hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
7b788c4e537ccfe9b9a19c03459ac9310b0314ff
662
py
Python
setup.py
yuji-koseki/django-home-urls
ef42ad08101f83c2aff941e00abd50e60c57ac51
[ "MIT" ]
null
null
null
setup.py
yuji-koseki/django-home-urls
ef42ad08101f83c2aff941e00abd50e60c57ac51
[ "MIT" ]
null
null
null
setup.py
yuji-koseki/django-home-urls
ef42ad08101f83c2aff941e00abd50e60c57ac51
[ "MIT" ]
null
null
null
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="django_home_urls", version="0.1.0", author="Yuji Koseki", author_email="[email protected]", description="Django home urlconf.", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/yuji-koseki/django-home-urls", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", 'Framework :: Django', "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], )
28.782609
58
0.663142
0
0
0
0
0
0
0
0
302
0.456193
7b792f428ffd2ed8a9d5df151157eca526120574
3,553
py
Python
lib/DataFileIO.py
cttsai1985/Kaggle-Home-Credit-Default-Risk
a378d5fcee1895a6229c740779f64b286532de8c
[ "Apache-2.0" ]
null
null
null
lib/DataFileIO.py
cttsai1985/Kaggle-Home-Credit-Default-Risk
a378d5fcee1895a6229c740779f64b286532de8c
[ "Apache-2.0" ]
null
null
null
lib/DataFileIO.py
cttsai1985/Kaggle-Home-Credit-Default-Risk
a378d5fcee1895a6229c740779f64b286532de8c
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ This script provide a class to read and save files Created on Sat July 21 2018 @author: cttsai """ import pandas as pd from Utility import CheckFileExist from LibConfigs import logger, hdf5_compress_option, fast_hdf5_compress_option class DataFileIO(object): """ """ def __init__(self): self.data_lastet_load = {} def getLastestLoaded(self): return self.data_lastet_load.copy() @staticmethod def checkFile(filename): return CheckFileExist(filename, silent=False) @staticmethod def loadEmpty(configs): return {k: pd.DataFrame() for k in configs.keys()} @staticmethod def readHDF(filename, configs={}, opt_load=True): with pd.HDFStore(filename, 'r', **hdf5_compress_option) as store: logger.info("{} contained {} items".format(filename, len(store.keys()))) for k in store.keys(): logger.info("{}: {}".format(k, store[k].shape)) if opt_load and configs: # load and limited by configs ret = {k: pd.DataFrame() for k in configs.keys()} ret.update({k.strip('/'): store[k] for k in store.keys() if k.strip('/') in configs.keys()}) return ret if opt_load: # load all saved dataframes return {k.strip('/'): store[k] for k in store.keys()} return {} def showHDF(self, filename): self.checkFile(filename) self.readHDF(filename, opt_load=False) def loadCSV(self, configs={}): """ configs = {'name': 'file_path'} return load_data = {'name': dataframe} """ logger.info("Read Data from CSV") load_data = {} for k, f_path in configs.items(): if not self.checkFile(f_path): continue load_data[k] = pd.read_csv(f_path) logger.info("Read in {}: from {}, shape={}".format(k, f_path, load_data[k].shape)) self.data_lastet_load = load_data.copy() return load_data def loadHDF(self, filename, configs={}, limited_by_configs=True): """ """ logger.info("Read Data from HDFS") if not self.checkFile(filename): return self.loadEmpty(configs) if limited_by_configs: logger.info("Load selected DataFrame Only") load_data = self.readHDF(filename, configs, opt_load=True) else: # full loaded load_data = self.readHDF(filename, opt_load=True) for k, v in load_data.items(): if isinstance(v, pd.DataFrame): logger.info('memory usage on {} is {:.3f} MB'.format(k, v.memory_usage().sum() / 1024. ** 2)) self.data_lastet_load = load_data#.copy() return load_data def saveHDF(self, filename, data, opt_overwrite=True, opt_fast=False): if self.checkFile(filename): if not opt_overwrite: logger.warning("overwrite is not allowed") return False compress_option = hdf5_compress_option if opt_fast: logger.info("use faster compression option") compress_option = fast_hdf5_compress_option with pd.HDFStore(filename, 'w', **compress_option) as store: logger.info("Save to {}".format(filename)) for k, d in data.items(): store.put(k, d, format='table') #store.put(k, d, format='fixed') logger.info("Save {}: {}".format(k, d.shape))
33.205607
109
0.587672
3,264
0.91866
0
0
935
0.263158
0
0
655
0.184351
7b7fac5e786fffa0981a48a959c7b50a97194205
885
py
Python
tests/testSevenKing.py
yooyoo2004/RoomAI
7f4d655581a03ded801f6c6d7d18f9fff47aa6f5
[ "MIT" ]
null
null
null
tests/testSevenKing.py
yooyoo2004/RoomAI
7f4d655581a03ded801f6c6d7d18f9fff47aa6f5
[ "MIT" ]
null
null
null
tests/testSevenKing.py
yooyoo2004/RoomAI
7f4d655581a03ded801f6c6d7d18f9fff47aa6f5
[ "MIT" ]
1
2021-08-15T16:19:01.000Z
2021-08-15T16:19:01.000Z
#!/bin/python from roomai.sevenking import SevenKingEnv from roomai.sevenking import SevenKingAction import unittest class testSevenKing(unittest.TestCase): def show_hand_card(self,hand_card): str = "" for c in hand_card: str += "," + c.key print (str) def testEnv(self): env = SevenKingEnv() env.num_players = 2 infos, public_state, person_states, private_state = env.init() assert(len(infos) == 2) turn = public_state.turn self.show_hand_card(person_states[turn].hand_card) print (turn) print ("available_actions=",person_states[turn].available_actions.keys()) print ("available_actions_v=",person_states[turn].available_actions.values()) action = SevenKingAction("%s,%s" % (person_states[turn].hand_card[0].key, person_states[turn].hand_card[1].key))
30.517241
120
0.662147
763
0.862147
0
0
0
0
0
0
67
0.075706
7b817580d6dc21506efb8434e6050e6f651bf968
1,776
py
Python
pyamazonlandsat/product.py
eamanu/pyamazonlandsat
cf16c5acc8fa44a89a8fcd5276e4a46421e3aa3e
[ "MIT" ]
null
null
null
pyamazonlandsat/product.py
eamanu/pyamazonlandsat
cf16c5acc8fa44a89a8fcd5276e4a46421e3aa3e
[ "MIT" ]
null
null
null
pyamazonlandsat/product.py
eamanu/pyamazonlandsat
cf16c5acc8fa44a89a8fcd5276e4a46421e3aa3e
[ "MIT" ]
null
null
null
import attr import os import tarfile from pyamazonlandsat.utils import get_path_row_from_name from pyamazonlandsat.downloader import Downloader @attr.s class Product: """Class that represent a Product :param name: name of the Product. type name: str. :param output_path: path where save the downloaded prodcuct. :type output_path: str. """ name = attr.ib() output_path = attr.ib() _path_files = attr.ib(init=False) _link = attr.ib(init=False, default='https://landsat-pds.s3.amazonaws.com/c1/L8/%s/%s/%s') def _generate_link(self): """Method to generate the link to download from S3 Amazon Service """ path, row = get_path_row_from_name(self.name) self._link = self._link % (path, row, self.name) def _compress_product(self): """Method to compress product into a tar file. """ with tarfile.open('%s.tar.gz' % os.path.join(self.output_path, self.name), 'w:gz') as tar: for ff in os.listdir(self._path_files): tar.add( os.path.join( self._path_files, ff), ff) def get_image_product(self): """Method to download the product. This method create a `Downloader`_ object and download the images. Then compressed it and move to `output_path` The downloaded images are saved into a temporal folder, then is compresed into a tar file and then move to `output_path`. """ self._generate_link() downloader = Downloader(self._link) self._path_files = downloader.download_images() self._compress_product() downloader.remove_tmp_files()
31.714286
84
0.614865
1,620
0.912162
0
0
1,628
0.916667
0
0
727
0.409347
7b83240c1ea862333830ef3e4b3423db43db8c92
5,352
py
Python
segmentation.py
IgnacioPardo/RoadTrip
6cdded860a67bb99cc1fc81e85cd8c09eaf46431
[ "MIT" ]
2
2021-04-13T18:54:08.000Z
2021-09-21T23:08:08.000Z
segmentation.py
IgnacioPardo/RoadTrip
6cdded860a67bb99cc1fc81e85cd8c09eaf46431
[ "MIT" ]
null
null
null
segmentation.py
IgnacioPardo/RoadTrip
6cdded860a67bb99cc1fc81e85cd8c09eaf46431
[ "MIT" ]
null
null
null
from __future__ import division from skimage.segmentation import slic, mark_boundaries from skimage.util import img_as_float from skimage import io import numpy as np import matplotlib.pyplot as plt import os from cv2 import boundingRect #from argparse import ArgumentParser img_width = 50 img_height = 50 img_depth = 4 _selected_segments = set() _current_segments = [] _current_image = [] _original_image = [] _plt_img = [] _shift = False def segment(image, **kwargs): return slic(img_as_float(image), n_segments = int(kwargs.get("n_segments", max(image.shape) * 1.5)), sigma = 5) def on_click(event): if _shift: x, y = int(round(event.xdata)), int(round(event.ydata)) segment_value = _current_segments[y, x] if segment_value not in _selected_segments: _selected_segments.add(segment_value) _current_image[_current_segments == segment_value] = [255, 0, 0] else: _selected_segments.remove(segment_value) _current_image[_current_segments == segment_value] = _original_image[_current_segments == segment_value] _plt_img.set_data(_current_image) plt.draw() print(segment_value) def on_key_press(event): global _shift if event.key == 'shift': _shift = True def on_key_release(event): global _shift if event.key == 'shift': _shift = False def select(image, segments): global _selected_segments global _current_segments global _current_image global _original_image global _plt_img _selected_segments = set() _current_segments = segments _current_image = np.copy(image) _original_image = image fig = plt.figure(f"Segmentation") ax = fig.add_subplot(1, 1, 1) _plt_img = ax.imshow(image) fig.canvas.mpl_connect('button_press_event', on_click) fig.canvas.mpl_connect('key_press_event', on_key_press) fig.canvas.mpl_connect('key_release_event', on_key_release) plt.show() return _selected_segments def mask_from_segments(segments, value): mask = np.zeros(segments.shape, dtype="uint8") mask[segments == value] = 255 return mask def padded_image(image, segments, value): mask = mask_from_segments(segments, value) positions = np.transpose(mask.nonzero()) x, y, width, height = boundingRect(positions[:,::-1]) global_height, global_width, _ = image.shape left_padding_x, top_padding_y = (img_width - width) // 2, (img_height - height) // 2 right_padding_x, bottom_padding_y = left_padding_x, top_padding_y right_padding_x += (img_width - width) % 2 bottom_padding_y += (img_height - height) % 2 if top_padding_y > y: return None if left_padding_x > x: return None if bottom_padding_y > global_height - (y + height): return None if right_padding_x > global_width - (x + width): return None result_image = np.zeros((img_height, img_width, 4), dtype="float32") # i is result_image's index, ii is original image's index for i, ii in zip(range(img_height), range(y - top_padding_y, y + height + bottom_padding_y)): for j, jj in zip(range(img_width), range(x - left_padding_x, x + width + right_padding_x)): # Add a channel to whether each pixel belongs to the original segment result_image[i, j] = np.array(list(image[ii, jj]) + [mask[ii, jj]], dtype="float32") # returns a 4-channel image with dimensions (image_utils.img_width x image_utils.img_height) return result_image def padded_segments(image, segments, selection, mask=None): padded_segments = [] segment_val = [] max_val = segments.max() + 1 for i in selection: if mask is not None: and_mask = np.logical_and(mask_from_segments(segments, i), mask) if not and_mask.any(): continue img = padded_image(image, segments, i) if img is not None: padded_segments.append(img) segment_val.append(i) print(f"Padding images [{int((i / max_val) * 100)}%]\r", end="") print('\n') return (np.array(padded_segments), segment_val) if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--name", default="new") args = parser.parse_args() image_paths = os.listdir("inputs") images = [io.imread(os.path.join("inputs", image_path)) for image_path in image_paths] print(f"Found {len(images)} inputs") output_path = os.path.join("datasets", args.name) existing_segments = os.listdir(output_path) if 'c0' in existing_segments: false_index = existing_segments.index('c0') true_index = len(existing_segments) - false_index else: false_index = len(existing_segments) true_index = 0 print("Segmenting") segments = [segment(image) for image in images] for i in range(len(images)): selection = select(images[i], segments[i]) true_padded_images, _ = padded_segments(images[i], segments[i], selection) print(f"Saving {len(true_padded_images)} car images") for img in true_padded_images: # Can't save it as an image: it has an extra channel with open(os.path.join(output_path, f"c{str(true_index)}"), 'wb') as save_file: np.save(save_file, img) true_index += 1 not_selection = set(range(segments[i].max())) - selection false_padded_images, _ = padded_segments(images[i], segments[i], not_selection) print(f"Saving {len(false_padded_images)} non-car images") for img in false_padded_images: with open(os.path.join(output_path, str(false_index)), 'wb') as save_file: np.save(save_file, img) false_index += 1 os.rename(os.path.join("inputs", image_paths[i]), os.path.join("processed", image_paths[i]))
30.409091
112
0.734865
0
0
0
0
0
0
0
0
726
0.13565
7b842e0e690c82590e6a6533bd9a6cab6937e48f
1,797
py
Python
benten/code/workflowgraph.py
stain/benten
40440d36025e0b27b8dfa6752aa76b15e7abc0d1
[ "Apache-2.0" ]
null
null
null
benten/code/workflowgraph.py
stain/benten
40440d36025e0b27b8dfa6752aa76b15e7abc0d1
[ "Apache-2.0" ]
null
null
null
benten/code/workflowgraph.py
stain/benten
40440d36025e0b27b8dfa6752aa76b15e7abc0d1
[ "Apache-2.0" ]
null
null
null
"""Parse CWL and create a JSON file describing the workflow. This dictionary is directly suitable for display by vis.js, but can be parsed for any other purpose.""" # Copyright (c) 2019 Seven Bridges. See LICENSE from ..cwl.lib import ListOrMap def cwl_graph(cwl: dict): graph = { "nodes": [], "edges": [], "lines": {} } inputs = ListOrMap(cwl.get("inputs", {}), key_field="id", problems=[]) _add_nodes(graph, inputs, "inputs") steps = ListOrMap(cwl.get("steps", {}), key_field="id", problems=[]) _add_nodes(graph, steps, "steps") outputs = ListOrMap(cwl.get("outputs", {}), key_field="id", problems=[]) _add_nodes(graph, outputs, "outputs") _add_edges(graph, inputs, outputs, steps) return graph def _add_nodes(graph, grp, grp_id): for k, v in grp.as_dict.items(): graph["nodes"] += [{ "id": k, "label": v.get("label", k) if isinstance(v, dict) else k, "title": v.get("label", k) if isinstance(v, dict) else k, "group": grp_id }] graph["lines"][k] = grp.get_range_for_value(k).start.line def _add_edges(graph, inputs, outputs, steps): for k, v in steps.as_dict.items(): _to = k for _, prt in ListOrMap(v.get("in", {}), key_field="id", problems=[]).as_dict.items(): graph["edges"] += [{"from": _f, "to": _to} for _f in _get_source_step(prt, "source")] for k, v in outputs.as_dict.items(): _to = k graph["edges"] += [{"from": _f, "to": _to} for _f in _get_source_step(v, "outputSource")] def _get_source_step(v, key): src = v.get(key) if isinstance(v, dict) else v if not isinstance(src, list): src = [src] return [s.split("/")[0] for s in src if isinstance(s, str)]
29.95
97
0.590428
0
0
0
0
0
0
0
0
413
0.229827
7b87f62b10bc328cd7870120d84ededf89b99acb
21
py
Python
data/studio21_generated/introductory/4853/starter_code.py
vijaykumawat256/Prompt-Summarization
614f5911e2acd2933440d909de2b4f86653dc214
[ "Apache-2.0" ]
null
null
null
data/studio21_generated/introductory/4853/starter_code.py
vijaykumawat256/Prompt-Summarization
614f5911e2acd2933440d909de2b4f86653dc214
[ "Apache-2.0" ]
null
null
null
data/studio21_generated/introductory/4853/starter_code.py
vijaykumawat256/Prompt-Summarization
614f5911e2acd2933440d909de2b4f86653dc214
[ "Apache-2.0" ]
null
null
null
def double_char(s):
10.5
19
0.714286
0
0
0
0
0
0
0
0
0
0
7b882a00a99da3e2e17e41e9f577ca3003e8abd3
2,561
py
Python
app/core/models.py
fxavier/abt-epts
021a8140db32afba106a7a9e122b98452d88c225
[ "MIT" ]
null
null
null
app/core/models.py
fxavier/abt-epts
021a8140db32afba106a7a9e122b98452d88c225
[ "MIT" ]
null
null
null
app/core/models.py
fxavier/abt-epts
021a8140db32afba106a7a9e122b98452d88c225
[ "MIT" ]
null
null
null
from django.db import models from django.contrib.auth.models import AbstractBaseUser, BaseUserManager, \ PermissionsMixin from django.conf import settings class UserManager(BaseUserManager): def create_user(self, email, password=None, **extra_fields): """Creates and saves a new user""" if not email: raise ValueError('Users must have an email address') user = self.model(email=self.normalize_email(email), **extra_fields) user.set_password(password) user.save(using=self._db) return user def create_superuser(self, email, password): """Creates and saves a new super user""" user = self.create_user(email, password) user.is_staff = True user.is_superuser = True user.save(using=self._db) return user class User(AbstractBaseUser, PermissionsMixin): """Custom user model that suppors using email instead of username""" email = models.EmailField(max_length=255, unique=True) name = models.CharField(max_length=255) is_active = models.BooleanField(default=True) is_staff = models.BooleanField(default=False) objects = UserManager() USERNAME_FIELD = 'email' class Provincia(models.Model): name = models.CharField(max_length=200) def __str__(self): return self.name class Distrito(models.Model): """Model definition for District.""" # TODO: Define fields here name = models.CharField(max_length=100) provincia = models.ForeignKey('Provincia', on_delete=models.CASCADE) def __str__(self): """Unicode representation of District.""" return self.name class UnidadeSanitaria(models.Model): """Model definition for HealthFacility.""" id = models.CharField(max_length=255, primary_key=True) name = models.CharField(max_length=255) # openmrs_name = models.CharField(max_length=255, null=True, blank=True) distrito = models.ForeignKey('Distrito', on_delete=models.CASCADE) class Meta: """Meta definition for HealthFacility.""" verbose_name = 'Unidade Sanitaria' verbose_name_plural = 'Unidades Sanitarias' def __str__(self): """Unicode representation of HealthFacility.""" return self.name class Livro(models.Model): tipo = models.CharField(max_length=100) numero = models.IntegerField() pagina = models.IntegerField() linha = models.IntegerField() def __str__(self): return f'{self.tipo} {self.numero}'
30.488095
76
0.673565
2,342
0.914487
0
0
0
0
0
0
577
0.225303
7b8b21db4d1b5bb95da77aaaeac80ad479fa1496
477
py
Python
reviews/migrations/0006_review_no_login.py
moshthepitt/answers
9febf465a18c41e7a48130e987a8fd64ceae3358
[ "MIT" ]
6
2015-07-28T09:36:39.000Z
2020-08-11T17:15:18.000Z
reviews/migrations/0006_review_no_login.py
Swifilaboroka/answers
9febf465a18c41e7a48130e987a8fd64ceae3358
[ "MIT" ]
8
2015-12-17T22:56:16.000Z
2022-01-13T00:43:16.000Z
reviews/migrations/0006_review_no_login.py
Swifilaboroka/answers
9febf465a18c41e7a48130e987a8fd64ceae3358
[ "MIT" ]
3
2017-07-15T12:13:03.000Z
2022-02-02T10:04:10.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('reviews', '0005_auto_20160203_1247'), ] operations = [ migrations.AddField( model_name='review', name='no_login', field=models.BooleanField(default=False, help_text='Is this review open to the world?', verbose_name='No Login'), ), ]
23.85
125
0.628931
368
0.771488
0
0
0
0
0
0
120
0.251572
7b8c7e8a4741c68754a4c124370afe960c3a82b1
2,191
py
Python
qbism/kraus.py
heyredhat/qbism
192333b725495c6b66582f7a7b0b4c18a2f392a4
[ "Apache-2.0" ]
2
2021-01-27T18:39:12.000Z
2021-02-01T06:57:02.000Z
qbism/kraus.py
heyredhat/qbism
192333b725495c6b66582f7a7b0b4c18a2f392a4
[ "Apache-2.0" ]
null
null
null
qbism/kraus.py
heyredhat/qbism
192333b725495c6b66582f7a7b0b4c18a2f392a4
[ "Apache-2.0" ]
null
null
null
# AUTOGENERATED! DO NOT EDIT! File to edit: 04kraus.ipynb (unless otherwise specified). __all__ = ['apply_kraus', 'partial_trace_kraus', 'povm_map'] # Cell import numpy as np import qutip as qt # Cell def apply_kraus(dm, kraus): r""" Applies a Kraus map to a density matrix $\rho$. The Kraus map consists in some number of operators satisfying $\sum_{i} \hat{K}_{i}^{\dagger}\hat{K}_{i} = \hat{I}$. $\rho$ is transformed via: $$\rho \rightarrow \sum_{i} \hat{K}_{i}\rho\hat{K}_{i}^{\dagger} $$ """ return sum([kraus[j]*dm*kraus[j].dag() for j in range(len(kraus))]) # Cell def partial_trace_kraus(keep, dims): r""" Constructs the Kraus map corresponding to the partial trace. Takes `keep` which is a single index or list of indices denoting subsystems to keep, and a list `dims` of dimensions of the overall tensor product Hilbert space. For illustration, to trace over the $i^{th}$ subsystem of $n$, one would construct Kraus operators: $$ \hat{K}_{i} = I^{\otimes i - 1} \otimes \langle i \mid \otimes I^{\otimes n - i}$$. """ if type(keep) == int: keep = [keep] trace_over = [i for i in range(len(dims)) if i not in keep] indices = [{trace_over[0]:t} for t in range(dims[trace_over[0]])] for i in trace_over[1:]: new_indices = [] for t in range(dims[i]): new_indices.extend([{**j, **{i: t}} for j in indices]) indices = new_indices return [qt.tensor(*[qt.identity(d) if i in keep else qt.basis(d, index[i]).dag() for i, d in enumerate(dims)]) for index in indices] # Cell def povm_map(kraus, A, B=None): r""" Represents a Kraus map on Qbist probability vectors. Takes a list of Kraus operators, a POVM $A$ on the initial Hilbert space, and a POVM $B$ on the final Hilbert space. If $B$ isn't provided, it's assumed to be the same as $A$. Then the matrix elements of the map are: $$K_{j, i} = tr( \mathbb{K}(\frac{\hat{A}_{i}}{tr \hat{A}_{i}})\hat{B}_{j} ) $$ Where $\mathbb{K}(\hat{O})$ denotes the Kraus map applied to $O$. """ B = B if type(B) != type(None) else A return np.array([[(apply_kraus(a/a.tr(), kraus)*b).tr() for a in A] for b in B]).real
42.960784
146
0.64126
0
0
0
0
0
0
0
0
1,314
0.599726
7b8d3bfd9dda43412dd61ee3a956e43a5295cf1f
78
py
Python
Python Book/12. Complex Loops/05_sequence_2k_plus_one/sequence_2k_plus_one.py
alexanderivanov2/Softuni-Software-Engineering
8adb96f445f1da17dbb6eded9e9594319154c7e7
[ "MIT" ]
null
null
null
Python Book/12. Complex Loops/05_sequence_2k_plus_one/sequence_2k_plus_one.py
alexanderivanov2/Softuni-Software-Engineering
8adb96f445f1da17dbb6eded9e9594319154c7e7
[ "MIT" ]
null
null
null
Python Book/12. Complex Loops/05_sequence_2k_plus_one/sequence_2k_plus_one.py
alexanderivanov2/Softuni-Software-Engineering
8adb96f445f1da17dbb6eded9e9594319154c7e7
[ "MIT" ]
null
null
null
n = int(input()) num = 1 while num <= n: print(num) num = num * 2 + 1
13
21
0.487179
0
0
0
0
0
0
0
0
0
0
7b8dd1f4d57db9568b64c88454ba16b6a105aa77
4,129
py
Python
run_all_benchmark_functions.py
ntienvu/KnowingOptimumValue_BO
42225cb9d61c1225bd757fe9dd02834a0bc7a3e6
[ "MIT" ]
14
2020-06-30T00:36:14.000Z
2022-01-11T13:15:53.000Z
run_all_benchmark_functions.py
ntienvu/KnowingOptimumValue_BO
42225cb9d61c1225bd757fe9dd02834a0bc7a3e6
[ "MIT" ]
null
null
null
run_all_benchmark_functions.py
ntienvu/KnowingOptimumValue_BO
42225cb9d61c1225bd757fe9dd02834a0bc7a3e6
[ "MIT" ]
2
2020-10-17T15:27:06.000Z
2021-02-27T10:34:04.000Z
import sys sys.path.insert(0,'..') sys.path.insert(0,'../..') from bayes_opt import BayesOpt,BayesOpt_KnownOptimumValue import numpy as np #from bayes_opt import auxiliary_functions from bayes_opt import functions from bayes_opt import utilities import warnings #from bayes_opt import acquisition_maximization import sys import itertools import matplotlib.pyplot as plt np.random.seed(6789) warnings.filterwarnings("ignore") counter = 0 myfunction_list=[] #myfunction_list.append(functions.sincos()) #myfunction_list.append(functions.branin()) #myfunction_list.append(functions.hartman_3d()) #myfunction_list.append(functions.ackley(input_dim=5)) myfunction_list.append(functions.alpine1(input_dim=5)) #myfunction_list.append(functions.hartman_6d()) #myfunction_list.append(functions.gSobol(a=np.array([1,1,1,1,1]))) #myfunction_list.append(functions.gSobol(a=np.array([1,1,1,1,1,1,1,1,1,1]))) acq_type_list=[] temp={} temp['name']='erm' # expected regret minimization temp['IsTGP']=0 # recommended to use tgp for ERM acq_type_list.append(temp) temp={} temp['name']='cbm' # confidence bound minimization temp['IsTGP']=1 # recommended to use tgp for CBM #acq_type_list.append(temp) #temp={} #temp['name']='kov_mes' # MES+f* #temp['IsTGP']=0 # we can try 'tgp' #acq_type_list.append(temp) temp={} temp['name']='kov_ei' # this is EI + f* temp['IsTGP']=0 # we can try 'tgp' by setting it =1 #acq_type_list.append(temp) temp={} temp['name']='ucb' # vanilla UCB temp['IsTGP']=0 # we can try 'tgp' by setting it =1 #acq_type_list.append(temp) temp={} temp['name']='ei' # vanilla EI temp['IsTGP']=0 # we can try 'tgp' by setting it =1 #acq_type_list.append(temp) temp={} temp['name']='random' # vanilla EI temp['IsTGP']=0 # we can try 'tgp' by setting it =1 #acq_type_list.append(temp) fig=plt.figure() color_list=['r','b','k','m','c','g','o'] marker_list=['s','x','o','v','^','>','<'] for idx, (myfunction,acq_type,) in enumerate(itertools.product(myfunction_list,acq_type_list)): print("=====================func:",myfunction.name) print("==================acquisition type",acq_type) IsTGP=acq_type['IsTGP'] acq_name=acq_type['name'] nRepeat=10 ybest=[0]*nRepeat MyTime=[0]*nRepeat MyOptTime=[0]*nRepeat marker=[0]*nRepeat bo=[0]*nRepeat [0]*nRepeat for ii in range(nRepeat): if 'kov' in acq_name or acq_name == 'erm' or acq_name == 'cbm': bo[ii]=BayesOpt_KnownOptimumValue(myfunction.func,myfunction.bounds,myfunction.fstar, \ acq_name,IsTGP,verbose=1) else: bo[ii]=BayesOpt(myfunction.func,myfunction.bounds,acq_name,verbose=1) ybest[ii],MyTime[ii]=utilities.run_experiment(bo[ii],n_init=3*myfunction.input_dim,\ NN=10*myfunction.input_dim,runid=ii) MyOptTime[ii]=bo[ii].time_opt print("ii={} BFV={:.3f}".format(ii,myfunction.ismax*np.max(ybest[ii]))) Score={} Score["ybest"]=ybest Score["MyTime"]=MyTime Score["MyOptTime"]=MyOptTime utilities.print_result_sequential(bo,myfunction,Score,acq_type) ## plot the result # process the result y_best_sofar=[0]*len(bo) for uu,mybo in enumerate(bo): y_best_sofar[uu]=[ (myfunction.fstar - np.max(mybo.Y_ori[:ii+1]) ) for ii in range(len(mybo.Y_ori))] y_best_sofar[uu]=y_best_sofar[uu][3*myfunction.input_dim:] # remove the random phase for plotting purpose y_best_sofar=np.asarray(y_best_sofar) myxaxis=range(y_best_sofar.shape[1]) plt.errorbar(myxaxis,np.mean(y_best_sofar,axis=0), np.std(y_best_sofar,axis=0)/np.sqrt(nRepeat), label=acq_type['name'],color=color_list[idx],marker=marker_list[idx]) plt.ylabel("Simple Regret",fontsize=14) plt.xlabel("Iterations",fontsize=14) plt.legend(prop={'size': 14}) strTitle="{:s} D={:d}".format(myfunction.name,myfunction.input_dim) plt.title(strTitle,fontsize=18)
25.80625
125
0.654154
0
0
0
0
0
0
0
0
1,467
0.355292
7b8e2e97334a2cce55aad103330d605ea89ea8e4
2,258
py
Python
coursesical/ical.py
cdfmlr/coursesical
d027db60dca6bcf543a74d3a6dd635fd8d1ee5ba
[ "MIT" ]
2
2021-03-19T02:23:24.000Z
2021-12-22T15:01:46.000Z
coursesical/ical.py
cdfmlr/coursesical
d027db60dca6bcf543a74d3a6dd635fd8d1ee5ba
[ "MIT" ]
null
null
null
coursesical/ical.py
cdfmlr/coursesical
d027db60dca6bcf543a74d3a6dd635fd8d1ee5ba
[ "MIT" ]
null
null
null
import icalendar import uuid from datetime import datetime import pytz cst = pytz.timezone('Asia/Shanghai') class Calendar(icalendar.Calendar): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.add('prodid', '-//CDFMLR//coursesical//CN') self.add('VERSION', '2.0') self.add('X-WR-CALNAME', 'coursesical') self.add('X-APPLE-CALENDAR-COLOR', '#ff5a1d') self.add('X-WR-TIMEZONE', 'Asia/Shanghai') def add_event(self, event): self.add_component(event) # def fCalendar(): # cal = icalendar.Calendar() # cal.add('prodid', '-//CDFMLR//coursesical//CN') # cal.add('VERSION', '2.0') # cal.add('X-WR-CALNAME', 'coursesical') # cal.add('X-APPLE-CALENDAR-COLOR', '#ff5a1d') # cal.add('X-WR-TIMEZONE', 'Asia/Shanghai') # return cal class Event(icalendar.Event): def __init__(self, summary: str, start: datetime, end: datetime, location: str, description: str, *args, **kwargs): super().__init__(*args, **kwargs) self.add('SUMMARY', summary) self.add('LOCATION', location) self.add('DESCRIPTION', description) self.add('DTSTART', datetime(start.year, start.month, start.day, start.hour, start.minute, start.second, tzinfo=cst)) self.add('DTEND', datetime(end.year, end.month, end.day, end.hour, end.minute, end.second, tzinfo=cst)) self.add('SEQUENCE', '0') self.add('UID', str(uuid.uuid3(uuid.NAMESPACE_DNS, f'{summary}{str(uuid.uuid4())}'))) def alarm(self, before_minutes: int): alarm = icalendar.Alarm() alarm.add('UID', str(uuid.uuid3( uuid.NAMESPACE_DNS, str(self["summary"]) + str(uuid.uuid4()) + str(before_minutes) ))) alarm.add('ACTION', 'DISPLAY') alarm['TRIGGER'] = f'-PT{before_minutes}M' alarm.add('DESCRIPTION', '提醒事项') self.add_component(alarm) return self def weekly_repeat(self, until: datetime): self.add('rrule', {'freq': 'WEEKLY', 'INTERVAL': 1, 'UNTIL': until}) return self
31.361111
95
0.569088
1,847
0.815093
0
0
0
0
0
0
671
0.296117
7b8f6c6edc977e548344a0694966296691f0f034
816
py
Python
minesweeper/test/message_tests.py
newnone/Multiplayer-Minesweeper
054adc4a14a710dfdd479791b9d1d40df061211c
[ "MIT" ]
null
null
null
minesweeper/test/message_tests.py
newnone/Multiplayer-Minesweeper
054adc4a14a710dfdd479791b9d1d40df061211c
[ "MIT" ]
null
null
null
minesweeper/test/message_tests.py
newnone/Multiplayer-Minesweeper
054adc4a14a710dfdd479791b9d1d40df061211c
[ "MIT" ]
null
null
null
#!/usr/bin/python3.2 import unittest from minesweeper.message import * class UTSMessageTest(unittest.TestCase): def test_parse_infer_type(self): """ Instantiates one object for every concrete subclass of UTSMessage using the type-inferring factory method parse_infer_type(), checking that the instance returned is of the expected type. """ factory_strings = ("look", "dig 5 2", "flag 6 2", "deflag 3 6", "help", "bye") message_classes = UTSMessage.message_types for string, mclass in zip(factory_strings, message_classes): o = UTSMessage.parse_infer_type(string) self.assertIsInstance( o, mclass ) if __name__ == "__main__": unittest.main()
27.2
98
0.61152
692
0.848039
0
0
0
0
0
0
304
0.372549
7b917e46393f05ca669d8af2e30bf77af89da6ab
1,640
py
Python
setup.py
RunnerPyzza/RunnerPyzza
47f46339ab510635120613ac683f0be462f54ca4
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
setup.py
RunnerPyzza/RunnerPyzza
47f46339ab510635120613ac683f0be462f54ca4
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
setup.py
RunnerPyzza/RunnerPyzza
47f46339ab510635120613ac683f0be462f54ca4
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
from distutils.core import setup from distutils.command.build_py import build_py import os import shutil import stat from RunnerPyzza import __version__ class runner_build_py(build_py): def runner_install(self): print "RunnerPyzza basic configuration ..." try: os.mkdir("/etc/runnerpyzza/") except: pass try: os.mkdir("/etc/runnerpyzza/log") os.system("chmod 777 /etc/runnerpyzza/log") except: pass shutil.copy2("RPdaemon.conf", "/etc/runnerpyzza/RPdaemon.conf") shutil.copy2("runnerpyzza", "/etc/runnerpyzza/runnerpyzza") try: os.system("chmod 755 /etc/runnerpyzza/runnerpyzza") except: pass print "RunnerPyzza basic configuration ... Done!" def run(self): self.runner_install() build_py.run(self) #run superclass method setup( name = 'RunnerPyzza', version = __version__, author = 'Marco Galardini - Emilio Potenza', author_email = '[email protected] - [email protected]', packages = ['RunnerPyzza','RunnerPyzza.ClientCommon', 'RunnerPyzza.Common', 'RunnerPyzza.LauncherManager', 'RunnerPyzza.ServerCommon'], scripts = ['RPdaemon','RPlauncher','RPaddservice','RPadduser','RPpreparedir','RPsshkeys'], #url = 'http://RunnerPyzza', license = 'LICENSE.txt', description = 'An easy to use queue system for laboratory networks', long_description = open('README.txt').read(), install_requires = ["paramiko >= 1.7.7.2", "argparse >= 1.1"], cmdclass = {"build_py" : runner_build_py} )
33.469388
140
0.646951
757
0.461585
0
0
0
0
0
0
747
0.455488
7b92c51e95df7d865e1969f7a3d0f8febc341130
1,142
py
Python
recursion/0043_string_multiplication.py
MartinMa28/Algorithms_review
3f2297038c00f5a560941360ca702e6868530f34
[ "MIT" ]
null
null
null
recursion/0043_string_multiplication.py
MartinMa28/Algorithms_review
3f2297038c00f5a560941360ca702e6868530f34
[ "MIT" ]
null
null
null
recursion/0043_string_multiplication.py
MartinMa28/Algorithms_review
3f2297038c00f5a560941360ca702e6868530f34
[ "MIT" ]
null
null
null
class Solution: def _equalize_length(self, *args) -> tuple: max_len = max(map(len, args)) return tuple(map(lambda x: x.zfill(max_len), args)) def _add(self, *args) -> str: return str(sum(map(int, args))) def _sub(self, num1: str, num2: str) -> str: return str(int(num1) - int(num2)) def multiply(self, num1: str, num2: str) -> str: num1, num2 = self._equalize_length(num1, num2) n = len(num1) if n == 1: # multiply by single digit return str(int(num1) * int(num2)) num1_h = num1[: n // 2] num1_l = num1[n // 2:] num2_h = num2[: n // 2] num2_l = num2[n // 2:] num1_h_num2_h = self.multiply(num1_h, num2_h) num1_l_num2_l = self.multiply(num1_l, num2_l) combo = self._sub(self.multiply(self._add(num1_h, num1_l), self._add(num2_h, num2_l)), self._add(num1_h_num2_h, num1_l_num2_l)) return self._add(num1_h_num2_h + '0' * 2 * (n - n // 2), combo + '0' * (n - n // 2), num1_l_num2_l) if __name__ == "__main__": solu = Solution() print(solu.multiply('123', '456'))
