hexsha
stringlengths 40
40
| size
int64 5
2.06M
| ext
stringclasses 11
values | lang
stringclasses 1
value | max_stars_repo_path
stringlengths 3
251
| max_stars_repo_name
stringlengths 4
130
| max_stars_repo_head_hexsha
stringlengths 40
78
| max_stars_repo_licenses
listlengths 1
10
| max_stars_count
int64 1
191k
⌀ | max_stars_repo_stars_event_min_datetime
stringlengths 24
24
⌀ | max_stars_repo_stars_event_max_datetime
stringlengths 24
24
⌀ | max_issues_repo_path
stringlengths 3
251
| max_issues_repo_name
stringlengths 4
130
| max_issues_repo_head_hexsha
stringlengths 40
78
| max_issues_repo_licenses
listlengths 1
10
| max_issues_count
int64 1
116k
⌀ | max_issues_repo_issues_event_min_datetime
stringlengths 24
24
⌀ | max_issues_repo_issues_event_max_datetime
stringlengths 24
24
⌀ | max_forks_repo_path
stringlengths 3
251
| max_forks_repo_name
stringlengths 4
130
| max_forks_repo_head_hexsha
stringlengths 40
78
| max_forks_repo_licenses
listlengths 1
10
| max_forks_count
int64 1
105k
⌀ | max_forks_repo_forks_event_min_datetime
stringlengths 24
24
⌀ | max_forks_repo_forks_event_max_datetime
stringlengths 24
24
⌀ | content
stringlengths 1
1.05M
| avg_line_length
float64 1
1.02M
| max_line_length
int64 3
1.04M
| alphanum_fraction
float64 0
1
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5d83ad6cff3db1b6e4ae4b1be6ce413b57641a09
| 9,537 |
py
|
Python
|
ics/mergeGatingSets.py
|
victorfica/utils
|
b61935a860838a0e70afde7c9ecf2c68f51a2c4b
|
[
"MIT"
] | 5 |
2015-12-16T01:23:07.000Z
|
2020-04-27T11:41:43.000Z
|
ics/mergeGatingSets.py
|
victorfica/utils
|
b61935a860838a0e70afde7c9ecf2c68f51a2c4b
|
[
"MIT"
] | 1 |
2021-05-06T23:47:20.000Z
|
2021-05-06T23:48:33.000Z
|
ics/mergeGatingSets.py
|
victorfica/utils
|
b61935a860838a0e70afde7c9ecf2c68f51a2c4b
|
[
"MIT"
] | 6 |
2016-04-29T14:04:22.000Z
|
2021-05-06T23:49:34.000Z
|
#!/usr/bin/env python
"""
Usage examples:
python /home/agartlan/gitrepo/utils/ics/mergeGatingSets.py --function functions --ncpus 4 --out functions_extract.csv
sbatch -n 1 -t 3-0 -c 4 -o functions_slurm.txt --wrap="python /home/agartlan/gitrepo/utils/ics/mergeGatingSets.py --function functions --ncpus 4 --out functions_extract.csv"
sbatch -n 1 -t 3-0 -c 4 -o functions_markers_slurm.txt --wrap="python /home/agartlan/gitrepo/utils/ics/mergeGatingSets.py --function functions_markers --ncpus 4 --out functions_markers_extract.csv"
sbatch -n 1 -t 3-0 -c 4 -o functions_markers_sparse_slurm_gby.txt --wrap="python /home/agartlan/gitrepo/utils/ics/mergeGatingSets.py --function sparse_functions --ncpus 4 --subsets /home/agartlan/gitrepo/utils/ics/allcombs_subsets.csv --out functions_markers_sparse_24Jul2018_gby.csv"
sbatch -n 1 -t 3-0 -c 4 -o cell_functions_slurm.txt --wrap="python /home/agartlan/gitrepo/utils/ics/mergeGatingSets.py --function cell_functions --ncpus 4 --out cell_functions_22Aug2018.feather --feather --subsets /home/agartlan/gitrepo/utils/ics/subsets_CD4_gd_Tcells.csv"
python /home/agartlan/gitrepo/utils/ics/mergeGatingSets.py --function cell_functions --ncpus 3 --out cell_functions_extract.csv --testbatch --testsamples --feather --subsets /home/agartlan/gitrepo/utils/ics/subsets_CD4_gd_Tcells.csv
python /home/agartlan/gitrepo/utils/ics/mergeGatingSets.py --function sparse_functions --ncpus 3 --out sparse_functions_extract_23Aug2018.csv --testbatch --testsamples --feather --subsets /home/agartlan/gitrepo/utils/ics/subsets_CD4_gd_Tcells.csv
python /home/agartlan/gitrepo/utils/ics/mergeGatingSets.py --function bool_functions --ncpus 6 --out bool_functions_extract_05May2020.csv --testbatch --testsamples --feather --subsets /home/agartlan/gitrepo/utils/ics/subsets_CD4_gd_Tcells.csv
To delete all tmp files use:
find . -name \merged_tmp*.feather -type f -delete
"""
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Extract features and merge batches into one CSV.')
parser.add_argument('--folder', type=str,
help='Data folder containing all batch folders.',
default='/fh/fast/gilbert_p/grp/hvtn602_compass/tmpdata')
parser.add_argument('--function', type=str,
help='Name of extraction to apply ("functions")',
default='functions')
parser.add_argument('--subsets', type=str,
help='Filename listing subsets for analysis.',
default='/home/agartlan/gitrepo/utils/ics/sample_subsets2.csv')
parser.add_argument('--out', type=str,
help='Output filename for CSV.',
default='merged_out.csv')
parser.add_argument('--ncpus', type=int,
help='Number of CPUs/cores to use for parallelization.',
default=1)
parser.add_argument('--testsamples', action='store_true', help='Only process two samples from each batch.')
parser.add_argument('--testbatch', action='store_true', help='Only process twp samples from one batch.')
parser.add_argument('--matchingonly', action='store_true', help='Only perform sample matching, to validate metadata.')
parser.add_argument('--feather', action='store_true', help='Store as feather as oposed to CSV')
parser.add_argument('--utils', default='/home/agartlan/gitrepo/utils', help='Location of agartland/utils repo from public github.com')
args = parser.parse_args()
try:
import parmap
from multiprocessing import Pool
_PARMAP = True
except:
_PARMAP = False
print('Could not find package "parmap", parallelization not enabled.')
import itertools
import pandas as pd
import numpy as np
from os.path import join as opj
import os
from functools import partial
import time
import sys
import feather
"""Make sure the utils are on path before importing"""
sys.path.append(args.utils)
# from ics import extractFunctionsGBY, extractFunctionsMarkersGBY, parseSubsets, mergeSamples, matchSamples
from ics import *
if args.matchingonly:
metaDf = testMatching(args.folder)
metaDf.to_csv(opj(args.folder, 'metamatch_' + args.out))
print('Wrote matching metadata to %s.' % opj(args.folder, 'metamatch_' + args.out))
else:
subsets, markers, functions, exclude = parseSubsets(args.subsets)
features = {'sparse_functions':(extractFunctionsGBY, dict(subsets=subsets,
functions=functions,
mincells=5)),
'bool_functions':(extractFunctionsGBY, dict(subsets=subsets,
functions=functions,
mincells=0)),
'functions_markers':(extractFunctionsMarkersGBY, dict(subsets=subsets,
functions=functions,
markers=markers,
compressions=[('ALL', 2),
(['IFNg','IL2', 'TNFa'], 2)])),
'functions':(extractFunctionsGBY, dict(subsets=subsets,
functions=functions,
compressions=[('ALL', 1),
('ALL', 2),
(['IFNg','IL2', 'TNFa'], 1),
(['IFNg','IL2', 'TNFa'], 2),
(['IFNg','IL2'], 1)])),
'cell_functions':(extractRawFunctions, dict(subsets=subsets, functions=functions, downsample=1))}
extractionFunc, extractionKwargs = features[args.function]
if args.testbatch:
print('Test: processing samples from one batch')
if args.testsamples:
print('Test: processing two samples per batch')
outFile = opj(args.folder, args.out)
if args.feather:
outFile = outFile.replace('.csv', '.feather')
wrote = mergeBatches(args.folder,
extractionFunc=extractionFunc,
extractionKwargs=extractionKwargs,
testsamples=args.testsamples,
testbatch=args.testbatch,
outFile=outFile,
metaCols=['PTID', 'VISITNO', 'Global.Spec.Id', 'TESTDT', 'STIM'],
filters={'STIM':['negctrl', 'TB WCL', 'BCG-Pasteur', 'Ag85B', 'TB 10.4'], 'VISITNO':[2, 6, 7, 10, 11, 12]},
useFeather=int(args.feather),
ncpus=args.ncpus)
if wrote == outFile:
print('Wrote extracted data to %s.' % outFile)
else:
print('Error writing file to disk: %s' % wrote)
| 52.401099 | 284 | 0.554996 |
5d84d543ecd3e19e8c3f8af82dd1e6cc5ea16443
| 88 |
py
|
Python
|
meeting.py
|
zoni/ulauncher-meet
|
1b76627c69dfc539645acd27e30c9b8fd8fe08ae
|
[
"MIT"
] | 4 |
2021-04-30T21:39:03.000Z
|
2021-08-30T11:38:21.000Z
|
meeting.py
|
zoni/ulauncher-meet
|
1b76627c69dfc539645acd27e30c9b8fd8fe08ae
|
[
"MIT"
] | 1 |
2021-05-31T11:05:37.000Z
|
2021-05-31T11:05:37.000Z
|
meeting.py
|
zoni/ulauncher-meet
|
1b76627c69dfc539645acd27e30c9b8fd8fe08ae
|
[
"MIT"
] | 2 |
2021-05-07T09:47:20.000Z
|
2021-08-25T16:27:24.000Z
|
from dataclasses import dataclass
| 11 | 33 | 0.715909 |
5d85c596f37801463f956fbf7ef5af170636decb
| 1,000 |
py
|
Python
|
setup.py
|
uuosio/uuosio.gscdk
|
a2e364d4499c1372567aa5933e2d8e02340a8385
|
[
"BSD-3-Clause"
] | 6 |
2021-09-03T09:02:39.000Z
|
2022-01-12T06:31:09.000Z
|
setup.py
|
uuosio/uuosio.gscdk
|
a2e364d4499c1372567aa5933e2d8e02340a8385
|
[
"BSD-3-Clause"
] | 1 |
2021-11-01T16:46:09.000Z
|
2021-11-04T12:51:45.000Z
|
setup.py
|
uuosio/uuosio.gscdk
|
a2e364d4499c1372567aa5933e2d8e02340a8385
|
[
"BSD-3-Clause"
] | 2 |
2021-11-10T01:56:15.000Z
|
2022-01-13T14:27:31.000Z
|
import os
import shutil
import setuptools
# from skbuild import setup
from distutils.core import setup
from distutils.sysconfig import get_python_lib
import glob
# if os.path.exists('pysrc/tinygo'):
# shutil.rmtree('pysrc/tinygo')
# shutil.copytree('tinygo/build/release/tinygo', 'pysrc/tinygo')
release_files = []
for root, dirs, files in os.walk("pysrc/tinygo"):
for f in files:
release_files.append(os.path.join(root.replace('pysrc/', ''), f))
# print(release_files)
setup(
name="gscdk",
version="0.3.5",
description="Go Smart Contract Development Kit",
author='The UUOSIO Team',
license="BSD-3-Clause",
url="https://github.com/uuosio/uuosio.gscdk",
packages=['gscdk'],
package_dir={'gscdk': 'pysrc'},
package_data={
# "": ["*"],
'gscdk': release_files,
},
setup_requires=['wheel']
# scripts=['compiler/build/release/tinygo/bin/eosio-go'],
# install_requires=[
# ],
# include_package_data=True
)
| 24.390244 | 77 | 0.658 |
5d861ae24ab41a343997586ea4f68f7cd661d4d3
| 301 |
py
|
Python
|
tests/data_creator_action.py
|
michalurbanski/bkgames
|
69b1d16ae27d3118dd78449ce7deecbd6e1b95e7
|
[
"MIT"
] | null | null | null |
tests/data_creator_action.py
|
michalurbanski/bkgames
|
69b1d16ae27d3118dd78449ce7deecbd6e1b95e7
|
[
"MIT"
] | null | null | null |
tests/data_creator_action.py
|
michalurbanski/bkgames
|
69b1d16ae27d3118dd78449ce7deecbd6e1b95e7
|
[
"MIT"
] | null | null | null |
from typing import Callable
| 33.444444 | 104 | 0.750831 |
5d8772d2443bc37d077b4e1088b8652b560de433
| 387 |
py
|
Python
|
Python/Numpy/Min and Max/min_and_max.py
|
brianchiang-tw/HackerRank
|
02a30a0033b881206fa15b8d6b4ef99b2dc420c8
|
[
"MIT"
] | 2 |
2020-05-28T07:15:00.000Z
|
2020-07-21T08:34:06.000Z
|
Python/Numpy/Min and Max/min_and_max.py
|
brianchiang-tw/HackerRank
|
02a30a0033b881206fa15b8d6b4ef99b2dc420c8
|
[
"MIT"
] | null | null | null |
Python/Numpy/Min and Max/min_and_max.py
|
brianchiang-tw/HackerRank
|
02a30a0033b881206fa15b8d6b4ef99b2dc420c8
|
[
"MIT"
] | null | null | null |
import numpy as np
if __name__ == '__main__':
h, w = map( int, input().split() )
row_list = []
for i in range(h):
single_row = list( map(int, input().split() ) )
np_row = np.array( single_row )
row_list.append( np_row )
min_of_each_row = np.min( row_list, axis = 1)
max_of_min = np.max( min_of_each_row )
print( max_of_min )
| 15.48 | 56 | 0.573643 |
5d87b775f0d8dfc2c8f2bb9538693bb8aa0d1ec6
| 22,757 |
py
|
Python
|
allure/pytest_plugin.py
|
allure-framework/allure-pytest
|
d55180aaeb21233e7ca577ffc6f67a07837c63f2
|
[
"Apache-2.0"
] | 112 |
2017-01-24T21:37:49.000Z
|
2022-03-25T22:32:12.000Z
|
venv/Lib/site-packages/allure/pytest_plugin.py
|
Arthii01052/conduit
|
3427d76d0fa364cb5d19bdd6da4aeb0a22fe9660
|
[
"MIT"
] | 56 |
2017-01-21T20:01:41.000Z
|
2019-01-14T13:35:53.000Z
|
venv/Lib/site-packages/allure/pytest_plugin.py
|
Arthii01052/conduit
|
3427d76d0fa364cb5d19bdd6da4aeb0a22fe9660
|
[
"MIT"
] | 52 |
2017-01-23T13:40:40.000Z
|
2022-03-30T00:02:31.000Z
|
import uuid
import pickle
import pytest
import argparse
from collections import namedtuple
from six import text_type
from allure.common import AllureImpl, StepContext
from allure.constants import Status, AttachmentType, Severity, \
FAILED_STATUSES, Label, SKIPPED_STATUSES
from allure.utils import parent_module, parent_down_from_module, labels_of, \
all_of, get_exception_message, now, mangle_testnames
from allure.structure import TestCase, TestStep, Attach, TestSuite, Failure, TestLabel
MASTER_HELPER = AllureHelper()
CollectFail = namedtuple('CollectFail', 'name status message trace')
| 39.168675 | 183 | 0.572483 |
5d88a4a57aa7fe412e25b74cc37254832f74121b
| 1,113 |
py
|
Python
|
treenode/debug.py
|
domlysi/django-treenode
|
86e7c76e2b2d60c071cfce6ad1493b2b51f2d304
|
[
"MIT"
] | null | null | null |
treenode/debug.py
|
domlysi/django-treenode
|
86e7c76e2b2d60c071cfce6ad1493b2b51f2d304
|
[
"MIT"
] | null | null | null |
treenode/debug.py
|
domlysi/django-treenode
|
86e7c76e2b2d60c071cfce6ad1493b2b51f2d304
|
[
"MIT"
] | null | null | null |
# -*- coding: utf-8 -*-
from django.conf import settings
from django.db import connection
import logging
import timeit
logger = logging.getLogger(__name__)
| 26.5 | 74 | 0.637017 |
5d8a580c6383e0fa95c751c549eb6cc5184e491f
| 3,705 |
py
|
Python
|
String_tool.py
|
vibhorvk/BlendString
|
3bf62083716b3b1f4976abeb3528771eeb79e2cf
|
[
"MIT"
] | null | null | null |
String_tool.py
|
vibhorvk/BlendString
|
3bf62083716b3b1f4976abeb3528771eeb79e2cf
|
[
"MIT"
] | null | null | null |
String_tool.py
|
vibhorvk/BlendString
|
3bf62083716b3b1f4976abeb3528771eeb79e2cf
|
[
"MIT"
] | null | null | null |
bl_info = {
"name": "STRING",
"blender": (2, 80, 0),
"category": "Object",
'Author' : 'Vibhor Gupta'
}
import bpy
import bmesh
def register():
bpy.utils.register_class(STRING)
def unregister():
bpy.utils.unregister_class(STRING)
# This allows you to run the script directly from Blender's Text editor
# to test the add-on without having to install it.
if __name__ == "__main__":
register()
| 29.879032 | 107 | 0.515789 |
5d8b272fb8d2699d2cf3ea1fd7de71c67f398d16
| 1,130 |
py
|
Python
|
Code/DataHandlers/__init__.py
|
aricsanders/pyMez3
|
13e2b9900af2287db0cc42a0190d31da165ce174
|
[
"Unlicense"
] | 2 |
2017-01-29T00:46:01.000Z
|
2017-07-25T17:23:04.000Z
|
Code/DataHandlers/__init__.py
|
aricsanders/pyMez3
|
13e2b9900af2287db0cc42a0190d31da165ce174
|
[
"Unlicense"
] | 1 |
2019-08-02T03:59:41.000Z
|
2019-08-02T03:59:41.000Z
|
Code/DataHandlers/__init__.py
|
aricsanders/pyMez3
|
13e2b9900af2287db0cc42a0190d31da165ce174
|
[
"Unlicense"
] | null | null | null |
"""
The DataHandlers subpackage is designed to manipulate data, by allowing different data types to be opened,
created, saved and updated. The subpackage is further divided into modules grouped by a common theme. Classes for data
that are already on disk normally follows the following pattern:
`instance=ClassName(file_path,**options)`
For Example to
open a XML file that you don't know the model, use
`xml=pyMez.Code.DataHandlers.XMLModels.XMLBase('MyXML.xml')'
or
`xml=XMLBase('MyXML.xml')`
All data models normally have save(), str() and if appropriate show() methods.
Examples
--------
<a href="../../../Examples/How_To_Open_S2p.html"> How to open a s2p file </a>
Import Structure
----------------
DataHandlers typically import from Utils but __NOT__ from Analysis, InstrumentControl or FrontEnds
Help
-----
<a href="../index.html">`pyMez.Code`</a>
<div>
<a href="../../../pyMez_Documentation.html">Documentation Home</a> |
<a href="../../index.html">API Documentation Home</a> |
<a href="../../../Examples/html/Examples_Home.html">Examples</a> |
<a href="../../../Reference_Index.html">Index </a>
</div>
"""
| 25.681818 | 118 | 0.70531 |
5d8ca67bf97053442519e2fbb8cf359ecbb33654
| 228 |
py
|
Python
|
djangomail/backends/dummy.py
|
somenzz/djangomail
|
7d4f833cd71289a51eb935757d8b628e9c9f8aa1
|
[
"MIT"
] | 1 |
2021-06-01T07:51:18.000Z
|
2021-06-01T07:51:18.000Z
|
djangomail/backends/dummy.py
|
somenzz/djangomail
|
7d4f833cd71289a51eb935757d8b628e9c9f8aa1
|
[
"MIT"
] | null | null | null |
djangomail/backends/dummy.py
|
somenzz/djangomail
|
7d4f833cd71289a51eb935757d8b628e9c9f8aa1
|
[
"MIT"
] | 1 |
2022-01-24T13:38:14.000Z
|
2022-01-24T13:38:14.000Z
|
"""
Dummy email backend that does nothing.
"""
from djangomail.backends.base import BaseEmailBackend
| 20.727273 | 53 | 0.763158 |
5d8ccdbb74a4a8ff8a56e579b885b0bbd0743a4f
| 7,666 |
py
|
Python
|
awx/plugins/library/scan_services.py
|
Avinesh/awx
|
6310a2edd890d6062a9f6bcdeb2b46c4b876c2bf
|
[
"Apache-2.0"
] | 17 |
2021-04-03T01:40:17.000Z
|
2022-03-03T11:45:20.000Z
|
awx/plugins/library/scan_services.py
|
Avinesh/awx
|
6310a2edd890d6062a9f6bcdeb2b46c4b876c2bf
|
[
"Apache-2.0"
] | 24 |
2021-05-18T21:13:35.000Z
|
2022-03-29T10:23:52.000Z
|
awx/plugins/library/scan_services.py
|
Avinesh/awx
|
6310a2edd890d6062a9f6bcdeb2b46c4b876c2bf
|
[
"Apache-2.0"
] | 14 |
2021-04-06T20:05:41.000Z
|
2022-03-24T14:16:03.000Z
|
#!/usr/bin/env python
import re
from ansible.module_utils.basic import * # noqa
DOCUMENTATION = '''
---
module: scan_services
short_description: Return service state information as fact data
description:
- Return service state information as fact data for various service management utilities
version_added: "1.9"
options:
requirements: [ ]
author: Matthew Jones
'''
EXAMPLES = '''
- monit: scan_services
# Example fact output:
# host | success >> {
# "ansible_facts": {
# "services": {
# "network": {
# "source": "sysv",
# "state": "running",
# "name": "network"
# },
# "arp-ethers.service": {
# "source": "systemd",
# "state": "stopped",
# "name": "arp-ethers.service"
# }
# }
# }
'''
def main():
module = AnsibleModule(argument_spec = dict()) # noqa
service_modules = (ServiceScanService, SystemctlScanService)
all_services = {}
incomplete_warning = False
for svc_module in service_modules:
svcmod = svc_module(module)
svc = svcmod.gather_services()
if svc is not None:
all_services.update(svc)
if svcmod.incomplete_warning:
incomplete_warning = True
if len(all_services) == 0:
results = dict(skipped=True, msg="Failed to find any services. Sometimes this is due to insufficient privileges.")
else:
results = dict(ansible_facts=dict(services=all_services))
if incomplete_warning:
results['msg'] = "WARNING: Could not find status for all services. Sometimes this is due to insufficient privileges."
module.exit_json(**results)
main()
| 40.136126 | 155 | 0.530655 |
5d8cdce66649554dda1ee6deb1afd812b2f3ebbf
| 2,146 |
py
|
Python
|
app.py
|
duckm8795/runscope-circleci
|
2fd42e64bddb4b8f34c437c2d834b92369c9a2bf
|
[
"Apache-2.0"
] | null | null | null |
app.py
|
duckm8795/runscope-circleci
|
2fd42e64bddb4b8f34c437c2d834b92369c9a2bf
|
[
"Apache-2.0"
] | null | null | null |
app.py
|
duckm8795/runscope-circleci
|
2fd42e64bddb4b8f34c437c2d834b92369c9a2bf
|
[
"Apache-2.0"
] | null | null | null |
import requests
import sys
import time
import os
if __name__ == '__main__':
main()
| 31.101449 | 154 | 0.605312 |
5d8dbbff6df38e6773044260538db7a759525964
| 16,585 |
py
|
Python
|
spyse/client.py
|
fabaff/spyse-python
|
f286514ac052ebe6fa98f877d251d8f3cd4db1c4
|
[
"MIT"
] | 9 |
2021-07-28T11:59:07.000Z
|
2022-02-17T02:25:06.000Z
|
spyse/client.py
|
fabaff/spyse-python
|
f286514ac052ebe6fa98f877d251d8f3cd4db1c4
|
[
"MIT"
] | 2 |
2021-11-27T02:03:03.000Z
|
2022-02-02T11:33:34.000Z
|
spyse/client.py
|
fabaff/spyse-python
|
f286514ac052ebe6fa98f877d251d8f3cd4db1c4
|
[
"MIT"
] | 7 |
2021-08-05T04:02:09.000Z
|
2022-03-04T14:11:04.000Z
|
import requests
from typing import List, Optional
from .models import AS, Domain, IP, CVE, Account, Certificate, Email, DNSHistoricalRecord, WHOISHistoricalRecord
from .response import Response
from .search_query import SearchQuery
from limiter import get_limiter, limit
| 42.308673 | 117 | 0.662466 |
5d8e72c2a2b92c4afc6d55b1c762592baf4c02a2
| 147 |
py
|
Python
|
talleres_inov_docente/figures/plot_helpers.py
|
jfcaballero/Tutorial-sobre-scikit-learn-abreviado
|
1e2aa1f9132c277162135a5463068801edab8d15
|
[
"CC0-1.0"
] | 576 |
2016-03-20T10:05:58.000Z
|
2022-03-20T05:58:32.000Z
|
talleres_inov_docente/figures/plot_helpers.py
|
jfcaballero/Tutorial-sobre-scikit-learn-abreviado
|
1e2aa1f9132c277162135a5463068801edab8d15
|
[
"CC0-1.0"
] | 64 |
2016-03-20T08:56:49.000Z
|
2019-03-13T15:37:55.000Z
|
talleres_inov_docente/figures/plot_helpers.py
|
jfcaballero/Tutorial-sobre-scikit-learn-abreviado
|
1e2aa1f9132c277162135a5463068801edab8d15
|
[
"CC0-1.0"
] | 570 |
2016-03-20T19:23:07.000Z
|
2021-12-12T12:22:14.000Z
|
from matplotlib.colors import ListedColormap
cm3 = ListedColormap(['#0000aa', '#ff2020', '#50ff50'])
cm2 = ListedColormap(['#0000aa', '#ff2020'])
| 29.4 | 55 | 0.707483 |
5d8e73966f8c10521ed6c383e9307e6cc3d33a3d
| 612 |
py
|
Python
|
Applications/FlaskApp/errorpages.py
|
cemac-ccs/FlaskMWE
|
e8ce3cbca0d402bd9fdb1feb10290f2e7b11907b
|
[
"MIT"
] | null | null | null |
Applications/FlaskApp/errorpages.py
|
cemac-ccs/FlaskMWE
|
e8ce3cbca0d402bd9fdb1feb10290f2e7b11907b
|
[
"MIT"
] | null | null | null |
Applications/FlaskApp/errorpages.py
|
cemac-ccs/FlaskMWE
|
e8ce3cbca0d402bd9fdb1feb10290f2e7b11907b
|
[
"MIT"
] | null | null | null |
from flask import render_template
# Error Pages ----------------------------------------------------------------
| 27.818182 | 78 | 0.637255 |
5d8e9f525045331a16efdc9df5a7b8042480b89c
| 1,118 |
py
|
Python
|
cppgym/ToyText/BlackJack.py
|
anhydrous99/cppgym
|
0b1009a74faebfe5a31bcfd6a86c74cf13464d56
|
[
"MIT"
] | null | null | null |
cppgym/ToyText/BlackJack.py
|
anhydrous99/cppgym
|
0b1009a74faebfe5a31bcfd6a86c74cf13464d56
|
[
"MIT"
] | 1 |
2021-01-03T10:21:36.000Z
|
2021-01-26T03:59:07.000Z
|
cppgym/ToyText/BlackJack.py
|
anhydrous99/cppgym
|
0b1009a74faebfe5a31bcfd6a86c74cf13464d56
|
[
"MIT"
] | null | null | null |
from .._BlackJack import BlackJackCPP
import gym
import ctypes
import numpy as np
from gym import spaces
| 26.619048 | 53 | 0.593918 |
5d8f21c23f88e0ce2aa150c385f666597b203749
| 5,827 |
py
|
Python
|
sdks/python/apache_beam/runners/direct/consumer_tracking_pipeline_visitor_test.py
|
ajothomas/beam
|
4774c1caf3dac3b6a7dd161f82559a26fa380920
|
[
"Apache-2.0",
"BSD-3-Clause"
] | 5 |
2019-07-27T11:54:33.000Z
|
2021-06-06T11:53:36.000Z
|
sdks/python/apache_beam/runners/direct/consumer_tracking_pipeline_visitor_test.py
|
ajothomas/beam
|
4774c1caf3dac3b6a7dd161f82559a26fa380920
|
[
"Apache-2.0",
"BSD-3-Clause"
] | 12 |
2019-04-15T15:27:23.000Z
|
2019-07-01T18:13:10.000Z
|
sdks/python/apache_beam/runners/direct/consumer_tracking_pipeline_visitor_test.py
|
ajothomas/beam
|
4774c1caf3dac3b6a7dd161f82559a26fa380920
|
[
"Apache-2.0",
"BSD-3-Clause"
] | 1 |
2021-06-03T19:54:48.000Z
|
2021-06-03T19:54:48.000Z
|
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Tests for consumer_tracking_pipeline_visitor."""
