hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
11 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
251
max_stars_repo_name
stringlengths
4
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
251
max_issues_repo_name
stringlengths
4
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
251
max_forks_repo_name
stringlengths
4
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.05M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.04M
alphanum_fraction
float64
0
1
7cfa416e684eef42a41f05552ac51704b017a9e1
1,471
py
Python
arguments_setting.py
Projectoy/ml_framework
f3d37d632a1aec314eb186a3da6d174a5dc4beee
[ "Apache-2.0" ]
null
null
null
arguments_setting.py
Projectoy/ml_framework
f3d37d632a1aec314eb186a3da6d174a5dc4beee
[ "Apache-2.0" ]
null
null
null
arguments_setting.py
Projectoy/ml_framework
f3d37d632a1aec314eb186a3da6d174a5dc4beee
[ "Apache-2.0" ]
null
null
null
import argparse, os
36.775
119
0.680489
7cfa745e3890fcda9ffd072f599dc7be286f99a5
11,039
py
Python
fileHandler.py
Omer-Sella/ldpc
955c0bc32236e171365cbbb88f00574302771610
[ "MIT" ]
null
null
null
fileHandler.py
Omer-Sella/ldpc
955c0bc32236e171365cbbb88f00574302771610
[ "MIT" ]
null
null
null
fileHandler.py
Omer-Sella/ldpc
955c0bc32236e171365cbbb88f00574302771610
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Thu Nov 28 12:10:11 2019 @author: Omer """ ## File handler ## This file was initially intended purely to generate the matrices for the near earth code found in: https://public.ccsds.org/Pubs/131x1o2e2s.pdf ## The values from the above pdf were copied manually to a txt file, and it is the purpose of this file to parse it. ## The emphasis here is on correctness, I currently do not see a reason to generalise this file, since matrices will be saved in either json or some matrix friendly format. import numpy as np from scipy.linalg import circulant #import matplotlib.pyplot as plt import scipy.io import common import hashlib import os projectDir = os.environ.get('LDPC') if projectDir == None: import pathlib projectDir = pathlib.Path(__file__).parent.absolute() ## Omer Sella: added on 01/12/2020, need to make sure this doesn't break anything. import sys sys.path.insert(1, projectDir) FILE_HANDLER_INT_DATA_TYPE = np.int32 GENERAL_CODE_MATRIX_DATA_TYPE = np.int32 NIBBLE_CONVERTER = np.array([8, 4, 2, 1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE) #plt.imshow(nearEarthParity) #nearEarthParity = readMatrixFromFile('/home/oss22/swift/swift/codeMatrices/nearEarthParity.txt', 1022, 8176, 511, True, False, False) #import networkx as nx #from networkx.algorithms import bipartite #B = nx.Graph() #B.add_nodes_from(range(1022), bipartite=0) #B.add_nodes_from(range(1022, 7156 + 1022), bipartite=1) # Add edges only between nodes of opposite node sets #for i in range(8176): # for j in range(1022): # if nearEarthParity[j,i] != 0: # B.add_edges_from([(j, 7156 + i)]) #X, Y = bipartite.sets(B) #pos = dict() #pos.update( (n, (1, i)) for i, n in enumerate(X) ) #pos.update( (n, (2, i)) for i, n in enumerate(Y) ) #nx.draw(B, pos=pos) #plt.show()
38.197232
172
0.621343
7cfaab0b77af0b6c7c138ff09a0a82244c391f57
12,133
py
Python
stage/configuration/test_amazon_s3_origin.py
Sentienz/datacollector-tests
ca27988351dc3366488098b5db6c85a8be2f7b85
[ "Apache-2.0" ]
null
null
null
stage/configuration/test_amazon_s3_origin.py
Sentienz/datacollector-tests
ca27988351dc3366488098b5db6c85a8be2f7b85
[ "Apache-2.0" ]
null
null
null
stage/configuration/test_amazon_s3_origin.py
Sentienz/datacollector-tests
ca27988351dc3366488098b5db6c85a8be2f7b85
[ "Apache-2.0" ]
1
2019-10-29T08:46:11.000Z
2019-10-29T08:46:11.000Z
import logging import pytest from streamsets.testframework.markers import aws, sdc_min_version from streamsets.testframework.utils import get_random_string logger = logging.getLogger(__name__) S3_SANDBOX_PREFIX = 'sandbox' LOG_FIELD_MAPPING = [{'fieldPath': '/date', 'group': 1}, {'fieldPath': '/time', 'group': 2}, {'fieldPath': '/timehalf', 'group': 3}, {'fieldPath': '/info', 'group': 4}, {'fieldPath': '/file', 'group': 5}, {'fieldPath': '/message', 'group': 6}] REGULAR_EXPRESSION = r'(\S+) (\S+) (\S+) (\S+) (\S+) (.*)' # log to be written int the file on s3 data_format_content = { 'COMMON_LOG_FORMAT': '127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700] ' '"GET /apache.gif HTTP/1.0" 200 232', 'LOG4J': '200 [main] DEBUG org.StreamSets.Log4j unknown - This is sample log message', 'APACHE_ERROR_LOG_FORMAT': '[Wed Oct 11 14:32:52 2000] [error] [client 127.0.0.1] client ' 'denied by server configuration:/export/home/live/ap/htdocs/test', 'COMBINED_LOG_FORMAT': '127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700] "GET /apache.gif' ' HTTP/1.0" 200 2326 "http://www.example.com/strt.html" "Mozilla/4.08' ' [en] (Win98; I ;Nav)"', 'APACHE_CUSTOM_LOG_FORMAT': '10.185.248.71 - - [09/Jan/2015:9:12:06 +0000] "GET ' '/inventoryServic/inventory/purchaseItem?userId=20253471&itemId=23434300 ' 'HTTP/1.1" 500 17 ', 'CEF': '10.217.31.247 CEF:0|Citrix|NetScaler|NS10.0|APPFW|APPFW_STARTURL|6|src=10.217.253.78 ' 'spt=53743 method=GET request=http://vpx247.example.net/FFC/login.html msg=Disallow Illegal URL.', 'LEEF': 'LEEF: 2.0|Trend Micro|Deep Security Agent|<DSA version>|4000030|cat=Anti-Malware ' 'name=HEU_AEGIS_CRYPT desc=HEU_AEGIS_CRYPT sev=6 cn1=241 msg=Realtime', 'REGEX': '2019-04-30 08:23:53 AM [INFO] [streamsets.sdk.sdc_api] Pipeline Filewriterpipeline53'} # data to verify the output of amazon s3 origin. get_data_to_verify_output = { 'LOG4J': {'severity': 'DEBUG', 'relativetime': '200', 'thread': 'main', 'category': 'org.StreamSets.Log4j', 'ndc': 'unknown', 'message': 'This is sample log message'}, 'COMMON_LOG_FORMAT': {'request': '/apache.gif', 'auth': 'frank', 'ident': '-', 'response': '200', 'bytes': '232', 'clientip': '127.0.0.1', 'verb': 'GET', 'httpversion': '1.0', 'rawrequest': None, 'timestamp': '10/Oct/2000:13:55:36 -0700'}, 'APACHE_ERROR_LOG_FORMAT': {'message': 'client denied by server configuration:/export/home/live/ap/htdocs/' 'test', 'timestamp': 'Wed Oct 11 14:32:52 2000', 'loglevel': 'error', 'clientip': '127.0.0.1'}, 'COMBINED_LOG_FORMAT': {'request': '/apache.gif', 'agent': '"Mozilla/4.08 [en] (Win98; I ;Nav)"', 'auth': 'frank', 'ident': '-', 'verb': 'GET', 'referrer': '"http://www.example.com/strt.' 'html"', 'response': '200', 'bytes': '2326', 'clientip': '127.0.0.1', 'httpversion': '1.0', 'rawrequest': None, 'timestamp': '10/Oct/2000:13:55:36 -0700'}, 'APACHE_CUSTOM_LOG_FORMAT': {'remoteUser': '-', 'requestTime': '09/Jan/2015:9:12:06 +0000', 'request': 'GET ' '/inventoryServic/inventory/purchaseItem?userId=20253471&itemId=23434300 HTTP/1.1', 'logName': '-', 'remoteHost': '10.185.248.71', 'bytesSent': '17', 'status': '500'}, 'CEF': {'severity': '6', 'product': 'NetScaler', 'extensions': {'msg': 'Disallow Illegal URL.', 'request': 'http://vpx247.example.net/FFC/login.html', 'method': 'GET', 'src': '10.217.253.78', 'spt': '53743'}, 'signature': 'APPFW', 'vendor': 'Citrix', 'cefVersion': 0, 'name': 'APPFW_STARTURL', 'version': 'NS10.0'}, 'GROK': {'request': '/inventoryServic/inventory/purchaseItem?userId=20253471&itemId=23434300', 'auth': '-', 'ident': '-', 'response': '500', 'bytes': '17', 'clientip': '10.185.248.71', 'verb': 'GET', 'httpversion': '1.1', 'rawrequest': None, 'timestamp': '09/Jan/2015:9:12:06 +0000'}, 'LEEF': {'eventId': '4000030', 'product': 'Deep Security Agent', 'extensions': {'cat': 'Realtime'}, 'leefVersion': 2.0, 'vendor': 'Trend Micro', 'version': '<DSA version>'}, 'REGEX': {'/time': '08:23:53', '/date': '2019-04-30', '/timehalf': 'AM', '/info': '[INFO]', '/message': 'Pipeline Filewriterpipeline53', '/file': '[streamsets.sdk.sdc_api]'}} def get_aws_origin_to_trash_pipeline(sdc_builder, attributes, aws): # Build pipeline. builder = sdc_builder.get_pipeline_builder() builder.add_error_stage('Discard') s3_origin = builder.add_stage('Amazon S3', type='origin') s3_origin.set_attributes(**attributes) trash = builder.add_stage('Trash') pipeline_finisher_executor = builder.add_stage('Pipeline Finisher Executor') pipeline_finisher_executor.set_attributes(stage_record_preconditions=["${record:eventType() == 'no-more-data'}"]) s3_origin >> trash s3_origin >= pipeline_finisher_executor s3_origin_pipeline = builder.build().configure_for_environment(aws) s3_origin_pipeline.configuration['shouldRetry'] = False return s3_origin_pipeline def delete_aws_objects(client, aws, s3_key): # Clean up S3. delete_keys = {'Objects': [{'Key': k['Key']} for k in client.list_objects_v2(Bucket=aws.s3_bucket_name, Prefix=s3_key)['Contents']]} client.delete_objects(Bucket=aws.s3_bucket_name, Delete=delete_keys) def execute_pipeline_and_get_output(sdc_executor, s3_origin, pipeline): sdc_executor.add_pipeline(pipeline) snapshot = sdc_executor.capture_snapshot(pipeline, start_pipeline=True).snapshot output_records = snapshot[s3_origin].output return output_records
46.84556
334
0.656556
7cfb56c23b97ce934940b9509f58841e0ebbb0fe
3,493
py
Python
model_building/svr_experiment_configuration.py
eubr-atmosphere/a-MLLibrary
b6ba472baacea6d793ab4f03275cdfa874e83bc3
[ "Apache-2.0" ]
3
2021-09-19T17:06:31.000Z
2021-12-10T23:21:21.000Z
model_building/svr_experiment_configuration.py
eubr-atmosphere/a-MLLibrary
b6ba472baacea6d793ab4f03275cdfa874e83bc3
[ "Apache-2.0" ]
null
null
null
model_building/svr_experiment_configuration.py
eubr-atmosphere/a-MLLibrary
b6ba472baacea6d793ab4f03275cdfa874e83bc3
[ "Apache-2.0" ]
1
2021-09-27T13:54:12.000Z
2021-09-27T13:54:12.000Z
""" Copyright 2019 Marco Lattuada Copyright 2019 Danilo Ardagna Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import sklearn.svm as svm import model_building.experiment_configuration as ec
38.811111
111
0.692242
7cfbb1bacec44e19e996fa070cd83150534767b0
1,000
py
Python
src/scs_host/sys/host_gpi.py
south-coast-science/scs_host_rpi
a02afde3fd2e1f2b8c6dc08beef8c74039108a64
[ "MIT" ]
null
null
null
src/scs_host/sys/host_gpi.py
south-coast-science/scs_host_rpi
a02afde3fd2e1f2b8c6dc08beef8c74039108a64
[ "MIT" ]
1
2020-07-13T14:54:08.000Z
2020-11-16T10:11:04.000Z
src/scs_host/sys/host_gpi.py
south-coast-science/scs_host_rpi
a02afde3fd2e1f2b8c6dc08beef8c74039108a64
[ "MIT" ]
2
2017-11-07T16:59:02.000Z
2019-09-29T15:39:37.000Z
""" Created on 12 May 2017 @author: Bruno Beloff ([email protected]) """ from scs_host.sys.host_gpio import HostGPIO # -------------------------------------------------------------------------------------------------------------------- # noinspection PyUnusedLocal,PyAbstractClass
25
118
0.346
7cfcc11fbbb1d31705e442bed5fe7d622b04a2bd
4,472
py
Python
benchmark/AMS/HIGGSTES/TP.py
victor-estrade/SystGradDescent
822e7094290301ec47a99433381a8d6406798aff
[ "MIT" ]
2
2019-03-20T09:05:02.000Z
2019-03-20T15:23:44.000Z
benchmark/AMS/HIGGSTES/TP.py
victor-estrade/SystGradDescent
822e7094290301ec47a99433381a8d6406798aff
[ "MIT" ]
null
null
null
benchmark/AMS/HIGGSTES/TP.py
victor-estrade/SystGradDescent
822e7094290301ec47a99433381a8d6406798aff
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 from __future__ import print_function from __future__ import division from __future__ import absolute_import from __future__ import unicode_literals # Command line : # python -m benchmark.VAR.GG.TP import os import logging from config import SEED from config import _ERROR from config import _TRUTH import numpy as np import pandas as pd from visual.misc import set_plot_config set_plot_config() from utils.log import set_logger from utils.log import flush from utils.log import print_line from utils.model import get_model from utils.model import get_optimizer from utils.model import train_or_load_neural_net from utils.evaluation import evaluate_summary_computer from utils.images import gather_images from visual.misc import plot_params from problem.higgs import HiggsConfigTesOnly as Config from problem.higgs import get_generators_torch from problem.higgs import GeneratorCPU from problem.higgs import GeneratorTorch from problem.higgs import HiggsNLL as NLLComputer from model.tangent_prop import TangentPropClassifier from archi.classic import L4 as ARCHI from ...my_argparser import TP_parse_args from collections import OrderedDict from .common import measurement DATA_NAME = 'HIGGSTES' BENCHMARK_NAME = 'VAR-'+DATA_NAME N_ITER = 30 # ===================================================================== # MAIN # ===================================================================== if __name__ == '__main__': main()
30.841379
97
0.687165
7cfd01e468c618706379749c3f05781c60e2fe7b
1,883
py
Python
papermill/tests/test_adl.py
dmartinpro/papermill
fbb0a60c97cde70e3b278f778cbd366cf54f83f0
[ "BSD-3-Clause" ]
null
null
null
papermill/tests/test_adl.py
dmartinpro/papermill
fbb0a60c97cde70e3b278f778cbd366cf54f83f0
[ "BSD-3-Clause" ]
null
null
null
papermill/tests/test_adl.py
dmartinpro/papermill
fbb0a60c97cde70e3b278f778cbd366cf54f83f0
[ "BSD-3-Clause" ]
null
null
null
import unittest from ..adl import ADL import six if six.PY3: from unittest.mock import Mock, MagicMock else: from mock import Mock, MagicMock
36.211538
97
0.670738
7cfd39821c7ad2ac471f6e189d3999d3560e833a
259
py
Python
users/views.py
AnvarKhan/django-python
bd54e44deb290f43ea5982c2ca9f37cd6c946879
[ "Apache-2.0" ]
1
2022-02-05T15:07:25.000Z
2022-02-05T15:07:25.000Z
users/views.py
AnvarKhan/django-python
bd54e44deb290f43ea5982c2ca9f37cd6c946879
[ "Apache-2.0" ]
null
null
null
users/views.py
AnvarKhan/django-python
bd54e44deb290f43ea5982c2ca9f37cd6c946879
[ "Apache-2.0" ]
null
null
null
from django.views.generic import CreateView from django.urls import reverse_lazy from .forms import CustomUserCreationForm
28.777778
43
0.830116
7cfe95c6759feee2397de3f952b5fd6bdfa39ca2
137
py
Python
st3/package_util/compat/typing.py
Thom1729/package_util
3ddec00d8ab4a52f0f5ce3fe8b09247c1518547f
[ "MIT" ]
18
2020-02-20T11:56:43.000Z
2021-12-30T19:00:50.000Z
st3/package_util/compat/typing.py
Thom1729/package_util
3ddec00d8ab4a52f0f5ce3fe8b09247c1518547f
[ "MIT" ]
31
2020-02-21T13:38:12.000Z
2021-12-15T22:18:37.000Z
st3/package_util/compat/typing.py
Thom1729/package_util
3ddec00d8ab4a52f0f5ce3fe8b09247c1518547f
[ "MIT" ]
3
2020-02-21T09:31:27.000Z
2021-10-01T20:56:16.000Z
try: from typing import * # noqa: F401, F403 except ImportError: from .typing_stubs import * # type: ignore # noqa: F401, F403
27.4
66
0.671533
7cfea92f95c14fb4efaa051120fc4e6f1facdf01
2,858
py
Python
stanza/models/common/dropout.py
rasimuvaikas/stanza
21793519a531b0e9d7151e42d180d97785c9a5b8
[ "Apache-2.0" ]
3,633
2016-01-21T17:29:13.000Z
2022-03-31T13:36:47.000Z
stanza/models/common/dropout.py
rasimuvaikas/stanza
21793519a531b0e9d7151e42d180d97785c9a5b8
[ "Apache-2.0" ]
593
2016-01-19T07:16:05.000Z
2022-03-31T20:23:58.000Z
stanza/models/common/dropout.py
rasimuvaikas/stanza
21793519a531b0e9d7151e42d180d97785c9a5b8
[ "Apache-2.0" ]
525
2016-01-20T03:22:19.000Z
2022-03-24T05:51:56.000Z
import torch import torch.nn as nn
37.605263
139
0.642407
7cff5cb6c2fef0ecc0f5ac6be8e4bd36f4fe013c
365
py
Python
Day01-15/code/Day15/pdf2.py
bdfd/Python_Zero2Hero_DS
9dafe90b8112fdc3d07e1aa02e41ed3f019f733c
[ "MIT" ]
3
2022-01-15T19:06:19.000Z
2022-01-18T16:47:27.000Z
Day01-15/code/Day15/pdf2.py
bdfd/4.5_Data-Science-Python-Zero2Hero-
9dafe90b8112fdc3d07e1aa02e41ed3f019f733c
[ "MIT" ]
null
null
null
Day01-15/code/Day15/pdf2.py
bdfd/4.5_Data-Science-Python-Zero2Hero-
9dafe90b8112fdc3d07e1aa02e41ed3f019f733c
[ "MIT" ]
1
2022-01-09T00:18:49.000Z
2022-01-09T00:18:49.000Z
""" PDF Version: 0.1 Author: BDFD Date: 2018-03-26 """ from PyPDF2 import PdfFileReader with open('./res/Python.pdf', 'rb') as f: reader = PdfFileReader(f, strict=False) print(reader.numPages) if reader.isEncrypted: reader.decrypt('') current_page = reader.getPage(5) print(current_page) print(current_page.extractText())
19.210526
45
0.682192
7cff626ae151f2363fd9919cb12cd92f5b8974de
2,335
py
Python
qt__pyqt__pyside__pyqode/qt__class_tree__parse_and_print__recursively__from__doc_qt_io/gui.py
DazEB2/SimplePyScripts
1dde0a42ba93fe89609855d6db8af1c63b1ab7cc
[ "CC-BY-4.0" ]
null
null
null
qt__pyqt__pyside__pyqode/qt__class_tree__parse_and_print__recursively__from__doc_qt_io/gui.py
DazEB2/SimplePyScripts
1dde0a42ba93fe89609855d6db8af1c63b1ab7cc
[ "CC-BY-4.0" ]
null
null
null
qt__pyqt__pyside__pyqode/qt__class_tree__parse_and_print__recursively__from__doc_qt_io/gui.py
DazEB2/SimplePyScripts
1dde0a42ba93fe89609855d6db8af1c63b1ab7cc
[ "CC-BY-4.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' from PyQt5 import QtWidgets as qtw from PyQt5.QtTest import QTest import time import requests from bs4 import BeautifulSoup from console import get_inherited_children, ROOT_URL if __name__ == '__main__': app = qtw.QApplication([]) w = MainWindow() w.resize(500, 500) w.show() w.fill_tree() app.exec()
25.107527
98
0.628266
7cffa5673d098c5404a18e4042db11fef2170e1f
6,540
py
Python
common/OpTestASM.py
kyle-ibm/op-test
df8dbf8cbff1390668c22632052adb46ebf277c1
[ "Apache-2.0" ]
null
null
null
common/OpTestASM.py
kyle-ibm/op-test
df8dbf8cbff1390668c22632052adb46ebf277c1
[ "Apache-2.0" ]
null
null
null
common/OpTestASM.py
kyle-ibm/op-test
df8dbf8cbff1390668c22632052adb46ebf277c1
[ "Apache-2.0" ]
1
2021-05-25T11:33:18.000Z
2021-05-25T11:33:18.000Z
#!/usr/bin/env python3 # encoding=utf8 # IBM_PROLOG_BEGIN_TAG # This is an automatically generated prolog. # # $Source: op-test-framework/common/OpTestASM.py $ # # OpenPOWER Automated Test Project # # Contributors Listed Below - COPYRIGHT 2017 # [+] International Business Machines Corp. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. See the License for the specific language governing # permissions and limitations under the License. # # IBM_PROLOG_END_TAG ''' OpTestASM: Advanced System Management (FSP Web UI) -------------------------------------------------- This class can contains common functions which are useful for FSP ASM Web page. Some functionality is only accessible through the FSP Web UI (such as progress codes), so we scrape it. ''' import time import subprocess import os import pexpect import sys import subprocess from .OpTestConstants import OpTestConstants as BMC_CONST from .OpTestError import OpTestError import http.cookiejar import urllib.request import urllib.parse import urllib.error import re import ssl
31.902439
90
0.555657
6b00216e5015b612b495eca186f46004bdc92b04
1,824
py
Python
test/test_storage.py
jrabasco/PyPasser
3cc6ecdfa9b5fe22f5a88c221517fe09d2df9db6
[ "MIT" ]
null
null
null
test/test_storage.py
jrabasco/PyPasser
3cc6ecdfa9b5fe22f5a88c221517fe09d2df9db6
[ "MIT" ]
null
null
null
test/test_storage.py
jrabasco/PyPasser
3cc6ecdfa9b5fe22f5a88c221517fe09d2df9db6
[ "MIT" ]
null
null
null
#!/usr/bin/python3.4 __author__ = "Jeremy Rabasco" import sys import os sys.path.append("..") import unittest from modules import storage from modules.service import Service from modules.database import Database if __name__ == "__main__": unittest.main()
35.076923
104
0.668311
6b00e8ebc8e80cec62f2565854961c322350a073
4,676
py
Python
virt/ansible-latest/lib/python2.7/site-packages/ansible/plugins/lookup/template.py
lakhlaifi/RedHat-Ansible
27c5077cced9d416081fcd5d69ea44bca0317fa4
[ "Apache-2.0" ]
1
2020-03-22T01:04:39.000Z
2020-03-22T01:04:39.000Z
ansible/ansible/plugins/lookup/template.py
SergeyCherepanov/ansible
875711cd2fd6b783c812241c2ed7a954bf6f670f
[ "MIT" ]
7
2020-09-07T17:27:56.000Z
2022-03-02T06:25:46.000Z
ansible/ansible/plugins/lookup/template.py
SergeyCherepanov/ansible
875711cd2fd6b783c812241c2ed7a954bf6f670f
[ "MIT" ]
1
2020-03-22T01:04:48.000Z
2020-03-22T01:04:48.000Z
# Copyright: (c) 2012, Michael DeHaan <[email protected]> # Copyright: (c) 2012-17, Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type DOCUMENTATION = """ lookup: template author: Michael DeHaan <[email protected]> version_added: "0.9" short_description: retrieve contents of file after templating with Jinja2 description: - Returns a list of strings; for each template in the list of templates you pass in, returns a string containing the results of processing that template. options: _terms: description: list of files to template convert_data: type: bool description: whether to convert YAML into data. If False, strings that are YAML will be left untouched. variable_start_string: description: The string marking the beginning of a print statement. default: '{{' version_added: '2.8' type: str variable_end_string: description: The string marking the end of a print statement. default: '}}' version_added: '2.8' type: str """ EXAMPLES = """ - name: show templating results debug: msg: "{{ lookup('template', './some_template.j2') }}" - name: show templating results with different variable start and end string debug: msg: "{{ lookup('template', './some_template.j2', variable_start_string='[%', variable_end_string='%]') }}" """ RETURN = """ _raw: description: file(s) content after templating """ import os from ansible.errors import AnsibleError from ansible.plugins.lookup import LookupBase from ansible.module_utils._text import to_bytes, to_text from ansible.template import generate_ansible_template_vars from ansible.utils.display import Display display = Display()
40.66087
159
0.64136
6b01058178b8f414abe46085a609e4696e9cb097
1,096
py
Python
setup.py
ripiuk/fant_sizer
dcc0908c79ed76af3f4189ebd2a75cecf7a89e34
[ "MIT" ]
null
null
null
setup.py
ripiuk/fant_sizer
dcc0908c79ed76af3f4189ebd2a75cecf7a89e34
[ "MIT" ]
null
null
null
setup.py
ripiuk/fant_sizer
dcc0908c79ed76af3f4189ebd2a75cecf7a89e34
[ "MIT" ]
null
null
null
from setuptools import setup, find_packages from os.path import join, dirname setup( name="fant_sizer", version="0.7", author="Rypiuk Oleksandr", author_email="[email protected]", description="fant_sizer command-line file-information", url="https://github.com/ripiuk/fant_sizer", keywords="file command-line information size tool recursively", license="MIT", classifiers=[ 'Topic :: Utilities', 'Environment :: Console', 'Natural Language :: English', 'License :: OSI Approved :: MIT License', 'Intended Audience :: Developers', 'Intended Audience :: Information Technology', 'Development Status :: 5 - Production/Stable', 'Programming Language :: Python :: 3.6' ], packages=find_packages(), long_description=open(join(dirname(__file__), "README.rst")).read(), entry_points={ "console_scripts": ['fant_sizer = fant_sizer.fant_sizer:_main'], }, )
36.533333
76
0.581204
6b032c5cf849bb1b6a9241eb068c04ff780d5adc
1,957
py
Python
2018/Round 1A/A.py
elvisyjlin/google-code-jam
7fe8244c5ae07a9896acf9c48f3a06b306b393b1
[ "MIT" ]
null
null
null
2018/Round 1A/A.py
elvisyjlin/google-code-jam
7fe8244c5ae07a9896acf9c48f3a06b306b393b1
[ "MIT" ]
null
null
null
2018/Round 1A/A.py
elvisyjlin/google-code-jam
7fe8244c5ae07a9896acf9c48f3a06b306b393b1
[ "MIT" ]
null
null
null
if __name__ == '__main__': T = int(input()) for t in range(T): print('Case #{}: {}'.format(t+1, solve()))
27.56338
50
0.444558
6b041831b70999f5552fbde4cf4fd10965b426d5
9,798
py
Python
desktop/libs/liboozie/src/liboozie/submittion_tests.py
vinaymundada27/Hue
7bffb33bbe7cfa34d340241c4ba3b19476211b2a
[ "Apache-2.0" ]
1
2018-08-01T05:10:26.000Z
2018-08-01T05:10:26.000Z
desktop/libs/liboozie/src/liboozie/submittion_tests.py
vinaymundada27/Hue
7bffb33bbe7cfa34d340241c4ba3b19476211b2a
[ "Apache-2.0" ]
null
null
null
desktop/libs/liboozie/src/liboozie/submittion_tests.py
vinaymundada27/Hue
7bffb33bbe7cfa34d340241c4ba3b19476211b2a
[ "Apache-2.0" ]
1
2019-07-23T12:36:09.000Z
2019-07-23T12:36:09.000Z
#!/usr/bin/env python # Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from django.contrib.auth.models import User from nose.plugins.attrib import attr from nose.tools import assert_equal, assert_true, assert_not_equal from hadoop import cluster, pseudo_hdfs4 from hadoop.conf import HDFS_CLUSTERS, MR_CLUSTERS, YARN_CLUSTERS from liboozie.submittion import Submission from oozie.tests import OozieMockBase from desktop.lib.test_utils import clear_sys_caches from desktop.lib.django_test_util import make_logged_in_client LOG = logging.getLogger(__name__)
35.11828
106
0.677689
6b04b9ebe40e4d32dbf9b4d850ad1eefd373d8ea
12,721
py
Python
Training/train_baseHD.py
Wenyuan-Vincent-Li/SSL_Seg_GAN
8f6c45fd000ea12468dccf211b376fadbf4759c6
[ "Apache-2.0" ]
1
2022-03-09T11:51:22.000Z
2022-03-09T11:51:22.000Z
Training/train_baseHD.py
Wenyuan-Vincent-Li/SSL_Seg_GAN
8f6c45fd000ea12468dccf211b376fadbf4759c6
[ "Apache-2.0" ]
null
null
null
Training/train_baseHD.py
Wenyuan-Vincent-Li/SSL_Seg_GAN
8f6c45fd000ea12468dccf211b376fadbf4759c6
[ "Apache-2.0" ]
null
null
null