27.853659
135
0.565674
1,049
0.918564
0
0
0
0
0
0
52
0.045534
7b941b7e926180fee64edecc4bb32c18fe4b75b2
220
py
Python
galaxy/exceptions.py
jmchilton/pulsar
783b90cf0bce893a11c347fcaf6778b98e0bb062
[ "Apache-2.0" ]
1
2016-08-17T06:36:03.000Z
2016-08-17T06:36:03.000Z
galaxy/exceptions.py
jmchilton/pulsar
783b90cf0bce893a11c347fcaf6778b98e0bb062
[ "Apache-2.0" ]
null
null
null
galaxy/exceptions.py
jmchilton/pulsar
783b90cf0bce893a11c347fcaf6778b98e0bb062
[ "Apache-2.0" ]
null
null
null
""" Here for compat. with objectstore. """ class ObjectNotFound(Exception): """ Accessed object was not found """ pass class ObjectInvalid(Exception): """ Accessed object store ID is invalid """ pass
15.714286
47
0.663636
171
0.777273
0
0
0
0
0
0
122
0.554545
7b95c23e30524cab22ee7e5bbccde48a49bfd895
9,432
py
Python
fluid/node.py
quantmind/aio-fluid
e75f91646ac9a0c9ca5679bda12319c208166d64
[ "BSD-3-Clause" ]
null
null
null
fluid/node.py
quantmind/aio-fluid
e75f91646ac9a0c9ca5679bda12319c208166d64
[ "BSD-3-Clause" ]
21
2021-08-13T06:11:55.000Z
2022-03-18T06:13:05.000Z
fluid/node.py
quantmind/aio-fluid
e75f91646ac9a0c9ca5679bda12319c208166d64
[ "BSD-3-Clause" ]
null
null
null
import asyncio import inspect import logging import os import random import time import uuid from abc import ABC, abstractmethod from functools import cached_property, wraps from logging import Logger from typing import Any, Callable, Dict, List, Optional, Tuple from aiohttp.client import ClientConnectionError, ClientConnectorError from aiohttp.web import Application, GracefulExit from .log import get_logger from .utils import close_task, dot_name, underscore class Id: @classmethod def name(cls) -> str: """My name""" return underscore(cls.__name__) @cached_property def uid(self) -> str: """My unique ID""" return uuid.uuid4().hex @classmethod def create_logger(cls, logger: Optional[logging.Logger] = None) -> logging.Logger: return logger or get_logger(dot_name(cls.name())) class IdLog(Id): @cached_property def logger(self): return self.create_logger() class NodeBase(ABC, Id): exit_lag: int = 1 app: Optional[Application] = None async def start_app(self, app: Application) -> None: """Start application""" self.app = app await self.start() async def close_app(self, app: Application) -> None: await self.close() @abstractmethod def is_running(self) -> bool: """True if the Node is running""" @abstractmethod async def start(self) -> None: """called when the node worker has started""" pass @abstractmethod async def close(self) -> None: """called when the node worker closed""" pass async def setup(self) -> None: """Called by the :meth:`.start` method when the worker starts This can be optionally implemented by derived classes """ pass async def teardown(self) -> None: """Called my :meth:`close` when the worker is stopping. This can be optionally implemented by derived classes """ pass async def done(self) -> None: try: await self.teardown() except Exception: self.logger.exception("unhandled exception while tear down worker") async def system_exit(self) -> None: """Gracefully exiting the app if possible""" if self.is_running(): await self.done() self.system_exit_sync() def system_exit_sync(self) -> None: """Exit the app""" self.logger.warning("bailing out!") asyncio.get_event_loop().call_later(self.exit_lag, self._exit) def _exit(self) -> None: # pragma: no cover if os.getenv("PYTHON_ENV") != "test": raise GracefulExit class NodeWorker(NodeBase): def __init__(self, *, logger: Optional[Logger] = None) -> None: self.logger: Logger = self.create_logger(logger) self._worker = None @property def debug(self) -> bool: return self.logger.isEnabledFor(logging.DEBUG) # FOR DERIVED CLASSES async def work(self) -> None: """Main work coroutine, this is where you define the asynchronous loop. Must be implemented by derived classes """ raise NotImplementedError # API def is_running(self) -> bool: """True if the Node is running""" return bool(self._worker) async def start(self) -> None: """Start the node""" assert not self.is_running(), "Node already running - cannot start" await self.setup() self._worker = asyncio.ensure_future(self._work()) async def close(self, close_worker: bool = True) -> None: if self._worker: self.logger.info("closing") worker = self._worker self._worker = None if close_worker: await close_task(worker, self.done) else: await self.done() self.logger.warning("closed") # INTERNAL async def _work(self) -> None: self.logger.warning("started") try: await self.work() except asyncio.CancelledError: pass except Exception: self.logger.exception("unhandled exception in worker") await self.system_exit() else: await self.close(close_worker=False) class WorkerApplication(Dict[str, Any]): def __init__(self): super().__init__() self.on_startup = [] self.on_shutdown = [] async def startup(self): for on_startup in self.on_startup: await on_startup(self) async def shutdown(self): for on_shutdown in self.on_shutdown: await on_shutdown(self) class NodeWorkers(NodeBase): def __init__(self, *workers: NodeWorker, logger: Optional[Logger] = None) -> None: self.logger: Logger = self.create_logger(logger) self._closing: bool = False self._workers: List[NodeBase] = list(workers) @property def debug(self) -> bool: return self.logger.isEnabledFor(logging.DEBUG) def is_running(self) -> bool: return isinstance(self._workers, tuple) def is_closing(self) -> bool: return self._closing def add_workers(self, *workers: NodeBase) -> None: if self.is_running(): raise RuntimeError("Cannot add workers when started") self._workers.extend(workers) async def start(self) -> None: await self.setup() self.logger.warning("started") workers = self._freeze_workers() await asyncio.gather(*[w.start_app(self.app) for w in workers]) async def close(self) -> None: if self.is_running(): self._closing = True await asyncio.gather(*[w.close_app(self.app) for w in self._workers]) await self.teardown() def _freeze_workers(self) -> Tuple[NodeBase, ...]: if isinstance(self._workers, tuple): raise RuntimeError("worker already started") self._workers = tuple(self._workers) return self._workers class Node(NodeWorker): """A nodeworker with an heartbeat work loop and ability to publish messages into a pubsub """ heartbeat: float = 1 ticks: int = 0 async def tick(self) -> None: """called at every iteration in the worker""" pass async def work(self) -> None: while True: start = time.monotonic() self.ticks += 1 await self.tick() dt = time.monotonic() - start await asyncio.sleep(max(self.heartbeat - dt, 0)) class Consumer(NodeWorker): def __init__( self, process_message, **kwargs, ) -> None: super().__init__(**kwargs) self.process_message = process_message self._message_queue: Optional[asyncio.Queue] = None def qsize(self) -> int: return 0 if self._message_queue is None else self._message_queue.qsize() async def setup(self) -> None: self._message_queue = asyncio.Queue() async def work(self): while self.is_running(): message = await self._message_queue.get() await self.process_message(message) await asyncio.sleep(0) def submit(self, message) -> None: if self._message_queue is None: raise RuntimeError("cannot submit to a non running consumer") self._message_queue.put_nowait(message) class Worker(NodeWorker): def __init__( self, work: Callable[[], None], logger: Optional[Logger] = None, ) -> None: super().__init__(logger=logger) self.work = work class TickWorker(Node): def __init__( self, tick: Callable[[], None], heartbeat: float = 1, logger: Optional[Logger] = None, ) -> None: super().__init__(logger=logger) self.heartbeat = heartbeat self.tick = tick class every: def __init__(self, seconds: float, noise: float = 0) -> None: self.seconds = seconds self.noise = min(noise, seconds) self.last = 0 self.gap = self._gap() self.ticks = 0 def __call__(self, method): method.every = self @wraps(method) async def _(node, *args) -> None: now = time.time() if now - self.last > self.gap: self.last = now self.gap = self._gap() self.ticks += 1 try: await method(node, *args) except (ClientConnectionError, ClientConnectorError) as exc: node.logger.error(str(exc)) return _ def _gap(self) -> float: return self.seconds + self.noise * (random.random() - 0.5) def on_error_exit( method: Callable[[NodeBase, Any], None] ) -> Callable[[NodeBase, Any], None]: @wraps(method) def sync_wrap(node: NodeBase, *args) -> None: try: method(node, *args) except Exception: node.logger.exception("unhandled exception, bailing out!") node.system_exit_sync() @wraps(method) async def async_wrap(node: NodeBase, *args) -> None: try: await method(node, *args) except Exception: node.logger.exception("unhandled exception, bailing out!") await node.system_exit() return async_wrap if inspect.iscoroutinefunction(method) else sync_wrap
28.155224
86
0.603584
8,244
0.874046
0
0
1,860
0.197201
4,160
0.441052
1,231
0.130513
7b967b35c19a8e35142f9fb160d57122b85d9056
860
py
Python
python/testcase.py
AurySystem/SYAML
7bc6e6cae023bfb8c3f2f15f0ce9d3618f879593
[ "MIT" ]
null
null
null
python/testcase.py
AurySystem/SYAML
7bc6e6cae023bfb8c3f2f15f0ce9d3618f879593
[ "MIT" ]
null
null
null
python/testcase.py
AurySystem/SYAML
7bc6e6cae023bfb8c3f2f15f0ce9d3618f879593
[ "MIT" ]
null
null
null
import syaml testcase = """--- key: key: f key2: l nest: inner: g nest2: nestted: 3 inner2: s outnest: 3 ha: g je: r --- key: value a_list: - itema - listlist: - itemitem - itemb - key1: bweh key2: bweh key3: bweh key4: bweh - innerList: - innerItem - indict: reh rar: dd sublist: - iteml - itemc - - itm - [44,55,66,"7t","8t","eeee"] - ohno - "test" - "ending": obj key: last of inner - aa: aaa - lastitem anotherkey: value ... """ a = syaml.load(testcase) print(a) depth = 12 def recurse(dict): global depth depth -= 1 #will this be a problem? bleh = {} if depth == 0: return dict.update({"keys":recurse(bleh)}) return dict #a[0] = recurse(a[0]) b = syaml.dump(2,a) print(b) print(syaml.load(b))
14.576271
37
0.522093
0
0
0
0
0
0
0
0
612
0.711628
7b98ab75092f0df028f96b2d93df9ca2c2ab75d6
478
py
Python
lib/csvtools.py
mtyates/scrapers
1fe55314b1235a971a436a8a17f05cea22b40f49
[ "Apache-2.0" ]
null
null
null
lib/csvtools.py
mtyates/scrapers
1fe55314b1235a971a436a8a17f05cea22b40f49
[ "Apache-2.0" ]
null
null
null
lib/csvtools.py
mtyates/scrapers
1fe55314b1235a971a436a8a17f05cea22b40f49
[ "Apache-2.0" ]
1
2021-12-20T16:55:50.000Z
2021-12-20T16:55:50.000Z
#!/usr/bin/env python import os import sys def dict_to_csv(comps, filename): ## print column headings then all attributes for each company f = open(filename, 'wb') columns = [x for x in comps[comps.keys()[0]].keys() if x != 'name'] columns = ['name'] + columns f.write(','.join(columns) + '\n') for k,v in comps.items(): for column in columns: f.write('"' + v[column] + '"' + ',') f.write('\n') f.close()
22.761905
71
0.546025
0
0
0
0
0
0
0
0
118
0.246862
7b9a53fe727088aa66ec964d3fe2b9eeb158dba7
543
py
Python
dashboard/migrations/0016_auto_20200222_2336.py
BDALab/GENEActiv-sleep-analyses-system
f0458de041153f2dee240a53571149827de00a2e
[ "MIT" ]
null
null
null
dashboard/migrations/0016_auto_20200222_2336.py
BDALab/GENEActiv-sleep-analyses-system
f0458de041153f2dee240a53571149827de00a2e
[ "MIT" ]
null
null
null
dashboard/migrations/0016_auto_20200222_2336.py
BDALab/GENEActiv-sleep-analyses-system
f0458de041153f2dee240a53571149827de00a2e
[ "MIT" ]
null
null
null
# Generated by Django 2.2.5 on 2020-02-22 22:36 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('dashboard', '0015_auto_20200222_2200'), ] operations = [ migrations.RemoveField( model_name='subject', name='handedness', ), migrations.RemoveField( model_name='subject', name='height', ), migrations.RemoveField( model_name='subject', name='weight', ), ]
20.884615
49
0.546961
458
0.843462
0
0
0
0
0
0
138
0.254144
7b9bed79cdfa84b20637330716a10344fca07de2
799
py
Python
examples.py/Basics/Shape/LoadDisplayShape.py
timgates42/processing.py
78a237922c2a928b83f4ad579dbf8d32c0099890
[ "Apache-2.0" ]
1,224
2015-01-01T22:09:23.000Z
2022-03-29T19:43:56.000Z
examples.py/Basics/Shape/LoadDisplayShape.py
timgates42/processing.py
78a237922c2a928b83f4ad579dbf8d32c0099890
[ "Apache-2.0" ]
253
2015-01-14T03:45:51.000Z
2022-02-08T01:18:19.000Z
examples.py/Basics/Shape/LoadDisplayShape.py
timgates42/processing.py
78a237922c2a928b83f4ad579dbf8d32c0099890
[ "Apache-2.0" ]
225
2015-01-13T18:38:33.000Z
2022-03-30T20:27:39.000Z
""" Load and Display a Shape. Illustration by George Brower. (Rewritten in Python by Jonathan Feinberg.) The loadShape() command is used to read simple SVG (Scalable Vector Graphics) files into a Processing sketch. This library was specifically tested under SVG files created from Adobe Illustrator. For now, we can't guarantee that it'll work for SVGs created with anything else. """ # The file "bot1.svg" must be in the data folder # of the current sketch to load successfully bot = loadShape("bot1.svg") def setup(): size(640, 360) smooth() noLoop() # Only run draw() once def draw(): background(102) shape(bot, 110, 90, 100, 100) # Draw at coordinate (10, 10) at size 100 x 100 shape(bot, 280, 40) # Draw at coordinate (70, 60) at the default size
33.291667
84
0.700876
0
0
0
0
0
0
0
0
613
0.767209
7b9c4e6a952c20a965aae8106ca3b0f977bd503c
4,015
py
Python
deidentify/tokenizer/tokenizer_ons.py
bbieniek/deidentify
7021bf0540e0a7f931e65544d12a2909c79a14eb
[ "MIT" ]
64
2020-01-16T16:20:47.000Z
2022-03-31T12:59:19.000Z
deidentify/tokenizer/tokenizer_ons.py
HabibMrad/deidentify
d8960a74c852a71b29a6ee0fd6a3cf7f946a5f60
[ "MIT" ]
14
2020-01-28T08:47:06.000Z
2022-02-12T08:32:12.000Z
deidentify/tokenizer/tokenizer_ons.py
HabibMrad/deidentify
d8960a74c852a71b29a6ee0fd6a3cf7f946a5f60
[ "MIT" ]
12
2020-01-21T07:54:04.000Z
2022-02-19T06:42:53.000Z
""" Custom tokenization routines for the 'ons' corpus. Special care is taken to metadata tokens such as === Report: 12345 === that were inserted to distinguish between multiple documents of a client. They will be properly handled during the tokenization and sentence segmentation stage. """ import re import spacy from spacy.matcher import Matcher from spacy.symbols import ORTH from deidentify.tokenizer import Tokenizer META_REGEX = re.compile(r'=== (?:Report|Answer): [0-9]+ ===\n') TOKENIZER_SPECIAL_CASES = [ 'B.Sc.', 'Co.', 'Dhr.', 'Dr.', 'M.Sc.', 'Mevr.', 'Mgr.', 'Mr.', 'Mw.', 'O.K.', 'a.u.b.', 'ca.', 'e.g.', 'etc.', 'v.d.' ] def _metadata_complete(doc, i): return doc[i].text[0] == '\n' \ and doc[i - 1].text == '=' \ and META_REGEX.match(doc[i - 9: i + 1].text) def _metadata_sentence_segmentation(doc): """Custom sentence segmentation rule of the Ons corpus. It segments metadata text into separate sentences. Metadata consists of 10 tokens: ['=', '=', '=', 'Report|Answer', ':', 'DDDDDD', '=', '=', '=', '\n'] During sentence segmentation, we want that the metadata is always a sentence in itself. Therefore, the first token (i.e., '=') is marked as sentence start. All other tokens are explicitly marked as non-sentence boundaries. To ensure that anything immediately following after metadata is a new sentece, the next token is marked as sentence start. """ for i in range(len(doc)): if not _metadata_complete(doc, i): continue # All metadata tokens excluding the leading '='. meta_span = doc[i - 8: i + 1] for meta_token in meta_span: meta_token.is_sent_start = False # The leading '=' is a sentence boundary doc[i - 9].is_sent_start = True # Any token following the metadata is also a new sentence. doc[i + 1].is_sent_start = True return doc NLP = spacy.load('nl_core_news_sm') try: NLP.add_pipe(_metadata_sentence_segmentation, before="parser") # Insert before the parser except ValueError: # spacy>=3 from spacy.language import Language Language.component('meta-sentence-segmentation')(_metadata_sentence_segmentation) # pylint: disable=E1101 NLP.add_pipe('meta-sentence-segmentation', before="parser") # Insert before the parser for case in TOKENIZER_SPECIAL_CASES: NLP.tokenizer.add_special_case(case, [{ORTH: case}]) NLP.tokenizer.add_special_case(case.lower(), [{ORTH: case.lower()}]) infixes = NLP.Defaults.infixes + [r'\(', r'\)', r'(?<=[\D])\/(?=[\D])'] infix_regex = spacy.util.compile_infix_regex(infixes) NLP.tokenizer.infix_finditer = infix_regex.finditer class TokenizerOns(Tokenizer): def parse_text(self, text: str) -> spacy.tokens.doc.Doc: """Custom spacy tokenizer for the 'ons' corpus that takes care of special metadata tokens. Example: ['=', '=', '=', 'Report', ':', '1234', '=', '=', '=', '\n'] is converted to ['=== Report: 1234 ===\n'] Furthermore, common Dutch abbreviations are handled. Parameters ---------- text : str The text to tokenize. Returns ------- doc : spacy.tokens.doc.Doc Parsed spacy document. """ matcher = Matcher(NLP.vocab) pattern = [ {"ORTH": "="}, {"ORTH": "="}, {"ORTH": "="}, {"ORTH": {"IN": ['Answer', 'Report']}}, {'ORTH': ':'}, {'IS_DIGIT': True, 'OP': '+'}, {"ORTH": "="}, {"ORTH": "="}, {"ORTH": "="}, {"ORTH": "\n"} ] matcher.add("METADATA", [pattern]) doc = NLP(text, disable=self.disable) matches = matcher(doc) with doc.retokenize() as retokenizer: for _, start, end in matches: attrs = {"LEMMA": str(doc[start:end])} retokenizer.merge(doc[start:end], attrs=attrs) return doc
31.124031
109
0.596762
1,263
0.31457
0
0
0
0
0
0
2,003
0.498879
7b9c889768e3496393e2ee54739cb4b6ccbaab96
1,219
py
Python
systemtest/quality/utils/models.py
IBM-Power-SystemTest/systemtest
a29e6d54500ca13f554073cc66a4a2d403ea5b14
[ "BSD-3-Clause" ]
1
2022-03-09T18:07:11.000Z
2022-03-09T18:07:11.000Z
systemtest/quality/utils/models.py
IBM-Power-SystemTest/systemtest
a29e6d54500ca13f554073cc66a4a2d403ea5b14
[ "BSD-3-Clause" ]
null
null
null
systemtest/quality/utils/models.py
IBM-Power-SystemTest/systemtest
a29e6d54500ca13f554073cc66a4a2d403ea5b14
[ "BSD-3-Clause" ]
null
null
null
# Django from django.conf import Settings, settings # APPs from systemtest.quality import forms as quality_forms, models as quality_models from systemtest.utils.db2 import Database def get_quality_status(status_name: str) -> quality_models.QualityStatus: """ Gets a specific QualityStatus by exact name Args: status_name: Name of status to fetch Raises: DoesNotExist: QualityStatus matching query does not exist Returns: QualityStatus object """ return quality_models.QualityStatus.objects.get(name=status_name) def fetch_database() -> dict: database = Database(**settings.DATABASES.get("db2")) sql = database.get_sql(settings.QUALITY_SQL_PATH) required_columns = { "SYSTEM_NUMBER", "WORKUNIT", "OPERATION_STATUS" } optional_columns = { "WORKUNIT_QTY", "PRODUCT_LINE", "OPERATION_NUMBER" } for row in database.fetch(sql): columns = set(row.keys()) if (required_columns - columns): continue data = {column.lower(): row.get(column) for column in (required_columns | optional_columns)} yield data
23.442308
79
0.646432
0
0
620
0.508614
0
0
0
0
369
0.302707
7b9c9c8690ed96b25a9028c69ebb2b7c65845147
1,849
py
Python
cibopath/scraper.py
hackebrot/cibopath
7b341cb92942a0ed70e21c9e5f23d281a625e30c
[ "BSD-3-Clause" ]
11
2016-02-08T11:45:26.000Z
2017-05-19T16:07:31.000Z
cibopath/scraper.py
hackebrot/cibopath
7b341cb92942a0ed70e21c9e5f23d281a625e30c
[ "BSD-3-Clause" ]
5
2016-02-11T22:11:54.000Z
2016-06-09T20:54:07.000Z
cibopath/scraper.py
hackebrot/cibopath
7b341cb92942a0ed70e21c9e5f23d281a625e30c
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- import asyncio import logging import aiohttp from cibopath import readme_parser, github_api from cibopath.templates import Template logger = logging.getLogger('cibopath') class CibopathError(Exception): """Custom error class for the app.""" class CookiecutterReadmeError(CibopathError): """Unable to retrieve readme from github.com/audreyr/cookiecutter.""" class UnableToFindTemplateLinks(CibopathError): """Cannot find links to templates in README.""" def fetch_template_data(username, token): semaphore = asyncio.Semaphore(10) loop = asyncio.get_event_loop() auth = aiohttp.BasicAuth(username, token) with aiohttp.ClientSession(loop=loop, auth=auth) as client: logger.debug('Load Cookiecutter readme') cookiecutter_readme = loop.run_until_complete( github_api.get_readme(semaphore, client, 'audreyr', 'cookiecutter') ) if not cookiecutter_readme: raise CookiecutterReadmeError logger.debug('Find GitHub links in Cookiecutter readme') github_links, _ = readme_parser.read(cookiecutter_readme) if not github_links: raise UnableToFindTemplateLinks tasks = [ github_api.get_template(semaphore, client, link) for link in github_links ] logger.debug('Fetch template data from links') results = loop.run_until_complete(asyncio.gather(*tasks)) yield from filter(None, results) # Ignore all invalid templates def load_templates(username, token): templates = [] template_data = fetch_template_data(username, token) for name, author, repo, context, readme in template_data: _, tags = readme_parser.read(readme) templates.append(Template(name, author, repo, context, sorted(tags))) return templates
29.822581
79
0.70146
291
0.157382
1,025
0.554354
0
0
0
0
339
0.183342
7b9ce56039cc41fcf712d566d9141353c7327dc4
5,400
py
Python
using_force_sense_selector_switch/A-B_force_sense_switching/ForceSenseSwitchSample.py
sjdemartini/SpikeSafePythonSamples
60dc9cd175577e9601c0709ac471c72c5a666f1b
[ "MIT" ]
4
2020-06-11T00:11:17.000Z
2022-03-17T22:58:13.000Z
using_force_sense_selector_switch/A-B_force_sense_switching/ForceSenseSwitchSample.py
sjdemartini/SpikeSafePythonSamples
60dc9cd175577e9601c0709ac471c72c5a666f1b
[ "MIT" ]
null
null
null
using_force_sense_selector_switch/A-B_force_sense_switching/ForceSenseSwitchSample.py
sjdemartini/SpikeSafePythonSamples
60dc9cd175577e9601c0709ac471c72c5a666f1b
[ "MIT" ]
2
2021-12-20T20:03:05.000Z
2022-01-12T18:51:54.000Z
# Goal: # Demonstrate the A/B switch functionality of the SpikeSafe PSMU while operating in DC mode # # Expectation: # Channel 1 will run in DC mode with the switch set to Primary. # Afterward the Switch be set to Auxiliary mode, in which another source may operate connected to the SpikeSafe # After the Auxiliary source has completed operation, the switch will be set to Primary to operate the SpikeSafe in DC mode again import sys import time import logging from spikesafe_python.MemoryTableReadData import log_memory_table_read from spikesafe_python.ReadAllEvents import log_all_events from spikesafe_python.TcpSocket import TcpSocket from spikesafe_python.Threading import wait from spikesafe_python.SpikeSafeError import SpikeSafeError from tkinter import messagebox ### set these before starting application # SpikeSafe IP address and port number ip_address = '10.0.0.220' port_number = 8282 ### setting up sequence log log = logging.getLogger(__name__) logging.basicConfig(filename='SpikeSafePythonSamples.log',format='%(asctime)s, %(levelname)s, %(message)s',datefmt='%m/%d/%Y %I:%M:%S',level=logging.INFO) ### start of main program try: log.info("ForceSenseSwitchSample.py started.") # instantiate new TcpSocket to connect to SpikeSafe tcp_socket = TcpSocket() tcp_socket.open_socket(ip_address, port_number) # reset to default state tcp_socket.send_scpi_command('*RST') log_all_events(tcp_socket) # check that the Force Sense Selector Switch is available for this SpikeSafe. We need the switch to run this sequence # If switch related SCPI is sent and there is no switch configured, it will result in error "386, Output Switch is not installed" tcp_socket.send_scpi_command('OUTP1:CONN:AVAIL?') isSwitchAvailable = tcp_socket.read_data() if isSwitchAvailable != 'Ch:1': raise Exception('Force Sense Selector Switch is not available, and is necessary to run this sequence.') # set the Force Sense Selector Switch state to Primary (A) so that the SpikeSafe can output to the DUT # the default switch state can be manually adjusted using SCPI, so it is best to send this command even after sending a *RST tcp_socket.send_scpi_command('OUTP1:CONN PRI') # set Channel 1 settings to operate in DC mode tcp_socket.send_scpi_command('SOUR1:FUNC:SHAP DC') tcp_socket.send_scpi_command('SOUR1:CURR:PROT 50') tcp_socket.send_scpi_command('SOUR1:CURR 0.1') tcp_socket.send_scpi_command('SOUR1:VOLT 20') # log all SpikeSafe event after settings are adjusted log_all_events(tcp_socket) # turn on Channel 1 tcp_socket.send_scpi_command('OUTP1 1') # check for all events and measure readings on Channel 1 once per second for 10 seconds time_end = time.time() + 10 while time.time() < time_end: log_all_events(tcp_socket) log_memory_table_read(tcp_socket) wait(1) # turn off Channel 1 and check for all events # When operating in DC mode, the channel must be turned off before adjusting the switch state tcp_socket.send_scpi_command('OUTP1 0') log_all_events(tcp_socket) # set the Force Sense Selector Switch state to Auxiliary (B) so that the Auxiliary Source will be routed to the DUT and the SpikeSafe will be disconnected tcp_socket.send_scpi_command('OUTP1:CONN AUX') # Show a message box so any tasks using the Auxiliary source may be performed before adjusting the switch back to Primary # The SpikeSafe is not electrically connected to the DUT at this time messagebox.showinfo("Auxiliary Source Active", "Force Sense Selector Switch is in Auxiliary (B) mode. Perform any tests using the auxiliary source, then close this window to adjust the switch back to Primary (A) mode.") # set the Force Sense Selector Switch state to Primary (A) so that the SpikeSafe can output to the DUT tcp_socket.send_scpi_command('OUTP1:CONN PRI') # turn on Channel 1 tcp_socket.send_scpi_command('OUTP1 1') # check for all events and measure readings on Channel 1 once per second for 10 seconds time_end = time.time() + 10 while time.time() < time_end: log_all_events(tcp_socket) log_memory_table_read(tcp_socket) wait(1) # turn off Channel 1 and check for all events tcp_socket.send_scpi_command('OUTP1 0') log_all_events(tcp_socket) # disconnect from SpikeSafe tcp_socket.close_socket() log.info("ForceSenseSwitchSample.py completed.\n") except SpikeSafeError as ssErr: # print any SpikeSafe-specific error to both the terminal and the log file, then exit the application error_message = 'SpikeSafe error: {}\n'.format(ssErr) log.error(error_message) print(error_message) sys.exit(1) except Exception as err: # print any general exception to both the terminal and the log file, then exit the application error_message = 'Program error: {}\n'.format(err) log.error(error_message) print(error_message) sys.exit(1)
46.551724
223
0.696111
0
0
0
0
0
0
0
0
2,972
0.55037
7b9d392017b7f0eb08e175d175e38cee08ff4854
1,886
py
Python
tools/perf/contrib/cluster_telemetry/screenshot.py
metux/chromium-deb
3c08e9b89a1b6f95f103a61ff4f528dbcd57fc42
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
null
null
null
tools/perf/contrib/cluster_telemetry/screenshot.py
metux/chromium-deb
3c08e9b89a1b6f95f103a61ff4f528dbcd57fc42
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
null
null
null
tools/perf/contrib/cluster_telemetry/screenshot.py
metux/chromium-deb
3c08e9b89a1b6f95f103a61ff4f528dbcd57fc42
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
null
null
null
# Copyright 2017 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import logging import os import py_utils import time from telemetry.page import legacy_page_test from telemetry.util import image_util class Screenshot(legacy_page_test.LegacyPageTest): """Takes a PNG screenshot of the page.""" def __init__(self, png_outdir, wait_time=0): super(Screenshot, self).__init__() self._png_outdir = png_outdir self._wait_time = wait_time def ValidateAndMeasurePage(self, page, tab, results): if not tab.screenshot_supported: raise legacy_page_test.MeasurementFailure( 'Screenshotting not supported on this platform') try: tab.WaitForDocumentReadyStateToBeComplete() except py_utils.TimeoutException: logging.warning("WaitForDocumentReadyStateToBeComplete() timeout, " + "page: %s", page.name) return time.sleep(self._wait_time) if not os.path.exists(self._png_outdir): logging.info("Creating directory %s", self._png_outdir) try: os.makedirs(self._png_outdir) except OSError: logging.warning("Directory %s could not be created", self._png_outdir) raise outpath = os.path.abspath( os.path.join(self._png_outdir, page.file_safe_name)) + '.png' # Replace win32 path separator char '\' with '\\'. outpath = outpath.replace('\\', '\\\\') screenshot = tab.Screenshot() # TODO(lchoi): Add logging to image_util.py and/or augment error handling of # image_util.WritePngFile logging.info("Writing PNG file to %s. This may take awhile.", outpath) start = time.time() image_util.WritePngFile(screenshot, outpath) logging.info("PNG file written successfully. (Took %f seconds)", time.time()-start)
33.087719
80
0.698303
1,585
0.840403
0
0
0
0
0
0
630
0.33404
7b9dada36fd7bad56b1a0092534a61252ce1c05e
2,474
py
Python
tripleoclient/tests/v1/overcloud_delete/test_overcloud_delete.py
mail2nsrajesh/python-tripleoclient
6646b2fc4a37b2a52c1cf7d7edb42c8007e905d8
[ "Apache-2.0" ]
null
null
null
tripleoclient/tests/v1/overcloud_delete/test_overcloud_delete.py
mail2nsrajesh/python-tripleoclient
6646b2fc4a37b2a52c1cf7d7edb42c8007e905d8
[ "Apache-2.0" ]
null
null
null
tripleoclient/tests/v1/overcloud_delete/test_overcloud_delete.py
mail2nsrajesh/python-tripleoclient
6646b2fc4a37b2a52c1cf7d7edb42c8007e905d8
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # import mock from tripleoclient.tests.v1.overcloud_deploy import fakes from tripleoclient.v1 import overcloud_delete class TestDeleteOvercloud(fakes.TestDeployOvercloud): def setUp(self): super(TestDeleteOvercloud, self).setUp() self.cmd = overcloud_delete.DeleteOvercloud(self.app, None) self.app.client_manager.workflow_engine = mock.Mock() self.workflow = self.app.client_manager.workflow_engine @mock.patch( 'tripleoclient.workflows.stack_management.delete_stack', autospec=True) def test_stack_delete(self, mock_delete_stack): clients = self.app.client_manager orchestration_client = clients.orchestration stack = mock.Mock() stack.id = 12345 orchestration_client.stacks.get.return_value = stack self.cmd._stack_delete(clients, 'overcloud') orchestration_client.stacks.get.assert_called_once_with('overcloud') mock_delete_stack.assert_called_once_with( clients, stack=12345) def test_stack_delete_no_stack(self): clients = self.app.client_manager orchestration_client = clients.orchestration type(orchestration_client.stacks.get).return_value = None self.cmd.log.warning = mock.MagicMock() self.cmd._stack_delete(clients, 'overcloud') orchestration_client.stacks.get.assert_called_once_with('overcloud') self.cmd.log.warning.assert_called_once_with( "No stack found ('overcloud'), skipping delete") @mock.patch( 'tripleoclient.workflows.plan_management.delete_deployment_plan', autospec=True) def test_plan_delete(self, delete_deployment_plan_mock): self.cmd._plan_delete(self.workflow, 'overcloud') delete_deployment_plan_mock.assert_called_once_with( self.workflow, container='overcloud')
36.382353
79
0.719887
1,753
0.708569
0
0
923
0.37308
0
0
818
0.330639
7b9f976e658245e57765789e6e80ca7112711034
8,621
py
Python
bird_view/models/agent_IAs_RL.py
magh24/carla_RL_IAs
a38fb353bd84330c6c20b9cc8e824d7bbb02cfe5
[ "MIT" ]
39
2020-03-17T10:12:49.000Z
2022-03-12T14:18:45.000Z
bird_view/models/agent_IAs_RL.py
marintoro/LearningByCheating
a13b331ee8d69071570c97b35f1348758d658ee5
[ "MIT" ]
null
null
null
bird_view/models/agent_IAs_RL.py
marintoro/LearningByCheating
a13b331ee8d69071570c97b35f1348758d658ee5
[ "MIT" ]
16
2020-06-11T20:15:57.000Z
2022-03-13T01:55:16.000Z
