ncSIRv6P09Cs3pHLLmm0la7zsqPo4l1dvDO6ohpOI+kRASCc/F6lGyBpPk65g1Q5aItFdeNpqWzMYBGYbPlpPBNgquviRr9ursjbUBQ4UHi5qasogO5hq7ISwRk4UVq9UVeuoDqzceeDn5tVqRlWamPIc3VypF9zTBqWFrgFiljfBHkAyfFUcoEr4ERIvdmKQAX9XwEzXO7afhKBB/SKInJ30crOz70fpL1sStprp5y6sq1V1ZW+HM3JS5UUEZKvRkqkYFVt/JTbOXN7AQziGQrm/qU6tKQp/lWapDCKnOMP9N+WBlZP9xTnXIE/4GJU86HD5tppawBWm0U4zMglPIEhzldNPMx3IOKg0s3XaEbn+3gSxAaRP9qdF1B0y/15Gj4g6btVKhGNQld2y2MvEknlXijn3zAMQJ+ImcFchgTds5OVtRwzRzOYPQJPUrDc3TINp5egm8U2gFawwPqegvluyp1ioORVgPq3+PGVc6hOBz2arWnW630ux+Qch3SA0Sn/tn0F46rp7vywhcTpVRUoztZMBgBBYFCeV9RU2lIFrHO5Ah98qg1vOAV9DGQ+OokcSttgSiX1g+EjpEon9PxacSlBKzHR18GdGF/4+Atg4V9z74sLC9OoX4lCmtxwv2kYcsVdouvzC3lXsFAIleNmCmzpmXMxj2hWTtVme+EA7bsaYdijstS89cJJg4K3pRpjGigEdORvA0YbMXVxTZiyKcxM+meTFSr3/cv1vbQYE13J6stUX+Im018Tq891rese6p6iZ83rv2YsKKgBEbzc9laKwa3EZpToq1zXUd5JodHu5tYqjyYkMyj+cre3C/amWRW2NnWBBLwMUZ/ZCyelLHgIqg8Qrb0rtCx2g436w35cFC3VHtU328QzJzZzoiHMYS8nuex0LnWsDdrbF5LdeEVTUmaKaoYNJ0pA+D+2e8nL9ggPh+SPc0vEDFSTbUYG7rBQp8KwwwDAO81IMAAAH464vleqv8Rnt8h8q3V6k4s+Q5bV26SFjXrrBsMMAwHPYBhhgBBinsx1t6/pPnBQDkEWCF2OeqdKkI1rbe593PQ4G1yU1b8raRsmLJ/sBgjJoXx8lRep4DIBacOUUI9uTXrVPLCJcMJz+iIilYiJCRiEhITEYQExjGExiIiMJjGARMYRMQGEwsGYEzDDH0YBijug/vAU1KAYBgJ9ujBxoUmdtYoQDaQrqJqLv7VZOzQqo68zJfIocaCdxgGGGA0MEY1Ew4G5ssho9tBvfd6WXkGeyJa4QBgeTLq94JpeeVBZ1lmAwDFSgQIMS7snBvtY3l+qybhmsRkY3ikBekTo3S+NsgMqYSXcYBgaVqZ4IAxV4w0R09KY5AeSJRRgB+DTRc0QOYgAHlUfHANoAAcwP3z3PE0kLnOadbbMI00WAYERERERERERERERERYYYAMdQtXbsR0IWrQW9tFSCeu6GwGEEAYMLDAMAEkn9hsM3nOfwe+2tH1mr40oqsTVZRKtfgLx5y1/d6vA9soJP0SdZf37EoSMgPEcvDQjoBOJXCPi+Im+elf5zhgYVSp/hWULBBQq96Ea2PVSXLStXj+xDTK3Wmpt8dl8bwEewo0nmVb/CDXGYhiQDyWLrT+MCMrfGzr2ibTdv0zisq7XWf3GZssja6QVTyRIEOGNu+nJeJDfRxrT1MHym14yCNGLYUxAhEYCDdKzxcsa7fBhgTMi7aFIQ3EegVKxHgjmUywBEN8I1nKAWU8g6wGHhU6uHaTueEJWSYT320qOkznORYEtm+fNcwyYmHZtHMzbhx3SND0R5l1Lcg7DRhIuMwM7zVYsHHnjKDmKZTCe2HbsVPIusvJkLhvJ+ji6TIMuul9kmNiV/M+h1s8uAaDCVosxKNfougGT+wgztQKZqkm77+UCM9tDCYjEoSEj0a/WrDLrpesNFj3xiqrqr2ci1xrzWIvMkFff4Uza3kGmmaKoxtzwx6RXHFMYTQgYW4HoPIsdgXKg1V4JD5QdLpfwS2blC3ShF7znuUPYopVQJ+uVB3lKJ9Otu4/OJVqK6KlyYHRt/L1VXwwutHZOgpHvwhf3be+MydZA6HLiO71SWZKCxV2N29NkgV7rxqWEj0ePZ0/BfCfk4TghfsNirwhcUDHz7ff0dWAhe2+8LNtnieHn8WH4HHyvSKs2eoUtOVLtfJwCJ989PBKueNt4u9jvSbHUwmYNo8Pnop6gNwigNjqdIUlY6X9GhWjv9/OYIc/4xZZzxa6lcpDHLgJqMys8qlGEQLhlZimR/BUtYi97dSNYUp2P2xnjKtpS/iTGapeKTU74gPlnmVHvLR5ee2nb1ElIxZD9vylZLPtj+wkKnSeNPXaTVd3v5xNj93OfCxXCaRXEv9Ml6SSvySAOW9InB9kLz1veKOOlCAScQLqlPBgIcw0nre27yAre+z279G+28Q78H0fv9E7NZB8cNGbxvzJQJhmmVKjDJ+DM3bnsxGI6+D5SgpDmmN9vme4s0jIVlDFCAWGQEe17Hx2JYA3i6y1dMlwQ3ZK8jS+P7YfOe2lVrqPHD7Qp/O1TdpKAv3jWxPW0I1KyvTIWjgDL77plgpjOS02amrMgd1l5/zv7/03zTcE49zlo3R9w9BKgKlcWtnOqiYI60ehM9Qcc1qFfA6hlMeuq2zt5s8asF+bC+PVul1/sMnzyZjA3zOqWAkAwkE/SdmLAO4WBfz7g/f4CqdcCAUkWQqjKuuJ/ZMI3xIONxSZqrnshuPw1YYlH4wv2PvEZ+i2tKKbPsciUYnbxwHnq7/J2XVxK2QQCx/q7gedaFwJjpdR1jHittxVsFlcOLqDrOaBJwTjp+tokdV8lgxOANqj/YjYwCYh2USmhZ/YvsZUEc7tbdIcL+iLT2utHqCisZs58xJ8wIEknJ0sVWP1kVGRGYhDTFOiU+uaTSqfV34RYEd0/q88+LGau5O6PuoOF3kWBJLMtGALIDXfr+Iy2F3IAMwjgR7gzhiGVyTcJo/MY4qaKfdHniuRSvjFP22XajdQMrLm1/C4ab5GMWtJbH1oNMJdPZ77AhUbVLNRsUroJsDMFdR73nRLh79X0TWhUjGUTqgtBPbJHR2xndp7c6peRk2So/12v80HP2sZs+BG6uqCWuzulgp2dAsCgZvbyOIeLn5/VqG0SCVi5P3ZVWk6CeJCfvJohvSxQjxMTZj0LY7RP6mX4Yrz4dhxmLHgMxeI7BB2s5MujuPZiWp0010RL2QChszqE+TjJ4G7R7f1BJwKKWYhH3oIw3eYmenfZ+8VA+YsBQKpEticeJDnNmfsk/HF5GnJXhMUw1mFW4IJh3JQdtH2Yr/nlSc+kpMrpvkTUbbCa7dURuZq6LhxEGz6eAEcbyCiVEF3TcFH3LQExZR6Yh7TlcYvMtnugzFXZ6s9OrPRS1jB0er/OX75W29u8dZ7Mz2sHjrdHqODc3GBvPf24FZRcSnu0rMqb9I1nuvY+ONMJYp5bt4q56tvmUu515rvVXpr7kB7rh6z0xkcUrooOX5tugeyrjwsoDfedtkl7JWGkJlWgFZp55+B0+XVroWgNAES3vU2XcIb35RFDr6Ldo3CTrqeulooEapL1mP1bHLBMGgFur3ffdlmiLX5wwwboibrbS3MCCdQ0rrf1+1wKHzD7qQx0biQHU6HUKL9kXKDeW+9w4wipvs79QwlRbl1EmPVlZrG/Hyuvn1Fq+T9kQJSw99Y2HNqrs2N5/VO7gIlnoPq5ijw+vxTbsuGWc6z4eYbrKRQUWbxX7/izfq/NMMB54cdoNvEwjYIZadzDKvyZBJbJMydTtS21Oowy3YWqbmzPfgFw5gTHb37iEZQcXkJUpId4+3Oz6ExhgghQ1pgvdAbTqnQAp9+U8XYxSYJFa7QflDarC0V9Q/ctCF+6ls7cOWmmCX046hrS8SeAwzcbhQWG1zaDxS6kaPVAM1upDKOUpMF5lXn1ITq6t2phZ2e1lMjgj7gEHX4xxRhzPwXUL6hDm8YRu9uUBiddSQ2ViEmVlwxI2WyBrEPWF+//arB4xJONOv8gioYMxng7AVG6lqT/uQf6+N1cqZ9aOTnUIiksd0zstERposW10/WIPySSlY8UlT031ip/Fp9XfaIgf4P/qgveJivLzCZuX8l2Pp1Doqw1U4dNieC9wsHnHszXSX14fiLDjcQrUp2anEaTCeWHeCawvr4Y5o+hnP7Pe25m8hQsze4NMduGQcpWPT58zDaPMryHpvUKcXVDiTVEY8cIqz/lmsTHNRuosDtocN5iiW+u9VOUoO8BKFEv+MT5ytnJvCnD9FJExIWa30UcoPAdhbS8gxITHiH0eOPwBYHcbifhApcNLaYJAC5GAzA1rr5bD6guGJOmgiReKdpNczA8DQVtIlaMu2YMQ3dR025IL97kI8usn8QQAx/ArlgbtTQy9iuHgyGBr2RPUu9EjR+zcaoA7P4MuaTHUMfxfgUG1+2MoWKyPof1HPyu7YOy7x4uHDxtYCJwsoSqgxmpvVbRLlC75XW+ep/K18Ql63CadIV9G8v60H/2Tfmu/8Mb49yq+PqoBveazF43Q12Q9HtZK/HmO85EOr2FpjWh+etwo/vivqi6Lr3KzIp3/1jfAkPcQiCGf8wpsP0yV9id7V7VyC11e5Sf9lLHTvg1mJ1/dihA0xA8R/5iA340EnRbO45X/g18qL4cFnRLLMOZDBdV8sGSFHGRmP2ZR+FxeDw61j+W9GmwAWPp/9D8nQRGxsfQzr2TetoP62OIS0GVHonVEM1nuXNz+Jw9YEvSDDX66sebxypBEOZOt1riU0Epm5oxmTj7YsGk+Kw3sHHnMI+oLjEREh/1AONT4fXlFijHFjnpmJDe82eEJW02PBW/aFJsoEyjxXubuEIszqWsD4Lx+g0oNb80sfTs1MC28lsQsnP7UuUTHPMUO/MJpoSlrTwIKKfAiY6q3DPVCGOf02LFnPFfJdLhVmbXE0nAM8iYPk4covfs9c0S1X2Hog/Vfpz75KFJHbe/ez+7rh4pDS7e1WnA4h3kiLaC5ExdJuxgx4QbRORCgC5XfPJFR46E+QBAQL0dZA26bCliCxNPE3HpPkFby7Q1Ajt4E6l3lk+uiBKx18wUDhoC06/FmdTbsEEnw7cYoPC7I8zLR8Ore5IaObu6Xxmk4UiR7zS00i0d84b49JDJL54et7wtbvagZMEMzY/Q4wa98uGI3BQGffWkpva9r43p2A3mmr5S9ghV+JU1fec8AyhNdH6KJd+Yo6pWRhpFcp6YSxePSnamzdaPhPdovJoETxbxbWDR9zApSj38VpcpZsQwk65t3/OfdcEJvXm9kTdGxwouchnEL0EDc/u9MpbsXbG58xtV2KhQfodbB2dtT9Pf0cZn8yp/Osl0Vu1oqgoeVkRDDm7LyfsXn/ZWNmtYbhh8cU+Y39CBtE/8Wud1L/uO3BdnqpT97LuOln5yUszPtZGoOKJ6sdeR8bhggxObeZCtxiAjmlT/RNJRjq744GATneYsMdnWwzt8WaVQoVrbtBFzAp3svfhsFOidhog9/PJCY6li/Pncsnhv96QN6wqA0fkKqRQzAnPfDfmYjr+v7PfflGV23W6gmK6AF8QO1czbCNQDyvuZ0oXnSKoGnWcXRMJsL9gQ1+VfjRrAHEY6ZJE/w99yF9/mUZaB9uCqrTduplXDSnrOxnuM6XJoMoD8O7JKLIUI/Olao87CnBr6uP03SxW+EnerLikg8g3XAdlM6CFWsIE7BVNmxDQFx0FcUya6J5pIYf7sZcXEtumGfF793SOQhCio1AkHdp/m10oG8U6rpb9gjc3fRiV5CtP1bHpMsh7FmMD1AcsaRYI+23+droYujssXfgx2CIeXnTCa26wbgBktJImhabJISETP+LlN9UGWegg9anQCIGqaAFcG7QASfAS9z6qZaOxG+8MQr8Btt+P3oceMIADjCd+hfgmt3f0wUgMOlp1T3BAw5pww27Oua9iCkgDt5zcZTHrt2MMqb1F9bWin0ZZyvYIq17d+PjV0mH5oCR4+R2jvbqMA3doST6CTho+NFUciNCov4kXVFcIp/A42Q8HAWpN0eZvy5gkBRt4b/G+b3IXQmxzanYJdx88YNlEFYgUsHNjyX14wSrnuwuG42WM779rEWTmMM9uhJtoyJwhWYQ9iEgHsoXaztVAweK/Vj0+Y62jRUe0/y8PGlJEH3wh28XqdvllYSTNsi8IhF4nMGRuk+Ef7mF0RdXFPWFo1FEMfbpEyLy3c6p5kNsXS5ZBbSKwKt4JIqSTGGneSKPAqFKrcy7TWt0MrM7+7jqP4Bk1coJZVjDmOkkFVRNfUEg5UrskwcT0OS2w6NGkmMa6tV7iEpl+hGkFh8h5keEs5JPtPVzo0VqmjJ7BccLZhjBPC1N3yfJz7rnzgvofMkyDS/QT+zhQLr8UyEM3prcWczmEhrWDqsioGv8dzObtnhso44hPeRsNmnGRDywnCMveuUadj1XmPnSkvybpUAn8KDiqaB8/KiL+GoqEo26xiCvhM9xslqdlyjU1OesEoIFIX59txIIxAPu6lznr+leX3+y9wVG95TdXTz0CQSK/987xeaRqv01d0qg9TIFDJ9tN4YXbaEqEzYLXmLcy6gE0ieyN55uM/deHz/Qv9qF7wzwqQwYfOtfl/ZzlTf5tXVu3h6dbOZtYy+/BNcOi7USYj+53aUJWtl7CRDbDvFchAqlyIoURH2KqDPIIY+IPCW4hysrP+sz0DXaU14H2+nt72oU9rst1QPBW+HNtqrP7aXnAhqzD0xre0ezhcIOj7RrX47dMHPEN+dvA5neLZM3oJ8KBW5WMfphqiUf8h1XUKM41rWZZMZxX0aAZ6ICfB0Tnv6E5uKOGXHEPpRZI9DFYIdEq/W014l7Nrv8r7Wv+SeNI+5MA0EuHjUakRV1it2YAGJEAbSXy2DgfzUQ2vovtU4a3bXS91r2n8Q6x71pi40lIGpuSsezaiE0x/I2n/OHXMChRPsWth7l5AafUXZmVtTHJn6eOyydHC8pR28UUEZZkKPECG+/KQtVv7Gfo+1hGFBRieuHEREYwv9y/L2DgkM3gPSdjLzTX8PERWEZfuBD08KBMDuxyblcz0m/bnx2xNMk80xHeSg3Ur5ntm1Kwhd6KL5Q3EgH1zWz8j1qjkudQ9b5LiVgWdCK59LpxrSSRplbuqRvwK3WFZpjKZmmZV4D6YD8rrfLCy3yT6e8zWrurFTFB4g3rW9YrFUQgN9ftz8t2tX6SOHuUAxohXl1rvLcW1HRPXZGJ4Fxkfepn98hplFb/vrGz8zXyZo8b9fmMFaVEyxDqQkfohK04caTjT/K8vLOYDuUQBqQQrIMi7gvXNyCbjt/e0sDCWPQQh9WyQAny84pNHQCLiKpxnCQiZ52S5V39n3g3Sa0BpFqbc9Or3eVoUsPoRc1ZlGLACWqaaXwX/UiXyps8kp9cxt9taN3euRHwa95899oBVaJzoB05YeJK3EePTgnSxY5phS3J/vvl2/Pc3NUn560dWKGRQTTRIhLzhXk+BciNHMPtxuINjEmbI7LIfpIn97rsAviVQpyr2XM6bxLF6DbA/I0R8B8ItoKJ7s8cCLlReNzrk0PF7XhG/BmcveQbOyMXdI76XpDbdq/pokU9X4jHwJ/OO2rGsxGgXz/XnWtjEE5Owc1ijnz26rpRCIvLEHjNc8Qz+18oOljE6ypcWnG0Nn3q0j0dC3cV+77Ts7Rn0X/NogsjtBwP5MXdL+qykVBrd2BqNYSEGejEimp89E0Ozms/DAmjzOx3zLo2x5gbhZtbWTMC+rIz9Bt9ELfIjQdhbiVw6zMEojmVrH6dl7t9lfRE3SoU7/EJKXP8YC8+4Wnw5J9XddHRfN20W2+Uq7+HW9r0Uh/1PyhfTud+QABt4lmr3bvZgnQwLuj479FA+DDJ6BgKwRJAhhcKLz1M6yGxVrfKzHXXaUvmuk5N6TbkObHic/PLoRSNH/cO0f4rPqt5kk/F68BrWe6jYaNVMGng7nLbu5H7Ty7ibQjCNHMTylFauuXwVKvUzpklBw5uIIdsaKcgSL3SE4J6Elriki+DozK2x0D4Yng0BWKgfO5nfCEyqhGH66oXJCvphGiSA8V2IXppNxgzk+G8VOwZBk/PLCA5e17xKmwoemRqDN0F04OOmuO6qLCbFTU23kx0T93nuqnkTJUTboX/C41mDGqHsMvEbbwmsbK/bWhV5PtINYLbXjeoMqvz8ovcSZCkwp6RJCPO66ZHqEQ1viV6LMGzMMIO6TizamWJ+a+MaOE5VgSLdl2GWx/1atVYv6kZEszRYBAlncDTcZVkod99I0suIXcgJhgR+QYY08L0e2ZkEslXCJ9ejZSAQLzrIGHrU745xSYIstX7oZiaXFWMreEurjce6k0k92IS6ld51rcAjWFC/AKgiLTLLG/VPPoPiqxo4lb/fFGsXKI/nseFTYa7MOY3ovEHA6rTqUdEltlFRNzQ97a2gLdQhUhvZ/dRgGxqYoMpkBzh80TrT95J3IPnvnsn0S+kYtZk/8w+NmQnHY/85LEvifKkPJ21ad8mZ+6BWt8/0+/Wiw5+zul1Of76SGU/3m9Lpkl3JT/6QmVfhFDQa3MykxMbw4EqgAlK32+Tdf6duwkX06qDEA0wELOKabLFzEORK7f6WcYRIsv+tIwifsBAPf9YXrT0oEQU90rF2FQYs+jQdSH9sx2wfPzjWy2246MYTJeiRO/sPsRNU6NYLQDsmIwVIbkY6cUID6u1D0Bibk/pVwey/pEtIsvLAF6aBB8gupc3QT1D1srIonwHo7B02cfN1Cj6IybkqN6/lBRxwQCnJVhjajLJlA9xfXl6jIbLbDqTgXMEhY0HmoTwDo5/XPhPglO0cN4LQT1ndeM5js5jc7lJ81ssAcGciSZKfcCPoCBmlnVB7P/Q38yIa8Rxmyq2LCMIJFuGoqe63YKwq/xhs9IxUmYBHywsWYAjHNpsYk0EyTRIIpurxaJ9MNIjSXV3IuW/SZOWS5XhfuBBzmR+Psyb3EqXh9FSNMkigDYZ1gkh3d7es4WzIZU0bXVewvaKFMoXSAxnEQV9Ph212mW8pUn6AypWLHGYOlDroe6yEpfLowInD+ob9cPdG932maZqmtAYmPrCG0sx5mOaA4fqFz6w8NNx19zqEY6Obctnf1IyQ3DishGLwefCtD3sP2qSWvDwg1PptEQQbgz8Sev1mZYjZ2zbNU0q/crO79WSKl1EWaaYGZI5neI/koR+MR1d7L3fOVV/kZCgRygacFH842hcEYcj/po29JHOL0AhGWG4kiou6TJJyjXSpOn1odOE5IoejxC9rdN5MoMHAFIYuGvMCY7lav4Cj/Rf9kKyvZxdZaS1BhigjlXvB6D7YmlBwEEyGyrHhXLgt78HjX+nPgnBOpR8uu6dtiqvq39ZaQrD3Cdv577Y4hdfM+lqTi6tl+aJJEUE8UjTL8hJCxY2gU18I1q91zsh+XcvXD018qsuyPk/ssBGHndNw+90FdDtkv9yBFBn2JVJ1vjc5OJJg0Be3Wp2wtsefgR5R+TEzsk2dZSI0MjFkw/EQbAiZLgjJ80hOjDrvo+xLDmWNV4Imumw0L1S8/fxUVFN9FDOWqXdv4n3KGvvJ0GPM09dGdtiHRb/hlrKEx0Nyz/c+ltdKEYDBLE/NBxPL1K6DHZbJbx2l0alqrVT2skuXJ33tfGsWXVapvhgwDV/cyPnJY+jFWRirWRal+u6Aj5ohYwsq5lP0cFwnbNvHpLCPhsPsWrj2fjpb+157xaOGfy6V9covtpraIQ2WrPBuXzb0IfqkIO2TeiM6UYYfDoEdT1Ljq8t4q231NcW3Ny62BXZb2I0I1HPrpapXKI6Lqt54fp1XUe7cjSCh6KPrx9tJyXkRbGHoeB/vNPlMQteXznxVFRYpZIK6LL0FJhNEzAWjG0FlP8hNHifUtpc2bAnpH7YmcK6mBADQLqYwr/qsg+IYyV0GhcPkYgUAd1EcALG0Hw/3yvzyvve3E8BbWY3Mjgw4MLVt7YefIvNhQdNPzeQTXPwjLHHIBy64BYkXI3XQjMPqVYVUU3cE8K0X3Dg4z0Vq2HkfCgQTvf/EquF8THF9MWJ4DJxWStOexyXa4xjz16Z2fglSCQGmgDjDPByt23/eMczP/lJsxQA55K5eL1Uid1ofT4+lGQk51Cm9FpZvrL41NQ/kGJttRDGB1yuCHjdwUJ0wAJ0y3fCf5ScCETltGFEajwMAocnRXx9hYHNgXxSr0rvOdzhwNluaycIdtmj/bNXCcmCg+ZGuxR2ytThRKAmCYLb7TcNp4Gjaw5PQMOsLpy/P7s5+foN/5f3XSFXINbbfHega0cyw5JOYt7gPdIo6L3Zq2zK9Ngo0zjnPm+8q1eMkECSOh5rQ1uniEoyhHx+UXTM9xmWVD23cWWYlRpuw5PADSs+NKfF6dQTKsqN6F3a4Zj7msXbIqjoJiapMAmnot7zLcaqF7YLkav5+/85lmMja1e0WjEDGlwqmQFD4VHDQK1EtsMbqY5BxDV1erXdF4fsFRhn7uy0/zF2Pz3MX2XEfM+3bxxxZxsJORaeo4Fh5pyNNRHoRbTe23+Oi3m0GlMVmiJ+qtXc5Pmpq2TdrMqmn20NOC4nMxd2HROcjaa+JAKx98JX8TEp0ED4f2MXg05AgcAvAgAUALACwQynH0lAJuM5y2jRVbwQW6cRCnejRiXh828gzb1wgfi3aFcON9e+V56hT85pqsZfAasfTCS8vm8J5guQm+FxcbwvB6HXsr2UCESIu5ww6/0lwc48lxIABUQEBIcsRW6xzXrRcBxW+ZwZr3/Uyv4yhIDfmTfiAWEfIeHINnqyCGdsm1seTpQZTTfiAJKR88u1RMFPX3EebXiOwr09ldhV5QCoTf511dWNMsAZHJ1Ue7Tloc6zygPZ/Gs43gpnQDAwUCSJssnS41hyM9eDylLNRWbfWjyiwA9nbNC5V37mbNGWjr7SNVUvZnM9RcnuthZmuRSHLXkKHBSSGmZvUPwpJBwxBYheuxS9Att/a4e/2utocXwJn92097491/MJ/ZVRkeNEEzfD4xsUIOrvBTzmqM0HqupjBuOOXieb+JodxuWsx8Ep0xmOn4zfzevTAHaqcznWQ0aqTNo1qatlJYFEzLk34uFWGcFZGHaERJBejllIzva45Ts9pr0xTVGLyyXq+Pi4p7IxhZR+606vHtXWSVH3RZ7xhZylWgZkJfWGAK2zaf4exvr/4zg7wrIS33jtoMikpeCpKV8JEJbBAuDEHw7PIvyLXI0iGQC+hqBouai4id3OBkoeF+gURrbJewjYZHCE0ClD0hmfFGvfdJdC3NuGShi2f/EkgNErLGJpp5XoU8BUT2YmhEBvS3maigx5cGcHpCxue8ChN7uTiz61Wrf8Df6SMhBXQZtfIK5KrQIS+BqR6wFtGrf4k5XuMPgyXP2hqBiOydatTY+VFfc69/kD12641hsnE0O2BLTgunlaUFbaL9MrshlT08NUTEndqObmtkCaUcRsKvC1YKwRmJsu+I2wFY1bJQeOLz6670klQGgbTeDG2WdcKeM6SF/7SwtxKxyjMaHhfLnGBVjE8fw9toP+XLV5IvQreCiQH8rKvCFVgitCOIJgaa9psF7k6k5WwepqaPVaTiPu7qGM5TpwRsMlxC/sKZ+Kov3EUjIPptdIbT8qBJTNeaITEEOIaiidBgc+/57w+JH/KNhTrgpQ1XcC3rc4zBq3yOU1lHIIR37QsCYq5MYVK2mSQ0W+GPO4ScI6HyIjs2JaXJlAOlZAf13yS6Zf+HnXWaLLlAOr9fCMAWFygt9/CwGr+DMcOUydpvuoLL4CAqWEO9WxdTh57uXm+ezt2VlNazvsFvNe0Hj61NggeFQ4O2yJqO4ZxhGYxLfZA8r++3X0ChY2iLJYFvFCrTyMR+9pJaXFKn1sxJgV/SqPtgBKKQUFOp4v/IgxMdR+fiOybZdNxqr+5vQolBH7KRseCnjOVfpexbUc5mozWa3Mcx5dGiYUIMUbRsUKkIA6XT8u86ru7FLA+MWNrgAUhxP/CEL7DUOGzc/RCT/C/C73ynvtjJowX7lS4K1u2gliiZD0nmOVEcGEnHoBfuT5wg65jBuBt8yjW3Wr/fHMOYT/iNhJVo9X+Xtk7UzflAJ3hy4kg5r1rieQVAsCLOfukTo1nGJy7p+8+OeYiWCEINytr9CckqBfIHrPFwiDaoOZUF7uUy38cBOsaatIQIT3J0Vt5M/ws3pVxN6brwXulHjlpEIukWfTRmKqi9XxIvUXeyKsQP024NRqqdG0JkqHBrF1qrDjPz+aBoOm4L5rzULxWvo45arb4j10V+jM2cxkw3P5bxZG3wDQf+GOcFx3efBY69lUlm/Yi5sK7zhVojAbLSuzEE3kJW+sf/1z4G7CavsOdvjkAhKSCu1AUblKEOIEAFIiA2Cl8XZXFKXPzbLJyFWUjPkQ0ebvROB4IIPd3pQZpJUYlrud7Peqq8VwGv94G4XsKbEXj83NFpHbo02MGOtqnVEZ1hycuTKgmYoGvnwonrkNPEQ4bv0/j98OxApamQ081EX/fQhcmk7jtVrbKSzZqdEoZcXO6EaYwAu/hxPhZZmrpqso8bbgqL4Eien1xGSRdChINnVBbx4DM1cP9vagz8vhpcrfLOjU7ISRxJrqNq/FDHX/KNHdyoz2vMQ2uKzfHfCEopHGsknwwQBq9JwRtNzUNDF4wyWw9xyRT+LKdWnaqFKCqdRUtHDAMEKoWWiHeQ2ctpuU5z5n2P6r8cFNWldQTS/XCR2gG5k0Af0IGLfuGtFDFpZs5kQtOHq+llHqTdkj7rijJ7owy3yCUzx1HWJINMqyYsW44dyRVNk6DvPA6oox1J2jMtHnKkrgQj09N8OdxfBytW7PKc8zZZ94RtxV3svkSTOtjCntqMsPYzBIHsqnfY+eyt0DV3vRcKu6V3gb1xMHeqbgfxpS1fYazt2HkbLxBYQ69QumGCTKGq2H9KElMD/UaKwOHkQy3ijEp2ECaPNMM9f44znrkLCv2Ea/YsxvvCTgUo+nWZXUqk1m2bMyPDmVyEtf9KDVpw/iVnHIdIs7iv/KhWQ762qZmcI3tRS822+0ssLDHqeQUNqDCeSKeNBLZYtaqI2RoMCQt16SpwFrf4YYYGHjsg4H05J1EA2pXnuV1V5TDXiLXau/iRx2fY/CRsy9UJ/Pa6e7QWzHrAfOg7hwt3sVFIzCJp1sRmei2xA4E0z8mA8x8mDQPohyLlEN/PK7gMjM6yF0bykA7psFch7tcN7yNRZ2lFdHQN4QI2GvklQtyW9lqeWaecH7JOCK1eGERsquKAZBULy2ahmI0umV7Q4/tQJh956zNNQqs/tKZg6ZNezZUGY++6FV7HUAj4BfmC0UpDFS30v9Wjp/Sa4Zys2AfYbkDI55lS1iKWN6b/ePp9MO+EQiZoLzZjY+RUTbTfsvRA7f+cOH19MyM6oDNCmBXKK7DXnLJj2PlPlrfgKk2i7FYxqYvKu6m2CxqvQR52Dg62rxfU5+6oBSAUwoT4fO8iuhq6z0Uzd7WL9IHCGMEwoBXfY/0oNEFoGKidkNTniF1G+MWJodDrRowZvOuQYgUJgUiAgTCDio3ibxaZvXKX3UfkwM8taEYRpJzMdn9Tak0WMxXeV52BbYsu8YzyXRxlkKN/Ig+KpiTXbBakx5NWtZAjN1Hgvr51pMtIkb2qHCnD17U8sywFn/xqbAlwOiu1mU8FZXpx8A5zLT6MOGs5VwWsODBmA/9ASmu/BUNvaV7mzL84XLM7qMmKg1E77Cjh3FG053VJQg2XN2kla0hz6D1zJEeUPRENto4c10VSMzNDy4bkqLPBiG3z1k8Mv1vw3IfZIMwfIv3CbYFqiYqdYDcUhdt5Y244Th02sLXhuJyVzCqeUj7w4YO/c0Qyx8Ux6pde0Pb9SP/6OKeQCwZa51/r4BEoukxrLQUmU/zCqeOMe0Y+v9x9OAG/e7xwZuzm1lwpEFAb6UQ/QgCMZ7rRzVcllbTTJE2v3+uu7h7RbUlCd2eTly2tAIYj/ST/NJ4rMY7PSof/CvKulZEF3kuS6u/o2jT2eDyJKpZOAfh3NEuVTEbs5G0R06nN4svSRzttjZVQiuT5sUslEn4e4JKVdWTZKmdVw4UUUch2Z4p8pu9Q1WEo6FtNRgV7laPMi9qb8ppPOpTwPXGLwh6+zw/iPJuA37jFtR5Uk2VFTwLGKrlrGQnaWdTbIsrfOdSn/eXIvQeK5SUu+Mn/bjPo0dIx65SiYvRf1/fII7f6pqBv/l/EALv8BvHccrpfCwyeLrZiZjPaGsGzHYfGc3EQXnF4HxOGe3d2QCWQ8qj4esaYwJGtJBc8RU26ChI0jdU2xnZSTlWNeqUjF/PLmBY+RoifkeKeaNUIlLuro8g9RolUUVjUT8qY2uspxt0K9bHMT6A5bPcXCZCsVd3Ip9FYhDOZVqHQjIicBE1V2u7fCP7+jcSPqQLhjl+fJscggLCCf1VAjKAI+NOyRcSZW2xBwGia2ojcqqaPJwtyTeBvaRgJYF9EMKzejHCvpaLUuTVGl5HzeTm4YrBrb3UY9klmSAedptrNrGXSTBWvvcSurxjcjxfBGoMpWLiCf4oiavp3EvsoNfkyHlGTiK62jd+x6eUz23A/z0vqKhOVP763mtyhpQaziGNs8Sxl+m7Az2/KPT1TjRpEg7NDTRmoHM3hh5Qv3qxw9MrgHjzRNrZuwcpSbGpbBSlNuTU8kXvPdFbEZHdCc2QWbCVoBOPJ4OVXBg61l03atWwVJXlliJYckDgK0gYsVHzIyALXbDkHYtT7SI+W+mduk08d5RPAIg4mke194SJgEy4d5XwdF00MF/YXl/j6D1QTki1ihZiW/5caVBpuITMOQ2dCyNYqve+3cJaW3hRSyHCt3udf1a8RuIoz5sCSyRxnXPyt+gnTd1kamrwQnoG3UkJSMdDwA7NBvhHLolhIPXR6xn0tpdYH2n7xc+PyxUwh/g3KyVbYUgbCloZkdz7ePdpBBFt46oV/o3OSPJ3YR8qHoBt0fR2VyxtxFvHgKlqo6iVp/a9IrLtOu/apwD4h7mOM4FDGbV8OpGb/qicefbsX4vT7kPUPksM4iRqghKqjLDEnOofoepLiWPq8nRnQuu8s2QBzOSV+WHVR6pCMOq1h0y+UMPRS13MI3Nk6wcx3ExqC1MlNIlSXF9Mci20bLVcPzeZuTpgX7qVOWQ+y+EYy1X10oGpWPllJjPdE+RcFn29+MjySsdguNGvhkMCGBAuPTr08YdIJWCQRw4ZebXey23Cpkdkl1P2qOi+0R+T7mmogHc9NIEIBNkKk+G0jqd3bO/7tPHWX1LrAd8j5uMw3BTBQT1P332dLISlYhcKkoZDsK/DNanaQJ0vFmBAwRJCoC5Hf4cYi3DPBVBQUFkzRhuTdFcf3NXcdkggXw45w21FST6PolNEtJL+IPRINHgzKAMEICC51TF1JVxeSOedrHrn4usLr0lyqynImcrdSO4UmHFaUht8vrRU8ZwFDWuNVtVNiL0az2WT1/wMjWH2t1CmVitrM2nwWECwNzewXHbEY5Om+aRU07ZYYLFYJVQDz1JPnj3PXY6AQ7mpw1nlraldjD/yzfdD2SkDlXnqMi5D6+1bLf+blqsjUuuT54y+MGRTas4yQ+9IYpb7mKiQcCHTjuRwQAYGq9tXBZe0IdXZmHFwPvvDYxt9+Rj8jEZ7bY9C3Tt4nYFw6aRgJwejq1AZIN2Xz3RLFxzYCL7ttP8Ub9pF4U/aDrwhD4bmIf+4zr3dIEU8Q08wyPD5IRoN9lIYGg0AZBZxg8JXVYosmgZP4cdx3n8MfI8Q3rpzjw3OPVFgIjTQJ5Qy0Yrmc5rKwL6FyCp+c4N3hUqrnLxl6zrOGZr87pgQvNK+ulm6xskuTHZw6BDT81OPfttCk/5nSs57f4kzhwZbAddjoIqbtTEH0AFw+44Z83xf0fhRtCB2lRLO8ckOkzazecojw27i4f3jip2/1981x+/xKp4MY4eE4IFeS7UaW3/BXn9S6A5v+xXX+18P5AqWmwqM1PoxhIqjuJml8y3yih06qas9LZy25WSCx+G+mX1XunzpE0o1Alafsd32pxV1LwFBmf3+/ZV+8b6EUkSCb0UijAngVVpqgYAMeoBFyFAzoITrAdnm481jk8VrmagM/YBhhgBzGP7ME2+7MQvi9svsslFhiNke5jjcSf5Y1auWrwzrq04mGeBCeSHRD7C2mCDHjcZXe9CUnwPa1B4UH9NyZzuiAmu1d5lpkQgquA34/ZQGC/NpMpM5lMfEpfZog4w/MYpv7GoprKzmXnbpqTYEiZwprxmWsekoYdyoD1MrSNGyr+Tnv77XmcbCG/qUWqDIPoJLIFu9ob6yxSQ55Sz+9rqvmnTODXoThC6lVnXZ/80umbyXxnxJDfH0xRnogtC/pUQp474NvOxtNz6oZkDHj+pAKc9s7d3+S9XU2e+Tq8PXK4gWZbVRk9ZrxwuexMaoCwfBKTAu2xQpyE31laALaso1myWuAqmOo0u5ITI5pzeJkn/LLOoiUUNCTlQ7SvH458knjqzgytwnuHlShIe2a3catecCnrrRCXZu15Etj3ekkXlyuCtv2ajCjh8XDE/rcGKDhySp9XTayg7OHfXbrEE0FhUVlkb9ATmQ2S9wiRlVhyWKUm6aQuLFFD9HP9mpS+91vM16899mbmFcz5OD4KZATUPtb0Tp5dQibv0otxgJWHq5C4a6AKEsPybgg+/qjoiCoZUITUVTyeHi2h9yJETnpXzypqXhXb+l9dZndfodEoOixwswKRwrZjp4vBBYZq5e3/Gl3J5byOeT7BF1f9E68seocJhihhJLsZze0cYT0g5ZWT4LWiQgyNIWZR00Qv9hDS50nbw+ajXxwyaekQFdhmEArMgbda21HcRpjgS3kP6/tZB10wc10TcRz6xx/cYeHKbo1KR/x56OigIPO9Zhuj8TuWnQm9vuT0g5vxEceQpuSgfwiWT0EW/zPp9rXcUZPoETkah/0TmZ/MVZHlZpRXqev8TuFBVMWG/7Q6SbZzpvzNjPguz7lmG9d1gVOAHP9BWEgFG2gLlI//w6/BAd7aa67fywKUGwKuIJ7LySy15zbJDgo+1uoR4TwtmN0ma1wUADe62i+HiUsZLZzmCDLCjfbcwYpu6GyuGK7ZCG3lI6FceA+4kn4DgAl6Cmzh7CvR44d+Pg0yzd3wsn44oFwnwzS4kwgdYvEWeTpD1icd0ufC6E9e8mz9N3TI0qzyWiNpgA6wZwOY4mNDUulb5D1chSpe1xn7h7ZJ6z6HTnFtZmRHy62DDDIW9ER0qAn9HoehWhS6T/tsk9s9XHt6Grv5rVqnzaqHcWd9jkplPz/FUiobtrbpMHzt1W7o3/TFRPGCGMFGPDEqi8bGw2vS/YUcpaBKB3euyI0N6LHVqVGeRQYDw/GFqigwYdMEFicmCerZg1BT9c3JftnyBqZ9rA58vo58V4iUtHIa4UyWByUkMFdx9UZxnzTwOxJ7yJIaq5k/pdqMHpP7OmTk6xjy3rvYrqLYDZVKv84v2mrttyAwzOugb4CJABImmwsOKYB7Io3W8xGnqXSlG6K+q0eW4w63nQOcvlNcePqA3ZV73Nc4flIt0GGFwVFnVtPTJeA8nyr0UD/XaA9KyuQL07tdfPtRv35KLVYdC7X4VDhjeCkh8TP/D8OBuo1tUstu80U2vQ93CysD89AeVd3rz5/SLvlcmIslEJFXx0vD8Rc1xvlrvZeXodvvXDrWdCLOiH63EFsVGbtrrXECDxHS2JKK4CF0DN9VIMWt7PQZ/2J+H1Ykb+RDug252L8dXCxF3N96ziLwZ/LWOeK25XO37o7AO9iLKNgWq5fxoO3H8+GDeOnTj4cM7mcE1RH3Kt19+YANiqzrMFn47xxFFdAHABvjm7s+4N3cBNMm0DOvlVtigPzpOYZavxy1s0FAVGiUa8H1don3nqmBeZfYKi4qxf905Q77AvYIhQJaET0wu6Ie7HXB6yK0+o5qxG/lCv6LSdw+MwiaIVdfc4p/BDZd/xfAqV1UVCGYW5/jTK6ZT3mayRMXIlriqAQHEN+RZNIdcDzrIrAyFT6RpEsvi4oVC55GmwzvPmJt/9aQZsW5iYmjcUhNCIuJpl0dkDG+9MUtOt5EXbGqXIUO8T9elEv3rNsfIkSA0JxVhQpPgQlR/C7ZN6EzalpMznbf8q0pCZ1yClTVzxSl88lfwVGisIpCEBxbZhkHQmgZV0Un6c2shJtnkVIcys4BwUm/52nlEZ3nK6hnI7r17PhLye47MqsVoGW/5zqZq+PSpjLYfLnD2WQgd/UoQwelp/8ts7DPKYNu6w2G1q0obgVPmqdOagwF2yDFWDlUoiP5xAjkWBFDgPIXVdLwmacxdCyRGpXpi86PbKfdm+qVd8NmMN/TeINRrLy+nYAqnWdWmf/dl2WpXUdYdVYOgjRWQKMZnLyjg56zV5HPVP/qS44Fe28862fiocaGIZyH2lNEnQPVgyabr8fTbET2hB5z6gGcXl6t1P5b9UpaN7YX6ohsSwNncu3huy+jkbtzoDJw8X5k5uTJazFZxuWvwphfwj8hJYCcw8xuz+WkL9wFFQwFbRo+O78d5CCSIcFfwh/Ummq1wpaXVFaR/pLaCDyNIPOaAi6UgY3Hk76kqrq5+ztPIf5egMuoe+u+c0plbhUzen5U38nd0y2DuRC6h5wfBitbwNTchw3DnxW40q/4KG6VgGxlCEuldFY3Oa7rSC/jTuJcNbLUChIqNI6lVFTkQnonOobMVIfwKV5V66slPBpARx/h5IwqDYivV2edmQg2i2V0j5hTtPkJYH0I/0lXPsTCvZwyjimP7JLLHM5v3z9dhoc+M/anqXQ8FoGHkQs9SvpJ4r7Vq7Ddn9dkcPm8v8OVscU7WLWy91eNDebSYmnDQI+6jFtIkVhfXt25CKr+FWYCCjT3+p8PBnCwagjnY5jq0JTXQW7DqvKmZnSBjeZqCnKClbMcYRKNINGUmiJeERvVWayat/iIeNvBY1godW7HZ22eTVR/lGlaNM808jOAWFXCJynx9FGW5xOZo7ltnrkWz2DRhqiK9qcw9mwIUJyH1iDvKymUtBfRXhiAFmCgRVmzf/KA9fmP3PSWu7wSdDIwhGGbmL1eK0ShTlq9yzdImuBMkbyC9UowvY8C/hZmsNeiy3jg/3ISWRgwvlGxOY+z5LjhO9GJXeLjTnSN5emCYr5qUD+ISTOM7n6VBaLKId56vQXjmy+fNMrvHbaPZh1M8UZYTZ1qEWPUqibQy6sI0hkhFSLVhB8zCyGprBzJXLfKIlb9V305yU2qD5CacXEKApnaLOkpYkr6V331uknEpj5pEDqYaLIb2mIiW37+hDvO0/97IIWHJNHnymGK5X5Nl7X+59TiN3G/CfHvtiiO+Op22kMUvi/g3y3EOag1nVM9NZsIgwNoVDrn1kP/Ym8kUkGt7xekFxCpP4y0HI5VKHjWqp+iVTuUwt/TKuio1Q4qfmM2j5ug7SlQDtmBoC7nDBbWLjY4TnvkX7S95A2ulJ5wtVFvwd72DCtrqMWtjkLlJZdpO4NYNsvubSja5C5pULl3LQNqxdUmKtWc1rPfJ3h5LVXKbEALTgFbWJVOd85AF5tFFGzh7O2p0VuVlinm3NK6L1dZ2ZjBgKzrbvVwXfgc9HcQfnHbeEeJ9qhKA2jnwzMH/EIoyv54zq2qMTeiIHX+h5+389TeYfxYQxiRWGyD6o+3PVBa9jLf7FDHIeySXK+gqEQLi8qMW5K9EFCY7cU4w6w4qV2VQnt2rKztDhRjwhgMPjs8yXEBuRBV7jyaLrRh5pYWDeGK2lczSzEEdjtEXWuP/HBpZTwfNrkMgfT+radaVJhe4SxD57Zwbf9iDm/B7E/r8Zp0DqOERG8ds3+Q1BwRTG6b/h/uOTQe1fsq8iLdTcU/mEPDBcpld5i4u42ojCE/K+GatcuhQ9Q/JIcHXeNs+kJWn6JvUlFVpe2kEK+xYDCMh47yhQfCyEbI/M1pE8+ylojeQn2KPXDm68GYDbS94a8osl+5Ucr6E7IOevzbeawvlfP+S3ZctbCOrSvvRPekLfwnZRWDZqnQPRyzeqEN/aaZ30D+pRIp4bn9x7wTRaGvQx3G6zQ9G2By5TN++0RJnS6bmnop+xIU/oai7O79IctFwwtmQ9xze7zCGjwj9IniHdgjDvbuwkXew7z2O923yjF358xXKuyfuxkXV8ozDU0024irMO7o4p+ddaspW6P+wl+urx0GuTYX4rOlYhwQHo6LZmQCQRf2lrVFAmHiOsdLNYpQO9wQ6CgoVYfjvsrnK9vHikIuyQPGyJyY9VmHTjKSxiE9KYDILh+0yKBXRSuLjw0heFChXfC8x9rv34tTVMHaNpqc6HWQLQqvyRPG649XY7orUTdfxOGgRjVtAjRix/tNInt6nblYjQnezamH1wRIGHye78sHixETmBAfg9xN0zDQwym45pPZyFrglyIhntR56H29TsSgS04bfRX9IE87TlajvUCmrBHWUr9NG3BCYG+4Szw/YlP24cHnbzNQDpJgKc0sysT22AQ6TxZ6xXUea69IjiLZCTXAjQGmciDQC/yNlv+4GBR0UjtBYkLkIUlm6xEhWrk/c8EhVKzUNEctxB9hJpx9eWb4C54UBVmtyULO1IKXPDaAHFqzvHPXOW8qQjWYiP8ybUVWsPYz7vJf2xitVbRpKVqcDjOdqO4+ZXnJQR9IsCHu+H5V69XiW87cORcK6BP2cBBA2KN00gDfi72C5XrTvJxPAfRzdnkdrtOgfftWIwCDfpVUYbQ2JOEQA0pWxGQQ9UHd3EDQdTsL1uEQBFQtky29fIpAJUvI5CaGm6Fmpedcq/FUqze+fvMDQpK436pDCDtS2kkSXgLjOIgk58XzN+6OPHwbCKlegVty9Jh3cvrdhV9qIBcEjVT2DTkIaFtyA+F8ayP2QFxbeaopau/lspb0Vv/PIKB0AjJ6LccfZYRLa92y5X8oWOMFYEkkZTf+i6PVVz1fZehTWBU/vaXhQzgX+p0aOkVFosaNHgJmWBAYJAeNDtHrE4LI5x4gEcGgmOuiFXNf+s7QVywNqQIJ+xSChJGCg30iYXyARGfRDwRqhLkb9sJR3v8lJ0K/zf4fyf3t8qYWaBFYmWvIkF5742Ln6pzdVTQ4SKdmy4jh2j4OF8vAZpS4TLh/O9wjIgL6Y+GaJVd84XCxmTN/tHTKzaonH8LrbbdJV5Z0VNyAi3D1S2+dwT7rsd1d9hfkwQbwdl1ZCWymIjng7cahJ5A43DfLw34rPDrp71Nol2YP1RyBahy0iFsJQ+UONKxqpoQwWYyJMEttrPO1sX3dgd6hb75Mxo3s9H+5uoPbqEpQHeDslksaGN9I+zBx8OBu9c4WKd3H8GfJRdWrXJycJSDf7ox79IVuHSbF5zPBziUIbgTIsKwp+9ruYEfZXLoneBowQgNIAf3qLuTPn2V72j1RUrIsI5XUqOzfkqJpB1cJAyV4g1mbYrYiACSQEMywTLs/4C5As1ejXPLNj12/2hFowZcKj3QIf2ev13OVTMuoOeu8KoiE/g+ayAVbd0fiQlHncVzf74cDiMPfWahq+7rcSmjInPB1Ck8Hz9SxjO2/2yBDeCDptngnIun3Xj69DUDWEZvbzfoTRILctF7OxuByVRVJ3YFUvOUKNmHfNHOf/i41VvcvcqjWKbZM3/jag1eZmWCJaCx0dYsqhCb/Yd5poNXCUuBzKscDiFcICYF4k2zIqvbbzcOggGf0SwFp4h8ftJ3/zsij9lW3am9p8NX+MVHzvbySiYF/9uqDn8e8ogahPgl0wcoIPlXIwpKSQSANLoW/uk8TFgofS+pRHh1vtyCH9OgKQChlAvWwNdRyG2ekUQ8YIQ1ZfwlPnjKlxx8fB/20zI/jdQRaQzJVguhKWWnohOltjce9Wz8RLx9UFsZ5rEsjlbP8iQcaYbQIND2xGC3QW+nJGUwPlAICsrS26uXrz2uq6j9I5VCwTKpdRYZPiLCK839hQ4+n+lS18TR1bOV6owcAY0bpBV80Cx2Z8MQocNHiHDBBf/Dd5fAYkwPZYOz8pEqoZkMaO7BBb+Bwf2gAs34JoZ4ExPwtsBSb7DIvGAW69VhyHEFVNUC1cG0fq4bUqnilvni8CoV/6+1g6gOd6IxuXbKajmET3DgnaRfv3cVbg58kwr/nX9hanNTv+Jmbm5JLuHMJO368nfzyCS1Co1DKcaSQQLLCEnslZElthSb+tRNRmZ/F+vrdTKwMzf354T/wf7dibwDgaX6PMo8aPcPqa0WURPGL4BZirgX9jnjsFO9GKHLsMELUzOMDcFeH3YFD7Hs+gK5vXmiFVrg3kjol8PmH6xNCTF2O1/SZqSdZVEaxTRbmrLcC3u079GFJ5xKSPgwPaN6rM9PmLIg8gYVAJ8Y2GL6S65qRCFVZ4F/xpgx+7h0RhywN4lW+aw3epYfdcyOekmpxRTh14zeUaV/k6azSUYLvhP4DGoh5bbsxg4rsfWxGTgBHsT2GlEEqPvU2JBerC/9fbvkngJySu5eHZKPOwP5Yk1wOgHg63nA1EXVPkZvAazoZP4zxYOx27osjPb9RPuju6koif/tMuQFd5QqgPY475WPzJja6uGCvRxfPZkoTvYVxBrdoDptwrEyhMJsk24kL8O/v7Ju/ZfR/EMOuZCvGd1klOHXlgFUnqt5S+6aPbMGapktkpnlDbDPnkhIdudxEru/s4m4duSgiv9QKzxEzNN1VkxRJfUTQlSMz3D81NgFlVvQfnO4hIKFmfZRaPZZmVIXQv8YwB0CwUgyabpKDB0Qf3IkZAYnXGCMpaA8L+ibunO+JS7YzD2117uy9gAqyizEYQ8n1J7epHQwlg7xCg32TsowO88bm9/sjnGi+wSidNDdQ4MoEwNwEUwlVtuzGbqC9YyWboFHQitIR4vvRXLpiZNOjrIp6M1cBB6lt5PMNAbFhry0lC3VBm/vFcFb7V/Fk/VaoG5vKXWG77gG7TdZGgt3iI8bmsFsIUS3wyQwZaen2awiijrwS0hB5WvGSfM3aq1w0IKgTtBBBYY4fs1BAf410Ab1xilKuR7rL12iJ6Q6/BaX/BI2zcoOxCwu1np9NT6hBhq5mLvrTBFfZbP1cfLJiQZd2x751OVAcUvNIudFmkr6Q1SnocQvMVtkWm2UcdwlAXJoSpEL+BrZf9PiNIC2bemd5gXlgEmvK4kcPOz32jOVy9E5kcLgajgeoNK4dTj8+A4ynZuaLd489irUXBMP6xTy0W035WayAW4i2Fc/0veELHue5gIuvsteepe5olR2AU6ONAy/1AI5FIhHQYEId2vdvTcvkUTp7AJhLD+DUZYEAkSeFNHLLxZGYoNzZeynInyLTiO+JFSrSU2T/6mKho/kbjpzJjrDODcXu0gPhU9O8tSieR/KkLDdqctzNhCs9xXzdzIP7qY1tK5pd5QEDOZzoKv/1U7QL4IvIYqFAJMyWEaH4Gudzj0tJEaHBbPdVyYewsu/zqolOY9ij0OwsSPrBh3ZeRYQaJPZf3UFpeOirzE9YMVt8l5a6cAJLhD30+3W23ah9TplY+K18qKRS2/r1DubNtOAOjT2zQeg4IDOi/ASIMXrRWG/RiGYX7phE4abMczFNyRJ/UjLHTGBnSSCNOWNgwnL+N9UzggVaErkf62myzuaexfhzkI0d87ITVo2RxyaZWStNEUFFFlFHG4uVScbCUcfxbbJcXN09zVV199L6OLtLRD/nF7gLL/jFXAFHA33BdMhTSWjq5KdhJeaIeziXnqTbGlI3j71Q/Lc54+yDr5G0do4d3nr5+Q3hd1rJwMEFl4viyaPVAAQgef52u+13o7FGfY2uxzQwZz/lyNgU9kD6qU2s+n0WqMMjdhX7QqWmHQM0XwkGQEhthBulYCEuM1OFgtK52/LtaiMed67QZ9jj8DdPTuoPkMwRvq7MxdT9rHwWLFN+IKN9RV8pxtQ2GGvpicJBlHpmwfBNcHpQfQQb+ypRPMo2Pe0c6eNzHlb43b1aoR187v7FlPKwH9hh1pcWLpvCF5YUevbpiq1pSZyVTZeKt3SR5wq3LaxAKxfjaPr56+YWamLjCGoxYb7qAlSBpTBQg6lChpXpx32f66VbAuD2wA2ub5/0Suolz0QOkI/QNXRhHBs7YWzLS1bSFFwIJTSb0eR5xDXgf8j61JRYFqu3GkZy3whrSz99vwxM2iGVXDa7G5FGCIz3fNmYMjD+u47GFfR1FxnHjScWdEJNwIU8VcOOrpNtAhHius/4e8tinrq+uYfev84Zg/vRt6PWq25AJvskTrg2UeBkxo+p8V8wC41Tmv3XUrPFHTqWpz8+Yw2wc+jDnWuYCKA7bWpfrGajqXX0uKLBe6d6cuziOtuMVjGld81Toc4V1sj4hXyogDkwdPaDdd19EK5I+Y5MY3+tFyUA6jFG05EFH6xfA/BHSHpAu+JV9m27ZUIQO0dlBAiSCQ00/GrUxR57JBbtbG85+zWeSfAjekgfxyIBwpNQfsgeDZEN96ojcqUa5r6m3R6FN2l0Z9Xa+6V2eWZtYg7u5isk3epaTvf0tH9FA/A/uXS19LBOpW0yS764cRx/PVLx5nXu6nNOlooSkHSlJgpe9Ka2bOJgZvT+PAYOm6pwHtPIhbAW3xYy74SfHla1lOc2vyK1ywke5fm8f24g2r2+JUy4/Tr6AzTk6MWeq+alSPcySBBJEEymkbMPRWqq1Rvy1/BOOn6QzuPX/Ex1z2UEH6p/V+DdDnvdjo7SvGIoRwssIdVzzI178h8mUpKUwXQ+GYZCZdsqfc9Rwq1VE/iAV1ItzZCDoy7kNhVtEFPGgXT+0kORoyj4M+YCy+xVZ4q+aUhKxXisfkkfI4gxvYL/mQkEmakfv+GBPnARYs+NgI+8OBpphwoGFQVAUgj/p5Spd+VClaKM0AbJblMwJwI1c157iojcCpN9L6rOKFr1cDPb1VZareqNF1kxCpiYOzvIunhPzlFttr5mtmrnireshrn373zRqQfmMjD0k3HMdT89ob/5Wo1Ssxb805AYLXmAzawYtSQqU40Xtme308z+XAYDEHpJIaOZzqt9oWHcV8MTWS/BUHcnwgcRwRgALf1N3pg6Hx/Qausmhu7HLRh97Jr6wSvOr5lv9nz+pT90edIx1pu+F19gYSPo4NJ4XT2pQ75KXm6OZVuqvQWnJQqnVKPyC8u/feWBIUdamBG1Axe1nn19MPZIJzfy5y+pnPRRL+A+QAK/d/2SRn3xxB+qqyM3M1sD+07rUCFcMJYLSmi1F5qn5VeZ7xVtCIT2SZyZnC75zgrzaXXqrL/QRW/zmK7T21LJ3fhAo4ggxMI9Ucfp44wJo+YpmyaTflEZc1NfuCV+VaDZWM7yD/rC0TsYGvKU+CK273H6amN6Q4OimncpERafGN7QT/BPoahixrhayokM0HP6MVuK7Vl2rhnfyINwPBQH325jMD/vmoK55kmu11bg+NuWZ3ZaM2DY4N6YTa0uT/zuTqRNb7qqDWzTyoPHaaynrXJkSV7EkuhRTjN5+ZHWcNCYX0Z2Uoj8SzLztUrPZIz5cgAQzxcRXhdZv1RK7cgKC2IQ95TnG+YZfckUBm0Fe1eg7r2Lwp5ZuJO3EZiitnyWsoHleoBPsd2AT68UPrLiNjW8RFgsR5Yx0e26SIeo1WPyjL5VnQvT/aP6zPUFrj8pk+Ob9oqRXCYLVSJPJThk1SzFLwzxVoQzPv0L0Gfy7gnGQSxTUFIx2tU+6Jq2JSRlW0EW/orD868UOnjqeXbbx8QtmEmYLhr3Zjbkuqnv85svl5YSxwKnqaR7C/F9wCVYi6RwYvkseZqcp0nA/2i6yKOvZDkUBDh9VxGpLjuht4Xne79lOt/4O8NPG8D4qAw2t3ji4QRl3cJSMEC3+d930cfdlL/JeMWnBV9MmWcBJigv++VCRaZJhV6HDThxfzFVQGID0X3FWYLmpjvjHXjZmPGqRrSUHuJ8/U4cCeyWxn/PaQlafWFNDNeW7tZ7Xc8Ls4MAKuIymnrnj+ohf5GR7ldxDJLZH0i6VbqfskeBAMV4V0KQnTp1XCrYbrwcVykE/93AvF2cPtmJpOT+9iHyxMKrYeT0nDkyPcsy7SXE16qOPP0cxnriWdUBXEyxjNbpS2cpbObIVPv8/Q3QUcwcULXjwyfeKArH6I2oISrlX+6O/oZkrJeNJjiU5Jf8yatLUjdFk0y6TYWa+GBq/1KOUi8BZRMQqHRoTE2U1u2zRWQuhnyijO7k1ILPC9R/MOh7GQZGifHY3l1LrLuLrBKFU0DEihMbSrbvC9DpC06cKPXrEAEFtGrRqWLr8C7yQnsIczUUVKnaUn9HFWcD+FIP+Lhbvl8gsKo0yBuoJjBygxwqgBlygQUElwBoN2YKUT2MOFl/AtGUpKx29OutbxUuyjqMox1JGh8oONumLGOUxdlfTIuvD8xeDOTby6vrAVp9Vpa0kQNA8uG3RHvUIDYhWHHjAJ1vuq3qtOZXJz6YZe0uJ1dhs+6pSoIt1Q5cqK/NACAENpihq8ceMTAha1xOLFsTAsKC0Xs/f9OiNEhk9MrpmPBqYRTAx5WXtQtP6Ozn8/ntmkkXorJA3Fjtth1fPg5yP/NeSO1Xh4tRNIGSYvYWoCCDAembIA2W5bA8aGo4xSHSQS096IvAp1Pc1/wWxACQwLn9pmggeS0Qp0g3R1AwBcv2i9q2HBhwA0Jyw1VXpUWiZNbBrCA76eTuopIN2mZd0LuUsIpZazfU6f64UNU3vlB1UCAQbqJ+H+QlROcG5x0+gEs4lV/99Wx97XtekeREcpX15Lh7R/dYivSEX77tdaBQvMV38WX4TqTulB2ZwSjo7NSkp2+y2x9bhBrJewvcPl51f8xMGBJkUgrS1kg24rVCGf2rekUYg2zHDmzeYFbtEtsj9XXGtyw2WD6GN3xx+nZ/HAygW9qRtdRninkV+NNfiB6fedzJrnUhLyIWabvIsyWi1DzXh6FkIKZ9N4/MYikEN0Jv1b2n4PuRh/F+1y0SjzlNDDkLJ2oOxfogu24kwOTm8WI26QQy2oRoY6UgBw18j/+jQ+1E/1nQYLR6AD5tQEE9yZmNaynGc+zpzg81Te1eQh9SMS6AmZgY/lIuCjsoaFU1DVe0QKpTogEYI2Eu7yKCRn5+OxNK5y+HAcEgbpdkYwRRoAcSEw0MdoYffGPmUfJ31B8d3g3LSSAa3t7OZuY6Hu6nvV50wufUq02RwDvfhx59/jy9vtOmkWT1/91bSzJlLBmfjEpkE/4UXJdrWhfZIMuJvYJU0mr5MEUBQozCaBdP35lmGp5RrbqFOETPMFwSzDdWO5jSRqaXt6Ev7FbftsimeO3lX3HTUFAPVUxX3pHJtjUI+eLVvj+wPy92NTCAXXzR++yUlCEeUa5UdbX4619imm9dcrlhxT70/INSHZ/SGPBzsIv0X30ZXSDNMXSYwM7AxqDZah212L5YKJbgJ0xd+qCU7Y0MD4m98RzDyjjOgg/0aPLJE+0T5jV39Fpy8sj/fKbD9/3nJdNctp3zxWag+z72lEHfJiH8vz8+TD3OS+iPUDy3DCvvRV9Hoo2O7jDoWOOSh44SsCtxRiDBCl3Pn68U3jY8bTpoMaTI4WlfLCfJbJaJvIeMRojeNC4AEhl7aaXiDRKbIxLcn3FI5BAke5y7jwTaXYQ8AUA7aiHde8WI+qBzDMfQYCBzXzMXOClQZBw4EqkFcMVOZKB99mXIeD0qLFWHM2t1m+eDK8trds/PVq6zIjfdJ020UAvAPE0DT9EMJ1oZZXHpP8AdxfIUkFv+BNYios2vXP0i23L8/ZWKcwFamNrYQKLA44187XI3e/wQrw3i9GloOoB+N8jKY/np8wdYjAGAPtOEBHDQgGSrxNpTkcUS3blj5EQjr4j9UQ2RPJZV+JmY1b25wCH7ZGorO3OPtFaXW8WPYazUTNaszdyOM831S/XDkJe2FaL1TY0t/IGuidHDkd7VSDJfaAYC6k6DVD/ICyYxTJBAFfmP1hPOjz+JuIfjzOxiFoS8EwUfJGMz15TvMMlLWgWQnHO0E7uQRMRZ2XXlxm/Xev3yuL79HUWezvnhmHCEQsxtTBnC6H2JuFs9oZCiAqaRSByrXv6RPygATzAj9uwvcz5itw65IY7Vpnm9R3qhqrY5lNQBIS52YeUiDQtSZ4xPT7+fKHzH3Djomexh7m5KXR8rQTHxIsQDE7UEUPjEGVJ+JS5Gc1RJH98wqPF/swf82Ur9z6BF8fpLef3VuRWstrxXbZNmiOECYm276eL6ZhWbV36QSjs/VXck2d2r5cXV82ZnHzm4aLW83zQOk1k4pykjZlVee+JmApm2l9Bn0Opuoo7DRB7hg9pwlg7Ac+UYrVodWb99SSrQsVM0odpR0I4bKaqzIW466KgvF8CZblTNC13yMUPwm6WJI/VPvDsCvY5gmSGMTJJ6wQ6jy3wm+Wft92Li+p4lB3/WVtFvfrxZc0vgC7nWEH57PhwOmxWxxrNsRhydlsrqsP1FLLJO0ziAH9E/WdvxMoF25DTWJZJTPZrSR5KA0ASSB8SgZ+6TiQJ3uzrgjxiLdkHNyrTgz4B78ePXIexrUT5dHNHIyjUis4p7yE/5tqmryRFrm97JLX1EgyeU07A/CfC2L8RMC5qJAskXw/Q8xdsnVfcNaB6MNx8fN1T5M+6HBM4uEHaICSjI/1o3HtXXDuYxJNuoyPxsp/AQ41ZKH4OI+ah0z+3hYSCcZmvWRiN5X961WvEW7IPI6WTfEdaYr1cyFkde4LtFsfgqCww02k534hL71kNtI+GqOQYYq5DONYBrFIGYwbAQSRRodwPA4DYIYqI08b6kQkLIFEH+hNVqct16tM9mkUxqHpm4n0G/4JtYzPFVtNkr0/81bgHEpgFg6HwKyQerLGsiezTJIVLYEAkXx67ztzAddJetO2mj7umkNnh8Twbuv5QbNjfBaPtlEdvc1cz5rd/YsRG0s3cvpzPV4o2/Q5YtgXUjrW2eWUPkGaGhkBarOvqF2rXatvFMvBb0sbwodKdaIG6kuZ3iEW4i63UcqKwsGgUvQzYk+Z9rZryDISRBLZP70dVuJM7XljVWSlyX1gxy/ldMrwD6V8UG6KjuwIQfauHPOvvW5WuL8nkd6hVmNEPsBkMo5X72uDOFcJmv0f9yla6SUPQ78MrL7xqHueGAwG5yN5sQjBvMBs1if4NimdsXAXbSjQ89fWthZaz0KOVrjkA9HuKMimEmVeXfryOXRB4bDYCwdRE6S9Vt0cxzlNv8v6vBxXfyVNcDWtFHTQ1+uMC7ymM08+417XEOBXPTGAyp5TzhVBbS733rQg+UjVYe6lUazi2TxirNO3V/wuFW9Rj6tnIdGrbWYUzmgPpdmqAbCdR60L1pZgwrWrayDKTd7qFbzhyUnYobaRvRiGiWkYKgPJEX+GUBlEPM1OJHoGc+qM8Q7wz/im1cA3ElS70zBJkqMW2xxB6wlrbVEZRUQ90QkKxFi6oz208aAqkLGDurpbiA4QH6Oz+SSJRNfQb7cwwx5XypzU5C5M6B3MWGD70+gnOXN69P2K7ONVRiYxPa80+AmOSvRR1f9L3vokv1Qkjh6TyAm5BoHzxuyaFwU/238+3iDFpM7cuCv07quGIAN02Pm/t8qiT7aHwUIiGj6QM2EH7LW1jh1+roDTGHAlEUGyRFvHMfS+oHHE8L6V02Zgo/xJSSSY2X1hTbgv58i+FZp4uii+dszIxsXh0CY/PV4dltjGG/U+AREQs+WmKDhVllfhJfELIo4RUUoZXuxvr0mt6tS9WmEh7tFGEWuplzY6Ronp82JYxMZKb+gZdI4njcEp41E7nlc/e/h9wI3NguPaVe9B5Lyk/gHJgPm2CIhVYah5TwP6UNn6DPkr24wDAZwFV8jYfTIg4Wy4z5VFONKIIdQkAW/41D5C+Par93x1jvu+BBRS4EGL/LZ53v5zqpxsmmvzPu+/dh8IcDAo/iEDnOZgjTB2Y56jbcwMoexaLzuJDu/VGXP7h1YeqYOnj3tObe9ldj+A9Y5r5+mG1Nrw1Oprjv/fRpxIwIIlAuvYq8Q5q0FDR5auDBfglhHK7cIKrXd/f0YHvanWnTrSgB1Hty1v9f0ggtpRco3qIA6mx454f6xSqP5b7CLBEqu5po2jj35AHEDiKqlFTI5Jylo/D5muNHv/f2qjfr4ZJZnugjWyjbJJl8Pr0x08zB+KxFOlxurTH63oaRB8ipQdxIa8PQi6FoC5fwutwBQAsF6O2ARdfMtTMY9CDWAL2XUWR4nDboAyWwnBrAMI4RohHoCC8kFAEMD3XLgOrY2gTgYS1j1ua0uid22SWl8XlmDWswaAHvjC107B4yBKcI0oXKRxAfoHqjPnuN9NvpipkXe9BZ+E7F/UQEoYEdRrjX6czHJy/WdP6QfAzn/1kMi2DGzpEcxo6XdTLvkESvcHqibN4+CXFuN1OAr8ljUOwtWEZYTINsruQsTfuFbnRHpY1S+TGQcdoxHNlFTWAJX0zDSEYzzrh5LDVTsKLc2hUh+4y3STWlNTpyYZKmOwv8jIxwob97mkme8ea8p6NPVvDjKyl6RH7HQLKPHrP23z0hfT2P3Pqp+Y5+DG3zkqWiZyDSf+74pqqAHmFiqRz3j4IvpAkgCQZZewDOkUt8zFIKQtOBEjjKGgsAuw9tqUTvTu1xw+c2lx2ypS/aWlo2H9XvrI76xQ/pEwgIQM3HNrDAdlFCEeF4Ox4tDxsxY7JJJcfO6in51h69ar91pY2q+OgiDMTgFxgo8mgqz4XAf8hS8xqFaZS/xyIc7KnraAgtTmhA7/kSkAa+10SHshutuCSt+s2fJYm/1a4f3GkiR7Qnoe7ibFvauy5Ij8qxjNQ+RrqHJCwlXJtKUoi7WdVxT/p8iQqasZOMZp8a3xWt+Mpd4KBX7cTPp/JBT2XKoqANoF2IjiN9RDHjr/m3ZkEA96XnnG0RlMchcpEkfabSmrHReFf8/9hro5SjZkoLeGth5u11e+ylGx9zw92Zv4jA/1nzdyultZgOGy12hIS8VX0UNP5aEP1LS01qlhCMAXTQyQ+U/CbcEWwm1wcmJnWm/jjg2Spx6kNWGB2DQ8JslfraPqHal365V2g0ab5rMHHwtoVl0UiCLuZmx2w4OQXBqmU3baFFZcds4OIt/lX5vxg257EVPGLveSpsCh6refySI4Gjbk3SkhTaIWesmVnsstW3FAw4faZs57PJBl0sHMCjTSHYfCpsL0cIVNWQ8EIQL0tEsA3DZ+8reQBrdFcNaYdHp++prRngmXuWHOz1wt2ZnP9Mu0m9JlLlqUsxgy0EKyLEBJqsnrKaqgUaY+IAFKLpf7l1XUMyrCAM+3HJUpm+KebJWE+f6MKVOp336cChbbIY1n9W6D4HkNG77K+SEdlEXoefxaaI3HztoAzxcAyE3QkrF5c93DpmvGCbb9iQdYoZcSMq4Ove9H6pqxzdm1O1IuCWCJajyKnIByCrehn7HvI0qcN0EX4uCm3ik0Tr5ddeeaQpoHfL+v5GJCpalqc015s7h4mkbQmWpk/Qc3qPHZuZ6d2hJ6Yl5wLwSEj5iZNS2Da1LN4pEl22fFPRcCy6zdFbcKqLNb1QYYxKmSpo22BoOhmKXt8ZsD+AVxMQz0vRnbRSDheZnfNB2fmlwf67Awe49RMcdVImc96IIIpnz97WGZmWBNAzUK3wXQJnwg1rPpp/Rw7j3mpDdNavdumwOp7cEXZ8U15/vXQdetsJpQz7uCkywY0Yv0JBfHDaZsVZaH01ilmUc/K8hcX/XVgkvdpGgRJIiEkuIWe6gmuHz9zOCMxjnbqJQoRUaOqJhxxHRzZXUMMZMdFl1W7+VClr8IhA6fiCBItsYU0KC557BH8wWlabnB0P2Jbu2gV40pfxI1B1g63mbP07PxXduBhtlx1G3i+9/72JIi/7erkgQqwK0YSqZa2an1lAh7gpPFVVpvAzsO0T2XUTKRkPT+he4cXK2Kw7Ka9CvTVTHM5Xlsq47uxz5VJ0GEHfIKni3Vq5nQYoXrJKqAT19csesP93ClhuEZ9ajeta80euZ7tefeF4KTQ4dyLP51HgY+7H68OJ8oBCR/X3JVuyW865vT0spylMO21YLWImWxhzJDmEs3tIxgpdHJ4HZRr9ufFHSM4uGmNXZlJvnH+V+oVD/UaCCaegoUKF6g3uBIN1Kajz47tz6P4S+/rjZTR6lSmR+sueaPZ5umEDe0XO33CvAolbZ3LXRw+6mMn0ePdm5fqkMeOO/6VxT8QI8J3UFCCfY3Rt835ZeEGJ32IPFw/NB9fb/eCLVvkNmwacYd/GQQk4UaGjzjbeOsU5VHeiQggBaq7H7RIFbHfipkRc7/y4ugPRJlaIq3VjG/sNgtPRRP/aCd6uSNDcKGMxQqn5/+j9LT/uX4praO2Nr/lnTT3z7jfo0YltygCqDikGfj9YSsPCPdZI5WRpIJT+oEk7BeYAZOIoFAPkJGyDz5OPimWD3M1z+XJey4VIy4HNXpPT3VfpofFj3ehrIP4hEpU4pOaR0UPNkE6o73W5SD2YkQ63INtg56ywaTgpc7oM4I36Wfc0cPVEO7p1109kEzQxJgQbYjlNYhJxj/Yag3xSXFscjALsZ1Z3c2BSgtO1u0O7BAgM1b2hp4ZBhHA3Qln+pqTzzwBt/DvekdJ/JFkllIx87M9eWIzI+Tjk1x4BluxL/DueMV43HWdrCbx6pVUkfXF4P9beJ+rVkd0kzDpyHKS3s50AjI0bWtdq2QjTNLLVGfjfhkZ89Bxkuk2G8XT+FBZH/uwlfWW83/AbMgB2yIl8nix7naluAcDZvOg1mVFgrSeT8pHxVKSOC4DtehqFfZJ+xudH4Xe/ly0LK5NWNBBv9Xr3tGaaBMYNJ8Hq0eJVo/eS42u/CjaDzZvPLxXRom/mHw3jBzdrQmzmZqoVQp+Zcr/OEKr9VZMhQb2wJxHq4uyUhmoJpO/hL7No3u2H3CEBrt9kbuzYOjagzu9dgfDyrA49oKMKTeMHQYoU7fcV0kcnC2hiqkHxL8sID8eO3ATgLwluH2DkdmXW7dMWQqFCdGh0ABA1Lp/BXGywarbisrCeqbdfSjuACUybynQZSGta3fa9bAYCgwRRZuiW/w/wOreBBOEegnJmXwK50TpSCfQwin8wY+g5JLcGVOQpwt8xprIL61MdwRwE1+YkzF6xxph6axBAleGPqT9Pk9cyWKQGLXEG/uHIWutYRTrvPXuaD3lIw5sOIHMzYdB30ujxtZkCEVLIyjK+2Pt+BSuWZ2B9ZDJgSPAa6X1MCGuliaTDWu//mgFZMfh6q+DrZhLh/i5x1RqJgVftSL4AF/3C4DdCINQE9m0le/By+VYWX8kVAuyxPvx/y7EqxNkAa9i5SLERqxt8ojmuqisNR6s0vXch8Xw4WVSPI29L43sho0iLNnTk0IQjk3Fk91PaDUQujyE0jLgnc3tfuXB7HNok5PdjhsgB34jaCAGfHIEG6UEd9kKZUUx9oWtbnibHJbGgM0PfkmS9S+x3asmkfMYfKNAaZuT9fMlz+luVZMK5pxazW+MDy8bascBCBfvqbq63R+TpqHyYJvRCQuheGKnaguQkHxiHvk/iEAgDacyGkEU9MRmkaNFXtp0tNsm3icOyEEMgIJX4/3tj/TpqCnXTGZ/xrT/BgLT3jM330p2UeB40B5i8joO6XUzX4H4dW7HalZb0ec/cPcODzK0zTzCXV9K9w3Qq2aAg2hYAQgVIVjmkygws7+bUiWArmqYEDXZkY8zBDywcKV39vusLFgia4V2mkKAsTIqLawvORBUfN2B5vd5LQn3wTK8QTcMOFm0eh7bNQ5iANjf8qr958SRZyLINdrTWg12r/TpFve8yl8TovkP2i7rrU1ezeVmgUJW8xRd74khQVcaPGlxGtXe2j8ICaGpEMYA4ZpLL4jOCQTrt0xg9cyNcq1V8lRKR8twcwnb8w28mgr3SS7gQdg0jFFN2Gt1CZCMAMosvlwHE/z5uyu9Q131u4HWzzcx3UFRiZnVf6LsNwZFW79eu4azdsvfNNfjr0vIp2NpnwDMQevycXW46KdB+maiOEYWrXNrZ18nV0UbhUdpHJA17/W6rlYHihIt29vFe4KLxgO7cjonpbkCC3+fNnEILZQG/NMefp8ttO2qcPqhKOCazGaQvJth2fc+ovmg0974xViuL7wLl+NrVX2DY4boRZpvm3E8AU1Xu0vOcNv7CeTPkagVmXhhMBHsTFdVlk5pEiiWAfOk1VYYebW/2twTwaZrhVz/5JTVvgGdh6Jfg2UZTQgUM+uXuQ/ER+mLXffTDDB1bAKv7YToSFg53ZWlfyeChp+dkLpK7QzTw3RnUNCXe+vdNHHUeqWnZfb3ZLjtq8ZWGiMRtt0zasXtD7sztyA/zRN7y64/UpQCCwev3HBajh36iEQoJQRrobciad9A0M9gJJg4iM+rzs1gFDxleX9O8mt4XIK5licCKl6iG0n1C+Ygj7sZmd8JuEX1VctBCBvCIK8LNaxpb1nvJO4HvmJgpauhtCf+3+4FOlwHxrqoJZn3B3hYG6a07cmHUudTmNKDTimxQT1dz9l6du43/MSv3uzwyc533Q+P82QGVJi4JCUySo3jR2HSMNK9U/la19nFFwvIXZ/6nzZl9oQNAutd4cGT2uYxDdfz1xmz76LDzse6Nqu6rElo5jivt1DobZ8qOobs+LyTwKXtvCHMXvRj7Jthpgsks2Du++LmdZAYYmPD0czZfAwk+ULlT0C6478sNRh99OtFAgNQMRxehCbg5/qc86pRxMYfKOO1UXp8cwKyEzpS1pZmhdhAEIU/17h5CyQVbRsfS+Rl3iplYiQ84w2Y008h21AUhzvsfAiilVhYZemI8UKivwnriI/6YJ3n85db7jn/jxMkwCcyuLDUmvxdTwpWN0i51zZxnSdA8NY5Uvipi4j1SGg9F6oqSqJU81ZnyZObdTmp9pYI+47zXYgVARyKhyup4gfMoH9hmRlJGlyo6CTgTAr62wsICvriTGoSrNsn/1onSQoBxFUoEK9mxM9LqRUEhY5EzaUrKy6A+nttyO+fnweexzRwvSv/9/05Nno0mrmVSTNyK+v/Y55VH3VjReBp+VRuT3arcNFwBbHkb+3bwc9s4jVkxT4SmOQYQFQiyUAYnTd5M/g3mFU40lwLo2PsPj9hEQL1oVr91RKjjKIoqgV+Ve48v/FyXUobFppWH70ovZGAYEG3G5o6hzAb7e8mf8xp5y1QVNbXvNslzdteUAl5xOEtBBTMaBAO34vdFaDAQ1mzgthcyssWWoieiuQPgsHdYAp6cMowAOcMIhA7s4jfOMGb8nG8C543CkjcTXPepul1whbRLfKp2/NEu+VX5E0h6G8Ndw12CfIdIGgdFtFnUmJJBhmb3IH6bIZJUH4A6lgoqHSl6LSWdB0ujU85G7JjQt882gVXFBjPrzXRw2WpuNLaQGMVWXHzCRr4qflMTbMaz9G7s1fvc6W3qRSae1iQQe6QiTupb9DKzuF9Zq0LvN2j/MoFzrUU5qfs0taiZP4uxVpQK9lb+2saeRedrMi2iSqoe/7rxXjGYxDWGbK+r+o6pUtZSvqrY0D3j+VxYFOnJaVTSAGU3/L4qfOXQAjFLP+f1fXuyPtPlAp+KeF61cRNCnr5iIn18f6DIOu3vXGHfTmOt359unCjX3tf5H08WRkq89AdGClEaN3PpTH3W/RzIMyoRVkEIvk2ktKetehQSozguCMF41myTsg+WRncZW67GzKd8aouQTIKzpN7TOELR7/vkOmqybF3nXEu6i5HhpNBz/xUD2A4BePnTLjyZfzeLG2h4zeyT0H6Ne3G0vmYQ5zxzHRK3DcVXaPcC5zn6atNUH5WSNHzE5ZZupjpbK4rz07vG5oG5iOVzK/I+KE1idHcV4JvjFiP/Cf/Z6W0ulKivUVfTgGTsPV2x+gPeiwclXSbtPfoi3TIkaXm9UVhI6ILzgXqAq77W18psB6OsX1hKIJsRQuIUmsZmRYY8+VmKUfD+MQtWKZf+vMl9IfTktFrYdJSPWezKozBtDSsDSCq0+8czESDw5ASMLnXwEa65QUKtuK1GszAzXSPVq7BifcsSMcwB9rp0QX0bsTpcYin+eQQJgW6rNHcj/NFx7p9P6vm1XiGMNo/tbdUBrmgvB5uZn/Mvu1jK3vHWt2Vo8clpFXzmm1vnnZg4vNtnz1iLTXKRvT2rUMa4Q5VLfJvAsYXQHvWPhPk3S/DEX8NnsnbpaHRzCOmEh1V1SfQWH3solXea4DrLfCNXiRgxJsGQxZBk53II5czLqKoPsdw3qs0IrI7zy1g63cG8Guo1J2A6ohFJ6WAriGwFKQ2G2PTbnGLWsK/BcXVvlXBwCwNearxwsqbbuS2NhhTVgbS3FyNWLMiAwOrpbCTasml8tsWkAH6fBMM/t+1BymHgoFh7MnV2roXrLIcnWfsjPQbRIGkxsj3as69fJiv1csHC3V6bOln67G60kH0yZqwGt5PRyV7Xvbi2ryMezyQ4cIwenH6nHSJt3vuxIYiKSU/DJyEZdsoLB4LPkAh2sEOqkFVoq+DV4YcpB0o4cUUfDZYpKtWAiCFl59fUgqdSVv4w8LoFbJoJth2MUzru3buOxG5OLRBZtu+Ery7O+X9WXsBtl5NCcD5YMvliAyjRUYql7RPYSFXHnF+0xt5RX+t4yKX3tFNdz/NXuV57ZGnddi/hAKE4lIgS8ESCacYgKjc8CoMMXjcA6hd20YXg6uOl+NZzHCXUCiJz9qDs0COHUpMH1Hor8G8giM37VPUXYBnQ59Kk28twCk/5Oo19v60JMFToLb+jQ5TwalL1SfgieUnKfr95i2HgaxviccYE28X7mKTpaQUMp52drBS/qPZsbpjN7RxU3lTfs+Z2P4Zo600A/7+56cInKiP8hGFM3legHss4OCfneOyN31J6Vy6yvDEA7gKkRqpFms+IKXd9GuTGihbKam8PxSH9X0b2heYfiquwUyUCUm/iyWEFiQ5ZKRIKkAMy3PlElI852LtXa8YPBeyBPgSQzCQ8WTlWiNtXhFu0+e8Uyl17N1ElaRuQT6R/kCRPeNHgxQTpkTxPQQ2VDLUCECYBGESwJL21bzqWIncyjVeCJzJ2Q4DKCuUazA7G0zJQlipo8/DwWITLqhY7gMY8ICUCyIyCDmBVTGEydJgxwmIzGA4qsrgljxgQXMbL5BI+ctnlyKWqhQ39yIYEc7LHpKKHWsa+SoEgA+wjckj7Qj9kYY2A2pUT7OVDIOfmnKsZ5uOsbajXty4v/aM/IXm6PpNZn3WOe1Yd+dwwh6SIQ1pOhlbfcThekppfWE2Rh6mzdM1Ylz6/0h98W4pA0VEIoYM1ssvy9rRwEyObFUrXZeUzojgdwpHzu8GPa/WpmY2nN43c2NRPihdfcwpEn8zKOa4CG