import torch.nn as nn import torch.optim as optim import torch.utils.data from Training import functions from Training.imresize import imresize import matplotlib.pyplot as plt from Models.pix2pixHD_base import GANLoss, VGGLoss from Models.pix2pixHD2 import mask2onehot def train_single_scale(dataloader, netD, netG, netS, reals, Gs, Ss, in_s, in_s_S, NoiseAmp, NoiseAmpS, opt): ''' :param netD: currD :param netG: currG :param netS: currS :param reals: a list of image pyramid ## TODO: you can just pass image shape here :param Gs: list of prev netG :param Ss: list of prev netS :param in_s: 0-> all zero [1, 3, 26, 26] :param NoiseAmp: [] -> [1] :param opt: config :return: ''' loss = Losses(opt) real = reals[opt.scale_num] # find the current level image xn opt.nzx = real[0] opt.nzy = real[1] # z_opt = 0 ## dummy z_opt alpha = opt.alpha # setup optimizer optimizerD = optim.Adam(netD.parameters(), lr=opt.lr_d, betas=(opt.beta1, 0.999)) optimizerG = optim.Adam(netG.parameters(), lr=opt.lr_g, betas=(opt.beta1, 0.999)) optimizerS = optim.Adam(netS.parameters(), lr=opt.lr_s, betas=(opt.beta1, 0.999)) schedulerD = torch.optim.lr_scheduler.MultiStepLR(optimizer=optimizerD, milestones=[opt.niter * 0.8], gamma=opt.gamma) schedulerG = torch.optim.lr_scheduler.MultiStepLR(optimizer=optimizerG, milestones=[opt.niter * 0.8], gamma=opt.gamma) schedulerS = torch.optim.lr_scheduler.MultiStepLR(optimizer=optimizerS, milestones=[opt.niter * 0.8], gamma=opt.gamma) errD2plot = [] errG2plot = [] D_real2plot = [] D_fake2plot = [] for epoch in range(opt.niter): # niter = 2000 if Gs == [] and Ss == []: noise_ = functions.generate_noise([1, opt.nzx, opt.nzy], opt.batchSize) # [None, 1, 32, 32] noise_ = noise_.expand(opt.batchSize, 3, opt.nzx, opt.nzy) ## Noise_: for generated false samples through generator else: noise_ = functions.generate_noise([1, opt.nzx, opt.nzy], opt.batchSize) for j, data in enumerate(dataloader): data['image'] = data['image'].to(opt.device) data['label'] = data['label'].long().to(opt.device) ############################ # (1) Update D network: maximize D(x) + D(G(z)) ########################### # train with real netD.zero_grad() pred_real = netD(data['image'], data['label'][:,0:1,...]) loss_D_real = loss.criterionGAN(pred_real, True) D_x = loss_D_real.item() # train with fake if (j == 0) & (epoch == 0): # first iteration training in this level if Gs == [] and Ss == []: prev = torch.full([opt.batchSize, opt.nc_z, opt.nzx, opt.nzy], 0, device=opt.device) in_s = prev # full of 0 [None, 3, 32, 32] prev_S = torch.full([opt.batchSize, opt.label_nc, opt.nzx, opt.nzy], 0, device=opt.device) in_s_S = prev_S # full of 0 [None, 4, 32, 32] mask = data['label'][:,0:1,...] opt.noise_amp = opt.noise_amp_init opt.noise_amp_S = opt.noise_amp_init else: prev = draw_concat(Gs, data['down_scale_label'], reals, NoiseAmp, in_s, 'generator', opt) ## given a new noise, prev is a image generated by previous Generator with bilinear upsampling [1, 3, 33, 33] criterion = nn.MSELoss() RMSE = torch.sqrt(criterion(data['image'], prev)) opt.noise_amp = opt.noise_amp_init * RMSE prev_S = draw_concat(Ss, data['down_scale_image'], reals, NoiseAmpS, in_s_S, 'segment', opt) ## prob with [None, 4, 32, 32] onehot_label = mask2onehot(data['label'][:,0:1,...], opt.label_nc) RMSE_S = torch.sqrt(criterion(onehot_label, prev_S)) # RMSE_S = 0 opt.noise_amp_S = opt.noise_amp_init * RMSE_S mask = data['label'][:,0:1,...] else: prev = draw_concat(Gs, data['down_scale_label'], reals, NoiseAmp, in_s, 'generator', opt) prev_S = draw_concat(Ss, data['down_scale_image'], reals, NoiseAmpS, in_s_S, 'segment', opt) mask = data['label'][:,0:1,...] if Gs == []: noise = noise_ ## Gausiaan noise for generating image [None, 3, 42, 42] else: noise = opt.noise_amp * noise_ + prev ## [None, 3, 43, 43] new noise is equal to the prev generated image plus the gaussian noise. fake = netG(noise.detach(), prev, mask) # [None, 3, 32, 32] the same size with the input image # detach() make sure that the gradients don't go to the noise. # prev:[None, 3, 42, 42] -> [None, 3, 43, 43] first step prev = 0, second step prev = a image generated by previous Generator with bilinaer upsampling pred_fake = netD(fake.detach(), data['label'][:,0:1,...]) # output shape [1, 1, 16, 16] -> [1, 1, 23, 23] # print(len(pred_fake), len(pred_fake[0])) loss_D_fake = loss.criterionGAN(pred_fake, False) D_G_z = loss_D_fake.item() # segment_logit, segment_mask = netS(data['image'], mask2onehot(prev_S, opt.label_nc)) # print(data['image'].shape, onehot.shape) # print(epoch, j) segment_logit, segment_prob, segment_mask = netS(data['image'], prev_S.detach()) pred_fake_S = netD(data['image'], segment_prob.detach()) loss_D_fake_S = loss.criterionGAN(pred_fake_S, False) D_S_z = loss_D_fake_S.item() errD = (loss_D_real + 0.5 * loss_D_fake + 0.5 * loss_D_fake_S) ## Todo: figure out a proper coefficient errD.backward() optimizerD.step() errD2plot.append(errD.detach()) ## errD for each iteration ############################ # (2) Update G network: maximize D(G(z)) ########################### netG.zero_grad() pred_fake = netD(fake, data['label'][:,0:1,...]) loss_G_GAN = 0.5 * loss.criterionGAN(pred_fake, True) # GAN feature matching loss loss_G_GAN_Feat = 0 if not opt.no_ganFeat_loss: feat_weights = 4.0 / (opt.n_layers_D + 1) D_weights = 1.0 / opt.num_D for i in range(opt.num_D): for j in range(len(pred_fake[i]) - 1): loss_G_GAN_Feat += D_weights * feat_weights * \ loss.criterionFeat(pred_fake[i][j], pred_real[i][j].detach()) * opt.lambda_feat # VGG feature matching loss loss_G_VGG = 0 if not opt.no_vgg_loss: loss_G_VGG = loss.criterionVGG(fake, data['image']) * opt.lambda_feat ## reconstruction loss if alpha != 0: ## alpha = 10 calculate the reconstruction loss Recloss = nn.MSELoss() rec_loss = alpha * Recloss(fake, data['image']) else: rec_loss = 0 errG = loss_G_GAN + loss_G_GAN_Feat + loss_G_VGG + rec_loss errG.backward() optimizerG.step() ############################ # (3) Update S network: maximize D(S(z)) ########################### netS.zero_grad() pred_fake_S = netD(data['image'], segment_prob) loss_G_GAN_S = 0.03 * loss.criterionGAN(pred_fake_S, True) # Segmentation loss if opt.contour: loss_G_Seg = loss.crossEntropy(segment_logit, data['label'].float()) else: loss_G_Seg = loss.crossEntropy(segment_prob, torch.squeeze(data['label'][:,0:1,...], dim =1)) # GAN feature matching loss loss_G_GAN_Feat_S = 0 if not opt.no_ganFeat_loss: feat_weights = 4.0 / (opt.n_layers_D + 1) D_weights = 1.0 / opt.num_D for i in range(opt.num_D): for j in range(len(pred_fake_S[i]) - 1): loss_G_GAN_Feat_S += D_weights * feat_weights * \ loss.criterionFeat(pred_fake_S[i][j], pred_real[i][j].detach()) * opt.lambda_feat errS = loss_G_GAN_S + loss_G_GAN_Feat_S + loss_G_Seg errS.backward() optimizerS.step() ## for every epoch, do the following: errG2plot.append(errG.detach()) ## ErrG for each iteration D_real2plot.append(D_x) ## discriminator loss on real D_fake2plot.append(D_G_z + D_S_z) ## discriminator loss on fake if epoch % 25 == 0 or epoch == (opt.niter - 1): print('scale %d:[%d/%d]' % (opt.scale_num, epoch, opt.niter)) if epoch % 25 == 0 or epoch == (opt.niter - 1): plt.imsave('%s/fake_sample_%d.png' % (opt.outf, epoch), functions.convert_image_np(fake.detach()), vmin=0, vmax=1) plt.imsave('%s/fake_sample_real_%d.png' % (opt.outf, epoch), functions.convert_image_np(data['image']), vmin=0, vmax=1) plt.imsave('%s/fake_sample_mask_%d.png' % (opt.outf, epoch), functions.convert_mask_np(data['label'][:,0:1,...], num_classes= opt.label_nc)) plt.imsave('%s/segmentation_mask_%d.png' % (opt.outf, epoch), functions.convert_mask_np(segment_mask.detach(), num_classes=opt.label_nc)) schedulerD.step() schedulerG.step() schedulerS.step() functions.save_networks(netG, netD, netS, opt) ## save netG, netD, z_opt, opt is used to parser output path return in_s, in_s_S, netG, netS def draw_concat(Gs, masks, reals, NoiseAmp, in_s, mode, opt): ''' :param Gs: [G0] :param mask: [down scaled _mask] :param reals: [image pyramid] only used to represent the image shape :param NoiseAmp: [1] :param in_s: all zeros [1, 3, 26, 26] :param mode: 'rand' :param opt: :return: ''' G_z = in_s[:opt.batchSize, :, :, :] # [None, 3, 26, 26] all zeros, image input for the corest level if len(Gs) > 0: if mode == 'generator': count = 0 for G, mask, real_curr, real_next, noise_amp in zip(Gs, masks, reals, reals[1:], NoiseAmp): if count == 0: z = functions.generate_noise([1, real_curr[0], real_curr[1]], opt.batchSize) z = z.expand(opt.batchSize, G_z.shape[1], z.shape[2], z.shape[3]) else: z = functions.generate_noise( [opt.nc_z, real_curr[0], real_curr[1]], opt.batchSize) G_z = G_z[:, :, 0:real_curr[0], 0:real_curr[1]] ## G_z [None, 3, 32, 32] z_in = noise_amp * z + G_z G_z = G(z_in.detach(), G_z, mask) ## [1, 3, 26, 26] output of previous generator G_z = imresize(G_z, real_next[1] / real_curr[1], opt) G_z = G_z[:, :, 0:real_next[0], 0:real_next[1]] ## resize the image to be compatible with current G [1, 3, 33, 33] count += 1 elif mode == 'segment': count = 0 for G, mask, real_curr, real_next, noise_amp in zip(Gs, masks, reals, reals[1:], NoiseAmp): G_z = G_z[:, :, 0:real_curr[0], 0:real_curr[1]] ## G_z [None, 3, 32, 32] _, G_z, _ = G(mask, G_z) ## [1, 3, 26, 26] output of previous generator if opt.contour: G_z = torch.cat((G_z, 1-G_z), 1) G_z = imresize(G_z, real_next[1] / real_curr[1], opt) G_z = G_z[:, :, 0:real_next[0], 0:real_next[1]] ## resize the image to be compatible with current G [1, 3, 33, 33] count += 1 return G_z
48.003774
162
0.537929
6b04db30f6d56200725a9e9d3be9cbc67d645d65
2,074
py
Python
tests/python/unittest/test_tir_pass_inject_double_buffer.py
0xreza/tvm
f08d5d78ee000b2c113ac451f8d73817960eafd5
[ "Zlib", "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0" ]
null
null
null
tests/python/unittest/test_tir_pass_inject_double_buffer.py
0xreza/tvm
f08d5d78ee000b2c113ac451f8d73817960eafd5
[ "Zlib", "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0" ]
1
2020-07-29T00:21:19.000Z
2020-07-29T00:21:19.000Z
tests/python/unittest/test_tir_pass_inject_double_buffer.py
0xreza/tvm
f08d5d78ee000b2c113ac451f8d73817960eafd5
[ "Zlib", "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0" ]
1
2021-07-22T17:33:16.000Z
2021-07-22T17:33:16.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import te if __name__ == "__main__": test_double_buffer()
36.385965
74
0.655738
6b052c373e2583931e7668595c831adfd5fed432
491
py
Python
read_sensor.py
shivupoojar/openfaas-pi
5eda501368a1ac321954cb2aaf58be617977bd58
[ "Apache-2.0" ]
1
2020-11-24T03:31:26.000Z
2020-11-24T03:31:26.000Z
read_sensor.py
shivupoojar/openfaas-pi
5eda501368a1ac321954cb2aaf58be617977bd58
[ "Apache-2.0" ]
null
null
null
read_sensor.py
shivupoojar/openfaas-pi
5eda501368a1ac321954cb2aaf58be617977bd58
[ "Apache-2.0" ]
null
null
null
import requests from sense_hat import SenseHat import smbus import time while True: try: pressure=0 sense = SenseHat() pressure = sense.get_pressure() data = {'pressure':pressure} print(pressure) #send http request to sense serverless function with pressure #data r=requests.post('http://127.0.0.1:8080/function/sensor',data) print(r.text) sense=SenseHat() sense.show_message(r.text) except KeyboardInterrupt: sys.exit()
21.347826
69
0.672098
6b0543a7aff4c6ab6b022a2d8e6d154ed4873777
1,528
py
Python
trabantsim/prototypes/space_invaders.py
highfestiva/life
b05b592502d72980ab55e13e84330b74a966f377
[ "BSD-3-Clause" ]
9
2019-09-03T18:33:31.000Z
2022-02-04T04:00:02.000Z
trabantsim/prototypes/space_invaders.py
highfestiva/life
b05b592502d72980ab55e13e84330b74a966f377
[ "BSD-3-Clause" ]
null
null
null
trabantsim/prototypes/space_invaders.py
highfestiva/life
b05b592502d72980ab55e13e84330b74a966f377
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # Space Invadersishkebab. from trabant import * # ASCII geometries. shipascii = r''' /\ /XXXXXXXX\ v v ''' invader = r''' /XXXXXX\ /XXXXXXXX\ XXXXXXXXXX XX XX XX \XXXXXXXX/ /XX XX\ /X/ \/ \X\ X/ \X ''' cam(distance=250) gravity((0,0,0)) ship = create_ascii_object(shipascii, pos=(0,0,-100), col='#070') shots = [] invaderspeeds,isi = [(25,0,0), (0,0,-10), (-25,0,0), (0,0,-10)],0 invaders = set() for y in range(2): for x in range(8): invaders.add(create_ascii_object(invader, pos=(x*25-130,0,100-y*20), col=rndvec().abs(), physmesh=True)) for invader in invaders: invader.vel(invaderspeeds[0]) while loop(): # Steering. vel = keydir()*50 + tapdir(ship.pos())*4 ship.vel((vel.x,0,0)) # Only move in X. # Shooting. is_tap_close = taps() and tapdir(ship.pos()).x < 3 is_shooting = 'Space' in keys() or 'LCtrl' in keys() or is_tap_close if is_shooting and timeout(0.7, first_hit=True): shots += [create_sphere(ship.pos()+vec3(0,0,10), vel=(0,0,200), col='#fff')] sound(sound_bang, shots[-1].pos()) # Run invaders. if timeout(3, timer='invaders'): isi = (isi+1)%len(invaderspeeds) [i.vel(invaderspeeds[isi]) for i in invaders] # Check collisions, make explosions. for o in collided_objects(): if o in invaders: invaders.remove(o) explode(o.pos(),o.vel(),5) elif o == ship: while loop(): pass o.release()
24.645161
112
0.581806
6b05df704fde4ca413cc3974d404975347c287a5
11,550
py
Python
model/backbone/xception.py
Shang-XH/BAFTT
62392325342f48b8a89f0c2bf71e48026dd90629
[ "MIT" ]
4
2021-09-07T03:29:38.000Z
2021-09-07T04:24:31.000Z
model/backbone/xception.py
Shang-XH/BAFTT
62392325342f48b8a89f0c2bf71e48026dd90629
[ "MIT" ]
null
null
null
model/backbone/xception.py
Shang-XH/BAFTT
62392325342f48b8a89f0c2bf71e48026dd90629
[ "MIT" ]
null
null
null
import math import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.model_zoo as model_zoo from model.sync_batchnorm.batchnorm import SynchronizedBatchNorm2d if __name__ == "__main__": import torch model = AlignedXception(BatchNorm=nn.BatchNorm2d, pretrained=True, output_stride=16) input = torch.rand(1, 3, 512, 512) output, low_level_feat = model(input) print(output.size()) print(low_level_feat.size())
40.104167
116
0.583117
6b096c429c0f219b1a8f9aeb011545c4774f439d
1,430
py
Python
Backend/autonomus/utils/mail.py
IrinaMBejan/Autonom
4a97da1b26ed22e3ec8bb939359148765392b692
[ "MIT" ]
2
2019-03-08T10:04:35.000Z
2020-03-14T15:24:56.000Z
Backend/autonomus/utils/mail.py
IrinaMBejan/Autonom
4a97da1b26ed22e3ec8bb939359148765392b692
[ "MIT" ]
null
null
null
Backend/autonomus/utils/mail.py
IrinaMBejan/Autonom
4a97da1b26ed22e3ec8bb939359148765392b692
[ "MIT" ]
2
2019-03-16T14:47:36.000Z
2020-04-28T14:09:45.000Z
from sendgrid import SendGridAPIClient from sendgrid.helpers.mail import Mail, Substitution API_KEY = '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' API_KEY_ID = 'egd1yywWRbeVF2gcGhTH2Q' ENCODING = "utf-8" DEFAULT_MAIL="[email protected]"
29.791667
89
0.68951
6b09dfca59db461ba56fcce8bea683cfe5b5f132
22,696
py
Python
yellowbrick/features/pca.py
percygautam/yellowbrick
1ba6774a257bc85768a990293790caf4c14a5653
[ "Apache-2.0" ]
1
2020-04-30T08:50:11.000Z
2020-04-30T08:50:11.000Z
yellowbrick/features/pca.py
percygautam/yellowbrick
1ba6774a257bc85768a990293790caf4c14a5653
[ "Apache-2.0" ]
null
null
null
yellowbrick/features/pca.py
percygautam/yellowbrick
1ba6774a257bc85768a990293790caf4c14a5653
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # yellowbrick.features.pca # Decomposition based feature visualization with PCA. # # Author: Carlo Morales # Author: Ral Peralta Lozada # Author: Benjamin Bengfort # Created: Tue May 23 18:34:27 2017 -0400 # # Copyright (C) 2017 The scikit-yb developers # For license information, see LICENSE.txt # # ID: pca.py [] [email protected] $ """ Decomposition based feature visualization with PCA. """ ########################################################################## ## Imports ########################################################################## # NOTE: must import mplot3d to load the 3D projection import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable from yellowbrick.style import palettes from yellowbrick.features.projection import ProjectionVisualizer from yellowbrick.exceptions import YellowbrickValueError, NotFitted from sklearn.pipeline import Pipeline from sklearn.decomposition import PCA as PCATransformer from sklearn.preprocessing import StandardScaler from sklearn.exceptions import NotFittedError ########################################################################## # 2D and 3D PCA Visualizer ########################################################################## def fit(self, X, y=None, **kwargs): """ Fits the PCA transformer, transforms the data in X, then draws the decomposition in either 2D or 3D space as a scatter plot. Parameters ---------- X : ndarray or DataFrame of shape n x m A matrix of n instances with m features. y : ndarray or Series of length n An array or series of target or class values. Returns ------- self : visualizer Returns self for use in Pipelines. """ # Call super fit to compute features, classes, colors, etc. super(PCA, self).fit(X=X, y=y, **kwargs) self.pca_transformer.fit(X) self.pca_components_ = self.pca_transformer.named_steps["pca"].components_ return self def transform(self, X, y=None, **kwargs): """ Calls the internal `transform` method of the scikit-learn PCA transformer, which performs a dimensionality reduction on the input features ``X``. Next calls the ``draw`` method of the Yellowbrick visualizer, finally returning a new array of transformed features of shape ``(len(X), projection)``. Parameters ---------- X : ndarray or DataFrame of shape n x m A matrix of n instances with m features. y : ndarray or Series of length n An array or series of target or class values. Returns ------- Xp : ndarray or DataFrame of shape n x m Returns a new array-like object of transformed features of shape ``(len(X), projection)``. """ try: Xp = self.pca_transformer.transform(X) self.draw(Xp, y) return Xp except NotFittedError: raise NotFitted.from_estimator(self, "transform") def draw(self, Xp, y): """ Plots a scatterplot of points that represented the decomposition, `pca_features_`, of the original features, `X`, projected into either 2 or 3 dimensions. If 2 dimensions are selected, a colorbar and heatmap can also be optionally included to show the magnitude of each feature value to the component. Parameters ---------- Xp : array-like of shape (n, 2) or (n, 3) The matrix produced by the ``transform()`` method. y : array-like of shape (n,), optional The target, used to specify the colors of the points. Returns ------- self.ax : matplotlib Axes object Returns the axes that the scatter plot was drawn on. """ # Call to super draw which draws the scatter plot. super(PCA, self).draw(Xp, y) if self.proj_features: # Draws projection features in transformed space. self._draw_projection_features(Xp, y) if self.projection == 2: if self.heatmap: if not self.colormap: self.colormap = palettes.DEFAULT_SEQUENCE # TODO: change to pcolormesh instead of imshow per #615 spec im = self.lax.imshow( self.pca_components_, interpolation="none", cmap=self.colormap, aspect="auto", ) plt.colorbar( im, cax=self.uax, orientation="horizontal", ticks=[self.pca_components_.min(), 0, self.pca_components_.max()], ) return self.ax def _draw_projection_features(self, Xp, y): """ Draw the projection of features in the transformed space. Parameters ---------- Xp : array-like of shape (n, 2) or (n, 3) The matrix produced by the ``transform()`` method. y : array-like of shape (n,), optional The target, used to specify the colors of the points. Returns ------- self.ax : matplotlib Axes object Returns the axes that the scatter plot was drawn on. """ x_vector = self.pca_components_[0] y_vector = self.pca_components_[1] max_x = max(Xp[:, 0]) max_y = max(Xp[:, 1]) if self.projection == 2: for i in range(self.pca_components_.shape[1]): self.ax.arrow( x=0, y=0, dx=x_vector[i] * max_x, dy=y_vector[i] * max_y, color="r", head_width=0.05, width=0.005, ) self.ax.text( x_vector[i] * max_x * 1.05, y_vector[i] * max_y * 1.05, self.features_[i], color="r", ) elif self.projection == 3: z_vector = self.pca_components_[2] max_z = max(Xp[:, 1]) for i in range(self.pca_components_.shape[1]): self.ax.plot( [0, x_vector[i] * max_x], [0, y_vector[i] * max_y], [0, z_vector[i] * max_z], color="r", ) self.ax.text( x_vector[i] * max_x * 1.05, y_vector[i] * max_y * 1.05, z_vector[i] * max_z * 1.05, self.features_[i], color="r", ) else: raise YellowbrickValueError("Projection dimensions must be either 2 or 3") return self.ax def finalize(self, **kwargs): """ Draws the title, labels, legends, heatmap, and colorbar as specified by the keyword arguments. """ super(PCA, self).finalize() self.ax.set_title("Principal Component Plot") self.ax.set_xlabel("$PC_1$") self.ax.set_ylabel("$PC_2$") if self.projection == 3: self.ax.set_zlabel("$PC_3$") if self.heatmap == True: self.lax.set_xticks(np.arange(-0.5, len(self.features_))) self.lax.set_xticklabels([]) # Makes the labels centered. self.lax.set_xticks(np.arange(0, len(self.features_)), minor=True) self.lax.set_xticklabels( self.features_, rotation=90, fontsize=12, minor=True ) self.lax.set_yticks(np.arange(0.5, 2)) self.lax.set_yticklabels(["$PC_1$", "$PC_2$"], va="bottom", fontsize=10) self.fig.tight_layout() ########################################################################## ## Quick Method ########################################################################## def pca_decomposition( X, y=None, ax=None, features=None, classes=None, scale=True, projection=2, proj_features=False, colors=None, colormap=None, alpha=0.75, random_state=None, colorbar=True, heatmap=False, show=True, **kwargs ): """ Produce a two or three dimensional principal component plot of the data array ``X`` projected onto its largest sequential principal components. It is common practice to scale the data array ``X`` before applying a PC decomposition. Variable scaling can be controlled using the ``scale`` argument. Parameters ---------- X : ndarray or DataFrame of shape n x m A matrix of n instances with m features. y : ndarray or Series of length n An array or series of target or class values. ax : matplotlib Axes, default: None The axes to plot the figure on. If None is passed in, the current axes will be used (or generated if required). features : list, default: None The names of the features specified by the columns of the input dataset. This length of this list must match the number of columns in X, otherwise an exception will be raised on ``fit()``. classes : list, default: None The class labels for each class in y, ordered by sorted class index. These names act as a label encoder for the legend, identifying integer classes or renaming string labels. If omitted, the class labels will be taken from the unique values in y. Note that the length of this list must match the number of unique values in y, otherwise an exception is raised. This parameter is only used in the discrete target type case and is ignored otherwise. scale : bool, default: True Boolean that indicates if user wants to scale data. projection : int or string, default: 2 The number of axes to project into, either 2d or 3d. To plot 3d plots with matplotlib, please ensure a 3d axes is passed to the visualizer, otherwise one will be created using the current figure. proj_features : bool, default: False Boolean that indicates if the user wants to project the features in the projected space. If True the plot will be similar to a biplot. colors : list or tuple, default: None A single color to plot all instances as or a list of colors to color each instance according to its class in the discrete case or as an ordered colormap in the sequential case. If not enough colors per class are specified then the colors are treated as a cycle. colormap : string or cmap, default: None The colormap used to create the individual colors. In the discrete case it is used to compute the number of colors needed for each class and in the continuous case it is used to create a sequential color map based on the range of the target. alpha : float, default: 0.75 Specify a transparency where 1 is completely opaque and 0 is completely transparent. This property makes densely clustered points more visible. random_state : int, RandomState instance or None, optional (default None) This parameter sets the random state on this solver. If the input X is larger than 500x500 and the number of components to extract is lower than 80% of the smallest dimension of the data, then the more efficient `randomized` solver is enabled. colorbar : bool, default: True If the target_type is "continous" draw a colorbar to the right of the scatter plot. The colobar axes is accessible using the cax property. heatmap : bool, default: False Add a heatmap showing contribution of each feature in the principal components. Also draws a colorbar for readability purpose. The heatmap is accessible using lax property and colorbar using uax property. show : bool, default: True If True, calls ``show()``, which in turn calls ``plt.show()`` however you cannot call ``plt.savefig`` from this signature, nor ``clear_figure``. If False, simply calls ``finalize()`` kwargs : dict Keyword arguments that are passed to the base class and may influence the visualization as defined in other Visualizers. Attributes ---------- pca_components_ : ndarray, shape (n_features, n_components) This tells about the magnitude of each feature in the pricipal components. This is primarily used to draw the biplots. classes_ : ndarray, shape (n_classes,) The class labels that define the discrete values in the target. Only available if the target type is discrete. This is guaranteed to be strings even if the classes are a different type. features_ : ndarray, shape (n_features,) The names of the features discovered or used in the visualizer that can be used as an index to access or modify data in X. If a user passes feature names in, those features are used. Otherwise the columns of a DataFrame are used or just simply the indices of the data array. range_ : (min y, max y) A tuple that describes the minimum and maximum values in the target. Only available if the target type is continuous. Examples -------- >>> from sklearn import datasets >>> iris = datasets.load_iris() >>> X = iris.data >>> y = iris.target >>> pca_decomposition(X, y, colors=['r', 'g', 'b'], projection=3) """ # Instantiate the visualizer visualizer = PCA( ax=ax, features=features, scale=scale, projection=projection, proj_features=proj_features, colors=colors, colormap=colormap, alpha=alpha, random_state=random_state, colorbar=colorbar, heatmap=heatmap, **kwargs ) # Fit and transform the visualizer (calls draw) visualizer.fit(X, y) visualizer.transform(X, y) if show: visualizer.show() else: visualizer.finalize() # Returns the visualizer object. return visualizer # Alias for PCA PCADecomposition = PCA
36.547504
88
0.606847
6b09e9510878cd225e1975781111b1e1feae8734
1,229
py
Python
k2/python/host/k2host/properties.py
Jarvan-Wang/k2
7f164ecb804d15006fd30e8564d80e0fa212f011
[ "Apache-2.0" ]
144
2020-04-17T10:10:57.000Z
2022-03-25T19:07:54.000Z
k2/python/host/k2host/properties.py
Jarvan-Wang/k2
7f164ecb804d15006fd30e8564d80e0fa212f011
[ "Apache-2.0" ]
136
2020-04-22T10:35:10.000Z
2021-08-16T13:49:29.000Z
k2/python/host/k2host/properties.py
Jarvan-Wang/k2
7f164ecb804d15006fd30e8564d80e0fa212f011
[ "Apache-2.0" ]
26
2020-04-21T08:23:06.000Z
2021-09-02T15:23:53.000Z
# Copyright (c) 2020 Xiaomi Corporation (author: Haowen Qiu) # See ../../../LICENSE for clarification regarding multiple authors import torch from torch.utils.dlpack import to_dlpack from .fsa import Fsa from _k2host import _is_valid from _k2host import _is_top_sorted from _k2host import _is_arc_sorted from _k2host import _has_self_loops from _k2host import _is_acyclic from _k2host import _is_deterministic from _k2host import _is_epsilon_free from _k2host import _is_connected from _k2host import _is_empty
22.759259
67
0.753458
6b0a2521796cb92f0d1e011306fd05dc969275cf
355
py
Python
origamibot/core/teletypes/poll_option.py
cmd410/OrigamiBot
03667d069f0c0b088671936ce36bf8f85a029b93
