hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
c30a8241bc4eb176e2d35bfc53ddbf79b7ca685f
77
py
Python
test/settings/test_kafka_consumer_config.py
DebasishMaji/PI
e293982cae8f8755d28d7b3de22966dc74759b90
[ "Apache-2.0" ]
null
null
null
test/settings/test_kafka_consumer_config.py
DebasishMaji/PI
e293982cae8f8755d28d7b3de22966dc74759b90
[ "Apache-2.0" ]
null
null
null
test/settings/test_kafka_consumer_config.py
DebasishMaji/PI
e293982cae8f8755d28d7b3de22966dc74759b90
[ "Apache-2.0" ]
null
null
null
import unittest class TestKafkaConsumerConfig(unittest.TestCase): pass
12.833333
49
0.805195
58
0.753247
0
0
0
0
0
0
0
0
c30ea52dd60b15b77f690236c9544837627ac0f7
7,684
py
Python
Pycraft/StartupAnimation.py
demirdogukan/InsiderPycraft
5567107326fbd222a7df6aabf4ab265e0a157636
[ "MIT" ]
22
2021-03-25T17:47:45.000Z
2022-03-29T01:56:12.000Z
Pycraft/StartupAnimation.py
demirdogukan/InsiderPycraft
5567107326fbd222a7df6aabf4ab265e0a157636
[ "MIT" ]
1
2021-12-22T16:12:59.000Z
2021-12-22T16:12:59.000Z
Pycraft/StartupAnimation.py
demirdogukan/InsiderPycraft
5567107326fbd222a7df6aabf4ab265e0a157636
[ "MIT" ]
3
2021-09-05T14:10:05.000Z
2022-01-10T12:57:34.000Z
if not __name__ == "__main__": print("Started <Pycraft_StartupAnimation>") class GenerateStartupScreen: def __init__(self): pass def Start(self): try: self.Display.fill(self.BackgroundCol) self.mod_Pygame__.display.flip() self.mod_Pygame__.display.set_caption(f"Pycraft: v{self.version}: Welcome") PresentsFont = self.mod_Pygame__.font.Font(self.mod_OS__.path.join(self.base_folder, ("Fonts\\Book Antiqua.ttf")), 35) PycraftFont = self.mod_Pygame__.font.Font(self.mod_OS__.path.join(self.base_folder, ("Fonts\\Book Antiqua.ttf")), 60) NameFont = self.mod_Pygame__.font.Font(self.mod_OS__.path.join(self.base_folder, ("Fonts\\Book Antiqua.ttf")), 45) NameText = NameFont.render("Tom Jebbo", True, self.FontCol) NameTextWidth = NameText.get_width() NameTextHeight = NameText.get_height() PresentsText = PresentsFont.render("presents", True, self.FontCol) PycraftText = PycraftFont.render("Pycraft", True, self.FontCol) PycraftTextWidth = PycraftText.get_width() PycraftTextHeight = PycraftText.get_height() iteration = 0 clock = self.mod_Pygame__.time.Clock() if self.RunFullStartup == True: while iteration <= (60*3): self.realWidth, self.realHeight = self.mod_Pygame__.display.get_window_size() self.Display.fill(self.BackgroundCol) self.Display.blit(NameText, ((self.realWidth-NameTextWidth)/2, (self.realHeight-NameTextHeight)/2)) iteration += 1 if self.realWidth < 1280: self.mod_DisplayUtils__.DisplayUtils.GenerateMinDisplay(self, 1280, self.SavedHeight) if self.realHeight < 720: self.mod_DisplayUtils__.DisplayUtils.GenerateMinDisplay(self, self.SavedWidth, 720) self.mod_Pygame__.display.flip() clock.tick(60) for event in self.mod_Pygame__.event.get(): if event.type == self.mod_Pygame__.QUIT: self.Stop_Thread_Event.set() self.Thread_StartLongThread.join() self.Thread_AdaptiveMode.join() self.Thread_StartLongThread.join() self.mod_Pygame__.quit() self.mod_Sys__.exit("Thanks for playing") quit() iteration = 0 while iteration <= (60*2): self.realWidth, self.realHeight = self.mod_Pygame__.display.get_window_size() self.Display.fill(self.BackgroundCol) self.Display.blit(NameText, ((self.realWidth-NameTextWidth)/2, (self.realHeight-NameTextHeight)/2)) self.Display.blit(PresentsText, ((((self.realWidth-NameTextWidth)/2)+120), ((self.realHeight-NameTextHeight)/2)+30)) iteration += 1 if self.realWidth < 1280: self.mod_DisplayUtils__.DisplayUtils.GenerateMinDisplay(self, 1280, self.SavedHeight) if self.realHeight < 720: self.mod_DisplayUtils__.DisplayUtils.GenerateMinDisplay(self, self.SavedWidth, 720) self.mod_Pygame__.display.flip() clock.tick(60) for event in self.mod_Pygame__.event.get(): if event.type == self.mod_Pygame__.QUIT: self.Stop_Thread_Event.set() self.Thread_StartLongThread.join() self.Thread_AdaptiveMode.join() self.Thread_StartLongThread.join() self.mod_Pygame__.quit() self.mod_Sys__.exit("Thanks for playing") quit() iteration = 0 while iteration <= (60*3): self.realWidth, self.realHeight = self.mod_Pygame__.display.get_window_size() self.Display.fill(self.BackgroundCol) self.Display.blit(PycraftText, ((self.realWidth-PycraftTextWidth)/2, (self.realHeight-PycraftTextHeight)/2)) iteration += 1 if self.realWidth < 1280: self.mod_DisplayUtils__.DisplayUtils.GenerateMinDisplay(self, 1280, self.SavedHeight) if self.realHeight < 720: self.mod_DisplayUtils__.DisplayUtils.GenerateMinDisplay(self, self.SavedWidth, 720) self.mod_Pygame__.display.flip() clock.tick(60) for event in self.mod_Pygame__.event.get(): if event.type == self.mod_Pygame__.QUIT: self.Stop_Thread_Event.set() self.Thread_StartLongThread.join() self.Thread_AdaptiveMode.join() self.Thread_StartLongThread.join() self.mod_Pygame__.quit() self.mod_Sys__.exit("Thanks for playing") quit() y = 0 while True: self.realWidth, self.realHeight = self.mod_Pygame__.display.get_window_size() self.Display.fill(self.BackgroundCol) self.Display.blit(PycraftText, ((self.realWidth-PycraftTextWidth)/2, ((self.realHeight-PycraftTextHeight)/2)-y)) y += 2 if self.realWidth < 1280: self.mod_DisplayUtils__.DisplayUtils.GenerateMinDisplay(self, 1280, self.SavedHeight) if self.realHeight < 720: self.mod_DisplayUtils__.DisplayUtils.GenerateMinDisplay(self, self.SavedWidth, 720) self.mod_Pygame__.display.flip() clock.tick(60) for event in self.mod_Pygame__.event.get(): if event.type == self.mod_Pygame__.QUIT: self.Stop_Thread_Event.set() self.Thread_StartLongThread.join() self.Thread_AdaptiveMode.join() self.Thread_StartLongThread.join() self.mod_Pygame__.quit() self.mod_Sys__.exit("Thanks for playing") quit() if ((self.realHeight-PycraftTextHeight)/2)-y <= 0: self.RunFullStartup = False return None except Exception as Message: self.RunFullStartup = False return Message else: print("You need to run this as part of Pycraft") import tkinter as tk from tkinter import messagebox root = tk.Tk() root.withdraw() messagebox.showerror("Startup Fail", "You need to run this as part of Pycraft, please run the 'main.py' file") quit()
53.361111
141
0.511322
7,307
0.950937
0
0
0
0
0
0
394
0.051275
c30f35ba35fbd12a0fe79d62b724f5343db144f1
2,985
py
Python
kattishunter/kattis/submission.py
ParksProjets/kattis-hunter
c4990edf59fba6d91d22fdc126673781ab423d0f
[ "MIT" ]
null
null
null
kattishunter/kattis/submission.py
ParksProjets/kattis-hunter
c4990edf59fba6d91d22fdc126673781ab423d0f
[ "MIT" ]
null
null
null
kattishunter/kattis/submission.py
ParksProjets/kattis-hunter
c4990edf59fba6d91d22fdc126673781ab423d0f
[ "MIT" ]
null
null
null
""" Submit files for a Kattis problem. Copyright (C) 2019, Guillaume Gonnet This project is under the MIT license. """ import os.path as path import re from typing import Dict, List, Text import requests import logging from .login import login logger = logging.getLogger(__name__) # Base headers to use. HEADERS = { "Accept": "text/html, application/xhtml+xml, application/xml;q=0.9, */*;q=0.8", "Accept-Language": "en-US,en;q=0.5", } def retreive_csrf_token(config: Dict, pid: Text, retry = True): "Retreive CSRF token from the submit page." # Setup headers to send. headers = HEADERS.copy() headers["User-Agent"] = config["cache"]["user-agent"] # Make the GET request. url = config["url"]["submit"].format(pid=pid) cookies = config["cache"].get("cookies", {}) res = requests.get(url, headers=headers, cookies=cookies, allow_redirects=False) config["cache"]["cookies"] = {**cookies, **res.cookies.get_dict()} # Not logged, try to login first. if res.status_code != 200: if not retry: logger.critical("Can't retrieve submit page from Kattis.") login(config) return retreive_csrf_token(config, pid, False) # Find the CSRF token in response body. pattern = r"name=\"csrf_token\".*?value=\"([0-9a-z]+)\"" match = re.search(pattern, res.text) if match is None: logger.critical("Can't find CSRF token in submit page.") return match.group(1) def read_file(filename: Text): "Read a single file to send." with open(filename, "rb") as file: return file.read() def read_files(files: List[Text]): "Read files to send." return [( "sub_file[]", (path.basename(file), read_file(file), "application/octet-stream") ) for file in files] def submit_kattis(config: Dict, pid: Text, files: List[Text]): "Submit files to a Kattis problem." # Setup headers to send. headers = HEADERS.copy() headers["User-Agent"] = config["cache"]["user-agent"] # Setup data to send. data = { "csrf_token": retreive_csrf_token(config, pid), "type": "files", "sub_code": "", "problem": pid, "language": "C++", "submit": "Submit", "submit_ctr": 10 } # URL, files and cookies to use. url = config["url"]["submit"].format(pid=pid) files = read_files(files) cookies = config["cache"]["cookies"] # Make the POST request. logger.debug("Submitting %d files for '%s'.", len(files), pid) res = requests.post(url, data=data, files=files, headers=headers, cookies=cookies) config["cache"]["cookies"] = {**cookies, **res.cookies.get_dict()} # Find submisson ID. match = re.match(r"^.*/submissions/([0-9]+)$", res.url) if not match: logger.critical("Can't find submission ID from URL '%s'.", res.url) sid = match.group(1) logger.debug("Files sent to submission %s.", sid) return sid
26.415929
83
0.622781
0
0
0
0
0
0
0
0
1,159
0.388275
c30f9cd42abaa561a1c9cda944cad65e60a4fabe
785
py
Python
scripts/set_health_led.py
alanmitchell/mini-monitor
5d60e1f69fc61d53f3090a159445595a9987c36a
[ "Apache-2.0" ]
7
2016-01-11T23:54:31.000Z
2022-02-16T11:58:16.000Z
scripts/set_health_led.py
alanmitchell/mini-monitor
5d60e1f69fc61d53f3090a159445595a9987c36a
[ "Apache-2.0" ]
null
null
null
scripts/set_health_led.py
alanmitchell/mini-monitor
5d60e1f69fc61d53f3090a159445595a9987c36a
[ "Apache-2.0" ]
5
2015-12-17T15:22:45.000Z
2018-08-13T17:40:38.000Z
#!/usr/bin/env python3 """Script to do basic health checks of the system and turn on an LED on BCM pin 12 (pin 32 on header) if they pass, turn Off otherwise. """ import time import RPi.GPIO as GPIO import subprocess # The BCM pin number that the LED is wired to. When the pin # is at 3.3V the LED is On. LED_PIN = 12 GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) GPIO.setup(LED_PIN, GPIO.OUT) # ----- Test for Internet availability. # Try to ping for a minute before declaring that the Internet # is not available internet_available = False for i in range(12): if subprocess.call('/bin/ping -q -c1 8.8.8.8', shell=True) == 0: internet_available = True break time.sleep(5) # Set LED according to results of test GPIO.output(LED_PIN, internet_available)
25.322581
71
0.71465
0
0
0
0
0
0
0
0
430
0.547771
c30fa03b89f6de54fae9f895f13e66390afbeacc
2,676
py
Python
vqa_txt_data/compare_experiment_results.py
billyang98/UNITER
c7f0833f14aa9dcb1e251a986c72e49edde1bdd4
[ "MIT" ]
null
null
null
vqa_txt_data/compare_experiment_results.py
billyang98/UNITER
c7f0833f14aa9dcb1e251a986c72e49edde1bdd4
[ "MIT" ]
null
null
null
vqa_txt_data/compare_experiment_results.py
billyang98/UNITER
c7f0833f14aa9dcb1e251a986c72e49edde1bdd4
[ "MIT" ]
null
null
null
import json import numpy as np from tqdm import tqdm # Change these based on experiment #exp_dataset = 'mask_char_oov_test_set.db' #exp_name = 'results_test_mask_char' #exp_dataset = 'mask_2_oov_test_set.db' #exp_name = 'results_test_mask_2' #exp_dataset = 'mask_2_oov_test_set.db' #exp_name = 'results_test_synonyms_mask_2_ensemble_all_5' #exp_dataset = 'synonyms_mask_char_l03_oov_test_set.db' #exp_name = 'results_test_synonyms_mask_char_l03' #exp_dataset = 'synonyms_mask_char_03m_oov_test_set.db' #exp_name = 'results_test_synonyms_mask_char_03m' #exp_dataset = 'synonyms_mask_2_03l_oov_test_set.db' #exp_name = 'results_test_synonyms_mask_2_03l' exp_dataset = 'mask_2_oov_test_set.db' exp_name = 'results_test_synonyms_mask_2_fixed' q_list_file = '/scratch/cluster/billyang/vqa_dataset/txt_db/oov_datasets/{}/questions_changed.json'.format(exp_dataset) exp_ans_file = '/scratch/cluster/billyang/uniter_image/vqa_joint_trained/{}/results_3000_all.json'.format(exp_name) #exp_ans_file = '/scratch/cluster/billyang/uniter_image/vqa_joint_fixed_trained/{}/results_3000_all.json'.format(exp_name) q_list = json.load(open(q_list_file)) exp_ans_list = json.load(open(exp_ans_file)) baseline_ans_list = json.load(open('/scratch/cluster/billyang/uniter_image/vqa_joint_trained/results_test_normal_test/results_3000_all.json')) #baseline_ans_list = json.load(open('/scratch/cluster/billyang/uniter_image/vqa_joint_fixed_trained/results_test_normal_test_fixed/results_3000_all.json')) exp_ans = {o['question_id']: o['answer'] for o in exp_ans_list} baseline_ans = {o['question_id']: o['answer'] for o in baseline_ans_list} gt_ans = json.load(open('oov_test_full_answers.json')) results = {} results['num_questions'] = len(q_list) exp_tot_score = 0 bl_tot_score = 0 rtw = [] wtr = [] def getscore(answer, answers, scores): if answer in answers: return scores[answers.index(answer)] return 0 for qid in tqdm(q_list): exp_score = getscore(exp_ans[qid], gt_ans[qid]['strings'], gt_ans[qid]['scores']) exp_tot_score += exp_score bl_score = getscore(baseline_ans[qid], gt_ans[qid]['strings'], gt_ans[qid]['scores']) bl_tot_score += bl_score if exp_score > 0 and bl_score == 0: wtr.append(qid) if bl_score > 0 and exp_score == 0: rtw.append(qid) results['exp_score'] = exp_tot_score / len(q_list) results['bl_score'] = bl_tot_score / len(q_list) results['rtw'] = rtw results['wtr'] = wtr results['rtw_count'] = len(rtw) results['wtr_count'] = len(wtr) print("dumping") json.dump(results, open('{}.json'.format(exp_name), 'w')) # get new scores # find answers wrong to right # find answers right to wrong
32.240964
155
0.763079
0
0
0
0
0
0
0
0
1,463
0.546712
c31181ed7742f029eee26ce5c90c82ae4b887fbd
528
py
Python
app/articles/forms.py
AlexRAV/flask-blog
df8036e01794914ca0e88856ed93f8a91cc1d47a
[ "BSD-3-Clause" ]
null
null
null
app/articles/forms.py
AlexRAV/flask-blog
df8036e01794914ca0e88856ed93f8a91cc1d47a
[ "BSD-3-Clause" ]
null
null
null
app/articles/forms.py
AlexRAV/flask-blog
df8036e01794914ca0e88856ed93f8a91cc1d47a
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """Article forms.""" from flask_wtf import Form, FlaskForm from wtforms import PasswordField, StringField, TextAreaField from wtforms.validators import DataRequired, Email, EqualTo, Length class NewArticleForm(FlaskForm): title = StringField('Article title', validators=[DataRequired(), Length(min=5, max=200)]) body = TextAreaField('Article body', validators=[DataRequired(), Length(min=50)]) class NewCommentForm(FlaskForm): body = TextAreaField('Comment', validators=[DataRequired()])
35.2
93
0.746212
309
0.585227
0
0
0
0
0
0
81
0.153409
c3119f2506c627ca857b498eb0bfe45c4bd66fbc
9,582
py
Python
dataanalysis.py
Rev-Jiang/Python
c91d5724a6843f095bfe1a05f65d9fc885e01b88
[ "MIT" ]
null
null
null
dataanalysis.py
Rev-Jiang/Python
c91d5724a6843f095bfe1a05f65d9fc885e01b88
[ "MIT" ]
null
null
null
dataanalysis.py
Rev-Jiang/Python
c91d5724a6843f095bfe1a05f65d9fc885e01b88
[ "MIT" ]
null
null
null
#-*- coding: UTF-8 -*- #上句表示可用中文注释,否则默认ASCII码保存 # Filename : dataanalysis.py # author by : Rev_997 import numpy as np import pandas as pd import matplotlib.pyplot as plt def isiterable(obj): try: iter(obj) return True except TypeError:#not iterable return False #if it is not list or NumPy, transfer it if not isinstance(x,list) and isiterable(x): x=list(x) #is and is not are used to judge if the varible is None, as None is unique. a=None a is None import datetime dt=datetime(2011,10,29,20,30,21) dt.day dt.minute dt.date() dt.time() #datetime could be transfered to string by function striftime dt.strftime('%m/%d/%Y %H:%M') #string could be transfered to datetime by function strptime datetime.strptime('20091031','%Y%m%d') #substitute 0 for minutes and seconds dt.replace(minute=0,second=0) #the difference of two datetime objects produce a datetime.timedelta dt2=datetime(2011,11,15,22,30) delta=dt2-dt delta type(delta) #add a timedelta to a datetime -- get a now datetime dt+delta #if elif else if x: pass elif: pass else: pass #for for value in collection: #do something wuth value #continue #break for a,b,c in iterator: #do something #while x=256 total=0 while x>0: if total>500: break total+=x x=x//2 def attempt_float(x): try: return float(x) except: return x #once the float(x) is invalid, the except works def attempt_float(x): try: return float(x) except(TypeError,ValueError): return x #catch the abnormity #value=true-expr if condition else false-expr #same as ''' if condition: value=true-expr else: value=false-expr ''' #about tuple tup=4,5,6 tup #(4,5,6) #transfer to tuple tuple([4,0,2]) tuple('string') #tuple use + to generate longer tuple #tuple.append() #tuple.count() #list.append() #list.insert() #list.pop() #list.remove() #list.extend() #list.sort() import bisect c=[1,2,2,2,3,4,7] #find the suitable position bisect.bisect(c,2) #insert the new number bisect.insort(c,6) ###attention: bisect is suitable for ordered sequence #---------------------------------------------------------------- #some function of list #enumerate for i,value in enumerate(collection): #do something with value some_list=['foo','bar','baz'] mapping=dict((v,i) for i,v in enumerate(some_list)) mapping #sorted sorted([7,2,4,6,3,5,2]) sorted('horse race') #powerful with set sorted(set('this is just some string')) #zip seq1=['foo','bar','baz'] seq2=['one','two','three'] zip(seq1,seq2) seq3=[False,True] zip(seq1,seq2,seq3) #several arrays iterate together with zip for i,(a,b) in enumerate(zip(seq1,seq2)): print('%d: %s, %s' % (i,a,b)) #unzip pitchers=[('Nolan','Ryan'),('Roger','Clemens'),('Schilling','Curt')] first_names,last_names=zip(*pitchers)# * is meant zip(seq[0],seq[1],...,seq[len(seq)-1]) first_names last_names #reversed list(reversed(range(10))) #dictionary empty_dict={}d1={'a':'some value','b':[1,2,3,4]} d1 #delete del d1[5] #or ret=d1.pop('dummy') ret #get keys and values d1.keys() d1.values() #combine two dictionaries d1.update({'b':'foo','c':12}) d1 #match two list to be dictionary ''' mapping={} for key,value in zip(key_list,value_list): mapping[key]=value ''' mapping=dict(zip(range(5),reversed(range(5)))) mapping #brief way to express circulation by dict ''' if key in some_dict: value=some_dict[key] else: value=default_value ''' value=some_dict.get(key,default_values) #the vlaue of dictionary is set as other list ''' words=['apple','bat','bar','atom','book'] by_letter={} for word in words: letter=word[0] if letter not in by_letter: by_letter[letter]=[word] else: by_letter[letter].append(word) by_letter ''' by_letter.setdefault(letter,[]).append(word) #or use defaultdict class in Module collections from collections import defaultdict by_letter=defaultdict(list) for word in words: by_letter[word[0]].append(word) #the key of dictionary should be of hashability--unchangable hash('string') hash((1,2,(2,3))) hash((1,2,[3,4]))#no hashability as list is changable #to change a list to tuple is the easiest way to make it a key d={} d[tuple([1,2,3])]=5 d #set set([2,2,2,1,3,3]) {2,2,2,1,3,3} a={1,2,3,4,5} b={3,4,5,6,7,8} #intersection a|b #union a&b #difference a-b #symmetric difference a^b #if is subset a_set={1,2,3,4,5} {1,2,3}.issubset(a_set) a_set.issuperset({1,2,3}) #set could use the == to judge if the same {1,2,3}=={3,2,1} #the operation of the sets a.add(x) a.remove(x) a.union(b) a.intersection(b) a.difference(b) a.symmetric_difference(b) a.issubset(b) a.issuperset(b) a.isdisjoint(b) #the derivative of list&set&dictionary ''' [expr for val in collection if condition] is the same as result=[] for val in collection: if condition: result.append(expr) ''' #list #[expr for val in collection if condition] strings=['a','as','bat','car','dove','python'] [x.upper() for x in strings if len(x)>2] #dicrionary #dict_comp={key-expr:value-expr for value in collection if condition} loc_mapping={val:index for index, val in enumerate(string)} loc_mapping #or loc_mapping=dict((val,idx) for idx, val in enumerate(string)) #set #set_comp={expr for value in collection if condition} unique_lengths={len(x) for x in strings} unique_lengths #list nesting derivative all_data=[['Tom','Billy','Jeffery','Andrew','Wesley','Steven','Joe'], ['Susie','Casey','Jill','Ana','Eva','Jennifer','Stephanie']] #find the names with two 'e' and put them in a new list names_of_interest=[] for name in all_data: enough_es=[name for name in names if name.count('e')>2] names_of_interest.extend(enough_es) #which could be shorten as below: result=[name for names in all_data for name in names if name.count('e')>=2] result #flat a list consist of tuples some_tuples=[(1,2,3),(4,5,6),(7,8,9)] flattened=[x for tup in some_tuples for x in tup] flattened ''' flattened=[] for tup in some_tuples: for x in tup: flattened.append(x) ''' #which is different from: [[x for x in tup] for tup in some_tuples] #clean function import re def clean_strings(strings): result=[] for value in strings: value=value.strip() value=re.sub('[!#?]','',value) #Remove punctuation marks value=value.title() result.append(value) return result states=[' Alabama ','Georgia!','Georgia','georgia','FlOrIda','south carolina##','West virginia?'] clean_strings(states) #or def remove_punctuation(value): return re.sub('[!#?]','',value) clean_ops=[str.strip,remove_punctuation,str.title] def clean_strings(strings,ops): result=[] for value in strings: for function in ops: value=function(value) result.append(value) return result clean_strings(states,clean_ops) #anonymous function #lambda [arg1[, arg2, ... argN]]: expression #exmaple 1 #use def define function def add( x, y ): return x + y #use lambda expression lambda x, y: x + y #lambda permits default parameter lambda x, y = 2: x + y lambda *z: z #call lambda function a = lambda x, y: x + y a( 1, 3 ) b = lambda x, y = 2: x + y b( 1 ) b( 1, 3 ) c = lambda *z: z c( 10, 'test') #example2 #use def define function def add( x, y ): return x + y #use lambda expression lambda x, y: x + y #lambda permits default parameter lambda x, y = 2: x + y lambda *z: z #call lambda function a = lambda x, y: x + y a( 1, 3 ) b = lambda x, y = 2: x + y b( 1 ) b( 1, 3 ) c = lambda *z: z c( 10, 'test') #example 3 def apply_to_list(some_list,f): return [f(x) for x in some_list] ints=[4,0,1,5,6] apply_to_list(ints,lambda x:x*2) #example 4 strings=['foo','card','bar','aaaa','abab'] strings.sort(key=lambda x: len(set(list(x)))) strings #currying ''' def add_numbers(x,y): return x+y add_five=lambda y:add_numbers(5,y) ''' #partial function is to simplify the process from functools import partial add_five=partial(add_numbers,5) #generator expression gen=(x**2 for x in xxrange(100)) gen #the same: def _make_gen(): for x in xrange(100): yield x**2 gen=_make_gen() #generator expression could be used in any python function acceptable of generator sum(x**2 for x in xrange(100)) dict((i,i**2) for i in xrange(5)) #itertools module import itertools first_letter=lambda x:x[0] names=['Alan','Adam','Wes','Will','Albert','Steven'] for letter,names in itertools.groupby(names,first_letter): print letter,list(names) #names is a genetator #some functions in itertools imap(func,*iterables) ifilter(func,iterable) combinations(iterable,k) permutations(iterable,k) groupby(iterable[,keyfunc]) #documents and operation system path='xxx.txt' f=open(path) for line in f: pass #remove EOL of every line lines=[x.rstrip() for x in open(path)] lines #set a empty-lineproof doc with open('tmp.txt','w') as handle: handle.writelines(x for x in open(path) if len(x)>1) open('tmp.txt').readlines() #some function to construct documents read([size]) readlines([size]) write(str) close() flush() seek(pos) tell() closed
20.08805
100
0.644124
0
0
63
0.00655
0
0
0
0
4,392
0.456644
c311dcd3f870bbdf6b67118d6ccc561653945f40
259
py
Python
show_model_info.py
panovr/Brain-Tumor-Segmentation
bf1ac2360af46a484d632474ce93de339ad2b496
[ "MIT" ]
null
null
null
show_model_info.py
panovr/Brain-Tumor-Segmentation
bf1ac2360af46a484d632474ce93de339ad2b496
[ "MIT" ]
null
null
null
show_model_info.py
panovr/Brain-Tumor-Segmentation
bf1ac2360af46a484d632474ce93de339ad2b496
[ "MIT" ]
null
null
null
import bts.model as model import torch device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') BATCH_SIZE = 6 FILTER_LIST = [16,32,64,128,256] unet_model = model.DynamicUNet(FILTER_LIST) unet_model.summary(batch_size=BATCH_SIZE, device=device)
28.777778
69
0.783784
0
0
0
0
0
0
0
0
11
0.042471
c31289e9e024e29ebc9122d648b85bcf484eedb5
1,031
py
Python
docs/source/conf.py
andriis/bravado
0d2ef182df4eb38641282e2f839c4dc813ee4349
[ "BSD-3-Clause" ]
600
2015-05-20T00:37:21.000Z
2022-03-09T03:48:38.000Z
docs/source/conf.py
andriis/bravado
0d2ef182df4eb38641282e2f839c4dc813ee4349
[ "BSD-3-Clause" ]
323
2015-05-19T22:35:29.000Z
2021-12-09T12:55:09.000Z
docs/source/conf.py
andriis/bravado
0d2ef182df4eb38641282e2f839c4dc813ee4349
[ "BSD-3-Clause" ]
137
2015-05-14T19:51:58.000Z
2022-01-31T19:36:32.000Z
# -*- coding: utf-8 -*- import sphinx_rtd_theme # -- General configuration ----------------------------------------------- extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = u'bravado' copyright = u'2013, Digium, Inc.; 2014-2015, Yelp, Inc' exclude_patterns = [] pygments_style = 'sphinx' autoclass_content = 'both' # -- Options for HTML output --------------------------------------------- html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] html_static_path = ['_static'] htmlhelp_basename = 'bravado-pydoc' intersphinx_mapping = { 'python': ('http://docs.python.org/', None), 'bravado-core': ('https://bravado-core.readthedocs.io/en/latest/', None), }
22.413043
77
0.645975
0
0
0
0
0
0
0
0
639
0.619787
c313212d51b9e2cc91e003a4faa89dafdee74dd8
13,900
py
Python
edgedb/_testbase.py
Fogapod/edgedb-python
377805660e3455bef536412bd5467b435753b3a5
[ "Apache-2.0" ]
null
null
null
edgedb/_testbase.py
Fogapod/edgedb-python
377805660e3455bef536412bd5467b435753b3a5
[ "Apache-2.0" ]
null
null
null
edgedb/_testbase.py
Fogapod/edgedb-python
377805660e3455bef536412bd5467b435753b3a5
[ "Apache-2.0" ]
null
null
null
# # This source file is part of the EdgeDB open source project. # # Copyright 2016-present MagicStack Inc. and the EdgeDB authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import asyncio import atexit import contextlib import functools import inspect import json import logging import os import re import unittest import edgedb from edgedb import _cluster as edgedb_cluster @contextlib.contextmanager def silence_asyncio_long_exec_warning(): def flt(log_record): msg = log_record.getMessage() return not msg.startswith('Executing ') logger = logging.getLogger('asyncio') logger.addFilter(flt) try: yield finally: logger.removeFilter(flt) _default_cluster = None def _init_cluster(data_dir=None, *, cleanup_atexit=True): if (not os.environ.get('EDGEDB_DEBUG_SERVER') and not os.environ.get('EDGEDB_LOG_LEVEL')): _env = {'EDGEDB_LOG_LEVEL': 'silent'} else: _env = {} if data_dir is None: cluster = edgedb_cluster.TempCluster(env=_env, testmode=True) destroy = True else: cluster = edgedb_cluster.Cluster(data_dir=data_dir, env=_env) destroy = False if cluster.get_status() == 'not-initialized': cluster.init() cluster.start(port='dynamic') cluster.set_superuser_password('test') if cleanup_atexit: atexit.register(_shutdown_cluster, cluster, destroy=destroy) return cluster def _start_cluster(*, cleanup_atexit=True): global _default_cluster if _default_cluster is None: cluster_addr = os.environ.get('EDGEDB_TEST_CLUSTER_ADDR') if cluster_addr: conn_spec = json.loads(cluster_addr) _default_cluster = edgedb_cluster.RunningCluster(**conn_spec) else: data_dir = os.environ.get('EDGEDB_TEST_DATA_DIR') _default_cluster = _init_cluster( data_dir=data_dir, cleanup_atexit=cleanup_atexit) return _default_cluster def _shutdown_cluster(cluster, *, destroy=True): cluster.stop() if destroy: cluster.destroy() class TestCaseMeta(type(unittest.TestCase)): _database_names = set() @staticmethod def _iter_methods(bases, ns): for base in bases: for methname in dir(base): if not methname.startswith('test_'): continue meth = getattr(base, methname) if not inspect.iscoroutinefunction(meth): continue yield methname, meth for methname, meth in ns.items(): if not methname.startswith('test_'): continue if not inspect.iscoroutinefunction(meth): continue yield methname, meth @classmethod def wrap(mcls, meth): @functools.wraps(meth) def wrapper(self, *args, __meth__=meth, **kwargs): try_no = 1 while True: try: # There might be unobvious serializability # anomalies across the test suite, so, rather # than hunting them down every time, simply # retry the test. self.loop.run_until_complete( __meth__(self, *args, **kwargs)) except edgedb.TransactionSerializationError: if try_no == 3: raise else: self.loop.run_until_complete(self.con.execute( 'ROLLBACK;' )) try_no += 1 else: break return wrapper @classmethod def add_method(mcls, methname, ns, meth): ns[methname] = mcls.wrap(meth) def __new__(mcls, name, bases, ns): for methname, meth in mcls._iter_methods(bases, ns.copy()): if methname in ns: del ns[methname] mcls.add_method(methname, ns, meth) cls = super().__new__(mcls, name, bases, ns) if not ns.get('BASE_TEST_CLASS') and hasattr(cls, 'get_database_name'): dbname = cls.get_database_name() if name in mcls._database_names: raise TypeError( f'{name} wants duplicate database name: {dbname}') mcls._database_names.add(name) return cls class TestCase(unittest.TestCase, metaclass=TestCaseMeta): @classmethod def setUpClass(cls): loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) cls.loop = loop @classmethod def tearDownClass(cls): cls.loop.close() asyncio.set_event_loop(None) def add_fail_notes(self, **kwargs): if not hasattr(self, 'fail_notes'): self.fail_notes = {} self.fail_notes.update(kwargs) @contextlib.contextmanager def annotate(self, **kwargs): # Annotate the test in case the nested block of code fails. try: yield except Exception: self.add_fail_notes(**kwargs) raise @contextlib.contextmanager def assertRaisesRegex(self, exception, regex, msg=None, **kwargs): with super().assertRaisesRegex(exception, regex, msg=msg): try: yield except BaseException as e: if isinstance(e, exception): for attr_name, expected_val in kwargs.items(): val = getattr(e, attr_name) if val != expected_val: raise self.failureException( f'{exception.__name__} context attribute ' f'{attr_name!r} is {val} (expected ' f'{expected_val!r})') from e raise class ClusterTestCase(TestCase): BASE_TEST_CLASS = True @classmethod def setUpClass(cls): super().setUpClass() cls.cluster = _start_cluster(cleanup_atexit=True) class ConnectedTestCaseMixin: @classmethod async def connect(cls, *, cluster=None, database='edgedb', user='edgedb', password='test'): conargs = cls.get_connect_args( cluster=cluster, database=database, user=user, password=password) return await edgedb.async_connect(**conargs) @classmethod def get_connect_args(cls, *, cluster=None, database='edgedb', user='edgedb', password='test'): if cluster is None: cluster = cls.cluster conargs = cluster.get_connect_args().copy() conargs.update(dict(user=user, password=password, database=database)) return conargs class DatabaseTestCase(ClusterTestCase, ConnectedTestCaseMixin): SETUP = None TEARDOWN = None SCHEMA = None SETUP_METHOD = None TEARDOWN_METHOD = None # Some tests may want to manage transactions manually, # in which case ISOLATED_METHODS will be False. ISOLATED_METHODS = True # Turns on "EdgeDB developer" mode which allows using restricted # syntax like FROM SQL and similar. It allows modifying standard # library (e.g. declaring casts). INTERNAL_TESTMODE = True BASE_TEST_CLASS = True def setUp(self): if self.INTERNAL_TESTMODE: self.loop.run_until_complete( self.con.execute( 'CONFIGURE SESSION SET __internal_testmode := true;')) if self.ISOLATED_METHODS: self.xact = self.con.transaction() self.loop.run_until_complete(self.xact.start()) if self.SETUP_METHOD: self.loop.run_until_complete( self.con.execute(self.SETUP_METHOD)) super().setUp() def tearDown(self): try: if self.TEARDOWN_METHOD: self.loop.run_until_complete( self.con.execute(self.TEARDOWN_METHOD)) finally: try: if self.ISOLATED_METHODS: self.loop.run_until_complete(self.xact.rollback()) del self.xact if self.con.is_in_transaction(): self.loop.run_until_complete( self.con.execute('ROLLBACK')) raise AssertionError( 'test connection is still in transaction ' '*after* the test') if not self.ISOLATED_METHODS: self.loop.run_until_complete( self.con.execute('RESET ALIAS *;')) finally: super().tearDown() @classmethod def setUpClass(cls): super().setUpClass() dbname = cls.get_database_name() cls.admin_conn = None cls.con = None class_set_up = os.environ.get('EDGEDB_TEST_CASES_SET_UP') # Only open an extra admin connection if necessary. if not class_set_up: script = f'CREATE DATABASE {dbname};' cls.admin_conn = cls.loop.run_until_complete(cls.connect()) cls.loop.run_until_complete(cls.admin_conn.execute(script)) cls.con = cls.loop.run_until_complete(cls.connect(database=dbname)) if not class_set_up: script = cls.get_setup_script() if script: # The setup is expected to contain a CREATE MIGRATION, # which needs to be wrapped in a transaction. tx = cls.con.transaction() cls.loop.run_until_complete(tx.start()) cls.loop.run_until_complete(cls.con.execute(script)) cls.loop.run_until_complete(tx.commit()) del tx @classmethod def get_database_name(cls): if cls.__name__.startswith('TestEdgeQL'): dbname = cls.__name__[len('TestEdgeQL'):] elif cls.__name__.startswith('Test'): dbname = cls.__name__[len('Test'):] else: dbname = cls.__name__ return dbname.lower() @classmethod def get_setup_script(cls): script = '' # Look at all SCHEMA entries and potentially create multiple # modules, but always create the 'test' module. schema = ['\nmodule test {}'] for name, val in cls.__dict__.items(): m = re.match(r'^SCHEMA(?:_(\w+))?', name) if m: module_name = (m.group(1) or 'test').lower().replace( '__', '.') with open(val, 'r') as sf: module = sf.read() schema.append(f'\nmodule {module_name} {{ {module} }}') # Don't wrap the script into a transaction here, so that # potentially it's easier to stitch multiple such scripts # together in a fashion similar to what `edb inittestdb` does. script += f'\nSTART MIGRATION TO {{ {"".join(schema)} }};' script += f'\nPOPULATE MIGRATION; \nCOMMIT MIGRATION;' if cls.SETUP: if not isinstance(cls.SETUP, (list, tuple)): scripts = [cls.SETUP] else: scripts = cls.SETUP for scr in scripts: if '\n' not in scr and os.path.exists(scr): with open(scr, 'rt') as f: setup = f.read() else: setup = scr script += '\n' + setup return script.strip(' \n') @classmethod def tearDownClass(cls): script = '' class_set_up = os.environ.get('EDGEDB_TEST_CASES_SET_UP') if cls.TEARDOWN and not class_set_up: script = cls.TEARDOWN.strip() try: if script: cls.loop.run_until_complete( cls.con.execute(script)) finally: try: cls.loop.run_until_complete(cls.con.aclose()) if not class_set_up: dbname = cls.get_database_name() script = f'DROP DATABASE {dbname};' cls.loop.run_until_complete( cls.admin_conn.execute(script)) finally: try: if cls.admin_conn is not None: cls.loop.run_until_complete( cls.admin_conn.aclose()) finally: super().tearDownClass() class AsyncQueryTestCase(DatabaseTestCase): BASE_TEST_CLASS = True class SyncQueryTestCase(DatabaseTestCase): BASE_TEST_CLASS = True def setUp(self): super().setUp() cls = type(self) cls.async_con = cls.con conargs = cls.get_connect_args().copy() conargs.update(dict(database=cls.async_con.dbname)) cls.con = edgedb.connect(**conargs) def tearDown(self): cls = type(self) cls.con.close() cls.con = cls.async_con del cls.async_con _lock_cnt = 0 def gen_lock_key(): global _lock_cnt _lock_cnt += 1 return os.getpid() * 1000 + _lock_cnt
30.151844
79
0.566403
11,150
0.802158
1,817
0.130719
7,936
0.570935
350
0.02518
2,480
0.178417
c315663a28ae143f4027a8b0b899801904c9cfc7
824
py
Python
konwledge_extraction/ner/bert_crf_ner/losses/focal_loss.py
mlshenkai/KGQA
08e72d68da6519aaca7f39fabf8c0194bebd0314
[ "Apache-2.0" ]
null
null
null
konwledge_extraction/ner/bert_crf_ner/losses/focal_loss.py
mlshenkai/KGQA
08e72d68da6519aaca7f39fabf8c0194bebd0314
[ "Apache-2.0" ]
null
null
null
konwledge_extraction/ner/bert_crf_ner/losses/focal_loss.py
mlshenkai/KGQA
08e72d68da6519aaca7f39fabf8c0194bebd0314
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # @Author: Kai Shen # @Created Time: 2022/2/23 10:14 AM # @Organization: YQN # @Email: [email protected] import torch import torch.nn as nn import torch.nn.functional as F class FocalLoss(nn.Module): def __init__(self, gamma=2, weight=None, ignore_index=-100): super(FocalLoss, self).__init__() self.gamma = gamma self.weight = weight self.ignore_index = ignore_index def forward(self, output, target): """ :param output: [N, CLASS] :param target: [N,] :return: """ logit = F.softmax(output, dim=1) # [N,CLASS] pt = torch.exp(logit) logit = (1 - pt) ** self.gamma * logit # [N, CLASS] loss = F.nll_loss(logit, target, self.weight, ignore_index=self.ignore_index) return loss
28.413793
85
0.598301
625
0.758495
0
0
0
0
0
0
241
0.292476
c3159e702eacd0f494cdd9cb0e3428247b34b8ae
669
py
Python
tests/biology/test_join_fasta.py
shandou/pyjanitor
d7842613b4e4a7532a88f673fd54e94c3ba5a96b
[ "MIT" ]
1
2021-03-25T10:46:57.000Z
2021-03-25T10:46:57.000Z
tests/biology/test_join_fasta.py
shandou/pyjanitor
d7842613b4e4a7532a88f673fd54e94c3ba5a96b
[ "MIT" ]
null
null
null
tests/biology/test_join_fasta.py
shandou/pyjanitor
d7842613b4e4a7532a88f673fd54e94c3ba5a96b
[ "MIT" ]
null
null
null
import importlib import os import pytest from helpers import running_on_ci import janitor.biology # noqa: F403, F401 # Skip all tests if Biopython not installed pytestmark = pytest.mark.skipif( (importlib.util.find_spec("Bio") is None) & ~running_on_ci(), reason="Biology tests relying on Biopython only required for CI", ) @pytest.mark.biology def test_join_fasta(biodf): """Test adding sequence from FASTA file in ``sequence`` column.""" df = biodf.join_fasta( filename=os.path.join(pytest.TEST_DATA_DIR, "sequences.fasta"), id_col="sequence_accession", column_name="sequence", ) assert "sequence" in df.columns
25.730769
71
0.714499
0
0
0
0
330
0.493274
0
0
246
0.367713
c3166bb775db3bf02b0cf82cc41168152ed9ad5b
12,182
py
Python
test/test_tilepyramid.py
ungarj/tilematrix
f5797cf2056f7de8de8f284db40b10943e5e40fb
[ "MIT" ]
16
2016-07-27T22:21:12.000Z
2022-01-15T18:13:43.000Z
test/test_tilepyramid.py
ungarj/tilematrix
f5797cf2056f7de8de8f284db40b10943e5e40fb
[ "MIT" ]
30
2015-10-09T18:10:13.000Z
2022-03-15T16:56:54.000Z
test/test_tilepyramid.py
ungarj/tilematrix
f5797cf2056f7de8de8f284db40b10943e5e40fb
[ "MIT" ]
2
2021-07-30T07:23:13.000Z
2021-09-13T12:24:11.000Z
"""TilePyramid creation.""" import pytest from shapely.geometry import Point from shapely.ops import unary_union from types import GeneratorType from tilematrix import TilePyramid, snap_bounds def test_init(): """Initialize TilePyramids.""" for tptype in ["geodetic", "mercator"]: assert TilePyramid(tptype) with pytest.raises(ValueError): TilePyramid("invalid") with pytest.raises(ValueError): TilePyramid() assert hash(TilePyramid(tptype)) def test_metatiling(): """Metatiling setting.""" for metatiling in [1, 2, 4, 8, 16]: assert TilePyramid("geodetic", metatiling=metatiling) try: TilePyramid("geodetic", metatiling=5) raise Exception() except ValueError: pass def test_tile_size(): """Tile sizes.""" for tile_size in [128, 256, 512, 1024]: tp = TilePyramid("geodetic", tile_size=tile_size) assert tp.tile_size == tile_size def test_intersect(): """Get intersecting Tiles.""" # same metatiling tp = TilePyramid("geodetic") intersect_tile = TilePyramid("geodetic").tile(5, 1, 1) control = {(5, 1, 1)} test_tiles = {tile.id for tile in tp.intersecting(intersect_tile)} assert control == test_tiles # smaller metatiling tp = TilePyramid("geodetic") intersect_tile = TilePyramid("geodetic", metatiling=2).tile(5, 1, 1) control = {(5, 2, 2), (5, 2, 3), (5, 3, 3), (5, 3, 2)} test_tiles = {tile.id for tile in tp.intersecting(intersect_tile)} assert control == test_tiles # bigger metatiling tp = TilePyramid("geodetic", metatiling=2) intersect_tile = TilePyramid("geodetic").tile(5, 1, 1) control = {(5, 0, 0)} test_tiles = {tile.id for tile in tp.intersecting(intersect_tile)} assert control == test_tiles intersect_tile = TilePyramid("geodetic").tile(4, 12, 31) control = {(4, 6, 15)} test_tiles = {tile.id for tile in tp.intersecting(intersect_tile)} assert control == test_tiles # different CRSes tp = TilePyramid("geodetic") intersect_tile = TilePyramid("mercator").tile(5, 1, 1) try: test_tiles = {tile.id for tile in tp.intersecting(intersect_tile)} raise Exception() except ValueError: pass def test_tilepyramid_compare(grid_definition_proj, grid_definition_epsg): """Comparison operators.""" gproj, gepsg = grid_definition_proj, grid_definition_epsg # predefined assert TilePyramid("geodetic") == TilePyramid("geodetic") assert TilePyramid("geodetic") != TilePyramid("geodetic", metatiling=2) assert TilePyramid("geodetic") != TilePyramid("geodetic", tile_size=512) assert TilePyramid("mercator") == TilePyramid("mercator") assert TilePyramid("mercator") != TilePyramid("mercator", metatiling=2) assert TilePyramid("mercator") != TilePyramid("mercator", tile_size=512) # epsg based assert TilePyramid(gepsg) == TilePyramid(gepsg) assert TilePyramid(gepsg) != TilePyramid(gepsg, metatiling=2) assert TilePyramid(gepsg) != TilePyramid(gepsg, tile_size=512) # proj based assert TilePyramid(gproj) == TilePyramid(gproj) assert TilePyramid(gproj) != TilePyramid(gproj, metatiling=2) assert TilePyramid(gproj) != TilePyramid(gproj, tile_size=512) # altered bounds abounds = dict(**gproj) abounds.update(bounds=(-5000000.0, -5000000.0, 5000000.0, 5000000.0)) assert TilePyramid(abounds) == TilePyramid(abounds) assert TilePyramid(gproj) != TilePyramid(abounds) # other type assert TilePyramid("geodetic") != "string" def test_grid_compare(grid_definition_proj, grid_definition_epsg): """Comparison operators.""" gproj, gepsg = grid_definition_proj, grid_definition_epsg # predefined assert TilePyramid("geodetic").grid == TilePyramid("geodetic").grid assert TilePyramid("geodetic").grid == TilePyramid("geodetic", metatiling=2).grid assert TilePyramid("geodetic").grid == TilePyramid("geodetic", tile_size=512).grid assert TilePyramid("mercator").grid == TilePyramid("mercator").grid assert TilePyramid("mercator").grid == TilePyramid("mercator", metatiling=2).grid assert TilePyramid("mercator").grid == TilePyramid("mercator", tile_size=512).grid # epsg based assert TilePyramid(gepsg).grid == TilePyramid(gepsg).grid assert TilePyramid(gepsg).grid == TilePyramid(gepsg, metatiling=2).grid assert TilePyramid(gepsg).grid == TilePyramid(gepsg, tile_size=512).grid # proj based assert TilePyramid(gproj).grid == TilePyramid(gproj).grid assert TilePyramid(gproj).grid == TilePyramid(gproj, metatiling=2).grid assert TilePyramid(gproj).grid == TilePyramid(gproj, tile_size=512).grid # altered bounds abounds = dict(**gproj) abounds.update(bounds=(-5000000.0, -5000000.0, 5000000.0, 5000000.0)) assert TilePyramid(abounds).grid == TilePyramid(abounds).grid assert TilePyramid(gproj).grid != TilePyramid(abounds).grid def test_tile_from_xy(): tp = TilePyramid("geodetic") zoom = 5 # point inside tile p_in = (0.5, 0.5, zoom) control_in = [ ((5, 15, 32), "rb"), ((5, 15, 32), "lb"), ((5, 15, 32), "rt"), ((5, 15, 32), "lt"), ] for tile_id, on_edge_use in control_in: tile = tp.tile_from_xy(*p_in, on_edge_use=on_edge_use) assert tile.id == tile_id assert Point(p_in[0], p_in[1]).within(tile.bbox()) # point is on tile edge p_edge = (0, 0, zoom) control_edge = [ ((5, 16, 32), "rb"), ((5, 16, 31), "lb"), ((5, 15, 32), "rt"), ((5, 15, 31), "lt"), ] for tile_id, on_edge_use in control_edge: tile = tp.tile_from_xy(*p_edge, on_edge_use=on_edge_use) assert tile.id == tile_id assert Point(p_edge[0], p_edge[1]).touches(tile.bbox()) with pytest.raises(ValueError): tp.tile_from_xy(180, -90, zoom, on_edge_use="rb") with pytest.raises(ValueError): tp.tile_from_xy(180, -90, zoom, on_edge_use="lb") tile = tp.tile_from_xy(180, -90, zoom, on_edge_use="rt") assert tile.id == (5, 31, 0) tile = tp.tile_from_xy(180, -90, zoom, on_edge_use="lt") assert tile.id == (5, 31, 63) with pytest.raises(TypeError): tp.tile_from_xy(-180, 90, zoom, on_edge_use="lt") with pytest.raises(TypeError): tp.tile_from_xy(-180, 90, zoom, on_edge_use="rt") tile = tp.tile_from_xy(-180, 90, zoom, on_edge_use="rb") assert tile.id == (5, 0, 0) tile = tp.tile_from_xy(-180, 90, zoom, on_edge_use="lb") assert tile.id == (5, 0, 63) with pytest.raises(ValueError): tp.tile_from_xy(-180, 90, zoom, on_edge_use="invalid") def test_tiles_from_bounds(grid_definition_proj): # global pyramids tp = TilePyramid("geodetic") parent = tp.tile(8, 5, 5) from_bounds = set([t.id for t in tp.tiles_from_bounds(parent.bounds(), 9)]) children = set([t.id for t in parent.get_children()]) assert from_bounds == children # non-global pyramids tp = TilePyramid(grid_definition_proj) parent = tp.tile(8, 0, 0) from_bounds = set([t.id for t in tp.tiles_from_bounds(parent.bounds(), 9)]) children = set([t.id for t in parent.get_children()]) assert from_bounds == children def test_tiles_from_bounds_batch_by_row(): tp = TilePyramid("geodetic") bounds = (0, 0, 90, 90) zoom = 8 tiles = tp.tiles_from_bounds(bounds, zoom, batch_by="row") assert isinstance(tiles, GeneratorType) assert list(tiles) previous_row = None tiles = 0 for tile_row in tp.tiles_from_bounds(bounds, zoom, batch_by="row"): assert isinstance(tile_row, GeneratorType) previous_tile = None for tile in tile_row: tiles += 1 if previous_row is None: if previous_tile is not None: assert tile.col == previous_tile.col + 1 else: if previous_tile is not None: assert tile.col == previous_tile.col + 1 assert tile.row == previous_tile.row assert tile.row == previous_row + 1 previous_tile = tile previous_row = tile.row assert tiles == len(list(tp.tiles_from_bounds(bounds, zoom))) def test_tiles_from_bounds_batch_by_column(): tp = TilePyramid("geodetic") bounds = (0, 0, 90, 90) zoom = 8 tiles = tp.tiles_from_bounds(bounds, zoom, batch_by="column") assert isinstance(tiles, GeneratorType) assert list(tiles) previous_column = None tiles = 0 for tile_column in tp.tiles_from_bounds(bounds, zoom, batch_by="column"): assert isinstance(tile_column, GeneratorType) previous_tile = None for tile in tile_column: tiles += 1 if previous_column is None: if previous_tile is not None: assert tile.row == previous_tile.row + 1 else: if previous_tile is not None: assert tile.row == previous_tile.row + 1 assert tile.col == previous_tile.col assert tile.col == previous_column + 1 previous_tile = tile previous_column = tile.col assert tiles == len(list(tp.tiles_from_bounds(bounds, zoom))) def test_tiles_from_bounds_batch_by_row_antimeridian_bounds(): tp = TilePyramid("geodetic") bounds = (0, 0, 185, 95) zoom = 8 tiles = tp.tiles_from_bounds(bounds, zoom, batch_by="row") assert isinstance(tiles, GeneratorType) assert list(tiles) previous_row = None tiles = 0 for tile_row in tp.tiles_from_bounds(bounds, zoom, batch_by="row"): assert isinstance(tile_row, GeneratorType) previous_tile = None for tile in tile_row: tiles += 1 if previous_row is None: if previous_tile is not None: assert tile.col > previous_tile.col else: if previous_tile is not None: assert tile.col > previous_tile.col assert tile.row == previous_tile.row assert tile.row > previous_row previous_tile = tile previous_row = tile.row assert tiles == len(list(tp.tiles_from_bounds(bounds, zoom))) def test_tiles_from_bounds_batch_by_row_both_antimeridian_bounds(): tp = TilePyramid("geodetic") bounds = (-185, 0, 185, 95) zoom = 8 tiles = tp.tiles_from_bounds(bounds, zoom, batch_by="row") assert isinstance(tiles, GeneratorType) assert list(tiles) previous_row = None tiles = 0 for tile_row in tp.tiles_from_bounds(bounds, zoom, batch_by="row"): assert isinstance(tile_row, GeneratorType) previous_tile = None for tile in tile_row: tiles += 1 if previous_row is None: if previous_tile is not None: assert tile.col == previous_tile.col + 1 else: if previous_tile is not None: assert tile.col == previous_tile.col + 1 assert tile.row == previous_tile.row assert tile.row == previous_row + 1 previous_tile = tile previous_row = tile.row assert tiles == len(list(tp.tiles_from_bounds(bounds, zoom))) def test_snap_bounds(): bounds = (0, 1, 2, 3) tp = TilePyramid("geodetic") zoom = 8 snapped = snap_bounds(bounds=bounds, tile_pyramid=tp, zoom=zoom) control = unary_union( [tile.bbox() for tile in tp.tiles_from_bounds(bounds, zoom)] ).bounds assert snapped == control pixelbuffer = 10 snapped = snap_bounds( bounds=bounds, tile_pyramid=tp, zoom=zoom, pixelbuffer=pixelbuffer ) control = unary_union( [tile.bbox(pixelbuffer) for tile in tp.tiles_from_bounds(bounds, zoom)] ).bounds assert snapped == control def test_deprecated(): tp = TilePyramid("geodetic") assert tp.type assert tp.srid assert tp.tile_x_size(0) assert tp.tile_y_size(0) assert tp.tile_height(0) assert tp.tile_width(0)
34.315493
86
0.64111
0
0
0
0
0
0
0
0
1,057
0.086767
c316f38f732cf3a6b4ada4ff98b624a3bbbf8f67
1,180
py
Python
setup.py
giovannicuriel/report_builder
e728e77d7647f248198e39521278ed246171b256
[ "BSD-2-Clause" ]
null
null
null
setup.py
giovannicuriel/report_builder
e728e77d7647f248198e39521278ed246171b256
[ "BSD-2-Clause" ]
null
null
null
setup.py
giovannicuriel/report_builder
e728e77d7647f248198e39521278ed246171b256
[ "BSD-2-Clause" ]
1
2019-11-25T12:51:29.000Z
2019-11-25T12:51:29.000Z
# -*- coding: utf-8 -*- """ setup.py script """ import io from collections import OrderedDict from setuptools import setup, find_packages with io.open('README.md', 'rt', encoding='utf8') as f: README = f.read() setup( name='reportbuilder', version='0.0.1', url='http://github.com/giovannicuriel/report-builder', project_urls=OrderedDict(( ('Code', 'https://github.com/giovannicuriel/report-builder.git'), ('Issue tracker', 'https://github.com/giovannicuriel/report-builder/issues'), )), license='BSD-2-Clause', author='Giovanni Curiel dos Santos', author_email='[email protected]', description='Sample package for Python training courses', long_description=README, packages=["reportbuilder"], include_package_data=True, zip_safe=False, platforms=[any], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: BSD License", "Operating System :: OS Independent", ], install_requires=[ 'flask==1.1.1' ], entry_points={ 'console_scripts': [ 'report-builder = reportbuilder.app:main' ] } )
26.818182
