hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
11 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
251
max_stars_repo_name
stringlengths
4
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
251
max_issues_repo_name
stringlengths
4
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
251
max_forks_repo_name
stringlengths
4
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.05M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.04M
alphanum_fraction
float64
0
1
5d1d8a76e626c2ee6f2e02dabc04e268863c54e7
723
py
Python
algorithm/dynamic_programming/coin_change/solution.py
delaanthonio/hackerrank
b1f2e1e93b3260be90eb3b8cb8e86e9a700acf27
[ "MIT" ]
1
2017-07-02T01:35:39.000Z
2017-07-02T01:35:39.000Z
algorithm/dynamic_programming/coin_change/solution.py
delaanthonio/hackerrank
b1f2e1e93b3260be90eb3b8cb8e86e9a700acf27
[ "MIT" ]
null
null
null
algorithm/dynamic_programming/coin_change/solution.py
delaanthonio/hackerrank
b1f2e1e93b3260be90eb3b8cb8e86e9a700acf27
[ "MIT" ]
1
2018-04-03T15:11:56.000Z
2018-04-03T15:11:56.000Z
#!/usr/bin/env python3 """ The Coin Change Problem :author: Dela Anthonio :hackerrank: https://hackerrank.com/delaanthonio :problem: https://www.hackerrank.com/challenges/coin-change/problem """ from typing import List def count_ways(amount: int, coins: List[int]) -> int: """Return the number of ways we can count to ``amount`` with values ``coins``.""" ways = [1] + [0] * amount for coin in coins: for val in range(coin, amount + 1): ways[val] += ways[val - coin] return ways[-1] if __name__ == '__main__': main()
24.1
85
0.625173
5d1e0c02d27663acdb4392c5b988ee86f8972b53
147
py
Python
climbproject/climbapp/admin.py
javawolfpack/ClimbProject
508cf822a1eb0b78f7120a3d469ceb65e3b423f7
[ "MIT" ]
null
null
null
climbproject/climbapp/admin.py
javawolfpack/ClimbProject
508cf822a1eb0b78f7120a3d469ceb65e3b423f7
[ "MIT" ]
5
2018-11-24T16:15:24.000Z
2022-02-11T03:40:48.000Z
climbproject/climbapp/admin.py
javawolfpack/ClimbProject
508cf822a1eb0b78f7120a3d469ceb65e3b423f7
[ "MIT" ]
1
2018-11-24T16:13:49.000Z
2018-11-24T16:13:49.000Z
from django.contrib import admin #from .models import * from . import models # Register your models here. admin.site.register(models.ClimbModel)
18.375
38
0.782313
5d1e73e0421ce77dfe2003f2cfbf66fd1ffd338e
1,264
py
Python
setup.py
TheMagicNacho/artemis-nozzle
5c02672feb7b437a4ff0ccc45394de3010bcd5ab
[ "BSD-2-Clause" ]
null
null
null
setup.py
TheMagicNacho/artemis-nozzle
5c02672feb7b437a4ff0ccc45394de3010bcd5ab
[ "BSD-2-Clause" ]
null
null
null
setup.py
TheMagicNacho/artemis-nozzle
5c02672feb7b437a4ff0ccc45394de3010bcd5ab
[ "BSD-2-Clause" ]
null
null
null
# coding: utf-8 from runpy import run_path from setuptools import setup # Get the version from the relevant file d = run_path('skaero/version.py') __version__ = d['__version__'] setup( name="scikit-aero", version=__version__, description="Aeronautical engineering calculations in Python.", author="Juan Luis Cano", author_email="[email protected]", url="https://github.com/Juanlu001/scikit-aero", license="BSD", keywords=[ "aero", "aeronautical", "aerospace", "engineering", "atmosphere", "gas" ], requires=["numpy", "scipy"], packages=[ "skaero", "skaero.atmosphere", "skaero.gasdynamics", "skaero.util" ], classifiers=[ "Development Status :: 2 - Pre-Alpha", "Intended Audience :: Education", "Intended Audience :: Science/Research", "License :: OSI Approved :: BSD License", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: Implementation :: CPython", "Topic :: Scientific/Engineering", "Topic :: Scientific/Engineering :: Physics" ], long_description=open('README.rst').read() )
30.829268
70
0.625791
5d1e977ff682cc24e27dda8c4298d920050e0d35
1,226
py
Python
appendix/AI.by.Search/backtracking.search/3-1.eight.queens.py
royqh1979/programming_with_python
7e1e8f88381151b803b6ae6ebda9809d9cc6664a
[ "MIT" ]
5
2019-03-06T12:28:47.000Z
2022-01-06T14:06:02.000Z
appendix/AI.by.Search/backtracking.search/3-1.eight.queens.py
royqh1979/programming_with_python
7e1e8f88381151b803b6ae6ebda9809d9cc6664a
[ "MIT" ]
6
2021-02-02T22:40:49.000Z
2022-03-12T00:27:54.000Z
appendix/AI.by.Search/backtracking.search/3-1.eight.queens.py
royqh1979/programming_with_python
7e1e8f88381151b803b6ae6ebda9809d9cc6664a
[ "MIT" ]
4
2019-03-06T14:29:25.000Z
2020-06-02T15:16:40.000Z
""" 8 """ n=int(input("n:")) queens = [0]*(n+1) # col_flags=[0]*(n+1) # diag_flags = [0]*(2*n) # diag2_flags = [0] * (2*n) count = 0 queen(n) print(f"{count}\n")
15.518987
67
0.58646
5d1ef3d88231b985a99b51b59e99bc1d40f0567f
24,820
py
Python
multimodal_affinities/evaluation/analysis/plots_producer.py
amzn/multimodal-affinities
23045eb6a9387ce0c9c6f5a15227cf1cc4282626
[ "CC-BY-4.0" ]
6
2021-07-06T12:48:18.000Z
2021-12-06T01:52:24.000Z
multimodal_affinities/evaluation/analysis/plots_producer.py
amzn/multimodal-affinities
23045eb6a9387ce0c9c6f5a15227cf1cc4282626
[ "CC-BY-4.0" ]
null
null
null
multimodal_affinities/evaluation/analysis/plots_producer.py
amzn/multimodal-affinities
23045eb6a9387ce0c9c6f5a15227cf1cc4282626
[ "CC-BY-4.0" ]
5
2021-07-10T08:09:17.000Z
2022-03-24T16:27:15.000Z
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: CC-BY-4.0 import os import cv2 from collections import namedtuple import imageio from PIL import Image from random import randrange import numpy as np from sklearn.decomposition import PCA from scipy.spatial.distance import pdist, squareform import torch import matplotlib matplotlib.use('Agg') # Required for gif animations import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.image as image import matplotlib.patches as patches from multimodal_affinities.visualization.vis_handler import VisHandler from multimodal_affinities.visualization.image_utils import resize_image from multimodal_affinities.visualization.colors_util import rgb_hex_to_tuple
50.040323
148
0.621112
5d208ff94339d61c9f91237707d44d87ad7cd192
6,294
py
Python
openstates/openstates-master/openstates/de/legislators.py
Jgorsick/Advocacy_Angular
8906af3ba729b2303880f319d52bce0d6595764c
[ "CC-BY-4.0" ]
null
null
null
openstates/openstates-master/openstates/de/legislators.py
Jgorsick/Advocacy_Angular
8906af3ba729b2303880f319d52bce0d6595764c
[ "CC-BY-4.0" ]
null
null
null
openstates/openstates-master/openstates/de/legislators.py
Jgorsick/Advocacy_Angular
8906af3ba729b2303880f319d52bce0d6595764c
[ "CC-BY-4.0" ]
null
null
null
import re import lxml.html from openstates.utils import LXMLMixin from billy.scrape.legislators import LegislatorScraper, Legislator
35.359551
82
0.522402
5d20ce5f76b15dfb9e999e6d113dbf7e789ecd49
10,386
py
Python
simpleredial/dataloader/fine_grained_test_dataloader.py
gmftbyGMFTBY/SimpleReDial-v1
f45b8eb23d1499ec617b4cc4f417d83d8f2b6bde
[ "MIT" ]
36
2021-10-13T10:32:08.000Z
2022-03-20T07:50:05.000Z
simpleredial/dataloader/fine_grained_test_dataloader.py
gmftbyGMFTBY/SimpleReDial-v1
f45b8eb23d1499ec617b4cc4f417d83d8f2b6bde
[ "MIT" ]
3
2021-11-24T10:57:59.000Z
2022-03-27T15:37:40.000Z
simpleredial/dataloader/fine_grained_test_dataloader.py
gmftbyGMFTBY/SimpleReDial-v1
f45b8eb23d1499ec617b4cc4f417d83d8f2b6bde
[ "MIT" ]
1
2022-03-15T07:13:22.000Z
2022-03-15T07:13:22.000Z
from header import * from .utils import * from .util_func import * '''Only for Testing'''
41.378486
106
0.501637
5d21c5c96591c41db957d015a344d7b68da97b7a
4,396
py
Python
dabing/DABING-MIB.py
SvajkaJ/dabing
8ddd8c1056b182b52f76028e23cd2ba8418a0dec
[ "MIT" ]
null
null
null
dabing/DABING-MIB.py
SvajkaJ/dabing
8ddd8c1056b182b52f76028e23cd2ba8418a0dec
[ "MIT" ]
null
null
null
dabing/DABING-MIB.py
SvajkaJ/dabing
8ddd8c1056b182b52f76028e23cd2ba8418a0dec
[ "MIT" ]
null
null
null
# # PySNMP MIB module DABING-MIB (http://snmplabs.com/pysmi) # ASN.1 source file://..\DABING-MIB.mib # Produced by pysmi-0.3.4 at Tue Mar 22 12:53:47 2022 # On host ? platform ? version ? by user ? # Using Python version 3.8.2 (tags/v3.8.2:7b3ab59, Feb 25 2020, 22:45:29) [MSC v.1916 32 bit (Intel)] # OctetString, ObjectIdentifier, Integer = mibBuilder.importSymbols("ASN1", "OctetString", "ObjectIdentifier", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsIntersection, ConstraintsUnion, ValueRangeConstraint, SingleValueConstraint, ValueSizeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsIntersection", "ConstraintsUnion", "ValueRangeConstraint", "SingleValueConstraint", "ValueSizeConstraint") NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance") MibScalar, MibTable, MibTableRow, MibTableColumn, Gauge32, ModuleIdentity, IpAddress, ObjectIdentity, iso, Counter32, Unsigned32, Bits, NotificationType, TimeTicks, Counter64, enterprises, MibIdentifier, Integer32 = mibBuilder.importSymbols("SNMPv2-SMI", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Gauge32", "ModuleIdentity", "IpAddress", "ObjectIdentity", "iso", "Counter32", "Unsigned32", "Bits", "NotificationType", "TimeTicks", "Counter64", "enterprises", "MibIdentifier", "Integer32") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") dabing = ModuleIdentity((1, 3, 6, 1, 4, 1, 55532)) dabing.setRevisions(('2022-03-17 00:00',)) if mibBuilder.loadTexts: dabing.setLastUpdated('202203170000Z') if mibBuilder.loadTexts: dabing.setOrganization('www.stuba.sk') Parameters = MibIdentifier((1, 3, 6, 1, 4, 1, 55532, 1)) Agent = MibIdentifier((1, 3, 6, 1, 4, 1, 55532, 2)) Manager = MibIdentifier((1, 3, 6, 1, 4, 1, 55532, 3)) Notifications = MibIdentifier((1, 3, 6, 1, 4, 1, 55532, 4)) NotificationPrefix = MibIdentifier((1, 3, 6, 1, 4, 1, 55532, 4, 1)) NotificationObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 55532, 4, 2)) channel = MibScalar((1, 3, 6, 1, 4, 1, 55532, 1, 1), OctetString().clone('12C')).setMaxAccess("readonly") if mibBuilder.loadTexts: channel.setStatus('current') interval = MibScalar((1, 3, 6, 1, 4, 1, 55532, 1, 2), Integer32().clone(960)).setMaxAccess("readonly") if mibBuilder.loadTexts: interval.setStatus('current') trapEnabled = MibScalar((1, 3, 6, 1, 4, 1, 55532, 1, 3), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: trapEnabled.setStatus('current') agentIdentifier = MibScalar((1, 3, 6, 1, 4, 1, 55532, 2, 1), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: agentIdentifier.setStatus('current') agentLabel = MibScalar((1, 3, 6, 1, 4, 1, 55532, 2, 2), OctetString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: agentLabel.setStatus('current') agentStatus = MibScalar((1, 3, 6, 1, 4, 1, 55532, 2, 3), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: agentStatus.setStatus('current') managerHostname = MibScalar((1, 3, 6, 1, 4, 1, 55532, 3, 1), OctetString()).setMaxAccess("readonly") if mibBuilder.loadTexts: managerHostname.setStatus('current') managerPort = MibScalar((1, 3, 6, 1, 4, 1, 55532, 3, 2), Integer32().clone(162)).setMaxAccess("readonly") if mibBuilder.loadTexts: managerPort.setStatus('current') genericPayload = MibScalar((1, 3, 6, 1, 4, 1, 55532, 4, 2, 1), OctetString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: genericPayload.setStatus('current') malfunctionTrap = NotificationType((1, 3, 6, 1, 4, 1, 55532, 4, 1, 1)).setObjects(("DABING-MIB", "genericPayload")) if mibBuilder.loadTexts: malfunctionTrap.setStatus('current') testTrap = NotificationType((1, 3, 6, 1, 4, 1, 55532, 4, 1, 2)).setObjects(("DABING-MIB", "genericPayload")) if mibBuilder.loadTexts: testTrap.setStatus('current') mibBuilder.exportSymbols("DABING-MIB", Notifications=Notifications, channel=channel, PYSNMP_MODULE_ID=dabing, testTrap=testTrap, malfunctionTrap=malfunctionTrap, Parameters=Parameters, agentLabel=agentLabel, managerPort=managerPort, trapEnabled=trapEnabled, managerHostname=managerHostname, Manager=Manager, NotificationPrefix=NotificationPrefix, Agent=Agent, genericPayload=genericPayload, NotificationObjects=NotificationObjects, agentIdentifier=agentIdentifier, dabing=dabing, agentStatus=agentStatus, interval=interval)
93.531915
523
0.75364
5d228bf6a4bad705b90b99a4ee75f695228944a7
956
py
Python
parameter_setup/run_setup_extra_vis.py
kharris/allen-voxel-network
3c39cf7e7400c09f78ebe9d1d9f8a6d7b9ef6d7b
[ "BSD-2-Clause" ]
7
2018-04-02T01:30:31.000Z
2020-02-23T03:31:57.000Z
parameter_setup/run_setup_extra_vis.py
yijizhao/allen-voxel-network
3c39cf7e7400c09f78ebe9d1d9f8a6d7b9ef6d7b
[ "BSD-2-Clause" ]
null
null
null
parameter_setup/run_setup_extra_vis.py
yijizhao/allen-voxel-network
3c39cf7e7400c09f78ebe9d1d9f8a6d7b9ef6d7b
[ "BSD-2-Clause" ]
2
2016-11-10T03:27:29.000Z
2018-08-06T17:32:05.000Z
import os import numpy as np save_stem='extra_vis_friday_harbor' data_dir='../../data/sdk_new_100' resolution=100 cre=False source_acronyms=['VISal','VISam','VISl','VISp','VISpl','VISpm', 'VISli','VISpor','VISrl','VISa'] lambda_list = np.logspace(3,12,10) scale_lambda=True min_vox=0 # save_file_name='visual_output.hdf5' #source_coverage=0.90 source_coverage=0.95 #source_shell = 1 source_shell=None save_dir=os.path.join('../../data/connectivities',save_stem) experiments_fn=None target_acronyms=source_acronyms solver=os.path.abspath('../smoothness_c/solve') cmdfile=os.path.join(save_dir,'model_fitting_cmds') selected_fit_cmds=os.path.join(save_dir,'model_fitting_after_selection_cmds') save_mtx=True cross_val_matrices=True cross_val=5 fit_gaussian=False select_one_lambda=False if select_one_lambda: lambda_fn='lambda_opt' else: lambda_fn='lambda_ipsi_contra_opt' laplacian='free' shuffle_seed=666 max_injection_volume=0.7
26.555556
77
0.789749
5d246013ebe48dbfeb0d5a33d4837a599aed75ec
396
py
Python
examples/runall.py
GNiklas/MOSSEPy
fbae1294beefe48f321bc5dbbc70e6c72d3ffe1f
[ "MIT" ]
null
null
null
examples/runall.py
GNiklas/MOSSEPy
fbae1294beefe48f321bc5dbbc70e6c72d3ffe1f
[ "MIT" ]
null
null
null
examples/runall.py
GNiklas/MOSSEPy
fbae1294beefe48f321bc5dbbc70e6c72d3ffe1f
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Nov 20 09:42:39 2020 @author: niklas """ from mossepy.mosse_tracker import MOSSE # choose position of object in first frame # that should be done by mouse click objPos = [256, 256] # choose tracker type tracker = MOSSE() # initialize object position in first frame tracker.setObjPos(objPos) # start tracking tracker.trackImg()
19.8
43
0.729798
5d252f7a220679f8642989c387a00db59609427b
3,194
py
Python
core/formulas.py
mike006322/PolynomialCalculator
bf56b0e773a3461ab2aa958d0d90e08f80a4d201
[ "MIT" ]
null
null
null
core/formulas.py
mike006322/PolynomialCalculator
bf56b0e773a3461ab2aa958d0d90e08f80a4d201
[ "MIT" ]
null
null
null
core/formulas.py
mike006322/PolynomialCalculator
bf56b0e773a3461ab2aa958d0d90e08f80a4d201
[ "MIT" ]
null
null
null
def solve(polynomial): """ input is polynomial if more than one variable, returns 'too many variables' looks for formula to apply to coefficients returns solution or 'I cannot solve yet...' """ if len(polynomial.term_matrix[0]) > 2: return 'too many variables' elif len(polynomial.term_matrix[0]) == 1: return polynomial.term_matrix[1][0] elif len(polynomial.term_matrix[0]) == 2: degree = polynomial.term_matrix[1][1] if degree == 1: if len(polynomial.term_matrix) == 2: return 0 else: return -polynomial.term_matrix[2][0]/polynomial.term_matrix[1][0] if degree == 2: ans = quadratic_formula(polynomial) return ans if degree > 2: return Durand_Kerner(polynomial) def quadratic_formula(polynomial): """ input is single-variable polynomial of degree 2 returns zeros """ if len(polynomial.term_matrix) == 3: if polynomial.term_matrix[2][1] == 1: a, b = polynomial.term_matrix[1][0], polynomial.term_matrix[2][0] return 0, -b/a a, c = polynomial.term_matrix[1][0], polynomial.term_matrix[2][0] return (-c/a)**.5, -(-c/a)**.5 if len(polynomial.term_matrix) == 2: a, b, c, = polynomial.term_matrix[1][0], 0, 0 elif len(polynomial.term_matrix) == 3: a, b, c = polynomial.term_matrix[1][0], polynomial.term_matrix[2][0], 0 else: a, b, c = polynomial.term_matrix[1][0], polynomial.term_matrix[2][0], polynomial.term_matrix[3][0] ans1 = (-b + (b**2 - 4*a*c)**.5)/2*a ans2 = (-b - (b**2 - 4*a*c)**.5)/2*a if ans1 == ans2: return ans1 return ans1, ans2 def isclose(a, b, rel_tol=1e-09, abs_tol=0.0001): """ returns boolean whether abs(a-b) is less than abs_total or rel_total*max(a, b) """ return abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol) def Durand_Kerner(f): """ input polynomial returns numerical approximation of all complex roots """ roots = [] for i in range(f.degree()): roots.append((0.4 + 0.9j)**i) diff = 1 diff_temp = 0 while diff > .00000001 and not isclose(diff_temp, diff): iterate() for i in range(len(roots)): if isclose(roots[i].real, round(roots[i].real)): temp = round(roots[i].real) roots[i] -= roots[i].real roots[i] += temp if isclose(roots[i].imag, round(roots[i].imag)): temp = round(roots[i].imag) roots[i] -= roots[i].imag*1j roots[i] += temp*1j return roots if __name__ == '__main__': pass
31.623762
106
0.556669
5d25df408d94ab31e94a89b3213ae144d0477893
5,761
py
Python
manim/mobject/svg/style_utils.py
5Points7Edges/manim
1c2a5099133dbf0abdd5517b2ac93cfc8275b842
[ "MIT" ]
null
null
null
manim/mobject/svg/style_utils.py
5Points7Edges/manim
1c2a5099133dbf0abdd5517b2ac93cfc8275b842
[ "MIT" ]
null
null
null
manim/mobject/svg/style_utils.py
5Points7Edges/manim
1c2a5099133dbf0abdd5517b2ac93cfc8275b842
[ "MIT" ]
null
null
null
"""Utility functions for parsing SVG styles.""" __all__ = ["cascade_element_style", "parse_style", "parse_color_string"] from xml.dom.minidom import Element as MinidomElement from colour import web2hex from ...utils.color import rgb_to_hex from typing import Dict, List CASCADING_STYLING_ATTRIBUTES: List[str] = [ "fill", "stroke", "fill-opacity", "stroke-opacity", ] # The default styling specifications for SVG images, # according to https://www.w3.org/TR/SVG/painting.html # (ctrl-F for "initial") SVG_DEFAULT_ATTRIBUTES: Dict[str, str] = { "fill": "black", "fill-opacity": "1", "stroke": "none", "stroke-opacity": "1", } def cascade_element_style( element: MinidomElement, inherited: Dict[str, str] ) -> Dict[str, str]: """Collect the element's style attributes based upon both its inheritance and its own attributes. SVG uses cascading element styles. A closer ancestor's style takes precedence over a more distant ancestor's style. In order to correctly calculate the styles, the attributes are passed down through the inheritance tree, updating where necessary. Note that this method only copies the values and does not parse them. See :meth:`parse_color_string` for converting from SVG attributes to manim keyword arguments. Parameters ---------- element : :class:`MinidomElement` Element of the SVG parse tree inherited : :class:`dict` Dictionary of SVG attributes inherited from the parent element. Returns ------- :class:`dict` Dictionary mapping svg attributes to values with `element`'s values overriding inherited values. """ style = inherited.copy() # cascade the regular elements. for attr in CASCADING_STYLING_ATTRIBUTES: entry = element.getAttribute(attr) if entry: style[attr] = entry # the style attribute should be handled separately in order to # break it up nicely. furthermore, style takes priority over other # attributes in the same element. style_specs = element.getAttribute("style") if style_specs: for style_spec in style_specs.split(";"): try: key, value = style_spec.split(":") except ValueError as e: if not style_spec.strip(): # there was just a stray semicolon at the end, producing an emptystring pass else: raise e else: style[key.strip()] = value.strip() return style def parse_color_string(color_spec: str) -> str: """Handle the SVG-specific color strings and convert them to HTML #rrggbb format. Parameters ---------- color_spec : :class:`str` String in any web-compatible format Returns ------- :class:`str` Hexadecimal color string in the format `#rrggbb` """ if color_spec[0:3] == "rgb": # these are only in integer form, but the Colour module wants them in floats. splits = color_spec[4:-1].split(",") if splits[0][-1] == "%": # if the last character of the first number is a percentage, # then interpret the number as a percentage parsed_rgbs = [float(i[:-1]) / 100.0 for i in splits] else: parsed_rgbs = [int(i) / 255.0 for i in splits] hex_color = rgb_to_hex(parsed_rgbs) elif color_spec[0] == "#": # its OK, parse as hex color standard. hex_color = color_spec else: # attempt to convert color names like "red" to hex color hex_color = web2hex(color_spec, force_long=True) return hex_color def fill_default_values(svg_style: Dict) -> None: """ Fill in the default values for properties of SVG elements, if they are not currently set in the style dictionary. Parameters ---------- svg_style : :class:`dict` Style dictionary with SVG property names. Some may be missing. Returns ------- :class:`dict` Style attributes; none are missing. """ for key in SVG_DEFAULT_ATTRIBUTES: if key not in svg_style: svg_style[key] = SVG_DEFAULT_ATTRIBUTES[key] def parse_style(svg_style: Dict[str, str]) -> Dict: """Convert a dictionary of SVG attributes to Manim VMobject keyword arguments. Parameters ---------- svg_style : :class:`dict` Style attributes as a string-to-string dictionary. Keys are valid SVG element attributes (fill, stroke, etc) Returns ------- :class:`dict` Style attributes, but in manim kwargs form, e.g., keys are fill_color, stroke_color """ manim_style = {} fill_default_values(svg_style) if "fill-opacity" in svg_style: manim_style["fill_opacity"] = float(svg_style["fill-opacity"]) if "stroke-opacity" in svg_style: manim_style["stroke_opacity"] = float(svg_style["stroke-opacity"]) # nones need to be handled specially if "fill" in svg_style: if svg_style["fill"] == "none": manim_style["fill_opacity"] = 0 else: manim_style["fill_color"] = parse_color_string(svg_style["fill"]) if "stroke" in svg_style: if svg_style["stroke"] == "none": # In order to not break animations.creation.Write, # we interpret no stroke as stroke-width of zero and # color the same as the fill color, if it exists. manim_style["stroke_width"] = 0 if "fill_color" in manim_style: manim_style["stroke_color"] = manim_style["fill_color"] else: manim_style["stroke_color"] = parse_color_string(svg_style["stroke"]) return manim_style
31.140541
119
0.635306
5d2760eb1387adc84de54a02742f29d1beeb4ef2
1,361
py
Python
iotrigger.py
mm011106/iotrigger
643ced0440a8c4fb95ade56399f813c88ac8ddd6
[ "Apache-2.0" ]
null
null
null
iotrigger.py
mm011106/iotrigger
643ced0440a8c4fb95ade56399f813c88ac8ddd6
[ "Apache-2.0" ]
1
2017-01-08T14:22:32.000Z
2019-01-08T23:51:53.000Z
iotrigger.py
mm011106/iotrigger
643ced0440a8c4fb95ade56399f813c88ac8ddd6
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python #coding:utf-8 import os import RPi.GPIO as GPIO # import json from time import sleep # from twython import Twython f=open("tw_config.json",'r') config=json.load(f) f.close() CONSUMER_KEY =config['consumer_key'] CONSUMER_SECRET =config['consumer_secret'] ACCESS_TOKEN =config['access_token'] ACCESS_SECRET =config['access_secret'] dist=config['dist'] api = Twython(CONSUMER_KEY,CONSUMER_SECRET,ACCESS_TOKEN,ACCESS_SECRET) trigger_input=21 GPIO.setmode(GPIO.BCM) GPIO.setup(25, GPIO.OUT) GPIO.setup(trigger_input, GPIO.IN, pull_up_down=GPIO.PUD_UP) GPIO.add_event_detect(trigger_input, GPIO.RISING, callback=on_positive_edge, bouncetime=1000) ledstate = GPIO.LOW try: while True: sleep(0.01) except KeyboardInterrupt: # pass GPIO.cleanup() #
21.951613
93
0.714916
5d27ee1b746e920a8fbbde21e0ae74440138e1ce
2,293
py
Python
src/wheezy/template/tests/test_utils.py
nxsofsys/wheezy.template
b65b70b2927974790ff2413843ec752dd9c6c609
[ "MIT" ]
2
2017-02-08T11:48:41.000Z
2017-12-18T08:04:13.000Z
src/wheezy/template/tests/test_utils.py
ezotrank/wheezy.template
d54bc667303fd4de7314f659e17dd317ac3e3a82
[ "MIT" ]
null
null
null
src/wheezy/template/tests/test_utils.py
ezotrank/wheezy.template
d54bc667303fd4de7314f659e17dd317ac3e3a82
[ "MIT" ]
1
2022-03-04T20:26:20.000Z
2022-03-04T20:26:20.000Z
""" Unit tests for ``wheezy.templates.utils``. """ import unittest
31.847222
62
0.602704
5d28c827c798225b6b2063067a58a432acbd8766
34,967
py
Python
akshare/economic/macro_constitute.py
peterrosetu/akshare
9eac9ccb531b6e07d39140830d65349ea9441dc3
[ "MIT" ]
1
2020-12-26T23:39:05.000Z
2020-12-26T23:39:05.000Z
akshare/economic/macro_constitute.py
Hecate2/akshare
2d8904f5cf242ab784f748ab2f886329ebf69742
[ "MIT" ]
null
null
null
akshare/economic/macro_constitute.py
Hecate2/akshare
2d8904f5cf242ab784f748ab2f886329ebf69742
[ "MIT" ]
2
2020-09-23T08:50:14.000Z
2020-09-28T09:57:07.000Z