[ "MIT" ]
4
2020-06-30T10:32:54.000Z
2020-11-01T23:07:58.000Z
origamibot/core/teletypes/poll_option.py
cmd410/OrigamiBot
03667d069f0c0b088671936ce36bf8f85a029b93
[ "MIT" ]
6
2020-06-26T23:14:59.000Z
2020-07-26T11:48:07.000Z
origamibot/core/teletypes/poll_option.py
cmd410/OrigamiBot
03667d069f0c0b088671936ce36bf8f85a029b93
[ "MIT" ]
1
2020-07-28T08:52:51.000Z
2020-07-28T08:52:51.000Z
from .base import TelegramStructure, Field
19.722222
42
0.515493
6b0a3fda038a685ade7b25955f97976cdafc44a7
787
py
Python
var/spack/repos/builtin/packages/r-viridislite/package.py
xiki-tempula/spack
9d66c05e93ab8a933fc59915040c0e0c86a4aac4
[ "ECL-2.0", "Apache-2.0", "MIT" ]
9
2018-04-18T07:51:40.000Z
2021-09-10T03:56:57.000Z
var/spack/repos/builtin/packages/r-viridislite/package.py
xiki-tempula/spack
9d66c05e93ab8a933fc59915040c0e0c86a4aac4
[ "ECL-2.0", "Apache-2.0", "MIT" ]
907
2018-04-18T11:17:57.000Z
2022-03-31T13:20:25.000Z
var/spack/repos/builtin/packages/r-viridislite/package.py
xiki-tempula/spack
9d66c05e93ab8a933fc59915040c0e0c86a4aac4
[ "ECL-2.0", "Apache-2.0", "MIT" ]
29
2018-11-05T16:14:23.000Z
2022-02-03T16:07:09.000Z
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import *
39.35
95
0.7446
6b0a89ea28d57009a70965dacb867faddce3f86e
28,086
py
Python
shiSock-0.2.0/test_two/PySock/server.py
AnanyaRamanA/shiSock
51efb0eba17eb106b9480598d278536ddd7732c3
[ "MIT" ]
null
null
null
shiSock-0.2.0/test_two/PySock/server.py
AnanyaRamanA/shiSock
51efb0eba17eb106b9480598d278536ddd7732c3
[ "MIT" ]
null
null
null
shiSock-0.2.0/test_two/PySock/server.py
AnanyaRamanA/shiSock
51efb0eba17eb106b9480598d278536ddd7732c3
[ "MIT" ]
1
2021-10-31T13:47:42.000Z
2021-10-31T13:47:42.000Z
from re import S import select import socket import queue import threading import sys import pickle import base64 import os from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives.ciphers.aead import AESGCM from cryptography.hazmat.primitives.serialization import load_ssh_public_key from cryptography.hazmat.primitives import hashes from cryptography.hazmat.primitives.asymmetric import padding from cryptography.hazmat.backends import default_backend import hashlib import yaml import random import time
38.73931
170
0.44054
6b0b0bbc4a2a5899aadcf7804e822911158b0d28
9,304
py
Python
server/www/packages/packages-windows/x86/ldap3/utils/asn1.py
zhoulhb/teleport
54da194697898ef77537cfe7032d774555dc1335
[ "Apache-2.0" ]
640
2018-09-12T03:14:13.000Z
2022-03-30T04:38:09.000Z
server/www/packages/packages-windows/x86/ldap3/utils/asn1.py
zhoulhb/teleport
54da194697898ef77537cfe7032d774555dc1335
[ "Apache-2.0" ]
175
2018-09-10T19:52:20.000Z
2022-03-30T04:37:30.000Z
server/www/packages/packages-windows/x86/ldap3/utils/asn1.py
zhoulhb/teleport
54da194697898ef77537cfe7032d774555dc1335
[ "Apache-2.0" ]
230
2018-09-13T02:40:49.000Z
2022-03-29T11:53:58.000Z
""" """ # Created on 2015.08.19 # # Author: Giovanni Cannata # # Copyright 2015 - 2018 Giovanni Cannata # # This file is part of ldap3. # # ldap3 is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ldap3 is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with ldap3 in the COPYING and COPYING.LESSER files. # If not, see <http://www.gnu.org/licenses/>. from pyasn1 import __version__ as pyasn1_version from pyasn1.codec.ber import decoder # for usage in other modules from pyasn1.codec.ber.encoder import Encoder # for monkeypatching of boolean value from ..core.results import RESULT_CODES from ..utils.conv import to_unicode from ..protocol.convert import referrals_to_list CLASSES = {(False, False): 0, # Universal (False, True): 1, # Application (True, False): 2, # Context (True, True): 3} # Private # Monkeypatching of pyasn1 for encoding Boolean with the value 0xFF for TRUE # THIS IS NOT PART OF THE FAST BER DECODER if pyasn1_version == 'xxx0.2.3': from pyasn1.codec.ber.encoder import tagMap, BooleanEncoder, encode from pyasn1.type.univ import Boolean from pyasn1.compat.octets import ints2octs tagMap[Boolean.tagSet] = BooleanCEREncoder() else: from pyasn1.codec.ber.encoder import tagMap, typeMap, AbstractItemEncoder from pyasn1.type.univ import Boolean from copy import deepcopy customTagMap = deepcopy(tagMap) customTypeMap = deepcopy(typeMap) customTagMap[Boolean.tagSet] = LDAPBooleanEncoder() customTypeMap[Boolean.typeId] = LDAPBooleanEncoder() encode = Encoder(customTagMap, customTypeMap) # end of monkey patching # a fast BER decoder for LDAP responses only def compute_ber_size(data): """ Compute size according to BER definite length rules Returns size of value and value offset """ if data[1] <= 127: # BER definite length - short form. Highest bit of byte 1 is 0, message length is in the last 7 bits - Value can be up to 127 bytes long return data[1], 2 else: # BER definite length - long form. Highest bit of byte 1 is 1, last 7 bits counts the number of following octets containing the value length bytes_length = data[1] - 128 value_length = 0 cont = bytes_length for byte in data[2: 2 + bytes_length]: cont -= 1 value_length += byte * (256 ** cont) return value_length, bytes_length + 2 ###### if str is not bytes: # Python 3 else: # Python 2 DECODERS = { # Universal (0, 1): decode_boolean, # Boolean (0, 2): decode_integer, # Integer (0, 4): decode_octet_string, # Octet String (0, 10): decode_integer, # Enumerated (0, 16): decode_sequence, # Sequence (0, 17): decode_sequence, # Set # Application (1, 1): decode_bind_response, # Bind response (1, 4): decode_sequence, # Search result entry (1, 5): decode_sequence, # Search result done (1, 7): decode_sequence, # Modify response (1, 9): decode_sequence, # Add response (1, 11): decode_sequence, # Delete response (1, 13): decode_sequence, # ModifyDN response (1, 15): decode_sequence, # Compare response (1, 19): decode_sequence, # Search result reference (1, 24): decode_extended_response, # Extended response (1, 25): decode_intermediate_response, # intermediate response (2, 3): decode_octet_string # } BIND_RESPONSE_CONTEXT = { 7: decode_octet_string # SaslCredentials } EXTENDED_RESPONSE_CONTEXT = { 10: decode_octet_string, # ResponseName 11: decode_octet_string # Response Value } INTERMEDIATE_RESPONSE_CONTEXT = { 0: decode_octet_string, # IntermediateResponseName 1: decode_octet_string # IntermediateResponseValue } LDAP_MESSAGE_CONTEXT = { 0: decode_controls, # Controls 3: decode_sequence # Referral } CONTROLS_CONTEXT = { 0: decode_sequence # Control }
37.821138
161
0.661651
6b0c63a3de849494bdcf25b7c5c83e9a868cfc9f
2,351
py
Python
lib/utils/arg_scope.py
SimeonZhang/detectron2_tensorflow
ca03f633111d540ea91b3de75dbfa1da813647be
[ "Apache-2.0" ]
3
2021-06-07T10:48:51.000Z
2022-03-01T11:43:40.000Z
lib/utils/arg_scope.py
SimeonZhang/detectron2_tensorflow
ca03f633111d540ea91b3de75dbfa1da813647be
[ "Apache-2.0" ]
null
null
null
lib/utils/arg_scope.py
SimeonZhang/detectron2_tensorflow
ca03f633111d540ea91b3de75dbfa1da813647be
[ "Apache-2.0" ]
null
null
null
import copy from contextlib import contextmanager from functools import wraps from collections import defaultdict import tensorflow as tf _ArgScopeStack = [] def get_arg_scope(): """ Returns: dict: the current argscope. An argscope is a dict of dict: ``dict[layername] = {arg: val}`` """ if len(_ArgScopeStack) > 0: return _ArgScopeStack[-1] else: return defaultdict(dict) def add_arg_scope(cls): """Decorator for function to support argscope Example: .. code-block:: python from mylib import MyClass myfunc = add_arg_scope(MyClass) Args: func: A function mapping one or multiple tensors to one or multiple tensors. Remarks: If the function ``func`` returns multiple input or output tensors, only the first input/output tensor shape is displayed during logging. Returns: The decorated function. """ original_init = cls.__init__ cls.__arg_scope_enabled__ = True cls.__init__ = wrapped_init return cls
26.41573
93
0.64228
6b0cebe762170956488a4d3cddc7f97ae057f2da
754
py
Python
CORN-TEST/textfsm_parse.py
AnkitDeshwal89/NETMIKO
81c164e9cff46d11b56612f6adc343b6bcdfe87a
[ "Apache-2.0" ]
null
null
null
CORN-TEST/textfsm_parse.py
AnkitDeshwal89/NETMIKO
81c164e9cff46d11b56612f6adc343b6bcdfe87a
[ "Apache-2.0" ]
null
null
null
CORN-TEST/textfsm_parse.py
AnkitDeshwal89/NETMIKO
81c164e9cff46d11b56612f6adc343b6bcdfe87a
[ "Apache-2.0" ]
null
null
null
import textfsm import subprocess import random res = subprocess.run('ifconfig',stdout=subprocess.PIPE) intstatus = res.stdout.decode('ascii') with open("datafile","w+") as a: a.write(intstatus) a.close() template_file= "ifconfig-template.template" template = open(template_file) with open("datafile") as f: raw_data = f.read() re_table = textfsm.TextFSM(template) data = re_table.ParseText(raw_data) print(data) NL = [] for x in data: NLD = { 'Interface' : x[0].split(':')[0], 'TX' : int(x[1])+int(random.randint(1,100)) } NL.append(NLD) print(NL) import json print('#'*12) print(json.dumps(NL)) #Enter template FileName :ifconfig-template.template #Input Data file : ifconfig_output.txt
18.390244
55
0.667109
6b0d16f74ff1faebf0826e751ccbc24a085729d3
31,951
py
Python
classes.py
jared-jorgenson/mini_game
ac73987ac4c32c0e9f521d7bcf8d4d9ee4ded85a
[ "MIT" ]
null
null
null
classes.py
jared-jorgenson/mini_game
ac73987ac4c32c0e9f521d7bcf8d4d9ee4ded85a
[ "MIT" ]
null
null
null
classes.py
jared-jorgenson/mini_game
ac73987ac4c32c0e9f521d7bcf8d4d9ee4ded85a
[ "MIT" ]
null
null
null
import pygame
59.833333
121
0.52111
6b0d7e26713e21d118eb39e3b4c51db758d9a74a
18,151
py
Python
installSynApps/data_model/install_config.py
NSLS-II/installSynApps
0f8e978939715bbba1a064ead3044fa36215cb09
[ "BSD-3-Clause" ]
null
null
null
installSynApps/data_model/install_config.py
NSLS-II/installSynApps
0f8e978939715bbba1a064ead3044fa36215cb09
[ "BSD-3-Clause" ]
2
2021-01-06T19:57:19.000Z
2021-03-11T20:48:42.000Z
installSynApps/data_model/install_config.py
NSLS-II/installSynApps
0f8e978939715bbba1a064ead3044fa36215cb09
[ "BSD-3-Clause" ]
1
2020-12-14T20:35:20.000Z
2020-12-14T20:35:20.000Z
"""A file containing representations of install configurations. The core Data representation for installSynApps. An InstallConfiguration object is parsed from a configuration, and is then used throughout the build process. InjectorFile objects are used for representing text that need to be injected into configuration files prior to builds. """ import os import installSynApps from installSynApps.data_model.install_module import InstallModule as IM def generate_default_install_config(target_install_loc='/epics', update_versions=False, with_pva=True): config = InstallConfiguration(target_install_loc, None) y = 'YES' n = 'NO' gu = 'GIT_URL' wu = 'WGET_URL' base_org = 'https://github.com/epics-base/' syn_org = 'https://github.com/EPICS-synApps/' mod_org = 'https://github.com/epics-modules/' ad_org = 'https://github.com/areaDetector/' seq_rel = 'http://www-csr.bessy.de/control/SoftDist/sequencer/releases/' psi_org = 'https://github.com/paulscherrerinstitute/' # Add core modules that will generally always be built config.add_module(IM("EPICS_BASE", "R7.0.3", "$(INSTALL)/base", gu, base_org, "epics-base", y, y, y)) config.add_module(IM("SUPPORT", "R6-1", "$(INSTALL)/support", gu, syn_org, "support", y, y, n)) config.add_module(IM("CONFIGURE", "R6-1", "$(SUPPORT)/configure", gu, syn_org, "configure", y, y, n)) config.add_module(IM("UTILS", "R6-1", "$(SUPPORT)/utils", gu, syn_org, "utils", y, y, n)) config.add_module(IM("SNCSEQ", "2.2.8", "$(SUPPORT)/seq", wu, seq_rel, "seq-2.2.8.tar.gz", y, y, y)) config.add_module(IM("IPAC", "2.15", "$(SUPPORT)/ipac", gu, mod_org, "ipac", y, y, y)) config.add_module(IM("ASYN", "R4-37", "$(SUPPORT)/asyn", gu, mod_org, "asyn", y, y, y)) config.add_module(IM("AUTOSAVE", "R5-10", "$(SUPPORT)/autosave", gu, mod_org, "autosave", y, y, y)) config.add_module(IM("BUSY", "R1-7-2", "$(SUPPORT)/busy", gu, mod_org, "busy", y, y, y)) config.add_module(IM("CALC", "R3-7-3", "$(SUPPORT)/calc", gu, mod_org, "calc", y, y, y)) config.add_module(IM("DEVIOCSTATS", "master", "$(SUPPORT)/iocStats", gu, mod_org, "iocStats", y, y, y)) config.add_module(IM("SSCAN", "R2-11-3", "$(SUPPORT)/sscan", gu, mod_org, "sscan", y, y, y)) config.add_module(IM("IPUNIDIG", "R2-11", "$(SUPPORT)/ipUnidig", gu, mod_org, "ipUnidig", y, y, y)) # Some modules that are commonly needed config.add_module(IM("XSPRESS3", "master", "$(SUPPORT)/xspress3", gu, mod_org, "xspress3", y, y, y)) config.add_module(IM("MOTOR", "R7-1", "$(SUPPORT)/motor", gu, mod_org, "motor", y, y, y)) config.add_module(IM("QUADEM", "R9-3", "$(SUPPORT)/quadEM", gu, mod_org, "quadEM", y, y, y)) config.add_module(IM("STREAM", "2.8.10", "$(SUPPORT)/stream", gu, psi_org, "StreamDevice", y, y, y)) # AreaDetector and commonly used drivers config.add_module(IM("AREA_DETECTOR", "R3-8", "$(SUPPORT)/areaDetector", gu, ad_org, "areaDetector", y, y, n)) config.add_module(IM("ADSUPPORT", "R1-9", "$(AREA_DETECTOR)/ADSupport", gu, ad_org, "ADSupport", y, y, y)) config.add_module(IM("ADCORE", "R3-8", "$(AREA_DETECTOR)/ADCore", gu, ad_org, "ADCore", y, y, y)) config.add_module(IM("ADPERKINELMER", "master", "$(AREA_DETECTOR)/ADPerkinElmer", gu, ad_org, "ADPerkinElmer", n, n, n)) config.add_module(IM("ADGENICAM", "master", "$(AREA_DETECTOR)/ADGenICam", gu, ad_org, "ADGenICam", n, n, n)) config.add_module(IM("ADANDOR3", "master", "$(AREA_DETECTOR)/ADAndor3", gu, ad_org, "ADAndor3", n, n, n)) config.add_module(IM("ADPROSILICA", "R2-5", "$(AREA_DETECTOR)/ADProsilica", gu, ad_org, "ADProsilica", n, n, n)) config.add_module(IM("ADSIMDETECTOR", "master", "$(AREA_DETECTOR)/ADSimDetector", gu, ad_org, "ADSimDetector", n, n, n)) config.add_module(IM("ADPILATUS", "R2-8", "$(AREA_DETECTOR)/ADPilatus", gu, ad_org, "ADPilatus", n, n, n)) config.add_module(IM("ADMERLIN", "master", "$(AREA_DETECTOR)/ADMerlin", gu, ad_org, "ADMerlin", n, n, n)) config.add_module(IM("ADARAVIS", "master", "$(AREA_DETECTOR)/ADAravis", gu, ad_org, "ADAravis", n, n, n)) config.add_module(IM("ADEIGER", "R2-6", "$(AREA_DETECTOR)/ADEiger", gu, ad_org, "ADEiger", n, n, n)) config.add_module(IM("ADVIMBA", "master", "$(AREA_DETECTOR)/ADVimba", gu, ad_org, "ADVimba", n, n, n)) config.add_module(IM("ADPOINTGREY", "master", "$(AREA_DETECTOR)/ADPointGrey", gu, ad_org, "ADPointGrey", n, n, n)) config.add_module(IM("ADANDOR", "R2-8", "$(AREA_DETECTOR)/ADAndor", gu, ad_org, "ADAndor", n, n, n)) config.add_module(IM("ADDEXELA", "R2-3", "$(AREA_DETECTOR)/ADDexela", gu, ad_org, "ADDexela", n, n, n)) config.add_module(IM("ADMYTHEN", "master", "$(AREA_DETECTOR)/ADMythen", gu, ad_org, "ADMythen", n, n, n)) config.add_module(IM("ADURL", "master", "$(AREA_DETECTOR)/ADURL", gu, ad_org, "ADURL", n, n, n)) common_plugins_str = 'dbLoadRecords("$(DEVIOCSTATS)/db/iocAdminSoft.db", "IOC=$(PREFIX)")\n' autosave_str = 'file "sseqRecord_settings.req", P=$(P), S=AcquireSequence\n' if with_pva: autosave_str += 'file "NDPva_settings.req", P=$(P), R=Pva1:\n' common_plugins_str += 'NDPvaConfigure("PVA1", $(QSIZE), 0, "$(PORT)", 0, $(PREFIX)Pva1:Image, 0, 0, 0)\n' \ 'dbLoadRecords("NDPva.template", "P=$(PREFIX),R=Pva1:, PORT=PVA1,ADDR=0,TIMEOUT=1,NDARRAY_PORT=$(PORT)")\n' \ '# Must start PVA server if this is enabled\n' \ 'startPVAServer\n' \ config.add_injector_file('PLUGIN_CONFIG', common_plugins_str, '$(AREA_DETECTOR)/ADCore/iocBoot/EXAMPLE_commonPlugins.cmd') config.add_injector_file('AUTOSAVE_CONFIG', autosave_str, '$(AREA_DETECTOR)/ADCore/iocBoot/EXAMPLE_commonPlugin_settings.req') if update_versions: installSynApps.sync_all_module_tags(config) return config
39.804825
130
0.598204
6b0ed79dd0939a74afbcf7db38081382144c0b6e
3,587
py
Python
apps/accounts/views.py
tarvitz/icu
9a7cdac9d26ea224539f68f678b90bf70084374d
[ "BSD-3-Clause" ]
1
2022-03-12T23:44:21.000Z
2022-03-12T23:44:21.000Z
apps/accounts/views.py
tarvitz/icu
9a7cdac9d26ea224539f68f678b90bf70084374d
[ "BSD-3-Clause" ]
null
null
null
apps/accounts/views.py
tarvitz/icu
9a7cdac9d26ea224539f68f678b90bf70084374d
[ "BSD-3-Clause" ]
null
null
null
# Create your views here. # -*- coding: utf-8 -*- from apps.core.helpers import render_to, ajax_response, get_object_or_None from apps.core.decorators import lock, login_required_json from apps.accounts.models import Invite from apps.accounts.decorators import check_invite from apps.accounts.forms import ( LoginForm, AccountRegisterForm, SendInviteForm, InviteRegisterForm ) from django.core.mail import send_mail from django.core.urlresolvers import reverse from django.contrib import auth from django.contrib.auth.decorators import login_required from django.conf import settings from django.db import transaction from django.utils.translation import ugettext_lazy as _ #@check for possibility to register
30.922414
115
0.642598
6b0f57abb4c6963ae8d955c1ecf87495f2b1c219
12,193
py
Python
plugins/modules/oci_blockstorage_volume_backup_policy_facts.py
LaudateCorpus1/oci-ansible-collection
2b1cd87b4d652a97c1ca752cfc4fdc4bdb37a7e7
[ "Apache-2.0" ]
null
null
null
plugins/modules/oci_blockstorage_volume_backup_policy_facts.py
LaudateCorpus1/oci-ansible-collection
2b1cd87b4d652a97c1ca752cfc4fdc4bdb37a7e7
[ "Apache-2.0" ]
null
null
null
plugins/modules/oci_blockstorage_volume_backup_policy_facts.py
LaudateCorpus1/oci-ansible-collection
2b1cd87b4d652a97c1ca752cfc4fdc4bdb37a7e7
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # Copyright (c) 2020, 2022 Oracle and/or its affiliates. # This software is made available to you under the terms of the GPL 3.0 license or the Apache 2.0 license. # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # Apache License v2.0 # See LICENSE.TXT for details. # GENERATED FILE - DO NOT EDIT - MANUAL CHANGES WILL BE OVERWRITTEN from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = { "metadata_version": "1.1", "status": ["preview"], "supported_by": "community", } DOCUMENTATION = """ --- module: oci_blockstorage_volume_backup_policy_facts short_description: Fetches details about one or multiple VolumeBackupPolicy resources in Oracle Cloud Infrastructure description: - Fetches details about one or multiple VolumeBackupPolicy resources in Oracle Cloud Infrastructure - Lists all the volume backup policies available in the specified compartment. - For more information about Oracle defined backup policies and user defined backup policies, see L(Policy-Based Backups,https://docs.cloud.oracle.com/iaas/Content/Block/Tasks/schedulingvolumebackups.htm). - If I(policy_id) is specified, the details of a single VolumeBackupPolicy will be returned. version_added: "2.9.0" author: Oracle (@oracle) options: policy_id: description: - The OCID of the volume backup policy. - Required to get a specific volume_backup_policy. type: str aliases: ["id"] compartment_id: description: - The OCID of the compartment. If no compartment is specified, the Oracle defined backup policies are listed. type: str extends_documentation_fragment: [ oracle.oci.oracle, oracle.oci.oracle_display_name_option ] """ EXAMPLES = """ - name: Get a specific volume_backup_policy oci_blockstorage_volume_backup_policy_facts: # required policy_id: "ocid1.policy.oc1..xxxxxxEXAMPLExxxxxx" - name: List volume_backup_policies oci_blockstorage_volume_backup_policy_facts: # optional compartment_id: "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx" """ RETURN = """ volume_backup_policies: description: - List of VolumeBackupPolicy resources returned: on success type: complex contains: display_name: description: - A user-friendly name. Does not have to be unique, and it's changeable. Avoid entering confidential information. returned: on success type: str sample: display_name_example id: description: - The OCID of the volume backup policy. returned: on success type: str sample: "ocid1.resource.oc1..xxxxxxEXAMPLExxxxxx" schedules: description: - The collection of schedules that this policy will apply. returned: on success type: complex contains: backup_type: description: - The type of volume backup to create. returned: on success type: str sample: FULL offset_seconds: description: - The number of seconds that the volume backup start time should be shifted from the default interval boundaries specified by the period. The volume backup start time is the frequency start time plus the offset. returned: on success type: int sample: 56 period: description: - The volume backup frequency. returned: on success type: str sample: ONE_HOUR offset_type: description: - Indicates how the offset is defined. If value is `STRUCTURED`, then `hourOfDay`, `dayOfWeek`, `dayOfMonth`, and `month` fields are used and `offsetSeconds` will be ignored in requests and users should ignore its value from the responses. - "`hourOfDay` is applicable for periods `ONE_DAY`, `ONE_WEEK`, `ONE_MONTH` and `ONE_YEAR`." - "`dayOfWeek` is applicable for period `ONE_WEEK`." - "`dayOfMonth` is applicable for periods `ONE_MONTH` and `ONE_YEAR`." - "'month' is applicable for period 'ONE_YEAR'." - They will be ignored in the requests for inapplicable periods. - If value is `NUMERIC_SECONDS`, then `offsetSeconds` will be used for both requests and responses and the structured fields will be ignored in the requests and users should ignore their values from the responses. - For clients using older versions of Apis and not sending `offsetType` in their requests, the behaviour is just like `NUMERIC_SECONDS`. returned: on success type: str sample: STRUCTURED hour_of_day: description: - The hour of the day to schedule the volume backup. returned: on success type: int sample: 56 day_of_week: description: - The day of the week to schedule the volume backup. returned: on success type: str sample: MONDAY day_of_month: description: - The day of the month to schedule the volume backup. returned: on success type: int sample: 56 month: description: - The month of the year to schedule the volume backup. returned: on success type: str sample: JANUARY retention_seconds: description: - How long, in seconds, to keep the volume backups created by this schedule. returned: on success type: int sample: 56 time_zone: description: - Specifies what time zone is the schedule in returned: on success type: str sample: UTC destination_region: description: - The paired destination region for copying scheduled backups to. Example `us-ashburn-1`. See L(Region Pairs,https://docs.cloud.oracle.com/iaas/Content/Block/Tasks/schedulingvolumebackups.htm#RegionPairs) for details about paired regions. returned: on success type: str sample: us-phoenix-1 time_created: description: - The date and time the volume backup policy was created. Format defined by L(RFC3339,https://tools.ietf.org/html/rfc3339). returned: on success type: str sample: "2013-10-20T19:20:30+01:00" compartment_id: description: - The OCID of the compartment that contains the volume backup. returned: on success type: str sample: "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx" defined_tags: description: - Defined tags for this resource. Each key is predefined and scoped to a namespace. For more information, see L(Resource Tags,https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). - "Example: `{\\"Operations\\": {\\"CostCenter\\": \\"42\\"}}`" returned: on success type: dict sample: {'Operations': {'CostCenter': 'US'}} freeform_tags: description: - Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see L(Resource Tags,https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm). - "Example: `{\\"Department\\": \\"Finance\\"}`" returned: on success type: dict sample: {'Department': 'Finance'} sample: [{ "display_name": "display_name_example", "id": "ocid1.resource.oc1..xxxxxxEXAMPLExxxxxx", "schedules": [{ "backup_type": "FULL", "offset_seconds": 56, "period": "ONE_HOUR", "offset_type": "STRUCTURED", "hour_of_day": 56, "day_of_week": "MONDAY", "day_of_month": 56, "month": "JANUARY", "retention_seconds": 56, "time_zone": "UTC" }], "destination_region": "us-phoenix-1", "time_created": "2013-10-20T19:20:30+01:00", "compartment_id": "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx", "defined_tags": {'Operations': {'CostCenter': 'US'}}, "freeform_tags": {'Department': 'Finance'} }] """ from ansible.module_utils.basic import AnsibleModule from ansible_collections.oracle.oci.plugins.module_utils import oci_common_utils from ansible_collections.oracle.oci.plugins.module_utils.oci_resource_utils import ( OCIResourceFactsHelperBase, get_custom_class, ) try: from oci.core import BlockstorageClient HAS_OCI_PY_SDK = True except ImportError: HAS_OCI_PY_SDK = False VolumeBackupPolicyFactsHelperCustom = get_custom_class( "VolumeBackupPolicyFactsHelperCustom" ) if __name__ == "__main__": main()
38.342767
157
0.584598
6b0ff469900ccc9c854a18661fc7b7737ba3ac79
98
py
Python
pi_control/server_stats/apps.py
mhozza/pi-control
0dce821b4702519fedc3950270ee0091ed484ef6
[ "MIT" ]
null
null
null
pi_control/server_stats/apps.py
mhozza/pi-control
0dce821b4702519fedc3950270ee0091ed484ef6
[ "MIT" ]
10
2020-03-14T21:04:36.000Z
2022-03-03T21:51:07.000Z
pi_control/server_stats/apps.py
mhozza/pi-control
0dce821b4702519fedc3950270ee0091ed484ef6
[ "MIT" ]
null
null
null
from django.apps import AppConfig
16.333333
35
0.77551
6b1048e91d3158720f5949f6fb7c7ea76df6e7a1
14,435
py
Python
testproject/testproject/settings.py
jackvz/mezzanine-cartridge-api
c956afa672fcf1035ab60cd5eb6589a06ccaafa0
[ "MIT" ]
1
2019-04-18T23:28:03.000Z
2019-04-18T23:28:03.000Z
testproject/testproject/settings.py
jackvz/mezzanine-cartridge-api
c956afa672fcf1035ab60cd5eb6589a06ccaafa0
[ "MIT" ]
1
2020-06-05T20:27:04.000Z
2020-06-05T20:27:04.000Z
testproject/testproject/settings.py
jackvz/mezzanine-cartridge-api
c956afa672fcf1035ab60cd5eb6589a06ccaafa0
[ "MIT" ]
1
2020-12-13T15:55:53.000Z
2020-12-13T15:55:53.000Z
