hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
11 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
251
max_stars_repo_name
stringlengths
4
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
251
max_issues_repo_name
stringlengths
4
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
251
max_forks_repo_name
stringlengths
4
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.05M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.04M
alphanum_fraction
float64
0
1
b931a37de7e1f1ed0fc213effed503351b163f01
9,946
py
Python
goopylib/objects/_BBox.py
BhavyeMathur/goopylib
f9eb1458e9218a8dd4add6693ce70b804624bf91
[ "MIT" ]
25
2020-07-09T10:57:16.000Z
2022-02-06T10:31:34.000Z
goopylib/objects/_BBox.py
BhavyeMathur/goopy
f9eb1458e9218a8dd4add6693ce70b804624bf91
[ "MIT" ]
48
2020-07-02T20:08:40.000Z
2020-07-06T16:09:25.000Z
goopylib/objects/_BBox.py
BhavyeMathur/goopy
f9eb1458e9218a8dd4add6693ce70b804624bf91
[ "MIT" ]
1
2020-12-01T13:45:53.000Z
2020-12-01T13:45:53.000Z
from goopylib.objects.GraphicsObject import GraphicsObject from goopylib.styles import *
37.81749
122
0.594008
b931c0b51c15ef9d8f1fe028562964e4cc16bd70
670
py
Python
Graph/DFS&BFS.py
Mayner0220/Programmers
42e4783a526506fb7d8208841a76201909ed5c5c
[ "Apache-2.0" ]
1
2021-04-01T06:19:02.000Z
2021-04-01T06:19:02.000Z
Graph/DFS&BFS.py
Mayner0220/Programmers
42e4783a526506fb7d8208841a76201909ed5c5c
[ "Apache-2.0" ]
null
null
null
Graph/DFS&BFS.py
Mayner0220/Programmers
42e4783a526506fb7d8208841a76201909ed5c5c
[ "Apache-2.0" ]
null
null
null
# https://www.acmicpc.net/problem/1260 n, m, v = map(int, input().split()) graph = [[0] * (n+1) for _ in range(n+1)] visit = [False] * (n+1) for _ in range(m): R, C = map(int, input().split()) graph[R][C] = 1 graph[C][R] = 1 dfs(v) print() bfs(v)
19.142857
43
0.470149
b9341a63382a080379eb1fbad26490deed5a76c6
2,404
py
Python
pysteps/tests/helpers.py
Fangyh09/pysteps
9eb7f4ead0a946d98b7504d1bd66b18dc405ed51
[ "BSD-3-Clause" ]
6
2019-01-06T07:42:55.000Z
2021-02-03T13:59:50.000Z
pysteps/tests/helpers.py
Fangyh09/pysteps
9eb7f4ead0a946d98b7504d1bd66b18dc405ed51
[ "BSD-3-Clause" ]
5
2018-12-23T15:10:27.000Z
2021-01-06T15:03:03.000Z
pysteps/tests/helpers.py
Fangyh09/pysteps
9eb7f4ead0a946d98b7504d1bd66b18dc405ed51
[ "BSD-3-Clause" ]
2
2019-08-06T14:16:43.000Z
2019-08-13T00:36:31.000Z
""" Testing helper functions ======================= Collection of helper functions for the testing suite. """ from datetime import datetime import numpy as np import pytest import pysteps as stp from pysteps import io, rcparams def get_precipitation_fields(num_prev_files=0): """Get a precipitation field from the archive to be used as reference.""" # Selected case date = datetime.strptime("201505151630", "%Y%m%d%H%M") data_source = rcparams.data_sources["mch"] root_path = data_source["root_path"] path_fmt = data_source["path_fmt"] fn_pattern = data_source["fn_pattern"] fn_ext = data_source["fn_ext"] importer_name = data_source["importer"] importer_kwargs = data_source["importer_kwargs"] # Find the input files from the archive fns = io.archive.find_by_date(date, root_path, path_fmt, fn_pattern, fn_ext, timestep=5, num_prev_files=num_prev_files) # Read the radar composites importer = io.get_method(importer_name, "importer") reference_field, quality, metadata = io.read_timeseries(fns, importer, **importer_kwargs) del quality # Not used if num_prev_files == 0: reference_field = np.squeeze(reference_field) # Remove time dimension # Convert to mm/h reference_field, metadata = stp.utils.to_rainrate(reference_field, metadata) # Mask invalid values reference_field = np.ma.masked_invalid(reference_field) # Log-transform the data [dBR] reference_field, metadata = stp.utils.dB_transform(reference_field, metadata, threshold=0.1, zerovalue=-15.0) return reference_field def smart_assert(actual_value, expected, tolerance=None): """ Assert by equality for non-numeric values, or by approximation otherwise. If the precision keyword is None, assert by equality. When the precision is not None, assert that two numeric values (or two sets of numbers) are equal to each other within the tolerance. """ if tolerance is None: assert actual_value == expected else: # Compare numbers up to a certain precision assert actual_value == pytest.approx(expected, 1e-6)
33.388889
80
0.640599
b934cd0c4d4115b02def19c6bd570d1877b158cd
3,598
py
Python
modules/courses/courses.py
ehiller/mobilecsp-v18
a59801c44c616d30f5e916d6771e479c8a9e88f7
[ "Apache-2.0" ]
null
null
null
modules/courses/courses.py
ehiller/mobilecsp-v18
a59801c44c616d30f5e916d6771e479c8a9e88f7
[ "Apache-2.0" ]
null
null
null
modules/courses/courses.py
ehiller/mobilecsp-v18
a59801c44c616d30f5e916d6771e479c8a9e88f7
[ "Apache-2.0" ]
null
null
null
# Copyright 2012 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Courses module.""" __author__ = 'Pavel Simakov ([email protected])' from common import resource from controllers import assessments from controllers import lessons from controllers import utils from models import content from models import resources_display from models import custom_modules from models import roles from tools import verify All_LOCALES_PERMISSION = 'can_pick_all_locales' All_LOCALES_DESCRIPTION = 'Can pick all locales, including unavailable ones.' SEE_DRAFTS_PERMISSION = 'can_see_draft_content' SEE_DRAFTS_DESCRIPTION = 'Can see lessons and assessments with draft status.' custom_module = None def register_module(): """Registers this module in the registry.""" # provide parser to verify verify.parse_content = content.parse_string_in_scope # setup routes courses_routes = [ ('/', lessons.CourseHandler), ('/activity', lessons.UnitHandler), ('/answer', assessments.AnswerHandler), ('/assessment', lessons.AssessmentHandler), ('/course', lessons.CourseHandler), ('/forum', utils.ForumHandler), ('/preview', utils.PreviewHandler), ('/register', utils.RegisterHandler), ('/resources', utils.ResourcesHandler), ('/rest/locale', utils.StudentLocaleRESTHandler), ('/review', lessons.ReviewHandler), ('/reviewdashboard', lessons.ReviewDashboardHandler), ('/student/editstudent', utils.StudentEditStudentHandler), ('/student/settracks', utils.StudentSetTracksHandler), ('/student/home', utils.StudentProfileHandler), ('/student/unenroll', utils.StudentUnenrollHandler), ('/unit', lessons.UnitHandler)] global custom_module # pylint: disable=global-statement custom_module = custom_modules.Module( 'Course', 'A set of pages for delivering an online course.', [], courses_routes, notify_module_enabled=on_module_enabled) return custom_module
36.714286
78
0.735686
b934ce47dae53d305023f829683b8ba6f625367b
1,362
py
Python
packages/merlin/protocols/PrefixLayout.py
pyre/pyre
0f903836f52450bf81216c5dfdfdfebb16090177
[ "BSD-3-Clause" ]
25
2018-04-23T01:45:39.000Z
2021-12-10T06:01:23.000Z
packages/merlin/protocols/PrefixLayout.py
pyre/pyre
0f903836f52450bf81216c5dfdfdfebb16090177
[ "BSD-3-Clause" ]
53
2018-05-31T04:55:00.000Z
2021-10-07T21:41:32.000Z
packages/merlin/protocols/PrefixLayout.py
pyre/pyre
0f903836f52450bf81216c5dfdfdfebb16090177
[ "BSD-3-Clause" ]
12
2018-04-23T22:50:40.000Z
2022-02-20T17:27:23.000Z
# -*- coding: utf-8 -*- # # michael a.g. avzis <[email protected]> # (c) 1998-2021 all rights reserved # support import merlin # the manager of intermediate and final build products # end of file
23.482759
82
0.668135
b9355080468a287acd9198671ea28f44a47c9a46
2,389
py
Python
test/IECoreMaya/ImageConverterTest.py
bradleyhenke/cortex
f8245cc6c9464b1de9e6c6e57068248198e63de0
[ "BSD-3-Clause" ]
386
2015-01-02T11:10:43.000Z
2022-03-10T15:12:20.000Z
test/IECoreMaya/ImageConverterTest.py
bradleyhenke/cortex
f8245cc6c9464b1de9e6c6e57068248198e63de0
[ "BSD-3-Clause" ]
484
2015-01-09T18:28:06.000Z
2022-03-31T16:02:04.000Z
test/IECoreMaya/ImageConverterTest.py
bradleyhenke/cortex
f8245cc6c9464b1de9e6c6e57068248198e63de0
[ "BSD-3-Clause" ]
99
2015-01-28T23:18:04.000Z
2022-03-27T00:59:39.000Z
########################################################################## # # Copyright (c) 2011, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the name of Image Engine Design nor the names of any # other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import maya.cmds import IECore import IECoreImage import IECoreMaya if __name__ == "__main__": IECoreMaya.TestProgram()
37.920635
92
0.706153
b936e2da1dfb0c50e0a4123e54c302664e300cf0
4,454
py
Python
tests/core_ptl/check_for_ranks.py
PatrykNeubauer/NeMo
3ada744b884dba5f233f22c6991fc6092c6ca8d0
[ "Apache-2.0" ]
2
2021-09-21T07:36:20.000Z
2022-02-05T15:29:04.000Z
tests/core_ptl/check_for_ranks.py
PatrykNeubauer/NeMo
3ada744b884dba5f233f22c6991fc6092c6ca8d0
[ "Apache-2.0" ]
null
null
null
tests/core_ptl/check_for_ranks.py
PatrykNeubauer/NeMo
3ada744b884dba5f233f22c6991fc6092c6ca8d0
[ "Apache-2.0" ]
12
2021-06-20T08:56:10.000Z
2022-03-16T19:07:10.000Z
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil import torch from omegaconf import OmegaConf from pytorch_lightning import Trainer from pytorch_lightning.utilities.distributed import rank_zero_only from nemo.core import ModelPT from nemo.utils import logging from nemo.utils.exp_manager import ExpManagerConfig, exp_manager def instantiate_multinode_ddp_if_possible(): num_gpus = torch.cuda.device_count() trainer = Trainer(gpus=num_gpus, accelerator='ddp', logger=None, checkpoint_callback=None) exp_manager_cfg = ExpManagerConfig(exp_dir='./ddp_check/', use_datetime_version=False, version="") exp_manager(trainer, cfg=OmegaConf.structured(exp_manager_cfg)) return trainer def setup_model(trainer: Trainer): model = ExampleModel(trainer=trainer) logging.info(f"M.Global Rank:{model.global_rank}") logging.info(f"M.Local Rank:{model.local_rank}") logging.info(f"M.World Size:{model.trainer.world_size}") trainer.predict(model) return model def get_rank_info(texts: list, rank_key: str) -> int: for line in texts: if rank_key in line: rank_value = line.split(":")[-1] rank_value = int(rank_value) return rank_value print("Could not find the correct rank key !") exit(1) def run_checks(): cleanup() trainer = instantiate_multinode_ddp_if_possible() model = setup_model(trainer) check_model_ranks(model) print("DDP checks passed !") cleanup() if __name__ == '__main__': run_checks()
28.551282
102
0.687023
b93839299c30aa23ab066b85969c7c27e043c202
1,143
py
Python
helpers/json_manager.py
Lofi-Lemonade/Python-Discord-Bot-Template
4cb79197c751c88100ad396adb38e88bf2a4d1ed
[ "Apache-2.0" ]
null
null
null
helpers/json_manager.py
Lofi-Lemonade/Python-Discord-Bot-Template
4cb79197c751c88100ad396adb38e88bf2a4d1ed
[ "Apache-2.0" ]
null
null
null
helpers/json_manager.py
Lofi-Lemonade/Python-Discord-Bot-Template
4cb79197c751c88100ad396adb38e88bf2a4d1ed
[ "Apache-2.0" ]
null
null
null
"""" Copyright Krypton 2022 - https://github.com/kkrypt0nn (https://krypton.ninja) Description: This is a template to create your own discord bot in python. Version: 4.1 """ import json def add_user_to_blacklist(user_id: int) -> None: """ This function will add a user based on its ID in the blacklist.json file. :param user_id: The ID of the user that should be added into the blacklist.json file. """ with open("blacklist.json", "r+") as file: file_data = json.load(file) file_data["ids"].append(user_id) with open("blacklist.json", "w") as file: file.seek(0) json.dump(file_data, file, indent=4) def remove_user_from_blacklist(user_id: int) -> None: """ This function will remove a user based on its ID from the blacklist.json file. :param user_id: The ID of the user that should be removed from the blacklist.json file. """ with open("blacklist.json", "r") as file: file_data = json.load(file) file_data["ids"].remove(user_id) with open("blacklist.json", "w") as file: file.seek(0) json.dump(file_data, file, indent=4)
31.75
91
0.659668
b93889b31eb8ffef50e08b669fe2f20c16f4d959
1,628
py
Python
tests/test_common.py
ColinKennedy/ways
1eb44e4aa5e35fb839212cd8cb1c59c714ba10d3
[ "MIT" ]
2
2019-11-10T18:35:38.000Z
2020-05-12T10:37:42.000Z
tests/test_common.py
ColinKennedy/ways
1eb44e4aa5e35fb839212cd8cb1c59c714ba10d3
[ "MIT" ]
5
2017-11-27T18:05:25.000Z
2021-06-01T21:57:48.000Z
tests/test_common.py
ColinKennedy/ways
1eb44e4aa5e35fb839212cd8cb1c59c714ba10d3
[ "MIT" ]
1
2017-11-27T17:54:53.000Z
2017-11-27T17:54:53.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- '''Make sure that generic functions work exactly as we expect.''' # IMPORT STANDARD LIBRARIES import unittest # IMPORT WAYS LIBRARIES from ways import common
35.391304
84
0.686732
b938dd2d4297c0de33a03a4e075f88143c4fb4d8
942
py
Python
setup.py
glibin/natasha
4f5c153f754759c189779f9879decd8d218356af
[ "MIT" ]
1
2020-01-16T14:02:01.000Z
2020-01-16T14:02:01.000Z
setup.py
glibin/natasha
4f5c153f754759c189779f9879decd8d218356af
[ "MIT" ]
null
null
null
setup.py
glibin/natasha
4f5c153f754759c189779f9879decd8d218356af
[ "MIT" ]
null
null
null
from setuptools import setup, find_packages setup( name='natasha', version='0.2.0', description='Named-entity recognition for russian language', url='https://github.com/bureaucratic-labs/natasha', author='Dmitry Veselov', author_email='[email protected]', license='MIT', classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', ], keywords='natural language processing, russian morphology, named entity recognition, tomita', packages=find_packages(), install_requires=[ 'yargy==0.3.0' ], extras_require={ 'web': [ 'ujson', 'aiohttp', ], }, )
29.4375
97
0.59448
b93a3daf85b033d7039d8c3747eadb457802db6b
2,814
py
Python
GeneratePassword/generate_password_v2.py
OneScreenfulOfPython/screenfuls
ea4e378c8d9e530edadd4a3315fe9e8acc98460b
[ "Apache-2.0" ]
2
2015-01-19T14:50:55.000Z
2015-01-28T12:45:59.000Z
GeneratePassword/generate_password_v2.py
OneScreenfulOfPython/screenfuls
ea4e378c8d9e530edadd4a3315fe9e8acc98460b
[ "Apache-2.0" ]
null
null
null
GeneratePassword/generate_password_v2.py
OneScreenfulOfPython/screenfuls
ea4e378c8d9e530edadd4a3315fe9e8acc98460b
[ "Apache-2.0" ]
null
null
null
import os, sys import random import string try: # Make Python2 work like Python3 input = raw_input except NameError: # On Python3; already using input pass letters = string.ascii_letters numbers = string.digits punctuation = string.punctuation def generate(password_length, at_least_one_letter, at_least_one_number, at_least_one_punctuation): """Generate a password by include enough random characters to meet the password length restriction. In addition, the user can specify that at least one of the each of the classes of character be used. """ # # Any combination of characters is valid # valid_characters = "" if at_least_one_letter: valid_characters += letters if at_least_one_number: valid_characters += numbers if at_least_one_punctuation: valid_characters += punctuation # # Start with a blank password and then go round enough # times to make a password of the required length. # password = "" for i in range(password_length): # # Each time around, ensure that one of each of the selected # groups is chosen, and then just choose randomly from all # groups. # if at_least_one_letter: character = random.choice(letters) at_least_one_letter = False elif at_least_one_number: character = random.choice(numbers) at_least_one_number = False elif at_least_one_punctuation: character = random.choice(punctuation) at_least_one_punctuation = False else: character = random.choice(valid_characters) password += character # # Finally, shuffle the password so we don't always get a # letter at the beginning, with a number after and some # punctuation. # characters = list(password) # # random.shuffle shuffles a list *in place* # random.shuffle(characters) # # X.join(...) means: return all the strings in (...) joined by X # ", ".join(['Eggs', 'Bacon', 'Beans']) => "Eggs, Bacon, Beans" # But if you want to generate *real* .csv files, use the csv module # because there are lots of corner-cases. # password = "".join(characters) return password if __name__ == '__main__': password_length = int(input("How many letters? ")) at_least_one_letter = "Y" == (input("At least one letter [Y/n]? ").upper() or "Y") at_least_one_number = "Y" == (input("At least one number [Y/n]? ").upper() or "Y") at_least_one_punctuation = "Y" == (input("At least one punctuation [Y/n]? ").upper() or "Y") password = generate(password_length, at_least_one_letter, at_least_one_number, at_least_one_punctuation) print("Your password is: {}".format(password))
33.5
108
0.658138
b93a4101b4ff85c90fbde08405fbe7515b2816bd
17,093
py
Python
bot/jobs/thorchain_node_jobs.py
block42-blockchain-company/thornode-telegram-bot
6478b1eb41e36c5fdd327b963b55343de1ce5337
[ "MIT" ]
15
2020-04-21T07:51:26.000Z
2021-11-02T05:45:48.000Z
bot/jobs/thorchain_node_jobs.py
block42-blockchain-company/thornode-telegram-bot
6478b1eb41e36c5fdd327b963b55343de1ce5337
[ "MIT" ]
78
2020-04-13T23:01:16.000Z
2021-05-09T11:46:25.000Z
bot/jobs/thorchain_node_jobs.py
block42-blockchain-company/thornode-telegram-bot
6478b1eb41e36c5fdd327b963b55343de1ce5337
[ "MIT" ]
5
2020-09-03T21:19:16.000Z
2021-11-20T00:17:56.000Z
from constants.messages import get_node_health_warning_message, get_node_healthy_again_message from handlers.chat_helpers import try_message_with_home_menu, try_message_to_all_users from packaging import version from service.utils import * def check_thorchain_catch_up_status(context, node_address): """ Check if node is some blocks behind with catch up status """ chat_id = context.job.context['chat_id'] node_data = context.job.context['chat_data']['nodes'][node_address] if 'is_catching_up' not in node_data: node_data['is_catching_up'] = False try: is_currently_catching_up = is_thorchain_catching_up( node_data['ip_address']) except (Timeout, ConnectionError): logger.warning(f"Timeout or Connection error with {node_data['ip_address']}") return if node_data['is_catching_up'] != is_currently_catching_up: try: block_height = get_latest_block_height(node_data['ip_address']) except (Timeout, ConnectionError): logger.warning(f"Timeout or Connection error with {node_data['ip_address']}") block_height = "currently unavailable" if is_currently_catching_up: node_data['is_catching_up'] = True text = 'The Node is behind the latest block height and catching up! ' + '\n' + \ 'IP: ' + node_data['ip_address'] + '\n' + \ 'THORNode: ' + node_data['alias'] + '\n' + \ 'Node address: ' + node_address + '\n' + \ 'Current block height: ' + block_height + '\n\n' + \ 'Please check your Thornode immediately!' else: node_data['is_catching_up'] = False text = 'The node caught up to the latest block height again! ' + '\n' + \ 'IP: ' + node_data['ip_address'] + '\n' + \ 'THORNode: ' + node_data['alias'] + '\n' + \ 'Node address: ' + node_address + '\n' + \ 'Current block height: ' + block_height try_message_with_home_menu(context=context, chat_id=chat_id, text=text) def check_thorchain_midgard_api(context, node_address): """ Check that Midgard API is ok """ chat_id = context.job.context['chat_id'] node_data = context.job.context['chat_data']['nodes'][node_address] was_healthy = node_data.setdefault('is_midgard_healthy', True) is_midgard_healthy = is_midgard_api_healthy(node_data['ip_address']) if was_healthy != is_midgard_healthy: if is_midgard_healthy: text = 'Midgard API is healthy again! ' + '\n' + \ 'IP: ' + node_data['ip_address'] + '\n' + \ 'THORNode: ' + node_data['alias'] + '\n' + \ 'Node address: ' + node_address try_message_with_home_menu(context, chat_id=chat_id, text=text) else: text = 'Midgard API is not healthy anymore! ' + '\n' + \ 'IP: ' + node_data['ip_address'] + '\n' + \ 'THORNode: ' + node_data['alias'] + '\n' + \ 'Node address: ' + node_address + '\n\n' + \ 'Please check your Thornode immediately!' try_message_with_home_menu(context, chat_id=chat_id, text=text) node_data['is_midgard_healthy'] = is_midgard_healthy
43.164141
126
0.600889
b93aaafe8012e07a3a1b7cd6bfac2b4027e51ebd
3,760
py
Python
hard-gists/7578539/snippet.py
jjhenkel/dockerizeme
eaa4fe5366f6b9adf74399eab01c712cacaeb279
[ "Apache-2.0" ]
21
2019-07-08T08:26:45.000Z
2022-01-24T23:53:25.000Z
hard-gists/7578539/snippet.py
jjhenkel/dockerizeme
eaa4fe5366f6b9adf74399eab01c712cacaeb279
[ "Apache-2.0" ]
5
2019-06-15T14:47:47.000Z
2022-02-26T05:02:56.000Z
hard-gists/7578539/snippet.py
jjhenkel/dockerizeme
eaa4fe5366f6b9adf74399eab01c712cacaeb279
[ "Apache-2.0" ]
17
2019-05-16T03:50:34.000Z
2021-01-14T14:35:12.000Z
from pylab import * from numpy import * from numpy.linalg import solve from scipy.integrate import odeint from scipy.stats import norm, uniform, beta from scipy.special import jacobi a = 0.0 b = 3.0 theta=1.0 sigma=sqrt(theta/(2*(a+b+2))) tscale = 0.05 invariant_distribution = poly1d( [-1 for x in range(int(a))], True)*poly1d( [1 for x in range(int(b))], True) gaussian_var = norm() def poly_to_jacobi(x): """x is a poly1d object""" xc = x.coeffs N = x.order+1 matrix = zeros(shape=(N,N), dtype=float) for i in range(N): matrix[N-i-1:N, i] = jacobi(i,a,b).coeffs return solve(matrix, xc) def propagate_jacobi(pc, t): """Takes jacobi coefficients and propagates them""" n = arange(pc.shape[0], dtype=float) l = theta*n*(n+a+b+1.0)/(a+b+2.0)*tscale return exp(-l*t)*pc tmax = 4 prior = beta_prior(40, 20) prior_in_jacobi = poly_to_jacobi(prior) dt = 0.1 times = arange(0,tmax,dt) x = arange(-1,1,0.01) rw_dt = 0.01 t, y = random_walk(0.35*2-1, tmax, rw_dt) solution_as_x = zeros(shape=(times.size, x.size), dtype=float) solution_as_jacobi = None empirical_ctr = zeros(shape=(4,), dtype=float) for i in range(0,4): nt = int(1.0/dt) prior = prior_in_jacobi rnd = uniform(0,1) if (i > 0): nsamples = 40 r = rnd.rvs(nsamples) ctr = (y[i/rw_dt]+1)/2.0 print "CTR: " + str(ctr) success = (r < ctr).sum() print "Empirical: " + str(success / float(nsamples)) evidence = beta_prior( nsamples - success, success) prior = None j = truncate_unnecessary_jacobi(solution_as_jacobi[int(1/dt)-1]) prior = poly_to_jacobi(evidence * jacobi_to_poly_no_invariant(j)) empirical_ctr[i] = success / float(nsamples) solution_as_jacobi = pde_solve(prior, times[i*nt:(i+1)*nt]) solution_as_x[i*nt:(i+1)*nt] = transform_to_x(solution_as_jacobi, x) plot(arange(0,4), empirical_ctr, 'go') plot(t, (y+1)/2.0, 'k') imshow(solution_as_x.transpose(), origin='lower', extent=[0,tmax,0,1]) xlabel("time") ylabel("CTR") title("Bayesian Estimate of CTR") colorbar() show()
27.246377
109
0.611702
b93b21d31a5eecb527d2b3ad7f00cf5d4683d661
1,535
py
Python
forms.py
lennykioko/Flask-social-network