# -*- coding:utf-8 -*- # /usr/bin/env python """ Date: 2019/10/21 12:08 Desc: --- """ import json import time import pandas as pd import requests from tqdm import tqdm from akshare.economic.cons import ( JS_CONS_GOLD_ETF_URL, JS_CONS_SLIVER_ETF_URL, JS_CONS_OPEC_URL, ) def macro_cons_gold_volume(): """ ETFSPDR Gold Trust, 20041118- :return: pandas.Series 2004-11-18 8.09 2004-11-19 57.85 2004-11-22 87.09 2004-11-23 87.09 2004-11-24 96.42 ... 2019-10-20 924.64 2019-10-21 924.64 2019-10-22 919.66 2019-10-23 918.48 2019-10-24 918.48 """ t = time.time() res = requests.get( JS_CONS_GOLD_ETF_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"][""] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["()"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "etf", "attr_id": "1", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", keep="last", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "gold_volume" temp_df = temp_df.astype(float) return temp_df def macro_cons_gold_change(): """ ETFSPDR Gold Trust, 20041118- :return: pandas.Series 2004-11-18 0 2004-11-19 49.76 2004-11-22 29.24 2004-11-23 0.00 2004-11-24 9.33 ... 2019-10-20 0.00 2019-10-21 0.00 2019-10-22 -4.98 2019-10-23 -1.18 2019-10-24 0.00 """ t = time.time() res = requests.get( JS_CONS_GOLD_ETF_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"][""] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["/()"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "etf", "attr_id": "1", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, [0, 2]] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", keep="last", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "gold_change" temp_df = temp_df.astype(float) return temp_df def macro_cons_gold_amount(): """ ETFSPDR Gold Trust, 20041118- :return: pandas.Series 2004-11-18 114920000.00 2004-11-19 828806907.20 2004-11-22 1253785205.50 2004-11-23 1254751438.19 2004-11-24 1390568824.08 ... 2019-10-20 44286078486.23 2019-10-21 44333677232.68 2019-10-22 43907962483.56 2019-10-23 44120217405.82 2019-10-24 44120217405.82 """ t = time.time() res = requests.get( JS_CONS_GOLD_ETF_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"][""] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["()"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "etf", "attr_id": "1", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, [0, 3]] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", keep="last", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "gold_amount" temp_df = temp_df.astype(float) return temp_df def macro_cons_silver_volume(): """ ETF--iShares Silver Trust, 20060429- :return: pandas.Series 2006-04-29 653.17 2006-05-02 653.17 2006-05-03 995.28 2006-05-04 1197.43 2006-05-05 1306.29 ... 2019-10-17 11847.91 2019-10-18 11847.91 2019-10-21 11813.02 2019-10-22 11751.96 2019-10-23 11751.96 """ t = time.time() res = requests.get( JS_CONS_SLIVER_ETF_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"][""] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["()"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "etf", "attr_id": "2", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, [0, 1]] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", keep="last", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "silver_volume" url = "https://cdn.jin10.com/data_center/reports/etf_2.json" r = requests.get(url) data_json = r.json() append_temp_df = pd.DataFrame(data_json["values"]).T append_temp_df.columns = [item["name"] for item in data_json["keys"]] temp_append_df = append_temp_df[""] temp_append_df.name = "silver_volume" temp_df = temp_df.reset_index() temp_df["index"] = temp_df["index"].astype(str) temp_df = temp_df.append(temp_append_df.reset_index()) temp_df.drop_duplicates(subset=["index"], keep="last", inplace=True) temp_df.index = pd.to_datetime(temp_df["index"]) del temp_df["index"] temp_df = temp_df[temp_df != 'Show All'] temp_df.sort_index(inplace=True) temp_df = temp_df.astype(float) return temp_df def macro_cons_silver_change(): """ ETF--iShares Silver Trust, 20060429- :return: pandas.Series 2006-04-29 0 2006-05-02 0.00 2006-05-03 342.11 2006-05-04 202.15 2006-05-05 108.86 ... 2019-10-17 -58.16 2019-10-18 0.00 2019-10-21 -34.89 2019-10-22 -61.06 2019-10-23 0.00 """ t = time.time() res = requests.get( JS_CONS_SLIVER_ETF_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"][""] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["/()"] temp_df.name = "silver_change" url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "etf", "attr_id": "2", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, [0, 2]] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", keep="last", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "silver_change" url = "https://cdn.jin10.com/data_center/reports/etf_2.json" r = requests.get(url) data_json = r.json() append_temp_df = pd.DataFrame(data_json["values"]).T append_temp_df.columns = [item["name"] for item in data_json["keys"]] temp_append_df = append_temp_df["/"] temp_append_df.name = "silver_change" temp_df = temp_df.reset_index() temp_df["index"] = temp_df["index"].astype(str) temp_df = temp_df.append(temp_append_df.reset_index()) temp_df.drop_duplicates(subset=["index"], keep="last", inplace=True) temp_df.index = pd.to_datetime(temp_df["index"]) del temp_df["index"] temp_df = temp_df[temp_df != 'Show All'] temp_df.sort_index(inplace=True) temp_df = temp_df.astype(float) return temp_df def macro_cons_silver_amount(): """ ETF--iShares Silver Trust, 20060429- :return: pandas.Series 2006-04-29 263651152 2006-05-02 263651152 2006-05-03 445408550 2006-05-04 555123947 2006-05-05 574713264 ... 2019-10-17 Show All 2019-10-18 Show All 2019-10-21 Show All 2019-10-22 Show All 2019-10-23 Show All """ t = time.time() res = requests.get( JS_CONS_SLIVER_ETF_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"][""] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["()"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "etf", "attr_id": "2", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, [0, 3]] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", keep="last", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "silver_amount" url = "https://cdn.jin10.com/data_center/reports/etf_2.json" r = requests.get(url) data_json = r.json() append_temp_df = pd.DataFrame(data_json["values"]).T append_temp_df.columns = [item["name"] for item in data_json["keys"]] temp_append_df = append_temp_df[""] temp_append_df.name = "silver_amount" temp_df = temp_df.reset_index() temp_df["index"] = temp_df["index"].astype(str) temp_df = temp_df.append(temp_append_df.reset_index()) temp_df.drop_duplicates(subset=["index"], keep="last", inplace=True) temp_df.index = pd.to_datetime(temp_df["index"]) del temp_df["index"] temp_df = temp_df[temp_df != 'Show All'] temp_df.sort_index(inplace=True) temp_df = temp_df.astype(float) return temp_df def macro_cons_opec_near_change(): """ -, 20170118- :return: pandas.Series \ 2017-01-18 -0.87 3.56 -0.25 -0.87 0.95 4.26 0.20 3.13 -11.35 2017-02-13 -4.17 -2.32 -1.67 -1.00 5.02 -16.57 -14.12 6.47 10.18 2017-03-14 -0.02 -1.82 -0.44 -0.69 3.61 -6.20 -0.93 -1.11 5.80 2017-04-12 0.45 -1.87 -0.28 0.19 -2.87 -0.85 -0.95 -6.08 -2.98 2017-05-11 -0.75 9.71 -0.06 0.88 -3.47 -3.91 0.03 -6.16 5.08 2017-06-13 0.96 -5.42 0.22 -0.13 0.45 4.44 0.00 17.82 17.42 2017-07-12 -0.09 6.60 -0.21 -0.77 1.67 6.06 -0.02 12.70 9.67 2017-08-10 -0.10 -1.93 0.85 0.71 0.69 -3.31 -0.74 15.43 3.43 2017-09-12 0.41 0.83 -0.03 -3.23 -0.23 -2.31 0.01 -11.23 13.83 2017-10-11 -0.85 -0.29 -0.05 1.44 0.09 3.16 -0.17 5.39 5.08 2017-11-13 -3.84 6.98 0.71 0.18 -1.13 -13.10 -0.37 4.23 -5.44 2017-12-13 1.41 -10.87 -0.51 -0.47 -0.22 0.10 -0.53 0.61 9.58 2018-01-18 3.03 4.48 -0.72 -0.01 1.32 0.79 -0.25 -0.70 7.57 2018-04-12 -4.95 -8.17 0.26 -0.91 0.33 -1.31 0.23 -3.72 1.82 2018-05-14 1.77 -0.78 0.31 -0.93 1.00 -0.07 0.08 0.69 -0.83 2018-06-12 3.90 1.40 0.06 0.18 0.56 2.77 -0.57 -2.43 -5.35 2018-07-11 0.46 -8.83 -0.09 0.35 -2.27 7.15 2.73 -25.43 2.78 2018-08-13 1.38 1.17 0.42 -0.34 -5.63 2.41 7.85 -5.67 7.05 2018-09-12 -1.40 -0.80 0.40 18.80 -15.00 9.00 0.80 25.60 7.40 2018-10-11 -0.80 5.70 53.10 -0.10 -15.00 0.80 0.60 10.30 2.60 2018-11-13 -0.40 2.20 -0.30 0.30 -15.60 465.30 -3.30 6.00 -1.70 2018-12-12 -0.50 0.30 0.10 -1.10 -38.00 -2.30 4.50 -1.10 -3.00 2019-03-14 0.20 2.20 0.50 0.70 1.20 -7.00 -1.40 2.30 1.00 2019-04-10 -0.70 0.70 52.40 0.90 -2.80 -12.60 -0.10 19.60 1.10 2019-06-13 0.60 7.40 -0.10 2.30 -22.70 9.40 1.30 -0.30 -9.20 2017-01-18 -14.93 -0.63 -4.52 -22.09 2017-02-13 -49.62 -15.93 -3.05 -89.02 2017-03-14 -6.81 -3.69 -1.60 -13.95 2017-04-12 4.16 -3.27 -2.59 -15.27 2017-05-11 4.92 -6.23 -2.60 -1.82 2017-06-13 0.23 -1.80 -0.77 33.61 2017-07-12 5.13 -0.07 -1.36 39.35 2017-08-10 3.18 -0.67 -1.58 17.26 2017-09-12 -1.03 -2.02 -3.19 -7.91 2017-10-11 -0.07 -0.84 -5.19 8.85 2017-11-13 1.69 -0.60 -4.36 -15.09 2017-12-13 -4.54 -3.55 -4.16 -13.35 2018-01-18 -1.09 -0.70 -8.22 4.24 2018-04-12 -4.69 4.49 -5.53 -20.14 2018-05-14 4.65 0.61 -4.17 1.21 2018-06-12 8.55 -0.63 -4.25 3.54 2018-07-11 40.54 3.51 -4.75 17.34 2018-08-13 -5.28 6.92 -4.77 4.07 2018-09-12 3.80 1.20 -3.60 27.80 2018-10-11 10.80 3.00 -4.20 13.20 2018-11-13 12.70 14.20 -4.00 12.70 2018-12-12 37.70 7.10 -5.20 -1.10 2019-03-14 -8.60 -0.40 -14.20 -22.10 2019-04-10 -32.40 -0.90 -28.90 -53.40 2019-06-13 -7.60 0.30 -3.50 -23.60 """ t = time.time() big_df = pd.DataFrame() headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_opec_report", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.117 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } res = requests.get(f"https://datacenter-api.jin10.com/reports/dates?category=opec&_={str(int(round(t * 1000)))}", headers=headers) # all_date_list = res.json()["data"] bar = tqdm(reversed(all_date_list[:-1])) for item in bar: bar.set_description(f"Please wait for a moment, now downing {item}'s data") res = requests.get( f"https://datacenter-api.jin10.com/reports/list?category=opec&date={item}&_={str(int(round(t * 1000)))}", headers=headers) temp_df = pd.DataFrame(res.json()["data"]["values"], columns=pd.DataFrame(res.json()["data"]["keys"])["name"].tolist()).T temp_df.columns = temp_df.iloc[0, :] temp_df = temp_df.iloc[1:, :] try: temp_df = temp_df[['', '', '', '', '', '', '', '', '', '', '', '']].iloc[-1, :] except: temp_df = temp_df[['', '', '', '', '', '', '', '', '', '', '', '']].iloc[-1, :] big_df[temp_df.name] = temp_df big_df = big_df.T big_df.columns.name = "" big_df = big_df.astype(float) return big_df def _macro_cons_opec_month(): """ -, 20170118- , , :return: pandas.Series \ 2017-01-18 108.0 172.4 54.5 21.3 372.0 463.2 281.2 60.8 154.2 2017-02-13 104.5 165.1 52.7 19.9 377.5 447.6 271.8 67.5 157.6 2017-03-14 105.3 164.1 52.6 19.4 381.4 441.4 270.9 66.9 160.8 2017-04-12 105.6 161.4 52.6 19.8 379.0 440.2 270.2 62.2 154.5 2017-05-11 104.7 169.2 52.4 20.6 375.9 437.3 270.2 55.0 150.8 2017-06-13 105.9 161.3 52.8 20.4 379.5 442.4 270.5 73.0 168.0 2017-07-12 106.0 166.8 52.7 19.7 379.0 450.2 270.9 85.2 173.3 2017-08-10 105.9 164.6 53.6 20.5 382.4 446.8 270.3 100.1 174.8 2017-09-12 106.5 164.6 53.7 17.3 382.8 444.8 270.2 89.0 186.1 2017-10-11 104.6 164.1 53.6 20.1 382.7 449.4 270.0 92.3 185.5 2017-11-13 101.2 171.1 54.1 20.3 382.3 438.3 270.8 96.2 173.8 2017-12-13 101.3 158.1 53.3 19.7 381.8 439.6 270.3 97.3 179.0 2018-01-18 103.7 163.3 52.6 19.7 382.9 440.5 270.0 96.2 186.1 2018-04-12 98.4 152.4 51.8 18.3 381.4 442.6 270.4 96.8 181.0 2018-05-14 99.7 151.5 52.0 18.3 382.3 442.9 270.5 98.2 179.1 2018-06-12 103.1 152.5 51.9 18.9 382.9 445.5 270.1 95.5 171.1 2018-07-11 103.9 143.1 51.9 19.0 379.9 453.3 273.1 70.8 166.0 2018-08-13 106.2 145.6 52.5 18.8 373.7 455.6 279.1 66.4 166.7 2018-09-12 104.5 144.8 52.9 18.7 358.4 464.9 280.2 92.6 172.5 2018-10-11 104.9 151.9 53.1 18.7 344.7 465.0 281.2 105.3 174.8 2018-11-13 105.4 153.3 52.5 18.6 329.6 465.4 276.4 111.4 175.1 2018-12-12 105.2 152.1 52.5 17.6 295.4 463.1 280.9 110.4 173.6 2019-03-14 102.6 145.7 52.2 20.3 274.3 463.3 270.9 90.6 174.1 2019-04-10 101.8 145.4 52.4 21.4 269.8 452.2 270.9 109.8 173.3 2019-06-13 102.9 147.1 52.9 21.1 237.0 472.4 271.0 117.4 173.3 2017-01-18 1047.4 307.1 202.1 3308.5 2017-02-13 994.6 293.1 200.4 3213.9 2017-03-14 979.7 292.5 198.7 3195.8 2017-04-12 999.4 289.5 197.2 3192.8 2017-05-11 995.4 284.2 195.6 3173.2 2017-06-13 994.0 288.5 196.3 3213.9 2017-07-12 995.0 289.8 193.8 3261.1 2017-08-10 1006.7 290.5 193.2 3286.9 2017-09-12 1002.2 290.1 191.8 3275.5 2017-10-11 997.5 290.5 189.0 3274.8 2017-11-13 1000.0 291.1 186.3 3258.9 2017-12-13 999.6 288.3 183.4 3244.8 2018-01-18 991.8 287.8 174.5 3241.6 2018-04-12 993.4 286.4 148.8 3195.8 2018-05-14 995.9 287.2 143.6 3193.0 2018-06-12 998.7 286.5 139.2 3186.9 2018-07-11 1042.0 289.7 134.0 3232.7 2018-08-13 1038.7 295.9 127.8 3232.3 2018-09-12 1040.1 297.2 123.5 3256.5 2018-10-11 1051.2 300.4 119.7 3276.1 2018-11-13 1063.0 316.0 117.1 3290.0 2018-12-12 1101.6 324.6 113.7 3296.5 2019-03-14 1008.7 307.2 100.8 3054.9 2019-04-10 979.4 305.9 73.2 3002.2 2019-06-13 969.0 306.1 74.1 2987.6 """ t = time.time() res = requests.get( JS_CONS_OPEC_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] big_df = pd.DataFrame() for country in [item["datas"] for item in json_data["list"]][0].keys(): try: value_list = [item["datas"][country] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df[""] temp_df.name = country big_df = big_df.append(temp_df) except: continue headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_opec_report", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.117 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } res = requests.get(f"https://datacenter-api.jin10.com/reports/dates?category=opec&_={str(int(round(t * 1000)))}", headers=headers) # all_date_list = res.json()["data"] need_date_list = [item for item in all_date_list if item.split("-")[0] + item.split("-")[1] + item.split("-")[2] not in date_list] for item in reversed(need_date_list): res = requests.get( f"https://datacenter-api.jin10.com/reports/list?category=opec&date={item}&_={str(int(round(t * 1000)))}", headers=headers) temp_df = pd.DataFrame(res.json()["data"]["values"], columns=pd.DataFrame(res.json()["data"]["keys"])["name"].tolist()).T temp_df.columns = temp_df.iloc[0, :] temp_df = temp_df[['', '', '', '', '', '', '', '', '', '', '', '', '']].iloc[-2, :] big_df[item] = temp_df return big_df.T def macro_cons_opec_month(): """ -, 20170118- , 20200312:fix: https://datacenter.jin10.com/reportType/dc_opec_report :return: pandas.Series \ 2017-01-18 108.0 172.4 54.5 21.3 372.0 463.2 281.2 60.8 154.2 2017-02-13 104.5 165.1 52.7 19.9 377.5 447.6 271.8 67.5 157.6 2017-03-14 105.3 164.1 52.6 19.4 381.4 441.4 270.9 66.9 160.8 2017-04-12 105.6 161.4 52.6 19.8 379.0 440.2 270.2 62.2 154.5 2017-05-11 104.7 169.2 52.4 20.6 375.9 437.3 270.2 55.0 150.8 2017-06-13 105.9 161.3 52.8 20.4 379.5 442.4 270.5 73.0 168.0 2017-07-12 106.0 166.8 52.7 19.7 379.0 450.2 270.9 85.2 173.3 2017-08-10 105.9 164.6 53.6 20.5 382.4 446.8 270.3 100.1 174.8 2017-09-12 106.5 164.6 53.7 17.3 382.8 444.8 270.2 89.0 186.1 2017-10-11 104.6 164.1 53.6 20.1 382.7 449.4 270.0 92.3 185.5 2017-11-13 101.2 171.1 54.1 20.3 382.3 438.3 270.8 96.2 173.8 2017-12-13 101.3 158.1 53.3 19.7 381.8 439.6 270.3 97.3 179.0 2018-01-18 103.7 163.3 52.6 19.7 382.9 440.5 270.0 96.2 186.1 2018-04-12 98.4 152.4 51.8 18.3 381.4 442.6 270.4 96.8 181.0 2018-05-14 99.7 151.5 52.0 18.3 382.3 442.9 270.5 98.2 179.1 2018-06-12 103.1 152.5 51.9 18.9 382.9 445.5 270.1 95.5 171.1 2018-07-11 103.9 143.1 51.9 19.0 379.9 453.3 273.1 70.8 166.0 2018-08-13 106.2 145.6 52.5 18.8 373.7 455.6 279.1 66.4 166.7 2018-09-12 104.5 144.8 52.9 18.7 358.4 464.9 280.2 92.6 172.5 2018-10-11 104.9 151.9 53.1 18.7 344.7 465.0 281.2 105.3 174.8 2018-11-13 105.4 153.3 52.5 18.6 329.6 465.4 276.4 111.4 175.1 2018-12-12 105.2 152.1 52.5 17.6 295.4 463.1 280.9 110.4 173.6 2019-03-14 102.6 145.7 52.2 20.3 274.3 463.3 270.9 90.6 174.1 2019-04-10 101.8 145.4 52.4 21.4 269.8 452.2 270.9 109.8 173.3 2019-06-13 102.9 147.1 52.9 21.1 237.0 472.4 271.0 117.4 173.3 2017-01-18 1047.4 307.1 202.1 3308.5 2017-02-13 994.6 293.1 200.4 3213.9 2017-03-14 979.7 292.5 198.7 3195.8 2017-04-12 999.4 289.5 197.2 3192.8 2017-05-11 995.4 284.2 195.6 3173.2 2017-06-13 994.0 288.5 196.3 3213.9 2017-07-12 995.0 289.8 193.8 3261.1 2017-08-10 1006.7 290.5 193.2 3286.9 2017-09-12 1002.2 290.1 191.8 3275.5 2017-10-11 997.5 290.5 189.0 3274.8 2017-11-13 1000.0 291.1 186.3 3258.9 2017-12-13 999.6 288.3 183.4 3244.8 2018-01-18 991.8 287.8 174.5 3241.6 2018-04-12 993.4 286.4 148.8 3195.8 2018-05-14 995.9 287.2 143.6 3193.0 2018-06-12 998.7 286.5 139.2 3186.9 2018-07-11 1042.0 289.7 134.0 3232.7 2018-08-13 1038.7 295.9 127.8 3232.3 2018-09-12 1040.1 297.2 123.5 3256.5 2018-10-11 1051.2 300.4 119.7 3276.1 2018-11-13 1063.0 316.0 117.1 3290.0 2018-12-12 1101.6 324.6 113.7 3296.5 2019-03-14 1008.7 307.2 100.8 3054.9 2019-04-10 979.4 305.9 73.2 3002.2 2019-06-13 969.0 306.1 74.1 2987.6 """ t = time.time() big_df = pd.DataFrame() headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_opec_report", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.117 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } res = requests.get(f"https://datacenter-api.jin10.com/reports/dates?category=opec&_={str(int(round(t * 1000)))}", headers=headers) # all_date_list = res.json()["data"] bar = tqdm(reversed(all_date_list)) for item in bar: bar.set_description(f"Please wait for a moment, now downing {item}'s data") res = requests.get( f"https://datacenter-api.jin10.com/reports/list?category=opec&date={item}&_={str(int(round(t * 1000)))}", headers=headers) temp_df = pd.DataFrame(res.json()["data"]["values"], columns=pd.DataFrame(res.json()["data"]["keys"])["name"].tolist()).T temp_df.columns = temp_df.iloc[0, :] temp_df = temp_df.iloc[1:, :] try: temp_df = temp_df[['', '', '', '', '', '', '', '', '', '', '', '']].iloc[-2, :] except: temp_df = temp_df[['', '', '', '', '', '', '', '', '', '', '', '']].iloc[-1, :] big_df[temp_df.name] = temp_df big_df = big_df.T big_df.columns.name = "" big_df = big_df.astype(float) return big_df if __name__ == "__main__": macro_cons_gold_volume_df = macro_cons_gold_volume() print(macro_cons_gold_volume_df) macro_cons_gold_change_df = macro_cons_gold_change() print(macro_cons_gold_change_df) macro_cons_gold_amount_df = macro_cons_gold_amount() print(macro_cons_gold_amount_df) print(pd.concat([macro_cons_gold_volume_df, macro_cons_gold_change_df, macro_cons_gold_amount_df], axis=1)) macro_cons_silver_volume_df = macro_cons_silver_volume() print(macro_cons_silver_volume_df) macro_cons_silver_change_df = macro_cons_silver_change() print(macro_cons_silver_change_df) macro_cons_silver_amount_df = macro_cons_silver_amount() print(macro_cons_silver_amount_df) print(pd.concat([macro_cons_silver_volume_df, macro_cons_silver_change_df, macro_cons_silver_amount_df], axis=1)) macro_cons_opec_near_change_df = macro_cons_opec_near_change() print(macro_cons_opec_near_change_df) macro_cons_opec_month_df = macro_cons_opec_month() print(macro_cons_opec_month_df)
42.128916
140
0.574885
5d29262ef748030566b97eaf9b5c7c914c6c44fd
1,811
py
Python
test/testers/winforms/scrollbar/__init__.py
ABEMBARKA/monoUI
5fda266ad2db8f89580a40b525973d86cd8de939
[ "MIT" ]
1
2019-08-13T15:22:12.000Z
2019-08-13T15:22:12.000Z
test/testers/winforms/scrollbar/__init__.py
ABEMBARKA/monoUI
5fda266ad2db8f89580a40b525973d86cd8de939
[ "MIT" ]
null
null
null
test/testers/winforms/scrollbar/__init__.py
ABEMBARKA/monoUI
5fda266ad2db8f89580a40b525973d86cd8de939
[ "MIT" ]
1
2019-08-13T15:22:17.000Z
2019-08-13T15:22:17.000Z
############################################################################## # Written by: Cachen Chen <[email protected]> # Date: 08/06/2008 # Description: Application wrapper for scrollbar.py # Used by the scrollbar-*.py tests ##############################################################################$ 'Application wrapper for scrollbar' from strongwind import * from os.path import exists from sys import path def launchScrollBar(exe=None): 'Launch ScrollBar with accessibility enabled and return a scrollbar object. Log an error and return None if something goes wrong' if exe is None: # make sure we can find the sample application harness_dir = path[0] i = harness_dir.rfind("/") j = harness_dir[:i].rfind("/") uiaqa_path = harness_dir[:j] if uiaqa_path is None: raise IOError, "When launching an application you must provide the "\ "full path or set the\nUIAQA_HOME environment "\ "variable." exe = '%s/samples/winforms/scrollbar.py' % uiaqa_path if not os.path.exists(exe): raise IOError, "%s does not exist" % exe args = [exe] (app, subproc) = cache.launchApplication(args=args, name='ipy', wait=config.LONG_DELAY) scrollbar = ScrollBar(app, subproc) cache.addApplication(scrollbar) scrollbar.scrollBarFrame.app = scrollbar return scrollbar # class to represent the application
32.339286
134
0.602982
5d2a93367402f8cedeb2edebdd44e28110111fbf
4,209
py
Python
save_tweets.py
iglesiasmanu/data_analysis
61127c91ad0eb11ecdc7258e186e430e9dddb0b6
[ "BSD-3-Clause" ]
null
null
null
save_tweets.py
iglesiasmanu/data_analysis
61127c91ad0eb11ecdc7258e186e430e9dddb0b6
[ "BSD-3-Clause" ]
null
null
null
save_tweets.py
iglesiasmanu/data_analysis
61127c91ad0eb11ecdc7258e186e430e9dddb0b6
[ "BSD-3-Clause" ]
null
null
null
import json from os import path from tweepy import OAuthHandler, Stream from tweepy.streaming import StreamListener from sqlalchemy.orm.exc import NoResultFound from database import session, Tweet, Hashtag, User consumer_key = "0qFf4T2xPWVIycLmAwk3rDQ55" consumer_secret = "LcHpujASn4fIIrQ8sikbCTQ3oyU6T6opchFVWBBqwICahzSE64" access_token = "4271002872-XLo7TNnE3qvYevqLmT1RBuiJ5CJ3o0DCr3WReAT" acces_token_secret = "ulZ3dA25zuC6BGJgaFowCSTIm6gKVtOa4x9y7tO0IUDIx" auth = OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, acces_token_secret)
32.882813
80
0.623188
5d2b1bb602059e1df9b567f6022d9d62a73d9127
907
py
Python
app/views/main.py
chrisjws-harness/flaskSaaS
f42558c523de23f03a098044df164ead3539a4dd
[ "MIT" ]
null
null
null
app/views/main.py
chrisjws-harness/flaskSaaS
f42558c523de23f03a098044df164ead3539a4dd
[ "MIT" ]
null
null
null
app/views/main.py
chrisjws-harness/flaskSaaS
f42558c523de23f03a098044df164ead3539a4dd
[ "MIT" ]
null
null
null
from flask import render_template, jsonify from app import app import random
19.717391
59
0.61301
5d2e7fe7c422e728c2698140a25e0895a9bb3030
254
py
Python
base_sample/numpy_mat.py
keepangry/ai_algorithm
21d8024296a2f2d2797448ed34eb383359259684
[ "Apache-2.0" ]
2
2018-08-29T11:09:36.000Z
2018-10-22T11:46:36.000Z
base_sample/numpy_mat.py
keepangry/ai_algorithm
21d8024296a2f2d2797448ed34eb383359259684
[ "Apache-2.0" ]
null
null
null
base_sample/numpy_mat.py
keepangry/ai_algorithm
21d8024296a2f2d2797448ed34eb383359259684
[ "Apache-2.0" ]
null
null
null
# encoding: utf-8 ''' @author: yangsen @license: @contact: @software: @file: numpy_mat.py @time: 18-8-25 9:56 @desc: ''' import numpy as np a = np.arange(9).reshape(3,3) # a[1] a[[1,2]] a[np.array([1,2])] # a[:,1] a[:,[1,2]] a[:,np.array([1,2])]
11.043478
29
0.574803
5d2ea06d1190699ab0cefe6b4179c68d747feca4
17,002
py
Python
ai_traineree/agents/rainbow.py
laszukdawid/ai-traineree
af32940eba8e11012de87b60d78f10f5a3b96c79
[ "Apache-2.0" ]
22
2020-08-21T03:03:05.000Z
2022-02-22T10:15:36.000Z
ai_traineree/agents/rainbow.py
laszukdawid/ai-traineree
af32940eba8e11012de87b60d78f10f5a3b96c79
[ "Apache-2.0" ]
23
2021-02-13T20:35:45.000Z
2022-02-06T20:15:37.000Z
ai_traineree/agents/rainbow.py
laszukdawid/ai-traineree
af32940eba8e11012de87b60d78f10f5a3b96c79
[ "Apache-2.0" ]
6
2020-10-11T08:36:09.000Z
2021-11-20T18:31:03.000Z
import copy from typing import Callable, Dict, List, Optional import torch import torch.nn as nn import torch.optim as optim from ai_traineree import DEVICE from ai_traineree.agents import AgentBase from ai_traineree.agents.agent_utils import soft_update from ai_traineree.buffers import NStepBuffer, PERBuffer from ai_traineree.buffers.buffer_factory import BufferFactory from ai_traineree.loggers import DataLogger from ai_traineree.networks.heads import RainbowNet from ai_traineree.types import ActionType, AgentState, BufferState, DoneType, NetworkState, ObsType, RewardType from ai_traineree.types.dataspace import DataSpace from ai_traineree.utils import to_numbers_seq, to_tensor def act(self, obs: ObsType, eps: float = 0.) -> int: """ Returns actions for given state as per current policy. Parameters: state: Current available state from the environment. epislon: Epsilon value in the epislon-greedy policy. """ # Epsilon-greedy action selection if self._rng.random() < eps: # TODO: Update with action_space.sample() once implemented assert len(self.action_space.shape) == 1, "Only 1D is supported right now" return self._rng.randint(self.action_space.low, self.action_space.high) t_obs = to_tensor(self.state_transform(obs)).float().unsqueeze(0).to(self.device) self.dist_probs = self.net.act(t_obs) q_values = (self.dist_probs * self.z_atoms).sum(-1) return int(q_values.argmax(-1)) # Action maximizes state-action value Q(s, a) def learn(self, experiences: Dict[str, List]) -> None: """ Parameters: experiences: Contains all experiences for the agent. Typically sampled from the memory buffer. Five keys are expected, i.e. `state`, `action`, `reward`, `next_state`, `done`. Each key contains a array and all arrays have to have the same length. """ rewards = to_tensor(experiences['reward']).float().to(self.device) dones = to_tensor(experiences['done']).type(torch.int).to(self.device) states = to_tensor(experiences['state']).float().to(self.device) next_states = to_tensor(experiences['next_state']).float().to(self.device) actions = to_tensor(experiences['action']).type(torch.long).to(self.device) assert rewards.shape == dones.shape == (self.batch_size, 1) assert states.shape == next_states.shape == (self.batch_size,) + self.obs_space.shape assert actions.shape == (self.batch_size, 1) # Discrete domain with torch.no_grad(): prob_next = self.target_net.act(next_states) q_next = (prob_next * self.z_atoms).sum(-1) * self.z_delta if self.using_double_q: duel_prob_next = self.net.act(next_states) a_next = torch.argmax((duel_prob_next * self.z_atoms).sum(-1), dim=-1) else: a_next = torch.argmax(q_next, dim=-1) prob_next = prob_next[self.__batch_indices, a_next, :] m = self.net.dist_projection(rewards, 1 - dones, self.gamma ** self.n_steps, prob_next) assert m.shape == (self.batch_size, self.num_atoms) log_prob = self.net(states, log_prob=True) assert log_prob.shape == (self.batch_size,) + self.action_size + (self.num_atoms,) log_prob = log_prob[self.__batch_indices, actions.squeeze(), :] assert log_prob.shape == m.shape == (self.batch_size, self.num_atoms) # Cross-entropy loss error and the loss is batch mean error = -torch.sum(m * log_prob, 1) assert error.shape == (self.batch_size,) loss = error.mean() assert loss >= 0 self.optimizer.zero_grad() loss.backward() nn.utils.clip_grad_norm_(self.net.parameters(), self.max_grad_norm) self.optimizer.step() self._loss = float(loss.item()) if hasattr(self.buffer, 'priority_update'): assert (~torch.isnan(error)).any() self.buffer.priority_update(experiences['index'], error.detach().cpu().numpy()) # Update networks - sync local & target soft_update(self.target_net, self.net, self.tau) def state_dict(self) -> Dict[str, dict]: """Returns agent's state dictionary. Returns: State dicrionary for internal networks. """ return {"net": self.net.state_dict(), "target_net": self.target_net.state_dict()} def get_state(self) -> AgentState: """Provides agent's internal state.""" return AgentState( model=self.model, obs_space=self.obs_space, action_space=self.action_space, config=self._config, buffer=copy.deepcopy(self.buffer.get_state()), network=copy.deepcopy(self.get_network_state()), ) def save_state(self, path: str) -> None: """Saves agent's state into a file. Parameters: path: String path where to write the state. """ agent_state = self.get_state() torch.save(agent_state, path) def load_state(self, path: str) -> None: """Loads state from a file under provided path. Parameters: path: String path indicating where the state is stored. """ agent_state = torch.load(path) self._config = agent_state.get('config', {}) self.__dict__.update(**self._config) self.net.load_state_dict(agent_state['net']) self.target_net.load_state_dict(agent_state['target_net']) def save_buffer(self, path: str) -> None: """Saves data from the buffer into a file under provided path. Parameters: path: String path where to write the buffer. """ import json dump = self.buffer.dump_buffer(serialize=True) with open(path, 'w') as f: json.dump(dump, f) def load_buffer(self, path: str) -> None: """Loads data into the buffer from provided file path. Parameters: path: String path indicating where the buffer is stored. """ import json with open(path, 'r') as f: buffer_dump = json.load(f) self.buffer.load_buffer(buffer_dump)
45.218085
118
0.648688
5d2fb89dd83715259f4676be3c051b02287f606c
4,169
py
Python
nvvm/core/nvvm.py
uchytilc/PyCu
9ba25281611bf4dbd70d37f4eba0574f817d6928
[ "MIT" ]
null
null
null
nvvm/core/nvvm.py
uchytilc/PyCu
9ba25281611bf4dbd70d37f4eba0574f817d6928
[ "MIT" ]
null
null
null
nvvm/core/nvvm.py
uchytilc/PyCu
9ba25281611bf4dbd70d37f4eba0574f817d6928
[ "MIT" ]
null
null
null
from pycu.nvvm import (get_libdevice, ir_version, version, add_module_to_program, compile_program, create_program, destroy_program, get_compiled_result, get_compiled_result_size, get_program_log, get_program_log_size, lazy_add_module_to_program, verify_program) import os import sys from ctypes import c_char_p import weakref
28.951389
181
0.708803
5d314e81984e8fdd23c8fa9711722c873d27574a
160
py
Python
fieldservice/fieldservice/doctype/fieldservice_settings/test_fieldservice_settings.py
itsdaveit/fieldservice
90bd813fb01f23a18df3b24fc67ec86c4d8be5a5
[ "MIT" ]
null
null
null
fieldservice/fieldservice/doctype/fieldservice_settings/test_fieldservice_settings.py
itsdaveit/fieldservice
90bd813fb01f23a18df3b24fc67ec86c4d8be5a5
[ "MIT" ]
null
null
null
fieldservice/fieldservice/doctype/fieldservice_settings/test_fieldservice_settings.py
itsdaveit/fieldservice
90bd813fb01f23a18df3b24fc67ec86c4d8be5a5
[ "MIT" ]
1
2021-11-09T10:26:06.000Z
2021-11-09T10:26:06.000Z
# Copyright (c) 2022, itsdve GmbH and Contributors # See license.txt # import frappe import unittest
17.777778
50
0.79375
5d332a4a020a6faa75a8b1522601b2bced79121d
2,621
py
Python
Codes/Data Processing.py
BrickerP/Investment-
8b57c0d157a7eaa38d693c8d42ce1bc7dc7bdde9
[ "Apache-2.0" ]
null
null
null
Codes/Data Processing.py
BrickerP/Investment-