import numpy as np import torch from collections import deque, namedtuple import cv2 import os import carla from .model_supervised import Model_Segmentation_Traffic_Light_Supervised from .model_RL import DQN, Orders class AgentIAsRL: def __init__(self, args=None, **kwargs): super().__init__(**kwargs) self.args = args path_to_folder_with_model = args.path_folder_model path_to_model_supervised = os.path.join(path_to_folder_with_model, "model_supervised/") path_model_supervised = None for file in os.listdir(path_to_model_supervised): if ".pth" in file: if path_model_supervised is not None: raise ValueError( "There is multiple model supervised in folder " + path_to_model_supervised + " you must keep only one!", ) path_model_supervised = os.path.join(path_to_model_supervised, file) if path_model_supervised is None: raise ValueError("We didn't find any model supervised in folder " + path_to_model_supervised) # All this magic number should match the one used when training supervised... model_supervised = Model_Segmentation_Traffic_Light_Supervised( len(args.steps_image), len(args.steps_image), 1024, 6, 4, args.crop_sky ) model_supervised.load_state_dict( torch.load(path_model_supervised, map_location=args.device) ) model_supervised.to(device=args.device) self.encoder = model_supervised.encoder self.last_conv_downsample = model_supervised.last_conv_downsample self.action_space = (args.nb_action_throttle + 1) * args.nb_action_steering path_to_model_RL = os.path.join(path_to_folder_with_model, "model_RL") os.chdir(path_to_model_RL) tab_model = [] for file in os.listdir(path_to_model_RL): if ".pth" in file: tab_model.append(os.path.join(path_to_model_RL, file)) if len(tab_model) == 0: raise ValueError("We didn't find any RL model in folder "+ path_to_model_RL) self.tab_RL_model = [] for current_model in tab_model: current_RL_model = DQN(args, self.action_space).to(device=args.device) current_RL_model_dict = current_RL_model.state_dict() print("we load RL model ", current_model) checkpoint = torch.load(current_model) # 1. filter out unnecessary keys pretrained_dict = { k: v for k, v in checkpoint["model_state_dict"].items() if k in current_RL_model_dict } # 2. overwrite entries in the existing state dict current_RL_model_dict.update(pretrained_dict) # 3. load the new state dict current_RL_model.load_state_dict(current_RL_model_dict) self.tab_RL_model.append(current_RL_model) self.window = ( max([abs(number) for number in args.steps_image]) + 1 ) # Number of frames to concatenate self.RGB_image_buffer = deque([], maxlen=self.window) self.device = args.device self.state_buffer = deque([], maxlen=self.window) self.State = namedtuple("State", ("image", "speed", "order", "steering")) if args.crop_sky: blank_state = self.State( np.zeros(6144, dtype=np.float32), -1, -1, 0 ) # RGB Image, color channet first for torch else: blank_state = self.State(np.zeros(8192, dtype=np.float32), -1, -1, 0) for _ in range(self.window): self.state_buffer.append(blank_state) if args.crop_sky: self.RGB_image_buffer.append( np.zeros((3, args.front_camera_height - 120, args.front_camera_width)) ) else: self.RGB_image_buffer.append( np.zeros((3, args.front_camera_height, args.front_camera_width)) ) self.last_steering = 0 self.last_order = 0 self.current_timestep = 0 def act(self, state_buffer, RL_model): speeds = [] order = state_buffer[-1].order steerings = [] for step_image in self.args.steps_image: state = state_buffer[step_image + self.window - 1] speeds.append(state.speed) steerings.append(state.steering) images = torch.from_numpy(state_buffer[-1].image).to(self.device, dtype=torch.float32) speeds = torch.from_numpy(np.stack(speeds).astype(np.float32)).to( self.device, dtype=torch.float32 ) steerings = torch.from_numpy(np.stack(steerings).astype(np.float32)).to( self.device, dtype=torch.float32 ) with torch.no_grad(): quantile_values, _ = RL_model( images.unsqueeze(0), speeds.unsqueeze(0), order, steerings.unsqueeze(0), self.args.num_quantile_samples, ) return quantile_values.mean(0).argmax(0).item() # We had different mapping int/order in our training than in the CARLA benchmark, # so we need to remap orders def adapt_order(self, incoming_obs_command): if incoming_obs_command == 1: # LEFT return Orders.Left.value if incoming_obs_command == 2: # RIGHT return Orders.Right.value if incoming_obs_command == 3: # STRAIGHT return Orders.Straight.value if incoming_obs_command == 4: # FOLLOW_LANE return Orders.Follow_Lane.value def run_step(self, observations): self.current_timestep += 1 rgb = observations["rgb"].copy() if self.args.crop_sky: rgb = np.array(rgb)[120:, :, :] else: rgb = np.array(rgb) if self.args.render: bgr = rgb[:, :, ::-1] cv2.imshow("network input", bgr) cv2.waitKey(1) rgb = np.rollaxis(rgb, 2, 0) self.RGB_image_buffer.append(rgb) speed = np.linalg.norm(observations["velocity"]) order = self.adapt_order(int(observations["command"])) if self.last_order != order: print("order = ", Orders(order).name) self.last_order = order np_array_RGB_input = np.concatenate( [ self.RGB_image_buffer[indice_image + self.window - 1] for indice_image in self.args.steps_image ] ) torch_tensor_input = ( torch.from_numpy(np_array_RGB_input) .to(dtype=torch.float32, device=self.device) .div_(255) .unsqueeze(0) ) with torch.no_grad(): current_encoding = self.encoder(torch_tensor_input) current_encoding = self.last_conv_downsample(current_encoding) current_encoding_np = current_encoding.cpu().numpy().flatten() current_state = self.State(current_encoding_np, speed, order, self.last_steering) self.state_buffer.append(current_state) tab_action = [] for RL_model in self.tab_RL_model: current_action = self.act(self.state_buffer, RL_model) tab_action.append(current_action) steer = 0 throttle = 0 brake = 0 for action in tab_action: steer += ( (action % self.args.nb_action_steering) - int(self.args.nb_action_steering / 2) ) * (self.args.max_steering / int(self.args.nb_action_steering / 2)) if action < int(self.args.nb_action_steering * self.args.nb_action_throttle): throttle += (int(action / self.args.nb_action_steering)) * ( self.args.max_throttle / (self.args.nb_action_throttle - 1) ) brake += 0 else: throttle += 0 brake += 1.0 steer = steer / len(tab_action) throttle = throttle / len(tab_action) if brake < len(tab_action) / 2: brake = 0 else: brake = brake / len(tab_action) control = carla.VehicleControl() control.steer = np.clip(steer, -1.0, 1.0) control.throttle = np.clip(throttle, 0.0, 1.0) control.brake = np.clip(brake, 0.0, 1.0) control.manual_gear_shift = False self.last_steering = steer return control
37.482609
95
0.594363
8,401
0.974481
0
0
0
0
0
0
732
0.084909
7b9fd2f8f9e605ca6783d2a3d4f02dcb90eb1482
162
py
Python
Python/1079.py
Marcelalopes/Questoes-URI
e13894c1bcbcb252ed814d5b5e930d05c7a8494f
[ "MIT" ]
5
2020-10-12T16:21:31.000Z
2021-12-15T20:27:22.000Z
Python/1079.py
Marcelalopes/Questoes-URI
e13894c1bcbcb252ed814d5b5e930d05c7a8494f
[ "MIT" ]
null
null
null
Python/1079.py
Marcelalopes/Questoes-URI
e13894c1bcbcb252ed814d5b5e930d05c7a8494f
[ "MIT" ]
5
2019-06-21T04:26:14.000Z
2021-05-01T14:15:44.000Z
n = int(input()) for i in range(1 , n + 1 ): x = input().split() a,b,c = x print('{:.1f}'.format((float(a) * 2 + float(b) * 3 + float(c) * 5) / 10))
23.142857
77
0.45679
0
0
0
0
0
0
0
0
8
0.049383
7b9fd98a85b6fed6891c0ba799c31065628711f4
10,547
py
Python
bin_testing/diff_fuzzing.py
KristianMika/PA193-Bech32m
6625c3883dd4ee4db40afc0b9eae1c945544a87b
[ "MIT" ]
null
null
null
bin_testing/diff_fuzzing.py
KristianMika/PA193-Bech32m
6625c3883dd4ee4db40afc0b9eae1c945544a87b
[ "MIT" ]
null
null
null
bin_testing/diff_fuzzing.py
KristianMika/PA193-Bech32m
6625c3883dd4ee4db40afc0b9eae1c945544a87b
[ "MIT" ]
null
null
null
import base64 import binascii import datetime import os import subprocess import random import sys BECH_SYMBOLS = "qpzry9x8gf2tvdw0s3jn54khce6mua7l" OUR_BINARY = None LIBBECH32ENC_BINARY = None LIBBECH32DEC_BINARY = None NODE_REF = "node . " # region Encoding def node_encode(hrp, data_hex): str_in = NODE_REF + f"encode {hrp} {data_hex}" proc = subprocess.Popen(str_in.split(' '), stdout=subprocess.PIPE, stderr=subprocess.PIPE) proc.wait() err = proc.stderr.read().decode(encoding='ASCII').strip() if err != '': print("*******") print("Node error:\n" + err) with open("fuzzing_results.txt", "a") as f: f.write("*******\n") f.write(f"HRP: {hrp}\n") f.write(f"HEX: {data_hex}\n") f.write("Node error:\n" + err + "\n") f.write("*******\n") return proc.stdout.read().decode(encoding='ASCII').strip(), err != '' def external_encode(hrp, bech): indexes = get_indexes(bech) indexes_str = indexes_to_string(indexes) str_in = f"{LIBBECH32ENC_BINARY} {hrp} {indexes_str}" proc = subprocess.Popen(str_in.split(' '), stdout=subprocess.PIPE) proc.wait() return proc.stdout.read().decode(encoding='ASCII').strip() def hex_encode(hrp, data_hex): proc = subprocess.Popen(f"{OUR_BINARY} --input-text {data_hex} --input-format hex --hrp {hrp}".split(' '), stdout=subprocess.PIPE, stderr=subprocess.PIPE) proc.wait() err = proc.stderr.read().decode(encoding='ASCII').strip() if err != '': print("******* ENCODE ERROR *******") print("HRP: " + hrp) print("HEX: " + data_hex) print("OUR error:\n" + err) with open("fuzzing_results.txt", "a") as f: f.write("*******\n") f.write(f"HRP: {hrp}\n") f.write(f"HEX: {data_hex}\n") f.write("OUR error:\n" + err + "\n") f.write("*******\n") return proc.stdout.read().decode(encoding='ASCII').strip() def base64_encode(hrp, data_base64, do_trim=True): proc = subprocess.Popen( f"{OUR_BINARY} --input-text {data_base64} --input-format base64 --hrp {hrp}{' --trim' if do_trim else ''}" .split(' '), stdout=subprocess.PIPE, stderr=subprocess.PIPE) proc.wait() err = proc.stderr.read().decode(encoding='ASCII').strip() if err != '': print("******* ENCODE ERROR *******") print("HRP: " + hrp) print("B64: " + data_base64) print("OUR error:\n" + err) with open("fuzzing_results.txt", "a") as f: f.write("*******\n") f.write(f"HRP: {hrp}\n") f.write(f"B64: {data_base64}\n") f.write("OUR error:\n" + err + "\n") f.write("*******\n") return proc.stdout.read().decode(encoding='ASCII').strip() def bin_encode(hrp, data_hex): try: with open('b.bin', 'wb') as f: f.write(binascii.unhexlify(data_hex)) proc = subprocess.Popen(f"{OUR_BINARY} --input-file b.bin --input-format bin --hrp {hrp}".split(' '), stdout=subprocess.PIPE, stderr=subprocess.PIPE) proc.wait() err = proc.stderr.read().decode(encoding='ASCII').strip() if err != '': print("******* ENCODE ERROR *******") print("HRP: " + hrp) print("B64: " + data_hex + "(as binary)") with open("fuzzing_results.txt", "a") as f: f.write("*******\n") f.write(f"HRP: {hrp}\n") f.write(f"BIN: {data_hex} (as binary)\n") f.write("OUR error:\n" + err + "\n") f.write("*******\n") return proc.stdout.read().decode(encoding='ASCII').strip() finally: os.remove('b.bin') # endregion # region Decoding def node_decode(code): str_in = NODE_REF + f"decode {code}" proc = subprocess.Popen(str_in.split(' '), stdout=subprocess.PIPE, stderr=subprocess.PIPE) proc.wait() err = proc.stderr.read().decode(encoding='ASCII').strip() if err != '': print("*******") print("Node error:\n" + err) with open("fuzzing_results.txt", "a") as f: f.write("*******\n") f.write(f"CODE: {code}\n") f.write("Node error:\n" + err + "\n") f.write("*******\n") return proc.stdout.read().decode(encoding='ASCII').strip(), err != '' def external_decode(code): str_in = f"{LIBBECH32DEC_BINARY} {code}" proc = subprocess.Popen(str_in.split(' '), stdout=subprocess.PIPE) proc.wait() return proc.stdout.read().decode(encoding='ASCII').strip() def hex_decode(code): proc = subprocess.Popen( f"{OUR_BINARY} --decode --input-text {code} --output-format hex --allow-empty-hrp --trim".split(' '), stdout=subprocess.PIPE, stderr=subprocess.PIPE) proc.wait() err = proc.stderr.read().decode(encoding='ASCII').strip() if err != '': print("******* DECODE ERROR *******") print("CODE: " + code) print("OUR error:\n" + err) with open("fuzzing_results.txt", "a") as f: f.write("*******\n") f.write(f"CODE: {code}\n") f.write("OUR error:\n" + err + "\n") f.write("*******\n") return proc.stdout.read().decode(encoding='ASCII').strip() # endregion def generate_hrp(): chars = [chr(x) for x in range(33, 127)] length = random.randint(1, 81) ret = "".join(random.choice(chars) for _ in range(length)).lower() while ret[0] == '-' and len(ret) > 1: ret = ret[1:] if ret[0] == '-': ret = 'a' return ret.replace("'", "").replace('"', '') def generate_hex(hrp): max_len = 83 - len(hrp) chars = "0123456789abcdef" length = random.randint(2, max_len) if length % 2 == 1: length -= 1 return "".join(random.choice(chars) for _ in range(length)) def to_base64(hex_str): return base64.b64encode(base64.b16decode(hex_str)).decode(encoding='utf-8') # Adapted from # https://stackoverflow.com/questions/1425493/convert-hex-to-binary def to_bin(hex_code): return bin(int(hex_code, 16))[2:] def extract_bech(code): return code[code.rfind('1') + 1:-6] def get_indexes(s): return [BECH_SYMBOLS.index(c) for c in s] def indexes_to_string(indexes): return " ".join(str(i) for i in indexes) def process(hrp, hex_str, base64_str): success = True try: our_res = hex_encode(hrp, hex_str) our_res_64 = base64_encode(hrp, base64_str, do_trim=False) our_res_64_trim = base64_encode(hrp, base64_str) our_res_bin = bin_encode(hrp, hex_str) node_res, node_enc_err = node_encode(hrp, hex_str) extract_our = extract_bech(our_res) external_res = external_encode(hrp, extract_our) dec_our = hex_decode(our_res) dec_ext = external_decode(our_res) _node_dec = node_decode(our_res) hrp, dec_node = _node_dec[0].split(' ') node_dec_err = _node_dec[1] at_least_one_equal = our_res_64 == our_res or our_res_64_trim == our_res if our_res_bin != our_res or \ not at_least_one_equal or \ our_res != external_res or \ (our_res != node_res and not node_enc_err): success = False print("ERROR: Our ENCODED result does not match reference result:") print(f"HRP: {hrp}") print(f"HEX: {hex_str}") print(f"B64: {base64_str}") print(f"BIN: {to_bin(hex_str)}") print(f" Our result:\t\t{our_res}") print(f" Our result B64:\t{our_res_64}") print(f" Our result B64 T:\t{our_res_64_trim}") print(f" Our result BIN:\t{our_res_bin}") print(f" External result:\t{external_res}") print(f" Node result:\t\t{node_res}") with open("fuzzing_results.txt", "a") as f: f.write("ERROR: Our ENCODED result does not match reference result:\n") f.write(f"HRP: {hrp}\n") f.write(f"HEX: {hex_str}\n") f.write(f"B64: {base64_str}\n") f.write(f"BIN: {to_bin(hex_str)}\n") f.write(f" Our result:\t\t{our_res}\n") f.write(f" Our result B64:\t{our_res_64}\n") f.write(f" Our result B64 T:\t{our_res_64}\n") f.write(f" Our result BIN:\t{our_res_bin}\n") f.write(f" External result:\t{external_res}\n") f.write(f" Node result:\t\t{node_res}\n") f.write("\n") if dec_ext not in extract_our or (dec_our != dec_node and not node_dec_err): success = False print("ERROR: Our DECODED result does not match node result:") print(f" Our result:\t\t{dec_our}") if dec_ext not in extract_our: print(f" External result:\t{dec_ext} not in {extract_our}") print(f" Node result:\t\t{dec_node}") with open("fuzzing_results.txt", "a") as f: f.write("ERROR: Our DECODED result does not match node result:\n") f.write(f" Our result:\t\t{dec_our}\n") if dec_ext not in extract_our: f.write(f" External result: {dec_ext} not in {extract_our}\n") f.write(f" Node result:\t\t{dec_node}\n") f.write("\n") except Exception as e: success = False print(e) with open("fuzzing_results.txt", "a") as f: f.write(f"{hrp}\n") f.write(f"{e}\n") f.write("\n") return success if __name__ == '__main__': OUR_BINARY = sys.argv[1] LIBBECH32ENC_BINARY = sys.argv[2] LIBBECH32DEC_BINARY = sys.argv[3] FUZZ_ITERATIONS = int(sys.argv[4]) FUZZ_SECONDS = int(sys.argv[5]) _hrp = 'v)zeod9[qg.ns)+}r}' _hex_str = '857e' _b64_str = to_base64(_hex_str.upper()) process('a', 'ff', to_base64('FF')) fail_count = 0 start_time = datetime.datetime.now() for _ in range(0, FUZZ_ITERATIONS): if not process(_hrp, _hex_str, _b64_str): fail_count += 1 _hrp = generate_hrp() _hex_str = generate_hex(_hrp) _b64_str = to_base64(_hex_str.upper()) end_time = datetime.datetime.now() if (end_time - start_time).seconds >= FUZZ_SECONDS: print(f'Fuzzing stopped after {FUZZ_SECONDS} seconds') break print("DONE") sys.exit(fail_count)
35.156667
114
0.561297
0
0
0
0
0
0
0
0
2,934
0.278183
7ba085171ad82d0c573dcc7bfc7f5421e63a5a9f
3,166
py
Python
ldt/utils/usaf/bcsd_preproc/forecast_task_07.py
andrewsoong/LISF
20e3b00a72b6b348c567d0703550f290881679b4
[ "Apache-2.0" ]
67
2018-11-13T21:40:54.000Z
2022-02-23T08:11:56.000Z
ldt/utils/usaf/bcsd_preproc/forecast_task_07.py
andrewsoong/LISF
20e3b00a72b6b348c567d0703550f290881679b4
[ "Apache-2.0" ]
679
2018-11-13T20:10:29.000Z
2022-03-30T19:55:25.000Z
ldt/utils/usaf/bcsd_preproc/forecast_task_07.py
andrewsoong/LISF
20e3b00a72b6b348c567d0703550f290881679b4
[ "Apache-2.0" ]
119
2018-11-08T15:53:35.000Z
2022-03-28T10:16:01.000Z
#!/usr/bin/env python3 """ #------------------------------------------------------------------------------ # # SCRIPT: forecast_task_07.py # # PURPOSE: Combine all non-precip 6-hourly files into one file and copy BCSD # precip files in to the same directory Based on FORECAST_TASK_07.sh. # # REVISION HISTORY: # 24 Oct 2021: Ryan Zamora, first version # #------------------------------------------------------------------------------ """ # # Standard modules # import configparser import os import subprocess import sys # # Local methods # def _usage(): """Print command line usage.""" txt = f"[INFO] Usage: {(sys.argv[0])} current_year month_abbr config_file" print(txt) print("[INFO] where") print("[INFO] current_year: Current year") print("[INFO] month_abbr: Current month") print("[INFO] config_file: Config file that sets up environment") def _read_cmd_args(): """Read command line arguments.""" if len(sys.argv) != 4: print("[ERR] Invalid number of command line arguments!") _usage() sys.exit(1) # current_year try: current_year = int(sys.argv[1]) except ValueError: print(f"[ERR] Invalid argument for current_year! Received {(sys.argv[1])}") _usage() sys.exit(1) if current_year < 0: print(f"[ERR] Invalid argument for current_year! Received {(sys.argv[1])}") _usage() sys.exit(1) # month_abbr month_abbr = str(sys.argv[2]) # config_file config_file = sys.argv[3] if not os.path.exists(config_file): print(f"[ERR] {config_file} does not exist!") sys.exit(1) return current_year, month_abbr, config_file def read_config(config_file): """Read from bcsd_preproc config file.""" config = configparser.ConfigParser() config.read(config_file) return config def _driver(): """Main driver.""" current_year, month_abbr, config_file = _read_cmd_args() # Setup local directories config = read_config(config_file) # Path of the main project directory projdir = config["bcsd_preproc"]["projdir"] # Number of precip ensembles needed range_ens_fcst=list(range(1, 13)) + list(range(1,13)) + list(range(1,7)) range_ens_nmme=range(1,31) fcst_date = f"{month_abbr}01" # Path for where forecast files are located: indir=f"{projdir}/data/forecast/CFSv2_25km/raw/6-Hourly/{fcst_date}/{current_year}" # Path for where the linked precip files should be placed: outdir=f"{projdir}/data/forecast/NMME/linked_cfsv2_precip_files/{fcst_date}/{current_year}" if not os.path.exists(outdir): os.makedirs(outdir) for iens, ens_value in enumerate(range_ens_fcst): src_file=f"{indir}/ens{ens_value}" dst_file=f"{outdir}/ens{range_ens_nmme[iens]}" cmd = f"ln -sfn {src_file} {dst_file}" print(cmd) returncode = subprocess.call(cmd, shell=True) if returncode != 0: print("[ERR] Problem calling creating symbolic links!") sys.exit(1) print("[INFO] Done creating symbolic links") # # Main Method # if __name__ == "__main__": _driver()
26.830508
95
0.622236
0
0
0
0
0
0
0
0
1,673
0.528427
7ba2716e5d28bfa4af27d8788deae9d221d9561f
271
py
Python
1_estrutura_sequencial/10_celsius_fahrenheit.py
cecilmalone/lista_de_exercicios_pybr
6d7c4aeddf8d1b1d839ad05ef5b5813a8fe611b5
[ "MIT" ]
null
null
null
1_estrutura_sequencial/10_celsius_fahrenheit.py
cecilmalone/lista_de_exercicios_pybr
6d7c4aeddf8d1b1d839ad05ef5b5813a8fe611b5
[ "MIT" ]
null
null
null
1_estrutura_sequencial/10_celsius_fahrenheit.py
cecilmalone/lista_de_exercicios_pybr
6d7c4aeddf8d1b1d839ad05ef5b5813a8fe611b5
[ "MIT" ]
null
null
null
""" 10. Faça um Programa que peça a temperatura em graus Celsius, transforme e mostre em graus Farenheit. """ celsius = float(input('Informe o valor em Celsius (ºC): ')) fahrenheit = (celsius * (9/5)) + 32 print('{} ºC é igual a {:.1f} ºF'.format(celsius, fahrenheit))
30.111111
101
0.682657
0
0
0
0
0
0
0
0
177
0.638989
7ba27d2ca0843358d969fed10afe5cbbd1851036
12,178
py
Python
model/modules/capsules.py
lidq92/pytorch-dynamic-routing-between-capsules
4388cd36193348cbb10035008360330e67acdd41
[ "MIT" ]
10
2018-09-17T02:14:34.000Z
2021-06-17T12:16:35.000Z
model/modules/capsules.py
lidq92/pytorch-dynamic-routing-between-capsules
4388cd36193348cbb10035008360330e67acdd41
[ "MIT" ]
null
null
null
model/modules/capsules.py
lidq92/pytorch-dynamic-routing-between-capsules
4388cd36193348cbb10035008360330e67acdd41
[ "MIT" ]
2
2019-08-06T20:40:02.000Z
2020-01-02T08:24:39.000Z
import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from torch.distributions import Normal def squash(s, dim=-1, eps=1e-8): """ "Squashing" non-linearity that shrunks short vectors to almost zero length and long vectors to a length slightly below 1 v_j = ||s_j||^2 / (1 + ||s_j||^2) * s_j / ||s_j|| Args: s: Vector before activation dim: Dimension along which to calculate the norm Returns: v: Squashed vector """ squared_norm = torch.sum(s**2, dim=dim, keepdim=True) v = squared_norm / (1 + squared_norm) * \ s / (torch.sqrt(squared_norm) + eps) return v class PrimaryCapsules(nn.Module): def __init__(self, in_channels, out_channels, dim_caps, kernel_size=9, stride=2): """ Primary Capsules Layer NIPS 2017 Args: in_channels: Number of input channels out_channels: Number of output channels dim_caps: length of the output capsule vector """ super(PrimaryCapsules, self).__init__() self.dim_caps = dim_caps self._caps_channel = int(out_channels / dim_caps) assert self._caps_channel * dim_caps == out_channels # self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride) def forward(self, x): out = self.conv(x) out = out.view(out.size(0), self._caps_channel, out.size(2), out.size(3), self.dim_caps) # out = out.view(out.size(0), -1, self.dim_caps) # return squash(out) class RoutingCapsules(nn.Module): def __init__(self, in_dim, in_caps, num_caps, dim_caps, num_routing=3, use_cuda=True): """ Routing Capsules Layer NIPS 2017 Args: in_dim: length of input capsule vector in_caps: Number of input capsules if digits layer num_caps: Number of capsules in the capsule layer dim_caps: length of the output capsule vector num_routing: Number of iterations during routing algorithm """ super(RoutingCapsules, self).__init__() self.use_cuda = use_cuda self.in_dim = in_dim self.in_caps = in_caps self.num_caps = num_caps self.dim_caps = dim_caps self.num_routing = num_routing self.W = nn.Parameter(0.01 * torch.randn(1, num_caps, in_caps, dim_caps, in_dim )) def __repr__(self): """ """ tab = ' ' line = '\n' next = ' -> ' res = self.__class__.__name__ + '(' res = res + line + tab + '(' + str(0) + '): ' + 'CapsuleLinear(' res = res + str(self.in_dim) + ', ' + str(self.dim_caps) + ')' res = res + line + tab + '(' + str(1) + '): ' + 'Routing(' res = res + 'num_routing=' + str(self.num_routing) + ')' res = res + line + ')' return res def forward(self, x): batch_size = x.size(0) # (batch_size, in_caps, in_dim) -> (batch_size, 1, in_caps, in_dim, 1) x = x.unsqueeze(3).unsqueeze(1) # # W @ x = # (1, num_caps, in_caps, dim_caps, in_dim) # @ # (batch_size, 1, in_caps, in_dim, 1) # = # (batch_size, num_caps, in_caps, dim_caps, 1) u_hat = torch.matmul(self.W, x) # (batch_size, num_caps, in_caps, dim_caps) u_hat = u_hat.squeeze(-1) ''' detach u_hat during routing iterations to prevent gradients from flowing, i.e., - In forward pass, u_hat_detached = u_hat; - In backward, no gradient can flow from u_hat_detached back to x_hat. ''' u_hat_detached = u_hat.detach() # Routing algorithm b = Variable(torch.zeros(batch_size, self.num_caps, self.in_caps, 1)) if self.use_cuda: b = b.cuda() for route_iter in range(self.num_routing-1): # (batch_size, num_caps, in_caps, 1) -> Softmax along num_caps c = F.softmax(b, dim=1) # element-wise multiplication # (batch_size, num_caps, in_caps, 1) # * # (batch_size, in_caps, num_caps, dim_caps) # -> (batch_size, num_caps, in_caps, dim_caps) # sum across in_caps -> # (batch_size, num_caps, dim_caps) s = (c * u_hat_detached).sum(dim=2) # apply "squashing" non-linearity along dim_caps v = squash(s) # dot product agreement # between the current output vj and the prediction uj|i # (batch_size, num_caps, in_caps, dim_caps) # @ # (batch_size, num_caps, dim_caps, 1) # -> (batch_size, num_caps, in_caps, 1) uv = torch.matmul(u_hat_detached, v.unsqueeze(-1)) b += uv # Note: it seems more appropriate here to use b = uv ''' last iteration is done on the original u_hat, without the routing weights update use u_hat to compute v in order to backpropagate gradient ''' c = F.softmax(b, dim=1) s = (c * u_hat).sum(dim=2) v = squash(s) return v class PrimaryCaps(nn.Module): def __init__(self, A=32, B=32): """ Primary Capsule Layer ICLR 2018 Args: A: input channel B: number of types of capsules. """ super(PrimaryCaps, self).__init__() self.B = B self.capsules_pose = nn.ModuleList([nn.Conv2d(in_channels=A, out_channels=4 * 4, kernel_size=1, stride=1) for _ in range(self.B)]) self.capsules_activation = nn.ModuleList([nn.Conv2d(in_channels=A, out_channels=1, kernel_size=1, stride=1) for _ in range(self.B)]) def forward(self, x): poses = [self.capsules_pose[i](x) for i in range(self.B)] poses = torch.cat(poses, dim=1) activations = [self.capsules_activation[i](x) for i in range(self.B)] activations = F.sigmoid(torch.cat(activations, dim=1)) return poses, activations class ConvCaps(nn.Module): def __init__(self, B=32, C=32, K=3, stride=2, iteration=3, coordinate_add=False, transform_share=False, routing='EM_routing', use_cuda=True): """ Convolutional Capsule Layer ICLR 2018 Args: B: input number of types of capsules. C: output number of types of capsules. K: kernel size of convolution. K = 0 means the capsules in layer L+1's receptive field contain all capsules in layer L, which is used in the final ClassCaps layer. stride: stride of convolution iteration: number of EM iterations coordinate_add: whether to use Coordinate Addition transform_share: whether to share transformation matrix. routing: 'EM_routing' or 'angle_routing' """ super(ConvCaps, self).__init__() self.routing = routing self.use_cuda = use_cuda self.B = B self.C = C self.K = K # K = 0 means full receptive field like class capsules self.Bkk = None self.Cww = None self.b = None # batch_size, get it in forword process self.stride = stride self.coordinate_add = coordinate_add # transform_share is also set to True if K = 0 self.transform_share = transform_share or K == 0 self.beta_v = None self.beta_a = None if not transform_share: self.W = nn.Parameter(torch.randn(B, K, K, C, 4, 4)) else: self.W = nn.Parameter(torch.randn(B, C, 4, 4)) self.iteration = iteration def coordinate_addition(self, width_in, votes): add = [[i / width_in, j / width_in] for i in range(width_in) for j in range(width_in)] # K,K,w,w add = Variable(torch.Tensor(add)) if self.use_cuda: add = add.cuda() add = add.view(1, 1, self.K, self.K, 1, 1, 1, 2) add = add.expand(self.b, self.B, self.K, self.K, self.C, 1, 1, 2).contiguous() votes[:, :, :, :, :, :, :, :2, -1] = votes[:, :, :, :, :, :, :, :2, -1] + add return votes def down_w(self, w): return range(w * self.stride, w * self.stride + self.K) def EM_routing(self, lambda_, a_, V): # routing coefficient R = Variable(torch.ones([self.b, self.Bkk, self.Cww]), requires_grad=False) if self.use_cuda: R = R.cuda() R /= self.Cww for i in range(self.iteration): # M-step R = (R * a_)[..., None] sum_R = R.sum(1) mu = ((R * V).sum(1) / sum_R)[:, None, :, :] sigma_square = (R * (V - mu) ** 2).sum(1) / sum_R # E-step if i != self.iteration - 1: mu, sigma_square, V_, a__ = mu.data, sigma_square.data, V.data, a_.data normal = Normal(mu, sigma_square[:, None, :, :] ** (1 / 2)) p = torch.exp(normal.log_prob(V_)) ap = a__ * p.sum(-1) R = Variable(ap / torch.sum(ap, -1)[..., None], requires_grad=False) else: const = (self.beta_v.expand_as(sigma_square) + torch.log(sigma_square)) * sum_R a = torch.sigmoid(lambda_ * (self.beta_a.repeat(self.b, 1) - const.sum(2))) return a, mu def angle_routing(self, lambda_, a_, V): # routing coefficient R = Variable(torch.zeros([self.b, self.Bkk, self.Cww]), requires_grad=False) if self.use_cuda: R = R.cuda() for i in range(self.iteration): R = F.softmax(R, dim=1) R = (R * a_)[..., None] sum_R = R.sum(1) mu = ((R * V).sum(1) / sum_R)[:, None, :, :] if i != self.iteration - 1: u_v = mu.permute(0, 2, 1, 3) @ V.permute(0, 2, 3, 1) u_v = u_v.squeeze().permute(0, 2, 1) / V.norm(2, -1) / mu.norm(2, -1) R = R.squeeze() + u_v else: sigma_square = (R * (V - mu) ** 2).sum(1) / sum_R const = (self.beta_v.expand_as(sigma_square) + torch.log(sigma_square)) * sum_R a = torch.sigmoid(lambda_ * (self.beta_a.repeat(self.b, 1) - const.sum(2))) return a, mu def forward(self, x, lambda_): poses, activations = x width_in = poses.size(2) w = int((width_in - self.K) / self.stride + 1) if self.K else 1 # 5 self.Cww = w * w * self.C self.b = poses.size(0) # if self.beta_v is None: if self.use_cuda: self.beta_v = nn.Parameter(torch.randn(1, self.Cww, 1)).cuda() self.beta_a = nn.Parameter(torch.randn(1, self.Cww)).cuda() else: self.beta_v = nn.Parameter(torch.randn(1, self.Cww, 1)) self.beta_a = nn.Parameter(torch.randn(1, self.Cww)) if self.transform_share: if self.K == 0: self.K = width_in # class Capsules' kernel = width_in W = self.W.view(self.B, 1, 1, self.C, 4, 4).expand(self.B, self.K, self.K, self.C, 4, 4).contiguous() else: W = self.W # B,K,K,C,4,4 self.Bkk = self.K * self.K * self.B # used to store every capsule i's poses in each capsule c's receptive field pose = poses.contiguous() # b,16*32,12,12 pose = pose.view(self.b, 16, self.B, width_in, width_in).permute(0, 2, 3, 4, 1).contiguous() # b,B,12,12,16 poses = torch.stack([pose[:, :, self.stride * i:self.stride * i + self.K, self.stride * j:self.stride * j + self.K, :] for i in range(w) for j in range(w)], dim=-1) # b,B,K,K,w*w,16 poses = poses.view(self.b, self.B, self.K, self.K, 1, w, w, 4, 4) # b,B,K,K,1,w,w,4,4 W_hat = W[None, :, :, :, :, None, None, :, :] # 1,B,K,K,C,1,1,4,4 votes = W_hat @ poses # b,B,K,K,C,w,w,4,4 if self.coordinate_add: votes = self.coordinate_addition(width_in, votes) activation = activations.view(self.b, -1)[..., None].repeat(1, 1, self.Cww) else: activations_ = [activations[:, :, self.down_w(x), :][:, :, :, self.down_w(y)] for x in range(w) for y in range(w)] activation = torch.stack( activations_, dim=4).view(self.b, self.Bkk, 1, -1) \ .repeat(1, 1, self.C, 1).view(self.b, self.Bkk, self.Cww) votes = votes.view(self.b, self.Bkk, self.Cww, 16) activations, poses = getattr(self, self.routing)(lambda_, activation, votes) return poses.view(self.b, self.C, w, w, -1), activations.view(self.b, self.C, w, w)
36.029586
172
0.579323
11,529
0.946707
0
0
0
0
0
0
3,341
0.274347
7ba31e643aa2124a524e4368c26dcf7ed0147d91
16,807
py
Python
ci/test_marathon_lb_dcos_e2e.py
vivint-smarthome/marathon-lb
d8dd02a1889d3db6e3e7fefa62ff178b3ab72ce9
[ "Apache-2.0" ]
511
2015-10-17T09:28:28.000Z
2022-02-20T21:58:56.000Z
ci/test_marathon_lb_dcos_e2e.py
vivint-smarthome/marathon-lb
d8dd02a1889d3db6e3e7fefa62ff178b3ab72ce9
[ "Apache-2.0" ]
575
2015-10-09T11:54:09.000Z
2021-11-22T20:50:19.000Z
ci/test_marathon_lb_dcos_e2e.py
vivint-smarthome/marathon-lb
d8dd02a1889d3db6e3e7fefa62ff178b3ab72ce9
[ "Apache-2.0" ]
411
2015-10-29T13:41:45.000Z
2022-02-11T09:27:50.000Z