from __future__ import absolute_import, unicode_literals import os from django import VERSION as DJANGO_VERSION from django.utils.translation import ugettext_lazy as _ SECRET_KEY = '%29hnw7d-dy4n)!@1yi#ov#^@x0b=o*2o8^31oe!+(xw!!oc9a' ###################### # CARTRIDGE SETTINGS # ###################### # The following settings are already defined in cartridge.shop.defaults # with default values, but are common enough to be put here, commented # out, for conveniently overriding. Please consult the settings # documentation for a full list of settings Cartridge implements: # http://cartridge.jupo.org/configuration.html#default-settings # Sequence of available credit card types for payment. # SHOP_CARD_TYPES = ("Mastercard", "Visa", "Diners", "Amex") # Setting to turn on featured images for shop categories. Defaults to False. # SHOP_CATEGORY_USE_FEATURED_IMAGE = True # If True, the checkout process is split into separate # billing/shipping and payment steps. # SHOP_CHECKOUT_STEPS_SPLIT = True # If True, the checkout process has a final confirmation step before # completion. # SHOP_CHECKOUT_STEPS_CONFIRMATION = True # Controls the formatting of monetary values accord to the locale # module in the python standard library. If an empty string is # used, will fall back to the system's locale. SHOP_CURRENCY_LOCALE = "en_GB.UTF-8" # Dotted package path and name of the function that # is called on submit of the billing/shipping checkout step. This # is where shipping calculation can be performed and set using the # function ``cartridge.shop.utils.set_shipping``. # SHOP_HANDLER_BILLING_SHIPPING = \ # "cartridge.shop.checkout.default_billship_handler" # Dotted package path and name of the function that # is called once an order is successful and all of the order # object's data has been created. This is where any custom order # processing should be implemented. # SHOP_HANDLER_ORDER = "cartridge.shop.checkout.default_order_handler" # Dotted package path and name of the function that # is called on submit of the payment checkout step. This is where # integration with a payment gateway should be implemented. # SHOP_HANDLER_PAYMENT = "cartridge.shop.checkout.default_payment_handler" # Sequence of value/name pairs for order statuses. # SHOP_ORDER_STATUS_CHOICES = ( # (1, "Unprocessed"), # (2, "Processed"), # ) # Sequence of value/name pairs for types of product options, # eg Size, Colour. NOTE: Increasing the number of these will # require database migrations! # SHOP_OPTION_TYPE_CHOICES = ( # (1, "Size"), # (2, "Colour"), # ) # Sequence of indexes from the SHOP_OPTION_TYPE_CHOICES setting that # control how the options should be ordered in the admin, # eg for "Colour" then "Size" given the above: # SHOP_OPTION_ADMIN_ORDER = (2, 1) ###################### # MEZZANINE SETTINGS # ###################### # The following settings are already defined with default values in # the ``defaults.py`` module within each of Mezzanine's apps, but are # common enough to be put here, commented out, for conveniently # overriding. Please consult the settings documentation for a full list # of settings Mezzanine implements: # http://mezzanine.jupo.org/docs/configuration.html#default-settings # Controls the ordering and grouping of the admin menu. # # ADMIN_MENU_ORDER = ( # ("Content", ("pages.Page", "blog.BlogPost", # "generic.ThreadedComment", (_("Media Library"), "media-library"),)), # (_("Shop"), ("shop.Product", "shop.ProductOption", "shop.DiscountCode", # "shop.Sale", "shop.Order")), # ("Site", ("sites.Site", "redirects.Redirect", "conf.Setting")), # ("Users", ("auth.User", "auth.Group",)), # ) # A three item sequence, each containing a sequence of template tags # used to render the admin dashboard. # # DASHBOARD_TAGS = ( # ("blog_tags.quick_blog", "mezzanine_tags.app_list"), # ("comment_tags.recent_comments",), # ("mezzanine_tags.recent_actions",), # ) # A sequence of templates used by the ``page_menu`` template tag. Each # item in the sequence is a three item sequence, containing a unique ID # for the template, a label for the template, and the template path. # These templates are then available for selection when editing which # menus a page should appear in. Note that if a menu template is used # that doesn't appear in this setting, all pages will appear in it. # PAGE_MENU_TEMPLATES = ( # (1, _("Top navigation bar"), "pages/menus/dropdown.html"), # (2, _("Left-hand tree"), "pages/menus/tree.html"), # (3, _("Footer"), "pages/menus/footer.html"), # ) # A sequence of fields that will be injected into Mezzanine's (or any # library's) models. Each item in the sequence is a four item sequence. # The first two items are the dotted path to the model and its field # name to be added, and the dotted path to the field class to use for # the field. The third and fourth items are a sequence of positional # args and a dictionary of keyword args, to use when creating the # field instance. When specifying the field class, the path # ``django.models.db.`` can be omitted for regular Django model fields. # # EXTRA_MODEL_FIELDS = ( # ( # # Dotted path to field. # "mezzanine.blog.models.BlogPost.image", # # Dotted path to field class. # "somelib.fields.ImageField", # # Positional args for field class. # (_("Image"),), # # Keyword args for field class. # {"blank": True, "upload_to": "blog"}, # ), # # Example of adding a field to *all* of Mezzanine's content types: # ( # "mezzanine.pages.models.Page.another_field", # "IntegerField", # 'django.db.models.' is implied if path is omitted. # (_("Another name"),), # {"blank": True, "default": 1}, # ), # ) # Setting to turn on featured images for blog posts. Defaults to False. # # BLOG_USE_FEATURED_IMAGE = True # If True, the django-modeltranslation will be added to the # INSTALLED_APPS setting. USE_MODELTRANSLATION = False ######################## # MAIN DJANGO SETTINGS # ######################## # Hosts/domain names that are valid for this site; required if DEBUG is False # See https://docs.djangoproject.com/en/dev/ref/settings/#allowed-hosts ALLOWED_HOSTS = ['*'] # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # On Unix systems, a value of None will cause Django to use the same # timezone as the operating system. # If running in a Windows environment this must be set to the same as your # system time zone. TIME_ZONE = 'UTC' # If you set this to True, Django will use timezone-aware datetimes. USE_TZ = True # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = "en" # Supported languages LANGUAGES = ( ('en', _('English')), ) # A boolean that turns on/off debug mode. When set to ``True``, stack traces # are displayed for error pages. Should always be set to ``False`` in # production. Best set to ``True`` in local_settings.py DEBUG = True # Whether a user's session cookie expires when the Web browser is closed. SESSION_EXPIRE_AT_BROWSER_CLOSE = True SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = False AUTHENTICATION_BACKENDS = ("mezzanine.core.auth_backends.MezzanineBackend",) # The numeric mode to set newly-uploaded files to. The value should be # a mode you'd pass directly to os.chmod. FILE_UPLOAD_PERMISSIONS = 0o644 ############# # DATABASES # ############# DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': 'db.dev', } } ######### # PATHS # ######### # Full filesystem path to the project. PROJECT_APP_PATH = os.path.dirname(os.path.abspath(__file__)) PROJECT_APP = os.path.basename(PROJECT_APP_PATH) PROJECT_ROOT = BASE_DIR = os.path.dirname(PROJECT_APP_PATH) # Every cache key will get prefixed with this value - here we set it to # the name of the directory the project is in to try and use something # project specific. CACHE_MIDDLEWARE_KEY_PREFIX = PROJECT_APP # URL prefix for static files. # Example: "http://media.lawrence.com/static/" STATIC_URL = "/static/" # Absolute path to the directory static files should be collected to. # Don't put anything in this directory yourself; store your static files # in apps' "static/" subdirectories and in STATICFILES_DIRS. # Example: "/home/media/media.lawrence.com/static/" STATIC_ROOT = os.path.join(PROJECT_ROOT, STATIC_URL.strip("/")) # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash. # Examples: "http://media.lawrence.com/media/", "http://example.com/media/" MEDIA_URL = STATIC_URL + "media/" # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/home/media/media.lawrence.com/media/" MEDIA_ROOT = os.path.join(PROJECT_ROOT, *MEDIA_URL.strip("/").split("/")) # Package/module name to import the root urlpatterns from for the project. ROOT_URLCONF = "%s.urls" % PROJECT_APP TEMPLATES = [ { "BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": [ os.path.join(PROJECT_ROOT, "templates") ], "OPTIONS": { "context_processors": [ "django.contrib.auth.context_processors.auth", "django.contrib.messages.context_processors.messages", "django.template.context_processors.debug", "django.template.context_processors.i18n", "django.template.context_processors.static", "django.template.context_processors.media", "django.template.context_processors.request", "django.template.context_processors.tz", "mezzanine.conf.context_processors.settings", "mezzanine.pages.context_processors.page", ], "builtins": [ "mezzanine.template.loader_tags", ], "loaders": [ "mezzanine.template.loaders.host_themes.Loader", "django.template.loaders.filesystem.Loader", "django.template.loaders.app_directories.Loader", ], }, }, ] if DJANGO_VERSION < (1, 9): del TEMPLATES[0]["OPTIONS"]["builtins"] ################ # APPLICATIONS # ################ INSTALLED_APPS = ( "django.contrib.admin", "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.redirects", "django.contrib.sessions", "django.contrib.sites", "django.contrib.sitemaps", "django.contrib.staticfiles", "mezzanine.boot", "mezzanine.conf", "mezzanine.core", "mezzanine.generic", "mezzanine.pages", "cartridge.shop", "mezzanine.blog", "mezzanine.forms", "mezzanine.galleries", "mezzanine.twitter", # "mezzanine.accounts", 'corsheaders', 'rest_framework', 'rest_framework_api_key', 'drf_yasg', # 'oauth2_provider', # 'rest_framework.authtoken', 'mezzanine_cartridge_api', ) # List of middleware classes to use. Order is important; in the request phase, # these middleware classes will be applied in the order given, and in the # response phase the middleware will be applied in reverse order. MIDDLEWARE = ( "mezzanine.core.middleware.UpdateCacheMiddleware", 'django.contrib.sessions.middleware.SessionMiddleware', # Uncomment if using internationalisation or localisation # 'django.middleware.locale.LocaleMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', "cartridge.shop.middleware.ShopMiddleware", "mezzanine.core.request.CurrentRequestMiddleware", "mezzanine.core.middleware.RedirectFallbackMiddleware", "mezzanine.core.middleware.AdminLoginInterfaceSelectorMiddleware", "mezzanine.core.middleware.SitePermissionMiddleware", "mezzanine.pages.middleware.PageMiddleware", "mezzanine.core.middleware.FetchFromCacheMiddleware", 'corsheaders.middleware.CorsMiddleware', ) if DJANGO_VERSION < (1, 10): MIDDLEWARE_CLASSES = MIDDLEWARE del MIDDLEWARE # Store these package names here as they may change in the future since # at the moment we are using custom forks of them. PACKAGE_NAME_FILEBROWSER = "filebrowser_safe" PACKAGE_NAME_GRAPPELLI = "grappelli_safe" ######################### # OPTIONAL APPLICATIONS # ######################### # These will be added to ``INSTALLED_APPS``, only if available. OPTIONAL_APPS = ( "debug_toolbar", "django_extensions", "compressor", PACKAGE_NAME_FILEBROWSER, PACKAGE_NAME_GRAPPELLI, ) ################## # LOCAL SETTINGS # ################## # Allow any settings to be defined in local_settings.py which should be # ignored in your version control system allowing for settings to be # defined per machine. # Instead of doing "from .local_settings import *", we use exec so that # local_settings has full access to everything defined in this module. # Also force into sys.modules so it's visible to Django's autoreload. f = os.path.join(PROJECT_APP_PATH, "local_settings.py") if os.path.exists(f): import sys import imp module_name = "%s.local_settings" % PROJECT_APP module = imp.new_module(module_name) module.__file__ = f sys.modules[module_name] = module exec(open(f, "rb").read()) #################### # DYNAMIC SETTINGS # #################### # set_dynamic_settings() will rewrite globals based on what has been # defined so far, in order to provide some better defaults where # applicable. We also allow this settings module to be imported # without Mezzanine installed, as the case may be when using the # fabfile, where setting the dynamic settings below isn't strictly # required. try: from mezzanine.utils.conf import set_dynamic_settings except ImportError: pass else: set_dynamic_settings(globals())
34.783133
79
0.699619
6b1163fcd99a8abc3b5c62d0ed18bd3324cc7b0a
959
py
Python
wordgen/data_gen.py
ishaanbakhle/wordgen.us
45c5247ce04b13badd2e1b3164cedc9176a805c7
[ "MIT" ]
null
null
null
wordgen/data_gen.py
ishaanbakhle/wordgen.us
45c5247ce04b13badd2e1b3164cedc9176a805c7
[ "MIT" ]
null
null
null
wordgen/data_gen.py
ishaanbakhle/wordgen.us
45c5247ce04b13badd2e1b3164cedc9176a805c7
[ "MIT" ]
null
null
null
from wordgen import consts import numpy as np from sklearn import preprocessing if __name__ == '__main__': print(fill_matrix("james as"))
25.236842
76
0.594369
6b1167f333bc4ee9231e98ecd5d13fbcbf6bc62d
30,725
py
Python
arcade/gl/context.py
Cleptomania/arcade
abb7f0a0229b7f3a7843856d4b0812a3a2b80468
[ "MIT" ]
null
null
null
arcade/gl/context.py
Cleptomania/arcade
abb7f0a0229b7f3a7843856d4b0812a3a2b80468
[ "MIT" ]
null
null
null
arcade/gl/context.py
Cleptomania/arcade
abb7f0a0229b7f3a7843856d4b0812a3a2b80468
[ "MIT" ]
null
null
null
from ctypes import c_int, c_char_p, cast, c_float from collections import deque import logging import weakref from typing import Any, Dict, List, Tuple, Union, Sequence, Set import pyglet from pyglet.window import Window from pyglet import gl from .buffer import Buffer from .program import Program from .vertex_array import Geometry, VertexArray from .framebuffer import Framebuffer, DefaultFrameBuffer from typing import Optional from .texture import Texture from .query import Query from .glsl import ShaderSource from .types import BufferDescription LOG = logging.getLogger(__name__) def enable(self, *args): """ Enables one or more context flags:: # Single flag ctx.enable(ctx.BLEND) # Multiple flags ctx.enable(ctx.DEPTH_TEST, ctx.CULL_FACE) """ self._flags.update(args) for flag in args: gl.glEnable(flag) def enable_only(self, *args): """ Enable only some flags. This will disable all other flags. This is a simple way to ensure that context flag states are not lingering from other sections of your code base:: # Ensure all flags are disabled (enable no flags) ctx.enable_only() # Make sure only blending is enabled ctx.enable_only(ctx.BLEND) # Make sure only depth test and culling is enabled ctx.enable_only(ctx.DEPTH_TEST, ctx.CULL_FACE) """ self._flags = set(args) if self.BLEND in self._flags: gl.glEnable(self.BLEND) else: gl.glDisable(self.BLEND) if self.DEPTH_TEST in self._flags: gl.glEnable(self.DEPTH_TEST) else: gl.glDisable(self.DEPTH_TEST) if self.CULL_FACE in self._flags: gl.glEnable(self.CULL_FACE) else: gl.glDisable(self.CULL_FACE) if self.PROGRAM_POINT_SIZE in self._flags: gl.glEnable(self.PROGRAM_POINT_SIZE) else: gl.glDisable(self.PROGRAM_POINT_SIZE) def disable(self, *args): """ Disable one or more context flags:: # Single flag ctx.disable(ctx.BLEND) # Multiple flags ctx.disable(ctx.DEPTH_TEST, ctx.CULL_FACE) """ self._flags -= set(args) for flag in args: gl.glDisable(flag) def is_enabled(self, flag) -> bool: """ Check if a context flag is enabled :type: bool """ return flag in self._flags # def blend_equation(self) # def front_face(self) # def cull_face(self) def finish(self) -> None: """Wait until all OpenGL rendering commands are completed""" gl.glFinish() # --- Resource methods --- def buffer( self, *, data: Optional[Any] = None, reserve: int = 0, usage: str = "static" ) -> Buffer: """Create a new OpenGL Buffer object. :param Any data: The buffer data, This can be ``bytes`` or an object supporting the buffer protocol. :param int reserve: The number of bytes reserve :param str usage: Buffer usage. 'static', 'dynamic' or 'stream' :rtype: :py:class:`~arcade.gl.Buffer` """ # create_with_size return Buffer(self, data, reserve=reserve, usage=usage) def framebuffer( self, *, color_attachments: Union[Texture, List[Texture]] = None, depth_attachment: Texture = None ) -> Framebuffer: """Create a Framebuffer. :param List[arcade.gl.Texture] color_attachments: List of textures we want to render into :param arcade.gl.Texture depth_attachment: Depth texture :rtype: :py:class:`~arcade.gl.Framebuffer` """ return Framebuffer( self, color_attachments=color_attachments, depth_attachment=depth_attachment ) def texture( self, size: Tuple[int, int], *, components: int = 4, dtype: str = "f1", data: Any = None, wrap_x: gl.GLenum = None, wrap_y: gl.GLenum = None, filter: Tuple[gl.GLenum, gl.GLenum] = None ) -> Texture: """Create a 2D Texture. Wrap modes: ``GL_REPEAT``, ``GL_MIRRORED_REPEAT``, ``GL_CLAMP_TO_EDGE``, ``GL_CLAMP_TO_BORDER`` Minifying filters: ``GL_NEAREST``, ``GL_LINEAR``, ``GL_NEAREST_MIPMAP_NEAREST``, ``GL_LINEAR_MIPMAP_NEAREST`` ``GL_NEAREST_MIPMAP_LINEAR``, ``GL_LINEAR_MIPMAP_LINEAR`` Magnifying filters: ``GL_NEAREST``, ``GL_LINEAR`` :param Tuple[int, int] size: The size of the texture :param int components: Number of components (1: R, 2: RG, 3: RGB, 4: RGBA) :param str dtype: The data type of each component: f1, f2, f4 / i1, i2, i4 / u1, u2, u4 :param Any data: The texture data (optional). Can be bytes or an object supporting the buffer protocol. :param GLenum wrap_x: How the texture wraps in x direction :param GLenum wrap_y: How the texture wraps in y direction :param Tuple[GLenum,GLenum] filter: Minification and magnification filter """ return Texture( self, size, components=components, data=data, dtype=dtype, wrap_x=wrap_x, wrap_y=wrap_y, filter=filter, ) def depth_texture(self, size: Tuple[int, int], *, data=None) -> Texture: """Create a 2D depth texture :param Tuple[int, int] size: The size of the texture :param Any data: The texture data (optional). Can be bytes or an object supporting the buffer protocol. """ return Texture(self, size, data=data, depth=True) def geometry( self, content: Optional[Sequence[BufferDescription]] = None, index_buffer: Buffer = None, mode: int = None, index_element_size: int = 4, ): """ Create a Geomtry instance. :param list content: List of :py:class:`~arcade.gl.BufferDescription` (optional) :param Buffer index_buffer: Index/element buffer (optional) :param int mode: The default draw mode (optional) :param int mode: The default draw mode (optional) :param int index_element_size: Byte size of the index buffer type. Can be 1, 2 or 4 (8, 16 or 32 bit unsigned integer) """ return Geometry(self, content, index_buffer=index_buffer, mode=mode, index_element_size=index_element_size) def program( self, *, vertex_shader: str, fragment_shader: str = None, geometry_shader: str = None, tess_control_shader: str = None, tess_evaluation_shader: str = None, defines: Dict[str, str] = None ) -> Program: """Create a :py:class:`~arcade.gl.Program` given the vertex, fragment and geometry shader. :param str vertex_shader: vertex shader source :param str fragment_shader: fragment shader source (optional) :param str geometry_shader: geometry shader source (optional) :param str tess_control_shader: tessellation control shader source (optional) :param str tess_evaluation_shader: tessellation evaluation shader source (optional) :param dict defines: Substitute #defines values in the source (optional) :rtype: :py:class:`~arcade.gl.Program` """ source_vs = ShaderSource(vertex_shader, gl.GL_VERTEX_SHADER) source_fs = ( ShaderSource(fragment_shader, gl.GL_FRAGMENT_SHADER) if fragment_shader else None ) source_geo = ( ShaderSource(geometry_shader, gl.GL_GEOMETRY_SHADER) if geometry_shader else None ) source_tc = ( ShaderSource(tess_control_shader, gl.GL_TESS_CONTROL_SHADER) if tess_control_shader else None ) source_te = ( ShaderSource(tess_evaluation_shader, gl.GL_TESS_EVALUATION_SHADER) if tess_evaluation_shader else None ) # If we don't have a fragment shader we are doing transform feedback. # When a geometry shader is present the out attributes will be located there out_attributes = [] # type: List[str] if not source_fs: if source_geo: out_attributes = source_geo.out_attributes else: out_attributes = source_vs.out_attributes return Program( self, vertex_shader=source_vs.get_source(defines=defines), fragment_shader=source_fs.get_source(defines=defines) if source_fs else None, geometry_shader=source_geo.get_source(defines=defines) if source_geo else None, tess_control_shader=source_tc.get_source(defines=defines) if source_tc else None, tess_evaluation_shader=source_te.get_source(defines=defines) if source_te else None, out_attributes=out_attributes, ) def query(self): """ Create a query object for measuring rendering calls in opengl. :rtype: :py:class:`~arcade.gl.Query` """ return Query(self) class ContextStats: def __init__(self, warn_threshold=100): self.warn_threshold = warn_threshold # (created, freed) self.texture = (0, 0) self.framebuffer = (0, 0) self.buffer = (0, 0) self.program = (0, 0) self.vertex_array = (0, 0) self.geometry = (0, 0)
38.310474
126
0.652823
6b118924fc3b616de8ffa2d875b9ce842c00da9f
2,141
py
Python
api/app/models/bookings/exam.py
pixelater/queue-management
9881505d4af2b9860aeaf76b9572315dd016c7dc
[ "Apache-2.0" ]
null
null
null
api/app/models/bookings/exam.py
pixelater/queue-management
9881505d4af2b9860aeaf76b9572315dd016c7dc
[ "Apache-2.0" ]
1
2019-02-26T00:27:31.000Z
2019-02-26T00:27:31.000Z
api/app/models/bookings/exam.py
pixelater/queue-management
9881505d4af2b9860aeaf76b9572315dd016c7dc
[ "Apache-2.0" ]
null
null
null
'''Copyright 2018 Province of British Columbia Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.''' from app.models.bookings import Base from qsystem import db
43.693878
111
0.739841
6b12470d00652efed9a53779a3b55749c6b298e3
9,350
py
Python
datatableview/tests/test_helpers.py
gregneagle/sal
74c583fb1c1b33d3201b308b147376b3dcaca33f
[ "Apache-2.0" ]
2
2019-11-01T20:50:35.000Z
2021-01-13T22:02:55.000Z
datatableview/tests/test_helpers.py
gregneagle/sal
74c583fb1c1b33d3201b308b147376b3dcaca33f
[ "Apache-2.0" ]
null
null
null
datatableview/tests/test_helpers.py
gregneagle/sal
74c583fb1c1b33d3201b308b147376b3dcaca33f
[ "Apache-2.0" ]
null
null
null
# -*- encoding: utf-8 -*- from datetime import datetime from functools import partial from django import get_version from datatableview import helpers import six from .testcase import DatatableViewTestCase from .test_app.models import ExampleModel, RelatedM2MModel if get_version().split('.') < ['1', '7']: test_data_fixture = 'test_data_legacy.json' else: test_data_fixture = 'test_data.json'
37.250996
107
0.610695
6b136297b7f7ffe43bf97fc683bc6c2f3794e562
3,518
py
Python
discordbot.py
naari3/seibaribot
3686206ed0b28b318a4032753350be8d9f2223fd
[ "MIT" ]
null
null
null
discordbot.py
naari3/seibaribot
3686206ed0b28b318a4032753350be8d9f2223fd
[ "MIT" ]
null
null
null
discordbot.py
naari3/seibaribot
3686206ed0b28b318a4032753350be8d9f2223fd
[ "MIT" ]
1
2022-02-09T16:45:40.000Z
2022-02-09T16:45:40.000Z
import traceback from os import getenv import discord from discord import Message from discord.ext import commands from discord.ext.commands import Context from asyncio import sleep import asyncio client = discord.Client() # bot! bot = commands.Bot(command_prefix='!') # ID GIRATINA_CHANNEL_ID = 940610524415144036 WIP_CHANNEL_ID = 940966825087361025 # # Bot # # # # # # bokuseku.mp3 - https://qiita.com/sizumita/items/cafd00fe3e114d834ce3 token = getenv('DISCORD_BOT_TOKEN') bot.run(token)
29.07438
191
0.689312
6b13e68ee45340f613741a1e02396fe2503dcda1
6,831
py
Python
test/cpp/naming/utils/dns_server.py
arghyadip01/grpc
9e10bfc8a096ef91a327e22f84f10c0fabff4417
[ "Apache-2.0" ]
9
2020-12-04T07:34:08.000Z
2022-03-07T21:10:35.000Z
test/cpp/naming/utils/dns_server.py
arghyadip01/grpc
9e10bfc8a096ef91a327e22f84f10c0fabff4417
[ "Apache-2.0" ]
62
2020-02-27T00:53:36.000Z
2021-02-05T06:10:53.000Z
test/cpp/naming/utils/dns_server.py
arghyadip01/grpc
9e10bfc8a096ef91a327e22f84f10c0fabff4417
[ "Apache-2.0" ]
12
2020-07-14T23:59:57.000Z
2022-03-22T09:59:18.000Z
#!/usr/bin/env python2.7 # Copyright 2015 gRPC authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Starts a local DNS server for use in tests""" import argparse import sys import yaml import signal import os import threading import time import twisted import twisted.internet import twisted.internet.reactor import twisted.internet.threads import twisted.internet.defer import twisted.internet.protocol import twisted.names import twisted.names.client import twisted.names.dns import twisted.names.server from twisted.names import client, server, common, authority, dns import argparse import platform _SERVER_HEALTH_CHECK_RECORD_NAME = 'health-check-local-dns-server-is-alive.resolver-tests.grpctestingexp' # missing end '.' for twisted syntax _SERVER_HEALTH_CHECK_RECORD_DATA = '123.123.123.123' if __name__ == '__main__': main()
37.125
143
0.639731
6b13e6f6469b20dda5e5b5da9f0367c1ee7833b5
726
py
Python
colour/examples/models/examples_ictcp.py
BPearlstine/colour
40f0281295496774d2a19eee017d50fd0c265bd8
[ "Cube", "BSD-3-Clause" ]
2
2020-05-03T20:15:42.000Z
2021-04-09T18:19:06.000Z
colour/examples/models/examples_ictcp.py
BPearlstine/colour
40f0281295496774d2a19eee017d50fd0c265bd8
[ "Cube", "BSD-3-Clause" ]
null
null
null
colour/examples/models/examples_ictcp.py
BPearlstine/colour
40f0281295496774d2a19eee017d50fd0c265bd8
[ "Cube", "BSD-3-Clause" ]
1
2019-12-11T19:48:27.000Z
2019-12-11T19:48:27.000Z
# -*- coding: utf-8 -*- """ Showcases *ICTCP* *colour encoding* computations. """ import numpy as np import colour from colour.utilities import message_box message_box('"ICTCP" Colour Encoding Computations') RGB = np.array([0.45620519, 0.03081071, 0.04091952]) message_box(('Converting from "ITU-R BT.2020" colourspace to "ICTCP" colour ' 'encoding given "RGB" values:\n' '\n\t{0}'.format(RGB))) print(colour.RGB_to_ICTCP(RGB)) print('\n') ICTCP = np.array([0.07351364, 0.00475253, 0.09351596]) message_box(('Converting from "ICTCP" colour encoding to "ITU-R BT.2020" ' 'colourspace given "ICTCP" values:\n' '\n\t{0}'.format(ICTCP))) print(colour.ICTCP_to_RGB(ICTCP))
27.923077
77
0.665289
6b147a9cf7116a1a4434ef19b42cc9c65f9ba8e8
1,536
py
Python
app/core/model/routine.py
MauricioAntonioMartinez/django-workout-tracker-api
82f9499f172bd6d4b861f072948949dd6f8f6ec1
[ "MIT" ]
null
null
null
app/core/model/routine.py
MauricioAntonioMartinez/django-workout-tracker-api
82f9499f172bd6d4b861f072948949dd6f8f6ec1
[ "MIT" ]
null
null
