hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
05167a6a94f7c83fc6497eed1db4333dd9bd4308
12,980
py
Python
weibospider.py
Chiang97912/WeiboSpider
2c426d2dfa8c6d418b66bd54002c292194872c88
[ "MIT" ]
null
null
null
weibospider.py
Chiang97912/WeiboSpider
2c426d2dfa8c6d418b66bd54002c292194872c88
[ "MIT" ]
null
null
null
weibospider.py
Chiang97912/WeiboSpider
2c426d2dfa8c6d418b66bd54002c292194872c88
[ "MIT" ]
1
2021-05-07T06:35:22.000Z
2021-05-07T06:35:22.000Z
# -*- coding: UTF-8 -*- import os import json import time import rsa import base64 import urllib import binascii import traceback import requests import pandas as pd from lxml import etree from datetime import datetime class NoResultException(Exception): def __init__(self): super().__init__() def __str__(self): return 'No result' class Config(object): def __init__(self, **entries): self.__dict__.update(entries) class WeiboSpider(object): def __init__(self, config): self.year = config.year self.month = config.month self.day = config.day self.query = config.query self.config = config self.weibo = list() self.cookie = self.get_cookie() self.headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:54.0) Gecko/20100101 Firefox/54.0' } def get_cookie(self): data = { 'entry': 'weibo', 'gateway': '1', 'from': '', 'savestate': '7', 'qrcode_flag': 'false', 'useticket': '1', 'pagerefer': 'https://login.sina.com.cn/crossdomain2.php?action=logout&r=https%3A%2F%2Fweibo.com%2Flogout.php%3Fbackurl%3D%252F', 'wsseretry': 'servertime_error', 'vsnf': '1', 'su': '', 'service': 'miniblog', 'servertime': '1529058370', 'nonce': 'CPEDL5', 'pwencode': 'rsa2', 'rsakv': '1330428213', 'sp': '', 'sr': '1536*864', 'encoding': 'UTF-8', 'prelt': '75', 'url': 'https://weibo.com/ajaxlogin.php?framelogin=1&callback=parent.sinaSSOController.feedBackUrlCallBack', 'returntype': 'META' } username = self.config.username password = self.config.password pre_url = "http://login.sina.com.cn/sso/prelogin.php?entry=weibo&callback=sinaSSOController.preloginCallBack&su=emhlZGFwYXQlNDAxNjMuY29t&rsakt=mod&client=ssologi" s = requests.session() res = s.get(pre_url) res = res.text.split('(')[-1].split(')')[0] pre_json = json.loads(res) servertime = pre_json['servertime'] nonce = pre_json['nonce'] rsakv = pre_json['rsakv'] pubkey = pre_json['pubkey'] su = base64.encodestring(urllib.parse.quote( username).encode(encoding="utf-8"))[:-1] # rsa2计算sp rsaPubkey = int(pubkey, 16) key = rsa.PublicKey(rsaPubkey, 65537) message = str(servertime) + '\t' + str(nonce) + '\n' + str(password) sp = rsa.encrypt(message.encode(encoding="utf-8"), key) sp = binascii.b2a_hex(sp) data['servertime'] = servertime data['nonce'] = nonce data['rsakv'] = rsakv data['su'] = su data['sp'] = sp url = 'http://login.sina.com.cn/sso/login.php?client=ssologin.js(v1.4.18)&wsseretry=servertime_error' res = requests.post(url, data=data) cookie = res.cookies.get_dict() return cookie def set_encoding(self, res): ''' 解决weibo网页不同编码问题 ''' code = ['UTF-8', 'GBK'] for item in code: if item in res.text: res.encoding = item break def extract_digit(self, s): if s: return ''.join([x for x in s if x.isdigit()]) else: return '' def get_detail_info(self, url, weibo): res = requests.get(url, headers=self.headers, cookies=self.cookie) res.encoding = 'utf-8' html = res.text lines = html.splitlines() # splitlines将字符串按照\n切割 weibo['gender'] = '' weibo['location'] = '' weibo['age'] = '' for line in lines: line = line.replace(r'\t', '') line = line.replace(r'\n', '') line = line.replace(r'\r', '') if line.startswith('<script>FM.view({"ns":"pl.header.head.index","domid":"Pl_Official_Headerv6__1"'): n = line.find('html":"') if n > 0: line = line[n + 7: -12].replace("\\", "") # 去掉所有的斜杠 if not line.find('<div class="search_noresult">') > 0: parser = etree.HTML(line) temp = parser.xpath( '//*[@class="pf_username"]/span/a/i/@class')[0].split(' ')[1] if temp == 'icon_pf_male': weibo['gender'] = '男' elif temp == 'icon_pf_female': weibo['gender'] = '女' if line.startswith('<script>FM.view({"ns":"pl.content.homeFeed.index","domid":"Pl_Core_UserInfo'): n = line.find('html":"') if n > 0: line = line[n + 7: -12].replace("\\", "") # 去掉所有的斜杠 if not line.find('<div class="search_noresult">') > 0: parser = etree.HTML(line) # lv = parser.cssselect( # '.W_icon_level > span') # lv = lv[0].text[3:] if len(lv) > 0 else '' # weibo['lv'] = lv # 等级 t = 1 flag1 = False flag2 = False while True: try: icon = parser.xpath( '//*[@class="WB_innerwrap"]/div/div/ul/li[{}]/span[1]/em/@class'.format(t))[0].split(' ')[1] if icon == 'ficon_cd_place': flag1 = True weibo['location'] = parser.xpath( '//*[@class="WB_innerwrap"]/div/div/ul/li[{}]/span[2]'.format(t))[0].xpath('string(.)').strip() elif icon == 'ficon_constellation': flag2 = True age_text = parser.xpath( '//*[@class="WB_innerwrap"]/div/div/ul/li[{}]/span[2]'.format(t))[0].xpath('string(.)').strip() y = age_text.split('年')[0] if y.isdigit(): weibo['age'] = datetime.now().year - int(y) else: weibo['age'] = '' t += 1 except Exception as e: break if flag1 and flag2: break def get_one_page(self, html): selecter = etree.HTML(html) k = 1 while True: weibo = dict() try: div = selecter.xpath('//*[@id="pl_feedlist_index"]/div[2]/div[{}]'.format(k)) if len(div) == 0: break name = selecter.xpath('//*[@id="pl_feedlist_index"]/div[2]/div[{}]/div/div[1]/div[2]/div[1]/div[2]/a'.format(k)) weibo['name'] = name[0].text.strip() if len(name) > 0 else '' content = selecter.xpath( '//*[@id="pl_feedlist_index"]/div[2]/div[{}]/div/div[1]/div[2]/p[1]'.format(k)) weibo['content'] = content[0].xpath('string(.)').strip() if len(content) > 0 else '' release_time = selecter.xpath( '//*[@id="pl_feedlist_index"]/div[2]/div[{}]/div/div[1]/div[2]/p[@class="from"]/a[1]'.format(k)) weibo['release_time'] = release_time[0].xpath('string(.)').strip() if len(release_time) > 0 else '' transpond = selecter.xpath( '//*[@id="pl_feedlist_index"]/div[2]/div[{}]/div/div[2]/ul/li[2]/a'.format(k)) transpond = transpond[0].text if len(transpond) > 0 else '' transpond = self.extract_digit(transpond) if transpond: weibo['transpond_num'] = transpond else: weibo['transpond_num'] = 0 comment = selecter.xpath( '//*[@id="pl_feedlist_index"]/div[2]/div[{}]/div/div[2]/ul/li[3]/a'.format(k)) comment = comment[0].text if len(comment) > 0 else '' comment = self.extract_digit(comment) if comment: weibo['comment_num'] = comment else: weibo['comment_num'] = 0 thumbsup = selecter.xpath( '//*[@id="pl_feedlist_index"]/div[2]/div[{}]/div/div[2]/ul/li[4]/a/em'.format(k)) thumbsup = thumbsup[0].text if len(thumbsup) > 0 else '' thumbsup = self.extract_digit(thumbsup) if thumbsup: weibo['thumbsup_num'] = thumbsup else: weibo['thumbsup_num'] = 0 homepage_url = selecter.xpath( '//*[@id="pl_feedlist_index"]/div[2]/div[{}]/div/div[1]/div[2]/div[1]/div[2]/a[1]/@href'.format(k)) homepage_url = homepage_url[0] if len(homepage_url) > 0 else '' if homepage_url: h = homepage_url[2:].split('/') if h[1] == 'u': weibo['uid'] = h[2].split('?')[0] else: weibo['uid'] = h[1].split('?')[0] homepage_url = 'https:' + homepage_url self.get_detail_info(homepage_url, weibo) except Exception as e: print(traceback.print_exc()) break k += 1 self.weibo.append(weibo) def save(self): columns_map = { 'name': '微博名称', 'location': '微博所在地', 'gender': '性别', 'content': '微博内容', 'transpond_num': '转发量', 'comment_num': '评论量', 'thumbsup_num': '点赞量', 'uid': '用户ID', 'age': '年龄', 'release_time': '发布时间' } df = pd.DataFrame(self.weibo) df.rename(columns=columns_map, inplace=True) columns = ['微博名称', '用户ID', '性别', '年龄', '微博所在地', '微博内容', '发布时间', '转发量', '评论量', '点赞量'] df.to_excel('./data/{}年{}月{}日.xlsx'.format(self.year, self.month, self.day), columns=columns) def start(self): page_index = 1 while True: url = 'https://s.weibo.com/weibo?q={}&typeall=1&suball=1&timescope=custom:{}-{}-{}-0:{}-{}-{}-23&Refer=g&page={}'.format( self.query, self.year, str(self.month).zfill(2), str(self.day).zfill(2), self.year, str(self.month).zfill(2), str(self.day).zfill(2), page_index) if page_index == 51: break try: res = requests.get(url, headers=self.headers, cookies=self.cookie) except Exception as e: print(e) page_index += 1 continue self.set_encoding(res) html = res.text if '新浪通行证' in html: self.cookie = self.get_cookie() res = requests.get(url, headers=self.headers, cookies=self.cookie) self.set_encoding(res) html = res.text print('cookie updated!') print('正在抓取{}年{}月{}日 第{}页数据'.format(self.year, self.month, self.day, page_index)) try: self.get_one_page(html) except NoResultException as e: print(e) break time.sleep(0.5) page_index += 1 self.save() def main(): blacklist_file = 'blacklist.txt' # 黑名单文件 config = { 'query': '共享单车', # 查询关键词 'start_month': 1, # 开始月份 'start_day': 1, # 开始天数 'username': 'xxxxxxxxxxxx', # 账号 'password': 'xxxxxxxxxxxx', # 密码 } years = ['2018', '2019'] config = Config(**config) if not os.path.exists(blacklist_file): open(blacklist_file, 'w').close() # 如果黑名单不存在就创建 if not os.path.exists('./data'): os.makedirs('./data') for year in years: for month in range(config.start_month, 13): for day in range(config.start_day, 32): with open(blacklist_file) as f: blacklist = [line.strip() for line in f.readlines()] if '{}-{}-{}'.format(year, month, day) in blacklist: continue config.year = year config.month = month config.day = day ws = WeiboSpider(config) ws.start() with open(blacklist_file, 'a') as f: f.write('{}-{}-{}\n'.format(year, month, day)) print("数据抓取并保存完成") if __name__ == '__main__': main()
39.938462
170
0.469106
11,800
0.886152
0
0
0
0
0
0
3,565
0.267723
0516e5d4fd543c80d6f16ba01f4a7586b969a893
3,783
py
Python
spoty/commands/get_second_group.py
dy-sh/spoty
431a392707c8754da713871e0e7747bcc4417274
[ "MIT" ]
2
2022-02-01T16:49:32.000Z
2022-03-02T18:30:31.000Z
spoty/commands/get_second_group.py
dy-sh/spoty
431a392707c8754da713871e0e7747bcc4417274
[ "MIT" ]
null
null
null
spoty/commands/get_second_group.py
dy-sh/spoty
431a392707c8754da713871e0e7747bcc4417274
[ "MIT" ]
null
null
null
from spoty.commands.first_list_commands import \ count_command, \ export_command, \ print_command from spoty.commands.second_list_commands import \ filter_second_group, \ find_duplicates_second_command,\ find_deezer_second_group, \ find_spotify_second_group from spoty.commands import get_group from spoty.utils import SpotyContext import click @click.group("get") @click.option('--spotify-playlist', '--sp', multiple=True, help='Get tracks from Spotify playlist URI or ID.') @click.option('--spotify-entire-library', '--s', multiple=True, help='Get all tracks from Spotify library (by user URI or ID). To request a list for the current authorized user, use "me" as ID.') @click.option('--spotify-entire-library-regex', '--sr', nargs=2, multiple=True, help='Works the same as --spotify-entire-library, but you can specify regex filter which will be applied to playlists names. This way you can query any playlists by names.') @click.option('--deezer-playlist', '--dp', multiple=True, help='Get tracks from Deezer playlist URI or ID.') @click.option('--deezer-entire-library', '--d', multiple=True, help='Get all tracks from Deezer library (by user URI or ID). To request a list for the current authorized user, use "me" as ID.') @click.option('--deezer-entire-library-regex', '--dr', nargs=2, multiple=True, help='Works the same as --deezer-entire-library, but you can specify regex filter which will be applied to playlists names. This way you can query any playlists by names.') @click.option('--audio', '--a', multiple=True, help='Get audio files located at the specified local path. You can specify the audio file name as well.') @click.option('--csv', '--c', multiple=True, help='Get tracks from csv playlists located at the specified local path. You can specify the scv file name as well.') @click.option('--m3u8', '--m', multiple=True, help='Get tracks from m3u8 playlists located at the specified local path. You can specify the m3u8 file name as well.') @click.option('--no-recursive', '-r', is_flag=True, help='Do not search in subdirectories from the specified path.') @click.pass_obj def get_second(context: SpotyContext, spotify_playlist, spotify_entire_library, spotify_entire_library_regex, deezer_playlist, deezer_entire_library, deezer_entire_library_regex, audio, csv, m3u8, no_recursive ): """ Collect second list of tracks for further actions (see next commands). """ context.summary.append("Collecting second list:") get_group.get_tracks_wrapper(context, spotify_playlist, spotify_entire_library, spotify_entire_library_regex, deezer_playlist, deezer_entire_library, deezer_entire_library_regex, audio, csv, m3u8, no_recursive, ) get_second.add_command(filter_second_group.filter_second) get_second.add_command(count_command.count_tracks) get_second.add_command(print_command.print_tracks) get_second.add_command(export_command.export_tracks) get_second.add_command(find_duplicates_second_command.find_duplicates_second) get_second.add_command(find_deezer_second_group.find_deezer) get_second.add_command(find_spotify_second_group.find_spotify)
50.44
187
0.641819
0
0
0
0
2,990
0.790378
0
0
1,410
0.37272
05195432ec2c13cb2bd586385c70cb0f3fcc21ab
19,804
py
Python
jenkins_job_wrecker/modules/triggers.py
romanek-adam/jenkins-job-wrecker
db9379d852afe8b621c7688d34fd057d916de8f2
[ "MIT" ]
1
2020-06-05T06:36:50.000Z
2020-06-05T06:36:50.000Z
jenkins_job_wrecker/modules/triggers.py
romanek-adam/jenkins-job-wrecker
db9379d852afe8b621c7688d34fd057d916de8f2
[ "MIT" ]
15
2020-05-18T07:37:06.000Z
2020-08-24T09:16:08.000Z
jenkins_job_wrecker/modules/triggers.py
romanek-adam/jenkins-job-wrecker
db9379d852afe8b621c7688d34fd057d916de8f2
[ "MIT" ]
null
null
null
# encoding=utf8 import jenkins_job_wrecker.modules.base from jenkins_job_wrecker.helpers import get_bool, Mapper class Triggers(jenkins_job_wrecker.modules.base.Base): component = 'triggers' def gen_yml(self, yml_parent, data): triggers = [] for child in data: object_name = child.tag.split('.')[-1].lower() self.registry.dispatch(self.component, object_name, child, triggers) yml_parent.append(['triggers', triggers]) def scmtrigger(top, parent): pollscm = {} for child in top: if child.tag == 'spec': pollscm['cron'] = child.text elif child.tag == 'ignorePostCommitHooks': pollscm['ignore-post-commit-hooks'] = (child.text == 'true') else: raise NotImplementedError('cannot handle scm trigger ' 'setting %s' % child.tag) parent.append({'pollscm': pollscm}) def timertrigger(top, parent): parent.append({'timed': top[0].text}) def reversebuildtrigger(top, parent): reverse = {} for child in top: if child.tag == 'upstreamProjects': reverse['jobs'] = child.text elif child.tag == 'threshold': pass # TODO elif child.tag == 'spec': pass # TODO else: raise NotImplementedError('cannot handle reverse trigger ' 'setting %s' % child.tag) parent.append({'reverse': reverse}) def __gerrit_process_file_paths(attribute): file_paths = [] for file_path_type in attribute: if file_path_type.tag == "com.sonyericsson.hudson.plugins.gerrit.trigger.hudsontrigger.data.FilePath": file_path = {} for file_path_attribute in file_path_type: if file_path_attribute.tag == "compareType": file_path["compare-type"] = file_path_attribute.text elif file_path_attribute.tag == "pattern": file_path["pattern"] = file_path_attribute.text file_paths.append(file_path) else: raise NotImplementedError("Not implemented file path type: ", file_path_type.tag) return file_paths def __gerrit_process_gerrit_projects(child): projects = [] for gerrit_project in child: project = {} for attribute in gerrit_project: if attribute.tag == "compareType": project["project-compare-type"] = attribute.text elif attribute.tag == "pattern": project["project-pattern"] = attribute.text elif attribute.tag == "branches": branches = [] for branch_type in attribute: if branch_type.tag == \ "com.sonyericsson.hudson.plugins.gerrit.trigger.hudsontrigger.data.Branch": branch = {} for branch_attribute in attribute[0]: if branch_attribute.tag == "compareType": branch["branch-compare-type"] = branch_attribute.text elif branch_attribute.tag == "pattern": branch["branch-pattern"] = branch_attribute.text else: raise NotImplementedError("Not implemented branch attribute: ", branch_attribute.tag) branches.append(branch) else: raise NotImplementedError("Not implemented branch type: ", branch_type.tag) project["branches"] = branches elif attribute.tag == "disableStrictForbiddenFileVerification": project["disable-strict-forbidden-file-verification"] = get_bool(attribute.text) elif attribute.tag == "filePaths": file_paths = __gerrit_process_file_paths(attribute) project["file-paths"] = file_paths elif attribute.tag == "forbiddenFilePaths": forbidden_file_paths = __gerrit_process_file_paths(attribute) project["forbidden-file-paths"] = forbidden_file_paths elif attribute.tag == "topics": topics = [] for topic in attribute: if topic.tag == \ "com.sonyericsson.hudson.plugins.gerrit.trigger.hudsontrigger.data.Topic": topic_keys = {} for topic_attribute in topic: if topic_attribute.tag == "compareType": topic_keys["compare-type"] = topic_attribute.text elif topic_attribute.tag == "pattern": topic_keys["pattern"] = topic_attribute.text else: raise NotImplementedError("Not implemented topic attribute: ", topic_attribute.tag) topics.append(topic_keys) else: raise NotImplementedError("Not implemented topic type: ", topic.tag) project["topics"] = topics else: raise NotImplementedError("Not implemented attribute: ", attribute.tag) projects.append(project) return projects def __gerrit_process_trigger_on_events(child): trigger_on = [] sonyericsson_prefix = "com.sonyericsson.hudson.plugins.gerrit.trigger.hudsontrigger.events." for event in child: if event.tag == sonyericsson_prefix + "PluginChangeAbandonedEvent": trigger_on.append("change-abandoned-event") elif event.tag == sonyericsson_prefix + "PluginChangeMergedEvent": trigger_on.append("change-merged-event") elif event.tag == sonyericsson_prefix + "PluginChangeRestoredEvent": trigger_on.append("change-restored-event") elif event.tag == sonyericsson_prefix + "PluginCommentAddedEvent": comment_added_event = {} for element in event: if element.tag == "verdictCategory": comment_added_event["approval-category"] = element.text elif element.tag == "commentAddedTriggerApprovalValue": comment_added_event["approval-value"] = element.text trigger_on.append({"comment-added-event": comment_added_event}) elif event.tag == sonyericsson_prefix + "PluginCommentAddedContainsEvent": trigger_on.append({"comment-added-contains-event": {"comment-contains-value": event[0].text}}) elif event.tag == sonyericsson_prefix + "PluginDraftPublishedEvent": trigger_on.append("draft-published-event") elif event.tag == sonyericsson_prefix + "PluginPatchsetCreatedEvent": patchset_created_event = {} for attribute in event: if attribute.tag == "excludeDrafts": patchset_created_event["exclude-drafts"] = get_bool(attribute.text) elif attribute.tag == "excludeTrivialRebase": patchset_created_event["exclude-trivial-rebase"] = get_bool(attribute.text) elif attribute.tag == "excludeNoCodeChange": patchset_created_event["exclude-no-code-change"] = get_bool(attribute.text) elif attribute.tag == "excludePrivateState": patchset_created_event["exclude-private"] = get_bool(attribute.text) elif attribute.tag == "excludeWipState": patchset_created_event["exclude-wip"] = get_bool(attribute.text) trigger_on.append({"patchset-created-event": patchset_created_event}) elif event.tag == sonyericsson_prefix + "PluginPrivateStateChangedEvent": trigger_on.append("private-state-changed-event") elif event.tag == sonyericsson_prefix + "PluginRefUpdatedEvent": trigger_on.append("ref-updated-event") elif event.tag == sonyericsson_prefix + "PluginTopicChangedEvent": trigger_on.append("topic-changed-event") elif event.tag == sonyericsson_prefix + "PluginWipStateChangedEvent": trigger_on.append("wip-state-changed-event") return trigger_on def gerrittrigger(top, parent): mapper = Mapper({ "silentMode": ("silent", bool), "silentStartMode": ("silent-start", bool), "escapeQuotes": ("escape-quotes", bool), "dependencyJobsNames": ("dependency-jobs", str), "nameAndEmailParameterMode": ("name-and-email-parameter-mode", str), "commitMessageParameterMode": ("commit-message-parameter-mode", str), "changeSubjectParameterMode": ("change-subject-parameter-mode", str), "commentTextParameterMode": ("comment-text-parameter-mode", str), "buildStartMessage": ("start-message", str), "buildFailureMessage": ("failure-message", str), "buildSuccessfulMessage": ("successful-message", str), "buildUnstableMessage": ("unstable-message", str), "buildNotBuiltMessage": ("notbuilt-message", str), "buildUnsuccessfulFilepath": ("failure-message-file", str), "customUrl": ("custom-url", str), "serverName": ("server-name", str), "dynamicTriggerConfiguration": ("dynamic-trigger-enabled", bool), "triggerConfigURL": ("dynamic-trigger-url", str), }) mapper_gerrit_build = Mapper({ "gerritBuildStartedVerifiedValue": ("gerrit-build-started-verified-value", int), "gerritBuildStartedCodeReviewValue": ("gerrit-build-started-codereview-value", int), "gerritBuildSuccessfulVerifiedValue": ("gerrit-build-successful-verified-value", int), "gerritBuildSuccessfulCodeReviewValue": ("gerrit-build-successful-codereview-value", int), "gerritBuildFailedVerifiedValue": ("gerrit-build-failed-verified-value", int), "gerritBuildFailedCodeReviewValue": ("gerrit-build-failed-codereview-value", int), "gerritBuildUnstableVerifiedValue": ("gerrit-build-unstable-verified-value", int), "gerritBuildUnstableCodeReviewValue": ("gerrit-build-unstable-codereview-value", int), "gerritBuildNotBuiltVerifiedValue": ("gerrit-build-notbuilt-verified-value", int), "gerritBuildNotBuiltCodeReviewValue": ("gerrit-build-notbuilt-codereview-value", int) }) gerrit_trigger = {} is_override_votes = False for child in top: if mapper.map_element(child, gerrit_trigger): pass # Handled by the mapper. elif mapper_gerrit_build.map_element(child, gerrit_trigger): # Jenkins Job Builder implementation uses "override-votes" # key to override default vote values. For detail: # https://docs.openstack.org/infra/jenkins-job-builder/triggers.html#triggers.gerrit is_override_votes = True elif child.tag == "gerritProjects": gerrit_trigger["projects"] = __gerrit_process_gerrit_projects(child) elif child.tag == "dynamicGerritProjects": pass # No implementation by JJB elif child.tag == "spec": pass # Not needed in yml elif child.tag == "skipVote": skip_vote = {} for attribute in child: if attribute.tag == "onSuccessful": skip_vote["successful"] = get_bool(attribute.text) if attribute.tag == "onFailed": skip_vote["failed"] = get_bool(attribute.text) if attribute.tag == "onUnstable": skip_vote["unstable"] = get_bool(attribute.text) if attribute.tag == "onNotBuilt": skip_vote["notbuilt"] = get_bool(attribute.text) gerrit_trigger["skip-vote"] = skip_vote elif child.tag == "notificationLevel": if child.text is None: gerrit_trigger["notification-level"] = "SERVER_DEFAULT" else: gerrit_trigger["notification-level"] = child.text elif child.tag == "triggerOnEvents": gerrit_trigger["trigger-on"] = __gerrit_process_trigger_on_events(child) elif child.tag == "gerritTriggerTimerTask": pass # Unconfigurable Attribute elif child.tag == "triggerInformationAction": pass # Unconfigurable Attribute else: raise NotImplementedError("Not implemented Gerrit Trigger Plugin's attribute: ", child.tag) gerrit_trigger["override-votes"] = is_override_votes parent.append({'gerrit': gerrit_trigger}) def githubpushtrigger(top, parent): parent.append('github') def ghprbtrigger(top, parent): ghpr = {} for child in top: if child.tag == 'spec' or child.tag == 'cron': ghpr['cron'] = child.text elif child.tag == 'configVersion': pass # Not needed elif child.tag == 'adminlist': if child.text: ghpr['admin-list'] = child.text.strip().split('\n') else: ghpr['admin-list'] = [] elif child.tag == 'allowMembersOfWhitelistedOrgsAsAdmin': ghpr['allow-whitelist-orgs-as-admins'] = get_bool(child.text) elif child.tag == 'whitelist': if child.text: ghpr['white-list'] = child.text.strip().split('\n') else: ghpr['white-list'] = [] elif child.tag == 'orgslist': if child.text: ghpr['org-list'] = child.text.strip().split('\n') else: ghpr['org-list'] = [] elif child.tag == 'buildDescTemplate': ghpr['build-desc-template'] = child.text elif child.tag == 'triggerPhrase': ghpr['trigger-phrase'] = child.text elif child.tag == 'onlyTriggerPhrase': ghpr['only-trigger-phrase'] = get_bool(child.text) elif child.tag == 'useGitHubHooks': ghpr['github-hooks'] = get_bool(child.text) elif child.tag == 'permitAll': ghpr['permit-all'] = get_bool(child.text) elif child.tag == 'autoCloseFailedPullRequests': ghpr['auto-close-on-fail'] = get_bool(child.text) elif child.tag == 'blackListCommitAuthor': if child.text: ghpr['black-list-commit-author'] = child.text.strip().split(' ') else: ghpr['black-list-commit-author'] = [] elif child.tag == 'blackListLabels': if child.text: ghpr['black-list-labels'] = child.text.strip().split('\n') else: ghpr['black-list-labels'] = [] elif child.tag == 'blackListTargetBranches': ghpr['black-list-target-branches'] = [item[0].text.strip() for item in child if item[0].text is not None] elif child.tag == 'displayBuildErrorsOnDownstreamBuilds': ghpr['display-build-errors-on-downstream-builds'] = get_bool(child.text) elif child.tag == 'excludedRegions': if child.text: ghpr['excluded-regions'] = child.text.strip().split('\n') else: ghpr['excluded-regions'] = [] elif child.tag == 'includedRegions': if child.text: ghpr['included-regions'] = child.text.strip().split('\n') else: ghpr['included-regions'] = [] elif child.tag == 'skipBuildPhrase': ghpr['skip-build-phrase'] = child.text elif child.tag == 'whiteListLabels': if child.text: ghpr['white-list-labels'] = child.text.strip().split('\n') else: ghpr['white-list-labels'] = [] elif child.tag == 'whiteListTargetBranches': ghpr['white-list-target-branches'] = [item[0].text.strip() for item in child if item[0].text is not None] elif child.tag == 'gitHubAuthId': ghpr['auth-id'] = child.text elif child.tag == 'extensions': extensions_prefix = "org.jenkinsci.plugins.ghprb.extensions." for extension in child: if extension.tag == extensions_prefix+"status.GhprbSimpleStatus": for extension_child in extension: if extension_child.tag == "commitStatusContext": ghpr['status-context'] = extension_child.text elif extension_child.tag == "triggeredStatus": ghpr['triggered-status'] = extension_child.text elif extension_child.tag == "startedStatus": ghpr['started-status'] = extension_child.text elif extension_child.tag == "statusUrl": ghpr['status-url'] = extension_child.text elif extension_child.tag == "addTestResults": ghpr['status-add-test-results'] = get_bool(extension_child.text) elif extension_child.tag == "completedStatus": for status in extension_child: if status[1].text == "SUCCESS": ghpr['success-status'] = status[0].text elif status[1].text == "FAILURE": ghpr['failure-status'] = status[0].text elif status[1].text == "ERROR": ghpr['error-status'] = status[0].text else: raise NotImplementedError("GHPRB status %s is not implemented." % status[1].text) else: raise NotImplementedError("GHPRB simple status type %s is not implemented." % extension_child.tag) elif extension.tag == extensions_prefix+"comments.GhprbBuildStatus": for extension_child in extension: if extension_child.tag == "messages": for message in extension_child: if message[1].text == "SUCCESS": ghpr['success-comment'] = message[0].text elif message[1].text == "FAILURE": ghpr['failure-comment'] = message[0].text elif message[1].text == "ERROR": ghpr['error-comment'] = message[0].text else: raise NotImplementedError("GHPRB message %s is not implemented." % message[0].text) else: raise NotImplementedError("GHPRB extension type %s is not implemented." % extension_child.tag) elif extension.tag == extensions_prefix+"build.GhprbCancelBuildsOnUpdate": ghpr['cancel-builds-on-update'] = True elif extension.tag == extensions_prefix+"comments.GhprbCommentFile": ghpr['comment-file'] = extension[0].text elif extension.tag == extensions_prefix+"status.GhprbNoCommitStatus": ghpr['no-commit-status'] = True else: raise NotImplementedError("GHPRB extension %s is not implemented." % extension.tag) else: raise NotImplementedError("GHPRB tag %s is not implemented." % child.tag) parent.append({'github-pull-request': ghpr})
51.572917
119
0.569683
362
0.018279
0
0
0
0
0
0
6,048
0.305393
051d3484ddd9be778a5ba470d36fedfb5de63393
4,097
py
Python
tools/clean-parallel.py
ZJaume/clean
0c3c6bab8bf173687ec0bba6908097ef7bc38db2
[ "MIT" ]
1
2021-06-02T03:08:32.000Z
2021-06-02T03:08:32.000Z
tools/clean-parallel.py
ZJaume/clean
0c3c6bab8bf173687ec0bba6908097ef7bc38db2
[ "MIT" ]
1
2021-05-30T22:55:44.000Z
2021-06-02T08:47:56.000Z
tools/clean-parallel.py
ZJaume/clean
0c3c6bab8bf173687ec0bba6908097ef7bc38db2
[ "MIT" ]
2
2021-06-01T19:07:43.000Z
2021-06-03T11:03:04.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import re import regex import argparse # The variables below need to be adjusted for a language pair and dataset. # To add a new language, define the list of alpha characters in the dict below. MIN_LENGTH = 1 # minimum number of words in a sentence MAX_LENGTH = 200 # maximum number of words in a sentence RATIO_LENGTH = 0.3 # maximum length difference between the source and target sentence RATIO_ALPHA_WORDS = 0.4 # minimum fraction of "real" words in a source sentence RATIO_ALPHA_CHARS = 0.5 # minimum fraction of alpha characters in a source sentence CHARS = { 'bg': r'[АаБбВвГгДддЕеЖжЗзИиЙйКкkasЛлМмНнОоПпРрСсТтУуФфХхЦцЧчШшЩщЪъЬьЮюЯя]', 'cs': r'[a-zÁáČčĎďÉéěÍíŇňÓóŘřŠšŤťÚúůÝýŽž]', 'ca': r'[a-zÀàÈèÉéÍíÒòÓóÚúÇç]', 'da': r'[a-zÆæØøÅå]', 'de': r'[a-zÄäÖöÜüß]', 'en': r'[a-z]', 'el': r'[a-zΑαΒβΓγΔδΕεΖζΗηΘθΙιΚκΛλΜμΝνΞξΟοΠπΡρΣσςΤτΥυΦφΧχΨψΩω]', 'es': r'[a-zÁáÉéÍíÓóÚúñÑ]', 'et': r'[a-zÕõÄäÖöÜü]', 'eu': r'[a-zñÑ]', 'fi': r'[a-zÅåÄäÖö]', 'fr': r'[a-zÂâÁáÀàâÇçÉéÈèÊêÓóÒòÔôŒœÜüÛûŸÿ]', 'ga': r'[abcdefghilmnoprstuáéíóúÁÉÍÓÚ]', 'gl': r'[a-zÁáÉéÍíÓóÚúÑñ]', 'hr': r'[abcčČćĆdđĐefghijklmnoprsšŠtuvzžŽ]', 'hu': r'[a-zÁáÉéÍíÓóÖöŐőŰű]', 'is': r'[abdefghijklmnoprstuvxyÁáðÐÉéÍíÓóÚúÝýÞþÆæÖö]', 'it': r'[a-zàÀèÈéÉìÌíÍîÎòÒóÓùÙúÚ]', 'lt': r'[aąbcČčdeĘęĖėfghiĮįyjklmnoprsŠštuŲųŪūvzŽž]', 'lv': r'[aĀābcČčdeĒēfgĢģhiĪījkĶķlĻļmnŅņoprsŠštuŪūvzŽž]', 'mt': r'[abĊċdefĠġghĦħiiejklmnopqrstuvwxŻżz]', 'nb': r'[a-zÂâÁáÀàâÉéÈèÊêÓóÒòÔôÜüÆæØøÅå]', 'nl': r'[a-zÂâÁáÀàâÉéÈèÊêÓóÒòÔôÚú]', 'no': r'[a-zÂâÁáÀàâÉéÈèÊêÓóÒòÔôÜüÆæØøÅå]', 'nn': r'[a-zÂâÁáÀàâÉéÈèÊêÓóÒòÔôÜüÆæØøÅå]', 'pl': r'[a-zĄąĆćĘꣳŃńÓóŚśŹźŻż]', 'ro': r'[a-zĂăÂâÎîȘșȚț]', 'sk': r'[a-záäÁÄčČďĎžéÉíÍĺĹľĽňŇóÓôÔŕŔšŠťŤúÚýÝžŽ]', 'sl': r'[abcčČdđĐefghijklmnoprsšŠtuvzžŽ]', 'sv': r'[a-zÅåÄäÖö]', } middle_period = regex.compile(r'\w+[\.\?\!] \p{Lu}\w*,? ') def main(): args = parse_user_args() for i, line in enumerate(sys.stdin): fields = line.strip().split('\t') if len(fields) < 2: continue src = fields[-2].strip() trg = fields[-1].strip() skip = clean_parallel(src, trg, args.src_lang, args.trg_lang) if skip: if args.debug: sys.stderr.write("{}\t{}".format(skip, line)) continue sys.stdout.write(line) def clean_parallel(src, trg, src_lang, trg_lang): if src.lower() == trg.lower(): return "IDENTICAL" src_toks = src.split() trg_toks = trg.split() src_len = len(src_toks) trg_len = len(trg_toks) if not src_len or not trg_len: return "EMPTY" ratio_len = src_len / float(trg_len) if ratio_len < RATIO_LENGTH or ratio_len > (1. / RATIO_LENGTH): return "RATIO_LENGTH" if src_len < MIN_LENGTH or trg_len < MIN_LENGTH: return "TOO_SHORT" if src_len > MAX_LENGTH or trg_len > MAX_LENGTH: return "TOO_LONG" num_alpha = sum( [1 if re.match(CHARS[src_lang], t, re.IGNORECASE) else 0 for t in src_toks]) if num_alpha / float(src_len) < RATIO_ALPHA_WORDS: return "RATIO_ALPHA" char_alpha = len(re.findall(CHARS[src_lang], src, re.IGNORECASE)) if char_alpha / float(len(src.replace(' ', ''))) < RATIO_ALPHA_CHARS: return "RATIO_CHARS" if len(middle_period.findall(src)) != len(middle_period.findall(trg)): return "MIDDLE_PERIOD" if src_lang in CHARS and trg_lang in CHARS: if (src[0].isalpha() and not src[0].isupper() and (len(src)>1 and src[1]!=')')) \ or (trg[0].isalpha() and not trg[0].isupper() and (len(trg)>1 and trg[1]!=')')): return "START_CAPITAL" return None def parse_user_args(): parser = argparse.ArgumentParser() parser.add_argument("-l1", "--src-lang", default='es') parser.add_argument("-l2", "--trg-lang", default='en') parser.add_argument("--debug", action='store_true') return parser.parse_args() if __name__ == "__main__": main()
32.515873
96
0.640469
0
0
0
0
0
0
0
0
2,253
0.486294
051e064cf78fe1b3efaa1e563322f576984f94e9
24,624
py
Python
rubika/client.py
Bahman-Ahmadi/rubika
924e82434f9468cadf481af7b29695f642af7e99
[ "MIT" ]
23
2021-12-06T09:54:01.000Z
2022-03-31T19:44:29.000Z
rubika/client.py
Bahman-Ahmadi/rubika
924e82434f9468cadf481af7b29695f642af7e99
[ "MIT" ]
4
2022-01-08T19:27:40.000Z
2022-03-30T13:18:23.000Z
rubika/client.py
Bahman-Ahmadi/rubika
924e82434f9468cadf481af7b29695f642af7e99
[ "MIT" ]
13
2021-12-08T14:18:39.000Z
2022-03-30T13:20:37.000Z
from pathlib import Path from requests import post from random import randint from json import loads, dumps import random, datetime, rubika.encryption # because should be exist ! adminsAccess = { "pin":"PinMessages", "newAdmin":"SetAdmin", "editInfo":"ChangeInfo", "banMember":"BanMember", "changeLink":"SetJoinLink", "changeMembersAccess":"SetMemberAccess", "deleteMessages":"DeleteGlobalAllMessages" } usersAccess = { "addMember":"AddMember", "viewAdmins":"ViewAdmins", "viewMembers":"ViewMembers", "sendMessage":"SendMessages" } class Bot: def __init__(self, auth): self.auth = auth self.enc = rubika.encryption.encryption(auth) @staticmethod def _getURL(): return "https://messengerg2c64.iranlms.ir/" ''' result = [] for i in range(11,99): result.append(f"https://messengerg2c{i}.iranlms.ir/") return random.choice(result) ''' def _requestSendFile(self, file): return loads(self.enc.decrypt(post(json={"api_version":"5","auth": self.auth,"data_enc":self.enc.encrypt(dumps({ "method":"requestSendFile", "input":{ "file_name": str(file.split("/")[-1]), "mime": file.split(".")[-1], "size": Path(file).stat().st_size }, "client":{ "app_name":"Main", "app_version":"3.2.1", "platform":"Web", "package":"web.rubika.ir", "lang_code":"fa" } }))},url=Bot._getURL()).json()["data_enc"]))["data"] def _uploadFile(self, file): frequest = Bot._requestSendFile(self, file) bytef = open(file,"rb").read() hash_send = frequest["access_hash_send"] file_id = frequest["id"] url = frequest["upload_url"] header = { 'auth':self.auth, 'Host':url.replace("https://","").replace("/UploadFile.ashx",""), 'chunk-size':str(Path(file).stat().st_size), 'file-id':str(file_id), 'access-hash-send':hash_send, "content-type": "application/octet-stream", "content-length": str(Path(file).stat().st_size), "accept-encoding": "gzip", "user-agent": "okhttp/3.12.1" } if len(bytef) <= 131072: header["part-number"], header["total-part"] = "1","1" while True: try: j = post(data=bytef,url=url,headers=header).text j = loads(j)['data']['access_hash_rec'] break except Exception as e: continue return [frequest, j] else: t = random._floor(len(bytef) / 131072 + 1) for i in range(1,t+1): if i != t: k = i - 1 k = k * 131072 while True: try: header["chunk-size"], header["part-number"], header["total-part"] = "131072", str(i),str(t) o = post(data=bytef[k:k + 131072],url=url,headers=header).text o = loads(o)['data'] break except Exception as e: continue else: k = i - 1 k = k * 131072 while True: try: header["chunk-size"], header["part-number"], header["total-part"] = str(len(bytef[k:])), str(i),str(t) p = post(data=bytef[k:],url=url,headers=header).text p = loads(p)['data']['access_hash_rec'] break except Exception as e: continue return [frequest, p] def sendMessage(self, chat_id, text, metadata=[], message_id=None): inData = { "method":"sendMessage", "input":{ "object_guid":chat_id, "rnd":f"{randint(100000,999999999)}", "text":text, "reply_to_message_id":message_id }, "client":{ "app_name":"Main", "app_version":"3.2.1", "platform":"Web", "package":"web.rubika.ir", "lang_code":"fa" } } if metadata != [] : inData["input"]["metadata"] = {"meta_data_parts":metadata} return post(json={"api_version":"5","auth":self.auth,"data_enc":self.enc.encrypt(dumps(inData))},url=Bot._getURL()) def editMessage(self, message_id, chat_id, newText): return post(json={"api_version":"5","auth": self.auth,"data_enc":self.enc.encrypt(dumps({ "method":"editMessage", "input":{ "message_id": message_id, "object_guid": chat_id, "text": newText }, "client":{ "app_name":"Main", "app_version":"3.2.1", "platform":"Web", "package":"web.rubika.ir", "lang_code":"fa" } }))},url=Bot._getURL()) def deleteMessages(self, chat_id, message_ids): return post(json={"api_version":"5","auth":self.auth,"data_enc":self.enc.encrypt(dumps({ "method":"deleteMessages", "input":{ "object_guid":chat_id, "message_ids":message_ids, "type":"Global" }, "client":{ "app_name":"Main", "app_version":"3.2.1", "platform":"Web", "package":"web.rubika.ir", "lang_code":"fa" } }))},url=Bot._getURL()) def getUserInfo(self, chat_id): return loads(self.enc.decrypt(post(json={"api_version":"5","auth":self.auth,"data_enc":self.enc.encrypt(dumps({ "method":"getUserInfo", "input":{ "user_guid":chat_id }, "client":{ "app_name":"Main", "app_version":"3.2.1", "platform":"Web", "package":"web.rubika.ir", "lang_code":"fa" } }))},url=Bot._getURL()).json()["data_enc"])) def getMessages(self, chat_id,min_id): return loads(self.enc.decrypt(post(json={"api_version":"5","auth": self.auth,"data_enc":self.enc.encrypt(dumps({ "method":"getMessagesInterval", "input":{ "object_guid":chat_id, "middle_message_id":min_id }, "client":{ "app_name":"Main", "app_version":"3.2.1", "platform":"Web", "package":"web.rubika.ir", "lang_code":"fa" } }))},url=Bot._getURL()).json().get("data_enc"))).get("data").get("messages") def getInfoByUsername(self, username): ''' username should be without @ ''' return loads(self.enc.decrypt(post(json={"api_version":"5","auth": self.auth,"data_enc":self.enc.encrypt(dumps({ "method":"getObjectByUsername", "input":{ "username":username }, "client":{ "app_name":"Main", "app_version":"3.2.1", "platform":"Web", "package":"web.rubika.ir", "lang_code":"fa" } }))},url=Bot._getURL()).json().get("data_enc"))) def banGroupMember(self, chat_id, user_id): return post(json={"api_version":"5","auth": self.auth,"data_enc":self.enc.encrypt(dumps({ "method":"banGroupMember", "input":{ "group_guid": chat_id, "member_guid": user_id, "action":"Set" }, "client":{ "app_name":"Main", "app_version":"3.2.1", "platform":"Web", "package":"web.rubika.ir", "lang_code":"fa" } }))},url=Bot._getURL()) def invite(self, chat_id, user_ids): return post(json={"api_version":"5","auth": self.auth,"data_enc":self.enc.encrypt(dumps({ "method":"addGroupMembers", "input":{ "group_guid": chat_id, "member_guids": user_ids }, "client":{ "app_name":"Main", "app_version":"3.2.1", "platform":"Web", "package":"web.rubika.ir", "lang_code":"fa" } }))},url=Bot._getURL()) def getGroupAdmins(self, chat_id): return loads(self.enc.decrypt(post(json={"api_version":"5","auth": self.auth,"data_enc":self.enc.encrypt(dumps({ "client":{ "app_name":"Main", "app_version":"2.9.5", "lang_code":"fa", "package":"ir.resaneh1.iptv", "platform":"Android" }, "input":{ "group_guid":chat_id }, "method":"getGroupAdminMembers" }))},url=Bot._getURL()).json().get("data_enc"))) def getMessagesInfo(self, chat_id, message_ids): return loads(self.enc.decrypt(post(json={"api_version":"5","auth": self.auth,"data_enc":self.enc.encrypt(dumps({ "method":"getMessagesByID", "input":{ "object_guid": chat_id, "message_ids": message_ids }, "client":{ "app_name":"Main", "app_version":"3.2.1", "platform":"Web", "package":"web.rubika.ir", "lang_code":"fa" } }))}, url=Bot._getURL()).json()["data_enc"])).get("data").get("messages") def setMembersAccess(self, chat_id, access_list): return post(json={ "api_version": "4", "auth": self.auth, "client": { "app_name": "Main", "app_version": "2.9.5", "lang_code": "fa", "package": "ir.resaneh1.iptv", "platform": "Android" }, "data_enc": self.enc.encrypt(dumps({ "access_list": access_list, "group_guid": chat_id })), "method": "setGroupDefaultAccess" }, url=Bot._getURL()) def getGroupMembers(self, chat_id): return loads(self.enc.decrypt(post(json={ "api_version":"5", "auth": self.auth, "data_enc": self.enc.encrypt(dumps({ "method":"getGroupAllMembers", "input":{ "group_guid": chat_id, }, "client":{ "app_name":"Main", "app_version":"3.2.1", "platform":"Web", "package":"web.rubika.ir", "lang_code":"fa" } })) }, url=Bot._getURL()).json()["data_enc"]))["data"]["in_chat_members"] def getGroupInfo(self, chat_id): return loads(self.enc.decrypt(post( json={ "api_version":"5", "auth": self.auth, "data_enc": self.enc.encrypt(dumps({ "method":"getGroupInfo", "input":{ "group_guid": chat_id, }, "client":{ "app_name":"Main", "app_version":"3.2.1", "platform":"Web", "package":"web.rubika.ir", "lang_code":"fa" } }))}, url=Bot._getURL()).json()["data_enc"])) def getGroupLink(self, chat_id): return loads(self.enc.decrypt(post(json={"api_version":"5","auth": self.auth,"data_enc":self.enc.encrypt(dumps({ "method":"getGroupLink", "input":{ "group_guid":chat_id }, "client":{ "app_name":"Main", "app_version":"3.2.1", "platform":"Web", "package":"web.rubika.ir", "lang_code":"fa" } }))},url=Bot._getURL()).json().get("data_enc"))).get("data").get("join_link") def changeGroupLink(self, chat_id): return post(json={ "api_version":"4", "auth":self.auth, "client":{ "app_name":"Main", "app_version":"2.8.1", "lang_code":"fa", "package":"ir.resaneh1.iptv", "platform":"Android" }, "data_enc":self.enc.encrypt(dumps({ "group_guid": chat_id })), "method":"setGroupLink", },url=Bot._getURL()) def setGroupTimer(self, chat_id, time): return post(json={ "api_version":"4", "auth":self.auth, "client":{ "app_name":"Main", "app_version":"2.8.1", "platform":"Android", "package":"ir.resaneh1.iptv", "lang_code":"fa" }, "data_enc":self.enc.encrypt(dumps({ "group_guid": chat_id, "slow_mode": time, "updated_parameters":["slow_mode"] })), "method":"editGroupInfo" },url=Bot._getURL()) def setGroupAdmin(self, chat_id, user_id, access_list=[]): return post(json={"api_version":"5","auth":self.auth,"data_enc":self.enc.encrypt(dumps({ "method":"setGroupAdmin", "input":{ "group_guid": chat_id, "access_list": access_list, "action": "SetAdmin", "member_guid": user_id }, "client":{ "app_name":"Main", "app_version":"2.8.1", "platform":"Android", "package":"ir.resaneh1.iptv", "lang_code":"fa" } }))},url=Bot._getURL()) def deleteGroupAdmin(self, chat_id, user_id, access_list=[]): return post(json={"api_version":"5","auth":self.auth,"data_enc":self.enc.encrypt(dumps({ "method":"setGroupAdmin", "input":{ "group_guid": chat_id, "action": "UnsetAdmin", "member_guid": user_id }, "client":{ "app_name":"Main", "app_version":"2.8.1", "platform":"Android", "package":"ir.resaneh1.iptv", "lang_code":"fa" } }))},url=Bot._getURL()) def logout(self): return post(json={"api_version":"5","auth": self.auth,"data_enc":self.enc.encrypt(dumps({ "method":"logout", "input":{}, "client":{ "app_name":"Main", "app_version":"3.2.1", "platform":"Web", "package":"web.rubika.ir", "lang_code":"fa" } }))},url=Bot._getURL()) def forwardMessages(self, From, message_ids, to): return post(json={"api_version":"5","auth": self.auth,"data_enc":self.enc.encrypt(dumps({ "method":"forwardMessages", "input":{ "from_object_guid": From, "message_ids": message_ids, "rnd": f"{randint(100000,999999999)}", "to_object_guid": to }, "client":{ "app_name":"Main", "app_version":"3.2.1", "platform":"Web", "package":"web.rubika.ir", "lang_code":"fa" } }))},url=Bot._getURL()) def seenChats(self, seenList): # seenList should be a dict , keys are object guids and values are last message’s id, {"guid":"msg_id"} return post(json={"api_version":"5","auth": self.auth,"data_enc":self.enc.encrypt(dumps({ "method":"seenChats", "input":{ "seen_list": seenList }, "client":{ "app_name":"Main", "app_version":"3.2.1", "platform":"Web", "package":"web.rubika.ir", "lang_code":"fa" } }))},url=Bot._getURL()) def sendChatAction(self, chat_id, action): #every some seconds before sending message this request should send return post(json={"api_version":"5","auth": self.auth,"data_enc":self.enc.encrypt(dumps({ "method":"sendChatActivity", "input":{ "activity": action, "object_guid": chat_id }, "client":{ "app_name":"Main", "app_version":"3.2.1", "platform":"Web", "package":"web.rubika.ir", "lang_code":"fa" } }))},url=Bot._getURL()) def pin(self, chat_id, message_id): return post(json={"api_version": "4", "auth": self.auth, "client": { "app_name": "Main", "app_version": "2.9.5", "lang_code": "fa", "package": "ir.resaneh1.iptv", "platform": "Android" }, "data_enc": self.enc.encrypt(dumps({ "action":"Pin", "message_id": message_id, "object_guid": chat_id })), "method": "setPinMessage" },url=Bot._getURL()) def unpin(self, chat_id, message_id): return post(json={"api_version": "4", "auth": self.auth, "client": { "app_name": "Main", "app_version": "2.9.5", "lang_code": "fa", "package": "ir.resaneh1.iptv", "platform": "Android" }, "data_enc": self.enc.encrypt(dumps({ "action":"Unpin", "message_id": message_id, "object_guid": chat_id })), "method": "setPinMessage" },url=Bot._getURL()) def joinGroup(self, link): hashLink = link.split("/")[-1] return post(json={"api_version":"5","auth": self.auth,"data_enc":self.enc.encrypt(dumps({ "method":"joinGroup", "input":{ "hash_link": hashLink }, "client":{ "app_name":"Main", "app_version":"3.2.1", "platform":"Web", "package":"web.rubika.ir", "lang_code":"fa" } }))},url=Bot._getURL()) def leaveGroup(self, chat_id): return post(json={"api_version":"5","auth": self.auth,"data_enc":self.enc.encrypt(dumps({ "method":"leaveGroup", "input":{ "group_guid": chat_id }, "client":{ "app_name":"Main", "app_version":"3.2.1", "platform":"Web", "package":"web.rubika.ir", "lang_code":"fa" } }))},url=Bot._getURL()) def block(self, chat_id): return post(json={"api_version":"5","auth": self.auth,"data_enc":self.enc.encrypt(dumps({ "method":"setBlockUser", "input":{ "action": "Block", "user_guid": chat_id }, "client":{ "app_name":"Main", "app_version":"3.2.1", "platform":"Web", "package":"web.rubika.ir", "lang_code":"fa" } }))},url=Bot._getURL()) def unblock(self, chat_id): return post(json={"api_version":"5","auth": self.auth,"data_enc":self.enc.encrypt(dumps({ "method":"setBlockUser", "input":{ "action": "Unblock", "user_guid": chat_id }, "client":{ "app_name":"Main", "app_version":"3.2.1", "platform":"Web", "package":"web.rubika.ir", "lang_code":"fa" } }))},url=Bot._getURL()) def sendPhoto(self, chat_id, file, size, thumbnail=None, caption=None, message_id=None): uresponse = Bot._uploadFile(self, file) file_inline = { "dc_id": uresponse[0]["dc_id"], "file_id": uresponse[0]["id"], "type":"Image", "file_name": file.split("/")[-1], "size": str(Path(file).stat().st_size), "mime": file.split(".")[-1], "access_hash_rec": uresponse[1], "width": size[0], "height": size[1], "thumb_inline": thumbnail or "iVBORw0KGgoAAAANSUhEUgAAABwAAAAoCAYAAADt5povAAAAAXNSR0IArs4c6QAABZZJREFUWEftl2tMVEcUgM+Ze3fv7rLLCvLwxaNB0VpJCWqNIgqV+gpNLImxiTZoTZNa5YdpGi211aSJSdOkSU1qaorV2D/90TapJNrYVGttKKBgqYiioLLoWmAXQdjHfcyc5uKSoFlhFxp/NJ3N5mZnZ84359zzGoRnPPAZ8+B/oGkBBhCTJQgABACYz6eOsUw68t+YAp6QPO6eMYFLX4CktBSlMCOVPS8zUlBEPz0nMPqHhOevNlb7551wZ+QQUQ8aDTg8t3tjYo5dMTZLkuC1zUb9YBiGOEfTZI8NWQZU7OQoyLHOnZGKOXUt6skffjMuPA36JHD49/I8mDI30146PwuT3z0cPBJr6Bx5z1Ggamz9vmNDhx8+hL7Iu39M02hAtqPclhUOw8ud3bzpbKPeHAHyyNPcY35NQSPCTMdi29fbZmo6lPgH+bVTdXpDZN1jVokGxB3ltmxN5UXN7azuUpt6cxaAwtxgeyCAMQZiYAD6AcCang5uO4KDDIfa6Qv6yovt6RLyFZyLuxGzmvLHBbLd5basQZWXXPVgg2Kz9E53iZLcTPk5t4vSwyrd/+4X7efSJXLWvAy5zOun+wGVBq50qBecTstdElSia8aduICVG5TsoCZKWjzYkO6WfSGV57d7oSPBoRppLikXQAZZMsCmYLi317iRkiItSkzAEEfLtUkBW7uwPslm6Z2WytfOSGUzB0PQ43ZSotfHu0EwZrNgyBcAz1Qn5XGd/u5XWfOkgKaGBblsaLobKjLTGN9zPPglAAS6uyEYcSD5UKV9oQCx6VSt+DZ5quwFwyjWDOqcsElfLsCw28a2Ox0gt3TgjSkuSLPZwa4wZAankEVmVrcLleoatXpOthQAg4o1w5g4cEEmGzBd3es3OpwK63cnsiVDQdEvIzD/EFznqHgNVV+gk+iZnSk9FBoVq7rhmbCGqS7JL0t8BZLo4mC9FVL5Ik48nCAzu6cXryUloma3UF5IF13T0mT/pDQ0nQaEdm9+tn3VvGy2OBCkIVWH7nON+sWcWdL83Ewpw+2AqTe7oPnXK8Yf+bksPGENQ7oobr6NdRdbtauRjCGnpIDN5wMVAHQAUBITwWG1gu7zQcAM8PJi+ywGfKUQomvCJq1v0VojQDO1mVljpD6O1D4zm0jm/MZS2zSZxApVF/G/w7Amimrb2O9XO9T2WJN3eZFjOgejUELRE5eGZmoTjF7jHAJ3egwPY4DiKbXQPAyjRx1BRhpLTk2SsprajXMnLxi1sSbv4Vy6eqVetbYQtkMIHxkxlrqPAL4A1m/eCzvPNOlNcQFLC/Wq1QtpqwgBlyWQGBCC+Yk2CIgTCGJIfSFs3LafVZ66rDfGBVy9XK9as5jeFEEQiMg0Aw0uzIpPI7XQRKOpucRAUizEgBH5w3ip4kO2c0LAVxbRNhEGwxdmtw8exU++P6+ftSrANDVS4+wACRzkz3ZZ1qwqoE8dDuHwBVhDxUc4OaBfZTfeP0xVx0/zmigWlVuPWcsyU8WJBIdw/TtAjbXtOUR7Tpzhp6MApetfW8tmpolvnBMFmgV4XZFRteYl2srDwPtCeK/6R/mLo6fVGgJAhiAoEgpOG1g/3iq/um4JHbDIJPUG2MVt+3FXXO/w7Q22jPXL+N6ypeItESCSZJQEIukaEpnhMardRQSwyDRyBtGn4qVN+/Gds4365Vi9FGbPBld1paVi5Yv0udC54AYKNDVjwx46epj84UaJAJHJKPUPSmfy3tC2eAfBH603fWojvG+LkluYTwfWLhOvA5pix4h8AhCCCY9Xaj54Aj74qkb9KdZGePTp0WyI05OV5XMyKN9hBRsS0HD4jxrmnMpBv/+Abp1rlM7f8oa74m31R8SNezGJ4rHj7hnvQvpMr2uxVqW41o2nYVzCYln83wf+AyQsJlbR2o/9AAAAAElFTkSuQmCC" } inData = { "method":"sendMessage", "input":{ "file_inline": file_inline, "object_guid": chat_id, "rnd": f"{randint(100000,999999999)}", "reply_to_message_id": message_id }, "client":{ "app_name":"Main", "app_version":"3.2.1", "platform":"Web", "package":"web.rubika.ir", "lang_code":"fa" } } if caption != None: inData["input"]["text"] = caption data = {"api_version":"5","auth":self.auth,"data_enc":self.enc.encrypt(dumps(inData))} return post(json=data,url=Bot._getURL()) def sendVoice(self, chat_id, file, time, caption=None, message_id=None): # file's format should be ogg. time should be ms (type: float). uresponse = Bot._uploadFile(self, file) inData = { "method":"sendMessage", "input":{ "file_inline": { "dc_id": uresponse[0]["dc_id"], "file_id": uresponse[0]["id"], "type":"Voice", "file_name": file.split("/")[-1], "size": str(Path(file).stat().st_size), "time": time, "mime": file.split(".")[-1], "access_hash_rec": uresponse[1], }, "object_guid":chat_id, "rnd":f"{randint(100000,999999999)}", "reply_to_message_id":message_id }, "client":{ "app_name":"Main", "app_version":"3.2.1", "platform":"Web", "package":"web.rubika.ir", "lang_code":"fa" } } if caption != None: inData["input"]["text"] = caption data = { "api_version":"5", "auth":self.auth, "data_enc":self.enc.encrypt(dumps(inData)) } return post(json=data,url=Bot._getURL()) def sendDocument(self, chat_id, file, caption=None, message_id=None): # Bot.sendDocument("guid","./file.txt", caption="anything", message_id="12345678") uresponse = Bot._uploadFile(self, file) file_id = str(uresponse[0]["id"]) mime = file.split(".")[-1] dc_id = uresponse[0]["dc_id"] access_hash_rec = uresponse[1] file_name = file.split("/")[-1] size = str(Path(file).stat().st_size) inData = { "method":"sendMessage", "input":{ "object_guid":chat_id, "reply_to_message_id":message_id, "rnd":f"{randint(100000,999999999)}", "file_inline":{ "dc_id":str(dc_id), "file_id":str(file_id), "type":"File", "file_name":file_name, "size":size, "mime":mime, "access_hash_rec":access_hash_rec } }, "client":{ "app_name":"Main", "app_version":"3.2.1", "platform":"Web", "package":"web.rubika.ir", "lang_code":"fa" } } if caption != None: inData["input"]["text"] = caption data = { "api_version":"5", "auth":self.auth, "data_enc":self.enc.encrypt(dumps(inData)) } while True: try: return loads(self.enc.decrypt(loads(post(json=data,url=Bot._getURL()).text)['data_enc'])) break except: continue def sendLocation(self, chat_id, location, message_id=None): # location = [float(x), float(y)] return post(json={ "api_version":"4", "auth":self.auth, "client":{ "app_name":"Main", "app_version":"2.8.1", "platform":"Android", "package":"ir.resaneh1.iptv", "lang_code":"fa" }, "data_enc":self.enc.encrypt(dumps({ "is_mute": False, "object_guid":chat_id, "rnd":f"{randint(100000,999999999)}", "location":{ "latitude": location[0], "longitude": location[1] }, "reply_to_message_id":message_id })), "method":"sendMessage" },url=Bot._getURL()) def searchInChannelMembers(self, text, channel_guid): try: return loads(self.enc.decrypt(post(json={ "api_version":"4", "auth":self.auth, "client":{ "app_name":"Main", "app_version":"2.8.1", "platform":"Android", "package":"ir.resaneh1.iptv", "lang_code":"fa" }, "data_enc":self.enc.encrypt(dumps({ "channel_guid": channel_guid, "search_text": text })), "method":"getChannelAllMembers" },url=Bot._getURL()).json()["data_enc"]))["in_chat_members"] except KeyError: return None def getChatsUpdate(self): time_stamp = str(random._floor(datetime.datetime.today().timestamp()) - 200) return loads(self.enc.decrypt(post(json={"api_version":"5","auth": self.auth,"data_enc":self.enc.encrypt(dumps({ "method":"getChatsUpdates", "input":{ "state":time_stamp, }, "client":{ "app_name":"Main", "app_version":"3.2.1", "platform":"Web", "package":"web.rubika.ir", "lang_code":"fa" } }))},url=Bot._getURL()).json().get("data_enc"))).get("data").get("chats") def getChatUpdate(self, chat_id): time_stamp = str(random._floor(datetime.datetime.today().timestamp()) - 200) return loads(self.enc.decrypt(post(json={"api_version":"5","auth": self.auth,"data_enc":self.enc.encrypt(dumps({ "method":"getMessagesUpdates", "input":{ "object_guid":chat_id, "state":time_stamp }, "client":{ "app_name":"Main", "app_version":"3.2.1", "platform":"Web", "package":"web.rubika.ir", "lang_code":"fa" } }))},url=Bot._getURL()).json().get("data_enc"))).get("data").get("updated_messages") def myStickerSet(self): time_stamp = str(random._floor(datetime.datetime.today().timestamp()) - 200) return loads(self.enc.decrypt(post(json={"api_version":"5","auth": self.auth,"data_enc":self.enc.encrypt(dumps({ "method":"getMyStickerSets", "input":{}, "client":{ "app_name":"Main", "app_version":"3.2.1", "platform":"Web", "package":"web.rubika.ir", "lang_code":"fa" } }))},url=Bot._getURL()).json().get("data_enc"))).get("data") class Socket: data = {"error":[],"messages":[]} def __init__(self, auth): self.auth = auth self.enc = rubika.encryption.encryption(auth) def on_open(self, ws): def handShake(*args): ws.send(dumps({ "api_version": "4", "auth": self.auth, "data_enc": "", "method": "handShake" })) import _thread _thread.start_new_thread(handShake, ()) def on_error(self, ws, error): Socket.data["error"].append(error) def on_message(self, ws, message): try: parsedMessage = loads(message) Socket.data["messages"].append({"type": parsedMessage["type"], "data": loads(self.enc.decrypt(parsedMessage["data_enc"]))}) except KeyError: pass def on_close(self, ws, code, msg): return {"code": code, "message": msg} def handle(self, OnOpen=None, OnError=None, OnMessage=None, OnClose=None, forEver=True): import websocket ws = websocket.WebSocketApp( "wss://jsocket3.iranlms.ir:80", on_open=OnOpen or Socket(self.auth).on_open, on_message=OnMessage or Socket(self.auth).on_message, on_error=OnError or Socket(self.auth).on_error, on_close=OnClose or Socket(self.auth).on_close ) if forEver : ws.run_forever()
29.349225
2,034
0.634665
24,079
0.977788
0
0
211
0.008568
0
0
11,272
0.457728
051f4dab5a5f1bed25333ea9cb6d58c8c48a834b
424
py
Python
lpyHardway/logic/ex2.py
oreanroy/learn_modules
fb1debc612940b65c409d8f5b35a3b4e16e67494
[ "MIT" ]
null
null
null
lpyHardway/logic/ex2.py
oreanroy/learn_modules
fb1debc612940b65c409d8f5b35a3b4e16e67494
[ "MIT" ]
17
2019-12-01T16:56:29.000Z
2022-03-02T04:49:51.000Z
lpyHardway/logic/ex2.py
oreanroy/learn_modules
fb1debc612940b65c409d8f5b35a3b4e16e67494
[ "MIT" ]
1
2019-09-28T00:43:54.000Z
2019-09-28T00:43:54.000Z
people = 30 cars = 40 buses = 15 if cars > people: print "We should take the cars." elif cars < people: print "we should not take the cars." else: print "we can't decide." if buses > cars: print " That's too many buses" elif buses < cars: print " Maybe we could take the bus." else: print "we stil can't decide." if people > buses: print " Alright lets take the buses." else: print "Fine, let's stay home then."
