hexsha
stringlengths 40
40
| size
int64 5
2.06M
| ext
stringclasses 11
values | lang
stringclasses 1
value | max_stars_repo_path
stringlengths 3
251
| max_stars_repo_name
stringlengths 4
130
| max_stars_repo_head_hexsha
stringlengths 40
78
| max_stars_repo_licenses
listlengths 1
10
| max_stars_count
int64 1
191k
⌀ | max_stars_repo_stars_event_min_datetime
stringlengths 24
24
⌀ | max_stars_repo_stars_event_max_datetime
stringlengths 24
24
⌀ | max_issues_repo_path
stringlengths 3
251
| max_issues_repo_name
stringlengths 4
130
| max_issues_repo_head_hexsha
stringlengths 40
78
| max_issues_repo_licenses
listlengths 1
10
| max_issues_count
int64 1
116k
⌀ | max_issues_repo_issues_event_min_datetime
stringlengths 24
24
⌀ | max_issues_repo_issues_event_max_datetime
stringlengths 24
24
⌀ | max_forks_repo_path
stringlengths 3
251
| max_forks_repo_name
stringlengths 4
130
| max_forks_repo_head_hexsha
stringlengths 40
78
| max_forks_repo_licenses
listlengths 1
10
| max_forks_count
int64 1
105k
⌀ | max_forks_repo_forks_event_min_datetime
stringlengths 24
24
⌀ | max_forks_repo_forks_event_max_datetime
stringlengths 24
24
⌀ | content
stringlengths 1
1.05M
| avg_line_length
float64 1
1.02M
| max_line_length
int64 3
1.04M
| alphanum_fraction
float64 0
1
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
13422bb3478f929cfdd7d39790b4b35df0ba961e
| 7,034 |
py
|
Python
|
src/infer/_ExtractSimpleDeformTTA.py
|
RamsteinWR/PneumoniaRSNA1
|
08bdba51292307a78ef711c6be4a63faea240ddf
|
[
"MIT"
] | null | null | null |
src/infer/_ExtractSimpleDeformTTA.py
|
RamsteinWR/PneumoniaRSNA1
|
08bdba51292307a78ef711c6be4a63faea240ddf
|
[
"MIT"
] | null | null | null |
src/infer/_ExtractSimpleDeformTTA.py
|
RamsteinWR/PneumoniaRSNA1
|
08bdba51292307a78ef711c6be4a63faea240ddf
|
[
"MIT"
] | null | null | null |
import json
import os
import re
import numpy as np
import pandas as pd
from src.infer.ExtractDeformableTTA import MAPPINGS_PATH, test_image_set, METADATA_PATH, RCNN0_DETS_DIR
WDIR = os.path.dirname(os.path.abspath(__file__))
def flip_box(box):
"""
box (list, length 4): [x1, y1, w, h]
"""
# Get top right corner of prediction
x1 = box[0]
y1 = box[1]
w = box[2]
h = box[3]
topRight = (x1 + w, y1)
# Top left corner of flipped box is:
newTopLeft = (1024. - topRight[0], topRight[1])
return [newTopLeft[0], newTopLeft[1], w, h]
with open(MAPPINGS_PATH) as f:
mapping = json.load(f)
with open(MAPPINGS_PATH.replace(test_image_set, "{}_flip".format(test_image_set))) as f:
flip_mapping = json.load(f)
metadata = pd.read_csv(METADATA_PATH)
execfile(os.path.join(WDIR, "DetectionEnsemble.py"))
imsizes = [224, 256, 288, 320, 352, 384, 416, 448, 480, 512]
fold0_nom = "fold{}_{}".format(0, imsizes[0])
fold1_nom = "fold{}_{}".format(1, imsizes[1])
fold2_nom = "fold{}_{}".format(2, imsizes[2])
fold3_nom = "fold{}_{}".format(3, imsizes[3])
fold4_nom = "fold{}_{}".format(4, imsizes[4])
fold5_nom = "fold{}_{}".format(5, imsizes[5])
fold6_nom = "fold{}_{}".format(6, imsizes[6])
fold7_nom = "fold{}_{}".format(7, imsizes[7])
fold8_nom = "fold{}_{}".format(8, imsizes[8])
fold9_nom = "fold{}_{}".format(9, imsizes[9])
fold1RCNN0 = run_ensemble(get_TTA_results("fold1_256", test_image_set, RCNN0_DETS_DIR.format(fold1_nom)), metadata)
fold3RCNN0 = run_ensemble(get_TTA_results("fold3_320", test_image_set, RCNN0_DETS_DIR.format(fold3_nom)), metadata)
fold5RCNN0 = run_ensemble(get_TTA_results("fold5_384", test_image_set, RCNN0_DETS_DIR.format(fold5_nom)), metadata)
fold7RCNN0 = run_ensemble(get_TTA_results("fold7_448", test_image_set, RCNN0_DETS_DIR.format(fold7_nom)), metadata)
fold9RCNN0 = run_ensemble(get_TTA_results("fold9_512", test_image_set, RCNN0_DETS_DIR.format(fold9_nom)), metadata)
list_of_dfs = [fold1RCNN0, fold3RCNN0, fold5RCNN0, fold7RCNN0, fold9RCNN0]
final_TTA_ensemble = run_ensemble(list_of_dfs, metadata, adjust_score=False)
final_TTA_ensemble["adjustedScore"] = final_TTA_ensemble.score * final_TTA_ensemble.votes
final_TTA_ensemble = final_TTA_ensemble[["patientId", "x", "y", "w", "h", "score", "votes", "adjustedScore"]]
final_TTA_ensemble.to_csv(os.path.join(WDIR, "../../SimpleDCNPredictions.csv"), index=False)
| 44.238994 | 115 | 0.598806 |
1342626b945cae1f2c60f3de7811ba70848e89f4
| 1,896 |
py
|
Python
|
pool4.py
|
yfii/yfiiapi
|
2c0341b66108f99005dc5a40e3d1d30267f50bb5
|
[
"MIT"
] | 4 |
2020-09-11T12:31:37.000Z
|
2020-12-14T04:42:05.000Z
|
pool4.py
|
yfii/yfiiapi
|
2c0341b66108f99005dc5a40e3d1d30267f50bb5
|
[
"MIT"
] | 1 |
2020-10-07T11:03:07.000Z
|
2020-10-07T11:03:07.000Z
|
pool4.py
|
yfii/yfiiapi
|
2c0341b66108f99005dc5a40e3d1d30267f50bb5
|
[
"MIT"
] | 9 |
2020-09-25T17:54:50.000Z
|
2021-06-05T05:36:14.000Z
|
from web3 import Web3, HTTPProvider
import json
w3url = "https://mainnet.infura.io/v3/998f64f3627548bbaf2630599c1eefca"
w3 = Web3(HTTPProvider(w3url))
WETH = "0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2"
YFII = "0xa1d0E215a23d7030842FC67cE582a6aFa3CCaB83"
DAI = "0x6B175474E89094C44Da98b954EedeAC495271d0F"
iUSDT = "0x72Cf258c852Dc485a853370171d46B9D29fD3184"
POOL4 = "0x3d367C9529f260B0661e1C1E91167C9319ee96cA"
yfii2dai = [YFII, WETH, DAI]
with open("abi/erc20.json") as f:
erc20ABI = json.loads(f.read())
with open("abi/uniswapRouterv2.json") as f:
uniswapABI = json.loads(f.read())
with open("abi/pool4.json") as f:
pool4ABI = json.loads(f.read())
uniswap_instance = w3.eth.contract(
abi=uniswapABI,
address=w3.toChecksumAddress("0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D"),
)
pool4_instance = w3.eth.contract(abi=pool4ABI, address=POOL4)
if __name__ == "__main__":
print(getDATA())
| 29.169231 | 86 | 0.730485 |
13427c6b2da4367eae23b3d65430a2f826b58232
| 106,827 |
py
|
Python
|
obswebsocket/requests.py
|
PanBartosz/obs-websocket-py
|
e92960a475d3f1096a4ea41763cbc776b23f0a37
|
[
"MIT"
] | 123 |
2017-06-19T05:34:58.000Z
|
2022-03-23T12:48:19.000Z
|
obswebsocket/requests.py
|
PanBartosz/obs-websocket-py
|
e92960a475d3f1096a4ea41763cbc776b23f0a37
|
[
"MIT"
] | 67 |
2017-06-20T11:31:08.000Z
|
2022-03-25T20:30:41.000Z
|
obswebsocket/requests.py
|
PanBartosz/obs-websocket-py
|
e92960a475d3f1096a4ea41763cbc776b23f0a37
|
[
"MIT"
] | 51 |
2017-10-09T19:03:12.000Z
|
2022-03-28T19:25:02.000Z
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# THIS FILE WAS GENERATED BY generate_classes.py - DO NOT EDIT #
# (Generated on 2020-12-20 18:26:33.661372) #
from .base_classes import Baserequests
| 29.682412 | 417 | 0.601075 |
134494ea81ba3a532d6b1f91e17ecbbfebb61032
| 157 |
py
|
Python
|
simple_history/tests/custom_user/admin.py
|
rdurica/django-simple-history
|
84d17f40be68e9ac7744b773451be83720c4c13a
|
[
"BSD-3-Clause"
] | 911 |
2015-01-05T13:21:17.000Z
|
2020-06-07T07:11:53.000Z
|
simple_history/tests/custom_user/admin.py
|
rdurica/django-simple-history
|
84d17f40be68e9ac7744b773451be83720c4c13a
|
[
"BSD-3-Clause"
] | 492 |
2015-01-01T18:20:20.000Z
|
2020-06-06T17:34:01.000Z
|
simple_history/tests/custom_user/admin.py
|
rdurica/django-simple-history
|
84d17f40be68e9ac7744b773451be83720c4c13a
|
[
"BSD-3-Clause"
] | 307 |
2015-02-01T00:45:51.000Z
|
2020-06-06T15:39:29.000Z
|
from django.contrib import admin
from django.contrib.auth.admin import UserAdmin
from .models import CustomUser
admin.site.register(CustomUser, UserAdmin)
| 22.428571 | 47 | 0.834395 |
1345874b0ae4768978973e82f88c986754ca58f9
| 7,109 |
py
|
Python
|
tools/accuracy_checker/openvino/tools/accuracy_checker/evaluators/custom_evaluators/mtcnn_evaluator_utils.py
|
Pandinosaurus/open_model_zoo
|
2543996541346418919c5cddfb71e33e2cdef080
|
[
"Apache-2.0"
] | 1 |
2019-05-31T14:01:42.000Z
|
2019-05-31T14:01:42.000Z
|
tools/accuracy_checker/openvino/tools/accuracy_checker/evaluators/custom_evaluators/mtcnn_evaluator_utils.py
|
Pandinosaurus/open_model_zoo
|
2543996541346418919c5cddfb71e33e2cdef080
|
[
"Apache-2.0"
] | null | null | null |
tools/accuracy_checker/openvino/tools/accuracy_checker/evaluators/custom_evaluators/mtcnn_evaluator_utils.py
|
Pandinosaurus/open_model_zoo
|
2543996541346418919c5cddfb71e33e2cdef080
|
[
"Apache-2.0"
] | null | null | null |
"""
Copyright (c) 2018-2022 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from collections import OrderedDict
import cv2
import numpy as np
from ...adapters import MTCNNPAdapter
| 39.494444 | 120 | 0.623435 |
134646519d68e17184a83f90eaeb23182da3950c
| 8,849 |
py
|
Python
|
pytests/Atomicity/basic_ops.py
|
ashwin2002/TAF
|
4223787a1f4c0fe9fa841543020b48ada9ade9e3
|
[
"Apache-2.0"
] | null | null | null |
pytests/Atomicity/basic_ops.py
|
ashwin2002/TAF
|
4223787a1f4c0fe9fa841543020b48ada9ade9e3
|
[
"Apache-2.0"
] | null | null | null |
pytests/Atomicity/basic_ops.py
|
ashwin2002/TAF
|
4223787a1f4c0fe9fa841543020b48ada9ade9e3
|
[
"Apache-2.0"
] | null | null | null |
from Cb_constants import DocLoading
from basetestcase import ClusterSetup
from couchbase_helper.documentgenerator import DocumentGenerator, doc_generator
from couchbase_helper.tuq_generators import JsonGenerator
from remote.remote_util import RemoteMachineShellConnection
from sdk_client3 import SDKClient
from com.couchbase.client.java.json import JsonObject
"""
Basic test cases with commit,rollback scenarios
"""
| 42.138095 | 79 | 0.600181 |
1346bfc37ba0726e8df79447049dc235a411088d
| 509 |
py
|
Python
|
reverseWord.py
|
lovefov/Python
|
ba8fc49e6e503927dc1f827f37b77f3e43b5d0c8
|
[
"MIT"
] | null | null | null |
reverseWord.py
|
lovefov/Python
|
ba8fc49e6e503927dc1f827f37b77f3e43b5d0c8
|
[
"MIT"
] | null | null | null |
reverseWord.py
|
lovefov/Python
|
ba8fc49e6e503927dc1f827f37b77f3e43b5d0c8
|
[
"MIT"
] | 1 |
2021-02-08T08:48:44.000Z
|
2021-02-08T08:48:44.000Z
|
#!/usr/bin/env python3
#-*- coding:utf-8 -*-
#Author:
'''
2.xlen()list 3.x
def spin_words(sentence):
# Your code goes here
return " ".join([x[::-1] if len(x) >= 5 else x for x in sentence.split(" ")])
str[::-1] ok
'''
| 19.576923 | 81 | 0.569745 |
1346de71efda2a56a9fe39787dfce52620463eb1
| 3,461 |
py
|
Python
|
src/scs_host/comms/network_socket.py
|
south-coast-science/scs_host_cpc
|
08b4a28c022936462b60823cca136ba6746eac57
|
[
"MIT"
] | null | null | null |
src/scs_host/comms/network_socket.py
|
south-coast-science/scs_host_cpc
|
08b4a28c022936462b60823cca136ba6746eac57
|
[
"MIT"
] | null | null | null |
src/scs_host/comms/network_socket.py
|
south-coast-science/scs_host_cpc
|
08b4a28c022936462b60823cca136ba6746eac57
|
[
"MIT"
] | null | null | null |
"""
Created on 30 May 2017
@author: Bruno Beloff ([email protected])
A network socket abstraction, implementing ProcessComms
"""
import socket
import time
from scs_core.sys.process_comms import ProcessComms
# --------------------------------------------------------------------------------------------------------------------
| 27.251969 | 118 | 0.428489 |
13470b2018f5f54dbcfea9b085e57cd30b1be672
| 15,182 |
py
|
Python
|
dateparser/date.py
|
JKhakpour/dateparser
|
7f324cfd3de04e91752979cf65ae0dedc622375f
|
[
"BSD-3-Clause"
] | 2 |
2019-03-12T10:50:15.000Z
|
2021-07-07T14:38:58.000Z
|
dateparser/date.py
|
JKhakpour/dateparser
|
7f324cfd3de04e91752979cf65ae0dedc622375f
|
[
"BSD-3-Clause"
] | null | null | null |
dateparser/date.py
|
JKhakpour/dateparser
|
7f324cfd3de04e91752979cf65ae0dedc622375f
|
[
"BSD-3-Clause"
] | 1 |
2018-03-07T13:25:16.000Z
|
2018-03-07T13:25:16.000Z
|
# -*- coding: utf-8 -*-
import calendar
import collections
from datetime import datetime, timedelta
from warnings import warn
import six
import regex as re
from dateutil.relativedelta import relativedelta
from dateparser.date_parser import date_parser
from dateparser.freshness_date_parser import freshness_date_parser
from dateparser.languages.loader import LanguageDataLoader
from dateparser.languages.detection import AutoDetectLanguage, ExactLanguages
from dateparser.conf import apply_settings
from dateparser.utils import normalize_unicode, apply_timezone_from_settings
APOSTROPHE_LOOK_ALIKE_CHARS = [
u'\N{RIGHT SINGLE QUOTATION MARK}', # u'\u2019'
u'\N{MODIFIER LETTER APOSTROPHE}', # u'\u02bc'
u'\N{MODIFIER LETTER TURNED COMMA}', # u'\u02bb'
u'\N{ARMENIAN APOSTROPHE}', # u'\u055a'
u'\N{LATIN SMALL LETTER SALTILLO}', # u'\ua78c'
u'\N{PRIME}', # u'\u2032'
u'\N{REVERSED PRIME}', # u'\u2035'
u'\N{MODIFIER LETTER PRIME}', # u'\u02b9'
u'\N{FULLWIDTH APOSTROPHE}', # u'\uff07'
]
RE_NBSP = re.compile(u'\xa0', flags=re.UNICODE)
RE_SPACES = re.compile(r'\s+')
RE_TRIM_SPACES = re.compile(r'^\s+(\S.*?)\s+$')
RE_SANITIZE_SKIP = re.compile(r'\t|\n|\r|\u00bb|,\s\u0432|\u200e|\xb7|\u200f|\u064e|\u064f', flags=re.M)
RE_SANITIZE_RUSSIAN = re.compile(r'([\W\d])\u0433\.', flags=re.I | re.U)
RE_SANITIZE_AMPM = re.compile(r'\b([ap])(\.)?m(\.)?\b', flags=re.DOTALL | re.I)
RE_SANITIZE_ON = re.compile(r'^.*?on:\s+(.*)')
RE_SANITIZE_APOSTROPHE = re.compile(u'|'.join(APOSTROPHE_LOOK_ALIKE_CHARS))
RE_SEARCH_TIMESTAMP = re.compile(r'^\d{10}(?![^\d.])')
def sanitize_date(date_string):
date_string = RE_SANITIZE_SKIP.sub(' ', date_string)
date_string = RE_SANITIZE_RUSSIAN.sub(r'\1 ', date_string) # remove u'.' (Russian for year) but not in words
date_string = sanitize_spaces(date_string)
date_string = RE_SANITIZE_AMPM.sub(r'\1m', date_string)
date_string = RE_SANITIZE_ON.sub(r'\1', date_string)
date_string = RE_SANITIZE_APOSTROPHE.sub(u"'", date_string)
return date_string
def get_date_from_timestamp(date_string, settings):
if RE_SEARCH_TIMESTAMP.search(date_string):
date_obj = datetime.fromtimestamp(int(date_string[:10]))
date_obj = apply_timezone_from_settings(date_obj, settings)
return date_obj
def parse_with_formats(date_string, date_formats, settings):
""" Parse with formats and return a dictionary with 'period' and 'obj_date'.
:returns: :class:`datetime.datetime`, dict or None
"""
period = 'day'
for date_format in date_formats:
try:
date_obj = datetime.strptime(date_string, date_format)
except ValueError:
continue
else:
# If format does not include the day, use last day of the month
# instead of first, because the first is usually out of range.
if '%d' not in date_format:
period = 'month'
date_obj = date_obj.replace(
day=get_last_day_of_month(date_obj.year, date_obj.month))
if not ('%y' in date_format or '%Y' in date_format):
today = datetime.today()
date_obj = date_obj.replace(year=today.year)
date_obj = apply_timezone_from_settings(date_obj, settings)
return {'date_obj': date_obj, 'period': period}
else:
return {'date_obj': None, 'period': period}
| 38.338384 | 114 | 0.640364 |
1347a75f9a9bad0cfccf1c5a976700bd26f857d2
| 8,817 |
py
|
Python
|
src/models/functions/connection/mixture_density_network.py
|
kristofbc/handwriting-synthesis
|
16505e89fd7275d4cd3ed9c4388c9f3c153a0397
|
[
"FTL"
] | null | null | null |
src/models/functions/connection/mixture_density_network.py
|
kristofbc/handwriting-synthesis
|
16505e89fd7275d4cd3ed9c4388c9f3c153a0397
|
[
"FTL"
] | null | null | null |
src/models/functions/connection/mixture_density_network.py
|
kristofbc/handwriting-synthesis
|
16505e89fd7275d4cd3ed9c4388c9f3c153a0397
|
[
"FTL"
] | null | null | null |
import chainer
import chainer.functions
from chainer.utils import type_check
from chainer import cuda
from chainer import function
import numpy as np
#from chainer import function_node
from utils import clip_grad
#class MixtureDensityNetworkFunction(function_node.FunctionNode):
def mixture_density_network(x, eos, pi, mu_x1, mu_x2, s_x1, s_x2, rho):
""" Mixture Density Network
Output the coefficient params
Args:
x (Variable): Tensor containing the position [x1, x2, x3] to predict
eos (Variable): End-of-stroke prediction
pi (Variable): mixture components
mu_x1 (Variable): mean of x1
mu_x2 (Variable): mean of x2
s_x1 (Variable): variance of x1
s_x2 (Variable): variance of x2
rho (Variable): correlation parameter
Returns:
loss (Variable)
y (Variable)
eos (Variable)
pi (Variable)
mu_x1 (Variable)
mu_x2 (Variable)
s_x1 (Variable)
s_x2 (Variable)
rho (Variable)
"""
return MixtureDensityNetworkFunction()(x, eos, pi, mu_x1, mu_x2, s_x1, s_x2, rho)
| 40.260274 | 142 | 0.576613 |
134809d310a2c2bc00124d8b1a5104d5d2cb92b6
| 939 |
py
|
Python
|
flask__webservers/bootstrap_4__toggle_switch__examples/main.py
|
DazEB2/SimplePyScripts
|
1dde0a42ba93fe89609855d6db8af1c63b1ab7cc
|
[
"CC-BY-4.0"
] | null | null | null |
flask__webservers/bootstrap_4__toggle_switch__examples/main.py
|
DazEB2/SimplePyScripts
|
1dde0a42ba93fe89609855d6db8af1c63b1ab7cc
|
[
"CC-BY-4.0"
] | null | null | null |
flask__webservers/bootstrap_4__toggle_switch__examples/main.py
|
DazEB2/SimplePyScripts
|
1dde0a42ba93fe89609855d6db8af1c63b1ab7cc
|
[
"CC-BY-4.0"
] | null | null | null |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
__author__ = 'ipetrash'
# SOURCE: https://github.com/twbs/bootstrap
# SOURCE: https://github.com/gitbrent/bootstrap4-toggle
# SOURCE: https://gitbrent.github.io/bootstrap4-toggle/
from flask import Flask, render_template
app = Flask(__name__)
import logging
logging.basicConfig(level=logging.DEBUG)
if __name__ == '__main__':
app.debug = True
# Localhost
# port=0 -- random free port
# app.run(port=0)
app.run(
port=5000,
# :param threaded: should the process handle each request in a separate
# thread?
# :param processes: if greater than 1 then handle each request in a new process
# up to this maximum number of concurrent processes.
threaded=True,
)
# # Public IP
# app.run(host='0.0.0.0')
| 22.357143 | 87 | 0.631523 |
134951456249066bc57415ee60860d0f10fe18d8
| 160 |
py
|
Python
|
dev/phonts/visualization/phonts.py
|
eragasa/pypospack
|
21cdecaf3b05c87acc532d992be2c04d85bfbc22
|
[
"MIT"
] | 4 |
2018-01-18T19:59:56.000Z
|
2020-08-25T11:56:52.000Z
|
dev/phonts/visualization/phonts.py
|
eragasa/pypospack
|
21cdecaf3b05c87acc532d992be2c04d85bfbc22
|
[
"MIT"
] | 1 |
2018-04-22T23:02:13.000Z
|
2018-04-22T23:02:13.000Z
|
dev/phonts/visualization/phonts.py
|
eragasa/pypospack
|
21cdecaf3b05c87acc532d992be2c04d85bfbc22
|
[
"MIT"
] | 1 |
2019-09-14T07:04:42.000Z
|
2019-09-14T07:04:42.000Z
|
import pypospack.io.phonts as phonts
# <---- additional classes and functions in which to add top
# <---- pypospack.io.phonts
if __name__ == "__main__":
| 20 | 60 | 0.6875 |
13495c72390c53605e37531f81078eacc3f25cd2
| 30,078 |
py
|
Python
|
omegaconf/_utils.py
|
sugatoray/omegaconf
|
edf9e86493a14b0e909e956d9bae59b9861ef9c5
|
[
"BSD-3-Clause"
] | 1,091 |
2018-09-06T17:27:12.000Z
|
2022-03-31T13:47:45.000Z
|
omegaconf/_utils.py
|
sugatoray/omegaconf
|
edf9e86493a14b0e909e956d9bae59b9861ef9c5
|
[
"BSD-3-Clause"
] | 624 |
2019-06-11T20:53:19.000Z
|
2022-03-30T20:44:25.000Z
|
omegaconf/_utils.py
|
sugatoray/omegaconf
|
edf9e86493a14b0e909e956d9bae59b9861ef9c5
|
[
"BSD-3-Clause"
] | 71 |
2019-06-14T05:32:45.000Z
|
2022-03-27T19:52:35.000Z
|
import copy
import os
import re
import string
import sys
import warnings
from contextlib import contextmanager
from enum import Enum
from textwrap import dedent
from typing import (
Any,
Dict,
Iterator,
List,
Optional,
Tuple,
Type,
Union,
get_type_hints,
)
import yaml
from .errors import (
ConfigIndexError,
ConfigTypeError,
ConfigValueError,
GrammarParseError,
OmegaConfBaseException,
ValidationError,
)
from .grammar_parser import SIMPLE_INTERPOLATION_PATTERN, parse
try:
import dataclasses
except ImportError: # pragma: no cover
dataclasses = None # type: ignore # pragma: no cover
try:
import attr
except ImportError: # pragma: no cover
attr = None # type: ignore # pragma: no cover
# Regexprs to match key paths like: a.b, a[b], ..a[c].d, etc.
# We begin by matching the head (in these examples: a, a, ..a).
# This can be read as "dots followed by any character but `.` or `[`"
# Note that a key starting with brackets, like [a], is purposedly *not*
# matched here and will instead be handled in the next regex below (this
# is to keep this regex simple).
KEY_PATH_HEAD = re.compile(r"(\.)*[^.[]*")
# Then we match other keys. The following expression matches one key and can
# be read as a choice between two syntaxes:
# - `.` followed by anything except `.` or `[` (ex: .b, .d)
# - `[` followed by anything then `]` (ex: [b], [c])
KEY_PATH_OTHER = re.compile(r"\.([^.[]*)|\[(.*?)\]")
# source: https://yaml.org/type/bool.html
YAML_BOOL_TYPES = [
"y",
"Y",
"yes",
"Yes",
"YES",
"n",
"N",
"no",
"No",
"NO",
"true",
"True",
"TRUE",
"false",
"False",
"FALSE",
"on",
"On",
"ON",
"off",
"Off",
"OFF",
]
# To be used as default value when `None` is not an option.
_DEFAULT_MARKER_: Any = Marker("_DEFAULT_MARKER_")
def _resolve_optional(type_: Any) -> Tuple[bool, Any]:
"""Check whether `type_` is equivalent to `typing.Optional[T]` for some T."""
if getattr(type_, "__origin__", None) is Union:
args = type_.__args__
if len(args) == 2 and args[1] == type(None): # noqa E721
return True, args[0]
if type_ is Any:
return True, Any
return False, type_
def _is_optional(obj: Any, key: Optional[Union[int, str]] = None) -> bool:
"""Check `obj` metadata to see if the given node is optional."""
from .base import Container, Node
if key is not None:
assert isinstance(obj, Container)
obj = obj._get_node(key)
if isinstance(obj, Node):
return obj._is_optional()
else:
# In case `obj` is not a Node, treat it as optional by default.
# This is used in `ListConfig.append` and `ListConfig.insert`
# where the appended/inserted value might or might not be a Node.
return True
def extract_dict_subclass_data(obj: Any, parent: Any) -> Optional[Dict[str, Any]]:
"""Check if obj is an instance of a subclass of Dict. If so, extract the Dict keys/values."""
from omegaconf.omegaconf import _maybe_wrap
is_type = isinstance(obj, type)
obj_type = obj if is_type else type(obj)
subclasses_dict = is_dict_subclass(obj_type)
if subclasses_dict:
warnings.warn(
f"Class `{obj_type.__name__}` subclasses `Dict`."