8b57c0d157a7eaa38d693c8d42ce1bc7dc7bdde9
[ "Apache-2.0" ]
null
null
null
Codes/Data Processing.py
BrickerP/Investment-
8b57c0d157a7eaa38d693c8d42ce1bc7dc7bdde9
[ "Apache-2.0" ]
1
2022-01-07T06:25:54.000Z
2022-01-07T06:25:54.000Z
# -*- coding: utf-8 -*- """ Created on Sun Nov 21 14:51:01 2021 @author: 75638 """ import pandas as pd import numpy as np pd.set_option('display.max_columns', None) pd.set_option('display.width', 10000) def process_data(path1,path2): ''' 1.path1: file path of different factor 2.path2:file path of SP500members 3.remove anomalies 4.normalized data 5.fill NaN with 0 ''' #read factor.xlsx factor=pd.read_excel(path1,index_col=0) #remove anomalies which is greater than median+5*std or less than median-s*std for date in factor: median=factor[date].quantile(0.5) std=factor[date].std() min=median-5*std max=median+5*std factor[date]=factor[date].clip(min,max) #normalize data for date in factor: mean=factor[date].mean() std=factor[date].std() factor[date]=(factor[date]-mean)/std # fill NAN for date in factor: median=factor[date].quantile(0.5) factor.fillna(median,inplace=True) #read SP500 member datas member=pd.read_excel(path2,index_col=0) #merge industry data factor=pd.merge(member,factor,left_index=True,right_index=True) # save processed data factor.to_csv('C:\\Users\\75638\\OneDrive - UW\\Desktop\\703project\\data\\volatility.csv') return factor if __name__ == '__main__': path1='C:\\Users\\75638\\OneDrive - UW\\Desktop\\703project\\original_data\\volatility.xlsx' path2='C:\\Users\\75638\\OneDrive - UW\\Desktop\\703project\\SP500\\SP500members.xlsx' data=process_data(path1,path2)
33.177215
97
0.591759
5d33f0625c53288d64064188bcbc357613405301
1,448
py
Python
tests/test_env.py
Majanao/pytorch-blender
eb5effb033094d037e7bdc2238c00806be7012ae
[ "MIT" ]
381
2019-07-03T14:15:16.000Z
2022-03-30T08:58:26.000Z
tests/test_env.py
ANABUR920/pytorch-blender
eb5effb033094d037e7bdc2238c00806be7012ae
[ "MIT" ]
18
2020-01-15T17:36:08.000Z
2021-12-31T08:37:54.000Z
tests/test_env.py
ANABUR920/pytorch-blender
eb5effb033094d037e7bdc2238c00806be7012ae
[ "MIT" ]
34
2019-07-09T03:15:02.000Z
2022-01-13T17:36:20.000Z
import pytest from pathlib import Path from blendtorch import btt BLENDDIR = Path(__file__).parent/'blender'
26.814815
81
0.641575
5d356088cb332b6a1cde85497c82874f1681387b
20
py
Python
sitetree/__init__.py
sitkatech/django-sitetree
5d7e9d503f97ff021c5c04855e04e098b3d2488c
[ "BSD-3-Clause" ]
3
2019-02-12T01:58:42.000Z
2019-06-08T10:50:33.000Z
sitetree/__init__.py
sitkatech/django-sitetree
5d7e9d503f97ff021c5c04855e04e098b3d2488c
[ "BSD-3-Clause" ]
null
null
null
sitetree/__init__.py
sitkatech/django-sitetree
5d7e9d503f97ff021c5c04855e04e098b3d2488c
[ "BSD-3-Clause" ]
null
null
null
VERSION = (0, 9, 5)
10
19
0.5
5d36081f930dd6c0a745b46f1b5a299e738d247f
20,670
py
Python
deepvariant/runtime_by_region_vis.py
tahashmi/deepvariant
441c1809d3290f4a20b29a0a0bbf8ecfb929a6e3
[ "BSD-3-Clause" ]
4
2019-03-30T13:25:25.000Z
2020-10-14T18:47:21.000Z
deepvariant/runtime_by_region_vis.py
FrogEnthusiast7/deepvariant
84516dfacd1ed856a34507becb21848aa12e77a8
[ "BSD-3-Clause" ]
1
2021-06-18T15:04:47.000Z
2021-06-18T15:04:47.000Z
deepvariant/runtime_by_region_vis.py
FrogEnthusiast7/deepvariant
84516dfacd1ed856a34507becb21848aa12e77a8
[ "BSD-3-Clause" ]
1
2019-09-04T16:59:18.000Z
2019-09-04T16:59:18.000Z
# Copyright 2020 Google LLC. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from this # software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. r"""Create a visual report of make_examples runtime by region. Use this script to visualize the runtime-by-region data generated by running make_examples with --runtime_by_region. """ from typing import Dict, Sequence, List, Tuple, Text, Any, Union from absl import app from absl import flags import altair as alt import pandas as pd import tensorflow as tf from third_party.nucleus.io import sharded_file_utils # Altair uses a lot of method chaining, such as # chart.mark_bar().encode(...).properties(...), so using backslash # continuation to break this into separate lines makes the code more readable. # pylint: disable=g-backslash-continuation VEGA_URL = 'https://storage.googleapis.com/deepvariant/lib/vega' FLAGS = flags.FLAGS flags.DEFINE_string( 'input', None, 'TSV file that was produced when running make_examples ' 'with --runtime_by_region. Can be sharded, e.g. /path/[email protected].') flags.DEFINE_string( 'title', None, 'Title will be shown at the top of the report and will ' 'be used as a prefix for downloaded image files.') flags.DEFINE_string('output', 'runtime_by_region_report.html', 'Path for the output report, which will be an html file.') RUNTIME_COLUMNS = [ 'get reads', 'find candidates', 'make pileup images', 'write outputs' ] COUNT_COLUMNS = ['num reads', 'num candidates', 'num examples'] CSS_STYLES = """ <style> body { font-family: sans-serif; } .chart-container { padding: 30px; } </style> """ def read_sharded_runtime_tsvs(path_string: str) -> pd.DataFrame: """Imports data from a single or sharded path into a pandas dataframe. Args: path_string: The path to the input file, which may be sharded. Returns: A dataframe matching the TSV file(s) but with added Task column. """ if sharded_file_utils.is_sharded_file_spec(path_string): paths = sharded_file_utils.generate_sharded_filenames(path_string) else: paths = [path_string] list_of_dataframes = [] for i, path in enumerate(paths): if path.startswith('gs://'): # Once pandas is updated to 0.24+, pd.read_csv will work for gs:// # without this workaround. with tf.io.gfile.GFile(path) as f: d = pd.read_csv(f, sep='\t') else: d = pd.read_csv(path, sep='\t') d['Task'] = i list_of_dataframes.append(d) return pd.concat(list_of_dataframes, axis=0, ignore_index=True) def format_runtime_string(raw_seconds: float) -> str: """Creates a nice format string from a potentially large number of seconds. Args: raw_seconds: A number of seconds. Returns: The seconds divided into hours, minutes, and remaining seconds, formatted nicely. For example, 2h3m5.012s. """ minutes, seconds = divmod(raw_seconds, 60) hours, minutes = divmod(minutes, 60) seconds = round(seconds, 3) output = '' if hours > 0: output += f'{int(hours)}h' if minutes > 0: output += f'{int(minutes)}m' if seconds > 0 or not output: output += f'{seconds}s' return output def calculate_totals(df: pd.DataFrame) -> pd.DataFrame: """Calculates total runtime, formats it nicely, and sorts by it. Args: df: A dataframe of runtime profiling numbers. Returns: The same dataframe with some additional summary columns. """ # 'total runtime' is a simple sum of the runtime columns. df['total runtime'] = df[RUNTIME_COLUMNS].sum(axis=1) # Create a formatted runtime string for tooltips. df['Runtime'] = df['total runtime'].apply(format_runtime_string) # Sort by descending total region runtime. df.sort_values(by='total runtime', inplace=True, ascending=False) return df def summarize_by_task(df: pd.DataFrame) -> pd.DataFrame: """Groups regions to get the total runtime for each task. Args: df: A dataframe of runtime profiling numbers. Returns: The dataframe grouped by task. """ by_task = df.groupby(by=['Task']).sum() return by_task.reset_index() def stage_histogram(d: pd.DataFrame, title: str = '') -> alt.Chart: """Plots a histogram of runtimes stacked by stage. Args: d: A dataframe of runtimes, either by region or by task. title: A title for the plot. Returns: An altair chart. """ columns_used = RUNTIME_COLUMNS d = d[columns_used] return alt.Chart(d).transform_fold( RUNTIME_COLUMNS, as_=['Stage', 'runtime_by_stage']) \ .mark_bar(opacity=0.3) \ .encode( x=alt.X('runtime_by_stage:Q', bin=alt.Bin(maxbins=100), title='Runtime (seconds)'), y=alt.Y('count()', title='Count of regions', stack=None), color=alt.Color('Stage:N', sort=None) ).properties(title=title) def correlation_scatter_charts(d: pd.DataFrame, title: str = '') -> alt.Chart: """Produces a grid of scatter plots of runtimes of stages versus covariates. Args: d: A pandas dataframe of runtime by regions. title: A title for the plot. Returns: An altair chart """ columns_used = ['region', 'total runtime'] + RUNTIME_COLUMNS + COUNT_COLUMNS d = d[columns_used] return alt.Chart(d).mark_circle(opacity=0.1).encode( x=alt.X(alt.repeat('column'), type='quantitative', axis=alt.Axis(labelExpr="datum.value + 's'")), y=alt.Y(alt.repeat('row'), type='quantitative'), tooltip='region' ).properties(width=100, height=100) \ .repeat( column=['total runtime'] + RUNTIME_COLUMNS, row=COUNT_COLUMNS, ).properties(title=title) def totals_by_stage(d: pd.DataFrame) -> alt.Chart: """Plots total runtimes for each stage. Args: d: A dataframe of runtimes. Returns: An altair chart. """ stage_totals_series = d.sum()[RUNTIME_COLUMNS] stage_totals = pd.DataFrame( stage_totals_series, columns=['Runtime (seconds)']) stage_totals.reset_index(inplace=True) stage_totals = stage_totals.rename(columns={'index': 'Stage'}) stage_totals['Runtime'] = stage_totals['Runtime (seconds)'].apply( format_runtime_string) return alt.Chart(stage_totals).mark_bar().encode( x='Runtime (seconds)', y=alt.Y('Stage', sort=None), tooltip=['Runtime'], fill=alt.Fill('Stage', sort=None)).properties(title='Overall runtime by stage') def pareto_by_task_tooltip(row: pd.Series) -> str: """For one row of a dataframe, computes a tooltip description. Args: row: A Pandas Series, one row of a dataframe containing some specific cumulative sum columns. Returns: A string to show as the tooltip for a pareto curve. """ return (f"{row['task cumsum order'] * 100:.2f}% of regions " f"account for {row['task cumsum fraction'] * 100:.2f}% of " f"the runtime in task {row['Task']}") def calculate_pareto_metrics(df_subset: pd.DataFrame) -> pd.DataFrame: """Calculates cumulative sums for a subset of a dataframe. Args: df_subset: A dataframe subset of one task. Returns: The same dataframe subset with some additional columns. """ # These are the same for all regions in the same task, for the scatter plot: df_subset['task total runtime'] = df_subset['total runtime'].sum() df_subset['Runtime for task'] = df_subset['task total runtime'].apply( format_runtime_string) df_subset['task num examples'] = df_subset['num examples'].sum() # These are cumulative sums for the pareto curves: df_subset['task cumsum fraction'] = df_subset['total runtime'].cumsum( ) / df_subset['total runtime'].sum() n = len(df_subset) df_subset['task cumsum order'] = list(map(lambda x: x / n, range(0, n))) df_subset['tooltip'] = df_subset.apply(pareto_by_task_tooltip, axis=1) return df_subset def pareto_and_runtimes_by_task(df: pd.DataFrame) -> alt.Chart: """Creates an interactive Pareto curve and scatter plot of task runtimes. Tracing each curve shows to what extent a small proportion of long-running regions contribute disproportionately to the overall runtime. That is, "The longest-running X% of regions account for Y% of the total runtime." There is a curve for each task. Args: df: A dataframe of all regions. Returns: An altair chart. """ grouped = df.groupby(df['Task'], sort=False) df = grouped.apply(calculate_pareto_metrics) # Sample along the Pareto curve, ensuring the longest regions are shown. if len(df) > 5000: x = 1000 df = pd.concat([df.nlargest(x, 'total runtime'), df.sample(5000 - x)]) # Limit columns to greatly reduce the size of the html report. columns_used = [ 'task cumsum order', 'task cumsum fraction', 'tooltip', 'Task', 'task total runtime', 'task num examples', 'Runtime for task' ] df = df[columns_used] # Brushing on the task_scatter plot highlights the same tasks in the Pareto # curve. brush = alt.selection_interval() pareto_by_task = alt.Chart(df).mark_line(size=2).encode( x=alt.X( 'task cumsum order', title='The longest-runtime X% of regions', axis=alt.Axis(format='%')), y=alt.Y( 'task cumsum fraction', title='Account for Y% of the total runtime', axis=alt.Axis(format='%')), tooltip='tooltip', color=alt.condition(brush, 'Task:N', alt.value('lightgray'))).properties( title='Pareto curve for each task').interactive() # This chart needs to use the same dataframe as the first chart to enable the # brushing on one to affect the other. Using max(task) for 'text' is a # trick that causes bundling by task to avoid showing multiple overlapping # points which otherwise make the text look funky. task_scatter = alt.Chart(df).mark_point(size=10).encode( x=alt.X('max(task total runtime)', title='Runtime (seconds)'), y=alt.Y('task num examples:Q', title='Number of examples'), color=alt.condition(brush, 'Task:N', alt.value('lightgray')), tooltip=['Task', 'Runtime for task'] ) \ .properties(title='Total runtime for each task (drag to highlight)') \ .add_selection(brush) return pareto_by_task | task_scatter def individual_region_bars(small_df: pd.DataFrame, title: Union[str, Dict[str, str]] = '') -> alt.Chart: """Makes a stacked bar chart with runtime of each stage for individual regions. Args: small_df: A dataframe of regions, each of which will be shown as a bar. title: A title for the plot. If a dict, it should contain 'title' and/or 'subtitle'. Returns: An altair chart. """ columns_used = ['region', 'Runtime'] + RUNTIME_COLUMNS d = small_df[columns_used] return alt.Chart(d).transform_fold( RUNTIME_COLUMNS, as_=['Stage', 'runtime_by_stage']) \ .mark_bar().encode( x=alt.X('region:N', sort=None), y=alt.Y('runtime_by_stage:Q', scale=alt.Scale(type='linear'), title='Runtime (seconds)'), fill=alt.Fill('Stage:N', sort=None), tooltip='Runtime:N' ).properties(title=title) def selected_longest_and_median_regions(df: pd.DataFrame) -> alt.Chart: """Creates a stacked bar charts of the top 20 and median 20 regions. Args: df: A dataframe of all regions. Returns: An altair chart. """ num_rows = len(df) mid = round(num_rows / 2) return individual_region_bars(df.iloc[0:20], 'Top runtime regions') \ | individual_region_bars(df.iloc[mid-10:mid+11], 'Median runtime regions') def top_regions_producing_zero_examples(df: pd.DataFrame) -> alt.Chart: """Creates a chart of the top regions that produced zero examples. Args: df: A dataframe of all regions. Returns: An altair chart. """ regions_with_zero_examples = df[df['num examples'] == 0] runtime_of_zeros = regions_with_zero_examples['total runtime'].sum() / 3600 total_runtime = df['total runtime'].sum() / 3600 subtitle = ( f'Spent {runtime_of_zeros:.2f} hours processing the ' f'{len(regions_with_zero_examples)} regions that produced no examples, ' f'which is {runtime_of_zeros / total_runtime * 100:.2f}% of the total ' f'runtime of {total_runtime:.2f} hours.') return individual_region_bars( regions_with_zero_examples.nlargest(50, 'total runtime'), title={ 'text': 'The longest-running regions that produced no examples', 'subtitle': subtitle }) def write_to_html_report(charts: List[Dict[Text, alt.Chart]], title: str, subtitle: str, html_output: Any) -> None: """Makes the html report with all the charts inserted. Args: charts: A list of altair chart objects. title: The title to show at the top of the report. subtitle: The subtitle to show just below the title on the report. html_output: a writable file object. Returns: None. Writes into the html_output file object. """ # Start the HTML document. html_output.write('<!DOCTYPE html>\n<html>\n<head>') # Add dependencies vega and vega-lite, which render the altair charts. html_output.write('<script type="text/javascript" src="{}/vega@5"></script>' '\n'.format(VEGA_URL)) html_output.write( '<script type="text/javascript" src="{}/[email protected]"></script>' '\n'.format(VEGA_URL)) html_output.write( '<script type="text/javascript" src="{}/vega-embed@6"></script>' '\n'.format(VEGA_URL)) # Add styles (CSS). html_output.write(CSS_STYLES) html_output.write('</head>\n<body>') html_output.write('<h1>{}</h1>\n'.format(title)) html_output.write('<h2>{}</h2>\n'.format(subtitle)) # Make a div containing all the charts. html_output.write('<div>') for chart in charts: html_output.write( '<div class="chart-container" id="vis_{}"></div>\n'.format(chart['id'])) html_output.write('</div>') # Add JSON vega specs and hook them up to the divs with VegaEmbed. html_output.write('<script>\n') for chart in charts: html_output.write('var spec_{} = {};\n'.format(chart['id'], chart['chart'].to_json())) download_filename = '{}_{}'.format(title.replace(' ', '_'), chart['id']) embed_options = {'mode': 'vega-lite', 'downloadFileName': download_filename} html_output.write('vegaEmbed("#vis_{}", spec_{}, {})\n'.format( chart['id'], chart['id'], embed_options)) html_output.write('</script>\n') # Close HTML document. html_output.write('</body></html>') def read_data_and_make_dataframes( input_path: str) -> Tuple[pd.DataFrame, pd.DataFrame]: """Loads data from a file into one dataframe as-is and one by task. Args: input_path: str, path of the input TSV file (may be sharded). Returns: df: A dataframe with one row per region. by_task: A dataframe with one row per task. """ df = read_sharded_runtime_tsvs(input_path) df = calculate_totals(df) by_task = summarize_by_task(df) return df, by_task def make_all_charts( df: pd.DataFrame, by_task: pd.DataFrame) -> List[Dict[Text, Union[str, alt.Chart]]]: """Creates charts and puts them in a list with their ID names. Args: df: A dataframe with one row per region. by_task: A dataframe with one row per task. Returns: list of dicts, each containing a chart and a descriptive ID. """ charts = [{ 'id': 'total_by_stage', 'chart': totals_by_stage(by_task) }, { 'id': 'pareto_and_runtimes_by_task', 'chart': pareto_and_runtimes_by_task(df) }, { 'id': 'histogram_by_task', 'chart': stage_histogram(by_task, title='Stage runtimes for each task') }, { 'id': 'selected_longest_and_median_regions', 'chart': selected_longest_and_median_regions(df) }, { 'id': 'zero_examples', 'chart': top_regions_producing_zero_examples(df) }] # Altair shows a max of 5000 data points. if len(df) <= 5000: # With up to 5000 points, just show them all. charts.extend([{ 'id': 'histogram', 'chart': stage_histogram(df, title='Runtime by stage for all regions') }, { 'id': 'scatter_grid', 'chart': correlation_scatter_charts(df, title='Trends for all regions') }]) else: # With too many points, make different subsets to show trends better. top_100 = df.nlargest(100, 'total runtime') top_5000 = df.nlargest(5000, 'total runtime') # Sample the bottom 99% to avoid outliers that obscure general trends. bottom_99_percent = df.nsmallest(int(len(df) * .99), 'total runtime') if len(bottom_99_percent) > 5000: bottom_99_percent = bottom_99_percent.sample(5000) charts.extend([{ 'id': 'histogram_bottom_99_percent', 'chart': stage_histogram( bottom_99_percent, title='Runtime by stage for regions in the bottom 99%') }, { 'id': 'histogram_top_100', 'chart': stage_histogram( top_100, title='Runtime by stage for regions in the top 100') }, { 'id': 'scatter_grid_top_5000', 'chart': correlation_scatter_charts( top_5000, title='Trends for regions in the top 5000') }, { 'id': 'scatter_grid_bottom_99_percent', 'chart': correlation_scatter_charts( bottom_99_percent, title='Trends for regions in the bottom 99%') }]) return charts def make_report(input_path: str, title: str, html_output: tf.io.gfile.GFile) -> None: """Reads data, creates charts, and composes the charts into an HTML report. Args: input_path: Path of the input TSV file (or sharded files). title: Title to put at the top of the report. html_output: Writable file object where output will be written. """ # Load data into pandas dataframes and add summary columns. df, by_task = read_data_and_make_dataframes(input_path) # Build all the charts. charts = make_all_charts(df, by_task) # Write a subtitle with some top-level stats. subtitle = (f'Runtime profiling for make_examples on {len(df)} regions ' f'across {len(by_task)} task{"(s)" if len(by_task) > 1 else ""}') # Write the HTML report with all the charts. write_to_html_report( charts=charts, title=title, subtitle=subtitle, html_output=html_output) if __name__ == '__main__': flags.mark_flags_as_required(['input', 'title']) app.run(main)
34.335548
97
0.677504
5d36d6dbf217342990cb49eda55af38f42824619
4,238
py
Python
pkgs/dynd-python-0.7.2-py27_0/lib/python2.7/site-packages/dynd/tests/test_nd_fields.py
wangyum/anaconda
6e5a0dbead3327661d73a61e85414cf92aa52be6
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
pkgs/dynd-python-0.7.2-py27_0/lib/python2.7/site-packages/dynd/tests/test_nd_fields.py
wangyum/anaconda
6e5a0dbead3327661d73a61e85414cf92aa52be6
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
pkgs/dynd-python-0.7.2-py27_0/lib/python2.7/site-packages/dynd/tests/test_nd_fields.py
wangyum/anaconda
6e5a0dbead3327661d73a61e85414cf92aa52be6
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
import sys import unittest from dynd import nd, ndt """ class TestFields(unittest.TestCase): def test_simple(self): a = nd.array([ (1, 2, 'a', 'b'), (3, 4, 'ab', 'cd'), (5, 6, 'def', 'ghi')], type='3 * {x: int32, y: int32, z: string, w: string}') # Selecting a single field b = nd.fields(a, 'x') self.assertEqual(nd.dtype_of(b), ndt.make_struct( [ndt.int32], ['x'])) self.assertEqual(nd.as_py(b.x), nd.as_py(a.x)) # Selecting two fields b = nd.fields(a, 'z', 'y') self.assertEqual(nd.dtype_of(b), ndt.make_struct( [ndt.string, ndt.int32], ['z', 'y'])) self.assertEqual(nd.as_py(b.z), nd.as_py(a.z)) self.assertEqual(nd.as_py(b.y), nd.as_py(a.y)) # Selecting three fields b = nd.fields(a, 'w', 'y', 'z') self.assertEqual(nd.dtype_of(b), ndt.make_struct( [ndt.string, ndt.int32, ndt.string], ['w', 'y', 'z'])) self.assertEqual(nd.as_py(b.w), nd.as_py(a.w)) self.assertEqual(nd.as_py(b.y), nd.as_py(a.y)) self.assertEqual(nd.as_py(b.z), nd.as_py(a.z)) # Reordering all four fields b = nd.fields(a, 'w', 'y', 'x', 'z') self.assertEqual(nd.dtype_of(b), ndt.make_struct( [ndt.string, ndt.int32, ndt.int32, ndt.string], ['w', 'y', 'x', 'z'])) self.assertEqual(nd.as_py(b.w), nd.as_py(a.w)) self.assertEqual(nd.as_py(b.y), nd.as_py(a.y)) self.assertEqual(nd.as_py(b.x), nd.as_py(a.x)) self.assertEqual(nd.as_py(b.z), nd.as_py(a.z)) def test_fixed_var(self): a = nd.array([ [(1, 2, 'a', 'b'), (3, 4, 'ab', 'cd')], [(5, 6, 'def', 'ghi')], [(7, 8, 'alpha', 'beta'), (9, 10, 'X', 'Y'), (11, 12, 'the', 'end')]], type='3 * var * {x: int32, y: int32, z: string, w: string}') # Selecting a single field b = nd.fields(a, 'x') self.assertEqual(nd.type_of(b), ndt.make_fixed_dim(3, ndt.make_var_dim(ndt.make_struct( [ndt.int32], ['x'])))) self.assertEqual(nd.as_py(b.x), nd.as_py(a.x)) # Selecting two fields b = nd.fields(a, 'z', 'y') self.assertEqual(nd.type_of(b), ndt.make_fixed_dim(3, ndt.make_var_dim(ndt.make_struct( [ndt.string, ndt.int32], ['z', 'y'])))) self.assertEqual(nd.as_py(b.z), nd.as_py(a.z)) self.assertEqual(nd.as_py(b.y), nd.as_py(a.y)) # Selecting three fields b = nd.fields(a, 'w', 'y', 'z') self.assertEqual(nd.type_of(b), ndt.make_fixed_dim(3, ndt.make_var_dim(ndt.make_struct( [ndt.string, ndt.int32, ndt.string], ['w', 'y', 'z'])))) self.assertEqual(nd.as_py(b.w), nd.as_py(a.w)) self.assertEqual(nd.as_py(b.y), nd.as_py(a.y)) self.assertEqual(nd.as_py(b.z), nd.as_py(a.z)) # Reordering all four fields b = nd.fields(a, 'w', 'y', 'x', 'z') self.assertEqual(nd.type_of(b), ndt.make_fixed_dim(3, ndt.make_var_dim(ndt.make_struct( [ndt.string, ndt.int32, ndt.int32, ndt.string], ['w', 'y', 'x', 'z'])))) self.assertEqual(nd.as_py(b.w), nd.as_py(a.w)) self.assertEqual(nd.as_py(b.y), nd.as_py(a.y)) self.assertEqual(nd.as_py(b.x), nd.as_py(a.x)) self.assertEqual(nd.as_py(b.z), nd.as_py(a.z)) def test_bad_field_name(self): a = nd.array([ (1, 2, 'a', 'b'), (3, 4, 'ab', 'cd'), (5, 6, 'def', 'ghi')], type='3 * {x: int32, y: int32, z: string, w: string}') self.assertRaises(RuntimeError, nd.fields, a, 'y', 'v') """ if __name__ == '__main__': unittest.main()
42.808081
76
0.464606
5d373f0e4790917fc2d0b3ea420a4ad7a8c76024
4,096
py
Python
xeofs/pandas/_transformer.py
nicrie/xeofs
4c0ed49b45794ce0abb641c98b82638b2faa4828
[ "MIT" ]
3
2022-02-22T07:56:09.000Z
2022-03-30T10:47:20.000Z
xeofs/pandas/_transformer.py
nicrie/xeofs
4c0ed49b45794ce0abb641c98b82638b2faa4828
[ "MIT" ]
13
2022-02-15T13:44:34.000Z
2022-03-15T22:51:01.000Z
xeofs/pandas/_transformer.py
nicrie/xeofs
4c0ed49b45794ce0abb641c98b82638b2faa4828
[ "MIT" ]
2
2022-02-17T19:02:59.000Z
2022-02-22T07:56:15.000Z
from typing import Union, Iterable, List import numpy as np import pandas as pd from ..models._transformer import _ArrayTransformer, _MultiArrayTransformer
35.310345
101
0.616211
5d38d81bebcb78fdcd3ec6d9d6e334cd582c79d5
1,004
py
Python
tests/bogus_python_model.py
FossilizedContainers/fossilized-controller
5aa14112b3728a619a37233906366c1cda2a0a77
[ "MIT" ]
1
2022-01-24T21:54:46.000Z
2022-01-24T21:54:46.000Z
tests/bogus_python_model.py
FossilizedContainers/fossilized-controller
5aa14112b3728a619a37233906366c1cda2a0a77
[ "MIT" ]
null
null
null
tests/bogus_python_model.py
FossilizedContainers/fossilized-controller
5aa14112b3728a619a37233906366c1cda2a0a77
[ "MIT" ]
null
null
null
import os import sys import lipd # import pythonAdapter, assumes in ../python-adapter/ tests_dir = os.path.dirname(os.path.realpath(__file__)) fc_dir = os.path.dirname(tests_dir) python_adapter_dir = os.path.join(fc_dir, "python-adapter") sys.path.append(python_adapter_dir) import adapter # have to call adapter in the adapter.py file as adapter.adapter adapter = adapter.global_adapter adapter.register(fake_model) adapter.start_server()
26.421053
85
0.739044
5d38e4a873930da8bc4504369cb7f1bca6894323
13,421
py
Python
tello_control_ui.py
banne2266/UAV-autopilot-NCTU-2021
1a25d4add2de9659516d045054935e3b6e04d06d
[ "MIT" ]
null
null
null
tello_control_ui.py
banne2266/UAV-autopilot-NCTU-2021
1a25d4add2de9659516d045054935e3b6e04d06d
[ "MIT" ]
null
null
null
tello_control_ui.py
banne2266/UAV-autopilot-NCTU-2021
1a25d4add2de9659516d045054935e3b6e04d06d
[ "MIT" ]
null
null
null
from PIL import Image from PIL import ImageTk import tkinter as tki from tkinter import Toplevel, Scale import threading import datetime import cv2 import os import time import platform
37.177285
113
0.580583
5d3a6779a16e847e6ab8367c806b8cd0393b9b7c
160
py
Python
__temp/examples/rhino/mesh-stanford-dragon.py
robin-gdwl/examples_topop-desc
3a10dfc891c3e6998029c7baf8a5a7a501870fe2
[ "MIT" ]
null
null
null
__temp/examples/rhino/mesh-stanford-dragon.py
robin-gdwl/examples_topop-desc
3a10dfc891c3e6998029c7baf8a5a7a501870fe2
[ "MIT" ]
null
null
null
__temp/examples/rhino/mesh-stanford-dragon.py
robin-gdwl/examples_topop-desc
3a10dfc891c3e6998029c7baf8a5a7a501870fe2
[ "MIT" ]
1
2022-01-16T02:32:43.000Z
2022-01-16T02:32:43.000Z
import compas import compas_rhino from compas.datastructures import Mesh mesh = Mesh.from_ply(compas.get('stanford_dragon.ply')) compas_rhino.mesh_draw(mesh)
20
55
0.825
5d3b019f7105ea70804aca52b749a325dbd4f20c
416
py
Python
Python/ML_DL/DL/Neural-Networks-Demystified-master/partOne.py
vbsteja/code
0c8f4dc579f5de21b6c55fe6e65c3c8eb5473687
[ "Apache-2.0" ]
3
2018-08-06T15:34:58.000Z
2022-02-11T14:19:05.000Z
Python/ML_DL/DL/Neural-Networks-Demystified-master/partOne.py
vbsteja/code
0c8f4dc579f5de21b6c55fe6e65c3c8eb5473687
[ "Apache-2.0" ]
null
null
null
Python/ML_DL/DL/Neural-Networks-Demystified-master/partOne.py
vbsteja/code
0c8f4dc579f5de21b6c55fe6e65c3c8eb5473687
[ "Apache-2.0" ]
3
2018-08-06T15:35:01.000Z
2020-08-08T07:53:07.000Z
# Neural Networks Demystified # Part 1: Data + Architecture # # Supporting code for short YouTube series on artificial neural networks. # # Stephen Welch # @stephencwelch import numpy as np # X = (hours sleeping, hours studying), y = Score on test X = np.array(([3,5], [5,1], [10,2]), dtype=float) y = np.array(([75], [82], [93]), dtype=float) # Normalize X = X/np.amax(X, axis=0) y = y/100 #Max test score is 100
24.470588