#!python3 import contextlib import json import logging import os from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import serialization from cryptography.hazmat.primitives.asymmetric import rsa from dcos_e2e import cluster from dcos_e2e import node from dcos_test_utils import helpers as dcos_helpers from dcos_test_utils import iam as dcos_iam from dcos_test_utils import enterprise as dcos_ee_api from dcos_test_utils import dcos_api from dcos_test_utils import package import dcos_installer_tools import pytest import test_marathon_lb DCOS_E2E_BACKEND = 'DCOS_E2E_BACKEND' DCOS_E2E_CLUSTER_ID = 'DCOS_E2E_CLUSTER_ID' DCOS_E2E_NODE_TRANSPORT = 'DCOS_E2E_NODE_TRANSPORT' DCOS_LOGIN_UNAME = 'DCOS_LOGIN_UNAME' DCOS_LOGIN_PW = 'DCOS_LOGIN_PW' BACKEND_AWS = 'aws' BACKEND_DOCKER = 'docker' BACKEND_VAGRANT = 'vagrant' MARATHON_LB_IMAGE = os.environ.get('MARATHON_LB_IMAGE', 'marathon-lb:latest') MARATHON_LB_VERSION = os.environ.get('MARATHON_LB_VERSION', 'dev') OSS = 'oss' ENTERPRISE = 'enterprise' VARIANTS = {OSS: dcos_installer_tools.DCOSVariant.OSS, ENTERPRISE: dcos_installer_tools.DCOSVariant.ENTERPRISE} VARIANT_VALUES = dict((value.value, value) for value in VARIANTS.values()) logging.captureWarnings(True) # NOTE(jkoelker) Define some helpers that should eventually be upstreamed class Package(package.Cosmos): def render(self, name, options=None, version=None): params = {'packageName': name} if version: params['packageVersion'] = version if options: params['options'] = options self._update_headers('render', request_version=1, response_version=1) return self._post('/render', params).json().get('marathonJson') class Secrets(dcos_helpers.ApiClientSession): def __init__(self, default_url: dcos_helpers.Url, session=None): super().__init__(default_url) if session: self.session = session def list_stores(self): r = self.get('/store') r.raise_for_status() return r.json()['array'] def list_secrets(self, store, path='/'): params = {'list': True} r = self.get(self.secret_uri(store, path), params=params) r.raise_for_status() return r.json()['array'] def create_secret(self, path, value, store='default'): headers = None data = None if not isinstance(value, (str, bytes)): value = json.dumps(value, sort_keys=True, indent=None, ensure_ascii=False, separators=(',', ':')) json_value = {'value': value} if isinstance(value, bytes): headers = {'Content-Type': 'application/octet-stream'} data = value json_value = None return self.put(self.secret_uri(store, path), json=json_value, data=data, headers=headers) def delete_secret(self, path, store='default'): return self.delete(self.secret_uri(store, path)) @staticmethod def secret_uri(store, path): if not path.startswith('/'): path = '/' + path return '/secret/{}{}'.format(store, path) def add_user_to_group(self, user, group): return self.put('/groups/{}/users/{}'.format(group, user)) def delete_user_from_group(self, user, group): if not self.user_in_group(user, group): return return self.delete('/groups/{}/users/{}'.format(group, user)) def list_group_users(self, group): r = self.get('/groups/{}/users'.format(group)) r.raise_for_status() return r.json()['array'] def user_in_group(self, user, group): return user in [a['user']['uid'] for a in self.list_group_users(group)] # NOTE(jkoelker) Monkey patch in our helpers dcos_api.DcosApiSession.package = property( lambda s: Package(default_url=s.default_url.copy(path='package'), session=s.copy().session)) dcos_api.DcosApiSession.secrets = property( lambda s: Secrets( default_url=s.default_url.copy(path='secrets/v1'), session=s.copy().session)) dcos_ee_api.EnterpriseApiSession.secrets = property( lambda s: Secrets( default_url=s.default_url.copy(path='secrets/v1'), session=s.copy().session)) dcos_iam.Iam.add_user_to_group = add_user_to_group dcos_iam.Iam.delete_user_from_group = delete_user_from_group dcos_iam.Iam.list_group_users = list_group_users dcos_iam.Iam.user_in_group = user_in_group class Cluster(cluster.Cluster): _USER_ZKCLI_CMD = ( '.', '/opt/mesosphere/environment.export', '&&', 'zkCli.sh', '-server', '"zk-1.zk:2181,zk-2.zk:2181,zk-3.zk:2181,zk-4.zk:2181,' 'zk-5.zk:2181"' ) _USER_OSS_EMAIL = '[email protected]' _USER_OSS_ZK_PATH = '/dcos/users/{}'.format(_USER_OSS_EMAIL) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._variant = dcos_installer_tools.DCOSVariant.OSS @property def _any_master(self): return next(iter(self.masters)) def _any_master_run(self, cmd, *args, **kwargs): return self._any_master.run(list(cmd), *args, **kwargs) @property def _oss_user_exists(self): cmd = self._USER_ZKCLI_CMD + ('get', self._USER_OSS_ZK_PATH) output = self._any_master_run(cmd, shell=True) stdout = output.stdout.decode() if stdout.strip().split('\n')[-1] == self._USER_OSS_EMAIL: return True return False def _create_oss_user(self): if self._oss_user_exists: return cmd = self._USER_ZKCLI_CMD + ('create', self._USER_OSS_ZK_PATH, self._USER_OSS_EMAIL) self._any_master_run(cmd, shell=True) def _delete_oss_user(self): cmd = self._USER_ZKCLI_CMD + ('delete', self._USER_OSS_ZK_PATH) self._any_master_run(cmd, shell=True) def _enterprise_session(self): cmd = ('cat', '/opt/mesosphere/etc/bootstrap-config.json') config_result = self._any_master_run(cmd) config = json.loads(config_result.stdout.decode()) ssl_enabled = config['ssl_enabled'] scheme = 'https://' if ssl_enabled else 'http://' dcos_url = scheme + str(self._any_master.public_ip_address) api = dcos_ee_api.EnterpriseApiSession( dcos_url=dcos_url, masters=[str(n.public_ip_address) for n in self.masters], slaves=[str(n.public_ip_address) for n in self.agents], public_slaves=[ str(n.public_ip_address) for n in self.public_agents ], auth_user=dcos_api.DcosUser(credentials=self.credentials), ) if api.ssl_enabled: api.set_ca_cert() api.login_default_user() api.set_initial_resource_ids() return api def _oss_session(self): api = dcos_api.DcosApiSession( dcos_url='http://{}'.format(self._any_master.public_ip_address), masters=[str(n.public_ip_address) for n in self.masters], slaves=[str(n.public_ip_address) for n in self.agents], public_slaves=[ str(n.public_ip_address) for n in self.public_agents ], auth_user=dcos_api.DcosUser(credentials=self.credentials), ) api.login_default_user() return api def _session(self): if self.enterprise: return self._enterprise_session() return self._oss_session() @property def credentials(self): if self.enterprise: return { 'uid': os.environ.get(DCOS_LOGIN_UNAME, 'admin'), 'password': os.environ.get(DCOS_LOGIN_PW, 'admin') } return dcos_helpers.CI_CREDENTIALS @property def enterprise(self): return self._variant == dcos_installer_tools.DCOSVariant.ENTERPRISE @property def oss(self): return self._variant == dcos_installer_tools.DCOSVariant.OSS @property def variant(self): return self._variant @variant.setter def variant(self, value): # NOTE(jkoelker) Hack becuase enums from vendored libraries # are technically different if hasattr(value, 'value') and value.value in VARIANT_VALUES: value = VARIANT_VALUES[value.value] if value in VARIANTS: value = VARIANTS[value] if value not in dcos_installer_tools.DCOSVariant: msg = 'Expected one of {} or {} got {}' raise ValueError(msg.format(tuple(VARIANTS.keys()), dcos_installer_tools.DCOSVariant, value)) self._variant = value def create_user(self): if self.enterprise: return self._create_oss_user() def delete_user(self): if self.enterprise: return self._delete_oss_user() def create_service_account(self, name, secret, description=None, superuser=False): if not self.enterprise: return if description is None: description = '{} service account'.format(name) key = rsa.generate_private_key( public_exponent=65537, key_size=2048, backend=default_backend()) priv = key.private_bytes( encoding=serialization.Encoding.PEM, format=serialization.PrivateFormat.PKCS8, encryption_algorithm=serialization.NoEncryption()) pub = key.public_key().public_bytes( encoding=serialization.Encoding.PEM, format=serialization.PublicFormat.SubjectPublicKeyInfo) priv = priv.decode('ascii') pub = pub.decode('ascii') with self.session as session: iam = session.iam try: iam.create_service(name, pub, description) except AssertionError: iam.delete_service(name) iam.create_service(name, pub, description) if superuser: iam.add_user_to_group(name, 'superusers') login_endpoint = 'https://leader.mesos/{}/auth/login' # NOTE(jkoelker) override the login_endpoint to force it to # use `leader.mesos` by default it is set # to the dcos_url the sesion is created with sa_creds = iam.make_service_account_credentials(name, priv) sa_creds['login_endpoint'] = login_endpoint.format( iam.default_url.path) secret_ret = session.secrets.create_secret(secret, sa_creds) if secret_ret.status_code != 201: session.secrets.delete_secret(secret, store='default') session.secrets.create_secret(secret, sa_creds) def delete_service_account(self, name, secret): if not self.enterprise: return with self.session as session: iam = session.iam iam.delete_user_from_group(name, 'superusers') session.secrets.delete_secret(secret, store='default') iam.delete_service(name) @contextlib.contextmanager def service_account(self, name, secret, description=None, superuser=False): try: yield self.create_service_account(name, secret, description, superuser) finally: self.delete_service_account(name, secret) @property @contextlib.contextmanager def session(self): with self.user: yield self._session() @property @contextlib.contextmanager def user(self): try: yield self.create_user() finally: self.delete_user() def get_docker_cluster(cluster_id, transport, **kwargs): from dcos_e2e_cli.dcos_docker.commands import _common if cluster_id not in _common.existing_cluster_ids(): return None cluster_containers = _common.ClusterContainers(cluster_id, transport) cluster = Cluster.from_nodes( masters=set(map(cluster_containers.to_node, cluster_containers.masters)), agents=set(map(cluster_containers.to_node, cluster_containers.agents)), public_agents=set(map(cluster_containers.to_node, cluster_containers.public_agents))) cluster.variant = cluster_containers.dcos_variant return cluster def get_cluster(): backend = os.environ.get(DCOS_E2E_BACKEND, BACKEND_DOCKER) cluster_id = os.environ.get(DCOS_E2E_CLUSTER_ID, 'default') if backend == BACKEND_AWS: return None if backend == BACKEND_VAGRANT: return None transport = os.environ.get(DCOS_E2E_NODE_TRANSPORT, 'docker-exec') if transport == 'ssh': transport = node.Transport.SSH else: transport = node.Transport.DOCKER_EXEC return get_docker_cluster(cluster_id, transport) @pytest.fixture(scope='session') def dcos_marathon_lb_session(): '''Fixture to return `cluster.session` after deploying `marathon-lb`''' cluster = get_cluster() with cluster.session as session: options = { 'marathon-lb': { 'sysctl-params': ' '.join( ['net.ipv4.tcp_fin_timeout=30', 'net.core.somaxconn=10000']), } } if cluster.enterprise: options['marathon-lb'].update({ 'secret_name': 'mlb-secret', 'marathon-uri': 'https://master.mesos:8443', 'strict-mode': True }) with cluster.service_account('mlb-principal', 'mlb-secret', superuser=True): app = session.package.render('marathon-lb', options=options) app['container']['docker']['image'] = MARATHON_LB_IMAGE app['labels']['DCOS_PACKAGE_VERSION'] = MARATHON_LB_VERSION with session.marathon.deploy_and_cleanup(app): yield session @pytest.fixture(scope='session') def agent_public_ip(dcos_marathon_lb_session): '''Fixture to return the first public agents ip address''' return dcos_marathon_lb_session.public_slaves[0] @pytest.fixture(scope='session') def dcos_version(dcos_marathon_lb_session): '''Fixture to return the first dcos version''' return dcos_marathon_lb_session.get_version() @pytest.fixture(scope='session', params=(['backends/' + f for f in os.listdir('backends')] + ['backends_1.9/' + f for f in os.listdir('backends_1.9')])) def backend_app(request, dcos_version): if dcos_version.startswith('1.9.'): if not request.param.startswith('backends_1.9/'): return pytest.skip('Not a 1.9 backend') return test_marathon_lb.get_json(request.param) if request.param.startswith('backends_1.9/'): return pytest.skip('Not a 1.9 cluster') return test_marathon_lb.get_json(request.param) @pytest.fixture(scope='session') def app_deployment(dcos_marathon_lb_session, backend_app): session = dcos_marathon_lb_session with session.marathon.deploy_and_cleanup(backend_app, check_health=False): app_id = backend_app['id'] backend_app['name'] = app_id[1:] if app_id[0] == '/' else app_id yield backend_app @pytest.fixture(scope='session') def app_port(app_deployment, agent_public_ip): return test_marathon_lb.get_app_port(app_deployment['name'], agent_public_ip) def test_port(app_deployment, app_port): assert app_port == app_deployment["labels"]["HAPROXY_0_PORT"] def test_response(app_deployment, app_port, agent_public_ip): (response, status_code) = test_marathon_lb.get_app_content(app_port, agent_public_ip) assert status_code == 200 assert response == app_deployment['name']
32.571705
76
0.609091
9,652
0.574285
2,037
0.1212
5,256
0.312727
0
0
2,088
0.124234
7ba7975d420153a385e3680b17a15d19e06af3c9
308
py
Python
day1.py
danmana/adventofcode2017
6f80cd7c2382453b6e9d577975c2f02a024095c5
[ "MIT" ]
null
null
null
day1.py
danmana/adventofcode2017
6f80cd7c2382453b6e9d577975c2f02a024095c5
[ "MIT" ]
null
null
null
day1.py
danmana/adventofcode2017
6f80cd7c2382453b6e9d577975c2f02a024095c5
[ "MIT" ]
null
null
null
def sumOf(s, offset): sum = 0 n = len(s) for i in range(0, len(s)): if s[i] == s[(i + offset) % n]: sum += int(s[i]) return sum file = open("./input/input1.txt", "r") for s in file: s = s.strip() print('Part 1: ', sumOf(s, 1)) print('Part 2: ', sumOf(s, int(len(s)/2))) file.close()
14
43
0.519481
0
0
0
0
0
0
0
0
43
0.13961
7ba983a2c839be1dfa3a88ffa4c32747f568686e
2,123
py
Python
tests/test_inflate.py
FilipKlaesson/cops
67d2e5dd4534b3f3eec95b6cfda9d4c9c1746ef0
[ "BSD-3-Clause" ]
null
null
null
tests/test_inflate.py
FilipKlaesson/cops
67d2e5dd4534b3f3eec95b6cfda9d4c9c1746ef0
[ "BSD-3-Clause" ]
null
null
null
tests/test_inflate.py
FilipKlaesson/cops
67d2e5dd4534b3f3eec95b6cfda9d4c9c1746ef0
[ "BSD-3-Clause" ]
null
null
null
import numpy as np from cops.graph import Graph from cops.clustering import ClusterProblem, ClusterStructure, inflate_agent_clusters def test_activationinflate1(): G = Graph() G.add_connectivity_path([0, 1]) G.add_connectivity_path([0, 2]) agent_positions = {0: 0, 1: 1, 2: 2} G.init_agents(agent_positions) cs = ClusterStructure(agent_clusters={"c0": [0], "c1": [1], "c2": [2]}) master = 0 cp = ClusterProblem() cp.graph = G cp.master = master cp.prepare_problem(remove_dead=False) cs = inflate_agent_clusters(cp, cs) np.testing.assert_equal(cs.subgraphs["c0"], set([0])) np.testing.assert_equal(cs.subgraphs["c1"], set([1])) np.testing.assert_equal(cs.subgraphs["c2"], set([2])) np.testing.assert_equal(cs.child_clusters["c0"], {("c1", 1), ("c2", 2)}) np.testing.assert_equal(cs.child_clusters["c1"], set()) np.testing.assert_equal(cs.child_clusters["c2"], set()) np.testing.assert_equal(cs.parent_clusters["c1"], ("c0", 0)) np.testing.assert_equal(cs.parent_clusters["c2"], ("c0", 0)) def test_inflate2(): G = Graph() G.add_transition_path(list(range(0, 12))) G.add_connectivity_path(list(range(0, 12))) G.add_connectivity_path([6, 8]) agent_positions = {0: 0, 1: 1, 2: 4, 3: 6, 4: 8, 5: 10} G.init_agents(agent_positions) cs = ClusterStructure(agent_clusters={"c0": [0, 1], "c1": [2, 3], "c2": [4, 5]}) master = 0 cp = ClusterProblem() cp.graph = G cp.master = master cp.prepare_problem(remove_dead=False) cs = inflate_agent_clusters(cp, cs) np.testing.assert_equal(cs.subgraphs["c0"], set([0, 1, 2, 3])) np.testing.assert_equal(cs.subgraphs["c1"], set([4, 5, 6, 7])) np.testing.assert_equal(cs.subgraphs["c2"], set([8, 9, 10, 11])) np.testing.assert_equal(cs.child_clusters["c0"], {("c1", 4)}) np.testing.assert_equal(cs.child_clusters["c1"], {("c2", 8)}) np.testing.assert_equal(cs.child_clusters["c2"], set()) np.testing.assert_equal(cs.parent_clusters["c1"], ("c0", 3)) np.testing.assert_equal(cs.parent_clusters["c2"], ("c1", 6))
31.686567
84
0.646726
0
0
0
0
0
0
0
0
120
0.056524
7bab917bc22f4ebc30925ed7bbdf5a597c5e9ff4
3,243
py
Python
tools/STCG/STCG.py
ambertide/SASVM
ee699ec9b585ad0fccb0b70e11dde1b225ac56c1
[ "MIT" ]
null
null
null
tools/STCG/STCG.py
ambertide/SASVM
ee699ec9b585ad0fccb0b70e11dde1b225ac56c1
[ "MIT" ]
7
2019-12-27T20:59:12.000Z
2020-01-08T22:53:42.000Z
tools/STCG/STCG.py
ambertide/SASVM
ee699ec9b585ad0fccb0b70e11dde1b225ac56c1
[ "MIT" ]
null
null
null
import csv from sys import argv from os import getcwd def generate_memory_list_view(expected_memory) -> str: """ Convert expected memory's bytestring to a list of Cells (in string) :param expected_memory: "A00023" :return: [Cell("A0"), Cell("00"), Cell("23")] """ list_view = "[" for i in range(0, len(expected_memory), 2): list_view += f"Cell(\"{expected_memory[i] + expected_memory[i + 1]}\")," list_view += "]" return list_view def generate_test_case(file_name: str, expected_memory: str, expected_output: str) -> str: """ Generate a test case string to test an *.asm file. :param file_name: *.asm file to test :param expected_memory: Expected memory as bytestring :param expected_output: Expected output from STDOUT :return: String """ with open(file_name) as file: code = file.read() expected_memory_list: str = generate_memory_list_view(expected_memory) output: str = f"""# Generated with SpaceCat TestCase Generator. import unittest from spacecat import assembler, simulator from spacecat.common_utils import Cell test_code = \"\"\"{code}\"\"\" class AlphabetBenchmark(unittest.TestCase): def test_assembler(self): a_ = assembler.Assembler.instantiate(test_code, mem_size={len(expected_memory)//2}) self.assertEqual({expected_memory_list}, a_.memory) def test_simulator(self): a_ = assembler.Assembler.instantiate(test_code, mem_size=128) s_ = simulator.Simulator(mem_size=128, register_size=16, stdout_register_indices=[15]) s_.load_memory(a_.memory) output = "" i = 0 for _ in s_: output += s_.return_stdout() i += 1 if i == 10_000: self.fail("Failed to resolve in given CPU Cycles.") self.assertEqual('{expected_output}', output) if __name__ == '__main__': unittest.main() """ return output def generate_test_file(output_directory: str, file_name: str, expected_memory: str, expected_output: str) -> None: file_only_name = file_name.split("/")[-1].strip(".asm") output_directory += f"/test_{file_only_name}.py" with open(output_directory, "w+") as file: try: file.write(generate_test_case(file_name, expected_memory, expected_output)) except (IOError, FileNotFoundError): print(f"Couldn't generate test case for {file_name}") def generate_from_config(input_directory: str, config_file: str, output_directory: str) -> None: with open(config_file) as file: reader = csv.reader(file, delimiter=",") for i, row in enumerate(reader): if i == 0: continue generate_test_file(output_directory, input_directory + "/" + row[0], row[1], row[2]) if __name__ == "__main__": print("Generating...") if len(argv) > 1: relative_import_directory = argv[1] config_file = argv[2] output_directory = argv[3] else: relative_import_directory = "../../src/data/sample_scripts" config_file="test_files.csv" output_directory="../../src/test/integration_tests" generate_from_config(relative_import_directory, config_file, output_directory)
36.438202
114
0.662041
0
0
0
0
0
0
0
0
1,627
0.501696
7bad82b4e2d7cbdb41d0bbaab31ed7d1164ed27e
108
py
Python
Crash Course Python, 2nd Edition/Chapter 3, Introducing List/YourOwnList.py
EdgarCastillo101/Crash-Course-Python-2nd-edition
484c9096076c0ba69b1b9d78c6c974064fc1eda3
[ "MIT" ]
null
null
null
Crash Course Python, 2nd Edition/Chapter 3, Introducing List/YourOwnList.py
EdgarCastillo101/Crash-Course-Python-2nd-edition
484c9096076c0ba69b1b9d78c6c974064fc1eda3
[ "MIT" ]
null
null
null
Crash Course Python, 2nd Edition/Chapter 3, Introducing List/YourOwnList.py
EdgarCastillo101/Crash-Course-Python-2nd-edition
484c9096076c0ba69b1b9d78c6c974064fc1eda3
[ "MIT" ]
null
null
null
car = ['volvo', 'toyota', 'BMW', 'Yes?'] message = f"I would like to own a {car[1].title()}" print(message)
27
51
0.601852
0
0
0
0
0
0
0
0
67
0.62037
7baf6ff631178bc7ddca808d29592a1384d2ce35
10,677
py
Python
stanCode_projects/my_drawing/my_drawing.py
ShihYesWei/stanCode-projects
69104b7be3d8c3fbd34935c1d4e15e40961e4556
[ "MIT" ]
null
null
null
stanCode_projects/my_drawing/my_drawing.py
ShihYesWei/stanCode-projects
69104b7be3d8c3fbd34935c1d4e15e40961e4556
[ "MIT" ]
null
null
null
stanCode_projects/my_drawing/my_drawing.py
ShihYesWei/stanCode-projects
69104b7be3d8c3fbd34935c1d4e15e40961e4556
[ "MIT" ]
null
null
null
""" File: my_drawing Author name: Alan Chen ---------------------- This program will draw a recently famous picture of Gian(技安), one of the main characters in doraemon(哆啦A夢). This is a picture that originally Gian was scared by something. Here, I reassign the things that scared him is the Illuminati symbol with a string of PYTHON. """ from campy.graphics.gobjects import GOval, GRect, GLine, GLabel, GPolygon, GArc from campy.graphics.gwindow import GWindow w = GWindow(1000, 650) def main(): """ Draw a scared Gian. """ ''' #This is for adjusting the position for i in range(0, 1000, 100): li = GLine(i, 0, i, 650) locatei = GLabel(str(i)) w.add(li) w.add(locatei, i, 20) for j in range(0, 700, 100): lj = GLine(0, j, 1000, j) locatej = GLabel(str(j)) w.add(lj) w.add(locatej, 0, j) ''' #background bg = GPolygon() bg.add_vertex((666, 325)) bg.add_vertex((0, 0)) bg.add_vertex((0, 325)) bg.filled = True bg.fill_color = 'red' bg.color = 'red' w.add(bg) bg = GPolygon() bg.add_vertex((666, 325)) bg.add_vertex((0, 325)) bg.add_vertex((0, 650)) bg.filled = True bg.fill_color = 'orange' bg.color = 'orange' w.add(bg) bg = GPolygon() bg.add_vertex((666, 325)) bg.add_vertex((333, 650)) bg.add_vertex((0, 650)) bg.filled = True bg.fill_color = 'lightgreen' bg.color = 'lightgreen' w.add(bg) bg = GPolygon() bg.add_vertex((666, 325)) bg.add_vertex((333, 650)) bg.add_vertex((666, 650)) bg.filled = True bg.fill_color = 'slategrey' bg.color = 'slategrey' w.add(bg) bg = GPolygon() bg.add_vertex((666, 325)) bg.add_vertex((1000, 650)) bg.add_vertex((666, 650)) bg.filled = True bg.fill_color = 'darkcyan' bg.color = 'darkcyan' w.add(bg) bg = GPolygon() bg.add_vertex((666, 325)) bg.add_vertex((1000, 650)) bg.add_vertex((1000, 400)) bg.filled = True bg.fill_color = 'greenyellow' bg.color = 'greenyellow' w.add(bg) bg = GPolygon() bg.add_vertex((666, 325)) bg.add_vertex((1000, 400)) bg.add_vertex((1000, 200)) bg.filled = True bg.fill_color = 'khaki' bg.color = 'khaki' w.add(bg) bg = GPolygon() bg.add_vertex((666, 325)) bg.add_vertex((1000, 0)) bg.add_vertex((1000, 200)) bg.filled = True bg.fill_color = 'mistyrose' bg.color = 'mistyrose' w.add(bg) bg = GPolygon() bg.add_vertex((666, 325)) bg.add_vertex((1000, 0)) bg.add_vertex((666, 0)) bg.filled = True bg.fill_color = 'plum' bg.color = 'plum' w.add(bg) bg = GPolygon() bg.add_vertex((666, 325)) bg.add_vertex((350, 0)) bg.add_vertex((666, 0)) bg.filled = True bg.fill_color = 'magenta' bg.color = 'magenta' w.add(bg) bg = GPolygon() bg.add_vertex((666, 325)) bg.add_vertex((350, 0)) bg.add_vertex((0, 0)) bg.filled = True bg.fill_color = 'tomato' bg.color = 'tomato' w.add(bg) #body body = GOval(900, 200) body.filled = True body.fill_color = 'Steelblue' body.color = 'blue' w.add(body, 220, 570) #face lower_face = GOval(530, 380) lower_face.filled = True lower_face.fill_color = 'Steelblue' lower_face.color = 'navy' w.add(lower_face, 405, 260) upper_face = GOval(485, 575) upper_face.filled = True upper_face.fill_color = 'Steelblue' upper_face.color = 'Steelblue' w.add(upper_face, 423, 40) shadow_on_face = GOval(420, 330) shadow_on_face.filled = True shadow_on_face.fill_color = 'Cadetblue' shadow_on_face.color = 'Cadetblue' w.add(shadow_on_face, 455, 230) shadow_on_face2 = GOval(390, 370) shadow_on_face2.filled = True shadow_on_face2.fill_color = 'Cadetblue' shadow_on_face2.color = 'Cadetblue' w.add(shadow_on_face2, 480, 170) # right_eye right_eye1 = GOval(90, 90) right_eye1.filled = True right_eye1.fill_color = 'powderblue' right_eye1.color = 'black' w.add(right_eye1, 525, 225) right_eye2 = GOval(45, 80) right_eye2.color = 'black' w.add(right_eye2, 546, 231) right_eye3 = GOval(30, 45) right_eye3.color = 'black' w.add(right_eye3, 552, 253) right_eye4 = GOval(5, 10) right_eye4.filled = True right_eye4.fill_color = 'black' right_eye4.color = 'black' w.add(right_eye4, 565, 271) # left_eye left_eye1 = GOval(90, 90) left_eye1.filled = True left_eye1.fill_color = 'powderblue' left_eye1.color = 'black' w.add(left_eye1, 710, 230) left_eye2 = GOval(60, 80) left_eye2.color = 'black' w.add(left_eye2, 725, 235) left_eye3 = GOval(25, 50) left_eye3.color = 'black' w.add(left_eye3, 740, 250) left_eye4 = GOval(5, 10) left_eye4.filled = True left_eye4.fill_color = 'black' left_eye4.color = 'black' w.add(left_eye4, 750, 270) # nose nose = GOval(80, 52) # 610 351 nose.filled = True nose.fill_color = 'DarkSeaGreen' nose.color = 'black' w.add(nose, 610, 347) # mouse for i in range(10): mouse = GOval(50, 80) mouse.filled = True mouse.fill_color = 'navy' mouse.color = 'navy' w.add(mouse, 560 + 4 * i, 430 - i) for i in range(100): mouse = GOval(50, 80) mouse.filled = True mouse.fill_color = 'navy' mouse.color = 'navy' w.add(mouse, 600 + i, 420) # tongue for i in range(15): tongue = GOval(50, 40) tongue.filled = True tongue.fill_color = 'mediumblue' tongue.color = 'mediumblue' w.add(tongue, 570 + 2 * i, 470 - i) for i in range(10): tongue = GOval(50, 45) tongue.filled = True tongue.fill_color = 'mediumblue' tongue.color = 'mediumblue' w.add(tongue, 600 + i, 455) for i in range(25): tongue = GOval(50, 30) tongue.filled = True tongue.fill_color = 'mediumblue' tongue.color = 'mediumblue' w.add(tongue, 600 + i, 475) for i in range(50): tongue = GOval(50, 45) tongue.filled = True tongue.fill_color = 'mediumblue' tongue.color = 'mediumblue' w.add(tongue, 650 + i, 455) # hair top_hair = GOval(330, 95) top_hair.filled = True top_hair.fill_color = 'navy' top_hair.color = 'navy' w.add(top_hair, 505, 25) bangs = GPolygon() bangs.add_vertex((510, 82)) bangs.add_vertex((620, 82)) bangs.add_vertex((560, 147)) bangs.filled = True bangs.fill_color = 'navy' bangs.color = 'navy' w.add(bangs) bangs = GPolygon() bangs.add_vertex((580, 98)) bangs.add_vertex((690, 98)) bangs.add_vertex((635, 155)) bangs.filled = True bangs.fill_color = 'navy' bangs.color = 'navy' w.add(bangs) bangs = GPolygon() bangs.add_vertex((650, 96)) bangs.add_vertex((770, 96)) bangs.add_vertex((710, 150)) bangs.filled = True bangs.fill_color = 'navy' bangs.color = 'navy' w.add(bangs) bangs = GPolygon() bangs.add_vertex((740, 85)) bangs.add_vertex((825, 85)) bangs.add_vertex((780, 148)) bangs.filled = True bangs.fill_color = 'navy' bangs.color = 'navy' w.add(bangs) for i in range(80): # rightside side = GOval(40, 90) side.filled = True side.fill_color = 'navy' side.color = 'navy' w.add(side, 800 + i, 55 + i ** 1.2) for i in range(100): # leftside side = GOval(40, 40) side.filled = True side.fill_color = 'navy' side.color = 'navy' w.add(side, 500 - i, 60 + i ** 1.2) # right_ear right_ear = GOval(70, 130) right_ear.filled = True right_ear.fill_color = 'Steelblue' right_ear.color = 'blue' w.add(right_ear, 395, 250) right_inear = GOval(50, 80) right_inear.filled = True right_inear.fill_color = 'royalblue' right_inear.color = 'blue' w.add(right_inear, 410, 290) # left_ear left_ear = GOval(70, 130) left_ear.filled = True left_ear.fill_color = 'Steelblue' left_ear.color = 'blue' w.add(left_ear, 880, 260) left_inear = GOval(50, 80) left_inear.filled = True left_inear.fill_color = 'royalblue' left_inear.color = 'blue' w.add(left_inear, 890, 290) # tears t1 = GOval(50, 25) t1.filled = True t1.fill_color = 'aqua' w.add(t1, 525, 300) t1 = GOval(50, 25) t1.filled = True t1.fill_color = 'aqua' w.add(t1, 750, 300) #left tears for i in range(0, 10, 2): tear = GOval(15, 50) tear.filled = True tear.fill_color = 'aqua' tear.color = 'aqua' w.add(tear, 525 - 2* i, 300 + 10 * i) for i in range(0, 10, 2): tear = GOval(21, 40) tear.filled = True tear.fill_color = 'aqua' tear.color = 'aqua' w.add(tear, 515 + i, 400 + 10 * i) for i in range(0, 10, 2): tear = GOval(18, 40) tear.filled = True tear.fill_color = 'aqua' tear.color = 'aqua' w.add(tear, 525, 500 + 10 * i) #right tears for i in range(0, 10, 2): tear = GOval(5, 50) tear.filled = True tear.fill_color = 'aqua' tear.color = 'aqua' w.add(tear, 790 + 2 * i, 300 + 10 * i) for i in range(0, 10, 2): tear = GOval(11, 40) tear.filled = True tear.fill_color = 'aqua' tear.color = 'aqua' w.add(tear, 808 - i, 410 + 10 * i) #lines line1 = GLine(525, 175, 575, 185) w.add(line1) line2 = GLine(575,185, 625, 270) w.add(line2) line3 = GLine(710, 255, 760, 170) w.add(line3) line4 = GLine(651, 400, 651, 420) w.add(line4) line5 = GLine(630, 520, 660, 520) w.add(line5) # Illuminati tri = GPolygon() tri.add_vertex((150, 20)) tri.add_vertex((-20, 280)) tri.add_vertex((320, 280)) tri.filled = True tri.fill_color = 'green' w.add(tri) up_eye = GArc(200, 120, 0, 180) up_eye.filled = True up_eye.fill_color = 'darkgreen' w.add(up_eye, 50, 150) low_eye = GArc(200, 120, -12, -167) low_eye.filled = True low_eye.fill_color = 'darkgreen' low_eye.color = 'darkgreen' w.add(low_eye, 50, 145) eye_ball = GOval(55, 55) eye_ball.filled = True eye_ball.fill_color = 'black' w.add(eye_ball, 125, 150) py = GLabel('PYTHON') py.font = '-50' w.add(py, 20, 280) if __name__ == '__main__': main()
24.156109
114
0.579189
0
0
0
0
0
0
0
0
1,726
0.161505
7bb1307068ac9567a6b6b9039165f859f8bd8998
127
py
Python
tests/handlers/testhandlers/not_a_handler.py
bcurnow/magicband-reader
d8afa80648abc8954abd9c3cab8f6f6b9cb260ec
[ "Apache-2.0" ]
5
2021-01-12T02:53:07.000Z
2022-03-02T17:58:18.000Z
tests/handlers/testhandlers/not_a_handler.py
bcurnow/magicband-reader
d8afa80648abc8954abd9c3cab8f6f6b9cb260ec
[ "Apache-2.0" ]
null
null
null
tests/handlers/testhandlers/not_a_handler.py
bcurnow/magicband-reader
d8afa80648abc8954abd9c3cab8f6f6b9cb260ec
[ "Apache-2.0" ]
null
null
null
""" This module doesn't provide a register method and should be skipped. This ensures that the error handling logic works. """
63.5
126
0.76378
0
0
0
0
0
0
0
0
126
0.992126
7bb15b935b3d0af4caae284ba8b64031d24bf414
3,196
py
Python
ciri/modules/reddit.py
AmarnathCJD/Cirilla-Userbot
a580f2d3442ab7ebc4497aee7e381e6e220dbf93
[ "MIT" ]
null
null
null
ciri/modules/reddit.py
AmarnathCJD/Cirilla-Userbot
a580f2d3442ab7ebc4497aee7e381e6e220dbf93
[ "MIT" ]
null
null
null
ciri/modules/reddit.py
AmarnathCJD/Cirilla-Userbot
a580f2d3442ab7ebc4497aee7e381e6e220dbf93
[ "MIT" ]
2
2022-01-01T06:58:10.000Z
2022-01-12T15:59:38.000Z
import json import os import subprocess import requests from bs4 import BeautifulSoup from ciri import HelpStr from ciri.utils import ciri_cmd, eor @ciri_cmd(pattern="red(?:dit)? (.*)") async def reddit(e): url = e.pattern_match.group(1) if not url: return await e.edit("`No url provided?`") if not "reddit.com" in url: return await e.edit("`Invalid reddit url.`") headers = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36" } r = requests.get(url, headers=headers) if not r.status_code == 200: return await e.edit("`Invalid reddit url, returned 404.`") post_id = get_post_id(url) vid, aud, title = get_download_url(post_id, r) msg = await eor(e, f"`Downloading...`") file = download_files(aud, vid, title) await msg.delete() await e.client.send_file(e.chat_id, file, caption=f"`{title}`") def get_post_id(url: str) -> str: post_id = url[url.find("comments/") + 9 :] post_id = f"t3_{post_id[:post_id.find('/')]}" return post_id def get_download_url(post_id: str, data: bytes): soup = BeautifulSoup(data.content, "html.parser") required_js = soup.find("script", id="data") json_data = json.loads(required_js.text.replace("window.___r = ", "")[:-1]) title = json_data["posts"]["models"][post_id]["title"] title = title.replace(" ", "_") dash_url = json_data["posts"]["models"][post_id]["media"]["dashUrl"] height = json_data["posts"]["models"][post_id]["media"]["height"] if height == "1080": height = "480" dash_url = dash_url[: int(dash_url.find("DASH")) + 4] return f"{dash_url}_{height}.mp4", f"{dash_url}_audio.mp3", title def download_files(a, v, title="reddit"): with requests.get(a) as r: if r.status_code == 200: with open(f"{title}_aud.mp3", "wb") as f: f.write(r.content) else: with requests.get(a.split("DASH_audio.mp3")[0] + "audio") as r: if r.status_code == 200: with open(f"{title}_aud.mp3", "wb") as f: f.write(r.content) with requests.get(v) as r: if r.status_code == 200: with open(f"{title}_vid.mp4", "wb") as f: f.write(r.content) else: with requests.get(v.split(".mp4")[0]) as r: if r.status_code == 200: with open(f"{title}_vid.mp4", "wb") as f: f.write(r.content) subprocess.call( [ "ffmpeg", "-i", f"{title}_vid.mp4", "-i", f"{title}_aud.mp3", "-map", "0:v", "-map", "1:a", "-c:v", "copy", f"{title}.mp4", ] ) os.remove(f"{title}_vid.mp4") os.remove(f"{title}_aud.mp3") return f"{title}.mp4" HelpStr.update( { "reddit": { "red(ddit)": { "Description": "Downloads the audio and video from a reddit post.", "Usage": "red(ddit <url>)", }, } } )
30.730769
129
0.54005
0
0
0
0
799
0.25
761
0.23811
888
0.277847
7bb4c8f4351e98128f6ae2e0b66016892643437c
2,343
py
Python
.ipynb_checkpoints/visuals-checkpoint.py
Serenitea/DSND-Capstone-LoL
2a29132b5e513f9dde1b2afadbc9f28b00ae952d
[ "CNRI-Python" ]
null
null
null
.ipynb_checkpoints/visuals-checkpoint.py
Serenitea/DSND-Capstone-LoL
2a29132b5e513f9dde1b2afadbc9f28b00ae952d
[ "CNRI-Python" ]
null
null
null
.ipynb_checkpoints/visuals-checkpoint.py
Serenitea/DSND-Capstone-LoL
2a29132b5e513f9dde1b2afadbc9f28b00ae952d
[ "CNRI-Python" ]
null
null
null
import requests, json import numpy as np import importlib import pandas as pd import os import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline import pdb import warnings warnings.filterwarnings('ignore') def plot_barh(s_to_plot, title = '', xlabel = '', ylabel = '', color_palette = 'YlGnBu', pre_unit = '', suff_unit = '', round_place = '', xllim_set = 0, xulim_set = 1): y_labels = s_to_plot.index # Plot the figure. plt.figure(figsize=(12, 8)) ax = s_to_plot.plot(kind='barh') plt.barh(s_to_plot.index, s_to_plot, color = sns.color_palette(color_palette, len(s_to_plot.index))) ax.set_title(title) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.set_yticklabels(y_labels) #x_llim, x_ulim = ax.get_xlim() #x_ulim = xulim_set ax.set_xlim(xllim_set, xulim_set) # expand xlim to make labels easier to read plt.tight_layout() rects = ax.patches # For each bar: Place a label for rect in rects: # Get X and Y placement of label from rect. x_value = rect.get_width() y_value = rect.get_y() + rect.get_height() / 2 # Number of points between bar and label. Change to your liking. space = 5 # Vertical alignment for positive values ha = 'left' # If value of bar is negative: Place label left of bar if x_value < 0: # Invert space to place label to the left space *= -1 # Horizontally align label at right ha = 'right' label_string = "{:."+str(round_place)+"f}" # Use X value as label and format number with one decimal place #label = "{:.1f}".format(x_value) label = label_string.format(x_value) # Create annotation plt.annotate( pre_unit+label+suff_unit, # Use `label` as label (x_value, y_value), # Place label at end of the bar xytext=(space, 0), # Horizontally shift label by `space` textcoords="offset points", # Interpret `xytext` as offset in points va='center', # Vertically center label ha=ha) # Horizontally align label differently for # positive and negative values.