+ " Subclassing `Dict` in Structured Config classes is deprecated,"
+ " see github.com/omry/omegaconf/issues/663",
UserWarning,
stacklevel=9,
)
if is_type:
return None
elif subclasses_dict:
dict_subclass_data = {}
key_type, element_type = get_dict_key_value_types(obj_type)
for name, value in obj.items():
is_optional, type_ = _resolve_optional(element_type)
type_ = _resolve_forward(type_, obj.__module__)
try:
dict_subclass_data[name] = _maybe_wrap(
ref_type=type_,
is_optional=is_optional,
key=name,
value=value,
parent=parent,
)
except ValidationError as ex:
format_and_raise(
node=None, key=name, value=value, cause=ex, msg=str(ex)
)
return dict_subclass_data
else:
return None
def get_value_kind(
value: Any, strict_interpolation_validation: bool = False
) -> ValueKind:
"""
Determine the kind of a value
Examples:
VALUE: "10", "20", True
MANDATORY_MISSING: "???"
INTERPOLATION: "${foo.bar}", "${foo.${bar}}", "${foo:bar}", "[${foo}, ${bar}]",
"ftp://${host}/path", "${foo:${bar}, [true], {'baz': ${baz}}}"
:param value: Input to classify.
:param strict_interpolation_validation: If `True`, then when `value` is a string
containing "${", it is parsed to validate the interpolation syntax. If `False`,
this parsing step is skipped: this is more efficient, but will not detect errors.
"""
if _is_missing_value(value):
return ValueKind.MANDATORY_MISSING
value = _get_value(value)
# We identify potential interpolations by the presence of "${" in the string.
# Note that escaped interpolations (ex: "esc: \${bar}") are identified as
# interpolations: this is intended, since they must be processed as interpolations
# for the string to be properly un-escaped.
# Keep in mind that invalid interpolations will only be detected when
# `strict_interpolation_validation` is True.
if isinstance(value, str) and "${" in value:
if strict_interpolation_validation:
# First try the cheap regex matching that detects common interpolations.
if SIMPLE_INTERPOLATION_PATTERN.match(value) is None:
# If no match, do the more expensive grammar parsing to detect errors.
parse(value)
return ValueKind.INTERPOLATION
else:
return ValueKind.VALUE
# DEPRECATED: remove in 2.2
# DEPRECATED: remove in 2.2
def is_generic_list(type_: Any) -> bool:
"""
Checks if a type is a generic list, for example:
list returns False
typing.List returns False
typing.List[T] returns True
:param type_: variable type
:return: bool
"""
return is_list_annotation(type_) and get_list_element_type(type_) is not None
def is_generic_dict(type_: Any) -> bool:
"""
Checks if a type is a generic dict, for example:
list returns False
typing.List returns False
typing.List[T] returns True
:param type_: variable type
:return: bool
"""
return is_dict_annotation(type_) and len(get_dict_key_value_types(type_)) > 0
def split_key(key: str) -> List[str]:
"""
Split a full key path into its individual components.
This is similar to `key.split(".")` but also works with the getitem syntax:
"a.b" -> ["a", "b"]
"a[b]" -> ["a, "b"]
".a.b[c].d" -> ["", "a", "b", "c", "d"]
"[a].b" -> ["a", "b"]
"""
# Obtain the first part of the key (in docstring examples: a, a, .a, '')
first = KEY_PATH_HEAD.match(key)
assert first is not None
first_stop = first.span()[1]
# `tokens` will contain all elements composing the key.
tokens = key[0:first_stop].split(".")
# Optimization in case `key` has no other component: we are done.
if first_stop == len(key):
return tokens
if key[first_stop] == "[" and not tokens[-1]:
# This is a special case where the first key starts with brackets, e.g.
# [a] or ..[a]. In that case there is an extra "" in `tokens` that we
# need to get rid of:
# [a] -> tokens = [""] but we would like []
# ..[a] -> tokens = ["", "", ""] but we would like ["", ""]
tokens.pop()
# Identify other key elements (in docstring examples: b, b, b/c/d, b)
others = KEY_PATH_OTHER.findall(key[first_stop:])
# There are two groups in the `KEY_PATH_OTHER` regex: one for keys starting
# with a dot (.b, .d) and one for keys starting with a bracket ([b], [c]).
# Only one group can be non-empty.
tokens += [dot_key if dot_key else bracket_key for dot_key, bracket_key in others]
return tokens
# Similar to Python 3.7+'s `contextlib.nullcontext` (which should be used instead,
# once support for Python 3.6 is dropped).
| 30.849231 | 109 | 0.619423 |
134ae941abed7aefa64cace4d2b745626ee1b2ee
| 28,935 |
py
|
Python
|
darc/amber_clustering.py
|
loostrum/darc
|
977f43652ff4fc873340d09ac0fddeb81b889541
|
[
"Apache-2.0"
] | null | null | null |
darc/amber_clustering.py
|
loostrum/darc
|
977f43652ff4fc873340d09ac0fddeb81b889541
|
[
"Apache-2.0"
] | 47 |
2019-08-27T08:07:06.000Z
|
2022-03-04T10:10:40.000Z
|
darc/amber_clustering.py
|
loostrum/darc
|
977f43652ff4fc873340d09ac0fddeb81b889541
|
[
"Apache-2.0"
] | 1 |
2020-11-24T09:27:56.000Z
|
2020-11-24T09:27:56.000Z
|
#!/usr/bin/env python3
#
# AMBER Clustering
import os
from time import sleep
import yaml
import ast
import threading
import multiprocessing as mp
import numpy as np
from astropy.time import Time, TimeDelta
import astropy.units as u
from astropy.coordinates import SkyCoord
from darc import DARCBase, VOEventQueueServer, LOFARTriggerQueueServer
from darc.definitions import TSAMP, NCHAN, BANDWIDTH, MASTER, TIME_UNIT
from darc.external import tools
from darc import util
| 44.930124 | 118 | 0.55718 |
134b9c14653c7fb4e1904d66229452a0dbe85152
| 9,811 |
py
|
Python
|
tools/load_demo_data.py
|
glenn2763/skyportal
|
79dc11bfe08076d9c1f920bad85681ab001e22c8
|
[
"BSD-3-Clause"
] | null | null | null |
tools/load_demo_data.py
|
glenn2763/skyportal
|
79dc11bfe08076d9c1f920bad85681ab001e22c8
|
[
"BSD-3-Clause"
] | null | null | null |
tools/load_demo_data.py
|
glenn2763/skyportal
|
79dc11bfe08076d9c1f920bad85681ab001e22c8
|
[
"BSD-3-Clause"
] | null | null | null |
import datetime
import os
import subprocess
import base64
from pathlib import Path
import shutil
import pandas as pd
import signal
import requests
from baselayer.app.env import load_env
from baselayer.app.model_util import status, create_tables, drop_tables
from social_tornado.models import TornadoStorage
from skyportal.models import init_db, Base, DBSession, Source, User
from skyportal.model_util import setup_permissions, create_token
from skyportal.tests import api
from baselayer.tools.test_frontend import verify_server_availability
if __name__ == "__main__":
"""Insert test data"""
env, cfg = load_env()
basedir = Path(os.path.dirname(__file__)) / ".."
with status(f"Connecting to database {cfg['database']['database']}"):
init_db(**cfg["database"])
with status("Dropping all tables"):
drop_tables()
with status("Creating tables"):
create_tables()
for model in Base.metadata.tables:
print(" -", model)
with status(f"Creating permissions"):
setup_permissions()
with status(f"Creating dummy users"):
super_admin_user = User(
username="[email protected]", role_ids=["Super admin"]
)
group_admin_user = User(
username="[email protected]", role_ids=["Super admin"]
)
full_user = User(username="[email protected]", role_ids=["Full user"])
view_only_user = User(
username="[email protected]", role_ids=["View only"]
)
DBSession().add_all(
[super_admin_user, group_admin_user, full_user, view_only_user]
)
for u in [super_admin_user, group_admin_user, full_user, view_only_user]:
DBSession().add(
TornadoStorage.user.create_social_auth(u, u.username, "google-oauth2")
)
with status("Creating token"):
token = create_token(
[
"Manage groups",
"Manage sources",
"Upload data",
"Comment",
"Manage users",
],
super_admin_user.id,
"load_demo_data token",
)
with status("Launching web app & executing API calls"):
try:
response_status, data = api("GET", "sysinfo", token=token)
app_already_running = True
except requests.ConnectionError:
app_already_running = False
web_client = subprocess.Popen(
["make", "run"], cwd=basedir, preexec_fn=os.setsid
)
server_url = f"http://localhost:{cfg['ports.app']}"
print()
print(f"Waiting for server to appear at {server_url}...")
try:
verify_server_availability(server_url)
print("App running - continuing with API calls")
with status("Creating dummy group & adding users"):
data = assert_post(
"groups",
data={
"name": "Stream A",
"group_admins": [
super_admin_user.username,
group_admin_user.username,
],
},
)
group_id = data["data"]["id"]
for u in [view_only_user, full_user]:
data = assert_post(
f"groups/{group_id}/users/{u.username}", data={"admin": False}
)
with status("Creating dummy instruments"):
data = assert_post(
"telescope",
data={
"name": "Palomar 1.5m",
"nickname": "P60",
"lat": 33.3633675,
"lon": -116.8361345,
"elevation": 1870,
"diameter": 1.5,
"group_ids": [group_id],
},
)
telescope1_id = data["data"]["id"]
data = assert_post(
"instrument",
data={
"name": "P60 Camera",
"type": "phot",
"band": "optical",
"telescope_id": telescope1_id,
},
)
instrument1_id = data["data"]["id"]
data = assert_post(
"telescope",
data={
"name": "Nordic Optical Telescope",
"nickname": "NOT",
"lat": 28.75,
"lon": 17.88,
"elevation": 1870,
"diameter": 2.56,
"group_ids": [group_id],
},
)
telescope2_id = data["data"]["id"]
data = assert_post(
"instrument",
data={
"name": "ALFOSC",
"type": "both",
"band": "optical",
"telescope_id": telescope2_id,
},
)
with status("Creating dummy sources"):
SOURCES = [
{
"id": "14gqr",
"ra": 353.36647,
"dec": 33.646149,
"redshift": 0.063,
"group_ids": [group_id],
"comments": [
"No source at transient location to R>26 in LRIS imaging",
"Strong calcium lines have emerged.",
],
},
{
"id": "16fil",
"ra": 322.718872,
"dec": 27.574113,
"redshift": 0.0,
"group_ids": [group_id],
"comments": ["Frogs in the pond", "The eagle has landed"],
},
]
(basedir / "static/thumbnails").mkdir(parents=True, exist_ok=True)
for source_info in SOURCES:
comments = source_info.pop("comments")
data = assert_post("sources", data=source_info)
assert data["data"]["id"] == source_info["id"]
for comment in comments:
data = assert_post(
"comment",
data={"source_id": source_info["id"], "text": comment},
)
phot_file = basedir / "skyportal/tests/data/phot.csv"
phot_data = pd.read_csv(phot_file)
data = assert_post(
"photometry",
data={
"source_id": source_info["id"],
"time_format": "iso",
"time_scale": "utc",
"instrument_id": instrument1_id,
"observed_at": phot_data.observed_at.tolist(),
"mag": phot_data.mag.tolist(),
"e_mag": phot_data.e_mag.tolist(),
"lim_mag": phot_data.lim_mag.tolist(),
"filter": phot_data["filter"].tolist(),
},
)
spec_file = os.path.join(
os.path.dirname(os.path.dirname(__file__)),
"skyportal",
"tests",
"data",
"spec.csv",
)
spec_data = pd.read_csv(spec_file)
for i, df in spec_data.groupby("instrument_id"):
data = assert_post(
"spectrum",
data={
"source_id": source_info["id"],
"observed_at": str(datetime.datetime(2014, 10, 24)),
"instrument_id": 1,
"wavelengths": df.wavelength.tolist(),
"fluxes": df.flux.tolist(),
},
)
for ttype in ["new", "ref", "sub"]:
fname = f'{source_info["id"]}_{ttype}.png'
fpath = basedir / f"skyportal/tests/data/{fname}"
thumbnail_data = base64.b64encode(
open(os.path.abspath(fpath), "rb").read()
)
data = assert_post(
"thumbnail",
data={
"source_id": source_info["id"],
"data": thumbnail_data,
"ttype": ttype,
},
)
source = Source.query.get(source_info["id"])
source.add_linked_thumbnails()
finally:
if not app_already_running:
print("Terminating web app")
os.killpg(os.getpgid(web_client.pid), signal.SIGTERM)
| 37.446565 | 88 | 0.428804 |
134f9288b26ce3d17a1dc1a42f04cbaea4914dea
| 1,537 |
py
|
Python
|
framework/Exploits/CUTEFLOW_0024.py
|
UncleWillis/BugBox
|
25682f25fc3222db383649a4924bcd65f2ddcb34
|
[
"BSD-3-Clause"
] | 1 |
2019-01-25T21:32:42.000Z
|
2019-01-25T21:32:42.000Z
|
framework/Exploits/CUTEFLOW_0024.py
|
UncleWillis/BugBox
|
25682f25fc3222db383649a4924bcd65f2ddcb34
|
[
"BSD-3-Clause"
] | null | null | null |
framework/Exploits/CUTEFLOW_0024.py
|
UncleWillis/BugBox
|
25682f25fc3222db383649a4924bcd65f2ddcb34
|
[
"BSD-3-Clause"
] | 1 |
2021-06-23T04:44:25.000Z
|
2021-06-23T04:44:25.000Z
|
# Copyright 2013 University of Maryland. All rights reserved.
# Use of this source code is governed by a BSD-style
# license that can be found in the LICENSE.TXT file.
import sys
import os
import time
from selenium.common.exceptions import NoAlertPresentException
import framework
| 29 | 134 | 0.582954 |
134fbec769aed9e0795c724b3dcc54286150a284
| 10,720 |
py
|
Python
|
telethon/tl/custom/button.py
|
HosseyNJF/Telethon
|
0b0a1dc6a1a3f2fc8593526549889fba2884e8b8
|
[
"MIT"
] | 4 |
2020-11-28T08:50:07.000Z
|
2020-12-13T03:44:05.000Z
|
telethon/tl/custom/button.py
|
HosseyNJF/Telethon
|
0b0a1dc6a1a3f2fc8593526549889fba2884e8b8
|
[
"MIT"
] | 4 |
2020-10-11T15:40:17.000Z
|
2020-10-22T09:06:58.000Z
|
telethon/tl/custom/button.py
|
HosseyNJF/Telethon
|
0b0a1dc6a1a3f2fc8593526549889fba2884e8b8
|
[
"MIT"
] | 2 |
2020-01-16T12:21:02.000Z
|
2021-12-16T01:30:11.000Z
|
from .. import types
from ... import utils
| 40.916031 | 79 | 0.638619 |
134fdc98faac6c7e555a1d8a47d4c15e48a09ce5
| 1,575 |
py
|
Python
|
src/main/resources/pys/join.py
|
addUsername/javaBoring
|
d576adbd21447085f56719e8cc871faf94d8a369
|
[
"MIT"
] | null | null | null |
src/main/resources/pys/join.py
|
addUsername/javaBoring
|
d576adbd21447085f56719e8cc871faf94d8a369
|
[
"MIT"
] | null | null | null |
src/main/resources/pys/join.py
|
addUsername/javaBoring
|
d576adbd21447085f56719e8cc871faf94d8a369
|
[
"MIT"
] | null | null | null |
# -*- coding: utf-8 -*-
"""
Created on Tue Jul 7 20:14:22 2020
Simple script to join json files
@author: SERGI
"""
import json
import sys
import os
if __name__ == "__main__":
print("hello from python", flush=True)
jsonPath = str(sys.argv[1])
# =============================================================================
# jsonPath = "../eclipse-workspace/prueba/target/json/"
# =============================================================================
jsonPathTemp = jsonPath+"temp/"
arr = os.listdir(jsonPathTemp)
arr.sort()
print(arr)
dict_to_json = {}
dict_0 = readJson(jsonPathTemp + arr[0])
dict_1 = readJson(jsonPathTemp + arr[1])
dict_2 = readJson(jsonPathTemp + arr[2])
dict_3 = readJson(jsonPathTemp + arr[3])
keys = [name for name in dict_0.keys() if "0" not in name]
for key in keys:
dict_to_json[key] = dict_0[key] + dict_1[key] + dict_2[key] + dict_3[key]
#0seg,f_step,f_stop
seg = dict_0['0seg,f_step,f_stop'][0]
step = dict_0['0seg,f_step,f_stop'][1]
stop = dict_3['0seg,f_step,f_stop'][2]
dict_to_json['0seg,f_step,f_stop'] = [seg, step, stop]
print("Escribiendo json: ", jsonPath+arr[0], flush=True)
writeJson(jsonPath+arr[0], dict_to_json)
print("finish", flush=True)
| 28.125 | 82 | 0.533333 |
1351156463c6a25e82b73e57ee20368b3d832d46
| 2,017 |
py
|
Python
|
app/grandchallenge/challenges/migrations/0023_auto_20200123_1102.py
|
njmhendrix/grand-challenge.org
|
9bc36f5e26561a78bd405e8ea5e4c0f86c95f011
|
[
"Apache-2.0"
] | 1 |
2021-02-09T10:30:44.000Z
|
2021-02-09T10:30:44.000Z
|
app/grandchallenge/challenges/migrations/0023_auto_20200123_1102.py
|
njmhendrix/grand-challenge.org
|
9bc36f5e26561a78bd405e8ea5e4c0f86c95f011
|
[
"Apache-2.0"
] | null | null | null |
app/grandchallenge/challenges/migrations/0023_auto_20200123_1102.py
|
njmhendrix/grand-challenge.org
|
9bc36f5e26561a78bd405e8ea5e4c0f86c95f011
|
[
"Apache-2.0"
] | null | null | null |
# Generated by Django 3.0.2 on 2020-01-23 11:02
import re
import django.contrib.postgres.fields.citext
import django.core.validators
from django.db import migrations
import grandchallenge.challenges.models
| 36.017857 | 103 | 0.543877 |
13513f9e059c5209134cdb28c07c7e40eb9e7c97
| 8,756 |
py
|
Python
|
autosk_dev_test/component/LinReg.py
|
hmendozap/master-arbeit-files
|
5c1b90bc4a424313234b84bad405799de6f8d2ed
|
[
"MIT"
] | 2 |
2018-01-18T06:25:21.000Z
|
2018-12-11T07:43:09.000Z
|
autosk_dev_test/component/LinReg.py
|
hmendozap/master-arbeit-files
|
5c1b90bc4a424313234b84bad405799de6f8d2ed
|
[
"MIT"
] | 1 |
2016-03-29T07:55:18.000Z
|
2016-03-29T07:55:18.000Z
|
autosk_dev_test/component/LinReg.py
|
hmendozap/master-arbeit-files
|
5c1b90bc4a424313234b84bad405799de6f8d2ed
|
[
"MIT"
] | null | null | null |
import numpy as np
import scipy.sparse as sp
from HPOlibConfigSpace.configuration_space import ConfigurationSpace
from HPOlibConfigSpace.conditions import EqualsCondition, InCondition
from HPOlibConfigSpace.hyperparameters import UniformFloatHyperparameter, \
UniformIntegerHyperparameter, CategoricalHyperparameter, Constant
from autosklearn.pipeline.components.base import AutoSklearnRegressionAlgorithm
from autosklearn.pipeline.constants import *
| 44.222222 | 102 | 0.489721 |
13526b6d17cc702b79611d77af35c9e1a3a2bf4e
| 278 |
py
|
Python
|
python_work/Chapter5/exe3_alien_color.py
|
Elektra-2/python_crash_course_2nd
|
1c8beaddfe037faa3a36e7c384a6ea2f9d560060
|
[
"MIT"
] | 1 |
2020-08-25T18:42:30.000Z
|
2020-08-25T18:42:30.000Z
|
python_work/Chapter5/exe3_alien_color.py
|
Elektra-2/python_crash_course_2nd
|
1c8beaddfe037faa3a36e7c384a6ea2f9d560060
|
[
"MIT"
] | null | null | null |
python_work/Chapter5/exe3_alien_color.py
|
Elektra-2/python_crash_course_2nd
|
1c8beaddfe037faa3a36e7c384a6ea2f9d560060
|
[
"MIT"
] | null | null | null |
# Creating a elif chain
alien_color = 'red'
if alien_color == 'green':
print('Congratulations! You won 5 points!')
elif alien_color == 'yellow':
print('Congratulations! You won 10 points!')
elif alien_color == 'red':
print('Congratulations! You won 15 points!')
| 25.272727 | 48 | 0.683453 |
13532d8edfc3e8c0a315f5cb2ba2e9ad01f479b5
| 2,427 |
py
|
Python
|
DigiPsych_API/Data_Science_API/evaluate_model.py
|
larryzhang95/Voice-Analysis-Pipeline
|
264ac5c70d0baab47b81718ea5b895be30a683e9
|
[
"Apache-2.0"
] | 7 |
2019-06-22T21:03:50.000Z
|
2021-11-21T19:46:55.000Z
|
DigiPsych_API/Data_Science_API/evaluate_model.py
|
larryzhang95/Voice-Analysis-Pipeline
|
264ac5c70d0baab47b81718ea5b895be30a683e9
|
[
"Apache-2.0"
] | null | null | null |
DigiPsych_API/Data_Science_API/evaluate_model.py
|
larryzhang95/Voice-Analysis-Pipeline
|
264ac5c70d0baab47b81718ea5b895be30a683e9
|
[
"Apache-2.0"
] | 3 |
2019-09-15T01:50:39.000Z
|
2021-12-22T02:36:36.000Z
|
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import learning_curve
# Plot learning curve
# Plot validation curve
| 42.578947 | 115 | 0.674083 |
13539ceb0c44529e049d271d3d684efaaf1e9dee
| 121 |
py
|
Python
|
oomi/__init__.py
|
sremes/oomi
|
312317aa2ef68f1481b2447652a7d47c5f2e3f56
|
[
"MIT"
] | null | null | null |
oomi/__init__.py
|
sremes/oomi
|
312317aa2ef68f1481b2447652a7d47c5f2e3f56
|
[
"MIT"
] | null | null | null |
oomi/__init__.py
|
sremes/oomi
|
312317aa2ef68f1481b2447652a7d47c5f2e3f56
|
[
"MIT"
] | null | null | null |
"""Utilities for downloading comsumption data from Oomi."""
from oomi.oomi_downloader import OomiDownloader, OomiConfig
| 30.25 | 59 | 0.818182 |
1354ab456ba9280a4363560bf56997305ed54a5f
| 3,692 |
py
|
Python
|
BaseTools/Source/Python/UPT/Object/Parser/InfMisc.py
|
KaoTuz/edk2-stable202108
|
49d9306e7bf64b2f07d8473be1f2faea49d0a012
|
[
"Python-2.0",
"Zlib",
"BSD-2-Clause",
"MIT",
"BSD-2-Clause-Patent",
"BSD-3-Clause"
] | 9 |
2021-07-26T17:02:51.000Z
|
2021-12-30T10:49:46.000Z
|
BaseTools/Source/Python/UPT/Object/Parser/InfMisc.py
|
ESdove/edk2_exploring
|
34ff32b45f43d233d9696e7c8e3de68ea3000a7b
|
[
"Python-2.0",
"Zlib",
"BSD-2-Clause",
"MIT",
"BSD-2-Clause-Patent",
"BSD-3-Clause"
] | null | null | null |
BaseTools/Source/Python/UPT/Object/Parser/InfMisc.py
|
ESdove/edk2_exploring
|
34ff32b45f43d233d9696e7c8e3de68ea3000a7b
|
[
"Python-2.0",
"Zlib",
"BSD-2-Clause",
"MIT",
"BSD-2-Clause-Patent",
"BSD-3-Clause"
] | null | null | null |
## @file
# This file is used to define class objects of INF file miscellaneous.
# Include BootMode/HOB/Event and others. It will consumed by InfParser.
#
# Copyright (c) 2011 - 2018, Intel Corporation. All rights reserved.<BR>
#
# SPDX-License-Identifier: BSD-2-Clause-Patent
'''
InfMisc
'''