73
0.673077
5d3c91e42dac2041a621585dba8f1dfdc1e88107
19,048
py
Python
manubot/process/util.py
benstear/manubot
df184a5c7e5eb98894a3edb43d9772d1ac3e01ab
[ "BSD-3-Clause" ]
null
null
null
manubot/process/util.py
benstear/manubot
df184a5c7e5eb98894a3edb43d9772d1ac3e01ab
[ "BSD-3-Clause" ]
null
null
null
manubot/process/util.py
benstear/manubot
df184a5c7e5eb98894a3edb43d9772d1ac3e01ab
[ "BSD-3-Clause" ]
null
null
null
import json import logging import os import pathlib import re import textwrap import warnings from typing import List, Optional import jinja2 import pandas import requests import requests_cache import yaml from manubot.util import read_serialized_data, read_serialized_dict from manubot.process.bibliography import load_manual_references from manubot.process.ci import get_continuous_integration_parameters from manubot.process.metadata import ( get_header_includes, get_thumbnail_url, get_manuscript_urls, get_software_versions, ) from manubot.process.manuscript import ( datetime_now, get_manuscript_stats, get_text, ) from manubot.cite.citekey import ( citekey_to_csl_item, shorten_citekey, is_valid_citekey, standardize_citekey, ) def check_collisions(citekeys_df): """ Check for short_citekey hash collisions """ collision_df = citekeys_df[["standard_citekey", "short_citekey"]].drop_duplicates() collision_df = collision_df[collision_df.short_citekey.duplicated(keep=False)] if not collision_df.empty: logging.error(f"OMF! Hash collision. Congratulations.\n{collision_df}") return collision_df def check_multiple_citation_strings(citekeys_df): """ Identify different citation strings referring the the same reference. """ message = textwrap.dedent( f"""\ {len(citekeys_df)} unique citations strings extracted from text {citekeys_df.standard_citekey.nunique()} unique standard citations\ """ ) logging.info(message) multi_df = citekeys_df[citekeys_df.standard_citekey.duplicated(keep=False)] if not multi_df.empty: table = multi_df.to_string( index=False, columns=["standard_citekey", "manuscript_citekey"] ) logging.warning(f"Multiple citekeys detected for the same reference:\n{table}") return multi_df def read_variable_files(paths: List[str], variables: Optional[dict] = None) -> dict: """ Read multiple serialized data files into a user_variables dictionary. Provide `paths` (a list of URLs or local file paths). Paths can optionally have a namespace prepended. For example: ```python paths = [ 'https://git.io/vbkqm', # update the dictionary's top-level 'namespace_1=https://git.io/vbkqm', # store under 'namespace_1' key 'namespace_2=some_local_path.json', # store under 'namespace_2' key ] ``` If a namespace is not provided, the JSON must contain a dictionary as its top level. Namespaces should consist only of ASCII alphanumeric characters (includes underscores, first character cannot be numeric). Pass a dictionary to `variables` to update an existing dictionary rather than create a new dictionary. """ if variables is None: variables = {} for path in paths: logging.info(f"Reading user-provided templating variables at {path!r}") # Match only namespaces that are valid jinja2 variable names # http://jinja.pocoo.org/docs/2.10/api/#identifier-naming match = re.match(r"([a-zA-Z_][a-zA-Z0-9_]*)=(.+)", path) if match: namespace, path = match.groups() logging.info( f"Using the {namespace!r} namespace for template variables from {path!r}" ) try: if match: obj = {namespace: read_serialized_data(path)} else: obj = read_serialized_dict(path) except Exception: logging.exception(f"Error reading template variables from {path!r}") continue assert isinstance(obj, dict) conflicts = variables.keys() & obj.keys() if conflicts: logging.warning( f"Template variables in {path!r} overwrite existing " "values for the following keys:\n" + "\n".join(conflicts) ) variables.update(obj) logging.debug( f"Reading user-provided templating variables complete:\n" f"{json.dumps(variables, indent=2, ensure_ascii=False)}" ) return variables def add_author_affiliations(variables: dict) -> dict: """ Edit variables to contain numbered author affiliations. Specifically, add a list of affiliation_numbers for each author and add a list of affiliations to the top-level of variables. If no authors have any affiliations, variables is left unmodified. """ rows = list() for author in variables["authors"]: if "affiliations" not in author: continue if not isinstance(author["affiliations"], list): warnings.warn( f"Expected list for {author['name']}'s affiliations. " f"Assuming multiple affiliations are `; ` separated. " f"Please switch affiliations to a list.", category=DeprecationWarning, ) author["affiliations"] = author["affiliations"].split("; ") for affiliation in author["affiliations"]: rows.append((author["name"], affiliation)) if not rows: return variables affil_map_df = pandas.DataFrame(rows, columns=["name", "affiliation"]) affiliation_df = affil_map_df[["affiliation"]].drop_duplicates() affiliation_df["affiliation_number"] = range(1, 1 + len(affiliation_df)) affil_map_df = affil_map_df.merge(affiliation_df) name_to_numbers = { name: sorted(df.affiliation_number) for name, df in affil_map_df.groupby("name") } for author in variables["authors"]: author["affiliation_numbers"] = name_to_numbers.get(author["name"], []) variables["affiliations"] = affiliation_df.to_dict(orient="records") return variables def load_variables(args) -> dict: """ Read `metadata.yaml` and files specified by `--template-variables-path` to generate manuscript variables available for jinja2 templating. Returns a dictionary, refered to as `variables`, with the following keys: - `pandoc`: a dictionary for passing options to Pandoc via the `yaml_metadata_block`. Fields in `pandoc` are either generated by Manubot or hard-coded by the user if `metadata.yaml` includes a `pandoc` dictionary. - `manubot`: a dictionary for manubot-related information and metadata. Fields in `manubot` are either generated by Manubot or hard-coded by the user if `metadata.yaml` includes a `manubot` dictionary. - All fields from a manuscript's `metadata.yaml` that are not interpreted by Manubot are copied to `variables`. Interpreted fields include `pandoc`, `manubot`, `title`, `keywords`, `authors` (formerly `author_info`, now deprecated), `lang`, and `thumbnail`. - User-specified fields inserted according to the `--template-variables-path` option. User-specified variables take highest precedence and can overwrite values for existing keys like `pandoc` or `manubot` (dangerous). """ # Generated manuscript variables variables = {"pandoc": {}, "manubot": {}} # Read metadata which contains pandoc_yaml_metadata # as well as authors information. if args.meta_yaml_path.is_file(): metadata = read_serialized_dict(args.meta_yaml_path) else: metadata = {} logging.warning( f"missing {args.meta_yaml_path} file with yaml_metadata_block for pandoc" ) # Interpreted keys that are intended for pandoc move_to_pandoc = "title", "keywords", "lang" for key in move_to_pandoc: if key in metadata: variables["pandoc"][key] = metadata.pop(key) # Add date to metadata now = datetime_now() logging.info( f"Using {now:%Z} timezone.\n" f"Dating manuscript with the current datetime: {now.isoformat()}" ) variables["pandoc"]["date-meta"] = now.date().isoformat() variables["manubot"]["date"] = f"{now:%B} {now.day}, {now.year}" # Process authors metadata if "author_info" in metadata: authors = metadata.pop("author_info", []) warnings.warn( "metadata.yaml: 'author_info' is deprecated. Use 'authors' instead.", category=DeprecationWarning, ) else: authors = metadata.pop("authors", []) if authors is None: authors = [] variables["pandoc"]["author-meta"] = [author["name"] for author in authors] variables["manubot"]["authors"] = authors add_author_affiliations(variables["manubot"]) # Set repository version metadata for CI builds ci_params = get_continuous_integration_parameters() if ci_params: variables["manubot"]["ci_source"] = ci_params # Add manuscript URLs variables["manubot"].update(get_manuscript_urls(metadata.pop("html_url", None))) # Add software versions variables["manubot"].update(get_software_versions()) # Add thumbnail URL if present thumbnail_url = get_thumbnail_url(metadata.pop("thumbnail", None)) if thumbnail_url: variables["manubot"]["thumbnail_url"] = thumbnail_url # Update variables with metadata.yaml pandoc/manubot dicts for key in "pandoc", "manubot": dict_ = metadata.pop(key, {}) if not isinstance(dict_, dict): logging.warning( f"load_variables expected metadata.yaml field {key!r} to be a dict." f"Received a {dict_.__class__.__name__!r} instead." ) continue variables[key].update(dict_) # Update variables with uninterpreted metadata.yaml fields variables.update(metadata) # Update variables with user-provided variables here variables = read_variable_files(args.template_variables_path, variables) # Add header-includes metadata with <meta> information for the HTML output's <head> variables["pandoc"]["header-includes"] = get_header_includes(variables) assert args.skip_citations # Extend Pandoc's metadata.bibliography field with manual references paths bibliographies = variables["pandoc"].get("bibliography", []) if isinstance(bibliographies, str): bibliographies = [bibliographies] assert isinstance(bibliographies, list) bibliographies.extend(args.manual_references_paths) bibliographies = list(map(os.fspath, bibliographies)) variables["pandoc"]["bibliography"] = bibliographies # enable pandoc-manubot-cite option to write bibliography to a file variables["pandoc"]["manubot-output-bibliography"] = os.fspath(args.references_path) variables["pandoc"]["manubot-output-citekeys"] = os.fspath(args.citations_path) variables["pandoc"]["manubot-requests-cache-path"] = os.fspath( args.requests_cache_path ) variables["pandoc"]["manubot-clear-requests-cache"] = args.clear_requests_cache return variables def get_citekeys_df(citekeys: list, citekey_aliases: dict = {}): """ Generate and return citekeys_df. citekeys_df is a pandas.DataFrame with the following columns: - manuscript_citekey: citation keys extracted from the manuscript content files. - detagged_citekey: manuscript_citekey but with tag citekeys dereferenced - standard_citekey: detagged_citekey standardized - short_citekey: standard_citekey hashed to create a shortened citekey """ citekeys_df = pandas.DataFrame( {"manuscript_citekey": list(citekeys)} ).drop_duplicates() citekeys_df["detagged_citekey"] = citekeys_df.manuscript_citekey.map( lambda citekey: citekey_aliases.get(citekey, citekey) ) for citation in citekeys_df.detagged_citekey: is_valid_citekey(citation, allow_raw=True) citekeys_df["standard_citekey"] = citekeys_df.detagged_citekey.map( standardize_citekey ) citekeys_df["short_citekey"] = citekeys_df.standard_citekey.map(shorten_citekey) citekeys_df = citekeys_df.sort_values(["standard_citekey", "detagged_citekey"]) check_collisions(citekeys_df) check_multiple_citation_strings(citekeys_df) return citekeys_df def read_citations_tsv(path) -> dict: """ Read citekey aliases from a citation-tags.tsv file. """ if not path.is_file(): logging.info( f"no citation tags file at {path} " "Not reading citekey_aliases from citation-tags.tsv." ) return {} tag_df = pandas.read_csv(path, sep="\t") na_rows_df = tag_df[tag_df.isnull().any(axis="columns")] if not na_rows_df.empty: logging.error( f"{path} contains rows with missing values:\n" f"{na_rows_df}\n" "This error can be caused by using spaces rather than tabs to delimit fields.\n" "Proceeding to reread TSV with delim_whitespace=True." ) tag_df = pandas.read_csv(path, delim_whitespace=True) tag_df["manuscript_citekey"] = "tag:" + tag_df.tag tag_df = tag_df.rename(columns={"citation": "detagged_citekey"}) citekey_aliases = dict( zip(tag_df["manuscript_citekey"], tag_df["detagged_citekey"]) ) return citekey_aliases def _citation_tags_to_reference_links(args) -> str: """ Convert citation-tags.tsv to markdown reference link syntax """ citekey_aliases = read_citations_tsv(args.citation_tags_path) if not citekey_aliases: return "" text = "\n\n" for key, value in citekey_aliases.items(): text += f"[@{key}]: {value}\n" logging.warning( "citation-tags.tsv is deprecated. " f"Consider deleting citation-tags.tsv and inserting the following paragraph into your Markdown content:{text}" ) return text def generate_csl_items( citekeys: list, manual_refs: dict = {}, requests_cache_path: Optional[str] = None, clear_requests_cache: Optional[bool] = False, ) -> list: """ General CSL (citeproc) items for standard_citekeys in citekeys_df. Parameters: - citekeys: list of standard_citekeys - manual_refs: mapping from standard_citekey to csl_item for manual references - requests_cache_path: path for the requests cache database. Passed as cache_name to `requests_cache.install_cache`. requests_cache may append an extension to this path, so it is not always the exact path to the cache. If None, do not use requests_cache. - clear_requests_cache: If True, clear the requests cache before generating citekey metadata. """ # Deduplicate citations citekeys = list(dict.fromkeys(citekeys)) # Install cache if requests_cache_path is not None: requests # require `import requests` in case this is essential for monkey patching by requests_cache. requests_cache.install_cache(requests_cache_path, include_get_headers=True) cache = requests_cache.get_cache() if clear_requests_cache: logging.info("Clearing requests-cache") requests_cache.clear() logging.info( f"requests-cache starting with {len(cache.responses)} cached responses" ) csl_items = list() failures = list() for standard_citekey in citekeys: if standard_citekey in manual_refs: csl_items.append(manual_refs[standard_citekey]) continue elif standard_citekey.startswith("raw:"): logging.error( f"CSL JSON Data with a standard_citekey of {standard_citekey!r} not found in manual-references.json. " "Metadata must be provided for raw citekeys." ) failures.append(standard_citekey) try: csl_item = citekey_to_csl_item(standard_citekey) csl_items.append(csl_item) except Exception: logging.exception(f"Citeproc retrieval failure for {standard_citekey!r}") failures.append(standard_citekey) # Uninstall cache if requests_cache_path is not None: logging.info( f"requests-cache finished with {len(cache.responses)} cached responses" ) requests_cache.uninstall_cache() if failures: message = "CSL JSON Data retrieval failed for the following standardized citation keys:\n{}".format( "\n".join(failures) ) logging.error(message) return csl_items def _generate_csl_items(args, citekeys_df): """ General CSL (citeproc) items for standard_citekeys in citekeys_df. Writes references.json to disk and logs warnings for potential problems. """ # Read manual references (overrides) in JSON CSL manual_refs = load_manual_references(args.manual_references_paths) # Retrieve CSL Items csl_items = generate_csl_items( citekeys=citekeys_df.standard_citekey.unique(), manual_refs=manual_refs, requests_cache_path=args.requests_cache_path, clear_requests_cache=args.clear_requests_cache, ) # Write CSL JSON bibliography for Pandoc. write_csl_json(csl_items, args.references_path) return csl_items def write_csl_json(csl_items, path): """ Write CSL Items to a JSON file at `path`. If `path` evaluates as False, do nothing. """ if not path: return path = pathlib.Path(path) with path.open("w", encoding="utf-8") as write_file: json.dump(csl_items, write_file, indent=2, ensure_ascii=False) write_file.write("\n") def template_with_jinja2(text, variables): """ Template using jinja2 with the variables dictionary unpacked as keyword arguments. """ jinja_environment = jinja2.Environment( loader=jinja2.BaseLoader(), undefined=jinja2.make_logging_undefined(logging.getLogger()), autoescape=False, comment_start_string="{##", comment_end_string="##}", extensions=["jinja2.ext.do", "jinja2.ext.loopcontrols"], ) template = jinja_environment.from_string(text) return template.render(**variables) def prepare_manuscript(args): """ Compile manuscript, creating manuscript.md and references.json as inputs for pandoc. """ text = get_text(args.content_directory) assert args.skip_citations text += _citation_tags_to_reference_links(args) variables = load_variables(args) variables["manubot"]["manuscript_stats"] = get_manuscript_stats(text) with args.variables_path.open("w", encoding="utf-8") as write_file: json.dump(variables, write_file, ensure_ascii=False, indent=2) write_file.write("\n") text = template_with_jinja2(text, variables) # Write manuscript for pandoc with args.manuscript_path.open("w", encoding="utf-8") as write_file: yaml.dump( variables["pandoc"], write_file, default_flow_style=False, explicit_start=True, explicit_end=True, width=float("inf"), ) write_file.write("\n") write_file.write(text)
37.496063
118
0.679546
5d3efa01c738d69c4c33cd7d548df41216a056d7
3,738
py
Python
iba_scrape.py
wmwilcox/mix-mind
02da016f314bb5f30f267f1f46c67c6d4a4c370c
[ "Apache-2.0" ]
1
2021-05-02T19:50:44.000Z
2021-05-02T19:50:44.000Z
iba_scrape.py
wmwilcox/mix-mind
02da016f314bb5f30f267f1f46c67c6d4a4c370c
[ "Apache-2.0" ]
34
2018-08-07T13:09:29.000Z
2021-05-13T17:25:18.000Z
iba_scrape.py
wmwilcox/mix-mind
02da016f314bb5f30f267f1f46c67c6d4a4c370c
[ "Apache-2.0" ]
4
2019-02-14T04:17:24.000Z
2021-05-14T15:33:39.000Z
#! /usr/bin/env python # scrape the IBA pages for cocktail lists import sys import xml.etree.ElementTree as ET from lxml import html import requests from pprint import pprint from collections import OrderedDict import json url = 'http://iba-world.com/new-era-drinks/' jsonfile = 'IBA_new_era_drinks.json' url = 'http://iba-world.com/iba-cocktails/' jsonfile = 'IBA_unforgettables.json' url = 'http://iba-world.com/contemporary-classics/' jsonfile = 'IBA_contemporary_classics.json' jsonfile = 'IBA_.json' recipes = OrderedDict() page = requests.get(url) tree = html.fromstring(page.content) items = tree.findall(".//div[@class='blog_list_item_lists']") for item in items: name = item.find(".//h3").text name = ' '.join([word.capitalize() for word in name.split()]) body = item.find(".//div[@class='blog_text']") recipes[name] = {'unit': 'cL'} print name children = [c for c in body.iterchildren()] n = 0 if children[1].tag == 'ul': n = -1 style = children[n+1].text if style is None: try: style = children[n+1].find('span').text except: pass recipes[name]['style'] = style recipes[name]['ingredients'] = OrderedDict() if not children[n+2].tag == 'ul': print "adapting <p> ingredients:", children[n+2].text ing_list = ET.tostring(children[n+2]).lstrip('<p>').rstrip('</p>\n').split('<br />\n') else: ing_list = [i.text for i in children[n+2].iterchildren()] for ingredient in ing_list: if len(ingredient.split()) == 1: recipes[name]['ingredients'][ingredient.lower()] = '' continue unit = ingredient.split()[1].lower() if unit == 'cl': recipes[name]['ingredients'][' '.join([w.lower() for w in ingredient.split()[2:]])] = float(ingredient.split()[0]) elif unit == 'bar' or unit == 'to': # bar spoon recipes[name]['ingredients'][' '.join([w.lower() for w in ingredient.split()[3:]])] = ' '.join(ingredient.split()[:3]) elif unit == 'dashes' or unit == 'drops' or unit == 'with': recipes[name]['ingredients'][' '.join([w.lower() for w in ingredient.split()[2:]])] = ' '.join(ingredient.split()[:2]) elif unit == 'dash': recipes[name]['ingredients'][' '.join([w.lower() for w in ingredient.split()[2:]])] = 'dash' else: print "using literal: ", ingredient literal = {'1': 'one', '2': 'two', 'A': 'one'} try: recipes[name]['ingredients'][' '.join([w.lower() for w in ingredient.split()[1:]])] = literal[ingredient.split()[0]] except: recipes[name]['ingredients'][ingredient.lower()] = '' # Get full description from the link ref_url = item.find(".//a[@class='top_hover_image']").attrib.get('href') detail_page = requests.get(ref_url) detail_tree = html.fromstring(detail_page.content) use_next = False for child in detail_tree.find(".//div[@class='col-sm-9']").iterchildren(): if use_next and child.tag == 'p': recipes[name]['IBA_description'] = child.text break if child.tag =='ul': use_next = True with open(jsonfile, 'w') as fp: json.dump(recipes, fp, indent=4, separators=(',', ': ')) print "Wrote out as {}".format(jsonfile) sys.exit(0) raw = sys.argv[1] with open(raw) as fp: for line in fp.readlines(): if line.lstrip().startswith(r'<h3>'): print line.lstrip() # super hax if line.startswith(r'<p>'): print line if line.startswith(r'<li>'): print line if not line.lstrip().startswith('<'): print line
33.981818
132
0.584805
5d3f6e4da89be36858bff2a63bb4de2ff240849a
244
py
Python
config.py
ggiaquin16/GroupProject19
f491abc4e8f127552dc7384f3378e14029da8008
[ "CC-BY-3.0" ]
null
null
null
config.py
ggiaquin16/GroupProject19
f491abc4e8f127552dc7384f3378e14029da8008
[ "CC-BY-3.0" ]
null
null
null
config.py
ggiaquin16/GroupProject19
f491abc4e8f127552dc7384f3378e14029da8008
[ "CC-BY-3.0" ]
null
null
null
api_key = "9N7hvPP9yFrjBnELpBdthluBjiOWzJZw" mongo_url = 'mongodb://localhost:27017' mongo_db = 'CarPopularity' mongo_collections = ['CarSalesByYear', 'PopularCarsByRegion'] years_data = ['2019', '2018', '2017', '2016', '2015'] test_mode = True
40.666667
61
0.75
5d4008c47be6196efe901a8e83cca011533d0bf1
2,648
py
Python
pytorch_ares/pytorch_ares/attack_torch/mim.py
thu-ml/realsafe
474d549aa402b4cdd5e3629d23d035c31b60a360
[ "MIT" ]
107
2020-06-15T09:55:11.000Z
2020-12-20T11:27:11.000Z
pytorch_ares/pytorch_ares/attack_torch/mim.py
haichen-ber/ares
474d549aa402b4cdd5e3629d23d035c31b60a360
[ "MIT" ]
7
2020-06-14T03:00:18.000Z
2020-12-07T07:10:10.000Z
pytorch_ares/pytorch_ares/attack_torch/mim.py
haichen-ber/ares
474d549aa402b4cdd5e3629d23d035c31b60a360
[ "MIT" ]
19
2020-06-14T08:35:33.000Z
2020-12-19T13:43:41.000Z
import imp import torch import torch.nn as nn import numpy as np import torch.nn.functional as F from pytorch_ares.attack_torch.utils import loss_adv
39.522388
118
0.583837
5d4029e498cad9d638e5fe5f4c3a65f28490da96
303
py
Python
src/utils/templatetags/menubutton.py
pwelzel/bornhack-website
af794e6a2fba06e09626259c7768feb30ff394be
[ "BSD-3-Clause" ]
null
null
null
src/utils/templatetags/menubutton.py
pwelzel/bornhack-website
af794e6a2fba06e09626259c7768feb30ff394be
[ "BSD-3-Clause" ]
null
null
null
src/utils/templatetags/menubutton.py
pwelzel/bornhack-website
af794e6a2fba06e09626259c7768feb30ff394be
[ "BSD-3-Clause" ]
null
null
null
from django import template register = template.Library()
25.25
93
0.716172
5d41c3b8ea2fc0ea3e45c5b6768c95bfbb166b0c
1,965
py
Python
wiki/tests.py
Prones94/Make_Wiki
f8816eb31bb370f48affff8568a6b0d0ffaf7cd4
[ "MIT" ]
null
null
null
wiki/tests.py
Prones94/Make_Wiki
f8816eb31bb370f48affff8568a6b0d0ffaf7cd4
[ "MIT" ]
5
2020-06-06T01:41:16.000Z
2021-06-10T20:09:01.000Z
wiki/tests.py
Prones94/Make_Wiki
f8816eb31bb370f48affff8568a6b0d0ffaf7cd4
[ "MIT" ]
null
null
null
from django.test import TestCase from django.contrib.auth.models import User from wiki.models import Page from django.utils.text import slugify # Create your tests here. ''' Steps to writing a test 1. Set up your test data 2. Make a request (GET, POST) 3a. Check if response matches what we expect 3b. Check if database matches what we expect '''
33.87931
85
0.641221
5d42291558faa9e742ab82a57f0f93c0ba5ed168
66
py
Python
birdy/__init__.py
tkiapril/birdy
cf6a8f8d31c9363dbf7398ae3d78fe3069a5a936
[ "MIT" ]
1
2015-01-07T17:47:54.000Z
2015-01-07T17:47:54.000Z
birdy/__init__.py
tkiapril/birdy
cf6a8f8d31c9363dbf7398ae3d78fe3069a5a936
[ "MIT" ]
null
null
null
birdy/__init__.py
tkiapril/birdy
cf6a8f8d31c9363dbf7398ae3d78fe3069a5a936
[ "MIT" ]
null
null
null
__author__ = 'Mitja Pagon <[email protected]>' __version__ = '0.2'
22
45
0.712121
5d424aaa1fdb6fb518af8c5169d61b82bae9ef0f
1,928
py
Python
ares/defense/randomization.py
KuanKuanQAQ/ares
40dbefc18f6438e1812021fe6d6c3195f22ca295
[ "MIT" ]
206
2020-12-31T09:43:11.000Z
2022-03-30T07:02:41.000Z
ares/defense/randomization.py
afoolboy/ares
89610d41fdde194e4ad916d29961aaed73383692
[ "MIT" ]
7
2021-01-26T06:45:44.000Z
2022-02-26T05:25:48.000Z
ares/defense/randomization.py
afoolboy/ares
89610d41fdde194e4ad916d29961aaed73383692
[ "MIT" ]
61
2020-12-29T14:02:41.000Z
2022-03-26T14:21:10.000Z
''' The randomization defense method, which applies random . ''' import tensorflow as tf from ares.defense.input_transformation import input_transformation def randomize(xs, scale_min=0.875, pad_value=0.0): ''' Apply random rescaling and padding to xs. :param xs: A batch of inputs for some classifier. :param scale_min: The random rescaling rate would be chosen between ``scale_min`` and 1.0. :param pad_value: ``constant_values`` parameter for the ``tf.pad`` method. :return: A new tensor with same shape and dtype as xs. ''' ratio = tf.random.uniform((), minval=scale_min, maxval=1.0) height, width = tf.cast(xs.shape[1].value * ratio, tf.int32), tf.cast(xs.shape[2].value * ratio, tf.int32) xs_rescaled = tf.image.resize(xs, (height, width), method=tf.image.ResizeMethod.NEAREST_NEIGHBOR, align_corners=True, preserve_aspect_ratio=False) height_rem, width_rem = xs.shape[1].value - height, xs.shape[2].value - width pad_left = tf.random_uniform((), 0, width_rem, dtype=tf.int32) pad_right = width_rem - pad_left pad_top = tf.random_uniform((), 0, height_rem, dtype=tf.int32) pad_bottom = height_rem - pad_top xs_padded = tf.pad(xs_rescaled, [[0, 0], [pad_top, pad_bottom], [pad_left, pad_right], [0, 0]], constant_values=pad_value) xs_padded.set_shape(xs.shape) return xs_padded def randomization(scale_min=0.875, pad_value=0.0): ''' A decorator to apply randomize rescaling and padding to input of the classifier. :param scale_min: The random rescaling rate would be chosen between ``scale_min`` and 1.0. :param pad_value: ``constant_values`` parameter for the ``tf.pad`` method. ''' return lambda rs_class: input_transformation(rs_class, randomize, args_fn, kwargs_fn)
43.818182
110
0.688797
5d43ba93812ece31b158196b6ad2d32a374bd0f8
147
py
Python
annotate/backend/admin.py
hopeogbons/image-annotation
2d8b1799bc791428fd3ab29d8052195996923130
[ "Apache-2.0" ]
null
null
null
annotate/backend/admin.py
hopeogbons/image-annotation
2d8b1799bc791428fd3ab29d8052195996923130
[ "Apache-2.0" ]
11
2021-03-09T10:15:39.000Z
2022-02-26T13:53:51.000Z
annotate/backend/admin.py
hopeogbons/image-annotation
2d8b1799bc791428fd3ab29d8052195996923130
[ "Apache-2.0" ]
null
null
null
from django.contrib import admin from annotate.backend.models import Image, Annotation admin.site.register(Image) admin.site.register(Annotation)
24.5
53
0.836735
5d4867285dd6af6ea7e2fbae337fc27c75376241
1,893
py
Python
c/create.py
LMS57/domato
005739f55b49ead0ac47ea14b324decee05a7625
[ "Apache-2.0" ]
null
null
null
c/create.py
LMS57/domato
005739f55b49ead0ac47ea14b324decee05a7625
[ "Apache-2.0" ]
null
null
null
c/create.py
LMS57/domato
005739f55b49ead0ac47ea14b324decee05a7625
[ "Apache-2.0" ]
null
null
null
data = open('./original').readlines() alphabet = { "<":"lt", ">":"gt", "=":"=", "-":'-', "+":"+", "-":"-", "~":"~", "!":"ex", "%":"%", "^":"^", "&":"&", "*":"*", "(":"(", ")":"right_paran", "[":"[", "]":"]", "{":"{", "}":"}", "[":"[", "]":"]", "|":"|", ";":";", ":":":", ",":",", ".":".", "?":"?", "/":"/", } start = 0 current = "" space = "<space>" declared = [] referenced = [] for x in data: x = x.strip() if x == "": continue if '%%' == x: start = 1 continue elif start != 1: continue if x == "test": break; x = x.split(' ') if len(x) == 1:#item declaration or end if x[0] == ';': current = "" else: current = x[0] declared.append(item(x[0])) print "" else: x = x[1:] tmp = item(current)+'\t=\t' for y in range(len(x)): referenced.append(item(x[y])) tmp += item(x[y]) if y != len(x)-1 and "'" not in x[y+1] and "'" not in x[y]: tmp+=space print tmp referenced = set(referenced) final = [] for x in referenced: if x not in declared: final.append(x) print "" for x in final: tmp = x+'\t=\t' x = x[1:-1] print tmp + x.lower()