85
0.634746
0
0
0
0
0
0
0
0
582
0.49322
c3184306de4eb3bd08a9f52149a34046ea7333f3
2,296
py
Python
pyfunds/option.py
lucaruzzola/pyfunds
498c5a0a3eb9423ca9f267b8d8c47f0f23987f3d
[ "MIT" ]
6
2021-08-16T16:15:05.000Z
2022-03-21T15:46:29.000Z
pyfunds/option.py
lucaruzzola/pyfunds
498c5a0a3eb9423ca9f267b8d8c47f0f23987f3d
[ "MIT" ]
null
null
null
pyfunds/option.py
lucaruzzola/pyfunds
498c5a0a3eb9423ca9f267b8d8c47f0f23987f3d
[ "MIT" ]
null
null
null
from __future__ import annotations from abc import ABC, abstractmethod from typing import Callable, Generic, TypeVar T = TypeVar("T") U = TypeVar("U") class NoElement(Exception): pass class Option(ABC, Generic[T]): def __init__(self): super().__init__() @staticmethod def apply(value: T): return Some(value) if value is not None else Nothing() @abstractmethod def _is_empty(self) -> bool: pass @abstractmethod def get(self) -> T: pass def get_or_else(self, default: T) -> T: return default if self._is_empty() else self.get() @staticmethod def when(condition: bool, value: T) -> Option[T]: return Some(value) if condition else Nothing() def map(self, f: Callable[[T], U]) -> Option[U]: return Some(f(self.get())) if not self._is_empty() else self def flat_map(self, f: Callable[[T], Option[U]]) -> Option[U]: return f(self.get()) if not self._is_empty() else self def fold(self, default: U, fs: Callable[[T], U]) -> U: return default if self._is_empty() else fs(self.get()) def __str__(self) -> str: return f"Option is {'Some' if not self._is_empty() else 'Nothing'}" + ( f", with value: {self.get().__repr__()} of type {type(self.get())}" if not self._is_empty() else "" ) def __repr__(self) -> str: return "pyfunds.Option" def __eq__(self, other: Option[T]) -> bool: if self._is_empty(): return other._is_empty() elif other._is_empty(): return False else: return self.get() == other.get() def __ne__(self, other: Option[T]) -> bool: return not self == other class Some(Option[T]): def __init__(self, value: T): super().__init__() self._value = value def _is_empty(self) -> bool: return False def get(self) -> T: return self._value def __repr__(self) -> str: return f"pyfunds.Some({self.get()})" class Nothing(Option[T]): def __init__(self): super().__init__() def _is_empty(self) -> bool: return True def get(self) -> T: raise NoElement def __repr__(self) -> str: return "pyfunds.Nothing"
23.916667
79
0.582753
2,131
0.928136
0
0
336
0.146341
0
0
197
0.085801
c318b45aea4400e446baec5f077cb60419864b6f
1,237
py
Python
generate_dataset/visualize_mask.py
Kaju-Bubanja/PoseCNN
c2f7c4e8f98bc7c67d5cbc0be3167d3cb3bea396
[ "MIT" ]
20
2018-08-30T08:02:56.000Z
2021-09-15T12:22:22.000Z
generate_dataset/visualize_mask.py
Kaju-Bubanja/PoseCNN
c2f7c4e8f98bc7c67d5cbc0be3167d3cb3bea396
[ "MIT" ]
null
null
null
generate_dataset/visualize_mask.py
Kaju-Bubanja/PoseCNN
c2f7c4e8f98bc7c67d5cbc0be3167d3cb3bea396
[ "MIT" ]
5
2018-10-16T15:01:15.000Z
2020-08-29T03:52:51.000Z
import cv2 import rosbag import rospy from cv_bridge import CvBridge def main(): # bag = rosbag.Bag("/home/satco/PycharmProjects/PoseCNN/bag/dataset_one_box.bag") bag = rosbag.Bag("/home/satco/PycharmProjects/PoseCNN/bag/test.bag") # topics = ["/camera1/color/image_raw", "/camera2/color/image_raw"] topics = ["/camera/color/image_raw"] # counter = -20 counter = 0 bridge = CvBridge() for topic, msg, t in bag.read_messages(topics=topics, start_time=rospy.Time(1537799716, 30952)): print(msg.header.stamp) # if topic == "/camera1/color/image_raw": if topic == "/camera/color/image_raw": # print(msg.header.stamp) if counter < 0: counter += 1 continue # print("Showing image " + str(counter)) image = bridge.imgmsg_to_cv2(msg, "bgr8") mask_name = "data/images/cube" + str(counter) + ".png" mask = cv2.imread(mask_name) alpha = 0.5 image_with_mask = cv2.addWeighted(mask, alpha, image, 1 - alpha, 0) cv2.imshow("Image with mask", image_with_mask) cv2.waitKey(5000) counter += 1 if __name__ == "__main__": main()
35.342857
100
0.595796
0
0
0
0
0
0
0
0
426
0.344382
c318c41ae02a5b1bce71b7e42ebcd848cf95e1f3
909
py
Python
itembase/core/urls/location_urls.py
wedwardbeck/ibase
5647fa5aff6c1bdc99b6c93884ff0d5aef17d85b
[ "MIT" ]
null
null
null
itembase/core/urls/location_urls.py
wedwardbeck/ibase
5647fa5aff6c1bdc99b6c93884ff0d5aef17d85b
[ "MIT" ]
9
2020-01-17T14:16:08.000Z
2020-02-18T15:07:40.000Z
itembase/core/urls/location_urls.py
wedwardbeck/ibase
5647fa5aff6c1bdc99b6c93884ff0d5aef17d85b
[ "MIT" ]
null
null
null
from django.urls import path from itembase.core.views.location_views import LocationAddressCreateView, LocationAddressDetailView, \ LocationAddressUpdateView, LocationCreateView, LocationDeleteView, LocationDetailView, LocationListView, \ LocationUpdateView app_name = "locations" urlpatterns = [ path("", LocationListView.as_view(), name="list"), path("new/", LocationCreateView.as_view(), name="new"), path("edit/<int:pk>/", LocationUpdateView.as_view(), name="edit"), path("delete/<int:pk>/", LocationDeleteView.as_view(), name="delete"), path("<int:pk>/", LocationDetailView.as_view(), name="view"), path('<int:pk>/address-new/', LocationAddressCreateView.as_view(), name='address-new'), path('address/<int:pk>', LocationAddressDetailView.as_view(), name='address-view'), path('address/edit/<int:pk>', LocationAddressUpdateView.as_view(), name='address-edit'), ]
50.5
110
0.729373
0
0
0
0
0
0
0
0
200
0.220022
c318d66c0ef14a2821d36ef3adf7ffcb264139ea
3,455
py
Python
web/addons/product_margin/wizard/product_margin.py
diogocs1/comps
63df07f6cf21c41e4527c06e2d0499f23f4322e7
[ "Apache-2.0" ]
1
2019-12-29T11:53:56.000Z
2019-12-29T11:53:56.000Z
odoo/addons/product_margin/wizard/product_margin.py
tuanquanghpvn/odoo8-tutorial
52d25f1ca5f233c431cb9d3b24b79c3b4fb5127e
[ "MIT" ]
null
null
null
odoo/addons/product_margin/wizard/product_margin.py
tuanquanghpvn/odoo8-tutorial
52d25f1ca5f233c431cb9d3b24b79c3b4fb5127e
[ "MIT" ]
3
2020-10-08T14:42:10.000Z
2022-01-28T14:12:29.000Z
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2010 Tiny SPRL (<http://tiny.be>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import time from openerp.osv import fields, osv from openerp.tools.translate import _ class product_margin(osv.osv_memory): _name = 'product.margin' _description = 'Product Margin' _columns = { 'from_date': fields.date('From'), 'to_date': fields.date('To'), 'invoice_state': fields.selection([ ('paid', 'Paid'), ('open_paid', 'Open and Paid'), ('draft_open_paid', 'Draft, Open and Paid'), ], 'Invoice State', select=True, required=True), } _defaults = { 'from_date': time.strftime('%Y-01-01'), 'to_date': time.strftime('%Y-12-31'), 'invoice_state': "open_paid", } def action_open_window(self, cr, uid, ids, context=None): """ @param cr: the current row, from the database cursor, @param uid: the current user’s ID for security checks, @param ids: the ID or list of IDs if we want more than one @return: """ context = dict(context or {}) def ref(module, xml_id): proxy = self.pool.get('ir.model.data') return proxy.get_object_reference(cr, uid, module, xml_id) model, search_view_id = ref('product', 'product_search_form_view') model, graph_view_id = ref('product_margin', 'view_product_margin_graph') model, form_view_id = ref('product_margin', 'view_product_margin_form') model, tree_view_id = ref('product_margin', 'view_product_margin_tree') #get the current product.margin object to obtain the values from it records = self.browse(cr, uid, ids, context=context) record = records[0] context.update(invoice_state=record.invoice_state) if record.from_date: context.update(date_from=record.from_date) if record.to_date: context.update(date_to=record.to_date) views = [ (tree_view_id, 'tree'), (form_view_id, 'form'), (graph_view_id, 'graph') ] return { 'name': _('Product Margins'), 'context': context, 'view_type': 'form', "view_mode": 'tree,form,graph', 'res_model': 'product.product', 'type': 'ir.actions.act_window', 'views': views, 'view_id': False, 'search_view_id': search_view_id, } # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
35.618557
81
0.589001
2,320
0.671102
0
0
0
0
0
0
1,930
0.558288
c31b0a85e27980acdba6410b67f84602e15446a0
1,038
py
Python
scripts/analysis_one.py
VikkiMba/Programmable-matter
d340c0b370a7e610892ffd8351f7aa576928d05c
[ "MIT" ]
null
null
null
scripts/analysis_one.py
VikkiMba/Programmable-matter
d340c0b370a7e610892ffd8351f7aa576928d05c
[ "MIT" ]
null
null
null
scripts/analysis_one.py
VikkiMba/Programmable-matter
d340c0b370a7e610892ffd8351f7aa576928d05c
[ "MIT" ]
null
null
null
name = input('Enter file name: ') lst=list() lst2=list() with open(name) as f: for line in f: #print(line) blops=line.rstrip() blop=blops.split() #for val in blop: my_lst = [float(val) for val in blop]#list_comprehension for num in my_lst: if num <= 3.5: lst.append(num) if num >=4: lst2.append(num) #num = float(val) #print(num) #text = f.read() #print(text) #print(type(text)) #print(type(line)) #print(blop) #print(type(blop)) #print(lst) #print(lst2) import itertools import matplotlib.pyplot as plt import seaborn as sns #for (f, b) in zip(lst2 ,lst): #print (f, b) #print(type(my_lst)) with open('neu_sam_4b.csv', 'w') as fh: for (f, b) in zip(lst, lst2): print(f,',',b, file=fh) ext=lst force=lst2 plt.plot(ext, force) plt.xlabel('Extension') plt.ylabel('Force') plt.title('sample with 0.25wt%') plt.tight_layout() plt.show() #for digit in lst: #print(digit, file=fh)
20.352941
64
0.578998
0
0
0
0
0
0
0
0
376
0.362235
c31bd0f2505a1c4be1c52fbd6469723bb696bfa9
2,470
py
Python
account/models.py
Hasanozzaman-Khan/Django-User-Authentication
96482a51ed01bbdc7092d6ca34383054967a8aa0
[ "MIT" ]
null
null
null
account/models.py
Hasanozzaman-Khan/Django-User-Authentication
96482a51ed01bbdc7092d6ca34383054967a8aa0
[ "MIT" ]
null
null
null
account/models.py
Hasanozzaman-Khan/Django-User-Authentication
96482a51ed01bbdc7092d6ca34383054967a8aa0
[ "MIT" ]
null
null
null
from django.db import models from django.contrib.auth.models import AbstractBaseUser, PermissionsMixin, BaseUserManager from PIL import Image # Create your models here. class Home(models.Model): pass class CustomUserManager(BaseUserManager): """Manager for user profiles""" def create_user(self, email, first_name, last_name, password=None): """Create a new user profile""" if not email: raise ValueError("User must have an email address.") email = self.normalize_email(email) user = self.model(email=email, first_name=first_name, last_name=last_name) user.set_password(password) user.save(using=self._db) return user def create_superuser(self, email, first_name, last_name, password): """Create and save a new superuser with given details""" user = self.create_user(email, first_name, last_name, password) user.is_superuser = True user.is_staff = True user.save(using=self._db) return user class CustomRegisterModel(AbstractBaseUser, PermissionsMixin): """ Database model for users in the system """ email = models.EmailField(max_length=255, unique=True) first_name = models.CharField(max_length=255) last_name = models.CharField(max_length=255) is_active = models.BooleanField(default=True) is_staff = models.BooleanField(default=False) is_email_verified = models.BooleanField(default=False) objects = CustomUserManager() USERNAME_FIELD = 'email' REQUIRED_FIELDS = ['first_name', 'last_name'] def get_full_name(self): """Retrieve full name of user""" return self.first_name + " " + self.last_name def get_short_name(self): """Retrieve short name of user""" return self.first_name def __str__(self): """Return string representation of our user""" return self.email class ProfileModel(models.Model): user = models.OneToOneField(CustomRegisterModel, on_delete=models.CASCADE) image = models.ImageField(default='default.jpg', upload_to='profile_picture') def __str__(self): return f"{self.user.first_name}'s profile" def save(self, *args, **kwargs): super().save(*args, **kwargs) img = Image.open(self.image.path) if img.height > 300 or img.width > 300: output_size = (300, 300) img.thumbnail(output_size) img.save(self.image.path)
30.493827
90
0.676923
2,288
0.926316
0
0
0
0
0
0
433
0.175304
c31dc50c8e3e9b895471f34a5cb531f2da5f9d94
316
py
Python
Numeric Patterns/numericpattern37.py
vaidehisinha1/Python-PatternHouse
49f71bcc5319a838592e69b0e49ef1edba32bf7c
[ "MIT" ]
null
null
null
Numeric Patterns/numericpattern37.py
vaidehisinha1/Python-PatternHouse
49f71bcc5319a838592e69b0e49ef1edba32bf7c
[ "MIT" ]
471
2022-01-15T07:07:18.000Z
2022-02-28T16:01:42.000Z
Numeric Patterns/numericpattern37.py
vaidehisinha1/Python-PatternHouse
49f71bcc5319a838592e69b0e49ef1edba32bf7c
[ "MIT" ]
2
2022-01-17T09:43:16.000Z
2022-01-29T15:15:47.000Z
height = int(input()) for i in range(1,height+1) : for j in range(1, i+1): m = i*j if(m <= 9): print("",m,end = " ") else: print(m,end = " ") print() # Sample Input :- 5 # Output :- # 1 # 2 4 # 3 6 9 # 4 8 12 16 # 5 10 15 20 25
13.73913
33
0.379747
0
0
0
0
0
0
0
0
89
0.281646
c31e95b8404220c927502906ac5a4aee6be489dd
2,617
py
Python
reviewboard/search/testing.py
pombredanne/reviewboard
15f1d7236ec7a5cb4778ebfeb8b45d13a46ac71d
[ "MIT" ]
null
null
null
reviewboard/search/testing.py
pombredanne/reviewboard
15f1d7236ec7a5cb4778ebfeb8b45d13a46ac71d
[ "MIT" ]
null
null
null
reviewboard/search/testing.py
pombredanne/reviewboard
15f1d7236ec7a5cb4778ebfeb8b45d13a46ac71d
[ "MIT" ]
null
null
null
"""Search-related testing utilities.""" import tempfile import time from contextlib import contextmanager import haystack from django.conf import settings from django.core.management import call_command from djblets.siteconfig.models import SiteConfiguration from reviewboard.admin.siteconfig import load_site_config def reindex_search(): """Rebuild the search index.""" call_command('rebuild_index', interactive=False) # On Whoosh, the above is asynchronous, and we can end up trying to read # before we end up writing, occasionally breaking tests. We need to # introduce just a bit of a delay. # # Yeah, this is still sketchy, but we can't turn off the async behavior # or receive notification that the write has completed. time.sleep(0.1) @contextmanager def search_enabled(on_the_fly_indexing=False, backend_id='whoosh'): """Temporarily enable indexed search. Args: on_the_fly_indexing (bool, optional): Whether or not to enable on-the-fly indexing. backend_id (unicode, optional): The search backend to enable. Valid options are "whoosh" (default) and "elasticsearch". """ siteconfig = SiteConfiguration.objects.get_current() old_backend_id = siteconfig.get('search_backend_id') old_backend_settings = siteconfig.get('search_backend_settings') if backend_id == 'whoosh': backend_settings = { 'PATH': tempfile.mkdtemp(suffix='search-index', dir=settings.SITE_DATA_DIR), 'STORAGE': 'file', } elif backend_id == 'elasticsearch': backend_settings = { 'INDEX_NAME': 'reviewboard-tests', 'URL': 'http://es.example.com:9200/', } else: raise NotImplementedError('Unexpected backend ID "%s"' % backend_id) siteconfig.settings.update({ 'search_enable': True, 'search_backend_id': backend_id, 'search_backend_settings': { backend_id: backend_settings, }, 'search_on_the_fly_indexing': on_the_fly_indexing, }) siteconfig.save(update_fields=('settings',)) load_site_config() try: yield haystack.connections['default'].reset_sessions() finally: siteconfig.settings.update({ 'search_enable': False, 'search_backend_id': old_backend_id, 'search_backend_settings': old_backend_settings, 'search_on_the_fly_indexing': False, }) siteconfig.save(update_fields=('settings',)) load_site_config()
30.788235
78
0.659534
0
0
1,814
0.69316
1,830
0.699274
0
0
1,104
0.421857
c31e9aaa2f138851e26e15e8a729a624dea9ce5b
6,434
py
Python
pydron/config/config.py
DelphianCalamity/pydron
1518dc71b5cf64fde563b864db2a4de74e092c8e
[ "MIT" ]
5
2020-04-06T15:20:56.000Z
2022-01-05T23:11:13.000Z
pydron/config/config.py
mahmoudimus/pydron
a7b484dec8bcc2730ba9bd76bc63bf3362c05e4d
[ "MIT" ]
null
null
null
pydron/config/config.py
mahmoudimus/pydron
a7b484dec8bcc2730ba9bd76bc63bf3362c05e4d
[ "MIT" ]
2
2020-11-27T20:21:34.000Z
2021-02-26T23:02:11.000Z
# Copyright (C) 2015 Stefan C. Mueller import json import os.path from remoot import pythonstarter, smartstarter import anycall from pydron.backend import worker from pydron.interpreter import scheduler, strategies from twisted.internet import defer preload_packages = [] def load_config(configfile=None): if not configfile: candidates = [] if "PYDRON_CONF" in os.environ: candidates.append(os.environ["PYDRON_CONF"]) candidates.append(os.path.abspath("pydron.conf")) candidates.append(os.path.expanduser("~/pydron.conf")) candidates.append("/etc/pydron.conf") for candidate in candidates: if os.path.exists(candidate): configfile = candidate break else: raise ValueError("Config file could not be found. Looked for %s" % repr(candidates)) with open(configfile, 'r') as f: cfg = json.load(f) def convert(obj): if isinstance(obj, dict): return {k:convert(v) for k,v in obj.iteritems()} elif isinstance(obj, list): return [convert(v) for v in obj] elif isinstance(obj, unicode): return str(obj) else: return obj cfg = convert(cfg) return cfg def create_scheduler(config, pool): if "scheduler" not in config: strategy_name = "trivial" else: strategy_name = config["scheduler"] if strategy_name == "trivial": strategy = strategies.TrivialSchedulingStrategy(pool) strategy = strategies.VerifySchedulingStrategy(strategy) else: raise ValueError("Unsupported scheduler: %s" % strategy_name) return scheduler.Scheduler(pool, strategy) def create_pool(config, rpcsystem, error_handler): """ starts workers and returns a pool of them. Returns two callbacks: * The first callbacks with the pool as soon as there is one worker. Errbacks if all starters failed to create a worker. * The second calls back once all workers have been started. This one can be cancelled. The given `error_handler` is invoked for every failed start. """ starters = [] for starter_conf in config["workers"]: starters.extend(_create_starters(starter_conf, rpcsystem)) pool = worker.Pool() ds = [] for i, starter in enumerate(starters): d = starter.start() def success(worker, i, starter): worker.nicename = "#%s" % i pool.add_worker(worker) def fail(failure): error_handler(failure) return failure d.addCallback(success, i, starter) ds.append(d) d = defer.DeferredList(ds, fireOnOneErrback=True, consumeErrors=True) def on_success(result): return pool def on_fail(firsterror): return firsterror.value.subFailure d.addCallbacks(on_success, on_fail) return d def create_rpc_system(conf): port_range = _parse_port_range(conf.get("data_ports", 0)) return anycall.create_tcp_rpc_system(port_range = port_range) def _create_starters(conf, rpcsystem): global preload_packages import pydron data_ports = _parse_port_range(conf.get("data_ports", 0)) preconnect = conf.get("preconnect", True) if 0 in data_ports: # use automatically selected ports. this is not compatible # with preconnect preconnect = False data_ports = [0] if data_ports != [0] and len(data_ports) <= conf["cores"]: if 0 not in data_ports: raise ValueError("Not enough ports configured for %r" % conf) starters = [] for i in range(conf["cores"]): starter_type = conf["type"] if starter_type == "multicore": starter = _multicore_starter(conf, rpcsystem) elif starter_type == "ssh": starter = _ssh_starter(conf, rpcsystem) elif starter_type == "cloud": starter = _ec2_starter(conf, rpcsystem) else: raise ValueError("Not supported worker type %s" % repr(starter_type)) if data_ports == [0]: port = 0 else: port = data_ports[i] smart = smartstarter.SmartStarter(starter, rpcsystem, anycall.create_tcp_rpc_system, list(preload_packages)+[pydron], preconnect = preconnect, data_port = port) starters.append(worker.WorkerStarter(smart)) return starters def _multicore_starter(conf, rpcsystem): return pythonstarter.LocalStarter() def _ssh_starter(conf, rpcsystem): starter = pythonstarter.SSHStarter(conf["hostname"], username=conf["username"], password=conf.get("password", None), private_key_files=conf.get("private_key_files", []), private_keys=conf.get("private_keys", []), tmp_dir=conf.get("tmp_dir", "/tmp")) return starter def _ec2_starter(conf, rpcsystem): starter = pythonstarter.EC2Starter(username=conf["username"], provider=conf["provider"], provider_keyid=conf["accesskeyid"], provider_key=conf["accesskey"], image_id=conf["imageid"], size_id=conf["sizeid"], public_key_file=conf["publickey"], private_key_file=conf["privatekey"], tmp_dir=conf.get("tmp_dir", "/tmp")) return starter def _parse_port_range(ports): try: return [int(ports)] except ValueError: pass if isinstance(ports, list): return [int(x) for x in ports] min_port, max_port = str(ports).split('-', 1) min_port = int(min_port) max_port = int(max_port) return range(min_port, max_port + 1)
32.331658
96
0.562791
0
0
0
0
0
0
0
0
1,039
0.161486
c31eedaebb01514423f430e25d6d4f8b0f2cba6b
4,678
py
Python
astropy/tests/plugins/display.py
guntbert/astropy
f2d2add09e5b1638b2698f19a4d46fcca19e82be
[ "BSD-3-Clause" ]
null
null
null
astropy/tests/plugins/display.py
guntbert/astropy
f2d2add09e5b1638b2698f19a4d46fcca19e82be
[ "BSD-3-Clause" ]
10
2017-03-15T16:14:43.000Z
2018-11-22T14:40:54.000Z
astropy/tests/plugins/display.py
guntbert/astropy
f2d2add09e5b1638b2698f19a4d46fcca19e82be
[ "BSD-3-Clause" ]
1
2020-01-23T00:41:10.000Z
2020-01-23T00:41:10.000Z
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This plugin provides customization of the header displayed by pytest for reporting purposes. """ import os import sys import datetime import locale import math from collections import OrderedDict from astropy.tests.helper import ignore_warnings from astropy.utils.introspection import resolve_name PYTEST_HEADER_MODULES = OrderedDict([('Numpy', 'numpy'), ('Scipy', 'scipy'), ('Matplotlib', 'matplotlib'), ('h5py', 'h5py'), ('Pandas', 'pandas')]) # This always returns with Astropy's version from astropy import __version__ TESTED_VERSIONS = OrderedDict([('Astropy', __version__)]) def pytest_report_header(config): try: stdoutencoding = sys.stdout.encoding or 'ascii' except AttributeError: stdoutencoding = 'ascii' args = config.args # TESTED_VERSIONS can contain the affiliated package version, too if len(TESTED_VERSIONS) > 1: for pkg, version in TESTED_VERSIONS.items(): if pkg not in ['Astropy', 'astropy_helpers']: s = "\nRunning tests with {} version {}.\n".format( pkg, version) else: s = "\nRunning tests with Astropy version {}.\n".format( TESTED_VERSIONS['Astropy']) # Per https://github.com/astropy/astropy/pull/4204, strip the rootdir from # each directory argument if hasattr(config, 'rootdir'): rootdir = str(config.rootdir) if not rootdir.endswith(os.sep): rootdir += os.sep dirs = [arg[len(rootdir):] if arg.startswith(rootdir) else arg for arg in args] else: dirs = args s += "Running tests in {}.\n\n".format(" ".join(dirs)) s += "Date: {}\n\n".format(datetime.datetime.now().isoformat()[:19]) from platform import platform plat = platform() if isinstance(plat, bytes): plat = plat.decode(stdoutencoding, 'replace') s += f"Platform: {plat}\n\n" s += f"Executable: {sys.executable}\n\n" s += f"Full Python Version: \n{sys.version}\n\n" s += "encodings: sys: {}, locale: {}, filesystem: {}".format( sys.getdefaultencoding(), locale.getpreferredencoding(), sys.getfilesystemencoding()) s += '\n' s += f"byteorder: {sys.byteorder}\n" s += "float info: dig: {0.dig}, mant_dig: {0.dig}\n\n".format( sys.float_info) for module_display, module_name in PYTEST_HEADER_MODULES.items(): try: with ignore_warnings(DeprecationWarning): module = resolve_name(module_name) except ImportError: s += f"{module_display}: not available\n" else: try: version = module.__version__ except AttributeError: version = 'unknown (no __version__ attribute)' s += f"{module_display}: {version}\n" # Helpers version if 'astropy_helpers' in TESTED_VERSIONS: astropy_helpers_version = TESTED_VERSIONS['astropy_helpers'] else: try: from astropy.version import astropy_helpers_version except ImportError: astropy_helpers_version = None if astropy_helpers_version: s += f"astropy_helpers: {astropy_helpers_version}\n" special_opts = ["remote_data", "pep8"] opts = [] for op in special_opts: op_value = getattr(config.option, op, None) if op_value: if isinstance(op_value, str): op = ': '.join((op, op_value)) opts.append(op) if opts: s += "Using Astropy options: {}.\n".format(", ".join(opts)) return s def pytest_terminal_summary(terminalreporter): """Output a warning to IPython users in case any tests failed.""" try: get_ipython() except NameError: return if not terminalreporter.stats.get('failed'): # Only issue the warning when there are actually failures return terminalreporter.ensure_newline() terminalreporter.write_line( 'Some tests are known to fail when run from the IPython prompt; ' 'especially, but not limited to tests involving logging and warning ' 'handling. Unless you are certain as to the cause of the failure, ' 'please check that the failure occurs outside IPython as well. See ' 'http://docs.astropy.org/en/stable/known_issues.html#failing-logging-' 'tests-when-running-the-tests-in-ipython for more information.', yellow=True, bold=True)
32.943662
78
0.614793
0
0
0
0
0
0
0
0
1,679
0.358914
c31f343b321d0b0d195053ec8d68315783bcc174
2,782
py
Python
packages/api-server/api_server/routes/lifts.py
Sald-for-Communication-and-IT/rmf-web
ec5996ab0b06440d7147170f3030b14c73d26116
[ "Apache-2.0" ]
null
null
null
packages/api-server/api_server/routes/lifts.py
Sald-for-Communication-and-IT/rmf-web
ec5996ab0b06440d7147170f3030b14c73d26116
[ "Apache-2.0" ]
null
null
null
packages/api-server/api_server/routes/lifts.py
Sald-for-Communication-and-IT/rmf-web
ec5996ab0b06440d7147170f3030b14c73d26116
[ "Apache-2.0" ]
null
null
null
from typing import Any, List, cast from fastapi import Depends from rx import operators as rxops from api_server.base_app import BaseApp from api_server.fast_io import FastIORouter, WatchRequest from api_server.models import Lift, LiftHealth, LiftRequest, LiftState from api_server.repositories import RmfRepository from .utils import rx_watcher class LiftsRouter(FastIORouter): def __init__(self, app: BaseApp): super().__init__(tags=["Lifts"]) @self.get("", response_model=List[Lift]) async def get_lifts(rmf_repo: RmfRepository = Depends(app.rmf_repo)): return await rmf_repo.get_lifts() @self.get("/{lift_name}/state", response_model=LiftState) async def get_lift_state( lift_name: str, rmf_repo: RmfRepository = Depends(app.rmf_repo) ): """ Available in socket.io """ return await rmf_repo.get_lift_state(lift_name) @self.watch("/{lift_name}/state") async def watch_lift_state(req: WatchRequest, lift_name: str): lift_state = await get_lift_state(lift_name, RmfRepository(req.user)) if lift_state is not None: await req.emit(lift_state.dict()) rx_watcher( req, app.rmf_events().lift_states.pipe( rxops.filter(lambda x: cast(LiftState, x).lift_name == lift_name), rxops.map(cast(Any, lambda x: cast(LiftState, x).dict())), ), ) @self.get("/{lift_name}/health", response_model=LiftHealth) async def get_lift_health( lift_name: str, rmf_repo: RmfRepository = Depends(app.rmf_repo) ): """ Available in socket.io """ return await rmf_repo.get_lift_health(lift_name) @self.watch("/{lift_name}/health") async def watch_lift_health(req: WatchRequest, lift_name: str): health = await get_lift_health(lift_name, RmfRepository(req.user)) if health is not None: await req.emit(health.dict()) rx_watcher( req, app.rmf_events().lift_health.pipe( rxops.filter(lambda x: cast(LiftHealth, x).id_ == lift_name), rxops.map(cast(Any, lambda x: cast(LiftHealth, x).dict())), ), ) @self.post("/{lift_name}/request") def _post_lift_request( lift_name: str, lift_request: LiftRequest, ): app.rmf_gateway().request_lift( lift_name, lift_request.destination, lift_request.request_type, lift_request.door_mode, )
36.12987
86
0.586988
2,430
0.873472
0
0
2,259
0.812006
1,637
0.588426
221
0.079439
c320f2c59ba3ca84a73f6a79313b9f9398f03283
5,228
py
Python
src/opnsense/scripts/suricata/queryAlertLog.py
ass-a2s/opnsense-core
a0634d180325f6afe3be7f514b4470e47ff5eb75
[ "BSD-2-Clause" ]
2
2019-03-15T03:35:54.000Z
2019-03-15T07:50:36.000Z
src/opnsense/scripts/suricata/queryAlertLog.py
ass-a2s/opnsense-core
a0634d180325f6afe3be7f514b4470e47ff5eb75
[ "BSD-2-Clause" ]
null
null
null
src/opnsense/scripts/suricata/queryAlertLog.py
ass-a2s/opnsense-core
a0634d180325f6afe3be7f514b4470e47ff5eb75
[ "BSD-2-Clause" ]
null
null
null
#!/usr/local/bin/python3.6 """ Copyright (c) 2015-2019 Ad Schellevis <[email protected]> All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -------------------------------------------------------------------------------------- query suricata alert log """ import sys import os.path import re import sre_constants import shlex import ujson sys.path.insert(0, "/usr/local/opnsense/site-python") from log_helper import reverse_log_reader from params import update_params from lib import suricata_alert_log if __name__ == '__main__': # handle parameters parameters = {'limit': '0', 'offset': '0', 'filter': '', 'fileid': ''} update_params(parameters) # choose logfile by number if parameters['fileid'].isdigit(): suricata_log = '%s.%d' % (suricata_alert_log, int(parameters['fileid'])) else: suricata_log = suricata_alert_log if parameters['limit'].isdigit(): limit = int(parameters['limit']) else: limit = 0 if parameters['offset'].isdigit(): offset = int(parameters['offset']) else: offset = 0 data_filters = {} data_filters_comp = {} for filter_txt in shlex.split(parameters['filter']): filterField = filter_txt.split('/')[0] if filter_txt.find('/') > -1: data_filters[filterField] = '/'.join(filter_txt.split('/')[1:]) filter_regexp = data_filters[filterField] filter_regexp = filter_regexp.replace('*', '.*') filter_regexp = filter_regexp.lower() try: data_filters_comp[filterField] = re.compile(filter_regexp) except sre_constants.error: # remove illegal expression # del data_filters[filterField] data_filters_comp[filterField] = re.compile('.*') # filter one specific log line if 'filepos' in data_filters and data_filters['filepos'].isdigit(): log_start_pos = int(data_filters['filepos']) else: log_start_pos = None # query suricata eve log result = {'filters': data_filters, 'rows': [], 'total_rows': 0, 'origin': suricata_log.split('/')[-1]} if os.path.exists(suricata_log): for line in reverse_log_reader(filename=suricata_log, start_pos=log_start_pos): try: record = ujson.loads(line['line']) except ValueError: # can not handle line record = {} # only process valid alert items if 'alert' in record: # add position in file record['filepos'] = line['pos'] record['fileid'] = parameters['fileid'] # flatten structure record['alert_sid'] = record['alert']['signature_id'] record['alert_action'] = record['alert']['action'] record['alert'] = record['alert']['signature'] # use filters on data (using regular expressions) do_output = True for filterKeys in data_filters: filter_hit = False for filterKey in filterKeys.split(','): if filterKey in record and data_filters_comp[filterKeys].match( ('%s' % record[filterKey]).lower()): filter_hit = True if not filter_hit: do_output = False if do_output: result['total_rows'] += 1 if (len(result['rows']) < limit or limit == 0) and result['total_rows'] >= offset: result['rows'].append(record) elif result['total_rows'] > offset + limit: # do not fetch data until end of file... break # only try to fetch one line when filepos is given if log_start_pos is not None: break # output results print(ujson.dumps(result))
39.606061
106
0.599273
0
0
0
0
0
0
0
0
2,305
0.440895
c3214282673aaeda28c84c61fc6d8f9be877c23b
3,592
py
Python
cairis/gui/DictionaryListCtrl.py
RachelLar/cairis_update
0b1d6d17ce49bc74887d1684e28c53c1b06e2fa2
[ "Apache-2.0" ]
null
null
null
cairis/gui/DictionaryListCtrl.py
RachelLar/cairis_update
0b1d6d17ce49bc74887d1684e28c53c1b06e2fa2
[ "Apache-2.0" ]
null
null
null
cairis/gui/DictionaryListCtrl.py
RachelLar/cairis_update
0b1d6d17ce49bc74887d1684e28c53c1b06e2fa2
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import wx from cairis.core.armid import * from DictionaryEntryDialog import DictionaryEntryDialog class DictionaryListCtrl(wx.ListCtrl): def __init__(self,parent): wx.ListCtrl.__init__(self,parent,PROJECTSETTINGS_LISTDICTIONARY_ID,size=wx.DefaultSize,style=wx.LC_REPORT | wx.LC_SORT_ASCENDING) self.keys = [] self.InsertColumn(0,'Name') self.SetColumnWidth(0,150) self.InsertColumn(1,'Definition') self.SetColumnWidth(1,300) self.theSelectedIdx = -1 self.theMenu = wx.Menu() self.theMenu.Append(DICTIONARYLISTCTRL_MENUADD_ID,'Add') self.theMenu.Append(DICTIONARYLISTCTRL_MENUDELETE_ID,'Delete') self.Bind(wx.EVT_LIST_ITEM_RIGHT_CLICK,self.OnRightDown) self.Bind(wx.EVT_LIST_ITEM_SELECTED,self.OnItemSelected) self.Bind(wx.EVT_LIST_ITEM_DESELECTED,self.OnItemDeselected) self.Bind(wx.EVT_LIST_ITEM_ACTIVATED,self.onEntryActivated) wx.EVT_MENU(self.theMenu,DICTIONARYLISTCTRL_MENUADD_ID,self.onAddEntry) wx.EVT_MENU(self.theMenu,DICTIONARYLISTCTRL_MENUDELETE_ID,self.onDeleteEntry) def OnItemSelected(self,evt): self.theSelectedIdx = evt.GetIndex() def OnItemDeselected(self,evt): self.theSelectedIdx = -1 def OnRightDown(self,evt): self.PopupMenu(self.theMenu) def onAddEntry(self,evt): dlg = DictionaryEntryDialog(self) if (dlg.ShowModal() == DICTIONARYENTRY_BUTTONCOMMIT_ID): name = dlg.name() definition = dlg.definition() idx = self.GetItemCount() self.InsertStringItem(idx,name) self.SetStringItem(idx,1,definition) def onDeleteEntry(self,evt): if (self.theSelectedIdx == -1): errorText = 'No entry selected' errorLabel = 'Delete definition' dlg = wx.MessageDialog(self,errorText,errorLabel,wx.OK) dlg.ShowModal() dlg.Destroy() else: selectedValue = self.GetItemText(self.theSelectedIdx) self.DeleteItem(self.theSelectedIdx) def onEntryActivated(self,evt): self.theSelectedIdx = evt.GetIndex() name = self.GetItemText(self.theSelectedIdx) definition = self.GetItem(self.theSelectedIdx,1) dlg = DictionaryEntryDialog(self,name,definition.GetText()) if (dlg.ShowModal() == DICTIONARYENTRY_BUTTONCOMMIT_ID): self.SetStringItem(self.theSelectedIdx,0,dlg.name()) self.SetStringItem(self.theSelectedIdx,1,dlg.definition()) def load(self,entries): self.keys = entries.keys() self.keys.sort() for name in self.keys: idx = self.GetItemCount() self.InsertStringItem(idx,name) self.SetStringItem(idx,1,entries[name]) def dimensions(self): entries = [] for x in range(self.GetItemCount()): name = self.GetItemText(x) definition = self.GetItem(x,1) entries.append((name,definition.GetText())) return entries
37.030928
133
0.733018
2,693
0.749722
0
0
0
0
0
0
850
0.236637
c32367d43e08138167f815beb65fbee346856f66
1,965
py
Python
old_test/test-large.py
briandobbins/pynio
1dd5fc0fc133f2b8d329ae68929bd3c6c1c5fa7c
[ "Apache-2.0" ]
null
null
null
old_test/test-large.py
briandobbins/pynio
1dd5fc0fc133f2b8d329ae68929bd3c6c1c5fa7c
[ "Apache-2.0" ]
null
null
null
old_test/test-large.py
briandobbins/pynio
1dd5fc0fc133f2b8d329ae68929bd3c6c1c5fa7c
[ "Apache-2.0" ]
null
null
null
from __future__ import print_function, division import numpy as np import Nio import time, os # # Creating a file # init_time = time.clock() ncfile = 'test-large.nc' if (os.path.exists(ncfile)): os.system("/bin/rm -f " + ncfile) opt = Nio.options() opt.Format = "LargeFile" opt.PreFill = False file = Nio.open_file(ncfile, 'w', options=opt) file.title = "Testing large files and dimensions" file.create_dimension('big', 2500000000) bigvar = file.create_variable('bigvar', "b", ('big',)) print("created bigvar") # note it is incredibly slow to write a scalar to a large file variable # so create an temporary variable x that will get assigned in steps x = np.empty(1000000,dtype = 'int8') #print x x[:] = 42 t = list(range(0,2500000000,1000000)) ii = 0 for i in t: if (i == 0): continue print(t[ii],i) bigvar[t[ii]:i] = x[:] ii += 1 x[:] = 84 bigvar[2499000000:2500000000] = x[:] bigvar[-1] = 84 bigvar.units = "big var units" #print bigvar[-1] print(bigvar.dimensions) # check unlimited status for dim in list(file.dimensions.keys()): print(dim, " unlimited: ",file.unlimited(dim)) print(file) print("closing file") print('elapsed time: ',time.clock() - init_time) file.close() #quit() # # Reading a file # print('opening file for read') print('elapsed time: ',time.clock() - init_time) file = Nio.open_file(ncfile, 'r') print('file is open') print('elapsed time: ',time.clock() - init_time) print(file.dimensions) print(list(file.variables.keys())) print(file) print("reading variable") print('elapsed time: ',time.clock() - init_time) x = file.variables['bigvar'] print(x[0],x[1000000],x[249000000],x[2499999999]) print("max and min") min = x[:].min() max = x[:].max() print(min, max) print('elapsed time: ',time.clock() - init_time) # check unlimited status for dim in list(file.dimensions.keys()): print(dim, " unlimited: ",file.unlimited(dim)) print("closing file") print('elapsed time: ',time.clock() - init_time) file.close()
23.674699
71
0.689567
0
0
0
0
0
0
0
0
622
0.316539
c323fd0a281a1d87543bdabbbe5b4427e5eec191
36,178
py
Python
eeauditor/auditors/aws/Amazon_ECS_Auditor.py
kbhagi/ElectricEye
31960e1e1cfb75c5d354844ea9e07d5295442823
[ "Apache-2.0" ]
442
2020-03-15T20:56:36.000Z
2022-03-31T22:13:07.000Z
eeauditor/auditors/aws/Amazon_ECS_Auditor.py
kbhagi/ElectricEye
31960e1e1cfb75c5d354844ea9e07d5295442823
[ "Apache-2.0" ]
57
2020-03-15T22:09:56.000Z
2022-03-31T13:17:06.000Z
eeauditor/auditors/aws/Amazon_ECS_Auditor.py
kbhagi/ElectricEye
31960e1e1cfb75c5d354844ea9e07d5295442823
[ "Apache-2.0" ]
59
2020-03-15T21:19:10.000Z
2022-03-31T15:01:31.000Z
#This file is part of ElectricEye. #SPDX-License-Identifier: Apache-2.0 #Licensed to the Apache Software Foundation (ASF) under one #or more contributor license agreements. See the NOTICE file #distributed with this work for additional information #regarding copyright ownership. The ASF licenses this file #to you under the Apache License, Version 2.0 (the #"License"); you may not use this file except in compliance #with the License. You may obtain a copy of the License at #http://www.apache.org/licenses/LICENSE-2.0 #Unless required by applicable law or agreed to in writing, #software distributed under the License is distributed on an #"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY #KIND, either express or implied. See the License for the #specific language governing permissions and limitations #under the License. import boto3 import datetime from check_register import CheckRegister registry = CheckRegister() # import boto3 clients ecs = boto3.client("ecs") # loop through ECS Clusters def list_clusters(cache): response = cache.get("list_clusters") if response: return response cache["list_clusters"] = ecs.list_clusters() return cache["list_clusters"] @registry.register_check("ecs") def ecs_cluster_container_insights_check(cache: dict, awsAccountId: str, awsRegion: str, awsPartition: str) -> dict: """[ECS.1] ECS clusters should have container insights enabled""" response = list_clusters(cache) myEcsClusters = response["clusterArns"] for clusters in myEcsClusters: clusterArn = str(clusters) try: response = ecs.describe_clusters(clusters=[clusterArn]) for clusterinfo in response["clusters"]: clusterName = str(clusterinfo["clusterName"]) ecsClusterArn = str(clusterinfo["clusterArn"]) for settings in clusterinfo["settings"]: contInsightsCheck = str(settings["value"]) # ISO Time iso8601Time = ( datetime.datetime.utcnow() .replace(tzinfo=datetime.timezone.utc) .isoformat() ) if contInsightsCheck == "disabled": finding = { "SchemaVersion": "2018-10-08", "Id": ecsClusterArn + "/ecs-cluster-container-insights-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": ecsClusterArn, "AwsAccountId": awsAccountId, "Types": [ "Software and Configuration Checks/AWS Security Best Practices" ], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "LOW"}, "Confidence": 99, "Title": "[ECS.1] ECS clusters should have container insights enabled", "Description": "ECS cluster " + clusterName + " does not have container insights enabled. Refer to the remediation instructions to remediate this behavior", "Remediation": { "Recommendation": { "Text": "For information on configuring Container Insights for your cluster refer to the Setting Up Container Insights on Amazon ECS for Cluster- and Service-Level Metrics section of the Amazon CloudWatch User Guide", "Url": "https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/deploy-container-insights-ECS-cluster.html", } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsEcsCluster", "Id": ecsClusterArn, "Partition": awsPartition, "Region": awsRegion, "Details": {"Other": {"ClusterName": clusterName}}, } ], "Compliance": { "Status": "FAILED", "RelatedRequirements": [ "NIST CSF DE.AE-3", "NIST SP 800-53 AU-6", "NIST SP 800-53 CA-7", "NIST SP 800-53 IR-4", "NIST SP 800-53 IR-5", "NIST SP 800-53 IR-8", "NIST SP 800-53 SI-4", "AICPA TSC CC7.2", "ISO 27001:2013 A.12.4.1", "ISO 27001:2013 A.16.1.7", ], }, "Workflow": {"Status": "NEW"}, "RecordState": "ACTIVE", } yield finding else: finding = { "SchemaVersion": "2018-10-08", "Id": ecsClusterArn + "/ecs-cluster-container-insights-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": ecsClusterArn, "AwsAccountId": awsAccountId, "Types": [ "Software and Configuration Checks/AWS Security Best Practices" ], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "INFORMATIONAL"}, "Confidence": 99, "Title": "[ECS.1] ECS clusters should have container insights enabled", "Description": "ECS cluster " + clusterName + " has container insights enabled.", "Remediation": { "Recommendation": { "Text": "For information on configuring Container Insights for your cluster refer to the Setting Up Container Insights on Amazon ECS for Cluster- and Service-Level Metrics section of the Amazon CloudWatch User Guide", "Url": "https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/deploy-container-insights-ECS-cluster.html", } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsEcsCluster", "Id": ecsClusterArn, "Partition": awsPartition, "Region": awsRegion, "Details": {"Other": {"ClusterName": clusterName}}, } ], "Compliance": { "Status": "PASSED", "RelatedRequirements": [ "NIST CSF DE.AE-3", "NIST SP 800-53 AU-6", "NIST SP 800-53 CA-7", "NIST SP 800-53 IR-4", "NIST SP 800-53 IR-5", "NIST SP 800-53 IR-8", "NIST SP 800-53 SI-4", "AICPA TSC CC7.2", "ISO 27001:2013 A.12.4.1", "ISO 27001:2013 A.16.1.7", ], }, "Workflow": {"Status": "RESOLVED"}, "RecordState": "ARCHIVED", } yield finding except Exception as e: print(e) @registry.register_check("ecs") def ecs_cluster_default_provider_strategy_check(cache: dict, awsAccountId: str, awsRegion: str, awsPartition: str) -> dict: """[ECS.2] ECS clusters should have a default cluster capacity provider strategy configured""" response = list_clusters(cache) myEcsClusters = response["clusterArns"] for clusters in myEcsClusters: clusterArn = str(clusters) try: response = ecs.describe_clusters(clusters=[clusterArn]) for clusterinfo in response["clusters"]: clusterName = str(clusterinfo["clusterName"]) ecsClusterArn = str(clusterinfo["clusterArn"]) defaultProviderStratCheck = str(clusterinfo["defaultCapacityProviderStrategy"]) # ISO Time iso8601Time = ( datetime.datetime.utcnow().replace(tzinfo=datetime.timezone.utc).isoformat() ) if defaultProviderStratCheck == "[]": finding = { "SchemaVersion": "2018-10-08", "Id": ecsClusterArn + "/ecs-cluster-default-provider-strategy-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": ecsClusterArn, "AwsAccountId": awsAccountId, "Types": ["Software and Configuration Checks/AWS Security Best Practices"], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "INFORMATIONAL"}, "Confidence": 99, "Title": "[ECS.2] ECS clusters should have a default cluster capacity provider strategy configured", "Description": "ECS cluster " + clusterName + " does not have a default provider strategy configured. Refer to the remediation instructions to remediate this behavior", "Remediation": { "Recommendation": { "Text": "For information on cluster capacity provider strategies for your cluster refer to the Amazon ECS Cluster Capacity Providers section of the Amazon Elastic Container Service Developer Guide", "Url": "https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-capacity-providers.html", } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsEcsCluster", "Id": ecsClusterArn, "Partition": awsPartition, "Region": awsRegion, "Details": {"Other": {"ClusterName": clusterName}}, } ], "Compliance": { "Status": "FAILED", "RelatedRequirements": [ "NIST CSF ID.AM-2", "NIST SP 800-53 CM-8", "NIST SP 800-53 PM-5", "AICPA TSC CC3.2", "AICPA TSC CC6.1", "ISO 27001:2013 A.8.1.1", "ISO 27001:2013 A.8.1.2", "ISO 27001:2013 A.12.5.1", ], }, "Workflow": {"Status": "NEW"}, "RecordState": "ACTIVE", } yield finding else: finding = { "SchemaVersion": "2018-10-08", "Id": ecsClusterArn + "/ecs-cluster-default-provider-strategy-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": ecsClusterArn, "AwsAccountId": awsAccountId, "Types": ["Software and Configuration Checks/AWS Security Best Practices"], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "INFORMATIONAL"}, "Confidence": 99, "Title": "[ECS.2] ECS clusters should have a default cluster capacity provider strategy configured", "Description": "ECS cluster " + clusterName + " has a default provider strategy configured.", "Remediation": { "Recommendation": { "Text": "For information on cluster capacity provider strategies for your cluster refer to the Amazon ECS Cluster Capacity Providers section of the Amazon Elastic Container Service Developer Guide", "Url": "https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-capacity-providers.html", } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsEcsCluster", "Id": ecsClusterArn, "Partition": awsPartition, "Region": awsRegion, "Details": {"Other": {"ClusterName": clusterName}}, } ], "Compliance": { "Status": "PASSED", "RelatedRequirements": [ "NIST CSF ID.AM-2", "NIST SP 800-53 CM-8", "NIST SP 800-53 PM-5", "AICPA TSC CC3.2", "AICPA TSC CC6.1", "ISO 27001:2013 A.8.1.1", "ISO 27001:2013 A.8.1.2", "ISO 27001:2013 A.12.5.1", ], }, "Workflow": {"Status": "RESOLVED"}, "RecordState": "ARCHIVED", } yield finding except Exception as e: print(e) @registry.register_check("ecs") def ecs_task_definition_privileged_container_check(cache: dict, awsAccountId: str, awsRegion: str, awsPartition: str) -> dict: """[ECS.3] ECS Task Definitions should not run privileged containers if not required""" for taskdef in ecs.list_task_definitions(status='ACTIVE')['taskDefinitionArns']: try: response = ecs.describe_task_definition(taskDefinition=taskdef)["taskDefinition"] taskDefinitionArn = str(response['taskDefinitionArn']) tdefFamily = str(response["family"]) # Loop container definitions for cdef in response["containerDefinitions"]: # ISO Time iso8601Time = (datetime.datetime.utcnow().replace(tzinfo=datetime.timezone.utc).isoformat()) cdefName = str(cdef["name"]) # We are going to assume that if there is not a privileged flag...that it is ;) try: privCheck = str(cdef["privileged"]) except: privCheck = 'UNKNOWN' if privCheck != 'False': finding = { "SchemaVersion": "2018-10-08", "Id": taskDefinitionArn + "/" + cdefName + "/ecs-task-definition-privileged-container-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": taskDefinitionArn + "/" + cdefName, "AwsAccountId": awsAccountId, "Types": [ "Software and Configuration Checks/AWS Security Best Practices", "TTPs/Privilege Escalation" ], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "MEDIUM"}, "Confidence": 99, "Title": "[ECS.3] ECS Task Definitions should not run privileged containers if not required", "Description": "ECS Container Definition " + cdefName + " in Task Definition " + taskDefinitionArn + " has defined a Privileged container, which should be avoided unless absolutely necessary. Refer to the remediation instructions to remediate this behavior", "Remediation": { "Recommendation": { "Text": "Containers running as Privileged will have Root permissions, this should be avoided if not needed. Refer to the Task definition parameters Security section of the Amazon Elastic Container Service Developer Guide", "Url": "https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#container_definitions", } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsEcsTaskDefinition", "Id": taskDefinitionArn, "Partition": awsPartition, "Region": awsRegion, "Details": { "Other": { "Family": tdefFamily, "ContainerDefinitionName": cdefName } } } ], "Compliance": { "Status": "FAILED", "RelatedRequirements": [ "NIST CSF PR.AC-1", "NIST SP 800-53 AC-1", "NIST SP 800-53 AC-2", "NIST SP 800-53 IA-1", "NIST SP 800-53 IA-2", "NIST SP 800-53 IA-3", "NIST SP 800-53 IA-4", "NIST SP 800-53 IA-5", "NIST SP 800-53 IA-6", "NIST SP 800-53 IA-7", "NIST SP 800-53 IA-8", "NIST SP 800-53 IA-9", "NIST SP 800-53 IA-10", "NIST SP 800-53 IA-11", "AICPA TSC CC6.1", "AICPA TSC CC6.2", "ISO 27001:2013 A.9.2.1", "ISO 27001:2013 A.9.2.2", "ISO 27001:2013 A.9.2.3", "ISO 27001:2013 A.9.2.4", "ISO 27001:2013 A.9.2.6", "ISO 27001:2013 A.9.3.1", "ISO 27001:2013 A.9.4.2", "ISO 27001:2013 A.9.4.3", ], }, "Workflow": {"Status": "NEW"}, "RecordState": "ACTIVE", } yield finding else: finding = { "SchemaVersion": "2018-10-08", "Id": taskDefinitionArn + "/" + cdefName + "/ecs-task-definition-privileged-container-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": taskDefinitionArn + "/" + cdefName, "AwsAccountId": awsAccountId, "Types": [ "Software and Configuration Checks/AWS Security Best Practices", "TTPs/Privilege Escalation" ], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "INFORMATIONAL"}, "Confidence": 99, "Title": "[ECS.3] ECS Task Definitions should not run privileged containers if not required", "Description": "ECS Container Definition " + cdefName + " in Task Definition " + taskDefinitionArn + " has not defined a Privileged container.", "Remediation": { "Recommendation": { "Text": "Containers running as Privileged will have Root permissions, this should be avoided if not needed. Refer to the Task definition parameters Security section of the Amazon Elastic Container Service Developer Guide", "Url": "https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#container_definitions", } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsEcsTaskDefinition", "Id": taskDefinitionArn, "Partition": awsPartition, "Region": awsRegion, "Details": { "Other": { "Family": tdefFamily, "ContainerDefinitionName": cdefName } } } ], "Compliance": { "Status": "PASSED", "RelatedRequirements": [ "NIST CSF PR.AC-1", "NIST SP 800-53 AC-1", "NIST SP 800-53 AC-2", "NIST SP 800-53 IA-1", "NIST SP 800-53 IA-2", "NIST SP 800-53 IA-3", "NIST SP 800-53 IA-4", "NIST SP 800-53 IA-5", "NIST SP 800-53 IA-6", "NIST SP 800-53 IA-7", "NIST SP 800-53 IA-8", "NIST SP 800-53 IA-9", "NIST SP 800-53 IA-10", "NIST SP 800-53 IA-11", "AICPA TSC CC6.1", "AICPA TSC CC6.2", "ISO 27001:2013 A.9.2.1", "ISO 27001:2013 A.9.2.2", "ISO 27001:2013 A.9.2.3", "ISO 27001:2013 A.9.2.4", "ISO 27001:2013 A.9.2.6", "ISO 27001:2013 A.9.3.1", "ISO 27001:2013 A.9.4.2", "ISO 27001:2013 A.9.4.3", ], }, "Workflow": {"Status": "RESOLVED"}, "RecordState": "ARCHIVED", } yield finding except Exception as e: print(e) @registry.register_check("ecs") def ecs_task_definition_security_labels_check(cache: dict, awsAccountId: str, awsRegion: str, awsPartition: str) -> dict: """[ECS.4] ECS Task Definitions for EC2 should have Docker Security Options (SELinux or AppArmor) configured""" for taskdef in ecs.list_task_definitions(status='ACTIVE')['taskDefinitionArns']: try: response = ecs.describe_task_definition(taskDefinition=taskdef)["taskDefinition"] taskDefinitionArn = str(response["taskDefinitionArn"]) tdefFamily = str(response["family"]) # If there is a network mode of "awsvpc" it is likely a Fargate task - even though EC2 compute can run with that... # time for some funky edge cases, keep that in mind before you yeet an issue at me, please ;) if str(response["networkMode"]) == 'awsvpc': continue else: # Loop container definitions for cdef in response["containerDefinitions"]: # ISO Time iso8601Time = (datetime.datetime.utcnow().replace(tzinfo=datetime.timezone.utc).isoformat()) cdefName = str(cdef["name"]) try: # This is a passing check secOpts = str(cdef["dockerSecurityOptions"]) finding = { "SchemaVersion": "2018-10-08", "Id": taskDefinitionArn + "/" + cdefName + "/ecs-task-definition-security-labels-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": taskDefinitionArn + "/" + cdefName, "AwsAccountId": awsAccountId, "Types": ["Software and Configuration Checks/AWS Security Best Practices"], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "INFORMATIONAL"}, "Confidence": 99, "Title": "[ECS.4] ECS Task Definitions for EC2 should have Docker Security Options (SELinux or AppArmor) configured", "Description": "ECS Container Definition " + cdefName + " in Task Definition " + taskDefinitionArn + " has Docker Security Options configured.", "Remediation": { "Recommendation": { "Text": "Containers running on EC2 Compute-types should have Docker Security Options configured. Refer to the Task definition parameters Security section of the Amazon Elastic Container Service Developer Guide", "Url": "https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#container_definitions" } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsEcsTaskDefinition", "Id": taskDefinitionArn, "Partition": awsPartition, "Region": awsRegion, "Details": { "Other": { "Family": tdefFamily, "ContainerDefinitionName": cdefName, 'DockerSecurityOptions': secOpts } } } ], "Compliance": { "Status": "PASSED", "RelatedRequirements": [ "NIST CSF PR.IP-1", "NIST SP 800-53 CM-2", "NIST SP 800-53 CM-3", "NIST SP 800-53 CM-4", "NIST SP 800-53 CM-5", "NIST SP 800-53 CM-6", "NIST SP 800-53 CM-7", "NIST SP 800-53 CM-9", "NIST SP 800-53 SA-10", "AICPA TSC A1.3", "AICPA TSC CC1.4", "AICPA TSC CC5.3", "AICPA TSC CC6.2", "AICPA TSC CC7.1", "AICPA TSC CC7.3", "AICPA TSC CC7.4", "ISO 27001:2013 A.12.1.2", "ISO 27001:2013 A.12.5.1", "ISO 27001:2013 A.12.6.2", "ISO 27001:2013 A.14.2.2", "ISO 27001:2013 A.14.2.3", "ISO 27001:2013 A.14.2.4", ], }, "Workflow": {"Status": "RESOLVED"}, "RecordState": "ARCHIVED" } yield finding except: secOpts = str('["NO_OPTIONS"]') finding = { "SchemaVersion": "2018-10-08", "Id": taskDefinitionArn + "/" + cdefName + "/ecs-task-definition-security-labels-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": taskDefinitionArn + "/" + cdefName, "AwsAccountId": awsAccountId, "Types": ["Software and Configuration Checks/AWS Security Best Practices"], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "HIGH"}, "Confidence": 99, "Title": "[ECS.4] ECS Task Definitions for EC2 should have Docker Security Options (SELinux or AppArmor) configured", "Description": "ECS Container Definition " + cdefName + " in Task Definition " + taskDefinitionArn + " does not have any Docker Security Options configured. Refer to the remediation instructions to remediate this behavior", "Remediation": { "Recommendation": { "Text": "Containers running on EC2 Compute-types should have Docker Security Options configured. Refer to the Task definition parameters Security section of the Amazon Elastic Container Service Developer Guide", "Url": "https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#container_definitions" } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsEcsTaskDefinition", "Id": taskDefinitionArn, "Partition": awsPartition, "Region": awsRegion, "Details": { "Other": { "Family": tdefFamily, "ContainerDefinitionName": cdefName, 'DockerSecurityOptions': secOpts } } } ], "Compliance": { "Status": "FAILED", "RelatedRequirements": [ "NIST CSF PR.IP-1", "NIST SP 800-53 CM-2", "NIST SP 800-53 CM-3", "NIST SP 800-53 CM-4", "NIST SP 800-53 CM-5", "NIST SP 800-53 CM-6", "NIST SP 800-53 CM-7", "NIST SP 800-53 CM-9", "NIST SP 800-53 SA-10", "AICPA TSC A1.3", "AICPA TSC CC1.4", "AICPA TSC CC5.3", "AICPA TSC CC6.2", "AICPA TSC CC7.1", "AICPA TSC CC7.3", "AICPA TSC CC7.4", "ISO 27001:2013 A.12.1.2", "ISO 27001:2013 A.12.5.1", "ISO 27001:2013 A.12.6.2", "ISO 27001:2013 A.14.2.2", "ISO 27001:2013 A.14.2.3", "ISO 27001:2013 A.14.2.4", ], }, "Workflow": {"Status": "NEW"}, "RecordState": "ACTIVE" } yield finding except Exception as e: print(e)