import Logger.Log as Logger
from Logger import ToolError
from Library import DataType as DT
from Object.Parser.InfCommonObject import InfSectionCommonDef
from Library.Misc import Sdict
##
# BootModeObject
#
##
# EventObject
#
##
# HobObject
#
##
# InfSpecialCommentObject
#
## ErrorInInf
#
# An encapsulate of Error for INF parser.
#
def ErrorInInf(Message=None, ErrorCode=None, LineInfo=None, RaiseError=True):
if ErrorCode is None:
ErrorCode = ToolError.FORMAT_INVALID
if LineInfo is None:
LineInfo = ['', -1, '']
Logger.Error("InfParser",
ErrorCode,
Message=Message,
File=LineInfo[0],
Line=LineInfo[1],
ExtraData=LineInfo[2],
RaiseError=RaiseError)
| 25.818182 | 77 | 0.628115 |
13570cde1e5c8c95a0a1cd4eb53d4d9f0d94d653
| 297 |
py
|
Python
|
21-08/Starters8/1.py
|
allenalvin333/Codechef_Competitions
|
44c3626de33cd9e17d1acfc74abe0aab809efbad
|
[
"MIT"
] | null | null | null |
21-08/Starters8/1.py
|
allenalvin333/Codechef_Competitions
|
44c3626de33cd9e17d1acfc74abe0aab809efbad
|
[
"MIT"
] | null | null | null |
21-08/Starters8/1.py
|
allenalvin333/Codechef_Competitions
|
44c3626de33cd9e17d1acfc74abe0aab809efbad
|
[
"MIT"
] | null | null | null |
# https://www.codechef.com/START8C/problems/PENALTY
for T in range(int(input())):
n=list(map(int,input().split()))
a=b=0
for i in range(len(n)):
if(n[i]==1):
if(i%2==0): a+=1
else: b+=1
if(a>b): print(1)
elif(b>a): print(2)
else: print(0)
| 24.75 | 51 | 0.501684 |
13583e5f15c53f390db50be7afda1b1e9f5ec33e
| 859 |
py
|
Python
|
util/eval.py
|
jhong93/vpd
|
1ed3e8631c46e078ecb9a7756dba1f1c14aead5b
|
[
"BSD-3-Clause"
] | 7 |
2021-11-26T01:15:23.000Z
|
2022-03-15T10:51:47.000Z
|
util/eval.py
|
jhong93/vpd
|
1ed3e8631c46e078ecb9a7756dba1f1c14aead5b
|
[
"BSD-3-Clause"
] | 4 |
2022-01-15T09:46:00.000Z
|
2022-02-05T07:10:18.000Z
|
util/eval.py
|
jhong93/vpd
|
1ed3e8631c46e078ecb9a7756dba1f1c14aead5b
|
[
"BSD-3-Clause"
] | 1 |
2021-09-18T16:50:14.000Z
|
2021-09-18T16:50:14.000Z
|
import matplotlib.pyplot as plt
from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix
| 35.791667 | 74 | 0.690338 |
135906a75c8644d17899cd5046a70589324b71a2
| 3,595 |
py
|
Python
|
python/py3study/pytorch-lab/demo-cifar.py
|
sillyemperor/langstudy
|
937a11d97984e10e4ead54f3b7b7d6a1f2ef24a1
|
[
"MIT"
] | null | null | null |
python/py3study/pytorch-lab/demo-cifar.py
|
sillyemperor/langstudy
|
937a11d97984e10e4ead54f3b7b7d6a1f2ef24a1
|
[
"MIT"
] | null | null | null |
python/py3study/pytorch-lab/demo-cifar.py
|
sillyemperor/langstudy
|
937a11d97984e10e4ead54f3b7b7d6a1f2ef24a1
|
[
"MIT"
] | null | null | null |
import torch
import torchvision
import torchvision.transforms as transforms
import os.path
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
root = os.path.join(BASE_DIR, '../data/')
trainset = torchvision.datasets.CIFAR10(root=root, train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root=root, train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset,
shuffle=False, num_workers=2)
import torch.nn as nn
import torch.nn.functional as F
# torch.Size([1, 3, 32, 32])
# torch.Size([1, 6, 14, 14])
# torch.Size([1, 16, 5, 5])
# torch.Size([1, 400])
# torch.Size([1, 120])
# torch.Size([1, 84])
# torch.Size([1, 100])
model = Net()
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.0002, momentum=0.9)
from util import train_eval
train_eval(model, criterion, trainloader, testloader, optimizer, epochs=5)
# [1, 5000] loss: 2.293
# [1, 10000] loss: 2.075
# [1, 15000] loss: 1.876
# [1, 20000] loss: 1.754
# [1, 25000] loss: 1.658
# [1, 30000] loss: 1.625
# [1, 35000] loss: 1.558
# [1, 40000] loss: 1.520
# [1, 45000] loss: 1.494
# [1, 50000] loss: 1.459
# 1/5 4456/10000 44.56% (107.18255376815796s)
# [2, 5000] loss: 1.413
# [2, 10000] loss: 1.398
# [2, 15000] loss: 1.386
# [2, 20000] loss: 1.379
# [2, 25000] loss: 1.358
# [2, 30000] loss: 1.324
# [2, 35000] loss: 1.333
# [2, 40000] loss: 1.280
# [2, 45000] loss: 1.296
# [2, 50000] loss: 1.304
# 2/5 5357/10000 53.56999999999999% (105.8866639137268s)
# [3, 5000] loss: 1.226
# [3, 10000] loss: 1.231
# [3, 15000] loss: 1.215
# [3, 20000] loss: 1.235
# [3, 25000] loss: 1.199
# [3, 30000] loss: 1.187
# [3, 35000] loss: 1.192
# [3, 40000] loss: 1.194
# [3, 45000] loss: 1.196
# [3, 50000] loss: 1.191
# 3/5 5729/10000 57.29% (105.63971090316772s)
# [4, 5000] loss: 1.117
# [4, 10000] loss: 1.096
# [4, 15000] loss: 1.121
# [4, 20000] loss: 1.123
# [4, 25000] loss: 1.107
# [4, 30000] loss: 1.120
# [4, 35000] loss: 1.124
# [4, 40000] loss: 1.094
# [4, 45000] loss: 1.105
# [4, 50000] loss: 1.102
# 4/5 5829/10000 58.29% (112.56915497779846s)
# [5, 5000] loss: 1.034
# [5, 10000] loss: 1.024
# [5, 15000] loss: 1.040
# [5, 20000] loss: 1.027
# [5, 25000] loss: 1.043
# [5, 30000] loss: 1.049
# [5, 35000] loss: 1.024
# [5, 40000] loss: 1.042
# [5, 45000] loss: 1.027
# [5, 50000] loss: 1.027
# 5/5 6178/10000 61.78% (109.75669193267822s)
# 61.0% (541.0347754955292s)
| 28.307087 | 75 | 0.585535 |
135933f07f224fa858e30bebe4b7db897823355d
| 995 |
py
|
Python
|
astroquery/neodys/tests/test_neodys_remote.py
|
B612-Asteroid-Institute/astroquery
|
4bc8002639e80f7356306f4e000334da5e086091
|
[
"BSD-3-Clause"
] | null | null | null |
astroquery/neodys/tests/test_neodys_remote.py
|
B612-Asteroid-Institute/astroquery
|
4bc8002639e80f7356306f4e000334da5e086091
|
[
"BSD-3-Clause"
] | 1 |
2021-03-19T14:06:50.000Z
|
2021-03-19T14:06:50.000Z
|
astroquery/neodys/tests/test_neodys_remote.py
|
B612-Asteroid-Institute/astroquery
|
4bc8002639e80f7356306f4e000334da5e086091
|
[
"BSD-3-Clause"
] | null | null | null |
from ... import neodys
| 41.458333 | 79 | 0.711558 |
1359a8c4afe9581f59876f936fb68313f28865c1
| 1,028 |
py
|
Python
|
corehq/apps/accounting/migrations/0026_auto_20180508_1956.py
|
kkrampa/commcare-hq
|
d64d7cad98b240325ad669ccc7effb07721b4d44
|
[
"BSD-3-Clause"
] | 1 |
2020-05-05T13:10:01.000Z
|
2020-05-05T13:10:01.000Z
|
corehq/apps/accounting/migrations/0026_auto_20180508_1956.py
|
kkrampa/commcare-hq
|
d64d7cad98b240325ad669ccc7effb07721b4d44
|
[
"BSD-3-Clause"
] | 1 |
2019-12-09T14:00:14.000Z
|
2019-12-09T14:00:14.000Z
|
corehq/apps/accounting/migrations/0026_auto_20180508_1956.py
|
MaciejChoromanski/commcare-hq
|
fd7f65362d56d73b75a2c20d2afeabbc70876867
|
[
"BSD-3-Clause"
] | 5 |
2015-11-30T13:12:45.000Z
|
2019-07-01T19:27:07.000Z
|
# -*- coding: utf-8 -*-
# Generated by Django 1.11.13 on 2018-05-08 19:56
from __future__ import unicode_literals
from __future__ import absolute_import
from django.db import migrations
| 27.783784 | 80 | 0.689689 |
1359c0fa6a8b2dda6889c4d23c5bb6bc6ad1f0c0
| 9,806 |
py
|
Python
|
tensor2tensor/rl/evaluator.py
|
SouBanerjee/tensor2tensor
|
8b88b13dd65bf52b3c27663a128adb7b0a5773fb
|
[
"Apache-2.0"
] | 1 |
2019-12-11T14:43:49.000Z
|
2019-12-11T14:43:49.000Z
|
tensor2tensor/rl/evaluator.py
|
SouBanerjee/tensor2tensor
|
8b88b13dd65bf52b3c27663a128adb7b0a5773fb
|
[
"Apache-2.0"
] | null | null | null |
tensor2tensor/rl/evaluator.py
|
SouBanerjee/tensor2tensor
|
8b88b13dd65bf52b3c27663a128adb7b0a5773fb
|
[
"Apache-2.0"
] | null | null | null |
# coding=utf-8
# Copyright 2018 The Tensor2Tensor Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""Evaluation script for RL agents.
Example invocation:
python -m tensor2tensor.rl.evaluator \
--policy_dir=$HOME/t2t/rl_v1/policy \
--eval_metrics_dir=$HOME/t2t/rl_v1/full_eval_metrics \
--hparams_set=rlmb_base \
--hparams='batch_size=64'
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import datetime
import os
from tensor2tensor.data_generators import gym_env
from tensor2tensor.layers import common_video
from tensor2tensor.models.research import rl # pylint: disable=unused-import
from tensor2tensor.rl import rl_utils
from tensor2tensor.rl import trainer_model_based_params # pylint: disable=unused-import
from tensor2tensor.utils import flags as t2t_flags # pylint: disable=unused-import
from tensor2tensor.utils import registry
from tensor2tensor.utils import trainer_lib
import tensorflow as tf
flags = tf.flags
FLAGS = flags.FLAGS
flags.DEFINE_string("output_dir", "", "Main directory for multi-runs.")
flags.DEFINE_integer("total_num_workers", 1, "How many workers in total.")
flags.DEFINE_string("worker_to_game_map", "", "How to map workers to games.")
flags.DEFINE_string("policy_dir", "", "Directory with policy checkpoints.")
flags.DEFINE_string("model_dir", "", "Directory with model checkpoints.")
flags.DEFINE_string(
"eval_metrics_dir", "", "Directory to output the eval metrics at."
)
flags.DEFINE_bool("full_eval", True, "Whether to ignore the timestep limit.")
flags.DEFINE_enum(
"agent", "policy", ["random", "policy", "planner"], "Agent type to use."
)
flags.DEFINE_bool(
"eval_with_learner", True,
"Whether to use the PolicyLearner.evaluate function instead of an "
"out-of-graph one. Works only with --agent=policy."
)
flags.DEFINE_string(
"planner_hparams_set", "planner_small", "Planner hparam set."
)
flags.DEFINE_string("planner_hparams", "", "Planner hparam overrides.")
flags.DEFINE_integer(
"log_every_steps", 20, "Log every how many environment steps."
)
flags.DEFINE_string(
"debug_video_path", "", "Path to save the planner debug video at."
)
# Unused flags needed to pass for multi-run infrastructure.
flags.DEFINE_bool("autotune", False, "Unused here.")
flags.DEFINE_string("objective", "", "Unused here.")
flags.DEFINE_string("client_handle", "client_0", "Unused.")
flags.DEFINE_bool("maximize_tuner_objective", True, "Unused.")
flags.DEFINE_integer("vizier_search_algorithm", 0, "Unused.")
def make_env(env_type, real_env, sim_env_kwargs):
"""Factory function for envs."""
return {
"real": lambda: real_env.new_like( # pylint: disable=g-long-lambda
batch_size=sim_env_kwargs["batch_size"],
store_rollouts=False,
),
"simulated": lambda: rl_utils.SimulatedBatchGymEnvWithFixedInitialFrames( # pylint: disable=g-long-lambda
**sim_env_kwargs
),
}[env_type]()
def make_agent(
agent_type, env, policy_hparams, policy_dir, sampling_temp,
sim_env_kwargs=None, frame_stack_size=None, planning_horizon=None,
rollout_agent_type=None, batch_size=None, num_rollouts=None,
inner_batch_size=None, video_writer=None, env_type=None):
"""Factory function for Agents."""
if batch_size is None:
batch_size = env.batch_size
return {
"random": lambda: rl_utils.RandomAgent( # pylint: disable=g-long-lambda
batch_size, env.observation_space, env.action_space
),
"policy": lambda: rl_utils.PolicyAgent( # pylint: disable=g-long-lambda
batch_size, env.observation_space, env.action_space,
policy_hparams, policy_dir, sampling_temp
),
"planner": lambda: rl_utils.PlannerAgent( # pylint: disable=g-long-lambda
batch_size, make_agent(
rollout_agent_type, env, policy_hparams, policy_dir,
sampling_temp, batch_size=inner_batch_size
), make_env(env_type, env.env, sim_env_kwargs),
lambda env: rl_utils.BatchStackWrapper(env, frame_stack_size),
num_rollouts, planning_horizon,
discount_factor=policy_hparams.gae_gamma, video_writer=video_writer
),
}[agent_type]()
def make_eval_fn_with_agent(
agent_type, planner_hparams, model_dir, log_every_steps=None,
video_writer=None
):
"""Returns an out-of-graph eval_fn using the Agent API."""
def eval_fn(env, loop_hparams, policy_hparams, policy_dir, sampling_temp):
"""Eval function."""
base_env = env
env = rl_utils.BatchStackWrapper(env, loop_hparams.frame_stack_size)
sim_env_kwargs = rl.make_simulated_env_kwargs(
base_env, loop_hparams, batch_size=planner_hparams.batch_size,
model_dir=model_dir
)
agent = make_agent(
agent_type, env, policy_hparams, policy_dir, sampling_temp,
sim_env_kwargs, loop_hparams.frame_stack_size,
planner_hparams.planning_horizon, planner_hparams.rollout_agent_type,
num_rollouts=planner_hparams.num_rollouts,
inner_batch_size=planner_hparams.batch_size, video_writer=video_writer,
env_type=planner_hparams.env_type
)
rl_utils.run_rollouts(
env, agent, env.reset(), log_every_steps=log_every_steps
)
assert len(base_env.current_epoch_rollouts()) == env.batch_size
return eval_fn
def evaluate(
loop_hparams, planner_hparams, policy_dir, model_dir, eval_metrics_dir,
agent_type, eval_with_learner, log_every_steps, debug_video_path,
report_fn=None, report_metric=None
):
"""Evaluate."""
if eval_with_learner:
assert agent_type == "policy"
if report_fn:
assert report_metric is not None
eval_metrics_writer = tf.summary.FileWriter(eval_metrics_dir)
video_writer = None
kwargs = {}
if not eval_with_learner:
if debug_video_path:
video_writer = common_video.WholeVideoWriter(
fps=10, output_path=debug_video_path, file_format="avi")
kwargs["eval_fn"] = make_eval_fn_with_agent(
agent_type, planner_hparams, model_dir, log_every_steps=log_every_steps,
video_writer=video_writer
)
eval_metrics = rl_utils.evaluate_all_configs(
loop_hparams, policy_dir, **kwargs
)
rl_utils.summarize_metrics(eval_metrics_writer, eval_metrics, 0)
if video_writer is not None:
video_writer.finish_to_disk()
# Report metrics
if report_fn:
if report_metric == "mean_reward":
metric_name = rl_utils.get_metric_name(
sampling_temp=loop_hparams.eval_sampling_temps[0],
max_num_noops=loop_hparams.eval_max_num_noops,
clipped=False
)
report_fn(eval_metrics[metric_name], 0)
else:
report_fn(eval_metrics[report_metric], 0)
return eval_metrics
def get_game_for_worker(map_name, directory_id):
"""Get game for the given worker (directory) id."""
if map_name == "v100unfriendly":
games = ["chopper_command", "boxing", "asterix", "seaquest"]
worker_per_game = 5
elif map_name == "human_nice":
games = gym_env.ATARI_GAMES_WITH_HUMAN_SCORE_NICE
worker_per_game = 5
else:
raise ValueError("Unknown worker to game map name: %s" % map_name)
games.sort()
game_id = (directory_id - 1) // worker_per_game
tf.logging.info("Getting game %d from %s." % (game_id, games))
return games[game_id]
def main(_):
now = datetime.datetime.now()
now_tag = now.strftime("%Y_%m_%d_%H_%M")
loop_hparams = trainer_lib.create_hparams(
FLAGS.loop_hparams_set, FLAGS.loop_hparams
)
if FLAGS.worker_to_game_map and FLAGS.total_num_workers > 1:
loop_hparams.game = get_game_for_worker(
FLAGS.worker_to_game_map, FLAGS.worker_id + 1)
tf.logging.info("Set game to %s." % loop_hparams.game)
if FLAGS.full_eval:
loop_hparams.eval_rl_env_max_episode_steps = -1
planner_hparams = trainer_lib.create_hparams(
FLAGS.planner_hparams_set, FLAGS.planner_hparams
)
policy_dir = FLAGS.policy_dir
model_dir = FLAGS.model_dir
eval_metrics_dir = FLAGS.eval_metrics_dir
if FLAGS.output_dir:
cur_dir = FLAGS.output_dir
if FLAGS.total_num_workers > 1:
cur_dir = os.path.join(cur_dir, "%d" % (FLAGS.worker_id + 1))
policy_dir = os.path.join(cur_dir, "policy")
model_dir = os.path.join(cur_dir, "world_model")
eval_metrics_dir = os.path.join(cur_dir, "evaluator_" + now_tag)
tf.logging.info("Writing metrics to %s." % eval_metrics_dir)
if not tf.gfile.Exists(eval_metrics_dir):
tf.gfile.MkDir(eval_metrics_dir)
evaluate(
loop_hparams, planner_hparams, policy_dir, model_dir,
eval_metrics_dir, FLAGS.agent, FLAGS.eval_with_learner,
FLAGS.log_every_steps if FLAGS.log_every_steps > 0 else None,
debug_video_path=FLAGS.debug_video_path
)
if __name__ == "__main__":
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run()
| 35.528986 | 112 | 0.730879 |
135a363584e253a0fd487ab5902e769a0e03931f
| 1,236 |
py
|
Python
|
src/part_2_automation/test_test1.py
|
AndreiHustiuc/IT_Factory_Course
|
c6f3e4a9282a1c19c0f52c79f0c81f026814a02a
|
[
"MIT"
] | null | null | null |
src/part_2_automation/test_test1.py
|
AndreiHustiuc/IT_Factory_Course
|
c6f3e4a9282a1c19c0f52c79f0c81f026814a02a
|
[
"MIT"
] | null | null | null |
src/part_2_automation/test_test1.py
|
AndreiHustiuc/IT_Factory_Course
|
c6f3e4a9282a1c19c0f52c79f0c81f026814a02a
|
[
"MIT"
] | 1 |
2022-03-16T10:39:03.000Z
|
2022-03-16T10:39:03.000Z
|
# Generated by Selenium IDE
import pytest
import time
import json
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.common.action_chains import ActionChains
from selenium.webdriver.support import expected_conditions
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.common.desired_capabilities import DesiredCapabilities
| 38.625 | 89 | 0.768608 |
135abe65fc98dab6544eb64993951b1e91db47a2
| 732 |
py
|
Python
|
app/grandchallenge/components/admin.py
|
njmhendrix/grand-challenge.org
|
9bc36f5e26561a78bd405e8ea5e4c0f86c95f011
|
[
"Apache-2.0"
] | 1 |
2021-02-09T10:30:44.000Z
|
2021-02-09T10:30:44.000Z
|
app/grandchallenge/components/admin.py
|
njmhendrix/grand-challenge.org
|
9bc36f5e26561a78bd405e8ea5e4c0f86c95f011
|
[
"Apache-2.0"
] | null | null | null |
app/grandchallenge/components/admin.py
|
njmhendrix/grand-challenge.org
|
9bc36f5e26561a78bd405e8ea5e4c0f86c95f011
|
[
"Apache-2.0"
] | null | null | null |
from django.contrib import admin
from grandchallenge.components.models import (
ComponentInterface,
ComponentInterfaceValue,
)
admin.site.register(ComponentInterface, ComponentInterfaceAdmin)
admin.site.register(ComponentInterfaceValue, ComponentInterfaceValueAdmin)
| 23.612903 | 74 | 0.67623 |
135ad256377f1febc7ff1ea7598a8c696743a758
| 165 |
py
|
Python
|
publishtimer/__init__.py
|
paragguruji/publishtimer
|
b0b68d6c4d450a2cc22d29725e43c2a1261f0f74
|
[
"BSD-2-Clause"
] | null | null | null |
publishtimer/__init__.py
|
paragguruji/publishtimer
|
b0b68d6c4d450a2cc22d29725e43c2a1261f0f74
|
[
"BSD-2-Clause"
] | null | null | null |
publishtimer/__init__.py
|
paragguruji/publishtimer
|
b0b68d6c4d450a2cc22d29725e43c2a1261f0f74
|
[
"BSD-2-Clause"
] | null | null | null |
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 28 15:28:24 2016
@author: Parag Guruji, [email protected]
"""
from .helpers import setup_env
done = setup_env()
| 16.5 | 44 | 0.678788 |
135d785a425446491b59ae18c63cdcf06bf42dd8
| 278 |
py
|
Python
|
netdisco/discoverables/nanoleaf_aurora.py
|
jjlawren/netdisco
|
ffc3cd092bff359b1c1fc1ed51940624b3c8076b
|
[
"Apache-2.0"
] | 1 |
2020-01-05T21:36:10.000Z
|
2020-01-05T21:36:10.000Z
|
env/lib/python3.7/site-packages/netdisco/discoverables/nanoleaf_aurora.py
|
seanmitch/UPnP
|
f3cb1ef62657f166971c1c470ce5dfd58bdeeac9
|
[
"Unlicense"
] | null | null | null |
env/lib/python3.7/site-packages/netdisco/discoverables/nanoleaf_aurora.py
|
seanmitch/UPnP
|
f3cb1ef62657f166971c1c470ce5dfd58bdeeac9
|
[
"Unlicense"
] | null | null | null |
"""Discover Nanoleaf Aurora devices."""
from . import MDNSDiscoverable
| 27.8 | 74 | 0.726619 |
135f17354c6a575112f9dd1ee2ae823d8e499637
| 2,299 |
py
|
Python
|
debug/compute_score_common_ts_RETREAT.py
|
DavidSabbagh/meeg_power_regression
|
d9cd5e30028ffc24f08a52966c7641f611e92ee6
|
[
"BSD-3-Clause"
] | 1 |
2020-12-18T06:10:16.000Z
|
2020-12-18T06:10:16.000Z
|
debug/compute_score_common_ts_RETREAT.py
|
DavidSabbagh/meeg_power_regression
|
d9cd5e30028ffc24f08a52966c7641f611e92ee6
|
[
"BSD-3-Clause"
] | null | null | null |
debug/compute_score_common_ts_RETREAT.py
|
DavidSabbagh/meeg_power_regression
|
d9cd5e30028ffc24f08a52966c7641f611e92ee6
|
[
"BSD-3-Clause"
] | 2 |
2021-03-01T01:36:38.000Z
|
2021-03-01T13:44:02.000Z
|
import os.path as op
import numpy as np
import pandas as pd
from sklearn.pipeline import make_pipeline
from sklearn.linear_model import RidgeCV
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import KFold, cross_val_score
import mne
from pyriemann.tangentspace import TangentSpace
import config_drago as cfg
meg = 'mag'
scale = 1e22
rank = 65
reg = 1e-6
seed = 42
n_jobs = 10
cv = KFold(n_splits=n_jobs, shuffle=True, random_state=seed)
file_covs = op.join(cfg.path_outputs, 'covs_allch_oas.float32.h5')
covs_allch = mne.externals.h5io.read_hdf5(file_covs) # (sub, fb, ch, ch)
info = np.load(op.join(cfg.path_data, 'info_allch.npy')).item()
picks = mne.pick_types(info, meg=meg)
covs = proj_covs_common(covs_allch, picks, scale=scale, rank=rank, reg=reg)
X = proj_covs_ts(covs)
X = X.reshape(len(X), -1)
info = pd.read_csv(op.join(cfg.path_data, 'participants.csv'))
subjects = [d['subject'] for d in covs_allch if 'subject' in d]
y = info.set_index('Observations').age.loc[subjects]
ridge = make_pipeline(StandardScaler(),
RidgeCV(alphas=np.logspace(-3, 5, 100)))
score = - cross_val_score(ridge, X, y, cv=cv,
scoring="neg_mean_absolute_error", n_jobs=n_jobs,
verbose=True)
| 31.930556 | 77 | 0.651588 |
135f22f80a61bf2986149f078e69c6a03f73a3a5
| 1,161 |
py
|
Python
|
bter/publish.py
|
mengalong/bter
|
7fa56f9c83429bc564e6d123498b14aae5c390b1
|
[
"Apache-2.0"
] | 1 |
2017-08-30T01:01:50.000Z
|
2017-08-30T01:01:50.000Z
|
bter/publish.py
|
mengalong/bter
|
7fa56f9c83429bc564e6d123498b14aae5c390b1
|
[
"Apache-2.0"
] | null | null | null |
bter/publish.py
|
mengalong/bter
|
7fa56f9c83429bc564e6d123498b14aae5c390b1
|
[
"Apache-2.0"
] | null | null | null |
# Copyright 2017~ mengalong <[email protected]>
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import daiquiri
from six.moves.urllib import parse as urlparse
from stevedore import driver
logger = daiquiri.getLogger(__name__)
| 33.171429 | 77 | 0.709733 |
135f9b393c2da1b1ae7cb6b4ea51c6e47c87c3b3
| 2,976 |
py
|
Python
|
web3/_utils/module_testing/math_contract.py
|
y19818/web3.py
|
32a85a287ab63220d1e0c06d77be74de595ff02f
|
[
"MIT"
] | null | null | null |
web3/_utils/module_testing/math_contract.py
|
y19818/web3.py
|
32a85a287ab63220d1e0c06d77be74de595ff02f
|
[
"MIT"
] | null | null | null |
web3/_utils/module_testing/math_contract.py
|
y19818/web3.py
|
32a85a287ab63220d1e0c06d77be74de595ff02f
|
[
"MIT"
] | null | null | null |
MATH_BYTECODE = (
"606060405261022e806100126000396000f360606040523615610074576000357c01000000000000"
"000000000000000000000000000000000000000000009004806316216f391461007657806361bc22"
"1a146100995780637cf5dab0146100bc578063a5f3c23b146100e8578063d09de08a1461011d5780"
"63dcf537b11461014057610074565b005b610083600480505061016c565b60405180828152602001"
"91505060405180910390f35b6100a6600480505061017f565b604051808281526020019150506040"
"5180910390f35b6100d26004808035906020019091905050610188565b6040518082815260200191"
"505060405180910390f35b61010760048080359060200190919080359060200190919050506101ea"
"565b6040518082815260200191505060405180910390f35b61012a6004805050610201565b604051"
"8082815260200191505060405180910390f35b610156600480803590602001909190505061021756"
"5b6040518082815260200191505060405180910390f35b6000600d9050805080905061017c565b90"
"565b60006000505481565b6000816000600082828250540192505081905550600060005054905080"
"507f3496c3ede4ec3ab3686712aa1c238593ea6a42df83f98a5ec7df9834cfa577c5816040518082"
"815260200191505060405180910390a18090506101e5565b919050565b6000818301905080508090"
"506101fb565b92915050565b600061020d6001610188565b9050610214565b90565b600060078202"
"90508050809050610229565b91905056"
)
MATH_ABI = [
{
"constant": False,
"inputs": [],
"name": "return13",
"outputs": [
{"name": "result", "type": "int256"},
],
"type": "function",
},
{
"constant": True,
"inputs": [],
"name": "counter",
"outputs": [
{"name": "", "type": "uint256"},
],
"type": "function",
},
{
"constant": False,
"inputs": [
{"name": "amt", "type": "uint256"},
],
"name": "increment",
"outputs": [
{"name": "result", "type": "uint256"},
],
"type": "function",
},
{
"constant": False,
"inputs": [
{"name": "a", "type": "int256"},
{"name": "b", "type": "int256"},
],
"name": "add",
"outputs": [
{"name": "result", "type": "int256"},
],
"type": "function",
},
{
"constant": False,
"inputs": [],
"name": "increment",
"outputs": [
{"name": "", "type": "uint256"},
],
"type": "function"
},
{
"constant": False,
"inputs": [
{"name": "a", "type": "int256"},
],
"name": "multiply7",
"outputs": [
{"name": "result", "type": "int256"},
],
"type": "function",
},
{
"anonymous": False,
"inputs": [
{"indexed": False, "name": "value", "type": "uint256"},
],
"name": "Increased",
"type": "event",
},
]
| 32.347826 | 87 | 0.576949 |
135f9d0a7a2f751997f717a3c72579433fa4791e
| 4,269 |
py
|
Python
|
dnsdb/config.py
|
nuby/open_dnsdb
|
7fec703d8458083f0e6826393656055556e9f0b2
|
[
"Apache-2.0"
] | 1 |
2019-09-27T01:06:55.000Z
|
2019-09-27T01:06:55.000Z
|
dnsdb/config.py
|
cclauss/open_dnsdb
|
28c2055685be1c173d77eaa2a05d8e156ccbbbf2
|
[
"Apache-2.0"
] | null | null | null |
dnsdb/config.py
|
cclauss/open_dnsdb
|
28c2055685be1c173d77eaa2a05d8e156ccbbbf2
|
[
"Apache-2.0"
] | null | null | null |
# -*- coding: utf-8 -*-
import os
import sys
from datetime import timedelta
from oslo.config import cfg
CONF = cfg.CONF
CONF.register_opts([
cfg.StrOpt('log-dir'),
cfg.StrOpt('log-file'),
cfg.StrOpt('debug'),
cfg.StrOpt('verbose'),
], 'log')
CONF.register_opts([
cfg.StrOpt('connection'),
cfg.StrOpt('data'),
], 'DB')
CONF.register_opts([
cfg.StrOpt('server'),
cfg.StrOpt('port'),
cfg.StrOpt('from_addr'),
cfg.StrOpt('info_list'),
cfg.StrOpt('alert_list'),
], 'MAIL')
CONF.register_opts([
cfg.StrOpt('allow_ip'),
cfg.StrOpt('secret_key'),
cfg.StrOpt('env'),
cfg.StrOpt('local_group'),
cfg.StrOpt('acl_dir'),
cfg.StrOpt('view_acl_group')
], 'etc')
CONF.register_opts([
cfg.IntOpt('dnsupdater_port'),
], 'api')
CONF.register_opts([
cfg.StrOpt('acl_groups'),
cfg.IntOpt('cname_ttl'),
cfg.StrOpt('view_zone')
], 'view')
CONF.register_opts([
cfg.StrOpt('base-url',
default='/',
help='The url prefix of this site.'),
cfg.StrOpt('run-mode',
default="werkzeug",
choices=('gunicorn', 'werkzeug'),
help="Run server use the specify mode."),
cfg.StrOpt('bind',
default='0.0.0.0',
help='The IP address to bind'),
cfg.IntOpt('port',
default=8080,
help='The port to listen'),
cfg.BoolOpt('debug',
default=False),
], 'web')
CONF.register_opts([
cfg.StrOpt('config',
default=None,
help='The path to a Gunicorn config file.'),
cfg.StrOpt('bind',
default='127.0.0.1:8888'),
cfg.IntOpt('workers',
default=0,
help='The number of worker processes for handling requests'),
cfg.BoolOpt('daemon',
default=False,
help='Daemonize the Gunicorn process'),
cfg.StrOpt('accesslog',
default=None,
help='The Access log file to write to.'