# pytype: skip-file
import logging
import unittest
import apache_beam as beam
from apache_beam import pvalue
from apache_beam.pipeline import Pipeline
from apache_beam.pvalue import AsList
from apache_beam.runners.direct import DirectRunner
from apache_beam.runners.direct.consumer_tracking_pipeline_visitor import ConsumerTrackingPipelineVisitor
from apache_beam.transforms import CoGroupByKey
from apache_beam.transforms import Create
from apache_beam.transforms import DoFn
from apache_beam.transforms import FlatMap
from apache_beam.transforms import Flatten
from apache_beam.transforms import ParDo
# Disable frequent lint warning due to pipe operator for chaining transforms.
# pylint: disable=expression-not-assigned
# pylint: disable=pointless-statement
if __name__ == '__main__':
logging.getLogger().setLevel(logging.DEBUG)
unittest.main()
| 35.530488 | 105 | 0.727476 |
5d8fd5fa2bcd3f5669762aabbd18717b761f3d16
| 30,184 |
py
|
Python
|
gluon/main.py
|
scudette/rekall-agent-server
|
e553f1ae5279f75a8f5b0c0c4847766b60ed86eb
|
[
"BSD-3-Clause"
] | 21 |
2018-02-16T17:43:59.000Z
|
2021-12-29T12:08:28.000Z
|
gluon/main.py
|
scudette/rekall-agent-server
|
e553f1ae5279f75a8f5b0c0c4847766b60ed86eb
|
[
"BSD-3-Clause"
] | 12 |
2017-11-01T14:54:29.000Z
|
2018-02-01T22:02:12.000Z
|
gluon/main.py
|
scudette/rekall-agent-server
|
e553f1ae5279f75a8f5b0c0c4847766b60ed86eb
|
[
"BSD-3-Clause"
] | 8 |
2018-10-08T03:48:00.000Z
|
2022-03-31T12:13:01.000Z
|
#!/bin/env python
# -*- coding: utf-8 -*-
"""
| This file is part of the web2py Web Framework
| Copyrighted by Massimo Di Pierro <[email protected]>
| License: LGPLv3 (http://www.gnu.org/licenses/lgpl.html)
The gluon wsgi application
---------------------------
"""
from __future__ import print_function
if False: import import_all # DO NOT REMOVE PART OF FREEZE PROCESS
import gc
import os
import re
import copy
import sys
import time
import datetime
import signal
import socket
import random
import string
from gluon._compat import Cookie, urllib2
#from thread import allocate_lock
from gluon.fileutils import abspath, write_file
from gluon.settings import global_settings
from gluon.utils import web2py_uuid
from gluon.admin import add_path_first, create_missing_folders, create_missing_app_folders
from gluon.globals import current
# Remarks:
# calling script has inserted path to script directory into sys.path
# applications_parent (path to applications/, site-packages/ etc)
# defaults to that directory set sys.path to
# ("", gluon_parent/site-packages, gluon_parent, ...)
#
# this is wrong:
# web2py_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
# because we do not want the path to this file which may be Library.zip
# gluon_parent is the directory containing gluon, web2py.py, logging.conf
# and the handlers.
# applications_parent (web2py_path) is the directory containing applications/
# and routes.py
# The two are identical unless web2py_path is changed via the web2py.py -f folder option
# main.web2py_path is the same as applications_parent (for backward compatibility)
web2py_path = global_settings.applications_parent # backward compatibility
create_missing_folders()
# set up logging for subsequent imports
import logging
import logging.config
# This needed to prevent exception on Python 2.5:
# NameError: name 'gluon' is not defined
# See http://bugs.python.org/issue1436
# attention!, the import Tkinter in messageboxhandler, changes locale ...
import gluon.messageboxhandler
logging.gluon = gluon
# so we must restore it! Thanks ozancag
import locale
locale.setlocale(locale.LC_CTYPE, "C") # IMPORTANT, web2py requires locale "C"
exists = os.path.exists
pjoin = os.path.join
try:
logging.config.fileConfig(abspath("logging.conf"))
except: # fails on GAE or when logfile is missing
logging.basicConfig()
logger = logging.getLogger("web2py")
from gluon.restricted import RestrictedError
from gluon.http import HTTP, redirect
from gluon.globals import Request, Response, Session
from gluon.compileapp import build_environment, run_models_in, \
run_controller_in, run_view_in
from gluon.contenttype import contenttype
from pydal.base import BaseAdapter
from gluon.validators import CRYPT
from gluon.html import URL, xmlescape
from gluon.utils import is_valid_ip_address, getipaddrinfo
from gluon.rewrite import load as load_routes, url_in, THREAD_LOCAL as rwthread, \
try_rewrite_on_error, fixup_missing_path_info
from gluon import newcron
__all__ = ['wsgibase', 'save_password', 'appfactory', 'HttpServer']
requests = 0 # gc timer
# Security Checks: validate URL and session_id here,
# accept_language is validated in languages
# pattern used to validate client address
regex_client = re.compile('[\w\-:]+(\.[\w\-]+)*\.?') # ## to account for IPV6
try:
version_info = open(pjoin(global_settings.gluon_parent, 'VERSION'), 'r')
raw_version_string = version_info.read().split()[-1].strip()
version_info.close()
global_settings.web2py_version = raw_version_string
web2py_version = global_settings.web2py_version
except:
raise RuntimeError("Cannot determine web2py version")
try:
from gluon import rocket
except:
if not global_settings.web2py_runtime_gae:
logger.warn('unable to import Rocket')
load_routes()
HTTPS_SCHEMES = set(('https', 'HTTPS'))
def get_client(env):
"""
Guesses the client address from the environment variables
First tries 'http_x_forwarded_for', secondly 'remote_addr'
if all fails, assume '127.0.0.1' or '::1' (running locally)
"""
eget = env.get
g = regex_client.search(eget('http_x_forwarded_for', ''))
client = (g.group() or '').split(',')[0] if g else None
if client in (None, '', 'unknown'):
g = regex_client.search(eget('remote_addr', ''))
if g:
client = g.group()
elif env.http_host.startswith('['): # IPv6
client = '::1'
else:
client = '127.0.0.1' # IPv4
if not is_valid_ip_address(client):
raise HTTP(400, "Bad Request (request.client=%s)" % client)
return client
def serve_controller(request, response, session):
"""
This function is used to generate a dynamic page.
It first runs all models, then runs the function in the controller,
and then tries to render the output using a view/template.
this function must run from the [application] folder.
A typical example would be the call to the url
/[application]/[controller]/[function] that would result in a call
to [function]() in applications/[application]/[controller].py
rendered by applications/[application]/views/[controller]/[function].html
"""
# ##################################################
# build environment for controller and view
# ##################################################
environment = build_environment(request, response, session)
# set default view, controller can override it
response.view = '%s/%s.%s' % (request.controller,
request.function,
request.extension)
# also, make sure the flash is passed through
# ##################################################
# process models, controller and view (if required)
# ##################################################
run_models_in(environment)
response._view_environment = copy.copy(environment)
page = run_controller_in(request.controller, request.function, environment)
if isinstance(page, dict):
response._vars = page
response._view_environment.update(page)
page = run_view_in(response._view_environment)
# logic to garbage collect after exec, not always, once every 100 requests
global requests
requests = ('requests' in globals()) and (requests + 1) % 100 or 0
if not requests:
gc.collect()
# end garbage collection logic
# ##################################################
# set default headers it not set
# ##################################################
default_headers = [
('Content-Type', contenttype('.' + request.extension)),
('Cache-Control',
'no-store, no-cache, must-revalidate, post-check=0, pre-check=0'),
('Expires', time.strftime('%a, %d %b %Y %H:%M:%S GMT',
time.gmtime())),
('Pragma', 'no-cache')]
for key, value in default_headers:
response.headers.setdefault(key, value)
raise HTTP(response.status, page, **response.headers)
def wsgibase(environ, responder):
"""
The gluon wsgi application. The first function called when a page
is requested (static or dynamic). It can be called by paste.httpserver
or by apache mod_wsgi (or any WSGI-compatible server).
- fills request with info
- the environment variables, replacing '.' with '_'
- adds web2py path and version info
- compensates for fcgi missing path_info and query_string
- validates the path in url
The url path must be either:
1. for static pages:
- /<application>/static/<file>
2. for dynamic pages:
- /<application>[/<controller>[/<function>[/<sub>]]][.<extension>]
The naming conventions are:
- application, controller, function and extension may only contain
`[a-zA-Z0-9_]`
- file and sub may also contain '-', '=', '.' and '/'
"""
eget = environ.get
current.__dict__.clear()
request = Request(environ)
response = Response()
session = Session()
env = request.env
#env.web2py_path = global_settings.applications_parent
env.web2py_version = web2py_version
#env.update(global_settings)
static_file = False
http_response = None
try:
try:
try:
# ##################################################
# handle fcgi missing path_info and query_string
# select rewrite parameters
# rewrite incoming URL
# parse rewritten header variables
# parse rewritten URL
# serve file if static
# ##################################################
fixup_missing_path_info(environ)
(static_file, version, environ) = url_in(request, environ)
response.status = env.web2py_status_code or response.status
if static_file:
if eget('QUERY_STRING', '').startswith('attachment'):
response.headers['Content-Disposition'] \
= 'attachment'
if version:
response.headers['Cache-Control'] = 'max-age=315360000'
response.headers[
'Expires'] = 'Thu, 31 Dec 2037 23:59:59 GMT'
response.stream(static_file, request=request)
# ##################################################
# fill in request items
# ##################################################
app = request.application # must go after url_in!
if not global_settings.local_hosts:
local_hosts = set(['127.0.0.1', '::ffff:127.0.0.1', '::1'])
if not global_settings.web2py_runtime_gae:
try:
fqdn = socket.getfqdn()
local_hosts.add(socket.gethostname())
local_hosts.add(fqdn)
local_hosts.update([
addrinfo[4][0] for addrinfo
in getipaddrinfo(fqdn)])
if env.server_name:
local_hosts.add(env.server_name)
local_hosts.update([
addrinfo[4][0] for addrinfo
in getipaddrinfo(env.server_name)])
except (socket.gaierror, TypeError):
pass
global_settings.local_hosts = list(local_hosts)
else:
local_hosts = global_settings.local_hosts
client = get_client(env)
x_req_with = str(env.http_x_requested_with).lower()
cmd_opts = global_settings.cmd_options
request.update(
client = client,
folder = abspath('applications', app) + os.sep,
ajax = x_req_with == 'xmlhttprequest',
cid = env.http_web2py_component_element,
is_local = (env.remote_addr in local_hosts and
client == env.remote_addr),
is_shell = False,
is_scheduler = False,
is_https = env.wsgi_url_scheme in HTTPS_SCHEMES or \
request.env.http_x_forwarded_proto in HTTPS_SCHEMES \
or env.https == 'on'
)
request.url = environ['PATH_INFO']
# ##################################################
# access the requested application
# ##################################################
disabled = pjoin(request.folder, 'DISABLED')
if not exists(request.folder):
if app == rwthread.routes.default_application \
and app != 'welcome':
redirect(URL('welcome', 'default', 'index'))
elif rwthread.routes.error_handler:
_handler = rwthread.routes.error_handler
redirect(URL(_handler['application'],
_handler['controller'],
_handler['function'],
args=app))
else:
raise HTTP(404, rwthread.routes.error_message
% 'invalid request',
web2py_error='invalid application')
elif not request.is_local and exists(disabled):
five0three = os.path.join(request.folder,'static','503.html')
if os.path.exists(five0three):
raise HTTP(503, file(five0three, 'r').read())
else:
raise HTTP(503, "<html><body><h1>Temporarily down for maintenance</h1></body></html>")
# ##################################################
# build missing folders
# ##################################################
create_missing_app_folders(request)
# ##################################################
# get the GET and POST data
# ##################################################
#parse_get_post_vars(request, environ)
# ##################################################
# expose wsgi hooks for convenience
# ##################################################
request.wsgi = LazyWSGI(environ, request, response)
# ##################################################
# load cookies
# ##################################################
if env.http_cookie:
for single_cookie in env.http_cookie.split(';'):
single_cookie = single_cookie.strip()
if single_cookie:
try:
request.cookies.load(single_cookie)
except Cookie.CookieError:
pass # single invalid cookie ignore
# ##################################################
# try load session or create new session file
# ##################################################
if not env.web2py_disable_session:
session.connect(request, response)
# ##################################################
# run controller
# ##################################################
if global_settings.debugging and app != "admin":
import gluon.debug
# activate the debugger
gluon.debug.dbg.do_debug(mainpyfile=request.folder)
serve_controller(request, response, session)
except HTTP as hr:
http_response = hr
if static_file:
return http_response.to(responder, env=env)
if request.body:
request.body.close()
if hasattr(current, 'request'):
# ##################################################
# on success, try store session in database
# ##################################################
if not env.web2py_disable_session:
session._try_store_in_db(request, response)
# ##################################################
# on success, commit database
# ##################################################
if response.do_not_commit is True:
BaseAdapter.close_all_instances(None)
elif response.custom_commit:
BaseAdapter.close_all_instances(response.custom_commit)
else:
BaseAdapter.close_all_instances('commit')
# ##################################################
# if session not in db try store session on filesystem
# this must be done after trying to commit database!
# ##################################################
if not env.web2py_disable_session:
session._try_store_in_cookie_or_file(request, response)
# Set header so client can distinguish component requests.
if request.cid:
http_response.headers.setdefault(
'web2py-component-content', 'replace')
if request.ajax:
if response.flash:
http_response.headers['web2py-component-flash'] = \
urllib2.quote(xmlescape(response.flash).replace(b'\n', b''))
if response.js:
http_response.headers['web2py-component-command'] = \
urllib2.quote(response.js.replace('\n', ''))
# ##################################################
# store cookies in headers
# ##################################################
session._fixup_before_save()
http_response.cookies2headers(response.cookies)
ticket = None
except RestrictedError as e:
if request.body:
request.body.close()
# ##################################################
# on application error, rollback database
# ##################################################
# log tickets before rollback if not in DB
if not request.tickets_db:
ticket = e.log(request) or 'unknown'
# rollback
if response._custom_rollback:
response._custom_rollback()
else:
BaseAdapter.close_all_instances('rollback')
# if tickets in db, reconnect and store it in db
if request.tickets_db:
ticket = e.log(request) or 'unknown'
http_response = \
HTTP(500, rwthread.routes.error_message_ticket %
dict(ticket=ticket),
web2py_error='ticket %s' % ticket)
except:
if request.body:
request.body.close()
# ##################################################
# on application error, rollback database
# ##################################################
try:
if response._custom_rollback:
response._custom_rollback()
else:
BaseAdapter.close_all_instances('rollback')
except:
pass
e = RestrictedError('Framework', '', '', locals())
ticket = e.log(request) or 'unrecoverable'
http_response = \
HTTP(500, rwthread.routes.error_message_ticket
% dict(ticket=ticket),
web2py_error='ticket %s' % ticket)
finally:
if response and hasattr(response, 'session_file') \
and response.session_file:
response.session_file.close()
session._unlock(response)
http_response, new_environ = try_rewrite_on_error(
http_response, request, environ, ticket)
if not http_response:
return wsgibase(new_environ, responder)
if global_settings.web2py_crontype == 'soft':
newcron.softcron(global_settings.applications_parent).start()
return http_response.to(responder, env=env)
def save_password(password, port):
"""
Used by main() to save the password in the parameters_port.py file.
"""
password_file = abspath('parameters_%i.py' % port)
if password == '<random>':
# make up a new password
chars = string.letters + string.digits
password = ''.join([random.choice(chars) for _ in range(8)])
cpassword = CRYPT()(password)[0]
print('******************* IMPORTANT!!! ************************')
print('your admin password is "%s"' % password)
print('*********************************************************')
elif password == '<recycle>':
# reuse the current password if any
if exists(password_file):
return
else:
password = ''
elif password.startswith('<pam_user:'):
# use the pam password for specified user
cpassword = password[1:-1]
else:
# use provided password
cpassword = CRYPT()(password)[0]
fp = open(password_file, 'w')
if password:
fp.write('password="%s"\n' % cpassword)
else:
fp.write('password=None\n')
fp.close()
def appfactory(wsgiapp=wsgibase,
logfilename='httpserver.log',
profiler_dir=None,
profilerfilename=None):
"""
generates a wsgi application that does logging and profiling and calls
wsgibase
Args:
wsgiapp: the base application
logfilename: where to store apache-compatible requests log
profiler_dir: where to store profile files
"""
if profilerfilename is not None:
raise BaseException("Deprecated API")
if profiler_dir:
profiler_dir = abspath(profiler_dir)
logger.warn('profiler is on. will use dir %s', profiler_dir)
if not os.path.isdir(profiler_dir):
try:
os.makedirs(profiler_dir)
except:
raise BaseException("Can't create dir %s" % profiler_dir)
filepath = pjoin(profiler_dir, 'wtest')
try:
filehandle = open( filepath, 'w' )
filehandle.close()
os.unlink(filepath)
except IOError:
raise BaseException("Unable to write to dir %s" % profiler_dir)
def app_with_logging(environ, responder):
"""
a wsgi app that does logging and profiling and calls wsgibase
"""
status_headers = []
def responder2(s, h):
"""
wsgi responder app
"""
status_headers.append(s)
status_headers.append(h)
return responder(s, h)
time_in = time.time()
ret = [0]
if not profiler_dir:
ret[0] = wsgiapp(environ, responder2)
else:
import cProfile
prof = cProfile.Profile()
prof.enable()
ret[0] = wsgiapp(environ, responder2)
prof.disable()
destfile = pjoin(profiler_dir, "req_%s.prof" % web2py_uuid())
prof.dump_stats(destfile)
try:
line = '%s, %s, %s, %s, %s, %s, %f\n' % (
environ['REMOTE_ADDR'],
datetime.datetime.today().strftime('%Y-%m-%d %H:%M:%S'),
environ['REQUEST_METHOD'],
environ['PATH_INFO'].replace(',', '%2C'),
environ['SERVER_PROTOCOL'],
(status_headers[0])[:3],
time.time() - time_in,
)
if not logfilename:
sys.stdout.write(line)
elif isinstance(logfilename, str):
write_file(logfilename, line, 'a')
else:
logfilename.write(line)
except:
pass
return ret[0]
return app_with_logging
| 37.919598 | 117 | 0.52286 |
5d90667a56cb7c978d1072b2a27a14dbab5c4dfc
| 3,798 |
py
|
Python
|
agents/EWPublisherAgent.py
|
marc4gov/tokenspice2
|
1993383674f35b20e11e54606b3dac8e4c05c0f9
|
[
"Apache-2.0"
] | 1 |
2021-01-12T08:06:21.000Z
|
2021-01-12T08:06:21.000Z
|
agents/EWPublisherAgent.py
|
marc4gov/tokenspice2
|
1993383674f35b20e11e54606b3dac8e4c05c0f9
|
[
"Apache-2.0"
] | null | null | null |
agents/EWPublisherAgent.py
|
marc4gov/tokenspice2
|
1993383674f35b20e11e54606b3dac8e4c05c0f9
|
[
"Apache-2.0"
] | null | null | null |
import logging
log = logging.getLogger('marketagents')
from enforce_typing import enforce_types # type: ignore[import]
import random
from agents.PublisherAgent import PublisherAgent
from agents.PoolAgent import PoolAgent
from util import constants
from util.constants import POOL_WEIGHT_DT, POOL_WEIGHT_OCEAN
from web3engine import bfactory, bpool, datatoken, dtfactory, globaltokens
from web3tools.web3util import toBase18
| 37.98 | 80 | 0.662191 |
5d922c20991f9207f7464898983a068c11cac2a8
| 1,625 |
py
|
Python
|
lcls_orbit/__init__.py
|
slaclab/lcls-orbit
|
e2b8738c4af2dfed40fce4b898bf9b2a820d5f56
|
[
"BSD-3-Clause-LBNL"
] | null | null | null |
lcls_orbit/__init__.py
|
slaclab/lcls-orbit
|
e2b8738c4af2dfed40fce4b898bf9b2a820d5f56
|
[
"BSD-3-Clause-LBNL"
] | null | null | null |
lcls_orbit/__init__.py
|
slaclab/lcls-orbit
|
e2b8738c4af2dfed40fce4b898bf9b2a820d5f56
|
[
"BSD-3-Clause-LBNL"
] | 1 |
2021-11-16T01:03:53.000Z
|
2021-11-16T01:03:53.000Z
|
import numpy as np
from . import _version
__version__ = _version.get_versions()['version']
HXR_COLORS = ("#000000", "#02004a", "#030069", "#04008f", "#0500b3", "#0700ff")
SXR_COLORS = ("#000000", "#330000", "#520000", "#850000", "#ad0000", "#ff0000")
HXR_AREAS = {
"GUN" : [2017.911, 2018.712],
"L0" : [2018.712, 2024.791],
"DL1_1": [2024.791, 2031.992],
"DL1_2": [2031.992, 2035.035],
"L1": [2035.035, 2044.167],
"BC1": [2044.167, 2059.733],
"L2": [2059.733, 2410.698],
"BC2": [2410.698, 2438.400],
"L3": [2438.400, 3042.005],
"CLTH_0": [3042.005, 3050.512],
"CLTH_1": [3050.512, 3058.457],
"CLTH_2": [3058.457, 3110.961],
"BSYH_1": [3110.961, 3117.409],
"BSYH_2": [3117.409, 3224.022],
"LTUH": [3224.022, 3562.739],
"UNDH": [3562.739, 3718.483],
"DMPH_1": [3718.483, 3734.407],
"DMPH_2": [3734.407, 3765.481]
}
HXR_AREAS = {np.mean(value): key for key, value in HXR_AREAS.items()}
SXR_AREAS = {
"GUN" : [2017.911, 2017.911],
"L0" : [2018.712, 2024.791],
"DL1_1": [2024.791, 2031.992],
"DL1_2": [2031.992, 2035.035],
"L1": [2035.035, 2044.167],
"BC1": [2044.167, 2059.733],
"L2": [2059.733, 2410.698],
"BC2": [2410.698, 2438.400],
"L3": [2438.400, 3042.005],
"CLTH_0": [3042.005, 3050.512],
"CLTH_1": [3050.512, 3058.457],
"CLTS": [3177.650, 3224.022],
"BSYS": [3224.022, 3565.656],
"LTUS": [3565.656, 3718.483],
"UNDS": [3718.483, 3734.407],
"DMPS_1": [3734.407, 3734.407],
"DMPS_2": [3734.407, 3765.481]
}
SXR_AREAS = {np.mean(value): key for key, value in SXR_AREAS.items()}
| 30.660377 | 79 | 0.563077 |
5d930df4a535163668fcaae7a75a25d2de903db1
| 13,123 |
py
|
Python
|
tests/test_optimizers_v2/test_optimizers_v2.py
|
OverLordGoldDragon/dummy
|
5192b91c57721f37b906f670ad954a46f98bf5b5
|
[
"MIT"
] | null | null | null |
tests/test_optimizers_v2/test_optimizers_v2.py
|
OverLordGoldDragon/dummy
|
5192b91c57721f37b906f670ad954a46f98bf5b5
|
[
"MIT"
] | null | null | null |
tests/test_optimizers_v2/test_optimizers_v2.py
|
OverLordGoldDragon/dummy
|
5192b91c57721f37b906f670ad954a46f98bf5b5
|
[
"MIT"
] | null | null | null |
import os
import tempfile
import numpy as np
import tensorflow as tf
from time import time
from termcolor import cprint
from unittest import TestCase
from .. import K
from .. import Input, Dense, GRU, Bidirectional, Embedding
from .. import Model, load_model
from .. import l2
from .. import maxnorm
from .. import Adam, Nadam, SGD
from .. import AdamW, NadamW, SGDW
from .. import get_weight_decays, fill_dict_in_order, reset_seeds, K_eval
print("TF version: %s" % tf.__version__)
tf_eager = bool(os.environ["TF_EAGER"] == "True")
if tf_eager:
print("TF running eagerly")
else:
tf.compat.v1.disable_eager_execution()
print("TF running in graph mode")
| 44.334459 | 83 | 0.586375 |
5d93683480faf496a5e564f3b162607a289a4f92
| 21,601 |
py
|
Python
|
koku/reporting/migrations/0099_ocp_performance.py
|
Vasyka/koku
|
b5aa9ec41c3b0821e74afe9ff3a5ffaedb910614
|
[
"Apache-2.0"
] | 2 |
2022-01-12T03:42:39.000Z
|
2022-01-12T03:42:40.000Z
|
koku/reporting/migrations/0099_ocp_performance.py
|
Vasyka/koku
|
b5aa9ec41c3b0821e74afe9ff3a5ffaedb910614
|
[
"Apache-2.0"
] | null | null | null |
koku/reporting/migrations/0099_ocp_performance.py
|
Vasyka/koku
|
b5aa9ec41c3b0821e74afe9ff3a5ffaedb910614
|
[
"Apache-2.0"
] | 1 |
2021-07-21T09:33:59.000Z
|
2021-07-21T09:33:59.000Z
|
# Generated by Django 2.2.10 on 2020-02-18 12:51
import django.contrib.postgres.indexes
from django.db import migrations
from django.db import models
| 51.800959 | 173 | 0.734781 |
5d942ae26a14855b18361770889fe0b68867154b
| 1,433 |
py
|
Python
|
sympy/tensor/tests/test_functions.py
|
iamabhishek0/sympy
|
c461bd1ff9d178d1012b04fd0bf37ee3abb02cdd
|
[
"BSD-3-Clause"
] | 8,323 |
2015-01-02T15:51:43.000Z
|
2022-03-31T13:13:19.000Z
|
sympy/tensor/tests/test_functions.py
|
iamabhishek0/sympy
|
c461bd1ff9d178d1012b04fd0bf37ee3abb02cdd
|
[
"BSD-3-Clause"
] | 15,102 |
2015-01-01T01:33:17.000Z
|
2022-03-31T22:53:13.000Z
|
sympy/tensor/tests/test_functions.py
|
iamabhishek0/sympy
|
c461bd1ff9d178d1012b04fd0bf37ee3abb02cdd
|
[
"BSD-3-Clause"
] | 4,490 |
2015-01-01T17:48:07.000Z
|
2022-03-31T17:24:05.000Z
|
from sympy.tensor.functions import TensorProduct
from sympy import MatrixSymbol, Matrix, Array
from sympy.abc import x, y, z
from sympy.abc import i, j, k, l
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
C = MatrixSymbol("C", 3, 3)
| 25.589286 | 74 | 0.567341 |
5d94582a86f1cb5da7910dcf3af0df5fef4be108
| 898 |
py
|
Python
|
app/views.py
|
Kgermando/sem
|
c76e97e1d526d4e92a925adb6bceee426f999655
|
[
"Apache-2.0"
] | null | null | null |
app/views.py
|
Kgermando/sem
|
c76e97e1d526d4e92a925adb6bceee426f999655
|
[
"Apache-2.0"
] | null | null | null |
app/views.py
|
Kgermando/sem
|
c76e97e1d526d4e92a925adb6bceee426f999655
|
[
"Apache-2.0"
] | null | null | null |
from django.shortcuts import render
# Create your views here.
| 26.411765 | 59 | 0.604677 |
5d9653a594b04879fa4c04919b21be2e555546ba
| 1,033 |
py
|
Python
|
webcrawler/crawler/spiders/baselensspider.py
|
HansZimmer5000/LensComparison
|
e4d9b68211604c4569c4ca9b1e1b4fce2a8c1ea8
|
[
"Apache-2.0"
] | null | null | null |
webcrawler/crawler/spiders/baselensspider.py
|
HansZimmer5000/LensComparison
|
e4d9b68211604c4569c4ca9b1e1b4fce2a8c1ea8
|
[
"Apache-2.0"
] | null | null | null |
webcrawler/crawler/spiders/baselensspider.py
|
HansZimmer5000/LensComparison
|
e4d9b68211604c4569c4ca9b1e1b4fce2a8c1ea8
|
[
"Apache-2.0"
] | null | null | null |
# This module is about my webcrawler with the use of scrapy.
# Its a generell web crawler, but the import and use of GhAdapter makes it usefull for geizhals.de sites.
from abc import ABC, abstractmethod
import scrapy
| 27.184211 | 105 | 0.804453 |
5d968294f2b19ad9cf4d5cc885fbe7be0f0e3330
| 15,289 |
py
|
Python
|
byol_train.py
|
fjbriones/deep-text-recognition-benchmark
|
c85d12aa56495fe221656bac4c8cb159a28456b1
|
[
"Apache-2.0"
] | null | null | null |
byol_train.py
|
fjbriones/deep-text-recognition-benchmark
|
c85d12aa56495fe221656bac4c8cb159a28456b1
|
[
"Apache-2.0"
] | null | null | null |
byol_train.py
|
fjbriones/deep-text-recognition-benchmark
|
c85d12aa56495fe221656bac4c8cb159a28456b1
|
[
"Apache-2.0"
] | null | null | null |
import os
import sys
import time
import random
import string
import argparse
import torch
import torch.backends.cudnn as cudnn
import torch.nn.init as init
import torch.optim as optim
import torch.utils.data
import numpy as np
from utils import CTCLabelConverter, CTCLabelConverterForBaiduWarpctc, AttnLabelConverter, Averager
from simclr_dataset import hierarchical_dataset, AlignCollate, Batch_Balanced_Dataset
from simclr_model import FeaturesModel as Model
from test import validation
from byol_pytorch import BYOL
from imgaug import augmenters as iaa
import imgaug as ia
from tqdm import tqdm
import matplotlib.pyplot as plt
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def train(opt):
""" dataset preparation """
if not opt.data_filtering_off:
print('Filtering the images containing characters which are not in opt.character')
print('Filtering the images whose label is longer than opt.batch_max_length')
# see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130
opt.select_data = opt.select_data.split('-')
opt.batch_ratio = opt.batch_ratio.split('-')
train_dataset = Batch_Balanced_Dataset(opt)
log = open(f'./saved_models/{opt.exp_name}/log_dataset.txt', 'a')
ia.seed(1)
image_transforms = iaa.Sequential([iaa.SomeOf((1, 5),
[iaa.LinearContrast((0.5, 1.0)),
iaa.GaussianBlur((0.5, 1.5)),
iaa.Crop(percent=((0, 0.4),(0, 0),(0, 0.4),(0, 0.0)), keep_size=True),
iaa.Crop(percent=((0, 0.0),(0, 0.02),(0, 0),(0, 0.02)), keep_size=True),
iaa.Sharpen(alpha=(0.0, 0.5), lightness=(0.0, 0.5)),
iaa.PiecewiseAffine(scale=(0.02, 0.03), mode='edge'),
iaa.PerspectiveTransform(scale=(0.01, 0.02))],
random_order=True)])
AlignCollate_valid = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD, image_transforms=image_transforms)
valid_dataset, valid_dataset_log = hierarchical_dataset(root=opt.valid_data, opt=opt)
valid_loader = torch.utils.data.DataLoader(
valid_dataset, batch_size=opt.batch_size,
shuffle=True, # 'True' to check training progress with validation function.