17.666667
38
0.676887
0
0
0
0
0
0
0
0
212
0.5
0520b1fd12c6c807e99e2585c0ad990c4a9c1185
3,001
py
Python
undercrawler/crazy_form_submitter.py
abael/ScrapyGenericCrawler
9d210fb862a7fddd58c548847d8f5c2d72eae5c1
[ "MIT" ]
88
2016-04-07T18:41:19.000Z
2022-01-03T12:18:44.000Z
undercrawler/crazy_form_submitter.py
shekar9160/generic_scraper
e5104dca5a5d9fe4b9ddd085c7b0935a712ea74d
[ "MIT" ]
61
2016-04-06T18:31:45.000Z
2021-07-15T12:10:23.000Z
undercrawler/crazy_form_submitter.py
shekar9160/generic_scraper
e5104dca5a5d9fe4b9ddd085c7b0935a712ea74d
[ "MIT" ]
31
2016-04-14T07:49:49.000Z
2021-08-08T17:07:36.000Z
import logging import random import string from scrapy.http.request.form import _get_inputs as get_form_data logger = logging.getLogger(__name__) SEARCH_TERMS = list(string.ascii_lowercase) + list('123456789 *%.?') def search_form_requests(url, form, meta, search_terms=None, extra_search_terms=None): ''' yield kwargs for search requests, using default search terms and extra_search_terms, also randomly refining search if there are such options in the form. ''' refinement_options = [False] if not any(input_type == 'search query' for input_type in meta['fields'].values()): return n_target_inputs = sum( input_type == 'search query' or _is_refinement_input(input_type, form.inputs[input_name]) for input_name, input_type in meta['fields'].items()) assert n_target_inputs >= 0 # 2 and 4 here are just some values that feel right, need tuning refinement_options.append([True] * 2 * min(2, n_target_inputs)) extra_search_terms = set(extra_search_terms or []) main_search_terms = set( search_terms if search_terms is not None else SEARCH_TERMS) for search_term in (main_search_terms | extra_search_terms): for do_random_refinement in refinement_options: formdata = _fill_search_form( search_term, form, meta, do_random_refinement) if formdata is not None: priority = -3 if do_random_refinement else -1 if search_term not in main_search_terms: min_priority = min( priority, -int(len(extra_search_terms) / 10)) priority = random.randint(min_priority, priority) logger.debug( 'Scheduled search: "%s" at %s with priority %d%s', search_term, url, priority, ' with random refinement' if do_random_refinement else '') yield dict( url=url, formdata=formdata, method=form.method, priority=priority, ) def _fill_search_form(search_term, form, meta, do_random_refinement=False): additional_formdata = {} search_fields = [] for input_name, input_type in meta['fields'].items(): input_el = form.inputs[input_name] if input_type == 'search query': search_fields.append(input_name) elif do_random_refinement and \ _is_refinement_input(input_type, input_el): if input_el.type == 'checkbox' and random.random() > 0.5: additional_formdata[input_name] = 'on' additional_formdata[random.choice(search_fields)] = search_term return get_form_data(form, additional_formdata, None, None, None) def _is_refinement_input(input_type, input_el): return (input_type == 'search category / refinement' and getattr(input_el, 'type', None) in ['checkbox'])
40.554054
78
0.638121
0
0
1,927
0.642119
0
0
0
0
455
0.151616
0520c8a0308bb129120ec328a9eacba21da937c0
277
py
Python
python/pid.py
gin2018/test_tools
46d911da6719ae2069ed4e87bdcc6922c21459a5
[ "MIT" ]
null
null
null
python/pid.py
gin2018/test_tools
46d911da6719ae2069ed4e87bdcc6922c21459a5
[ "MIT" ]
null
null
null
python/pid.py
gin2018/test_tools
46d911da6719ae2069ed4e87bdcc6922c21459a5
[ "MIT" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt pid_file = open("pid.txt", "w") x = np.linspace(0, 2 * np.pi, 100) print x pid_file.write(x) y1, y2 = np.sin(x), np.cos(x) plt.plot(x, y1, label='y = sin(x)') plt.plot(x, y2, label='y = cos(x)') plt.legend() plt.show()
16.294118
35
0.624549
0
0
0
0
0
0
0
0
36
0.129964
0524ab92ab97c6f8922dd3dd0c03bf3b79b8a0ee
921
py
Python
libs/libssh2/libssh2.py
simont77/craft-blueprints-kde
3c0a40923c7c8e0341ad08afde22f86bb1517ddf
[ "BSD-2-Clause" ]
null
null
null
libs/libssh2/libssh2.py
simont77/craft-blueprints-kde
3c0a40923c7c8e0341ad08afde22f86bb1517ddf
[ "BSD-2-Clause" ]
1
2020-01-10T01:06:16.000Z
2020-01-10T01:06:16.000Z
libs/libssh2/libssh2.py
simont77/craft-blueprints-kde
3c0a40923c7c8e0341ad08afde22f86bb1517ddf
[ "BSD-2-Clause" ]
2
2020-01-02T18:22:12.000Z
2020-08-05T13:39:21.000Z
# -*- coding: utf-8 -*- import info class subinfo(info.infoclass): def setTargets( self ): self.svnTargets['master'] = 'https://github.com/libssh2/libssh2.git||libssh2-1.8.0' self.targets['1.8.0'] = "https://www.libssh2.org/download/libssh2-1.8.0.tar.gz" self.targetInstSrc['1.8.0'] = "libssh2-1.8.0" self.patchToApply['master'] = ('0001-Ensure-other-libraries-are-told-the-correct-linkage-.patch', 1) self.defaultTarget = 'master' def setDependencies( self ): self.buildDependencies['virtual/base'] = 'default' self.runtimeDependencies['libs/zlib'] = 'default' self.runtimeDependencies['libs/openssl'] = 'default' from Package.CMakePackageBase import * class Package(CMakePackageBase): def __init__( self, **args ): CMakePackageBase.__init__( self ) self.subinfo.options.configure.defines = "-DENABLE_ZLIB_COMPRESSION=ON "
38.375
108
0.667752
840
0.912052
0
0
0
0
0
0
348
0.37785
05260b29fa65b53dc965a1c89ebcef95a1a96d54
396
py
Python
test/config_generator_test.py
jnohlgard/projector-installer
52aeaa936aa21d9fa6aee109d78e209fa068821b
[ "Apache-2.0" ]
null
null
null
test/config_generator_test.py
jnohlgard/projector-installer
52aeaa936aa21d9fa6aee109d78e209fa068821b
[ "Apache-2.0" ]
null
null
null
test/config_generator_test.py
jnohlgard/projector-installer
52aeaa936aa21d9fa6aee109d78e209fa068821b
[ "Apache-2.0" ]
null
null
null
"""Test config_generator.py module""" from unittest import TestCase from projector_installer.config_generator import token_quote class ConfigGeneratorTest(TestCase): """Test config_generator.py module""" def test_token_quote(self) -> None: """The token_quote method must return the same token in quotes""" self.assertEqual(token_quote('some_token'), '\"some_token\"')
30.461538
73
0.739899
263
0.664141
0
0
0
0
0
0
167
0.421717
05273ebf4b8d4eb6302f146e1b519e163f850d92
5,289
py
Python
tooling/maven.py
AntonisGkortzis/Vulnerabilities-in-Reused-Software
16b2087cb595b48446dadda8cae75dad6ef1433b
[ "MIT" ]
3
2020-11-24T20:30:59.000Z
2021-05-26T02:33:53.000Z
tooling/maven.py
AntonisGkortzis/Vulnerabilities-in-Reused-Software
16b2087cb595b48446dadda8cae75dad6ef1433b
[ "MIT" ]
null
null
null
tooling/maven.py
AntonisGkortzis/Vulnerabilities-in-Reused-Software
16b2087cb595b48446dadda8cae75dad6ef1433b
[ "MIT" ]
null
null
null
import os import re import logging import zipfile logger = logging.getLogger(__name__) class MvnArtifact: """ Class representing a fully defined maven artifact (e.g., <groupId>:<artifactId>:<type>:<version>[:<dep_type>]) """ __elem_re = re.compile(r'^(.+?):(.+?):(.+?):(.+?)((:)(.+))?$') def __init__(self, artifact_str): elems = MvnArtifact.__elem_re.match(artifact_str).groups() self.groupId = elems[0] self.artifactId = elems[1] self.type = elems[2] self.version = elems[3] self.dep_type = elems[6] # (e.g., compile, test, provided) def __str__(self): dt = '' if not 'dep_type' in self._dict_ else f':{self.dep_type}' return f'{self.groupId}:{self.artifactId}:{self.type}:{self.version}{dt}' def __eq__(self, other): if isinstance(other, MvnArtifact): return self.groupId == other.groupId and self.artifactId == other.artifactId \ and self.type == other.type and self.version == other.version return NotImplemented def __hash__(self): d = self.__dict__ del d['dep_type'] return hash(tuple(sorted(d.items()))) def get_class_list(self, m2_home=os.path.expanduser('~/.m2')): m2_home="/media/agkortzis/Data/m2" art_path = self.get_m2_path(m2_home) logger.debug("@@-zip file={}".format(art_path)) container = zipfile.ZipFile(art_path) len_preffix = len('WEB-INF/classes/') if art_path.endswith('.war') else 0 if not art_path.endswith('.war') and not art_path.endswith('.jar'): logger.warning(f'Unsupported file type: {os.path.splitext(art_path)[1]}') return [] return [i[len_preffix:-6].replace(os.path.sep,'.') for i in container.namelist() if i.endswith('.class')] def get_m2_path(self, m2_home=os.path.expanduser('~/.m2')): m2_home="/media/agkortzis/Data/m2" return os.sep.join([m2_home, 'repository', self.groupId.replace('.', os.sep), self.artifactId, self.version, f"{self.artifactId}-{self.version}.{self.type}"]) class ArtifactTree: def __init__(self, artifact): self.artifact = MvnArtifact(artifact) self.deps = [] def __iter__(self): yield self for d in self.deps: for t in d.__iter__(): yield t def print_tree(self, indent=0): print(' ' * indent, self.artifact) for i in self.deps: i.print_tree(indent+2) def filter_deps(self, filter): self.deps = [i for i in self.deps if filter(i)] for i in self.deps: i.filter_deps(filter) def missing_m2_pkgs(self, m2_home=os.path.expanduser('~/.m2')): m2_home="/media/agkortzis/Data/m2" return [p for p in self if not os.path.exists(p.artifact.get_m2_path(m2_home))] @staticmethod def parse_tree_str(tree_str): return ArtifactTree.__parse_tree([l[7:].rstrip() for l in tree_str.split('\n')], 0) @staticmethod def __parse_tree(tree_lst, i): root_level, root_artifact = ArtifactTree.__parse_item(tree_lst[i]) t = ArtifactTree(root_artifact) while i+1 < len(tree_lst) and root_level < ArtifactTree.__parse_item(tree_lst[i+1])[0]: t.deps.append(ArtifactTree.__parse_tree(tree_lst, i+1)) tree_lst.pop(i+1) return t @staticmethod def __parse_item(item): parts = re.match(r'([ \+\-\|\\]*)(.+)', item).groups() return int(len(parts[0])/3), parts[1] def get_compiled_modules(project_trees_file): with open(project_trees_file) as f: try: str_trees = split_trees([l.rstrip() for l in f.readlines()]) except: logger.error(f'File is malformed: {project_trees_file}') return [] trees = [] for t in str_trees: t = ArtifactTree.parse_tree_str('\n'.join(t)) if t.artifact.type in ['jar', 'war']: t.filter_deps(lambda d : d.artifact.dep_type == 'compile' and d.artifact.type in ['jar', 'war']) trees.append(t) return [t for t in trees if not t.missing_m2_pkgs()] def filter_mvn_output(mvn_tree_output): re_tree_element = re.compile(r'^\[INFO\] (\||\\\-|\+\-| )*([a-zA-Z_$][a-zA-Z\d_\-$]*\.)*[a-zA-Z_$][a-zA-Z\d_\-$]*:.+?:([a-zA-Z]+?):.+?(:[a-zA-Z\-]+)?$') with open(tree_file, 'r') as f: lines = f.readlines() tree_lines = [l.rstrip() for l in lines if re_tree_element.match(l)] return tree_lines def split_trees(tree_lines): re_artifact = re.compile(r'^\[INFO\] ([a-zA-Z_$][a-zA-Z\d_\-$]*\.)*[a-zA-Z_$][a-zA-Z\d_\-$]*:.+?:([a-zA-Z]+?):.+$') trees = [] tree = None for l in tree_lines: if re_artifact.match(l): if tree: trees.append([tree['root']] + tree['deps']) tree = {'root': l, 'deps': []} else: tree['deps'].append(l) trees.append([tree['root']] + tree['deps']) return trees
33.687898
156
0.560219
3,650
0.690112
125
0.023634
664
0.125544
0
0
948
0.17924
0527ccd6baf873620f163e0b3ed2a44bfa92eff6
1,812
py
Python
ptsites/sites/hares.py
kbnq/flexget_qbittorrent_mod
e52d9726b80aab94cf3d9ee6c382b6721b757d3b
[ "MIT" ]
null
null
null
ptsites/sites/hares.py
kbnq/flexget_qbittorrent_mod
e52d9726b80aab94cf3d9ee6c382b6721b757d3b
[ "MIT" ]
null
null
null
ptsites/sites/hares.py
kbnq/flexget_qbittorrent_mod
e52d9726b80aab94cf3d9ee6c382b6721b757d3b
[ "MIT" ]
null
null
null
from ..schema.nexusphp import Attendance from ..schema.site_base import Work, SignState from ..utils.net_utils import NetUtils class MainClass(Attendance): URL = 'https://club.hares.top/' USER_CLASSES = { 'downloaded': [8796093022208], 'share_ratio': [5.5], 'days': [364] } def build_workflow(self, entry, config): return [ Work( url='/attendance.php', method='get', succeed_regex=[ '这是您的第 \\d+ 次签到,已连续签到 \\d+ 天,本次签到获得 \\d+ 个奶糖。', '已签到' ], check_state=('final', SignState.SUCCEED), is_base_content=True ) ] def build_selector(self): selector = super(MainClass, self).build_selector() NetUtils.dict_merge(selector, { 'detail_sources': { 'default': { 'do_not_strip': True, 'link': '/userdetails.php?id={}', 'elements': { 'bar': 'ul.list-inline', 'table': 'div.layui-col-md10 > table:nth-child(1) > tbody' } } }, 'details': { 'points': { 'regex': '奶糖.*?([\\d,.]+)', 'handle': self.handle_points }, 'seeding': { 'regex': ('(做种中).*?(\\d+)', 2) }, 'leeching': { 'regex': ('(下载中).*?\\d+\\D+(\\d+)', 2) }, 'hr': None } }) return selector def handle_points(self, value): if value in ['.']: return '0' else: return value
29.225806
82
0.400662
1,756
0.931071
0
0
0
0
0
0
498
0.264051
05299930cfe175dfdd505fa507a88544ad0e95c1
716
py
Python
tests/garage/sampler/test_rl2_worker.py
blacksph3re/garage
b4abe07f0fa9bac2cb70e4a3e315c2e7e5b08507
[ "MIT" ]
1,500
2018-06-11T20:36:24.000Z
2022-03-31T08:29:01.000Z
tests/garage/sampler/test_rl2_worker.py
blacksph3re/garage
b4abe07f0fa9bac2cb70e4a3e315c2e7e5b08507
[ "MIT" ]
2,111
2018-06-11T04:10:29.000Z
2022-03-26T14:41:32.000Z
tests/garage/sampler/test_rl2_worker.py
blacksph3re/garage
b4abe07f0fa9bac2cb70e4a3e315c2e7e5b08507
[ "MIT" ]
309
2018-07-24T11:18:48.000Z
2022-03-30T16:19:48.000Z
from garage.envs import GymEnv from garage.tf.algos.rl2 import RL2Worker from tests.fixtures import TfGraphTestCase from tests.fixtures.envs.dummy import DummyBoxEnv from tests.fixtures.policies import DummyPolicy class TestRL2Worker(TfGraphTestCase): def test_rl2_worker(self): env = GymEnv(DummyBoxEnv(obs_dim=(1, ))) policy = DummyPolicy(env_spec=env.spec) worker = RL2Worker(seed=1, max_episode_length=100, worker_number=1, n_episodes_per_trial=5) worker.update_agent(policy) worker.update_env(env) episodes = worker.rollout() assert episodes.rewards.shape[0] == 500
32.545455
50
0.655028
498
0.695531
0
0
0
0
0
0
0
0
052a76693b3fb6c307548d396e0accbc369737c8
660
py
Python
dependencies/src/4Suite-XML-1.0.2/test/Xml/Xslt/Borrowed/uo_20001208.py
aleasims/Peach
bb56841e943d719d5101fee0a503ed34308eda04
[ "MIT" ]
null
null
null
dependencies/src/4Suite-XML-1.0.2/test/Xml/Xslt/Borrowed/uo_20001208.py
aleasims/Peach
bb56841e943d719d5101fee0a503ed34308eda04
[ "MIT" ]
null
null
null
dependencies/src/4Suite-XML-1.0.2/test/Xml/Xslt/Borrowed/uo_20001208.py
aleasims/Peach
bb56841e943d719d5101fee0a503ed34308eda04
[ "MIT" ]
1
2020-07-26T03:57:45.000Z
2020-07-26T03:57:45.000Z
#Uche Ogbuji exercises format-number on Brad Marshall's behalf from Xml.Xslt import test_harness sheet_1 = """\ <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"> <xsl:template match = "/"> <xsl:value-of select='format-number(10000000000.75 + 10000000000.50, "##.##")'/> </xsl:template> </xsl:stylesheet>""" #" source_1 = "<spam/>" expected_1 = """<?xml version="1.0" encoding="UTF-8"?> 20000000001.25""" def Test(tester): source = test_harness.FileInfo(string=source_1) sheet = test_harness.FileInfo(string=sheet_1) test_harness.XsltTest(tester, source, [sheet], expected_1) return
24.444444
84
0.671212
0
0
0
0
0
0
0
0
387
0.586364
052bebc9ce249268deadd50cd183873b6f1a799a
2,697
py
Python
tests/test_connection.py
daniel-herrero/fastapi-mailman
a174d0ec777d3330dc5464f71fafa7829db07bf1
[ "MIT" ]
6
2021-10-08T10:20:37.000Z
2022-03-30T08:56:10.000Z
tests/test_connection.py
daniel-herrero/fastapi-mailman
a174d0ec777d3330dc5464f71fafa7829db07bf1
[ "MIT" ]
2
2021-11-11T11:44:29.000Z
2022-03-08T06:54:54.000Z
tests/test_connection.py
daniel-herrero/fastapi-mailman
a174d0ec777d3330dc5464f71fafa7829db07bf1
[ "MIT" ]
1
2022-03-04T14:43:22.000Z
2022-03-04T14:43:22.000Z
import typing as t import pytest as pt from fastapi_mailman import BadHeaderError, EmailMessage if t.TYPE_CHECKING: from fastapi_mailman import Mail @pt.mark.anyio async def test_send_message(mail: "Mail"): mail.backend = "locmem" msg = EmailMessage( subject="testing", to=["[email protected]"], body="testing", ) await msg.send() assert len(mail.outbox) == 1 sent_msg = mail.outbox[0] assert sent_msg.from_email == mail.default_sender @pt.mark.anyio async def test_send_message_using_connection(mail: "Mail"): async with mail.get_connection() as conn: msg = EmailMessage( subject="testing", to=["[email protected]"], body="testing", connection=conn, ) await msg.send() assert len(mail.outbox) == 1 sent_msg = mail.outbox[0] assert sent_msg.from_email == mail.default_sender await conn.send_messages([msg]) assert len(mail.outbox) == 2 @pt.mark.anyio async def test_send_single(mail: "Mail"): async with mail.get_connection() as conn: msg = EmailMessage( subject="testing", to=["[email protected]"], body="testing", connection=conn, ) await msg.send() assert len(mail.outbox) == 1 sent_msg = mail.outbox[0] assert sent_msg.subject == "testing" assert sent_msg.to == ["[email protected]"] assert sent_msg.body == "testing" assert sent_msg.from_email == mail.default_sender @pt.mark.anyio async def test_send_many(mail: "Mail"): async with mail.get_connection() as conn: msgs = [] for _ in range(10): msg = EmailMessage(mailman=mail, subject="testing", to=["[email protected]"], body="testing") msgs.append(msg) await conn.send_messages(msgs) assert len(mail.outbox) == 10 sent_msg = mail.outbox[0] assert sent_msg.from_email == mail.default_sender @pt.mark.anyio async def test_send_without_sender(mail: "Mail"): mail.default_sender = None msg = EmailMessage(mailman=mail, subject="testing", to=["[email protected]"], body="testing") await msg.send() assert len(mail.outbox) == 1 sent_msg = mail.outbox[0] assert sent_msg.from_email is None @pt.mark.anyio async def test_send_without_to(mail: "Mail"): msg = EmailMessage(subject="testing", to=[], body="testing") assert await msg.send() == 0 @pt.mark.anyio async def test_bad_header_subject(mail): msg = EmailMessage(subject="testing\n\r", body="testing", to=["[email protected]"]) with pt.raises(BadHeaderError): await msg.send()
28.389474
102
0.629218
0
0
0
0
2,520
0.934372
2,415
0.895439
304
0.112718
052c8a3287a40e2446164e87ba133bbda46f1779
294
py
Python
Workshops/enBuyukSayi.py
brkyydnmz/Python
8cde0421edda6ac5b7fd30e8f20ad7cb6e1708b0
[ "MIT" ]
null
null
null
Workshops/enBuyukSayi.py
brkyydnmz/Python
8cde0421edda6ac5b7fd30e8f20ad7cb6e1708b0
[ "MIT" ]
null
null
null
Workshops/enBuyukSayi.py
brkyydnmz/Python
8cde0421edda6ac5b7fd30e8f20ad7cb6e1708b0
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- sayi1 = int(input("1. Sayı:")) sayi2 = int(input("2. Sayı:")) sayi3 = int(input("3. Sayı:")) if (sayi1>=sayi2) and (sayi1>=sayi3): enBuyuk = sayi1 elif(sayi2>=sayi1) and (sayi2>=sayi3): enBuyuk = sayi2 else: enBuyuk = sayi3 print("En Büyük Sayı:",enBuyuk)
21
38
0.608844
0
0
0
0
0
0
0
0
75
0.25
052d317538142bae7b508c18b4e71450d9b3e276
399
py
Python
08/seven-segment_part1.py
ReinprechtStefan/AdventOfCode2021
a2750c5fbcc7fc927d710f4db6926d015a2fb673
[ "Apache-2.0" ]
null
null
null
08/seven-segment_part1.py
ReinprechtStefan/AdventOfCode2021
a2750c5fbcc7fc927d710f4db6926d015a2fb673
[ "Apache-2.0" ]
null
null
null
08/seven-segment_part1.py
ReinprechtStefan/AdventOfCode2021
a2750c5fbcc7fc927d710f4db6926d015a2fb673
[ "Apache-2.0" ]
null
null
null
with open('input.txt') as f: lines = f.readlines() counter = 0 for line in lines: right_part = line.split(" | ")[1] for segment in right_part.strip().split(" "): #print(segment, len(segment)) if len(segment) in [2,3,4,7]: counter += 1 #else: #print("NO ", segment, len(segment)) print(counter)
22.166667
53
0.491228
0
0
0
0
0
0
0
0
90
0.225564
052ffb78d4e1a7b366b635d756b5d2bbba48de18
7,605
py
Python
main/gui.py
MBmasher/weighted-object
eaaf25338240873b7c4197097b2bb73be256b702
[ "MIT" ]
null
null
null
main/gui.py
MBmasher/weighted-object
eaaf25338240873b7c4197097b2bb73be256b702
[ "MIT" ]
null
null
null
main/gui.py
MBmasher/weighted-object
eaaf25338240873b7c4197097b2bb73be256b702
[ "MIT" ]
null
null
null
import Tkinter import weighted_objects import tkFileDialog import time import ttk import numpy import sys while True: # Ask user for file dialog. Tkinter.Tk().withdraw() osu_file_path = tkFileDialog.askopenfilename(title="Select an osu file", filetypes=(("osu files", "*.osu"),)) # Calculate final nerf. final_nerf = weighted_objects.calculate_nerf(osu_file_path) distance_snap_list = weighted_objects.weighted_distance_snap_list time_list = weighted_objects.time_list # Separate list into multiple lists when breaks exist. time_break_separated_list = [[]] list_number = 0 for i in range(len(time_list) - 1): if time_list[i + 1] - time_list[i] > 3000: # Create new list. list_number += 1 time_break_separated_list.append([]) time_break_separated_list[list_number].append(time_list[i]) # Coordinates to be later used in the canvas. canvas_distance_snap_list = [] canvas_time_list = [] # Calculating coordinates. for i in time_list: canvas_time_list.append(350 * (i - time_list[0]) / (time_list[-1] - time_list[0])) for i in distance_snap_list: canvas_distance_snap_list.append(150 - i * 75) # Creating the GUI. root = Tkinter.Tk() root.resizable(width=False, height=False) root.geometry("400x500") root.title("Weighted Objects") # Stuff for the timer. ms = time_list[0] note_number = 0 # Function to be used to initialize the timer. def first_load(): # Variable relative_time is the time when the user has clicked the button to start timer. global relative_time relative_time = int(round(time.time() * 1000)) - time_list[0] tick() # Function to be used to run the timer. def tick(): # Variable ms is the time that constantly goes up during the timer. global ms time_label.after(30, tick) ms = int(round(time.time() * 1000)) - relative_time time_label["text"] = "Timer: {}ms".format(ms) update_labels() draw_timer_line() # Function to be used to update the labels that need constant updates. def update_labels(): global note_number # Updates note number depending on where the timer is at. for i in range(len(time_list)): if ms < time_list[i]: note_number = i - 1 break distance_snap_label["text"] = "Weighted: {:.2f}x".format(distance_snap_list[note_number]) progress_bar["value"] = distance_snap_list[note_number] cumulative_label["text"] = "Cumulative Value: {}".format(numpy.cumsum(distance_snap_list)[note_number]) # Function to be used to draw the green line that indicates where the timer is at. def draw_timer_line(): if ms < time_list[-1]: draw_x = 350 * (ms - time_list[0]) / (time_list[-1] - time_list[0]) difficulty_graph.coords(timer_line, draw_x, 0, draw_x, 150) # Function used to kill the GUI. def stop(): root.quit() root.destroy() # Function used to kill the program entirely. def kill(): sys.exit() Tkinter.Label(root, fg="black", text="Old Amount of Objects: {}".format(len(distance_snap_list))).pack() Tkinter.Label(root, fg="black", text="New Calculated Weighted Objects: {:.2f}".format(sum(distance_snap_list))).pack() Tkinter.Label(root, fg="black", text="Raw Percentage Change: {:.2f}%".format(100 * sum(distance_snap_list) / len(distance_snap_list))).pack() Tkinter.Label(root, fg="black", text="Calculated Nerf/Buff: {:.2f}%".format(100 * final_nerf)).pack() Tkinter.Label(root, fg="blue", text="Graph of Distance Snap/Cumulative Sum of Distance Snap against Time").pack() difficulty_graph = Tkinter.Canvas(root, width=350, height=150) difficulty_graph.pack() Tkinter.Label(root, fg="black", text="Red/Blue: Distance Snap").pack() Tkinter.Label(root, fg="black", text="Yellow: Cumulative Sum of Distance Snap").pack() # Draw grid lines and fill background difficulty_graph.create_rectangle(0, 0, 350, 150, fill="#dddddd") difficulty_graph.create_line(0, 30, 350, 30, fill="#cccccc") difficulty_graph.create_line(0, 60, 350, 60, fill="#cccccc") difficulty_graph.create_line(0, 90, 350, 90, fill="#cccccc") difficulty_graph.create_line(0, 120, 350, 120, fill="#cccccc") difficulty_graph.create_line(70, 0, 70, 150, fill="#cccccc") difficulty_graph.create_line(140, 0, 140, 150, fill="#cccccc") difficulty_graph.create_line(210, 0, 210, 150, fill="#cccccc") difficulty_graph.create_line(280, 0, 280, 150, fill="#cccccc") # Draw blue line graph, distance snap. for i in range(len(distance_snap_list) - 1): # Don't continue the graph if there is a break. if time_list[i + 1] - time_list[i] < 3000: difficulty_graph.create_line(canvas_time_list[i], canvas_distance_snap_list[i], canvas_time_list[i + 1], canvas_distance_snap_list[i + 1], fill="#9999ff") # Draw red line graph, the average thing (what do you call this?). for n in range(len(time_break_separated_list)): for x in range(len(time_break_separated_list[n]) - 20): if n == 0: i = x else: i = x + numpy.cumsum(map(len, time_break_separated_list))[n - 1] # Don't continue graph if there's a break. if time_list[i + 11] - time_list[i + 10] < 3000: difficulty_graph.create_line(canvas_time_list[i + 10], sum(canvas_distance_snap_list[i:i + 20]) / 20.0, canvas_time_list[i + 11], sum(canvas_distance_snap_list[i + 1:i + 21]) / 20.0, fill="#990000") # Draw yellow line graph, cumulative distance snap sum. for i in range(len(distance_snap_list) - 1): difficulty_graph.create_line(canvas_time_list[i], 150 - (149 * numpy.cumsum(distance_snap_list)[i] / sum(distance_snap_list)), canvas_time_list[i + 1], 150 - (149 * numpy.cumsum(distance_snap_list)[i + 1] / sum(distance_snap_list)), fill="#ffff00") timer_line = difficulty_graph.create_line(0, 0, 0, 150, fill="#77ff77") time_label = Tkinter.Label(root, fg="black") time_label.pack() distance_snap_label = Tkinter.Label(root, fg="black") distance_snap_label.pack() cumulative_label = Tkinter.Label(root, fg="black") cumulative_label.pack() progress_bar = ttk.Progressbar(root, orient="horizontal", length=200, mode="determinate") progress_bar.pack() progress_bar["maximum"] = 2 Tkinter.Button(root, fg="blue", text="Start Realtime!", command=first_load).pack() Tkinter.Button(root, fg="red", text="Choose another map", command=stop).pack() # If window is closed, stop the program. root.protocol("WM_DELETE_WINDOW", kill) root.mainloop()
39.201031
118
0.598028
0
0
0
0
0
0
0
0
1,807
0.237607
05311a2863ffbf10e5b4872464958a44b018f474
2,929
py
Python
src/benchmark/probe_training_wrapper.py
dumpmemory/PEARL_v1
df46be5ed86ba7850486b578a8926aa151e7bf87
[ "MIT" ]
24
2021-06-10T04:09:00.000Z
2021-11-02T11:23:35.000Z
src/benchmark/probe_training_wrapper.py
dumpmemory/PEARL_v1
df46be5ed86ba7850486b578a8926aa151e7bf87
[ "MIT" ]
1
2021-06-08T15:27:38.000Z
2021-06-08T15:41:05.000Z
src/benchmark/probe_training_wrapper.py
dumpmemory/PEARL_v1
df46be5ed86ba7850486b578a8926aa151e7bf87
[ "MIT" ]
4
2021-06-10T02:28:12.000Z
2021-08-24T13:00:14.000Z
from .probe import ProbeTrainer # train using embeddings def train_embeddings(encoder, probe_type, num_epochs, lr, patience, wandb, save_dir, batch_size, tr_episodes, val_episodes, tr_labels, val_labels, test_episodes, test_labels, use_encoder=False, save_interval=100): if use_encoder: enc = encoder else: enc = None probe_trainer = ProbeTrainer(encoder=enc, epochs=num_epochs, lr=lr, batch_size=batch_size, patience=patience, wandb=wandb, fully_supervised=False, save_dir=save_dir, representation_len=encoder.feature_size) probe_trainer.train(tr_episodes, val_episodes, tr_labels, val_labels, save_interval=save_interval) final_accuracies, final_f1_scores = probe_trainer.test(test_episodes, test_labels) wandb.log(final_accuracies) wandb.log(final_f1_scores) # train using images def train_images(encoder, probe_type, num_epochs, lr, patience, wandb, save_dir, batch_size, tr_episodes, val_episodes, tr_labels, val_labels, test_episodes, test_labels, save_interval=100): probe_trainer = ProbeTrainer(encoder=encoder, epochs=num_epochs, lr=lr, batch_size=batch_size, patience=patience, wandb=wandb, fully_supervised=False, save_dir=save_dir, representation_len=encoder.feature_size) probe_trainer.train(tr_episodes, val_episodes, tr_labels, val_labels, save_interval=save_interval) final_accuracies, final_f1_scores = probe_trainer.test(test_episodes, test_labels) wandb.log(final_accuracies) wandb.log(final_f1_scores) # main training method def run_probe_training(training_input, encoder, probe_type, num_epochs, lr, patience, wandb, save_dir, batch_size, tr_episodes, val_episodes, tr_labels, val_labels, test_episodes, test_labels, use_encoder=False, save_interval=100): if training_input == 'embeddings': train_embeddings(encoder, probe_type, num_epochs, lr, patience, wandb, save_dir, batch_size, tr_episodes, val_episodes, tr_labels, val_labels, test_episodes, test_labels, use_encoder=use_encoder, save_interval=save_interval) elif training_input == 'images': train_images(encoder, probe_type, num_epochs, lr, patience, wandb, save_dir, batch_size, tr_episodes, val_episodes, tr_labels, val_labels, test_episodes, test_labels, save_interval=save_interval) else: print("Invalid input...choose either 'embeddings' and 'images'")
46.492063
148
0.635712
0
0
0
0
0
0
0
0
143
0.048822
0531675b4efb814c0c0505cc13c93cd557315404
1,310
py
Python
grr/server/grr_response_server/blob_stores/db_blob_store.py
oueldz4/grr
8c60d9198cc0875a8ea80b90237eb0a8272082ff
[ "Apache-2.0" ]
null
null
null
grr/server/grr_response_server/blob_stores/db_blob_store.py
oueldz4/grr
8c60d9198cc0875a8ea80b90237eb0a8272082ff
[ "Apache-2.0" ]
null
null
null
grr/server/grr_response_server/blob_stores/db_blob_store.py
oueldz4/grr
8c60d9198cc0875a8ea80b90237eb0a8272082ff
[ "Apache-2.0" ]
1
2020-07-09T01:08:48.000Z
2020-07-09T01:08:48.000Z
#!/usr/bin/env python """REL_DB blobstore implementation.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from grr_response_server import blob_store from grr_response_server import data_store class DbBlobStore(blob_store.BlobStore): """A REL_DB-based blob store implementation.""" # TODO(user): REL_DB can be None, because initialization is happening at some # early but nondeterministic time. Once REL_DB is guaranteed to be not None, # perform type checking that REL_DB.delegate is a BlobStore.. @property def delegate(self): return data_store.REL_DB.delegate def WriteBlobs(self, blob_id_data_map): return self.delegate.WriteBlobs(blob_id_data_map) def ReadBlobs(self, blob_ids): return self.delegate.ReadBlobs(blob_ids) def ReadBlob(self, blob_id): return self.delegate.ReadBlob(blob_id) def CheckBlobsExist(self, blob_ids): return self.delegate.CheckBlobsExist(blob_ids) def CheckBlobExists(self, blob_id): return self.delegate.CheckBlobExists(blob_id) def WriteBlobsWithUnknownHashes(self, blobs_data): return self.delegate.WriteBlobsWithUnknownHashes(blobs_data) def WriteBlobWithUnknownHash(self, blob_data): return self.delegate.WriteBlobWithUnknownHash(blob_data)
31.190476
79
0.79084
1,047
0.799237
0
0
69
0.052672
0
0
320
0.244275
053268be449fba403f273951c902bae23a8253b1
333
py
Python
tests/ut_repytests_loose-testnetmessportreuse.py
SeattleTestbed/repy_v1
f40a02e2e398b1ec67fede84b41a264ae7356d2c
[ "MIT" ]
1
2021-08-18T05:58:17.000Z
2021-08-18T05:58:17.000Z
tests/ut_repytests_loose-testnetmessportreuse.py
SeattleTestbed/repy_v1
f40a02e2e398b1ec67fede84b41a264ae7356d2c
[ "MIT" ]
3
2015-11-17T21:01:03.000Z
2016-07-14T09:08:04.000Z
tests/ut_repytests_loose-testnetmessportreuse.py
SeattleTestbed/repy_v1
f40a02e2e398b1ec67fede84b41a264ae7356d2c
[ "MIT" ]
5
2015-07-02T13:29:23.000Z
2021-09-25T07:48:30.000Z
#pragma out #pragma repy restrictions.loose def foo(ip,port,mess, ch): print ip,port,mess,ch stopcomm(ch) def noop(a,b,c,d): pass if callfunc == 'initialize': ip = getmyip() noopch = recvmess(ip,<messport>,noop) recvmess(ip,<messport1>,foo) sleep(.1) sendmess(ip,<messport1>,'hi',ip,<messport>) stopcomm(noopch)
18.5
45
0.678679
0
0
0
0
0
0
0
0
58
0.174174
05343aca0c5c82c59e3358b3b9d65dce1ef6b0de
806
py
Python
pyzfscmds/check.py
johnramsden/pyzfscmds
b5d430ffd0454bc6b09e256aeea67164714d9809
[ "BSD-3-Clause" ]
9
2018-07-08T20:01:33.000Z
2022-03-29T11:31:51.000Z
pyzfscmds/check.py
johnramsden/pyzfscmds
b5d430ffd0454bc6b09e256aeea67164714d9809
[ "BSD-3-Clause" ]
1
2019-07-10T12:16:53.000Z
2019-07-10T12:16:53.000Z
pyzfscmds/check.py
johnramsden/pyzfscmds
b5d430ffd0454bc6b09e256aeea67164714d9809
[ "BSD-3-Clause" ]
5
2018-06-04T02:33:43.000Z
2020-05-25T22:48:58.000Z
""" Startup checks """ import subprocess import pyzfscmds.system.agnostic as zfssys def is_root_on_zfs(): """Check if running root on ZFS""" system = zfssys.check_valid_system() if system is None: raise RuntimeError(f"System is not yet supported by pyzfscmds\n") root_dataset = None if zfssys.zfs_module_loaded() and zpool_exists(): root_dataset = zfssys.mountpoint_dataset("/") if root_dataset is None: raise RuntimeError("System is not booting off a ZFS root dataset\n") return True def zpool_exists() -> bool: try: subprocess.check_call(["zpool", "get", "-H", "version"], stdout=subprocess.PIPE, stderr=subprocess.PIPE) except subprocess.CalledProcessError: return False return True
23.705882
77
0.66005
0
0
0
0
0
0
0
0
177
0.219603
0536d3d2cb26fae2a4bb43f1a3c0258c006ca24c
2,015
py
Python
dist.py
dladustn95/Dialogue_generator
004fa49e3140e6c7ceb14448604c8aa45966f70d
[ "MIT" ]
4
2020-09-03T03:39:53.000Z
2021-08-25T03:53:41.000Z
dist.py
dladustn95/Dialogue_generator
004fa49e3140e6c7ceb14448604c8aa45966f70d
[ "MIT" ]
null
null
null
dist.py
dladustn95/Dialogue_generator
004fa49e3140e6c7ceb14448604c8aa45966f70d
[ "MIT" ]
1
2020-09-04T07:04:50.000Z
2020-09-04T07:04:50.000Z
import sys def distinct_1(path): inFile = open(path, mode="r", encoding="utf8") char_set = set() all_unigram_count = 0 for line in inFile.readlines(): line = line.strip().split(" ") for word in line: char_set.add(word) all_unigram_count += len(line) distinct_unigram_count = len(char_set) print("distinct_unigram: ", distinct_unigram_count) print("all_unigram: ", all_unigram_count) print("distinct 1: " + str(distinct_unigram_count / all_unigram_count)) inFile.close() return distinct_unigram_count / all_unigram_count sp="#####" def distinct_2(path): inFile = open(path, mode="r", encoding="utf8") bichar_set = set() all_bigram_count = 0 for line in inFile.readlines(): line = line.strip().split(" ") char_len = len(line) for idx in range(char_len - 1): bichar_set.add(line[idx] + sp + line[idx + 1]) all_bigram_count += (char_len - 1) distinct_bigram_count = len(bichar_set) print("distinct_bigram: ", distinct_bigram_count) print("all_bigram: ", all_bigram_count) print("distinct 2: " + str(distinct_bigram_count / all_bigram_count)) inFile.close() return distinct_bigram_count / all_bigram_count def distinct_3(path): inFile = open(path, mode="r", encoding="utf8") bichar_set = set() all_bigram_count = 0 for line in inFile.readlines(): line = line.strip().split(" ") char_len = len(line) for idx in range(char_len - 2): bichar_set.add(line[idx] + sp + line[idx + 1] + sp + line[idx + 2]) all_bigram_count += (char_len -2) distinct_bigram_count = len(bichar_set) print("distinct_trigram: ", distinct_bigram_count) print("all_trigram: ", all_bigram_count) print("distinct 3: " + str(distinct_bigram_count / all_bigram_count)) inFile.close() return distinct_bigram_count / all_bigram_count distinct_1(sys.argv[1]) distinct_2(sys.argv[1]) distinct_3(sys.argv[1])
34.152542
79
0.655583
0
0
0
0
0
0
0
0
188
0.0933
0537e1ab85799850e99a5e3c6bb0f22f481e1ab8
5,036
py
Python
Scripts/plot_PolarVortexStrength_PDFs.py
zmlabe/StratoVari
c5549f54482a2b05e89bded3e3b0b3c9faa686f3
[ "MIT" ]
4
2019-11-23T19:44:21.000Z
2020-02-20T16:54:45.000Z
Scripts/plot_PolarVortexStrength_PDFs.py
zmlabe/StratoVari
c5549f54482a2b05e89bded3e3b0b3c9faa686f3
[ "MIT" ]
null
null
null
Scripts/plot_PolarVortexStrength_PDFs.py
zmlabe/StratoVari
c5549f54482a2b05e89bded3e3b0b3c9faa686f3
[ "MIT" ]
2
2019-06-21T19:27:55.000Z
2021-02-12T19:13:22.000Z
""" Calculate PDFs for polar vortex response Notes ----- Author : Zachary Labe Date : 25 June 2019 """ ### Import modules import numpy as np import matplotlib.pyplot as plt import datetime import read_MonthlyData as MO import calc_Utilities as UT import cmocean import scipy.stats as sts ### Define directories directorydata = '/seley/zlabe/simu/' directoryfigure = '/home/zlabe/Desktop/STRATOVARI/' ### Define time now = datetime.datetime.now() currentmn = str(now.month) currentdy = str(now.day) currentyr = str(now.year) currenttime = currentmn + '_' + currentdy + '_' + currentyr titletime = currentmn + '/' + currentdy + '/' + currentyr print('\n' '----Plotting PDF Polar Vortex Subsamples- %s----' % titletime) ### Alott time series (300 ensemble members) year1 = 1701 year2 = 2000 years = np.arange(year1,year2+1,1) ############################################################################### ############################################################################### ############################################################################### ### Call arguments varnames = ['U10'] period = 'JFM' # Enter temporal period (DJF,JFM,JFMA,ND) simuh = 'Past' # Enter simulation time (Current,Past) letters = [r'Mean',r'A',r'B',r'C'] ############################################################################### if simuh == 'Current': simuq = 'Cu' elif simuh == 'Past': simuq = 'Pi' else: print(ValueError('Wrong simulation selected!')) ############################################################################### ############################################################################### ############################################################################### ### Call function for 4d variable data lat,lon,lev,varfuture = MO.readExperiAll(varnames[0],'Future','surface') lat,lon,lev,varpast = MO.readExperiAll(varnames[0],simuh,'surface') ### Create 2d array of latitude and longitude lon2,lat2 = np.meshgrid(lon,lat) ### List of experiments runs = [varfuture,varpast] ### Separate per monthly periods if period == 'DJF': varmo = np.empty((len(runs),varpast.shape[0]-1,varpast.shape[2], varpast.shape[3])) for i in range(len(runs)): varmo[i,:,:,:] = UT.calcDecJanFeb(runs[i],runs[i],lat, lon,'surface',17) elif period == 'JFM': varmo = np.empty((len(runs),varpast.shape[0],varpast.shape[2], varpast.shape[3])) for i in range(len(runs)): varmo[i,:,:,:] = np.nanmean(runs[i][:,:3,:,:],axis=1) elif period == 'JFMA': varmo = np.empty((len(runs),varpast.shape[0],varpast.shape[2], varpast.shape[3])) for i in range(len(runs)): varmo[i,:,:,:] = np.nanmean(runs[i][:,:4,:,:],axis=1) elif period == 'ND': varmo = np.empty((len(runs),varpast.shape[0],varpast.shape[2], varpast.shape[3])) for i in range(len(runs)): varmo[i,:,:,:] = np.nanmean(runs[i][:,-2:,:,:],axis=1) else: ValueError('Wrong period selected! (DJF,JFM,JFMA,ND)') ### Remove missing data varmo[np.where(varmo < -1e10)] = np.nan ############################################################################### ############################################################################### ############################################################################### ### Slice data for 60N latq = np.where((lat >= 59.5) & (lat <= 60.5))[0] latu = lat[latq].squeeze() varmou = varmo[:,:,latq,:].squeeze() ### Calculate zonal mean varmoz = np.nanmean(varmou[:,:,:],axis=2) ### Calculate anomalies anom = varmoz[0,:] - varmoz[1,:] ### Remove nans mask = ~np.isnan(anom) anom = anom[mask] ### Fit a distribution num_bins = np.arange(-50,50,1) mA,sA = sts.norm.fit(anom[:100]) mB,sB = sts.norm.fit(anom[100:200]) mC,sC = sts.norm.fit(anom[200:]) mm,sm = sts.norm.fit(anom[:]) A = sts.norm.pdf(num_bins,mA,sA) B = sts.norm.pdf(num_bins,mB,sB) C = sts.norm.pdf(num_bins,mC,sC) meann = sts.norm.pdf(num_bins,mm,sm) plt.figure() plt.plot(num_bins,A,color='darkblue',linewidth=2.0,label=r'A') plt.plot(num_bins,B,color='darkgreen',linewidth=2.0,label=r'B') plt.plot(num_bins,C,color='darkorange',linewidth=2.0,label=r'C') plt.plot(num_bins,meann,color='k',linewidth=2.0,label=r'Mean', linestyle='--',dashes=(1,0.3)) l = plt.legend(shadow=False,fontsize=7,loc='upper left', fancybox=True,frameon=False,ncol=1,bbox_to_anchor=(0.72,1), labelspacing=0.2,columnspacing=1,handletextpad=0.4) for text in l.get_texts(): text.set_color('k') ### Statistical tests on distribution tA,pA = sts.ks_2samp(A,meann) tB,pB = sts.ks_2samp(B,meann) tC,pC = sts.ks_2samp(C,meann) print('\n\nP-value between A and mean --> %s!' % np.round(pA,4)) print('P-value between B and mean --> %s!' % np.round(pB,4)) print('P-value between C and mean --> %s!' % np.round(pC,4)) plt.savefig(directoryfigure + 'PDFs_PolarVortex_%s_%s.png' % \ (period,simuh),dpi=300)
34.027027
79
0.53475
0
0
0
0
0
0
0
0
1,931
0.383439
053869e3d79166cc0d895c117eef19a63bd977af
906
py
Python
test/test_airtunnel/operators/test_sql_helpers.py
joerg-schneider/airflow-bootstrap
bbed0a2d5addd0dd6221b75c06982f47e0d837d4
[ "MIT" ]
23
2019-09-30T15:22:58.000Z
2021-04-09T10:53:23.000Z
test/test_airtunnel/operators/test_sql_helpers.py
joerg-schneider/airflow-bootstrap
bbed0a2d5addd0dd6221b75c06982f47e0d837d4
[ "MIT" ]
1
2019-11-24T18:37:56.000Z
2019-11-24T18:37:56.000Z
test/test_airtunnel/operators/test_sql_helpers.py
joerg-schneider/airflow-bootstrap
bbed0a2d5addd0dd6221b75c06982f47e0d837d4
[ "MIT" ]
4
2020-01-14T03:31:34.000Z
2021-05-07T21:34:22.000Z
import pytest from airtunnel.operators.sql import sql_helpers TEST_SCRIPT = "ddl/test_schema/test_table.sql" @pytest.mark.parametrize( argnames=("sql_path",), argvalues=((TEST_SCRIPT,), ("/" + TEST_SCRIPT,), ((TEST_SCRIPT,),)), ) def test_load_sql_script(sql_path: str): # load with a single relative path s = sql_helpers.load_sql_script(sql_path) assert len(s) > 50 def test_split_sql_script(): sql_helpers.split_sql_script(sql_helpers.load_sql_script(TEST_SCRIPT)) def test_format_sql_script(): sql_helpers.format_sql_script( sql_script=sql_helpers.load_sql_script(TEST_SCRIPT), sql_params_dict={"idx_name": "i1", "idx_col": "c1"}, ) def test_prepare_sql_params(fake_airflow_context): sql_helpers.prepare_sql_params( compute_sql_params_function=lambda f: {"x": f["task_instance"]}, airflow_context=fake_airflow_context, )
26.647059
74
0.728477
0
0
0
0
277
0.30574
0
0
124
0.136865
053914ae8ca6bed144522d26cba1f2a52c6014f5
2,582
py
Python
EE475/Ch6P13.py
PhoeniXuzoo/NU-Projects
a217ad46e6876ceffb3dec1d6e52f775674b2e8b
[ "MIT" ]
null
null
null
EE475/Ch6P13.py
PhoeniXuzoo/NU-Projects
a217ad46e6876ceffb3dec1d6e52f775674b2e8b
[ "MIT" ]
null
null
null
EE475/Ch6P13.py
PhoeniXuzoo/NU-Projects
a217ad46e6876ceffb3dec1d6e52f775674b2e8b
[ "MIT" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt ## softmax: 0.1 600 ## perceptron: 0.05 550 def readData(csvname): data = np.loadtxt(csvname, delimiter=',') x = data[:-1, :] y = data[-1:, :] return x, y def softmaxCostFunc(x, y, w): cost = np.sum(np.log(1 + np.exp(-y*np.transpose(np.dot(np.transpose(x), w))))) return cost / float(np.size(y)) def gradientDescentOneStepForSoftmax(x, y, w, alpha=0.1): total = np.zeros([9,1]) for i in range(np.size(y)): power = np.exp(-y[:,i] * np.dot(x[:,i], w)) term = power / (1 + power) total += term * y[:,i] * x[:,[i]] w = w + alpha * (1/np.size(y)) * total return w def perceptronCostFunc(x, y, w): cost = 0 a = (-y*np.transpose(np.dot(np.transpose(x), w)))[0] for i in range(len(a)): cost += a[i] if (a[i] > 0) else 0 return cost / float(np.size(y)) def gradientDescentOneStepForPerceptron(x, y, w, alpha=0.05): total = np.zeros([9,1]) for i in range(np.size(y)): term = -y[:,i] * np.dot(x[:,[i]].T, w) total += 0 if term <= 0 else -y[:,i] * x[:,[i]] w = w - alpha * (1/np.size(y)) * total return w if __name__ == "__main__": csvname = 'breast_cancer_data.csv' x, y = readData(csvname) w = np.ones([x.shape[0] + 1, 1]) x = np.insert(x, 0, values=np.ones([1, x.shape[1]]), axis=0) xSoftList = [0] ySoftList = [softmaxCostFunc(x, y, w)] for i in range(600): w = gradientDescentOneStepForSoftmax(x, y, w) xSoftList.append(i+1) ySoftList.append(softmaxCostFunc(x, y, w)) yPredic = np.transpose(np.dot(np.transpose(x), w)) wrong = 0 for i in range(np.size(yPredic)): if ((yPredic[0][i] > 0) != (y[0][i] > 0)): wrong += 1 print("Softmax Wrong Prediction: ", wrong) w = np.ones([x.shape[0], 1]) xPerceptronList = [0] yPerceptronList = [perceptronCostFunc(x, y, w)] for i in range(550): w = gradientDescentOneStepForPerceptron(x, y, w) xPerceptronList.append(i+1) yPerceptronList.append(perceptronCostFunc(x, y, w)) plt.plot(xSoftList, ySoftList, label="Softmax Cost Function",color="#F08080") plt.plot(xPerceptronList, yPerceptronList, label="Perceptro Cost Function") plt.legend(loc="upper right") plt.show() plt.close() yPredic = np.transpose(np.dot(np.transpose(x), w)) wrong = 0 for i in range(np.size(yPredic)): if ((yPredic[0][i] > 0) != (y[0][i] > 0)): wrong += 1 print("Perceptron Wrong Prediction: ", wrong)
29.011236
82
0.573199
0
0
0
0
0
0
0
0
208
0.080558
05399638e32621d9f8eab1ecc185a769af934b80
416
py
Python