'"-" means log to stderr.'),
cfg.StrOpt('loglevel',
default='info',
help='The granularity of Error log outputs.',
choices=('debug', 'info', 'warning', 'error', 'critical')),
cfg.BoolOpt('ignore-healthcheck-accesslog',
default=False),
cfg.IntOpt('timeout',
default=30,
help='Workers silent for more than this many seconds are '
'killed and restarted.'),
cfg.StrOpt('worker-class',
default='sync',
help='The type of workers to use.',
choices=('sync', 'eventlet', 'gevent', 'tornado'))
], 'gunicorn')
| 31.160584 | 92 | 0.594284 |
136018fcec6b4476406646ec76b683c9bf3950c1
| 1,148 |
py
|
Python
|
rover/rover.py
|
cloudy/osr-rover-code
|
07d370ae1cde75eaf2d279fcc7f220c95cf6d736
|
[
"Apache-2.0"
] | null | null | null |
rover/rover.py
|
cloudy/osr-rover-code
|
07d370ae1cde75eaf2d279fcc7f220c95cf6d736
|
[
"Apache-2.0"
] | null | null | null |
rover/rover.py
|
cloudy/osr-rover-code
|
07d370ae1cde75eaf2d279fcc7f220c95cf6d736
|
[
"Apache-2.0"
] | null | null | null |
from __future__ import print_function
import time
from rover import Robot
from connections import Connections
| 19.457627 | 110 | 0.674216 |
136335a62a6f24cad26390348c87d9d3bbbba896
| 14,534 |
py
|
Python
|
aswiki/parser.py
|
scanner/django-aswiki
|
318908eeccc8da324846ac5ffc4d4a206f560521
|
[
"BSD-3-Clause"
] | null | null | null |
aswiki/parser.py
|
scanner/django-aswiki
|
318908eeccc8da324846ac5ffc4d4a206f560521
|
[
"BSD-3-Clause"
] | 1 |
2020-09-25T05:40:38.000Z
|
2020-09-28T05:41:27.000Z
|
aswiki/parser.py
|
scanner/django-aswiki
|
318908eeccc8da324846ac5ffc4d4a206f560521
|
[
"BSD-3-Clause"
] | null | null | null |
#
# File: $Id: parser.py 1865 2008-10-28 00:47:27Z scanner $
#
"""
This is where the logic and definition of our wiki markup parser lives.
We use the Python Creoleparser (which requires Genshi)
We make a custom dialect so that the parser can know the URL base for
all of the topics (pages) in the wiki and some additional goop so that
we can tell what other topics a given topic refers to.
"""
# system imports
#
from urllib import quote
from urlparse import urlparse
try:
import threading
except ImportError:
import dummy_threading as threading
# Django imports
#
from django.core.urlresolvers import reverse
from django.utils.translation import ugettext as _
# 3rd party imports
#
from creoleparser.dialects import create_dialect, creole10_base, creole11_base
from creoleparser.core import Parser
from genshi import builder
# We see if we have the 'typogrify' app installed. If we do we will
# use it for rendering our templates to prettify them a bit.
#
try:
from typogrify.templatetags.typogrify import typogrify
except ImportError:
# Model imports
#
from aswiki.models import Topic
############################################################################
############################################################################
#
############################################################################
#
def class_fn(topic_name):
"""
This function is invoked by the markup dialect every time it encounters a
wiki topic. It returns a string that is the css class name to add to wiki
links as they are turned in to proper <a href></a> links.
We use this as a way to annotate topics that do not exist yet with some
graphical attribute so that users can easily tell which topics are not yet
created.
We use the wiki.models.TopicManager's css_class_name method to do this
lookup.
NOTE: Since this module is imported by the wiki.models module we need to
import that module inside here so that we can access the Topic
model. This is cheap since it will already be imported.
Arguments:
- `topic_name`: the topic name being checked for existence.
"""
# XXX This is where we should do a cache lookup of the topic name
# and only if that fails fall back to
# Topic.objects.css_class_name(topic_name)
#
return Topic.objects.css_class_name(topic_name)
####################################################################
#
def output_mailto(arg_string):
"""
Given the arguments of an anchor macro output the proper genshi
stream that will render a mailto link. We also need to support the magic
argument string format of '<you> AT <word> AT <foo> DOT <foo>'
Arguments:
- `arg_string`: The argument string of the anchor macro.
- `macro_body`: The macro body if provided
- `block_type`: True if this is a block macro.
"""
# XXX Need to support the fancy format.. but for now just get the basic
# working.
return builder.tag.a(arg_string, href="mailto:%s" % arg_string)
####################################################################
#
def output_subtopics(arg_string):
"""
This will take a single string as its input. It will find all
topics for which the string as a topic name is the parent topic.
There is some semantic magic in a topic if it contains periods, ie: the
'.' character. This forms a kind of hierarchy. Loosely speaking all topics
that start with the same prefix, separated by '.' are sub-topics.
So: 2007.Agenda is a sub-topic of 2007. 2007.Agenda.foo is a subtopic of
2007 and 2007.Agenda.
This macro will insert in to the output <ul> of the topics that are proper
subtopics of the given string, ordered by name. So in the above example if
I were to say <<subtopics 2007>> it would give me "2007.Agenda" and
"2007.Agenda.foo" in a <ul>
If the arg string ends with a dot, then it is treated as the
separator. ie: <<subtopics 2007.>> and <<subtopics 2007>> are identical.
Arguments:
- `arg_string`: The topic we want to find all subtopics of.
"""
arg_string = arg_string
if arg_string[-1] != '.':
arg_string = arg_string + "."
topics = Topic.objects.filter(lc_name__istartswith = arg_string.lower()).order_by('lc_name')
if topics.count() == 0:
return None
ul = builder.tag.ul()
# For every topic that matches our pattern we insert a 'li' link
# to that topic in our output. We also add this topic to the
# 'extra_references' list in our global TOPIC_LIST object. This is
# so that the prerender../save() methods of the Topic object we are
# rendering this output for can know to add those topics to the list
# of topics referenced by the topic being rendered.
for topic in topics:
TOPIC_LIST.extra_references.append(topic)
ul.append(builder.tag.li(builder.tag.a(topic.name,
href = topic.get_absolute_url())))
return ul
####################################################################
#
def output_attachments(arg_string):
"""
Returns a <ul> of all of the attachments attached to the topic name
given as the arg_string.
Arguments:
- `arg_string`: Expected to be the name of a topic. If no such topic
exist, then no attachment list is generated.
"""
try:
topic = Topic.objects.get(lc_name = arg_string.lower())
except Topic.DoesNotExist:
return None
ul = builder.tag.ul()
# For every file attachment on this topic, add a 'li' link
# to that attachment.
#
for attachment in topic.file_attachments.all():
ul.append(builder.tag.li(builder.tag.a(attachment.basename(),
href = attachment.get_absolute_url())))
return ul
####################################################################
#
def macro_fn(name, arg_string, macro_body, block_type, environ):
"""
Handles the macros we define for our version of markup.
Arguments:
- `name`: The name of the macro
- `arg_string`: The argument string, including any delimiters
- `macro_body`: The macro body, None for macro with no body.
- `block_type`: True for block type macros.
- `environ` : The environment object, passed through from
creoleparser.core.Parser class's 'parse()' method.
"""
name = name.strip().lower()
arg_string = arg_string.strip()
if name == 'anchor':
if block_type:
return builder.tag.a(macro_body, name = arg_string)
else:
return builder.tag.a(name = arg_string)
elif name == 'mailto':
return output_mailto(arg_string)
elif name == 'gettext':
if block_type:
return _(macro_body)
else:
return _(arg_string)
elif name == 'subtopics':
return output_subtopics(arg_string)
elif name == 'attachlist':
return output_attachments(arg_string)
elif name == 'attachment':
# For including downloadable attachments in a wiki document.
if block_type:
return builder.tag.a(macro_body, href=arg_string)
else:
return builder.tag.a(arg_string, href=arg_string)
return None
##
## Create our custom dialect. It will use our class function and a TopicList
## instance. The root URL for all wiki topics will be the same as the
## 'aswiki_topic_index' url.
##
## NOTE: This assumes that the url for a specific Topic is the same as the url
## for the aswiki_topic_index with the Topic name appended to it
##
TOPIC_LIST = TopicList()
# dialect = creoleparser.dialects.Creole10(
# wiki_links_base_url = reverse('aswiki_topic_index'),
# wiki_links_space_char = '%20',
# use_additions = True,
# no_wiki_monospace = False,
# wiki_links_class_func = class_fn,
# wiki_links_path_func = TOPIC_LIST.path_fn,
# macro_func = macro_fn,
# interwiki_links_base_urls=dict(wikicreole='http://wikicreole.org/wiki/',
# wikipedia='http://wikipedia.org/wiki/',)
# )
parser = Parser(dialect = create_dialect(\
creole11_base,
wiki_links_base_url = reverse('aswiki_topic_index'), # NOTE: Make this
# a two element
# list for images
# to be loaded
# from a separate
# URL
wiki_links_space_char = '%20', # NOTE: make this a two element list to
# give images a different space
# character.
no_wiki_monospace = False,
wiki_links_class_func = class_fn,
wiki_links_path_func = (TOPIC_LIST.path_fn,
TOPIC_LIST.image_fn),
bodied_macros = { },
non_bodied_macros = { },
macro_func = macro_fn,
# custom_markup = (),
interwiki_links_base_urls = {
'wikicreole' : 'http://wikicreole.org/wiki/',
'wikipedia' :'http://wikipedia.org/wiki/' }
))
| 37.848958 | 96 | 0.597083 |
1365f047bda189ac06139ef3c589483027732b74
| 13,825 |
py
|
Python
|
oauth_api/validators.py
|
anobi/django-oauth-api
|
95bf9b500dab326553a5a8a17d5c6da1a34f6ac4
|
[
"BSD-2-Clause"
] | null | null | null |
oauth_api/validators.py
|
anobi/django-oauth-api
|
95bf9b500dab326553a5a8a17d5c6da1a34f6ac4
|
[
"BSD-2-Clause"
] | null | null | null |
oauth_api/validators.py
|
anobi/django-oauth-api
|
95bf9b500dab326553a5a8a17d5c6da1a34f6ac4
|
[
"BSD-2-Clause"
] | 4 |
2015-07-30T11:03:54.000Z
|
2017-11-13T15:30:48.000Z
|
import base64
import binascii
from datetime import timedelta
from django.contrib.auth import authenticate
from django.utils import timezone
from oauthlib.oauth2 import RequestValidator
from oauth_api.models import get_application_model, AccessToken, AuthorizationCode, RefreshToken, AbstractApplication
from oauth_api.settings import oauth_api_settings
GRANT_TYPE_MAPPING = {
'authorization_code': (AbstractApplication.GRANT_AUTHORIZATION_CODE,),
'password': (AbstractApplication.GRANT_PASSWORD,),
'client_credentials': (AbstractApplication.GRANT_CLIENT_CREDENTIALS,),
'refresh_token': (AbstractApplication.GRANT_AUTHORIZATION_CODE, AbstractApplication.GRANT_PASSWORD,
AbstractApplication.GRANT_CLIENT_CREDENTIALS)
}
| 37.364865 | 124 | 0.636166 |
13662d9d6240c63c9a734dfc856cbc7f4107d5e2
| 160 |
py
|
Python
|
objects/fun_return.py
|
padmacho/pythontutorial
|
80c58d2d6efc0c3598f92b627338c6cd9fda1759
|
[
"Apache-2.0"
] | null | null | null |
objects/fun_return.py
|
padmacho/pythontutorial
|
80c58d2d6efc0c3598f92b627338c6cd9fda1759
|
[
"Apache-2.0"
] | null | null | null |
objects/fun_return.py
|
padmacho/pythontutorial
|
80c58d2d6efc0c3598f92b627338c6cd9fda1759
|
[
"Apache-2.0"
] | null | null | null |
x = [1, 2, 3]
y = modify(x)
print("x == y", x == y)
print("x == y", x is y)
| 26.666667 | 65 | 0.55625 |
1366f50a70db89f7b6f66ff4d8a7cc0516afcf2f
| 6,471 |
py
|
Python
|
edx_gen/_write_comps.py
|
hberndl70/mooc-generator
|
58ff77ece12b456887ec24db79d8baa87ecd5621
|
[
"MIT"
] | null | null | null |
edx_gen/_write_comps.py
|
hberndl70/mooc-generator
|
58ff77ece12b456887ec24db79d8baa87ecd5621
|
[
"MIT"
] | null | null | null |
edx_gen/_write_comps.py
|
hberndl70/mooc-generator
|
58ff77ece12b456887ec24db79d8baa87ecd5621
|
[
"MIT"
] | null | null | null |
import sys, os
import tarfile
import shutil
from edx_gen import _edx_consts
from edx_gen import _read_metadata
from edx_gen import _write_structure
from edx_gen import _write_comps
from edx_gen import _write_comp_html
from edx_gen import _write_comp_checkboxes
from edx_gen import _write_comp_video
from edx_gen import _xml_google_doc
from edx_gen import _markdown
from edx_gen import _util
import __SETTINGS__
#--------------------------------------------------------------------------------------------------
# Text strings
WARNING = " WARNING:"
#--------------------------------------------------------------------------------------------------
# write to either units folder or problems folder, depending on the type
#--------------------------------------------------------------------------------------------------
# write to either units folder or problems folder, depending on the type
#--------------------------------------------------------------------------------------------------
| 38.064706 | 117 | 0.641323 |
1367201e3118f25640a5bbd95836976d130709a4
| 2,403 |
py
|
Python
|
grading_program.py
|
ByeonghoonJeon/Student-Grading
|
eee55638aee4390d7758c1204b85cce7279ccdf7
|
[
"MIT"
] | null | null | null |
grading_program.py
|
ByeonghoonJeon/Student-Grading
|
eee55638aee4390d7758c1204b85cce7279ccdf7
|
[
"MIT"
] | null | null | null |
grading_program.py
|
ByeonghoonJeon/Student-Grading
|
eee55638aee4390d7758c1204b85cce7279ccdf7
|
[
"MIT"
] | null | null | null |
# 1. Create students score dictionary.
students_score = {}
# 2. Input student's name and check if input is correct. (Alphabet, period, and blank only.)
# 2.1 Creat a function that evaluate the validity of name.
while True:
# 2.2 Input student's name.
name = input("Please input student's name. \n")
check_name(name)
# 2.3 Check if the name is alphabet. If not, ask to input correct name again.
while check_name(name) != True:
name = input("Please input student's name. (Alphabet and period only.)\n")
# 3. Input student's score and check if input is correct. (digits only and between zero and 100)
score = input(f"Please input {name}'s score.(0 ~ 100)\n")
while score.isdigit() == False or int(score) not in range(0, 101):
score = input("Please input valid numbers only.(Number from zero to 100.)\n")
students_score[name] = score
# 4. Ask another student's information.
another_student = input(
"Do you want to input another student's information as well? (Y/N)\n"
)
while another_student.lower() not in ("yes", "y", "n", "no"):
# 4.1 Check if the input is valid.
another_student = input("Please input Y/N only.\n")
if another_student.lower() in ("yes", "y"):
continue
elif another_student.lower() in ("no", "n"):
break
for student in students_score:
score = students_score[student]
score = int(score)
if score >= 90:
students_score[student] = "A"
elif score in range(70, 90):
students_score[student] = "B"
elif score in range(50, 70):
students_score[student] = "C"
elif score in range(40, 50):
students_score[student] = "D"
else:
students_score[student] = "F"
print(students_score)
| 36.969231 | 100 | 0.646275 |
136832386a64df8b748feecd13c99a4dc30fc9d5
| 735 |
py
|
Python
|
test/test_utils.py
|
by46/recipe
|
203abd2141a536b66b4e57d073169a49395be1f0
|
[
"MIT"
] | null | null | null |
test/test_utils.py
|
by46/recipe
|
203abd2141a536b66b4e57d073169a49395be1f0
|
[
"MIT"
] | null | null | null |
test/test_utils.py
|
by46/recipe
|
203abd2141a536b66b4e57d073169a49395be1f0
|
[
"MIT"
] | null | null | null |
import unittest
from recipe import utils
| 33.409091 | 77 | 0.719728 |
1368b69e2269d6b7303299c5097db81eca903217
| 6,708 |
py
|
Python
|
extern/smplx_kinect/smplx_kinect/common/avakhitov_utils.py
|
wangxihao/rgbd-kinect-pose
|
03180723c99759ba2500bcd42b5fe7a1d26eb507
|
[
"MIT"
] | 1 |
2022-02-07T06:12:26.000Z
|
2022-02-07T06:12:26.000Z
|
extern/smplx_kinect/smplx_kinect/common/avakhitov_utils.py
|
wangxihao/rgbd-kinect-pose
|
03180723c99759ba2500bcd42b5fe7a1d26eb507
|
[
"MIT"
] | null | null | null |
extern/smplx_kinect/smplx_kinect/common/avakhitov_utils.py
|
wangxihao/rgbd-kinect-pose
|
03180723c99759ba2500bcd42b5fe7a1d26eb507
|
[
"MIT"
] | null | null | null |
import numpy as np
import cv2
import os.path as osp
import json
from human_body_prior.tools.model_loader import load_vposer
import torch
vposer_ckpt = '/Vol1/dbstore/datasets/a.vakhitov/projects/pykinect_fresh/smplify-x/smplify-x-data/vposer_v1_0/'
def batch_rodrigues(rot_vecs, epsilon=1e-8, dtype=torch.float32):
''' Calculates the rotation matrices for a batch of rotation vectors
Parameters
----------
rot_vecs: torch.tensor Nx3
array of N axis-angle vectors
Returns
-------
R: torch.tensor Nx3x3
The rotation matrices for the given axis-angle parameters
'''
batch_size = rot_vecs.shape[0]
device = rot_vecs.device
angle = torch.norm(rot_vecs + 1e-8, dim=1, keepdim=True)
rot_dir = rot_vecs / angle
cos = torch.unsqueeze(torch.cos(angle), dim=1)
sin = torch.unsqueeze(torch.sin(angle), dim=1)
# Bx1 arrays
rx, ry, rz = torch.split(rot_dir, 1, dim=1)
K = torch.zeros((batch_size, 3, 3), dtype=dtype, device=device)
zeros = torch.zeros((batch_size, 1), dtype=dtype, device=device)
K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \
.view((batch_size, 3, 3))
ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0)
rot_mat = ident + sin * K + (1 - cos) * torch.bmm(K, K)
return rot_mat
| 35.120419 | 118 | 0.570662 |
1368b793b823b3bd0b461ed385d6e6b6434e1e68
| 3,455 |
py
|
Python
|
scripts/dev/dockerutil.py
|
axelbarjon/mongodb-kubernetes-operator
|
13eb844c55774ce8a6de51edde1a66b4371f3ef6
|
[
"RSA-MD"
] | 1 |
2021-03-24T17:54:51.000Z
|
2021-03-24T17:54:51.000Z
|
scripts/dev/dockerutil.py
|
axelbarjon/mongodb-kubernetes-operator
|
13eb844c55774ce8a6de51edde1a66b4371f3ef6
|
[
"RSA-MD"
] | 18 |
2021-03-08T13:38:37.000Z
|
2022-02-14T15:06:28.000Z
|
scripts/dev/dockerutil.py
|
axelbarjon/mongodb-kubernetes-operator
|
13eb844c55774ce8a6de51edde1a66b4371f3ef6
|
[
"RSA-MD"
] | 1 |
2021-03-25T13:37:02.000Z
|
2021-03-25T13:37:02.000Z
|
import docker
from dockerfile_generator import render
import os
import json
from tqdm import tqdm
from typing import Union, Any, Optional
def build_image(repo_url: str, tag: str, path: str) -> None:
"""
build_image builds the image with the given tag
"""
client = docker.from_env()
print(f"Building image: {tag}")
client.images.build(tag=tag, path=path)
print("Successfully built image!")
def push_image(tag: str) -> None:
"""
push_image pushes the given tag. It uses
the current docker environment
"""
client = docker.from_env()
print(f"Pushing image: {tag}")
with tqdm(total=100, ascii=False) as progress_bar:
last_percent = 0.0
for line in client.images.push(tag, stream=True):
percent = get_completion_percentage(line)
if percent:
progress_bar.update(percent - last_percent)
last_percent = percent
def build_and_push_image(repo_url: str, tag: str, path: str, image_type: str) -> None:
"""
build_and_push_operator creates the Dockerfile for the operator
and pushes it to the target repo
"""
dockerfile_text = render(image_type, ["."])
with open(f"{path}/Dockerfile", "w") as f:
f.write(dockerfile_text)
build_image(repo_url, tag, path)
os.remove(f"{path}/Dockerfile")
push_image(tag)
| 32.28972 | 108 | 0.636758 |
136925370fda5dbcb2e2d6d5e61c676370502bb7
| 904 |
py
|
Python
|
scripts/VCF/UTILS/select_variants.py
|
elowy01/igsr_analysis
|
ffea4885227c2299f886a4f41e70b6e1f6bb43da
|
[
"Apache-2.0"
] | 3 |
2018-04-20T15:04:34.000Z
|
2022-03-30T06:36:02.000Z
|
scripts/VCF/UTILS/select_variants.py
|
elowy01/igsr_analysis
|
ffea4885227c2299f886a4f41e70b6e1f6bb43da
|
[
"Apache-2.0"
] | 7 |
2019-06-06T09:22:20.000Z
|
2021-11-23T17:41:52.000Z
|
scripts/VCF/UTILS/select_variants.py
|
elowy01/igsr_analysis
|
ffea4885227c2299f886a4f41e70b6e1f6bb43da
|
[
"Apache-2.0"
] | 5 |
2017-11-02T11:17:35.000Z
|
2021-12-11T19:34:09.000Z
|
from VcfFilter import VcfFilter
import argparse
import os
#get command line arguments
parser = argparse.ArgumentParser(description='Script to select a certain variant type from a VCF file')
#parameters
parser.add_argument('--bcftools_folder', type=str, required=True, help='Folder containing the Bcftools binary' )
parser.add_argument('--filename', type=str, required=True, help='Name (without the fullpath) of the VCF file that will be analysed. It assumes that the filename format is for example lc_bams.gatk.xxxx.vcf.gz, where lc_bams is the analysis group and gatk is the method used' )
parser.add_argument('--type', type=str, required=False, help='Type of variant to select. i.e. snps/indels etc' )
args = parser.parse_args()
if __name__ == '__main__':
vcf_f=VcfFilter(vcf=args.filename,bcftools_folder=args.bcftools_folder)
vcf_f.filter_by_variant_type(type=args.type)
| 39.304348 | 275 | 0.766593 |
13695de67e652f576d889f205ef664189b73d45b
| 14,680 |
py
|
Python
|
site/tests/unittests/test/test_base64.py
|
martinphellwig/brython_wf
|
e169afc1e048cba0c12118b4cd6f109df6fe67c9
|
[
"BSD-3-Clause"
] | 652 |
2015-07-26T00:00:17.000Z
|
2022-02-24T18:30:04.000Z
|
site/tests/unittests/test/test_base64.py
|
martinphellwig/brython_wf
|
e169afc1e048cba0c12118b4cd6f109df6fe67c9
|
[
"BSD-3-Clause"
] | 8 |
2015-09-07T03:38:19.000Z
|
2021-05-23T03:18:51.000Z
|
check-python33-manual/samples/standard_library_337/Lib/test/test_base64.py
|
DaveKaretnyk/parsing-utils2
|
40085bbd399fa605f2f2a4708d385a64ffc907de
|
[
"MIT"
] | 40 |
2015-07-24T19:45:08.000Z
|
2021-11-01T14:54:56.000Z
|
import unittest
from test import support
import base64
import binascii
import os
import sys
import subprocess
def test_main():
support.run_unittest(__name__)
if __name__ == '__main__':
test_main()
| 41.586402 | 83 | 0.570981 |
1369857b721c52701d49ebb99393f03d4c246712
| 569 |
py
|
Python
|
appliance_catalog/migrations/0015_appliance_icon_py3.py
|
ChameleonCloud/portal
|
92a06fb926dc36e997b94fb8dcd22b7e0d24d3ee
|
[
"Apache-2.0"
] | 3 |
2015-08-04T20:53:41.000Z
|
2020-02-14T22:58:20.000Z
|
appliance_catalog/migrations/0015_appliance_icon_py3.py
|
ChameleonCloud/portal
|
92a06fb926dc36e997b94fb8dcd22b7e0d24d3ee
|
[
"Apache-2.0"
] | 103 |
2015-01-15T14:21:00.000Z
|
2022-03-31T19:14:20.000Z
|
appliance_catalog/migrations/0015_appliance_icon_py3.py
|
ChameleonCloud/portal
|
92a06fb926dc36e997b94fb8dcd22b7e0d24d3ee
|
[
"Apache-2.0"
] | 4 |
2016-02-22T16:48:20.000Z
|
2021-01-08T17:13:21.000Z
|
# -*- coding: utf-8 -*-
# Generated by Django 1.11.29 on 2021-02-25 20:32
from __future__ import unicode_literals
from django.db import migrations, models
| 24.73913 | 86 | 0.644991 |
136a5b3d51a58e910193de0d1a2f38a488d4801a
| 1,435 |
py
|
Python
|
twitoff/twitter.py
|
ChristopherKchilton/twitoff-ChristopherKchilton
|
fbac9899feff256ededab009b28e2f6ebd67f476
|
[
"MIT"
] | 1 |
2021-09-23T22:04:09.000Z
|
2021-09-23T22:04:09.000Z
|
twitoff/twitter.py
|
ChristopherKchilton/twitoff-ChristopherKchilton
|
fbac9899feff256ededab009b28e2f6ebd67f476
|
[
"MIT"
] | null | null | null |
twitoff/twitter.py
|
ChristopherKchilton/twitoff-ChristopherKchilton
|
fbac9899feff256ededab009b28e2f6ebd67f476
|
[
"MIT"
] | null | null | null |
"""Retrieve and request tweets from the DS API"""
import requests
import spacy
from .models import DB, Tweet, User
nlp = spacy.load("my_model")
# Add and updates tweets
def add_or_update_user(username):
"""Adds and updates the user with twiter handle 'username'
to our database
"""
#TODO: Figure out
try:
r = requests.get(
f"https://lambda-ds-twit-assist.herokuapp.com/user/{username}")
user = r.json()
user_id = user["twitter_handle"]["id"]
# print(user)
# This is either respectively grabs or creates a user for our db
db_user = (User.query.get(user_id)) or User(id=user_id, name=username)
# This adds the db_user to our database
DB.session.add(db_user)
tweets = user["tweets"]
# if tweets:
# db_user.newest_tweet_id = tweets[0].id
for tweet in tweets:
tweet_vector = vectorize_tweet(tweet["full_text"])
tweet_id = tweet["id"]
db_tweet = (Tweet.query.get(tweet_id)) or Tweet(
id=tweet["id"], text=tweet["full_text"], vect=tweet_vector)
db_user.tweets.append(db_tweet)
DB.session.add(db_tweet)
except Exception as e:
print("Error processing {}: {}".format(username, e))
raise e
else:
DB.session.commit()
| 25.175439 | 78 | 0.608362 |
136a6f790e3bad7ef05103763b29d85ab9987e87
| 595 |
py
|
Python
|
day22.py
|
p88h/aoc2017
|
a929a8c0894559b0d7dd3d0b58c076295087f4c8
|
[
"Unlicense"
] | 1 |
2021-12-26T21:28:47.000Z
|
2021-12-26T21:28:47.000Z
|
day22.py
|
p88h/aoc2017
|
a929a8c0894559b0d7dd3d0b58c076295087f4c8
|
[
"Unlicense"
] | null | null | null |
day22.py
|
p88h/aoc2017
|
a929a8c0894559b0d7dd3d0b58c076295087f4c8
|
[
"Unlicense"
] | null | null | null |
import io
grid = {}
y = 0
x = 0
for l in io.open("day22.in").read().splitlines():
for x in range(len(l)):
grid[(y,x)] = l[x]
y += 1
y = y // 2
x = x // 2
dx = 0
dy = -1
r = 0
for iter in range(10000000):
if (y,x) not in grid or grid[(y,x)] == '.':
(dy, dx) = (-dx, dy)
grid[(y,x)] = 'W'
elif grid[(y,x)] == 'W':
grid[(y,x)] = '#'
r += 1
elif grid[(y,x)] == '#':
(dy, dx) = (dx, -dy)
grid[(y,x)] = 'F'
elif grid[(y,x)] == 'F':
(dy, dx) = (-dy, -dx)
grid[(y,x)] = '.'
y += dy
x += dx
print(r)
| 19.833333 | 49 | 0.381513 |
136b2299eb41b7ded97c6048734842406f59258d
| 3,437 |
py
|
Python
|
ansys/dpf/core/errors.py
|
TheGoldfish01/pydpf-core
|
75ca8a180454f94cedafbc68c1d6f20dcfc4c795
|
[
"MIT"
] | 11 |
2021-01-31T15:50:02.000Z
|
2021-10-01T23:15:38.000Z
|
ansys/dpf/core/errors.py
|
TheGoldfish01/pydpf-core
|
75ca8a180454f94cedafbc68c1d6f20dcfc4c795
|
[
"MIT"
] | 46 |
2021-01-14T05:00:50.000Z
|
2021-10-06T18:30:37.000Z
|
ansys/dpf/core/errors.py
|
TheGoldfish01/pydpf-core
|
75ca8a180454f94cedafbc68c1d6f20dcfc4c795
|
[
"MIT"
] | 3 |
2021-06-30T07:18:30.000Z
|
2021-09-15T08:43:11.000Z
|
from grpc._channel import _InactiveRpcError, _MultiThreadedRendezvous
from functools import wraps
_COMPLEX_PLOTTING_ERROR_MSG = """
Complex fields cannot be plotted. Use operators to get the amplitude
or the result at a defined sweeping phase before plotting.