22E0kyju+7XfBkmU2CRyRxREkM339rbdcFmNAEUkV/kG3R8/ytrGtztK1ic0wuf3z50JWNIEGRQI6UpQqMWfO9TGstXaSSOFPIJdNjCcPfnVY5es34rPfxq2KhCu8ecMFDnFzB9fNKPk6r6mT4vokYYRcACg7gCiMSNhcRbwRiFj6CCIIYU4E34p0krrBvBRXgBvRH65NX6ptpllJJOBpXG612Lo7XKKH0A9UuLF5BpfjHNL1gUQp859oFm3TsagiQbO6q1RH/DF3wq0NX3f73k15vTWYlgVfXiNjA0zphpb1t/Ic3i3PYYw3Vg8oNPUy2x6cxC/oWwK3J1Y3ZLDfl0fYe70r0KFQ6KxVvQlni2BuTiE8uWopB933M5AMdlT7pQdg2dNA3ucDWbXOkERlB2ZxdQmyY5H9VHdQqZ190WslMj+s22gvLph+txLl9CvYCaQQl7X/EXImifbxmF/05NMuYzYK0RAHL17kRWwMeEq1jfNqLNR05nqQY7uSoM18+RJ69iplenO4r2LxfqXQLN71yy+Jdm2q0INw3ODrmWZWA0rJ6EcXYT+jyluiRVQ0/ZVmOR3tKFLZGqJgU8FVWR2YS81DTG+erMUFUi8A/P3vRDu9q0DVlf1VrlJpjAMMMBPzwMIXOujtGQZvQ0O71+jN8pNzjTmhX9VHD1vjTPOMfJJ2yDiIrQ1d1qwUz82qcMfTidAgjS/KOytJuekRo38XQg+9lDVfgLdbCCSOf2BQB6vbs//WmZXiDow48ZTQqvMncdC5lXT7cKo05j7siKAVj816HXCN5MQhaoIwLh2cjw9BiVJ88ukp9RikWhkec+HHah6oMNqSyYWeq3qWatIlkOoPNICBJ/kVtVjXfNOSQImvkD9JJjp8dxhgah/7KnB97jkWGxs/cg8y05XMrGV86zTyMWmOSsg338aMn477HTebNqymj0jqtcfB07Qr/wYoiA33LC3ODyNNQdOF7kBB3VsKCMIINwfJaqFdltDWz9HrV/bnBWwmdNIpnowgPFJzcEQHlkuL41SureYCPqRsITko118IOlneeN8Cm4prpAA9gwGNwayQYHvMjMREEVksf/nCMH6wbDFIVxCDK5k4oBXFhu72C4qn93VqA6beS8u+5tJR448FjmpoOXRb2sSv4t+J+oc0JoA0GYK1kLfusI3Z2pq0dSt/oX77Eurz4htNoDUXzwgzmhWpEs5PRnVNG1mVezZw1zgTwLT3F0W9vJava9OhIF6wyrFiCJjglwu3gmGYdEHW8NKTQtqpIH17buQ2/7ncxzWdvzywu1XPRxxhc0nmo7Z+ia0GLWSmoVeZro9/OBeZDhv1SvGXbM64Fko68B4gFJKTZgJDTnTwFBbOsz8dqhgpR0yp/A0WbOZBNC9oYvIHPdL6lInwQ6FTK2vW1gUdwsFmtKOlUQcj18Ysd+HbFOE8R90+MOl6oZ9voj1zDTXlmfP/GAUt/zvbaK0o13F0af9y3N1zj/N7HE2yJUvuuYxPg2L+7MDkPuHkoOLVbYQwLjZ0Dg/3m6ts3fa5rhhW7MsRTTBaxYmFXgG5iQNSDll/ovoIcz6rF4W0h8UQ9ntaUhahsVLI4W2blx3oZTqHghsfOIHzdkEhMP/bQmJIJ/NkjSDH/JMxoX3m3fDtdMor4IPH0Z/2x+Tz2TZZnopIOsYNae+GYjNIp4euD847U0w4VDilJO9PmweoYHVj4YQhH7jV0kMHBgoB+Aok/63I8FFH4r+GSvooBHvtL5tV5HhSzCfUBINs9+/o3OxSB+L+uDAF3KK2pIMPthUUYbPd1oivQVYaNxLmirS7EtOlplP9hNsL+N07oSXZL6DbiiUYowUlAEok8KsIOuK1qgsRpT0uw498rmA9LpyPrXmskEylDk/Pp4PO+pkXIluwwUiTfC8BoSmXsSW+Kjx2gDah3FEU2XYvs9XEFw3qAxTkq4N799q68G2P6oENqfc3OGlkGwptDIBIUVrwsP+jO5hcmHnW9219MxHbv3VZe707TH5AluZJimGRuCE/JpX1Kl2l6ji2h6YN/i6Jau+fDTGVs7MIh5PZE17x92Vkmpw+HmZNuWfD57ULcJlRzNm4jz/j/oT+B6ASFGlWKzT3Z0qkFKWd/wF7UD7DDm+dMcLRL8QAruNUNwW/5/bGaResrF2sb7jZx4tFiuWUkPE+TXJDgK8g7EDvv0ekrs92NzStacER79ZyOLl5knTLTnBLrzkDQNWKdY9nIMpZIciJeUmYV9m73WQ7lmQ7uLv0h72LJNPEMHA1WsH6+s4asVJ1RfcTpm3QY9Xao41weUO9RoAOdBWgKgBIIa+HK9UssRUy4x7ldjMef+piy51wOXdm6Kqmxy09u71I/lXrrNM1pOd1iFZ+BtqzgJuiWNABfAYDtl4MyOMt9KIkWMpuJLP0Kzk5QzuBtVswsC4R3rFpeydggvQte2G8N2NKiOEoMf168dRMLRJ+4xOHa5B52afIfC7E8fy7GNLFwghxwRAnsANabiG1f1ngQuuf+NhXxirBvAgWmxPo1QRYRWHleuo083MV+0qQDBP/hytI6ts+1UQOJI27H5+3tx8L4OztWhA8xpuqCW7pPJ76n7L3qIWqN5+IduVg4h5umliHZuXx9GVJZQ9SrxSDB0KHrBfcx26h42iMIgxyeeGXKNVZjUGrkjqF9RxlPjUL/pdu07aGiGAQWXfDcL0WqhdajbULQFxvfDMnAFYoEQoBut33L9Wv9tW3DSuC4oKPtQwE2XyxlPTNyr3AvenK44LtUFy+PSX6D8l2UDekwTVgPxUnyGgLaVNUcqhDj0AdXcQxQ/bDfBKKNOpm7yH577WVv9/48vrK4NTlhMabuvgPi4zArovXiD9NxNZS8WdmcHEu2I9BGWUfJK8FvK/xZwNpTVdcXgufzRHbkEStV9pBLuoH4TewOTYPQsKlX2J8o70z6V+WIOsw6GRKJgR5AVyx4+TdWJvhQ3fj16Us3O7akefE+gQEZHTkRNN4n2lMtBTh8rkZ/61nYtHWeBn5iVkdRJtTiQx0jknXHhHjOoDhdB8tihUWpFMDH3G1toU6BE5NzJCR476qc0cRLHUYkb4ZmprW17E+ZbH0qZ3qheSnTCEdkDHeN0qGmVNOxedefK3N63ow2gfW5Z48xeknuwPzn/WRp6FmsirzZUcTYP2Ov1sp6Ns5D7P5vol/B8RSeMi74hQwL4JVrArt9GnX/sprtpjRaT3mmR9+/aXhjWYcuuLjRFDAKeQm2w7+4+Bn7U7qc5A4IcdrAsYqCYwJxyHbSs+BlcT/gaQAc9DBLyAhuE4LrGVPZEV7+eOgYO6LUH7J/DVAsk9JU2mZLQBI2cMc/e/5Nk9qel2yunoLN09mevUMeV57EooP+VkznsUcPHyR4tqpLaABqwhRn0bJ0rF+KvzGdLbXNK+nwzTM/1bOFAI5V7/tR+qr9+hzd1CcacaaUvnwJ1xoiABIxpEIwGrceooD1ZxwyMGNtnZHqmMlURF+aBLevrcxesauau3o26BDwAdzvycq3crKZ9cC1RVVdbDy5H/jvv0F3Rta0El37xQOHbPcxzAa00HVlTmufWhAyvw66DOByWfHjqT2XBc745+qfGxNeijnC7OcRx0i2TyyB3Sc5T7a9x0xgovLdPITGJiCDnPL5C5+m/14L8EhXz64eAp6MEPqsTttcomx1VdERGx8DA7vSO5jUkbddcywQQXsNhXEk3xzKu7T8ovkbIQ7RVWuiFFTeUoGDJT/SowZMu765Gc3n7Th92pj+1oefj4lwC39r/Z98JPOii/y4zyF1zgw5EsOB7cTse88M6+JpeVxGhURKXuZ1NNL5XK3SngF9WkNzzHFTuPCU4Fbq4Jxz6/qgGLksIFcAXGdAhRVh8aIjhx2aAJKU2onOvNdtjK6+8ahokvBVPlxo2lH78k+QXCFeNOcDDW/67PT1VeH1HU++cuKhHRTsy+X3iTPhPUm34lWqszF+Kr98WnRd6wTn1ovGJOiW4YFZnSJ9eVGDWSDM8dGAUiMBn7gc1lGHHr/lFts6jviiLMaEfYHkQdtkePLGlVmfiyJL7jRMdjy/2BFCHQ6hjwBtfum86t1hOStJm6x8cp5ZQA5fPnHOiabIXPq1LzElQ2mO2WVpU3WLTQb892SaAqurjdYPKgjrIg9FKAOGJP2ETx9Ox7fAkwOnnBKi/SnHDR7J4pmZt66j5RqyoWPIPeWT5m5cDh1FcHLn5uETQX3h13rOYLiqXzNSi6SuqQ8vXG3uBaE8yCVlxwVBIH7IycSN2RB7ed/8e5kksjSIKzGcMPggguhu4kj0IjCI36J5Lo4ILI7zUZ2mUVMrmpBypNfHWUyhJystKs/qeeM6uDRkQpxREs56Xo1YKVbf6YES8rDdvlL0s4M6mP5TySADrsLlL7GS2ljJ8kJdOpj3v98wmBihhqwIF1+a0L++QZvaGURSb01sbaDYESB3vnnG2XtvWR73CN41gaapXez9a1mB41I2o6+m6D9+B1gOykDM0pn3Nd93KU10KQadz+ox7AX8OLua3M4xfmsC+vJI5uE8zOP9+HtVy6qamLXRmD0x/AMmtN1seo9Nm2zTdfbh4z54SjKWMXMpYe/czg5F0vzyfpW3gZBWpdQYGDaPzBREAgZMP+EAQfPlxz0zxQDT0dAgAhH/CgQP/yfdyVJrh2RWwxNL3+1rUIWZi4AguJNTGb2XEcaE8kNeNqISer/VTYPn4hh45Z9wNJoaHJ1J9wk0ht8nK8jNnyp6nxKEPRFoqFNzzQOYmQx0AgMr0WBYbbuo7dX2IGYqvDMfwJdX5NSSAQloDmnPiMUnba7lAhNPVbfWbZPrl7LGl0J0OEcjsmAnXqGl4broH6Dm06hkLarMvcsJbUg0KX1POTNupQh2hh0wg6RtpgjbRmQKh5tdd3Dw5fV1UDQU/HR4JASPzQ497kRnQfkJe7iqSdJWFUWvPmb4mhap9SP9Jk1UHWiB1VZ7Pn/PqDxP1ooMShEnAKBM31mNM0cYt2WFpvEVvctZGFTwaf6dYM7YWH0o0QIDcmE4BZ7tnr6l0RVwPspqF8hePfY9rkaxos/C32/S9lkbbUheE1sGGrymSVyhgJWcSYdpvPtum+yrknWVEgERTx3qPN1dJtOMzIRBzBd7cZwUcVO6NMzU26Pwz54OLWiHcKSnVBD21Hs95keymWq8e+JpampaKtrJaHOiVaB1YgjENS1R3BLslbtCJYmzoU1W8stDa8jUEhgYKTftwxrT3TUTpblR2rdeeKeLFigw4Se/NNDVVIMczfQ9DXCUDb7XGbag0rEzgmGitriszPjzfaLU2Az/DHYv50OyzNifGrXCtu9rNtSqGdyrOvKIdVzOT4iEKSTYg1LEFF52F3zmfTOPv25Tk/lC7l82ovNLClkLBPM19qhZkPqmuz+iWuqu/0A/QbayQxf5XKf+QnIv0wD1xNGREGfTNSAnYoiZXSfvK0pPno9BRP/f0YIWMfxh3MvxG3QY3Bc+uEz5IlGxqLGpDaOuvdhmSufHIAagv4bQSyCAMv5nOcBwBl8kAXsMiAcTjgmMmA5Yj6D0i5YSzteWY2+GGQmdQvY5v/ongJRSvfli0srG3qiUlOlceyoljmuwHh/WoL/6246R33GJ7ox8ZFmcmd0pcce56utLxExRt10cmNg1z0GFzZh79y6Dnfnc9XJqqetcq+8kvzpGb6P1Birb6j8bPTOvOdk9VvTf7GezYv1sC8Yyw24nIdQ7Lp9bNnrAhpVjiYmkkDV0UmSHFoGvgltJV4qIjSIiMYx/vxQVxywXkHJAgb+0ZNgTgYo4YF1lsjWD7trcA6HPTYaoruTPJs2VyugzH5meCmHxspyrmFUVZAIcEFvkjJvtA8sxDjS3TuG1zwxiSAUn7iHBGagWO9SAy7DYuldiQ0RTFmcsY1+qmDs4fHd7l9KOUcYWMp/ursM04V/gehvrPM9L9GPBPzMm4xQkih/IvjlPbmmyp7EIH5upNCi9m2fGRszvDAq4vke6AjiCpJE3y7azx96hQKcjFGeDCZvaeF4iB9mPH+axyRpq9rr0RU7q0Rai54pxD0RzlpXTtBsQDpaqQ8Fpa9vSOuVQ2tiFj8/Si8L18nk9efGi5fP/Gy/hRy6zqq+DjmUy4xMvR+AsQ7YFII3UsxkedLAfj8mrzSJqOv1eksZ1qsAl7uxBhfGUmXjPVPPd2OVwZ482jbHM1tNQ8lU9faL8W7v3/59t4uwE5WJfRq+rG4qJ32puLgXmDZMx07C99h5vFEcc3rsXZW95yCyU7n9msDoGqot2p4VKPDGBYIqhsxc92sPUqqKDnoCHv598e1CF8PU3TZhH9VPpaQ9qMATWy7neEGpyO11Sg80kys3EaGAVyvFXDCjykeICJ4SUE3IuESZOp1zfJKxW+LDrE8tk5asghrF9mNikPZV5L1rcKyuwwBBmuyNxRBKPN1Ie/5TIZtopwMWan76dWi8Pv3wmm0aXGYl0b4Ubpe2jf9UutEh7UD/qjxshB9a8MOLbvDmo+KzVYquc2iTLAblKkWJMrMx8sRadUOfJ52C1scXleI9y5TEaF8HsZuQH7JxpKnnA7lF/VseYCTrj9HwukPUz0Oh/dLxR0jFBBtfQ+CIbbk3FbLYAk6A03KM943LbZkQ4JfKeNrY71+hBikpxTWA535LMBUmuSxpcsU5gvhi/Hzive5sWgfuvNtsFAhVjq3RKxs1495X90WmeCzx8CZ+5CMpkcMoNWH6rWZaXMPAaGrObePIZKe3IoW9N4ffX59U26YeuTeG4uxoM3NY1CI+C2t+t+2uY2d9O1NBa7nw0mr+jpvqizSpaE0XePI+CyKyiTw78dKGFKxiNJPYygZq2a1LiofmXv1ieXDdx09L6z1RZC/tm4hA4b3AgbVkghAYLQUUerHjQa/cRU2SdHRK1r7ZVgQxoaDSyO1RQRD88Fa5M7FD3o0G9gNqQCINKsO+bjCfsjotE37dzfUN3vDY56PScju6VRpr0/d2t6qS/VZL4Z4GPgBJYcUV/x1w6wUWqNP8PK2zqV1/flDO4YPluNjLm03SBNtMfmvnRhzWzqdEcCDWM63+JM235VmshEgg0GwNq/3Es2h5um1zWQeC7YQINDetJZjKpEpLUDwpZ1TQKTrJ5YqN0wdwgsxth5mJJa3PatogM6a8Wfel8n9YDtMhaJmx1RlT3BEtLJqSRJHcydYUdPAZ7DIBmw9XSWVei9ia0+Ccm8xrh1fZRDpFvyGihE3TNU7tZ1xvVxxui1jzcioEnZUCgnXBFopEqUDWI6pWdxymtN9/TVdwgzncuUz0lG0OHHtsDpiWpW77QiT1rJpPFBKH9ICDwNsLRUduXqlXM6QfAi1gesqLs9vOnc47o8azxcdcFOt0394Jf9lEjlI7L8zTXTtdUqWWiaq+E2Hik7fUW1M/1mP370wqESnUeBKu/AJJGa07O3hFzzMFV7Lft+LG1OItjzN+uoqajTFW06/t8WIKBO7Ob/97Ru/HAb4EQZwsshgLCqvbiG3AhKH01PEWOviPVA/IiTB8zur9GLhn32QrYTY8ocB9CugXImVMpPzUkH7TTL8mfmFQbhuKysIyXirwh9lRpX4mp4Z9QQbSMba0dkT9MuMnx6qxrsOkhHQIH4nDcH6F8j2VdGQp3KeLqgaK6K9zGWuiXccMP95NTjoz9eUXxw5s3TNvucqPmejD+TG/+ZzWuA+dqCtwRgm/FPvx2PtdU4tPPzJM7I2nfoq+Ve6uqMVrxssZacP5JPx8iFAWCAFGPJ3rstvsbx3G/ffVQGWBuwBHIb61nlPsEvli7bfwv6OQ5oa7SSU2HFN+slqPOqSUV7ZoJ58Rdi6qzSH8j312fBnByzo3fAVbpr7H16VabDg1I4ecYEl44TtFlaaQRCxX0JHF9tOJ6iW8P7Y/42yQ6MMyjlGsKTZQcwgO/0+yppvLeY/7qHcop1UarOzA2MqfWWqfhWwb5ka0MNu4EPYtoVZh8Vb15Pxjb+wSSReZscCTF+LRDbcb7CzlEkBKo2/HMAH6/GVB/XAgGPUl228OgRAT/cn0gOC+e6XP0A0mI+Bf4L+McXKbj1fWBff6Fp4a3K1p7Fv/V489DPrsqLKhsUBvC6qBWQAzYf4UmQVkvAuQ2hGbVxaeVmXGgCdZEYrJQ4VwwMEMFdhYaLSAtOuoi+SrIp5pXuDTLQZkmCICWMSLkC3udvHWzzyZJhKKGk0mMn9em/K4OESrO+CMq/azWr68DgVDH2h1+BSP9ub4IKfSdNbX+9wjPHwduXLg91QGB8T+XrlynH8BZXW6sYIS6UVe2bvLQSLjGs9dgi7zGUbeECDM5pjb5LgUXo3/GBfumArXzN0BDFLWyvGYmSjyDlboVyTzl5kKapIvtuaS2Gq641+3Ql4euz45grRc90chPKdD/U+pP6Dv9L0ywYfq6h6iy4AKejfESnO9D0GqQbktZn/Y/tAR0/vrI4N2clx/iPAS4/xlyTT5izW5fM8nUC3uRVg/78C7KCJrnoGMeoj8vDQlRFfHH6MfQlPhxDdOPfTpLqoZDDfJ8xVfChVlFb1jw/fFggEV6stayl3InGCa6RLGPiZOyz0Hu7420wLGTV/dN754K1IsReLAVGZ0Neua5O96S48Mk6jfwH5vZwRINvAWS8cyIQJ50VUMG7gUIOeTgItvVoMic9U2yzWgGgq7ebp+4CTNKwA245QmtJuWNFbK63lD/GuFtbs6NHcc3KeN9G0VY3oq3znerlmVUHaofaffFAewYP9E1o/TlLPIQmiX+B42FoEb1PFqarABm9XYwwYiPykETzGE0D9glJ9P6NNL0GWRvvK/rZK5fdx8Tvz+JUvqxBDSwgfmuI+zc4j2PqpjFWTcvrAd2ZYTvWZafJ7AktY5sevGJ35UDvJROh0o7I4Xsz/pxRIYPRIB319kir8u7/b5zdNZ0eGcoPKb74+iT8BuzizqBkw8dlu9KPxEG7xOpBEJNjG/9ofBl/KaF2grqF13Z3kMGyfgd1doZuELQYvxgWTrh5i4uLfQ+1viKDP2VLp0iGB3F4y046va+RdUnakQwASB9bnx0hLphq0ipuBfhBsPF1mWxPZaPVXsZ7/ip1AnRecMVrUmeiy3daKKZK4u3XIXMzyyPRRJLiyoTyElKZ9oaoxdTGxRT29cJgvX/ECd9xDJ+GvMkBO3U6qae2i6OLDdiDMpb2f0bkncmVWaLp4438vzI2GNuxJLihmojzjsZNF5mSCBKCQyDTJ9Je9kxoKaVA0K0IaBQaLSodizhex4NJHmAudPCb/bhc8BaV+vA0eFQFvuc3TKmVRjrvkjSdu6mitIby7+BYZEmTg7gc3i9EgJRla1miOezxzrS4Opo7HxOHKyGdkMb1nMH1TOihILIXik7c2bG2QTTh4TK2lKVIIittNzVF5EJCE1FFDc1M6K24hnk0nx39PTd9L+5bizmzWqP38JOQklGo+b9lscQUMHycw1Y7goJLsrA00Jh2kOBH1L5zZt/a48bURopT1qvYqzIhw+wkao1WsAz1gsQGFOM3goCUvPxcCTX4+KFXmkZ2aqXuxC/4JFLsCm+1OL5ClzvrEkCMFqzU/wCunwyCF8SEtZ0dYXreCvokRBTQ3m6lB9iAo0AQ/6bt0EJ+WseZZ/P8TzdddjidBTR7Pav4/Odpo4G2/Ng3yBEhVKsQclyYyf5x17XD/S1qBviNL+DzGKxi6h1D3HRXvKW6JS8Aa+O3fHvETvKT4lh5byk1Q3FLbO8GFdnnhyMU3Ma8Nm2ch+jnXkxBgsHBsWK9S/cCtadFw7S+ZYDHgFcVBoFg2pGjIBRGvGLX3H1uPCI7wG7f/JOskRtt6sJGEBGtZHHxMozd0QCo6c/1+v3u+dP1mO2ZQCuYu7aaRMCPCKx2wY1LlwOkgZnU0rVdpvaUGA7Prsv2Uf2mcT08++aXP3jyNMcOrlL3z8xcsiEQ0pSdE8jrRYaDfJv5KJ2euXmDKs6j/CPn5t8+G439C4BXFnSHT/0ROlJfIAQwBixC437Ua3c33m0R9FrdqwSw+JJGy12VGh29jGMXGouI088X0/SFA8oc328vfdErNpt/xnpB4sqHKfdhFRCoJKdY55zWGVMqJ/jRXOZiaxqpNcyr+OKS7VHf8D3B34pd4n5ZT621EZUBX2oXodHqM3tmD/8PrDijjdlfmtYv+/Ts2TWoF+AxCZRiLMYkpvz8uUHjI3PW6jT1qA8cSswrC74mGES3k0T9v5+q84BjION/BhLkNbBtgsOcKnX7/De6XLsFT4aizeVes3D4WNotq3bModyFUgHBvwmrsvTZqwqydEIpodKik0TDroYOKxxTSHLZzjlEVerPmrvxSjtbml+R6xhPIY69dHor9/QvPwrGYCrnPTlg0WXVkak8YDWJ/UfW3C+A9V0C2qb+QibqxCQAr8Hk5WGpBHhu5GHzaj5N6vSjmP4++o5/Rwr52OQ+uNfuhwg013amg1ouJAt6LHDFsnhnMEiMo0u1o3SJEOr0qItSV0v0uv610Cr2t7oxwOM64wXbqch58XSE553Xj1HDNN73GHZA8UanGXC2ZHLUQipYXIQ7rTPRgL986b6UTp6Uh+lfH/Eev1S5V/wRYJsEUGFAggZRUnxwT/2P7WkCYvdbXYLe/WCz6+wg+/v4HPaRwlQMzYAr/X7rnEP50bbPfN2qLfTLXWS6nexzcwK6x9oxaKwMB3/VZjTcV4arLSIc9hWH40txdgUqmwA/plvMvN1c9oIATHPMCW34idDb3imzM8xvZEeMqCGqfL8R+r8O/jk1TATHcIcy4icKfe9Nt9sig6KJa5NW7lMHteCVQ6uAU2dceX7OqgHu4McWH8PpDlukVZEI/rAmBHNEFJdVLDHUn8+mqVI4CKRHtYNfmmu8kYpdVlexqllGKTh9e29s14+mOBqShoRO9W4wIBUQ1f8WlD7SU7ag1EWJLUx/E8HGHsfTu3/1HpLDjYSasy2e3fIAso0r+Gw2LxAY2BLlia561VUVr0wRunfwJUH+4fconKa7rfTg4P+EUkb/PwHp5tmVhFJaPAsF79OP+lOMUY7H18LposgTW5ojYdDPFLvgo/3/b9JqirPSNhMPwgslNcVFW5JDZhXADMhpomHsoQ39Uj0H8eSEU7P8VbXpJYmi5XkbGhf6lEjd7ehoMoUo+dteG5jirKZv9oExEVDMpCQQzOhpf/e+AO4v0iZT3vM7idW5EoRYKMyzydPpreZcW8fmr4qnV7LBcEDm9Vc6CSa7XVGX5STeNVk1HE3OmFhepEQTnxanAiXIQVjRb+ayZA1KvVrenaSCrpjK/t0AhKoAn5IzDMJSpDGFEIc7KRO9LK006D3v0ag6HB9KvLmExiVG271e4R8dBGo04s+YgJWOciTyz0cTwp2Ew1W7nhfCsviPoX4hXciqoUGQRML77eer4ric+z603xSY1a6V2SVdCBDdfjDE6CVH1BfM+5Qnhg2hhNQF9ZQ8EhjBmEARfGfepdEbf8P6ecLfFRt8r8bjjneh/N7l6Tmat2i7FnrMzK1E2DG2T74O9IacPhsPr0edq1lzk2dg6UxmOKemozCIMIbf/qVP53i1v3Mm23u7dYvh0Xx+L93TKBaE59PLDzxvyG/T4EcBxBttrTBdFTnreLnwr8YKYWtOwS/zU/jclpYzNHqeQwL/3guzPO+EyH3lNO78CYyUG981Kl+PFPtxK73t1TTQcETtRfoqyYuiJOCGdIywP+K91T8Fwo1QTo3N/XX9druGHe7eXOCBqxHk8WIJuR4ydtcWcBVtHVGHf5B2NqRbGp6RBHuvWb8RhbHjjzX3QM2tXXq++hXXIAmrIBetlu9Fl5HQxXWz/M1Bbk3JvmC9aMUnR4bcKMMrmnWranNkeiLs9y+4OsbOsEzuxgTrB18DbFt+h3obwY7Qa6YmX+2huUzNAH3j3jhrGU98Pt+uRQ5tqMHeYNS3eKRZ1MlpL0Wmz8Vgl7PCLBK1WMRAAtMKSONXM+D1s0BOJQqQtD8emS0KoP/SP0btnsxzxaNDMDUZjQM7AIam08Ew0t45c+WDRWTL3M2AJ/a8JBHLb1V9kHnZhmjPUHwI46J/k8CeHabGCNZvl9CIhdQMEUTE3L5Ev3uOzg1k/lFCAGK8dd4IadoJ7HY0HTydXVATMnoz9teMJkIRFWo+aw6p2Lyg+ljme0bbbUV60Veik2N5neBy7Mw5jnTWRgoBS34TCj1GezLyQHQ5GgYByzv3ihEZ681araM2SRx0UxJmgYJyEZT/fgYFjrhIUKnQ9aTEYvt6AwRnC0qAE9DgoonpYCV7qIu/cVq0HKvYOqOZzx6H9/j40bHMxSabJMYYZ5kiFt+/QTCUD/88YXXNzKZTmsFg9f1odRNdOru/88mmgtbDqfZPrxxGUzBWdUBNi1k//VJUEkHgrIJlw3xoq/6I3Pfx2ir/0ksmS85Qg64ziLXMbWrAT3FRPIyBuQZSYjhlBT8Sww5GYQg33I5BNVROw/yJhGUqYGCGrZltYWA85OzjitZkQU9p89Zw8oo/bTNxansEaWbrGGSAscjDkbSkQU8YMz7XjTqUcDDB7dgc7er805QBBTYaDzkRUGbBGkFFZPBKtQte178r78dl9NhKTYdt6+bNhiLLybCaG4MnlnPoPHSTSBvDGAqZzjllLofUWl46lMgTSu/kBQi2HQ+pjE22VLtCwNkOq/MbOmWumAggrZL9P0lV5kVo6JYauh4EZfajuH9lBffaDm2MxrxW+cK3bvHlbGPAaqtb8sQKLmge9kScre8xRm+aM+mcw2Z1je0JUS6DdYZl5LxkdWikp0E/RZCWM4TnJhpkaYyH4kOerL810b3FGJO5dJTvKj+aCS5KogrmcDhPDx0nfvHinjCO7lAvbN6gfvDIula/soZJeeeOhWyjOG8ZhuK6qje3K2MqXSfP3H1g5XO2ERyXqjzLgWNt2Dq67Y4No8VUtumtN5ksIfMH3s1IXdzUxDfQu+ysuW0wDbTogQ1l02hZq1/6uyHTbgu3fV1iBc0R+684z4KZu3K7JohajXFap5RenefbopI3nLIwBclXM5WNX3+uh+MOuuBSuVkaGVfnP8jqZVEE8vljdkXNl4qscFv0jJuO+Tk1KIdSgl8W0QrII17Ugc/9a+Yp69CU+cmFn7097QqiRqj0Hjw+lOAOjS+VQ04OdNwg7oiAghFpyUnbQQg6h8rInBZA4dYSMfzN4RnMZbifNizqPRd7owTgMUfE+/JjdLws2rhMRyWxwkNgBgGzsYwP+aZ7GvxGkR46ukpFq/7xL2X8GoqpU04DbpdXtC+IfFk3y5MeqjYug8r8yyvp/tb3yz0F+QjtJFDqtu3Jnn/6W57X6a83kh6g4D6ypKd6fF8HuIYXNmdS7lO9VseYQ/jrk7itS/ynwU30E7c0jK1RzTN786oWYW9suRSQ3C6y57DhdbsvDmGu6OD7VZMshvB2RkCZiiPyYmk2IaAt4WUt+3KvjiiOSjs7y7kBzDCBH47jj3BRA31sn0lt5Dogb6KC3bXBm8JcHYv7RYRxoCNipY68+KF2V40eBdn14Tir69Udb9Ob5n7lV8qgJ8lEuFamI/qXxpN4059QYjbqJMZVU4NiwKT/EG68ERxlKPQVJycI8Zn0Mk8791l5YcQ3PrjrIpdnbUVqfmwjSV3qUKYVwXmumFs42N6IpBMyW9ga604mNnlP9XB6GF/OF7uDQ4t8lCIKvubxF6uA14xK9zK2Um4emLBbl3xdpNygpCbS+GB1s36yMrLIJiViAtOPtCz/6lHLRR5oUPKyy5Tc7XWLwrPWwrXy1vNT75w6T7aTItmSbHS3YBVr3XaOoWHiBdiba86ui7FVbYqywi79o1jBu4Ooqtyp0stOImkeLjgYcUFBoQAFjIh/k+lXxPV1xtno23qlBpWTfyuuQUsNb9jysSpdIjopsA4Q3QQcO4vIVi4R0BmfXyiSo7mM6ZGeAIYF3vIfXqfrEdfeLE3wlFqCWafX6mx3MieL4nuqchHHUoILMglXUeTeUAsdfILqF0Rabms1Z6q6mcp7hsBEZKk0jzM7gf3LNqkN3WfW8ehFjJm/7CtJBOs6BBMFhbkrNNdPPzIbl1aM2gf5UT/dyr05Zl/c0dpsLn/hPNkzbbv57b5MxWkKPPs8ozmwjcgfkSbOcMAb6Hvh26Vj3Woq/8cLOlnk0+4uKu1BOYpWUtSEh9o+1mz1MepjY5RPI34TgCl+27AqdAgJeMrRkp4SEzCyQyfjUWV8JcYNCW6G39t1QvVtbHLQVZnLrRMsePqtG8eP0cQ36ZJzYER3P65WqoVBelcaLWbM47FREFoWYTe823r8QnIo04yxmyOBjjcajv293p6MozJOC3BzA+NvLeNGGRIrsu6P/gUPawbR8xMmBQSlPAYEyCTy5x/34MbA3ZH6Y0Vys8ZQShcscMjUpy7e4/9CIFzNkmeUsK24rex7THkaMKQgL/gsc2wjBtfXIAJxdSfD7SNw+sPmwgXOsLb24IAfm+bqLNB/rLlbGm6ZJ0EvdXQuqqdmL09oOL+2V9o61TCpG6FConLik6FVHSMKMV5KSXthcDl3+ZlJbZkoz8l8BA2RRglH2z0UyieSj9lDH1/JianKngNiN5av9HQRB9ztup1bRHh4zgRJhZFtxVLrC2S6hpNdh8fp0uyY6EBAjYZkZ4kqwqwydIUSQ3P0dA+NVdnoy4OISv/EKd890vRsmrmCZf7LA+/Txu76vryEokeDi8djdPupC5U88RoCrFjoO74T1+7YXcfYTFRE+y8j9EvRKuzYjBPu+2YEFOjBQkN9yhfGpMgj1llmi3kAxngsfWJ6kd4Bhk7W0vydPq+tQJnxHnhE0wYkYrc4AMcLt6cOx/O4Z7LFxSQu20HNBW7bQdK8ZrSS7hB9kOAlNLXpNHdZJ6MTI51IdCU1xIUEuMtku5rCH1Pd55BKrPtqp41aJi+hAfYPDNAACf7xQmZIhGSaIkzuyCEpsPXRE+/pSU8r1MkJrVRjb3296HO+lvfb+dPscG4vhHTowKHZptUdtjj8t6HGqddIpAcMjGY6Jh6C7i18Nw6fOeOBvM05VBsKbqMZzYg+3XqhgQ0YYKw6+tNriGCWHz5Z/6eYi4LUH+TArJbRXsWEw304j2Yy6bqz0foInTi3wUV6QaqZXOQPyWmrF+v1jlWn00zP2jo7mhdF9Bg3ShLelJKRcYo/Na7/ptVwS5EsmcNImR2JzEdlCoglAaq2BxGn0MNDLrL4qbVKFdmwTdbwkt4fZ0FcC/Nsd2TgtnBRyCFrPWeC0Lkmajmf52i/6hog7roWoPxpM3eH5vaJCm6Yr23UPzSRD5Gj0cEHlC66l0arRUdRVkODx5Y0ihp5cu9pnUhyO3oTS6N1H8lRI1Hn2Vw7xcsTo1qGk7xMkqtIuduaYTdrteiPlWKEYA26os/ZvhJflua2VfYisW6ECzPJ7cA4/8k9jkHkCjZKUMse2vmuO48rMnBN//kOEvB2RQDFiY+D63Q3owe4odVUzzWVgFwNbPtIvmSjq5/oYJGT0BncmzbqBw9732691MDp4esTefFpO/Z4J1UtRyuQ8uOCWlvJAD9PJgMEcNXWWuOwWKxwP594RiBYig/Q3mdbvuEDcAKyQBG3QO5bJeDWcq2EgAO17YQJ3O9gwi/vp3r2HsFYo22+3uU9AbGMNZdsZAjEvgMF4bIUBcSuRvIijjtotFLPcVCD8/REMNfZm2NdHtFbjFnouydmmst4mss+k/cYi7rKmZhheQAZVNAIYjOyKpvGT9ggLni7iRD2+PwWRYVmj+FqovfRDLN7Xahz/rMCZirqiYcVxndkka2lh0F9ca6h/NW0AgZwNWMwnVbGLT+lujUKUmT42wSMsLQ2JpZ8VeLY+59nzGFdo65S807NKR9mGJ6IJe40d5xUo5EjFKDdo77ZxNqtXOLcgrJJUmbD5rjFOuBKufeW2C2KtguEokAGBCmA3P5zWHX01PRRCcRtz/0E6oXAKtjwM8ow83MZngq79xgZInifxBGega6pIDcihrv1YJWR6NQ0aTwbnMBNPLlGACImqAoP5EP0SDLqhH+b4UAYTRShDrbfT5CUNYVhO23fL/hvHZMfrP9YfZvaiqo9SVQBqLuf3kcuuK+VR+wI5bwf5hNjv1qIafZvOWq6LtlfYMAqSQ0euvawkPnxYkRVfrGO58mD8nSqj1VCGU5BmAVmLzOzO+RqfDx/gq4Bq5/5CqNAZi+S6YkmjuCh7iBuK0PtV4gjvsP9hhkvFhlbDb5xeSY+GLaPqUDQxPSHVdNhDmGGXtxTI5lJL0/H7eNhxNX6Ii3pB13zod1pO3/W/LLzHgZ0mgGfnfGJsorNmKctQsRnEbfmxKUmvFKQk0yyPLNHU54CL3e+7efia5m4696Qd8QKMtLqFOq9AbYXyctLj3L8RFcA/gg5GWDZej9lbmKPzmDZyycIOICMSBB3+W+cSj03tBgPoPXESQ/cSoZ5cDIEQ1ez5nDOiGAWQgh/aEB5Ngo4/pU44cXgsAjQMk4IVjpvKEn6ptGXuHWOH+chcVP+ymr1/URNtatz/tLJKA2n5zKLJtrQZ4MKzZaudFQ3yaI83YqFSAiDVE89SeVESA8OlGEJq/3xZsO7Dzut5xgimLJ0csMRc71OY267i82scq6+hzlMh5+J97ia48dq3yBRoXuVruU3/5WPwc7dlCWO94bzdf1xGU+FyiduoBXHBs8Ng/oPRXF8Oj8u/2PeTRd5ijay+2sCDsj5K45w7vnFD6goPj9VbM2DizHuNE48T2W3IAXUU+/lG+BMZHFt87P7ZA2rQ2yZU8f2mHI3UmggbxiGrybUk3LPoZbhkcR1gOBShFZBpVxkDYLaKp1Q70Se18wnGmx95eQxzbnekYc/ULnJsP5chqfBzGsdHYPxnhYTow8SYCr5WfCPvWoqOu+JrAvyYR4NbFFDv6yMTSaNQ7+MIU03MBzUh7/O7eP7SCqf2BroQnQWPepYe/sffnj7GVI5J1tI/0ZWGyKMEmsP1gEIStxFKDsJfM8KV/CmWFDk8JUiphlHLG9M93lJdeB30z/U5kcL1Sx6B8+Ti3mKGAZd03sJEd2vi5weEN/yPLt+LwM4qk3Dlz+v6ilQhkBOn4i981UVHMMLVPG74GbjJRLk6xOKJuF5d03u3MajMlc8SCJSY3qUlISyDiiW+Xqp/uvkMyUo6OZMARMoWIjX1ineNmpSNJBuP3KkXdDT6AZ5XuzKVFqFpb3RqEzx/5Uy/y3mZN/zZ37djy8jbvbS9y6x2h+Ml8uKorgexm7WM+XGlSYijslsNKhCS0QyBnuLOb375dtF5CJJ8sUTP0GQxaEAWzufmOlkLuKmBDFid93jIdwXy9jaWR/EwWj620yfm4QwV8MFjo2ETT3EiPAb1ZoXRaJB/eXTN/VHNfh39PLR5GRZZA+M3uDL4VQfuBFi1jV4OqjHeiuDcb2mKz1urk45dwwWkDAFysBuSAgGnxk5a6TDt014oPVEdesw6KmM8dl5/bxYvVoYSPAF+YPI+dSZCZyNovFZpSKZggy2PspPas2+yO6no8akYl09Z7uMRX241L+Ym61bjozmwEnsRFHm9Lx+IsCER9VnOWEdRsLc1HsOSKHQ8g4HswI/1KYcbPf4ROC4XJtrfNe5PonAUI9qOCHCUF71qvkvsdtiYCF9EGo9E7XmEeXFr3c2KSRej3Lq8a6V8p3EtxF0jd0gEoTYRN8aESdi86+vkllukMK1YPSUy4YiArywl8tLVpBWE4FYxNrrER8clGtWngVeX3pBAGcuoZb4f6rmRtit6Ygz2O+X/VzbhHD1tfgrsqJSJWZFZiUCY8SSJJLMC2trhim+gAWeD54OcrYQ9larXR9MltN2D3cSsr6G7AUd3nQPMeWhi3HIh8oDtGyInom2NGN5uDDgrsBI8tqDkjoeJdZ1JVBC4JVpjg7jfeDZM6ZeM5cFfJm9urkhIcghbBoxLueGtX/VtuubxaMcrNYJsMVSYqFh1YYQtN5r5H1rAaNQHeD4SDv6U5RfrPfjtNp+yKQB5D4K54meVgD2aoF14qSMPkSbTbk7iaby+vRA1JSgvHeb8Syovo4mWo3E9ekv20isbQYIz0XK3k3b+JDzoTP9G3jlfL+yGnwR17feZRw7uI/PJ9crdJrdjT57VrUEGAp7rxSqNzfaBvE1OY8v83QC5ND5/oewBT/xizYgQQkSYSSbY8PoGPxXcWua1eervQhZHkS5JhN1i1czPY7bl2whXqba0jNVREEcV9IzHzlRBDKYkjc9QFRbBI+GUa5LaKQAwwne2rX9z7PYyZlKWiBl8y2fcfW5bDNJdKbNvOHijIMKnRzAuDyqETBGOf9hXTRpHGCDGDrDYqW8Eg9FLXJ1dpjims89f/xamP63VKTSZugTLZ2zkjc3sgNYVFu4UupBFw1+oVt8vWw7398BZ6GUEIyrPVg6dnIUeVW/oSpf44O04zAEcZ7e1y6LD2GTi8LUH1SyMb65d9zeTLHgQxTTHNSLNRZry2sb8H+ezXERmJBjMdT0S3QNvEaS9NInM1L5Y/eWB9FbP8Zlx76nJ7TtEi+o78OBdXefzFoBC1RDEMYGY5mnNxmeK+IYbIcY+TyVC5UOL0b6WNvFz/1T6xtU+Wh9WUw9luJ+tuu7z0l/1dvA8ejlMQdlZ7DF1wqNILo7HYHICCYptLVcp+oS6Ejy+76e1ccPoZmWYK52cV96jSOe6TSrZisSvp7hO62lIlJQugbwIgItqVZv7TyvjjhvgqCBNJmRjL1WaA8xrqUHvMhYoVsZo2bAyWOTYVVw/eiy1cW9qN4QxtevGFX9rYPOipyUfmMAYxXy3g2vPMEUT/BVgfzA7QHpQ7Fg6dsn97Y+M+lF9xyNaVFLK3biTHZhKQI/pWLUg5Lm1MuwN2mKoagc0M++5O30tYZHPKN8o4v7PDE42urWoJdUvBgt2VVFjv/ZhkG5lSOPtNUINm3eRWJOEH5/WtH+kIBI/nzJZH/LvfHaW4qzj+bX2K9g+JlxGKTIgUfT9VraBgNG0h5r3osCi6bxvxFVviiIyk3fMnFAxFojdBNlHTD7WHyALPgjIx04o0MXuSGI5slTOxhHglU3+y6TXbdosQ/oZVb0lAIO9NP/En0cl32ejRmDYFQDGIXPFgh9oZcXS2iqG9uHlZokgztDra2Tra2BmyL4C2Rh5E2x5SmTyV1Mupe3FgKg5G70nV5v4S4yxzy5Bgb+kyUfkltkw02agzyZQEygQ2AnEQFIwcMlhWoQDmmR5xZ1C/U4yM5HHmIZanE/uY9ZPVFfdXKLVTIVVfw2Eae62EkNbQMIrmuQX4s1uPSrrUOFrKBQDF/E70pMG24FJ7/AUE5f6Rqs8xKy0Ew630fFgR8F6R8JS7ceuSkJHS9TbssT+nI13PxENmKHz+RpZnmtJI5UrwM2dJhexTarP4na7BNslM36p+UnSY2bpd/fbAslCwiTAFg0lii4f+sEEQFg5D38Ngh30YLTBK8E9qCn3hOWYm/8G0GnTyKDQ+zMmc4EJ+UcNg/w0X+GqcweIKy9AZa/JfbyFYIi6YqtU3D8hgDRcIr0gkDlAhAIPm4BIJ3tH2owAIW9nLTQiMsk60MJ45ixIwCzoWJPSJ31jSZ4jVuDPSYc71GohvIdeVbvEC3uGtK7IRyk743Lwmq/sFP06tXLN9osKX6hVjkGsPmKRGOQexWBCT3xs6vUFD3HxQbnV5abXFKqeYH/1YYkm+x1BuiyJcyw3ZzHldDqPMCW0dSEw7tqYMaesP8mIXS7IlndutE8x2Tt89HCF8agOPFv5+K69vXx7s0itM1Y8E3eo4wW3T8KwaAHhqsiPei7KUuA1M2IpU4LLRjOiF7pFIqk2Q8L6wuhtj8nbOj64MgaeNi8O2RiTUZKXbrewJ5/ap479nnrijVNx+lo8HXVOPiWlcHcnU7FrcvuQg3+HMzmuHDjs55/Sf+AJ95Nct2hBYN2Dst3R32YW/z+uantdKfNbkQnP5tHLtK49LydHftkGbtynci8I24E18WYxBuS9smOFvEGZaNop7XrgqT0yCyCizDg3vPk0Up29CwZMseLcOXhrhejv9TyHfXR5QPtVE+SUvTDHlI4+KdeumlEfdb05FqiNV6ygDhkhJA4x6fLzJJ0kFkT8D3CL+al1FNVpLWk1vzh8siJiKG6d8VFwqHFnqe5D2d0fXOMdaEOjJEAJdD+jdT1AePRGTQvmj951W4qsKsc4RcpXNxlcgVed0b/xW/0CDJ3q4JJNBWyitJygKpbcEXJZHFXW0z6QE4kWiq/tUx9Ma4/f2/jZlQwclW8URQtk+o2RKhZtKu9IJeRwfzk6w63yMmfx0GTzl/wxkgz9Rq1nZMQzyHjOUIy+YOdCTYlFA9O8kPwtWs9ZcIztRCFJEMf9Bknh1CGgGjOigeXXuq50me9nFWWCnyXL/FFisGLsBtp6fj92zUKiP4niasjMzySaVRw3mrnsQXqTFTeFBEnE97myIgawsQnCKhSsxdIjehH7mB9wlE+wTncuoQxc6N4YhRHqhpO1mhF8GayFM3peBltJB0v5Ogm4qQOsVzOgoxWik1BZuV8CX+lFI64uOREiHov9qqRLuQBYLX5kHnhGCdB7L2Zvn0zrpEtBNaEThOCXTKMfUxsT44TCr2vtdcmZCcqWl1R/Sb2wrBhd860CDkU35LFkEdV7XURyPenKTjn+tXDnDdcyO+YMBYdSDq3hYORx+VyHcxpHPp1jdVcCBAbwfBPqAq3KDKbEtmdijpaUx6oAK8DBJ2DKSUfHJIsnKMc3WYOsOvmNGuyeSRrUPPEv8YpgIm1BOVsoE+TyQZ7MDK/rWJrji6lT5Goxb38w1PzWIk+HhJpYph76wffy0lDTlm8hzCBik0aQG63wxSg1FUwBujXiDNt01xm0+jPrPNF9OEqZsW3fbX8aPf6+7ZAJlaWgMGjHZ8aempfNzaPj6dXQ1a4TNydqRMORhBjsebH6LGWDmPJmCIahj7yfif4WiuMDM9h12tJoknf6eaHveh/09nyWbr8G7FxkYSKCCHhE6+aSMh8J8VvaIdQ8wlq41zuF1mrKpteJgdtEDKGo0k7kxU+8jRjCCwNZa8fGnCO/muM6f29Yb67u4hYPtZLl6SfcLbchZ4r0t9qs14zm+UXXLdeSOCbbwvddiU2x3+UUpRYLNcUB8agU70HXpUqTsQaCunGHuRO7dyAePbIHIconOSucGYvh2ItiQWNu8TfHb00/ucaUTTx+tF6s5Me33IuaqzdiBddhiMOsYEkEAsNzMXdWS9hQu/OYT+xWbijLzit3qNyrQMkh0cfip1TIlPhHJ0098i6rdzxDxmQGqp2EGlG23es7P2yHbeLqhFRmn2lF1EDG7MkQHCYgzDFTGHhtp0rjqlOrdMR878UC3EvY1MeXcsyELbvZGDtD/Tqz2d/2663zoa6jTfvAdgcYbdus0ZXZ0wvt39UNrXtzUaJ1NV28xjePUMahoQOf4qCjspq8XsdNOromGYPBHogkJGqkgeFnFVTtmm/aMFhi0nUb3419pZCrhmdoSuYubG5RmIdYzB9FEW6APVoi97MsGC3UIPf065DTUqlMQkICs/HefW2IKJpq9owehmP22WZ2YbVyUNem0+Z/+EDS2n/TBwB6tSxAPR3+9vKhKnXCmlPVU8jFnuzusTe/Of0aYSDp/5HkOXI7A3lbs5a1ElrvCQ2v48+kPFN0XVQaMm3jV13tmmkdIpA68bGjCXd4p77crMIEnfsMuf4JjEKLzl4jz+b2640v1EloleZzPuWOM4MHAqQsJGv+QxhQE3MRg6L39XxJkDwVUVTaqwNATBD69X2nToanJiyIt5+xmxh9u6uXjTc3RKSA+U5z67dJNG0C6mwSFyvGmkqUYscj+iT7xK3bgjBNY38mdCjE0eBCnxIkOIV9zlAD+DKFb21nnksdxzxESNtdd/Ok6QTHbJ9kiQZBbOdkc+SuVzRwUFcCIQglmfiDYva5jQe51CD+kTw5hSb5Hhg4/AVCkvTF5D8fGLoql6+VaUTdFmLRq8FLzUy/LLq1S+bZUlNAwooJazFj/oiPWG9iaaYQdDM7Ae4ixO70fZ6DpSy4EGSArBdHqZKqECIeCuQHfiij2QrQMEYi0x/0QZfdYcHs6upAXXuySeYU2+b+EmnCvqg2DmrfHDh3RUHBxx4BhV0CMG0upIAVl/JpazVlKTaKbHzFPQFtnW23J2n1VSIQgvv0SYvLeLj+4uG4KnVUgjrSf34yercfNRkp/HdQpLiEfP/ihi00QDAWEEVQ//oe4F0KwHlNrhRwO02E/9qhaDkKaAkscJt9q9LjuDOd4tuAZ2UMNGtpSanPJ342hIHPxaG8g+SZ6LBIUxwH+dwCfTsfW7WjKR9cYISCaJu0cCNCy4Ha5Z3Im17Zs01XLy3lutopGjUWMRkkChvSLexbrAp6ZvsvyTdMTkgHAv+/EUK2lBsdTX7WTdVX7AWjonOhbcwcA9tG2eNr+L6QEZNG2nfb2qIj9/CIHSkpaIXvmRWE24qzIu1iQB/ing8YCOg3zxbdjNdrLa3vDxKZ757IVOmAVeCSa8fOOmxZ6EtdtVuJIdz9/lXe5qosVjwYw7k3zQuS+B+eNxvM5VoWkVCqO6prigEs5+zZVvgbGgoT3iLGlSG35pmf9w2Xh5Lx4phk301sUexo5YpZmZhq23nmxCram4T5ec2hA39idPnZiFE3tSTAfDwx+hpUpDdiGyTAgZ2FgmUvQ6jQH0k8Mk4ENGHDGWOfMUkUkwJ4FuP/3cQZPP3JbhoOCrvUQk9AiS0wQT2WlyUU5MCdY+2HXdu6ycBOKqeVat+Wya5GXtcAWQ51nMHe7LJhc+UxZR8/UUDHMpE8ONEE0dSpIBxwOHJNA4ZA6G2VorlFRV0zbdLeFBVW332mUmc6jJPpU0Q9wScpArMFHQ8QSKMaacHgmZDV0UzUs5Sa6jGcrexzNN8RMwPRBGwUydGqK6xjGjJGoKrY+bLkpN61TLd0RY98sPqgXxbeHHL/f2MLOeWUJ1DxPn7sZ7LumD15USel+ggWuhEv6qu9kZM/MMShKUEe00wzLID+Oz8R6xUTj16IzkCP+0ZPsaYNyiozzMdeij7CYfk0SzmIUGUQOhOELeDVy5ylRQZXYWKXnoIyYN3Txf3N3IeAU92msm2WuvGh4DN5j8/30xUta9E1EPwMbpa4AM6UywreAp9jeWyOiZvu5h2pXu/4ygLuCEAcAZJ63TQxIS8LDtR42UNnuYPg0QES3K9z4o5jvPUAUnBnCGXVhUxsN7wvV8m8Zxc3apiZyCviBWpT1Jkhr47keNCqzGQP2HBF/TJ8HnZcPTReK4jWlR3uMOSvOg5LjPR7C/I+qp14Y0BqiwtdDXEVC7Q0vxRdAv2Lezc1S4fzoNqbzwvOiaxFAkUInuoiFIBI5J2Lno8bczHe9XUNsUD48y+FGzsgZpYfu7T0A7A5CpzrLtnepW6N5jUBw/r3WUrxyS9znDabm3DDzDRVmW+8Q7K62Hc0xlnawkiEYc19oj1zSk6eEAwH+6OQMpqMVQhH1HQtvBBoalaEAgowBrtOuPrNAZEvD5B+AoM58ZcU/qbPXkNDbeMxY12L+jjXMrFVBKlSHHTJHAbTh0EdUG82iUGD03H2Lsy51KVn7QgUTK6LhAW15FLnzk38GkodrrtkU5LWx9JtZ6joO+ELeLEPNiQFmyRc1cIA7+Q0R+uqDHHbpLN+pvH0q2w3vMgeE4NUHKIOKyR0DwQ1J6ICB0YoJDvDq+I/FCtIW+BXTBHcJU+jxovotroFICJDRROHPXiXMXha2uc0sVuRYX82K5UML9LjHeBjM6Xl492B6sKyRCGE7vH1aL6bMReijm6E/OKp6MCa7z1F+ezsCVoZH6pE56JZDCDAoXn6zZprPTt7RqKfI5Qj16961ErMSXR9NfNag/qe7bs86cvM+dmnvaMlSw8AhQ4Wq209rqboG5EXwmnCTBaLvFqP0m85PJu54dB6D9bL4TFkX4nXTXLTQ1jP8J9wVuR1Gmww4L5KYIljplOAyp5MrJnRDwNXAE8oUpFsPNr4qK596MBpyG7EOeDWV0uUZzlIdRtZ5u1MqU8oRFHtHu++b0XdwBTyyOx2ulKarjJPSzZSiXrZZxB/RDb/Be5RaiIY8Go8zzXVR3Ny9O9gOYnR4XqZ6wQ/Jwy4HT/MCqUvVLKpRnuxEszEoFKeREOj8FVnVWzMD2zuyMEFCUR4Ez7fVdUijK90Wsb6wVPUGTp7B1bCkpmUelH4NBuaDwzPzhs05KvADeAqHoA5BJgeyJa0rE+dmWtNifu/f/DAMg/A6cajC2/Ur5v3FLgZidk4KZh5lhr+ESNEbP6ClGceXNtgsTkG4oojUH6q+Vyy1Pkzo+fxHTrZcyl6laYrsg0t/qqH7weeGu80/h3OFVGgQK66moIAC+QOrBii6eLEsOGeoc4NlyG2OczExn5Xd7Ns2sHJIWurRCQNtUC7tSKEqHeZPieLkTbS/kkFC7eVA1GnOhg9N1+4yv3esuxfy2+OnJgXAhaWe6DkM1C6fndNqEHKMn5ZZG74Z8wdfS5zZ6V7e0ZWFHySK8mf8xRaKe/kwN22hteMToAdmQdOyFl7JUIj1shSTE9aZcQgTU/1ex3c9kpWzrTR+MU/t7td8+ZWGZQoDoDhKzE2LIiSR2nuecBQvzezolB7ojb+ZwlfkUbax9GbuEJe0ejdPsmRIVqW0XSI2Dsq0ervRWhJ3TE33ru6aAggCXEFej90Z8PCItPnGuq2gKn5/h499FpFwgCC8+DxLkTPen545u6Keo390JE/5/3VGkH2WnutjloRiZpl3Fx9nAQuuCFIvV/96xVBX1CDoDPtRzozUs9KImAOp1g0wg8FqNo7YLVxWRPXVk/t77CODLr/MSvvlNxlhZH0bWoapKapSNLDPIOUBNY0F4zJZBUxgnc3EZYz1vk6qvuu25suRMFOR5eBU7AhpAGLG/pRyH0jIMsKix1rfA54reovxy8Y0UINsqWGmQ7gNJmGLz18HKS2fNb2aBD0/kbXQCmrXWxZazfDljIbd91tjs62omoY42vFBFtduvIt49QyI/3zP/LjMY/SAVMiQn3diyEOOffPUCPnPpJw5xpq8Sf1TOkfu29qbOMchz1USR4JH40PZROEhArtJIET0tNY9oREXRhr3pKt3NOz0wkVPHOQUnh3viLu6LT/tV3CrCxMNlJtiICisRd2+OZpZ8UnUDvZ9LFFQb+4xLdUiwZO2bD2HTyvsT3qffnSbn7e+9ShcHGYiKTDiRXEwmneW6qNh93NceYipnaYEuKu/qeBRAl9CaLiCmH/UjPxaBex0oRavxWHJLjKxOOT2LynYAIKRrPl1V0QQ7z0Oza9l4CRGWfs7HMgD/J0SBsQQDXxIYvEaZ2xj20EdbYLdRawJCQrY4aNKx707jmTxJOjFXGfIY4gOJbIK5dCZy0E0z6cGUKqy8/8uw3H8R45+0F6VuYLMTUgKD0V9eDfja+Q88m8lC8uQP9YIFmZqDPQsqR9KiGZJ6h6NQUldONQ5jGcNVEH90oq9/0S5Pntu0RTspu87k8FbojqJLZzNR9/0hqXYKh/J2eZL5M4OkPAxsJbE6XbQq6GPDOQUa4kt5YoxpHWSawUqSG8nyJevWYJGTVekROzyvUNNGuy26iW5ZnFDhzFxfJtne3BgI/Ddnmax1MSyBt2Qk6vWNuGs/3SR/uYGO0K0A8/Lnoo6ATCVRHF5VB+8nZYaoqLh261ijeEcwb0iylUPDcfgi1dmHocliLGsNFY4hlROIKXFjxBwoNBgySChIJAYYVv8AZ7IUfx8HxWEs5b8DbyeH72Jf7owapkrTIZNyP/3sa6DA+xwm8adNxpd4pbK3/So+76g2Qqim9eDPlEV4piRG5ik1Qwuc71iJMr5o4G3O5CGWNSNfFZK4UGE6DMPhDPmPQTrigSfH9le/QZ4nwCrwxHJClQsar3//nNR97cXXNLUfvPS0ecwQH2r+FpcKIC5EX5DZ5vt9YFYTvq6l5V5iqjPrQx5XN0mFVWEqyHhpj1Dgyu52ni6tIS5YMDqPeJu2Ph0tifaC9R+Qvtcfs6qOStN1MuQBBUycisRTqeTH9hoiy8yj5RcD7e0TY76zMXiBcPuZs3lPsORueubxvtcMDzcqK1z2I3SH0wKe1/7Bvrdg+srzrBwC196QZkaPeMFFnTa4Gw/0Ymwo/Y4Q9gH0cmCquV2JsCLxltoDmA59JuNsc44TW43p4RIGlgb245jDQUp7aXUNndRZKD+zCnOIPPsR/sWgpnFOxWebFp2XTx3WM6O9nTAbksuQqDjwhBpPbTo+whtfmn5GwTCKKcmyD4VHR6pP5C1WZMum8Kx4WAcFuWI0LLp/MPO6vC7AkxtrcluGi1L6R23UsKBOZd2qRPSM432nCMEJwWBC02rbD1/ooZMSYK8a8wZFfb7BNkBb+ooQ2BmrZfnbr6/LydblV0Ag2+YXB+8DzX/QVjzw4NsiQjVP5KLo9tiVLuW0gjL8NXNJ6ltKS2EQOswqnnTueM8i0OiEriQ7M8iL5q0QwNMWzEESwYKwlIW3hwun01ztOmgUg05fU25qvEXN4Y0hTACOLN78AQPBQkb+YpLnyfJAu7+FVlHa0R7H3eql4MRLto7OIhkK9i3Mt/Jxk1hwHQd8J9PKO949CKp8MCBTI8p/gtVcWuC50HlV8BfUcpRcHMvpknoq4kNtjuXeFVeRzvv+4F8u/Y5u67Sxsm+lbglhKNgmEiUJuh2Zc6cmrvbeEK86CnPliWvPB2CWnLBHrkf8qmEuwt9j5DkNjvnKcbhu3LfNC3jX5RICpPL5gbgtUD+TRuV/c7m00aIJs93h874rfyTznV6MbjKA3JosdIexp9EWgXSftYc5juhOtY8z5zuCGg9oqOT+piO8xDkdZ+JRA6G2+GoEdn5kkN6UQQiwzFeVfVk3pGbyLg2jRu643OMymQmUtITTjZd/fUUDM0YlEWWeJsG5fz33bvtggQgqW8ryDazWa4BBjrKGGhAQAdyQ4MJEEwO5QaHH5ghL8cHgNPmzw6GkwZVgmM37q01pEUgPXAxuVqPk7iyDk4LVcVB2K9Ch7dtR3AOe+eEH3GE4qQIxAYw3THtHgtFkkdlnLyQ9+dOl5JafXnmVYAkRup6VNO0IrIny5scP8lJuzxFYkkOk4YZJNV3urLn8ZNjLlDRkVyib7bppIqB3CDe9J3bBs1prAv803eX8/0OVaxmhXuB3niTznhDMd0owS4nnXtm0ZQNlWbR/Rn+9wy1Cgd8an2i8yle8ntXBk/loMYRbf7DYDi2eJCAYZKzVH6xbjsTJ4h36tBTqKz/d+3bmwh0PW9fTDgDd/Zu7d3dpr+YK5UtsyA76/k+ZUtPyF3xDXtG1jUVsWHKv21pvJwSDpYIfTqQykc9q666uVNXp08sSd6KGTM1Dsw07KG/xL0GeyqrXgFR/ufMAO913gQ3LweTESnS798iALA+hciWmyPLKS2Wu2jpOrvKwT/SwquwmPLxl9HqGoBgDDpY3OYW2oXDDEri9XENoxtfw+O29Fo1fWC6LjW4TORnb2PyRSVEA5VzTizXpCu1mf6azXPaX8d598nIVq90AFqPJ8x9Z5s+Cg9msYevCeL7BP4gEZF+aViizsJIn6T7ImOEB69XauULBut1uXifdxAnmcDv2h7eRMOZBUDUSpRbNpUCKzk+KevXg9GCfDE890+Z7Qxgu9AdPd6sulUZin0VIeJ3JAxKh4W2VKi6AdhLNHnxPjmcrt7SZ4gGETIdVouMIcHUPScW9N59VilUF/KD5Vc8sQJS/AUUvr0qpy1et477WZJxAE5RnNJ28v6IECY8rkQPRKVxP+UtJDKUySvJI7P1uMLD9Cw9Lij4npEfMJxiNUH9uEzMjSWST0raWQ4OkNRW2OOAFne2EOqtXPOKE9eUcCJw25i5zkhlO7dlnWrfW1uXsrYwhICC/QC/zwYwQz4qJfMTsrPKQwQFx0x1g1ixrYP76ul+7Vqo5QQsgLHMXWn031uOI1Zo/zvdpedLu7lfWzPdmB99Cs7B5/PKFeQNaMOb38h1No3amXi13qX7FIPL4dJxUQI6BHkCa9PpVEqzQ5M2DMvVkw1mGaAN3H9dyrq7+Zy2BvrrIPYxnwoLIfcxuvRSzdZiDA3869vMJT3PrXopk/L/mkdAniF+/gfhfluq9P+sgp2lmrkE1Z+M3Ntmmq/ry+3WdpERz3VyJp3rp/lGp+H2LYp4GYFMjRVDbLuwQamz3iwbQ9M9h+Il3Bu2YE1DgbDbbF3UpZjsZJL6skKfqB8LWlmuqIFPS8Y4bhJz8ByawhC877P7nbCrO34POrUNnUM9+JyZJ6huw+GIQOfchM74L8a5yat+oxMI+9qRKGuTjGE3mLlEeb2Fsfy1tmuiaGu2xoefmnXsns8Wm/Kt+QhIZkdbvB/+4AtiGy+O+1Le1rjdZ5ZPIQA8ps/64ebNP3+n5Dl+HcY1xgoSEBjQQNz+4ISdCRkC6p2+FKMoquMfHtZ9xsa2MHhjbR1GTnb6Bme49i//4GL9NbGdSrVAsfhSGT/Z0eyMuxf3kOgTayLrfVaNwE/Ef11wwugA2HjNyymnXwd0nlZcBSmkg359mdS08uTQgL5bmqsfV8uVEwYpEbmaIlkaz04pUZR/bxZUU6JtwlFlQh5xzt8+6hnFwFcTWeIXZsxfehuSkFv8aAuUzcTS2SHfYPLCryAchzykd0rWyeUyA5Cfc/um7o8P2pf/YkEhPj9nR9mGno09TNTejd6XcnYu5S3GY6FuEB0JIieEjSFXjlarvL8yKuKM3YQ7tLdYdzm3k3YrYOtgz/3upmRvtFGjw3TXgGY/5VsvSq+o3B8ugVKgAPdwkgFMBW+/vpnEw6mEVdFUwd4WUuqn2QcYS+jjIdSlNlWCKPiszQ34F/vYfsiNUUto7k2niEXNhq6YuUsOBQq9Q5TckpXdi8PDr+GA8dM6qH+ar6i0Hp9ZZ6FUxtp2xnI7BHSrB6jfQz07kZ5bSVmox19QSmxC8vD5NTn2po8NaD0ktU8WuDP5jccwqtYm/27MZ2OUplUgaJn0L7sisIQXCDwJ2lJbIN9ywsZPR8VvF4xYHOzCXsjKUF25qOK/7fn1vGOM7GUYkyZaUPJ/rZMLhozcvJHGloa+fAV68DQDiQnZeDB7kt1Rug0Bgi2Aib0bo/ZrImhjw1rSqfbxkU/pLOoRAgQHTJ0Orhi1rem5FocwJFc6fTEcNq1w5V2Mlbq3tPIYoVRY9v+Jgkzy+qNidpzn5lFapHXyQmUBmyO/lvakjm9ckuoywGREjkyzetxSSGi6XquRer3k6ssJIk79B+ruI8Ns7q3W0etI1u07DRWq17GLSMrz/Deot1MbIsOFWClyF6yxELl5BuL/1R845XlSW4OaLrP+9coxBLcYUPyj+GgzH8KRGwnFH7ogwMA/pUK+pePnfEjm+UpzraSaZKq/VIXOsdeB7NfIKocLQ77u4yf+ViMk0lh2WsOw2cVRUOKWdS6rhnMzZjOxlGljCj7lcQGjcl0ndl6s+eOCfv1QuHK2PsO4EYE++MdQnjueXT9MqhVc0OYiTy0jbTl+XbFPW2Q3gISzhG1cKjmTMPz/D0ExDLM5MqCv/jLf+Iln3bigjUq5LeVJVra9oFwnRyr9arUDq6nIlh1ELoOo9x3iSLshl606wDzUG1cQGghnFzncbHziOZ5hPcla2J4Y4x0RhKhLunLdx5dJU+lQ35EdNMerWvTF5ZO4gFsfJb0Oey7n9zEdkRoE+hbR5XQkPux8MsGlJlmfw4hK+ggnBDl5FQyRhqbmilRmd1MEtM9ExZkIjira7U7tPzKGUDMGzQWm+kTXUIHiYsg4/a09Ij823i4KNy4SFqAPvNMTXHFdAMKceo+KE91Q6gIOw2vzpZubT/B/A06FjAxiUe2UIjK+wjjgnrHDEcpj31Agm0X8nk3/X9AZwunGeOhprstdjyVervtcOfG207HVqwiEhvMVpMM7z+JUm2ydhioDR6TB+dBKv30X7nGFfc640DcrqN+NFrM3/wD7aIC2jujowxd4ZDQsIm7/9XbyUxp9dsKnYIUQpItxXmu9RSHTpqKeASA9EkdoTyEdqgQ4XcXTtIgdxIR2ErF2VMBcr3b1PFA8KigLH3MRJqTm+f35p3cXoGZDutWYpxrsNDU6H8ZOsWhCiufaqxkEQqDO6DYRzqI/H0ULRbDkeNnZOlRIEBBTAKIRb1P1dfR41pagQ1GHYCuJU90GTix+De6/fPpmerWB3/z4sKvlOulA1sr7w7CYgd17blnylRxcKnsCAwT6jom1VT8P10KWBb8+MY2pZ6D+aS648t5zl2z5GneQ8mpxfmXQBjdE4Jpdfltc4dwZxBOwJfMMy+zvR7MIr7N3gtYt5wsO+7jH15f0DZlfv5TvJozc1/ODzOua2hIdthMdNF/N3tu3w3woUHFjCcMU7FtoQOI2C12i2fKz3L5A1JS+x1miJCcY9HntNZahAhduIDtcrgIYNfun7ttSr4nk7AgMuHv2TtfH/M3q45g9zaCoDD/2m7Q/1a99R4Bb443xY7PMML1TQRkdakQorBivYnewM+vvKBpPvdun99msPd3tkwGEXL0vx+SkgsAbzslDbq5q//HznSXrENqQMxu6Y+l/7WCOmYrvwkGGBN8ccPi2h/1bWpmyrP3dmzzdjfvRroHcTwkK4qqKglwarpr2g0XO75dV2rnNq+en+nzQnN7VrgNom/qxwklBZ6ErYevCuwRFbSEE8m4nuvWF45CcxVHfLXYjg71lgiTdgxwbPZmORKGEXD1lluL261N+gN7FHkzvQGlmFklcQeOKPYHvJPmF4kU9g6ADSHZH0c6+f2ika+xihohkomYfDAToOBcGTDDCSZpjfeLbQtFgQB40JP8xNMyxRfsHEZt/JRvBdIgYAjDFB7ubYPlWFPGNJGNTmh0DulT0NBhDFiScESdPURe1If+cFwZDwNRQ0JSGEF52Oht2RuGr/yIAZq8OVCO++PvRlBzmkZvfHeU3oMi67Ds4C8K+D26pHGe+qdiqLtHyXOBwX94iW6r0vVBeCzpvinNoK/2Pbr/edTO2dN7Dygt79i6WMk2nCz7UpMW2V2cib214V6WzXhtVw3LX66tBKBDVoRrYvXIVitO0v2A0f1EAdYln6sj8V1cJ6jB63ZaFsMClfzIkS4EnGhAwuctoyEASKPzgioDFbrCKDzqepcFanAIF3D7kheGfh4aG+WaV810vMv7Fe9ntZpqvWWHFsV+SAwdbBg7to6WWm++BB0wy1cj5gBiQpyQa7ExJpWMTCvNrYQ1+KgM2WZjYAngwawB9R+RD3OMTLosA5E2k3JwLmjxA/OB6g/OHAbxuwr/TrFxRuYTA8UUPvWuEGbQdq24S3TsejS984ZM0FQS2ptPPp1l9FJoErhf9j7r5YAxEs17w+305B4RyDmO5HPx77gbfgV30uf27sqcICg3vfNqvFqGVUhDg8oUQvSkh4A/mS1WZM3+91qV07WFl0ffruENx8ctL6TSOefcNG5pp+3cyKiZbbKiAvnWDUdcmPzO72+FkCC9+C0CS9fXBt9gMNyawdpHBKcs7KmgnoGNYmHcVazt80RuwPumYB/PI8/I4gunQ0XbJIwnVzVYzcM0TdP5T6AbYOe2UwwtT/ZcGeljysf6DOJAk2ncGIpq6htKDN6kLpR1l3gV9RV0QYwMrUT9TRoXzNdnGOOnaDp+3JOagz5pZitep8GucoStm7IV3SZOssNE5b3PFxW6aw3mRTnzfAm+PkVlZs0a25gPH+Z+AeJkRxCJknLDRW/1aHCA7l1b1/2gvPWvEPrGT1+ACUyF5NZxqTsUaovHPWpJuKFBPmmApebPXnSSf9wzhKcPPpj5XeCW6kFtZONvjjC90ez8PlWR6zO2oKjtSXjKupZeidWQwfXDu3LL4k2cmKHzQlx/9g/9rQlXrOuG24v5yEHs0r2xM/+1KOVRcpLMUAs05DmJx5bHLW3CMiriGrd0wJsdW6CdcHiXG7/MV6vYR5jCM2TJDGRoPwOgtKrGZ6vq9xb7Bx8M1HovtsF5uRwon9p8bhXtK4xYK2UOV/tGwHEP/p3PRAmttemYnfCKYcMdsg+ep1oq9RznP1DZ8zuhbv4v9rjHam/AWXUeKX9n1bGrX0YOkn3kwUg9zV0OUQWPVBI8ayVmzUxXOJp2biUmzZ8MzDT1B8HxYH1rE7wgdSYhXhWARfBsQWAmWtte3hIQLxMMUsBL5oW+OCF8Xb8j+pg9IrMZWCbwtHzMyOQr6o+K+yznPafUcP8qC5RpP4JV60Hek53jhAbkhgm5wTA42x05PcF455106wEYQ1Kwxu3/3Keap2mm4u211JFrzb+ZtHHp2LY0TdAGNfWAh1GtChgIDtz/ZY+YX0Xv+qbIkkaYc56mmM5J7Pw+B/ZBmTTUDrQfv5JugWQJ9V/mwh3rghLkECmrjMexxL7WzQgCNbfU6Ier1IQPQkFtzC1LvUJvm7oIMYt+QEjuppp1Dwa2WEQsWL/F/VItkPvDwh95MHpjeb/gcXXehUdnWoyLOGRyisB4r6C3b9NyO05kgaURlZeRA1DHFrze8uLv1rhHhl2XHsqnk45I4xkgsapwbjC0ZixtQxUUDkSMLEuxXB+aI6ORYRPcnFUiWnDL4jY38xENxsaEj7qvB0IOlhmQ+TLwv/arJyvAXdcE1bSCLhYfTdn4Wga1gdmbM8ivdAPKNJ370PR/qIbc2WK0V3RNX0Vhs+aK+hcPslNdnspm3v4dgQhXBegzgP6b+TdfNrgMAi2/2KXqdOATKLQu3OB1jKtI4nkGCHX+aKfPnBR9pKXKJYX5jlox4yItMH0FAjoCOrQgZ9+LSqmNmkTdwYuYETPlguZtfkqbSMqRN2xMIiMlKgQOVKPs9WlFIse1NXHvIwr8PMXYQvoMIqceUxEwBg+XSbqRzAzY94EuLYDdABqmeNNe2tYFsVdav/dtOMFh3Abmn9K8CF9xCYIf8humcfmfL1tTynWFvO3Gpm6VC0cQL0qD9qJw47FrH/KNo31zHl95X3bTMDS4HkhmsgIyHVerMW2Yk6SzHGpOnq6GlPa08Pa8bveY1VBZRFY7faBD/sE9b1vHtV6HBAE6J+aPxELGFxmylqcp/sFadz+Psi7i0t051MQw/r7PUxMSuxH4euw58/k3j1+PRf8XnVv/nilxIQGKECMT9TS+S2XEsAn118epjZgQyDmiX/2pooL9R87XaPAgJqHEVyviUDdVx2r0NaJ/2hzVSkrXuLzKTAY5Iqy4gyk2S3gZNlZeIkjAeH7VZEPUl8IbALdC2EWuc4KtQGmYfobP5zR8PZWI3cTXPNYs6GHjqveeLzHTZWAqC7AchEZ7D2JT5eD8ne44eGg3n6Sup3KY0gt3DkUYBlZyfg0OvwOpmdAkehqDNCg47UOFSt+M0vOnq2L7UvyP9ROKa5ZO8qam0HzR+Qrl2QbwjXHLOPiMJngLkhNropfIpagAvKbiSWN4JFlgKooiwHjrGgNon09LsoVKVpQlatX6llcBgAvOWhAuEBAj/1yg0bsq8HxgWqBfKZP9ifUg5JL7TlsnzvT3nVIeey2+xgjxujdKmKJvi8ekxkDYcV90PnWE6h56sxxzuJ5un/pfB1noQAR3BOV3U1s9MMbz+5opyWOVWy5/o1Buz1fYbSZ1w7kkZUMCDFajDUSSGJeX67TLe++0IHBpfuAZAijvthXnHHhY4Dblnhwe/AkZgtXrs1e8r6WA90n/8XQzwxwsNBNB8iBQ2X2Ek/Ej2LfmSLb4CejlSPYQ8OsfVc0meSJFXjGBHMObWT/Opx35UeVbQOcJQj1PJ2vSMUH2rD1bPG1u1o3sraePb6kvOsJXAxQwW0zlHNMakWDTA2SBt8O+67K5VTwKH5XgvY7b1Mc99O5avxzL1t1wKV3qXEmQg3mof7bJcO5BYbpxN43J7aE/JTn5eXRITkn6iuBCpqaKu9KkHbLQTIerwRLKUAIymxpUEsDPOlOh5NcW1RRQ5P5O+OOPgGLDlajhGGFdEiIw590E6wOsBMB5r6h+pjaI1lko6D2OskUxO9D5ALAVKzbCd0D9AOB50I9Tmimu5rzC+XsQtMOC13XKlzYpX54ELE/8z4IHM1CdWodrXtR/LwVk4ThDA/0dFc5bjPeTz3oyblDwqb+22TsrXch8tpsqOzxd7972S2eN3aTzrUfo4lsEDF8bGLhqfQAe798S/OsNmDTPc8jNhMayzjzrQ0EkyWx9mct46DowVM6EDWuJQycIBmrolLfaiH/gE+jSmoNaPM8Kgsk0WfuURF47R8rF3mu7okkV30Hr8eD/Cri7x8quBZTGKnfcQnqcywP8XkgDTEoBzTa36AxD/bfJ5cRAKia/Ekl6pEC6YWcWkJJp+/Zv215WbQDoXkJaGKFYw+OUpblJicjzJx9Um7GklCkKewAqWehtk+fYvc8izXxHG14yMqH4naeqwtHeCjO8pp6Tw1NlFbFeUAieBaXjanzc29C5BNPzR+Hk7J+8/YXSCoWGCfgRF/VtPlHjxt75o1dPdifHbxAPgKTbUqQ/Cw4F+KgUvPqxg/tfwbi/8hNSKZsOuDx1gPx7XwnMCbAsIxaRrYEF8jm3jGekah2vqlRRX0PnQLIJQReqTwpb9wKNyAzmHeQRkvlSjyBgnDPzp+Rg2SoIxHcb9RhN0R2EeWm6+HitKonDYXcDT7Hy8tIGCTgpuXgQYKlKOnksmgog6bLJzQMslrX8Q28M4t1UqkjmsIddKFfciVt98pZ/NlprcX/bH0NcTDyfzav6NpWTWvZXQL1SIlCpEyFcR4Dxi3gO3VsDSMJ64knk9gqI/zBNCJOFvlXpEivEw8YNyv8w3OSveyhR7wEzh3FKXd+PxMjJlHXeUxin/qn5a4IR15QXytMMWo1qbqoFVZSm3wwl8Zrm+ZxXz4mOMJfOAvHWfKQLMZVb4hRYt31FtuFpA+/23ECI8omVw4vEaY/LKtB3ELOioc66ypr3+ST0B3kc6TDgVdhnp7tSTPd1on23ZxifFLe8N0MJphVVzCE3mL1gZ9Cbk09tN/Ye3Xt9IxZbUdl2G+9W2lC+GQ3gC91VfEP+fIskf0Ox0KswEW1GRY9Ou7EJaN0fqA+mwjlkZSVqKfP+REAC3hBAAvMBcU90pBSnik6SS2cyyVrFfxnP37GxTUJPPoDWBAQbr/EpNkg68wI3wo/oPY9oCAN8/bF4Trg0fojk0Xrh6KNWn38128sSerpIEfI00BUpdz8g3A3ZQeM96yzJAwvV78Vdy1ipXzUVL9Mqh0jrBZVijbj2dZiZqjIXEXqPkZPTPnpyNhuyPP1yst5BJvwuTjncb68aFUuqM637/bH3diN30Cdbg26ytPuXywXLUzie78OygFwdtr5izO5ynZC1G/nkniXjGHRAK74GpwcaKxoMxierlLT6IUkNEZ4EpDt/FO+quB4KDn22VABcKl0Ip4GgNgCkY1jin/2tbBGi1FE2HANXVNEBR9vkBvSikzroCtN76uVSDYKO/HRiGyhnXMfyfzOAYVPOJ9KZ+H718Jm+ZuuhTHpIFyCDTU51h57Qs+J+oeu6Y83axL2E+OnCuwR48IUC2D+uqYyfZngZ8gZWPkKGYCyD2xxD3u93R7Yobkxoiri/RZ1MQZyZv1M0S0i2laYyeh2iWIgcGvwSsF/JBEa72xRC+pyZUXnQ/aTzuPx03n+thILkZ5ynQ3O1lk3bOGxO+T+m0T5L1FixNWhZbUlBcsS/Z+WPctW/9atSnZlmdGGuY73NFpNRupilZOKfGk7jniu8qr9sd1f8ihe0FXVfuWGzcHPjxg/HOPeHWdmwIH+NWSCyHLfu+yCq6PfCOQzjoXfy1PqQtbO4+k5uMQXCywd7BU1FkjerTb6nArbQDhy5LcBFGZG1lvgY6WOLNklqWNcWla/U+wOubp0xVjFRPXRTBk0/lMwPt0reau4YeEg/e1m4kgBDI/vlnvR88FogHpfWirOPxuZTOxwAfBH1KTR9Yq+LQsYpZn8bZcZ8V0hjT4N8NGV3FgSg1aMMvR4MA7ACs7OJmBigvGYQCoD0ZNoWK8s7CH9RpRHtiuxx5tofDAXQxSedmd4kd5jAhgjiV+PlmllgDJYuJzTO0JGbpiXyj2txVYAdHEK/JAPbLrEp1B8pbJ52T2yZSzr5dGnG0xf0ae3PuSghp0kJMF4zOJ7k1FBuM7bc3/s4tVAGRrMOKPWwzkr0F+DCRIbenv6zvrX32tkWmEmX0F1u8fupIqaBNk59U8YEuue9PIbPNyhvccobtNlQ0SSR45asz8zesKcqIOwXoKcEBQsccmHMIvevWd/R0AM5YjnRURwcKGIptXWkEvIkHPdwz2q1EUfRkNhyOK9y9jkA7t2QJWcgr3QSagAwkW6S1T4ywzffh3C6uw5Yykmd1Cc/CeBPXsHXdbsc93VTpQikmhpHmWynoEU1ZJH0m6ntlokvJrGQDz984xj3A4RINM27w3GfENI7LW6arNLB+2V0Zvxjac/7I73LttznwzNUeFNTI0os81I0YL4F3SRRbSl9hsh3gr2YyzvSYkXcUWBxIAC1VwN5lyqo0NRlo0nwdGb85U7jXBB54NrICyRyCJgsu4zIm6fkRWF7wFzUmx963Xa9E3VdtL9YwitrMxDVobb6v067dI0C3KJJn7dYb0lZHySRN4x6zgpTs92PGjUYljBt34oEsV04jKez0N520HHYZ4Qh1VEf2NclglmNiy1VZjp6CXDSvXeXfYCOyZil33jTKIBjfysbUhgovjAX/LrxqCN+A/IfmxfmzCqWYMr9ejQdvCCAYYohEgBDmu7GqUhPPTe/WQYe/gg+wPaDJNp8fgucXEo2y+JSVPW+LfNh+MbGdRGYWCZrEkpr1By1B/ejcfz3iQp24HXSdrhKekuhYHgX3jQf2muoroK1/yweWT4ktVv9x+I0yoA3WepDdAWCkqqkXLM6SDPMhwkVn5SvgVEB+rclwpQBP/gkQDrfM6uTAKeV/d3MoerO0/Vsfrai0zOHFr2u43vFHFwRKxzLET+wfDtVcajpXsh5CVqMBbEIMoH3J4EnIcRCzxXO4Gpt6ud7owdMr980PFnTl4oRWaGJmWWnYSlKkTnWEGyyqe3xRX6HKsF60X5h6Ohg7q+KUezmneP/dZhPzzc7nyUQ6UbaDCJimuyEiUOKrUoM4X7if+vHS1zvOgBfISKhrEcVYc+ucou9NpnH9QxBTInz3XShozL/iMihseYnm82Yjs+4UhQVgfzgu/Kv0vzcBha6y6FQH6H+qBOQLKNLoUCRtcyGhMf5ZCWBfyxDBcpTs4KTNJXt+aThO96H8mkqhocFFZouwanOC79mXNsRXF6BV3nYxTX5uJp++h33sBmNiNtJL8ouEY0oPfDwxmBQsUCuWKonphgTEJFMY/s38ctH54bfidJNrwjrwWZxcUjpLjRaU8gq8t55qVK/VBk3KfrvaZwE/qWMJLL3ctTpSORSfkDpnhy4nckSZpWAXQaHOFIB1FBMFbDqYwi4CdfYRP7RL8/JHWh8vajGIcad4EhD5WEA9R5Ic3VDqEDRgdKUIo1MZGfXJ/1OeuTrVDmUWU0fsUH26oVUC1NO+IMbu/1A4Ah3AGWgxNa4LDsUu80Ywk7Vai8f4vynSGKCL5WIvEENPW5KaACKMdl6nyPbSMtAyY3IOSv/1WHPxkMKyHhBf8/uYmIsp9NNLSlQjtGrHssQcwkmVA9Lr7PuThrXs8e8XFcC9WwvUxHbm7VQvrqrdyEUMz/Z56+K3gq9WNyOEQNQvsVdOrsH/T7wHQnZOYRvcovD1UgeZB4xlCTmXu/F1NZJO3nDo6bS+C8gsnzNpVP0380/5DOjneuGcXTM3d2aCQvmZlYl+sywoxalOyFQsNlCg9hKCDMGu0J1qtvTnf2GpCeeHvq4W7mIU76HgTp9GR0fiGs/CZgvg0TlBsxmrgRzStqR8FyaF04XQh6KFJSASshQcKndCof+co2dIyllPUcOaPyu8uI4C2PJYeipguPs9Qs4YJ4vYI8CWDBjuk21t9IZk0o4uoZjlw5p+kt+vlHMXKqum9eUYUTDJSLLWpguRjZctdJdmMvdVZ41vItYLrYmGB5pVVqkLpI/psVfXGB6+C3WISOVM3RJ7XaC9G5/dCpSOLl1x27FPeuvBCx6m3DJ/Hm9OCin21W8jh7sYeO00bFiSS4qvTVAXwiODdxJQgY99y2Kcai5In2ogL9uVLBqkcIsYnzC2AJPqmzEb1sod7Ko5gTdD1C9dZScjvAJCN3RZGQgifZW5sVxT8AY8AJbeb8j7VLSA2JzGkhXULkAPpfN6ZZNcg1oZ+pv3kCQsPaB92hzTG3D4sifrsf0AWysTS/k6T9CS4mLaItDwH69aQW49vgq0NFkDWTjfCzeWxn0qmWU3+sg/ic6gJ4rj4/98zuQN3A3Eko6rcWYbtbcsbIz1F9ia5W79AxOrCzmJSV/t88FRPFjQgKA0p2JkYvNEZ9NKGFyDvUmyrNg4mtUjYphwXOhTnn6qD9K1hSMRv4+N1bjsXAxA+oiTSVWYHx+If+tEylkLwSRCBPtg0cGYwKBHvy3uskrKpj1NBB9huZ76Z0lWzA42+uTaSkKSPCEOaw8crpVc3E0mwlt2PvhehSOZwI2iBvmJFx2LbIvVYkZA+4abfKf9h/fbdnccHGT9g4Xigf39SJ4DjnrGmlEUXfHs21MazknXlSh5xbyh/B9ozkE+3SKmDYEo3waoPXl6Wz1koQ52xCXRiYVrMi8XcLrYyxFUYqanbwG7bKWMCnprUMUJPQifpjk3geE0O7dtHDuDu4e781NxtO3/MZJclMheHhZuPhMkG7w7BXmzdmawdbnqty7LiRI9kW20vpNTaHRe7cOip5Nesk80GI5l8EHzp/qQi32+8IIb20l23wYbv/pQpIovmizE9uC5E5HreW5BuoP3gRdlm0efaBtXmjjQXNpR7Nz4XyLgaCXqo0fjiVhBCT0KXqcJDMJQD5K7JR+vEg+F7mZTpjCvc1+G2qQC70WA8E1QCFgt26td7n2zL9dMztsmsmkeZYL6nlUwzfFo8le+0yzMGlGo1uSDjzPQuq3rho/G+Sb3MFUskMBtyxHmioFsyB7+2LXenAPN2xjvGV6HIhAbwwy2KQdmeH9/C6hO0cQhfyB1YXShAX4QCi0VhjdItjMyIqzwL3QRDyEUEljI5i0iBDUJOZYe4lBIhCITPWLVQkBhSa+Qadu2VTAR30WPnj7kV92tz4lB7UxPP7NKw0IfpqT5ES/6I6Y1yiDe4fHZvc23j0qO+wmP+wxTSBf9igWdFsh2yOVe11L+w+cbJFm0Xf95suvR73SZVfjwkNGauDz4MEGHHzuXHn9Q89bIjcLLybtaCpZJ5gJWRiMcF4ADjRmYXbKKOwdJQypW1ckTVe/NF2+KUjuM0w/32RDzsef5Pruwne+SqJkWjUTNSgouOgqFV7mrHxWuZJqdLED0QhqFqp/jIuQxwg3yFfAuA+nnfKV3NAAMXZEry2I7ZfntfSXwntPi/qG2Y3WmHHTpikNZHmFlXKRS2f2+E1mhhDVUEKsSRWqAxiN3se+8Vujb2pmnLa5oaOIftFQPYkZ6CDNbsAlCNmR/bKKiCtJ3V5HOXSruvqEIQ8raywaFHF4WhdMjmvQa581JH1ABY+cJvQXWsJ6FeYa+wTdqYMIihRKDM44BkjKo85Fl2pUN6d5vmhu6wajJT2jby0iVfQXTSKX0cDj9VneNtQna9yivzh98TFeTsZVLT5gzZDcGgTGTRoJdCu3GTy3W5vcd5WU4PcYp5b0Bqre6ItGwJD6sWrRJyywSo8mKo+eZc2tMpuQI/6M8j8bexEJwSnmQwj4h73mZjJCvKOn5NI/nhHSzEp3aGiYxOi3CxGYSzCZfnnhIHGavReFBV+h+CYhBDZsttk8/JHDUvEefQzKMTSNaeIUk/pLSUd8VKv2P5OJnNaA7hYKYFqhyrKJ63AaixzjZiCWjsIiNwby3NhKHihAB5zQsrhwCOIkFmB23HclccP35WAuqZ3Tabg9EfWhcHMIsjz3px4mO5b+NFR/mpCrFRBpSfmZVBvoiW5ybGlMvoo8xHK2X1C9rW0OI2JXxC5jSMTcf5iGL8t0RxE14hFweu4XeTHhNT49Mg0jUpXA7cgKbaQ/mLvMunP1EIcE2u/J0EPsFf67NMQip6cDmFAp25SYKPoyJN9FnEWSaE8GNNVLwzrGugKxnHVIP5obSt8BwuVFstpFc4m0z21hDu6ZEJcEwKsm8Op+JZ6cUvxeov+grMMLWQHSiM6vshBUbAyUSbSj/t/w2HJ20EqmtaKihiViWx897WVKO+TZjo2OVOIf4N3IHbUPlAhrkxmQtrnRmkHhPbZXaTD59fG5tPTMYu4X1RK9g93VcW5gVjr35AtOpBR9oz9DV4NIT1Z4kN/4kywSb/EdImFlPiiO3mL0jea4DAndHBXSAD2yjIdm6/Zs/Sk6qLetqmkyb6jTuPpECKnuLKe1C/mMgDxP0IxnSX1ShCpGlyKjjxduQv8sr3UkCz+sIet2XwO1Zc3GWN4XctBzD48k/I67TXfapxRXKeipFaGKPimzz5tlTuz96uAEHZobYqvxOi26YaJPK/IRHVruJpui8rVaI3woqoPI6i6SLp/v64DndFiLb3IXf1BFq20K4yLS71BOCE0fScTmTI7JyqBbeFwxG1TqOtP2tjFX5hoAjy0FUFpNSKi29glRYBicYTOA0e27dPgmbbkxNkLaHrpRj3pDa6wbY1+QWcPvepVASaUOlMDI9q3PY6qhmUVB+gEQE6wzh8zClwNbH518jOfLOEZEsNjjHKqPwe5YTIfSOMTzjDPcq0cjz2PgNyWn42ZyF5wTuiLX3trOcPJoX1Xqf2S+fDf0SwG16v4xCKssuQsoFbZ5xvnc1XgP8R1nDEK5BLa9AOXkiR0TcwT7c2jD7R/fkFBU24S2xpkY9tBb1hPoKFtxXPJ7b3KB/Rndk7+fSx6imk2/+PzKKLFkFmBPvEv5q/HOR3PjwKQxyHmm4Iq57CnDbAAfFmTgR2r1NFjvK+0gzUhZSMKhY4e1Jv4ghZ0YLuOUYJJSQ5bZqWVRx6NFNI4yXoqpBoUGV3kqQ119up7//KgaOItA/gdS0MSTgf6HlEU4/Dxy7nNX82zsbsyjfu9GNpuD/GbPFj9EUzNh++fkg0ONTmzTSyTpT1JionpeNK/kXRTsa9QtUmWTL5Ie8cI0vL0ZWnz5mTKIKkDDVUkPbwITCYCVSRT2gA7Bq6efUs9NzLBHkqeQ3OoFoF+SpGP73vLV6mRF61p0rGRKbdHoBZ/GKil0iEDBwjrjNh6scL/jv2Ic+myaICEUZcHm5RHQu6Fe0XirvWfhVxG0E74L3KgI2Ef4iYZacNP9ZWMhp2rGjlf+bKMuRlmjCA393zwhfyvq6GyAuePxACYUALLBWgyh03sMPTFAR7DIgAVl25p/smq5Eg/yzHvS9ogaiwXOUYItXW6XUbAUDbRhtzC3Q/u4W31fB5Wz/NHw/Hpi7Jbq3wdWb07HlUmTZhP1d9YfXn4EcL97P2vO1CLoFc+2DXC8rEsjvjtiHQhJ2i8tRSjreEqvAtpq/FsAj1hP68RKJk8DDcLxcS056yQ+JX+qUO5S7jBFaAKPzCmcrawkTlEGy/yZQ+Lz+isZ/FuSECCDg0IDwUwuG7c2H/75IGJY+2PVVa/foiv4oUMigKMkLy5zVFr0GQWXdXfJsAIvDtGOviGpah2SKCJa1c14IJJHijBJr+WdEhqjyFFH/bifwL5mF/3q957Dx8MiJjqk9Ja+9rUXK2yDXgDmbmZJKDTJSJdK+XLJ5VSwFbjKhb+gzC2z/Za7HSOc3ESqKGlKr1dGHkQKM+YL8oXynXvO7Lq8EjZ5VnN5+ZqyPWZbxH6wklDGDsfCJLYC86a3zhqlgVKf3jh4MxiC8LDUJ2OBdCUUJhTVrDMKo8BfISUrIqIivOKVONiORVW5ZRsb0eIDM2iP1G+YOowYSkL4E5uGLtrxsXv3XPFQNlcwHim+xwG6O7I3Ok4kCUz84+3JfVoSGCHTo0NeSaWBDaXnUiWHfkgwv1GZo+xgB/XlXe0W/tNL8FrBApu6KoKhkYgLE2W0V2xk3FmufVOxtqK7ALO/VhwqkCtk6aGnxcw6F+SZ5FID4Hnw44LXOnhK6cfgfvpZamNrQJuG3BRu/QgopdnYnl/eNVhY0PrE8NB/xT1/ADvPfPcRBgriFrlrtkKUYlIlNATTKRvauZeCtsHcnf762ZTfj5wuv7OGrqHI7hXrz1TX1hvMeRkN90CAizyYQnZ2jZUIzGG/itNSR3ZWG/+V8o44UYBiPWy9j+Dk3CtvBXpFxNwLQswM9qA4xgq2PdNbIUXm0T6HWvvMQL0is3Lo3uPH7suaYFVSsqgNGZVN5T7cB0cn8VgnMDC9jWYR/GrVfHiFx9466dCAD+MIKnIoC1iVGmUdvXKK9gsvGoh8nEYZUsGoBPn7bm8K+htMB/gJEzL0VdDkeD/jDpKWEtrRWzQWEJymiqJ6qg+zAnmpkIX3XFYtEFZ8CpIJKL57byL8KDgfnPjkgd3D0cb1IWWh0JQIKSb52mHqlpheK02fpDMjCXjadLyb245KehrOYB/OqVIlb8nW0p1JVqlDVES/asiPYUT9jO1Wl448jblZrE0E4kXvSuk7nMsV/eZ0tpOU+CRNn7cJ9RNmly0I6JHkNZqpjmVBoC4C76ugVh/YkJ6Qb53md6SpWURUyjYQk+Yc3Xqk9z8cB0Ws6QFVA9v8odSVrP1AWaoyOnFGFeYUCsCdU2eRE+HWSkCFhVdu/8GVPmup/onoCSLjbT564YB8Zus9ikdUok6eHC5ukCXxGj/mK+uZSeZdY+idFzSBbWEgDtd0A7qszpJxebb/pX2HQgDDsG4+BAi8m1x5H2aLL4RyUPaaiAQgPuebBI+fW+XhaH/1PO6ZZtM8hGNsLCwlAm3AjVn0W/kcQbOpGSDp8qI4jsdiRLDx009J3whGZJlqh4hNOgwyVFgpAwFzivyukaDOqPETFM4CpqNHO8/E3yHyIRP3VbR8HYtWxtTzeDjQ/ivMxYH6x6+FySb+upcnCCE/UzKjTu2MKudJBj7KzIT8ofPU1UtHug1ZcCVN5/vHvjrn/AcLzFyfEYPizspZYrseMY6zEhd9c4kb8TSatpeurxQQBHigC/2V1CJW3kNEy3B3l+FEYh1tuh1ldUA12ZbKaB+Fie0vW23He1QK4/Pw78LjA/ewryJ4W4uKjOI4HBw3dDwZH/xrQ8p4QWXA1pPQLBmtapCQ461fVW46YqqSPhgliGrCxIEsVxMlcm5xhQN17+CCfZSM5eU/SaofVb7pXoeT/UUO1o9md9OMrA8tCazoGTP/1wfoRbsICaVzrIqyGgYWJsD1JHuIpaWCXZK/w/BWCrM0A49PlMZSE3E4mtqoTObiZ2WYIsDRH1VBP+HR1p84DOFO4QNGc8ylpHuB6bL2fSU/16WRcqkJkxt96wmLvcWH+kDPWdECq1WR4hYipVGW1CkJrOy1V6aQ+yG7iGVragd3RlTnSSjt8oGlv6Qvby9Uy+CpUlyWaozHafqp0Q8dDRA/kV4gK/x8eynr3d9LnBPdHwd/azAIA0t1iCyXwlbdm8FSoy3HV39V4c7rD/nfsphuB1oyz22lvHxtMSbz9SBXXgXjFU4V2M+T3ib/p50qQL1VJL4D64I9uSiOHSsrzlsMJbRzTEDp/KhGDBLoi3hwFLY7n9XH/pUIomXTm2KPjbuxLeDU8r3mskA2B35q+eZftw6kS17BcRVKPyDepJBBZRG8rFz4F03litfWRI1A2byS/lGUEUJpwJND3pN36K7YkwG+gm0DxnFgniwT+SrolHZ1RWCYCTQqljycU1sH/k4qUoNj9qL0j/sbptGJaVv1jsV8tF06+ioijt0NiNc8KRP2z2P0BlU0tVos8aU1LOy2uJC+zYFheBCF16kHIiOSIPmBzhXpXvmHI/oDR0ynqGPtNp0nQqraQp0O5BxCYVHCZCNHMwKE19fStAjLeYJXqzT3POdsN56xLRFT21imeyNLYxBr0Xtyj1QhEPPdTnYSbHjCa/NAeEJvPU+YCmVP6iA3fCcdLFn+FA+xDHIcpVN8ADepoJcRC1TLOeODgGWuetIpzeby8hYbNEAkyVkptZrFlISXStrXbdzQfBzDooBWQrbuCSzwt473k5HP+6Ndc0eLf/ODGoHsNswXlFBOsCQOMxp9X2ZxqBic7bhSK1FBNqamOUPk+u0OefY8XRNvgB4r3uBVvBCXQP7MWKxndcloyJbbxj6vHlnUHVNHtpk4fPSKAe2aX1/G3RjLse2SfxI2SbpCHBibubVBz+cJ2ZndbsXIqHi2YD2aFMFEoR5ecy2nyaKiGkWcY+jfWQSPmx6aYUjk6xrFnXEA7d/Ig90v0Z1+G1QhLy5fBfnEOOlsFepKNjqSQZYqaqlOrYYxXsbDHeEJQXSO0Q5kouay9aGDKnGxpclOOzN+UM+6pFuNfcHuD4Ap2wdAendr759Iqtx5C9Yt6tHF8KAp58AtEbnY/ukFzjSg06hWYI3oxbxg+Oq3mvpXnMEvXmPgkTpexbK/FP0enwsXEL+lM4ywqcIJPD9O0JZKnFMo6yxTv4y0m6uQztE539qY0XNJGknfMXJIeTRE1SRb21lK0q5IgZvfVzIMwJIf9tDW2Vj4LWh2XQBo+ruh2eBrPP39Hn9kO1stNNXK+foS9fHb77Q87NjurpOfvo1uYTUufWqRUmfVaxoPfdi2jiB3XMNZ7JPUtx7B3Nvm6xedT/BT858FI4sYa/c2xOZNnf1fMzUvZfKZXKSx7Re6Rrcv7l5QITIcbj/+5JemuPtlaBmVX4TMD9FCHz4KAZDbJj3hJhRen94jEZcHRFWV9rqNFDIzL04a2NKOHXcUCoqZ06xcPmiH+KCFkMyO89BlpTTou6orzVzPZyVl+ch3jTre8HedFi5rKVfP+S38b4vFwmYT06dyWTKCKiHY0UNwE75ejasNAZ/JG/LFaBT2bxZshRzFHnC0jAnN7vFp9NJTcgTUvQ8FopnXxaA0kI5Ec9hec768BS/jZZrVz/0Ot62tAhzsEL+opdipArE95DhXg0/IRrZVEjZ3hnYePGl5ZVjONcACXLaXHZbXq6bwMs4Fw5BVhYsjp+lKODxtJ0WsT1K60HUT9XA+F5hXvpFlngnnH9MGDr2JLM7u1qk6b+ZoeRx7l2tzax2DanHnx58RBhQIpYLIfZK7NUhYBNiJNwU4T3GcJZiz+9PU0JubzWAxe9o9j3SuJtkK8AUmeevUBnH3RKUHSTHGvOAIiVliBI/gm15V64DOuwLvFeqt5TjAl3amwq45M9lEwcpjWatHGFMFKZbWP/V6/HiQHKjZ69s0OXoXTkiFVkSqG6WfTHerIhsgFQM9Nw/9gCJmf9CW/kPumVF5TFPspDQwwcGrsmVC9zqAPP5AEr6tDYfyWuBHiliynyS7JljkenARwvX7WDkmCTXtYJ3caTg9TOGI3z5F9oLhpRB23/94So+4h+5wPHYN0AHfU4wOXMQzsuoie4WZxG9Ce23xoyOTRZJNB9vGXUEhwerwjz6I5oQx2hS97bQG5IveKrgmhxJ/YUWB0baOTkZeS5vzQzfOWQDR/WCxN/R50o6wlW6535K3MdPMF5ks5yJs2UzgCPcSQjXUiXpDjpBgMxow9ZEO73mqH+PeFl5ShsFiUdeGkPLca/H7YIf4K9kKYPT/dY3CCYtjRvhG19cYANb4rr3xArzNmuIaruDWZ6X/dJw7UWvLLjfU78/vH+kitf5RXYgg7BYNE7Ocjc3Q5VhPpgAPQAz5FhxRNbIzOhy6vLgz3LxIBqyxnllKyod30Yf4WB70+FhZ6zY55M6hDuQ4set7WsL8XeHFcW4ZO6pSU/gZ4mNuY3efWcK5d1QhiPWBbEcTZf9M4lMXd6lHV31yBoqxcMvy8ziPKa8w9B1Dskpl/qbau3GCF83uoXy1L0yWtvPPC++EeHf1N/V6lDlxtu6zR+21djR8qaG3NgvTaRaYbTy3d6y8MUNrpggdf2rmB2RCLQZ2n2Y9qlOscvDQ8WvJ2susfC8P9lbqxVovYGg6mkaw+NVjXr3F6yEWqnb60uslidIlk/6p6LiK6nF4xuNF/0j38NbyEAzNSWlbRyRJCYw3ah0Cvnru9/Q+TEHo6jGNyBgI70Jcbw+3NngWJl9gBqbImW+d7GDq3bOLb/FkO8Ef5spZ1yEMAau/0C2LBrrr39xV157cDZ64UeVUbEnzM+YHuedqbVmGFI/uNsiiYFX35Flpsvnig/ZsB7L5f14S7C4pWzkKC7WjGgIQzwWxhth82z6VRvnIK+Ya9kGiN22BOxYy/LA6tr/0Y8QTHoiAabGYTH6ToeNTAibKSgHFw0JRXWrfNd6Z7Sfpu7WNNHNqmuk7UPSAQ9oa2QpLzBZS+nRsVa/syIxguBZvv+4cN0vTZndk91UnF72oJP9DKcUGeOKFYZqCV5IXP8kzTmG+JCaf+qjjyhqZzaiRXyGYa+6fGJbZHzVvq8eTTloqwe22u0d4I9YwF5aHvPO2hG5YCyPUzEu4aJtLaqH9iRYo5Jjdti0toaDJOCXcFMUGRfe4ASEfezyeSjcRY24qIn6dPbA3VLaKHs9EZ1E2ajuNyqamc55fpe9+2bs0G83PKhiauuIAZefnJ913mH9+miaQOITzhss0Re5tozwwPUo4wD4V2X1tDRDFU2uvyBYac7LKISlUwUO8LIjHsxUL7aQ+Cp9TtEQmxW/UY7l4ao4bC7aCPSVmS0pQKrK5NRclLr8HIl9487Vfxick8k3M/K5bSmLL6SW0p2+V8ZRX2XBpd8TCN9SCTSvYOEVHw74HUbH1JjJahYty4nm7C+ZotHcZo5UmuklkimQy6U/smlAP2n/j+D7TvlREc+YS0wqJGbnnZpWO7RQOISTe7Zn7oW1FIW2isTap1nNBnB0NEIQenJG+RDE5ng2B2pTtpVlbJqxtO0SZHMqCyrA7DFa70IWSQXdLh/0SA622lO36YUAD2Mr7eVKuokQWj6J4R6CWftZl5sKwFZ5CCFUkOS7oRn/878LT/39TlG9OSvEqZz38j4JdXowYWuxZ09WgxUwTxA/gsO86ukm9c+f7Uh0unUmCoxLKVgLuJixlwn5ROVCi/lulsK+rbCapr973nPHQtiRhzNIy+yEEqfS/QJQ7zUinT+nmIJ93WnWzBPN9FXik8ITl7SCQpTVhY9UW4Z9zyu0tyNxQC6l8KGNUc6/bXkhF+cUO+W4WrOt+BTMklEC87h7gS5re3N7ChgGJtt6AtT5/UZkxvIgYp6tCvOt8CRw9oPKVgGnF+jdPB4KBTLisTxO0aKTgktksqMs3hObHu0NOfDIXMAsg56pdyqNWqaCqJ8lwcwKbyS10SaPsNRjdOOBOaZP8u9ZZOR2RSBI32oIoHdjBdGMzFV3avd3seJGUabYdpyoNv0buyt2vF4D7cxPBDd+eMTLUVM3zMwLCVOwX0uAXrmk9jHO2oHshhNpU7/pXgtkP/SVPqgf71ze0LE9+U3ukEBb+1LJsuCG4/FEXmpFZDEIXFYHNKQ4ps9Ic9yrGhOGKAEcT7wf4jHoLGy3oUo+3wtn0jkl2+NUwgn0vo2xtoWriOGLN62bjb4m0CNjA91xaoYUx7ZYAdJkE/gua8DlQyF4sRfa8hwGMGrLTN6lDgf8F0jn3G1Cv5Ek5EiqvU1YoDp+IcaCeswva/O7uIGqRCnMpml2EnR8Vy8sXzb6GHfeKGODpaFBcLQ8zJVzxk2Ui9YpJkTX1pqRyXvX349vlDRSrWqx6TU5KxNDGZudx+44gaxeDUfhNKtUhD/mwd6SlgOgoVZlrqOgbRvee/OJmsvqid6sLMvLSDPetMe27FGxcR63UlgBRVlOpShn4K8QSH3nBF0RR8zRIphhUU/Q9DfZl5muzrybP8g/9eeqekhxcW/vbjvpNw+3pdxMRg6y3yZ78XJDHrRUi7JpqOworKvExlpVXh/zjGCWxH+mBqXlu8LjpLkEFMpBojkaLwOUpdmaf7Qpi+lpgAMB8dbCOXIS7tGFhsbm9YqYl7n41KrIlWfNhTSCPRcWS2q09ATjow+JSJR08ezd8jSE1PlwhRIzg5QPDJunBr84Ym3bEGZz37MLUyYIGlj3gSaR7TIzwgKMR+ZyQ1nBuFB1XLH2ppWMJWEsXNHREDkdIrBnuwrUCAAx8NHP5Nxgx6tYKMZYo8fksEWd64KCs/tE/zmZUx4tdG0qxV6m68X5/gvr2RPikyFk++WZH1KO9Q3WDI9gk3Ti8MFEh/sI7jhmNJO4YyLWEV3qlI4cZje7yxGaVtien18Kb34+XI6axHNBFIrJ0tjG6MLWxOQbbXUskbfgcX5xMp3jvdDT+dJtJJIpTyDTyh8o1QArzzVGikiQsfMykh72WeZ6pA1UoinIW9fcmlsvCaHVVT//gquEllLfXz+rov+0Zp+ElJgICaXjAVm6EIpVBrktVHlYJbtBmBZBkf+TkoFHX55TJsTK7x9ksXaZ4xkysLjlUIfiqOew6Tncvak7YCaRTlmZt2XTX4R9tZAgsi+UAgNMg4NePuq+XT1MCMFbU5//WuDCk47Kqc5Z6c9m3kpRbiWgR33uXb1KIHtlAAOpwclWUk3TBYpNlFqn3wqUpNYicbr5WGHNTebcBLNjHbmrXta9b4mlejScZ8VmBIbRxWydu25uGHHjjW+jU8unkgIA8VAoOswG5Av0Rl4vwxLwzPzInTw2yo0SHZkb27ObeTZ1O2T5wU/BFHP2JkFTjkz9Dbzyyt7Ef15PxOc5K7nt1HMktMKiixM/U/CjYl6OIIXZdjxfcIAQv5176ZDzqXmz9aWeDKRtn6ZG4TlnFq0hvX49Snq/aK5NRTPD7fielOxky/KBZaomuBW5TfzKcm9nAPLvrKrPwpDwQsRggDqSLNndiG/4trbN2ySQTSwlEGBbbMGmKb7DYryCymJr/PFdB1cOhcDQRQ0MticxujpsSJFPHup39logPTLsie4LqmGXN68X5qAa/LbrI97rGWX6rJxyVDr1WS+4EfFIwIA36V2fn08i3HMJbfz6HgJgvrhySfL0e9o+aspuWm8lmLMjJTf8rBfmvFrD6+X+cbRDKyq/S0GKtUzyMiLMefBK+O2EIiw6+KKZ+uPlHtA6yPA5cayaHizqwL3dURYZdNV9v2yc3htp6fmTNLrdzyM0qiVTJeL0RK0x3zfuJrStj0cuyQxbwK6iL4XnJdrXFrOVX6q6ORbiJi6isyvVhwjuGo7q/VRiuMtylvxkjTFLm7d0dUlQBhZd6/6lAIoKafMXUlYE1DF/iRMJW1kMRLcumsr88xGj/geR75MUAYnBfT5HdJ0dwI1PDsbqFOhQtbWDhFZZZnCTHobBdbx2amJ4ZJz6fKX3H05BmjMeWQUXsxxU0qRJfngV6uo54pyi8cMpEuQq7PvU8H0WT4XHUKZEe3XUSuEiPgUyf3IlBi70QORaMoJH8x14hWY6mjVFWc0D+1kklzsj4SVcUq9Y2GCIHpUukrHUhgfMevYN9sYiEZpzK7N/X0FzMI+0/6Ix3vDBEpIx1X2T03CjbN2y4VOnRYzH6v+aGw/v/ewVtSTTdWv3lSSl6sP072bvm705jeWgm5YffkLWl27r2wi5bxMPP3ezu+EcNQUECmBngxwaGRdqR45kpf6BkJZbAE5oEm7uofTagHA5462h+1v/eAdx/w/WWBvSHuaNCFbQZ3sq9jfA2U083cfoi03G6kjXfKgbTB8JY2KvAPi/OfopkKauUPQiRj8SkAJzMhWsEibeLwfmLTcRvqfKzmLx1X3FbMjTUZF8RWpGx/7L26+b/CI6qszRsF+W0V+k2fxJBQlf6vaqxsFLHg6crk3T6qMJZxMoLDL1399LjW5EC3yFUbc8VwVPEm366eIgPjIdkUV3mPYS4IilovyU526XwHb3TSpKrxBVExSyAJ57hDRfJN38qfl1HfOL3CFM2jrwvFmxLmTJFrn8Tdh5luKTx7ENvzv4Yaolf1UtqILQyw5txq6fQNN4IuT6MmEbnOvsgGRtmt5LXCGKJ4YPHAJjx/eaCq8VIsj+vak4AwU/AwGpcEZ7PFhDP36fPn/VLjDvrZkKXpwhrCd5GAfD4hyUrJSGG46J3S7DBpu00cs7juFFWfd/+KTiHgHbIkgHIfRhm2moSKVYMEb1lcvZtD70D2mdJgi/6kBwwNdmi3wKbIDk0Det8hCUETqMPXFnx99FJPOXoLi/Z9wKmw4TJmrJeVF8cF/0i49ietQE6zpnBhw73ag9/0ELBsmD5NCmhW9QUc3LQKZ0MJe+SqtuQZB5Z7MYtUhgl9ac3/23Q2kGerP+/kN1ruox7emH3npLYQjzuXw4/BjLlxpa7hg3hD4+mwOUXvLYRQlaLwxITa3rjMhEv87NSR5aSm7DQ9RjaSxc1rLn3FD+eRIVj7+tDORy3HBAGRwyKB5UzwJ68p2yw76/V0YBJ7qjF2tFPQ7lo4nysfey7/DdYJyWJEOZzjJthEthqw0hCj21ZQubxoTdFIGGIbs+ZobZa2imRt6DddwzbU3Jxb/bRNAivNhlsp9D1jTzSo2IffRY0IjtYyk7bWcd8Dxx4yg1F+0TPBJ7/y3lqFqZsDD9IkuuKd6mMbBpkrnD8Zq5MUalNYXNZNj4AiqCwaEnZRI3DAtGsgc/NUFdjpK95HwXLVZJkyM/d/Ruf1HWgmg+AlLJ3IC1Wsl1+r9YJ7uMbxXjDBrt6vLf78OKQzG0ET6D2YTQkvd4JgUoMWvBR84NaSykplmiJTrR7SoKO37fadNYwSkiRcdBW4WxGP8aoQ6EWvYHwIcnNaNj5fF0XScxLUhG6owTKCRshwG5Yxha8EaJ4tMGFYMCRhhZMZEpckaMqO+il0sEA4ODyWR86fLsIaGQxJRsbrnM5Bqz3EpHT+f9X6iAfz/umWQZ3bqOP+qsLDJyy/hidcDXp9rFp9taHSEgb78IzsA5ZWu/NkG6tpN3j6asldG/uRO161DIJoH+zfqiT+3hAqU5pTeYmsRBz/7+Wjf5R5Unk3qUDZQ++y3/3BWedBhOGcWlqPpFdrFw27R0h6zwj/Ci0azyzNbA5OVSwacRQwkXYJdcbijX9INbXZIGcnmF25DrZtk+CRxrET8+m83iL9vw/axyI3duZMOZ8i16DyybInCpjca+I5vcupLBRs0oEUyd93vllpIF/Qq/MWoNKLCVyBQvBZf5LcLq/8zRgezkj7STewh0b46ynx7f5t5jLZ13LPmGZbXpMbRW7VN8abKoupvaGZ4K4ezrE8SevTCHtyqX9S+t8EUjom4xR+zDqmywrjEL68OL0nFOb0YN0ZrYtsuzA8jtHEAAffREwrX5EyQnJqrVMMg912bj/FoJKOB5oa1mS7OWLWKy8Er4vrxHdILP2TdpnV/PSO9VgLQy0GV/5AcJXlKBudv4GWmn8ZB8CKRqUVb3J/2cbY2c8ZdUD6gYR+uo+uA9j2f6jmFg0VxCvwKV2gmotIxaCv2Qr19vTfvTG+BEhI57cOcAgtyR4lVTNo+A69y0X7V9S5hidWlOS9ss9RTLP4hJKoQ2dCSDCeRUU/J0ExGbd/Q2NfT0Z+QF5voXRT6x2X2HR9oOO90fvIHqPUi43kV1bM3j8foTkTo7pVoFigbhgUCHXYGnekznWwao/FyXTQeMhQwlvgHFUwAVnb/DvuQfLgp2Sn1s21jmLex90XeezK8RFd42s+hxKBPzpT8loOSHWcTUQgSnEbbm/zJ+OIej1Ie0h3xrZZh+5rqOZKdIUqcZIKPWwOWLMvgieiEOE+U+/2PbdMQ20ihCBmt0aUwB+VvjHOsasKlm+OxGyrWpHwYkr7TfgTtnKQSVOAgkDPiN45Z94ptolWDRfkBUm1HyLkTfilPUkZboQG3ckgk9XSp5+ky0RtFXat/GQuaeOmcQJHePfchmThJ7bVkE04yCOrkoD8X+VrpHNB9tJNVMsRbYrNmKwJpTq+CXipJUlTDtjRO/iOWH5DlvFdOTDvg3VI0ouYXbj5Yr9yTWrNjBL5ItyLAqaeblcelBhB8sBCXS0aeVfsoM1o1A6MiMv5zRvueQWYv93JIbNjdNIs1CuDD7XgV9IKj5qPgcr6f0wlpuXCfNSkdhy5+TprXBP9bEDS00+Fq65EeXLxrcIdhUAKrTSEco9YHKMlDh/YgCXgCekG6ocyriiDQX4KBeqEoUJBVGr/JlDfQlrM0wqivMzpijYo3gpkUDtPWapAXqjovFF/U7j43JgjW35syFquwnl1yXdfBs3jjlpt5QLI7xZsF8PTvExT7RWzZ9GI6niXPpCh+VnCDNIUnmqXGod/f613cqjgt29Fi5eMrt6MszqoptgrtJlAhPpqTGdWmmo+wOPMC4NGwiODhwbHCgLo32ttSVHgxBpYTa72GPksK0Io9DcfCQVs6EUJRPYu2ogAagTSRnai+y+aPwf4WFHHk6Ct8C68d5ROHcYlVOSyeFMVcbqZHNHs18UpPzjJRvBIuhO6AQSqhrbzLolC5M0PNEzm9sbZlqkx+xiY8I7nPBWkIXcdTvKSMKdEutFwXiTTheVSoVjHfI/UoQqric617TXbW0vfxD7x/wL4USWVybbrFP8Wk9Qw/7dUtYmx8KudNvzqtUEM9UEfiJ+bMUst+/mfEbHLvLmbiKLSDWwzEQrR+VLS9rafYcb3ubKXULEZJGvDHOvP9+mnV+YVLs6kgcMQK8Z2NDx3NFH/Z+fDUrOSFC+2to92y+5FegrV6Fk3hrx/dKIoWo+Rmcu/JtX2TGwpnbzNWuU4W3LL+gQMLLjabiDIrFVzkfR1OT+8nMJJXj71HTo+Vp8Qpjt5icfliZv2BZ+3fNopQgwRrDHg9S45A+6cbyNM8pLsbSPQMcSE9RmSHNopCNgQ3w+MVdjxAZzIWiCnz/58aeFUpZndsTDueLjmF8su1cIzdsQlJFPAW56IIIa/Hg84lbIKA4bPkAgGT3HlXFhZEvEKH9vImWm2LNQ2fpRcTIk3/WvyvjNVXcznUGkBfEu/wNnyopbN84lULQkv3iL/ifkmJ2iiL89UjOszIR7OOIax10+DilWxlOEbDwzQZ0hRWaTstoWJZ6nnn96SPHiuBFv18aF5oPndiiCaFRAvESBKP+mQvNWTP9TDbB5r4GUfzv8Sg1f/8QVCqmC1iJJt9Y4NmcD7VUxF0Ys4/nQULAFWtR5DBFEfm1WxdQ1x5wYvZflpZFM5dqfeT8FWlNuS/DX2a38Zte8aDnnM8kW+HufhrTWUZloHsH/a7Oz91T+7xpTC2uZ3ui6MyfrZudFXj1DwheyBzMkG1ozwYlbZEDAZdc60/Wc6aIpI3Tg8KtXVPiQFDFWQmzb+2A1aJ7TrWDcD1Yo36mMkXmio+cbShcG0uPkVTJGr4Eb4IS7nXe4tjTCFlwU64IMw3ydKKJsygYbo10ZuL8NwuwNuLj7g0q7cR4IBiIqdDpmoq2a2TOZ3FmVWSdri6wCbHtyZEox9QRjYE8mGuzWoVGm0WMyiBeWditJxKXZMXfGPRAz6CHvo2hRhs5aLoge8c3KzK8YhHIr7eaxVbXP84aaUzlF3sHdbmOFZOWIW4ORjTneovDU2QNGejG8KLaMIpjc3cUkFoN8KMo08NSn8BctQ2DwBR02KymZPSuhBcyh/iX87Mim2dmk/7/cv+9jhno9cqpA6YVdPAJ+pZSKyJv1fFX7ecNndK6xI9WorxnNKnb/LhdaNfp7Q117tYO+Dt+1j2MNJY5XAt3YI3NTELwUiFj3n4BXz+ypvozqcS/vPc0a8qgeiCwtmq/PNriwavLKhH5b6mAkdILAnFUgNMfU/N5I2UVhj0ic80WSm+5Uq9mAuZcUMD8BpEfpKhlFkdzYHfa0niTGrLrnjNRKZkfwmGH1piCFzcG1AkB9wTkdZyP9ciJuXt7iTqOUsK1SCJ1DjHV98R0SyQ0so4hLC3S9NZH2fwtZft9cllI3XOiwjHyIlM/GHq/cwr48MVXHMqiBFK7Y7FY+6oj9Iv4rl2b54D1pHaWSbf2Ia1nzL19xf+U8VTXX1Ya4vhsxMNESJbLbt1UcyafsYXtfuJHXkP58CHBDRCA3NWPTMgqZ9x1ItJcRv6QzpdFKaNKjpmMMqtXbzguJO6eZWXwWwb2HaDcptN37VrFhqPxXSztFg7AX25k2qNjehC+Kj0jFiF5uuLcNaaezda4HfcvbMT8gxrViPcMzYbdJKqshv2X79Ggt0TGrM0hUC8ZPY6FG16GGKMISVf3kQvJFL0UdKLZ/VrNNrTdADy4I6Zj1yyWc4QuPDxmrBeYc8I7681VavAiPhPhdywkwPjBD50q9QdJ/WBDROVPMUDmcwFtN9UAd/VmNjtzaen1ivZP8YMd02bmVTNWLNnYt2xyGs9USy9F6A9LNPN+KwksAkOlXNq+7bPznBCXNTzCzbXtKsIi7C8WPnE0/YoxUjR9I0rTS5xc2bjfk4kwuHMchJyIvTmQTSBGj4iaGWlQMDT1dtXn8uG4elvm5LXJLULkS658hTBxqlpsPsurU/eluH9W9wLZa9LgW4MO9IRnl6Lp+G3BV+aXdiAFddaFQ6WaTbyLBgEPLhQinydtjgHG+SV5bhRGktcuGjEbeWQ1PhKcUF3GW09yIEo8sCdK2cX1z2TlOuJydM+6qxvVnjuMpvmWMiQYPpDAkKalRsoZGJT74fJ9xRgoLQs8LZ+J2VUpLHeF2OxpEe6sga1ctqQGIzoJ57/bgTVtFsAXDbMsMzKbqIuziGDpYEwhw1GD0zWNN16AyeR8b5WnQXHowSnRkeHFGQRiW7P+e/qZ4xbYJBpFidwPK5mLpOIwz0N5Y3VGcqBKtXXQEkafBE+xU1EyrKbeSv89BwfUznE3jvuWOebuFx729sKVsfY6Ns13QvscOBf4Jw55mebB2y+ylmmlamHvM3QxsIT8p1b8S+Y3hCgX3Ef3ZbkHCxYTGfNtXvy3oAfI2qv56B5DKxi8aJLJlzG4/u6hIgFonxLt6UccWp1WYU4g3pzE+5V2Fyy709o9HMHEbmQ6wsIKagK0ABXNfvbzPX1jeWpJaR++xGbsX5rKxjQfmC/8SW3kvOZabs+8zs/QMp1PAZfIo/wqQbp4R1oN+EoNQuDJhDyePCLF2sheFMwKND2stRD7p0yYcYWsALs0+QE3twKFfsVEGHyb9uBQUOywLVNug/hiZzyTbCA8kCEqzVloHikMDhqMKihXTSlCrTedpcrkqjqTWfe9qc4NIlJhRI2qWi80ziL9fMN1EM8G91MvVLOqPsgu4l9hpg9TAi6yMLuO3UGkzIlcOTmfFwxXrX7DAVy2wiK5iVtIZ3r4VhBM/+yNgONsz0KCo3E8wOlonyTNNkkdmNCUsNZebxD6eIuezpEMdMlQ1O/I1c+yi9+Tg++oHh4aSU/koe4Do1wWP377Ii50YE5ue/KlO4zYuythhxiGS3xYt3mFvVFjWluqeLCJwLCa/e2eVxD2IBtcMnUw1EfMlRglr2mqKdwIVdg2XxKxhMkIwzJwfFIVqOi17Wv52po10mvpG9Vcdo0r6E2BrhT8C54pseMUbCSXhf/QFAW1OGpqY1G0YwiS01qw7Y4JLBENZqiQm5eNRCW1iMTOCYk2UUkI5YoAIJLLMynmepkOoKG47Vluiy6S991BQxGqctJJGZ+rkknPJRAqgBG/ZU+VX5xCqXtHqweTTNsiiS35+dqstw3PF1EjG6bt6YpYxi4YVIbP6N5xiJxEOwHpRhc4f+LNF7BMtYHXRoq/Fak5XS6XIDjMgPOPpUZ0ibUeNYEeevKldaCpqIvdA+PkreMrKPGriWcFOo2xxOSY1fjMZVNfv91NfU2IdaeabV1A4Ihfo37vAaZQ9HiwgXOovIp/XKt4SPekOSojGskOAV2R8y425b2PkbapHBTastISZvOdUFdAiOTW7kvUanMAJYov6EzzSmrmkV9C8FB3Ld/XqcYpS+VDBvaxRis9dLe3Z9fR4F6yq5rQnhyPcOaFGLhUu+u6965X9XpUhbNeTFLiSbxtRHxKIH3VtaRjSXcVPQCH7M3oCCAWn9fWNkbPP3s4+hs85WWdBnshrcVz4YxqUKLiElYR/mfAieuPHTzzTv1YsQ56kOohQMHf+GWRJ2mnzGXSImWLXWRiurvFuKfy0QpgjRB7oiazANeK2FKjoYjUFuX3DxFleXrJesfkphnTfFDhJEWWNeD89DjGZVyjJDvdABGnb/QFkIOiUN2HQLemaMgmsviSAMWCRfBG/F4AN2/ZNQOqxBMa57o+9sd0tCYgp+FNtLEMGKbdOGSZtQ6cqR9sYlOcecn4/CfTslwhUmaBJ8f3DSQuvcKKC2+GOcEoxjvUwwJkgjolQdFhPysDdzS1hOmEFB9U54yThYm1QwQzJHiXZu7mgWIEj/1Iz++tLK7AVFbt6KkAQgRM5DeUVxAkR/LMLHhj1bKP4RtX4bMQkUaJl+CqJwk8XoNAybn88ISPqjpXlR9ICJ0Y+mWf5UDinE+SeD9LXRqzdD/Z0m6d5KSWygJgcJ86Ula/mZoAN/JF0XupsoE31dkcF6VsQ0c4jTPNPJuW86XFRobUXJ8IXgeHqYcYB1p+CWeKSUkENLMSrHReE1eRHGtlaDvtl7DbEVVY8rTJy4cADQ0ECRJrf5nL654Gn1l40wb88SWcDv3IcjcybwT2Q3eGSO0qux9i15VYEI3y4ejg8fI2EzqHvskFemM2SM2IdkYk6t+cm8MyuXw/j/u0oKyMnYQ/WrrEaFLSuMXmwugG5uOU4cS70uzOepJ0psM1x3aeObekiknWJgj9HSPRtGIGl2Qme4XtSAyUetUdd0x+XNVIrcjCT5GgMy38hmfuYKJSMJ0AcsIQKssCxYYIBPw/hu4sRVHhiKsep7IbQIz4iITu1WYhQ6w3WO2pTX+6hdvIgEpoQJfruybEEEMGx2QcrZAfy0WaW7t/kNRw0pqTLFrrQ2Kplbr2NVPNZN98BDYP6zQxRdxzKffYwAXaH9EDQ9uO2NH9E5OX7jLbdP7JhnZGJbB/prPgzH2FGNEGy2ZEibBQW+cm7gYpEisIAMLfH5RnPBTyIJNN1CpZBUVtfh8TDf1LwwK3Yl57FXsRyTIE1MwgkOe/J3dMgP6cKWZRXggUW5RDwravS3Kd6k2cD6jsGKtWOiQEwhnIhQUOd+hH6ayxLWzNNo9Qp0sRLRszyyZe7YyA+o/SWkFZwr+zWCP3votPzVWFCz4hbypS/80a5G1sPejTgvEjzcXjkb+o3Z0UVl58LWbGdXXuPNTAukCZ7iQXHwiB3q6rzPt8h+K+j2QIy5SuDU7ph+XT5Xaz70uZ39skfU8l6URkRjNext07wd4uCwQpbq20zVE4uaGEe5MIdog2kaC8DS8ZNqNl7damuE+3+QzZD1/CbqaNPASFuWuIUWrC5dFY1l4wFgFGTThhVVT/m5UPyhceY2nnNtFr1YCdz7ZQzvVRg+EKlgDWtrE/IUaen3ifV3VKHgXB+nTbJj8gSFKMW3FlCOrgnl6/81SiMmByJdgQ21BwqwBRVb/cIgDI3/rKvfRB9Md3RNqw6qFuJdj5JvoSy99+L8seK68oJDJqIxxZDhSR830phakSH3uTnl6gdsjYHvzoO8ce28E4syNByNE18o1tU+q7A5SrcyaW94/qxzZK09mX5yljLYcShSx7PssEG/tFHWpuLMyr86myzBwJPLCyRmLfJikIK6KnR+KB9dJe9alijcWwXr7C2lDsXpDaVH1xKAH4KxzNmbOVdNlHEU9qcW+ljY74Saefv+DexUseAmP9qo3x+aadwjgzC3XU4rXgnJMOotMIZP4oj8n83UZyYAnm0ZiCq1bl5qLuOQpJCCzEBR1Mdd2iHffiodh3ALiW9+VA1BgHQlep1/AB/yjqyTQHvOtJoujjtuuhjRA/J3+ZV3mWvpeEU2nLGnnLb9xgH7P0BIDpfPt8jJBwrfOg54RI6BH1sean7UObvA6EeecO0V89gM7zWeKV/W/Y9ckrJl405U2GemgBRt0+WyyLRfYo6yLIiMwXG2UmiV8q0yaCOCfDBCsnsCH+l0TsmUfTInZW3vZBVZ93AcJ2LSTzAbbyGUugInUVMdDmmg5oXmsrGVJe5SOD4aVO2ntbkDTQOnt+Ve9eA9Np5rr4eVoPrP4GqZtGF/pyCVNDmYtHC1B/ceCVw0h6g3r3nNZY4mkzTtH3yZbxJWp9pwPpDx1YfcVO+QD3v1xfEG8WmrjkbQ/otjr3h79LVKbSPHmyXh5I4VvpMjXZynqCxVA7AP87K1q0Zx+8gfmxcaAa9klsS8CaeojBw2wa5t7hcf0+8+RiHOvYHtX7hIJwJ8AS6ToKaYv490P5hZ09JS9/m1/zukk7DirYC3pGvYYM5zhEit9mAQo55wEV62Nak/w1cyzbojaYuDqKVGVHTabsUmR3iFMZyPbwjg9RhJ6wBX3OpdWow8uH3VRV6uyIbL99Iqwo4RuYE8NWru6Q0rd+bVvZ+ciyoB/Civ4ah4HSCa0uBpIuYjOTdvTRFJpUukSMvzG3FXDxng8lLWbEwhX/27/L6p3GXChGZf5k7agrpmLOt8rPHSn6OhQmRzzYhoPJDU86kswNfMjqbtjvGeaSTMcXg90u1HPKqlIrDojMd97Qk6394PPUNtcVPmDcU9DgE2S17hEYFtIEyvv0JW5OeXsMXlwFd0HlbMYCfJbR2qt0jXS42u2nFn+vH8kJiqIjtipkcd+Qee9xOzGZYsMjeXbgASc/mWiQmKD08t5ZMWllDJUHOGL9voKxY5n24g2ReH3GOgdgf6f8c/q5RQUYqOfsya1rmEV5JqgN8LoCym2pM+NnO8uvd21pzYL0mabu5X7ZI06Fk+ocUwdAyZT7G6qyk2ugGFkkLflk6aymFHLrbQwkiXVGgix6k+6bLQXDMn+zhnEZaJQHSypzf2c90KHEZSV28GK3qyebgExfdWqhCTWcx1BBlzTbdFbjK4pMLWS4ABAVC7hFL5hDrrj3FIfdvrc3Pa5k9l72Rjt8sT98W4upiqdKSbyZmhsEbMi4+0iUTpY/h1R3vLqYgM02DZ/dwUxE4FvqM0z/zWv08Gjxwpi5FAMlCHeCVd1Qu5L0PqUXhdryMgrQSnJnckEnhouqMEZ52NIfPcMibRtEBcavHxmDwsX/3zYE1kKUiyHPdshYA6pndrVILD3PxApXDdzsbiQhjg6RSy/ysqC323mRkDtsRuyv+v/nrP2N987bnH19pugZiWayFwDaTch/iZEWd8MGnqXqGMh91Vh10iJL2DC9D9NZuZgyA8J+NwPKwpzYaLsyiwXfEshwqosP5DdEgFQ3xJ6SeMfCTAKtGLR5THJoTEOg4gTNmNh/xFXoceiFhSO6bMqFYTvYZHYfHG5TBDMxYqH6ZBndnHIq/6H85ww9sV3yLa24yq9Z0E3p6OXseGRdcQ9kjBPTU80XMoI3MLgnH2wxxaM1QjFBvywxCXCTnDNG1THzqf/NatL15MGYrjwhLjkU3gD0yEPt4KEw8iTXTHtso7JqVfTvnQMONufm0363RG0BD1b+91CVHHDOMsR6zuPtThovyps8/tAoOAqzRhg8E6bqWhaev96dOfd0SCXYY3srkp2gv0y6AieU1fKEFRLPbfwXxdAJNegos500i8Nbsfpoy9At39uAcoG00NNFLXkmO4w0pn3FRqoIxbXGsEiAu/8brf4HqAFSiuETTZ/fFCo2CA0AMlwBBXCVp4+W0SvOH7H90TC9DRNY3SGceDLeL7PdGK6oEX9ZLAUDI3q+L9mzuMbP8YAPXMD+3FcR4lZbhsbYm2yg6OalRe0kjE6XL90RO0mbnbA+6LwLn6sBtJ8FDHjqInCOxXfMDQnXl9Xuxh3vp4LXUP9iCzYsbZLawSXBwxd0RxWmdS/BCj6k3j3vXMHOGvM7BIyL9If4+idInYMQnG3RqYBwdvKR/O0XDf8Vsk640gS9r2oBbhGk0ACPecBvXtQrHVYPp594rbnHoAEMPp2rjRh8/eUdakFudlKtKbiIeP2jsmfVNgHQqXEiZgVLywVsyyjpy3XE9Kt3GHuU3RgIt9Z/VLip9IUvCriicZxPvjq0lPcCGU18O235o+GLAHvHbw0mkKxofnhjypHjjZAXC2WchD6XOUlp5aKPlxe89APwiyjvqfG84hsfqYFI21CbRL+8Osu1ndS5aZmrBD3RqVZezGanrh4y9r7TLe+Xu7BYhlEql7CUSpulR+rTi5831AmAPQxNUxGcVRcTD6FRTzlo8yH75xjVOOfo6uhsIyU1WWkpbCrUsKWshqF4m+hb42OCe+/Jr/Kr1eleyj/mZVK3QeZSYVL/0GwvZEvWwJIc5/DbmSv6WKoI2mu3q0Raw0PfqbJnsagRcgpqfy2t0m/yo/lPasD1fog2rMsNVhLYtNZgtjUV/pBZO62pnuETiZo7fqC+I+fJLpiuuTkK5Mmuz9X94dsO1cd7cIuebRmjKw5KIfhdxFImR4Q4P8H5piPpYsXw0AC7PZzus4lkBl7Axp06lCiR9Nhqa4FwXWop89mdAw9D9NkLMmn1GFbAavzfXYVjimZitavX212Hruf6aaDhBQ602juV7dkmpdeDExMA6VfwSz8smfyl1ZXZt5KE8VsdfwU4BpX2na9GbYJvHYeWxHmyF4uPVpj+8alrrZq9M1geAQxFlIkq2EhQQJdsWZFuonZEdNOTT6Gc5mjCRxLqioiDKcclF+t2B9MfyycjlaaTHwAdF4lKIZo8cvLV01k/NZD3pLm/+9xKO3O1J3Tpwi+Oe4nbKqw6XdjNoo0IuX4IPxcluGZPWOzc5h9ouXRRzdJkEDLbYzo+n9jpEdxqiyRqQ2J0r+bMJ0qh4LWZ+n1jfTAzIczaKc+KmprLcLSPZKj/fAnuH4zFJx+kZ0FWJdravSS72Uyu462L09w45MQRgW+x6eKqDqPfWcHIRDJmomt7ycCtCRpnMIVIN+s9xkDTSgovwPkZRINCoxDWx8BH9jRImEZV2c/MnfFfZaSq/ohDPcjQB8lLfoYUQgIRA4zX5d/2ISn6B3TV7CPk97J4bJo0ur4iCbbs1nBpBVPfERGXCa6BQQVrY4UJuzDfuGqlr3DVqLyJ3Gwo7Xio3WXJauvpDt1k9dcyZocnqzCktGOTd5S1s5MRGn689W6W0o+lQgqgypxPQBcsQ8JYnN2MD4DvNHL8VfcxotgLwBT2gu2h8jZMUy+mQIIh2u09dRhVDzu+1nBXrShoecERijNIW1M0dOibes+SxheBoCF1AdfQ2aPLC0CRDmebWbvFbyrGhfg2Ris9QQ9l1gLrwytp64dNCr+dQaJmiK0FhLCj4bUjKMjahADbf/wj9WR4zTGTqhzgAv9OjXh5rlHbR7ejCIOIHIJPM5FLdGNQFwZG27DNF3LvX6Hd/s65ImfB/fNVQS0M3Q/gj/2e2G57n4KV6zn6nUep/cCv74u6WW8hIkxQ2XEF9nmcLE7o0ZPF/7SSORXzvrpNBhL2Q44Tb7vKsie8iWUBbcgRz0cF8w/IE6c5FqDp49CmkZV9POTVxafTKqrU3RPmI1KG1Jmlhn0OI2NOP7nE2uEedWg+ZYoq3HnM/W5cBvFQ2O+Vi+B4+bXd26pzCOotqbFmxDsGRLJmkGPbmseWwXEDi5UIR4dJ6L0vsjISwIQ0K6RAPr2N09ujKIlJ/RZjrE+s5LVZaAxu1vCwGnowuGuTP647VyPePjTeMr0SYZkm/mbV44mCVp1iheYaSDCvkOc+j+3M7XQpmOdtFerfH2GeFuzLWaI3ZeWnVzxDqZcaPq/fxFjVYTIUjRmKXWCY4lla47qRBS5HoaZax4fYZuanbO8NGfMff9a+0Pxt75HgbHck7ymTVCV29fSpCRN0+YWtTOpOikjb+sap6jaR6J6/AnbuB/eyLXTiswRmFG8j5FvZy3h0SvBZNwv1XQulBRx7pIUKgyNt6OYI89Q8yvn2mc2JEkqWsSczxR8swc5iqnHuUGunFaiNGhxxLJ2semuqQzXeVOuA9MG3IWW3PTPMMpyYGfe0zbRtEMcxab5RHtnZWy+h5ySN6VxTZpYJM9mYVimHp5E3dVE8wndOefxpH2N/qWwX+OqC/LHvpP3WV9XWssUsEQ3n4jjZx7XGvu9roJWe737yPaP5fU1FSH8GK/09HocM2A3yWCdZWEk4WTRPpz1c/l4h7/eESH7knU1m9lKF1gFWSQGGMrMuup7dUwTPoVvpozsiVO3P8KhvcwaoTFfoN7XipGer/1ZVdFOKXWXNLtIbuSIlDsZgQCXGw4pCXBYPiw95XJap/LwqZRgyUh5acXkOvGs+MovqeoTTwpQKXl5zN8Obs7IB3FxJN/GBn/i7BIV0/nZyV0vYSilxa8Ell/2MMVm2d7h8X9jFv1sRBybp8f9QUThEvKA1lZdinm6fGsB2ijvbfaMIE1QYrDbwicSYx1j+MUhzXhrkkw925hZSD4tZTNKFtyzcqhYee8l1188yObkyjEcIz0VuAWt7UXsyfoPFKw7dVlCsVOhflDHPQemLbZ5A8u+2IdCfdw3JbvuZHh8eb1ZheD/mUx1932klNeZ2NyjKTWLx0AgwkdARnhBI2WnWOlZ3lZLok+DN5niW9feVvUP5QZTbauvhG9/E910bquaO25EILZNFA7J3xB7GOUWmcKXSCl0Ox99RdT5fy3p58KIo72yYqaE/5AizMVEq8ag1YjrmRhYlc4MsSWOujVK/vcIBfWj1mgzBkc/wnOZbWvW4yrc0a8nxi/I57UI2gZPWG6B52u/Eq/sG658Bw7GMwm3xqKuQHhG2eaROnssUQ21gcJasd6rtVzP0fsLqN2olSvz0ge4Jk+kWtXrBw7Dkb3WnigmouOpKr4081e8GwiE2IDY/IzvX5td6YpASpfls9OkyEa8jBfubvgmaUn6rN3OTC+WrVmNSCTGAgc5Tyzkmce2h7kYZJwsb3Vx1yyCXVl7fo7vGyAn8eNC7UrbCuJu9t8pOqFYyIf7k/isKULsg8k2KE5dK2YHA1NIgUjQ5h0wql8N2UlWy90JfnB5hDuZRf1yiqKrA7ZMCQ6WNI+/5PRqkFTHcNVJuzdyWD6JWTQDzsJ0J1QXLbyswUI1lpblhy2IN2CJxi/vCPuYvokJYJRQ+x1iWpSRE6imh0mKMzeUd25ZBjjaULIa8JtvpGa6FPURhKcMiWvbCTB6oCkCfNwk7kVZZ1xC8LRCvpPt+ymcQRVlTDcf0Tz2XOuK0nDHiKw5c6xrYxDTtX78k1a5UgxKgj/8LrKKZ+twe3eRkxK//WSqYtLMvroq7MWFjTQ9zWhJiMn0R3TgUl5erFjSfdThYASE+vLP5hj7dT/GTBQ2INBxSChS0ccxUP9haf7RpGJjHzbmLHz+rqWoPOvvcw9BTLUfBe0Em0tEWHikTARfK/qO4s1H1YrKxJzQGnG0zWCragMUiTpuAiMIyAyJQKTqiYP9JCGfxvFRM6gAZQJGoeItEqFC/3mLwJiEmZaLPJg9TQkvrI2GKXFeJFxbPpgvDSWhuZkNzCK2Bp3FQfIDo8HCy34iOtD2J4tER9HkQCJMKa4sH2gwVY1PfadWbWSZkKPmuUpg2AsQNoQSMZchanQ4lnbXzyIPv9fkyQwJp4JXoDhM6eqLnpdQGRe2SIQdkdWm+COdxNknyhi3ZXrbzN9TmWEYvQiZL+s++4dy99rrKxlJX5p6b3ejXBaOXe8uI5uBnaw4sxLc/uy8CaKmO/tzBDGJPG9x2wVmVTIcelkvOmyCd9CcgP1K/Elir1CrndDZIQfgbYT6L9ISXnkZKRHGzBXuQcLX4pZKtBjf/08+5aANeIYxqzP3V1aYSsOwEvUvypuOooaUMCICvagqOGQuJB8ZtEXVfAZkmvHkr84dxQ4IhGtUi8SM0THhzdLGbUBuduotOHVCzVNC4OH23c2ik7HZl5jvAnDcJJrssrFPtSUtI3NYsXdXr3ZYBuonZXcxYZixOuUhwOy2jOz0t3bv9+c+g0SQuuq5AMoh+o84PqZ4sw3YGRk63P3Q3EpZSMdqRnGplSjjlpFeMdH0C2SM2kMImvQcrV56cq862uFKn3gjPoiZc44Quhho9qTpe/DPhlbSb2SIKq/o0ZpvqzQtuzEasECJ2EutRmyKbJfgZmDYtVojWlm8eOFmfCD39JHKgXKIJA883w6GIbybqwJC2hzsNk4q3tuV5BE5QmzKiGA5cpS+kyBSqRLqGuzs6bPwavPT0zTC1vFDhosWWhGwKOKjVVZSJIOxckFz+W2u9cUGC3EkyIQxbyGuwgPkrR+lKC4mfLQK9N0nOSZeSJDswGaIpL6FotvOLWdsor0XUt2Ypaf2I40YO1OPGm1vB2oapbVqJCU080ir8e/ojmSjQjoQSJc2/+aHXGl2lwlYs7hnadm5E6lG/DjwtXbmS9jPZh1pT55QX9xSux6BIK6slF8rH5zdnndAIyks/+s28FXyKat4qI69Zfo7nQcftQ+SnkFHp18grHleVFfYLb+Sa1wK6qb38+YNjsR+0roPkDoBjTI88wzEwOgWv+TDetsqSxYDcajJ3J6QdpwGVFqvn/O7J80JtTdd/ytneIMxgBYic91e1SGnDptrfsHQlMi2bd5zw3m4NMNOUC2ynvjiOHtTaV8N0zkC4k0uJ0GYlkNhakMRxvN3lYliF4G0ruJR5VtDZAamOJ2JqWmNVMHDojkC/nzXwgYVxuk4ppKy5BMSYgzte4QTeZmz+kgxVBjsRBYLOB3fUe0TLUe64SkYnv9hmozKxrsUx6OTj0JyaX0z+et02jdao9MO6tMQbIPhejASCJMYMkjU6HCtvuhMbM5OeaDRQb5FEtbHnZnY2yWrPenaQGNsOt+s3RGVDf17kgS4asbH23eNMSUxEDgvJgUbk9+lFVoBorSsU4OjlxBjsh41wfksIEXIs04kAFIXSxM1mK2h8I1LiM3XxTDQ8N8qyLIxuWkwBLy6FfLxUPHSDiYTyRukB3O4rB3sSGb3+rvdNxdZ3Qyk/8LaNRiThMlAEaWLlG0CKnYNDEoVOTtfWOjI55nsbrw2n7dL0DjumStZlu93I67orWiw1XthExUO4tSHUsaJD2ASEMoFsf3zN5ABLKlHH0juN1jLFS3W/21FmIZ78V0bHfiknGYOhY0OXnJs1WzUsKs1ED7T9LeFtQEFXLan1m7uohqbR94G4Y69uthafIAhJ7rneHhmpeI1XkJg+bn7VuxR0L4O4HQvGDQ8+WZkocvGDOOD+34LWzkziFNmroEvUm+hlGERRUY5x94wCZDYpEtqmxobqBQOMz/U/pL0tH15G4P2unhPaee6MQU/Xb2TO0NYB7BpsPVtQX95ea/FfHP7Yrj9iG0kyaP94vVKiI+xA8rt+zin14Ceh9CmBIq1r5ALRfpPv4/RnP60iU/UZ36lzypEjEBch0VH+UvLFwX1aE2kEVmqM9LpqxVVCXHWkn09gbdv8/YM8xINRsFJSzw+ugesYSG5CG3lGDFE6tTyR6/3O/ZxMlKMmUPiL2w3uTQx/14KzctaYlZ7Lc2YrgSI4xgobvH4aVe0dhAzeYuaXdOTRD0nALxNpKx1ih7V/HEJYG9qHHyRxdCiQwtQ1aZo2Lx4mlhaGRoEaq55N+y0CUql9hs3ZBFa5RSkgmjuzsWVGyCKYw2i52zEZOJrfIOzCUGGqKDjCOGSCTO71h2nlVKYmJ21WalVJyM9kkAmfDmotfLYBES/A5Vwru2Sgt0jIByZYONq5WfFTTj+NLYHYUN1povMBJq4mY2uD0veBQcs1fDt78kDe+Ekzxuf4FqlIKchy8/UlbHGxyd0PFhTxefAoGMs+NbdCY8d+/31wyoN8buLKttUubO1VtYa5Ieo6ni/4ooKKxKk4rJKq8p/3NlyrTzE6MIKCTMptUMr5azPR4gaJnp/Vf4Ch2Zwbk+8nlw8kGuHbosu8hqQkrBESPnsWowCHP75npFMsUYIMExUR+tptvNkZu5PXmJ0IIXmj8B/Z6ob9Ah8vK7mXzZeBgzEgROimeUma5TlcTPnjbvh6v8Tc7aLGjY4hKOnEKx6N97a775X2GqSkB6qIAxmHMXRHZtnsVxDOdmeXBnSrHNEw0UuMbCOT8bVwFwS+bZgjOrFfpjrbm12AINZe3Ef9oVcSK//a60NJghH7i3EewZ7l0GQ7buKKnRgBLCa3lCpVacE/3AKjtk51H7iaMWz2VRmaKK4lx41CdL/mv+azsrjhMISy+z5OOcNtRtDZNVT4oal7IKNxKDXdlr52FSCPihAZ7YRKakGk7EfjOzmjwvgkRzidWPVu1nhcPvidoab2U911WuYLag3YLVBlblOD624m8bt0b1tzjmFOXw8qfsTRz1N8v/zH0DERbe5ICJQzIqX7PxLMfk/BlLTuWmzM8TLw6EoLnIqrBfCLGB44wwY1a/5VInSn1BEsJvaqG33xxYVT1bM3hHVnHJVqEXx9KD8krLlRz0s8HkZrZh4UHvLnP4c7f3Y5WyzjROkf1csnOGwSfXIxd36ApE9+LKZleKs/FRVM90jcHK/ezfaftPK3dro932yOLqnbY5NYV2LWtJlsuSa98i04hq/fE1CUD2BhFxqohkRm1kX2mJIbaCppOCKlXMRgw99oDzn26I+JDO0bhONy2kBtWRRlHWugPF5ZBXlIcF2eNZGCeD9HNOnRP6ChY6grxhQ6puST5ksttsrkeN4lo67GaizI8SMoZevTDpG+7gHrQz7EKKkhRpf2EzVmt08KxurHrJxcqnAGIewIoRsFoGzj6SzvMs6pXI2Egn24oODfSWmILoU3xTbfVCFOz2MOFSpFy8EppWRYrIcp37hJEpPNkEibOmJSvi64y/T4kkWyS6uJIb15YYPGqdJdsTdozpT3bBYlGwLqzk5hiZSDTCFZmRDw6DzxuSCDWSTu+MosL9fq1Q+WODfSU/c4RdLz+0KR4NV975WklsolBaqHxN2QafuxZQrBKLb0A5sgxd5kODTZ9sfYtw23BzY3+WwLEd+RAiD3GLMbGWgiwuXL2d67jtJ0vC519pRx1RuOGp6oW1VFRxqV4vgfjZvArblI2JlKXe8ipLyoMndJjiblIwHOSwGItQMn+788PDJhOqD3MT1Esa2Rrp2opyf6BqGogsY1uBhE+C8b86jl9JcOHNBE5nk+yTKJONsdwEzNH9P+OdxkX8J005ywOOBGlDzYgwX/kz7CzoCxN5mvU5MbZYiCr03VZU2ojyatVGaXrhwzLadtwH9ioI0+BVh+Sp00SPfkcCdRe1kvdSeMipzIDuuVJaT3U5QgJIsUogyeFQkQ85DjhUiIDOPXvUb0s4382sUF5TdCWlc7ytEhxDYZ4SiTZhRSHgF5NNg9Ljvw8iTcl4CE5qWYq2KrLFnJLlStdbi4Wz8RIhYgIM6ctfpTDd22GSwzS/PltdzryCGOuq9zpqo6WAvEnFGc/zhPV2wQHzw/a6luAol7UCkS6v57AbA1+wKl9qIJW4UcVlbfTeTz3AsVDEWMvOJtutuuG6FDp15eHlJxA3o4pAviG5ijnPdd+jFnbpZ+eN+J5ynqV7IdreiDx+JO7niEvbJzc/YrjXlwuBMB+gU5CeKG9vhkJB/2UbPjgjlTwXAYfoXoxn5xhAUjSn7IPGxlVcjRoyUOUooYvWhjl/u4nkz8KkqDRa03xbOaJCQZzUE+PhGdzpbqiU/udLsNxFaqaRY7s0+ygW6WPg6MpZCyHZTzGFUeCZm9F7pr6nf4hnUlN4NkVZgap1cOAYtJPzbRqognKvaKf26pGqLBrKXXII+VIRal9QsQSeLryvFYc7q7yuPtZ2PBpvJuiZVzAdFTOb0Q+4lqVwPJF6l6FzqDCPLgVSH98HvYEbFWBddVl+0haQiAnCwIJI/2WA8Ss2t9rBSMtCJtTWUUlUk21UvibvPNis6kklPWS5M+KgJD+tJ1ey0YHAzsr2EJhn/S7LF+TxJ2yjA3p92dCOR2tEc/ju1qiax3BSxN5tFd7+mz+lSdoW3RAWU/YnR+eaNptCK3GzDvkNHhgU2+vCWe3u1pUgKZi5KJLeCq4qzyAD9NMdqKgRfm+jzkXO7fABnBbi6cUhLJLWD7rC38EDfdnx1xCFy6eXfptdGTewbVUJvObI/sBTxxaiK/6U7gxueLnXlsY6Wc8e+TpZl3fKj1U01mniwk4cjnfRd4P7123krujWlE44bnJhdZbUUzBFxz44LC4EcFvap1FlUFQyiubsBLP3IqDi46zNUAIrGLqd2WB3vqx9vmCyOLZ/s5v0/6sNg/b/XgD7pdmyIlsnP8SwvMu8lIZIRz5QwZyRiwDX+euoWepdsYV/vP3QgvRtJUNqU8BF5sBhp6H7/Ta256luVHgsUgPPZEKyfsEvQxeOgNgeq8MtKjNGlPdXAQTk+l9AOKLmAOPbH0c7baVfZZ8ex7XyNjSLdcPT7z/lgjof+L7qndrCDJ7PRhfCMLbdUWA1fL1S0Dlrixusq5gYsqFy7TmZz89X6FvgWHqGUPXT+Cw5RiKQY9tE/pUhmJuQaygqO+b2sKN8IzNBK/xWhXD0mNfZMT/P6aaZzCbID6HM5PcxUOqnD/k6yMWi/JY0XNcm+pPb9dSBxImouYvOMpaSVANy62+83SIklNZnaof5j3b2RS9to5z3T7tkm27F24tDNSPVKpVkJ0tqEgfH2mIB3KXdPej0Om0YAvG2B+1915tBkEPoi2hTqygZP6pjR3L+LEIOzWtdPX12KuM0inS6XBOrwFBURtsKmbZHIaAryFaw682x7W9DFl93hLYrH4TeX7zWBOmGxjU7UhMA0O6UYgUjhzlQPzWBbsSGeZuQX6q8A1DC0+Rnx2OSlF9p6ph4I9yKg6Sp+8xenrBnCDnCD3Op909YuJ7Psi4R23k2Ko3363C6vQlZkRH9sOLWQHiecGg5Gpe/fF92TFZ3XxfLhya/b/QLnlJWYt4dJWzLP7fxYWz+ZMvXhCnZZUUdBnbM60M3EoeKvSnEGk/DFXk54iBWj/qEQ6wW1r9Q1ktSlkAti1dti9fleMrfFVfFkk+FyZbok0VRWoo0OKwQqqUtiRyxxkhliPcrD1FefPUYLz6vq5lZhZDG/ygW47H7bu/MmxzM9ySNt6PF+bdQ/fKLk4K9z85+UdD0q2o5D6b8bvDQ3ihRbwWjnJPfGxju+eXEqpG+Tmjg479V4Ow8mqRrJeBLB6eLfoYz8lF6YcknJtLPqmBqFFIzI3u5G0lGS8F6MHSMSmzyECoB/+yFef/gXiK2nt/q7Hz7GYslrVM9wcuM1D8Kn/UM1cgzZit/PRm1JzA7r1iVWbpqHzA/desA+216aIdO41b/MQfOSSrLDT7GjgqnVK08Glym7z5sp+GHmn3IglPSDsSVdhzbzy7U0uWEN4sd2FrzzrVWNHOxEr2n69sY7U1QGxBHfI0rxSOFfee9Rd23MnjvpMfviCehv+4QW2le9y7aFBBPImR1osAsUVLGm6E7+fx6+RLrRYdVe/kDfJiMMyq/RUAH0YcW6q4QB1LFoC1FxxMhct+1K94yyc3zVcAOl5LQB9T+fQiVJ4AFwJFqvNfXQA8xLcBeQnwFg7Lj3FuwUYQzGRz4Y7aXNmSJIjMhisJ2ChXfJ77stLrPGqGEVFYFde3vDVZ7bLqblRYnPnqfXnu5KjbgurpLE+OVZWbKTD8uhxKyBBdiQrCQbtUE1KPX4PnyovmE5N90/WsEHbK8kYnHwC9giIZS6+/u/tRVPpsrcyjby97XbDfuHKwqCYOZqAH5+rnL/lVfjMHXYpyB7GVgre6iYc9yNJaDBwFI49sdAPaNHSfKrdOMQyz+FUEOc6sarbS2d4Y/0q6oHlx188PvE7xhpyeUsHCu9bxKieKfjFLwXFZdEPjXQKNlakPrh0PA/sUlNy4kusPRc7dVilk6KJamjkE7gOEQNF4zQyBTmEkmQEdVG5fNleERpVlt532li9j5lisks+e3qvymgCOosyFZPfPuccDPE/D4hrhWkkI2tFkVddP3kcIjz0QQn15GmwDWcsBK+RsoRKtXcn5YXqPQrdzEP2QKtAGWSYo5/EsaUqUD5j7WECJlZdWvEa2D6yeU9zHBHZ0PkTKF+dK/r5gXDbxu8+HCjVund45nAB8oNFCdxMkNbYgBRxSmoW4N9nKLRUMaeqG0mIQEkkmefP9wWkQ2+eIDzGUNprOn9LvMeTOG4ttHBLHx/FQ419DtiUkBB/PmaSenCYmuWVi+US7hAsqNw1vu91SptqD0tVmX408OCtSLcaJXMQNzPTBrUBke1/GhvFJ0UX7DHGJfrfs5I32qCxhu2xpdy9rjh3QnpBzmWZouwi92EqbDBXRTsefBxNkoCpgegxzheYC9WNvS0OMXeOJ22fW+jh/Vw0PnY29Il+yzPRy6D5Kud5JdZVOAy/VRifMKM/2r6/erkkyyLsAfITA0TOVAFrqEQwxGtR+JvC/RacDCW3AJysUOpdsDI2tYXpPwT0keDqxHPb9bpkpPYyIguM4yc0Mo2kwb0pr74pXCvLMU9E2RpRRIaLfBMJe0EyKpHyk89j3x+Z9I2q0B6nStz0UiDt2DgoZRoEQvWkKm4OSkEouCj84kDZC3zNxaomzQhdWS3fKbPtNZLihNoDt8EIITtDlsvU7YatgnRmbryIJpiA+vaKDkzX3/MUXnHN/G0ByoE+2SsV0/LfrEVg/DJdeudQvxBF3Jaa5UD4rBkSUsmY/xrOWoblcYYPXDGK/udktHvnn72LNmvlC8vz9Ec72+aGYWZozllJhRkTLFn+O/n1NbNZy4BxSD17Q7wEPNBBTzaih+mC3uarfGFy1RNG0dKXh22MZR5OpQqPnOFxbHYp22wqZ96jN5Om8Aac+9lR5d55kpTh1Nrtiwmt2z6/cca5+vR9NxgH/ZK9npxqtG7OUR07yH7y7gxLHcK97C8I9a4xC13qRF1Uz8QBnP6lNR6lGcGVOJ8psgLGIBFF1eyX4rtFQ/wsCpc30y+2JXumdR4GHWPP5yMl+E9NeBbNVrC2WPkoLTvunK6hp8kOv1hqRXsgfTAQ020jfu3eXye0d7qnOzKnY+7SJJNjwTapCf3eJhxzVMSE+nvXZCJeNSgW9STjpBEksZeO24AWj/hzxF2fQfMZE2p44ng6PMb43V1dWatRChkngyidg9P2fRaIahq54lIMDMbl7GOn7amxwXc3ENdfHkdHbJ05zOnUs+xz2Zhc09U5T+C4eYwKROcAhEkje/JwgfGQpaN58A0eH9AZYzcQpKb3nMIlnfbmt37l6sJwVHXMz3ITawcZ5/OEvpdaPMA/EtnPoTb+1RP6bAPcrNptdpsvYJ8msdIqtiKInu0e7xCHapKaxa46YbT6t5JMRL5ckLn0TrWWg7sSO2ykWWfltVbpThlHtVr8cUuQtQ7PxTnl/L15/anuGORrErG0jA9eZlVtG/uNZ1Y+1SsBIPGeOoZyG6fqwUjonEkj/GQcRcvjK26MvG/5Z++x8P35iY2GwiVIe4mnBVMTIIT9jJj0L6c+5fMV+6z69IxuTs2FMiqqrZ4La8/LkfCKoNvSf0Q0vRnI/6ezLGwcjbgCRcY1asiwlGarzHqzdKwBI8ZbW0i7glyyjv/zLX+iws/zpatlVWFOszSMmvBPuntLwzzDmXAxSGpBzJ8+gPtO57E11lo6jaNi67koQMu6RWTN/zDJtDX2Tg/NCdNtTxD7timbU+IGDQfKFTajqvlL0BlAWPU29EZBhLO5l5/oxfilJE8E4YuLDHjd+NuXBKT0NtisVtoSmwuOd+VvN2CXCpeQlYmYZcEXJ51zU+cCrtrrGKTY2ZKiDQp3t2ASbkkF09ZBdeRzbD+6DSrfQtn1f2zW2NH34Gnz/l74T4s7G081VaEDkUSZ1eYuh8w3naPZwZ6fVAmtawEonFiJV0ixDaiEvL8NyldvJn+sNzf/Ezr8gYXOYUhqyW7fXDfWNz94ATXvuTMH7St/1WoaS/qic/BCeQ1hxmpitKHAe23eo6Ppu/9gtgfmTo/7uC5SvQUuiMERO3KSQMybi5Y/dlGVbcDBzXxCCs577wrVscXHOrNiXzyCAo7NrutQnSlBXK8QLCE3MJiJxV010flKMu0X9gXVmz6qOVe67sBoJ5G7f9M9OGHZ48/onl9Zzh7788Nizb6hLkmQiapNwbql+I2a/d24ssnQymx1ZmsOndRtXZl2UN1balnL0ILgQx/CeS71u0d2qaoZE27v9JxRp9jpFYcN5kiwev/RTqgNeTDey6NbiqPYSoL9JaDdesdvnZqot71Jd5MzqYGJg3gt+g70hYXTTV1VwOJQmX7jMQ8U1zh6dM5k6razJ5KHDYUFodH7ST8DeC1toLkrQ3CGTO8s2vo+cE+V5qe8oNaypuJKn+iEjPXRmqwzRAtklaKglR2SzGxglmRYbfryDcLsM30Q733dR9EZuKwn4W0Nwn5GsNRb4XM+IFxiCnx0epTEdxUoSSOX2VWIRRqUyDp9GnYlq4Ugk44/C9H6CRF6+xLJ+ya71tTBr3CxKg4J6Ugq9z96pYEUMRFozGs7dMwuWrnaq9KDkpNpjnXxlaAjE238OxNCDkxEERu5CwIesCwJPSN2qUiNU65jhneimnZD2aZHaSIiP+eTQLSXH6NczvkwgR9blOzrDILhMY9d7jw6AK+nJUw0UFZZD4x+K9UIvxJQUIrVMy/llJmYUULVa83N0CYvw+Ovip0sxVY2IRDibKblLbgYWerv/FqQZ6FL/cnHaBCPoCuZZsxkpEB2NqBG3Xw723jiljOeU5Pc7HP3KjbIKyIL1cF/xb3z74M7F9sn03GH3iiEAWSyXJXbc/SdB4tdiF0NqWdiC9ecoBnwVu6F2vifY/Ao6xtdJ6WUvAJp/nbmmqMePJRYCRHanDE3z6+MKz+ewDPwkBXsScQmnWMgFA+CGOxnHcQH3lsN5wS8vY3RmGGiiA4bGaD6Gy2x4r1LgL7BibQrzWijq21ICsDcnYyrNbGjBS2Xcl7jU6JgRQqar2MCLEOWa7ufjEuiGTHLvVghuoSgrtcRbPZsJS62NsdcA5oLabDVCoOXlmG/QtDy0jLj6FiTH7RH+ILyiYVWVlbp7gX+BPTDCoUwPwTZrEHr6+LzZcVmDViS0dE048r1iDaE9Wld6iWWZVdi0OuFdV/ns3TKnBGZwxPGdyRtgYFLmtEWec31TlZ384gawwjdkn5rHBac5ZBhLZiWesQHFb/09ST/guY7POPIiZAUzpibrSEjmDakFAbHDalMmKv/UzMPPjMBQlY0T8z4Mvek/GKtemKxr206iP/tFW0X81J4iORo00kXmeZo1RO67vxsp3IsaRystJiqurODDs3iY5PcEUNEpOYlaKRct0nuyACWhEFwI1evKr6IYQMhoWn55e72gHRCsGTaj1KzTqV6ZR8xgCLzArDE8gEV0CC7jnECMqJmR8sAHjz2kqC2SKzHS/sQRF0y2VTBMwGG2QDMksMeCJkxiv8K/JQaz1LFaxyJxofJf9sdUIr8TQToi7lXEn0KcxJmyBr/gnpTyghSaZ3jlkGowdxVwHUkdc8Wo0hdI8rDUo3J48UiELEQMe2umiZNjw5AEbffzaVci5xFlFEvU9oEjIyEChNcouYAKDzRbpeJqh3ueOFe5sNzNb5drCKAVp7owtkbTMaHa0xAibhzaI5tKenr+kcfbalNIdMYIC42m20LBZ9xXxox88dsVwkYQ7eum29VNDt0svQo7TRPi6/9xRXB5dEGo2FSigvw2lKASeGcv7asYfZ+ikNzysHnDQfOAgNMg5FuRoZtXTfD323PR4EdFM31u7fYNirEH+BYzbtWNSsIYE2yTLN3tU98nCdueZf8mCMRqQMEM+0sOFsCTPseSS4lB84oU5M7h4QdDVGZGdX0Gcbm7zPnWgb92EqEgQmT5vQa5Vo9SwO1KDEdC5WrZD2nAFmjAG5jDIZ2rtT+TyVqQhYRyZkAZSR6I8N9yd3BZKR+k6BOx3yf+fpbdFbuZ9ZdsgiqsYGr19lyJhlbGicbhafHtdMmM+7z7iO97JCQaLbph58rZxpDcyz8h3oUMIjkL1VMD3Nc0EFH3LIdAT5g0irNQ3OfHXVx2R3S5eR3fBW8zFeXAFpd81rH08qNjswG27RJbPaz6yrxUFW2xIJdL1VIW9CiXUNKB6RbFOdu14mwr5WHewyG79s7IfDJk6OK+n9J3EvIReU20GPkEo6FN9A9rQ1sdOTTZfk5HFr9UBNIlE1UzuPZZB3Octi0g5x4fS83dLbp4Z+WJISuappnbdCSjCSqcTMA/F8OIs9OeWzZY3zUn2vpdWxhpo3fCJt5AE89n9eqNwwimrrJ8bEXrpTE6I1FIm94c/FzND1KLogcHXZnUDUaqyvXtXu3TwTYSrAAE0gTHDCTFfb/jMwTact6jc+Z1P4bf6RO23TyX8FzmHrvQzIqBc5WY2SDc60eYGFxvFkXPsdBCRVOhm0NxOwFPZ2drZLQDWVLngEzt3i1gkohHr7y/Npoq30TymnSdQyC97dezTbd59ejBlOxdG8Mg6DRhMvyVS5OF1uMRexSVCTikYVbD3ucZMHey985ol3vWcwPOENIDdRSMYybijABLcpcXikhzDfM1t/45EW1xeM2/Lfa0K9E4mKLmTFBTUecoVw+2pMhcFmpyFEx8aPzpEihVrcKSMSPRi3ZDYcpt1gAaOHAq44j4DffKP+ByN68mChMtQx8jE53EsGIzlvaRR+xTNf5MoqwaBknkn/lEb4hEwobTJfRuEGj3NhGwYitVLV1maM95xb37PjzJ+83cDpfY3NazvwaLiDIY1u06BV3ME+pcqicywtpdYNgsAgucjFNk+ct1poteQhvJYw8p3KQlWNZaz6fXUCJYOpHgpEY+vb0mQDqC8lP0ufOAbCL1P4cd+k5SbL3Z4c1Ky3uD3CJyhapVwL6JOn3h3T9c7WOqZgbRLG2AOUS3YKGbE2KYer7TKTZJVGnmOVuNmENuTYEEVygXMt6Rd4ZOIwL2XVX+NLVKmHbcU+yNQ51tes2slOWmJPZIGIClW8NLXnCGSeooDWfmOnT1yhh4lj1T8rGkv+4o73XDQ1BWFZmagCq4woyUX+CjULU3xWRtEztO3H0vbP6+1AxNOEvruBV4Mm7Z6jDjx9UKDgD1TJo+c/1P503WynkAPRKMjnHCfCb0KFdKq+uvrp77gtfUGVvIBOxITZqx75smz9d8LbFnA99lGQBFmwTyN1oLQd0vke2nXicE0MPnpPIvRd+mkvDWy4GaebOlP1TW8CZeLmEhY0iLOr8cSDnTvnnYvr65bTBSUHz/Va0cap8FiTYyMewlz1XERsF1xYsHyrw+nSn3U5ltGspVYkUUM+iA4fZFMMulkHeRAYr0biNunhBwtM0OSR+2Q0yvzVQG7TjLohYKibZpsxBCCWkFoxkDnRg+nPqSyvCk2RKUXnmweu85QY1uj+rQP4UJ743/lXkTNcnhz4/ls7+RDJHRPa6cJTIrywQYxbUlJTaEd6KCII9ox5ln9Q8Fefe1YsSVA18cRb4hDa8kGvk2GeNtMmOGR6WJ7ALtBCMxo+ujaFRkv3mdl6SVaMYm8zCP1tr9T8W6rnBvHMdrIiUPEQHxDJZ2ewFHUrV+BX4rg1QKAZHny99yhid5VQsfuXgH5hL64wqD4H7wl8/uvIDZx2XgtcMwlsn0lEiUzrfwddW6hRO0AcZD5GwCX5RPyUkj5Zs9l8dR5RPpTI28POHjF/1l2wDe9JqViJPj7pCkURncvpahb2O8B/Zs5qdmMSiZyNmOSFYwlCXAdJU+WrN+FBXSUip6sqyE1YgT/1GULUr/N5EC/cIN/mWx/qDlJWsjxLBc3CnNsy11NPLJQxQS40jNaFQC/4s+TXUg4ZoTWzDTzLKTmY9fQme9mdGQdzFA+r1I951D06MQ29snFSqi0scPKRhUGNoAX8ogIFW/qreTlzUYxPQNteBMuC/Jj0HHlaCC3evdCICkQix4iPM1op8fr7pPL+IitGmQVNxCw7CGGy5gStxVShCCFz2frHJg70QIzxaF7C8qsdTytefPdYgssKBCZ1HJfI96ceWL/+8cIR/hwmVfZW1rqLSrlsAEhOkxT12cmhM2kONPRrdNZdvlyC7YkSnq4grFR32NXBP6LpSN+DCuzH5eI2c6H+Gy2gn76zfR0zINnhchszZYLw90MoDKnGpJVLgEhupD4W3YKD8g3tMxLiaYEObY6OvcvS/Esv7jI3p9THuWKG7zhcPioFaorcuoAudCZKq3lVE2WyKPdi1GVuvJNrJoVOU0c/334OLOwo4cHe6nNJYbRfoa/nrCTpk1q++yKBrfBShY1ZWqEGVv65augJ+zDr51rTRlLfO3JcXjoo/NzmUywGNX5UZLYfoXcJ4KMZkdL/jrr6cNROgt2IP03GsFRkH6K2YXblmxa/KSmbflrVioAdUkcruBI603V1vNodPw1cRMbD+SheQwSokqFjAlYWsmux4Vsi/VpPA4GEvyS/sUKmsTH424hxr1TZxrJhSQJuLePlh9vgIJijYB07Z7DLIoxF465/gigT28S/BJJ3KfckfZZcoJBx/nL17YDx/HoHP80R/0uE0QKdoKwCjBko1fSLD0bJKfUovtKrEVb7yzX0dRuavMrxpm7Z+JFfnwlcKSrN4acpzI2egGRFQyREpyRsdQPV3eJXVyxNDa6+lcJ3MuSaD+B+9JDRhMO/Lsuf42cLlwxSmIbv5kXW7Cw0W0sg/2LgirXgbtqpqWl1xnxT9k4KRsKlZaxtV7XwZVoMfAOUeFjUcB6UTejBibx39fAxi6oKCyyA7dNbzTfJNDb6NN6TBINpUyY0HBg7o78CKWtUHV2Iots9HHaZIxEenYtAusNdFngadlEVxpd2Sw13EYVn74lQjmin3v4QmiA7VJiopyKGFup0pFWOgo+ai2Ev3h9HOWUgMpbUBHnhPJK7/xTKxCSdKEr2TPOiMQ0Epez9WNutpyUlGzfICoJw8B1phv1HqJkoGjA3q1Knl+Ts+zS5N6bYpcttKU21nfisFtnpMn2NU6Q8n95mkG/5N8dGSSjxs0f3Eb2wRAdl3YMjgF225zVrL4KI68ndq0+LcI7QNdNWv3R1LSLKEEiPS0YuircUbL6x6IDSaaqyKkbIOuTuxEXcvJNM58Om/p6nDTy4vXoher6VRW7voZyFNbSx1QMaGFiJpiCwcMxIqrAaJzOmo3AGxHSxLHZIjl/7c9JfEWo+VbDrGZRZLz2Io/LpBx53eo7DUpTzbpqzOIadQcUQiwvHB42BhD+qZQyYRG0xAZiqSZivE65IyjqDLqWail+z+VmVxqnk4asxiM6In09QcK1tjuOYLoHrGYX1exVkmXjV0GSf2Q0Uhc/VGeCmSMWpZ8tcMYnbva96IYbiqfCaZwVywR7i8he0ffms99xjONtGVV7zpeYQcyE9CeD0i/vmBgl4jkwVdBv/cH/k7nPTCJBXiU+qHiaakYr7knnSX5g7U2O8MGYF7zb14ZEDmerZDPaXhqG+oR92GNeq9YRpOfKuIVLIZD3lHdmYmu9RUcpfD35zjl4XtNTSpGR6xbIYDV8gujRFUyz5amRt/3i/+ojpNjF+50dKXYzNqF56AprEqVQ14XaNbzN/FpzG23F3xsypnWywWGjhtQ94YmG/JhJA1ZUqHEZXGyxYK1burt5GZwQRBf5HjPltqP+ZV27PYUhOYYwjh2Fo+4sgdF7Mp5BtkTFcjN/myFFlp0jhjVn+dXVhmhxvjJufQv+pFQj8X4VFLxii7IQWeAbBZ8b3sBC/u9oS0nMBx13lQkumRBXKziXyQwpY+7AaD/IXsQcS3zF+dm9jgcbNijhY9Qrk1GEZLfhWJK7ZVqjIPaQwBlIg2Gin7c4UNEubSHL4ps40fy83fiqcm18VLcekVtYk8OVMd4swSsaB60ypMvZ26IUnZ/b8/4LbcKIkM1AVdFM/9+N0mlFdm1LzkwMqBEmUIEr905m2BDSH6Pn2FDPSWsi8P2UU9cHlvpdgt+WyhJXbEpfUqCm1x9uMfDVvId76Q0aKIE5TxIdoNyA+dscU8K+zJnsdYLNb0GNBOC6J9usHOcKERJ0qLrGEeGntGxEw4DlpAwh0akHQek2mTEoqu6Dgoj73jJixXzluGvfgydEnSepoo9Yha6BUQ1D9VVzdwkH4kpj9Ekw3QzV1LKOQXqd6eRUZBnJQacMRy1rukO36kKpu9Pv6Z2xlguBnPkGeKLGxJEkxtnpcOe1tZXinpZUFwgjcJ8H1/HqpHZ7leQ6Jok1p7wPkdPHDzUvstNY0u9WJUZtDArx3t3KPkFeqc53j0Y7L2tptMuzJjlVcVhqDtq96zmRFxWdvKLxaoZSPR60WIh8oIkORCAPUIoOpVrddRM0DhOqlVHwlrCbL7auVjtpKh/809hQ6Sqke2d6WMrSDOBlfQC8hjwRNlOC98Ikm8+817uuY8POhuM3QpbZmaxVoi4AZJbUEIv/XaWJqWj6OmAh2Sq4w1gpporzAr5OTvyE2FrFkp/xIIF9MmEsQduPswZd7U9XioCuGea5zbS7YZX6e4Ufse6S9wtB+lGvq12bStFvMtWtOXjhsGz+oMWs4laYczEOdVgUCubUVzAA0YU4w5h9XGI+V7LN6opd0TTqCol18kbDSL6uN7vzXHfnu0cu1NExjEIgz9QaQgB7l4ZHzIWDVrgi0O8C7mfTa7KyHs34lt9EQ8keZlcAffqm0hpOZf9+SgF98jYsPbT2PuMhX5+2txEdob01/GDE9UN1Ry1tSPPEj04srdCozIMJc0Jcn4VyNlAfzXF8QLN5tkroPQYVLeG8nTjDuffQtgJBJ+7iH6QMPSekCSnL3xObg1brdweIcnfpv1vwHlDHWB1sV+5WKw/gMK3vteZX2nu4OlfgmUIvUEz0wNmvtG0fgafSRuNsEaeuqttruYHr22d53ZNwwOFejmLrS+UflPt+TRfxoszwpTJ6JIKRlW/I+NUjy34oh5OKCOy4e2nwlLNkFTutX6rivnpEN0bZWQOi5RvIDxYYTi2kMVkEqzKExzz/DI3hiRLRjsojS+BvgYO7RenUbc+Xnsez7Bsou4KU2msmG85U9Vf9iHakBbTj70BSfXammYBiCHsjfg0omGO4ai1/iUeCT9vQs7tilSTZMlmcCRTjVTrvXmkf06MQumslTxUwp+OvaswflfFgeK64Ry2kCrKCOVGk4pfMllB2FZyiWm9fhtN6oEL95ZByj7CvcmZxGn54vg1x7ppuMyGl6pPTUkivEclhCWv1/8n7+30AgEm6TUe1y5thIggrdlmFyx+svHzk+fSkhQ/7zpSu9+kHM2eHp0xJKA7FFh2OT42c1pwPDbvfuPLDuLowHUP/rJTF6Ruo5xLczHQ1xQDq2msr969P32Ut1NC5oidbXHCfF5GZSuHNXtBsflfk8/m9Ew7wmN/NoDx9L3aW9/aQsPvGqHsGXLnlTqeMOjHMaBdRJIqCziR+wuJJJ/h7aig/8xO5opT2SEPFZngdjJPN/wscIsJnXLAre9zkCclvUwxEyo3CPFzahm1GB/5/tVRgOz0Wbf0gSsWndmtvtjEUhlfQelbH20DxP4bM0D+VwERMTJU3HjVwoVEV2A7Yu6GaAh85KP4QjR3hZTn1bRmSjBqfA0kbtwnai/aM3yatAcCYESMhgoFtg6ZRwqsCBYZPrsM9J7n0seuST77EOiloMRZs5pckstfLvBD/8vOMj5IH0/lZ8DahVU+mcHA+ee3/aw0XZQwL/OsPTJSHfNiG+54Re9WZTIHbmJCE45Y6ASbApgt1r5doNbr89i2uqk11eBXISjnRtPeiSl+rGQneGNZRYwjWE8t0ByWq4/5o/5+SOj2+z+hfBMxHxj1UPtJaE2R60hCSChR7ZElp1NQfCFTUd825l8NRdn8ZF0iKz8paPeII2P4k48YY/wP9IoU1ORj1FmVH3XgUFj/IxUZyQhXHTxm6Tw2gaCBBPpGSxlbuJQ13SVaMPihtIwPj5xLVACBjoHeVWLdnfrVe42vHaMw6gRuRTKOTyMb10Hvgm4HpTBqcY9u9GPIc+g0TXI0JfgPJVwCeB4Z4rchsP2CVjhe+aSBrm14Mpr4cdbQ3btl73z+DViWTedjUW+tInlyd0jmkCLMPuK8y9wnATnthC1UFTd8cnITdMtSHp1pknnbAPTy4OJtoAz+lOmcxR0l+dyKk3HQcP1ozxoNK0Czj+qwX1MDpQzaZPcrdA2ZmAAcNpVDHq/eAJXEqFnJ4qase7HrQAsKJq9vQNHaya1mHJ644NR4EgFYZBJrvkhzQEb8kr1P5hx6J+fNLSqERsJb41/iEvioolcYoabY0hE1Jk1N86MARy+8VnncCJPxa5uNW2qbI2rpR/Ep8PiSaxb15A6jT5DreHNS4f6YueJFiwQf1qirmiMhRcsfbC3MKNT17u4zm4JuDVdczHEm7LXJec/dEUzyKfe+X8QwsUOD0bjz3kLgBDru7WBG6ZosYNRy6u+NUUw9S45wtjXc/7pKzuzhQfzwISuwlNg9xFQXSom0FuvBTLpuISgZacurBpZu2C860kt9cirUCPlL73uE9GfxxHVR18WfAuu9hSJPUeba8HhEcNWlztwBjV+9R0mGprxkjL9/dNUybLyaPXdkWQnjuuRm9mItMC6puY1HmOy10JtbctZKrqDMg4nEtTBGmiZbUqswJx2Sa0JVziKXu104jKkoh7XOBxuEvUmCbbZdhebqwYZHRDHCfikPwJL8VFxVT/2gvWWUbwXEF0f1PMmey/mT9VFzdPN3Q15AiMcpn42+0bz3mZKVZJg6oOcjzs++2TE4MN869Eml9OsmqjWQC8cJCRD+1yR+GvolJ13WGksEACIRGoCSWtExcHs0+DG2y9Y0kmWXoX25+++Ri73cI28pFBrNXQV1m0E1UkNKjYXsjnzU265b11g7rC5pvHGFIPwlM58Gt/biztfCs5G8emzk8JrDu6vRZLsSnFgNXhLiNqAgxI5mtOckjTuZ/LKDGZZr9Hpi+7J5jBqIzvA4iiQSerJ1uLC66SD352s5mIuTLkQ5mKjmcfklp+cJf1p482HhTtoE97ShVNR+gFo1vERRjz+viS6wDwynzzKB3SZvzSjFrgGuYUph6aUFsn/JeIEJpt2ACXB8u2qSBv3GelqXrsvzkN6rPr4FtEb5TwNgPp6dARAxWi0s43G5ciBUMZNpryXz64mtZKKpr4/EM4S6msUzPcafUMjLjKFxqd9029AUoiE+ehxyGEZLCatUigwJjtBif8xJQffzZESXIae6H9CPLHfp/WcDPaJZuuM8dtH1DqV7DIWNYiokzm4SenGKupBocEq8uVOFdh/irBAWasA3siZjDTT6MHv5yDYZa9CrQZY2n74fiwvo3l4wGUSO3AwQr1QsS1S4JPWePsSnrJWxKm4aQ8pAFuivTeNEImwbED4TuTSHbGHI7MAgOPzbT0WiZ9KCpnE9ogpEP/iidcrKyU/zpCZGMx8db/s11BxWuENd5jaMQUNuhO+/2cQKzMseHq2lMsZMsrKLxF/CqzEfcRgfShaMion9thI9lqQuQVepkUwiEujLkfXlTdkEEXf1/PKZKsPEUmxY8B/mf0S8wyeT7VHQmTX0dj5vuhxCJjW0Kr4y5yfRgGeBpL8TUDuD/5SEWWdrdMB40SpEpAbwybEoL5J0ctefXjR160lcD0Zoo71uX8u4iOKRRh1dIjlHc8tsbIYSUAZ3PaVqG9erEbmooEai6B7oV+4O6MOe3MoNrExiqxbVJgntn95t9AqmNeDMyMlWE3YL219r6Stnx5oR2PAnhfz8ChyOPTaIklbG40euSKMG5kPvaXXQvA3GugKiea4IADcnObYj0ICxUAHAYXty8HKqL/fdOjbIdU/hYkgOc5U8pmEofSK8ZhtAOM/M/rprjxSjNF5xMHcsf+UUsKucVLMXus8OrrxyvM+irOEZ9lFekH3npFB97frguSUvtJL8z29werwM++YqtNwIHr1dzlgzpJRntHZmV929LAAjYY1NKv8KShrDAuZuUH+btiBSsy+jyZN+bQ5IVFhMzv5XRRrxThyXzW1F4J6Lmo6kuJ6kz0Wd6u8AKpNZwdCHcTBbIIKNQ7DjY95fPVc6uD5Pbs8aHkLJi7R+7zv5UZMwsZwjFLiYqWIRuiw8/6Ka21QQ+U3qasqkqRSwDNjntoV3rZi3v72F88rtNFv75jyiVQxU3KTdXlOibymqGO38i4d2kbTzBnaNY34nhsEC9vC7PbnTDrgi0ofoSBZV8QM0z76tdchsgYzjNMZIOJ7FFAtcpCYXxCekIEIMnknr/UVk8k/hBXciw+5KJU2NCG14aFhyBlh724Av3XaKjbE2h8t3c7hJfXhlZkP6JRXGktRUyvoPT99jG8HfqGM3feTrctIO90ewmvL2SWdXD1wW3r/Y0kxyKqK2+eBlW54wjqvSYtHL23F2evILYPZNH4NDj8TmFZ6d3axamVuT0QT5pYW/lPEYsk0+EqdxfCMMBuzaEgWCIEQ1hqSkTJgK8uIXja4tgWW6G2CRnDfQvHEjvXfdUNHvOEAV0gR2fT+6iIuqpfOUWNJBZX8h5+xEVnDF0afS7ievxNB48iISvFdsgU5VdAOSBTlceCQb6kzVwezX6GtQvNsGuOGxfP2HJfOTCSuRkcskeQejgbDt/NOhIsXO3mzFX3n7E+IgzzEeL4j1oz++PfgBNIKuamizwymCCxEyCfhFW7RjKiYfmTuEjgkMlpt2J8RrteiwstqJEDjhPHBKZmWEkzcrA+sAcJakjLPxXtLHN2GcV9pEl/VREZ0zq017y+gg8wEo8ESh1f6ZjoXb82IvwuBpjpw027xeltjqkTIIJZqJC83LqwsrdbCmrELZq0NQI199P5+l9PDTjvXja012YLixiZmmMF+bDs1q4i1IM5tzhuU2Uh6pGqLE0jLZUHWwto7HkcTcQLhkh5o3izGg6aQiLSUIQpM115cImLTEautwrwymu/1e4a6Y+ZmCMIDhcZQOZ2J7ZzFcPuSRo06AtupA/8++WHc8k369ZzcCpuCSy0HjpZVuv2cTcx0jk/hN7cJNxq2NYvoMEVBrW+7Hp5KT96KkmD2+C5hjKDYPOhSn8EA/W8MfDsYaK6DEDQ+tZqDOuNb+aif2cz0xImFJJQNPQ4vjG6VQ/4vJkBa43sQbGglZk0bWR2J9HxkpyFR+2x87GPRv9wblrhGpfjgtFiUt9ZMWIedf1gQs0ZO1ijNss9Xczi1RRSuGuCFmy3y+OzepJ2xPyxWUrxeX10dxENMwrR10Fx7ogpTQdw7VAd7WW+YoD5lQnfWY8UkvLYjKOAruTIYORuXnO6CVzIFbVKY9uGOUivNJtxRBWPr4akMJle64YrXseK4M94jrH0nfwzyiTP7CQ7npjfSoZdHi4CyShQ4RAxz4tF5stRmy/K73JUL2Fm8Ep0JUc6fwx9XzJUv+FPJIhzisxiiVe31PT6LCytrHg258u26e88jAgpVE4z4pKF9QE4yN5tRtcDnSrLHHvLACEUuSFLMohc2Mt4Wn9M1lJTBy6A08hMt5V7Xcgif3xEk4ANYYH0taTI8rXoqSUGzHlpVI7VZLdzhUZ+8dea1qtnn4Vqinj0NNBrJIB8xF5mLOF0ANR/thOnERnSHsmRDtv1D90nQJJ8sTeCHOy5PMM748AjxuYYWpDUa9CSnnKAh3D18xG5C9Sdsj6neUOT64GnBGsu0fHtmeD2K6h3dpVzAMabmtGWgqMF0rYuxHdQO0qQjdbIsTZRyEUZK/+rMBCxMlQ4NbfLw4MRB9KrVNkT/HFogn+jvhEZ+LFt5ylwU2/tHWXJzu/VW5VlSecCV4VrLlXqhmWiQaHKtkKaUFFeoUT3vEJli+pegtj2CJ210IcDPuDXjpLRALEzwy7X4YraPpPSun/TyrYIShq+I+9Qo1A2eriHfNzh49mXUffwsVZOsL9vvo9sRARaznj0vmgUeShGmlkIF5iY596owTnYa0Km4WqWZElt6kY8wTMqzJ1zJ4ay9Mt+CGcvajk275GqqyFMTrgz5MFDo9NB4MqZ3wtzvc/5SuZnSni8wMsCyFGPNMGrzBexMtdAnE2v0LrdlVK3PXvQlGc4HbvHStJ+/7OMjGwMkgOmLrJ5FVNzo9SRpxBMrr296lFSZcvR1XYPnzKI4djezaN9k4qK4HkyuRyirS0wrH8zreGydNO567VyPAZHW0qto5DcuFnhJUJwpWqlyxFljnV7Xd0FQhtm7ynQhEcCfq7FiTLEMK592AqPjM0G2FGwwR/K7vieCLgP6l3GOavrTejjOLo3DXLwVE5savKEy5A/zaV4ub4fPoioGuvewOBtQhXM1vTV5pDbm4TPlqly9Lj6Wl3khFqdV7cKd7lbZmnh+8AhAAMWXLhE9yOVPUhGcsCuh6aRSwDv/pJtuYWRjTL2HPTTr178rKcUOGYcZ2Q5apckE8sUDvnaEyCDSFOR+6Zqiadxy8xsW29tb8IRRVOjDfM+elSw9rXyqNhB5YN64/g+4F6wwcXC9UH+GF71dysKQGulAMdrRcmNOciL6WoPJkvG/aWShf6mLq+etQdghI0QhnZIfp2Ot5U3mdDSWjnuVt92Oj7s8nAfaD1WJEAMWRna5+PmCUVOIJYMjYOYLLj+zaaL9ZrQyyJ2f8QReE3zfaSWlvYcwiLgBib/Lx0Sool2YNDxHYXO+HwywPugYP5dUIfL/raAvkGGMl7apatlo5P49HVyF9P405yHK4gIyM7lPBuE8NPhxFmu7D1CNG/obZ6eIBd80aJh8SrNUt21nc6Ou5tS9Lc0F88KEEZ6y0PiAGreMgJFo6QaCNq6mBcxwFiy+DTTJ7Cf2fHHwYyWXm4KfrIip+bjx0xLWm8jRME7GAtvHT/1GPAkwzNHTZ0906ie9hZAg+rHd4e2J823FPS69k89oiJBprT4jfqGWVphGlPUrhWEP/0SVy5RLfW9eDqKpErbN62ouDhvysUHb1iDoaVcGmoLLULa9ie3Cy8gyFqMkqpz73vkeR8vhYBeH9kOmgdK4roe/7pMk8ZlNwfWR9FlhkttIJehBPAUT0aPTL2ZHFF3Q/Dh5anid/dd2bdTVvxquwfgZLkFLZbnBghzFnlCNrStUqet2WFC5kOAq3qYy04QtpwDBeNPKhpvY0rQJjl/CuyPhaYU3GSFES9ZWU+x0Wo+gIDNxC9QWSLf3b6n2zvuCdZ5jayAfKvzwHVwDY6byvY//sunciDzpGsyl74dsN47qcywIdJ4loLQljbkELyXIliZhVMXGuwEkYK3e0bZ4oo+rYzO721h1kIsYaglAYg1/AQEZelSbLNHLn9s5oDLS0NJpz+RK3qf4XwHocG7JPp8cUEwoYBFTXeM1rx1d5J/L9xAIIm2RUUC2VXLgxJCdmRgF8MA5ZTIB4FnAae1+5zmeBHMyqy600pTOT38BuEMYaFX+bBPiYWmtk7PNGLc4+CRIFGLdJ+952yrcMIvri50MLOFVTn2TMDLZFoq0v/uS3EH5BeszalMuGY7RQ8lvQl2K5dpYgDOo0e3RpY3mXCC36HhLhwXyFO6bJolvh+/m6Wu7rosoWNVImp6P8+MrcL+8Z/2GZojrm7tgjvNAXnfy9E5Hx5JK+4n94YNbmp7kfq8WSBr8Q7ijL15EQ4KFaoSU7SgfS0bWFB5MeezlJyy1/DIa9MLIMbjFIh7UjewBttoJfzhCViRFZ43q/YbHrKTyIZVRQ0shCafbNpZnNvll+BLAW48qf7GVocanGq2BKCht/gW1xSw0hUrNG0V5gT2H0C8jLKB1yFAq02L+gZI2Vwb4Bb6KKarM6nNa0Cnm7vFYXZQe3u2l/gEdu16PgXpFZwxny5iJDl3dPQjlN4XHIwsKtiR6Pm9YlrjFetJtz907fCTThzlqBb5+0OGAEJVo2go0TWnbpFElYcpVWeEstLC0OeUn2ySlLC21M7FkjqS9VhFj0Rowv/41pmwriOeyfdJewv7ZnVM70cFiC/KFb/l17XSKiS3rp5Th+qTPVHGhAoLSFsiGvo6QhesehJ+jWWhAJQlLzhj4VqTXKn4tBytltF6E8c+kvq2UVrHehdOLLtpIJFb9Jlm66JqMpFSjrJuZzg2pDZR6ASymXWKGlhccXy08ItSI3g7SF7P4h8t5Lqh7aScteKIT2hrSWUzxw00wtj8aACdFWu6Ftj+JHqIOaFfmzKqyP9PvuQwQlU0IjYz2SCVQwvSXu5lJTGnfzdhNdSoKJm8sR/K1uK8EeewHWS++AajQCtPpc7KErBku1q4w4Nca6sSMPxbr3iLRhfAeNoWaHiA1BE8L6TKM3MTotCxjbfBXAUmEAtBHRwxZMPH9GAcKZyedAVjF1sS/Ugf6WO6r4saUkZP0VDkG4/lnOoj2juUBlzKoB9eLT8bEd8CSbz0Ne2KggPH36FC8JbEEduGM3o/eHot4bExScu5tRHUEHW6Dgu8bXS5BQ6eLLdDxxmR6I1CX4HHsfW65a3CwdGL24Tg/n05oFB6P10EW6g6RO9p4fp8qHIcHDTqFEdHt5NbGywAE6pXhEhFTv6inTP0P8yUpukWqYzuSS6sK+HdflQw2yfico84SedH5SP9VF5i16WoAPB34XtRR3TKNzuAW1b9KuFvu4noF8eGxD0+7XGjnM7cXCKTI+pXpnV5HA3Y58bXNl+4YdeCwB29QHDTK72q7rRMquZBbz8V5MhKA3jus/l3/SO3+FK92NKIOpMFCv1sMDRXV1UC0IaUnHdd14KPP91AtE0SKSRSUrR3OwxmexSy8ywPtbFn6eC2ht+GlahqnKlfeVfCOGkc4++rz5p6yuyUxyQH+XWufFFWvJrrzvYRy/7kQdV6HizhG+4GfUcgeLPEcigZLPX0IVKQicfLf5cPwxG7SQGDh7hPX+MANg6pm72lbiNv1xYokcA4GNkerOqgHgoYD+1tqlAocwX6WEQRLIjBH2eQbQv8YWVVlH46a98MIpP0IKkjg/gP2LWJVqpw6wkvzFJL4NkpJguSqcJbnRWFlKJN/tEL+32WtwjmgdKM3shAYfO4jzVC7fld0KfxPMLcC+NakwjFmevQvbyaeshiH+F+Y6m+Xpp7Jv0ERcQqKbEh18fR07ElqJd5E1C7BwSEvHkTT5N0Wvf4MKXB6Ioxek9MVmM5jHqStLckN1VupZWNPVHz+BFHBxxSsaiCihh3YUyjl/lM4/gxHSVAva4vmrcwN0ZBi7GuKOvPOZcQrawcxDuW/9EPGE9tso1qylDUGdEJbuxBzHNDCdJLBCu8m63vomotbhvi0gviJ0CLqJywggq22/YwJpa/adDZaCqsaTm2PZdkpFTq9gNlo2WR0QTIK5VGqlV4owtqZtTnYxzPVK1ECbXpY11x/5Tc2hixc58pIl9DzxcpfZZNxrQ2ywdumhPIoP8qZoT7XPbMlfioUmQtWGco+iTGrSHpDxzBHYQux8xjp5spZfe0hDPvU+BiwrOrYaNWf2IyY9hWF0N6DaOyHj4Scs1mPNyvMzTIN3ir12deYnYcba6ijK9ycR2E9Tz2R3kyErjOsToNctU5f1HRDo5iWMw0dn5jeyig9yAmvI5645IuoyTBu+MODZGqm6PH+y7DyblYbzEkU3eVpPxLWsmM6Z0XODxuOPzwpG3ntWPWLuDzqVZTkpJmCkKs84VuqaOn2RlLpuNNZzlr8rnRhbFyF05dgpjF+A7gLJfYWtSc8Xms33P3OA3ORY+iYuUexv4xM99fpvozVpIICcy0eUeQnf1srqlpT7fTuOS6k0M+3eIsa3+qXqmyMiVRqXS3aEq8i/o1m/P/VYdKp7AZHBUT41C9EM2IoobImgyHIO2bF1WzW+p/3G4lwtCOPSohkKeNh8LdZnTjVNo5kz9H3mmMTvc3D+RdfYdt+RIb5RX9D2GtMXvDUlEqPYxXZJtdf5Tn0YzVPYkt5rdZX6IUnwzo4Fg0dwVLz7l++6JkhPiP+bL87h2wplgndeAV96AO6m8iyPcIVQkII/zPYqji9SyLCjB0fAObGeaDMmbpYDOxZob6pM4X45tsrFvT4iQdaGCtMEdmfvQaRlPo4YtW7AFdF61fKWwKJjQHaYMzH94iLTvrvsdh9oJFGbgrgYKKusoh7KuxXPRq5VF0m4u8GqMzUjeom0YJor4DFstT+2T0zz0KR3cWup0xxQ1ZwtNbd6guM/yPlQJ7gu62RIMcJBLJVp4v+VpNQpQL8OnLZ5bIISrYsfQmCBqTkxxZXgIjZ/zynyPT2eTciWbiOxmmc3/hsczsZpXqLRua8VuQ4d/49bFISWiR/MNOVOS8jP6mPeIyLkxHnzlgZgzT/KFbSOg5gwF1SoBItOYSs1ExuXYUywVX6nCQo4GxLfHs6yZ6pH24u9f8wBzWorm0QFCWw0O7mt98NlsGrFGfOB5BeHseDq8CRRcjMQLbM/VYlclstBB9bcQcIQpjn9JE/qGrGgHwdKzklX28hOrxkAjlm+vYGg7sZBzzxkYwjnPb54q2w/fejNNu8XYqdx9BXn/YEEU+Q5MrzeIqQKy0cUrphnVCcVk0ppiNrWbSWpIdv1JeihZ9BOUy3Dneu1LQP+KJJ7gDuKcwmk3WGsZL9DBK+EjWqNhh50lGMht9F7RqIytnu1fQSpxQS0gGe3TMmlvVdbbSvjNBH9X0p59lioP1OTQt/172upbfEE214bZnC7qeXwLpQ7kY5TqXH9yHOcRrKfwwu1RIvfLyGlvUJiQMSiRsNG6pHTYyyBb8KT8rjmn1dAS4j0+6e0HxKHWN7ptSpqYhoGaMqbYZeA0dQD0u940c5NtABUcPIuVyfJrKwNJqpVZJjVFuUdpSmSHrMJPlnGwSYxKFVZi/XOa+QReg3ZriPrKaBBvAEX3owzAevDwO4kdKvOW9DCcknozBzZXwZSAkQao5e68f8EFsZLBARUkGE8fL88wNNIldQr6OxLFoOFR5XplAZR0VsAKICOGv0AOUKGeXMwXU08WDmotLBkg3qDwNV78hlwOC9OGPj5Em6z+T4Jb6lftzn9N26o1707YSlt0xTNzt7nDe5ikVDojlL2/4ghTftlDWFptLZvkebX0rZzi5X5TN2zHfsl/hqahViVIgsvnU395/lt9blKjvqa+hqkGdjR+xuzSp54NNzrCrHgDwhNuWS6rw7QrgFxUhJl5z8TiDX9NgmGn6r/RCBUDq8de/mZ6neMJpDVmXmLu9hl9O3a5PiwW5TxFgsCCPfutUC9tc+uZpHlyw2kuotQfc39XMd3F6Dd1VkvdgKrKAUn9ezf1zNRbozxJB9N2WXqYoGjXZ2LkuX2AttNcPcRUR9pFC0ktTLmsPo7pR01riUrkXNO4GsAhqQtxZcH6Af+eCNp11w6FD5yeGdnGqXAUm8nubqSyLMZs9xaE/MGnYA4mliErqsl1vdCUjdflKo27UVFyB78Du2T7kjJ88VhlhrI/4rWF8osvfdsCzO5uPEVKm/uRp7nth7ZWDDtJkpAKO5COgFBV5vouUGFycLlw7m29ZivaNvy1S4ageg1MuBeV1krOi7ezG0vzc75p1d8hKFUqQc70IcmVrKKnzn4919KGZ5pdCocsw0e5HhndPy8h7zmuZbhXs8S5OhamAUYoGdTc00naV8OY3wUWfwUMrm1D/n4gsbWGeb2Es+K1Y8qY3WqtweIMvcv4wGG4f6eaAhwuXlkv5nK5PrP5Y7vyg2QZx+XwM54L9S7o7YYjqn+H9uIr1+3lzqrhO3nc1PsDs/F6bwKLAepcb5zHbQbhzll48EwIzCGSjCc08PGoG6PoUrVESRHQcJMCK17lqqsGJj5XBGgtvHfI+vBlvjGlkY/9u1TsXicMQUK+BUuXUsBgC0UisBzBfdskvR/Rynu1+F+FgmfA+X28qBAnNVxQcl5bW34LpbavksSu9/Y3H7+cZW7LP0Ybsw9UK3DOo8G2Q8Kurw3mLWLsLnqkSdyZw/Ybs9N/Vm2VXJ2Inaqy0o7p8Y1KKXPQNgFA/P+lFV0UF/UhgFFC04PETdvs8Ujj1d7XQyfbRnwd4LqFg3vGbm94xiisyZ5aPHtKFRgb24kauphDSOmtJ95rVfH7mkDO3dvKqBqnEMPTqvmsMxoUQudrViaIjSE5578wIt+6Ns8MN240JkuidivGyfpuFVV2DyFSzwsMTC759uPfsEsfSyzx8P1rRujPBMz9BRpsC1xFiDDMJIPJxfD/Zlr9FJNXStuSheFFI3QMulISlCX/+jo1+lvv6/rPUJPzwRWfpX+c+jQXr2+jraYQImukKznAWuYp+njVWIgIWO94HIx8jvElkaV2QZDjxes5/hNorug7HfRQMrSkTcFO6P7rrVAOWhgAeOiB5+PiRQhHKTVQqtod8lY3MJ4JME0VDWR2Hz8d1qaw2EVAtSF34KKe6ss0dif5MwlmN0T7qwcIrz76LZpLa9Gdb0dVUTXX5cPcd2U0B93XPpv5AZHLIfiJQol1dp+ukbi0CMoajmGLgbc5CKIv0kqGRwmciW3Vwr73+0/aqrdEtsUu4XjEurQgpblIl28C3WFDeS7mcCh11W6uBUSTCMe8H45C6qq4xI42DfBtGbUeqRF4W8tpTYXCAGiShtmHfTYqBZQ0Fr4jYtaViVDYKiGmNusfwUret/dzJLCGXPh7BHvwTTROg9Siw8rt2igsYZwSmJ4kLpQZ7UOJQbDNBUJTDERKt6rNKAdAx+vMYy4Hhi8FnVsx4CVWNCbMPx4RDxoyrXTE+rX5KRbKQp7y9hY1wSSJjMz9VU20MIgfoVbTQMotml0UbjLJulDLHzRKwy+qscadkb78fUvCa1wP2fnH2N2BvhCIKZ9z6bG5VZspMSXVYaG2eFXqNYiuvb+IAJxx+KgiUno+zLKeI80zKC4vfwqDIeyUiIl4zrYFdhBcKhyAQf3Sk9uIanyanHvW23mebvQKKEbXt+eYFH/WVEic+u419SICTxub2aoni5XRkkN8odX0cK2mO3uLi/OIJh5tuIJ3nVo5A8usaLHfeaFIWTJELNpNZAIGiPmylJX/4AlySjiH95OFUjpTzJVx6ir6PErYwy58rb4jXG3iSVb0qz4ygaX+iNKHka46TIb1n30lHh36fIL9+1+yNWABf24RXOp5VVQJYDDiomPWhSb8Y8j2bpckt+rIthPNDBd5++QCDYvH437ldnYE9piD8T7XwVIOcElv/Skl+qTgjX2qRvfNevFENKj0HoaQL92ZoEuPcB+QyyON0KVRztPsdWh0FAzlc+t5zbieZJtJR3jYLh9WkgHT0xW43ggXIf6acg9gzirPt0WlG1hcRII1pwEmCSSGfbRc+Qg04kUTlBrP1wcV8jKyh+UO67GHDb+at2NbLKUwsvzbj4np+6HIoeN29aLCEt/nWCJp4ti2u2rkeLj6FY7Goxd7l2cSmy2EGBq55uKUICwoEB+7xYh8gGH/UhJSOaHLIFGq5Td7fFh2O0vQJ09Rm+TLavz40RRZfQ17P3eSuO+wykpZhMnw1u/LCY4QRz4BoX96MYWisjmK0CK4zghsIAUcAznHh4ewaaflvC5pohpl5LIq/ku6eZFAcHF71msogMv6LwJUavyZGJ3ndG9wcoUTRtVhy5ZMvDC63OWpQ2BjoPrNPcAp/MvSoNFbfE+0js/fTWSnobvE/eZAe7pwfekchlWOxFVMMMSQeczlgouudoybu2nJjuXYV+asj13/pbMyJJS40ZmDxS0QqrFpxJQTEVwcahzT13OTcP1X5d2d0Wo3dkmIIs6YLxmuktI7A66Wmm1hDNIyEv6P4FsvsFlzYl3epf/Zw2rvJ7TYIOPL6DxcZyp1rXsQvvTtI1bdFm4HYvKSuVCU2jyqOby21ZrXk/OC7tex3GchZA2eWD9Ua+jaE5bcViUgr4x6hgPcyYhisVJn40eH1OVkZ31vWTsqj80AdIKyymnlVsCS5TsNMUums3X+CP7uFhaCpzxdrYFWd7L3V0r6lZeJjWKJz1xMe78oiSsaF+C9sdru00/tekuTxv2RpAiwlTUTYl4mRo7f4qZ1wUMpAl4hZOOtZbMJoTHe3H7F84R3D0DtyLCpLh/oAZ6pyO7LaBj64vWKMs0PKgT+xXLHBtszdPAxi1lees4MOOG0cYZ17ep8k9aHIaUW28F+4fMxctqpQ3JZGbrMT9/LMH2lA+py4Kkv/lwloCvCt6p166MhNUya5VIWzA7Vf5jc+aSpg9N7xTP9FxfWytDVA7DZA83cJssZOVQzIlH1pSeyksgKsbj2hUCQQtXPaAtwJM5wW6LujIBbbIY/BTUQdZv1ejMwuNwu9zaMc3EQj1QCJ41Eu4vJOIKJYx8teNYbhgaYCScxHMfkzBVXZZ+mhNZsrCaMZPHIu6qlcR3KnYn0e5jlNf2b9VyOSJJVpaLPOSRrOg+Xjpq6fuhCVxcm0kM72ku6+84Twhj2Nz4BqpeaOy8rnvzVGHeiocRfYCzCb1bGe86s8RLfp9izl8ulIW8gtwdhBUjNll0Z7WNfcjY+oGOUR61BZvXo8MdhaQx0pjRchMhgeKIOYOctQcZK81rxJ3kcqd1DUH6Cnh43bRvtCGbpEmu+nnJ/2NY6J2aDbIUNIEuA0WFK2sg2bcMszqoQ4uBDhNFyqawhper6Mv9naG19GJg+kyIsFurirkbToZfCOoibQHrHpMEAnETjMxBRCLelmp+/+N4tTnKt9zxoAjuGct+j01pGzzbNDEi/fTbSRrtk4Fc6tlChROlWtB5khbPf7A8Enh2QJ93GJ5IHEmpXvEvUbJt2Kw/pVWdCyWEyF8AYiYO8/njA88EshTw4hG6B/+vn/tBjxJFOcweA8lQyVjG129hOCrbhgQiioDrfP4RRwuWzMB8UAK5mFB+rsU8wmcoK8RJ7aVZeLG/kApyR6RK+rwUsVBvVQZKCKA7TVvc6mr3R8VbGQ8bFPg+aKMrsOogkDLkU5COulH7XQPb/wNw06g1RtItsaJW8N2bHcVNgC9USL/bAeuLgX982qe/89G/dSK+IuewNV3+R0OBJIoqqpa6XhrDkwbYMHsLkLMx4vmj3PHmeR9LNpZPWdT5AWewoaVFfm2LR4q3d/uPAHzyRCLoo70hK2l2T2YXxvkqBww/MuvCeJXrzc14nsiZ1l/Aey+AE8tM7CJ/pcMWDiwHbUVbKNP+CJCTDYyYR8uL9/B66mMwSrmKlituXB/nOKIfVUpQNHIqLuYRwlvhAwNOJIQKDU6jIBGtvtlQLtaCXWsYPVYWHss20ao4OxiA8Y8vILN8+U/AZBYshDigx4cokEP/xaaRWvMKPNUSnKebFK0xhNg1M3fIu4WHEfHLeKhykFvnLSIGQJkXckCsnC1vUI/iuek/3yF3DXQSw6f8SETiD44suSnorWBiYYmqvHXa6gimi9KJV1oCaXHRQ0rx/XlXI+gjyiLbQoCaRCqvNZ9OvUc3UB3YYUvGScK47pV+eu2FefWvx4PMh5oXCU8YQR39dND4YCrP0ZkV4kK93qixIflzTOdU7sVEypTqnMeDwzOZFKBagFBIa53VbzR+yF6j+uxEo7Ljmko/KC15Em71N8EIs4PA5bMB36Dff5KWbL6moqlyYjgJGX7aub9H7tBZ7gHwJ8/iR4Xi0jeRMfrwyJQO17RlRSzEhDL67FiqAPszuaABqnMhFJ4UEGj98t0ltoYRI+NQ3MD1TooJ1tq1mzVEG2eFIx6PrjSB+mGujKJwn0FRvBlJI+3Mk7Vn1GLjjuIoj/KLGVCW9ecw1w1GNhfExVXqBM4y98rnbS5IhaVWCFTCEk/V3qUAhdiztS/A5TPTTEFaAD542iKwmoLOQ9dTV5VHJcOQ+nUCpn18XLnGBphkYi2oaC9drzWUuJ4dcwphyv9q90unddDKx3Ge9sBRlsxo5w2MAEO2w5pM5k2TAgs2lf/zaRahXZyoBZhI4DKuA1hXDGJxxj8ZBbO5dC/D7y/N2No4HfiQz8f6k1+g2gFM4fdprwS+BReNIGk/lyv0X7uumGboQDyzGNUPRc34BqysSsdzXROHbefItEaKRA0u61JcIyb7vRINVVnLqlpjc26JHa4MtBcliCZKUDEcxL9wJKPgLrjk1kRpgameR3QAhN5kwh7EdhyMSrWijsg2KsmT/2r8OVhWTES5BH1YVNePjY7jqVFfQV3mEAHlf+NiVoo4qunngUZ1l4CWG6UvXek/H+DTpYlpMs2mzAfUcSaOaNfmd4crrFnxCFlGNmiDepDi7xBCFOV/lRJ8M9alJrPBguY/96XEuPz8T7LCclqDRg1OJn2Nr9hIRJwQ+EPvDq4drw6b5Q4TmhtFNmjbxJeXpuZXKZbuL7ABUV54sWwIqIvFqpPTcBABmS+G/DbX0nsViTFzPPmiMQN0sYTRcnTuVEKcmKwZl4W7k/RR3xmtiqIbPdrf1YTfDJz4mI0nK8sbV5mi8XpzX9z2Si/z7abHXx7RMnzg62yAvATE4C3INZtAPPQNlQxOTR0mR+qf/6o51ySNLtoGIpUkp4LMCT/N9F4KuMsqc+k+GL7WSmx0QeS8fNXjJDSvXr6vPdJ8voIaaRJsPCvKkMfEHE23iKQ0B9x/bP1h94kxp9GI93WBGaAJqIxYzaiq8eciJkZxysXfi3jXWC91FHbOLEK5F8g+Wqshz+p4y7SXreRYyN08XCQ41kUBUnpAChvU42mvYPKi+WO4DgceuX0aOfT+LkoeZbLvFtMrQhWRLohkGPCjvU9PKv3uYbkH0DyxPjAutegKBVLwLAiof0dsVS+zzwrBfl61x6NNXALnEHi9wuw0bPRGnzuuYnVKrwIYKEbirC8veBJ7ozmnoIsVL6KkbYnURbXL7Ux+3kzEJRojaaX+JArfYfTbuxQh/iIHvVzBPoqfJSMz4M7PNKsQQyWoZXxVCI7/9jz7nR4RCq5zISr1y3KRurK5bTR4ONj7542MVmFRKIjJ6wvGldJ7WYN3ZwjPG27QNZhkY1OSnejhD+5mnM5J4Xntwm28fjZ5TPfOeCOj0GMQ7721fSr7Rp1xcLI20Jt8LttNgPvmmwscdqJt6lTxgI2Nb1AHDxQjv5GZGGmh0w0L7r2Ql8iA3cyhh/KyC/jh4jP4frEJZgszRVpWZ5D4maGWAUKK8Y9Ij0P80EOzh/stdeGBLAHxnHCRIBL/ZYfUaIdlDk3QVJer9O9jCG4Yar6e7UXEz47iDmGCQTB+nY/zGNm7gM/lENOnWwU99j+b17hy4nIEIsTVxvmKdWhtYWXUdx42Jxv50+C4kWfJbhQkyOosvOCwt04OZj8xLOHPSdDURGk6p05gwcz/GhemVZQD8ccT5IhGtw7YLNfSCPcqb6cpV7OV/tbwm6Eqzjr6NjMKEgZC4GTgGpur9VcLIrC8q9+P6pRp/LyX8s4czwDx4/LIRlYa1nv2BEM4jNzaMpd0u15P8HyAXvIaKEGlbZfka0k4/CvxfX2z58qIh5CHCbJKO32d6M0rjBUe66svQjvwjC4aZ4+5FykNCRY1RHjUQ7KN+exDJFNWuElSaMIqw0Ro2LN0d+0ZtTZINnGObAv4et7+RH+mZnvu6GKpYM8cTtbQ5+V+AUXhos0vGwuJqyyVNJrFPvyc1CDxjN4y9K+kq50aQfD10lVNN20hMkUvbB3UvPgxJE899lvL8ikwC5Ncp1Y/DPqWw03I5z79ozoNyiBPjg0DhlovkbzwUPyC4UwMXBSWLmtQxPh5GSXpEp4BF0uyMpqEx1WiB7un31vOELOfv+RKCIaAgkf38gqK8JajSrPAbIZrkKZrTBUdHFmi3uj5YniPWbP7koEd2Lw/Zyw9hjxaV9T+weyVhlus+/tExFgbIfQHtIOxThcWSttv/PFSCwo+ayFDoJKptkUoHadVSN2PhEw8Lo+UvbD8XwbBzs+OfGmm+c0mdozuo6nGhkc/2VHusVvMV6wqbmWjxk0P1jGUj01LZBayJoxSLSelyjn46FdgpoVlBAks4wDGVHv1DOkQ/SlrSXMlq9CIYmxyzM56UcOHAFHHzcn4FL70Ekf2/cyvzPDqFn0jcxTvAMrk1i1GyjekPjQwPf1TVJrXjY46r5RfhuWIcd8/KBzzuO4GgVbncQwhZUn5J/rrHaYpUuxcETFAg782/en+g0Q8FtKU67/PPguHnff7bmdISZ66hujZy3Rk+6/Wl5frKueBinEViQiisUPi9PczS693LtIKO7blXBMvIyjU9BjLDVnMFS71Ui1DH6zRfom6V/zCNVOQBLLcHrG+YliQiAwYnQuxchUeT3CObEIQG9HCt9hlkfyNebfRjmoasQjNGw2SnCDxIjEABL2cJYrdrMXPiSiRSPc1Ukr31EcsxziMMaOpOLOGoLPMofTZS6ksUD7/eYhZiH0G6GUpqmRJF60LHhGG1eFqd1axjuAwGaHIADrLtUKhgWZzENz7tOl+oYolSos6UTMoSHuRjekaV6OA9lkrpT74Bq827tpCuBQLgrvFXS3/JCkCxlVXtRHIgdI81mjpQXizgDIAaxNyrc4UWTX9d1l4wPNiy7g7jW8J7j1m8gA9ScuoVdizKf1eZGrxEDU8foG5S29iENwSkE8m+nnSy+W+mBwK9sXO/pd6JMJ6lPbEi9XJojWyDgnLh/xP4QsoE5vwIm7sMqI6Q0qPYXC/Tqbwsl8tK449B1IwaHJyi5Y5PDar913pty0st1d5QCwWiUrjfg71eR/wEuuvtZ7wJa92NC/YsD6RdTT0UOkXQEpfj9J7d+O2mUFiEtkfihXsMMX9o4LGEVAAHfLjKW1Rm6K5BA0gNmiz0fBm8oW2qJtZ1pA3rPKXz23ZZUn9I6eCVvFLMx/Le0rzTWLGROy2o3R/xGR614Lb0JD4ISgdPNKMND1sJ5kshmelVStKlVkhSg6NtXGR/3PlyKrDUFy9BVAZHrB4qHIJFqXSRQSEgyTptlmVf89l7XCnz6G+gH/ESdTJouKA/E0y0seAmKUtcUFGmAutuT9h437aSFEZYHxyQIje69bqFUiMhScpcMzr1OsDygrtKuFf98LGQErvCoflokN3hj4QiWslAcMphBrjTCEqFzd4muUFzSlGSIaP9F3aHWhW/0YSkcnnU48LBQDWqeh7SukLf+f1E5YKq79upQUnvL929GgJq3eLW9EUnH7BdjV8EBytc1os/N3eqdDDKthMhOw067etEmXR5IiNWXOYb3EBiMXGUCtFXcTVZ++jGbApJrdNE414e3FL97ezTGWvU0JbsdzaDmlzuQ0iy2M12f2Cpdkbeh3b5W1CCQ86QOMzVuKFJLm/i7N8gNgEtMhjl5y3O8V4UuFkKMA3RGjEms1g3wd1oh3T0jC6c8kk7TjRS87FS/FuhYarOEHOroPwu6ks2Eyp5TAnHs1/YalxU61oA+exIyDkdFOQClPMLlWtdSqmz+UAyQ03KRDwq9MDmUlNH4QUm7nXrRIc1yFAVSxRL7mAwzd+W+s16kvo3r6GHuHJhM2zhcbbWYUubqNC57zfBgzm+fW1ab3LM3PjtX6el09QeOn6MITmzzikIiphsiv2kR6HtGVMcTMZHRAb0N6gm3I9phxzi5Sa3LpN6YgCZysKFQXxKcX1NrJedi8YsxyopVJYK9KIzmB1HvwDYkruGm5TeaVon9in6jUVux0yKH03JGmZCmPi6PE0O72Nrg/z+QRafhvD8DRKRdTZP0/TjNK4RlVqYeqcjlYkx0UZQgMXOThyuX456i2xaKFz5osKTCjaggQZD/ZFrgUHnB3YUaZDb/LjU/CAApS1X7H/Po2/gN90ygxlALJe4iAlpseJpQIiS7VBqK4c3HlX4+NnmqyWhh9kHyZ/eX7ytFLJQY7ybavYzCWDRIItrIOq5EhwkrHJv4bFjRUdvYNsEmwRzyjq8v1RhlvHwoIeo0grPHCO8euNuiEUkSAwQ42J5A+2ZJn+cktSQD5Tm24Z5jlz4ftFXTW5rNi2CLKeOPGXC3ZB5pVX8GUTcm3B7J7GZzgZP8ZZpKFlBa6mC+W/kZex9oLtyYZNkXI8a0pN5JMm9p+wvV3I2+a0gmuvZ43RVcv74sM1dk3FuuwifR6/9THqMT6jJ3RAXQwy0KqcY3J9mCpjPr9Q62mURvSlFk1nCFQWQb8PtCnsbMPBeCLdjtFqx1swlpiph7TiR7GmSJE/eheASo997RLfHRhjEPDNiHpYKbb29KpcIt9CCU2iLQSysZiEeaCoFd0Qb0Meqpyoxyy1cbtVOsXpb1OJjLsVU9jrzrkUsNLeq6Z0QSbDxxkgvlcvDZ0WEglNEIRNcnuScFM8Ttb1fspVIucG7ugmBvP5NCk023X3L9b8/jpEzrIT3C4uZfIUv8QCCbngDlWsaKth97I6Puo5hsn3tn7vHoNdm4iCHQG/ap30rOPxSKonIWelBkqqttrv5MItacegeP13YbK39YDPpNxSpT1T+TCxOcGrlQf/hJAbrwnKmn5AkiwD7hvGGdXAGrt+sYbdaqnXjIkJDXhp8aCRWxjIHf5YcQLc9famfEYFmntUEcBFKC+tqqwwzPsjr6SKfIOeEBa9s7n3XvfNzZveg/Fym+NDMEEE4UKDEwaE939OwOuCG7YpDgVYv8yt9T2PjKn6Mp1JJYSM/KRgcXPhmFe75ZNudi+M9KJ8rn4rRw30GWOe7yLRfSS5istndbPGCETjegOYAbri2MuEKR9bR+lBx1+UhVFKdBjQJqq0csHijanS/XkRa+xGZVimM7U4dWlF115RcNpjtyyDihdy8p1zz6hRkAzC3TjeMTRrp9I9+XWk5ZHW1M2q9Ee/gm9LkySK5qnfeSZw1ulcqE30k4OCuzFUmf8cIvkEBO4SPjmzSiPmE3AorLqSa89CaGW5Ta+kIood5IWDtVt82R0VxyhkwSuSqnvHEdxIwQcOZ4k/joLLHFbvv4Rk7Gzy52Cu3mx0SjOxMH+qeMJhXH+PRR+z6IHrCyS4AU55aieuHW/Cu9Ohtu9PWfathh+dWmo1fd8mFcoDN3BgSraVFGRZCVF8CRKRKxW5HYHJGjosPZLsYvYj/zEhGMu0IqRXZTm/dirVvGzxeHSMBHlgrgz3m0VpYrS2ou9c8MK6So/2UZ2QLqYv3MK7vXtN7rzMQxT2/0wQeyKomJZpzIBPqJVcQh2oS9IcjQ8dLy7XCBpdFrCcFcfsEKjRVzwXhO1YWr6s9jEyMKYbdN93DbDc9JuvNLzMDvk7ZxanU5PPle8shYMwsxMP3I3LGLFsIzoPd4yqCVGv1wb5dyvNQ3eju/+q1g6qLOsBUSSJJij+g30mPno2wTxuDE7SuSQ5XPOMlzP1f36AElCPn5lzOdHm2566pDNm96HvzlR34ZuuWD1rPFWcZFtqHw5kCPg0LXMg9uMK9uRqGmHJ4LtIr3JddYyTGYxpor2xuDmSZNb3hhaCqm6dHjkGWRSpJs8FVDCu0aVJc30+2GsUnxKZ+ZoKeMfCzAEsOJIdLOKNxtNuWQFeKtF/v8RZjq11ZCLZdZzpQFjdiYIlnPbzKL78UaGQ9iVGAmYNll0WTj63OKYtmIo0w8zplj53n8FPuYIx93geGVnmFG/qx0zqgxttKexgjfiYsarRxTvNi0NOnKM6tPWZrcz4oY8kL+sY6dLvfOthHDaw2leCC8uCPTOB3eEuSaCFo0AZSZzaDw/gmnqoxb1eQ/93QJ/XTOMeo3bljG9njxcJ3saCWONWLQx56OVER4+UTuO+UjoCmyI1hJhC4psiP/SiJLmEIW8tkVtrkc5dP5Zlb+PixSPrtmHUqsQjOx7OBk/VaFT39PkZIOVWlxKjRCXyN1BrmmD+dHYVSUN2KEbRQ2HZDe0FWdyLcgDfE3YYI1u9u/AnkoXVzehRUj0IkIA1YEQuaWfAo7SmIrFqUqEOm4ZBzr2sS6Z3KR2ygCUTfzWmAy3d0+BYvdnFMMFwkk11fwQBrVvllQOxgWcR2JTzVFax+vLI5HnWxNvI//XGA3yZzblOrpIdtA2U3i4a9DzKq9LKCth7Dc+SW2IoawMJWUgSuP6VCOZbaSIw61YhxKRW/6BCLg2ooC1Z/gpL57n18nt1WikHgNyJ0dGXIkRiSwsxHK3/2Dl1WhjGqbQVMAszKV8uaVff5VljLAuVvCgHptks3FfXjauRbCH3CryNfZ91d8dsrmQF9cEIME9BHL3kevgRo106FvO+11JGNjsnGN5LeBQkOS+mvzObbxVt4sUg+w7Ls9F+jXwDOR4tDS/15pimUtYAMj/LpDrDDcYq+OUrZRL7Rct4VP9ILqR6efoJzWlXa/4tWpDeCoiE/XaXoPAQTx6p940acVpIJp9OUp0jzzhFnQespFBfzAFtMNIJ3Uy45Z5DuZ+JZgnjH590IIeZc/Sc3YE5sO03EF1cfpBScD9DmYmWrgpQ4037IciLPVxQ/VqxBLBCFZ+LzDJEOoi4OkBwHf3fQldP6Bobm/IGswnTADXC4i359Lo6Of6rusaHhktYktYfXbIDPtDHlwaVXINuDcZkrk1sXHDlJG3tbrHyEN2v1KKJTgZ6Ir3lJyERQJIMIyb/X09R8Egee2LmcFEL/rvocw9pJdA/l61Xfr/bJEapPh0oTnznPIReFelLkk30odcOtP3ScPHyCh4cBUYLNrdMFerHxCDbuwpHUfa6p9kzh9RdVR9S590qWh+SnTmqQTmZFtjimk01KTOVoOZ2BHG5IHGnT0XbVFSVU6hFJS8iNjpFr+8Wk8yFfCIpXpxXDG6JlGx8ik4d14c69dvwZyWxCuSd2lV0xiQFStAht7sSfXUx4I+xsM1gkeP+DatIQV0m8Z+Fx+qveyTomSNe2RjriQC93aP1vUtrCdZYWfe3m8hi7UI7wPO54fWDODs8ZsumXjyN2LAZYRYBlsx0PtYbvxe7SOu4wO1gn/0RJMiDP2i/WwpSoJQuwvughihtDAstXC4j1o0OlSl7PqbWVmc5CRrl5BSGTnAMT1RZkSMYpRsI1nxIHErkTghfTDC+dNmoXl6EiFA+ZWVDHUSXhTiSzSrITI5jfrQuF3Wik3ptyQMC9TFZtCXFmPp7bJ3mHZWY4x4tSkl7c7gEsi441IKV5Tw7e9oES6nfgXyiPQt2U+ZCQqUYtXYVUNUj3HJ9xrdfbNvFE1Efeqdkfe+K7vOP27E8j7KvIl67WIOmbMHWC7VGtCRVUMMVfa6LOXXs83JGShqw9haCyvgMhk9Nx3AdQvDYWUWkvzZmmLfLzWlWn9M3/KUJp074VPIdP5fZZ8om3Auk/X5pXRdKHxi9cDNnDpES55Lc3yqebkZcg2xM1j+J40A+9Hmt510xsTXC2JLo9P4rW4OmFVrZc6gYGO6U1ZIhI/LjOpLehxjYhvaFRLbd6iHZMNIH2DRspDkyHTqUmZCpCVCaJE8YCf9azK7SWnjb9vaXAqQ1We+MIRWZfaU8MAgWzL08RYIkpQMgK7k0nalluODomvvmr8m1MewRIcyRWGvWbBpiGVols20dbUc115uePVRyUMmIqbUvm8Zq0TGftMflk14bb7u/vgauix+zrdn7yIJtbzklCFe3SwepZwYnzGgyFFkxtRKPT3pEp4Yj6V2+hkXHj3orK8PAJSFKZ5x/radnNAjI3O1rOlXMEbstW7EKPZWMcSomayP6epXbzrPXEdG6HKLDXx0/2rRMxLd+I5OWVV2cc6WGw5Hw6VzBL2GO4PEzlN8wm61FtfIcHV2yTTWgEEP9j6rQC7/jNu0mqMZPeIw/FHVswNqTY+La+2EP6bJUoMBdkRo/9+5m51/6NaiovD80gMOJ53maSb5vUlRBJx6h5FQYVeCOJeEwUjkZr7i97RvR2HOiv7OmYj3aGA8T2yKMtXGfWAhtGuodNqMvABjGIzwevqW9e0niboI6yYuqtEjMHVFIwpEBQSeY3QdSZKGHGGwxgktaF4jFhMG4LwyDqmUdHE/xRVWjxtRHdkGgQuyE38D7sL5cuDTY7icn45r6IcLzwmrTW1mDm5W7DVyL29xZNOHTezKSEQlxoJaz7aCfMl5TZpRRvGXMw7mtRnp843jAbYKXTZMQ5KTp8d5+0MYodRlPdhml/ZcjsIztxhNSYaBpCYh5vjZmsbnSszv6GH/XvZ663SXecFKTnxiyQPDgnTDXf6ckOaFsAo61m77AbUbqRXYoyxhl1C44q6q0Ior5jtDA4c81rnEH4SPew9G/bzNF0bSJXyAqWDIOCtuNmxT/eWlN56UK5f2wY6zid/d8d6sdSPP+IEdcqM8WnhbpmeXVc98/ZQzXI0LwX/vclp41IQcbMAVmVg1MB7s+wHzvA7VNRgScEP962/t8sg5+JEL0qZtdi6s7qwUCwisvGiz8x7pGARLOFmGhiYp5vfhQB6VIpGsmWe24PWOTghCfei4hAMP+nLnhcQb7JqeQy7W8jW0UsDFTeKLh5eS/Au0FbJ3pb9C2ruljdZUL9dBUbuAVbYopUoQR4BksdljyDpoksaEeEt12rVBs4+MZmykO/fwy1ZyTKRAu2ASZrUPyJBmNc2gBEJbdzsjDEwtvkXItuSnZxRE/dqsnT1X4TVGVzYeg2jMXsMO3llsJkkAOktK22PnVtZxMdWkc4NbMPtsnXkbwDJ0j44vOZjjHJWf6x2bGVAblU+5z79WFWTrRoyhNAT8XmblYmDEw/Ovy99o2aIqZNFFBVN0xXsoISxYw0j7vNdeqZr7Z1KrZHFjDtQdmon1aiWNWNihTE5XmwpzU1NIX+i5TO1k9gRYjJnIHJ9wg30/HRMkKTCxZBhQR5uMLe4M53POVafuXUMsgLu3/0M82vVnoZt405jopXjo19XgCHymoSIDZE0GSdL2EjCKvSaGOOXp00UFs9SEzvp/Dyqr5ipKYSdOf99nP0dZYE0iFbimcj1z3bpDs28GduSZUKhT/VpJrWoPyIvZcg+f2S6fuCIP4tKWsg9FPICNnUfMDoeMBSK8rYh6i/wtbLljL9lxY7CuRt9DEMZuDssczTBzxn4YB7aqHViVVwc8gzVh1ouaV5q2/ux4HvT6doN/Nf1j4tHIHJ3kPztlIhKTHQzBDD3yMNns3Wg2Zvf2Ecb3+oPBDLsnc0sW7kM0k8yVoK4GkkcXYBwaI15yZkpPyY0sfIYTT8VyH66Hgnh0faKh4Au4HUHlnhoJ5zG5yxZjo+wYcf1Aih/GjHkJExZWLtercSd0EUD+I8fRXMOj7uZFkd5TJ8fPFXOcXI51LR8+mKw/ctILrklLIpQKKexkdR2tyZsGv+YgJeMfj+HYbT23JdoGdgRplfrTL5MHIwhPVw03QNdlcCNE6zU4Xk1KYlPBPLv7LTMsf0ZLBTVf2xjPCcoAgmnarPPq1T5LqWItiXOQPA+5FYcoZMf3MkyNJ5ewinlueyLQ/inWVjGHZgClu+yaR7snNhQc2zNXvMvfPvT22ZUXTocbABr4O+S7z1296A2zIgjoMM6sk+Bj0iomeA5RGS/M0Y9U94jg4eRkaYd75K/50Fo/yJglARWpiSb/5FwVGPI3avXKnB1IReODMMvD+vvemIGJ00oxu3pC7JdYyzdkNAzXqlcvG7p/Mk0OWuq490z4MQiK4jKaZA2PY5hyQUFsn/pMzi+/qv3sLilS+pnrPEvB8cN6AZe37c7zzxtcVhnj8MYykEFdAOWe9CJuS73Fzz1IldIs2JaiYs2xECvBPpvufiXmSobTDK2B3kCoAfvL15vB2/uczBvGJBSIc0SGCm6fAmqEHIT3OU4KlSP3MerwwvykrlYELYQbHMhHpNqmceMwlUi7Pe/T7q/wGYiWNIbi7ciMqrBY8UFz5sLBLnSt8b/Ji51wYnsfAEKq1jzGC8TTL/UlYy8vrhSyEjKFd4fPEMb87cj7muYjID+sjplJTpQ0Q668iKUAj/+fab3LqELjDTBs4b5nY135yO1rydxtjOw3Dp3awKSM4Wwn7JkjUDBahCbPVevnZPEaM6FSn1Pk4BYqSmeoxKiuN+XiLhiMLzpaUZmxQx3z4gX6SJURItucfsCczbPitCvGpFYvGqLw82wijxmiKNgt9jjTmO47o4pbtMrX0Sz01Ppru16nNepGh+hIxmIdStwS59DL2psF5Fj6K/pd0DPU4unuNgj/eAWj0sSXCxd2seskqODJ28yxFvKiMdwwvB52nerty9raIIT7ozRzL3BhYPObJtzNLWP2fWOfoSMs/3aJd11sIxc6WQGiLBZcnhTlC2fxsZprd+WMHGdf7KZzKoUKsVqwvKeCZHc2pomER9HHW7XD7wx4kts0+Bv0KXFT/nEgfQMlr1xUT0EdzCCzYalQifLsh2j4dHTh9pGRmsZoORx1OXC1zL1c7a0ZzHahaXXblY6L9GTquckM7KLaSEfyMcZuMOPxw3AL/Idt9RrYNRr03xThH8m/fCVFPK14mCXeukylGO9m3hmdNfPzKfQoA6eEWqRXJYRvmKojHoM7WO7wDwYFsaqlolGutvCnovsAW4/st4wJTvhWIkpOk2WwvSbj/mTuL7iKDcmjcGdfCUUuh/1sy5uqijqvdka74fXiZ5rIlepOt/+Zplk2cKi5m5ZosGGUYLtVxuyJR6GoNc3Gua9V/lAQ/m2PTkWMrweM3w45chLyOasCGosdnccwVxDT4kacUIowmDLX1rj8VTNp2SFvHRx+NJpi7YOEe/Zdd9IodOZq6+31ZC4hw2nlEJhFmhWFVB4fklhNtqSDVxEWpEZtfDCd45AZDnXcu5khPaKY22IW7ECiYWcmVGNEprQmsIc0/xqkDQx9Uc+lw2DtLxAQb6xi7ekOsrC2qbyUH5Gv3+x/4XUz4HxGxGOP7Q23XuQjT1FZHmKWTUcaqwXvj7XgqQ+Nk21D2AzEEvXaE9Pq5he7XJLOdg6YL+ymNU2yGe9i98cfO4m8ehlWK4bOn4hHy4H+Il6uTqNzjyz768v9IeOeGjnk56hrOBzDerPhQ6HSABPn6fqAtd1SUVi58OYEzya9L+4e3fgwJ3fxZlOsmr8HrPOb2IJ54kpreT68+xrTbcXnBDXZN1CEyL887mQTTMGQB8v7FEDaLMuQJKnqnKLJoPyT4Vge6hmFPiyvhj8grcTgh0B3ghuWuJ5FlpTVe4ZucxI+Gg6UFFs8NcIBUidaUOJVBrpyZc5Ob4RW0yDlRPSi0yije2tKpG6wG4jGZ41qnDTwuQKy9cKuB5uYV8s715cQIt4Ll2vEmHJmP8Hc1xDQMQPXviIRG/APFUbEDc/gF6M/1n8nIWF0Zt/rWY0Mo0JsN8H1Dg1U3i7XrBuDOjzKvBrH4Kt1M1oGDCCLGzpJeBZeYzfI/ngUeEi1uiLOJeV3ofv1hFHcYhD7JBG2ncVyNA4dzB49UYk1lXhjG6rfOmXUNniEqgNyQH8vfeyRlJpbUxIsbasF727BuQsWIxQZn5/DW4O9/FE2vEZ2IY8PZQQxX/fNz9Yocg6gLtdMKMn18tHDcjItu+AH4CoVLRwD3sQOcO7MLtXt876sN76RBFQIeGWnFS3OyPrRugHaoXnY7QL0Uq+qgTvgKwJL7GjnNPyW3cjZnHuP+gtHjFavKSbq2a7npVthxrQS/g8MK3FPpjaWc2UGTluw990ZrSIm8pd0+rsyV+q35qk5ihgpB8D63P8rMN2uWdcwqx+l+yLXI/2SXdo5HUpgz6yREMclcz/lFa+jt757QkVljmC32YUQ5Ssg5MGOPEaeE1j7QnH6RFvEoc1YP8Vqf0H0QNVY4j4oU6YFnAssNxQhzHAEWkLuPIsg65KWjNEPPILMth5aoVZqbV63MrJIODFCuKQ3TXrXGFN/kwyv9rXlzbSzfw4oBWXJcOOS+8EXgPq+Q5NbOOPIFYgxj60cFMkgrhAxvV82UTGiXMEKndCzAN2rM0/7zsz6hPVJc8NdRkrV7GpFboWN1v7Oi69SO47wXDGCWtKD4RmYruaKU7PkoK8H2fpDjhcIOx+A/wCR/fvpChszdln/k/iZYMzPaXB1DthgOa1OxpNpbHXB/SdxDCg2/VEU4mE7DsGKM8uCBd0RcMaRc7uwYYXgxegdFFxWmew1/1z64iPFpRa5TyT0Ybhi76/+Y7rkYDaH1XBgOT4TcCG3ZokUABa2u6jgHGrDF28mY14lOGsxQC8eMHHIoGbrOsfvKujMJ1LPEUqvg6WbMRpK08yZNpImKaWVrCQe0/oxsk8T0akbTswi25nGvbVJzrwdTG1ZDeGG2JDOg6W5+doo+js2CD2Os2RryxhW7tWF+3cTry/7va7N51UXUTwbmq+RAIjfnU0cfDTV9wefBFjC2p2wwAETyCYQ4FvuNxp09CdmsZMXsj1Z6wlS5Wpv7eT6zL5muc41oX4CDhBV4l2vWdQ3xLb19a9nRNkrDjvfvo/7SYB46R/gvUFISClT8UKXp9wGPPOMGyHVDj21xYDaIul6vpIxV8tdjRBAEdrOgxMg/3UdGxl/COll02Ug1F0WT6n7f6yTJ0pxvk47NNggA2zWx8hiZfF/dQaczuPbYMDRFQSbwNTEVxY4/P3wsQDQfbgt5xOQ3c8Jnkq3s2enCSiOZ+z5CFZMWyFccxgSvwW78Xd5pYqIWcQpL+Pbqq6/IiN2ZOnC917mUeWs6kUZ6Iq+EmO9aXO5xjzX1qUbn6sxrWcGDVy13cSb539GyRRJccaza5PVgJqdBFWTXAHOGrpSdW0ejo8sq4ITT+Va+G+LbJ40R2ZEPl3a9VHtq/IQM9DlqK95qsA1SYbCX9lTDIqO+Xo9FrReT0XJgY4Rxh8LZrrVZkJZe3DVuYsMuL/RdjBHQRXwFFG9oLAuN+bStjJvSLyin1FrVkEdCpBVGcqpltyHvcLw42UHtdELnp688xZMh9hmJlFD2vEINoq2j4+d4Y2Deze1/8l/fH1XwDACZgh5MpZCLtSrYFy1x52PhAda0aNPvL2OCMZH3EMd67SprEA9c4zENmvlSNeAlAoAQ9oYxi8R9Xz/FiI0fgO4SQgjyMG9shkLwcoQ6phFKbfh25k8TW4o4Nr7tkrO9tqGzgTjbQ962KjfH/4hhWaaIvupA0noiRYY1Wdk0CdIoTWO6Gp+YOD4SQ3Gl7zp5gAy7/4PlT5lQGKCpverJDFehFXbF3OpksQOSj1OnFsX3lONBcE6sAmL6tKgZY62a6WpWplUa7R3FH3XejqQpKexqQuXPTakC6/WM85YVjdhPqYlrXkcP7TbOxEYsE7fEcqBCWMeYCF4s84u2cZ09ZEvMj69JhrBjODSya/bxIofiLNjEMlHajZVREfVirX2hfCuZOaroNlc2tnEpPUKBApzSbjxAjPXTiQsh2kEqlqIb8TFv3dNQ1gnJR+BVN0sOdLjDNioLNyjHp53sJLMEOm+QjXIsykYBlzUN/nxVWLYh1oTl29qgPSRbK4RPRTmTwOOnP5P0byI/fotHsLaoPHxybva7f2QNZNOYkIHJO1Ozx9K3X9Gy62m+O90teO3SewXuXzVp0TGj//Rh3liNHo/RvH/6F0SNinPDR7VGbcx4vUmrQdrhSZZKdZ/FZYOJAXBLJoDaknIVUqVjQAF6eefGbZXZw30gvv6z3dSAMB4X1Uus6m0u/ICUBqyHjC6LKhWFE2iMOA/tY/dTolyG9G/7P4zGEOlGuuiRQduzs+3oiVL65sZTVqOlhVXU+UKYNCR4pIp+/goOBZffWXuZKgwn8DVEMdz0Zu71AqV/oM8ilyFveOkLk4ishZVreOqeXitMzGNFByK5SThxfyeSQAVst4jty1tZhO3gYIPV0cnPeCVLUn+VFzgXcSe1GFUj7hG9vPaCPVW83O/D4qZCyGUsUwg+2zVfHoNIfrMrKSJNZv+bDXRgPAOPFLm6eJGKXhM+c+YyJtLjJxmQSZynufKwLA9ooGe5SSiux8mh4nnh9fUWlC3OtrINgQgtD8uJ3JsG37d1tziPBrNouYdCmiAYT/wv7yYp/hAZWGisb837WbOH2wtKyXEJ6lkhVVB5HVqVMoVv9tl8eKXidJTfzHQdzGpCOYx5kgfKoc9+gxYgdkxXrfDkxyVj9WkPfHBFClqWra6sgKAqO/HQGg1sTrlGvSdHc3NkugXYzzjwudQscD4sXoyl13ShP6yCqUVrPTKMQpYT57ajcJ0+ZG9zaG9akQU0rlevPp+zpONRgvvFGH8G0CEjQc9E18tJrSyz174aEfpXaI5EpOOxNDNzvSXVfMRr4Ls2Y+KWGibPS9tykiw8N1eMycc5Hab2faMhHSAV4UrWBCMEUO9iTrzoGlNyWbmNo6qrMoul0fAV7nHE1GM0CDEOHtU+H/wysbRWSBp+Rl+TOT3EQYHc8m4tAkms1sCElXZVqkDshuB41p32qLQn0cRCa8aqwZta5cEBKul4n2CNzo6EMtF8oTNEcljHHYaAfVTOeLM0sFiUvrCJdtTSAei5MBunTuAT3fno6nwLRgVOXYbgBv8LcuorylIAYYeHAMnk36uf6p68+Lvhz8+IHcDAK5qff7Ka/mtYx7VdwJYT/VAw/7wYadcySfSu1XQXIxrXmZgD9npgOYUW/BcU4mEIoNHEfcb66//tCfjnXdU3Ud6YIZKovskvkBmfziweVhdT2pMufIcfEiQTchyKYozzGpQVycTyimsuhp95xxMLgDK0uMCRJxsRjDVpdnmyBDUVMJNqv640DOjamHwQFYimhY/p7KZiU+W/j/nfxw8DoC36k61vjSCf7dk/Z22FgJTM4fkycGTbyaFfvuEKh8c8Zb5TOL8TP6gHE0qs6I6mhM3FodEh1T10CBtmzOPwvOBkVuaymClCK5bGv8dSVUMEe3QXQbFpth8331FjLdx3DE/uDnaqLBYQ7+sm5CWOGEdCHUN5jcrZ0pXMBX20CgpgDJxj3ptjTSP/lvPcDc2s9Gz1358LJl59x5+igcQJMRm8Al/VcMt3+FNuYcjW+6ZVwev46v6kvmlQb328CTFys3TybwWYuGrkpsVOMh3PTz9MDR6mmZGhzZQnce47MoK+zkhh17m05NtCTnbSUEVRYl3ZeigC+bMRRR77haetv42vG/ltHpL6Dca8aKUEIqjvShHqNWrp2LBXCpQi85W8E8wsugBVGGwI2pEuIwlJOdPVE6u2I5RFP8Eut354RBzA9S3iHaMF1r306V8tu1E+C/JkPLcny2n3bLl6xC+HKKJWdzogybx0Efhe8uPi5vJrsgDfKSzi5ZIxjT4/90VHtzF1+HqU+BqZUrMVautaFr65Y50zesgRm9qWyYZSn1wjAlOkhXsPI4VUgpmS5cKCAPUwlL6+PL3eNGOf39BVeeXPLFcu5PrpzLm4/123j2FWbBrVvPLgm0FKrj/YmNFGmzmaRDdWLVdI3vgcfybkA0E3RxsPgJ/sQWOXSI6vo8U94Wk0ixXLo3zcj9JLdPoI5RStlyDjX3U+c6adO3zEXfrN8TFpOfIqs1etaT+d7KEGuh0mwTbPUaR2LeoH5CRpYZtC7BLyGm5kArf1qvQ9H5Q+qzegVHxa+y2WiWMui+Wc8b30+1+4ZbevctK/smJaULWOZmraKxXC8wMPdtsXalSm1M2F0sjnjB1ZSvzWgfwydVs1j6ZvDFH3Dd8QyEHgdWsE20lHJmn99ADDdyLPY0KiYmIP2w59XwH6KAtT3KMzdKgtZ75LlkofFPSFUHf4MMmFqzbzGv3icfRCZLAsdKlfl+tYwGNjSHojxy3IGXg9Lbbsm0lsgssEeMdQWERN9jO53t2w+q6mWZijSHxlyGXYoQ0hlpGrfVaRbdqta0l45zelkGGv7EfhtJHDRTv1YzTvhi8ZvrBufDB/2x47JrHeaqJE/zXVY3p2gkS765SfwTyZeilYLtkhyMF+uIoCIBeRDiBZfWa2BjB5HWgoVNc1wJWSirY+iLzMPxnP2kX6EmA2B3DDA4KWVmMeBPzF1Df1wh732wmc1lxQ2Q68dI+Mcl8aj0vnCUdXukw3RPfDO7j4bJ7+g9dfktLoPSIOsIgFheJZlX21lNY87wrcJM3+uij63YzHHMLh17JGzwUpr1jjRqq6D28ZcefPLH0P9uEGX4cQdKRv+04t99FImSF1o0i395XDLHNB8OXBACMw5VCuyzyIG7QIFFUZOUCZ4ts4pvQq/lVDdHAGACqHMldU6s0FgH24jpz4sST+8zkS0lcRSRwCXGhSatDEaqF5sMpobwRQpO3QxtUJrsH1zk1FIKSh8WFyYUrAe8RrRRs6Q4HHRyJ+TOXUtQ2iWNWQIC0nP2pd1EMlImv630/u3oPgZg2nwalPb24WssvXc+tPAB+4TdUTDPLmIx4UkvdQaxCiKs0bPx6yADcM1gtGHuZYsjmfv3roIS1aHaS2SREPub2vQP1yXmqryg2YMU4pGrplSfRzd+QdzbGaK71yxP2tgS2DCXDI80El2abNJzz1ncAhlC2FCUqjPndW0TpMtK6LQGF36bOcp132WErKQQUzeh1baK6wxkwsAmqq8QzfA6RgZ7jh0xdUAObZz8B3yVOmBcXokG7NMH1VSaffDIZjm3mTDwuuShEfPURmn+lmEYDIfStM5tRSwxZkjWa2A6XSj00DBqadkUMAs+7wL730AAbu9GV35UnBLfQZyRLa/rF2pHNVeWe9ye1cUJ1NEwEs242z/ye7ckRSlCLWbC387xxDshPf7Db4i7LglXL0qrxqYTcUupbiEcX6rUXO7OpHauN7Tz1FKMgw0W/D+PKqrpHC5rJKoU1Q/JW9IVbrony/ZAa4i5w/CkpL4hIDGxlqpdzsK3sD715ysIKnCp4ZZKEny4upLu7GPcM7G+G99BiMTqDRM0UKF9GFodDrCFCKE3q6AiVahKrfTcoAcTpaM9zD+cWQN6GqbwWr06vshXoGb/zyvXhgen4QPseRUdges7mqWM1yUqwfeSc9QQ/MZN6t9bHougnJRx6DcwNL67hf9wwPx/c9C/6fW78XezM0xFC3djwEhl5Agpa3DmfStTu9IIXxJ9QD4qhzCK3s8EW7LRczUIOyFD7Xu3g8i0seYxLpQ5g78Li0qKRVOqXvRtdTei0RqR3UPbCrVdwwiDHx87U2A0wbq/KcZe0H2KQmBYj2uQrXzWPP/U2MZnhSfQ1Z9yjW29Nz51KxMvO7Kc/l9DicvqLvFU2YrKBO1PQCr7loW7m6wJWmr2h0c+Fu9URdd9U3EAWnbsZd1iNvRPmXUzQ2jWEq9IewH5u9daJKzyTVjgWtu6olya1lDcHQhKqJsDpEZm0iw5Xtqp/5bRsleEiRAM5ZnwH1turFr8ciapM7H9hQwYp86om2vlhfPV6K4rYIvyMaGWLRxTkujW0d/bs6rr4cq9TFGrpXLrohNfpgKVHLorsxq2JrEDkgljgl6cFNXfrlfsviiRh17IwbdY0+qwslPBdTVECEVv521PHlZIFTufp9JhjUfI0rDH7im1NdmtDCu5Jya4Cwz40OwjxIBukgodC1Tlk5LMW62biEJnO0X7cCBJ7po3sSyeYaAU8XhNJszB1gzh2xC+UMdYp0n6urOwTQiPsyO+xAmAZ2u0SmsqXHeFlhtWvW00QcseH5KEJwyQybO0QoIM/kGuqHj9CFDva99LJeyW/7fEhKBH2P1thIHKrL2x05m70QYLelnPN7VfoAWqbimxYq0Q5ly5W8EVBx2/FYPrtJW9XcJUTa+ZnX5O5JDDUX4hZ/abZ7pA8TirTuNwvYkQ/3BD+8aXz6i600A6AuFaFjrushCYZOz9BUyy+Jdmry/9UnO5iLGbRqtgf6Mb8CwjCtipJUAgwwQvbQlE37maTfhxIi6EdLXHv6pN6jhedzd0My33BylBa8ubYX9KHKLdMy9fM4LwWcsSmxjH2C9X70qCbLjz01Jv0kLuyv2QtmVNTj/aUZ5hc54sMD3OFGPqKH5ZWhY/jTeGFFfBqSVVdoIs8Oe/7kdQ7S317OmB2HbobzKG1Hc2IaZbznWBYxUM2rkZZEXZQkbrRBf7mGVNoxNvMuZ+V+wHKgMb5I/CsLUXpu+mZtj7QnKBUNv7W+8xaSTlWr71ye4SxlYW+2lNlYo1TpOqveQ5sLZfJ3wOizHYtXWr/3uxEcyzoLR2NIu82J2ZiYM/tKsNPeYB57MH8x4EeE53OisV/VrlP0i5byGRiGU5dos7BaRDKuEo+wtbjgyPNbv5dZKWYnrco/hVDiN7h/SPKe5pgXM+hufYLd9Hrg5yYVdtzMLpd4wH0GuEoOlHELjDJrefAZxdagv5bOqF3V/BpJs4gv91dbeWUvc6QqF6wgnDxV/Q64XRwbyxtOixx6tOW2ZcogTdqMO9uJwY/GBuwQ7ZYjzRmj95pZ7GrJu5YeIrSchXA8Kt4pv7il/UNrV3NEaUos3cG/g8a+wuTBuhDxrPgBBzXxvCIzQZlkvs9kzgtLOlvjmTapnZk21G9JSyMgI2i6Ic7NSPo7lR/vzPKz2lSGx8lckeltQCNsd+yis1P0pKT63ITbxQcizbYBcMcMgrGAr+vraRCQVlx2xwTlNj9mvJnpbNhvozOeqyAW3aat1TpR3OyoGyZX2XdcA7NSkhfyVqV59xxx0z8xzq40a8ozP+CzouwGOMh9N7fAYs92ckTiPv0xAfUQNBXl1l4CEx14HVRWSJ+YM4wRxMeBd53076eaXA9rrPQEjxfoaC4b9u13d8Z5EJVYnYFXmJInL1RS2w8o/3hSXzPuUd45pdrUSlFAGRsVZRQvqIqA2zXSW2YvlcwrKmgk/HB80/Taq4oKOLNlbtJ8ZDhOCgPGywlU+giFMtzcs+I37M4RZPoevVniiNeqiXdkRJcvbRYKjXGyFGazdxnMeICIO8ypkEcr+YvYqnwnsBkz1xU5KGVMYE5nLKmJ7KLi067ROzz+JeXug5uSc+x/vCjVokmsGT5kbDzvYyMGsLuO3eI8mW3qxHPSoq3PxoR6w5SeSnnZuv0pKlW1zc2ER1guHY9LKQ+46S31PwXXCFRiovxnkmCt1KQQF7hiOnMUK8Cl3G2AtoC2HgLpeYhYI6K7YERZT7KSpcZV3BrOOlpJRG3OGbIRITFD1VoMH9gin2fm043B/8cV1QqhPulj1p1BJSO09o1x1SYnJnNFXqVpz7UyaSnTXnAXfFkOneiAjdCCjaWrZ8nd6dsqjER1Rg0WR+ktoab9BrFRBb6tQOFliO6crGYgBhjfx1rDz21qIoARDmeBPPoks4gC3+Sf6B14EYDJQZLrfE/slUrPdYy4j6dkN5Y5ujugH6ZQ5JvdPkT2RT4LqMKlrChYQObSucgYi4YNszvs7zOFhPT2oJaubf42OzlmuVVoO9csuAii/NwQ5rU61h7rird/dSzyJl571cHjMglh/Q89EbUyngjFNXp/XuLS4k3bFjSE1XM02MMMmK86CqmHZJA/4kqT4NEYNF8d+i2FKOW1OoahbYwC6lTD6WgjNb+xVz/Bxi6Crg+3Lnx6MlGKVirxUeuuusM3sghXmin4NPxksWlMpzp2bg2QXWUkxjy314kX9E7YYq/coDuCKKCf/QvICA7hEwDcDJKiUDUfbTJ9TmAmUjCuvWopwLUyyGHSFBS0lRA5mhEC05xU39flnOxqCSsrKRlM7bJ8qF0KuCIzSy33LQcRYyVQ61jxXkRfUFwPsmz/vgktiIBTRUFEgvSaUFRPT5YSICOqQY22QtyTzeMYVAm5ARX8w5IuJWPM0squFoV3gRoXy6CqjQiU+HkZm/QbAspisoJJ8RgJmDVvtNknqKqMjE4qghE6N4t6q5qO6iv2hj7hERs02gZ1zU5Jy7WYKWju3uFdltfFAedUJy2Q4BNVFhJOBmXjeSOhhvKbRGVjU5+nHUMsvvybp8uoXxrGz6KqQU4CyWi2qjBIFJ3btWP258FprOnqJpLFp7U/Ki8tQYWEfHBdn3+TQk5CshyIiISCVKi3JKzRCLhpxBAo/zyPUXVhCNzEhVLWa2+ll9EXV9mDJczLG1BCWHRsQm1LPvcIII1iKYP4JxsF7jz3mYd35F7Qq1VigKa24YyDvl8hJhhn7qgTGdtpKVqYFD0/X1Q8ziHplTTp6uEiAUsVtgXNlLIX8SkHbaa8VaJwzdGeJmV32glJaCrplcSrN6LMaeGjkaFBhenGJpsznehP66sYiows6xe49ePubsweIANM/MXIqxDGaDYeDKr3FV4ZyLaZfUFVPiIbezERcX19WCHsT6wIeTAqrFNqS/y0eEfpCMD7V9aKDTmVq0N6a0CfwPXU1EYNZS8B83NOMI0iXM3LI+BYuXuFRXXnOETHhPlHB6UE2WSPCol+mfIkuzrjK5pQyUH89oFwqYnK1YzBkHCJclWcCYpkWuw4+BLaDZ5vTwY5iRVBbVfKHTROPElGJ8Ph64luCHK2RXUWuRBiwwr7ZV1obYRWFw4dHDQ892nK6zfUcJhkXV6Vo5Bt2W4lepvpUmG0qUFFJh8oLb68hyhCQTya6IWQ7Eu2uM75DQtCU6T4sjV5JY6tSSjFHbC/eyiqx0zLqM726tdO5tTZ3hhUyIdoONdbYiSlnS7UXBEzZ4CCyo6m/E2GXb2fys8fPTMjYYoalgJDvD5fKxYr0TfUT/GxfKzk/WWjtCnj57FxZHmdeJB4TZ4Sgpfrcg3taSo6kV9k+EydnDwz/5TQUXnbvKB9LiX1mvr6bbEYdLmqWLFdW4O83Ma7EVFK1QYn6Ot4nWOotCvGt1UxduYVLtMZMG2irEhWjoFUdVWKlWON7CZmcBukKl9Ah8mVdmlKD3/Qo04YftWfwrBS2hVcxyE3tAwMCraolJZPa3+2445JdDIbnlgpWyupPvpLcRQQd+l97F4s5dSa7ljpBik5s9tyLYz3825JTi3PFJiI85QKni3rVW0yakKvHigVkq3j6WA7jfQJlTPs2YwAX36y/uyLZ4T3pOouHc/Be44XKhKltm1QDAqLHZUSuYx1BEkRR8ngyE9xQGtd0AnzZT4nf6hte+TK6VlUzojU0uFMz71FyDC+BSfRow6rbS55ldsE8dMFRdkfsYLKCgIRAwLZsTU66Z/M+R7+jX9Rn/de9A2kcJTmVCvDRDWS0dhyNgd0FnCz8PYVg4XU8nDEQ/Yjse+DCwdjGvTjBRhsI8HgWZcbYYEPGyuzVYeAjhrBjhUvkAAIgNMZ+ZD8VOq+Z4pkoLG4uKy8mdkPybBLObLhR6CrdEr0hRnVPAcThxPIhsiTHOqCS2YHyDu0HdbXHMO06+fDvbat3O9vqjgjK8uVCK2hfGBYHO9a51yCodIN5P5w4ZnV0eLL+IYwFEiGplwIME3jMJZApVRVKO01EQ6fGQaQngEp+CIyE5Oh4YIk2E0bSfQfno64NK8/AChw/RdgCVWN/6D9mUaTSMukAC25Xq0uDE+AevzawxFELEU3NA/p0U1viLo06UdFAmAuAg9FtFZfCqzEso0ucWpixoO36SWZyr3oq3BLPJjPUSB1aa3KOI6JAw0/fkYxCm1aHRO+Btb9mYeBYzSXWr0KFhVtPQ3AelVbmL6SWAjEaOAnEdwIqIEZtEhRWIV1epKKF3ulY8m5o6gPXc3GQvfDRk0GKBStl0WtdTHs4TEvt1sEiXEZgVMsXwk1tGzdrQxav4Y72PtPh8CJliJuTda/OzuI5xZt2lYasMl/Rq7ZEJlBJxTrWYSYZmFdzLSNgHLdOCytPpyy+8HPkGc6jGxKwBfQn4cgHwdYUlFucQrKUXkEa7NVm8sDAr9vvbxWPzYpnWatR5C2LTlkQqtCAWeU6QcoP3iDwSyHAPTiklhqZadtzGQiRMmmZnZy/EIMUkJ1doSro41sFWyu/uFsnEPkyMEEsQzaCZvaqICKYQfYHNoEU4pyrEm01XQkZHJUinXQzHSQajtoqMlVLlTHFCBvOzKlMTuN27qu577/Wq3XgOFa7StwnY2E07TqDq/zPWfICQ+HEaOJn/nNYh6VdMyMqs08vOAZtX6twX3lvC1Dkxn7AkC5wIrHzizGFEksAlqkIIBh6W3YEhsn7Eo4+RuGnjTz8XeWq7dKobmWldF33Z530JT1Z6be31vU/q0KdzfI4TtcksUd4YMFAXPod0/aWF4IAlLAviYZMV20ifIbGsLkAfSrqxtMNsKzAVMrLwhOCsPLnz6q5vQaN2Y8Pzos/agRZ+rPGGqklNxarMW31ptWAhQVGtzbOo9xVW+3RAxLGzNhGcSj5PBSxpZcEB2dw4t5UwqaFav+GgPW2nF1JRwKYcP/yxRjQ8JC1pyi2xMiCnNnPV3ZN9l+QEJKaMmo9rGy+DaNrLWmzuzh3p7wj163lRufjQKc3cRy8XwGaaTdwwWclwQboYrDy4Q59xFcFVVVQOiDQ1/59N5ZEM0psnXiTTmlXpjCR9coLFPv0fgp9esX6OQikqhS10MXPih0YKZTY3iwQtCf2t9VfasLzJDOyywKqIMhNdIhGx2XeuBfBOlCsgA+ah08SY11IZEO0SGJWWGRNRbYiqjeMnB9wKEYzyQP4wx8Zly0Pb01kiERsAvDiTT0hGZyLwG5bQrtoJdUBzKd/ay2Jy1IraNYewSnWbI0x6imqEAnt14hMSImI6A5pjXbFDQlPFhzw70h2qgJJ0DYS/LEAGdxWSPKeUhhWJ2GeFlFWFEqMUPeVWgZr/cBNFGPLCTFAwajIFu0vBOGjPw923tdJN0J9Bq89Io+cyQBZCbcVOFStc5tawaaSf5RS41HTRH4TTBV3Y0dFV+E9DnMSK1Vh08R4OuI77AA2KBWggU38euthFRqIJM4Xc1Rm6ymkkFDUXCQFR5OwicxJGiURdGM2WikzSJ9AzQFuIJbeS6Yg7taKzu0GIvCu/EipOz1EsPByadhNyEhMTHEYywcB6ggPgBkWNpEkANW3SyUfTk92BY+yBJRSqJAJ3tk/90GJC0j7MhELAlsxCMKiOnq7VJ5N5PacXeGaF6D+5uFfsBvaagda714OBd0FLE6gjiim8PQkraxnurSCFbjwTuWQ2DO1RCL+eYNl+6nlDiSjsY0px5ClYeFAoo6XXxEdwCOZeoczI19nwmc/IXQhE1KWM+pcnbg9ThGNELCBuICwT7wg8cRKvgK5ASGDKUhjJmbghMIdyg2FmD4V2iHbQxvX7Ka1tkFHN1OuOSgYHiTYtTELqUop8Apu21YIKIDeRzmTmT8BV89CBsys7pv8C9VPXhKghBltMUkriIYj6W9EoI+bOJ78+qL1whiN/VSX1+IpFijGUUUA1BKlMB+dyjcRYtW1dhTr3KpQol6zUcE31dbNLniZCzpUKqtPrUHCva0ifv2Ol1KfQraZKZXLRKLU96qGW6ZlOmWBkIpIeQgsLk1XHIqVogpL6URvuShjJYiuhFk2DKUApOO9YNHBFdGUZUvJRpUaUfGvuYI5CVnx4CTgftGe0LV1QtsojEy9QykYSWhnvnu2AecJqoKZi4/hMXp+gHyidiETuKNd3k5VZA/nwS58NaGOtqrGig12LiWkaaaOhZznNJtLfw7kO2ZAsRb/h0GTDNasCVAVP05MezNWF4xq81qCagwQEkHb0Z9762JkRRtBqUVDfuu78SZh4FbuKAsAZ6pHOJgQvhgUx+HgloC9uz8o9BgDO1avEvQCIjVYu6nRT62MawdQ1FHZbhLTWvMZCB8JFhj9ppFeUYOn809DqYo+NhVxydUWzVgzuATBudN3XWGpK0/KLa+AGz+WLscKdKlDCgrv4+2MToABF8oSHViA/cSq8aP6nz1m2IXTL/YSfBlKjKM8x7ehMWoT7EVK+4RxM3TZK1hTiWxm2acOLAZyG42uKMWCkjFtDdOatrD7uLrN70SYcisdyvMX3LrnuIXdrF0SvLNEacReJW9FJFwMCf4KVUVNXoKVmGf+8l+cI7aPPTt+2WYHC/wHqs4pRH0JBECj+i93LReDHlPGW78I3XLg363C6lIigE4BBuFHM+sewLB2tCLeZ0ZBQTt0tfVyac+xjL5SwH/dcErFlThQW0fpXJwe+FFtbxFZxrDLH9/y9x2H9AYfMYVjC2PQhstSkS6FDdM7Ur/fXoHzlUcYQJVpe9nSoQhONLePJ3DQWskqpxnsRy3pVcuzjxPm2N0BT2GoH19vn+2+w8N1ZK/ZksLtLjJ6QRY8djSd0e8DUV2zWrKw6IlE5QmeubyS+s+z8KC3Y/d6gkWRi3qwtMualcQ6g0lM5NWDBaOUaYMZIJPp2rQuQD+dB1Z7cis9pXw+sMk+OgHLcjK5uJrUQPpaaSAoBTJK5foju2rPCoceiXqsW7U+SCkqTFsowBHtCtGVQeIATUoYvoSxszI1rJciB3W5EHK+QWYruYRQ4S3cNPIUjyXR8HxrBYxkPL9KERnggQal6ZBJci24uEPWJnuxuxaTDX4cYgI3Xuupda+B5lPbYXVrVXlhjlfXkvSiCPM021NFeLWatuzBZkOoDKfjT5qm+e9hBiTRc4YqimpCZ0epGLpE523Ex41CRaHfspiyth0bInahTOhjRgwBP3ksDooOFI8CAJSo0guMz8mUAfu1AI6v41DqWdJLioG8rZx6sivHmmSBfBDyEa7061stTNK1kmeg3W2qQiApTQQcC1j7/zUSqP8QzrrMT1D+Wl4feITT5WZSXklW8neZo18xjpAkzSpp8IZPhHD1+Egqkpmk6Y1cZIuFE84U/Bm6WU1VJxeN3lDvKYccloifvKNptORlKUWUdVY1xFN423R7ZovZVFAYdQKoO+5i1KtkZpyYWc5dvyXDczMm3yoK5I0vkUlFDfkJ0Jn662IRJRHqDQEtHiEg21nOqqwgv/rehoQB+HpjRwXqQl/yCF+ulZ13sVgtc29OHuEdbzsJVQBWNMU3khTIx3AvWXE62nLkaNWk07erZDiCBCTpbZ2u1ttMJ+gWF3KhklY56NOwYODlK4Ns62lw6xaUZXVXLeAo1oCrV6qZaQK/sn/z6AHAl5kclCKBoUoFXh3BWwPvHMLCOZz9MMv5A6jrySgEFRLUAyFDPyiRImO8tp4lMBYRoqkaKYHUNCYuNoKGJ4iBk28caZkWkvcUIrGO9tqZ5Tg+F5lalLs2Dm2p02ZgLHAS7d8qKMWIMzOFlHL1A4UEPsld5V4coUKi5VTisnX3YEimpP3w8K8cKLpUei0YMPzXZuZk1p96eAVp1lnCDGswNTZxbxmo5vCw0UGar56zsbGzkoNTbettZWgMXr4LnI22IFrgE9xDKm1lyuxyjZk4xOqfwggF/Q3VjR2GJd0saonFw0moaY3sZ+wIp/IJAh5dWx3kfodU1yV53nLi4sUpjYsc86JM6//0qSOprCpJvrNCArMvToBWRTpZznhZsjpNAAw4Ls8bvUIx/yGj/EWuxiv0TLGhqKonDm5WQ1RTERZ+wo4d+2pVJIPFIwiRjQf4Q1HLxCOkCl/qRYovONSenwphLCzUUDaWaFPuEzz0bFw4BGMuRObLkVVzbFSZLKxSDqJkTQgUCvV2urlzd0qUALNn8I6Pq+/iIncd+fZ1YThf7NAGOuBbCnkH02bt4qdDGyybeVIoMQfnkq73mN9Q5u/PzWQleEg6ZO0+vp9asH0vc8cdhoBlAIrhXkagxzYY1cPiKQXyzmNN2p6232nvulMXj1VAce4mBBGZkQ2EIytLGvhCreWZ86e2Ekhs+YLgY8Vt3Ql5hkDzy2aA7Iah6z2mLeTfnRAJXgxdYiHxT+5FVWxxi6Piie43K4Bh+yqSUvgjRQsjc4OSMwqwce7xlNqnBJHByW9yVXejXtW1b9IHhubDhhOHJGG9HJwwHJ7mdKMN4PdddOahrmA/tSoUErvtxBiNnY8uDPHey1bt422i0sCFHwg1aY1yUgx1L+hdR4sSbEEBGppcmtk7/EE6Jk6xw0rhM3xYTvvr/2nRlkNbLYSbHsU0rJmTbYg/yK2s3Dq8iCSCypSNIv3E3QmzCErI/WqzppAdG1sf1L+dJtRaMlWWlf9KdHOEQmi7NSMhFAw7oCiAvXS8A5V1Jsc3sRjf9577r6YtgTJLFn88CvLSyZQNVMpv8BmLb478cVLXQ50y0k6a53c4qF9Fxh5n8bBjaCJtEFj9axA+D1TcDFX0DkgJxAH2CyTFQp49/LLYnz+Gk6lOf9njcd6X995a3Jqef9lLutd6GRh9EzKAQ/qOqHzr8JAloe0K1mhOnfxIumH0uyhSKZWZHoNBjIM+5h0MCT3iE3rH63KBsIYd65f719nrtCtrIGwc3WTlw10ZzJuQbycB6LcRzbA7Ye0D9IRuDQfVQZgwkOnEmdrygsQRt++pjJxu1V1o3o2ltkIg4TAfV4yDjdt45ci5iSieIbhap4ZL761QwIQ5BVBqe69CQXW8Yc+rR+ZnT+vC2NMlQ0/PYPrjuD30hxeKTL+VN6IyTf8NlOKiN2y4wg27NqqqxV9GNIFm34q/8SorsdjIODxZkOmEX6stsuPQj0JKldyy2FpE9pkdguNSNW5dB4kZBFLihBzE7hmJ+PRqrJxzCAkLOihMX9cFBPwjq2KtdqLS1wWd+T9ysLGt789Zdgw2M8exHnK5fJQ4CuzlTSEQuTJEGQ9lS353WyKZ/z3O87qd4rOmsOdIasz+Ek8J0CyMPXRlwJdK8WIW5s+x7PTttGdr5REN/qs1/EmgHx19oPn/BUBp7CCn0v6UQ9c4ReQearsQZYT41SoTnSReIcx0LbTWltUsYh3hECcEUvOVJwJtVbJmdPtv+4Jre82p+fTTT6/+ZtLjFe/0lzOsY65TqcS5fM8Hvt15exTmyEX269Y9W7mgeSdoYmzs3gi9jE0I2Ghbu/IHfF+4Q2H7G7C0+bBJHwEWZoLfRFdsGicOqnWRqjeSrK6TGtmRbnulgNUzlMpD3Jzn47TeWtHAEdBMxaZ1RpdZ7zbMYMkbrgps4XewadIlfeaD9jAJrg0WZIQlt91JkxZLf6gmOmUazr3HyO35ZP03RjJ6W0HAvKaGadywsYPxr2wysBgQch5Dr5Yc9BB19zzWHBn3VzfMlzGu8m1h442z+LRqSF/omr6McVPli+IqRaRD0Uz08xRtUd1Gedqq9wIxINcQpnOl5Pb5VHa/gOXSx9SRBfykl/zT/l7S6jEWzJGMe8S9fjZQUQlBII01dh2fErhTik9mfug4xXouXun7ry6Rly4DVKoIff9YSd7CQv/xfB7rW/PYIYOwNWXgk3+mDAqQPSgxa9p8h9n0ffyKZxXoUu7adPZPXiGD5sQTFlYFbudCzr5a8VJCkDGU4mXC37dSr9mKfEcSt35jXrDp7+QD/y05sh6XQc+ucS4OIPD19XzSjkYXf5EIxwif01aaUyj85IvabqJhr+oFDpCwJhZW/UY9boxGWoL9Y3pV0lYM/Ma9kbL0lqmQyWCwjZ1dPefzaNwlLoUuA4NXq3FKD4Ued3ItJxSogo16OYaxoustj1+JyasklYxC0NMCclSzuuHr1tv4nlR4KmjK3Hz6ki4Y+Jkb9vYhdTk8pdO5zTKqcIWVChf1PLf01iRMMKcqs7OKXg1Mp2CxLJM37vdwZWZUw72+H+caVQPQCcLip5yNQd9plDg3WrFHc/+HAty4GSYZYxTC/Ikm9QdiVv5uDsNcbhYLImjQ2ZIELFnIp1UnIFZ93OUG8xLr43+XR8uXBQRfnolBKiu7SEc8YhKZ8IZgabsIRR/SBuxwaJKTQig30WsEKwnBwz4gINeaODWsgvYiMlPXo77EReFsT1emyl8BTSSd314FJjgBXvdIwMyPAAzEkWK88CJbXD5M4IwT3/AgvcT9rJtX8+VyLmESovJYYFSB1u7t0RtzrSCaIscbfoa57zFNwueexRTWaJR/PdzYoRCtwNiaK1ME7k73uT0VjB4N6wE0jww50r9rthONVOvsnr32zb9xo1qisV0lUu8rQDb8LRCQHxuvyQptlgXLFiZ/ZSYW1Ed9bhVPBWkp5Sz8DHBS8ycuK44xn33qohsOKqc6+Bkfgpqy9q6ft7UlDEdvz0beTWjTbxxRx/iD1KiTf2Y+LoDGr80FfInn/ww/o1HtgumKMfyXlqDoIYrD51TDMiXW/vzsuxvwXpndy/wC5b6R07IJInAyenbRB2Cyf5hXSyVz6QGiK1ncjJHtwaQHeWNgE8Ppj6Ki1IDL7LReS7I7BBUYXB6yv+NDfjgP1URD9MuLzxBuX7tUbP3lMbDl6IcT5+3WLysMyeDE+B/ur3A4tqLhejmEIC+fN8ce/YwaGLbw/A/x5KefNtc/izqZY32/x8nWkjg4VEzxhQicGZcIT3c1qI9LKl+fhtQ/TREj7hC/5pNczMVM+R5m31avF7+Wf0CmILFwOpzEPUodDbaKkEoiehjrmhOWHGNuSTkk4nbJIc/oU6Gm9JX4jfrgCK90QKJYDStQ7Qxe1ex9QOpDcTAEDN2OKHvPKKxfXOPHijHCAa5UsVCPrm1wzBoayV+FzCEWpK8iyNFJFhOYdbdKvPakmjcTO6DGNppPRxh8rjLRdoIEAON1hNyHYw05oHya2Dol0mjXVH+glO+jYbpoO7N4OkZWZW2Z4XUKaHnWkn3w9+aqBQNZoTV4BVsH/oHR1aF2F5u9xVy8+2bRnI98ZpHzzt55VyGCE751fD9UXDBob9nJjY8W7DpsyQXc318Ed+Nggj6+i+7uqwQhYBuHGzVxf4N6rh5n8vt1Xf3at1o8opPQvazjyanalQ/J45/EEvT2d35HtSzu4SPjrp4tJrDwvxT9F1da9AbBe/1bOaac2nfH8V9HB0fMvumxhev7Y7e3/ibKljRheUuIl0pxiVl5gi7imgBAg5C7SvhHXeFnuYKh3mGgzQQlyIOKdNM5e35PuB/j8YysqTNvrtcNXOBxDC8wqeSAPLlMN5BeniQ8C9bsxGzc8a4Dy6bIc5xPCfJlHwIXC7ZMJ9RQfrP/m6T0F4Eo3DO35kOuI0N4nBo8tNI45myuUUzZmnIJprouSdNFvwKKKRKARvyUn8EJoZW5HBnk9M11JqVTIIlbCLkUAR5nCljYMENv6rIJPcM38U+5z3TVv8Q8VIgJsw2BBoqkD3rGAFwgowLMmCIqAsU7iz/5/UMEAATrNB/9ypeMwhfgeJICZt/LKgEGPnnYbppu/j21DCGHSqsYanKMlNaEtsK6c9ZKyYBHwwV9eHBsRqJeM/cMhu1aFMbSZYq/jmbLi1bN0nrm47w+gxmbjjoyZrLaOkmZUIQIi3V8GAdmcDyylQHvEu+xFvZm/jfA8x6zXThVWdVY9EZANHrBvq0qpIVpaJFFvtc7lika4V9A5fKw7+MPrYXWds78QaAB7MJBzuXU87+HWHGHUZWOdaLAsnU7uxzQQrNXiSYsV6jy8/muuEW1d+rGHW9TUuZV6SevxBb6Pa0ZBBDvus+LkqGicslSjGEzKNUBP3lGL/JRxMWL2BRnnVAiwFRDqPYYXKEQYUl6zUNUzbOERaC4TIIpZ9uLrj9Gznqw71kmnxP3hHGsCfCEB/16fWfN7wuzsSdhKXFHpDiUdJBWDgkjGXCjUpbRxLEZhkzxGYI8mZSGhJQAIkndrY2YXXhcluHNIgmkEc0+KKqx8+ZNsQTn9bf1WbYxRHrNkXz8/NbGCuLh+ii96KDv9zAT9/VF9FasyLS+KlC1QuuOPEOmVTcws+hO5AviiORLgQyz7kKBbUR7LiY4bF35c240q0c6skPSUZWJ3apRadD2qWAdOTrMxI9AKmeJWXH6jImioJSVGQ1fy8XhXo1RHcbOH+Me9K/qf0lBMCf2/exsiFRi+B+tzui5jWaQWjIbNq0NFUZdBa+OIkIXBZIVHFgyFEb7u403IPGLoNWK95M2zIfLeeO0nKZZHQrZl4K1J3haFz/qnsYfBNCFSqDjKsEs0TD0K3gyTWy852ZoRxN+vlabA75OaU6x7ZNkQWW3Jg0SSP8rPdayclshn0OXcrc1bZNw86db2Wpr18bGj8ngb5PdO5urjscgDUPogwXgGiE0TxaW9QoeCcx4cqnL7iiqDo9mjYXH3q77M99jlBgCEFr8jHib7BX6LaAMfBRtp4hpID/06fpkmYevbIzV4ND79WjEPQv7hPhbuG9ybt1J3cs38Q22qaUc1l3M2UCg1ghuMr9me6IG1nefr6pZ9UsOfS3vF8WHeCryNCn8uLP9OzSXRTs3841VvrFivRRsAO8ams7Sv1Zij9ymhuY8cl4l150ZeJ0rOyuvXUdoOjjUzFNixfAezpphOUtm4jIL8Cm0PxdtFaPzuLb+19KLs7oNehyzueqLPsZ/ACgCFc/jqTUbPPFbbGzuXVF63n67hrqjcC50ZJ3zZGMoJeAOL+xuaIiCo+f2VAibp2MIOq03a9qBLE8myj8oWM3KQL+x4naxmlP6kk1qXMhc+HZoJC18nVm4nwKFvK5vskGyA+v5TC6J6YUTpo6Pm+mMp+sj8n4q1j5cnp9oGd4FNZEiORxl0jTnLlcMU3P/qLuUQVDyshHF3cNQsrSiZwkvjVjBZQVoDK95BFX3slHGvKhAzWicrVLvkffUcD3N+i0bvViHzvTi4Qajge7mBI5djOonkRbQM3pgnwo7Nj/kN9u+ibMFgplqcPv0zxBolLT+HyUCQ3e9wSZu1wQyzco6SrtH8FAa+1irVObO1afaJA5NTPJ64bfUOkAhDa8Cb5qrpK70FujQzUyY0lvGBCZ7OVGQo5Xv51s+02UJdqINyJJZmw80XmppLr8zjlUcG7voLsK+3b9eOBctaEXCHtBR8gK3dAWAZfE6GoxzLjLu9LvQ9m1LJBBBBFDW2lcQnWMRXSyW3LLPxMGkuDaZuBw+iMAwdwHijfRt+cQWmvvqMXHZAbVhLJEiyt8dsuw5aKn2gQZ6uKq2Bb2TqljmdO8eJY4aBUAzhB70AR1xJxNU7Drj3FO+8i8d4HDJLHj9x07SN+f2rlsE8BpYKEZ1jvpUsNZDUviaGW4lvVj9zfO82G0V2KKPfpjg5cWjYekL3GzHe0B39BhbfGd6/1mhhJdWNhr/LWqVpeMZaOqzr4tZDTmZF3AsLve7AzSuKAnd3AD5jJFBASKFC3WR2UAWea6Qg0iX4osl6kJk1t7JjOaLtHtdkvCQ1yG7HuDIn6CfWUUZj4Eg/+IwfK9FHUuxefsr0jWgdMvxN9cF8BKfFghSB6HNV3qQPr1bYNSO19Z95cIHKdHWRTwzBL6D9bVFRn53zM0vj8ZsOZ3oJvdRyTBpmgfwSJskKZYDqsNtn6o6TJwFYKQwwV+h3sn/PSbwm8Tss0h7FxspYr6Pv3Q8t43C0ngLNxEl3eS3ioGaUv3VXjD1fwoFwkovIAC0fCGhurIPftfPa6O9tpyFznxZHXMLQS69GXx/LKxkOcZuMPwI7x3owXCDfysf6gRkNZCWeiq2tMdDcaZVbZ90DI3INna0/Q5YbmevaY8ZJkqHSJzYhev+yaljT5xYASnhpu81AsKAEfwiR96l3kDuYZLFjkvkNbvxW0KgzvRGI9XttJq8UdzzXGqZDp7EwMJ4EWUwoFLwkhZ67zTDlzd962Dy1JQMH67pVUN/KBD4saz07TQzn9+S1ilmDDHWVjQHY/beg9OGh9D7NXnKJqI5jV7FBbTKomg2RLligg/F+5WtSr5C9WIVxsxh8OYWY9N6ZfprZcjUo07SQpLdwS+6SW8HF+cenidNxFgH+nozt6cL5QdMYMjYyYzggqiw8sNDMXNPTl6FH1FvOws5D8RTb9aSKhrE1jZxprPulusu2ek+3HZKObBpvi842yf0Az3LvZKOOcTBkTC9AV2VqzVd0R+JfmgP6cbdYw9pZVTjmNzBQdX1pToOb+InMDvglSvL7gayidSu7lkknf4W99pgn2ZfGo5cvw8XgVAlOdqxoRd5o1F0ywue5P0LMqo9UPhEYhyP5AeYwO4CN+NGJIxcAooFv6kU4sY/5kD4gWhYBGTop9uLLk19/w7YwQvQ6PWb7+POyWSCy0wwPF/zA14sPLHf7OLkQtSQgq8JhmmND3k2GNPzOin9kFOSL7sVhsPUeyBw4aQJmQoDpLFvxepCdUGoiEJTt53du5mSJZ89tLBASRX80pxZ/xfDDBCC9cSs7r9sU6tqLxghPjR7iCatKtwsssmU0whyC3UNiHV6mmqQHhaDMN02ZKuT7BxpEfcx03KLVrMcbulAFig6QqQ0b4abdblClGJihjX8MGDttNhzxI7RiXfFa901aY9xAUHgsSLfqjIDtiD9kX9t3GtDo4PrTF2WcijCLhvPymJWBcprF2ceAlei9pFzgyfEv7mKHCQ9j6UzV5rjCW/dOdcoWwbA82UmnXlSCJrXh92GK+DDJTb8f+yvtJdQL/uPa/qm8IO+EqFRFIcdlfTBbWT0K3JP01J1S61NlVcaClgMzjVT4jPKyVpMtKog1zcJFqoEuOOul4i/MK2tTqf+fj/Dqqrk3IwcwJst9KUwsyVOxRw1nMtXEma5VSZlqD2rUFSrUUjCkD0dF3Skn1t7ct0SazvpY4GfJ4l4j9VWRNb70o4vSILL1DGa+eVaA2mGlZOxmRyeQ0Fp1epjV4n3WzQnk3G1cE6C10iGqB5g8g/DPVOz3basgYBA5DxuhdFhbkfrF36MbVSy1Vr/40y26uEL+0O6ZljsQGOMABz7IZepvnpDubpyyA97bLqDclhdumbORmT1jO/49BC4faYWRNTsayIVcMkgSt/c+Hy50D3LljIK43LFX/zngLbiExVErOtLaHh3s3r3cV+UcbiloPY+NlWH0Wo67SBbNICxotsp6OjYo1uA6kyqx2cVZMrlek/M0oKtrwvzcDQCEIXG1Ihgt9NQw6FSYr4sgmwhXKbdUQgo1YlUL63P7QkLj1Hv176ANJg7xv2ZLFkE4e27tMGBarULQfKQ3LrH9r4I5d1181k3X6dy764mWU9mEY7ns+ab2r88dr352SI3gO7LLPhgQCn5kKTEhEq71ykRJoWtLSrJqwfb0O8aNneF0j5QxUPVrXt6h8erA2YSmpoMZj0dxMjeY1rw6DIQb1z0K8zfjWMDscpycoiqSGHUyPZT3i895/Bw6UTny5rvGu1ugSrurPJeOspUvUE1qtNHBuRtC3nRnkEF8Ju6G/rmpjXEVNANhoPtVKKIrzkNgDjmkL0hf1dYqu3oqWCGW9MCVjPCQayIRQOV2PUplICkY2ispJ3Jd/Sv+JAnFcCfH4KRBahvC5R0S1ScUcwSYgPehog3mvM4bpLsDexZV7nZs1h2V7EZIb2itdjy5w3ffLjUgFG/2hwUGMMYfyqZMnC/Zdj061dVD6nT0I+XUdPFI51VoFH/aUPQe5iPS1VpgZvXk5WCp5lwclxR0sinXRBjD0kBNOS0nrqaz15gjrcSYOpjjfp24CQI5V/OyO88FL9P6W2FCGfunWcw34Xp1UOL7X7TYhdMDyRJ0Reoddv+PBkzT8iPF54Q24urrGpdPyGL3yLZjVGnU/aZ+ALNfDnDAzl9Jxtl8+46/8z18I24N0J/OoXNXON/mI9zbQ6K95x0CHD7hSN59eesLUuw4ln24XBZdl1pTZ0y0TFtpj7m9ntnB0LGlgu2r58szdmah1Ldt7QQiYfAP9D+ZyG5Ii7Zn3trEnTeJOKrMti1Vq5mKHKyZUIptYGFdlcZbuBrvyokHqOWgwEty2kzhuF+fKil6jZVplC7qnJgniY879eMLEZDWYlUKPynfMwk0wPN0nleNCGQzhtD+tR67P1pLdl/gaXcSB2X4YC7DVqCFTrAn8Nix8orooT1sl7L3GyjmtCpXmghsX3Yb2R0phyzXt1WA4c7TuUxOH4IZXvMaqxFX3Q3coxREVRP9BSOrD4C6+nt3fEn1aONF0GdwrzkCvXQt4Kp3JDQKBXcLvpgEPGbQAqSgh5uZN1/1pK7bW3KLvcjmPQ0V0RX4AmPGBLmmf6rgtPXFn7M6+KbYqrTOIj/lFbLhKh59EWBpsP9f8z5JN93Prx4g+o5vn4/lrKx9pFQg5r7wa2Ayi09bM+lzTO1zAKu4c+fDULtYla0ufyYF57VtzAX5TQ1nJki89LE3GoWbjZif1rp1F98FZxC9l2tYsygZzIH9GgVYMvUuhlC49eX+q/RXpCwllYdH5jwfR9jKZ5lUtqF/VThpEXbcrE6zhrgHb/7gY7ZZXD9U9S86eW0eOGm6o+6833emplZdoQ4nUzsS/LEHrtl8vgIpgztQGMJfZ+Rq+JUZN3xzSQPYeFLTMycprnJMZkBTCf64jEnYT2i4pgc7K3FAhSxKIdvy2snmizDz+I6JoQwIBTzHWenDnw1qMTSDIhbBGB6P2cusgIhZRvuW+Si4TPYGd/R1cDViXOngZAXzQgoCEMERu6eXpyiPwihMp4xAeMeGwWxL9F8V0squkgAxrVFda8z3vhU6kl48qJbJm/XJ99eNlfA5bVS/dmcXwXybWebDPj9XXFk00lSx4eNUDvsTYyQ63N6zR8jSKUAmwo+mgTxbmcZo3IvHfU2MKpnrnJFWMTLSA1TV8+yFpl18MFibKliQchRUb8jypifXx0rNRBB2LPlmctpdqybZOATkP6ZcgI1HlDKH2EcgJe6jZCkOEyIHyAIQ1xErOvDhxRK4UjOIqEjkeF/6IOS4aCuDEFAfFejGiQPsE77QgspplcPAonDfUfs4R9jKX7ISJwQ+rLY/bnjXPTkOO0B5m+ur4zL1tK5C4jaHSVRlaDOnzB/i9FYeqTbCam72O7Sqd3igR1tbzyTLRoA1YkNizSbIUgzIlYHrbOI3MmSXJOie7CHU7KXjjv+QVMe5umoO9Mb4fIachDsjJj1RibEd1hSk35nrG5oectNhZdPVVHgx5vXU5Q9Do3MALG/wxKeybm4xvlxBNI7ouqGp7mV+xsjUbBZ749wVvDlTXCdT/X2eHCXgG2Z3tGVBgR0NhFxx8zTLyZd/0tceBYbWj++hYuxlXWx1KfuFKQaeCvX67fVicOo/mXzd+KyQoh/21Ts8T3RSIyACBOit9W8O+06f6zShw7fMU6XtcsXP2K9nCy3EnlTxmp3BGzH5D5RTrMN/DsNT5MGfGyckiIsOyRbjmELOM+bJN6xEWbfUH9VDhugeZIodl1i4qTGSiFsmNu6K1M1mWLCZc32kYFT/wzdoJ9q/7iT35nuGIQtUSZ3GUkz+kIWLSK5QD+rVoNBrDNtxpuXLlLriPl7Do3xMj2B2347rUdnkmXbusScVNVeyOkGjrILfZDAqEEI02GmR1BmFwCh+/tRLnsdcRa8ewJgRVEWUbjq1mQVR3f7IrXLv6lA7Tqhad6f+UxH+yFUWGTJyM31k3edbqsjbGT6WR5n7OH4+/DNOpN328hGE7iZfVESxNjGPFLe16lS6be2U8TyEWt9uYxh2nHh8nTfVp1QHs3J+frI16/BcYPH/jrId2tr6Piim89fs5e3nXIYPt72ubbNdd2SoN67KNi29x3glCCKC4+aiR7pV8H0N/g8kgBb31ywDYBKqLWEz++++4eDmAEJ2mQjlDaxpDHLE/BIjoRH7L9VogfDDAnGCkn9aUKCybcUiMu1Us71mNGsUOXFXTlRquruFTBauii8MA9P+XsjLfnYu2cQcf4Sq0mb1/UWkMYCwQB5XciFsgNEWQLh9jA/MrJ8XnY2EwyPy613cdmvIco67ZriiRH/GkFCDPW7vKedsna6TS+4LvXy8r2xy1NW1zgfIq395s9/osj86xKwdPyk3CH1ZE/LuNo00S/h4If87Xci6Rqeq490drCTUu9X5x2mPWDiJXTdurgWLAnF4j1W5cVO7BMkp8fQqDQYHJFB++gAI3QvBCYd8lmh3FUevTw1iWyh70DBYQ6RRSNIIErXu+KCHYY3QgZFOBTWeoGNc3XczThkJc9Z4K20Tp2NcNUltz2GlVUO9EAm21WaA4Hc5F+M0KldWe/7BTOZbzxbOieH9755qRiH0PVh7Oi6ONWpIENkNGnhwQJF76AZPrJNqUUnWXiBgLomYz48/VqhTBRQotFmqZZ/KoeEnZjfqloBCQu0gTvPGXNrS/wcHwhDd4D6K7aI4fQMWh+Bzg+ycJ8TpF5iiYghb/ETsWuwyxspleUOmxntFtWoN9X0AD/G6sfm3nicYOppMGutx73H/bmjbYcWwUvg1X7G/f7cxjfn3CwSQHoFkt0P5cziLjAduC25Eyds7GrEnhCQgRCpyEOanFMdQ7RpmWEz6YWE+bF2ILBXzof5SEFD9GAuftl8CAHMQRwEcTHaJ1LqLrjGaRktI03ahvGpSKA98GYBIAbghDaCOarlM+bxL3hvKeY1nkS0dKUu8lA2jbl5tnuvX6VHntmj6JaQEkRFi9WgqodSFdLtK9r1PYbwxleZYfsQf4jl7hMj4+XIfh5lu55o2E5LS9/xz2ir/lH59hYKv0rP20vjUY/y43EupY0AzB44vkj2YeUVqXeeIrpfzZ5/DVKoREvRb3xbzM4lSUBVaRUsNfI5x0SGcRv8K0xMFLybZGWc2s+8o3XJEoDF4WoNmHIp71v6gmu/WlbcPOSb7WWG83BvfzD+tFfeRp4GjgIsOJuQmdXPBBURM+3pPBYWsvf8Ycbd7g2v2FCY4Gv0pOM7SOJi/b7LdbLTgMxS5/cuiPollYUe4ix99R7duhAd6laF9gkSPGKxO3n4r7rYWtGqyK2PVtVmEPTeWuv9QqHhX+r5yDeuEkwmdjWzE6hJr3oCYW39Nk/w+xpIqFm0nfcPgk3/GiZpcUavjdRTxpHpHh0A0Ijdx3HlyCN9eouBKpW6VWnE5nlsn4uvdTVpMimnLB0ApHYkYRN7NgYOvfE+8VP5eSo0QD9TKt7pkEahZhCp2ibxUpQxirguFUWR3Xdd1nf/WRh2eJa+nsN4212S1O/JsYRy2Wc4b4S5Tp6winBqCiLT1x9vJKB+8NJDq9kx/3lkGQFe7HeK7XV5Q6ol6TEbIZvwK90z3ecwKN6aXTPebjlpgzDhtzT7Pq1X9DSwTUGO7tJCr4BOxIg2nFYuJ9hcS31L1FgR4KldqtLmMrNOuSMZqBB1kRQbW0W5lVknQWaRUUwMtliF1j500mE5dhoYSobC5b1m7VzIWWoYDJqtXTeyYgc9k8rIAdr3SXg5QI46xPtYcQr18ZjJV1lyrK+ZhjQSbAYoc0GOfFhByE3nc40Bt1T+77exmG+u2PXYMsLRBtBY8fT7APfgpteLAPbnwLxo+mdNhR2v5++n99GA3AKo2ActoxEgcOCVD1OpImoldNWp3/L/UiTKYdtvKuhzAiYYB0GaARdT2JF9DCoVMdsibwNjqX9zmHfuF2HXU4Ty7pFV9Fd5OK+rUZU39dK3loonJLQ1rFB3wdXC50gR3h65Qb1smV7mOYSmU9CeY1wt5v3DC3oGSgcRvCwJ9NL88X20S7B+A22ypLhpFfYIrfs9fsk14wuS7HHX+0mMYFB06j0S/2A2Knq3JtqmppcbGGg6ca4OZUa0GN54vy6ex96nYLrw5jSEcETHgy95DJTWZ7d7F7kB32bMLV8bAzrGFSJ8jLNo6x+ub+fkjiCakXjPNxY6wnicb3ZZV05eqksWHUYGamXtOiKlMqrfYQDYg7rmyOeSt/Md+6J8CdLOWY1CqEcAz0UzRzt6ZBqLhlG2v62Srrz0t+CASIEIQ/e6kvySMwhSvpgnBkLxvKPJlqafJj+A0I42qOHWMQy9YKOo2JDHXeyKIlRhoUhPtya2MDzGsOij0Np+L8veE9a+Mypas2YgNza+Brsqmk8UL7n3tjzUPg8O1JMKgtssv5+TKNdvtf1xWLyR/9tdt+7NABhfeKy7/4Puv8DsxT4gawOwRMXD/yBY3RJSlTFOJzqmI0t/WJJGAVJVa2fmzVQpXiZpbtMB8Rc8QNyyN1HXR86zGRA7ILR+Z03rPGkFbgaxeoRFkEgFkd2qI6dQc2Dn3blt3xDuzcLlYBf3GQgo8xxieJ9sQYfaMoyQFHa/305ywqoy/rG+O9/iCWrra+K/W+9+WXlvc5Xvb1V+Z8vauYYq0SXcygtEk758qfvCJ6MeTFQIFaoASdifaW/qQxnPFysmsLCLtKIeFG560ruvM1hXr6RrU2eQmfSjSK+1nebd+8AfOLMU9v1Vv6/MYPXwLEMYoEPUgdjUDCOoBFQFnbYVyCzS0poD94smj7r8uhdsa21utkZaicx99OU4QDten6GxeFgrOTXMkHAeUont/Q0kaMPeNLVgCvyJyOjoWD3RmXQNDil9fz28OJ40H2n6yhSsiqfXHK28aiGHiAQQ7yUHACaGb+on4sHWel1PFU757tl2qK+U6dnMj7irw3ngXV5BA5VAYCMnYoCEpgx4r1iKCKCHv0pH4ZbHl+XLpzI/r2vPT30UbxlRtTttC+DQ2mRt5wQ7Lcfk0k4c3Lf2uw2VoJaMELWqKcnPe/Ug4BP/qRtlereYDviq+Dl2Sd5PmRjXRQQdbBEDm4I2AERr7eyyjK7QeXETaWcUOCM/ReB/LFoEG4baJncjqWurCBuyFh6BW1X1S00858JkxSzq0wbgaNXdzOSLGFU95EoZmTi5EiKTo6u/zuWt+tcu8QgmFw2Vxl8r4zADeA1r6JPZu7enmv6st8YdYbtU9YKtabGzNiL0NU0TI3ahBeMmTa6GlfSSeJ7lqvF4W+GhtjXIogcNRRo2laxClAg68sKFW0nMGj5m+GrhUzZtzjlSg5Jq/7STVXnclZ1GZVNDk2FW8hg4MdbTf21FCi1yzcCG+wJTvdU9RKesJsSps73Bt5+uJCtnlHmqcqlGsXoLc/4WaRA1VNeY0VjCET7kss0AsJdcxoUtA0wopuY2bIBcMKHA8wE15DFviu+I3QKWJ79gtCHHj4+RneB1mYKWQtukSZnBhq/tOVdn9eJYjEoozknWE/84VRX+FaVPSuk/ONwHJQ/qvmfY0pk7TaYmC7wTLbQQ6zVEgh96FcrgZ2Icf6IOqJ71DG08aeuOA4m+UwTq5D+ONaTlno1TdeCO+ZpjDgXyF2JC9AVp+Y5K7Eeqm18dFi2KLzb4ij3Nv7bYg0wReUgxMBvHvStpedknOoSX5ERbNbUrbfm3VVhx1iqsFzvS/tITytUGimL0G1t6SJGVpmq5IJi6yxd1uEOpMWM+Ev5/ZVAB2+MhNUUBSD+/0s8kG2n3kcnMUUkD3No3V8HvW/GffNN7a+vWWB/o7hVZTUq1qta/9fHz6ZapoJwxM2FQHvKI2/LQu6BnEyUYErcNp97Z3EBB8o0zG/s5LS7qknwEEs3zzRRADbRifS/LWtQybelwbscwrEjmqVLRIyVw3dvhBgBtlobMsYDoj3D4vbam7Db9/1k8mSNfpUDuE2STSblz8vdspLdtJRSby6exraA6DWMhu+YEPC/aZ82VaoHY+EIzcOxJP6BdCZQDFVAtzdPYpSyfjxBN3ZXDGmQha3Va/3BqCXc2nBpZIoa7WBzNNEjDNQIyfaqhMA6qoPaT7nieu/1mM5N5/a6NuUBnc0Ue43ll8ETKVfn19a77irwvuUeWE36RQ2pajD8Fx8GmlgrkrwkFgaFD/XsoJYxQDcQ84N0fyC0MWLZ7ArIj1PC31T41LLvQW5J6mMKnX++vIUM4GjmcMEuh2kCfV0Av+QqcFTxBLLkxA9k5SVJC+CiwnlVNV0ch67Mb5wxotf+BglLDeUnXIYDR4DEGWSq0vi+jLTFgYC7GR6VRVy4rmDwM2VVkVIhVMugrCuo41ZFBjgjw3gauys9aVYjAOoum6nh1iR6uC5EYN57JotpSTV5UREpRy1C22tdQYCW9Tdc9asI5TU+vZLLfK3TNzT3aK0lw+85b6CObFZQvqqS5MCt6/4qZ3Zw0tkggy/UN6x5TfExqTDOOrraY0GOzrtOTWb172v8DV8NLFuZYeapSAMNmzZhZM90EW/NdTcX7TnZelAwWPwD1PGaQwXH81FxgLiV8Gr/cnxYCsPbFLpZ9xvqzF405jUWIbZnPwme25t6xxOwmZ5u3oOWSMaMM3wl18UJQ3haEkQFoQxMtKh3Yq2RehLcfGePyAo09grJDqBKAaIRhzYspAkZSqPxhCFrXHyNND94jsyH6O0fgQhPCLBEWbzHAfZpEuUR4TfCyfXmSkdvF65QeoX2lXxve2lsPSYqgek7pWYhOUtyC4NLfO0xJnUG0nDqIXs467pBw87zJexxAfYGy8vgN4MEj5+Gho6CGxLNkFRKbdu0N19BkXlAJ9L266liGNqODoSOVVlH6ST8nd0Gyu7aN6VpyRzj/G7vvzh0svuU+QZJBf3JQX1zkPGO2tdn7AcKYMpVXVmEcCUeId9SFDjN+Ro3/rE1nW2lWfbapsKIrdbqHs+0RY5PyHdgmXI6rpnrZuDMI3YarHEf8lk7Iv/Z0RbL4Zp4wv1Mri9/At1DGsQ+Phb5qkEAHl6Z7MOyx17pUSnDx/YH4KBrllND13LQgIFsnbX2p+HfXY+yOA9rJGh3pOrWfreyMrC8qE3HI+zvn9+YFnC/lOAP8DzSV0+gBODhFU1MMSoOtogVJnxaMEqnZ7SgpT/g6os/qx+BK4qN++1SSTZojnFIqIPw2li5Fbn5fJAj/Kj37YoabFVRmyKQbX2g8kflcyXFU2vNvjvp5h1RDUPL+hxF7afaCu2TQu1vkA3nRXuaUIj65i+YcTD63gAVcHEWoSWGmTxHGGUxRadrWRcSVy6RyNiQiDrjP3arbiSMXVUerpgGrb5YAdvo9Z0RNAEglGhJrFIxddV7q/pitrDpE32ZOyEtngNNt1ESdHeu0TSvjrph2onfbVJ7JdJZF2teCqvSVbUyIMYKPFjho74D+gfWZcwy3DKBIG6VIcso4EyozanOwf82XxhHnnzDVFyxxiOxDW7YL2mLAjqjK9UJ7geP3GO38hasI8jURpeXrw/XzWphopRBM/8gxiDKWMuT/WqZ/uzO3YYDdXvGUNDrqk+HYlzHnCsNaerqcXunjdnq6gcB6ggqA3dD0UJK0JKNGgDab9Strj+LdqtKHfd+BeR6Xays6uYIuMLk47sxkShxZyhxPZzaw5TySGgKRnY5ufHUHVq1TzV0WrqbH5u+2Lk+yGiZDathUq5ZbriFVefE6dzE2uwFWMns0gnrB/9meMiLEJxRSUu1iBjd2/3s1Sp6pUC56KfEXYnM4NQE9d/nkfLAyRR+VJZKcLXpreZ5dRIJYINWsuv+yuD+OpVxjHjZV66G8h/a4UwJ/+sIk67QPVsxZtmVuL82A5X2vaGmMDJZTUG6QlTryyWQQ4ngmZwO9QB2JLzLtQ8KzV/1tvCdpqFIHEdMwGz/RWaxUkx6vm6K/omBpLaKnkUBL/9gFd2WSyCRSNp1MgKhXawQFpbJZq56Chx5VOvotZW7ckHYwXyK97pswUJVC8KDc8S4CqcyfIkkMycoVUZfKKjsV+Rg9p5tzc3ZUM3hUI/oHp+5Y0MV058Au4e8vJ3XT/Ff61Cg/IzSDN6K0Kyf6qTisuXcEK+VFtNxcEIUgVKnb1Hf+31i9AQDvWLdsKZgiJ8gDoaUFyduZBo10uVvIFvxlDqZxWyEAsGt69clKV0TM4C5x+6/ghCw1LLfbKQnMIvM7su+YU0gutFGOoXoIZKWmuBldo+W5+nz2dOdj/MBKpcpueGD6+rsJvQlMzydWYyFRiCKEJKxz9DTD8Rytya1lF4PvvREaqdcWWD5UWPMH58p8l3/hnEkRW7dUwa4/5qZGS3HTCkhli93EFJ7eqUeryh9EdtByDHyzLyMuOeNJfq2uRqsS4/JCoVaBnb/so/g/uDr4LenEEQ2V0gWJQFpmiTHEPxuBURWQN5qRxnELxhualnMAklBvgJAoK71BIH7qGvp69puZxnrY2VSoCgwxQUmJEfyCmqUzhEij3HGvZYwJqeEVTDgZKhTc3Ngfpnfg0nNpYR4q551XBFTsjxLPLlLxpIgQFIaNMaoX8yxPVqHsE7kuQmp1huqebtW0n83dWx01kj/hd2yDVkn09xnGXCRJfGSESkF2JXQKXX1Rojc8TLH/vQTV3kltpD7VbxINMhaU/CvQcwmT7mF/7Ne/sRaLBSwDBIQdhoYhsihFZf0jrGSMPP+gZ4vpXcdas9LS8DSa6CgNtle1a3haw89WM0hNjf6VSciffaP+Nd7cVeLdV2AHFM5ZLUUvtFNXeFn9/HQEYirGajJMNToquEm1/w9X3iGqG3d6SgKlG2V9dPEyH93bw1S6FndYgcb6OSsNrUYeMFfLwF0g6HnQyy3A5+cK5OIZHUY5aMlwyjdyyuhopdh17qa06aDmdEykRAZzPaBm9rRlPxPB5qrxh3CbF7D+pCUE6hDZpMDRGKw8D98J35wpUW48V2oT0oTgXrnEzPZMegB1mGcJaG4LztjVNWTlZBKVwfJmAYh1b2DWhekzdG19Xsz0Ta7eKd0mIE1xZ3DIWd1FANH59Gb3vNy5FtfvaOk8ux/lsJQ7V+pbLaWaBdNOYNA5T8wYOeCe2RyqJFUS77orCuQflj5Spi/WxxJSIPQNq5JBLfmS8tuyV7Vw/yJEshN4f74Zg0TOLV7irpW7SeEK48Xk+LDcyZytLV7/zIys3d6LNabkLMhtHf1rxkYuQXJ0ZDwqtFFJyTqVmj1NsHcrvJltANm9Z3Rv/1r1pEDugsf8sx50imjPqdefEwnqTCmK1CDz47M8pYsvBP/UiJQwMQ3lEvx7jU0Idg0BXLTjI/zylqS4XpgGACU7KDrZXi5fLa31J7hKqNv7srEdBgw0LbkNP5wqDpaIyk3u7caqsqirxtThFmvxtvEFjN7yJl5HXzvKw+5yBocmL6p67Cx1ERv+2SxM2YbEswZXk/8vpC7EEhMYMm9T7u5Jz1HjlgMtgDTJ1OKBksdHerL5xj8Lmm2tQcZyPoPk7W4IlavWs8F0SwRvWPIhjq8lYrI4GY7jP1chMDf5Mk1uvSq3OQ8acy3trJtASaTXM0+ZTStQikNF5iL1VR00fNlR1TeEyRl22KbZCpTRkLLWsV/STWgj+6dR7pyIKxJR9RrtPM8Pig9Y+2jHoczyoYWlCKuLNdqzxBvxWx0uAs2RaogUnXYgw+hIT0TlXMh9TFahhQHpcEK4IHWLRdzPfaF7Fqgvj7ZtzdGHVGkJz636hTV5OLzxV34hy8olEuSxRie4Yz5FXhrXjh3s2RT43+3vftKpBLyP4jMp2+6J67Rja4CMkIkAx+66F7Xee9KgB6Q7K2Tzpggzbo/91Re1zKiRa/d+V7h0VK29lCHH6CDEFvCfagPjlO+ShlDLSxalOI072sXrMEyVzrhpFf8V5O2LKlfS0znXeoAy4zqfEH6Ho/mHbBZDhYepn9hfd63kgwjEkDcnL79a0Oh/SF9WZy6hPK31vMcGgGvW+9BlMBocczy+uQMQ7wGSeFF9XmvoYA3wPeBV0ONUDS6d7uz3dMzNlxpTnAQBGQwObmADl2vYv5G/pSn53SYs3FZHkz5INTIBDF2aBJ0EJPE58pA7HBprkADC5P7lS/bj37WqJ/F4F6msyy7rAJCiWaCkoww+oZVSHrYUGm8i8LaSTFm6R7+ehPwVjtgqtW1aVFMuMfhjqtXbtSvSCkWGuIYNb5KUnZ2VfnoXd18phnXOduVdum5aRBo4fVTEb2ey6PfPMQGBYEOYGlUqsoTIPFfwiOEinB9O+91ESvgMkJxyZvKZu5+cttlBG72BbLEBa00Pa1GAoAgxxRBHNNYG4GTuUw6k7KsBES5ebzMqgx+30q3F2DcDWkh1tpo9MrsrklB3Y7L1CBognq4rkPk4J4vxHPlu/wW4bKDreIiWha6FWCSvNWFhOtMOcRmk09NwjAwe1dZticzcvcEm6l9aHH/Ri76K3FUc0pKhCicvCHS0ylBf/abqKwlX6Gt47+o/wMxq9EUZWOFbMe+hCDdBBzgWWW8VXPCeCC+PHmbZX1yjgQjTwQEJKcy8S1i13x4ebAylPQBqkXr90glWez1gj7VHBkQk7eB0canPLEPyTgK8aKz6xwT/wqKv06Ja1cjj6UwGfj0MSwjpi/7GUfy2sC4OrEFdUuMgKCmGCa7ZenwwGAdM2E2ZpyRJpLDSltBv8x+1H5PoUuGb80d7yerrrvDo+WN2kDb0AzOoS/jExrYtrrqOBg8PQ3IvQKoYfVvvJQn5yjOXc9T+0V0mW+iwT4ew84dD8L+GC+sh/iWyRMP4xk2bds9K+GISXO5Hb+Nif56elMWnME2Nq9cyfPJDQwv+dlEaLlt2ibXmd7jYqkWHw4L1SSHK72+xofPKUe2ybRYtZ92x+1L5H++T9Bgn7CDNvubiqwLAmF4khgnSAzZxeKybDHawpw4YQr8CkGMehrOocwThZhHBiJSvWoiy+zD4PgKXK6g44tMEB+B4OTl77zIR4WoWSg6hQLOhNQVEd7GLRB/61M7bgnKlPSqaX0KC5fBrzzaXfU2xUsuGbKGhOj+PUkEwBUYDScSE7FSNaDHYNdJabmCCBEXHVglN97c63e6r7bf543Vxd8uyQh12UTcq6IOwrb3Og0vBbigyDrGtlj6/YK9OPgt+G9ouS7mlxbtQLvHjJTCc9hekDX9shHAUFWzYQF+hX268lIE6ltLBYFLrocEOpbedfJTAZZAGdyjDG3kTTTfa319I2m/ouZA32ooPcNXscf4zkbW6Pip7q3/lDZEFTXZUEx4cCYt38PJ3092GKM2LOpVO3mKwi75QyZ8zYb5YDgL9Jwf3VUGDeBQXECiCOX/uAf0u8eOBXINASwRFAruEAAQYknSKfxV1zpJC10T1y+G8JVZz0JUYsjl7EB5zTVoLm3rRULs/NbQvshfzr6LfHIIdr2Opvw3o9a5t2mOEfJtkc3f+zC4FkpQXV2ATGXLgimUX2/lRGHs89IzU63fOX8eLWMf5/GrDcam0GFdALZ4XUc11puMONTP+EcXaS7o+zfjwumoxwBdt358Me5T0c5SD+nAz4nTBuTCbzU6gnNL5sDBZmVM0JL/3rj5jYuKRqsKwb0hmNXcX8FhjlTr8GMc/JfbYkKpIO+vAUREvdToyMlaZ5wx39TNeyRFww+7tA/OzMDrIdr+mpC7NcCGcOD7jA6tJIHfDgh+3v0Emw+dimoNnamwQ9Hpo+D9fzUSAxf02ErSCwSAkr8KQxjsejkKWmiKPy+lBs+94QbNTVDrJGPYK0vu06Jfr1zTFi7rw0h2hjQa9YaRAbENpgvBC0ssoiI7USs6WUJHl1Z64UCQcXJc+jYGAlRKHWJOrl8Mrkc63vxmMl3P23ffSBns/+z/RCkEUg35Nv7QcHx7oM8MXNaKwCwVwm8Wc7WCMygDjsPpzj3VAfxoKX6tvqaFeLPjlhfrXy3VLzUtv0Za2mIqyzPkb+gVzWWk9k7V2pMbXTSkLOuagG1BIbC5/uQ5Khp6SjKeq4YQLt+pdNDwUKGJkoUYGiJajCj6D7ucbM/XDcS5XFYkBF2dlxWDgf1DH0QuWF0UuPhp+iSKnM+zl7ZO7PYjo0sWM+9squULlGAOFWoiC9BUALWnQ+HZ68sIxnNlBFjVYN1r3f2GVQK8MYXRErMrS1nh4ED35dEfi9bUHyPXqg+qGS8rW6H46KABoI/FcZdI0qOJrrW5d/p87GR7IIQxjfjy8uDLk3kNCjFuj62JT0ytqy+SDKydac/aF3Y1OC76EUlD/1TWcFCMvsQMXUjd4cd3YxeY3B6sscy1shB+DnuAPh3yexK9oW2Ia0+UnEwkNIi5iEZscpbH/Y7fGsy7MNhF26zl+xZuz/ePMiOflaLP1kE4LVca/QOIs/B1TUiVFG5pUD9P9H0t0EAPTYWZshZxGqPR7kXAZRZuCrJF9L811EcHASsTQZDVVRNFxTLJMTi1XPO5rYcMtikQED6fuZUnl+Pv6zTXZKen+0rzYAnNUzboK/zzDFQMnMYS4+BXFG6Fbw7AiDqMpDPxU6ZuHjSdAp4Q4NgJq9xxauNQZWsKgelaKt+kwaY5rlSdN/m7YQQ6V9uradaW912UXv+l6h0iuiyedNhWxjISYjiz5gWx5rxR1hQ89rIJ5Ro1x4doDPxgOq1PVU/cF2HjGQ8uXcYXSepjhzAgxz0HNNPPS0QRwXIQe8NuUxT0TRbZ7GA/HZAfar/WRDZHIHIHMiiI4KoOydDKitY+hDsUfN2+EgcsKN2CP6sfzLloah+dypi+FPp8qjy6iLABsSMMEKNM2GgPmcKz0RDPCj8TmF9pU+vXx+qITMCz965J46qWBlsmRqdtRfPpZTKtGfJaY1rgKNcquKxjcpAHzqoxpwuAtXnlFr4kCKvqwFQBB0HRsWRa+GTaDsGpuErtymTzCTcmfy4BbUoP8fnDm2fuasTRMsJEH9bQCDxgPulBfZTheoKBgZjPykrNPV2+SV+rMikA4EeJR2mVeqtUO2RRHbWHujjNGVR+L0DI9x8VBwiID3fT1AtaT20PXb4NSdDK380K+1TQ1qzjAcKPPMKrx2gJ7DiQY+z6yDJgTBn6rTOjnIRjOoP/u5cCUqDWK2azUUVEVUF2sEhAtYq2C4atZdFP7cgy7VTKlaRK/2tBYqmM5ZHYmjDpCfGWuqLPyYVJ1R7RB1GTLEfnEOr4ZTirdkj6F0xlEUQzym20OQl5khvN1SOZ92Oa8fC3n4ufMzAyp8VoU8I1F91Ehbnf+ZSbkedmOJ84loS5b4/56eIevYbbHitezatlPlPyIjQL8d0qbx9YSkRAcWnH9/FKDV0Io3OESvt1YxEkIGI7Qt0oCxCzaaHhdAsOuq5PQ3ZkP8/wjzfTIu1wTQD5VbQ8kT9LFWl7HU2mKaCfikJIOkc9GkWhrR9vM7ZKWfLxjh/PW98zyUWNqEuu/mD5End8111RYRyGiT5CgxBIdnKaSW3RpamvUYjNFB2iqnonlUa9rhLK3EKnV54d9/T5brdWXaU/OvvgKpRLPcauXnnPDLg03WOuaCns1VexWGwof2NDjd04TAHn1EUwYEjwCD0bKd1k8jd87vIYtUplyH944TDchen64VvOIGQ8dgcp3vtI4fn15gSiPshrdrH4326Y0XamQ5BZUsUr+sqKh5qKROlSKkuTl9Q6Z877LnRJNARmuloMl4qi32oxVkO4w3aiHWHM2READKnUY89t4o1mLnxgS295VM35lbgT4flbpHBqtECV8/z3lOLedrYfNt9VZntuFj5hgzkUrZ4/SVg5W7fJaQZQNBaBZGM5eaM8cT8ejqzsGmiEKgXPU8TYEDAQBWHBuAEBmhYREa59ULcuR4fI0HvsSDxXmSN3Pp8Z/UZq5HstFOD9R6s3vsOOeltQ097tzodLAa+LEkv7+AmxwNx7eBzEj+4wcf/l8K6AtVTuOU3ZcuQNucv54dOXHhSu4UrI/xyTe1eh7iOBaqka98xg5rbrki4TJrJ2dEPAaPvX18I56dhslxe/3SI+85TL5runAKtLACHykdkYK2sAv5O6AMwyBs2Xgqej3H36Zq26P/pZm2qq2IOaqIiEX6O0YUuovpcSQGeowb1GfSo95sOaWmUHEkg2e/F/QFkY7Vf1H1UgdVubjZ6H8USma0OPhphiGgPOb3DdUL4PS6bjEQ36fX+O9HsLwLoyOaSXvTwMFX2IqThaZS07cTu82Rxlgy98FZHXxH4XUZKoj4spfTeyyi+XV7Hvz+hWAtLCz1od+1jMij/cv27sTRNbY8bNhNhQTFtL7ECKCNLi3u62hkl80ZLX/eAv4Wi4MNOfNkQASiBcKmxIe8hrZoqBlONqSKAlQrRCrcneDA3vIFS8FqZ2S4wC4FERXYMgEjA4oCl78fL33O1bNJO1CEOCz+e+1XoeMDP3+owHAmTuCGPOVzP8xOMQgqQMl4yDRyhx1dLsnnA6TgMy2i7ZsmFgFOh9etY/XicC87E8JrI1WlYwSitLQ2CRQG87gT4FoPpGfOWLmIef7i+GsriGB37FBbbaR5Zn98TN4Ih0gCnxdT+/fo0JZ5bmvihSB56rUgCf8vVUbggFZjwPrEhwb9s9+dsBkRq9mMY7ojM/3E0yDBOD6BBp7eQUVrgZKZRWfZ/dGG4OC5qnbC42zToUzffBZq85ipqRUqbd6unvu3bX+2QB9hemLzLcNk+FRmX8VQqCAFSA9wQX8J/bt+NA4Q/XTruhuclCFBS7zpbtYcAvajL0vH3m8we802rsPd4/k43u6DbAuSgboaKGURkpwO4QjikXNiDSNKAgzVxEROnHZJ7N0/UfB1tHotHedeT0DP0fA1Yxj2Fui4u6y/6jqs8W9+JuKNSi4tXIojyVjtHvLgRu2tFATLX2vAJfzDMdw+GsL8MTeJDOUyYJeh7TwlxP01u8pI8aacIg4HlEyIoXwJkV/FhDBLMxg9MhNxbbCZocW+DZ/ye4hxLnJTxAxcL3RrjeQfzfcTsLQ4Hn3Ky1AsaohPf7QL0sHUmLzavHuV8LYtPTpn9J3L4fHYfd5tLav3tSk/+tw/Y+YYjoQOuT+Qaq7Fgu8j/bS/t9iV1ndb+F1TcXmZmsYVCnXQjKJ60233aNk+XHQahpDD8DmMfoW/SGPHivViVPG9tXCr+/PJeaPAGf1QXQCGhnXgNebl3ny+WlsKWRzdKIjTI7ZF8yQPTg7Mk7UQMby0etKzSp74/Qm2XwvzOij2pjEPsxLiMpIeiZHOcPa1VMJ3c1utuv1C0Moz8xi0PNF7eAcOD6nzQPtvU6w/qod8iqwvtfGp9PP/HjEyqGfTsl4EiGNjsrEXqr9BCzyyPlBZ8sMZoISvJTfnQU+BJrEfUh06a8cYkBQsv7G6WtMW7gan8ZGVcH5u2xz4jn58967/HaHJtjvAW7ZTRYes/9vTA5vLrsrfptVawnpwbGG/Ut88B4R/j0e+EHwWEh680QwS0QVHy/HdCcYIBbaufgnOLYVB2N2La+zADyTrR1ajagMv4N778qSK7qD9LJNiU0aLoYjXeUrHEvyEzQ7oftDH/lgfvlW5cJ22aMkgI9Xyu1xfU81ghvbaLmuNCbttgD+ATsTvq9Bjp+TwfVsraP/cWfpKg1ZqyGNqIppWodxLXiRJpZofLxuQC3aC+hFa7L6fsYi1h4ax5nAC/WJsA5UcLx5vW8b10OoPv9WtcnKZSmxONalAS+waxfmBDjlPx+rZMjw/r7KPdzy1lVi4DKqFmgTDFx2qdHJQ8I7dUiRirWZg+AW4+q3+49EDwDIp3jnk1nJdDbRCSmeC6SMujIWvuV1KBGVSyJ27dOfN+8EuQrn/PeFzbjIb8ddcP3YU70plDHUfTY3b67CseTKZj/RWux3Qh9FtHk80+TyYAwGJpKhbupokDnqk+UqAa9cUW5SgDF/B4/BegFkEGd0oj3yahbKu182r7uKSL6AiSUG/epMfXlLBUyrYxDdQdNGv6Ryjwmu5jdibyVSgLhEDBRLYGqjRV6k6mqNW7xKrP2ahKA7hgFQRhPnyzIlY1fanNzmjDVqts7bt1/hS5i7QYLgPM92xkYtCRfGJYVcxpXOdvHThGyn/h/al9UxQ9U9N+MpMmRA/focFSpJ78ZUgzypUwkvH14iJAUu4fSDTSzSH6OQcIHYrlrB/i0cGsOMNT+EoBh3qt5k/9c+FTD0xoILHbjvBCOfblzFJB34Q4667HvLz6VOHwvxLDcXSJXK4c0GvI7YDmU0VQMcRyUqI3Q1rh7rw+Rs6A63oddxMtR1zm59laQ+h8TGGJHZhtBvGjQvho4humYSJqVzxbOgzcPzeWnkkqEYMj3oQfc/L8jjmLP3fC5EvWzEiF1+Esv3bDhXpfBEfnaf2livU+x8yly/pVgdNDzY32WIK4B/nAHeeR8nRmIlmfIJTCDnUswdPJ2wEJrEaAQ1qcf4HTjBsCKKl9UcPbDjtVk2mD5+yPK/Lpcj/qqqjgtVEznQ0iajxdPrdXC8IHZDJup8SkS+HZdFYtK2VSocy59rSezuhnVKQWmYdKolblWo+FU0q/Va6KqTqtQYaB6XVNvGNL2MjkU2XMui6AWXPOQW7ECiugzhtfrj6FL5E382I2cavyEKjKAOyXnxpN7KW6ehwyd7GIkn90d7ptdjXP0TZpxsg6ej67iuMKN2rDv6fvEw9n81vmfbiMOoxjAgobILwbIQMjPCtAUe9u3yNO/Y5ECN9FnezQ005BSrGzK+spk4uGXdpYjk1CJ2h2QHTs7+sR6FjKVzwxH+nNKnImguCoRIkByJ/InDC8WEMyL6hm5whd0RMLm0PbOggMnkK8CMbilGRiaDjGE/illgHrEFCKm8RhgeeucEr3yjCAOZnUESXS9DQqBvbU8r6/MXYHuWSqXReKB2os/wjv7tzCVSiCGTPemXdoboDStfO4hH1YsfoVO5NTCMpnS+hcV8yUA4TMYS6n4EyqlsO8aq19+Z6s+4ZoX8k1E4j3HsnB08Xb7gUAWwWbb/umFKCnfYY5hi25MNm8/azg0GKyPFwMXjIeyVV14PkE2C7riqhCWOll57kRUXHiwBdumIJtIFEIJ3LwBkN0+iu83p0o7SQdCmuCly0SjCGgAgpl0yNxImzkhvfLJMkNaWvBNeakI1/RsyP40wgfXKx3OcFA9yDLmT8Yvyi+bZksV5EoYQgbjdQMZZTAdg60O/8pEiTbqPb5DusFUYIKC7+CP/Rbszy7LfxrD3UqV93PkKd4eDetmQvpfUj6VFHlp0Le89zCidCHPiCX9TfaZyLuQt9BhUF0stUodoEy0l3QR/wQdkR34hnAHoFCISPtr6A0OCkW7ilPdhvWfUjrVP5qfxkqXNeI5D8mx6E8Vg/sgCdbKH8htPNefmHirNAc46IHyHz3i7DHIuOvFhmp7x3cmvv/jCdJ6nhtRk5NUsgzKeCeRVytFOyzyJEz2wILTv1xdEnpnVaJ1B5ilO9YrqYXrr3/vuohnBBUuXeCABeyGagEB4JhPvghTHUEm7iMjrwhaeO2vDIu0yGZftNngZyQPgewwlZ3lciMYHDiqyMYDtbsPStnscWjt6j70NXQD8HzZHm/TFOSSbXt9CDNpLkFoxpQA/YlgqvZrehDgawWsBZTIOVhH+muXT+aJrMisfbbeNEH0Tcrz50qVeRIKVkKHCderuliGgbCWKO2IW3hmT4bK0oBxs4KsQ60nnZBUmyYQQCimTG39ItLdqR14hlt2QakXVpLzjBXHluM5RgLc5ep6PJ6S8/HWQIugyV3wpvriemPJ9WAVy8cvaHIEk3CgrY+l1YX8wTUm5td70du5SO686b+RSHPzvjnymNL31qUFEpQyZNx1hOm/fONfLcWqsO4qSXZuYDOpGwfEv2mf8IdNUDfnp7Tk9DnqNafeIp9SwZhLACEGPFxW2Qaax1jW9jue4yj5+3z5Yjv7hUD0HiKCY+UoVoaEs1nS6Mf1VjK8JpJFpLaTqa8mZfKUOwn+Lp/ithS4Ifj/kg7Mmpp4f3SLxipIO6wTCPiUSA8nv/uZOyeTxdIabrt8XTaYJcNHj8inSKxGHTDh43ni11gz6Aoi+U+Vxu/wFOVs2GOrK/pHd1fabpy3Llgf1ECTbg33a8gQKMJ0ZbHau2if4pLSemzGTtGeq3ml8LFV0OeCQBXyEbFX6QNhiJx9F/q7UlPZZ8s5puQtHwXDSeR28w1a3k22fPm6GFzggBucdZpMgjLAx6Z3ExoLaYQQ45R4He0tai/4C9USwzK7bJU9/lY6/hX9TVyfLeiK5Rewv3/bzBOCeJRXTCNfaBedjZmDVPKxwOnqwxYI4YCBTZ6y1JWXiOPMHifI5RffaeZJyo/l7RbCGEECIfhMCYAsZR6Z9hDN3zfIcvfisAWwgS5o547CW84Io2RL8vkT7OQ/TP+YdQM957s597JZbFR7tZnTAmx5qOJkIoIu5Yfe2NdKOTM1cWdEcTZiDU5wv0fWPKcq0KqjSwinu6xSk+pGLGv5FFF2viZ3a0yJy8QkNl+cVABGslJXEcVyYs29ec83X3qD03Y3yBN/K1hc+WEqL3R3aiRjOx8PG0YAeckFeft8OPoKI3cLHQed1fIWD6Hs3L6CsoWqNZYRgAUbRiGAMqJG5wdTXs2blNutxuks85iNkWPukagiDXzEBYEX7v1vMLuq4FEfTTufI4As0B+IWVyyXvZ8+cGfvmxlmkyVP0WuxEMGv/rZtSO/0/WRuvf7bhysVBq0TkVhz1CSbOHilyZXmwVVz2E0eXui9u28zAnplIhcwpF9OZi3iwgxZDhYvgUNH6313N9ra4Un71R3HImKiGQDwELwYd5+t8EFeoQWyGGX/ip2QzAvZI2wIx1LYKy/CKFx5vGkpF/fyEls2Q8Euk8qu1rN14iPYVdEAMbC92/gxVwKGyM/L+39Xw/Pa53A+1eYlJu2v6bgZ2/FidpikfUHhxIJ1lmCsoHHZp4UgkQrVm2xDJ3uICl5MafHEXyUiGPjzvARH34PP11TySHjDBLfOtXUHrbe0bYOAIDOvGy6d5OTB7QpIXZ5uFzlQM6FEvZ4ThPiujfxuHxjo+NA2p5JXUY8x+tSY/OjdRawgPdpWtGwlFmVvF8DAmymExa5PS5cYS1jF1SzcKcBLUGOSb37bE+PzfKurdt4GuSaawpFtlBYtBbX7WuoMnBD1+rxC7Mfo2DFggHqDhQaKImQPRCSrKJKullFWf+n4+X99vU9xjvX+dow7iCWYRtph7d9R74ZmBzYyQrjT9VR+4UT23F+D2rUiNatvKTbINHVG0XfZDRrzGtKDUCxt93RN1KKMzChvgJthoDl+hz2filKRCFOZYR2p/rFxMuJO7EuMS840YBq4n1E72c7XLm5sy31zgQjaiJiNQ6ExzTsbrMU9etkDW2ymic7Gy3VBguFRyck3ygQc68tiVbYuYxLcButTsQlvjZLWqd6/lNqeOO+16TcKlszAYILaDHcA38PrbXIaTgOc25Aend6hjciwbv006ENaCt04cYMaEGYvCi0OpCchar8Zc4IdLrbNfxPyI3XCCqHngsXV/7YGOiD/GQsT0ma26qwjUyjHS0ePA+Fzp0vIefLs4khn0IsPSshCzs14vBMnSB6WgEnBUh0e0Ry0u45+hl90iJO8D2u6EFTNrJ8pqB1v+fVc8nWppga+si/5bdBbQa9UinrbdIHsMpCorVBLLIdZCeIU9BYQ3qjxw2+cI+FEyf1g9j1Xji0YvnmRYXlvc3q0W3VXy4HPi+/mfWIObSwbtCxv+JrifOXxDe9iw6tySDlHX3LcUtL/zwOqgvHskjdg3xBqIU2HMYoqoc5CAvNJ2mC0szVuOhZrOyMW6n4xB+ttfTugB0NO5R17InFvGgrD/Bo2pr5HWklT/TfYUmOrlUKNOe49i3QNyDJWAdadWeqwV00FWNniNh+T6SiA271RlIL/6V5GwBlESNUJdCo4871YEQ2ogyK+ylPxm3VMf4k+adCbtjqBMqt0rGeQ6Eg9KSicIw9CHQqDGCoLDqjXurt67CrmU/1iWcIk4sbpksBErMBEvBbZBo43nTJtKLibPkVxXdnyHfYqcS+1ElRvVGPC2rqOQLKCD/3DFCmKA5HoVuJrnUyElhZ+o1ajSv/62X9jdsz3ZEg+2ZbML7GEY2pMBu5z4jDd+MSq/Va4R+NkJYt7jiv76typ+ETjHXPNPHre40WevMrQwH5hws0/cnZ30ZRajvqVeagtf5H7yspJLLEXpPifrory4qRv2x9aEDFgFivdMstBVte58NJLPLjHVPjcPByyh0aVrhHxfwe1Ri8v5nS3TWTzK6P1VPXk9NjOJKzZrpN38Xw7fY9r2wTSdB3KiY7oemMALqgzKIzhFC+/h9qttm1o16eIShWOz/XcK/sntAU2UGVvjwXmdi1pdm8JAe0QFmnAC7bvPccbET0Z00+ArAh+12Xa9v4meNA89rBfzKYSrMZPLFqzZatSffd2193nR+3dR6edOVvLU6FWuHIDAN0moJyr6gqlUENZhfnsw36CkhCWOEBxT/ILW2k584VXjOt/Pr03KUHfA1U3aYXtG0jT3DQnKqnEm/to8EFEOVo3+K44W2DrI1euFYIri6ydloLnUjwPpIQw8/DA87+72zKOKA4ZEiWmIyqKMT9IykZDxa3LfCBn79gelHHSNM2V0R/wNqAdhuPv1cTxUDw+k5aPCVy69b8TROPSaqQsyub4LI8UaTnyCuCWMkuEAW89BUWxlC7ZMQLnY6iHi7m1keb459ftr/fBU81mLh6JSVdi7Ts5vUY+c/I1yBqntSTDJQl7pDMH4h92cN4II22Bo3PbpAqgN2lqPHPpUCYw1++lxguwthdCPRp3getmXVJ/di5jkeGwVLeTrnKzMHNtbfk90sN9RKpLB/IfAX42UROG1FPBJefNODxCotEZfiWzB8DTVlheJ7HPwdgIuXuzFfqAWAxvXXruMk3FIJZVzzkYGSfZxUvRyBjsEUzdJ0RHMQ6a/u44ZqnIjK2cUa8jin/N07fKOyFy3xYmIIVBLS85izmUiHp0ewZSbU0PDlTARQy/nYZC3vwPLYFWHDsFxZsMuzqJ9TKrRcEkzZQ00vV/Hxioo/HUNHksUDhj1AXSHMA+FatiExQev5yVBbF8RLPLdjCHdN9sXw3oL9o6jKQHs0DHyYcyKHncPnlPpauTY1g/wf0qKWEubG6cQ4FxyK1yTaFLND5SRB3ucuEZkbIjCZzzuE+2YQFfOLzBavpYmn7azwXKPVQ7j5rslKcYl17vriSy+Ejnp5Kl3+rOEm6drfl4kUQW0chyiroCGTYmJnkuBuK06yHmZPwBfIw54phALsbZpk4Ul3YZOCwtKG04/L57ySsMH3qSUhDWrw/wpiay5NbisE4udFpGMHuQTVRq2DQZxAHNad5PzlXr149NEIlA3vSz7s1ejgFW67Mk87K2Acd9bMo/ZFp4YyLocfv7++ISyKhY+CF63eJiy06zDue7aUquw3G9kdu6ds8jzjKu7kdhIiV10rlj7wmFdY/06qGhmcK/o/xcZctx18dNo5mpJ6OlPdHK2oz7ntz9aVWycucoXXfHDmqDmi0uP2mZoghF9bew+udzSmsIW54AYp7eER/8BFy+mgxeWeyG6h+wlPpOBN8jnPvishHeXrJHY8wte5wrRTyBGD815hrRLrr0bczgtrKImCc4BjsvUljrILguWz4SnJAw8aK5eqA6OGc4ROFPncIIgJXCDHG+8ftbFyfPxGWwaM2hQD2CB8gTtNOftUsiZ3GGBE6N3rseJCnt8y2IAbYSjcikAWStgpgK1ErUiEmrKdZgVpyDP0tyKsepqyE3Kr9lYIOo1O5mnfbXqLzIySbttUArUHAbyW36zENOVzfH33NtdtWxG/s8omWkT+hCSFUuj8Itd9NMh4nUXhBZUV8y8A8WYoGXl2UYk++OY0nn4KygbDtc7oW6ioEgnG8BwFqI2DYEADd3u3Sr67n4TNbz/nLGV7YkfJiKBJl4EDhJQB2u2l6qcrprarku8nAqCuRxNqtdFISFQq27d5n2i+RjhyC2+uapbMH18MQMa91esIq1Sgrx1PywRHYSkUFD7eXG6cuzceROXa8W37El1bLo2FURDCCKGuWzH89cJC5o0Y1MA34Lu+MbmvAWututiV9C8snn8rscWwSBet7nKqg9/ZzAA7lontLwaGnZOPPoV34tmSTDRfBKlitOiDNbzIwV0UoveGlifwYutaSFlhy2LNJNw5r0RMk1UHCoYe1uLTjMptCJOViAbvegU/e0TlUrzVUdA6FH9jf5NYhiulweLhUzgjNsoWu/xCoofFST5CXhD3SSe+MgSrdXZCUay+rPAfWtXNxtkR/x1LEtIPyJ2Ff/PY5XZdYwPhJI+mzyiv9rXRr1quIyFxhcUqumO6KpWncIDzLsdzJHuy27maGwcM+N9fnnSrk0XdQ/RiXjUoKh4NQxGDWoTRuiDUmoltFr2OiDpwrcjLoN+j11FauxGDLZ2rjBZ/pksr6OG0BYHKuesolTdtZqW/y9IMnin+EOGOb8yzOPKvYj+YYIfBkT6aMGTe3gxzFeBC+GIMQHDEUbc8MMgLoZ8IIHa1/Qo/+vpnZmqvQnEg8LL4c4GWvmGtsQnUjwPgTO+FgkOi0toQ2geUnqfRCEiBZESqgb1WhAfahNR6oCvQfCq0Le73T+/CT3D/TWuyWPhiYBgCE6qzHC5cTY7jcz5AEK6isGUylYlnXf+lr4lZnSqjp7kQw+ITL0l7q2ZMRx5hpAlw+DE6elrZ5ERgunHW8kcwsNLQ9+eYE9+RHT50R9BjPWRv9mtQwVN0uCrL6kB19AXFhUfTOKpYdrX/413GgJkSaJv312S99d/FkBvcNE1vfXOu12gPuVSOG6PGzcwFJ/O/BM5n9rOTo9RA8rD9yi0xCUHZHwVg0JCU37SxcUoEDmPGWJ2kk5GFnHk+OS5SjcZeEluyD4avtuz/MOFeFs3kqwucH0spV4HQrYb4i8NXT3membEOrFMIqLUweRdyOwd9BRi+gitJiMxbADdSBzN9CMkWtnymbwlI7e/N9R9ouh6K5UUW9CVE21Ean9oAIQTLZk3eHc4rs1VCZeNq7jte+dvEdY1mN4AWqN76ux2wEzGxOIENQYYQv9P8odRMoCefEVSjWB0oO8Z42fqvXlFTEl4To3HDCHAt+4MBcJeldxtdhUzqz3dW3wcqFNI//hoGMh4kCDCpf0ExwCQE2aaKRsyJn1KI2w+n3t6CbZpANQSERnUPIHa/YVnYtMoEn5UkeHyJx5SeA3cKezU06la1SGrIYbnniAlc97BEhmD4PjKesrExMV1KDsvbPTYASySidfJjeYIsuULFSczVppzrQLSwbR+csT1n+2k743Z+bYblbSlEF2nFwN5dXndBBOmvaYvccoaFsr8q2jirvu8KkXoiBaqrY2L4EDGW9wgS4Uwv0xroYj+Fum+11Mqc3nEPcB7MPC4z1uSRC0bK2DGIIfEu/b9+SmI9ld0suMFudVvAmy5CR7AhfW3BqvGGvABAx4gmO+MMFQxUdHUwtbo+rxGirnXZ25WFM0f6zIYOCTQBVWl60/+7lh4WxE9yFogGu8CCx571aciu5xbYG/KKpr7h1K+hIaGck7xBBsU92iEg9a634jt1qYjChL9hMQDDUQ00kSFsGJucPTUpHrE5YfzNpQi5/FlI8160UiNT4dXmjJ2oVW0SRXX4TJ8xAG9CKAwdVuIF56mIoPyW1SXhP9IXKXhzv+WnQJ5B40mtasM28S+Noo9BR6OWdzU1J3qCt30rWzKz4ZibyT/q+Mnp5yR3/A4YV8f6T3Hme7Ij+X8PBf51QuOKsGjsVqQOPKj+KQnCU0GvAxkU0Dpc8TlwoNNE0mnTv4fejOtsQznAduQOuHskK8yDSnpv3XXdwTM5ElOU2zV5/uU1Bm7gYH/Qc68cmL+EfoPPlt4xlKHlzmlKGYDrykIjJCBzcz89+L+RPsPf8/vj1SF25RShmleFXaZUn0yaYe+JgMaqrH6dFvJW8GeT82cYNr8Znjr/34+7sIWH01dkkKvmNbk9fU+SbSoczsEIGWiY7CJs/xEKRrP4DU6tWhNGSTMTUKu/0Vxe3Css3TmK2gnF4nwz/6cNuIStns3PDHwaF2gjwvK7p9gMgIJaJ1XD/jOFG/6KOJumMqooBwSOiMRuSA/RBJ6g7CkDmM9Z0Ig+8Oj+jZR3q4w4mmotMhiTSnSEellbLGdyUjV8j+5a7Bpa/Zj7wjufapKWGfai/BeH6QQAFFOcaT/VChAZ1I2Ix18wXpzgPSQXeQUlpeA4ODbBuXiGYRuDYobxpoY1OefYQx7q0DqXXejk5taPjYARf+v8fdhldM1b/MqdaFsLyd6NxKoQYb5rn6VKUGrpVIgIoY7jxvWT+QanQqgZCRrfi3sniQHIrWt5VzykUZxksFCoZhsoUfdKoMwLniU/GEgdO0m9jPW7f8G+pAnmom/aa1XZV1k2uFzs9dw/GQq0Dd2DG7GF+4kTo0J4payFBV5Wm4QgKezuTnYZYwHL0yN19/YXcjmyd4fkC58iwHEDF1ZNB2hXPCLjE88sAXCqJiHt/PJHvBvclp2MDRaDCpm/H10X63mpV1mcyFylS6rXdOc9spXNJNDAjUT8O0p33K6lh6vdCy2AsFwdd5iu48+iqgbtfVohjQrDFkP4jn2wfyNUHFFc28JziKDwTZP2HMCF5YWIqe2XPax+TQ6pXj7vqH06e71xV8n4cLk81RwAkpZGMKTfrV+VG/FoWsqNAGnt/aZY9JkqitL8+CUNiScn9oj3ZTVWcrD4mTxkBpJU/NZC4XnL1kr3y8Hwh6iQ4VL596vzXv207pEWZnxaKZ2ESfs8enLAWoscQAlKfOAMMFCIOBZiA/bEKtok5D8qS5Zy2WWdUeL1mpU0+jXMT3u0bA89RlsgQ5cjPEe1KDbPemOGl62ZaYQstbsz3mm1TUHUGJkHYUl86UF1p/dMFvGg3xUNp0Aa4FPDOwdRSNQeaBaB/giqkAPk7hNmGrvyF2veMuyG1WlRwjQlaDOQnvG0AuGYsmlYGTMrKff28dCwr94a9QUBVO+UoFgg9+bEw3pt0QQUtCYcSGPru1AVJWfQbjiR6CdeM7Oh9f79HOtvHPXditP1h+f4/z/M7C+D99qGdBGlDz0rmjBNA4akryayH5Wt/T8fzkg1+XpeLqlHdd/gmp0+rTrnva+5upw4o/4aIx+yb/vlqpacFZXClRO/lKcrCV27bbHlfWmMpS2/0QmYQotg+3rzhkmqh0Ysw33NqEARrm0pZOSCYYnPVgWq4oNJw6xX4bMtsgNOZC6vSPZ7pWYCK/gYMwe7Ek3kYWuKoeK2Kw+XK/qLqkny8k0Xb/h+Djz4G/+biT9BcUxAbJDzY4c07Q7vC9vqiKgghyJEY2hALdRLstcG3EWjV28vh31seuK0sdbNh73tRYW8xl1y9llHrbZqSPYFHj9ye/Rzmg0G1Q8YV/aQiFYEhQwxunsnfpilgXVBuW3+1heLAYDcS4pZAETXyH1DC8r6Tbf4yMszy7kNoob+hmgkhvcOYfimm/9/UTrxj3JnZMXp+K/48P27vQjRWNw3xY+GvMYtXkF8JUWNUKql8SKVnbZRoz0/BRKg3V44k/7FSTHMf01dRCTFHmIU66lDdLJBMv6reYcEKlNgf/pDSBstMMgIYdC1BjBYZsVJKprDYFoOouXCoPESQu9EApxYOpzpWQM0w3w6kkb7XNGwofKwaO10vEp/dOG5K7aAQ2HmFBYjjjxYePmoPr2ZaJ1l0H1P7e1P3HCbQ/oyZAT9mpxyAdMgQCMASt5r7jW0q+d9llVffW4u8RrbK54pa7pUYiTPCCpPvG7tjRXcov8NXaQ5W+Wph2ClhH7UxUzE/qF7Op+azyc267xVwgx3rQH88kZiAl2CbKk5nTIBBwhA7sowhJeuJy6w+pAwdvj0sdpOzBVo74xECon5g3G65RdEN+pkB2zqSgqqF1fmyr8EGhlxPzPHD7DDzDr10hmDp0aARoZtHDsFl+hcre+9G3o+LCBp4bQw7N0SaJtZbMQMe4C+XqpXlJnz4TMwdMdaeiVDYVVqCfL8njXBQideRz1Mlm1TceAkekgn7dJxJwn3SrFelfiTy9pm15r+NiG62ZeK94in7dt2tMepg0ME4QSQtBr215+2jx5EHmsCYvS27/JZXesk3AgBv0UN6trw5xpUff9I7yeFihOf3h7u1RcUTCFnygVa2ZdF5XEejOOMEqigtksee5HjeShnzeAuTSHpRQ8vVGoHRzxz8WB9YEvHsFBqwO+j47YzbJ5zBP251Y75f0hbi5RtpT+PhH4taj4MmD6uAchQQvFsVOdQGAPtPrfDwZ6v9jeQbMRFnk6K8FkSUFOqtUjdYYitqywyRH8Ma6Zhfoolj+7mtf27IrAfyn0t4IH7zlkydtN1mK+GOS9DAr5fMyRPD1X4LUkavwT7/4IywzPXR0xIwy5fzHdnwqKP8+Zcz/R0vOd9r4fbsX/MeFfM4ys6V21s5zPD2nj5PrCL3a8qw7JRgDXmZiGP+wlQW6JN9iOEdDimF8QqanmzfDKey3H5nek4NFWYliwD+b4zaIOh7lQRLJEYTAzcSMkrEgEe6mEE44MkGZapr3/kMY1ZBXpoRmoI28E55liC5PIpAPg7zMYOHGkOTLorQfC3Qxo7EmB7an8qOCmt7TaKdGBqZSrQcSgqg3JZRjvw2pN8Zfwep8dVUqA62bCoBMgvBZ/okTW1X1TRLEFIK7i9TpGxrosqPTHZtc4WHsgqp8fc8sPQaHGIFpCCs2nbvDqh7xPQ0I1rbofVfY9zxKDBPWw0/npk2FwB1CTNl4TisL85GFHl8IiMqcUPu63gYTzsjArdG68m0wCyCPd89OvZTAlMRuRffbGq6/fdc4G56LtM6glDsZROnRnLKqjC9Pk4IrZCmtYBk0DMlbLI3ST+vIrrF6You3+G8PQsdvjUUf+sG5gHBnAXUxge8gzDtqnMnEVFmuYbvVNCR9HlmmnP/b5b9nHpkgGPOerh+VXfVLZYQf2JruqpR1Fo6rM50lIi1VUHvjgVuaypX25kHtbsP3eMu22ZpH7V3kW5F0XDHp5oxl/WNZBJFWLG4fQ0SzGoX9+F5Bp/9OhpPLRE4poKI/9/zT+OmEMp6cnr2NizBh7/989FNJozcgZ3hTO60VY1DhpjKSpYr3M6ZlpLCU7cdraFVJwPKv4G/9Luln3oFE0xc7Vdxbb7gBIb+z6kjQ5/RAkUuSp01xIvO2YQoctP0ykeba+5iNEwFyn7CwrlG42/g7U6TNeaBtS55U4tAbJtmnbShWEjeQAZo9AN6hT9+ELCXhxkAF289uUgpIhya1F+VIH6oLExAbIcXOwogGetZyfYSyX/ysl+wnNzJDg9V7ZeBDhmIcQUeZLTcwdoYp+buSlr2WL3ed7bIlWXfv7KTt6BJIuNwidb1Hyln612CbdhwL2ThLCOs0rcmk8N6KbZjm76mrccfZOEAKHAQaaVD9VMbTEBwFOV4BCgVC7vctBHTNyZphE/0TZhdoz594ZAYQu5xcOYFWOylK9CQ39vZY5nGvVg+GC/VrNuhGdVj09XgRjsLTqWsSJw++zerRY851kaaU1WKpd30M0vk48zxYPSgDL+95cGrxDztUzW8jz03SVJYCudsqfauRlYPZ8dVHPqjQ9NHkoq90fSvzKDO6NsObbUXDwUqKu7za8m4UIkEO+p5L8T7D6yG29rXZO4P++cfDfxgZW+fHtsraV+2Ivv7GFzI5wWi2OPIIZMxTYd5QqXUY2jMyj7Sls4XgurJC+0FOp5B6ZpQYUnsAi4cbVFAgxJrfq586S9SuuxkXNtiYmjLYKbVxI32vrpdG3irabDmtkC7YwT1Wgp04QRyOSbr1RZ4j9v6tR8zW26gbpavSujiVogJBz2oETpc62GScb7qcE3b10l6GESGXOGg2sqsAlx4YU0rfhRp00DQyVrOnP9GYRbc8yQf5qBkh4i4sPLM0gNj6w7aFuED1cuOkpf0v7bNHlPWtCx8WeC3hPUo397ZCWsIsC+sttCopNWm4hvqH0mP9yuqpwu2+7GcddeZLOOa316jW8SyZLdl3pyQXSIK91m5a2+Bvq8oMk7KSezPGP7RfUlsLDpnz2SNXJp1+SS+GJNkeae2WEkN298c3/VY5jlNJ1kvKd6kCDiyokS13jFXO6Sb6nB6qKuBzdZrxOLxbkggBr7Xsnr3K95exOpkrQdK4lvptLcLXpIhCT8i7oOlJSVNE4QwTVnJfi25EyBkkfC0hBg583rS5cmSP1zLAQSlDMBVW31bIjpDk/Qr/Ysx6/3b36gbdmYGO6hgRjqmT0cnv+zoTxVIVkDtoOXfGZwx9grwa5UzmUIbQc7TbDGK/oKIK3FY5Mr/U7BxyWK072RbLexBQFvseJh73z+sh6NXakydu9WYd65BoMGm+UVmixF4aI4p1aWTknXQYAvOY8BEoOz8nG3Ldqsg1p1OvcPaFYaDEIw4dgUm5Ho0uNfzV73CiZCHW483teexytHFbxdoBRcEditIn1a44PRcYVp2om9TtMApJVC8Dx1griZKE91SKVxjhK6LVFQqgkj6GAE4jlOGF2C4tVfpfay6yhsRL7jw47yMDmUhKvuCTciYr/V2SN6DwZmcPxUzHAkYwsCAY+oyraOzn4hSi6XwiY0h4ZqX87HCGqwYXW8447+1Ebq4EOp1pbYnTPCbnNNEqEqNUz+qaUY7BlHPIFOcCOYyaNebALjYnS4uADmp4mqz5Q6x3nvuP7rv0p/J5bsi+A3p/RQFMlocuU1314aVuGdjT8MLElDZW+rN1id9NGCjk94P0mwX6+v14Fvo63twJb/KtVs1/KQ0aNGFiGtUbpAZ5h9HS2HKO/jGncNEeBDrd9/jt/fen77XjLN/UdLBW3o0v+Y2z8QXg96YByMxcAdNMc3ibTRpFnD3wYgg0r3UVIQARBszzN4yeAapstn1YpPQihKRW3hx1RLB6y6OkJtffHYZu0qW/IzLB+9gyuh98PiU9HtfQwLYOQkmxGo6CB5D9E51WIjS85vvZHAo7VLzTJZJCHC9BowzT/UsDBHgQgPcg0uj30gJhk0Xa8y6T3ZbvgUkbg+bz4KldQBL00yTGqqSHShxGPS8W8wZYldwE8132yj5J+4cn4NXD6OGWYhRDpczph2u0NMHTOvZRk8nuv0Ywm1RVV6jSJVxAQLki/t9ZzJyEXUlEBKHSHJK9VgSDEbjhANpxebe3x+Q8ujx3t2OjYRHYcJM9nAt2pwWZ/ODnkSG71QZCAt/S2yZptVschYpelbVzuURmrusLz9Uhu8KSI0p+0R6wbJdHK43yTNnbydlNbvdjj+t4do2Lh/oM2pEFDcAKaPYsuCA754FmUC+EpbAWm5e9WxpkVVaOiGRsA/f5WBu+sZBweDoY6T/REXjyaEhL5a0UUhAtmXdGI8JqGJaBeRpdPw/ZZt7qDwW2a8AKoohr0qB21wUfEk12iiomMOL82uJHL2sGox7tyZiefOxGzx+/Ejed+iNf8ar6UL0zHU54YKoLWR/1o7nFoQkSMOf22Hwv2ugXLtjdlfRagbZkv+5MvO8p2QztbzriZiEIIftX8XlqCDUYnermTejJhU7ZGumvANsbCJ/JQOD576fc+lFfqrOj5UXl3OwAknY2kT3rJrd+eb0H/A5RvzR+U6WohZJpVd3UsXF++88PEMhjfC68Yu+m9MbT2CYHDZIrZp3LyCfijSCD03Z2xw8w/zOJU6LGjfRpHO7iaujTm+pgyLZO+zftEZ0jtZE7zHwxr1yFmHd8J4Y+mKtWHwphgxGpy3HbiVNlTlRh0gmg6c5twhmq7Sy3RALzc1kURaU3GEcrKHkVWakZmcouYqc+qnEOMqZv0p+bvfKUubWEjigtOIByYapbW6Lb12CZ9uZhM7WqJENAPz0DQHEPVqjY78Evu6vQ236t7P+RXCPVdzZjSvHxr4H2QmipznKMajenRs5CQ73+WjG+17MdpxlMzVtVxHMW89OvXtlUY5TxjKzlMPKM69drLVjzN32HgyqOL0cOYBig93v1low+20X52S6YbhyIXa8fQuaRE7SJK7U0Wjb1ay5Qr1alMLghWZ7h3LLzwwkEdjUqxmXWPxrOlBAkG0h2PNvA3wIDNbbaMY0LVXPOpaT1ZfOtqPwV7c3n6edtwCqysJCIZf3LVTfBPKhAZMHbFh4HMEPdw3u5ozL77NEx12RpTD/DEIEGocp0NfZ2DmYRICHJueAtnVy1qvjjvWH1qbZheLCx4GvT69gwGL2/0zFr2B0Wkb4pAlGjzbIBXWXvHjB2Thu99/0rA8LSXKMQ0pYwLk+eS8fCNFqLDvlrduVAiJyRJOz2a7m359PawpvnrqQ6ojQbYkDOFskZtUwbo3gSw+s+JamrpyQXGFJ1x1DLTeO7W6rPdYWIMXff+c0STWfuAuWEKPcru74VhHSWhZYvwWs1hsUXkRyYEuvnIgumPcMb2MunSTzd7aqxyJKIKiEy84ab/o0CSngnJngermcg2SOjNmRHHj9qEe8EYqXiDCYJcaBDVrysbWFHyqjNt9sfTqyXPrtK2uM8U4O0s20bQi8yxrHjzOOk2hqI4cxxFsorwH91YSaJ1Sz82XayS+JKfC1yR1iAt4m/3H6Rg5uzq5u1OnfksCHBkLj5DHxdnSCUMyqYLBIIlVwUgDkrw4yzp0n9qC8rPNGrb912x8D0oB7wwkHvRmRKuo3sii76dEgPKEHlIIIfZaIRq/dg068qK1P4GeCZI1WhryhFSZh1mClXUgK7rc+jN0S92nWmtlL278MU/jmSNBtxbDothvwSXrp4nwlmgazXxdXvYxxy1IdSI6mTsn/CRq7ti7m65j6kcw7nvlhZ3Ikic4jJm/UMmAPAomy+51iI94VrwhaIU8gUSY5lOec5hPpkqDD4DDzhTIa2CwXrov5p0SzhqUTb23E75tvlkvQ4AfB6ETSuW0wILQMJTzqDD4LAp9zir5ga1R56FhaK+rjHB8K8+DA/PKuzSzNIhfX/7RT76phZ1AtVMKon1y0VfidPmGp0P5kQZKSt8lHOPL05K0qAJdH31X/M6iMk4+YUoz7XieLvjAsNNFL0RDQTc0y1PcZYyM+zKz6kUJNzvYmReKWfFcSwJ2+x82jRcCfHG9OdgU1MNF2OCL9RusB9Kg+XKAU7MIY3orPslazPj/bHvNWf0t+K2YMM2s6HjmCigCPJKzNtwC2mzmIRjofq2T6Ujc4dmmm4gDJqnKtMu0thn6u80BkqmtMl5+WSkDK3vMJt5YBxdrsm+w6XmzwDVF6guyRsBEHKj/JH30gN/JxFZeHmGMuiWdFGAkjfVWldea3EbXZJdv9jAxQZCuUN6Myo5dqRWGYUWJ29a9Una3CoIWtTVLqenysZpJTtvgunYi9H2VJqty65w+Is6m8mDDDm2p6aA+A6ZRgEhihtX4wsLEtbf5ZaaRsbZc9Rbu1EBp2+cjTDaZEUWFusIG+WFBz70O/7onRSX1O//fd5ShsGJU8Lgxm+AgG+r+91RpYjm1wwhUdaiTTXoJBkai80XVRRj+K+EdxkPli7nfsWq1Ycp3/dhD6y6+piixEGfR6pPc19eOWkIpNGHexaTXVtiDJd/o929QoOh3ou+UWGg2lQrVm6eHZ31wKUrj1CTGws8x8GOlukpsYHdsAbz4iNhm7X7ectq0yNPyLI6BRBuZKtZ79Z00Dgz5tiRmvDRSNgq7w/Z8MWp27QyQ7WrOGnaO+Yqzl7+bpQSe3zkBm7yuLPlslVkk7z23BNHphusy4NNapcZPjWiUPk0KFZ4EIty0uKgnvVqoHx/wrV1F1o7ujT2fTBhwPP8Es8EJFwORQUojxGSMX8hXz6gUexkUeprvbWyjwMAZAsCLIpOClvofgS2Qw6mtwpd6oh9NOqEa4CnwdOal1FKxwi3jcykV5Hjgoj9uC4x1k0b7wqMj1sODuzUCWAW9QdLTR7qiLgN6V4RoXWE/bMAJ4Z/T6orSW9Y8/T/uUSaVWng6dDN632Is4txueJ48UeLJT3tPYWk23DP52ISNYkC3lO0Is9XbozXXaS2bdUaGuXRe5PF5MfpkefLJYm5XsQTqyHCtBkEHPu3xk45LAjJlGXfdygD8vKt3Jk0E1rCEcY019KZXVA/SdAXC7g//CdnF2b418+83NxcZ3XmqboRTCE475JXUc5h2rUzvCadt1G6TvdNBcUaOMEA7K8VqjHdg9epWC8gnUCHb7aKaeStHjmg/4o1RxtJUy6xvlvP3asy2Lxk3BmvUVMeAkwDyoQhNuuqTiJhKiCUHRiOjFTrf1ioKuP8rzpx/ppVwD2epqg8sUbSVY5zasevUJmvaU4HZUtiFyYwXsVqY2mxuX8Iz8DS+MQayDJDa9E6uwFiOroxqOQouZ2foHR41f3HHfAeaMrYRk/QW7WsyqiQGXRjF525rHooScRZNtlXA5FTcWfvNkO/lHVN/0IHt0SzI6hggnEcnxmCkTW5RamWVdOWuvV5rXolIZAat+SPVhw3tLq6JPxE8h8XzrhpD1GlMLyJglYnwP1Kv9xo30pRn0z3cBwPhtcd3kZe9T6jjIaStQywONJiUPk5fpDeeZMi4TwfEV1TRaHWdKDaSqCScAPnXPbtJfQfaDbbaxdpxmP2cBIOnpAy0GYRYt6oyqMrXekmkdtQe5B2DICl16nfWwKtQsCApyQMW0H/NGLeFnBfD7NpzvUYGP9HMxdCWopFAFvcJPygva8Go++IIlWxcf7RtHyEiuZp8WvYIEiWYi7ZJqsnalLYKlX8tolHCE5WcGUixVDNYtS8sHbdpwJFzqhNESTb/6+Vd9Cg3QIFV9+1yxX7ubceAhSZuRqrCDUV2SOdHgZunKUXRiWVkJiLaDl6p7T39pny5aGwPwPtOcWQmW6iEv3GvyFy396+NN6++edxIqNUliMwg48idirISERdVgtF5mEs8CfXWIlOE2tfJpQiVXBhtNxpQYPKlSZ5yxPTvB2iMK0G5sPKKhLcb3nCLVOOlChYI6thYMbU3rsHG99CZEwbsU4rOMmU5xt3mJq0AIivy0fZ1DfUhpl3z3+4MDbYhwdvHmOgOoW/7HvM6uYzgTPfNMPDx3buM9bO1OXilBXzMFJGiAZMuxHDdmgDIWGpm5mNrfTpz7E/DbUhqgDnRf9MX4WgT0gvpu4jm9WLSvNthnzrGjZlZqUrCePNIcqmtU5o0mDQZQjW1nkCWokEgcfCJKKlmmvXOGhSTwRAR1BiUGUXPj5H7FV2mYK6rsbt1mxANrluQ22i+2N4FIirf4c1Vm2/3sWj2sXHMQOTMLJBSXE6XqqWtd3bRoUPBYE+Pzl8CgXTnHba6gOnLTf7xPovGPqR5haa5DwNnqGMj40s3HNOfYO7KJYPLS3pJEoK9Rmz0YiOG4tx+y6WMLY/c83uIfmaQOPibbZ7UqaQv90HvygdcDAdHooAvjwytGKKnu87bxk4Vh1DXjSGtWkzwzlQYBhCjV9n9oTdCxqqOhl0QicCjFXiyPzK3o72Jbj44agF3Z77OmFZ5xfapLki3oZfwmCIX3xB0P5bKPm8dgiOI+IG1UQBZtthuDaeIPHYHzOkfSIr3uvnN0+zY46SFG/RR0vREYs/L6VRgLKizRZ+ALZu/CZSqYQWk6etoTI7YeOc3N3imF3jKCS8I9nqi/Bf5N81gpcq7ljR0KoqcWMjrk93ROJ+ok9LRRsQnzDjMrlQNoBFcN039+/q0DPKR+xxEh6QX6ySefb1nQ9KrZTChHQtkZC2YKFxCtduX96f4CFDT6WXKGZSGdNVcyOIr9yqEI0Ymopj77DHbmQn1XEQvy4DwoCG6/lVXFGTkEjZHx8fKY/arOYovBFCZGMqOgiECAMgP2B3WGJjQVCSorLhZ1LaWKMvaZWETT8sRkFSD+IzhzQitH66IyqZ+JuGB7gLfx5FOhD4iwZp4Ic3UVRF5VV4LpoO5lCCxic7hgxj/gdn4JT/2TaMdoCMxoeTyIdOk2utaZaL05Q9TH1Jgo1kIiTq0+S4C2UO2mXyZ9ckgv9F6qsszcYGDIyK/PH/Frbg/EafhKAZVCgkVLyWvBRlqgOs7co4uy6/JqFCBo6Brz35v30kAWKVzb6mCsGqPqunLtKJogOYjdgPRxMc3JdJJ60UUXrv2G0Kf4+x74/qPFaDnfPOFJmNuyresNiOmy2XE9ePSVdHUVf/xBhd++sOBnZoYNcgJ2PbFBaWoFHE/1csO8FPgRDHeoP5zlwUGzyfUq43/yVTy4xp0HueYjHOwgUKkaL2NsZbWqvNTIVcIPAYW9D0u9iPTzy1FKTFempZT88/44D8RsGrhx/MYPBh7ZUF5B5Plxw7yZsyVxBlwIUwBVx6efBumGlLbXDvpwN0BP+ti/eAIyvjubFJ7VkqQhSnCHM3i40rKOq2YAO38/LYWrC0cS/PMGsboC3xYGZq78l7WCCh5R6UBjw4Etfl3mIWRBcTKdqOzceP5vnqSsAVBXEDdxpbfl5XNvN2IEHFYO+3lkQd1sqzJ5Ymfm/2dsmDwbupKAj+ZGizgQzP3NcZerao/ymKLkb7iStJAVjnCtDMXRpNu/JsGmWTVLiWAh+yWWTrS/sRog4rtBKGXt1CwoorwbuOMvB2u2GWi1p85PDqLb3TUcxnth4L6Anxpdz5doFGwkonwSBxW6f4xKbAMjKyj/x/3KzTTM3KnMJ+xg9nT1ZAcfNVnEol+PZHmP3y4xAukTFyxEdrJK3B88p+u/jBfLRZ3EaUgVXYcz0Ez3utYofB5SSpgv6bINHAarvjG1IguakcwD6jYyx35rHOkmXkKaf8ncvlMxzUZv95OMnVJMpuTGeOxDd9P1nSgP0cjsTXqS75dvRExkIK4pK0IWTpXbEpZW6Nc4+eHhUqwcFhYPJZiePAIiK9m2NIZirHpuxqzkuM4HLkJ4o+CdYUTiGKFiESUnrsGcKHK/0usIs9xpiJU99crAXrIywRdVTHIdZIwCnDocO/T3EwXUyR84pruYtCGeBuqbh/JSg/Nq/snYfUMJWyBKH8/VX7lzmnFLYqkvvnqENU0Uc0wZ9wJR4dTu3KoF5LmaSSmgkNPFp33xMvqEDAHVUhhIDOpiI76wzOJmozlpGb2EakKUcEQcxYtbUGQC/aqj9MkvTWjZg64O5fDt/DwLNoS/DBqferJIRpvo579gIYm8fCJN6fG7SxmSQSGjUxZKRaBY0WTPgZAUK5px6gOWQx1i6PXr3AMbahh7jxKDHjRq8LZB1/fSaPPJ+hXqCl0UFlTlqSl2uQFI9HBvrDo1AYrAOfiZ95x8baMg7IkvZawOxEW4vstvBimUf9Oyb0XH08BFkjedX/vcb23Z8NTAr7U/uWaUOWzAAlfvIdiVIUmi9x82q1TUoGbZfDEuawDvE1b11mfIB09bGiVKzPOiSv53+lR7rbrptuwtGFcL8ryVdKtG/HEPZztcyaL72iSntAXeqBc1f3/Z3zoqR+NaruPs98dcuYINe3QFN057aLg4loIgDgYDn8ScnuRYhQteFqhfSgTgIEbmgTtI2ZZ5hb2TjJ8xgq1ZpGwZc9vasLbbu4IJgwnoZeqklSunt8et0kOFOE5tLsFJ+4ut6yrqARrTVyHxqA0vpQzGvqR07qcA5RWSkyzMMWWWjvHeuEql2L6xcJMXqryK0h0ZLuq9a0fFsKe6OHOKswWQmHEpD4GYoWTONYnoRB/UN//GdetOBhvfiPY1eEuts/MHub+Tf1MihtseOKx2FeijfM2CO+znLQ/8mXM0HmIh3FF9NbT9CDsNyj0rG4UvAswlcxi7bbIKgftdSlOPx9lo8KX9rc4OeQwUGu8BN895w/llMy3+PxlNtLYKq5m1vTvijOMNR6yAa/NDRzD5xr1RJ+hxUU7Dvm4lAGXpsi+QEBarvSLRs4YXREUPXuconZ6mgOp/PCE3G7F/QtnwXcqUbpZOy7PBsQOsMJotSdVGPZwoCAaKXGMvH/M1VS4bfxfMQfVRPLoU0lE7zFLm7QeeChJWXu3adm+Q/gZFJhj0A+HzWckeEUBJC36OK0mTvXh5Gx3OqHVAdM/MgyLp/cO1Hz9p2+Q9acHRE1oUXZmvMHh9J79NxQ6zMM7cSoOiqeRyJfzEeiOcmEUVeIqGmN6WmyU+zGifArGiRdiVE+iPMrmGZZlAq2L3nwVX+PPNndynnXGYreH+ZIsBnIkDBLshT7oGm9sKi4qXSmjo+zGSnd+/HP314rz/kqC3iIu+U6I99mtJu2bKYMNSVGc/bWBUpcTj8G/c9DO2cS5vCK2iCauaPZqPPq+eNdwhx37VH94q9TkbCZ6NlTQfF42WRXzlT9Jka67iJXTL4RK7xJ/IWTS6ioV/o8b/rfmZtLGj1wcEgCyPLUHCFlNP8Z6biCQ0woI+UWXFo98fPb6cG5VcDXU81tL16IHGkyj/o+h3aafZe+eFNyi/Vl6B61JBT8hmY6lG707nr66P5XmwbEI9Dg1mjEFCjsYaO7q+dJ65ku2p7o3xhszhaLkmkmq4WvUh0+Ken+g9B3hKJWsR3m7Vkl7CGeTMdD/WSM9+WnMirlcB2igmt1UEaksdaev5T6yPm6eRIFZn+DbSc53jdCySSeXrvJAzOH5XtJmoXlD/3Drqyfn1TJpsBWT+KNlxAIUez7N+lmPqZjRPii/cfAv1ZDe5iVtxe+lkFOKGWSfbrgEfMQL9s3cCkq7cRv64pCt/4i3QxelhVPYRqAB16DWq3ExQkR2cOTRwkvxxHfP+vy9NEPO1m6YjSi8AeBwvX5b3BZafsme5sug4D5MuNwpYe89dtIWeQaVsrfdD9bAg+BFRXj9tBYQglzXKulLF+ys9moZx6+vpS3fv31GtXeQ76YLtKCzGSVAW1N3slSuV5iLKeIQw0AMTvsAo/aLPwVy6Zjt6cjpg27Fcl/tIsDZPPjADiKxNwtojV/kf4JQXMOa2tyTSU16GsmrXbVCIyQaBtUzOvAEGkZM0Su73gLkH7mS/pF09KJyrbPwXE5s/3Y0j5IIVeMYVNng1bK+x8Qty5+2YPUZFa+Qs+CnlzNkvOP6nXSSZmtdUnHdxxHPSl2vM9J3rnqzFHieZxbGFfET4z1MJTaZG53Mu9OUb7ER2DCM92z4XKdGaW+Fl6GIDzhrxmXxK6/Eba0uLicbHW7IRuV+nkvMPVq67r0VPfMk1RGxlYrh7SribR7yUu42BaMk9zJj4/qWgx8tXxxFQ2ffsBWQj7YNsxxt6EGF53ASc+rvSviPUvi61+vWitzl30iVXcVuM4auXsG0/sPt9GXI+bpjMvZPfsYevPautfQnBec7DzlkXFIL3QlG7QySw+KFSEHSH8J6O+awf46t52TTOzx5HMo2UizDFWs1umUATPe7utw7Jiqn1o9PzmK4DnSjDstM4MkLgJOhSr7ZBc9ynNqbPw0jWhdhaNkQODJRxFB4Oy9TenV+sbfpDAq6qieKpDa1P3C8gQQxdraHlTC3TNRJKiITG83ZQizK1IjJOR9HnTl3QlfmKwlfXWwWKl+Zb1g3dNuWoDudQjIXY5amkNeqd4Bw+nHQs2ocGckhKyzMwebDCUicUa5p4jO5TwLFwl4a+roNTBDhL0O5Bf6hlYRbnpCgMoe9IUb+9Sx0geGVeP0QskSy6xcDUDZEeSJ1IHRKEuiA0RQ5Sdi6QqEDmYgfvx97SwlW91aXtxn95FJK6EYv3Jwk4rCyFdGXGs5ejyTbTP+RBdnE4G+d0wDGL4MBrszS/8HcnvNz5b81EPwN3A/Q29QvaIC+0aYVhT5NajQf6cKvfcBk0Qm7jTzaqJDMwsVzBZgsvNYAEM93qFHU7KT5u/abW3DB6F0ogklLqghnsknqXGT+Gf38MhBZkeeR3mxeLaIGXaW6LTXbXG+xkgLavs3X1RwbdADavVsT2Z3O/2jOL2mHSTJsO5yTJ4RnHAiJgdT0yfEO8lTMkjTAs9dZaFfoX0Smhj8zMKFo6f1aJnLl2tzn75KppHWN3jsh11TnzoSEShghXdcQjOZ7GL1Ig29bMXRLVd0ZKxitHfOxurt2RoLP44rgkKcXQQETf2yR50I6+/sIqRGPvSDnbL9P/COAgkQkfNazBONkp58EM5271z42mSB5FhJ6zFy5Ms6r18IaOZ+I6qRKlX5Eq9FjhzNGj4H46cXn2uKYgt04+6t1RZpBg/mxTLnsIf87JKRYIgXqyndVEF3E3wuS2dZT96kol8ikT24RssyuOBFNOIQtqCV0D2aaYemeH54wn52bZxZe9hvhMuPWFaxboeCi8PbMWk1QYtxhHr/J8pWhM9wNb94krFZjv1YrsuiDKs8ZAL0ro9K8kzgv2+XZYXGbdJspBmM4yFU9NzNc017FPaCf/Usr1cnquV0CufJ9rIRkoLADvmmq5TOFJf5bj2UgIhOiDAtMTqehAtQpYbkIk48cILTB4i8/RogdlLSO/25Sg5PTgGB4V/PKnS8eK+i8ZGVPGbzQV5i4Ezl2nDMRBIMQH5st2hjilMZmAaI8BQarw667KFmy9JPs5EWfodiIjuuG4QP7ednI8v3PFVZVIBZ9YRYfpUu3dKSsdmQzOuNVqknyZiWcva4cQUS2uNAT6SjRf2kxXYN8yBCdv4kvmJ48SFjTG48/vTOdpvpfqprJa3Uew4SeTSoPFj75wYIGm9Hgy+Xq8stAynONVmFSLS61yz4UfeFN/rXOGiEXrXGL4M6JEdaPJckwvlDsHocQgV6VmSanbfsZSS6Q50axdV3gtCxiITd+x/HNfEwpo2pDR6Cuel2WJ51koANLmIAKUr+RwlLnae33xTIvNTGAdNL1aBgPt8EaHHsWHuEdf5pMGGCcGbY4ZwQfqDfm0L5TQsHXUcyUDdq7F14XOzFZXlmlmKUYCjoX0ub55erkLvu5RWe26s4vhfSWTH6kwLjXCBXMk2H6zFTMnbE0N0ZQBxEIrep3l3KqJuXULhDdJNDmWBj2pCEIzuCM9neMnh8MzJhaFZCVqm5KEa/C1BQWZrWyheWnaoz9LqqgfCLzpzm4dGdpySsONRaIbK6KC6uhgB6XEqOzb+sVj4tC5XEQtq2+ujfdGc0a5JpIH8tToL4r8Gb2Pwj63VUr9WUNM7KUfPXVgqzUVmChrWWvbkcpeeAlcWUIsDyrEmRSkU3GwmgVXNJ6mrn4eAZQiHzhuV9aZQa3q7Jwm436Sd34b9iagjbH6wonjBbDHVMtc7p+BBFl7pV/GZ7RZBBe9kxts+L176bGXxyCcF72OoXoa++k7NPEOAJ4jdjZfsSBiJuTof+FnpKLp8ZWrvTzwnyHy3jXvFGk00ujh4oDu4E4FwAWrsTDVCoMELgxbEsKef4g+dfTP+NwV40/zUFU7qwtfXo/Gy7cPX+7wV6vMxWGvIH7wJG360iazrhtJoq8li6N1B1MTVxJTk/YC+rjFe7/8NZLqdS0KCu6odULYTe/kJTi0P9DWsdez53lK0GUK6SkqnXuWMdpZJwrG6dEve2lBdmdvizz8KDLhWNugss+1Uk8n9n3yA8UvoqDCi7DQAubO9bxHgvrCyMDUig6ob/pp6k1kM2PtD8XkD2Wva7ulzCX7vauGs9PokvCo7a/SP8foHZ//szxPLNWCm1xYgtr4x4W4Yza53EmPD9VyXpmQQFx0Fr9skJxzl/VQbGenD42pATqf+hNOmRPrI9/tw2TivLb5PIaFqwq0jIdjsH1hBBifSLmL16cQyUxjvdb3ideNStO/HcDBrXyzMKjYEn4j1WirJgnC1jW7Q6CAiQ6uSFk7fR8un4pZdEBBPRgb6jcl8rZeHFQDw7rI3rPvATu1rXiEUasEnkndx0McLqIJgLnKTjFBymfzk3ZqYGyDU/GJwxzXSxKrPOd88xwYYbC4iR3i7XdkVrDKn7r+WW7X6ev7BkF43elqjBjqakwOUM79vPr1tt3EUXmmam0ktTEXSDuub06t3EGH32vmSBk0+n7tlk07Dn+KsDfeh2wz8Y5169G1+RvmlMjd5TduaV9/huGlT9fi/H/O64A1q9Dv1zlWPBwv6Gw4Q1Onoi8MinYsXoNS9aymIjLJ1bGHunOsgDZBOqo/ReroXqPFjAneML0t8OKKrAb0oPj4mkr28Bf+gj2oYUIFzNXZuCzBvoa1WkUN/W5GfIiQsbcelwc9Plh3N727pBsulNBSeHnqMiUL8/m2OE3cjbexgW1TCsabwb4tiXBnMB3LDNgcZ64eInBAY6/rQoxfBqv4c0SLEPpvt8uP4SqmvDTiDPmVrPaN4QT/eafUystzDsBX94IWHgTOMFmdeV8zCibQhqNKYetdwSDZyCGw7/En3izr4Ps4aA79oBF+9E5Vo9UcTrLoNa+QEDmhiqUVPMfqP3yv7DSbFlqkg8TOzfg5lH6ojs+uCHCPNwm0bZ7+JJnQOAfOCwT0Y/S3N39Ht6h/VbGeczscxdkhunksZhWBxsMlWl6FAr/CzFZGI6lkAmeQxNnYB289cFSY+rESA3zOjGpv9zpUwEYAsy2o0WhMnDwBSAJ28JiFalA0yKfQkutGXetOxAe1QCCDHTUMmDaO+X14iVtl8/N1s8eCwRWeDs5Y5vOLJ+v4f9E/tmovADSldGMicTaLr152IMBH3ixQe+zUqGtY+uSTMQMGJIgoex5QYKva0mALGsIw3KNuNecI7aWMz6sx05PFi2A2ni5Dmo1bZeQV4vpICWwI1XimHkrs57jTqMZK9NSuSZ6UFjNwv8VjCuShach69IZIfkdNooNoUoIRe4M+IsYulLYjnzbNNRGzQRByvajP1O+D/th3VkqkH/cdYZb+7QBWgKfdxoo9Az35pAwJDtQUK0zBJ5y5AQoVlvbJ6K0BBHEeZHyJq3aUwBC/x+WZ+mngonWNbXQ43RraG41CsqR2PtbIBw1XdoD4O1vLQjxD+mEU5ZhOfZvf+uJjBvobFscf3MNisNg9/IuzdTcUOO6m0dwNAX8MzwYDlEWeRY+sC9j0LQs9jut5aiWgIIXTHBHNN8MyEIXnFKEFseRDvIrXkXJbo/2yu4R5Jkc3Yt37nhh74HqJbCzTMTy9ttWVN921cWK6IiOv7sEAQXkMJOuXMFGmhQiNTR5enMaYHcdp6pb9uKuTcD5FSipxkDl/mYEtkPLZnOwKD6hp0SPXGt+rnshKmcm2KumjXhdJSKE5hYQ6bgCr0FdT/gXekjb04VL7iz5OvI3i3CHHJtz2v8S2Z1Bl4QyUXDSSJWIEqINGnqlyILGehTbqoX0D4pq6WUl7tK99Qt+P+jjVXbA2IoQW9uPtdiAYzPdnVd6jKdfvL22gW3IqfP9rwVXWUOpqepYft41IOVwndUiSpj5EmFCMCbror3FOjO2+5vHN2Of/4js/LCEccyL+nEBHtxpSc+wjsfi2nEvIf2C4wdXPwpnXP/P42nSQ0H7d/Y+1rX+dPooEmaDc14j00UGEQHZiS/jOdSdpHDfHX/h12D+2vsUnlDgLa+0AO7DyKcUpLRd2ZTFAQS6+Ls/yHKJdHxms9sw5MRR/Y/TC7hzSzAIBhZDHdOD25114vD65zvKnPoeckSK/Xqd4CMkQXt8tPO4M9jWiTUAv5u5ybaQVcX350k/tVCAzfcp2j5/UiWCKwhOuezy36jiT9HUurZKestgZhzdLd/zwBBqAUQPQJlt718TbR2vMNk+zidfso1Lja7v91mzBXo2CZPN7daM3xESS0rMLFEJ1a/fuj9DSS5lciFf/NzsiUhsxU5ZnvT6b0KbELbNVxQwxAj0PwNac2rNMV2OeJ0Qs5oFFFtx02X086FnftLW0y+9lp6TPZrsYvpH9NEguxkY4fVweP9oYz7gRw0iTPUsdsjpJzBRWt/3RtQawIqCgghwnSVD784w8FKyK4Y6JCE+ph/TuBfCwH4XvkyJ86s8tYmcjPlIHJxcOYQRATQ1hsWYzGPeCERi+J+NRE7gPwewUiP1jqa9CoFHOoqs525vWmtMB7PMV31QqjWCb1VFl7/03SVEHR8dJrA9gqvqYtsNp4tRM8FiTVleel9iv9CP1UPsH7dk1qLlpsX69JtzO7jLB8A93r8a4v8mH499ZCmb5tp+C1GoOKhYejKVTq8m8AzOBv36ppalMimK7acf/xf54DgHnw38LDwr4JkX+VxJpqFH4O7YH+VrKfzB8BtlQWb4+YvKJXnNpPWdbBzaK+oZcUgBcsRdhrhbNk9VXRlX4jhlboXDBT+vCoE5BDpNVUF6pkqS+Sm1A7CrU9IRB2cjR/mPEH6FBjzeZn2DKRBlqjlRpGuJYokuuMWeefydyh/S3YLE315v5xbkm55fIWRUzZvscGpMqDkoD2YRVMUSNseuXFkhpMtskJks/rhEqvu+i7S34C3PJDm3n8gR68hWLVj5g+tYhNqHN4vy+beSE7gt4ZnITO2eceWs6c4b3+mACdHlzL5UZ6fKpMYFXFLo+aM5ipNfjqlT72yX8ZZOJHmS2wGfB+oBIdkP7mnKk/uWDSwp0aRuoRYQKpRZcIircOX/77HNjX1jc1AFC7ckdsGSmE/z4x9NrXaWG7236RKkHXKyf6IbfvDB7YYjWBBgMOj4JHORcb4PDBNxdj6ZMapXZsJYPdtftVjnvUpNbyOXMQbgnxTgdDpza8uokhOV0n4V1FcB3Tz2jhxypVd/3CmAwA1XXEOcpzJG0WAd44P2RXx57RfwvAQqAPt+fL8KxXKYW9oV74dTs+qpZg+DiYj8altjxiDWTI6kNamFrMzkcbRcYjypytDJqKhg0+DXaB/TOxyvH3C3ombhCsbCznpruoqbDYoMPOEhuj45SmvBnTPvVMBebYKk46n9qJfku4bl4by9+h+74NUOy+PITxUHnOPHV/zAYRfNkjgS+q4dIZWLJ3QkLxrt3+r3hvKLgrdTnWKDqdPlYy+lzIPDtrO51C7O1C0SQNyUV32WzzRUYP6+UZLVdPVm9+s3DvzulqCN+19tJWkXY1DDQwwMvFtY8ZQphCs9ZAY8yGN3dOBHy0B7fplD5SLV2rn2jBwWUwdo6gXO2nSOtGp9UshvgTmvk3uu+nMdndMmZ1xBWCF7uksrvfQlnFD84ezJrgmdREk7Jmw/jekk6mUgI13MFYwO6BuZmNBjtfRK7rmsaFUQbjtJdwRvfGi5IyoDZ3MvDCSKD7Agdy7pkSziAoO+wYk7waKIAmm6DHTV694BZFqlG2hYCdrCUHi0X4uKb4HszaZ4LEjrVfoaL7sVNB0NlxvroiR7GlMAPOazPTXXl9eJxv4xMFW2Ysc8oxGIZjWY55vtSGNDe8RIbEYYgOFCtuF/eY7x6LqaNYuutMxJ56VL2ZOpmBy6DIYtPSSCC3wv4jXMqrMowl5wbaz1hQ1a0m1FinxmEXm7OmL5daj97OhbOJlWFO76hBDqKUlAaAorSzqlYZG2xZRmAk6cpHjWv/dGUB9kyBUUIZqZXOwzPn0V7qTIDBLsB1cnwHqstqGa6XlYUGXZe9Q1MOJSRr130TAbOiRdjL7l1dubLzBXQ9zdNBk1X2RvvyOvlTOE6U6UpDahG2giFA+5vpsYJe2g7+meFOcAZWFmcdwV9wc3UX4+9/j2+BVZ8t6ppKR7uDXfYI+gl9pMyiokgiDMc0hN5UXqifckBBBAx+o0EXdgTfj80A1G7Yv4Ocpdad9AQuA2uUzf2G4kyPtD2fJCLlGJaeBI2PXgNHDwdRabu5YeImH7qcIKiNE+qjkOfLrf98mK3ALEZD3jYIEpsmu+z+QbMVZzW6+y/7UVF75XgFJQmY/9crRzFB17PUGgPc5KbQi4NTLcCb58Csna3er+rgvNSptjPk3woAv2ce/f5p2nzJ3LXwqAZcy0CkfGzGlcUX0JSJiEKvfDvH6KVdeOtOxOH1FP+n8leoQwD4pYLsfl7ySeRMtaDUC928/FqBBdcZLjA6cvJGlourLDFv1lASEwPgEHo0QiqdwtVErkWXw84jmAKRdzRUpp5gcUO7MZixyVE0HNC6D0eVmiZokpbz1SKDRSUqAyORjzmDJUIxlfUy2rZ3foiUtZ7I0dVLDHX9gfpO3IGxCjcPrfqfcZLcL1bLbdRnEGGt3HJB7/GjADZ+SoKcl4oElqrUOYTmPHRf2rH+ZUY5IIr4HVcwo4/y4YlLCfBePZpSF5U4qIj4Vu2Y7LFd4//GvsLy2MTJ6Jp3joj7LEdOKsDfcERk1u3oi+5zk/qpwcsp6SCPCBA9umQ+k19UcI4RuiSU/hbAdvTp1Dc4RnX+uILt3oKY0Bn5fR5e5xJmDrMz/lnK7uj6nsD70nMQH4HwaD3qe98ZV9IfzRGfQLR48k68SvUkYYv+5nJN6z6TPmNmrP7USxwiLAdIkl+/xy+ixMt373L+P/e+hPznkfLSSM9P96qfM2opS2knR+JiSaN+dYpYtFas62/7NZVAl3d4K8qZPBZG0o+rAgxeSbvl7U3rFXJGZR0Gms4Xl8yuSPN96g5wY6WTM5o0haP2wgukwfbckxuk0U5wXn1XCJDOlt2QhhKGtZmcJsdcWs8Wvz2hfNaFsXNl5NlyLNnkMMIKve9itiPXFLWdIKW7HuE/umra8XKcSeSdbyJex6WN07OhQ633J7dJ8ZJDwQYttl2N5eIbALeg/5novFnTRfg2rTdOXfe83jZ++cKsILmyhVgRGcZN7DkHgcYFQMqaIeropSdtAdkjT6tkmXIMom/bf0MIn//G59pQyySDZnznOHy1ecPZqdLTK7pWGsS5AHB7kH3kzm4gqtLGgDRtlHWTHajx9BLFBXzzFWxmrwqzxk+APsi+U5Jlzi3EOsOhp4vaEB7ycYA9iC/Du9m698uI9XBKu9W6NQ49QSy7NSQ19csZKm4RYaMZa6H1YI+GIsHpV8X7/bgy0DoP9V8Y3bWw6rZOy2GjkJOR+uxhb5svw5WnsM2B5fzuTS0aNZDUxw7NyyH6ksbZ5Pn/fro+VS/AOnb0H40kjMLK0Yu7yJmZT6kNXe09x4MYPXYBFg6tvWhuOaYaOwpjZOabVCdOUOWiVCUgeMPZ0uRuCWpwi2opta1fUuOaboDwnVmzh5Z90piEBvzFDWRITMbcIeoVKJ1NSpe7IwP+CAVjF4WHJ28GX+FrbZqXMNN/H7rzC6CEwz7xfVmMFK9aIlsbzPj1JTx7ulabO2lfkslXvJT5rwATroMajaH7dRpqIaeM8V0U+MBueUTaWl5lUHo0MmzPytGlRltgZeBAlqlF5FHNxdgfXepu7ZqzqQSa+JjjVrgnp6pbMWCVeoQZVSkrh2/zJGG8mNy5slD9x+v3RGLhvnhalx52O1pvTVHbMgSRgld/NcD5KJezfeoWtCc6BBjkkTg73rQP5uNUJ/LDC9yW77T/1/NAcSDcX7M9yrevAO0e1pFtyphoGHGhw87QgkX1kn5bs0Sty/8EgsGIIq8mveCrwbXK6lv6pcA6KdNKSkPhecrUzwGyqot/4pE1ENv62XgiZ1/VsQBtVk+x6yUE5zNoVQtUFGNSXUNowli4kfwTKBAEIAgne29DItCPIiEoTSU7ey09Iw6M4w+aOKpnZEUSgBufEdnDl0V2/eZfi5JhDqOxevuxDD2AoXBW173hN0Ld3m3dDm7qnroBmCglmqGwjG0KhJ4QUuSxfcXIxTtbaDQmYoOoyqFpImBcazeeQpU30btySgHE7tAZBeMVOoVyroXDfF9FxSqSIpXKfcfoDtLytglS0/g6p/QB9YBg+96Ic7dYQZX2Fny2RWApUnsdFfZvhOtfUjPCXZQftbMcymkcEkMua+96ZjkM9nwU6LbWSWuEjIaEuTqsTaa29CvUclwJbevIeUUtQKLrQUxsiwhtxJOLodN4+i3dZo2+hp5A9/S4SWq3DNAttCTiHAkxG+dzz5o4d72FMRXdquNOhk77PDIiENRZSdTMULaU4XhLqz06oP1oXT7ePR4VIhG98ayPS/ChK32uLO/BtY4i14Poo6QdDP/Q9FZTR6HCTcZO2KlRq9P3OTAtYMuc8Qwj6z2cyjVEJBr8soTMIhRx2rzFOLVpsz1KVc7AE/dihCzruBhZ4Sb7EWrHIQ1FIre1K8Cz+Yz/pZQob0yLwago3f3ndwM1AlbR0ohR0P+FvePvy4RhRnv7uP37tHh/2WVtvdxu9fhhO/jUIldTK2zAz0bCrmf0Lu/ItUNzSK8qS6Seoplt7cnTIugfUmDZtwlObfJ7bQCmO1FwzBAqwfB3OVIBUuvay0pbsGtFck2q+an+qR22+VFQiL9j09a+ptwhfHLB/Kv7zg1fcc8Phc6Ywz0fYITTivdkrSG3Blb+W3o1fv2uR90UIQhMDsCcOGAjS3w+RCQ0VqgkoKiSskQBDuvR4PrNSLKeIN7Tj/LkCnkjYXkMNlfMOH5bzqYFW2NAKKOxWF65IgU85BzhZokEBkAeSQEa1NiGaLnf2aQPO/KZ4Mo7Dl7ll1TpHLZpswh4NuSAsU2HtA2iG5pQWOqG49oVH9eAIGWp1yYku+psCX7+0Dsv10tsmjF48g+UEEo1Ph37QjMsbQjxl2KsUaBJXiLrzM4fQaVyiPiidr5Ht92qX9yfbtsReaYfmfImSA51EyQybCpbaf1mHNRTi30k1TShaPhl+xvRGbQsg3SQIJyIA6VkSj0QBQcERxFiS5HC7YlQJBKbAIkvWRYwvacc6xSPNsa6ljF9R2pkIACSw2lSk2SE0EI1QKrBHzXF6rrtQqQZZi2julwkrJ/v+bZeNrcy/slt273SZT+Wr4/6rU9dfbFRgK9FFll7jlV+lpY3TSzSsIcphbC4FEjMp/1XikaxWXugByQ/vVO7hdXE0m5/cHk6xGxXrxdobpJFf1VPnwNrvuFWmaw8ye8JzCg+AbXwM9kC57R3ibOzOnm3lf81sX/J37eospMmdx6pP+Ys6vBdSd4V7DMM4iKnTpf6/Ub8DIabngYNUagVDSw4akNqE8JJrjlH1ol2DClIXCUdiVYBflydnjt2hx0Fqxl3VTkqDYD9TFu9GaYuM1tSAg5hEsqtk0JjPXUnGohyPrFsNxcFtf1dmnL56C4PvnT51v63RJ3mcTpXF/HHeiOP33XbXGyCbMyBX8H2aA+aha+PC6AT5+ORYIZiBgEBt5ruWX0sRIV1VYI73vmdTWNIc6h5Vm9ynYnjjU20bTNYU3h/4Y28UIfXE0KQHPwQi00xoN8lmUVTfgiDo76xvii2G5RAZ9RRidYS0kPpvBmPuy8N6CLdTQkYbeb2mOkxwtbXAIA54kqQOVuCTY+NWcZogwGm1Vhz0e8V/lXZoIep3tkyXadp4CYn9R0H707abcVdMBYK3yeD5fMC8bUNAfU7FxBTi/CJZNiee6thnV7feJBOG0xtb5kPGS7WLssfjl+y4pxXVZ8hg7gjDnKJo29TU9VjTK8uuNynVyN37jOWeIop+/LZtQDTwnAMKZhyWj+fwmC7wV49B1NFWR4ezpmt5SgazJScZ5unTnO4BTWgcA0R5+WZmSXu1HsVEm/5CEPqNgxkC8JoIokf9B+nsKVRjTLXMeGAr10wgqfPPpiNhiT1Bp+KJh4lXRlWfy3ul82nPdtbubYLKtmhCsg9/PstHEnaQsx2kLjdx+emLCnSFBR+HU5D3GvE8/z+h8TIPj4ksC9BgELvkqguHZNojSKMXb+J21cTf5apJzJU7xFk0k3uEvkF86CpCigCdz3TE9hKK/ZV4Lk3BjZ9GhePIE/DNqz4+8jryDqbVJ8ymKj1SbKbCem2vZzuMDMLYpe+Ln8IwUKZ/jp8fYrlhJjDx+s+pTPcF3ebNu6OIQWJw+OMcBH3o/Hz1vDoOmZZAXNhbD+ej1RRxVa9zV+jBJUVLfHpNOTUFOBerpBydrP0hrPtEx6bTwKi7BDViEDWU4UfTFcRvbpfxIvDRUhLBPeiixNzuGVwkW1DQZphZaeE7DyMPfMPMHkCBzNXFHOU1Z2QuTLMbtOvblIGthRfcqK+J4AwLJZoR2TPREik+6BDTI0vfkBeD2+OjJB71Nbr0ms7uKU6kWGLSfi3jxSM/UG/uia/iFtW71DG8yDhWrKrzYzpxHTuHLbgsX5QrWcWAMAdnhWXZfExsEA3GA5flM+ZEX+orTgBslQqh1eSoN8mhxOsd/msxWFS0EckAbqcdplv705JijTQ8R7MyVYGCGpcrWG/vTNkofXpwsDrR4DSqDdUwieFS5xavuqFisY+O5QoL4Zk9axeNjHTU9FUV5kQonvZG0cAzEkiWlnQJlE7NOt0mgAwcidE4fKW8PuxxAlxfhHqRC31/16q/ytHk9GG3DPxtVen+RwGB5tHiSHHvRYdxwBB8jh8EXYx7gxKant7HL+krVQ1+MaNFwaCLSX8FPKmmliMconj4Y7MIsC192FqqduR9m5z9iRwbDJWi8lF+1grTtO6JlXaKXT/WhCJcVqyNALzwgk08ANk0dLPBg9nzJ+VRhgsw5pHmEICU3o9eSXAv4EKjq8bb7RLy26bPJfKW5zY2OlUWtAXHPX9usKCDLdtZS5Tl5AmQ/DVLbEs9jEaO0zRw6QS9eEodabLeTfg56bCIxuI4PtBQFGude04nE287pop3n7Xg06Fxy+rsLbW4rBT2W7E/bJvxLRk/2Mj7CKhMYNqGIhPmQktVPcQm4UUxputBKMb9IWWW9pLk57vlQGhz+aW7/osOk3o0HmSCerkhh+E4i3iEgQiBAOd+h2J1tHtWWhd6xnp9h0+5GdrqMX0n+BPNvaVART8a76Ryl/u0EM1SxBOBVFGldBZw0gyCWYOMNukFlZd6jgf+KNsbqWtnFTqlwwvnc5jhS8fB9iY4YhZozdviPw99Fyf7dxbz6o7XxQb7QtvdgynFiZ0XZ/mcuqVi4qdjQevNXjEIgmT972YbFLP3IEepd5j6wtw6iiEDkXTQrYlnCofpd5a84dzRw2pPMGE3gOhmTMHxYhtzYcwU/aF2btalHc4zun5EruiDNMhZZEYpHhwyDYAY64+1rPXdZvxJ7HSNGiKVx6tQ0B+0JulOgc+iLArrE/9KfQnTsptPARcXOxeFB72SD588Zl90IHfuZ44FxIo0uOQQ49z25S8zLdJC2x1bhXEbvCmgpbUZwqdQSmFZ7vfEOhQbuq7TyofURUgZB0lc5oS2Vv34FxuXk4017zHMVMh+p9lxfGpKFSK6VF1Xd1WHRWhKpfbS0cddPA+GGbZ+99bAvrkLtESZWzVRRTdHG6Xs4XXGs0UMlYPeH1bIycYAk7elR2YB/Lq+mSE+tx2wXpkj6OKHgtlpzuW+/ftJwM8cu2phQt322FjJCzOU2mYt8dp2QTG/beS2mLnH/UQ7x6nTu7ZXmVHg8d3TtxHssRjX7Fw9JJk28o3fhZ0cOkfv5m03xSMnwfAzkppk4iwW7ToX5u9jTyyvNAaVjo/41hBzyvIsqK/Nw6mUCqGzjyLdZGa8mevMQsvMNvz7QQnjv5kisLNUGthmLFKZjMbdDRk6ePHgFOR3viPtEggBjw+5a3VS1IW5krE8mRnwtCI/eEX43lp2J6ktDXuNs0uGdykgMfyMkan0nNIRrhtKtoLYhbHODnDxzYNQFBgTpa5qOVuksqJFK75BrUki6YZdD8+CySJeamNKu+SZjNoZhnPeNQO7qVLHR7bHDQyWEUrOhaGAR92MMLI8DxQlwmvLmu95sJBud/kcs8AdNgaLdvOjOq4FRLHj0v2qNFEPXfSgJRbL7lf2jdQxYmUUPu0m2mZWFslcKzbaLkmBaql1+yqy30Qw94VmIr0grkUhPO6EXBhuPiIOMvCfFwO6YsMSH1MdxxVhx3dQHamOEla7LmZIgym20lTgVO3cNDT7f98JG7x5imYGVriBPpBKgEfZMXrYSiP1vmARXwSiDtXdErqS38O/X69uLlPGgf/g52GrtWzT3wqCtc9enrZcJOtyiCoHAuR3svhhAdmMKtkCQN+ktmytHsoPpty1/2S4w7+hGt8nKHB1CG7ZFiz7A0TKe3G3nNnsbeqYWDtEXVjlXZWG7upept0UABPxs5by2yq9f7uTb+SEvdOwC2bSB65F1wtFHHB/JILS4KBbHVnpOpNG17Puv61qV2u8tCJxJTXJViUfd6IVPd34fFrl09AOiXWDtZ9KZ1R89qGDpyFoG5i9j9u7R65fsYLM/6ClW18Svi76zywsWfocHism/1IJ+2thxVMTaa/Y+YbT85Hd/gkqkGsG4kUhp7LOIJCeXfCWwseb165xPm7sfqX8fNeHUocIz3gReu4CB4nduPbfT/FBNcayj0uoYawt9Gog/rfzmtbhoOz91LPaluYwYJrC+dU8MSyF2oKs/lkGamYhDhWKj1FapZCoHPcauD8E/WUZek5GC9KuPsNC5B0hPkgYs0rc+3I8rSwp88ZdVMr7ry9lLSYRCtc8u+6+qug87bWr0K2k9+0f90IZIdWAihPmadwOdZoavSD6CpECcCZpAR4EQ+EbSFpdUjyoWcaBRiu9sM4BTVevod3bv73pnjpUQq7aPcn72lYiEfnXGqNIGP9u3K+wObjD2X+PeEuvSHG4mLWtId9aWAPZphfTnbaLdxPtEwJaNEQxIz9ZZMJ3NNyke6rpwa1hB8tZb2nrTkxSwmWz63bQoMv4xIIumAHvrHvHDAuh94DtQyzmrVsrq4BRTOhXvFsYdxGLGDqhYua0cfeCUGu4IwDQzUezIyDgM9ez19x8/1xLJP03XbSFmaH/aihmNZI2uu0c8f+XevRtrpslZIMxzepTrH+pvXR9+EUOzH7M2fH9zFOXvue6O1GVXNFKbmX1RuQlaiWa3GDs56Ga3xjeDGgDebPtpQLJzD8BgzmNTbjTU1jIgkkW2RTaQ6CkELUDALK6kMuCkvwbj6kMqJrOr5rPMOU1BOKzUL4tFAyCoSs0BfcZZ6379xh2Ki5kTEKPXB0pfWWB63CfzABLRZTu5t1mebk2lY1Z+dnXJzri+ybgWuJuji8O1zP4imoyzbmAYzH55THK8u2+/Ma9UHiNBQ8k0MNY7sbp9UldLHVs6o60cIS3vTIOJQkRzx3pJiJ/qPdukA1Y0bujX+EmnKsSbZ+S9MG65kUXbPxxMoRIeGPSPnIzOcHaxyQ6QstxJEBZe8GlXPzkV8EcT8+L7O1S/8vnzUukFrw81NoFy+OaCbDfciQYRQATomhmvjQHFjSvJJnooloGBPQv6mxHRe9Wf9Lk4iGprR12Dj8mwmwOh4z/XdEOG4PfbxbwfLx0UNaNelOt9+yMBuZKsH5M2Su3e9/rKs9ogw+Mrvj+mDOgBt5eMSGLMuLvfCN+kmdB9IBFMtMbjHJFWIxsYbQJObppwUeqwdVGGq9heNwdTVjNp9zBf2b9Ec3Kp+Qe5IZZhgcma9xQpKDQe6mcyFzKbZk64weUbx3z0mFtkSS077tZdUvrjPZ3u2Zqy0Lyld9Jzx81AUIGxpwxfgqZ0mFCoYCnq1H1dGN7mbPVMyK/BVZ3j34orvTMf0sEfYaxMBLsb3Q64fPnT6lxCeoOizCoDLM/sWFMfh914tCtJNB9NQ4RzfREeaktaCEttJp/rmDz1nTI9V+VpL/AS8de9ou8rBSUfyG3lJQxtSiUzSWIaiZUtqH6l+xVu+GbGma1tL/oqvXLJTbxCx8iKgv48l/jrW3RBFtGa9ssPMQTXvHXSPOARzgNSyekHNGEBY2+yFjtaoghkkMKOKEIkJzP72yO+LRM7P4WJlqVC39Hcg6h5/Zm1mg/PFGLikF7z0XN0ZlRqjojfHeradY8dAbBZ5qGEExmWPLdIXE0i68ySO9aHcZ10h2jgdYYEwEdGN/JzUlJZCgoA2Vw+883HRQexS5e0hj+CVnlpntYLF2dRotMRvkMIEQmA49V6N1zRHAXCjVo0hF0Ndq5rjj9ZAU8CbFz+dg8hBOPHFvG8UaDNHKI9Rk+FOCoBaSTwbJuopLaUgY+ddFGnlmrVOkoAXL5SrIrJWNZnkJd2wwF9lCdtLS4quN83Io5bxQdE71E5xnJqdvRDcVudyaU7J1rR4T1dOczHnmVOUg6/mGTxPy0pszp4bNsVCgTCpgkR9fsLIeooEdjN6l79v1qqDojRd2VvVwbXFjUUobnqfeI56U8jcnmLVMltv8wPxENGNDWhy2XEne2ldjieYymv+iuS1qKH4wTFVjtiQ9kXQK/Eue7ANmGA0RUPDn51NwqxOvyiyYOoMlNYc/00KDpikdrLBQYACqusSqj9uqZrbPAOz/3joYWnxHAxPckvmUgs9LDGrKEVMIYn9cxxg23Ma/mi6rmdB3yk22x7N+h/6CsUFWo93C05sWadGrpXbCumKxdsIxVLY93zcoyrHbP5VK7ex8hO1T4LEMwkBgo/T9RxOC4Dd0E+8RQCUXhAiPDY+DdZhmrE8s6J2cmI971cKsTzcbh5/JirctWFsA/epml9d/zwbzB21rotgdIsBS8rSrOTos1EFB99J6SHzdEV9Q9gtDb7rQ5MMLbLDCCycwXPQlggLjLcC7InjfIIYQNFhgDkcwPWE4fl7OPNmUxWAO/aVAaftQAszz9OQqRE3kmvziS1TgRxw/pmdgh7k4eu+92bODLARFn5yoy+/R0BwL5QT9tjUcfzY1qT2uG8vtiuK7dCPQHY0Wq9s8S4tiJeohTgQhwxMabjKhuvyQYeGSgpeYM2x5Kybj5NFbFkazK9ofHXwlKrT7OuktZRBjzbAn0VlpSXF5XZC5UkZJC5825o+wJf0i66zrQ3GQ+ff709UUzBwXKavNWxD93D1n3f9fXKyfFohkiwwXx5z/cZ43Wu3uuinIPWRtuHpf4S0/bP5NgW07Eav/Vc3ZLUDWC72Zgju7leXJG9ZVSA0OXqphvnl3yrWzkmjh+4RcifCZ/WuShBR/TNDakqzqMndO7SOzDL+kUm8WGwxtn6pwf827MXYn0FmQFBnycEUp0t0N6DvgmnTUtp+YTTfM8XqT7cmssUquC3Hxx8rsRWgKdlONE84IHzCh1sBc96VOxNqdUOuvgPnHJQkd1G25izIEBAJICs9pL8Ib6xQhVAaEDTEAl7yuGfjQx9SVInECNaJUH/AmbPMDPPrYLUKUaoKsLRmvkiCVew2phITE9tu+qb6QvG52CIq17egDblRKMNAFP/g5LNlaOxQBewYR1whfHyOZpqkqtYiuvMfWlqByQWyRaFqsR5gqdqPYf0P5Lgh7dS0xetoKHteJ5VLf0Tj4t+vpch8F1VHE/0e/mX78Gx64ucy9jhWoBCqPVu5DQY+lVJuG/OAw2asPEfflPH8BlU2eYtZJh3TLW/Tr7qsqltUsffPEGs3OF2PbizFNaAjvFmK+4iDGgCGiVCHeBJjl2GRS0+WUZYeUtlGZSSnCarCSs6qHTR8mQUJNK4TVY9Hg+mTwgpbihy5n9sm+uPIqmWW7NoaU5nu6VmkW0hokBxIlHjTp3mJqZ08oid0bdS92lP6EnZc4z+2oCmYrOplrfKJ25JDVEYOcLZUF6d7XLTb6pCS6hm+2BGJyWafqRMDEw+EAOYxAZv15CETMEwS9uYgMWnSczHVj04Au408XRGmkbckDq293aihkkLGq6KdaJp7Iot+eRt5m5dzM+92v21U2zAQHb0YrpF6oTDfHYDrk34Gop2SON3TvTxHd/bn4liVKxViMpczBnvpaOvq9781TzDwsj7S/gxkVMvJOUazhlzT+xNjep5qJhr/fA/iWfZrX9ocCrYONiRsbhIPoyAO6L/3UxdqMBBCpBA+e1jtAkNhu+OtbQTKrZkY1naiF5SqyHULTmBp0qfUIAReldCZ8NLllOvWfonyMHtpTH2S0aaA3HUyo0tLeNue4B+tZPHpoTTFGAxbl1GiHny65n4N2bGjKXxr0HiUGSFcqb4esGD+LSivcrjKigKx4bLLUPJ1chCS0ccztJsovCiiLjSo/BgHor90RphLMtw/QYkxYhwmoQ4usrAh2yz+tSHICr85X6jnpy1JRLzjxz8Esyopk5IFVEScHhHxKOcgJMkhhxM76uvPa3oCBtNjdT6dUAidkEYSrvbO7rak0GjD2jxGZFhD3GBaMl+W/vsA54vcwRshqGJAktSRCwAC6kBjAs04z/EQcZ3eDLLNFq+f0ZY6t7d5XjJhOUEomMpPrU+ZRvJR1zsUlDyuOAg9Enxm6595WqMFJmZyPsGzChF/MpuXp8zxHqxmgWrFYZXa/pJm2xeSyoGAPzireT8Q+2H+6RQ+YoRWjAYsbf0tBAuYasH0Vx+iIJKfr1tUh4mGVc65cYLDfX9IiHUWxpCKhFumI4ohw3vEVQgNmjGNBb4Oh9isfip0y4PebZZXZNtpn/YdofPh+gapQWe1/yISk6kLxdTM3DCLGwMkMofGlQchG/GAtdv0+1S1QI9EnIpJPQFfiH/bb36Xp9pKYoIMalYfhZdb/g3CuIymHLmM4VImPzsNteN7os/SiEge9zUb+RiuU0FWZC4SJ55vihMPm6VROu/BTj0/F4ctrqV273cHJOWGul7YWivnARWCynhJFTydT3iIycErvOA7PZeT4jPsSo/Q7ZqvnFg6xvL+EHudtom6y11pJIGMO2AsJ2EaPxF0uggBA2Sy7H6amjxBOX5pgHAokqDefi0bqDy313mQvN38RDfFS/ZcS2hrEjT4wE++WI2nECOGivUIhJFEvVZ2JZWylRA/s6SviFkaMGkSLNKTxc8oSFuEFxGhwMYbpRW+1PXmrNch3gPvHFinyqZ9QzPJV2FPos+uiWcpmvXEwoSAI5Wm+9+KZ4b7anmwBtFGAqKWW9hukNqN8pripLCoXxAhhEfJ4XnQCwKZCpaJxtQx29d/EFmA8T6vS4IufHkcqZdh8VTHza7F11R7CUYah8RpV77bZRdi7TzWHOb8Cn6V8cAwL0FBmK94BhjxDtAIgBhxiBCoDQ9znWKVX6uO7YVQS3gxSzTD2bB7WWnwJ4lvyri1Lqt2J2CGTEPWZ/6t6y4D5cgpY1woeLJmYyE86jLrZ9Rn7iEFrEyvKPjAkQeohDwX4G5GQbL5+A9Tov468OFxn6glganlfHmdyhzANKGvyS4IdeImE26TFhZRJ4OBK8Cbu0FKpVpFCx15J99rJ0GhK+PzJe0uSqvq4hi7hNv65YU3YGOgjEh8tS4jjE5uI7T1bU/6hZkWMHWdHlT7zl9l/7eZzDeqa0jkWbDWu6yVmGrJn9dQ+3Z7prFp8+XsWFa5mIYEYKpP/MYcWLOgiLMvLIfNLnb/acbsfqohICFtEwjA0CqjIEPXxevRL9Ryn4bJ5pJiVzajE0v8XOzZDAaQT/gXHkExx4rijcvJRbTR6tugg9sYsR1CeoQL2OPRXKDSIVTj351XTqX835AXM+1kc/Bho2MZKLd/FVpw5yWsZdO0CZyTKSSY9Ip/hiHHNG5+jY34A0FgamWyx2T6/6de16Qkl+xsxJ23xp2/dbjG23dFigUzkU9a4cHljjIfu3yh9y+2uZLl5aVRsAL8VrUEooYwt/oznq+OSPebMvV/NGYzX8G32fAQ/1vae3pPmd7O7LJ50mrl/HhzQNVMo7d4t56MeSKX6Un7+SwnB577adlBU+gX/XJTTVSolU5Gf83BujuPXi7+3Ds6I5Xg4XBQH/NTtFhgrBB/xfUmY4C4azo7YGrfGOHnQwZ7S6Y/A4cW89wzsEYi+UrpQyOc+WG15UvTb0kFmF2A+lulGr2O57KUfKTkeJ75gT8nQQDpnpzZ7p44ftIxCcs8+bTg1xKRA49R9o1WrYZ+2s5Wot/DUzl+fOyr7GoTb01yEoT5bOGRJEhP/M8vwua4Q1CmNxtyD+RpLkwwjyEGNfPnd6RuRNDutFt0YvsNPpFot8pB36NvrCQ+/hqQDITFog2+SsVMWgJjOC5fJaN8OwS61sc3wkBs/3kDNhHk1DZXD/C7xyVCPXeSQ4AcqdtKc6SnHy4n1PjpJV145W7+dzgrppHRlX4Zc3wtgpAUiQZnMChqabGKVK5xX45aFb14f9nJBczLJN1xs4pP14m3GB1JiVSe+UG1807GypyB0hBngt4iGPcBDEaJ0nq3rgQWfZhVHdntfbs5khXSKkqNJPkVTgyBELWDMsHJ/RSnPhiqPyWelliEAF7lxmvhADm8NktHtsCAmj1gR96HAd41QtCElexyDi5Iw4rdjH4KxK60qj1qYNWduF4X5ml0kYwQvW2Ga+2EZ8tMxvSTb1avejMOWtTfAF+R4ojT667LcIoQ4cB4x23IumGChSXFJQ4PkySjFufhPRhos9pCdcgwYsQXNaOUPXT1MMLbq/hdLNdv3Ot23fo67iI53uAe/FMdUmONIJu0LYX09EYvPvuRruw5FXoRPc/MfzFukCTAPt7BQdJKhwAf5IAMAyuCG+41CnlFTjwV7hNwQYed2UBu0qNIFgFbTdl9Fj7Ea8wBfYElVseExDuWKsWCPIVtq6kxnIEleg74z3a/4MuMRquXKzMUIFq3ajRe/ypzo3rjY5QnjzOdRLaquTH9iKfezhHSTqYs8LutmWqnSJ8LEzhCoFICD+IojRKUOc9k3RJIpTAxhcAQHs+EAc3QqA6VOczJ7ku8g+qmzoMjdESM5jb1sm/2AjIAfOnYCEBUuDdPrWy7XQ59sSjDVHa0jhc3AsWrdtg6kWqfhMCIdy9SuFqTU1SFkH3GrcMqoERWiy+UjuD8mQ8FZpUjQrNZxGyaQQBBv2FFvQsV7bAKNZ+I4++ObD+sagCOytszmvk0V7gJ6z8gomW2BqwQPhAUho3sm2gbC1o7JvdatAvBwfNbwrezSVRoZGDhXrUtPDrkM2edq9SGWcPvO9WphCPWzn78BVGylAGYKLTvouQ7dCGSwVwFLnGtMVvpCCKbCm2Rs4O8YCiaMDdkqX7vb4qndt17bzt6GBB+oG8+eq8o2vYK/7myPgVNOR/dMil9v+7xtUGUBc+8CVyU+nBRLSYPV6UOoTcRs9f5Q69jW8YOkfZ0N0m0KRKU70uRcVL1pMs9PKx/5sjC+xiuB+c5Dl5atOGUmdfWO/xxqqgVvW3HlnANxDsGa3R54O4PLQCCcQdrH5weyHiYWBdfk3diKdMwUBrCObUY6U6lHf062Y3Hp/Rc5ogBPXHKCS+gorcoaopeIAJDgHmXrrCNmOcv3NWeetlP20HLnTfIKCR6tBXNRaF5+s7NKW2kMVOS4Q7WYFBAqhaOCPYfEnbSettTYQhk1O7kefCQ94Q/cmi5edJrKjDScJqLwU94vNkK+iVubZ2dcLFmOnym8xj3ca6o8d9xLWolYaW/vFK2Y0B5RUW8aC9ZAa/Fk0wyOIwt1pB0gyV+MVbvW9OEp+qccP4lKTPTORp805GwuI85c5py9JATwpMZ1MWN7kkaXLZ/HSVyuN1LCGrSXWm7CwlLlU30ntO65ARQhmsghu5OAQJuURVXPiGW/xJ+kRbl9T7kjU780xwy7oNYHG6zY2n1SCPl1Hf+vQkr123kHsDIcFSLC62tt9ryIB+JfPj9S9AKaYXzrYWWknNuQ0qV3hu/vsJrTOmY1O1Ty25FqW02EdDi+DhNNtq77Eeiy9Y2QcPhMOYlp7uW/USUEuL2h9xOjEC0m3nOqjv/hzh+s+eqb43GoEGKwoMbjqMahxWC52P5b74wIYWKe7y48F6JGgaAjQbHoaCi9ZvXOTH3dpPKo3RdTWcToMxpMBh8g2Iu/YZ5PwkRz904xPlnqgQUhzOggdO+nhAuGNzxcYORSLu1QRSOYarqM8xiADLGJwTmKxvc+PmAG0Yo5bSrQbsrYIrW7LRdj/kAwCz+exesREpWokAw9p6F0u6WXSZrt7uj+DkneYFHajajxMVs3Mx06/sRX8t3U9z8B+J8I27jVXKZBNLN0JxRPfjoJw+DPvc/+9Ypy9nlOJo1tYg0WiKoLHEBVx+S1IjsVjcZmKAYyQM5XPbBkB9AqhV7cQoU31VEWsXdHocNdjoMMfqVnP83fL9CTIjfXSPve0JGhX61NUyPVA0hB7osjz6wmsuiduaz0Ez6pkUCMutzPExuzmh1Yz9f9jzvAnohL3hMkMKJd6umA4HvYlT64T/JqSYSjdW4ewYdJxmaDPryY3Gdb7js8t5tl9ja6hf6VdgwlC9XQgPKsq37QgcHYCwnWf/Dn/VsFHg8S192dotBPoNg3l+H41sIa+hKH2r5fqkmsrbHJXCLq+OMfOQsOdSN7aP65bhtADYNC3l5f8PJ4F1Per+ExRwquUeAqfnG3absT7UhagLuhYE8CTuLC2SP5fTuYxBRDGtnw8x1nF9RAA49CKD02tnEGt755vhTbi/QnRyXubbFZB5zGMOXe0A0HxCTBrIR2omMIeiiG8dkEjWERPlu4NdIW7qigApCLOXcbghg3PRilssUcjr0/dq/G/bCBSS17P43WXybqlGhB2VRBPPBhu6S3eI+Te00RFe7SOxnn9g+qnwEdJVpwknyDMX9bKMNJ9WBF8/npu6wb9GGy3ELJzi8+bEYNhTjk27MX1/edS7MMjf3z+72ctTfA/11yodzDQoVayJZ5ND4YfAxg2COk6KUhJbvS3RNaAjo0iqWP38CCtPsCsXdy779dMayAlUHN5RmhKyV5dN0zSsKm9WyHac4MnU52PN/fVuD3s6R0nq/kiVuoL43k6j6mcAubK6C0kT2AtG8XjOjF5nuyVSSjwMPortbXIlLLYkPpsugOd6VnwO1QekuBaLSeU5og0djJnElCTkoJjaG9V50pqP8GBO7XBzrbWHAxGTP+YtNxQpTftfdoeUx81oXQ92+bAVAUX3Yf81KlJGZGD2TeaWoQ1VgLcyVvcjffKQSAXR8ystrx7GYEQGXsF9opKsLniYnAif03k6BAvIxB5+rj+b0uneBpfivxClJwNKNpNfttfFMNZfNxnpJyEFPVeqpw9H/SouDr/I1bIhS+6cFOJn7jzVPsXLjEFH2jqJOyeMesYdFiHy/bTT5sXI7B9ztoVpXAIm51/ncO2PTRAFax2ut/VGIeFBMhxQJSrt3HltMMH+JlHVtMMpRMF9qfA3HtbdgOI9huk9RDMl3ocJYt7tSC9VXjRULcpE8EehjFvX0dAdmxKAVM/4MYcfx8kTGZTXRJG2/XzSnQHhdzoebT0O0344XUi+wFjbh99qYu+0g37m/wZlS+F9K/VQkJxnMibPgucncjO5Q35elQEwHhD13y8SL3GfIoM4TAQwQ2TiszVfEbS/DxQrpw6HnOqflc9qnRuUQBENK5lk1VLW/lIGVcxr2s+tfd6aBjeNNl9xJPnYPSkczMNGKBOQVLtuqWJOlTBVtiwVS60UqjH1UuGpXvQPCTG2r0g3lg33yj48MJNz/LBm9XikWZu7IxT1OyRweUSFsYiKsIcsDTDYzv+yw2+e/Y88MszZqXJzjYArN9S6W9VcWS5b/LTQpd+6Zb3+QZ/xhaD1TE1xtWCCfWPGHWXrZWXUULwuh+KoNKLDaT/u476j2ZvHA8n1Hs0KUD5cqpEjKsypeKVurDWTJnohMzXUTBW8lbbjzPgp4C6AbXOqIYux61Qnk9EbXqhcclFvmgFWZM8ATiJ8iatiegiCTb2AbnR6EnBoyaaeEuiK7KCQv3XQx7HhNIcRugr6XBKaDj48IIHKpBE0OFRXzM7ZzeGOnIE1hf5DTlcW8fbdxSM/xlBpNNC2Tmv5lbHWkevhMlwcwYv9eSUIpUNi65ed/RVKuUNllhLa0/6ERFetT91WY0/4scOqJ2fvxWnm6ZXlHAebThXVSBC/Wx6x+jlchFj9o/kIH+0A/nxS9sJGQIEOiwxMr8eV1GLS8QcUt11gC45BA7vzXS8EJ8Nz0lLU4OdNQBvQNqawm3OxE/UVTOiCaMpxpUei/qDoNiKGHx+938s9FtO+Xdb3YbpbkXRnASrJnYsChv+b+hghc4fi9JuNQFLw3BKz3FSi7e5TYO/g2S5b7uKWjAt4BD3fJW6o/sxAKh/2X2Rd47yLuC8Hoe5a1+nZf6qp6LqMTGq4bu9x3VWVi74ixXocv/ZW9