null
app/core/model/routine.py
MauricioAntonioMartinez/django-workout-tracker-api
82f9499f172bd6d4b861f072948949dd6f8f6ec1
[ "MIT" ]
null
null
null
import os import uuid from django.conf import settings # this is how we can retrive variables # for the settings file from django.contrib.auth.models import (AbstractBaseUser, BaseUserManager, PermissionsMixin) from django.core.validators import MaxValueValidator, MinValueValidator from django.db import models from django.utils.translation import gettext_lazy as _ from multiselectfield import MultiSelectField # Maneger User class is the class that provides the creation # of user or admin and all methods out of the box from rest_framework import exceptions from rest_framework.authentication import TokenAuthentication from user.custom_token import ExpiringToken from .exercise import BaseSerie
30.72
74
0.742839
6b15e8a8bf1abf0fd58cab05c52fa68b6927df9e
3,732
py
Python
example_scripts/transect_tutorial.py
British-Oceanographic-Data-Centre/COAsT
4d3d57c9afb61a92063b665626c1828dd2998d2b
[ "MIT" ]
8
2020-09-10T13:40:07.000Z
2022-03-10T22:52:44.000Z
example_scripts/transect_tutorial.py
British-Oceanographic-Data-Centre/COAsT
4d3d57c9afb61a92063b665626c1828dd2998d2b
[ "MIT" ]
294
2020-05-11T12:17:17.000Z
2022-03-31T22:07:52.000Z
example_scripts/transect_tutorial.py
British-Oceanographic-Data-Centre/COAsT
4d3d57c9afb61a92063b665626c1828dd2998d2b
[ "MIT" ]
4
2020-05-28T10:43:56.000Z
2021-09-07T10:40:09.000Z
""" This is a demonstration script for using the Transect class in the COAsT package. This object has strict data formatting requirements, which are outlined in tranect.py. Transect subsetting (a vertical slice of data between two coordinates): Creating them and performing some custom diagnostics with them. --- In this tutorial we take a look at subsetting the model data along a transect (a custom straight line) and creating some bespoke diagnostics along it. We look at: 1. Creating a TRANSECT object, defined between two points. 2. Plotting data along a transect. 3. Calculating flow normal to the transect """ ## Create a transect subset of the example dataset # Load packages and define some file paths import coast import xarray as xr import matplotlib.pyplot as plt fn_nemo_dat_t = "./example_files/nemo_data_T_grid.nc" fn_nemo_dat_u = "./example_files/nemo_data_U_grid.nc" fn_nemo_dat_v = "./example_files/nemo_data_V_grid.nc" fn_nemo_dom = "./example_files/COAsT_example_NEMO_domain.nc" # Configuration files describing the data files fn_config_t_grid = "./config/example_nemo_grid_t.json" fn_config_f_grid = "./config/example_nemo_grid_f.json" fn_config_u_grid = "./config/example_nemo_grid_u.json" fn_config_v_grid = "./config/example_nemo_grid_v.json" # %% Load data variables that are on the NEMO t-grid nemo_t = coast.Gridded(fn_data=fn_nemo_dat_t, fn_domain=fn_nemo_dom, config=fn_config_t_grid) # Now create a transect between the points (54 N 15 W) and (56 N, 12 W) using the `coast.TransectT` object. This needs to be passed the corresponding NEMO object and transect end points. The model points closest to these coordinates will be selected as the transect end points. tran_t = coast.TransectT(nemo_t, (54, -15), (56, -12)) # Inspect the data tran_t.data # where `r_dim` is the dimension along the transect. # %% Plot the data # It is simple to plot a scalar such as temperature along the transect: temp_mean = tran_t.data.temperature.mean(dim="t_dim") plt.figure() temp_mean.plot.pcolormesh(y="depth_0", yincrease=False) plt.show() # %% Flow across the transect # With NEMOs staggered grid, the first step is to define the transect on the f-grid so that the velocity components are between f-points. We do not need any model data on the f-grid, just the grid information, so create a nemo f-grid object nemo_f = coast.Gridded(fn_domain=fn_nemo_dom, config=fn_config_f_grid) # and a transect on the f-grid tran_f = coast.TransectF(nemo_f, (54, -15), (56, -12)) tran_f.data # We also need the i- and j-components of velocity so (lazy) load the model data on the u- and v-grid grids nemo_u = coast.Gridded(fn_data=fn_nemo_dat_u, fn_domain=fn_nemo_dom, config=fn_config_u_grid) nemo_v = coast.Gridded(fn_data=fn_nemo_dat_v, fn_domain=fn_nemo_dom, config=fn_config_v_grid) # Now we can calculate the flow across the transect with the method tran_f.calc_flow_across_transect(nemo_u, nemo_v) # The flow across the transect is stored in a new dataset where the variables are all defined at the points between f-points. tran_f.data_cross_tran_flow # For example, to plot the time averaged velocity across the transect, we can plot the normal_velocities variable cross_velocity_mean = tran_f.data_cross_tran_flow.normal_velocities.mean(dim="t_dim") plt.figure() cross_velocity_mean.rolling(r_dim=2).mean().plot.pcolormesh(yincrease=False, y="depth_0", cbar_kwargs={"label": "m/s"}) plt.show() # or the volume transport across the transect, we can plot the normal_transports variable plt.figure() cross_transport_mean = tran_f.data_cross_tran_flow.normal_transports.mean(dim="t_dim") cross_transport_mean.rolling(r_dim=2).mean().plot() plt.ylabel("Sv") plt.show()
38.081633
277
0.780279
6b16a33b1ae4cc31b9c80ce44c59e17df1095980
44,917
py
Python
diofant/logic/boolalg.py
skirpichev/diofant
16e280fdd6053be10c3b60fbb66fc26b52ede27a
[ "BSD-3-Clause" ]
null
null
null
diofant/logic/boolalg.py
skirpichev/diofant
16e280fdd6053be10c3b60fbb66fc26b52ede27a
[ "BSD-3-Clause" ]
1
2021-06-23T08:27:17.000Z
2021-06-23T08:27:17.000Z
diofant/logic/boolalg.py
skirpichev/diofant
16e280fdd6053be10c3b60fbb66fc26b52ede27a
[ "BSD-3-Clause" ]
1
2021-06-23T07:58:58.000Z
2021-06-23T07:58:58.000Z
""" Boolean algebra module for Diofant. """ from collections import defaultdict from itertools import combinations, product from ..core import Atom, cacheit from ..core.expr import Expr from ..core.function import Application from ..core.numbers import Number from ..core.operations import LatticeOp from ..core.singleton import S from ..core.singleton import SingletonWithManagedProperties as Singleton from ..core.sympify import converter, sympify from ..utilities import ordered true = BooleanTrue() false: BooleanFalse = BooleanFalse() # We want S.true and S.false to work, rather than S.BooleanTrue and # S.BooleanFalse, but making the class and instance names the same causes some # major issues (like the inability to import the class directly from this # file). S.true = true S.false = false converter[bool] = lambda x: true if x else false # end class definitions. Some useful methods def conjuncts(expr): """Return a list of the conjuncts in the expr s. Examples ======== >>> conjuncts(a & b) == frozenset([a, b]) True >>> conjuncts(a | b) == frozenset([Or(a, b)]) True """ return And.make_args(expr) def disjuncts(expr): """Return a list of the disjuncts in the sentence s. Examples ======== >>> disjuncts(a | b) == frozenset([a, b]) True >>> disjuncts(a & b) == frozenset([And(a, b)]) True """ return Or.make_args(expr) def distribute_and_over_or(expr): """ Given a sentence s consisting of conjunctions and disjunctions of literals, return an equivalent sentence in CNF. Examples ======== >>> distribute_and_over_or(Or(a, And(Not(b), Not(c)))) (a | ~b) & (a | ~c) """ return _distribute((expr, And, Or)) def distribute_or_over_and(expr): """ Given a sentence s consisting of conjunctions and disjunctions of literals, return an equivalent sentence in DNF. Note that the output is NOT simplified. Examples ======== >>> distribute_or_over_and(And(Or(Not(a), b), c)) (b & c) | (c & ~a) """ return _distribute((expr, Or, And)) def _distribute(info): """Distributes info[1] over info[2] with respect to info[0].""" if isinstance(info[0], info[2]): for arg in info[0].args: if isinstance(arg, info[1]): conj = arg break else: return info[0] rest = info[2](*[a for a in info[0].args if a is not conj]) return info[1](*list(map(_distribute, ((info[2](c, rest), info[1], info[2]) for c in conj.args)))) elif isinstance(info[0], info[1]): return info[1](*list(map(_distribute, ((x, info[1], info[2]) for x in info[0].args)))) else: return info[0] def to_nnf(expr, simplify=True): """ Converts expr to Negation Normal Form. A logical expression is in Negation Normal Form (NNF) if it contains only And, Or and Not, and Not is applied only to literals. If simplify is True, the result contains no redundant clauses. Examples ======== >>> to_nnf(Not((~a & ~b) | (c & d))) (a | b) & (~c | ~d) >>> to_nnf(Equivalent(a >> b, b >> a)) (a | ~b | (a & ~b)) & (b | ~a | (b & ~a)) """ expr = sympify(expr) if is_nnf(expr, simplify): return expr return expr.to_nnf(simplify) def to_cnf(expr, simplify=False): """ Convert a propositional logical sentence s to conjunctive normal form. That is, of the form ((A | ~B | ...) & (B | C | ...) & ...). If simplify is True, the expr is evaluated to its simplest CNF form. Examples ======== >>> to_cnf(~(a | b) | c) (c | ~a) & (c | ~b) >>> to_cnf((a | b) & (a | ~a), True) a | b """ expr = sympify(expr) if not isinstance(expr, BooleanFunction): return expr if simplify: return simplify_logic(expr, 'cnf', True) # Don't convert unless we have to if is_cnf(expr): return expr expr = eliminate_implications(expr) return distribute_and_over_or(expr) def to_dnf(expr, simplify=False): """ Convert a propositional logical sentence s to disjunctive normal form. That is, of the form ((A & ~B & ...) | (B & C & ...) | ...). If simplify is True, the expr is evaluated to its simplest DNF form. Examples ======== >>> to_dnf(b & (a | c)) (a & b) | (b & c) >>> to_dnf((a & b) | (a & ~b) | (b & c) | (~b & c), True) a | c """ expr = sympify(expr) if not isinstance(expr, BooleanFunction): return expr if simplify: return simplify_logic(expr, 'dnf', True) # Don't convert unless we have to if is_dnf(expr): return expr expr = eliminate_implications(expr) return distribute_or_over_and(expr) def is_nnf(expr, simplified=True): """ Checks if expr is in Negation Normal Form. A logical expression is in Negation Normal Form (NNF) if it contains only And, Or and Not, and Not is applied only to literals. If simplified is True, checks if result contains no redundant clauses. Examples ======== >>> is_nnf(a & b | ~c) True >>> is_nnf((a | ~a) & (b | c)) False >>> is_nnf((a | ~a) & (b | c), False) True >>> is_nnf(Not(a & b) | c) False >>> is_nnf((a >> b) & (b >> a)) False """ expr = sympify(expr) if is_literal(expr): return True stack = [expr] while stack: expr = stack.pop() if expr.func in (And, Or): if simplified: args = expr.args for arg in args: if Not(arg) in args: return False stack.extend(expr.args) elif not is_literal(expr): return False return True def is_cnf(expr): """ Test whether or not an expression is in conjunctive normal form. Examples ======== >>> is_cnf(a | b | c) True >>> is_cnf(a & b & c) True >>> is_cnf((a & b) | c) False """ return _is_form(expr, And, Or) def is_dnf(expr): """ Test whether or not an expression is in disjunctive normal form. Examples ======== >>> is_dnf(a | b | c) True >>> is_dnf(a & b & c) True >>> is_dnf((a & b) | c) True >>> is_dnf(a & (b | c)) False """ return _is_form(expr, Or, And) def _is_form(expr, function1, function2): """Test whether or not an expression is of the required form.""" expr = sympify(expr) # Special case of an Atom if expr.is_Atom: return True # Special case of a single expression of function2 if isinstance(expr, function2): for lit in expr.args: if isinstance(lit, Not): if not lit.args[0].is_Atom: return False else: if not lit.is_Atom: return False return True # Special case of a single negation if isinstance(expr, Not): if not expr.args[0].is_Atom: return False if not isinstance(expr, function1): return False for cls in expr.args: if cls.is_Atom: continue if isinstance(cls, Not): if not cls.args[0].is_Atom: return False elif not isinstance(cls, function2): return False for lit in cls.args: if isinstance(lit, Not): if not lit.args[0].is_Atom: return False else: if not lit.is_Atom: return False return True def eliminate_implications(expr): """ Change >>, <<, and Equivalent into &, |, and ~. That is, return an expression that is equivalent to s, but has only &, |, and ~ as logical operators. Examples ======== >>> eliminate_implications(Implies(a, b)) b | ~a >>> eliminate_implications(Equivalent(a, b)) (a | ~b) & (b | ~a) >>> eliminate_implications(Equivalent(a, b, c)) (a | ~c) & (b | ~a) & (c | ~b) """ return to_nnf(expr) def is_literal(expr): """ Returns True if expr is a literal, else False. Examples ======== >>> is_literal(a) True >>> is_literal(~a) True >>> is_literal(a + b) True >>> is_literal(Or(a, b)) False """ if isinstance(expr, Not): return not isinstance(expr.args[0], BooleanFunction) else: return not isinstance(expr, BooleanFunction) def to_int_repr(clauses, symbols): """ Takes clauses in CNF format and puts them into an integer representation. Examples ======== >>> to_int_repr([x | y, y], [x, y]) [{1, 2}, {2}] """ symbols = dict(zip(symbols, range(1, len(symbols) + 1))) return [{append_symbol(arg, symbols) for arg in Or.make_args(c)} for c in clauses] def _check_pair(minterm1, minterm2): """ Checks if a pair of minterms differs by only one bit. If yes, returns index, else returns -1. """ index = -1 for x, (i, j) in enumerate(zip(minterm1, minterm2)): if i != j: if index == -1: index = x else: return -1 return index def _convert_to_varsSOP(minterm, variables): """ Converts a term in the expansion of a function from binary to it's variable form (for SOP). """ temp = [] for i, m in enumerate(minterm): if m == 0: temp.append(Not(variables[i])) elif m == 1: temp.append(variables[i]) return And(*temp) def _convert_to_varsPOS(maxterm, variables): """ Converts a term in the expansion of a function from binary to it's variable form (for POS). """ temp = [] for i, m in enumerate(maxterm): if m == 1: temp.append(Not(variables[i])) elif m == 0: temp.append(variables[i]) return Or(*temp) def _simplified_pairs(terms): """ Reduces a set of minterms, if possible, to a simplified set of minterms with one less variable in the terms using QM method. """ simplified_terms = [] todo = list(range(len(terms))) for i, ti in enumerate(terms[:-1]): for j_i, tj in enumerate(terms[(i + 1):]): index = _check_pair(ti, tj) if index != -1: todo[i] = todo[j_i + i + 1] = None newterm = ti[:] newterm[index] = 3 if newterm not in simplified_terms: simplified_terms.append(newterm) simplified_terms.extend( [terms[i] for i in [_ for _ in todo if _ is not None]]) return simplified_terms def _compare_term(minterm, term): """ Return True if a binary term is satisfied by the given term. Used for recognizing prime implicants. """ for i, x in enumerate(term): if x not in (3, minterm[i]): return False return True def _rem_redundancy(l1, terms): """ After the truth table has been sufficiently simplified, use the prime implicant table method to recognize and eliminate redundant pairs, and return the essential arguments. """ essential = [] for x in terms: temporary = [] for y in l1: if _compare_term(x, y): temporary.append(y) if len(temporary) == 1: if temporary[0] not in essential: essential.append(temporary[0]) for x in terms: for y in essential: if _compare_term(x, y): break else: for z in l1: # pragma: no branch if _compare_term(x, z): assert z not in essential essential.append(z) break return essential def SOPform(variables, minterms, dontcares=None): """ The SOPform function uses simplified_pairs and a redundant group- eliminating algorithm to convert the list of all input combos that generate '1' (the minterms) into the smallest Sum of Products form. The variables must be given as the first argument. Return a logical Or function (i.e., the "sum of products" or "SOP" form) that gives the desired outcome. If there are inputs that can be ignored, pass them as a list, too. The result will be one of the (perhaps many) functions that satisfy the conditions. Examples ======== >>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1], ... [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]] >>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]] >>> SOPform([t, x, y, z], minterms, dontcares) (y & z) | (z & ~t) References ========== * https://en.wikipedia.org/wiki/Quine-McCluskey_algorithm """ variables = [sympify(v) for v in variables] if minterms == []: return false minterms = [list(i) for i in minterms] dontcares = [list(i) for i in (dontcares or [])] for d in dontcares: if d in minterms: raise ValueError(f'{d} in minterms is also in dontcares') old = None new = minterms + dontcares while new != old: old = new new = _simplified_pairs(old) essential = _rem_redundancy(new, minterms) return Or(*[_convert_to_varsSOP(x, variables) for x in essential]) def POSform(variables, minterms, dontcares=None): """ The POSform function uses simplified_pairs and a redundant-group eliminating algorithm to convert the list of all input combinations that generate '1' (the minterms) into the smallest Product of Sums form. The variables must be given as the first argument. Return a logical And function (i.e., the "product of sums" or "POS" form) that gives the desired outcome. If there are inputs that can be ignored, pass them as a list, too. The result will be one of the (perhaps many) functions that satisfy the conditions. Examples ======== >>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], ... [1, 0, 1, 1], [1, 1, 1, 1]] >>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]] >>> POSform([t, x, y, z], minterms, dontcares) z & (y | ~t) References ========== * https://en.wikipedia.org/wiki/Quine-McCluskey_algorithm """ variables = [sympify(v) for v in variables] if minterms == []: return false minterms = [list(i) for i in minterms] dontcares = [list(i) for i in (dontcares or [])] for d in dontcares: if d in minterms: raise ValueError(f'{d} in minterms is also in dontcares') maxterms = [] for t in product([0, 1], repeat=len(variables)): t = list(t) if (t not in minterms) and (t not in dontcares): maxterms.append(t) old = None new = maxterms + dontcares while new != old: old = new new = _simplified_pairs(old) essential = _rem_redundancy(new, maxterms) return And(*[_convert_to_varsPOS(x, variables) for x in essential]) def _find_predicates(expr): """Helper to find logical predicates in BooleanFunctions. A logical predicate is defined here as anything within a BooleanFunction that is not a BooleanFunction itself. """ if not isinstance(expr, BooleanFunction): return {expr} return set().union(*(_find_predicates(i) for i in expr.args)) def simplify_logic(expr, form=None, deep=True): """ This function simplifies a boolean function to its simplified version in SOP or POS form. The return type is an Or or And object in Diofant. Parameters ========== expr : string or boolean expression form : string ('cnf' or 'dnf') or None (default). If 'cnf' or 'dnf', the simplest expression in the corresponding normal form is returned; if None, the answer is returned according to the form with fewest args (in CNF by default). deep : boolean (default True) indicates whether to recursively simplify any non-boolean functions contained within the input. Examples ======== >>> b = (~x & ~y & ~z) | (~x & ~y & z) >>> simplify_logic(b) ~x & ~y >>> sympify(b) (z & ~x & ~y) | (~x & ~y & ~z) >>> simplify_logic(_) ~x & ~y """ if form == 'cnf' or form == 'dnf' or form is None: expr = sympify(expr) if not isinstance(expr, BooleanFunction): return expr variables = _find_predicates(expr) truthtable = [] for t in product([0, 1], repeat=len(variables)): t = list(t) if expr.xreplace(dict(zip(variables, t))): truthtable.append(t) if deep: from ..simplify import simplify variables = [simplify(v) for v in variables] if form == 'dnf' or \ (form is None and len(truthtable) >= (2 ** (len(variables) - 1))): return SOPform(variables, truthtable) elif form == 'cnf' or form is None: # pragma: no branch return POSform(variables, truthtable) else: raise ValueError('form can be cnf or dnf only') def _finger(eq): """ Assign a 5-item fingerprint to each symbol in the equation: [ # of times it appeared as a Symbol, # of times it appeared as a Not(symbol), # of times it appeared as a Symbol in an And or Or, # of times it appeared as a Not(Symbol) in an And or Or, sum of the number of arguments with which it appeared, counting Symbol as 1 and Not(Symbol) as 2 ] >>> eq = Or(And(Not(y), a), And(Not(y), b), And(x, y)) >>> dict(_finger(eq)) {(0, 0, 1, 0, 2): [x], (0, 0, 1, 0, 3): [a, b], (0, 0, 1, 2, 8): [y]} So y and x have unique fingerprints, but a and b do not. """ f = eq.free_symbols d = {fi: [0] * 5 for fi in f} for a in eq.args: if a.is_Symbol: d[a][0] += 1 elif a.is_Not: d[a.args[0]][1] += 1 else: o = len(a.args) + sum(isinstance(ai, Not) for ai in a.args) for ai in a.args: if ai.is_Symbol: d[ai][2] += 1 d[ai][-1] += o else: d[ai.args[0]][3] += 1 d[ai.args[0]][-1] += o inv = defaultdict(list) for k, v in ordered(d.items()): inv[tuple(v)].append(k) return inv def bool_map(bool1, bool2): """ Return the simplified version of bool1, and the mapping of variables that makes the two expressions bool1 and bool2 represent the same logical behaviour for some correspondence between the variables of each. If more than one mappings of this sort exist, one of them is returned. For example, And(x, y) is logically equivalent to And(a, b) for the mapping {x: a, y:b} or {x: b, y:a}. If no such mapping exists, return False. Examples ======== >>> function1 = SOPform([x, z, y], [[1, 0, 1], [0, 0, 1]]) >>> function2 = SOPform([a, b, c], [[1, 0, 1], [1, 0, 0]]) >>> bool_map(function1, function2) (y & ~z, {y: a, z: b}) The results are not necessarily unique, but they are canonical. Here, ``(t, z)`` could be ``(a, d)`` or ``(d, a)``: >>> eq1 = Or(And(Not(y), t), And(Not(y), z), And(x, y)) >>> eq2 = Or(And(Not(c), a), And(Not(c), d), And(b, c)) >>> bool_map(eq1, eq2) ((x & y) | (t & ~y) | (z & ~y), {t: a, x: b, y: c, z: d}) >>> eq = And(Xor(a, b), c, And(c, d)) >>> bool_map(eq, eq.subs({c: x})) (c & d & (a | b) & (~a | ~b), {a: a, b: b, c: d, d: x}) """ def match(function1, function2): """Return the mapping that equates variables between two simplified boolean expressions if possible. By "simplified" we mean that a function has been denested and is either an And (or an Or) whose arguments are either symbols (x), negated symbols (Not(x)), or Or (or an And) whose arguments are only symbols or negated symbols. For example, And(x, Not(y), Or(w, Not(z))). Basic.match is not robust enough (see issue sympy/sympy#4835) so this is a workaround that is valid for simplified boolean expressions. """ # do some quick checks if function1.__class__ != function2.__class__: return if len(function1.args) != len(function2.args): return if function1.is_Symbol: return {function1: function2} # get the fingerprint dictionaries f1 = _finger(function1) f2 = _finger(function2) # more quick checks if len(f1) != len(f2): return # assemble the match dictionary if possible matchdict = {} for k in f1: if k not in f2 or len(f1[k]) != len(f2[k]): return for i, x in enumerate(f1[k]): matchdict[x] = f2[k][i] return matchdict if matchdict else None a = simplify_logic(bool1) b = simplify_logic(bool2) m = match(a, b) if m: return a, m return m is not None
27.042143
93
0.552107
6b188f11fc196c24fb2215879e63681e45f8138c
5,585
py
Python
amazon/goods_review_thread.py
JoanLee0826/amazon
13fcbcb0e9e396af6d4b2287c2a1a06fd602ce98
[ "MIT" ]
5
2019-09-26T02:39:20.000Z
2021-04-05T13:19:49.000Z
amazon/goods_review_thread.py
JoanLee0826/amazon
13fcbcb0e9e396af6d4b2287c2a1a06fd602ce98
[ "MIT" ]
null
null
null
amazon/goods_review_thread.py
JoanLee0826/amazon
13fcbcb0e9e396af6d4b2287c2a1a06fd602ce98
[ "MIT" ]
3
2020-01-08T08:53:32.000Z
2021-06-04T17:06:34.000Z
import pandas as pd import requests from lxml import etree import re, time, random, datetime from queue import Queue import threading if __name__ == '__main__': data = r"../data/category/Kid's Weighted Blankets_08_28_13_22.xlsx" review = Review(domain='com') review.run(data=data)
39.055944
110
0.520859
6b199ca74af9fa333d99b4deab665ee6ec19fa62
1,032
py
Python
lumicks/pylake/population/tests/conftest.py
lumicks/pylake
b5875d156d6416793a371198f3f2590fca2be4cd
[ "Apache-2.0" ]
8
2019-02-18T07:56:39.000Z
2022-03-19T01:14:48.000Z
lumicks/pylake/population/tests/conftest.py
lumicks/pylake
b5875d156d6416793a371198f3f2590fca2be4cd
[ "Apache-2.0" ]
42
2018-11-30T14:40:35.000Z
2022-03-29T11:43:45.000Z
lumicks/pylake/population/tests/conftest.py
lumicks/pylake
b5875d156d6416793a371198f3f2590fca2be4cd
[ "Apache-2.0" ]
4
2019-01-09T13:45:53.000Z
2021-07-06T14:06:52.000Z
import pytest import numpy as np from pathlib import Path
25.8
79
0.666667
6b1abd24dcce5c1b223e996046c73de1b7c697fc
1,332
py
Python
Concurrent/PipelineDecomposingTask.py
rafagarciac/ParallelProgrammingPython
bba91984018688f41049fd63961d3b8872876336
[ "MIT" ]
null
null
null
Concurrent/PipelineDecomposingTask.py
rafagarciac/ParallelProgrammingPython
bba91984018688f41049fd63961d3b8872876336
[ "MIT" ]
null
null
null
Concurrent/PipelineDecomposingTask.py
rafagarciac/ParallelProgrammingPython
bba91984018688f41049fd63961d3b8872876336
[ "MIT" ]
null
null
null
#!/usr/bin/env python """ Artesanal example Pipe without Pipe class. """ __author__ = "Rafael Garca Cullar" __email__ = "[email protected]" __copyright__ = "Copyright (c) 2018 Rafael Garca Cullar" __license__ = "MIT" from concurrent.futures import ProcessPoolExecutor import time import random if __name__ == "__main__": __spec__ = None # Fix multiprocessing in Spyder's IPython pools = instanceProcessPool() # pool = ProcessPoolExecutor([max_workers]) runThreadsInPipeline(pools) # pools[0].submit(worker, random.random()).add_done_callback(pipeline) shutdownPools(pools) # pool.shutdown()
27.183673
107
0.678679
6b1e268c000917add1c1379d6ddcd9ab23f2b03b
245
py
Python
src/digibujogens/__main__.py
roaet/digibujogens
ab154edda69c091595902dd8b2e3fd273b2e7105
[ "MIT" ]
null
null
null
src/digibujogens/__main__.py
roaet/digibujogens
ab154edda69c091595902dd8b2e3fd273b2e7105
[ "MIT" ]
null
null
null
src/digibujogens/__main__.py
roaet/digibujogens
ab154edda69c091595902dd8b2e3fd273b2e7105
[ "MIT" ]
null
null
null
""" Main application entry point. python -m digibujogens ... """ def main(): """ Execute the application. """ raise NotImplementedError # Make the script executable. if __name__ == "__main__": raise SystemExit(main())