"""
_FIELD_CONTAINER_PLOTTING_MSG = """"
This fields_container contains multiple fields. Only one time-step
result can be plotted at a time. Extract a field with
``fields_container[index]``.
"""
def protect_grpc(func):
"""Capture gRPC exceptions and return a more succinct error message."""
return wrapper
| 28.882353 | 78 | 0.672971 |
136b533fe267643a58604244ebaf15ea2c8117bd
| 11 |
py
|
Python
|
ls10.py
|
yu961549745/pynote
|
5976aeeca6368c0956baddf6a9ccb93ae8e0612a
|
[
"MIT"
] | null | null | null |
ls10.py
|
yu961549745/pynote
|
5976aeeca6368c0956baddf6a9ccb93ae8e0612a
|
[
"MIT"
] | null | null | null |
ls10.py
|
yu961549745/pynote
|
5976aeeca6368c0956baddf6a9ccb93ae8e0612a
|
[
"MIT"
] | null | null | null |
'''
IO
'''
| 2.75 | 3 | 0.181818 |
136b5475110947f42e139d24c848b375d4d0e140
| 2,144 |
py
|
Python
|
deep_disfluency/feature_extraction/wer_calculation_from_final_asr_results.py
|
askender/deep_disfluency
|
bea8403ed954df8eadd3e2b9d98bb7c2b416a665
|
[
"MIT"
] | null | null | null |
deep_disfluency/feature_extraction/wer_calculation_from_final_asr_results.py
|
askender/deep_disfluency
|
bea8403ed954df8eadd3e2b9d98bb7c2b416a665
|
[
"MIT"
] | null | null | null |
deep_disfluency/feature_extraction/wer_calculation_from_final_asr_results.py
|
askender/deep_disfluency
|
bea8403ed954df8eadd3e2b9d98bb7c2b416a665
|
[
"MIT"
] | null | null | null |
from mumodo.mumodoIO import open_intervalframe_from_textgrid
import numpy
from deep_disfluency.utils.accuracy import wer
final_file = open('wer_test.text', "w")
ranges1 = [line.strip() for line in open(
"/media/data/jh/simple_rnn_disf/rnn_disf_detection/data/disfluency_detection/swda_divisions_disfluency_detection/SWDisfHeldoutASR_ranges.text")]
ranges2 = [line.strip() for line in open(
"/media/data/jh/simple_rnn_disf/rnn_disf_detection/data/disfluency_detection/swda_divisions_disfluency_detection/SWDisfTestASR_ranges.text")]
for ranges in [ranges1, ranges2]:
final_file.write("\n\n")
for r in ranges:
for s in ["A", "B"]:
iframe = open_intervalframe_from_textgrid("{0}{1}.TextGrid"
.format(r, s))
hyp = " ".join(iframe['Hyp']['text'])
ref = " ".join(iframe['Ref']['text'])
wer = wer(ref, hyp)
cost = wer(ref, hyp, macro=True)
print r, s, wer
print>>final_file, r, s, wer, cost
final_file.close()
# Based on the results, output the 'good' ASR results
results = open("wer_test.text")
no_ho = 0
no_test = 0
ingood = True
file = open("../../../simple_rnn_disf/rnn_disf_detection/data/disfluency_detection/swda_divisions_disfluency_detection/SWDisfHeldoutASRgood_ranges.text", "w")
for l in results:
# print l
if l == "\n":
print no_ho
no_ho = 0
file.close()
file = open(
"../../../simple_rnn_disf/rnn_disf_detection/data/disfluency_detection/swda_divisions_disfluency_detection/SWDisfTestASRgood_ranges.text",
"w")
continue
if float(l.strip('\n').split(" ")[
2]) < 0.4: # both speakers are under 40% error rate- likely half decent separation
# print l
if ingood and "B" in l.strip("\n").split(" ")[1]:
no_ho += 1
#file.write(l.strip('\n').split(" ")[0]+l.strip('\n').split(" ")[1]+"\n")
file.write(l.strip('\n').split(" ")[0] + "\n")
ingood = True
else:
ingood = False
print no_ho
results.close()
file.close()
| 36.965517 | 158 | 0.619403 |
136b8fe5a8aa80e827bc10eb9537bdf94b4fdc81
| 1,541 |
py
|
Python
|
newsweec/utils/_dataclasses.py
|
Adwaith-Rajesh/newsweec
|
f3b66fb6f74cb68be4e716269032db340abe8320
|
[
"MIT"
] | 13 |
2020-08-30T10:52:29.000Z
|
2021-08-18T12:20:39.000Z
|
newsweec/utils/_dataclasses.py
|
Adwaith-Rajesh/newsweec
|
f3b66fb6f74cb68be4e716269032db340abe8320
|
[
"MIT"
] | null | null | null |
newsweec/utils/_dataclasses.py
|
Adwaith-Rajesh/newsweec
|
f3b66fb6f74cb68be4e716269032db340abe8320
|
[
"MIT"
] | 1 |
2021-06-07T04:01:37.000Z
|
2021-06-07T04:01:37.000Z
|
from dataclasses import dataclass
from dataclasses import field
from time import time
from typing import Any
from typing import Callable
from typing import Dict
from typing import List
from typing import Optional
from typing import Tuple
| 22.661765 | 81 | 0.668397 |
136bbda00809274a9f8b16997fd9b06b349771f8
| 3,754 |
py
|
Python
|
vivo2notld/definitions/person_definition.py
|
gwu-libraries/vivo2notld
|
3f579f8aad28c60119864757e1fe66c2d64a0149
|
[
"MIT"
] | 5 |
2015-09-23T10:05:29.000Z
|
2016-04-07T17:08:38.000Z
|
vivo2notld/definitions/person_definition.py
|
gwu-libraries/vivo2notld
|
3f579f8aad28c60119864757e1fe66c2d64a0149
|
[
"MIT"
] | null | null | null |
vivo2notld/definitions/person_definition.py
|
gwu-libraries/vivo2notld
|
3f579f8aad28c60119864757e1fe66c2d64a0149
|
[
"MIT"
] | null | null | null |
from .document_summary import definition as document_summary_definition
from .organization_summary import definition as organization_summmary_definition
definition = {
"where": "?subj a foaf:Person .",
"fields": {
"name": {
"where": "?subj rdfs:label ?obj ."
},
#Contact info
"email": {
"where": """
?subj obo:ARG_2000028 ?vc .
?vc a vcard:Kind .
?vc vcard:hasEmail ?vce .
?vce a vcard:Email, vcard:Work .
?vce vcard:email ?obj .
"""
},
"telephone": {
"where": """
?subj obo:ARG_2000028 ?vc .
?vc a vcard:Kind .
?vc vcard:hasTelephone ?vct .
?vct a vcard:Telephone .
?vct vcard:telephone ?obj .
"""
},
"address": {
"where": """
?subj obo:ARG_2000028 ?vc .
?vc a vcard:Kind .
?vc vcard:hasAddress ?obj .
""",
"definition": {
"where": "?subj a vcard:Address .",
"fields": {
"address": {
"where": "?subj vcard:streetAddress ?obj ."
},
"city": {
"where": "?subj vcard:locality ?obj ."
},
"state": {
"where": "?subj vcard:region ?obj ."
},
"zip": {
"where": "?subj vcard:postalCode ?obj ."
}
}
}
},
"website": {
"list": True,
"where": """
?subj obo:ARG_2000028 ?vc .
?vc a vcard:Kind .
?vc vcard:hasURL ?vcu .
?vcu a vcard:URL .
?vcu vcard:url ?obj .
""",
"optional": True
},
"researchArea": {
"where": """
?subj vivo:hasResearchArea ?ra .
?ra rdfs:label ?obj .
""",
"optional": True,
"list": True
},
"geographicFocus": {
"where": """
?subj vivo:geographicFocus ?gf .
?gf rdfs:label ?obj .
""",
"optional": True,
"list": True
},
"overview": {
"where": "?subj vivo:overview ?obj .",
"optional": True,
},
"positions": {
"where": "?subj vivo:relatedBy ?obj .",
"definition": {
"where": "?subj a vivo:Position .",
"fields": {
"title": {
"where": "?subj rdfs:label ?obj ."
},
"organization": {
"where": "?subj vivo:relates ?obj .",
"definition": organization_summmary_definition
}
}
},
"optional": True,
"list": True
},
"publications": {
"where": """
?subj vivo:relatedBy ?aship .
?aship a vivo:Authorship .
?aship vivo:relates ?obj .
""",
"definition": document_summary_definition,
"optional": True,
"list": True
}
}
}
| 33.221239 | 80 | 0.34017 |
136d5996f3e902f896a0d95201a3a98051d0cce2
| 1,553 |
py
|
Python
|
apart/search.py
|
ruslan-ok/ServerApps
|
541aa12f1933054a12f590ce78544178be374669
|
[
"MIT"
] | 1 |
2021-06-07T02:14:13.000Z
|
2021-06-07T02:14:13.000Z
|
apart/search.py
|
ruslan-ok/ServerApps
|
541aa12f1933054a12f590ce78544178be374669
|
[
"MIT"
] | 9 |
2021-08-14T07:53:47.000Z
|
2022-03-18T19:07:22.000Z
|
apart/search.py
|
ruslan-ok/ServerApps
|
541aa12f1933054a12f590ce78544178be374669
|
[
"MIT"
] | null | null | null |
from django.db.models import Q
from hier.search import SearchResult
from .models import app_name, Apart, Meter, Bill, Service, Price
| 45.676471 | 146 | 0.696072 |
136df33d64bf85a2b5e33607c10d78558114c0b0
| 5,884 |
py
|
Python
|
pyrevolve/experiment_management.py
|
MRebolle/Battery-Robot
|
1b97e8c77cf7eff7d5cc7e417b4e5ec97e4011e7
|
[
"Apache-1.1"
] | null | null | null |
pyrevolve/experiment_management.py
|
MRebolle/Battery-Robot
|
1b97e8c77cf7eff7d5cc7e417b4e5ec97e4011e7
|
[
"Apache-1.1"
] | null | null | null |
pyrevolve/experiment_management.py
|
MRebolle/Battery-Robot
|
1b97e8c77cf7eff7d5cc7e417b4e5ec97e4011e7
|
[
"Apache-1.1"
] | null | null | null |
import os
import shutil
import numpy as np
from pyrevolve.custom_logging.logger import logger
import sys
| 41.730496 | 181 | 0.653977 |
136e61a21e482a156b8b710f63c002d29a6f7812
| 2,136 |
py
|
Python
|
books/model/Instrumentation.py
|
nudglabs/books-python-wrappers
|
8844eca8fe681542644a70749b72a6dc4e48c171
|
[
"MIT"
] | 9 |
2015-04-01T08:59:49.000Z
|
2022-01-27T01:27:45.000Z
|
books/model/Instrumentation.py
|
nudglabs/books-python-wrappers
|
8844eca8fe681542644a70749b72a6dc4e48c171
|
[
"MIT"
] | 3 |
2020-05-14T04:22:22.000Z
|
2021-08-06T11:19:03.000Z
|
books/model/Instrumentation.py
|
nudglabs/books-python-wrappers
|
8844eca8fe681542644a70749b72a6dc4e48c171
|
[
"MIT"
] | 11 |
2016-04-14T10:59:36.000Z
|
2020-08-19T13:26:05.000Z
|
#$Id$
| 25.428571 | 67 | 0.627341 |
136f314f36b3d7d707a24bb2dc1a76fc985f86a7
| 1,079 |
py
|
Python
|
DPR/setup.py
|
sophiaalthammer/parm
|
ecf2dce5ee225b18e1ed3736a86696cc81e0797c
|
[
"MIT"
] | 18 |
2022-01-06T13:03:40.000Z
|
2022-03-29T14:24:23.000Z
|
DPR/setup.py
|
k-for-code/parm
|
ecf2dce5ee225b18e1ed3736a86696cc81e0797c
|
[
"MIT"
] | 1 |
2022-01-20T08:45:19.000Z
|
2022-01-24T05:18:40.000Z
|
DPR/setup.py
|
k-for-code/parm
|
ecf2dce5ee225b18e1ed3736a86696cc81e0797c
|
[
"MIT"
] | 4 |
2021-05-27T08:33:18.000Z
|
2022-02-20T17:45:40.000Z
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from setuptools import setup
with open("README.md") as f:
readme = f.read()
setup(
name="dpr",
version="0.1.0",
description="Facebook AI Research Open Domain Q&A Toolkit",
url="https://github.com/facebookresearch/DPR/",
classifiers=[
"Intended Audience :: Science/Research",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3.6",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
],
long_description=readme,
long_description_content_type="text/markdown",
setup_requires=[
"setuptools>=18.0",
],
install_requires=[
"cython",
"faiss-cpu>=1.6.1",
"filelock",
"numpy",
"regex",
"torch>=1.2.0",
"transformers>=3.0.0,<3.1.0",
"tqdm>=4.27",
"wget",
"spacy>=2.1.8",
],
)
| 25.690476 | 69 | 0.594995 |
136f33f06908f09a707c44642cdf5eac1e23e341
| 2,817 |
py
|
Python
|
leetcode/hard/smallest_range/srcs/a_with_ordered_dict.py
|
BillionsRichard/pycharmWorkspace
|
709e2681fc6d85ff52fb25717215a365f51073aa
|
[
"Apache-2.0"
] | null | null | null |
leetcode/hard/smallest_range/srcs/a_with_ordered_dict.py
|
BillionsRichard/pycharmWorkspace
|
709e2681fc6d85ff52fb25717215a365f51073aa
|
[
"Apache-2.0"
] | null | null | null |
leetcode/hard/smallest_range/srcs/a_with_ordered_dict.py
|
BillionsRichard/pycharmWorkspace
|
709e2681fc6d85ff52fb25717215a365f51073aa
|
[
"Apache-2.0"
] | null | null | null |
# encoding: utf-8
"""
@version: v1.0
@author: Richard
@license: Apache Licence
@contact: [email protected]
@site:
@software: PyCharm
@time: 2019/9/12 20:37
"""
from pprint import pprint as pp
from operator import itemgetter
import time
from collections import OrderedDict
from hard.smallest_range.srcs.big_2d_list import BIG_LIST_85
from hard.smallest_range.srcs.big_2d_list import BIG_LIST_86
if __name__ == '__main__':
s = Solution()
nums = [[4, 10, 15, 24, 26], [0, 9, 12, 20], [5, 18, 22, 30]]
# nums = [[10], [11]]
# nums = [[11,38,83,
# 84,84,85,88,89,89,92],[28,61,89],[52,77,79,80,81],[21,25,26,26,26,27],[9,83,85,90],[84,85,87],[26,68,70,71],[36,40,41,42,45],[-34,21],[-28,-28,-23,1,13,21,28,37,37,38],[-74,1,2,22,33,35,43,45],[54,96,98,98,99],[43,54,60,65,71,75],[43,46],[50,50,58,67,69],[7,14,15],[78,80,89,89,90],[35,47,63,69,77,92,94]]
# [-74, 1, 2, 22, 33, 35, 43, 45], [54, 96, 98, 98, 99], [43, 54, 60, 65, 71, 75], [43, 46],
# [50, 50, 58, 67, 69], [7, 14, 15], [78, 80, 89, 89, 90], [35, 47, 63, 69, 77, 92, 94]]
nums = BIG_LIST_85
# nums = BIG_LIST_86
min_range = s.smallestRange(nums)
print(min_range)
| 31.651685 | 311 | 0.547746 |
136ff9b25221822f1896aad526fbb94d03b405cd
| 4,887 |
py
|
Python
|
pcf/particle/gcp/storage/storage.py
|
davidyum/Particle-Cloud-Framework
|
f6325a60a3838f86bd73bf4071438e12f9c68f8d
|
[
"Apache-2.0"
] | null | null | null |
pcf/particle/gcp/storage/storage.py
|
davidyum/Particle-Cloud-Framework
|
f6325a60a3838f86bd73bf4071438e12f9c68f8d
|
[
"Apache-2.0"
] | null | null | null |
pcf/particle/gcp/storage/storage.py
|
davidyum/Particle-Cloud-Framework
|
f6325a60a3838f86bd73bf4071438e12f9c68f8d
|
[
"Apache-2.0"
] | null | null | null |
from pcf.core.gcp_resource import GCPResource
from pcf.core import State
import logging
from google.cloud import storage
from google.cloud import exceptions
logger = logging.getLogger(__name__)
| 28.91716 | 104 | 0.602415 |
13700654033637b55b5386791b563e0e83f1b925
| 498 |
py
|
Python
|
cimcb/utils/smooth.py
|
CIMCB/cimcb
|
5d30f80423ed94e1068871b30e465b38d451581a
|
[
"MIT"
] | 5 |
2020-05-26T23:45:40.000Z
|
2022-01-13T00:40:14.000Z
|
cimcb/utils/smooth.py
|
CIMCB/cimcb
|
5d30f80423ed94e1068871b30e465b38d451581a
|
[
"MIT"
] | 3 |
2020-10-20T09:03:18.000Z
|
2021-11-01T14:22:05.000Z
|
cimcb/utils/smooth.py
|
KevinMMendez/cimcb
|
fe831253b122ed0ff9e33cbd160ef721abee1e38
|
[
"MIT"
] | 4 |
2020-10-12T07:17:43.000Z
|
2022-03-28T06:28:44.000Z
|
import numpy as np
| 33.2 | 65 | 0.588353 |
13710731fb3b914385bee296e01c654e62f3641b
| 11,810 |
py
|
Python
|
ezeeai/core/extensions/best_exporter.py
|
jmarine/ezeeai
|
091b4ce3bc5794c534084bff3301b15ba8a9be1a
|
[
"Apache-2.0"
] | 19 |
2019-06-12T03:14:59.000Z
|
2021-05-31T16:02:53.000Z
|
ezeeai/core/extensions/best_exporter.py
|
jmarine/ezeeai
|
091b4ce3bc5794c534084bff3301b15ba8a9be1a
|
[
"Apache-2.0"
] | 29 |
2019-06-27T10:15:38.000Z
|
2022-03-11T23:46:36.000Z
|
ezeeai/core/extensions/best_exporter.py
|
jmarine/ezeeai
|
091b4ce3bc5794c534084bff3301b15ba8a9be1a
|
[
"Apache-2.0"
] | 10 |
2019-05-14T17:45:44.000Z
|
2020-08-26T13:25:04.000Z
|
from __future__ import absolute_import
import abc
import os
import json
import glob
import shutil
from tensorflow.python.estimator import gc
from tensorflow.python.estimator import util
from tensorflow.python.estimator.canned import metric_keys
from tensorflow.python.framework import errors_impl
from tensorflow.python.platform import gfile
from tensorflow.python.platform import tf_logging
from tensorflow.python.summary import summary_iterator
from tensorflow.python.estimator.exporter import Exporter, _SavedModelExporter
def _verify_compare_fn_args(compare_fn):
"""Verifies compare_fn arguments."""
args = set(util.fn_args(compare_fn))
if 'best_eval_result' not in args:
raise ValueError(
'compare_fn (%s) must include best_eval_result argument.' % compare_fn)
if 'current_eval_result' not in args:
raise ValueError(
'compare_fn (%s) must include current_eval_result argument.' %
compare_fn)
non_valid_args = list(args - set(['best_eval_result', 'current_eval_result']))
if non_valid_args:
raise ValueError('compare_fn (%s) has following not expected args: %s' %
(compare_fn, non_valid_args))
def _loss_smaller(best_eval_result, current_eval_result):
"""Compares two evaluation results and returns true if the 2nd one is smaller.
Both evaluation results should have the values for MetricKeys.LOSS, which are
used for comparison.
Args:
best_eval_result: best eval metrics.
current_eval_result: current eval metrics.
Returns:
True if the loss of current_eval_result is smaller; otherwise, False.
Raises:
ValueError: If input eval result is None or no loss is available.
"""
default_key = metric_keys.MetricKeys.LOSS
if not best_eval_result or default_key not in best_eval_result:
raise ValueError(
'best_eval_result cannot be empty or no loss is found in it.')
if not current_eval_result or default_key not in current_eval_result:
raise ValueError(
'current_eval_result cannot be empty or no loss is found in it.')
return best_eval_result[default_key] > current_eval_result[default_key]
| 44.398496 | 98 | 0.637934 |
13716a3c1d81e757e4d87853e2f35128b1e83ff1
| 5,329 |
py
|
Python
|
src/pkgcore/restrictions/restriction.py
|
mgorny/pkgcore
|
ab4a718aa1626f4edeb385383f5595a1e262b0dc
|
[
"BSD-3-Clause"
] | null | null | null |
src/pkgcore/restrictions/restriction.py
|
mgorny/pkgcore
|
ab4a718aa1626f4edeb385383f5595a1e262b0dc
|
[
"BSD-3-Clause"
] | null | null | null |
src/pkgcore/restrictions/restriction.py
|
mgorny/pkgcore
|
ab4a718aa1626f4edeb385383f5595a1e262b0dc
|
[
"BSD-3-Clause"
] | null | null | null |
# Copyright: 2005-2012 Brian Harring <[email protected]
# Copyright: 2006 Marien Zwart <[email protected]>
# License: BSD/GPL2
"""
base restriction class
"""
from functools import partial
from snakeoil import caching, klass
from snakeoil.currying import pretty_docs
def curry_node_type(cls, node_type, extradoc=None):
"""Helper function for creating restrictions of a certain type.
This uses :obj:`partial` to pass a node_type to the wrapped class,
and extends the docstring.
:param cls: callable (usually a class) that is wrapped.
:param node_type: value passed as node_type.
:param extradoc: addition to the docstring. Defaults to
"Automatically set to %s type." % node_type
:return: a wrapped callable.
"""
if extradoc is None:
extradoc = "Automatically set to %s type." % (node_type,)
doc = cls.__doc__
result = partial(cls, node_type=node_type)
if doc is None:
doc = ''
else:
# do this so indentation on pydoc __doc__ is sane
doc = "\n".join(line.lstrip() for line in doc.split("\n")) + "\n"
doc += extradoc
return pretty_docs(result, doc)
value_type = "values"
package_type = "package"
valid_types = (value_type, package_type)
| 27.611399 | 78 | 0.627698 |
1372983b8db0190678e8ab88123c2241d2b934f3
| 797 |
py
|
Python
|
keylime/migrations/versions/8da20383f6e1_extend_ip_field.py
|
kkaarreell/keylime
|
e12658bb6dc945b694e298b8ac337a204ab86ed2
|
[
"Apache-2.0"
] | 18 |
2016-10-19T13:57:32.000Z
|
2019-01-12T21:35:43.000Z
|
keylime/migrations/versions/8da20383f6e1_extend_ip_field.py
|
kkaarreell/keylime
|
e12658bb6dc945b694e298b8ac337a204ab86ed2
|
[
"Apache-2.0"
] | 72 |
2019-01-24T10:12:59.000Z
|
2019-04-17T11:07:16.000Z
|
keylime/migrations/versions/8da20383f6e1_extend_ip_field.py
|
kkaarreell/keylime
|
e12658bb6dc945b694e298b8ac337a204ab86ed2
|
[
"Apache-2.0"
] | 10 |
2017-03-27T20:58:08.000Z
|
2018-07-30T12:59:27.000Z
|
"""extend_ip_field
Revision ID: 8da20383f6e1
Revises: eeb702f77d7d
Create Date: 2021-01-14 10:50:56.275257
"""
import sqlalchemy as sa
from alembic import op
# revision identifiers, used by Alembic.
revision = "8da20383f6e1"
down_revision = "eeb702f77d7d"
branch_labels = None
depends_on = None
| 18.534884 | 105 | 0.72522 |
1372bb8d33de36c039935d2eac285248cdacdfb7
| 301 |
py
|
Python
|
token_train/quickdemo(1)(1).py
|
Tatsuya26/processamento_de_linguagens
|
e89ab8461bcf3264a79f10b7ebc2208eff271c6c
|
[
"MIT"
] | null | null | null |
token_train/quickdemo(1)(1).py
|
Tatsuya26/processamento_de_linguagens
|
e89ab8461bcf3264a79f10b7ebc2208eff271c6c
|
[
"MIT"
] | null | null | null |
token_train/quickdemo(1)(1).py
|
Tatsuya26/processamento_de_linguagens
|
e89ab8461bcf3264a79f10b7ebc2208eff271c6c
|
[
"MIT"
] | null | null | null |
import ply.lex as lex
tokens =["NUM","OPERADORES"]
t_NUM = '\d+'
t_OPERADORES = '[+|*|-]'
t_ignore='\n\t '
lexer = lex.lex()
# 1+2 1-2 1*2
# ola mundo
import sys
for line in sys.stdin:
lexer.input(line)
for tok in lexer:
print(tok)
| 13.086957 | 28 | 0.584718 |
1373c11e16cd5b0b44349e8fb881270741a3ce25
| 1,657 |
py
|
Python
|
ucsrb/migrations/0013_auto_20180710_2040.py
|
Ecotrust/ucsrb
|
29d97cf1f21537aaf24f38e7dedc7c8cfccf1f12
|
[
"MIT"
] | 1 |
2018-07-31T00:58:30.000Z
|
2018-07-31T00:58:30.000Z
|
ucsrb/migrations/0013_auto_20180710_2040.py
|
Ecotrust/ucsrb
|
29d97cf1f21537aaf24f38e7dedc7c8cfccf1f12
|
[
"MIT"
] | 264 |
2017-10-24T23:54:52.000Z
|
2021-10-16T15:40:47.000Z
|
ucsrb/migrations/0013_auto_20180710_2040.py
|
Ecotrust/ucsrb
|
29d97cf1f21537aaf24f38e7dedc7c8cfccf1f12
|
[
"MIT"
] | 1 |
2019-07-16T06:37:45.000Z
|
2019-07-16T06:37:45.000Z
|
# -*- coding: utf-8 -*-
# Generated by Django 1.11.9 on 2018-07-10 20:40
from __future__ import unicode_literals
from django.db import migrations, models
| 32.490196 | 72 | 0.620398 |
137402a725b61eaf0c95cb37df89ef2b691ce663
| 2,015 |
py
|
Python
|
src/ctc/protocols/fei_utils/analytics/payload_crud.py
|
fei-protocol/checkthechain
|
ec838f3d0d44af228f45394d9ba8d8eb7f677520
|
[
"MIT"
] | 94 |
2022-02-15T19:34:49.000Z
|
2022-03-26T19:26:22.000Z
|
src/ctc/protocols/fei_utils/analytics/payload_crud.py
|
fei-protocol/checkthechain
|
ec838f3d0d44af228f45394d9ba8d8eb7f677520
|
[
"MIT"
] | 7 |
2022-03-03T02:58:47.000Z
|
2022-03-11T18:41:05.000Z
|
src/ctc/protocols/fei_utils/analytics/payload_crud.py
|
fei-protocol/checkthechain
|
ec838f3d0d44af228f45394d9ba8d8eb7f677520
|
[
"MIT"
] | 7 |
2022-02-15T17:53:07.000Z
|
2022-03-17T19:14:17.000Z
|
from __future__ import annotations
import typing
from ctc import spec
from . import timestamp_crud
from . import metric_crud
from . import analytics_spec
# def update_payload(
# timescale: analytics_spec.Timescale,
# old_payload: analytics_spec.AnalyticsPayload,
# ) -> analytics_spec.AnalyticsPayload:
# new_timestamps = get_new_timestamps(
# timescale=timescale,
# old_payload=old_payload,
# )
# new_blocks = get_new_blocks(
# new_timestamps=new_timestamps,
# old_payload=old_payload,
# )
# new_metrics = get_metrics(blocks=new_blocks)
# return combine_new_data(
# old_payload=old_payload,
# new_metrics=new_metrics,
# )
| 27.22973 | 69 | 0.658065 |
1374addc1e8f402af9273db13845fe70ea5229f1
| 18,118 |
py
|
Python
|
research/video_prediction/prediction_model.py
|
mbz/models
|
98dcd8dbcb1027e4b22f79113018df30da4b8590
|
[
"Apache-2.0"
] | 1 |
2021-10-05T13:34:44.000Z
|
2021-10-05T13:34:44.000Z
|
research/video_prediction/prediction_model.py
|
mbz/models
|
98dcd8dbcb1027e4b22f79113018df30da4b8590
|
[
"Apache-2.0"
] | null | null | null |
research/video_prediction/prediction_model.py
|
mbz/models
|
98dcd8dbcb1027e4b22f79113018df30da4b8590
|
[
"Apache-2.0"
] | 1 |
2020-11-14T04:15:00.000Z
|
2020-11-14T04:15:00.000Z
|
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Model architecture for predictive model, including CDNA, DNA, and STP."""
import numpy as np
import tensorflow as tf
import tensorflow.contrib.slim as slim
from tensorflow.python.platform import flags
from tensorflow.contrib.layers.python import layers as tf_layers
from lstm_ops import basic_conv_lstm_cell
FLAGS = flags.FLAGS
# Amount to use when lower bounding tensors
RELU_SHIFT = 1e-12
# kernel size for DNA and CDNA.
DNA_KERN_SIZE = 5
def kl_divergence(mu, log_sigma):
"""KL divergence of diagonal gaussian N(mu,exp(log_sigma)) and N(0,1).