x0pIoVwdtZP3ZfxpxtC+yQ26n75OcgzGKFtqn+bnB18aZ+mYbXWdnlWEoOi8KoCmrP3q2Ck4cdd5Y29dIMiaSLOlKMLEof5h0z/s06gwYxjsqWXahwp4IwNBMT0Fo0snaMHJxlrEIwwZuDyY3pCreCmx6hCcS3bDUBJ/yTPuDlnPyspYBiuDWQ8Fd7aX0+enDpLr9Qy/fQDAtjrLXJqsg9yZK3aMtrMvMOUr9C0Tw2TIH+sFZBqWBi5HBhijhSd/ckmr3IpmhcyyqRsWUOIe2b94bpq5KryIM0DmOMAi85XYd71tRMY76F4R+lcm8kh5HbuxEwgRHZo4nJKbOZ+Ry5UAgxuwHQkzY0g699FKYdCr3+ggNY1NPCbbCqQhMGmT7fzOj6zvR3ypWefOnQlrfWUg+yxny6pmcnrY/hjEQ/7oT9tCbYQDVeICDbhASPqI6qT9hxesoTKz+vucodkbPPJPG/Q0zM2E2PCw8bwqEAcCbVGneYX5BZ7Yljbr3qSz8FKr/+IN478507znbeEY2qFteA0fuGfRUNNxlOfBQcRi1Fr+VkOwhdw+MqDXR1DT/lcEDsKIaWnTHrQLWMwLY4zNNqhT56uC4X9KeKRfMbuf68st6kC8DnXjH102aLdECVoTp+6qyLX2oDU26eud9RXjEaec7HLWBQCLrYVE0haMXueke1stWhnFaJCIAZwqxGWbla3b8a4NhPIJ0Tj2b4Y16ov8QIz0s0usUCqt/zSRsfIiQ2Ud/zO+NJdCWSwLC9uxtnpSqPNXseo13Q5HJeKetb8M4cHGRav0/GeJFGvps3KbITL1XjPdi6iOb+yljnVpcWr6I456mCB1q6Lu8L/vSI6v7l5OtQqkDRZFVltqhsM9PUjIqQxHCJY5zTcCDx2H9pEMg8uIL/kMdnSmX589K1Evq7VY+ga3q+zgMSe9iMDWjQwqRb6Sn1Tc79Gja/ycEhSUPx1tB6F2tiNeq0j4SBPOdXpehmrnH3nZ71DoLEw2kd17QBvirXjdNC0o4L404H6SujJVHQnN7dOxaY/T6FFJMSQclmDmFAyYxd48IY+q0iOshAik4FznCMjCT7rnC9d9JstVGu1Cdyr6NcVTW7RlMAkIJ0V70BzTtl3RVxB4q9nstFaCEcLY9RQHpRIhCcMPMEwjJ/TZmOkPiUnxXkR6VO09kiWKQQ10WKyYiNPOLEZMixFYdHJmK/hFCBafJ1RcpbK7LOmamVdxKn4WZurQPkfXWKr/HccF4yuvniDFuc2SwMv0MnqN80kz7LUG60tYOYAb2zAMMMBdvcTAMMMAe2Cnwjisu7Q0M+4fWMfvsgUSc21cEeS/ysZP0kOjmp8ZMrOKX2r2GEZfdJtWBYmQgBsa1jB/wPzAEu8prgjcD1gdlNupQIRiIwNr0IVvl1YSqmMnfMgMGrxNNxDE4OCwhOE8laITA7PZxN8TGQXjsbVMIVcCtGVRU2WRMO/XDeci4HbN3vlvacKs6vDvBqMr+K0dBMoQvmPt3CWLtYh5IpLb4Q8RBH75S3QgGEH/eqOBDu8ikBJnw+JiZDhXxPu0q2/PH3+YUwFnyOrjgI/1/gfQy5j4HEqE9vX87Ec9UUBdt/ovE7/zQxE+AOJlnCqLHD7f5rrGMqfayKGvq+P0gvuk8MZPux9ueXoBnNBSyJRkQkabG4HeTy8HBvKy1nsR6HxJSozLm83pWFXzIn4qjamUhWvRSmNSolP0MFQqK+wZb20jVnwsaf6N477Q6+A7j/XxthcxyggfwDiSuk4RMNJgWo/7FORKy7gNlyQIeGagsMOS3OuiZDwBT+EjUJ5ChYG9o0gejuDWq1aXg802hAMc/ubyVO5dUYORpW3yj13uuO2bKtWNRzPrkRhMJxMCilBPjAn13zSSZAY6+N2jEtfqC65mRGxRJjOnxgMWJIDXYjugtO70doh1MCNpVSPXr9yfkPFgNl2z09UUVVuxuQchDSCQTvzm745vMkw8x8pjXuicJOrX/RQFU7pjBnstnSav6/m60RQdPTMLYyvX1QLHWFgyj3vaIk11ZE7xPSlcnQVQupZetK1sLxH6He0kv+Jly9ehUHgG7m4isw+ca8bpPZNZ3tvBaZZt5/1naQvFXEfFBB9HZ/vQJFAFK0kWptljobfFu/KYOTIbGzF2n9UNClkeD0jfKRMqcNiuwp8ny5yWIlr9znvZHd+6V7Ix9w9aH86BHk5gY6q2hHSZCTjP4Us8lL08832DPuUMcPcKQeynN+vpJa54/Bjgx+FaAmdkUxNiGvdK5z2JnIKEfXpzHqA8n1/jHdBe3f6NrFXfh5eFhM1I1O7ek7jGGaKJmJ3LVUfYWNKMxl0tcKQOQJGzCYy+TulsHxcCMqKsVHcv8OjYDFJRoOAp9CTPhr8xzKjeSEFfzLWWTPGTktt867JDzjg5DUwJeG54wgEBBTR8g1kP4Xy8LuHxAW9ORCpzPNjZqn0HvWC0e1W7mUTWXAFTQGWsUxyZRsxwNU55lvDJfBuCrYY+XaW4lXShjPr/qtmetayXjv8SYSFCRghYOSeczwSqNEraWzDSpzDI3tWzXvLAsTJGTHgUPsBaAFSaZ3ivrU34H0tAUfb20x57otcunVvKk8BdPLuWSd6bmUA5tchIkgm2/tQgWwoHdilhrT63hqxUWgtenThrxUTZ/3RBmGQGei6v0pMNtOmDy/9UcZ0QZyKKrLiPs3RVHaSjlG6kGqUShGKFcnICiu8Tj4dkMK94jKqFksmbPoxBmPk6axs9rV5RFKTC5yQsGUXfs9fJoysIEKvyrzK+kPzIVIGO9IoZ1VuyXUHDUR2iQO1cUDhJsywsSQFdMJQIKq/peCJPi4x1PzX+V/W6fOD7aJLn9tk21sHcpTFz8QmC2Z3DWdyCSeMUi/ZsyOI8BidiP47iHrVqfzg/NTglLFt+mPveq0rwGY2SL+8Fjk2aMgO9xP1hlEKT9a49CYHvPya8rShTnCYdHPTYWIscVeUsuUiMIwiBwmnaoX/JjFRRifMmqRMYITYdOzPXbUdk18IN2mUG3VucALLBKqfLx97Uh2D0BsR6v/hTBE2Gaaiv6GkfkS2XYmJooG5GIxDaYCsIz6VT1t/8+PvVJ3fnP0IdUYOk5hdAoQ7fh2wnSDzxC8GaqSMFMK/lh0SXoDqYdOesojRJ/rIN8F3G5FZLwguXedTWwSJPrkC637biZDiMJiUmCguPycsO5vdGGW5i3XYqg1CB7SYFYhYVwyL1yBWkKb1mIGO7gMx2CJQKhGgaiCAjb4K0fkAf7HSubsfIHz4M23rvNR978VcL+oBfRG/hNEKwvfDrD1VaK1XCJIwqpMN+f/NVqGXl0riPTItExdjBc/Xg8Msff+RfeUYOAGF1UQxmRZIoir7zt2HJp0yuk2cxNLdecVQIG/Vq74nMlNGCfMsIOXhfAgD9BcnrOFYlx6iQydkR63PQc/XrIfd+tLQ47dNKWgyrREombuTR91h0YhgPliFesP3SIMUVw87TdyV/rpldFyJzZmWGSeK7GjQcXyQU9vhw7/4mK8DLSb0y2xO5+CtKkCopwo1dOFROdouOhZq6ZsRzCEGIRE9oNi8LUnPZQ2lAzyU+B73kpdrKjFsdN+TJ4sR+zWskRIr9W+X/a6zi80mm8PhhuW4uDdoUdJXq8PW2J59Dtn6k7g70t8NmpprdDWA2CzM2peo6QUeATARSvzISYDv9N1USKWqNxpPzJIUpH5di/NTbnyIb90J3efTPb3VNvOrGGhKuvH4h2hqkrDXm2AukkQkijlE22Uz73zhLVXXlHNzllUFSLAJxhGifMDc4mvzi5Znf0tYNC4MCcN1hM7X92mgiOsV4HhblKltuIyQBiuGaSk6jBpo6Hz0Ae23sTECO05HiuRCwYr3YY7c5uXvUzOdZTM9GhsmkKRJD1anyvp0uinIp7hWQIMihbA1YP0D4I7k5K6Tf+heCGzWI8iAfOoV3goTxqvPzU4ZPNrE30MaeJu2iPySuvPDBmu4hB/mqcPOKf00b9MzCXk6/yArmBJk28UCcbbpiZCZrfova1o87zzrSBHd/5CVPqXUJZMBa9uykvwIJ9lKSxOrRYIpa/8Go9+IbdygyMjuAMPrLY82AQ76L5iTUZEtdsQmF+XZuyRgqV3J61I+88YGuDBTGDL43X/aB3dSoH4ninoqtDHuLN3tHjU6vC05NDEyOnUbvuoZ0pY6PNmM1Wf6RtNkEn41wsKj8+HMZVfINb9s0lIaIoEsPrd2dEjSNYBtg93omG/YKuGOCYDBP9hSHb6abverDAJKjM0xOfVq8DYuuRnM2qA5a7WXE6vnk3LFXdnEiBYIoQYugEWJd6Dde8x99yFEtGkwgKxYUEZDKPKaKtR7NuZUfDTVTWfKJ4KnfWInSYIuGjHYQs1jjMqw7dNFvFjH6/amToyLaWWKf2Owrpbch8PK1we7F8gp7JgO3K4ft4i8XJsdqD8ZxxFkEoaY+GwwiD97L0dDf/vNokLTgrXsvIdrcYjX0ef4Ni/P5ydP1tcufjPuV05jwaQc+bLK7XGbJL7kC9N5omIeUH7u1rIID6gFbPvTpcohRkZQZ5O4GI5mus7dk9JdHxeCPJhUmR4y28zF1/EPwbz5Uq64zo5hHs+xenffJ/Fuj+E8OQUS4HuOjFxYaEmFCF7YRIQgNe5y4wCIZ9R6mE8RxagcRqXj9dIYMJsL6lyV+lL00aihtJ1+rf0osq9xj+6q5E51P+sblEU1JB2fTK/VwMY5How2ipKC1Xna6zCjjV7k0AyQI7JM744065QSxqAaOGaDMTJ7YtRu2OMAh7PsCUyadJc3ZthWk4O1b/wbYJk+m0pO6I5n4bOmvUT+6ciK05imez23HFGWCmrn+xLckHvdpJlmiG5iqtMJmfSI7zRR1k9C0NCsk8/+h/6DJ+ehMERWQ1mr35CgkBNNy7M8HTDeG4JQzXsDdyVCD5Je0nvYDLcBrU7urvfz14GAZ5NKxP8FOD8zyUE0IKlyzr044HHBWUgUs4ojjgaPSbX202swU5TQkMwonNCbTzIkBAGlAoKJd0BHosP5vcqS/GzC3by4s+ODY3fgRWqXQVfkxLJ+MA/zGwnSbWGYNXDmvMfO/X50P8/9ehEtyd2vqb7+3XT13FrpCWjNfOJyeEzN8Ur6ZH/mziNVvBTAT62GwencMKQvtRLyz6T5I88peKo59f47OYLPzZw/oYz3r5IbalyQgQVTafoFnkzbZkCD4WIK/V5YcTZ7zzn+i0uZ9fy3qjKluXl4tfy7rQGJPN22qtN9iPf2NLZbsuyIJYcusOGoZT0f6n9Vs+lO9wxTOZHTYV+s1b8NFam1USwCO6MtAiqD6JH0YR4+yx9FxY6xvSibgXORHGehqCxZJGG8HRHtbsjwofMDA7dyKv+C0JXdUD9ntFYVPcH3cbpnTgQ0CvQ33xht/EVJ30nJUZKSD7gojbPNLvB6h9KkA1PcUDXiDcVTV+ioKSqGWluizaXWTgmanxf6kBMwwW7SD5kH7ZJFK+M9hE2JUOWjukcNBpJ4Y90KQP1Su7lDPzfisfbnNF0sd0pynURDrH5d1V3w9dCINCTLj6uEiP/cEsjLzO1PFILwt5fLlwO3OZYF3hA571bwvUMVKP4zJgyDbZPbCWPdxriiqI0CIoz7LxBn1kkLf7Pmyl44VTlIHEXZhMpPXrtM1vY8fcfZs6/nn1gUoxZIc6qgERNLLwBD4AEN5X2j0UAFs2xUHBF8BhX4uhUJX4t8ppIMONzaXq1nsuZHAbBTTjSv7qJ0A4an2w5ZnSmVI0X5nZ9iTO76UyMBVBCpydBu/yKvJkrVPugbloYQAmCBrdkYf07MlPH/NsTrGx/LLIXZCerwe4lF9kiGYrR5hTY631MrRCkDggbdkt1l7ocFCCh9Rjfo7g3wae3qfMuynS1npPxTStPlZ3cK0rvD1xT8i036MdScrVH6r2bfGh9OtF7xXtzkZ7kGMvkMKQjzdeCoxqRgTUblCq5xSFDfu2kAdYjnIO1FKX7bIw2cajfvIsJ6zIwVmwWrfHApw+l3DlxsH6PdOOrTen6WZEmB2vgqmEz8aUakHiTbTCtIX956nUydnhskITCgej+rcSN0hgZvglZk+wxVAYLrErMN501A8ZJp2Um53Ukh3O8jUNb7qHlj6Ccf6nxtLQGmKhStpjFDmBQH1sDTR6JsGGQAQHZ+XsBhHZ3Ojm5Xh619d47qzWy6idz7dhrp/0prMtngJIX6+9wNOQ9rbdMASK5vxNmiDgk9io7r+P/JMvE8ci+ITSUdibhrFXwvkOqCuGXGkalyKP8x0b7Hfyvz61utW3QXnBhRdXIkYtZQ2460Y8LGE1h5ZO+FoJ+rYaFbnk5cmV3w+nOg28hfq69WUkk9pyFHRbECtNhq+GCqFo19Zm3LtdktmnIqE2S2hc692zbYBosqao2/L3Mc+jssx093A3JW84WQZiJhxOb6xpO8IPeM2wDLOfQi/mOcDR8dnNEi9jSbRPDbPNvKjXEXbB2bPQ6F6DjwgXFCMLlDGFFXNOIW4xTChFg9A5tNmKU2PG2GLpNQzHdXASR38pM54SUxRpZOk7qcdpvEZAm8rMyNwvVSs+e4YYvLTINrjwNw/ks5aWK1kD4M7yL0aKyPiP8qCDknMCt144yuHDFwGQeWfAY07yLgqvx7SK/a+3Dnj8kLJAUILvpu+EM7GrjyR1vPauiEOx5D9p1cPAzS108shlCQb3lJojLVms5M/PZscDi20M6x7xUk9up7G530m4vt6TUNjI/WUVFkq3xXADKExP1Fbjmx2jxUzyS0/0mwN+BCcQD05PW4sAyMWzq4KUJkc9tsod4HjJofHaXYUX9owtLWBi9hrDS7MmvIztCSjt8B8EHDvpchGJOvWF2fLZ+9WsQtGapNImPd7k+1WqGqBET7isknSAQMQJBoZv3UOB2Ur1U8W8vSDDbvZODHl4/9yKleneXupBcv62F/1ED2ZmC3Oy4vPVjsWIQ4qGCh8vQSDDgYaKG/p6PCWAn26PLgGU/NVMd9fQzwouTCL/VyehY0H9o6xR4XpyizmTkCJGibQ05uS2n4i3VjBaPKURlFr2Z354B2Q7ZTHTFtxDfjWVopbJuijsMbHT0bdCWKGUD6n9AIfsoApVALKsYmOIn4OVCMVxsdjsSfr1LyWOhOfwUBxxcBpJlBSceR0+nQSEbOlFtqxvySK+PVf2OE9524hbVxvjGqp8fgqeJwwfExk0MLFwEYAh+eplO8Ldhw5HuHMe/5Wq7u2blLkKZq70r9uvMctXSjCDpX5Um6FJBMd4G28K439AobBgzj4DXD35oEMYIQIQwvxLt2BFyOhv5WM7tUlj94j7yFoMoKgMMOiE9psZS+goiTlYPsYx+BHQRz++TGR4I8wRXrKAy1hRyUY8V9qtlTAcGbkZk/MFj9H5+GPmK53GcaKF791jM1s0sUJRdGNWfXEg0lNGujlpExX/Yi93dlqprlDhRFP8RJywoj9ccI6groOu1qlW3CTppPCZsesJ3KFIq/X30s75yq2ltMfoRcJRjVCL4vw8cQGTQcxBRdvNmzp8hXf7NmdWYsTWJMZr/VmYGpCA2XVJyDo1NsKOL7E3SzBJH/1IGYJn88Teuq0JWxzWpriNYYCV53aqHqImEm3Q2l1wMHedp9F033RFmPVk3zxFMGSnZE2WgE4IRXQjznhXC82/RiXQOlB+yXuovFpr7SQoBAbXJ00YNFYxU2V/5NhvyWVYGa0WAZfDH3dNzd+DxtDJHjanQ2Sdhtvqku/CRbxN6bxM4QL6K+kWwc7j+pMqlEl6OHTtRju6SBp1tI/dO+LdZk1g6PNUBY6afuAKpnZWfMlQEZ6wgqNqvwf8fZm07KVSSmSqDqe/4U2v0es+KDG+JPk4sY1Sum8yXJNv+PUPpopK0l/lvxKrVK/BETBItpGC2crXOSeOH4GjRBt71d9eZj3dSu738OYtmM4VRus9eMYmboe259o/GUzhS8SH3+Iw6OjjCdD+7Sv1/lxi94YScqpj2JZZlAHIXGjQJ9fCQgfumBGyI8m7booMTIiRCssJziuR2ZXRsmFP1KpPR5VQSdGLj+lEAvIm73kt1qWy+E7D/7BtD94ILusKt+V1j0c1RLtqFynqXEThFbegIG7ex9rHb5SQKDTMHWdbVm758bWQfN9wsOKLkpOV1BjbRIEH/UFB+bbuJ4lus1KyhhMNtN200oePun2yfHys0gL7okGWec74QRpfmbJWmeLZ1PnQ6++XUy9HaIgywR9Z2eoZSX93PcyF6+6Xe8Yw3dhgmTBrn4Zzjym+t3qlTd44qHNCjkTSH8EBjW6BPrZq1yaIHu2L4sgOJRN9FqUM3w0WpPxwtCMoXUUiGsE7DSVt1an/LvEU4EVe4xB1rzsa0Et16maz7bPQKzdLHL77Dk1xBBxN6tMVcPZj+fgWbgCfJXkfdOIZKpYfzzSfMVtOJwSZLsghbHcdOqkkdzVjAQDyCjULbzW4Ol9RJs4LQEH8O2/XFxyiH7hmNpOyW23zOh3r0NCB6J8fhGFRRAhWvvR5TdUSC33oaEmIWm0NtQ+htptYiCxZGQwIehdCYW+8c2CiMXduC0kG7oLx/8Het4dys2MY+mpmt0Xt8VxHovwWAK+182ZRDd8X/0NIxWW1YEvQnbEU6v7KhNCaPmAvbHj0ZDKjLdcb6cxOWo8ijRD838Fed85bsiJuQWg3pfdS83guhZpJl3Vd1nKIrttnEnaOS/EhuN8dQbKySaYMucJ7e0WhNyKFTX0p3vCDUwT1oLeLSOx+nJJ+j+HM1VypsOFJT+azl8sEFTOr3b9GvPqw424YAtmq2pHN0iAJ6JL2x3uTEAgeWhoBsegfI0HITnmcjczpWOeMYfthMgm4ZRV5ckpuOJnfyLHf8SGMwnbaVD0U3wno9QiggquUOc453xMhRvxVTK9+iZbHxvtOu0In8bBmDWOgxArcsWHxSIpnNaqY4Y7elgjGDMDn7ydHNvUfCrB6KozynNgJPTTHFWG9TYcxCLMont1QxHZMApQtOSkUE788hX1SmFx+lefEY8D2OjfEmJmqtK4F8IRDWxu3GTtLwIOBv9dckJhTuA6sBwsrrOITg6aL9QJBg+AdL0CwfdO2dY28F6sn6I5ikzJI4er0qzGJ0qSfuiRXH28Vom8jR569Wt3rOg8S3gvQp4PBYAA+YWpu5AG21b9BL6TIGmwvMfp0eZoUNJ8Dj64qXVWpa1Uzb+nWOB7xzWzIDgatKD62jcEhQ1/AqfszUMuKNGiwV/FPSbEQr3xFpkRA8BOeNaun/guNn+yuyf0qZzutVVcYGWlkUyBj7azKMBWIo6dYv5/s2yWBMoIjela4lT5g+q3TcknLgXf54V0DQzV6bGbQqxJIQCZ2DElZBHP5l9WWlYmtIFsYEKqMnaO3jswZT9hjTcumox6xepcEx4UQZ37twPYYSMLzQOJLEIpigEdDl4E11n3zcuSoMONJ6zfILJBo7pLs8OET8T4yBVNv8XgBmvKBIzVpZiBwqpb9nTp99bhHRwNhmyUbxY7FkMQPx59ihozlujakEK2EYJP+qWOE6j6qX30/URe7NcYexkp6pnYCVDrs4SFGv+I3e9CtsvYsFCix+DD9bz2BBx07daddK37iwBqXwQAkwAWqRFdbvsTioI4d1oYKEAp1IJVpe/8D45LOqElgiyHn8kRNx6q1zD4GMOt++Do/BTvGwd0fBgBOA4d8a1y6lSYlzRBE3b8942tbbb8a+bm6LyUrS2O9xmsaWQsXyW4I7E52z079GZKP1L5GoIuEyAdRTiFAWUMOwlhyLF/L93WCpcmrm0gCt4gKm2JZ7UCqNe7hlLGC9h8mfixmIWcWKZmS9ePip7P8elkNMIGkm5Q+iyQmIqcUj9yPo71RLmK9fKXIJm0X+6H5ZNlec6kOD1wl4pff63quXQO+BA0Uyoc7p7lwEEIO114+GTURtx/3CIjNiJ2wd1ID9tLnGP5VO/feiuApQOy2Pd4H9U/9W84Km8NFZiwon9LLTaiCNSnGho8+wvsfI3l2W2EdjilyquIXHscz+tSfbbqRc63sVgj2ukU4dhYukQjIgfLNF53/JQVlyuBS8r0Be/L29frlIBVuGMIS/hTKQekjCQ+pjOcM9KTSVJeNshyyUGWkO4QZpGUSkK/7RO9YqKNH+2DoGKf6R5Tt4zMQuUeTEeDLjrXm+Cvv7y1j7KPnp2VPCColS6vmalBG8DWs9uLIQ3ze6gHlU5xhZtmpXg7dbluvWSdDi0f4otqMmWsWJPVw8HqL74zfM5a0ESxY4MfjGI3wd7T5L2gnj9krQc6OLKWeoWb5eeAoGxRgZtX1lXVJE1c3PRx6QN1r6RCOhN5su2XDHUG2wYmDwrwi5WsfT6u2qxH1cjtMZ6PoDHY3NEH2q1Y9CZz0ZKt1BFNhMFmEvfHGkzZaYX1JoRujAV5lmDiOtZiD5Q7QsWPrV01p8u20p2vh7i6zgLNG599c4PewvEa3M2l2OqqIASfomkp34bjKkc7/V+3LSzTOqS1MeIR71DVp7d5FHug+WvPmzFIu0NhBqycaa/wCYt/KKqCCkdrZnPqyRShIH4xBjT65Rxj7BqALO1Q1OEAWiiY9KJVIjrhNEOW3HPr6dIQ/a7Cc8QRYUILpmZGskMzvDqKTFOd9ADZHgf9IvUBAw2yx2YiYbQ3hahbMonV4BJ8z4jGke3kjYOJ2k2WCx/ohv7sXhppHGAqt0Op0DeJu6yWL/5q1dtVnoqU6e161PQFDmQEHYxQgemps4n0cAyaLWKi2G/Uw4aYtlcxDxXHaq7/PwXK+KrPStKsQjD0KQ47n9KIaQTn7g3t9IB7tDk3ltZurjtGqTyhR48wPSslbMIIFgTkzToQIATfUX+tL+pSnFv/ohcMyUb7jkoC7JLFNVemtP988d7TrfIVGVZbmdjQX1mdhH714mNs2PrQ4dqUVN8UwgbI6zGequcJmE/vXLix+B2OvunTGlZZd9d0/fxVJX2x+UlmHIR7TZYr0vLlYbRT8dIZ3TeeMk+3scAXA3F+lmN2AO+0BdDoqIhKEV8b1enYm9+vq7qUx6LGHWUucHdPMedbP2a6hMd5vHS91nji7c7D2hC5g/JWpcqkGREzI7dcBWH6ExVqqmnDqQ2QF9nGJOgdUwcX3SUcVcUMuiAwNDJF1RAKj7HuGMAXufiuh0nSWlmDKrQHxTvRkorDa2BWYysapaGHQVNZNBq+t99usEiksRGGPlLxrIddn2i60zt/fR0XBFPHRnCHcDx1RIH9NlMwoVD9LCpEbB0o3FXaFYUpBijKhC9OrIZ3oSbAler1exhC29gwIRxYciLIm1mhOdpaTDIIiyiRuF95nDFS588iQBw93zrOT+jYZ5Ezvo6uo9meJLZ8Un7w7QdcFgcG0emV03ndWNCs541Ruzt7wcelbxDxQ7n29WJw5JU0GF2l7yh8y60Wo7VueKBaide/BFjT141gkakM4GgXUKOlLsKxcTSv2mJbY+hS0IwBVx9hcgcITrH63oNFm1jd9+PpXQRS9olOcQDi+/Bdhqb6ex99oLV+iDijPLrXslFIbn8i8CCnaY8cocLaa9RxzSx/it4bOZ6D8tbgx/Gxf4agOxAwmVd7vTXn7SlmsLh1iMK8Z9erSEXuln2qf9nNS1Fb5DzWLClGHkMLJJhJrVo+AoPRqEl/ULnlhkZ7G2uMhGxAZE5etz3UUsPy/jZWAq5TTqH9FaHbWzpQfYdf/c6rBc3SjV9yDlMvtPoavfNHOcGqwB5LdMl9X1A0ZTi00E5YNkhX7jzqQfSLL8rR30At0EFicCJKWxC1ldayJJBLqmnvW9Z91WXMHFrCBTrAxI2E5/C2CqnY/155beP5mxxX/YTrcmqZN1+9Oj2aeLxrtF/mvTwKUU/C/doIYtm31QLOC5QwGCDd5zNxymwxk7s+PP4+9dsCdh398HbX9B+P1XF3sk1uTC530BCDPcxWDyZFdbP5SQv/ZJuvqmDVFMAxdhJQnDi0C5AV+w/polIXdKD/Vxus2UFXuC0eyaArtURpsIRC8oxyv+hrWh+Ozkn4X/Hu3dpH6JgxMRHSTJBKrFw0v2WdgWIM21NJsj0QXsiWCOKKnn1ujLuttQe0NI/jSj1ZT6incOI1LdxgGGVyEIw8JXRztHWK2tqoTvtyL1Q1T6uq3h3yTqKonu2JOmvqkLAej6iq25Go4cYtp5PneKQUaUgrzGJA+Yxa7KYaXyZIJWW589H3uH22exlVb0nu8ztgP99d/F8jfpstghA2VKLXbfwGb01/MHy1/Rt6rTDg+aw/M5mx7Kd+0DN7F79EzPgR6acjMTW/WxIVmwV2Q6sDvkA3WCwHgiG5eRBQdDLBOBTRQBGwb1Q0Rhsg5+VzfGzxaL4X0CwZ6xM7XXZsojtNogWtDa0Bo2l+WCKJ+ZrviqAjIko9uWwyBSDOK4szpaCi8IH5VbQBoY/sbwkUVoMt02PY26ijdEjlZLj19CX2fdKy0N63V3oZNt9UeLXVmLzzk9hdhAPgB9iEpkWar+0RJFacYXiRZkvZq7egGtoUTMn3WaC7U6tiov9zyxXeXe8v1qMoM08wVarTBaFMDEEYliGuOIUBfRnl9s7QXsBnJB1lbmTkeXEVyklZOeuaj0WhASiavcnBNZ48k0DIXakXJIY6MRsCYjmCEIZnDa+GL0cqICE/BDgwwDVVbOBw3ZSHJYmpqqLAF9rwTKd5Jtp+9E6sAilWbj5Kn8QoSjEu5u2UTb2V25AasxYBZe0vtQeij6SdzuZmy03HLhd0vRNEG/TehmnLuBtQISuEiCM18chG62cMyRdxzXD+vIVFya4+v2musfdXbCytsm61pxXEDYv8/4HU6DoPooDo32ImYiQd/+MJoepKYLivzVcGy2XYQZH+SUoxgAIh9hNvfphnmFsnJ1L9yPGZOPwBg1W7Z2LsO/7NtNBD52ya2RFB4GZ6dU6zf4vsVQqSaJA1ylFigvDFAezHWx3v8+UdJ9UATWneAWGc7NkaggvOBJX0LVibIXO+fsJkzt8HVb36czzgdRVW5Va0Oy96CDM5F1S/jLc+oiZ0MhxRxEVm/xufr8cmiqLAELdBeKl1b99mC8wMSspEkyIt/djhbJqSunFpaZiIW/D6sSi3qkiLKEx09J2G9zxbI0o3PauiNtWYeNG+L9AEBsVjZGuPonLuFxKupCjPQ+pqqhUWTMZtCOx79Zi5xDFt5eeCsyXVGzFH/0GL5QXt/l0aL0L+5I6TLCrvGirHjXIQ+l6373vgFAk5zcOFCxTzVzuhOiNOKlBLxuBmPyCBQYf0ZgoqFdSzMXL7TChhehpx5mlQ6aExwz15p1T2OvlV6kIV3oeUs1mMfVIkUpV68OFfIPNz7zuKs6Imb+nF4xk0RWGjx8fT8iSSsnUGxm2WSIBQeCAxHceA4tKKLPb5oYGO6M35yul6NguSSJtJpHwpftU1ffaUkHNcotsmcrBAA0cLIqrMOqIOXg+aow/C8mj5GFR1xpeNK39mzen64SBoIe5iYZcXkpGCjXkbGEwYAZlFwHlBIGuv8hfMHrYlDc65Jb29qyuJvLUf7106ZLgqAmsljoFmhIiQOIVtGIEg0GPfPaHaIKbtox/oSuIEoXT2sRImPRkg4RiaGE2UJ2JuFMqWHXz/OnuT90bazSZk01JpIEzp2O9frM0LKJxHE+ZfuF90qEH8yuksTJXSr1wxYM/djneEpjY4Y5cwyGCmgPP48qGbDEI2/VczjOHXq3GVqbMFVwUXWJwrBoHSCg2oq1jLMgjFmyKIMgPOIIUWff+BQcI9pPTEgKgq2hLIIx0hcfie3b3ExtjDdaRYCIfysOd4DqSM9ZkW/ScgzxAC+z3UUwNtvMJ8z4+5DXlVvC2JHya40OYNwH8Up/PB2QyKSv5J14UBx497b4+MzeaKlrAkbfTG7w0EtzvStu+dLiI6RW/HUnAdcCn1MlserTDlwuDPsOpjSjddePVI6zSGF2Og+ST+z5Qzyi/TS1HNJ21tD8epA0y/DsyqaB3bZ5CO2wgRspf/rwOV+GfTueDksksjqGJ1UQzGOkbcqCWk/QzQrDOHyCatP3jljWOLH9EAjY9anpFqyPbu/057+vWkOJAkjr42Rq/I2PRNHv7QbUOe6oQCqmjYQx+PT4KVIgKVgsAXzYPoOtFGSrmbe+5M0Fm5MmBl8RpeLDsw7jBXT8B6ETvCM4KdIw9yJrtbD1+eDMmEGbDZ6Z+pgjdvZZ5rwmXP5fuSYf21Y5FkF7QsKPM7JHq/f9ViJ+lxgE4UYJeMDxA75GEcZiZ1ZEdbYNGYzQlJqaYHn7h3d9QwQ7YgZwucoTQcxAY+72At4Jgf9fHzMMUwHYZwgyBBqMyM1CGnXInmUJ3mr0zWU1a6vscrJERue049x1E3funleNntxkYldiwaA1gxM13iwIAK/1QpH8t3ZkVBlcfeZIqNvECVf9F2DdKZqo0XT1hlHUncFiu0TV2T0DO3zch26zGeNUBwTNM8OgsUTku0i6sGLfDzhpIMHQmYW+EQjTSCCkz6/NP3qgTT5K2fHjt4P/n0Vely3e87qfWzunyyFifDI57lmCMHv+vBRWimKvut1CbrzUwD1hZSwv0zFO/IopZDyG4tSQba9psW1LhHqn44wwoqOstcG4A8L88Q2ZQ1u8ghxCNhjjAi6prsVd+TszSTd3Po3jT5/Y8VUk+O5UlIw6tZpBoIeDOLD1RuGxUD6XqtuIDnq6b68PyRhsSCHXit66pMHpK1O0eb5w5SO1QaSodI37pKGlg8aiEe70rwYXODK3DB9g6tRTUB7+wQeqD4f17hKtmeSiIh0SvyOCVQ19JAfhFCtWdgf6uBHoUbB6J9pNPVbq/0N/5Xir0yuRbrSObWGeZwbG14nAcYtZZo/J48DRcbJ4igKvLH3F1lCjqRfTZTJmCGG9DXMaUhvBl9Yb3qS56SpBWerJwTwVCk9fORW2IP9xROi4A+rGfLXZHnVzRN1YZ334N11a4kw4WGpJv9dz5Y8f9iPGZkwYkXBGxQZk1xBQn7RoPdQagdcLLrwc87sJdbyvIc6Iwl82sK8gy2uRW0XkhBpjW5o0ZoEGiyBzfa80l0PaorIIhXzRkVTgS00sUz66u7iztqbEZSCIj8tKoUJDZjd8MbBnkJiJri91W8S4rLlbytxT0KABEaC8/QJ6yG7mzKVxcTmvw6TcYIDSY+wrEmMxpr3AN6vOY2xbL07iFNnSDxL2aL9VDpaAQghjZjTedAk0Jras5nk6gYHj35KiSt5tlsqCU9zLPba2WXRK2hhOCOQjUYl9Ai1o5REkO9MDRAhMUQMS/Q2IDo5OUdOKZe3KXJqrEuQr4bgOf148hIduI+bLaA7C4I1tHXiZ76nh9zz+naUO8hQi+3+a1O33uj16F0UpIGRd4yd79Z/VDhuhrnpQZzGEuW8LrZNVx+U1757MOBHyTW/S97C1hVWOWzypGyvjNM8eUltno4ZACeSQFH/+QRQk5xWZpiTHT8+ue8a9hPW7bdY39Uy8KBE6+xL1DyhT8QoSJGQsVaCa9YLCnG7zDC+6tfRroRDhsHOeDVam7csmzEmnJj6V718TpJ42cHWVkJqvdWtwnOCNeSuTjOMVWOrMEalvFCSshP9ekSzA/M+D6ZWAsdb4+0Z/xV7FGyzTJXtsHiTopxnvM15hbUcJXkm46M0wYnyrITpP7kEGuO/YuPpnp+HHd4UYav/QlThsMPDiYk4hhPCEoRjE6Fb4ICoTeIVznWn5X5ZTJBTTClfTvKIcdtYSBpcoL11EsYkJIaXm7f161xiDW3lqvAvaHUrZJ5FCfnkdZ5Uor1pnXqahlb0SMMOQF46Eb82XVOzxNiqp2h/SSqJSqIvyNLQky+CbrJw8NNRTpn4k/5n2uyPHMr4JzUtX3Wofeokbfr4tDFd5hKTVQ26QExFGD7IDdw47GbpHn0NHHR6sKFMND6XZd8fGWTT7uB3/SVA+9+7WhMDwve/aQ91mBSwSAQE4uilaMUAVNAjF3b/P9ROrkg+b0aDqeX8U7mzPp2Ta2cbTL8fl06XavB26Zw9TbGGdQ7/yzQ/Fx3VcWY6n0EK6exXRKmBap6RG6Ns4NN8rRqeQQLdICQUfYDsxp46x0PwrBbCr7hiBeeEPpbntWvDI8n3IzMZ4HL4Rv/AjQ3ptHi51Y1H3j22lmf70fjTKdJwpzxaB2xTXjHjPBvuXXX2YPftBCTjx31u7QezBgusWz2lgJR5lWRcKNrEDBatOMfxte/A+ZvfYWzB2ot50Biz7Do4hj/NIenY2VdyGxWoutMCzp0ZsGXw6Tc/9rEH9/RTWMmRxcWU4IqL1JInW7iIL/eQwRQ/HkL+xO6p3EkEsYrfollSxTduh8+QsWXgIS6bPRYkbnIbdYsl5KK80ZrD7SW2DZpynzz29yQvxfxHJgxfr/Gdf7HAw3nFeMZVsFpuTW/VGb32UUT5K/RZ1YtUwBs/4pQedM6bNB+2ixX3MCVDdhL3Z9LRDhWD8wXszJnFHNvx9SAxQvT9qGczF3yzjN1aaiH6v8qVjMeSQU+3NdPflVn4VjXQfk8wH+03P0ZHc/bWVGV7sYic94r4xBBQI+YfJC9X2ITHmeD3n0qc8Nnx2+O0/cMnvX4+9fqtvKQwbr+byfWURStwPnfF5nYXwQM6LvDE7uiMcFWEmHxvxXtKe8iyJNULORRfalW8noho2bHj72g6pl8y3ZItcXxGVbds+6x9/V3kNB9C5NMPiPEg3kh/qdIR2c1wgBVEBcxu/2OvO4Lcf2l92Pz6G3QdFg5S55R1mcuYFOSee61UeJzBYBJrldpUckyN1+mJj3b+2oproRFwR8WRWdrOsCGdsuM6Fr/GuKib5Mdng+h+/+VX7Vu5frYO5vX0dfqkzQdTshKk3sY3R/C3u2VquAoz51c+DxtF28fJutFB4p2UGBS+zQwIuQ+EKbJt0o5Pbx8BveFAO1+xnMbU7yzV1a9HVXOGWqqsXrJSxzw4T9iLo6qdyqszcGNdeoVALkCBT5L3aKTUmAjUXuBE/c66SGA/ZeJu7gheOa66E1Ynl5AhihVd1AZynw5HJEA48wMLZEzfg8V2gbxgoaOvh7VuhKv7OUcBjKtXT9yNCn3svjlWIDJeDwwSMBbOEO4OtW//JQao0z1jEoR9MieyueyVMtE/P9gXOSWlvVxEd60W8OGVXkeGa+8P0T4Ojt2w4m1ZmTUho882hIDBEbeivQ0YyHXhIIysnPcbOo4qy7sLsfdTb+u6QyCaRhTG8DonKsQIG49xPJQGPxU9yBwbGj3jZjFsijWDLiBbvrVvYT9yVLPnQtbcqbGiBpnCFDEHVC9iosHmuVQ+rxexJkGnv3A1bzgGfqORiNHNcpLB7J7TWQx2ewOrFqsksQS8CT8GHr/zX/yg6Q5vqfjB2WQ24oBdioECYOnoWiuxm/pP+PjX7hKb11YeYMO16nRJZJmYhOs36WXqgoG85fGkfejW4eyFAbg4PIfS0STegWLUIKIRFb3OAQXr+wv8ngPB9Csrwp4AAnJfOcu0RneBv2gI6XNvIcL9FBnfAK3hBR2GWSIHyOO7XC/3DFQdtrHaPS76jwZ9IdKFciqzBAI7Wg6Vezv7LMCKhTj7jfs7sYvF2YvzDyGUErCnkYrqjjfJE7Znit5bdBuV03SNaiAHk4z0qNDc1CKuumKjE/urb89ehMDRdvFejhU3DPmVZ5+sdRt0qfjR9r0ego2F8fyTpMKbT0ECWwYamTUwZUFwUwjRX4Y6mWMcqyIpx+lpGJN5J2VfqivMjD521I2m5152TxJ3STQ0zZvJ60VbSuSnFFMtj2yDc5f8REzMSz5M3P79uNyN1189qQwXae0QjqcGj+Y7w2xZHUNWsjHdf9ZUmyXytoE9SaMDkSG039Tkkupw3OlLY9n4BaOSV8wwvY0rTaq0LZhbD+XpXZn761erFTrh5P+Zzml9bXhefsYhSwgjYGBAe/E9JBSRcPzHJkrMjD6OoICzDZHm59TYLrHf+u1d8RzT6vH5lxX9GHqVPN0TkF2hMWbi7JsyvBMz9XjJghmOLSc4FuijpSX/I+HYLZ+0pvIEsYE2MZ2DrY9HvyS7LW0VHZoNiMfv3q0qZ+eBlZlvx55jW0l1Yv4oMD2Tx8uXB3lDBOMTcoXr9N1TsLuDA0G673uO2ImImSdKEQVlK7eqG9UvvTvuuswh16CO7ID/99NOl0CdBZTHRX1D53eJ0rUpoYW7VQiknOMBg3WL4TLVtMymREFisUUhseLEn6JwRw6PDK9XHqJweXJFekOmyjZu708A5vw6ILSlYfupIWouDdzWH1/VSkSN2csn3Ul/Vk8S8frAP9x2KCQcFF83i1rmxQHhm+JaYeX/OdBiTQln7I3fwdi1qTdoqEEcoNmOA88ZEeHTGD6+D+twJ/4VWZFh+2w/nzny++5SKi3CsPMUv5rRw1EFwiwtg9S8ukiFHy+dBYi2gxtfYLeJ9CXEp4kyZ0SK+3R25BPjiVwsdI9+P6/B/vgR3Hi3OeytZYcfjyxYl8f5jPakOpfeMM7yQQbEQ3ddKlQjjaJgppVYO6Vi1mf+fVzk3dTE9KFD3NACIT0lyA2isYe3OJn/ryjU01fZVqbvw5R9jW9nehYfUxJVI7mdPswLgse+D488fE43wsNKz4/d6uuKaABmp3ekFehJASesiUrYL5oyBG8W19CwMdgichd9gVHGe9bHSIzsaHVkQBADgzPW4DDWbWpPV13ExCeJ0ZOwdFU0m+uDucWjeTQxmqQ3TjgU8hsq/RVNNHNoyseV8tXpaB3qatRtcylLj4gMJnNDGG26ySvFLMf/Fq9PxKTy1tqeYa+Xwe+Lj/GQYEQWndEJaPrfWvXiRIR/RrA/R25tUF2Ldh09MkqTJdfXEBGm8siv5VLBxanX66Bsj99M3I3/Y/fQzTeKB5F5+K+uihk4TPxYQbGLy3si7GKJw0iAeMgfRKvSShikl6K140+PzKdY3gmCrYiFSXXQ7VA0u/2PqaX9Gcl8b3F6d9XmgYEkkNRN/8tpijPFswFP225g2KMUuIOq8uM8LKlISOfbJAgQwDjfFwgef3nlFr1lo/PY/nmXBt6uj4cpdFfZ1M+0TODQ9dEYeqMU1A04cfqEUyCAmP6W+iLeUC9ftIwyvQaM9hqWYtzzj8IpLh4nd6JyFxiwN0S+0EmXEnI8fIpBCCIZoY1zEuXse7yndmUQ1P38aqHBv5cI1bG0JIKnZPP9+5Y3q+3DvLETmJVV/dXUaH8bcaa9H6tUoVj7YwmiZeXW6hZIISrZz7E6nZQArtRFsLeEuezW6nSkP77WnElLAhsolbQJsZvz2OAxMv0UTnR7G0nzsLyEH6MXCrr+++I/4GIB9sJb/AgIaxa2LgbinieGY6/Edr68+1e/g6cAHsx6emmyloKmGdOF4MAqfkTBF0BzXfONOc6OSBkJNOOGAScT1k2zHvH4IVZEyanj1br7g1eNSF6pWZexpsWCTYSOvVLHYcoewUwJQ3SqbEbad8SOMO/2+PO9uz3o4q/VeV8BmThhxpUjAnG9GL8nQPMWcIuYiYZ80VwEg21C+NyPxvKoDORnSiLMljUqC0ybMxIbhLKvWzCAJz6vLaIwSe4EFpOVLecPdD0el5bpIRStjA1rpKYyDSKGJhhrFd5jt0rAQ0RBi6Dd90l1ZCr8j3oBwrvVN7PM8T5e7QZZf01MQhB680JqCfy7AIfIK3k6MsZUu5aS4ICbivKsk1YTUgaBgLSZPTuj2G5EFbVvWRefIpsLSA5+vOpaBScCEfHFwZjgksRmJqr4V5e3wclXdiulPorRDadFkyXfMoSuflXb0wTHv28SpAZPJRF4fOamiz1WGZYQqwJS6fZijD61ACQXyS/Iy7GvDSyosFTrO1N5tyuQJXUwONUXAwIeE0I+adWw35GBrQmH8FrdeTCpATlIvLfS4mC/JTgzoZNNSonDyMc8+qdN2yjn4J5o9EUdabmpr8t5SGOlB0KABOgQhbugivnYeKt1PTmNUm8xSk+rRt4EsLxI5kyvvoyzVJ8kbHfpSl7DdBzg3Q4u/K0ZvePBBCeOzFzQmrAdLPlYrCHS5o467L+gZeH1/ETaetPnvXcOTPLx+Mw+0LaIJ4bwr3zQMahuQ4LsVNavwS84JEsa/sKxbGKYYt6SFHvDd8kjqpKlaqLEBYv7P6KxQ/yuLlFmxI7ztg1rml8medmMt49+fNbn8RNQpFQKP2MdzZH3p+q2bzVFCJI5l+72V+lh/n6oWnCv0+2ll2sQBldZSr3R/90nkESnPZItoYwA/twJC4JiSH4DAZE5nksg0Al0SuCdC3aT92xuHOOjlJZK4Flk7Yb3G0P1wP712g2t5NMktwfLkPzfK9/rnCSHjr8mgZTqk8F6IvhMJEYTGzxzVYSEKZzEqqeZVAqW1zS8KyoBubqbG8v+SuuK/VZx96UjQQzg9U6HhI0nw4E7Qp61cGYMfxITjTs/fLufx1ZpvLDI14shgdW9lqFLJxeZQf3WFlMq3BJ70gYw5cQn6/KYMtrOFmPi0Nv44QFU3T8Y6/36gMDhvegHLahQFDWSvZ96Ng7FskakNBDYyAinYlU5wdVTIjihhXR2g+//SKk5yE6vQR4pbtDbEXLsTbsISh2/cH/GBWa9FeGfx6dip/Yl0EbFpmvUvMP42m5uFb3czIPbaelb/+7tc/kC9s/n6L2Eg7fUwi+eX8/ymqYvIbncQHdRlW1vNkTn2wSM/dPhgL/nM6yFzrAmlrPtH2+RzyNYKJJAq35S3UAGwYn54kMUVbHSD4x54kdqArCsIpqb13IH/WAkIAWg2ITYPwz68nKd3e8rea40z3wputz33HxSsG085bHFmuc6QkYIN0PsT/Msv1w4hPloSJ6ik65ZC7qhcFcVupBIzs4aG1kbSpsPB5upROc/ozWdpWeWd/ChPHG/xrZjomYLQYw066yOd6MNTONGiVYPB2dYz1iqVIkm4vyoi0GS24qfZNPQzyAyc0HH6vht5JeLbZZBCRpan6c+I3r8iw7LYuOXkqGs7g+Plrz7PxFbSqdTq1fBtfp0MSOb+2tvBG3SF6/Fdgb64ec2Pa+oaE4xhB6wYigzwsf+tbKKOg65iaYPfB637u4fAmGj8AwdN24E5/Klj+1pCvyehnBOH+8zWhEDZ2t11FZ9YQ3HIPQ3XYRcBtWtvWn27nDubQLmkSVaevGgFQfsQjLcmAy/FjpEqX6JAUlyqGTBeW0WA9LzePdssA+Swa4kQnAfaP++vKNUk3eeSZo4ppF4ziEA8hMAavV73KaWErMGY+1kaceBqKxkDK323bOMZ5KNXs3sXdg6lDTx/MaeKs7eeZKHd8pf67k5M0Usk6aPui7foKDHe8q+Gx0gciM0sDAfZKn87OnOey/B20JAQQ5qM+6F5+NEKAhY7WlFLEONDmW4gDtNUEciJhMAT1b5zdMJV1BXTF5RZ7Dhaa9Rf3JVe/J4FUQbF3X1/wrcviSeBq5R6DVSqSnLnYehGZp0YNJgCBOa0JpzjYts6oErMf4CQW8UaIThpbwy6ySYvDE0kYqL+9Ce2Jyc9H/nLd0sK8O2CdEXegBu0BQqaAPJn8rytlm/fUGGVwAihIdvSqY7fTjHhKCDSjfkjyRZoKUF4dFyuafGk2+BpRftUPmN7AOqX2SCcKY4f2J1Z2qhzICweaF0VL/1fcYqO9U3kbBIf+BLDi2ZjjNOsf3zrAhrA4+j7sGewN/7kNGvcbklvDTrqFmtfnOjNh4IgXO/BSTS2zS4SY5cURUI9JisRiMju7DHau7ZpW7avdWSsOva9m+wZlJuLU9WyFTZzgH5ubb3ImxWkePe/CR0WBtbrD1YZ8/5RRb6wT3VYqQ4rs5ZsD1hB2ogSDWNwwyBng5MzNaodo1IHN+PgEUb7f9aE4JWqoAYdrOsttRnVc7ULoa3b+1DzC0fuU73fH426vqQOxkRR5rInTBunnMTfeSJIapyHMfCFrTzLD13mMsRgLw7oToUG32Py8seakY8k4MWtFRokSwWZNO/HbzezjEtkt7wssgId+nGrNpWGAlL6W/XA4drtwjcftavX1dqBPx9+CfWX/vQ1Qb3TjXbdNGFnTXnMRAdgiqO4ytfqz+VbcirQ8E9i5egqyHCeRMKc8PfmjBfffqk4zVcHln9J/coM9VgB91Fi8sl2sgENaK7BDIT0Pj4vbjsqrMv/1fuE9SC6WgfKmKTEbW9VvYaA+Cncm7AYAed0EFb9Aiw+FHpCed3JDdjHsVq1IiSkjz9LWGwPsTFMRp97KdjAybpYdp4HE3K0nT9iDA0k1V/lCzMPCObywObTbo0K0D4NceHt9DcysdC4C2lyPawEZ/ehc6ypXXlzkn/WB/0rsL7PYUcCCM9huce5BNxR7TfBUy4J3grySxg6GqUStRvUtWFLC9IsyLoSEVVyWD/WZbeir8wTIMK2QmIxKd/aQKer9pbQQ4AA9P8eLPCNyvIue3HwXuiWSR4l/+Yh3Dp0t1WmV/y+2EBzW7rXdIg4vo9TrATm8MUeBSNCimDeE4tdaONCQRgSxVIGAlmUFqooPjRMdFLvJ+ji16TpCKG54AXFUq+CQA8y4frgKtdsmhjzqKEDRikOPC6rOQJmJ7XlKApShywx0X0GWdFRsiAvexeBkoBIb7RZsjh9FqqHM1BIrRgFbOGeB8lDcf6QT9Aa9ZpJHhyUVtCML8kNgGn4IV3OXQlsMCzkguQMpEOFN1OwHe0svOqbibYOm85ttwlAUbmMv4VP6/fTNmzYELHHK1bQ/qoyOAyiCsrj1VZUxsXAmbh05R+rJo1mTVNFIpPYRV/8DMHSb9IHvYkCB6IgYIweJw0mt9eiLlB2HgFuZGhdFu1bbEfJ6iCGrlrpsSNhnNfZ5yrmTaTGuZ9oxnZbBdMqRAq5C6jJm5XUkZWbj0pEuxVYZzyM4Vx+4AiI+BrxyFNXp+DXAMwqYEYAh84Z1xwZ0re6osj7ixKD4KzXhVit4vmW5aoprun0as1s5yKOyRKLhFHEqCqK79USymMEfaCKzw/oUGChC8oKxHYJ1ZcqwEQ5yA/BLIo2xXm3BARiDPuCJTdILUMbQMFq1uolcjE+pC1/ZDUExPro9Ts6OXrPpc/V7c5A1fTaaJ9ooPQFfo4YSaFVIbRZ+w9voPC3P+rsmcErqOYMzbQpX0JXalmuFc4uGUmXuzuuhWH1pr4FVDN7TooaSV3qZo32DvJ00FR/4u3Sn25e+5wBLlbal+BcK0XAZXHIcB17FmQWW6CuBe+9rkpO8AIogH4h64A/750Nypa65O/8cnO9YaRADfYMWZHJUl+Y+krJlKb2QSz2H3aU00h7aa934v+upTlCQEwVAxGHSy8jiEy7ticPe+8X/cZn3HdZESpJHQtoGUf89x6AlHjL/uZ82Qcy+rncH+tlofbNWs7D+EeG/4nUP7bGjeeDt3mvduFh3wOZsiDwOBBGA+p8BGP32diffsnFR6b+zIDNoNU/j6z901iZbb+MeZYt4DmnjBOOueErYPwdHwC0ztfF2d0Qms8aynxmLdPNQhmmEePYOmflLs2Yz0d8zhjLzWc9kPsvMus6hrBa/VGdYS3eKLpG0xa10zxbnMR0pHE2qtWF6UdRCBbQ/i9YTWTJaMP7aiCwcKSN0/CGFRbcfrzXPstnP0Npfq3C6ie+7uxzAdT0KJcUnIkCIS1am5NZXchRmZMxwcei5QgzIKCAgjAEAGg0u8RhZLiRizFxqkfRsN+V+2hsmH9478cCXyCBrddYnsJtvvEdWMW7p0XeOIsbIbCweUl1ay/Cn8XEbtFGDc2ZP77k43GCQF8/yUA/J10UCbXQeODyzBnsjq+P+G8ypuWmLxH5A/ahfiQUem/SWJfpBN5gWfTcEE8ji/iojzMg7ztOaHwMh0LU4DiyCJZ6SjZvOy3cGbdCoy/MaGEKX/KJL2MsxjnT9P91i+QzINCmDSnl/w24GqPJbbJcr1ajw7T95sGCFyZej2w7bwhciexrAScPDL6v9SqIscy+Kcmu770rjJ8tEUSutaR60TqJrOiSHBVWvUVo5czvQ4ySFEcugKe4X9VBg/oCf7RFdxtxqsNlwXyzWY3J5ZoHEFl9gkCBgKAh5WQJRBx4MCGAcQZjgTHqvLiiMe41dUE3/BUf4UHnLTFehWfdcyc382/SQCMuvBmzgMlMVvxsSacIV5hI+a2mKUhAx8QZi+Vhpdek/fOHW+nbM2Dnr0eweJgxrMmjuWkGx27YTzWxPATJg7pkB0UChHkcjvg51F9wsAtKOMI3Sfd47D/6Jqg7EwEELNYAgjSypFg5MJUJ4cYMEVBb0qEH9BT/P1HTIwnV7ffen2UMPqmgww8DG9Tbtkjgi69LIM3+2v+1aKXiIR8Gk+NNezWMlbfUuM8qZwCiVXotsoIuZX68hg6JRYCPreRCGFRCIh/vh38ecEiyT4gXfLIaTHDbTQjrCoxCkBXadTbZzrwbXX1RnaPSZtJm34d3zmTWAvoklYQXPhhXit84etOA9IwEXmantIcrZm676dI+skBAI5soIVmGoGwUFV71e8EGWmbVy3YyvEHr2+T5zlKXKp8Lm6seMZMFVFo3taC2nRNuTG79RYZSuTY0npSOBJuN933iGUv+zcORd5b/PZrvi3xOdZ8kcIRo0NAdMbthrmA5MnzCjvusNhnebEKPliL84FgwK4fxbPoXztDrYnd+salR+bZ2eoWnTrc6MejR9G/mtosOuOF78QfoYYQvbNO7nutO/kbpOXFESW/3DkAhWvhDYfvWIeEdhqL38qRjILqiGVI3bnvOIThFi1dsOu/Y3Vxbf7zq+Vi8Sg5dqUPONFxAEBgHgLeAuowUo58Nz5RhpZv17Ec5TK5Kfa/7L2E8qQ1WpKCwF6WYRtbZJAegac/s6hOFlVDTxEKoo4XtQyDKUDjn9QMBH1pkmgxeu7S9vL1tWeabF93kUWklruLjWWXzpR7E9MdAEAUf/LgZ1oPNWsZBKtMuLdPJs0D1E6/MYfniheHu3WPYB6Agr3RBZG9IPwxupglEDsGsI7bfr4iq8LHroso+DSHobaROEF2+OqIQQiIPOaIePrFgl4GW8jgNt4DUYm323VpL7YYZo+v3l/EQjZzs3vusskG3kHabgehWYRanqbX41065qVJlP9G7Lc5SUwPRjCdC4Va8k0KLt/e45XzMTp0fBDi8dOFxryafcoK96BiZOkQvjvJcxxBK/tslRaSdooFPgTLSDksgFCl8uCHVcro5fPDN3p4DRwt5B+cPKMw49hNfZ79XhwksR5rBkIj1/Vf/aHFmw2Kv7rb6FL4bLkdzJ8Km3XpYG4DSgMgRv2ARY/iCTmFqTu2goU5d4SI/ouYLJ0ZKoJqCNoQwZE5NmncQc8dU4ROtKZakRt2GAonLro8FETmgEU3KMAKPPFBFv0JmyOQsKte9RBpfZ6G9/tEzyj2mr5VSYirgog8Tf28pkVIgot8Tla/qfqbiTpkTnsUK6LnSb6Z2+xVp1s7Tr2IXMcK8X0dsqxqe/BsxWHNIatToqPQUxBlzaRnMfZeCJia/OP77ljcVJiL2+J/YJOeC6LEH4dFrjp9DkFJMfkufkMEYOe0n3amrlQD2lfsveeAMG48qU88sZABxMoUBLlMkmtECogF1GZ1TTFEMW3v1WW0RgUsOXLVB2hASwvJ60JzDs/gEqVStLd8WVU8ouZCsbYtYzHkUhBHEhNcL50boH8Q3APzDhAw2VM47EWf5fjjk4RzLoUOV+LZoe9ulUZIA+XK0XWA+Iz85+3HJYKoUI9NoBMNrF9THzec3VtZpBAjUaWxYvaGCI7+eiySgPsi1gDuSJ8A7Pp088z9wuA50RAzLZadSGuoPi1HaMgPR8uWcDskACAxGgdSplKqdp32lOttRiD4zU0/MiESCPsVtntntjlNkadPD/RwrgrV1zpYnDYjV5b8zLLTCJB6IDKIjiUembqERxL/Gt423qM6IBPI11q2J8Y55dNkCyy8xVnYIPp7VRQ5aEB2HayI9Em00qS0EJWfm07xWlNFqfQyff3MjIyqEqzAMMMBA72O1xVWu+s6LtFZLANhhnTy6ENmejCwcbn+/bWFs67CqNGbiFKyoO9+TDLjDsSslv5/joazPPA3ibti6uGvuBgGxQO4RdFMSiXf/KiJJOpROoJ87p0e9x/pZf1zluR88OTHbkmaOYLvFDQhESqVKzf5dixpO55KtDVPmXMqqDCkN/ZuTXnywar50TwtCSBsslPW9gXskUXuantPiXtAM4Ar/SG3hu45ghH25y7wDechkoZV0YjUrbTdCr3/4meXLE6GQ3s0k8ROPeJXhnPlsxSRnuMhQrX6UjfPrvu7e8xGkRTqPuDnJOMlJ7LyYsQVLgDdxPJcyvqwqvOr++p++VHwf+xjaBuvl3JHCgSVOOPe7pa6ce/isWqfdMUhzz+TZss0Fu1/LAbrkWJ1sW3gdmWu5WrNCpXYJ3EIhfMUTbtGaKF3/mwu69ahNQwJGVKZzAvflSjlryTMv6X6WlAUNx9EaVLBvmhYQpd8ebqF4k5OmGiAVmlV3JO06P0PqtphrbvXICgbeFwhnhuCOvxtjuh2qxVGtVyKw8mG59ZkNgVDgiwdSR1aYtgoqn4rolv+F2TnAYy3s0ZS/sl/GnYaPZH9LO7Oa6WAhe2N6HaWOs8Iub6kQZg7Yc92xEz9YSfPmzrGr4pj8tMYbk9DlMZ5kUILrydGeXD6ODkESV7Z1vG2brMGD+em0wlc19QRfcNJJDBvIoerveCHIQK4HNTEUFewQ2GKnWAGPQsIOvavjKLcxUQdv+tQwc6TsOF2bPWK27JOzhjRyNni9BP2WxK25v2lLrvDZLzlQw8Ub/ar8GQCUGCT3tOIapVT7DfrV1d//d9gUOjQuZ+QgqpEcwzGETKiEQbf/tJx7+9SPOxl22mQ0xKPywpShCLdWeQ5mUqGd3mq6bxLru28KnwlQR6uwnQbEWY59++rJSMzzuvC7lSQtArDEMwwL0IShCxncixNYeioZMpLmfgdxewQoEYY669PzwT3Unc6MKk+3XgoayGVdgnanxT65NSPL8SMMTrRcRMiwyeuj4OwkOKFh1KUr1KdVc4qGE75kis4T4xyHlJYBpUd9FkhGC5B+887jtY9uw6rgL8RRdpu8EqAFj17j9/TD/gB/5quG0oN4nd8Nzx7jh6ZefUgwBMMM+L6eDHTZOwSubaIgA2csOoNY0cw3mM2JpVqznDdCQopMUfKngGzUNTjY5rfLBeqKM8aUQ1K2RbFbsVX0VxZPIcQMnYonI3qu8aqQLfzml1EQstAfabfdePvy4MQja9rzO24lRquVUOkRop1T7kdtKNGWEFyTVtJxaH7+XtFReRO+7bFlHUTyr2tAznNfqVjos5ogs2J2Lsi5yqndggbSAvYGG5p4dYrsQA+7L7CYujP+W2l+rDbIXwQ1MB3meoede1Rp/ObjJYj5dXKUrkVWxrWa+qffJaoHwhWTPj6VoD5fqnYbZXi+0hU7Ra+L5VbpvxIHDhnNcsY7wVuzsuY+DymhirfIzWaimqPV3HFpzhmGn6cXFqHXrCDRUTbtX6GuSlj68P7noqq4RaZ29urJpw5yxlabQuICw3pyQE+vF98woUCRIOdeuHNo5KTSw038KjU7ofjftIrDiLOfZawqo7NR549J3UZbpr4PZm2pDpVEeDTFzE9cMmCfIrvsJrOo6tC0fnZsjI1dDWU2v8pxru/DTqgG6fC15J7pVF9Ej+r1AUfnxtG3puJyCaoexSt7/pX4vUP27VjXbcPVNblqju36+5uHoaOkxY8GaYvYyku4mXBE8w53TOL8mbkPI8TIWc/pqzcCAYzeeD3qWALvbF0c+MfJZP7BvWIMGz21pw5ZWLDUgez550e0EWqzTdPMNSyH7tv/siOIExxKvaBndCoZgnsJ2HaXvOMOVaPTearI18Ni2vJcRZ9k0BbDxIIAUAJIrHv/BQ4qBl7dnCyd91i6SBPDj1TCqXFDchJac2P45UWxunxrXV7k8VD9R+TH9GH2kvcX8y29fNLi4dNgcYzDak61M4KPLCpY/uXJDRanLEFo1TyRwk/wLaw883WYBPbzAamjiPDRkP8TgWlzEg49cdQjSAGwNywc9Boj1Fj4stydk1Iu93eOuEtQCGpKDwOImB9SjjUDm0/qIGhlQM6frjG8DUTRGzbnNopmnKRskYsL0tK8Fjgg0NoPv0mUjPciwk2VFl+2fC1eoXI5WmttomdotLdHvibpcFmanTTbIHdOl4f5ivz3I5gjMbbrVKIYtUeCfuDp/jk7xqEDOqT4JMIy3gUgPadDQeslxjVca1KnnuBXJ2z7GI9Z902EshMVjQaa+rhOdkWs+gn2FhJ36EpC207e33R0nOdSDstMhIl2EmHV+J5HVS/HWGh7DIRRw23xd4cxclNkeC1bCd/xMSmgv7Lkq0EworGXY9DalI13HCs/xclc41HTxjCr7at6MEfBHueVZaT3xUywYn9CSaNhDH3y+0K3RwZ2mQvi5F4d+af5l/HBzhZ3Ss+6sV2aLbx7HovQJKMU1oUc9GzXSo5+fPhu5kkap02KJbUKxMdYzqmnw+iaKi5kN3vsbv/4a8cNoygjgd4Z8+Q/LWBHhozgrDIDB7Lmq5GLemKTxS2DepzU6P1HWqJS8hmEoPy6NrWriWLM+2Aw8gSO8ubZbsLCfu5EmczVtEvVtWEHC5qDzFFdpH0CxsflJoZ987bjMVvE1qqpJZZvZcP8j1fV9NuhVXeaO5IQsisfKs35brQTzKlvP11TNjptPSDT5G3wuLz+bpd6xWck/DwAOBJh8UZ0hyM1U8la4MfrCqMcQ9A36eV3G1pSR44zdqc+44RkOUmFk4hJaBF6lMNcl+cTzpr6mdCEkjbFmrAt04tzBI8ommJAiBwzA6E6WrBlo8jqmeTk1gaabBV8q/+OdtQFUBDBnp8NT0KkqSZDYVxJpYghy2ZhtggNiNS2bw1jlH4cdiEaUXnT4C9QiQ2rnm+Ohn+Bu8VNm5H+bNx3+35gENfVK27KUUNBYMP6rt8pvfWJuCCk6yT2PvAzWrsXwCAkvgOcBFokaMn5kDfP5zoMh3ALqLseVX/aYsTmvj8jgUBl+zuUsUZMOiq9WHW6fL8Mjq2YTJIq8hYcMlkQYlJm8r0TV71Gn1KhoeMWFvwqj4kYuk2JgfS8urLuw5sSR+oY0YEtnWRvQA5LGCpzQSphcL0CIQN64vsJ64M2JJd3irlJC4q+10s1iqYjJ+56z3hnNzKOryGzJ9GVeHbhT0Q9tiJbxyVD1DiQEVqt/upmG14Y9qyZizzTc+1FIFpokbZl2efh1ojKxVvoKBJrBPIj/HIB/ToTfP9ansUBDSK+J3h34uGH/K0SGU6oBDIvS6rLDnbF8bVLPvrk8kew0yunWTMrwWGoeon2cIxoNWpAf7OGjRQ+J5+qrZ1PufKZ2lRmAk1D/MYQOCuowIX5QiBTbMSApi1iWwXimtzc415ZKdJ4aAWnaZg26LlIX/McekD1FRCmHzhLYkuW9Tj4vjTnUfmg+WKX74iLYn2DPvOJJ3S3Q6T6xPkbH3ZsrFfmJcaTNBeVU49aKL384qA9cCIzZYTUpQhu7B7qZM4Y49pbBM34ReBkv2wLbtsLfXWbXic/4Z/3HU/NGy7ybU1u3AicaiTAQLi+VJAoQUceKD62rGv31IjMCseZVjCQ1lc7DBaQz12cuyJHQKPzT8iD7VmTG9qT9xVpmx1NgV1P9xg1p+OWaTdeXHtTsOS59SSBhRAakO2enb0okFj0QMIdsMJgBBFjnapm/B43i2JNW4hXHszWxKCK7sW8z0O02uWwlsTKD6h7OPeKcRrfP4Ob3mmaz5VjwPyw9Fz0DwFssVTUNBha5axQfirJvnqI7CaxWBpussiQC3uBr+namAa4nE2BwNhzn/3vwfxfNHoyUSiE6/euaj6a1BkotrCc8TQywKuDBwi8SOHRia7xf0+IXYhj7ZQXFC/0FmT4XQv7NFj1hgyyH20/vsN3APJbyFKDEHWzN04IIRXwFj+oR8yurj+ZPS8LOf2vE2MPCj+Y/NdtbGicrZF3WGrLx/es6cW6hLQBV1UAeiCGPs+RGiuG0bkmD985Jgz+304InkyTdm7u5s1HCZh21dmjSvDSitzcgtrE06GKGGttXwbxrsBeTZ7K1cKCMDGu4o4oeEUGCoFfOEtSnTwnqjkO1Dmp3KToc4l6Emw2Nbw6utxrs87HjY62pP9lA77VFRBuEvMUs3tTz8DzUaZlJgHNEDwBO/0hHhhAi9fqUb0EmtE2YEUDNn+8hJnvueJFu4Gsk2lH2UiU4a3VHvNblZ71CvJvdL6BBwWp+hjotiujAdM1RJOY/nW0CzOA/bEhD10YHcgge0IKm/CAwr8rLMt9/bl3lktwnNMI/r/4YENb5gfhwQogqBnVxA6lZedxu0vXM9x5BJF4TjTeOo+nFv6CIbyrt07jo9eci4vsVYwcNTXkV3qqf9csobE1No8rvYTrTLDh3KUiMnOz7m7jhol1oMtra212XCq2mNbu6ix83E6Y+Z1sHISIW50VvaIIqH+FDU06KRXxkVBHQom/iNllyaSzTSKs3noW06AwGbMWQaiqZBZZ3y14IV6mhtSdh2bakBSubjS0yJUqy8k7YroaVEqUWe130R7KBuelfbYmXwV+r81o/6lCipOMPo3burNQw9nZpAU1fRmlCAz0hWkgqzQ6oBBlXCZyNyT8+xgeXP6/0tQE8UOm1P2nfJ8SaTaMNZk33zfxL4p3MBgO96ReIp1ia1YA4zR7VNp3k6qR/+MYGHiCaHTfJyzKj/aithyLqOmOfWSy/ut7aHheI2ohHec4i4Uj8ICPUZV286kUgGql+8y7lX2xVFs4lDuXAIOmmUo2jydl/LtkeJeKXze9841WlXe2Zz/sbZtW4udbbfWLsl7a7kzI9zNcxY1UoOEETpmusbT40BlPLBivSFxjs1i60VflHE04YxrBpWTdUdIsjxaYKndtNRcO5DIjc6iX3ac+0yst2V/Mmo88jXsiSQOiMZkNLyvcg9W16pLHfE3tlu+ad0uvqlnVrCjvSzwmH9tXNv/kRaIxZxDUEXaeEZ0JKGYGQezncTkkFTVgycpPpSo4qQI1eBXEHQ/0uZcS/zRl5nts+S1UX+qvLkV+6O/ew6zcqZW83R/X4zbfS7eUYgX9af2mmOe3aKhxV2d6Gj55kpHudBJhvfhzmL5wlUbDh3mRa06avQOvp8E2j8noPLzn0P+T+Y9f5rWA4MG1pfbIBKJ84YffPiWx9j4GV2y/KV0BgzcEQ2efdpljLAMMMAaU6tG3iGk/dF/wzPbVMRWIalqfm2PeT36BGxGGQ0f/mn42lrKmuCJ11zejQQUa84rWIEwt5SRyfj8aLspdhhihrarE0LEV07TO6E2WFl8HuqAWs+dDdqoJXwBAUl4l8B81JAAEJnYNNnyngTn1DxMBf7bUO/Qbwvn9efhyCWS/qXvy8U+901cMeKhR+KnJAFZmxEzrGOsLLc64h+opp4FSBHfJqXpq56M+2P0b/WYKyEINJyozciv3LJQdNNm4RDVgvgSk2Ju8vD/Ke7sCvdoaSDgW2GtzvHgPgvquyBWDcS1XMG8hhRTKje8LwxQnn5dJN+49x/zjx/jeyJRPaD5aVbcbT3RNxlTAQRKJG/DfiAYwB9/cIDLhGE6JUJcw93CwmtQUewjfiC4cX2x2zYnjdAzlMS78ZKQ7l6HYD0TEUi0N9SfQhBnyQsN+mu+JVqEmSC/yuEQcbN2pCI5pmNnkVTSpdqoKU99RTIBzZY4YNe4ndfPxGfybLssG15akQiT3+Xb4wQmd8MIfgzI14cY+AuhURWDxWjfJqskVFeoi+cfrczckQHtXMHukjxt1HHdu6iTIVGaloDkFDEO8P/HLTT2UOgQAQOMt4WmtkPBZDndZRcDuQSyOer5zWNYXgC4G204tRVJ0aD2LSl/7Z3FelTl9O3dN7XW+f7+s/t01eK5Wesq1ozUG1g2fM2/rqNSQq6Lew8Eumz4omFm46PsakQ0bDiBuafUIUid0SGgLnwMGNmbz8TqDlg1O8YtGolFrdy2tdkXNVIPc35u71hZEFiIplLVGvFkht3a/cuQW2H9ie6e4u16U9S5rSThqnIwOzV1cNUu3PeN+XqhqOs7B94rrGwprsYORljwmFpfFV4Ehxnq5j/kbOoMt3TmFhTV3OT3kdKewT2R3t6Res+V3zguWoBnweXFOtRjU9HDTdPsnB2x2V39LNgwH8ZRYSDHXa5wnxppV3djsy8aUT4sUJ9kkSG/U+eHvrqcPz3vos50cn7GrU36WdLgYku9i6xSR3ZlHscnhPkcGq0ctIBFasL1SQvLu9/L3LGD22vZ+fUx3I+RyLRSK4FNFWXZGiQAUF5IgJS8VxFK8RHilG2mAeu4DwZisyPX4Uh1pmipDOLZwh0DkKn0IoVrKvfDA7s63wxOe3xwwzZPIZYPXeXMcToIU9oy6QRwGGOVi3kHnFTWCVpj2QQk5wtH/QH6QZpss/jKL09iAMLgJ7lbyWSv3qzHR8HEwPRLBtcciLF93ApIv1NgG17Tt3bIPXMdpXSKWmYWy51RuEzmHSzYruSXJXejnaYtdqI6hK6CBVy87CuoRbePyzhKdel56Jph+thDX7JJ4ongaQzy7uQIhr9lv9+p3kS5CzozTIgm43f7R9ak073iZNOrOmq5hOL4i2dH1U5RGq/V502a9I9CgrnxC8oVlHi3uSs4/zjd7y42CZfNEemA0mgfJhtZX7Lq93O6CMqTJ0MlYO96um5yxmpz64AWxYOlp5IxaclMj+igs2g+x5YLl58d5jOC55zHaovzzphGAOqBnM+IxJQDlaQkAD0jw651X6z4F86KUEuHWEIKBAm4625KmnT7aGFkiPf6dOAz4LjsY+Q/99I/+cFkKX+auw7KE4uLj/vQy9xK3NOOqV1Jowl780QON1anGaAvjEeJgk31gYtVxCy8gmwXQ/ZjuW0ydXfhtX7UwSbucqOLSai2VQPnaa7XVpUHB6ONpnNZLoNP4UPsaTuR2jcFo5/w+ewL7+YiDdVegJR2lLiZB1pSAj24xRf8PDfcU8y8gOgCBXDoZWZmj2Aisvc6WriTgqCy515mJrisIw7cVRtxjj0+qB77rabwUL1BNQURhW4muuHq3sTwEnyGb1zxFL3mksJ5tAbjeX6qNaF8lXWt1B+rVySvBD1MbO4r+CofFY/bKt8XEyQzrOlJw4OpfvhoSsEyahtQcOtsF4b50yq3JNJbIY9ItVEDZsUKnVS335tuRKOqbDa145mo8y7z6SmYn6aDefZxux5MZVlPLmRSvISz+HBlMKBnBfHUPKrp0nVLSOZBL8+ZKqzSqM+OUO1MKtNDVhkV7D1Z/6VJ4UfR8pnFxCiC+DoZgV7EtOmLDs0u4alcwGJ1GdyHussngqXQ4q2i5xRgjWTwmOMjqdVHxCWJ/4+Ye1yzOzlYWobUrSGgWncZvibPpWqct3JtuIxQmlcjH0U6qn175mmpHkvI+4VVRBS39XIdu8pU9ZFKhbjLmCjC6MH2GGB3fMD3bBOtkLVCKAuvXoDVuHYaFEvVtA2vaXF70M59IcvkDoqcQafAq3kqBgSSGEW64/AydYSXsRq1/KabV4HBpWRvFl4r0pNGG5cCE63N+iZtpF73Autq30D0Z2NOolpnbzfHeK92YdYlP9Zxwf0koXR78Vea9CLGIMcgfb7glaNUYSUay7J6wnL6rHcK4Ku8UqheIDncQVTpGlxFAC0XR62dsJ4ysr/hBCwDoRNC+8WB+aYAYJj582UHoRPErxlUNPeW+QToKkjlhaokP4k8z/hhxEOX5LJMTVGJ3PukO5JLdHLBnFFbzWjLkGavzVGjkUyvN6nMl2EyUTcYX82IO8ghqJQUqOr2wiOZpFqxi9rYrr+oxa2OiusRvZj+8yzvn7ZtTPsvofBbvJplyfP03uOnYpCY0ApF1HqBXC/5Rg7yA30wbNvKBEs7y0EDYXP98OTyT2daTXuGiHAXkhgK9MMYehYmxWf+aCwbuzRBeXKXKQBW+60j9UWo4SYVi9fnHZcoID9kygbgUwO8QHd/qIOm4WPtzPvtNAon3YM17TEiTo/76IQzsxVdqAlIiin0yV1o8Fll+oZVsRJvaL+edqBrlaoZnvS5yT0HlddvgDMm6qZwDTa/l2rnjVKtUsLQbHaJdtIacem9noqC/oJSgfhnBMXG1pRPNGsqhr3hZAH1EPy22FrmeRQZWWHnid73V6IjY3S/qcPWHegY93oyOAdi1D4/bh6mMiyIP6qRiPI57JW/AIcWRE5wZ8w7XUdgX0pH285SoVtIHSW5gwf6aQ1ENCMGXm8c6MjjJCGNUQOXkbaXpV3uIaYL2lJ5/icwOxD3aTg6dRutPYSl04H1opSHdH5rUa1ARm1jIMiNAUvkQfh7k2AYRK/fOtDD4RVkOO8gCxl3dNmL+fTSTWEejP+9845VgXMNFzJNCiuigE7Oot9dYex0ml1gyyYKUBWoe4TblICtYF+MeKTxIAWY5IpCkHaFA9Ynjok+fhZqRCO7a1H3iQwUmh0eO3QmjsmBnd0PBCfVPUcoNLmNbhX5IFT/h44gsrd6OKhsDwpokMzvIUHBLAIBYq/uawnA2GaF8HDw9Fl1/j6fmphLK3kzHwsLtrypEC3rtpyXbQkDQEAgTG95zYq3tK4vjJMjWLaf8MGVP1Il2aFVCAjf/rvqq047z20BiHK6utL3FyALkbP/r61NI5GaUsdi+GkICg7Bzq3yI0ryC3LTo5UG/RumctP5VVGSAaNnNOY8Nn3xgORART8TAaWDq6HJtmr/Ju2cSaKqGFW63F9JhTGz/RvgfGis4fuGwLyYDs00g7NXT9oKvZpJwcPVDB4WbncXTQLQ2LcWJYGF2veuh4X4PfL8uEjFG64d/n3kYJJYCCAdUUGIEPZvFa7BrNV5T9XOsikiocGTpeu8yQn8Zufqvp2DQuRFRJL8NaZ095xk3I1lMvTku7qprNP1FkrVjacVbntSt2TRbB/eTZjm62mGMFR8P1+XUanCmaxFgbwUfXJR4yBMx5BjZmKIDOg55Sh94UH1oqder3nOECmlJZ0ud+FGobu5k2o1MXQQfjKeJFwp8CdXYZuT7B+Anf9Llbk7ntcB1tzzef2Uw66Vai8NXDa65pH/YmI47y7xHU4FU7cFCEfkICmrrk8j3LReuxgTi6D3xCknkF95y43Am5/ouIJ4i35vRSuHdVX8jjbts8KmF2Sdje2/LZyFWAYZTMWk3Sl6fbdi6nrG+LiPGB79K0Eu+TYYIaiaQwTcTvA9hA9wDAYnqVOf6TqhixEQsZXr3qlpCtkZ2JQYXfnERSdcON1dfkjt2p4woAcqRH32WBxaglIyEjBJOIpnqKsihpPuh3Nu09oqCXPss2gvaAPoXDSP8esj7UNK1xtiL+zurXi2wZzq/fnjo01dM1UJxfjgCkFJm4xHnuyaMcCGc53g45xu9DOLs0ZGpMBczdFJZ8oHihCqJI5XSTHBIDEkE4Uczol8+amDcO1SgVCPR0StcgqynXHOICGr3XmNsn6Qd7syGu1hjcIUI9MZSUCLYUY37spBhW+VihFfDfs8sf9LqB62JxhCKRds3JChqdYG4VKDPv4gZDTb2QxBWsODXFOwWLHXmf8w8sPjTFfxgq2UlRNssTwJQSfWaPP5EpNdghDS6mp7PjRNTc6zdNhG6vKNLr/vFPqTjGUBzr5PA4eCRZAA1FzNNIYKH0F9Qyns/3K/q3zQX0NiqJml/dfRAfDdf8r5ENSfcdtj1A3+35LmE+gWiyorrbPeY1Wxw9haju5ig1vvMa7WZMa8FoXJCg6VQ/HxIcK+4/RK7qPVkdHqjcOOU6NJV3q/QrezQLBX7ceiwDkGos9MpXIa3UPrsRx7QnbIwcg9GgqxQ5ryZ7H2ezzeNri/fZ7MvH/VTj+2vbNk4juqYPiSdeOccsZhmDGfTStJVw/RD7VEfnYInJ3HW+jOZMx2Upz3G5XQ+uibU9Gwn+6IJlsho/6Z1I/yvsifLusRFFG9tIZJh+Y+3K+mDUyMijBNMAnf0jNvaRzXhZaTSJPsRqbn48R5QPulGwlv2j5zuJN+9yhhfKozN73ZTmgNU8jmRqTZBEBlBgGahtscSWBCnGipRuSTOplSazKzrzJPeLbfgZ8jIGg++TdTsUdvJ0QITOIXN9TtJBJ1Ek4YT0W34KzaLWJiq0iWFe3WgR7FaJvWXd6LDZsVjMgr8kWj6nRHusC7jSeUxgCOpe0WtasMiS22OMGACaAFIeR7T5hHw58iLdtnEctjXYWXviYwKp9kjuXKe8gOshNPD38nDe8vrunUkdErBDtWtEj9ewsmp7AwJvTXT16YkEcmoiaCsxtSdQ/WxPU7viaOAv/xdyRThQkOdCouY=' state_dict = pickle.loads(bz2.decompress(base64.b64decode(PARAM))) model = GeeseNet() model.load_state_dict(state_dict) model.eval() #model = GeeseNet() #model.load_state_dict(torch.load('./latest.pth')) #model.eval() # Main Function of Agent obses = []
5,281.582609
604,151
0.966882
f2a3e15dbd9f5aecf7c8735a8a4cd1ee5164b116
5,879
py
Python
venv/lib/python3.6/site-packages/ansible_collections/f5networks/f5_modules/tests/unit/modules/network/f5/test_bigip_message_routing_transport_config.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
1
2020-01-22T13:11:23.000Z
2020-01-22T13:11:23.000Z
venv/lib/python3.6/site-packages/ansible_collections/f5networks/f5_modules/tests/unit/modules/network/f5/test_bigip_message_routing_transport_config.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
12
2020-02-21T07:24:52.000Z
2020-04-14T09:54:32.000Z