57.60828
254
0.409199
0
0
34,833
0.962823
34,961
0.966361
0
0
14,280
0.394715
c324c7d6ffabe1bf0c4f2f6e3eba09b511032c92
7,470
py
Python
Mask/Interpolate slider without prepolate.py
typedev/RoboFont-1
307c3c953a338f58cd0070aa5b1bb737bde08cc9
[ "MIT" ]
1
2016-03-27T17:07:16.000Z
2016-03-27T17:07:16.000Z
Mask/Interpolate slider without prepolate.py
typedev/RoboFont-1
307c3c953a338f58cd0070aa5b1bb737bde08cc9
[ "MIT" ]
null
null
null
Mask/Interpolate slider without prepolate.py
typedev/RoboFont-1
307c3c953a338f58cd0070aa5b1bb737bde08cc9
[ "MIT" ]
null
null
null
""" This slider controls interpolation between foreground and mask layers. Initial position for slider is at 1.0 (current foreground outline) Sliding left to 0.0 interpolates to mask Sliding right to 3.0 extrapolates away from mask. NOTE: Running this script opens an observer on the current glyph in the Glyph View window. The slider window must then be closed before it can be used on another glyph. """ from fontTools.misc.transform import Transform from vanilla import * g = CurrentGlyph() g.prepareUndo('interpolate with mask') ################### PREPOLATION ################################### ## Auto contour order and startpoints for foreground: #g.autoContourOrder() #for c in g: # c.autoStartSegment() ## Auto contour order and startpoints for mask: g.flipLayers("foreground", "mask") #g.autoContourOrder() #for c in g: # c.autoStartSegment() ## Gather point info for mask layer: maskpoints = [] for i in range(len(g)): maskpoints.append([]) for j in range(len(g[i])): maskpoints[i].append((g[i][j].onCurve.x,g[i][j].onCurve.y)) ## Gather point info for foreground layer: g.flipLayers("mask", "foreground") forepoints = [] for i in range(len(g)): forepoints.append([]) for j in range(len(g[i])): forepoints[i].append((g[i][j].onCurve.x,g[i][j].onCurve.y)) ## Compare length of each contour in mask and foreground: n = 0 print '-------------------------------' print 'Checking ' + str(g.name) + ' without auto ordering' def gradient(point1, point2): grad = (point2[1] - point1[1])/(point2[0] - point1[0] + 0.9) return grad mismatched = [] if len(maskpoints) == len(forepoints): for i in range(len(forepoints)): print '-------------------------------' if len(forepoints[i]) == len(maskpoints[i]): print 'Contour ' + str(i) + ' matches' else: n = n + 1 print 'Contour ' + str(i) + ':' print str(len(forepoints[i])) + ' points in foreground' print str(len(maskpoints[i])) + ' points in mask' print '-------------------------------' if len(forepoints[i]) > len(maskpoints[i]): count = len(maskpoints[i]) prob = 'mask' else: count = len(forepoints[i]) prob = 'foreground' for j in range(-1,count - 1): def foregradient(a,b): foregrad = gradient(forepoints[a][b],forepoints[a][b+1]) return foregrad def maskgradient(a,b): maskgrad = gradient(maskpoints[a][b],maskpoints[a][b+1]) return maskgrad foregrad = foregradient(i,j) maskgrad = maskgradient(i,j) if foregrad > 20: foregrad = 100 if maskgrad > 20: maskgrad = 100 if foregrad < -20: foregrad = -100 if maskgrad < -20: maskgrad = -100 if abs(foregrad - maskgrad) > 0.4: mismatched.append(j+1) mismatched = [mismatched[0]] ## Find second problem: if prob == 'foreground': foregrad = foregradient(i,j) maskgrad = maskgradient(i,j+1) else: foregrad = foregradient(i,j+1) maskgrad = maskgradient(i,j) if foregrad > 20: foregrad = 100 if maskgrad > 20: maskgrad = 100 if foregrad < -20: foregrad = -100 if maskgrad < -20: maskgrad = -100 if abs(foregrad - maskgrad) > 0.4: mismatched.append(j+1) if abs(len(forepoints[i]) - len(maskpoints[i])) == 1: if len(mismatched) == 1: print 'Check between points ' + str(mismatched[0]) + ' and ' + str(mismatched[0] + 1) else: print 'Check amongst the last few points' else: if len(mismatched) == 2: print 'Check between points ' + str(mismatched[0]) + ' and ' + str(mismatched[0] + 1) print 'Check between points ' + str(mismatched[1]) + ' and ' + str(mismatched[1] + 1) elif len(mismatched) == 1: print 'Check between points ' + str(mismatched[0]) + ' and ' + str(mismatched[0] + 1) print 'Check amongst the last few points' else: print 'Check amongst the last few points' else: print '-------------------------------' print 'Foreground has ' + str(len(forepoints)) + ' contours' print 'Mask has ' + str(len(maskpoints)) + ' contours' print '-------------------------------' ################### INTERP SLIDER ################################### ## Collect mask points: g.flipLayers("foreground", "mask") all_mask_points = [] all_mask_points_length = [] for i in range(len(g)): all_mask_points.append([]) for j in range(len(g[i].points)): all_mask_points[i].append((g[i].points[j].x, g[i].points[j].y)) all_mask_points_length.append(j) ## Collect initial foreground points: g.flipLayers("mask", "foreground") all_fore_points = [] all_fore_points_length = [] for i in range(len(g)): all_fore_points.append([]) for j in range(len(g[i].points)): all_fore_points[i].append((g[i].points[j].x, g[i].points[j].y)) all_fore_points_length.append(j) ## Check for compatibility: if n > 0: pass else: ## if compatible, interpolate: def interp_fore(Glif, int_val): for i in range(len(Glif)): for j in range(len(Glif[i].points)): fore_point = all_fore_points[i][j] mask_point = all_mask_points[i][j] Glif[i].points[j].x = mask_point[0] + ((fore_point[0] - mask_point[0]) * int_val) Glif[i].points[j].y = mask_point[1] + ((fore_point[1] - mask_point[1]) * int_val) class InterpWithMaskWindow: def __init__(self, glyph): if glyph is None: print "There should be a glyph window selected." return self.glyph = glyph self.w = Window((600, 36),"Interpolate Foreground with Mask (no AutoOrder):") self.w.int = Slider((10, 6, -10, 22), value=1, maxValue=3, minValue=0, callback=self.adjust) self.w.open() def adjust(self, sender): int_val = self.w.int.get() print round(int_val, 2) Glif = self.glyph interp_fore(Glif, int_val) Glif.update() OpenWindow(InterpWithMaskWindow, CurrentGlyph()) g.update() g.performUndo() t = Transform().translate(0, 0) g.transform(t, doComponents=True) g.update()
30.614754
105
0.493574
792
0.106024
0
0
0
0
0
0
1,800
0.240964
c3261a4d2211366618f8d261cfec66b8e3825641
429
py
Python
ex062.py
paulo-caixeta/Exercicios_Curso_Python
3b77925499c174ea9ff81dec65d6319125219b9a
[ "MIT" ]
null
null
null
ex062.py
paulo-caixeta/Exercicios_Curso_Python
3b77925499c174ea9ff81dec65d6319125219b9a
[ "MIT" ]
null
null
null
ex062.py
paulo-caixeta/Exercicios_Curso_Python
3b77925499c174ea9ff81dec65d6319125219b9a
[ "MIT" ]
null
null
null
# Continuação do ex061 (Termos de PA) print('Gerador de PA') print('-=' * 10) primeiro = int(input('Primeiro termo: ')) razão = int(input('Razão: ')) i = 0 n = 10 novos = 10 total = 0 while novos != 0: total = total + novos while i < total: termo = primeiro + razão * i i += 1 print(termo, end=' -> ') print('PAUSA') novos = int(input('Deseja mostrar mais termos? Quantos? ')) print('FIM')
23.833333
63
0.578089
0
0
0
0
0
0
0
0
143
0.329493
c3266d2fbd585c2d178a2034896380f763b83e0c
4,151
py
Python
order/tests.py
DanLivassan/bookstore
f054c3dcb7d6b57c24f98ea28a23de0061d2ccf2
[ "MIT" ]
null
null
null
order/tests.py
DanLivassan/bookstore
f054c3dcb7d6b57c24f98ea28a23de0061d2ccf2
[ "MIT" ]
1
2022-02-25T01:38:50.000Z
2022-02-25T01:38:50.000Z
order/tests.py
DanLivassan/bookstore
f054c3dcb7d6b57c24f98ea28a23de0061d2ccf2
[ "MIT" ]
null
null
null
from random import randint from django.contrib.auth import get_user_model from django.test import TestCase from django.urls import reverse from order.serializers import OrderSerializer from product.models import Product from order.models import Order from rest_framework import status from rest_framework.test import APIClient MAX_PER_PAGE = 5 def sample_user(email='[email protected]', password='Sstring1'): """Creste a sample user""" return get_user_model().objects.create_user(email, password) def sample_product(title="My Product", price=1000, description="My product description"): raw_product = { 'title': title, 'price': price, 'description': description, } return Product.objects.create(**raw_product) def sample_order(user, products): raw_order = { # 'products': [product, product], 'user': user } order = Order.objects.create(**raw_order) for product in products: order.products.add(product) return order class ModelTests(TestCase): def test_order_creation_and_str(self): """Test that order is created and str is showed properly""" product1 = sample_product() product2 = sample_product() user = sample_user() order = sample_order(user, [product1, product2]) self.assertEqual(2, len(order.products.all())) self.assertIn(user.email, str(order)) self.assertIn("2", str(order)) class SerializerTests(TestCase): def test_order_serializer(self): """Test that order serializer""" product1 = sample_product() product2 = sample_product() user = sample_user() order = sample_order(user, [product1, product2]) serialized_data = OrderSerializer(order) data = serialized_data.data self.assertEqual(len(data['products']), 2) self.assertEqual(data['total'], 2000) class PublicApiTests(TestCase): def setUp(self) -> None: self.client = APIClient() def test_that_write_methods_fails(self): """Test if unauthenticated user perform write methods fails""" url = reverse('product-list', args=['v1']) post_response = self.client.post(url, {}) put_response = self.client.put(url, {}) patch_response = self.client.patch(url, {}) self.assertEqual(status.HTTP_403_FORBIDDEN, post_response.status_code) self.assertEqual(status.HTTP_403_FORBIDDEN, put_response.status_code) self.assertEqual(status.HTTP_403_FORBIDDEN, patch_response.status_code) def test_get_order_list(self): """Test that orders are retrieved porperly and if the sum of prices matches with sum of products price""" url = reverse('order-list', args=['v1']) total = 0 products = [] for i in range(5): price = randint(1000, 2000) total += price products.append(sample_product(price=price)) user = sample_user() sample_order(user=user, products=products) response = self.client.get(url) api_order = response.data['results'][0] self.assertEqual(api_order['total'], total) self.assertEqual(len(api_order['products']), 5) class PrivateApiTest(TestCase): def setUp(self) -> None: self.user = sample_user(email='[email protected]') self.client = APIClient() self.client.force_authenticate(self.user) def test_create_a_new_order(self): """Test that an order are created porperly""" url = reverse('order-list', args=['v1']) sample_product() sample_product() products = Product.objects.all() user = sample_user() order_payload = { 'user': user.id, 'products_ids': [p.id for p in products] } response = self.client.post(url, order_payload) orders = Order.objects.all() self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(orders.count(), 1) self.assertEqual(orders[0].products.count(), 2)
33.747967
113
0.645387
3,134
0.754999
0
0
0
0
0
0
596
0.14358
c326bebf1fd8cf9fedf46e490c5cf11624fd3c7e
6,950
py
Python
sam-app/tests/unit/test_apns.py
mgacy/Adequate-Backend
7f62f692a3fff53f825e597289515bffadb8f25c
[ "MIT" ]
1
2021-06-03T07:27:18.000Z
2021-06-03T07:27:18.000Z
sam-app/tests/unit/test_apns.py
mgacy/Adequate-Backend
7f62f692a3fff53f825e597289515bffadb8f25c
[ "MIT" ]
3
2021-04-06T18:36:02.000Z
2021-06-16T04:22:27.000Z
sam-app/tests/unit/test_apns.py
mgacy/Adequate-Backend
7f62f692a3fff53f825e597289515bffadb8f25c
[ "MIT" ]
null
null
null
import unittest from .mocks import BotoSessionMock from push_notification import apns class APNSTestCase(unittest.TestCase): def_apns_category = 'MGDailyDealCategory' # def setUp(self): # def tearDown(self): # push_notification # push_background # make_new_deal_message # make_delta_message def test_make_delta_comment_1(self): deal_id = 'a6k5A000000kP9LQAU' delta_type = 'commentCount' delta_value = 5 message = { 'id': deal_id, 'delta_type': delta_type, 'delta_value': delta_value } expected = ( '{"aps": {"content-available": 1}, ' '"deal-id": "a6k5A000000kP9LQAU", ' '"delta-type": "commentCount", ' '"delta-value": 5}' ) result = apns.make_delta_message(message) self.assertEqual(result, expected) def test_make_delta_status_1(self): deal_id = 'a6k5A000000kP9LQAU' delta_type = 'launchStatus' delta_value = 'launch' message = { 'id': deal_id, 'delta_type': delta_type, 'delta_value': delta_value } expected = ( '{"aps": {"content-available": 1}, ' '"deal-id": "a6k5A000000kP9LQAU", ' '"delta-type": "launchStatus", ' '"delta-value": "launch"}' ) result = apns.make_delta_message(message) self.assertEqual(result, expected) # publish_message def test_publish_delta_status_prod(self): message = ( '{"aps": {"content-available": 1}, ' '"deal-id": "a6k5A000000kP9LQAU", ' '"delta-type": "launchStatus", ' '"delta-value": "launch"}' ) # deal_id = 'a6k5A000000kP9LQAU' # delta_type = 'launchStatus' # delta_value = 'launch' # message = ( # '{"aps": {"content-available": 1}, ' # f'"deal-id": "{deal_id}", ' # f'"delta-type": "{delta_type}", ' # f'"delta-value": "{delta_value}"' # '}' # ) session = BotoSessionMock() default_message='default message' apns_server = 'prod' apns.publish_message(session, topic_arn='fake_topic_arn', apns_server=apns_server, apns_message=message, default_message=default_message) expected = ( '{' '"default": "default message", ' '"APNS": "{' '\\"aps\\": {' '\\"content-available\\": 1' '}, ' '\\"deal-id\\": \\"a6k5A000000kP9LQAU\\", ' '\\"delta-type\\": \\"launchStatus\\", ' '\\"delta-value\\": \\"launch\\"' '}"' '}' ) result = session.client.message self.assertEqual(result, expected) def test_publish_delta_status_dev(self): message = ( '{"aps": {"content-available": 1}, ' '"deal-id": "a6k5A000000kP9LQAU", ' '"delta-type": "launchStatus", ' '"delta-value": "launch"}' ) session = BotoSessionMock() default_message='default message' apns_server = 'dev' apns.publish_message(session, topic_arn='fake_topic_arn', apns_server=apns_server, apns_message=message, default_message=default_message) expected = ( '{' '"default": "default message", ' '"APNS_SANDBOX": "{' '\\"aps\\": {' '\\"content-available\\": 1' '}, ' '\\"deal-id\\": \\"a6k5A000000kP9LQAU\\", ' '\\"delta-type\\": \\"launchStatus\\", ' '\\"delta-value\\": \\"launch\\"' '}"' '}' ) result = session.client.message self.assertEqual(result, expected) def test_publish_delta_status_both(self): message = ( '{"aps": {"content-available": 1}, ' '"deal-id": "a6k5A000000kP9LQAU", ' '"delta-type": "launchStatus", ' '"delta-value": "launch"}' ) session = BotoSessionMock() default_message='default message' apns_server = 'both' apns.publish_message(session, topic_arn='fake_topic_arn', apns_server=apns_server, apns_message=message, default_message=default_message) expected = ( '{' '"default": "default message", ' '"APNS": "{' '\\"aps\\": {' '\\"content-available\\": 1' '}, ' '\\"deal-id\\": \\"a6k5A000000kP9LQAU\\", ' '\\"delta-type\\": \\"launchStatus\\", ' '\\"delta-value\\": \\"launch\\"' '}", ' '"APNS_SANDBOX": "{' '\\"aps\\": {' '\\"content-available\\": 1' '}, ' '\\"deal-id\\": \\"a6k5A000000kP9LQAU\\", ' '\\"delta-type\\": \\"launchStatus\\", ' '\\"delta-value\\": \\"launch\\"' '}"' '}' ) result = session.client.message self.assertEqual(result, expected) def test_publish_invalid_server(self): session = BotoSessionMock() topic_arn='fake_topic_arn' apns_server = 'meh' apns_message ='{"aps": {"content-available": 1}' default_message='default message' self.assertRaises( ValueError, apns.publish_message, session, topic_arn, apns_server, apns_message, default_message) # _make_background_notification def test_make_background_notification_no_additional(self): additional = None expected = { 'aps': { 'content-available': 1 } } result = apns._make_background_notification(additional) self.assertEqual(result, expected) def test_make_background_notification_with_additional(self): deal_id = 'a6k5A000000kP9LQAU' delta_type = 'commentCount' delta_value = 5 additional = { 'id': deal_id, 'delta_type': delta_type, 'delta_value': delta_value } expected = { 'aps': { 'content-available': 1 }, 'id': deal_id, 'delta_type': delta_type, 'delta_value': delta_value } result = apns._make_background_notification(additional) self.assertDictEqual(result, expected) # _make_notification # def test_make_notification_1(self): # raise_for_status
29.079498
109
0.489784
6,861
0.987194
0
0
0
0
0
0
2,474
0.355971
c327543b799027a0d190954bd8149ab8b7d7603f
809
py
Python
scrapets/extract.py
ownport/scrapets
e52609aae4d55fb9d4315f90d4e2fe3804ef8ff6
[ "MIT" ]
2
2017-06-22T15:45:52.000Z
2019-08-23T03:34:40.000Z
scrapets/extract.py
ownport/scrapets
e52609aae4d55fb9d4315f90d4e2fe3804ef8ff6
[ "MIT" ]
9
2016-10-23T17:56:34.000Z
2016-12-12T10:39:23.000Z
scrapets/extract.py
ownport/scrapets
e52609aae4d55fb9d4315f90d4e2fe3804ef8ff6
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from HTMLParser import HTMLParser # ------------------------------------------------------- # # LinkExtractor: extract links from html page # class BaseExtractor(HTMLParser): def __init__(self): HTMLParser.__init__(self) self._links = [] @property def links(self): return self._links class LinkExtractor(BaseExtractor): def handle_starttag(self, tag, attrs): if tag == 'a': links = [v for k,v in attrs if k == 'href' and v not in self._links] self._links.extend(links) class ImageLinkExtractor(BaseExtractor): def handle_starttag(self, tag, attrs): if tag == 'img': links = [v for k,v in attrs if k == 'src' and v not in self._links] self._links.extend(links)
20.74359
80
0.566131
631
0.779975
0
0
58
0.071693
0
0
148
0.182942
c327b1f258b5961f3d1085b7f824f0cb5ee2f32a
2,227
py
Python
tour/forms.py
superdev0505/mtp-web
8288765a89daaa7b02dfd7e78cc51c4f12d7fcce
[ "MIT" ]
null
null
null
tour/forms.py
superdev0505/mtp-web
8288765a89daaa7b02dfd7e78cc51c4f12d7fcce
[ "MIT" ]
null
null
null
tour/forms.py
superdev0505/mtp-web
8288765a89daaa7b02dfd7e78cc51c4f12d7fcce
[ "MIT" ]
null
null
null
## Django Packages from django import forms from django_select2 import forms as s2forms ## App packages from .models import * from datetime import datetime from bootstrap_datepicker_plus import DatePickerInput, TimePickerInput, DateTimePickerInput, MonthPickerInput, YearPickerInput from tags_input import fields from lib.classes import CustomTagsInputField ############################################################################ ############################################################################ class TourForm(forms.ModelForm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['name'] = forms.CharField(widget=forms.TextInput(attrs={'class': 'form-control', 'data-validation': 'required'}), required=False) self.fields['description'] = forms.CharField( widget=forms.Textarea(attrs={'class': 'form-control', 'rows': 4, 'data-validation': 'required'}), required=False) self.fields['tour_tag'] = CustomTagsInputField( TourTag.objects.filter(is_actived=True), create_missing=True, required=False, ) # class Meta: model = Tour fields = ( 'name', 'description', 'tour_tag' ) class TourSearchForm(forms.Form): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['username'] = forms.CharField( label='Username', widget=forms.TextInput(attrs={'class': 'form-control'}), required=False ) self.fields['name'] = forms.CharField( label='Tour Name', widget=forms.TextInput(attrs={'class': 'form-control'}), required=False ) self.fields['tour_tag'] = CustomTagsInputField( TourTag.objects.filter(is_actived=True), create_missing=False, required=False, ) def _my(self, username): self.fields['username'] = forms.CharField( label='', widget=forms.TextInput(attrs={'class': 'form-control d-none', 'value': username}), required=False )
31.814286
133
0.562191
1,710
0.767849
0
0
0
0
0
0
482
0.216435
c327d2cfdab4947c294367dcb469b4dd7dc0ab92
485
py
Python
bots/test_analyseGithub.py
RSE2-D2/RSE2-D2
eb535669cbc476b67d7cb6e1092eb0babe2f24df
[ "MIT" ]
3
2020-04-02T09:39:44.000Z
2020-04-02T14:26:48.000Z
bots/test_analyseGithub.py
RSE2-D2/RSE2-D2
eb535669cbc476b67d7cb6e1092eb0babe2f24df
[ "MIT" ]
16
2020-04-02T08:21:16.000Z
2020-04-02T15:44:29.000Z
bots/test_analyseGithub.py
RSE2-D2/RSE2-D2
eb535669cbc476b67d7cb6e1092eb0babe2f24df
[ "MIT" ]
1
2020-04-02T08:36:41.000Z
2020-04-02T08:36:41.000Z
import analyseGithub def test_containsGithubURL_empty(): assert not analyseGithub.containsGitHubURL("") def test_containsGithubURL_noUrl(): assert not analyseGithub.containsGitHubURL("Some test tweet") def test_containsGithubURL_url(): repo = "https://github.com/git/git" assert analyseGithub.containsGitHubURL(repo) def test_extractGitHubLink(): repo = "https://github.com/git/git" assert analyseGithub.extractGitHubLink(f"{repo} more tweet") == "git/git"
30.3125
77
0.762887
0
0
0
0
0
0
0
0
104
0.214433
c3283cdb2fefed11f9dc322c324670fa2d4fbccd
1,069
py
Python
tests/unit/utils/filebuffer_test.py
gotcha/salt
7b84c704777d3d2062911895dc3fdf93d40e9848
[ "Apache-2.0" ]
2
2019-03-30T02:12:56.000Z
2021-03-08T18:59:46.000Z
tests/unit/utils/filebuffer_test.py
gotcha/salt
7b84c704777d3d2062911895dc3fdf93d40e9848
[ "Apache-2.0" ]
null
null
null
tests/unit/utils/filebuffer_test.py
gotcha/salt
7b84c704777d3d2062911895dc3fdf93d40e9848
[ "Apache-2.0" ]
1
2020-12-04T11:28:06.000Z
2020-12-04T11:28:06.000Z
# -*- coding: utf-8 -*- ''' tests.unit.utils.filebuffer_test ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :codeauthor: :email:`Pedro Algarvio ([email protected])` :copyright: © 2012 by the SaltStack Team, see AUTHORS for more details. :license: Apache 2.0, see LICENSE for more details. ''' # Import salt libs from saltunittest import TestCase, TestLoader, TextTestRunner from salt.utils.filebuffer import BufferedReader, InvalidFileMode class TestFileBuffer(TestCase): def test_read_only_mode(self): with self.assertRaises(InvalidFileMode): BufferedReader('/tmp/foo', mode='a') with self.assertRaises(InvalidFileMode): BufferedReader('/tmp/foo', mode='ab') with self.assertRaises(InvalidFileMode): BufferedReader('/tmp/foo', mode='w') with self.assertRaises(InvalidFileMode): BufferedReader('/tmp/foo', mode='wb') if __name__ == "__main__": loader = TestLoader() tests = loader.loadTestsFromTestCase(TestFileBuffer) TextTestRunner(verbosity=1).run(tests)
30.542857
75
0.663237
463
0.43271
0
0
0
0
0
0
381
0.356075
c328c8c92438a707d941d9592d5c8e996b8cd217
2,881
py
Python
ranking_baselines/ARCII/rank_metrics.py
dileep1996/mnsrf_ranking_suggestion
5bd241fb49f08fa4937539991e12e5a502d5a072
[ "MIT" ]
1
2020-02-04T18:27:25.000Z
2020-02-04T18:27:25.000Z
ranking_baselines/DRMM/rank_metrics.py
dileep1996/mnsrf_ranking_suggestion
5bd241fb49f08fa4937539991e12e5a502d5a072
[ "MIT" ]
null
null
null
ranking_baselines/DRMM/rank_metrics.py
dileep1996/mnsrf_ranking_suggestion
5bd241fb49f08fa4937539991e12e5a502d5a072
[ "MIT" ]
null
null
null
############################################################################### # Author: Wasi Ahmad # Project: ARC-II: Convolutional Matching Model # Date Created: 7/18/2017 # # File Description: This script contains ranking evaluation functions. ############################################################################### import torch, numpy def mean_average_precision(logits, target): """ Compute mean average precision. :param logits: 2d tensor [batch_size x num_clicks_per_query] :param target: 2d tensor [batch_size x num_clicks_per_query] :return: mean average precision [a float value] """ assert logits.size() == target.size() sorted, indices = torch.sort(logits, 1, descending=True) map = 0 for i in range(indices.size(0)): average_precision = 0 num_rel = 0 for j in range(indices.size(1)): if target[i, indices[i, j].data[0]].data[0] == 1: num_rel += 1 average_precision += num_rel / (j + 1) average_precision = average_precision / num_rel map += average_precision return map / indices.size(0) def NDCG(logits, target, k): """ Compute normalized discounted cumulative gain. :param logits: 2d tensor [batch_size x rel_docs_per_query] :param target: 2d tensor [batch_size x rel_docs_per_query] :return: mean average precision [a float value] """ assert logits.size() == target.size() assert logits.size(1) >= k, 'NDCG@K cannot be computed, invalid value of K.' sorted, indices = torch.sort(logits, 1, descending=True) NDCG = 0 for i in range(indices.size(0)): DCG_ref = 0 num_rel_docs = torch.nonzero(target[i].data).size(0) for j in range(indices.size(1)): if j == k: break if target[i, indices[i, j].data[0]].data[0] == 1: DCG_ref += 1 / numpy.log2(j + 2) DCG_gt = 0 for j in range(num_rel_docs): if j == k: break DCG_gt += 1 / numpy.log2(j + 2) NDCG += DCG_ref / DCG_gt return NDCG / indices.size(0) def MRR(logits, target): """ Compute mean reciprocal rank. :param logits: 2d tensor [batch_size x rel_docs_per_query] :param target: 2d tensor [batch_size x rel_docs_per_query] :return: mean reciprocal rank [a float value] """ assert logits.size() == target.size() sorted, indices = torch.sort(logits, 1, descending=True) total_reciprocal_rank = 0 for i in range(indices.size(0)): for j in range(indices.size(1)): if target[i, indices[i, j].data[0]].data[0] == 1: total_reciprocal_rank += 1.0 / (j + 1) break return total_reciprocal_rank / logits.size(0)
34.710843
81
0.560222
0
0
0
0
0
0
0
0
1,081
0.375217
c3292201406d3697087e8916c4dd2621e50dc55a
192
py
Python
src/wwucs/bot/__init__.py
reillysiemens/wwucs-bot
9e48ba5dc981e36cd8b18345bcbd3768c3deeeb8
[ "0BSD" ]
null
null
null
src/wwucs/bot/__init__.py
reillysiemens/wwucs-bot
9e48ba5dc981e36cd8b18345bcbd3768c3deeeb8
[ "0BSD" ]
null
null
null
src/wwucs/bot/__init__.py
reillysiemens/wwucs-bot
9e48ba5dc981e36cd8b18345bcbd3768c3deeeb8
[ "0BSD" ]
null
null
null
"""WWUCS Bot module.""" __all__ = [ "__author__", "__email__", "__version__", ] __author__ = "Reilly Tucker Siemens" __email__ = "[email protected]" __version__ = "0.1.0"
16
38
0.651042
0
0
0
0
0
0
0
0
115
0.598958
c3295559778e2a7c61a68e36cb3971cb3e83f7f7
10,638
py
Python
deploy/python/det_keypoint_unite_infer.py
Amanda-Barbara/PaddleDetection
65ac13074eaaa2447c644a2df71969d8a3dd1fae
[ "Apache-2.0" ]
null
null
null
deploy/python/det_keypoint_unite_infer.py
Amanda-Barbara/PaddleDetection
65ac13074eaaa2447c644a2df71969d8a3dd1fae
[ "Apache-2.0" ]
null
null
null
deploy/python/det_keypoint_unite_infer.py
Amanda-Barbara/PaddleDetection
65ac13074eaaa2447c644a2df71969d8a3dd1fae
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import json import cv2 import math import numpy as np import paddle import yaml from det_keypoint_unite_utils import argsparser from preprocess import decode_image from infer import Detector, DetectorPicoDet, PredictConfig, print_arguments, get_test_images, bench_log from keypoint_infer import KeyPointDetector, PredictConfig_KeyPoint from visualize import visualize_pose from benchmark_utils import PaddleInferBenchmark from utils import get_current_memory_mb from keypoint_postprocess import translate_to_ori_images KEYPOINT_SUPPORT_MODELS = { 'HigherHRNet': 'keypoint_bottomup', 'HRNet': 'keypoint_topdown' } def predict_with_given_det(image, det_res, keypoint_detector, keypoint_batch_size, run_benchmark): rec_images, records, det_rects = keypoint_detector.get_person_from_rect( image, det_res) keypoint_vector = [] score_vector = [] rect_vector = det_rects keypoint_results = keypoint_detector.predict_image( rec_images, run_benchmark, repeats=10, visual=False) keypoint_vector, score_vector = translate_to_ori_images(keypoint_results, np.array(records)) keypoint_res = {} keypoint_res['keypoint'] = [ keypoint_vector.tolist(), score_vector.tolist() ] if len(keypoint_vector) > 0 else [[], []] keypoint_res['bbox'] = rect_vector return keypoint_res def topdown_unite_predict(detector, topdown_keypoint_detector, image_list, keypoint_batch_size=1, save_res=False): det_timer = detector.get_timer() store_res = [] for i, img_file in enumerate(image_list): # Decode image in advance in det + pose prediction det_timer.preprocess_time_s.start() image, _ = decode_image(img_file, {}) det_timer.preprocess_time_s.end() if FLAGS.run_benchmark: results = detector.predict_image( [image], run_benchmark=True, repeats=10) cm, gm, gu = get_current_memory_mb() detector.cpu_mem += cm detector.gpu_mem += gm detector.gpu_util += gu else: results = detector.predict_image([image], visual=False) results = detector.filter_box(results, FLAGS.det_threshold) if results['boxes_num'] > 0: keypoint_res = predict_with_given_det( image, results, topdown_keypoint_detector, keypoint_batch_size, FLAGS.run_benchmark) if save_res: save_name = img_file if isinstance(img_file, str) else i store_res.append([ save_name, keypoint_res['bbox'], [keypoint_res['keypoint'][0], keypoint_res['keypoint'][1]] ]) else: results["keypoint"] = [[], []] keypoint_res = results if FLAGS.run_benchmark: cm, gm, gu = get_current_memory_mb() topdown_keypoint_detector.cpu_mem += cm topdown_keypoint_detector.gpu_mem += gm topdown_keypoint_detector.gpu_util += gu else: if not os.path.exists(FLAGS.output_dir): os.makedirs(FLAGS.output_dir) visualize_pose( img_file, keypoint_res, visual_thresh=FLAGS.keypoint_threshold, save_dir=FLAGS.output_dir) if save_res: """ 1) store_res: a list of image_data 2) image_data: [imageid, rects, [keypoints, scores]] 3) rects: list of rect [xmin, ymin, xmax, ymax] 4) keypoints: 17(joint numbers)*[x, y, conf], total 51 data in list 5) scores: mean of all joint conf """ with open("det_keypoint_unite_image_results.json", 'w') as wf: json.dump(store_res, wf, indent=4) def topdown_unite_predict_video(detector, topdown_keypoint_detector, camera_id, keypoint_batch_size=1, save_res=False): video_name = 'output.mp4' if camera_id != -1: capture = cv2.VideoCapture(camera_id) else: capture = cv2.VideoCapture(FLAGS.video_file) video_name = os.path.split(FLAGS.video_file)[-1] # Get Video info : resolution, fps, frame count width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = int(capture.get(cv2.CAP_PROP_FPS)) frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT)) print("fps: %d, frame_count: %d" % (fps, frame_count)) if not os.path.exists(FLAGS.output_dir): os.makedirs(FLAGS.output_dir) out_path = os.path.join(FLAGS.output_dir, video_name) fourcc = cv2.VideoWriter_fourcc(* 'mp4v') writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height)) index = 0 store_res = [] while (1): ret, frame = capture.read() if not ret: break index += 1 print('detect frame: %d' % (index)) frame2 = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) results = detector.predict_image([frame2], visual=False) results = detector.filter_box(results, FLAGS.det_threshold) if results['boxes_num'] == 0: writer.write(frame) continue keypoint_res = predict_with_given_det( frame2, results, topdown_keypoint_detector, keypoint_batch_size, FLAGS.run_benchmark) im = visualize_pose( frame, keypoint_res, visual_thresh=FLAGS.keypoint_threshold, returnimg=True) if save_res: store_res.append([ index, keypoint_res['bbox'], [keypoint_res['keypoint'][0], keypoint_res['keypoint'][1]] ]) writer.write(im) if camera_id != -1: cv2.imshow('Mask Detection', im) if cv2.waitKey(1) & 0xFF == ord('q'): break writer.release() print('output_video saved to: {}'.format(out_path)) if save_res: """ 1) store_res: a list of frame_data 2) frame_data: [frameid, rects, [keypoints, scores]] 3) rects: list of rect [xmin, ymin, xmax, ymax] 4) keypoints: 17(joint numbers)*[x, y, conf], total 51 data in list 5) scores: mean of all joint conf """ with open("det_keypoint_unite_video_results.json", 'w') as wf: json.dump(store_res, wf, indent=4) def main(): deploy_file = os.path.join(FLAGS.det_model_dir, 'infer_cfg.yml') with open(deploy_file) as f: yml_conf = yaml.safe_load(f) arch = yml_conf['arch'] detector_func = 'Detector' if arch == 'PicoDet': detector_func = 'DetectorPicoDet' detector = eval(detector_func)(FLAGS.det_model_dir, device=FLAGS.device, run_mode=FLAGS.run_mode, trt_min_shape=FLAGS.trt_min_shape, trt_max_shape=FLAGS.trt_max_shape, trt_opt_shape=FLAGS.trt_opt_shape, trt_calib_mode=FLAGS.trt_calib_mode, cpu_threads=FLAGS.cpu_threads, enable_mkldnn=FLAGS.enable_mkldnn, threshold=FLAGS.det_threshold) topdown_keypoint_detector = KeyPointDetector( FLAGS.keypoint_model_dir, device=FLAGS.device, run_mode=FLAGS.run_mode, batch_size=FLAGS.keypoint_batch_size, trt_min_shape=FLAGS.trt_min_shape, trt_max_shape=FLAGS.trt_max_shape, trt_opt_shape=FLAGS.trt_opt_shape, trt_calib_mode=FLAGS.trt_calib_mode, cpu_threads=FLAGS.cpu_threads, enable_mkldnn=FLAGS.enable_mkldnn, use_dark=FLAGS.use_dark) keypoint_arch = topdown_keypoint_detector.pred_config.arch assert KEYPOINT_SUPPORT_MODELS[ keypoint_arch] == 'keypoint_topdown', 'Detection-Keypoint unite inference only supports topdown models.' # predict from video file or camera video stream if FLAGS.video_file is not None or FLAGS.camera_id != -1: topdown_unite_predict_video(detector, topdown_keypoint_detector, FLAGS.camera_id, FLAGS.keypoint_batch_size, FLAGS.save_res) else: # predict from image img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file) topdown_unite_predict(detector, topdown_keypoint_detector, img_list, FLAGS.keypoint_batch_size, FLAGS.save_res) if not FLAGS.run_benchmark: detector.det_times.info(average=True) topdown_keypoint_detector.det_times.info(average=True) else: mode = FLAGS.run_mode det_model_dir = FLAGS.det_model_dir det_model_info = { 'model_name': det_model_dir.strip('/').split('/')[-1], 'precision': mode.split('_')[-1] } bench_log(detector, img_list, det_model_info, name='Det') keypoint_model_dir = FLAGS.keypoint_model_dir keypoint_model_info = { 'model_name': keypoint_model_dir.strip('/').split('/')[-1], 'precision': mode.split('_')[-1] } bench_log(topdown_keypoint_detector, img_list, keypoint_model_info, FLAGS.keypoint_batch_size, 'KeyPoint') if __name__ == '__main__': paddle.enable_static() parser = argsparser() FLAGS = parser.parse_args() print_arguments(FLAGS) FLAGS.device = FLAGS.device.upper() assert FLAGS.device in ['CPU', 'GPU', 'XPU' ], "device should be CPU, GPU or XPU" main()
39.254613
112
0.611957
0
0
0
0
0
0
0
0
1,976
0.185749
c329db170d0245164f12a99cffcce2a4d1c0ef5a
551
py
Python
plugins/google_cloud_compute/komand_google_cloud_compute/actions/disk_detach/action.py
lukaszlaszuk/insightconnect-plugins
8c6ce323bfbb12c55f8b5a9c08975d25eb9f8892
[ "MIT" ]
46
2019-06-05T20:47:58.000Z
2022-03-29T10:18:01.000Z
plugins/google_cloud_compute/komand_google_cloud_compute/actions/disk_detach/action.py
lukaszlaszuk/insightconnect-plugins
8c6ce323bfbb12c55f8b5a9c08975d25eb9f8892
[ "MIT" ]
386
2019-06-07T20:20:39.000Z
2022-03-30T17:35:01.000Z
plugins/google_cloud_compute/komand_google_cloud_compute/actions/disk_detach/action.py
lukaszlaszuk/insightconnect-plugins
8c6ce323bfbb12c55f8b5a9c08975d25eb9f8892
[ "MIT" ]
43
2019-07-09T14:13:58.000Z
2022-03-28T12:04:46.000Z
import insightconnect_plugin_runtime from .schema import DiskDetachInput, DiskDetachOutput, Input, Component class DiskDetach(insightconnect_plugin_runtime.Action): def __init__(self): super(self.__class__, self).__init__( name="disk_detach", description=Component.DESCRIPTION, input=DiskDetachInput(), output=DiskDetachOutput() ) def run(self, params={}): return self.connection.client.disk_detach( params.get(Input.ZONE), params.get(Input.INSTANCE), params.get(Input.DEVICENAME) )
34.4375
117
0.718693
438
0.794918
0
0
0
0
0
0
13
0.023593
c32a765467990449b567bcb5b74b49876b530290
431
py
Python
troupon/payment/serializers.py
andela/troupon
3704cbe6e69ba3e4c53401d3bbc339208e9ebccd
[ "MIT" ]
14
2016-01-12T07:31:09.000Z
2021-11-20T19:29:35.000Z
troupon/payment/serializers.py
andela/troupon
3704cbe6e69ba3e4c53401d3bbc339208e9ebccd
[ "MIT" ]
52
2015-09-02T14:54:43.000Z
2016-08-01T08:22:21.000Z
troupon/payment/serializers.py
andela/troupon
3704cbe6e69ba3e4c53401d3bbc339208e9ebccd
[ "MIT" ]
17
2015-09-30T13:18:48.000Z
2021-11-18T16:25:12.000Z
"""Serializers for the payment app.""" from rest_framework import serializers from models import Purchases class TransactionSerializer(serializers.ModelSerializer): """Serializer for Transaction instances. """ class Meta: model = Purchases fields = ('id', 'item', 'price', 'quantity', 'title', 'description', 'stripe_transaction_id', 'stripe_transaction_status')
26.9375
61
0.654292
320
0.742459
0
0
0
0
0
0
183
0.424594
c32ab97ad989123fa02793d4bdfb1b13b2fa964a
4,817
py
Python
mla/kmeans.py
anshulg5/MLAlgorithms
6c12ebe64016eabb9527fb1f18be81cd3ff0c599
[ "MIT" ]
1
2020-04-22T22:03:51.000Z
2020-04-22T22:03:51.000Z
mla/kmeans.py
anshulg5/MLAlgorithms
6c12ebe64016eabb9527fb1f18be81cd3ff0c599
[ "MIT" ]
1
2021-06-25T15:40:35.000Z
2021-06-25T15:40:35.000Z
mla/kmeans.py
anshulg5/MLAlgorithms
6c12ebe64016eabb9527fb1f18be81cd3ff0c599
[ "MIT" ]
2
2019-07-21T13:19:17.000Z
2020-12-28T05:46:37.000Z
import random import seaborn as sns import matplotlib.pyplot as plt import numpy as np from mla.base import BaseEstimator from mla.metrics.distance import euclidean_distance random.seed(1111) class KMeans(BaseEstimator): """Partition a dataset into K clusters. Finds clusters by repeatedly assigning each data point to the cluster with the nearest centroid and iterating until the assignments converge (meaning they don't change during an iteration) or the maximum number of iterations is reached. Parameters ---------- K : int The number of clusters into which the dataset is partitioned. max_iters: int The maximum iterations of assigning points to the nearest cluster. Short-circuited by the assignments converging on their own. init: str, default 'random' The name of the method used to initialize the first clustering. 'random' - Randomly select values from the dataset as the K centroids. '++' - Select a random first centroid from the dataset, then select K - 1 more centroids by choosing values from the dataset with a probability distribution proportional to the squared distance from each point's closest existing cluster. Attempts to create larger distances between initial clusters to improve convergence rates and avoid degenerate cases. """ y_required = False def __init__(self, K=5, max_iters=100, init='random'): self.K = K self.max_iters = max_iters self.clusters = [[] for _ in range(self.K)] self.centroids = [] self.init = init def _initialize_cetroids(self, init): """Set the initial centroids.""" if init == 'random': self.centroids = [self.X[x] for x in random.sample(range(self.n_samples), self.K)] elif init == '++': self.centroids = [random.choice(self.X)] while len(self.centroids) < self.K: self.centroids.append(self._choose_next_center()) else: raise ValueError('Unknown type of init parameter') def _predict(self, X=None): """Perform the clustering on the dataset.""" self._initialize_cetroids(self.init) centroids = self.centroids for _ in range(self.max_iters): self._assign(centroids) centroids_old = centroids centroids = [self._get_centroid(cluster) for cluster in self.clusters] if self._is_converged(centroids_old, centroids): break self.centroids = centroids return self._get_predictions() def _get_predictions(self): predictions = np.empty(self.n_samples) for i, cluster in enumerate(self.clusters): for index in cluster: predictions[index] = i return predictions def _assign(self, centroids): for row in range(self.n_samples): for i, cluster in enumerate(self.clusters): if row in cluster: self.clusters[i].remove(row) break closest = self._closest(row, centroids) self.clusters[closest].append(row) def _closest(self, fpoint, centroids): closest_index = None closest_distance = None for i, point in enumerate(centroids): dist = euclidean_distance(self.X[fpoint], point) if closest_index is None or dist < closest_distance: closest_index = i closest_distance = dist return closest_index def _get_centroid(self, cluster): """Get values by indices and take the mean.""" return [np.mean(np.take(self.X[:, i], cluster)) for i in range(self.n_features)] def _dist_from_centers(self): return np.array([min([euclidean_distance(x, c) for c in self.centroids]) for x in self.X]) def _choose_next_center(self): distances = self._dist_from_centers() probs = distances / distances.sum() cumprobs = probs.cumsum() r = random.random() ind = np.where(cumprobs >= r)[0][0] return self.X[ind] def _is_converged(self, centroids_old, centroids): return True if sum([euclidean_distance(centroids_old[i], centroids[i]) for i in range(self.K)]) == 0 else False def plot(self, data=None): sns.set(style="white") if data is None: data = self.X for i, index in enumerate(self.clusters): point = np.array(data[index]).T plt.scatter(*point, c=sns.color_palette("hls", self.K + 1)[i]) for point in self.centroids: plt.scatter(*point, marker='x', linewidths=10) plt.show()
34.654676
119
0.622379
4,619
0.958896
0
0
0
0
0
0
1,389
0.288354
c32ad26a1993eb568f93f3377b6a0497a0eab914
10,741
py
Python
train_classifier.py
justusmattern/dist-embeds
2a5fd97bcfc3eed5c7f11e76d82c4ff49709cbe8
[ "MIT" ]
null
null
null
train_classifier.py
justusmattern/dist-embeds
2a5fd97bcfc3eed5c7f11e76d82c4ff49709cbe8
[ "MIT" ]
null
null
null
train_classifier.py
justusmattern/dist-embeds
2a5fd97bcfc3eed5c7f11e76d82c4ff49709cbe8
[ "MIT" ]
null
null
null