square.py
Formalhalt/Phyton-Calculators
25f686e45a8333e9a141568c8f695350bde36bc6
[ "CC0-1.0" ]
null
null
null
square.py
Formalhalt/Phyton-Calculators
25f686e45a8333e9a141568c8f695350bde36bc6
[ "CC0-1.0" ]
null
null
null
square.py
Formalhalt/Phyton-Calculators
25f686e45a8333e9a141568c8f695350bde36bc6
[ "CC0-1.0" ]
null
null
null
height = float(input("Enter height of the square: ")) width = float(input("Enter width of the Square: ")) perimeter = (2 * height) + (2 * width) area = height * height print("The perimeter of the square is", perimeter) print("The area of the square is", area) close = input("Press X to exit") # The above line of code keeps the program open for the user to see the outcome of the problem.
23.111111
96
0.663462
0
0
0
0
0
0
0
0
231
0.555288
053b161da791d51b0f7c77d904ccb2a6a0472da3
6,492
py
Python
dls7-1[cnn].py
cutz-j/computer_vision
23408231221bb16539ea1964f000bdbb7f9e7e20
[ "MIT" ]
null
null
null
dls7-1[cnn].py
cutz-j/computer_vision
23408231221bb16539ea1964f000bdbb7f9e7e20
[ "MIT" ]
null
null
null
dls7-1[cnn].py
cutz-j/computer_vision
23408231221bb16539ea1964f000bdbb7f9e7e20
[ "MIT" ]
null
null
null
import numpy as np from common.util import im2col from collections import OrderedDict from common.layers import * from common.gradient import numerical_gradient ## 4차원 배열 ## x = np.random.rand(10, 1, 28, 28) # (m, c, h, w) print(x.shape) x[0].shape # data 1개 x[0, 0] # 첫 data의 channel 공간 x1 = np.random.rand(1, 3, 7, 7) col1 = im2col(x1, 5, 5, stride=1, pad=0) print(col1.shape) x2 = np.random.rand(10, 3, 7 ,7) col2 = im2col(x2, 5, 5) print(col2.shape) class Convolution: def __init__(self, W, b, stride=1, pad=0): # 초기화 # self.W = W self.b = b self.stride = stride self.pad = pad def forward(self, x): # conv forward # # im2col을 통해 np.dot 행렬곱 연산 수행 # FN, C, FH, FW = self.W.Shape # filter의 shape 기록 N, C, H, W = x.shape # input data의 shape out_h = int(1 + (H + 2*self.pad - FH) / self.stride) out_w = int(1 + (W + 2*self.pad - FW) / self.stride) # 공식 col = im2col(x, FH, FW, self.stride, self.pad) # 2차원 col_W = self.W.reshape(FN, -1).T # 행렬 연산을 위한 reshape --> 2차원 out = np.dot(col, col_W) + self.b # 연산 out = out.reshape(N, out_h, out_w, -1).transpose(0, 3, 1, 2) class Pooling: def __init__(self, pool_h, pool_w, stride=1, pad=0): self.pool_h = pool_h self.pool_w = pool_w self.stride = stride self.pad = pad def forward(self, x): N, C, H, W = x.shape out_h = int(1 + (H - self.pool_h) / self.stride) out_w = int(1 + (W - self.pool_w) / self.stride) col = im2col(x, self.pool_h, self.pool_w, self.stride, self.pad) col = col.reshape(-1, self.pool_h * self.pool_w) out = np.max(col, axis=1) out = out.reshape(N, out_h, out_w, C).transpose(0, 3, 1, 2) return out class SimpleConvNet: """단순한 합성곱 신경망 conv - relu - pool - affine - relu - affine - softmax Parameters ---------- input_size : 입력 크기(MNIST의 경우엔 784) hidden_size_list : 각 은닉층의 뉴런 수를 담은 리스트(e.g. [100, 100, 100]) output_size : 출력 크기(MNIST의 경우엔 10) activation : 활성화 함수 - 'relu' 혹은 'sigmoid' weight_init_std : 가중치의 표준편차 지정(e.g. 0.01) 'relu'나 'he'로 지정하면 'He 초깃값'으로 설정 'sigmoid'나 'xavier'로 지정하면 'Xavier 초깃값'으로 설정 """ def __init__(self, input_dim=(1, 28, 28), conv_param={'filter_num':30, 'filter_size':5, 'pad':0, 'stride':1}, hidden_size=100, output_size=10, weight_init_std=0.01): filter_num = conv_param['filter_num'] filter_size = conv_param['filter_size'] filter_pad = conv_param['pad'] filter_stride = conv_param['stride'] input_size = input_dim[1] conv_output_size = (input_size - filter_size + 2*filter_pad) / filter_stride + 1 pool_output_size = int(filter_num * (conv_output_size/2) * (conv_output_size/2)) # 가중치 초기화 self.params = {} self.params['W1'] = weight_init_std * \ np.random.randn(filter_num, input_dim[0], filter_size, filter_size) self.params['b1'] = np.zeros(filter_num) self.params['W2'] = weight_init_std * \ np.random.randn(pool_output_size, hidden_size) self.params['b2'] = np.zeros(hidden_size) self.params['W3'] = weight_init_std * \ np.random.randn(hidden_size, output_size) self.params['b3'] = np.zeros(output_size) # 계층 생성 self.layers = OrderedDict() self.layers['Conv1'] = Convolution(self.params['W1'], self.params['b1'], conv_param['stride'], conv_param['pad']) self.layers['Relu1'] = Relu() self.layers['Pool1'] = Pooling(pool_h=2, pool_w=2, stride=2) self.layers['Affine1'] = Affine(self.params['W2'], self.params['b2']) self.layers['Relu2'] = Relu() self.layers['Affine2'] = Affine(self.params['W3'], self.params['b3']) self.last_layer = SoftmaxWithLoss() def predict(self, x): for layer in self.layers.values(): x = layer.forward(x) return x def loss(self, x, t): """손실 함수를 구한다. Parameters ---------- x : 입력 데이터 t : 정답 레이블 """ y = self.predict(x) return self.last_layer.forward(y, t) def accuracy(self, x, t, batch_size=100): if t.ndim != 1 : t = np.argmax(t, axis=1) acc = 0.0 for i in range(int(x.shape[0] / batch_size)): tx = x[i*batch_size:(i+1)*batch_size] tt = t[i*batch_size:(i+1)*batch_size] y = self.predict(tx) y = np.argmax(y, axis=1) acc += np.sum(y == tt) return acc / x.shape[0] def numerical_gradient(self, x, t): """기울기를 구한다(수치미분). Parameters ---------- x : 입력 데이터 t : 정답 레이블 Returns ------- 각 층의 기울기를 담은 사전(dictionary) 변수 grads['W1']、grads['W2']、... 각 층의 가중치 grads['b1']、grads['b2']、... 각 층의 편향 """ loss_w = lambda w: self.loss(x, t) grads = {} for idx in (1, 2, 3): grads['W' + str(idx)] = numerical_gradient(loss_w, self.params['W' + str(idx)]) grads['b' + str(idx)] = numerical_gradient(loss_w, self.params['b' + str(idx)]) return grads def gradient(self, x, t): """기울기를 구한다(오차역전파법). Parameters ---------- x : 입력 데이터 t : 정답 레이블 Returns ------- 각 층의 기울기를 담은 사전(dictionary) 변수 grads['W1']、grads['W2']、... 각 층의 가중치 grads['b1']、grads['b2']、... 각 층의 편향 """ # forward self.loss(x, t) # backward dout = 1 dout = self.last_layer.backward(dout) layers = list(self.layers.values()) layers.reverse() for layer in layers: dout = layer.backward(dout) # 결과 저장 grads = {} grads['W1'], grads['b1'] = self.layers['Conv1'].dW, self.layers['Conv1'].db grads['W2'], grads['b2'] = self.layers['Affine1'].dW, self.layers['Affine1'].db grads['W3'], grads['b3'] = self.layers['Affine2'].dW, self.layers['Affine2'].db return grads
31.211538
95
0.518792
3,852
0.548562
0
0
0
0
0
0
2,127
0.302905
053b82076a707b4cf23d2d9a676fce87856d471c
17,136
py
Python
tests/test_crawler.py
jacopoabbate/datavault-api-python-client
70c3113b56db77de3835b4210dd7bffb22b34c9f
[ "MIT" ]
null
null
null
tests/test_crawler.py
jacopoabbate/datavault-api-python-client
70c3113b56db77de3835b4210dd7bffb22b34c9f
[ "MIT" ]
null
null
null
tests/test_crawler.py
jacopoabbate/datavault-api-python-client
70c3113b56db77de3835b4210dd7bffb22b34c9f
[ "MIT" ]
null
null
null
import datetime import pytest import requests from datavault_api_client import crawler from datavault_api_client.data_structures import DiscoveredFileInfo class TestCleanRawFilename: @pytest.mark.parametrize( "datavault_assigned_name, expected_cleaned_filename", [ ("WATCHLIST_username_676_20200610.txt.bz2", "WATCHLIST_676_20200610.txt.bz2"), ("CROSSREF_903_20200610.txt.bz2", "CROSSREF_903_20200610.txt.bz2"), ("COREREF_945_20200610.txt.bz2", "COREREF_945_20200610.txt.bz2"), ("REPLAY_794_20200316.txt.bz2", "REPLAY_794_20200316.txt.bz2"), ("SEDOL_794_20200316.txt.bz2", "SEDOL_794_20200316.txt.bz2"), ("CUSIP_794_20200316.txt.bz2", "CUSIP_794_20200316.txt.bz2"), ("PREMREF_794_20200316.txt.bz2", "PREMREF_794_20200316.txt.bz2"), ], ) def test_name_cleaning(self, datavault_assigned_name, expected_cleaned_filename): # Setup - none # Exercise cleaned_filename = crawler.clean_raw_filename(datavault_assigned_name) # Verify assert cleaned_filename == expected_cleaned_filename # Cleanup - none class TestParseSourceFromName: def test_source_id_parser(self): # Setup filename_to_parse = "WATCHLIST_945_20201201.txt.bz2" # Exercise parsed_source_id = crawler.parse_source_from_name(filename_to_parse) # Verify expected_source_id = "945" assert parsed_source_id == expected_source_id # Cleanup - none class TestParseReferenceDate: def test_reference_date_parser(self): # Setup filename_to_parse = "WATCHLIST_945_20201201.txt.bz2" # Exercise parsed_reference_date = crawler.parse_reference_date(filename_to_parse) # Verify expected_reference_date = datetime.datetime(year=2020, month=12, day=1) assert parsed_reference_date == expected_reference_date # Cleanup - none class TestCreateDiscoveredFileObject: def test_discovered_file_object_creation(self): # Setup file_node = { 'name': 'WATCHLIST_accountname_945_20201130.txt.bz2', 'fid': '20201130-S945_WATCHLIST_accountname_0_0', 'parent': '/v2/list/2020/11/30/S945/WATCHLIST', 'url': '/v2/data/2020/11/30/S945/WATCHLIST/20201130-S945_WATCHLIST_accountname_0_0', 'size': 78994869, 'md5sum': 'bf703f867cad0b414d84fac0c9bfe0e5', 'createdAt': '2020-11-30T23:22:36', 'updatedAt': '2020-11-30T23:22:36', 'writable': False, 'directory': False } # Exercise created_discovered_file_object = crawler.create_discovered_file_object(file_node) # Verify expected_discovered_file_object = DiscoveredFileInfo( file_name='WATCHLIST_945_20201130.txt.bz2', download_url=( "https://api.icedatavault.icedataservices.com/v2/data/2020/11/30/S945/WATCHLIST/" "20201130-S945_WATCHLIST_accountname_0_0" ), source_id=945, reference_date=datetime.datetime(year=2020, month=11, day=30), size=78994869, md5sum="bf703f867cad0b414d84fac0c9bfe0e5", ) assert created_discovered_file_object == expected_discovered_file_object # Cleanup - none class TestInitializeSearch: def test_initialization_of_search_from_instrument_url( self, mocked_datavault_api_instrument_level, ): # Setup session = requests.Session() url = "https://api.icedatavault.icedataservices.com/v2/list/2020/07/16/S367/WATCHLIST" credentials = ("username", "password") # Exercise stack, leaf_nodes = crawler.initialise_search(url, credentials, session) # Verify expected_stack = [] expected_leaf_nodes = [ DiscoveredFileInfo( file_name="WATCHLIST_367_20200716.txt.bz2", download_url=( "https://api.icedatavault.icedataservices.com/v2/data/2020/07/16/S367/" "WATCHLIST/20200716-S367_WATCHLIST_username_0_0" ), source_id=367, reference_date=datetime.datetime(year=2020, month=7, day=16), size=100145874, md5sum="fb34325ec9262adc74c945a9e7c9b465", ) ] assert stack == expected_stack assert leaf_nodes == expected_leaf_nodes # Cleanup - none def test_initialisation_of_search_from_instrument_url_and_not_matching_source_id( self, mocked_datavault_api_instrument_level, ): # Setup session = requests.Session() url = "https://api.icedatavault.icedataservices.com/v2/list/2020/07/16/S367/WATCHLIST" credentials = ("username", "password") source_id = 945 # Exercise stack, leaf_nodes = crawler.initialise_search(url, credentials, session, source_id) # Verify assert stack == [] assert leaf_nodes == [] # Cleanup - none def test_initialisation_of_search_from_instrument_url_and_matching_source_id( self, mocked_datavault_api_instrument_level, ): # Setup session = requests.Session() url = "https://api.icedatavault.icedataservices.com/v2/list/2020/07/16/S367/WATCHLIST" credentials = ("username", "password") source_id = 367 # Exercise stack, leaf_nodes = crawler.initialise_search(url, credentials, session, source_id) # Verify assert stack == [] assert leaf_nodes == [ DiscoveredFileInfo( file_name="WATCHLIST_367_20200716.txt.bz2", download_url=( "https://api.icedatavault.icedataservices.com/v2/data/2020/07/16/S367/" "WATCHLIST/20200716-S367_WATCHLIST_username_0_0" ), source_id=367, reference_date=datetime.datetime(year=2020, month=7, day=16), size=100145874, md5sum="fb34325ec9262adc74c945a9e7c9b465", ) ] # Cleanup - none def test_initialisation_of_search_from_top_level( self, mocked_top_level_datavault_api, ): # Setup session = requests.Session() url = "https://api.icedatavault.icedataservices.com/v2/list" credentials = ("username", "password") # Exercise stack, leaf_nodes = crawler.initialise_search(url, credentials, session) # Verify expected_stack = [ { 'name': '2020', 'parent': '/v2/list', 'url': '/v2/list/2020', 'size': 0, 'createdAt': '2020-01-01T00:00:00', 'updatedAt': '2020-12-01T00:00:00', 'writable': False, 'directory': True }, ] expected_leaf_nodes = [] assert stack == expected_stack assert leaf_nodes == expected_leaf_nodes def test_initialisation_behaviour_with_error_code( self, mocked_top_level_datavault_api_failed_request, ): # Setup session = requests.Session() url = "https://api.icedatavault.icedataservices.com/v2/list" credentials = ("username", "password") # Exercise with pytest.raises(requests.exceptions.HTTPError): crawler.initialise_search(url, credentials, session) class TestCreateNodeUrl: def test_creation_of_node_url(self): # Setup url_path = "v2/list/2020/11/30/S945" # Exercise node_url = crawler.create_node_url(url_path) # Verify expected_url = "https://api.icedatavault.icedataservices.com/v2/list/2020/11/30/S945" assert node_url == expected_url # Cleanup - none class TestTraverseApiDirectoryTree: def test_traversal_of_api_directory_tree( self, mocked_datavault_api_single_source_single_day, mocked_files_available_to_download_single_source_single_day, ): # Setup session = requests.Session() url = "https://api.icedatavault.icedataservices.com/v2/list" credentials = ("username", "password") leaf_nodes = [] # Exercise discovered_files = crawler.traverse_api_directory_tree( session, credentials, session.get(url).json(), leaf_nodes ) # Verify expected_files = mocked_files_available_to_download_single_source_single_day assert ( discovered_files.sort(key=lambda x: x.file_name) == expected_files.sort(key=lambda x: x.file_name) ) # Cleanup - none def test_traversal_of_api_directory_tree_with_not_matching_source_id( self, mocked_datavault_api_single_source_single_day, ): # Setup session = requests.Session() url = "https://api.icedatavault.icedataservices.com/v2/list" credentials = ("username", "password") leaf_nodes = [] source_id = 673 # Exercise discovered_files = crawler.traverse_api_directory_tree( session, credentials, session.get(url).json(), leaf_nodes, source_id ) # Verify assert discovered_files == [] # Cleanup - none def test_traversal_of_api_directory_tree_with_matching_source_id( self, mocked_datavault_api_multiple_sources_single_day, mocked_files_available_to_download_multiple_sources_single_day, ): # Setup session = requests.Session() url = "https://api.icedatavault.icedataservices.com/v2/list" credentials = ("username", "password") leaf_nodes = [] source_id = 367 # Exercise discovered_files = crawler.traverse_api_directory_tree( session, credentials, session.get(url).json(), leaf_nodes, source_id ) discovered_files.sort(key=lambda x: x.file_name) # Verify expected_files = [ file for file in mocked_files_available_to_download_multiple_sources_single_day if file.source_id == int(source_id) ] expected_files.sort(key=lambda x: x.file_name) assert discovered_files == expected_files # Cleanup - none def test_traversal_of_api_directory_tree_with_empty_stack( self ): # Setup session = requests.Session() credentials = ("username", "password") stack = [] leaf_nodes = [] # Exercise discovered_files = crawler.traverse_api_directory_tree( session, credentials, stack, leaf_nodes ) # Verify # expected_files = [ # file for file in mocked_set_of_files_available_to_download_multiple_sources_single_day # if file.source == source_id # ] assert discovered_files == [] # Cleanup - none def test_traversal_of_api_directory_tree_with_failed_request_down_the_line( self, mocked_datavault_api_with_down_the_line_failed_request, ): # Setup session = requests.Session() credentials = ("username", "password") stack = [ { 'name': '2020', 'parent': '/v2/list', 'url': '/v2/list/2020', 'size': 0, 'createdAt': '2020-01-01T00:00:00', 'updatedAt': '2020-12-02T00:00:00', 'writable': False, 'directory': True, }, ] leaf_nodes = [] # Exercise # Verify with pytest.raises(requests.exceptions.HTTPError): crawler.traverse_api_directory_tree(session, credentials, stack, leaf_nodes) # Cleanup - none def test_traversal_of_api_directory_with_repeated_node_in_stack( self, mocked_datavault_api_with_repeated_node ): # Setup session = requests.Session() credentials = ("username", "password") stack = [ { 'name': '2020', 'parent': '/v2/list', 'url': '/v2/list/2020', 'size': 0, 'createdAt': '2020-01-01T00:00:00', 'updatedAt': '2020-12-02T00:00:00', 'writable': False, 'directory': True, }, ] leaf_nodes = [] # Exercise discovered_instruments = crawler.traverse_api_directory_tree( session, credentials, stack, leaf_nodes ) # Verify assert discovered_instruments == [ DiscoveredFileInfo( file_name='COREREF_945_20201201.txt.bz2', download_url=( "https://api.icedatavault.icedataservices.com/v2/data/2020/12/01/S945/CORE/" "20201201-S945_CORE_ALL_0_0" ), source_id=945, reference_date=datetime.datetime(year=2020, month=12, day=1), size=15680, md5sum='c9cc20020def775933be0be9690a9b5a', ) ] # Cleanup - none class TestDatavaultCrawl: def test_crawler_with_instrument_level_url( self, mocked_datavault_api_instrument_level, mocked_files_available_to_download_single_instrument, ): # Setup url_to_crawl = ( "https://api.icedatavault.icedataservices.com/v2/list/2020/07/16/S367/WATCHLIST" ) credentials = ("username", "password") # Exercise discovered_files = crawler.datavault_crawler(url_to_crawl, credentials) # Verify assert discovered_files == mocked_files_available_to_download_single_instrument # Cleanup - none def test_crawler_with_single_source_and_single_day_setup( self, mocked_datavault_api_single_source_single_day, mocked_files_available_to_download_single_source_single_day, ): # Setup url_to_crawl = "https://api.icedatavault.icedataservices.com/v2/list" credentials = ("username", "password") # Exercise discovered_files = crawler.datavault_crawler(url_to_crawl, credentials) # Verify expected_files = mocked_files_available_to_download_single_source_single_day expected_files.sort(key=lambda x: x.file_name, reverse=True) assert discovered_files == expected_files # Cleanup - none def test_crawler_with_single_source_and_multiple_days_setup( self, mocked_datavault_api_single_source_multiple_days, mocked_files_available_to_download_single_source_multiple_days, ): # Setup url_to_crawl = "https://api.icedatavault.icedataservices.com/v2/list" credentials = ("username", "password") # Exercise discovered_files = crawler.datavault_crawler(url_to_crawl, credentials) discovered_files.sort(key=lambda x: x.file_name) # Verify expected_files = mocked_files_available_to_download_single_source_multiple_days expected_files.sort(key=lambda x: x.file_name) assert discovered_files == expected_files # Cleanup - none def test_crawler_under_multiple_sources_and_single_day_scenario( self, mocked_datavault_api_multiple_sources_single_day, mocked_files_available_to_download_multiple_sources_single_day ): # Setup url_to_crawl = "https://api.icedatavault.icedataservices.com/v2/list" credentials = ("username", "password") # Exercise discovered_files = crawler.datavault_crawler(url_to_crawl, credentials) discovered_files.sort(key=lambda x: x.file_name) # Verify expected_files = mocked_files_available_to_download_multiple_sources_single_day expected_files.sort(key=lambda x: x.file_name) assert discovered_files == expected_files # Cleanup - none def test_crawler_under_select_source_scenario( self, mocked_datavault_api_multiple_sources_single_day, mocked_files_available_to_download_multiple_sources_single_day, ): # Setup url_to_crawl = "https://api.icedatavault.icedataservices.com/v2/list" credentials = ("username", "password") # Exercise discovered_files = crawler.datavault_crawler(url_to_crawl, credentials, source_id=207) discovered_files.sort(key=lambda x: x.file_name) # Verify expected_files = [ file for file in mocked_files_available_to_download_multiple_sources_single_day if file.source_id == 207 ] expected_files.sort(key=lambda x: x.file_name) assert discovered_files == expected_files # Cleanup - none
36.69379
100
0.623424
16,955
0.989437
0
0
967
0.056431
0
0
4,246
0.247782
053c288fde8eaacd236f5d1f96f0de4ba7806a4f
2,976
py
Python
prototype/couch/couch_concurrent.py
ooici/pyon
122c629290d27f32f2f41dafd5c12469295e8acf
[ "BSD-2-Clause" ]
2
2015-06-09T16:07:09.000Z
2015-07-28T10:06:31.000Z
prototype/couch/couch_concurrent.py
ooici/pyon
122c629290d27f32f2f41dafd5c12469295e8acf
[ "BSD-2-Clause" ]
3
2020-07-22T15:14:55.000Z
2021-12-13T19:35:06.000Z
prototype/couch/couch_concurrent.py
ooici/pyon
122c629290d27f32f2f41dafd5c12469295e8acf
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python __author__ = 'Michael Meisinger' import gevent import random from pyon.datastore.datastore import DatastoreManager from pyon.public import IonObject import ooi.timer """ from prototype.couch.couch_concurrent import runcc runcc(dict(num_obj=100000, num_read=2000, num_thread=3)) """ class CouchConcurrencyEval(object): def __init__(self): from pyon.core.bootstrap import container_instance self.container = container_instance self.rr = self.container.resource_registry self.rr_store = DatastoreManager.get_datastore_instance("resources") self.timer = ooi.timer.Timer() def prepare_scenario1(self, nums): num_objects = nums.get("num_obj", 10000) self.res_objs = [IonObject("InstrumentDevice", name="resource_"+str(i)) for i in xrange(num_objects)] res = self.rr_store.create_mult(self.res_objs) self.res_ids = [res_id for _,res_id,_ in res] self.timer.complete_step('create') # Make indexes update if any self.rr_store.read_doc(self.res_ids[0]) self.timer.complete_step('prep_done') def run_cceval1(self, nums): num_read = nums.get("num_read", 2000) # for i in xrange(num_read): # res_obj = self.rr.read(self.res_ids[0]) # self.timer.complete_step('read_same_n') # for i in xrange(num_read): # res_obj = self.rr.read(self.res_ids[0]) # self.timer.complete_step('read_same_n2') # for i in xrange(num_read): # res_obj = self.rr.read(self.res_ids[random.randint(0, len(self.res_ids)-1)]) # self.timer.complete_step('read_rand_n') # for i in xrange(num_read): # res_obj = self.rr_store.read_doc(self.res_ids[random.randint(0, len(self.res_ids)-1)]) # self.timer.complete_step('readdoc_rand_n') num_thread = nums.get("num_thread", 5) def _proc(): for i in xrange(int(num_read/num_thread)): res_obj = self.rr.read(self.res_ids[random.randint(0, len(self.res_ids)-1)]) gls = [gevent.spawn(_proc) for i in xrange(num_thread)] gevent.joinall(gls) self.timer.complete_step('read_conc_same_n') def _proc(): rr_store = DatastoreManager.get_datastore_instance("resources") for i in xrange(int(num_read/num_thread)): res_obj = rr_store.read(self.res_ids[random.randint(0, len(self.res_ids)-1)]) gls = [gevent.spawn(_proc) for i in xrange(num_thread)] gevent.joinall(gls) self.timer.complete_step('read_conc2_same_n') self.timer.complete_step('end') def print_timers(self): prior_t = 0 for l,t in self.timer.times: print l, t-prior_t prior_t = t def runcc(nums=None): nums = nums if nums is not None else {} cce = CouchConcurrencyEval() cce.prepare_scenario1(nums) cce.run_cceval1(nums) cce.print_timers()
30.680412
109
0.652218
2,483
0.834341
0
0
0
0
0
0
954
0.320565
053c773f4e711f1e0bdb6a424915109fb1e18820
2,226
py
Python
serve.py
racterub/itac-flask
5b30e51c9a625483eaf312fb64472622b60b00eb
[ "MIT" ]
null
null
null
serve.py
racterub/itac-flask
5b30e51c9a625483eaf312fb64472622b60b00eb
[ "MIT" ]
null
null
null
serve.py
racterub/itac-flask
5b30e51c9a625483eaf312fb64472622b60b00eb
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @Date : 2020-04-06 23:45:54 # @Author : Racter Liu (racterub) ([email protected]) # @Link : https://racterub.me # @License : MIT from flask import Flask, render_template, request, url_for, redirect, session, send_from_directory, send_file, make_response app = Flask(__name__) app.secret_key = "test" DEBUG = True PORT = 8989 @app.route("/") def index(): return "index of /" # in-url param @app.route("/db/<dbname>/<int:dbid>") def db(dbname, dbid): return "dbname: %s, dbid: %s" % (dbname, dbid+123) # http get param @app.route("/get/") def get(): name = request.args.get("name") passwd = request.args.get("passwd") return "name: %s, password: %s" % (name, passwd) @app.route("/post/") def post(): name = request.form["name"] passwd = request.form["passwd"] return "name: %s, password: %s" % (name, passwd) # implement login @app.route("/login/", methods=["POST", "GET"]) def login(): if request.method == "POST": try: if (request.form["username"] == "test" and request.form["password"] == "test"): session["user"] = request.form["username"] return "Success" else: return redirect(url_for("login", next=request.endpoint)) except ValueError: return "Something broke", 400 else: return render_template("login.html") # session @app.route("/admin/") def admin(): if ('user' not in session): return redirect(url_for("login", next=request.endpoint)) return "admin!" @app.route("/logout") def logout(): if ('user' in session): session.pop("user", None) return "Logout" else: return redirect(url_for("index")) # serve static file @app.route("/robots.txt") def robot(): return send_from_directory("static", "robots.txt") # make_response @app.route("/makeresponse/") def makeresp(): resp = make_response("test", 200) resp.headers['X-Author'] = "ITAC" return resp # Jinja @app.route("/jinja/<name>") def jinja(name): return render_template("index.html", title=name) if __name__ == '__main__': app.run(host='0.0.0.0', debug=DEBUG, port=PORT)
24.195652
124
0.612309
0
0
0
0
1,632
0.733154
0
0
738
0.331536
053ff9d6d078fd3f1bdb31f203cc1982c89849c7
4,067
py
Python
api/list_bp.py
kziovas/practise-todolist
53e6b789b46e1104a076835ac606544ba1ef7b25
[ "MIT" ]
2
2021-07-27T08:38:35.000Z
2021-08-03T10:00:58.000Z
api/list_bp.py
kziovas/practise-sanic-rest-api-to-do-list
53e6b789b46e1104a076835ac606544ba1ef7b25
[ "MIT" ]
null
null
null
api/list_bp.py
kziovas/practise-sanic-rest-api-to-do-list
53e6b789b46e1104a076835ac606544ba1ef7b25
[ "MIT" ]
null
null
null
from sanic.response import json from sanic import Blueprint from service import ListService from injector import inject, singleton from logging import Logger from sanic import Sanic @singleton class ListController: @inject def __init__(self, logger: Logger, list_service : ListService): self.logger = logger self.list_service=list_service async def add_user_list(self, user_id, task_list_id_dict : dict): if (task_list_id_dict): task_list_ids=task_list_id_dict["task_list_ids"] else: task_list_ids={"task_list_ids":[]} await self.list_service.add_to_list(user_id, task_list_ids) async def add_task_list(self, task_list_id, task_list_dict : dict): if (task_list_dict): task_list=task_list_dict["task_list"] else: task_list={"task_list":[]} await self.list_service.add_to_list(task_list_id, task_list) async def get_user_list(self, pattern : str = "*") -> list: user_lists= await self.list_service.get_all_lists_by_pattern(pattern) return user_lists async def get_task_list(self, pattern : str = "*") -> list: task_lists= await self.list_service.get_all_lists_by_pattern(pattern) return task_lists async def get_user_task_list(self, user_id : str, user_id_pattern : str, task_list_id : str, task_list_id_pattern : str) -> dict: user_task_list= await self.list_service.get_user_task_list(user_id, user_id_pattern, task_list_id, task_list_id_pattern) return user_task_list async def add_user_task_list(self, user_id : str, user_id_pattern : str, task_list_id : str, task_list_id_pattern : str, task_list_dict : dict) -> dict: if (task_list_dict): task_list=task_list_dict["task_list"] else: task_list={"task_list":[]} user_task_list= await self.list_service.add_user_task_list(user_id, user_id_pattern, task_list_id, task_list_id_pattern, task_list) return user_task_list def create_list_controller(list_controller: ListController, app: Sanic): lists_bp = Blueprint("lists") list_pattern="todo:list:" user_list_pattern=list_pattern+"user*" task_list_pattern=list_pattern+"task_list*" @lists_bp.route("/lists/users", methods =['GET']) async def get_user_list(request): lists= await list_controller.get_user_list(user_list_pattern) return json(lists) @lists_bp.route("/lists/task-lists", methods =['GET']) async def get_task_list(request): lists= await list_controller.get_task_list(task_list_pattern) return json(lists) @lists_bp.route("/lists/users/<user_id>", methods =['POST']) async def post_user_list(request,user_id): await list_controller.add_user_list(user_id,request.json) lists= await list_controller.get_user_list(user_list_pattern) return json(lists) @lists_bp.route("/lists/tasks/<task_list_id>", methods =['POST']) async def post_task_list(request,task_list_id): await list_controller.add_task_list(task_list_id,request.json) lists= await list_controller.get_task_list(task_list_pattern) return json(lists) @lists_bp.route("/lists/users/<user_id>/<task_list_id>", methods =['GET']) async def get_user_task_list(request,user_id, task_list_id): user_id_pattern=list_pattern+user_id task_list_id_pattern=list_pattern+task_list_id lists= await list_controller.get_user_task_list(user_id, user_id_pattern, task_list_id, task_list_id_pattern) return json(lists) @lists_bp.route("/lists/<user_id>/<task_list_id>", methods =['POST']) async def post_user_task_list(request,user_id,task_list_id): user_id_pattern=list_pattern+user_id task_list_id_pattern=list_pattern+task_list_id lists=await list_controller.add_user_task_list(user_id, user_id_pattern, task_list_id, task_list_id_pattern, request.json) return json(lists) app.blueprint(lists_bp)
37.311927
157
0.715761
1,840
0.452422
0
0
3,573
0.878535
2,956
0.726826
309
0.075977
0541032df78b9eac36f755de81be4a580d936532
5,223
py
Python
src/AoC_2015/d24_sleigh_balance_subset_sum/sleigh_balance.py
derailed-dash/Advent-of-Code
12378baf33ef4a59958e84eb60e795b6530c22ba
[ "MIT" ]
9
2021-12-31T20:13:03.000Z
2022-03-05T07:05:06.000Z
src/AoC_2015/d24_sleigh_balance_subset_sum/sleigh_balance.py
derailed-dash/Advent-of-Code
12378baf33ef4a59958e84eb60e795b6530c22ba
[ "MIT" ]
1
2022-01-25T08:35:04.000Z
2022-01-29T00:07:00.000Z
src/AoC_2015/d24_sleigh_balance_subset_sum/sleigh_balance.py
derailed-dash/Advent-of-Code
12378baf33ef4a59958e84eb60e795b6530c22ba
[ "MIT" ]
null
null
null
""" Author: Darren Date: 02/05/2021 Solving https://adventofcode.com/2015/day/24 We require three bags of equal weight. Bag 1 in the passenger compartment, needs to have fewest packages. Bags 2 and 3 to either side. Solution: Use subset sum function to work out which combinations of packages adds up to total weight / number of bags (compartments). The faster subsum is about 3x quicker than the version that uses itertools.combinations. Once we have all combinations for the first bag, sort by the number of packages, since we want the first bag to have fewest possible packages. We don't care about what's in bags 2, 3... I.e. because we know we will have valid combinations of packages that will add up to the same weight """ from __future__ import absolute_import import logging import os import time from math import prod from itertools import combinations # pylint: disable=logging-fstring-interpolation SCRIPT_DIR = os.path.dirname(__file__) INPUT_FILE = "input/input.txt" SAMPLE_INPUT_FILE = "input/sample_input.txt" def main(): logging.basicConfig(level=logging.DEBUG, format="%(asctime)s:%(levelname)s:\t%(message)s") # input_file = os.path.join(SCRIPT_DIR, SAMPLE_INPUT_FILE) input_file = os.path.join(SCRIPT_DIR, INPUT_FILE) with open(input_file, mode="rt") as f: package_weights = [int(x) for x in f.read().splitlines()] logging.info(f"Package weights: {package_weights}") # Part 1 optimum_solution = distribute_packages(package_weights, 3) logging.info(f"Solution found with QE {get_quantum_entanglement(optimum_solution)}") logging.info(f"First bag: {optimum_solution}") # Part 2 optimum_solution = distribute_packages(package_weights, 4) logging.info(f"Solution found with QE {get_quantum_entanglement(optimum_solution)}") logging.info(f"First bag: {optimum_solution}") def distribute_packages(package_weights, number_of_bags) -> tuple: logging.info(f"Solving for {number_of_bags} bags") package_count = len(package_weights) total_weight = sum(package_weights) target_weight_per_bag = total_weight // number_of_bags logging.debug(f"Total packages: {package_count}, with total weight: {total_weight}") logging.debug(f"Target weight per bag: {target_weight_per_bag}") # Get all combos for first bag. # Sort by bags in the combo, since the first bag should have fewest packages. first_bag_combos = faster_subset_sum(package_weights, target_weight_per_bag) first_bag_combos = sorted(first_bag_combos, key=len) # store first bag of optimum solution optimum_solution = tuple() for first_bag_combo in first_bag_combos: # First bag must have smallest number of packages # Skip any bag combos that have more packages than a previous solution if len(optimum_solution) > 0: if len(first_bag_combo) > len(optimum_solution): continue # if quantum entanglement of the first bag is higher than an existing solution, # then skip it if get_quantum_entanglement(first_bag_combo) >= get_quantum_entanglement(optimum_solution): continue optimum_solution = first_bag_combo return optimum_solution def get_quantum_entanglement(bag: tuple): return prod(bag) def faster_subset_sum(items: list, target: int, partial=[], results=[]) -> list: """ Determine all combinations of list items that add up to the target Args: numbers (list): A list of values target (int): The total that the values need to add up to partial (list, optional): Used by the function. Defaults to []. results (list, optional): Used by the function. Defaults to []. Returns: list: The list of valid combinations """ total = sum(partial) # check if the partial sum is equals to target, and if so # add the current terms to the results list if total == target: results.append(partial) # if the partial sum equals or exceed the target, no point in recursing through remaining terms. if total >= target: return [] for i, item in enumerate(items): remaining_numbers = items[i + 1:] faster_subset_sum(remaining_numbers, target, partial + [item], results) return results def simple_subset_sum(items, target: int) -> tuple: """ Return a tuple of any combinations of items that adds up to the target Args: items (Sequence): List/set of items target (int): The target sum to achieve Yields: Iterator[tuple]: Items that achieve the desired sum """ # Iterating through all possible subsets of collection from lengths 0 to n: for i in range(len(items)+1): for subset in combinations(items, i): # printing the subset if its sum is x: if sum(subset) == target: yield subset if __name__ == "__main__": t1 = time.perf_counter() main() t2 = time.perf_counter() print(f"Execution time: {t2 - t1:0.4f} seconds")
34.589404
103
0.681409
0
0
607
0.116217
0
0
0
0
2,759
0.52824
0541425822ca873cc1104abcaddefbf0b86d3c05
8,946
py
Python
artap/algorithm_bayesopt.py
tamasorosz/artap
e8df160bfc9c378c3fc96b0b86e92d75d89cf26b
[ "MIT" ]
5
2021-06-13T17:04:37.000Z
2022-03-04T17:16:06.000Z
artap/algorithm_bayesopt.py
tamasorosz/artap
e8df160bfc9c378c3fc96b0b86e92d75d89cf26b
[ "MIT" ]
null
null
null
artap/algorithm_bayesopt.py
tamasorosz/artap
e8df160bfc9c378c3fc96b0b86e92d75d89cf26b
[ "MIT" ]
8
2021-03-11T18:23:47.000Z
2022-02-22T11:13:23.000Z
from .problem import Problem from .algorithm import Algorithm from .config import artap_root import time import numpy as np import os import sys sys.path.append(artap_root + os.sep + "lib" + os.sep) import bayesopt from multiprocessing import Process, Pipe, Queue, Manager # from multiprocessing.managers import BaseManager _l_type = ['L_FIXED', 'L_EMPIRICAL', 'L_DISCRETE', 'L_MCMC', 'L_ERROR'] _sc_type = ['SC_MTL', 'SC_ML', 'SC_MAP', 'SC_LOOCV', 'SC_ERROR'] _surr_name = ["sGaussianProcess", "sGaussianProcessML", "sGaussianProcessNormal", "sStudentTProcessJef", "sStudentTProcessNIG"] # Python module to get run BayesOpt library in a OO pattern. # The objective module should inherit this one and override evaluateSample. class BayesOptContinuous(object): # Let's define the vector. # # For different options: see vector.h and vector.cpp . # If a parameter is not defined, it will be automatically set # to a default value. def __init__(self, n_dim): ## Library vector self.params = {} ## n dimensions self.n_dim = n_dim ## Lower bounds self.lb = np.zeros((self.n_dim,)) ## Upper bounds self.ub = np.ones((self.n_dim,)) @property def parameters(self): return self.params @parameters.setter def parameters(self, params): self.params = params @property def lower_bound(self): return self.lb @lower_bound.setter def lower_bound(self, lb): self.lb = lb @property def upper_bound(self): return self.ub @upper_bound.setter def upper_bound(self, ub): self.ub = ub ## Function for testing. # It should be overriden. def evaluateSample(self, x_in): raise NotImplementedError("Please Implement this method") ## Main function. Starts the optimization process. def optimize(self): min_val, x_out, error = bayesopt.optimize(self.evaluateSample, self.n_dim, self.lb, self.ub, self.params) return min_val, x_out, error class BayesOpt(Algorithm): """ BayesOpt algorithms """ def __init__(self, problem: Problem, name="BayesOpt"): super().__init__(problem, name) self.problem = problem self.options.declare(name='l_type', default='L_EMPIRICAL', values=_l_type, desc='Type of learning for the kernel params') self.options.declare(name='sc_type', default='SC_MAP', values=_sc_type, desc='Type of learning for the kernel params') self.options.declare(name='n_iterations', default=50, lower=1, desc='Maximum BayesOpt evaluations') self.options.declare(name='init_method', default=1, desc='Init method') # 1-LHS, 2-Sobol self.options.declare(name='n_init_samples', default=10, lower=1, desc='Number of samples before optimization') self.options.declare(name='n_iter_relearn', default=10, lower=1, desc='Number of samples before relearn kernel') self.options.declare(name='surr_name', default='sGaussianProcessML', values=_surr_name, desc='Name of the surrogate function') self.options.declare(name='surr_noise', default=1e-10, lower=0.0, desc='Variance of observation noise') class BayesOptClassSerial(BayesOptContinuous): def __init__(self, algorithm): n = len(algorithm.problem.parameters) super().__init__(n) # algorithm self.algorithm = algorithm # Size design variables. self.lb = np.empty((n,)) self.ub = np.empty((n,)) self.params = {} def evaluateSample(self, x): return self.algorithm.evaluator.evaluate_scalar(x) class BayesOptSerial(BayesOpt): """ BayesOpt algorithms """ def __init__(self, problem: Problem, name="BayesOpt"): super().__init__(problem, name) self.bo = BayesOptClassSerial(self) def run(self): # Figure out bounds vectors. i = 0 for parameter in self.problem.parameters: bounds = parameter['bounds'] self.bo.lb[i] = bounds[0] self.bo.ub[i] = bounds[1] i += 1 # set bayesopt self.bo.params['n_iterations'] = self.options['n_iterations'] self.bo.params['n_init_samples'] = self.options['n_init_samples'] self.bo.params['n_iter_relearn'] = self.options['n_iter_relearn'] self.bo.params['surr_name'] = self.options['surr_name'] self.bo.params['surr_noise'] = self.options['surr_noise'] self.bo.params['init_method'] = self.options['init_method'] self.bo.params['l_type'] = self.options['l_type'] self.bo.params['sc_type'] = self.options['sc_type'] self.bo.params['verbose_level'] = self.options['verbose_level'] t_s = time.time() self.problem.logger.info("BayesOpt: surr_name{}".format(self.options['surr_name'])) mvalue, x_out, error = self.bo.optimize() t = time.time() - t_s self.problem.logger.info("BayesOpt: elapsed time: {} s".format(t)) # sync changed individual informations self.problem.data_store.sync_all() if error != 0: print('Optimization FAILED.') print("Error", error) print('-' * 35) else: pass # print('Optimization Complete, %f seconds' % (clock() - start)) # print("Result", x_out, mvalue) # print('-' * 35) class BayesOptClassParallel(Process, BayesOptContinuous): def __init__(self, pipe, algorithm): n = len(algorithm.problem.parameters) Process.__init__(self) BayesOptContinuous.__init__(self, n) # algorithm self.algorithm = algorithm # output self.mvalue = -1.0 self.x_out = -1.0 self.error = 0 self.pipe = pipe # Size design variables. self.lb = np.empty((n,)) self.ub = np.empty((n,)) self.params = {} def run(self): mvalue, x_out, error = self.optimize() self.pipe.send('STOP') # set output values self.mvalue = mvalue self.x_out = x_out self.error = error # output print("output") print(self.mvalue) print(self.x_out) print(self.error) def evaluateSample(self, x): self.pipe.send(x) result = self.pipe.recv() return result class BayesOptParallel(BayesOpt): """ BayesOpt algorithms """ def __init__(self, problem: Problem, name="BayesOpt"): super().__init__(problem, name) self.pipe_par, self.pipe_child = Pipe() self.bo = BayesOptClassParallel(self.pipe_child, self) def worker(self, pipe): x = None while True: x = pipe.recv() if str(x) == 'STOP': break result = self.bo.job.evaluate_scalar(x) pipe.send(result) def run(self): # Figure out bounds vectors. i = 0 for parameter in self.problem.parameters: bounds = parameter['bounds'] self.bo.lb[i] = bounds[0] self.bo.ub[i] = bounds[1] i += 1 # set bayesopt self.bo.params['n_iterations'] = self.options['n_iterations'] self.bo.params['n_init_samples'] = self.options['n_init_samples'] self.bo.params['n_iter_relearn'] = self.options['n_iter_relearn'] self.bo.params['surr_name'] = self.options['surr_name'] self.bo.params['surr_noise'] = self.options['surr_noise'] self.bo.params['init_method'] = self.options['init_method'] self.bo.params['l_type'] = self.options['l_type'] self.bo.params['sc_type'] = self.options['sc_type'] self.bo.params['verbose_level'] = self.options['verbose_level'] # process = Process(target=self.worker, args=(self.pipe_par, self.problem, )) process = Process(target=self.worker, args=(self.pipe_par, )) self.bo.start() process.start() self.bo.join() process.join() print(self.bo.mvalue) print(self.bo.x_out) print(self.bo.error) print() print(self.problem.data_store, len(self.problem.populations[-1].individuals)) # self.result = self.mvalue """ if self.bo.error != 0: print('Optimization FAILED.') print("Error", self.bo.error) print('-' * 35) else: print('Optimization Complete, %f seconds' % (clock() - start)) print("Result", self.bo.x_out, self.bo.mvalue) print('-' * 35) """
31.611307
127
0.59099
8,198
0.916387
0
0
403
0.045048
0
0
2,654
0.296669
0543197cdee0aacdb12b0d10810f263f61b2c8d7
538
py
Python
Sorting/ShortBubbleSort.py
sonivaibhv/Algo
ea53d61a17687ef08bb2a7dbfd9331fd10f49ea8
[ "MIT" ]
1
2017-05-06T13:05:35.000Z
2017-05-06T13:05:35.000Z
Sorting/ShortBubbleSort.py
CuriousLearner/Algorithms
e44a04b3a0797da36a9de18c116a48241ce59d9d
[ "MIT" ]
null
null
null
Sorting/ShortBubbleSort.py
CuriousLearner/Algorithms
e44a04b3a0797da36a9de18c116a48241ce59d9d
[ "MIT" ]
null
null
null
def Short_Bubble_Sort(alist): ''' Sorting alist using Short Bubble Sort ''' passnum = len(alist) - 1 exchangesDone = True while passnum > 0 and exchangesDone: exchangesDone = False for i in range(passnum): if alist[i] > alist[i+1]: exchangesDone = True alist[i], alist[i+1] = alist[i+1], alist[i] passnum = passnum - 1 return alist def main(): alist=[20, 30, 40, 90, 50, 60, 70, 80, 100, 110] print(Short_Bubble_Sort(alist)) main()
25.619048
59
0.565056
0
0
0
0
0
0
0
0
53
0.098513
0543991c023c828b9777016230758b911a5898f1
5,997
py
Python
src/arclink/libs/python/seiscomp/db/generic/genwrap.py
yannikbehr/seiscomp3
ebb44c77092555eef7786493d00ac4efc679055f
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
src/arclink/libs/python/seiscomp/db/generic/genwrap.py
yannikbehr/seiscomp3
ebb44c77092555eef7786493d00ac4efc679055f
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
src/arclink/libs/python/seiscomp/db/generic/genwrap.py
yannikbehr/seiscomp3
ebb44c77092555eef7786493d00ac4efc679055f
[ "Naumen", "Condor-1.1", "MS-PL" ]
1
2021-09-15T08:13:27.000Z
2021-09-15T08:13:27.000Z