18.742574
71
0.320655
5d48a2b09ec3e91f3ac7c94a610ddffec5774abc
10,500
py
Python
AppServer/google/appengine/api/memcache/memcache_distributed.py
isabella232/scale-safe
8b887726768106b6b67d7be6ea257bee5cd83f9a
[ "Apache-2.0" ]
3
2016-06-12T01:18:49.000Z
2018-07-16T18:20:23.000Z
AppServer/google/appengine/api/memcache/memcache_distributed.py
davgit/appscale
17d35a14fa5a56975de1e3517bec9e7f9047d82a
[ "Apache-2.0" ]
1
2021-06-08T10:04:35.000Z
2021-06-08T10:04:35.000Z
AppServer/google/appengine/api/memcache/memcache_distributed.py
davgit/appscale
17d35a14fa5a56975de1e3517bec9e7f9047d82a
[ "Apache-2.0" ]
1
2020-05-25T02:59:15.000Z
2020-05-25T02:59:15.000Z
#!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Non-stub version of the memcache API, keeping all data in memcached. Uses the python-memcached library to interface with memcached. """ import base64 import cPickle import logging import memcache import os import time from google.appengine.api import apiproxy_stub from google.appengine.api.memcache import memcache_service_pb from google.appengine.runtime import apiproxy_errors MemcacheSetResponse = memcache_service_pb.MemcacheSetResponse MemcacheSetRequest = memcache_service_pb.MemcacheSetRequest MemcacheIncrementRequest = memcache_service_pb.MemcacheIncrementRequest MemcacheIncrementResponse = memcache_service_pb.MemcacheIncrementResponse MemcacheDeleteResponse = memcache_service_pb.MemcacheDeleteResponse from google.appengine.api.memcache import TYPE_INT from google.appengine.api.memcache import TYPE_LONG
33.980583
77
0.701619
5d493476e5ae3fc5c2137c7a547ce012434fae4f
4,927
py
Python
inflateutils/exportmesh.py
arpruss/inflatemesh
ab4abfc7794fd4cf96f41bb797e1b2a61f687a46
[ "MIT" ]
8
2017-11-30T14:03:25.000Z
2021-03-02T03:16:01.000Z
inflateutils/exportmesh.py
arpruss/inflatemesh
ab4abfc7794fd4cf96f41bb797e1b2a61f687a46
[ "MIT" ]
2
2019-03-15T04:10:04.000Z
2021-01-11T17:44:31.000Z
inflateutils/exportmesh.py
arpruss/inflatemesh
ab4abfc7794fd4cf96f41bb797e1b2a61f687a46
[ "MIT" ]
2
2018-04-08T10:59:39.000Z
2021-01-28T03:37:57.000Z
from struct import pack from .vector import * from .formatdecimal import decimal from numbers import Number import os import sys try: basestring except: basestring = str def toSCADModule(polys, moduleName, digitsAfterDecimal=9, colorOverride=None): """ INPUT: polys: list of (color,polyhedra) pairs (counterclockwise triangles), or a list of (color,triangle) pairs (TODO: currently uses first color for all in latter case) moduleName: OpenSCAD module name OUTPUT: string with OpenSCAD code implementing the polys """ polys = toPolyhedra(polys) scad = [] scad.append("module " +moduleName+ "() {") for rgb,poly in polys: if colorOverride != "" and (colorOverride or rgb): line = " color(%s) " % describeColor(colorOverride if colorOverride else tuple(min(max(c,0.),1.0) for c in rgb)) else: line = " " pointsDict = {} i = 0 line += "polyhedron(points=[" points = [] for face in poly: for v in reversed(face): if tuple(v) not in pointsDict: pointsDict[tuple(v)] = i points.append( ("[%s,%s,%s]") % tuple(decimal(x,digitsAfterDecimal) for x in v) ) i += 1 line += ",".join(points) line += "], faces=[" line += ",".join( "[" + ",".join(str(pointsDict[tuple(v)]) for v in reversed(face)) + "]" for face in poly ) + "]" line += ");" scad.append(line) scad.append("}\n") return "\n".join(scad) def saveSCAD(filename, polys, moduleName="object1", quiet=False): """ filename: filename to write OpenSCAD file polys: list of (color,polyhedra) pairs (counterclockwise triangles) moduleName: OpenSCAD module name quiet: give no status message if set """ if not quiet: sys.stderr.write("Saving %s\n" % filename) if filename: with open(filename, "w") as f: f.write(toSCADModule(polys, moduleName)) f.write("\n" + moduleName + "();\n") else: sys.stdout.write(toSCADModule(polys, moduleName)) sys.stdout.write("\n" + moduleName + "();\n") def saveSTL(filename, mesh, swapYZ=False, quiet=False): """ filename: filename to save STL file mesh: list of (color,triangle) pairs (counterclockwise) swapYZ: should Y/Z axes be swapped? quiet: give no status message if set """ mesh = toMesh(mesh) if not quiet: sys.stderr.write("Saving %s\n" % filename) minY = float("inf") minVector = Vector(float("inf"),float("inf"),float("inf")) numTriangles = 0 if swapYZ: matrix = Matrix( (1,0,0), (0,0,-1), (0,1,0) ) else: matrix = Matrix.identity(3) mono = True for rgb,triangle in mesh: if rgb is not None: mono = False numTriangles += 1 for vertex in triangle: vertex = matrix*vertex minVector = Vector(min(minVector[i], vertex[i]) for i in range(3)) minVector -= Vector(0.001,0.001,0.001) # make sure all STL coordinates are strictly positive as per Wikipedia if filename: with open(filename, "wb") as f: writeSTL(f.write) else: if sys.platform == "win32": import msvcrt msvcrt.setmode(sys.stdout.fileno(), os.O_BINARY) writeSTL(lambda data : os.write(sys.stdout.fileno(), data))
33.517007
166
0.558149
5d4b0bc52d1482cd0028c140868e692cfb38b3c0
3,982
py
Python
Assignment1/Identification/match_module.py
arywatt/FDS_2020_2021
392f360b219c6ef5e2c685da1f3c8aab7415ce32
[ "MIT" ]
null
null
null
Assignment1/Identification/match_module.py
arywatt/FDS_2020_2021
392f360b219c6ef5e2c685da1f3c8aab7415ce32
[ "MIT" ]
null
null
null
Assignment1/Identification/match_module.py
arywatt/FDS_2020_2021
392f360b219c6ef5e2c685da1f3c8aab7415ce32
[ "MIT" ]
1
2020-10-29T08:38:42.000Z
2020-10-29T08:38:42.000Z
import numpy as np from PIL import Image import matplotlib.pyplot as plt import histogram_module import dist_module # model_images - list of file names of model images # query_images - list of file names of query images # # dist_type - string which specifies distance type: 'chi2', 'l2', 'intersect' # hist_type - string which specifies histogram type: 'grayvalue', 'dxdy', 'rgb', 'rg' # # note: use functions 'get_dist_by_name', 'get_hist_by_name' and 'is_grayvalue_hist' to obtain # handles to distance and histogram functions, and to find out whether histogram function # expects grayvalue or color image # For each image file from 'query_images' find and visualize the 5 nearest images from 'model_image'. # # Note: use the previously implemented function 'find_best_match' # Note: use subplot command to show all the images in the same Python figure, one row per query image
33.745763
101
0.633852
5d4c8cdbc546fb237f365ef954c77cb12a3738d8
1,566
py
Python
dycco/__main__.py
rojalator/dycco
84ace8727aef84bb3d886cdaa3d3aef1089f1935
[ "MIT" ]
null
null
null
dycco/__main__.py
rojalator/dycco
84ace8727aef84bb3d886cdaa3d3aef1089f1935
[ "MIT" ]
1
2022-03-22T07:35:15.000Z
2022-03-22T09:15:44.000Z
dycco/__main__.py
rojalator/dycco
84ace8727aef84bb3d886cdaa3d3aef1089f1935
[ "MIT" ]
null
null
null
import argparse import logging import sys from .dycco import document if __name__ == '__main__': arg_parser = argparse.ArgumentParser(prog='dycco', description='Literate-style documentation generator.') arg_parser.add_argument('source_file', nargs='+', default=sys.stdin, help='Source files to document') arg_parser.add_argument('-o', '--output-dir', default='docs', help='Output directory (will be created if necessary)') arg_parser.add_argument('-a', '--asciidoc3', action='store_true', default=False, dest='use_ascii', help='Process with asciidoc3 instead of markdown (you will have to install asciidoc3, of course)') arg_parser.add_argument('-e', '--escape-html', action='store_true', default=False, dest='escape_html', help='Run the documentation through html.escape() before markdown or asciidoc3') arg_parser.add_argument('-f', '--single-file', action='store_true', default=False, dest='single_file', help='Just produce a .md or .adoc file in single-column to be processed externally') args = arg_parser.parse_args() sys.exit(main(args.source_file, args.output_dir, args.use_ascii, args.escape_html, args.single_file))
46.058824
121
0.707535
5d4c9607e3defd3816cf4fbd7853e01e09dcb111
14,354
py
Python
jumpy/jumpy/ndarray.py
rghwer/testdocs
8fafa40407411ed7a3f8216e691e42e0c7d32083
[ "Apache-2.0" ]
13,006
2015-02-13T18:35:31.000Z
2022-03-18T12:11:44.000Z
jumpy/jumpy/ndarray.py
pxiuqin/deeplearning4j
e11ddf3c24d355b43d36431687b807c8561aaae4
[ "Apache-2.0" ]
5,319
2015-02-13T08:21:46.000Z
2019-06-12T14:56:50.000Z
jumpy/jumpy/ndarray.py
pxiuqin/deeplearning4j
e11ddf3c24d355b43d36431687b807c8561aaae4
[ "Apache-2.0" ]
4,719
2015-02-13T22:48:55.000Z
2022-03-22T07:25:36.000Z
################################################################################ # Copyright (c) 2015-2018 Skymind, Inc. # # This program and the accompanying materials are made available under the # terms of the Apache License, Version 2.0 which is available at # https://www.apache.org/licenses/LICENSE-2.0. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # # SPDX-License-Identifier: Apache-2.0 ################################################################################ from .java_classes import * import numpy as np import ctypes import warnings native_ops = NativeOpsHolder.getInstance().getDeviceNativeOps() # DATA TYPE MANAGEMENT DOUBLE = DataType.DOUBLE FLOAT = DataType.FLOAT HALF = DataType.HALF LONG = DataType.LONG INT = DataType.INT SHORT = DataType.SHORT UBYTE = DataType.UBYTE BYTE = DataType.BYTE BOOL = DataType.BOOL UTF8 = DataType.UTF8 COMPRESSED = DataType.COMPRESSED UNKNOWN = DataType.UNKNOWN SUPPORTED_JAVA_DTYPES = [ DOUBLE, FLOAT, HALF, LONG, INT, SHORT, BOOL #UTF8 ] SUPPORTED_PYTHON_DTYPES = [ np.float64, np.float32, np.float16, np.int64, np.int32, np.int16, np.bool_ #np.str_ ] _PY2J = {SUPPORTED_PYTHON_DTYPES[i] : SUPPORTED_JAVA_DTYPES[i] for i in range(len(SUPPORTED_JAVA_DTYPES))} _J2PY = {SUPPORTED_JAVA_DTYPES[i] : SUPPORTED_PYTHON_DTYPES[i] for i in range(len(SUPPORTED_JAVA_DTYPES))} def set_context_dtype(dtype): ''' Sets the dtype for nd4j # Arguments dtype: 'float' or 'double' ''' dtype_map = { 'float32': 'float', 'float64': 'double' } dtype = dtype_map.get(dtype, dtype) if dtype not in ['float', 'double']: raise ValueError("Invalid dtype '{}'. Available dtypes are 'float' and 'double'.".format(dtype)) dtype_ = DataTypeUtil.getDtypeFromContext(dtype) DataTypeUtil.setDTypeForContext(dtype_) if get_context_dtype() != dtype: warnings.warn("Can not set context dtype now. Set it at the beginning of your program.") def get_context_dtype(): ''' Returns the nd4j dtype ''' dtype = DataTypeUtil.getDtypeFromContext() return DataTypeUtil.getDTypeForName(dtype) _refs = [] def _from_numpy(np_array): ''' Convert numpy array to nd4j array ''' pointer_address, _ = np_array.__array_interface__['data'] _refs.append(np_array) pointer = native_ops.pointerForAddress(pointer_address) size = np_array.size pointer.limit(size) jdtype = _dtype_py2j(np_array.dtype) ''' mapping = { DOUBLE: DoublePointer, FLOAT: FloatPointer, HALF: HalfPointer, LONG: LongPointer, INT: IntPointer, SHORT: ShortPointer, BOOL: BoolPointer } pc = mapping[jdtype] #pointer = pc(pointer) ''' buff = Nd4j.createBuffer(pointer, size, jdtype) assert buff.address() == pointer_address _refs.append(buff) elem_size = buff.getElementSize() assert elem_size == np_array.dtype.itemsize strides = np_array.strides strides = [dim / elem_size for dim in strides] shape = np_array.shape nd4j_array = Nd4j.create(buff, shape, strides, 0) assert buff.address() == nd4j_array.data().address() return nd4j_array def _to_numpy(nd4j_array): ''' Convert nd4j array to numpy array ''' buff = nd4j_array.data() address = buff.pointer().address() dtype = nd4j_array.dataType().toString() mapping = { 'DOUBLE': ctypes.c_double, 'FLOAT': ctypes.c_float, 'HALF': ctypes.c_short, 'LONG': ctypes.c_long, 'INT': ctypes.c_int, 'SHORT': ctypes.c_short, 'BOOL': ctypes.c_bool } Pointer = ctypes.POINTER(mapping[dtype]) pointer = ctypes.cast(address, Pointer) np_array = np.ctypeslib.as_array(pointer, tuple(nd4j_array.shape())) return np_array
27.980507
106
0.544448
5d4ce281f4ac42992169e4a43a604e5e249ccc55
592
py
Python
Python/usec_mode.py
hanayik/StimSync
f08ec01a36c47b00bfe4937b5a6eb2a60af0713d
[ "BSD-2-Clause" ]
6
2017-12-04T18:33:45.000Z
2021-08-04T02:07:21.000Z
source/Python/usec_mode.py
neurolabusc/StimSync
749908572bda3073b0911566d50fe92d74d3cdb7
[ "BSD-2-Clause" ]
null
null
null
source/Python/usec_mode.py
neurolabusc/StimSync
749908572bda3073b0911566d50fe92d74d3cdb7
[ "BSD-2-Clause" ]
3
2018-01-13T12:17:18.000Z
2021-08-01T06:43:10.000Z
import serial ser = serial.Serial('/dev/tty.usbmodem7071', 115200, timeout=10) ser.write("\xb1\xa3\xb5\xb5") #set usec mode 177,163,181,181 ser.flush() ser.flushInput() obs = ser.read(8) if len(obs) != 8: print('Error: no buttons presses detected') print 'Observed data (as hex): '+ obs.encode('hex') obsBin = [ord(c) for c in obs] usec = (obsBin[3] << 24)+ (obsBin[4] << 16)+ (obsBin[5] << 8)+obsBin[6] keys = (obsBin[1] << 8)+obsBin[2] print 'keys pressed %d at %d usec' % (keys, usec) ser.write("\xb1\xa3\xa9\xa9") #turn off oscilloscope: set keyboard mode 177,163,169,169 ser.close()
37
87
0.663851
5d4e94cca5bcc101399e2e8aec4db86507599854
4,839
py
Python
torchaudio/datasets/libritts.py
hahaxun/audio
87a1886ecfa83b398a2a9a09d9a94bd9dabc5cf5
[ "BSD-2-Clause" ]
1
2021-04-20T09:04:24.000Z
2021-04-20T09:04:24.000Z
torchaudio/datasets/libritts.py
hahaxun/audio
87a1886ecfa83b398a2a9a09d9a94bd9dabc5cf5
[ "BSD-2-Clause" ]
null
null
null
torchaudio/datasets/libritts.py
hahaxun/audio
87a1886ecfa83b398a2a9a09d9a94bd9dabc5cf5
[ "BSD-2-Clause" ]
null
null
null
import os from typing import Tuple import torchaudio from torch import Tensor from torch.utils.data import Dataset from torchaudio.datasets.utils import ( download_url, extract_archive, walk_files, ) URL = "train-clean-100" FOLDER_IN_ARCHIVE = "LibriTTS" _CHECKSUMS = { "http://www.openslr.org/60/dev-clean.tar.gz": "0c3076c1e5245bb3f0af7d82087ee207", "http://www.openslr.org/60/dev-other.tar.gz": "815555d8d75995782ac3ccd7f047213d", "http://www.openslr.org/60/test-clean.tar.gz": "7bed3bdb047c4c197f1ad3bc412db59f", "http://www.openslr.org/60/test-other.tar.gz": "ae3258249472a13b5abef2a816f733e4", "http://www.openslr.org/60/train-clean-100.tar.gz": "4a8c202b78fe1bc0c47916a98f3a2ea8", "http://www.openslr.org/60/train-clean-360.tar.gz": "a84ef10ddade5fd25df69596a2767b2d", "http://www.openslr.org/60/train-other-500.tar.gz": "7b181dd5ace343a5f38427999684aa6f", }
32.046358
98
0.619963
5d4ed462393daeadb0c9bc3293879acfa5af3ab3
2,164
py
Python
Others/Source/19/19.2/barh_test.py
silence0201/Learn-Python
662da7c0e74221cedb445ba17d5cb1cd3af41c86
[ "MIT" ]
1
2018-05-30T01:38:23.000Z
2018-05-30T01:38:23.000Z
Others/Source/19/19.2/barh_test.py
silence0201/Learn-Python
662da7c0e74221cedb445ba17d5cb1cd3af41c86
[ "MIT" ]
null
null
null
Others/Source/19/19.2/barh_test.py
silence0201/Learn-Python
662da7c0e74221cedb445ba17d5cb1cd3af41c86
[ "MIT" ]
null
null
null
# coding: utf-8 ######################################################################### # : <a href="http://www.crazyit.org">Java</a> # # author yeeku.H.lee [email protected] # # # # version 1.0 # # # # Copyright (C), 2001-2018, yeeku.H.Lee # # # # This program is protected by copyright laws. # # # # Program Name: # # # # <br>Date: # ######################################################################### import matplotlib.pyplot as plt import numpy as np # x_data = ['2011', '2012', '2013', '2014', '2015', '2016', '2017'] y_data = [58000, 60200, 63000, 71000, 84000, 90500, 107000] y_data2 = [52000, 54200, 51500,58300, 56800, 59500, 62700] bar_width=0.3 # Yrange(len(x_data), 012... plt.barh(y=range(len(x_data)), width=y_data, label='Java', color='steelblue', alpha=0.8, height=bar_width) # Ynp.arange(len(x_data))+bar_width, # bar_width1+bar_width2+bar_width... plt.barh(y=np.arange(len(x_data))+bar_width, width=y_data2, label='Android', color='indianred', alpha=0.8, height=bar_width) # , ha, va for y, x in enumerate(y_data): plt.text(x+5000, y-bar_width/2, '%s' % x, ha='center', va='bottom') for y, x in enumerate(y_data2): plt.text(x+5000, y+bar_width/2, '%s' % x, ha='center', va='bottom') # Y plt.yticks(np.arange(len(x_data))+bar_width/2, x_data) # plt.title("JavaAndroid") # plt.xlabel("") plt.ylabel("") # plt.legend() plt.show()
46.042553
74
0.420055
5d4ed8a99839b3110a2db17a408cf4dde65b3291
2,336
py
Python
03_docker_compose/03_c_simple_case_with_mongodb_orm/app/app.py
kendny/study_docker
edb376fb69319a78e05f60faa5dcc88d527602c4
[ "BSD-2-Clause" ]
2
2019-05-09T01:41:16.000Z
2022-01-06T01:06:07.000Z
03_docker_compose/03_c_simple_case_with_mongodb_orm/app/app.py
walkacross/docker_in_practice
da24da76b4fa3eabca5004abd59d7eef7a48988b
[ "BSD-2-Clause" ]
null
null
null
03_docker_compose/03_c_simple_case_with_mongodb_orm/app/app.py
walkacross/docker_in_practice
da24da76b4fa3eabca5004abd59d7eef7a48988b
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Dec 18 20:13:57 2018 @author: allen """ import random, os, json, datetime, time from flask import Flask, Response from pymongo import MongoClient from bson import json_util app = Flask(__name__) MONGO_URI = "mongodb://mongodb:27017" # "mongodb:<container_name>:27017" mongdb_client= MongoClient(MONGO_URI) random_numbers = mongdb_client.demo.random_numbers time.sleep(5) # hack for the mongoDb database to get running ###################### ## ########################## from pymodm.connection import connect from pymongo.write_concern import WriteConcern from pymodm import MongoModel, fields # Connect to MongoDB and call the connection "my-app". connect("mongodb://mongodb:27017/myDatabase", alias="my-app") if __name__ == "__main__": port = int(os.environ.get('PORT', 5000)) app.config['DEBUG'] = True app.run(host='0.0.0.0', port=port)
26.545455
110
0.630137
5d4f428d1c149bf1e2a1658ede1f6e9adcddbdd2
1,523
py
Python
goethe/eval/analogy_space.py
HPI-DeepLearning/wort2vek
bc91c2752a8516665d270c7a7a793ec484c970c4
[ "MIT" ]
4
2017-05-01T01:02:40.000Z
2022-02-03T16:14:19.000Z
goethe/eval/analogy_space.py
HPI-DeepLearning/wort2vek
bc91c2752a8516665d270c7a7a793ec484c970c4
[ "MIT" ]
6
2017-04-06T22:10:09.000Z
2017-04-06T22:10:57.000Z
goethe/eval/analogy_space.py
HPI-DeepLearning/wort2vek
bc91c2752a8516665d270c7a7a793ec484c970c4
[ "MIT" ]
null
null
null
#! /usr/bin/Python from gensim.models.keyedvectors import KeyedVectors from scipy import spatial from numpy import linalg import argparse import sys vector_file = sys.argv[1] if len(sys.argv) != 6: print('arguments wrong!') print(len(sys.argv)) exit() else: words = [sys.argv[2], sys.argv[3], sys.argv[4], sys.argv[5]] print(words) wvs = KeyedVectors.load_word2vec_format(vector_file, binary=True) print('WVs loaded.') for w in words: if w not in wvs.vocab: print('out of vocab!') exit() #print(wvs.most_similar(positive=[words[1], words[2]], negative=[words[0]], topn=3)) w1 = wvs[words[0]] w2 = wvs[words[1]] w3 = wvs[words[2]] w4 = wvs[words[3]] m1 = w1 / linalg.norm(w1) m2 = w2 / linalg.norm(w2) m3 = w3 / linalg.norm(w3) m4 = w4 / linalg.norm(w4) diff1 = w1 - w2 diff2 = w3 - w4 miff1 = m1 - m2 miff2 = m3 - m4 print('-------Word Space---------') print('to word-4: ', 1-spatial.distance.cosine(m2+m3-m1, m4)) print('to word-3: ', 1-spatial.distance.cosine(m1+m4-m2, m3)) print('to word-2: ', 1-spatial.distance.cosine(m4+m1-m3, m2)) print('to word-1: ', 1-spatial.distance.cosine(m2+m3-m4, m1)) print('------Analogy Space-------') print(' cosine: ', 1-spatial.distance.cosine(diff1, diff2)) print(' Euclidean: ', 1-linalg.norm(diff1-diff2)/(linalg.norm(diff1)+linalg.norm(diff2))) print(' M-cosine: ', 1-spatial.distance.cosine(miff1, miff2)) print('M-Euclidean: ', 1-linalg.norm(miff1-miff2)/(linalg.norm(miff1)+linalg.norm(miff2)))
27.690909
91
0.644123
5d5195b07f67a7785033de940e7003695bbf2ec4
2,497
py
Python
localgraphclustering/algorithms/eig2_nL.py
vishalbelsare/LocalGraphClustering
a6325350997932d548a876deb259c2387fc2c809
[ "MIT" ]
106
2017-09-06T04:47:02.000Z
2022-03-30T07:43:27.000Z
localgraphclustering/algorithms/eig2_nL.py
vishalbelsare/LocalGraphClustering
a6325350997932d548a876deb259c2387fc2c809
[ "MIT" ]
51
2017-09-06T02:22:09.000Z
2021-12-15T11:39:28.000Z
localgraphclustering/algorithms/eig2_nL.py
vishalbelsare/LocalGraphClustering
a6325350997932d548a876deb259c2387fc2c809
[ "MIT" ]
38
2017-09-04T21:45:13.000Z
2022-01-19T09:48:25.000Z
import numpy as np import scipy as sp import scipy.sparse.linalg as splinalg def eig2_nL(g, tol_eigs = 1.0e-6, normalize:bool = True, dim:int=1): """ DESCRIPTION ----------- Computes the eigenvector that corresponds to the second smallest eigenvalue of the normalized Laplacian matrix then it uses sweep cut to round the solution. PARAMETERS (mandatory) ---------------------- g: graph object PARAMETERS (optional) --------------------- dim: positive, int default == 1 The number of eigenvectors or dimensions to compute. tol_eigs: positive float, double default == 1.0e-6 Tolerance for computation of the eigenvector that corresponds to the second smallest eigenvalue of the normalized Laplacian matrix. normalize: bool, default == True True if we should return the eigenvectors of the generalized eigenvalue problem associated with the normalized Laplacian. This should be on unless you know what you are doing. RETURNS ------ p: Eigenvector or Eigenvector matrixthat corresponds to the second smallest eigenvalue of the normalized Laplacian matrix and larger eigenvectors if dim >= 0. """ n = g.adjacency_matrix.shape[0] D_sqrt_neg = sp.sparse.spdiags(g.dn_sqrt.transpose(), 0, n, n) L = sp.sparse.identity(n) - D_sqrt_neg.dot((g.adjacency_matrix.dot(D_sqrt_neg))) emb_eig_val, p = splinalg.eigsh(L, which='SM', k=1+dim, tol = tol_eigs) F = np.real(p[:,1:]) if normalize: F *= g.dn_sqrt[:,np.newaxis] return F, emb_eig_val """ Random walks and local cuts in graphs, Chung, LAA 2007 We just form the sub-matrix of the Laplacian and use the eigenvector there. """
33.293333
87
0.621946
5d527097e73751e96803cabcd187b0fd2d52470c
1,737
py
Python
build/common/hex2carray.py
isabella232/nanos-nonsecure-firmware
d1ce2e0e01a8ed6d8840a24308e16f6560a626aa
[ "Apache-2.0" ]
16
2018-03-20T11:52:29.000Z
2021-02-12T07:39:54.000Z
build/common/hex2carray.py
LedgerHQ/nanos-nonsecure-firmware
d1ce2e0e01a8ed6d8840a24308e16f6560a626aa
[ "Apache-2.0" ]
1
2022-03-06T09:56:16.000Z
2022-03-06T09:56:16.000Z
build/common/hex2carray.py
isabella232/nanos-nonsecure-firmware
d1ce2e0e01a8ed6d8840a24308e16f6560a626aa
[ "Apache-2.0" ]
7
2017-08-24T00:42:09.000Z
2022-03-06T09:51:51.000Z
""" ******************************************************************************* * Ledger Blue * (c) 2016 Ledger * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. ******************************************************************************** """ from ledgerblue.hexParser import IntelHexParser import argparse parser = argparse.ArgumentParser() parser.add_argument("--hex", help="Hex file to be converted as a C array") args = parser.parse_args() if args.hex == None: raise Exception("Missing hex filename to sign") parser = IntelHexParser(args.hex) for a in parser.getAreas(): if (len(a.data) > 0x10000): raise BaseException("data must be splitted in chunks of 64k") print "0x" + hexU8(a.start >> 24) + ", 0x" + hexU8(a.start >> 16) + ", 0x" + hexU8(a.start >> 8) + ", 0x" + hexU8(a.start) + ", " print "0x" + hexU8(len(a.data) >> 24) + ", 0x" + hexU8(len(a.data) >> 16) + ", 0x" + hexU8(len(a.data) >> 8) + ", 0x" + hexU8(len(a.data)) + ", " # low @ to high @ offset = 0 while offset < len(a.data): string = "" for i in range(8): if offset+i < len(a.data): string += " 0x" + hexU8(a.data[offset+i]) + "," print string offset+=8
31.581818
146
0.599885
5d52775ef423ec088ebd9b5618d6a0b7639f157e
2,418
py
Python
setup.py
xames3/vdoxa
8fa945449bb34447ded0c421214c0252ff523d4a
[ "Apache-2.0" ]
1
2020-02-04T08:18:54.000Z
2020-02-04T08:18:54.000Z
setup.py
xames3/vdoxa
8fa945449bb34447ded0c421214c0252ff523d4a
[ "Apache-2.0" ]
null
null
null
setup.py
xames3/vdoxa
8fa945449bb34447ded0c421214c0252ff523d4a
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 XAMES3. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. # # ====================================================================== """ vdoXA is an open-source python package for trimming the videos. It is built as a subsystem for < XXXXX Not to be named XXXXX > project. Originally inspired by my colleague's work, I thought of improving the concept and build a tool to simplify the process. I hope it comes with strong support for continuous updates, reliable functions and overall ease of use. Read complete documentation at: <https://github.com/xames3/vdoxa>. """ from setuptools import find_packages, setup from vdoxa.vars import dev doclines = __doc__.split('\n') def use_readme() -> str: """Use `README.md` for parsing long description.""" with open('README.md') as file: return file.read() with open('requirements.txt', 'r') as requirements: required_packages = [package.rstrip() for package in requirements] setup( name=dev.PROJECT_NAME, version=dev.PROJECT_VERSION, url=dev.PROJECT_LINK, download_url=dev.PROJECT_LINK, author=dev.AUTHOR, author_email=dev.AUTHOR_EMAIL, maintainer=dev.AUTHOR, maintainer_email=dev.AUTHOR_EMAIL, classifiers=[ 'Intended Audience :: Developers', 'Intended Audience :: End Users/Desktop', 'Intended Audience :: Information Technology', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: Apache Software License', 'Natural Language :: English', ], license=dev.PROJECT_LICENSE, description=f'{doclines[1]}', long_description=use_readme(), long_description_content_type='text/markdown', keywords='opencv2 cv2 moviepy', zip_safe=False, install_requires=required_packages, python_requires='~=3.6', include_package_data=True, packages=find_packages(), entry_points={ 'console_scripts': [ 'vdoxa = vdoxa.parser:main', ], } )
31
72
0.715054
5d52a5f4ab272695a4c951a2d0a2e0909bf0ed0b
1,413
py
Python
application/modules/login.py
BaggerFast/Simple_votings
843769fa6fd2c04feb542e6b301b7b4810260d4e
[ "MIT" ]
null
null
null
application/modules/login.py
BaggerFast/Simple_votings
843769fa6fd2c04feb542e6b301b7b4810260d4e
[ "MIT" ]
null
null
null
application/modules/login.py
BaggerFast/Simple_votings
843769fa6fd2c04feb542e6b301b7b4810260d4e
[ "MIT" ]
null
null
null
from django.contrib import messages from django.contrib.auth import login, authenticate from django.shortcuts import render, redirect from django.urls import reverse from django.views import View from application.forms import AuthenticateForm from application.views import get_navbar, Page
36.230769
95
0.640481
5d52ada1ae418220d17ef038d3cc8e85cc6253d2
2,938
py
Python
little_questions/utils/log.py
HelloChatterbox/little_questions
04bee86244b42fdaed9f8d010c2f83037ad753f6
[ "MIT" ]
null
null
null
little_questions/utils/log.py
HelloChatterbox/little_questions
04bee86244b42fdaed9f8d010c2f83037ad753f6
[ "MIT" ]
null
null
null
little_questions/utils/log.py
HelloChatterbox/little_questions
04bee86244b42fdaed9f8d010c2f83037ad753f6
[ "MIT" ]
null
null
null
# Copyright 2017 Mycroft AI Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import inspect import logging import sys
28.803922
74
0.596664