num_workers=int(opt.workers),
collate_fn=AlignCollate_valid, pin_memory=True)
log.write(valid_dataset_log)
print('-' * 80)
log.write('-' * 80 + '\n')
log.close()
if opt.rgb:
opt.input_channel = 3
model = Model(opt)
print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
opt.hidden_size, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
opt.SequenceModeling)
# weight initialization
for name, param in model.named_parameters():
if 'localization_fc2' in name:
print(f'Skip {name} as it is already initialized')
continue
try:
if 'bias' in name:
init.constant_(param, 0.0)
elif 'weight' in name:
init.kaiming_normal_(param)
except Exception as e: # for batchnorm.
if 'weight' in name:
param.data.fill_(1)
continue
# data parallel for multi-GPU
model = torch.nn.DataParallel(model).to(device)
model.train()
if opt.saved_model != '':
print(f'loading pretrained model from {opt.saved_model}')
if opt.FT:
model.load_state_dict(torch.load(opt.saved_model), strict=False)
else:
model.load_state_dict(torch.load(opt.saved_model))
print("Model:")
print(model)
image_transforms = iaa.Sequential([iaa.SomeOf((1, 5),
[iaa.LinearContrast((0.5, 1.0)),
iaa.GaussianBlur((0.5, 1.5)),
iaa.Crop(percent=((0, 0.4),(0, 0),(0, 0.4),(0, 0.0)), keep_size=True),
iaa.Crop(percent=((0, 0.0),(0, 0.02),(0, 0),(0, 0.02)), keep_size=True),
iaa.Sharpen(alpha=(0.0, 0.5), lightness=(0.0, 0.5)),
iaa.PiecewiseAffine(scale=(0.02, 0.03), mode='edge'),
iaa.PerspectiveTransform(scale=(0.01, 0.02))],
random_order=True)])
byol_learner = BYOL(
model,
image_size=(32,100),
hidden_layer=-1,
channels=1,
augment_fn=image_transforms,
augmented=True)
print(byol_learner)
# filter that only require gradient decent
filtered_parameters = []
params_num = []
for p in filter(lambda p: p.requires_grad, byol_learner.parameters()):
filtered_parameters.append(p)
params_num.append(np.prod(p.size()))
print('Trainable params num : ', sum(params_num))
# setup optimizer
if opt.optimizer == 'adam':
optimizer = optim.Adam(filtered_parameters, lr=opt.lr, betas=(opt.beta1, 0.999))
elif opt.optimizer == 'adadelta':
optimizer = optim.Adadelta(filtered_parameters, lr=opt.lr, rho=opt.rho, eps=opt.eps, weight_decay=opt.weight_decay)
elif opt.optimizer == 'sgd':
optimizer = optim.SGD(filtered_parameters, lr=opt.lr, momentum=opt.momentum, weight_decay=opt.weight_decay, nesterov=opt.nesterov)
else:
raise Exception('Unknown optimizer')
print("Optimizer:")
print(optimizer)
""" final options """
# print(opt)
with open(f'./saved_models/{opt.exp_name}/opt.txt', 'a') as opt_file:
opt_log = '------------ Options -------------\n'
args = vars(opt)
for k, v in args.items():
opt_log += f'{str(k)}: {str(v)}\n'
opt_log += '---------------------------------------\n'
print(opt_log)
opt_file.write(opt_log)
""" start training """
start_iter = 0
if opt.saved_model != '':
try:
start_iter = int(opt.saved_model.split('_')[-1].split('.')[0])
print(f'continue to train, start_iter: {start_iter}')
except:
pass
#LR Scheduler:
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[int(0.6*opt.num_iter), int(0.8*opt.num_iter)], last_epoch=start_iter-1, gamma=0.1)
best_loss = None
iteration = start_iter
print(device)
loss_avg = Averager()
valid_loss_avg = Averager()
# kl_loss_avg = Averager()
# kl_loss = torch.nn.KLDivLoss()
epoch = 0
while(True):
# train part
for i in tqdm(range(opt.valInterval)):
image_tensors, _ = train_dataset.get_batch()
image = image_tensors.to(device)
optimizer.zero_grad()
loss = byol_learner(image)
loss.backward()
if opt.grad_clip:
torch.nn.utils.clip_grad_norm_(byol_learner.parameters(), opt.grad_clip)
optimizer.step()
scheduler.step()
byol_learner.update_moving_average()
loss_avg.add(loss)
if iteration==0:
print("Epoch {:06d} Loss: {:.04f}".format(iteration, loss_avg.val()))
iteration += 1
byol_learner.eval()
model.eval()
with torch.no_grad():
for image_tensors, _ in valid_loader:
image = image_tensors.to(device)
val_loss = byol_learner(image)
valid_loss_avg.add(val_loss)
# features = model(image)
# features = features.view(-1, 26, features.shape[1])
# kl_div = kl_loss(features[:int(features.shape[0]/2)], features[int(features.shape[0]/2):])
# kl_loss_avg.add(kl_div)
model.train()
byol_learner.train()
with open(f'./saved_models/{opt.exp_name}/log_train.txt', 'a') as log:
log.write("Iteration {:06d} Loss: {:.06f} Val loss: {:06f}".format(iteration, loss_avg.val(), valid_loss_avg.val()) + '\n')
print("Iteration {:06d} Loss: {:.06f} Val loss: {:06f}".format(iteration, loss_avg.val(), valid_loss_avg.val()))
if best_loss is None:
best_loss = valid_loss_avg.val()
torch.save(model.state_dict(), f'./saved_models/{opt.exp_name}/iter_{iteration+1}.pth')
elif best_loss > valid_loss_avg.val():
best_loss = valid_loss_avg.val()
torch.save(model.state_dict(), f'./saved_models/{opt.exp_name}/iter_{iteration+1}.pth')
scheduler.step()
loss_avg.reset()
valid_loss_avg.reset()
if epoch % 5 == 0:
torch.save(model.state_dict(), f'./saved_models/{opt.exp_name}/iter_{iteration+1}.pth')
if (iteration + 1) >= opt.num_iter:
print('end the training')
torch.save(model.state_dict(), f'./saved_models/{opt.exp_name}/iter_{iteration+1}.pth')
sys.exit()
epoch +=1
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--exp_name', help='Where to store logs and models')
parser.add_argument('--train_data', required=True, help='path to training dataset')
parser.add_argument('--valid_data', required=True, help='path to validation dataset')
parser.add_argument('--manualSeed', type=int, default=1111, help='for random seed setting')
parser.add_argument('--workers', type=int, help='number of data loading workers', default=4)
parser.add_argument('--batch_size', type=int, default=192, help='input batch size')
parser.add_argument('--num_iter', type=int, default=300000, help='number of iterations to train for')
parser.add_argument('--valInterval', type=int, default=2000, help='Interval between each validation')
parser.add_argument('--saved_model', default='', help="path to model to continue training")
parser.add_argument('--FT', action='store_true', help='whether to do fine-tuning')
parser.add_argument('--optimizer', type=str, choices=['adam', 'adadelta', 'sgd'], help="Optimizer")
parser.add_argument('--lr', type=float, default=1, help='learning rate, default=1.0 for Adadelta')
parser.add_argument('--beta1', type=float, default=0.9, help='beta1 for adam. default=0.9')
parser.add_argument('--rho', type=float, default=0.95, help='decay rate rho for Adadelta. default=0.95')
parser.add_argument('--eps', type=float, default=1e-8, help='eps for Adadelta. default=1e-8')
parser.add_argument('--nesterov', action='store_true', help='Use Nesterov momentum for SGD')
parser.add_argument('--momentum', type=float, default=0.9, help='Momentum for SGD')
parser.add_argument('--grad_clip', type=float, default=5, help='gradient clipping value. default=5')
parser.add_argument('--baiduCTC', action='store_true', help='for data_filtering_off mode')
""" Data processing """
parser.add_argument('--select_data', type=str, default='MJ-ST',
help='select training data (default is MJ-ST, which means MJ and ST used as training data)')
parser.add_argument('--batch_ratio', type=str, default='0.5-0.5',
help='assign ratio for each selected data in the batch')
parser.add_argument('--total_data_usage_ratio', type=str, default='1.0',
help='total data usage ratio, this ratio is multiplied to total number of data.')
parser.add_argument('--batch_max_length', type=int, default=25, help='maximum-label-length')
parser.add_argument('--imgH', type=int, default=32, help='the height of the input image')
parser.add_argument('--imgW', type=int, default=100, help='the width of the input image')
parser.add_argument('--rgb', action='store_true', help='use rgb input')
parser.add_argument('--character', type=str,
default='0123456789abcdefghijklmnopqrstuvwxyz', help='character label')
parser.add_argument('--sensitive', action='store_true', help='for sensitive character mode')
parser.add_argument('--PAD', action='store_true', help='whether to keep ratio then pad for image resize')
parser.add_argument('--data_filtering_off', action='store_true', help='for data_filtering_off mode')
""" Model Architecture """
parser.add_argument('--Transformation', type=str, required=True, help='Transformation stage. None|TPS')
parser.add_argument('--FeatureExtraction', type=str, required=True,
help='FeatureExtraction stage. VGG|RCNN|ResNet')
parser.add_argument('--SequenceModeling', type=str, required=True, help='SequenceModeling stage. None|BiLSTM')
parser.add_argument('--num_fiducial', type=int, default=20, help='number of fiducial points of TPS-STN')
parser.add_argument('--input_channel', type=int, default=1,
help='the number of input channel of Feature extractor')
parser.add_argument('--output_channel', type=int, default=512,
help='the number of output channel of Feature extractor')
parser.add_argument('--hidden_size', type=int, default=256, help='the size of the LSTM hidden state')
parser.add_argument('--weight_decay', type=float, default=10e-4, help='Weight decay')
parser.add_argument('--FinalLayer', action='store_true', help='Use a nonlinear projection head during training')
parser.add_argument('--final_feature', type=int, default=256, help='the size of the output of the final layer')
opt = parser.parse_args()
if not opt.exp_name:
opt.exp_name = f'{opt.Transformation}-{opt.FeatureExtraction}-{opt.SequenceModeling}-BYOL'
opt.exp_name += f'-Seed{opt.manualSeed}'
# print(opt.exp_name)
os.makedirs(f'./saved_models/{opt.exp_name}', exist_ok=True)
""" vocab / character number configuration """
if opt.sensitive:
# opt.character += 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
opt.character = string.printable[:-6] # same with ASTER setting (use 94 char).
""" Seed and GPU setting """
# print("Random Seed: ", opt.manualSeed)
random.seed(opt.manualSeed)
np.random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
torch.cuda.manual_seed(opt.manualSeed)
cudnn.benchmark = True
cudnn.deterministic = True
opt.num_gpu = torch.cuda.device_count()
# print('device count', opt.num_gpu)
if opt.num_gpu > 1:
print('------ Use multi-GPU setting ------')
print('if you stuck too long time with multi-GPU setting, try to set --workers 0')
# check multi-GPU issue https://github.com/clovaai/deep-text-recognition-benchmark/issues/1
opt.workers = opt.workers * opt.num_gpu
opt.batch_size = opt.batch_size * opt.num_gpu
""" previous version
print('To equlize batch stats to 1-GPU setting, the batch_size is multiplied with num_gpu and multiplied batch_size is ', opt.batch_size)
opt.batch_size = opt.batch_size * opt.num_gpu
print('To equalize the number of epochs to 1-GPU setting, num_iter is divided with num_gpu by default.')
If you dont care about it, just commnet out these line.)
opt.num_iter = int(opt.num_iter / opt.num_gpu)
"""
train(opt)
| 45.502976 | 152 | 0.636013 |
5d96fee6a1d130e8653363f3a24275073276610b
| 1,496 |
py
|
Python
|
app/__init__.py
|
dulin/tornado-test
|
8ceeb9f2b50b4cd0f18baa9149140721feec1925
|
[
"MIT"
] | null | null | null |
app/__init__.py
|
dulin/tornado-test
|
8ceeb9f2b50b4cd0f18baa9149140721feec1925
|
[
"MIT"
] | null | null | null |
app/__init__.py
|
dulin/tornado-test
|
8ceeb9f2b50b4cd0f18baa9149140721feec1925
|
[
"MIT"
] | null | null | null |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# -*- mode: python -*-
import aiopg
import psycopg2
import tornado.locks
from tornado.options import define, options
from tornado.web import Application
from app.application import Application
define('port', default=8080, help="listening port")
define('bind_address', default="", help="bind address")
define("db_host", default="127.0.0.1", help="database host")
define("db_port", default=5432, help="database port")
define("db_database", default="tornado", help="database name")
define("db_user", default="tornado", help="database user")
define("db_password", default="tornado", help="database password")
| 32.521739 | 81 | 0.675802 |
5d9879f28b9c13e35ac740f4cb5632764b5c35dd
| 2,426 |
py
|
Python
|
pipescaler/core/stage.py
|
KarlTDebiec/PipeScaler
|
b990ece8f3dd2c3506c226ed871871997fc57beb
|
[
"BSD-3-Clause"
] | 1 |
2022-02-07T03:47:53.000Z
|
2022-02-07T03:47:53.000Z
|
pipescaler/core/stage.py
|
KarlTDebiec/PipeScaler
|
b990ece8f3dd2c3506c226ed871871997fc57beb
|
[
"BSD-3-Clause"
] | 49 |
2022-01-17T15:16:22.000Z
|
2022-03-28T03:00:39.000Z
|
pipescaler/core/stage.py
|
KarlTDebiec/PipeScaler
|
b990ece8f3dd2c3506c226ed871871997fc57beb
|
[
"BSD-3-Clause"
] | null | null | null |
#!/usr/bin/env python
# pipescaler/core/stage.py
#
# Copyright (C) 2020-2021 Karl T Debiec
# All rights reserved.
#
# This software may be modified and distributed under the terms of the
# BSD license.
from __future__ import annotations
from abc import ABC, abstractmethod
from importlib.util import module_from_spec, spec_from_file_location
from typing import Any, List, Optional
from pipescaler.common import validate_input_path
| 27.568182 | 83 | 0.633965 |
5d99e63583440bf3da1b852644d47a0c0ec5d4a3
| 349 |
py
|
Python
|
src/project/api/rankings/urls.py
|
jSkrod/djangae-react-browser-games-app
|
28c5064f0a126021afb08b195839305aba6b35a2
|
[
"CC-BY-4.0",
"MIT"
] | null | null | null |
src/project/api/rankings/urls.py
|
jSkrod/djangae-react-browser-games-app
|
28c5064f0a126021afb08b195839305aba6b35a2
|
[
"CC-BY-4.0",
"MIT"
] | null | null | null |
src/project/api/rankings/urls.py
|
jSkrod/djangae-react-browser-games-app
|
28c5064f0a126021afb08b195839305aba6b35a2
|
[
"CC-BY-4.0",
"MIT"
] | null | null | null |
from django.conf.urls import url, include
from project.api.rankings.api import AddRanking, AddScore, GetScoresUser, GetScoresGame
urlpatterns = [
url(r'add_ranking$', AddRanking.as_view()),
url(r'add_score$', AddScore.as_view()),
url(r'get_scores_game$', GetScoresGame.as_view()),
url(r'get_scores_user$', GetScoresUser.as_view())
]
| 38.777778 | 87 | 0.739255 |
5d9a08394431a2356f36800cd3badfa0bed3c07f
| 7,730 |
py
|
Python
|
qiskit_metal/qlibrary/lumped/cap_n_interdigital.py
|
wdczdj/qiskit-metal
|
c77805f66da60021ef8d10d668715c1dc2ebcd1d
|
[
"Apache-2.0"
] | null | null | null |
qiskit_metal/qlibrary/lumped/cap_n_interdigital.py
|
wdczdj/qiskit-metal
|
c77805f66da60021ef8d10d668715c1dc2ebcd1d
|
[
"Apache-2.0"
] | null | null | null |
qiskit_metal/qlibrary/lumped/cap_n_interdigital.py
|
wdczdj/qiskit-metal
|
c77805f66da60021ef8d10d668715c1dc2ebcd1d
|
[
"Apache-2.0"
] | null | null | null |
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
from qiskit_metal import draw, Dict
from qiskit_metal.qlibrary.core import QComponent
import numpy as np
| 41.336898 | 100 | 0.51022 |
5d9a69d3f7389d018e9e0d4577b31c493762c8e2
| 4,895 |
py
|
Python
|
ThirdParty/protobuf-registry/python/protobufs/services/feature/actions/get_flags_pb2.py
|
getcircle/luno-ios
|
d18260abb537496d86cf607c170dd5e91c406f0f
|
[
"MIT"
] | null | null | null |
ThirdParty/protobuf-registry/python/protobufs/services/feature/actions/get_flags_pb2.py
|
getcircle/luno-ios
|
d18260abb537496d86cf607c170dd5e91c406f0f
|
[
"MIT"
] | null | null | null |
ThirdParty/protobuf-registry/python/protobufs/services/feature/actions/get_flags_pb2.py
|
getcircle/luno-ios
|
d18260abb537496d86cf607c170dd5e91c406f0f
|
[
"MIT"
] | null | null | null |
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: protobufs/services/feature/actions/get_flags.proto
from google.protobuf import descriptor as _descriptor
from google.protobuf import message as _message
from google.protobuf import reflection as _reflection
from google.protobuf import symbol_database as _symbol_database
from google.protobuf import descriptor_pb2
# @@protoc_insertion_point(imports)
_sym_db = _symbol_database.Default()
DESCRIPTOR = _descriptor.FileDescriptor(
name='protobufs/services/feature/actions/get_flags.proto',
package='services.feature.actions.get_flags',
syntax='proto3',
serialized_pb=b'\n2protobufs/services/feature/actions/get_flags.proto\x12\"services.feature.actions.get_flags\"\x0b\n\tRequestV1\"\x84\x01\n\nResponseV1\x12H\n\x05\x66lags\x18\x01 \x03(\x0b\x32\x39.services.feature.actions.get_flags.ResponseV1.FlagsEntry\x1a,\n\nFlagsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\x08:\x02\x38\x01\x62\x06proto3'
)
_sym_db.RegisterFileDescriptor(DESCRIPTOR)
_REQUESTV1 = _descriptor.Descriptor(
name='RequestV1',
full_name='services.feature.actions.get_flags.RequestV1',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=90,
serialized_end=101,
)
_RESPONSEV1_FLAGSENTRY = _descriptor.Descriptor(
name='FlagsEntry',
full_name='services.feature.actions.get_flags.ResponseV1.FlagsEntry',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='key', full_name='services.feature.actions.get_flags.ResponseV1.FlagsEntry.key', index=0,
number=1, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=b"".decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
_descriptor.FieldDescriptor(
name='value', full_name='services.feature.actions.get_flags.ResponseV1.FlagsEntry.value', index=1,
number=2, type=8, cpp_type=7, label=1,
has_default_value=False, default_value=False,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=_descriptor._ParseOptions(descriptor_pb2.MessageOptions(), b'8\001'),
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=192,
serialized_end=236,
)
_RESPONSEV1 = _descriptor.Descriptor(
name='ResponseV1',
full_name='services.feature.actions.get_flags.ResponseV1',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='flags', full_name='services.feature.actions.get_flags.ResponseV1.flags', index=0,
number=1, type=11, cpp_type=10, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None),
],
extensions=[
],
nested_types=[_RESPONSEV1_FLAGSENTRY, ],
enum_types=[
],
options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=104,
serialized_end=236,
)
_RESPONSEV1_FLAGSENTRY.containing_type = _RESPONSEV1
_RESPONSEV1.fields_by_name['flags'].message_type = _RESPONSEV1_FLAGSENTRY
DESCRIPTOR.message_types_by_name['RequestV1'] = _REQUESTV1
DESCRIPTOR.message_types_by_name['ResponseV1'] = _RESPONSEV1
RequestV1 = _reflection.GeneratedProtocolMessageType('RequestV1', (_message.Message,), dict(
DESCRIPTOR = _REQUESTV1,
__module__ = 'protobufs.services.feature.actions.get_flags_pb2'
# @@protoc_insertion_point(class_scope:services.feature.actions.get_flags.RequestV1)
))
_sym_db.RegisterMessage(RequestV1)
ResponseV1 = _reflection.GeneratedProtocolMessageType('ResponseV1', (_message.Message,), dict(
FlagsEntry = _reflection.GeneratedProtocolMessageType('FlagsEntry', (_message.Message,), dict(
DESCRIPTOR = _RESPONSEV1_FLAGSENTRY,
__module__ = 'protobufs.services.feature.actions.get_flags_pb2'
# @@protoc_insertion_point(class_scope:services.feature.actions.get_flags.ResponseV1.FlagsEntry)
))
,
DESCRIPTOR = _RESPONSEV1,
__module__ = 'protobufs.services.feature.actions.get_flags_pb2'
# @@protoc_insertion_point(class_scope:services.feature.actions.get_flags.ResponseV1)
))
_sym_db.RegisterMessage(ResponseV1)
_sym_db.RegisterMessage(ResponseV1.FlagsEntry)
_RESPONSEV1_FLAGSENTRY.has_options = True
_RESPONSEV1_FLAGSENTRY._options = _descriptor._ParseOptions(descriptor_pb2.MessageOptions(), b'8\001')
# @@protoc_insertion_point(module_scope)
| 32.852349 | 371 | 0.765475 |
5d9cfb201fcd48e23406da7a37202a4d1d0051f3
| 1,758 |
py
|
Python
|
Medium/102_2.py
|
Hellofafar/Leetcode
|
7a459e9742958e63be8886874904e5ab2489411a
|
[
"CNRI-Python"
] | 6 |
2017-09-25T18:05:50.000Z
|
2019-03-27T00:23:15.000Z
|
Medium/102_2.py
|
Hellofafar/Leetcode
|
7a459e9742958e63be8886874904e5ab2489411a
|
[
"CNRI-Python"
] | 1 |
2017-10-29T12:04:41.000Z
|
2018-08-16T18:00:37.000Z
|
Medium/102_2.py
|
Hellofafar/Leetcode
|
7a459e9742958e63be8886874904e5ab2489411a
|
[
"CNRI-Python"
] | null | null | null |
# ------------------------------
# Binary Tree Level Order Traversal
#
# Description:
# Given a binary tree, return the level order traversal of its nodes' values. (ie, from
# left to right, level by level).
#
# For example:
# Given binary tree [3,9,20,null,null,15,7],
# 3
# / \
# 9 20
# / \
# 15 7
# return its level order traversal as:
# [
# [3],
# [9,20],
# [15,7]
# ]
#
# Version: 2.0
# 11/11/19 by Jianfa
# ------------------------------
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
# Used for testing
if __name__ == "__main__":
test = Solution()