15bfe1f7dca90074c0cbef62c5da9d5a25b5ce65
[ "MIT" ]
1
2018-04-15T19:35:54.000Z
2018-04-15T19:35:54.000Z
forms.py
lennykioko/Flask-social-network
15bfe1f7dca90074c0cbef62c5da9d5a25b5ce65
[ "MIT" ]
null
null
null
forms.py
lennykioko/Flask-social-network
15bfe1f7dca90074c0cbef62c5da9d5a25b5ce65
[ "MIT" ]
null
null
null
# forms are not just about display, instead they are more of validation # wtf forms protect our site against csrf attacks from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, TextAreaField from wtforms.validators import (DataRequired, Regexp, ValidationError, Email, Length, EqualTo) from models import User
25.583333
85
0.712704
b93b8add4495a7de42fb7a036f7ba8c5ddea0d87
1,508
py
Python
pantam_cli/utils/messages.py
flmnt/pantam
da47d977e69ec410d0642b5ade1f2323c1b6b350
[ "MIT" ]
2
2020-10-04T10:29:43.000Z
2021-03-30T13:45:09.000Z
pantam_cli/utils/messages.py
flmnt/pantam
da47d977e69ec410d0642b5ade1f2323c1b6b350
[ "MIT" ]
null
null
null
pantam_cli/utils/messages.py
flmnt/pantam
da47d977e69ec410d0642b5ade1f2323c1b6b350
[ "MIT" ]
null
null
null
from sys import stderr, stdout from enum import Enum from colored import fg, attr PANTAM: str = fg("yellow") + attr("bold") + "PANTAM" + attr("reset") colour_msg = lambda msg, colour: fg(colour) + attr("bold") + msg + attr("reset") info_msg = lambda msg: colour_msg(msg, "blue") success_msg = lambda msg: colour_msg(msg, "green") error_msg = lambda msg: colour_msg(msg, "red") def write_msg(msg: str, spacing: NewLine = None) -> None: """Write message to stdout""" prefix: str = "\n" if spacing in (NewLine.before, NewLine.both) else "" suffix: str = "\n" if spacing in (NewLine.after, NewLine.both) else "" stdout.write("%s%s%s" % (prefix, msg, suffix)) def write_error(msg: str) -> None: """Write message to stderr""" stderr.write("\n%s\n" % msg) welcome_msg = ( lambda: PANTAM + """ The microframework for microservices. Let's build your app... """ ) name_index_file_msg = lambda: "What is the name of your main script?" name_actions_folder_msg = lambda: "What is the name of your actions folder?" def create_actions_file_msg(second_run: bool): """Actions File Message""" article = "another" if second_run else "an" return "Do you want to create %s action file?" % article name_actions_file_msg = lambda: "What is the name of your actions file?" confirm_structure_msg = ( lambda structure: """Your application will look like this: %s Happy to proceed?""" % structure )
24.322581
80
0.671088
b93da1b1bbce8a3e5fafae55f093b2f5323fb641
2,510
py
Python
tests/manage/test_remove_mon_from_cluster.py
zmc/ocs-ci
fcf51f3637f657689ba5a8ac869f2b14ac04b0cf
[ "MIT" ]
null
null
null
tests/manage/test_remove_mon_from_cluster.py
zmc/ocs-ci
fcf51f3637f657689ba5a8ac869f2b14ac04b0cf
[ "MIT" ]
null
null
null
tests/manage/test_remove_mon_from_cluster.py
zmc/ocs-ci
fcf51f3637f657689ba5a8ac869f2b14ac04b0cf
[ "MIT" ]
null
null
null
""" A Testcase to remove mon from when I/O's are happening. Polarion-ID- OCS-355 """ import logging import pytest from ocs_ci.ocs import ocp, constants from ocs_ci.framework.testlib import tier4, ManageTest from ocs_ci.framework import config from ocs_ci.ocs.resources import pod from tests.helpers import run_io_with_rados_bench, delete_cephblockpool from ocs_ci.ocs.cluster import CephCluster from ocs_ci.utility.retry import retry from ocs_ci.ocs.exceptions import CephHealthException log = logging.getLogger(__name__) def run_io_on_pool(): """ Runs the I/O on the pool and delete the pool Returns: A thread of I/O """ tools_pod = pod.get_ceph_tools_pod() tools_pod.add_role(role='client') return run_io_with_rados_bench( ceph_pods=[tools_pod], config={'time': 45, 'cleanup': False, 'pool': 'test-pool' } )
29.529412
94
0.688446
b93f9ebd7406695d9627c10b5f85877c35692320
2,690
py
Python
smartystreets_python_sdk/us_autocomplete_pro/client.py
Caaz/smartystreets-python-sdk
f56cd00d29861bde297143c128f79a4b1d89541c
[ "Apache-2.0" ]
null
null
null
smartystreets_python_sdk/us_autocomplete_pro/client.py
Caaz/smartystreets-python-sdk
f56cd00d29861bde297143c128f79a4b1d89541c
[ "Apache-2.0" ]
null
null
null
smartystreets_python_sdk/us_autocomplete_pro/client.py
Caaz/smartystreets-python-sdk
f56cd00d29861bde297143c128f79a4b1d89541c
[ "Apache-2.0" ]
null
null
null
from smartystreets_python_sdk import Request from smartystreets_python_sdk.exceptions import SmartyException from smartystreets_python_sdk.us_autocomplete_pro import Suggestion, geolocation_type
42.03125
112
0.717472
b94044f865f05e0aee9b401bba3907e01e40ff6c
11,578
py
Python
mssqlvc.py
Saritasa/mssqlvc
836caeea59cc0ed23234687b94062e007707c603
[ "BSD-2-Clause" ]
2
2016-09-22T04:36:46.000Z
2018-07-31T21:36:42.000Z
mssqlvc.py
Saritasa/mssqlvc
836caeea59cc0ed23234687b94062e007707c603
[ "BSD-2-Clause" ]
1
2016-02-02T07:58:29.000Z
2016-02-02T14:19:18.000Z
mssqlvc.py
krasninja/mssqlvc
836caeea59cc0ed23234687b94062e007707c603
[ "BSD-2-Clause" ]
2
2016-09-21T09:48:44.000Z
2020-03-24T15:59:54.000Z
# -*- coding: utf-8 -*- """ mssqlvc ~~~~~~~ Database version control utility for Microsoft SQL Server. See README.md for more information. Licensed under the BSD license. See LICENSE file in the project root for full license information. """ import argparse import datetime import io import logging import os import re import sys import urlparse try: import clr except ImportError: print('Cannot import crl module, make sure you run this script using IronPython') exit(2) import System clr.AddReference('Microsoft.SqlServer.Smo') clr.AddReference('Microsoft.SqlServer.SqlEnum') clr.AddReference('Microsoft.SqlServer.ConnectionInfo') import Microsoft.SqlServer.Management.Smo as Smo import Microsoft.SqlServer.Management.Common as Common __author__ = 'Ivan Kozhin' __copyright__ = 'Copyright (c) 2015-2016, Saritasa' __license__ = 'BSD' __version__ = '1.4.5' __all__ = ['MsSqlVersion'] def get_cmd_line_parser(): """Get initialized argparse.ArgumentParser object""" parser = argparse.ArgumentParser( description='MSSQL database patch history tool', formatter_class=argparse.RawDescriptionHelpFormatter, epilog='''Example: %(prog)s -c "mssql://sa:123@host\instance/database" -d "D:/1/project/patch"''') parser.add_argument('--connection', '-c', required=True, dest='connection', action='store', help='connection string in rfc1738 url format, required') parser.add_argument('--directory', '-d', dest='directory', action='store', default='.', help='directory with patch files') parser.add_argument('--log', '-l', dest='log', action='store', help='log file') parser.add_argument('--noexecute', '-n', action='store_true', dest='noexecute', default=False, help='displays pending script files with no execution') parser.add_argument('--noexecute-fill', '-nf', action='store_true', dest='noexecute_fill', default=False, help='displays pending script files with no execution and fills patch table') parser.add_argument('--stop-on-error', '-soe', action='store_true', dest='stop_on_error', default=False, help='stops execution if any script fails') parser.add_argument('--exclude-pattern', '-ep', dest='exclude_pattern', help='skips files match to regular expression') parser.add_argument('--record-files-only', '-rfo', action='store_true', dest='record_files_only', default=False, help='only file names will be stored to patch table without folder paths') parser.add_argument('--case-insensitive', '-ci', action='store_true', dest='case_insensitive', default=False, help='use case insensitive to compare patch files so "PatchName.sql" and "patchname.sql" is the same') parser.add_argument('--debug', action='store_true', dest='debug', default=False, help='enables debug output') parser.add_argument('--version', '-v', action='version', version='%(prog)s ' + __version__) return parser if __name__ == '__main__': # parser parser = get_cmd_line_parser() parser_args = parser.parse_args() if parser_args.connection is None or parser_args.directory is None: parser.print_help() exit(1) # logging logger = logging.getLogger('mssql') if parser_args.log: fh = logging.FileHandler(parser_args.log) fh.setFormatter(logging.Formatter('%(asctime)s [%(levelname)s] %(message)s')) logger.addHandler(fh) ch = logging.StreamHandler() ch.setFormatter(logging.Formatter('%(asctime)s [%(levelname)s] %(message)s')) logger.setLevel(logging.DEBUG if parser_args.debug else logging.INFO) logger.addHandler(ch) # database handle sqlvc = MsSqlVersion(parser_args.connection, parser_args.directory, exclude_pattern=parser_args.exclude_pattern, stop_on_error=parser_args.stop_on_error, case_insensitive=parser_args.case_insensitive, record_files_only=parser_args.record_files_only, logger=logger) if parser_args.noexecute: for patch in sqlvc.get_pending_patches(): logger.info(' ' + patch) elif parser_args.noexecute_fill: sqlvc.fill() else: sqlvc.update()
39.515358
121
0.640266
b9408aacd4d750c790ebb27107e026e183ea1d35
4,296
py
Python
lib/python3.6/site-packages/statsmodels/iolib/tests/test_table_econpy.py
KshitizSharmaV/Quant_Platform_Python
d784aa0604d8de5ba5ca0c3a171e3556c0cd6b39
[ "BSD-3-Clause" ]
1
2020-05-09T08:42:52.000Z
2020-05-09T08:42:52.000Z
statsmodels/iolib/tests/test_table_econpy.py
yanzhenxiong/statsmodels
e56c4046ff8807c3c16d6a9293b5cb5dfe6f0cd0
[ "BSD-3-Clause" ]
null
null
null
statsmodels/iolib/tests/test_table_econpy.py
yanzhenxiong/statsmodels
e56c4046ff8807c3c16d6a9293b5cb5dfe6f0cd0
[ "BSD-3-Clause" ]
1
2020-05-09T08:42:58.000Z
2020-05-09T08:42:58.000Z
''' Unit tests table.py. :see: http://docs.python.org/lib/minimal-example.html for an intro to unittest :see: http://agiletesting.blogspot.com/2005/01/python-unit-testing-part-1-unittest.html :see: http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/305292 ''' from __future__ import absolute_import from statsmodels.compat.python import zip import numpy as np from numpy.testing import assert_equal __docformat__ = "restructuredtext en" from statsmodels.iolib.table import Cell, SimpleTable from statsmodels.iolib.table import default_latex_fmt from statsmodels.iolib.table import default_html_fmt ltx_fmt1 = default_latex_fmt.copy() html_fmt1 = default_html_fmt.copy() txt_fmt1 = dict( data_fmts = ['%0.2f', '%d'], empty_cell = ' ', colwidths = 1, colsep=' * ', row_pre = '* ', row_post = ' *', table_dec_above='*', table_dec_below='*', header_dec_below='*', header_fmt = '%s', stub_fmt = '%s', title_align='r', header_align = 'r', data_aligns = "r", stubs_align = "l", fmt = 'txt' ) cell0data = 0.0000 cell1data = 1 row0data = [cell0data, cell1data] row1data = [2, 3.333] table1data = [ row0data, row1data ] test1stubs = ('stub1', 'stub2') test1header = ('header1', 'header2') #test1header = ('header1\nheader1a', 'header2\nheader2a') tbl = SimpleTable(table1data, test1header, test1stubs, txt_fmt=txt_fmt1, ltx_fmt=ltx_fmt1, html_fmt=html_fmt1)
30.041958
261
0.573091
b9409e44daa0d7a262748b347f053c849e397b73
291
py
Python
homeassistant/components/todoist/types.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
30,023
2016-04-13T10:17:53.000Z
2020-03-02T12:56:31.000Z
homeassistant/components/todoist/types.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
24,710
2016-04-13T08:27:26.000Z
2020-03-02T12:59:13.000Z
homeassistant/components/todoist/types.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
11,956
2016-04-13T18:42:31.000Z
2020-03-02T09:32:12.000Z
"""Types for the Todoist component.""" from __future__ import annotations from typing import TypedDict
19.4
65
0.697595
b9417eb816defb8a05e4de472fa5d06b0845774d
4,237
py
Python
src/c/c_pyzstd.py
corneliusroemer/pyzstd
06f14ad29735d9ae85c188703dcb64c24686c4f2
[ "BSD-3-Clause" ]
29
2020-10-13T03:35:37.000Z
2022-03-14T11:09:47.000Z
src/c/c_pyzstd.py
corneliusroemer/pyzstd
06f14ad29735d9ae85c188703dcb64c24686c4f2
[ "BSD-3-Clause" ]
12
2020-12-22T02:27:47.000Z
2022-03-18T14:54:33.000Z
src/c/c_pyzstd.py
corneliusroemer/pyzstd
06f14ad29735d9ae85c188703dcb64c24686c4f2
[ "BSD-3-Clause" ]
3
2020-11-21T20:57:10.000Z
2021-09-26T01:14:44.000Z
from collections import namedtuple from enum import IntEnum from ._zstd import * from . import _zstd __all__ = (# From this file 'compressionLevel_values', 'get_frame_info', 'CParameter', 'DParameter', 'Strategy', # From _zstd 'ZstdCompressor', 'RichMemZstdCompressor', 'ZstdDecompressor', 'EndlessZstdDecompressor', 'ZstdDict', 'ZstdError', 'decompress', 'get_frame_size', 'compress_stream', 'decompress_stream', 'zstd_version', 'zstd_version_info', 'zstd_support_multithread') # Used in __init__.py _ZSTD_DStreamInSize = _zstd._ZSTD_DStreamInSize _train_dict = _zstd._train_dict _finalize_dict = _zstd._finalize_dict # compressionLevel_values _nt_values = namedtuple('values', ['default', 'min', 'max']) compressionLevel_values = _nt_values(_zstd._ZSTD_defaultCLevel, _zstd._ZSTD_minCLevel, _zstd._ZSTD_maxCLevel) _nt_frame_info = namedtuple('frame_info', ['decompressed_size', 'dictionary_id']) def get_frame_info(frame_buffer): """Get zstd frame infomation from a frame header. Argument frame_buffer: A bytes-like object. It should starts from the beginning of a frame, and needs to include at least the frame header (6 to 18 bytes). Return a two-items namedtuple: (decompressed_size, dictionary_id) If decompressed_size is None, decompressed size is unknown. dictionary_id is a 32-bit unsigned integer value. 0 means dictionary ID was not recorded in the frame header, the frame may or may not need a dictionary to be decoded, and the ID of such a dictionary is not specified. It's possible to append more items to the namedtuple in the future.""" ret_tuple = _zstd._get_frame_info(frame_buffer) return _nt_frame_info(*ret_tuple) # Set CParameter/DParameter types for validity check _zstd._set_parameter_types(CParameter, DParameter)
36.213675
80
0.663441
b941e493bd72a0cc29b7f5487a4bd483b40a8fe3
4,414
py
Python
test/unit/data/model/mapping/common.py
quacksawbones/galaxy-1
65f7259b29d3886e526d9be670c60d9da9fbe038
[ "CC-BY-3.0" ]
1,085
2015-02-18T16:14:38.000Z
2022-03-30T23:52:07.000Z
test/unit/data/model/mapping/common.py
quacksawbones/galaxy-1
65f7259b29d3886e526d9be670c60d9da9fbe038
[ "CC-BY-3.0" ]
11,253
2015-02-18T17:47:32.000Z
2022-03-31T21:47:03.000Z
test/unit/data/model/mapping/common.py
quacksawbones/galaxy-1
65f7259b29d3886e526d9be670c60d9da9fbe038
[ "CC-BY-3.0" ]
1,000
2015-02-18T16:18:10.000Z
2022-03-29T08:22:56.000Z
from abc import ABC, abstractmethod from contextlib import contextmanager from uuid import uuid4 import pytest from sqlalchemy import ( delete, select, UniqueConstraint, ) def persist(session, obj, return_id=True): """ Use the session to store obj in database, then remove obj from session, so that on a subsequent load from the database we get a clean instance. """ session.add(obj) session.flush() obj_id = obj.id if return_id else None # save this before obj is expunged session.expunge(obj) return obj_id def delete_from_database(session, objects): """ Delete each object in objects from database. May be called at the end of a test if use of a context manager is impractical. (Assume all objects have the id field as their primary key.) """ # Ensure we have a list of objects (check for list explicitly: a model can be iterable) if not isinstance(objects, list): objects = [objects] for obj in objects: table = obj.__table__ stmt = delete(table).where(table.c.id == obj.id) session.execute(stmt) def collection_consists_of_objects(collection, *objects): """ Returns True iff list(collection) == list(objects), where object equality is determined by primary key equality: object1.id == object2.id. """ if len(collection) != len(objects): # False if lengths are different return False if not collection: # True if both are empty return True # Sort, then compare each member by its 'id' attribute, which must be its primary key. collection.sort(key=lambda item: item.id) objects_l = list(objects) objects_l.sort(key=lambda item: item.id) for item1, item2 in zip(collection, objects_l): if item1.id is None or item2.id is None or item1.id != item2.id: return False return True def get_unique_value(): """Generate unique values to accommodate unique constraints.""" return uuid4().hex
31.084507
98
0.677843
b9421dbb7e263a5a3de9a9e29e270b09ceba630c
1,004
py
Python
django_events/users/management/commands/create_default_su.py
chrisBrookes93/django-events-management
93886448a7bb85c8758324977ff67bcacc80bbec
[ "MIT" ]
null
null
null
django_events/users/management/commands/create_default_su.py
chrisBrookes93/django-events-management
93886448a7bb85c8758324977ff67bcacc80bbec
[ "MIT" ]
null
null
null
django_events/users/management/commands/create_default_su.py
chrisBrookes93/django-events-management
93886448a7bb85c8758324977ff67bcacc80bbec
[ "MIT" ]
null
null
null
from django.core.management.base import BaseCommand from django.contrib.auth import get_user_model
41.833333
114
0.661355
b942ff3dafb5c886434a478e8bfb0592e83afd1c
6,215
bzl
Python
antlir/bzl/image_layer.bzl
zeroxoneb/antlir
811d88965610d16a5c85d831d317f087797ca732
[ "MIT" ]
28
2020-08-11T16:22:46.000Z
2022-03-04T15:41:52.000Z
antlir/bzl/image_layer.bzl
zeroxoneb/antlir
811d88965610d16a5c85d831d317f087797ca732
[ "MIT" ]
137
2020-08-11T16:07:49.000Z
2022-02-27T10:59:05.000Z
antlir/bzl/image_layer.bzl
zeroxoneb/antlir
811d88965610d16a5c85d831d317f087797ca732
[ "MIT" ]
10
2020-09-10T00:01:28.000Z
2022-03-08T18:00:28.000Z
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ An `image.layer` is a set of `feature` with some additional parameters. Its purpose to materialize those `feature`s as a btrfs subvolume in the per-repo `buck-image/out/volume/targets`. We call the subvolume a "layer" because it can be built on top of a snapshot of its `parent_layer`, and thus can be represented as a btrfs send-stream for more efficient storage & distribution. The Buck output of an `image.layer` target is a JSON file with information on how to find the resulting layer in the per-repo `buck-image/out/volume/targets`. See `SubvolumeOnDisk.to_json_file`. ## Implementation notes The implementation of this converter deliberately minimizes the amount of business logic in its command. The converter must include **only** our interactions with the buck target graph. Everything else should be delegated to subcommands. ### Command In composing the `bash` command, our core maxim is: make it a hermetic function of the converter's inputs -- do not read data from disk, do not insert disk paths into the command, do not do anything that might cause the bytes of the command to vary between machines or between runs. To achieve this, we use Buck macros to resolve all paths, including those to helper scripts. We rely on environment variables or pipes to pass data between the helper scripts. Another reason to keep this converter minimal is that `buck test` cannot make assertions about targets that fail to build. Since we only have the ability to test the "good" targets, it behooves us to put most logic in external scripts, so that we can unit-test its successes **and** failures thoroughly. ### Output We mark `image.layer` uncacheable, because there's no easy way to teach Buck to serialize a btrfs subvolume (for that, we have `package.new`). That said, we should still follow best practices to avoid problems if e.g. the user renames their repo, or similar. These practices include: - The output JSON must store no absolute paths. - Store Buck target paths instead of paths into the output directory. ### Dependency resolution An `image.layer` consumes a set of `feature` outputs to decide what to put into the btrfs subvolume. These outputs are actually just JSON files that reference other targets, and do not contain the data to be written into the image. Therefore, `image.layer` has to explicitly tell buck that it needs all direct dependencies of its `feature`s to be present on disk -- see our `attrfilter` queries below. Without this, Buck would merrily fetch the just the `feature` JSONs from its cache, and not provide us with any of the buid artifacts that comprise the image. We do NOT need the direct dependencies of the parent layer's features, because we treat the parent layer as a black box -- whatever it has laid down in the image, that's what it provides (and we don't care about how). The consequences of this information hiding are: - Better Buck cache efficiency -- we don't have to download the dependencies of the ancestor layers' features. Doing that would be wasteful, since those bits are redundant with what's in the parent. - Ability to use genrule image layers / apply non-pure post-processing to a layer. In terms of engineering, both of these non-pure approaches are a terrible idea and a maintainability headache, but they do provide a useful bridge for transitioning to Buck image builds from legacy imperative systems. - The image compiler needs a litte extra code to walk the parent layer and determine what it provides. - We cannot have "unobservable" dependencies between features. Since feature dependencies are expected to routinely cross layer boundaries, feature implementations are forced only to depend on data that can be inferred from the filesystem -- since this is all that the parent layer implementation can do. NB: This is easy to relax in the future by writing a manifest with additional metadata into each layer, and using that metadata during compilation. """ load(":compile_image_features.bzl", "compile_image_features") load(":image_layer_utils.bzl", "image_layer_utils") load(":image_utils.bzl", "image_utils") def image_layer( name, parent_layer = None, features = None, flavor = None, flavor_config_override = None, antlir_rule = "user-internal", **image_layer_kwargs): """ Arguments - `parent_layer`: The name of another `image_layer` target, on top of which the current layer will install its features. - `features`: List of `feature` target paths and/or nameless structs from `feature.new`. - `flavor`: Picks default build options for the layer, including `build_appliance`, RPM installer, and others. See `flavor_helpers.bzl` for details. - `flavor_config_override`: A struct that can override the default values fetched from `REPO_CFG[flavor].flavor_to_config`. - `mount_config`: Specifies how this layer is mounted in the `mounts` field of a `feature` of a parent layer. See the field in `_image_layer_impl` in `image_layer_utils.bzl` - `runtime`: A list of desired helper buck targets to be emitted. `container` is always included in the list by default. See the field in `_image_layer_impl` in `image_layer_utils.bzl` and the [docs](/docs/tutorials/helper-buck-targets#imagelayer) for the list of possible helpers, their respective behaviours, and how to invoke them. """ image_layer_utils.image_layer_impl( _rule_type = "image_layer", _layer_name = name, # Build a new layer. It may be empty. _make_subvol_cmd = compile_image_features( name = name, current_target = image_utils.current_target(name), parent_layer = parent_layer, features = features, flavor = flavor, flavor_config_override = flavor_config_override, ), antlir_rule = antlir_rule, **image_layer_kwargs )