Args:
mu: mu parameter of the distribution.
log_sigma: log(sigma) parameter of the distribution.
Returns:
the KL loss.
"""
return -.5 * tf.reduce_sum(1. + log_sigma - tf.square(mu) - tf.exp(log_sigma),
axis=1)
def construct_latent_tower(images):
"""Builds convolutional latent tower for stochastic model.
At training time this tower generates a latent distribution (mean and std)
conditioned on the entire video. This latent variable will be fed to the
main tower as an extra variable to be used for future frames prediction.
At inference time, the tower is disabled and only returns latents sampled
from N(0,1).
If the multi_latent flag is on, a different latent for every timestep would
be generated.
Args:
images: tensor of ground truth image sequences
Returns:
latent_mean: predicted latent mean
latent_std: predicted latent standard deviation
latent_loss: loss of the latent twoer
samples: random samples sampled from standard guassian
"""
with slim.arg_scope([slim.conv2d], reuse=False):
stacked_images = tf.concat(images, 3)
latent_enc1 = slim.conv2d(
stacked_images,
32, [3, 3],
stride=2,
scope='latent_conv1',
normalizer_fn=tf_layers.layer_norm,
normalizer_params={'scope': 'latent_norm1'})
latent_enc2 = slim.conv2d(
latent_enc1,
64, [3, 3],
stride=2,
scope='latent_conv2',
normalizer_fn=tf_layers.layer_norm,
normalizer_params={'scope': 'latent_norm2'})
latent_enc3 = slim.conv2d(
latent_enc2,
64, [3, 3],
stride=1,
scope='latent_conv3',
normalizer_fn=tf_layers.layer_norm,
normalizer_params={'scope': 'latent_norm3'})
latent_mean = slim.conv2d(
latent_enc3,
FLAGS.latent_channels, [3, 3],
stride=2,
activation_fn=None,
scope='latent_mean',
normalizer_fn=tf_layers.layer_norm,
normalizer_params={'scope': 'latent_norm_mean'})
latent_std = slim.conv2d(
latent_enc3,
FLAGS.latent_channels, [3, 3],
stride=2,
scope='latent_std',
normalizer_fn=tf_layers.layer_norm,
normalizer_params={'scope': 'latent_std_norm'})
latent_std += FLAGS.latent_std_min
divergence = kl_divergence(latent_mean, latent_std)
latent_loss = tf.reduce_mean(divergence)
if FLAGS.multi_latent:
# timestep x batch_size x latent_size
samples = tf.random_normal(
[FLAGS.sequence_length-1] + latent_mean.shape, 0, 1,
dtype=tf.float32)
else:
# batch_size x latent_size
samples = tf.random_normal(latent_mean.shape, 0, 1, dtype=tf.float32)
if FLAGS.inference_time:
# No latent tower at inference time, just standard gaussian.
return None, None, None, samples
else:
return latent_mean, latent_std, latent_loss, samples
def construct_model(images,
actions=None,
states=None,
iter_num=-1.0,
k=-1,
use_state=True,
num_masks=10,
stp=False,
cdna=True,
dna=False,
context_frames=2):
"""Build convolutional lstm video predictor using STP, CDNA, or DNA.
Args:
images: tensor of ground truth image sequences
actions: tensor of action sequences
states: tensor of ground truth state sequences
iter_num: tensor of the current training iteration (for sched. sampling)
k: constant used for scheduled sampling. -1 to feed in own prediction.
use_state: True to include state and action in prediction
num_masks: the number of different pixel motion predictions (and
the number of masks for each of those predictions)
stp: True to use Spatial Transformer Predictor (STP)
cdna: True to use Convoluational Dynamic Neural Advection (CDNA)
dna: True to use Dynamic Neural Advection (DNA)
context_frames: number of ground truth frames to pass in before
feeding in own predictions
Returns:
gen_images: predicted future image frames
gen_states: predicted future states
Raises:
ValueError: if more than one network option specified or more than 1 mask
specified for DNA model.
"""
# Each image is being used twice, in latent tower and main tower.
# This is to make sure we are using the *same* image for both, ...
# ... given how TF queues work.
images = [tf.identity(image) for image in images]
if stp + cdna + dna != 1:
raise ValueError('More than one, or no network option specified.')
batch_size, img_height, img_width, color_channels = images[0].get_shape()[0:4]
lstm_func = basic_conv_lstm_cell
# Generated robot states and images.
gen_states, gen_images = [], []
current_state = states[0]
if k == -1:
feedself = True
else:
# Scheduled sampling:
# Calculate number of ground-truth frames to pass in.
num_ground_truth = tf.to_int32(
tf.round(tf.to_float(batch_size) * (k / (k + tf.exp(iter_num / k)))))
feedself = False
# LSTM state sizes and states.
lstm_size = np.int32(np.array([32, 32, 64, 64, 128, 64, 32]))
lstm_state1, lstm_state2, lstm_state3, lstm_state4 = None, None, None, None
lstm_state5, lstm_state6, lstm_state7 = None, None, None
# Latent tower
latent_loss = 0.0
if FLAGS.stochastic_model:
latent_tower_outputs = construct_latent_tower(images)
latent_mean, latent_std, latent_loss, samples = latent_tower_outputs
# Main tower
for image, action in zip(images[:-1], actions[:-1]):
# Reuse variables after the first timestep.
reuse = bool(gen_images)
done_warm_start = len(gen_images) > context_frames - 1
with slim.arg_scope(
[lstm_func, slim.layers.conv2d, slim.layers.fully_connected,
tf_layers.layer_norm, slim.layers.conv2d_transpose],
reuse=reuse):
if feedself and done_warm_start:
# Feed in generated image.
prev_image = gen_images[-1]
elif done_warm_start:
# Scheduled sampling
prev_image = scheduled_sample(image, gen_images[-1], batch_size,
num_ground_truth)
else:
# Always feed in ground_truth
prev_image = image
# Predicted state is always fed back in
state_action = tf.concat(axis=1, values=[action, current_state])
enc0 = slim.layers.conv2d(
prev_image,
32, [5, 5],
stride=2,
scope='scale1_conv1',
normalizer_fn=tf_layers.layer_norm,
normalizer_params={'scope': 'layer_norm1'})
hidden1, lstm_state1 = lstm_func(
enc0, lstm_state1, lstm_size[0], scope='state1')
hidden1 = tf_layers.layer_norm(hidden1, scope='layer_norm2')
hidden2, lstm_state2 = lstm_func(
hidden1, lstm_state2, lstm_size[1], scope='state2')
hidden2 = tf_layers.layer_norm(hidden2, scope='layer_norm3')
enc1 = slim.layers.conv2d(
hidden2, hidden2.get_shape()[3], [3, 3], stride=2, scope='conv2')
hidden3, lstm_state3 = lstm_func(
enc1, lstm_state3, lstm_size[2], scope='state3')
hidden3 = tf_layers.layer_norm(hidden3, scope='layer_norm4')
hidden4, lstm_state4 = lstm_func(
hidden3, lstm_state4, lstm_size[3], scope='state4')
hidden4 = tf_layers.layer_norm(hidden4, scope='layer_norm5')
enc2 = slim.layers.conv2d(
hidden4, hidden4.get_shape()[3], [3, 3], stride=2, scope='conv3')
# Pass in state and action.
smear = tf.reshape(
state_action,
[int(batch_size), 1, 1, int(state_action.get_shape()[1])])
smear = tf.tile(
smear, [1, int(enc2.get_shape()[1]), int(enc2.get_shape()[2]), 1])
if use_state:
enc2 = tf.concat(axis=3, values=[enc2, smear])
# Setup latent
if FLAGS.stochastic_model:
latent = samples
if FLAGS.multi_latent:
latent = samples[timestep]
if not FLAGS.inference_time:
latent = tf.cond(iter_num < FLAGS.num_iterations_1st_stage,
lambda: tf.identity(latent),
lambda: latent_mean + tf.exp(latent_std / 2.0) * latent)
with tf.control_dependencies([latent]):
enc2 = tf.concat([enc2, latent], 3)
enc3 = slim.layers.conv2d(
enc2, hidden4.get_shape()[3], [1, 1], stride=1, scope='conv4')
hidden5, lstm_state5 = lstm_func(
enc3, lstm_state5, lstm_size[4], scope='state5') # last 8x8
hidden5 = tf_layers.layer_norm(hidden5, scope='layer_norm6')
enc4 = slim.layers.conv2d_transpose(
hidden5, hidden5.get_shape()[3], 3, stride=2, scope='convt1')
hidden6, lstm_state6 = lstm_func(
enc4, lstm_state6, lstm_size[5], scope='state6') # 16x16
hidden6 = tf_layers.layer_norm(hidden6, scope='layer_norm7')
# Skip connection.
hidden6 = tf.concat(axis=3, values=[hidden6, enc1]) # both 16x16
enc5 = slim.layers.conv2d_transpose(
hidden6, hidden6.get_shape()[3], 3, stride=2, scope='convt2')
hidden7, lstm_state7 = lstm_func(
enc5, lstm_state7, lstm_size[6], scope='state7') # 32x32
hidden7 = tf_layers.layer_norm(hidden7, scope='layer_norm8')
# Skip connection.
hidden7 = tf.concat(axis=3, values=[hidden7, enc0]) # both 32x32
enc6 = slim.layers.conv2d_transpose(
hidden7,
hidden7.get_shape()[3], 3, stride=2, scope='convt3', activation_fn=None,
normalizer_fn=tf_layers.layer_norm,
normalizer_params={'scope': 'layer_norm9'})
if dna:
# Using largest hidden state for predicting untied conv kernels.
enc7 = slim.layers.conv2d_transpose(
enc6, DNA_KERN_SIZE**2, 1, stride=1, scope='convt4', activation_fn=None)
else:
# Using largest hidden state for predicting a new image layer.
enc7 = slim.layers.conv2d_transpose(
enc6, color_channels, 1, stride=1, scope='convt4', activation_fn=None)
# This allows the network to also generate one image from scratch,
# which is useful when regions of the image become unoccluded.
transformed = [tf.nn.sigmoid(enc7)]
if stp:
stp_input0 = tf.reshape(hidden5, [int(batch_size), -1])
stp_input1 = slim.layers.fully_connected(
stp_input0, 100, scope='fc_stp')
transformed += stp_transformation(prev_image, stp_input1, num_masks)
elif cdna:
cdna_input = tf.reshape(hidden5, [int(batch_size), -1])
transformed += cdna_transformation(prev_image, cdna_input, num_masks,
int(color_channels))
elif dna:
# Only one mask is supported (more should be unnecessary).
if num_masks != 1:
raise ValueError('Only one mask is supported for DNA model.')
transformed = [dna_transformation(prev_image, enc7)]
masks = slim.layers.conv2d_transpose(
enc6, num_masks + 1, 1, stride=1, scope='convt7', activation_fn=None)
masks = tf.reshape(
tf.nn.softmax(tf.reshape(masks, [-1, num_masks + 1])),
[int(batch_size), int(img_height), int(img_width), num_masks + 1])
mask_list = tf.split(axis=3, num_or_size_splits=num_masks + 1, value=masks)
output = mask_list[0] * prev_image
for layer, mask in zip(transformed, mask_list[1:]):
output += layer * mask
gen_images.append(output)
current_state = slim.layers.fully_connected(
state_action,
int(current_state.get_shape()[1]),
scope='state_pred',
activation_fn=None)
gen_states.append(current_state)
return gen_images, gen_states, latent_loss
## Utility functions
def stp_transformation(prev_image, stp_input, num_masks):
"""Apply spatial transformer predictor (STP) to previous image.
Args:
prev_image: previous image to be transformed.
stp_input: hidden layer to be used for computing STN parameters.
num_masks: number of masks and hence the number of STP transformations.
Returns:
List of images transformed by the predicted STP parameters.
"""
# Only import spatial transformer if needed.
from spatial_transformer import transformer
identity_params = tf.convert_to_tensor(
np.array([1.0, 0.0, 0.0, 0.0, 1.0, 0.0], np.float32))
transformed = []
for i in range(num_masks - 1):
params = slim.layers.fully_connected(
stp_input, 6, scope='stp_params' + str(i),
activation_fn=None) + identity_params
transformed.append(transformer(prev_image, params))
return transformed
def cdna_transformation(prev_image, cdna_input, num_masks, color_channels):
"""Apply convolutional dynamic neural advection to previous image.
Args:
prev_image: previous image to be transformed.
cdna_input: hidden lyaer to be used for computing CDNA kernels.
num_masks: the number of masks and hence the number of CDNA transformations.
color_channels: the number of color channels in the images.
Returns:
List of images transformed by the predicted CDNA kernels.
"""
batch_size = int(cdna_input.get_shape()[0])
height = int(prev_image.get_shape()[1])
width = int(prev_image.get_shape()[2])
# Predict kernels using linear function of last hidden layer.
cdna_kerns = slim.layers.fully_connected(
cdna_input,
DNA_KERN_SIZE * DNA_KERN_SIZE * num_masks,
scope='cdna_params',
activation_fn=None)
# Reshape and normalize.
cdna_kerns = tf.reshape(
cdna_kerns, [batch_size, DNA_KERN_SIZE, DNA_KERN_SIZE, 1, num_masks])
cdna_kerns = tf.nn.relu(cdna_kerns - RELU_SHIFT) + RELU_SHIFT
norm_factor = tf.reduce_sum(cdna_kerns, [1, 2, 3], keep_dims=True)
cdna_kerns /= norm_factor
# Treat the color channel dimension as the batch dimension since the same
# transformation is applied to each color channel.
# Treat the batch dimension as the channel dimension so that
# depthwise_conv2d can apply a different transformation to each sample.
cdna_kerns = tf.transpose(cdna_kerns, [1, 2, 0, 4, 3])
cdna_kerns = tf.reshape(cdna_kerns, [DNA_KERN_SIZE, DNA_KERN_SIZE, batch_size, num_masks])
# Swap the batch and channel dimensions.
prev_image = tf.transpose(prev_image, [3, 1, 2, 0])
# Transform image.
transformed = tf.nn.depthwise_conv2d(prev_image, cdna_kerns, [1, 1, 1, 1], 'SAME')
# Transpose the dimensions to where they belong.
transformed = tf.reshape(transformed, [color_channels, height, width, batch_size, num_masks])
transformed = tf.transpose(transformed, [3, 1, 2, 0, 4])
transformed = tf.unstack(transformed, axis=-1)
return transformed
def dna_transformation(prev_image, dna_input):
"""Apply dynamic neural advection to previous image.
Args:
prev_image: previous image to be transformed.
dna_input: hidden lyaer to be used for computing DNA transformation.
Returns:
List of images transformed by the predicted CDNA kernels.
"""
# Construct translated images.
prev_image_pad = tf.pad(prev_image, [[0, 0], [2, 2], [2, 2], [0, 0]])
image_height = int(prev_image.get_shape()[1])
image_width = int(prev_image.get_shape()[2])
inputs = []
for xkern in range(DNA_KERN_SIZE):
for ykern in range(DNA_KERN_SIZE):
inputs.append(
tf.expand_dims(
tf.slice(prev_image_pad, [0, xkern, ykern, 0],
[-1, image_height, image_width, -1]), [3]))
inputs = tf.concat(axis=3, values=inputs)
# Normalize channels to 1.
kernel = tf.nn.relu(dna_input - RELU_SHIFT) + RELU_SHIFT
kernel = tf.expand_dims(
kernel / tf.reduce_sum(
kernel, [3], keep_dims=True), [4])
return tf.reduce_sum(kernel * inputs, [3], keep_dims=False)
def scheduled_sample(ground_truth_x, generated_x, batch_size, num_ground_truth):
"""Sample batch with specified mix of ground truth and generated data points.
Args:
ground_truth_x: tensor of ground-truth data points.
generated_x: tensor of generated data points.
batch_size: batch size
num_ground_truth: number of ground-truth examples to include in batch.
Returns:
New batch with num_ground_truth sampled from ground_truth_x and the rest
from generated_x.
"""
idx = tf.random_shuffle(tf.range(int(batch_size)))
ground_truth_idx = tf.gather(idx, tf.range(num_ground_truth))
generated_idx = tf.gather(idx, tf.range(num_ground_truth, int(batch_size)))
ground_truth_examps = tf.gather(ground_truth_x, ground_truth_idx)
generated_examps = tf.gather(generated_x, generated_idx)
return tf.dynamic_stitch([ground_truth_idx, generated_idx],
[ground_truth_examps, generated_examps])
| 37.903766 | 95 | 0.669886 |
137575ac656962b0f9d67245530a471421c965ac
| 1,657 |
bzl
|
Python
|
junit5/rules.bzl
|
prashantsharma04/bazel_java_rules
|
4f80fbe70e1778aa8e3e0ee8aa2f1efc3e44a462
|
[
"Apache-2.0"
] | 1 |
2020-10-22T06:44:10.000Z
|
2020-10-22T06:44:10.000Z
|
junit5/rules.bzl
|
prashantsharma04/bazel_java_rules
|
4f80fbe70e1778aa8e3e0ee8aa2f1efc3e44a462
|
[
"Apache-2.0"
] | 5 |
2020-06-01T22:33:59.000Z
|
2020-11-01T17:03:06.000Z
|
junit5/rules.bzl
|
prashantsharma04/bazel_java_rules
|
4f80fbe70e1778aa8e3e0ee8aa2f1efc3e44a462
|
[
"Apache-2.0"
] | 1 |
2020-08-17T07:42:21.000Z
|
2020-08-17T07:42:21.000Z
|
load("@rules_jvm_external//:defs.bzl", "artifact")
# For more information see
# - https://github.com/bmuschko/bazel-examples/blob/master/java/junit5-test/BUILD
# - https://github.com/salesforce/bazel-maven-proxy/tree/master/tools/junit5
# - https://github.com/junit-team/junit5-samples/tree/master/junit5-jupiter-starter-bazel
def junit5_test(name, srcs, test_package, resources = [], deps = [], runtime_deps = [], **kwargs):
"""JUnit runner macro"""
FILTER_KWARGS = [
"main_class",
"use_testrunner",
"args",
]
for arg in FILTER_KWARGS:
if arg in kwargs.keys():
kwargs.pop(arg)
junit_console_args = []
if test_package:
junit_console_args += ["--select-package", test_package]
else:
fail("must specify 'test_package'")
native.java_test(
name = name,
srcs = srcs,
use_testrunner = False,
main_class = "org.junit.platform.console.ConsoleLauncher",
args = junit_console_args,
deps = deps + [
artifact("org.junit.jupiter:junit-jupiter-api"),
artifact("org.junit.jupiter:junit-jupiter-params"),
artifact("org.junit.jupiter:junit-jupiter-engine"),
artifact("org.hamcrest:hamcrest-library"),
artifact("org.hamcrest:hamcrest-core"),
artifact("org.hamcrest:hamcrest"),
artifact("org.mockito:mockito-core"),
],
visibility = ["//java:__subpackages__"],
resources = resources,
runtime_deps = runtime_deps + [
artifact("org.junit.platform:junit-platform-console"),
],
**kwargs
)
| 35.255319 | 98 | 0.616174 |
1376113ee039ab051c772dba764cfe52a310f45d
| 625 |
py
|
Python
|
tests/mocked_carla.py
|
fangedward/pylot
|
a742b3789ee8e7fa2d692ae22bda1e2960ed9345
|
[
"Apache-2.0"
] | null | null | null |
tests/mocked_carla.py
|
fangedward/pylot
|
a742b3789ee8e7fa2d692ae22bda1e2960ed9345
|
[
"Apache-2.0"
] | null | null | null |
tests/mocked_carla.py
|
fangedward/pylot
|
a742b3789ee8e7fa2d692ae22bda1e2960ed9345
|
[
"Apache-2.0"
] | null | null | null |
# This module provides mocked versions of classes and functions provided
# by Carla in our runtime environment.
| 20.833333 | 72 | 0.5776 |
1377e6c9502e17891e25610fab3c369d6bcdf674
| 404 |
py
|
Python
|
rgb_to_cmyk.py
|
Zweizack/fuzzy-rainbow
|
f69f7eb59971d28a9093a03c1911b41e23cddf2a
|
[
"MIT"
] | null | null | null |
rgb_to_cmyk.py
|
Zweizack/fuzzy-rainbow
|
f69f7eb59971d28a9093a03c1911b41e23cddf2a
|
[
"MIT"
] | null | null | null |
rgb_to_cmyk.py
|
Zweizack/fuzzy-rainbow
|
f69f7eb59971d28a9093a03c1911b41e23cddf2a
|
[
"MIT"
] | null | null | null |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
ee = '\033[1m'
green = '\033[32m'
yellow = '\033[33m'
cyan = '\033[36m'
line = cyan+'-' * 0x2D
print(ee+line)
R,G,B = [float(X) / 0xFF for X in input(f'{yellow}RGB: {green}').split()]
K = 1-max(R,G,B)
C,M,Y = [round(float((1-X-K)/(1-K) * 0x64),1) for X in [R,G,B]]
K = round(K * 0x64,1)
print(f'{yellow}CMYK: {green}{C}%, {M}%, {Y}%, {K}%')
print(line)
| 21.263158 | 73 | 0.542079 |
1377f0cfac03b437ee48b39fc8008df7e5dd358b
| 4,720 |
py
|
Python
|
docs/updatedoc.py
|
JukeboxPipeline/jukedj
|
d4159961c819c26792a278981ee68106ee15f3f3
|
[
"BSD-3-Clause"
] | 2 |
2015-01-22T17:39:05.000Z
|
2015-02-09T16:47:15.000Z
|
docs/updatedoc.py
|
JukeboxPipeline/jukedj
|
d4159961c819c26792a278981ee68106ee15f3f3
|
[
"BSD-3-Clause"
] | 3 |
2020-02-12T00:24:58.000Z
|
2021-06-10T20:05:03.000Z
|
docs/updatedoc.py
|
JukeboxPipeline/jukeboxmaya
|
c8d6318d53cdb5493453c4a6b65ef75bdb2d5f2c
|
[
"BSD-3-Clause"
] | null | null | null |
#!/usr/bin/env python
"""Builds the documentaion. First it runs gendoc to create rst files for the source code. Then it runs sphinx make.
.. Warning:: This will delete the content of the output directory first! So you might loose data.
You can use updatedoc.py -nod.
Usage, just call::
updatedoc.py -h
"""
import argparse
import os
import shutil
import sys
import gendoc
thisdir = os.path.abspath(os.path.dirname(__file__))
def setup_argparse():
"""Sets up the argument parser and returns it
:returns: the parser
:rtype: :class:`argparse.ArgumentParser`
:raises: None
"""
parser = argparse.ArgumentParser(
description="Builds the documentaion. First it runs gendoc to create rst files\
for the source code. Then it runs sphinx make.\
WARNING: this will delete the contents of the output dirs. You can use -nod.")
ipath = os.path.join(thisdir, '../src')
ipath = os.path.abspath(ipath)
idefault = [ipath]
parser.add_argument('-i', '--input', nargs='+', default=idefault,
help='list of input directories. gendoc is called for every\
source dir.\
Default is \'%s\'.' % ', '.join(idefault))
opath = os.path.join(thisdir, 'reference')
opath = os.path.abspath(opath)
odefault = [opath]
parser.add_argument('-o', '--output', nargs='+', default=odefault,
help='list of output directories. if you have multiple source\
directories, the corresponding output directorie is used.\
if there are less dirs than for source, the last output dir\
is used for the remaining source dirs.\
WARNING: the output directories are emptied by default. See -nod.\
Default is \'%s\'.' % ', '.join(odefault))
gadefault = ['-T', '-f', '-e', '-o']
parser.add_argument('-ga', '--gendocargs', nargs='*', default=gadefault,
help="list of arguments to pass to gendoc. use -gh for info.\
Default is \'%s\'" % ', '.join(gadefault))
parser.add_argument('-nod', '--nodelete', action='store_true',
help='Do not empty the output directories first.')
parser.add_argument('-gh', '--gendochelp', action='store_true',
help='print the help for gendoc and exit')
return parser
def prepare_dir(directory, delete=True):
"""Create apidoc dir, delete contents if delete is True.
:param directory: the apidoc directory. you can use relative paths here
:type directory: str
:param delete: if True, deletes the contents of apidoc. This acts like an override switch.
:type delete: bool
:returns: None
:rtype: None
:raises: None
"""
if os.path.exists(directory):
if delete:
assert directory != thisdir, 'Trying to delete docs! Specify other output dir!'
print 'Deleting %s' % directory
shutil.rmtree(directory)
print 'Creating %s' % directory
os.mkdir(directory)
else:
print 'Creating %s' % directory
os.mkdir(directory)
def run_gendoc(source, dest, args):
"""Starts gendoc which reads source and creates rst files in dest with the given args.
:param source: The python source directory for gendoc. Can be a relative path.
:type source: str
:param dest: The destination for the rst files. Can be a relative path.
:type dest: str
:param args: Arguments for gendoc. See gendoc for more information.
:type args: list
:returns: None
:rtype: None
:raises: SystemExit
"""
args.insert(0, 'gendoc.py')
args.append(dest)
args.append(source)
print 'Running gendoc.main with: %s' % args
gendoc.main(args)
def main(argv=sys.argv[1:]):
"""Parse commandline arguments and run the tool
:param argv: the commandline arguments.