# ------------------------------
# Summary:
# Similar BFS solution but use a little more spaces.
# On 102.py, using list.pop(0) actually takes O(n) time because it needs to remap the index
# of values. Use collections.deque instead.
#
# O(N) time O(N) space
| 26.636364 | 108 | 0.527873 |
5d9e54e4e20b43e465756409507c8caedb39d5b5
| 7,969 |
py
|
Python
|
mturk/comparison_among_different_models/sample_from_models_for_comparison.py
|
qiaone/GIF
|
2c551e844748c72395fc91fb080c7a2f9c8d5285
|
[
"MIT"
] | 322 |
2020-08-28T22:23:09.000Z
|
2022-03-25T09:42:12.000Z
|
mturk/comparison_among_different_models/sample_from_models_for_comparison.py
|
qiaone/GIF
|
2c551e844748c72395fc91fb080c7a2f9c8d5285
|
[
"MIT"
] | 25 |
2020-11-03T02:03:51.000Z
|
2022-03-18T13:06:42.000Z
|
mturk/comparison_among_different_models/sample_from_models_for_comparison.py
|
qiaone/GIF
|
2c551e844748c72395fc91fb080c7a2f9c8d5285
|
[
"MIT"
] | 59 |
2020-08-28T23:32:08.000Z
|
2022-03-30T03:29:35.000Z
|
import sys
sys.path.append('../../')
import constants as cnst
import os
os.environ['PYTHONHASHSEED'] = '2'
import tqdm
from model.stg2_generator import StyledGenerator
import numpy as np
from my_utils.visualize_flame_overlay import OverLayViz
from my_utils.flm_dynamic_fit_overlay import camera_ringnetpp
from my_utils.generate_gif import generate_from_flame_sequence
from my_utils.generic_utils import save_set_of_images
from my_utils import compute_fid
import constants
from dataset_loaders import fast_image_reshape
import torch
from my_utils import generic_utils
from my_utils.eye_centering import position_to_given_location
# General settings
save_images = True
code_size = 236
use_inst_norm = True
core_tensor_res = 4
resolution = 256
alpha = 1
step_max = int(np.log2(resolution) - 2)
root_out_dir = f'{cnst.output_root}sample/'
num_smpl_to_eval_on = 1000
use_styled_conv_stylegan2 = True
flength = 5000
cam_t = np.array([0., 0., 0])
camera_params = camera_ringnetpp((512, 512), trans=cam_t, focal=flength)
run_ids_1 = [29, ] # with sqrt(2)
# run_ids_1 = [7, 24, 8, 3]
# run_ids_1 = [7, 8, 3]
settings_for_runs = \
{24: {'name': 'vector_cond', 'model_idx': '216000_1', 'normal_maps_as_cond': False,
'rendered_flame_as_condition': False, 'apply_sqrt2_fac_in_eq_lin': False},
29: {'name': 'full_model', 'model_idx': '294000_1', 'normal_maps_as_cond': True,
'rendered_flame_as_condition': True, 'apply_sqrt2_fac_in_eq_lin': True},
7: {'name': 'flm_rndr_tex_interp', 'model_idx': '051000_1', 'normal_maps_as_cond': False,
'rendered_flame_as_condition': True, 'apply_sqrt2_fac_in_eq_lin': False},
3: {'name': 'norm_mp_tex_interp', 'model_idx': '203000_1', 'normal_maps_as_cond': True,
'rendered_flame_as_condition': False, 'apply_sqrt2_fac_in_eq_lin': False},
8: {'name': 'norm_map_rend_flm_no_tex_interp', 'model_idx': '009000_1', 'normal_maps_as_cond': True,
'rendered_flame_as_condition': True, 'apply_sqrt2_fac_in_eq_lin': False},}
overlay_visualizer = OverLayViz()
# overlay_visualizer.setup_renderer(mesh_file=None)
flm_params = np.zeros((num_smpl_to_eval_on, code_size)).astype('float32')
fl_param_dict = np.load(cnst.all_flame_params_file, allow_pickle=True).item()
for i, key in enumerate(fl_param_dict):
flame_param = fl_param_dict[key]
flame_param = np.hstack((flame_param['shape'], flame_param['exp'], flame_param['pose'], flame_param['cam'],
flame_param['tex'], flame_param['lit'].flatten()))
# tz = camera_params['f'][0] / (camera_params['c'][0] * flame_param[:, 156:157])
# flame_param[:, 156:159] = np.concatenate((flame_param[:, 157:], tz), axis=1)
# import ipdb; ipdb.set_trace()
flm_params[i, :] = flame_param.astype('float32')
if i == num_smpl_to_eval_on - 1:
break
batch_size = 64
flame_decoder = overlay_visualizer.deca.flame.eval()
for run_idx in run_ids_1:
# import ipdb; ipdb.set_trace()
generator_1 = torch.nn.DataParallel(
StyledGenerator(embedding_vocab_size=69158,
rendered_flame_ascondition=settings_for_runs[run_idx]['rendered_flame_as_condition'],
normal_maps_as_cond=settings_for_runs[run_idx]['normal_maps_as_cond'],
core_tensor_res=core_tensor_res,
w_truncation_factor=1.0,
apply_sqrt2_fac_in_eq_lin=settings_for_runs[run_idx]['apply_sqrt2_fac_in_eq_lin'],
n_mlp=8)).cuda()
model_idx = settings_for_runs[run_idx]['model_idx']
ckpt1 = torch.load(f'{cnst.output_root}checkpoint/{run_idx}/{model_idx}.model')
generator_1.load_state_dict(ckpt1['generator_running'])
generator_1 = generator_1.eval()
# images = np.zeros((num_smpl_to_eval_on, 3, resolution, resolution)).astype('float32')
pbar = tqdm.tqdm(range(0, num_smpl_to_eval_on, batch_size))
pbar.set_description('Generating_images')
flame_mesh_imgs = None
mdl_id = 'mdl2_'
if settings_for_runs[run_idx]['name'] == 'full_model':
mdl_id = 'mdl1_'
for batch_idx in pbar:
flm_batch = flm_params[batch_idx:batch_idx+batch_size, :]
flm_batch = torch.from_numpy(flm_batch).cuda()
flm_batch = position_to_given_location(flame_decoder, flm_batch)
batch_size_true = flm_batch.shape[0]
if settings_for_runs[run_idx]['normal_maps_as_cond'] or \
settings_for_runs[run_idx]['rendered_flame_as_condition']:
cam = flm_batch[:, constants.DECA_IDX['cam'][0]:constants.DECA_IDX['cam'][1]:]
shape = flm_batch[:, constants.INDICES['SHAPE'][0]:constants.INDICES['SHAPE'][1]]
exp = flm_batch[:, constants.INDICES['EXP'][0]:constants.INDICES['EXP'][1]]
pose = flm_batch[:, constants.INDICES['POSE'][0]:constants.INDICES['POSE'][1]]
# import ipdb; ipdb.set_trace()
light_code = \
flm_batch[:, constants.DECA_IDX['lit'][0]:constants.DECA_IDX['lit'][1]:].view((batch_size_true, 9, 3))
texture_code = flm_batch[:, constants.DECA_IDX['tex'][0]:constants.DECA_IDX['tex'][1]:]
norma_map_img, _, _, _, rend_flm = \
overlay_visualizer.get_rendered_mesh(flame_params=(shape, exp, pose, light_code, texture_code),
camera_params=cam)
rend_flm = torch.clamp(rend_flm, 0, 1) * 2 - 1
norma_map_img = torch.clamp(norma_map_img, 0, 1) * 2 - 1
rend_flm = fast_image_reshape(rend_flm, height_out=256, width_out=256, mode='bilinear')
norma_map_img = fast_image_reshape(norma_map_img, height_out=256, width_out=256, mode='bilinear')
else:
rend_flm = None
norma_map_img = None
gen_1_in = ge_gen_in(flm_batch, rend_flm, norma_map_img, settings_for_runs[run_idx]['normal_maps_as_cond'],
settings_for_runs[run_idx]['rendered_flame_as_condition'])
# torch.manual_seed(2)
identity_embeddings = torch.randint(low=0, high=69158, size=(gen_1_in.shape[0], ), dtype=torch.long,
device='cuda')
mdl_1_gen_images = generic_utils.get_images_from_flame_params(
flame_params=gen_1_in.cpu().numpy(), pose=None,
model=generator_1,
step=step_max, alpha=alpha,
input_indices=identity_embeddings.cpu().numpy())
# import ipdb; ipdb.set_trace()
images = torch.clamp(mdl_1_gen_images, -1, 1).cpu().numpy()
flame_mesh_imgs = torch.clamp(rend_flm, -1, 1).cpu().numpy()
save_path_current_id = os.path.join(root_out_dir, 'inter_model_comparison', settings_for_runs[run_idx]['name'])
save_set_of_images(path=save_path_current_id, prefix=f'{mdl_id}_{batch_idx}',
images=(images + 1) / 2, show_prog_bar=True)
#save flam rndr
save_path_current_id_flm_rndr = os.path.join(root_out_dir, 'inter_model_comparison',
settings_for_runs[run_idx]['name'])
save_set_of_images(path=save_path_current_id_flm_rndr, prefix=f'mesh_{batch_idx}',
images=(flame_mesh_imgs + 1) / 2, show_prog_bar=True)
# save_set_of_images(path=save_path_this_expt, prefix='mesh_', images=((norma_map_img + 1) / 2).cpu().numpy())
# save_set_of_images(path=save_path_this_expt, prefix='mdl1_', images=((mdl_1_gen_images + 1) / 2).cpu().numpy())
# save_set_of_images(path=save_path_this_expt, prefix='mdl2_', images=((mdl_2_gen_images + 1) / 2).cpu().numpy())
| 47.718563 | 119 | 0.676371 |
5d9ff4014ab10b4aacbc6a629a0aa9ded18d3d4a
| 895 |
py
|
Python
|
setup.py
|
philippWassibauer/django-activity-stream
|
766a372aea4803ef5fe051a5de16dde5b5efcc72
|
[
"BSD-3-Clause"
] | 4 |
2015-05-21T04:28:43.000Z
|
2019-04-27T15:12:32.000Z
|
setup.py
|
philippWassibauer/django-activity-stream
|
766a372aea4803ef5fe051a5de16dde5b5efcc72
|
[
"BSD-3-Clause"
] | null | null | null |
setup.py
|
philippWassibauer/django-activity-stream
|
766a372aea4803ef5fe051a5de16dde5b5efcc72
|
[
"BSD-3-Clause"
] | 2 |
2018-02-10T22:31:07.000Z
|
2021-02-14T07:43:35.000Z
|
from distutils.core import setup
""" django-activity-stream instalation script """
setup(
name = 'activity_stream',
description = 'generic activity feed system for users',
author = 'Philipp Wassibauer',
author_email = '[email protected]',
url='http://github.com/philippWassibauer/django-activity-stream',
download_url='http://github.com/philippWassibauer/django-activity-stream/tarball/master',
license='MIT',
version = __import__('activity_stream').__version__,
classifiers=[
'Development Status :: 3 - Alpha',
'Environment :: Web Environment',
'Framework :: Django',
'Intended Audience :: Developers',
'License :: OSI Approved :: MIT License',
'Operating System :: OS Independent',
'Programming Language :: Python',
'Topic :: Software Development :: Libraries :: Python Modules',
],
)
| 33.148148 | 93 | 0.660335 |
5da0ff4d3e7dbb3fe7c21095720798fb7df7ef6b
| 742 |
py
|
Python
|
02/selenium.02.py
|
study-machine-learning/dongheon.shin
|
6103ef9c73b162603bc39a27e4ecca0f1ac35e57
|
[
"MIT"
] | 2 |
2017-09-24T02:29:48.000Z
|
2017-10-05T11:15:22.000Z
|
02/selenium.02.py
|
study-machine-learning/dongheon.shin
|
6103ef9c73b162603bc39a27e4ecca0f1ac35e57
|
[
"MIT"
] | null | null | null |
02/selenium.02.py
|
study-machine-learning/dongheon.shin
|
6103ef9c73b162603bc39a27e4ecca0f1ac35e57
|
[
"MIT"
] | null | null | null |
from selenium import webdriver
username = "henlix"
password = "my_password"
browser = webdriver.PhantomJS()
browser.implicitly_wait(5)
url_login = "https://nid.naver.com/nidlogin.login"
browser.get(url_login)
el = browser.find_element_by_id("id")
el.clear()
el.send_keys(username)
el = browser.find_element_by_id("pw")
el.clear()
el.send_keys(password)
form = browser.find_element_by_css_selector("input.btn_global[type=submit]")
form.submit()
url_shopping_list = "https://order.pay.naver.com/home?tabMenu=SHOPPING"
browser.get(url_shopping_list)
products = browser.find_elements_by_css_selector(".p_info span")
for product in products:
print("- ", product.text)
# PYTHONIOENCODING=utf-8:surrogateescape python3 selenium.02.py
| 22.484848 | 76 | 0.777628 |
5da246d54547ba7b297b610234129f3853586daf
| 343 |
py
|
Python
|
visualization/matplotlib/barwitherror.py
|
Licas/datascienceexamples
|
cbb1293dbae875cb3f166dbde00b2ab629a43ece
|
[
"MIT"
] | null | null | null |
visualization/matplotlib/barwitherror.py
|
Licas/datascienceexamples
|
cbb1293dbae875cb3f166dbde00b2ab629a43ece
|
[
"MIT"
] | null | null | null |
visualization/matplotlib/barwitherror.py
|
Licas/datascienceexamples
|
cbb1293dbae875cb3f166dbde00b2ab629a43ece
|
[
"MIT"
] | null | null | null |
from matplotlib import pyplot as plt
drinks = ["cappuccino", "latte", "chai", "americano", "mocha", "espresso"]
ounces_of_milk = [6, 9, 4, 0, 9, 0]
error = [0.6, 0.9, 0.4, 0, 0.9, 0]
#Yerr -> element at i position represents +/- error[i] variance on bar[i] value
plt.bar( range(len(drinks)),ounces_of_milk, yerr=error, capsize=15)
plt.show()
| 38.111111 | 79 | 0.667638 |
5da2dcdc36e76038fe4e53bad3d9602bb03e2dea
| 38,961 |
py
|
Python
|
Packs/mnemonicMDR/Integrations/ArgusManagedDefence/ArgusManagedDefence.py
|
matan-xmcyber/content
|
7f02301c140b35956af3cd20cb8dfc64f34afb3e
|
[
"MIT"
] | null | null | null |
Packs/mnemonicMDR/Integrations/ArgusManagedDefence/ArgusManagedDefence.py
|
matan-xmcyber/content
|
7f02301c140b35956af3cd20cb8dfc64f34afb3e
|
[
"MIT"
] | 3 |
2019-12-13T13:27:20.000Z
|
2020-01-01T14:27:45.000Z
|
Packs/mnemonicMDR/Integrations/ArgusManagedDefence/ArgusManagedDefence.py
|
matan-xmcyber/content
|
7f02301c140b35956af3cd20cb8dfc64f34afb3e
|
[
"MIT"
] | null | null | null |
import demistomock as demisto
from CommonServerPython import *
""" IMPORTS """
import json
import urllib3
import dateparser
import traceback
from typing import Any, Dict, List, Union
import logging
from argus_api import session as argus_session
from argus_api.api.currentuser.v1.user import get_current_user
from argus_api.api.cases.v2.case import (
add_case_tag,
add_comment,
advanced_case_search,
close_case,
create_case,
delete_case,
delete_comment,
download_attachment,
edit_comment,
get_attachment,
get_case_metadata_by_id,
list_case_attachments,
list_case_tags,
list_case_comments,
remove_case_tag_by_id,
remove_case_tag_by_key_value,
update_case,
)
from argus_api.api.events.v1 import get_event_by_path
from argus_api.api.events.v1.case.case import get_events_for_case
from argus_api.api.events.v1.aggregated import (
find_aggregated_events,
list_aggregated_events,
)
from argus_api.api.events.v1.payload import get_payload
from argus_api.api.events.v1.pcap import get_pcap
from argus_api.api.events.v1.nids import find_n_i_d_s_events, list_n_i_d_s_events
from argus_api.api.pdns.v3.search import search_records
from argus_api.api.reputation.v1.observation import (
fetch_observations_for_domain,
fetch_observations_for_i_p,
)
# Disable insecure warnings
urllib3.disable_warnings()
""" CONSTANTS """
DATE_FORMAT = "%Y-%m-%dT%H:%M:%SZ"
PRETTY_DATE_FORMAT = "%b %d, %Y, %H:%M:%S"
FETCH_TAG = demisto.params().get("fetch_tag")
""" HELPER FUNCTIONS """
""" COMMAND FUNCTIONS """
""" MAIN FUNCTION """
""" ENTRY POINT """
if __name__ in ("__main__", "__builtin__", "builtins"):
main()
| 35.711274 | 117 | 0.65273 |
5da38d402c0b885654d90358b5f682eddb296488
| 672 |
py
|
Python
|
03.py
|
SnowWolf75/aoc-2020
|
1745a6cf46dac097869e5af99194b710e78bed28
|
[
"Unlicense"
] | null | null | null |
03.py
|
SnowWolf75/aoc-2020
|
1745a6cf46dac097869e5af99194b710e78bed28
|
[
"Unlicense"
] | null | null | null |
03.py
|
SnowWolf75/aoc-2020
|
1745a6cf46dac097869e5af99194b710e78bed28
|
[
"Unlicense"
] | null | null | null |
#!/usr/bin/env python3
import sys, os
import unittest
from lib.common import *
filename = "inputs/2020_12_03_input.txt"
| 16.8 | 40 | 0.638393 |
5da38e943cdd95f554ae0517d32417a9a5d31b05
| 699 |
py
|
Python
|
scripts/examples/tools/capturebat.py
|
fortinet/ips-bph-framework
|
145e14cced2181f388ade07d78b4f0e9452143dd
|
[
"Apache-2.0"
] | 21 |
2019-10-24T04:59:52.000Z
|
2021-05-11T12:47:17.000Z
|
scripts/examples/tools/capturebat.py
|
fortinet/ips-bph-framework
|
145e14cced2181f388ade07d78b4f0e9452143dd
|
[
"Apache-2.0"
] | null | null | null |
scripts/examples/tools/capturebat.py
|
fortinet/ips-bph-framework
|
145e14cced2181f388ade07d78b4f0e9452143dd
|
[
"Apache-2.0"
] | 9 |
2019-10-26T16:56:08.000Z
|
2021-03-15T14:10:21.000Z
|
# Tool Imports
from bph.tools.windows.capturebat import BphCaptureBat as CaptureBat
# Core Imports
from bph.core.server.template import BphTemplateServer as TemplateServer
from bph.core.sample import BphSample as Sample
from bph.core.sample import BphLabFile as LabFile
from bph.core.session import BphSession as Session
session = Session(project_name='blackhat_arsenal_2019')
session.start()
templateserver = TemplateServer()
templateserver.start()
capturebat = CaptureBat()
capturebat.cleanup()
capturebat.execute()
capturebat.start()
capturebat.execute(delay=15)
capturebat.stop()
capturebat.execute()
capturebat.collect()
capturebat.execute()
capturebat.files()
| 24.964286 | 73 | 0.786838 |
5da47e4e4410b3e8309f308ed349c9a9599c9032
| 2,225 |
py
|
Python
|
dymos/utils/test/test_hermite.py
|
kaushikponnapalli/dymos
|
3fba91d0fc2c0e8460717b1bec80774676287739
|
[
"Apache-2.0"
] | 104 |
2018-09-08T16:52:27.000Z
|
2022-03-10T23:35:30.000Z
|
dymos/utils/test/test_hermite.py
|
kaushikponnapalli/dymos
|
3fba91d0fc2c0e8460717b1bec80774676287739
|
[
"Apache-2.0"
] | 628 |
2018-06-27T20:32:59.000Z
|
2022-03-31T19:24:32.000Z
|
dymos/utils/test/test_hermite.py
|
kaushikponnapalli/dymos
|
3fba91d0fc2c0e8460717b1bec80774676287739
|
[
"Apache-2.0"
] | 46 |
2018-06-27T20:54:07.000Z
|
2021-12-19T07:23:32.000Z
|
import unittest
import numpy as np
from numpy.testing import assert_almost_equal
from dymos.utils.hermite import hermite_matrices
if __name__ == '__main__': # pragma: no cover
unittest.main()
| 31.785714 | 79 | 0.613483 |
5da53bca28edc1a3193db977a15e4f5897d0d909
| 2,569 |
py
|
Python
|
xl_auth/settings.py
|
libris/xl_auth
|
33d705c287d2ecd81920d37c3751d947cd52588c
|
[
"Apache-2.0"
] | 7 |
2017-09-04T10:24:02.000Z
|
2019-12-02T13:12:30.000Z
|
xl_auth/settings.py
|
libris/xl_auth
|
33d705c287d2ecd81920d37c3751d947cd52588c
|
[
"Apache-2.0"
] | 140 |
2017-09-06T07:02:18.000Z
|
2022-02-26T01:26:25.000Z
|
xl_auth/settings.py
|
libris/xl_auth
|
33d705c287d2ecd81920d37c3751d947cd52588c
|
[
"Apache-2.0"
] | 2 |
2017-09-13T16:42:57.000Z
|
2018-02-15T15:32:40.000Z
|
# -*- coding: utf-8 -*-
"""Application configuration."""
from __future__ import absolute_import, division, print_function, unicode_literals
import os
from . import __author__, __name__, __version__
| 34.716216 | 82 | 0.696769 |
5da5c1523876b5ad6f15a38ad4bcfea7774fd3c9
| 3,083 |
py
|
Python
|
tests/mrp/test_mrp_auth.py
|
evanreichard/pyatv
|
d41bd749bbf8f8a9365e7fd36c1164543e334565
|
[
"MIT"
] | null | null | null |
tests/mrp/test_mrp_auth.py
|
evanreichard/pyatv
|
d41bd749bbf8f8a9365e7fd36c1164543e334565
|
[
"MIT"
] | 1 |
2020-06-13T15:14:47.000Z
|
2020-06-13T15:14:47.000Z
|
tests/mrp/test_mrp_auth.py
|
evanreichard/pyatv
|
d41bd749bbf8f8a9365e7fd36c1164543e334565
|
[
"MIT"
] | null | null | null |
"""Functional authentication tests with fake MRP Apple TV."""
import inspect
from aiohttp.test_utils import AioHTTPTestCase, unittest_run_loop
import pyatv
from pyatv import exceptions
from pyatv.const import Protocol
from pyatv.conf import MrpService, AppleTV
from pyatv.mrp.server_auth import PIN_CODE, CLIENT_IDENTIFIER, CLIENT_CREDENTIALS
from tests.fake_device import FakeAppleTV
| 32.114583 | 81 | 0.705157 |
5da69a858193b1623616f277374a6ced50dc8b34
| 352 |
py
|
Python
|
tests_app/tests/functional/key_constructor/bits/models.py
|
maryokhin/drf-extensions
|
8223db2bdddaf3cd99f951b2291210c5fd5b0e6f
|
[
"MIT"
] | 1 |
2019-06-18T16:40:33.000Z
|
2019-06-18T16:40:33.000Z
|
tests_app/tests/functional/key_constructor/bits/models.py
|
maryokhin/drf-extensions
|
8223db2bdddaf3cd99f951b2291210c5fd5b0e6f
|
[
"MIT"
] | null | null | null |
tests_app/tests/functional/key_constructor/bits/models.py
|
maryokhin/drf-extensions
|
8223db2bdddaf3cd99f951b2291210c5fd5b0e6f
|
[
"MIT"
] | 1 |
2018-07-17T00:13:19.000Z
|
2018-07-17T00:13:19.000Z
|
# -*- coding: utf-8 -*-
from django.db import models
| 22 | 60 | 0.713068 |
5da7c35c6f555424a35c54ce0dd94e20ac56d5b8
| 4,116 |
py
|
Python
|
ngraph_onnx/onnx_importer/utils/numeric_limits.py
|
cliveseldon/ngraph-onnx
|
a2d20afdc7acd5064e4717612ad372d864d03d3d
|
[
"Apache-2.0"
] | null | null | null |
ngraph_onnx/onnx_importer/utils/numeric_limits.py
|
cliveseldon/ngraph-onnx
|
a2d20afdc7acd5064e4717612ad372d864d03d3d
|
[
"Apache-2.0"
] | null | null | null |
ngraph_onnx/onnx_importer/utils/numeric_limits.py
|
cliveseldon/ngraph-onnx
|
a2d20afdc7acd5064e4717612ad372d864d03d3d
|
[
"Apache-2.0"
] | null | null | null |
# ******************************************************************************
# Copyright 2018 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
import numbers
from typing import Union
| 34.588235 | 94 | 0.640671 |
5da817172273224f419b42630ca0117dc06b1363
| 5,158 |
py
|
Python
|
curvpack/utils.py
|
AbhilashReddyM/curvpack
|
74351624ec9ec50ec4445c7be85a48a4eabb029a
|
[
"BSD-3-Clause"
] | 8 |
2019-04-30T19:31:57.000Z
|
2022-02-25T14:50:56.000Z
|
curvpack/utils.py
|
AbhilashReddyM/curvpack
|
74351624ec9ec50ec4445c7be85a48a4eabb029a
|
[
"BSD-3-Clause"
] | 1 |
2019-06-14T06:32:40.000Z
|
2019-06-14T18:26:01.000Z
|
curvpack/utils.py
|
AbhilashReddyM/curvpack
|
74351624ec9ec50ec4445c7be85a48a4eabb029a
|
[
"BSD-3-Clause"
] | 3 |
2020-04-18T10:13:55.000Z
|
2022-02-02T03:53:04.000Z
|
import numpy as np
# The first two functions are modified from MNE surface project. LIcense follows
# This software is OSI Certified Open Source Software. OSI Certified is a certification mark of the Open Source Initiative.
#
# Copyright (c) 2011-2019, authors of MNE-Python. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
#
# Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
# Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
# Neither the names of MNE-Python authors nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission.
#
# This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright owner or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.
def triangle_neighbors(tris, npts):
"""Efficiently compute vertex neighboring triangles.
Returns the triangles in the 1-ring of a given vertex
"""
# this code replaces the following, but is faster (vectorized):
#
# this['neighbor_tri'] = [list() for _ in xrange(this['np'])]
# for p in xrange(this['ntri']):
# verts = this['tris'][p]
# this['neighbor_tri'][verts[0]].append(p)
# this['neighbor_tri'][verts[1]].append(p)
# this['neighbor_tri'][verts[2]].append(p)
# this['neighbor_tri'] = [np.array(nb, int) for nb in this['neighbor_tri']]
#
verts = tris.ravel()
counts = np.bincount(verts, minlength=npts)
reord = np.argsort(verts)
tri_idx = np.unravel_index(reord, (len(tris), 3))[0]
idx = np.cumsum(np.r_[0, counts])
# the sort below slows it down a bit, but is needed for equivalence
neighbor_tri = np.array([np.sort(tri_idx[v1:v2])
for v1, v2 in zip(idx[:-1], idx[1:])])
return neighbor_tri
def get_surf_neighbors(tris,neighbor_tri, k):
"""Get vertices of 1-ring
"""
verts = tris[neighbor_tri[k]]
verts = np.setdiff1d(verts, [k], assume_unique=False)
nneighbors = len(verts)
return verts
def GetVertexNormals(vertices,faces,FaceNormals,e0,e1,e2):
"""
INPUT:
Vertices : vertices
Faces : vertex connectivity
FaceNormals : Outer Normal per face, having magnitude equal to area of face
e0,e1,e2 : edge vectors
OUTPUT:
VertNormals : Unit normal at the vertex
"""
VertNormals =np.zeros(vertices.shape)
#edge lengths
de0=np.sqrt(e0[:,0]**2+e0[:,1]**2+e0[:,2]**2)
de1=np.sqrt(e1[:,0]**2+e1[:,1]**2+e1[:,2]**2)
de2=np.sqrt(e2[:,0]**2+e2[:,1]**2+e2[:,2]**2)
L2=np.c_[de0**2,de1**2,de2**2]
#Calculate weights according to N.Max [1999] for normals
wfv1=FaceNormals/(L2[:,1]*L2[:,2])[:,np.newaxis]
wfv2=FaceNormals/(L2[:,2]*L2[:,0])[:,np.newaxis]
wfv3=FaceNormals/(L2[:,0]*L2[:,1])[:,np.newaxis]
# #Calculate the weights according to MWA for normals
# wfv1=FaceNormals*np.arcsin(2*Af/(de1*de2))[:,np.newaxis]
# wfv2=FaceNormals*np.arcsin(2*Af/(de2*de0))[:,np.newaxis]
# wfv3=FaceNormals*np.arcsin(2*Af/(de0*de1))[:,np.newaxis]
verts=faces.T[0]
for j in [0,1,2]:
VertNormals[:,j]+=np.bincount(verts,minlength=vertices.shape[0],weights=wfv1[:,j])
verts=faces.T[1]
for j in [0,1,2]:
VertNormals[:,j]+=np.bincount(verts,minlength=vertices.shape[0],weights=wfv2[:,j])
verts=faces.T[2]
for j in [0,1,2]:
VertNormals[:,j]+=np.bincount(verts,minlength=vertices.shape[0],weights=wfv3[:,j])
VertNormals=normr(VertNormals)
return VertNormals
def fastcross(x, y):
"""Compute cross product between list of 3D vectors
Input
x : Mx3 array
y : Mx3 array
Output
z : Mx3 array Cross product of x and y.