44.078014
79
0.740628
b943636ba1006005819134b02620af2faa23d559
84
py
Python
python/testData/debug/test_ignore_lib.py
jnthn/intellij-community
8fa7c8a3ace62400c838e0d5926a7be106aa8557
[ "Apache-2.0" ]
2
2019-04-28T07:48:50.000Z
2020-12-11T14:18:08.000Z
python/testData/debug/test_ignore_lib.py
jnthn/intellij-community
8fa7c8a3ace62400c838e0d5926a7be106aa8557
[ "Apache-2.0" ]
173
2018-07-05T13:59:39.000Z
2018-08-09T01:12:03.000Z
python/testData/debug/test_ignore_lib.py
jnthn/intellij-community
8fa7c8a3ace62400c838e0d5926a7be106aa8557
[ "Apache-2.0" ]
2
2020-03-15T08:57:37.000Z
2020-04-07T04:48:14.000Z
from calendar import setfirstweekday stopped_in_user_file = True setfirstweekday(15)
28
36
0.880952
b9443b673da6e4fd8c252e11eba4606e69192845
1,036
py
Python
promt_tr/__main__.py
ffreemt/promt-tr-free
ff20b0f176f9611fa5a834af5aeaa9ef6ca3a3ee
[ "MIT" ]
null
null
null
promt_tr/__main__.py
ffreemt/promt-tr-free
ff20b0f176f9611fa5a834af5aeaa9ef6ca3a3ee
[ "MIT" ]
null
null
null
promt_tr/__main__.py
ffreemt/promt-tr-free
ff20b0f176f9611fa5a834af5aeaa9ef6ca3a3ee
[ "MIT" ]
null
null
null
''' __main__, to run: python -m promt_tr ''' import sys from random import randint from promt_tr import promt_tr, LANG_CODES # pragma: no cover def main(): '''main''' from_lang = 'auto' to_lang = 'zh' text = 'test ' + str(randint(0, 10000)) if not sys.argv[1:]: print('Provide some English text, with an optional to_lang') print('E.g., python -m promt_tr test this and that de') print('Testing with some random text\n') else: argv = sys.argv[1:] len_ = len(argv) if len_ == 1: if argv[0] in LANG_CODES: to_lang = argv[0] else: text = argv[0] elif argv[-1] in LANG_CODES: to_lang = argv[-1] text = ' '.join(argv[:-1]) else: text = ' '.join(argv) for to_lang in ['zh', 'de', 'fr', 'it', 'es']: resu = promt_tr(text, from_lang, to_lang) print(f'[{text}] translated to [{to_lang}]: [{resu}]') if __name__ == '__main__': main()
23.545455
68
0.527027
b9458ab72f55b4db845f6d76e44dba3b00e000ed
6,265
py
Python
src/features/v3/proc_v3_n1_calc_distance.py
askoki/nfl_dpi_prediction
dc3256f24ddc0b6725eace2081d1fb1a7e5ce805
[ "MIT" ]
null
null
null
src/features/v3/proc_v3_n1_calc_distance.py
askoki/nfl_dpi_prediction
dc3256f24ddc0b6725eace2081d1fb1a7e5ce805
[ "MIT" ]
null
null
null
src/features/v3/proc_v3_n1_calc_distance.py
askoki/nfl_dpi_prediction
dc3256f24ddc0b6725eace2081d1fb1a7e5ce805
[ "MIT" ]
null
null
null
import os import sys import pandas as pd from datetime import datetime from settings import RAW_DATA_DIR, DataV3, DATA_V3_SUBVERSION from src.features.helpers.processing import add_missing_timestamp_values from src.features.helpers.processing_v3 import get_closest_players, get_players_and_ball_indices, calculate_distance, \ normalize_according_to_play_direction, check_group_event from src.features.helpers.processing_v4 import home_has_possession, calculate_team_sitation week_num = int(sys.argv[1]) data_v3 = DataV3(DATA_V3_SUBVERSION) save_file_path = data_v3.get_step1_checkpoint_path(week_num) try: clean_df = pd.read_csv(save_file_path) save_file_exists = True except FileNotFoundError: save_file_exists = False if not save_file_exists: print("Started loading data") play_df = pd.read_csv(os.path.join(RAW_DATA_DIR, 'plays.csv')) games_df = pd.read_csv(os.path.join(RAW_DATA_DIR, 'games.csv')) week_and_games = games_df[games_df.week == week_num] tracking_df = pd.read_csv(os.path.join(RAW_DATA_DIR, f'week{week_num}.csv')) print("Data loaded. Start processing timestamps") tracking_df = add_missing_timestamp_values(tracking_df) games_n_plays_df = play_df.merge(week_and_games, how='inner', on='gameId') m_grouped = games_n_plays_df.groupby(['gameId', 'playId']) df_t = tracking_df.merge(games_n_plays_df, how='left', on=['gameId', 'playId']) # Remove all events without 'pass_forward' df_t_grouped = df_t.groupby(['gameId', 'playId']) df_t_v3 = df_t.copy().sort_index() for name, group in df_t_grouped: game_id, play_id = name # if group does not contain pass forward, drop it if all(group.event != 'pass_forward'): df_t_v3 = df_t_v3[(df_t_v3.gameId != game_id) | (df_t_v3.playId != play_id)] df_t_v3_s = df_t_v3.sort_values(by=['gameId', 'playId', 'time', 'event']) df_t_v3_s = df_t_v3_s.reset_index(drop=True) df_t_grouped = df_t_v3_s.groupby(['gameId', 'playId']) # remove all values before 'pass_forward' print("Removing all values before pass forward event...") for name, group in df_t_grouped: game_id, play_id = name pass_forward_frame_id = group[group.event == 'pass_forward'].index.min() - 1 remove_start = group.index.min() df_t_v3_s = df_t_v3_s.drop(df_t_v3_s.loc[remove_start:pass_forward_frame_id].index) pd.options.mode.chained_assignment = None gb = df_t_v3_s.groupby(['gameId', 'playId']) print('Getting closest players...') keep_indices = [] for name, group in gb: game_id, play_id = name try: event_3rd = group.event.unique()[2] except IndexError: print('Number of events is < 3, skipping...') continue situation_df = group[group.event == event_3rd] # convert dataframe into series ball_row = situation_df[situation_df.team == 'football'].head(1) # remove ball player_situation_df = situation_df[situation_df.team != 'football'] try: p1, p2 = get_closest_players(player_situation_df, ball_row.x.item(), ball_row.y.item()) except ValueError: print('Value Error raised. This group will be skipped.') continue p_n_b_indices = get_players_and_ball_indices(group, p1, p2) if p_n_b_indices: keep_indices.extend(p_n_b_indices) clean_df = df_t_v3_s[df_t_v3_s.index.isin(keep_indices)] clean_df.to_csv( save_file_path, index=False ) print('Normalize...') clean_df = normalize_according_to_play_direction(clean_df) clean_df['homeHasPossession'] = clean_df.apply( lambda row: home_has_possession(row), axis=1 ) clean_df['teamSituation'] = clean_df.apply( lambda row: calculate_team_sitation(row), axis=1 ) print('Creating features...') min_df = clean_df[[ 'time', 'x', 'y', 's', 'o', 'dir', 'event', 'team', 'gameId', 'playId', 'frameId', 'isDefensivePI' ]] gb_2 = clean_df.groupby(['gameId', 'playId', 'frameId']) # ball direction and orientation are NaN calc_df = pd.DataFrame( columns=[ 'time', 'att_def_d', 'att_ball_d', 'def_ball_d', 'att_s', 'def_s', 'ball_s', 'att_o', 'def_o', 'att_dir', 'def_dir', 'event', 'gameId', 'playId', 'frameId', 'isDefensivePI' ] ) GROUP_SIZE_MINIMUM = 3 for name, group in gb_2: game_id, play_id, frameId = name if len(group) < GROUP_SIZE_MINIMUM: continue ball = group[group.teamSituation == 'football'].head(1).squeeze() p_att = group[group.teamSituation == 'attacking'].head(1).squeeze() p_def = group[group.teamSituation == 'defending'].head(1).squeeze() group_row = group.head(1).squeeze() group_events = group.event.unique().tolist() dict_to_append = { 'time': group_row.time, 'att_def_d': calculate_distance(p_att.x, p_att.y, p_def.x, p_def.y), 'att_ball_d': calculate_distance(p_att.x, p_att.y, ball.x, ball.y), 'def_ball_d': calculate_distance(p_def.x, p_def.y, ball.x, ball.y), 'att_s': p_att.s, 'def_s': p_def.s, 'ball_s': ball.s, 'att_a': p_att.a, 'def_a': p_def.a, 'ball_a': ball.a, 'att_o': p_att.o, 'def_o': p_def.o, 'att_dir': p_att.dir, 'def_dir': p_def.dir, 'event': group_row.event, 'pass_arrived': check_group_event(group_events, 'pass_arrived'), 'pass_outcome_caught': check_group_event(group_events, 'pass_outcome_caught'), 'tackle': check_group_event(group_events, 'tackle'), 'first_contact': check_group_event(group_events, 'first_contact'), 'pass_outcome_incomplete': check_group_event(group_events, 'pass_outcome_incomplete'), 'out_of_bounds': check_group_event(group_events, 'out_of_bounds'), 'week': week_num, 'gameId': group_row.gameId, 'playId': group_row.playId, 'frameId': group_row.frameId, 'isDefensivePI': group_row.isDefensivePI } calc_df = calc_df.append( dict_to_append, ignore_index=True ) print("Saving data...") calc_df.to_csv( data_v3.get_step1_end_path(week_num), index=False ) print(f'End time: {datetime.now().strftime("%H:%M:%S")}')
35.596591
119
0.675499
b945e094a775936b9b256c03b9ad1404cebcb291
1,312
py
Python
annotate-preprocessed.py
Rajpratik71/devel-scripts
068285719a13b02889b1314361cc5bdb764d9a3a
[ "Apache-2.0" ]
null
null
null
annotate-preprocessed.py
Rajpratik71/devel-scripts
068285719a13b02889b1314361cc5bdb764d9a3a
[ "Apache-2.0" ]
null
null
null
annotate-preprocessed.py
Rajpratik71/devel-scripts
068285719a13b02889b1314361cc5bdb764d9a3a
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python """Annotates -E preprocessed source input with line numbers. Read std input, then annotate each line with line number based on previous expanded line directives from -E output. Useful in the context of compiler debugging. """ import getopt import os import re import sys import script_utils as u flag_reverse = True def usage(msgarg): """Print usage and exit.""" if msgarg: sys.stderr.write("error: %s\n" % msgarg) print """\ usage: %s [options] < input > output options: -d increase debug msg verbosity level """ % os.path.basename(sys.argv[0]) sys.exit(1) def parse_args(): """Command line argument parsing.""" global flag_reverse try: optlist, _ = getopt.getopt(sys.argv[1:], "dr") except getopt.GetoptError as err: # unrecognized option usage(str(err)) for opt, _ in optlist: if opt == "-d": u.increment_verbosity() elif opt == "-r": flag_reverse = False # Setup u.setdeflanglocale() parse_args() # Read lines = sys.stdin.readlines() lnum = -1 matcher = re.compile(r"^\#\s+(\d+)\s+\"(\S+)\".*$") for line in lines: m = matcher.match(line) if m: lnum = int(m.group(1)) afile = m.group(2) print "<%s:%d>" % (afile, lnum) continue print "%d:%s" % (lnum, line.strip()) lnum += 1
19.014493
74
0.636433
b94613d2fb24bf9487b3045eae02b837543d3647
2,547
py
Python
pages/lstm.py
tekeburak/dam-occupancy-model
f39d436bf27088068177245f0180cafaa56ad123
[ "MIT" ]
8
2021-01-24T14:56:23.000Z
2021-03-26T18:10:33.000Z
pages/lstm.py
tekeburak/dam-occupancy-model
f39d436bf27088068177245f0180cafaa56ad123
[ "MIT" ]
null
null
null
pages/lstm.py
tekeburak/dam-occupancy-model
f39d436bf27088068177245f0180cafaa56ad123
[ "MIT" ]
6
2021-01-24T14:44:49.000Z
2021-03-21T17:50:30.000Z
import streamlit as st import tensorflow as tf import numpy from utils.get_owm_data import get_open_weather_map_data from utils.get_date import get_date_list_for_gmt import plotly.graph_objects as go from plotly import tools import plotly.offline as py import plotly.express as px
50.94
476
0.773852
b9475ee1123a7f8c87eb161ddf2246d4b5a64a79
1,847
py
Python
fst_web/demo_settings.py
kamidev/autobuild_fst
6baffa955075ffe3c5f197789e9fd065fa74058e
[ "BSD-3-Clause" ]
null
null
null
fst_web/demo_settings.py
kamidev/autobuild_fst
6baffa955075ffe3c5f197789e9fd065fa74058e
[ "BSD-3-Clause" ]
null
null
null
fst_web/demo_settings.py
kamidev/autobuild_fst
6baffa955075ffe3c5f197789e9fd065fa74058e
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- import os ROOT = os.path.abspath(os.path.dirname(__file__)) path = lambda *args: os.path.join(ROOT, *args) """ Template for local settings of the FST webservice (fst_web) Please edit this file and replace all generic values with values suitable to your particular installation. """ # NOTE! Always set this to False before deploying DEBUG = True # NOTE! Before deploying on a public, uncomment ALLOWED_HOSTS # and add IP address and/or domain of your site ALLOWED_HOSTS = ['localhost', '127.0.0.1', 'fst.magokoro.nu'] # Look for instance-specific settings try: from .instance_settings import * except ImportError: from .default_instance_settings import * DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': path('database/fst_demo.db') } } LOG_LEVEL = "DEBUG" # Enable this to override global DB Debug setting # DB_DEBUG_LEVEL = "DEBUG" # Setup mail server for sending email notifications. # You can use any mail server you want. # But a very simple way to get started is to use a gmail account. EMAIL_USE_TLS = True EMAIL_HOST = 'smtp.gmail.com' EMAIL_PORT = 587 # EMAIL_HOST_USER = 'your email' # EMAIL_HOST_PASSWORD = 'your password' # Admins specified here receive email notifications on critical errors. ADMINS = () MANAGERS = ADMINS # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash. # Examples: "http://media.lawrence.com/media/", "http://example.com/media/" MEDIA_URL = os.path.join("/dokument/") # Site and port for hosting FST service (do not add ending '/'). FST_SITE_URL = "http://127.0.0.1:8000" # TODO - Check if FST_INSTANCE_PREFIX can be removed # Site and port of specific FST instance (do not add ending '/'). FST_INSTANCE_URL = os.path.join( "http://127.0.0.1:8000", FST_INSTANCE_PREFIX)
28.415385
76
0.721711
b947d963b017c12ec37d222b3722de432bf97da6
8,891
py
Python
BookingScraper-joao_v2/BookingScraper/airbnb.py
joaocamargo/estudos-python
c5fbf59a1f06131d9789dca7dbdfdcf2200d0227
[ "MIT" ]
1
2019-10-09T12:56:13.000Z
2019-10-09T12:56:13.000Z
BookingScraper-joao_v2/BookingScraper/airbnb.py
joaocamargo/estudos-python
c5fbf59a1f06131d9789dca7dbdfdcf2200d0227
[ "MIT" ]
null
null
null
BookingScraper-joao_v2/BookingScraper/airbnb.py
joaocamargo/estudos-python
c5fbf59a1f06131d9789dca7dbdfdcf2200d0227
[ "MIT" ]
null
null
null
#! /usr/bin/env python3.6 import argparse import argcomplete from argcomplete.completers import ChoicesCompleter from argcomplete.completers import EnvironCompleter import requests from bthread import BookingThread from bs4 import BeautifulSoup from file_writer import FileWriter hotels = [] def prep_data(rooms=1, country='Macedonia', dest_id='-1', DayIni='01/01/2019', DayFim='02/01/2019', out_format=None): ''' Prepare data for saving :return: hotels: set() ''' offset = 1 session = requests.Session() parsed_html = get_booking_page(session, offset, rooms, country, dest_id, DayIni,DayFim) all_offset = parsed_html.find_all('li', {'class': 'sr_pagination_item'})[-1].get_text().splitlines()[-1] threads = [] for i in range(int(all_offset)): offset += 1 t = BookingThread(session, offset, rooms, country,dest_id,DayIni, DayFim, process_hotels) threads.append(t) for t in threads: t.start() for t in threads: t.join() hotels2 = hotels return hotels2 def get_data(rooms=1, country='Macedonia', dest_id='-1',DayIni='01/01/2019',DayFim='02/01/2019', out_format=None): ''' Get all accomodations in Macedonia and save them in file :return: hotels-in-macedonia.{txt/csv/xlsx} file ''' print('Procurando por',country) hotels_list = prep_data(rooms, country,dest_id, DayIni, DayFim, out_format) save_data(hotels_list , out_format=out_format, country=country) def save_data(data, out_format, country): ''' Saves hotels list in file :param data: hotels list :param out_format: json, csv or excel :return: ''' writer = FileWriter(data, out_format, country) file = writer.output_file() print('All accommodations are saved.') print('You can find them in', file, 'file') if __name__ == "__main__": parser = argparse.ArgumentParser() countries = get_countries() parser.add_argument("--rooms", help='Add the number of rooms to the booking request.', default=1, type=int, nargs='?') parser.add_argument("--country", help='Add the country to the booking request.', default='Macedonia', nargs='?').completer = ChoicesCompleter(countries) parser.add_argument("--dest_id", help='Add the country to the booking request.', default='0', nargs='?') parser.add_argument("--DayIni", help='Data inicial', default='01/01/2019', nargs='?') parser.add_argument("--DayFim", help='Data inicial', default='02/01/2019', nargs='?') parser.add_argument("--out_format", help='Add the format for the output file. Add excel, json or csv.', default='json', choices=['json', 'excel', 'csv'], nargs='?').completer = EnvironCompleter argcomplete.autocomplete(parser) args = parser.parse_args() localidades = [{ 'Pais': 'London', 'dest_id': '-2601889' }, { 'Pais': 'Utrecht', 'dest_id': '-2154382' }, { 'Pais': 'Buzios', 'dest_id': '-626254' }, { 'Pais': '', 'dest_id': '' }] countryAux = [d['Pais'] for d in localidades if args.dest_id in d['dest_id']] if len(countryAux)>0: country = countryAux[0] print('Parametros') print(args.rooms, country,args.dest_id,args.DayIni,args.DayFim, args.out_format) get_data(args.rooms, country,args.dest_id,args.DayIni,args.DayFim, args.out_format) else: country = 'Nao Identificado' locais = [d['Pais'] + ':' + d['dest_id'] for d in localidades if d['Pais'] != ''] print('----------') print('Utilize uma das seguintes localizaes') for i in locais: print(i) print('----------')
37.995726
250
0.576313
b94890b4860019fd993040c0790c0701fc24a0c5
2,919
py
Python
main.py
valurhrafn/chromium-sync
df5e3299d179fc47ff34d1a95409383f46aac4d4
[ "MIT" ]
4
2017-03-27T02:25:07.000Z
2021-03-07T21:40:58.000Z
main.py
valurhrafn/chromium-sync
df5e3299d179fc47ff34d1a95409383f46aac4d4
[ "MIT" ]
null
null
null
main.py
valurhrafn/chromium-sync
df5e3299d179fc47ff34d1a95409383f46aac4d4
[ "MIT" ]
null
null
null
#!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from google.appengine.api import users import webapp2 # For datastore import cgi import urllib from google.appengine.ext import ndb # ************** MainHandler ************* # # ************** GetUser ************* # # ************** HasData ************* # app = webapp2.WSGIApplication([ ('/', MainHandler), ('/GetUser/', GetUser), ('/HasData/', HasData), ('/chrome-sync/command/', PostData), ('/GetSyncData/', GetSyncData) ], debug=True)
30.40625
74
0.647825
b94a534d42db78fa886439d7fdfdf20e0f8b2504
1,434
py
Python
comet/service/subscriber.py
dneise/Comet
abaa0da65d69f90a5262d81416477b4e71deb2ad
[ "BSD-2-Clause" ]
15
2015-11-29T18:53:58.000Z
2022-03-09T15:47:30.000Z
comet/service/subscriber.py
dneise/Comet
abaa0da65d69f90a5262d81416477b4e71deb2ad
[ "BSD-2-Clause" ]
29
2016-01-21T18:10:45.000Z
2021-10-01T16:41:12.000Z
comet/service/subscriber.py
dneise/Comet
abaa0da65d69f90a5262d81416477b4e71deb2ad
[ "BSD-2-Clause" ]
11
2016-01-22T14:05:51.000Z
2022-03-09T17:49:56.000Z
# Comet VOEvent Broker. from twisted.application.internet import ClientService from comet.protocol.subscriber import VOEventSubscriberFactory __all__ = ["makeSubscriberService"] def makeSubscriberService(endpoint, local_ivo, validators, handlers, filters): """Create a reconnecting VOEvent subscriber service. Parameters ---------- endpoint : implements `twisted.internet.interfaces.IStreamClientEndpoint` The endpoint to which the service will connect. local_ivo : `str` or `None` IVOA identifier for the subscriber. validators : `list` of implementers of `~comet.icomet.IValidator`. Validators which will be applied to incoming events. Events which fail validation will be rejected. handlers : `list` of implementers of `~comet.icomet.IHandler`. Handlers to which events which pass validation will be passed. filters : `list` of `str` XPath filters. Will be passed to upstream as a request to filter the alerts being sent. Notes ----- Upstream brokes may not provide support for XPath filtering; in this case, the filters suppplied will be ignored. Reconnection is handled according to the default policies of `twisted.application.internet.ClientService`. """ factory = VOEventSubscriberFactory(local_ivo, validators, handlers, filters) service = ClientService(endpoint, factory) return service
35.85
80
0.727336
b94c3a86b197fdae8da6f36cf6af0eeecde07155
13,008
py
Python
scripts/master/cros_try_job_git.py
bopopescu/build
4e95fd33456e552bfaf7d94f7d04b19273d1c534
[ "BSD-3-Clause" ]
null
null
null
scripts/master/cros_try_job_git.py
bopopescu/build
4e95fd33456e552bfaf7d94f7d04b19273d1c534
[ "BSD-3-Clause" ]
null
null
null
scripts/master/cros_try_job_git.py
bopopescu/build
4e95fd33456e552bfaf7d94f7d04b19273d1c534
[ "BSD-3-Clause" ]
1
2020-07-23T11:05:06.000Z
2020-07-23T11:05:06.000Z
# Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import base64 import json import os import re import shutil import zlib from StringIO import StringIO try: # Create a block to work around evil sys.modules manipulation in # email/__init__.py that triggers pylint false positives. # pylint: disable=E0611,F0401 from email.Message import Message from email.Utils import formatdate except ImportError: raise from buildbot.process.properties import Properties from buildbot.schedulers.trysched import TryBase from twisted.internet import defer, reactor, utils from twisted.mail.smtp import SMTPSenderFactory from twisted.python import log from common.twisted_util.response import StringResponse from master import gitiles_poller from master.try_job_base import BadJobfile def translate_v1_to_v2(parsed_job): """Translate tryjob desc from V1 to V2.""" parsed_job.setdefault('extra_args', []).append('--remote-trybot') parsed_job['version'] = 2 def translate_v2_to_v3(parsed_job): """Translate tryjob desc from V2 to V3.""" # V3 --remote-patches format is not backwards compatible. if any(a.startswith('--remote-patches') for a in parsed_job.get('extra_args', ())): raise BadJobfile('Cannot translate --remote-patches from tryjob v.2 to ' 'v.3. Please run repo sync.') parsed_job['version'] = 3
37.165714
80
0.676661
b94d43136b5079271270c2099bbeca811ff9b1ce
1,412
py
Python
Medium/515.py
Hellofafar/Leetcode
7a459e9742958e63be8886874904e5ab2489411a
[ "CNRI-Python" ]
6
2017-09-25T18:05:50.000Z
2019-03-27T00:23:15.000Z
Medium/515.py
Hellofafar/Leetcode
7a459e9742958e63be8886874904e5ab2489411a
[ "CNRI-Python" ]
1
2017-10-29T12:04:41.000Z
2018-08-16T18:00:37.000Z
Medium/515.py
Hellofafar/Leetcode
7a459e9742958e63be8886874904e5ab2489411a
[ "CNRI-Python" ]
null
null
null
# ------------------------------ # 515. Find Largest Value in Each Tree Row # # Description: # You need to find the largest value in each row of a binary tree. # Example: # Input: # 1 # / \ # 3 2 # / \ \ # 5 3 9 # Output: [1, 3, 9] # # Version: 1.0 # 12/22/18 by Jianfa # ------------------------------ # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None # Used for testing if __name__ == "__main__": test = Solution() # ------------------------------ # Summary: # BFS solution.