:type argv: list
:returns: None
:rtype: None
:raises: None
"""
parser = setup_argparse()
args = parser.parse_args(argv)
if args.gendochelp:
sys.argv[0] = 'gendoc.py'
genparser = gendoc.setup_parser()
genparser.print_help()
sys.exit(0)
print 'Preparing output directories'
print '='*80
for odir in args.output:
prepare_dir(odir, not args.nodelete)
print '\nRunning gendoc'
print '='*80
for i, idir in enumerate(args.input):
if i >= len(args.output):
odir = args.output[-1]
else:
odir = args.output[i]
run_gendoc(idir, odir, args.gendocargs)
if __name__ == '__main__':
main()
| 35.488722 | 115 | 0.613559 |
13783bd8e2a248d44492c03b9013e0d6c16cfd22
| 478 |
py
|
Python
|
sort/selectionsort.py
|
vitormrts/sorting-algorithms
|
5571ce522a7fd33f976fa05b264ed2c253c221b3
|
[
"MIT"
] | null | null | null |
sort/selectionsort.py
|
vitormrts/sorting-algorithms
|
5571ce522a7fd33f976fa05b264ed2c253c221b3
|
[
"MIT"
] | null | null | null |
sort/selectionsort.py
|
vitormrts/sorting-algorithms
|
5571ce522a7fd33f976fa05b264ed2c253c221b3
|
[
"MIT"
] | null | null | null |
# 1 + (n-1)*[3 + X] = 1 + 3*(n-1) + X*(n-1) = 1 + 3*(n-1) + (n^2 + n - 2)/2
# = (1 - 3 - 1) + (3n + n/2) + (n^2/2)
# The complexity is O(n^2)
| 36.769231 | 86 | 0.464435 |
1379138cdd6c153ab5075c9fd6e443c52181da72
| 4,618 |
py
|
Python
|
BridgeOptimizer/scriptBuilder/ScriptBuilderBoundaryConditions.py
|
manuel1618/bridgeOptimizer
|
273bbf27b2c6273e4aaca55debbd9a10bebf7042
|
[
"MIT"
] | 1 |
2022-01-20T16:30:04.000Z
|
2022-01-20T16:30:04.000Z
|
BridgeOptimizer/scriptBuilder/ScriptBuilderBoundaryConditions.py
|
manuel1618/bridgeOptimizer
|
273bbf27b2c6273e4aaca55debbd9a10bebf7042
|
[
"MIT"
] | 13 |
2022-01-07T14:07:15.000Z
|
2022-01-29T19:42:48.000Z
|
BridgeOptimizer/scriptBuilder/ScriptBuilderBoundaryConditions.py
|
manuel1618/bridgeOptimizer
|
273bbf27b2c6273e4aaca55debbd9a10bebf7042
|
[
"MIT"
] | null | null | null |
import os
from typing import List, Tuple
from BridgeOptimizer.datastructure.hypermesh.LoadCollector import LoadCollector
from BridgeOptimizer.datastructure.hypermesh.LoadStep import LoadStep
from BridgeOptimizer.datastructure.hypermesh.Force import Force
from BridgeOptimizer.datastructure.hypermesh.SPC import SPC
| 47.122449 | 159 | 0.622347 |
137960c813f4163613ba4247cf3f11614175c045
| 320 |
py
|
Python
|
Lekcija08/script01.py
|
islamspahic/python-uup
|
ea7c9c655ad8e678bca5ee52138836732266799f
|
[
"Apache-2.0"
] | null | null | null |
Lekcija08/script01.py
|
islamspahic/python-uup
|
ea7c9c655ad8e678bca5ee52138836732266799f
|
[
"Apache-2.0"
] | null | null | null |
Lekcija08/script01.py
|
islamspahic/python-uup
|
ea7c9c655ad8e678bca5ee52138836732266799f
|
[
"Apache-2.0"
] | null | null | null |
tajniBroj = 51
broj = 2
while tajniBroj != broj:
broj = int(input("Pogodite tajni broj: "))
if tajniBroj == broj:
print("Pogodak!")
elif tajniBroj < broj:
print("Tajni broj je manji od tog broja.")
else:
print("Tajni broj je veci od tog broja.")
print("Kraj programa")
| 21.333333 | 50 | 0.590625 |
1379b64de3a90f72d35d03219b56d72544b5e73a
| 2,806 |
py
|
Python
|
tests/algorithms/memory/test_cmac.py
|
FrostByte266/neupy
|
4b7127e5e4178b0cce023ba36542f5ad3f1d798c
|
[
"MIT"
] | 801 |
2015-09-23T09:24:47.000Z
|
2022-03-29T19:19:03.000Z
|
tests/algorithms/memory/test_cmac.py
|
FrostByte266/neupy
|
4b7127e5e4178b0cce023ba36542f5ad3f1d798c
|
[
"MIT"
] | 277 |
2015-09-22T19:48:50.000Z
|
2022-03-11T23:25:32.000Z
|
tests/algorithms/memory/test_cmac.py
|
FrostByte266/neupy
|
4b7127e5e4178b0cce023ba36542f5ad3f1d798c
|
[
"MIT"
] | 194 |
2015-09-23T15:03:57.000Z
|
2022-03-31T13:54:46.000Z
|
import numpy as np
from sklearn import metrics
from neupy import algorithms
from base import BaseTestCase
| 30.172043 | 73 | 0.599786 |
137a3688b49f0ea26253687c4f9e076efa9114c9
| 3,075 |
py
|
Python
|
src/ggrc_workflows/models/task_group_object.py
|
Smotko/ggrc-core
|
b3abb58b24e7559960d71a94ba79c75539e7fe29
|
[
"Apache-2.0"
] | null | null | null |
src/ggrc_workflows/models/task_group_object.py
|
Smotko/ggrc-core
|
b3abb58b24e7559960d71a94ba79c75539e7fe29
|
[
"Apache-2.0"
] | 12 |
2015-01-08T14:50:19.000Z
|
2017-11-29T19:37:53.000Z
|
src/ggrc_workflows/models/task_group_object.py
|
Smotko/ggrc-core
|
b3abb58b24e7559960d71a94ba79c75539e7fe29
|
[
"Apache-2.0"
] | 1 |
2015-01-08T13:25:09.000Z
|
2015-01-08T13:25:09.000Z
|
# Copyright (C) 2013 Google Inc., authors, and contributors <see AUTHORS file>
# Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file>
# Created By: [email protected]
# Maintained By: [email protected]
from sqlalchemy.ext.associationproxy import association_proxy
from ggrc import db
from ggrc.models.mixins import Mapping
from ggrc.models.mixins import Timeboxed
from ggrc.models.reflection import PublishOnly
| 29.285714 | 78 | 0.690407 |
137bf77da0a4c318b41b184deddd1c0849f9d010
| 11,196 |
py
|
Python
|
verification/tb_template.py
|
ahmednofal/DFFRAM
|
7d7ebc28befe12ec3f232c0d2f5b8ea786227d45
|
[
"Apache-2.0"
] | null | null | null |
verification/tb_template.py
|
ahmednofal/DFFRAM
|
7d7ebc28befe12ec3f232c0d2f5b8ea786227d45
|
[
"Apache-2.0"
] | null | null | null |
verification/tb_template.py
|
ahmednofal/DFFRAM
|
7d7ebc28befe12ec3f232c0d2f5b8ea786227d45
|
[
"Apache-2.0"
] | null | null | null |
# Copyright 2020-2021 The American University in Cairo and the Cloud V Project.
#
# This file is part of the DFFRAM Memory Compiler.
# See https://github.com/Cloud-V/DFFRAM for further info.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
RAM_instantiation = """
/*
An auto generated testbench to verify RAM{word_num}x{word_size}
Authors: Mohamed Shalan ([email protected])
Ahmed Nofal ([email protected])
*/
`define VERBOSE_1
`define VERBOSE_2
`define UNIT_DELAY #1
`define USE_LATCH 1
`define SIZE {word_size}/8
//`include "{pdk_root}/sky130A/libs.ref/sky130_fd_sc_hd/verilog/primitives.v"
//`include "{pdk_root}/sky130A/libs.ref/sky130_fd_sc_hd/verilog/sky130_fd_sc_hd.v"
// // Temporary override: IcarusVerilog cannot read these for some reason ^
`include "hd_primitives.v"
`include "hd_functional.v"
`include "{filename}"
module tb_RAM{word_num}x{word_size};
localparam SIZE = `SIZE;
localparam A_W = {addr_width}+$clog2(SIZE);
localparam M_SZ = 2**A_W;
reg CLK;
reg [(SIZE-1):0] WE0;
reg EN0;
reg [(SIZE*8-1):0] Di0;
wire [(SIZE*8-1):0] Do0;
reg [A_W-1:0] A0, ADDR;
reg [7:0] Phase;
reg [7:0] RANDOM_BYTE;
event done;
RAM{word_num} #(.USE_LATCH(`USE_LATCH), .WSIZE(SIZE)) SRAM (
.CLK(CLK),
.WE0(WE0),
.EN0(EN0),
.Di0(Di0),
.Do(Do0),
.A0(A0[A_W-1:$clog2(SIZE)])
);
initial begin
$dumpfile("tb_RAM{word_num}x{word_size}.vcd");
$dumpvars(0, tb_RAM{word_num}x{word_size});
@(done) $finish;
end
/* Memory golden Model */
reg [(SIZE*8-1):0] RAM[(M_SZ)-1 : 0];
reg [(SIZE*8-1):0] RAM_DATA_RW;
genvar c;
generate
for (c=0; c < SIZE; c = c+1) begin: mem_golden_model
always @(posedge CLK) begin
if(EN0) begin
RAM_DATA_RW <= RAM[A0/SIZE];
if(WE0[c]) RAM[A0/SIZE][8*(c+1)-1:8*c] <= Di0[8*(c+1)-1:8*c];
end
end
end
endgenerate
"""
begin_single_ported_test = """
initial begin
CLK = 0;
WE0 = 0;
EN0 = 1;
"""
single_ported_custom_test = """
Phase = 0;
// Perform a single word write then read
mem_write_word({{SIZE{{8'h90}}}}, 4);
mem_read_word_0(4);
"""
RAM_instantiation_1RW1R = """
/*
An auto generated testbench to verify RAM{word_num}x{word_size}
Authors: Mohamed Shalan ([email protected])
Ahmed Nofal ([email protected])
*/
`define VERBOSE_1
`define VERBOSE_2
`define UNIT_DELAY #1
`define USE_LATCH 1
`define SIZE {word_size}/8
//`include "{pdk_root}/sky130A/libs.ref/sky130_fd_sc_hd/verilog/primitives.v"
//`include "{pdk_root}/sky130A/libs.ref/sky130_fd_sc_hd/verilog/sky130_fd_sc_hd.v"
// // Temporary override: IcarusVerilog cannot read these for some reason ^
`include "hd_primitives.v"
`include "hd_functional.v"
`include "{filename}"
module tb_RAM{word_num}x{word_size}_1RW1R;
localparam SIZE = `SIZE;
localparam A_W = {addr_width}+$clog2(SIZE);
localparam M_SZ = 2**A_W;
reg CLK;
reg [(SIZE-1):0] WE0;
reg EN0;
reg ENR;
reg [(SIZE*8-1):0] Di0;
wire [(SIZE*8-1):0] Do0;
wire [(SIZE*8-1):0] Do1;
reg [A_W-1:0] A0, A1, ADDR;
reg [7:0] Phase;
reg [7:0] RANDOM_BYTE;
event done;
RAM{word_num}_1RW1R #(.USE_LATCH(`USE_LATCH), .WSIZE(`SIZE)) SRAM (
.CLK(CLK),
.WE0(WE0),
.EN0(EN0),
.EN1(ENR),
.Di0(Di0),
.Do0(Do0),
.Do1(Do1),
.A0(A0[A_W-1:$clog2(SIZE)]),
.A1(A1[A_W-1:$clog2(SIZE)])
);
initial begin
$dumpfile("tb_RAM{word_num}x{word_size}_1RW1R.vcd");
$dumpvars(0, tb_RAM{word_num}x{word_size}_1RW1R);
@(done) $finish;
end
/* Memory golden Model */
reg [(SIZE*8-1):0] RAM[(M_SZ)-1 : 0];
reg [(SIZE*8-1):0] RAM_DATA_RW;
reg [(SIZE*8-1):0] RAM_DATA_R;
genvar c;
generate
for (c=0; c < SIZE; c = c+1) begin: mem_golden_model
always @(posedge CLK) begin
if(EN0) begin
RAM_DATA_RW <= RAM[A0/SIZE];
if(WE0[c]) RAM[A0/SIZE][8*(c+1)-1:8*c] <= Di0[8*(c+1)-1:8*c];
end
if (ENR) begin
RAM_DATA_R <= RAM[A1/SIZE];
end
end
end
endgenerate
"""
begin_dual_ported_test = """
initial begin
CLK = 0;
WE0 = 0;
EN0 = 1;
ENR = 1;
"""
dual_ported_custom_test = """
Phase = 0;
// Perform a 2 word write then read 2 words
mem_write_word({{SIZE{{8'h90}}}}, 4);
mem_write_word({{SIZE{{8'h33}}}}, 8);
mem_read_2words(4,8);
"""
start_test_common = """
always #10 CLK = !CLK;
integer i;
"""
test_port_1RW1R = """
/***********************************************************
Write and read from different ports
************************************************************/
// Fill the memory with a known pattern
// Word Write then Read
Phase = 1;
`ifdef VERBOSE_1
$display("\\nFinished Phase 0, starting Phase 1");
`endif
for(i=0; i<M_SZ; i=i+SIZE) begin
ADDR = (($urandom%M_SZ)) & 'hFFFF_FFFC ;
RANDOM_BYTE = $urandom;
mem_write_word( {SIZE{RANDOM_BYTE}}, ADDR);
mem_read_word_1( ADDR );
end
// HWord Write then Read
Phase = 2;
`ifdef VERBOSE_1
$display("\\nFinished Phase 1, starting Phase 2");
`endif
for(i=0; i<M_SZ; i=i+SIZE/2) begin
ADDR = (($urandom%M_SZ)) & 'hFFFF_FFFE;
RANDOM_BYTE = $urandom;
mem_write_hword( {SIZE/2{RANDOM_BYTE}}, ADDR);
mem_read_word_1( ADDR & {{SIZE-1{8'hFF}}, 8'hFC} );
end
// Byte Write then Read
Phase = 3;
`ifdef VERBOSE_1
$display("\\nFinished Phase 2, starting Phase 3");
`endif
for(i=0; i<M_SZ; i=i+1) begin
ADDR = (($urandom%M_SZ));
mem_write_byte($urandom%255, ADDR);
mem_read_word_1(ADDR & {{SIZE-1{8'hFF}}, 8'hFC} );
end
"""
test_port_RW = """
/***********************************************************
Write and read from same port
************************************************************/
Phase = 4;
`ifdef VERBOSE_1
$display("\\nFinished Phase 3, starting Phase 4");
`endif
for(i=0; i<M_SZ; i=i+SIZE) begin
ADDR = (($urandom%M_SZ)) & 'hFFFF_FFFC ;
RANDOM_BYTE = $urandom;
mem_write_word( {SIZE{RANDOM_BYTE}}, ADDR);
mem_read_word_0( ADDR );
end
// HWord Write then Read
Phase = 5;
`ifdef VERBOSE_1
$display("\\nFinished Phase 4, starting Phase 5");
`endif
for(i=0; i<M_SZ; i=i+SIZE/2) begin
ADDR = (($urandom%M_SZ)) & 'hFFFF_FFFE;
RANDOM_BYTE = $urandom;
mem_write_hword( {SIZE/2{RANDOM_BYTE}}, ADDR);
mem_read_word_0( ADDR & {{SIZE-1{8'hFF}}, 8'hFC} );
end
// Byte Write then Read
Phase = 6;
`ifdef VERBOSE_1
$display("\\nFinished Phase 5, starting Phase 6");
`endif
for(i=0; i<M_SZ; i=i+1) begin
ADDR = (($urandom%M_SZ));
mem_write_byte($urandom%255, ADDR);
mem_read_word_0(ADDR & {{SIZE-1{8'hFF}}, 8'hFC} );
end
$display ("\\n>> Test Passed! <<\\n");
-> done;
"""
end_test = """
end
"""
tasks = """
task mem_write_byte(input [7:0] byte, input [A_W-1:0] addr);
begin
@(posedge CLK);
A0 = addr;//[A_WIDTH:2];
WE0 = (1 << addr[$clog2(SIZE)-1:0]);
Di0 = (byte << (addr[$clog2(SIZE)-1:0] * 8));
@(posedge CLK);
`ifdef VERBOSE_2
$display("WRITE BYTE: 0x%X to %0X(%0D) (0x%X, %B)", byte, addr, addr, Di0, WE0);
`endif
WE0 = {SIZE{8'h00}};
end
endtask
task mem_write_hword(input [SIZE*8-1:0] hword, input [A_W-1:0] addr);
begin
@(posedge CLK);
A0 = addr;//[A_WIDTH:$clog2(SIZE)];
WE0 = {{SIZE/2{addr[$clog2(SIZE)-1]}},{SIZE/2{~addr[$clog2(SIZE)-1]}}};
Di0 = (hword << (addr[$clog2(SIZE)-1] * (SIZE/2)*8));
@(posedge CLK);
`ifdef VERBOSE_2
$display("WRITE HWORD: 0x%X to %0X(%0D) (0x%X, %B)", hword, addr, addr, Di0, WE0);
`endif
WE0 = {SIZE{8'h00}};
end
endtask
task mem_write_word(input [SIZE*8-1:0] word, input [A_W-1:0] addr);
begin
@(posedge CLK);
A0 = addr;
WE0 = {SIZE{8'hFF}};
Di0 = word;
@(posedge CLK);
`ifdef VERBOSE_2
$display("WRITE WORD: 0x%X to %0X(%0D) (0x%X, %B)", word, addr, addr, Di0, WE0);
`endif
WE0 = {SIZE{8'h00}};
end
endtask
task mem_read_word_0(input [A_W-1:0] addr);
begin
@(posedge CLK);
A0 = addr;//[9:2];
WE0 = {SIZE{8'h00}};
@(posedge CLK);
#5;
`ifdef VERBOSE_2
$display("READ WORD: 0x%X from %0D", Do0, addr);
`endif
check0();
end
endtask
task check0; begin
if(RAM_DATA_RW !== Do0) begin
$display("\\n>>Test Failed! <<\\t(Phase: %0d, Iteration: %0d", Phase, i);
$display("Address: 0x%X, READ: 0x%X - Should be: 0x%X", A0, Do0, RAM[A0/SIZE]);
$fatal(1);
end
end
endtask
"""
dual_ported_tasks = """
task mem_read_2words(input [A_W-1:0] addr0,
input [A_W-1:0] addr1);
begin
@(posedge CLK);
A0= addr0;//[9:2];
A1= addr1;//[9:2];
WE0 = {SIZE{8'h00}};
@(posedge CLK);
#5;
`ifdef VERBOSE_2
$display("READ WORD0: 0x%X from %0D", Do0, addr0);
$display("READ WORD1: 0x%X from %0D", Do1, addr1);
`endif
check0();
check1();
end
endtask
task mem_read_word_1(input [A_W-1:0] addr);
begin
@(posedge CLK);
A1 = addr;//[9:2];
WE0 = {SIZE{8'h00}};
@(posedge CLK);
#5;
`ifdef VERBOSE_2
$display("READ WORD: 0x%X from %0D", Do1, addr);
`endif
check1();
end
endtask
task check1; begin
if(RAM_DATA_R !== Do1) begin
$display("\\n>>Test Failed! <<\\t(Phase: %0d, Iteration: %0d", Phase, i);
$display("Address: 0x%X, READ: 0x%X - Should be: 0x%X", A1, Do1, RAM[A1/SIZE]);
$fatal(1);
end
end
endtask
"""
endmodule = """
endmodule
"""
| 27.108959 | 91 | 0.530368 |
137dda311b44a103b066cfeaf00c02a9bb814cbf
| 19,777 |
py
|
Python
|
xclim/indices/_anuclim.py
|
bzah/xclim
|
18ceee3f1db2d39355913c1c60ec32ddca6baccc
|
[
"Apache-2.0"
] | 1 |
2022-02-03T13:46:58.000Z
|
2022-02-03T13:46:58.000Z
|
xclim/indices/_anuclim.py
|
raquel-ucl/xclim
|
6102e542e6e08072a60879d6200f9340207cd50e
|
[
"Apache-2.0"
] | 2 |
2021-06-23T09:26:54.000Z
|
2021-07-26T19:28:41.000Z
|
xclim/indices/_anuclim.py
|
raquel-ucl/xclim
|
6102e542e6e08072a60879d6200f9340207cd50e
|
[
"Apache-2.0"
] | 1 |
2021-03-02T20:12:28.000Z
|
2021-03-02T20:12:28.000Z
|
# noqa: D100
from typing import Optional
import numpy as np
import xarray
from xclim.core.units import (
convert_units_to,
declare_units,
pint_multiply,
rate2amount,
units,
units2pint,
)
from xclim.core.utils import ensure_chunk_size
from ._multivariate import (
daily_temperature_range,
extreme_temperature_range,
precip_accumulation,
)
from ._simple import tg_mean
from .generic import select_resample_op
from .run_length import lazy_indexing
# Frequencies : YS: year start, QS-DEC: seasons starting in december, MS: month start
# See http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
# -------------------------------------------------- #
# ATTENTION: ASSUME ALL INDICES WRONG UNTIL TESTED ! #
# -------------------------------------------------- #
__all__ = [
"temperature_seasonality",
"precip_seasonality",
"tg_mean_warmcold_quarter",
"tg_mean_wetdry_quarter",
"prcptot_wetdry_quarter",
"prcptot_warmcold_quarter",
"prcptot",
"prcptot_wetdry_period",
"isothermality",
]
_xr_argops = {
"wettest": xarray.DataArray.argmax,
"warmest": xarray.DataArray.argmax,
"dryest": xarray.DataArray.argmin,
"driest": xarray.DataArray.argmin,
"coldest": xarray.DataArray.argmin,
}
_np_ops = {
"wettest": "max",
"warmest": "max",
"dryest": "min",
"driest": "min",
"coldest": "min",
}
# FIXME: src_timestep is not used here.
def _anuclim_coeff_var(arr: xarray.DataArray) -> xarray.DataArray:
"""Calculate the annual coefficient of variation for ANUCLIM indices."""
std = arr.resample(time="YS").std(dim="time")
mu = arr.resample(time="YS").mean(dim="time")
return std / mu
def _from_other_arg(
criteria: xarray.DataArray, output: xarray.DataArray, op, freq: str
) -> xarray.DataArray:
"""Pick values from output based on operation returning an index from criteria.
Parameters
----------
criteria : DataArray
Series on which operation returning index is applied.
output : DataArray
Series to be indexed.
op : func
Function returning an index, for example np.argmin, np.argmax, np.nanargmin, np.nanargmax.
freq : str
Temporal grouping.
Returns
-------
DataArray
Output values where criteria is met at the given frequency.
"""
ds = xarray.Dataset(data_vars={"criteria": criteria, "output": output})
dim = "time"
return ds.resample(time=freq).map(get_other_op)
def _to_quarter(
freq: str,
pr: Optional[xarray.DataArray] = None,
tas: Optional[xarray.DataArray] = None,
) -> xarray.DataArray:
"""Convert daily, weekly or monthly time series to quarterly time series according to ANUCLIM specifications."""
if freq.upper().startswith("D"):
if tas is not None:
tas = tg_mean(tas, freq="7D")
if pr is not None:
# Accumulate on a week
# Ensure units are back to a "rate" for rate2amount below
pr = convert_units_to(precip_accumulation(pr, freq="7D"), "mm")
pr.attrs["units"] = "mm/week"
freq = "W"
if freq.upper().startswith("W"):
window = 13
elif freq.upper().startswith("M"):
window = 3
else:
raise NotImplementedError(
f'Unknown input time frequency "{freq}": must be one of "D", "W" or "M".'
)
if tas is not None:
tas = ensure_chunk_size(tas, time=np.ceil(window / 2))
if pr is not None:
pr = ensure_chunk_size(pr, time=np.ceil(window / 2))
if pr is not None:
pram = rate2amount(pr)
out = pram.rolling(time=window, center=False).sum()
out.attrs = pr.attrs
out.attrs["units"] = pram.units
if tas is not None:
out = tas.rolling(time=window, center=False).mean(skipna=False)
out.attrs = tas.attrs
out = ensure_chunk_size(out, time=-1)
return out
| 35.190391 | 128 | 0.674369 |
137eb4fb88a280d57e223383a1252ee199ec52e5
| 14,714 |
py
|
Python
|
bvs/background_verification/report/checks_status_report/checks_status_report.py
|
vhrspvl/vhrs-bvs
|
56667039d9cc09ad0b092e5e6c5dd6598ff41e7b
|
[
"MIT"
] | 1 |
2021-08-19T11:16:47.000Z
|
2021-08-19T11:16:47.000Z
|
bvs/background_verification/report/checks_status_report/checks_status_report.py
|
vhrspvl/vhrs-bvs
|
56667039d9cc09ad0b092e5e6c5dd6598ff41e7b
|
[
"MIT"
] | null | null | null |
bvs/background_verification/report/checks_status_report/checks_status_report.py
|
vhrspvl/vhrs-bvs
|
56667039d9cc09ad0b092e5e6c5dd6598ff41e7b
|
[
"MIT"
] | 4 |
2018-03-21T05:57:54.000Z
|
2020-11-26T00:37:29.000Z
|
# Copyright (c) 2013, VHRS and contributors
# For license information, please see license.txt
from __future__ import unicode_literals
import frappe
from frappe import _, msgprint
from frappe.utils import (cint, cstr, date_diff, flt, getdate, money_in_words,
nowdate, rounded, today)
from datetime import datetime
from datetime import date
import datetime
from calendar import monthrange
| 41.68272 | 130 | 0.436387 |
137f6361d1e175bc555153af22f77e79ad507096
| 369 |
py
|
Python
|
dataset/dataset.py
|
TeamOfProfGuo/few_shot_baseline
|
f9ac87b9d309fc417589350d3ce61d3612e2be91
|
[
"MIT"
] | null | null | null |
dataset/dataset.py
|
TeamOfProfGuo/few_shot_baseline
|
f9ac87b9d309fc417589350d3ce61d3612e2be91
|
[
"MIT"
] | null | null | null |
dataset/dataset.py
|
TeamOfProfGuo/few_shot_baseline
|
f9ac87b9d309fc417589350d3ce61d3612e2be91
|
[
"MIT"
] | null | null | null |
import os
DEFAULT_ROOT = './materials'
datasets_dt = {}
| 17.571429 | 62 | 0.642276 |
137fdb8af310be2f7cdaeb72968e537c0108415a
| 888 |
py
|
Python
|
src/proto_formatter/syntax_parser.py
|
YiXiaoCuoHuaiFenZi/proto-formatter
|
ac8c913a8c3854e840aa4f015c026e58ee023b0b
|
[
"MIT"
] | null | null | null |
src/proto_formatter/syntax_parser.py
|
YiXiaoCuoHuaiFenZi/proto-formatter
|
ac8c913a8c3854e840aa4f015c026e58ee023b0b
|
[
"MIT"
] | null | null | null |
src/proto_formatter/syntax_parser.py
|
YiXiaoCuoHuaiFenZi/proto-formatter
|
ac8c913a8c3854e840aa4f015c026e58ee023b0b
|
[
"MIT"
] | null | null | null |
from .comment import CommentParser
from .protobuf import Protobuf
from .proto_structures import Syntax
| 29.6 | 77 | 0.657658 |
138136650386e60020d1b6906281d81dfdc20779
| 443 |
py
|
Python
|
IPL/app/core/views.py
|
mgp-git/Flask
|
f56be0192a3aac550a1dae46394352a68bd53d3d
|
[
"Apache-2.0"
] | null | null | null |
IPL/app/core/views.py
|
mgp-git/Flask
|
f56be0192a3aac550a1dae46394352a68bd53d3d
|
[
"Apache-2.0"
] | null | null | null |
IPL/app/core/views.py
|
mgp-git/Flask
|
f56be0192a3aac550a1dae46394352a68bd53d3d
|
[
"Apache-2.0"
] | null | null | null |
from flask import render_template, request, Blueprint
core = Blueprint('core', __name__)
| 22.15 | 64 | 0.693002 |
13829c0823e4f1af5270d26df1460fb75ccc8a6b
| 47,884 |
py
|
Python
|
tests/test_s3.py
|
tdilauro/circulation-core
|
8086ca8cbedd5f4b2a0c44df97889d078ff79aac
|
[
"Apache-2.0"
] | 1 |
2021-11-16T00:58:43.000Z
|
2021-11-16T00:58:43.000Z
|
tests/test_s3.py
|
tdilauro/circulation-core
|
8086ca8cbedd5f4b2a0c44df97889d078ff79aac
|
[
"Apache-2.0"
] | 16 |
2021-05-17T19:24:47.000Z
|
2021-12-15T13:57:34.000Z
|
tests/test_s3.py
|
tdilauro/circulation-core
|
8086ca8cbedd5f4b2a0c44df97889d078ff79aac
|
[
"Apache-2.0"
] | 1 |
2021-05-12T19:11:52.000Z
|
2021-05-12T19:11:52.000Z
|
# encoding: utf-8
import functools
import os
from urllib.parse import urlsplit
import boto3
import botocore
import pytest
from botocore.exceptions import BotoCoreError, ClientError
from mock import MagicMock
from parameterized import parameterized
from ..mirror import MirrorUploader
from ..model import (
DataSource,
ExternalIntegration,
Hyperlink,
Identifier,
Representation,
create,
)
from ..s3 import (
MinIOUploader,
MinIOUploaderConfiguration,
MockS3Client,
MultipartS3Upload,
S3AddressingStyle,
S3Uploader,
S3UploaderConfiguration,
)
from ..testing import DatabaseTest
from ..util.datetime_helpers import datetime_utc, utc_now
def test_mirror_one(self):
edition, pool = self._edition(with_license_pool=True)
original_cover_location = "http://example.com/a-cover.png"
content = open(self.sample_cover_path("test-book-cover.png"), "rb").read()
cover, ignore = pool.add_link(
Hyperlink.IMAGE,
original_cover_location,
edition.data_source,
Representation.PNG_MEDIA_TYPE,
content=content,
)
cover_rep = cover.resource.representation
assert None == cover_rep.mirrored_at
original_epub_location = "https://books.com/a-book.epub"
epub, ignore = pool.add_link(
Hyperlink.OPEN_ACCESS_DOWNLOAD,
original_epub_location,
edition.data_source,
Representation.EPUB_MEDIA_TYPE,
content="i'm an epub",
)
epub_rep = epub.resource.representation
assert None == epub_rep.mirrored_at
s3 = self._create_s3_uploader(client_class=MockS3Client)
# Mock final_mirror_url so we can verify that it's called with
# the right arguments
s3.final_mirror_url = mock_final_mirror_url
book_url = "http://books-go/here.epub"
cover_url = "http://s3.amazonaws.com/covers-go/here.png"
s3.mirror_one(cover.resource.representation, cover_url)
s3.mirror_one(epub.resource.representation, book_url)