34.455882
82
0.600512
0
0
0
0
0
0
0
0
839
0.358088
7bb571ec75fa6c41fe74464726a90fe46a7374f0
4,373
py
Python
components/roode/__init__.py
mgernhard/Roode
50727e0f46d2bfc73559eb5fc73984ca87acb174
[ "Unlicense" ]
null
null
null
components/roode/__init__.py
mgernhard/Roode
50727e0f46d2bfc73559eb5fc73984ca87acb174
[ "Unlicense" ]
null
null
null
components/roode/__init__.py
mgernhard/Roode
50727e0f46d2bfc73559eb5fc73984ca87acb174
[ "Unlicense" ]
null
null
null
from re import I import esphome.codegen as cg import esphome.config_validation as cv from esphome.components import sensor from esphome.const import CONF_ID, STATE_CLASS_MEASUREMENT, UNIT_EMPTY, UNIT_METER # DEPENDENCIES = ["i2c"] AUTO_LOAD = ["sensor", "binary_sensor", "text_sensor"] MULTI_CONF = True CONF_ROODE_ID = "roode_id" roode_ns = cg.esphome_ns.namespace("roode") Roode = roode_ns.class_("Roode", cg.PollingComponent) CONF_ROI_HEIGHT = 'roi_height' CONF_ROI_WIDTH = 'roi_width' CONF_ADVISED_SENSOR_ORIENTATION = 'advised_sensor_orientation' CONF_CALIBRATION = "calibration" CONF_ROI_CALIBRATION = "roi_calibration" CONF_INVERT_DIRECTION = "invert_direction" CONF_MAX_THRESHOLD_PERCENTAGE = "max_threshold_percentage" CONF_MIN_THRESHOLD_PERCENTAGE = "min_threshold_percentage" CONF_MANUAL_THRESHOLD = "manual_threshold" CONF_THRESHOLD_PERCENTAGE = "threshold_percentage" CONF_RESTORE_VALUES = "restore_values" CONF_I2C_ADDRESS = "i2c_address" CONF_SENSOR_MODE = "sensor_mode" CONF_MANUAL = "manual" CONF_MANUAL_ACTIVE = "manual_active" CONF_CALIBRATION_ACTIVE = "calibration_active" CONF_TIMING_BUDGET = "timing_budget" TYPES = [ CONF_RESTORE_VALUES, CONF_INVERT_DIRECTION, CONF_ADVISED_SENSOR_ORIENTATION, CONF_I2C_ADDRESS ] CONFIG_SCHEMA = (cv.Schema({ cv.GenerateID(): cv.declare_id(Roode), cv.Optional(CONF_INVERT_DIRECTION, default='false'): cv.boolean, cv.Optional(CONF_RESTORE_VALUES, default='false'): cv.boolean, cv.Optional(CONF_ADVISED_SENSOR_ORIENTATION, default='true'): cv.boolean, cv.Optional(CONF_I2C_ADDRESS, default=0x29): cv.uint8_t, cv.Exclusive( CONF_CALIBRATION, "mode", f"Only one mode, {CONF_MANUAL} or {CONF_CALIBRATION} is usable"): cv.Schema({ cv.Optional(CONF_CALIBRATION_ACTIVE, default='true'): cv.boolean, cv.Optional(CONF_MAX_THRESHOLD_PERCENTAGE, default=85): cv.int_range(min=50, max=100), cv.Optional(CONF_MIN_THRESHOLD_PERCENTAGE, default=0): cv.int_range(min=0, max=100), cv.Optional(CONF_ROI_CALIBRATION, default='false'): cv.boolean, }), cv.Exclusive( CONF_MANUAL, "mode", f"Only one mode, {CONF_MANUAL} or {CONF_CALIBRATION} is usable"): cv.Schema({ cv.Optional(CONF_MANUAL_ACTIVE, default='true'): cv.boolean, cv.Optional(CONF_TIMING_BUDGET, default=10): cv.int_range(min=10, max=1000), cv.Inclusive( CONF_SENSOR_MODE, "manual_mode", f"{CONF_SENSOR_MODE}, {CONF_ROI_HEIGHT}, {CONF_ROI_WIDTH} and {CONF_MANUAL_THRESHOLD} must be used together", ): cv.int_range(min=-1, max=2), cv.Inclusive( CONF_ROI_HEIGHT, "manual_mode", f"{CONF_SENSOR_MODE}, {CONF_ROI_HEIGHT}, {CONF_ROI_WIDTH} and {CONF_MANUAL_THRESHOLD} must be used together", ): cv.int_range(min=4, max=16), cv.Inclusive( CONF_ROI_WIDTH, "manual_mode", f"{CONF_SENSOR_MODE}, {CONF_ROI_HEIGHT}, {CONF_ROI_WIDTH} and {CONF_MANUAL_THRESHOLD} must be used together", ): cv.int_range(min=4, max=16), cv.Inclusive( CONF_MANUAL_THRESHOLD, "manual_mode", f"{CONF_SENSOR_MODE}, {CONF_ROI_HEIGHT}, {CONF_ROI_WIDTH} and {CONF_MANUAL_THRESHOLD} must be used together", ): cv.int_range(min=40, max=4000), }), }).extend(cv.polling_component_schema("100ms"))) async def setup_conf(config, key, hub): if key in config: cg.add(getattr(hub, f"set_{key}")(config[key])) def setup_manual_mode(config, hub): manual = config[CONF_MANUAL] for key in manual: cg.add(getattr(hub, f"set_{key}")(manual[key])) def setup_calibration_mode(config, hub): calibration = config[CONF_CALIBRATION] for key in calibration: cg.add(getattr(hub, f"set_{key}")(calibration[key])) async def to_code(config): hub = cg.new_Pvariable(config[CONF_ID]) await cg.register_component(hub, config) cg.add_library("EEPROM", None) cg.add_library("Wire", None) cg.add_library("pololu", "1.3.0", "VL53L1X") for key in TYPES: await setup_conf(config, key, hub) if CONF_MANUAL in config: setup_manual_mode(config, hub) if CONF_CALIBRATION in config: setup_calibration_mode(config, hub)
35.266129
121
0.69426
0
0
0
0
0
0
562
0.128516
1,117
0.255431
7bb63dc88642b89c018c0dffd26e55f7b04e4fc6
7,767
py
Python
GUI/mainUI.py
nipunsampath/Folder-Maker
e52ace87a08f477e6c105a0e14f85b7886a71f8c
[ "MIT" ]
2
2019-04-18T14:37:05.000Z
2020-10-25T02:47:26.000Z
GUI/mainUI.py
nipunsampath/Folder-Maker
e52ace87a08f477e6c105a0e14f85b7886a71f8c
[ "MIT" ]
null
null
null
GUI/mainUI.py
nipunsampath/Folder-Maker
e52ace87a08f477e6c105a0e14f85b7886a71f8c
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'D:\Projects\Python\Folder Maker\GUI\main.ui' # # Created by: PyQt5 UI code generator 5.12.1 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(729, 384) MainWindow.setWindowFlags(QtCore.Qt.WindowCloseButtonHint | QtCore.Qt.WindowMinimizeButtonHint) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.folderPathLineEdit = QtWidgets.QLineEdit(self.centralwidget) self.folderPathLineEdit.setGeometry(QtCore.QRect(110, 20, 581, 22)) self.folderPathLineEdit.setObjectName("folderPathLineEdit") self.openFolderPath = QtWidgets.QPushButton(self.centralwidget) self.openFolderPath.setGeometry(QtCore.QRect(10, 17, 93, 28)) self.openFolderPath.setObjectName("openFolderPath") self.toolBox = QtWidgets.QToolBox(self.centralwidget) self.toolBox.setGeometry(QtCore.QRect(20, 70, 671, 271)) self.toolBox.setObjectName("toolBox") self.movies = QtWidgets.QWidget() self.movies.setGeometry(QtCore.QRect(0, 0, 671, 209)) self.movies.setObjectName("movies") self.addButton = QtWidgets.QPushButton(self.movies) self.addButton.setGeometry(QtCore.QRect(550, 30, 93, 28)) self.addButton.setObjectName("addButton") self.createMoviesButton = QtWidgets.QPushButton(self.movies) self.createMoviesButton.setGeometry(QtCore.QRect(550, 150, 93, 28)) self.createMoviesButton.setObjectName("createMoviesButton") self.removeButton = QtWidgets.QPushButton(self.movies) self.removeButton.setGeometry(QtCore.QRect(550, 110, 93, 28)) self.removeButton.setObjectName("removeButton") self.editButton = QtWidgets.QPushButton(self.movies) self.editButton.setGeometry(QtCore.QRect(550, 70, 93, 28)) self.editButton.setObjectName("editButton") self.listWidget = QtWidgets.QListWidget(self.movies) self.listWidget.setGeometry(QtCore.QRect(57, 5, 451, 191)) font = QtGui.QFont() font.setPointSize(12) self.listWidget.setFont(font) self.listWidget.setObjectName("listWidget") self.subsChecBox = QtWidgets.QCheckBox(self.movies) self.subsChecBox.setGeometry(QtCore.QRect(550, 0, 81, 20)) self.subsChecBox.setObjectName("subsChecBox") self.toolBox.addItem(self.movies, "") self.tvShow = QtWidgets.QWidget() self.tvShow.setGeometry(QtCore.QRect(0, 0, 671, 209)) self.tvShow.setObjectName("tvShow") self.seriesName = QtWidgets.QLineEdit(self.tvShow) self.seriesName.setGeometry(QtCore.QRect(230, 20, 241, 22)) self.seriesName.setObjectName("seriesName") self.label = QtWidgets.QLabel(self.tvShow) self.label.setGeometry(QtCore.QRect(140, 20, 81, 16)) self.label.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.label.setObjectName("label") self.label_2 = QtWidgets.QLabel(self.tvShow) self.label_2.setGeometry(QtCore.QRect(100, 60, 121, 20)) self.label_2.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.label_2.setObjectName("label_2") self.numberOfSeasons = QtWidgets.QLineEdit(self.tvShow) self.numberOfSeasons.setGeometry(QtCore.QRect(230, 60, 241, 22)) self.numberOfSeasons.setObjectName("numberOfSeasons") self.numberOfEpisodes = QtWidgets.QLineEdit(self.tvShow) self.numberOfEpisodes.setGeometry(QtCore.QRect(230, 100, 241, 22)) self.numberOfEpisodes.setObjectName("numberOfEpisodes") self.label_3 = QtWidgets.QLabel(self.tvShow) self.label_3.setGeometry(QtCore.QRect(100, 100, 121, 20)) self.label_3.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.label_3.setObjectName("label_3") self.label_4 = QtWidgets.QLabel(self.tvShow) self.label_4.setGeometry(QtCore.QRect(100, 140, 121, 20)) self.label_4.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.label_4.setObjectName("label_4") self.createSeries = QtWidgets.QPushButton(self.tvShow) self.createSeries.setGeometry(QtCore.QRect(530, 70, 93, 28)) self.createSeries.setObjectName("createSeries") self.groupBox = QtWidgets.QGroupBox(self.tvShow) self.groupBox.setGeometry(QtCore.QRect(230, 129, 241, 71)) self.groupBox.setTitle("") self.groupBox.setObjectName("groupBox") self.perEpisodeRb = QtWidgets.QRadioButton(self.groupBox) self.perEpisodeRb.setGeometry(QtCore.QRect(10, 10, 221, 20)) self.perEpisodeRb.setChecked(True) self.perEpisodeRb.setObjectName("perEpisodeRb") self.perSeasonRb = QtWidgets.QRadioButton(self.groupBox) self.perSeasonRb.setGeometry(QtCore.QRect(10, 40, 221, 20)) self.perSeasonRb.setObjectName("perSeasonRb") self.toolBox.addItem(self.tvShow, "") MainWindow.setCentralWidget(self.centralwidget) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.retranslateUi(MainWindow) self.toolBox.setCurrentIndex(0) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "Folder Maker")) self.openFolderPath.setText(_translate("MainWindow", "Folder Path")) self.addButton.setText(_translate("MainWindow", "Add ")) self.addButton.setShortcut(_translate("MainWindow", "A")) self.createMoviesButton.setText(_translate("MainWindow", "Create ")) self.createMoviesButton.setShortcut(_translate("MainWindow", "C")) self.removeButton.setText(_translate("MainWindow", "Remove")) self.removeButton.setShortcut(_translate("MainWindow", "R")) self.editButton.setText(_translate("MainWindow", "Edit")) self.editButton.setShortcut(_translate("MainWindow", "E")) self.subsChecBox.setText(_translate("MainWindow", "Subtitles")) self.toolBox.setItemText(self.toolBox.indexOf(self.movies), _translate("MainWindow", "Movies")) self.label.setText(_translate("MainWindow", "Series Name")) self.label_2.setText(_translate("MainWindow", "Number of Seasons")) self.label_3.setText(_translate("MainWindow", "Number of Episodes")) self.label_4.setText(_translate("MainWindow", "Mode")) self.createSeries.setText(_translate("MainWindow", "Create Series")) self.perEpisodeRb.setToolTip(_translate("MainWindow", "Creates sub directories for episodes inside a Season directory")) self.perEpisodeRb.setText(_translate("MainWindow", "Sub Directory Per Episode")) self.perSeasonRb.setToolTip(_translate("MainWindow", "Creates only Seasons directories and Subtitles directories inside them")) self.perSeasonRb.setText(_translate("MainWindow", "Directory Per Season Only")) self.toolBox.setItemText(self.toolBox.indexOf(self.tvShow), _translate("MainWindow", "TV Series")) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) MainWindow = QtWidgets.QMainWindow() ui = Ui_MainWindow() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_())
55.085106
135
0.709927
7,262
0.934981
0
0
0
0
0
0
1,175
0.151281
7bb80c3ecc1f81bebc7a34d9d8f2cc068b53480f
1,632
py
Python
LoanPandas/code.py
yogprabhu/ga-learner-dsmp-repo
eaf27f7598f767481b08be3999024fb56612a666
[ "MIT" ]
1
2019-05-01T18:24:49.000Z
2019-05-01T18:24:49.000Z
LoanPandas/code.py
yogprabhu/ga-learner-dsmp-repo
eaf27f7598f767481b08be3999024fb56612a666
[ "MIT" ]
null
null
null
LoanPandas/code.py
yogprabhu/ga-learner-dsmp-repo
eaf27f7598f767481b08be3999024fb56612a666
[ "MIT" ]
null
null
null
# -------------- # Import packages import numpy as np import pandas as pd from scipy.stats import mode # code starts here bank = pd.read_csv(path) categorical_var = bank.select_dtypes(include = 'object') print(categorical_var) numerical_var = bank.select_dtypes(include = 'number') print(numerical_var) # code ends here # -------------- # code starts here banks = bank.drop(columns='Loan_ID') print(banks.isnull().sum()) bank_mode = banks.mode() #print(bank_mode) banks = banks.fillna(0) print(banks.isna().sum()) #code ends here # -------------- # Code starts here avg_loan_amount = pd.pivot_table(data=banks, index=['Gender', 'Married', 'Self_Employed'],values='LoanAmount', aggfunc=np.mean) # code ends here # -------------- # code starts here loan_approved_se = banks[(banks['Self_Employed']=='Yes')&(banks['Loan_Status']=='Y')].shape[0] loan_approved_nse=banks[(banks['Self_Employed']=='No')&(banks['Loan_Status']=='Y')].shape[0] Loan_Status = 614 percentage_se = (loan_approved_se/Loan_Status)*100 percentage_nse = (loan_approved_nse/Loan_Status)*100 # code ends here # -------------- # code starts here banks.Loan_Amount_Term.iloc[0] loan_term = banks['Loan_Amount_Term'].apply(lambda x: int(x)/12) banks['Loan_Amount_Term']=banks['Loan_Amount_Term'].apply(lambda x: int(x)/12) big_loan_term= banks[banks['Loan_Amount_Term']>=25].shape[0] # code ends here # -------------- # code starts here columns_to_show = ['ApplicantIncome', 'Credit_History'] loan_groupby = banks.groupby(by='Loan_Status') loan_groupby = loan_groupby[columns_to_show] mean_values = loan_groupby.agg([np.mean]) # code ends here
22.666667
127
0.700368
0
0
0
0
0
0
0
0
591
0.362132
7bb9a05e4b4df3445a16a9d49bf23b734a000bdc
1,718
py
Python
test/espnet2/tts/feats_extract/test_energy.py
texpomru13/espnet
7ef005e832e2fb033f356c16f54e0f08762fb4b0
[ "Apache-2.0" ]
5,053
2017-12-13T06:21:41.000Z
2022-03-31T13:38:29.000Z
test/espnet2/tts/feats_extract/test_energy.py
texpomru13/espnet
7ef005e832e2fb033f356c16f54e0f08762fb4b0
[ "Apache-2.0" ]
3,666
2017-12-14T05:58:50.000Z
2022-03-31T22:11:49.000Z
test/espnet2/tts/feats_extract/test_energy.py
texpomru13/espnet
7ef005e832e2fb033f356c16f54e0f08762fb4b0
[ "Apache-2.0" ]
1,709
2017-12-13T01:02:42.000Z
2022-03-31T11:57:45.000Z
import pytest import torch from espnet2.tts.feats_extract.energy import Energy @pytest.mark.parametrize( "use_token_averaged_energy, reduction_factor", [(False, None), (True, 1), (True, 3)] ) def test_forward(use_token_averaged_energy, reduction_factor): layer = Energy( n_fft=128, hop_length=64, fs="16k", use_token_averaged_energy=use_token_averaged_energy, reduction_factor=reduction_factor, ) xs = torch.randn(2, 384) if not use_token_averaged_energy: es, elens = layer(xs, torch.LongTensor([384, 128])) assert es.shape[1] == max(elens) else: ds = torch.LongTensor([[3, 3, 1], [3, 0, 0]]) // reduction_factor dlens = torch.LongTensor([3, 1]) es, _ = layer( xs, torch.LongTensor([384, 128]), durations=ds, durations_lengths=dlens ) assert torch.isnan(es).sum() == 0 @pytest.mark.parametrize( "use_token_averaged_energy, reduction_factor", [(False, None), (True, 1), (True, 3)] ) def test_output_size(use_token_averaged_energy, reduction_factor): layer = Energy( n_fft=4, hop_length=1, fs="16k", use_token_averaged_energy=use_token_averaged_energy, reduction_factor=reduction_factor, ) print(layer.output_size()) @pytest.mark.parametrize( "use_token_averaged_energy, reduction_factor", [(False, None), (True, 1), (True, 3)] ) def test_get_parameters(use_token_averaged_energy, reduction_factor): layer = Energy( n_fft=4, hop_length=1, fs="16k", use_token_averaged_energy=use_token_averaged_energy, reduction_factor=reduction_factor, ) print(layer.get_parameters())
30.140351
88
0.661816
0
0
0
0
1,629
0.948196
0
0
150
0.087311
7bba3197cf6ebc84a1f3034725dd0f1b29fd1b82
4,699
py
Python
squad/merge.py
uwnlp/piqa
e18f2189c93965c94655d5cc943dcecdc2c1ea57
[ "Apache-2.0" ]
89
2018-08-25T07:59:07.000Z
2021-05-04T06:37:27.000Z
squad/merge.py
seominjoon/piqa
e18f2189c93965c94655d5cc943dcecdc2c1ea57
[ "Apache-2.0" ]
11
2018-09-28T17:33:27.000Z
2019-11-27T23:34:45.000Z
squad/merge.py
uwnlp/piqa
e18f2189c93965c94655d5cc943dcecdc2c1ea57
[ "Apache-2.0" ]
10
2018-09-19T06:48:06.000Z
2020-04-14T20:42:06.000Z
"""Official merge script for PI-SQuAD v0.1""" from __future__ import print_function import os import argparse import json import sys import shutil import scipy.sparse import scipy.sparse.linalg import numpy as np import numpy.linalg def get_q2c(dataset): q2c = {} for article in dataset: for para_idx, paragraph in enumerate(article['paragraphs']): cid = '%s_%d' % (article['title'], para_idx) for qa in paragraph['qas']: q2c[qa['id']] = cid return q2c def get_predictions(context_emb_path, question_emb_path, q2c, sparse=False, metric='ip', progress=False): context_emb_dir, context_emb_ext = os.path.splitext(context_emb_path) question_emb_dir, question_emb_ext = os.path.splitext(question_emb_path) if context_emb_ext == '.zip': print('Extracting %s to %s' % (context_emb_path, context_emb_dir)) shutil.unpack_archive(context_emb_path, context_emb_dir) if question_emb_ext == '.zip': print('Extracting %s to %s' % (question_emb_path, question_emb_dir)) shutil.unpack_archive(question_emb_path, question_emb_dir) if progress: from tqdm import tqdm else: tqdm = lambda x: x predictions = {} for id_, cid in tqdm(q2c.items()): q_emb_path = os.path.join(question_emb_dir, '%s.npz' % id_) c_emb_path = os.path.join(context_emb_dir, '%s.npz' % cid) c_json_path = os.path.join(context_emb_dir, '%s.json' % cid) if not os.path.exists(q_emb_path): print('Missing %s' % q_emb_path) continue if not os.path.exists(c_emb_path): print('Missing %s' % c_emb_path) continue if not os.path.exists(c_json_path): print('Missing %s' % c_json_path) continue load = scipy.sparse.load_npz if sparse else np.load q_emb = load(q_emb_path) # shape = [M, d], d is the embedding size. c_emb = load(c_emb_path) # shape = [N, d], d is the embedding size. with open(c_json_path, 'r') as fp: phrases = json.load(fp) if sparse: if metric == 'ip': sim = c_emb * q_emb.T m = sim.max(1) m = np.squeeze(np.array(m.todense()), 1) elif metric == 'l1': m = scipy.sparse.linalg.norm(c_emb - q_emb, ord=1, axis=1) elif metric == 'l2': m = scipy.sparse.linalg.norm(c_emb - q_emb, ord=2, axis=1) else: q_emb = q_emb['arr_0'] c_emb = c_emb['arr_0'] if metric == 'ip': sim = np.matmul(c_emb, q_emb.T) m = sim.max(1) elif metric == 'l1': m = numpy.linalg.norm(c_emb - q_emb, ord=1, axis=1) elif metric == 'l2': m = numpy.linalg.norm(c_emb - q_emb, ord=2, axis=1) argmax = m.argmax(0) predictions[id_] = phrases[argmax] if context_emb_ext == '.zip': shutil.rmtree(context_emb_dir) if question_emb_ext == '.zip': shutil.rmtree(question_emb_dir) return predictions if __name__ == '__main__': squad_expected_version = '1.1' parser = argparse.ArgumentParser(description='Official merge script for PI-SQuAD v0.1') parser.add_argument('data_path', help='Dataset file path') parser.add_argument('context_emb_dir', help='Context embedding directory') parser.add_argument('question_emb_dir', help='Question embedding directory') parser.add_argument('pred_path', help='Prediction json file path') parser.add_argument('--sparse', default=False, action='store_true', help='Whether the embeddings are scipy.sparse or pure numpy.') parser.add_argument('--metric', type=str, default='ip', help='ip|l1|l2 (inner product or L1 or L2 distance)') parser.add_argument('--progress', default=False, action='store_true', help='Show progress bar. Requires `tqdm`.') args = parser.parse_args() with open(args.data_path) as dataset_file: dataset_json = json.load(dataset_file) if dataset_json['version'] != squad_expected_version: print('Evaluation expects v-' + squad_expected_version + ', but got dataset with v-' + dataset_json['version'], file=sys.stderr) dataset = dataset_json['data'] q2c = get_q2c(dataset) predictions = get_predictions(args.context_emb_dir, args.question_emb_dir, q2c, sparse=args.sparse, metric=args.metric, progress=args.progress) with open(args.pred_path, 'w') as fp: json.dump(predictions, fp)
38.516393
117
0.613109
0
0
0
0
0
0
0
0
831
0.176846
7bba6288445870de13beac5ccea088e511b9306b
3,918
py
Python
src/passpredict/locations.py
samtx/pass-predictor
6577f75cd7d64bd3c12a9512880d4b29c2682b4c
[ "MIT" ]
null
null
null
src/passpredict/locations.py
samtx/pass-predictor
6577f75cd7d64bd3c12a9512880d4b29c2682b4c
[ "MIT" ]
null
null
null
src/passpredict/locations.py
samtx/pass-predictor
6577f75cd7d64bd3c12a9512880d4b29c2682b4c
[ "MIT" ]
null
null
null
from functools import cached_property from datetime import datetime from math import degrees, radians, sin, cos import numpy as np from orbit_predictor import coordinate_systems from .utils import get_timezone_from_latlon from .time import make_utc from ._time import datetime2mjd from .solar import sun_pos_mjd from ._rotations import elevation_at_rad try: from zoneinfo import ZoneInfo except ImportError: from backports.zoneinfo import ZoneInfo class Location: def __init__(self, name, latitude_deg, longitude_deg, elevation_m): """Location. Parameters ---------- latitude_deg : float Latitude in degrees. longitude_deg : float Longitude in degrees. elevation_m : float Elevation in meters. """ self.name = name self.latitude_deg = latitude_deg self.longitude_deg = longitude_deg self.latitude_rad = radians(latitude_deg) self.longitude_rad = radians(longitude_deg) self.elevation_m = elevation_m position_ecef = coordinate_systems.geodetic_to_ecef( self.latitude_rad, self.longitude_rad, elevation_m / 1000.) self.recef = np.array(position_ecef) def dict(self) -> dict: d = { 'name': self.name, 'lat': self.lat, 'lon': self.lon, 'h': self.h } return d @property def lat(self) -> float: return self.latitude_deg @property def lon(self) -> float: return self.longitude_deg @property def h(self) -> float: return self.elevation_m @cached_property def timezone(self) -> ZoneInfo: """ Find timezone """ return get_timezone_from_latlon(self.latitude_deg, self.longitude_deg) @property def tz(self) -> ZoneInfo: return self.timezone @cached_property def offset(self) -> float: """ Compute timezone offset in hours from UTC """ now = datetime.now(self.timezone) delta = now.utcoffset().total_seconds() / 3600 return delta @cached_property def _cached_elevation_calculation_data(self): """ Cache trig values used for rotating ECEF to SEZ topocentric coordinates """ sin_lat, sin_long = sin(self.latitude_rad), sin(self.longitude_rad) cos_lat, cos_long = cos(self.latitude_rad), cos(self.longitude_rad) return (cos_lat * cos_long, cos_lat * sin_long, sin_lat) def _sun_elevation_mjd(self, mjd: float) -> float: """ Computes elevation angle of sun relative to location. Returns degrees. """ sun_recef = sun_pos_mjd(mjd) coslatcoslon, coslatsinlon, sinlat = self._cached_elevation_calculation_data el = elevation_at_rad(coslatcoslon, coslatsinlon, sinlat, self.recef, sun_recef) return degrees(el) def sun_elevation(self, d: datetime) -> float: """ Computes elevation angle of sun relative to location. Returns degrees. """ d2 = make_utc(d) mjd = datetime2mjd(d2) return self._sun_elevation_mjd(mjd) def is_sunlit(self, dt: datetime) -> bool: """ Computes elevation angle of sun relative to location Returns True if elevation > -6 degrees """ el = self.sun_elevation(dt) return el > -6 def _is_sunlit_mjd(self, mjd: float) -> bool: """ Computes elevation angle of sun relative to location Returns True if elevation > -6 degrees """ el = self._sun_elevation_mjd(mjd) return el > -6 def __repr__(self): deg = u'\N{DEGREE SIGN}' s = '<Location ' if self.name: s += self.name + ' ' s += f'({self.latitude_deg}{deg} , {self.longitude_deg}{deg})' s += '>' return s
29.238806
88
0.619704
3,454
0.881572
0
0
1,049
0.267739
0
0
962
0.245533
7bbaeab63e6d9b82f2fcd904c0c52ba80c699e2f
4,559
py
Python
rl_baselines/evaluation/eval_post.py
anonymous-authors-2018/robotics-repo
385d1f3b49f8d414ab90f53c6f06b56614ae83ba
[ "MIT" ]
5
2019-08-21T22:57:21.000Z
2021-01-01T21:15:26.000Z
rl_baselines/evaluation/eval_post.py
BillChan226/POAR-SRL-4-Robot
a6a8052e105369656d34fffc4f7ca4475dcc38df
[ "MIT" ]
null
null
null
rl_baselines/evaluation/eval_post.py
BillChan226/POAR-SRL-4-Robot
a6a8052e105369656d34fffc4f7ca4475dcc38df
[ "MIT" ]
2
2019-11-26T11:41:12.000Z
2021-08-30T16:00:27.000Z
import subprocess import numpy as np import pickle import argparse import os from rl_baselines.student_eval import allPolicy from srl_zoo.utils import printRed, printGreen from rl_baselines.evaluation.cross_eval_utils import EnvsKwargs, loadConfigAndSetup, policyEval,createEnv def dict2array(tasks,data): res=[] for t in tasks: if(t=='sc'): max_reward=250 else: max_reward=1850 data[t][:,1:]=data[t][:,1:]/max_reward res.append(data[t]) res=np.array(res) return res def episodeEval(log_dir, tasks,num_timesteps=1000): for t in tasks: eval_args=['--log-dir', log_dir, '--num-timesteps', str(num_timesteps), '--num-cpu',str(5)] task_args=['--task',t] subprocess.call(['python', '-m', 'rl_baselines.cross_eval_utils']+eval_args+task_args) file_name=log_dir+'episode_eval.pkl' with open(file_name, 'rb') as f: eval_reward = pickle.load(f) #Trasfer the data from dict into a numpy array and save eval_reward=dict2array(tasks,eval_reward) file_name=log_dir+'episode_eval.npy' np.save(file_name, eval_reward) def policyCrossEval(log_dir,task,episode,model_path, num_timesteps=2000,num_cpu=1,seed=0): train_args, algo_name, algo_class, srl_model_path, env_kwargs = loadConfigAndSetup(log_dir) env_kwargs = EnvsKwargs(task, env_kwargs) OK = True if (not OK): # no latest model saved yet return None, False else: pass printGreen( "Evaluation from the model saved at: {}, with evaluation time steps: {}".format(model_path, num_timesteps)) log_dir, environment, algo_args = createEnv(log_dir, train_args, algo_name, algo_class, env_kwargs, num_cpu=num_cpu,seed=seed) reward = policyEval(environment, model_path, log_dir, algo_class, algo_args, num_timesteps, num_cpu) # Just a trick to save the episode number of the reward,but need a little bit more space to store reward = np.append(episode, reward) return reward, True def saveReward(log_dir,reward, task,save_name='episode_eval.pkl'): reward = reward.astype(float) file_name=log_dir+save_name #can be changed accordingly if(os.path.isfile(file_name)): with open(file_name, 'rb') as f: eval_reward= pickle.load(f) if (task in eval_reward.keys()): episodes = eval_reward[task][0] #The fisrt dimension of reward is the episode current_episode =reward[0] #Check if the latest episodes policy is already saved if (current_episode not in episodes): # # eval_reward[task]=np.append(eval_reward[task],[reward],axis=0) eval_reward[task][0].append(reward[0]) eval_reward[task][1].append(reward.tolist()) else: index = episodes.index(current_episode) eval_reward[task][1][index].extend(reward[1:]) with open(file_name, 'wb') as f: pickle.dump(eval_reward, f, pickle.HIGHEST_PROTOCOL) else:# The task is not in the file yet eval_reward[task]=([reward[0]],[reward.tolist()]) with open(file_name, 'wb') as f: pickle.dump(eval_reward, f, pickle.HIGHEST_PROTOCOL) else: #There is still not a episodes rewards evaluation registered eval_reward = {} eval_reward[task]=([reward[0]],[reward.tolist()]) with open(file_name, 'wb') as f: pickle.dump(eval_reward, f, pickle.HIGHEST_PROTOCOL) return if __name__ == '__main__': parser = argparse.ArgumentParser(description="Evaluation after training") parser.add_argument('--log-dir',type=str, default='' ,help='RL algo to use') parser.add_argument('--task-label', type=str, default='', help='task to evaluate') parser.add_argument('--episode', type=str, default='', help='evaluation for the policy saved at this episode') parser.add_argument('--policy-path', type=str, default='', help='policy path') parser.add_argument('--seed', type=int, default=0, help='policy path') args, unknown = parser.parse_known_args() reward, _ = policyCrossEval(args.log_dir, args.task_label, episode=args.episode, model_path=args.policy_path, num_timesteps=251,seed=args.seed) saveReward(args.log_dir, reward, args.task_label, save_name='episode_eval.pkl')