23.147541
66
0.434136
b94d5a11e77235531376a017f673e8c5a0fdf637
9,578
py
Python
opsmop/meta/docs/exparser.py
lachmanfrantisek/opsmop
562ae2d753ff84b3d794a6815d0436753e82d2a0
[ "Apache-2.0" ]
null
null
null
opsmop/meta/docs/exparser.py
lachmanfrantisek/opsmop
562ae2d753ff84b3d794a6815d0436753e82d2a0
[ "Apache-2.0" ]
null
null
null
opsmop/meta/docs/exparser.py
lachmanfrantisek/opsmop
562ae2d753ff84b3d794a6815d0436753e82d2a0
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 Michael DeHaan LLC, <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os
37.708661
90
0.516914
b94dd4c5db15c696e937d22b21b3d1a6fd038ef8
737
py
Python
pylox/TokenType.py
sheunl/Compiler_Tests
18c5e0568bc39a60094f3e44943ac252c279ffb9
[ "CC0-1.0" ]
null
null
null
pylox/TokenType.py
sheunl/Compiler_Tests
18c5e0568bc39a60094f3e44943ac252c279ffb9
[ "CC0-1.0" ]
null
null
null
pylox/TokenType.py
sheunl/Compiler_Tests
18c5e0568bc39a60094f3e44943ac252c279ffb9
[ "CC0-1.0" ]
null
null
null
from enum import Enum
14.45098
32
0.522388
b94e05939494c3c75adce95bb694899b36d0a091
919
py
Python
src/oslibs/cocos/cocos-src/tools/cocos2d-console/plugins/framework/framework_add.py
dios-game/dios-cocos
b7fbcbafe02f516ef18fdb64b4519dbf806303fc
[ "MIT" ]
1
2021-07-22T15:53:26.000Z
2021-07-22T15:53:26.000Z
src/oslibs/cocos/cocos-src/tools/cocos2d-console/plugins/framework/framework_add.py
dios-game/dios-cocos
b7fbcbafe02f516ef18fdb64b4519dbf806303fc
[ "MIT" ]
null
null
null
src/oslibs/cocos/cocos-src/tools/cocos2d-console/plugins/framework/framework_add.py
dios-game/dios-cocos
b7fbcbafe02f516ef18fdb64b4519dbf806303fc
[ "MIT" ]
null
null
null
import cocos from MultiLanguage import MultiLanguage from package.helper import ProjectHelper
28.71875
108
0.686616
b9514946d8170f94e426e1cbf736a481d8427c11
761
py
Python
src/utils.py
f-grimaldi/explain_ML
00892675be32bebd023b274270ccb05b798fb388
[ "MIT" ]
1
2020-08-03T08:23:31.000Z
2020-08-03T08:23:31.000Z
src/utils.py
f-grimaldi/explain_ML
00892675be32bebd023b274270ccb05b798fb388
[ "MIT" ]
null
null
null
src/utils.py
f-grimaldi/explain_ML
00892675be32bebd023b274270ccb05b798fb388
[ "MIT" ]
null
null
null
from matplotlib import colors import numpy as np
31.708333
89
0.659658
b9516c7b124e87fce1712aca1aa49ef2cd923f11
3,056
py
Python
lib/two/mongomgr.py
erkyrath/tworld
9f5237771196b03753d027277ffc296e25fd7425
[ "MIT" ]
38
2015-01-03T16:59:20.000Z
2021-10-13T09:15:53.000Z
lib/two/mongomgr.py
Oreolek/tworld
9f5237771196b03753d027277ffc296e25fd7425
[ "MIT" ]
32
2015-01-04T01:59:34.000Z
2016-05-20T16:29:26.000Z
lib/two/mongomgr.py
Oreolek/tworld
9f5237771196b03753d027277ffc296e25fd7425
[ "MIT" ]
7
2015-10-08T21:01:20.000Z
2020-05-21T17:42:54.000Z
""" Manage the connection to the MongoDB server. """ import tornado.gen import tornado.ioloop import motor
35.534884
97
0.576571
b9530c0fbf29c36506820a41f0b32bd37796d3e0
1,298
py
Python
code/examples/example_binomial_and_log_normal_abtest.py
hugopibernat/BayesianABTestAnalysis
026960524f5313f4a734f30fd447a5731be802e0
[ "Apache-2.0" ]
null
null
null
code/examples/example_binomial_and_log_normal_abtest.py
hugopibernat/BayesianABTestAnalysis
026960524f5313f4a734f30fd447a5731be802e0
[ "Apache-2.0" ]
null
null
null
code/examples/example_binomial_and_log_normal_abtest.py
hugopibernat/BayesianABTestAnalysis
026960524f5313f4a734f30fd447a5731be802e0
[ "Apache-2.0" ]
null
null
null
################################################# ####### Author: Hugo Pibernat ####### ####### Contact: [email protected] ####### ####### Date: April 2014 ####### ################################################# from bayesianABTest import sampleSuccessRateForBinomial, sampleMeanForLogNormal, probabilityOfABetterThanB from numpy.random import lognormal from numpy import mean, concatenate, zeros # Generate Log-Normal data A_actuals = lognormal(mean=4.10, sigma=1.0, size=100) B_actuals = lognormal(mean=4.00, sigma=1.0, size=100) # Plus some zeros A_data = concatenate([A_actuals,zeros(10000)]) B_data = concatenate([B_actuals,zeros(10000)]) # Modeling conversions with a binomial variable A_purchases = sum(A_data > 0) A_sessions = len(A_data) B_purchases = sum(B_data > 0) B_sessions = len(B_data) A_CR = sampleSuccessRateForBinomial(A_sessions,A_purchases) B_CR = sampleSuccessRateForBinomial(B_sessions,B_purchases) # Modeling the spend with a log-normal A_non_zero_data = A_data[A_data > 0] B_non_zero_data = B_data[B_data > 0] A_spend = sampleMeanForLogNormal(A_non_zero_data) B_spend = sampleMeanForLogNormal(B_non_zero_data) # Combining the two A_rps = A_CR*A_spend B_rps = B_CR*B_spend # Result: print probabilityOfABetterThanB(A_rps,B_rps)
32.45
106
0.692604
b95332c99e63e536863282307e578d423edf7664
644
py
Python
tests/models/test_documents.py
airslate-oss/python-airslate
0f7fe6321b1c2e6875a02dfecb5ffa07a361bb1d
[ "Apache-2.0" ]
3
2021-02-07T20:04:26.000Z
2021-09-22T08:32:26.000Z
tests/models/test_documents.py
airslate-oss/python-airslate
0f7fe6321b1c2e6875a02dfecb5ffa07a361bb1d
[ "Apache-2.0" ]
15
2021-01-21T15:38:37.000Z
2021-02-16T07:52:20.000Z
tests/models/test_documents.py
airslate-oss/python-airslate
0f7fe6321b1c2e6875a02dfecb5ffa07a361bb1d
[ "Apache-2.0" ]
null
null
null
# This file is part of the airslate. # # Copyright (c) 2021 airSlate, Inc. # # For the full copyright and license information, please view # the LICENSE file that was distributed with this source code. from airslate.models.documents import UpdateFields from airslate.entities.fields import Field
28
62
0.677019
b95403252db42b0394653a122fd73b2b596e194d
400
py
Python
app/main.py
meysam81/sheypoor
aa67e20646ebc4143b83968f60c0b28c2ad340a1
[ "MIT" ]
null
null
null
app/main.py
meysam81/sheypoor
aa67e20646ebc4143b83968f60c0b28c2ad340a1
[ "MIT" ]
null
null
null
app/main.py
meysam81/sheypoor
aa67e20646ebc4143b83968f60c0b28c2ad340a1
[ "MIT" ]
null
null
null
from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware from app import api from app.core.config import config app = FastAPI(title="Sheypoor") # Set all CORS enabled origins app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) app.include_router(api.router, prefix=config.API_URI)
21.052632
53
0.7425
b9556579b31dd7d2370d8083a431ada02beb471d
2,205
py
Python
cdnu/ccds.py
Indy2222/mbg-codon-usage
d415076a8150cd712010c0389c71ef22ba9ad850
[ "MIT" ]
null
null
null
cdnu/ccds.py
Indy2222/mbg-codon-usage
d415076a8150cd712010c0389c71ef22ba9ad850
[ "MIT" ]
null
null
null
cdnu/ccds.py
Indy2222/mbg-codon-usage
d415076a8150cd712010c0389c71ef22ba9ad850
[ "MIT" ]
null
null
null
from typing import List, NamedTuple CCDS_FILE = 'CCDS.current.txt' CHROMOSOMES = ('1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', 'X', 'Y') def load_ccds() -> List[CdsPos]: """Load file with CDS locations within GRCh38 genome as a list of :class:`CdsPos`.""" cds = [] with open(CCDS_FILE, encoding='utf-8', newline='\n') as fp: for line in fp: if not line: # Skip empty lines continue if line.startswith('#'): # Skip comments continue parts = line.split('\t') ccds_id = parts[4] status = parts[5] if 'Public' not in status: # CDS is not yet public continue if parts[6] == '-': # CDS strand negative order = reverse-complement continue locations_str = parts[9] if locations_str == '-': # CDS location unknown continue chromosome = parts[0] assert chromosome in CHROMOSOMES, chromosome locations = [] assert locations_str.startswith('[') assert locations_str.endswith(']') for location_str in locations_str[1:-1].split(','): start_str, stop_str = location_str.split('-') start, stop = int(start_str), int(stop_str) + 1 locations.append((start, stop)) if sum(b - a for a, b in locations) % 3 != 0: # Skip CDS which are not multiple of three in length. continue cds.append(CdsPos( ccds_id=ccds_id, molecule='chr' + chromosome, indexes=locations )) return cds
30.205479
77
0.502494
b9576be4fad430a84f92a2e3dc9d1b34f113118c
2,732
py
Python
test/test_resolve_errors.py
ITMO-NSS-team/GEFEST
72bb61cf3fbb9f87fe3dcd48b71f3e84dd23b669
[ "BSD-3-Clause" ]
12
2022-01-19T11:06:32.000Z
2022-02-21T14:59:23.000Z
test/test_resolve_errors.py
ITMO-NSS-team/GEFEST
72bb61cf3fbb9f87fe3dcd48b71f3e84dd23b669
[ "BSD-3-Clause" ]
9
2022-01-19T11:09:11.000Z
2022-03-29T13:36:41.000Z
test/test_resolve_errors.py
ITMO-NSS-team/GEFEST
72bb61cf3fbb9f87fe3dcd48b71f3e84dd23b669
[ "BSD-3-Clause" ]
2
2022-01-19T11:37:24.000Z
2022-03-24T19:35:33.000Z
import pytest from copy import deepcopy from gefest.core.structure.point import Point from gefest.core.structure.polygon import Polygon from gefest.core.structure.structure import Structure from gefest.core.algs.postproc.resolve_errors import * from gefest.core.algs.geom.validation import * # marking length and width for testing polygon poly_width = 10 poly_length = 20 # creating a testing polygons via corner points rectangle_points = [(-1, 40), (-1, poly_length+40), (-poly_width-10, poly_length+40), (-poly_width-10, 40)] out_bounds_rectangle_poly = Polygon('rectangle', points=[Point(*coords) for coords in rectangle_points]) triangle_points = [(1, 1), (poly_width, poly_length), (1, poly_length)] unclosed_triangle_poly = Polygon('triangle', points=[Point(*coords) for coords in triangle_points]) incorrect_points = [(5, 5), (5, poly_length), (8, poly_length), (5, 5), (5, 30)] incorrect_poly = Polygon('incorrect_poly', points=[Point(*coords) for coords in incorrect_points]) domain = Domain()
37.424658
107
0.739019
b959064c37513b8eabaf61132941fe714e3a8dbc
1,833
py
Python
tests/mocks.py
davla/i3-live-tree
8dc3917afdd09f53f7cf39653c2bf12cb0200983
[ "MIT" ]
1
2021-07-22T09:04:46.000Z
2021-07-22T09:04:46.000Z
tests/mocks.py
davla/i3-live-tree
8dc3917afdd09f53f7cf39653c2bf12cb0200983
[ "MIT" ]
null
null
null
tests/mocks.py
davla/i3-live-tree
8dc3917afdd09f53f7cf39653c2bf12cb0200983
[ "MIT" ]
null
null
null
from unittest.mock import MagicMock, Mock from i3ipc.aio import Con import i3_live_tree.tree_serializer # noqa: F401
30.55
78
0.67485
b95a54ae27c88b1a727a1742ed1880093d3693e0
971
py
Python
hvac/api/secrets_engines/gcp.py
nested-tech/hvac
2a58ac9850b882e43c1617ae6b0ea93104c99794
[ "Apache-2.0" ]
null
null
null
hvac/api/secrets_engines/gcp.py
nested-tech/hvac
2a58ac9850b882e43c1617ae6b0ea93104c99794
[ "Apache-2.0" ]
null
null
null
hvac/api/secrets_engines/gcp.py
nested-tech/hvac
2a58ac9850b882e43c1617ae6b0ea93104c99794
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """Gcp methods module.""" from hvac import exceptions from hvac.api.vault_api_base import VaultApiBase from hvac.constants.gcp import DEFAULT_MOUNT_POINT, ALLOWED_CREDS_ENDPOINTS
34.678571
108
0.652935
b95b84a26deaf7cd8b371b13b34ee9e7005ee7c0
9,155
py
Python
ypricemagic/uniswap.py
poolpitako/ypricemagic
882aa2071a918937e77e0b85e5f52191a4714d28
[ "MIT" ]
null
null
null
ypricemagic/uniswap.py
poolpitako/ypricemagic
882aa2071a918937e77e0b85e5f52191a4714d28
[ "MIT" ]
null
null
null
ypricemagic/uniswap.py
poolpitako/ypricemagic
882aa2071a918937e77e0b85e5f52191a4714d28
[ "MIT" ]
null
null
null
import token from tokenize import tokenize from brownie import Contract, chain from brownie.exceptions import ContractNotFound from cachetools.func import ttl_cache from .utils.cache import memory from .utils.multicall2 import fetch_multicall from .interfaces.ERC20 import ERC20ABI import ypricemagic.magic import ypricemagic.utils.utils from .constants import STABLECOINS, dai, usdc, usdt, wbtc, weth, sushi # NOTE: If this is failing to pull a price for a token you need, it's likely because that token requires a special swap path. # Please add a viable swap path below to fetch price data successfully. #project.load() if chain.id == 1: FACTORIES = { "uniswap": "0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f", "sushiswap": "0xC0AEe478e3658e2610c5F7A4A2E1777cE9e4f2Ac", } ROUTERS = { "uniswap": Contract("0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D"), "sushiswap": Contract("0xD9E1CE17F2641F24AE83637AB66A2CCA9C378B9F"), } SPECIAL_PATHS = { "sushiswap": { "0xEF69B5697f2Fb0345cC680210fD39b593a2f9684": ["0xEF69B5697f2Fb0345cC680210fD39b593a2f9684","0x6B3595068778DD592e39A122f4f5a5cF09C90fE2",weth,usdc] ,"0xbf2179859fc6D5BEE9Bf9158632Dc51678a4100e": ["0xbf2179859fc6D5BEE9Bf9158632Dc51678a4100e","0xC28E27870558cF22ADD83540d2126da2e4b464c2",weth,usdc] ,"0x3166C570935a7D8554c8f4eA792ff965D2EFe1f2": ["0x3166C570935a7D8554c8f4eA792ff965D2EFe1f2","0x4954Db6391F4feB5468b6B943D4935353596aEC9",usdc] ,"0xE6279E1c65DD41b30bA3760DCaC3CD8bbb4420D6": ["0xE6279E1c65DD41b30bA3760DCaC3CD8bbb4420D6","0x87F5F9eBE40786D49D35E1B5997b07cCAA8ADbFF",weth,usdc] ,"0x4954Db6391F4feB5468b6B943D4935353596aEC9": ["0x4954Db6391F4feB5468b6B943D4935353596aEC9",usdc] ,"0x1E18821E69B9FAA8e6e75DFFe54E7E25754beDa0": ["0x1E18821E69B9FAA8e6e75DFFe54E7E25754beDa0","0xEF69B5697f2Fb0345cC680210fD39b593a2f9684","0x6B3595068778DD592e39A122f4f5a5cF09C90fE2",weth,usdc] ,"0xfC1E690f61EFd961294b3e1Ce3313fBD8aa4f85d": ["0xfC1E690f61EFd961294b3e1Ce3313fBD8aa4f85d","0xba100000625a3754423978a60c9317c58a424e3D",weth,usdc] ,"0xBA50933C268F567BDC86E1aC131BE072C6B0b71a": ["0xBA50933C268F567BDC86E1aC131BE072C6B0b71a",weth,usdc] ,"0x6102407f07029892eB5Ff02164ADFaFb85f4d222": ["0x6102407f07029892eB5Ff02164ADFaFb85f4d222",usdt] ,"0x85034b3b2e292493D029443455Cc62ab669573B3": ["0x85034b3b2e292493D029443455Cc62ab669573B3","0x1f9840a85d5aF5bf1D1762F925BDADdC4201F984",weth,usdc] ,"0xb220D53F7D0f52897Bcf25E47c4c3DC0bac344F8": ["0xb220D53F7D0f52897Bcf25E47c4c3DC0bac344F8", usdc] ,"0x383518188C0C6d7730D91b2c03a03C837814a899": ["0x383518188C0C6d7730D91b2c03a03C837814a899",dai] ,"0xafcE9B78D409bF74980CACF610AFB851BF02F257": ["0xafcE9B78D409bF74980CACF610AFB851BF02F257",wbtc,weth,usdc] }, "uniswap": { } } elif chain.id == 56: ROUTERS = { "pancakeswapv2": Contract("0x10ED43C718714eb63d5aA57B78B54704E256024E"), "pancakeswapv1": Contract("0x05fF2B0DB69458A0750badebc4f9e13aDd608C7F") } FACTORIES = { "pancakeswapv2": "0xcA143Ce32Fe78f1f7019d7d551a6402fC5350c73", "pancakeswapv1": "0xBCfCcbde45cE874adCB698cC183deBcF17952812" } SPECIAL_PATHS = { "pancakeswapv2": { }, "pancakeswapv1": { } } elif chain.id == 137: ROUTERS = { "quickswap": Contract("0xa5E0829CaCEd8fFDD4De3c43696c57F7D7A678ff") } FACTORIES = { "quickswap": "0x5757371414417b8C6CAad45bAeF941aBc7d3Ab32", } SPECIAL_PATHS = { "quickswap": { } } FACTORY_TO_ROUTER = {FACTORIES[name]: ROUTERS[name] for name in FACTORIES} FACTORY_TO_PROTOCOL = {FACTORIES[name]: name for name in FACTORIES}
43.388626
205
0.68935
b95bf173c71497f893fb19ff1c8e2576967d5c36
611
py
Python
configs/configuration_textrnn.py
haodingkui/semeval2020-task5-subtask1
bfd0c808c6b1de910d6f58ea040a13442b4bcdca
[ "MIT" ]
2
2020-08-19T12:32:21.000Z
2021-11-08T15:50:08.000Z
configs/configuration_textrnn.py
haodingkui/semeval2020-task5-subtask1
bfd0c808c6b1de910d6f58ea040a13442b4bcdca
[ "MIT" ]
null
null
null
configs/configuration_textrnn.py
haodingkui/semeval2020-task5-subtask1
bfd0c808c6b1de910d6f58ea040a13442b4bcdca
[ "MIT" ]
1
2020-08-19T12:32:48.000Z
2020-08-19T12:32:48.000Z
""" TextRNN model configuration """
27.772727
56
0.657938
b95cfef2234f9a61adbaa0afe2564f0d012dea38
38
py
Python
settings/debug_members.py
akorzunin/telegram_auction_bot
d4d5042614ea11f8085815d8f9fb8b6fbebcfab0
[ "Apache-2.0" ]
null
null
null
settings/debug_members.py
akorzunin/telegram_auction_bot
d4d5042614ea11f8085815d8f9fb8b6fbebcfab0
[ "Apache-2.0" ]
null
null
null
settings/debug_members.py
akorzunin/telegram_auction_bot
d4d5042614ea11f8085815d8f9fb8b6fbebcfab0
[ "Apache-2.0" ]
null
null
null
DEBUG_MEMBER_LIST = [ 503131177, ]
12.666667
21
0.684211
b95d4a692bcb2991f35a3f589cde3570c4033e09
29,218
py
Python
metrics/pointops/pointops_util.py
JiazeWang/SP-GAN
455003f78b1160ebe0a2056005b069808c0df35b
[ "MIT" ]
73
2021-05-11T12:00:29.000Z
2022-03-31T09:40:12.000Z
metrics/pointops/pointops_util.py
JiazeWang/SP-GAN
455003f78b1160ebe0a2056005b069808c0df35b
[ "MIT" ]
6
2021-08-18T13:03:43.000Z
2022-03-30T04:48:29.000Z
metrics/pointops/pointops_util.py
JiazeWang/SP-GAN
455003f78b1160ebe0a2056005b069808c0df35b
[ "MIT" ]
13
2021-08-28T20:09:13.000Z
2022-03-20T12:42:51.000Z
from typing import Tuple import torch from torch.autograd import Function import torch.nn as nn from metrics.pointops import pointops_cuda import numpy as np furthestsampling = FurthestSampling.apply gathering = Gathering.apply nearestneighbor = NearestNeighbor.apply interpolation = Interpolation.apply grouping = Grouping.apply grouping_int = GroupingInt.apply ballquery = BallQuery.apply featuredistribute = FeatureDistribute.apply featuregather = FeatureGather.apply labelstat_ballrange = LabelStatBallRange.apply labelstat_idx = LabelStatIdx.apply labelstat_and_ballquery = LabelStatAndBallQuery.apply def pairwise_distances(x, y=None): ''' Input: x is a Nxd matrix y is an optional Mxd matirx Output: dist is a NxM matrix where dist[i,j] is the square norm between x[i,:] and y[j,:] if y is not given then use 'y=x'. i.e. dist[i,j] = ||x[i,:]-y[j,:]||^2 ''' x_norm = (x ** 2).sum(1).view(-1, 1) if y is not None: y_t = torch.transpose(y, 0, 1) y_norm = (y ** 2).sum(1).view(1, -1) else: y_t = torch.transpose(x, 0, 1) y_norm = x_norm.view(1, -1) dist = x_norm + y_norm - 2.0 * torch.mm(x, y_t) import numpy as np return torch.clamp(dist, 0.0, np.inf) knnquery_naive = KNNQueryNaive.apply knnquery = KNNQuery.apply knnquery_exclude = KNNQueryExclude.apply
37.458974
145
0.585906
b95d5c160689db0e0a64a0a455645d72081698d5
2,992
py
Python
core/src/zeit/cms/content/caching.py
rickdg/vivi
16134ac954bf8425646d4ad47bdd1f372e089355
[ "BSD-3-Clause" ]
5
2019-05-16T09:51:29.000Z
2021-05-31T09:30:03.000Z
core/src/zeit/cms/content/caching.py
rickdg/vivi
16134ac954bf8425646d4ad47bdd1f372e089355
[ "BSD-3-Clause" ]
107
2019-05-24T12:19:02.000Z
2022-03-23T15:05:56.000Z
core/src/zeit/cms/content/caching.py
rickdg/vivi
16134ac954bf8425646d4ad47bdd1f372e089355
[ "BSD-3-Clause" ]
3
2020-08-14T11:01:17.000Z
2022-01-08T17:32:19.000Z
from collections import defaultdict from logging import getLogger from operator import itemgetter from os import environ from time import time from zope.cachedescriptors.property import Lazy as cachedproperty from zeit.cms.content.sources import FEATURE_TOGGLES from zope.component import getUtility from zeit.connector.interfaces import IConnector from zeit.connector.filesystem import Connector log = getLogger(__name__) __cache = ContentCache() get = __cache.get info = __cache.info
32.521739
78
0.57988
b95e87663683cd1ca4cf5da88872ac29da6e83c7
1,177
py
Python
genesis/project.py
genialis/genesis-genapi
dfe9bcc8b332a8b9873db4ab9994b0cc10eb209a
[ "Apache-2.0" ]
3
2020-01-24T17:03:23.000Z
2021-03-16T03:20:31.000Z
genesis/project.py
genialis/genesis-genapi
dfe9bcc8b332a8b9873db4ab9994b0cc10eb209a
[ "Apache-2.0" ]
1
2018-02-15T19:33:00.000Z
2018-02-15T19:33:00.000Z
genesis/project.py
genialis/genesis-genapi
dfe9bcc8b332a8b9873db4ab9994b0cc10eb209a
[ "Apache-2.0" ]
6
2015-05-27T10:14:46.000Z
2021-01-01T06:35:40.000Z
"""Project""" from __future__ import absolute_import, division, print_function, unicode_literals
30.973684
84
0.619371
b95f2f6c2258ef8998ac2a053019013dbf870640
2,351
py
Python
account/views.py
KimSoungRyoul/drf_unitteset_study_project
9a0d824bdc6343eeba6209299c077a6e9d280516
[ "MIT" ]
null
null
null
account/views.py
KimSoungRyoul/drf_unitteset_study_project
9a0d824bdc6343eeba6209299c077a6e9d280516
[ "MIT" ]
null
null
null
account/views.py
KimSoungRyoul/drf_unitteset_study_project
9a0d824bdc6343eeba6209299c077a6e9d280516
[ "MIT" ]
null
null
null
# Create your views here. from django.db.models import QuerySet from django.utils.decorators import method_decorator from drf_yasg.utils import swagger_auto_schema from rest_framework import viewsets, status from rest_framework.permissions import IsAuthenticated, AllowAny from rest_framework.response import Response from rest_framework.viewsets import mixins from account.documents import DjangoFilterDescriptionInspector from account.models import Customer from account.serializers import CustomerInfoSerializer, SignUpFormSerializer
40.534483
103
0.722671
b95fe9aa9fab4f285d9028f8b01c9820d83254e4
3,831
py
Python
src/front-door/azext_front_door/_validators.py
Mannan2812/azure-cli-extensions
e2b34efe23795f6db9c59100534a40f0813c3d95
[ "MIT" ]
207
2017-11-29T06:59:41.000Z
2022-03-31T10:00:53.000Z
src/front-door/azext_front_door/_validators.py
Mannan2812/azure-cli-extensions
e2b34efe23795f6db9c59100534a40f0813c3d95
[ "MIT" ]
4,061
2017-10-27T23:19:56.000Z
2022-03-31T23:18:30.000Z
src/front-door/azext_front_door/_validators.py
Mannan2812/azure-cli-extensions
e2b34efe23795f6db9c59100534a40f0813c3d95
[ "MIT" ]
802
2017-10-11T17:36:26.000Z
2022-03-31T22:24:32.000Z
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import argparse # pylint: disable=protected-access
35.472222
119
0.645262
b960f3f5be88ef82754359823e7c6a9b7ed78089
7,763
py
Python
mimesis/data/int/development.py
DevAerial/mimesis
33c58ae43e2f6ebc11e5ea7ebe8ac8917b2e1c0b
[ "MIT" ]
null
null
null
mimesis/data/int/development.py
DevAerial/mimesis
33c58ae43e2f6ebc11e5ea7ebe8ac8917b2e1c0b
[ "MIT" ]
1
2022-03-26T07:46:59.000Z
2022-03-26T07:47:20.000Z
mimesis/data/int/development.py
DevAerial/mimesis
33c58ae43e2f6ebc11e5ea7ebe8ac8917b2e1c0b
[ "MIT" ]
null
null
null