# This file was created by a source code generator: # genxml2wrap.py # Do not modify. Change the definition and # run the generator again! # # (c) 2010 Mathias Hoffmann, GFZ Potsdam # # import datetime class _TrackedObject(object): def __init__(self): self.__dict__['last_modified'] = datetime.datetime(1970, 1, 1, 0, 0, 0) def __setattr__(self, name, value): if name not in self.__dict__ or self.__dict__[name] != value: self.__dict__[name] = value self.__dict__['last_modified'] = datetime.datetime.utcnow() # # # QualityControl::QCLog class base_QCLog(_TrackedObject): publicID = "" networkCode = "" stationCode = "" streamCode = "" locationCode = "" creatorID = "" created = None start = None end = None message = "" # QualityControl::WaveformQuality class base_WaveformQuality(_TrackedObject): networkCode = "" stationCode = "" streamCode = "" locationCode = "" creatorID = "" created = None start = None end = None type = "" parameter = "" value = None lowerUncertainty = None upperUncertainty = None windowLength = None # QualityControl::Outage class base_Outage(_TrackedObject): networkCode = "" stationCode = "" streamCode = "" locationCode = "" creatorID = "" created = None start = None end = None # Inventory::StationReference class base_StationReference(_TrackedObject): stationID = "" # Inventory::StationGroup class base_StationGroup(_TrackedObject): publicID = "" type = None code = "" start = None end = None description = "" latitude = None longitude = None elevation = None # StationReference = "" # Inventory::AuxSource class base_AuxSource(_TrackedObject): name = "" description = "" unit = "" conversion = "" sampleRateNumerator = None sampleRateDenominator = None remark = "" # Inventory::AuxDevice class base_AuxDevice(_TrackedObject): publicID = "" name = "" description = "" model = "" manufacturer = "" remark = "" # AuxSource = "" # Inventory::SensorCalibration class base_SensorCalibration(_TrackedObject): serialNumber = "" channel = None start = None end = None gain = None gainFrequency = None remark = "" # Inventory::Sensor class base_Sensor(_TrackedObject): publicID = "" name = "" description = "" model = "" manufacturer = "" type = "" unit = "" lowFrequency = None highFrequency = None response = "" remark = "" # SensorCalibration = "" # Inventory::ResponsePAZ class base_ResponsePAZ(_TrackedObject): publicID = "" name = "" type = "" gain = None gainFrequency = None normalizationFactor = None normalizationFrequency = None numberOfZeros = None numberOfPoles = None zeros = "" poles = "" remark = "" # Inventory::ResponsePolynomial class base_ResponsePolynomial(_TrackedObject): publicID = "" name = "" gain = None gainFrequency = None frequencyUnit = "" approximationType = "" approximationLowerBound = None approximationUpperBound = None approximationError = None numberOfCoefficients = None coefficients = "" remark = "" # Inventory::DataloggerCalibration class base_DataloggerCalibration(_TrackedObject): serialNumber = "" channel = None start = None end = None gain = None gainFrequency = None remark = "" # Inventory::Decimation class base_Decimation(_TrackedObject): sampleRateNumerator = None sampleRateDenominator = None analogueFilterChain = "" digitalFilterChain = "" # Inventory::Datalogger class base_Datalogger(_TrackedObject): publicID = "" name = "" description = "" digitizerModel = "" digitizerManufacturer = "" recorderModel = "" recorderManufacturer = "" clockModel = "" clockManufacturer = "" clockType = "" gain = None maxClockDrift = None remark = "" # DataloggerCalibration = "" # Decimation = "" # Inventory::ResponseFIR class base_ResponseFIR(_TrackedObject): publicID = "" name = "" gain = None decimationFactor = None delay = None correction = None numberOfCoefficients = None symmetry = "" coefficients = "" remark = "" # Inventory::AuxStream class base_AuxStream(_TrackedObject): code = "" start = None end = None device = "" deviceSerialNumber = "" source = "" format = "" flags = "" restricted = None # Inventory::Stream class base_Stream(_TrackedObject): code = "" start = None end = None datalogger = "" dataloggerSerialNumber = "" dataloggerChannel = None sensor = "" sensorSerialNumber = "" sensorChannel = None clockSerialNumber = "" sampleRateNumerator = None sampleRateDenominator = None depth = None azimuth = None dip = None gain = None gainFrequency = None gainUnit = "" format = "" flags = "" restricted = None shared = None # Inventory::SensorLocation class base_SensorLocation(_TrackedObject): publicID = "" code = "" start = None end = None latitude = None longitude = None elevation = None # AuxStream = "" # Stream = "" # Inventory::Station class base_Station(_TrackedObject): publicID = "" code = "" start = None end = None description = "" latitude = None longitude = None elevation = None place = "" country = "" affiliation = "" type = "" archive = "" archiveNetworkCode = "" restricted = None shared = None remark = "" # SensorLocation = "" # Inventory::Network class base_Network(_TrackedObject): publicID = "" code = "" start = None end = None description = "" institutions = "" region = "" type = "" netClass = "" archive = "" restricted = None shared = None remark = "" # Station = "" # Routing::RouteArclink class base_RouteArclink(_TrackedObject): address = "" start = None end = None priority = None # Routing::RouteSeedlink class base_RouteSeedlink(_TrackedObject): address = "" priority = None # Routing::Route class base_Route(_TrackedObject): publicID = "" networkCode = "" stationCode = "" locationCode = "" streamCode = "" # RouteArclink = "" # RouteSeedlink = "" # Routing::Access class base_Access(_TrackedObject): networkCode = "" stationCode = "" locationCode = "" streamCode = "" user = "" start = None end = None
18.395706
73
0.691346
5,137
0.856595
0
0
0
0
0
0
1,246
0.207771
05461bddcd3bd1546efdbcd5e16d6aa27b51efe8
7,754
py
Python
mailchimp_marketing_asyncio/models/problem_detail_document.py
john-parton/mailchimp-asyncio
3865ca0867bec8f537dc1e3256aa3a160c00f8a2
[ "Apache-2.0" ]
null
null
null
mailchimp_marketing_asyncio/models/problem_detail_document.py
john-parton/mailchimp-asyncio
3865ca0867bec8f537dc1e3256aa3a160c00f8a2
[ "Apache-2.0" ]
null
null
null
mailchimp_marketing_asyncio/models/problem_detail_document.py
john-parton/mailchimp-asyncio
3865ca0867bec8f537dc1e3256aa3a160c00f8a2
[ "Apache-2.0" ]
1
2022-03-09T14:52:22.000Z
2022-03-09T14:52:22.000Z
# coding: utf-8 """ Mailchimp Marketing API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: 3.0.74 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class ProblemDetailDocument(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'type': 'str', 'title': 'str', 'status': 'int', 'detail': 'str', 'instance': 'str' } attribute_map = { 'type': 'type', 'title': 'title', 'status': 'status', 'detail': 'detail', 'instance': 'instance' } def __init__(self, type=None, title=None, status=None, detail=None, instance=None): # noqa: E501 """ProblemDetailDocument - a model defined in Swagger""" # noqa: E501 self._type = None self._title = None self._status = None self._detail = None self._instance = None self.discriminator = None self.type = type self.title = title self.status = status self.detail = detail self.instance = instance @property def type(self): """Gets the type of this ProblemDetailDocument. # noqa: E501 An absolute URI that identifies the problem type. When dereferenced, it should provide human-readable documentation for the problem type. # noqa: E501 :return: The type of this ProblemDetailDocument. # noqa: E501 :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this ProblemDetailDocument. An absolute URI that identifies the problem type. When dereferenced, it should provide human-readable documentation for the problem type. # noqa: E501 :param type: The type of this ProblemDetailDocument. # noqa: E501 :type: str """ if type is None: raise ValueError("Invalid value for `type`, must not be `None`") # noqa: E501 self._type = type @property def title(self): """Gets the title of this ProblemDetailDocument. # noqa: E501 A short, human-readable summary of the problem type. It shouldn't change based on the occurrence of the problem, except for purposes of localization. # noqa: E501 :return: The title of this ProblemDetailDocument. # noqa: E501 :rtype: str """ return self._title @title.setter def title(self, title): """Sets the title of this ProblemDetailDocument. A short, human-readable summary of the problem type. It shouldn't change based on the occurrence of the problem, except for purposes of localization. # noqa: E501 :param title: The title of this ProblemDetailDocument. # noqa: E501 :type: str """ if title is None: raise ValueError("Invalid value for `title`, must not be `None`") # noqa: E501 self._title = title @property def status(self): """Gets the status of this ProblemDetailDocument. # noqa: E501 The HTTP status code (RFC2616, Section 6) generated by the origin server for this occurrence of the problem. # noqa: E501 :return: The status of this ProblemDetailDocument. # noqa: E501 :rtype: int """ return self._status @status.setter def status(self, status): """Sets the status of this ProblemDetailDocument. The HTTP status code (RFC2616, Section 6) generated by the origin server for this occurrence of the problem. # noqa: E501 :param status: The status of this ProblemDetailDocument. # noqa: E501 :type: int """ if status is None: raise ValueError("Invalid value for `status`, must not be `None`") # noqa: E501 self._status = status @property def detail(self): """Gets the detail of this ProblemDetailDocument. # noqa: E501 A human-readable explanation specific to this occurrence of the problem. [Learn more about errors](/developer/guides/get-started-with-mailchimp-api-3/#Errors). # noqa: E501 :return: The detail of this ProblemDetailDocument. # noqa: E501 :rtype: str """ return self._detail @detail.setter def detail(self, detail): """Sets the detail of this ProblemDetailDocument. A human-readable explanation specific to this occurrence of the problem. [Learn more about errors](/developer/guides/get-started-with-mailchimp-api-3/#Errors). # noqa: E501 :param detail: The detail of this ProblemDetailDocument. # noqa: E501 :type: str """ if detail is None: raise ValueError("Invalid value for `detail`, must not be `None`") # noqa: E501 self._detail = detail @property def instance(self): """Gets the instance of this ProblemDetailDocument. # noqa: E501 A string that identifies this specific occurrence of the problem. Please provide this ID when contacting support. # noqa: E501 :return: The instance of this ProblemDetailDocument. # noqa: E501 :rtype: str """ return self._instance @instance.setter def instance(self, instance): """Sets the instance of this ProblemDetailDocument. A string that identifies this specific occurrence of the problem. Please provide this ID when contacting support. # noqa: E501 :param instance: The instance of this ProblemDetailDocument. # noqa: E501 :type: str """ if instance is None: raise ValueError("Invalid value for `instance`, must not be `None`") # noqa: E501 self._instance = instance def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(ProblemDetailDocument, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ProblemDetailDocument): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
32.995745
181
0.607557
7,387
0.95267
0
0
4,563
0.58847
0
0
4,685
0.604204
054f8d75e59fcecffb5d9b04254a41c1dbff6742
1,118
py
Python
loadingstatus.py
NesbiDevelopment/PythonHelper
6dc7545cd0ebd5bd3daf32860a7dc45d1caf50e3
[ "MIT" ]
null
null
null
loadingstatus.py
NesbiDevelopment/PythonHelper
6dc7545cd0ebd5bd3daf32860a7dc45d1caf50e3
[ "MIT" ]
null
null
null
loadingstatus.py
NesbiDevelopment/PythonHelper
6dc7545cd0ebd5bd3daf32860a7dc45d1caf50e3
[ "MIT" ]
null
null
null
import time import sys class Loadingstatus: def __init__(self, barlength = 20): self.loading = 0 self.lastCall = self.getMilliSeconds() self.barlength = barlength def getMilliSeconds(self): return int(time.time() * 1000) def updatePending(self): newCall = self.getMilliSeconds() if newCall-self.lastCall > 500: #switch loading loadingSymbol = {0: "/", 1: "-", 2: "\\", 3: "|"}[self.loading] self.loading = (self.loading + 1)%4 sys.stdout.write(loadingSymbol+"\r") sys.stdout.flush() self.lastCall = newCall def updateLoading(self,percent): sys.stdout.write(self.getBar(percent)+"\r") sys.stdout.flush() def endLoading(self,percent = 1): print(self.getBar(percent)) def getBar(self,percent): progressLength = int((self.barlength-2)*percent) progress = "=" * progressLength bar = "-" * (self.barlength-progressLength-2) percentString = "%.2f" % (percent*100) return "["+progress+bar+"] "+percentString+"%"
31.055556
75
0.584079
1,093
0.977639
0
0
0
0
0
0
58
0.051878
0552a237d536bb49e4a74fe8039eabfd37370524
1,596
py
Python
main.py
WillyHHsu/rest
1adba475579cb2c0f9b8690b7f822c02b483146a
[ "MIT" ]
null
null
null
main.py
WillyHHsu/rest
1adba475579cb2c0f9b8690b7f822c02b483146a
[ "MIT" ]
null
null
null
main.py
WillyHHsu/rest
1adba475579cb2c0f9b8690b7f822c02b483146a
[ "MIT" ]
null
null
null
import os from fastapi import FastAPI from fastapi_sqlalchemy import DBSessionMiddleware from fastapi_sqlalchemy import db from dotenv import load_dotenv from sqlalchemy import schema from db import models as db_model from schemas import models as schema load_dotenv() POSTGRES_USER = os.getenv('POSTGRES_USER') POSTGRES_PASSWORD = os.getenv('POSTGRES_PASSWORD') POSTGRES_DB = os.getenv('POSTGRES_DB') POSTGRES_URL = os.getenv('POSTGRES_URL') POSTGRES_PORT = os.getenv('POSTGRES_PORT', 5432) app = FastAPI( title="API REST", description="Uma API REST by WillyHHsu", ) app.add_middleware( DBSessionMiddleware, db_url=f"postgresql://{POSTGRES_USER}:{POSTGRES_PASSWORD}@{POSTGRES_URL}:{POSTGRES_PORT}/{POSTGRES_DB}" ) @app.get("/users") def get_users(): users = db.session.query(db_model.Player).all() return users @app.post("/tournament", summary='Cadastra um novo torneio', response_model=schema.Tournament) def new_tournament(tornament_request: schema.Tournament): db.session.add(db_model.Tornament(tornament_request)) db.session.commit() return schema.Tournament(**tornament_request) @app.post("/tournament/{id_tournament}/competitor", summary='Cadastra um novo competidor') def new_tournament(id_tournament): return db.session.query(db_model.Tournament).filter(id_tournament=id_tournament).first() @app.get("/tournament/{id_tournament}/match", summary='Lista as partidas de um torneio') def list_match(id_tournament): return db.session.query(db_model.Game).filter(id_tournament=id_tournament).all()
29.555556
107
0.759398
0
0
0
0
849
0.531955
0
0
393
0.246241
05546175c9355e358802def95353b9059d638d79
866
py
Python
src/compas_blender/utilities/data.py
KEERTHANAUDAY/compas
4d1101cf302f95a4472a01a1265cc64eaec6aa4a
[ "MIT" ]
null
null
null
src/compas_blender/utilities/data.py
KEERTHANAUDAY/compas
4d1101cf302f95a4472a01a1265cc64eaec6aa4a
[ "MIT" ]
null
null
null
src/compas_blender/utilities/data.py
KEERTHANAUDAY/compas
4d1101cf302f95a4472a01a1265cc64eaec6aa4a
[ "MIT" ]
null
null
null
import bpy __all__ = [ "delete_all_data", ] def delete_all_data(): """Delete all collections, mesh and curve objects, meshes, curves, materials.""" for collection in bpy.data.collections: bpy.data.collections.remove(collection) for obj in bpy.data.objects: if obj.type == 'MESH': bpy.data.objects.remove(obj) elif obj.type == 'CURVE': bpy.data.objects.remove(obj) for mesh in bpy.data.meshes: bpy.data.meshes.remove(mesh) for curve in bpy.data.curves: bpy.data.curves.remove(curve) for material in bpy.data.materials: bpy.data.materials.remove(material) # ============================================================================== # Main # ============================================================================== if __name__ == '__main__': pass
27.0625
84
0.51963
0
0
0
0
0
0
0
0
286
0.330254
055668b6a61ba32a80522c93f3aa4dbcf035bb7b
2,335
py
Python
teams_to_tsv.py
FSU-ACM-OSSG/Contest-Server
f9aabd9742a6aa78cbefc685fd2760a1f83d7721
[ "MIT" ]
8
2019-01-13T21:57:53.000Z
2021-11-29T12:32:48.000Z
teams_to_tsv.py
FSU-ACM-OSSG/Contest-Server
f9aabd9742a6aa78cbefc685fd2760a1f83d7721
[ "MIT" ]
73
2018-02-13T00:58:39.000Z
2022-02-10T11:59:53.000Z
teams_to_tsv.py
FSU-ACM-OSSG/Contest-Server
f9aabd9742a6aa78cbefc685fd2760a1f83d7721
[ "MIT" ]
4
2018-02-08T18:56:54.000Z
2019-02-13T19:01:53.000Z
############## # team_to_tsv script # Creates two tsv files for importing into domjudge # Team info gets stored inside teams.tsv in the following format # <team_id(int)> <external_id> <category_id> <team_name> # Account info gets stored inside acccounts.tsv in the following format # team <team-name> <user-name> <password> <teamid> # # Import teams.tsv first, then accounts.tsv # # NOTE 1 : Domjudge doesn't insert teams with ID < 1 from app.models.Team import * with open("teams.tsv", "w+") as teams_tsv, \ open("accounts.tsv", "w+") as accounts_tsv: # Headers requiered by domjudge teams_tsv.write("teams\t1\n") accounts_tsv.write("accounts\t1\n") walkin_counter = 1 for team in Team.objects.all(): # Only make 100 walk-in accounts if walkin_counter > 101: break; # Accounts that are not in use are assigned to walk-ins if team.team_name is None: team.team_name = "".join(("Walk-in-", str(walkin_counter))) walkin_counter += 1 # Empty team names are assign a dummy value if team.team_name.isspace(): team.team_name = "UnnamedTeam" # Avoiding team number 0, refer to NOTE 1 in the header if team.teamID == "acm-0": continue teams_tsv.write(u"\t".join( [team.teamID.strip("acm-"), # To only get ID number team.teamID, # Set to external ID for exporting "2", # Category ID of Participants Category - See footnote team.team_name.strip('\t'), # So tabs in team_name don't interfere '\n'])) accounts_tsv.write(u"\t".join( ["team", team.team_name.strip('\t'), # So tabs in team_name don't interfere '{0}-{1}'.format('team', team.teamID.split('-')[1].zfill(3)), team.domPass, # team.teamID.strip("acm-"), # To only get ID number '\n'])) # # FOOTNOTE: Team Category # # This value determines the team_category. Domjudge's defaults are: # 1 -> System # 2 -> Self-Registered # 3 -> Jury # # Since System and Jury are meant for admin, we assign teams to being # "self-registered" because you can't self-register for our contests # anyway, and this is easier than making you create a new category first. #
36.484375
77
0.614561
0
0
0
0
0
0
0
0
1,426
0.610707
05573cc8d3a341c5de3d72784bf092562a5a2e63
1,848
py
Python
mishris/utils/util.py
virazura/mishris
60762364347bfa50ffc9948e9d227c569fe68da5
[ "MIT" ]
null
null
null
mishris/utils/util.py
virazura/mishris
60762364347bfa50ffc9948e9d227c569fe68da5
[ "MIT" ]
null
null
null
mishris/utils/util.py
virazura/mishris
60762364347bfa50ffc9948e9d227c569fe68da5
[ "MIT" ]
null
null
null
from __future__ import unicode_literals import frappe import filetype """ NEED IMPORT LOCAL LANG FROM FRAPPE """ def attach_print(doctype, name, file_name=None, print_format=None, style=None, html=None, doc=None, lang=None, encrypt=False, password=None, print_letterhead=True): from frappe.utils import scrub_urls from PyPDF2 import PdfFileWriter from PyPDF2 import PdfFileReader from frappe.utils.print_format import read_multi_pdf output = PdfFileWriter() if not file_name: file_name = name file_name = file_name.replace(' ','').replace('/','-') print_settings = frappe.db.get_singles_dict("Print Settings") hr_settings = frappe.db.get_singles_dict("HR Settings") # Not Check Lang on this print format #_lang = local.lang #set lang as specified in print format attachment #if lang: local.lang = lang #local.flags.ignore_print_permissions = True no_letterhead = not print_letterhead if int(print_settings.send_print_as_pdf or 0): output = frappe.get_print(doctype, name, print_format=print_format, style=style, html=html, as_pdf=True, doc=doc, no_letterhead=no_letterhead, output=output) if int(hr_settings.encrypt_salary_slip): output.encrypt(password) salary_slip = read_multi_pdf(output) # butuh diubah ke bytes out = { "fname": file_name + ".pdf", "fcontent": salary_slip } else: out = { "fname": file_name + ".html", "fcontent": scrub_urls(get_print(doctype, name, print_format=print_format, style=style, html=html, doc=doc, no_letterhead=no_letterhead)).encode("utf-8") } #local.flags.ignore_print_permissions = False #reset lang to original local lang #local.lang = _lang return out
34.222222
165
0.67803
0
0
0
0
0
0
0
0
433
0.234307
055a29385d9e76d3a424d3a90ed95bbdc4015019
4,906
py
Python
cleverapi/clever_api.py
oncecreated/cleverapi
39b41860604a909d3e5262c1c795c0741570a653
[ "MIT" ]
13
2018-06-30T14:16:42.000Z
2020-03-04T20:23:47.000Z
cleverapi/clever_api.py
oncecreated/cleverapi
39b41860604a909d3e5262c1c795c0741570a653
[ "MIT" ]
11
2018-09-09T09:54:27.000Z
2019-04-15T13:40:19.000Z
cleverapi/clever_api.py
oncecreated/cleverapi
39b41860604a909d3e5262c1c795c0741570a653
[ "MIT" ]
14
2018-07-24T17:38:56.000Z
2020-03-04T20:24:12.000Z
import hashlib import json import uuid import requests import aiohttp from .exceptions import ApiResponseError from .action import Action class BaseCleverApi(): def __init__(self, access_token, version="5.73"): self.access_token = access_token self.api_version = version self.device_id = uuid.uuid4().hex[:16] self.api_host = "api.vk.com" def fetch(self, method, data=None): if data is None: data = {} return method, data def get_longpoll(self, owner_id, video_id): data = {"owner_id": owner_id, "video_id": video_id} return self.fetch("video.getLongPollServer", data) def get_start_data(self): data = { "build_ver": "503028", "need_leaderboard": "0", "func_v": "6", "lang": "ru", "https": "1" } return self.fetch("execute.getStartData", data) def get_user(self): return self.fetch("users.get") def get_hash(self, additional: list, user_id): ids = "".join(map(str, additional)) + "3aUFMZGRCJ" ids_hash = hashlib.md5(ids.encode()).hexdigest() user = str(int(user_id) ^ 202520) user_hash = hashlib.md5(user.encode()).hexdigest() device = str(self.device_id) + "0MgLscD6R3" device_hash = hashlib.md5(device.encode()).hexdigest() return "{}#{}#{}".format(ids_hash, user_hash, device_hash) def bump(self, lat, lon): data = {"lat": lat, "lon": lon, "prod": 1, "func_v": 1} return self.fetch("execute.bump", data) def send_action(self, *, action_id: Action, user_id): secure_hash = self.get_hash([action_id.value], user_id) data = {"action_id": action_id.value, "hash": secure_hash} return self.fetch("streamQuiz.trackAction", data) def send_answer(self, *, coins_answer: bool, game_id, answer_id, question_id, user_id): secure_hash = self.get_hash([game_id, question_id], user_id) data = { "answer_id": answer_id, "question_id": question_id, "device_id": self.device_id, "hash": secure_hash, } if coins_answer: data["coins_answer"] = True return self.fetch("streamQuiz.sendAnswer", data) def get_gifts(self): return self.fetch("execute.getGifts") def purchase_gift(self, gift_id): data = {"gift_id": gift_id} return self.fetch("streamQuiz.purchaseGift", data) def get_daily_rewards(self): return self.fetch("streamQuiz.getDailyRewardsData") def get_train_questions(self): return self.fetch("streamQuiz.getTrainQuestions") def use_extra_life(self): return self.fetch("streamQuiz.useExtraLife") def get_nearby_users(self, lat, lon): data = {"lat": lat, "lon": lon} return self.fetch("execute.getNearbyUsers", data) def comment(self, *, owner_id, video_id, message): data = { "owner_id": owner_id, "video_id": video_id, "message": message } return self.fetch("execute.createComment", data) class CleverApi(BaseCleverApi): def __init__(self, access_token, version="5.73"): super().__init__(access_token, version=version) self.session = requests.Session() self.session.headers.update({ "User-Agent": "Клевер/2.3.3 (Redmi Note 5; " "Android 28; VK SDK 1.6.8; com.vk.quiz)".encode( "utf-8") }) def fetch(self, method, data=None): if data is None: data = {} data.update({ "access_token": self.access_token, "v": self.api_version, "lang": "ru", "https": 1 }) url = f"https://{self.api_host}/method/{method}" content = self.session.post(url, data=data).json() error = content.get("error") if error is not None: raise ApiResponseError(json.dumps(content)) return content["response"] class AsyncCleverApi(BaseCleverApi): def __init__(self, access_token, connector, version="5.73"): super().__init__(access_token, version=version) self.connector = connector async def fetch(self, method, data=None): if data is None: data = {} data.update({ "access_token": self.access_token, "v": self.api_version, "lang": "ru", "https": 1 }) url = f"https://{self.api_host}/method/{method}" async with self.connector.session.post(url, data=data) as response: content = await response.json() error = content.get("error") if error is not None: raise ApiResponseError(json.dumps(content)) return content["response"]
28.858824
91
0.584183
4,763
0.969666
0
0
0
0
617
0.125611
878
0.178746
055ac96948dda92e22c15b66cc5f914681a2cae3
5,350
py
Python
blagging/views.py
androiddrew/blag-fork
249144c9a017581a6c5e387f5d86f33421d82ae3
[ "MIT" ]
null
null
null
blagging/views.py
androiddrew/blag-fork
249144c9a017581a6c5e387f5d86f33421d82ae3
[ "MIT" ]
7
2017-01-03T15:34:30.000Z
2017-07-13T15:27:08.000Z
blagging/views.py
androiddrew/blag-fork
249144c9a017581a6c5e387f5d86f33421d82ae3
[ "MIT" ]
null
null
null
from datetime import datetime as dt from flask import render_template, redirect, request, url_for, abort from flask_login import login_user, logout_user, login_required, current_user, login_url from . import app, db, login_manager from .models import Post, Tag, Author, tags as Post_Tag from .forms import LoginForm, PostForm # Auth################# @login_manager.user_loader def load_user(userid): return Author.query.get(int(userid)) @app.route('/login', methods=['GET', 'POST']) def login(): form = LoginForm() if form.validate_on_submit(): user = Author.get_by_username(form.username.data) if user is not None and user.check_password(form.password.data): login_user(user, form.remember_me.data) return redirect(request.args.get('next') or url_for('index')) return render_template('login.html', form=form) @app.route('/logout') def logout(): logout_user() return redirect(url_for('index')) # MAIN############## @app.route('/') @app.route('/page/<int:page_num>') def index(page_num=1): query = Post.query.filter(Post.published == True) pagination = query.order_by(Post.date.desc()).paginate(page=page_num, per_page=app.config['POST_PER_PAGE'], error_out=True) return render_template('blog.html', pagination=pagination, authors=Author.query.all()) @app.route('/post/<slug>', methods=['GET', 'POST']) def post(slug): post = Post.query.filter_by(_display_title=slug).filter(Post.published == True).first_or_404() return render_template('post.html', post=post) @app.route('/tag/<name>') @app.route('/tag/<name>/<int:page_num>') def tag(name, page_num=1): tag = Tag.query.filter_by(name=name).first_or_404() query = Post.query.join(Post_Tag).join(Tag).filter(Tag.id == tag.id).filter(Post.published == True) pagination = query.filter(Post.published == True).order_by(Post.date.desc()).paginate(page=page_num, per_page=app.config[ 'POST_PER_PAGE'], error_out=True) return render_template('tag.html', pagination=pagination, tag=tag) @app.route('/author/<display_name>') def user(display_name): user = Author.query.filter_by(display_name=display_name).first_or_404() return render_template('author.html', author=user) @app.route('/add', methods=['GET', 'POST']) @login_required def add(): form = PostForm() if form.validate_on_submit(): title = form.title.data short_desc = form.short_desc.data body = form.body.data tags = form.tags.data published = form.published.data post = Post(author=current_user, title=title, display_title=title, short_desc=short_desc, body=body, tags=tags, published=published) with db.session.no_autoflush: db.session.add(post) db.session.commit() return redirect(url_for('index')) return render_template('post_form.html', form=form) @app.route('/edit') @login_required def edit(): posts = Post.query.filter(Post.author_id == current_user.id).order_by(Post.date.desc()).all() return render_template('edit_list.html', posts=posts) @app.route('/edit/<int:post_id>', methods=['GET', 'POST']) @login_required def edit_post(post_id): post = Post.query.get_or_404(post_id) if current_user != post.author: abort(403) form = PostForm(obj=post, post_id=post.id) if form.validate_on_submit(): form.populate_obj(post) db.session.commit() return redirect(url_for('index')) return render_template('post_form.html', form=form) @app.route('/preview', methods=['GET', 'POST']) @login_required def preview_post(): result = request.get_json(force=True) form_data = dict() form_data['date'] = dt.utcnow() form_data['author'] = current_user for field in result: form_data[field['name']] = field['value'] form_data['tags'] = form_data.get('tags').split(',') return render_template('post_preview.html', post=form_data) # MAIN OTHER########### @app.errorhandler(403) def page_not_found(e): return render_template('403.html'), 403 @app.errorhandler(404) # bluprintname.app_errorhandler will register for the entire app when using blueprints def page_not_found(e): return render_template('404.html'), 404 @app.errorhandler(500) def server_error(e): app.logger.error('Server Error: {}'.format(e)) return render_template('500.html'), 500 @app.context_processor def inject_tags(): """context_processor similar to the app_context_processor for blueprints""" return dict(all_tags=Tag.all, tags_count=Tag.tag_count) @app.context_processor def inject_recent_posts(): """context_processor similar to the app_context_processor for blueprints for recent posts""" return dict(recent_posts=Post.recent) @app.context_processor def inject_auth_url(): return dict(auth_url=login_url) @app.template_filter('strftime') def _jinja2_filter_datetime(date, fmt=None): if fmt is None: fmt = '%Y-%m-%d' return date.strftime(fmt)
33.647799
119
0.65271
0
0
0
0
4,900
0.915888
0
0
837
0.156449
055b1e351a5242b821e047dfcb5c1f7591a3c693
509
py
Python
id.py
txkodo/pyDatapack
f647e0043d09e3d456a8019fb00cb945c0d6b6a7
[ "MIT" ]
null
null
null
id.py
txkodo/pyDatapack
f647e0043d09e3d456a8019fb00cb945c0d6b6a7
[ "MIT" ]
null
null
null
id.py
txkodo/pyDatapack
f647e0043d09e3d456a8019fb00cb945c0d6b6a7
[ "MIT" ]
null
null
null
import string import secrets def gen_objective_id(): return ''.join(secrets.choice(string.ascii_lowercase + string.digits) for _ in range(16)) def gen_scoreholder_id(): return ''.join(secrets.choice(string.ascii_lowercase + string.digits) for _ in range(16)) def gen_function_id(): return ''.join(secrets.choice(string.ascii_lowercase + string.digits) for _ in range(16)) def gen_datapath_id(): return ''.join(secrets.choice(string.ascii_lowercase + string.digits) for _ in range(16))
36.357143
92
0.740668
0
0
0
0
0
0
0
0
8
0.015717
055c22d5891f38a9238c8713208320ff8c57d8d5
185
py
Python
bot/states/states.py
amtp1/ubi-4
bbfa07f0936960058d7f282b1c83be7150494dc1
[ "BSD-3-Clause" ]
null
null
null
bot/states/states.py
amtp1/ubi-4
bbfa07f0936960058d7f282b1c83be7150494dc1
[ "BSD-3-Clause" ]
null
null
null
bot/states/states.py
amtp1/ubi-4
bbfa07f0936960058d7f282b1c83be7150494dc1
[ "BSD-3-Clause" ]
null
null
null
from aiogram.dispatcher.filters.state import StatesGroup, State class Attack(StatesGroup): set_phone_call = State() class Mailing(StatesGroup): set_mailing_text_call = State()
26.428571
63
0.783784
118
0.637838
0
0
0
0
0
0
0
0
055c45d3bc0e2eb761a389c587de2205205755a0
255
py
Python
apps/user/urls.py
dimastbk/x-one_test
aedf4dd4c5299c1f6e6afde2f557bd284e50f6dc
[ "MIT" ]
1
2020-08-10T11:46:17.000Z
2020-08-10T11:46:17.000Z
apps/user/urls.py
dimastbk/x-one_test
aedf4dd4c5299c1f6e6afde2f557bd284e50f6dc
[ "MIT" ]
null
null
null
apps/user/urls.py
dimastbk/x-one_test
aedf4dd4c5299c1f6e6afde2f557bd284e50f6dc
[ "MIT" ]
null
null
null
from rest_framework.routers import DefaultRouter from apps.user.views import AuthViewSet, UserViewSet router = DefaultRouter() router.register("", AuthViewSet, basename="auth") router.register("", UserViewSet, basename="user") urlpatterns = router.urls
28.333333
52
0.796078
0
0
0
0
0
0
0
0
16
0.062745
055c91bef8da3c2b5ab9913ec9ae41927e8fef83
1,514
py
Python
evkit/utils/misc.py
joel99/midlevel-reps
f0b4a4d8ccf09a0488cd18af24723172aff99446
[ "MIT" ]
120
2019-04-22T04:45:28.000Z
2022-03-23T01:53:17.000Z
evkit/utils/misc.py
joel99/midlevel-reps
f0b4a4d8ccf09a0488cd18af24723172aff99446
[ "MIT" ]
14
2019-06-12T08:21:21.000Z
2021-08-25T15:36:58.000Z
evkit/utils/misc.py
joel99/midlevel-reps
f0b4a4d8ccf09a0488cd18af24723172aff99446
[ "MIT" ]
19
2019-06-19T07:00:36.000Z
2022-03-24T07:18:30.000Z
import collections import torch import pprint import string remove_whitespace = str.maketrans('', '', string.whitespace) def cfg_to_md(cfg, uuid): ''' Because tensorboard uses markdown''' return uuid + "\n\n " + pprint.pformat((cfg)).replace("\n", " \n").replace("\n \'", "\n \'") + "" def is_interactive(): try: ip = get_ipython() return ip.has_trait('kernel') except: return False def is_cuda(model): return next(model.parameters()).is_cuda class Bunch(object): def __init__(self, adict): self.__dict__.update(adict) self._keys, self._vals = zip(*adict.items()) self._keys, self._vals = list(self._keys), list(self._vals) def keys(self): return self._keys def vals(self): return self._vals def compute_weight_norm(parameters): ''' no grads! ''' total = 0.0 count = 0 for p in parameters: total += torch.sum(p.data**2) # total += p.numel() count += p.numel() return (total / count) def get_number(name): """ use regex to get the first integer in the name if none exists, return -1 """ try: num = int(re.findall("[0-9]+", name)[0]) except: num = -1 return num def update_dict_deepcopy(d, u): # we need a deep dictionary update for k, v in u.items(): if isinstance(v, collections.Mapping): d[k] = update_dict_deepcopy(d.get(k, {}), v) else: d[k] = v return d
22.939394
110
0.579921
302
0.199472
0
0
0
0
0
0
264
0.174373
055cc455230997c5276c879e8d734a4e3c932b7e
1,652
py
Python
g13gui/g13/manager_tests.py
jtgans/g13gui
aa07ee91b0fd89eb8d9991291e11ca3a97ca11cc
[ "MIT" ]
3
2021-10-16T01:28:24.000Z
2021-12-07T21:49:54.000Z
g13gui/g13/manager_tests.py
jtgans/g13gui
aa07ee91b0fd89eb8d9991291e11ca3a97ca11cc
[ "MIT" ]
12
2021-05-09T16:57:18.000Z
2021-06-16T19:20:57.000Z
g13gui/g13/manager_tests.py
jtgans/g13gui
aa07ee91b0fd89eb8d9991291e11ca3a97ca11cc
[ "MIT" ]
null
null
null
#!/usr/bin/python import unittest import time import usb.util from g13gui.observer.observer import ObserverTestCase from g13gui.model.prefs import Preferences from g13gui.g13.manager import DeviceManager from g13gui.g13.manager import LCD_BUFFER_SIZE class DeviceManagerTests(ObserverTestCase): def setUp(self): prefs = Preferences() self.m = DeviceManager(prefs) self.m.start() while self.m.state != DeviceManager.State.FOUND: time.sleep(1) self.assertEqual(self.m.state, DeviceManager.State.FOUND) def tearDown(self): self.m.shutdown() self.m.join() def testLeds(self): for i in range(0, 17): self.m.setLedsMode(i) def testBacklight(self): for i in range(0, 256): self.m.setBacklightColor(i, 0, 0) for i in range(0, 256): self.m.setBacklightColor(0, i, 0) for i in range(0, 256): self.m.setBacklightColor(0, 0, i) for i in range(0, 256): self.m.setBacklightColor(i, i, 0) for i in range(0, 256): self.m.setBacklightColor(0, i, i) for i in range(0, 256): self.m.setBacklightColor(i, 0, i) for i in range(0, 256): self.m.setBacklightColor(i, i, i) def testLCD(self): whiteBuffer = [0x5A] * LCD_BUFFER_SIZE blackBuffer = [0xA5] * LCD_BUFFER_SIZE for i in range(1, 10): self.m.setLCDBuffer(whiteBuffer) time.sleep(0.5) self.m.setLCDBuffer(blackBuffer) time.sleep(0.5) if __name__ == '__main__': unittest.main()
24.656716
65
0.598668
1,347
0.815375
0
0
0
0
0
0
27
0.016344
055df8a4d5bc728dd507e18c15a01996fcd7eeb9
754
py
Python
mpikat/utils/unix_socket.py
ewanbarr/mpikat
1c9a7376f9e79dfeec5a151d8f483d6fdf3e7cc9
[ "MIT" ]
2
2018-11-12T12:17:27.000Z
2019-02-08T15:44:14.000Z
mpikat/utils/unix_socket.py
ewanbarr/mpikat
1c9a7376f9e79dfeec5a151d8f483d6fdf3e7cc9
[ "MIT" ]
3
2018-08-03T12:05:20.000Z
2018-08-03T12:13:53.000Z
mpikat/utils/unix_socket.py
ewanbarr/mpikat
1c9a7376f9e79dfeec5a151d8f483d6fdf3e7cc9
[ "MIT" ]
4
2019-01-21T16:31:34.000Z
2019-12-03T09:27:15.000Z
import socket import logging log = logging.getLogger('mpikat.utils.unix_socket') class UDSClient(object): def __init__(self, socket_name): self._socket_name = socket_name self._sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) try: self._sock.connect(self._socket_name) except Exception: log.exception("Unable to connect to Unix domain socket {}".format( self._socket_name)) self._sock.settimeout(2) def close(self): self._sock.close() def send(self, message): message += "\r\n" self._sock.sendall(message) def recv(self, maxsize=8192, timeout=2): self._sock.settimeout(2) return self._sock.recv(maxsize)
26.928571
78
0.635279
669
0.887268
0
0
0
0
0
0
76
0.100796
0560a6e08907adcfebf943f18a20892cd59deb17
311
py
Python
Exercises/python/Cod1/cod1.py
Rick222555000/Princess
29c4c22351eeb8f2124ffe63632351fa373668e8
[ "MIT" ]
null
null
null
Exercises/python/Cod1/cod1.py
Rick222555000/Princess
29c4c22351eeb8f2124ffe63632351fa373668e8
[ "MIT" ]
null
null
null
Exercises/python/Cod1/cod1.py
Rick222555000/Princess
29c4c22351eeb8f2124ffe63632351fa373668e8
[ "MIT" ]
null
null
null
#1- Crie um programa que ler 3 números inteiros A, B, C e exibe a mensagem se o resultado R=(A+B)/C é maior que B ou não. A, B, C = int(input()), int(input()), int(input()) R = (A + B)/C def Maior(R, B): if (R > B): return 'R é maior que B.' else: return 'R não é maior que B.' print(Maior(R, B))
25.916667
121
0.59164
0
0
0
0
0
0
0
0
167
0.526814
0560aa251cb9f57348aa3861ec51b4ed5e27e782
1,021
py
Python
mlearn/static/py/funcs.py
achandir/django-machine-learning-beta
9604953addee0c1bea90d308b4248a69d332f5a8
[ "BSD-3-Clause" ]
null
null
null
mlearn/static/py/funcs.py
achandir/django-machine-learning-beta
9604953addee0c1bea90d308b4248a69d332f5a8
[ "BSD-3-Clause" ]
null
null
null
mlearn/static/py/funcs.py
achandir/django-machine-learning-beta
9604953addee0c1bea90d308b4248a69d332f5a8
[ "BSD-3-Clause" ]
null
null
null
from django.core.files.storage import FileSystemStorage from django.conf import settings import os class OverwriteStorage(FileSystemStorage): def get_available_name(self, name, max_length=None): """ Returns a filename that's free on the target storage system, and available for new content to be written to. """ # If the filename already exists, remove it as if it was a true file system if self.exists(name): os.remove(os.path.join(settings.MEDIA_ROOT, name)) return name class StrToList: def strtolist(string): ''' Transforms the string stored by Prepross model to list ''' to_rem = ['[', ']', '[]', ','] string = string.replace(" ", "").split("'") for i in to_rem: try: string = list(filter((i).__ne__, string)) except: pass return string
30.029412
84
0.539667
911
0.892262
0
0
0
0
0
0
320
0.313418
0561ca0895bec1e2984e237afabbb565849b0693
140
py
Python
room/services.py
F4ever/dots
b893802a78d4c8c1054a2c75c80dc1dd27d51eac
[ "Apache-2.0" ]
null
null
null
room/services.py
F4ever/dots
b893802a78d4c8c1054a2c75c80dc1dd27d51eac
[ "Apache-2.0" ]
6
2020-06-05T20:10:02.000Z
2021-09-22T18:09:52.000Z
room/services.py
F4ever/dots
b893802a78d4c8c1054a2c75c80dc1dd27d51eac
[ "Apache-2.0" ]
null
null
null
class RoomCalculationService: def __init__(self, room_id): self.room_id = room_id def calculate_results(self): pass
23.333333
32
0.678571
140
1
0
0
0
0
0
0
0
0
05622f786bb071a97ceb1da54cab05760a5a36c8
624
py
Python
classes.py
thepfanner/CrisisComABM
919ab45ad522ec82806a6dff8ef8807a88e398d0
[ "MIT" ]
1
2017-03-31T01:48:07.000Z
2017-03-31T01:48:07.000Z
classes.py
thepfanner/CrisisComABM
919ab45ad522ec82806a6dff8ef8807a88e398d0
[ "MIT" ]
null
null
null
classes.py
thepfanner/CrisisComABM
919ab45ad522ec82806a6dff8ef8807a88e398d0
[ "MIT" ]
null
null
null
__author__ = 'sp' class Location: def __init__(self, x, y): self.x = x self.y = y class Location_ID: def __init__(self, id, direct, x, y, range): self.id = id self.direct = direct self.x = x self.y = y self.range = range class Products(): def __init__(self, a, b): self.a = a self.b = b class Circle(): def __init__(self, x, y, r): self.x = x self.y = y self.r = r class Network_Range_Circle(Circle): def __init__(self, x=0, y=0, r=0, id=0): Circle.__init__(self, x, y, r) self.id = id
19.5
48
0.517628
595
0.953526
0
0
0
0
0
0
4
0.00641
0564823c9e294186f86aee5daa972c4a2f49f3f0
2,400
py
Python
app.py
saty2146/flask_api_log
760ac901b310649fe5dc98c6a8bdd0fdb5883a82
[ "Apache-2.0" ]
null
null
null
app.py
saty2146/flask_api_log
760ac901b310649fe5dc98c6a8bdd0fdb5883a82
[ "Apache-2.0" ]
null
null
null
app.py
saty2146/flask_api_log
760ac901b310649fe5dc98c6a8bdd0fdb5883a82
[ "Apache-2.0" ]
null
null
null
#!venv/bin/python import os, re, json from flask import Flask, request from flask_restful import Resource, Api from json import dumps from flask_jsonpify import jsonify from flask import render_template from boxes import * app = Flask(__name__) api = Api(app) def get_logs(date, severity, box): DATESTAMP_RE = r'(\w+\s+\d+)' TIMESTAMP_RE = r'(\d+:\d+:\d+)' DEVICE_IP_RE = r'(\S+)' ERROR_SEVERITY_RE = r'<local7.(\S+)>' ERROR_CODE_RE = r':\s+%(\S+):' ERROR_MESSAGE_RE = r'(.*)' COLUMN_DELIMITER_RE = r'\s+' PADDING_RE = r'\s?(?:\d+\s+\w+\s+\d+\s+\d+:\d+:\d+\s+\w+)?' keys = ['datestamp', 'timestamp', 'error_severity', 'device', 'error_code', 'error_message'] result_log = [] datestamp = str(date) year = datestamp[0:4] month = datestamp[4:6] day = datestamp[-2:] filename = datestamp + '.log' ip_address_list = [ip for ip,name in boxes.iteritems() if name == box] ip_address = ip_address_list[0] workdir = '/var/log/cisco/' + year + '/' + month + '/' + ip_address + '/' filepath = workdir + filename SYSLOG_RE = ( DATESTAMP_RE + COLUMN_DELIMITER_RE + TIMESTAMP_RE + COLUMN_DELIMITER_RE + ERROR_SEVERITY_RE + COLUMN_DELIMITER_RE + DEVICE_IP_RE + COLUMN_DELIMITER_RE + PADDING_RE + ERROR_CODE_RE + COLUMN_DELIMITER_RE + ERROR_MESSAGE_RE) if os.path.isfile(filepath): with open(filepath, mode = 'r') as syslog: log_lines = syslog.readlines() for line in reversed(log_lines): matched = re.match(SYSLOG_RE, line) if not matched: continue values = matched.groups() result = dict(zip(keys, values)) result['device'] = boxes[result['device']] if severity == 'all': result_log.append(result) elif result['error_severity'] == severity and result['device'] == box: result_log.append(result) else: pass return result_log class Syslog(Resource): def get(self): date = request.args.get('date') severity = request.args.get('severity') box = request.args.get('box') log = {"data": get_logs(date, severity, box)} #return render_template('logs.html', logs = logs) return jsonify(log) api.add_resource(Syslog, '/syslog') # Route_1 if __name__ == '__main__': app.run(host="217.73.28.16", port=5002)
30.379747
96
0.617917
310
0.129167
0
0
0
0
0
0
416
0.173333
056594b9b59d36dfeef52d15b7455e3dcb8e0bf9
1,362
py
Python
federateme.py
elitest/federateme.py
887d27ddae814d7ed03fd7c993493d927d2492d5
[ "Unlicense" ]
null
null
null
federateme.py
elitest/federateme.py
887d27ddae814d7ed03fd7c993493d927d2492d5
[ "Unlicense" ]
null
null
null
federateme.py
elitest/federateme.py
887d27ddae814d7ed03fd7c993493d927d2492d5
[ "Unlicense" ]
1
2021-04-13T20:02:14.000Z
2021-04-13T20:02:14.000Z
#!/usr/bin/env python3 import boto.utils, json, requests def detect_ec2(): try: r = requests.get('http://169.254.169.254/latest/meta-data/ami-id') print(r) # probably should check for something in the response here. return True except: return False def gen_link(): s = json.dumps({'sessionId': boto.utils.get_instance_metadata()['identity-credentials']['ec2']['security-credentials']['ec2-instance']['AccessKeyId'], 'sessionKey': boto.utils.get_instance_metadata()['identity-credentials']['ec2']['security-credentials']['ec2-instance']['SecretAccessKey'], 'sessionToken': boto.utils.get_instance_metadata()['identity-credentials']['ec2']['security-credentials']['ec2-instance']['Token']}) r = requests.get("https://signin.aws.amazon.com/federation", params={'Action': 'getSigninToken', 'SessionDuration': 7200, 'Session': s}) t = r.json() rs = requests.Request('GET', 'https://signin.aws.amazon.com/federation', params={'Action': 'login', 'Issuer': 'Internet Widgets Pty.', 'Destination': 'https://console.aws.amazon.com/', 'SigninToken': t['SigninToken']}) l = rs.prepare() return l.url if detect_ec2(): print(gen_link()) else: print("This is not an AWS instance. Please run on an AWS EC2 instance.")