5d53556c82d1a27255c1497656b5efc347cde76d
1,035
py
Python
alipay/aop/api/response/AlipayOpenMiniVersionAuditApplyResponse.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
null
null
null
alipay/aop/api/response/AlipayOpenMiniVersionAuditApplyResponse.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
null
null
null
alipay/aop/api/response/AlipayOpenMiniVersionAuditApplyResponse.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse
28.75
112
0.699517
5d53e848dc1be11f4d81bb7ffe655fc1c2f327c3
1,923
py
Python
cvstudio/view/widgets/loading_dialog/loading_dialog.py
haruiz/PytorchCvStudio
ccf79dd0cc0d61f3fd01b1b5d96f7cda7b681eef
[ "MIT" ]
32
2019-10-31T03:10:52.000Z
2020-12-23T11:50:53.000Z
cvstudio/view/widgets/loading_dialog/loading_dialog.py
haruiz/CvStudio
ccf79dd0cc0d61f3fd01b1b5d96f7cda7b681eef
[ "MIT" ]
19
2019-10-31T15:06:05.000Z
2020-06-15T02:21:55.000Z
cvstudio/view/widgets/loading_dialog/loading_dialog.py
haruiz/PytorchCvStudio
ccf79dd0cc0d61f3fd01b1b5d96f7cda7b681eef
[ "MIT" ]
8
2019-10-31T03:32:50.000Z
2020-07-17T20:47:37.000Z
import os from PyQt5 import QtCore from PyQt5.QtCore import QRect, QPoint from PyQt5.QtGui import QMovie, QCloseEvent, QShowEvent from PyQt5.QtWidgets import QDialog, QLabel, QVBoxLayout, QApplication, QWidget
36.283019
95
0.637546
5d546fd247cbdfbb018dec6e3f4e3273ffdefdb8
3,115
py
Python
pysnmp-with-texts/MWORKS-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
8
2019-05-09T17:04:00.000Z
2021-06-09T06:50:51.000Z
pysnmp-with-texts/MWORKS-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
4
2019-05-31T16:42:59.000Z
2020-01-31T21:57:17.000Z
pysnmp-with-texts/MWORKS-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
10
2019-04-30T05:51:36.000Z
2022-02-16T03:33:41.000Z
# # PySNMP MIB module MWORKS-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/MWORKS-MIB # Produced by pysmi-0.3.4 at Wed May 1 14:16:04 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # ObjectIdentifier, OctetString, Integer = mibBuilder.importSymbols("ASN1", "ObjectIdentifier", "OctetString", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueRangeConstraint, SingleValueConstraint, ConstraintsUnion, ValueSizeConstraint, ConstraintsIntersection = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueRangeConstraint", "SingleValueConstraint", "ConstraintsUnion", "ValueSizeConstraint", "ConstraintsIntersection") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") Gauge32, Unsigned32, ObjectIdentity, IpAddress, Bits, MibIdentifier, Integer32, enterprises, ModuleIdentity, TimeTicks, Counter32, NotificationType, iso, Counter64, MibScalar, MibTable, MibTableRow, MibTableColumn = mibBuilder.importSymbols("SNMPv2-SMI", "Gauge32", "Unsigned32", "ObjectIdentity", "IpAddress", "Bits", "MibIdentifier", "Integer32", "enterprises", "ModuleIdentity", "TimeTicks", "Counter32", "NotificationType", "iso", "Counter64", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn") TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString") tecElite = MibIdentifier((1, 3, 6, 1, 4, 1, 217)) meterWorks = MibIdentifier((1, 3, 6, 1, 4, 1, 217, 16)) mw501 = MibIdentifier((1, 3, 6, 1, 4, 1, 217, 16, 1)) mwMem = MibIdentifier((1, 3, 6, 1, 4, 1, 217, 16, 1, 1)) mwHeap = MibIdentifier((1, 3, 6, 1, 4, 1, 217, 16, 1, 2)) mwMemCeiling = MibScalar((1, 3, 6, 1, 4, 1, 217, 16, 1, 1, 1), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: mwMemCeiling.setStatus('mandatory') if mibBuilder.loadTexts: mwMemCeiling.setDescription('bytes of memory the agent memory manager will allow the agent to use.') mwMemUsed = MibScalar((1, 3, 6, 1, 4, 1, 217, 16, 1, 1, 2), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: mwMemUsed.setStatus('mandatory') if mibBuilder.loadTexts: mwMemUsed.setDescription("bytes of memory that meterworks has malloc'ed. some of this may be in free pools.") mwHeapTotal = MibScalar((1, 3, 6, 1, 4, 1, 217, 16, 1, 2, 1), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: mwHeapTotal.setStatus('mandatory') if mibBuilder.loadTexts: mwHeapTotal.setDescription('bytes of memory given to the heap manager.') mwHeapUsed = MibScalar((1, 3, 6, 1, 4, 1, 217, 16, 1, 2, 2), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: mwHeapUsed.setStatus('mandatory') if mibBuilder.loadTexts: mwHeapUsed.setDescription('bytes of available memory in the heap.') mibBuilder.exportSymbols("MWORKS-MIB", mwHeap=mwHeap, mwHeapUsed=mwHeapUsed, mwMemCeiling=mwMemCeiling, meterWorks=meterWorks, tecElite=tecElite, mwMem=mwMem, mw501=mw501, mwHeapTotal=mwHeapTotal, mwMemUsed=mwMemUsed)
97.34375
505
0.759551
5d54ea522a32fa91aca889c9606f036f2de763c3
3,935
py
Python
Assets/Editor/PostprocessBuildPlayer_MpireNxusMeasurementPostBuildiOS.py
mpire-nxus/nxus_unity_sdk
34a1ebfc588c47c1c71fae11f29e82c1172c6dc2
[ "MIT" ]
1
2018-03-13T02:44:15.000Z
2018-03-13T02:44:15.000Z
Assets/Editor/PostprocessBuildPlayer_MpireNxusMeasurementPostBuildiOS.py
mpire-nxus/nxus_unity_sdk
34a1ebfc588c47c1c71fae11f29e82c1172c6dc2
[ "MIT" ]
null
null
null
Assets/Editor/PostprocessBuildPlayer_MpireNxusMeasurementPostBuildiOS.py
mpire-nxus/nxus_unity_sdk
34a1ebfc588c47c1c71fae11f29e82c1172c6dc2
[ "MIT" ]
null
null
null
#!/usr/bin/env python import sys import re from subprocess import Popen, PIPE import argparse from pbxproj import XcodeProject, TreeType from pbxproj import FileOptions if __name__ == "__main__": main()
38.578431
164
0.706226
5d553e6733970b4280761ad4ec3ddb284ae1146d
1,382
py
Python
vars_in_python.py
klyusba/python-quiz
9f469417458f8ba6b21f9507cc860ca4547ea67b
[ "MIT" ]
null
null
null
vars_in_python.py
klyusba/python-quiz
9f469417458f8ba6b21f9507cc860ca4547ea67b
[ "MIT" ]
null
null
null
vars_in_python.py
klyusba/python-quiz
9f469417458f8ba6b21f9507cc860ca4547ea67b
[ "MIT" ]
null
null
null
# == 1 == bar = [1, 2] print(foo(bar)) # == 2 == bar = [1, 2] print(foo(bar)) # == 3 == bar = [1, 2] print(foo()) # == 4 == bar = [1, 2] print(foo(bar), bar) # == 5 == bar = [1, 2] print(foo(bar), bar) # == 6 == try: bar = 1 / 0 print(bar) except ZeroDivisionError as bar: print(bar) print(bar) # == 7 == bar = [1, 2] print(list(bar for bar in bar)) print(bar) # == 8 == bar = [1, 2] f = lambda: sum(bar) print(f()) bar = [1, 2, 3, ] print(f()) # == 9 == bar = [1, 2] f = foo(bar) print(f()) bar = [1, 2, 3, ] print(f()) # == 10 == bar = [1, 2] foo = [] for i in bar: foo.append(lambda: i) print([f() for f in foo]) # == 11 == bar = [1, 2] foo = [ lambda: i for i in bar ] print(list(f() for f in foo)) # == 12 == bar = [1, 2] foo = [ lambda: i for i in bar ] print(list(f() for f in foo)) bar = [1, 2, 3, ] print(list(f() for f in foo)) bar[:] = [1, 2, 3, ] print(list(f() for f in foo)) # == 13 == bar = [1, 2] foo = [ lambda i=i: i for i in bar ] print(list(f() for f in foo))
11.145161
32
0.469609
5d55a06354d86f35af5fb38858161328b7581a23
10,786
py
Python
hack/dev/gh-replay-events.py
sm43/pipelines-as-code
bd21e48c96ab128d533701ecd1a2df7a0d136d65
[ "Apache-2.0" ]
null
null
null
hack/dev/gh-replay-events.py
sm43/pipelines-as-code
bd21e48c96ab128d533701ecd1a2df7a0d136d65
[ "Apache-2.0" ]
null
null
null
hack/dev/gh-replay-events.py
sm43/pipelines-as-code
bd21e48c96ab128d533701ecd1a2df7a0d136d65
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Author: Chmouel Boudjnah <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # See README.md for documentation import typing import argparse import base64 import hashlib import hmac import json import os import subprocess import sys import time import requests import ghapp_token NAMESPACE = "pipelines-as-code" SECRET_NAME = "pipelines-as-code-secret" ELNAME = "pipelines-as-code" EXPIRE_MINUTES_AS_SECONDS = ( int(os.environ.get("GITHUBAPP_TOKEN_EXPIRATION_MINUTES", 10)) * 60 ) if __name__ == "__main__": main(parse_args())
30.555241
113
0.623215
5d579c372853402ecfd7e953a09a9d04c6d7c725
114
py
Python
nintendeals/noa/api/__init__.py
Pooroomoo/nintendeals
993f4d159ff405ed82cd2bb023c7b75d921d0acb
[ "MIT" ]
37
2020-04-30T13:48:02.000Z
2022-03-09T04:55:54.000Z
nintendeals/noa/api/__init__.py
Pooroomoo/nintendeals
993f4d159ff405ed82cd2bb023c7b75d921d0acb
[ "MIT" ]
4
2020-05-09T03:17:44.000Z
2021-04-28T00:53:55.000Z
nintendeals/noa/api/__init__.py
Pooroomoo/nintendeals
993f4d159ff405ed82cd2bb023c7b75d921d0acb
[ "MIT" ]
5
2020-07-22T06:42:27.000Z
2022-02-07T22:35:57.000Z
from .algolia import search_by_nsuid from .algolia import search_by_platform from .algolia import search_by_query
28.5
39
0.868421
5d58e721508a643ec9487a7f661ca1a66cd5a971
3,659
py
Python
076_Minimum_Window_Substring.py
joshlyman/Josh-LeetCode
cc9e2cc406d2cbd5a90ee579efbcaeffb842c5ed
[ "MIT" ]
null
null
null
076_Minimum_Window_Substring.py
joshlyman/Josh-LeetCode
cc9e2cc406d2cbd5a90ee579efbcaeffb842c5ed
[ "MIT" ]
null
null
null
076_Minimum_Window_Substring.py
joshlyman/Josh-LeetCode
cc9e2cc406d2cbd5a90ee579efbcaeffb842c5ed
[ "MIT" ]
null
null
null
# Other solution # V2 # Time: O(|S|+|T|) # Space:O(|S|+|T|) # Refer from: # https://leetcode.com/problems/minimum-window-substring/solution/ # Sliding Window # We start with two pointers, leftleft and rightright initially pointing to the first element of the string S. # We use the rightright pointer to expand the window until we get a desirable window i.e. a window that contains all of the characters of T. # Once we have a window with all the characters, we can move the left pointer ahead one by one. If the window is still a desirable one we keep on updating the minimum window size. # If the window is not desirable any more, we repeat step 2 onwards. # The current window is s[i:j] and the result window is s[I:J]. In need[c] I store how many times I # need character c (can be negative) and missing tells how many characters are still missing. # In the loop, first add the new character to the window. Then, if nothing is missing, # remove as much as possible from the window start and then update the result. # Time: O(|S|+|T|) # Space:O(|S|+|T|) # Optimized Sliding Window # A small improvement to the above approach can reduce the time complexity of the algorithm to O(2*filtered_S+S+T), # where filtered(S) is the string formed from S by removing all the elements not present in T
36.959596
179
0.52774
5d5c6de0926f1a98ed21db39c4944a17b7f61725
823
py
Python
home/migrations/0002_auto_20171017_0412.py
Taywee/amberherbert.com
6bf384d7cdf18dc613252fe4dde38545150eabbc
[ "MIT" ]
null
null
null
home/migrations/0002_auto_20171017_0412.py
Taywee/amberherbert.com
6bf384d7cdf18dc613252fe4dde38545150eabbc
[ "MIT" ]
2
2017-10-15T20:36:59.000Z
2017-10-17T05:27:49.000Z
home/migrations/0002_auto_20171017_0412.py
Taywee/amberherbert.com
6bf384d7cdf18dc613252fe4dde38545150eabbc
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.5 on 2017-10-17 04:12 from __future__ import unicode_literals from django.db import migrations import wagtail.core.blocks import wagtail.core.fields
35.782609
384
0.684083
5d5caf5c5d1415de34379e45359c322cac37e6ff
2,766
py
Python
lib/adv_model.py
chawins/entangle-rep
3e9e0d6e7536b0de0e35d7f8717f2ccc8e887759
[ "MIT" ]
15
2019-06-30T12:30:17.000Z
2021-12-07T20:20:36.000Z
lib/adv_model.py
chawins/entangle-rep
3e9e0d6e7536b0de0e35d7f8717f2ccc8e887759
[ "MIT" ]
2
2020-06-11T10:10:52.000Z
2021-12-21T08:50:33.000Z
lib/adv_model.py
chawins/entangle-rep
3e9e0d6e7536b0de0e35d7f8717f2ccc8e887759
[ "MIT" ]
9
2019-07-09T14:52:30.000Z
2020-10-27T19:18:34.000Z
import torch import torch.nn as nn import torch.nn.functional as F
35.012658
78
0.578453
5d5d633b271390741583d9b310e4391f6dfe899f
4,673
py
Python
fs_image/rpm/storage/tests/storage_base_test.py
singhaditya28/fs_image
3d122da48eab8b26e5add6754cc1f91296139c58
[ "MIT" ]
null
null
null
fs_image/rpm/storage/tests/storage_base_test.py
singhaditya28/fs_image
3d122da48eab8b26e5add6754cc1f91296139c58
[ "MIT" ]
null
null
null
fs_image/rpm/storage/tests/storage_base_test.py
singhaditya28/fs_image
3d122da48eab8b26e5add6754cc1f91296139c58
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest from unittest.mock import patch, MagicMock from typing import List, Tuple from .. import Storage # Module import to ensure we get plugins
41.723214
79
0.558742
5d5d8bde571d6e8d8f2723242cd35348a71ff40f
8,457
py
Python
sdk/python/pulumi_gcp/kms/get_kms_crypto_key_version.py
sisisin/pulumi-gcp
af6681d70ea457843409110c1324817fe55f68ad
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_gcp/kms/get_kms_crypto_key_version.py
sisisin/pulumi-gcp
af6681d70ea457843409110c1324817fe55f68ad
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_gcp/kms/get_kms_crypto_key_version.py
sisisin/pulumi-gcp
af6681d70ea457843409110c1324817fe55f68ad
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs __all__ = [ 'GetKMSCryptoKeyVersionResult', 'AwaitableGetKMSCryptoKeyVersionResult', 'get_kms_crypto_key_version', 'get_kms_crypto_key_version_output', ] def get_kms_crypto_key_version(crypto_key: Optional[str] = None, version: Optional[int] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetKMSCryptoKeyVersionResult: """ Provides access to a Google Cloud Platform KMS CryptoKeyVersion. For more information see [the official documentation](https://cloud.google.com/kms/docs/object-hierarchy#key_version) and [API](https://cloud.google.com/kms/docs/reference/rest/v1/projects.locations.keyRings.cryptoKeys.cryptoKeyVersions). A CryptoKeyVersion represents an individual cryptographic key, and the associated key material. ## Example Usage ```python import pulumi import pulumi_gcp as gcp my_key_ring = gcp.kms.get_kms_key_ring(name="my-key-ring", location="us-central1") my_crypto_key = gcp.kms.get_kms_crypto_key(name="my-crypto-key", key_ring=my_key_ring.id) my_crypto_key_version = gcp.kms.get_kms_crypto_key_version(crypto_key=data["google_kms_key"]["my_key"]["id"]) ``` :param str crypto_key: The `self_link` of the Google Cloud Platform CryptoKey to which the key version belongs. This is also the `id` field of the `kms.CryptoKey` resource/datasource. :param int version: The version number for this CryptoKeyVersion. Defaults to `1`. """ __args__ = dict() __args__['cryptoKey'] = crypto_key __args__['version'] = version if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('gcp:kms/getKMSCryptoKeyVersion:getKMSCryptoKeyVersion', __args__, opts=opts, typ=GetKMSCryptoKeyVersionResult).value return AwaitableGetKMSCryptoKeyVersionResult( algorithm=__ret__.algorithm, crypto_key=__ret__.crypto_key, id=__ret__.id, name=__ret__.name, protection_level=__ret__.protection_level, public_keys=__ret__.public_keys, state=__ret__.state, version=__ret__.version)
41.253659
247
0.684522
5d5e98fd28e904d5e1f509a5b35e66ec3047cc56
353
py
Python
lecture11/subsets.py
nd-cse-30872-fa20/cse-30872-fa20-examples
7a991a0499e03bf91ac8ba40c99245d5d926e20c
[ "MIT" ]
null
null
null
lecture11/subsets.py
nd-cse-30872-fa20/cse-30872-fa20-examples
7a991a0499e03bf91ac8ba40c99245d5d926e20c
[ "MIT" ]
null
null
null
lecture11/subsets.py
nd-cse-30872-fa20/cse-30872-fa20-examples
7a991a0499e03bf91ac8ba40c99245d5d926e20c
[ "MIT" ]
2
2020-08-10T15:05:39.000Z
2020-08-12T15:16:01.000Z
#!/usr/bin/env python3 import itertools # Constants NUMBERS = range(0, 10) # Main Execution if __name__ == '__main__': main()
16.045455
62
0.580737
5d5ec924b9a968b7509ed5badaef99e8de842bde
21,520
py
Python
src/toil/batchSystems/abstractBatchSystem.py
Hexotical/toil
312b6e1f221ee7f7f187dd6dbfce1aecffd00e09
[ "Apache-2.0" ]
348
2018-07-08T03:38:28.000Z
2022-03-11T18:57:44.000Z
src/toil/batchSystems/abstractBatchSystem.py
Hexotical/toil
312b6e1f221ee7f7f187dd6dbfce1aecffd00e09
[ "Apache-2.0" ]
1,700
2018-07-05T18:28:49.000Z
2022-03-31T14:09:04.000Z
src/toil/batchSystems/abstractBatchSystem.py
Hexotical/toil
312b6e1f221ee7f7f187dd6dbfce1aecffd00e09
[ "Apache-2.0" ]
126
2018-07-11T18:59:29.000Z
2022-01-24T03:14:02.000Z
# Copyright (C) 2015-2021 Regents of the University of California # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import enum import logging import os import shutil from abc import ABC, abstractmethod from argparse import ArgumentParser, _ArgumentGroup from contextlib import contextmanager from typing import (Any, Callable, ContextManager, Dict, Iterator, List, Optional, Tuple, Type, TypeVar, Union, NamedTuple) from toil.common import Toil, cacheDirName, Config from toil.deferred import DeferredFunctionManager from toil.fileStores.abstractFileStore import AbstractFileStore from toil.job import JobDescription from toil.resource import Resource logger = logging.getLogger(__name__) # Value to use as exitStatus in UpdatedBatchJobInfo.exitStatus when status is not available. EXIT_STATUS_UNAVAILABLE_VALUE = 255 # Information required for worker cleanup on shutdown of the batch system. # FIXME: Return value should be a set (then also fix the tests) def getSchedulingStatusMessage(self) -> Optional[str]: """ Get a log message fragment for the user about anything that might be going wrong in the batch system, if available. If no useful message is available, return None. This can be used to report what resource is the limiting factor when scheduling jobs, for example. If the leader thinks the workflow is stuck, the message can be displayed to the user to help them diagnose why it might be stuck. :return: User-directed message about scheduling state. """ # Default implementation returns None. # Override to provide scheduling status information. return None def setEnv(self, name: str, value: Optional[str] = None) -> None: """ Set an environment variable for the worker process before it is launched. The worker process will typically inherit the environment of the machine it is running on but this method makes it possible to override specific variables in that inherited environment before the worker is launched. Note that this mechanism is different to the one used by the worker internally to set up the environment of a job. A call to this method affects all jobs issued after this method returns. Note to implementors: This means that you would typically need to copy the variables before enqueuing a job. If no value is provided it will be looked up from the current environment. """ raise NotImplementedError() OptionType = TypeVar('OptionType') def getWorkerContexts(self) -> List[ContextManager[Any]]: """ Get a list of picklable context manager objects to wrap worker work in, in order. Can be used to ask the Toil worker to do things in-process (such as configuring environment variables, hot-deploying user scripts, or cleaning up a node) that would otherwise require a wrapping "executor" process. """ return [] class BatchSystemSupport(AbstractBatchSystem): """ Partial implementation of AbstractBatchSystem, support methods. """ def __init__(self, config: Config, maxCores: float, maxMemory: int, maxDisk: int) -> None: """ Initializes initial state of the object :param toil.common.Config config: object is setup by the toilSetup script and has configuration parameters for the jobtree. You can add code to that script to get parameters for your batch system. :param float maxCores: the maximum number of cores the batch system can request for any one job :param int maxMemory: the maximum amount of memory the batch system can request for any one job, in bytes :param int maxDisk: the maximum amount of disk space the batch system can request for any one job, in bytes """ super().__init__() self.config = config self.maxCores = maxCores self.maxMemory = maxMemory self.maxDisk = maxDisk self.environment: Dict[str, str] = {} self.workerCleanupInfo = WorkerCleanupInfo(workDir=self.config.workDir, workflowID=self.config.workflowID, cleanWorkDir=self.config.cleanWorkDir) def checkResourceRequest(self, memory: int, cores: float, disk: int, job_name: str = '', detail: str = '') -> None: """ Check resource request is not greater than that available or allowed. :param int memory: amount of memory being requested, in bytes :param float cores: number of cores being requested :param int disk: amount of disk space being requested, in bytes :param str job_name: Name of the job being checked, for generating a useful error report. :param str detail: Batch-system-specific message to include in the error. :raise InsufficientSystemResources: raised when a resource is requested in an amount greater than allowed """ batch_system = self.__class__.__name__ or 'this batch system' for resource, requested, available in [('cores', cores, self.maxCores), ('memory', memory, self.maxMemory), ('disk', disk, self.maxDisk)]: assert requested is not None if requested > available: unit = 'bytes of ' if resource in ('disk', 'memory') else '' R = f'The job {job_name} is r' if job_name else 'R' if resource == 'disk': msg = (f'{R}equesting {requested} {unit}{resource} for temporary space, ' f'more than the maximum of {available} {unit}{resource} of free space on ' f'{self.config.workDir} that {batch_system} was configured with, or enforced ' f'by --max{resource.capitalize()}. Try setting/changing the toil option ' f'"--workDir" or changing the base temporary directory by setting TMPDIR.') else: msg = (f'{R}equesting {requested} {unit}{resource}, more than the maximum of ' f'{available} {unit}{resource} that {batch_system} was configured with, ' f'or enforced by --max{resource.capitalize()}.') if detail: msg += detail raise InsufficientSystemResources(msg) def setEnv(self, name: str, value: Optional[str] = None) -> None: """ Set an environment variable for the worker process before it is launched. The worker process will typically inherit the environment of the machine it is running on but this method makes it possible to override specific variables in that inherited environment before the worker is launched. Note that this mechanism is different to the one used by the worker internally to set up the environment of a job. A call to this method affects all jobs issued after this method returns. Note to implementors: This means that you would typically need to copy the variables before enqueuing a job. If no value is provided it will be looked up from the current environment. :param str name: the environment variable to be set on the worker. :param str value: if given, the environment variable given by name will be set to this value. if None, the variable's current value will be used as the value on the worker :raise RuntimeError: if value is None and the name cannot be found in the environment """ if value is None: try: value = os.environ[name] except KeyError: raise RuntimeError(f"{name} does not exist in current environment") self.environment[name] = value def formatStdOutErrPath(self, toil_job_id: int, cluster_job_id: str, std: str) -> str: """ Format path for batch system standard output/error and other files generated by the batch system itself. Files will be written to the Toil work directory (which may be on a shared file system) with names containing both the Toil and batch system job IDs, for ease of debugging job failures. :param: int toil_job_id : The unique id that Toil gives a job. :param: cluster_job_id : What the cluster, for example, GridEngine, uses as its internal job id. :param: string std : The provenance of the stream (for example: 'err' for 'stderr' or 'out' for 'stdout') :rtype: string : Formatted filename; however if self.config.noStdOutErr is true, returns '/dev/null' or equivalent. """ if self.config.noStdOutErr: return os.devnull fileName: str = f'toil_{self.config.workflowID}.{toil_job_id}.{cluster_job_id}.{std}.log' workDir: str = Toil.getToilWorkDir(self.config.workDir) return os.path.join(workDir, fileName)
42.613861
188
0.660037
5d6066cbcb225097d2a844447d53060bd3350b74
1,969
py
Python
demo/other_demo.py
Heartfilia/lite_tools
b3432ba7cb60502ac64d45e23022e20555fb1588
[ "MIT" ]
5
2021-05-10T07:35:47.000Z
2022-03-07T01:31:12.000Z
demo/other_demo.py
Heartfilia/lite_tools
b3432ba7cb60502ac64d45e23022e20555fb1588
[ "MIT" ]
null
null
null
demo/other_demo.py
Heartfilia/lite_tools
b3432ba7cb60502ac64d45e23022e20555fb1588
[ "MIT" ]
1
2022-03-03T03:23:26.000Z
2022-03-03T03:23:26.000Z
# -*- coding: utf-8 -*- from lite_tools import get_md5, get_sha, get_sha3, get_b64e, get_b64d # about hashlib ==> get_md5, get_sha, get_sha3 || default mode=256 s = "test_information" # print(get_md5(s)) # 5414ffd88fcb58417e64ecec51bb3a6b print(get_md5(s, upper=True)) # 5414FFD88FCB58417E64ECEC51BB3A6B print(get_md5(s, to_bin=True)) # b'T\x14\xff\xd8\x8f\xcbXA~d\xec\xecQ\xbb:k' # print(get_sha(s)) # d09869fdf901465c8566f0e2debfa3f6a3d878a8157e199c7c4c6dd755617f33 print(get_sha(s, to_bin=True)) # b'\xd0\x98i\xfd\xf9\x01F\\\x85f\xf0\xe2\xde\xbf\xa3\xf6\xa3\xd8x\xa8\x15~\x19\x9c|Lm\xd7Ua\x7f3' print(get_sha(s, mode=1)) # ada5dfdf0c9a76a84958310b838a70b6fd6d01f6 # default mode=256 // mode: 1 224 256 384 512 print(get_sha3(s)) # 9c539ca35c6719f546e67837ff37fe7791e53fe40715cd4da0167c78c9adc2e8 print(get_sha3(s, to_bin=True)) # b'\x9cS\x9c\xa3\\g\x19\xf5F\xe6x7\xff7\xfew\x91\xe5?\xe4\x07\x15\xcdM\xa0\x16|x\xc9\xad\xc2\xe8' print(get_sha3(s, mode=1)) # return "" // SUPPORT: sha3_224 sha3_256 sha3_384 sha3_512// only need inputting: 224 256 384 512 # default mode=256 // mode: 224 256 384 512 print(get_sha3(s, mode=384)) # 95c09e20a139843eae877a64cd95d6a629b3c9ff383b5460557aab2612682d4228d05fe41606a79acf5ae1c4de35160c # about base64 ==> get_b64e, get_b64d res_b64_encode = get_b64e(s) print(res_b64_encode) # dGVzdF9pbmZvcm1hdGlvbg== res_b64_bin = get_b64e(s, to_bin=True) print(res_b64_bin) # b'dGVzdF9pbmZvcm1hdGlvbg==' res_b32_encode = get_b64e(s, mode=32) # default mode=64 // mode: 16 32 64 85 print(res_b32_encode) # ORSXG5C7NFXGM33SNVQXI2LPNY====== res_b64_decode = get_b64d(res_b64_encode) print(res_b64_decode) # test_information res_b32_decode = get_b64d(res_b32_encode, mode=32) # default mode=64 // mode: 16 32 64 85 print(res_b32_decode) # test_information
57.911765
176
0.718639
5d61828a9a51cb5ce1865c213ffd2c5903a688a4
47
py
Python
prereise/gather/solardata/tests/__init__.py
terrywqf/PreREISE
f8052dd37091eaa15024725d5c92a3ef0ee311ee
[ "MIT" ]
null
null
null
prereise/gather/solardata/tests/__init__.py
terrywqf/PreREISE
f8052dd37091eaa15024725d5c92a3ef0ee311ee
[ "MIT" ]
null
null
null
prereise/gather/solardata/tests/__init__.py
terrywqf/PreREISE
f8052dd37091eaa15024725d5c92a3ef0ee311ee
[ "MIT" ]
null
null
null
__all__ = ["mock_pv_info", "test_pv_tracking"]
23.5
46
0.744681
5d61d078db118ba78d2af9ae995c1fa84aa2f450
2,306
py
Python
arfit/cp_utils.py
farr/arfit
7ff6def331ef98f43f623da2d9867d1ac967448b
[ "MIT" ]
5
2015-04-29T21:46:52.000Z
2021-05-13T04:59:23.000Z
arfit/cp_utils.py
afcarl/arfit
7ff6def331ef98f43f623da2d9867d1ac967448b
[ "MIT" ]
null
null
null
arfit/cp_utils.py
afcarl/arfit
7ff6def331ef98f43f623da2d9867d1ac967448b
[ "MIT" ]
2
2015-12-03T12:08:32.000Z
2018-05-26T16:20:31.000Z
import carmcmc as cm from gatspy.periodic import LombScargleFast import matplotlib.pyplot as plt import numpy as np
37.193548
131
0.691674
5d65143322eb65bf3b9638c414999e21eb0323db
1,319
py
Python
pdiffcopy/hashing.py
xolox/python-pdiffcopy
ed765af92c0c0823818d545e61384753912a5725
[ "MIT" ]
5
2020-03-07T00:01:24.000Z
2020-12-03T03:44:26.000Z
pdiffcopy/hashing.py
xolox/python-pdiffcopy
ed765af92c0c0823818d545e61384753912a5725
[ "MIT" ]
null
null
null
pdiffcopy/hashing.py
xolox/python-pdiffcopy
ed765af92c0c0823818d545e61384753912a5725
[ "MIT" ]
null
null
null