"""Provides all the data related to the development.""" LICENSES = [ "Apache License, 2.0 (Apache-2.0)", "The BSD 3-Clause License", "The BSD 2-Clause License", "GNU General Public License (GPL)", "General Public License (LGPL)", "MIT License (MIT)", "Mozilla Public License 2.0 (MPL-2.0)", "Common Development and Distribution License (CDDL-1.0)", "Eclipse Public License (EPL-1.0)", ] PROGRAMMING_LANGS = [ "ASP", "Assembly", "AutoIt", "Awk", "Bash", "C", "C Shell", "C#", "C++", "Caml", "Ceylon", "Clojure", "CoffeeScript", "Common Lisp", "D", "Dart", "Delphi", "Dylan", "ECMAScript", "Elixir", "Emacs Lisp", "Erlang", "F#", "Falcon", "Fortran", "GNU Octave", "Go", "Groovy", "Haskell", "haXe", "Io", "J#", "Java", "JavaScript", "Julia", "Kotlin", "Lisp", "Lua", "Mathematica", "Objective-C", "OCaml", "Perl", "PHP", "PL-I", "PL-SQL", "PowerShell", "Prolog", "Python", "R", "Racket", "Ruby", "Rust", "Scala", "Scheme", "Smalltalk", "Tcl", "Tex", "Transact-SQL", "TypeScript", "Z shell", ] OS = [ "Arch", "CentOS", "Debian", "Fedora", "FreeBSD", "Gentoo", "Kali", "Lubuntu", "Manjaro", "Mint", "OS X", "macOS", "OpenBSD", "PCLinuxOS", "Slackware", "Ubuntu", "Windows 10", "Windows 7", "Windows 8", "Windows 8.1", "Zorin", "elementaryOS", "macOS", "openSUSE", ] FOLDERS = [ "Development", "Downloads", "Documents", "Music", "Video", "Work", "Pictures", "Desktop", "Study", ] PROJECT_NAMES = [ "aardonyx", "abelisaurus", "achelousaurus", "achillobator", "acrocanthosaurus", "aegyptosaurus", "afrovenator", "agilisaurus", "alamosaurus", "albertaceratops", "albertosaurus", "alectrosaurus", "alioramus", "allosaurus", "alvarezsaurus", "amargasaurus", "ammosaurus", "ampelosaurus", "amygdalodon", "anatotitan", "anchiceratops", "anchisaurus", "ankylosaurus", "anserimimus", "antarctopelta", "antarctosaurus", "apatosaurus", "aragosaurus", "aralosaurus", "archaeoceratops", "archaeopteryx", "archaeornithomimus", "argentinosaurus", "arrhinoceratops", "atlascopcosaurus", "aucasaurus", "austrosaurus", "avaceratops", "avalonia", "avimimus", "azendohsaurus", "bactrosaurus", "bagaceratops", "bambiraptor", "barapasaurus", "barosaurus", "baryonyx", "becklespinax", "beipiaosaurus", "bellusaurus", "borogovia", "brachiosaurus", "brachyceratops", "bugenasaura", "buitreraptor", "camarasaurus", "camptosaurus", "carnotaurus", "caudipteryx", "cedarpelta", "centrosaurus", "ceratosaurus", "cetiosauriscus", "cetiosaurus", "chaoyangsaurus", "chasmosaurus", "chialingosaurus", "chindesaurus", "chinshakiangosaurus", "chirostenotes", "chubutisaurus", "chungkingosaurus", "citipati", "coelophysis", "coelurus", "coloradisaurus", "compsognathus", "conchoraptor", "confuciusornis", "corythosaurus", "cryolophosaurus", "dacentrurus", "daspletosaurus", "datousaurus", "deinocheirus", "deinonychus", "deltadromeus", "diceratops", "dicraeosaurus", "dilophosaurus", "diplodocus", "dracorex", "dravidosaurus", "dromaeosaurus", "dromiceiomimus", "dryosaurus", "dryptosaurus", "dubreuillosaurus", "edmontonia", "edmontosaurus", "einiosaurus", "elaphrosaurus", "emausaurus", "eolambia", "eoraptor", "eotyrannus", "equijubus", "erketu", "erlikosaurus", "euhelopus", "euoplocephalus", "europasaurus", "euskelosaurus", "eustreptospondylus", "fukuiraptor", "fukuisaurus", "gallimimus", "gargoyleosaurus", "garudimimus", "gasosaurus", "gasparinisaura", "gastonia", "giganotosaurus", "gilmoreosaurus", "giraffatitan", "gobisaurus", "gorgosaurus", "goyocephale", "graciliceratops", "gryposaurus", "guaibasaurus", "guanlong", "hadrosaurus", "hagryphus", "haplocanthosaurus", "harpymimus", "herrerasaurus", "hesperosaurus", "heterodontosaurus", "homalocephale", "huayangosaurus", "hylaeosaurus", "hypacrosaurus", "hypselosaurus", "hypsilophodon", "iguanodon", "indosuchus", "ingenia", "irritator", "isisaurus", "janenschia", "jaxartosaurus", "jingshanosaurus", "jinzhousaurus", "jobaria", "juravenator", "kentrosaurus", "khaan", "kotasaurus", "kritosaurus", "lamaceratops", "lambeosaurus", "lapparentosaurus", "leaellynasaura", "leptoceratops", "lesothosaurus", "lexovisaurus", "liaoceratops", "liaoxiornis", "ligabuesaurus", "liliensternus", "lophorhothon", "lophostropheus", "lufengosaurus", "lurdusaurus", "lycorhinus", "magyarosaurus", "maiasaura", "majungatholus", "malawisaurus", "mamenchisaurus", "mapusaurus", "marshosaurus", "masiakasaurus", "massospondylus", "maxakalisaurus", "megalosaurus", "melanorosaurus", "metriacanthosaurus", "microceratops", "micropachycephalosaurus", "microraptor", "minmi", "monolophosaurus", "mononykus", "mussaurus", "muttaburrasaurus", "nanotyrannus", "nanshiungosaurus", "nemegtosaurus", "neovenator", "neuquenosaurus", "nigersaurus", "nipponosaurus", "noasaurus", "nodosaurus", "nomingia", "nothronychus", "nqwebasaurus", "omeisaurus", "ornitholestes", "ornithomimus", "orodromeus", "oryctodromeus", "othnielia", "ouranosaurus", "oviraptor", "rebbachisaurus", "rhabdodon", "rhoetosaurus", "rinchenia", "riojasaurus", "rugops", "saichania", "saltasaurus", "saltopus", "sarcosaurus", "saurolophus", "sauropelta", "saurophaganax", "saurornithoides", "scelidosaurus", "scutellosaurus", "secernosaurus", "segisaurus", "segnosaurus", "seismosaurus", "shamosaurus", "shanag", "shantungosaurus", "shunosaurus", "shuvuuia", "silvisaurus", "sinocalliopteryx", "sinornithosaurus", "sinosauropteryx", "sinraptor", "sinvenator", "zalmoxes", "zephyrosaurus", "zuniceratops", "byzantine", "svengali", "accolade", "acrimony", "angst", "anomaly", "antidote", "baroque", "bona_fide", "bourgeois", "bravado", "brogue", "brusque", "cacophony", "caustic", "charisma", "cloying", "deja-vu", "dichotomy", "elan", "ennui", "epitome", "esoteric", "euphemism", "faux pas", "fiasco", "finagle", "glib", "harbinger", "hedonist", "heresy", "idyllic", "insidious", "junket", "kitsch", "litany", "lurid", "malaise", "malinger", "mantra", "maudlin", "mercenary", "misnomer", "nirvana", "oblivion", "ogle", "ostracize", "panacea", "paradox", "peevish", "propriety", "revel", "rhetoric", "spartan", "stigma", "stoic", "suave", "sycophant", "tirade", "tryst", "untenable", "vicarious", "vile", "waft", "zealous", ]
17.845977
61
0.551977
b962302fa813576c8cf57a4deea0db5f25dfb918
620
py
Python
docs/mathparse.py
pcmoritz/flow
bc97132e9e2d05262bb6bbad5bda173fd9f4ae92
[ "MIT" ]
16
2018-05-25T06:30:28.000Z
2020-08-08T00:03:47.000Z
docs/mathparse.py
pcmoritz/flow
bc97132e9e2d05262bb6bbad5bda173fd9f4ae92
[ "MIT" ]
46
2018-05-22T21:32:55.000Z
2019-06-12T13:10:02.000Z
docs/mathparse.py
pcmoritz/flow
bc97132e9e2d05262bb6bbad5bda173fd9f4ae92
[ "MIT" ]
6
2018-06-22T14:59:14.000Z
2019-08-29T06:00:34.000Z
""" A preliminary attempt at parsing an RST file's math syntax in order to make math render as inline rather than display mode. This doesn't work as of yet but might be useful. It could, however, be not useful if there's a pandoc option for converting .md to .rst that makes math inline and not display. Keeping it around, though. """ import re s = """Define .. math:: v_{des} as the desired velocity, .. math:: 1^k a vector of ones of length""" with open('/Users/nishant/Downloads/tutorialtest.rst', 'r') as myfile: s = myfile.read() print([elem[11:-2] for elem in re.findall('\n.. math:: *\S*\n\n', s)])
22.962963
70
0.693548
b96253f9f9bc87e42d80842aebed3aa7dacb859b
1,994
py
Python
lib/layout/primitives.py
tailhook/pyzza
610be6ee4bea9b64f8226faf7338523fdafdf2cf
[ "MIT" ]
2
2015-08-07T15:39:25.000Z
2019-03-31T12:45:37.000Z
lib/layout/primitives.py
tailhook/pyzza
610be6ee4bea9b64f8226faf7338523fdafdf2cf
[ "MIT" ]
null
null
null
lib/layout/primitives.py
tailhook/pyzza
610be6ee4bea9b64f8226faf7338523fdafdf2cf
[ "MIT" ]
null
null
null
from layout import Shape, Widget from flash.text.engine import TextBlock, TextElement
32.688525
70
0.609829
b963a238595dc05d6bc40e6f5888099b52a8fc14
20,515
py
Python
tests/testing_server.py
ImportTaste/WebRequest
0cc385622624de16ec980e0c12d9080d593cab74
[ "WTFPL" ]
null
null
null
tests/testing_server.py
ImportTaste/WebRequest
0cc385622624de16ec980e0c12d9080d593cab74
[ "WTFPL" ]
null
null
null
tests/testing_server.py
ImportTaste/WebRequest
0cc385622624de16ec980e0c12d9080d593cab74
[ "WTFPL" ]
null
null
null
import traceback import uuid import socket import logging import os import base64 import zlib import gzip import time import datetime from http import cookies from http.server import BaseHTTPRequestHandler from http.server import HTTPServer from threading import Thread import WebRequest if __name__ == '__main__': wg = WebRequest.WebGetRobust() srv = start_server( assertion_class = None, from_wg = wg, skip_header_checks = True) print("running server on port: ", srv) while 1: time.sleep(1)
32.929374
165
0.640653
b963e6196b8baa521ce89adb40142bf81a9183a6
3,770
py
Python
calcgrades.py
qrowsxi/calcgrades
93c71c1afef8dde5174726ae1702b71ccba633de
[ "MIT" ]
null
null
null
calcgrades.py
qrowsxi/calcgrades
93c71c1afef8dde5174726ae1702b71ccba633de
[ "MIT" ]
null
null
null
calcgrades.py
qrowsxi/calcgrades
93c71c1afef8dde5174726ae1702b71ccba633de
[ "MIT" ]
null
null
null
import csv import math import numpy as np import pandas import scipy.optimize import sys import argparse if __name__ == '__main__': main()
35.566038
116
0.609284
b9652ceb78b45d3bef98c61d48e3cd4630133615
19,317
py
Python
sdk/python/pulumi_google_native/testing/v1/test_matrix.py
AaronFriel/pulumi-google-native
75d1cda425e33d4610348972cd70bddf35f1770d
[ "Apache-2.0" ]
44
2021-04-18T23:00:48.000Z
2022-02-14T17:43:15.000Z
sdk/python/pulumi_google_native/testing/v1/test_matrix.py
AaronFriel/pulumi-google-native
75d1cda425e33d4610348972cd70bddf35f1770d
[ "Apache-2.0" ]
354
2021-04-16T16:48:39.000Z
2022-03-31T17:16:39.000Z
sdk/python/pulumi_google_native/testing/v1/test_matrix.py
AaronFriel/pulumi-google-native
75d1cda425e33d4610348972cd70bddf35f1770d
[ "Apache-2.0" ]
8
2021-04-24T17:46:51.000Z
2022-01-05T10:40:21.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ._enums import * from ._inputs import * __all__ = ['TestMatrixArgs', 'TestMatrix'] def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, client_info: Optional[pulumi.Input[pulumi.InputType['ClientInfoArgs']]] = None, environment_matrix: Optional[pulumi.Input[pulumi.InputType['EnvironmentMatrixArgs']]] = None, fail_fast: Optional[pulumi.Input[bool]] = None, flaky_test_attempts: Optional[pulumi.Input[int]] = None, project: Optional[pulumi.Input[str]] = None, request_id: Optional[pulumi.Input[str]] = None, result_storage: Optional[pulumi.Input[pulumi.InputType['ResultStorageArgs']]] = None, test_specification: Optional[pulumi.Input[pulumi.InputType['TestSpecificationArgs']]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = TestMatrixArgs.__new__(TestMatrixArgs) __props__.__dict__["client_info"] = client_info if environment_matrix is None and not opts.urn: raise TypeError("Missing required property 'environment_matrix'") __props__.__dict__["environment_matrix"] = environment_matrix __props__.__dict__["fail_fast"] = fail_fast __props__.__dict__["flaky_test_attempts"] = flaky_test_attempts __props__.__dict__["project"] = project __props__.__dict__["request_id"] = request_id if result_storage is None and not opts.urn: raise TypeError("Missing required property 'result_storage'") __props__.__dict__["result_storage"] = result_storage if test_specification is None and not opts.urn: raise TypeError("Missing required property 'test_specification'") __props__.__dict__["test_specification"] = test_specification __props__.__dict__["invalid_matrix_details"] = None __props__.__dict__["outcome_summary"] = None __props__.__dict__["state"] = None __props__.__dict__["test_executions"] = None __props__.__dict__["test_matrix_id"] = None __props__.__dict__["timestamp"] = None super(TestMatrix, __self__).__init__( 'google-native:testing/v1:TestMatrix', resource_name, __props__, opts)
50.436031
458
0.67671
b965c021bcb2dac479172708e85ad9ed89f09ef2
5,427
py
Python
View/View.py
MoriokaReimen/ConfigHeaderGenerator
73ba5d3bd5269d7e6881ec79b6fc0121ff2fb03e
[ "MIT" ]
null
null
null
View/View.py
MoriokaReimen/ConfigHeaderGenerator
73ba5d3bd5269d7e6881ec79b6fc0121ff2fb03e
[ "MIT" ]
null
null
null
View/View.py
MoriokaReimen/ConfigHeaderGenerator
73ba5d3bd5269d7e6881ec79b6fc0121ff2fb03e
[ "MIT" ]
null
null
null
import tkinter as tk import tkinter.messagebox from Control import Control
43.071429
112
0.629445
b9669e29ffa745ca4256305d7461bcbe497cc930
1,428
py
Python
tests/bugs/core_3355_test.py
FirebirdSQL/firebird-qa
96af2def7f905a06f178e2a80a2c8be4a4b44782
[ "MIT" ]
1
2022-02-05T11:37:13.000Z
2022-02-05T11:37:13.000Z
tests/bugs/core_3355_test.py
FirebirdSQL/firebird-qa
96af2def7f905a06f178e2a80a2c8be4a4b44782
[ "MIT" ]
1
2021-09-03T11:47:00.000Z
2021-09-03T12:42:10.000Z
tests/bugs/core_3355_test.py
FirebirdSQL/firebird-qa
96af2def7f905a06f178e2a80a2c8be4a4b44782
[ "MIT" ]
1
2021-06-30T14:14:16.000Z
2021-06-30T14:14:16.000Z
#coding:utf-8 # # id: bugs.core_3355 # title: Wrong comparsion of DATE and TIMESTAMP if index is used # decription: # tracker_id: CORE-3355 # min_versions: ['2.1.5'] # versions: 3.0 # qmid: None import pytest from firebird.qa import db_factory, isql_act, Action # version: 3.0 # resources: None substitutions_1 = [] init_script_1 = """create table tdate (id integer not null primary key, val date); create index tdateix1 on tdate (val); commit; insert into tdate values (0, '1997-12-31'); insert into tdate values (1, '1998-01-01'); insert into tdate values (2, '1998-01-02'); insert into tdate values (3, '1998-01-03'); insert into tdate values (4, '1998-01-04'); insert into tdate values (5, '1998-01-05'); commit; """ db_1 = db_factory(page_size=4096, sql_dialect=3, init=init_script_1) test_script_1 = """select count(*) from tdate where val >= timestamp'1998-01-04 12:00:00.0000'; select count(*) from tdate where val < timestamp'1998-01-04 12:00:00.0000'; """ act_1 = isql_act('db_1', test_script_1, substitutions=substitutions_1) expected_stdout_1 = """ COUNT ===================== 1 COUNT ===================== 5 """
25.052632
95
0.641457
b967ba0197b144171458b230c2dfe31844ba0b72
5,231
py
Python
dags/download_decrypt_transfer_files.py
hms-dbmi/bch-pic-sure-airflow-dags
0c1e6f07da4e270581942e551ac30284474921d4
[ "Apache-2.0" ]
null
null
null
dags/download_decrypt_transfer_files.py
hms-dbmi/bch-pic-sure-airflow-dags
0c1e6f07da4e270581942e551ac30284474921d4
[ "Apache-2.0" ]
null
null
null
dags/download_decrypt_transfer_files.py
hms-dbmi/bch-pic-sure-airflow-dags
0c1e6f07da4e270581942e551ac30284474921d4
[ "Apache-2.0" ]
null
null
null
""" @author: anilkdegala """ import os from airflow import DAG from airflow.operators.bash_operator import BashOperator from airflow.operators.python_operator import PythonOperator, BranchPythonOperator from datetime import date, timedelta, datetime from collections import OrderedDict from scripts.dag_pebbles import DagPebbles from airflow.configuration import conf from scripts.configurations import * from airflow.operators.dummy_operator import DummyOperator default_args = { "owner": "anilkdegala", "depends_on_past": True, "max_active_runs": 1, "start_date": datetime(2015, 6, 1), "is_active": True, "is_paused_upon_creation": False, } with DAG( "DOWNLOAD_DECRYPT_TRANSFER", description="Download, Decrypt, Transfer files (Source: S3, Staging: EC2: Target: RDS Oracle)", default_args=default_args, schedule_interval=None, catchup=False, orientation="TB", tags=['Utils'], dagrun_timeout=timedelta(hours=240) ) as dag: t_pipeline_begin = PythonOperator( task_id="begin_pipeline", python_callable=begin_pipeline, provide_context=True, dag=dag, ) t_check_pipeline = BranchPythonOperator( task_id="check_pipeline", python_callable=pipeline_enable_check, provide_context=True, dag=dag, ) t_pipeline_check_passed = PythonOperator( task_id="pipeline_check_passed", python_callable=pipeline_check_passed, provide_context=True, dag=dag, ) t_pipeline_check_skipped = PythonOperator( task_id="pipeline_check_skipped", python_callable=pipeline_check_skipped, provide_context=True, dag=dag, ) download_files_cmd = "/opt/bitnami/airflow/airflow-data/scripts/download_files.sh "+"{{ ti.xcom_pull(key='download_decrypt_arguments')}}" t_download_files = BashOperator( task_id='download_files', bash_command=download_files_cmd, dag=dag) decrypt_files_cmd = "/opt/bitnami/airflow/airflow-data/scripts/decrypt_files.sh "+"{{ ti.xcom_pull(key='download_decrypt_arguments')}} " t_decrypt_files = BashOperator( task_id='decrypt_files', bash_command=decrypt_files_cmd, dag=dag) transfer_files_cmd = "/opt/bitnami/airflow/airflow-data/scripts/transfer_files_rds.pl "+"{{ ti.xcom_pull(key='transfer_arguments')}} " t_transfer_files = BashOperator( task_id='transfer_files', bash_command=transfer_files_cmd, dag=dag) t_end_pipeline = PythonOperator( task_id="end_pipeline", python_callable=end_pipeline, provide_context=True, trigger_rule="none_failed", dag=dag, ) t_notify = PythonOperator( task_id="send_notifications", python_callable=notify, provide_context=True, trigger_rule="none_failed", dag=dag, ) t_cleanup = PythonOperator( task_id="cleanup", python_callable=cleanup, provide_context=True, trigger_rule="none_failed", dag=dag, ) t_end = PythonOperator( task_id="end", python_callable=end, provide_context=True, trigger_rule="none_failed", dag=dag, ) t_pipeline_begin >> t_check_pipeline t_check_pipeline >> t_pipeline_check_skipped >> t_end_pipeline t_check_pipeline >> t_pipeline_check_passed >> t_download_files >> t_decrypt_files >> t_transfer_files >> t_end_pipeline t_end_pipeline >> t_cleanup >> t_notify >> t_end
30.770588
171
0.664118
b96834dcae4311b040352e86ae4bdc019619193a
7,518
py
Python
keystone-moon/keystone/endpoint_policy/controllers.py
hashnfv/hashnfv-moon
daaba34fa2ed4426bc0fde359e54a5e1b872208c
[ "Apache-2.0" ]
null
null
null
keystone-moon/keystone/endpoint_policy/controllers.py
hashnfv/hashnfv-moon
daaba34fa2ed4426bc0fde359e54a5e1b872208c
[ "Apache-2.0" ]
null
null
null
keystone-moon/keystone/endpoint_policy/controllers.py
hashnfv/hashnfv-moon
daaba34fa2ed4426bc0fde359e54a5e1b872208c
[ "Apache-2.0" ]
1
2021-03-21T11:38:30.000Z
2021-03-21T11:38:30.000Z
# Copyright 2014 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from keystone.common import controller from keystone.common import dependency from keystone import notifications
45.017964
79
0.699654
b96893ff0c22487256e91c812d37a56c2c479eb3
11,886
py
Python
src/nibetaseries/cli/run.py
ipacheco-uy/NiBetaSeries
3d8716552f22f925524d80af9aace09469c22d4d
[ "MIT" ]
1
2019-10-03T21:20:48.000Z
2019-10-03T21:20:48.000Z
src/nibetaseries/cli/run.py
ipacheco-uy/NiBetaSeries
3d8716552f22f925524d80af9aace09469c22d4d
[ "MIT" ]
null
null
null
src/nibetaseries/cli/run.py
ipacheco-uy/NiBetaSeries
3d8716552f22f925524d80af9aace09469c22d4d
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Module that contains the command line app. Why does this file exist, and why not put this in __main__? You might be tempted to import things from __main__ later, but that will cause problems: the code will get executed twice: - When you run `python -m nibetaseries` python will execute ``__main__.py`` as a script. That means there won't be any ``nibetaseries.__main__`` in ``sys.modules``. - When you import __main__ it will get executed again (as a module) because there's no ``nibetaseries.__main__`` in ``sys.modules``. Also see (1) from http://click.pocoo.org/5/setuptools/#setuptools-integration """ from __future__ import absolute_import import os import argparse from argparse import RawTextHelpFormatter from glob import glob from multiprocessing import cpu_count from nipype import config as ncfg def get_parser(): """Build parser object""" from ..__init__ import __version__ import sys verstr = 'nibs v{}'.format(__version__) parser = argparse.ArgumentParser(description='NiBetaSeries BIDS arguments', formatter_class=RawTextHelpFormatter) parser.add_argument('bids_dir', help='The directory with the input dataset ' 'formatted according to the BIDS standard.') parser.add_argument('derivatives_pipeline', help='The pipeline that contains ' 'minimally preprocessed img, brainmask, and confounds.tsv') parser.add_argument('output_dir', help='The directory where the output directory ' 'and files should be stored. If you are running group level analysis ' 'this folder should be prepopulated with the results of the' 'participant level analysis.') parser.add_argument('analysis_level', choices=['participant', 'group'], help='Level of the analysis that will be performed ' 'Multiple participant level analyses can be run independently ' '(in parallel) using the same output_dir') parser.add_argument('-v', '--version', action='version', version=verstr) # Atlas Arguments (Required Options) atlas_args = parser.add_argument_group('Required Atlas Arguments') atlas_args.add_argument('-a', '--atlas-img', action='store', required=('-l' in sys.argv or '--atlas-lut' in sys.argv), help='input atlas nifti where each voxel within a "region" ' 'is labeled with the same integer and there is a unique ' 'integer associated with each region of interest.') atlas_args.add_argument('-l', '--atlas-lut', action='store', required=('-a' in sys.argv or '--atlas-img' in sys.argv), help='atlas look up table (tsv) formatted with the columns: ' 'index, regions which correspond to the regions in the ' 'nifti file specified by --atlas-img.') # preprocessing options proc_opts = parser.add_argument_group('Options for processing') proc_opts.add_argument('--estimator', default='lss', choices=['lss', 'lsa'], help='beta series modeling method') proc_opts.add_argument('-sm', '--smoothing-kernel', action='store', type=float, default=6.0, help='select a smoothing kernel (mm)') proc_opts.add_argument('-hp', '--high-pass', action='store', type=float, default=0.0078125, help='high pass filter (Hz)') proc_opts.add_argument('-c', '--confounds', help='The confound column names ' 'that are to be included in nuisance regression. ' 'write the confounds you wish to include separated by a space', nargs="+") proc_opts.add_argument('--hrf-model', default='glover', choices=['glover', 'spm', 'fir', 'glover + derivative', 'glover + derivative + dispersion', 'spm + derivative', 'spm + derivative + dispersion'], help='convolve your regressors ' 'with one of the following hemodynamic response functions') proc_opts.add_argument('--fir-delays', default=None, nargs='+', type=int, help='FIR delays in volumes', metavar='VOL') proc_opts.add_argument('-w', '--work-dir', help='directory where temporary files ' 'are stored (i.e. non-essential files). ' 'This directory can be deleted once you are reasonably ' 'certain nibs finished as expected.') # Image Selection options image_opts = parser.add_argument_group('Options for selecting images') parser.add_argument('--participant-label', nargs="+", help='The label(s) of the participant(s) ' 'that should be analyzed. The label ' 'corresponds to sub-<participant_label> from the BIDS spec ' '(so it does not include "sub-"). If this parameter is not ' 'provided all subjects should be analyzed. Multiple ' 'participants can be specified with a space separated list.') image_opts.add_argument('--session-label', action='store', default=None, help='select a session to analyze') image_opts.add_argument('-t', '--task-label', action='store', default=None, help='select a specific task to be processed') image_opts.add_argument('--run-label', action='store', default=None, help='select a run to analyze') image_opts.add_argument('-sp', '--space-label', action='store', default='MNI152NLin2009cAsym', choices=['MNI152NLin2009cAsym'], help='select a bold derivative in a specific space to be used') image_opts.add_argument('--description-label', action='store', default=None, help='select a bold file with particular ' '`desc` label to process') image_opts.add_argument('--exclude-description-label', action='store_true', default=False, help='exclude this `desc` label from nibetaseries') # performance options g_perfm = parser.add_argument_group('Options to handle performance') g_perfm.add_argument('--nthreads', '-n-cpus', action='store', type=int, help='maximum number of threads across all processes') g_perfm.add_argument('--use-plugin', action='store', default=None, help='nipype plugin configuration file') # misc options misc = parser.add_argument_group('misc options') misc.add_argument('--graph', action='store_true', default=False, help='generates a graph png of the workflow') return parser init()
46.611765
98
0.595406
b9693ae1ef191dd2735a2abba99bb1bc689af26f
2,727
py
Python
custom_components/senz/config_flow.py
astrandb/senz_hass
6725d37fd9c6d250ac10a16e68c56908bf1c8404
[ "MIT" ]
2
2022-01-15T09:55:58.000Z
2022-02-10T10:13:35.000Z
custom_components/senz/config_flow.py
astrandb/senz_hass
6725d37fd9c6d250ac10a16e68c56908bf1c8404
[ "MIT" ]
4
2022-01-15T19:41:28.000Z
2022-02-14T16:01:47.000Z
custom_components/senz/config_flow.py
astrandb/senz_hass
6725d37fd9c6d250ac10a16e68c56908bf1c8404
[ "MIT" ]
null
null
null
"""Config flow for SENZ WiFi.""" from __future__ import annotations import logging from typing import Any import voluptuous as vol from homeassistant.components import persistent_notification from homeassistant.data_entry_flow import FlowResult from homeassistant.helpers import config_entry_oauth2_flow from .const import DOMAIN from .pysenz import PreAPI
34.518987
184
0.671067
b9697b05a9b44247d80463465fa92118d707fb98
6,465
py
Python
astropy_helpers/git_helpers.py
bsipocz/astropy-helpers