14.411765
33
0.636735
6b1f0f890c358afb721298af5289d546925c2ca1
42,279
py
Python
lisa/target.py
mrkajetanp/lisa
15cfbc430f46b59f52a9d13769d0f6791ed6f154
[ "Apache-2.0" ]
null
null
null
lisa/target.py
mrkajetanp/lisa
15cfbc430f46b59f52a9d13769d0f6791ed6f154
[ "Apache-2.0" ]
null
null
null
lisa/target.py
mrkajetanp/lisa
15cfbc430f46b59f52a9d13769d0f6791ed6f154
[ "Apache-2.0" ]
null
null
null
# SPDX-License-Identifier: Apache-2.0 # # Copyright (C) 2018, ARM Limited and contributors. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from datetime import datetime import os import os.path import contextlib import shlex from collections.abc import Mapping import copy import sys import argparse import textwrap import functools import inspect import pickle import tempfile from types import ModuleType, FunctionType from operator import itemgetter import devlib from devlib.exception import TargetStableError from devlib.utils.misc import which from devlib.platform.gem5 import Gem5SimulationPlatform from lisa.utils import Loggable, HideExekallID, resolve_dotted_name, get_subclasses, import_all_submodules, LISA_HOME, RESULT_DIR, LATEST_LINK, setup_logging, ArtifactPath, nullcontext, ExekallTaggable, memoized from lisa.assets import ASSETS_PATH from lisa.conf import SimpleMultiSrcConf, KeyDesc, LevelKeyDesc, TopLevelKeyDesc,Configurable from lisa.generic import TypedList from lisa.platforms.platinfo import PlatformInfo # Make sure all submodules of devlib.module are imported so the classes # are all created before we list them import_all_submodules(devlib.module) _DEVLIB_AVAILABLE_MODULES = { cls.name for cls in get_subclasses(devlib.module.Module) if ( getattr(cls, 'name', None) # early modules try to connect to UART and do very # platform-specific things we are not interested in and getattr(cls, 'stage') != 'early' ) } def get_res_dir(self, name=None, append_time=True, symlink=True): """ Returns a directory managed by LISA to store results. Usage of that function is reserved to interactive use or simple scripts. Tests should not rely on that as the created folder will not be tracked by any external entity, which means the results will be lost in some automated environment. :param name: Name of the results directory :type name: str :param append_time: If True, the current datetime will be appended to the given ``name``. If ``name`` is None, the directory name will be the current datetime. :type append_time: bool :param symlink: Create a symlink named ``results_latest`` to the newly created results directory :type symlink: bool """ if isinstance(self._res_dir, ArtifactPath): root = self._res_dir.root relative = self._res_dir.relative else: root = self._res_dir relative = '' return self._get_res_dir( root=root, relative=relative, name=name, append_time=append_time, symlink=symlink, ) def _get_res_dir(self, root, relative, name, append_time, symlink): logger = self.get_logger() while True: time_str = datetime.now().strftime('%Y%m%d_%H%M%S.%f') if not name: name = time_str elif append_time: name = f"{name}-{time_str}" # If we were given an ArtifactPath with an existing root, we # preserve that root so it can be relocated as the caller wants it res_dir = ArtifactPath(root, os.path.join(relative, name)) # Compute base installation path logger.info(f'Creating result directory: {res_dir}') # It will fail if the folder already exists. In that case, # append_time should be used to ensure we get a unique name. try: os.makedirs(res_dir) break except FileExistsError: # If the time is used in the name, there is some hope that the # next time it will succeed if append_time: logger.info('Directory already exists, retrying ...') continue else: raise if symlink: res_lnk = os.path.join(LISA_HOME, LATEST_LINK) with contextlib.suppress(FileNotFoundError): os.remove(res_lnk) # There may be a race condition with another tool trying to create # the link with contextlib.suppress(FileExistsError): os.symlink(res_dir, res_lnk) return res_dir def install_tools(self, tools): """ Install tools additional to those specified in the test config 'tools' field :param tools: The list of names of tools to install :type tools: list(str) """ tools = set(tools) - self._installed_tools # TODO: compute the checksum of the tool + install location and keep # that in _installed_tools, so we are sure to be correct for tool in map(bin_path, tools): self.target.install(tool) self._installed_tools.add(tool) def get_tags(self): return {'board': self.name} def execute_python(self, f, args, kwargs, **execute_kwargs): """ Executes the given Python function ``f`` with the provided positional and keyword arguments. The return value or any exception is pickled back and is returned/raised in the host caller. :Variable keyword arguments: Forwarded to :meth:`execute` that will spawn the Python interpreter on the target .. note:: Closure variables are supported, but mutating them will not be reflected in the caller's context. Also, functions that are referred to will be: * bundled in the script if it is defined in the same module * referred to by name, assuming it comes from a module that is installed on the target and that this module is in scope. If that is not the case, a :exc:`NameError` will be raised. .. attention:: Decorators are ignored and not applied. """ sig = inspect.signature(f) kwargs = sig.bind(*args, **kwargs).arguments closure_vars = inspect.getclosurevars(f) name, code_str = self._get_code(f) out_tempfiles = tuple() try: out_tempfiles = (mktemp(), mktemp()) snippet = self._make_remote_snippet( name=name, code_str=code_str, module=f.__module__, kwargs=kwargs, global_vars={ **closure_vars.globals, **closure_vars.nonlocals, }, out_tempfiles=out_tempfiles ) cmd = ['python3', '-c', snippet] cmd = ' '.join(map(shlex.quote, cmd)) try: self.execute(cmd, **execute_kwargs) except Exception as e: # pylint: disable=broad-except err = e else: err = None return parse_output(out_tempfiles, err) finally: for path in out_tempfiles: self.remove(path) def remote_func(self, **kwargs): """ Decorates a given function to execute remotely using :meth:`execute_python`:: target = Target(...) @target.remote_func(timeout=42) def foo(x, y): return x + y # Execute the function on the target transparently val = foo(1, y=2) :Variable keyword arguments: Forwarded to :meth:`execute` that will spawn the Python interpreter on the target """ return wrapper_param class Gem5SimulationPlatformWrapper(Gem5SimulationPlatform): # vim :set tabstop=4 shiftwidth=4 expandtab textwidth=80
36.636915
211
0.584404
6b1f450e0afe4b703c2e85c366b7453eddf2730b
1,289
py
Python
iota/commands/core/get_node_info.py
EasonC13/iota.py
f596c1ac0d9bcbceda1cf6109cd921943a6599b3
[ "MIT" ]
347
2016-12-23T14:28:06.000Z
2019-09-30T13:46:30.000Z
iota/commands/core/get_node_info.py
EasonC13/iota.py
f596c1ac0d9bcbceda1cf6109cd921943a6599b3
[ "MIT" ]
194
2016-12-22T21:22:47.000Z
2019-10-01T09:01:16.000Z
iota/commands/core/get_node_info.py
EasonC13/iota.py
f596c1ac0d9bcbceda1cf6109cd921943a6599b3
[ "MIT" ]
147
2017-01-08T13:14:47.000Z
2019-10-01T22:27:31.000Z
import filters as f from iota import TransactionHash, Address from iota.commands import FilterCommand, RequestFilter, ResponseFilter from iota.filters import Trytes __all__ = [ 'GetNodeInfoCommand', ]
28.644444
73
0.6827
6b2003bf580dcb3f7c6fda11b1276e5b7d0fe837
4,925
py
Python
Aplicacion/Presentacion/views.py
Juandiegordp/TPI
427266f00745e9d9678110c1d01d3be4febca673
[ "MIT" ]
null
null
null
Aplicacion/Presentacion/views.py
Juandiegordp/TPI
427266f00745e9d9678110c1d01d3be4febca673
[ "MIT" ]
null
null
null
Aplicacion/Presentacion/views.py
Juandiegordp/TPI
427266f00745e9d9678110c1d01d3be4febca673
[ "MIT" ]
null
null
null
from Negocio import controller import forms, functions from flask import Flask, render_template, request, redirect, url_for, flash
40.702479
236
0.718376
6b204b59051969cf45dc90d85f76793faabc4ec6
644
py
Python
evalme/tests/test_old_format.py
heartexlabs/label-studio-evalme
48f7a5226346b6e074edb4717b84122cc089bc7a
[ "MIT" ]
3
2020-04-11T13:01:57.000Z
2021-05-19T13:53:16.000Z
evalme/tests/test_old_format.py
heartexlabs/label-studio-evalme
48f7a5226346b6e074edb4717b84122cc089bc7a
[ "MIT" ]
28
2020-05-21T01:34:44.000Z
2022-03-21T15:39:16.000Z
evalme/tests/test_old_format.py
heartexlabs/label-studio-evalme
48f7a5226346b6e074edb4717b84122cc089bc7a
[ "MIT" ]
1
2020-05-21T17:43:26.000Z
2020-05-21T17:43:26.000Z
from evalme.matcher import Matcher
25.76
53
0.723602
6b20937e56fc436965d29a3e4d7196bce1d5cd54
30,942
py
Python
behave/runner.py
wombat70/behave
c54493b0531795d946ac6754bfc643248cf3056a
[ "BSD-2-Clause" ]
13
2019-10-03T19:15:14.000Z
2019-10-16T02:01:57.000Z
behave/runner.py
wombat70/behave
c54493b0531795d946ac6754bfc643248cf3056a
[ "BSD-2-Clause" ]
null
null
null
behave/runner.py
wombat70/behave
c54493b0531795d946ac6754bfc643248cf3056a
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: UTF-8 -*- """ This module provides Runner class to run behave feature files (or model elements). """ from __future__ import absolute_import, print_function, with_statement import contextlib import os.path import sys import warnings import weakref import six from behave._types import ExceptionUtil from behave.capture import CaptureController from behave.exception import ConfigError from behave.formatter._registry import make_formatters from behave.runner_util import \ collect_feature_locations, parse_features, \ exec_file, load_step_modules, PathManager from behave.step_registry import registry as the_step_registry from enum import Enum if six.PY2: # -- USE PYTHON3 BACKPORT: With unicode traceback support. import traceback2 as traceback else: import traceback def _push(self, layer_name=None): """Push a new layer on the context stack. HINT: Use layer_name values: "scenario", "feature", "testrun". :param layer_name: Layer name to use (or None). """ initial_data = {"@cleanups": []} if layer_name: initial_data["@layer"] = layer_name self._stack.insert(0, initial_data) def _pop(self): """Pop the current layer from the context stack. Performs any pending cleanups, registered for this layer. """ try: self._do_cleanups() finally: # -- ENSURE: Layer is removed even if cleanup-errors occur. self._stack.pop(0) def _use_with_behave_mode(self): """Provides a context manager for using the context in BEHAVE mode.""" return use_context_with_mode(self, ContextMode.BEHAVE) def use_with_user_mode(self): """Provides a context manager for using the context in USER mode.""" return use_context_with_mode(self, ContextMode.USER) def user_mode(self): warnings.warn("Use 'use_with_user_mode()' instead", PendingDeprecationWarning, stacklevel=2) return self.use_with_user_mode() def _set_root_attribute(self, attr, value): for frame in self.__dict__["_stack"]: if frame is self.__dict__["_root"]: continue if attr in frame: record = self.__dict__["_record"][attr] params = { "attr": attr, "filename": record[0], "line": record[1], "function": record[3], } self._emit_warning(attr, params) self.__dict__["_root"][attr] = value if attr not in self._origin: self._origin[attr] = self._mode def execute_steps(self, steps_text): """The steps identified in the "steps" text string will be parsed and executed in turn just as though they were defined in a feature file. If the execute_steps call fails (either through error or failure assertion) then the step invoking it will need to catch the resulting exceptions. :param steps_text: Text with the Gherkin steps to execute (as string). :returns: True, if the steps executed successfully. :raises: AssertionError, if a step failure occurs. :raises: ValueError, if invoked without a feature context. """ assert isinstance(steps_text, six.text_type), "Steps must be unicode." if not self.feature: raise ValueError("execute_steps() called outside of feature") # -- PREPARE: Save original context data for current step. # Needed if step definition that called this method uses .table/.text original_table = getattr(self, "table", None) original_text = getattr(self, "text", None) self.feature.parser.variant = "steps" steps = self.feature.parser.parse_steps(steps_text) with self._use_with_behave_mode(): for step in steps: passed = step.run(self._runner, quiet=True, capture=False) if not passed: # -- ISSUE #96: Provide more substep info to diagnose problem. step_line = u"%s %s" % (step.keyword, step.name) message = "%s SUB-STEP: %s" % \ (step.status.name.upper(), step_line) if step.error_message: message += "\nSubstep info: %s\n" % step.error_message message += u"Traceback (of failed substep):\n" message += u"".join(traceback.format_tb(step.exc_traceback)) # message += u"\nTraceback (of context.execute_steps()):" assert False, message # -- FINALLY: Restore original context data for current step. self.table = original_table self.text = original_text return True def add_cleanup(self, cleanup_func, *args, **kwargs): """Adds a cleanup function that is called when :meth:`Context._pop()` is called. This is intended for user-cleanups. :param cleanup_func: Callable function :param args: Args for cleanup_func() call (optional). :param kwargs: Kwargs for cleanup_func() call (optional). """ # MAYBE: assert callable(cleanup_func), "REQUIRES: callable(cleanup_func)" assert self._stack if args or kwargs: else: internal_cleanup_func = cleanup_func current_frame = self._stack[0] if cleanup_func not in current_frame["@cleanups"]: # -- AVOID DUPLICATES: current_frame["@cleanups"].append(internal_cleanup_func) def path_getrootdir(path): """ Extract rootdir from path in a platform independent way. POSIX-PATH EXAMPLE: rootdir = path_getrootdir("/foo/bar/one.feature") assert rootdir == "/" WINDOWS-PATH EXAMPLE: rootdir = path_getrootdir("D:\\foo\\bar\\one.feature") assert rootdir == r"D:\" """ drive, _ = os.path.splitdrive(path) if drive: # -- WINDOWS: return drive + os.path.sep # -- POSIX: return os.path.sep class ModelRunner(object): """ Test runner for a behave model (features). Provides the core functionality of a test runner and the functional API needed by model elements. .. attribute:: aborted This is set to true when the user aborts a test run (:exc:`KeyboardInterrupt` exception). Initially: False. Stored as derived attribute in :attr:`Context.aborted`. """ # pylint: disable=too-many-instance-attributes # @property # @aborted.setter aborted = property(_get_aborted, _set_aborted, doc="Indicates that test run is aborted by the user.") def run(self): """ Implements the run method by running the model. """ self.context = Context(self) return self.run_model() class Runner(ModelRunner): """ Standard test runner for behave: * setup paths * loads environment hooks * loads step definitions * select feature files, parses them and creates model (elements) """ def before_all_default_hook(self, context): """ Default implementation for :func:`before_all()` hook. Setup the logging subsystem based on the configuration data. """ # pylint: disable=no-self-use context.config.setup_logging()
36.704626
93
0.598151
6b20e0c8f16f54d5573a17cd7bb380c1b08265f4
2,645
py
Python
01_P/P_2_1_1_02/main.py
genfifth/generative-design_Code-Package-Python-Mode
93fc8435933aa2e9329de77a1177bb34e63dd1c4
[ "BSD-2-Clause" ]
1
2019-04-23T16:26:31.000Z
2019-04-23T16:26:31.000Z
01_P/P_2_1_1_02/main.py
QuantumNovice/generative-design_Code-Package-Python-Mode
93fc8435933aa2e9329de77a1177bb34e63dd1c4
[ "BSD-2-Clause" ]
null
null
null
01_P/P_2_1_1_02/main.py
QuantumNovice/generative-design_Code-Package-Python-Mode
93fc8435933aa2e9329de77a1177bb34e63dd1c4
[ "BSD-2-Clause" ]
1
2019-01-31T16:05:19.000Z
2019-01-31T16:05:19.000Z
add_library('pdf') import random from datetime import datetime tileCount = 20
27.552083
93
0.565974
6b21fe4bf1085238cec917c37ffada209e34d9c0
41,499
py
Python
core/dbt/contracts/graph/manifest.py
peiwangdb/dbt
30e72bc5e2ae950ddf0a1230b0c6406b889bea1a
[ "Apache-2.0" ]
null
null
null
core/dbt/contracts/graph/manifest.py
peiwangdb/dbt
30e72bc5e2ae950ddf0a1230b0c6406b889bea1a
[ "Apache-2.0" ]
1
2021-08-14T03:52:23.000Z
2021-08-14T03:52:23.000Z
core/dbt/contracts/graph/manifest.py
peiwangdb/dbt
30e72bc5e2ae950ddf0a1230b0c6406b889bea1a
[ "Apache-2.0" ]
1
2021-08-14T03:50:50.000Z
2021-08-14T03:50:50.000Z
import enum from dataclasses import dataclass, field from itertools import chain, islice from mashumaro import DataClassMessagePackMixin from multiprocessing.synchronize import Lock from typing import ( Dict, List, Optional, Union, Mapping, MutableMapping, Any, Set, Tuple, TypeVar, Callable, Iterable, Generic, cast, AbstractSet, ClassVar ) from typing_extensions import Protocol from uuid import UUID from dbt.contracts.graph.compiled import ( CompileResultNode, ManifestNode, NonSourceCompiledNode, GraphMemberNode ) from dbt.contracts.graph.parsed import ( ParsedMacro, ParsedDocumentation, ParsedNodePatch, ParsedMacroPatch, ParsedSourceDefinition, ParsedExposure, HasUniqueID, UnpatchedSourceDefinition, ManifestNodes ) from dbt.contracts.graph.unparsed import SourcePatch from dbt.contracts.files import SourceFile, SchemaSourceFile, FileHash, AnySourceFile from dbt.contracts.util import ( BaseArtifactMetadata, SourceKey, ArtifactMixin, schema_version ) from dbt.dataclass_schema import dbtClassMixin from dbt.exceptions import ( CompilationException, raise_duplicate_resource_name, raise_compiler_error, warn_or_error, raise_duplicate_patch_name, raise_duplicate_macro_patch_name, raise_duplicate_source_patch_name, ) from dbt.helper_types import PathSet from dbt.logger import GLOBAL_LOGGER as logger from dbt.node_types import NodeType from dbt.ui import line_wrap_message from dbt import flags from dbt import tracking import dbt.utils NodeEdgeMap = Dict[str, List[str]] PackageName = str DocName = str RefName = str UniqueID = str def _search_packages( current_project: str, node_package: str, target_package: Optional[str] = None, ) -> List[Optional[str]]: if target_package is not None: return [target_package] elif current_project == node_package: return [current_project, None] else: return [current_project, node_package, None] def _sort_values(dct): """Given a dictionary, sort each value. This makes output deterministic, which helps for tests. """ return {k: sorted(v) for k, v in dct.items()} def build_node_edges(nodes: List[ManifestNode]): """Build the forward and backward edges on the given list of ParsedNodes and return them as two separate dictionaries, each mapping unique IDs to lists of edges. """ backward_edges: Dict[str, List[str]] = {} # pre-populate the forward edge dict for simplicity forward_edges: Dict[str, List[str]] = {n.unique_id: [] for n in nodes} for node in nodes: backward_edges[node.unique_id] = node.depends_on_nodes[:] for unique_id in node.depends_on_nodes: if unique_id in forward_edges.keys(): forward_edges[unique_id].append(node.unique_id) return _sort_values(forward_edges), _sort_values(backward_edges) # Build a map of children of macros M = TypeVar('M', bound=MacroCandidate) N = TypeVar('N', bound=Searchable) D = TypeVar('D') MaybeDocumentation = Optional[ParsedDocumentation] MaybeParsedSource = Optional[Union[ ParsedSourceDefinition, Disabled[ParsedSourceDefinition], ]] MaybeNonSource = Optional[Union[ ManifestNode, Disabled[ManifestNode] ]] T = TypeVar('T', bound=GraphMemberNode) def _update_into(dest: MutableMapping[str, T], new_item: T): """Update dest to overwrite whatever is at dest[new_item.unique_id] with new_itme. There must be an existing value to overwrite, and they two nodes must have the same original file path. """ unique_id = new_item.unique_id if unique_id not in dest: raise dbt.exceptions.RuntimeException( f'got an update_{new_item.resource_type} call with an ' f'unrecognized {new_item.resource_type}: {new_item.unique_id}' ) existing = dest[unique_id] if new_item.original_file_path != existing.original_file_path: raise dbt.exceptions.RuntimeException( f'cannot update a {new_item.resource_type} to have a new file ' f'path!' ) dest[unique_id] = new_item # This contains macro methods that are in both the Manifest # and the MacroManifest class MacroManifest(MacroMethods): AnyManifest = Union[Manifest, MacroManifest] K_T = TypeVar('K_T') V_T = TypeVar('V_T')
34.669173
98
0.644738
6b221317ab066084e6a6681c2759fb8660e93351
11,665
py
Python
openGaussBase/testcase/SQL/DCL/Alter_Default_Privileges/Opengauss_Function_Alter_Default_Privileges_Case0016.py
opengauss-mirror/Yat
aef107a8304b94e5d99b4f1f36eb46755eb8919e
[ "MulanPSL-1.0" ]
null
null
null
openGaussBase/testcase/SQL/DCL/Alter_Default_Privileges/Opengauss_Function_Alter_Default_Privileges_Case0016.py
opengauss-mirror/Yat
aef107a8304b94e5d99b4f1f36eb46755eb8919e
[ "MulanPSL-1.0" ]
null
null
null
openGaussBase/testcase/SQL/DCL/Alter_Default_Privileges/Opengauss_Function_Alter_Default_Privileges_Case0016.py
opengauss-mirror/Yat
aef107a8304b94e5d99b4f1f36eb46755eb8919e
[ "MulanPSL-1.0" ]
null
null
null
""" Copyright (c) 2022 Huawei Technologies Co.,Ltd. openGauss is licensed under Mulan PSL v2. You can use this software according to the terms and conditions of the Mulan PSL v2. You may obtain a copy of Mulan PSL v2 at: http://license.coscl.org.cn/MulanPSL2 THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. See the Mulan PSL v2 for more details. """ """ Case Type : Case Name : sysadminalter Description : 1.alter:alter 1.1.alter 1.2. : 2.sysadminalter:alter 2.1.sysadmin default016_01 : 2.2.default016_016 alter 2.3. : :alter Expect : 1.alter:alter 1.1.alter 1.2. : 2.sysadminalter:alter 2.1.sysadmin default016_01 : 2.2.default016_016 alter 2.3. : :alter History : """ import sys import unittest from yat.test import macro from yat.test import Node sys.path.append(sys.path[0] + "/../") from testcase.utils.Logger import Logger from testcase.utils.Constant import Constant from testcase.utils.CommonSH import CommonSH logger = Logger() commonsh = CommonSH('dbuser')
55.547619
184
0.598028
6b2234f49a8b57fe4bf6fd97f1ef5ca5137dfade
2,342
py
Python
Apps/phdigitalshadows/dsapi/service/infrastructure_service.py
ryanbsaunders/phantom-apps
1befda793a08d366fbd443894f993efb1baf9635
[ "Apache-2.0" ]
74
2019-10-22T02:00:53.000Z
2022-03-15T12:56:13.000Z
Apps/phdigitalshadows/dsapi/service/infrastructure_service.py
ryanbsaunders/phantom-apps
1befda793a08d366fbd443894f993efb1baf9635
[ "Apache-2.0" ]
375
2019-10-22T20:53:50.000Z
2021-11-09T21:28:43.000Z
Apps/phdigitalshadows/dsapi/service/infrastructure_service.py
ryanbsaunders/phantom-apps
1befda793a08d366fbd443894f993efb1baf9635
[ "Apache-2.0" ]
175
2019-10-23T15:30:42.000Z
2021-11-05T21:33:31.000Z
# File: infrastructure_service.py # # Licensed under Apache 2.0 (https://www.apache.org/licenses/LICENSE-2.0.txt) # from .ds_base_service import DSBaseService from .ds_find_service import DSFindService from ..model.infrastructure import Infrastructure
32.985915
106
0.599488
6b226704f6cb4e708962ce8718453e73c2ce6810
5,562
py
Python
src/find_genes_by_location/find_genes_by_location.py
NCBI-Codeathons/Identify-antiphage-defense-systems-in-the-bacterial-pangenome
b1eb83118268ada50e90f979347e47e055a51029
[ "MIT" ]
3
2020-07-06T18:23:47.000Z
2020-07-15T06:41:44.000Z
src/find_genes_by_location/find_genes_by_location.py
NCBI-Codeathons/Identify-antiphage-defense-systems-in-the-bacterial-pangenome
b1eb83118268ada50e90f979347e47e055a51029
[ "MIT" ]
5
2020-07-09T12:15:07.000Z
2020-07-10T17:23:50.000Z
src/find_genes_by_location/find_genes_by_location.py
NCBI-Codeathons/Identify-antiphage-defense-systems-in-the-bacterial-pangenome
b1eb83118268ada50e90f979347e47e055a51029
[ "MIT" ]
3
2020-07-06T18:25:24.000Z
2020-07-06T19:50:56.000Z
import argparse from collections import defaultdict import csv from dataclasses import dataclass, field from enum import Enum, unique, auto import os import sys import tempfile import yaml import zipfile import gffutils from google.protobuf import json_format from ncbi.datasets.v1alpha1 import dataset_catalog_pb2 from ncbi.datasets.v1alpha1.reports import assembly_pb2 from ncbi.datasets.reports.report_reader import DatasetsReportReader if __name__ == '__main__': FindGenesByLoc().run()
36.834437
141
0.670262
6b22b1c8cec3284d72a98eea77ac255711ba8ec7
811
py
Python
web/backend/backend_django/apps/capacity/models.py
tOverney/ADA-Project
69221210b1f4f13f6979123c6a7a1a9813ea18e5
[ "Apache-2.0" ]
null
null
null
web/backend/backend_django/apps/capacity/models.py
tOverney/ADA-Project
69221210b1f4f13f6979123c6a7a1a9813ea18e5
[ "Apache-2.0" ]
1
2016-11-04T01:03:21.000Z
2016-11-04T10:10:06.000Z
web/backend/backend_django/apps/capacity/models.py
tOverney/ADA-Project
69221210b1f4f13f6979123c6a7a1a9813ea18e5
[ "Apache-2.0" ]
null
null
null
from django.db import models from multigtfs.models import ( Block, Fare, FareRule, Feed, Frequency, Route, Service, ServiceDate, Shape, ShapePoint, Stop, StopTime, Trip, Agency)
32.44
79
0.705302
6b22ef64a2b0a516b9dfe5541aa85e77c40a249c
106
py
Python
apps/interface/settings/config.py
rainydaygit/testtcloudserver
8037603efe4502726a4d794fb1fc0a3f3cc80137
[ "MIT" ]
349
2020-08-04T10:21:01.000Z
2022-03-23T08:31:29.000Z
apps/interface/settings/config.py
rainydaygit/testtcloudserver
8037603efe4502726a4d794fb1fc0a3f3cc80137
[ "MIT" ]
2
2021-01-07T06:17:05.000Z
2021-04-01T06:01:30.000Z
apps/interface/settings/config.py
rainydaygit/testtcloudserver
8037603efe4502726a4d794fb1fc0a3f3cc80137
[ "MIT" ]
70
2020-08-24T06:46:14.000Z
2022-03-25T13:23:27.000Z
try: from public_config import * except ImportError: pass PORT = 9028 SERVICE_NAME = 'interface'
13.25
31
0.716981
6b22ef6d7e0edee04fb293d0c3cd3eec5a122d66
1,307
py
Python
api/api/pokemon/views.py
farnswj1/PokemonAPI
b6fc4dfe8c0fde6b4560455dd37e61b6a0d2ea27
[ "MIT" ]
null
null
null
api/api/pokemon/views.py
farnswj1/PokemonAPI
b6fc4dfe8c0fde6b4560455dd37e61b6a0d2ea27
[ "MIT" ]
null
null
null
api/api/pokemon/views.py
farnswj1/PokemonAPI
b6fc4dfe8c0fde6b4560455dd37e61b6a0d2ea27
[ "MIT" ]
null
null
null
from django.utils.decorators import method_decorator from django.views.decorators.cache import cache_page from rest_framework.generics import ( ListAPIView, RetrieveAPIView, CreateAPIView, UpdateAPIView, DestroyAPIView ) from .models import Pokemon from .serializers import PokemonSerializer from .filters import PokemonFilterSet # Create your views here.