import os import sys import argparse import time import random import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable # from sru import * import dataloader import modules class Model(nn.Module): def __init__(self, embedding, hidden_size=150, depth=1, dropout=0.3, cnn=False, nclasses=2, args=None): super(Model, self).__init__() self.cnn = cnn self.drop = nn.Dropout(dropout) self.args = args self.emb_layer = modules.EmbeddingLayer( embs = dataloader.load_embedding(embedding), dist_embeds = self.args.dist_embeds ) self.word2id = self.emb_layer.word2id if cnn: self.encoder = modules.CNN_Text( self.emb_layer.n_d, widths = [3,4,5], filters=hidden_size ) d_out = 3*hidden_size else: self.encoder = nn.LSTM( self.emb_layer.n_d, hidden_size//2, depth, dropout = dropout, # batch_first=True, bidirectional=True ) d_out = hidden_size # else: # self.encoder = SRU( # emb_layer.n_d, # args.d, # args.depth, # dropout = args.dropout, # ) # d_out = args.d self.out = nn.Linear(d_out, nclasses) def forward(self, input): if self.cnn: input = input.t() if self.args.dist_embeds: emb, kl_loss = self.emb_layer(input) else: emb = self.emb_layer(input) emb = self.drop(emb) if self.cnn: output = self.encoder(emb) else: output, hidden = self.encoder(emb) # output = output[-1] output = torch.max(output, dim=0)[0].squeeze() output = self.drop(output) if self.args.dist_embeds: return self.out(output), kl_loss else: return self.out(output) def text_pred(self, text, batch_size=32): batches_x = dataloader.create_batches_x( text, batch_size, ##TODO self.word2id ) outs = [] with torch.no_grad(): for x in batches_x: x = Variable(x) if self.cnn: x = x.t() emb = self.emb_layer(x) if self.cnn: output = self.encoder(emb) else: output, hidden = self.encoder(emb) # output = output[-1] output = torch.max(output, dim=0)[0] outs.append(F.softmax(self.out(output), dim=-1)) return torch.cat(outs, dim=0) def eval_model(niter, model, input_x, input_y): model.eval() # N = len(valid_x) # criterion = nn.CrossEntropyLoss() correct = 0.0 cnt = 0. # total_loss = 0.0 with torch.no_grad(): for x, y in zip(input_x, input_y): x, y = Variable(x, volatile=True), Variable(y) if model.args.dist_embeds: output, kl_loss = model(x) else: output = model(x) # loss = criterion(output, y) # total_loss += loss.item()*x.size(1) pred = output.data.max(1)[1] correct += pred.eq(y.data).cpu().sum() cnt += y.numel() model.train() return correct.item()/cnt def train_model(epoch, model, optimizer, train_x, train_y, test_x, test_y, best_test, save_path): model.train() niter = epoch*len(train_x) criterion = nn.CrossEntropyLoss() cnt = 0 for x, y in zip(train_x, train_y): niter += 1 cnt += 1 model.zero_grad() x, y = Variable(x), Variable(y) if model.args.dist_embeds: output, kl_loss = model(x) ce_loss = criterion(output, y) loss = ce_loss + model.args.kl_weight*kl_loss else: output = model(x) loss = criterion(output, y) loss.backward() optimizer.step() test_acc = eval_model(niter, model, test_x, test_y) if model.args.dist_embeds: sys.stdout.write("Epoch={} iter={} lr={:.6f} train_loss_class={:.6f} train_loss_kl={:.6f} train_loss_ovr = {:.6f} test_err={:.6f}\n".format( epoch, niter, optimizer.param_groups[0]['lr'], ce_loss.item(), kl_loss.item(), loss.item(), test_acc )) else: sys.stdout.write("Epoch={} iter={} lr={:.6f} train_loss = {:.6f} test_err={:.6f}\n".format( epoch, niter, optimizer.param_groups[0]['lr'], loss.item(), test_acc )) if test_acc > best_test: best_test = test_acc if save_path: torch.save(model.state_dict(), save_path) # test_err = eval_model(niter, model, test_x, test_y) sys.stdout.write("\n") return best_test def save_data(data, labels, path, type='train'): with open(os.path.join(path, type+'.txt'), 'w') as ofile: for text, label in zip(data, labels): ofile.write('{} {}\n'.format(label, ' '.join(text))) def main(args): if args.dataset == 'mr': # data, label = dataloader.read_MR(args.path) # train_x, train_y, test_x, test_y = dataloader.cv_split2( # data, label, # nfold=10, # valid_id=args.cv # ) # # if args.save_data_split: # save_data(train_x, train_y, args.path, 'train') # save_data(test_x, test_y, args.path, 'test') train_x, train_y = dataloader.read_corpus('data/mr/train.txt') test_x, test_y = dataloader.read_corpus('data/mr/test.txt') elif args.dataset == 'imdb': train_x, train_y = dataloader.read_corpus(os.path.join('/data/medg/misc/jindi/nlp/datasets/imdb', 'train_tok.csv'), clean=False, MR=True, shuffle=True) test_x, test_y = dataloader.read_corpus(os.path.join('/data/medg/misc/jindi/nlp/datasets/imdb', 'test_tok.csv'), clean=False, MR=True, shuffle=True) else: train_x, train_y = dataloader.read_corpus('/afs/csail.mit.edu/u/z/zhijing/proj/to_di/data/{}/' 'train_tok.csv'.format(args.dataset), clean=False, MR=False, shuffle=True) test_x, test_y = dataloader.read_corpus('/afs/csail.mit.edu/u/z/zhijing/proj/to_di/data/{}/' 'test_tok.csv'.format(args.dataset), clean=False, MR=False, shuffle=True) nclasses = max(train_y) + 1 # elif args.dataset == 'subj': # data, label = dataloader.read_SUBJ(args.path) # elif args.dataset == 'cr': # data, label = dataloader.read_CR(args.path) # elif args.dataset == 'mpqa': # data, label = dataloader.read_MPQA(args.path) # elif args.dataset == 'trec': # train_x, train_y, test_x, test_y = dataloader.read_TREC(args.path) # data = train_x + test_x # label = None # elif args.dataset == 'sst': # train_x, train_y, valid_x, valid_y, test_x, test_y = dataloader.read_SST(args.path) # data = train_x + valid_x + test_x # label = None # else: # raise Exception("unknown dataset: {}".format(args.dataset)) # if args.dataset == 'trec': # elif args.dataset != 'sst': # train_x, train_y, valid_x, valid_y, test_x, test_y = dataloader.cv_split( # data, label, # nfold = 10, # test_id = args.cv # ) model = Model(args.embedding, args.d, args.depth, args.dropout, args.cnn, nclasses, args=args).cuda() need_grad = lambda x: x.requires_grad optimizer = optim.Adam( filter(need_grad, model.parameters()), lr = args.lr ) train_x, train_y = dataloader.create_batches( train_x, train_y, args.batch_size, model.word2id, ) # valid_x, valid_y = dataloader.create_batches( # valid_x, valid_y, # args.batch_size, # emb_layer.word2id, # ) test_x, test_y = dataloader.create_batches( test_x, test_y, args.batch_size, model.word2id, ) best_test = 0 # test_err = 1e+8 for epoch in range(args.max_epoch): best_test = train_model(epoch, model, optimizer, train_x, train_y, # valid_x, valid_y, test_x, test_y, best_test, args.save_path ) if args.lr_decay>0: optimizer.param_groups[0]['lr'] *= args.lr_decay # sys.stdout.write("best_valid: {:.6f}\n".format( # best_valid # )) sys.stdout.write("test_err: {:.6f}\n".format( best_test )) if __name__ == "__main__": argparser = argparse.ArgumentParser(sys.argv[0], conflict_handler='resolve') argparser.add_argument("--cnn", action='store_true', help="whether to use cnn") argparser.add_argument("--lstm", action='store_true', help="whether to use lstm") argparser.add_argument("--dataset", type=str, default="mr", help="which dataset") argparser.add_argument("--embedding", type=str, required=True, help="word vectors") argparser.add_argument("--batch_size", "--batch", type=int, default=32) argparser.add_argument("--max_epoch", type=int, default=70) argparser.add_argument("--d", type=int, default=150) argparser.add_argument("--dropout", type=float, default=0.3) argparser.add_argument("--depth", type=int, default=1) argparser.add_argument("--lr", type=float, default=0.001) argparser.add_argument("--lr_decay", type=float, default=0) argparser.add_argument("--cv", type=int, default=0) argparser.add_argument("--save_path", type=str, default='') argparser.add_argument("--save_data_split", action='store_true', help="whether to save train/test split") argparser.add_argument("--gpu_id", type=int, default=0) argparser.add_argument("--kl_weight", type=float, default = 0.001) argparser.add_argument("--dist_embeds", action='store_true') args = argparser.parse_args() # args.save_path = os.path.join(args.save_path, args.dataset) print (args) torch.cuda.set_device(args.gpu_id) main(args)
34.536977
147
0.553114
2,615
0.24346
0
0
0
0
0
0
2,797
0.260404
c32b3afbd77078a6af646cb681c0da4280c9fc0a
1,844
py
Python
app/request/queue.py
infrared5/massroute-pi
c2e16d655058c6c5531ec66f8a82fe41ad4e8427
[ "MIT" ]
null
null
null
app/request/queue.py
infrared5/massroute-pi
c2e16d655058c6c5531ec66f8a82fe41ad4e8427
[ "MIT" ]
null
null
null
app/request/queue.py
infrared5/massroute-pi
c2e16d655058c6c5531ec66f8a82fe41ad4e8427
[ "MIT" ]
null
null
null
import logging from time import sleep logger = logging.getLogger(__name__) class StopRequestQueue: cursor = 0 queue = None service = None current_request = None request_delay = 0 # seconds def __init__(self, service, request_delay=10): self.queue = [] self.service = service self.request_delay = request_delay def add_request(self, request): self.queue.append(request) logger.info("Request added for %r. Queue length at %d" % (request.stop_id, len(self.queue))) def success(self, data): logger.debug("Success returned") # could become none upon stop(), considered inactive if self.current_request is not None: for component in self.current_request.components: component.data(data) sleep(self.request_delay) self.next() def failure(self, error): logger.debug("Failure returned") # could become none upon stop(), considered inactive if self.current_request is not None: for component in self.current_request.components: component.error(error) sleep(self.request_delay) self.next() def next(self, increment=True): logger.info('next()') self.cursor = self.cursor + 1 if increment else self.cursor if self.cursor < len(self.queue): self.current_request = self.queue[self.cursor] self.service.access(self.current_request.stop_id, self) """ Not allowing wrapped cursor. :next() is run through, then this queue is exited and the service availability is checked again, starting the sequence again. """ # self.cursor = 0 if self.cursor == len(self.queue) - 1 else self.cursor + 1 def start(self): logger.info('start()') self.cursor = 0 self.next(False) logger.info('start() - out') def stop(self): del self.queue[:] self.current_request = None
28.8125
96
0.679501
1,766
0.957701
0
0
0
0
0
0
484
0.262473
c32c528f23adfd98c6057b14b36d3ef97d2f6fbf
5,826
py
Python
trimap_module.py
lnugraha/trimap_generator
a279562b0d0f387896330cf88549e67618d1eb7f
[ "MIT" ]
168
2018-04-14T09:46:03.000Z
2022-03-29T08:14:11.000Z
trimap_module.py
lnugraha/trimap_generator
a279562b0d0f387896330cf88549e67618d1eb7f
[ "MIT" ]
7
2018-05-14T12:54:23.000Z
2021-10-12T01:16:20.000Z
trimap_module.py
lnugraha/trimap_generator
a279562b0d0f387896330cf88549e67618d1eb7f
[ "MIT" ]
35
2019-05-13T03:13:11.000Z
2022-03-22T11:55:58.000Z
#!/usr/bin/env python import cv2, os, sys import numpy as np def extractImage(path): # error handller if the intended path is not found image = cv2.imread(path, cv2.IMREAD_GRAYSCALE) return image def checkImage(image): """ Args: image: input image to be checked Returns: binary image Raises: RGB image, grayscale image, all-black, and all-white image """ if len(image.shape) > 2: print("ERROR: non-binary image (RGB)"); sys.exit(); smallest = image.min(axis=0).min(axis=0) # lowest pixel value: 0 (black) largest = image.max(axis=0).max(axis=0) # highest pixel value: 1 (white) if (smallest == 0 and largest == 0): print("ERROR: non-binary image (all black)"); sys.exit() elif (smallest == 255 and largest == 255): print("ERROR: non-binary image (all white)"); sys.exit() elif (smallest > 0 or largest < 255 ): print("ERROR: non-binary image (grayscale)"); sys.exit() else: return True class Toolbox: def __init__(self, image): self.image = image @property def printImage(self): """ Print image into a file for checking purpose unitTest = Toolbox(image); unitTest.printImage(image); """ f = open("image_results.dat", "w+") for i in range(0, self.image.shape[0]): for j in range(0, self.image.shape[1]): f.write("%d " %self.image[i,j]) f.write("\n") f.close() @property def displayImage(self): """ Display the image on a window Press any key to exit """ cv2.imshow('Displayed Image', self.image) cv2.waitKey(0) cv2.destroyAllWindows() def saveImage(self, title, extension): """ Save as a specific image format (bmp, png, or jpeg) """ cv2.imwrite("{}.{}".format(title,extension), self.image) def morph_open(self, image, kernel): """ Remove all white noises or speckles outside images Need to tune the kernel size Instruction: unit01 = Toolbox(image); kernel = np.ones( (9,9), np.uint8 ); morph = unit01.morph_open(input_image, kernel); """ bin_open = cv2.morphologyEx(self.image, cv2.MORPH_OPEN, kernel) return bin_open def morph_close(self, image, kernel): """ Remove all black noises or speckles inside images Need to tune the kernel size Instruction: unit01 = Toolbox(image); kernel = np.ones( (11,11)_, np.uint8 ); morph = unit01.morph_close(input_image, kernel); """ bin_close = cv2.morphologyEx(self.image, cv2.MORPH_CLOSE, kernel) return bin_close def trimap(image, name, size, number, erosion=False): """ This function creates a trimap based on simple dilation algorithm Inputs [4]: a binary image (black & white only), name of the image, dilation pixels the last argument is optional; i.e., how many iterations will the image get eroded Output : a trimap """ checkImage(image) row = image.shape[0] col = image.shape[1] pixels = 2*size + 1 ## Double and plus 1 to have an odd-sized kernel kernel = np.ones((pixels,pixels),np.uint8) ## Pixel of extension I get if erosion is not False: erosion = int(erosion) erosion_kernel = np.ones((3,3), np.uint8) ## Design an odd-sized erosion kernel image = cv2.erode(image, erosion_kernel, iterations=erosion) ## How many erosion do you expect image = np.where(image > 0, 255, image) ## Any gray-clored pixel becomes white (smoothing) # Error-handler to prevent entire foreground annihilation if cv2.countNonZero(image) == 0: print("ERROR: foreground has been entirely eroded") sys.exit() dilation = cv2.dilate(image, kernel, iterations = 1) dilation = np.where(dilation == 255, 127, dilation) ## WHITE to GRAY remake = np.where(dilation != 127, 0, dilation) ## Smoothing remake = np.where(image > 127, 200, dilation) ## mark the tumor inside GRAY remake = np.where(remake < 127, 0, remake) ## Embelishment remake = np.where(remake > 200, 0, remake) ## Embelishment remake = np.where(remake == 200, 255, remake) ## GRAY to WHITE ############################################# # Ensures only three pixel values available # # TODO: Optimization with Cython # ############################################# for i in range(0,row): for j in range (0,col): if (remake[i,j] != 0 and remake[i,j] != 255): remake[i,j] = 127 path = "./images/results/" ## Change the directory new_name = '{}px_'.format(size) + name + '_{}.png'.format(number) cv2.imwrite(os.path.join(path, new_name) , remake) ############################################# ### TESTING SECTION ### ############################################# if __name__ == '__main__': path = "./images/test_images/test_image_11.png" image = extractImage(path) size = 10 number = path[-5] title = "test_image" unit01 = Toolbox(image); kernel1 = np.ones( (11,11), np.uint8 ) unit01.displayImage opening = unit01.morph_close(image,kernel1) trimap(opening, title, size, number, erosion=False) unit02 = Toolbox(opening) unit02.displayImage ######################################################## ## Default instruction (no binary opening or closing ## ## trimap(image, title, size, number, erosion=False); ## ########################################################
35.309091
120
0.562993
1,781
0.305699
0
0
653
0.112084
0
0
2,697
0.462925
c32c82635b0888813302ed2b3bc7efe4aeb79fdb
4,047
py
Python
integration/keeper_secrets_manager_ansible/tests/keeper_init.py
Keeper-Security/secrets-manager
0044dec7f323ae2e531f52ef2435bd7205949fe9
[ "MIT" ]
9
2022-01-10T18:39:45.000Z
2022-03-06T03:51:41.000Z
integration/keeper_secrets_manager_ansible/tests/keeper_init.py
Keeper-Security/secrets-manager
0044dec7f323ae2e531f52ef2435bd7205949fe9
[ "MIT" ]
10
2022-01-27T00:51:05.000Z
2022-03-30T08:42:01.000Z
integration/keeper_secrets_manager_ansible/tests/keeper_init.py
Keeper-Security/secrets-manager
0044dec7f323ae2e531f52ef2435bd7205949fe9
[ "MIT" ]
6
2021-12-17T18:59:26.000Z
2022-03-28T16:47:28.000Z
import unittest from unittest.mock import patch import os from .ansible_test_framework import AnsibleTestFramework, RecordMaker import keeper_secrets_manager_ansible.plugins import tempfile records = { "TRd_567FkHy-CeGsAzs8aA": RecordMaker.make_record( uid="TRd_567FkHy-CeGsAzs8aA", title="JW-F1-R1", fields={ "password": "ddd" } ), "A_7YpGBUgRTeDEQLhVRo0Q": RecordMaker.make_file( uid="A_7YpGBUgRTeDEQLhVRo0Q", title="JW-F1-R2-File", files=[ {"name": "nailing it.mp4", "type": "video/mp4", "url": "http://localhost/abc", "data": "ABC123"}, {"name": "video_file.mp4", "type": "video/mp4", "url": "http://localhost/xzy", "data": "XYZ123"}, ] ) } def mocked_get_secrets(*args): if len(args) > 0: uid = args[0][0] ret = [records[uid]] else: ret = [records[x] for x in records] return ret class KeeperInitTest(unittest.TestCase): def setUp(self): self.yml_file_name = "test_keeper.yml" self.json_file_name = "test_keeper.json" # Add in addition Python libs. This includes the base # module for Keeper Ansible and the Keeper SDK. self.base_dir = os.path.dirname(os.path.realpath(__file__)) self.ansible_base_dir = os.path.join(self.base_dir, "ansible_example") self.yml_file = os.path.join(os.path.join(self.ansible_base_dir, self.yml_file_name)) self.json_file = os.path.join(os.path.join(self.ansible_base_dir, self.json_file_name)) for file in [self.yml_file, self.json_file]: if os.path.exists(file) is True: os.unlink(file) def tearDown(self): for file in [self.yml_file, self.json_file]: if os.path.exists(file) is True: os.unlink(file) def _common(self): with tempfile.TemporaryDirectory() as temp_dir: a = AnsibleTestFramework( base_dir=self.ansible_base_dir, playbook=os.path.join("playbooks", "keeper_init.yml"), inventory=os.path.join("inventory", "all"), plugin_base_dir=os.path.join(os.path.dirname(keeper_secrets_manager_ansible.plugins.__file__)), vars={ "keeper_token": "US:XXXXXX", "keeper_config_file": self.yml_file_name, "show_config": True } ) r, out, err = a.run() result = r[0]["localhost"] self.assertEqual(result["ok"], 2, "1 things didn't happen") self.assertEqual(result["failures"], 0, "failures was not 0") self.assertEqual(result["changed"], 0, "0 things didn't change") self.assertTrue(os.path.exists(self.yml_file), "test_keeper.yml does not exist") a = AnsibleTestFramework( base_dir=self.ansible_base_dir, playbook=os.path.join("playbooks", "keeper_init.yml"), inventory=os.path.join("inventory", "all"), plugin_base_dir=os.path.join(os.path.dirname(keeper_secrets_manager_ansible.plugins.__file__)), vars={ "keeper_token": "US:XXXXXX", "keeper_config_file": self.json_file_name, "show_config": False } ) r, out, err = a.run() result = r[0]["localhost"] self.assertEqual(result["ok"], 2, "1 things didn't happen") self.assertEqual(result["failures"], 0, "failures was not 0") self.assertEqual(result["changed"], 0, "0 things didn't change") self.assertTrue(os.path.exists(self.json_file), "test_keeper.json does not exist") # @unittest.skip @patch("keeper_secrets_manager_core.core.SecretsManager.get_secrets", side_effect=mocked_get_secrets) def test_keeper_get_mock(self, _): self._common() @unittest.skip def test_keeper_get_live(self): self._common()
37.472222
111
0.596244
3,104
0.766988
0
0
236
0.058315
0
0
998
0.246602
c32db06fd5b31b4a1c0ead0ae4470b3896648d58
1,180
py
Python
wonambi/attr/__init__.py
wonambi-python/wonambi
4e2834cdd799576d1a231ecb48dfe4da1364fe3a
[ "BSD-3-Clause" ]
63
2017-12-30T08:11:17.000Z
2022-01-28T10:34:20.000Z
wonambi/attr/__init__.py
wonambi-python/wonambi
4e2834cdd799576d1a231ecb48dfe4da1364fe3a
[ "BSD-3-Clause" ]
23
2017-09-08T08:29:49.000Z
2022-03-17T08:19:13.000Z
wonambi/attr/__init__.py
wonambi-python/wonambi
4e2834cdd799576d1a231ecb48dfe4da1364fe3a
[ "BSD-3-Clause" ]
12
2017-09-18T12:48:36.000Z
2021-09-22T07:16:07.000Z
"""Packages containing all the possible attributes to recordings, such as - channels (module "chan") with class: - Chan - anatomical info (module "anat") with class: - Surf - annotations and sleep scores (module "annotations") with class: - Annotations Possibly include forward and inverse models. These attributes are only "attached" to the DataType, there should not be any consistency check when you load them. The risk is that attributes do not refer to the correct datatype, but the advantage is that we cannot keep track of all the possible inconsistencies (f.e. if the channel names are not the same between the actual channels and those stored in the Channels class). In addition, these classes are often used in isolation, even without a dataset, so do not assume that any of the classes in the module can call the main dataset. In other words, these classes shouldn't have methods calling the datatype, but there can be functions in the modules that use both the dataset and the classes below. """ from .chan import Channels from .anat import Brain, Surf, Freesurfer from .annotations import Annotations, create_empty_annotations
43.703704
79
0.766102
0
0
0
0
0
0
0
0
1,047
0.887288
c32fe65d24a5f464b2f3a2a3ac48a2c68f408fd3
1,418
py
Python
Corpus/Pyramid Score/PyrEval/Pyramid/parameters.py
LCS2-IIITD/summarization_bias
d66846bb7657439347f4714f2672350447474c5a
[ "MIT" ]
1
2020-11-11T19:48:10.000Z
2020-11-11T19:48:10.000Z
Corpus/Pyramid Score/PyrEval/Pyramid/parameters.py
LCS2-IIITD/summarization_bias
d66846bb7657439347f4714f2672350447474c5a
[ "MIT" ]
null
null
null
Corpus/Pyramid Score/PyrEval/Pyramid/parameters.py
LCS2-IIITD/summarization_bias
d66846bb7657439347f4714f2672350447474c5a
[ "MIT" ]
null
null
null
""" =========== What is Matter Parameters =================== """ #tups = [(125.0, 1.0), (125.0, 1.5), (125.0, 2.0), (125.0, 2.5), (125.0, 3.0), (150.0, 1.0), (150.0, 1.5), (150.0, 2.0), (150.0, 2.5), (150.0, 3.0), (175.0, 1.0), (175.0, 1.5), (175.0, 2.0), (175.0, 2.5), (175.0, 3.0), (200.0, 1.0), (200.0, 1.5), (200.0, 2.0), (200.0, 2.5), (200.0, 3.0), (225.0, 1.0), (225.0, 1.5), (225.0, 2.0), (225.0, 2.5), (225.0, 3.0), (250.0, 1.0), (250.0, 1.5), (250.0, 2.0), (250.0, 2.5), (250.0, 3.0)] """ =========== DUC Data ========== """ #tups = [(64.0, 1.0), (64.0, 1.5), (64.0, 2.0), (64.0, 2.5), (70.0, 1.0), (70.0, 1.5), (70.0, 2.0), (70.0, 2.5), (76.0, 1.0), (76.0, 1.5), (76.0, 2.0), (76.0, 2.5), (82.0, 1.0), (82.0, 1.5), (82.0, 2.0), (82.0, 2.5), (88.0, 1.0), (88.0, 1.5), (88.0, 2.0), (88.0, 2.5), (96.0, 1.0), (96.0, 1.5), (96.0, 2.0), (96.0, 2.5), (100.0, 1.0), (100.0, 1.5), (100.0, 2.0), (100.0, 2.5)] #b = [1.0,1.5,2.0,2.5,3.0] # alpha should be from [10,40] #a = range(len(segpool)+10,len(segpool)+60,10) #tups = list(itertools.product(a,b)) #print "Alll combinations ", tups #tups = [(125, 1.0), (125, 1.5), (125, 2.0), (125, 2.5), (125, 3.0), (135, 1.0), (135, 1.5), (135, 2.0), (135, 2.5), (135, 3.0), (145, 1.0), (145, 1.5), (145, 2.0), (145, 2.5), (145, 3.0), (155, 1.0), (155, 1.5), (155, 2.0), (155, 2.5), (155, 3.0), (165, 1.0), (165, 1.5), (165, 2.0), (165, 2.5), (165, 3.0)] #thresholds = [83]
78.777778
428
0.43512
0
0
0
0
0
0
0
0
1,405
0.990832
c33017f8651ee60d0cc6f759fc632d532c899c80
3,213
py
Python
deploy/terraform/tasks.py
kinecosystem/blockchain-ops
fc21bbd2d3d405844857a8b3413718bacbaad294
[ "MIT" ]
15
2018-08-08T23:47:53.000Z
2020-02-13T17:14:15.000Z
deploy/terraform/tasks.py
kinfoundation/stellar-ops
fc21bbd2d3d405844857a8b3413718bacbaad294
[ "MIT" ]
21
2018-10-16T09:20:32.000Z
2019-12-15T19:01:56.000Z
deploy/terraform/tasks.py
yonikashi/blocktest
db044d74afc62f80f8f74060830347e82dd03adb
[ "MIT" ]
9
2018-11-05T17:28:55.000Z
2019-08-02T20:10:14.000Z
"""Call various Terraform actions.""" import os import os.path from invoke import task import jinja2 import yaml TERRAFORM_VERSION = '0.11.7' @task def install(c, ostype='linux', version=TERRAFORM_VERSION): """Download a local version of Terraform.""" if ostype == 'mac': ostype = 'darwin' file = f'terraform_{version}_{ostype}_amd64.zip' if os.path.exists('terraform'): print('Terraform file found') return print(f'Downloading Terraform {version}') c.run(f'wget -q https://releases.hashicorp.com/terraform/{version}/{file}') c.run(f'unzip {file}') c.run(f'rm {file}') MAIN_TF_FILE = 'stellar-network.tf' @task def template(c, vars_file='vars.yml'): """Process Terraform file taht require templating. Terraform and HCL has limitations that can be easily solved using template languages like Jinja. For example, avoiding redundancy when calling a module multiple times with just a single different variable value every time. """ print('generating terraform files from templates') with open(vars_file) as f: variables = yaml.load(f) for root, _, files in os.walk("."): for file in files: stripped_file, ext = os.path.splitext(file) if ext != '.j2': continue out_file = f'{root}/{stripped_file}' print(f'processing file {root}/{file}') with open(f'{root}/{file}') as f: tmplate = jinja2.Template(f.read(), extensions=['jinja2.ext.do']) out = tmplate.render(variables, env_vars=os.environ) with open(out_file, 'w') as f: f.write(out) c.run(f'./terraform fmt {out_file}') @task(template) def init(c): """Call terraform init.""" print('initializing') c.run('./terraform init') @task(init) def new_workspace(c, vars_file='vars.yml'): """Set terraform workspace.""" print('setting workspace') with open(vars_file) as f: variables = yaml.load(f) workspace = variables['stellar']['network_name'] c.run(f'./terraform workspace new {workspace}') @task(init) def workspace(c, vars_file='vars.yml'): """Set terraform workspace.""" print('setting workspace') with open(vars_file) as f: variables = yaml.load(f) workspace = variables['stellar']['network_name'] c.run(f'./terraform workspace select {workspace}') @task(workspace) def modules(c): """Call terraform get.""" print('getting modules') c.run('./terraform get') @task(modules) def plan(c, destroy=False): """Call terraform plan.""" print('planning') c.run('./terraform plan {}'.format('-destroy' if destroy else '')) @task(modules) def apply(c, yes=False): """Call terraform destroy.""" print('applying') c.run('./terraform apply {}'.format('-auto-approve' if yes else '')) @task(modules) def destroy(c, yes=False): """Call terraform destroy.""" print('destroying') c.run('./terraform destroy {}'.format('-auto-approve' if yes else '')) @task(modules) def output(c): """Call terraform output.""" print('printing output') c.run('./terraform output')
24.157895
81
0.62714
0
0
0
0
3,000
0.933707
0
0
1,470
0.457516
c331cb67fa44126ad7899136fc1a363b37ea7fe2
263
py
Python
gdal/swig/python/scripts/gdal2xyz.py
Sokigo-GLS/gdal
595f74bf60dff89fc5df53f9f4c3e40fc835e909
[ "MIT" ]
null
null
null
gdal/swig/python/scripts/gdal2xyz.py
Sokigo-GLS/gdal
595f74bf60dff89fc5df53f9f4c3e40fc835e909
[ "MIT" ]
null
null
null
gdal/swig/python/scripts/gdal2xyz.py
Sokigo-GLS/gdal
595f74bf60dff89fc5df53f9f4c3e40fc835e909
[ "MIT" ]
null
null
null
import sys # import osgeo.utils.gdal2xyz as a convenience to use as a script from osgeo.utils.gdal2xyz import * # noqa from osgeo.utils.gdal2xyz import main from osgeo.gdal import deprecation_warn deprecation_warn('gdal2xyz', 'utils') sys.exit(main(sys.argv))
26.3
65
0.787072
0
0
0
0
0
0
0
0
88
0.334601
c33241bd3d20aeeac4e2cda557798ad660937ce2
587
py
Python
inferencia/task/person_reid/body_reid/model/body_reid_model_factory.py
yuya-mochimaru-np/inferencia
e09f298d0a80672fc5bb9383e23c941290eff334
[ "Apache-2.0" ]
null
null
null
inferencia/task/person_reid/body_reid/model/body_reid_model_factory.py
yuya-mochimaru-np/inferencia
e09f298d0a80672fc5bb9383e23c941290eff334
[ "Apache-2.0" ]
5
2021-07-25T23:19:29.000Z
2021-07-26T23:35:13.000Z
inferencia/task/person_reid/body_reid/model/body_reid_model_factory.py
yuya-mochimaru-np/inferencia
e09f298d0a80672fc5bb9383e23c941290eff334
[ "Apache-2.0" ]
1
2021-09-18T12:06:13.000Z
2021-09-18T12:06:13.000Z
from .body_reid_model_name import BodyReidModelName class BodyReidModelFactory(): def create(model_name, model_path, model_precision): if model_name == BodyReidModelName.osnet_x0_25.value: from .model.osnet.osnet_x0_25 import OSNetX025 return OSNetX025(model_path, model_precision) else: msg = "{} is not implemented. Choose from {}.".format( model_name, BodyReidModelName.names() ) raise NotImplementedError(msg)
32.611111
66
0.577513
532
0.906303
0
0
0
0
0
0
40
0.068143
c3327d62d6a5e087ae5d5a099ea856c563dc576f
3,931
py
Python
cheatingbee/twitter.py
exoskellyman/cheatingbee
1dd0710f9be8f40c3f23aa5bcac568588ac8feeb
[ "MIT" ]
null
null
null
cheatingbee/twitter.py
exoskellyman/cheatingbee
1dd0710f9be8f40c3f23aa5bcac568588ac8feeb
[ "MIT" ]
null
null
null
cheatingbee/twitter.py
exoskellyman/cheatingbee
1dd0710f9be8f40c3f23aa5bcac568588ac8feeb
[ "MIT" ]
null
null
null
import datetime import io import os import tweepy from dotenv import load_dotenv from PIL import Image, ImageDraw, ImageFont class Twitter: """ A class used to manage the connection with the Twitter API ... Methods ------- post_tweet(solver_answers, nyt_answers, pangrams) Creates the tweet text and posts a picture with todays answers """ def __init__(self): load_dotenv() api_key = os.environ.get('TWITTER_API') api_key_secret = os.environ.get('TWITTER_API_SECRET') access_token = os.environ.get('TWITTER_ACCESS') access_token_secret = os.environ.get('TWITTER_ACCESS_SECRET') auth = tweepy.OAuthHandler(api_key, api_key_secret) auth.set_access_token(access_token, access_token_secret) self.api = tweepy.API(auth) def post_tweet(self, solver_answers, nyt_answers, pangrams): """Composes the tweet text and posts a picture with todays answers marked as NSFW to avoid spoilers Parameters ---------- solver_answers: list, required The answers returned by the solver nyt_answers: list, required The answers of todays New York Times Spelling Bee pangrams: list, required The pangrams in the answers of todays New York Times Spelling Bee """ pangrams.sort() nyt_answers.sort() text = ("Pangram(s):\n" + self.__make_rows(pangrams) + '\n\nAnswers:\n' + self.__make_rows(nyt_answers)) pic = self.__create_pic(text) media = self.api.media_upload( filename=str(datetime.date.today()), file=pic, possibly_sensitive=True) if len(solver_answers) == len(nyt_answers): tweet = "Cheating Bee got all {} answers on todays #SpellingBee!🐝🎓" tweet = tweet + "\n\nNeed help with todays puzzle? Click the image below!" tweet = tweet.format(len(nyt_answers)) else: tweet = "Cheating Bee got {}/{} answers on todays #SpellingBee!🐝" tweet = tweet + "\n\nNeed help with todays puzzle? Click the image below!" tweet = tweet.format(len(solver_answers), len(nyt_answers)) self.api.update_status(status=tweet, media_ids=[media.media_id]) def __make_rows(self, word_list): """Formats a list of words into a string with rows five words long Parameters ---------- word_list: list, required A list of words Returns ------- str The word list composed to a string with rows of five words """ text = '' for i in range(0, len(word_list), 5): if i + 5 < len(word_list): text = text + ', '.join(word_list[i:i+5]) + ',\n' else: text = text + ', '.join(word_list[i:len(word_list)]) return text def __create_pic(self, text): """Creates an image with and fills it with the text provided Parameters ---------- text: str, required The text string to be drawn on the picture Returns ------- file The picture as a file object """ font_size = 20 # number of lines plus 3 for padding height = (text.count('\n') + 3) * font_size # longest line in string length times font size at a ratio of .65 width = int( max([len(x) for x in text.splitlines()]) * font_size * 0.65) pic = Image.new("RGB", (width, height), (255, 255, 255)) font = ImageFont.truetype("Pillow/Tests/fonts/FreeMono.ttf", font_size) drawing = ImageDraw.Draw(pic) drawing.multiline_text((10, 10), text, font=font, fill=(0, 0, 0)) b = io.BytesIO() pic.save(b, 'png') b.seek(0) return b
34.787611
86
0.58204
3,812
0.967513
0
0
0
0
0
0
1,769
0.448985
c332b852b9ea902789bff01e3510374ac9b4407d
106
py
Python
variables.py
MuhweziDeo/python_refresher
0d100f88524ff780f1cee8afabfee1025c648f8b
[ "MIT" ]
null
null
null
variables.py
MuhweziDeo/python_refresher
0d100f88524ff780f1cee8afabfee1025c648f8b
[ "MIT" ]
null
null
null
variables.py
MuhweziDeo/python_refresher
0d100f88524ff780f1cee8afabfee1025c648f8b
[ "MIT" ]
null
null
null
x = 2 print(x) # multiple assignment a, b, c, d = (1, 2, 5, 9) print(a, b, c, d) print(type(str(a)))
8.833333
25
0.528302
0
0
0
0
0
0
0
0
21
0.198113
c332e2fe6b727044df2454bc3e05a8e3dca73a1d
4,773
py
Python
examples/authentication/demo_auth.py
jordiyeh/safrs
eecfaf6d63ed44b9dc44b7b86c600db02989b512
[ "MIT" ]
null
null
null
examples/authentication/demo_auth.py
jordiyeh/safrs
eecfaf6d63ed44b9dc44b7b86c600db02989b512
[ "MIT" ]
null
null
null
examples/authentication/demo_auth.py
jordiyeh/safrs
eecfaf6d63ed44b9dc44b7b86c600db02989b512
[ "MIT" ]
null
null
null
#!/usr/bin/env python # # This is a demo application to demonstrate the functionality of the safrs_rest REST API with authentication # # you will have to install the requirements: # pip3 install passlib flask_httpauth flask_login # # This script can be ran standalone like this: # python3 demo_auth.py [Listener-IP] # This will run the example on http://Listener-Ip:5000 # # - A database is created and a item is added # - User is created and the User endpoint is protected by user:admin & pass: adminPASS # - swagger2 documentation is generated # import sys import os import logging import builtins from functools import wraps from flask import Flask, redirect, jsonify, make_response from flask import abort, request, g, url_for from flask_sqlalchemy import SQLAlchemy from sqlalchemy import Column, Integer, String from safrs import SAFRSBase, SAFRSJSONEncoder, Api, jsonapi_rpc from flask_swagger_ui import get_swaggerui_blueprint from flask_sqlalchemy import SQLAlchemy from flask_httpauth import HTTPBasicAuth from passlib.apps import custom_app_context as pwd_context from itsdangerous import (TimedJSONWebSignatureSerializer as Serializer, BadSignature, SignatureExpired) from flask.ext.login import LoginManager, UserMixin, \ login_required, login_user, logout_user db = SQLAlchemy() auth = HTTPBasicAuth() # Example sqla database object class Item(SAFRSBase, db.Model): ''' description: Item description ''' __tablename__ = 'items' id = Column(String, primary_key=True) name = Column(String, default = '') class User(SAFRSBase, db.Model): ''' description: User description ''' __tablename__ = 'users' id = db.Column(String, primary_key=True) username = db.Column(db.String(32), index=True) password_hash = db.Column(db.String(64)) custom_decorators = [auth.login_required] @jsonapi_rpc(http_methods = ['POST']) def hash_password(self, password): self.password_hash = pwd_context.encrypt(password) @jsonapi_rpc(http_methods = ['POST']) def verify_password(self, password): return pwd_context.verify(password, self.password_hash) @jsonapi_rpc(http_methods = ['POST']) def generate_auth_token(self, expiration=600): s = Serializer(app.config['SECRET_KEY'], expires_in=expiration) return s.dumps({'id': self.id}) @staticmethod @jsonapi_rpc(http_methods = ['POST']) def verify_auth_token(token): s = Serializer(app.config['SECRET_KEY']) try: data = s.loads(token) except SignatureExpired: return None # valid token, but expired except BadSignature: return None # invalid token user = User.query.get(data['id']) return user def start_app(app): api = Api(app, api_spec_url = '/api/swagger', host = '{}:{}'.format(HOST,PORT), schemes = [ "http" ] ) item = Item(name='test',email='em@il') user = User(username='admin') user.hash_password('adminPASS') api.expose_object(Item) api.expose_object(User) # Set the JSON encoder used for object to json marshalling app.json_encoder = SAFRSJSONEncoder # Register the API at /api/docs swaggerui_blueprint = get_swaggerui_blueprint('/api', '/api/swagger.json') app.register_blueprint(swaggerui_blueprint, url_prefix='/api') print('Starting API: http://{}:{}/api'.format(HOST,PORT)) app.run(host=HOST, port = PORT) # # APP Initialization # app = Flask('demo_app') app.config.update( SQLALCHEMY_DATABASE_URI = 'sqlite://', SQLALCHEMY_TRACK_MODIFICATIONS = False, SECRET_KEY = b'sdqfjqsdfqizroqnxwc', DEBUG = True) HOST = sys.argv[1] if len(sys.argv) > 1 else '0.0.0.0' PORT = 5000 db.init_app(app) # # Authentication and custom routes # @auth.verify_password def verify_password(username_or_token, password): user = User.verify_auth_token(username_or_token) if not user: # try to authenticate with username/password user = User.query.filter_by(username=username_or_token).first() if not user or not user.verify_password(password): return False print('Authentication Successful for "{}"'.format(user.username)) return True @app.route('/') def goto_api(): return redirect('/api') @app.teardown_appcontext def shutdown_session(exception=None): '''cfr. http://flask.pocoo.org/docs/0.12/patterns/sqlalchemy/''' db.session.remove() # Start the application with app.app_context(): db.create_all() start_app(app)
31.82
109
0.673581
1,451
0.304002
0
0
1,565
0.327886
0
0
1,306
0.273622
c3335a14a14888a29737d6b5d92bb38bedb9c886
2,045
py
Python
ev3/sensors/color.py
NewThingsCo/ev3-controller
70d30617fa3ea6ef73a39a8c5360e8e4c72a9e98
[ "BSD-2-Clause" ]
1
2019-08-06T10:16:39.000Z
2019-08-06T10:16:39.000Z
ev3/sensors/color.py
NewThingsCo/ev3-controller
70d30617fa3ea6ef73a39a8c5360e8e4c72a9e98
[ "BSD-2-Clause" ]
null
null
null
ev3/sensors/color.py
NewThingsCo/ev3-controller
70d30617fa3ea6ef73a39a8c5360e8e4c72a9e98
[ "BSD-2-Clause" ]
1
2018-03-06T10:59:50.000Z
2018-03-06T10:59:50.000Z
import goless import time from sys import platform if platform == "linux" or platform == "linux2": import brickpi3 def start_color_sensor(brick, port, channel): print("start color sensor") setup_sensor(brick, port) goless.go(run_color_sensor, brick, port, channel) print("color sensor started") def setup_sensor(brick, port): brick.set_sensor_type(port, brick.SENSOR_TYPE.EV3_COLOR_REFLECTED) error = True while error: time.sleep(0.1) try: brick.get_sensor(port) error = False except brickpi3.SensorError as error: error = True def run_color_sensor(brick, port, channel): # sensor_modes = [(brick.SENSOR_TYPE.EV3_COLOR_REFLECTED, 'reflect'), # (brick.SENSOR_TYPE.EV3_COLOR_AMBIENT, 'ambiet'), # (brick.SENSOR_TYPE.EV3_COLOR_COLOR, 'color'), # (brick.SENSOR_TYPE.EV3_COLOR_COLOR_COMPONENTS, 'color_components')] sensor_modes = [(brick.SENSOR_TYPE.EV3_COLOR_COLOR, 'color')] while True: for sensor_mode in sensor_modes: time.sleep(0.01) sensor_value = read_sensor(brick, port, sensor_mode[0]) if sensor_value: channel.send((sensor_mode[1], sensor_value)) if isinstance(sensor_value, brickpi3.SensorError): break def read_sensor(brick, port, sensor_type): try: brick.set_sensor_type(port, sensor_type) time.sleep(0.01) return brick.get_sensor(port) except brickpi3.SensorError as error: print("error color", error) return error if __name__ == '__main__': print('for local testing read 100 color readings from port 1') brick = brickpi3.BrickPi3() readings = goless.chan() start_color_sensor(brick, brick.PORT_3, readings) for i in range(100): case, val = goless.select([goless.rcase(readings)]) print(case, val) print('100 reading are done, time to clean and exit') brick.reset_all()
30.984848
89
0.642543
0
0
0
0
0
0
0
0
471
0.230318
c333f525069086ebb8689eece355d91dd6b64f69
8,757
py
Python
model/BPE.py
djmhunt/TTpy
0f0997314bf0f54831494b2ef1a64f1bff95c097
[ "MIT" ]
null
null
null
model/BPE.py
djmhunt/TTpy
0f0997314bf0f54831494b2ef1a64f1bff95c097
[ "MIT" ]
4
2020-04-19T11:43:41.000Z
2020-07-21T09:57:51.000Z
model/BPE.py
djmhunt/TTpy
0f0997314bf0f54831494b2ef1a64f1bff95c097
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ :Author: Dominic Hunt """ import logging import numpy as np import scipy as sp import collections import itertools from model.modelTemplate import Model class BPE(Model): """The Bayesian predictor model Attributes ---------- Name : string The name of the class used when recording what has been used. Parameters ---------- alpha : float, optional Learning rate parameter epsilon : float, optional Noise parameter. The larger it is the less likely the model is to choose the highest expected reward number_actions : integer, optional The maximum number of valid actions the model can expect to receive. Default 2. number_cues : integer, optional The initial maximum number of stimuli the model can expect to receive. Default 1. number_critics : integer, optional The number of different reaction learning sets. Default number_actions*number_cues validRewards : list,np.ndarray, optional The different reward values that can occur in the task. Default ``array([0, 1])`` action_codes : dict with string or int as keys and int values, optional A dictionary used to convert between the action references used by the task or dataset and references used in the models to describe the order in which the action information is stored. dirichletInit : float, optional The initial values for values of the dirichlet distribution. Normally 0, 1/2 or 1. Default 1 prior : array of floats in ``[0, 1]``, optional Ignored in this case stimFunc : function, optional The function that transforms the stimulus into a form the model can understand and a string to identify it later. Default is blankStim rewFunc : function, optional The function that transforms the reward into a form the model can understand. Default is blankRew decFunc : function, optional The function that takes the internal values of the model and turns them in to a decision. Default is model.decision.discrete.weightProb See Also -------- model.BP : This model is heavily based on that one """ def __init__(self, alpha=0.3, epsilon=0.1, dirichletInit=1, validRewards=np.array([0, 1]), **kwargs): super(BPE, self).__init__(**kwargs) self.alpha = alpha self.epsilon = epsilon self.validRew = validRewards self.rewLoc = collections.OrderedDict(((k, v) for k, v in itertools.izip(self.validRew, range(len(self.validRew))))) self.dirichletVals = np.ones((self.number_actions, self.number_cues, len(self.validRew))) * dirichletInit self.expectations = self.updateExpectations(self.dirichletVals) self.parameters["epsilon"] = self.epsilon self.parameters["alpha"] = self.alpha self.parameters["dirichletInit"] = dirichletInit # Recorded information self.recDirichletVals = [] def returnTaskState(self): """ Returns all the relevant data for this model Returns ------- results : dict The dictionary contains a series of keys including Name, Probabilities, Actions and Events. """ results = self.standardResultOutput() results["dirichletVals"] = np.array(self.recDirichletVals) return results def storeState(self): """ Stores the state of all the important variables so that they can be accessed later """ self.storeStandardResults() self.recDirichletVals.append(self.dirichletVals.copy()) def rewardExpectation(self, observation): """Calculate the estimated reward based on the action and stimuli This contains parts that are task dependent Parameters ---------- observation : {int | float | tuple} The set of stimuli Returns ------- actionExpectations : array of floats The expected rewards for each action stimuli : list of floats The processed observations activeStimuli : list of [0, 1] mapping to [False, True] A list of the stimuli that were or were not present """ activeStimuli, stimuli = self.stimulus_shaper.processStimulus(observation) actionExpectations = self._actExpectations(self.dirichletVals, stimuli) return actionExpectations, stimuli, activeStimuli def delta(self, reward, expectation, action, stimuli): """ Calculates the comparison between the reward and the expectation Parameters ---------- reward : float The reward value expectation : float The expected reward value action : int The chosen action stimuli : {int | float | tuple | None} The stimuli received Returns ------- delta """ modReward = self.reward_shaper.processFeedback(reward, action, stimuli) return modReward def updateModel(self, delta, action, stimuli, stimuliFilter): """ Parameters ---------- delta : float The difference between the reward and the expected reward action : int The action chosen by the model in this trialstep stimuli : list of float The weights of the different stimuli in this trialstep stimuliFilter : list of bool A list describing if a stimulus cue is present in this trialstep """ # Find the new activities self._newExpect(action, delta, stimuli) # Calculate the new probabilities # We need to combine the expectations before calculating the probabilities actionExpectations = self._actExpectations(self.dirichletVals, stimuli) self.probabilities = self.calcProbabilities(actionExpectations) def _newExpect(self, action, delta, stimuli): self.dirichletVals[action, :, self.rewLoc[delta]] += self.alpha * stimuli/np.sum(stimuli) self.expectations = self.updateExpectations(self.dirichletVals) def _actExpectations(self, dirichletVals, stimuli): # If there are multiple possible stimuli, filter by active stimuli and calculate # calculate the expectations associated with each action. if self.number_cues > 1: actionExpectations = self.calcActExpectations(self.actStimMerge(dirichletVals, stimuli)) else: actionExpectations = self.calcActExpectations(dirichletVals[:, 0, :]) return actionExpectations def calcProbabilities(self, actionValues): # type: (np.ndarray) -> np.ndarray """ Calculate the probabilities associated with the actions Parameters ---------- actionValues : 1D ndArray of floats Returns ------- probArray : 1D ndArray of floats The probabilities associated with the actionValues """ cbest = actionValues == max(actionValues) deltaEpsilon = self.epsilon * (1 / self.number_actions) bestEpsilon = (1 - self.epsilon) / np.sum(cbest) + deltaEpsilon probArray = bestEpsilon * cbest + deltaEpsilon * (1 - cbest) return probArray def actorStimulusProbs(self): """ Calculates in the model-appropriate way the probability of each action. Returns ------- probabilities : 1D ndArray of floats The probabilities associated with the action choices """ probabilities = self.calcProbabilities(self.expectedRewards) return probabilities def actStimMerge(self, dirichletVals, stimuli): dirVals = dirichletVals * np.expand_dims(np.repeat([stimuli], self.number_actions, axis=0), 2) actDirVals = np.sum(dirVals, 1) return actDirVals def calcActExpectations(self, dirichletVals): actExpect = np.fromiter((np.sum(sp.stats.dirichlet(d).mean() * self.validRew) for d in dirichletVals), float, count=self.number_actions) return actExpect def updateExpectations(self, dirichletVals): def meanFunc(p, r=[]): return np.sum(sp.stats.dirichlet(p).mean() * r) expectations = np.apply_along_axis(meanFunc, 2, dirichletVals, r=self.validRew) return expectations
33.680769
145
0.628183
8,552
0.97659
0
0
0
0
0
0
4,917
0.561494
c336028d3170491bb761554d05258241830c82fc
1,688
py
Python
affiliates/banners/tests/__init__.py
glogiotatidis/affiliates
34d0ded8e24be9dd207d6419a5157dc8ce34bc06
[ "BSD-3-Clause" ]
15
2015-01-01T07:17:44.000Z
2020-11-09T06:28:29.000Z
affiliates/banners/tests/__init__.py
glogiotatidis/affiliates
34d0ded8e24be9dd207d6419a5157dc8ce34bc06
[ "BSD-3-Clause" ]
16
2015-02-25T23:17:27.000Z
2015-08-20T10:28:18.000Z
affiliates/banners/tests/__init__.py
glogiotatidis/affiliates
34d0ded8e24be9dd207d6419a5157dc8ce34bc06
[ "BSD-3-Clause" ]
12
2015-01-17T20:57:03.000Z
2019-11-03T15:04:31.000Z
from django.db.models.signals import post_init from factory import DjangoModelFactory, Sequence, SubFactory from factory.django import mute_signals from affiliates.banners import models class CategoryFactory(DjangoModelFactory): FACTORY_FOR = models.Category name = Sequence(lambda n: 'test{0}'.format(n)) class BannerFactory(DjangoModelFactory): ABSTRACT_FACTORY = True category = SubFactory(CategoryFactory) name = Sequence(lambda n: 'test{0}'.format(n)) destination = 'https://mozilla.org/' visible = True class ImageBannerFactory(BannerFactory): FACTORY_FOR = models.ImageBanner @mute_signals(post_init) class ImageVariationFactory(DjangoModelFactory): ABSTRACT_FACTORY = True color = 'Blue' locale = 'en-us' image = 'uploads/image_banners/test.png' class ImageBannerVariationFactory(ImageVariationFactory): FACTORY_FOR = models.ImageBannerVariation banner = SubFactory(ImageBannerFactory) class TextBannerFactory(BannerFactory): FACTORY_FOR = models.TextBanner class TextBannerVariationFactory(DjangoModelFactory): FACTORY_FOR = models.TextBannerVariation banner = SubFactory(TextBannerFactory) locale = 'en-us' text = Sequence(lambda n: 'test{0}'.format(n)) class FirefoxUpgradeBannerFactory(BannerFactory): FACTORY_FOR = models.FirefoxUpgradeBanner @mute_signals(post_init) class FirefoxUpgradeBannerVariationFactory(ImageVariationFactory): FACTORY_FOR = models.FirefoxUpgradeBannerVariation banner = SubFactory(FirefoxUpgradeBannerFactory) image = 'uploads/firefox_upgrade_banners/test.png' upgrade_image = 'uploads/firefox_upgrade_banners/test_upgrade.png'
25.575758
70
0.776659
1,423
0.843009
0
0
513
0.30391
0
0
193
0.114336
c337200f464a7d012b7b952e50ed5709111473ef
7,996
py
Python
cradlepy/framework/http.py
cblanquera/cradlepy
1634fe38a0cc58f92dbfc2b0c84ace9d16821c3c
[ "MIT" ]
null
null
null
cradlepy/framework/http.py
cblanquera/cradlepy
1634fe38a0cc58f92dbfc2b0c84ace9d16821c3c
[ "MIT" ]
null
null
null
cradlepy/framework/http.py
cblanquera/cradlepy
1634fe38a0cc58f92dbfc2b0c84ace9d16821c3c
[ "MIT" ]
null
null
null
from .request import Request from .response import Response class HttpRequestCookieTrait: 'Designed for the Request Object; Adds methods to store COOKIE data' def get_cookies(self, *args): 'Returns COOKIE given name or all COOKIE' return self.get('cookie', *args) def remove_cookies(self, *args): 'Removes COOKIE given name or all COOKIE' return self.remove('cookie', *args) def has_cookies(self, *args): 'Returns true if has COOKIE given name or if COOKIE is set' return self.exists('cookie', *args) def set_cookies(self, data, *args): 'Sets COOKIE' if isinstance(data, (list, dict, tuple)): return self.set('cookie', data) if len(args) == 0: return self return self.set('cookie', data, *args) class HttpRequestGetTrait: 'Designed for the Request Object; Adds methods to store GET data' def get_get(self, *args): 'Returns GET given name or all GET' return self.get('get', *args) def remove_get(self, *args): 'Removes GET given name or all GET' return self.remove('get', *args) def has_get(self, *args): 'Returns true if has GET given name or if GET is set' return self.exists('get', *args) def set_get(self, data, *args): 'Sets GET' if isinstance(data, (list, dict, tuple)): return self.set('get', data) if len(args) == 0: return self return self.set('get', data, *args) class HttpRequestPostTrait: 'Designed for the Request Object; Adds methods to store POST data' def get_post(self, *args): 'Returns POST given name or all POST' return self.get('post', *args) def remove_post(self, *args): 'Removes POST given name or all POST' return self.remove('post', *args) def has_post(self, *args): 'Returns true if has POST given name or if POST is set' return self.exists('post', *args) def set_post(self, data, *args): 'Sets POST' if isinstance(data, (list, dict, tuple)): return self.set('post', data) if len(args) == 0: return self return self.set('post', data, *args) class HttpRequestServerTrait: 'Designed for the Request Object; Adds methods to store SERVER data' def get_method(self): 'Returns method if set' pass def get_path(self, name = None): 'Returns path data given name or all path data' pass def get_query(self): 'Returns string query if set' pass def get_server(self, name = None): 'Returns SERVER data given name or all SERVER data' pass def has_server(self, name = None): 'Returns SERVER data given name or all SERVER data' pass def is_method(self, method): 'Returns true if method is the one given' pass def set_method(self, method): 'Sets request method' pass def set_path(self, path): 'Sets path given in string or array form' pass def set_query(self, query): 'Sets query string' pass def set_server(self, server): 'Sets SERVER' pass class HttpRequestSessionTrait: 'Designed for the Request Object; Adds methods to store SESSION data' def get_session(self, *args): 'Returns SESSION given name or all SESSION' return self.get('session', *args) def remove_session(self, *args): 'Removes SESSION given name or all SESSION' self.remove('session', *args) #TODO: link session object return self def has_session(self, *args): 'Returns true if has SESSION given name or if SESSION is set' return self.exists('session', *args) def set_session(self, data, *args): 'Sets SESSION' if isinstance(data, (list, dict, tuple)): return self.set('session', data) if len(args) == 0: return self self.set('session', data, *args) #TODO: link session object return self class HttpRequest( Request, HttpRequestCookieTrait, HttpRequestGetTrait, HttpRequestPostTrait, HttpRequestServerTrait, HttpRequestSessionTrait ): 'Http Request Object' def load(self): 'Loads default data given by WSGI' pass class HttpResponseHeaderTrait: 'Designed for the Response Object; Adds methods to process headers' def add_header(self, name, value = None): 'Adds a header parameter' pass def get_headers(self, name = None): 'Returns either the header value given the name or the all headers' pass def remove_header(self, name): 'Removes a header parameter' pass class HttpResponsePageTrait: 'Designed for the Response Object; Adds methods to process REST type responses' def add_meta(self, name, content): 'Adds a page meta item' pass def get_flash(self): 'Returns flash data' pass def get_meta(self, *args): 'Returns meta given path or all meta data' pass def get_page(self, *args): 'Returns page data given path or all page data' pass def has_page(self, *args): 'Returns true if theres any page data' pass def remove_page(self, *args): 'Removes arbitrary page data' pass def set_flash(self, message, type = 'info'): 'Sets a Page flash' pass def set_page(self, *args): 'Sets arbitrary page data' pass def set_title(self, title): 'Sets a Page title' pass class HttpResponseStatusTrait: 'Designed for the Response Object; Adds methods to process status codes' def get_status(self): 'Returns the status code' pass def set_status(self, code, status): 'Sets a status code' pass class HttpResponse( Response, HttpResponseHeaderTrait, HttpResponsePageTrait, HttpResponseStatusTrait ): 'Http Response Object' def load(self): 'Loads default data' pass class HttpRouterTrait: 'Designed for the HttpHandler we are parting this out to lessen the confusion' def all(self, path, callback): 'Adds routing middleware for all methods' pass def delete(self, path, callback): 'Adds routing middleware for delete method' pass def get(self, path, callback): 'Adds routing middleware for get method' pass def get_router(self): 'Returns a router object' pass def post(self, path, callback): 'Adds routing middleware for post method' pass def put(self, path, callback): 'Adds routing middleware for put method' pass def route(self, method, path, callback): 'Adds routing middleware' pass def set_router(self, router): 'Sets the router to use' pass def trigger_route(self, method, path, *args): 'Manually trigger a route' pass class HttpRouterInterface: 'Handles method-path matching and routing' def __init__(self, handler = None): 'Allow to pass a custom EventHandler' pass def process(self, request, *args): 'Process routes' pass def route(self, method, pattern, callback): 'Adds routing middleware' pass class HttpRouter(HttpRouterInterface): 'Handles method-path matching and routing' def __init__(self, handler = None): 'Allow to pass a custom EventHandler' pass def process(self, request, *args): 'Process routes' pass def route(self, method, pattern, callback): 'Adds routing middleware' pass class HttpDispatcher: pass class HttpHandler: pass class HttpDispatcherTrait: pass class HttpTrait: pass