41.272727
175
0.642438
0
0
0
0
0
0
0
0
715
0.524963
0565ccb5f3f8b36de113f3a2bcbbc32675fef341
58,839
py
Python
pysnmp-with-texts/FORCE10-MONITORING-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
8
2019-05-09T17:04:00.000Z
2021-06-09T06:50:51.000Z
pysnmp-with-texts/FORCE10-MONITORING-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
4
2019-05-31T16:42:59.000Z
2020-01-31T21:57:17.000Z
pysnmp-with-texts/FORCE10-MONITORING-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
10
2019-04-30T05:51:36.000Z
2022-02-16T03:33:41.000Z
# # PySNMP MIB module FORCE10-MONITORING-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/FORCE10-MONITORING-MIB # Produced by pysmi-0.3.4 at Wed May 1 13:14:24 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # ObjectIdentifier, OctetString, Integer = mibBuilder.importSymbols("ASN1", "ObjectIdentifier", "OctetString", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueRangeConstraint, ConstraintsIntersection, ConstraintsUnion, ValueSizeConstraint, SingleValueConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueRangeConstraint", "ConstraintsIntersection", "ConstraintsUnion", "ValueSizeConstraint", "SingleValueConstraint") f10Mgmt, = mibBuilder.importSymbols("FORCE10-SMI", "f10Mgmt") F10VlanID, F10CycloneVersion, F10ProcessorModuleType, F10PortPipeID, F10QueueID, F10SlotID = mibBuilder.importSymbols("FORCE10-TC", "F10VlanID", "F10CycloneVersion", "F10ProcessorModuleType", "F10PortPipeID", "F10QueueID", "F10SlotID") ifIndex, = mibBuilder.importSymbols("IF-MIB", "ifIndex") ObjectGroup, ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ObjectGroup", "ModuleCompliance", "NotificationGroup") Gauge32, Counter32, Integer32, iso, MibScalar, MibTable, MibTableRow, MibTableColumn, ModuleIdentity, Bits, IpAddress, TimeTicks, Unsigned32, MibIdentifier, ObjectIdentity, NotificationType, Counter64 = mibBuilder.importSymbols("SNMPv2-SMI", "Gauge32", "Counter32", "Integer32", "iso", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "ModuleIdentity", "Bits", "IpAddress", "TimeTicks", "Unsigned32", "MibIdentifier", "ObjectIdentity", "NotificationType", "Counter64") DisplayString, TextualConvention, MacAddress, TruthValue = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention", "MacAddress", "TruthValue") f10MonitoringMib = ModuleIdentity((1, 3, 6, 1, 4, 1, 6027, 3, 3)) f10MonitoringMib.setRevisions(('2008-12-18 12:00', '1906-01-20 00:00', '2000-11-02 10:30',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: f10MonitoringMib.setRevisionsDescriptions(('Force10 Monitoring MIB version 1.3 Added CPU Ingress Queue Unicast Statistics table. ', 'Force10 Monitoring MIB version 1.2 Added IP and ARP statistic objects that are not available in RFC1213. ', 'Force10 Monitoring MIB version 1.1',)) if mibBuilder.loadTexts: f10MonitoringMib.setLastUpdated('200812181200Z') if mibBuilder.loadTexts: f10MonitoringMib.setOrganization('Force10 Networks, Inc.') if mibBuilder.loadTexts: f10MonitoringMib.setContactInfo('Force10 Networks, Inc 1440 McCarthy Blvd Milpitas, CA 95035 (408) 571-3500 [email protected] http://www.force10networks.com') if mibBuilder.loadTexts: f10MonitoringMib.setDescription('Force10 Monitoring MIB provides statistics and accounting for various Force10 products. ') f10MonGroup = MibIdentifier((1, 3, 6, 1, 4, 1, 6027, 3, 3, 1)) f10MonQueue = MibIdentifier((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2)) f10MonMac = MibIdentifier((1, 3, 6, 1, 4, 1, 6027, 3, 3, 3)) f10MonIfQueue = MibIdentifier((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4)) f10NetworkStat = MibIdentifier((1, 3, 6, 1, 4, 1, 6027, 3, 3, 5)) f10IpStatistic = MibIdentifier((1, 3, 6, 1, 4, 1, 6027, 3, 3, 5, 1)) f10ArpStatistic = MibIdentifier((1, 3, 6, 1, 4, 1, 6027, 3, 3, 5, 2)) f10MonMibVersion = MibScalar((1, 3, 6, 1, 4, 1, 6027, 3, 3, 1, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("version1", 1), ("version1dot1", 2), ("version1dot2", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: f10MonMibVersion.setStatus('current') if mibBuilder.loadTexts: f10MonMibVersion.setDescription(' version1(1) - initial version, define QOS Queue Statistics table. version1dot1(2) - support MAC Accounting (f10MonMac). version1dot2(3) - support Interface Queue Statistics Tables (f10MonIfQueue). ') f10MonQueueGroup = MibIdentifier((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 1)) f10MonMaxQueue = MibScalar((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10MonMaxQueue.setStatus('current') if mibBuilder.loadTexts: f10MonMaxQueue.setDescription('The maximum number of Force10 QOS queue supported by Force10 Interfaces. ') f10InQueueStatisticsTable = MibTable((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 2), ) if mibBuilder.loadTexts: f10InQueueStatisticsTable.setStatus('current') if mibBuilder.loadTexts: f10InQueueStatisticsTable.setDescription('The Force10 QOS Input Queue Statistics Table. This table provides Input Queue statistics for Force10 Interfaces. ') f10InQueueStatisticsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 2, 1), ).setIndexNames((0, "IF-MIB", "ifIndex"), (0, "FORCE10-MONITORING-MIB", "f10InQueueId")) if mibBuilder.loadTexts: f10InQueueStatisticsEntry.setStatus('current') if mibBuilder.loadTexts: f10InQueueStatisticsEntry.setDescription('An entry in the Force10 QOS Input Queue table. The Input Queue Statistics Table is indexed by the Interface and the Queue ID. The Interface index should be an valid ifIndex as defined in the RFC1213 MIB II Interface Table and the Queue ID should be a valid Force10 Queue ID. ') f10InQueueId = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 2, 1, 1), F10QueueID()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10InQueueId.setStatus('current') if mibBuilder.loadTexts: f10InQueueId.setDescription('This is the second index of this table, it must be a valid Force10 QOS Queue ID. ') f10InQueueDropPackets = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 2, 1, 2), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10InQueueDropPackets.setStatus('current') if mibBuilder.loadTexts: f10InQueueDropPackets.setDescription(' ') f10InQueueBytes = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 2, 1, 3), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10InQueueBytes.setStatus('current') if mibBuilder.loadTexts: f10InQueueBytes.setDescription(' ') f10InQueueMatchPackets = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 2, 1, 4), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10InQueueMatchPackets.setStatus('current') if mibBuilder.loadTexts: f10InQueueMatchPackets.setDescription(' ') f10InQueueMatchBytes = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 2, 1, 5), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10InQueueMatchBytes.setStatus('current') if mibBuilder.loadTexts: f10InQueueMatchBytes.setDescription(' ') f10InQueueMatchBps = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 2, 1, 6), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10InQueueMatchBps.setStatus('current') if mibBuilder.loadTexts: f10InQueueMatchBps.setDescription(' ') f10InQueueCycloneVersion = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 2, 1, 7), F10CycloneVersion()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10InQueueCycloneVersion.setStatus('current') if mibBuilder.loadTexts: f10InQueueCycloneVersion.setDescription('The linecard Cyclone hardware version. ') f10InQueueBytesCount = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 2, 1, 8), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10InQueueBytesCount.setStatus('current') if mibBuilder.loadTexts: f10InQueueBytesCount.setDescription('The cumulative number of bytes data passing through this queue. This object is available on Cyclone version 2.0 (C2T2) hardware only. ') f10InQueuePktsCount = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 2, 1, 9), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10InQueuePktsCount.setStatus('current') if mibBuilder.loadTexts: f10InQueuePktsCount.setDescription('The cumulative number of packets passing through this queue. This object is available on Cyclone version 2.0 (C2T2) hardware only. ') f10OutQueueStatisticsTable = MibTable((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 3), ) if mibBuilder.loadTexts: f10OutQueueStatisticsTable.setStatus('current') if mibBuilder.loadTexts: f10OutQueueStatisticsTable.setDescription('The Force10 QOS Output Queue Statistics Table. This table provides Output Queue statistics for Force10 Interfaces. ') f10OutQueueStatisticsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 3, 1), ).setIndexNames((0, "IF-MIB", "ifIndex"), (0, "FORCE10-MONITORING-MIB", "f10OutQueueId")) if mibBuilder.loadTexts: f10OutQueueStatisticsEntry.setStatus('current') if mibBuilder.loadTexts: f10OutQueueStatisticsEntry.setDescription('An entry in the Output Queue table. The Output Queue Statistics Table is indexed by the Interface and the Queue ID. The Interface index should be an valid ifIndex as defined in the RFC1213 MIB II Interface Table and the the Queue ID should be a valid Force10 Queue ID. ') f10OutQueueId = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 3, 1, 1), F10QueueID()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10OutQueueId.setStatus('current') if mibBuilder.loadTexts: f10OutQueueId.setDescription('This is the second index of this table, it must be a valid Force10 QOS Queue ID. ') f10OutQueuePackets = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 3, 1, 2), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10OutQueuePackets.setStatus('current') if mibBuilder.loadTexts: f10OutQueuePackets.setDescription(' ') f10OutQueueBytes = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 3, 1, 3), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10OutQueueBytes.setStatus('current') if mibBuilder.loadTexts: f10OutQueueBytes.setDescription('The number of bytes in the queue. This object is available on Cyclone version 1.5 (CjTj) hardware only. ') f10OutQueueBps = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 3, 1, 4), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10OutQueueBps.setStatus('current') if mibBuilder.loadTexts: f10OutQueueBps.setDescription(' ') f10OutQueueCycloneVersion = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 3, 1, 5), F10CycloneVersion()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10OutQueueCycloneVersion.setStatus('current') if mibBuilder.loadTexts: f10OutQueueCycloneVersion.setDescription('The linecard Cyclone hardware version. ') f10OutQueueBytesCount = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 3, 1, 6), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10OutQueueBytesCount.setStatus('current') if mibBuilder.loadTexts: f10OutQueueBytesCount.setDescription('The cumulative number of bytes data passing through this queue. This object is available on Cyclone version 2.0 (C2T2) hardware only. ') f10WredStatisticsTable = MibTable((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 4), ) if mibBuilder.loadTexts: f10WredStatisticsTable.setStatus('current') if mibBuilder.loadTexts: f10WredStatisticsTable.setDescription('QOS WRED Statistics Table This table provides QOS WRED statistics for the Force10 Interfaces. ') f10WredStatisticsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 4, 1), ).setIndexNames((0, "IF-MIB", "ifIndex"), (0, "FORCE10-MONITORING-MIB", "f10WredQueueId")) if mibBuilder.loadTexts: f10WredStatisticsEntry.setStatus('current') if mibBuilder.loadTexts: f10WredStatisticsEntry.setDescription('An entry in the WRED Statistics table. The WRED Statistics Table is indexed by the Interface and the Queue ID. The Interface index should be an valid ifIndex as defined in the RFC1213 MIB II Interface Table and the Queue ID should be a valid Force10 Queue ID. ') f10WredQueueId = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 4, 1, 1), F10QueueID()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10WredQueueId.setStatus('current') if mibBuilder.loadTexts: f10WredQueueId.setDescription('This is the second index of this table, it must be a valid Force10 QOS Queue ID. ') f10WredGreenName = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 4, 1, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10WredGreenName.setStatus('current') if mibBuilder.loadTexts: f10WredGreenName.setDescription(' ') f10WredGreenThresholdLow = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 4, 1, 3), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10WredGreenThresholdLow.setStatus('current') if mibBuilder.loadTexts: f10WredGreenThresholdLow.setDescription(' ') f10WredGreenThresholdHigh = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 4, 1, 4), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10WredGreenThresholdHigh.setStatus('current') if mibBuilder.loadTexts: f10WredGreenThresholdHigh.setDescription(' ') f10WredGreenDropPackets = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 4, 1, 5), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10WredGreenDropPackets.setStatus('current') if mibBuilder.loadTexts: f10WredGreenDropPackets.setDescription(' ') f10WredGreenReserve1 = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 4, 1, 6), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10WredGreenReserve1.setStatus('current') if mibBuilder.loadTexts: f10WredGreenReserve1.setDescription(' ') f10WredGreenReserve2 = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 4, 1, 7), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10WredGreenReserve2.setStatus('current') if mibBuilder.loadTexts: f10WredGreenReserve2.setDescription(' ') f10WredYellowName = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 4, 1, 8), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10WredYellowName.setStatus('current') if mibBuilder.loadTexts: f10WredYellowName.setDescription(' ') f10WredYellowThresholdLow = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 4, 1, 9), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10WredYellowThresholdLow.setStatus('current') if mibBuilder.loadTexts: f10WredYellowThresholdLow.setDescription(' ') f10WredYellowThresholdHigh = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 4, 1, 10), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10WredYellowThresholdHigh.setStatus('current') if mibBuilder.loadTexts: f10WredYellowThresholdHigh.setDescription(' ') f10WredYellowDropPackets = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 4, 1, 11), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10WredYellowDropPackets.setStatus('current') if mibBuilder.loadTexts: f10WredYellowDropPackets.setDescription(' ') f10WredYellowReserve1 = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 4, 1, 12), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10WredYellowReserve1.setStatus('current') if mibBuilder.loadTexts: f10WredYellowReserve1.setDescription(' ') f10WredYellowReserve2 = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 4, 1, 13), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10WredYellowReserve2.setStatus('current') if mibBuilder.loadTexts: f10WredYellowReserve2.setDescription(' ') f10WredRedName = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 4, 1, 14), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10WredRedName.setStatus('current') if mibBuilder.loadTexts: f10WredRedName.setDescription(' ') f10WredRedThresholdLow = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 4, 1, 15), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10WredRedThresholdLow.setStatus('current') if mibBuilder.loadTexts: f10WredRedThresholdLow.setDescription(' ') f10WredRedThresholdHigh = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 4, 1, 16), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10WredRedThresholdHigh.setStatus('current') if mibBuilder.loadTexts: f10WredRedThresholdHigh.setDescription(' ') f10WredRedDropPackets = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 4, 1, 17), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10WredRedDropPackets.setStatus('current') if mibBuilder.loadTexts: f10WredRedDropPackets.setDescription(' ') f10WredRedReserve1 = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 4, 1, 18), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10WredRedReserve1.setStatus('current') if mibBuilder.loadTexts: f10WredRedReserve1.setDescription(' ') f10WredRedReserve2 = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 2, 4, 1, 19), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10WredRedReserve2.setStatus('current') if mibBuilder.loadTexts: f10WredRedReserve2.setDescription(' ') f10MacGroup = MibIdentifier((1, 3, 6, 1, 4, 1, 6027, 3, 3, 3, 1)) f10MacAccounting = MibIdentifier((1, 3, 6, 1, 4, 1, 6027, 3, 3, 3, 2)) f10MacAccountingDestTable = MibTable((1, 3, 6, 1, 4, 1, 6027, 3, 3, 3, 2, 1), ) if mibBuilder.loadTexts: f10MacAccountingDestTable.setStatus('current') if mibBuilder.loadTexts: f10MacAccountingDestTable.setDescription('The MAC Accounting Destination Table. Each entry in the table provides the MAC accounting statistics from a specific Interface, VLAN ID, and the desired destination MAC Address. ') f10MacAccountingDestEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6027, 3, 3, 3, 2, 1, 1), ).setIndexNames((0, "FORCE10-MONITORING-MIB", "f10MacAccInIfIndex"), (0, "FORCE10-MONITORING-MIB", "f10MacAccVlan"), (0, "FORCE10-MONITORING-MIB", "f10MacAccMacAddr")) if mibBuilder.loadTexts: f10MacAccountingDestEntry.setStatus('current') if mibBuilder.loadTexts: f10MacAccountingDestEntry.setDescription('An entry in the MAC Accounting Destination Table. The MAC Accounting Destination table is indexed by the input Interface, VLAN ID, and the destination MAC Address. ') f10MacAccInIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 3, 2, 1, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10MacAccInIfIndex.setStatus('current') if mibBuilder.loadTexts: f10MacAccInIfIndex.setDescription('The input Interface of this entry of the table. The value should be a valid ifIndex in the MIB II Interface Table. ') f10MacAccVlan = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 3, 2, 1, 1, 2), F10VlanID()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10MacAccVlan.setStatus('current') if mibBuilder.loadTexts: f10MacAccVlan.setDescription('The VLAN ID. ') f10MacAccMacAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 3, 2, 1, 1, 3), MacAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10MacAccMacAddr.setStatus('current') if mibBuilder.loadTexts: f10MacAccMacAddr.setDescription("The MAC Address that identifies this entry of the table. This is the destination MAC Address of the packets that's going through the Interface identified by f10MacAccInIfIndex. ") f10MacAccOutIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 3, 2, 1, 1, 4), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10MacAccOutIfIndex.setStatus('current') if mibBuilder.loadTexts: f10MacAccOutIfIndex.setDescription('The output Interface of this entry of the table. The value should be a valid ifIndex in the MIB II Interface Table. ') f10MacAccPackets = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 3, 2, 1, 1, 5), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10MacAccPackets.setStatus('current') if mibBuilder.loadTexts: f10MacAccPackets.setDescription('The number of packets going through this entry of the the table, identified by the Interface/MAC/VLAN. ') f10MacAccBytes = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 3, 2, 1, 1, 6), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10MacAccBytes.setStatus('current') if mibBuilder.loadTexts: f10MacAccBytes.setDescription('The number of bytes traffic going through this entry of the table, identified by the Interface/MAC/VLAN. ') f10MonIfQueueGroup = MibIdentifier((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 1)) f10IngQueueUnicastStatTable = MibTable((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 2), ) if mibBuilder.loadTexts: f10IngQueueUnicastStatTable.setStatus('current') if mibBuilder.loadTexts: f10IngQueueUnicastStatTable.setDescription('The Ingress Queue Unicast Statistics Table. This table provides Queue statistics for Ingress Unicast packets between Force10 linecards. ') f10IngQueueUnicastStatEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 2, 1), ).setIndexNames((0, "FORCE10-MONITORING-MIB", "f10IngUnicastSrcCard"), (0, "FORCE10-MONITORING-MIB", "f10IngUnicastDestCard"), (0, "FORCE10-MONITORING-MIB", "f10IngUnicastSrcPortPipe"), (0, "FORCE10-MONITORING-MIB", "f10IngUnicastDestPortPipe"), (0, "FORCE10-MONITORING-MIB", "f10IngUnicastQueueId")) if mibBuilder.loadTexts: f10IngQueueUnicastStatEntry.setStatus('current') if mibBuilder.loadTexts: f10IngQueueUnicastStatEntry.setDescription('An entry in the Ingress Queue Unicast Statistics table. The Ingress Queue Unicast Statistics Table is indexed by the source and destination linecard/portpipe and Queue ID. ') f10IngUnicastSrcCard = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 2, 1, 1), F10SlotID()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10IngUnicastSrcCard.setStatus('current') if mibBuilder.loadTexts: f10IngUnicastSrcCard.setDescription('This is the source linecard number. This is the first index of this table entry. ') f10IngUnicastDestCard = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 2, 1, 2), F10SlotID()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10IngUnicastDestCard.setStatus('current') if mibBuilder.loadTexts: f10IngUnicastDestCard.setDescription('This is the destination linecard number. This is the 3rd index of this table entry. ') f10IngUnicastSrcPortPipe = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 2, 1, 3), F10PortPipeID()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10IngUnicastSrcPortPipe.setStatus('current') if mibBuilder.loadTexts: f10IngUnicastSrcPortPipe.setDescription('This is the Force10 Cyclone PortPipe number of the source linecard. This is the 2nd index of this table entry. ') f10IngUnicastDestPortPipe = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 2, 1, 4), F10PortPipeID()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10IngUnicastDestPortPipe.setStatus('current') if mibBuilder.loadTexts: f10IngUnicastDestPortPipe.setDescription('This is the Force10 Cyclone PortPipe number of the destination linecard. This is the 4th index of this table entry. ') f10IngUnicastQueueId = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 2, 1, 5), F10QueueID()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10IngUnicastQueueId.setStatus('current') if mibBuilder.loadTexts: f10IngUnicastQueueId.setDescription('This is the Queue ID of this entry. This is the 5th index of this table entry. ') f10IngUnicastCycloneVersion = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 2, 1, 6), F10CycloneVersion()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10IngUnicastCycloneVersion.setStatus('current') if mibBuilder.loadTexts: f10IngUnicastCycloneVersion.setDescription('The linecard Cyclone hardware version. ') f10IngUnicastBytes = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 2, 1, 7), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10IngUnicastBytes.setStatus('current') if mibBuilder.loadTexts: f10IngUnicastBytes.setDescription('The number of bytes in the queue. This object is available on Cyclone version 1.5 (CjTj) hardware only. ') f10IngUnicastBytesCount = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 2, 1, 8), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10IngUnicastBytesCount.setStatus('current') if mibBuilder.loadTexts: f10IngUnicastBytesCount.setDescription('The cumulative number of bytes data passing through this queue. This object is available on Cyclone version 2.0 (C2T2) and Cyclone version 3.0 (X3) hardwares only. ') f10IngUnicastPacketCount = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 2, 1, 9), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10IngUnicastPacketCount.setStatus('current') if mibBuilder.loadTexts: f10IngUnicastPacketCount.setDescription('The cumulative number of packets passing through this queue. This object is available on Cyclone version 2.0 (C2T2) and Cyclone version 3.0 (X3) hardwares only. ') f10IngUnicastGreenMin = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 2, 1, 10), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10IngUnicastGreenMin.setStatus('current') if mibBuilder.loadTexts: f10IngUnicastGreenMin.setDescription('The min threshold for Green packets. The min threshold identifies the queue size percentage at which the WRED dropping starts to be applied with a given configured probability. ') f10IngUnicastGreenMax = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 2, 1, 11), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10IngUnicastGreenMax.setStatus('current') if mibBuilder.loadTexts: f10IngUnicastGreenMax.setDescription('The max threshold for Green packets. The max threshold identifies the queue size level at which tail drops occurs. ') f10IngUnicastGreenDrop = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 2, 1, 12), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10IngUnicastGreenDrop.setStatus('current') if mibBuilder.loadTexts: f10IngUnicastGreenDrop.setDescription('The number of Green packets being dropped in this queue. ') f10IngUnicastYellowMin = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 2, 1, 13), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10IngUnicastYellowMin.setStatus('current') if mibBuilder.loadTexts: f10IngUnicastYellowMin.setDescription('The min threshold for Yellow packets. The min threshold identifies the queue size percentage at which the WRED dropping starts to be applied with a given configured probability. ') f10IngUnicastYellowMax = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 2, 1, 14), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10IngUnicastYellowMax.setStatus('current') if mibBuilder.loadTexts: f10IngUnicastYellowMax.setDescription('The max threshold for Yellow packets. The max threshold identifies the queue size level at which tail drops occurs. ') f10IngUnicastYellowDrop = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 2, 1, 15), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10IngUnicastYellowDrop.setStatus('current') if mibBuilder.loadTexts: f10IngUnicastYellowDrop.setDescription('The number of Yellow packets being dropped in this queue. ') f10IngUnicastRedDrop = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 2, 1, 16), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10IngUnicastRedDrop.setStatus('current') if mibBuilder.loadTexts: f10IngUnicastRedDrop.setDescription('The number of Red packets being dropped in this queue. ') f10IngQueueMulticastStatTable = MibTable((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 3), ) if mibBuilder.loadTexts: f10IngQueueMulticastStatTable.setStatus('current') if mibBuilder.loadTexts: f10IngQueueMulticastStatTable.setDescription('The Ingress Queue Multicast Statistics Table. This table provides Queue statistics for Ingress Multicast packets at Force10 linecards. ') f10IngQueueMulticastStatEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 3, 1), ).setIndexNames((0, "FORCE10-MONITORING-MIB", "f10IngMulticastSrcCard"), (0, "FORCE10-MONITORING-MIB", "f10IngMulticastSrcPortPipe"), (0, "FORCE10-MONITORING-MIB", "f10IngMulticastQueueId")) if mibBuilder.loadTexts: f10IngQueueMulticastStatEntry.setStatus('current') if mibBuilder.loadTexts: f10IngQueueMulticastStatEntry.setDescription('An entry in the Ingress Queue Multicast Statistics table. The Ingress Queue Multicast Statistics Table is indexed by the source linecard/portpipe and Queue ID. ') f10IngMulticastSrcCard = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 3, 1, 1), F10SlotID()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10IngMulticastSrcCard.setStatus('current') if mibBuilder.loadTexts: f10IngMulticastSrcCard.setDescription('This is the source linecard number. This is the first index of this table entry. ') f10IngMulticastSrcPortPipe = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 3, 1, 2), F10PortPipeID()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10IngMulticastSrcPortPipe.setStatus('current') if mibBuilder.loadTexts: f10IngMulticastSrcPortPipe.setDescription('This is the Force10 Cyclone PortPipe number of the source linecard. This is the 2nd index of this table entry. ') f10IngMulticastQueueId = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 3, 1, 3), F10QueueID()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10IngMulticastQueueId.setStatus('current') if mibBuilder.loadTexts: f10IngMulticastQueueId.setDescription('This is the Queue ID of this entry. This is the 3rd index of this table entry. ') f10IngMulticastCycloneVersion = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 3, 1, 4), F10CycloneVersion()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10IngMulticastCycloneVersion.setStatus('current') if mibBuilder.loadTexts: f10IngMulticastCycloneVersion.setDescription('The linecard Cyclone hardware version. ') f10IngMulticastBytes = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 3, 1, 5), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10IngMulticastBytes.setStatus('current') if mibBuilder.loadTexts: f10IngMulticastBytes.setDescription('The number of bytes in the queue. This object is available on Cyclone version 1.5 (CjTj) hardware only. ') f10IngMulticastBytesCount = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 3, 1, 6), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10IngMulticastBytesCount.setStatus('current') if mibBuilder.loadTexts: f10IngMulticastBytesCount.setDescription('The cumulative number of bytes data passing through this queue. This object is available on Cyclone version 2.0 (C2T2) and Cyclone version 3.0 (X3) hardwares only. ') f10IngMulticastPacketCount = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 3, 1, 7), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10IngMulticastPacketCount.setStatus('current') if mibBuilder.loadTexts: f10IngMulticastPacketCount.setDescription('The cumulative number of packets passing through this queue. This object is available on Cyclone version 2.0 (C2T2) and Cyclone version 3.0 (X3) hardwares only. ') f10IngMulticastGreenMin = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 3, 1, 8), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10IngMulticastGreenMin.setStatus('current') if mibBuilder.loadTexts: f10IngMulticastGreenMin.setDescription('The min threshold for Green packets. The min threshold identifies the queue size percentage at which the WRED dropping starts to be applied with a given configured probability. ') f10IngMulticastGreenMax = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 3, 1, 9), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10IngMulticastGreenMax.setStatus('current') if mibBuilder.loadTexts: f10IngMulticastGreenMax.setDescription('The max threshold for Green packets. The max threshold identifies the queue size level at which tail drops occurs. ') f10IngMulticastGreenDrop = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 3, 1, 10), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10IngMulticastGreenDrop.setStatus('current') if mibBuilder.loadTexts: f10IngMulticastGreenDrop.setDescription('The number of Green packets being dropped in this queue. ') f10IngMulticastYellowMin = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 3, 1, 11), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10IngMulticastYellowMin.setStatus('current') if mibBuilder.loadTexts: f10IngMulticastYellowMin.setDescription('The min threshold for Yellow packets. The min threshold identifies the queue size percentage at which the WRED dropping starts to be applied with a given configured probability. ') f10IngMulticastYellowMax = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 3, 1, 12), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10IngMulticastYellowMax.setStatus('current') if mibBuilder.loadTexts: f10IngMulticastYellowMax.setDescription('The max threshold for Yellow packets. The max threshold identifies the queue size level at which tail drops occurs. ') f10IngMulticastYellowDrop = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 3, 1, 13), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10IngMulticastYellowDrop.setStatus('current') if mibBuilder.loadTexts: f10IngMulticastYellowDrop.setDescription('The number of Yellow packets being dropped in this queue. ') f10IngMulticastRedDrop = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 3, 1, 14), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10IngMulticastRedDrop.setStatus('current') if mibBuilder.loadTexts: f10IngMulticastRedDrop.setDescription('The number of Red packets being dropped in this queue. ') f10EgQueueUnicastStatTable = MibTable((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 4), ) if mibBuilder.loadTexts: f10EgQueueUnicastStatTable.setStatus('current') if mibBuilder.loadTexts: f10EgQueueUnicastStatTable.setDescription('The Egress Queue Unicast Statistics Table. This table provides Queue statistics for Egress Unicast packets at Force10 Interface. ') f10EgQueueUnicastStatEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 4, 1), ).setIndexNames((0, "IF-MIB", "ifIndex"), (0, "FORCE10-MONITORING-MIB", "f10EgUnicastQueueId")) if mibBuilder.loadTexts: f10EgQueueUnicastStatEntry.setStatus('current') if mibBuilder.loadTexts: f10EgQueueUnicastStatEntry.setDescription('An entry in the Egress Queue Unicast Statistics table. The Egress Queue Unicast Statistics Table is indexed by the ifIndex and Queue ID. The IfIndex should be an valid Interface Index as defined in the RFC1213 MIB II Interface Table. ') f10EgUnicastQueueId = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 4, 1, 1), F10QueueID()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10EgUnicastQueueId.setStatus('current') if mibBuilder.loadTexts: f10EgUnicastQueueId.setDescription('This is the Queue ID of this entry. This is the 2nd index of this table entry. ') f10EgUnicastCycloneVersion = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 4, 1, 2), F10CycloneVersion()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10EgUnicastCycloneVersion.setStatus('current') if mibBuilder.loadTexts: f10EgUnicastCycloneVersion.setDescription('The linecard Cyclone hardware version. ') f10EgUnicastBytes = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 4, 1, 3), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10EgUnicastBytes.setStatus('current') if mibBuilder.loadTexts: f10EgUnicastBytes.setDescription('The number of bytes in the queue. This object is available on Cyclone version 1.5 (CjTj) hardware only. ') f10EgUnicastBytesCount = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 4, 1, 4), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10EgUnicastBytesCount.setStatus('current') if mibBuilder.loadTexts: f10EgUnicastBytesCount.setDescription('The cumulative number of bytes data passing through this queue. This object is available on Cyclone version 2.0 (C2T2) and Cyclone version 3.0 (X3) hardwares only. ') f10EgUnicastPacketCount = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 4, 1, 5), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10EgUnicastPacketCount.setStatus('current') if mibBuilder.loadTexts: f10EgUnicastPacketCount.setDescription('The cumulative number of packets passing through this queue. This object is available on Cyclone version 2.0 (C2T2) and Cyclone version 3.0 (X3) hardwares only. ') f10EgUnicastGreenMin = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 4, 1, 6), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10EgUnicastGreenMin.setStatus('current') if mibBuilder.loadTexts: f10EgUnicastGreenMin.setDescription('The min threshold for Green packets. The min threshold identifies the queue size percentage at which the WRED dropping starts to be applied with a given configured probability. ') f10EgUnicastGreenMax = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 4, 1, 7), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10EgUnicastGreenMax.setStatus('current') if mibBuilder.loadTexts: f10EgUnicastGreenMax.setDescription('The max threshold for Green packets. The max threshold identifies the queue size level at which tail drops occurs. ') f10EgUnicastGreenDrop = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 4, 1, 8), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10EgUnicastGreenDrop.setStatus('current') if mibBuilder.loadTexts: f10EgUnicastGreenDrop.setDescription('The number of Green packets being dropped in this queue. ') f10EgUnicastYellowMin = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 4, 1, 9), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10EgUnicastYellowMin.setStatus('current') if mibBuilder.loadTexts: f10EgUnicastYellowMin.setDescription('The min threshold for Yellow packets. The min threshold identifies the queue size percentage at which the WRED dropping starts to be applied with a given configured probability. ') f10EgUnicastYellowMax = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 4, 1, 10), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10EgUnicastYellowMax.setStatus('current') if mibBuilder.loadTexts: f10EgUnicastYellowMax.setDescription('The max threshold for Yellow packets. The max threshold identifies the queue size level at which tail drops occurs. ') f10EgUnicastYellowDrop = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 4, 1, 11), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10EgUnicastYellowDrop.setStatus('current') if mibBuilder.loadTexts: f10EgUnicastYellowDrop.setDescription('The number of Yellow packets being dropped in this queue. ') f10EgUnicastRedDrop = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 4, 1, 12), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10EgUnicastRedDrop.setStatus('current') if mibBuilder.loadTexts: f10EgUnicastRedDrop.setDescription('The number of Red packets being dropped in this queue. ') f10EgQueueMulticastStatTable = MibTable((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 5), ) if mibBuilder.loadTexts: f10EgQueueMulticastStatTable.setStatus('current') if mibBuilder.loadTexts: f10EgQueueMulticastStatTable.setDescription('The Egress Queue Multicast Statistics Table. This table provides Queue statistics for Egress Multicast packets at Force10 Interface. ') f10EgQueueMulticastStatEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 5, 1), ).setIndexNames((0, "IF-MIB", "ifIndex"), (0, "FORCE10-MONITORING-MIB", "f10EgMulticastQueueId")) if mibBuilder.loadTexts: f10EgQueueMulticastStatEntry.setStatus('current') if mibBuilder.loadTexts: f10EgQueueMulticastStatEntry.setDescription('An entry in the Egress Queue Multicast Statistics table. The Egress Queue Multicast Statistics Table is indexed by the ifIndex and Queue ID. The IfIndex should be an valid Interface Index as defined in the RFC1213 MIB II Interface Table. ') f10EgMulticastQueueId = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 5, 1, 1), F10QueueID()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10EgMulticastQueueId.setStatus('current') if mibBuilder.loadTexts: f10EgMulticastQueueId.setDescription('This is the Queue ID of this entry. This is the 2nd index of this table entry. ') f10EgMulticastCycloneVersion = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 5, 1, 2), F10CycloneVersion()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10EgMulticastCycloneVersion.setStatus('current') if mibBuilder.loadTexts: f10EgMulticastCycloneVersion.setDescription('The linecard Cyclone hardware version. ') f10EgMulticastBytes = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 5, 1, 3), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10EgMulticastBytes.setStatus('current') if mibBuilder.loadTexts: f10EgMulticastBytes.setDescription('The number of bytes in the queue. This object is available on Cyclone version 1.5 (CjTj) hardware only. ') f10EgMulticastBytesCount = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 5, 1, 4), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10EgMulticastBytesCount.setStatus('current') if mibBuilder.loadTexts: f10EgMulticastBytesCount.setDescription('The cumulative number of bytes data passing through this queue. This object is available on Cyclone version 2.0 (C2T2) and Cyclone version 3.0 (X3) hardwares only. ') f10EgMulticastPacketCount = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 5, 1, 5), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10EgMulticastPacketCount.setStatus('current') if mibBuilder.loadTexts: f10EgMulticastPacketCount.setDescription('The cumulative number of packets passing through this queue. This object is available on Cyclone version 2.0 (C2T2) and Cyclone version 3.0 (X3) hardwares only. ') f10EgMulticastGreenMin = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 5, 1, 6), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10EgMulticastGreenMin.setStatus('current') if mibBuilder.loadTexts: f10EgMulticastGreenMin.setDescription('The min threshold for Green packets. The min threshold identifies the queue size percentage at which the WRED dropping starts to be applied with a given configured probability. ') f10EgMulticastGreenMax = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 5, 1, 7), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10EgMulticastGreenMax.setStatus('current') if mibBuilder.loadTexts: f10EgMulticastGreenMax.setDescription('The max threshold for Green packets. The max threshold identifies the queue size level at which tail drops occurs. ') f10EgMulticastGreenDrop = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 5, 1, 8), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10EgMulticastGreenDrop.setStatus('current') if mibBuilder.loadTexts: f10EgMulticastGreenDrop.setDescription('The max threshold for Green packets. The max threshold identifies the queue size level at which tail drops occurs. ') f10EgMulticastYellowMin = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 5, 1, 9), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10EgMulticastYellowMin.setStatus('current') if mibBuilder.loadTexts: f10EgMulticastYellowMin.setDescription('The min threshold for Yellow packets. The min threshold identifies the queue size percentage at which the WRED dropping starts to be applied with a given configured probability. ') f10EgMulticastYellowMax = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 5, 1, 10), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10EgMulticastYellowMax.setStatus('current') if mibBuilder.loadTexts: f10EgMulticastYellowMax.setDescription('The max threshold for Yellow packets. The max threshold identifies the queue size level at which tail drops occurs. ') f10EgMulticastYellowDrop = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 5, 1, 11), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10EgMulticastYellowDrop.setStatus('current') if mibBuilder.loadTexts: f10EgMulticastYellowDrop.setDescription('The number of Yellow packets being dropped in this queue. ') f10EgMulticastRedDrop = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 5, 1, 12), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10EgMulticastRedDrop.setStatus('current') if mibBuilder.loadTexts: f10EgMulticastRedDrop.setDescription('The number of Red packets being dropped in this queue. ') f10CpuIngQueueUnicastStatTable = MibTable((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 6), ) if mibBuilder.loadTexts: f10CpuIngQueueUnicastStatTable.setStatus('current') if mibBuilder.loadTexts: f10CpuIngQueueUnicastStatTable.setDescription('The CPU Ingress Queue Unicast Statistics Table. This table provides Queue statistics for Ingress Unicast packets destined for CPU.') f10CpuIngQueueUnicastStatEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 6, 1), ).setIndexNames((0, "FORCE10-MONITORING-MIB", "f10CpuIngUnicastSrcCard"), (0, "FORCE10-MONITORING-MIB", "f10CpuIngUnicastSrcPortPipe"), (0, "FORCE10-MONITORING-MIB", "f10CpuIngUnicastDestCpu"), (0, "FORCE10-MONITORING-MIB", "f10CpuIngUnicastQueueId")) if mibBuilder.loadTexts: f10CpuIngQueueUnicastStatEntry.setStatus('current') if mibBuilder.loadTexts: f10CpuIngQueueUnicastStatEntry.setDescription('An entry in the CPU Ingress Queue Unicast Statistics Table. The CPU Ingress Queue Unicast Statistics Table is indexed by the source linecard/portpipe, cpu port and Queue ID.') f10CpuIngUnicastSrcCard = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 6, 1, 1), F10SlotID()) if mibBuilder.loadTexts: f10CpuIngUnicastSrcCard.setStatus('current') if mibBuilder.loadTexts: f10CpuIngUnicastSrcCard.setDescription('This is the source linecard number. This is the first index of this table entry.') f10CpuIngUnicastSrcPortPipe = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 6, 1, 2), F10PortPipeID()) if mibBuilder.loadTexts: f10CpuIngUnicastSrcPortPipe.setStatus('current') if mibBuilder.loadTexts: f10CpuIngUnicastSrcPortPipe.setDescription('This is the Force10 Cyclone PortPipe number of the source linecard.This is the 2nd index of this table entry.') f10CpuIngUnicastDestCpu = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 6, 1, 3), F10ProcessorModuleType()) if mibBuilder.loadTexts: f10CpuIngUnicastDestCpu.setStatus('current') if mibBuilder.loadTexts: f10CpuIngUnicastDestCpu.setDescription('This is the destination CPU port of this entry. This is the 3rd index of this table entry.') f10CpuIngUnicastQueueId = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 6, 1, 4), F10QueueID()) if mibBuilder.loadTexts: f10CpuIngUnicastQueueId.setStatus('current') if mibBuilder.loadTexts: f10CpuIngUnicastQueueId.setDescription('This is the Queue ID of this entry. This is the 4th index of this table entry.') f10CpuIngUnicastCycloneVersion = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 6, 1, 5), F10CycloneVersion()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10CpuIngUnicastCycloneVersion.setStatus('current') if mibBuilder.loadTexts: f10CpuIngUnicastCycloneVersion.setDescription('The linecard Cyclone hardware version.') f10CpuIngUnicastBytesCount = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 6, 1, 6), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10CpuIngUnicastBytesCount.setStatus('current') if mibBuilder.loadTexts: f10CpuIngUnicastBytesCount.setDescription('The cumulative number of bytes data passing through this queue. This object is available on Cyclone version 3.0 (X3) hardware only.') f10CpuIngUnicastPacketCount = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 6, 1, 7), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10CpuIngUnicastPacketCount.setStatus('current') if mibBuilder.loadTexts: f10CpuIngUnicastPacketCount.setDescription('The cumulative number of packets passing through this queue. This object is available on Cyclone version 3.0 (X3) hardware only.') f10CpuIngUnicastGreenMin = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 6, 1, 8), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10CpuIngUnicastGreenMin.setStatus('current') if mibBuilder.loadTexts: f10CpuIngUnicastGreenMin.setDescription('The min threshold for Green packets. The min threshold identifies the queue size percentage at which the WRED dropping starts to be applied with a given configured probability.') f10CpuIngUnicastGreenMax = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 6, 1, 9), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10CpuIngUnicastGreenMax.setStatus('current') if mibBuilder.loadTexts: f10CpuIngUnicastGreenMax.setDescription('The max threshold for Green packets. The max threshold identifies the queue size level at which tail drops occurs.') f10CpuIngUnicastGreenDrop = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 6, 1, 10), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10CpuIngUnicastGreenDrop.setStatus('current') if mibBuilder.loadTexts: f10CpuIngUnicastGreenDrop.setDescription('The number of Green packets being dropped in this queue.') f10CpuIngUnicastYellowMin = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 6, 1, 11), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10CpuIngUnicastYellowMin.setStatus('current') if mibBuilder.loadTexts: f10CpuIngUnicastYellowMin.setDescription('The min threshold for Yellow packets. The min threshold identifies the queue size percentage at which the WRED dropping starts to be applied with a given configured probability.') f10CpuIngUnicastYellowMax = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 6, 1, 12), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10CpuIngUnicastYellowMax.setStatus('current') if mibBuilder.loadTexts: f10CpuIngUnicastYellowMax.setDescription('The max threshold for Yellow packets. The max threshold identifies the queue size level at which tail drops occurs.') f10CpuIngUnicastYellowDrop = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 6, 1, 13), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10CpuIngUnicastYellowDrop.setStatus('current') if mibBuilder.loadTexts: f10CpuIngUnicastYellowDrop.setDescription('The number of Yellow packets being dropped in this queue.') f10CpuIngUnicastRedDrop = MibTableColumn((1, 3, 6, 1, 4, 1, 6027, 3, 3, 4, 6, 1, 14), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10CpuIngUnicastRedDrop.setStatus('current') if mibBuilder.loadTexts: f10CpuIngUnicastRedDrop.setDescription('The number of Red packets being dropped in this queue.') f10BcastPktRecv = MibScalar((1, 3, 6, 1, 4, 1, 6027, 3, 3, 5, 1, 1), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10BcastPktRecv.setStatus('current') if mibBuilder.loadTexts: f10BcastPktRecv.setDescription('The total broadcast packet received. ') f10BcastPktSent = MibScalar((1, 3, 6, 1, 4, 1, 6027, 3, 3, 5, 1, 2), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10BcastPktSent.setStatus('current') if mibBuilder.loadTexts: f10BcastPktSent.setDescription('The total broadcast packet sent. ') f10McastPktRecv = MibScalar((1, 3, 6, 1, 4, 1, 6027, 3, 3, 5, 1, 3), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10McastPktRecv.setStatus('current') if mibBuilder.loadTexts: f10McastPktRecv.setDescription('The total multicast packet received. ') f10McastPktSent = MibScalar((1, 3, 6, 1, 4, 1, 6027, 3, 3, 5, 1, 4), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10McastPktSent.setStatus('current') if mibBuilder.loadTexts: f10McastPktSent.setDescription('The total multicast packet sent. ') f10ArpReqRecv = MibScalar((1, 3, 6, 1, 4, 1, 6027, 3, 3, 5, 2, 1), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10ArpReqRecv.setStatus('current') if mibBuilder.loadTexts: f10ArpReqRecv.setDescription('The total ARP request received. ') f10ArpReqSent = MibScalar((1, 3, 6, 1, 4, 1, 6027, 3, 3, 5, 2, 2), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10ArpReqSent.setStatus('current') if mibBuilder.loadTexts: f10ArpReqSent.setDescription('The total ARP request sent. ') f10ArpReplyRecv = MibScalar((1, 3, 6, 1, 4, 1, 6027, 3, 3, 5, 2, 3), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10ArpReplyRecv.setStatus('current') if mibBuilder.loadTexts: f10ArpReplyRecv.setDescription('The total ARP reply received. ') f10ArpReplySent = MibScalar((1, 3, 6, 1, 4, 1, 6027, 3, 3, 5, 2, 4), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10ArpReplySent.setStatus('current') if mibBuilder.loadTexts: f10ArpReplySent.setDescription('The total ARP reply sent. ') f10ArpProxySent = MibScalar((1, 3, 6, 1, 4, 1, 6027, 3, 3, 5, 2, 5), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: f10ArpProxySent.setStatus('current') if mibBuilder.loadTexts: f10ArpProxySent.setDescription('The total ARP proxy sent. ') mibBuilder.exportSymbols("FORCE10-MONITORING-MIB", f10CpuIngUnicastYellowMin=f10CpuIngUnicastYellowMin, f10EgMulticastBytesCount=f10EgMulticastBytesCount, f10OutQueueStatisticsTable=f10OutQueueStatisticsTable, f10MacAccBytes=f10MacAccBytes, f10InQueueCycloneVersion=f10InQueueCycloneVersion, f10IngUnicastQueueId=f10IngUnicastQueueId, f10MacAccPackets=f10MacAccPackets, f10CpuIngUnicastSrcCard=f10CpuIngUnicastSrcCard, f10WredYellowThresholdLow=f10WredYellowThresholdLow, f10WredStatisticsEntry=f10WredStatisticsEntry, f10CpuIngUnicastPacketCount=f10CpuIngUnicastPacketCount, f10WredRedName=f10WredRedName, f10IngMulticastCycloneVersion=f10IngMulticastCycloneVersion, f10EgMulticastRedDrop=f10EgMulticastRedDrop, f10EgQueueMulticastStatEntry=f10EgQueueMulticastStatEntry, f10WredGreenThresholdLow=f10WredGreenThresholdLow, f10EgMulticastCycloneVersion=f10EgMulticastCycloneVersion, f10InQueueMatchBytes=f10InQueueMatchBytes, f10EgMulticastYellowMax=f10EgMulticastYellowMax, f10MonQueueGroup=f10MonQueueGroup, f10OutQueueBytes=f10OutQueueBytes, f10EgUnicastBytes=f10EgUnicastBytes, f10IngUnicastSrcCard=f10IngUnicastSrcCard, f10ArpStatistic=f10ArpStatistic, f10InQueueBytesCount=f10InQueueBytesCount, f10EgUnicastCycloneVersion=f10EgUnicastCycloneVersion, f10EgMulticastPacketCount=f10EgMulticastPacketCount, f10OutQueueStatisticsEntry=f10OutQueueStatisticsEntry, f10CpuIngUnicastGreenDrop=f10CpuIngUnicastGreenDrop, f10IngMulticastYellowMax=f10IngMulticastYellowMax, f10IngQueueMulticastStatTable=f10IngQueueMulticastStatTable, f10BcastPktRecv=f10BcastPktRecv, f10CpuIngQueueUnicastStatEntry=f10CpuIngQueueUnicastStatEntry, f10EgUnicastGreenMax=f10EgUnicastGreenMax, f10IngMulticastYellowMin=f10IngMulticastYellowMin, f10InQueueMatchBps=f10InQueueMatchBps, f10InQueueStatisticsEntry=f10InQueueStatisticsEntry, f10CpuIngUnicastGreenMax=f10CpuIngUnicastGreenMax, f10WredRedReserve1=f10WredRedReserve1, f10WredRedReserve2=f10WredRedReserve2, f10IngMulticastQueueId=f10IngMulticastQueueId, f10EgMulticastYellowDrop=f10EgMulticastYellowDrop, f10InQueueDropPackets=f10InQueueDropPackets, f10OutQueuePackets=f10OutQueuePackets, f10IngUnicastYellowMax=f10IngUnicastYellowMax, f10EgQueueMulticastStatTable=f10EgQueueMulticastStatTable, f10CpuIngUnicastSrcPortPipe=f10CpuIngUnicastSrcPortPipe, f10CpuIngUnicastBytesCount=f10CpuIngUnicastBytesCount, f10InQueuePktsCount=f10InQueuePktsCount, f10IngMulticastSrcPortPipe=f10IngMulticastSrcPortPipe, f10EgUnicastPacketCount=f10EgUnicastPacketCount, f10IngMulticastGreenMin=f10IngMulticastGreenMin, f10EgQueueUnicastStatEntry=f10EgQueueUnicastStatEntry, f10CpuIngUnicastQueueId=f10CpuIngUnicastQueueId, f10MonQueue=f10MonQueue, f10EgMulticastGreenDrop=f10EgMulticastGreenDrop, f10IngUnicastGreenMin=f10IngUnicastGreenMin, f10IngQueueUnicastStatEntry=f10IngQueueUnicastStatEntry, f10IngMulticastBytesCount=f10IngMulticastBytesCount, f10OutQueueBps=f10OutQueueBps, f10IngMulticastSrcCard=f10IngMulticastSrcCard, f10WredYellowName=f10WredYellowName, f10MonMac=f10MonMac, f10WredYellowReserve1=f10WredYellowReserve1, f10InQueueBytes=f10InQueueBytes, f10MonMibVersion=f10MonMibVersion, f10ArpProxySent=f10ArpProxySent, f10ArpReplySent=f10ArpReplySent, f10MacAccOutIfIndex=f10MacAccOutIfIndex, f10BcastPktSent=f10BcastPktSent, f10IngUnicastCycloneVersion=f10IngUnicastCycloneVersion, f10EgUnicastRedDrop=f10EgUnicastRedDrop, f10InQueueStatisticsTable=f10InQueueStatisticsTable, f10WredStatisticsTable=f10WredStatisticsTable, f10OutQueueBytesCount=f10OutQueueBytesCount, f10IngUnicastBytes=f10IngUnicastBytes, f10CpuIngQueueUnicastStatTable=f10CpuIngQueueUnicastStatTable, f10CpuIngUnicastRedDrop=f10CpuIngUnicastRedDrop, f10IngUnicastYellowMin=f10IngUnicastYellowMin, f10InQueueId=f10InQueueId, f10MacAccounting=f10MacAccounting, f10MonIfQueueGroup=f10MonIfQueueGroup, f10ArpReqRecv=f10ArpReqRecv, f10IngMulticastPacketCount=f10IngMulticastPacketCount, f10IngUnicastGreenMax=f10IngUnicastGreenMax, f10IngMulticastYellowDrop=f10IngMulticastYellowDrop, PYSNMP_MODULE_ID=f10MonitoringMib, f10IngMulticastBytes=f10IngMulticastBytes, f10MonMaxQueue=f10MonMaxQueue, f10CpuIngUnicastDestCpu=f10CpuIngUnicastDestCpu, f10WredGreenName=f10WredGreenName, f10CpuIngUnicastYellowDrop=f10CpuIngUnicastYellowDrop, f10CpuIngUnicastGreenMin=f10CpuIngUnicastGreenMin, f10EgMulticastYellowMin=f10EgMulticastYellowMin, f10MonIfQueue=f10MonIfQueue, f10WredRedThresholdHigh=f10WredRedThresholdHigh, f10IngUnicastGreenDrop=f10IngUnicastGreenDrop, f10EgUnicastYellowMax=f10EgUnicastYellowMax, f10EgQueueUnicastStatTable=f10EgQueueUnicastStatTable, f10MacAccountingDestEntry=f10MacAccountingDestEntry, f10WredGreenDropPackets=f10WredGreenDropPackets, f10CpuIngUnicastYellowMax=f10CpuIngUnicastYellowMax, f10WredYellowReserve2=f10WredYellowReserve2, f10EgUnicastYellowDrop=f10EgUnicastYellowDrop, f10MacAccMacAddr=f10MacAccMacAddr, f10MacAccInIfIndex=f10MacAccInIfIndex, f10IpStatistic=f10IpStatistic, f10WredGreenThresholdHigh=f10WredGreenThresholdHigh, f10IngUnicastSrcPortPipe=f10IngUnicastSrcPortPipe, f10McastPktSent=f10McastPktSent, f10EgMulticastGreenMin=f10EgMulticastGreenMin, f10MonitoringMib=f10MonitoringMib, f10MonGroup=f10MonGroup, f10IngUnicastDestCard=f10IngUnicastDestCard, f10IngUnicastDestPortPipe=f10IngUnicastDestPortPipe, f10IngMulticastRedDrop=f10IngMulticastRedDrop, f10EgUnicastYellowMin=f10EgUnicastYellowMin, f10MacGroup=f10MacGroup, f10IngMulticastGreenDrop=f10IngMulticastGreenDrop, f10WredYellowDropPackets=f10WredYellowDropPackets, f10IngUnicastRedDrop=f10IngUnicastRedDrop, f10NetworkStat=f10NetworkStat, f10EgMulticastGreenMax=f10EgMulticastGreenMax, f10EgMulticastBytes=f10EgMulticastBytes, f10WredGreenReserve1=f10WredGreenReserve1, f10IngUnicastYellowDrop=f10IngUnicastYellowDrop, f10ArpReqSent=f10ArpReqSent, f10IngQueueUnicastStatTable=f10IngQueueUnicastStatTable, f10ArpReplyRecv=f10ArpReplyRecv, f10EgMulticastQueueId=f10EgMulticastQueueId, f10WredQueueId=f10WredQueueId, f10IngUnicastBytesCount=f10IngUnicastBytesCount, f10CpuIngUnicastCycloneVersion=f10CpuIngUnicastCycloneVersion, f10WredYellowThresholdHigh=f10WredYellowThresholdHigh, f10McastPktRecv=f10McastPktRecv, f10EgUnicastGreenMin=f10EgUnicastGreenMin, f10OutQueueId=f10OutQueueId, f10IngQueueMulticastStatEntry=f10IngQueueMulticastStatEntry, f10WredGreenReserve2=f10WredGreenReserve2, f10EgUnicastGreenDrop=f10EgUnicastGreenDrop, f10IngMulticastGreenMax=f10IngMulticastGreenMax, f10InQueueMatchPackets=f10InQueueMatchPackets, f10EgUnicastQueueId=f10EgUnicastQueueId, f10OutQueueCycloneVersion=f10OutQueueCycloneVersion, f10WredRedDropPackets=f10WredRedDropPackets, f10MacAccVlan=f10MacAccVlan, f10MacAccountingDestTable=f10MacAccountingDestTable, f10WredRedThresholdLow=f10WredRedThresholdLow, f10EgUnicastBytesCount=f10EgUnicastBytesCount, f10IngUnicastPacketCount=f10IngUnicastPacketCount)
131.044543
6,796
0.791261
0
0
0
0
0
0
0
0
17,718
0.301127
056746e5dbf852638494e8c736e9cb3208ccd43b
1,964
py
Python
recycler.py
LAION-AI/crawlingathome
43a477777fb403046d67224747cde1dac9f2094a
[ "MIT" ]
11
2021-06-02T03:46:52.000Z
2021-09-11T22:19:12.000Z
recycler.py
LAION-AI/crawlingathome
43a477777fb403046d67224747cde1dac9f2094a
[ "MIT" ]
9
2021-06-14T07:46:20.000Z
2021-08-28T22:50:46.000Z
recycler.py
LAION-AI/crawlingathome
43a477777fb403046d67224747cde1dac9f2094a
[ "MIT" ]
7
2021-06-01T11:59:36.000Z
2022-03-20T13:44:18.000Z
import numpy as np from requests import session from .core import CPUClient, GPUClient, HybridClient from .temp import TempCPUWorker from .errors import * # Dump a client's attributes into a dictionary so that it can be used remotely. def dump(c): try: return { "_type": c.type, "url": c.url, "token": c.token, "nickname": c.nickname, "shard": c.shard if hasattr(c, 'shard') else None, "start_id": str(c.start_id) if hasattr(c, 'start_id') else None, "end_id": str(c.end_id) if hasattr(c, 'end_id') else None, "shard_piece": c.shard_piece if hasattr(c, 'shard_piece') else None, "wat": c.wat if hasattr(c, 'wat') else None, "shards": c.shards if hasattr(c, 'shards') else None } except AttributeError as e: raise DumpError(f"[crawling@home] unable to dump client: {e}") # Load an existing client using its attributes. It's best to load using an existing dumpClient(): `loadClient(**dump)` def load(_type=None, url=None, token=None, nickname=None, shard=None, start_id=None, end_id=None, shard_piece=None, wat=None, shards=None): if _type == "HYBRID": c = HybridClient(*[None] * 2, _recycled=True) elif _type == "CPU": c = CPUClient(*[None] * 2, _recycled=True) elif _type == "GPU": c = GPUClient(*[None] * 2, _recycled=True) elif _type == "FULLWAT": c = TempCPUWorker(url, nickname, _recycled=True) else: raise ValueError(f"Invalid worker type: {_type}") c.s = session() c.type = _type c.url = url c.token = token c.nickname = nickname c.shard = shard c.start_id = start_id if isinstance(start_id, np.int64) else np.int64(start_id) c.end_id = end_id if isinstance(end_id, np.int64) else np.int64(end_id) c.shard_piece = shard_piece c.wat = wat c.shards = shards return c
35.709091
118
0.614562
0
0
0
0
0
0
0
0
431
0.21945
0567803d049b2b08966e5134ef97c6b64fdfc130
1,921
py
Python
config.py
uncharted-distil/distil-auto-ml
244661942cff11617c81830d7f58a9f9b5c9499d
[ "Apache-2.0" ]
2
2019-06-20T23:32:10.000Z
2021-01-24T22:32:07.000Z
config.py
uncharted-distil/distil-auto-ml
244661942cff11617c81830d7f58a9f9b5c9499d
[ "Apache-2.0" ]
157
2019-04-09T18:40:42.000Z
2021-05-06T13:44:33.000Z
config.py
uncharted-distil/distil-auto-ml
244661942cff11617c81830d7f58a9f9b5c9499d
[ "Apache-2.0" ]
1
2019-07-12T22:17:46.000Z
2019-07-12T22:17:46.000Z
import os DB_LOCATION = os.getenv("DB_URI", "test.db") # Debug flag to output more verbose logging # - defaults to False DEBUG = os.getenv("DEBUG", False) # Configurable output directory for saving machine learning model pickles # - defaults to ../output OUTPUT_DIR = os.getenv("OUTPUT_DIR", "output") # Port to make worker service available on PORT = os.getenv("PORT", "45042") # Configurable filename for output logs LOG_FILENAME = os.getenv("LOG_FILENAME", "distil-auto-ml.log") # User agent to supply to TA3 Systems SERVER_USER_AGENT = "qntfy_ta2" # Primitives static file directory D3MSTATICDIR = os.getenv("D3MSTATICDIR", "/static") # Enable GPU pipelines - "auto" will try to detect, "true" and "false" will force GPU = os.getenv("GPU", "auto") # Batch size to apply to primitives where feasible REMOTE_SENSING_BATCH_SIZE = int(os.getenv("REMOTE_SENSING_BATCH_SIZE", 128)) # Solution serach progress update message interval in seconds PROGRESS_INTERVAL = float(os.getenv("PROGRESS_INTERVAL", 10.0)) # maximum number of augment columns to support AUG_MAX_COLS = int(os.getenv("AUG_MAX_COLS", 50)) # maximum number of augment rows to support AUG_MAX_ROWS = int(os.getenv("AUG_MAX_ROWS", 50000)) # maximum amount of time for hyperparam tuning in seconds TIME_LIMIT = int(os.getenv("TIME_LIMIT", 600)) # use untuned/internally tuned pipelines (faster) or external tuning (better results) HYPERPARAMETER_TUNING = os.getenv("HYPERPARAMETER_TUNING", "True") == "True" # controls parallelism within primitives - defaults to the number of CPUs N_JOBS = int(os.getenv("N_JOBS", -1)) # enable use of mlp classifier + gradcam visualization MLP_CLASSIFIER = os.getenv("MLP_CLASSIFIER", "False") == "True" # whether or not received features for remote sensing are pooled or not IS_POOLED = os.getenv("POOL_FEATURES", "True") == "True" COMPUTE_CONFIDENCES = os.getenv("COMPUTE_CONFIDENCES", "False") == "False"
34.303571
85
0.753774
0
0
0
0
0
0
0
0
1,291
0.672046
0567c00611e59a9c33c0140344f11e8c956bd4aa
278
py
Python
python/testData/completion/slots.py
jnthn/intellij-community
8fa7c8a3ace62400c838e0d5926a7be106aa8557
[ "Apache-2.0" ]
2
2019-04-28T07:48:50.000Z
2020-12-11T14:18:08.000Z
python/testData/completion/slots.py
Cyril-lamirand/intellij-community
60ab6c61b82fc761dd68363eca7d9d69663cfa39
[ "Apache-2.0" ]
173
2018-07-05T13:59:39.000Z
2018-08-09T01:12:03.000Z
python/testData/completion/slots.py
Cyril-lamirand/intellij-community
60ab6c61b82fc761dd68363eca7d9d69663cfa39
[ "Apache-2.0" ]
2
2020-03-15T08:57:37.000Z
2020-04-07T04:48:14.000Z
class A(object): __slots__ = ['foo', 'bar'] a = A() a.ba<caret> class B(object): __slots__ = ['bar'] class C(B): pass C().ba<caret> class D(object): pass class E(D): __slots__ = ['bar'] E().ba<caret> class F: __slots__ = ['baz'] F().ba<caret>
9.586207
30
0.535971
47
0.169065
0
0
0
0
0
0
25
0.089928
056887fff4c016e1bd810fe62a7c889a8d65cc5e
1,952
py
Python
aircraft_framework_win/framework_PhD/framework/Stability/Dynamic/state_vector.py
AlejandroRios/IAANDOCAC-aircraft-framework
9768e9736af70e20e8ef1cc0ad6501f3a28dbb47
[ "Apache-2.0" ]
null
null
null
aircraft_framework_win/framework_PhD/framework/Stability/Dynamic/state_vector.py
AlejandroRios/IAANDOCAC-aircraft-framework
9768e9736af70e20e8ef1cc0ad6501f3a28dbb47
[ "Apache-2.0" ]
null
null
null
aircraft_framework_win/framework_PhD/framework/Stability/Dynamic/state_vector.py
AlejandroRios/IAANDOCAC-aircraft-framework
9768e9736af70e20e8ef1cc0ad6501f3a28dbb47
[ "Apache-2.0" ]
null
null
null
""" Function : Title : Written by: Email : [email protected] Date : Last edit : Language : Python 3.8 or > Aeronautical Institute of Technology - Airbus Brazil Description: - Inputs: - Outputs: - TODO's: - """ # ============================================================================= # IMPORTS # ============================================================================= import numpy as np # ============================================================================= # CLASSES # ============================================================================= # ============================================================================= # FUNCTIONS # ============================================================================= def state_vector(x, trim_par): X = np.zeros((12, 1)) X[0] = x[0] # V X[1] = x[1] # alpha X[2] = x[2] # q X[3] = x[3] # theta X[4] = trim_par['H_m'] # H X[6] = x[4] # beta X[7] = x[5] # phi X[8] = x[6] # p X[9] = x[7] # r X[10] = x[8] # r return X # ============================================================================= # MAIN # ============================================================================= # ============================================================================= # TEST # ============================================================================= # x = [68.0588, # 0, # 0, # 0, # 0, # 0, # 0, # 0, # 0, # 0, # 0, # 0, # 0, # 0] # trim_par = {} # trim_par = {'V':68.0588, # 'H_m':10000, # 'chi_deg':0, # 'gamma_deg':0, # 'phi_dot_deg_s':0, # 'theta_dot_deg':0, # 'psi_dot_deg_s':0, # 'beta_deg_eq':0, # 'W':[0, 0, 0]} # X = state_vector(x, trim_par) # print(X)
22.436782
79
0.236168
0
0
0
0
0
0
0
0
1,623
0.831455
056958a4ad13bb68213d3b4a27aff485fb258a2f
317
py
Python
10-Days-of-Statistics/Python/day-0_weighted_mean.py
joaopalmeiro/hackerrank
271b87645710e5ed56cbfd8c4209f3a7436e3f72
[ "MIT" ]
null
null
null
10-Days-of-Statistics/Python/day-0_weighted_mean.py
joaopalmeiro/hackerrank
271b87645710e5ed56cbfd8c4209f3a7436e3f72
[ "MIT" ]
null
null
null
10-Days-of-Statistics/Python/day-0_weighted_mean.py
joaopalmeiro/hackerrank
271b87645710e5ed56cbfd8c4209f3a7436e3f72
[ "MIT" ]
null
null
null
N = int(input()) X = list(map(int, input().split())) W = list(map(int, input().split())) def weighted_mean(X, W): numerator = sum([a * b for a, b in zip(X, W)]) denominator = sum(W) weighted_mean_value = numerator / denominator return round(weighted_mean_value, 1) print(weighted_mean(X, W))
16.684211
50
0.630915
0
0
0
0
0
0
0
0
0
0
0569e6f550e0e8fb6bd11e2714deff2f7f71997f
2,274
py
Python
common/settings.py
hehanlin/jobbole
46d5fa26cfa1ebd5c6c3621f615ffecbb4152fa9
[ "BSD-3-Clause" ]
2
2018-01-18T09:16:16.000Z
2022-02-12T08:59:23.000Z
common/settings.py
hehanlin/jobbole
46d5fa26cfa1ebd5c6c3621f615ffecbb4152fa9
[ "BSD-3-Clause" ]
null
null
null
common/settings.py
hehanlin/jobbole
46d5fa26cfa1ebd5c6c3621f615ffecbb4152fa9
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- import os os_env = os.environ class Config(object): COMMON_PATH = os.path.abspath(os.path.dirname(__file__)) # This directory PROJECT_ROOT = os.path.abspath(os.path.join(COMMON_PATH, os.pardir)) DATABASE_URL = "postgresql://he:he@localhost:5432/jobbole" class CeleryConfig(object): BROKER_URL = 'redis://[email protected]:6379/0' # 指定 Broker CELERY_RESULT_BACKEND = 'redis://[email protected]:6379/1' # 指定 Backend CELERY_TIMEZONE = 'Asia/Shanghai' # 指定时区,默认是 UTC CELERY_ENABLE_UTC = True CELERY_TASK_SERIALIZER = 'msgpack' # 任务序列化和反序列化 ls: json yaml msgpack pickle(不推荐) CELERY_RESULT_SERIALIZER = 'json' # 读取任务结果一般性能要求不高,所以使用了可读性更好的JSON CELERY_TASK_RESULT_EXPIRES = 60 * 60 * 24 # 任务过期时间,不建议直接写86400,应该让这样的magic数字表述更明显 CELERY_IMPORTS = ( # 指定导入的任务模块 ) # logging LoggingConfig = { "version": 1, "disable_existing_loggers": False, "formatters": { "simple": { "format": "%(asctime)s- %(module)s:%(lineno)d [%(levelname)1.1s] %(name)s: %(message)s", 'datefmt': '%Y/%m/%d %H:%M:%S' } }, "handlers": { "console": { "class": "logging.StreamHandler", "level": "DEBUG", "formatter": "simple", "stream": "ext://sys.stdout" }, "info_file_handler": { "class": "logging.handlers.RotatingFileHandler", "level": "INFO", "formatter": "simple", "filename": Config.PROJECT_ROOT + '/jobbole_info.log', "maxBytes": 10485760, "backupCount": 20, "encoding": "utf8" }, "error_file_handler": { "class": "logging.handlers.RotatingFileHandler", "level": "ERROR", "formatter": "simple", "filename": Config.PROJECT_ROOT + '/jobbole_error.log', "maxBytes": 10485760, "backupCount": 20, "encoding": "utf8" } }, "loggers": { "my_module": { "level": "ERROR", "handlers": ["info_file_handler"], "propagate": False } }, "root": { "level": "INFO", "handlers": ["console", "info_file_handler", "error_file_handler"] } }
30.72973
100
0.554969
940
0.383987
0
0
0
0
0
0
1,276
0.521242
056bdc49927b577c2ca6f33c088621f5b1d3d179
8,834
py
Python
interface.py
singularitai/Morphling
e7a3af969123c0d3c0f3c6f1036a97e9be0b289c
[ "MIT", "Condor-1.1", "Unlicense" ]
9
2021-03-22T09:18:58.000Z
2022-03-02T01:42:11.000Z
interface.py
singularitai/Morphling
e7a3af969123c0d3c0f3c6f1036a97e9be0b289c
[ "MIT", "Condor-1.1", "Unlicense" ]
null
null
null
interface.py
singularitai/Morphling
e7a3af969123c0d3c0f3c6f1036a97e9be0b289c
[ "MIT", "Condor-1.1", "Unlicense" ]
2
2022-03-29T07:59:12.000Z
2022-03-31T09:10:47.000Z
import os os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" # -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'Mock.ui' # # Created by: PyQt5 UI code generator 5.12.3 # # WARNING! All changes made in this file will be lost! import sys import subprocess import application_backend as ab from PyQt5 import QtCore, QtGui, QtWidgets class Ui_MainWindow(object): def __init__(self): self.app = QtWidgets.QApplication(sys.argv) self.MainWindow = QtWidgets.QMainWindow() self.setupUi(self.MainWindow) self.MainWindow.show() sys.exit(self.app.exec_()) def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(873, 663) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.gridLayoutWidget = QtWidgets.QWidget(self.centralwidget) self.gridLayoutWidget.setGeometry(QtCore.QRect(9, 9, 841, 631)) self.gridLayoutWidget.setObjectName("gridLayoutWidget") self.gridLayout = QtWidgets.QGridLayout(self.gridLayoutWidget) self.gridLayout.setContentsMargins(0, 0, 0, 0) self.gridLayout.setObjectName("gridLayout") self.SuperResolution = QtWidgets.QCheckBox(self.gridLayoutWidget) self.SuperResolution.setChecked(True) self.SuperResolution.setObjectName("SuperResolution") self.gridLayout.addWidget(self.SuperResolution, 7, 0, 1, 1) self.SingleSpeaker = QtWidgets.QCheckBox(self.gridLayoutWidget) self.SingleSpeaker.setObjectName("SingleSpeaker") self.gridLayout.addWidget(self.SingleSpeaker, 5, 0, 1, 1) self.CustomFace = QtWidgets.QCheckBox(self.gridLayoutWidget) self.CustomFace.setObjectName("CustomFace") self.gridLayout.addWidget(self.CustomFace, 8, 0, 1, 1) self.AudioOnly = QtWidgets.QCheckBox(self.gridLayoutWidget) self.AudioOnly.setChecked(False) self.AudioOnly.setObjectName("AudioOnly") self.gridLayout.addWidget(self.AudioOnly, 3, 0, 1, 1) self.Generate = QtWidgets.QPushButton(self.gridLayoutWidget) self.Generate.setObjectName("Generate") self.gridLayout.addWidget(self.Generate, 18, 0, 1, 1) #self.gridLayout.addWidget(self.Generate, 13, 0, 1, 1) self.SelectCustomFace = QtWidgets.QPushButton(self.gridLayoutWidget) self.SelectCustomFace.setEnabled(False) self.SelectCustomFace.setCheckable(False) self.SelectCustomFace.setChecked(False) self.SelectCustomFace.setFlat(False) self.SelectCustomFace.setObjectName("SelectCustomFace") self.gridLayout.addWidget(self.SelectCustomFace, 9, 0, 1, 1) self.SmilingFace = QtWidgets.QCheckBox(self.gridLayoutWidget) self.SmilingFace.setObjectName("SmilingFace") self.gridLayout.addWidget(self.SmilingFace, 6, 0, 1, 1) #self.progressBar = QtWidgets.QProgressBar(self.gridLayoutWidget) #self.progressBar.setProperty("value", 24) #self.progressBar.setObjectName("progressBar") #self.gridLayout.addWidget(self.progressBar, 18, 0, 1, 1) self.tacotron2 = QtWidgets.QCheckBox(self.gridLayoutWidget) self.tacotron2.setObjectName("tacotron2") #self.gridLayout.addWidget(self.tacotron2, 18, 0, 1, 1) self.gridLayout.addWidget(self.tacotron2, 13, 0, 1, 1) self.LJSpeech = QtWidgets.QCheckBox(self.gridLayoutWidget) self.LJSpeech.setObjectName("LJSpeech") self.gridLayout.addWidget(self.LJSpeech, 4, 0, 1, 1) self.plainTextEdit = QtWidgets.QPlainTextEdit(self.gridLayoutWidget) self.plainTextEdit.setObjectName("plainTextEdit") self.gridLayout.addWidget(self.plainTextEdit, 1, 0, 1, 1) self.VoiceNumber = QtWidgets.QSpinBox(self.gridLayoutWidget) self.VoiceNumber.setEnabled(False) self.VoiceNumber.setMaximum(123) self.VoiceNumber.setObjectName("VoiceNumber") self.gridLayout.addWidget(self.VoiceNumber, 11, 0, 1, 1) self.SpecificVoice = QtWidgets.QCheckBox(self.gridLayoutWidget) self.SpecificVoice.setObjectName("SpecificVoice") self.gridLayout.addWidget(self.SpecificVoice, 10, 0, 1, 1) MainWindow.setCentralWidget(self.centralwidget) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.retranslateUi(MainWindow) self.CustomFace.clicked.connect(self.SelectCustomFace.show) self.SpecificVoice.clicked.connect(self.VoiceNumber.show) self.Generate.clicked.connect(self.generate_clicked) self.SpecificVoice.clicked.connect(self.custom_voice_toggle) self.CustomFace.clicked.connect(self.custom_face_toggle) self.SelectCustomFace.clicked.connect(self.custom_face_clicked) QtCore.QMetaObject.connectSlotsByName(MainWindow) self.custom_face_path = "" def custom_voice_toggle(self): if self.SpecificVoice.isChecked(): self.VoiceNumber.setEnabled(True) else: self.VoiceNumber.setEnabled(False) def custom_face_toggle(self): if self.CustomFace.isChecked(): self.SelectCustomFace.setEnabled(True) self.SelectCustomFace.setCheckable(True) self.SelectCustomFace.setChecked(True) self.SelectCustomFace.setFlat(True) else: self.SelectCustomFace.setEnabled(False) self.SelectCustomFace.setCheckable(False) self.SelectCustomFace.setChecked(False) self.SelectCustomFace.setFlat(False) def custom_face_clicked(self): import easygui import os path = easygui.fileopenbox() cwd = os.getcwd() if type(path) != type(None): relative_path = os.path.relpath(path, cwd) self.custom_face_path = relative_path print(relative_path) def generate_clicked(self): text = self.plainTextEdit.toPlainText().replace("\n", ".") mode = 0 audio_only = bool(self.AudioOnly.isChecked()) audio_model = 1 if(self.LJSpeech.isChecked()): audio_model = 0 if(self.tacotron2.isChecked()): audio_model = 2 single_speaker = self.SingleSpeaker.isChecked() no_smiling = self.SmilingFace.isChecked() super_resolution = self.SuperResolution.isChecked() use_custom_face = self.CustomFace.isChecked() use_custom_voice = self.SpecificVoice.isChecked() custom_voice = self.VoiceNumber.value() command = "" command += "python application_backend -t {} ".format(text) command += "-m {} ".format(mode) command += "-ao {} ".format(audio_only) command += "-am {} ".format(audio_model) command += "-ss {} ".format(single_speaker) command += "-sm {} ".format(no_smiling) command += "-sr {} ".format(super_resolution) command += "-ucf {} ".format(use_custom_face) command += "-cf {} ".format(self.custom_face_path) command += "-ucv {} ".format(use_custom_voice) command += "-cv {}".format(custom_voice) print(command) ab.Generate(audio_model=audio_model, audio_only=audio_only, custom_face=self.custom_face_path, custom_voice=custom_voice, full_text=text, mode=mode, single_speaker=single_speaker, smiling=no_smiling, super_resolution=super_resolution, use_custom_face=use_custom_face, use_custom_voice=use_custom_voice) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "SingularitAI | Morphling Tool")) self.SuperResolution.setText(_translate("MainWindow", "Apply Super Resolution")) self.SingleSpeaker.setText(_translate("MainWindow", "Single Speaker and Voice")) self.CustomFace.setText(_translate("MainWindow", "Use Custom Face")) self.AudioOnly.setText(_translate("MainWindow", "Generate Audio Only")) self.Generate.setText(_translate("MainWindow", "Generate")) self.SelectCustomFace.setText(_translate("MainWindow", "Select Custom Face")) self.SmilingFace.setText(_translate("MainWindow", "Avoid Smiling Faces")) self.LJSpeech.setText(_translate("MainWindow", "Use LJ Speech")) self.tacotron2.setText(_translate("MainWindow", "Use Tacotron Speech")) self.SpecificVoice.setText(_translate("MainWindow", "Use Specific Voice")) if __name__ == "__main__": Ui_MainWindow()
43.732673
130
0.677043
8,433
0.954607
0
0
0
0
0
0
1,264
0.143084
056ef751fabceeae1db74a620559c093e5b86dfa
10,935
py
Python
load-testing/locustfile.py
MaksimAniskov/aws-global-odoo
0f225a2f4ede3215264fd3d3912fa7b4e87d4a8f
[ "MIT" ]
null
null
null
load-testing/locustfile.py
MaksimAniskov/aws-global-odoo
0f225a2f4ede3215264fd3d3912fa7b4e87d4a8f
[ "MIT" ]
1
2022-01-26T08:58:34.000Z
2022-01-26T08:58:34.000Z
load-testing/locustfile.py
MaksimAniskov/aws-global-odoo
0f225a2f4ede3215264fd3d3912fa7b4e87d4a8f
[ "MIT" ]
null
null
null
from locust import HttpUser, task, between import re import random import json import os class OdooUser: if os.environ.get('HOST'): host = os.environ.get('HOST') wait_time = between(20, 40) def on_start(self): response = self.client.get("/web/login") assert response.status_code == 200 csrf_token = re.search( r'input type="hidden" name="csrf_token" value="(.+)"', response.text).group(1) response = self.client.post( "/web/login", data={ "csrf_token": csrf_token, "login": os.environ.get('ODOO_USER_NAME'), "password": os.environ.get('ODOO_USER_PASSWORD'), "redirect": "" }) assert response.status_code == 200 response = self.client.get("/web") assert response.status_code == 200 session_info = re.search( r'odoo.session_info\s*=\s*(.+);', response.text).groups(1)[0] session_info = json.loads(session_info) self.thecontext = { "uid": session_info['uid'], "company_id": session_info['company_id'], "allowed_company_ids": [session_info['company_id']], "lang": session_info['user_context']['lang'], "tz": session_info['user_context']['tz'] } response = self.client.get( f'/web/webclient/load_menus/${session_info["cache_hashes"]["load_menus"]}') assert response.status_code == 200 response = json.loads(response.content) crm_menu = next( filter(lambda item: item['name'] == 'CRM', response['children'])) self.crm_action_id = int(crm_menu['action'].split(',')[1]) self.call_jsonrpc( "/web/dataset/call_kw/res.users/systray_get_activities", model="res.users", method="systray_get_activities", kwargs={"context": self.thecontext}, args=[] ) response = self.client.get( "/web/image?model=res.users", params={'field': 'image_128', 'id': self.thecontext['uid']}) assert response.status_code == 200 response = self.call_action( "/web/action/run", action_id=self.crm_action_id) result = json.loads(response.content)['result'] self.thecontext.update(result['context']) def call_jsonrpc(self, url, **params): response = self.client.post( url, json={ "id": random.randrange(10000000000), "params": {**params}, "jsonrpc": "2.0", "method": "call" } ) assert response.status_code == 200 response = json.loads(response.content) assert 'error' not in response return response['result'] def call_action(self, url, action_id): response = self.client.post( url, json={ "id": random.randrange(10000000000), "params": { "action_id": action_id, }, "jsonrpc": "2.0", "method": "call" } ) assert response.status_code == 200 assert 'error' not in json.loads(response.content) return response class OdooUserCrmKanban(OdooUser, HttpUser): @task def crm_kanban(self): self.call_action("/web/action/run", action_id=self.crm_action_id) domain = [ "&", ["type", "=", "opportunity"], ["user_id", "=", self.thecontext['uid']] ] self.call_jsonrpc( "/web/dataset/call_kw/crm.lead/read_progress_bar", model="crm.lead", method="read_progress_bar", kwargs={ "domain": domain, "group_by": "stage_id", "progress_bar": { "field": "activity_state", "colors": { "planned": "success", "today": "warning", "overdue": "danger" }, "sum_field": "expected_revenue", "modifiers": {} } }, args=[] ) result = self.call_jsonrpc( "/web/dataset/call_kw/crm.lead/web_read_group", model="crm.lead", method="web_read_group", kwargs={ "domain": domain, "fields": [ "stage_id", "color", "priority", "expected_revenue", "kanban_state", "activity_date_deadline", "user_email", "user_id", "partner_id", "activity_summary", "active", "company_currency", "activity_state", "activity_ids", "name", "tag_ids", "activity_exception_decoration", "activity_exception_icon" ], "groupby": ["stage_id"], "orderby": "", "lazy": True }, args=[] ) for group in result['groups']: result = self.call_jsonrpc( "/web/dataset/search_read", model="crm.lead", domain=[ "&", ["stage_id", "=", group['stage_id'][0]], "&", ["type", "=", "opportunity"], ["user_id", "=", self.thecontext['uid']] ], fields=[ "stage_id", "color", "priority", "expected_revenue", "kanban_state", "activity_date_deadline", "user_email", "user_id", "partner_id", "activity_summary", "active", "company_currency", "activity_state", "activity_ids", "name", "tag_ids", "activity_exception_decoration", "activity_exception_icon" ], limit=80, sort="", context={ "bin_size": True } ) # TODO: /web/dataset/call_kw/crm.tag/read # TODO: /web/dataset/call_kw/crm.stage/read class OdooUserCrmLeadCreate(OdooUser, HttpUser): @task def crm_lead_create(self): partners = self.call_jsonrpc( "/web/dataset/call_kw/res.partner/name_search", model="res.partner", method="name_search", kwargs={ "name": "", "args": ["|", ["company_id", "=", False], ["company_id", "=", 1]], "operator": "ilike", "limit": 8 }, args=[] ) random_partner_id = random.choice(partners)[0] result = self.call_jsonrpc( "/web/dataset/call_kw/crm.lead/onchange", model="crm.lead", method="onchange", kwargs={}, args=[ [], { "partner_id": random_partner_id, "company_id": self.thecontext['company_id'], "user_id": self.thecontext['uid'], "team_id": self.thecontext['default_team_id'], "name": False, "email_from": False, "phone": False, "expected_revenue": 0, "priority": "0", "company_currency": 1, "type": "opportunity", "partner_name": False, "contact_name": False, "country_id": False, "state_id": False, "city": False, "street": False, "street2": False, "zip": False, "mobile": False, "website": False, "function": False, "title": False }, "partner_id", { "partner_id": "1", "name": "", "email_from": "", "phone": "1", "expected_revenue": "", "priority": "", "company_currency": "", "company_id": "1", "user_id": "1", "team_id": "", "type": "1", "partner_name": "", "contact_name": "", "country_id": "1", "state_id": "", "city": "", "street": "", "street2": "", "zip": "1", "mobile": "1", "website": "", "function": "", "title": "" } ] ) partner = result['value'] partner['id'] = random_partner_id result = self.call_jsonrpc( "/web/dataset/call_kw/crm.lead/create", model="crm.lead", method="create", kwargs={}, args=[{ "type": "opportunity", "expected_revenue": random.randrange(1000, 1000000, 1000), "company_id": self.thecontext['company_id'], "user_id": self.thecontext['uid'], "team_id": self.thecontext['default_team_id'], "priority": "0", "partner_id": partner['id'], "name": partner.get('name', False), "email_from": partner.get('email_from', False), "phone": partner.get('phone', False), "partner_name": partner.get('partner_name', False), "contact_name": partner.get('contact_name', False), "country_id": partner['country_id'][0], "state_id": partner['state_id'][0], "city": partner.get('city', False), "street": partner.get('street', False), "street2": partner.get('street2', False), "zip": partner.get('zip', False), "function": partner.get('function', False), "title": partner.get('title', False) }] ) if result % 100 == 0: print('CRM lead id created:', result) if __name__ == "__main__": from locust.env import Environment my_env = Environment(user_classes=[OdooUserCrmKanban]) OdooUserCrmKanban(my_env).run()
34.714286
102
0.438317
10,674
0.976132
0
0
7,401
0.676818
0
0
3,131
0.286328
05702fee1b4a5bd092fcebf23643ddbeb574cdf2
939
py
Python
code/model/testSpeedPolar.py
PBarde/IBoatPIE
dd8038f981940b732be979b49e9b14102c3d4cca
[ "MIT" ]
1
2018-02-22T15:38:01.000Z
2018-02-22T15:38:01.000Z
code/model/testSpeedPolar.py
PBarde/IBoatPIE
dd8038f981940b732be979b49e9b14102c3d4cca
[ "MIT" ]
null
null
null
code/model/testSpeedPolar.py
PBarde/IBoatPIE
dd8038f981940b732be979b49e9b14102c3d4cca
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jun 13 18:03:27 2017 @author: paul """ from SimulatorTLKT import Boat from SimulatorTLKT import FIT_VELOCITY import numpy as np import matplotlib import matplotlib.pyplot as plt from math import pi matplotlib.rcParams.update({'font.size': 22}) pOfS=np.arange(0,360,0.5) wMags=np.arange(0,25,2) polars=[] legends=[] fig=plt.figure() for mag in wMags: pol=[] legends.append('Wind mag = '+str(mag) + ' m/s') for p in pOfS : pol.append(Boat.getDeterDyn(p,mag,FIT_VELOCITY)) polars.append(list(pol)) ax=plt.polar(pOfS*pi/180,pol,label=str(mag) + ' m/s') #plt.legend(legends) plt.legend(bbox_to_anchor=(1.1,1), loc=2, borderaxespad=0.) #plt.xlabel('Polar plot of Boat velocity [m/s] wrt. point of sail [deg]',fontsize=22) #ax.xaxis.set_label_position('top') fig.savefig('../../../Article/Figures/polar_modified2.pdf', bbox_inches='tight')
25.378378
85
0.690096
0
0
0
0
0
0
0
0
332
0.353568
05705dae303e8a7ae7b9765283158fc78c1a5987
3,387
py
Python
src/mcxlib/usage_examples.py
carlashley/meecxprofile
1fe776b3f23dd9b224d87dd155cc1681cf13fb5e
[ "Apache-2.0" ]
2
2021-09-10T12:52:43.000Z
2021-09-10T15:38:29.000Z
src/mcxlib/usage_examples.py
carlashley/meecxprofile
1fe776b3f23dd9b224d87dd155cc1681cf13fb5e
[ "Apache-2.0" ]
null
null
null
src/mcxlib/usage_examples.py
carlashley/meecxprofile
1fe776b3f23dd9b224d87dd155cc1681cf13fb5e
[ "Apache-2.0" ]
null
null
null
from pprint import pformat ds_obj_mcx_note = ('The MCX data returned back from \'dscl\' is a string nested in the attribute queried.\n' 'Settings can be filtered by using key filters.\n' 'Multiple values can be filtered for specific domains by comma seperating the values\n' 'Filter syntax examples:\n' ' - \'com.apple.MCX=\' will keep the preference domain \'com.apple.MCX\'.\n' ' - \'com.apple.MCX=com.apple.cachedaccounts.CreateAtLogin\' will keep the preference\n' ' domain value from the \'com.apple.MCX\' preference domain _specifically_.\n' ' - \'com.apple.MCX=com.apple.cachedaccounts.CreateAtLogin,com.apple.cachedaccounts.WarnOnCreate\'\n' ' will keep the two values for the \'com.apple.MCX\' preference domain.\n' 'Please note that filtering values is only done if the preference domain is also specified\n\n' 'In the example dictionary below:\n' ' - \'com.apple.MCX\' is referred to as the \'preference domain\'.\n' ' - \'com.apple.cachedaccounts.CreateAtLogin\' is referred to as the \'preference domain value\'.\n' ' This domain value should be taken from the \'mcx_preference_settings\' dictionary.\n\n') ds_obj_mcx_dict_example = {'com.apple.MCX': {'Forced': [{'mcx_preference_settings': {'com.apple.cachedaccounts.CreateAtLogin': True, 'com.apple.cachedaccounts.CreatePHDAtLogin': False, 'com.apple.cachedaccounts.WarnOnCreate': False}}]}, 'com.apple.dock': {'Forced': [{'mcx_preference_settings': {'AppItems-Raw': [], 'DocItems-Raw': [], 'contents-immutable': False, 'static-only': False}, 'mcx_union_policy_keys': [{'mcx_input_key_names': ['AppItems-Raw'], 'mcx_output_key_name': 'static-apps', 'mcx_remove_duplicates': True}, {'mcx_input_key_names': ['DocItems-Raw'], 'mcx_output_key_name': 'static-others', 'mcx_remove_duplicates': True}, {'mcx_input_key_names': ['MCXDockSpecialFolders-Raw'], 'mcx_output_key_name': 'MCXDockSpecialFolders', 'mcx_remove_duplicates': True}]}]}} ds_obj_mcx = f'{ds_obj_mcx_note}{pformat(ds_obj_mcx_dict_example)}'
91.540541
138
0.437851
0
0
0
0
0
0
0
0
1,723
0.50871
057149c969c7c699e7d3de460f67852d23e83cd2
2,622
py
Python
monitors/dns-monitor.py
CompeteNZ/Minotaur
47afb2ed7bd9c21d1adf8cf4fd0d5396c80fd803
[ "MIT" ]
null
null
null
monitors/dns-monitor.py
CompeteNZ/Minotaur
47afb2ed7bd9c21d1adf8cf4fd0d5396c80fd803
[ "MIT" ]
null
null
null
monitors/dns-monitor.py
CompeteNZ/Minotaur
47afb2ed7bd9c21d1adf8cf4fd0d5396c80fd803
[ "MIT" ]
null
null
null