"""
if max([x.shape[0], y.shape[0]]) >= 500:
return np.c_[x[:, 1] * y[:, 2] - x[:, 2] * y[:, 1],
x[:, 2] * y[:, 0] - x[:, 0] * y[:, 2],
x[:, 0] * y[:, 1] - x[:, 1] * y[:, 0]]
else:
return np.cross(x, y)
def normr(vec):
"""
Normalizes an array of vectors. e.g. to convert a np array of vectors to unit vectors
"""
return vec/np.sqrt((vec**2).sum(axis=1))[:,np.newaxis]
| 44.852174 | 757 | 0.65917 |
5da84607f0ca3d7ead02486a100adef7e245823f
| 14,805 |
py
|
Python
|
tests/unit/core/streams/test_stream_zero.py
|
tethys-platform/tethys
|
c27daf5a832b05f9d771b04355001c331bc08766
|
[
"ECL-2.0",
"Apache-2.0"
] | 2 |
2020-05-20T19:03:14.000Z
|
2020-06-03T20:43:34.000Z
|
tests/unit/core/streams/test_stream_zero.py
|
tethys-platform/tethys
|
c27daf5a832b05f9d771b04355001c331bc08766
|
[
"ECL-2.0",
"Apache-2.0"
] | null | null | null |
tests/unit/core/streams/test_stream_zero.py
|
tethys-platform/tethys
|
c27daf5a832b05f9d771b04355001c331bc08766
|
[
"ECL-2.0",
"Apache-2.0"
] | null | null | null |
# Copyright 2020 Konstruktor, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import platform
import time
from unittest import mock
from unittest.mock import patch, call
from pytest import fixture
from tethys.core.pipes.pipe_zero import ZeroPipe
from tethys.core.sessions.sess_zero import ZeroSession
from tethys.core.stations.station_zero import ZeroStation
from tethys.core.streams.stream_zero import ZeroStream
from tethys.core.transports.transport_zero import ZeroTransport
# conn context
def test_new_connection_context(self, stream):
with stream.connection_context():
MockTransport.connect.assert_called_once_with(stream)
MockTransport.disconnect.assert_not_called()
MockTransport.disconnect.assert_called_once_with(stream)
def test_old_connection_context(self, stream):
MockTransport._connections[stream.id] = stream
with stream.connection_context():
MockTransport.connect.assert_not_called()
MockTransport.disconnect.assert_not_called()
# heartbeat
# open
# close
# read
# write
# ack
# redirect
# open/close context
| 30.779626 | 88 | 0.640662 |
5da8c5b2385d6f73170c02cb6de27d3641c827fa
| 6,653 |
py
|
Python
|
amd64-linux/lib/ppc64_simple_components.py
|
qiyancos/Simics-3.0.31
|
9bd52d5abad023ee87a37306382a338abf7885f1
|
[
"BSD-4-Clause",
"FSFAP"
] | 1 |
2020-06-15T10:41:18.000Z
|
2020-06-15T10:41:18.000Z
|
amd64-linux/lib/ppc64_simple_components.py
|
qiyancos/Simics-3.0.31
|
9bd52d5abad023ee87a37306382a338abf7885f1
|
[
"BSD-4-Clause",
"FSFAP"
] | null | null | null |
amd64-linux/lib/ppc64_simple_components.py
|
qiyancos/Simics-3.0.31
|
9bd52d5abad023ee87a37306382a338abf7885f1
|
[
"BSD-4-Clause",
"FSFAP"
] | 3 |
2020-08-10T10:25:02.000Z
|
2021-09-12T01:12:09.000Z
|
## Copyright 2005-2007 Virtutech AB
##
## The contents herein are Source Code which are a subset of Licensed
## Software pursuant to the terms of the Virtutech Simics Software
## License Agreement (the "Agreement"), and are being distributed under
## the Agreement. You should have received a copy of the Agreement with
## this Licensed Software; if not, please contact Virtutech for a copy
## of the Agreement prior to using this Licensed Software.
##
## By using this Source Code, you agree to be bound by all of the terms
## of the Agreement, and use of this Source Code is subject to the terms
## the Agreement.
##
## This Source Code and any derivatives thereof are provided on an "as
## is" basis. Virtutech makes no warranties with respect to the Source
## Code or any derivatives thereof and disclaims all implied warranties,
## including, without limitation, warranties of merchantability and
## fitness for a particular purpose and non-infringement.
from sim_core import *
from components import *
import time
# Generic Simple System for PPC64 Processors
ppc64_simple_attributes = [
['cpu_frequency', Sim_Attr_Required, 'f',
'Processor frequency in MHz.'],
['memory_megs', Sim_Attr_Required, 'i',
'The amount of RAM in megabytes.'],
['map_offset', Sim_Attr_Optional, 'i',
'Base address for device mappings. ' \
'Offsets at 4 GB and above will not work'],
['time_of_day', Sim_Attr_Optional, 's',
'Date and time to initialize the OpenFirmware RTC to']]
| 37.587571 | 78 | 0.599579 |
5da9e73a716a3d83801c56b0312fd8f4d87f351c
| 385 |
py
|
Python
|
Front-end (Django)/course/migrations/0002_subject_number_of_questions.py
|
shadow0403bsr/AutomatedGradingSoftware
|
5031d22683a05f937615b3b8997152c285a2f930
|
[
"MIT"
] | null | null | null |
Front-end (Django)/course/migrations/0002_subject_number_of_questions.py
|
shadow0403bsr/AutomatedGradingSoftware
|
5031d22683a05f937615b3b8997152c285a2f930
|
[
"MIT"
] | null | null | null |
Front-end (Django)/course/migrations/0002_subject_number_of_questions.py
|
shadow0403bsr/AutomatedGradingSoftware
|
5031d22683a05f937615b3b8997152c285a2f930
|
[
"MIT"
] | null | null | null |
# Generated by Django 3.0.1 on 2020-02-15 06:02
from django.db import migrations, models
| 20.263158 | 49 | 0.597403 |
5da9e91d7d69e5378260fe7c404a58e9aa312b9e
| 3,101 |
py
|
Python
|
cornflow/tests/unit/test_dags.py
|
pchtsp/corn
|
2811ad400f3f3681a159984eabf4fee1fc99b433
|
[
"MIT"
] | 5 |
2021-11-24T02:43:22.000Z
|
2021-12-10T09:28:32.000Z
|
cornflow/tests/unit/test_dags.py
|
pchtsp/corn
|
2811ad400f3f3681a159984eabf4fee1fc99b433
|
[
"MIT"
] | 125 |
2021-09-01T12:06:48.000Z
|
2022-03-30T11:32:57.000Z
|
cornflow/tests/unit/test_dags.py
|
pchtsp/corn
|
2811ad400f3f3681a159984eabf4fee1fc99b433
|
[
"MIT"
] | 1 |
2022-03-23T17:57:59.000Z
|
2022-03-23T17:57:59.000Z
|
"""
Unit test for the DAG endpoints
"""
# Import from libraries
import json
# Import from internal modules
from cornflow.shared.const import EXEC_STATE_CORRECT, EXEC_STATE_MANUAL
from cornflow.tests.const import (
DAG_URL,
EXECUTION_URL_NORUN,
CASE_PATH,
INSTANCE_URL,
)
from cornflow.tests.unit.test_executions import TestExecutionsDetailEndpointMock
| 27.936937 | 80 | 0.563689 |
5daa62bfbc58bf60d68725712bf46468f85577d3
| 10,673 |
py
|
Python
|
nets/resnet.py
|
xwshi/faster-rcnn-keras
|
bfd99e3d0e786ada75a212c007111364b2c86312
|
[
"MIT"
] | null | null | null |
nets/resnet.py
|
xwshi/faster-rcnn-keras
|
bfd99e3d0e786ada75a212c007111364b2c86312
|
[
"MIT"
] | null | null | null |
nets/resnet.py
|
xwshi/faster-rcnn-keras
|
bfd99e3d0e786ada75a212c007111364b2c86312
|
[
"MIT"
] | null | null | null |
#-------------------------------------------------------------#
# ResNet50
#-------------------------------------------------------------#
import keras.backend as K
from keras import backend as K
from keras import initializers, layers, regularizers
from keras.engine import InputSpec, Layer
from keras.initializers import random_normal
from keras.layers import (Activation, Add, AveragePooling2D, Conv2D, MaxPooling2D, TimeDistributed,
ZeroPadding2D)
| 45.417021 | 148 | 0.599082 |
5daa836b2adc23c7d1169d134b820b47732f82c0
| 1,309 |
py
|
Python
|
app/api/deps.py
|
congdh/fastapi-realworld
|
42c8630aedf594b69bc96a327b04dfe636a785fe
|
[
"MIT"
] | null | null | null |
app/api/deps.py
|
congdh/fastapi-realworld
|
42c8630aedf594b69bc96a327b04dfe636a785fe
|
[
"MIT"
] | null | null | null |
app/api/deps.py
|
congdh/fastapi-realworld
|
42c8630aedf594b69bc96a327b04dfe636a785fe
|
[
"MIT"
] | null | null | null |
from typing import Generator
from fastapi import Depends, HTTPException
from fastapi.security import APIKeyHeader
from sqlalchemy.orm import Session
from starlette import status
from app import crud, models
from app.core import security
from app.db.session import SessionLocal
JWT_TOKEN_PREFIX = "Token" # noqa: S105
| 26.714286 | 81 | 0.694423 |
5daaea4f5cbe880e71d3bbf0f6ec12e332c717ab
| 2,343 |
py
|
Python
|
src/raiden_libs/contract_info.py
|
netcriptus/raiden-services
|
3955d91852c616f6ba0a3a979757edbd852b2c6d
|
[
"MIT"
] | 13 |
2019-02-07T23:23:33.000Z
|
2021-07-03T16:00:53.000Z
|
src/raiden_libs/contract_info.py
|
netcriptus/raiden-services
|
3955d91852c616f6ba0a3a979757edbd852b2c6d
|
[
"MIT"
] | 1,095 |
2019-01-21T09:30:57.000Z
|
2022-03-25T05:13:30.000Z
|
src/raiden_libs/contract_info.py
|
netcriptus/raiden-services
|
3955d91852c616f6ba0a3a979757edbd852b2c6d
|
[
"MIT"
] | 18 |
2019-01-21T09:17:19.000Z
|
2022-02-23T15:53:17.000Z
|
import sys
from typing import Dict, List, Tuple
import structlog
from eth_utils import to_canonical_address
from raiden.utils.typing import Address, BlockNumber, ChainID, Optional
from raiden_contracts.contract_manager import (
ContractDevEnvironment,
ContractManager,
contracts_precompiled_path,
get_contracts_deployment_info,
)
log = structlog.get_logger(__name__)
CONTRACT_MANAGER = ContractManager(contracts_precompiled_path())
def get_contract_addresses_and_start_block(
chain_id: ChainID,
contracts: List[str],
address_overwrites: Dict[str, Address],
development_environment: ContractDevEnvironment = ContractDevEnvironment.DEMO,
contracts_version: Optional[str] = None,
) -> Tuple[Dict[str, Address], BlockNumber]:
"""Returns contract addresses and start query block for a given chain and contracts version.
The default contracts can be overwritten by the additional parameters.
Args:
chain_id: The chain id to look for deployed contracts.
contracts: The list of contracts which should be considered
address_overwrites: Dict of addresses which should be used instead of
the ones in the requested deployment.
contracts_version: The version of the contracts to use.
Returns: A dictionary with the contract addresses and start block for the given information
"""
contract_data = get_contracts_deployment_info(
chain_id=chain_id,
version=contracts_version,
development_environment=development_environment,
)
if not contract_data:
log.error(
"No deployed contracts were found at the default registry",
contracts_version=contracts_version,
)
sys.exit(1)
# Get deployed addresses for those contracts which have no overwrites
addresses = {
c: (
address_overwrites.get(c)
or to_canonical_address(contract_data["contracts"][c]["address"])
)
for c in contracts
}
# Set start block to zero if any contract addresses are overwritten
if any(address_overwrites.values()):
start_block = BlockNumber(0)
else:
start_block = BlockNumber(
max(0, min(contract_data["contracts"][c]["block_number"] for c in contracts))
)
return addresses, start_block
| 33.956522 | 96 | 0.714042 |
5dab624f1bba960c93bdbcfc0dd2115a637b7aae
| 8,749 |
py
|
Python
|
meta_dataset/models/functional_classifiers.py
|
letyrodridc/meta-dataset
|
d868ea1c767cce46fa6723f6f77c29552754fcc9
|
[
"Apache-2.0"
] | null | null | null |
meta_dataset/models/functional_classifiers.py
|
letyrodridc/meta-dataset
|
d868ea1c767cce46fa6723f6f77c29552754fcc9
|
[
"Apache-2.0"
] | null | null | null |
meta_dataset/models/functional_classifiers.py
|
letyrodridc/meta-dataset
|
d868ea1c767cce46fa6723f6f77c29552754fcc9
|
[
"Apache-2.0"
] | null | null | null |
# coding=utf-8
# Copyright 2022 The Meta-Dataset Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python2,python3
"""Classifier-related code."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gin.tf
from meta_dataset.models import functional_backbones
import tensorflow.compat.v1 as tf
def linear_classifier_forward_pass(embeddings, w_fc, b_fc, cosine_classifier,
cosine_logits_multiplier, use_weight_norm):
"""Passes embeddings through the linear layer defined by w_fc and b_fc.
Args:
embeddings: A Tensor of size [batch size, embedding dim].
w_fc: A Tensor of size [embedding dim, num outputs].
b_fc: Either None, or a Tensor of size [num outputs] or []. If
cosine_classifier is False, it can not be None.
cosine_classifier: A bool. If true, a cosine classifier is used which does
not require the bias b_fc.
cosine_logits_multiplier: A float. Only used if cosine_classifier is True,
and multiplies the resulting logits.
use_weight_norm: A bool. Whether weight norm was used. If so, then if using
cosine classifier, normalize only the embeddings but not the weights.
Returns:
logits: A Tensor of size [batch size, num outputs].
"""
if cosine_classifier:
# Each column of the weight matrix may be interpreted as a class
# representation (of the same dimenionality as the embedding space). The
# logit for an embedding vector belonging to that class is the cosine
# similarity between that embedding and that class representation.
embeddings = tf.nn.l2_normalize(embeddings, axis=1, epsilon=1e-3)
if not use_weight_norm:
# Only normalize the weights if weight norm was not used.
w_fc = tf.nn.l2_normalize(w_fc, axis=0, epsilon=1e-3)
logits = tf.matmul(embeddings, w_fc)
# Scale the logits as passing numbers in [-1, 1] to softmax is not very
# expressive.
logits *= cosine_logits_multiplier
else:
assert b_fc is not None
logits = tf.matmul(embeddings, w_fc) + b_fc
return logits
| 41.861244 | 80 | 0.686821 |
5dacac5c524e8494c9a0a1e27e5a00cc81bbbd7d
| 13,499 |
py
|
Python
|
app.py
|
Shrinidhi-C/Context-Based-Question-Answering
|
f2e0bbc03003aae65f4cabddecd5cd9fcdbfb333
|
[
"Apache-2.0"
] | 16 |
2021-03-09T17:00:27.000Z
|
2022-01-07T15:49:46.000Z
|
app.py
|
Shrinidhi-C/Context-Based-Question-Answering
|
f2e0bbc03003aae65f4cabddecd5cd9fcdbfb333
|
[
"Apache-2.0"
] | 1 |
2021-06-03T13:01:41.000Z
|
2021-06-03T13:01:41.000Z
|
app.py
|
Karthik-Bhaskar/Context-Based-Question-Answering
|
f2e0bbc03003aae65f4cabddecd5cd9fcdbfb333
|
[
"Apache-2.0"
] | 7 |
2021-03-10T11:33:18.000Z
|
2022-01-07T17:48:17.000Z
|
import os
import threading
import shutil
from datetime import timedelta, datetime
from flask import Flask, render_template, request, session, jsonify, url_for, redirect
from haystack.document_store.elasticsearch import *
from haystack.preprocessor.utils import convert_files_to_dicts
from haystack.preprocessor.cleaning import clean_wiki_text
from haystack import Finder
from haystack.retriever.sparse import ElasticsearchRetriever
from haystack.reader.transformers import TransformersReader
from elasticsearch import Elasticsearch
es = (
Elasticsearch()
) # Replace with Elasticsearch(["http://elasticsearch:9200/"], verify_certs=True) to build docker image
session_time = 60 # Session Timeout in Minutes
app = Flask(__name__)
app.secret_key = "cbqa_123"
app.permanent_session_lifetime = timedelta(minutes=session_time)
user_id = 0 # User ID to keep track w.r.t sessions and context data
current_users = dict() # Used to store user id with time of login
user_doc_store = dict() # Document store object of the user id
user_settings = dict() # User settings for GPU and Pre-trained models choice
# Handles pre-processing the context and uploads the pre-processed context to Elasticsearch
# Each user is assigned with a separate Elasticsearch index starting with "user_{user_id}"
# Documents & textual context are deleted from them temp folder named with user_id under users dir after uploading to Es
# Handles setting up reader and retriever
# Handles deletion of context data completely from the server after the session time ends and deletes user id from dict
session_timer = threading.Thread(target=user_session_timer)
session_timer.start()
# Handles users w.r.t new session or already in session
# Handles context documents uploads
# Handles context added through the textbox
# Provides extracted answers for the posted question
# Handles GPU setting changes.
# Handles pre-trained model choice setting changes.
# Handles session timeout redirection
# Handles removing of session identifier from session dict, This works only when app tab is open until session completes
# Comment the below block in case of building a docker image or running on WSGI server like gunicorn
if __name__ == "__main__":
app.run(host="0.0.0.0")
| 38.132768 | 120 | 0.588414 |
5dad62563785343452980a6c164a9cfda04650c2
| 7,486 |
py
|
Python
|
timevortex/utils/filestorage.py
|
timevortexproject/timevortex
|
2bc1a50b255524af8582e6624dee280d64d3c9f3
|
[
"MIT"
] | null | null | null |
timevortex/utils/filestorage.py
|
timevortexproject/timevortex
|
2bc1a50b255524af8582e6624dee280d64d3c9f3
|
[
"MIT"
] | null | null | null |
timevortex/utils/filestorage.py
|
timevortexproject/timevortex
|
2bc1a50b255524af8582e6624dee280d64d3c9f3
|
[
"MIT"
] | null | null | null |
#!/usr/bin/python3
# -*- coding: utf8 -*-
# -*- Mode: Python; py-indent-offset: 4 -*-
"""File storage adapter for timevortex project"""
import os
from os import listdir, makedirs
from os.path import isfile, join, exists
from time import tzname
from datetime import datetime
import pytz
import dateutil.parser
from django.conf import settings
from django.utils import timezone
from timevortex.utils.globals import LOGGER, KEY_ERROR, KEY_SITE_ID, KEY_VARIABLE_ID, KEY_VALUE, KEY_DATE
from timevortex.utils.globals import KEY_DST_TIMEZONE, KEY_NON_DST_TIMEZONE, SYSTEM_SITE_ID
SETTINGS_FILE_STORAGE_FOLDER = "SETTINGS_FILE_STORAGE_FOLDER"
SETTINGS_DEFAULT_FILE_STORAGE_FOLDER = "/tmp/data/"
def get_lines_number(file_path):
"""Get lines number
"""
return sum(1 for line in open(file_path))
def get_series_per_file(site_folder, file_prefix):
"""Get series per file
"""
series = {}
for filename in listdir(site_folder):
is_file = isfile(join(site_folder, filename))
if is_file and file_prefix in filename:
complete_filename = "%s/%s" % (site_folder, filename)
with open(complete_filename, "r") as filed:
temp_series = filed.readlines()
for line in temp_series:
array_line = line.split("\t")
if len(array_line) >= 2:
series[array_line[1]] = array_line[0]
return series
def get_last_file_name(site_folder, file_prefix):
"""Get last filename
"""
old_date = None
last_filename = ""
for new_filename in listdir(site_folder):
is_file = isfile(join(site_folder, new_filename))
if is_file and file_prefix in new_filename:
old_date, last_filename = update_last_file_name(file_prefix, old_date, last_filename, new_filename)
return last_filename
def update_last_file_name(file_prefix, old_date, last_filename, new_filename):
"""Update last file name
"""
try:
new_date = new_filename.replace(file_prefix, "")
new_date = datetime.strptime(new_date, "%Y-%m-%d")
if old_date is None or new_date > old_date:
return new_date, new_filename
except ValueError:
LOGGER.error("Not right file")
return old_date, last_filename
FILE_STORAGE_SPACE = FileStorage(getattr(settings, SETTINGS_FILE_STORAGE_FOLDER, SETTINGS_DEFAULT_FILE_STORAGE_FOLDER))
| 34.497696 | 119 | 0.612209 |
5daed49fa4c053c06f93d18e081f06b652a982e8
| 4,078 |
py
|
Python
|
main_tg.py
|
olegush/quiz-bot
|
ae370d42f32c42b290a507924a801c63901d5148
|
[
"MIT"
] | null | null | null |
main_tg.py
|
olegush/quiz-bot
|
ae370d42f32c42b290a507924a801c63901d5148
|
[
"MIT"
] | null | null | null |
main_tg.py
|
olegush/quiz-bot
|
ae370d42f32c42b290a507924a801c63901d5148
|
[
"MIT"
] | null | null | null |
import os
import logging
import logging.config
from functools import partial
from dotenv import load_dotenv
from telegram import Bot, ReplyKeyboardMarkup, ReplyKeyboardRemove
from telegram.ext import (Updater, CommandHandler, MessageHandler,
RegexHandler, ConversationHandler, Filters)
from redis import Redis
from tg_logging import create_logger
from quiz_tools import get_question_and_answer, format_answer, format_question
QUESTION, ATTEMPT = range(2)
if __name__ == '__main__':
main()
| 31.612403 | 102 | 0.632908 |
5daf4ad3d9f3b39d8355c443ca683a3b5708554c
| 3,082 |
py
|
Python
|
tf_fourier_features/fourier_features_mlp.py
|
titu1994/tf_fourier_features
|
3aead078ae79a278b9975e21f44560a7f51e3f31
|
[
"MIT"
] | 37 |
2020-06-20T21:39:30.000Z
|
2021-11-08T09:31:22.000Z
|
tf_fourier_features/fourier_features_mlp.py
|
titu1994/tf_fourier_features
|
3aead078ae79a278b9975e21f44560a7f51e3f31
|
[
"MIT"
] | null | null | null |
tf_fourier_features/fourier_features_mlp.py
|
titu1994/tf_fourier_features
|
3aead078ae79a278b9975e21f44560a7f51e3f31
|
[
"MIT"
] | 5 |
2020-06-22T10:24:11.000Z
|
2021-09-10T10:40:08.000Z
|
import tensorflow as tf
from typing import Optional
from tf_fourier_features import fourier_features
| 48.15625 | 156 | 0.633679 |
5db0d4e1070be8121a1c33bca072f550967ebe82
| 6,969 |
py
|
Python
|
eek/spider.py
|
fusionbox/eek
|
8e962b7ad80c594a3498190fead016db826771e0
|
[
"BSD-2-Clause-FreeBSD"
] | 5 |
2015-05-11T18:13:51.000Z
|
2021-07-17T04:53:27.000Z
|
eek/spider.py
|
fusionbox/eek
|
8e962b7ad80c594a3498190fead016db826771e0
|
[
"BSD-2-Clause-FreeBSD"
] | 1 |
2015-03-06T20:32:14.000Z
|
2015-03-06T20:32:14.000Z
|
eek/spider.py
|
fusionbox/eek
|
8e962b7ad80c594a3498190fead016db826771e0
|
[
"BSD-2-Clause-FreeBSD"
] | 2 |
2015-07-15T12:41:32.000Z
|
2015-10-12T21:40:14.000Z
|
import urlparse
import csv
import sys
import re
import collections
import time
import requests
from eek import robotparser # this project's version
from bs4 import BeautifulSoup
try:
import lxml
except ImportError:
HTML_PARSER = None
else:
HTML_PARSER = 'lxml'
encoding_re = re.compile("charset\s*=\s*(\S+?)(;|$)")
html_re = re.compile("text/html")
headers = ['url', 'title', 'description', 'keywords', 'allow', 'disallow',
'noindex', 'meta robots', 'canonical', 'referer', 'status']
def encoding_from_content_type(content_type):
"""
Extracts the charset from a Content-Type header.
>>> encoding_from_content_type('text/html; charset=utf-8')
'utf-8'
>>> encoding_from_content_type('text/html')
>>>
"""
if not content_type:
return None
match = encoding_re.search(content_type)
return match and match.group(1) or None
def lremove(string, prefix):
"""
Remove a prefix from a string, if it exists.
>>> lremove('www.foo.com', 'www.')
'foo.com'
>>> lremove('foo.com', 'www.')
'foo.com'
"""
if string.startswith(prefix):
return string[len(prefix):]
else:
return string
def beautify(response):
content_type = response.headers.get('content-type')
if content_type:
if not html_re.search(content_type):
raise NotHtmlException
encoding = encoding_from_content_type(content_type)
else:
encoding = None
try:
return BeautifulSoup(
response.content,
features=HTML_PARSER,
from_encoding=encoding,
)
except UnicodeEncodeError:
raise NotHtmlException
def get_links(response):
if 300 <= response.status_code < 400 and response.headers['location']:
# redirect
yield urlparse.urldefrag(
urlparse.urljoin(response.url, response.headers['location'], False)
)[0]
try:
html = beautify(response)
for i in html.find_all('a', href=True):
yield urlparse.urldefrag(urlparse.urljoin(response.url, i['href'], False))[0]
except NotHtmlException:
pass
| 29.529661 | 99 | 0.605252 |
5db204f5af9206eceaf400a510a5e3d05316e861
| 2,647 |
py
|
Python
|
observations/r/zea_mays.py
|
hajime9652/observations
|
2c8b1ac31025938cb17762e540f2f592e302d5de
|
[
"Apache-2.0"
] | 199 |
2017-07-24T01:34:27.000Z
|
2022-01-29T00:50:55.000Z
|
observations/r/zea_mays.py
|
hajime9652/observations
|
2c8b1ac31025938cb17762e540f2f592e302d5de
|
[
"Apache-2.0"
] | 46 |
2017-09-05T19:27:20.000Z
|
2019-01-07T09:47:26.000Z
|
observations/r/zea_mays.py
|
hajime9652/observations
|
2c8b1ac31025938cb17762e540f2f592e302d5de
|
[
"Apache-2.0"
] | 45 |
2017-07-26T00:10:44.000Z
|
2022-03-16T20:44:59.000Z
|
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import csv
import numpy as np
import os
import sys
from observations.util import maybe_download_and_extract
def zea_mays(path):
"""Darwin's Heights of Cross- and Self-fertilized Zea May Pairs
Darwin (1876) studied the growth of pairs of zea may (aka corn)
seedlings, one produced by cross-fertilization and the other produced by
self-fertilization, but otherwise grown under identical conditions. His
goal was to demonstrate the greater vigour of the cross-fertilized
plants. The data recorded are the final height (inches, to the nearest
1/8th) of the plants in each pair.
In the *Design of Experiments*, Fisher (1935) used these data to
illustrate a paired t-test (well, a one-sample test on the mean
difference, `cross - self`). Later in the book (section 21), he used
this data to illustrate an early example of a non-parametric permutation
test, treating each paired difference as having (randomly) either a
positive or negative sign.
A data frame with 15 observations on the following 4 variables.
`pair`
pair number, a numeric vector
`pot`
pot, a factor with levels `1` `2` `3` `4`
`cross`
height of cross fertilized plant, a numeric vector
`self`
height of self fertilized plant, a numeric vector
`diff`
`cross - self` for each pair
Darwin, C. (1876). *The Effect of Cross- and Self-fertilization in the
Vegetable Kingdom*, 2nd Ed. London: John Murray.
Andrews, D. and Herzberg, A. (1985) *Data: a collection of problems from
many fields for the student and research worker*. New York: Springer.
Data retrieved from: `https://www.stat.cmu.edu/StatDat/`
Args:
path: str.
Path to directory which either stores file or otherwise file will
be downloaded and extracted there.
Filename is `zea_mays.csv`.
Returns:
Tuple of np.ndarray `x_train` with 15 rows and 5 columns and
dictionary `metadata` of column headers (feature names).