23.380117
83
0.617184
7,902
0.988244
0
0
0
0
0
0
2,824
0.353177
c3372092201a1e6f33ba16a8e3cd911550232f4d
326
py
Python
src/plugins/command/main.py
AlexCaranha/MyLauncher
d15037d5e26eee61e851a938b432ee1107f441ab
[ "MIT" ]
null
null
null
src/plugins/command/main.py
AlexCaranha/MyLauncher
d15037d5e26eee61e851a938b432ee1107f441ab
[ "MIT" ]
null
null
null
src/plugins/command/main.py
AlexCaranha/MyLauncher
d15037d5e26eee61e851a938b432ee1107f441ab
[ "MIT" ]
null
null
null
import pluggy hookimpl = pluggy.HookimplMarker('mylauncher') def get_class(): return CommandPlugin() class CommandPlugin: @hookimpl def setup(self): print("Setup ...") @hookimpl def get_alias(self): return "command" @hookimpl def execute(self, input:str): return None
15.52381
46
0.631902
216
0.662577
0
0
179
0.54908
0
0
32
0.09816
c3374bd201ea3739cfe629bae1ecfda55d32a4e4
5,022
py
Python
setup.py
kmike/UnbalancedDataset
777f26cee73c04ae2f3d59e43c990cbfd1725b23
[ "MIT" ]
6
2016-06-02T09:27:41.000Z
2021-04-21T06:46:12.000Z
setup.py
kmike/UnbalancedDataset
777f26cee73c04ae2f3d59e43c990cbfd1725b23
[ "MIT" ]
null
null
null
setup.py
kmike/UnbalancedDataset
777f26cee73c04ae2f3d59e43c990cbfd1725b23
[ "MIT" ]
1
2018-08-25T03:11:05.000Z
2018-08-25T03:11:05.000Z
#! /usr/bin/env python """Toolbox for unbalanced dataset in machine learning.""" from setuptools import setup, find_packages import os import sys import setuptools from distutils.command.build_py import build_py if sys.version_info[0] < 3: import __builtin__ as builtins else: import builtins descr = """Toolbox for unbalanced dataset in machine learning.""" DISTNAME = 'unbalanced_dataset' DESCRIPTION = 'Toolbox for unbalanced dataset in machine learning.' LONG_DESCRIPTION = descr MAINTAINER = 'Fernando Nogueira, Guillaume Lemaitre' MAINTAINER_EMAIL = '[email protected], [email protected]' URL = 'https://github.com/fmfn/UnbalancedDataset' LICENSE = 'new BSD' DOWNLOAD_URL = 'https://github.com/fmfn/UnbalancedDataset' # This is a bit (!) hackish: we are setting a global variable so that the main # skimage __init__ can detect if it is being loaded by the setup routine, to # avoid attempting to load components that aren't built yet: # the numpy distutils extensions that are used by UnbalancedDataset to # recursively build the compiled extensions in sub-packages is based on # the Python import machinery. builtins.__UNBALANCED_DATASET_SETUP__ = True with open('unbalanced_dataset/__init__.py') as fid: for line in fid: if line.startswith('__version__'): VERSION = line.strip().split()[-1][1:-1] break with open('requirements.txt') as fid: INSTALL_REQUIRES = [l.strip() for l in fid.readlines() if l] # requirements for those browsing PyPI REQUIRES = [r.replace('>=', ' (>= ') + ')' for r in INSTALL_REQUIRES] REQUIRES = [r.replace('==', ' (== ') for r in REQUIRES] REQUIRES = [r.replace('[array]', '') for r in REQUIRES] def configuration(parent_package='', top_path=None): if os.path.exists('MANIFEST'): os.remove('MANIFEST') from numpy.distutils.misc_util import Configuration config = Configuration(None, parent_package, top_path) config.set_options( ignore_setup_xxx_py=True, assume_default_configuration=True, delegate_options_to_subpackages=True, quiet=True) config.add_subpackage('unbalanced_dataset') return config if __name__ == "__main__": try: from numpy.distutils.core import setup extra = {'configuration': configuration} # Do not try and upgrade larger dependencies for lib in ['scipy', 'numpy', 'matplotlib']: try: __import__(lib) INSTALL_REQUIRES = [i for i in INSTALL_REQUIRES if lib not in i] except ImportError: pass except ImportError: if len(sys.argv) >= 2 and ('--help' in sys.argv[1:] or sys.argv[1] in ('--help-commands', '--version', 'clean')): # For these actions, NumPy is not required. # # They are required to succeed without Numpy for example when # pip is used to install UnbalancedDataset when Numpy is not yet # present in the system. from setuptools import setup extra = {} else: print('To install UnbalancedDataset from source, you need numpy.' + 'Install numpy with pip:\n' + 'pip install numpy\n' 'Or use your operating system package manager.') sys.exit(1) setup( name=DISTNAME, description=DESCRIPTION, long_description=LONG_DESCRIPTION, maintainer=MAINTAINER, maintainer_email=MAINTAINER_EMAIL, url=URL, license=LICENSE, download_url=DOWNLOAD_URL, version=VERSION, classifiers=['Intended Audience :: Science/Research', 'Intended Audience :: Developers', 'License :: OSI Approved', 'Programming Language :: Python', 'Topic :: Software Development', 'Topic :: Scientific/Engineering', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX', 'Operating System :: Unix', 'Operating System :: MacOS', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', ], install_requires=INSTALL_REQUIRES, requires=REQUIRES, packages=setuptools.find_packages(exclude=['doc']), include_package_data=True, zip_safe=False, # the package can run out of an .egg file cmdclass={'build_py': build_py}, **extra )
37.477612
79
0.597172
0
0
0
0
0
0
0
0
2,041
0.406412
c33796a44fa6fcd9a0852b7e8f6f953771655ffa
64
py
Python
ores/scoring/models/__init__.py
elukey/ores
18f6e2da642dd124daf4dc122d58032eb15485c9
[ "MIT" ]
69
2015-07-15T15:04:12.000Z
2018-08-20T15:00:27.000Z
ores/scoring/models/__init__.py
elukey/ores
18f6e2da642dd124daf4dc122d58032eb15485c9
[ "MIT" ]
146
2015-06-13T18:56:49.000Z
2018-08-17T22:38:52.000Z
ores/scoring/models/__init__.py
elukey/ores
18f6e2da642dd124daf4dc122d58032eb15485c9
[ "MIT" ]
34
2018-10-15T16:58:50.000Z
2022-03-08T20:01:34.000Z
from .rev_id_scorer import RevIdScorer __all__ = [RevIdScorer]
16
38
0.8125
0
0
0
0
0
0
0
0
0
0
c3386296bb9f34b0112bf5ce7c89306471d38bbf
4,311
py
Python
conjuntos.py
Tiesco789/guppe
464702a2d618e149439a9b5c763f82c5376d2c32
[ "MIT" ]
null
null
null
conjuntos.py
Tiesco789/guppe
464702a2d618e149439a9b5c763f82c5376d2c32
[ "MIT" ]
null
null
null
conjuntos.py
Tiesco789/guppe
464702a2d618e149439a9b5c763f82c5376d2c32
[ "MIT" ]
null
null
null
""" Conjuntos — Conjunto em qualquer linguagem de programação, estamos fazendo referência à teoria de conjuntos da matemática — Aqui no Python, os conjuntos são chamados de sets Dito isto, da mesma forma que na matemática: — Sets (conjuntos) não possuem valores duplicados; — Sets (conjuntos) não possuem valores ordenados; — Elementos não são acessados via índice, ou seja, conjuntos não são indexados; Conjuntos são bons para se utilizar quando precisamos armazenar elementos mas não nos importamos com a ordenaçào deles. Quando não precisamos se preocupar com chaves, valores e itens duplicados Os conjuntos (sets) são referenciados em python com chaves {} Diferença entre conjutnos (sets) e mapas (dicionários) em python: — Um dicionário tem chave/valor — Um conjunto tem apenas valor # Definindo um conjunto # Forma 1 s = set({1, 2, 3, 4, 5, 6, 7, 2, 3}) # Repare que temos valores repetidos print(s) print(type(s)) # OBS: Ao criar uim conjunto, caso seja adicionado um valor já existente, o mesmo será ignorado sem gerar error e nào fará parde do conjunto # Forma 2 s = {1, 2, 3, 4, 5, 5} print(s) print(type(s)) # Podemos verificar se um determinado valor está contido em um conjunto if 3 in s: print('Encontrei o valor 3') else: print('Não encontrei o valor 3') # Importante lembrar que, alem de não termos valores duplicados, os valores não são ordenados dados = 99, 2, 34, 23, 2, 12, 1, 44, 5, 34 # Listas aceitam valores duplicados, então temos 10 elementos lista = list(dados) print(f"Lista: {lista} com {len(lista)} elementos") # Tuplas aceitam valores duplicados, então temos 10 elementos tupla = tuple(dados) print(f"Tupla: {tupla} com {len(tupla)} elementos") # Dicionários não aceitam chaves duplicadas, então temos 8 elementos dicionario = {}.fromkeys(dados, 'dict') print(f"Dicionário: {dicionario} com {len(dicionario)} elementos") # Conjuntos não aceitam valores duplicados, então temos 8 elementos conjunto = set(dados) print(f"Conjunto: {conjunto} com {len(conjunto)} elementos") # Assim como os outros conjuntos python, podemos colocar tipos de dados misturados em Sets s = {1, 'b', True, 1.23, 44} print(s) print(type(s)) # Podemos iterar em um set normalmente for valor in s: print(valor) # Usos interessantes com sets # Imagine que fizemos um formulário de cadastro de visitantes em uma feira ou museu, # os visitantes informam manualmente a cidade de onde vieram # Nós adicionamos cada cidade em uma lista Python, já que em uma lista podemos adicionar novos elmentos e ter repetições cidades = ['Belo Horizante', 'São Paulo', 'Campo Grande', 'Cuiaba', 'Campo Grande', 'São Paulo', 'Cuiaba'] print(cidades) print(len(cidades)) # Agora precisamos saber quantas cidades distintas, ou seja, únicas, temos. # O que você faria? Faria um loop na lista? # Podemos utilizar o set para isso print(len(set(cidades))) s = {1, 2, 3} s.add(4) print(s) s = {1, 2, 3} s.remove(3) print(s) s.discard(2) print(s) # Copiando um conjunto para outro # Forma 1 - Deep Copy novo = s.copy() print(novo) novo.add(4) print(novo) print(s) # Forma 2 - Shallow Copy novo = s novo.add(4) print(novo) print(s) s = {1, 2, 3} print(s) s.clear() print(s) # Precisamos gerar qum conjunto com nomes de estudantes únicos # Forma 1 - Utilizando union # unicos1 = estudantes_python.union(estudantes_java) # print(unicos1) # Forma 2 - Utilizando o | pipe unicos2 = estudantes_python | estudantes_java print(unicos2) # Gerar um conjunto de estudantes que estão em ambos os cursos # Forma 1 - Utilizando union ambos1 = estudantes_python.intersection(estudantes_java) print(ambos1) # Forma 2 - utilizando o & ambos2 = estudantes_python & estudantes_java print(ambos2) # Métodos matemáticos de conjuntos # Imagine que temos dois conjuntos: um contendo estudantes do curso Python e um # Contendo estudantes do curso Java estudantes_python = {'Pedro', 'Maria', 'Cláudia', 'João', 'Marcos', 'Patricia'} estudantes_java = {'Ana', 'Maria', 'Cláudia', 'João', 'Marcos', 'Patricia'} # Veja que alguns alins que estudam python também estudam java. # Gerar um conjunto de estudantes que não estão no outro curso so_python = estudantes_python.difference(estudantes_java) print(so_python) so_java = estudantes_java.difference(estudantes_python) print(so_java) """
27.812903
140
0.740895
0
0
0
0
0
0
0
0
4,384
0.999772
c338d3a2b98ef137f9b2463dce7a00499cad0407
1,346
py
Python
tests/test_gpreg.py
cdgreenidge/gdec
1ee6ab0156fa8f74683f5b7a7dfcb2c3f2a57d7f
[ "MIT" ]
null
null
null
tests/test_gpreg.py
cdgreenidge/gdec
1ee6ab0156fa8f74683f5b7a7dfcb2c3f2a57d7f
[ "MIT" ]
null
null
null
tests/test_gpreg.py
cdgreenidge/gdec
1ee6ab0156fa8f74683f5b7a7dfcb2c3f2a57d7f
[ "MIT" ]
null
null
null
"""Test gpreg.py.""" from typing import Tuple import numpy as np import pytest from gdec import gpreg, npgp @pytest.fixture(scope="module") def dataset() -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: np.random.seed(42) amplitude = 1.0 lengthscale = 12 sigma = 0.5 n = 128 def spectrum_fn(w: np.ndarray) -> np.ndarray: return npgp.rbf_spectrum(w, amplitude, lengthscale) basis, freqs = npgp.real_fourier_basis(n) coef_vars = npgp.rbf_spectrum(freqs, amplitude, lengthscale) z = np.arange(n) w = np.sqrt(coef_vars) * np.random.randn(n) f = basis @ w x = z.repeat(1) f_x = f.repeat(1) y = sigma * np.random.randn(*f_x.shape) + f_x return x[:, None], y, z[:, None], f def test_you_can_train_periodic_gp_regression_on_the_synthetic_dataset(dataset): X, y, z, f = dataset grid_size = np.unique(X).size model = gpreg.PeriodicGPRegression() model.fit(X, y, grid_size=grid_size) f_est = model.predict(z) error = np.max(np.abs(f - f_est)) assert error < 0.3 def test_training_pid_on_float_dataset_raises_value_error(dataset): X, y, _, _ = dataset X = X.astype(np.float32) grid_size = np.unique(X).size model = gpreg.PeriodicGPRegression() with pytest.raises(ValueError): model.fit(X, y, grid_size=grid_size)
26.392157
80
0.665676
0
0
0
0
639
0.47474
0
0
28
0.020802
c33952e0e337955829e818701b7429be3b750ed1
1,008
py
Python
gizer/all_schema_engines.py
racker/gizer
4600999c35e99bce54071ea4f952b09b3fd5dc9b
[ "Apache-2.0" ]
null
null
null
gizer/all_schema_engines.py
racker/gizer
4600999c35e99bce54071ea4f952b09b3fd5dc9b
[ "Apache-2.0" ]
null
null
null
gizer/all_schema_engines.py
racker/gizer
4600999c35e99bce54071ea4f952b09b3fd5dc9b
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python __author__ = "Yaroslav Litvinov" __copyright__ = "Copyright 2016, Rackspace Inc." __email__ = "[email protected]" from mongo_schema import schema_engine import os def get_schema_files(schemas_dirpath): """ get list of js / json files resided in dirpath param. """ res = [] for fname in os.listdir(schemas_dirpath): if fname.endswith('json') or fname.endswith('js'): res.append(fname) res.sort() return res def get_schema_engines_as_dict(schemas_dirpath): """ Load schema engines into dict. Basename of schema file should be the name of collection""" js_schema_files = get_schema_files(schemas_dirpath) schemas = {} for fname in js_schema_files: collection_name = os.path.splitext(os.path.basename(fname))[0] schema_path = os.path.join(schemas_dirpath, fname) schemas[collection_name] = \ schema_engine.create_schema_engine(collection_name, schema_path) return schemas
33.6
76
0.709325
0
0
0
0
0
0
0
0
274
0.271825
c33a308f4b93fcb1577dde001c5501e493e62b57
146
py
Python
WeatherPy/config.py.py
Brownc03/python-api-challenge
24af57a6652b2990e8bdbc1e8e01566a2e7878b8
[ "ADSL" ]
null
null
null
WeatherPy/config.py.py
Brownc03/python-api-challenge
24af57a6652b2990e8bdbc1e8e01566a2e7878b8
[ "ADSL" ]
null
null
null
WeatherPy/config.py.py
Brownc03/python-api-challenge
24af57a6652b2990e8bdbc1e8e01566a2e7878b8
[ "ADSL" ]
null
null
null
# OpenWeatherMap API Key weather_api_key = "ae41fcf95db0d612b74e2b509abe9684" # Google API Key g_key = "AIzaSyCuF1rT6NscWq62bcBm0tZM7hKlaeWfONQ"
29.2
52
0.842466
0
0
0
0
0
0
0
0
115
0.787671
c33b670e9c5af9440c581f7412728d80706d9eb8
5,240
py
Python
bin/runinterpret.py
christine-liu/somaticCNVpipeline
254b709e611e56e5c891c663508ac79fa1093c07
[ "MIT" ]
null
null
null
bin/runinterpret.py
christine-liu/somaticCNVpipeline
254b709e611e56e5c891c663508ac79fa1093c07
[ "MIT" ]
2
2018-03-09T00:22:18.000Z
2019-03-12T11:26:42.000Z
bin/runinterpret.py
christine-liu/somaticCNVpipeline
254b709e611e56e5c891c663508ac79fa1093c07
[ "MIT" ]
6
2018-03-09T02:10:49.000Z
2020-05-14T09:19:11.000Z
#!usr/bin/python import os import numpy as np import common from interpret import qcfile, funcfile, analyzefiles def runAll(args): print('\n\n\nYou have requested to analyze CNV call data') print('\tWARNING:') print('\t\tIF USING ANY REFERENCES OTHER THAN THOSE I PROVIDE I CANNOT GUARANTEE RESULT ACCURACY') print('\n') #Set up environment# args.AnalysisDirectory = common.fixDirName(args.AnalysisDirectory) folderDict = {'LowessBinCounts': args.lowess, 'Segments': args.segments, 'PipelineStats': args.countstats} for i in list(folderDict.keys()): if not folderDict[i]: folderDict[i] = args.AnalysisDirectory + i + '/' else: folderDict[i] = common.fixDirName(folderDict[i]) QCdir = args.AnalysisDirectory + 'QC/' CNVdir = args.AnalysisDirectory + 'CNVlists/' summaryDir = args.AnalysisDirectory + 'SummaryFiles/' PloidyPlotDir = args.AnalysisDirectory + 'PloidyDeterminationPlots/' CNplotDir = args.AnalysisDirectory + 'CopyNumberProfilePlots/' ChromPlotDir = args.AnalysisDirectory + 'ChromosomeCopyNumberPlots/' for i in [args.AnalysisDirectory, QCdir, CNVdir, summaryDir, PloidyPlotDir, CNplotDir, ChromPlotDir]:# common.makeDir(i) #get list of samples to process #will involve checking infofile (if present) and whether required input files exist sampleFiles = common.getSampleList(folderDict['Segments'], args.samples, 'segments') sampleNames = [x.split('/')[-1].split('.')[0] for x in sampleFiles] # info = common.importInfoFile(args.infofile, args.columns, 'interpret') # if args.infofile: # refArray = info # else: # thisDtype = info # refArray = np.array( # [ (x, 1, 'unk',) for x in sampleNames], # dtype=thisDtype) #QC assessment# # qcfile.runQCone(sampleNames[0], args.species, folderDict['PipelineStats'], folderDict['LowessBinCounts'], folderDict['Segments'], QCdir, PloidyPlotDir) argList = [(x, args.species, folderDict['PipelineStats'], folderDict['LowessBinCounts'], folderDict['Segments'], QCdir, PloidyPlotDir) for x in sampleNames] common.daemon(qcfile.runQCone, argList, 'assess sample quality') analysisSamples = [] ploidyDict = {} genderDict = {} mergeQCfile = summaryDir + 'QCmetrics.txt' OUT = open(mergeQCfile, 'w') OUT.write('Name\tReads\tMAPD\tCS\tPloidy\tGender\tPASS\n') for i in sampleNames: IN = open(QCdir + i + '.qcTEMP.txt', 'r') data = IN.readline() OUT.write(data) data = data.rstrip().split('\t') if data[-1] == 'True': analysisSamples.append(i) ploidyDict[i] = float(data[4]) genderDict[i] = data[-2] IN.close() os.remove(QCdir + i + '.qcTEMP.txt') OUT.close() os.rmdir(QCdir) #FUnC: CNV filtering# if args.nofilter: print '\nFURTHER CODE IS ONLY DEVELOPED FOR WHEN FUnC IS IMPLEMENTED, EXITING NOW\n\n\n' raise SystemExit # funcfile.FUnCone(analysisSamples[0], args.species, folderDict['Segments'], CNVdir, # ploidyDict[analysisSamples[0]], genderDict[analysisSamples[0]]) argList = [(x, args.species, folderDict['Segments'], CNVdir, ploidyDict[x], genderDict[x]) for x in analysisSamples] common.daemon(funcfile.FUnCone, argList, 'remove unreliable CNV calls') #CNV analysis# # summaryStats = analyzefiles.analyzeOne(analysisSamples[0], args.species, CNVdir, folderDict['LowessBinCounts'], CNplotDir, ChromPlotDir, ploidyDict[analysisSamples[0]], genderDict[analysisSamples[0]]) # summaryStats = [summaryStats] argList = [(x, args.species, CNVdir, folderDict['LowessBinCounts'], CNplotDir, ChromPlotDir, ploidyDict[x], genderDict[x]) for x in analysisSamples] summaryStats = common.daemon(analyzefiles.analyzeOne, argList, 'create summary files') cellStatsFile = summaryDir + 'CellStats.txt' chromAmpFile = summaryDir + 'ChromosomeAmplifiedPercent.txt' chromDelFile = summaryDir + 'ChromosomeDeletedPercent.txt' #write summary statistics files# with open(cellStatsFile, 'w') as CELL, open(chromAmpFile, 'w') as AMP, open(chromDelFile, 'w') as DEL: CELL.write('Sample\tDeletionNumber\tAmplificationNumber\tTotalCNVnumber\tDeletedMB\tAmplifiedMB\tNetDNAalterdMB\n') chromHeader = 'Sample\t' + '\t'.join(summaryStats[0]['chroms']) + '\n' AMP.write(chromHeader) DEL.write(chromHeader) for i,j in enumerate(analysisSamples): CELL.write(str(j + '\t')) cellOut = [summaryStats[i]['cellStats']['delCount'], summaryStats[i]['cellStats']['ampCount'], summaryStats[i]['cellStats']['delCount'] + summaryStats[i]['cellStats']['ampCount'], np.round(summaryStats[i]['cellStats']['delMB'], 3), np.round(summaryStats[i]['cellStats']['ampMB'], 3), np.round(summaryStats[i]['cellStats']['ampMB'] - summaryStats[i]['cellStats']['delMB'], 3)] cellOut = '\t'.join(map(str, cellOut)) + '\n' CELL.write(cellOut) AMP.write(str(j + '\t')) ampOut = [np.round(summaryStats[i]['chromAmp'][x], 3) for x in summaryStats[0]['chroms']] ampOut = '\t'.join(map(str, ampOut)) + '\n' AMP.write(ampOut) DEL.write(str(j + '\t')) delOut = [np.round(summaryStats[i]['chromDel'][x], 3) for x in summaryStats[0]['chroms']] delOut = '\t'.join(map(str, delOut)) + '\n' DEL.write(delOut) print('\nCNV analysis complete\n\n\n')
31.566265
202
0.698473
0
0
0
0
0
0
0
0
2,137
0.407824
c33c7a593798637e5989678bfdadfbeb83157154
29,527
py
Python
mbio/EM/mrc.py
wzmao/mbio
af78cfdb47577199585179c3b04cc6cf3d6b401c
[ "MIT" ]
2
2015-05-28T12:23:02.000Z
2018-05-25T14:01:17.000Z
mbio/EM/mrc.py
wzmao/mbio
af78cfdb47577199585179c3b04cc6cf3d6b401c
[ "MIT" ]
null
null
null
mbio/EM/mrc.py
wzmao/mbio
af78cfdb47577199585179c3b04cc6cf3d6b401c
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """This module contains the MRC file class. """ __author__ = 'Wenzhi Mao' __all__ = ['MRC'] class MRCHeader(): """A header class for mrc file.""" def __init__(self, filename=None, **kwargs): """Provide the filename to parse or set it later.""" self.nx = self.ny = self.nz = None self.mode = None self.nxstart = self.nystart = self.nzstart = None self.mx = self.my = self.mz = None self.cella = [None] * 3 self.cellb = [None] * 3 self.mapc = None self.mapr = None self.maps = None self.dmin = self.dmax = self.dmean = None self.ispg = None self.nsymbt = None self.extra = None self.origin = [None] * 3 self.map = None self.machst = None self.rms = None self.nlabels = None self.label = [None] * 10 self.symdata = None self.xstart = self.ystart = self.zstart = None if filename: from os.path import exists, isfile if exists(filename) and isfile(filename): from .Cmrc import readHeader compress = 1 if filename.lower().endswith('.gz') else 0 temp = readHeader( filename=filename, header=self, compress=compress) if isinstance(temp, tuple): from ..IO.output import printError if temp[0] == None: printError(temp[1]) else: printError("Couldn't parse the Error information.") return None else: from numpy import array, argsort self = temp for i in xrange(10): self.label[i] = self.label[i][:80] if self.label[i].find('\0') != -1: self.label[i] = self.label[i][ :self.label[i].find("\0")] elif self.label[i] == ' ' * 80: self.label[i] = '' self.label[i] = self.label[i].rstrip() if self.symdata: self.symdata = self.symdata[:80] if self.symdata.find('\0') != -1: self.symdata = self.symdata[ :self.symdata.find('\0')] if self.extra: self.extra = self.extra[:80] if self.extra.find('\0') != -1: self.extra = self.extra[:self.extra.find('\0')] if self.origin == [0, 0, 0]: self.xstart, self.ystart, self.zstart = array( [self.nxstart * self.cella[0] / self.mx, self.nystart * self.cella[1] / self.my, self.nzstart * self.cella[2] / self.mz])[argsort([self.mapc, self.mapr, self.maps])] self.origin = list(array([self.xstart, self.ystart, self.zstart])[ [self.mapc - 1, self.mapr - 1, self.maps - 1]]) self.nxstart = self.nystart = self.nzstart = 0 else: self.nxstart = self.nystart = self.nzstart = 0 self.xstart, self.ystart, self.zstart = array( self.origin)[argsort([self.mapc, self.mapr, self.maps])] else: from ..IO.output import printError printError("The file doesn't exists or is not a file.") def parseHeader(self, filename=None, **kwargs): """Parse the MRC header information from the given file.""" if filename: from os.path import exists, isfile if exists(filename) and isfile(filename): from .Cmrc import readHeader compress = 1 if filename.lower().endswith('.gz') else 0 temp = readHeader( filename=filename, header=self, compress=compress) if isinstance(temp, tuple): from ..IO.output import printError if temp[0] == None: printError(temp[1]) else: printError("Couldn't parse the Error information.") return None else: from numpy import array, argsort self = temp for i in xrange(10): self.label[i] = self.label[i][:80] if self.label[i].find('\0') != -1: self.label[i] = self.label[i][ :self.label[i].find("\0")] elif self.label[i] == ' ' * 80: self.label[i] = '' self.label[i] = self.label[i].rstrip() if self.symdata: self.symdata = self.symdata[:80] if self.symdata.find('\0') != -1: self.symdata = self.symdata[ :self.symdata.find('\0')] if self.extra: self.extra = self.extra[:80] if self.extra.find('\0') != -1: self.extra = self.extra[:self.extra.find('\0')] if self.origin == [0, 0, 0]: self.xstart, self.ystart, self.zstart = array( [self.nxstart * self.cella[0] / self.mx, self.nystart * self.cella[1] / self.my, self.nzstart * self.cella[2] / self.mz])[argsort([self.mapc, self.mapr, self.maps])] self.origin = list(array([self.xstart, self.ystart, self.zstart])[ [self.mapc - 1, self.mapr - 1, self.maps - 1]]) self.nxstart = self.nystart = self.nzstart = 0 else: self.nxstart = self.nystart = self.nzstart = 0 self.xstart, self.ystart, self.zstart = array( self.origin)[argsort([self.mapc, self.mapr, self.maps])] else: from ..IO.output import printError printError("The file doesn't exists or is not a file.") else: from ..IO.output import printError printError("The filename must be provided.") def printInformation(self, **kwargs): """Print the information from the header.""" from ..IO.output import printInfo as p p("Num of columns, rows and sections: {0} {1} {2}".format( self.nx, self.ny, self.nz)) p("Mode: {0}".format(self.mode)) p("Num of First column, row, section: {0} {1} {2}".format( self.nxstart, self.nystart, self.nzstart)) p("Num of intervals along x, y, z: {0} {1} {2}".format( self.mx, self.my, self.mz)) p("Cell dimensions in angstroms: {0:.2f} {1:.2f} {2:.2f}".format( self.cella[0], self.cella[1], self.cella[2])) p("Cell angles in degrees: {0:.2f} {1:.2f} {2:.2f}".format( self.cellb[0], self.cellb[1], self.cellb[2])) p("Axis for cols, rows, sections: {0} {1} {2}".format( self.mapc, self.mapr, self.maps)) p("Min, max, mean density value: {0:.6f} {1:.6f} {2:.6f}".format( self.dmin, self.dmax, self.dmean)) p("Space group number: {0}".format(self.ispg)) p("Origin in X,Y,Z: {0:.4f} {1:.4f} {2:.4f}".format( self.origin[0], self.origin[1], self.origin[2])) p("Machine stamp: {0}".format(self.machst)) p("rms deviationfrom mean density: {0}".format(self.rms)) p("Num of labels being used: {0}".format(self.nlabels)) if self.nlabels != 0: p("Labels:") for i in self.label: if i != "": p("\t{0}".format(i)) p("Num of bytes for symmetry data: {0}".format(self.nsymbt)) if self.nsymbt != 0: p("\t{0}".format(self.symdata)) def getMatrixShape(self, **kwargs): """Get the data shape from the header information. Caution: it could be different with the data array.""" if (isinstance(self.nx, int) and isinstance(self.ny, int) and isinstance(self.nz, int)): return (self.nx, self.ny, self.nz) else: from ..IO.output import printError printError("There is no header information here.") return None def __repr__(self): return "MRCHeader" def setValue(self, label, value=None, **kwargs): """Set the value for a label.""" setattr(self, label, value) def getValue(self, label, default=None, **kwargs): """Get the value for a label.""" getattr(self, label, default) class MRC(): """This is a class to read and write MRC file. The data will always been store as x,y,z oreder.""" def __init__(self, filename=None, **kwargs): """Parse data from the given file.""" self.header = MRCHeader() self.data = None if filename: self.parseData(filename=filename, **kwargs) def __getattr__(self, name, **kwargs): if name in ['data', 'header']: return getattr(self, name) else: try: return getattr(self.header, name) except: return None def __setattr__(self, name, value, **kwargs): if name == 'data': self.__dict__[name] = value elif name == 'header': self.__dict__[name] = value else: if name in self.header.__dict__.keys(): setattr(self.header, name, value) elif name in self.__dict__.keys(): setattr(self, name, value) else: pass def __repr__(self): return "MRC" def __str__(self): return "MRC" def __dir__(self, **kwargs): return self.__dict__.keys() + self.header.__dict__.keys() def parseHeader(self, filename=None, **kwargs): """Parse the header only from a given file. If the data will be parsed in the future, the header will be overwrited by the new data file's header.""" if filename: from os.path import exists, isfile if exists(filename) and isfile(filename): self.header = MRCHeader(filename=filename) else: from ..IO.output import printError printError("The file doesn't exists or is not a file.") else: from ..IO.output import printError printError("The filename must be provided.") def parseData(self, filename=None, **kwargs): """Parse the data and header from a given file. If the header or data have already exists, all will be overwrited.""" if filename: from os.path import exists, isfile if exists(filename) and isfile(filename): from .Cmrc import readData from numpy import zeros, int8, int16, float32, uint8, uint16 from ..IO.output import printInfo, printError, printUpdateInfo if getattr(self, 'header', None): del self.header if kwargs.get('output', True): printUpdateInfo( "Parsing the Header from file {0}.".format(filename)) self.header = MRCHeader(filename=filename) if getattr(self, 'data', None): printInfo("Some data exists already, overwrite it.") del self.data if self.header.mode in [3, 4]: printError( "Sorry, we don't support the complex format yet.") del self.data self.data = None return None else: if self.header.mode == 0: self.data = zeros( (self.header.nz, self.header.ny, self.header.nx), dtype=int8) elif self.header.mode == 1: self.data = zeros( (self.header.nz, self.header.ny, self.header.nx), dtype=int16) elif self.header.mode == 2: self.data = zeros( (self.header.nz, self.header.ny, self.header.nx), dtype=float32) elif self.header.mode == 5: self.data = zeros( (self.header.nz, self.header.ny, self.header.nx), dtype=uint8) elif self.header.mode == 6: self.data = zeros( (self.header.nz, self.header.ny, self.header.nx), dtype=uint16) else: printError( "Couldn't understand the mode {0}".format(self.header.mode)) del self.data self.data = None return None if kwargs.get('output', True): printUpdateInfo( "Parsing the Data from file {0}.".format(filename)) self.data = self.data - 1 compress = 1 if filename.lower().endswith('.gz') else 0 temp = readData( filename=filename, nsymbt=self.header.nsymbt, datamode=self.header.mode, data=self.data, size=self.header.nz * self.header.ny * self.header.nx, compress=compress) if isinstance(temp, tuple): del self.data self.data = None if temp[0] == None: printError(temp[1]) else: printError("Couldn't parse the Error information.") return None else: from numpy import transpose, argsort if set([self.header.mapc, self.header.mapr, self.header.maps]) != set([1, 2, 3]): printError( "The MRC header contains no clear axis.(mapc, mapr and maps must cotain all 1,2,3.)") printError("Keep the data as it.") self.data = temp return None else: temporder = [ self.header.maps, self.header.mapr, self.header.mapc] self.data = transpose(temp, argsort(temporder)) del temp if self.header.transend: self.data.byteswap(True) else: printError("The file doesn't exists or is not a file.") return None else: printError("The filename must be provided.") return None def writeData(self, filename, skipupdate=False, force=False, **kwargs): """Write the MRC file into file. The header and data format will automaticly update. You could skip the update using `skipupdate` option. You could force it to overwrite files with `force` option.""" from ..IO.output import printInfo, printError from os.path import exists, isfile from numpy import transpose, array if filename: if exists(filename): if not isfile(filename): printError("The path is not a file.") return None else: if not force: back = raw_input( "* File {0} exists, do you want to overwrite it?(y/n)".format(filename)) while back.strip().lower() not in ['y', 'n']: back = raw_input( "* File {0} exists, do you want to overwrite it?(y/n)".format(filename)) if back.strip().lower() == 'n': printInfo("File not write.") return None else: printError("The filename must be provided.") return None if isinstance(self.data, type(None)): printError("No data to write.") return None find = False for i in xrange(10): if self.label[i].startswith("Written by mbio"): find = True from time import ctime from .. import __version__ self.label[i] = "Written by mbio {0} {1}".format( __version__, ctime()) self.label = self.label[:i] + \ self.label[i + 1:] + [self.label[i]] self.label = [j for j in self.label if j != ""] self.label = self.label + [""] * (10 - len(self.label)) break if not find: if self.nlabels != 10: from time import ctime from .. import __version__ self.label[self.nlabels] = "Written by mbio {0} {1}".format( __version__, ctime()) self.nlabels += 1 if not skipupdate: self.update() from .Cmrc import writeData if set([self.header.mapc, self.header.mapr, self.header.maps]) != set([1, 2, 3]): printError( "The MRC header contains no clear axis.(mapc, mapr and maps must cotain all 1,2,3.)") printError("Change it automaticly.") self.header.mapc, self.header.mapr, self.header.maps = 1, 2, 3 self.header.nxstart, self.header.nystart, self.header.nzstart = array( [self.header.nxstart, self.header.nystart, self.header.nzstart])[[self.header.mapc - 1, self.header.mapr - 1, self.header.maps - 1]] if kwargs.get('output', True): printInfo("Writing MRC to {0}".format(filename)) compress = 1 if filename.lower().endswith('.gz') else 0 temp = writeData(header=self.header, data=transpose( self.data, (self.header.maps - 1, self.header.mapr - 1, self.header.mapc - 1)), filename=filename, compress=compress) if isinstance(temp, tuple): if temp[0] == None: print temp printError(temp[1]) else: printError("Couldn't parse the Error information.") return None elif temp == 0: return None else: printError("Couldn't parse the Error information.") def update(self, **kwargs): """Update the MRC header information from the data array. Update the MRC data format based on the `header.mode` Include: nx, ny, nz, dmin, dmax, dmean, rms, nsymbt, nlabels and sort label nxstart, nystart, nzstart, xstart, ystart, zstart, map. Correct mapc, mapr and maps automaticly.""" from numpy import array, int8, int16, float32, uint8, uint16, argsort from ..IO.output import printError from platform import architecture if set([self.header.mapc, self.header.mapr, self.header.maps]) != set([1, 2, 3]): printError( "The MRC header contains no clear axis.(mapc, mapr and maps must cotain all 1,2,3.)") printError("Change it automaticly.") self.header.mapc, self.header.mapr, self.header.maps = 1, 2, 3 self.header.nx, self.header.ny, self.header.nz = array( self.data.shape)[[self.header.mapc - 1, self.header.mapr - 1, self.header.maps - 1]] if self.header.origin != [0., 0., 0.]: self.header.nxstart = self.header.nystart = self.header.nzstart = 0 self.header.xstart, self.header.ystart, self.header.zstart = array( self.header.origin)[argsort([self.header.mapc, self.header.mapr, self.header.maps])] elif self.header.nxstart != 0 or self.header.nystart != 0 or self.header.nzstart != 0: self.header.xstart, self.header.ystart, self.header.zstart = array( [self.header.nxstart * self.header.cella[0] / self.header.mx, self.header.nystart * self.header.cella[1] / self.header.my, self.header.nzstart * self.header.cella[2] / self.header.mz])[argsort([self.header.mapc, self.header.mapr, self.header.maps])] # self.header.nxstart, self.header.nystart, self.header.nzstart = array( # [self.header.nxstart, self.header.nystart, self.header.nzstart])[[self.header.mapc - 1, self.header.mapr - 1, self.header.maps - 1]] else: self.header.xstart, self.header.ystart, self.header.zstart = 0., 0., 0. self.header.dmin = self.data.min() self.header.dmax = self.data.max() self.header.dmean = self.data.mean() self.header.rms = (((self.data - self.data.mean()) ** 2).mean()) ** .5 # if architecture()[0].find('32')!=-1: # temp1=0. # temp2=0. # temp3=0. # for i in self.data: # for j in i: # for k in j: # temp1+=k**2 # temp2+=k # temp3+=1 # self.header.rms = (temp1/temp3-(temp2/temp3)**2)**.5 # else: # self.header.rms = (((self.data - self.data.mean())**2).mean())**.5 if self.header.symdata: self.header.nsymbt = 80 self.header.symdata = self.header.symdata[:80] else: self.header.nsymbt = 0 self.header.symdata = None self.header.nlabels = sum( [1 if i != "" else 0 for i in self.header.label]) self.header.label = [i[:80] for i in self.header.label if i != ""] self.header.label = self.header.label + \ [""] * (10 - len(self.header.label)) self.header.map = "MAP " if {0: int8, 1: int16, 2: float32, 5: uint8, 6: uint16}[self.header.mode] != self.data.dtype: self.data = array(self.data, dtype={0: int8, 1: int16, 2: float32, 5: uint8, 6: uint16}[self.header.mode]) def truncMatrix(self, index=[None, None, None, None, None, None], **kwargs): """Trunc the matrix by index. Related values will change accordingly. You need provide the start and end index(will be included) of x,y and z. Exapmle: MRC.truncMatrix([xstart, xend, ystart, yend, zstart, zend]) You could use *None* to indicate start from begin or to the end. """ from ..IO.output import printError, printInfo from numpy import array if len(index) != 6: printError("Must provide 6 indeces.") return None if index == [None] * 6: printInfo("Nothing changed.") return None xstart, xend, ystart, yend, zstart, zend = index if xstart == None: xstart = 0 if ystart == None: ystart = 0 if zstart == None: zstart = 0 if xend == None: xend = self.data.shape[0] + 1 else: xend += 1 if yend == None: yend = self.data.shape[1] + 1 else: yend += 1 if zend == None: zend = self.data.shape[2] + 1 else: zend += 1 if not 0 <= xstart <= self.data.shape[0]: printError("xstart is not in the range of x.") return None if not 0 <= xend <= self.data.shape[0]: printError("xend is not in the range of x.") return None if not xstart < xend: printError("xstart must less than xend.") return None if not 0 <= ystart <= self.data.shape[1]: printError("ystart is not in the range of y.") return None if not 0 <= yend <= self.data.shape[1]: printError("yend is not in the range of y.") return None if not ystart < yend: printError("ystart must less than yend.") return None if not 0 <= zstart <= self.data.shape[2]: printError("zstart is not in the range of z.") return None if not 0 <= zend <= self.data.shape[2]: printError("zend is not in the range of z.") return None if not zstart < zend: printError("zstart must less than zend.") return None self.data = self.data[xstart:xend, ystart:yend, zstart:zend] xstep, ystep, zstep = array( self.header.cella) * 1.0 / array([self.header.mx, self.header.my, self.header.mz]) self.header.xstart += xstart * xstep self.header.ystart += ystart * ystep self.header.zstart += zstart * zstep if self.header.origin == [0, 0, 0]: self.header.nxstart += xstart self.header.nystart += ystart self.header.nzstart += zstart else: self.header.nxstart = 0 self.header.nystart = 0 self.header.nzstart = 0 self.header.origin = list(array([self.header.xstart, self.header.ystart, self.header.zstart])[ [self.header.mapc - 1, self.header.mapr - 1, self.header.maps - 1]]) self.header.nx, self.header.ny, self.header.nz = array( self.data.shape)[[self.header.mapc - 1, self.header.mapr - 1, self.header.maps - 1]] # def getMatrixShape(self, **kwargs): # """Get the data shape from the header information. # Caution: it could be different with the data array.""" # if (isinstance(self.header.nx, int) and # isinstance(self.header.ny, int) and isinstance(self.header.nz, int)): # return (self.header.nx, self.header.ny, self.header.nz) # else: # from ..IO.output import printError # printError("There is no header information here.") # return None def getGridCoords(self, **kwargs): """Return the x, y and z coordinate for the whole grid.""" from numpy import array, arange, argsort xstep, ystep, zstep = array( self.header.cella) * 1.0 / array([self.header.mx, self.header.my, self.header.mz]) if self.header.origin == [0, 0, 0]: xcoor = (self.header.nxstart + arange(self.header.nx)) * xstep ycoor = (self.header.nystart + arange(self.header.ny)) * ystep zcoor = (self.header.nzstart + arange(self.header.nz)) * zstep coor = array([xcoor, ycoor, zcoor])[ argsort([self.header.mapc, self.header.mapr, self.header.maps])] return list(coor) else: xcoor = arange(self.header.nx) * xstep + self.header.origin[0] ycoor = arange(self.header.ny) * ystep + self.header.origin[1] zcoor = arange(self.header.nz) * zstep + self.header.origin[2] coor = array([xcoor, ycoor, zcoor])[ argsort([self.header.mapc, self.header.mapr, self.header.maps])] return list(coor) def getGridSteps(self, **kwargs): """Return the x, y and z coordinate steps.""" from numpy import array, arange, argsort step = array(array(self.header.cella) * 1.0 / array([self.header.mx, self.header.my, self.header.mz])) step = step[ argsort([self.header.mapc, self.header.mapr, self.header.maps])] return step def getArray(self, **kwargs): """Get the data from the MRC class""" return self.data def setMode(self, mode=2, **kwargs): """Set the data format for the data. The data will be change the format accordingly. Data type : 0 image : signed 8-bit bytes range -128 to 127 1 image : 16-bit halfwords 2 image : 32-bit reals 3 transform : complex 16-bit integers (not support now) 4 transform : complex 32-bit reals (not support now) 5 image : unsigned 8-bit range 0 to 255 6 image : unsigned 16-bit range 0 to 65535""" from numpy import array, int8, int16, float32, uint8, uint16 from ..IO.output import printError if mode not in xrange(7): printError("Mode must be 0,1,2,3,4,5,6.") elif mode in [3, 4]: printError("Sorry, the complex format is not supported now.") self.header.mode = mode if {0: int8, 1: int16, 2: float32, 5: uint8, 6: uint16}[self.header.mode] != self.data.dtype: self.data = array(self.data, dtype={0: int8, 1: int16, 2: float32, 5: uint8, 6: uint16}[self.header.mode]) def printInformation(self, **kwargs): """Print the information from the header.""" self.header.printInformation() def __del__(self): del self.data del self
44.602719
265
0.507739
29,403
0.9958
0
0
0
0
0
0
6,119
0.207234
c33c9ccdc0ba66d9833eb045f4eb9b0711984aa5
2,416
py
Python
links/management/commands/seed_data.py
darth-dodo/hackernews-backend
402497a47271a90402624ed2c34b46ac08638440
[ "MIT" ]
3
2020-04-20T09:15:39.000Z
2020-05-25T18:27:44.000Z
links/management/commands/seed_data.py
darth-dodo/hackernews-backend
402497a47271a90402624ed2c34b46ac08638440
[ "MIT" ]
null
null
null
links/management/commands/seed_data.py
darth-dodo/hackernews-backend
402497a47271a90402624ed2c34b46ac08638440
[ "MIT" ]
1
2022-01-29T06:05:15.000Z
2022-01-29T06:05:15.000Z
from random import randint from django.core.management.base import BaseCommand from django.db import transaction from faker import Faker from hn_users.models import HNUser, User from links.models import Link, Vote faker = Faker() class Command(BaseCommand): help = "Generate Links from a small user subset" def add_arguments(self, parser): parser.add_argument("no_of_users", type=int, nargs="?", default=4) parser.add_argument("no_of_links", type=int, nargs="?", default=20) @transaction.atomic() def handle(self, *args, **options): no_of_users = options.get("no_of_users") no_of_links = options.get("no_of_links") for user in range(no_of_users): user = self._create_user() hn_user = self._create_hn_user(django_user=user) for link in range(no_of_links): generated_link = self._create_link() generated_link.refresh_from_db() self.stdout.write( self.style.SUCCESS( f"Link {generated_link.url} generated with {generated_link.link_votes.count()} votes" ) ) def _create_link(self): all_users_count = HNUser.objects.count() number_of_users_who_voted = randint(1, all_users_count) # nosec randomly_ordered_users = HNUser.objects.all().order_by("?") # nosec random_users = randomly_ordered_users[:number_of_users_who_voted] hn_user = HNUser.objects.all().order_by("?").first() link = Link() link.posted_by = hn_user link.url = faker.url() link.description = faker.text() link.save() for random_user in random_users: vote = Vote() vote.link = link vote.user = random_user vote.save() return link def _create_user(self): simple_profile = faker.simple_profile() user = User() user.email = simple_profile["mail"] user.username = simple_profile["username"] user.first_name = simple_profile["name"].split(" ")[0] user.last_name = simple_profile["name"].split(" ")[-1] user.set_password(faker.password()) user.save() return user def _create_hn_user(self, django_user): hn_user = HNUser() hn_user.bio = faker.text() hn_user.django_user = django_user hn_user.save()
31.789474
105
0.624586
2,180
0.902318
0
0
640
0.264901
0
0
238
0.09851
c33fdea58a4606282019dc0ca418482457a10cef
3,010
py
Python
locations/spiders/cenex.py
mfjackson/alltheplaces
37c90b4041c80a574e6e4c2f886883e97df4b636
[ "MIT" ]
null
null
null
locations/spiders/cenex.py
mfjackson/alltheplaces
37c90b4041c80a574e6e4c2f886883e97df4b636
[ "MIT" ]
null
null
null
locations/spiders/cenex.py
mfjackson/alltheplaces
37c90b4041c80a574e6e4c2f886883e97df4b636
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import scrapy import json from locations.items import GeojsonPointItem class CenexSpider(scrapy.Spider): name = "cenex" item_attributes = {"brand": "Cenex", "brand_wikidata": "Q5011381"} allowed_domains = ["www.cenex.com"] def start_requests(self): yield scrapy.http.JsonRequest( "https://www.cenex.com/Common/Services/InteractiveMap.svc/GetLocations", method="POST", data={ "SearchRequest": { "Metadata": {"MapId": "", "Categories": []}, "Query": { "SearchLat": 0, "SearchLong": 0, "LocationTypes": [1, 16, 15], "Amenities": [], "Organizations": ["28e93e82-edfa-418e-90aa-7ded057a0c68"], "NELat": 90, "NELong": 180, "SWLat": -90, "SWLong": -180, }, }, "MapItemId": "40381d43-1c05-43e0-8477-78737b9974df", "AllOrganizationIds": [ "b4ed9d2c-cc3b-4ce0-b642-79d75eac11fa", "cb27078e-9b6a-4f4d-ac81-eb1d163a5ff6", "68be9e56-ff49-4724-baf0-90fc833fb459", "28e93e82-edfa-418e-90aa-7ded057a0c68", ], "ServiceUrl": "https://locatorservice.chsinc.ds/api/search", }, ) def parse(self, response): result = json.loads(response.body_as_unicode()) for store in result["SearchResponse"]["Locations"]: amenities = "|".join([a["Name"] for a in store["Amenities"]]) yield GeojsonPointItem( lon=store["Long"], lat=store["Lat"], ref=store["LocationId"], name=store["Name"], addr_full=" ".join([store["Address1"], store["Address2"]]).strip(), city=store["City"], state=store["State"], postcode=store["Zip"], country="US", phone=store["Phone"], website=store["WebsiteUrl"], opening_hours="24/7" if "24-Hour" in amenities else None, extras={ "amenity:fuel": True, "atm": "ATM" in amenities, "car_wash": "Car Wash" in amenities, "fuel:biodiesel": "Biodiesel" in amenities or None, "fuel:diesel": "Diesel" in amenities or None, "fuel:e85": "Flex Fuels" in amenities or None, "fuel:HGV_diesel": "Truck Stop" in amenities or None, "fuel:propane": "Propane" in amenities or None, "hgv": "Truck Stop" in amenities or None, "shop": "convenience" if "Convenience Store" in amenities else None, }, )
40.675676
88
0.469435
2,912
0.967442
2,737
0.909302
0
0
0
0
1,001
0.332558
c3402d0f4328c3cbff771ca36bde6cdd1c05dd43
6,794
py
Python
core/dbt/flags.py
tskleonard/dbt-core
c112050455e1f7b984c5c0d42a57a90a0d4d7053
[ "Apache-2.0" ]
null
null
null
core/dbt/flags.py
tskleonard/dbt-core
c112050455e1f7b984c5c0d42a57a90a0d4d7053
[ "Apache-2.0" ]
null
null
null
core/dbt/flags.py
tskleonard/dbt-core
c112050455e1f7b984c5c0d42a57a90a0d4d7053
[ "Apache-2.0" ]
null
null
null