27.229167
52
0.75746
6b23ef94d3d317043d5fc3a13457402a61c1b88c
9,546
py
Python
plugins/action/normalize_gitlab_cfg.py
sma-de/ansible-collections-gitlab
5da99b04722fc016d3e8589635fcbb3579dcfda2
[ "BSD-3-Clause" ]
null
null
null
plugins/action/normalize_gitlab_cfg.py
sma-de/ansible-collections-gitlab
5da99b04722fc016d3e8589635fcbb3579dcfda2
[ "BSD-3-Clause" ]
null
null
null
plugins/action/normalize_gitlab_cfg.py
sma-de/ansible-collections-gitlab
5da99b04722fc016d3e8589635fcbb3579dcfda2
[ "BSD-3-Clause" ]
null
null
null
from __future__ import (absolute_import, division, print_function) __metaclass__ = type from ansible.errors import AnsibleOptionsError from ansible.module_utils.six import iteritems, string_types from ansible_collections.smabot.base.plugins.module_utils.plugins.config_normalizing.base import ConfigNormalizerBaseMerger, NormalizerBase, NormalizerNamed, DefaultSetterConstant, DefaultSetterOtherKey from ansible_collections.smabot.base.plugins.module_utils.utils.dicting import setdefault_none, SUBDICT_METAKEY_ANY, get_subdict from ansible_collections.smabot.base.plugins.module_utils.utils.utils import ansible_assert class ActionModule(ConfigNormalizerBaseMerger): def __init__(self, *args, **kwargs): super(ActionModule, self).__init__(ConfigRootNormalizer(self), *args, default_merge_vars=['gitlab_cfg_defaults'], extra_merge_vars_ans=['extra_gitlab_config_maps'], **kwargs ) self._supports_check_mode = False self._supports_async = False
27.589595
202
0.626859
6b240627551477bf7c6382038b724993aeef7b0b
1,416
py
Python
microservices/validate/tools/dynamodb.py
clodonil/pipeline_aws_custom
8ca517d0bad48fe528461260093f0035f606f9be
[ "Apache-2.0" ]
null
null
null
microservices/validate/tools/dynamodb.py
clodonil/pipeline_aws_custom
8ca517d0bad48fe528461260093f0035f606f9be
[ "Apache-2.0" ]
null
null
null
microservices/validate/tools/dynamodb.py
clodonil/pipeline_aws_custom
8ca517d0bad48fe528461260093f0035f606f9be
[ "Apache-2.0" ]
null
null
null
""" Tools de integrao com o Dynamodb """ import boto3 import botocore import logging import datetime import json import copy import time import os
24.413793
70
0.639124
6b24d64a863b721f8c91dae3e401a33b896a0b31
853
py
Python
scrapy_ddiy/spiders/GlidedSky/glided_sky_001.py
LZC6244/scrapy_ddiy
1bf7cdd382afd471af0bf7069b377fb364dc4730
[ "MIT" ]
9
2021-05-17T02:55:16.000Z
2022-03-28T08:36:50.000Z
scrapy_ddiy/spiders/GlidedSky/glided_sky_001.py
LZC6244/scrapy_ddiy
1bf7cdd382afd471af0bf7069b377fb364dc4730
[ "MIT" ]
null
null
null
scrapy_ddiy/spiders/GlidedSky/glided_sky_001.py
LZC6244/scrapy_ddiy
1bf7cdd382afd471af0bf7069b377fb364dc4730
[ "MIT" ]
1
2022-01-23T06:28:31.000Z
2022-01-23T06:28:31.000Z
# -*- coding: utf-8 -*- from scrapy import Request from scrapy_ddiy.utils.spiders.ddiy_base import DdiyBaseSpider
34.12
106
0.657679
6b25fa954e2aca18ad4da138b448689002685921
5,125
py
Python
datasets/celeba/celeba_dataset.py
google/joint_vae
984f456d1a38c6b27e23433aef241dea56f53384
[ "Apache-2.0" ]
35
2017-12-15T12:58:15.000Z
2020-09-27T05:48:50.000Z
datasets/celeba/celeba_dataset.py
google/joint_vae
984f456d1a38c6b27e23433aef241dea56f53384
[ "Apache-2.0" ]
null
null
null
datasets/celeba/celeba_dataset.py
google/joint_vae
984f456d1a38c6b27e23433aef241dea56f53384
[ "Apache-2.0" ]
11
2017-12-08T06:07:30.000Z
2021-10-31T10:36:05.000Z
# # Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""Provides data for the mnist with attributes dataset. Provide data loading utilities for an augmented version of the MNIST dataset which contains the following attributes: 1. Location (digits are translated on a canvas and placed around one of four locations/regions in the canvas). Each location is a gaussian placed at four quadrants of the canvas. 2. Scale (We vary scale from 0.4 to 1.0), with two gaussians placed at 0.5 +- 0.1 and 0.9 +- 0.1 repsectively. 3. Orientation: we vary orientation from -90 to +90 degrees, sampling actual values from gaussians at +30 +- 10 and -30 +-10. On a third of the occasions we dont orient the digit at all which means a rotation of 0 degrees. The original data after transformations is binarized as per the procedure described in the following paper: Salakhutdinov, Ruslan, and Iain Murray. 2008. ``On the Quantitative Analysis of Deep Belief Networks.'' In Proceedings of the 25th International Conference on Machine Learning, 872-79. Author: vrama@ """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tensorflow as tf from tensorflow.contrib.slim.python.slim.data import dataset from tensorflow.contrib.slim.python.slim.data import tfexample_decoder from datasets.celeba.image_decoder import ImageDecodeProcess # Only provides option to load the binarized version of the dataset. _FILE_PATTERN = '%s-*' _SPLIT_TYPE = 'iid' _DATASET_DIR = '/srv/share/datasets/celeba_for_tf_ig' _SPLITS_TO_SIZES = {'train': 162770, 'val': 19867, 'test': 19962} _ITEMS_TO_DESCRIPTIONS = { 'image': 'A [218 x 178 x 3] RGB image.', 'labels': 'Attributes corresponding to the image.', } _NUM_CLASSES_PER_ATTRIBUTE = tuple([2]*18) def get_split(split_name='train', split_type="iid", dataset_dir=None, image_length=64, num_classes_per_attribute=None): """Gets a dataset tuple with instructions for reading 2D shapes data. Args: split_name: A train/test split name. split_type: str, type of split being loaded "iid" or "comp" dataset_dir: The base directory of the dataset sources. num_classes_per_attribute: The number of labels for the classfication problem corresponding to each attribute. For example, if the first attribute is "shape" and there are three possible shapes, then then provide a value 3 in the first index, and so on. Returns: A `Dataset` namedtuple. metadata: A dictionary with some metadata about the dataset we just constructed. Raises: ValueError: if `split_name` is not a valid train/test split. """ if split_name not in _SPLITS_TO_SIZES: raise ValueError('split name %s was not recognized.' % split_name) if split_type is not "iid": raise ValueError("Only IID split available for CelebA.") if num_classes_per_attribute is None: num_classes_per_attribute = _NUM_CLASSES_PER_ATTRIBUTE if dataset_dir is None or dataset_dir == '': dataset_dir = _DATASET_DIR # Load attribute label map file. label_map_json = os.path.join(dataset_dir, 'attribute_label_map.json') file_pattern = os.path.join(dataset_dir, _FILE_PATTERN % split_name) tf.logging.info('Loading from %s file.' % (file_pattern)) keys_to_features = { 'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''), 'image/format': tf.FixedLenFeature((), tf.string, default_value='raw'), 'image/labels': tf.FixedLenFeature([len(num_classes_per_attribute)], tf.int64), } # TODO(vrama): See # https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/slim/python/slim/data/tfexample_decoder.py#L270 # For where changes would need to be made to preprocess the images which # get loaded. items_to_handlers = { 'image': ImageDecodeProcess(shape=[218, 178, 3], image_length=64), 'labels': tfexample_decoder.Tensor('image/labels'), } decoder = tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers) metadata = { 'num_classes_per_attribute': num_classes_per_attribute, 'split_type': _SPLIT_TYPE, 'label_map_json': label_map_json, } return dataset.Dataset( data_sources=file_pattern, reader=tf.TFRecordReader, decoder=decoder, num_samples=_SPLITS_TO_SIZES[split_name], items_to_descriptions=_ITEMS_TO_DESCRIPTIONS), metadata
36.091549
123
0.724293
6b269f5ba9e2d6a392abd625b09ccdc699507f3d
1,303
py
Python
jorldy/manager/log_manager.py
kan-s0/JORLDY
44989cf415196604a1ad0383b34085dee6bb1c51
[ "Apache-2.0" ]
null
null
null
jorldy/manager/log_manager.py
kan-s0/JORLDY
44989cf415196604a1ad0383b34085dee6bb1c51
[ "Apache-2.0" ]
null
null
null
jorldy/manager/log_manager.py
kan-s0/JORLDY
44989cf415196604a1ad0383b34085dee6bb1c51
[ "Apache-2.0" ]
null
null
null
import os import datetime, time import imageio from pygifsicle import optimize from torch.utils.tensorboard import SummaryWriter
36.194444
86
0.583269
6b27daa674cb67e0f7a35c3fcd65be25c5a4c1db
2,676
py
Python
lib/SeparateDriver/ASRDriverParts/UNIInterface.py
multi-service-fabric/element-manager
e550d1b5ec9419f1fb3eb6e058ce46b57c92ee2f
[ "Apache-2.0" ]
null
null
null
lib/SeparateDriver/ASRDriverParts/UNIInterface.py
multi-service-fabric/element-manager
e550d1b5ec9419f1fb3eb6e058ce46b57c92ee2f
[ "Apache-2.0" ]
null
null
null
lib/SeparateDriver/ASRDriverParts/UNIInterface.py
multi-service-fabric/element-manager
e550d1b5ec9419f1fb3eb6e058ce46b57c92ee2f
[ "Apache-2.0" ]
1
2020-04-02T01:17:43.000Z
2020-04-02T01:17:43.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright(c) 2019 Nippon Telegraph and Telephone Corporation # Filename: ASRDriverParts/UNIInterface.py ''' Parts Module for ASR driver UNI interface configuraton ''' import GlobalModule from EmCommonLog import decorater_log from ASRDriverParts.InterfaceBase import InterfaceBase
33.037037
63
0.567638
6b2847d0ef2aafced05fa68a40e983a929d467d0
6,003
py
Python
tools/accuracy_checker/accuracy_checker/annotation_converters/mnist.py
AnthonyQuantum/open_model_zoo
7d235755e2d17f6186b11243a169966e4f05385a
[ "Apache-2.0" ]
4
2021-04-21T02:38:04.000Z
2021-10-13T12:15:33.000Z
tools/accuracy_checker/accuracy_checker/annotation_converters/mnist.py
AnthonyQuantum/open_model_zoo
7d235755e2d17f6186b11243a169966e4f05385a
[ "Apache-2.0" ]
6
2020-11-13T19:02:47.000Z
2022-03-12T00:43:24.000Z
tools/accuracy_checker/accuracy_checker/annotation_converters/mnist.py
AnthonyQuantum/open_model_zoo
7d235755e2d17f6186b11243a169966e4f05385a
[ "Apache-2.0" ]
null
null
null
""" Copyright (c) 2019 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np from ..config import PathField, BoolField from ..representation import ClassificationAnnotation from ..utils import read_csv, check_file_existence, read_json from .format_converter import BaseFormatConverter, ConverterReturn try: from PIL import Image except ImportError: Image = None
42.274648
118
0.670165
6b28598ebd5982e3c50306026cc2ae916f9a979c
4,511
py
Python
Libraries/Python/wxGlade/v0.9,5/wxGlade-0.9.5-py3.6.egg/wxglade/bugdialog.py
davidbrownell/Common_EnvironmentEx
9e20b79b4de0cb472f65ac08b3de83f9ed8e2ca3
[ "BSL-1.0" ]
null
null
null
Libraries/Python/wxGlade/v0.9,5/wxGlade-0.9.5-py3.6.egg/wxglade/bugdialog.py
davidbrownell/Common_EnvironmentEx
9e20b79b4de0cb472f65ac08b3de83f9ed8e2ca3
[ "BSL-1.0" ]
null
null
null
Libraries/Python/wxGlade/v0.9,5/wxGlade-0.9.5-py3.6.egg/wxglade/bugdialog.py
davidbrownell/Common_EnvironmentEx
9e20b79b4de0cb472f65ac08b3de83f9ed8e2ca3
[ "BSL-1.0" ]
1
2020-08-19T17:25:22.000Z
2020-08-19T17:25:22.000Z
"""\ Dialog to show details of internal errors. @copyright: 2014-2016 Carsten Grohmann @copyright: 2017 Dietmar Schwertberger @license: MIT (see LICENSE.txt) - THIS PROGRAM COMES WITH NO WARRANTY """ import bugdialog_ui import config import log import logging import sys import wx def Show(msg, exc): """Wrapper for creating a L{BugReport} dialog and show the details of the given exception instance. msg: Short description of the action that has raised this error exc: Caught exception see ShowEI(), BugReport.SetContent()""" dialog = BugReport() dialog.SetContent(msg, exc) dialog.ShowModal() dialog.Destroy() def ShowEI(exc_type, exc_value, exc_tb, msg=None): """Wrapper for creating a L{BugReport} dialog and show the given exception details. exc_type: Exception type exc_value: Exception value exc_tb: Exception traceback msg: Short description of the exception see: L{Show(), BugReport.SetContent()""" dialog = BugReport() dialog.SetContentEI(exc_type, exc_value, exc_tb, msg) dialog.ShowModal() dialog.Destroy() def ShowEnvironmentError(msg, inst): """Show EnvironmentError exceptions detailed and user-friendly msg: Error message inst: The caught exception""" details = {'msg':msg, 'type':inst.__class__.__name__} if inst.filename: details['filename'] = _('Filename: %s') % inst.filename if inst.errno is not None and inst.strerror is not None: details['error'] = '%s - %s' % (inst.errno, inst.strerror) else: details['error'] = str(inst.args) text = _("""%(msg)s Error type: %(type)s Error code: %(error)s %(filename)s""") % details wx.MessageBox(text, _('Error'), wx.OK | wx.CENTRE | wx.ICON_ERROR)
30.073333
103
0.65573
6b2889ee02cbc2db0ebf9270a48b091ad3ca3b59
8,237
py
Python
core/views.py
Neelamegam2000/QRcode-for-license
a6d4c9655c5ba52b24c1ea737797557f06e0fcbf
[ "MIT" ]
null
null
null
core/views.py
Neelamegam2000/QRcode-for-license
a6d4c9655c5ba52b24c1ea737797557f06e0fcbf
[ "MIT" ]
null
null
null
core/views.py
Neelamegam2000/QRcode-for-license
a6d4c9655c5ba52b24c1ea737797557f06e0fcbf
[ "MIT" ]
null
null
null
from django.shortcuts import render, redirect from django.conf import settings from django.core.files.storage import FileSystemStorage,default_storage from django.core.mail import send_mail, EmailMessage from core.models import Document from core.forms import DocumentForm from django.contrib import messages import os import pyqrcode import png import random import base64 import cv2 import numpy as np import pyzbar.pyzbar as pyzbar """def simple_upload(request): if request.method == 'POST' and request.FILES['myfile']: myfile = request.FILES['myfile'] fs = FileSystemStorage() filename = fs.save(myfile.name, myfile) uploaded_file_url = fs.url(filename) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) media_path = os.path.join(BASE_DIR,'media') full_path=os.path.join(media_path,myfile.name) qr=pyqrcode.create(uploaded_file_url) filename_before=filename.rsplit(".") filename1=filename_before[0]+".png" s=qr.png(filename1,scale=6) '''from fpdf import FPDF pdf=FPDF() pdf.add_page() pdf.image(filename1,x=50,y=None,w=60,h=60,type="",link=uploaded_file_url)''' return render(request, 'simple_upload.html', { 'uploaded_file_url': uploaded_file_url }) return render(request, 'simple_upload.html')"""
42.901042
167
0.617701
6b29a1af58169202c8dc76623da144e32be97995
25
py
Python
docassemble/MACourts/__init__.py
nonprofittechy/docassemble-MACourts
6035393a09cff3e8a371f19b79d1cde3a60691c1
[ "MIT" ]
2
2020-07-20T19:13:38.000Z
2021-03-02T04:30:44.000Z
docassemble/MACourts/__init__.py
nonprofittechy/docassemble-MACourts
6035393a09cff3e8a371f19b79d1cde3a60691c1
[ "MIT" ]
25
2020-04-11T18:40:32.000Z
2021-12-20T14:18:04.000Z
docassemble/MACourts/__init__.py
nonprofittechy/docassemble-MACourts
6035393a09cff3e8a371f19b79d1cde3a60691c1
[ "MIT" ]
7
2020-04-10T01:51:27.000Z
2021-06-25T21:24:48.000Z
__version__ = '0.0.58.2'
12.5
24
0.64
6b2b5f9728064d787e0b3474fa79a57d993dda3b
594
py
Python
main.py
Meat0Project/ChatBot
35ebadc71b100d861f9c9e211e1e751175f47c50
[ "MIT" ]
4
2020-10-30T07:46:39.000Z
2020-10-30T18:20:57.000Z
main.py
Meat0Project/ChatBot
35ebadc71b100d861f9c9e211e1e751175f47c50
[ "MIT" ]
null
null
null
main.py
Meat0Project/ChatBot
35ebadc71b100d861f9c9e211e1e751175f47c50
[ "MIT" ]
null
null
null
''' Made by - Aditya mangal Purpose - Python mini project Date - 18 october 2020 ''' from chatterbot import ChatBot from chatterbot.trainers import ChatterBotCorpusTrainer form termcolor import cprint import time chatbot = ChatBot('Bot') trainer = ChatterBotCorpusTrainer(chatbot) trainer.train('chatterbot.corpus.english') cprint("#" * 50, "magenta") cprint((f"A Chatot ").center(50), "yellow") cprint("#" * 50, "magenta") print('You can exit by type exit\n') while True: query = input(">> ") if 'exit' in query: exit() else: print(chatbot.get_response(query))
22.846154
55
0.69697
6b2bddfb3c677b2bd52d34844ad305be0f97c9b1
9,330
py
Python
challenges/day14.py
Jeffreyo3/AdventOfCode2020
8705847a04885d6489eb11acfddf2ff5702d8927
[ "MIT" ]
null
null
null
challenges/day14.py
Jeffreyo3/AdventOfCode2020
8705847a04885d6489eb11acfddf2ff5702d8927
[ "MIT" ]
null
null
null
challenges/day14.py
Jeffreyo3/AdventOfCode2020
8705847a04885d6489eb11acfddf2ff5702d8927
[ "MIT" ]
null
null
null
""" --- Day 14: Docking Data --- As your ferry approaches the sea port, the captain asks for your help again. The computer system that runs this port isn't compatible with the docking program on the ferry, so the docking parameters aren't being correctly initialized in the docking program's memory. After a brief inspection, you discover that the sea port's computer system uses a strange bitmask system in its initialization program. Although you don't have the correct decoder chip handy, you can emulate it in software! The initialization program (your puzzle input) can either update the bitmask or write a value to memory. Values and memory addresses are both 36-bit unsigned integers. For example, ignoring bitmasks for a moment, a line like mem[8] = 11 would write the value 11 to memory address 8. The bitmask is always given as a string of 36 bits, written with the most significant bit (representing 2^35) on the left and the least significant bit (2^0, that is, the 1s bit) on the right. The current bitmask is applied to values immediately before they are written to memory: a 0 or 1 overwrites the corresponding bit in the value, while an X leaves the bit in the value unchanged. For example, consider the following program: mask = XXXXXXXXXXXXXXXXXXXXXXXXXXXXX1XXXX0X mem[8] = 11 mem[7] = 101 mem[8] = 0 This program starts by specifying a bitmask (mask = ....). The mask it specifies will overwrite two bits in every written value: the 2s bit is overwritten with 0, and the 64s bit is overwritten with 1. The program then attempts to write the value 11 to memory address 8. By expanding everything out to individual bits, the mask is applied as follows: value: 000000000000000000000000000000001011 (decimal 11) mask: XXXXXXXXXXXXXXXXXXXXXXXXXXXXX1XXXX0X result: 000000000000000000000000000001001001 (decimal 73) So, because of the mask, the value 73 is written to memory address 8 instead. Then, the program tries to write 101 to address 7: value: 000000000000000000000000000001100101 (decimal 101) mask: XXXXXXXXXXXXXXXXXXXXXXXXXXXXX1XXXX0X result: 000000000000000000000000000001100101 (decimal 101) This time, the mask has no effect, as the bits it overwrote were already the values the mask tried to set. Finally, the program tries to write 0 to address 8: value: 000000000000000000000000000000000000 (decimal 0) mask: XXXXXXXXXXXXXXXXXXXXXXXXXXXXX1XXXX0X result: 000000000000000000000000000001000000 (decimal 64) 64 is written to address 8 instead, overwriting the value that was there previously. To initialize your ferry's docking program, you need the sum of all values left in memory after the initialization program completes. (The entire 36-bit address space begins initialized to the value 0 at every address.) In the above example, only two values in memory are not zero - 101 (at address 7) and 64 (at address 8) - producing a sum of 165. Execute the initialization program. What is the sum of all values left in memory after it completes? """ f = open("challenges\data\day14data.txt", "r") # Function to convert Decimal number # to Binary number """ --- Part Two --- For some reason, the sea port's computer system still can't communicate with your ferry's docking program. It must be using version 2 of the decoder chip! A version 2 decoder chip doesn't modify the values being written at all. Instead, it acts as a memory address decoder. Immediately before a value is written to memory, each bit in the bitmask modifies the corresponding bit of the destination memory address in the following way: If the bitmask bit is 0, the corresponding memory address bit is unchanged. If the bitmask bit is 1, the corresponding memory address bit is overwritten with 1. If the bitmask bit is X, the corresponding memory address bit is floating. A floating bit is not connected to anything and instead fluctuates unpredictably. In practice, this means the floating bits will take on all possible values, potentially causing many memory addresses to be written all at once! For example, consider the following program: mask = 000000000000000000000000000000X1001X mem[42] = 100 mask = 00000000000000000000000000000000X0XX mem[26] = 1 When this program goes to write to memory address 42, it first applies the bitmask: address: 000000000000000000000000000000101010 (decimal 42) mask: 000000000000000000000000000000X1001X result: 000000000000000000000000000000X1101X After applying the mask, four bits are overwritten, three of which are different, and two of which are floating. Floating bits take on every possible combination of values; with two floating bits, four actual memory addresses are written: 000000000000000000000000000000011010 (decimal 26) 000000000000000000000000000000011011 (decimal 27) 000000000000000000000000000000111010 (decimal 58) 000000000000000000000000000000111011 (decimal 59) Next, the program is about to write to memory address 26 with a different bitmask: address: 000000000000000000000000000000011010 (decimal 26) mask: 00000000000000000000000000000000X0XX result: 00000000000000000000000000000001X0XX This results in an address with three floating bits, causing writes to eight memory addresses: 000000000000000000000000000000010000 (decimal 16) 000000000000000000000000000000010001 (decimal 17) 000000000000000000000000000000010010 (decimal 18) 000000000000000000000000000000010011 (decimal 19) 000000000000000000000000000000011000 (decimal 24) 000000000000000000000000000000011001 (decimal 25) 000000000000000000000000000000011010 (decimal 26) 000000000000000000000000000000011011 (decimal 27) The entire 36-bit address space still begins initialized to the value 0 at every address, and you still need the sum of all values left in memory at the end of the program. In this example, the sum is 208. Execute the initialization program using an emulator for a version 2 decoder chip. What is the sum of all values left in memory after it completes? """ data = processData(f) # [print(d) for d in data] sumAllValues = initialize(data) print("Part 1:", sumAllValues) sumAllValuesV2 = initialize_v2(data) print("Part 2:", sumAllValuesV2) # binary = decimalToBinary(33323) # binary = leadingZeros(36, binary) # print(binary) # combos = initialize_v2([("mask", "100X100X101011111X100000100X11010011"), # ("mem[33323]", "349380")]) # print(combos)
42.217195
386
0.700536
6b2c276716f02206bb780210c6a91cee657ed190
2,524
py
Python
src/Dialogs/RegularPolygonDialog.py
Lovely-XPP/tkzgeom
bf68e139dc05f759542d6611f4dc07f4f2727b92
[ "MIT" ]
41
2021-11-24T05:54:08.000Z
2022-03-26T10:19:30.000Z
src/Dialogs/RegularPolygonDialog.py
Lovely-XPP/tkzgeom
bf68e139dc05f759542d6611f4dc07f4f2727b92
[ "MIT" ]
1
2022-02-28T04:34:51.000Z
2022-03-07T10:49:27.000Z
src/Dialogs/RegularPolygonDialog.py
Lovely-XPP/tkzgeom
bf68e139dc05f759542d6611f4dc07f4f2727b92
[ "MIT" ]
10
2021-11-24T07:35:17.000Z
2022-03-25T18:42:14.000Z
from PyQt5 import QtWidgets, uic from Factory import Factory from Dialogs.DialogMacros import turn_into_free_point, free_point_checkbox from Fill.ListWidget import fill_listWidget_with_data, set_selected_id_in_listWidget import Constant as c
39.4375
112
0.660063
6b2cac513cb8e6260352dc24ccb57b041a317ef9
8,858
py
Python
tests/test_networks.py
UCY-LINC-LAB/5G-Slicer
41e75a6709bc779cb4f3e08484b9ada3911646ed
[ "Apache-2.0" ]
null
null
null
tests/test_networks.py
UCY-LINC-LAB/5G-Slicer
41e75a6709bc779cb4f3e08484b9ada3911646ed
[ "Apache-2.0" ]
null
null
null
tests/test_networks.py
UCY-LINC-LAB/5G-Slicer
41e75a6709bc779cb4f3e08484b9ada3911646ed
[ "Apache-2.0" ]
null
null
null
import unittest from networks.QoS import QoS from networks.connections.mathematical_connections import FunctionalDegradation from networks.slicing import SliceConceptualGraph from utils.location import Location
47.368984
112
0.634229
6b2cec5a2588f39302333a5f4dacaf75c507b16b
3,344
py
Python
backend/api/management/commands/create_testdb.py
INSRapperswil/nornir-web
458e6b24bc373197044b4b7b5da74f16f93a9459
[ "MIT" ]
2
2021-06-01T08:33:04.000Z
2021-08-20T04:22:39.000Z
backend/api/management/commands/create_testdb.py
INSRapperswil/nornir-web
458e6b24bc373197044b4b7b5da74f16f93a9459
[ "MIT" ]
null
null
null
backend/api/management/commands/create_testdb.py
INSRapperswil/nornir-web
458e6b24bc373197044b4b7b5da74f16f93a9459
[ "MIT" ]
null
null
null
""" Setup DB with example data for tests """ from django.contrib.auth.hashers import make_password from django.contrib.auth.models import User, Group from django.core.management.base import BaseCommand from api import models
54.819672
121
0.62201
6b2cf4b5b97a007dddbfd9bea2e0b5aea5f19d54
576
py
Python
pyinfra/facts/util/distro.py
charles-l/pyinfra
1992d98ff31d41404427dbb3cc6095a7bebd4052
[ "MIT" ]
1
2020-12-24T08:24:13.000Z
2020-12-24T08:24:13.000Z
pyinfra/facts/util/distro.py
charles-l/pyinfra
1992d98ff31d41404427dbb3cc6095a7bebd4052
[ "MIT" ]
null
null
null
pyinfra/facts/util/distro.py
charles-l/pyinfra
1992d98ff31d41404427dbb3cc6095a7bebd4052
[ "MIT" ]
null
null
null
from __future__ import absolute_import, unicode_literals import os import distro
27.428571
92
0.751736
6b2d1574c0e19ae7863baaa36967e1b1432a37dd
3,206
py
Python
appium/webdriver/common/multi_action.py
salabogdan/python-client
66208fdbbc8f0a8b0e90376b404135b57e797fa5
[ "Apache-2.0" ]
1
2021-07-23T03:56:49.000Z
2021-07-23T03:56:49.000Z
appium/webdriver/common/multi_action.py
ayvnkhan/python-client
ba408b74f0d30fc06a51e77f68fc5cfd4ac8f99a
[ "Apache-2.0" ]
11
2019-07-16T04:21:22.000Z
2021-02-24T15:11:02.000Z
appium/webdriver/common/multi_action.py
ki4070ma/python-client
d5f29f08a2fe9b5a9cca4162726c7cfb4faa42e9
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # The Selenium team implemented something like the Multi Action API in the form of # "action chains" (https://code.google.com/p/selenium/source/browse/py/selenium/webdriver/common/action_chains.py). # These do not quite work for this situation, and do not allow for ad hoc action # chaining as the spec requires. import copy from typing import TYPE_CHECKING, Dict, List, Optional, TypeVar, Union from appium.webdriver.mobilecommand import MobileCommand as Command if TYPE_CHECKING: from appium.webdriver.common.touch_action import TouchAction from appium.webdriver.webdriver import WebDriver from appium.webdriver.webelement import WebElement T = TypeVar('T', bound='MultiAction')
35.622222
118
0.663132
6b2de30f1514c024be028007b3c7a182b53eba57
8,652
py
Python
src/visu/visualizer.py
JonasFrey96/PLR2
a0498e6ff283a27c6db11b3d57d3b3100026f069
[ "MIT" ]
null
null
null
src/visu/visualizer.py
JonasFrey96/PLR2
a0498e6ff283a27c6db11b3d57d3b3100026f069
[ "MIT" ]
2
2020-06-30T17:33:54.000Z
2020-07-07T18:12:21.000Z
src/visu/visualizer.py
JonasFrey96/PLR2
a0498e6ff283a27c6db11b3d57d3b3100026f069
[ "MIT" ]
null
null
null
import numpy as np import sys import os from PIL import Image from visu.helper_functions import save_image from scipy.spatial.transform import Rotation as R from helper import re_quat import copy import torch import numpy as np import k3d def plot_pcd(x, point_size=0.005, c='g'): """ x: point_nr,3 """ if c == 'b': k = 245 elif c == 'g': k = 25811000 elif c == 'r': k = 11801000 elif c == 'black': k = 2580 else: k = 2580 colors = np.ones(x.shape[0]) * k plot = k3d.plot(name='points') plt_points = k3d.points(x, colors.astype(np.uint32), point_size=point_size) plot += plt_points plt_points.shader = '3d' plot.display()
33.929412
194
0.532016
6b2de9f9abfa7c9d1e5aab26305227c69409476d
3,317
py
Python
leetCode_Q37_serializeTree.py
FreesiaLikesPomelo/-offer
14ac73cb46d13c7f5bbc294329a14f3c5995bc7a
[ "Apache-2.0" ]
null
null
null
leetCode_Q37_serializeTree.py
FreesiaLikesPomelo/-offer
14ac73cb46d13c7f5bbc294329a14f3c5995bc7a
[ "Apache-2.0" ]
null
null
null
leetCode_Q37_serializeTree.py
FreesiaLikesPomelo/-offer
14ac73cb46d13c7f5bbc294329a14f3c5995bc7a
[ "Apache-2.0" ]
null
null
null
''' 37. : 1 / \ 2 3 / \ 4 5 "[1,2,3,null,null,4,5]" ''' # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None # :240 ms, Python3 22.75% # :31 MB, Python3 100.00% # Your Codec object will be instantiated and called as such: # codec = Codec() # codec.deserialize(codec.serialize(root))
27.188525
81
0.472716
6b2e543e1da4f0dd04f05a16bdaaac83f262d6ce
1,505
py
Python
ipuz/puzzlekinds/__init__.py
maiamcc/ipuz
fbe6f663b28ad42754622bf2d3bbe59a26be2615
[ "MIT" ]
5
2015-06-23T17:18:41.000Z
2020-05-05T16:43:14.000Z
ipuz/puzzlekinds/__init__.py