"""
import pandas as pd
path = os.path.expanduser(path)
filename = 'zea_mays.csv'
if not os.path.exists(os.path.join(path, filename)):
url = 'http://dustintran.com/data/r/HistData/ZeaMays.csv'
maybe_download_and_extract(path, url,
save_file_name='zea_mays.csv',
resume=False)
data = pd.read_csv(os.path.join(path, filename), index_col=0,
parse_dates=True)
x_train = data.values
metadata = {'columns': data.columns}
return x_train, metadata
| 32.679012 | 74 | 0.705327 |
5db3dae6928f712e933165c643051e536448b1fb
| 359 |
py
|
Python
|
ois_api_client/v3_0/dto/Lines.py
|
peterkulik/ois_api_client
|
51dabcc9f920f89982c4419bb058f5a88193cee0
|
[
"MIT"
] | 7 |
2020-10-22T08:15:29.000Z
|
2022-01-27T07:59:39.000Z
|
ois_api_client/v3_0/dto/Lines.py
|
peterkulik/ois_api_client
|
51dabcc9f920f89982c4419bb058f5a88193cee0
|
[
"MIT"
] | null | null | null |
ois_api_client/v3_0/dto/Lines.py
|
peterkulik/ois_api_client
|
51dabcc9f920f89982c4419bb058f5a88193cee0
|
[
"MIT"
] | null | null | null |
from typing import List
from dataclasses import dataclass
from .Line import Line
| 22.4375 | 117 | 0.743733 |
5db3e4eb84b3d9fc5559048f6229e0e36618f2f4
| 1,545 |
py
|
Python
|
parsing_documents.py
|
leylafenix/belief-network-irs
|
9094e4cde738bd93ed1747dc958b5acb0e0fa684
|
[
"MIT"
] | null | null | null |
parsing_documents.py
|
leylafenix/belief-network-irs
|
9094e4cde738bd93ed1747dc958b5acb0e0fa684
|
[
"MIT"
] | null | null | null |
parsing_documents.py
|
leylafenix/belief-network-irs
|
9094e4cde738bd93ed1747dc958b5acb0e0fa684
|
[
"MIT"
] | null | null | null |
__author__ = 'Jose Gabriel'
import os
import pprint
if __name__ == '__main__':
s = "adi" + os.sep + "ADI.ALL"
out_folder = "test_index"
try: # averiguar como preguntar si una carpeta o fichero existe en python
os.mkdir(out_folder)
except FileExistsError:
pass
parse_all(s, out_folder)
| 26.186441 | 79 | 0.514563 |
5db477aeb7079f4d5d6c834082c575659d075877
| 161 |
py
|
Python
|
groups/admin.py
|
caktus/rapidsms-groups
|
eda6f30cdc60cf57833f1d37ba08e59454da8987
|
[
"BSD-3-Clause"
] | 1 |
2016-06-19T07:34:19.000Z
|
2016-06-19T07:34:19.000Z
|
groups/admin.py
|
caktus/rapidsms-groups
|
eda6f30cdc60cf57833f1d37ba08e59454da8987
|
[
"BSD-3-Clause"
] | null | null | null |
groups/admin.py
|
caktus/rapidsms-groups
|
eda6f30cdc60cf57833f1d37ba08e59454da8987
|
[
"BSD-3-Clause"
] | 1 |
2016-08-31T05:02:03.000Z
|
2016-08-31T05:02:03.000Z
|
#!/usr/bin/env python
# vim: ai ts=4 sts=4 et sw=4 encoding=utf-8
from django.contrib import admin
from groups.models import Group
admin.site.register(Group)
| 17.888889 | 43 | 0.751553 |
5db48c51cdf7033a6dcea32b1d26408dd6d2dbc0
| 1,891 |
py
|
Python
|
avod/datasets/kitti/kitti_aug_test.py
|
Ascend-Huawei/AVOD
|
ea62372517bbfa9d4020bc5ab2739ee182c63c56
|
[
"BSD-2-Clause"
] | null | null | null |
avod/datasets/kitti/kitti_aug_test.py
|
Ascend-Huawei/AVOD
|
ea62372517bbfa9d4020bc5ab2739ee182c63c56
|
[
"BSD-2-Clause"
] | null | null | null |
avod/datasets/kitti/kitti_aug_test.py
|
Ascend-Huawei/AVOD
|
ea62372517bbfa9d4020bc5ab2739ee182c63c56
|
[
"BSD-2-Clause"
] | null | null | null |
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from npu_bridge.npu_init import *
import unittest
import numpy as np
from avod.datasets.kitti import kitti_aug
| 33.767857 | 78 | 0.670016 |
5db5a1d6975c3995d47712215ed2acd01be9b8ad
| 208 |
py
|
Python
|
application/model/_base.py
|
keysona/blog
|
783e0bdbed1e4d8ec9857ee609b39c9dfb958670
|
[
"MIT"
] | null | null | null |
application/model/_base.py
|
keysona/blog
|
783e0bdbed1e4d8ec9857ee609b39c9dfb958670
|
[
"MIT"
] | null | null | null |
application/model/_base.py
|
keysona/blog
|
783e0bdbed1e4d8ec9857ee609b39c9dfb958670
|
[
"MIT"
] | null | null | null |
from flask_sqlalchemy import SQLAlchemy, Model
# class BaseModel(Model):
# def save(self):
# db.session.add(self)
# db.session.commit(self)
# def delete(self):
# db.session.
db = SQLAlchemy()
| 16 | 46 | 0.673077 |
5db6309005811059a99432092acd5ed62236c399
| 23,282 |
py
|
Python
|
kvmagent/kvmagent/plugins/prometheus.py
|
qianfei11/zstack-utility
|
e791bc6b6ae3a74e202f6fce84bde498c715aee8
|
[
"Apache-2.0"
] | null | null | null |
kvmagent/kvmagent/plugins/prometheus.py
|
qianfei11/zstack-utility
|
e791bc6b6ae3a74e202f6fce84bde498c715aee8
|
[
"Apache-2.0"
] | null | null | null |
kvmagent/kvmagent/plugins/prometheus.py
|
qianfei11/zstack-utility
|
e791bc6b6ae3a74e202f6fce84bde498c715aee8
|
[
"Apache-2.0"
] | null | null | null |
import os.path
import threading
import typing
from prometheus_client import start_http_server
from prometheus_client.core import GaugeMetricFamily, REGISTRY
from kvmagent import kvmagent
from zstacklib.utils import http
from zstacklib.utils import jsonobject
from zstacklib.utils import lock
from zstacklib.utils import lvm
from zstacklib.utils import misc
from zstacklib.utils import thread
from zstacklib.utils.bash import *
from zstacklib.utils.ip import get_nic_supported_max_speed
logger = log.get_logger(__name__)
collector_dict = {} # type: Dict[str, threading.Thread]
latest_collect_result = {}
collectResultLock = threading.RLock()
QEMU_CMD = kvmagent.get_qemu_path().split("/")[-1]
def convert_raid_state_to_int(state):
"""
:type state: str
"""
state = state.lower()
if state == "optimal":
return 0
elif state == "degraded":
return 5
else:
return 100
def convert_disk_state_to_int(state):
"""
:type state: str
"""
state = state.lower()
if "online" in state or "jobd" in state:
return 0
elif "rebuild" in state:
return 5
elif "failed" in state:
return 10
elif "unconfigured" in state:
return 15
else:
return 100
collect_node_disk_wwid_last_time = None
collect_node_disk_wwid_last_result = None
kvmagent.register_prometheus_collector(collect_host_network_statistics)
kvmagent.register_prometheus_collector(collect_host_capacity_statistics)
kvmagent.register_prometheus_collector(collect_vm_statistics)
kvmagent.register_prometheus_collector(collect_node_disk_wwid)
if misc.isMiniHost():
kvmagent.register_prometheus_collector(collect_lvm_capacity_statistics)
kvmagent.register_prometheus_collector(collect_raid_state)
kvmagent.register_prometheus_collector(collect_equipment_state)
| 36.492163 | 157 | 0.583541 |
5db634e6fdac00dd4f3ce30f7fe7fbdaae184512
| 6,924 |
py
|
Python
|
recipes/libstudxml/all/conanfile.py
|
rockandsalt/conan-center-index
|
d739adcec3e4dd4c250eff559ceb738e420673dd
|
[
"MIT"
] | 562 |
2019-09-04T12:23:43.000Z
|
2022-03-29T16:41:43.000Z
|
recipes/libstudxml/all/conanfile.py
|
rockandsalt/conan-center-index
|
d739adcec3e4dd4c250eff559ceb738e420673dd
|
[
"MIT"
] | 9,799 |
2019-09-04T12:02:11.000Z
|
2022-03-31T23:55:45.000Z
|
recipes/libstudxml/all/conanfile.py
|
rockandsalt/conan-center-index
|
d739adcec3e4dd4c250eff559ceb738e420673dd
|
[
"MIT"
] | 1,126 |
2019-09-04T11:57:46.000Z
|
2022-03-31T16:43:38.000Z
|
from conans import ConanFile, AutoToolsBuildEnvironment, MSBuild, tools
from conans.errors import ConanInvalidConfiguration
import os
import shutil
required_conan_version = ">=1.33.0"
| 41.963636 | 124 | 0.633449 |
5db692792275a8f7aff10d7781c4cef5d88900db
| 6,263 |
py
|
Python
|
dataset/WebCariA.py
|
KeleiHe/DAAN
|
04e153c55f8d63e824adbee828e524573afe6a1c
|
[
"Apache-2.0"
] | 9 |
2020-07-24T03:32:17.000Z
|
2022-03-25T12:01:24.000Z
|
dataset/WebCariA.py
|
KeleiHe/DAAN
|
04e153c55f8d63e824adbee828e524573afe6a1c
|
[
"Apache-2.0"
] | 1 |
2020-10-14T17:22:43.000Z
|
2020-10-14T17:22:43.000Z
|
dataset/WebCariA.py
|
KeleiHe/DAAN
|
04e153c55f8d63e824adbee828e524573afe6a1c
|
[
"Apache-2.0"
] | null | null | null |
# Copyright 2020 Wen Ji & Kelei He ([email protected])
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
| 38.900621 | 113 | 0.440683 |
5db7554e0b55f70192702d11bfb40d5a1d8f2459
| 4,081 |
py
|
Python
|
moonworm/crawler/state/json_state.py
|
zomglings/moonworm
|
930e60199629b6a04adecc7f9ff9450e51bb4640
|
[
"Apache-2.0"
] | 10 |
2021-12-08T22:35:58.000Z
|
2022-03-30T07:38:12.000Z
|
moonworm/crawler/state/json_state.py
|
zomglings/moonworm
|
930e60199629b6a04adecc7f9ff9450e51bb4640
|
[
"Apache-2.0"
] | 29 |
2021-11-04T12:30:31.000Z
|
2022-03-03T21:29:08.000Z
|
moonworm/crawler/state/json_state.py
|
zomglings/moonworm
|
930e60199629b6a04adecc7f9ff9450e51bb4640
|
[
"Apache-2.0"
] | 5 |
2021-11-06T02:25:09.000Z
|
2022-02-15T03:09:26.000Z
|
import datetime
import json
import time
from typing import Optional
from web3.datastructures import AttributeDict
from .event_scanner_state import EventScannerState
| 35.486957 | 109 | 0.626072 |
5db81c5e24b93ba19d16beaadd48634b1c9fd58a
| 4,934 |
py
|
Python
|
npbench/benchmarks/nbody/nbody_dace.py
|
frahlg/npbench
|
1bc4d9e2e22f3ca67fa2bc7f40e2e751a9c8dd26
|
[
"BSD-3-Clause"
] | 27 |
2021-05-10T11:49:13.000Z
|
2022-03-22T18:07:19.000Z
|
npbench/benchmarks/nbody/nbody_dace.py
|
frahlg/npbench
|
1bc4d9e2e22f3ca67fa2bc7f40e2e751a9c8dd26
|
[
"BSD-3-Clause"
] | 3 |
2021-12-01T13:03:17.000Z
|
2022-03-17T10:53:00.000Z
|
npbench/benchmarks/nbody/nbody_dace.py
|
frahlg/npbench
|
1bc4d9e2e22f3ca67fa2bc7f40e2e751a9c8dd26
|
[
"BSD-3-Clause"
] | 7 |
2021-06-24T03:40:25.000Z
|
2022-01-26T09:04:33.000Z
|
# Adapted from https://github.com/pmocz/nbody-python/blob/master/nbody.py
# TODO: Add GPL-3.0 License
import numpy as np
import dace as dc
"""
Create Your Own N-body Simulation (With Python)
Philip Mocz (2020) Princeton Univeristy, @PMocz
Simulate orbits of stars interacting due to gravity
Code calculates pairwise forces according to Newton's Law of Gravity
"""
N, Nt = (dc.symbol(s, dtype=dc.int64) for s in ('N', 'Nt'))
# @dc.program
# def hstack(out: dc.float64[N, 3], a: dc.float64[N],
# b: dc.float64[N], c: dc.float64[N]):
# out[:, 0] = a
# out[:, 1] = b
# out[:, 2] = c
| 29.195266 | 85 | 0.561005 |
5db8b350508cfde3359da0d0ee1d9036c8e97549
| 817 |
py
|
Python
|
application/__init__.py
|
Healthy-Kokoro/Hiroshima
|
87c6c533f97f55ceb33553a2409076bcd21a36d2
|
[
"MIT"
] | null | null | null |
application/__init__.py
|
Healthy-Kokoro/Hiroshima
|
87c6c533f97f55ceb33553a2409076bcd21a36d2
|
[
"MIT"
] | null | null | null |
application/__init__.py
|
Healthy-Kokoro/Hiroshima
|
87c6c533f97f55ceb33553a2409076bcd21a36d2
|
[
"MIT"
] | null | null | null |
# Third-party imports
from flask import Flask
from flask_sqlalchemy import SQLAlchemy
configurations = {
'development': 'configurations.DevelopmentConfiguration',
'testing': 'configurations.TestingConfiguration',
'staging': 'configurations.StagingConfiguration',
'production': 'configurations.ProductionConfiguration'
}
database = SQLAlchemy()
| 30.259259 | 64 | 0.831089 |
5db8ca5f5d703991674fff33fa5c1ac47210c351
| 692 |
py
|
Python
|
lesson5/exceptions_except.py
|
drednout/letspython
|
9747442d63873b5f71e2c15ed5528bd98ad5ac31
|
[
"BSD-2-Clause"
] | 1 |
2015-11-26T15:53:58.000Z
|
2015-11-26T15:53:58.000Z
|
lesson5/exceptions_except.py
|
drednout/letspython
|
9747442d63873b5f71e2c15ed5528bd98ad5ac31
|
[
"BSD-2-Clause"
] | null | null | null |
lesson5/exceptions_except.py
|
drednout/letspython
|
9747442d63873b5f71e2c15ed5528bd98ad5ac31
|
[
"BSD-2-Clause"
] | null | null | null |
if __name__ == "__main__":
fridge = {
"beer": 2,
"milk": 1,
"meat": 3,
}
print("I wanna drink 1 bottle of beer...")
take_beer(fridge)
print("Oooh, great!")
print("I wanna drink 2 bottle of beer...")
try:
take_beer(fridge, 2)
except Exception as e:
print("Error: {}. Let's continue".format(e))
print("Fallback. Try to take 1 bottle of beer...")
take_beer(fridge, 1)
print("Oooh, awesome!")
| 22.322581 | 54 | 0.559249 |
5db9f201356818f114d992f32b2d46869da4d326
| 23,877 |
py
|
Python
|
synapse/storage/data_stores/state/store.py
|
juhovan/synapse
|
57feeab364325374b14ff67ac97c288983cc5cde
|
[
"Apache-2.0"
] | 1 |
2020-07-12T00:18:52.000Z
|
2020-07-12T00:18:52.000Z
|
synapse/storage/data_stores/state/store.py
|
juhovan/synapse
|
57feeab364325374b14ff67ac97c288983cc5cde
|
[
"Apache-2.0"
] | null | null | null |
synapse/storage/data_stores/state/store.py
|
juhovan/synapse
|
57feeab364325374b14ff67ac97c288983cc5cde
|
[
"Apache-2.0"
] | null | null | null |
# -*- coding: utf-8 -*-
# Copyright 2014-2016 OpenMarket Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from collections import namedtuple
from typing import Dict, Iterable, List, Set, Tuple
from twisted.internet import defer
from synapse.api.constants import EventTypes
from synapse.storage._base import SQLBaseStore
from synapse.storage.data_stores.state.bg_updates import StateBackgroundUpdateStore
from synapse.storage.database import Database
from synapse.storage.state import StateFilter
from synapse.types import StateMap
from synapse.util.caches.descriptors import cached
from synapse.util.caches.dictionary_cache import DictionaryCache
logger = logging.getLogger(__name__)
MAX_STATE_DELTA_HOPS = 100
def _get_state_for_groups_using_cache(
self, groups: Iterable[int], cache: DictionaryCache, state_filter: StateFilter
) -> Tuple[Dict[int, StateMap[str]], Set[int]]:
"""Gets the state at each of a list of state groups, optionally
filtering by type/state_key, querying from a specific cache.
Args:
groups: list of state groups for which we want to get the state.
cache: the cache of group ids to state dicts which
we will pass through - either the normal state cache or the
specific members state cache.
state_filter: The state filter used to fetch state from the
database.
Returns:
Tuple of dict of state_group_id to state map of entries in the
cache, and the state group ids either missing from the cache or
incomplete.
"""
results = {}
incomplete_groups = set()
for group in set(groups):
state_dict_ids, got_all = self._get_state_for_group_using_cache(
cache, group, state_filter
)
results[group] = state_dict_ids
if not got_all:
incomplete_groups.add(group)
return results, incomplete_groups
def _insert_into_cache(
self,
group_to_state_dict,
state_filter,
cache_seq_num_members,
cache_seq_num_non_members,
):
"""Inserts results from querying the database into the relevant cache.
Args:
group_to_state_dict (dict): The new entries pulled from database.
Map from state group to state dict
state_filter (StateFilter): The state filter used to fetch state
from the database.
cache_seq_num_members (int): Sequence number of member cache since
last lookup in cache
cache_seq_num_non_members (int): Sequence number of member cache since
last lookup in cache
"""
# We need to work out which types we've fetched from the DB for the
# member vs non-member caches. This should be as accurate as possible,
# but can be an underestimate (e.g. when we have wild cards)
member_filter, non_member_filter = state_filter.get_member_split()
if member_filter.is_full():
# We fetched all member events
member_types = None
else:
# `concrete_types()` will only return a subset when there are wild
# cards in the filter, but that's fine.
member_types = member_filter.concrete_types()
if non_member_filter.is_full():
# We fetched all non member events
non_member_types = None
else:
non_member_types = non_member_filter.concrete_types()
for group, group_state_dict in group_to_state_dict.items():
state_dict_members = {}
state_dict_non_members = {}
for k, v in group_state_dict.items():
if k[0] == EventTypes.Member:
state_dict_members[k] = v
else:
state_dict_non_members[k] = v
self._state_group_members_cache.update(
cache_seq_num_members,
key=group,
value=state_dict_members,
fetched_keys=member_types,
)
self._state_group_cache.update(
cache_seq_num_non_members,
key=group,
value=state_dict_non_members,
fetched_keys=non_member_types,
)
def store_state_group(
self, event_id, room_id, prev_group, delta_ids, current_state_ids
):
"""Store a new set of state, returning a newly assigned state group.
Args:
event_id (str): The event ID for which the state was calculated
room_id (str)
prev_group (int|None): A previous state group for the room, optional.
delta_ids (dict|None): The delta between state at `prev_group` and
`current_state_ids`, if `prev_group` was given. Same format as
`current_state_ids`.
current_state_ids (dict): The state to store. Map of (type, state_key)
to event_id.
Returns:
Deferred[int]: The state group ID
"""
return self.db.runInteraction("store_state_group", _store_state_group_txn)
def purge_unreferenced_state_groups(
self, room_id: str, state_groups_to_delete
) -> defer.Deferred:
"""Deletes no longer referenced state groups and de-deltas any state
groups that reference them.
Args:
room_id: The room the state groups belong to (must all be in the
same room).
state_groups_to_delete (Collection[int]): Set of all state groups
to delete.
"""
return self.db.runInteraction(
"purge_unreferenced_state_groups",
self._purge_unreferenced_state_groups,
room_id,
state_groups_to_delete,
)
def purge_room_state(self, room_id, state_groups_to_delete):
"""Deletes all record of a room from state tables
Args:
room_id (str):
state_groups_to_delete (list[int]): State groups to delete
"""
return self.db.runInteraction(
"purge_room_state",
self._purge_room_state_txn,
room_id,
state_groups_to_delete,
)
| 37.307813 | 88 | 0.590568 |
5dba0da51e77fecfd4eb4bbfdb42e2e652206d09
| 1,322 |
py
|
Python
|
core/migrations/0011_itemvariation_variation.py
|
manulangat1/djcommerce
|
2cd92631479ef949e0f05a255f2f50feca728802
|
[
"MIT"
] | 1 |
2020-02-08T16:29:41.000Z
|
2020-02-08T16:29:41.000Z
|
core/migrations/0011_itemvariation_variation.py
|
manulangat1/djcommerce
|
2cd92631479ef949e0f05a255f2f50feca728802
|
[
"MIT"
] | 15 |
2020-05-04T13:22:32.000Z
|
2022-03-12T00:27:28.000Z
|
core/migrations/0011_itemvariation_variation.py
|
manulangat1/djcommerce
|
2cd92631479ef949e0f05a255f2f50feca728802
|
[
"MIT"
] | 1 |
2020-10-17T08:54:31.000Z
|
2020-10-17T08:54:31.000Z
|
# Generated by Django 2.2.6 on 2020-02-09 12:24
from django.db import migrations, models
import django.db.models.deletion
| 34.789474 | 115 | 0.555219 |
5dba8f581c63a89cafcdb31c2be81f0648adb964
| 1,422 |
py
|
Python
|
mnist/convolutional.py
|
Colins-Ford/mnist-webapp
|
20e9b6f5520d5bda957d9501347f787450555db8
|
[
"Apache-2.0"
] | null | null | null |
mnist/convolutional.py
|
Colins-Ford/mnist-webapp
|
20e9b6f5520d5bda957d9501347f787450555db8
|
[
"Apache-2.0"
] | null | null | null |
mnist/convolutional.py
|
Colins-Ford/mnist-webapp
|
20e9b6f5520d5bda957d9501347f787450555db8
|
[
"Apache-2.0"
] | null | null | null |
import os
from mnist import model
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
data = input_data.read_data_sets("data/dataset/", one_hot=True)
# model
with tf.variable_scope("convolutional"):
x = tf.placeholder(tf.float32, [None, 784])
keep_prob = tf.placeholder(tf.float32)
y, variables = model.convolutional(x, keep_prob)
# train
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
saver = tf.train.Saver(variables)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(20000):
batch = data.train.next_batch(50)
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g" % (i, train_accuracy))
sess.run(train_step, feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
print(sess.run(accuracy, feed_dict={x: data.test.images, y_: data.test.labels, keep_prob: 1.0}))
path = saver.save(
sess, os.path.join(os.path.dirname(__file__), 'data', 'convolutional.ckpt'),
write_meta_graph=False, write_state=False)
print("Saved:", path)
| 37.421053 | 100 | 0.69339 |
5dba9613244bd2e35eb89625f766b4f652fe90d8
| 2,901 |
py
|
Python
|
parse_scripts/import_osm.py
|
nokout/au_address
|
07138ecd8fedab9566435b609cb8124b67ad42ff
|
[
"MIT"
] | 1 |
2018-11-16T15:41:38.000Z
|
2018-11-16T15:41:38.000Z
|
training/parse_scripts/import_osm.py
|
crccheck/us-address-parser
|
826fd365cba065a0588fa013cddbb23a8dac27a9
|
[
"MIT"
] | 6 |
2016-10-05T11:21:36.000Z
|
2016-10-18T15:11:20.000Z
|
parse_scripts/import_osm.py
|
nokout/au_address
|
07138ecd8fedab9566435b609cb8124b67ad42ff
|
[
"MIT"
] | null | null | null |
import requests
import codecs
query1 = """<union>
<query type="way">
<has-kv k="addr:housenumber"/>
<has-kv k="addr:street:name"/>
<has-kv k="addr:street:type"/>
<has-kv k="addr:state"/>
<bbox-query e="%s" n="%s" s="%s" w="%s"/>
</query>
<query type="way">
<has-kv k="addr:housenumber"/>
<has-kv k="addr:street:name"/>
<has-kv k="addr:street:type"/>
<has-kv k="addr:city"/>
<bbox-query e="%s" n="%s" s="%s" w="%s"/>
</query>
<query type="way">
<has-kv k="addr:housenumber"/>
<has-kv k="addr:street:name"/>
<has-kv k="addr:street:type"/>
<has-kv k="addr:postcode"/>
<bbox-query e="%s" n="%s" s="%s" w="%s"/>
</query>
<query type="node">
<has-kv k="addr:housenumber"/>
<has-kv k="addr:street:name"/>
<has-kv k="addr:street:type"/>
<has-kv k="addr:state"/>
<bbox-query e="%s" n="%s" s="%s" w="%s"/>
</query>
<query type="node">
<has-kv k="addr:housenumber"/>
<has-kv k="addr:street:name"/>
<has-kv k="addr:street:type"/>
<has-kv k="addr:city"/>
<bbox-query e="%s" n="%s" s="%s" w="%s"/>
</query>
<query type="node">
<has-kv k="addr:housenumber"/>
<has-kv k="addr:street:name"/>
<has-kv k="addr:street:type"/>
<has-kv k="addr:postcode"/>
<bbox-query e="%s" n="%s" s="%s" w="%s"/>
</query>
</union>
<print/>""" % ((-70.000000, 50.000000, 25.000000, -125.000000) * 6)
r1 = requests.post('http://overpass-api.de/api/interpreter/', data=query1)
r1.encoding = 'utf-8'
f = codecs.open('data/osm_data.xml', encoding='utf-8' , mode='w+')
f.write(r1.text)
query2 = """<union>
<query type="way">
<has-kv k="addr:street"/>
<has-kv k="addr:street:name"/>
<has-kv k="addr:street:prefix"/>
<has-kv k="addr:street:type"/>
<bbox-query e="%s" n="%s" s="%s" w="%s"/>
</query>
<query type="node">
<has-kv k="addr:street"/>
<has-kv k="addr:street:name"/>
<has-kv k="addr:street:prefix"/>
<has-kv k="addr:street:type"/>
<bbox-query e="%s" n="%s" s="%s" w="%s"/>
</query>
</union>
<print/>""" % ((-87.61309146881104, 41.890042371392965, 41.87234107841773, -87.64235973358154) * 2)
#r2 = requests.post('http://overpass-api.de/api/interpreter/', data=query2)
#f = codecs.open("data/osm_data_street.xml", "wb", "utf-8")
#r2.encoding = 'utf-8'
#f.write(r2.text)
query3 = """<union>
<query type="way">
<has-kv k="addr:full" regv="^[0-9]+.*[a-z]+.*[0-9]{5}.*"/>
<bbox-query e="%s" n="%s" s="%s" w="%s"/>
</query>
<query type="node">
<has-kv k="addr:full" regv="^[0-9]+.*[a-z]+.*[0-9]{5}.*"/>
<bbox-query e="%s" n="%s" s="%s" w="%s"/>
</query>
</union>
<print/>
""" % ((-70.000000, 50.000000, 25.000000, -125.000000) * 2)
if __name__ == '__main__' :
r3 = requests.post('http://overpass-api.de/api/interpreter/', data=query3)
f = codecs.open("data/osm_data_full_addr.xml", "wb", "utf-8")
r3.encoding = 'utf-8'
f.write(r3.text)
| 28.441176 | 99 | 0.558083 |
5dbd482917f27cdd677d99ffd355bb76525f3a13
| 4,110 |
py
|
Python
|
tools/test_net_batch.py
|
abhirevan/pedestrian-detector
|
f4fa4cd59315ea515ace3c529b716ff3173e2205
|
[
"BSD-2-Clause"
] | null | null | null |
tools/test_net_batch.py
|
abhirevan/pedestrian-detector
|
f4fa4cd59315ea515ace3c529b716ff3173e2205
|
[
"BSD-2-Clause"
] | null | null | null |
tools/test_net_batch.py
|
abhirevan/pedestrian-detector
|
f4fa4cd59315ea515ace3c529b716ff3173e2205
|
[
"BSD-2-Clause"
] | null | null | null |
#!/usr/bin/env python
# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------
"""Test a Fast R-CNN network on an image database."""