[
[data1, bucket1, key1, args1, ignore1],
[data2, bucket2, key2, args2, ignore2],
] = s3.client.uploads
# Both representations have had .mirror_url set and been
# mirrored to those URLs.
assert data1.startswith(b"\x89")
assert "covers-go" == bucket1
assert "here.png" == key1
assert Representation.PNG_MEDIA_TYPE == args1["ContentType"]
assert (utc_now() - cover_rep.mirrored_at).seconds < 10
assert b"i'm an epub" == data2
assert "books-go" == bucket2
assert "here.epub" == key2
assert Representation.EPUB_MEDIA_TYPE == args2["ContentType"]
# In both cases, mirror_url was set to the result of final_mirror_url.
assert (
"final_mirror_url was called with bucket books-go, key here.epub"
== epub_rep.mirror_url
)
assert (
"final_mirror_url was called with bucket covers-go, key here.png"
== cover_rep.mirror_url
)
# mirrored-at was set when the representation was 'mirrored'
for rep in epub_rep, cover_rep:
assert (utc_now() - rep.mirrored_at).seconds < 10
assert False == MockMultipartS3Upload.completed
assert True == MockMultipartS3Upload.aborted
assert "Error!" == rep.mirror_exception
rep.mirror_exception = None
# Failed during completion
with s3.multipart_upload(
rep, rep.url, upload_class=AnotherFailingMultipartS3Upload
) as upload:
upload.upload_part("Part 1")
assert False == MockMultipartS3Upload.completed
assert True == MockMultipartS3Upload.aborted
assert "Error!" == rep.mirror_exception
| 35.105572 | 145 | 0.56497 |
1382e742de1eb49e756dcd17000e8fccc4bc6d6c
| 1,114 |
py
|
Python
|
lbry/scripts/set_build.py
|
vanshdevgan/lbry-sdk
|
3624a3b450945235edcf76971e18c898fba67455
|
[
"MIT"
] | null | null | null |
lbry/scripts/set_build.py
|
vanshdevgan/lbry-sdk
|
3624a3b450945235edcf76971e18c898fba67455
|
[
"MIT"
] | null | null | null |
lbry/scripts/set_build.py
|
vanshdevgan/lbry-sdk
|
3624a3b450945235edcf76971e18c898fba67455
|
[
"MIT"
] | null | null | null |
"""Set the build version to be 'qa', 'rc', 'release'"""
import sys
import os
import re
import logging
log = logging.getLogger()
log.addHandler(logging.StreamHandler())
log.setLevel(logging.DEBUG)
if __name__ == '__main__':
sys.exit(main())
| 30.108108 | 82 | 0.658887 |
13836c2a14bcd63d7cbfba39a7fecc1ae843d691
| 7,087 |
py
|
Python
|
backend/jenkins/pipelines/ansible/utils/testplan_gen.py
|
gbl1124/hfrd
|
327d7c1e18704d2e31a2649b40ae1d90353ebe24
|
[
"Apache-2.0"
] | 5 |
2019-08-02T20:53:57.000Z
|
2021-06-25T05:16:46.000Z
|
backend/jenkins/pipelines/ansible/utils/testplan_gen.py
|
anandbanik/hfrd
|
7bc1f13bfc9c7d902aec0363d27b089ef68c7eec
|
[
"Apache-2.0"
] | null | null | null |
backend/jenkins/pipelines/ansible/utils/testplan_gen.py
|
anandbanik/hfrd
|
7bc1f13bfc9c7d902aec0363d27b089ef68c7eec
|
[
"Apache-2.0"
] | 14 |
2019-07-01T01:40:50.000Z
|
2020-03-24T06:14:32.000Z
|
#!/usr/bin/python
import yaml
import os
import ast
import sys
from collections import OrderedDict
curr_dir = os.getcwd()
work_dir = sys.argv[1]
network_type = sys.argv[2]
testplan_dict = {}
testplan_dict["name"] = "System performance test"
testplan_dict["description"] = "This test is to create as much chaincode computation load as possible"
testplan_dict["runid"] = "RUNID_HERE"
if network_type == "ibp":
testplan_dict["networkid"] = sys.argv[3]
testplan_dict["collectFabricMetrics"] = False
testplan_dict["storageclass"] = "default"
testplan_dict["saveLog"] = False
testplan_dict["continueAfterFail"] = True
testplan_dict["tests"] = []
testplan_dict["peernodeAlias"] =[]
if os.path.exists(work_dir) != True:
print 'certs keyfiles directory do not exist'
exit(1)
# Load template file
with open(curr_dir + "/templates/testplan_template.yml", 'r') as stream:
template = yaml.load(stream)
channel_create = template["CHANNEL_CREATE"]
# channel_join = template["CHANNEL_JOIN"]
chaincode_install = template["CHAINCODE_INSTALL"]
chaincode_instantiate = template["CHAINCODE_INSTANTIATE"]
chaincode_invoke = template["CHAINCODE_INVOKE"]
execute_command = template["EXECUTE_COMMAND"]
connectionProfile = {}
org_list = []
org_list_lowercase = []
orderer_list = []
peer_list = []
org_peers_dict = {}
org_anchor_dict ={}
allAnchor_list =[]
# Load connection profile
for orgName in os.listdir(work_dir + '/keyfiles'):
if os.path.isfile(work_dir + '/keyfiles/' + orgName + '/connection.yml'):
with open(work_dir + '/keyfiles/' + orgName + '/connection.yml', 'r') as stream:
connectionProfile = yaml.load(stream)
if connectionProfile["orderers"] is None:
continue
orderer_list = orderer_list + connectionProfile["orderers"].keys()
if (connectionProfile["organizations"][orgName.lower()]["peers"] != None):
org_list.append(orgName)
org_list_lowercase.append(orgName.lower())
org_peers_dict[orgName] = connectionProfile["organizations"][orgName.lower(
)]["peers"]
peer_list = peer_list + \
connectionProfile["organizations"][orgName.lower(
)]["peers"]
org_anchor_dict[orgName] = sorted(
connectionProfile["organizations"][orgName.lower(
)]["peers"])[0]
# When there is only peer or orderer, we skip tests.
if len(orderer_list) == 0 or len(peer_list) == 0:
outputfile =open(work_dir + '/testplan_example.yml','w')
outputfile.write("")
outputfile.close()
exit(0)
orderer_list = list(OrderedDict.fromkeys(orderer_list))
peer_list = list(OrderedDict.fromkeys(peer_list))
for orgName in org_list :
tempOrgAnchorObj={}
tempOrgAnchorObj[orgName+"Anchor"] = org_anchor_dict[orgName]
testplan_dict["peernodeAlias"].append(tempOrgAnchorObj)
tempOrgPeersObj={}
tempOrgPeersObj[orgName+"Peers"] = ','.join(org_peers_dict[orgName])
testplan_dict["peernodeAlias"].append(tempOrgPeersObj)
allAnchor_list.append(org_anchor_dict[orgName])
testplan_dict["peernodeAlias"].append({"allAnchors":','.join(allAnchor_list)})
testplan_dict["peernodeAlias"].append({"allPeers":','.join(peer_list)})
print 'org list: '
print org_list_lowercase
print 'orderer_list: '
print orderer_list
print 'peer_list: '
print peer_list
print 'allAnchor_list'
print allAnchor_list
# CREATE_CHANNEL
channel_create["parameters"]["connectionProfile"] = org_list[0]
if network_type == 'cello':
channel_create["parameters"]["channelConsortium"] = 'FabricConsortium'
else:
channel_create["parameters"]["channelConsortium"] = 'SampleConsortium'
channel_create["parameters"]["channelOrgs"] = ','.join(org_list_lowercase)
channel_create["parameters"]["ordererName"] = orderer_list[0]
testplan_dict["tests"].append(channel_create)
# JOIN_CHANNEL and INSTALL_CHAINCODE
join_list = []
install_list = []
for org in org_list:
channel_join = template["CHANNEL_JOIN"]
channel_join["parameters"]["connectionProfile"] = org
channel_join["parameters"]["peers"] = ','.join(org_peers_dict[org])
channel_join["parameters"]["ordererName"] = orderer_list[0]
join_list.append(str(channel_join))
# CHAINCODE_INSTALL
chaincode_install["parameters"]["connectionProfile"] = org
chaincode_install["parameters"]["peers"] = ','.join(org_peers_dict[org])
install_list.append(str(chaincode_install))
for join_org in join_list:
join_item = ast.literal_eval(join_org)
testplan_dict["tests"].append(join_item)
for install_org in install_list:
install_item = ast.literal_eval(install_org)
testplan_dict["tests"].append(install_item)
# CHAINCODE_INSTANTIATE
chaincode_instantiate["parameters"]["connectionProfile"] = org_list[0]
chaincode_instantiate["parameters"]["peers"] = ','.join(peer_list)
# CHAINCODE_INVOKE
# Invoke with fixed transaction count : 100
chaincode_invoke["iterationCount"] = '100'
chaincode_invoke["parameters"]["connectionProfile"] = org_list[0]
chaincode_invoke["parameters"]["peers"] = ','.join(peer_list)
chaincoode_invoke_count = str(chaincode_invoke)
# Invoke with fixed running duration : 0 hour 10 minutes 0 second.
# And enable running tests parallel by setting waitUntilFinish to true
chaincode_invoke["iterationCount"] = '0h10m0s'
chaincode_invoke["waitUntilFinish"] = False
chaincoode_invoke_time = str(chaincode_invoke)
# Invoke with fixed running duration : 0 hour 10 minutes 0 second
chaincode_invoke["iterationCount"] = '0h10m0s'
chaincode_invoke["parameters"]["peers"] = peer_list[0]
chaincoode_invoke_parallel = str(chaincode_invoke)
testplan_dict["tests"].append(chaincode_instantiate)
testplan_dict["tests"].append(ast.literal_eval(chaincoode_invoke_count))
testplan_dict["tests"].append(ast.literal_eval(chaincoode_invoke_time))
testplan_dict["tests"].append(ast.literal_eval(chaincoode_invoke_parallel))
# Execute command with default images
testplan_dict["tests"].append(ast.literal_eval(str(execute_command)))
# Execute command with customized image
execute_command["name"] = "execute-command-with-customized-image"
execute_command["container"] = "user/ownimage"
testplan_dict["tests"].append(ast.literal_eval(str(execute_command)))
connYamlStr= yaml.dump(testplan_dict,default_flow_style=False)
tempstr= connYamlStr
for orgName in org_list :
tempstr = tempstr.replace(orgName+"Anchor:",orgName+"Anchor: &"+orgName+"Anchor")
tempstr = tempstr.replace(orgName+"Peers:",orgName+"Peers: &"+orgName+"Peers")
tempstr = tempstr.replace("allAnchors:","allAnchors: &allAnchors")
tempstr = tempstr.replace("allPeers:","allPeers: &allPeers")
tempstr = tempstr.replace("runid:","runid: &runid")
if network_type == "ibp":
tempstr = tempstr.replace("networkid:","networkid: &networkid")
# Dump testplan file
outputfile =open(work_dir + '/testplan_example.yml','w')
outputfile.write(tempstr)
outputfile.close()
| 39.372222 | 102 | 0.719769 |
1383ec6b114d686bf9cab5e588bcd0ec41143a37
| 1,033 |
py
|
Python
|
dblib/test_lib.py
|
cyber-fighters/dblib
|
9743122a55bc265f7551dd9283f381678b2703e4
|
[
"MIT"
] | null | null | null |
dblib/test_lib.py
|
cyber-fighters/dblib
|
9743122a55bc265f7551dd9283f381678b2703e4
|
[
"MIT"
] | 1 |
2019-02-25T09:52:31.000Z
|
2019-02-25T09:52:31.000Z
|
dblib/test_lib.py
|
cyber-fighters/dblib
|
9743122a55bc265f7551dd9283f381678b2703e4
|
[
"MIT"
] | null | null | null |
"""Collection of tests."""
import pytest
import dblib.lib
f0 = dblib.lib.Finding('CD spook', 'my_PC', 'The CD drive is missing.')
f1 = dblib.lib.Finding('Unplugged', 'my_PC', 'The power cord is unplugged.')
f2 = dblib.lib.Finding('Monitor switched off', 'my_PC', 'The monitor is switched off.')
def test_add_remove():
"""Test function."""
db = dblib.lib.BackyardDB()
# regular cases
db.add(f0)
assert f0 in db.findings
assert len(db.findings) == 1
db.add(f1)
assert f1 in db.findings
assert len(db.findings) == 2
db.add(f2)
assert f2 in db.findings
assert len(db.findings) == 3
db.add(None)
assert len(db.findings) == 3
db.remove(f1)
assert f1 not in db.findings
assert len(db.findings) == 2
# test exceptions
with pytest.raises(TypeError):
db.add(1)
def test_update():
"""Test function."""
db = dblib.lib.BackyardDB()
db.add(f0)
db.add(f1)
db.update(f1, f2)
assert f2 in db.findings
assert len(db.findings) == 2
| 23.477273 | 87 | 0.629235 |
1383ee1f9bdf4c8acf135f0e8788f23793efa056
| 1,627 |
py
|
Python
|
src/azure-cli/azure/cli/command_modules/policyinsights/_completers.py
|
YuanyuanNi/azure-cli
|
63844964374858bfacd209bfe1b69eb456bd64ca
|
[
"MIT"
] | 3,287 |
2016-07-26T17:34:33.000Z
|
2022-03-31T09:52:13.000Z
|
src/azure-cli/azure/cli/command_modules/policyinsights/_completers.py
|
YuanyuanNi/azure-cli
|
63844964374858bfacd209bfe1b69eb456bd64ca
|
[
"MIT"
] | 19,206 |
2016-07-26T07:04:42.000Z
|
2022-03-31T23:57:09.000Z
|
src/azure-cli/azure/cli/command_modules/policyinsights/_completers.py
|
YuanyuanNi/azure-cli
|
63844964374858bfacd209bfe1b69eb456bd64ca
|
[
"MIT"
] | 2,575 |
2016-07-26T06:44:40.000Z
|
2022-03-31T22:56:06.000Z
|
# --------------------------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for license information.
# --------------------------------------------------------------------------------------------
from azure.cli.core.decorators import Completer
from azure.cli.core.commands.client_factory import get_subscription_id
from ._client_factory import cf_policy_insights
| 45.194444 | 112 | 0.696374 |
13842b8b9629fa8e84e1baad24f225b91291bacf
| 6,553 |
py
|
Python
|
hordak/migrations/0011_auto_20170225_2222.py
|
CodeBrew-LTD/django-hordak
|
efdfe503bf38b0a283790c5b4d27bd6bb28155e4
|
[
"MIT"
] | 187 |
2016-12-12T10:58:11.000Z
|
2022-03-27T08:14:19.000Z
|
hordak/migrations/0011_auto_20170225_2222.py
|
CodeBrew-LTD/django-hordak
|
efdfe503bf38b0a283790c5b4d27bd6bb28155e4
|
[
"MIT"
] | 62 |
2016-12-10T00:12:47.000Z
|
2022-03-16T09:23:05.000Z
|
hordak/migrations/0011_auto_20170225_2222.py
|
CodeBrew-LTD/django-hordak
|
efdfe503bf38b0a283790c5b4d27bd6bb28155e4
|
[
"MIT"
] | 47 |
2016-12-12T11:07:31.000Z
|
2022-03-15T20:30:07.000Z
|
# -*- coding: utf-8 -*-
# Generated by Django 1.10.4 on 2017-02-25 22:22
from __future__ import unicode_literals
from django.db import migrations, models
import django.db.models.deletion
import django.utils.timezone
import django_smalluuid.models
| 40.202454 | 100 | 0.327789 |
13844a293f37e75b2bbbb1208093a4013b133018
| 646 |
py
|
Python
|
Bot Telegram.py
|
devilnotcry77/devil_not_cry
|
a9d342d053c788ec6db2d1c5967ed55104b40045
|
[
"Apache-2.0"
] | null | null | null |
Bot Telegram.py
|
devilnotcry77/devil_not_cry
|
a9d342d053c788ec6db2d1c5967ed55104b40045
|
[
"Apache-2.0"
] | null | null | null |
Bot Telegram.py
|
devilnotcry77/devil_not_cry
|
a9d342d053c788ec6db2d1c5967ed55104b40045
|
[
"Apache-2.0"
] | null | null | null |
from aiogram import Bot, types
from aiogram.dispatcher import Dispatcher
from aiogram.utils import executor
TOKEN = "Token for you bot"
bot = Bot(token=TOKEN)
dp = Dispatcher(bot)
if __name__ == '__main__':
executor.start_polling(dp)
| 32.3 | 79 | 0.704334 |
13847a22eab74e6541bf593e5d68249f802e533f
| 1,398 |
py
|
Python
|
redactor/utils.py
|
danlgz/django-wysiwyg-redactor
|
755927ea2cb9db203c4a002b4da7ebfbf989dd64
|
[
"BSD-3-Clause"
] | null | null | null |
redactor/utils.py
|
danlgz/django-wysiwyg-redactor
|
755927ea2cb9db203c4a002b4da7ebfbf989dd64
|
[
"BSD-3-Clause"
] | null | null | null |
redactor/utils.py
|
danlgz/django-wysiwyg-redactor
|
755927ea2cb9db203c4a002b4da7ebfbf989dd64
|
[
"BSD-3-Clause"
] | 2 |
2021-01-27T21:51:38.000Z
|
2021-03-10T22:31:19.000Z
|
from django.core.exceptions import ImproperlyConfigured
from importlib import import_module
try:
from django.utils.encoding import force_text
except ImportError:
from django.utils.encoding import force_unicode as force_text
from django.utils.functional import Promise
import json
| 24.964286 | 71 | 0.670243 |
1385311ad77efabb909223d3edfa32108eab2458
| 4,984 |
py
|
Python
|
timedpid.py
|
DrGFreeman/PyTools
|
795e06b5a07f49a990df3c545d2d103b16dd8b4d
|
[
"MIT"
] | 1 |
2020-04-20T04:45:47.000Z
|
2020-04-20T04:45:47.000Z
|
timedpid.py
|
DrGFreeman/PyTools
|
795e06b5a07f49a990df3c545d2d103b16dd8b4d
|
[
"MIT"
] | null | null | null |
timedpid.py
|
DrGFreeman/PyTools
|
795e06b5a07f49a990df3c545d2d103b16dd8b4d
|
[
"MIT"
] | 1 |
2020-04-20T04:45:51.000Z
|
2020-04-20T04:45:51.000Z
|
# timedpid.py
# Source: https://github.com/DrGFreeman/PyTools
#
# MIT License
#
# Copyright (c) 2017 Julien de la Bruere-Terreault <[email protected]>
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# This module defines a simple Proportional - Integral - Derivative (PID)
# controller with different time step calculation methods. This is a python
# implementation of my Arduino TimedPID library which can be found at
# https://github.com/DrGFreeman/TimedPID. Refer to this repository for detailed
# documentation.
import time
| 36.647059 | 80 | 0.664125 |
13863d63148372da4df5a7856bdd98b8b8e90e54
| 3,051 |
py
|
Python
|
pmon/zmq_responder.py
|
bernd-clemenz/pmon
|
8b61de4864ffed2d7ee224c283090ed1948533ae
|
[
"MIT"
] | 1 |
2020-06-01T19:20:09.000Z
|
2020-06-01T19:20:09.000Z
|
pmon/zmq_responder.py
|
bernd-clemenz/pmon
|
8b61de4864ffed2d7ee224c283090ed1948533ae
|
[
"MIT"
] | null | null | null |
pmon/zmq_responder.py
|
bernd-clemenz/pmon
|
8b61de4864ffed2d7ee224c283090ed1948533ae
|
[
"MIT"
] | null | null | null |
#
# -*- coding: utf-8-*-
# receives messages via zmq and executes some simple
# operations.
#
# (c) ISC Clemenz & Weinbrecht GmbH 2018
#
import json
import requests
import zmq
import pmon
| 29.336538 | 86 | 0.561455 |
138645ddd1d47197cec66a63b6f187e4f2176f57
| 423 |
py
|
Python
|
test/test_substitute.py
|
sanskrit/padmini
|
8e7e8946a7d2df9c941f689ea4bc7b6ebb7ca1d0
|
[
"MIT"
] | 1 |
2022-03-01T05:05:04.000Z
|
2022-03-01T05:05:04.000Z
|
test/test_substitute.py
|
sanskrit/padmini
|
8e7e8946a7d2df9c941f689ea4bc7b6ebb7ca1d0
|
[
"MIT"
] | null | null | null |
test/test_substitute.py
|
sanskrit/padmini
|
8e7e8946a7d2df9c941f689ea4bc7b6ebb7ca1d0
|
[
"MIT"
] | null | null | null |
from padmini import operations as op
"""
def test_ti():
assert S.ti("ta", "e") == "te"
assert S.ti("AtAm", "e") == "Ate"
def test_antya():
assert S.antya("ti", "u") == "tu"
assert S.antya("te", "Am") == "tAm"
"""
| 19.227273 | 53 | 0.51773 |
1388c9a700adcd34c480eb91c770af0acaf65dde
| 2,186 |
py
|
Python
|
TVSaffiliations/extractemails_nogui.py
|
kmhambleton/LSST-TVSSC.github.io
|
2391fcdeddf83321825532aa7d7682b5dcf567f0
|
[
"CC-BY-3.0"
] | null | null | null |
TVSaffiliations/extractemails_nogui.py
|
kmhambleton/LSST-TVSSC.github.io
|
2391fcdeddf83321825532aa7d7682b5dcf567f0
|
[
"CC-BY-3.0"
] | 3 |
2018-06-15T10:12:39.000Z
|
2022-03-23T23:43:27.000Z
|
TVSaffiliations/extractemails_nogui.py
|
kmhambleton/LSST-TVSSC.github.io
|
2391fcdeddf83321825532aa7d7682b5dcf567f0
|
[
"CC-BY-3.0"
] | 5 |
2018-03-27T12:53:55.000Z
|
2019-07-17T15:54:09.000Z
|
# coding: utf-8
#just prints the emails of members of a group to stdout,
#both primary and secondary members
# run as
# $python extractemails_nogui.py "Tidal Disruption Events"
from __future__ import print_function
'__author__' == 'Federica Bianco, NYU - GitHub: fedhere'
import sys
import pandas as pd
from argparse import ArgumentParser
from config import tvsfile
def parse_args(subglist):
""" Use ArgParser to build up the arguments we will use in our script
"""
stored_args = {}
# get the script name without the extension & use it to build up
# the json filename
parser = ArgumentParser(description='Selecting members by subgroup')
parser.add_argument('subgroup',
action='store',
default=None,
help='Choose the subgroup affiliation:' +
' -- '.join([s for s in subglist]))
args = parser.parse_args()
return args
if __name__ == '__main__':
if tvsfile is None:
print ("Required Argument: Google Doc file identifier (if you do not have it email federica!)")
sys.exit()
TVSMembers = pd.read_csv('https://docs.google.com/spreadsheets/d/' +
tvsfile +
'/export?gid=0&format=csv',
index_col=0)
subgroups = TVSMembers.primary.unique()
conf = parse_args([x for x in subgroups if str(x) != 'nan'])
primary = conf.subgroup
secondary = conf.subgroup
emails = TVSMembers[TVSMembers.primary == primary]['email'].values
print ("These are the members with primary affiliation with " + primary)
print ("")
print (' '.join([em + ','for em in emails]))
emails = TVSMembers[(TVSMembers.secondary == secondary) | (TVSMembers['secondary.1'] == secondary) | (TVSMembers['secondary.2'] == secondary)]['email'].values
print ("\n")
print ("These are the members with secondary affiliation with " + secondary)
print ("")
print (' '.join([em + ','for em in emails]))
print ("")
print ("If you also want their names and affiliations use: ")
print ("$python extractemailsW.py " + conf.subgroup)
| 35.836066 | 162 | 0.627173 |
1388cb066414d3af45386f8ba3a988639cd4786c
| 20,373 |
py
|
Python
|
cogs/owner.py
|
Obsidian-Development/JDBot
|
315b0782126ac36fe934ac3ba2d7132710d58651
|
[
"MIT"
] | null | null | null |
cogs/owner.py
|
Obsidian-Development/JDBot
|
315b0782126ac36fe934ac3ba2d7132710d58651
|
[
"MIT"
] | 1 |
2021-11-09T14:30:49.000Z
|
2021-11-09T14:31:19.000Z
|
cogs/owner.py
|
Obsidian-Development/JDBot
|
315b0782126ac36fe934ac3ba2d7132710d58651
|
[
"MIT"
] | null | null | null |
from discord.ext import commands, menus
import utils
import random , discord, os, importlib, mystbin, typing, aioimgur, functools, tweepy
import traceback, textwrap
from discord.ext.menus.views import ViewMenuPages
class SusUsersEmbed(menus.ListPageSource):
class TestersEmbed(menus.ListPageSource):
def tweepy_post(self, post_text = None):
consumer_key = os.getenv('tweet_key')
consumer_secret = os.getenv('tweet_secret')
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
access_token = os.getenv('tweet_access')
access_secret = os.getenv('tweet_token')
auth.set_access_token(access_token, access_secret)
twitter_api = tweepy.API(auth)
return twitter_api.update_status(status = post_text)
| 38.223265 | 333 | 0.676827 |
138922f3a893ab484911754fbdc916b94b521606
| 1,341 |
py
|
Python
|
tests/input_files/full_sm_UFO/function_library.py
|
valassi/mg5amc_test
|
2e04f23353051f64e1604b23105fe3faabd32869
|
[
"NCSA"
] | 1 |
2016-07-09T00:05:56.000Z
|
2016-07-09T00:05:56.000Z
|
tests/input_files/full_sm_UFO/function_library.py
|
valassi/mg5amc_test
|
2e04f23353051f64e1604b23105fe3faabd32869
|
[
"NCSA"
] | 4 |
2022-03-10T09:13:31.000Z
|
2022-03-30T16:15:01.000Z
|
tests/input_files/full_sm_UFO/function_library.py
|
valassi/mg5amc_test
|
2e04f23353051f64e1604b23105fe3faabd32869
|
[
"NCSA"
] | 1 |
2016-07-09T00:06:15.000Z
|
2016-07-09T00:06:15.000Z
|
# This file is part of the UFO.
#
# This file contains definitions for functions that
# are extensions of the cmath library, and correspond
# either to functions that are in cmath, but inconvenient
# to access from there (e.g. z.conjugate()),
# or functions that are simply not defined.
#
#
from __future__ import absolute_import
__date__ = "22 July 2010"
__author__ = "[email protected]"
import cmath
from .object_library import all_functions, Function
#
# shortcuts for functions from cmath
#
complexconjugate = Function(name = 'complexconjugate',
arguments = ('z',),
expression = 'z.conjugate()')
re = Function(name = 're',
arguments = ('z',),
expression = 'z.real')
im = Function(name = 'im',
arguments = ('z',),
expression = 'z.imag')
# New functions (trigonometric)
sec = Function(name = 'sec',
arguments = ('z',),
expression = '1./cmath.cos(z)')
asec = Function(name = 'asec',
arguments = ('z',),
expression = 'cmath.acos(1./z)')
csc = Function(name = 'csc',
arguments = ('z',),
expression = '1./cmath.sin(z)')
acsc = Function(name = 'acsc',
arguments = ('z',),
expression = 'cmath.asin(1./z)')
| 23.946429 | 57 | 0.57047 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.