venv/lib/python3.6/site-packages/ansible_collections/f5networks/f5_modules/tests/unit/modules/network/f5/test_bigip_message_routing_transport_config.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright: (c) 2019, F5 Networks Inc. # GNU General Public License v3.0 (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type import os import json import pytest import sys if sys.version_info < (2, 7): pytestmark = pytest.mark.skip("F5 Ansible modules require Python >= 2.7") from ansible.module_utils.basic import AnsibleModule from ansible_collections.f5networks.f5_modules.plugins.modules.bigip_message_routing_transport_config import ( ApiParameters, ModuleParameters, ModuleManager, GenericModuleManager, ArgumentSpec ) from ansible_collections.f5networks.f5_modules.tests.unit.compat import unittest from ansible_collections.f5networks.f5_modules.tests.unit.compat.mock import Mock, patch from ansible_collections.f5networks.f5_modules.tests.unit.modules.utils import set_module_args fixture_path = os.path.join(os.path.dirname(__file__), 'fixtures') fixture_data = {}
33.403409
136
0.628678
f2a46d1dd481c7acb620b8393b2d3f64e291c4db
3,062
py
Python
externals/IBK/scripts/personaltypes.py
Arombolosh/PVTool
043f4c94b1f473e6e26b2ee0da8e6a064d9343c5
[ "BSD-3-Clause" ]
2
2020-06-03T08:22:25.000Z
2020-06-04T13:05:19.000Z
externals/IBK/scripts/personaltypes.py
Arombolosh/PVTool
043f4c94b1f473e6e26b2ee0da8e6a064d9343c5
[ "BSD-3-Clause" ]
null
null
null
externals/IBK/scripts/personaltypes.py
Arombolosh/PVTool
043f4c94b1f473e6e26b2ee0da8e6a064d9343c5
[ "BSD-3-Clause" ]
null
null
null
############################################################################ # # Copyright (C) 2014 Digia Plc and/or its subsidiary(-ies). # Contact: http://www.qt-project.org/legal # # This file is part of Qt Creator. # # Commercial License Usage # Licensees holding valid commercial Qt licenses may use this file in # accordance with the commercial license agreement provided with the # Software or, alternatively, in accordance with the terms contained in # a written agreement between you and Digia. For licensing terms and # conditions see http://www.qt.io/licensing. For further information # use the contact form at http://www.qt.io/contact-us. # # GNU Lesser General Public License Usage # Alternatively, this file may be used under the terms of the GNU Lesser # General Public License version 2.1 or version 3 as published by the Free # Software Foundation and appearing in the file LICENSE.LGPLv21 and # LICENSE.LGPLv3 included in the packaging of this file. Please review the # following information to ensure the GNU Lesser General Public License # requirements will be met: https://www.gnu.org/licenses/lgpl.html and # http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. # # In addition, as a special exception, Digia gives you certain additional # rights. These rights are described in the Digia Qt LGPL Exception # version 1.1, included in the file LGPL_EXCEPTION.txt in this package. # ############################################################################# # This is a place to add your own dumpers for testing purposes. # Any contents here will be picked up by GDB and LLDB based # debugging in Qt Creator automatically. This code is not used # when debugging with CDB on Windows. # NOTE: This file will get overwritten when updating Qt Creator. # # To add dumpers that don't get overwritten, copy this file here # to a safe location outside the Qt Creator installation and # make this location known to Qt Creator using the Debugger / # GDB / Dumper customization / Additional file setting. # Example to display a simple type # template<typename U, typename V> struct MapNode # { # U key; # V data; # } # # def qdump__MapNode(d, value): # d.putValue("This is the value column contents") # d.putNumChild(2) # if d.isExpanded(): # with Children(d): # # Compact simple case. # d.putSubItem("key", value["key"]) # # Same effect, with more customization possibilities. # with SubItem(d, "data") # d.putItem("data", value["data"]) # Check http://qt-project.org/doc/qtcreator-3.2/creator-debugging-helpers.html # for more details or look at qttypes.py, stdtypes.py, boosttypes.py # for more complex examples. from dumper import * from stdtypes import * ######################## Your code below ####################### # copy this file over the corresponding file in qt designer installation
39.25641
78
0.68452
f2a4c80d5b858823c4ef9a8432cc56f697eb6900
3,618
py
Python
tests/test_builder_path_parameter.py
tabebqena/flask-open-spec
ee1fd9cd349e46e1d8295fc2799898731392af6a
[ "MIT" ]
null
null
null
tests/test_builder_path_parameter.py
tabebqena/flask-open-spec
ee1fd9cd349e46e1d8295fc2799898731392af6a
[ "MIT" ]
null
null
null
tests/test_builder_path_parameter.py
tabebqena/flask-open-spec
ee1fd9cd349e46e1d8295fc2799898731392af6a
[ "MIT" ]
null
null
null
from ..open_oas.builder.builder import OasBuilder from unittest import TestCase from ..tests.schemas.schemas import PaginationSchema from ..open_oas.decorators import Deferred, path_parameter
30.661017
68
0.369541
f2a53c9d24ff35deb138d84a030fd47b3eb06aa1
3,214
py
Python
Proj/2048/test_with_f/tpybrain.py
PiscesDream/Ideas
9ba710e62472f183ae4525f35659cd265c71392e
[ "Apache-2.0" ]
null
null
null
Proj/2048/test_with_f/tpybrain.py
PiscesDream/Ideas
9ba710e62472f183ae4525f35659cd265c71392e
[ "Apache-2.0" ]
null
null
null
Proj/2048/test_with_f/tpybrain.py
PiscesDream/Ideas
9ba710e62472f183ae4525f35659cd265c71392e
[ "Apache-2.0" ]
null
null
null
from load import * from _2048 import _2048 from numpy import * from pybrain.datasets import ClassificationDataSet from pybrain.utilities import percentError from pybrain.tools.shortcuts import buildNetwork from pybrain.supervised.trainers import BackpropTrainer from pybrain.structure.modules import SoftmaxLayer, SigmoidLayer if __name__ == '__main__': tr_x = load('rec_board.npy') tr_y = load('rec_move.npy') tr_x = con1(tr_x.T) print tr_x.shape print tr_y.shape data = ClassificationDataSet(tr_x.shape[1], 1, nb_classes = 4) for ind, ele in enumerate(tr_x): data.addSample(ele, tr_y[ind]) data._convertToOneOfMany() print data.outdim fnn = buildNetwork(data.indim, 10, 10, data.outdim, hiddenclass=SigmoidLayer, outclass=SoftmaxLayer ) trainer = BackpropTrainer( fnn, dataset=data)#, momentum=0.1, verbose=True, weightdecay=0.01) for i in xrange(3): print trainer.train() #trainer.trainUntilConvergence() game = _2048(length = 4) game.mul_test(100, lambda a, b, c, d, e: softmax_dec(a, b, c, d, e, f = fnn.activate), addition_arg = True)
30.903846
120
0.528002
f2a5d347767b990fa97d063da0ee6a2aa890bd9d
2,757
py
Python
run.py
mishel254/py-password-locker
c14dd314251f078125df39104b99384c8cbd292b
[ "MIT" ]
null
null
null
run.py
mishel254/py-password-locker
c14dd314251f078125df39104b99384c8cbd292b
[ "MIT" ]
null
null
null
run.py
mishel254/py-password-locker
c14dd314251f078125df39104b99384c8cbd292b
[ "MIT" ]
null
null
null
#!/usr/bin/env python3.8 from passwords import Credentials from login import accounts import random #create credentials func #delete ''' function to delete credentials & accounts ''' ''' save credentials & accounts ''' ''' search credentials ''' ''' check if contact exist ''' ''' display ''' if __name__ == '__main__': main()
22.056
73
0.573087
f2a7f8c88dbf4887b1d166b409dc1bae27f7d5b9
815
py
Python
tests/test_templates.py
knipknap/django_searchable
6fd9f8aa766477e8648fdbed720e966af1b216b7
[ "MIT" ]
62
2018-11-05T09:06:39.000Z
2022-02-18T15:33:06.000Z
tests/test_templates.py
knipknap/django_searchable
6fd9f8aa766477e8648fdbed720e966af1b216b7
[ "MIT" ]
4
2018-11-05T07:57:27.000Z
2021-05-30T00:37:35.000Z
tests/test_templates.py
knipknap/django_searchable
6fd9f8aa766477e8648fdbed720e966af1b216b7
[ "MIT" ]
8
2018-11-08T16:10:04.000Z
2022-01-27T09:31:53.000Z
from django.test import TestCase from django.test.client import RequestFactory from django.template import Template, Context from django.template.loader import render_to_string from .models import Author, Book expected_headers = ''' <tr> <th>Name</th><th>The title</th><th>Comment</th><th>Stars</th><th>AuthorID</th> </tr> '''.strip()
32.6
78
0.69816
f2a86a4dc06766b095f7432edceef5b58b99f8ac
103,875
py
Python
diabolo_play/scripts/interactive_play.py
omron-sinicx/diabolo
a0258fdf634d27c7cf185b2e40c6b12699417d36
[ "BSD-3-Clause" ]
11
2021-10-15T15:51:24.000Z
2021-12-26T16:43:17.000Z
diabolo_play/scripts/interactive_play.py
omron-sinicx/diabolo
a0258fdf634d27c7cf185b2e40c6b12699417d36
[ "BSD-3-Clause" ]
null
null
null
diabolo_play/scripts/interactive_play.py
omron-sinicx/diabolo
a0258fdf634d27c7cf185b2e40c6b12699417d36
[ "BSD-3-Clause" ]
1
2022-02-01T01:58:37.000Z
2022-02-01T01:58:37.000Z
#!/usr/bin/env python import sys import copy import rospy import tf_conversions import tf.transformations as transform import tf from math import pi import math import thread import os import random import geometry_msgs.msg from geometry_msgs.msg import Pose, PoseArray from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint import moveit_msgs.msg import shape_msgs.msg import visualization_msgs.msg import diabolo_gazebo.msg from diabolo_play.srv import SetInitialStickPositionsRequest, SetInitialStickPositions from diabolo_play.srv import CreateSticksTrajectoryRequest, CreateSticksTrajectory from diabolo_play.srv import CreateRobotTrajectory, CreateRobotTrajectoryRequest from moveit_msgs.srv import GetPlanningScene, GetPlanningSceneRequest import pandas as pd import numpy as np from gazebo_msgs.srv import ( DeleteModel, DeleteModelRequest, SpawnModel, SpawnModelRequest, ) from diabolo_play.msg import DiaboloMotionSplineSeeds from diabolo_play.srv import GetDiaboloState, GetDiaboloStateRequest from std_msgs.msg import String from std_srvs.srv import Empty, EmptyRequest import rospkg from diabolo_gazebo.msg import DiaboloState from scipy import interpolate import matplotlib.pyplot as plt from diabolo_play.motion_knot_points import KnotPointsServer import yaml import pickle if __name__ == "__main__": try: c = PlayerClass() i = 1 # print(c.motion_functions) c.force_add_motion_function_() prep_motions = ["None", "horizontal_impulse", "horizontal_impulse_short_left"] # prep_motion = prep_motions[2] prep_motion = "" while not rospy.is_shutdown(): rospy.loginfo("Enter 1 to load motion data") rospy.loginfo( "Enter 2 to initialize the motion functions with hardcoded values." ) rospy.loginfo("Enter 3 to initialize the robot positions.") rospy.loginfo("Enter d to spawn diabolo in simulation") rospy.loginfo("Enter sx to start playback at custom rate.") rospy.loginfo("Enter m to change the motion being executed") rospy.loginfo("Enter n to change the preparatory motion") rospy.loginfo("Enter ox to start oneshot motion") rospy.loginfo("Enter px to start continuous periodic motion") rospy.loginfo("Enter t to stop motion.") rospy.loginfo("Enter f to tilt the diabolo forward.") rospy.loginfo("Enter b to tilt the diabolo backward.") rospy.loginfo("Enter k to save the current knot points") rospy.loginfo("Enter x to exit.") i = raw_input() if i == "1": c.read_transformed_motion_data( folder=("experiments/output/2020-09-14_motion_extraction/") ) elif i == "2": c.initialize_motion_functions(use_saved_values=False) elif i == "3": c.initialize_robot_positions() elif i == "d" or i == "D": print("Default parameters are (0.13, 0.13, 0.07, .9999). Change? y/n") a = raw_input() if a == "y": print("Enter the parameters, seperated by spaces") p = raw_input().split() if len(p) >= 4: print( "New parameters are: " + p[0] + " " + p[1] + " " + p[2] + " " + p[3] ) c.initialize_sim_diabolo( parameters=( float(p[0]), float(p[1]), float(p[2]), float(p[3]), ) ) else: print("Not enough parameters") else: c.initialize_sim_diabolo( parameters=(0.13, 0.13, 0.07, 0.9999) ) # Set the diabolo plugin parameters and spawn the diabolo # One-shot / continuous motion execution call elif i == "ox" or i == "OX": print( "This will execute the motion without asking for confirmation. \n Meant for execution in simulation \n Are you sure? y/n?" ) e = raw_input() if e == "y": # TODO: pass preparatory_motion? c.run_oneshot_motion(interactive=True, confirm_execution=False) else: print("Aborting") elif i == "px" or i == "PX": print( "This will execute the motion without asking for confirmation. \n Meant for execution in simulation \n Are you sure? y/n?" ) e = raw_input() if e == "y": c.start_periodic_motion( interactive=True, confirm_execution=False, preparatory_motion=prep_motion, ) else: print("Aborting") elif i == "T" or i == "t": c.stop_periodic_motion() elif i == "f": # To tilt the diabolo forward, the right hand goes forward c.tilt_offset = 0.03 c.changed_tilt_offset_flag = True elif i == "b": c.tilt_offset = -0.03 c.changed_tilt_offset_flag = True ## Changing motion / prep. motion elif i == "m" or i == "M": print("The current motion is " + c.current_motion) print("Change? y/n") i = raw_input() if i == "y": print("List of available functions is as follows: ") print( "Enter the appropriate index number to choose the motion to change to" ) for i in range(len(c.motion_list)): print(str(i) + ": " + str(c.motion_list[i])) i = raw_input() try: c.current_motion = c.motion_list[int(i)] except: print("Incorrect index. Aborting") raise elif i == "n" or i == "N": print("The current preparatory motion is " + prep_motion) print("Change? y/n") i = raw_input() if i == "y": print("List of available motions: ") print( "Enter the appropriate index number to choose the motion to change to" ) for i in range(len(prep_motions)): print(str(i) + ": " + str(prep_motions[i])) i = raw_input() try: prep_motion = prep_motions[int(i)] if prep_motion == "None": prep_motion = "" except: print("Incorrect index. Aborting") raise elif i == "r": c.tilt_offset = 0.0 elif i == "k" or i == "K": c.save_current_knot_points() elif i == "x": # c.stop_publish() break elif i == "": continue except rospy.ROSInterruptException: pass
44.014831
142
0.575779
f2a9847b819084a601442dc4d30086db0ba4a8ad
1,378
py
Python
genius.py
fedecalendino/alfred-lyrics-finder
771eb9ddcd1849b6095b2e7b16a2335d25c74f30
[ "MIT" ]
3
2020-09-14T01:07:11.000Z
2021-03-12T09:43:12.000Z
genius.py
fedecalendino/alfred-lyrics-finder
771eb9ddcd1849b6095b2e7b16a2335d25c74f30
[ "MIT" ]
null
null
null
genius.py
fedecalendino/alfred-lyrics-finder
771eb9ddcd1849b6095b2e7b16a2335d25c74f30
[ "MIT" ]
null
null
null
from workflow import web
26
85
0.564586
f2ab54aefe1c397702c020ba41c25aedb91b9d9b
555
py
Python
setup.py
akvatol/CosmOrc
6ee1e1f3521a6d2b4c8eec104fa4e93db32d9352
[ "MIT" ]
1
2018-12-07T17:21:39.000Z
2018-12-07T17:21:39.000Z
setup.py
akvatol/CosmOrc
6ee1e1f3521a6d2b4c8eec104fa4e93db32d9352
[ "MIT" ]
8
2018-11-23T10:05:01.000Z
2019-04-09T19:17:43.000Z
setup.py
akvatol/CosmOrc
6ee1e1f3521a6d2b4c8eec104fa4e93db32d9352
[ "MIT" ]
1
2018-12-07T17:21:40.000Z
2018-12-07T17:21:40.000Z
from setuptools import setup, find_packages setup( name='CosmOrc', version='0.1', include_package_data=True, packages=find_packages(), python_requires='>=3.6', install_requires=[ 'Click==7.0', 'numpy==1.16.2', 'pandas==0.24.2', 'pyaml==19.4.1', 'PySnooper==0.2.8', 'python-dateutil==2.8.0', 'pytz==2019.3', 'PyYAML==5.1.2', 'six==1.12.0', 'typing==3.7.4.1', ], entry_points=''' [console_scripts] CosmOrc = main:cli ''', )
21.346154
43
0.506306
f2ac969d340070fc7df625b368680b8b1a6e1f30
323
py
Python
src/ralph/assets/filters.py
DoNnMyTh/ralph
97b91639fa68965ad3fd9d0d2652a6545a2a5b72
[ "Apache-2.0" ]
1,668
2015-01-01T12:51:20.000Z
2022-03-29T09:05:35.000Z
src/ralph/assets/filters.py
hq-git/ralph
e2448caf02d6e5abfd81da2cff92aefe0a534883
[ "Apache-2.0" ]
2,314
2015-01-02T13:26:26.000Z
2022-03-29T04:06:03.000Z
src/ralph/assets/filters.py
hq-git/ralph
e2448caf02d6e5abfd81da2cff92aefe0a534883
[ "Apache-2.0" ]
534
2015-01-05T12:40:28.000Z
2022-03-29T21:10:12.000Z
from ralph.admin.filters import DateListFilter
32.3
78
0.724458
f2ada1e33fb51298d8dea6d25a8d7c5459098cce
3,976
py
Python
sweetie_bot_flexbe_behaviors/src/sweetie_bot_flexbe_behaviors/rbc18part2_sm.py
sweetie-bot-project/sweetie_bot_flexbe_behaviors
d8511564bb9d6125838b4373263fb68a8b858d70
[ "BSD-3-Clause" ]
null
null
null
sweetie_bot_flexbe_behaviors/src/sweetie_bot_flexbe_behaviors/rbc18part2_sm.py
sweetie-bot-project/sweetie_bot_flexbe_behaviors
d8511564bb9d6125838b4373263fb68a8b858d70
[ "BSD-3-Clause" ]
null
null
null
sweetie_bot_flexbe_behaviors/src/sweetie_bot_flexbe_behaviors/rbc18part2_sm.py
sweetie-bot-project/sweetie_bot_flexbe_behaviors
d8511564bb9d6125838b4373263fb68a8b858d70
[ "BSD-3-Clause" ]
1
2019-12-23T05:06:26.000Z
2019-12-23T05:06:26.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- ########################################################### # WARNING: Generated code! # # ************************** # # Manual changes may get lost if file is generated again. # # Only code inside the [MANUAL] tags will be kept. # ########################################################### from flexbe_core import Behavior, Autonomy, OperatableStateMachine, ConcurrencyContainer, PriorityContainer, Logger from sweetie_bot_flexbe_states.wait_for_message_state import WaitForMessageState from sweetie_bot_flexbe_states.compound_action_state import CompoundAction # Additional imports can be added inside the following tags # [MANUAL_IMPORT] # [/MANUAL_IMPORT] ''' Created on Wed Nov 21 2018 @author: mutronics '''
37.866667
217
0.647133
f2b258bd5e08c7cfd6f403dd7e2e5de3a6cb8a04
9,512
py
Python
steel_segmentation/utils.py
marcomatteo/steel-segmentation-nbdev
dde19b0b3bf7657ab575e691bca1751592aecc67
[ "Apache-2.0" ]
1
2021-08-20T14:56:26.000Z
2021-08-20T14:56:26.000Z
steel_segmentation/utils.py
marcomatteo/steel-segmentation-nbdev
dde19b0b3bf7657ab575e691bca1751592aecc67
[ "Apache-2.0" ]
1
2021-05-03T16:42:34.000Z
2021-05-03T16:42:34.000Z
steel_segmentation/utils.py
marcomatteo/steel_segmentation
dde19b0b3bf7657ab575e691bca1751592aecc67
[ "Apache-2.0" ]
null
null
null
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/01_eda.ipynb (unless otherwise specified). __all__ = ['palet', 'seed_everything', 'print_competition_data', 'get_train_pivot', 'get_train_df', 'count_pct', 'get_classification_df', 'rle2mask', 'make_mask', 'mask2rle', 'plot_mask_image', 'plot_defected_image', 'get_random_idx', 'show_defects'] # Cell from fastai.vision.all import * import numpy as np import pandas as pd import cv2 from matplotlib import pyplot as plt # Cell palet = [ (249, 192, 12), # ClassId 1 (0, 185, 241), # ClassId 2 (114, 0, 218), # ClassId 3 (249,50,12) # ClassId 4 ] # Cell def seed_everything(seed=69): """ Seeds `random`, `os.environ["PYTHONHASHSEED"]`, `numpy`, `torch.cuda` and `torch.backends`. """ warnings.filterwarnings("ignore") random.seed(seed) os.environ["PYTHONHASHSEED"] = str(seed) np.random.seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True # Cell # Cell def get_train_pivot(df): """ Summarize the training csv with ClassId as columns and values EncodedPixels """ train_pivot = df.pivot( index="ImageId", columns="ClassId", values="EncodedPixels") train_pivot["n"] = train_pivot.notnull().sum(1) train_pivot["ClassIds"] = train_pivot.apply(rles2classids, axis=1) return train_pivot def get_train_df(path, only_faulty=False, pivot=False, hard_negatives=False): """ Get training DataFrame with all the images in data/train_images. Returns only the faulty images if `only_faulty`. """ img_path = path/"train_images" csv_file_name = path/"train.csv" train = pd.read_csv(csv_file_name) img_names = [img.name for img in get_image_files(img_path)] df_all = pd.DataFrame({'ImageId': img_names}) train_all = pd.merge(df_all, train, on="ImageId", how="outer", indicator=True) # Renaming and fillna train_all.rename(columns={'_merge': 'status'}, inplace=True) rename_dict = {"both": "faulty", "left_only": "no_faulty", "right_only": "missing"} train_all["status"] = train_all["status"].cat.rename_categories(rename_dict) train_all = train_all[train_all["status"]!="missing"] train_all.ClassId.fillna(0, inplace=True) train_all.ClassId = train_all.ClassId.astype('int64') train_all.EncodedPixels.fillna(-1, inplace=True) train_all["ImageId_ClassId"] = train_all["ImageId"] + "_" + train_all["ClassId"].astype('str') if hard_negatives: hard_neg_patterns = pd.read_csv( path/"hard_negatives_patterns.txt", header=None, names=["ImageId"]) cond = train_all["status"]=="faulty" cond_hn = train_all["ImageId"].isin(hard_neg_patterns["ImageId"].tolist()) train_all = train_all.loc[cond | cond_hn] if only_faulty: train_all = train_all[train_all["status"]=="faulty"] if pivot: return get_train_pivot(train_all) return train_all # Cell def count_pct(df, column="ClassId"): """Returns a `pandas.DataFrame` with count and frequencies stats for `column`.""" class_count = df[column].value_counts().sort_index() class_count.index.set_names(column, inplace=True) class_count = class_count.to_frame() class_count.rename(columns={column: "num"}, inplace=True) return class_count.assign(freq=lambda df: df["num"] / df["num"].sum()) # Cell def get_classification_df(df: pd.DataFrame): """ Get the DataFrame for the multiclass classification model """ def assign_multi_ClassId(x): """Returns a string with multi ClassId sep with a blank space (' ')""" cols = [fill_cols(x[i]) for i in range(5)] cols = [col.replace('5', '') for col in cols] ClassId_multi = cols[0] + " " + cols[1] + " " + \ cols[2] + " " + cols[3] + " " + cols[4] ClassId_multi = ClassId_multi.str.strip() ClassId_multi = ClassId_multi.str.replace(' ', ' ') return ClassId_multi.str.strip() train_multi = df.pivot( index="ImageId", columns="ClassId", values="ClassId") train_multi = train_multi.assign( ClassId_multi=lambda x: assign_multi_ClassId(x)) return train_multi.reset_index()[["ImageId", "ClassId_multi"]] # Cell def rle2mask(rle, value=1, shape=(256,1600)): """ mask_rle: run-length as string formated (start length) shape: (width,height) of array to return Returns numpy array, 1 - mask, 0 - background Source: https://www.kaggle.com/paulorzp/rle-functions-run-lenght-encode-decode """ s = rle.split() starts, lengths = [np.asarray(x, dtype=int) for x in (s[0:][::2], s[1:][::2])] starts -= 1 ends = starts + lengths img = np.zeros(shape[0]*shape[1], dtype=np.uint8) for lo, hi in zip(starts, ends): img[lo:hi] = value return img.reshape((shape[1], shape[0])).T # Cell def make_mask(item, df, flatten=False): ''' Given an item as: - row index [int] or - ImageId [str] or - file [Path] or - query [pd.Series], returns the image_item and mask with two types of shapes: - (256, 1600) if `flatten`, - (256, 1600, 4) if not `flatten`, ''' if isinstance(item, str): cond = df.loc[item] elif isinstance(item, int): cond = df.iloc[item] elif isinstance(item, Path): cond = df.loc[item.name] elif isinstance(item, pd.Series): cond = df.loc[item["ImageId"]] else: print(item, type(item)) raise KeyError("invalid item") fname = cond.name # without 0 ClassId, only 1,2,3,4 ClassId labels = cond[1:-2] h, w = (256, 1600) masks = np.zeros((h, w, 4), dtype=np.float32) # 4:class 14 (ch:03) for itemx, label in enumerate(labels.values): if label is not np.nan: masks[:, :, itemx] = rle2mask(rle=label, value=1, shape=(h,w)) if flatten: classes = np.array([1, 2, 3, 4]) masks = (masks * classes).sum(-1) return fname, masks # Cell def mask2rle(mask): """ Efficient implementation of mask2rle, from @paulorzp img: numpy array, 1 - mask, 0 - background Returns run length as string formated Source: https://www.kaggle.com/xhlulu/efficient-mask2rle """ pixels = mask.T.flatten() pixels = np.pad(pixels, ((1, 1), )) runs = np.where(pixels[1:] != pixels[:-1])[0] + 1 runs[1::2] -= runs[::2] return ' '.join(str(x) for x in runs) # Cell def plot_mask_image(name: str, img: np.array, mask: np.array): """Plot a np.array image and mask with contours.""" fig, ax = plt.subplots(figsize=(15, 5)) mask = mask.astype(np.uint8) for ch in range(4): contours, _ = cv2.findContours(mask[:, :, ch], cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE) for i in range(len(contours)): cv2.polylines(img, contours[i], True, palet[ch], 2) ax.set_title(name, fontsize=13) ax.imshow(img) plt.xticks([]) plt.yticks([]) plt.show() # Cell def plot_defected_image(img_path: Path, df: pd.DataFrame, class_id=None): """Plot a `img_path` Path image from the training folder with contours.""" img_name = img_path.name img = cv2.imread(str(img_path)) _, mask = make_mask(img_path, df) class_ids = np.arange(1, 5) cond = np.argmax(mask, axis=0).argmax(axis=0) > 0 classid = class_ids[cond] if class_id is None: title = f"Original: Image {img_name} with defect type: {list(classid)}" plot_mask_image(title, img, mask) else: title = f"Original: Image {img_name} with defect type {class_id}" idx = class_id-1 filter_mask = np.zeros((256, 1600, 4), dtype=np.float32) filter_mask[:, :, idx] = mask[:, :, idx] plot_mask_image(title, img, filter_mask) # Cell def get_random_idx(n: int) -> np.ndarray: """ Return a random sequence of size `n`. """ rng = np.random.default_rng() return rng.permutation(n) # Cell def show_defects(path, df, class_id=None, n=20, only_defects=True, multi_defects=False): """ Plot multiple images. Attributes: `path`: [Path] `df`: [pd.DataFrame] only train_pivot `class_id`: [str or int] select a type of defect otherwise plot all kinds; `n`: select the number of images to plot; `only_defects` [bool, default True]: if False it shows even the no faulty images; `multi_defects` [bool, default False]: if True it shows imgs with multi defects. """ cond_no_defects = df[0] == -1 cond_multi_defects = df["n"] > 1 df = df.loc[cond_no_defects] if not only_defects else df.loc[~cond_no_defects] df = df.loc[cond_multi_defects] if multi_defects else df.loc[~cond_multi_defects] if class_id is not None: cond_classId = df[class_id].notna() df = df.loc[cond_classId] imgid_from_df = df.index.tolist() pfiles_list = L([path / "train_images" / imgid for imgid in imgid_from_df]) perm_paths = pfiles_list[get_random_idx(len(pfiles_list))] for img_path in perm_paths[:n]: plot_defected_image(img_path, df)
34.589091
114
0.637931
f2b2b39cb97742f076427952e2dfe5b302a0b56b
1,548
py
Python
webapp/vaga_remanescente/views.py
prefeiturasp/SME-VagasNaCreche-API
20ae8862375124c7459fe6ff2d2d33ed34d136fb
[ "0BSD" ]
null
null
null
webapp/vaga_remanescente/views.py
prefeiturasp/SME-VagasNaCreche-API
20ae8862375124c7459fe6ff2d2d33ed34d136fb
[ "0BSD" ]
9
2020-06-06T00:20:46.000Z
2022-02-10T10:57:35.000Z
webapp/vaga_remanescente/views.py
prefeiturasp/SME-VagasNaCreche-API
20ae8862375124c7459fe6ff2d2d33ed34d136fb
[ "0BSD" ]
1
2020-09-17T14:46:24.000Z
2020-09-17T14:46:24.000Z
import pickle import zlib from django.core.cache import cache from fila_da_creche.queries.dt_atualizacao import get_dt_atualizacao from rest_framework.response import Response from rest_framework.views import APIView from vaga_remanescente.queries.distrito import get_distritos from vaga_remanescente.queries.dre import get_dre from vaga_remanescente.queries.sub_prefeitura import get_sub_prefeituras from vaga_remanescente.queries.vaga_por_escolas import get_vaga_por_escolas
36
89
0.672481
f2b2b69ac9c8d9c5d5b9c1cb7f1d8d0174255511
2,310
py
Python
utils/html_markup.py
carlboudreau007/BlockChain_Demo
fb90212e9a401aa3b757e49af7fd28d250bafbc4
[ "MIT" ]
null
null
null
utils/html_markup.py
carlboudreau007/BlockChain_Demo
fb90212e9a401aa3b757e49af7fd28d250bafbc4
[ "MIT" ]
null
null
null
utils/html_markup.py
carlboudreau007/BlockChain_Demo
fb90212e9a401aa3b757e49af7fd28d250bafbc4
[ "MIT" ]
null
null
null
import glob from flask import Markup SERVER_OPTIONS = [{'text': 'Local Host', 'value': '127.0.0.1'}, {'text': 'Test weved23962', 'value': '10.201.144.167'}, {'text': 'Stage weves31263', 'value': '10.50.8.130'}, {'text': 'Prod wevep31172', 'value': '10.48.164.198'} ] def sql_options(base_dir: str) -> [Markup, str]: """Create an option list based on files in the directory. :param base_dir: where the sql files are located :return: list of options """ pattern = f'{base_dir}/*.sql' files = glob.glob(pattern, recursive=True) options = '' first = True first_file = '' for file in files: file = file.replace('\\', '/') description = file.replace('.sql', '').replace('_', ' ') last_count = description.rfind('/') + 1 description = description[last_count:] # print(description) if first: options += f'<option value="{file}" selected="selected">{description}</option>\n' first_file = file first = False else: options += f'<option value="{file}">{description}</option>\n' return Markup(options), first_file def vue_sql_select(base_dir: str) -> [Markup, str]: """Create an option list based on files in the directory. :param base_dir: where the sql files are located :return: list of options """ pattern = f'{base_dir}/*.sql' files = glob.glob(pattern, recursive=True) options = [] first = True first_file = '' for file in files: file = file.replace('\\', '/') description = file.replace('.sql', '').replace('_', ' ') last_count = description.rfind('/') + 1 description = description[last_count:] # print(description) if first: first_file = file first = False # options += f"{{text: '{description}', value: '{file}'}}," options.append({'text': f'{description}', 'value': f'{file}'}) return Markup(options), first_file if __name__ == '__main__': print(vue_sql_select('../sql/pa_related/care_guidance')) print(sql_options('../sql/pa_related/care_guidance'))
32.535211
93
0.577056
f2b606f246e1cf267d985e5ff3efcca86aeda8cd
2,237
py
Python
streamlit_app.py
sebastiandres/xkcd_streamlit
68b1c01dd8eca34135126ebb33a2d539a0d25650
[ "MIT" ]
1
2021-07-21T03:20:52.000Z
2021-07-21T03:20:52.000Z
streamlit_app.py
sebastiandres/xkcd_streamlit
68b1c01dd8eca34135126ebb33a2d539a0d25650
[ "MIT" ]
null
null
null
streamlit_app.py
sebastiandres/xkcd_streamlit
68b1c01dd8eca34135126ebb33a2d539a0d25650
[ "MIT" ]
null
null
null
import streamlit as st from xkcd import xkcd_plot from shared import translate, LANGUAGE_DICT # Set page properties for the app st.set_page_config( page_title="Streamlit & XKCD", layout="wide", initial_sidebar_state="expanded", ) # Initialize the session states - f_list has functions and colors if 'f_list' not in st.session_state: st.session_state['f_list'] = [ ("5*exp(-x**2)", "g"), ("sin(5*x)/x", "b"), ] if 'SLANG' not in st.session_state: st.session_state['SLANG'] = list(LANGUAGE_DICT.keys())[0] # The side bar language_title = st.sidebar.empty() # Hack so the title gets updated before selection is made st.session_state['SLANG'] = st.sidebar.selectbox("", list(LANGUAGE_DICT.keys()) ) language_title.subheader(translate("language_title")) # Delete SLANG_DICT = LANGUAGE_DICT[st.session_state['SLANG']] st.sidebar.subheader(translate("parameters_title")) with st.sidebar.expander(translate("functions_expander")): f = st.text_input(translate("equation"), "sin(5*x)/x") c = st.color_picker(translate("function_color"), "#0000FF") col1, col2 = st.columns(2) if col1.button(translate("add_function")): st.session_state['f_list'].append( (f, c) ) if col2.button(translate("clean_functions")): st.session_state['f_list'] = [] st.write(translate("functions_link")) with st.sidebar.expander(translate("graph_expander")): title = st.text_input(translate("title_text"), translate("title_value")) xlabel = st.text_input(translate("xlabel_text"), "x") ylabel = st.text_input(translate("ylabel_text"), "y") xmin = st.number_input(translate("xmin_text"), value=-5) xmax = st.number_input(translate("xmax_text"), value=+5) st.sidebar.markdown(translate("links_md")) # The main view try: fig = xkcd_plot(st.session_state['f_list'], title, xlabel, ylabel, xmin, xmax, Nx=1001) st.pyplot(fig) except Exception as e: st.session_state['f_list'] = [] st.error(translate("error_warning")) st.warning(translate("error_advice")) st.exception(e)
37.283333
93
0.644166
f2b72d00fd0e6778383cb9c2b7f0e084dcbc51b2
5,798
py
Python
gui/wndRecipeProcedure.py
ralic/gnu_brewtools
ba09dc11e23d93e623f497286f3f2c3e9aaa41c2
[ "BSD-3-Clause" ]
null
null
null
gui/wndRecipeProcedure.py
ralic/gnu_brewtools
ba09dc11e23d93e623f497286f3f2c3e9aaa41c2
[ "BSD-3-Clause" ]
null
null
null
gui/wndRecipeProcedure.py
ralic/gnu_brewtools
ba09dc11e23d93e623f497286f3f2c3e9aaa41c2
[ "BSD-3-Clause" ]
null
null
null
""" * Copyright (c) 2008, Flagon Slayer Brewery * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the Flagon Slayer Brewery nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Flagon Slayer Brewery ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL Flagon Slayer Brewery BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import pygtk pygtk.require("2.0") import gtk, gtk.glade from recipe import* from obj_manager import* from util import* from wndRecipeIngredients import*
35.570552
121
0.723698
f2b7bb0de76b2e0ba5ce5495b4efc9822958361d
1,018
py
Python
oidc_provider/migrations/0028_change_response_types_field_1_of_3.py
avallbona/django-oidc-provider
93b41e9ada42ca7c4bd6c860de83793ba3701d68
[ "MIT" ]
null
null
null
oidc_provider/migrations/0028_change_response_types_field_1_of_3.py
avallbona/django-oidc-provider
93b41e9ada42ca7c4bd6c860de83793ba3701d68
[ "MIT" ]
null
null
null
oidc_provider/migrations/0028_change_response_types_field_1_of_3.py
avallbona/django-oidc-provider
93b41e9ada42ca7c4bd6c860de83793ba3701d68
[ "MIT" ]
1
2021-02-17T16:23:41.000Z
2021-02-17T16:23:41.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2018-12-16 02:43 from __future__ import unicode_literals from django.db import migrations, models import oidc_provider.fields
37.703704
415
0.652259
f2b7c2a6955082c094b447b57a5e843a6c763e15
4,693
py
Python
cyclegan/data/celeba/mask_face_region_with_avail_kpts.py
dingyanna/DepthNets
a13b05e315b0732b6a28594b1343a6940bbab229
[ "MIT" ]
114
2018-11-27T19:34:13.000Z
2022-03-26T19:39:00.000Z
cyclegan/data/celeba/mask_face_region_with_avail_kpts.py
dingyanna/DepthNets
a13b05e315b0732b6a28594b1343a6940bbab229
[ "MIT" ]
9
2018-12-11T09:05:22.000Z
2021-07-02T21:27:34.000Z
cyclegan/data/celeba/mask_face_region_with_avail_kpts.py
kdh4672/Face_Recognition_With_Augmentation
b0795b97c94bbba1a1e3310670d0868f3eacb479
[ "MIT" ]
32
2018-12-03T00:52:54.000Z
2021-08-30T01:45:31.000Z
""" This module masks faces using kpts already detected """ import numpy as np import argparse import cv2 #from RCN.preprocessing.tools import BGR2Gray from PIL import Image import h5py if __name__ == "__main__": #parser = argparse.ArgumentParser(description='Getting keypoint prediction\ # using a trained model.') #parser.add_argument('--img_path', type=str, help='the complete path to the\ # pickle file that contains pre-processed images', # required=True) #kpts_path = '/home/honari/libs/test_RCN/RCN/plotting/keypoints' kpts_path = "./keypoints" #args = parser.parse_args() #img_path = args.img_path imgs_path = 'celebA.h5' #fp = open(img_path, 'r') fp = h5py.File(imgs_path, 'a') #dset = pickle.load(fp) imgs = fp['src_GT'] #imgs_depthNet = fp['src_depthNet'] imgs_ids = fp['src_id'][:].astype("U6") print('getting kpts') #pred_kpts = get_kpts(imgs, path) pred_kpts = read_kpts(kpts_path, imgs_ids) print('getting masks') masked_face = mask_out_face(imgs, pred_kpts) """ data_dict = OrderedDict() data_dict['img_orig'] = imgs data_dict['img_mask'] = masked_face pickle.dump('mask_faces.pickle', data_dict) """ src_GT_mask_face = np.array(masked_face).astype(np.uint8) #img_path_out = img_path.split('.pickle')[0] + '_with_mask.pickle' #with open(img_path_out, 'wb') as fp: # pickle.dump(dset, fp) fp.create_dataset('src_GT_mask_face', data=src_GT_mask_face) src_depthNet = fp['src_depthNet'] fp.create_dataset('src_depthNet_and_mask', data=np.concatenate((src_depthNet, src_GT_mask_face), axis=-1)) ''' print('plotting samples') n_sample = 50 for img, img_mask, img_depthNet, img_id in \ zip(imgs, masked_face, imgs_depthNet, np.arange(n_sample)): row_size, col_size, _ = img.shape img_PIL = convert_np_to_PIL(img) img_mask_PIL = convert_np_to_PIL(img_mask) img_depthNet_PIL = convert_np_to_PIL(img_depthNet) img_new = tile_images(img_PIL, img_mask_PIL, img_depthNet_PIL, row_size, col_size) img_new.save('./sample_mask_imgs/img_%s.png' % (img_id)) ''' fp.close() print('done!')
32.818182
97
0.603665
f2b7d3d40db3233a8eadd8a94f91fbf6d7c9b69b
589
py
Python
task1/task1.py
ZHN202/opencv_learning
f0725955e6e525d3918c1117763bf0aaa4299777
[ "MIT" ]
1
2021-11-04T03:41:04.000Z
2021-11-04T03:41:04.000Z
task1/task1.py
ZHN202/opencv_learning
f0725955e6e525d3918c1117763bf0aaa4299777
[ "MIT" ]
null
null
null
task1/task1.py
ZHN202/opencv_learning
f0725955e6e525d3918c1117763bf0aaa4299777
[ "MIT" ]
null
null
null
import cv2 as cv import numpy as np img = cv.imread('test.png') # 1920*1080h,s,v = cv.split(hsvimg) img = cv.resize(img, dsize=(1920, 1080), fx=1, fy=1, interpolation=cv.INTER_NEAREST) # hsv hsvimg = cv.cvtColor(img, cv.COLOR_BGR2HSV) lower_y = np.array([20, 43, 46]) upper_y = np.array([34, 255, 220]) mask = cv.inRange(hsvimg, lower_y, upper_y) # lines = cv.HoughLinesP(mask, 1, np.pi / 180, 127, minLineLength=500, maxLineGap=1) for line in lines: x1, y1, x2, y2 = line[0] cv.line(img, (x1, y1), (x2, y2), (0, 255, 0), 1) cv.imshow('img', img) cv.waitKey(0)
26.772727
84
0.665535
f2b89b6b2b0dc41d3a0e5d1ce5504c256753035d
926
py
Python
reservations/migrations/0001_initial.py
danielmicaletti/ride_cell
910be09ebc714b8c744edaf81559c8a9266473e3
[ "MIT" ]
null
null
null
reservations/migrations/0001_initial.py
danielmicaletti/ride_cell
910be09ebc714b8c744edaf81559c8a9266473e3
[ "MIT" ]
null
null
null
reservations/migrations/0001_initial.py
danielmicaletti/ride_cell
910be09ebc714b8c744edaf81559c8a9266473e3
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2017-04-26 00:00 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion
31.931034
158
0.62959