import _init_paths
from fast_rcnn.test import test_net
from fast_rcnn.config import cfg, cfg_from_file, cfg_from_list
from datasets.factory import get_imdb
import caffe
import argparse
import pprint
import time, os, sys
import pandas as pd
def parse_args():
"""
Parse input arguments
"""
parser = argparse.ArgumentParser(description='Test a Fast R-CNN network pipeline')
parser.add_argument('--gpu', dest='gpu_id', help='GPU id to use',
default=0, type=int, required=True)
parser.add_argument('--dir', dest='dir',
help='Directory of the model files',
default="", type=str, required=True)
parser.add_argument('--models', dest='model_files',
help='Text file with names of models',
default=None, type=str, required=True)
parser.add_argument('--prototxt', dest='prototxt',
help='prototxt', default=None, type=str, required=True)
parser.add_argument('--imdb', dest='imdb_name',
help='dataset to test',
default='ped_test_small', type=str, required=True)
parser.add_argument('--cfg', dest='cfg_file',
help='cfg',
default='experiments/cfgs/faster_rcnn_end2end.yml', type=str)
parser.add_argument('--res', dest='res_file',
help='result file',
default='', type=str, required=True)
args = parser.parse_args()
return args
if __name__ == '__main__':
# args = parse_args()
gpu_id = 0
# dir = '/home/abhijitcbim/git/pedestrian-detector/output/faster_rcnn_end2end/train/backup'
# model_files = 'test.txt'
args = parse_args()
print('Called with args:')
print(args)
run_test_nets(args.gpu_id, args.dir, args.model_files, args.prototxt, args.imdb_name, args.cfg_file, args.res_file)
# run_test_net(gpu_id,caffemodel, prototxt, imdb_name, cfg_file)
| 33.145161 | 119 | 0.615572 |
5dbe1aa985f0f74b54e5721ad988a0ced87ead89
| 469 |
py
|
Python
|
mygallary/urls.py
|
mangowilliam/my_gallary
|
4c87fe055e5c28d6ca6a27ea5bde7df380750006
|
[
"MIT"
] | null | null | null |
mygallary/urls.py
|
mangowilliam/my_gallary
|
4c87fe055e5c28d6ca6a27ea5bde7df380750006
|
[
"MIT"
] | 6 |
2021-03-19T02:06:21.000Z
|
2022-03-11T23:53:21.000Z
|
mygallary/urls.py
|
mangowilliam/my_gallary
|
4c87fe055e5c28d6ca6a27ea5bde7df380750006
|
[
"MIT"
] | null | null | null |
from django.conf import settings
from django.conf.urls.static import static
from django.conf.urls import url
from . import views
urlpatterns = [
url('^$', views.gallary,name = 'gallary'),
url(r'^search/', views.search_image, name='search_image'),
url(r'^details/(\d+)',views.search_location,name ='images')
]
if settings.DEBUG:
urlpatterns+= static(settings.MEDIA_URL, document_root = settings.MEDIA_ROOT)
| 20.391304 | 81 | 0.656716 |
5dbebf189d084ec54743890289ba79eb7c5bba5c
| 5,831 |
py
|
Python
|
yolox/data/datasets/mot.py
|
ldelzott/ByteTrack
|
5f8ab49a913a551d041918607a0bd2473602ad39
|
[
"MIT"
] | null | null | null |
yolox/data/datasets/mot.py
|
ldelzott/ByteTrack
|
5f8ab49a913a551d041918607a0bd2473602ad39
|
[
"MIT"
] | null | null | null |
yolox/data/datasets/mot.py
|
ldelzott/ByteTrack
|
5f8ab49a913a551d041918607a0bd2473602ad39
|
[
"MIT"
] | null | null | null |
import cv2
import numpy as np
from pycocotools.coco import COCO
import os
from ..dataloading import get_yolox_datadir
from .datasets_wrapper import Dataset
| 40.776224 | 165 | 0.510547 |
5dbf449975065338e5216b26f0b50de7db0d2cd0
| 4,740 |
py
|
Python
|
src/poetry/console/commands/remove.py
|
pkoch/poetry
|
d22c5a7187d8b5a30196a7df58111b3c90be7d22
|
[
"MIT"
] | null | null | null |
src/poetry/console/commands/remove.py
|
pkoch/poetry
|
d22c5a7187d8b5a30196a7df58111b3c90be7d22
|
[
"MIT"
] | null | null | null |
src/poetry/console/commands/remove.py
|
pkoch/poetry
|
d22c5a7187d8b5a30196a7df58111b3c90be7d22
|
[
"MIT"
] | null | null | null |
from __future__ import annotations
from typing import Any
from cleo.helpers import argument
from cleo.helpers import option
from tomlkit.toml_document import TOMLDocument
try:
from poetry.core.packages.dependency_group import MAIN_GROUP
except ImportError:
MAIN_GROUP = "default"
from poetry.console.commands.installer_command import InstallerCommand
| 34.347826 | 88 | 0.59789 |
5dbff166d1570c685dadc7e901e806b3102dde0f
| 3,316 |
py
|
Python
|
orrinjelo/aoc2021/day_11.py
|
orrinjelo/AdventOfCode2021
|
6fce5c48ec3dc602b393824f592a5c6db2a8b66f
|
[
"MIT"
] | null | null | null |
orrinjelo/aoc2021/day_11.py
|
orrinjelo/AdventOfCode2021
|
6fce5c48ec3dc602b393824f592a5c6db2a8b66f
|
[
"MIT"
] | null | null | null |
orrinjelo/aoc2021/day_11.py
|
orrinjelo/AdventOfCode2021
|
6fce5c48ec3dc602b393824f592a5c6db2a8b66f
|
[
"MIT"
] | null | null | null |
from orrinjelo.utils.decorators import timeit
import numpy as np
visited = []
# = Test ================================================
inputlist = [
'5483143223',
'2745854711',
'5264556173',
'6141336146',
'6357385478',
'4167524645',
'2176841721',
'6882881134',
'4846848554',
'5283751526',
]
import pygame
import sys
| 22.557823 | 85 | 0.518697 |
5dc01810c4c1797d877a743bdf67e61535eee657
| 1,914 |
py
|
Python
|
exercise_2/exercise_2.1.py
|
lukaszbinden/ethz-iacv-2020
|
271de804315de98b816cda3e2498958ffa87ad59
|
[
"MIT"
] | null | null | null |
exercise_2/exercise_2.1.py
|
lukaszbinden/ethz-iacv-2020
|
271de804315de98b816cda3e2498958ffa87ad59
|
[
"MIT"
] | null | null | null |
exercise_2/exercise_2.1.py
|
lukaszbinden/ethz-iacv-2020
|
271de804315de98b816cda3e2498958ffa87ad59
|
[
"MIT"
] | null | null | null |
camera_width = 640
camera_height = 480
film_back_width = 1.417
film_back_height = 0.945
x_center = 320
y_center = 240
P_1 = (-0.023, -0.261, 2.376)
p_11 = P_1[0]
p_12 = P_1[1]
p_13 = P_1[2]
P_2 = (0.659, -0.071, 2.082)
p_21 = P_2[0]
p_22 = P_2[1]
p_23 = P_2[2]
p_1_prime = (52, 163)
x_1 = p_1_prime[0]
y_1 = p_1_prime[1]
p_2_prime = (218, 216)
x_2 = p_2_prime[0]
y_2 = p_2_prime[1]
f = 1.378
k_x = camera_width / film_back_width
k_y = camera_height / film_back_height
# f_k_x = f * k_x
f_k_x = f
# f_k_y = f * k_y
f_k_y = f
u_1_prime = (x_1 - x_center) / k_x
v_1_prime = (y_1 - y_center) / k_y
u_2_prime = (x_2 - x_center) / k_x
v_2_prime = (y_2 - y_center) / k_y
c_1_prime = (f_k_x * p_21 + (p_13 - p_23) * u_2_prime - u_2_prime/u_1_prime * f_k_x * p_11) / (f_k_x * (1 - u_2_prime/u_1_prime))
c_2_prime = (f_k_y * p_22 - (p_23 - (p_13*u_1_prime - f_k_x*(p_11 - c_1_prime))/u_1_prime) * v_2_prime) / f_k_y
c_2_prime_alt = (f_k_y * p_12 - (p_13 - (p_13*u_1_prime - f_k_x*(p_11 - c_1_prime))/u_1_prime) * v_1_prime) / f_k_y
c_3_prime = p_13 - (f_k_x / u_1_prime) * (p_11 - c_1_prime)
rho_1_prime = p_13 - c_3_prime
rho_2_prime = p_23 - c_3_prime
print(f"C' = ({c_1_prime}, {c_2_prime}, {c_3_prime})")
print(f"c_2_prime_alt = {c_2_prime_alt}")
print(f"rho_1_prime = {rho_1_prime}")
print(f"rho_2_prime = {rho_2_prime}")
print("------------------")
r_11 = f_k_x * (p_11 - c_1_prime)
r_12 = f_k_y * (p_12 - c_2_prime)
r_13 = 1 * (p_13 - c_3_prime)
l_11 = rho_1_prime * u_1_prime
l_12 = rho_1_prime * v_1_prime
l_13 = rho_1_prime * 1
print(f"L: ({l_11}, {l_12}, {l_13})")
print(f"R: ({r_11}, {r_12}, {r_13})")
print("------------------")
r_21 = f_k_x * (p_21 - c_1_prime)
r_22 = f_k_y * (p_22 - c_2_prime)
r_23 = 1 * (p_23 - c_3_prime)
l_21 = rho_2_prime * u_2_prime
l_22 = rho_2_prime * v_2_prime
l_23 = rho_2_prime * 1
print(f"L: ({l_11}, {l_12}, {l_13})")
print(f"R: ({r_11}, {r_12}, {r_13})")
| 23.060241 | 129 | 0.642633 |
5dc0c299dbdb6b798fc1619ba108af859bcce78e
| 3,329 |
py
|
Python
|
services/train/single.py
|
paper2code/torch2vec-restful-service
|
6c4412d84d067268bf988b1f31cef716a2ed23a5
|
[
"MIT"
] | 2 |
2020-09-13T18:08:52.000Z
|
2020-09-19T05:26:50.000Z
|
services/train/single.py
|
paper2code/torch2vec-restful-service
|
6c4412d84d067268bf988b1f31cef716a2ed23a5
|
[
"MIT"
] | null | null | null |
services/train/single.py
|
paper2code/torch2vec-restful-service
|
6c4412d84d067268bf988b1f31cef716a2ed23a5
|
[
"MIT"
] | null | null | null |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Aug 26 19:15:34 2020
@author: deviantpadam
"""
import pandas as pd
import numpy as np
import concurrent.futures
import os
import tqdm
from collections import Counter
from torch2vec.data import DataPreparation
from torch2vec.torch2vec import DM
# train = pd.read_csv('/home/deviantpadam/Downloads/example.csv',delimiter='\t')
# train = pd.read_csv('/home/deviantpadam/Downloads/example (1).csv')
train = pd.read_csv('../data/suggest_dump.txt',delimiter='\t')
train = cleaner(train)
corpus = train['authors']+' '+train['title']+' '+train['summary']+' '+train['subject1']+' '+train['subject2']+' '+train['task']
corpus.name = 'text'
corpus = pd.concat([train['subject1'],train['subject2'],train['task'],corpus],axis=1)
data = DataPreparation(corpus.reset_index(),f_size=3)
data.tokenize()
bigrams = _get_bigrams(data.corpus.values,min_count=700)
data.corpus = phraser(data.corpus.values)
bigrams = _get_bigrams(data.corpus.values,min_count=500)
data.corpus = phraser(data.corpus.values)
data.vocab_builder()
doc, context, target_noise_ids = data.get_data(window_size=5,num_noise_words=10)
model = DM(vec_dim=100,num_docs=len(data),num_words=data.vocab_size).cuda()
num_workers = os.cpu_count()
model.fit(doc_ids=doc,context=context,target_noise_ids=target_noise_ids,epochs=20,batch_size=8000,num_workers=num_workers)
model.save_model(data.document_ids,data.args,file_name='weights')
| 36.988889 | 151 | 0.681586 |
5dc0fa811b71f512df88503ac7e13855083e0792
| 8,399 |
py
|
Python
|
tests/sources/test_document_oereblex.py
|
geo-bl-ch/pyramid_oereb
|
767375a4adda4589e12c4257377fc30258cdfcb3
|
[
"BSD-2-Clause"
] | null | null | null |
tests/sources/test_document_oereblex.py
|
geo-bl-ch/pyramid_oereb
|
767375a4adda4589e12c4257377fc30258cdfcb3
|
[
"BSD-2-Clause"
] | null | null | null |
tests/sources/test_document_oereblex.py
|
geo-bl-ch/pyramid_oereb
|
767375a4adda4589e12c4257377fc30258cdfcb3
|
[
"BSD-2-Clause"
] | null | null | null |
# -*- coding: utf-8 -*-
import datetime
import pytest
import requests_mock
from geolink_formatter.entity import Document, File
from requests.auth import HTTPBasicAuth
from pyramid_oereb.contrib.sources.document import OEREBlexSource
from pyramid_oereb.lib.records.documents import DocumentRecord, LegalProvisionRecord
from pyramid_oereb.lib.records.office import OfficeRecord
from tests.mockrequest import MockParameter
def test_read():
with requests_mock.mock() as m:
with open('./tests/resources/geolink_v1.1.1.xml', 'rb') as f:
m.get('http://oereblex.example.com/api/geolinks/100.xml', content=f.read())
source = OEREBlexSource(host='http://oereblex.example.com', language='de', canton='BL')
source.read(MockParameter(), 100)
assert len(source.records) == 2
document = source.records[0]
assert isinstance(document, DocumentRecord)
assert isinstance(document.responsible_office, OfficeRecord)
assert document.responsible_office.name == {'de': 'Landeskanzlei'}
assert document.canton == 'BL'
assert document.text_at_web == {
'de': 'http://oereblex.example.com/api/attachments/313'
}
assert len(document.references) == 5
def test_read_related_decree_as_main():
with requests_mock.mock() as m:
with open('./tests/resources/geolink_v1.1.1.xml', 'rb') as f:
m.get('http://oereblex.example.com/api/geolinks/100.xml', content=f.read())
source = OEREBlexSource(host='http://oereblex.example.com', language='de', canton='BL',
related_decree_as_main=True)
source.read(MockParameter(), 100)
assert len(source.records) == 3
document = source.records[0]
assert isinstance(document, DocumentRecord)
assert isinstance(document.responsible_office, OfficeRecord)
assert document.responsible_office.name == {'de': 'Landeskanzlei'}
assert document.canton == 'BL'
assert document.text_at_web == {
'de': 'http://oereblex.example.com/api/attachments/313'
}
assert len(document.references) == 4
def test_read_with_version_in_url():
with requests_mock.mock() as m:
with open('./tests/resources/geolink_v1.1.1.xml', 'rb') as f:
m.get('http://oereblex.example.com/api/1.1.1/geolinks/100.xml', content=f.read())
source = OEREBlexSource(host='http://oereblex.example.com', language='de', canton='BL',
pass_version=True)
source.read(MockParameter(), 100)
assert len(source.records) == 2
def test_read_with_specified_version():
with requests_mock.mock() as m:
with open('./tests/resources/geolink_v1.0.0.xml', 'rb') as f:
m.get('http://oereblex.example.com/api/1.0.0/geolinks/100.xml', content=f.read())
source = OEREBlexSource(host='http://oereblex.example.com', language='de', canton='BL',
pass_version=True, version='1.0.0')
source.read(MockParameter(), 100)
assert len(source.records) == 2
def test_read_with_specified_language():
with requests_mock.mock() as m:
with open('./tests/resources/geolink_v1.1.1.xml', 'rb') as f:
m.get('http://oereblex.example.com/api/geolinks/100.xml?locale=fr', content=f.read())
source = OEREBlexSource(host='http://oereblex.example.com', language='de', canton='BL')
params = MockParameter()
params.set_language('fr')
source.read(params, 100)
assert len(source.records) == 2
document = source.records[0]
assert document.responsible_office.name == {'fr': 'Landeskanzlei'}
assert document.text_at_web == {
'fr': 'http://oereblex.example.com/api/attachments/313'
}
def test_authentication():
auth = {
'username': 'test',
'password': 'test'
}
source = OEREBlexSource(host='http://oereblex.example.com', language='de', canton='BL', auth=auth)
assert isinstance(source._auth, HTTPBasicAuth)
def test_get_document_title():
document = Document([], id='1', title='Test')
result = {'de': 'Test'}
assert OEREBlexSource._get_document_title(document, File(), 'de') == result
| 37.328889 | 102 | 0.604239 |
5dc1607dc008e8af7451051e5d28ffb9f945411a
| 998 |
py
|
Python
|
apps/zsh/singletons.py
|
codecat555/codecat555-fidgetingbits_knausj_talon
|
62f9be0459e6631c99d58eee97054ddd970cc5f3
|
[
"MIT"
] | 4 |
2021-02-04T07:36:05.000Z
|
2021-07-03T06:53:30.000Z
|
apps/zsh/singletons.py
|
codecat555/codecat555-fidgetingbits_knausj_talon
|
62f9be0459e6631c99d58eee97054ddd970cc5f3
|
[
"MIT"
] | null | null | null |
apps/zsh/singletons.py
|
codecat555/codecat555-fidgetingbits_knausj_talon
|
62f9be0459e6631c99d58eee97054ddd970cc5f3
|
[
"MIT"
] | null | null | null |
# A rarely-updated module to assist in writing reload-safe talon modules using
# things like threads, which are not normally safe for reloading with talon.
# If this file is ever updated, you'll need to restart talon.
import logging
_singletons = {}
| 28.514286 | 78 | 0.645291 |
5dc1f18fa3f023890a5249859cd11435ad90ffca
| 1,088 |
py
|
Python
|
trainNN/run_bichrom.py
|
yztxwd/Bichrom
|
3939b8e52816a02b34122feef27c8e0a06e31d8e
|
[
"MIT"
] | 3 |
2021-02-09T14:07:48.000Z
|
2021-06-21T18:31:54.000Z
|
trainNN/run_bichrom.py
|
yztxwd/Bichrom
|
3939b8e52816a02b34122feef27c8e0a06e31d8e
|
[
"MIT"
] | 5 |
2021-02-05T03:46:37.000Z
|
2022-03-16T16:34:41.000Z
|
trainNN/run_bichrom.py
|
yztxwd/Bichrom
|
3939b8e52816a02b34122feef27c8e0a06e31d8e
|
[
"MIT"
] | 4 |
2021-01-09T19:59:51.000Z
|
2021-11-12T21:08:40.000Z
|
import argparse
import yaml
from subprocess import call
from train import train_bichrom
if __name__ == '__main__':
# parsing
parser = argparse.ArgumentParser(description='Train and Evaluate Bichrom')
parser.add_argument('-training_schema_yaml', required=True,
help='YAML file with paths to train, test and val data')
parser.add_argument('-len', help='Size of genomic windows',
required=True, type=int)
parser.add_argument('-outdir', required=True, help='Output directory')
parser.add_argument('-nbins', type=int, required=True, help='Number of bins')
args = parser.parse_args()
# load the yaml file with input data paths:
with open(args.training_schema_yaml, 'r') as f:
try:
data_paths = yaml.safe_load(f)
except yaml.YAMLError as exc:
print(exc)
# create the output directory:
outdir = args.outdir
call(['mkdir', outdir])
train_bichrom(data_paths=data_paths, outdir=outdir, seq_len=args.len,
bin_size=int(args.len/args.nbins))
| 38.857143 | 81 | 0.662684 |
5dc26a359dc3c1de1c2351ad0bab013c4dbc10a0
| 3,687 |
py
|
Python
|
setup.py
|
Fronius-SED/rapidyaml
|
20d44ff0c43085d08cb17f37fd6b0b305938a3ea
|
[
"MIT"
] | null | null | null |
setup.py
|
Fronius-SED/rapidyaml
|
20d44ff0c43085d08cb17f37fd6b0b305938a3ea
|
[
"MIT"
] | null | null | null |
setup.py
|
Fronius-SED/rapidyaml
|
20d44ff0c43085d08cb17f37fd6b0b305938a3ea
|
[
"MIT"
] | null | null | null |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# SPDX-License-Identifier: MIT
import os
import shutil
import sys
from pathlib import Path
from distutils import log
from setuptools import setup
from setuptools.command.sdist import sdist as SdistCommand
from cmake_build_extension import BuildExtension, CMakeExtension
TOP_DIR = (Path(__file__).parent).resolve()
# Where the Python library is actually found.
PYTHON_DIR = "api/python"
setup_kw = {}
# Read in the package version when not in a git repository.
VERSION_FILE = os.path.join(PYTHON_DIR, 'ryml', 'version.py')
if not (TOP_DIR / '.git').exists() and os.path.exists(VERSION_FILE):
exec(open(VERSION_FILE).read())
setup_kw['version'] = version
else:
setup_kw['use_scm_version']= {
"version_scheme": "post-release",
"local_scheme": "no-local-version",
"write_to": VERSION_FILE,
}
# Read in the module description from the README.md file.
README_FILE = TOP_DIR / "README.md"
if README_FILE.exists():
with open(TOP_DIR / "README.md", "r") as fh:
setup_kw['long_description'] = fh.read()
setup_kw['long_description_content_type'] = "text/markdown"
# define a CMake package
cmake_args = dict(
name='ryml.ryml',
install_prefix='',
source_dir='',
cmake_component='python',
cmake_configure_options=[
"-DRYML_BUILD_API:BOOL=ON",
# Force cmake to use the Python interpreter we are currently using to
# run setup.py
"-DPython3_EXECUTABLE:FILEPATH="+sys.executable,
],
)
try:
ext = CMakeExtension(**cmake_args)
except TypeError:
del cmake_args['cmake_component']
ext = CMakeExtension(**cmake_args)
# If the CMakeExtension doesn't support `cmake_component` then we have to
# do some manual cleanup.
_BuildExtension=BuildExtension
setup(
# Package human readable information
name='rapidyaml',
#author='Joao Paulo Magalhaes',
description='Rapid YAML - a library to parse and emit YAML, and do it fast.',
url='https://github.com/biojppm/rapidyaml',
license='MIT',
license_files=['LICENSE.txt'],
# Package contents control
cmdclass={
"build_ext": BuildExtension,
},
package_dir={"": PYTHON_DIR},
packages=['ryml'],
ext_modules=[ext],
include_package_data=True,
# Requirements
python_requires=">=3.7",
setup_requires=['setuptools_scm'],
# Extra arguments
**setup_kw,
)
| 32.342105 | 81 | 0.641714 |
5dc297d8b74fa875a21b1642232b22d90653124f
| 5,193 |
py
|
Python
|
litex_boards/targets/digilent_arty_z7.py
|
machdyne/litex-boards
|
2311db18f8c92f80f03226fa984e6110caf25b88
|
[
"BSD-2-Clause"
] | null | null | null |
litex_boards/targets/digilent_arty_z7.py
|
machdyne/litex-boards
|
2311db18f8c92f80f03226fa984e6110caf25b88
|
[
"BSD-2-Clause"
] | null | null | null |
litex_boards/targets/digilent_arty_z7.py
|
machdyne/litex-boards
|
2311db18f8c92f80f03226fa984e6110caf25b88
|
[
"BSD-2-Clause"
] | null | null | null |
#!/usr/bin/env python3
#
# This file is part of LiteX-Boards.
#
# Copyright (c) 2021 Gwenhael Goavec-Merou <[email protected]>
# SPDX-License-Identifier: BSD-2-Clause
import argparse
import subprocess
from migen import *
from litex_boards.platforms import digilent_arty_z7
from litex.build import tools
from litex.build.xilinx import common as xil_common
from litex.build.xilinx.vivado import vivado_build_args, vivado_build_argdict
from litex.soc.interconnect import axi
from litex.soc.interconnect import wishbone
from litex.soc.cores.clock import *
from litex.soc.integration.soc_core import *
from litex.soc.integration.soc import SoCRegion
from litex.soc.integration.builder import *
from litex.soc.cores.led import LedChaser
# CRG ----------------------------------------------------------------------------------------------
# BaseSoC ------------------------------------------------------------------------------------------
# Build --------------------------------------------------------------------------------------------
def main():
parser = argparse.ArgumentParser(description="LiteX SoC on Arty Z7")
parser.add_argument("--toolchain", default="vivado", help="FPGA toolchain (vivado, symbiflow or yosys+nextpnr).")
parser.add_argument("--build", action="store_true", help="Build bitstream.")
parser.add_argument("--load", action="store_true", help="Load bitstream.")
parser.add_argument("--variant", default="z7-20", help="Board variant (z7-20 or z7-10).")
parser.add_argument("--sys-clk-freq", default=125e6, help="System clock frequency.")
builder_args(parser)
soc_core_args(parser)
vivado_build_args(parser)
parser.set_defaults(cpu_type="zynq7000")
args = parser.parse_args()
soc = BaseSoC(
variant = args.variant,
toolchain = args.toolchain,
sys_clk_freq=int(float(args.sys_clk_freq)),
**soc_core_argdict(args)
)
builder = Builder(soc, **builder_argdict(args))
builder_kwargs = vivado_build_argdict(args) if args.toolchain == "vivado" else {}
builder.build(**builder_kwargs, run=args.build)
if args.load:
prog = soc.platform.create_programmer()
prog.load_bitstream(os.path.join(builder.gateware_dir, soc.build_name + ".bit"))
if __name__ == "__main__":
main()
| 38.753731 | 123 | 0.561333 |
5dc2ee5e1dddc721c798287488da3cf41eba8ae1
| 6,899 |
py
|
Python
|
goose/parsers.py
|
allmalaysianews/article-extractor
|
8d0ff3ed01258d0fad56fc22d2c1852e603096b4
|
[
"Apache-2.0"
] | null | null | null |
goose/parsers.py
|
allmalaysianews/article-extractor
|
8d0ff3ed01258d0fad56fc22d2c1852e603096b4
|
[
"Apache-2.0"
] | null | null | null |
goose/parsers.py
|
allmalaysianews/article-extractor
|
8d0ff3ed01258d0fad56fc22d2c1852e603096b4
|
[
"Apache-2.0"
] | null | null | null |
# -*- coding: utf-8 -*-
"""\
This is a python port of "Goose" orignialy licensed to Gravity.com
under one or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership.
Python port was written by Xavier Grangier for Recrutae
Gravity.com licenses this file
to you under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance
with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import lxml.html as lxmlhtml
from lxml.html import soupparser
from lxml import etree
from copy import deepcopy
from goose.text import innerTrim
from goose.text import encodeValue
| 28.159184 | 84 | 0.584433 |
5dc3595f9215ec36727d03f139d3d859982ac98f
| 2,352 |
py
|
Python
|
src/infrastructure/database/postgres/sqlhandler.py
|
SoyBeansLab/daizu-online-judge-backend
|
873f81fdad2f216e28b83341a6d88b0e21078d6e
|
[
"MIT"
] | 7 |
2019-05-14T08:40:35.000Z
|
2019-08-20T08:15:21.000Z
|
src/infrastructure/database/postgres/sqlhandler.py
|
SoyBeansLab/daizu-online-judge-backend
|
873f81fdad2f216e28b83341a6d88b0e21078d6e
|
[
"MIT"
] | 76 |
2019-05-14T08:56:40.000Z
|
2020-10-18T16:25:33.000Z
|
src/infrastructure/database/postgres/sqlhandler.py
|
SoyBeansLab/daizu-online-judge-backend
|
873f81fdad2f216e28b83341a6d88b0e21078d6e
|
[
"MIT"
] | 3 |
2019-12-12T01:44:31.000Z
|
2020-11-22T03:24:40.000Z
|
from logging import getLogger
import os
from typing import List, Union
import psycopg2
from interface.database.sqlhandler import Cursor as AbsCursor
from interface.database.sqlhandler import Result as AbsResult
from interface.database.sqlhandler import SqlHandler as AbsSqlHandler
from exceptions.waf import SqlTransactionException
logger = getLogger("daizu").getChild("infrastracture.SqlHandler")
| 29.4 | 75 | 0.627551 |
5dc369e87fe800f32ded0cd2dc49e361f6723160
| 1,001 |
py
|
Python
|
virtualisation/wrapper/parser/xmlparser.py
|
CityPulse/CP_Resourcemanagement
|
aa670fa89d5e086a98ade3ccc152518be55abf2e
|
[
"MIT"
] | 2 |
2016-11-03T14:57:45.000Z
|
2019-05-13T13:21:08.000Z
|
virtualisation/wrapper/parser/xmlparser.py
|
CityPulse/CP_Resourcemanagement
|
aa670fa89d5e086a98ade3ccc152518be55abf2e
|
[
"MIT"
] | null | null | null |
virtualisation/wrapper/parser/xmlparser.py
|
CityPulse/CP_Resourcemanagement
|
aa670fa89d5e086a98ade3ccc152518be55abf2e
|
[
"MIT"
] | 1 |
2020-07-23T11:27:15.000Z
|
2020-07-23T11:27:15.000Z
|
from virtualisation.clock.abstractclock import AbstractClock
__author__ = 'Marten Fischer ([email protected])'
from virtualisation.wrapper.parser.abstractparser import AbstractParser
from virtualisation.misc.jsonobject import JSONObject as JOb
import datetime as dt
| 31.28125 | 91 | 0.682318 |
5dc48b0f27c0b76d7893695e9d44f12dbfa7a376
| 19,404 |
py
|
Python
|
plaso/formatters/interface.py
|
jonathan-greig/plaso
|
b88a6e54c06a162295d09b016bddbfbfe7ca9070
|
[
"Apache-2.0"
] | 1,253 |
2015-01-02T13:58:02.000Z
|
2022-03-31T08:43:39.000Z
|
plaso/formatters/interface.py
|
jonathan-greig/plaso
|
b88a6e54c06a162295d09b016bddbfbfe7ca9070
|
[
"Apache-2.0"
] | 3,388 |
2015-01-02T11:17:58.000Z
|
2022-03-30T10:21:45.000Z
|
plaso/formatters/interface.py
|
jonathan-greig/plaso
|
b88a6e54c06a162295d09b016bddbfbfe7ca9070
|
[
"Apache-2.0"
] | 376 |
2015-01-20T07:04:54.000Z
|
2022-03-04T23:53:00.000Z
|
# -*- coding: utf-8 -*-
"""This file contains the event formatters interface classes.
The l2t_csv and other formats are dependent on a message field,
referred to as description_long and description_short in l2t_csv.
Plaso no longer stores these field explicitly.
A formatter, with a format string definition, is used to convert
the event object values into a formatted string that is similar
to the description_long and description_short field.
"""
import abc
import re
from plaso.formatters import logger
def AddHelper(self, helper):
"""Adds an event formatter helper.
Args:
helper (EventFormatterHelper): event formatter helper to add.