import os import multiprocessing if os.name != "nt": # https://bugs.python.org/issue41567 import multiprocessing.popen_spawn_posix # type: ignore from pathlib import Path from typing import Optional # PROFILES_DIR must be set before the other flags # It also gets set in main.py and in set_from_args because the rpc server # doesn't go through exactly the same main arg processing. DEFAULT_PROFILES_DIR = os.path.join(os.path.expanduser("~"), ".dbt") PROFILES_DIR = os.path.expanduser(os.getenv("DBT_PROFILES_DIR", DEFAULT_PROFILES_DIR)) STRICT_MODE = False # Only here for backwards compatibility FULL_REFRESH = False # subcommand STORE_FAILURES = False # subcommand # Global CLI commands USE_EXPERIMENTAL_PARSER = None STATIC_PARSER = None WARN_ERROR = None WRITE_JSON = None PARTIAL_PARSE = None USE_COLORS = None DEBUG = None LOG_FORMAT = None VERSION_CHECK = None FAIL_FAST = None SEND_ANONYMOUS_USAGE_STATS = None PRINTER_WIDTH = 80 WHICH = None INDIRECT_SELECTION = None LOG_CACHE_EVENTS = None EVENT_BUFFER_SIZE = 100000 QUIET = None # Global CLI defaults. These flags are set from three places: # CLI args, environment variables, and user_config (profiles.yml). # Environment variables use the pattern 'DBT_{flag name}', like DBT_PROFILES_DIR flag_defaults = { "USE_EXPERIMENTAL_PARSER": False, "STATIC_PARSER": True, "WARN_ERROR": False, "WRITE_JSON": True, "PARTIAL_PARSE": True, "USE_COLORS": True, "PROFILES_DIR": DEFAULT_PROFILES_DIR, "DEBUG": False, "LOG_FORMAT": None, "VERSION_CHECK": True, "FAIL_FAST": False, "SEND_ANONYMOUS_USAGE_STATS": True, "PRINTER_WIDTH": 80, "INDIRECT_SELECTION": "eager", "LOG_CACHE_EVENTS": False, "EVENT_BUFFER_SIZE": 100000, "QUIET": False, } def env_set_truthy(key: str) -> Optional[str]: """Return the value if it was set to a "truthy" string value, or None otherwise. """ value = os.getenv(key) if not value or value.lower() in ("0", "false", "f"): return None return value def env_set_bool(env_value): if env_value in ("1", "t", "true", "y", "yes"): return True return False def env_set_path(key: str) -> Optional[Path]: value = os.getenv(key) if value is None: return value else: return Path(value) MACRO_DEBUGGING = env_set_truthy("DBT_MACRO_DEBUGGING") DEFER_MODE = env_set_truthy("DBT_DEFER_TO_STATE") ARTIFACT_STATE_PATH = env_set_path("DBT_ARTIFACT_STATE_PATH") ENABLE_LEGACY_LOGGER = env_set_truthy("DBT_ENABLE_LEGACY_LOGGER") def _get_context(): # TODO: change this back to use fork() on linux when we have made that safe return multiprocessing.get_context("spawn") # This is not a flag, it's a place to store the lock MP_CONTEXT = _get_context() def set_from_args(args, user_config): # N.B. Multiple `globals` are purely for line length. # Because `global` is a parser directive (as opposed to a language construct) # black insists in putting them all on one line global STRICT_MODE, FULL_REFRESH, WARN_ERROR, USE_EXPERIMENTAL_PARSER, STATIC_PARSER global WRITE_JSON, PARTIAL_PARSE, USE_COLORS, STORE_FAILURES, PROFILES_DIR, DEBUG, LOG_FORMAT global INDIRECT_SELECTION, VERSION_CHECK, FAIL_FAST, SEND_ANONYMOUS_USAGE_STATS global PRINTER_WIDTH, WHICH, LOG_CACHE_EVENTS, EVENT_BUFFER_SIZE, QUIET STRICT_MODE = False # backwards compatibility # cli args without user_config or env var option FULL_REFRESH = getattr(args, "full_refresh", FULL_REFRESH) STORE_FAILURES = getattr(args, "store_failures", STORE_FAILURES) WHICH = getattr(args, "which", WHICH) # global cli flags with env var and user_config alternatives USE_EXPERIMENTAL_PARSER = get_flag_value("USE_EXPERIMENTAL_PARSER", args, user_config) STATIC_PARSER = get_flag_value("STATIC_PARSER", args, user_config) WARN_ERROR = get_flag_value("WARN_ERROR", args, user_config) WRITE_JSON = get_flag_value("WRITE_JSON", args, user_config) PARTIAL_PARSE = get_flag_value("PARTIAL_PARSE", args, user_config) USE_COLORS = get_flag_value("USE_COLORS", args, user_config) PROFILES_DIR = get_flag_value("PROFILES_DIR", args, user_config) DEBUG = get_flag_value("DEBUG", args, user_config) LOG_FORMAT = get_flag_value("LOG_FORMAT", args, user_config) VERSION_CHECK = get_flag_value("VERSION_CHECK", args, user_config) FAIL_FAST = get_flag_value("FAIL_FAST", args, user_config) SEND_ANONYMOUS_USAGE_STATS = get_flag_value("SEND_ANONYMOUS_USAGE_STATS", args, user_config) PRINTER_WIDTH = get_flag_value("PRINTER_WIDTH", args, user_config) INDIRECT_SELECTION = get_flag_value("INDIRECT_SELECTION", args, user_config) LOG_CACHE_EVENTS = get_flag_value("LOG_CACHE_EVENTS", args, user_config) EVENT_BUFFER_SIZE = get_flag_value("EVENT_BUFFER_SIZE", args, user_config) QUIET = get_flag_value("QUIET", args, user_config) def get_flag_value(flag, args, user_config): lc_flag = flag.lower() flag_value = getattr(args, lc_flag, None) if flag_value is None: # Environment variables use pattern 'DBT_{flag name}' env_flag = f"DBT_{flag}" env_value = os.getenv(env_flag) if env_value is not None and env_value != "": env_value = env_value.lower() # non Boolean values if flag in [ "LOG_FORMAT", "PRINTER_WIDTH", "PROFILES_DIR", "INDIRECT_SELECTION", "EVENT_BUFFER_SIZE", ]: flag_value = env_value else: flag_value = env_set_bool(env_value) elif user_config is not None and getattr(user_config, lc_flag, None) is not None: flag_value = getattr(user_config, lc_flag) else: flag_value = flag_defaults[flag] if flag in ["PRINTER_WIDTH", "EVENT_BUFFER_SIZE"]: # must be ints flag_value = int(flag_value) if flag == "PROFILES_DIR": flag_value = os.path.abspath(flag_value) return flag_value def get_flag_dict(): return { "use_experimental_parser": USE_EXPERIMENTAL_PARSER, "static_parser": STATIC_PARSER, "warn_error": WARN_ERROR, "write_json": WRITE_JSON, "partial_parse": PARTIAL_PARSE, "use_colors": USE_COLORS, "profiles_dir": PROFILES_DIR, "debug": DEBUG, "log_format": LOG_FORMAT, "version_check": VERSION_CHECK, "fail_fast": FAIL_FAST, "send_anonymous_usage_stats": SEND_ANONYMOUS_USAGE_STATS, "printer_width": PRINTER_WIDTH, "indirect_selection": INDIRECT_SELECTION, "log_cache_events": LOG_CACHE_EVENTS, "event_buffer_size": EVENT_BUFFER_SIZE, "quiet": QUIET, }
35.94709
97
0.704592
0
0
0
0
0
0
0
0
2,258
0.332352
c341709c7b99e4263e43265985148f2594b1d447
2,223
py
Python
DataShine/DataShine.py
monk-after-90s/DataShine
e707d5a737ad1aca84a2646aa6d39fcfe430b58d
[ "MIT" ]
null
null
null
DataShine/DataShine.py
monk-after-90s/DataShine
e707d5a737ad1aca84a2646aa6d39fcfe430b58d
[ "MIT" ]
null
null
null
DataShine/DataShine.py
monk-after-90s/DataShine
e707d5a737ad1aca84a2646aa6d39fcfe430b58d
[ "MIT" ]
null
null
null
import asyncio import functools from copy import deepcopy from ensureTaskCanceled import ensureTaskCanceled def _no_closed(method): ''' Can not be run when closed. :return: ''' @functools.wraps(method) def wrapper(*args, **kwargs): self = args[0] if self._closed: raise RuntimeError(f'{repr(self)} is already closed.') return method(*args, **kwargs) return wrapper class DataShine: def __init__(self): self._unlocked = asyncio.Event() self._unlocked.set() self._period_change_event = asyncio.Event() self._data_container = None self._q = asyncio.Queue() self._q_hanler_task = asyncio.create_task(self._q_hanler()) self._closed = False async def close(self): ''' Close the DataShine instance. :return: ''' await ensureTaskCanceled(self._q_hanler_task) self._closed = True async def _q_hanler(self): while True: new_data = await self._q.get() self._q.task_done() self._data_container = new_data self._period_change_event.clear() self._period_change_event.set() self._period_change_event.clear() await asyncio.sleep(0) @_no_closed async def push_data(self, data): ''' Set the lamp to carry a data to be taken, and shine the data to notify monitors new data coming. :param data: :return: ''' self._q.put_nowait(data) @property def data(self): ''' Query the data last pushed. :return: ''' return self._data_container @_no_closed async def wait_data_shine(self): ''' Wait the shined data. If you wait too later, you will lose the chance to get the data. If you can not wait the data in time every time but have to handle all the data, you can cache data in a instance of asyncio.Queue. :return: ''' await self._period_change_event.wait() return deepcopy(self._data_container) if __name__ == '__main__': async def test(): pass asyncio.create_task(test())
24.977528
123
0.604139
1,689
0.759784
0
0
1,022
0.459739
1,185
0.533063
668
0.300495
c343356ef27f41702366f05b06f61bd4669c4a8d
13,886
py
Python
src/python/deepseq2.py
yotamfr/prot2vec
eaee36f9e3929054b1c324acd053a52d0e7be2bd
[ "MIT" ]
8
2017-10-01T14:34:25.000Z
2021-04-27T13:18:00.000Z
src/python/deepseq2.py
yotamfr/prot2vec
eaee36f9e3929054b1c324acd053a52d0e7be2bd
[ "MIT" ]
1
2020-01-23T17:17:18.000Z
2020-01-23T17:17:18.000Z
src/python/deepseq2.py
yotamfr/prot2vec
eaee36f9e3929054b1c324acd053a52d0e7be2bd
[ "MIT" ]
1
2018-05-04T04:54:32.000Z
2018-05-04T04:54:32.000Z
import os # os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # os.environ["CUDA_VISIBLE_DEVICES"] = "1" from src.python.baselines import * from pymongo import MongoClient from tqdm import tqdm import tensorflow as tf ### Keras from keras import optimizers from keras.models import Model from keras.layers import Input, Dense, Embedding, Activation from keras.layers import Conv2D, Conv1D from keras.layers import Dropout, BatchNormalization from keras.layers import MaxPooling1D, MaxPooling2D, GlobalMaxPooling1D, GlobalAveragePooling1D from keras.layers import Concatenate, Flatten, Reshape from keras.callbacks import Callback, EarlyStopping, ModelCheckpoint, LambdaCallback, LearningRateScheduler # from keras.losses import hinge, binary_crossentropy from keras import backend as K from sklearn.metrics import log_loss import math import argparse sess = tf.Session() K.set_session(sess) LR = 0.001 BATCH_SIZE = 32 LONG_EXPOSURE = True t0 = datetime(2014, 1, 1, 0, 0) t1 = datetime(2014, 9, 1, 0, 0) MAX_LENGTH = 2000 MIN_LENGTH = 30 def get_classes(db, onto, start=t0, end=t1): q1 = {'DB': 'UniProtKB', 'Evidence': {'$in': exp_codes}, 'Date': {"$lte": start}, 'Aspect': ASPECT} q2 = {'DB': 'UniProtKB', 'Evidence': {'$in': exp_codes}, 'Date': {"$gt": start, "$lte": end}, 'Aspect': ASPECT} def helper(q): seq2go, _ = GoAnnotationCollectionLoader( db.goa_uniprot.find(q), db.goa_uniprot.count(q), ASPECT).load() for i, (k, v) in enumerate(seq2go.items()): sys.stdout.write("\r{0:.0f}%".format(100.0 * i / len(seq2go))) seq2go[k] = onto.propagate(v) return reduce(lambda x, y: set(x) | set(y), seq2go.values(), set()) return onto.sort(helper(q1) | helper(q2)) def get_training_and_validation_streams(db, limit=None): q_train = {'DB': 'UniProtKB', 'Evidence': {'$in': exp_codes}, 'Date': {"$lte": t0}, 'Aspect': ASPECT} seq2go_trn, _ = GoAnnotationCollectionLoader(db.goa_uniprot.find(q_train), db.goa_uniprot.count(q_train), ASPECT).load() query = {"_id": {"$in": unique(list(seq2go_trn.keys())).tolist()}} count = limit if limit else db.uniprot.count(query) source = db.uniprot.find(query).batch_size(10) if limit: source = source.limit(limit) stream_trn = DataStream(source, count, seq2go_trn) q_valid = {'DB': 'UniProtKB', 'Evidence': {'$in': exp_codes}, 'Date': {"$gt": t0, "$lte": t1}, 'Aspect': ASPECT} seq2go_tst, _ = GoAnnotationCollectionLoader(db.goa_uniprot.find(q_valid), db.goa_uniprot.count(q_valid), ASPECT).load() query = {"_id": {"$in": unique(list(seq2go_tst.keys())).tolist()}} count = limit if limit else db.uniprot.count(query) source = db.uniprot.find(query).batch_size(10) if limit: source = source.limit(limit) stream_tst = DataStream(source, count, seq2go_tst) return stream_trn, stream_tst class DataStream(object): def __init__(self, source, count, seq2go): self._count = count self._source = source self._seq2go = seq2go def __iter__(self): count = self._count source = self._source seq2go = self._seq2go for k, seq in UniprotCollectionLoader(source, count): if not MIN_LENGTH <= len(seq) <= MAX_LENGTH: continue x = [AA.aa2index[aa] for aa in seq] yield k, x, seq2go[k] def __len__(self): return self._count def step_decay(epoch): initial_lrate = LR drop = 0.5 epochs_drop = 1.0 lrate = max(0.0001, initial_lrate * math.pow(drop, math.floor((1 + epoch) / epochs_drop))) return lrate def OriginalIception(inpt, num_channels=64): # tower_0 = Conv1D(num_channels, 1, padding='same', activation='relu')(inpt) tower_1 = Conv1D(num_channels, 1, padding='same', activation='relu')(inpt) tower_1 = Conv1D(num_channels, 3, padding='same', activation='relu')(tower_1) tower_2 = Conv1D(num_channels, 1, padding='same', activation='relu')(inpt) tower_2 = Conv1D(num_channels, 5, padding='same', activation='relu')(tower_2) # tower_3 = MaxPooling1D(3, padding='same')(inpt) # tower_3 = Conv1D(num_channels, 1, padding='same')(tower_3) return Concatenate(axis=2)([tower_1, tower_2,]) def LargeInception(inpt, num_channels=64): tower_1 = Conv1D(num_channels, 6, padding='same', activation='relu')(inpt) tower_1 = BatchNormalization()(tower_1) tower_1 = Conv1D(num_channels, 6, padding='same', activation='relu')(tower_1) tower_2 = Conv1D(num_channels, 10, padding='same', activation='relu')(inpt) tower_2 = BatchNormalization()(tower_2) tower_2 = Conv1D(num_channels, 10, padding='same', activation='relu')(tower_2) return Concatenate(axis=2)([tower_1, tower_2]) def SmallInception(inpt, num_channels=150): tower_1 = Conv1D(num_channels, 1, padding='same', activation='relu')(inpt) tower_1 = Conv1D(num_channels, 5, padding='same', activation='relu')(tower_1) # tower_1 = BatchNormalization()(tower_1) tower_2 = Conv1D(num_channels, 1, padding='same', activation='relu')(inpt) tower_2 = Conv1D(num_channels, 15, padding='same', activation='relu')(tower_2) # tower_2 = BatchNormalization()(tower_2) return Concatenate(axis=2)([tower_1, tower_2]) def Classifier(inp1d, classes): out = Dense(len(classes))(inp1d) out = BatchNormalization()(out) out = Activation('sigmoid')(out) return out def MotifNet(classes, opt): inpt = Input(shape=(None,)) out = Embedding(input_dim=26, output_dim=23, embeddings_initializer='uniform')(inpt) out = Conv1D(250, 15, activation='relu', padding='valid')(out) out = Dropout(0.2)(out) out = Conv1D(100, 15, activation='relu', padding='valid')(out) out = SmallInception(out) out = Dropout(0.2)(out) out = SmallInception(out) out = Dropout(0.2)(out) out = Conv1D(250, 5, activation='relu', padding='valid')(out) out = Dropout(0.2)(out) out = Classifier(GlobalMaxPooling1D()(out), classes) model = Model(inputs=[inpt], outputs=[out]) model.compile(loss='binary_crossentropy', optimizer=opt) return model def Inception(inpt, tower1=6, tower2=10): tower_1 = Conv1D(64, 1, padding='same', activation='relu')(inpt) tower_1 = Conv1D(64, tower1, padding='same', activation='relu')(tower_1) tower_2 = Conv1D(64, 1, padding='same', activation='relu')(inpt) tower_2 = Conv1D(64, tower2, padding='same', activation='relu')(tower_2) # tower_3 = MaxPooling1D(3, strides=1, padding='same')(inpt) # tower_3 = Conv1D(64, 1, padding='same', activation='relu')(tower_3) return Concatenate(axis=2)([tower_1, tower_2]) def ProteinInception(classes, opt): inpt = Input(shape=(None,)) img = Embedding(input_dim=26, output_dim=23, embeddings_initializer='uniform')(inpt) feats = Inception(Inception(img)) out = Classifier(GlobalMaxPooling1D()(feats), classes) model = Model(inputs=[inpt], outputs=[out]) model.compile(loss='binary_crossentropy', optimizer=opt) return model def Features(inpt): feats = Embedding(input_dim=26, output_dim=23, embeddings_initializer='uniform')(inpt) feats = Conv1D(250, 15, activation='relu', padding='valid')(feats) feats = Dropout(0.3)(feats) feats = Conv1D(100, 15, activation='relu', padding='valid')(feats) feats = Dropout(0.3)(feats) feats = Conv1D(100, 15, activation='relu', padding='valid')(feats) feats = Dropout(0.3)(feats) feats = Conv1D(250, 15, activation='relu', padding='valid')(feats) feats = Dropout(0.3)(feats) feats = GlobalMaxPooling1D()(feats) return feats def DeeperSeq(classes, opt): inp = Input(shape=(None,)) out = Classifier(Features(inp), classes) model = Model(inputs=[inp], outputs=[out]) model.compile(loss='binary_crossentropy', optimizer=opt) return model def batch_generator(stream, onto, classes): s_cls = set(classes) data = dict() def labels2vec(lbl): y = np.zeros(len(classes)) for go in onto.propagate(lbl, include_root=False): if go not in s_cls: continue y[classes.index(go)] = 1 return y def pad_seq(seq, max_length=MAX_LENGTH): delta = max_length - len(seq) left = [PAD for _ in range(delta // 2)] right = [PAD for _ in range(delta - delta // 2)] seq = left + seq + right return np.asarray(seq) def prepare_batch(sequences, labels): b = max(map(len, sequences)) + 100 Y = np.asarray([labels2vec(lbl) for lbl in labels]) X = np.asarray([pad_seq(seq, b) for seq in sequences]) return X, Y for k, x, y in stream: lx = len(x) if lx in data: data[lx].append([k, x, y]) ids, seqs, lbls = zip(*data[lx]) if len(seqs) == BATCH_SIZE: yield ids, prepare_batch(seqs, lbls) del data[lx] else: data[lx] = [[k, x, y]] for packet in data.values(): ids, seqs, lbls = zip(*packet) yield ids, prepare_batch(seqs, lbls) class LossHistory(Callback): def __init__(self): self.losses = [] def on_batch_end(self, batch, logs={}): self.losses.append(logs.get('loss')) def train(model, gen_xy, length_xy, epoch, num_epochs, history=LossHistory(), lrate=LearningRateScheduler(step_decay)): pbar = tqdm(total=length_xy) for _, (X, Y) in gen_xy: model.fit(x=X, y=Y, batch_size=BATCH_SIZE, epochs=num_epochs if LONG_EXPOSURE else epoch + 1, verbose=0, validation_data=None, initial_epoch=epoch, callbacks=[history]) pbar.set_description("Training Loss:%.5f" % np.mean(history.losses)) pbar.update(len(Y)) pbar.close() def zeroone2oneminusone(vec): return np.add(np.multiply(np.array(vec), 2), -1) def oneminusone2zeroone(vec): return np.divide(np.add(np.array(vec), 1), 2) def calc_loss(y_true, y_pred): return np.mean([log_loss(y, y_hat) for y, y_hat in zip(y_true, y_pred) if np.any(y)]) def predict(model, gen_xy, length_xy, classes): pbar = tqdm(total=length_xy, desc="Predicting...") i, m, n = 0, length_xy, len(classes) ids = list() y_pred, y_true = np.zeros((m, n)), np.zeros((m, n)) for i, (keys, (X, Y)) in enumerate(gen_xy): k = len(Y) ids.extend(keys) y_hat, y = model.predict(X), Y y_pred[i:i + k, ], y_true[i:i + k, ] = y_hat, y pbar.update(k) pbar.close() return ids, y_true, y_pred def evaluate(y_true, y_pred, classes): y_pred = y_pred[~np.all(y_pred == 0, axis=1)] y_true = y_true[~np.all(y_true == 0, axis=1)] prs, rcs, f1s = performance(y_pred, y_true, classes) return calc_loss(y_true, y_pred), prs, rcs, f1s def add_arguments(parser): parser.add_argument("--mongo_url", type=str, default='mongodb://localhost:27017/', help="Supply the URL of MongoDB"), parser.add_argument("--aspect", type=str, choices=['F', 'P', 'C'], default="F", help="Specify the ontology aspect.") parser.add_argument("--init_epoch", type=int, default=0, help="Which epoch to start training the model?") parser.add_argument("--arch", type=str, choices=['deepseq', 'motifnet', 'inception'], default="deepseq", help="Specify the model arch.") parser.add_argument('-r', '--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') if __name__ == "__main__": parser = argparse.ArgumentParser() add_arguments(parser) args = parser.parse_args() ASPECT = args.aspect # default: Molecular Function client = MongoClient(args.mongo_url) db = client['prot2vec'] print("Loading Ontology...") onto = get_ontology(ASPECT) # classes = get_classes(db, onto) classes = onto.classes classes.remove(onto.root) assert onto.root not in classes opt = optimizers.Adam(lr=LR, beta_1=0.9, beta_2=0.999, epsilon=1e-8) if args.arch == 'inception': model = ProteinInception(classes, opt) LONG_EXPOSURE = False num_epochs = 200 elif args.arch == 'deepseq': model = DeeperSeq(classes, opt) LONG_EXPOSURE = True num_epochs = 20 elif args.arch == 'motifnet': model = MotifNet(classes, opt) LONG_EXPOSURE = False num_epochs = 200 else: print('Unknown model arch') exit(0) if args.resume: model.load_weights(args.resume) print("Loaded model from disk") model.summary() for epoch in range(args.init_epoch, num_epochs): trn_stream, tst_stream = get_training_and_validation_streams(db) train(model, batch_generator(trn_stream, onto, classes), len(trn_stream), epoch, num_epochs) _, y_true, y_pred = predict(model, batch_generator(tst_stream, onto, classes), len(tst_stream), classes) loss, prs, rcs, f1s = evaluate(y_true, y_pred, classes) i = np.argmax(f1s) f_max = f1s[i] print("[Epoch %d/%d] (Validation Loss: %.5f, F_max: %.3f, precision: %.3f, recall: %.3f)" % (epoch + 1, num_epochs, loss, f1s[i], prs[i], rcs[i])) model_str = '%s-%d-%.5f-%.2f' % (args.arch, epoch + 1, loss, f_max) model.save_weights("checkpoints/%s.hdf5" % model_str) with open("checkpoints/%s.json" % model_str, "w+") as f: f.write(model.to_json()) np.save("checkpoints/%s.npy" % model_str, np.asarray(classes))
32.983373
124
0.631931
722
0.051995
1,581
0.113856
0
0
0
0
1,869
0.134596
c343f679c520b2ae7bc168a588760750faee9e80
5,977
py
Python
inbima.py
SkoltechAI/inbima
4c22a864208091e3fb41ea7703c463c4189e78d1
[ "MIT" ]
null
null
null
inbima.py
SkoltechAI/inbima
4c22a864208091e3fb41ea7703c463c4189e78d1
[ "MIT" ]
null
null
null
inbima.py
SkoltechAI/inbima
4c22a864208091e3fb41ea7703c463c4189e78d1
[ "MIT" ]
null
null
null
import matplotlib.pyplot as plt import openpyxl import sys from fs import FS from journals import Journals from utils import load_sheet from utils import log from word import Word YEARS = [2017, 2018, 2019, 2020, 2021] class InBiMa(): def __init__(self, is_new_folder=False): self.fs = FS(is_new_folder) if is_new_folder: return self.wb = openpyxl.load_workbook(self.fs.get_path('cait.xlsx')) log('Excel file is opened', 'res') self.team = load_sheet(self.wb['team']) self.grants = load_sheet(self.wb['grants']) self.papers = load_sheet(self.wb['papers']) self.journals = Journals(load_sheet(self.wb['journals'])) # self.journals_ref = self.load_journals_ref() self.task = { 'authors': ['#cichocki'], 'grants': ['#megagrant1'], } log('Excel file is parsed', 'res') # log('Journal info is loaded', 'res') for uid in self.team.keys(): self.task['authors'] = [uid] self.export_word_cv() self.export_grant_papers() self.export_stat() def export_word_cv(self): if len(self.task.get('authors', [])) != 1: text = 'export_word_cv (task should contain only one author)' log(text, 'err') return person = self.team.get(self.task['authors'][0]) if person is None: text = 'export_word_cv (invalid team member uid in task)' log(text, 'err') return uid = person['id'] stat = self.get_papers_stat(uid, YEARS) photo_logo = self.fs.download_photo_logo() photo_person = self.fs.download_photo(uid[1:], person.get('photo')) self.word = Word(YEARS, self.get_papers) self.word.add_person_info(person, photo_person, photo_logo) self.word.add_person_stat(stat) self.word.add_note(is_grant=True) self.word.add_break() self.word.add_paper_list(stat, author=person['id']) fname = 'CAIT_' + person['surname'] + '_' + person['name'] + '.docx' fpath = self.fs.get_path(fname) self.word.save(fpath) log(f'Document "{fpath}" is saved', 'res') def export_grant_papers(self): if len(self.task.get('grants', [])) != 1: text = 'export_grant_papers (task should contain only one grant)' log(text, 'err') return grant = self.grants.get(self.task['grants'][0]) if grant is None: text = 'export_grant_papers (invalid grant uid in task)' log(text, 'err') return uid = grant['id'] stat = self.get_papers_stat(years=YEARS, grant=uid) photo_logo = self.fs.download_photo_logo() head = grant.get('head', '') head = self.team[head] self.word = Word(YEARS, self.get_papers) self.word.add_grant_info(grant, head, photo_logo) self.word.add_note(is_grant=True) self.word.add_break() self.word.add_paper_list(stat, grant=uid, with_links=True) fname = 'CAIT_' + uid[1:] + '.docx' fpath = self.fs.get_path(fname) self.word.save(fpath) log(f'Document "{fpath}" is saved', 'res') def export_stat(self): stats = {} for uid in self.team.keys(): if self.team[uid].get('active') != 'Yes': continue if self.team[uid].get('lead') != 'Yes': continue stats[uid] = self.get_papers_stat(uid, YEARS) for uid, stat in stats.items(): x = YEARS y = [stat[y]['total'] for y in YEARS] plt.plot(x, y, marker='o', label=uid) plt.legend(loc='best') fpath = self.fs.get_path('plot.png') plt.savefig(fpath) log(f'Figure "{fpath}" is saved', 'res') def get_papers(self, author=None, year=None, q=None, grant=None): res = {} for title, paper in self.papers.items(): if year and int(year) != int(paper['year']): continue if author and not author in paper['authors_parsed']: continue if grant and not grant in paper.get('grant', ''): continue if q is not None: journal = self.journals.data[paper['journal']] q1 = journal.get('sjr_q1', '') q2 = journal.get('sjr_q2', '') if q == 1 and len(q1) < 2: continue if q == 2 and (len(q1) >= 2 or len(q2) < 2): continue if q == 0 and (len(q1) >= 2 or len(q2) >= 2): continue res[title] = paper res[title]['journal_object'] = self.journals.data[paper['journal']] return res def get_papers_stat(self, author=None, years=[], grant=None): res = {} for year in years: res[year] = { 'q1': len(self.get_papers(author, year, q=1, grant=grant)), 'q2': len(self.get_papers(author, year, q=2, grant=grant)), 'q0': len(self.get_papers(author, year, q=0, grant=grant)), 'total': len(self.get_papers(author, year, grant=grant)) } res['total'] = { 'q1': sum(res[year]['q1'] for year in years), 'q2': sum(res[year]['q2'] for year in years), 'q0': sum(res[year]['q0'] for year in years), 'total': sum(res[year]['total'] for year in years), } return res if __name__ == '__main__': args = sys.argv[1:] if len(args) == 0: ibm = InBiMa() elif len(args) == 1 and args[0] == '-f': ibm = InBiMa(is_new_folder=True) elif len(args) == 2 and args[0] == '-j': journals = Journals() journals.load_ref() journals.log_ref(title=args[1]) else: raise ValueError('Invalid arguments for script')
32.840659
79
0.543918
5,356
0.896102
0
0
0
0
0
0
919
0.153756
c3462530e3c62749cd08fd4db0ee3cc3926324bb
2,183
py
Python
UkDatabaseAPI/UkDatabaseAPI/database/mongo_db.py
kplachkov/UkDatabase
51db3183a86d3b07e0f97cc685f6f47ad4a8fc2e
[ "Apache-2.0" ]
null
null
null
UkDatabaseAPI/UkDatabaseAPI/database/mongo_db.py
kplachkov/UkDatabase
51db3183a86d3b07e0f97cc685f6f47ad4a8fc2e
[ "Apache-2.0" ]
3
2018-04-02T20:32:51.000Z
2019-02-09T16:19:39.000Z
UkDatabaseAPI/UkDatabaseAPI/database/mongo_db.py
kplachkov/UkDatabase
51db3183a86d3b07e0f97cc685f6f47ad4a8fc2e
[ "Apache-2.0" ]
null
null
null
import pymongo from bson.json_util import dumps from pymongo import MongoClient from UkDatabaseAPI.database.database import Database from UkDatabaseAPI.database.query_builder.mongo_query_builder import MongoQueryBuilder MONGO_URI = "mongodb://localhost:27017" """str: The MongoDB URI.""" class MongoDB(Database): def __init__(self): """Client for a MongoDB instance.""" # Opening db connection. self.__client = MongoClient(MONGO_URI) self.__db = self.__client.UkDatabase def __del__(self): """Close the connection.""" self.close_connection() def crate_collection_text_index(self): """Create a text index for the collection.""" self.__db.posts.create_index([('TEXT', pymongo.TEXT)], name='text', default_language='english') def close_connection(self): """Close the connection.""" self.__client.close() def find_posts(self, text: str, post_pub_date: str, number_of_results: int) -> str: """Find posts containing text or/and within a time range. Args: text: The text search criterion, from the URL argument. post_pub_date: The date or time range search criterion, from the URL argument. number_of_results: The number of results to return, from the URL argument. Returns: The posts containing the text or/and within a time range. """ queries = {} if text: queries.update(MongoQueryBuilder .get_query_for_search_by_text(text)) if post_pub_date: queries.update(MongoQueryBuilder .get_query_for_search_by_post_date(post_pub_date)) result = self.__db.posts.find({"$and": [queries]}, {"score": {"$meta": "textScore"}}) if number_of_results: # If int argument provided by the URL, the results are limited and sorted. result = result.sort([("score", {"$meta": "textScore"})]).limit(number_of_results) else: # Return all matched results sorted. result = result.sort([("score", {"$meta": "textScore"})]) return dumps(result)
38.982143
103
0.639945
1,890
0.865781
0
0
0
0
0
0
841
0.38525
c34648b7e6fe0e43164dec6e0c0022e1e1efabdd
1,485
py
Python
fb/forms.py
pure-python/brainmate
79c83e707a4811dd881832d22f17c29f33c4d7f2
[ "Apache-2.0" ]
null
null
null
fb/forms.py
pure-python/brainmate
79c83e707a4811dd881832d22f17c29f33c4d7f2
[ "Apache-2.0" ]
1
2016-04-14T14:42:52.000Z
2016-04-14T14:42:52.000Z
fb/forms.py
pure-python/brainmate
79c83e707a4811dd881832d22f17c29f33c4d7f2
[ "Apache-2.0" ]
null
null
null
from django.forms import ( Form, CharField, Textarea, PasswordInput, ChoiceField, DateField, ImageField, BooleanField, IntegerField, MultipleChoiceField ) from django import forms from fb.models import UserProfile class UserPostForm(Form): text = CharField(widget=Textarea( attrs={'rows': 1, 'cols': 40, 'class': 'form-control','placeholder': "What's on your mind?"})) class UserPostCommentForm(Form): text = CharField(widget=Textarea( attrs={'rows': 1, 'cols': 50, 'class': 'form-control','placeholder': "Write a comment..."})) class UserLogin(Form): username = CharField(max_length=30) password = CharField(widget=PasswordInput) class UserProfileForm(Form): first_name = CharField(max_length=100, required=False) last_name = CharField(max_length=100, required=False) gender = ChoiceField(choices=UserProfile.GENDERS, required=False) date_of_birth = DateField(required=False) avatar = ImageField(required=False) OPTIONS = ( ("Cars", "Cars"), ("Dogs", "Dogs"), ("Sports", "Sports"), ) interests = MultipleChoiceField(widget=forms.CheckboxSelectMultiple, choices=OPTIONS, required=False) class QuestionFrom(Form): question_description = CharField(max_length=300) points = IntegerField() class AddAnswerForm(Form): answer_description = CharField(max_length=30) correct_answer = BooleanField(required=False)
31.595745
102
0.682828
1,246
0.839057
0
0
0
0
0
0
174
0.117172
c346562511e160197f5f2be08e436cdf509a8cc0
28,863
py
Python
Galaxy_Invander/user23_fTVPDKIDhRdCfUp.py
triump0870/Interactive_Programming_Python
97e0f1f5639aecac683053ed742632db14dc6954
[ "Apache-2.0" ]
1
2015-06-09T22:40:15.000Z
2015-06-09T22:40:15.000Z
Galaxy_Invander/user23_fTVPDKIDhRdCfUp.py
triump0870/Interactive_Programming_Python
97e0f1f5639aecac683053ed742632db14dc6954
[ "Apache-2.0" ]
null
null
null
Galaxy_Invander/user23_fTVPDKIDhRdCfUp.py
triump0870/Interactive_Programming_Python
97e0f1f5639aecac683053ed742632db14dc6954
[ "Apache-2.0" ]
null
null
null
# Simple implementation of GalaxyInvanders game # Rohan Roy (India) - 3 Nov 2013 # www.codeskulptor.org/#user23_fTVPDKIDhRdCfUp VER = "1.0" # "add various aliens" import simplegui, math, random, time #Global const FIELD_WIDTH = 850 FIELD_HEIGHT = 500 TOP_MARGIN = 75 LEFT_MARGIN = 25 ALIEN_WIDTH = 48 ALIEN_HEIGHT = 55 PLAYER_SPEED = 10 BULLET_SPEED = 10 BULLET_POWER = 1 BONUS_SPEED = 10 ALIEN_SPEED = [3, 5] # Images: pImage = simplegui.load_image('https://dl.dropbox.com/s/zhnjucatewcmfs4/player.png') aImages = [] for i in range(7): aImages.append([]) aImages[0].append(simplegui.load_image('https://dl.dropbox.com/s/0cck7w6r0mt8pzz/alien_1_1.png')) aImages[0].append(simplegui.load_image('https://dl.dropbox.com/s/j0kubnhzajbdngu/alien_1_2.png')) aImages[0].append(simplegui.load_image('https://dl.dropbox.com/s/zkeu6hqh9bakj25/alien_1_3.png')) aImages[1].append(simplegui.load_image('https://dl.dropbox.com/s/e75mkcylat70lnd/alien_2_1.png')) aImages[1].append(simplegui.load_image('https://dl.dropbox.com/s/pgjvaxg0z6rhco9/alien_2_2.png')) aImages[1].append(simplegui.load_image('https://dl.dropbox.com/s/en0hycfsi3cuzuo/alien_2_3.png')) aImages[2].append(simplegui.load_image('https://dl.dropbox.com/s/fu9weoll70acs8f/alien_3_1.png')) aImages[2].append(simplegui.load_image('https://dl.dropbox.com/s/b2rxru2nt5q2r1u/alien_3_2.png')) aImages[2].append(simplegui.load_image('https://dl.dropbox.com/s/x66vgj9fc2jlg53/alien_3_3.png')) aImages[3].append(simplegui.load_image('https://dl.dropbox.com/s/7o04ljg52kniyac/alien_4_1.png')) aImages[3].append(simplegui.load_image('https://dl.dropbox.com/s/b3v6tvami0rvl6r/alien_4_2.png')) aImages[3].append(simplegui.load_image('https://dl.dropbox.com/s/j451arcevsag36h/alien_4_3.png')) aImages[4].append(simplegui.load_image('https://dl.dropbox.com/s/jlhdigkm79nncnm/alien_5_1.png')) aImages[4].append(simplegui.load_image('https://dl.dropbox.com/s/wvlvjsa8yl6gka3/alien_5_2.png')) aImages[4].append(simplegui.load_image('https://dl.dropbox.com/s/rrg4y1tnsbrh04r/alien_5_3.png')) aImages[5].append(simplegui.load_image('https://dl.dropbox.com/s/oufyfy590tzf7cx/alien_6_1.png')) aImages[5].append(simplegui.load_image('https://dl.dropbox.com/s/p4ehd9f6mo2xfzc/alien_6_2.png')) aImages[5].append(simplegui.load_image('https://dl.dropbox.com/s/815gq3xyh6wmc0t/alien_6_3.png')) aImages[6].append(simplegui.load_image('https://dl.dropbox.com/s/bv4ycocuomsvj50/alien_7_1.png')) aImages[6].append(simplegui.load_image('https://dl.dropbox.com/s/krs2gtvdxxve79z/alien_7_2.png')) aImages[6].append(simplegui.load_image('https://dl.dropbox.com/s/v2wczi8lxwczq87/alien_7_3.png')) #backgrounds bckg = [] bckg.append(simplegui.load_image("https://dl.dropbox.com/s/ibfu2t9vrh4bhxd/back01.jpg")) bckg.append(simplegui.load_image("https://dl.dropbox.com/s/pcl8vzby25ovis8/back02.jpg")) bckg.append(simplegui.load_image("https://dl.dropbox.com/s/g8nwo1t9s4i9usg/back03.jpg")) bckg.append(simplegui.load_image("https://dl.dropbox.com/s/ee8oilluf7pe98h/back04.jpg")) bckg.append(simplegui.load_image("https://dl.dropbox.com/s/7jfgjoxinzwwlx4/back05.jpg")) bckg.append(simplegui.load_image("https://dl.dropbox.com/s/wh01g2q3607snvz/back06.jpg")) bckg.append(simplegui.load_image("https://dl.dropbox.com/s/b72ltp2xii9utnr/back07.jpg")) bckg.append(simplegui.load_image("https://dl.dropbox.com/s/av73jek8egezs1w/back08.jpg")) bckg.append(simplegui.load_image("https://dl.dropbox.com/s/ik54ttfklv3x3ai/back09.jpg")) bckg.append(simplegui.load_image("https://dl.dropbox.com/s/e9e6kpyg3yuoenc/back10.jpg")) bckg.append(simplegui.load_image("https://dl.dropbox.com/s/zrabwnnvlwvn7it/back11.jpg")) bckg.append(simplegui.load_image("https://dl.dropbox.com/s/a2infkx0rmn8b8m/back12.jpg")) # sounds sndPlayer = simplegui.load_sound('https://dl.dropbox.com/s/vl3as0o2m2wvlwu/player_shoot.wav') sndAlien = simplegui.load_sound('https://dl.dropbox.com/s/m4x0tldpze29hcr/alien_shoot.wav') sndPlayerExplosion = simplegui.load_sound('https://dl.dropbox.com/s/10fn2wh7kk7uoxh/explosion%2001.wav') sndAlienHit = simplegui.load_sound('https://dl.dropbox.com/s/80qdvup27n8j6r1/alien_hit.wav') sndAlienExplosion = simplegui.load_sound('https://dl.dropbox.com/s/qxm3je9vdlb469g/explosion_02.wav') sndBonus = simplegui.load_sound('https://dl.dropbox.com/s/tzp7e20e5v19l01/bonus.wav') sndPause = simplegui.load_sound('https://dl.dropbox.com/s/uzs9nixpd22asno/pause.wav') sndTheme = simplegui.load_sound('https://dl.dropbox.com/s/52zo892uemfkuzm/theme_01.mp3') sounds = [sndPlayer, sndAlien, sndPlayerExplosion, sndAlienExplosion, \ sndBonus, sndPause, sndTheme, sndAlienHit] #Global variables GameRunning = False GameEnded = False player_speed = 0 mes = "" timer_counter = 0 lives = 0 level = 1 scores = 0 killed = 0 current_back = 0 paused = False shoot_count = 0 level_time = [] ready, go = False, False #player = [FIELD_WIDTH //2, FIELD_HEIGHT - 30 + TOP_MARGIN] #game objects user_bullet = [] weapon_level = 1 weapon_speed = BULLET_SPEED alien_bullets = [] alien_fleet = None player = None frame = None aTimer = None dTimer = None bonuses = [] dCounter = 0 back = False bonus_count = [0, 0, 0, 0] player_killed = False player_killed_at = 0 level_map = [] for i in range(7): level_map.append([]) level_map[0] = [ 0, 0, 0, 0] level_map[1] = [129, 0, 0, 0] level_map[2] = [195, 129, 0, 0] level_map[3] = [255, 195, 60, 0] level_map[4] = [255, 231, 195, 195] level_map[5] = [255, 255, 231, 195] level_map[6] = [255, 255, 255, 231] def draw_text(canvas, text, point, size, delta, color): canvas.draw_text(text, point, size, color[0]) canvas.draw_text(text, [point[0]-delta[0], \ point[1]-delta[1]], size, color[1]) class Bonus: def __init__ (self, kind, point): self.kind = kind self.x = point[0] self.y = point[1] self.v = BONUS_SPEED #velocity self.width = 36 self.height = 36 return self def move(self): self.y += self.v return self def draw(self, canvas): if self.kind == 0: #speed of bullet canvas.draw_circle([self.x, self.y], 15, 3, "LightBlue") canvas.draw_text("WS", [self.x-12, self.y+5], self.width //2, "LightBlue") elif self.kind == 1: #weapon level canvas.draw_circle([self.x, self.y], 15, 3, "Red") canvas.draw_text("WL", [self.x-12, self.y+5], self.width //2, "Red") elif self.kind == 2: #life canvas.draw_circle([self.x, self.y], 15, 3, "LightGreen") canvas.draw_text("LF", [self.x-12, self.y+5], self.width //2, "LightGreen") elif self.kind == 3: #weapon power canvas.draw_circle([self.x, self.y], 15, 3, "8010df") canvas.draw_text("WP", [self.x-12, self.y+5], self.width //2, "8010df") return self def execute(self): global weapon_speed, weapon_level, player, scores, bonus_count bonus_count[self.kind] += 1 if self.kind == 0: #speed of bullet weapon_speed += 1 delta = round(math.pow(20, (1 + (1.0*level-1)/32))*5) scores = scores + delta elif self.kind == 1: #weapon level weapon_level += 1 delta = round(math.pow(30, (1 + (1.0*level-1)/32))*5) scores = scores + delta elif self.kind == 2: #life player.lives += 1 delta = round(math.pow(100, (1 + (1.0*level-1)/32))*5) scores = scores + delta elif self.kind == 3: #weapon power player.power += 0.1 delta = round(math.pow(100, (1 + (1.0*level-1)/32))*5) scores = scores + delta sndBonus.play() return self def dHandler(): global dCounter, back, player_killed dCounter += 1 if dCounter % 10 == 0: if back: frame.set_canvas_background("Red") else: frame.set_canvas_background("black") back = not back; if dCounter > 50: dCounter = 0 player_killed = False dTimer.stop() frame.set_canvas_background("black") class Bullet: def __init__ (self, point, color, velocity): self.x = point[0] self.y = point[1] self.color = color self.v = velocity self.width = 1 self.height = 1 def draw(self, canvas): canvas.draw_line([self.x, self.y-5], [self.x, self.y+5], 3, self.color) def move(self): self.y += self.v class Alien: def __init__(self, point, kind): self.x = point[0] self.y = point[1] self.kind = kind self.flying = False self.vy = 0 self.vx = 0 self.health = self.get_max_health() self.width = 20 self.height = 20 def get_max_health(self): return 1+0.6 * self.kind[1] def shoot(self): if len(alien_bullets)<level*2: bullet = Bullet([self.x, self.y], "LightRed", BULLET_SPEED) alien_bullets.append(bullet) sndAlien.play() def move(self, point): if self.flying: koef = 1.5 self.y += (self.vy / koef) if self.x>player.x: self.x -= (self.vx / koef) else: self.x += (self.vx / koef) if self.vx<ALIEN_SPEED[0]: self.vx += 1 if self.vy<ALIEN_SPEED[1]: self.vy += 1 else: self.x = point[0] self.y = point[1] def draw(self, canvas): if aImages[self.kind[1]][self.kind[0]].get_width()==0: w = 15 h = 15 canvas.draw_circle([self.x, self.y], 15, 5, "Red") else: # img = aImages[self.kind[1]][self.kind[0]] img = aImages[self.kind[1]][self.kind[0]] self.width = w = img.get_width() self.height = h = img.get_height() canvas.draw_image(img, (w//2, h//2), (w, h), (self.x, self.y), (w, h)) if self.health<>self.get_max_health(): ratio = w * (self.health*1.0) / self.get_max_health() canvas.draw_line([self.x-w//2, self.y-h//2-3], [self.x+w//2, self.y-h//2-3], 4, "red") canvas.draw_line([self.x-w//2, self.y-h//2-3], [self.x-w//2+ratio, self.y-h//2-3], 4, "green") return canvas class AliensFleet: def __init__ (self, point): def is_high_level(place): map_ = (level-1)%7 row = level_map[map_][place[1]] #255 - 0 return (row & (1 << place[0]))<>0 self.x = point[0] self.y = point[1] self.aliens = [] self.pattern = [255, 255, 255, 255] self.y_velocity = ALIEN_HEIGHT//3 + 1 self.x_velocity = - ALIEN_WIDTH//3 + 1 for i in range(self.get_aliens_count()): point = self.get_alien_position(i) place = self.get_alien_place(i) alien_level = (level-1)//7 + is_high_level(place) alien = Alien(point, [random.randrange(3), alien_level]) self.aliens.append(alien) def get_aliens_count(self): c = 0 for i in range(4): for j in range(8): if (self.pattern[i] & (1 << j))<>0: c+=1 return c def get_alien_position(self, n): #returns a screen x, y of alien with number n point = self.get_alien_place(n) x = point[0]*(ALIEN_WIDTH + 3) + self.x y = point[1]*(ALIEN_HEIGHT + 3) +self.y point = [x, y] return point def get_alien_place(self, n): #returns a fleet x, y of alien with number n x, y, c = 0, 0, 0 for i in range(4): for j in range(8): if (self.pattern[i] & (1 << j))<>0: if c==n: x, y = j, i c+=1 point = [x, y] return point def move_aliens(self): i = 0 for alien in self.aliens: point = self.get_alien_position(i) alien.move(point) i += 1 return self def move_down(self): self.y += self.y_velocity if self.y>400: player.explode() self.y = 100 self.move_aliens() def move_side(self): self.x -= self.x_velocity # check borders of fleet: left = 8 right = -1 for i in range(len(self.aliens)): point = self.get_alien_place(i) if point[0]<left: left = point[0] if point[0]>right: right = point[0] if (self.x+(left+1)*60 < LEFT_MARGIN + 10) or (self.x + (right+1)*45>FIELD_WIDTH-LEFT_MARGIN-60): self.x_velocity = -self.x_velocity self.move_aliens() def draw(self, canvas): for alien in self.aliens: alien.draw(canvas) def make_shoot(self): for alien in self.aliens: if len(alien_bullets) < level * 3 + 1: if random.randrange(101)<2: # alien.shoot() return self def alien_fly(self): i = 0 for alien in self.aliens: if alien.flying: i += 1 if (i<1+level) and (random.randrange(1000)<3) and (time.time()-level_time[len(level_time)-1]>60): alien.flying=True def check_death(self): global scores, killed, player i = 0 for bullet in user_bullet: for i in range(len(self.aliens)): alien = self.aliens[i] if isBulletHit(bullet, alien): if alien.health-player.power<=0: point = self.get_alien_place(i) sndAlienExplosion.play() self.aliens.remove(alien) x = ~int((1 << point[0])) self.pattern[point[1]] = self.pattern[point[1]] & x user_bullet.remove(bullet) delta = round(math.pow(5, (1 + (1.0*level-1)/32))*5) scores = scores + delta killed += 1 x = random.randrange(1000) if x<5: bonus = Bonus(3, [alien.x, alien.y]) bonuses.append(bonus) elif x<50: bonus = Bonus(2, [alien.x, alien.y]) bonuses.append(bonus) elif x<120: bonus = Bonus(1, [alien.x, alien.y]) bonuses.append(bonus) elif x<200: bonus = Bonus(0, [alien.x, alien.y]) bonuses.append(bonus) if killed % 500 == 0: player.lives += 1 sndBonus.play() break else: user_bullet.remove(bullet) alien.health -= player.power sndAlienHit.play() i += 1 class Player: def __init__(self, point, lives): self.x = point[0] self.y = point[1] self.lives = 3 self.speed = player_speed self.power = BULLET_POWER self.width = 20 self.height = 20 def draw(self, canvas): draw_user_image(canvas, [self.x, self.y]) def move(self): self.x += player_speed if self.x<LEFT_MARGIN*2: self.x = LEFT_MARGIN*2 if self.x>FIELD_WIDTH: self.x=FIELD_WIDTH def draw_lives_counter(self, canvas): if self.lives < 5: for i in range(self.lives): draw_user_image(canvas, [150+i*35, 15]) else: draw_user_image(canvas, [150, 15]) canvas.draw_text(" x "+str(int(self.lives)), [170, 25], 25, "Yellow") def explode(self): global dTimer, alien_bullets, user_bullet, weapon_level, weapon_speed global alien_fleet, player_killed_at, player_killed, player_speed player_speed = 0 player_killed_at = time.time() sndPlayerExplosion.play() for alien in alien_fleet.aliens: alien.flying = False player_killed = True alien_bullets = [] user_bullet = [] bonuses = [] weapon_level = level // 10 + 1 weapon_speed = BULLET_SPEED self.lives -= 1 if self.lives<0: stop_game() dTimer = simplegui.create_timer(25, dHandler) dTimer.start() #helper functions def dummy(key): return key def pause(): global paused paused = not paused sndPause.play() def draw_user_image(canvas, point): # draw a image of user ship # global player if pImage.get_width()==0: canvas.draw_circle(point, 12, 5, "Yellow") else: canvas.draw_image(pImage, (25, 36), (49, 72), point, (34, 50)) player.width = pImage.get_width() player.height = pImage.get_height() return canvas def draw_lives(canvas): # draw lives counter canvas.draw_text("Lives : ", [30, 25], 25, "Red") if player<>None: player.draw_lives_counter(canvas) return canvas def draw_weapons(canvas): canvas.draw_text("Weapon : ", [30, 60], 25, "Red") canvas.draw_text("Rocket lvl: "+str(int(weapon_level)), [135, 60], 25, "Yellow") canvas.draw_text("WS:"+str(weapon_speed/10.0), [280, 48], 10, "00c5fe") canvas.draw_text("WP:"+str(player.power), [280, 61], 10, "00c5fe") return canvas def draw_level(canvas): canvas.draw_text("Level : ", [FIELD_WIDTH-200, 50], 50, "Red") canvas.draw_text(str(level), [FIELD_WIDTH-50, 50], 50, "Yellow") return canvas def draw_scores(canvas): canvas.draw_text(str(int(scores)), [400, 50], 50, "LightBlue") return canvas def draw_screen(canvas): # border of board canvas.draw_image(bckg[current_back], (425, 250), (850, 500), \ (LEFT_MARGIN+FIELD_WIDTH//2, TOP_MARGIN+FIELD_HEIGHT//2),\ (FIELD_WIDTH, FIELD_HEIGHT)) canvas.draw_polygon([[LEFT_MARGIN, TOP_MARGIN], [LEFT_MARGIN, FIELD_HEIGHT+TOP_MARGIN], [FIELD_WIDTH+LEFT_MARGIN, FIELD_HEIGHT+TOP_MARGIN], [FIELD_WIDTH+LEFT_MARGIN, TOP_MARGIN]], 2, 'Orange') return canvas def draw_start_screen(canvas): img_count = 1 + len(aImages)*(len(aImages[0])) + len(bckg) loaded_img_count = 0 if pImage.get_width()<>0: loaded_img_count += 1 for bImage in bckg: if bImage.get_width()<>0: loaded_img_count += 1 for aImg in aImages: for img in aImg: if img.get_width()<>0: loaded_img_count += 1 loaded_sounds = 0 for snd in sounds: if snd <> None: loaded_sounds += 1 draw_text(canvas, "SPACE INVANDERS", [220, 150], 50, [3, 3], ["blue", "yellow"]) canvas.draw_text("ver. - "+VER, [600, 170], 20, "yellow") canvas.draw_text("03 nov. 2013", [600, 190], 20, "yellow") draw_text(canvas, "CONTROLS:", [110, 210], 24, [2, 2], ["green", "yellow"]) draw_text(canvas, "Arrows - to left and right, space - to fire, P to pause game", [110, 240], 24, [2, 2], ["green", "yellow"]) draw_text(canvas, "Bonuses: ", [110, 280], 24, [2, 2], ["green", "yellow"]) b = Bonus(0, [125, 310]) b.draw(canvas) draw_text(canvas, " - increase user's bullet speed", [150, 320], 24, [2, 2], ["green", "yellow"]) b = Bonus(1, [125, 350]) b.draw(canvas) draw_text(canvas, " - increase user's bullet number", [150, 360], 24, [2, 2], ["green", "yellow"]) b = Bonus(2, [125, 390]) b.draw(canvas) draw_text(canvas, " - add life", [150, 400], 24, [2, 2], ["green", "yellow"]) b = Bonus(3, [125, 430]) b.draw(canvas) draw_text(canvas, " - increase weapon power", [150, 440], 24, [2, 2], ["green", "yellow"]) if loaded_img_count<img_count: draw_text(canvas, "Please, wait for loading...", [280, 500], 40, [3, 3], ["Blue", "Yellow"]) s = "Loaded "+str(loaded_img_count)+" images of "+str(img_count) draw_text(canvas, s, [110, 550], 20, [2, 2], ["Blue", "yellow"]) s = "Loaded "+str(loaded_sounds)+" sounds of "+str(len(sounds)) draw_text(canvas, s, [510, 550], 20, [2, 2], ["Blue", "yellow"]) else: draw_text(canvas, "Click to start game", [300, 500], 40, [3, 3], ["Blue", "yellow"]) frame.set_mouseclick_handler(click_handler) return canvas def draw_end_screen(canvas): draw_text(canvas, "Game over!", [350, 180], 50, [2, 2], ["Blue", "Yellow"]) draw_text(canvas, "Your score is "+str(int(scores)), [330, 240], 35, [2, 2], ["blue", "Yellow"]) draw_text(canvas, "You shoot "+str(int(shoot_count))+" times", [150, 320], 24, [2, 2], ["blue", "Yellow"]) draw_text(canvas, "You kill a "+str(killed)+" aliens", [150, 360], 24, [2, 2], ["blue", "Yellow"]) if shoot_count == 0: s = "0" else: s = str(int(10000*float(killed)/shoot_count)/100.0) draw_text(canvas, "Your accuracy is "+s+"%", [150, 400], 24, [2, 2], ["blue", "Yellow"]) i = 0 for bc in bonus_count: b = Bonus(i, [505, 310 + 40*i]) b.draw(canvas) draw_text(canvas, " - used "+str(bonus_count[i])+" times", [530, 320+40*i], 24, [2, 2], ["blue", "yellow"]) i += 1 draw_text(canvas, "Click to start new game", [300, 500], 40, [2, 2], ["blue", "Yellow"]) canvas.draw_text("ver. - "+VER, [600, 540], 15, "yellow"); return canvas def draw_game_objects(canvas): player.draw(canvas) #draw_user_image(canvas, Player) for bullet in alien_bullets: bullet.draw(canvas) for bullet in user_bullet: bullet.draw(canvas) for bonus in bonuses: bonus.draw(canvas) alien_fleet.draw(canvas) readyGo() if paused: draw_text(canvas, "P A U S E", [380, 350], 50, [2, 2], ["Green", "Yellow"]) if ready: draw_text(canvas, "R E A D Y", [380, 350], 50, [2, 2], ["Green", "Yellow"]) if go: draw_text(canvas, "G O ! ! !", [380, 350], 50, [2, 2], ["Green", "Yellow"]) sndTheme.play() return canvas def moving_objects(): global timer_counter if not GameRunning: return None if paused or ready or go or player_killed: return None timer_counter += 1 player.move() for alien in alien_fleet.aliens: if alien.flying: alien.move([0,0]) if isBulletHit(alien, player): player.explode() if alien.y>FIELD_HEIGHT + TOP_MARGIN+20: alien.y = TOP_MARGIN for bonus in bonuses: bonus.move(); if bonus.y > FIELD_HEIGHT + TOP_MARGIN+20: bonuses.remove(bonus) if isBulletHit(bonus, player): bonus.execute() bonuses.remove(bonus) for bullet in user_bullet: bullet.move() alien_fleet.check_death() for bullet in user_bullet: if bullet.y<TOP_MARGIN+25: user_bullet.remove(bullet) # for bullet in alien_bullets: bullets_to_delete = [] for bullet in list(alien_bullets): bullet.move() if bullet.y > FIELD_HEIGHT + TOP_MARGIN -10: bullets_to_delete.append(bullet) if isBulletHit(bullet, player): player.explode() for bullet in bullets_to_delete: if bullet in alien_bullets: alien_bullets.remove(bullet) alien_fleet.make_shoot() alien_fleet.alien_fly() if level<30: x = 60 - level else: x = 1 if timer_counter % x == 0: alien_fleet.move_side() if timer_counter % (100 + x) == 0: alien_fleet.move_down() if alien_fleet.get_aliens_count() == 0: new_level() # Handler to draw on canvas def draw(canvas): draw_screen(canvas) canvas.draw_text(mes, [250, 250], 40, "Yellow") ###################### #check a begin of game # if GameEnded: draw_end_screen(canvas) elif not GameRunning: draw_start_screen(canvas) else: ################## # game info draw_lives(canvas) draw_weapons(canvas) draw_level(canvas) draw_scores(canvas) draw_game_objects(canvas) return canvas def readyGo(): global ready, go ready = time.time()-level_time[len(level_time)-1]<0.7 go = (not ready) and time.time()-level_time[len(level_time)-1]<1.5 player_killed = time.time() - player_killed_at < 1.2 #Initialization and start of game def start_game(): global GameRunning, alien_fleet, player, GameEnded global scores, killed, level, level_time, bonus_count scores = 0 bonus_count = [0, 0, 0, 0] killed = 0 level = 0 GameEnded = False GameRunning = True new_level() player = Player([FIELD_WIDTH //2, FIELD_HEIGHT + TOP_MARGIN-20], 3) return None def stop_game(): global GameRunning, GameEnded # aTimer.stop() GameEnded = True GameRunning = False level_time.append(time.time()) frame.set_keydown_handler(dummy) frame.set_keyup_handler(dummy) return None # Handler for mouse click def click_handler(position): if not GameRunning: start_game() #else: # stop_game() return position #### keydown_handler def keydown(key): global keypressed, mes, shoot_count, player_speed keypressed = key if (key == simplegui.KEY_MAP['p']) or \ (key == simplegui.KEY_MAP['P']): pause() else: if (key == simplegui.KEY_MAP['right']): #player.move('right') player_speed = PLAYER_SPEED elif (key == simplegui.KEY_MAP['left']): # player.move('left') player_speed = -PLAYER_SPEED if (key == simplegui.KEY_MAP['space'])and(GameRunning): if len(user_bullet) < weapon_level: b = Bullet([player.x, player.y], "LightBlue", -weapon_speed) user_bullet.append(b) sndPlayer.play() shoot_count += 1 return #### keyup_handler to stop keydown def keyup(key): global player_speed #if keytimer.is_running(): # keytimer.stop() if (key == simplegui.KEY_MAP['right'])or(key == simplegui.KEY_MAP['left']): player_speed = 0 return def isBulletHit(bullet, obj): if (bullet.y+bullet.height//2+2 > obj.y-obj.height // 2) and (bullet.y-bullet.height//2-2<obj.y+obj.height//2): if (bullet.x+bullet.width//2 +2> obj.x - obj.width//2) and (bullet.x-bullet.width//2 -2< obj.x + obj.width//2): return True else: return False else: return False def new_level(): global level, alien_fleet, user_bullet, alien_bullets, current_back, player global level_time, player_speed level_time.append(time.time()) current_back = random.randrange(12) level += 1 player_speed = 0 user_bullet = [] alien_bullets = [] alien_fleet = AliensFleet([250, 100]) if level % 10 == 0: player.lives += 1 sndBonus.play() # Create a frame and assign callbacks to event handlers frame = simplegui.create_frame("Galaxian", 900, 600, 0) frame.set_draw_handler(draw) frame.set_keydown_handler(keydown) frame.set_keyup_handler(keyup) aTimer = simplegui.create_timer(60, moving_objects) aTimer.start() # Start the frame animation frame.start()
35.988778