# Fast large file synchronization inspired by rsync. # # Author: Peter Odding <[email protected]> # Last Change: March 6, 2020 # URL: https://pdiffcopy.readthedocs.io """Parallel hashing of files using :mod:`multiprocessing` and :mod:`pdiffcopy.mp`.""" # Standard library modules. import functools import hashlib import os # External dependencies. from six.moves import range # Modules included in our package. from pdiffcopy.mp import WorkerPool # Public identifiers that require documentation. __all__ = ("compute_hashes", "hash_worker") def hash_worker(offset, block_size, filename, method): """Worker function to be run in child processes.""" with open(filename, "rb") as handle: handle.seek(offset) context = hashlib.new(method) context.update(handle.read(block_size)) return offset, context.hexdigest()
31.404762
106
0.720243
5d65c01cd0ad11126b7931d199f6927d742a24e8
2,170
py
Python
pyscf/nao/test/test_0003_na2_nao.py
robert-anderson/pyscf
cdc56e168cb15f47e8cdc791a92d689fa9b655af
[ "Apache-2.0" ]
3
2021-02-28T00:52:53.000Z
2021-03-01T06:23:33.000Z
pyscf/nao/test/test_0003_na2_nao.py
robert-anderson/pyscf
cdc56e168cb15f47e8cdc791a92d689fa9b655af
[ "Apache-2.0" ]
36
2018-08-22T19:44:03.000Z
2020-05-09T10:02:36.000Z
pyscf/nao/test/test_0003_na2_nao.py
robert-anderson/pyscf
cdc56e168cb15f47e8cdc791a92d689fa9b655af
[ "Apache-2.0" ]
4
2018-02-14T16:28:28.000Z
2019-08-12T16:40:30.000Z
# Copyright 2014-2018 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest from pyscf.nao.m_siesta_utils import get_siesta_command, get_pseudo if __name__ == "__main__": unittest.main()
31.449275
87
0.657604
5d65f544314984a2fee60579b78ec312b1835ccc
491
py
Python
tests/moz_library/rental_books_test.py
mozkzki/moz-library
fb925414405a9fcba8bb7194cf983ba18c920e2f
[ "MIT" ]
null
null
null
tests/moz_library/rental_books_test.py
mozkzki/moz-library
fb925414405a9fcba8bb7194cf983ba18c920e2f
[ "MIT" ]
35
2021-10-09T13:08:33.000Z
2022-03-29T14:26:59.000Z
tests/moz_library/rental_books_test.py
mozkzki/moz-library
fb925414405a9fcba8bb7194cf983ba18c920e2f
[ "MIT" ]
null
null
null
import pytest from moz_library.rental_books import RentalBooks
27.277778
64
0.737271
5d66ab6b71d371d38fa50d90c8734a50bf50ee30
2,625
py
Python
examples/src/Charts/MultiCategoryChart.py
aspose-slides/Aspose.Slides-for-Python-via-.NET
c55ad5c71f942598f1e67e22a52cbcd1cb286467
[ "MIT" ]
null
null
null
examples/src/Charts/MultiCategoryChart.py
aspose-slides/Aspose.Slides-for-Python-via-.NET
c55ad5c71f942598f1e67e22a52cbcd1cb286467
[ "MIT" ]
null
null
null
examples/src/Charts/MultiCategoryChart.py
aspose-slides/Aspose.Slides-for-Python-via-.NET
c55ad5c71f942598f1e67e22a52cbcd1cb286467
[ "MIT" ]
null
null
null
import aspose.pydrawing as drawing import aspose.slides as slides
51.470588
106
0.708952
5d66c8be8ed85e591a27c5733a7d2e134250bc39
9,393
py
Python
netbox/extras/forms/filtersets.py
cybarox/netbox
ea197eff5f4fe925bb354d1375912decd81752bd
[ "Apache-2.0" ]
null
null
null
netbox/extras/forms/filtersets.py
cybarox/netbox
ea197eff5f4fe925bb354d1375912decd81752bd
[ "Apache-2.0" ]
null
null
null
netbox/extras/forms/filtersets.py
cybarox/netbox
ea197eff5f4fe925bb354d1375912decd81752bd
[ "Apache-2.0" ]
null
null
null
from django import forms from django.contrib.auth.models import User from django.contrib.contenttypes.models import ContentType from django.utils.translation import gettext as _ from dcim.models import DeviceRole, DeviceType, Platform, Region, Site, SiteGroup from extras.choices import * from extras.models import * from extras.utils import FeatureQuery from netbox.forms.base import NetBoxModelFilterSetForm from tenancy.models import Tenant, TenantGroup from utilities.forms import ( add_blank_choice, APISelectMultiple, BOOLEAN_WITH_BLANK_CHOICES, ContentTypeChoiceField, ContentTypeMultipleChoiceField, DateTimePicker, DynamicModelMultipleChoiceField, FilterForm, MultipleChoiceField, StaticSelect, TagFilterField, ) from virtualization.models import Cluster, ClusterGroup, ClusterType __all__ = ( 'ConfigContextFilterForm', 'CustomFieldFilterForm', 'CustomLinkFilterForm', 'ExportTemplateFilterForm', 'JournalEntryFilterForm', 'LocalConfigContextFilterForm', 'ObjectChangeFilterForm', 'TagFilterForm', 'WebhookFilterForm', )
29.261682
117
0.639519
5d66ef032fbd2dcf091b5ffde482a5d596613146
1,940
py
Python
bin/write2cly.py
docdiesel/smartmetertools
3b7449c7a9069696af078631aa5440f53d0f57bc
[ "MIT" ]
1
2019-05-30T08:28:31.000Z
2019-05-30T08:28:31.000Z
bin/write2cly.py
docdiesel/smartmetertools
3b7449c7a9069696af078631aa5440f53d0f57bc
[ "MIT" ]
null
null
null
bin/write2cly.py
docdiesel/smartmetertools
3b7449c7a9069696af078631aa5440f53d0f57bc
[ "MIT" ]
null
null
null
#!/usr/bin/python3 ## write2cly.py - reads json (generated by sml_reader.py) from stdin ## - writes values to Corlysis time series InfluxDB ## ## Writes data from smart meter to time series database (InfluxDB) ## at Corlysis.com [1]. You need to configure your database and token ## in the config section. ## ## [1] https://corlysis.com/ ##==== license section ======== ## This code is under MIT License: Copyright (C) 2019 Bernd Knnen ## License details see https://choosealicense.com/licenses/mit/ ##==== config section ======== # define corlysis settings here - set db and token at least cly_base_url = 'https://corlysis.com:8086/write' cly_parameters = { "db": "energy", "u" : "token", "p" : "placeyourtokenhere", "precision": "ms"} # assign readable field names config = { "1.8.0": "Bezug", "2.8.0": "Einspeisung", "16.7.0": "Wirkleistung" } ##==== code section ==== no need to change lines below ==== ##-- import libraries import json, sys, requests import requests import time # load json from stdin try: myjson = json.load(sys.stdin) except: sys.stderr.write('!! error loading json') exit(1) # decode json try: line = "meter_data " # add each meter value to line for obis in myjson['data']: key = config[obis] # set human readable field name value = myjson['data'][obis] # get value from smart meter line += key + '=' + str(value) + ',' # add key=value to insert line # cut off last comma line = line[:-1] # add timestamp as unix timestamp in ms line += ' ' + str(int(time.time()*1000)) #+ '\n' # post data into time series database; http response should be 204 r = requests.post(cly_base_url, params=cly_parameters, data=line) if r.status_code != 204 : sys.stderr.write(r.status_code) sys.stderr.write(r.content) # catch if input is no valid json except: sys.stderr.write('!!error: no data block in json') exit(2)
25.526316
71
0.652062
5d672137217c3f190c65f38cc034a58e8ab7815b
1,440
py
Python
dns/rdtypes/ANY/__init__.py
Ashiq5/dnspython
5449af5318d88bada34f661247f3bcb16f58f057
[ "ISC" ]
null
null
null
dns/rdtypes/ANY/__init__.py
Ashiq5/dnspython
5449af5318d88bada34f661247f3bcb16f58f057
[ "ISC" ]
null
null
null
dns/rdtypes/ANY/__init__.py
Ashiq5/dnspython
5449af5318d88bada34f661247f3bcb16f58f057
[ "ISC" ]
null
null
null
# Copyright (C) Dnspython Contributors, see LICENSE for text of ISC license # Copyright (C) 2003-2007, 2009-2011 Nominum, Inc. # # Permission to use, copy, modify, and distribute this software and its # documentation for any purpose with or without fee is hereby granted, # provided that the above copyright notice and this permission notice # appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND NOMINUM DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL NOMINUM BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT # OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. """Class ANY (generic) rdata type classes.""" __all__ = [ 'AFSDB', 'AMTRELAY', 'AVC', 'CAA', 'CDNSKEY', 'CDS', 'CERT', 'CNAME', 'CSYNC', 'DLV', 'DNAME', 'DNSKEY', 'DS', 'EUI48', 'EUI64', 'GPOS', 'HINFO', 'HIP', 'ISDN', 'LOC', 'MX', 'NINFO', 'NS', 'NSEC', 'NSEC3', 'NSEC3PARAM', 'OPENPGPKEY', 'OPT', 'PTR', 'RP', 'RRSIG', 'RT', 'SMIMEA', 'SOA', 'SPF', 'SSHFP', 'TKEY', 'TLSA', 'TSIG', 'TXT', 'URI', 'X25', ]
22.5
75
0.620833
5d67812696614c7eac2050cda2d994e16e9201d7
10,519
py
Python
01_test.py
KhubbatulinMark/DCase2020-Task-2-on-Wigner-Ville-transform
6653d7abbaafe09fb17768d9902bb77db24945d4
[ "MIT" ]
3
2020-09-18T10:33:37.000Z
2020-11-04T12:53:50.000Z
01_test.py
KhubbatulinMark/DCase2020-Task-2-on-Wigner-Ville-transform
6653d7abbaafe09fb17768d9902bb77db24945d4
[ "MIT" ]
4
2020-09-26T01:07:55.000Z
2022-02-10T01:30:27.000Z
01_test.py
KhubbatulinMark/DCase2020-Task-2-on-Wigner-Ville-transform
6653d7abbaafe09fb17768d9902bb77db24945d4
[ "MIT" ]
null
null
null
""" @file 01_test.py @brief Script for test @author Toshiki Nakamura, Yuki Nikaido, and Yohei Kawaguchi (Hitachi Ltd.) Copyright (C) 2020 Hitachi, Ltd. All right reserved. """ ######################################################################## # import default python-library ######################################################################## import os import glob import csv import re import itertools import sys ######################################################################## ######################################################################## # import additional python-library ######################################################################## import numpy # from import from tqdm import tqdm from sklearn import metrics # original lib import common as com import keras_model ######################################################################## ######################################################################## # load parameter.yaml ######################################################################## param = com.yaml_load() ####################################################################### ######################################################################## # def ######################################################################## def get_machine_id_list_for_test(target_dir, dir_name="test", ext="json"): """ target_dir : str base directory path of "dev_data" or "eval_data" test_dir_name : str (default="test") directory containing test data ext : str (default="wav) file extension of audio files return : machine_id_list : list [ str ] list of machine IDs extracted from the names of test files """ # create test files dir_path = os.path.abspath("{dir}/{dir_name}/*.{ext}".format(dir=target_dir, dir_name=dir_name, ext=ext)) file_paths = sorted(glob.glob(dir_path)) # extract id machine_id_list = sorted(list(set(itertools.chain.from_iterable( [re.findall('id_[0-9][0-9]', ext_id) for ext_id in file_paths])))) return machine_id_list def test_file_list_generator(target_dir, id_name, dir_name="test", prefix_normal="normal", prefix_anomaly="anomaly", ext="json"): """ target_dir : str base directory path of the dev_data or eval_data id_name : str id of wav file in <<test_dir_name>> directory dir_name : str (default="test") directory containing test data prefix_normal : str (default="normal") normal directory name prefix_anomaly : str (default="anomaly") anomaly directory name ext : str (default="wav") file extension of audio files return : if the mode is "development": test_files : list [ str ] file list for test test_labels : list [ boolean ] label info. list for test * normal/anomaly = 0/1 if the mode is "evaluation": test_files : list [ str ] file list for test """ com.logger.info("target_dir : {}".format(target_dir+"_"+id_name)) # development if mode: normal_files = sorted( glob.glob("{dir}/{dir_name}/{prefix_normal}_{id_name}*.{ext}".format(dir=target_dir, dir_name=dir_name, prefix_normal=prefix_normal, id_name=id_name, ext=ext))) normal_labels = numpy.zeros(len(normal_files)) anomaly_files = sorted( glob.glob("{dir}/{dir_name}/{prefix_anomaly}_{id_name}*.{ext}".format(dir=target_dir, dir_name=dir_name, prefix_anomaly=prefix_anomaly, id_name=id_name, ext=ext))) anomaly_labels = numpy.ones(len(anomaly_files)) files = numpy.concatenate((normal_files, anomaly_files), axis=0) labels = numpy.concatenate((normal_labels, anomaly_labels), axis=0) com.logger.info("test_file num : {num}".format(num=len(files))) if len(files) == 0: com.logger.exception("no_wav_file!!") print("\n========================================") # evaluation else: files = sorted( glob.glob("{dir}/{dir_name}/*{id_name}*.{ext}".format(dir=target_dir, dir_name=dir_name, id_name=id_name, ext=ext))) labels = None com.logger.info("test_file num : {num}".format(num=len(files))) if len(files) == 0: com.logger.exception("no_wav_file!!") print("\n=========================================") return files, labels ######################################################################## ######################################################################## # main 01_test.py ######################################################################## if __name__ == "__main__": # check mode # "development": mode == True # "evaluation": mode == False mode = com.command_line_chk() if mode is None: sys.exit(-1) # make output result directory os.makedirs(param["result_directory"], exist_ok=True) # load base directory dirs = com.select_dirs(param=param, mode=mode) # initialize lines in csv for AUC and pAUC csv_lines = [] # loop of the base directory for idx, target_dir in enumerate(dirs): print("\n===========================") print("[{idx}/{total}] {dirname}".format(dirname=target_dir, idx=idx+1, total=len(dirs))) machine_type = os.path.split(target_dir)[1] print("============== MODEL LOAD ==============") # set model path model_file = "{model}/model_{machine_type}.hdf5".format(model=param["model_directory"], machine_type=machine_type) # load model file if not os.path.exists(model_file): com.logger.error("{} model not found ".format(machine_type)) sys.exit(-1) model = keras_model.load_model(model_file) model.summary() if mode: # results by type csv_lines.append([machine_type]) csv_lines.append(["id", "AUC", "pAUC"]) performance = [] machine_id_list = get_machine_id_list_for_test(target_dir) print(machine_id_list) for id_str in machine_id_list: # load test file test_files, y_true = test_file_list_generator(target_dir, id_str) # setup anomaly score file path anomaly_score_csv = "{result}/anomaly_score_{machine_type}_{id_str}.csv".format( result=param["result_directory"], machine_type=machine_type, id_str=id_str) anomaly_score_list = [] print("\n============== BEGIN TEST FOR A MACHINE ID ==============") y_pred = [0. for k in test_files] for file_idx, file_path in tqdm(enumerate(test_files), total=len(test_files)): try: data = com.file_to_vector_array(file_path, n_mels=param["feature"]["n_mels"], frames=param["feature"]["frames"], n_fft=param["feature"]["n_fft"], hop_length=param["feature"]["hop_length"], power=param["feature"]["power"]) errors = numpy.mean(numpy.square(data - model.predict(data)), axis=1) y_pred[file_idx] = numpy.mean(errors) anomaly_score_list.append([os.path.basename(file_path), y_pred[file_idx]]) except: com.logger.error("file broken!!: {}".format(file_path)) # save anomaly score save_csv(save_file_path=anomaly_score_csv, save_data=anomaly_score_list) com.logger.info("anomaly score result -> {}".format(anomaly_score_csv)) if mode: # append AUC and pAUC to lists auc = metrics.roc_auc_score(y_true, y_pred) p_auc = metrics.roc_auc_score(y_true, y_pred, max_fpr=param["max_fpr"]) csv_lines.append([id_str.split("_", 1)[1], auc, p_auc]) performance.append([auc, p_auc]) com.logger.info("AUC : {}".format(auc)) com.logger.info("pAUC : {}".format(p_auc)) print("\n============ END OF TEST FOR A MACHINE ID ============") if mode: # calculate averages for AUCs and pAUCs averaged_performance = numpy.mean(numpy.array(performance, dtype=float), axis=0) csv_lines.append(["Average"] + list(averaged_performance)) csv_lines.append([]) if mode: # output results result_path = "{result}/{file_name}".format(result=param["result_directory"], file_name=param["result_file"]) com.logger.info("AUC and pAUC results -> {}".format(result_path)) save_csv(save_file_path=result_path, save_data=csv_lines)
42.587045
118
0.456412
5d68067044bd41e0c94f3b4e115e6a6243c834c1
1,247
py
Python
src/text_split/split.py
i1123581321/word_split
6401cdc37f58aa8718793dd7cb9bf4d3a4b690a4
[ "MIT" ]
null
null
null
src/text_split/split.py
i1123581321/word_split
6401cdc37f58aa8718793dd7cb9bf4d3a4b690a4
[ "MIT" ]
null
null
null
src/text_split/split.py
i1123581321/word_split
6401cdc37f58aa8718793dd7cb9bf4d3a4b690a4
[ "MIT" ]
null
null
null
import argparse import os parser = argparse.ArgumentParser(description="a simple parser") parser.add_argument("filename", type=str) parser.add_argument("lineno", nargs="+", type=int) parser.add_argument("--same_length", action=argparse.BooleanOptionalAction)
30.414634
77
0.585405
5d68e4a866db0948470d395c5ba6d5ad5676d177
23,037
py
Python
src/sentry/models/event.py
Ali-Tahir/sentry
aa7b306c5ea671ac002a3524982563679557cb31
[ "BSD-3-Clause" ]
null
null
null
src/sentry/models/event.py
Ali-Tahir/sentry
aa7b306c5ea671ac002a3524982563679557cb31
[ "BSD-3-Clause" ]
null
null
null
src/sentry/models/event.py
Ali-Tahir/sentry
aa7b306c5ea671ac002a3524982563679557cb31
[ "BSD-3-Clause" ]
null
null
null
from __future__ import absolute_import import six import string import warnings import pytz from collections import OrderedDict from dateutil.parser import parse as parse_date from django.db import models from django.utils import timezone from django.utils.translation import ugettext_lazy as _ from hashlib import md5 from semaphore.processing import StoreNormalizer from sentry import eventtypes from sentry.db.models import ( BoundedBigIntegerField, BoundedIntegerField, Model, NodeData, NodeField, sane_repr, ) from sentry.db.models.manager import EventManager from sentry.interfaces.base import get_interfaces from sentry.utils import json from sentry.utils.cache import memoize from sentry.utils.canonical import CanonicalKeyDict, CanonicalKeyView from sentry.utils.safe import get_path from sentry.utils.strings import truncatechars def get_interface(self, name): return self.interfaces.get(name) def get_legacy_message(self): # TODO(mitsuhiko): remove this code once it's unused. It's still # being used by plugin code and once the message rename is through # plugins should instead swithc to the actual message attribute or # this method could return what currently is real_message. return ( get_path(self.data, "logentry", "formatted") or get_path(self.data, "logentry", "message") or self.message ) def get_event_type(self): """ Return the type of this event. See ``sentry.eventtypes``. """ return self.data.get("type", "default") def get_event_metadata(self): """ Return the metadata of this event. See ``sentry.eventtypes``. """ # For some inexplicable reason we have some cases where the data # is completely empty. In that case we want to hobble along # further. return self.data.get("metadata") or {} def get_grouping_config(self): """Returns the event grouping config.""" from sentry.grouping.api import get_grouping_config_dict_for_event_data return get_grouping_config_dict_for_event_data(self.data, self.project) def get_hashes(self, force_config=None): """ Returns the calculated hashes for the event. This uses the stored information if available. Grouping hashes will take into account fingerprinting and checksums. """ # If we have hashes stored in the data we use them, otherwise we # fall back to generating new ones from the data. We can only use # this if we do not force a different config. if force_config is None: hashes = self.data.get("hashes") if hashes is not None: return hashes return filter( None, [x.get_hash() for x in self.get_grouping_variants(force_config).values()] ) def get_grouping_variants(self, force_config=None, normalize_stacktraces=False): """ This is similar to `get_hashes` but will instead return the grouping components for each variant in a dictionary. If `normalize_stacktraces` is set to `True` then the event data will be modified for `in_app` in addition to event variants being created. This means that after calling that function the event data has been modified in place. """ from sentry.grouping.api import get_grouping_variants_for_event, load_grouping_config from sentry.stacktraces.processing import normalize_stacktraces_for_grouping # Forcing configs has two separate modes. One is where just the # config ID is given in which case it's merged with the stored or # default config dictionary if force_config is not None: if isinstance(force_config, six.string_types): stored_config = self.get_grouping_config() config = dict(stored_config) config["id"] = force_config else: config = force_config # Otherwise we just use the same grouping config as stored. if # this is None the `get_grouping_variants_for_event` will fill in # the default. else: config = self.data.get("grouping_config") config = load_grouping_config(config) if normalize_stacktraces: normalize_stacktraces_for_grouping(self.data, config) return get_grouping_variants_for_event(self, config) def get_primary_hash(self): # TODO: This *might* need to be protected from an IndexError? return self.get_hashes()[0] # For compatibility, still used by plugins. def get_tags(self): return self.tags def get_tag(self, key): for t, v in self.get_tags(): if t == key: return v return None def get_raw_data(self): """Returns the internal raw event data dict.""" return dict(self.data.items()) def get_email_subject(self): template = self.project.get_option("mail:subject_template") if template: template = EventSubjectTemplate(template) else: template = DEFAULT_SUBJECT_TEMPLATE return truncatechars(template.safe_substitute(EventSubjectTemplateData(self)), 128).encode( "utf-8" ) def get_environment(self): from sentry.models import Environment if not hasattr(self, "_environment_cache"): self._environment_cache = Environment.objects.get( organization_id=self.project.organization_id, name=Environment.get_name_or_default(self.get_tag("environment")), ) return self._environment_cache def get_minimal_user(self): """ A minimal 'User' interface object that gives us enough information to render a user badge. """ return self.get_interface("user") def as_dict(self): """Returns the data in normalized form for external consumers.""" # We use a OrderedDict to keep elements ordered for a potential JSON serializer data = OrderedDict() data["event_id"] = self.event_id data["project"] = self.project_id data["release"] = self.release data["dist"] = self.dist data["platform"] = self.platform data["message"] = self.real_message data["datetime"] = self.datetime data["time_spent"] = self.time_spent data["tags"] = [(k.split("sentry:", 1)[-1], v) for (k, v) in self.tags] for k, v in sorted(six.iteritems(self.data)): if k in data: continue if k == "sdk": v = {v_k: v_v for v_k, v_v in six.iteritems(v) if v_k != "client_ip"} data[k] = v # for a long time culprit was not persisted. In those cases put # the culprit in from the group. if data.get("culprit") is None and self.group_id: data["culprit"] = self.group.culprit # Override title and location with dynamically generated data data["title"] = self.title data["location"] = self.location return data # ============================================ # DEPRECATED # ============================================ # deprecated accessors def error(self): # TODO why is this not a property? warnings.warn("Event.error is deprecated, use Event.title", DeprecationWarning) return self.title error.short_description = _("error") class Event(EventCommon, Model): """ An event backed by data stored in postgres. """ __core__ = False group_id = BoundedBigIntegerField(blank=True, null=True) event_id = models.CharField(max_length=32, null=True, db_column="message_id") project_id = BoundedBigIntegerField(blank=True, null=True) message = models.TextField() platform = models.CharField(max_length=64, null=True) datetime = models.DateTimeField(default=timezone.now, db_index=True) time_spent = BoundedIntegerField(null=True) data = NodeField( blank=True, null=True, ref_func=lambda x: x.project_id or x.project.id, ref_version=2, wrapper=EventDict, ) objects = EventManager() __repr__ = sane_repr("project_id", "group_id") class EventSubjectTemplate(string.Template): idpattern = r"(tag:)?[_a-z][_a-z0-9]*" class EventSubjectTemplateData(object): tag_aliases = {"release": "sentry:release", "dist": "sentry:dist", "user": "sentry:user"} DEFAULT_SUBJECT_TEMPLATE = EventSubjectTemplate("$shortID - $title")
33.778592
99
0.623996
5d6b89b1e8e521a2e81232c6e63ef4c5529270e8
2,920
py
Python
Assignment3/src/data/make_nowcast_dataset.py
shikashyam/BigDataSystemsCoursework
d7f9cabbfb18b0e3303292b65af1ffd530e24ccc
[ "MIT" ]
null
null
null
Assignment3/src/data/make_nowcast_dataset.py
shikashyam/BigDataSystemsCoursework
d7f9cabbfb18b0e3303292b65af1ffd530e24ccc
[ "MIT" ]
null
null
null
Assignment3/src/data/make_nowcast_dataset.py
shikashyam/BigDataSystemsCoursework
d7f9cabbfb18b0e3303292b65af1ffd530e24ccc
[ "MIT" ]
4
2022-02-12T23:59:54.000Z
2022-02-16T22:53:32.000Z
""" Makes training and test dataset for nowcasting model using SEVIR """ # -*- coding: utf-8 -*- import argparse import logging import os import h5py os.environ["HDF5_USE_FILE_LOCKING"]='FALSE' import sys import numpy as np import tensorflow as tf from nowcast_generator import get_nowcast_test_generator # parser = argparse.ArgumentParser(description='Make nowcast training & test datasets using SEVIR') # parser.add_argument('--sevir_data', type=str, help='location of SEVIR dataset',default='../../data/sevir') # parser.add_argument('--sevir_catalog', type=str, help='location of SEVIR dataset',default='../../data/CATALOG.csv') # parser.add_argument('--output_location', type=str, help='location of SEVIR dataset',default='../../data/interim') # parser.add_argument('--n_chunks', type=int, help='Number of chucks to use (increase if memory limited)',default=10) #args = parser.parse_args() def generate_data(sevir_location,sevir_catalog,output_location,n_chunks=10): """ Runs data processing scripts to extract training set from SEVIR """ logger = logging.getLogger(__name__) logger.info('making final data set from raw data') #trn_generator = get_nowcast_train_generator(sevir_catalog=args.sevir_catalog,sevir_location=args.sevir_data) tst_generator = get_nowcast_test_generator(sevir_catalog,sevir_location) #ogger.info('Reading/writing training data to %s' % ('%s/nowcast_training.h5' % args.output_location)) #read_write_chunks('%s/nowcast_training.h5' % args.output_location,trn_generator,args.n_chunks) logger.info('Reading/writing testing data to ' + output_location+'/nowcast_testing.h5') read_write_chunks(output_location+'/nowcast_testing.h5',tst_generator,n_chunks)
42.941176
117
0.7
5d6e1f190b9f10fc581499ca4a914cfa2670ffb2
9,576
py
Python
blender-plugin/import_cast.py
rtasan/ApexCastImporter
17f833ab8ff9757e295ca8eadb0cb210bfdd6476
[ "MIT" ]
null
null
null
blender-plugin/import_cast.py
rtasan/ApexCastImporter
17f833ab8ff9757e295ca8eadb0cb210bfdd6476
[ "MIT" ]
3
2021-05-24T12:29:43.000Z
2021-05-28T13:07:39.000Z
blender-plugin/import_cast.py
rtasan/ApexCastImporter
17f833ab8ff9757e295ca8eadb0cb210bfdd6476
[ "MIT" ]
null
null
null
# The Original importer was created by Nick # Copyright (c) 2020 Nick import bpy import bmesh import os import array import math from mathutils import * from bpy_extras.image_utils import load_image from .cast import Cast, Model, Animation, Curve, NotificationTrack, Mesh, Skeleton, Bone, Material, File
33.957447
130
0.631788
5d6e47beb4576bf2e083ccdcb792c2e2830c83c4
50,279
py
Python
user_program/usb4vc_ui.py
dekuNukem/USB4VC
66c4f0b4a4acd7cec6654ea0dd4da026edf5d24c
[ "MIT" ]
78
2022-02-07T16:48:11.000Z
2022-03-31T12:25:35.000Z
user_program/usb4vc_ui.py
dekuNukem/USB4VC
66c4f0b4a4acd7cec6654ea0dd4da026edf5d24c
[ "MIT" ]
1
2022-02-26T20:16:08.000Z
2022-02-26T20:24:04.000Z
user_program/usb4vc_ui.py
dekuNukem/USB4VC
66c4f0b4a4acd7cec6654ea0dd4da026edf5d24c
[ "MIT" ]
1
2022-02-24T03:34:15.000Z
2022-02-24T03:34:15.000Z