33.77037
130
0.645317
0
0
0
0
0
0
0
0
938
0.205747
7bbb8601ea2e62414cb9ab4019393f8898c93e86
6,304
py
Python
HLTriggerOffline/SUSYBSM/test/BSMTriggerCheck/runComparison.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
852
2015-01-11T21:03:51.000Z
2022-03-25T21:14:00.000Z
HLTriggerOffline/SUSYBSM/test/BSMTriggerCheck/runComparison.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
30,371
2015-01-02T00:14:40.000Z
2022-03-31T23:26:05.000Z
HLTriggerOffline/SUSYBSM/test/BSMTriggerCheck/runComparison.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
3,240
2015-01-02T05:53:18.000Z
2022-03-31T17:24:21.000Z
#! /usr/bin/env python import os os.system("make clean; make; \\rm *.log log.list") ############################################ #dir1='TriggerValidation_223_HLT' #dir2='TriggerValidation_224_HLT' #out='223_vs_224' #samples=['LM1'] #prefix1 = "histo_" #prefix2 = "histo_" #sufix1 = "_IDEALV11" #sufix2 = "_IDEALV11_v1" #label1 = "LM1_223" #label2 = "LM1_224" ############################################ #dir1='TriggerValidation_224_HLT' #dir2='TriggerValidation_300pre2_HLT' #out='224_vs_300pre2' #samples=['LM1'] #prefix1 = "histo_" #prefix2 = "histo_" #sufix1 = "_IDEALV11_v1" #sufix2 = "_IDEALV9" #label1 = "LM1_223" #label2 = "LM1_300pre2" ############################################ #dir1='TriggerValidation_224_HLT' #dir2='TriggerValidation_300pre6_HLT' #out='224_vs_300pre6' #samples=['LM1'] #prefix1 = "histo_" #prefix2 = "histo_" #sufix1 = "_IDEALV11_v1" #sufix2 = "_IDEAL_30x_v1" #label1 = "LM1_223" #label2 = "LM1_300pre6" ############################################ dir1='/afs/cern.ch/user/c/chiorbo/scratch0/SUSY_2007/TriggerValidation/TriggerValidation_DQM_312_commit_V00-06-00/src/HLTriggerOffline/SUSYBSM/test' dir2='/afs/cern.ch/user/c/chiorbo/scratch0/SUSY_2007/TriggerValidation/TriggerValidation_DQM_312_commit_V00-06-00/src/HLTriggerOffline/SUSYBSM/test' out='mc1_vs_mc2' samples=['_HLT'] prefix1 = "DQM_V0001" prefix2 = "DQM_V0001" sufix1 = "_R000000001" sufix2 = "_R000000001_2" label1 = "HLT" label2 = "HLT" ############################################ os.system('mkdir html/'+out) #create html index page os.system('cp html/template/index.html html/'+out+'/index.html') #create the cover page inputhtml = open('html/template/beginning.html') outputhtml = open('html/'+out+'/cover.html','w') for line in inputhtml: # remove .root if line.find('<!-- Here python will write the name of first release -->') != -1: outputhtml.write(dir1) # remove .root elif line.find('<!-- Here python will write the name of second release -->') != -1: outputhtml.write(dir2) else: outputhtml.write(line) continue inputhtml.close() outputhtml.close() #create the menu page os.system('cp html/template/menu_beginning.html html/'+out+'/menu.html') for sample in samples: tmp1 = open('tmp.html','w') tmp2 = open('html/template/menu_body.html') for line in tmp2: if line.find('thissample') != -1: newline = line.replace('thissample',sample) tmp1.write(newline) else: tmp1.write(line) continue tmp1.close() tmp2.close() os.system('more tmp.html >> html/'+out+'/menu.html') os.system('rm tmp.html') continue os.system('more html/template/menu_end.html >> html/'+out+'/menu.html') #run the code for each sample for sample in samples: file1 = dir1+'/'+prefix1+sample+sufix1+'.root' file2 = dir2+'/'+prefix2+sample+sufix2+'.root' outputfile = 'outputfile.root' #create html page for this sample inputhtml = open('html/template/comp_beginning.html') os.system('mkdir html/'+out+'/'+sample) outputhtml = open('html/'+out+'/'+sample+'/comparison.html','w') # add right version names in the html for line in inputhtml: if line.find('<!-- Here python will write the name of first release -->') != -1: outputhtml.write(dir1) elif line.find('<!-- Here python will write the name of second release -->') != -1: outputhtml.write(dir2) elif line.find('<!-- Here python will write the name of the model -->') != -1: outputhtml.write(sample) elif line.find('thissample') != -1: newline = line.replace('thissample',sample) outputhtml.write(newline) else: outputhtml.write(line) continue inputhtml.close() outputhtml.close() # run the comparison os.system('./triggerComparison.x -File1='+file1+' -File2='+file2+' -OutputFile='+outputfile+' -label1='+label1+' -label2='+label2) # for old names # os.system('./triggerComparison.x --oldL1names -File1='+file1+' -File2='+file2+' -OutputFile='+outputfile+' -label1='+label1+' -label2='+label2) os.system('mv HLTcomparison.log html/'+out+'/'+sample) os.system('mv L1comparison.log html/'+out+'/'+sample) # mv root file to the html directory os.system('mv '+outputfile+' html/'+out+'/'+sample) # add eff and residual pulls to the html os.system('more html/template/comp.html >> html/'+out+'/'+sample+'/comparison.html') # link the compatibility maps os.system('more compatibility.html >> html/'+out+'/'+sample+'/comparison.html') # create jpg files os.system("ls *eps > listeps.log") listeps = open("listeps.log") for epsfile in listeps: os.system("convert \""+epsfile[:-1]+"\" \""+epsfile[:-4]+"jpg\"") thefile = open('html/'+out+'/'+sample+'/comparison.html',"r+") # link HLT files #thefile.seek(0,2) #thefile.write('<tr><td><center><table>\n') #listeps.seek(0) #for epsfile in listeps: # if(epsfile.find('HLT') != -1): #this is a plot of a trigger path # tmp1 = open('html/template/addplot.html') # for line in tmp1: # newline = line.replace('triggerpath',epsfile[:-5]) # thefile.write(newline+'\n') # continue # continue # continue #thefile.write('</table></center></td>\n') # link L1 files #thefile.write('<td><center><table>\n') #listeps.seek(0) #for epsfile in listeps: # if(epsfile.find('L1') != -1): #this is a plot of a trigger path # if(epsfile.find('A_') != -1): #this is a plot of a trigger path # tmp1 = open('html/template/addplot.html') # for line in tmp1: # newline = line.replace('triggerpath',epsfile[:-5]) # thefile.write(newline+'\n') # continue # continue # continue #thefile.write('</table></center></td></tr>\n') #thefile.close() # write end of the comparison web page os.system('more html/template/end.html >> html/'+out+'/'+sample+'/comparison.html') # move all eps and jpg files in the proper directory os.system('mv *jpg html/'+out+'/'+sample+'/') os.system('mv *eps html/'+out+'/'+sample+'/') continue os.system('\\rm listeps.log')
34.075676
153
0.615641
0
0
0
0
0
0
0
0
4,176
0.662437
7bbbafe111995f8ba65d3c92e9ed6a6bf9e416f8
2,275
py
Python
log_in.py
lowerx/8March
02948996ca43dddbc2a7ffad882a21b59fbea4ed
[ "MIT" ]
null
null
null
log_in.py
lowerx/8March
02948996ca43dddbc2a7ffad882a21b59fbea4ed
[ "MIT" ]
null
null
null
log_in.py
lowerx/8March
02948996ca43dddbc2a7ffad882a21b59fbea4ed
[ "MIT" ]
null
null
null
from curses import echo from importlib.metadata import metadata import sqlite3 import sys import sqlalchemy import os from sqlalchemy import Column, Integer, String, ForeignKey, Table, MetaData, create_engine, engine_from_config from sqlalchemy.orm import relationship, backref, sessionmaker from sqlalchemy.ext.declarative import declarative_base from database import DataBase Base = declarative_base() # def db_connect(db_name): # """ # Performs database connection using database settings from settings.py. # Returns sqlalchemy engine instance # """ def create_table(db_name): engine = create_engine('sqlite:///' + str(db_name) + '.sqlite') An.metadata.create_all(engine) class An(Base): __tablename__ = 'test' id = Column(sqlalchemy.Integer, primary_key=True) username = Column('username', sqlalchemy.Text()) password = Column('password', sqlalchemy.Text()) page = Column('page', sqlalchemy.Integer) class Authentification(object): __engine = None def __init__(self, db, name, passphrase): engine = create_engine('sqlite:///' + str(name) + '.sqlite') if not sqlalchemy.inspect(engine).has_table(name): create_table('test') # self.__engine = db_connect(name) # self.__db.set_name(name) # self.__db.username = name # self.__db.password = passphrase # engine = db_connect(name) # create_table(engine) # self.Session = sessionmaker(bind=engine) # session = self.Session() # try: # session.add(self.__db) # session.commit() # except: # session.rollback() # raise # finally: # session.close() def new_session(self): engine = db_connect(name) create_table(engine) self.Session = sessionmaker(bind=engine) session = self.Session() try: result = session.query(An) for item in result: print(item) session.commit() except: session.rollback() raise finally: session.close() name = "test" db = DataBase(name) passphrase = "test" AuthentificationPros = Authentification(db, name, passphrase)
28.4375
110
0.633407
1,449
0.636923
0
0
0
0
0
0
620
0.272527
7bbbb84b2ea6ce8e2867ca8c352a6bb6c21ce89f
1,602
py
Python
mecc/views.py
unistra/eva
9f7bd8c44edbca05eb45b36cb5b8e658e53bc3c0
[ "Apache-2.0" ]
null
null
null
mecc/views.py
unistra/eva
9f7bd8c44edbca05eb45b36cb5b8e658e53bc3c0
[ "Apache-2.0" ]
3
2021-03-19T10:36:10.000Z
2021-09-08T01:37:47.000Z
mecc/views.py
unistra/eva
9f7bd8c44edbca05eb45b36cb5b8e658e53bc3c0
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from django_cas.decorators import login_required from django.core.exceptions import ObjectDoesNotExist from django.shortcuts import render, redirect from mecc.apps.years.models import UniversityYear @login_required def home(request): """ root of all evil: dispatch according to user profile """ try: target_year = UniversityYear.objects.get(is_target_year=True) request.session['current_year'] = target_year.label_year request.session['current_code_year'] = target_year.code_year except ObjectDoesNotExist: pass for e in request.user.groups.all(): if e.name == "VP": return redirect('dashboards:general') if e.name == "DES1": return redirect('training:list_all') for e in request.user.meccuser.profile.all(): if e.code == "RESPFORM" and e.year == request.session['current_code_year']: return redirect('training:list_resp') if e.code == 'REFAPP': return redirect('training:list', cmp=e.cmp) if e.code == 'DIRETU': return redirect('training:list', cmp=e.cmp) if e.code == "GESCOL": return redirect('training:list', cmp=e.cmp) if e.code in ['DIRCOMP', 'RAC']: return redirect('dashboards:institute', code=e.cmp) if e.code == "ECI": return redirect('training:list_all_meccs') if e.code == "RESPENS" and e.year == request.session['current_code_year']: return redirect('training:my_teachings') return render(request, 'base.html')
36.409091
83
0.637953
0
0
0
0
1,374
0.857678
0
0
423
0.264045
7bbbe09edfcf3321edef1198ab48f96f54dee63c
2,695
py
Python
src/OTLMOW/OTLModel/Datatypes/KlNetwerklinkMediumtype.py
davidvlaminck/OTLClassPython
71330afeb37c3ea6d9981f521ff8f4a3f8b946fc
[ "MIT" ]
2
2022-02-01T08:58:11.000Z
2022-02-08T13:35:17.000Z
src/OTLMOW/OTLModel/Datatypes/KlNetwerklinkMediumtype.py
davidvlaminck/OTLMOW
71330afeb37c3ea6d9981f521ff8f4a3f8b946fc
[ "MIT" ]
null
null
null
src/OTLMOW/OTLModel/Datatypes/KlNetwerklinkMediumtype.py
davidvlaminck/OTLMOW
71330afeb37c3ea6d9981f521ff8f4a3f8b946fc
[ "MIT" ]
null
null
null
# coding=utf-8 from OTLMOW.OTLModel.Datatypes.KeuzelijstField import KeuzelijstField from OTLMOW.OTLModel.Datatypes.KeuzelijstWaarde import KeuzelijstWaarde # Generated with OTLEnumerationCreator. To modify: extend, do not edit class KlNetwerklinkMediumtype(KeuzelijstField): """Mogelijke waarden voor het type drager waarlangs data door de link getransporteerd wordt.""" naam = 'KlNetwerklinkMediumtype' label = 'Netwerklink mediumtype' objectUri = 'https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#KlNetwerklinkMediumtype' definition = 'Mogelijke waarden voor het type drager waarlangs data door de link getransporteerd wordt.' codelist = 'https://wegenenverkeer.data.vlaanderen.be/id/conceptscheme/KlNetwerklinkMediumtype' options = { 'andere': KeuzelijstWaarde(invulwaarde='andere', label='andere', definitie='De link tussen de netwerkpoorten wordt gerealiseerd via een andere dan een optische, UTP, DSL of transportnetwerk verbinding.', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlNetwerklinkMediumtype/andere'), 'dsl': KeuzelijstWaarde(invulwaarde='dsl', label='DSL', definitie='De link tussen de netwerkpoorten wordt gerealiseerd via een DSL verbinding.', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlNetwerklinkMediumtype/dsl'), 'optisch': KeuzelijstWaarde(invulwaarde='optisch', label='optisch', definitie='De link tussen de netwerkpoorten wordt gerealiseerd via een glasvezelkabel.', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlNetwerklinkMediumtype/optisch'), 'transportnetwerk': KeuzelijstWaarde(invulwaarde='transportnetwerk', label='transportnetwerk', definitie='De link tussen de netwerkpoorten wordt gerealiseerd via het optisch transportnetwerk.', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlNetwerklinkMediumtype/transportnetwerk'), 'utp': KeuzelijstWaarde(invulwaarde='utp', label='UTP', definitie='De link tussen de netwerkpoorten wordt gerealiseerd via een UTP kabel.', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlNetwerklinkMediumtype/utp') }
72.837838
173
0.634879
2,463
0.913915
0
0
0
0
0
0
1,488
0.552134
7bbde3e95bb2349d1613a331043db076b94f2cfe
1,617
py
Python
src/utgardtests/filewriter/statusprocessor.py
ess-dmsc/utgard-test-utils
27e244d06a681e09a10584dc6b93e5eaf767a8be
[ "BSD-2-Clause" ]
null
null
null
src/utgardtests/filewriter/statusprocessor.py
ess-dmsc/utgard-test-utils
27e244d06a681e09a10584dc6b93e5eaf767a8be
[ "BSD-2-Clause" ]
null
null
null
src/utgardtests/filewriter/statusprocessor.py
ess-dmsc/utgard-test-utils
27e244d06a681e09a10584dc6b93e5eaf767a8be
[ "BSD-2-Clause" ]
null
null
null
import logging import threading import time class StatusProcessor: MAX_NUM_MESSAGES_PER_UPDATE = 10 GET_MESSAGES_TIMEOUT_S = 0.5 LIVENESS_TIMEOUT_S = 5 def __init__( self, status_consumer, msg_processor, logger=logging.getLogger(__name__), time_function=time.time, ): self._consumer = status_consumer self._msg_processor = msg_processor self._logger = logger self._time_function = time_function self._is_writing = False self._is_writing_lock = threading.Lock() def start(self): self._consumer.start() def update_status(self): self._get_and_process_messages() self._update_running_status() def _get_and_process_messages(self): msgs = self._consumer.get_messages( self.MAX_NUM_MESSAGES_PER_UPDATE, self.GET_MESSAGES_TIMEOUT_S ) for msg in msgs: self._msg_processor.process_msg(msg) def _update_running_status(self): ts = self._msg_processor.get_latest_timestamp() if ts is None: return ct = self._time_function() with self._is_writing_lock: self._is_writing = (ct - ts) <= self.LIVENESS_TIMEOUT_S def is_writing(self): with self._is_writing_lock: status = self._is_writing return status def stop(self): self._consumer.stop() def get_metrics(self): if self.is_writing(): raise RuntimeError("File writer is still running") else: return self._msg_processor.get_metrics()
26.508197
73
0.641311
1,570
0.970934
0
0
0
0
0
0
30
0.018553
7bbdf574388c84658ffc5b1e989b4bad6ddb075e
9,045
py
Python
befh/exchanges/okex_spot.py
philsong/BitcoinExchangeFH
3c45d4be2ea2a258f132d982f62f69d649e0b083
[ "Apache-2.0" ]
32
2017-12-15T07:30:11.000Z
2020-07-16T10:15:18.000Z
befh/exchanges/okex_spot.py
bijiasuo/BitcoinExchangeFH
9aa7b790cf74cf9fe48662147c30fc05e045e9ed
[ "Apache-2.0" ]
null
null
null
befh/exchanges/okex_spot.py
bijiasuo/BitcoinExchangeFH
9aa7b790cf74cf9fe48662147c30fc05e045e9ed
[ "Apache-2.0" ]
20
2017-11-09T15:28:39.000Z
2019-12-10T01:02:57.000Z
from befh.ws_api_socket import WebSocketApiClient from befh.market_data import L2Depth, Trade from befh.exchanges.gateway import ExchangeGateway from befh.instrument import Instrument from befh.util import Logger from befh.clients.sql_template import SqlClientTemplate import time import threading import json from functools import partial from datetime import datetime class ExchGwApiOkexSpotWs(WebSocketApiClient): """ Exchange socket """ def __init__(self): """ Constructor """ WebSocketApiClient.__init__(self, 'ExchGwOkexSpot') @classmethod def get_timestamp_offset(cls): return 1000 @classmethod def get_order_book_timestamp_field_name(cls): return 'timestamp' @classmethod def get_bids_field_name(cls): return 'bids' @classmethod def get_asks_field_name(cls): return 'asks' @classmethod def get_link(cls): return 'wss://real.okex.com:10441/websocket' @classmethod def get_order_book_subscription_string(cls, instmt): return json.dumps({"event":"addChannel", "channel": instmt.get_order_book_channel_id()}) @classmethod def get_trades_subscription_string(cls, instmt): return json.dumps({"event":"addChannel", "channel": instmt.get_trades_channel_id()}) @classmethod def parse_l2_depth(cls, instmt, raw): """ Parse raw data to L2 depth :param instmt: Instrument :param raw: Raw data in JSON """ # l2_depth = instmt.get_l2_depth() l2_depth = L2Depth() keys = list(raw.keys()) if cls.get_order_book_timestamp_field_name() in keys and \ cls.get_bids_field_name() in keys and \ cls.get_asks_field_name() in keys: # Date time timestamp = float(raw[cls.get_order_book_timestamp_field_name()])/cls.get_timestamp_offset() l2_depth.date_time = datetime.utcfromtimestamp(timestamp).strftime("%Y%m%d %H:%M:%S.%f") # Bids bids = raw[cls.get_bids_field_name()] bids = sorted(bids, key=lambda x: x[0], reverse=True) max_bid_len = min(len(bids), 5) for i in range(0, max_bid_len): l2_depth.bids[i].price = float(bids[i][0]) if type(bids[i][0]) != float else bids[i][0] l2_depth.bids[i].volume = float(bids[i][1]) if type(bids[i][1]) != float else bids[i][1] # Asks asks = raw[cls.get_asks_field_name()] asks = sorted(asks, key=lambda x: x[0]) max_ask_len = min(len(asks), 5) for i in range(0, max_ask_len): l2_depth.asks[i].price = float(asks[i][0]) if type(asks[i][0]) != float else asks[i][0] l2_depth.asks[i].volume = float(asks[i][1]) if type(asks[i][1]) != float else asks[i][1] else: raise Exception('Does not contain order book keys in instmt %s-%s.\nOriginal:\n%s' % \ (instmt.get_exchange_name(), instmt.get_instmt_name(), \ raw)) return l2_depth @classmethod def parse_trade(cls, instmt, raw): """ :param instmt: Instrument :param raw: Raw data in JSON :return: """ trade = Trade() trade_id = raw[0] trade_price = float(raw[1]) trade_volume = float(raw[2]) date_time = raw[3] trade_side = raw[4] # trade.date_time = date_time trade.trade_id = str(trade_id) trade.trade_price = trade_price trade.trade_volume = trade_volume trade.trade_side = Trade.parse_side(trade_side) return trade class ExchGwOkexSpot(ExchangeGateway): """ Exchange gateway """ def __init__(self, db_clients): """ Constructor :param db_client: Database client """ ExchangeGateway.__init__(self, ExchGwApiOkexSpotWs(), db_clients) @classmethod def get_exchange_name(cls): """ Get exchange name :return: Exchange name string """ return 'Okex' def on_open_handler(self, instmt, ws): """ Socket on open handler :param instmt: Instrument :param ws: Web socket """ Logger.info(self.__class__.__name__, "Instrument %s is subscribed in channel %s" % \ (instmt.get_instmt_code(), instmt.get_exchange_name())) if not instmt.get_subscribed(): instmt_code_split = instmt.get_instmt_code().split('_') if len(instmt_code_split) == 2: # Future instruments instmt.set_order_book_channel_id("ok_sub_spot_%s_%s_depth_5" % \ (instmt_code_split[0].lower(), instmt_code_split[1].lower())) instmt.set_trades_channel_id("ok_sub_spot_%s_%s_deals" % \ (instmt_code_split[0].lower(), instmt_code_split[1].lower())) else: # Spot instruments instmt.set_order_book_channel_id("ok_sub_spot_%s_depth_5" % instmt.get_instmt_code().lower()) instmt.set_trades_channel_id("ok_sub_spot_%s_deals" % instmt.get_instmt_code().lower()) ws.send(self.api_socket.get_order_book_subscription_string(instmt)) # ws.send(self.api_socket.get_trades_subscription_string(instmt)) instmt.set_subscribed(True) def on_close_handler(self, instmt, ws): """ Socket on close handler :param instmt: Instrument :param ws: Web socket """ Logger.info(self.__class__.__name__, "Instrument %s is unsubscribed in channel %s" % \ (instmt.get_instmt_code(), instmt.get_exchange_name())) instmt.set_subscribed(False) def on_message_handler(self, instmt, messages): """ Incoming message handler :param instmt: Instrument :param message: Message """ for message in messages: keys = message.keys() # print(keys) if 'channel' in keys: if 'data' in keys: if message['channel'] == instmt.get_order_book_channel_id(): data = message['data'] l2_depth = self.api_socket.parse_l2_depth(instmt, data) if l2_depth is not None: # Insert only if the first 5 levels are different # if l2_depth is not None and instmt.get_l2_depth().is_diff(instmt.get_prev_l2_depth()): instmt.set_prev_l2_depth(instmt.get_l2_depth()) instmt.set_l2_depth(l2_depth) instmt.incr_order_book_id() self.insert_order_book(instmt) elif message['channel'] == instmt.get_trades_channel_id(): for trade_raw in message['data']: trade = self.api_socket.parse_trade(instmt, trade_raw) if trade.trade_id != instmt.get_exch_trade_id(): instmt.incr_trade_id() instmt.set_exch_trade_id(trade.trade_id) self.insert_trade(instmt, trade) elif 'success' in keys: Logger.info(self.__class__.__name__, "Subscription to channel %s is %s" \ % (message['channel'], message['success'])) else: Logger.info(self.__class__.__name__, ' - ' + json.dumps(message)) def start(self, instmt): """ Start the exchange gateway :param instmt: Instrument :return List of threads """ instmt.set_prev_l2_depth(L2Depth(20)) instmt.set_l2_depth(L2Depth(20)) instmt.set_instmt_snapshot_table_name(self.get_instmt_snapshot_table_name(instmt.get_exchange_name(), instmt.get_instmt_name())) self.init_instmt_snapshot_table(instmt) return [self.api_socket.connect(self.api_socket.get_link(), on_message_handler=partial(self.on_message_handler, instmt), on_open_handler=partial(self.on_open_handler, instmt), on_close_handler=partial(self.on_close_handler, instmt))] if __name__ == '__main__': exchange_name = 'Okex' instmt_name = 'BCHBTC' instmt_code = 'BCH_BTC' instmt = Instrument(exchange_name, instmt_name, instmt_code) db_client = SqlClientTemplate() Logger.init_log() exch = ExchGwOkexSpot([db_client]) td = exch.start(instmt)
38.326271
116
0.570591
8,364
0.92471
0
0
3,269
0.361415
0
0
1,825
0.201769
7bbe575d89df5cb9077767131f1bcff71b4ea2bc
191
py
Python
cloudflare_ddns/__init__.py
joshuaavalon/cloudflare-ddns
9a79a73dc6f723d2bd9afd26289a9c990744f4e7
[ "Apache-2.0" ]
1
2019-05-16T15:25:22.000Z
2019-05-16T15:25:22.000Z
cloudflare_ddns/__init__.py
joshuaavalon/cloudflare-ddns
9a79a73dc6f723d2bd9afd26289a9c990744f4e7
[ "Apache-2.0" ]
null
null
null
cloudflare_ddns/__init__.py
joshuaavalon/cloudflare-ddns
9a79a73dc6f723d2bd9afd26289a9c990744f4e7
[ "Apache-2.0" ]
1
2019-06-17T15:22:29.000Z
2019-06-17T15:22:29.000Z
from cloudflare_ddns.configuration import Configuration, SiteConfiguration from cloudflare_ddns.ddns import CloudflareDDNS __all__ = ["CloudflareDDNS", "Configuration", "SiteConfiguration"]
38.2
74
0.848168
0
0
0
0
0
0
0
0
50
0.26178
7bbe5cef3d1aeca66fb6ca826edab503eb8c860b
587
py
Python
hardhat/recipes/python/twisted.py
stangelandcl/hardhat
1ad0c5dec16728c0243023acb9594f435ef18f9c
[ "MIT" ]
null
null
null
hardhat/recipes/python/twisted.py
stangelandcl/hardhat
1ad0c5dec16728c0243023acb9594f435ef18f9c
[ "MIT" ]
null
null
null
hardhat/recipes/python/twisted.py
stangelandcl/hardhat
1ad0c5dec16728c0243023acb9594f435ef18f9c
[ "MIT" ]
null
null
null
from .base import PipBaseRecipe class TwistedRecipe(PipBaseRecipe): def __init__(self, *args, **kwargs): super(TwistedRecipe, self).__init__(*args, **kwargs) self.sha256 = 'a4cc164a781859c74de47f17f0e85f4b' \ 'ce8a3321a9d0892c015c8f80c4158ad9' self.pythons = ['python3'] self.pydepends = ['Automat', 'constantly', 'hyperlink', 'incremental', 'zope.interface'] self.name = 'twisted' self.version = '18.4.0'
32.611111
60
0.524702
552
0.940375
0
0
0
0
0
0
155
0.264055
7bbf00877f721b0c24c4e63d13a17b9fddb98274
250
py
Python
EXC/CW1/task3/combiner.py
easyCZ/UoE-Projects
7651c8caf329c4f7b4562eba441bfc24124cfcfd
[ "BSD-2-Clause" ]
null
null
null
EXC/CW1/task3/combiner.py
easyCZ/UoE-Projects
7651c8caf329c4f7b4562eba441bfc24124cfcfd
[ "BSD-2-Clause" ]
1
2022-02-23T07:34:53.000Z
2022-02-23T07:34:53.000Z
EXC/CW1/task3/combiner.py
easyCZ/UoE-Projects
7651c8caf329c4f7b4562eba441bfc24124cfcfd
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/python # combiner.py import sys word_count = 0 line_count = 0 for line in sys.stdin: words, lines = line.strip().split('\t') word_count += int(words) line_count += int(lines) print("{0}\t{1}".format(word_count, line_count))
17.857143
48
0.66
0
0
0
0
0
0
0
0
44
0.176
7bbf1685508e5466a589c9ca9ef370e0a3b9611c
1,376
py
Python
tests/exploratory/user_data/radish/steps.py
tuxrosi/radish
b21fa751f8dfc4309451476151c810b44975babb
[ "MIT" ]
null
null
null
tests/exploratory/user_data/radish/steps.py
tuxrosi/radish
b21fa751f8dfc4309451476151c810b44975babb
[ "MIT" ]
null
null
null
tests/exploratory/user_data/radish/steps.py
tuxrosi/radish
b21fa751f8dfc4309451476151c810b44975babb
[ "MIT" ]
null
null
null
import re from radish.stepregistry import step from radish import when, then from radish.terrain import world @step(re.compile("I have the number in user data as (.+)")) def have_number(step, input_variable): if world.config.user_data: if input_variable in world.config.user_data: step.context.numbers.append(int(world.config.user_data[input_variable])) else: msg = "Variable [{0}] is not in the user data (-u/--user-data) specified on the command-line." assert False, msg.format(input_variable) else: assert ( False ), "There is no user data (-u/--user-data) specified on the command-line." @when("I sum them") def sum_numbers(step): step.context.result = sum(step.context.numbers) @then(re.compile("I expect the result to be the value in user data as (.+)")) def expect_result(step, result_variable): if world.config.user_data: if result_variable in world.config.user_data: assert step.context.result == int(world.config.user_data[result_variable]) else: msg = "Variable [{0}] is not in the user data (-u/--user-data) specified on the command-line." assert False, msg.format(input_variable) else: assert ( False ), "There is no user data (-u/--user-data) specified on the command-line."