"""
self.helpers.append(helper)
| 33.112628 | 79 | 0.704958 |
5dc4b2786f8172c270a1fc651693530424b90630
| 190 |
py
|
Python
|
python_program/condition.py
|
LiuKaiqiang94/PyStudyExample
|
b30212718b218c71e06b68677f55c33e3a1dbf46
|
[
"MIT"
] | 5 |
2018-09-10T02:52:35.000Z
|
2018-09-20T07:50:42.000Z
|
python_program/condition.py
|
LiuKaiqiang94/PyStudyExample
|
b30212718b218c71e06b68677f55c33e3a1dbf46
|
[
"MIT"
] | null | null | null |
python_program/condition.py
|
LiuKaiqiang94/PyStudyExample
|
b30212718b218c71e06b68677f55c33e3a1dbf46
|
[
"MIT"
] | null | null | null |
main()
| 13.571429 | 33 | 0.442105 |
5dc534af6da39531ee8b4ae7b4baf8841a23115e
| 1,608 |
py
|
Python
|
Annotated_video/test/Annotatedvideo_worm.py
|
Rukaume/LRCN
|
0d1928cc72544f59a4335fea7febc561d3dfc118
|
[
"MIT"
] | 1 |
2020-11-07T05:57:32.000Z
|
2020-11-07T05:57:32.000Z
|
Annotated_video/test/Annotatedvideo_worm.py
|
Rukaume/LRCN
|
0d1928cc72544f59a4335fea7febc561d3dfc118
|
[
"MIT"
] | 1 |
2020-11-07T00:30:22.000Z
|
2021-01-26T02:22:16.000Z
|
Annotated_video/test/Annotatedvideo_worm.py
|
Rukaume/LRCN
|
0d1928cc72544f59a4335fea7febc561d3dfc118
|
[
"MIT"
] | 1 |
2020-11-07T05:57:52.000Z
|
2020-11-07T05:57:52.000Z
|
# -*- coding: utf-8 -*-
"""
Created on Fri Sep 4 22:27:11 2020
@author: Miyazaki
"""
imdir = "C:/Users/Miyazaki/Desktop/hayashi_lab/20200527_lethargus_analysis/renamed_pillar_chamber-N2/chamber3"
resultdir= "C:/Users/Miyazaki/Desktop/hayashi_lab/20200527_lethargus_analysis/renamed_pillar_chamber-N2/result0918.csv"
import os, cv2, shutil
from tqdm import tqdm
import pandas as pd
os.chdir(imdir)
os.makedirs("../annotatedimages", exist_ok = True)
imlist = os.listdir("./")
imlist = [i for i in imlist if os.path.splitext(i)[1] == '.jpg' \
or os.path.splitext(i)[1] == '.png']
imlist.sort()
result = pd.read_csv(resultdir)
font = cv2.FONT_HERSHEY_SIMPLEX
for i in tqdm(range(len(imlist))):
if int(result.loc[i]) == 0:
tempim = cv2.imread(imlist[i])
tempim = cv2.putText(tempim,'quiescent',(10,500), font, 1,(255,0,0),2,cv2.LINE_AA)
cv2.imwrite('../annotatedimages/{}'.format(imlist[i]), tempim)
elif int(result.loc[i]) == 1:
tempim = cv2.imread(imlist[i])
tempim = cv2.putText(tempim,'dwell',(10,500), font, 1,(0,255,0),2,cv2.LINE_AA)
cv2.imwrite('../annotatedimages/{}'.format(imlist[i]), tempim)
elif int(result.loc[i]) == 2:
tempim = cv2.imread(imlist[i])
tempim = cv2.putText(tempim,'forward',(10,500), font, 1,(0,0,255),2,cv2.LINE_AA)
cv2.imwrite('../annotatedimages/{}'.format(imlist[i]), tempim)
elif int(result.loc[i]) == 3:
tempim = cv2.imread(imlist[i])
tempim = cv2.putText(tempim,'backward',(10,500), font, 1,(100,100,0),2,cv2.LINE_AA)
cv2.imwrite('../annotatedimages/{}'.format(imlist[i]), tempim)
else:
pass
| 36.545455 | 119 | 0.670398 |
5dc789560fb397b3832cccec69534dcbf26e36d2
| 5,902 |
py
|
Python
|
emilia/modules/math.py
|
masterisira/ELIZA_OF-master
|
02a7dbf48e4a3d4ee0981e6a074529ab1497aafe
|
[
"Unlicense"
] | null | null | null |
emilia/modules/math.py
|
masterisira/ELIZA_OF-master
|
02a7dbf48e4a3d4ee0981e6a074529ab1497aafe
|
[
"Unlicense"
] | null | null | null |
emilia/modules/math.py
|
masterisira/ELIZA_OF-master
|
02a7dbf48e4a3d4ee0981e6a074529ab1497aafe
|
[
"Unlicense"
] | null | null | null |
from typing import List
import requests
from telegram import Message, Update, Bot, MessageEntity
from telegram.ext import CommandHandler, run_async
from emilia import dispatcher
from emilia.modules.disable import DisableAbleCommandHandler
from emilia.modules.helper_funcs.alternate import send_message
import pynewtonmath as newton
import math
__help__ = """
Under Developmeent.. More features soon
- /cos: Cosine `/cos pi`
- /sin: Sine `/sin 0`
- /tan: Tangent `/tan 0`
- /arccos: Inverse Cosine `/arccos 1`
- /arcsin: Inverse Sine `/arcsin 0`
- /arctan: Inverse Tangent `/arctan 0`
- /abs: Absolute Value `/abs -1`
- /log: Logarithm `/log 2l8`
__Keep in mind__: To find the tangent line of a function at a certain x value, send the request as c|f(x) where c is the given x value and f(x) is the function expression, the separator is a vertical bar '|'. See the table above for an example request.
To find the area under a function, send the request as c:d|f(x) where c is the starting x value, d is the ending x value, and f(x) is the function under which you want the curve between the two x values.
To compute fractions, enter expressions as numerator(over)denominator. For example, to process 2/4 you must send in your expression as 2(over)4. The result expression will be in standard math notation (1/2, 3/4).
"""
SIMPLIFY_HANDLER = DisableAbleCommandHandler("math", simplify, pass_args=True)
FACTOR_HANDLER = DisableAbleCommandHandler("factor", factor, pass_args=True)
DERIVE_HANDLER = DisableAbleCommandHandler("derive", derive, pass_args=True)
INTEGRATE_HANDLER = DisableAbleCommandHandler("integrate", integrate, pass_args=True)
ZEROES_HANDLER = DisableAbleCommandHandler("zeroes", zeroes, pass_args=True)
TANGENT_HANDLER = DisableAbleCommandHandler("tangent", tangent, pass_args=True)
AREA_HANDLER = DisableAbleCommandHandler("area", area, pass_args=True)
COS_HANDLER = DisableAbleCommandHandler("cos", cos, pass_args=True)
SIN_HANDLER = DisableAbleCommandHandler("sin", sin, pass_args=True)
TAN_HANDLER = DisableAbleCommandHandler("tan", tan, pass_args=True)
ARCCOS_HANDLER = DisableAbleCommandHandler("arccos", arccos, pass_args=True)
ARCSIN_HANDLER = DisableAbleCommandHandler("arcsin", arcsin, pass_args=True)
ARCTAN_HANDLER = DisableAbleCommandHandler("arctan", arctan, pass_args=True)
ABS_HANDLER = DisableAbleCommandHandler("abs", abs, pass_args=True)
LOG_HANDLER = DisableAbleCommandHandler("log", log, pass_args=True)
dispatcher.add_handler(SIMPLIFY_HANDLER)
dispatcher.add_handler(FACTOR_HANDLER)
dispatcher.add_handler(DERIVE_HANDLER)
dispatcher.add_handler(INTEGRATE_HANDLER)
dispatcher.add_handler(ZEROES_HANDLER)
dispatcher.add_handler(TANGENT_HANDLER)
dispatcher.add_handler(AREA_HANDLER)
dispatcher.add_handler(COS_HANDLER)
dispatcher.add_handler(SIN_HANDLER)
dispatcher.add_handler(TAN_HANDLER)
dispatcher.add_handler(ARCCOS_HANDLER)
dispatcher.add_handler(ARCSIN_HANDLER)
dispatcher.add_handler(ARCTAN_HANDLER)
dispatcher.add_handler(ABS_HANDLER)
dispatcher.add_handler(LOG_HANDLER)
__mod_name__ = "Math"
__command_list__ = ["math","factor","derive","integrate","zeroes","tangent","area","cos","sin","tan","arccos","arcsin","arctan","abs","log"]
__handlers__ = [
SIMPLIFY_HANDLER,FACTOR_HANDLER,DERIVE_HANDLER,INTEGRATE_HANDLER,TANGENT_HANDLER,ZEROES_HANDLER,AREA_HANDLER,COS_HANDLER,SIN_HANDLER,TAN_HANDLER,ARCCOS_HANDLER,ARCSIN_HANDLER,ARCTAN_HANDLER,ABS_HANDLER,LOG_HANDLER
]
| 35.769697 | 252 | 0.763978 |
5dc7dadf50bfb05ab92b9d5e96fde0df19295e15
| 4,996 |
py
|
Python
|
services/IAm.py
|
matteobjornsson/serverless-rock-paper-scissors
|
32b6f11644c59dc3bb159ee9e1118fed26a3983d
|
[
"MIT"
] | null | null | null |
services/IAm.py
|
matteobjornsson/serverless-rock-paper-scissors
|
32b6f11644c59dc3bb159ee9e1118fed26a3983d
|
[
"MIT"
] | null | null | null |
services/IAm.py
|
matteobjornsson/serverless-rock-paper-scissors
|
32b6f11644c59dc3bb159ee9e1118fed26a3983d
|
[
"MIT"
] | 1 |
2021-04-20T23:55:37.000Z
|
2021-04-20T23:55:37.000Z
|
#
# Created on Thu Apr 22 2021
# Matteo Bjornsson
#
import boto3
from botocore.exceptions import ClientError
import logging
logging.basicConfig(filename="rps.log", level=logging.INFO)
iam_resource = boto3.resource("iam")
sts_client = boto3.client("sts")
def create_role(
iam_role_name: str, assume_role_policy_json: str, policy_arns: list
) -> iam_resource.Role:
"""
Create an IAM role with a given policy.
:param assume_role_policy_json: A json string that represents the assume
role policy defining what resources are allowed to assume the role.
:param policy_arns: a list of strings representing existing policy arns to
also attach to the role
:return: IAM role object
This method was adapted from the create_iam_role_for_lambda() method found here:
https://docs.aws.amazon.com/code-samples/latest/catalog/python-lambda-boto_client_examples-lambda_basics.py.html
"""
try:
role = iam_resource.create_role(
RoleName=iam_role_name,
AssumeRolePolicyDocument=assume_role_policy_json,
)
# wait for the creation to complete
iam_resource.meta.client.get_waiter("role_exists").wait(RoleName=iam_role_name)
# attach the additional supplied policies
for arn in policy_arns:
role.attach_policy(PolicyArn=arn)
except ClientError as error:
if error.response["Error"]["Code"] == "EntityAlreadyExists":
role = iam_resource.Role(iam_role_name)
logging.warning("The role %s already exists. Using it.", iam_role_name)
return role
else:
logging.error(error.response["Error"]["Message"])
logging.exception(
"Couldn't create role %s or attach policy %s.",
iam_role_name,
str(policy_arns),
)
raise
else:
logging.info("Created IAM role %s.", role.name)
logging.info("Attached policies %s to role %s.", policy_arns, role.name)
return role
def create_policy(policy_name: str, policy_json: str) -> iam_resource.Policy:
"""
Create an IAM policy of given name and json description.
Policies define permissions in AWS and can be associated with IAM roles.
:param policy_json: just be a valid policy json string
:return: IAM Policy object
"""
try:
policy = iam_resource.create_policy(
PolicyName=policy_name, PolicyDocument=policy_json
)
except ClientError as error:
if error.response["Error"]["Code"] == "EntityAlreadyExists":
policy = get_policy_by_name(policy_name)
logging.warning("The policy %s already exists. Using it.", policy.arn)
return policy
else:
logging.error(error.response["Error"]["Message"])
logging.exception("Couldn't create policy %s", policy_name)
raise
else:
logging.info("Created Policy '%s'", policy_name)
return policy
def get_policy_by_name(policy_name: str) -> iam_resource.Policy:
"""
Get an existing policy by name.
:return: IAM Policy object
"""
# sts provides the account number of the current credentials
account_id = sts_client.get_caller_identity()["Account"]
# policy arns consist of an account id and policy name
policy_arn = f"arn:aws:iam::{account_id}:policy/{policy_name}"
# policies are created in the Python SDK via their arn
policy = iam_resource.Policy(policy_arn)
return policy
def delete_role(iam_role) -> dict:
"""
Delete a role.
:param iam_role: this parameter is an IAM role object, such as returned
by create_role()
"""
try:
# remove all policies before deleting role
for policy in iam_role.attached_policies.all():
policy.detach_role(RoleName=iam_role.name)
response = iam_role.delete()
except ClientError as error:
logging.error(error.response["Error"]["Message"])
logging.error("Couldn't delete role %s", iam_role.name)
else:
logging.info("Deleted role '%s'", iam_role.name)
return response
def delete_policy(iam_policy) -> dict:
"""
Delete a role.
:param iam_policy: this parameter is an IAM policy object, such as returned
by create_policy()
"""
try:
response = iam_policy.delete()
except ClientError as error:
logging.error(error.response["Error"]["Message"])
logging.error("Couldn't delete policy %s", iam_policy.arn)
else:
logging.info("Deleted policy '%s'", iam_policy.arn)
return response
if __name__ == "__main__":
# brief functionality test with delete() cleanup at end
policy_json_file = "./policy/lambda_policy.json"
with open(policy_json_file) as file:
policy_json = file.read()
policy_name = "test_policy"
policy = create_policy(policy_name, policy_json)
print("new policy arn: ", policy.arn)
policy.delete()
| 34.937063 | 116 | 0.664532 |
5dcb3695e4bb82f323f1875e14dd30d0eb26c6e3
| 199 |
py
|
Python
|
stograde/common/run_status.py
|
babatana/stograde
|
c1c447e99c44c23cef9dd857e669861f3708ae77
|
[
"MIT"
] | null | null | null |
stograde/common/run_status.py
|
babatana/stograde
|
c1c447e99c44c23cef9dd857e669861f3708ae77
|
[
"MIT"
] | null | null | null |
stograde/common/run_status.py
|
babatana/stograde
|
c1c447e99c44c23cef9dd857e669861f3708ae77
|
[
"MIT"
] | null | null | null |
from enum import auto, Enum
| 19.9 | 33 | 0.683417 |
5dcb43dbc68228752388169be1e8b17fd1bf9290
| 112 |
py
|
Python
|
recsys/__init__.py
|
shenghuiliuu/recsys
|
d706d1ae2558816c1e11ca790baeb7748200b404
|
[
"MIT"
] | 50 |
2016-10-27T07:28:35.000Z
|
2022-03-30T01:32:32.000Z
|
recsys/__init__.py
|
shenghuiliuu/recsys
|
d706d1ae2558816c1e11ca790baeb7748200b404
|
[
"MIT"
] | 5 |
2016-11-10T16:22:37.000Z
|
2020-09-16T10:26:59.000Z
|
recsys/__init__.py
|
shenghuiliuu/recsys
|
d706d1ae2558816c1e11ca790baeb7748200b404
|
[
"MIT"
] | 22 |
2016-11-19T08:56:22.000Z
|
2021-06-23T16:13:10.000Z
|
__all__ = ['cross_validation',
'metrics',
'datasets',
'recommender']
| 14 | 31 | 0.4375 |
5dcbed3a8321b9c6b63677f0f51fde0daacfda04
| 21,917 |
py
|
Python
|
audiomate/annotations/label_list.py
|
CostanzoPablo/audiomate
|
080402eadaa81f77f64c8680510a2de64bc18e74
|
[
"MIT"
] | 133 |
2018-05-18T13:54:10.000Z
|
2022-02-15T02:14:20.000Z
|
audiomate/annotations/label_list.py
|
CostanzoPablo/audiomate
|
080402eadaa81f77f64c8680510a2de64bc18e74
|
[
"MIT"
] | 68 |
2018-06-03T16:42:09.000Z
|
2021-01-29T10:58:30.000Z
|
audiomate/annotations/label_list.py
|
CostanzoPablo/audiomate
|
080402eadaa81f77f64c8680510a2de64bc18e74
|
[
"MIT"
] | 37 |
2018-11-02T02:40:29.000Z
|
2021-11-30T07:44:50.000Z
|
import collections
import copy
import intervaltree
from .label import Label
def addl(self, value, start=0.0, end=float('inf')):
""" Shortcut for ``add(Label(value, start, end))``. """
self.add(Label(value, start=start, end=end))
def update(self, labels):
"""
Add a list of labels to the end of the list.
Args:
labels (list): Labels to add.
"""
ivs = []
for label in labels:
label.label_list = self
ivs.append(intervaltree.Interval(label.start, label.end, label))
self.label_tree.update(ivs)
def apply(self, fn):
"""
Apply the given function `fn` to every label in this label list.
`fn` is a function of one argument that receives the current label
which can then be edited in place.
Args:
fn (func): Function to apply to every label
Example:
>>> ll = LabelList(labels=[
... Label('a_label', 1.0, 2.0),
... Label('another_label', 2.0, 3.0)
... ])
>>> def shift_labels(label):
... label.start += 1.0
... label.end += 1.0
...
>>> ll.apply(shift_labels)
>>> ll.labels
[Label(a_label, 2.0, 3.0), Label(another_label, 3.0, 4.0)]
"""
for label in self.labels:
fn(label)
def merge_overlaps(self, threshold=0.0):
"""
Merge overlapping labels with the same value.
Two labels are considered overlapping,
if ``l2.start - l1.end < threshold``.
Args:
threshold (float): Maximal distance between two labels
to be considered as overlapping.
(default: 0.0)
Example:
>>> ll = LabelList(labels=[
... Label('a_label', 1.0, 2.0),
... Label('a_label', 1.5, 2.7),
... Label('b_label', 1.0, 2.0),
... ])
>>> ll.merge_overlapping_labels()
>>> ll.labels
[
Label('a_label', 1.0, 2.7),
Label('b_label', 1.0, 2.0),
]
"""
updated_labels = []
all_intervals = self.label_tree.copy()
# recursivly find a group of overlapping labels with the same value
# For every remaining interval
# - Find overlapping intervals recursively
# - Remove them
# - Create a concatenated new label
while not all_intervals.is_empty():
next_interval = list(all_intervals)[0]
overlapping = recursive_overlaps(next_interval)
ov_start = float('inf')
ov_end = 0.0
ov_value = next_interval.data.value
for overlap in overlapping:
ov_start = min(ov_start, overlap.begin)
ov_end = max(ov_end, overlap.end)
all_intervals.discard(overlap)
updated_labels.append(Label(
ov_value,
ov_start,
ov_end
))
# Replace the old labels with the updated ones
self.label_tree.clear()
self.update(updated_labels)
#
# Statistics
#
def label_total_duration(self):
"""
Return for each distinct label value the total duration of
all occurrences.
Returns:
dict: A dictionary containing for every label-value (key)
the total duration in seconds (value).
Example:
>>> ll = LabelList(labels=[
>>> Label('a', 3, 5),
>>> Label('b', 5, 8),
>>> Label('a', 8, 10),
>>> Label('b', 10, 14),
>>> Label('a', 15, 18.5)
>>> ])
>>> ll.label_total_duration()
{'a': 7.5 'b': 7.0}
"""
durations = collections.defaultdict(float)
for label in self:
durations[label.value] += label.duration
return durations
def label_values(self):
"""
Return a list of all occuring label values.
Returns:
list: Lexicographically sorted list (str) of label values.
Example:
>>> ll = LabelList(labels=[
>>> Label('a', 3.2, 4.5),
>>> Label('b', 5.1, 8.9),
>>> Label('c', 7.2, 10.5),
>>> Label('d', 10.5, 14),
>>> Label('d', 15, 18)
>>> ])
>>> ll.label_values()
['a', 'b', 'c', 'd']
"""
all_labels = {l.value for l in self}
return sorted(all_labels)
def label_count(self):
"""
Return for each label the number of occurrences within the list.
Returns:
dict: A dictionary containing for every label-value (key)
the number of occurrences (value).
Example:
>>> ll = LabelList(labels=[
>>> Label('a', 3.2, 4.5),
>>> Label('b', 5.1, 8.9),
>>> Label('a', 7.2, 10.5),
>>> Label('b', 10.5, 14),
>>> Label('a', 15, 18)
>>> ])
>>> ll.label_count()
{'a': 3 'b': 2}
"""
occurrences = collections.defaultdict(int)
for label in self:
occurrences[label.value] += 1
return occurrences
def all_tokens(self, delimiter=' '):
"""
Return a list of all tokens occurring in the label-list.
Args:
delimiter (str): The delimiter used to split labels into tokens.
See :meth:`audiomate.annotations.Label.tokenized`
Returns:
:class:`set`: A set of distinct tokens.
"""
tokens = set()
for label in self:
tokens = tokens.union(set(label.tokenized(delimiter=delimiter)))
return tokens
#
# Query Label Values
#
def join(self, delimiter=' ', overlap_threshold=0.1):
"""
Return a string with all labels concatenated together.
The order of the labels is defined by the start of the label.
If the overlapping between two labels is greater than
``overlap_threshold``, an Exception is thrown.
Args:
delimiter (str): A string to join two consecutive labels.
overlap_threshold (float): Maximum overlap between two
consecutive labels.
Returns:
str: A string with all labels concatenated together.
Example:
>>> ll = LabelList(idx='some', labels=[
>>> Label('a', start=0, end=4),
>>> Label('b', start=3.95, end=6.0),
>>> Label('c', start=7.0, end=10.2),
>>> Label('d', start=10.3, end=14.0)
>>> ])
>>> ll.join(' - ')
'a - b - c - d'
"""
sorted_by_start = sorted(self.labels)
concat_values = []
last_label_end = None
for label in sorted_by_start:
if last_label_end is None or (last_label_end - label.start < overlap_threshold and last_label_end > 0):
concat_values.append(label.value)
last_label_end = label.end
else:
raise ValueError('Labels overlap, not able to define the correct order')
return delimiter.join(concat_values)
def tokenized(self, delimiter=' ', overlap_threshold=0.1):
"""
Return a ordered list of tokens based on all labels.
Joins all token from all labels (``label.tokenized()```).
If the overlapping between two labels is greater than
``overlap_threshold``, an Exception is thrown.
Args:
delimiter (str): The delimiter used to split labels into tokens.
(default: space)
overlap_threshold (float): Maximum overlap between two
consecutive labels.
Returns:
str: A list containing tokens of all labels ordered according
to the label order.
Example:
>>> ll = LabelList(idx='some', labels=[
>>> Label('a d q', start=0, end=4),
>>> Label('b', start=3.95, end=6.0),
>>> Label('c a', start=7.0, end=10.2),
>>> Label('f g', start=10.3, end=14.0)
>>> ])
>>> ll.tokenized(delimiter=' ', overlap_threshold=0.1)
['a', 'd', 'q', 'b', 'c', 'a', 'f', 'g']
"""
sorted_by_start = sorted(self.labels)
tokens = []
last_label_end = None
for label in sorted_by_start:
if last_label_end is None or (last_label_end - label.start < overlap_threshold and last_label_end > 0):
tokens.extend(label.tokenized(delimiter=delimiter))
last_label_end = label.end
else:
raise ValueError('Labels overlap, not able to define the correct order')
return tokens
#
# Restructuring
#
def separated(self):
"""
Create a separate Label-List for every distinct label-value.
Returns:
dict: A dictionary with distinct label-values as keys. Every value
is a LabelList containing only labels with the same value.
Example:
>>> ll = LabelList(idx='some', labels=[
>>> Label('a', start=0, end=4),
>>> Label('b', start=3.95, end=6.0),
>>> Label('a', start=7.0, end=10.2),
>>> Label('b', start=10.3, end=14.0)
>>> ])
>>> s = ll.separate()
>>> s['a'].labels
[Label('a', start=0, end=4), Label('a', start=7.0, end=10.2)]
>>> s['b'].labels
[Label('b', start=3.95, end=6.0), Label('b', start=10.3, end=14.0)]
"""
separated_lls = collections.defaultdict(LabelList)
for label in self.labels:
separated_lls[label.value].add(label)
for ll in separated_lls.values():
ll.idx = self.idx
return separated_lls
def labels_in_range(self, start, end, fully_included=False):
"""
Return a list of labels, that are within the given range.
Also labels that only overlap are included.
Args:
start(float): Start-time in seconds.
end(float): End-time in seconds.
fully_included(bool): If ``True``, only labels fully included
in the range are returned. Otherwise
also overlapping ones are returned.
(default ``False``)
Returns:
list: List of labels in the range.
Example:
>>> ll = LabelList(labels=[
>>> Label('a', 3.2, 4.5),
>>> Label('b', 5.1, 8.9),
>>> Label('c', 7.2, 10.5),
>>> Label('d', 10.5, 14)
>>>])
>>> ll.labels_in_range(6.2, 10.1)
[Label('b', 5.1, 8.9), Label('c', 7.2, 10.5)]
"""
if fully_included:
intervals = self.label_tree.envelop(start, end)
else:
intervals = self.label_tree.overlap(start, end)
return [iv.data for iv in intervals]
def split(self, cutting_points, shift_times=False, overlap=0.0):
"""
Split the label-list into x parts and return them as new label-lists.
x is defined by the number of cutting-points
(``x == len(cutting_points) + 1``).
The result is a list of label-lists corresponding to each part.
Label-list 0 contains labels between ``0`` and ``cutting_points[0]``.
Label-list 1 contains labels between ``cutting_points[0]`` and
``cutting_points[1]``. And so on.
Args:
cutting_points(list): List of floats defining the points in seconds,
where the label-list is splitted.
shift_times(bool): If True, start and end-time are shifted in
splitted label-lists. So the start is relative
to the cutting point and not to the beginning
of the original label-list.
overlap(float): Amount of overlap in seconds. This amount is
subtracted from a start-cutting-point, and added
to a end-cutting-point.
Returns:
list: A list of of: class: `audiomate.annotations.LabelList`.
Example:
>>> ll = LabelList(labels=[
>>> Label('a', 0, 5),
>>> Label('b', 5, 10),
>>> Label('c', 11, 15),
>>>])
>>>
>>> res = ll.split([4.1, 8.9, 12.0])
>>> len(res)
4
>>> res[0].labels
[Label('a', 0.0, 4.1)]
>>> res[1].labels
[
Label('a', 4.1, 5.0),
Label('b', 5.0, 8.9)
]
>>> res[2].labels
[
Label('b', 8.9, 10.0),
Label('c', 11.0, 12.0)
]
>>> res[3].labels
[Label('c', 12.0, 15.0)]
If ``shift_times = True``, the times are adjusted to be relative
to the cutting-points for every label-list but the first.
>>> ll = LabelList(labels=[
>>> Label('a', 0, 5),
>>> Label('b', 5, 10),
>>>])
>>>
>>> res = ll.split([4.6])
>>> len(res)
4
>>> res[0].labels
[Label('a', 0.0, 4.6)]
>>> res[1].labels
[
Label('a', 0.0, 0.4),
Label('b', 0.4, 5.4)
]
"""
if len(cutting_points) == 0:
raise ValueError('At least one cutting-point is needed!')
# we have to loop in sorted order
cutting_points = sorted(cutting_points)
splits = []
iv_start = 0.0
for i in range(len(cutting_points) + 1):
if i < len(cutting_points):
iv_end = cutting_points[i]
else:
iv_end = float('inf')
# get all intervals intersecting range
intervals = self.label_tree.overlap(
iv_start - overlap,
iv_end + overlap
)
cp_splits = LabelList(idx=self.idx)
# Extract labels from intervals with updated times
for iv in intervals:
label = copy.deepcopy(iv.data)
label.start = max(0, iv_start - overlap, label.start)
label.end = min(iv_end + overlap, label.end)
if shift_times:
orig_start = max(0, iv_start - overlap)
label.start -= orig_start
label.end -= orig_start
cp_splits.add(label)
splits.append(cp_splits)
iv_start = iv_end
return splits
#
# Convenience Constructors
#
| 31.580692 | 115 | 0.505087 |
5dcd4858a80507237d1cda30d4f8de4336f40710
| 3,044 |
py
|
Python
|
src/views/age_results_widget.py
|
RubyMarsden/Crayfish
|
33bbb1248beec2fc40eee59e462711dd8cbc33da
|
[
"MIT"
] | null | null | null |
src/views/age_results_widget.py
|
RubyMarsden/Crayfish
|
33bbb1248beec2fc40eee59e462711dd8cbc33da
|
[
"MIT"
] | 8 |
2021-03-19T06:35:48.000Z
|
2021-03-31T14:23:24.000Z
|
src/views/age_results_widget.py
|
RubyMarsden/Crayfish
|
33bbb1248beec2fc40eee59e462711dd8cbc33da
|
[
"MIT"
] | null | null | null |
import matplotlib
from PyQt5.QtCore import Qt
from PyQt5.QtWidgets import QHBoxLayout, QDialog, QPushButton, QWidget, QVBoxLayout, QLabel
matplotlib.use('QT5Agg')
import matplotlib.pyplot as plt
from models.data_key import DataKey
from utils import ui_utils
| 30.747475 | 100 | 0.598555 |
5dcd80b6fc81b5df240724a020510872ace9a270
| 791 |
py
|
Python
|
examples/single_run/ocaes_single_run.py
|
EnergyModels/OCAES
|
d848d9fa621767e036824110de87450d524b7687
|
[
"MIT"
] | null | null | null |
examples/single_run/ocaes_single_run.py
|
EnergyModels/OCAES
|
d848d9fa621767e036824110de87450d524b7687
|
[
"MIT"
] | null | null | null |
examples/single_run/ocaes_single_run.py
|
EnergyModels/OCAES
|
d848d9fa621767e036824110de87450d524b7687
|
[
"MIT"
] | null | null | null |
import pandas as pd
from OCAES import ocaes
# ----------------------
# create and run model
# ----------------------
data = pd.read_csv('timeseries_inputs_2019.csv')
inputs = ocaes.get_default_inputs()
# inputs['C_well'] = 5000.0
# inputs['X_well'] = 50.0
# inputs['L_well'] = 50.0
# inputs['X_cmp'] = 0
# inputs['X_exp'] = 0
model = ocaes(data, inputs)
df, s = model.get_full_results()
revenue, LCOE, COVE, avoided_emissions = model.post_process(s)
s['revenue'] = revenue
s['LCOE'] = LCOE
s['COVE'] = COVE
s['avoided_emissions'] = avoided_emissions
df.to_csv('results_timeseries.csv')
s.to_csv('results_values.csv')
print(model.calculate_LCOE(s))
# ----------------------
# create plots using built-in functions
# ----------------------
model.plot_overview()
model.plot_power_energy()
| 23.969697 | 62 | 0.637168 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.