131
0.562346
10,997
0.381007
0
0
0
0
0
0
4,679
0.162111
c3482f320f27c64a0db4f2f20db98025fee332ce
1,664
py
Python
components/py-flask-wa/app.py
ajayns/amoc-project
c22ae62789568c1a784f165fbd4547ac20c290a0
[ "MIT" ]
26
2017-04-21T06:05:44.000Z
2020-03-09T11:41:34.000Z
components/py-flask-wa/app.py
ajayns/amoc-project
c22ae62789568c1a784f165fbd4547ac20c290a0
[ "MIT" ]
6
2017-04-16T03:53:28.000Z
2019-02-26T07:02:48.000Z
components/py-flask-wa/app.py
ajayns/amoc-project
c22ae62789568c1a784f165fbd4547ac20c290a0
[ "MIT" ]
5
2017-06-09T06:44:59.000Z
2019-12-13T07:34:11.000Z
from flask import Flask, jsonify, request, render_template, redirect from flask_pymongo import PyMongo from werkzeug import secure_filename import base64 app = Flask(__name__) app.config['MONGO_DBNAME'] = 'restdb' app.config['MONGO_URI'] = 'mongodb://localhost:27017/restdb' mongo = PyMongo(app) @app.route('/') def index(): return render_template("index.html") @app.route('/w') def webcam(): return render_template("webcam.html") @app.route('/img') def img(): i = request.query_string f = open('a.png','wb') f.write(i.decode('base64')) return "success <img src='" + i + "'>" @app.route('/hello') def hello(): return "hello world" @app.route('/star', methods=['GET']) def get_all_stars(): star = mongo.db.stars output = [] for s in star.find(): output.append({'name' : s['name'], 'distance' : s['distance']}) return jsonify(output) @app.route('/star/', methods=['GET']) def get_one_star(name): star = mongo.db.stars s = star.find_one({'name' : name}) if s: output = {'name': s['name'], 'distance': s['distance']} else: output = "No such name" return jsonify(output) @app.route('/star', methods=['POST']) def add_star(): star = mongo.db.stars name = request.json['name'] distance = request.json['distance'] star_id = star.insert({'name': name, 'distance': distance}) new_star = star.find_one({'_id': star_id}) output = {'name' : new_star['name'], 'distance' : new_star['distance']} return jsonify(output) @app.route('/uploader', methods=['POST']) def upload_file(): f = request.files['file'] f.save(secure_filename('1')) return "uploaded" if __name__ == '__main__': app.run(debug=True)
24.115942
73
0.658053
0
0
0
0
1,298
0.780048
0
0
406
0.24399
c34951b6e45c7100c95839ca25a8df621a593d38
2,190
py
Python
wc_lang/util.py
KarrLab/wc_lang
113a8b473576fa9c13688d2deb71b4b2ab400a03
[ "MIT" ]
7
2018-05-14T09:26:14.000Z
2021-05-20T01:11:45.000Z
wc_lang/util.py
KarrLab/wc_lang
113a8b473576fa9c13688d2deb71b4b2ab400a03
[ "MIT" ]
142
2018-03-14T16:50:56.000Z
2021-01-03T16:25:23.000Z
wc_lang/util.py
KarrLab/wc_lang
113a8b473576fa9c13688d2deb71b4b2ab400a03
[ "MIT" ]
4
2019-01-06T08:32:23.000Z
2021-05-20T01:11:49.000Z
""" Utilities :Author: Jonathan Karr <[email protected]> :Date: 2016-11-10 :Copyright: 2016, Karr Lab :License: MIT """ from obj_tables import get_models as base_get_models from wc_lang import core from wc_lang import io from wc_utils.util import git def get_model_size(model): """ Get numbers of model components Args: model (:obj:`core.Model`): model Returns: :obj:`dict`: dictionary with numbers of each type of model component """ return { "submodels": len(model.get_submodels()), "compartments": len(model.get_compartments()), "species_types": len(model.get_species_types()), "species": len(model.get_species()), "parameters": len(model.get_parameters()), "references": len(model.get_references()), "reactions": len(model.get_reactions()), } def get_model_summary(model): """ Get textual summary of a model Args: model (:obj:`core.Model`): model Returns: :obj:`str`: textual summary of the model """ return "Model with:" \ + "\n{:d} submodels".format(len(model.get_submodels())) \ + "\n{:d} compartments".format(len(model.get_compartments())) \ + "\n{:d} species types".format(len(model.get_species_types())) \ + "\n{:d} species".format(len(model.get_species())) \ + "\n{:d} parameters".format(len(model.get_parameters())) \ + "\n{:d} references".format(len(model.get_references())) \ + "\n{:d} dFBA objective reactions".format(len(model.get_dfba_obj_reactions())) \ + "\n{:d} reactions".format(len(model.get_reactions())) \ + "\n{:d} rate laws".format(len(model.get_rate_laws())) def get_models(inline=True): """ Get list of models Args: inline (:obj:`bool`, optional): if true, return inline models Returns: :obj:`list` of :obj:`class`: list of models """ return base_get_models(module=core, inline=inline) def gen_ids(model): """ Generate ids for model objects Args: model (:obj:`core.Model`): model """ for obj in model.get_related(): if hasattr(obj, 'gen_id'): obj.id = obj.gen_id()
28.441558
89
0.616895
0
0
0
0
0
0
0
0
1,018
0.46484
c349777d037bf08d8ee79327a13369ab404b7431
5,267
py
Python
synapse/tests/test_tools_autodoc.py
kcreyts/synapse
fe740fd1e0febfa32f8d431b32ab48f8a0cf306e
[ "Apache-2.0" ]
1
2021-02-15T22:07:05.000Z
2021-02-15T22:07:05.000Z
synapse/tests/test_tools_autodoc.py
kcreyts/synapse
fe740fd1e0febfa32f8d431b32ab48f8a0cf306e
[ "Apache-2.0" ]
null
null
null
synapse/tests/test_tools_autodoc.py
kcreyts/synapse
fe740fd1e0febfa32f8d431b32ab48f8a0cf306e
[ "Apache-2.0" ]
null
null
null
import synapse.common as s_common import synapse.tests.utils as s_t_utils import synapse.tools.autodoc as s_autodoc class TestAutoDoc(s_t_utils.SynTest): async def test_tools_autodoc_docmodel(self): with self.getTestDir() as path: argv = ['--doc-model', '--savedir', path] outp = self.getTestOutp() self.eq(await s_autodoc.main(argv, outp=outp), 0) with s_common.genfile(path, 'datamodel_types.rst') as fd: buf = fd.read() s = buf.decode() self.isin('Base types are defined via Python classes.', s) self.isin('synapse.models.inet.Addr', s) self.isin('Regular types are derived from BaseTypes.', s) self.isin(r'inet\:server', s) with s_common.genfile(path, 'datamodel_forms.rst') as fd: buf = fd.read() s = buf.decode() self.isin('Forms are derived from types, or base types. Forms represent node types in the graph.', s) self.isin(r'inet\:ipv4', s) self.notin(r'file\:bytes:.created', s) self.isin('Universal props are system level properties which may be present on every node.', s) self.isin('.created', s) self.notin('..created\n', s) self.isin('An example of ``inet:dns:a``\\:', s) async def test_tools_autodoc_confdefs(self): with self.getTestDir() as path: argv = ['--savedir', path, '--doc-conf', 'synapse.tests.test_lib_stormsvc.StormvarServiceCell'] outp = self.getTestOutp() self.eq(await s_autodoc.main(argv, outp=outp), 0) with s_common.genfile(path, 'conf_stormvarservicecell.rst') as fd: buf = fd.read() s = buf.decode() self.isin('autodoc-stormvarservicecell-conf', s) self.isin('StormvarServiceCell Configuration Options', s) self.isin('See :ref:`devops-cell-config` for', s) self.isin('auth\\:passwd', s) self.isin('Environment Variable\n ``SYN_STORMVARSERVICECELL_AUTH_PASSWD``', s) self.isin('``--auth-passwd``', s) argv.append('--doc-conf-reflink') argv.append('`Configuring a Cell Service <https://synapse.docs.vertex.link/en/latest/synapse/devguides/devops_cell.html>`_') # truncate the current file with s_common.genfile(path, 'conf_stormvarservicecell.rst') as fd: fd.truncate() outp = self.getTestOutp() self.eq(await s_autodoc.main(argv, outp=outp), 0) with s_common.genfile(path, 'conf_stormvarservicecell.rst') as fd: buf = fd.read() s = buf.decode() self.isin('StormvarServiceCell Configuration Options', s) self.isin('See `Configuring a Cell Service <https://synapse', s) async def test_tools_autodoc_stormsvc(self): with self.getTestDir() as path: argv = ['--savedir', path, '--doc-storm', 'synapse.tests.test_lib_stormsvc.StormvarServiceCell'] outp = self.getTestOutp() self.eq(await s_autodoc.main(argv, outp=outp), 0) with s_common.genfile(path, 'stormsvc_stormvarservicecell.rst') as fd: buf = fd.read() s = buf.decode() self.isin('StormvarServiceCell Storm Service', s) self.isin('This documentation is generated for version 0.0.1 of the service.', s) self.isin('Storm Package\\: stormvar', s) self.isin('.. _stormcmd-stormvar-magic:\n', s) self.isin('magic\n-----', s) self.isin('Test stormvar support', s) self.isin('forms as input nodes', s) self.isin('``test:str``', s) self.isin('nodes in the graph', s) self.isin('``test:comp``', s) self.isin('nodedata with the following keys', s) self.isin('``foo`` on ``inet:ipv4``', s) async def test_tools_autodoc_stormtypes(self): with self.getTestDir() as path: argv = ['--savedir', path, '--doc-stormtypes'] outp = self.getTestOutp() self.eq(await s_autodoc.main(argv, outp=outp), 0) with s_common.genfile(path, 'stormtypes_libs.rst') as fd: libbuf = fd.read() libtext = libbuf.decode() self.isin('.. _stormlibs-lib-print:\n\n$lib.print(mesg, \\*\\*kwargs)\n============================', libtext) self.isin('Print a message to the runtime.', libtext) self.isin('\\*\\*kwargs (any): Keyword arguments to substitute into the mesg.', libtext) self.isin('.. _stormlibs-lib-time:\n\n*********\n$lib.time\n*********', libtext) self.isin('A Storm Library for interacting with timestamps.', libtext) with s_common.genfile(path, 'stormtypes_prims.rst') as fd: primbuf = fd.read() primstext = primbuf.decode() self.isin('.. _stormprims-storm-auth-user:\n\n*****************\nstorm\\:auth\\:user\n*****************', primstext) self.isin('iden\n====\n\nThe User iden.', primstext)
41.801587
136
0.566926
5,147
0.977217
0
0
0
0
5,086
0.965635
2,021
0.38371
c34a6dd4d560ec8071e9109e3ca674e32bbace38
4,174
py
Python
tf_idf.py
ricosr/retrieval_chatbot
567e860f09771cae19e32b3bf20b5ce87266cda6
[ "MIT" ]
16
2018-12-04T13:55:56.000Z
2021-11-21T05:53:57.000Z
tf_idf.py
ricosr/retrieval_chatbot
567e860f09771cae19e32b3bf20b5ce87266cda6
[ "MIT" ]
5
2019-05-21T12:40:18.000Z
2019-05-31T18:23:51.000Z
tf_idf.py
ricosr/retrieval_chatbot
567e860f09771cae19e32b3bf20b5ce87266cda6
[ "MIT" ]
4
2018-11-22T13:45:05.000Z
2019-09-16T16:30:28.000Z
# -*- coding: utf-8 -*- import pickle import os import jieba from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.externals import joblib from sklearn.metrics.pairwise import cosine_similarity class TfIdf: def __init__(self, config): self.config = config self.model_dict = {} self.vector_context_ls = [] self.vector_utterrance_ls = [] self.load_models(self.config) def load_models(self, config): try: for file_name, file_path in self.config.model_dict.items(): self.model_dict[file_name] = joblib.load(file_path) except Exception as e: pass def select_model(self, file_name): try: self.current_model = self.model_dict[file_name] except Exception as e: pass def predict_tfidf(self, utterances, context_ls): for each_context in context_ls: if each_context == (0, 0): continue self.vector_context_ls.append(self.current_model.transform( [self.word_segment(each_context[0]) + self.word_segment(each_context[1])])) self.vector_utterrance_ls.append(self.current_model.transform( [self.word_segment(utterances) + self.word_segment(each_context[1])])) def calculate_distances(self): result_ls = [] for tfidf_c, tfidf_u in zip(self.vector_context_ls, self.vector_utterrance_ls): result_ls.append(self.calculate_cos_similarity(tfidf_c, tfidf_u)) result_ls = self.normalization(result_ls) self.vector_utterrance_ls.clear() self.vector_context_ls.clear() return result_ls def calculate_cos_similarity(self, x, y): x = x.reshape(1, -1) y = y.reshape(1, -1) return cosine_similarity(x, y) def word_segment(self, chinese_characters): seg_list = [each_word for each_word in jieba.cut(chinese_characters, cut_all=False)] return " ".join(seg_list) def normalization(self, ratio_ls): max_ratio = max(ratio_ls) min_ratio = min(ratio_ls) if max_ratio == min_ratio: return [1]*len(ratio_ls) return [(each_ratio - min_ratio) / (max_ratio - min_ratio) for each_ratio in ratio_ls] class TrainTfIdf: def __init__(self, config): self.config = config self.files_dict = {} self.load_stop_words(self.config) def load_pickle(self, file=None): if file: with open(self.config.file_dict[file], 'rb') as fp: self.files_dict[file] = pickle.load(fp) else: for file_name, path in self.config.file_dict.items(): with open(path, 'rb') as fp: self.files_dict[file_name] = pickle.load(fp) def word_segment(self, chinese_characters): seg_list = [each_word for each_word in jieba.cut(chinese_characters, cut_all=False)] return " ".join(seg_list) def load_stop_words(self, config): with open(config.stop_words, 'rb') as fpr: self.stop_words = pickle.load(fpr) # def remove_stop_words(self, cut_words): # cut_words_ls = cut_words.split(' ') # for i in range(len(cut_words_ls)): # if cut_words_ls[i] in self.stop_words: # cut_words_ls[i] = 0 # while True: # if 0 in cut_words_ls: # cut_words_ls.remove(0) # else: # break # return ' '.join(cut_words_ls) def train(self): if not os.path.exists("model"): os.mkdir("model") for file_name, content in self.files_dict.items(): # content:[[question, answer]] tmp_content = map(lambda each_chat: map(self.word_segment, each_chat), content) content_str_ls = [' '.join(list(each_chat)) for each_chat in tmp_content] # no_stop_content_ls = list(map(self.remove_stop_words, content_str_ls)) vectorizer = TfidfVectorizer(stop_words=self.stop_words) vectorizer.fit_transform(content_str_ls) joblib.dump(vectorizer, 'model/{}.pkl'.format(file_name))
36.614035
94
0.626977
3,952
0.946814
0
0
0
0
0
0
530
0.126977
c34b267716c64dbcac0061ea5f7b0de5338ff153
19,015
py
Python
d373c7/pytorch/models/classifiers.py
t0kk35/d373c7
7780b97545e581244fb4fb74347bb1b052b9ec3f
[ "Apache-2.0" ]
1
2021-07-23T18:04:55.000Z
2021-07-23T18:04:55.000Z
d373c7/pytorch/models/classifiers.py
t0kk35/d373c7
7780b97545e581244fb4fb74347bb1b052b9ec3f
[ "Apache-2.0" ]
null
null
null
d373c7/pytorch/models/classifiers.py
t0kk35/d373c7
7780b97545e581244fb4fb74347bb1b052b9ec3f
[ "Apache-2.0" ]
null
null
null
""" Module for classifier Models (c) 2020 d373c7 """ import logging import torch import torch.nn as nn from .common import PyTorchModelException, ModelDefaults, _History, _ModelGenerated, _ModelStream from .encoders import GeneratedAutoEncoder from ..layers import LSTMBody, ConvolutionalBody1d, AttentionLastEntry, LinearEncoder, TensorDefinitionHead from ..layers import TransformerBody, TailBinary from ..loss import SingleLabelBCELoss from ...features import TensorDefinition, TensorDefinitionMulti from typing import List, Dict, Union logger = logging.getLogger(__name__) class BinaryClassifierHistory(_History): loss_key = 'loss' acc_key = 'acc' def __init__(self, *args): dl = self._val_argument(args) h = {m: [] for m in [BinaryClassifierHistory.loss_key, BinaryClassifierHistory.acc_key]} _History.__init__(self, dl, h) self._running_loss = 0 self._running_correct_cnt = 0 self._running_count = 0 @staticmethod def _reshape_label(pr: torch.Tensor, lb: torch.Tensor) -> torch.Tensor: if pr.shape == lb.shape: return lb elif len(pr.shape)-1 == len(lb.shape) and pr.shape[-1] == 1: return torch.unsqueeze(lb, dim=len(pr.shape)-1) else: raise PyTorchModelException( f'Incompatible shapes for prediction and label. Got {pr.shape} and {lb.shape}. Can not safely compare' ) def end_step(self, *args): BinaryClassifierHistory._val_is_tensor(args[0]) BinaryClassifierHistory._val_is_tensor_list(args[1]) BinaryClassifierHistory._val_is_tensor(args[2]) pr, lb, loss = args[0], args[1][0], args[2] lb = BinaryClassifierHistory._reshape_label(pr, lb) self._running_loss += loss.item() self._running_correct_cnt += torch.sum(torch.eq(torch.ge(pr, 0.5), lb)).item() self._running_count += pr.shape[0] super(BinaryClassifierHistory, self).end_step(pr, lb, loss) def end_epoch(self): self._history[BinaryClassifierHistory.loss_key].append(round(self._running_loss/self.steps, 4)) self._history[BinaryClassifierHistory.acc_key].append(round(self._running_correct_cnt/self.samples, 4)) self._running_correct_cnt = 0 self._running_count = 0 self._running_loss = 0 super(BinaryClassifierHistory, self).end_epoch() def step_stats(self) -> Dict: r = { BinaryClassifierHistory.loss_key: round(self._running_loss/self.step, 4), BinaryClassifierHistory.acc_key: round(self._running_correct_cnt/self._running_count, 4) } return r def early_break(self) -> bool: return False class ClassifierDefaults(ModelDefaults): def __init__(self): super(ClassifierDefaults, self).__init__() self.emb_dim(4, 100, 0.2) self.linear_batch_norm = True self.inter_layer_drop_out = 0.1 self.default_series_body = 'recurrent' self.attention_drop_out = 0.0 self.convolutional_dense = True self.convolutional_drop_out = 0.1 self.transformer_positional_logic = 'encoding' self.transformer_positional_size = 16 self.transformer_drop_out = 0.2 def emb_dim(self, minimum: int, maximum: int, dropout: float): self.set('emb_min_dim', minimum) self.set('emb_max_dim', maximum) self.set('emb_dropout', dropout) @property def linear_batch_norm(self) -> bool: """Define if a batch norm layer will be added before the final hidden layer. :return: bool """ return self.get_bool('lin_batch_norm') @linear_batch_norm.setter def linear_batch_norm(self, flag: bool): """Set if a batch norm layer will be added before the final hidden layer. :return: bool """ self.set('lin_batch_norm', flag) @property def inter_layer_drop_out(self) -> float: """Defines a value for the inter layer dropout between linear layers. If set, then dropout will be applied between linear layers. :return: A float value, the dropout aka p value to apply in the nn.Dropout layers. """ return self.get_float('lin_interlayer_drop_out') @inter_layer_drop_out.setter def inter_layer_drop_out(self, dropout: float): """Define a value for the inter layer dropout between linear layers. If set, then dropout will be applied between linear layers. :param dropout: The dropout aka p value to apply in the nn.Dropout layers. """ self.set('lin_interlayer_drop_out', dropout) @property def default_series_body(self) -> str: """Defines the default body type for series, which is a tensor of rank 3 (including batch). This could be for instance 'recurrent'. :return: A string value, the default body type to apply to a rank 3 tensor stream. """ return self.get_str('def_series_body') @default_series_body.setter def default_series_body(self, def_series_body: str): """Defines the default body type for series, which is a tensor of rank 3 (including batch). This could be for instance 'recurrent'. :param def_series_body: A string value, the default body type to apply to a rank 3 tensor stream. """ self.set('def_series_body', def_series_body) @property def attention_drop_out(self) -> float: """Define a value for the attention dropout. If set, then dropout will be applied after the attention layer. :return: The dropout aka p value to apply in the nn.Dropout layers. """ return self.get_float('attn_drop_out') @attention_drop_out.setter def attention_drop_out(self, dropout: float): """Define a value for the attention dropout. If set, then dropout will be applied after the attention layer. :param dropout: The dropout aka p value to apply in the nn.Dropout layers. """ self.set('attn_drop_out', dropout) @property def convolutional_drop_out(self) -> float: """Define a value for the attention dropout. If set, then dropout will be applied after the attention layer. :return: The dropout aka p value to apply in the nn.Dropout layers. """ return self.get_float('conv_body_dropout') @convolutional_drop_out.setter def convolutional_drop_out(self, dropout: float): """Define a value for the attention dropout. If set, then dropout will be applied after the attention layer. :param dropout: The dropout aka p value to apply in the nn.Dropout layers. """ self.set('conv_body_dropout', dropout) @property def convolutional_dense(self) -> bool: """Defines if convolutional bodies are dense. Dense bodies mean that the input to the layer is added to the output. It forms a sort of residual connection. The input is concatenated along the features axis. This allows the model to work with the input if that turns out to be useful. :return: A boolean value, indicating if the input will be added to the output or not. """ return self.get_bool('conv_body_dense') @convolutional_dense.setter def convolutional_dense(self, dense: bool): """Defines if convolutional bodies are dense. Dense bodies mean that the input to the layer is added to the output. It forms a sort of residual connection. The input is concatenated along the features axis. This allows the model to work with the input if that turns out to be useful. :param dense: A boolean value, indicating if the input will be added to the output or not. """ self.set('conv_body_dense', dense) @property def transformer_positional_logic(self) -> str: """Sets which positional logic is used in transformer blocks. 'encoding' : The system will use the encoding, 'embedding' : The system will use an embedding layer. :return: A string value defining which positional logic to use. """ return self.get_str('trans_pos_logic') @transformer_positional_logic.setter def transformer_positional_logic(self, positional_logic: str): """Sets which positional logic is used in transformer blocks. 'encoding' : The system will use the encoding, 'embedding' : The system will use an embedding layer. :param positional_logic: A string value defining which positional logic to use. """ self.set('trans_pos_logic', positional_logic) @property def transformer_positional_size(self) -> int: """Sets the positional size of transformer blocks. The size is the number of elements added to each transaction in the series to help the model determine the position of transactions in the series. :return: An integer value. The number of elements output by the positional logic """ return self.get_int('trans_pos_size') @transformer_positional_size.setter def transformer_positional_size(self, positional_size: int): """Sets the positional size of transformer blocks. The size is the number of elements added to each transaction in the series to help the model determine the position of transactions in the series. :param positional_size: An integer value. The number of elements output by the positional logic """ self.set('trans_pos_size', positional_size) @property def transformer_drop_out(self) -> float: """Defines the drop out to apply in the transformer layer :return: An float value. The drop out value to apply in transformer layers """ return self.get_float('trans_dropout') @transformer_drop_out.setter def transformer_drop_out(self, dropout: float): """Defines the drop out to apply in the transformer layer :param dropout: The drop out value to apply in transformer layers """ self.set('trans_dropout', dropout) class GeneratedClassifier(_ModelGenerated): """Generate a Pytorch classifier model. This class will create a model that fits the input and label definition of the TensorDefinition. Args: tensor_def: A TensorDefinition or TensorDefinitionMulti object describing the various input and output features c_defaults: (Optional) ClassifierDefaults object defining the defaults which need to be used. kwargs: Various named parameters which can be use to drive the type of classifier and the capacity of the model. """ def __init__(self, tensor_def: Union[TensorDefinition, TensorDefinitionMulti], c_defaults=ClassifierDefaults(), **kwargs): tensor_def_m = self.val_is_td_multi(tensor_def) super(GeneratedClassifier, self).__init__(tensor_def_m, c_defaults) # Set-up stream per tensor_definition label_td = self.label_tensor_def(tensor_def_m) feature_td = [td for td in self._tensor_def.tensor_definitions if td not in label_td] streams = [_ModelStream(td.name) for td in feature_td] if self.is_param_defined('transfer_from', kwargs): # We're being asked to do transfer learning. # TODO we'll need a bunch of validation here. om = self.get_gen_model_parameter('transfer_from', kwargs) logger.info(f'Transferring from model {om.__class__}') # The Source model is an auto-encoder if isinstance(om, GeneratedAutoEncoder): self.set_up_heads(c_defaults, feature_td, streams) # Copy and freeze the TensorDefinitionHead, this should normally be the first item. for s, oms in zip(streams, om.streams): for sly in oms: if isinstance(sly, TensorDefinitionHead): src = self.is_tensor_definition_head(sly) trg = self.is_tensor_definition_head(s.layers[0]) trg.copy_state_dict(src) trg.freeze() logger.info(f'Transferred and froze TensorDefinitionHead {trg.tensor_definition.name}') elif isinstance(sly, LinearEncoder): # If no linear layers defined then try and copy the encoder linear_layers if not self.is_param_defined('linear_layers', kwargs): linear_layers = sly.layer_definition # Add last layer. Because this is binary, it has to have size of 1. linear_layers.append((1, 0.0)) tail = TailBinary( sum(s.out_size for s in streams), linear_layers, c_defaults.linear_batch_norm ) tail_state = tail.state_dict() # Get state of the target layer, remove last item. (popitem) source_state = list(sly.state_dict().values()) for i, sk in enumerate(tail_state.keys()): if i < 2: tail_state[sk].copy_(source_state[i]) # Load target Dict in the target layer. tail.load_state_dict(tail_state) for i, p in enumerate(tail.parameters()): if i < 2: p.requires_grad = False logger.info(f'Transferred and froze Linear Encoder layers {sly.layer_definition}') else: # Set-up a head layer to each stream. This is done in the parent class. self.set_up_heads(c_defaults, feature_td, streams) # Add Body to each stream. for td, s in zip(feature_td, streams): self._add_body(s, td, kwargs, c_defaults) # Create tail. linear_layers = self.get_list_parameter('linear_layers', int, kwargs) # Add dropout parameter this will make a list of tuples of (layer_size, dropout) linear_layers = [(i, c_defaults.inter_layer_drop_out) for i in linear_layers] # Add last layer. Because this is binary, it has to have size of 1. linear_layers.append((1, 0.0)) tail = TailBinary(sum(s.out_size for s in streams), linear_layers, c_defaults.linear_batch_norm) # Assume the last entry is the label self._y_index = self._x_indexes[-1] + 1 self.streams = nn.ModuleList( [s.create() for s in streams] ) self.tail = tail # Last but not least, set-up the loss function self.set_loss_fn(SingleLabelBCELoss()) def _add_body(self, stream: _ModelStream, tensor_def: TensorDefinition, kwargs: dict, defaults: ClassifierDefaults): if tensor_def.rank == 2: # No need to add anything to the body, rank goes directly to the tail. return elif tensor_def.rank == 3: # Figure out to which body to use. if self.is_param_defined('recurrent_layers', kwargs): body_type = 'recurrent' elif self.is_param_defined('convolutional_layers', kwargs): body_type = 'convolutional' elif self.is_param_defined('attention_heads', kwargs): body_type = 'transformer' else: body_type = defaults.default_series_body # Set-up the body. if body_type.lower() == 'recurrent': self._add_recurrent_body(stream, kwargs, defaults) elif body_type.lower() == 'convolutional': self._add_convolutional_body(stream, tensor_def, kwargs, defaults) elif body_type.lower() == 'transformer': self._add_transformer_body(stream, tensor_def, kwargs, defaults) else: raise PyTorchModelException( f'Do not know how to build body of type {body_type}' ) def _add_recurrent_body(self, stream: _ModelStream, kwargs: dict, defaults: ClassifierDefaults): attn_heads = self.get_int_parameter('attention_heads', kwargs, 0) # attn_do = defaults.attention_drop_out rnn_features = self.get_int_parameter( 'recurrent_features', kwargs, self.closest_power_of_2(int(stream.out_size / 3)) ) rnn_layers = self.get_int_parameter('recurrent_layers', kwargs, 1) # Add attention if requested if attn_heads > 0: attn = AttentionLastEntry(stream.out_size, attn_heads, rnn_features) stream.add('Attention', attn, attn.output_size) # Add main rnn layer rnn = LSTMBody(stream.out_size, rnn_features, rnn_layers, True, False) stream.add('Recurrent', rnn, rnn.output_size) def _add_convolutional_body(self, stream: _ModelStream, tensor_def: TensorDefinition, kwargs: dict, defaults: ClassifierDefaults): s_length = [s[1] for s in tensor_def.shapes if len(s) == 3][0] convolutional_layers = self.get_list_of_tuples_parameter('convolutional_layers', int, kwargs, None) dropout = defaults.convolutional_drop_out dense = defaults.convolutional_dense cnn = ConvolutionalBody1d(stream.out_size, s_length, convolutional_layers, dropout, dense) stream.add('Convolutional', cnn, cnn.output_size) def _add_transformer_body(self, stream: _ModelStream, tensor_def: TensorDefinition, kwargs: dict, defaults: ClassifierDefaults): s_length = [s[1] for s in tensor_def.shapes if len(s) == 3][0] attention_head = self.get_int_parameter('attention_heads', kwargs, 1) feedforward_size = self.get_int_parameter( 'feedforward_size', kwargs, self.closest_power_of_2(int(stream.out_size / 3)) ) drop_out = defaults.transformer_drop_out positional_size = defaults.transformer_positional_size positional_logic = defaults.transformer_positional_logic trans = TransformerBody( stream.out_size, s_length, positional_size, positional_logic, attention_head, feedforward_size, drop_out ) stream.add('Transformer', trans, trans.output_size) def get_y(self, ds: List[torch.Tensor]) -> List[torch.Tensor]: return ds[self._y_index: self._y_index+1] def history(self, *args) -> _History: return BinaryClassifierHistory(*args) def forward(self, x: List[torch.Tensor]): y = [s([x[i] for i in hi]) for hi, s in zip(self.head_indexes, self.streams)] y = self.tail(y) return y
46.041162
120
0.645438
18,427
0.969077
0
0
6,996
0.36792
0
0
6,935
0.364712
c34bda54e37900d299bfad9266c734ecc115936d
5,369
py
Python
qklnn/plots/hyperpar_scan.py
cambouvy/BSc-Thesis-Project
ca2504cb828ab068545e130eac393ceb34f2a457
[ "MIT" ]
1
2021-10-02T11:15:10.000Z
2021-10-02T11:15:10.000Z
qklnn/plots/hyperpar_scan.py
cambouvy/BSc-Thesis-Project
ca2504cb828ab068545e130eac393ceb34f2a457
[ "MIT" ]
null
null
null
qklnn/plots/hyperpar_scan.py
cambouvy/BSc-Thesis-Project
ca2504cb828ab068545e130eac393ceb34f2a457
[ "MIT" ]
null
null
null
import re import numpy as np import pandas as pd import matplotlib as mpl mpl.use("pdf") import matplotlib.pyplot as plt from matplotlib import gridspec from peewee import AsIs, JOIN, prefetch, SQL from IPython import embed from bokeh.layouts import row, column from bokeh.plotting import figure, show, output_file from bokeh.transform import linear_cmap from bokeh.models import ( ColumnDataSource, Range1d, LabelSet, Label, Rect, HoverTool, Div, ) from qlknn.NNDB.model import ( Network, PureNetworkParams, PostprocessSlice, NetworkMetadata, TrainMetadata, Postprocess, db, Hyperparameters, ) from qlknn.plots.statistical_spread import get_base_stats from qlknn.misc.to_precision import to_precision # First, get some statistics target_names = ["efeTEM_GB"] hyperpars = ["cost_stable_positive_scale", "cost_l2_scale"] # hyperpars = ['cost_stable_positive_scale', 'cost_stable_positive_offset'] goodness_pars = [ "rms", "no_pop_frac", "no_thresh_frac", "pop_abs_mis_median", "thresh_rel_mis_median", "wobble_qlkunstab", ] try: report = get_base_stats(target_names, hyperpars, goodness_pars) except Network.DoesNotExist: report = pd.DataFrame(columns=goodness_pars, index=["mean", "stddev", "stderr"]) query = ( Network.select( Network.id.alias("network_id"), PostprocessSlice, Postprocess.rms, Hyperparameters, ) .join(PostprocessSlice, JOIN.LEFT_OUTER) .switch(Network) .join(Postprocess, JOIN.LEFT_OUTER) .switch(Network) .where(Network.target_names == target_names) .switch(Network) .join(PureNetworkParams) .join(Hyperparameters) .where(Hyperparameters.cost_stable_positive_offset.cast("numeric") == -5) .where(Hyperparameters.cost_stable_positive_function == "block") ) if query.count() > 0: results = list(query.dicts()) df = pd.DataFrame(results) # df['network'] = df['network'].apply(lambda el: 'pure_' + str(el)) # df['l2_norm'] = df['l2_norm'].apply(np.nanmean) df.drop(["id", "network"], inplace=True, axis="columns") df.set_index("network_id", inplace=True) stats = df stats = stats.applymap(np.array) stats = stats.applymap(lambda x: x[0] if isinstance(x, np.ndarray) and len(x) == 1 else x) stats.dropna(axis="columns", how="all", inplace=True) stats.dropna(axis="rows", how="all", inplace=True) stats = stats.loc[:, hyperpars + goodness_pars] stats.reset_index(inplace=True) # stats.set_index(hyperpars, inplace=True) # stats.sort_index(ascending=False, inplace=True) # stats = stats.groupby(level=list(range(len(stats.index.levels)))).mean() #Average equal hyperpars # stats.reset_index(inplace=True) aggdict = {"network_id": lambda x: tuple(x)} aggdict.update({name: "mean" for name in goodness_pars}) stats_mean = stats.groupby(hyperpars).agg(aggdict) aggdict.update({name: "std" for name in goodness_pars}) stats_std = stats.groupby(hyperpars).agg(aggdict) stats = stats_mean.merge(stats_std, left_index=True, right_index=True, suffixes=("", "_std")) stats.reset_index(inplace=True) for name in hyperpars: stats[name] = stats[name].apply(str) for name in goodness_pars: fmt = lambda x: "" if np.isnan(x) else to_precision(x, 4) fmt_mean = stats[name].apply(fmt) stats[name + "_formatted"] = fmt_mean fmt = lambda x: "" if np.isnan(x) else to_precision(x, 2) fmt_std = stats[name + "_std"].apply(fmt) prepend = lambda x: "+- " + x if x != "" else x stats[name + "_std_formatted"] = fmt_std.apply(prepend) x = np.unique(stats[hyperpars[1]].values) x = sorted(x, key=lambda x: float(x)) y = np.unique(stats[hyperpars[0]].values) y = sorted(y, key=lambda x: float(x)) source = ColumnDataSource(stats) plotmode = "bokehz" hover = HoverTool( tooltips=[ ("network_id", "@network_id"), (hyperpars[0], "@" + hyperpars[0]), (hyperpars[1], "@" + hyperpars[1]), ] ) plots = [] for statname in goodness_pars: fmt = lambda x: "" if np.isnan(x) else to_precision(x, 2) title = "{:s} (ref={:s}±{:s})".format( statname, fmt(report[statname]["mean"]), fmt(report[statname]["stddev"] + report[statname]["stderr"]), ) p = figure(title=title, tools="tap", toolbar_location=None, x_range=x, y_range=y) p.add_tools(hover) color = linear_cmap(statname, "Viridis256", min(stats[statname]), max(stats[statname])) p.rect( x=hyperpars[1], y=hyperpars[0], width=1, height=1, source=source, fill_color=color, line_color=None, nonselection_fill_alpha=0.4, nonselection_fill_color=color, ) non_selected = Rect(fill_alpha=0.8) label_kwargs = dict( x=hyperpars[1], y=hyperpars[0], level="glyph", source=source, text_align="center", text_color="red", ) labels = LabelSet(text=statname + "_formatted", text_baseline="bottom", **label_kwargs) labels_std = LabelSet(text=statname + "_std_formatted", text_baseline="top", **label_kwargs) p.add_layout(labels) p.add_layout(labels_std) p.xaxis.axis_label = hyperpars[1] p.yaxis.axis_label = hyperpars[0] plots.append(p) from bokeh.layouts import layout, widgetbox title = Div(text=",".join(target_names)) l = layout([[title], [plots]]) show(l)
30.856322
99
0.67778
0
0
0
0
0
0
0
0
948
0.176536
c34c38cdb59ab3adcb9297c65de4aee9cda600b1
1,328
py
Python
py3canvas/tests/shared_brand_configs.py
tylerclair/py3canvas
7485d458606b65200f0ffa5bbe597a9d0bee189f
[ "MIT" ]
null
null
null
py3canvas/tests/shared_brand_configs.py
tylerclair/py3canvas
7485d458606b65200f0ffa5bbe597a9d0bee189f
[ "MIT" ]
null
null
null
py3canvas/tests/shared_brand_configs.py
tylerclair/py3canvas
7485d458606b65200f0ffa5bbe597a9d0bee189f
[ "MIT" ]
null
null
null
"""SharedBrandConfigs API Tests for Version 1.0. This is a testing template for the generated SharedBrandConfigsAPI Class. """ import unittest import requests import secrets from py3canvas.apis.shared_brand_configs import SharedBrandConfigsAPI from py3canvas.apis.shared_brand_configs import Sharedbrandconfig class TestSharedBrandConfigsAPI(unittest.TestCase): """Tests for the SharedBrandConfigsAPI.""" def setUp(self): self.client = SharedBrandConfigsAPI( secrets.instance_address, secrets.access_token ) def test_share_brandconfig_theme(self): """Integration test for the SharedBrandConfigsAPI.share_brandconfig_theme method.""" # This method utilises the POST request method and will make changes to the Canvas instance. This needs consideration. pass def test_update_shared_theme(self): """Integration test for the SharedBrandConfigsAPI.update_shared_theme method.""" # This method utilises the PUT request method and will make changes to the Canvas instance. This needs consideration. pass def test_un_share_brandconfig_theme(self): """Integration test for the SharedBrandConfigsAPI.un_share_brandconfig_theme method.""" id = None # Change me!! r = self.client.un_share_brandconfig_theme(id)
37.942857
126
0.752259
1,014
0.763554
0
0
0
0
0
0
668
0.503012
c34deabfbf09d812a3e974c9b52d0665996b8dda
1,095
py
Python
apps/cars/tests/api/abstract/abstract_base_api_test.py
agorsk1/car-rating-app
354c5933f4cbad69c9a57d1839f9086cd5cf9a1d
[ "MIT" ]
1
2022-03-03T11:15:25.000Z
2022-03-03T11:15:25.000Z
apps/cars/tests/api/abstract/abstract_base_api_test.py
agorsk1/car-rating-app
354c5933f4cbad69c9a57d1839f9086cd5cf9a1d
[ "MIT" ]
null
null
null
apps/cars/tests/api/abstract/abstract_base_api_test.py
agorsk1/car-rating-app
354c5933f4cbad69c9a57d1839f9086cd5cf9a1d
[ "MIT" ]
null
null
null
from abc import ABC, abstractmethod from django.test import TestCase from rest_framework.generics import GenericAPIView from rest_framework.test import APIRequestFactory from apps.cars.factory import UserFactory class AbstractBaseTest(object): class AbstractBaseApiTestCase(TestCase, ABC): """ Abstract Base TestCase class. """ def setUp(self) -> None: """Base setup""" self.user = UserFactory.create() self.request_factory = APIRequestFactory() self.view = self._view() self.endpoint = self._endpoint() @abstractmethod def _view(self) -> GenericAPIView.as_view(): """Abstract method that returns YourApiToTest.as_view()""" pass @abstractmethod def _endpoint(self) -> str: """Abstract method that return endpoint string E.g /cars/""" pass @abstractmethod def test_anonymous_request(self, *args, **kwargs) -> None: """test if anonymous user cannot access endpoint""" pass
29.594595
72
0.621918
877
0.800913
0
0
460
0.420091
0
0
238
0.217352
c34e3c84ae9852ef18383b6753e4f283c886e50c
995
py
Python
templating-tool.py
salayatana66/vw-serving-flask
7b91f986b0e03e9784cf481b1f8833508dc40bfb
[ "BSD-2-Clause-FreeBSD" ]
4
2020-10-01T17:31:00.000Z
2021-05-09T12:21:41.000Z
templating-tool.py
salayatana66/vw-serving-flask
7b91f986b0e03e9784cf481b1f8833508dc40bfb
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
templating-tool.py
salayatana66/vw-serving-flask
7b91f986b0e03e9784cf481b1f8833508dc40bfb
[ "BSD-2-Clause-FreeBSD" ]
2
2020-10-01T17:31:01.000Z
2020-10-02T17:48:01.000Z
""" A simple templating tool for Dockerfiles """ import sys import os import click import jinja2 import yaml @click.group() def cli(): """ @Unimplemented """ pass @cli.command() @click.argument("template", required=True, type=str) @click.option("-y", "--yaml_file", required=True, help="Yaml file with keys for template", type=str) def from_yaml(template, yaml_file): """ Fills in template file fields using the yaml_file """ temp_path = os.path.expanduser( os.path.expandvars(template)) yml_path = os.path.expanduser( os.path.expandvars(yaml_file)) with open(temp_path, 'r') as tfile: temp_jin = jinja2.Template(tfile.read()) with open(yml_path, 'r') as yfile: yml_loaded = yaml.load(yfile, Loader=yaml.BaseLoader) temp_rend = temp_jin.render(**yml_loaded) sys.stdout.write(temp_rend) sys.stdout.flush() cli.add_command(from_yaml) if __name__ == '__main__': cli()
19.509804
61
0.648241
0
0
0
0
811
0.815075
0
0
216
0.217085
c3508126a16d94b29f0bc62586532976da28f49d
11,552
py
Python
verbforms.py
wmcooper2/Clean-Code-English-Tests
a966ed40e13608a75bb618d35bf812d9229cacc3
[ "MIT" ]
null
null
null
verbforms.py
wmcooper2/Clean-Code-English-Tests
a966ed40e13608a75bb618d35bf812d9229cacc3
[ "MIT" ]
1
2018-09-02T12:46:41.000Z
2018-09-02T12:55:30.000Z
verbforms.py
wmcooper2/TotalEnglishAssistant
a966ed40e13608a75bb618d35bf812d9229cacc3
[ "MIT" ]
null
null
null
"""File for holding the different verb forms for all of the verbs in the Total English book series.""" verb_forms = { 'become' : { 'normal' : 'become', 'present' : ['become','becomes'], 'past' : 'became', 'past participle' : 'become', 'gerund' : 'becoming', }, 'be': { 'normal' : 'be', 'present' : ['am','is','are'], 'past' : ['was', 'were'], 'past participle' : 'been', 'gerund' : 'being', }, 'begin': { 'normal' : 'begin', 'present' : ['begin','begins'], 'past' : 'began', 'past participle' : 'begun', 'gerund' : 'beginning', }, 'blow': { 'normal' : 'blow', 'present' : ['blow', 'blows'], 'past' : 'blew', 'past participle' : 'blown', 'gerund' : 'blowing', }, 'bring': { 'normal' : 'bring', 'present' : ['bring','brings'], 'past' : 'brought', 'past participle' : 'brought', 'gerund' : 'bringing', }, 'build': { 'normal' : 'build', 'present' : ['build','builds'], 'past' : 'built', 'past participle' : 'built', 'gerund' : 'building', }, 'burn': { 'normal' : 'burn', 'present' : ['burn','burns'], 'past' : ['burned','burnt'], 'past participle' : ['burned','burnt'], 'gerund' : 'burning', }, 'buy': { 'normal' : 'buy', 'present' : ['buy','buys'], 'past' : 'bought', 'past participle' : 'bought', 'gerund' : 'buying', }, 'catch': { 'normal' : 'catch', 'present' : ['catch','catches'], 'past' : 'caught', 'past participle' : 'caught', 'gerund' : 'catching', }, 'choose': { 'normal' : 'choose', 'present' : ['choose','chooses'], 'past' : 'chose', 'past participle' : 'chosen', 'gerund' : 'choosing', }, 'come': { 'normal' : 'come', 'present' : ['come','comes'], 'past' : 'came', 'past participle' : 'come', 'gerund' : 'coming', }, 'cut': { 'normal' : 'cut', 'present' : ['cut','cuts'], 'past' : 'cut', 'past participle' : 'cut', 'gerund' : 'cutting', }, 'do': { 'normal' : 'do', 'present' : ['do','does'], 'past' : 'did', 'past participle' : 'done', 'gerund' : 'doing', }, 'drink': { 'normal' : 'drink', 'present' : ['drink','drinks'], 'past' : 'drank', 'past participle' : 'drunk', 'gerund' : 'drinking', }, 'eat': { 'normal' : 'eat', 'present' : ['eat','eats'], 'past' : 'ate', 'past participle' : 'eaten', 'gerund' : 'eating', }, 'feel': { 'normal' : 'feel', 'present' : ['feel','feels'], 'past' : 'felt', 'past participle' : 'felt', 'gerund' : 'feeling', }, 'fight': { 'normal' : 'fight', 'present' : ['fight','fights'], 'past' : 'fought', 'past participle' : 'fought', 'gerund' : 'fighting', }, 'find': { 'normal' : 'find', 'present' : ['find','finds'], 'past' : 'found', 'past participle' : 'found', 'gerund' : 'finding', }, 'fly': { 'normal' : 'fly', 'present' : ['fly','flies'], 'past' : 'flew', 'past participle' : 'flown', 'gerund' : 'flying', }, 'forget': { 'normal' : 'forget', 'present' : ['forget','forgets'], 'past' : 'forgot', 'past participle' : ['forgotten','forgot'], 'gerund' : 'forgetting', }, 'get': { 'normal' : 'get', 'present' : ['get','gets'], 'past' : 'got', 'past participle' : ['gotten','got'], 'gerund' : 'getting', }, 'give': { 'normal' : 'give', 'present' : ['give','gives'], 'past' : 'gave', 'past participle' : 'given', 'gerund' : 'giving', }, 'go': { 'normal' : 'go', 'present' : ['go','goes'], 'past' : 'went', 'past participle' : 'gone', 'gerund' : 'going', }, 'grow': { 'normal' : 'grow', 'present' : ['grow','grows'], 'past' : 'grew', 'past participle' : 'grown', 'gerund' : 'growing', }, 'have': { 'normal' : 'have', 'present' : ['have','has'], 'past' : 'had', 'past participle' : 'had', 'gerund' : 'having', }, 'hear': { 'normal' : 'hear', 'present' : ['hear','hears'], 'past' : 'heard', 'past participle' : 'heard', 'gerund' : 'hearing', }, 'hit': { 'normal' : 'hit', 'present' : ['hit','hits'], 'past' : 'hit', 'past participle' : 'hit', 'gerund' : 'hitting', }, 'hold': { 'normal' : 'hold', 'present' : ['hold','holds'], 'past' : 'held', 'past participle' : 'held', 'gerund' : 'holding', }, 'hurt': { 'normal' : 'hurt', 'present' : ['hurt','hurts'], 'past' : 'hurt', 'past participle' : 'hurt', 'gerund' : 'hurting', }, 'keep': { 'normal' : 'keep', 'present' : ['keep','keeps'], 'past' : 'kept', 'past participle' : 'kept', 'gerund' : 'keeping', }, 'know': { 'normal' : 'know', 'present' : ['know','knows'], 'past' : 'knew', 'past participle' : 'known', 'gerund' : 'knowing', }, 'lead': { 'normal' : 'lead', 'present' : ['lead','leads'], 'past' : 'led', 'past participle' : 'led', 'gerund' : 'leading', }, 'leave': { 'normal' : 'leave', 'present' : ['leave','leaves'], 'past' : 'left', 'past participle' : 'left', 'gerund' : 'leaving', }, 'lend': { 'normal' : 'lend', 'present' : ['lend','lends'], 'past' : 'lent', 'past participle' : 'lent', 'gerund' : 'lending', }, 'lie': { 'normal' : 'lie', 'present' : ['lie','lies'], 'past' : 'lay', 'past participle' : 'lain', 'gerund' : 'lying', }, 'lose': { 'normal' : 'lose', 'present' : ['lose','loses'], 'past' : 'lost', 'past participle' : 'lost', 'gerund' : 'losing', }, 'make': { 'normal' : 'make', 'present' : ['make','makes'], 'past' : 'made', 'past participle' : 'made', 'gerund' : 'making', }, 'mean': { 'normal' : 'mean', 'present' : ['mean','means'], 'past' : 'meant', 'past participle' : 'meant', 'gerund' : 'meaning', }, 'meet': { 'normal' : 'meet', 'present' : ['meet','meets'], 'past' : 'met', 'past participle' : 'met', 'gerund' : 'meeting', }, 'put': { 'normal' : 'put', 'present' : ['put','puts'], 'past' : 'put', 'past participle' : 'put', 'gerund' : 'putting', }, 'read': { 'normal' : 'read', 'present' : ['read','reads'], 'past' : 'read', 'past participle' : 'read', 'gerund' : 'reading', }, 'ride': { 'normal' : 'ride', 'present' : ['ride','rides'], 'past' : 'rode', 'past participle' : 'ridden', 'gerund' : 'riding', }, 'ring': { 'normal' : 'ring', 'present' : ['ring','rings'], 'past' : 'rang', 'past participle' : 'rung', 'gerund' : 'ringing', }, 'run': { 'normal' : 'run', 'present' : ['run','runs'], 'past' : 'ran', 'past participle' : 'run', 'gerund' : 'running', }, 'say': { 'normal' : 'say', 'present' : ['say','says'], 'past' : 'said', 'past participle' : 'said', 'gerund' : 'saying', }, 'see': { 'normal' : 'see', 'present' : ['see','sees'], 'past' : 'saw', 'past participle' : 'seen', 'gerund' : 'seeing', }, 'sell': { 'normal' : 'sell', 'present' : ['sell','sells'], 'past' : 'sold', 'past participle' : 'sold', 'gerund' : 'selling', }, 'send': { 'normal' : 'send', 'present' : ['send','sends'], 'past' : 'sent', 'past participle' : 'sent', 'gerund' : 'sending', }, 'shake': { 'normal' : 'shake', 'present' : ['shake','shakes'], 'past' : 'shook', 'past participle' : 'shaken', 'gerund' : 'shaking', }, 'show': { 'normal' : 'show', 'present' : ['show','shows'], 'past' : 'showed', 'past participle' : 'shown', 'gerund' : 'showing', }, 'shut': { 'normal' : 'shut', 'present' : ['shut','shuts'], 'past' : 'shut', 'past participle' : 'shut', 'gerund' : 'shutting', }, 'sing': { 'normal' : 'sing', 'present' : ['sing','sings'], 'past' : 'sang', 'past participle' : 'sung', 'gerund' : 'singing', }, 'sit': { 'normal' : 'sit', 'present' : ['sit','sits'], 'past' : 'sat', 'past participle' : 'sat', 'gerund' : 'sitting', }, 'sleep': { 'normal' : 'sleep', 'present' : ['sleep','sleeps'], 'past' : 'slept', 'past participle' : 'slept', 'gerund' : 'sleeping', }, 'smell': { 'normal' : 'smell', 'present' : ['smell','smells'], 'past' : 'smelled,smelt', 'past participle' : 'smelled,smelt', 'gerund' : 'smelling', }, 'speak': { 'normal' : 'speak', 'present' : ['speak','speaks'], 'past' : 'spoke', 'past participle' : 'spoken', 'gerund' : 'speaking', }, 'spend': { 'normal' : 'spend', 'present' : ['spend','spends'], 'past' : 'spent', 'past participle' : 'spent', 'gerund' : 'spending', }, 'stand': { 'normal' : 'stand', 'present' : ['stand','stands'], 'past' : 'stood', 'past participle' : 'stood', 'gerund' : 'standing', }, 'swim': { 'normal' : 'swim', 'present' : ['swim','swims'], 'past' : 'swam', 'past participle' : 'swum', 'gerund' : 'swimming', }, 'take': { 'normal' : 'take', 'present' : ['take','takes'], 'past' : 'took', 'past participle' : 'taken', 'gerund' : 'taking', }, 'teach': { 'normal' : 'teach', 'present' : ['teach','teaches'], 'past' : 'taught', 'past participle' : 'taught', 'gerund' : 'teaching', }, 'tell': { 'normal' : 'tell', 'present' : ['tell','tells'], 'past' : 'told', 'past participle' : 'told', 'gerund' : 'telling', }, 'think': { 'normal' : 'think', 'present' : ['think','thinks'], 'past' : 'thought', 'past participle' : 'thought', 'gerund' : 'thinking', }, 'throw': { 'normal' : 'throw', 'present' : ['throw','throws'], 'past' : 'threw', 'past participle' : 'thrown', 'gerund' : 'throwing', }, 'understand': { 'normal' : 'understand', 'present' : ['understand','understands'], 'past' : 'understood', 'past participle' : 'understood', 'gerund' : 'unerstanding', }, 'wear': { 'normal' : 'wear', 'present' : ['wear','wears'], 'past' : 'wore', 'past participle' : 'worn', 'gerund' : 'wearing', }, 'win': { 'normal' : 'win', 'present' : ['win','wins'], 'past' : 'won', 'past participle' : 'won', 'gerund' : 'winning', }, 'write': { 'normal' : 'write', 'present' : ['write','writes'], 'past' : 'wrote', 'past participle' : 'written', 'gerund' : 'writing',},}
18.814332
78
0.428497
0
0
0
0
0
0
0
0
6,678
0.578082
c3518b43a0aa4df0b06d8f5ad7ea43c927361987
169
py
Python
bokeh/themes/__init__.py
quasiben/bokeh
738343bd18c851dfd1fdc82cf35fe3eb4cdfd475
[ "BSD-3-Clause" ]
null
null
null
bokeh/themes/__init__.py
quasiben/bokeh
738343bd18c851dfd1fdc82cf35fe3eb4cdfd475
[ "BSD-3-Clause" ]
null
null
null
bokeh/themes/__init__.py
quasiben/bokeh
738343bd18c851dfd1fdc82cf35fe3eb4cdfd475
[ "BSD-3-Clause" ]
null
null
null
''' Provides API for loading themes ''' from __future__ import absolute_import from os.path import join from .theme import Theme default = Theme(json={}) del join
12.071429
38
0.739645
0
0
0
0
0
0
0
0
40
0.236686
c351ebb4f07cf7eccdee13a557a0b9df8efb0303
4,321
py
Python
files/spam-filter/tracspamfilter/captcha/keycaptcha.py
Puppet-Finland/puppet-trac
ffdf467ba80ff995778c30b0bdc6dc3e7d4e6cd3
[ "BSD-2-Clause" ]
null
null
null
files/spam-filter/tracspamfilter/captcha/keycaptcha.py