# DESCRIPTION # Run dns check and store the results in the db # monitor_source = host address # DEPENDENCIES # Install python # Install mysql.connector "python -m pip install mysql-connector-python" # Install dotenv "python -m pip install python-dotenv" # Install nslookup "python -m pip install nslookup" # HOW TO RUN # run cmd "python <script>" # automate on windows using a bat file with command "python <script>" see batch folder for batch files # automate on linux using cron with command "python <script>" # TODO #!/usr/bin/env python3 import os import sys import datetime import mysql.connector from nslookup import Nslookup from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv()) try: conn = mysql.connector.connect( user=os.getenv("DB_USERNAME"), password=os.getenv("DB_PASSWORD"), host=os.getenv("DB_HOST"), port=int(os.getenv("DB_PORT")), database=os.getenv("DB_DATABASE") ) except mysql.connector.Error as err: print(err) sys.exit(1) # get db connection cursor cursor = conn.cursor() # get list of ping monitors from the db try: sql = "SELECT monitor_id,monitor_type,monitor_source FROM monitors WHERE monitor_type=%s AND monitor_state=%s" val = ('dns', 1) cursor.execute(sql, val) except mysql.connector.Error as err: print(err) sys.exit(1) results = cursor.fetchall() dns_query = Nslookup() for (monitor_id, monitor_type, monitor_source) in results: ips_record = dns_query.dns_lookup(monitor_source) #print(ips_record.response_full, ips_record.answer) if not ips_record.answer: # host unknown (e.g. domain name lookup error) # store result in the db as -1 try: sql = "INSERT INTO monitor_results (monitor_id, monitor_type, monitor_source, monitor_result) VALUES (%s, %s, %s, %s)" val = (monitor_id, monitor_type, monitor_source, -1) cursor.execute(sql, val) except mysql.connector.Error as err: print(err) continue else: # UPDATE - NOW NOT SAVING OK RESULTS ONLY ERRORS (saves on database etc) # host found (e.g. resolved IP address) # store result in the db #try: # sql = "INSERT INTO monitor_results (monitor_id, monitor_type, monitor_source, monitor_result) VALUES (%s, %s, %s, %s)" # val = (monitor_id, monitor_type, monitor_source, 1) # cursor.execute(sql, val) #except mysql.connector.Error as err: # print(err) continue # commit db transaction and close conection conn.commit() conn.close()
30.137931
131
0.676583
0
0
0
0
0
0
0
0
1,445
0.551106
0571570e4ea6cc0ac98e3e348473a3292c2d2151
797
py
Python
program_param.py
duszek123/Example_Project
72e65ce5f31774c250cf388dbfb0a6d2a6b3ffeb
[ "MIT" ]
null
null
null
program_param.py
duszek123/Example_Project
72e65ce5f31774c250cf388dbfb0a6d2a6b3ffeb
[ "MIT" ]
null
null
null
program_param.py
duszek123/Example_Project
72e65ce5f31774c250cf388dbfb0a6d2a6b3ffeb
[ "MIT" ]
null
null
null
import torch import cv2 #data dir with train i validation picture data_dir = '/home/pawel/Pulpit/picture_data' #source video stream camera_source = '/dev/video2' #flag, false, not used save = False #input picture size (px) input_size = (224,224) size_pict = input_size[0] #part of the data from the database intended for training batch_size = 8 #numb of process core num_workers = 4 #numb of train epoch epoch_num = 2 #old variable not use frame_iterator = 0 #flag, not use flag_start = False #use device in project - cpu or gpu(cuda) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") #using video stream in project video_stream = vid = cv2.VideoCapture(camera_source) if not video_stream.isOpened(): raise ValueError("Unable to open video source", camera_source)
24.151515
71
0.756587
0
0
0
0
0
0
0
0
401
0.503137
0572b494de8de54123140e45c9c69a2ed0fbad3b
501
py
Python
models/fields/__init__.py
hengwei-chan/3D_SBDD
eda6d51aaf01ef25581a46920a25161678fab76d
[ "MIT" ]
67
2021-12-02T05:53:44.000Z
2022-03-31T07:21:26.000Z
models/fields/__init__.py
hengwei-chan/3D_SBDD
eda6d51aaf01ef25581a46920a25161678fab76d
[ "MIT" ]
13
2021-12-05T14:23:46.000Z
2022-03-25T21:07:20.000Z
models/fields/__init__.py
hengwei-chan/3D_SBDD
eda6d51aaf01ef25581a46920a25161678fab76d
[ "MIT" ]
16
2022-01-11T11:48:24.000Z
2022-03-27T19:20:58.000Z
from .classifier import SpatialClassifier def get_field(config, num_classes, num_indicators, in_channels): if config.name == 'classifier': return SpatialClassifier( num_classes = num_classes, num_indicators = num_indicators, in_channels = in_channels, num_filters = config.num_filters, k = config.knn, cutoff = config.cutoff, ) else: raise NotImplementedError('Unknown field: %s' % config.name)
31.3125
68
0.628743
0
0
0
0
0
0
0
0
31
0.061876
0572d30a3c1b204b7741919022f74dedf09c6c6c
1,693
py
Python
get_data/__init__.py
BrunoASNascimento/inmet_api
ec663543b1f6a77900166df2e6bf64d1f26f910d
[ "MIT" ]
null
null
null
get_data/__init__.py
BrunoASNascimento/inmet_api
ec663543b1f6a77900166df2e6bf64d1f26f910d
[ "MIT" ]
null
null
null
get_data/__init__.py
BrunoASNascimento/inmet_api
ec663543b1f6a77900166df2e6bf64d1f26f910d
[ "MIT" ]
null
null
null
from datetime import datetime, timedelta import requests import pandas as pd def cleaner_data(data): columns = ['ESTACAO', 'LATITUDE', 'LONGITUDE', 'ALTITUDE', 'ANO', 'MES', 'DIA', 'HORA', 'TEMP', 'TMAX', 'TMIN', 'UR', 'URMAX', 'URMIN', 'TD', 'TDMAX', 'TDMIN', 'PRESSAONNM', 'PRESSAONNM_MAX', 'PRESSAONNM_MIN', 'VELVENTO', 'DIR_VENTO', 'RAJADA', 'RADIACAO', 'PRECIPITACAO'] df = pd.DataFrame(columns=columns) for i in range(1, len(data)): try: dado = [data[i].split(' ')] dado = pd.DataFrame(dado, columns=columns) # print(dado) df = df.append(dado) except: pass str_float = ['LATITUDE', 'LONGITUDE', 'ALTITUDE', 'TEMP', 'TMAX', 'TMIN', 'UR', 'URMAX', 'URMIN', 'TD', 'TDMAX', 'TDMIN', 'PRESSAONNM', 'PRESSAONNM_MAX', 'PRESSAONNM_MIN', 'VELVENTO', 'DIR_VENTO', 'RAJADA', 'RADIACAO', 'PRECIPITACAO'] str_int = ['ANO', 'MES', 'DIA', 'HORA'] df[str_float] = df[str_float].astype('float') df[str_int] = df[str_int].astype('int64') print(df.head) def get_data(): date_now = datetime.utcnow() date_delta = date_now - timedelta(days=1) date_str = date_delta.strftime("%Y%m%d") for hour in range(0, 24): print(hour) url = ("http://master.iag.usp.br/fig_dados/OBSERVACAO/INMET/UND_inmet_" + str(date_str)+str(hour).zfill(2)+"00.txt") # print(url) response = requests.request("GET", url) data = response.text.split('\n') print(len(data)) cleaner_data(data) return data cleaner_data(get_data())
32.557692
151
0.559362
0
0
0
0
0
0
0
0
546
0.322504
05757df9e7e0717b064bec504f59f7b4d4c67024
7,795
py
Python
get_both_current_and_active_power.py
wed35/Two-dimensional-Images-of-Current-and-Active-Power-Signals-for-Elevator-Condition-Recognition
d8a01915f46457257bda7c699fe36e7bdf4f907d
[ "MIT" ]
null
null
null
get_both_current_and_active_power.py
wed35/Two-dimensional-Images-of-Current-and-Active-Power-Signals-for-Elevator-Condition-Recognition
d8a01915f46457257bda7c699fe36e7bdf4f907d
[ "MIT" ]
null
null
null
get_both_current_and_active_power.py
wed35/Two-dimensional-Images-of-Current-and-Active-Power-Signals-for-Elevator-Condition-Recognition
d8a01915f46457257bda7c699fe36e7bdf4f907d
[ "MIT" ]
null
null
null
#%% # import libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt from datetime import datetime import os import time %matplotlib inline #%% import pymysql def Select(tableName, start, end) : sql_query = """ SELECT DataSavedTime, Item005 FROM """+tableName+""" WHERE DataSavedTime between '"""+start+"""' and '"""+end+""" ' ORDER BY DataSavedTime ASC """ # original : """ WHERE DataSavedTime between '2019-07-05 08:48:00.000' and '2019-07-05 09:47:59.900' ORDER BY DataSavedTime ASC """ conn = pymysql.connect(host='192.168.100.120', user='root', password='1234', database='UYeG_Cloud_New', charset='utf8') curs = conn.cursor() curs.execute(sql_query) rows = curs.fetchall() list_for_data = list(rows) df_Curr = pd.DataFrame(list_for_data).fillna(0) df_Curr.columns=['DataSavedTime', 'Item005'] return df_Curr #%% def split_time(str_time): split_colon = str_time.split(':') # [hh, mm, ss.ms] split_dot = split_colon[2].split('.') # [ss, ms] time_list = [] for i in range(len(split_colon)-1): time_list.append(split_colon[i]) time_list.append(split_dot[0]) if len(split_dot)>1: time_list.append(str(int(int(split_dot[1])/100000))) else: time_list.append('0') return time_list def check_second(time_list, mode): temp0, temp1, temp2 = int(time_list[0]), int(time_list[1]), int(time_list[2]) ms = time_list[3] if mode=='-1': temp2 = int(time_list[2])-1 if temp2<0: temp1 = int(time_list[1]) - 1 if temp1<0: temp0 -= 1 temp1 += 59 temp2 += 59 if mode=='+1': temp2 = int(time_list[2])+1 if temp2>59: temp1 += 1 if temp1>59: temp0 += 1 temp1 -= 59 temp2 -=59 time_list = [str(temp0), str(temp1), str(temp2), ms] return time_list def bar_time(time_set): # make time format as hh_mm_ss_ms split_colon = time_set.split(':') hh = split_colon[0] mm = split_colon[1] split_dot = split_colon[2].split('.') if len(split_dot)==1: ss = split_dot[0] ms = str(0) else: ss = split_dot[0] ms = str(int(int(split_dot[1])/100000)) return hh+'_'+mm+'_'+ss+'_'+ms def colon_time(time_elements): # make time format as hh:mm:ss.ms ''' PARAMETER => ['hh', 'mm', 'ss', 'ms'] ''' if time_elements[3]=='0': return time_elements[0]+':'+time_elements[1]+':'+time_elements[2] else: return time_elements[0]+':'+time_elements[1]+':'+time_elements[2]+'.'+time_elements[3] #%% # get current check_time = time.time() start = '2019-08-09 12:03:00.000' end = '2019-08-09 12:03:50.000' df_cur = Select('HisItemCurr', start, end) # 600 data per minute plt.plot(df_cur['DataSavedTime'], df_cur['Item005']) plt.ylim(-10, 100) plt.show() #cur_result.to_csv('C:/Users/haeng/Desktop/test'+'.csv') print('time duration = ', time.time()-check_time) #%% # get valid current values check_time = time.time() cur_date, cur_values = [], [] i = 1 temp_cnt = [] while i in range(1, len(df_cur['Item005'])): if df_cur['Item005'][i-1]==0 and df_cur['Item005'][i]!=0: cnt_zero = 0 temp_date = [] temp_values = [] temp_date.append(df_cur['DataSavedTime'][i-1]) temp_values.append(df_cur['Item005'][i-1]) j = i while j in range(i, len(df_cur['Item005'])): if df_cur['Item005'][j]!=0 and j+1<=len(df_cur['Item005']-1): if df_cur['Item005'][j+1]==0: cnt_zero += 1 else: cnt_zero = 0 elif df_cur['Item005'][j]==0 and j+1<=len(df_cur['Item005']-1): if df_cur['Item005'][j+1]!=0: cnt_zero = 0 else: cnt_zero += 1 if cnt_zero>41: temp_cnt.append(cnt_zero) cnt_zero = 0 break temp_date.append(df_cur['DataSavedTime'][j]) temp_values.append(df_cur['Item005'][j]) j += 1 temp_date.append(df_cur['DataSavedTime'][j]) temp_values.append(df_cur['Item005'][j]) i = j cur_date.append(temp_date) cur_values.append(temp_values) i += 1 for i in range(len(cur_date)): del cur_date[i][len(cur_date[i])-40:] del cur_values[i][len(cur_values[i])-40:] print('time duration: ', time.time()-check_time) #%% # split current date start_date, start_time, end_time = [], [], [] # hh:mm:ss.ms start_time_bar, end_time_bar = [], [] # hh_mm_ss_ms for i in range(len(cur_date)): start_date.append(str(cur_date[i][0]).split()[0]) start_t = str(cur_date[i][0]).split()[1] start_time.append(start_t) start_time_bar.append(bar_time(start_t)) end_t = str(cur_date[i][len(cur_date[i])-1]).split()[1] end_time.append(end_t) end_time_bar.append(bar_time(end_t)) print(start_date) print(start_time) print(start_time_bar) #%% # set file name to save csv and png file_names = [] for i in range(len(cur_date)): file_name = start_date[i]+'_'+start_time_bar[i] file_names.append(file_name) print(file_names) #%% # save current csv and png for i in range(len(cur_date)): cur_start = start_date[i]+' '+start_time[i][:12] cur_end = start_date[i]+' '+end_time[i][:12] df_cur_save = Select('HisItemCurr', cur_start, cur_end) df_cur_save.to_csv('./elevator_label/'+file_names[i]+'.csv') plt.figure() plt.plot(df_cur_save['DataSavedTime'], df_cur_save['Item005']) plt.ylim(-10, 100) plt.savefig('./elevator_label/'+file_names[i]+'.png') plt.close() #%% # get active power by using time of current # start_, end_ --> xx:xx:xx.xxx df_act_dict = {} for i in range(len(cur_date)): # change start second by substracting 1 start_new = check_second([start_time_bar[i].split('_')[0], start_time_bar[i].split('_')[1], start_time_bar[i].split('_')[2], start_time_bar[i].split('_')[3]], '-1') s_temp = start_date[i]+' '+colon_time(start_new) # change end second by adding 1 end_new = check_second([end_time_bar[i].split('_')[0], end_time_bar[i].split('_')[1], end_time_bar[i].split('_')[2], end_time_bar[i].split('_')[3]], '+1') e_temp = start_date[i]+' '+colon_time(end_new) check_time = time.time() df_act = Select('HisItemAct', s_temp, e_temp) # I don't know why this loop takes a long time in this part df_act_dict[i] = df_act plt.figure() plt.plot(df_act['DataSavedTime'], df_act['Item005']) plt.ylim(-10, 100) plt.show() print('time duration(plot) = ', time.time()-check_time) #%% # get real active power time act_start_time, act_end_time = [], [] act_start_idx, act_end_idx = [], [] for z in range(len(cur_date)): #print(df_act_dict[z].shape) # 261, 111 #df_act_dict[z].to_csv('./elevator_label/active_raw_test'+str(z)+'.csv') for i in range(1, df_act_dict[z].shape[0]): if df_act_dict[z]['Item005'][i-1]==0 and df_act_dict[z]['Item005'][i]!=0: act_start_time.append(str(df_act_dict[z]['DataSavedTime'][i-1]).split()[1]) act_start_idx.append(i-1) break for i in range(df_act_dict[z].shape[0]-2, int(df_act_dict[z].shape[0]/2), -1): if df_act_dict[z]['Item005'][i]!=0 and df_act_dict[z]['Item005'][i+1]==0: act_end_time.append(str(df_act_dict[z]['DataSavedTime'][i+1]).split()[1]) act_end_idx.append(i+1) break print(act_start_idx) print(act_start_time) print(act_end_idx) print(act_end_time) #%% # save active power csv and png for i in range(len(cur_date)): df_act_save = df_act_dict[i][act_start_idx[i]:act_end_idx[i]+1] df_act_save.to_csv('./elevator_label/'+file_names[i]+'_active.csv') plt.figure() plt.plot(df_act_save['DataSavedTime'], df_act_save['Item005']) plt.ylim(-10, 100) plt.savefig('./elevator_label/'+file_names[i]+'_active.png') plt.close() #%%
29.194757
134
0.630276
0
0
0
0
0
0
0
0
1,823
0.233868
057648a66341634f2bd91398e33248914e65d08f
435
py
Python
src/pynorare/cli_util.py
concepticon/pynorare
3cf5ea2d1597c5acc84963f781ff49d96b4d7e02
[ "MIT" ]
null
null
null
src/pynorare/cli_util.py
concepticon/pynorare
3cf5ea2d1597c5acc84963f781ff49d96b4d7e02
[ "MIT" ]
5
2020-07-20T11:05:07.000Z
2022-03-11T15:51:52.000Z
src/pynorare/cli_util.py
concepticon/pynorare
3cf5ea2d1597c5acc84963f781ff49d96b4d7e02
[ "MIT" ]
null
null
null
from pyconcepticon import Concepticon from pynorare.dataset import get_dataset_cls def add_datasets(parser): parser.add_argument( 'dataset', nargs='+', help='select your dataset', type=str) def iter_datasets(args): for dsid in args.dataset: cls = get_dataset_cls(args.api.datasets[dsid].path.parent) yield cls(repos=args.norarepo, concepticon=Concepticon(args.repos.repos))
24.166667
81
0.691954
0
0
203
0.466667
0
0
0
0
33
0.075862
0576551dec71ed65de6452c0a4914168209bd3e8
2,987
py
Python
braille/lang.py
galou/braille-converter
bf3b898c212a5067d61ce7dc6828df227ddd9db5
[ "MIT" ]
24
2015-04-03T10:24:18.000Z
2022-01-29T10:50:34.000Z
braille/lang.py
galou/braille-converter
bf3b898c212a5067d61ce7dc6828df227ddd9db5
[ "MIT" ]
2
2016-03-28T04:10:14.000Z
2017-02-22T23:25:12.000Z
braille/lang.py
galou/braille-converter
bf3b898c212a5067d61ce7dc6828df227ddd9db5
[ "MIT" ]
10
2015-05-06T06:26:21.000Z
2019-11-13T23:11:11.000Z
# Copyright 2012 Jonathan Paugh # See COPYING for license details ''' Functions that deal with lang files or rulesets ''' import ds import comp as cpl from .options import opt from .util import fwarn, do_re, gettype import os langdir = os.path.join(os.path.dirname(__file__), 'lang') if not os.path.isdir(langdir): raise IOError('Cannot load lang files; unknown dir "%s"' % langdir) #Cache of imported rulesets, indexed by lang name ruleset = { } def import_ruleset(lang='amer-2', comp=None, fresh=False): ''' loads the rules for the given language params: ------- lang='amer-2' Language to load. Defaults to American Grade 2. This consists of solely of alphanumeric characters and hyphens. comp=True - Compile the ruleset to the most succint form (brl). The default is set by commandline-argument. fresh=False - Get a fresh version of the ruleset, from file, rather than relying on the cache. Defaults False. If you change the comp option (or change the lang file), you must set this to True to see your changes. ''' #Don't be grumpy about underscores. lang = lang.replace('_', '-') rules = [] #prefer cached version first if not fresh and lang in ruleset: return ruleset[lang] #Set default comp if comp == None: comp = opt('comp') #Import standard (international) rules first if (not lang == 'standard' and not 'standard' in ruleset): import_ruleset('standard') cxt = ds.Context() cxt.fname = os.path.join(langdir, lang) cxt.lineno = 0 try: with open(cxt.fname) as lfile: for line in lfile: cxt.lineno += 1 rule = __parse_rule(cxt, line, comp) if rule: rules.append(rule) except IOError as e: raise rules.sort(cmp=__cmp_rules) # cache ruleset for this language ruleset[lang] = rules if not lang == 'standard': rules.extend(ruleset['standard']) return rules def __parse_rule(cxt, line, comp=False): ''' parse a string into a line tuple. ''' line = line.strip() if (not line) or line[0] == '#': return None rule = do_re(ds.patt.rule, line) if not rule: fwarn(cxt, 'Invalid Rule "%s"' % line) return None typ = rule['type'].lower() rule['type'] = typ if not typ in ds.types: fwarn(cxt, 'Unknown rule type: '+typ) return None if not rule['priority']: rule['priority'] = 1 #Compile the rule. (Convert it's brl to minimum form) fun = gettype(rule, 'comp') if comp or fun == cpl.dotify or fun == cpl.prefix: fun(cxt, rule) else: #The minimum we must do is dotify any dots cpl.try_dotify(cxt, rule) return rule def __cmp_rules(x, y): ''' cmp function for the rules. ''' if gettype(x, 'order') < gettype(y, 'order'): return -1 elif gettype(x, 'order') > gettype(y, 'order'): return 1 elif x['priority'] < y['priority']: return -1 elif x['priority'] > y['priority']: return 1 else: # Longer strings first return -1 * cmp(len(x['prn']), len(y['prn']))
23.706349
69
0.657181
0
0
0
0
0
0
0
0
1,349
0.451624
057756ea7512bea24b4425c570ad661d5b1d078c
118
py
Python
Codeforces/B_Simple_Game.py
anubhab-code/Competitive-Programming
de28cb7d44044b9e7d8bdb475da61e37c018ac35
[ "MIT" ]
null
null
null
Codeforces/B_Simple_Game.py
anubhab-code/Competitive-Programming
de28cb7d44044b9e7d8bdb475da61e37c018ac35
[ "MIT" ]
null
null
null
Codeforces/B_Simple_Game.py
anubhab-code/Competitive-Programming
de28cb7d44044b9e7d8bdb475da61e37c018ac35
[ "MIT" ]
null
null
null
n,m=map(int,input().split()) mid=n//2 if n==1 and m==1: print("1") elif mid<m: print(m-1) else: print(m+1)
14.75
28
0.542373
0
0
0
0
0
0
0
0
3
0.025424
057a549b59e9c893c4abd50247ba001cdab7fac2
966
py
Python
toughradius/tests/test_base.py
geosson/GSRadius
5870e3d055e8366f98b8e65220a1520b5da22f6d
[ "Apache-2.0" ]
1
2019-05-12T15:06:58.000Z
2019-05-12T15:06:58.000Z
toughradius/tests/test_base.py
geosson/GSRadius
5870e3d055e8366f98b8e65220a1520b5da22f6d
[ "Apache-2.0" ]
null
null
null
toughradius/tests/test_base.py
geosson/GSRadius
5870e3d055e8366f98b8e65220a1520b5da22f6d
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python #coding:utf-8 from toughlib import config as iconfig import os import requests class TestMixin: MANAGE_URL = 'http://127.0.0.1:18160' def sub_path(self,path): return "%s%s"%(TestMixin.MANAGE_URL,path) def init_rundir(self): try: os.mkdir("/tmp/toughradius") except: print "/tmp/toughradius exists" def init_config(self): testfile = os.path.join(os.path.abspath(os.path.dirname(__file__)),"test.json") self.config = iconfig.find_config(testfile) def admin_login(self): req = requests.Session() r = req.post(self.sub_path("/admin/login"),data=dict(username="admin",password="root")) if r.status_code == 200: rjson = r.json() msg = rjson['msg'] if rjson['code'] == 0: return req else: raise Exception(msg) else: r.raise_for_status()
27.6
95
0.575569
864
0.89441
0
0
0
0
0
0
156
0.161491
057b75bb649e28b716661271413ac2187e4d17f1
48
py
Python
game/data/components/__init__.py
UnidayStudio/Easy-2D-Game-Engine
1a8501cba538d7542b0e24bf64eead388085480f
[ "MIT" ]
8
2019-12-15T22:32:30.000Z
2021-06-14T07:38:51.000Z
game/data/components/__init__.py
UnidayStudio/Easy-2D-Game-Engine
1a8501cba538d7542b0e24bf64eead388085480f
[ "MIT" ]
null
null
null
game/data/components/__init__.py
UnidayStudio/Easy-2D-Game-Engine
1a8501cba538d7542b0e24bf64eead388085480f
[ "MIT" ]
2
2020-09-10T17:34:23.000Z
2021-03-11T09:26:26.000Z
from game.data.components.TestComponent import *
48
48
0.854167
0
0
0
0
0
0
0
0
0
0
057bdb050500b53da7e385ff2282c3ebb232fe64
121
py
Python
hcaptcha/__init__.py
yunusbyrak/py-hcaptcha
f429bfaba7619c2ac255ae101423d72c2866aa09
[ "MIT" ]
1
2022-01-09T23:49:03.000Z
2022-01-09T23:49:03.000Z
hcaptcha/__init__.py
bryonpokemon/py-hcaptcha
92f723c8f5180d921731d7d04deb637099514a2e
[ "MIT" ]
null
null
null
hcaptcha/__init__.py
bryonpokemon/py-hcaptcha
92f723c8f5180d921731d7d04deb637099514a2e
[ "MIT" ]
1
2022-01-09T23:49:03.000Z
2022-01-09T23:49:03.000Z
from .challenges import Challenge from .solvers import Solver from .agents import random_agent from .exceptions import *
24.2
33
0.826446
0
0
0
0
0
0
0
0
0
0
057c321a1c38497a94f1e9f85d9de7c4b624cddb
10,869
py
Python
mscode/xp/general_comparison.py
cohenjer/mscode
e761c4af0227c386bdc7d22a55a2218486faf708
[ "MIT" ]
null
null
null
mscode/xp/general_comparison.py
cohenjer/mscode
e761c4af0227c386bdc7d22a55a2218486faf708
[ "MIT" ]
null
null
null
mscode/xp/general_comparison.py
cohenjer/mscode
e761c4af0227c386bdc7d22a55a2218486faf708
[ "MIT" ]
null
null
null
# recovery (and error) vs noise for all algorithms # recovery (and error) vs condB for all algorithms # recovery vs (k,d) for all algorithms (heatmap) # todo: also condD? # Questions: # - test two distributions for X: Gaussian, and decreasing # - to choose lambda(s), we fix according to average best one from a set of experiments using the same settings on the fly. The grid is very coarse. In practice, use cross-validation. # - We initialize with 1 zero init, cf init tests for more details # Reasonable dimensions for reasonable runtime import numpy as np from matplotlib import pyplot as plt from itertools import combinations, product import shelve import pandas as pd from mscode.utils.utils import count_support, redundance_count, find_lambda from mscode.methods.algorithms import iht_mix, homp, omp, ls_kn_supp, pseudo_trick, brute_trick, ista_mix, ista, admm_mix from mscode.utils.generator import gen_mix, initialize import plotly.express as px # Random seeding np.random.seed(seed=0) # Problem parameters k = 5 #2 r = 6 #2 n = 50 #10 m = 50 #20 d = 100 #50 #noise = 0.03 # 0.03 SNR = 20 # dB cond = 2*1e2 distr = 'Uniform' tol = 1e-6 # We run the tests several times since performances are very problem-dependent Nbdata = 50 # Recovery and error versus noise grid_SNR = [1000, 100, 50, 40, 30, 20, 15, 10, 5, 2, 0] #[40, 20] grid_lambda = [1e-5, 1e-4, 1e-3, 1e-2, 1e-1] # Store results in Pandas DataFrame store_pd = pd.DataFrame(columns=["xp", "value", "algorithm", "error type", "SNR", "lambda", "k", "r", "d", "m", "n", "cond"]) for SNR in grid_SNR: print('SNR', SNR, 'dB') # run 3 checks for lambda, to find a reasonable value store_lamb = [] store_lamb_m = [] for iter in range(3): store_lamb_m.append(find_lambda((m,n,d,k,r,SNR,cond), grid_lambda, 'Fista_m')) store_lamb.append(find_lambda((m,n,d,k,r,SNR,cond), grid_lambda, 'Fista')) lamb = np.median(store_lamb) lamb_m = np.median(store_lamb_m) print('lambda ratio is', lamb, 'and for mixed', lamb_m) for j in range(Nbdata): # Generate data Y, Ytrue, D, B, X, S, sig, condB = gen_mix([m, n, d, r], k, snr=SNR, cond=cond, distr = distr) # The default zero init X0 = initialize([d,r], distr = 'Zeros') # Running algorithms X_istam, _, err_ista_m, S_ista_m = ista_mix(Y, D, B, lamb_m, k=k, X0=X0, verbose=False, tol=tol) X_ista, _, err_ista, S_ista = ista(Y, D, B, lamb, k=k, X0=X0, verbose=False, tol=tol) X_homp, err_homp, S_homp = homp(Y, D, B, k, X0, tol=tol) X_iht, err_iht, S_iht = iht_mix(Y, D, B, k, X0, tol=tol) X_trick, err_trick, S_trick = pseudo_trick(Y, D, B, k) # Storing results dic={ 'xp':10*['XP1'], 'value':[count_support(S, S_ista_m), count_support(S, S_ista), count_support(S, S_homp), count_support(S, S_iht), count_support(S, S_trick)]+ [np.linalg.norm(X - X_istam), np.linalg.norm(X - X_ista), np.linalg.norm(X - X_homp), np.linalg.norm(X - X_iht), np.linalg.norm(X - X_trick)], 'algorithm': 2*['Mixed-FISTA', 'Block-FISTA', 'HOMP', 'IHT', 'TrickOMP'], "error type": 5*['support recovery']+5*['reconstruction error'], "SNR":10*[SNR], "lambda":2*[lamb, lamb_m,0,0,0], "k":10*[k], "r":10*[r], "d":10*[d], "m":10*[m], "n":10*[n], "cond":10*[condB], } store_pd = store_pd.append(pd.DataFrame(dic), ignore_index=True) ## Recovery and error versus conditionning SNR = 20 grid_cond = [1, 10, 50, 100, 5*1e2, 1e3, 5*1e3, 1e4, 5*1e4, 1e5] for cond in grid_cond: print('cond', cond) # run 3 checks for lambda, to find a reasonable value store_lamb = [] store_lamb_m = [] for iter in range(3): store_lamb_m.append(find_lambda((m,n,d,k,r,SNR,cond), grid_lambda, 'Fista_m')) store_lamb.append(find_lambda((m,n,d,k,r,SNR,cond), grid_lambda, 'Fista')) lamb = np.median(store_lamb) lamb_m = np.median(store_lamb_m) print('lambda ratio is', lamb, 'and for mixed', lamb_m) for j in range(Nbdata): # Generate data Y, Ytrue, D, B, X, S, sig, condB = gen_mix([m, n, d, r], k, snr=SNR, cond=cond, distr=distr) # The default zero init X0 = initialize([d,r], distr = 'Zeros') # Running algorithms X_istam, _, err_ista_m, S_ista_m = ista_mix(Y, D, B, lamb_m, k=k, X0=X0, verbose=False, tol=tol) X_ista, _, err_ista, S_ista = ista(Y, D, B, lamb, k=k, X0=X0, verbose=False, tol=tol) X_homp, err_homp, S_homp = homp(Y, D, B, k, X0, tol=tol) X_iht, err_iht, S_iht = iht_mix(Y, D, B, k, X0, tol=tol) X_trick, err_trick, S_trick = pseudo_trick(Y, D, B, k) dic={ 'xp':10*['XP2'], 'value':[count_support(S, S_ista_m), count_support(S, S_ista), count_support(S, S_homp), count_support(S, S_iht), count_support(S, S_trick)]+ [np.linalg.norm(X - X_istam), np.linalg.norm(X - X_ista), np.linalg.norm(X - X_homp), np.linalg.norm(X - X_iht), np.linalg.norm(X - X_trick)], 'algorithm': 2*['Mixed-FISTA', 'Block-FISTA', 'HOMP', 'IHT', 'TrickOMP'], "error type": 5*['support recovery']+5*['reconstruction error'], "SNR":10*[SNR], "lambda":2*[lamb, lamb_m,0,0,0], "k":10*[k], "r":10*[r], "d":10*[d], "m":10*[m], "n":10*[n], "cond":10*[np.round(condB,3)], } store_pd = store_pd.append(pd.DataFrame(dic), ignore_index=True) ## Recovery and error versus (k,d) cond = 5*1e2 grid_k = [1, 2, 5, 10, 20] grid_d = [20, 50, 100, 200, 400] for d in grid_d: for k in grid_k: print('(d,k) is', d, k) # run 3 checks for lambda, to find a reasonable value store_lamb = [] store_lamb_m = [] for iter in range(3): store_lamb_m.append(find_lambda((m,n,d,k,r,SNR,cond), grid_lambda, 'Fista_m')) store_lamb.append(find_lambda((m,n,d,k,r,SNR,cond), grid_lambda, 'Fista')) lamb = np.median(store_lamb) lamb_m = np.median(store_lamb_m) print('lambda ratio is', lamb, 'and for mixed', lamb_m) for j in range(Nbdata): # Generate data Y, Ytrue, D, B, X, S, sig, condB = gen_mix([m, n, d, r], k, snr=SNR, cond=cond, distr=distr) # The default zero init X0 = initialize([d,r], distr = 'Zeros') # Running algorithms X_istam, _, err_ista_m, S_ista_m = ista_mix(Y, D, B, lamb_m, k=k, X0=X0, verbose=False, tol=tol) X_ista, _, err_ista, S_ista = ista(Y, D, B, lamb, k=k, X0=X0, verbose=False, tol=tol) X_homp, err_homp, S_homp = homp(Y, D, B, k, X0, tol=tol) X_iht, err_iht, S_iht = iht_mix(Y, D, B, k, X0, tol=tol) X_trick, err_trick, S_trick = pseudo_trick(Y, D, B, k) # Storing results dic={ 'xp':10*['XP3'], 'value':[count_support(S, S_ista_m), count_support(S, S_ista), count_support(S, S_homp), count_support(S, S_iht), count_support(S, S_trick)]+ [np.linalg.norm(X - X_istam), np.linalg.norm(X - X_ista), np.linalg.norm(X - X_homp), np.linalg.norm(X - X_iht), np.linalg.norm(X - X_trick)], 'algorithm': 2*['Mixed-FISTA', 'Block-FISTA', 'HOMP', 'IHT', 'TrickOMP'], "error type": 5*['support recovery']+5*['reconstruction error'], "SNR":10*[SNR], "lambda":2*[lamb, lamb_m,0,0,0], "k":10*[k], "r":10*[r], "d":10*[d], "m":10*[m], "n":10*[n], "cond":10*[condB], } store_pd = store_pd.append(pd.DataFrame(dic), ignore_index=True) df1 = store_pd[store_pd.xp=='XP1'] df2 = store_pd[store_pd.xp=='XP2'] df3 = store_pd[store_pd.xp=='XP3'] fig = px.box(df1[df1['error type']=='support recovery'], x='SNR', y='value', facet_col='algorithm', color='algorithm', title="Support recovery versus SNR", labels={'value':'Support recovery'}) fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1])) fig.update_xaxes(type='category') fig.update_layout( font_family="HelveticaBold", font_size=15, autosize=False, width=1000, height=400, yaxis=dict(zeroline=False, gridcolor='rgb(233,233,233)'), yaxis2=dict(zeroline=False, gridcolor='rgb(233,233,233)'), yaxis3=dict(zeroline=False, gridcolor='rgb(233,233,233)'), yaxis4=dict(zeroline=False, gridcolor='rgb(233,233,233)'), yaxis5=dict(zeroline=False, gridcolor='rgb(233,233,233)'), paper_bgcolor="white",#'rgb(233,233,233)', plot_bgcolor="white",#'rgb(233,233,233)', showlegend=False, ) fig.show() fig2 = px.box(df2[df2['error type']=='support recovery'], x='cond', y='value', color='algorithm', facet_col='algorithm', title="Support recovery versus conditionning of B", labels={'value':'Support recovery'}) fig2.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1])) fig2.update_xaxes(type='category') fig2.update_layout( font_family="HelveticaBold", font_size=15, autosize=False, width=1000, height=400, yaxis=dict(zeroline=False, gridcolor='rgb(233,233,233)'), yaxis2=dict(zeroline=False, gridcolor='rgb(233,233,233)'), yaxis3=dict(zeroline=False, gridcolor='rgb(233,233,233)'), yaxis4=dict(zeroline=False, gridcolor='rgb(233,233,233)'), yaxis5=dict(zeroline=False, gridcolor='rgb(233,233,233)'), paper_bgcolor="white",#'rgb(233,233,233)', plot_bgcolor="white",#'rgb(233,233,233)', showlegend=False, ) fig2.show() # Normalizing the support recovery scores fig3=px.density_heatmap(df3[df3['error type']=='support recovery'], x='d', y='k', z='value', facet_col='algorithm', color_continuous_scale='Viridis', histfunc="avg", labels={'value':'Support recovery'}, title='Recovery for varying sparsity and dictionary size') fig3.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1])) fig3.update_xaxes(type='category') fig3.update_yaxes(type='category') fig3.update_layout( font_family="HelveticaBold", font_size=15, autosize=False, width=1000, height=310, paper_bgcolor="white",#'rgb(233,233,233)', plot_bgcolor="white",#'rgb(233,233,233)', ) fig3.show() year = 2021 month = 10 day = 20 path = '../..' stor_name = '{}-{}-{}'.format(year,month,day) #store_pd.to_pickle('{}/data/XP1/{}_results'.format(path,stor_name)) #fig.write_image('{}/data/XP1/{}_plot1.pdf'.format(path,stor_name)) #fig2.write_image('{}/data/XP1/{}_plot2.pdf'.format(path,stor_name)) #fig3.write_image('{}/data/XP1/{}_plot3.pdf'.format(path,stor_name)) # for Frontiers export #fig.write_image('{}/data/XP1/{}_plot1.jpg'.format(path,stor_name)) #fig2.write_image('{}/data/XP1/{}_plot2.jpg'.format(path,stor_name)) #fig3.write_image('{}/data/XP1/{}_plot3.jpg'.format(path,stor_name)) # to load data #store_pd = pd.read_pickle('{}/data/XP1/{}_results'.format(path,stor_name))
44.004049
261
0.631153
0
0
0
0
0
0
0
0
3,440
0.316496
057c9190ccad439b376e3bce3f11d837eb5a4576
42
py
Python
tests/test_modules/simple_test_package/aa.py
ajylee/call_map
21e7684b0814eae6f16cd4bc75597dc4e9239ec0
[ "BSD-2-Clause" ]
20
2017-12-24T00:19:15.000Z
2021-11-15T07:42:25.000Z
tests/test_modules/simple_test_package/aa.py
ajylee/call_map
21e7684b0814eae6f16cd4bc75597dc4e9239ec0
[ "BSD-2-Clause" ]
1
2017-10-22T21:03:41.000Z
2017-12-24T04:26:22.000Z
tests/test_modules/simple_test_package/aa.py
ajylee/call_map
21e7684b0814eae6f16cd4bc75597dc4e9239ec0
[ "BSD-2-Clause" ]
2
2017-11-04T10:06:59.000Z
2019-08-01T22:24:49.000Z
from . import bb def foo(): bb.bar()
8.4
16
0.547619
0
0
0
0
0
0
0
0
0
0
057cd72af1308e0a81b1f8fd12ba9d1678f47b2d
1,262
py
Python
tests/fixtures.py
GustavoKatel/pushbullet-cli
e5102772752a97db539594b0d50b5effb36a22e2
[ "MIT" ]
176
2017-01-30T16:21:48.000Z
2022-02-10T05:32:57.000Z
tests/fixtures.py
GustavoKatel/pushbullet-cli
e5102772752a97db539594b0d50b5effb36a22e2
[ "MIT" ]
49
2017-01-21T20:27:03.000Z
2022-01-16T02:57:51.000Z
tests/fixtures.py
GustavoKatel/pushbullet-cli
e5102772752a97db539594b0d50b5effb36a22e2
[ "MIT" ]
21
2017-01-26T06:08:54.000Z
2022-01-04T19:53:25.000Z
import click import pytest from click.testing import CliRunner @pytest.yield_fixture def pb_api(mocker): from pushbullet_cli import app from tests.mock_pushbullet import MockPushBullet mock_pb = MockPushBullet() mocker.patch.object(app, "_get_pb", return_value=mock_pb) yield mock_pb @pytest.fixture def runner(pb_api): runner = CliRunner() return runner def wrap_runner_func(runner, func): def invoke(arg_list=[], should_raise=True, **kwargs): result = runner.invoke(func, arg_list, **kwargs) if should_raise: if result.exception is not None: raise result.exception assert result.exit_code == 0 return result return invoke @pytest.fixture def push(runner): from pushbullet_cli.app import push return wrap_runner_func(runner, push) @pytest.fixture def list_devices(runner): from pushbullet_cli.app import list_devices return wrap_runner_func(runner, list_devices) @pytest.fixture def list_pushes(runner): from pushbullet_cli.app import list_pushes return wrap_runner_func(runner, list_pushes) @pytest.fixture def set_key(runner): from pushbullet_cli.app import set_key return wrap_runner_func(runner, set_key)
21.033333
61
0.723455
0
0
219
0.173534
837
0.663233
0
0
9
0.007132
057dcb0e3d38cc7460f6b046f1c4949c4d391cb9
2,478
py
Python
sktime/transformations/hierarchical/tests/test_aggregate.py
biologioholic/sktime
9d0391a04b11d22bd783b452f01aa5b4529b41a2
[ "BSD-3-Clause" ]
1
2021-12-22T02:45:39.000Z
2021-12-22T02:45:39.000Z
sktime/transformations/hierarchical/tests/test_aggregate.py
biologioholic/sktime
9d0391a04b11d22bd783b452f01aa5b4529b41a2
[ "BSD-3-Clause" ]
null
null
null
sktime/transformations/hierarchical/tests/test_aggregate.py
biologioholic/sktime
9d0391a04b11d22bd783b452f01aa5b4529b41a2
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 -u # -*- coding: utf-8 -*- """Tests for hierarchical aggregator.""" # copyright: sktime developers, BSD-3-Clause License (see LICENSE file) __author__ = ["ciaran-g"] import pytest from sktime.transformations.hierarchical.aggregate import Aggregator from sktime.utils._testing.hierarchical import _bottom_hier_datagen # test for equal output with with named/unnamed indexes @pytest.mark.parametrize("flatten_single_levels", [True, False]) def test_aggregator_fit_transform_index(flatten_single_levels): """Tests fit_transform of aggregator function. This test asserts that the output of Aggregator using fit_transfrom() with a named multiindex is equal to an unnamed one. It also tests that Aggregator does not change the names of the input index in both cases. """ agg = Aggregator(flatten_single_levels=flatten_single_levels) X = _bottom_hier_datagen( no_bottom_nodes=3, no_levels=1, ) # named indexes X_agg = agg.fit_transform(X) msg = "Aggregator returns wrong index names." assert X_agg.index.names == X.index.names, msg # unnamed indexes X.index.rename([None] * X.index.nlevels, inplace=True) X_agg_unnamed = agg.fit_transform(X) assert X_agg_unnamed.index.names == X.index.names, msg msg = "Aggregator returns different output for named and unnamed indexes." assert X_agg.equals(X_agg_unnamed), msg # test that flatten_single_levels works as expected def test_aggregator_flatten(): """Tests Aggregator flattening single levels. This tests that the flatten_single_levels argument works as expected for a fixed example of a complicated hierarchy. """ agg = Aggregator(flatten_single_levels=False) agg_flat = Aggregator(flatten_single_levels=True) X = _bottom_hier_datagen( no_bottom_nodes=10, no_levels=4, random_seed=111, ) # aggregate without flattening X_agg = agg.fit_transform(X) # aggregate with flattening X_agg_flat = agg_flat.fit_transform(X) msg = ( "Aggregator without flattening should have 21 unique levels, " "with the time index removed, for random_seed=111." ) assert len(X_agg.droplevel(-1).index.unique()) == 21, msg msg = ( "Aggregator with flattening should have 17 unique levels, " "with the time index removed, for random_seed=111." ) assert len(X_agg_flat.droplevel(-1).index.unique()) == 17, msg
33.486486
80
0.717514
0
0
0
0
1,023
0.412833
0
0
1,175
0.474173
057e82bc7eee8bfd854f64e90c47dfe5089a763d
563
py
Python
doni/tests/unit/api/test_availability_window.py
ChameleonCloud/doni
e280a0fddf4ee7d2abb69ceed49a9728e88cf99b
[ "Apache-2.0" ]
null
null
null
doni/tests/unit/api/test_availability_window.py
ChameleonCloud/doni
e280a0fddf4ee7d2abb69ceed49a9728e88cf99b
[ "Apache-2.0" ]
49
2021-03-16T14:58:18.000Z
2022-03-14T22:06:36.000Z
doni/tests/unit/api/test_availability_window.py
ChameleonCloud/doni
e280a0fddf4ee7d2abb69ceed49a9728e88cf99b
[ "Apache-2.0" ]
null
null
null
from flask.testing import FlaskClient from doni.tests.unit import utils def test_list_availability_windows( mocker, user_auth_headers, client: "FlaskClient", database: "utils.DBFixtures" ): mock_authorize = mocker.patch("doni.api.availability_window.authorize") hw = database.add_hardware() res = client.get( f"/v1/hardware/{hw['uuid']}/availability", headers=user_auth_headers ) assert res.status_code == 200 assert res.json == { "availability": [], } assert mock_authorize.called_once_with("hardware:get")
29.631579
82
0.708703
0
0
0
0
0
0
0
0
140
0.248668
057ec8e5e224d55258d512334e2a91039899ab2c
747
py
Python
src/genui/generators/serializers.py
Tontolda/genui
c5b7da7c5a99fc16d34878e2170145ac7c8e31c4
[ "0BSD" ]
15
2021-05-31T13:39:17.000Z
2022-03-30T12:04:14.000Z
src/genui/generators/serializers.py
martin-sicho/genui
ea7f1272030a13e8e253a7a9b6479ac6a78552d3
[ "MIT" ]
3
2021-04-08T22:02:22.000Z
2022-03-16T09:10:20.000Z
src/genui/generators/serializers.py
Tontolda/genui
c5b7da7c5a99fc16d34878e2170145ac7c8e31c4
[ "0BSD" ]
5
2021-03-04T11:00:54.000Z
2021-12-18T22:59:22.000Z
""" serializers Created by: Martin Sicho On: 27-01-20, 17:00 """ from rest_framework import serializers from genui.utils.serializers import GenericModelSerializerMixIn from genui.compounds.serializers import MolSetSerializer from genui.projects.serializers import ProjectSerializer from . import models class GeneratorSerializer(GenericModelSerializerMixIn, serializers.HyperlinkedModelSerializer): className = GenericModelSerializerMixIn.className extraArgs = GenericModelSerializerMixIn.extraArgs project = ProjectSerializer(many=False) compounds = MolSetSerializer(many=True) class Meta: model = models.Generator fields = ('id', 'name', 'description', 'project', 'compounds', 'className', 'extraArgs')
29.88
96
0.781794
438
0.586345
0
0
0
0
0
0
130
0.174029
057f8e845bc31c86789aa18cb713245d93a393bc
5,898
py
Python
cccbr_methods/models.py
lelandpaul/cccbr_methods
8fce303d7d7fd178f1b371389a4cc318852e392a
[ "MIT" ]
null
null
null
cccbr_methods/models.py
lelandpaul/cccbr_methods
8fce303d7d7fd178f1b371389a4cc318852e392a
[ "MIT" ]
1
2021-12-13T20:44:46.000Z
2021-12-13T20:44:46.000Z
cccbr_methods/models.py
lelandpaul/cccbr_methods
8fce303d7d7fd178f1b371389a4cc318852e392a
[ "MIT" ]
null
null
null
from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import create_engine from datetime import datetime, timedelta from sqlalchemy import Table, Column, Integer, String, Date, ForeignKey, Boolean from sqlalchemy.orm import relationship, backref from sqlalchemy.orm import sessionmaker from re import sub import os module_path = '/'.join(__file__.split('/')[:-1]) # SQLAlchemy Setup Base = declarative_base() engine = create_engine('sqlite:///{}/data/methods.db?check_same_thread=False'.format(module_path)) Base.metadata.create_all(engine) Session = sessionmaker(bind=engine) session = Session() class Method(Base): __tablename__ = 'methods' id = Column(Integer, primary_key=True) # method['id'] (formatted) stage = Column(Integer) # mset.properties.stage classification = Column(String(32)) # mset.properties.classification.string plain = Column(Boolean, default=False) # mset.properties.classification['plain'] trebledodging = Column(Boolean, default=False) # mset.properties.classification['trebledodging'] little = Column(Boolean, default=False) # mset.properties.classification['little'] differential = Column(Boolean, default=False) # mset.properties.classification['differential'] lengthoflead = Column(Integer) # mset.properties.lengthoflead numberofhunts = Column(Integer) # mset.properties.numberofhunts huntbellpath = Column(String(32)) # mset.properties.huntbellpath methodset_notes = Column(String(128)) # mset.properties.notes title = Column(String(128), index=True, unique=True) # method.title name = Column(String(128), index=True) # method.name leadhead = Column(String(32)) # method.leadhead leadheadcode = Column(String(32)) # method.leadheadcode symmetry = Column(String(32)) # method.symmetry notation = Column(String(128)) # method.notation falseness = Column(String(32)) # method.falseness.fchgroups extensionconstruction = Column(String(32)) # method.extensionconstruction notes = Column(String(128)) # method.notes pmmref = Column(String(32)) # method.references.pmmref bnref = Column(String(32)) # method.references.bnref cbref = Column(String(32)) # method.references.cbref rwref = Column(String(32)) # method.references.rwref tdmmref = Column(String(32)) # method.references.tdmmref performances = relationship("Performance", back_populates="method") @staticmethod def get(search_string='', *args, **kwargs): """ Search for a method in the database and return the first result. """ # If there's an exact match for the search_string, we want to return that # but we still want to respect the other search terms exact = session.query(Method).filter_by(title=search_string, **kwargs).first() if exact: return exact query = session.query(Method).filter(Method.title.like('%' + search_string + '%')) return query.filter_by(**kwargs).first() @staticmethod def search(search_string='', *args, **kwargs): """ Search for a method in the database and return all results. """ query = session.query(Method).filter(Method.title.like('%' + search_string + '%')) return query.filter_by(**kwargs).all() @staticmethod def query(): return session.query(Method) @property def full_notation(self): if not ',' in self.notation: return self.notation segments = [seg.split('.') for seg in sub('-','.-.',self.notation).strip('.').split(',')] full_notation = ['.'.join(seg + seg[:-1][::-1]) if len(seg) > 1 else seg[0] for seg in segments] return '.'.join(full_notation) @property def full_notation_list(self): return self.full_notation.split('.') def __repr__(self): return '<Method {}>'.format(self.title) def __iter__(self): for key, val in self.__dict__.items(): if key == '_sa_instance_state': continue yield (key, val) class Performance(Base): __tablename__ = 'performances' id = Column(Integer, primary_key=True, autoincrement=True) # id kind = Column(String(32)) # method.performances.KIND date = Column(Date) # PERF.date society = Column(String(32)) # PERF.society town = Column(String(32)) # PERF.location.town county = Column(String(32)) # PERF.location.county building = Column(String(32)) # PERF.location.building address = Column(String(32)) # PERF.location.address country = Column(String(32)) # PERF.location.country room = Column(String(32)) # PERF.location.room region = Column(String(32)) # PERF.location.region method_id_fk = Column(Integer, ForeignKey('methods.id')) method = relationship("Method", back_populates="performances") def __repr__(self): return '<Performance {}: {}>'.format(self.kind, self.method.title) def __iter__(self): for key, val in self.__dict__.items(): if key == '_sa_instance_state': continue if key == 'method': continue yield (key, val)
45.369231
106
0.590709
5,274
0.894201
337
0.057138
1,364
0.231265
0
0
1,471
0.249407
057fec44c986714a8f02d47b39f9f891463a6252
848
py
Python
peuler_012_better.py
bayramcicek/mini-programs
3f876e3274b7beeb5e7413ac9c5275813d9f0d2d
[ "Unlicense" ]
null
null
null
peuler_012_better.py
bayramcicek/mini-programs
3f876e3274b7beeb5e7413ac9c5275813d9f0d2d
[ "Unlicense" ]
null
null
null
peuler_012_better.py
bayramcicek/mini-programs
3f876e3274b7beeb5e7413ac9c5275813d9f0d2d
[ "Unlicense" ]
null
null
null