maiamcc/ipuz
fbe6f663b28ad42754622bf2d3bbe59a26be2615
[ "MIT" ]
3
2015-08-21T05:17:22.000Z
2021-03-20T18:39:31.000Z
ipuz/puzzlekinds/__init__.py
maiamcc/ipuz
fbe6f663b28ad42754622bf2d3bbe59a26be2615
[ "MIT" ]
3
2018-01-15T17:28:10.000Z
2020-09-29T20:32:21.000Z
from .acrostic import IPUZ_ACROSTIC_VALIDATORS from .answer import IPUZ_ANSWER_VALIDATORS from .block import IPUZ_BLOCK_VALIDATORS from .crossword import IPUZ_CROSSWORD_VALIDATORS from .fill import IPUZ_FILL_VALIDATORS from .sudoku import IPUZ_SUDOKU_VALIDATORS from .wordsearch import IPUZ_WORDSEARCH_VALIDATORS IPUZ_PUZZLEKINDS = { "http://ipuz.org/acrostic": { "mandatory": ( "puzzle", ), "validators": { 1: IPUZ_ACROSTIC_VALIDATORS, }, }, "http://ipuz.org/answer": { "mandatory": (), "validators": { 1: IPUZ_ANSWER_VALIDATORS, }, }, "http://ipuz.org/block": { "mandatory": ( "dimensions", ), "validators": { 1: IPUZ_BLOCK_VALIDATORS, }, }, "http://ipuz.org/crossword": { "mandatory": ( "dimensions", "puzzle", ), "validators": { 1: IPUZ_CROSSWORD_VALIDATORS, }, }, "http://ipuz.org/fill": { "mandatory": (), "validators": { 1: IPUZ_FILL_VALIDATORS, }, }, "http://ipuz.org/sudoku": { "mandatory": ( "puzzle", ), "validators": { 1: IPUZ_SUDOKU_VALIDATORS, }, }, "http://ipuz.org/wordsearch": { "mandatory": ( "dimensions", ), "validators": { 1: IPUZ_WORDSEARCH_VALIDATORS, }, }, }
23.153846
50
0.509635
6b2f80664f980dad5a40411dc361a14a2b34e519
8,263
py
Python
CTFd/api/v1/users.py
MrQubo/CTFd
5c8ffff1412ea91ad6cf87135cb3d175a1223544
[ "Apache-2.0" ]
null
null
null
CTFd/api/v1/users.py
MrQubo/CTFd
5c8ffff1412ea91ad6cf87135cb3d175a1223544
[ "Apache-2.0" ]
null
null
null
CTFd/api/v1/users.py
MrQubo/CTFd
5c8ffff1412ea91ad6cf87135cb3d175a1223544
[ "Apache-2.0" ]
null
null
null
from flask import session, request, abort from flask_restplus import Namespace, Resource from CTFd.models import ( db, Users, Solves, Awards, Tracking, Unlocks, Submissions, Notifications, ) from CTFd.utils.decorators import authed_only, admins_only, ratelimit from CTFd.cache import clear_standings from CTFd.utils.user import get_current_user, is_admin from CTFd.utils.decorators.visibility import ( check_account_visibility, check_score_visibility, ) from CTFd.schemas.submissions import SubmissionSchema from CTFd.schemas.awards import AwardSchema from CTFd.schemas.users import UserSchema users_namespace = Namespace("users", description="Endpoint to retrieve Users")
30.156934
78
0.634031
6b33e7e0e395a01bbb9aefe040bd4c754743cdbd
1,005
py
Python
getting_started/pages.py
emilhe/dash-extensions-docs
f44edba1c955242fc503185954ea5f3be69eb122
[ "MIT" ]
1
2022-03-20T09:50:07.000Z
2022-03-20T09:50:07.000Z
getting_started/pages.py
emilhe/dash-extensions-docs
f44edba1c955242fc503185954ea5f3be69eb122
[ "MIT" ]
null
null
null
getting_started/pages.py
emilhe/dash-extensions-docs
f44edba1c955242fc503185954ea5f3be69eb122
[ "MIT" ]
null
null
null
import dash_labs as dl from dash_extensions.enrich import DashBlueprint, DashProxy, html, Output, Input app = DashProxy(prevent_initial_callbacks=True, plugins=[dl.plugins.pages]) # Register a few pages. n_pages = 5 for i in range(n_pages): page = make_page(i) page.register(app, page_name(i), prefix=str(i)) # Setup main app layout. app_shell = [html.H1("App shell"), dl.plugins.page_container] navigation = html.Ul([html.Li(html.A(page_name(i), href=page_name(i))) for i in range(n_pages)]) app.layout = html.Div(app_shell + [navigation], style=dict(display="block")) if __name__ == '__main__': app.run_server()
34.655172
106
0.689552
6b34589c449dc4aced65c72c732c394afc998c68
8,790
py
Python
zaqar/transport/wsgi/v2_0/homedoc.py
vkmc/zaqar-websocket
a93c460a28e541b5cc8b425d5fb4d69e78ab9f4b
[ "Apache-2.0" ]
1
2015-03-22T18:41:13.000Z
2015-03-22T18:41:13.000Z
zaqar/transport/wsgi/v2_0/homedoc.py
vkmc/zaqar-websocket
a93c460a28e541b5cc8b425d5fb4d69e78ab9f4b
[ "Apache-2.0" ]
null
null
null
zaqar/transport/wsgi/v2_0/homedoc.py
vkmc/zaqar-websocket
a93c460a28e541b5cc8b425d5fb4d69e78ab9f4b
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2013 Rackspace, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy # of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. import json # NOTE(kgriffs): http://tools.ietf.org/html/draft-nottingham-json-home-03 JSON_HOME = { 'resources': { # ----------------------------------------------------------------- # Queues # ----------------------------------------------------------------- 'rel/queues': { 'href-template': '/v2/queues{?marker,limit,detailed}', 'href-vars': { 'marker': 'param/marker', 'limit': 'param/queue_limit', 'detailed': 'param/detailed', }, 'hints': { 'allow': ['GET'], 'formats': { 'application/json': {}, }, }, }, 'rel/queue': { 'href-template': '/v2/queues/{queue_name}', 'href-vars': { 'queue_name': 'param/queue_name', }, 'hints': { 'allow': ['PUT', 'DELETE'], 'formats': { 'application/json': {}, }, }, }, 'rel/queue_stats': { 'href-template': '/v2/queues/{queue_name}/stats', 'href-vars': { 'queue_name': 'param/queue_name', }, 'hints': { 'allow': ['GET'], 'formats': { 'application/json': {}, }, }, }, # ----------------------------------------------------------------- # Messages # ----------------------------------------------------------------- 'rel/messages': { 'href-template': ('/v2/queues/{queue_name}/messages' '{?marker,limit,echo,include_claimed}'), 'href-vars': { 'queue_name': 'param/queue_name', 'marker': 'param/marker', 'limit': 'param/messages_limit', 'echo': 'param/echo', 'include_claimed': 'param/include_claimed', }, 'hints': { 'allow': ['GET'], 'formats': { 'application/json': {}, }, }, }, 'rel/post_messages': { 'href-template': '/v2/queues/{queue_name}/messages', 'href-vars': { 'queue_name': 'param/queue_name', }, 'hints': { 'allow': ['POST'], 'formats': { 'application/json': {}, }, 'accept-post': ['application/json'], }, }, 'rel/messages_delete': { 'href-template': '/v2/queues/{queue_name}/messages{?ids,pop}', 'href-vars': { 'queue_name': 'param/queue_name', 'ids': 'param/ids', 'pop': 'param/pop' }, 'hints': { 'allow': [ 'DELETE' ], 'formats': { 'application/json': {} } } }, 'rel/message_delete': { 'href-template': '/v2/queues/{queue_name}/messages/{message_id}{?claim}', # noqa 'href-vars': { 'queue_name': 'param/queue_name', 'message_id': 'param/message_id', 'claim': 'param/claim_id' }, 'hints': { 'allow': [ 'DELETE' ], 'formats': { 'application/json': {} } } }, # ----------------------------------------------------------------- # Claims # ----------------------------------------------------------------- 'rel/claim': { 'href-template': '/v2/queues/{queue_name}/claims/{claim_id}', 'href-vars': { 'queue_name': 'param/queue_name', 'claim_id': 'param/claim_id', }, 'hints': { 'allow': ['GET'], 'formats': { 'application/json': {}, }, }, }, 'rel/post_claim': { 'href-template': '/v2/queues/{queue_name}/claims{?limit}', 'href-vars': { 'queue_name': 'param/queue_name', 'limit': 'param/claim_limit', }, 'hints': { 'allow': ['POST'], 'formats': { 'application/json': {}, }, 'accept-post': ['application/json'] }, }, 'rel/patch_claim': { 'href-template': '/v2/queues/{queue_name}/claims/{claim_id}', 'href-vars': { 'queue_name': 'param/queue_name', 'claim_id': 'param/claim_id', }, 'hints': { 'allow': ['PATCH'], 'formats': { 'application/json': {}, }, 'accept-post': ['application/json'] }, }, 'rel/delete_claim': { 'href-template': '/v2/queues/{queue_name}/claims/{claim_id}', 'href-vars': { 'queue_name': 'param/queue_name', 'claim_id': 'param/claim_id', }, 'hints': { 'allow': ['DELETE'], 'formats': { 'application/json': {}, }, }, }, } } ADMIN_RESOURCES = { # ----------------------------------------------------------------- # Pools # ----------------------------------------------------------------- 'rel/pools': { 'href-template': '/v2/pools{?detailed,limit,marker}', 'href-vars': { 'detailed': 'param/detailed', 'limit': 'param/pool_limit', 'marker': 'param/marker', }, 'hints': { 'allow': ['GET'], 'formats': { 'application/json': {}, }, }, }, 'rel/pool': { 'href-template': '/v2/pools/{pool_name}', 'href-vars': { 'pool_name': 'param/pool_name', }, 'hints': { 'allow': ['GET', 'PUT', 'PATCH', 'DELETE'], 'formats': { 'application/json': {}, }, }, }, # ----------------------------------------------------------------- # Flavors # ----------------------------------------------------------------- 'rel/flavors': { 'href-template': '/v2/flavors{?detailed,limit,marker}', 'href-vars': { 'detailed': 'param/detailed', 'limit': 'param/flavor_limit', 'marker': 'param/marker', }, 'hints': { 'allow': ['GET'], 'formats': { 'application/json': {}, }, }, }, 'rel/flavor': { 'href-template': '/v2/flavors/{flavor_name}', 'href-vars': { 'flavor_name': 'param/flavor_name', }, 'hints': { 'allow': ['GET', 'PUT', 'PATCH', 'DELETE'], 'formats': { 'application/json': {}, }, }, }, # ----------------------------------------------------------------- # Health # ----------------------------------------------------------------- 'rel/health': { 'href': '/v2/health', 'hints': { 'allow': ['GET'], 'formats': { 'application/json': {}, }, }, }, }
31.170213
93
0.367577
6b35baeaa7950e5538a7f5306ca85d6a854ed57e
82,533
py
Python
synapse/models/infotech.py
vertexproject/synapse
9712e2aee63914441c59ce6cfc060fe06a2e5920
[ "Apache-2.0" ]
216
2017-01-17T18:52:50.000Z
2022-03-31T18:44:49.000Z
synapse/models/infotech.py
vertexproject/synapse
9712e2aee63914441c59ce6cfc060fe06a2e5920
[ "Apache-2.0" ]
2,189
2017-01-17T22:31:48.000Z
2022-03-31T20:41:45.000Z
synapse/models/infotech.py
vertexproject/synapse
9712e2aee63914441c59ce6cfc060fe06a2e5920
[ "Apache-2.0" ]
44
2017-01-17T16:50:57.000Z
2022-03-16T18:35:52.000Z
import asyncio import logging import synapse.exc as s_exc import synapse.lib.types as s_types import synapse.lib.module as s_module import synapse.lib.version as s_version logger = logging.getLogger(__name__) loglevels = ( (10, 'debug'), (20, 'info'), (30, 'notice'), (40, 'warning'), (50, 'err'), (60, 'crit'), (70, 'alert'), (80, 'emerg'), )
48.807215
191
0.372506
6b35eaa0ed1f5a899840c77cec0648c4c36f9761
1,447
py
Python
test/test.py
bciar/ppp-web
1afe39a3c8d2197595ad0e2610c612db210cd62e
[ "MIT" ]
2
2018-09-27T03:31:42.000Z
2018-09-27T11:11:17.000Z
test/test.py
bciar/ppp-web
1afe39a3c8d2197595ad0e2610c612db210cd62e
[ "MIT" ]
null
null
null
test/test.py
bciar/ppp-web
1afe39a3c8d2197595ad0e2610c612db210cd62e
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Unit tests.""" import os import unittest from copy import copy from webui.app import create_app if __name__ == '__main__': from test.utils.doctest_unittest_runner import doctest_unittest_runner TEST_DIR = os.path.dirname(os.path.realpath(__file__)) + '/' doctest_unittest_runner(test_dir=TEST_DIR, relative_path_to_root='../', package_names=['webui', 'test'])
27.826923
79
0.607464
6b36c2213b18abb5b4d5cac68e49cf0ee92025a0
6,938
py
Python
tests/sources/test_clang_format.py
Justin-Fisher/webots
8a39e8e4390612919a8d82c7815aa914f4c079a4
[ "Apache-2.0" ]
1,561
2019-09-04T11:32:32.000Z
2022-03-31T18:00:09.000Z
tests/sources/test_clang_format.py
Justin-Fisher/webots
8a39e8e4390612919a8d82c7815aa914f4c079a4
[ "Apache-2.0" ]
2,184
2019-09-03T11:35:02.000Z
2022-03-31T10:01:44.000Z
tests/sources/test_clang_format.py
Justin-Fisher/webots
8a39e8e4390612919a8d82c7815aa914f4c079a4
[ "Apache-2.0" ]
1,013
2019-09-07T05:09:32.000Z
2022-03-31T13:01:28.000Z
#!/usr/bin/env python # Copyright 1996-2021 Cyberbotics Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test that the C, C++ and shader source code is compliant with ClangFormat.""" import unittest import difflib import os import subprocess from io import open from distutils.spawn import find_executable if __name__ == '__main__': unittest.main()
41.54491
113
0.528971
6b37d79a6bcd2f11e42ccf5ea2b0694fffb12722
10,361
py
Python
src/python/tests/core/system/shell_test.py
sanketsaurav/clusterfuzz
9f7efba7781614d50cdc6ab136b9bcf19607731c
[ "Apache-2.0" ]
1
2019-04-09T06:40:55.000Z
2019-04-09T06:40:55.000Z
src/python/tests/core/system/shell_test.py
Delaney6/clusterfuzz
9eeb08a85869b32733dd54c69b098688ff3b1bf5
[ "Apache-2.0" ]
null
null
null
src/python/tests/core/system/shell_test.py
Delaney6/clusterfuzz
9eeb08a85869b32733dd54c69b098688ff3b1bf5
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """shell tests.""" import mock import os import unittest from pyfakefs import fake_filesystem_unittest from system import environment from system import shell from tests.test_libs import helpers as test_helpers from tests.test_libs import test_utils
36.101045
79
0.705434
6b3842e1a431bbf5fa9d29f78a1c73a20bb3a410
2,735
py
Python
Language Model/birnn/model.py
osamaqureshi/NLP-for-Urdu
864550dbf27244900c2be86e0bedcfb5bb519cb6
[ "MIT" ]
1
2020-10-22T20:18:22.000Z
2020-10-22T20:18:22.000Z
Language Model/birnn/model.py
osamaqureshi/NLP-for-Urdu
864550dbf27244900c2be86e0bedcfb5bb519cb6
[ "MIT" ]
null
null
null
Language Model/birnn/model.py
osamaqureshi/NLP-for-Urdu
864550dbf27244900c2be86e0bedcfb5bb519cb6
[ "MIT" ]
null
null
null
import numpy as np import tensorflow as tf def loss_function(real, pred, loss_object): mask = tf.math.logical_not(tf.math.equal(real, 0)) loss_ = loss_object(real, pred) mask = tf.cast(mask, dtype=loss_.dtype) loss_ *= mask return tf.reduce_mean(loss_) def mask_sequences(seq, t): mask = np.zeros(seq.shape) mask[:,:t] = 1 inp = tf.math.multiply(seq, mask) mask[:,:t+1] = 1 tar = tf.math.multiply(seq, mask) return inp, tar
42.734375
113
0.545521
6b385bed93debf4cc525192d73536e80c2566746
591
py
Python
python/ray/train/__init__.py
jamesliu/ray
11ab412db1fa3603a3006e8ed414e80dd1f11c0c
[ "Apache-2.0" ]
33
2020-05-27T14:25:24.000Z
2022-03-22T06:11:30.000Z
python/ray/train/__init__.py
jamesliu/ray
11ab412db1fa3603a3006e8ed414e80dd1f11c0c
[ "Apache-2.0" ]
227
2021-10-01T08:00:01.000Z
2021-12-28T16:47:26.000Z
python/ray/train/__init__.py
gramhagen/ray
c18caa4db36d466718bdbcb2229aa0b2dc03da1f
[ "Apache-2.0" ]
5
2020-08-06T15:53:07.000Z
2022-02-09T03:31:31.000Z
from ray.train.backend import BackendConfig from ray.train.callbacks import TrainingCallback from ray.train.checkpoint import CheckpointStrategy from ray.train.session import (get_dataset_shard, local_rank, load_checkpoint, report, save_checkpoint, world_rank, world_size) from ray.train.trainer import Trainer, TrainingIterator __all__ = [ "BackendConfig", "CheckpointStrategy", "get_dataset_shard", "load_checkpoint", "local_rank", "report", "save_checkpoint", "TrainingIterator", "TrainingCallback", "Trainer", "world_rank", "world_size" ]
42.214286
79
0.749577
6b387e13117dba7e993918eb8dcf86f67409ab84
1,548
py
Python
test/test_contact_in_group.py
anastas11a/python_training
1daceddb193d92542f7f7313026a7e67af4d89bb
[ "Apache-2.0" ]
null
null
null
test/test_contact_in_group.py
anastas11a/python_training
1daceddb193d92542f7f7313026a7e67af4d89bb
[ "Apache-2.0" ]
null
null
null
test/test_contact_in_group.py
anastas11a/python_training
1daceddb193d92542f7f7313026a7e67af4d89bb
[ "Apache-2.0" ]
null
null
null
from model.contact import Contact from model.group import Group import random
29.207547
73
0.709302
6b3881271e2eaf5752f4f95cac12eda083886a6f
301
py
Python
byurak/accounts/admin.py
LikeLion-CAU-9th/Django-fancy-coder
53c770f4c1891f9076bed8c89d0b942b77e67667
[ "MIT" ]
null
null
null
byurak/accounts/admin.py
LikeLion-CAU-9th/Django-fancy-coder
53c770f4c1891f9076bed8c89d0b942b77e67667
[ "MIT" ]
2
2021-06-27T16:19:47.000Z
2021-08-01T16:41:54.000Z
byurak/accounts/admin.py
LikeLion-CAU-9th/Django-fancy-coder
53c770f4c1891f9076bed8c89d0b942b77e67667
[ "MIT" ]
2
2021-08-21T13:32:52.000Z
2021-12-20T10:12:45.000Z
from django.contrib import admin from accounts.models import User, Profile, UserFollow admin.site.register(Profile) admin.site.register(UserFollow)
23.153846
53
0.750831
6b3934ad826855dff168d0197fe9075473c458c0
20,474
py
Python
viz_utils/eoa_viz.py
olmozavala/eoas-pyutils
f552a512e250f8aa16e1f3ababf8b4644253918b
[ "MIT" ]
null
null
null
viz_utils/eoa_viz.py
olmozavala/eoas-pyutils
f552a512e250f8aa16e1f3ababf8b4644253918b
[ "MIT" ]
null
null
null
viz_utils/eoa_viz.py
olmozavala/eoas-pyutils
f552a512e250f8aa16e1f3ababf8b4644253918b
[ "MIT" ]
null
null
null
import os from PIL import Image import cv2 from os import listdir from os.path import join import matplotlib.pyplot as plt import matplotlib from matplotlib.colors import LogNorm from io_utils.io_common import create_folder from viz_utils.constants import PlotMode, BackgroundType import pylab import numpy as np import cmocean import shapely import cartopy.crs as ccrs import cartopy.feature as cfeature import cartopy def select_colormap(field_name): ''' Based on the name if the field it chooses a colormap from cmocean Args: field_name: Returns: ''' if np.any([field_name.find(x) != -1 for x in ('ssh', 'srfhgt', 'adt','surf_el')]): # cmaps_fields.append(cmocean.cm.deep_r) return cmocean.cm.curl elif np.any([field_name.find(x) != -1 for x in ('temp', 'sst', 'temperature')]): return cmocean.cm.thermal elif np.any([field_name.find(x) != -1 for x in ('vorticity', 'vort')]): return cmocean.cm.curl elif np.any([field_name.find(x) != -1 for x in ('salin', 'sss', 'sal')]): return cmocean.cm.haline elif field_name.find('error') != -1: return cmocean.cm.diff elif field_name.find('binary') != -1: return cmocean.cm.oxy elif np.any([field_name.find(x) != -1 for x in ('u_', 'v_', 'u-vel.', 'v-vel.','velocity')]): return cmocean.cm.speed
41.869121
163
0.575657
6b39d4fb43437addee89cd08745a9f78f2bca971
1,414
py
Python
ade20kScripts/setup.py
fcendra/PSPnet18
bc4f4292f4ddd09dba7076ca0b587c8f60dfa043
[ "MIT" ]
1
2020-08-16T14:27:31.000Z
2020-08-16T14:27:31.000Z
ade20kScripts/setup.py
fcendra/PSPNet.pytorch
bc4f4292f4ddd09dba7076ca0b587c8f60dfa043
[ "MIT" ]
null
null
null
ade20kScripts/setup.py
fcendra/PSPNet.pytorch
bc4f4292f4ddd09dba7076ca0b587c8f60dfa043
[ "MIT" ]
null
null
null
from os import listdir from os.path import isfile, join from path import Path import numpy as np import cv2 # Dataset path target_path = Path('target/') annotation_images_path = Path('dataset/ade20k/annotations/training/').abspath() dataset = [ f for f in listdir(annotation_images_path) if isfile(join(annotation_images_path,f))] images = np.empty(len(dataset), dtype = object) count = 1 # Iterate all Training Images for n in range(0, len(dataset)): # Read image images[n] = cv2.imread(join(annotation_images_path,dataset[n])) # Convert it to array array = np.asarray(images[n],dtype=np.int8) # Conditions when the value equal less than 1, change it to 255. # If it is >= 1, increment it by -1 arr = np.where(array < 1, 255, array -1) #Saved it to another file if count < 10: cv2.imwrite(target_path +'ADE_train_0000000'+ str(count) + ".png", arr) elif count < 100 and count > 9: cv2.imwrite(target_path +'ADE_train_000000'+ str(count) + ".png", arr) elif count < 1000 and count > 99: cv2.imwrite(target_path +'ADE_train_00000'+ str(count) + ".png", arr) elif count < 10000 and count > 999: cv2.imwrite(target_path +'ADE_train_0000'+ str(count) + ".png", arr) else: cv2.imwrite(target_path +'ADE_train_000'+ str(count) + ".png", arr) print(str(count) + ".png is printed") count += 1
34.487805
97
0.65983
6b3b2f253f3b9ff3bee85537636c322b9a7a1ad0
8,617
py
Python
src/mesh/azext_mesh/servicefabricmesh/mgmt/servicefabricmesh/models/__init__.py
Mannan2812/azure-cli-extensions
e2b34efe23795f6db9c59100534a40f0813c3d95
[ "MIT" ]
207
2017-11-29T06:59:41.000Z
2022-03-31T10:00:53.000Z
src/mesh/azext_mesh/servicefabricmesh/mgmt/servicefabricmesh/models/__init__.py
Mannan2812/azure-cli-extensions
e2b34efe23795f6db9c59100534a40f0813c3d95
[ "MIT" ]
4,061
2017-10-27T23:19:56.000Z
2022-03-31T23:18:30.000Z
src/mesh/azext_mesh/servicefabricmesh/mgmt/servicefabricmesh/models/__init__.py
Mannan2812/azure-cli-extensions
e2b34efe23795f6db9c59100534a40f0813c3d95
[ "MIT" ]
802
2017-10-11T17:36:26.000Z
2022-03-31T22:24:32.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .available_operation_display import AvailableOperationDisplay from .error_details_model import ErrorDetailsModel from .error_error_model import ErrorErrorModel from .error_model import ErrorModel, ErrorModelException from .operation_result import OperationResult from .provisioned_resource_properties import ProvisionedResourceProperties from .proxy_resource import ProxyResource from .managed_proxy_resource import ManagedProxyResource from .resource import Resource from .tracked_resource import TrackedResource from .secret_resource_properties import SecretResourceProperties from .inlined_value_secret_resource_properties import InlinedValueSecretResourceProperties from .secret_resource_properties_base import SecretResourcePropertiesBase from .secret_resource_description import SecretResourceDescription from .secret_value import SecretValue from .secret_value_properties import SecretValueProperties from .secret_value_resource_description import SecretValueResourceDescription from .volume_provider_parameters_azure_file import VolumeProviderParametersAzureFile from .volume_properties import VolumeProperties from .volume_reference import VolumeReference from .application_scoped_volume_creation_parameters import ApplicationScopedVolumeCreationParameters from .application_scoped_volume import ApplicationScopedVolume from .application_scoped_volume_creation_parameters_service_fabric_volume_disk import ApplicationScopedVolumeCreationParametersServiceFabricVolumeDisk from .volume_resource_description import VolumeResourceDescription from .network_resource_properties import NetworkResourceProperties from .local_network_resource_properties import LocalNetworkResourceProperties from .endpoint_ref import EndpointRef from .network_ref import NetworkRef from .network_resource_properties_base import NetworkResourcePropertiesBase from .network_resource_description import NetworkResourceDescription from .gateway_destination import GatewayDestination from .tcp_config import TcpConfig from .http_route_match_path import HttpRouteMatchPath from .http_route_match_header import HttpRouteMatchHeader from .http_route_match_rule import HttpRouteMatchRule from .http_route_config import HttpRouteConfig from .http_host_config import HttpHostConfig from .http_config import HttpConfig from .gateway_properties import GatewayProperties from .gateway_resource_description import GatewayResourceDescription from .image_registry_credential import ImageRegistryCredential from .environment_variable import EnvironmentVariable from .setting import Setting from .container_label import ContainerLabel from .endpoint_properties import EndpointProperties from .resource_requests import ResourceRequests from .resource_limits import ResourceLimits from .resource_requirements import ResourceRequirements from .diagnostics_ref import DiagnosticsRef from .reliable_collections_ref import ReliableCollectionsRef from .container_state import ContainerState from .container_event import ContainerEvent from .container_instance_view import ContainerInstanceView from .container_code_package_properties import ContainerCodePackageProperties from .auto_scaling_trigger import AutoScalingTrigger from .auto_scaling_mechanism import AutoScalingMechanism from .auto_scaling_policy import AutoScalingPolicy from .service_resource_description import ServiceResourceDescription from .diagnostics_sink_properties import DiagnosticsSinkProperties from .diagnostics_description import DiagnosticsDescription from .application_properties import ApplicationProperties from .azure_internal_monitoring_pipeline_sink_description import AzureInternalMonitoringPipelineSinkDescription from .application_resource_description import ApplicationResourceDescription from .add_remove_replica_scaling_mechanism import AddRemoveReplicaScalingMechanism from .auto_scaling_metric import AutoScalingMetric from .auto_scaling_resource_metric import AutoScalingResourceMetric from .service_properties import ServiceProperties from .service_replica_properties import ServiceReplicaProperties from .service_replica_description import ServiceReplicaDescription from .average_load_scaling_trigger import AverageLoadScalingTrigger from .container_logs import ContainerLogs from .operation_result_paged import OperationResultPaged from .secret_resource_description_paged import SecretResourceDescriptionPaged from .secret_value_resource_description_paged import SecretValueResourceDescriptionPaged from .volume_resource_description_paged import VolumeResourceDescriptionPaged from .network_resource_description_paged import NetworkResourceDescriptionPaged from .gateway_resource_description_paged import GatewayResourceDescriptionPaged from .application_resource_description_paged import ApplicationResourceDescriptionPaged from .service_resource_description_paged import ServiceResourceDescriptionPaged from .service_replica_description_paged import ServiceReplicaDescriptionPaged from .service_fabric_mesh_management_client_enums import ( ResourceStatus, HealthState, SecretKind, VolumeProvider, SizeTypes, ApplicationScopedVolumeKind, NetworkKind, HeaderMatchType, OperatingSystemType, DiagnosticsSinkKind, AutoScalingMechanismKind, AutoScalingMetricKind, AutoScalingResourceMetricName, AutoScalingTriggerKind, ) __all__ = [ 'AvailableOperationDisplay', 'ErrorDetailsModel', 'ErrorErrorModel', 'ErrorModel', 'ErrorModelException', 'OperationResult', 'ProvisionedResourceProperties', 'ProxyResource', 'ManagedProxyResource', 'Resource', 'TrackedResource', 'SecretResourceProperties', 'InlinedValueSecretResourceProperties', 'SecretResourcePropertiesBase', 'SecretResourceDescription', 'SecretValue', 'SecretValueProperties', 'SecretValueResourceDescription', 'VolumeProviderParametersAzureFile', 'VolumeProperties', 'VolumeReference', 'ApplicationScopedVolumeCreationParameters', 'ApplicationScopedVolume', 'ApplicationScopedVolumeCreationParametersServiceFabricVolumeDisk', 'VolumeResourceDescription', 'NetworkResourceProperties', 'LocalNetworkResourceProperties', 'EndpointRef', 'NetworkRef', 'NetworkResourcePropertiesBase', 'NetworkResourceDescription', 'GatewayDestination', 'TcpConfig', 'HttpRouteMatchPath', 'HttpRouteMatchHeader', 'HttpRouteMatchRule', 'HttpRouteConfig', 'HttpHostConfig', 'HttpConfig', 'GatewayProperties', 'GatewayResourceDescription', 'ImageRegistryCredential', 'EnvironmentVariable', 'Setting', 'ContainerLabel', 'EndpointProperties', 'ResourceRequests', 'ResourceLimits', 'ResourceRequirements', 'DiagnosticsRef', 'ReliableCollectionsRef', 'ContainerState', 'ContainerEvent', 'ContainerInstanceView', 'ContainerCodePackageProperties', 'AutoScalingTrigger', 'AutoScalingMechanism', 'AutoScalingPolicy', 'ServiceResourceDescription', 'DiagnosticsSinkProperties', 'DiagnosticsDescription', 'ApplicationProperties', 'AzureInternalMonitoringPipelineSinkDescription', 'ApplicationResourceDescription', 'AddRemoveReplicaScalingMechanism', 'AutoScalingMetric', 'AutoScalingResourceMetric', 'ServiceProperties', 'ServiceReplicaProperties', 'ServiceReplicaDescription', 'AverageLoadScalingTrigger', 'ContainerLogs', 'OperationResultPaged', 'SecretResourceDescriptionPaged', 'SecretValueResourceDescriptionPaged', 'VolumeResourceDescriptionPaged', 'NetworkResourceDescriptionPaged', 'GatewayResourceDescriptionPaged', 'ApplicationResourceDescriptionPaged', 'ServiceResourceDescriptionPaged', 'ServiceReplicaDescriptionPaged', 'ResourceStatus', 'HealthState', 'SecretKind', 'VolumeProvider', 'SizeTypes', 'ApplicationScopedVolumeKind', 'NetworkKind', 'HeaderMatchType', 'OperatingSystemType', 'DiagnosticsSinkKind', 'AutoScalingMechanismKind', 'AutoScalingMetricKind', 'AutoScalingResourceMetricName', 'AutoScalingTriggerKind', ]
42.034146
150
0.82755
6b3bed4772887b4ca3b8868f07f00b80ff44103a
1,503
py
Python
Core/managers/InputPeripherals.py
Scoppio/Rogue-EVE
a46f1faa9c7835e8c5838f6270fb5d75b349936b
[ "MIT" ]
2
2016-11-07T23:43:17.000Z
2016-11-08T21:49:57.000Z
Core/managers/InputPeripherals.py
Scoppio/Rogue-EVE
a46f1faa9c7835e8c5838f6270fb5d75b349936b
[ "MIT" ]
null
null
null
Core/managers/InputPeripherals.py
Scoppio/Rogue-EVE
a46f1faa9c7835e8c5838f6270fb5d75b349936b
[ "MIT" ]
null
null
null
import logging from models.GenericObjects import Vector2 logger = logging.getLogger('Rogue-EVE')
33.4
109
0.630739