# https://luma-oled.readthedocs.io/en/latest/software.html import os import sys import time import threading import usb4vc_oled from luma.core.render import canvas import RPi.GPIO as GPIO import usb4vc_usb_scan import usb4vc_shared import usb4vc_show_ev import usb4vc_check_update import json import subprocess from subprocess import Popen, PIPE from usb4vc_shared import this_app_dir_path from usb4vc_shared import config_dir_path from usb4vc_shared import firmware_dir_path from usb4vc_shared import temp_dir_path from usb4vc_shared import ensure_dir from usb4vc_shared import i2c_bootloader_pbid from usb4vc_shared import usb_bootloader_pbid config_file_path = os.path.join(config_dir_path, 'config.json') ensure_dir(this_app_dir_path) ensure_dir(config_dir_path) ensure_dir(firmware_dir_path) ensure_dir(temp_dir_path) PLUS_BUTTON_PIN = 27 MINUS_BUTTON_PIN = 19 ENTER_BUTTON_PIN = 22 SHUTDOWN_BUTTON_PIN = 21 PBOARD_RESET_PIN = 25 PBOARD_BOOT0_PIN = 12 SLEEP_LED_PIN = 26 GPIO.setmode(GPIO.BCM) GPIO.setup(PBOARD_RESET_PIN, GPIO.IN) GPIO.setup(PBOARD_BOOT0_PIN, GPIO.IN) GPIO.setup(SLEEP_LED_PIN, GPIO.OUT) GPIO.output(SLEEP_LED_PIN, GPIO.LOW) SPI_MOSI_MAGIC = 0xde SPI_MOSI_MSG_TYPE_SET_PROTOCOL = 2 set_protocl_spi_msg_template = [SPI_MOSI_MAGIC, 0, SPI_MOSI_MSG_TYPE_SET_PROTOCOL] + [0]*29 PBOARD_ID_UNKNOWN = 0 PBOARD_ID_IBMPC = 1 PBOARD_ID_ADB = 2 pboard_info_spi_msg = [0] * 32 this_pboard_id = PBOARD_ID_UNKNOWN USBGP_BTN_SOUTH = 0x130 USBGP_BTN_EAST = 0x131 USBGP_BTN_C = 0x132 USBGP_BTN_NORTH = 0x133 USBGP_BTN_WEST = 0x134 USBGP_BTN_Z = 0x135 USBGP_BTN_TL = 0x136 USBGP_BTN_TR = 0x137 USBGP_BTN_TL2 = 0x138 USBGP_BTN_TR2 = 0x139 USBGP_BTN_SELECT = 0x13a USBGP_BTN_START = 0x13b USBGP_BTN_MODE = 0x13c USBGP_BTN_THUMBL = 0x13d USBGP_BTN_THUMBR = 0x13e USBGP_BTN_A = USBGP_BTN_SOUTH USBGP_BTN_B = USBGP_BTN_EAST USBGP_BTN_X = USBGP_BTN_NORTH USBGP_BTN_Y = USBGP_BTN_WEST USBGP_ABS_X = 0x00 # left stick X USBGP_ABS_Y = 0x01 # left stick Y USBGP_ABS_Z = 0x02 # left analog trigger USBGP_ABS_RX = 0x03 # right stick X USBGP_ABS_RY = 0x04 # right stick Y USBGP_ABS_RZ = 0x05 # right analog trigger USBGP_ABS_HAT0X = 0x10 # D-pad X USBGP_ABS_HAT0Y = 0x11 # D-pad Y GENERIC_USB_GAMEPAD_TO_MOUSE_KB_DEAULT_MAPPING = { "MAPPING_TYPE": "DEFAULT_MOUSE_KB", 'BTN_TL': {'code': 'BTN_LEFT'}, 'BTN_TR': {'code': 'BTN_RIGHT'}, 'BTN_TL2': {'code': 'BTN_LEFT'}, 'BTN_TR2': {'code': 'BTN_RIGHT'}, 'ABS_X': {'code': 'REL_X'}, 'ABS_Y': {'code': 'REL_Y'}, 'ABS_HAT0X': {'code': 'KEY_RIGHT', 'code_neg': 'KEY_LEFT'}, 'ABS_HAT0Y': {'code': 'KEY_DOWN', 'code_neg': 'KEY_UP'} } IBM_GENERIC_USB_GAMEPAD_TO_15PIN_GAMEPORT_GAMEPAD_DEAULT_MAPPING = { "MAPPING_TYPE": "DEFAULT_15PIN", # buttons to buttons 'BTN_SOUTH': {'code':'IBM_GGP_BTN_1'}, 'BTN_NORTH': {'code':'IBM_GGP_BTN_2'}, 'BTN_EAST': {'code':'IBM_GGP_BTN_3'}, 'BTN_WEST': {'code':'IBM_GGP_BTN_4'}, 'BTN_TL': {'code':'IBM_GGP_BTN_1'}, 'BTN_TR': {'code':'IBM_GGP_BTN_2'}, 'BTN_Z': {'code':'IBM_GGP_BTN_3'}, 'BTN_C': {'code':'IBM_GGP_BTN_4'}, 'BTN_TL2': {'code':'IBM_GGP_BTN_1'}, 'BTN_TR2': {'code':'IBM_GGP_BTN_2'}, # analog axes to analog axes 'ABS_X': {'code':'IBM_GGP_JS1_X'}, 'ABS_Y': {'code':'IBM_GGP_JS1_Y'}, 'ABS_HAT0X': {'code':'IBM_GGP_JS1_X'}, 'ABS_HAT0Y': {'code':'IBM_GGP_JS1_Y'}, 'ABS_RX': {'code':'IBM_GGP_JS2_X'}, 'ABS_RY': {'code':'IBM_GGP_JS2_Y'}, } PROTOCOL_OFF = {'pid':0, 'display_name':"OFF"} PROTOCOL_AT_PS2_KB = {'pid':1, 'display_name':"AT/PS2"} PROTOCOL_XT_KB = {'pid':2, 'display_name':"PC XT"} PROTOCOL_ADB_KB = {'pid':3, 'display_name':"ADB"} PROTOCOL_PS2_MOUSE_NORMAL = {'pid':4, 'display_name':"PS/2"} PROTOCOL_MICROSOFT_SERIAL_MOUSE = {'pid':5, 'display_name':"Microsft Serial"} PROTOCOL_ADB_MOUSE = {'pid':6, 'display_name':"ADB"} PROTOCOL_15PIN_GAMEPORT_GAMEPAD = {'pid':7, 'display_name':"Generic 15-Pin", 'mapping':IBM_GENERIC_USB_GAMEPAD_TO_15PIN_GAMEPORT_GAMEPAD_DEAULT_MAPPING} PROTOCOL_MOUSESYSTEMS_SERIAL_MOUSE = {'pid':8, 'display_name':"MouseSys Serial"} PROTOCOL_USB_GP_TO_MOUSE_KB = {'pid':0, 'display_name':'Mouse & KB', 'mapping':GENERIC_USB_GAMEPAD_TO_MOUSE_KB_DEAULT_MAPPING} PROTOCOL_RAW_KEYBOARD = {'pid':125, 'display_name':"Raw data"} PROTOCOL_RAW_MOUSE = {'pid':126, 'display_name':"Raw data"} PROTOCOL_RAW_GAMEPAD = {'pid':127, 'display_name':"Raw data"} custom_profile_list = [] try: onlyfiles = [f for f in os.listdir(config_dir_path) if os.path.isfile(os.path.join(config_dir_path, f))] json_map_files = [os.path.join(config_dir_path, x) for x in onlyfiles if x.lower().startswith('usb4vc_map') and x.lower().endswith(".json")] for item in json_map_files: print('loading json file:', item) with open(item) as json_file: custom_profile_list.append(json.load(json_file)) except Exception as e: print('exception json load:', e) ibmpc_keyboard_protocols = [PROTOCOL_OFF, PROTOCOL_AT_PS2_KB, PROTOCOL_XT_KB] ibmpc_mouse_protocols = [PROTOCOL_OFF, PROTOCOL_PS2_MOUSE_NORMAL, PROTOCOL_MICROSOFT_SERIAL_MOUSE, PROTOCOL_MOUSESYSTEMS_SERIAL_MOUSE] ibmpc_gamepad_protocols = [PROTOCOL_OFF, PROTOCOL_15PIN_GAMEPORT_GAMEPAD, PROTOCOL_USB_GP_TO_MOUSE_KB] adb_keyboard_protocols = [PROTOCOL_OFF, PROTOCOL_ADB_KB] adb_mouse_protocols = [PROTOCOL_OFF, PROTOCOL_ADB_MOUSE] adb_gamepad_protocols = [PROTOCOL_OFF, PROTOCOL_USB_GP_TO_MOUSE_KB] raw_keyboard_protocols = [PROTOCOL_OFF, PROTOCOL_RAW_KEYBOARD] raw_mouse_protocols = [PROTOCOL_OFF, PROTOCOL_RAW_MOUSE] raw_gamepad_protocols = [PROTOCOL_OFF, PROTOCOL_RAW_GAMEPAD] mouse_sensitivity_list = [1, 1.25, 1.5, 1.75, 0.25, 0.5, 0.75] """ key is protocol card ID conf_dict[pbid]: hw revision current keyboard protocol current mouse protocol current gamepad procotol mouse sensitivity """ configuration_dict = {} LINUX_EXIT_CODE_TIMEOUT = 124 curve_vertial_axis_x_pos = 80 curve_horizontal_axis_width = 32 curve_linear = {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9, 10: 10, 11: 11, 12: 12, 13: 13, 14: 14, 15: 15, 16: 16, 17: 17, 18: 18, 19: 19, 20: 20, 21: 21, 22: 22, 23: 23, 24: 24, 25: 25, 26: 26, 27: 27, 28: 28, 29: 29, 30: 30, 31: 31, 32: 32, 33: 33, 34: 34, 35: 35, 36: 36, 37: 37, 38: 38, 39: 39, 40: 40, 41: 41, 42: 42, 43: 43, 44: 44, 45: 45, 46: 46, 47: 47, 48: 48, 49: 49, 50: 50, 51: 51, 52: 52, 53: 53, 54: 54, 55: 55, 56: 56, 57: 57, 58: 58, 59: 59, 60: 60, 61: 61, 62: 62, 63: 63, 64: 64, 65: 65, 66: 66, 67: 67, 68: 68, 69: 69, 70: 70, 71: 71, 72: 72, 73: 73, 74: 74, 75: 75, 76: 76, 77: 77, 78: 78, 79: 79, 80: 80, 81: 81, 82: 82, 83: 83, 84: 84, 85: 85, 86: 86, 87: 87, 88: 88, 89: 89, 90: 90, 91: 91, 92: 92, 93: 93, 94: 94, 95: 95, 96: 96, 97: 97, 98: 98, 99: 99, 100: 100, 101: 101, 102: 102, 103: 103, 104: 104, 105: 105, 106: 106, 107: 107, 108: 108, 109: 109, 110: 110, 111: 111, 112: 112, 113: 113, 114: 114, 115: 115, 116: 116, 117: 117, 118: 118, 119: 119, 120: 120, 121: 121, 122: 122, 123: 123, 124: 124, 125: 125, 126: 126, 127: 127} curve1 = {0: 1, 1: 1, 2: 2, 3: 2, 4: 3, 5: 4, 6: 4, 7: 5, 8: 5, 9: 6, 10: 6, 11: 7, 12: 7, 13: 8, 14: 8, 15: 9, 16: 9, 17: 10, 18: 11, 19: 11, 20: 12, 21: 12, 22: 13, 23: 13, 24: 14, 25: 15, 26: 15, 27: 16, 28: 16, 29: 17, 30: 18, 31: 18, 32: 19, 33: 19, 34: 20, 35: 21, 36: 21, 37: 22, 38: 22, 39: 23, 40: 24, 41: 24, 42: 25, 43: 26, 44: 26, 45: 27, 46: 28, 47: 28, 48: 29, 49: 30, 50: 30, 51: 31, 52: 32, 53: 33, 54: 33, 55: 34, 56: 35, 57: 36, 58: 36, 59: 37, 60: 38, 61: 39, 62: 39, 63: 40, 64: 41, 65: 42, 66: 43, 67: 44, 68: 45, 69: 46, 70: 46, 71: 47, 72: 48, 73: 49, 74: 50, 75: 51, 76: 52, 77: 53, 78: 55, 79: 56, 80: 57, 81: 58, 82: 59, 83: 60, 84: 61, 85: 62, 86: 63, 87: 65, 88: 66, 89: 67, 90: 68, 91: 70, 92: 71, 93: 72, 94: 73, 95: 75, 96: 76, 97: 77, 98: 79, 99: 80, 100: 81, 101: 83, 102: 84, 103: 86, 104: 87, 105: 89, 106: 90, 107: 92, 108: 93, 109: 95, 110: 96, 111: 98, 112: 100, 113: 101, 114: 103, 115: 105, 116: 106, 117: 108, 118: 110, 119: 112, 120: 113, 121: 115, 122: 117, 123: 119, 124: 121, 125: 123, 126: 125, 127: 127} curve2 = {0: 1, 1: 1, 2: 1, 3: 1, 4: 2, 5: 2, 6: 2, 7: 2, 8: 2, 9: 3, 10: 3, 11: 3, 12: 3, 13: 4, 14: 4, 15: 4, 16: 4, 17: 5, 18: 5, 19: 5, 20: 5, 21: 6, 22: 6, 23: 6, 24: 7, 25: 7, 26: 7, 27: 8, 28: 8, 29: 8, 30: 8, 31: 9, 32: 9, 33: 9, 34: 10, 35: 10, 36: 10, 37: 11, 38: 11, 39: 12, 40: 12, 41: 12, 42: 13, 43: 13, 44: 13, 45: 14, 46: 14, 47: 15, 48: 15, 49: 15, 50: 16, 51: 16, 52: 17, 53: 17, 54: 18, 55: 18, 56: 19, 57: 19, 58: 20, 59: 20, 60: 21, 61: 21, 62: 22, 63: 22, 64: 23, 65: 23, 66: 24, 67: 24, 68: 25, 69: 26, 70: 26, 71: 27, 72: 28, 73: 28, 74: 29, 75: 30, 76: 30, 77: 31, 78: 32, 79: 33, 80: 34, 81: 35, 82: 36, 83: 37, 84: 38, 85: 39, 86: 40, 87: 41, 88: 42, 89: 43, 90: 44, 91: 45, 92: 47, 93: 48, 94: 49, 95: 51, 96: 52, 97: 53, 98: 55, 99: 56, 100: 58, 101: 59, 102: 61, 103: 63, 104: 64, 105: 66, 106: 68, 107: 70, 108: 71, 109: 73, 110: 75, 111: 78, 112: 80, 113: 82, 114: 84, 115: 86, 116: 89, 117: 92, 118: 94, 119: 96, 120: 100, 121: 102, 122: 106, 123: 110, 124: 112, 125: 116, 126: 120, 127: 125} curve3 = {0: 1, 1: 1, 2: 1, 3: 1, 4: 1, 5: 1, 6: 1, 7: 1, 8: 1, 9: 1, 10: 1, 11: 1, 12: 1, 13: 1, 14: 1, 15: 1, 16: 1, 17: 1, 18: 1, 19: 1, 20: 1, 21: 2, 22: 2, 23: 2, 24: 2, 25: 2, 26: 2, 27: 2, 28: 2, 29: 2, 30: 2, 31: 3, 32: 3, 33: 3, 34: 3, 35: 3, 36: 3, 37: 3, 38: 4, 39: 4, 40: 4, 41: 4, 42: 4, 43: 4, 44: 5, 45: 5, 46: 5, 47: 5, 48: 5, 49: 6, 50: 6, 51: 6, 52: 6, 53: 7, 54: 7, 55: 7, 56: 7, 57: 8, 58: 8, 59: 8, 60: 8, 61: 9, 62: 9, 63: 9, 64: 10, 65: 10, 66: 10, 67: 11, 68: 11, 69: 11, 70: 12, 71: 12, 72: 12, 73: 13, 74: 13, 75: 14, 76: 14, 77: 15, 78: 15, 79: 16, 80: 16, 81: 17, 82: 17, 83: 18, 84: 19, 85: 19, 86: 20, 87: 21, 88: 21, 89: 22, 90: 23, 91: 24, 92: 25, 93: 26, 94: 27, 95: 28, 96: 29, 97: 30, 98: 32, 99: 33, 100: 34, 101: 35, 102: 37, 103: 38, 104: 40, 105: 41, 106: 43, 107: 45, 108: 46, 109: 48, 110: 50, 111: 52, 112: 54, 113: 56, 114: 59, 115: 61, 116: 64, 117: 66, 118: 69, 119: 72, 120: 76, 121: 79, 122: 83, 123: 87, 124: 92, 125: 99, 126: 104, 127: 118} joystick_curve_list = [curve_linear, curve1, curve2, curve3] pboard_database = { PBOARD_ID_UNKNOWN:{'author':'Unknown', 'fw_ver':(0,0,0), 'full_name':'Unknown', 'hw_rev':0, 'protocol_list_keyboard':raw_keyboard_protocols, 'protocol_list_mouse':raw_mouse_protocols, 'protocol_list_gamepad':raw_gamepad_protocols}, PBOARD_ID_IBMPC:{'author':'dekuNukem', 'fw_ver':(0,0,0), 'full_name':'IBM PC Compatible', 'hw_rev':0, 'protocol_list_keyboard':ibmpc_keyboard_protocols, 'protocol_list_mouse':ibmpc_mouse_protocols, 'protocol_list_gamepad':ibmpc_gamepad_protocols}, PBOARD_ID_ADB:{'author':'dekuNukem', 'fw_ver':(0,0,0), 'full_name':'Apple Desktop Bus', 'hw_rev':0, 'protocol_list_keyboard':adb_keyboard_protocols, 'protocol_list_mouse':adb_mouse_protocols, 'protocol_list_gamepad':adb_gamepad_protocols}, } plus_button = my_button(PLUS_BUTTON_PIN) minus_button = my_button(MINUS_BUTTON_PIN) enter_button = my_button(ENTER_BUTTON_PIN) shutdown_button = my_button(SHUTDOWN_BUTTON_PIN) my_oled = oled_sleep_control() my_menu = None ui_thread = threading.Thread(target=ui_worker, daemon=True)
51.462641
1,075
0.63269
5d6f6e6ed3bbf01cb5af3d5c038344399c98f74f
384
py
Python
study/migrations/0003_auto_20200224_2316.py
hpathipati/Quick-Tutor
17476d79b87f51b12a6c8fc435d1a6506bff1e04
[ "PostgreSQL", "Unlicense", "MIT" ]
null
null
null
study/migrations/0003_auto_20200224_2316.py
hpathipati/Quick-Tutor
17476d79b87f51b12a6c8fc435d1a6506bff1e04
[ "PostgreSQL", "Unlicense", "MIT" ]
null
null
null
study/migrations/0003_auto_20200224_2316.py
hpathipati/Quick-Tutor
17476d79b87f51b12a6c8fc435d1a6506bff1e04
[ "PostgreSQL", "Unlicense", "MIT" ]
null
null
null
# Generated by Django 3.0.2 on 2020-02-24 23:16 from django.db import migrations, models
20.210526
63
0.588542
5d6fd80c1e9176894348ae0d83e6981dbb3ecb3a
103,544
py
Python
tests/unit/resources/test_resource.py
gzecchi/oneview-python
949bc67ca3eaed324a6dc058620145d9e067e25b
[ "Apache-2.0" ]
null
null
null
tests/unit/resources/test_resource.py
gzecchi/oneview-python
949bc67ca3eaed324a6dc058620145d9e067e25b
[ "Apache-2.0" ]
null
null
null
tests/unit/resources/test_resource.py
gzecchi/oneview-python
949bc67ca3eaed324a6dc058620145d9e067e25b
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- ### # (C) Copyright [2019] Hewlett Packard Enterprise Development LP # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ### import io import unittest import mock from mock import call from tests.test_utils import mock_builtin from hpOneView.connection import connection from hpOneView import exceptions from hpOneView.resources.resource import (ResourceClient, ResourceHelper, ResourceFileHandlerMixin, ResourceZeroBodyMixin, ResourcePatchMixin, ResourceUtilizationMixin, ResourceSchemaMixin, Resource, RESOURCE_CLIENT_INVALID_ID, UNRECOGNIZED_URI, TaskMonitor, RESOURCE_CLIENT_TASK_EXPECTED, RESOURCE_ID_OR_URI_REQUIRED, transform_list_to_dict, extract_id_from_uri, merge_resources, merge_default_values, unavailable_method) def test_build_uri_with_uri_should_work(self): input = "/rest/testuri/09USE7335NW3" expected_output = "/rest/testuri/09USE7335NW3" result = self.resource_client._helper.build_uri(input) self.assertEqual(expected_output, result) def test_build_uri_with_none_should_raise_exception(self): try: self.resource_client._helper.build_uri(None) except ValueError as exception: self.assertEqual(RESOURCE_CLIENT_INVALID_ID, exception.args[0]) else: self.fail("Expected Exception was not raised") def test_build_uri_with_empty_str_should_raise_exception(self): try: self.resource_client._helper.build_uri('') except ValueError as exception: self.assertEqual(RESOURCE_CLIENT_INVALID_ID, exception.args[0]) else: self.fail("Expected Exception was not raised") class FakeResource(object): class ResourceClientTest(unittest.TestCase): URI = "/rest/testuri" TYPE_V200 = 'typeV200' TYPE_V300 = 'typeV300' DEFAULT_VALUES = { '200': {'type': TYPE_V200}, '300': {'type': TYPE_V300} } def test_delete_dict_invalid_uri(self): dict_to_delete = {"task": "task", "uri": ""} try: self.resource_client.delete(dict_to_delete, False, -1) except exceptions.HPOneViewUnknownType as e: self.assertEqual("Unknown object type", e.args[0]) else: self.fail() def test_delete_with_none(self): try: self.resource_client.delete(None) except ValueError as e: self.assertTrue("Resource" in e.args[0]) else: self.fail() def test_get_utilization_with_empty(self): try: self.resource_client.get_utilization('') except ValueError as exception: self.assertEqual(RESOURCE_CLIENT_INVALID_ID, exception.args[0]) else: self.fail("Expected Exception was not raised") def test_merge_api_default_values(self): resource = {'name': 'resource1'} default_values = { '200': {"type": "EnclosureGroupV200"}, '300': {"type": "EnclosureGroupV300"} } expected = {'name': 'resource1', "type": "EnclosureGroupV300"} resource_client = ResourceClient(self.connection, self.URI) result = resource_client.merge_default_values(resource, default_values) self.assertEqual(result, expected) def test_transform_list_to_dict(self): list = ['one', 'two', {'tree': 3}, 'four', 5] dict_transformed = transform_list_to_dict(list=list) self.assertEqual(dict_transformed, {'5': True, 'four': True, 'one': True, 'tree': 3, 'two': True})
42.21117
127
0.665727
5d72ba13d02bd291e6fb1bfd1e3d024e5c0779f3
316
py
Python
workalendar/usa/colorado.py
vanadium23/workalendar
4c67b5a7900fa56d7a93b767c6cbd8f1cc6b70a7
[ "MIT" ]
null
null
null
workalendar/usa/colorado.py
vanadium23/workalendar
4c67b5a7900fa56d7a93b767c6cbd8f1cc6b70a7
[ "MIT" ]
null
null
null
workalendar/usa/colorado.py
vanadium23/workalendar
4c67b5a7900fa56d7a93b767c6cbd8f1cc6b70a7
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import (absolute_import, division, print_function, unicode_literals) from .core import UnitedStates
26.333333
66
0.677215
5d72e502922a05a806cd65843fb08ea2947b5e7b
3,358
py
Python
dataloaders/augmentation.py
thierrypin/gei-pool
0a9e79b01148735f0e975c50d2476e41ba20af4f
[ "MIT" ]
null
null
null
dataloaders/augmentation.py
thierrypin/gei-pool
0a9e79b01148735f0e975c50d2476e41ba20af4f
[ "MIT" ]
null
null
null
dataloaders/augmentation.py
thierrypin/gei-pool
0a9e79b01148735f0e975c50d2476e41ba20af4f
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import random import numpy as np # Generic data augmentation ########## # Images # ########## def horizontal_flip(p=0.5): return fc def vertical_flip(p=0.5): return fc def gaussian_noise(p=0.5, mean=0, sigma=0.02): return fc def black_vstripe(p=0.5, size=10): return fc def black_hstripe(p=0.5, size=10): return fc def default_augmenter(p=0.5, strip_size=3, mean=0, sigma=0.02): """Default data augmentation with horizontal flip, vertical flip, gaussian noise, black hstripe, and black vstripe. Returns: Augmenter object. Use as: aug.augment(img) """ print("Using default image augmenter") return Augmenter([ horizontal_flip(p), gaussian_noise(p, mean, sigma), black_hstripe(p, size=strip_size), black_vstripe(p, size=strip_size) ]) ########## # Videos # ########## def default_augmenter_vid(p=0.5, strip_size=3, mean=0, sigma=0.02): """Default data augmentation with horizontal flip, gaussian noise, black hstripe, and black vstripe. Returns: Augmenter object. Use as: aug.augment(img) """ return Augmenter([ horizontal_flip_vid(p), gaussian_noise(p, mean, sigma), black_hstripe_vid(p, size=strip_size), black_vstripe_vid(p, size=strip_size) ])
25.24812
158
0.549136
5d72ea525d5fca207b00f29574de0ed2864d8b1b
7,229
py
Python
cigeo/admin.py
CzechInvest/ciis
c6102598f564a717472e5e31e7eb894bba2c8104
[ "MIT" ]
1
2019-05-26T22:24:01.000Z
2019-05-26T22:24:01.000Z
cigeo/admin.py
CzechInvest/ciis
c6102598f564a717472e5e31e7eb894bba2c8104
[ "MIT" ]
6
2019-01-22T14:53:43.000Z
2020-09-22T16:20:28.000Z
cigeo/admin.py
CzechInvest/ciis
c6102598f564a717472e5e31e7eb894bba2c8104
[ "MIT" ]
null
null
null
from django.contrib import admin from django.contrib.gis import geos from leaflet.admin import LeafletGeoAdmin, LeafletGeoAdminMixin from .models import Lau1 from .models import Nuts3 from .models import Airport from .models import Road from .models import PublicTransportStop from .models import RailwayStation from django.urls import reverse from django.utils.translation import ugettext_lazy as _ import nested_admin import uuid import json # Register your models here. admin.site.register(Lau1, LAU1Admin) admin.site.register(Nuts3, NUTS3Admin) admin.site.register(Road, RoadAdmin) admin.site.register(PublicTransportStop, PublicTransportStopAdmin) admin.site.register(RailwayStation, RailwayStationAdmin) admin.site.register(Airport, AirportAdmin)
30.761702
80
0.580025
5d730d1afb5f1402b6e9a016eacea8ab0f918612
858
py
Python
umbra/monitor/main.py
RafaelAPB/umbra
cf075bbe73e46540e9edee25f9ec3d0828620d5f
[ "Apache-2.0" ]
null
null
null
umbra/monitor/main.py
RafaelAPB/umbra
cf075bbe73e46540e9edee25f9ec3d0828620d5f
[ "Apache-2.0" ]
null
null
null
umbra/monitor/main.py
RafaelAPB/umbra
cf075bbe73e46540e9edee25f9ec3d0828620d5f
[ "Apache-2.0" ]
null
null
null
import logging import json import asyncio from google.protobuf import json_format from umbra.common.protobuf.umbra_grpc import MonitorBase from umbra.common.protobuf.umbra_pb2 import Instruction, Snapshot from umbra.monitor.tools import Tools logger = logging.getLogger(__name__) logging.getLogger("hpack").setLevel(logging.WARNING)
31.777778
99
0.757576
5d733960d2eb830da7ca11bb10495536367425c3
6,207
py
Python
pycs/spells/hunters_mark.py
dwagon/pycs
4d02acbf380526d3bf0380f6bb8b757a827024b8
[ "MIT" ]
null
null
null
pycs/spells/hunters_mark.py
dwagon/pycs
4d02acbf380526d3bf0380f6bb8b757a827024b8
[ "MIT" ]
null
null
null
pycs/spells/hunters_mark.py
dwagon/pycs
4d02acbf380526d3bf0380f6bb8b757a827024b8
[ "MIT" ]
null
null
null
"""https://www.dndbeyond.com/spells/hunters-mark""" from unittest.mock import patch import dice from pycs.constant import ActionCategory from pycs.constant import SpellType from pycs.creature import Creature from pycs.effect import Effect from pycs.gear import Shortbow from pycs.spell import SpellAction from pycs.spells.spelltest import SpellTest ############################################################################## ############################################################################## ############################################################################## ############################################################################## ############################################################################## ############################################################################## ############################################################################## ############################################################################## ############################################################################## # EOF
41.10596
85
0.475914
5d7378673807f7e0283f1553a575bc82a4166826
390
py
Python
utilities.py
armandok/pySLAM-D
ef7398806e021885b29702adf55acbedaf544ce6
[ "MIT" ]
10
2020-12-24T16:40:46.000Z
2022-02-01T18:09:13.000Z
utilities.py
armandok/pySLAM-D
ef7398806e021885b29702adf55acbedaf544ce6
[ "MIT" ]
null
null
null
utilities.py
armandok/pySLAM-D
ef7398806e021885b29702adf55acbedaf544ce6
[ "MIT" ]
null
null
null
import numpy as np
30
92
0.694872
5d7393f1d5071cf9d02bab3da993f038421d4d57
1,175
py
Python
robosuite/models/grippers/__init__.py
kyungjaelee/robosuite
0d73fcca9ed8e638632f4bd7b0f1b8ebf4640fb1
[ "MIT" ]
397
2020-09-28T02:49:58.000Z
2022-03-30T18:08:19.000Z
robosuite/models/grippers/__init__.py
kyungjaelee/robosuite
0d73fcca9ed8e638632f4bd7b0f1b8ebf4640fb1
[ "MIT" ]
169
2020-09-28T02:17:59.000Z
2022-03-29T13:32:43.000Z
robosuite/models/grippers/__init__.py
kyungjaelee/robosuite
0d73fcca9ed8e638632f4bd7b0f1b8ebf4640fb1
[ "MIT" ]
131
2020-09-28T14:50:35.000Z
2022-03-31T02:27:33.000Z
from .gripper_model import GripperModel from .gripper_factory import gripper_factory from .gripper_tester import GripperTester from .panda_gripper import PandaGripper from .rethink_gripper import RethinkGripper from .robotiq_85_gripper import Robotiq85Gripper from .robotiq_three_finger_gripper import RobotiqThreeFingerGripper, RobotiqThreeFingerDexterousGripper from .panda_gripper import PandaGripper from .jaco_three_finger_gripper import JacoThreeFingerGripper, JacoThreeFingerDexterousGripper from .robotiq_140_gripper import Robotiq140Gripper from .wiping_gripper import WipingGripper from .null_gripper import NullGripper GRIPPER_MAPPING = { "RethinkGripper": RethinkGripper, "PandaGripper": PandaGripper, "JacoThreeFingerGripper": JacoThreeFingerGripper, "JacoThreeFingerDexterousGripper": JacoThreeFingerDexterousGripper, "WipingGripper": WipingGripper, "Robotiq85Gripper": Robotiq85Gripper, "Robotiq140Gripper": Robotiq140Gripper, "RobotiqThreeFingerGripper": RobotiqThreeFingerGripper, "RobotiqThreeFingerDexterousGripper": RobotiqThreeFingerDexterousGripper, None: NullGripper, } ALL_GRIPPERS = GRIPPER_MAPPING.keys()
39.166667
103
0.846809
5d7596fcdc1125f69dea760f3f07ca8ccf07185d
7,509
py
Python
src/pose/visualizations/visualizations.py
Idein/chainer-hand-pose
45c7b629a74bf13da8cc9b47d0ded7099c139e9b
[ "Apache-2.0" ]
11
2019-12-14T07:55:52.000Z
2021-06-22T06:38:34.000Z
src/pose/visualizations/visualizations.py
terasakisatoshi/chainer-hand-pose
a47e0c61c4fea3369db566eea3d539d1c9398bf7
[ "Apache-2.0" ]
1
2020-06-17T21:39:48.000Z
2020-06-26T13:16:43.000Z
src/pose/visualizations/visualizations.py
terasakisatoshi/chainer-hand-pose
a47e0c61c4fea3369db566eea3d539d1c9398bf7
[ "Apache-2.0" ]
3
2019-12-11T13:47:54.000Z
2020-10-23T07:10:15.000Z
import logging logger = logging.getLogger(__name__) import random import chainercv import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D # NOQA from pose.hand_dataset.geometry_utils import normalize_joint_zyx from pose.hand_dataset.image_utils import normalize_depth # Decimal Code (R,G,B) BASE_COLOR = { "RED": (255, 0, 0), "GREEN": (0, 255, 0), "BLUE": (0, 0, 255), "YELLOW": (255, 255, 0), "CYAN": (0, 255, 255), "MAGENTA": (255, 0, 255), } def vis_image(img, ax=None): """ extend chainercv.visualizations.vis_image """ C, H, W = img.shape if C == 1: if ax is None: fig = plt.figure() ax = fig.add_subplot(1, 1, 1) # remove channnel dimension ax.imshow(img.squeeze()) else: ax = chainercv.visualizations.vis_image(img, ax) return ax def vis_point(point, img=None, color=None, ax=None): """ Visualize points in an image, customized to our purpose. Base implementation is taken from chainercv.visualizations.vis_image """ point, ax, H, W = preprocess(point, ax, img) n_inst = len(point) c = np.asarray(color) / 255. if color is not None else None for i in range(n_inst): # note that the shape of `point[i]` is (K,N) and the format of one is (y, x), (z,y,x). # (K, N) -> (N, K) pts = point[i].transpose() # (K,N) -> (N,K) # resort coordinate order : yx -> xy or zyx -> xyz pts = pts[::-1] ax.scatter(*pts, c=c) if W is not None: ax.set_xlim(left=0, right=W) if H is not None: ax.set_ylim(bottom=H - 1, top=0) return ax def vis_edge(point, indices, img=None, color=None, ax=None): """ Visualize edges in an image """ point, ax, H, W = preprocess(point, ax, img) n_inst = len(point) if color is not None: color = np.asarray(color) / 255. else: color = [None] * len(indices) for i in range(n_inst): # note that the shape of `point[i]` is (K,N) and the format of one is (y, x) or (z,y,x). pts = point[i] for ((s, t), c) in zip(indices, color): # Select point which consists edge. It is a pair or point (start, target). # Note that [::-1] does resort coordinate order: yx -> xy or zyx -> xyz edge = pts[[s, t]].transpose() edge = edge[::-1] ax.plot(*edge, c=c) if W is not None: ax.set_xlim(left=0, right=W) if H is not None: ax.set_ylim(bottom=H - 1, top=0) return ax
31.953191
96
0.632574
5d75bb550217d28f2cb95a0798b2a193f98c5dc4
190
py
Python
publication-erdf/flask_service.py
ticapix/automated-tasks
a0c73ad2939c6f1a2d91aea6fd309b5005455191
[ "Unlicense" ]
null
null
null
publication-erdf/flask_service.py
ticapix/automated-tasks
a0c73ad2939c6f1a2d91aea6fd309b5005455191
[ "Unlicense" ]
null
null
null
publication-erdf/flask_service.py
ticapix/automated-tasks
a0c73ad2939c6f1a2d91aea6fd309b5005455191
[ "Unlicense" ]
null
null
null
#!/usr/bin/env python3 from flask import Flask app = Flask(__name__) if __name__ == "__main__": app.run()
14.615385
28
0.673684
536f43c7085300c239b6e7cb90378b2df33381ad
1,134
py
Python
tools/nn/speaker.py
mikiec84/speaking_detection
ed680138627c156e1f7b0af20d6517e2bea754cc
[ "MIT" ]
null
null
null
tools/nn/speaker.py
mikiec84/speaking_detection
ed680138627c156e1f7b0af20d6517e2bea754cc
[ "MIT" ]
null
null
null
tools/nn/speaker.py
mikiec84/speaking_detection
ed680138627c156e1f7b0af20d6517e2bea754cc
[ "MIT" ]
null
null
null
import os import skimage.io from torch.nn import Module import torch.nn from torchvision.models import resnet18 from nn.speaker_dataset import Dataset # @UnusedImport os.environ['TORCH_MODEL_ZOO'] = '../data/' VIDTIMIT_PATH = '../data/vidtimit/' skimage.io.use_plugin('pil')
23.625
74
0.613757
536ff8da70c0647265f2448d9db35e0d757a366c
1,551
py
Python
tensorflow_model_analysis/util_test.py
mdreves/model-analysis
73760b27b763e322a92ea80ff0a768ad9ef74526
[ "Apache-2.0" ]
null
null
null
tensorflow_model_analysis/util_test.py
mdreves/model-analysis
73760b27b763e322a92ea80ff0a768ad9ef74526
[ "Apache-2.0" ]
null
null
null
tensorflow_model_analysis/util_test.py
mdreves/model-analysis
73760b27b763e322a92ea80ff0a768ad9ef74526
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Simple tests for util.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow_model_analysis import util if __name__ == '__main__': tf.test.main()
32.3125
74
0.691812