4999df1cfb6a5022347b0cef9caf8a556517c625
[ "PSF-2.0", "BSD-2-Clause", "BSD-3-Clause" ]
9
2019-12-06T13:12:33.000Z
2021-10-05T12:47:15.000Z
astropy_helpers/git_helpers.py
bsipocz/astropy-helpers
4999df1cfb6a5022347b0cef9caf8a556517c625
[ "PSF-2.0", "BSD-2-Clause", "BSD-3-Clause" ]
2
2019-11-28T17:20:27.000Z
2019-12-09T18:44:35.000Z
astropy_helpers/git_helpers.py
bsipocz/astropy-helpers
4999df1cfb6a5022347b0cef9caf8a556517c625
[ "PSF-2.0", "BSD-2-Clause", "BSD-3-Clause" ]
3
2019-11-28T17:04:22.000Z
2021-10-19T13:12:34.000Z
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Utilities for retrieving revision information from a project's git repository. """ # Do not remove the following comment; it is used by # astropy_helpers.version_helpers to determine the beginning of the code in # this module # BEGIN import locale import os import subprocess import warnings def update_git_devstr(version, path=None): """ Updates the git revision string if and only if the path is being imported directly from a git working copy. This ensures that the revision number in the version string is accurate. """ try: # Quick way to determine if we're in git or not - returns '' if not devstr = get_git_devstr(sha=True, show_warning=False, path=path) except OSError: return version if not devstr: # Probably not in git so just pass silently return version if 'dev' in version: # update to the current git revision version_base = version.split('.dev', 1)[0] devstr = get_git_devstr(sha=False, show_warning=False, path=path) return version_base + '.dev' + devstr else: # otherwise it's already the true/release version return version def get_git_devstr(sha=False, show_warning=True, path=None): """ Determines the number of revisions in this repository. Parameters ---------- sha : bool If True, the full SHA1 hash will be returned. Otherwise, the total count of commits in the repository will be used as a "revision number". show_warning : bool If True, issue a warning if git returns an error code, otherwise errors pass silently. path : str or None If a string, specifies the directory to look in to find the git repository. If `None`, the current working directory is used, and must be the root of the git repository. If given a filename it uses the directory containing that file. Returns ------- devversion : str Either a string with the revision number (if `sha` is False), the SHA1 hash of the current commit (if `sha` is True), or an empty string if git version info could not be identified. """ if path is None: path = os.getcwd() if not os.path.isdir(path): path = os.path.abspath(os.path.dirname(path)) if sha: # Faster for getting just the hash of HEAD cmd = ['rev-parse', 'HEAD'] else: cmd = ['rev-list', '--count', 'HEAD'] returncode, stdout, stderr = run_git(cmd) if not sha and returncode == 128: # git returns 128 if the command is not run from within a git # repository tree. In this case, a warning is produced above but we # return the default dev version of '0'. return '0' elif not sha and returncode == 129: # git returns 129 if a command option failed to parse; in # particular this could happen in git versions older than 1.7.2 # where the --count option is not supported # Also use --abbrev-commit and --abbrev=0 to display the minimum # number of characters needed per-commit (rather than the full hash) cmd = ['rev-list', '--abbrev-commit', '--abbrev=0', 'HEAD'] returncode, stdout, stderr = run_git(cmd) # Fall back on the old method of getting all revisions and counting # the lines if returncode == 0: return str(stdout.count(b'\n')) else: return '' elif sha: return _decode_stdio(stdout)[:40] else: return _decode_stdio(stdout).strip() # This function is tested but it is only ever executed within a subprocess when # creating a fake package, so it doesn't get picked up by coverage metrics. def _get_repo_path(pathname, levels=None): # pragma: no cover """ Given a file or directory name, determine the root of the git repository this path is under. If given, this won't look any higher than ``levels`` (that is, if ``levels=0`` then the given path must be the root of the git repository and is returned if so. Returns `None` if the given path could not be determined to belong to a git repo. """ if os.path.isfile(pathname): current_dir = os.path.abspath(os.path.dirname(pathname)) elif os.path.isdir(pathname): current_dir = os.path.abspath(pathname) else: return None current_level = 0 while levels is None or current_level <= levels: if os.path.exists(os.path.join(current_dir, '.git')): return current_dir current_level += 1 if current_dir == os.path.dirname(current_dir): break current_dir = os.path.dirname(current_dir) return None
33.324742
79
0.612065
b96b280416f0d557826ffa670a7914f2d45e5fc5
526
py
Python
src/sot_talos_balance/test/test_feet_admittance.py
imaroger/sot-talos-balance
5e56700b4e105273ecf6feb3474789beac469a77
[ "BSD-2-Clause" ]
null
null
null
src/sot_talos_balance/test/test_feet_admittance.py
imaroger/sot-talos-balance
5e56700b4e105273ecf6feb3474789beac469a77
[ "BSD-2-Clause" ]
null
null
null
src/sot_talos_balance/test/test_feet_admittance.py
imaroger/sot-talos-balance
5e56700b4e105273ecf6feb3474789beac469a77
[ "BSD-2-Clause" ]
null
null
null
'''Test feet admittance control''' from sot_talos_balance.utils.run_test_utils import run_ft_calibration, run_test, runCommandClient try: # Python 2 input = raw_input # noqa except NameError: pass run_test('appli_feet_admittance.py') run_ft_calibration('robot.ftc') input("Wait before running the test") print('Set saturation value') runCommandClient('robot.admBF_dqSaturation.sin.value = [0.0, 0.0, 0.01, 0.0, 0.0, 0.0]') input("Wait before dumping the data") runCommandClient('dump_tracer(robot.tracer)')
25.047619
97
0.752852
b96bb8e94e8bbfe556cc0ad3a314b6991573aa47
544
py
Python
tests/test_db.py
davebryson/py-tendermint
ec6a38a54950d9841759b0f2ed93659b58948a03
[ "Apache-2.0" ]
24
2017-08-18T20:36:27.000Z
2020-03-27T08:55:39.000Z
tests/test_db.py
davebryson/py-tendermint
ec6a38a54950d9841759b0f2ed93659b58948a03
[ "Apache-2.0" ]
6
2017-10-14T05:50:34.000Z
2019-06-03T08:39:49.000Z
tests/test_db.py
davebryson/py-tendermint
ec6a38a54950d9841759b0f2ed93659b58948a03
[ "Apache-2.0" ]
5
2018-01-09T11:07:06.000Z
2019-06-02T14:34:34.000Z
import os from tendermint.db import VanillaDB from tendermint.utils import home_dir
20.923077
42
0.621324
b96d766a7c5eab27eb3785b1277b6beccda7c9ed
1,446
py
Python
auth/tests/test_views.py
asb29/Redundant
ee816fd41f9217610bd11f757cf9175288723c70
[ "MIT" ]
null
null
null
auth/tests/test_views.py
asb29/Redundant
ee816fd41f9217610bd11f757cf9175288723c70
[ "MIT" ]
null
null
null
auth/tests/test_views.py
asb29/Redundant
ee816fd41f9217610bd11f757cf9175288723c70
[ "MIT" ]
null
null
null
from django.test import TestCase from django.test import Client
30.125
52
0.53527
b96f6c5854c1e905c9ad5d8f08d016972c710a1f
4,134
py
Python
projects/OneNet/onenet/head.py
iFighting/OneNet
6e33b46d2aa13131262833c75f0fd1c3d224ef03
[ "MIT" ]
2
2021-06-16T01:31:17.000Z
2021-11-25T15:27:28.000Z
projects/OneNet/onenet/head.py
xieenze/OneNet
3b06ad6832727cef4c0262389de4cdbb2a666197
[ "MIT" ]
null
null
null
projects/OneNet/onenet/head.py
xieenze/OneNet
3b06ad6832727cef4c0262389de4cdbb2a666197
[ "MIT" ]
1
2021-02-04T06:38:42.000Z
2021-02-04T06:38:42.000Z
# # Modified by Peize Sun # Contact: [email protected] # # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ OneNet Transformer class. Copy-paste from torch.nn.Transformer with modifications: * positional encodings are passed in MHattention * extra LN at the end of encoder is removed * decoder returns a stack of activations from all decoding layers """ import copy import math from typing import Optional, List import torch from torch import nn, Tensor import torch.nn.functional as F from detectron2.modeling.poolers import ROIPooler, cat from detectron2.structures import Boxes from .deconv import CenternetDeconv def _get_activation_fn(activation): """Return an activation function given a string""" if activation == "relu": return F.relu if activation == "gelu": return F.gelu if activation == "glu": return F.glu raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
32.296875
94
0.600871
b96fae5c29fd446ea7199733a629bbe0f6190046
49,876
py
Python
mermaid/utils.py
HastingsGreer/mermaid
bd13c5fc427eb8cd9054973a8eaaeb302078182d
[ "Apache-2.0" ]
120
2019-10-29T23:53:02.000Z
2022-03-30T02:59:58.000Z
mermaid/utils.py
AlexanderChristgau/mermaid
ba07883cc3cb5982e4655048a434b4495cb49c6d
[ "Apache-2.0" ]
10
2019-11-05T09:28:35.000Z
2022-01-09T19:12:51.000Z
mermaid/utils.py
AlexanderChristgau/mermaid
ba07883cc3cb5982e4655048a434b4495cb49c6d
[ "Apache-2.0" ]
19
2019-11-10T13:34:39.000Z
2022-03-13T20:30:10.000Z
"""Various utility functions. .. todo:: Reorganize this package in a more meaningful way. """ from __future__ import print_function from __future__ import absolute_import # from builtins import str # from builtins import range import torch from torch.nn.parameter import Parameter from torch.autograd import Variable from .libraries.modules.stn_nd import STN_ND_BCXYZ from .data_wrapper import AdaptVal from .data_wrapper import MyTensor from . import smoother_factory as sf from .data_wrapper import USE_CUDA import numpy as np from . import finite_differences as fd import torch.nn as nn import torch.nn.init as init from . import module_parameters as pars from .spline_interpolation import SplineInterpolation_ND_BCXYZ import os try: from .libraries.functions.nn_interpolation import get_nn_interpolation except ImportError: print('WARNING: nn_interpolation could not be imported (only supported in CUDA at the moment). ' 'Some functionality may not be available.') def my_hasnan(x): """Check if any input elements are NaNs. :param x: numpy array :return: True if NaNs are present, False else """ return (x != x).any() def combine_dict(d1,d2): """Creates a dictionary which has entries from both of them. :param d1: dictionary 1 :param d2: dictionary 2 :return: resulting dictionary """ d = d1.copy() d.update(d2) return d def get_parameter_list_from_parameter_dict(pd): """Takes a dictionary which contains key value pairs for model parameters and converts it into a list of parameters that can be used as an input to an optimizer. :param pd: parameter dictionary :return: list of parameters """ pl = [] for key in pd: pl.append(pd[key]) return pl def get_parameter_list_and_par_to_name_dict_from_parameter_dict(pd): """Same as get_parameter_list_from_parameter_dict; but also returns a dictionary which keeps track of the keys based on memory id. :param pd: parameter dictionary :return: tuple of (parameter_list, name_dictionary) """ par_to_name_dict = dict() pl = [] for key in pd: pl.append(pd[key]) par_to_name_dict[pd[key]] = key return pl, par_to_name_dict def lift_to_dimension(A, dim): """Creates a view of A of dimension dim (by adding dummy dimensions if necessary). :param A: numpy array :param dim: desired dimension of view :return: returns view of A of appropriate dimension """ current_dim = len(A.shape) if current_dim > dim: raise ValueError('Can only add dimensions, but not remove them') if current_dim == dim: return A else: return A.reshape([1]*(dim-current_dim)+list(A.shape)) def get_dim_of_affine_transform(Ab): """Returns the number of dimensions corresponding to an affine transformation of the form y=Ax+b stored in a column vector. For A =[a1,a2,a3], the parameter vector is simply [a1;a2;a3;b], i.e., all columns stacked on top of each other. :param Ab: parameter vector :return: dimensionality of transform (1,2,or 3) """ nr = len(Ab) if nr==2: return 1 elif nr==6: return 2 elif nr==12: return 3 else: raise ValueError('Only supports dimensions 1, 2, and 3.') def set_affine_transform_to_identity(Ab): """Sets the affine transformation as given by the column vector Ab to the identity transform. :param Ab: Affine parameter vector (will be overwritten with the identity transform) :return: """ dim = get_dim_of_affine_transform(Ab) if dim==1: Ab.zero_() Ab[0]=1. elif dim==2: Ab.zero_() Ab[0]=1. Ab[3]=1. elif dim==3: Ab.zero_() Ab[0]=1. Ab[4]=1. Ab[8]=1. else: raise ValueError('Only supports dimensions 1, 2, and 3.') def set_affine_transform_to_identity_multiN(Ab): """Set the affine transforms to the identity (in the case of arbitrary batch size). :param Ab: Parameter vectors B x pars (batch size x param. vector); will be overwritten with identity trans. :return: """ sz = Ab.size() nr_of_images = sz[0] for nrI in range(nr_of_images): set_affine_transform_to_identity(Ab[nrI, :]) def get_inverse_affine_param(Ab): """Computes inverse of affine transformation. Formally: C(Ax+b)+d = CAx+Cb+d = x; C = inv(A), d = -Cb :param Ab: B x pars (batch size x param. vector) :return: Inverse of affine parameters """ dim =0 if Ab.shape[1] == 2: dim = 1 elif Ab.shape[1] == 6: dim = 2 elif Ab.shape[1] == 12: dim = 3 if dim not in [1, 2, 3]: raise ValueError('Only supports dimensions 1, 2, and 3.') Ab = Ab.view(Ab.shape[0], dim+1, dim).transpose(1,2) Ab_inv = torch.zeros_like(Ab) for n in range(Ab.shape[0]): tm_inv = torch.inverse(Ab[n, :, :dim]) Ab_inv[n, :, :dim] = tm_inv Ab_inv[n, :, dim] = - torch.matmul(tm_inv, Ab[n,:,dim]) inv_affine_param = Ab_inv.transpose(1, 2).contiguous().view(Ab.shape[0], -1) return inv_affine_param def update_affine_param(Ab, Cd): """Update affine parameters. Formally: C(Ax+b)+d = CAx+Cb+d :param Ab: B x pars (batch size x param. vector) :return: Updated affine parameters """ dim = 0 if Ab.shape[1]==2: dim = 1 elif Ab.shape[1]==6: dim = 2 elif Ab.shape[1]==12: dim = 3 if dim not in [1, 2, 3]: raise ValueError('Only supports dimensions 1, 2, and 3.') Ab = Ab.view(Ab.shape[0], dim+1, dim).transpose(1, 2) Cd = Cd.view(Cd.shape[0], dim+1, dim).transpose(1, 2) updated_param = torch.zeros_like(Ab) for n in range(Ab.shape[0]): tm_param = torch.matmul(Cd[n,:,:dim],Ab[n,:,:dim]) updated_param[n,:,:dim] = tm_param updated_param[n,:,dim] = torch.matmul(Cd[n,:,:dim], Ab[n,:,dim]) +Cd[n,:,dim] updated_param = updated_param.transpose(1,2).contiguous().view(Ab.shape[0],-1) return updated_param def apply_affine_transform_to_map(Ab,phi): """Applies an affine transform to a map. :param Ab: affine transform parameter column vector :param phi: map; format nrCxXxYxZ (nrC corresponds to dimension) :return: returns transformed map """ sz = phi.size() dim = len(sz) - 1 if dim not in [1,2,3]: raise ValueError('Only supports dimensions 1, 2, and 3.') phiR = MyTensor(sz).zero_().type_as(phi) if dim == 1: phiR = phi * Ab[0] + Ab[1] elif dim == 2: phiR[0, ...] = Ab[0] * phi[0, ...] + Ab[2] * phi[1, ...] + Ab[4] # a_11x+a_21y+b1 phiR[1, ...] = Ab[1] * phi[0, ...] + Ab[3] * phi[1, ...] + Ab[5] # a_12x+a_22y+b2 elif dim == 3: phiR[0, ...] = Ab[0] * phi[0, ...] + Ab[3] * phi[1, ...] + Ab[6] * phi[2, ...] + Ab[9] phiR[1, ...] = Ab[1] * phi[0, ...] + Ab[4] * phi[1, ...] + Ab[7] * phi[2, ...] + Ab[10] phiR[2, ...] = Ab[2] * phi[0, ...] + Ab[5] * phi[1, ...] + Ab[8] * phi[2, ...] + Ab[11] else: raise ValueError('Only supports dimensions 1, 2, and 3.') return phiR def apply_affine_transform_to_map_multiNC(Ab,phi): """Applies an affine transform to maps (for arbitrary batch size). :param Ab: affine transform parameter column vectors (batch size x param. vector) :param phi: maps; format batchxnrCxXxYxZ (nrC corresponds to dimension) :return: returns transformed maps """ sz = phi.size() dim = get_dim_of_affine_transform(Ab[0,:]) nr_of_images = Ab.size()[0] if nr_of_images != sz[0]: raise ValueError('Incompatible number of affine transforms') if dim != len(sz)-2: raise ValueError('Incompatible number of affine transforms') phiR = MyTensor(sz).zero_().type_as(phi) for nrI in range(nr_of_images): phiR[nrI, ...] = apply_affine_transform_to_map(Ab[nrI, :], phi[nrI, ...]) return phiR def compute_normalized_gaussian(X, mu, sig): """Computes a normalized Gaussian. :param X: map with coordinates at which to evaluate :param mu: array indicating the mean :param sig: array indicating the standard deviations for the different dimensions :return: Normalized Gaussian evaluated at coordinates in X Example:: >>> mu, sig = [1,1], [1,1] >>> X = [0,0] >>> print(compute_normalized_gaussian(X, mu, sig) """ dim = len(mu) if dim == 1: g = np.exp(-np.power(X[0, :] - mu[0], 2.)/(2*np.power(sig[0], 2.))) g = g/g.sum() return g elif dim == 2: g = np.exp(-np.power(X[0,:,:]-mu[0],2.)/(2*np.power(sig[0],2.)) - np.power(X[1,:, :] - mu[1], 2.) / (2 * np.power(sig[1], 2.))) g = g/g.sum() return g elif dim == 3: g = np.exp(-np.power(X[0,:, :, :] - mu[0], 2.) / (2 * np.power(sig[0], 2.)) -np.power(X[1,:, :, :] - mu[1], 2.) / (2 * np.power(sig[1], 2.)) -np.power(X[2,:, :, :] - mu[2], 2.) / (2 * np.power(sig[2], 2.))) g = g / g.sum() return g else: raise ValueError('Can only compute Gaussians in dimensions 1-3') def compute_warped_image(I0, phi, spacing, spline_order, zero_boundary=False, use_01_input=True): """Warps image. :param I0: image to warp, image size XxYxZ :param phi: map for the warping, size dimxXxYxZ :param spacing: image spacing [dx,dy,dz] :return: returns the warped image of size XxYxZ """ # implements this by creating a different view (effectively adding dimensions) Iw = compute_warped_image_multiNC(I0.view(torch.Size([1, 1] + list(I0.size()))), phi.view(torch.Size([1] + list(phi.size()))), spacing, spline_order, zero_boundary, use_01_input) return Iw.view(I0.size()) def compute_warped_image_multiNC(I0, phi, spacing, spline_order, zero_boundary=False, use_01_input=True): """Warps image. :param I0: image to warp, image size BxCxXxYxZ :param phi: map for the warping, size BxdimxXxYxZ :param spacing: image spacing [dx,dy,dz] :return: returns the warped image of size BxCxXxYxZ """ dim = I0.dim()-2 if dim == 1: return _compute_warped_image_multiNC_1d(I0, phi, spacing, spline_order,zero_boundary,use_01_input=use_01_input) elif dim == 2: return _compute_warped_image_multiNC_2d(I0, phi, spacing, spline_order,zero_boundary,use_01_input=use_01_input) elif dim == 3: return _compute_warped_image_multiNC_3d(I0, phi, spacing, spline_order,zero_boundary,use_01_input=use_01_input) else: raise ValueError('Images can only be warped in dimensions 1 to 3') def _get_low_res_spacing_from_spacing(spacing, sz, lowResSize): """Computes spacing for the low-res parametrization from image spacing. :param spacing: image spacing :param sz: size of image :param lowResSize: size of low re parameterization :return: returns spacing of low res parameterization """ #todo: check that this is the correct way of doing it return spacing * (np.array(sz[2::])-1) / (np.array(lowResSize[2::])-1) def _get_low_res_size_from_size(sz, factor): """Returns the corresponding low-res size from a (high-res) sz. :param sz: size (high-res) :param factor: low-res factor (needs to be <1) :return: low res size """ if (factor is None) or (factor >= 1): print('WARNING: Could not compute low_res_size as factor was ' + str(factor)) return np.array(sz) else: low_res_sz = np.array(sz) low_res_sz[2::] = (np.ceil((np.array(sz[2::]) * factor))).astype('int16') return low_res_sz def compute_vector_momentum_from_scalar_momentum_multiNC(lam, I, sz, spacing): """Computes the vector momentum from the scalar momentum: :math:`m=\\lambda\\nabla I`. :param lam: scalar momentum, BxCxXxYxZ :param I: image, BxCxXxYxZ :param sz: size of image :param spacing: spacing of image :return: returns the vector momentum """ nrOfI = sz[0] # number of images m = create_ND_vector_field_variable_multiN(sz[2::], nrOfI) # attention that the second dimension here is image dim, not nrOfC nrOfC = sz[1] for c in range(nrOfC): # loop over all the channels and add the results m = m + compute_vector_momentum_from_scalar_momentum_multiN(lam[:, c, ...], I[:, c, ...], nrOfI, sz[2::], spacing) return m def compute_vector_momentum_from_scalar_momentum_multiN(lam, I, nrOfI, sz, spacing): """Computes the vector momentum from the scalar momentum: :math:`m=\\lambda\\nabla I`. :param lam: scalar momentum, batchxXxYxZ :param I: image, batchXxYxZ :param sz: size of image :param spacing: spacing of image :return: returns the vector momentum """ fdt = fd.FD_torch(spacing) dim = len(sz) m = create_ND_vector_field_variable_multiN(sz, nrOfI) if dim == 1: m[:, 0, :] = fdt.dXc(I)*lam elif dim == 2: m[:, 0, :, :] = fdt.dXc(I)*lam m[:, 1, :, :] = fdt.dYc(I)*lam elif dim == 3: m[:, 0, :, :, :] = fdt.dXc(I)*lam m[:, 1, :, :, :] = fdt.dYc(I)*lam m[:, 2, :, :, :] = fdt.dZc(I)*lam else: raise ValueError('Can only convert scalar to vector momentum in dimensions 1-3') return m def create_ND_vector_field_variable_multiN(sz, nr_of_images=1): """ Create vector field torch Variable of given size :param sz: just the spatial sizes (e.g., [5] in 1D, [5,10] in 2D, [5,10,10] in 3D) :param nrOfI: number of images :return: returns vector field of size nrOfIxdimxXxYxZ """ dim = len(sz) csz = np.array(sz) # just to make sure it is a numpy array csz = np.array([nr_of_images, dim]+list(csz)) return MyTensor(*(csz.tolist())).normal_(0., 1e-7) def create_ND_vector_field_variable(sz): """Create vector field torch Variable of given size. :param sz: just the spatial sizes (e.g., [5] in 1D, [5,10] in 2D, [5,10,10] in 3D) :return: returns vector field of size dimxXxYxZ """ dim = len(sz) csz = np.array(sz) # just to make sure it is a numpy array csz = np.array([dim]+list(csz)) return MyTensor(*(csz.tolist())).normal_(0.,1e-7) def create_vector_parameter(nr_of_elements): """Creates a vector parameters with a specified number of elements. :param nr_of_elements: number of vector elements :return: returns the parameter vector """ return Parameter(MyTensor(nr_of_elements).normal_(0., 1e-7)) def create_ND_vector_field_parameter_multiN(sz, nrOfI=1,get_field_from_external_network=False): """Create vector field torch Parameter of given size. :param sz: just the spatial sizes (e.g., [5] in 1D, [5,10] in 2D, [5,10,10] in 3D) :param nrOfI: number of images :return: returns vector field of size nrOfIxdimxXxYxZ """ dim = len(sz) csz = np.array(sz) # just to make sure it is a numpy array csz = np.array([nrOfI, dim]+list(csz)) if get_field_from_external_network: tmp = MyTensor(*(csz.tolist())).normal_(0.,1e-7) tmp.requires_grad = True else: tmp = Parameter(MyTensor(*(csz.tolist())).normal_(0.,1e-7)) return tmp def create_local_filter_weights_parameter_multiN(sz,gaussian_std_weights, nrOfI=1,sched='w_K_w',get_preweight_from_network=False): """ Create vector field torch Parameter of given size :param sz: just the spatial sizes (e.g., [5] in 1D, [5,10] in 2D, [5,10,10] in 3D) :param nrOfI: number of images :return: returns vector field of size nrOfIxdimxXxYxZ """ nr_of_mg_weights = len(gaussian_std_weights) csz = np.array(sz) # just to make sure it is a numpy array csz = np.array([nrOfI,nr_of_mg_weights]+list(csz)) weights = torch.empty(*csz) # set the default if sched =='w_K_w': gaussian_std_weights = [torch.sqrt(std_w) for std_w in gaussian_std_weights] for g in range(nr_of_mg_weights): weights[:, g, ...] = gaussian_std_weights[g] tmp = AdaptVal(weights) if get_preweight_from_network: tmp.requires_grad = True else: tmp = Parameter(tmp) return tmp def create_ND_scalar_field_parameter_multiNC(sz, nrOfI=1, nrOfC=1): """ Create vector field torch Parameter of given size :param sz: just the spatial sizes (e.g., [5] in 1D, [5,10] in 