#!/usr/bin/python3 import math class Solution: @staticmethod def number_of_factor(self): count = 0 if self == 1: return 1 for i in range(1, math.ceil(math.sqrt(self))): if self % i == 0: count += 2 if math.ceil(math.sqrt(self)) == math.floor(math.sqrt(self)): count += 1 return count test = Solution triangle_arr = [0] temp, box, curr_num = 0, 0, 0 for i in range(1, 1001): while temp <= i: box += 1 curr_num = (box * (box + 1)) / 2 temp = test.number_of_factor(curr_num) triangle_arr.append(curr_num) print(curr_num) # number_test = int(input()) # # limit_list = [] # for a in range(number_test): # limit_list.append(int(input())) # # for limit in limit_list: # print(int(triangle_arr[limit]))
20.190476
69
0.5625
355
0.418632
0
0
335
0.395047
0
0
195
0.229953
05803580ad5cf536a86b26fbe2b79573b774b99b
9,253
py
Python
swyft/plot/plot.py
undark-lab/swyft
50aa524e2f3a2b3d1354543178ff72bc7f055a35
[ "MIT" ]
104
2020-11-26T09:46:03.000Z
2022-03-18T06:22:03.000Z
swyft/plot/plot.py
cweniger/swyft
2c0ed514622a37e8ec4e406b99a8327ecafb7ab4
[ "MIT" ]
83
2021-03-02T15:54:26.000Z
2022-03-10T08:09:05.000Z
swyft/plot/plot.py
undark-lab/swyft
50aa524e2f3a2b3d1354543178ff72bc7f055a35
[ "MIT" ]
10
2021-02-04T14:27:36.000Z
2022-03-31T17:39:34.000Z
import numpy as np import pylab as plt from scipy.integrate import simps def grid_interpolate_samples(x, y, bins=1000, return_norm=False): idx = np.argsort(x) x, y = x[idx], y[idx] x_grid = np.linspace(x[0], x[-1], bins) y_grid = np.interp(x_grid, x, y) norm = simps(y_grid, x_grid) y_grid_normed = y_grid / norm if return_norm: return x_grid, y_grid_normed, norm else: return x_grid, y_grid_normed def get_HDI_thresholds(x, cred_level=[0.68268, 0.95450, 0.99730]): x = x.flatten() x = np.sort(x)[::-1] # Sort backwards total_mass = x.sum() enclosed_mass = np.cumsum(x) idx = [np.argmax(enclosed_mass >= total_mass * f) for f in cred_level] levels = np.array(x[idx]) return levels def plot_posterior( samples, pois, weights_key=None, ax=plt, grid_interpolate=False, bins=100, color="k", contours=True, **kwargs ): if isinstance(pois, int): pois = (pois,) w = None # FIXME: Clean up ad hoc code if weights_key is None: weights_key = tuple(sorted(pois)) try: w = samples["weights"][tuple(weights_key)] except KeyError: if len(weights_key) == 1: for k in samples["weights"].keys(): if weights_key[0] in k: weights_key = k break w = samples["weights"][tuple(weights_key)] elif len(weights_key) == 2: for k in samples["weights"].keys(): if set(weights_key).issubset(k): weights_key = k w = samples["weights"][k] if w is None: return if len(pois) == 1: x = samples["v"][:, pois[0]] if grid_interpolate: # Grid interpolate samples log_prior = samples["log_priors"][pois[0]] w_eff = np.exp(np.log(w) + log_prior) # p(z|x) = r(x, z) p(z) zm, v = grid_interpolate_samples(x, w_eff) else: v, e = np.histogram(x, weights=w, bins=bins, density=True) zm = (e[1:] + e[:-1]) / 2 levels = sorted(get_HDI_thresholds(v)) if contours: contour1d(zm, v, levels, ax=ax, color=color) ax.plot(zm, v, color=color, **kwargs) ax.set_xlim([x.min(), x.max()]) ax.set_ylim([-v.max() * 0.05, v.max() * 1.1]) # Diagnostics mean = sum(w * x) / sum(w) mode = zm[v == v.max()][0] int2 = zm[v > levels[2]].min(), zm[v > levels[2]].max() int1 = zm[v > levels[1]].min(), zm[v > levels[1]].max() int0 = zm[v > levels[0]].min(), zm[v > levels[0]].max() entropy = -simps(v * np.log(v), zm) return dict( mean=mean, mode=mode, HDI1=int2, HDI2=int1, HDI3=int0, entropy=entropy ) elif len(pois) == 2: # FIXME: use interpolation when grid_interpolate == True x = samples["v"][:, pois[0]] y = samples["v"][:, pois[1]] counts, xbins, ybins, _ = ax.hist2d(x, y, weights=w, bins=bins, cmap="gray_r") levels = sorted(get_HDI_thresholds(counts)) try: ax.contour( counts.T, extent=[xbins.min(), xbins.max(), ybins.min(), ybins.max()], levels=levels, linestyles=[":", "--", "-"], colors=color, ) except ValueError: print("WARNING: 2-dim contours not well-defined.") ax.set_xlim([x.min(), x.max()]) ax.set_ylim([y.min(), y.max()]) xm = (xbins[:-1] + xbins[1:]) / 2 ym = (ybins[:-1] + ybins[1:]) / 2 cx = counts.sum(axis=1) cy = counts.sum(axis=0) mean = (sum(xm * cx) / sum(cx), sum(ym * cy) / sum(cy)) return dict(mean=mean, mode=None, HDI1=None, HDI2=None, HDI3=None, entropy=None) def plot_1d( samples, pois, truth=None, bins=100, figsize=(15, 10), color="k", labels=None, label_args={}, ncol=None, subplots_kwargs={}, fig=None, contours=True, ) -> None: """Make beautiful 1-dim posteriors. Args: samples: Samples from `swyft.Posteriors.sample` pois: List of parameters of interest truth: Ground truth vector bins: Number of bins used for histograms. figsize: Size of figure color: Color labels: Custom labels (default is parameter names) label_args: Custom label arguments ncol: Number of panel columns subplot_kwargs: Subplot kwargs """ grid_interpolate = False diags = {} if ncol is None: ncol = len(pois) K = len(pois) nrow = (K - 1) // ncol + 1 if fig is None: fig, axes = plt.subplots(nrow, ncol, figsize=figsize, **subplots_kwargs) else: axes = fig.get_axes() lb = 0.125 tr = 0.9 whspace = 0.15 fig.subplots_adjust( left=lb, bottom=lb, right=tr, top=tr, wspace=whspace, hspace=whspace ) if labels is None: labels = [samples["parameter_names"][pois[i]] for i in range(K)] for k in range(K): if nrow == 1 and ncol > 1: ax = axes[k] elif nrow == 1 and ncol == 1: ax = axes else: i, j = k % ncol, k // ncol ax = axes[j, i] ret = plot_posterior( samples, pois[k], ax=ax, grid_interpolate=grid_interpolate, color=color, bins=bins, contours=contours, ) ax.set_xlabel(labels[k], **label_args) if truth is not None: ax.axvline(truth[pois[k]], ls=":", color="r") diags[(pois[k],)] = ret return fig, diags def plot_corner( samples, pois, bins=100, truth=None, figsize=(10, 10), color="k", labels=None, label_args={}, contours_1d: bool = True, fig=None, ) -> None: """Make a beautiful corner plot. Args: samples: Samples from `swyft.Posteriors.sample` pois: List of parameters of interest truth: Ground truth vector bins: Number of bins used for histograms. figsize: Size of figure color: Color labels: Custom labels (default is parameter names) label_args: Custom label arguments contours_1d: Plot 1-dim contours fig: Figure instance """ K = len(pois) if fig is None: fig, axes = plt.subplots(K, K, figsize=figsize) else: axes = np.array(fig.get_axes()).reshape((K, K)) lb = 0.125 tr = 0.9 whspace = 0.1 fig.subplots_adjust( left=lb, bottom=lb, right=tr, top=tr, wspace=whspace, hspace=whspace ) diagnostics = {} if labels is None: labels = [samples["parameter_names"][pois[i]] for i in range(K)] for i in range(K): for j in range(K): ax = axes[i, j] # Switch off upper left triangle if i < j: ax.set_yticklabels([]) ax.set_xticklabels([]) ax.set_xticks([]) ax.set_yticks([]) ax.set_frame_on(False) continue # Formatting labels if j > 0 or i == 0: ax.set_yticklabels([]) # ax.set_yticks([]) if i < K - 1: ax.set_xticklabels([]) # ax.set_xticks([]) if i == K - 1: ax.set_xlabel(labels[j], **label_args) if j == 0 and i > 0: ax.set_ylabel(labels[i], **label_args) # Set limits # ax.set_xlim(x_lims[j]) # if i != j: # ax.set_ylim(y_lims[i]) # 2-dim plots if j < i: ret = plot_posterior( samples, [pois[j], pois[i]], ax=ax, color=color, bins=bins ) if truth is not None: ax.axvline(truth[pois[j]], color="r") ax.axhline(truth[pois[i]], color="r") diagnostics[(pois[j], pois[i])] = ret if j == i: ret = plot_posterior( samples, pois[i], ax=ax, color=color, bins=bins, contours=contours_1d, ) if truth is not None: ax.axvline(truth[pois[i]], ls=":", color="r") diagnostics[(pois[i],)] = ret return fig, diagnostics def contour1d(z, v, levels, ax=plt, linestyles=None, color=None, **kwargs): y0 = -1.0 * v.max() y1 = 5.0 * v.max() ax.fill_between(z, y0, y1, where=v > levels[0], color=color, alpha=0.1) ax.fill_between(z, y0, y1, where=v > levels[1], color=color, alpha=0.1) ax.fill_between(z, y0, y1, where=v > levels[2], color=color, alpha=0.1) # if not isinstance(colors, list): # colors = [colors]*len(levels) # for i, l in enumerate(levels): # zero_crossings = np.where(np.diff(np.sign(v-l*1.001)))[0] # for c in z[zero_crossings]: # ax.axvline(c, ls=linestyles[i], color = colors[i], **kwargs) if __name__ == "__main__": pass
29.848387
88
0.514428
0
0
0
0
0
0
0
0
1,735
0.187507
05819bbe1c0902e6600dadc33453e92046d7a1ff
3,038
py
Python
control-gastos/python/main.py
manuelduarte077/Ejercicios-con-Python-NodeJS
d7b26fdeeb1640272847274b99b2f607145d58a4
[ "MIT" ]
1
2021-07-13T18:43:59.000Z
2021-07-13T18:43:59.000Z
control-gastos/python/main.py
manuelduarte077/Ejercicios-con-Python-NodeJS
d7b26fdeeb1640272847274b99b2f607145d58a4
[ "MIT" ]
null
null
null
control-gastos/python/main.py
manuelduarte077/Ejercicios-con-Python-NodeJS
d7b26fdeeb1640272847274b99b2f607145d58a4
[ "MIT" ]
null
null
null
import os from tabulate import tabulate import requests def iniciar(): os.system('cls') while True: print('Seleccione una opción: ') print('\t1. Registrar movimiento') print('\t2. Ver todos los movimientos') print('\t3. Buscar un movimiento') print('\t4. Modificar un movimiento') print('\t5. Eliminar un movimiento') print('\t6. Salir') opcion = input('Ingrese una opción: ') if opcion == '1': nuevo_movimiento() elif opcion == '2': mostrar_movimientos() elif opcion == '3': buscar_movimiento() elif opcion == '4': modificar_movimiento() elif opcion == '5': eliminar_movimiento() elif opcion == '6': break else: print('Escoja una opción correcta') def nuevo_movimiento(): tipo = input('Ingrese el tipo de movimiento \n- Ingreso\n- Gasto\n') cantidad = input('Ingrese la cantidad: ') fecha = input('Ingrese la fecha: ') data = {'tipo': tipo, 'cantidad': cantidad, 'fecha': fecha} respuesta = requests.post( url='http://localhost:3000/movimientos/registrar', data=data) print(respuesta.text) def mostrar_movimientos(): response = requests.get(url='http://localhost:3000/movimientos/todos') datos = [] for dato in response.json(): temp = [] for key, value in dato.items(): temp.append(value) datos.append(temp) headers = ['ID', 'TIPO DE MOVIMIENTO', 'CANTIDAD', 'FECHA'] tabla = tabulate(datos, headers, tablefmt='fancy_grid') print(tabla) def buscar_movimiento(): id = input('Ingrese el id del movimiento a buscar: ') response = requests.get(url='http://localhost:3000/movimientos/buscar/'+id) datos = [] for dato in response.json(): temp = [] for key, value in dato.items(): temp.append(value) datos.append(temp) headers = ['ID', 'TIPO DE MOVIMIENTO', 'CANTIDAD', 'FECHA'] tabla = tabulate(datos, headers, tablefmt='fancy_grid') print(tabla) def modificar_movimiento(): id = input('Ingrese el id del movimiento a modificar: ') campo = input( 'Ingrese el campo a modificar:\n1. Tipo\n2. Cantidad\n3. Fecha') nuevo_valor = '' if(campo == '1'): campo = 'tipo' nuevo_valor = input('Ingrese el tipo de movimiento: ') elif(campo == '2'): campo = 'cantidad' nuevo_valor = input('Ingrese la cantidad: ') elif(campo == '3'): campo = 'fecha' nuevo_valor = input('Ingrese la fecha: ') data = {'campo': campo, 'nuevo_valor': nuevo_valor} respuesta = requests.post( url='http://localhost:3000/movimientos/modificar/'+id, data=data) print(respuesta.text) def eliminar_movimiento(): id = input('Ingrese el id del movimiento a elimina: ') respuesta = requests.post( url='http://localhost:3000/movimientos/eliminar/'+id) print(respuesta.text) iniciar()
31
79
0.600066
0
0
0
0
0
0
0
0
1,024
0.336731
05826df3789ad47bc005b4bcd34765514c7e2fd2
409
py
Python
examples/idioms/programs/016.1530-depth-first-traversing-of-a-binary-tree.py
laowantong/paroxython
4626798a60eeaa765dbfab9e63e04030c9fcb1d0
[ "MIT" ]
31
2020-05-02T13:34:26.000Z
2021-06-06T17:25:52.000Z
examples/idioms/programs/016.1530-depth-first-traversing-of-a-binary-tree.py
laowantong/paroxython
4626798a60eeaa765dbfab9e63e04030c9fcb1d0
[ "MIT" ]
108
2019-11-18T19:41:52.000Z
2022-03-18T13:58:17.000Z
examples/idioms/programs/016.1530-depth-first-traversing-of-a-binary-tree.py
laowantong/paroxython
4626798a60eeaa765dbfab9e63e04030c9fcb1d0
[ "MIT" ]
4
2020-05-19T08:57:44.000Z
2020-09-21T08:53:46.000Z
"""Depth-first traversing of a binary tree. Call a function _f on every node of binary tree _bt, in depth-first infix order Source: programming-idioms.org """ # Implementation author: TinyFawks # Created on 2016-02-18T08:50:27.130406Z # Last modified on 2016-02-18T09:16:52.625429Z # Version 2 # Recursive DFS. def dfs(bt): if bt is None: return dfs(bt.left) f(bt) dfs(bt.right)
18.590909
79
0.694377
0
0
0
0
0
0
0
0
307
0.750611
0582a1028ca60869856e20d167bdffc0aa95e128
412
py
Python
pal95_doc/docs/__init__.py
MacHu-GWU/pal95_doc-project
753b865435f316e985320247489e68f465741827
[ "MIT" ]
13
2019-10-01T02:51:27.000Z
2022-02-28T17:38:58.000Z
pal95_doc/docs/__init__.py
MacHu-GWU/pal95_doc-project
753b865435f316e985320247489e68f465741827
[ "MIT" ]
2
2020-11-09T09:17:21.000Z
2021-04-27T21:20:59.000Z
pal95_doc/docs/__init__.py
MacHu-GWU/pal95_doc-project
753b865435f316e985320247489e68f465741827
[ "MIT" ]
1
2020-02-28T12:05:22.000Z
2020-02-28T12:05:22.000Z
# -*- coding: utf-8 -*- from .equipment import lt_equipment from .spell import lt_spell_lxy, lt_spell_zle, lt_spell_lyr, lt_spell_an from .monster import lt_monster from .zone import lt_zone doc_data = dict( lt_equipment=lt_equipment, lt_spell_lxy=lt_spell_lxy, lt_spell_zle=lt_spell_zle, lt_spell_lyr=lt_spell_lyr, lt_spell_an=lt_spell_an, lt_monster=lt_monster, lt_zone=lt_zone, )
25.75
72
0.764563
0
0
0
0
0
0
0
0
23
0.055825
0582c3422fbd8d71835125e19cb23d6667d70ef1
3,157
py
Python
nexrad/nexrad_tutorial.py
uva-hydroinformatics-lab/precipitation_processing
54ef1673900b6bb2ee38daec3aac33748a8402cd
[ "MIT" ]
1
2019-01-08T03:57:49.000Z
2019-01-08T03:57:49.000Z
nexrad/nexrad_tutorial.py
uva-hydroinformatics/precipitation_processing
54ef1673900b6bb2ee38daec3aac33748a8402cd
[ "MIT" ]
null
null
null
nexrad/nexrad_tutorial.py
uva-hydroinformatics/precipitation_processing
54ef1673900b6bb2ee38daec3aac33748a8402cd
[ "MIT" ]
null
null
null
import matplotlib.pyplot as plt import numpy.ma as ma import numpy as np import pyart.graph import tempfile import pyart.io import boto s3conn = boto.connect_s3("AKIAISFFH4JXWC2HYFSA","9Az+XWYP9cbL3Sh641z/tbMuC1CSpjPjQTFkHj8D") bucket = s3conn.get_bucket('noaa-nexrad-level2') s3key = bucket.get_key('2015/05/15/KVWX/KVWX20150515_080737_V06.gz') print s3key #localfile = tempfile.NamedTemporaryFile(mode='r') localfile = open("sample_nexrad_data", "w") s3key.get_contents_to_filename(localfile.name) radar = pyart.io.read_nexrad_archive(localfile.name) # display the lowest elevation scan data display = pyart.graph.RadarDisplay(radar) fig = plt.figure(figsize=(9, 12)) plots = [ # variable-name in pyart, display-name that we want, sweep-number of radar (0=lowest ref, 1=lowest velocity) ['reflectivity', 'Reflectivity (dBZ)', 0], ['differential_reflectivity', 'Zdr (dB)', 0], ['differential_phase', 'Phi_DP (deg)', 0], ['cross_correlation_ratio', 'Rho_HV', 0], ['velocity', 'Velocity (m/s)', 1], ['spectrum_width', 'Spectrum Width', 1] ] def plot_radar_images(plots): ncols = 2 nrows = len(plots)/2 for plotno, plot in enumerate(plots, start=1): ax = fig.add_subplot(nrows, ncols, plotno) display.plot(plot[0], plot[2], ax=ax, title=plot[1], colorbar_label='', axislabels=('East-West distance from radar (km)' if plotno == 6 else '', 'North-South distance from radar (km)' if plotno == 1 else '')) display.set_limits((-300, 300), (-300, 300), ax=ax) display.set_aspect_ratio('equal', ax=ax) display.plot_range_rings(range(100, 350, 100), lw=0.5, col='black', ax=ax) plt.show() plot_radar_images(plots) refl_grid = radar.get_field(0, 'reflectivity') print refl_grid[0] rhohv_grid = radar.get_field(0, 'cross_correlation_ratio') zdr_grid = radar.get_field(0, 'differential_reflectivity') # apply rudimentary quality control reflow = np.less(refl_grid, 20) zdrhigh = np.greater(np.abs(zdr_grid), 2.3) rhohvlow = np.less(rhohv_grid, 0.95) notweather = np.logical_or(reflow, np.logical_or(zdrhigh, rhohvlow)) print notweather[0] qcrefl_grid = ma.masked_where(notweather, refl_grid) print qcrefl_grid[0] qced = radar.extract_sweeps([0]) qced.add_field_like('reflectivity', 'reflectivityqc', qcrefl_grid) display = pyart.graph.RadarDisplay(qced) fig = plt.figure(figsize=(10, 5)) plots = [ # variable-name in pyart, display-name that we want, sweep-number of radar (0=lowest ref, 1=lowest velocity) ['reflectivity', 'Reflectivity (dBZ)', 0], ['reflectivityqc', 'QCed Reflectivity (dBZ)', 0], ] for plotno, plot in enumerate(plots, start=1): ax = fig.add_subplot(1, 2, plotno) display.plot(plot[0], plot[2], ax=ax, title=plot[1], colorbar_label='', axislabels=('East-West distance from radar (km)' if plotno == 2 else '', 'North-South distance from radar (km)' if plotno == 1 else '')) display.set_limits((-300, 300), (-300, 300), ax=ax) plt.show()
36.287356
113
0.667089
0
0
0
0
0
0
0
0
1,038
0.328793
05830297f5e87cadfedcaa83499c7c9b2affb118
3,746
py
Python
ServeRest-APITesting-Python/Tests/test_cart.py
barbosamp/automacao-api-rest-jornada-learning
9ceb57bc6f4d845c35a149d760775c10c3a38614
[ "MIT" ]
2
2020-11-20T18:40:32.000Z
2021-04-20T23:13:13.000Z
ServeRest-APITesting-Python/Tests/test_cart.py
barbosamp/automacao-api-rest-jornada-learning
9ceb57bc6f4d845c35a149d760775c10c3a38614
[ "MIT" ]
1
2020-10-22T16:16:40.000Z
2020-10-22T16:16:40.000Z
ServeRest-APITesting-Python/Tests/test_cart.py
kpedron/automacao-api-rest-jornada-learning
50ceaf9f43b03383cc65e92460b6b9a398a88e02
[ "MIT" ]
2
2020-10-16T02:37:20.000Z
2020-10-31T13:54:46.000Z
import unittest import requests import json import pytest BASE_URL = "https://api.serverest.dev" class Products(unittest.TestCase): def setUp(self): # Do authentication # Cart endpoint requires authentication full_url = BASE_URL + "/login" body = { "email": "[email protected]", "password": "teste" } response = requests.post(url=full_url, json=body) if response.status_code != 200: pytest.fail("Some problem to get authorization token \n", False) response_json = json.loads(response.text) self.token = response_json["authorization"] def test_get_all_cart(self): full_url = BASE_URL + "/carrinhos" # Send HTTP Request response = requests.get(url=full_url) # Check the response from ServeRest self.assertEqual(response.status_code, 200, "Error in status code to get all carts") def test_create_cart_to_user(self): full_url = BASE_URL + "/carrinhos" body = { "produtos": [ { "idProduto": "K6leHdftCeOJj8BJ", "quantidade": 2 } ] } header = {"Authorization": self.token} # Send HTTP Request response = requests.post(url=full_url, headers=header, json=body) # Check the response from ServeRest self.assertEqual(response.status_code, 201, "Error in status code to create a cart") response_json = json.loads(response.text) self.assertEqual(response_json["message"], "Cadastro realizado com sucesso") # Now we will delete the cart (this is a good practice) # Buy the item will delete the cart automatically full_url = BASE_URL + "/carrinhos/concluir-compra" # The endpoint delete the cart using the Authorization token from the user response = requests.delete(url=full_url, headers=header) self.assertEqual(response.status_code, 200, "Error in status code to delete a cart") def test_get_cart_from_specific_user(self): full_url = BASE_URL + "/carrinhos" query = {"idUsuario": "K6leHdftCeOJj8BJ"} # Send HTTP Request response = requests.get(url=full_url, params=query) self.assertEqual(response.status_code, 200, "Error in status code to get a cart") def test_create_cart_without_authentication(self): full_url = BASE_URL + "/carrinhos" body = { "produtos": [ { "idProduto": "K6leHdftCeOJj8BJ", "quantidade": 2 } ] } # Send HTTP Request response = requests.post(url=full_url, json=body) # Check the response from ServeRest self.assertEqual(response.status_code, 401) response_json = json.loads(response.text) self.assertEqual(response_json["message"], "Token de acesso ausente, inválido, expirado ou usuário " "do token não existe mais") def test_create_cart_unknown_product(self): full_url = BASE_URL + "/carrinhos" body = { "produtos": [ { "idProduto": "234", "quantidade": 4 } ] } header = {"Authorization": self.token} # Send HTTP Request response = requests.post(url=full_url, headers=header, json=body) # Check the response from ServeRest self.assertEqual(response.status_code, 400) response_json = json.loads(response.text) self.assertEqual(response_json["message"], "Produto não encontrado")
32.017094
108
0.591564
3,648
0.9728
0
0
0
0
0
0
1,214
0.323733
05836efbaef8a6e021845f469c0a620d95e4b977
372
py
Python
MotorTorpedoQuotePT109/QuotePT109/migrations/0002_page_likes.py
alex-lake29/MotorTorpedoQuotePT-109
012d45e8a329022492acad86e6693abf0ba5b7d2
[ "MIT" ]
null
null
null
MotorTorpedoQuotePT109/QuotePT109/migrations/0002_page_likes.py
alex-lake29/MotorTorpedoQuotePT-109
012d45e8a329022492acad86e6693abf0ba5b7d2
[ "MIT" ]
null
null
null
MotorTorpedoQuotePT109/QuotePT109/migrations/0002_page_likes.py
alex-lake29/MotorTorpedoQuotePT-109
012d45e8a329022492acad86e6693abf0ba5b7d2
[ "MIT" ]
null
null
null
# Generated by Django 2.1.5 on 2022-03-21 19:27 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('QuotePT109', '0001_initial'), ] operations = [ migrations.AddField( model_name='page', name='likes', field=models.IntegerField(default=0), ), ]
19.578947
49
0.583333
279
0.75
0
0
0
0
0
0
86
0.231183
0585d3beb2756c9c282cc3b3a1b2f3b72dff380a
474
py
Python
message_sender/migrations/0003_auto_20161124_1357.py
praekeltfoundation/seed-message-sender
d90ef4dc9fa248df97ca97f07569c6c70afcd1bd
[ "BSD-3-Clause" ]
1
2017-01-03T08:53:18.000Z
2017-01-03T08:53:18.000Z
message_sender/migrations/0003_auto_20161124_1357.py
praekelt/seed-message-sender
d90ef4dc9fa248df97ca97f07569c6c70afcd1bd
[ "BSD-3-Clause" ]
45
2016-03-16T09:32:27.000Z
2018-06-28T10:05:19.000Z
message_sender/migrations/0003_auto_20161124_1357.py
praekeltfoundation/seed-message-sender
d90ef4dc9fa248df97ca97f07569c6c70afcd1bd
[ "BSD-3-Clause" ]
1
2016-09-28T09:32:05.000Z
2016-09-28T09:32:05.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.9.1 on 2016-11-24 13:57 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [("message_sender", "0002_auto_20161124_1150")] operations = [ migrations.AlterField( model_name="inbound", name="transport_type", field=models.CharField(blank=True, max_length=200, null=True), ) ]
24.947368
74
0.656118
317
0.668776
0
0
0
0
0
0
136
0.28692
058753427b8d12d1061f42dc505d9be81b5a17ea
15,639
py
Python
src/02_ppo.py
grzegorzwojdyga/trl
1921e71a7465a43dcc135d97821aa8b03bfebf8c
[ "Apache-2.0" ]
null
null
null
src/02_ppo.py
grzegorzwojdyga/trl
1921e71a7465a43dcc135d97821aa8b03bfebf8c
[ "Apache-2.0" ]
null
null
null
src/02_ppo.py
grzegorzwojdyga/trl
1921e71a7465a43dcc135d97821aa8b03bfebf8c
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """02-ppo.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1GXTVkhpJyQQsUWn6tGQAWPmstw9adAzj # PPO for transformer models > A Pytorch implementation of Proximal Policy Optimization for transfomer models. This follows the language model approach proposed in paper ["Fine-Tuning Language Models from Human Preferences"]( https://arxiv.org/pdf/1909.08593.pdf) and is similar to the [original implementation](https://github.com/openai/lm-human-preferences). The two main differences are 1) the method is implemented in Pytorch and 2) works with the `transformer` library by Hugging Face. """ # default_exp ppo # export import numpy as np import torch.nn.functional as F from torch.optim import Adam import torch import collections import time import random from trl.core import (logprobs_from_logits, whiten, clip_by_value, entropy_from_logits, flatten_dict, average_torch_dicts, stats_to_np, stack_dicts, add_suffix) """## KL-controllers To ensure that the learned policy does not deviate to much from the original language model the KL divergence between the policy and a reference policy (the language model before PPO training) is used as an additional reward signal. Large KL-divergences are punished and staying close to the reference is rewarded. Two controllers are presented in the paper: an adaptive log-space proportional controller and a fixed controller. """ # exports class AdaptiveKLController: """ Adaptive KL controller described in the paper: https://arxiv.org/pdf/1909.08593.pdf """ def __init__(self, init_kl_coef, target, horizon): self.value = init_kl_coef self.target = target self.horizon = horizon def update(self, current, n_steps): target = self.target proportional_error = np.clip(current / target - 1, -0.2, 0.2) mult = 1 + proportional_error * n_steps / self.horizon self.value *= mult # exports class FixedKLController: """Fixed KL controller.""" def __init__(self, kl_coef): self.value = kl_coef def update(self, current, n_steps): pass # exports class PPOTrainer: """ The PPO_trainer uses Proximal Policy Optimization to optimise language models. """ default_params = { "lr": 1.41e-5, "adap_kl_ctrl": True, "init_kl_coef":0.2, "target": 6, "horizon":10000, "gamma":1, "lam":0.95, "cliprange": .2, "cliprange_value":.2, "vf_coef":.1, "batch_size": 256, "forward_batch_size": 16, "ppo_epochs": 4, } def __init__(self, model, ref_model, **ppo_params): """ Initialize PPOTrainer. Args: model (torch.model): Hugging Face transformer GPT2 model with value head ref_model (torch.model): Hugging Face transformer GPT2 refrence model used for KL penalty ppo_params (dict or None): PPO parameters for training. Can include following keys: 'lr' (float): Adam learning rate, default: 1.41e-5 'batch_size' (int): Number of samples per optimisation step, default: 256 'forward_batch_size' (int): Number of samples forward passed through model at a time, default: 16 'ppo_epochs' (int): Number of optimisation epochs per batch of samples, default: 4 'gamma' (float)): Gamma parameter for advantage calculation, default: 1. 'lam' (float): Lambda parameter for advantage calcualation, default: 0.95 'cliprange_value' (float): Range for clipping values in loss calculation, default: 0.2 'cliprange' (float): Range for clipping in PPO policy gradient loss, default: 0.2 'vf_coef' (float): Scaling factor for value loss, default: 0.1 'adap_kl_ctrl' (bool): Use adaptive KL control, otherwise linear, default: True 'init_kl_coef' (float): Initial KL penalty coefficient (used for adaptive and linear control), default: 0.2 'target' (float): Target KL value for adaptive KL control, default: 6.0 'horizon' (float): Horizon for adaptive KL control, default: 10000 """ self.ppo_params = self.default_params self.ppo_params.update(ppo_params) self.ref_model = ref_model self.model = model self.optimizer = Adam(model.parameters(), lr=self.ppo_params['lr']) self.kl_ctl = AdaptiveKLController(self.ppo_params['init_kl_coef'], self.ppo_params['target'], self.ppo_params['horizon']) def step(self, query, response, scores): """ Run a PPO optimisation step. args: query (torch.tensor): tensor containing the encoded queries, shape [batch_size, query_length] response (torch.tensor): tensor containing the encoded responses, shape [batch_size, response_length] scores (torch.tensor): tensor containing the scores, shape [batch_size] returns: train_stats (dict): a summary of the training statistics """ bs = self.ppo_params['batch_size'] timing = dict() t0 = time.time() gen_len = response.shape[1] model_input = torch.cat((query, response), axis=1) t = time.time() logprobs, ref_logprobs, values = self.batched_forward_pass(model_input, gen_len) timing['time/ppo/forward_pass'] = time.time()-t t = time.time() rewards, non_score_reward, kl_coef = self.compute_rewards(scores, logprobs, ref_logprobs) timing['time/ppo/compute_rewards'] = time.time()-t t = time.time() all_stats = [] idxs = list(range(bs)) for _ in range(self.ppo_params['ppo_epochs']): random.shuffle(idxs) for i in range(bs): idx = idxs[i] train_stats = self.train_minibatch(logprobs[idx:idx+1], values[idx:idx+1], rewards[idx:idx+1], query[idx:idx+1], response[idx:idx+1], model_input[idx:idx+1]) all_stats.append(train_stats) timing['time/ppo/optimize_step'] = time.time()-t t = time.time() train_stats = stack_dicts(all_stats) # reshape advantages/ratios such that they are not averaged. train_stats['policy/advantages'] = torch.flatten(train_stats['policy/advantages']).unsqueeze(0) train_stats['policy/ratio'] = torch.flatten(train_stats['policy/ratio']).unsqueeze(0) stats = self.record_step_stats(scores=scores, logprobs=logprobs, ref_logprobs=ref_logprobs, non_score_reward=non_score_reward, train_stats=train_stats, kl_coef=kl_coef) stats = stats_to_np(stats) timing['time/ppo/calc_stats'] = time.time()-t self.kl_ctl.update(stats['objective/kl'], self.ppo_params['batch_size']) timing['time/ppo/total'] = time.time()-t0 stats.update(timing) return stats def batched_forward_pass(self, model_input, gen_len): """Calculate model outputs in multiple batches.""" bs = self.ppo_params['batch_size'] fbs = self.ppo_params['forward_batch_size'] logprobs = [] ref_logprobs = [] values = [] for i in range(int(self.ppo_params['batch_size']/fbs)): m_input = model_input[i*fbs:(i+1)*fbs] logits, _, v = self.model(m_input) ref_logits, _, _ = self.ref_model(m_input) values.append(v[:, -gen_len-1:-1].detach()) logprobs.append(logprobs_from_logits(logits[:,:-1,:], m_input[:,1:])[:, -gen_len:].detach()) ref_logprobs.append(logprobs_from_logits(ref_logits[:,:-1,:], m_input[:,1:])[:, -gen_len:].detach()) return torch.cat(logprobs), torch.cat(ref_logprobs), torch.cat(values) def train_minibatch(self, logprobs, values, rewards, query, response, model_input): """Train one PPO minibatch""" loss_p, loss_v, train_stats = self.loss(logprobs, values, rewards, query, response, model_input) loss = loss_p + loss_v self.optimizer.zero_grad() loss.backward() self.optimizer.step() return train_stats def compute_rewards(self, scores, logprobs, ref_logprobs): """Compute per token rewards from scores and KL-penalty.""" kl = logprobs - ref_logprobs non_score_reward = -self.kl_ctl.value * kl rewards = non_score_reward.clone().detach() rewards[:, -1] += scores return rewards, non_score_reward, self.kl_ctl.value def loss(self, old_logprobs, values, rewards, query, response, model_input): """Calculate policy and value losses.""" lastgaelam = 0 advantages_reversed = [] gen_len = response.shape[1] for t in reversed(range(gen_len)): nextvalues = values[:, t + 1] if t < gen_len - 1 else 0.0 delta = rewards[:, t] + self.ppo_params['gamma'] * nextvalues - values[:, t] lastgaelam = delta + self.ppo_params['gamma'] * self.ppo_params['lam'] * lastgaelam advantages_reversed.append(lastgaelam) advantages = torch.stack(advantages_reversed[::-1]).transpose(0, 1) returns = advantages + values advantages = whiten(advantages) advantages = advantages.detach() logits, _, vpred = self.model(model_input) logprob = logprobs_from_logits(logits[:,:-1,:], model_input[:, 1:]) #only the generation part of the values/logprobs is needed logprob, vpred = logprob[:, -gen_len:], vpred[:,-gen_len-1:-1] vpredclipped = clip_by_value(vpred, values - self.ppo_params["cliprange_value"], values + self.ppo_params["cliprange_value"]) vf_losses1 = (vpred - returns)**2 vf_losses2 = (vpredclipped - returns)**2 vf_loss = .5 * torch.mean(torch.max(vf_losses1, vf_losses2)) vf_clipfrac = torch.mean(torch.gt(vf_losses2, vf_losses1).double()) ratio = torch.exp(logprob - old_logprobs) pg_losses = -advantages * ratio pg_losses2 = -advantages * torch.clamp(ratio, 1.0 - self.ppo_params['cliprange'], 1.0 + self.ppo_params['cliprange']) pg_loss = torch.mean(torch.max(pg_losses, pg_losses2)) pg_clipfrac = torch.mean(torch.gt(pg_losses2, pg_losses).double()) loss = pg_loss + self.ppo_params['vf_coef'] * vf_loss entropy = torch.mean(entropy_from_logits(logits)) approxkl = .5 * torch.mean((logprob - old_logprobs)**2) policykl = torch.mean(logprob - old_logprobs) return_mean, return_var = torch.mean(returns), torch.var(returns) value_mean, value_var = torch.mean(values), torch.var(values) stats = dict( loss=dict(policy=pg_loss, value=vf_loss, total=loss), policy=dict(entropy=entropy, approxkl=approxkl,policykl=policykl, clipfrac=pg_clipfrac, advantages=advantages, advantages_mean=torch.mean(advantages), ratio=ratio), returns=dict(mean=return_mean, var=return_var), val=dict(vpred=torch.mean(vpred), error=torch.mean((vpred - returns) ** 2), clipfrac=vf_clipfrac, mean=value_mean, var=value_var), ) return pg_loss, self.ppo_params['vf_coef'] * vf_loss, flatten_dict(stats) def record_step_stats(self, kl_coef, **data): """Record training step statistics.""" kl = data['logprobs'] - data['ref_logprobs'] mean_kl = torch.mean(torch.sum(kl, axis=-1)) mean_entropy = torch.mean(torch.sum(-data['logprobs'], axis=1)) mean_non_score_reward =torch.mean(torch.sum(data['non_score_reward'], axis=1)) stats = { 'objective/kl': mean_kl, 'objective/kl_dist': kl, 'objective/logprobs': data['logprobs'], 'objective/ref_logprobs': data['ref_logprobs'], 'objective/kl_coef': kl_coef, 'objective/entropy': mean_entropy, 'ppo/mean_non_score_reward': mean_non_score_reward, } for k, v in data['train_stats'].items(): stats[f'ppo/{k}'] = torch.mean(v, axis=0) stats['ppo/val/var_explained'] = 1 - stats['ppo/val/error'] / stats['ppo/returns/var'] return stats """## Tensor shapes and contents Debugging tensor shapes and contents usually involves inserting a lot of print statements in the code. To avoid this in the future I add a list of the tensor shapes and contents for reference. If the tensors are sliced or reshaped I list the last shape. | Name | Shape | Content | |-------|---------|---------| | `query` | `[batch_size, query_length]`| contains token ids of query| | `response`| `[batch_size, response_length]`| contains token ids of responses| | `scores`| `[batch_size]`| rewards of each query/response pair| | `model_input`| `[batch_size, query_length + response_length]`| combined query and response tokens| | `m_input`|`[forward_batch_size, query_length + response_length]`| small forward batch of model_input| | `logits` | `[forward_batch_size, query_length + response_length, vocab_size]`| logits from model outputs| | `ref_logits`|`[forward_batch_size, query_length + response_length, vocab_size]`| logits from ref_model outputs| | `logprobs`| `[batch_size, response_length]`| log-probabilities of response tokens | | `ref_logprobs`| `[batch_size, response_length]`| reference log-probabilities of response tokens | | `rewards`| `[batch_size, response_length]`| the model rewards incl. kl-score for each token| | `non_score_reward`| `[batch_size, response_length]`| the model kl-score for each token| ## Model output alignments Some notes on output alignments, since I spent a considerable time debugging this. All model outputs are shifted by 1 to the model inputs. That means that the logits are shifted by one as well as values. For this reason the logits and values are always shifted one step to the left. This also means we don't have logits for the first input element and so we delete the first input token when calculating the softmax, since we don't have logits predictions. The same applies for the values and we shift them by index one to the left. ## KL-divergence One question that came up during the implementation was "Why is the KL-divergence just the difference of the log-probs? Where is the probability in front of the log term?". The answer can be found in Sergey Levine's [lecture slides](http://rll.berkeley.edu/deeprlcourse/docs/week_3_lecture_1_dynamics_learning.pdf): To calculate the KL divergence we calculate the expected value of the log term. The probability usually in front of the log-term comes from that expected value and for a set of trajectories we can simply take the mean over the sampled trajectories. """
47.390909
564
0.632585
11,416
0.72997
0
0
0
0
0
0
7,162
0.457958
0587d07321592ddb102cc4ed98640454fd0d67f7
4,589
py
Python
RockPaperScissors.py
andreimaftei28/projects-on-JetBrainAcademy
8c2b8ab7bab5757db94e9f0b6d55c33852f64ee1
[ "MIT" ]
null
null
null
RockPaperScissors.py
andreimaftei28/projects-on-JetBrainAcademy
8c2b8ab7bab5757db94e9f0b6d55c33852f64ee1
[ "MIT" ]
null
null
null
RockPaperScissors.py
andreimaftei28/projects-on-JetBrainAcademy
8c2b8ab7bab5757db94e9f0b6d55c33852f64ee1
[ "MIT" ]
3
2020-12-19T13:48:06.000Z
2021-08-12T18:36:33.000Z
"""Rock Paper Scisssors game using OOP""" import random from tempfile import mkstemp from shutil import move, copymode from os import fdopen, remove class RockPaperScissors: """initializing the 'global' atributtes""" def __init__(self): self.defeat = {"scissors": "rock", "paper" : "scissors", "rock" : "paper"} self.choices = ["rock", "paper", "scissors"] self.score = 0 self.name = input("Enter your name: ") def file(self): """method keeping track of players rating in 'rating.txt' file""" file = open("rating.txt", "r+", encoding="utf-8") for line in file: line1 = line.rstrip() if self.name == line1.split()[0]: score = line1.split()[1] self.score = int(score) self.play() print(line.replace(score, str(self.score)), file=file, flush=True) file.close() break else: if self.name != line1.split()[0]: continue else: score = line1.split()[1] self.play() print(line.replace(score, str(self.score)), file=file, flush=True) file.close() break else: self.play() print(self.name, self.score, sep=" ", file=file, flush=True) file.close() def play(self): """method is checking word imputed by user against the initial dict of words, and increase rating if user wins,or is a draw""" print(f"Hello, {self.name}") self.rewrite_options() print("Okay, let's start") while True: user_input = input("Enter your choice: ") if user_input == "!rating": print(f"Your rating: {self.score}") continue elif user_input == "!exit": print("Bye!") break else: choice = random.choice(self.choices) if user_input not in self.choices: print("Invalid input") elif user_input == choice: self.score += 50 print(f"There is a draw ({choice})") elif user_input in self.defeat[choice]: self.score += 100 print(f"Well done. The computer chose {choice} and failed") else: print(f"Sorry, but the computer chose {choice}") def rewrite_file(self): """method updating rating of all players by rewriting 'rating.txt' file""" names = [] dict_ = {} fake_f = "rating.txt" abs_path = "C:/Users/dandei/Desktop/jetBrain_projects/rock_paper_scissors/rating.txt" #change this with your path fake_f, abs_path = mkstemp() with fdopen(fake_f, "w") as new_file: with open("rating.txt", "r+", encoding="utf-8") as file: content = file.read() content = content.split("\n") for element in content: if len(element) > 1: element = element.split() names.append(element) dict_ = dict(names) for key, value in dict_.items(): print(key, value, sep=" ", file=new_file) copymode("rating.txt", abs_path) remove("rating.txt") move(abs_path, "rating.txt") def rewrite_options(self): """method let's user choose between playing the classic game or palying the game with more options. Changes the initial dict of words as user inputs more options""" choice = input("Enter your game options: ") choices = choice.split(",") defeat_by = {} new_list = [] if choice == "": return None else: self.choices = choices for i in range(len(choices)): new_list = choices[i + 1:] + choices[:i] #wins_over defeat_by[choices[i]] = new_list[:(len(new_list)) // 2] self.defeat = defeat_by #If rating.txt does not exist, it get's created here fill = open("rating.txt", "a", encoding="utf-8") fill.close() #creating instance of the RockPaperScissors class rps = RockPaperScissors() rps.file() rps.rewrite_file()
33.014388
123
0.504249
4,187
0.912399
0
0
0
0
0
0
1,253
0.273044
0588017972ca3ca8aebe2412eda69531f658e740
807
py
Python
jarvis/accounts/tests/factories.py
Anubhav722/blahblah
160698e06a02e671ac40de3113cd37d642e72e96
[ "MIT" ]
1
2019-01-03T06:10:04.000Z
2019-01-03T06:10:04.000Z
jarvis/accounts/tests/factories.py
Anubhav722/blahblah
160698e06a02e671ac40de3113cd37d642e72e96
[ "MIT" ]
1
2021-03-31T19:11:52.000Z
2021-03-31T19:11:52.000Z
jarvis/accounts/tests/factories.py
Anubhav722/blahblah
160698e06a02e671ac40de3113cd37d642e72e96
[ "MIT" ]
null
null
null
from faker import Faker from ..models import Client, UserProfile from django.contrib.auth import get_user_model from factory import django, SubFactory, fuzzy, Sequence, LazyAttribute fake = Faker() User = get_user_model() class ClientFactory(django.DjangoModelFactory): class Meta: model = Client key = fake.sha1() secret = fake.sha256() organization = fake.company() class UserFactory(django.DjangoModelFactory): class Meta: model = User username = fake.user_name() email = fake.email() class UserProfileFactory(django.DjangoModelFactory): class Meta: model = UserProfile django_get_or_create = ('user',) client = SubFactory(ClientFactory) user = SubFactory(UserFactory) limit = fake.numerify() label = fake.name()
21.810811
70
0.700124
574
0.711276
0
0
0
0
0
0
6
0.007435
0588430e94f2e77e31265668a8e628ff493b0db0
24
py
Python
tests/components/devcon/__init__.py
pcaston/Open-Peer-Power
81805d455c548e0f86b0f7fedc793b588b2afdfd
[ "Apache-2.0" ]
null
null
null
tests/components/devcon/__init__.py
pcaston/Open-Peer-Power
81805d455c548e0f86b0f7fedc793b588b2afdfd
[ "Apache-2.0" ]
null
null
null
tests/components/devcon/__init__.py
pcaston/Open-Peer-Power
81805d455c548e0f86b0f7fedc793b588b2afdfd
[ "Apache-2.0" ]
1
2019-04-24T14:10:08.000Z
2019-04-24T14:10:08.000Z
"""Tests for Devcon."""
12
23
0.583333
0
0
0
0
0
0
0
0
23
0.958333
05884cb8cc1e8c53f7f9b4339d31feb82c92a4b6
98
py
Python
Code coach problems/Easy/Python/Isogram_Detector.py
Djivs/sololearn-code-solutions
7727dd97f79863a88841548770481f6f2abdc7bf
[ "MIT" ]
1
2020-07-27T07:32:57.000Z
2020-07-27T07:32:57.000Z
Code coach problems/Easy/Python/Isogram_Detector.py
Djivs/sololearn-code-solutions
7727dd97f79863a88841548770481f6f2abdc7bf
[ "MIT" ]
null
null
null
Code coach problems/Easy/Python/Isogram_Detector.py
Djivs/sololearn-code-solutions
7727dd97f79863a88841548770481f6f2abdc7bf
[ "MIT" ]
1
2020-11-07T12:45:21.000Z
2020-11-07T12:45:21.000Z
a = input() i = 0 while i != len(a): if a[i] in a[i+1:]: break print(str(i == len(a)).lower())
14
31
0.510204
0
0
0
0
0
0
0
0
0
0
0589b9d3ea2a64dcded6b8ab04bba1a44e732a41
2,813
py
Python
src/cbc_binary_toolkit/schemas.py
carbonblack/cbc-binary-toolkit
92c90b80e3c3e0b5c2473ef2086d2ce2fb651db4
[ "MIT" ]
8
2020-05-12T18:08:52.000Z
2021-12-27T06:11:00.000Z
src/cbc_binary_toolkit/schemas.py
carbonblack/cbc-binary-toolkit
92c90b80e3c3e0b5c2473ef2086d2ce2fb651db4
[ "MIT" ]
4
2020-05-13T16:07:49.000Z
2020-06-30T18:47:14.000Z
src/cbc_binary_toolkit/schemas.py
carbonblack/cbc-binary-toolkit
92c90b80e3c3e0b5c2473ef2086d2ce2fb651db4
[ "MIT" ]
3
2020-05-16T19:57:57.000Z
2020-11-01T08:43:31.000Z
# -*- coding: utf-8 -*- # ******************************************************* # Copyright (c) VMware, Inc. 2020-2021. All Rights Reserved. # SPDX-License-Identifier: MIT # ******************************************************* # * # * DISCLAIMER. THIS PROGRAM IS PROVIDED TO YOU "AS IS" WITHOUT # * WARRANTIES OR CONDITIONS OF ANY KIND, WHETHER ORAL OR WRITTEN, # * EXPRESS OR IMPLIED. THE AUTHOR SPECIFICALLY DISCLAIMS ANY IMPLIED # * WARRANTIES OR CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, # * NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE. """Schemas for Engine Results component""" from schema import And, Or, Optional, Schema IOCv2SEVSchema = Schema( { "id": And(str, len), "match_type": And(str, lambda type: type in ["query", "equality", "regex"]), "values": And([str], len), Optional("field"): And(str, len), Optional("link"): And(str, len), "severity": And(int, lambda n: n > 0 and n < 11) # Needs stripped before sent to CBC } ) IOCv2Schema = Schema( { "id": And(str, len), "match_type": And(str, lambda type: type in ["query", "equality", "regex"]), "values": And([str], len), Optional("field"): And(str, len), Optional("link"): And(str, len) } ) ReportSchema = Schema( { "id": And(str, len), "timestamp": And(int, lambda n: n > 0), "title": And(str, len), "description": And(str, len), "severity": And(int, lambda n: n > 0 and n < 11), Optional("link"): str, Optional("tags"): [str], "iocs_v2": [IOCv2Schema], Optional("visibility"): str } ) EngineResponseSchema = Schema( { "iocs": [IOCv2SEVSchema], "engine_name": And(str, len), "binary_hash": And(str, lambda n: len(n) == 64), "success": bool } ) BinaryMetadataSchema = Schema( { "sha256": And(str, lambda n: len(n) == 64), "url": And(str, len), "architecture": [str], "available_file_size": Or(int, None), "charset_id": Or(int, None), "comments": Or(str, None), "company_name": Or(str, None), "copyright": Or(str, None), "file_available": bool, "file_description": Or(str, None), "file_size": Or(int, None), "file_version": Or(str, None), "internal_name": Or(str, None), "lang_id": Or(int, None), "md5": And(str, lambda n: len(n) == 32), "original_filename": Or(str, None), "os_type": Or(str, None), "private_build": Or(str, None), "product_description": Or(str, None), "product_name": Or(str, None), "product_version": Or(str, None), "special_build": Or(str, None), "trademark": Or(str, None) } )
31.606742
93
0.542126
0
0
0
0
0
0
0
0
1,188
0.422325