Puppet-Finland/puppet-trac
ffdf467ba80ff995778c30b0bdc6dc3e7d4e6cd3
[ "BSD-2-Clause" ]
null
null
null
files/spam-filter/tracspamfilter/captcha/keycaptcha.py
Puppet-Finland/puppet-trac
ffdf467ba80ff995778c30b0bdc6dc3e7d4e6cd3
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright (C) 2015 Dirk Stöcker <[email protected]> # All rights reserved. # # This software is licensed as described in the file COPYING, which # you should have received as part of this distribution. The terms # are also available at http://trac.edgewall.com/license.html. # # This software consists of voluntary contributions made by many # individuals. For the exact contribution history, see the revision # history and logs, available at http://projects.edgewall.com/trac/. import hashlib import random import urllib2 from trac.config import Option from trac.core import Component, implements from trac.util.html import tag from tracspamfilter.api import user_agent from tracspamfilter.captcha import ICaptchaMethod class KeycaptchaCaptcha(Component): """KeyCaptcha implementation""" implements(ICaptchaMethod) private_key = Option('spam-filter', 'captcha_keycaptcha_private_key', '', """Private key for KeyCaptcha usage.""", doc_domain="tracspamfilter") user_id = Option('spam-filter', 'captcha_keycaptcha_user_id', '', """User id for KeyCaptcha usage.""", doc_domain="tracspamfilter") def generate_captcha(self, req): session_id = "%d-3.4.0.001" % random.randint(1, 10000000) sign1 = hashlib.md5(session_id + req.remote_addr + self.private_key).hexdigest() sign2 = hashlib.md5(session_id + self.private_key).hexdigest() varblock = "var s_s_c_user_id = '%s';\n" % self.user_id varblock += "var s_s_c_session_id = '%s';\n" % session_id varblock += "var s_s_c_captcha_field_id = 'keycaptcha_response_field';\n" varblock += "var s_s_c_submit_button_id = 'keycaptcha_response_button';\n" varblock += "var s_s_c_web_server_sign = '%s';\n" % sign1 varblock += "var s_s_c_web_server_sign2 = '%s';\n" % sign2 varblock += "document.s_s_c_debugmode=1;\n" fragment = tag(tag.script(varblock, type='text/javascript')) fragment.append( tag.script(type='text/javascript', src='http://backs.keycaptcha.com/swfs/cap.js') ) fragment.append( tag.input(type='hidden', id='keycaptcha_response_field', name='keycaptcha_response_field') ) fragment.append( tag.input(type='submit', id='keycaptcha_response_button', name='keycaptcha_response_button') ) req.session['captcha_key_session'] = session_id return None, fragment def verify_key(self, private_key, user_id): if private_key is None or user_id is None: return False # FIXME - Not yet implemented return True def verify_captcha(self, req): session = None if 'captcha_key_session' in req.session: session = req.session['captcha_key_session'] del req.session['captcha_key_session'] response_field = req.args.get('keycaptcha_response_field') val = response_field.split('|') s = hashlib.md5('accept' + val[1] + self.private_key + val[2]).hexdigest() self.log.debug("KeyCaptcha response: %s .. %s .. %s", response_field, s, session) if s == val[0] and session == val[3]: try: request = urllib2.Request( url=val[2], headers={"User-agent": user_agent} ) response = urllib2.urlopen(request) return_values = response.read() response.close() except Exception, e: self.log.warning("Exception in KeyCaptcha handling (%s)", e) else: self.log.debug("KeyCaptcha check result: %s", return_values) if return_values == '1': return True self.log.warning("KeyCaptcha returned invalid check result: " "%s (%s)", return_values, response_field) else: self.log.warning("KeyCaptcha returned invalid data: " "%s (%s,%s)", response_field, s, session) return False def is_usable(self, req): return self.private_key and self.user_id
38.238938
82
0.610507
3,566
0.825081
0
0
0
0
0
0
1,600
0.370199
c353ac7f88d4d2f15d7dbe0bb2a19e95c08d7680
3,222
py
Python
app/model/causalnex.py
splunk/splunk-mltk-container-docker
6e98e5984d99d7a3318f3e68c224d2a5163b717b
[ "Apache-2.0" ]
20
2019-10-28T10:10:00.000Z
2022-02-17T02:31:54.000Z
app/model/causalnex.py
splunk/splunk-mltk-container-docker
6e98e5984d99d7a3318f3e68c224d2a5163b717b
[ "Apache-2.0" ]
13
2019-11-22T16:00:02.000Z
2022-01-12T10:57:08.000Z
app/model/causalnex.py
splunk/splunk-mltk-container-docker
6e98e5984d99d7a3318f3e68c224d2a5163b717b
[ "Apache-2.0" ]
15
2019-10-25T23:19:43.000Z
2022-03-27T16:49:21.000Z
#!/usr/bin/env python # coding: utf-8 # In[18]: # this definition exposes all python module imports that should be available in all subsequent commands import json import numpy as np import pandas as pd from causalnex.structure import DAGRegressor from sklearn.model_selection import cross_val_score from sklearn.preprocessing import StandardScaler from sklearn.model_selection import KFold # ... # global constants MODEL_DIRECTORY = "/srv/app/model/data/" # In[22]: # this cell is not executed from MLTK and should only be used for staging data into the notebook environment def stage(name): with open("data/"+name+".csv", 'r') as f: df = pd.read_csv(f) with open("data/"+name+".json", 'r') as f: param = json.load(f) return df, param # In[24]: # initialize your model # available inputs: data and parameters # returns the model object which will be used as a reference to call fit, apply and summary subsequently def init(df,param): model = DAGRegressor( alpha=0.1, beta=0.9, fit_intercept=True, hidden_layer_units=None, dependent_target=True, enforce_dag=True, ) return model # In[26]: # train your model # returns a fit info json object and may modify the model object def fit(model,df,param): target=param['target_variables'][0] #Data prep for processing y_p = df[target] y = y_p.values X_p = df[param['feature_variables']] X = X_p.to_numpy() X_col = list(X_p.columns) #Scale the data ss = StandardScaler() X_ss = ss.fit_transform(X) y_ss = (y - y.mean()) / y.std() scores = cross_val_score(model, X_ss, y_ss, cv=KFold(shuffle=True, random_state=42)) print(f'MEAN R2: {np.mean(scores).mean():.3f}') X_pd = pd.DataFrame(X_ss, columns=X_col) y_pd = pd.Series(y_ss, name=target) model.fit(X_pd, y_pd) info = pd.Series(model.coef_, index=X_col) #info = pd.Series(model.coef_, index=list(df.drop(['_time'],axis=1).columns)) return info # In[28]: # apply your model # returns the calculated results def apply(model,df,param): data = [] for col in list(df.columns): s = model.get_edges_to_node(col) for i in s.index: data.append([i,col,s[i]]); graph = pd.DataFrame(data, columns=['src','dest','weight']) #results to send back to Splunk graph_output=graph[graph['weight']>0] return graph_output # In[ ]: # save model to name in expected convention "<algo_name>_<model_name>" def save(model,name): #with open(MODEL_DIRECTORY + name + ".json", 'w') as file: # json.dump(model, file) return model # In[ ]: # load model from name in expected convention "<algo_name>_<model_name>" def load(name): model = {} #with open(MODEL_DIRECTORY + name + ".json", 'r') as file: # model = json.load(file) return model # In[ ]: # return a model summary def summary(model=None): returns = {"version": {"numpy": np.__version__, "pandas": pd.__version__} } return returns
16.272727
108
0.624146
0
0
0
0
0
0
0
0
1,305
0.405028
c3545eaf7cf8c0dfbca19e2063b2250b17a5d6be
6,500
py
Python
Assignment1/Q4/q4.py
NavneelSinghal/COL774
d8b473b9cd05984ef4ffe8642ce3ce5cb9a17252
[ "MIT" ]
null
null
null
Assignment1/Q4/q4.py
NavneelSinghal/COL774
d8b473b9cd05984ef4ffe8642ce3ce5cb9a17252
[ "MIT" ]
null
null
null
Assignment1/Q4/q4.py
NavneelSinghal/COL774
d8b473b9cd05984ef4ffe8642ce3ce5cb9a17252
[ "MIT" ]
null
null
null
import matplotlib import matplotlib.pyplot as plt import matplotlib.animation as animation matplotlib.use('Agg') import math import numpy as np import sys from os.path import join, isfile import warnings warnings.filterwarnings("ignore") def gda(x, y): x = x.T y = y.T # phi = P(y = 1) # mu[i] = mean of the feature vectors of the ith class # sigma = common co-variance matrix # M[i] = number of data points of class i phi, mu, sigma, M = 0, np.array([0., 0.]), 0, np.array([0, 0]) m = y.shape[0] M[1] = np.sum(y) M[0] = m - M[1] phi = M[1] / m mu = np.array([np.sum(np.array([x[j] for j in range(m) if y[j] == i]), axis=0) / M[i] for i in range(2)]) sigma = np.sum(np.array([np.outer(x[i] - mu[y[i]], x[i] - mu[y[i]]) for i in range(m)]), axis=0).astype(float) / m return phi, mu, sigma def gda_general(x, y): x = x.T y = y.T # phi = P(y = 1) # mu[i] = mean of the feature vectors of the ith class # sigma[i] = co-variance matrix for the ith class # M[i] = number of data points of class i phi, mu, sigma, M = 0, np.array([0., 0.]), 0, np.array([0, 0]) m = y.shape[0] M[1] = np.sum(y) M[0] = m - M[1] phi = M[1] / m mu = np.array([np.sum(np.array([x[j] for j in range(m) if y[j] == i]), axis=0) / M[i] for i in range(2)]) sigma = np.array([np.sum(np.array([np.outer(x[i] - mu[k], x[i] - mu[k]) for i in range(m) if y[i] == k]), axis=0) / M[k] for k in range(2)]).astype(float) return phi, mu, sigma def main(): # read command-line arguments data_dir = sys.argv[1] out_dir = sys.argv[2] part = sys.argv[3] # check for existence of input files for c in ['x', 'y']: if not isfile(join(data_dir, 'q4' + c + '.dat')): raise Exception('q4' + c + '.dat not found') # read from csv file x = np.array(np.genfromtxt(join(data_dir, 'q4x.dat'))).T y = np.array([0 if yi == 'Alaska' else 1 for yi in np.loadtxt(join(data_dir, 'q4y.dat'), dtype=str)]) # normalisation x_mean = np.array([0.0] * 2) x_stddev = np.array([0.0] * 2) for i in range(2): x_mean[i] = np.mean(x[i]) x[i] -= np.full_like(x[i], np.mean(x[i])) x_stddev[i] = np.sqrt(np.sum(x[i] ** 2) / x[i].shape[0]) x[i] /= np.sqrt(np.sum(x[i] ** 2) / x[i].shape[0]) # part A # running GDA with common co-variance matrix phi, mu, sigma = gda(x, y) if part == 'a': output_file = open(join(out_dir, '4aoutput.txt'), mode='w') output_file.write('phi = ' + str(phi) + '\n') output_file.write('mu[0] = ' + str(mu[0]) + '\n') output_file.write('mu[1] = ' + str(mu[1]) + '\n') output_file.write('sigma = \n' + str(sigma) + '\n') output_file.close() print('phi = ' + str(phi)) print('mu[0] = ' + str(mu[0])) print('mu[1] = ' + str(mu[1])) print('sigma = \n' + str(sigma)) return 0 # part B, C fig4b, ax4b = plt.subplots() # filter by y-values x0, x1 = [], [] for i in range(y.shape[0]): if y[i] == 0: x0.append([x[0][i], x[1][i]]) else: x1.append([x[0][i], x[1][i]]) x0 = np.array(x0).T x1 = np.array(x1).T # plot classes alaska = ax4b.scatter(x0[0] * x_stddev[0] + x_mean[0], x0[1] * x_stddev[1] + x_mean[1], c='red', s=6) canada = ax4b.scatter(x1[0] * x_stddev[0] + x_mean[0], x1[1] * x_stddev[1] + x_mean[1], c='blue', s=6) ax4b.set_xlabel('Fresh water ring dia.') ax4b.set_ylabel('Marine water ring dia.') fig4b.legend((alaska, canada), ('Alaska', 'Canada')) if part == 'b': fig4b.savefig(join(out_dir, '1b_plot.png')) plt.show() return 0 # linear boundary computation - equation in report sigma_inverse = np.linalg.inv(sigma) theta = np.array([0., 0., 0.]) theta[0] = np.log(phi / (1 - phi)) for i in range(2): mui = np.array([mu[i]]) theta[0] += ((-1) ** i) * np.matmul(np.matmul(mui, sigma_inverse), mui.T) theta[1:] = np.matmul(np.array([mu[1] - mu[0]]), sigma_inverse) # plotting the boundary rx = np.arange(-3, 4) ry = (-theta[0] - theta[1] * rx) / theta[2] ax4b.plot(rx * x_stddev[0] + x_mean[0], ry * x_stddev[1] + x_mean[1]) #plt.show() if part == 'c': fig4b.savefig(join(out_dir, '1c_plot.png')) plt.show() return 0 # part D # running generalised GDA phi, mu, sigma = gda_general(x, y) if part == 'd': output_file = open(join(out_dir, '4doutput.txt'), mode='w') output_file.write('phi = ' + str(phi) + '\n') output_file.write('mu[0] = ' + str(mu[0]) + '\n') output_file.write('mu[1] = ' + str(mu[1]) + '\n') output_file.write('sigma[0] = \n' + str(sigma[0]) + '\n') output_file.write('sigma[1] = \n' + str(sigma[1]) + '\n') output_file.close() print('phi = ' + str(phi)) print('mu[0] = ' + str(mu[0])) print('mu[1] = ' + str(mu[1])) print('sigma[0] = \n' + str(sigma[0])) print('sigma[1] = \n' + str(sigma[1])) return 0 # part E # quadratic boundary computation - equation in report constant = np.log(phi / (1 - phi)) + np.log(np.linalg.det(sigma[0]) / np.linalg.det(sigma[1])) / 2 linear = 0 quadratic = 0 for i in range(2): sigma_inverse = np.linalg.inv(sigma[i]) mui = np.array([mu[i]]) prod = np.matmul(mui, sigma_inverse) constant += ((-1) ** i) * np.matmul(prod, mui.T) / 2 linear += ((-1) ** (i + 1)) * prod quadratic += ((-1) ** i) * sigma_inverse / 2 constant = constant[0][0] linear = linear[0] # note that here x transposed is the feature vector (as x is a row vector) # and similarly mu[i] is also a row vector, which explains the equations above # equation is x * quadratic * x.T + linear * x.T + constant = 0 # plotting the quadratic boundary Z = 0 X, Y = np.meshgrid(np.linspace(-4, 4, 100), np.linspace(-4, 4, 100)) Z += quadratic[0, 0] * (X ** 2) + (quadratic[0, 1] + quadratic[1, 0]) * X * Y + (quadratic[1, 1]) * (Y ** 2) Z += linear[0] * X + linear[1] * Y Z += constant ax4b.contour(X * x_stddev[0] + x_mean[0], Y * x_stddev[1] + x_mean[1], Z, 0) if part == 'e': fig4b.savefig(join(out_dir, '1e_plot.png')) plt.show() # part F - in the report return 0 if __name__ == '__main__': main()
31.400966
158
0.534923
0
0
0
0
0
0
0
0
1,432
0.220308
c35493185a871b0c5b3f41a18ba8dd0865c75b5e
1,521
py
Python
var/spack/repos/builtin/packages/bcache/package.py
milljm/spack
b476f8aa63d48f4b959522ece0406caa32992d4a
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
var/spack/repos/builtin/packages/bcache/package.py
milljm/spack
b476f8aa63d48f4b959522ece0406caa32992d4a
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
var/spack/repos/builtin/packages/bcache/package.py
milljm/spack
b476f8aa63d48f4b959522ece0406caa32992d4a
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Bcache(MakefilePackage): """Bcache is a patch for the Linux kernel to use SSDs to cache other block devices.""" homepage = "http://bcache.evilpiepirate.org" url = "https://github.com/g2p/bcache-tools/archive/v1.0.8.tar.gz" version('1.0.8', sha256='d56923936f37287efc57a46315679102ef2c86cd0be5874590320acd48c1201c') version('1.0.7', sha256='64d76d1085afba8c3d5037beb67bf9d69ee163f357016e267bf328c0b1807abd') version('1.0.6', sha256='9677c6da3ceac4e1799d560617c4d00ea7e9d26031928f8f94b8ab327496d4e0') version('1.0.5', sha256='1449294ef545b3dc6f715f7b063bc2c8656984ad73bcd81a0dc048cbba416ea9') version('1.0.4', sha256='102ffc3a8389180f4b491188c3520f8a4b1a84e5a7ca26d2bd6de1821f4d913d') depends_on('libuuid') depends_on('util-linux') depends_on('gettext') depends_on('pkgconfig', type='build') def setup_build_environment(self, env): env.append_flags('LDFLAGS', '-lintl') patch('func_crc64.patch', sha256='558b35cadab4f410ce8f87f0766424a429ca0611aa2fd247326ad10da115737d') def install(self, spec, prefix): mkdirp(prefix.bin) install('bcache-register', prefix.bin) install('bcache-super-show', prefix.bin) install('make-bcache', prefix.bin) install('probe-bcache', prefix.bin)
40.026316
104
0.738988
1,300
0.854701
0
0
0
0
0
0
952
0.625904
c354a245e57f7c727ba4576fb602286db50cc1a3
645
py
Python
core/migrations/0010_wagtailsitepage_screenshot.py
admariner/madewithwagtail
a43b3263c0f151ece4994fccd561b0575db4979f
[ "MIT" ]
null
null
null
core/migrations/0010_wagtailsitepage_screenshot.py
admariner/madewithwagtail
a43b3263c0f151ece4994fccd561b0575db4979f
[ "MIT" ]
null
null
null
core/migrations/0010_wagtailsitepage_screenshot.py
admariner/madewithwagtail
a43b3263c0f151ece4994fccd561b0575db4979f
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.7 on 2017-11-21 23:50 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('core', '0009_wagtail112upgrade'), ] operations = [ migrations.RenameField( model_name='wagtailsitepage', old_name='image_desktop', new_name='site_screenshot', ), migrations.RemoveField( model_name='wagtailsitepage', name='image_phone', ), migrations.RemoveField( model_name='wagtailsitepage', name='image_tablet', ), ]
22.241379
48
0.568992
534
0.827907
0
0
0
0
0
0
211
0.327132
c3556300b12020a7a08798e9741d8eecbab08f07
1,555
py
Python
circuitpython/schedule.py
Flameeyes/birch-books-smarthome
245a8afc848b2a8cf4dbcde31b36716b44937200
[ "MIT" ]
null
null
null
circuitpython/schedule.py
Flameeyes/birch-books-smarthome
245a8afc848b2a8cf4dbcde31b36716b44937200
[ "MIT" ]
null
null
null
circuitpython/schedule.py
Flameeyes/birch-books-smarthome
245a8afc848b2a8cf4dbcde31b36716b44937200
[ "MIT" ]
null
null
null
# SPDX-FileCopyrightText: © 2020 The birch-books-smarthome Authors # SPDX-License-Identifier: MIT BOOKSTORE_GROUND_FLOOR = 0x0007 BOOKSTORE_FIRST_FLOOR = 0x0008 BOOKSTORE_TERRARIUM = 0x0010 BOOKSTORE_BEDROOM = 0x0020 HOUSE_BASEMENT = 0x0040 HOUSE_GROUND_FLOOR = 0x0380 HOUSE_BEDROOM_LIGHT = 0x0400 HOUSE_BEDROOM_LAMP = 0x0800 HOUSE_FIREPLACE_1 = 0x1000 HOUSE_FIREPLACE_2 = 0x2000 SCHEDULE = [ BOOKSTORE_BEDROOM | HOUSE_BEDROOM_LIGHT, BOOKSTORE_TERRARIUM | BOOKSTORE_BEDROOM | HOUSE_BEDROOM_LIGHT, BOOKSTORE_TERRARIUM | BOOKSTORE_FIRST_FLOOR | HOUSE_BEDROOM_LIGHT, BOOKSTORE_TERRARIUM | BOOKSTORE_GROUND_FLOOR | HOUSE_GROUND_FLOOR, BOOKSTORE_TERRARIUM | BOOKSTORE_GROUND_FLOOR | HOUSE_GROUND_FLOOR, BOOKSTORE_TERRARIUM | BOOKSTORE_GROUND_FLOOR, BOOKSTORE_TERRARIUM | BOOKSTORE_GROUND_FLOOR, BOOKSTORE_TERRARIUM | BOOKSTORE_GROUND_FLOOR, BOOKSTORE_TERRARIUM | BOOKSTORE_GROUND_FLOOR, BOOKSTORE_TERRARIUM | BOOKSTORE_GROUND_FLOOR | HOUSE_GROUND_FLOOR, BOOKSTORE_TERRARIUM | BOOKSTORE_FIRST_FLOOR | HOUSE_GROUND_FLOOR, BOOKSTORE_TERRARIUM | BOOKSTORE_FIRST_FLOOR | HOUSE_BASEMENT | HOUSE_BEDROOM_LIGHT, BOOKSTORE_TERRARIUM | BOOKSTORE_BEDROOM | HOUSE_BASEMENT | HOUSE_BEDROOM_LAMP, BOOKSTORE_BEDROOM | HOUSE_BEDROOM_LAMP, 0, 0, ] TEST_SCHEDULE = [ BOOKSTORE_GROUND_FLOOR, BOOKSTORE_FIRST_FLOOR, BOOKSTORE_TERRARIUM, BOOKSTORE_BEDROOM, HOUSE_BASEMENT, HOUSE_GROUND_FLOOR, HOUSE_BEDROOM_LIGHT, HOUSE_BEDROOM_LAMP, HOUSE_FIREPLACE_1, HOUSE_FIREPLACE_2, ]
33.804348
87
0.803859
0
0
0
0
0
0
0
0
97
0.062339
c3561322c8fe83a3cce278173951cb1c3bdb4ed4
284
py
Python
imdb/utils.py
rinkurajole/imdb_sanic_app
502852b911eb2cfdc5dfcdb4fba585b91e2ce7c6
[ "BSD-3-Clause" ]
null
null
null
imdb/utils.py
rinkurajole/imdb_sanic_app
502852b911eb2cfdc5dfcdb4fba585b91e2ce7c6
[ "BSD-3-Clause" ]
null
null
null
imdb/utils.py
rinkurajole/imdb_sanic_app
502852b911eb2cfdc5dfcdb4fba585b91e2ce7c6
[ "BSD-3-Clause" ]
null
null
null
import bcrypt salt = bcrypt.gensalt() def generate_hash(passwd, salt=salt): return str(bcrypt.hashpw(passwd, salt)) def match_password(req_pwd, db_pwd): db_pwd = db_pwd.replace('b\'','').replace('\'','').encode('utf-8') return db_pwd == bcrypt.hashpw(req_pwd, db_pwd)
23.666667
70
0.683099
0
0
0
0
0
0
0
0
20
0.070423
c3562d1b40f2737d409b58bb9f4467b0ae1bbe8c
14,200
py
Python
test/test_modules/test_math.py
dragonteros/unsuspected-hangeul
52dda3768809f5ba91e4fd7bb754223737b2da3d
[ "MIT" ]
62
2019-02-24T17:45:04.000Z
2021-06-14T07:34:57.000Z
test/test_modules/test_math.py
dragonteros/unsuspected-hangeul
52dda3768809f5ba91e4fd7bb754223737b2da3d
[ "MIT" ]
11
2019-02-25T17:19:45.000Z
2020-07-18T05:04:17.000Z
test/test_modules/test_math.py
dragonteros/unsuspected-hangeul
52dda3768809f5ba91e4fd7bb754223737b2da3d
[ "MIT" ]
2
2019-02-25T07:51:14.000Z
2019-09-23T12:36:08.000Z
from test.test_base import TestBase class TestMath(TestBase): def test_isclose(self): _test = self._assert_execute _test('ㄹ (ㄱㅇㄱ ㄱㅇㄱ ㄴㄱ ㅅㅎㄷ ㄱㅎㄷ ㄴ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ)ㅎㄴ', 'True') _test('ㅂ ㅅ ㅂ ㅂㅎㄹ (ㄱㅇㄱ ㄱㅇㄱ ㄴㄱ ㅅㅎㄷ ㄱㅎㄷ ㄴ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ)ㅎㄴ', 'True') _test('ㅂ ㅅ ㅈ ㅂㅎㄹ (ㄱㅇㄱ ㄱㅇㄱ ㄴㄱ ㅅㅎㄷ ㄱㅎㄷ ㄴ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ)ㅎㄴ', 'True') _test('ㅈㅈㅈ ㄴㄱ ㅅㅎㄷ ㅅㅈㅈ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷ', 'False') _test('ㅈㅈㅈㅈㅈㅈㅈ ㄴㄱ ㅅㅎㄷ ㅅㅈㅈㅈㅈㅈㅈ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷ', 'False') _test('ㅅㄷㄱ ㅈ ㄴㄱ ㅅㅎㄷ ㄱㅎㄷ (ㅂ ㅅ ㅂ ㅂㅎㄹ) (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷ', 'False') _test('ㄴㅈㄱㄹㄴㄹㄱ ㅅㄴㅂㄱㄱㄴㄱ ㄴㄱ ㅅㅎㄷ ㄱㅎㄷ (ㅂ ㅅ ㅂ ㅂㅎㄹ) (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷ', 'True') _test('(ㅂ ㅅ ㅈ ㅂㅎㄹ) (ㄱ ㅂ ㅅ ㅂ ㅂㅎㄹ ㅄㅎㄷ) ㅅㅎㄷ, ㄴㄱ, (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷ', 'True') _test('ㄱㄴ ㄷ (ㄱㅇㄱ ㄴㅇㄱ ㄴㄱ ㅅㅎㄷ ㅅㅎㄷ ㄴㅇㄱ ㅅㅎㄷ, ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ)ㅎㄷ', 'True') _test('ㄱㄴ ㄹ (ㄱㅇㄱ ㄴㅇㄱ ㄴㄱ ㅅㅎㄷ ㅅㅎㄷ ㄴㅇㄱ ㅅㅎㄷ, ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ)ㅎㄷ', 'True') _test('ㄱㄴ ㅁ (ㄱㅇㄱ ㄴㅇㄱ ㄴㄱ ㅅㅎㄷ ㅅㅎㄷ ㄴㅇㄱ ㅅㅎㄷ, ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ)ㅎㄷ', 'True') _test('ㄴㄱ ㄷ (ㄱㅇㄱ ㄴㅇㄱ ㄴㄱ ㅅㅎㄷ ㅅㅎㄷ ㄴㅇㄱ ㅅㅎㄷ, ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ)ㅎㄷ', 'True') _test('ㄴㄱ ㄹ (ㄱㅇㄱ ㄴㅇㄱ ㄴㄱ ㅅㅎㄷ ㅅㅎㄷ ㄴㅇㄱ ㅅㅎㄷ, ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ)ㅎㄷ', 'True') _test('ㄴㄱ ㅁ (ㄱㅇㄱ ㄴㅇㄱ ㄴㄱ ㅅㅎㄷ ㅅㅎㄷ ㄴㅇㄱ ㅅㅎㄷ, ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ)ㅎㄷ', 'True') def test_isnan(self): _test = self._assert_execute _test('(ㅂ ㅅ ㄴ ㅂㅎㄹ) (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('(ㅂ ㅅ ㅁ ㅂㅎㄹ) (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'False') _test('ㄱ (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'False') _test('ㄴ (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'False') _test('(ㅂ ㅅ ㄴ ㅂㅎㄹ) ㄴ ㅄㅎㄷ (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('ㄱ (ㅂ ㅅ ㄴ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('ㄴ (ㅂ ㅅ ㄴ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('(ㅂ ㅅ ㄴ ㅂㅎㄹ) (ㅂ ㅅ ㄴ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('(ㅂ ㅅ ㅁ ㅂㅎㄹ) (ㅂ ㅅ ㄴ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('(ㅂ ㅅ ㄴ ㅂㅎㄹ) (ㅂ ㅅ ㅁ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('ㅂ ㅅ ㅁ ㅂㅎㄹ ㄴㄱ ㄱㅎㄷ (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'False') _test('(ㅂ ㅅ ㅁ ㅂㅎㄹ) ㄴ ㅄㅎㄷ (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'False') _test('ㄱ (ㅂ ㅅ ㅁ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'False') _test('ㄴ (ㅂ ㅅ ㅁ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'False') _test('(ㅂ ㅅ ㅁ ㅂㅎㄹ) (ㅂ ㅅ ㅁ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'False') _test('ㄱ (ㅂ ㅅ ㅁ ㅂㅎㄹ ㄴㄱ ㄱㅎㄷ) ㅄㅎㄷ (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'False') _test('ㄱ (ㅂ ㅅ ㅁ ㅂㅎㄹ ㄴㄱ ㄱㅎㄷ) ㅄㅎㄷ (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'False') def test_isinf(self): _test = self._assert_execute _test('(ㅂ ㅅ ㅁ ㅂㅎㄹ) (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('(ㅂ ㅅ ㄴ ㅂㅎㄹ) (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'False') _test('ㄱ (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'False') _test('ㄴ (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'False') _test('ㅂ ㅅ ㅁ ㅂㅎㄹ ㄴㄱ ㄱㅎㄷ (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('(ㅂ ㅅ ㅁ ㅂㅎㄹ) ㄴ ㅄㅎㄷ (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('(ㅂ ㅅ ㅁ ㅂㅎㄹ ㄴㄱ ㄱㅎㄷ) ㄴ ㅄㅎㄷ (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('(ㅂ ㅅ ㅁ ㅂㅎㄹ) (ㅂ ㅅ ㄴ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('ㄱ (ㅂ ㅅ ㅁ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('ㄴ (ㅂ ㅅ ㅁ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('(ㅂ ㅅ ㄴ ㅂㅎㄹ) (ㅂ ㅅ ㅁ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('(ㅂ ㅅ ㅁ ㅂㅎㄹ) (ㅂ ㅅ ㅁ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('ㄱ (ㅂ ㅅ ㅁ ㅂㅎㄹ ㄴㄱ ㄱㅎㄷ) ㅄㅎㄷ (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('(ㅂ ㅅ ㄴ ㅂㅎㄹ) ㄴ ㅄㅎㄷ (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'False') _test('ㄱ (ㅂ ㅅ ㄴ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'False') _test('ㄴ (ㅂ ㅅ ㄴ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'False') _test('(ㅂ ㅅ ㄴ ㅂㅎㄹ) (ㅂ ㅅ ㄴ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'False') def test_abs(self): _test = self._assert_execute _test('ㄱ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '0') _test('ㄱ ㄷ ㄴㄱ ㅅㅎㄷ ㄱㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '0.0') _test('ㄱ ㅄㅎㄴ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '0.0') _test('ㄴ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '1') _test('ㄴㄱ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '1') _test('ㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '2') _test('ㄷㄱ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '2') _test('ㄷ ㄴㄱ ㅅㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '0.5') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '0.5') _test('ㅁ ㄴㄱ ㅅㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '0.25') _test('ㅁㄱ ㄴㄱ ㅅㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '0.25') _test('ㄴ ㅄㅎㄴ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '1.0') _test('ㄴㄱ ㅄㅎㄴ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '1.0') _test('ㄷ ㄴㄱ ㅅㅎㄷ ㅄㅎㄴ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '0.5') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ ㅄㅎㄴ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '0.5') _test('ㄱ ㄴ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '1.0') _test('ㄱ ㄴㄱ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '1.0') _test('ㄱ ㄷ ㄴㄱ ㅅㅎㄷ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '0.5') _test('ㄱ ㄷㄱ ㄴㄱ ㅅㅎㄷ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '0.5') _test('ㄹ ㅁ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㅂ ㅂ ㅅ ㄱ ㅂㅎㅀㄷ', 'True') _test('ㄹㄱ ㅁ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㅂ ㅂ ㅅ ㄱ ㅂㅎㅀㄷ', 'True') _test('ㄹ ㅁㄱ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㅂ ㅂ ㅅ ㄱ ㅂㅎㅀㄷ', 'True') _test('ㄹㄱ ㅁㄱ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㅂ ㅂ ㅅ ㄱ ㅂㅎㅀㄷ', 'True') _test('ㅂ ㅁㄴㄱ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㅂㄴㄱ ㅂ ㅅ ㄱ ㅂㅎㅀㄷ', 'True') _test('ㅂㄱ ㅁㄴㄱ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㅂㄴㄱ ㅂ ㅅ ㄱ ㅂㅎㅀㄷ', 'True') _test('ㅂ ㅁㄴ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㅂㄴㄱ ㅂ ㅅ ㄱ ㅂㅎㅀㄷ', 'True') _test('ㅂㄱ ㅁㄴ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㅂㄴㄱ ㅂ ㅅ ㄱ ㅂㅎㅀㄷ', 'True') _test('ㄴㄱ ㄷ ㄴㄱ ㅅㅎㄷ ㅅㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㄴ ㅂ ㅅ ㄱ ㅂㅎㅀㄷ', 'True') _test('ㄴㄱ ㄹ ㄴㄱ ㅅㅎㄷ ㅅㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㄴ ㅂ ㅅ ㄱ ㅂㅎㅀㄷ', 'True') _test('ㄴㄱ ㅁ ㄴㄱ ㅅㅎㄷ ㅅㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㄴ ㅂ ㅅ ㄱ ㅂㅎㅀㄷ', 'True') _test('ㅁㄱ ㄷ ㄴㄱ ㅅㅎㄷ ㅅㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㄷ ㅂ ㅅ ㄱ ㅂㅎㅀㄷ', 'True') _test('ㄱㄴ ㄹ ㄴㄱ ㅅㅎㄷ ㅅㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㄷ ㅂ ㅅ ㄱ ㅂㅎㅀㄷ', 'True') _test('ㄱㄷ ㅁ ㄴㄱ ㅅㅎㄷ ㅅㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㄷ ㅂ ㅅ ㄱ ㅂㅎㅀㄷ', 'True') def test_log(self): _test = self._assert_execute _test('ㄴ [((ㅂ ㅅ ㅈ ㅂㅎㄹ) (ㄱㅇㄱ ㅂ ㅅ ㄺ ㅂㅎㅀㄴ) ㅅㅎㄷ) ㄱㅇㄱ ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') _test('ㄴㄱ [(ㅂ ㅅ ㅈ ㅂㅎㄹ (ㄱㅇㄱ ㅂ ㅅ ㄺ ㅂㅎㅀㄴ) ㅅㅎㄷ) ㄱㅇㄱ ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') _test('ㄷㄱ [(ㅂ ㅅ ㅈ ㅂㅎㄹ (ㄱㅇㄱ ㅂ ㅅ ㄺ ㅂㅎㅀㄴ) ㅅㅎㄷ) ㄱㅇㄱ ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') _test('ㄷ [(ㅂ ㅅ ㅈ ㅂㅎㄹ (ㄱㅇㄱ ㅂ ㅅ ㄺ ㅂㅎㅀㄴ) ㅅㅎㄷ) ㄱㅇㄱ ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') _test('ㄴㄱ ㄹ ㄴㄱ ㅅㅎㄷ ㅅㅎㄷ [(ㅂ ㅅ ㅈ ㅂㅎㄹ (ㄱㅇㄱ ㅂ ㅅ ㄺ ㅂㅎㅀㄴ) ㅅㅎㄷ) ㄱㅇㄱ ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') def test_trig(self): _test = self._assert_execute _test('ㄱ (ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ) ㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷ', 'True') _test('[ㅈㄱ ㅅㄱ ㅂㄱ ㅁㄱ ㄺ ㄷㄱ ㄴㄱ ㄱ ㄴ ㄷ ㄹ ㅁ ㅂ ㅅ ㅈ] ㅁㅀㅈㄴㄱ [ㅂ ㅅ ㅂ ㅂㅎㄹ (ㄱㅇㄱ ㄷ ㄱㅎㄷ ㄷ ㄴㄱ ㅅㅎㄷ ㄷㅎㄷ) ㄱㅎㄷ (ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ) ㄴ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ] ㅁㄷㅎㄷ (ㄱ ㅁㅂㅎㄴ)ㅎㄴ', 'True') _test('[ㅈㄱ ㅅㄱ ㅂㄱ ㅁㄱ ㄺ ㄷㄱ ㄴㄱ ㄱ ㄴ ㄷ ㄹ ㅁ ㅂ ㅅ ㅈ] ㅁㅀㅈㄴㄱ [ㅂ ㅅ ㅂ ㅂㅎㄹ (ㄱㅇㄱ ㄷ ㄱㅎㄷ ㄷㄱ ㄴㄱ ㅅㅎㄷ ㄷㅎㄷ) ㄱㅎㄷ (ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ) ㄴㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ] ㅁㄷㅎㄷ (ㄱ ㅁㅂㅎㄴ)ㅎㄴ', 'True') _test('ㄱ (ㅂ ㅅ ㄳ ㅂㅎㅀㄴ) ㄴ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷ', 'True') _test('[ㅈㄱ ㅅㄱ ㅂㄱ ㅁㄱ ㄺ ㄷㄱ ㄴㄱ ㄱ ㄴ ㄷ ㄹ ㅁ ㅂ ㅅ ㅈ] ㅁㅀㅈㄴㄱ [ㅂ ㅅ ㅂ ㅂㅎㄹ (ㄱㅇㄱ ㄷ ㄱㅎㄷ) ㄱㅎㄷ (ㅂ ㅅ ㄳ ㅂㅎㅀㄴ) ㄴ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ] ㅁㄷㅎㄷ (ㄱ ㅁㅂㅎㄴ)ㅎㄴ', 'True') _test('[ㅈㄱ ㅅㄱ ㅂㄱ ㅁㄱ ㄺ ㄷㄱ ㄴㄱ ㄱ ㄴ ㄷ ㄹ ㅁ ㅂ ㅅ ㅈ] ㅁㅀㅈㄴㄱ [ㅂ ㅅ ㅂ ㅂㅎㄹ (ㄱㅇㄱ ㄷ ㄱㅎㄷ ㄴ ㄷㅎㄷ) ㄱㅎㄷ (ㅂ ㅅ ㄳ ㅂㅎㅀㄴ) ㄴㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ] ㅁㄷㅎㄷ (ㄱ ㅁㅂㅎㄴ)ㅎㄴ', 'True') _test('ㄱ (ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ) ㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷ', 'True') _test('(ㅂ ㅅ ㅂ ㅂㅎㄹ ㅁ ㄴㄱ ㅅㅎㄷ ㄱㅎㄷ) (ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ) ㄴ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷ', 'True') _test('(ㅂ ㅅ ㅂ ㅂㅎㄹ ㅁㄱ ㄴㄱ ㅅㅎㄷ ㄱㅎㄷ) (ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ) ㄴㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷ', 'True') _test('(ㅂ ㅅ ㅂ ㅂㅎㄹ ㄹ ㄴㄱ ㅅㅎㄷ ㄱㅎㄷ) (ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ) (ㄹ ㄷ ㄴㄱ ㅅㅎㄷ ㅅㅎㄷ) (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷ', 'True') _test('(ㅂ ㅅ ㅂ ㅂㅎㄹ ㅅ ㄴㄱ ㅅㅎㄷ ㄱㅎㄷ) (ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ) (ㄹ ㄷㄱ ㄴㄱ ㅅㅎㄷ ㅅㅎㄷ) (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷ', 'True') _test('ㄱ [(ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㄱㅇㄱ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ) ㄴ ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') _test('ㄴ [(ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㄱㅇㄱ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ) ㄴ ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') _test('ㄴㄱ [(ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㄱㅇㄱ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ) ㄴ ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') _test('ㄷ [(ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㄱㅇㄱ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ) ㄴ ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') _test('ㄷㄱ [(ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㄱㅇㄱ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ) ㄴ ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') _test('ㅂ ㅅ ㅂ ㅂㅎㄹ [(ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㄱㅇㄱ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ) ㄴ ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') _test('ㄱ [(ㄱㅇㄱ ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ ㄴ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㄷ ㅅㅎㄷ) (ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㄷㄱ ㅅㅎㄷ) ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') _test('ㄴ [(ㄱㅇㄱ ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ ㄴ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㄷ ㅅㅎㄷ) (ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㄷㄱ ㅅㅎㄷ) ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') _test('ㄴㄱ [(ㄱㅇㄱ ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ ㄴ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㄷ ㅅㅎㄷ) (ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㄷㄱ ㅅㅎㄷ) ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') _test('ㄷ [(ㄱㅇㄱ ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ ㄴ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㄷ ㅅㅎㄷ) (ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㄷㄱ ㅅㅎㄷ) ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') _test('ㄷㄱ [(ㄱㅇㄱ ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ ㄴ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㄷ ㅅㅎㄷ) (ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㄷㄱ ㅅㅎㄷ) ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') _test('ㅂ ㅅ ㅂ ㅂㅎㄹ [(ㄱㅇㄱ ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ ㄴ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㄷ ㅅㅎㄷ) (ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㄷㄱ ㅅㅎㄷ) ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') def test_asin(self): _test = self._assert_execute _test('ㄱ [(ㄱㅇㄱ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ ㅂ ㅅ ㄴㅅ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴ [(ㄱㅇㄱ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ ㅂ ㅅ ㄴㅅ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴㄱ [(ㄱㅇㄱ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ ㅂ ㅅ ㄴㅅ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄱ ㄴ ㅄㅎㄷ [(ㄱㅇㄱ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ ㅂ ㅅ ㄴㅅ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴ ㄴ ㅄㅎㄷ [(ㄱㅇㄱ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ ㅂ ㅅ ㄴㅅ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄱ [(ㄱㅇㄱ ㅂ ㅅ ㄴㅅ ㅂㅎㅀㄴ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴ[(ㄱㅇㄱ ㅂ ㅅ ㄴㅅ ㅂㅎㅀㄴ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴㄱ[(ㄱㅇㄱ ㅂ ㅅ ㄴㅅ ㅂㅎㅀㄴ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄱ ㄴ ㅄㅎㄷ[(ㄱㅇㄱ ㅂ ㅅ ㄴㅅ ㅂㅎㅀㄴ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴ ㄴ ㅄㅎㄷ[(ㄱㅇㄱ ㅂ ㅅ ㄴㅅ ㅂㅎㅀㄴ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') def test_acos(self): _test = self._assert_execute _test('ㄱ [(ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㅂ ㅅ ㅅㄱ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴ [(ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㅂ ㅅ ㅅㄱ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄱ ㄴ ㅄㅎㄷ [(ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㅂ ㅅ ㅅㄱ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴ ㄴ ㅄㅎㄷ [(ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㅂ ㅅ ㅅㄱ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴ[(ㄱㅇㄱ ㅂ ㅅ ㅅㄱ ㅂㅎㅀㄴ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴㄱ[(ㄱㅇㄱ ㅂ ㅅ ㅅㄱ ㅂㅎㅀㄴ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄱ ㄴ ㅄㅎㄷ[(ㄱㅇㄱ ㅂ ㅅ ㅅㄱ ㅂㅎㅀㄴ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴ ㄴ ㅄㅎㄷ[(ㄱㅇㄱ ㅂ ㅅ ㅅㄱ ㅂㅎㅀㄴ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') def test_atan(self): _test = self._assert_execute _test('ㄱ [(ㄱㅇㄱ ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ ㅂ ㅅ ㄴㄷ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴ [(ㄱㅇㄱ ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ ㅂ ㅅ ㄴㄷ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴㄱ [(ㄱㅇㄱ ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ ㅂ ㅅ ㄴㄷ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄱ ㄴ ㅄㅎㄷ [(ㄱㅇㄱ ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ ㅂ ㅅ ㄴㄷ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴ ㄴ ㅄㅎㄷ [(ㄱㅇㄱ ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ ㅂ ㅅ ㄴㄷ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄱ [(ㄱㅇㄱ ㅂ ㅅ ㄴㄷ ㅂㅎㅀㄴ ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴ[(ㄱㅇㄱ ㅂ ㅅ ㄴㄷ ㅂㅎㅀㄴ ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴㄱ[(ㄱㅇㄱ ㅂ ㅅ ㄴㄷ ㅂㅎㅀㄴ ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') def test_atan2(self): _test = self._assert_execute _test('ㄱ ㄴ ㅂ ㅅ ㄴㄷ ㅂㅎㄹ ㅎㄷ', '0.0') _test('ㄱ ㄴㄱ ㅂ ㅅ ㄴㄷ ㅂㅎㄹ ㅎㄷ (ㅂ ㅅ ㅂ ㅂㅎㄹ)ㄶㄷ', 'True') _test('(ㄴ ㄱ ㅂ ㅅ ㄴㄷ ㅂㅎㄹ ㅎㄷ) ㄷ ㄱㅎㄷ (ㅂ ㅅ ㅂ ㅂㅎㄹ)ㄶㄷ', 'True') _test('(ㄴㄱ ㄱ ㅂ ㅅ ㄴㄷ ㅂㅎㄹ ㅎㄷ) ㄷㄱ ㄱㅎㄷ (ㅂ ㅅ ㅂ ㅂㅎㄹ)ㄶㄷ', 'True') _test('[ㄴ ㄴㄱ ㄷ ㄷㄱ ㄹ ㄺ ㅁㅀㅅ] [(ㄱㅇㄱ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ, ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ, ㅂ ㅅ ㄴㄷ ㅂㅎㅀㄷ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ] ㅁㄷㅎㄷ (ㄱ ㅁㅂㅎㄴ)ㅎㄴ', 'True') def test_trunc(self): _test = self._assert_execute _test('ㄱ (ㅂ ㅅ ㅂㄹ ㄱ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㅁ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄱ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㅁㄱ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄱ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㄷ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄱ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄱ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㄴ (ㅂ ㅅ ㅂㄹ ㄱ ㅂㅎㅁ)ㅎㄴ', '1') _test('ㄴㄱ (ㅂ ㅅ ㅂㄹ ㄱ ㅂㅎㅁ)ㅎㄴ', '-1') _test('ㄷ ㄴㄱ ㅅㅎㄷ ㄹ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄱ ㅂㅎㅁ)ㅎㄴ', '1') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ ㄹ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄱ ㅂㅎㅁ)ㅎㄴ', '-1') _test('ㄷ (ㅂ ㅅ ㅂㄹ ㄱ ㅂㅎㅁ)ㅎㄴ', '2') _test('ㄷㄱ (ㅂ ㅅ ㅂㄹ ㄱ ㅂㅎㅁ)ㅎㄴ', '-2') _test('ㄷ ㄴㄱ ㅅㅎㄷ ㅂ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄱ ㅂㅎㅁ)ㅎㄴ', '2') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ ㅂ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄱ ㅂㅎㅁ)ㅎㄴ', '-2') def test_floor(self): _test = self._assert_execute _test('ㄱ (ㅂ ㅅ ㅂㄹ ㄴ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㅁ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄴ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㅁㄱ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄴ ㅂㅎㅁ)ㅎㄴ', '-1') _test('ㄷ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄴ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄴ ㅂㅎㅁ)ㅎㄴ', '-1') _test('ㄴ (ㅂ ㅅ ㅂㄹ ㄴ ㅂㅎㅁ)ㅎㄴ', '1') _test('ㄴㄱ (ㅂ ㅅ ㅂㄹ ㄴ ㅂㅎㅁ)ㅎㄴ', '-1') _test('ㄷ ㄴㄱ ㅅㅎㄷ ㄹ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄴ ㅂㅎㅁ)ㅎㄴ', '1') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ ㄹ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄴ ㅂㅎㅁ)ㅎㄴ', '-2') _test('ㄷ (ㅂ ㅅ ㅂㄹ ㄴ ㅂㅎㅁ)ㅎㄴ', '2') _test('ㄷㄱ (ㅂ ㅅ ㅂㄹ ㄴ ㅂㅎㅁ)ㅎㄴ', '-2') _test('ㄷ ㄴㄱ ㅅㅎㄷ ㅂ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄴ ㅂㅎㅁ)ㅎㄴ', '2') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ ㅂ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄴ ㅂㅎㅁ)ㅎㄴ', '-3') def test_round(self): _test = self._assert_execute _test('ㄱ (ㅂ ㅅ ㅂㄹ ㄷ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㅁ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄷ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㅁㄱ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄷ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㄷ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄷ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄷ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㄴ (ㅂ ㅅ ㅂㄹ ㄷ ㅂㅎㅁ)ㅎㄴ', '1') _test('ㄴㄱ (ㅂ ㅅ ㅂㄹ ㄷ ㅂㅎㅁ)ㅎㄴ', '-1') _test('ㄷ ㄴㄱ ㅅㅎㄷ ㄹ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄷ ㅂㅎㅁ)ㅎㄴ', '2') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ ㄹ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄷ ㅂㅎㅁ)ㅎㄴ', '-2') _test('ㄷ (ㅂ ㅅ ㅂㄹ ㄷ ㅂㅎㅁ)ㅎㄴ', '2') _test('ㄷㄱ (ㅂ ㅅ ㅂㄹ ㄷ ㅂㅎㅁ)ㅎㄴ', '-2') _test('ㄷ ㄴㄱ ㅅㅎㄷ ㅂ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄷ ㅂㅎㅁ)ㅎㄴ', '2') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ ㅂ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄷ ㅂㅎㅁ)ㅎㄴ', '-2') def test_ceil(self): _test = self._assert_execute _test('ㄱ (ㅂ ㅅ ㅂㄹ ㄹ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㅁ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄹ ㅂㅎㅁ)ㅎㄴ', '1') _test('ㅁㄱ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄹ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㄷ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄹ ㅂㅎㅁ)ㅎㄴ', '1') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄹ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㄴ (ㅂ ㅅ ㅂㄹ ㄹ ㅂㅎㅁ)ㅎㄴ', '1') _test('ㄴㄱ (ㅂ ㅅ ㅂㄹ ㄹ ㅂㅎㅁ)ㅎㄴ', '-1') _test('ㄷ ㄴㄱ ㅅㅎㄷ ㄹ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄹ ㅂㅎㅁ)ㅎㄴ', '2') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ ㄹ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄹ ㅂㅎㅁ)ㅎㄴ', '-1') _test('ㄷ (ㅂ ㅅ ㅂㄹ ㄹ ㅂㅎㅁ)ㅎㄴ', '2') _test('ㄷㄱ (ㅂ ㅅ ㅂㄹ ㄹ ㅂㅎㅁ)ㅎㄴ', '-2') _test('ㄷ ㄴㄱ ㅅㅎㄷ ㅂ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄹ ㅂㅎㅁ)ㅎㄴ', '3') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ ㅂ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄹ ㅂㅎㅁ)ㅎㄴ', '-2') def test_round_to_inf(self): _test = self._assert_execute _test('ㄱ (ㅂ ㅅ ㅂㄹ ㅁ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㅁ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㅁ ㅂㅎㅁ)ㅎㄴ', '1') _test('ㅁㄱ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㅁ ㅂㅎㅁ)ㅎㄴ', '-1') _test('ㄷ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㅁ ㅂㅎㅁ)ㅎㄴ', '1') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㅁ ㅂㅎㅁ)ㅎㄴ', '-1') _test('ㄴ (ㅂ ㅅ ㅂㄹ ㅁ ㅂㅎㅁ)ㅎㄴ', '1') _test('ㄴㄱ (ㅂ ㅅ ㅂㄹ ㅁ ㅂㅎㅁ)ㅎㄴ', '-1') _test('ㄷ ㄴㄱ ㅅㅎㄷ ㄹ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㅁ ㅂㅎㅁ)ㅎㄴ', '2') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ ㄹ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㅁ ㅂㅎㅁ)ㅎㄴ', '-2') _test('ㄷ (ㅂ ㅅ ㅂㄹ ㅁ ㅂㅎㅁ)ㅎㄴ', '2') _test('ㄷㄱ (ㅂ ㅅ ㅂㄹ ㅁ ㅂㅎㅁ)ㅎㄴ', '-2') _test('ㄷ ㄴㄱ ㅅㅎㄷ ㅂ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㅁ ㅂㅎㅁ)ㅎㄴ', '3') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ ㅂ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㅁ ㅂㅎㅁ)ㅎㄴ', '-3')
55.905512
158
0.520352
24,351
0.998401
0
0
0
0
0
0
19,677
0.806765
c3565453ab31565d1b32ad8f383deec201854e66
1,563
py
Python
services/smtp.py
sourceperl/docker.mqttwarn
9d87337f766843c8bdee34eba8d29776e7032009
[ "MIT" ]
null
null
null
services/smtp.py
sourceperl/docker.mqttwarn
9d87337f766843c8bdee34eba8d29776e7032009
[ "MIT" ]
null
null
null
services/smtp.py
sourceperl/docker.mqttwarn
9d87337f766843c8bdee34eba8d29776e7032009
[ "MIT" ]
2
2016-09-03T09:12:17.000Z
2020-03-03T11:58:40.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'Jan-Piet Mens <jpmens()gmail.com>' __copyright__ = 'Copyright 2014 Jan-Piet Mens' __license__ = """Eclipse Public License - v 1.0 (http://www.eclipse.org/legal/epl-v10.html)""" import smtplib from email.mime.text import MIMEText def plugin(srv, item): srv.logging.debug("*** MODULE=%s: service=%s, target=%s", __file__, item.service, item.target) smtp_addresses = item.addrs server = item.config['server'] sender = item.config['sender'] starttls = item.config['starttls'] username = item.config['username'] password = item.config['password'] msg = MIMEText(item.message) msg['Subject'] = item.get('title', "%s notification" % (srv.SCRIPTNAME)) msg['To'] = ", ".join(smtp_addresses) msg['From'] = sender msg['X-Mailer'] = srv.SCRIPTNAME try: srv.logging.debug("Sending SMTP notification to %s [%s]..." % (item.target, smtp_addresses)) server = smtplib.SMTP(server) server.set_debuglevel(0) server.ehlo() if starttls: server.starttls() if username: server.login(username, password) server.sendmail(sender, smtp_addresses, msg.as_string()) server.quit() srv.logging.debug("Successfully sent SMTP notification") except Exception, e: srv.logging.warn("Error sending notification to SMTP recipient %s [%s]: %s" % (item.target, smtp_addresses, str(e))) return False return True
33.978261
124
0.621241
0
0
0
0
0
0
0
0
466
0.298145
c3566cc0d033b24fec07c1d00481ebc4541fed37
1,865
py
Python
xknx/knxip/disconnect_request.py
Trance-Paradox/xknx
d5603361080f96aafd19c14d17fb1ff391064b3f
[ "MIT" ]
null
null
null
xknx/knxip/disconnect_request.py
Trance-Paradox/xknx
d5603361080f96aafd19c14d17fb1ff391064b3f
[ "MIT" ]
null
null
null
xknx/knxip/disconnect_request.py
Trance-Paradox/xknx
d5603361080f96aafd19c14d17fb1ff391064b3f
[ "MIT" ]
null
null
null
""" Module for Serialization and Deserialization of a KNX Disconnect Request information. Disconnect requests are used to disconnect a tunnel from a KNX/IP device. """ from __future__ import annotations from typing import TYPE_CHECKING from xknx.exceptions import CouldNotParseKNXIP from .body import KNXIPBody from .hpai import HPAI from .knxip_enum import KNXIPServiceType if TYPE_CHECKING: from xknx.xknx import XKNX class DisconnectRequest(KNXIPBody): """Representation of a KNX Disconnect Request.""" SERVICE_TYPE = KNXIPServiceType.DISCONNECT_REQUEST def __init__( self, xknx: XKNX, communication_channel_id: int = 1, control_endpoint: HPAI = HPAI(), ): """Initialize DisconnectRequest object.""" super().__init__(xknx) self.communication_channel_id = communication_channel_id self.control_endpoint = control_endpoint def calculated_length(self) -> int: """Get length of KNX/IP body.""" return 2 + HPAI.LENGTH def from_knx(self, raw: bytes) -> int: """Parse/deserialize from KNX/IP raw data.""" if len(raw) < 2: raise CouldNotParseKNXIP("Disconnect info has wrong length") self.communication_channel_id = raw[0] # raw[1] is reserved return self.control_endpoint.from_knx(raw[2:]) + 2 def to_knx(self) -> bytes: """Serialize to KNX/IP raw data.""" return ( bytes((self.communication_channel_id, 0x00)) # 2nd byte is reserved + self.control_endpoint.to_knx() ) def __str__(self) -> str: """Return object as readable string.""" return ( "<DisconnectRequest " f'CommunicationChannelID="{self.communication_channel_id}" ' f'control_endpoint="{self.control_endpoint}" />' )
29.603175
85
0.657909
1,433
0.768365
0
0
0
0
0
0
615
0.329759
c357fdd1d20a6b3edc1499c2dfe1f260522fc967
391
py
Python
src/database_setup.py
liuchanglilian/crowdsourcing-text-msg
8270a8175bc78141d9eff00b53f4b292d0d2678c
[ "MIT" ]
null
null
null
src/database_setup.py
liuchanglilian/crowdsourcing-text-msg
8270a8175bc78141d9eff00b53f4b292d0d2678c
[ "MIT" ]
null
null
null
src/database_setup.py
liuchanglilian/crowdsourcing-text-msg
8270a8175bc78141d9eff00b53f4b292d0d2678c
[ "MIT" ]
null
null
null
from src.sqlite_helper import create_message_table, drop_message_table """ This script will create a SQLite table for you, and should be one time setup The table name is message which will store all the Post message """ create_message_table() """ If you need to drop the message table, un-comment the following code by removing the # sign in the beginning """ # # drop_message_table() #
24.4375
108
0.769821
0
0
0
0
0
0
0
0
289
0.73913
c3590d5e9d8eea5dee2b2753a4c5f63a26af1754
5,401
py
Python
home/pedrosenarego/zorba/zorba1.0.py
rv8flyboy/pyrobotlab
4e04fb751614a5cb6044ea15dcfcf885db8be65a
[ "Apache-2.0" ]
63
2015-02-03T18:49:43.000Z
2022-03-29T03:52:24.000Z
home/pedrosenarego/zorba/zorba1.0.py
hirwaHenryChristian/pyrobotlab
2debb381fc2db4be1e7ea6e5252a50ae0de6f4a9
[ "Apache-2.0" ]
16
2016-01-26T19:13:29.000Z
2018-11-25T21:20:51.000Z
home/pedrosenarego/zorba/zorba1.0.py
hirwaHenryChristian/pyrobotlab
2debb381fc2db4be1e7ea6e5252a50ae0de6f4a9
[ "Apache-2.0" ]
151
2015-01-03T18:55:54.000Z
2022-03-04T07:04:23.000Z
from java.lang import String import threading import random import codecs import io import itertools import time import os import urllib2 import textwrap import socket import shutil ############################################################# # This is the ZOrba # ############################################################# # All bot specific configuration goes here. leftPort = "/dev/ttyACM1" rightPort = "/dev/ttyACM0" headPort = leftPort gesturesPath = "/home/pedro/Dropbox/pastaPessoal/3Dprinter/inmoov/scripts/zorba/gestures" botVoice = "WillBadGuy" #starting the INMOOV i01 = Runtime.createAndStart("i01", "InMoov") i01.setMute(True) ##############STARTING THE RIGHT HAND######### i01.rightHand = Runtime.create("i01.rightHand", "InMoovHand") #tweaking defaults settings of right hand i01.rightHand.thumb.setMinMax(20,155) i01.rightHand.index.setMinMax(30,130) i01.rightHand.majeure.setMinMax(38,150) i01.rightHand.ringFinger.setMinMax(30,170) i01.rightHand.pinky.setMinMax(30,150) i01.rightHand.thumb.map(0,180,20,155) i01.rightHand.index.map(0,180,30,130) i01.rightHand.majeure.map(0,180,38,150) i01.rightHand.ringFinger.map(0,180,30,175) i01.rightHand.pinky.map(0,180,30,150) ################# #################STARTING RIGHT ARM############### i01.startRightArm(rightPort) #i01.rightArm = Runtime.create("i01.rightArm", "InMoovArm") ## tweak default RightArm i01.detach() i01.rightArm.bicep.setMinMax(0,60) i01.rightArm.bicep.map(0,180,0,60) i01.rightArm.rotate.setMinMax(46,130) i01.rightArm.rotate.map(0,180,46,130) i01.rightArm.shoulder.setMinMax(0,155) i01.rightArm.shoulder.map(0,180,0,155) i01.rightArm.omoplate.setMinMax(8,85) i01.rightArm.omoplate.map(0,180,8,85) ########STARTING SIDE NECK CONTROL######## def neckMoveTo(restPos,delta): leftneckServo.moveTo(restPos + delta) rightneckServo.moveTo(restPos - delta) leftneckServo = Runtime.start("leftNeck","Servo") rightneckServo = Runtime.start("rightNeck","Servo") right = Runtime.start("i01.right", "Arduino") #right.connect(rightPort) leftneckServo.attach(right, 13) rightneckServo.attach(right, 12) restPos = 90 delta = 20 neckMoveTo(restPos,delta) #############STARTING THE HEAD############## i01.head = Runtime.create("i01.head", "InMoovHead") #weaking defaults settings of head i01.head.jaw.setMinMax(35,75) i01.head.jaw.map(0,180,35,75) i01.head.jaw.setRest(35) #tweaking default settings of eyes i01.head.eyeY.setMinMax(0,180) i01.head.eyeY.map(0,180,70,110) i01.head.eyeY.setRest(90) i01.head.eyeX.setMinMax(0,180) i01.head.eyeX.map(0,180,70,110) i01.head.eyeX.setRest(90) i01.head.neck.setMinMax(40,142) i01.head.neck.map(0,180,40,142) i01.head.neck.setRest(70) i01.head.rothead.setMinMax(21,151) i01.head.rothead.map(0,180,21,151) i01.head.rothead.setRest(88) #########STARTING MOUTH CONTROL############### i01.startMouthControl(leftPort) i01.mouthControl.setmouth(0,180) ###################################################################### # mouth service, speech synthesis mouth = Runtime.createAndStart("i01.mouth", "AcapelaSpeech") mouth.setVoice(botVoice) ###################################################################### # helper function help debug the recognized text from webkit/sphinx ###################################################################### def heard(data): print "Speech Recognition Data:"+str(data) ###################################################################### # Create ProgramAB chat bot ( This is the inmoov "brain" ) ###################################################################### zorba2 = Runtime.createAndStart("zorba", "ProgramAB") zorba2.startSession("Pedro", "zorba") ###################################################################### # Html filter to clean the output from programab. (just in case) htmlfilter = Runtime.createAndStart("htmlfilter", "HtmlFilter") ###################################################################### # the "ear" of the inmoov TODO: replace this with just base inmoov ear? ear = Runtime.createAndStart("i01.ear", "WebkitSpeechRecognition") ear.addListener("publishText", python.name, "heard"); ear.addMouth(mouth) ###################################################################### # MRL Routing webkitspeechrecognition/ear -> program ab -> htmlfilter -> mouth ###################################################################### ear.addTextListener(zorba) zorba2.addTextListener(htmlfilter) htmlfilter.addTextListener(mouth) #starting the INMOOV i01 = Runtime.createAndStart("i01", "InMoov") i01.setMute(True) i01.mouth = mouth ###################################################################### # Launch the web gui and create the webkit speech recognition gui # This service works in Google Chrome only with the WebGui ################################################################# webgui = Runtime.createAndStart("webgui","WebGui") ###################################################################### # Helper functions and various gesture definitions ###################################################################### i01.loadGestures(gesturesPath) ear.startListening() ###################################################################### # starting services ###################################################################### i01.startRightHand(rightPort) i01.detach() leftneckServo.detach() rightneckServo.detach() i01.startHead(leftPort) i01.detach()
31.95858
89
0.587854
0
0
0
0
0
0
0
0
2,721
0.503796