2D, [5,10,10] in 3D) :param nrOfI: number of images :param nrOfC: number of channels :return: returns vector field of size nrOfIxnrOfCxXxYxZ """ csz = np.array(sz) # just to make sure it is a numpy array csz = np.array([nrOfI,nrOfC]+list(csz)) return Parameter(MyTensor(*(csz.tolist())).normal_(0.,1e-7)) def centered_identity_map_multiN(sz, spacing, dtype='float32'): """ Create a centered identity map (shifted so it is centered around 0) :param sz: size of an image in BxCxXxYxZ format :param spacing: list with spacing information [sx,sy,sz] :param dtype: numpy data-type ('float32', 'float64', ...) :return: returns the identity map """ dim = len(sz) - 2 nrOfI = sz[0] if dim == 1: id = np.zeros([nrOfI, 1, sz[2]], dtype=dtype) elif dim == 2: id = np.zeros([nrOfI, 2, sz[2], sz[3]], dtype=dtype) elif dim == 3: id = np.zeros([nrOfI, 3, sz[2], sz[3], sz[4]], dtype=dtype) else: raise ValueError('Only dimensions 1-3 are currently supported for the identity map') for n in range(nrOfI): id[n, ...] = centered_identity_map(sz[2::], spacing,dtype=dtype) return id def identity_map_multiN(sz,spacing,dtype='float32'): """ Create an identity map :param sz: size of an image in BxCxXxYxZ format :param spacing: list with spacing information [sx,sy,sz] :param dtype: numpy data-type ('float32', 'float64', ...) :return: returns the identity map """ dim = len(sz)-2 nrOfI = int(sz[0]) if dim == 1: id = np.zeros([nrOfI,1,sz[2]],dtype=dtype) elif dim == 2: id = np.zeros([nrOfI,2,sz[2],sz[3]],dtype=dtype) elif dim == 3: id = np.zeros([nrOfI,3,sz[2],sz[3],sz[4]],dtype=dtype) else: raise ValueError('Only dimensions 1-3 are currently supported for the identity map') for n in range(nrOfI): id[n,...] = identity_map(sz[2::],spacing,dtype=dtype) return id def centered_identity_map(sz, spacing, dtype='float32'): """ Returns a centered identity map (with 0 in the middle) if the sz is odd Otherwise shifts everything by 0.5*spacing :param sz: just the spatial dimensions, i.e., XxYxZ :param spacing: list with spacing information [sx,sy,sz] :param dtype: numpy data-type ('float32', 'float64', ...) :return: returns the identity map of dimension dimxXxYxZ """ dim = len(sz) if dim == 1: id = np.mgrid[0:sz[0]] elif dim == 2: id = np.mgrid[0:sz[0], 0:sz[1]] elif dim == 3: id = np.mgrid[0:sz[0], 0:sz[1], 0:sz[2]] else: raise ValueError('Only dimensions 1-3 are currently supported for the identity map') # now get it into range [0,(sz-1)*spacing]^d id = np.array(id.astype(dtype)) if dim == 1: id = id.reshape(1, sz[0]) # add a dummy first index for d in range(dim): id[d] *= spacing[d] if sz[d]%2==0: #even id[d] -= spacing[d]*(sz[d]//2) else: #odd id[d] -= spacing[d]*((sz[d]+1)//2) # and now store it in a dim+1 array if dim == 1: idnp = np.zeros([1, sz[0]], dtype=dtype) idnp[0, :] = id[0] elif dim == 2: idnp = np.zeros([2, sz[0], sz[1]], dtype=dtype) idnp[0, :, :] = id[0] idnp[1, :, :] = id[1] elif dim == 3: idnp = np.zeros([3, sz[0], sz[1], sz[2]], dtype=dtype) idnp[0, :, :, :] = id[0] idnp[1, :, :, :] = id[1] idnp[2, :, :, :] = id[2] else: raise ValueError('Only dimensions 1-3 are currently supported for the centered identity map') return idnp # # def centered_min_normalized_identity_map(sz, spacing, dtype='float32'): # """ # Returns a centered identity map (with 0 in the middle) if the sz is odd # Otherwise shifts everything by 0.5*spacing # # :param sz: just the spatial dimensions, i.e., XxYxZ # :param spacing: list with spacing information [sx,sy,sz] # :param dtype: numpy data-type ('float32', 'float64', ...) # :return: returns the identity map of dimension dimxXxYxZ # """ # dim = len(sz) # if dim == 1: # id = np.mgrid[0:sz[0]] # elif dim == 2: # id = np.mgrid[0:sz[0], 0:sz[1]] # elif dim == 3: # id = np.mgrid[0:sz[0], 0:sz[1], 0:sz[2]] # else: # raise ValueError('Only dimensions 1-3 are currently supported for the identity map') # # min_spacing = np.min(spacing) # spacing_ratio = spacing/min_spacing # # # # now get it into range [0,(sz-1)*spacing]^d # id = np.array(id.astype(dtype)) # if dim == 1: # id = id.reshape(1, sz[0]) # add a dummy first index # # for d in range(dim): # id[d] *= spacing[d] # if sz[d]%2==0: # #even # id[d] -= spacing[d]*(sz[d]//2) # else: # #odd # id[d] -= spacing[d]*((sz[d]+1)//2) # # # and now store it in a dim+1 array and rescale by the ratio # if dim == 1: # idnp = np.zeros([1, sz[0]], dtype=dtype) # idnp[0, :] = id[0] * spacing_ratio[0] # elif dim == 2: # idnp = np.zeros([2, sz[0], sz[1]], dtype=dtype) # idnp[0, :, :] = id[0] * spacing_ratio[0] # idnp[1, :, :] = id[1] * spacing_ratio[1] # elif dim == 3: # idnp = np.zeros([3, sz[0], sz[1], sz[2]], dtype=dtype) # idnp[0, :, :, :] = id[0] * spacing_ratio[0] # idnp[1, :, :, :] = id[1] * spacing_ratio[1] # idnp[2, :, :, :] = id[2] * spacing_ratio[2] # else: # raise ValueError('Only dimensions 1-3 are currently supported for the centered identity map') # # return idnp # # def tranfrom_var_list_into_min_normalized_space(var_list,spacing,do_transform=True): # if do_transform: # min_spacing = np.min(spacing) # spacing_ratio =min_spacing/spacing # dim = spacing.size # spacing_ratio_t = AdaptVal(torch.Tensor(spacing_ratio)) # sp_sz = [1]+[dim] +[1]*dim # spacing_ratio_t = spacing_ratio_t.view(*sp_sz) # new_var_list = [var*spacing_ratio_t if var is not None else None for var in var_list] # else: # new_var_list = var_list # return new_var_list # def recover_var_list_from_min_normalized_space(var_list,spacing,do_transform=True): # if do_transform: # min_spacing = np.min(spacing) # spacing_ratio =spacing/min_spacing # dim = spacing.size # spacing_ratio_t = AdaptVal(torch.Tensor(spacing_ratio)) # sp_sz = [1]+[dim] +[1]*dim # spacing_ratio_t = spacing_ratio_t.view(*sp_sz) # new_var_list = [var*spacing_ratio_t if var is not None else None for var in var_list] # else: # new_var_list = var_list # return new_var_list # def identity_map(sz,spacing,dtype='float32'): """ Returns an identity map. :param sz: just the spatial dimensions, i.e., XxYxZ :param spacing: list with spacing information [sx,sy,sz] :param dtype: numpy data-type ('float32', 'float64', ...) :return: returns the identity map of dimension dimxXxYxZ """ dim = len(sz) if dim==1: id = np.mgrid[0:sz[0]] elif dim==2: id = np.mgrid[0:sz[0],0:sz[1]] elif dim==3: id = np.mgrid[0:sz[0],0:sz[1],0:sz[2]] else: raise ValueError('Only dimensions 1-3 are currently supported for the identity map') # now get it into range [0,(sz-1)*spacing]^d id = np.array( id.astype(dtype) ) if dim==1: id = id.reshape(1,sz[0]) # add a dummy first index for d in range(dim): id[d]*=spacing[d] #id[d]*=2./(sz[d]-1) #id[d]-=1. # and now store it in a dim+1 array if dim==1: idnp = np.zeros([1, sz[0]], dtype=dtype) idnp[0,:] = id[0] elif dim==2: idnp = np.zeros([2, sz[0], sz[1]], dtype=dtype) idnp[0,:, :] = id[0] idnp[1,:, :] = id[1] elif dim==3: idnp = np.zeros([3,sz[0], sz[1], sz[2]], dtype=dtype) idnp[0,:, :, :] = id[0] idnp[1,:, :, :] = id[1] idnp[2,:, :, :] = id[2] else: raise ValueError('Only dimensions 1-3 are currently supported for the identity map') return idnp def omt_boundary_weight_mask(img_sz,spacing,mask_range=5,mask_value=5,smoother_std =0.05): """generate a smooth weight mask for the omt """ dim = len(img_sz) mask_sz = [1,1]+ list(img_sz) mask = AdaptVal(torch.ones(*mask_sz))*mask_value if dim ==2: mask[:,:,mask_range:-mask_range,mask_range:-mask_range]=1 elif dim==3: mask[:,:,mask_range:-mask_range,mask_range:-mask_range,mask_range:-mask_range ]=1 sm = get_single_gaussian_smoother(smoother_std,img_sz,spacing) mask = sm.smooth(mask) return mask.detach() def momentum_boundary_weight_mask(img_sz,spacing,mask_range=5,smoother_std =0.05,pow=2): """generate a smooth weight mask for the omt """ dim = len(img_sz) mask_sz = [1,1]+ list(img_sz) mask = AdaptVal(torch.zeros(*mask_sz)) if dim ==2: mask[:,:,mask_range:-mask_range,mask_range:-mask_range]=1 elif dim==3: mask[:,:,mask_range:-mask_range,mask_range:-mask_range,mask_range:-mask_range ]=1 sm = get_single_gaussian_smoother(smoother_std,img_sz,spacing) mask = sm.smooth(mask) if pow ==2: mask = mask**2 if pow ==3: mask = mask*mask*mask return mask # def compute_omt_const(stds,param,dim): # omt_power = param['forward_model']['smoother']['omt_power'] # omt_weight_penalty = param['forward_model']['smoother']['omt_weight_penalty'] # min_std = torch.min(stds) # max_std = torch.max(stds) # omt_const = torch.abs(torch.log(max_std/stds))**omt_power # omt_const = omt_const/(torch.abs(torch.log(max_std / min_std)) ** omt_power) # omt_const = omt_const*omt_weight_penalty/(EV.reg_factor_in_mermaid*2) # sz = [1]+ [len(stds)] +[1]*(dim+1) # return omt_const.view(*sz) def t2np(v): """ Takes a torch array and returns it as a numpy array on the cpu :param v: torch array :return: numpy array """ return (v.detach()).cpu().numpy() def cxyz_to_xyzc( v ): """ Takes a torch array and returns it as a numpy array on the cpu :param v: torch array :return: numpy array """ dim = len(v.shape)-2 if dim ==2: v = v.permute(0,2,3,1) if dim ==3: v = v.permute(0,2,3,4,1) return v def checkNan(x): """" input should be list of Variable """ return [len(np.argwhere(np.isnan(elem.detach().cpu().numpy()))) for elem in x] def get_resampled_image(I, spacing, desiredSize, spline_order=1, zero_boundary=False, identity_map=None): """ :param I: B C X Y Z :param spacing: spx spy spz :param desiredSize: B C X Y Z :param spline_order: :param zero_boundary: :param identity_map: :return: """ if spacing is None: img_sz = I.shape[2:] spacing = 1. / (np.array(img_sz) - 1) if identity_map is not None: # todo will remove, currently fix for symmetric training if I.shape[0] != identity_map.shape[0]: n_batch = I.shape[0] desiredSize = desiredSize.copy() desiredSize[0] = n_batch identity_map = identity_map[:n_batch] resampled, new_spacing = resample_image(I, spacing, desiredSize, spline_order=spline_order, zero_boundary=zero_boundary, identity_map=identity_map) return resampled def resample_image(I, spacing, desiredSize, spline_order=1, zero_boundary=False, identity_map=None): """ Resample an image to a given desired size :param I: Input image (expected to be of BxCxXxYxZ format) :param spacing: array describing the spatial spacing :param desiredSize: array for the desired size (excluding B and C, i.e, 1 entry for 1D, 2 for 2D, and 3 for 3D) :return: returns a tuple: the downsampled image, the new spacing after downsampling """ desiredSize = desiredSize[2:] is_numpy = False if not isinstance(I, torch.Tensor): I = torch.Tensor(I) is_numpy = True sz = np.array(list(I.size())) # check that the batch size and the number of channels is the same nrOfI = sz[0] nrOfC = sz[1] desiredSizeNC = np.array([nrOfI, nrOfC] + list(desiredSize)) newspacing = spacing * ((sz[2::].astype('float') - 1.) / ( desiredSizeNC[2::].astype('float') - 1.)) ########################################### if identity_map is not None: idDes = identity_map else: idDes = AdaptVal(torch.from_numpy(identity_map_multiN(desiredSizeNC, newspacing))) # now use this map for resampling ID = compute_warped_image_multiNC(I, idDes, newspacing, spline_order, zero_boundary) return ID if not is_numpy else ID.numpy(), newspacing def get_res_size_from_size(sz, factor): """ Returns the corresponding low-res size from a (high-res) sz :param sz: size (high-res) :param factor: low-res factor (needs to be <1) :return: low res size """ if (factor is None): print('WARNING: Could not compute low_res_size as factor was ' + str(factor)) return sz else: lowResSize = np.array(sz) if not isinstance(factor, list): lowResSize[2::] = (np.ceil((np.array(sz[2:]) * factor))).astype('int16') else: lowResSize[2::] = (np.ceil((np.array(sz[2:]) * np.array(factor)))).astype('int16') if lowResSize[-1] % 2 != 0: lowResSize[-1] -= 1 print( '\n\nWARNING: forcing last dimension to be even: fix properly in the Fourier transform later!\n\n') return lowResSize def get_res_spacing_from_spacing(spacing, sz, lowResSize): """ Computes spacing for the low-res parameterization from image spacing :param spacing: image spacing :param sz: size of image :param lowResSize: size of low re parameterization :return: returns spacing of low res parameterization """ # todo: check that this is the correct way of doing it return spacing * (np.array(sz[2::]) - 1) / (np.array(lowResSize[2::]) - 1) ########################################## Adaptive Net ###################################################3 def space_normal(tensors, std=0.1): """ space normalize for the net kernel :param tensor: :param mean: :param std: :return: """ if isinstance(tensors, Variable): space_normal(tensors.data, std=std) return tensors for n in range(tensors.size()[0]): for c in range(tensors.size()[1]): dim = tensors[n][c].dim() sz = tensors[n][c].size() mus = np.zeros(dim) stds = std * np.ones(dim) print('WARNING: What should the spacing be here? Needed for new identity map code') raise ValueError('Double check the spacing here before running this code') spacing = np.ones(dim) centered_id = centered_identity_map(sz,spacing) g = compute_normalized_gaussian(centered_id, mus, stds) tensors[n,c] = torch.from_numpy(g)
34.805304
130
0.602675
b96fca03cef0164231c4fa09bc83db6c5b2aa7db
1,093
py
Python
examples/io/plot_read_evoked.py
fmamashli/mne-python
52f064415e7c9fa8fe243d22108dcdf3d86505b9
[ "BSD-3-Clause" ]
3
2021-01-04T08:45:56.000Z
2021-05-19T12:25:59.000Z
examples/io/plot_read_evoked.py
fmamashli/mne-python
52f064415e7c9fa8fe243d22108dcdf3d86505b9
[ "BSD-3-Clause" ]
28
2020-05-07T00:58:34.000Z
2020-08-29T23:02:17.000Z
examples/io/plot_read_evoked.py
fmamashli/mne-python
52f064415e7c9fa8fe243d22108dcdf3d86505b9
[ "BSD-3-Clause" ]
3
2019-01-28T13:48:00.000Z
2019-07-10T16:02:11.000Z
""" ================================== Reading and writing an evoked file ================================== This script shows how to read and write evoked datasets. """ # Author: Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) from mne import read_evokeds from mne.datasets import sample print(__doc__) data_path = sample.data_path() fname = data_path + '/MEG/sample/sample_audvis-ave.fif' # Reading condition = 'Left Auditory' evoked = read_evokeds(fname, condition=condition, baseline=(None, 0), proj=True) ############################################################################### # Show result as a butterfly plot: # By using exclude=[] bad channels are not excluded and are shown in red evoked.plot(exclude=[], time_unit='s') # Show result as a 2D image (x: time, y: channels, color: amplitude) evoked.plot_image(exclude=[], time_unit='s') ############################################################################### # Use :func:`mne.Evoked.save` or :func:`mne.write_evokeds` to write the evoked # responses to a file.
29.540541
79
0.569076
b970d836b7397be4bc4d63762c0eec8adfb90a91
611
py
Python
source/monkeyPatches/__init__.py
lukaszgo1/nvda
38a2efd1e1bff7db4471cb7afa03ab1590b7adef
[ "bzip2-1.0.6" ]
19
2016-05-11T05:15:31.000Z
2022-03-17T12:40:10.000Z
source/monkeyPatches/__init__.py
lukaszgo1/nvda
38a2efd1e1bff7db4471cb7afa03ab1590b7adef
[ "bzip2-1.0.6" ]
307
2015-08-27T11:22:33.000Z
2022-03-29T10:43:34.000Z
source/monkeyPatches/__init__.py
lukaszgo1/nvda
38a2efd1e1bff7db4471cb7afa03ab1590b7adef
[ "bzip2-1.0.6" ]
14
2016-03-28T07:31:49.000Z
2022-03-30T04:56:35.000Z
# A part of NonVisual Desktop Access (NVDA) # Copyright (C) 2021 NV Access Limited # This file is covered by the GNU General Public License. # See the file COPYING for more details. from . import wxMonkeyPatches applyWxMonkeyPatches = wxMonkeyPatches.apply
30.55
86
0.761047
b970f8ccb56e24dd8d65fd92869bbf7790f6e611
5,298
py
Python
yt_dlp/extractor/ninenow.py
nxtreaming/yt-dlp
385ffb467b2285e85a2a5495b90314ba1f8e0700
[ "Unlicense" ]
11
2022-01-06T22:09:50.000Z
2022-03-12T22:26:22.000Z
yt_dlp/extractor/ninenow.py
nxtreaming/yt-dlp
385ffb467b2285e85a2a5495b90314ba1f8e0700
[ "Unlicense" ]
4
2022-02-25T08:20:18.000Z
2022-03-17T16:16:20.000Z
yt_dlp/extractor/ninenow.py
nxtreaming/yt-dlp
385ffb467b2285e85a2a5495b90314ba1f8e0700
[ "Unlicense" ]
3
2022-02-19T08:59:13.000Z
2022-03-06T16:11:21.000Z
from .common import InfoExtractor from ..compat import compat_str from ..utils import ( ExtractorError, int_or_none, float_or_none, smuggle_url, str_or_none, try_get, unified_strdate, unified_timestamp, )
43.073171
146
0.575123
b97242dec299cf214174fe1ceb1c2d4c7e16b595
4,783
py
Python
apex/fp16_utils/fused_weight_norm.py
mcarilli/apex
766e36c9e10fe4efd847c3f77c3b38974c89eab1
[ "BSD-3-Clause" ]
1
2020-05-05T01:37:42.000Z
2020-05-05T01:37:42.000Z
apex/fp16_utils/fused_weight_norm.py
mcarilli/apex
766e36c9e10fe4efd847c3f77c3b38974c89eab1
[ "BSD-3-Clause" ]
1
2018-06-24T18:56:56.000Z
2018-06-24T18:56:56.000Z
apex/fp16_utils/fused_weight_norm.py
mcarilli/apex
766e36c9e10fe4efd847c3f77c3b38974c89eab1
[ "BSD-3-Clause" ]
1
2020-07-03T00:37:20.000Z
2020-07-03T00:37:20.000Z
import torch from torch.autograd import Variable from torch.autograd.function import Function, once_differentiable import apex_C
41.95614
175
0.604223
b9724b70833f729e47c38eb018294247250b7282
23,312
py
Python
bzt/modules/grinder.py
gerardorf/taurus
610872b4cf70af31d79a346db1aebd3466310d77
[ "Apache-2.0" ]
1
2019-01-15T17:23:58.000Z
2019-01-15T17:23:58.000Z
bzt/modules/grinder.py
gerardorf/taurus
610872b4cf70af31d79a346db1aebd3466310d77
[ "Apache-2.0" ]
null
null
null
bzt/modules/grinder.py
gerardorf/taurus
610872b4cf70af31d79a346db1aebd3466310d77
[ "Apache-2.0" ]
null
null
null
""" Module holds all stuff regarding Grinder tool usage Copyright 2015 BlazeMeter Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import re import time from bzt import TaurusConfigError, ToolError from bzt.engine import ScenarioExecutor, FileLister, HavingInstallableTools, SelfDiagnosable from bzt.modules.aggregator import ConsolidatingAggregator, ResultsReader from bzt.modules.console import WidgetProvider, ExecutorWidget from bzt.modules.java import TaurusJavaHelper from bzt.requests_model import HTTPRequest from bzt.six import iteritems from bzt.utils import MirrorsManager, dehumanize_time, get_full_path, PythonGenerator, CALL_PROBLEMS from bzt.utils import unzip, RequiredTool, JavaVM, shutdown_process, TclLibrary, FileReader, RESOURCES_DIR
40.82662
119
0.618823
b972e358701b6b26d8d3c931dfecc57580620c15
467
py
Python
test/Fortran/fixture/myfortran_flags.py
moroten/scons
20927b42ed4f0cb87f51287fa3b4b6cf915afcf8
[ "MIT" ]
1,403
2017-11-23T14:24:01.000Z
2022-03-30T20:59:39.000Z
test/Fortran/fixture/myfortran_flags.py
moroten/scons
20927b42ed4f0cb87f51287fa3b4b6cf915afcf8
[ "MIT" ]
3,708
2017-11-27T13:47:12.000Z
2022-03-29T17:21:17.000Z
test/Fortran/fixture/myfortran_flags.py
moroten/scons
20927b42ed4f0cb87f51287fa3b4b6cf915afcf8
[ "MIT" ]
281
2017-12-01T23:48:38.000Z
2022-03-31T15:25:44.000Z
import getopt import sys comment = ('#' + sys.argv[1]).encode() opts, args = getopt.getopt(sys.argv[2:], 'cf:o:xy') optstring = '' length = len(comment) for opt, arg in opts: if opt == '-o': out = arg elif opt not in ('-f', '-K'): optstring = optstring + ' ' + opt infile = open(args[0], 'rb') outfile = open(out, 'wb') outfile.write((optstring + "\n").encode()) for l in infile.readlines(): if l[:length] != comment: outfile.write(l) sys.exit(0)
27.470588
67
0.601713
b9736fc25869ac44481082e255dc93e0f52aa441
9,015
py
Python
zen_knit/organizer/__init__.py
Zen-Reportz/zen_knit
104c2693d2cc61520657131da769f5d59d2df8e9
[ "MIT" ]
30
2021-12-25T15:39:42.000Z
2022-02-25T04:53:44.000Z
zen_knit/organizer/__init__.py
Zen-Reportz/zen_knit
104c2693d2cc61520657131da769f5d59d2df8e9
[ "MIT" ]
11
2022-01-02T22:10:07.000Z
2022-02-02T00:56:33.000Z
zen_knit/organizer/__init__.py
Zen-Reportz/zen_knit
104c2693d2cc61520657131da769f5d59d2df8e9
[ "MIT" ]
2
2022-01-27T13:22:46.000Z
2022-01-30T05:01:59.000Z
import io import os import base64 from pathlib import Path from nbconvert import filters from pygments.formatters.latex import LatexFormatter from zen_knit import formattor from zen_knit.data_types import ChunkOption, ExecutedData, OrganizedChunk, OrganizedData from zen_knit.formattor.html_formatter import HTMLFormatter mime_extensions = {"image/png" : "png", "image/jpg" : "jpg"}
37.5625
139
0.533888
b974558759b358f82c2d72d79bab9c7dc3e35a76
12,467
py
Python
qibullet/robot_virtual.py
mcaniot/qibullet
9c5e1b319a18dd289263eb82f9d7303429bcbe21
[ "Apache-2.0" ]
null
null
null
qibullet/robot_virtual.py
mcaniot/qibullet
9c5e1b319a18dd289263eb82f9d7303429bcbe21
[ "Apache-2.0" ]
null
null
null
qibullet/robot_virtual.py
mcaniot/qibullet
9c5e1b319a18dd289263eb82f9d7303429bcbe21
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 import sys import pybullet from qibullet.camera import * from qibullet.link import Link from qibullet.joint import Joint IS_VERSION_PYTHON_3 = sys.version_info[0] >= 3
35.31728
79
0.593006
b974d5d1bd35654f50415a8f7c66f3fb9a0316ab
704
py
Python
tests/test_formatter.py
hbraux/kafkacli
5f7ed23150932b66b484fb43dd6210b6c0968776
[ "MIT" ]
null
null
null
tests/test_formatter.py
hbraux/kafkacli
5f7ed23150932b66b484fb43dd6210b6c0968776
[ "MIT" ]
null
null
null
tests/test_formatter.py
hbraux/kafkacli
5f7ed23150932b66b484fb43dd6210b6c0968776
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import pytest import json from kafkacli.formatter import Formatter sampleJson = json.loads('{"a":"s", "b":1}')
24.275862
62
0.640625
b9750e636d7a3d49a65558af431533fc2e745edb
187
py
Python
src/jobs/forms.py
arc198/DJANGO-JOB-SITE
d9547c4ee85751677ba6458380b609973c3b4a8d
[ "MIT" ]
20
2018-05-04T18:42:35.000Z
2021-03-18T07:15:12.000Z
src/jobs/forms.py
fleepgeek/django-jobsite
d9547c4ee85751677ba6458380b609973c3b4a8d
[ "MIT" ]
5
2020-02-11T22:22:33.000Z
2021-06-10T20:18:05.000Z
src/jobs/forms.py
arc198/DJANGO-JOB-SITE
d9547c4ee85751677ba6458380b609973c3b4a8d
[ "MIT" ]
8
2018-05-04T19:03:23.000Z
2020-09-23T00:24:46.000Z
from django import forms from .models import Application
23.375
44
0.700535
b975e6fb7fb3fa8849afb4e4ce41618c2ce94c1b
451
py
Python
src/test/tests/unit/protocol.py
ylee88/visit
8e0920996d84fef70a7014b0d770360918d849d5
[ "BSD-3-Clause" ]
1
2022-01-27T23:52:04.000Z
2022-01-27T23:52:04.000Z
src/test/tests/unit/protocol.py
ylee88/visit
8e0920996d84fef70a7014b0d770360918d849d5
[ "BSD-3-Clause" ]
null
null
null
src/test/tests/unit/protocol.py
ylee88/visit
8e0920996d84fef70a7014b0d770360918d849d5
[ "BSD-3-Clause" ]
null
null
null
# ---------------------------------------------------------------------------- # CLASSES: nightly # # Test Case: protocolo.py # # Tests: vistprotocol unit test # # Mark C. Miller, Tue Jan 11 10:19:23 PST 2011 # ---------------------------------------------------------------------------- tapp = visit_bin_path("visitprotocol") res = sexe(tapp,ret_output=True) if res["return_code"] == 0: excode = 111 else: excode = 113 Exit(excode)
26.529412
78
0.432373
b97645cb1bc48b7d30c6b37e139952912087b791
3,348
py
Python
pyMazeBacktrack.py
Dozed12/pyMazeBacktrack
aaa2a902fdca17dca6e2ee00e672b6bb38da5639
[ "MIT" ]
2
2019-02-22T10:35:25.000Z
2020-08-11T01:25:12.000Z
pyMazeBacktrack.py
Dozed12/pyMazeBacktrack
aaa2a902fdca17dca6e2ee00e672b6bb38da5639
[ "MIT" ]
null
null
null
pyMazeBacktrack.py
Dozed12/pyMazeBacktrack
aaa2a902fdca17dca6e2ee00e672b6bb38da5639
[ "MIT" ]
null
null
null
import libtcodpy as libtcod from random import randint nSquares = 30 nTiles = nSquares * 2 + 1 SCREEN_WIDTH = nTiles SCREEN_HEIGHT = nTiles libtcod.console_set_custom_font("cp437_12x12.png", libtcod.FONT_LAYOUT_ASCII_INROW) libtcod.console_init_root(SCREEN_WIDTH, SCREEN_HEIGHT, 'pyMazeBacktrack', False, libtcod.RENDERER_OPENGL) black = libtcod.black white = libtcod.white Table = [[0 for i in range(nTiles)]for i in range(nTiles)] for x in range(nTiles): for y in range(nTiles): Table[x][y] = black libtcod.console_put_char_ex(None,x,y,219,Table[x][y],libtcod.white) libtcod.console_flush() Memory = [] CurrX = 1 CurrY = 1 Table[CurrX][CurrY] = white end = 0 while end == 0: while Possible(CurrX,CurrY,Table,nTiles): Dir = randint(1,4) while CheckDir(CurrX,CurrY,nTiles,Dir,Table) == 0: Dir = randint(1,4) if Dir == 1: Table[CurrX][CurrY - 1] = white CurrY -= 2 Table[CurrX][CurrY] = white elif Dir == 2: Table[CurrX + 1][CurrY] = white CurrX += 2 Table[CurrX][CurrY] = white elif Dir == 3: Table[CurrX][CurrY + 1] = white CurrY += 2 Table[CurrX][CurrY] = white elif Dir == 4: Table[CurrX - 1][CurrY] = white CurrX -= 2 Table[CurrX][CurrY] = white Memory.append(Dir) #print for x in range(nTiles): for y in range(nTiles): libtcod.console_put_char_ex(None,x,y,219,Table[x][y],libtcod.white) libtcod.console_flush() while Possible(CurrX,CurrY,Table,nTiles) == 0: MemorySize = len(Memory) Dir = Memory[MemorySize-1] if Dir == 1: CurrY += 2 elif Dir == 2: CurrX -= 2 elif Dir == 3: CurrY -= 2 elif Dir == 4: CurrX += 2 del Memory[MemorySize-1] if CurrX == 1 and CurrY == 1: end = 1 break #print for x in range(nTiles): for y in range(nTiles): libtcod.console_put_char_ex(None,x,y,219,Table[x][y],libtcod.white) libtcod.console_flush() libtcod.console_wait_for_keypress(True)
20.168675
106
0.496416
b978586a0e39802db346feaf3a0aa1c91c336f05
3,011
py
Python
source/tests/test_resources.py
aws-solutions/maintaining-personalized-experiences-with-machine-learning
3f6f1b0069df4828eae9b0835b717500189e4f71
[ "Apache-2.0" ]
6
2021-09-23T16:33:24.000Z
2022-03-31T11:45:13.000Z
source/tests/test_resources.py
aws-solutions/maintaining-personalized-experiences-with-machine-learning
3f6f1b0069df4828eae9b0835b717500189e4f71
[ "Apache-2.0" ]
4
2021-09-24T21:34:14.000Z
2022-01-27T22:11:08.000Z
source/tests/test_resources.py
aws-solutions/maintaining-personalized-experiences-with-machine-learning
3f6f1b0069df4828eae9b0835b717500189e4f71
[ "Apache-2.0" ]
9
2021-09-23T23:24:46.000Z
2022-02-12T04:53:16.000Z
# ###################################################################################################################### # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # # # Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance # # with the License. You may obtain a copy of the License at # # # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, software distributed under the License is distributed # # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for # # the specific language governing permissions and limitations under the License. # # ###################################################################################################################### import pytest from shared.resource import ( DatasetGroup, Schema, Dataset, DatasetImportJob, Solution, SolutionVersion, Campaign, EventTracker, BatchSegmentJob, BatchInferenceJob, )
42.408451
120
0.454334
b9787b11fbcd5779df09a2f0f27e44e75ad576ac
1,870
py
Python
app_venv/Lib/site-packages/phonenumbers/data/region_AG.py
orlandofv/sianna
f07dd6dbc62a9604f31ab800e482e62f14fba766
[ "MIT" ]
null
null
null
app_venv/Lib/site-packages/phonenumbers/data/region_AG.py
orlandofv/sianna
f07dd6dbc62a9604f31ab800e482e62f14fba766
[ "MIT" ]
null
null
null
app_venv/Lib/site-packages/phonenumbers/data/region_AG.py
orlandofv/sianna
f07dd6dbc62a9604f31ab800e482e62f14fba766
[ "MIT" ]
null
null
null
"""Auto-generated file, do not edit by hand. AG metadata""" from ..phonemetadata import NumberFormat, PhoneNumberDesc, PhoneMetadata PHONE_METADATA_AG = PhoneMetadata(id='AG', country_code=1, international_prefix='011', general_desc=PhoneNumberDesc(national_number_pattern='(?:268|[58]\\d\\d|900)\\d{7}', possible_length=(10,), possible_length_local_only=(7,)), fixed_line=PhoneNumberDesc(national_number_pattern='268(?:4(?:6[0-38]|84)|56[0-2])\\d{4}', example_number='2684601234', possible_length=(10,), possible_length_local_only=(7,)), mobile=PhoneNumberDesc(national_number_pattern='268(?:464|7(?:1[3-9]|[28]\\d|3[0246]|64|7[0-689]))\\d{4}', example_number='2684641234', possible_length=(10,), possible_length_local_only=(7,)), toll_free=PhoneNumberDesc(national_number_pattern='8(?:00|33|44|55|66|77|88)[2-9]\\d{6}', example_number='8002123456', possible_length=(10,)), premium_rate=PhoneNumberDesc(national_number_pattern='900[2-9]\\d{6}', example_number='9002123456', possible_length=(10,)), personal_number=PhoneNumberDesc(national_number_pattern='52(?:355[0-46-9]|4(?:5(?:2[024-9]|5[0-46-9])|60[1-9]|9(?:2[0-5]|49)))\\d{4}|52(?:3(?:[2-46-9][02-9]|5[02-46-9])|4(?:[2-478][02-9]|5[034]|6[2-9]|9[05-9])|7[2-4]\\d)\\d{5}|52[34][2-9]1[02-9]\\d{4}|5(?:00|2[1256]|33|44|66|77|88)[2-9]\\d{6}', example_number='5002345678', possible_length=(10,)), voip=PhoneNumberDesc(national_number_pattern='26848[01]\\d{4}', example_number='2684801234', possible_length=(10,), possible_length_local_only=(7,)), pager=PhoneNumberDesc(national_number_pattern='26840[69]\\d{4}', example_number='2684061234', possible_length=(10,), possible_length_local_only=(7,)), national_prefix='1', national_prefix_for_parsing='1|([457]\\d{6})$', national_prefix_transform_rule='268\\1', leading_digits='268', mobile_number_portable_region=True)
103.888889
352
0.711765
b97884a1b2bbd76cce01bb9efe2744d31832af25
2,182
py
Python
gradefiles-send.py
lapets/bu-gsubmit-grading
69c40a763908be1c954dce3e5e5aab854ac379ff
[ "MIT" ]
3
2016-10-03T15:29:20.000Z
2019-06-28T17:33:06.000Z
gradefiles-send.py
lapets/bu-gsubmit-grading
69c40a763908be1c954dce3e5e5aab854ac379ff
[ "MIT" ]
null
null
null
gradefiles-send.py
lapets/bu-gsubmit-grading
69c40a763908be1c954dce3e5e5aab854ac379ff
[ "MIT" ]
null
null
null
##################################################################### ## ## gradefiles-send.py ## ## Script to send grade files by email to enrolled students; the ## input grade file names should correspond to the user names of ## the students. ## ## from email.mime.text import MIMEText # For creating a message string. from subprocess import Popen, PIPE # For sending email on linux. import sys # For command line arguments. import os # For commands and file manipulation (walk, path, system). ##################################################################### ## Sending a simple email message. ## ##################################################################### ## Process the command line parameters. ## if len(sys.argv) == 6\ and (int(sys.argv[1][0:3]) in range(100,1000))\ and sys.argv[2] in ['Fall', 'Spring']\ and int(sys.argv[3]) in range(2000,2100): courseNumber = sys.argv[1] # Accepts course names like "591 X1." season = sys.argv[2] year = sys.argv[3] task = sys.argv[4] sender = sys.argv[5] else: print('\n Usage:\n\n % python gradefiles-send.py <###> <Fall|Spring> <YYYY> <task> <sender-username>\n') exit() ##################################################################### ## Check for list of files. ## if not os.path.exists('./data'): print('No folder "data" containing grade files found. Exiting.') exit() ##################################################################### ## Send the grade files. ## for curdir, dirs, files in os.walk('./data/'): for file in files: txt = open('./data/'+file, 'r').read() targets = file.split('.')[0].split("_") send(txt, courseNumber, task, sender, targets) print('Sent grade file to ' + str(targets) + '.') #eof
33.569231
112
0.519707
b9789c0f2981942a54633089abdf3245b58a73a3
1,227
py
Python
Publisher/PGGAN-1024 trained on CelebaHQ/2-exporter.py
GalAster/16
47560a2132fbe4dda35a35dedfd7d8e6a8acc35a
[ "Unlicense" ]
3
2019-10-03T01:51:38.000Z
2019-10-04T16:15:43.000Z
Publisher/PGGAN-1024 trained on CelebaHQ/2-exporter.py
GalAster/16
47560a2132fbe4dda35a35dedfd7d8e6a8acc35a
[ "Unlicense" ]
null
null
null
Publisher/PGGAN-1024 trained on CelebaHQ/2-exporter.py
GalAster/16
47560a2132fbe4dda35a35dedfd7d8e6a8acc35a
[ "Unlicense" ]
1
2020-03-17T12:58:52.000Z
2020-03-17T12:58:52.000Z
import os import pickle import tensorflow as tf import wolframclient.serializers as wxf name = 'karras2018iclr-celebahq-1024x1024' file = open(name + '.pkl', 'rb') sess = tf.InteractiveSession() G, D, Gs = pickle.load(file) saver = tf.train.Saver() save_path = "./target/" + name + "/" model_name = 'model' if not os.path.exists(save_path): os.makedirs(save_path) save_path_full = os.path.join(save_path, model_name) saver.save(sess, save_path_full) ckpt = tf.train.get_checkpoint_state(save_path) reader = tf.train.NewCheckpointReader(ckpt.model_checkpoint_path) all_variables = list(reader.get_variable_to_shape_map().keys()) npy = dict(zip(all_variables, map(reader.get_tensor, all_variables))) wxf.export(npy, name + '.wxf', target_format='wxf') # Save as protobuf with tf.Session() as sess: tf.initialize_all_variables().run() output_graph_def = tf.graph_util.convert_variables_to_constants( sess=sess, input_graph_def=sess.graph_def, # output_node_names=['G_paper_1/images_out'] output_node_names=['G_paper_1/ToRGB_lod0/add'] ) with tf.gfile.GFile("./target/" + name + ".pb", "wb") as file: # file.write(output_graph_def.SerializeToString()) #
34.083333
74
0.726976
b978dfcb152bc099b2de54896ed9a54dfbc29639
6,890
py
Python
src/moveGoogle.py
Quanta-Robotics/Robot-Blueberry
7b7e77e09ac5e9ec5afd947e0db1ecc8773e56da
[ "MIT" ]
25
2021-06-08T07:09:30.000Z
2021-12-30T06:28:35.000Z
src/moveGoogle.py
ICT-CoU/Robot-Blueberry
d19fd1be037df9d67de64df57a87006d74cd6c43
[ "MIT" ]
2
2021-05-23T12:54:51.000Z
2021-06-07T17:47:56.000Z
src/moveGoogle.py
ICT-CoU/Robot-Blueberry
d19fd1be037df9d67de64df57a87006d74cd6c43
[ "MIT" ]
14
2021-06-08T13:02:28.000Z
2021-12-30T20:07:18.000Z
#!/usr/bin/env python import os import os.path import yaml import time import random import multiprocessing import RPi.GPIO as GPIO from talk import say GPIO.setwarnings(False) GPIO.setmode(GPIO.BCM) from adafruit_servokit import ServoKit Motor1 = {'EN': 27, 'input1': 19, 'input2': 16} Motor2 = {'EN': 22, 'input1': 26, 'input2': 20} for x in Motor1: GPIO.setup(Motor1[x], GPIO.OUT) GPIO.setup(Motor2[x], GPIO.OUT) EN1 = GPIO.PWM(Motor1['EN'], 100) EN2 = GPIO.PWM(Motor2['EN'], 100) EN1.start(0) EN2.start(0) hand = ServoKit(channels=16) ROOT_PATH = os.path.realpath(os.path.join(__file__, '..', '..')) servo = readYaml() if servo == None: with open('{}/src/configurationBackUp.yaml'.format(ROOT_PATH),'r+', encoding='utf8') as conf: servoBackUp = yaml.load(conf, Loader=yaml.FullLoader) writeYaml(servoBackUp) servo = readYaml() if servo == None: print('close') exit() Initial = servo['Initial_Position']['I2C'] Current = servo['Current_Position']['I2C'] InitialGpio = servo['Initial_Position']['Gpio'] CurrentGpio = servo['Current_Position']['Gpio'] GpioPin = servo['Pin']['Gpio'] for i in range(0,6): GPIO.setup(GpioPin[i], GPIO.OUT) Servo = [] for i in range(0,6): Servo.append(GPIO.PWM(GpioPin[i],50)) Servo[i].start(0)
25.330882
154
0.560377
b978fbbcd4002601ca1e2723cae4385002e671d8
2,063
py
Python
src/onegov/translator_directory/models/language.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/translator_directory/models/language.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/translator_directory/models/language.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
from uuid import uuid4 from sqlalchemy import Index, Column, Text, Table, ForeignKey from sqlalchemy.orm import object_session from onegov.core.orm import Base from onegov.core.orm.types import UUID spoken_association_table = Table( 'spoken_lang_association', Base.metadata, Column( 'translator_id', UUID, ForeignKey('translators.id'), nullable=False), Column('lang_id', UUID, ForeignKey('languages.id'), nullable=False) ) written_association_table = Table( 'written_lang_association', Base.metadata, Column( 'translator_id', UUID, ForeignKey('translators.id'), nullable=False), Column('lang_id', UUID, ForeignKey('languages.id'), nullable=False) ) mother_tongue_association_table = Table( 'mother_tongue_association', Base.metadata, Column( 'translator_id', UUID, ForeignKey('translators.id'), nullable=False), Column('lang_id', UUID, ForeignKey('languages.id'), nullable=False) )
25.469136
79
0.650994
b97a0b2a9f0b601569ce8973596517ed7d8790ec
3,588
py
Python
tfjs-converter/python/tensorflowjs/converters/graph_rewrite_util.py
djemeljanovs/tfjs
ee4430cd7a04283ec09184a3fe9d3fb27496f1dc
[ "Apache-2.0" ]
null
null
null
tfjs-converter/python/tensorflowjs/converters/graph_rewrite_util.py
djemeljanovs/tfjs
ee4430cd7a04283ec09184a3fe9d3fb27496f1dc
[ "Apache-2.0" ]
null
null
null
tfjs-converter/python/tensorflowjs/converters/graph_rewrite_util.py
djemeljanovs/tfjs
ee4430cd7a04283ec09184a3fe9d3fb27496f1dc
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import re from tensorflow.core.framework import graph_pb2 from tensorflow.core.framework import node_def_pb2 from tensorflow.python.framework import tensor_util # Custom op name for fused depthwise conv2d FUSED_DEPTHWISE_CONV2D = 'FusedDepthwiseConv2dNative' # The grappler op name for fused MatMul which starts with '_' FUSED_MATMUL = '_FusedMatMul' def node_from_map(node_map, name): """Pulls a node def from a dictionary for a given name. Args: node_map: Dictionary containing an entry indexed by name for every node. name: Identifies the node we want to find. Returns: NodeDef of the node with the given name. Raises: ValueError: If the node isn't present in the dictionary. """ stripped_name = node_name_from_input(name) if stripped_name not in node_map: raise ValueError("No node named '%s' found in map." % name) return node_map[stripped_name] def values_from_const(node_def): """Extracts the values from a const NodeDef as a numpy ndarray. Args: node_def: Const NodeDef that has the values we want to access. Returns: Numpy ndarray containing the values. Raises: ValueError: If the node isn't a Const. """ if node_def.op != "Const": raise ValueError( "Node named '%s' should be a Const op for values_from_const." % node_def.name) input_tensor = node_def.attr["value"].tensor tensor_value = tensor_util.MakeNdarray(input_tensor) return tensor_value # Whether to scale by gamma after normalization. def node_name_from_input(node_name): """Strips off ports and other decorations to get the underlying node name.""" if node_name.startswith("^"): node_name = node_name[1:] m = re.search(r"(.*):\d+$", node_name) if m: node_name = m.group(1) return node_name def cleanup_graph_def(input_graph_def, nodes_to_skip, inputs_to_remove): """Clean up the graph def by removing the skipped nodes and clean up the nodes with inputs that have been removed. Args: input_graph_def: GraphDef object to be cleaned. node_to_skip: Dict with node names to be skipped. inputs_to_remove: List of nodes to be removed from inputs of all nodes. Returns: GraphDef that has been cleaned. """ result_graph_def = graph_pb2.GraphDef() for node in input_graph_def.node: if node.name in nodes_to_skip: continue new_node = node_def_pb2.NodeDef() new_node.CopyFrom(node) for value in inputs_to_remove: for i, input_node in enumerate(new_node.input): if input_node == value.name: new_node.input[i] = value.input[0] result_graph_def.node.extend([new_node]) result_graph_def.library.CopyFrom(input_graph_def.library) result_graph_def.versions.CopyFrom(input_graph_def.versions) return result_graph_def
33.849057
80
0.726031
b97af59ee4283114481f3e83dc8e3cf6244bb61c
1,014
py
Python
loss_fn/classification_loss_fns/binary_cross_entropy.py
apple/ml-cvnets
84d992f413e52c0468f86d23196efd9dad885e6f
[ "AML" ]
209
2021-10-30T08:32:10.000Z
2022-03-31T16:18:03.000Z
loss_fn/classification_loss_fns/binary_cross_entropy.py
apple/ml-cvnets
84d992f413e52c0468f86d23196efd9dad885e6f
[ "AML" ]
12
2021-12-04T10:47:11.000Z
2022-03-31T15:39:40.000Z
loss_fn/classification_loss_fns/binary_cross_entropy.py
apple/ml-cvnets
84d992f413e52c0468f86d23196efd9dad885e6f
[ "AML" ]
50
2021-11-01T08:15:02.000Z
2022-03-29T08:17:34.000Z
# # For licensing see accompanying LICENSE file. # Copyright (C) 2022 Apple Inc. All Rights Reserved. # from torch.nn import functional as F from torch import Tensor import argparse from . import register_classification_loss_fn from .. import BaseCriteria
28.166667
87
0.667653
b97c7f15dd61f4851cffcb3982337f852b3b8da5
576
py
Python
Sorting/insertion_sort.py
lakshyarawal/pythonPractice
4b400342198a8270c5ac0c6306afb555f927c6c1
[ "MIT" ]
null
null
null
Sorting/insertion_sort.py
lakshyarawal/pythonPractice
4b400342198a8270c5ac0c6306afb555f927c6c1
[ "MIT" ]
null
null
null
Sorting/insertion_sort.py
lakshyarawal/pythonPractice
4b400342198a8270c5ac0c6306afb555f927c6c1
[ "MIT" ]
null
null
null
""" Insertion Sort Algorithm:""" """Implementation""" # Using the special variable # __name__ if __name__ == "__main__": main()
19.2
65
0.522569
b97c828450c34038ee92e089e3f2b951d2113017
903
py
Python
nipype/interfaces/spm/__init__.py
felixsc1/nipype
e722d6170593583f16ddfcb95473e5d30b5f1d7c
[ "Apache-2.0" ]
8
2019-05-29T09:38:30.000Z
2021-01-20T03:36:59.000Z
nipype/interfaces/spm/__init__.py
felixsc1/nipype
e722d6170593583f16ddfcb95473e5d30b5f1d7c
[ "Apache-2.0" ]
12
2021-03-09T03:01:16.000Z
2022-03-11T23:59:36.000Z
nipype/interfaces/spm/__init__.py
felixsc1/nipype
e722d6170593583f16ddfcb95473e5d30b5f1d7c
[ "Apache-2.0" ]
1
2020-07-17T12:49:49.000Z
2020-07-17T12:49:49.000Z
# -*- coding: utf-8 -*- # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """Top-level namespace for spm.""" from .base import (Info, SPMCommand, logger, no_spm, scans_for_fname, scans_for_fnames) from .preprocess import (FieldMap, SliceTiming, Realign, RealignUnwarp, Coregister, Normalize, Normalize12, Segment, Smooth, NewSegment, DARTEL, DARTELNorm2MNI, CreateWarped, VBMSegment) from .model import (Level1Design, EstimateModel, EstimateContrast, Threshold, OneSampleTTestDesign, TwoSampleTTestDesign, PairedTTestDesign, MultipleRegressionDesign) from .utils import (Analyze2nii, CalcCoregAffine, ApplyTransform, Reslice, ApplyInverseDeformation, ResliceToReference, DicomImport)
53.117647
77
0.653378
b97cd7905f5c596cb6d79b67c2c80e83907421d9
8,257
py
Python
network.py
tobloef/neural-network
bd05a8b9eccc0f5a973782247d39f9b5aa33156c
[ "MIT" ]
3
2018-01-06T22:27:58.000Z
2018-08-12T20:29:51.000Z
network.py
tobloef/neural-network
bd05a8b9eccc0f5a973782247d39f9b5aa33156c
[ "MIT" ]
1
2018-03-31T18:49:56.000Z
2018-04-19T04:52:33.000Z
network.py
tobloef/neural-network
bd05a8b9eccc0f5a973782247d39f9b5aa33156c
[ "MIT" ]
null
null
null
import numpy as np from mathUtils import *
53.270968
286
0.657987
b97d4675d330154e0b12b91fbd601affd888ea29
1,901
py
Python
examples/airflow/dags/etl_orders_7_days.py
phixMe/marquez
06d71635369893b371a8a9c9e7023f11d7cbb1f8
[ "Apache-2.0" ]
null
null
null
examples/airflow/dags/etl_orders_7_days.py
phixMe/marquez
06d71635369893b371a8a9c9e7023f11d7cbb1f8
[ "Apache-2.0" ]
null
null
null
examples/airflow/dags/etl_orders_7_days.py
phixMe/marquez
06d71635369893b371a8a9c9e7023f11d7cbb1f8
[ "Apache-2.0" ]
null
null
null
from datetime import datetime from marquez_airflow import DAG from airflow.operators.postgres_operator import PostgresOperator from airflow.utils.dates import days_ago default_args = { 'owner': 'datascience', 'depends_on_past': False, 'start_date': days_ago(1), 'email_on_failure': False, 'email_on_retry': False, 'email': ['[email protected]'] } dag = DAG( 'etl_orders_7_days', schedule_interval='@hourly', catchup=False, default_args=default_args, description='Loads newly placed orders weekly.' ) t1 = PostgresOperator( task_id='if_not_exists', postgres_conn_id='food_delivery_db', sql=''' CREATE TABLE IF NOT EXISTS orders_7_days ( order_id INTEGER REFERENCES orders(id), placed_on TIMESTAMP NOT NULL, discount_id INTEGER REFERENCES discounts(id), menu_id INTEGER REFERENCES menus(id), restaurant_id INTEGER REFERENCES restaurants(id), menu_item_id INTEGER REFERENCES menu_items(id), category_id INTEGER REFERENCES categories(id) );''', dag=dag ) t2 = PostgresOperator( task_id='tuncate', postgres_conn_id='food_delivery_db', sql='TRUNCATE TABLE orders_7_days;', dag=dag ) t3 = PostgresOperator( task_id='insert', postgres_conn_id='food_delivery_db', sql=''' INSERT INTO orders_7_days (order_id, placed_on, discount_id, menu_id, restaurant_id, menu_item_id, category_id) SELECT o.id AS order_id, o.placed_on, o.discount_id, m.id AS menu_id, m.restaurant_id, mi.id AS menu_item_id, c.id AS category_id FROM orders AS o INNER JOIN menu_items AS mi ON mi.id = o.menu_item_id INNER JOIN categories AS c ON c.id = mi.category_id INNER JOIN menus AS m ON m.id = c.menu_id WHERE o.placed_on >= NOW() - interval '7 days' ''', dag=dag ) t1 >> t2 >> t3
29.246154
135
0.681746
b97deb7d2bd255cd9a3d9f169d969333b63452ec
313
py
Python
sample/pizza.py
marianarmorgado/python-starter
8bf3d7a16fd462cf99898c9a82c6e1cf4fc0e7f2
[ "MIT" ]
null
null
null
sample/pizza.py
marianarmorgado/python-starter
8bf3d7a16fd462cf99898c9a82c6e1cf4fc0e7f2
[ "MIT" ]
null
null
null
sample/pizza.py
marianarmorgado/python-starter
8bf3d7a16fd462cf99898c9a82c6e1cf4fc0e7f2
[ "MIT" ]
null
null
null
# store information about a pizza being ordered pizza = { 'crust': 'thick', 'toppings': ['mushrooms', 'extra vegan cheese'] } # summarize the order print("You ordered a " + pizza['crust'] + "-crust pizza" + "with the following toppings:") for topping in pizza['toppings']: print("\t" + topping)
26.083333
59
0.645367
b97e1419e0e45b84ecc462227c812c10beb92718
181
py
Python
YouTube/CursoEmVideo/python/ex012.py
Fh-Shadow/Progamando
f496d83c36e9a079ed06b4e7c34396c57f539de9
[ "MIT" ]
null
null
null
YouTube/CursoEmVideo/python/ex012.py
Fh-Shadow/Progamando
f496d83c36e9a079ed06b4e7c34396c57f539de9
[ "MIT" ]
null
null
null
YouTube/CursoEmVideo/python/ex012.py
Fh-Shadow/Progamando
f496d83c36e9a079ed06b4e7c34396c57f539de9
[ "MIT" ]
null
null
null
a = float(input('Qual o preo do produto? R$')) d = a - (a * 23 / 100) print('O produto que custava R${:.2f}, na promoo de 23% de desconto vai custar: R${:.2f}' .format(a, d))
45.25
106
0.607735
b97e5feb1052b87d359d8e3d9f63ba930bff8e66
15,038
py
Python
dnnlib/submission/submit.py
gperdrizet/gansformer
c68ba623aa498c83d8df4c4f0a3b5e3f63c773a5
[ "MIT" ]
1,172
2021-03-02T02:00:44.000Z
2022-03-31T02:46:45.000Z
dnnlib/submission/submit.py
gperdrizet/gansformer
c68ba623aa498c83d8df4c4f0a3b5e3f63c773a5
[ "MIT" ]
37
2021-03-03T14:11:11.000Z
2022-03-12T15:40:15.000Z
dnnlib/submission/submit.py
gperdrizet/gansformer
c68ba623aa498c83d8df4c4f0a3b5e3f63c773a5
[ "MIT" ]
138
2021-03-02T06:37:10.000Z
2022-03-30T14:59:09.000Z
# Submit a function to be run either locally or in a computing cluster. # Compared to original StyleGAN implementation, we extend the support for automatic training resumption, # and network recompilation. import copy import inspect import os import pathlib import pickle import platform import pprint import re import shutil import sys import time import traceback from enum import Enum from .. import util from ..util import EasyDict from . import internal _user_name_override = None
43.337176
238
0.691847