35.282051
106
0.652616
0
0
0
0
1,256
0.912791
0
0
428
0.311047
7bbf1d84d1d1e722a857754d78ceb86118a7eadb
3,462
py
Python
django/core/views.py
andreyvpng/askme
65139c347a6b80f0a660ca24d6dd864e4531903a
[ "Apache-2.0" ]
2
2018-10-29T09:37:47.000Z
2019-11-28T14:11:12.000Z
django/core/views.py
andreyvpng/askme
65139c347a6b80f0a660ca24d6dd864e4531903a
[ "Apache-2.0" ]
null
null
null
django/core/views.py
andreyvpng/askme
65139c347a6b80f0a660ca24d6dd864e4531903a
[ "Apache-2.0" ]
2
2018-09-18T14:09:46.000Z
2019-11-28T14:11:14.000Z
from django.contrib.auth import get_user_model from django.contrib.auth.mixins import LoginRequiredMixin from django.core.exceptions import ObjectDoesNotExist, PermissionDenied from django.http.response import HttpResponseBadRequest, HttpResponseRedirect from django.urls import reverse_lazy from django.urls.base import reverse from django.views.generic import CreateView, DeleteView, DetailView, View from .forms import AnswerForm, QuestionForm from .models import Answer, Like, Question User = get_user_model() class AnswerDetailView(DetailView): queryset = Answer.objects.all_with_question() class AnswerCreateView(LoginRequiredMixin, CreateView): model = Answer form_class = AnswerForm def form_valid(self, form): self.object = form.save(commit=False) self.object.question = self.get_question() if self.object.question.asked_to != self.request.user: return HttpResponseBadRequest() self.object.save() return super().form_valid(form) def get_question(self): return Question.objects.get(id=self.kwargs['pk']) class AnswerDeleteView(LoginRequiredMixin, DeleteView): model = Answer success_url = reverse_lazy('user:my-profile') def dispatch(self, *args, **kwargs): answer = self.get_object() if answer.question.asked_to != self.request.user: raise PermissionDenied return super().dispatch(*args, **kwargs) class PrivateQuestionDetailView(DetailView): model = Question def dispatch(self, *args, **kwargs): question = self.get_object() if question.asked_to != self.request.user: raise PermissionDenied try: return reverse(question.answer.get_absolute_url()) except ObjectDoesNotExist: pass return super().dispatch(*args, **kwargs) def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) answer_form = AnswerForm() ctx.update({'answer_form': answer_form}) return ctx class QuestionCreateView(LoginRequiredMixin, CreateView): model = Question form_class = QuestionForm def form_valid(self, form): self.object = form.save(commit=False) self.object.asked_by = self.request.user self.object.asked_to = self.get_user() self.object.save() return super().form_valid(form) def get_success_url(self): return reverse('user:profile', kwargs={ 'pk': self.get_user().id }) def get_user(self): return User.objects.get(id=self.kwargs['pk']) class QuestionDeleteView(LoginRequiredMixin, DeleteView): model = Question success_url = reverse_lazy('user:inbox') def dispatch(self, *args, **kwargs): question = self.get_object() if question.asked_to != self.request.user: raise PermissionDenied return super().dispatch(*args, **kwargs) class LikeView(LoginRequiredMixin, View): def post(self, request, pk): answer = Answer.objects.get(id=pk) like = Like.objects.filter(answer=answer, liked_by=request.user) if like: like.delete() else: like = Like.objects.create(answer=answer, liked_by=request.user) like.save() return HttpResponseRedirect(request.META.get('HTTP_REFERER'))
27.696
77
0.662334
2,925
0.844887
0
0
0
0
0
0
82
0.023686
7bc0b829008737def4ec98f701aadecbf19f6fdd
336
py
Python
setup.py
lepture/pydouban
5b67c9f6a206a2b21539fc28b3b8658947ae1904
[ "BSD-3-Clause" ]
1
2019-04-14T19:58:43.000Z
2019-04-14T19:58:43.000Z
setup.py
lepture/pydouban
5b67c9f6a206a2b21539fc28b3b8658947ae1904
[ "BSD-3-Clause" ]
null
null
null
setup.py
lepture/pydouban
5b67c9f6a206a2b21539fc28b3b8658947ae1904
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python from distutils.core import setup setup( name = 'pydouban', version = '1.0.0', description = 'Lightweight Python Douban API Library', author = 'Marvour', author_email = '[email protected]', license = 'BSD License', url = 'http://i.shiao.org/a/pydouban', packages = ['pydouban'], )
22.4
58
0.630952
0
0
0
0
0
0
0
0
159
0.473214
7bc111fc110f0ab3862581da0b6b979e7a706d1e
3,234
py
Python
drowsiness_detector.py
zhww-107/drowsiness_detector
855995e1da36ffc0ec1fda7df8ea1aafc35c416d
[ "BSD-2-Clause" ]
1
2020-05-12T12:31:51.000Z
2020-05-12T12:31:51.000Z
drowsiness_detector.py
zhww-107/drowsiness_detector
855995e1da36ffc0ec1fda7df8ea1aafc35c416d
[ "BSD-2-Clause" ]
null
null
null
drowsiness_detector.py
zhww-107/drowsiness_detector
855995e1da36ffc0ec1fda7df8ea1aafc35c416d
[ "BSD-2-Clause" ]
null
null
null
from imutils import face_utils from scipy.spatial import distance import cv2 import dlib import imutils import pygame import time # Initializing the alert sound pygame.mixer.init() alert_sound = pygame.mixer.Sound("alert_sound.wav") default_volume = 0.2 # Eye-Aspect-Ratio data EAR_threshhold = 0.17 # One valid frame is counted when EAR is lower than this value frame_count = 0 # Number of frames when EAR is lower than EAR_threshhold EAR_total_frame = 25 # Having frame_count larger than this value is considered drowsiness # Play the alarm in a given volume def alert(volume): alert_sound.set_volume(volume) alert_sound.play() # Given an eye landmark, compute its eye_aspect_ratio def eye_aspect_ratio(eye): v1 = distance.euclidean(eye[1], eye[5]) v2 = distance.euclidean(eye[2], eye[4]) h1 = distance.euclidean(eye[0], eye[3]) return (v1 + v2) / (2 * h1) # Initialize the face detector and Facial landmark predictor detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") # Access the camera cap = cv2.VideoCapture(0) # Main loop for drowsiness detection while True: # Read the camera input, resize it, and concert it to grayscale frame ret, frame = cap.read() frame = imutils.resize(frame, width=600) raw = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Detect faces in grayscale frame bounds = detector(raw,0) for bound in bounds: # Predict facial landmarks for each detected face shape = predictor(raw,bound) # Convert the facial lanmarks into a 1-D numpy array (x, y) shape = face_utils.shape_to_np(shape) # Left and right eyes' indexes for facial landmarks left_eye = shape[42:48] right_eye = shape[36:42] # The main EAR is the average of left and right eye's EAR left_EAR = eye_aspect_ratio(left_eye) right_EAR = eye_aspect_ratio(right_eye) EAR = (left_EAR + right_EAR) / 2 # Draw the facial landmarks for left eye for (x, y) in left_eye: cv2.circle(frame, (x, y), 1, (0, 255, 0), -1) # Draw the facial landmarks for right eye for (x, y) in right_eye: cv2.circle(frame, (x, y), 1, (0, 255, 0), -1) # Alarm when drowsiness is detected if EAR < EAR_threshhold: frame_count += 1 # Volume increases gradually if frame_count >= EAR_total_frame: alert(0.2 + (frame_count - 25) * 0.2) time.sleep(3) else: frame_count = 0 # Display informations cv2.putText(frame, "Frame: {:.0f}".format(frame_count), (30, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) cv2.putText(frame, "Eye-Aspect-Ratio: {:.2f}".format(EAR), (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) cv2.putText(frame, "Press Q to exit.", (410, 320), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) # Display the frame cv2.imshow("Drowsiness_Detector", frame) # Provide a way to exit the program -- pressing "Q" key = cv2.waitKey(1) & 0xFF if key == ord("q"): break cv2.destroyAllWindows()
31.096154
89
0.649969
0
0
0
0
0
0
0
0
1,135
0.350959
7bc160c90d8d420f5bacbdb3fbe421c84e36aaf4
11,809
py
Python
trunk-tap.py
schreiberstein/trunk-tap.py
aacf32816e2a558e31ebc431edf84e23ef22146d
[ "MIT" ]
15
2017-10-22T15:08:58.000Z
2022-01-03T22:21:12.000Z
trunk-tap.py
ideechaniz/trunk-tap.py
aacf32816e2a558e31ebc431edf84e23ef22146d
[ "MIT" ]
2
2018-04-04T18:52:54.000Z
2019-02-20T10:16:13.000Z
trunk-tap.py
ideechaniz/trunk-tap.py
aacf32816e2a558e31ebc431edf84e23ef22146d
[ "MIT" ]
6
2017-10-23T03:03:16.000Z
2021-07-03T16:28:29.000Z
#!/usr/bin/env python3 # < trunk-tap.py > # Version 1.0 < 20171022 > # Copyright 2017: Alexander Schreiber < schreiberstein[at]gmail.com > # https://github.com/schreiberstein/trunk-tap.py # MIT License: # ============ # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # See: https://opensource.org/licenses/MIT # Introduction: # ============= # trunk-tap.py is a Linux command line utility to connects a set of 802.1Q VLANs to a TINC VPN/OpenVPN TAP-interface and is designed to be invoked by ifup/ifdown scripts after starting or stopping a VPN connection. # Dependencies (on Debian): python3, iproute2, bridge-utils, vlan (including kernel module '8021q' in /etc/modules) # It reads the filenames from the content of a folder containing files corresponding to the VLAN ID (e.g. '100', '105', ...), then creates VLAN interfaces on a local Ethernet adapter used as "trunk port" (e.g. 'eth1.100', 'eth1.105', ...). # The script then proceeds to generate bridge interfaces for every VLAN ID. (e.g. "trunk0.100", "trunk0.105", ...) and attaches the respective Ethernet VLAN interfaces to the bridge. (e.g. 'trunk0.105 <-> eth1.105', ...) # After that, the local infrastructure is ready to be attached to the VPN layer 2 tunnel. # This is achieved by enabling the TAP interface ("up"), creating VLAN interfaces on the TAP adapter (e.g. 'tap0.100', 'tap0.105', ...) and attaching them to the respective bridge. # Illustration: # ============= # (TINC VPN / OpenVPN) # -------- SITE 1 ------- -------- SITE 2 ------- # eth1.100 <-> trunk0.100 <--\ ################ /--> trunk0.100 <-> eth1.100 # eth1.105 <-> trunk0.105 <--->> ---TAP-TUNNEL--- <<---> trunk0.105 <-> eth1.105 # eth1.110 <-> trunk0.110 <--/ ################ \--> trunk0.110 <-> eth1.110 # Hint: Interface names (ethernet adapter, bridge name, ...) do not neccesarily have to be identical among sites. # --------------------------------------------------------------------------------------------------------------- # # Code: # ===== # Import required Python3 modules import os, sys, subprocess from pathlib import Path # Create VLAN-interfaces on trunk interface (e.g. 'eth1.100', 'eth1.105', ...) def trunk_vlan_add(): # Initialize our trunk interface, if it is not up yet p = subprocess.Popen("ip link set dev " + trunk_interface + " up", shell=True) p.communicate() # Create VLAN interfaces on trunk_interface for filename in os.listdir(vlan_dir): p = subprocess.Popen("ip link add link " + trunk_interface + " name " + trunk_interface + "." + filename + " type vlan id " + filename +" ; " + "ip link set " + trunk_interface + "." + filename + " up", shell=True) p.communicate() continue return # Function to remove VLAN interfaces from trunk interface def trunk_vlan_del(): # Remove VLAN interfaces on trunk_interface for filename in os.listdir(vlan_dir): p = subprocess.Popen("ip link set dev " + trunk_interface + "." + filename + " down" + " ; " + "ip link delete " + trunk_interface + "." + filename, shell=True) p.communicate() continue return # Function to create main bridge (no VLAN ID - May be used to attach a VLAN/network to provide network to devices without VLAN support (VLAN0 - untagged)) def bridge_add(): p = subprocess.Popen("ip link add name " + bridge_name + " type bridge" + " ; " + "ip link set " + bridge_name + " up" + " ; " + "ip link set " + trunk_interface + " master " + bridge_name, shell=True) p.communicate() return # Function to remove bridge def bridge_del(): p = subprocess.Popen("ip link set " + bridge_name + " down" + " ; " + "ip link delete " + bridge_name + " type bridge", shell=True) p.communicate() return # Creates bridges to be used for VLAN bridging (e.g. 'trunk0.100', 'trunk0.105', ..) - illustration: eth1.105 <-> Bridge: trunk0.105 <-> tap0.105 def bridge_vlan_add(): for filename in os.listdir(vlan_dir): p = subprocess.Popen("ip link add name " + bridge_name + "." + filename + " type bridge" + " ; " + "ip link set " + bridge_name + "." + filename + " up", shell=True) p.communicate() continue return # Function to remove VLAN interfaces from the bridge def bridge_vlan_del(): for filename in os.listdir(vlan_dir): p = subprocess.Popen("ip link set dev " + bridge_name + "." + filename + " down" + " ; " + "ip link delete " + bridge_name + "." + filename, shell=True) p.communicate() continue return # Function to bridge the VLANs of the physical interface with the VLANs of the bridge def bridge(): for filename in os.listdir(vlan_dir): p = subprocess.Popen("ip link set " + trunk_interface + "." + filename + " master " + bridge_name + "." + filename, shell=True) p.communicate() continue return # Create VLAN-interfaces on tap interface def tap_vlan_add(): # Initialize the tap interface, if it is not up yet p = subprocess.Popen("ip link set dev " + tap_interface + " up", shell=True) p.communicate() # Create VLAN interfaces on tap interface for filename in os.listdir(vlan_dir): p = subprocess.Popen("ip link add link " + tap_interface + " name " + tap_interface + "." + filename + " type vlan id " + filename + " ; " + "ip link set dev " + tap_interface + "." + filename + " up", shell=True) p.communicate() continue return # Function to bridge the VLANs of the physical interface with the VLANs of the bridge def tap_bridge(): for filename in os.listdir(vlan_dir): p = subprocess.Popen("ip link set " + tap_interface + "." + filename + " master " + bridge_name + "." + filename, shell=True) p.communicate() continue return # Function to enable ("up") the tap interface def tap_if_up(): p = subprocess.Popen("ip link set dev " + tap_interface + " down", shell=True) p.communicate(); return # Function to disable ("down") the tap interface def tap_if_down(): p = subprocess.Popen("ip link set dev " + tap_interface + " down", shell=True) p.communicate(); return # Function to remove VLAN interfaces from tap interface def tap_vlan_del(): # Remove VLAN interfaces on tinc_interface for filename in os.listdir(vlan_dir): p = subprocess.Popen("ip link set dev " + tap_interface + "." + filename + " down" + " ; " + "ip link delete " + tap_interface + "." + filename, shell=True) p.communicate() continue return # Function to remove members attached by the tap_bridge() function def tap_unbridge(): for filename in os.listdir(vlan_dir): p = subprocess.Popen("ip link set " + tap_interface + "." + filename + " nomaster", shell=True) p.communicate() continue return # Function to remove members attached by the bridge() function def unbridge(): for filename in os.listdir(vlan_dir): p = subprocess.Popen("ip link set " + trunk_interface + "." + filename + " nomaster", shell=True) p.communicate() continue return # ------------------------ # Note: Order of execution # ------------------------ # Start: # ------ # trunk_vlan_add() # bridge_add() # bridge_vlan_add() # bridge() # tap_if_up() # tap_vlan_add() # tap_bridge() # Stop: # ----- # tap_unbridge() # tap_vlan_del() # tap_if_down() # unbridge() # bridge_vlan_del() # bridge_del() # trunk_vlan_del() # Start function - Used to execute all other functions def start(no_tap): trunk_vlan_add() bridge_add() bridge_vlan_add() bridge() # Don't do anything with the TAP interface if --no_tap was specified if not no_tap: tap_if_up() tap_vlan_add() tap_bridge() return # Stop function - reverses the actions performed by start() def stop(no_tap): # Don't do anything with the TAP interface if --no_tap was specified if not no_tap: tap_unbridge() tap_vlan_del() tap_if_down() unbridge() bridge_vlan_del() bridge_del() trunk_vlan_del() return # # # # # # # # # # Main function # # # # # # # # # # def main(): # If no arguments are specified, quit. if len(sys.argv) == 1: print("Error: No arguments specified. Enter ./trunktap.py --help for more information.") quit() # If arguments are given, parse them and run script. import argparse parser = argparse.ArgumentParser() # Add arguments parser.add_argument("-start", dest="is_start", action="store_true", help="Creates all interfaces and establishes VLAN bridges") parser.add_argument("-stop", dest="is_stop", action="store_true", help="Reverses -start: Removes the previously created interfaces") parser.add_argument("-i", "--interface", dest="trunk_interface", help="Specify the trunk interface on the host that will provide the VLANs to the network (e.g. eth1)") parser.add_argument("-t", "--tap-interface", dest="tap_interface", help="Specify the TAP interface on the host that will be used by TINC/OpenVPN (e.g. $INTERFACE, tap0)") parser.add_argument("-v", "--vlan-dir", dest="vlan_dir", help="The path to the folder that contains the files that represent the VLANs that will be created. - Default: ./vlans/ ", default="./vlans/") parser.add_argument("-b", "--bridge", dest="bridge_name", help="Name of the bridge that will be created. (e.g. trunk0, br0)") parser.add_argument("--no-tap", dest="no_tap", help="Only for special use: If used, the VLANs will be created locally (e.g. trunk0.105 <-> eth1.105), but the TAP interface won't be used.", default=False, action="store_true") # Parse arguments arguments = parser.parse_args() # Create local variables because the functions use these global trunk_interface, tap_interface, vlan_dir, bridge_name trunk_interface = arguments.trunk_interface tap_interface = arguments.tap_interface vlan_dir = arguments.vlan_dir bridge_name = arguments.bridge_name # Make sure that either start or stop was specified (NOT XOR) if not arguments.is_start ^ arguments.is_stop: print("Error: You have to specify either -start or -stop. Only one option is valid.") quit() # Make sure that arguments are not empty if not (trunk_interface and tap_interface and vlan_dir and bridge_name): print("Error: You have to specify -i, -t, -b and -v.") quit() # Execute either function start() or stop() and pass the no_tap-variable if arguments.is_start: start(arguments.no_tap) if arguments.is_stop: stop(arguments.no_tap) quit() # Only run main if the script is explicitly executed (e.g. './trunktap.py') if __name__ == "__main__": main()
41.146341
260
0.655348
0
0
0
0
0
0
0
0
7,148
0.605301
7bc353399a2502106befa0365666e5d586522d04
4,404
py
Python
tests/common/mock_cgroup_commands.py
rbgithuub/WALinuxAgent
c0462f33bb5e3a33430fe3d172676d85cefa6227
[ "Apache-2.0" ]
null
null
null
tests/common/mock_cgroup_commands.py
rbgithuub/WALinuxAgent
c0462f33bb5e3a33430fe3d172676d85cefa6227
[ "Apache-2.0" ]
null
null
null
tests/common/mock_cgroup_commands.py
rbgithuub/WALinuxAgent
c0462f33bb5e3a33430fe3d172676d85cefa6227
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Microsoft Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Requires Python 2.6+ and Openssl 1.0+ # import contextlib import os import re import subprocess from azurelinuxagent.common.utils import fileutil from tests.tools import patch, data_dir # # Default values for the mocked commands. # # The output comes from an Ubuntu 18 system # _default_commands = [ (r"systemctl --version", '''systemd 237 +PAM +AUDIT +SELINUX +IMA +APPARMOR +SMACK +SYSVINIT +UTMP +LIBCRYPTSETUP +GCRYPT +GNUTLS +ACL +XZ +LZ4 +SECCOMP +BLKID +ELFUTILS +KMOD -IDN2 +IDN -PCRE2 default-hierarchy=hybrid '''), (r"mount -t cgroup", '''cgroup on /sys/fs/cgroup/systemd type cgroup (rw,nosuid,nodev,noexec,relatime,xattr,name=systemd) cgroup on /sys/fs/cgroup/rdma type cgroup (rw,nosuid,nodev,noexec,relatime,rdma) cgroup on /sys/fs/cgroup/cpuset type cgroup (rw,nosuid,nodev,noexec,relatime,cpuset) cgroup on /sys/fs/cgroup/net_cls,net_prio type cgroup (rw,nosuid,nodev,noexec,relatime,net_cls,net_prio) cgroup on /sys/fs/cgroup/perf_event type cgroup (rw,nosuid,nodev,noexec,relatime,perf_event) cgroup on /sys/fs/cgroup/hugetlb type cgroup (rw,nosuid,nodev,noexec,relatime,hugetlb) cgroup on /sys/fs/cgroup/freezer type cgroup (rw,nosuid,nodev,noexec,relatime,freezer) cgroup on /sys/fs/cgroup/memory type cgroup (rw,nosuid,nodev,noexec,relatime,memory) cgroup on /sys/fs/cgroup/pids type cgroup (rw,nosuid,nodev,noexec,relatime,pids) cgroup on /sys/fs/cgroup/devices type cgroup (rw,nosuid,nodev,noexec,relatime,devices) cgroup on /sys/fs/cgroup/cpu,cpuacct type cgroup (rw,nosuid,nodev,noexec,relatime,cpu,cpuacct) cgroup on /sys/fs/cgroup/blkio type cgroup (rw,nosuid,nodev,noexec,relatime,blkio) '''), (r"mount -t cgroup2", '''cgroup on /sys/fs/cgroup/unified type cgroup2 (rw,nosuid,nodev,noexec,relatime) '''), (r"systemctl show walinuxagent\.service --property CPUAccounting", '''CPUAccounting=no '''), (r"systemctl show walinuxagent\.service --property MemoryAccounting", '''MemoryAccounting=no '''), (r"systemd-run --unit=([^\s]+) --scope ([^\s]+)", ''' Running scope as unit: TEST_UNIT.scope Thu 28 May 2020 07:25:55 AM PDT '''), ] _default_files = ( (r"/proc/self/cgroup", os.path.join(data_dir, 'cgroups', 'proc_self_cgroup')), (r"/proc/[0-9]+/cgroup", os.path.join(data_dir, 'cgroups', 'proc_pid_cgroup')), (r"/sys/fs/cgroup/unified/cgroup.controllers", os.path.join(data_dir, 'cgroups', 'sys_fs_cgroup_unified_cgroup.controllers')), ) @contextlib.contextmanager def mock_cgroup_commands(): original_popen = subprocess.Popen original_read_file = fileutil.read_file original_path_exists = os.path.exists def mock_popen(command, *args, **kwargs): if isinstance(command, list): command_string = " ".join(command) else: command_string = command for cmd in _default_commands: match = re.match(cmd[0], command_string) if match is not None: command = ["echo", cmd[1]] return original_popen(command, *args, **kwargs) def mock_read_file(filepath, **kwargs): for file in _default_files: match = re.match(file[0], filepath) if match is not None: filepath = file[1] return original_read_file(filepath, **kwargs) def mock_path_exists(path): for file in _default_files: match = re.match(file[0], path) if match is not None: return True return original_path_exists(path) with patch("azurelinuxagent.common.cgroupapi.subprocess.Popen", side_effect=mock_popen) as patcher: with patch("azurelinuxagent.common.cgroupapi.os.path.exists", side_effect=mock_path_exists): with patch("azurelinuxagent.common.cgroupapi.fileutil.read_file", side_effect=mock_read_file): yield patcher
38.631579
178
0.711172
0
0
1,376
0.312443
1,403
0.318574
0
0
2,772
0.629428
7bc78e4dfebfc4162a535f0855d380aa68aa6df8
1,474
py
Python
main.py
saiamphora/XOR-NEATpy
091b6d6fc3b662491c8216227f5305841521e0ed
[ "Unlicense" ]
1
2021-11-29T03:30:49.000Z
2021-11-29T03:30:49.000Z
main.py
saiamphora/XOR-NEATpy
091b6d6fc3b662491c8216227f5305841521e0ed
[ "Unlicense" ]
1
2021-11-29T15:28:09.000Z
2021-11-29T15:28:09.000Z
main.py
saiamphora/XOR-NEATpy
091b6d6fc3b662491c8216227f5305841521e0ed
[ "Unlicense" ]
null
null
null
from __future__ import print_function import os import neat # 2-input XOR inputs and expected outputs. xor_inputs = [(0.0, 0.0), (0.0, 1.0), (1.0, 0.0), (1.0, 1.0)] xor_outputs = [(0.0,),(1.0,),(1.0,),(0.0,)] def eval_genomes(genomes, config): for genome_id, genome in genomes: genome.fitness = 4.0 net = neat.nn.FeedForwardNetwork.create(genome, config) for xi, xo in zip(xor_inputs, xor_outputs): output = net.activate(xi) genome.fitness -= (output[0] - xo[0]) ** 4 def run(config_file): config = neat.Config(neat.DefaultGenome, neat.DefaultReproduction, neat.DefaultSpeciesSet, neat.DefaultStagnation, config_file) p = neat.Population(config) p.add_reporter(neat.StdOutReporter(True)) stats = neat.StatisticsReporter() p.add_reporter(stats) p.add_reporter(neat.Checkpointer(5)) winner = p.run(eval_genomes, 500) print('\nBest genome:\n{!s}'.format(winner)) print('\nOutput:') winner_net = neat.nn.FeedForwardNetwork.create(winner, config) for xi, xo in zip(xor_inputs, xor_outputs): output = winner_net.activate(xi) print("input {!r}, expected output {!r}, got {!r}".format(xi, xo, output)) p = neat.Checkpointer.restore_checkpoint('neat-checkpoint-4') p.run(eval_genomes, 10) local_dir = os.path.dirname(__file__) config_path = os.path.join(local_dir, 'config-feedforward') run(config_path)
33.5
82
0.651967
0
0
0
0
0
0
0
0
158
0.107191
7bc7b39f24b5e8a02751dc33b721dc3411814fe9
16,866
py
Python
iBlock.py
RussianOtter/iBlock
e0db1b94fd2d8ed9538ad42df1a706cc782bb2f3
[ "MIT" ]
5
2017-10-02T06:01:01.000Z
2022-03-08T05:51:51.000Z
iBlock.py
RussianOtter/iBlock
e0db1b94fd2d8ed9538ad42df1a706cc782bb2f3
[ "MIT" ]
null
null
null
iBlock.py
RussianOtter/iBlock
e0db1b94fd2d8ed9538ad42df1a706cc782bb2f3
[ "MIT" ]
null
null
null
""" _ _____ _ _ |_| __ | |___ ___| |_ | | __ -| | . | _| '_| |_|_____|_|___|___|_,_| iBlock is a machine learning video game! This game is played on a 8x6 board (48 spaces) and the goal is to fill up the enemy's column with your pieces! Once that happens the game will reset and log all the data for the AI's to observe! In the first few games the AI will take random moves and attempt winning. Once one of the AI's win, the information on how they one gets processed and they try to attempt it again using that information! Rather then focusing on attacking, these AI naturally plays offensively! You will see them defend their base while at the same time try to attack the enemy! The AI also doesn't know which spaces it must fill to win so as it plays it must learn on it's own (this also allows for the creation of custom maps). iBlock has multiple different game options for how to set up the way the AI will play! New gamemodes coming soon! Copyright (c) SavSec 2017 Copyright (c) SavSec iBlock 2017 Format: Encoding: UTF-8 Tab: 2 System: Python 2.7 Modules: sys, time, random License: MIT License Developer: @Russian_Otter - Instagram """ import sys, random, time, argparse parser = argparse.ArgumentParser() parser.add_argument("-i", "--intelligence",help="Activates dynamic machine learning mode for both players",action="store_true") parser.add_argument("-r", "--random",help="Activates random machine learning mode for both players",action="store_true") parser.add_argument("-p", "--pvai",help="Activates Player vs AI mode",action="store_true") parser.add_argument("-R", "--Reset",help="Activates reset mode for both players",action="store_true") parser.add_argument("-sm", "--show-moves",help="Shows the last move for each turn",action="store_true") parser.add_argument("-d", "--display",help="Set to False to disable table display",default=True) parser.add_argument("-pg", "--progress",help="Displays progress graphs", action="store_true") parser.add_argument("-t", "--time",help="Turn rate for each player",default=0.05) parser.add_argument("-q", "--quick",help="Plays a 1 match game", action="store_true") parser.add_argument("-H", "--Hide",help="Hides help",action="store_true") args = parser.parse_args() if args.pvai: human_mode = True else: human_mode = False if args.Reset: fresh_start1,fresh_start0 = True,True else: fresh_start0,fresh_start1 = False,False if args.show_moves: show_move = True else: show_move = False if args.progress: progress_graphing = True else: progress_graphing = False display = args.display mtime = float(args.time) if show_move: from time import gmtime, strftime if progress_graphing: """ import matplotlib.pyplot as plt import numpy as np Still in progress """ pass global last_move last_move = ["41"] def pull_dynamics(player): p0_info = open("player_0.ib").read().split() p1_info = open("player_1.ib").read().split() if player == "1": return p1_info if player == "0": return p0_info def table_ref(): print """ Table Reference ============================== 1 |2 | 3 4 5 6 |7 | 8 9 |10| 11 12 13 14 |15| 16 17 |18| 19 20 21 22 |23| 24 25 |26| 27 28 29 30 |31| 32 33 |34| 35 36 37 38 |39| 40 41 |42| 43 44 45 46 |47| 48 ============================== """ pass table = { "1":".", "2":".", "3":".", "4":".", "5":".", "6":".", "7":".", "8":"0", "9":".", "10":".", "11":".", "12":".", "13":".", "14":".", "15":".", "16":".", "17":".", "18":".", "19":".", "20":".", "21":".", "22":".", "23":".", "24":".", "25":".", "26":".", "27":".", "28":".", "29":".", "30":".", "31":".", "32":".", "33":".", "34":".", "35":".", "36":".", "37":".", "38":".", "39":".", "40":".", "41":"1", "42":".", "43":".", "44":".", "45":".", "46":".", "47":".", "48":"." } # up left = -9 # up down = +-8 # right left = +-1 # down right = +9 # up right = -7 # down left = +7 def table_reset(): reset = { "1":".", "2":".", "3":".", "4":".", "5":".", "6":".", "7":".", "8":"0", "9":".", "10":".", "11":".", "12":".", "13":".", "14":".", "15":".", "16":".", "17":".", "18":".", "19":".", "20":".", "21":".", "22":".", "23":".", "24":".", "25":".", "26":".", "27":".", "28":".", "29":".", "30":".", "31":".", "32":".", "33":".", "34":".", "35":".", "36":".", "37":".", "38":".", "39":".", "40":".", "41":"1", "42":".", "43":".", "44":".", "45":".", "46":".", "47":".", "48":"." } table.update(reset) def table_print(table): if display: print "\n"+"=" * 26 print """%s .%s. %s %s %s %s .%s. %s %s .%s. %s %s %s %s .%s. %s %s .%s. %s %s %s %s .%s. %s %s .%s. %s %s %s %s .%s. %s %s .%s. %s %s %s %s .%s. %s %s .%s. %s %s %s %s .%s. %s""".replace(".","|") %( table["1"],table["2"],table["3"],table["4"],table["5"],table["6"],table["7"],table["8"], table["9"],table["10"],table["11"],table["12"],table["13"],table["14"],table["15"],table["16"], table["17"],table["18"],table["19"],table["20"],table["21"],table["22"],table["23"],table["24"], table["25"],table["26"],table["27"],table["28"],table["29"],table["30"],table["31"],table["32"], table["33"],table["34"],table["35"],table["36"],table["37"],table["38"],table["39"],table["40"], table["41"],table["42"],table["43"],table["44"],table["45"],table["46"],table["47"],table["48"] ) print "=" * 26 def my_blocks(id): block = [] id = str(id) for _ in table: if table[_] == id: block.append(_) return block def grab_dynamics(player): if player == "0": dyn = open("player_0.ib").read().split(" ") if player == "1": dyn = open("player_1.ib").read().split(" ") return dyn def sort_dynamics(latest,player): info = latest+grab_dynamics(player) return list(set([x for x in info if info.count(x) > 1])) def write_dynamics(dynamics,player): if player == "0": dyn = open("player_0.ib","w") dyn.write(" ".join(dynamics)) dyn.close() if player == "1": dyn = open("player_1.ib","w") dyn.write(" ".join(dynamics)) dyn.close() def move(id,space,table=table): table.update({space:id}) last_move = space table_print(table) if show_move: tplay = strftime("%H:%M:%S", gmtime()) print "[%s] Player %s moved to %s" %(tplay,id,space) time.sleep(mtime) return last_move def validate_move(space,id,attempt=0): if attempt == 5: return True if table[space] != id: if space in globals()["last_move"]: return False return True else: return False def move_options(space,player="3"): space = str(space) tspace = int(space) if space in [ "10","11","12","13","14","15", "18","19","20","21","22","23", "26","27","28","29","30","31", "34","35","36","37","38","39", ]: moves = tspace-9,tspace+9,tspace-7,tspace+7,tspace-8,tspace+8,tspace+1,tspace-1 if space == "1": moves = tspace+1,tspace+8,tspace+9 if space == "8": moves = tspace-1,tspace+8,tspace+7 if space == "41": moves = tspace+1,tspace-8,tspace-7 if space == "48": moves = tspace-1,tspace-8,tspace-9 if space in ["2","3","4","5","6","7"]: moves = tspace+8,tspace-1,tspace+1,tspace+7,tspace+9 if space in ["16","24","32","40"]: moves = tspace-1,tspace-8,tspace+8,tspace-9,tspace+7 if space in ["9","17","25","33"]: moves = tspace+1,tspace+8,tspace-8,tspace+9,tspace-7 if space in ["42","43","44","45","46","47"]: moves = tspace-1,tspace+1,tspace-8,tspace-9,tspace-7 area = [] for _ in moves: if table[str(_)] != player: area.append(str(_)) return area def available_moves(player): moves = [] m = 0 for _ in my_blocks(player): for v in move_options(_): if table[v] != player: moves.insert(m,v) m += 1 return moves def dynamic_update(new,old,player): info = new + old for _ in new: info.append(_) return list(set([x for x in info if info.count(x) > 1])) def push_dynamics(dyn,player): if player == "1": cv = open("player_1.ib").read().split(" ") dyn = dynamic_update(cv,dyn,"1") print dyn f = open("player_1.ib","w") f.write("") f.write(" ".join(dyn)) f.close() print "\nUpdated Values:\n"+open("player_1.ib").read() time.sleep(2) if player == "0": cv = open("player_0.ib").read().split(" ") dyn = dynamic_update(cv,dyn,"0") f = open("player_0.ib","w") f.write("") f.write(" ".join(dyn)) f.close() print "\nUpdated Values:\n"+open("player_0.ib").read() time.sleep(2) def check_for_win(dinfo0,dinfo1,real=True,table=table,push=False,fresh_start0=fresh_start0,fresh_start1=fresh_start1): if table["2"] + table["10"] + table["18"] + table["26"] + table["34"] + table["42"] == "000000": if fresh_start0: f = open("player_0.ib","w") f.write(" ".join(my_blocks("0"))) f.close() fresh_start0 = False else: if push: write_dynamics(sort_dynamics(my_blocks("0"),"0"),"0") print "Player 0 Wins!" p0_info = open("player_0.ib").read().split() p1_info = open("player_1.ib").read().split() pf0 = 48-len(p0_info) pf1 = 48-len(p1_info) if pf0 == 48: pf0 = 0 if pf1 == 48: pf1 = 0 print "Player 0 Fitness:",pf0 print "Player 1 Fitness:",pf1 time.sleep(2) if real: sys.exit() else: table_reset() return True,"0" if table["7"] + table["15"] + table["23"] + table["31"] + table["39"] + table["47"] == "111111": if fresh_start1: f = open("player_1.ib","w") f.write(" ".join(my_blocks("1"))) f.close() fresh_start1 = False else: if push: write_dynamics(sort_dynamics(my_blocks("1"),"1"),"1") print "Player 1 Wins!" p0_info = open("player_0.ib").read().split() p1_info = open("player_1.ib").read().split() pf0 = 48-len(p0_info) pf1 = 48-len(p1_info) if pf0 == 48: pf0 = 0 if pf1 == 48: pf1 = 0 print "Player 0 Fitness:",pf0 print "Player 1 Fitness:",pf1 time.sleep(2) if real: sys.exit() else: table_reset() return True,"1" def last_go(last): globals()["last_move"].append(last) if len(last_move) > 2: globals()["last_move"].reverse() globals()["last_move"].pop(1) globals()["last_move"].reverse() def iblock(real=False,dynamic=False): push = True dyn0,dyn1 = [],[] p0w,p1w = 0,0 while 1: for _ in "1","0": dyn0 = my_blocks("0") dyn1 = my_blocks("1") if p0w == 5: check = check_for_win(dyn0,dyn1, real=real,push=True) p0w = 0 if p1w == 5: check = check_for_win(dyn0,dyn1, real=real,push=True) p1w = 0 if p0w < 5 and p1w < 5: check = check_for_win(dyn0,dyn1, real=real,push=push) if "None" in str(type(check)): check = [dynamic,_] if check[0]: if check[1] == "1": p1w += 1 if check[1] == "0": p0w += 1 dyn = pull_dynamics(check[1]) if check[1] == "0": dyn0 = dynamic_update(dyn,dyn0,"0") if check[1] == "1": dyn1 = dynamic_update(dyn,dyn1,"1") go_move,block = None,None if _ == "0": av = available_moves(_) try: if type(av) == tuple: av = list(av) for lm in last_move: av.pop(av.index(lm)) except: pass for md in dyn0: if md in av: go_move = md if _ == "1": av = available_moves(_) try: if type(av) == tuple: av = list(av) for lm in last_move: av.pop(av.index(lm)) except: pass for md in dyn1: if md in av: go_move = md if go_move == None: block = True attempt = -1 while 1: attempt += 1 try: if block == None: c = go_move else: c = random.choice(available_moves(_)) if attempt > 2: c = random.choice(available_moves(_)) if validate_move(c,_,attempt) == True: break except Exception as e: print e c = random.choice(available_moves(_)) last_go(move(_,c)) def iblockgo(real=False,dynamic=False): push = True dyn0,dyn1 = [],[] p0w,p1w = 0,0 while 1: for _ in "1","0": dyn0 = my_blocks("0") dyn1 = my_blocks("1") if p0w == 5: check = check_for_win(dyn0,dyn1, real=real,push=True) p0w = 0 if p1w == 5: check = check_for_win(dyn0,dyn1, real=real,push=True) p1w = 0 if p0w < 5 and p1w < 5: check = check_for_win(dyn0,dyn1, real=real,push=push) if "None" in str(type(check)): check = [dynamic,_] if check[0]: if check[1] == "1": p1w += 1 if check[1] == "0": p0w += 1 dyn = pull_dynamics(check[1]) if check[1] == "0": dyn0 = dynamic_update(dyn,dyn0,"0") if check[1] == "1": dyn1 = dynamic_update(dyn,dyn1,"1") go_move,block = None,None if _ == "0": av = available_moves(_) try: if type(av) == tuple: av = list(av) for lm in last_move: av.pop(av.index(lm)) except: pass for md in dyn0: if md in av: go_move = md if _ == "1": av = available_moves(_) try: if type(av) == tuple: av = list(av) for lm in last_move: av.pop(av.index(lm)) except: pass for md in dyn1: if md in av: go_move = md if go_move == None: block = True if _ == "1": table_ref() print "Available Moves:" for av in available_moves(_): print av, print while 1: go_move = raw_input("iBlock ~ ") if go_move in available_moves(_) and validate_move(go_move,_): last_go(move(_,go_move)) break else: attempt = -1 while 1: attempt += 1 try: if block == None: c = go_move else: c = random.choice(available_moves(_)) if attempt > 2: c = random.choice(available_moves(_)) if validate_move(c,_,attempt) == True: break except Exception as e: print e c = random.choice(available_moves(_)) last_go(move(_,c)) def reset_knowldge(): """ Reseting knowldge wipes all past game history and updates it with random winning moves. """ print "Reseting Knowldge..." time.sleep(1) if not fresh_start0 or not fresh_start1: print "You must change values: \"fresh_start0\" and \"fresh_start1\" to True before reseting." print "Be sure to change those values back to False while not in reset mode." time.sleep(3) if mtime > 0.0009 or display == True: print "Consider Temporarily Changing You Game Settings For Reset:" print "-Speed should be less than 0.0009" print "-Display should be turned off" time.sleep(3) try: iblock(False,False) except: pass print "Reset Complete!" time.sleep(1) def random_ai_mode(): """ Random AI mode disables the learning ability of the program which causes it to make random moves. (Personally this is more entiretaining than Intelligence Mode) """ print "Starting Random AI Mode..." if mtime < 0.05: print "Consider changing the frame rate to more than 0.05 while in random mode" time.sleep(3) if display == False: print "Consider changing display to True inorder to view the game in random mode" time.sleep(3) time.sleep(1) try: iblock(False,False) except: print "Game Paused" def intelligence_mode(): if mtime < 0.005: print "Consider changing the frame rate to more than 0.005 while in intelligence mode" time.sleep(3) if display == False: print "Consider changing display to True inorder to view the game in intelligence mode" time.sleep(3) """ This mode activates the intelligence factor of the machine learning program and tells it to improve based on it's last victories! """ print "Starting Intelligence Mode..." time.sleep(1) try: iblock(False,True) except: print "Game Paused" def intelligent_1v1(): """ This is a 1 match mode to quickly see who wins a fast fight """ print "Starting Intelligent 1v1..." if mtime < 0.005: print "Consider changing the frame rate to more than 0.005 while in intelligence mode" time.sleep(3) if display == False: print "Consider changing display to True inorder to view the game in intelligence mode" time.sleep(3) time.sleep(1) try: iblock(True,True) except: print "Game Paused" def human_vs_iblock(): """ You'll probably loose... """ # Coming Soon # if not args.Hide: print """ _ _____ _ _ |_| __ | |___ ___| |_ | | __ -| | . | _| '_| |_|_____|_|___|___|_,_| """ parser.print_help() print print "Available Game Modes/Options:" print "-Random Mode" print "-Intelligence Mode" print "-1 Match Intelligence Mode" print "-Reset Mode" print "-Human vs Player Mode" print "\n(Enter the function name for the gamemode you want in the python terminal or set your arguments to choose your gamemode)\n" print "Set arguments to \"-H\" to disable this message." time.sleep(0.5) if len(sys.argv) > 1: if args.intelligence: intelligence_mode() sys.exit() if args.random: random_ai_mode() sys.exit() if args.Reset: print "Stop the program once both player's fitness is at your desired stat" reset_knowldge() sys.exit() if args.quick: intelligent_1v1() sys.exit() if human_mode: try: iblockgo() except: print "Game Paused/Stopped"
27.115756
398
0.600024
0
0
0
0
0
0
0
0
6,199
0.367544
7bc9519279bbaea50bce0ecf16967333a0bd62b5
319
py
Python
Autre/Internet.py
Yaya-Cout/Python
500a2bc18cbb0b9bf1470943def8fd8e8e76d36d
[ "Unlicense" ]
5
2020-12-05T14:00:39.000Z
2021-12-02T11:44:54.000Z
Autre/Internet.py
Yaya-Cout/Python
500a2bc18cbb0b9bf1470943def8fd8e8e76d36d
[ "Unlicense" ]
11
2021-03-15T17:51:43.000Z
2021-11-24T13:24:39.000Z
Autre/Internet.py
Yaya-Cout/Python
500a2bc18cbb0b9bf1470943def8fd8e8e76d36d
[ "Unlicense" ]
1
2021-01-02T14:15:10.000Z
2021-01-02T14:15:10.000Z
def main(): import webbrowser recherche = 0 while True: if recherche >= 2: print("Vous avez fait " + str(recherche) + " recherches.") recherche += 1 adresse = input("Quel adresse veut-tu ouvrir") webbrowser.open(adresse) if __name__ == "__main__": main()
19.9375
70
0.567398
0
0
0
0
0
0
0
0
70
0.219436
7bc96e1706c4c4494a902bdb9aa51a33d9269620
6,502
py
Python
older/rc-qradar-search/query_runner/components/ariel_query.py
nickpartner-goahead/resilient-community-apps
097c0dbefddbd221b31149d82af9809420498134
[ "MIT" ]
65
2017-12-04T13:58:32.000Z
2022-03-24T18:33:17.000Z
older/rc-qradar-search/query_runner/components/ariel_query.py
nickpartner-goahead/resilient-community-apps
097c0dbefddbd221b31149d82af9809420498134
[ "MIT" ]
48
2018-03-02T19:17:14.000Z
2022-03-09T22:00:38.000Z
older/rc-qradar-search/query_runner/components/ariel_query.py
nickpartner-goahead/resilient-community-apps
097c0dbefddbd221b31149d82af9809420498134
[ "MIT" ]
95
2018-01-11T16:23:39.000Z
2022-03-21T11:34:29.000Z
"""Action Module circuits component to update incidents from QRadar Ariel queries""" import logging from datetime import datetime import time import copy import json from string import Template from pkg_resources import Requirement, resource_filename import resilient_circuits.template_functions as template_functions from query_runner.lib.query_action import QueryRunner from query_runner.lib.qradar_rest_client import QRadarClient from query_runner.lib.misc import SearchTimeout, SearchFailure try: basestring except NameError: basestring = str LOG = logging.getLogger(__name__) CONFIG_DATA_SECTION = 'ariel' def config_section_data(): """sample config data for use in app.config""" section_config_fn = resource_filename(Requirement("rc-qradar-search"), "query_runner/data/app.config.qradar") query_dir = resource_filename(Requirement("rc-qradar-search"), "query_runner/data/queries_ariel") with open(section_config_fn, 'r') as section_config_file: section_config = Template(section_config_file.read()) return section_config.safe_substitute(directory=query_dir) class AQLIncidentUpdate(QueryRunner): """ Acknowledges and fires off new query requests """ def __init__(self, opts): query_options = opts.get(CONFIG_DATA_SECTION, {}) jinja_filters = template_functions.JINJA_FILTERS jinja_filters["datetime"] = self._datetime_filter template_functions.ENV.filters.update(jinja_filters) super(AQLIncidentUpdate, self).__init__(opts, query_options, run_search) def _datetime_filter(self, val): """ JINJA filter to convert ms to YYYY-MM-DD HH:mm:ss """ dt = datetime.fromtimestamp(val/1000.0) return dt.strftime("%Y-%m-%d %H:%M:%S") ############################# # Functions for running Query ############################# def _wait_for_query_to_complete(search_id, qradar_client, timeout, polling_interval): """ Poll QRadar until search execution finishes """ start_time = time.time() search_status = qradar_client.get_search_status(search_id) if not search_status: # Sometimes it takes a little while to be able to query a search id time.sleep(4) search_status = qradar_client.get_search_status(search_id) while search_status.get("status", "") in ("WAIT", "EXECUTE", "SORTING"): if timeout != 0: if time.time() - start_time > timeout: raise SearchTimeout(search_id, search_status.get("status", "")) time.sleep(polling_interval) search_status = qradar_client.get_search_status(search_id) if search_status.get("status", "") != "COMPLETED": LOG.error(search_status) raise SearchFailure(search_id, search_status.get("status", "")) # end _wait_for_query_to_complete def _get_query_results(search_id, qradar_client, item_range): """ Get results from a complete QRadar query """ if item_range: headers = {"Range": item_range} else: headers = None url = "ariel/searches/{0}/results".format(search_id, headers=headers) response = qradar_client.get(url) LOG.debug(response) # Replace "NULL" with "" response = remove_nulls(response) return response # end _get_query_results def remove_nulls(d): """ recursively replace 'NULL' with '' in dictionary """ if isinstance(d, basestring): if d == u'NULL': return u'' else: return d new = {} LOG.debug("d={d} ".format(d=d)) LOG.debug("type of d is {t}".format(t=type(d))) for k, v in d.items(): if isinstance(v, dict): v = remove_nulls(v) elif isinstance(v, list): v = [remove_nulls(v1) for v1 in v] elif isinstance(v, basestring) and v == u'NULL': v = u'' new[k] = v LOG.info("Returning: {n}".format(n=new)) return new def run_search(options, query_definition, event_message): """ Run Ariel search and return result """ # Read the options and construct a QRadar client qradar_url = options.get("qradar_url", "") qradar_token = options.get("qradar_service_token", "") timeout = int(options.get("query_timeout", 600)) polling_interval = int(options.get("polling_interval", 5)) if not all((qradar_url, qradar_token, timeout, polling_interval)): LOG.error("Configuration file missing required values!") raise Exception("Missing Configuration Values") verify = options.get("qradar_verify", "") if verify[:1].lower() in ("0", "f", "n"): verify = False else: verify = True qradar_client = QRadarClient(qradar_url, qradar_token, verify=verify) error = None response = None try: params = {'query_expression': query_definition.query} url = "ariel/searches" response = qradar_client.post(url, params=params) LOG.debug(response) search_id = response.get('search_id', '') if not search_id: error = "Query Failed: " + response.get("message", "No Error Message Found") else: LOG.info("Queued Search %s", search_id) _wait_for_query_to_complete(search_id, qradar_client, timeout, polling_interval) # Query Execution Finished, Get Results response = _get_query_results(search_id, qradar_client, query_definition.range) except Exception as exc: if not query_definition.onerror: raise LOG.error(exc) error = u"{}".format(exc) if error: mapdata = copy.deepcopy(event_message) mapdata.update(query_definition.vars) mapdata.update({"query": query_definition.query}) mapdata.update({"error": error}) error_template = json.dumps({"events": [query_definition.onerror]}, indent=2) error_rendered = template_functions.render_json(error_template, mapdata) response = error_rendered if not response or len(response["events"]) == 0: LOG.warn("No data returned from query") if query_definition.default: mapdata = copy.deepcopy(event_message) mapdata.update(query_definition.vars) mapdata.update({"query": query_definition.query}) default_template = json.dumps({"events": [query_definition.default]}, indent=2) default_rendered = template_functions.render_json(default_template, mapdata) response = default_rendered return response # end run_search
36.324022
113
0.669948
642
0.098739
0
0
0
0
0
0
1,457
0.224085
7bcaa605df103e994b12588df4d84741fe74b87f
2,371
py
Python
first/sendmail-practice.py
bujige/Python-practice
c1eb76b0caaada628f23a477303f07d6be3f707c
[ "Apache-2.0" ]
null
null
null
first/sendmail-practice.py
bujige/Python-practice
c1eb76b0caaada628f23a477303f07d6be3f707c
[ "Apache-2.0" ]
null
null
null
first/sendmail-practice.py
bujige/Python-practice
c1eb76b0caaada628f23a477303f07d6be3f707c
[ "Apache-2.0" ]
null
null
null
#! /usr/bin/env python # -*- coding: utf-8 -*- from email import encoders from email.header import Header from email.mime.multipart import MIMEBase, MIMEMultipart from email.mime.text import MIMEText from email.utils import parseaddr, formataddr import smtplib # 格式化一个邮件地址 def _format_addr(s): # parseaddr:解析字符串中的email地址 name, addr = parseaddr(s) # name中包含中文,需要通过Header对象进行编码 # formataddr:parseaddr函数的逆函数 return formataddr((Header(name, 'utf-8').encode(), addr)) # 登录账户和口令 from_addr = input('From:') password = input('Password:') # 目标地址 to_addr = input('To:') # 目标服务器 smtp_server = input('SMTP server:') # 封装邮件 # 内容 msg = MIMEText('Hello,send by Python...', 'plain', 'utf-8') # HTML邮件 msg = MIMEText('<html><body><h1>Hello</h1>' + '<p>send by <a href="http://www.python.org">Python</a>...</p>' + '</body></html>', 'html', 'utf-8') # 发件人 msg['From'] = _format_addr('Python爱好者<%s>' % from_addr) # 收件人 msg['To'] = _format_addr('管理员<%s>' % to_addr) # 主题 msg['Subject'] = Header('来自SMTP的问候...', 'utf-8').encode() # 邮件对象 msg = MIMEMultipart() msg = MIMEMultipart('alternative') msg['From'] = _format_addr('Python爱好者<%s>' % from_addr) msg['To'] = _format_addr('管理员<%s>' % to_addr) msg['Subject'] = Header('来自SMTP的问候。。。', 'utf-8').encode() # 邮件正文是MIMEText: msg.attach(MIMEText('send with file...', 'plain', 'utf-8')) msg.attach(MIMEText('<html><body><h1>Hello</h1>' + '<p><img src="cid:0"></p>' + '</body></html>', 'html', 'utf-8')) with open('/Users/doc88/Desktop/banner.png', 'rb') as f: # 设置附件和MIME,从本地读取一个图片 mime = MIMEBase('image', 'jpeg', filename='banner.png') # 加上必要的头信息: mime.add_header('Content-Disposition', 'attachment', filename='banner.png') mime.add_header('Content-ID', '<0>') mime.add_header('X-Attachment-Id', '0') # 把附件的内容读进来: mime.set_payload(f.read()) # 用Base64编码: encoders.encode_base64(mime) # 添加到MIMEMultipart: msg.attach(mime) try: # 发送邮件 # 创建服务器 server = smtplib.SMTP_SSL(smtp_server, 465) # 打印出和SMTP服务器所有的交互信息 server.set_debuglevel(1) # 登录服务器 server.login(from_addr, password) # 发送邮件 # 发件账户,收件账户,内容 server.sendmail(from_addr, [to_addr], msg.as_string()) # 退出服务器 server.quit() print('Success!') except smtplib.SMTPException as e: print('Fail,%s' % e)
28.22619
79
0.634753
0
0
0
0
0
0
0
0
1,380
0.497656
7bcea7388e12344b8c218c07128ff9fb1cd5ed79
1,519
py
Python
yat-master/pymodule/common_sql/plain_parser/reader.py
opengauss-mirror/Yat
aef107a8304b94e5d99b4f1f36eb46755eb8919e
[ "MulanPSL-1.0" ]
null
null
null
yat-master/pymodule/common_sql/plain_parser/reader.py
opengauss-mirror/Yat
aef107a8304b94e5d99b4f1f36eb46755eb8919e
[ "MulanPSL-1.0" ]
null
null
null
yat-master/pymodule/common_sql/plain_parser/reader.py
opengauss-mirror/Yat
aef107a8304b94e5d99b4f1f36eb46755eb8919e
[ "MulanPSL-1.0" ]
null
null
null
#!/usr/bin/env python # encoding=utf-8 """ Copyright (c) 2021 Huawei Technologies Co.,Ltd. openGauss is licensed under Mulan PSL v2. You can use this software according to the terms and conditions of the Mulan PSL v2. You may obtain a copy of Mulan PSL v2 at: http://license.coscl.org.cn/MulanPSL2 THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. See the Mulan PSL v2 for more details. """ class PlainReader: def __init__(self, content): if isinstance(content, (str, )): self.content = content.splitlines(keepends=False) else: self.content = content self.content_iter = iter(self.content) self._cache = None def next_line(self): if self._cache is None: return next(self.content_iter) else: swap = self._cache self._cache = None return swap def top_line(self): if self._cache is None: self._cache = next(self.content_iter) return self._cache def skip_line(self): if self._cache is None: next(self.content_iter) else: self._cache = None def has_next(self): try: if self._cache is None: self._cache = next(self.content_iter) return True except StopIteration: return False
27.125
84
0.623436
960
0.631995
0
0
0
0
0
0
553
0.364055
7bcfdbc346740098cdd0e1ea01a84bd850dcb6f3
2,895
py
Python
web/admin.py
dschien/greendoors-web
26a10e909e6447f1709d27e58340f08372ce8f26
[ "MIT" ]
null
null
null
web/admin.py
dschien/greendoors-web
26a10e909e6447f1709d27e58340f08372ce8f26
[ "MIT" ]
2
2020-06-05T17:29:54.000Z
2021-06-10T18:58:13.000Z
web/admin.py
dschien/greendoors-web
26a10e909e6447f1709d27e58340f08372ce8f26
[ "MIT" ]
null
null
null
__author__ = 'schien' from django.contrib import admin from django.contrib.auth.admin import UserAdmin from django.contrib.auth.models import User from django.contrib.admin import BooleanFieldListFilter from api.models import Scan, Measure, InstalledMeasure, MeasureCategory, App, MessageThread, RedirectUrl, TrackableURL, Click, UserProfile, Favourite, \ LoggerMessage from api.models import Device, House, Note, HomeOwnerProfile, Message class TrackableUrlInline(admin.StackedInline): model = TrackableURL can_delete = False # verbose_name_plural = 'House' class RedirectUrlAdmin(admin.ModelAdmin): #inlines = (TrackableUrlInline,) pass admin.site.register(RedirectUrl, RedirectUrlAdmin) admin.site.register(TrackableURL) admin.site.register(Click) class InstalledMeasureInline(admin.StackedInline): model = InstalledMeasure can_delete = False verbose_name_plural = 'House' class HouseAdmin(admin.ModelAdmin): inlines = (InstalledMeasureInline,) admin.site.register(House, HouseAdmin) class MessagesAdmin(admin.ModelAdmin): readonly_fields = ('key',) date_hierarchy = 'created' admin.site.register(Message, MessagesAdmin) admin.site.register(MessageThread) class HouseInline(admin.StackedInline): model = House can_delete = False verbose_name_plural = 'House' class CreatedDateAdmin(admin.ModelAdmin): date_hierarchy = 'created' list_filter = ('user', 'created') admin.site.register(Device, CreatedDateAdmin) admin.site.register(Scan, CreatedDateAdmin) admin.site.register(Note, CreatedDateAdmin) class ScanInline(admin.StackedInline): model = Scan extra = 0 class NoteInline(admin.StackedInline): model = Note extra = 0 class FavouriteInline(admin.StackedInline): model = Favourite extra = 0 class PhoneInline(admin.StackedInline): model = Device can_delete = False verbose_name_plural = 'Phone' extra = 0 class HomeOwnerProfileInline(admin.StackedInline): model = HomeOwnerProfile can_delete = False verbose_name_plural = 'Home Owners' extra = 0 class UserProfileAdmin(admin.ModelAdmin): model = UserProfile can_delete = False # Define a new User admin class UserAdmin(UserAdmin): inlines = (PhoneInline, HomeOwnerProfileInline, ScanInline, NoteInline, FavouriteInline) list_display = ('username', 'email', 'first_name', 'last_name', 'is_active', 'date_joined', 'is_staff') list_filter = ['is_staff', 'is_superuser', 'date_joined', 'last_login', ] # bristol admin.site.register(Measure) admin.site.register(UserProfile, UserProfileAdmin) admin.site.register(HomeOwnerProfile) admin.site.register(InstalledMeasure) admin.site.register(MeasureCategory) admin.site.register(App) admin.site.register(LoggerMessage) # frome # Re-register UserAdmin admin.site.unregister(User) admin.site.register(User, UserAdmin)
24.327731
152
0.760622
1,648
0.569257
0
0
0
0
0
0
330
0.11399
c8730231294cec0e238e9725d099edb7ac1ec02d
7,359
py
Python
compecon/basisSpline.py
daniel-schaefer/CompEcon-python
d3f66e04a7e02be648fc5a68065806ec7cc6ffd6
[ "MIT" ]
null
null
null
compecon/basisSpline.py
daniel-schaefer/CompEcon-python
d3f66e04a7e02be648fc5a68065806ec7cc6ffd6
[ "MIT" ]
null
null
null
compecon/basisSpline.py
daniel-schaefer/CompEcon-python
d3f66e04a7e02be648fc5a68065806ec7cc6ffd6
[ "MIT" ]
1
2021-06-01T03:47:35.000Z
2021-06-01T03:47:35.000Z
import numpy as np from scipy.sparse import csc_matrix, diags, tril from .basis import Basis __author__ = 'Randall' # TODO: complete this class # todo: compare performance of csr_matrix and csc_matrix to deal with sparse interpolation operators # fixme: interpolation is 25 slower than in matlab when 2 dimensions!! 2x slower with only one class BasisSpline(Basis): def __init__(self, *args, k=3, **kwargs): nargs = len(args) if nargs == 1: if isinstance(args[0], tuple): breaks = [np.sort(br) for br in args[0]] n = np.array([br.size + k - 1 for br in breaks]) a = np.array([br[0] for br in breaks]) b = np.array([br[-1] for br in breaks]) kwargs['nodetype'] = 'user' else: raise ValueError("If only 1 positional argument is provided, it must be a tuple of 'd' array-like, " + "each of them containing the breaks for one dimension.") elif nargs == 3: n, a, b = np.broadcast_arrays(*np.atleast_1d(*args)) breaks = [np.linspace(aa, bb, nn + 1 - k) for aa, bb, nn in zip(a, b, n)] kwargs['nodetype'] = 'canonical' else: txt = 'Either 1 or 3 positional arguments must be provided\n' txt += '\t1 argument -> break points\n' txt += '\t3 argument -> n, a, b' raise ValueError(txt) ''' Check inputs ''' assert ((k > 0) and type(k) is int), 'k must be a positive integer' assert np.all(n > k), 'number of nodes must exceed order of spline' assert np.all([(br.size > 1) for br in breaks]), 'breakpoint sequence must contain at least two elements' ''' Make instance ''' kwargs['basistype'] = 'spline' super().__init__(n, a, b, **kwargs) self.k = k self.breaks = breaks self._set_nodes() def _set_nodes(self): """ Sets the basis nodes :return: None """ n = self.n k = self.k self._nodes = list() for i in range(self.d): x = np.cumsum(self._augbreaks(i, k)) x = (x[k : n[i] + k] - x[:n[i]]) / k x[0] = self.a[i] x[-1] = self.b[i] self._nodes.append(x) self._expand_nodes() def _augbreaks(self, i, m,): aa = np.repeat(self.a[i], m) bb = np.repeat(self.b[i], m) return np.concatenate((aa, self.breaks[i], bb)) def _update_diff_operators(self, i, order): """ Updates the list _D of differentiation operators :param order: order of required derivative :return: None """ keys = set(self._diff_operators[i].keys()) if (order in keys) or (order == 0): return # Use previously stored values if available n = self.n[i] a = self.a[i] b = self.b[i] k = self.k assert order <= k, 'order must be less or equal to k' kk = k - 1 - min(order, 0) augbreaks = self._augbreaks(i, kk) if order > 0: def sptemp(j): temp = np.atleast_2d((k + 1 - j) / (augbreaks[k:(n + k - j)] - augbreaks[(j - 1):(n - 1)])) return diags((-temp, temp), [0, 1], (n - j, n + 1 - j)) missing_keys = set(range(1, order + 1)) - keys if 1 in missing_keys: self._diff_operators[i][1] = sptemp(1) missing_keys -= {1} missing_keys = list(missing_keys) missing_keys.sort(reverse=True) while missing_keys: j = missing_keys.pop() self._diff_operators[i][j] = np.dot(sptemp(j), self._diff_operators[i][j - 1]) else: def sptemp(j): temp = (augbreaks[(kk + 1):(kk + n - j)] - augbreaks[(kk - k + j + 1):(kk + n - k)]) / (k - j) return tril(np.tile(temp, (n - j, 1)), -1) missing_keys = set(range(order, 0)) - keys if -1 in missing_keys: self._diff_operators[i][-1] = sptemp(-1) missing_keys -= {-1} missing_keys = list(missing_keys) missing_keys.sort(reverse=False) while missing_keys: j = missing_keys.pop() self._diff_operators[i][j] = sptemp(j) * self._diff_operators[i][j + 1] """ Interpolation methods """ def _phi1d(self, i, x=None, order=0): """ Computes interpolation matrices for given data x and order of differentiation 'order' (integration if negative) :param x: evaluation points (defaults to nodes) :param order: a list of orders for differentiation (+) / integration (-) :return a: dictionary with interpolation matrices, keys given by unique elements of order. Example: Create a basis with 5 nodes, get the interpolation matrix evaluated at 20 points:: n, a, b = 5, 0, 4 x = numpy.linspace(a,b, 20) Phi = BasisSpline(n, a, b) Phi.Phi(x) Phi(x) Calling an instance directly (as in the last line) is equivalent to calling the interpolation method. """ n = self.n[i] k = self.k if order is None: order = 0 order = np.atleast_1d(order).flatten() assert np.max(order) < k, 'Derivatives defined for order less than k' nn = n + np.maximum(0, -np.min(order)) # todo review why nn is not used, weird # Check for x argument xIsProvided = (x is not None) x = x.flatten() if xIsProvided else self._nodes[i] nx = x.size minorder = np.min(order) kaug = k - minorder augbreaks = self._augbreaks(i, kaug) ind = self._lookup(augbreaks, x) # Recursively determine the values of a k-order basis matrix. # This is placed in an (m x k+1-order) matrix bas = np.zeros((kaug + 1, nx)) bas[0] = 1 Phidict = dict() for j in range(1, kaug + 1): for jj in range(j, 0, -1): b0 = augbreaks[ind + jj - j] b1 = augbreaks[ind + jj] temp = bas[jj - 1] / (b1 - b0) bas[jj] = (x - b0) * temp + bas[jj] bas[jj - 1] = (b1 - x) * temp # as now contains the order j spline basis ii = np.where((k - j) == order)[0] if ii.size > 0: ii = ii[0] oi = order[ii] # Put values in appropriate columns of a sparse matrix r = np.tile(np.arange(nx), k - oi + 1) c = np.atleast_2d(np.arange(oi - k, 1)).T + np.atleast_2d(ind) c = (c - (oi - minorder)).flatten() data = bas[:k - oi + 1].flatten() Phidict[oi] = csc_matrix((data, (r, c)), (nx, n-oi)) if oi: # If needed compute derivative or anti-derivative Phidict[oi] = Phidict[oi] * self._diff(i, oi) # todo: review, i think this will return only unique values Phi = np.array([Phidict[k] for k in order]) return Phi
36.430693
119
0.512298
7,016
0.95339
0
0
0
0
0
0
2,217
0.301264
c873b44db1fbe52cb97100b99eb41550c409cc9f
2,279
py
Python
vendors/rez-2.23.1-py2.7/rez/backport/shutilwhich.py
ColinKennedy/tk-config-default2-respawn
855fb8033daa549b92615792442f19a7f9c4f55c
[ "Linux-OpenIB" ]
4
2019-01-11T03:41:28.000Z
2019-09-12T06:57:17.000Z
vendors/rez-2.23.1-py2.7/rez/backport/shutilwhich.py
ColinKennedy/tk-config-default2-respawn
855fb8033daa549b92615792442f19a7f9c4f55c
[ "Linux-OpenIB" ]
null
null
null
vendors/rez-2.23.1-py2.7/rez/backport/shutilwhich.py
ColinKennedy/tk-config-default2-respawn
855fb8033daa549b92615792442f19a7f9c4f55c
[ "Linux-OpenIB" ]
2
2019-01-10T05:00:18.000Z
2020-02-15T16:32:56.000Z
import os import os.path import sys # Modified version from Python-3.3. 'env' environ dict override has been added. def which(cmd, mode=os.F_OK | os.X_OK, env=None): """Given a command, mode, and a PATH string, return the path which conforms to the given mode on the PATH, or None if there is no such file. `mode` defaults to os.F_OK | os.X_OK. `env` defaults to os.environ, if not supplied. """ # Check that a given file can be accessed with the correct mode. # Additionally check that `file` is not a directory, as on Windows # directories pass the os.access check. def _access_check(fn, mode): return (os.path.exists(fn) and os.access(fn, mode) and not os.path.isdir(fn)) # Short circuit. If we're given a full path which matches the mode # and it exists, we're done here. if _access_check(cmd, mode): return cmd if env is None: env = os.environ path = env.get("PATH", os.defpath).split(os.pathsep) if sys.platform == "win32": # The current directory takes precedence on Windows. if not os.curdir in path: path.insert(0, os.curdir) # PATHEXT is necessary to check on Windows. default_pathext = \ '.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.MSC' pathext = env.get("PATHEXT", default_pathext).split(os.pathsep) # See if the given file matches any of the expected path extensions. # This will allow us to short circuit when given "python.exe". matches = [cmd for ext in pathext if cmd.lower().endswith(ext.lower())] # If it does match, only test that one, otherwise we have to try # others. files = [cmd] if matches else [cmd + ext.lower() for ext in pathext] else: # On other platforms you don't have things like PATHEXT to tell you # what file suffixes are executable, so just pass on cmd as-is. files = [cmd] seen = set() for dir in path: dir = os.path.normcase(dir) if not dir in seen: seen.add(dir) for thefile in files: name = os.path.join(dir, thefile) if _access_check(name, mode): return name return None
36.174603
79
0.617376
0
0
0
0
0
0
0
0
1,102
0.483545
c876f748ac3b92bbe9dd6ace6cf8630a36ac3d08
6,469
py
Python
src/symbol_table.py
harkiratbehl/PyGM
e0a4e0b865afb607dfa0525ca386bfbe77bb6508
[ "MIT" ]
2
2019-02-13T11:30:08.000Z
2021-02-14T04:20:44.000Z
src/symbol_table.py
harkiratbehl/PyGM
e0a4e0b865afb607dfa0525ca386bfbe77bb6508
[ "MIT" ]
null
null
null
src/symbol_table.py
harkiratbehl/PyGM
e0a4e0b865afb607dfa0525ca386bfbe77bb6508
[ "MIT" ]
null
null
null
"""Defines the classes SymbolTable and SymbolTableNode""" import sys from numpy import ones class SymbolTableNode: """Defines a class SymbolTableNode which stores the nodes in the SymbolTable""" def __init__(self, name, type_name, parameters = None, size = None): """Initializes the Node""" self.name = name self.type_name = type_name if parameters is None: self.parameters = [] else: self.parameters = parameters if size is None: self.size = [] else: self.size = size def print_node(self): print "Name:", self.name, "Type:", self.type_name, "Size:", self.size if len(self.parameters) != 0: print "Parameters:" for p in self.parameters: p.print_node() class SymbolTable: """Defines a class for SymbolTable""" def __init__(self): """Initializes the SymbolTable""" self.symbol_table = { 'scope_0': { 'name': 'scope_0', 'type': 'scope_0', 'parent': None, 'identifiers': [], 'functions': [], 'allvars': [], 'nextuse': dict() } } self.var_list = [] self.next_use = dict() self.current_scope = 'scope_0' def start_scope(self, scope): """Starts a scope""" self.current_scope = scope def end_scope(self): """Ends a scope""" self.current_scope = self.symbol_table[self.current_scope]['parent'] def new_scope(self, scope_name): self.symbol_table[scope_name] = { 'name': scope_name, 'type': scope_name, 'parent': self.current_scope, 'identifiers': [], 'functions': [], 'allvars': [], 'nextuse': dict() } def add_scope(self, scope_name): """Adds a new scope to the SymbolTable""" if scope_name not in self.symbol_table.keys(): self.new_scope(scope_name) self.start_scope(scope_name) def add_identifier(self, TreeNode, scope = None, size = None): if scope is None: scope = self.current_scope for node in self.symbol_table[scope]['identifiers']: if TreeNode.data == node.name: return True newNode = SymbolTableNode(TreeNode.data, TreeNode.input_type, size = size) self.symbol_table[scope]['identifiers'] += [newNode] return True def add_function(self, name, return_type, parameters): ret = [] for t in return_type.children: ret += [t.data] params = [] for p in parameters: params += [SymbolTableNode(p.data, p.input_type)] newNode = SymbolTableNode(name, ret, params) self.symbol_table[self.current_scope]['functions'] += [newNode] return True def add_var(self, TreeNode, scope = None): if scope is None: scope = self.current_scope for node in self.symbol_table[scope]['allvars']: if TreeNode.name == node.name: return True # newNode = SymbolTableNode(TreeNode.name, TreeNode.type_name) self.symbol_table[scope]['allvars'] += [TreeNode] return True def search_identifier(self, name): scope = self.current_scope while scope != None: for node in self.symbol_table[scope]['identifiers']: if name == node.name: return scope + '_' + name scope = self.symbol_table[scope]['parent'] return False def search_function(self, name): scope = self.current_scope while scope != None: for node in self.symbol_table[scope]['functions']: if name == node.name: return scope + '_' + name scope = self.symbol_table[scope]['parent'] return False def print_symbol_table(self): """Prints the symbol table""" print '' print 'SYMBOL TABLE' for y in self.symbol_table.keys(): print y, "with parent", self.symbol_table[y]['parent'] if len(self.symbol_table[y]['identifiers']) != 0: print "Identifiers:" for x in self.symbol_table[y]['identifiers']: x.print_node() if len(self.symbol_table[y]['functions']) != 0: print "Functions:" for x in self.symbol_table[y]['functions']: x.print_node() if len(self.symbol_table[y]['allvars']) != 0: print "Allvars:" for x in self.symbol_table[y]['allvars']: x.print_node() print "" def make_var_list(self): for y in self.symbol_table.keys(): for x in self.symbol_table[y]['allvars']: if self.var_list ==[]: self.var_list += [x] else: al =0 for y in self.var_list: if y.name == x.name: al=1 if al==0: self.var_list += [x] return self.var_list def fill_next_use(self,three_address_code): line_count = three_address_code.length() # Initializing symbol_table values for each variable for var in self.var_list: self.next_use[var.name] = [sys.maxsize * ones(line_count), 0] # traversing the three_address_code in reverse order for i in range(line_count): j = line_count - i - 1 three_address_instr = three_address_code.code[j] var1 = three_address_instr[3] var2 = three_address_instr[4] for line_no in range(0, j): if var1 in self.var_list: self.next_use[var1.name][0][line_no] = j + 1 if var2 in self.var_list: self.next_use[var2.name][0][line_no] = j + 1 # def add_node(self, node): # """Adds a node to the SymbolTable""" # self.symbol_table.append(node) # def search_node(self,name): # """Searches for a node in the SymbolTable""" # for i in range(len(self.symbol_table)): # if self.symbol_table[i].name == name: # return 1 # return 0
34.227513
83
0.534549
6,372
0.985005
0
0
0
0
0
0
1,231
0.190292
c879174dc589e41a31be3771fbf140871339c500
151
py
Python
setup.py
Will-Robin/NorthNet
343238afbefd02b7255ef6013cbfb0e801bc2b3b
[ "BSD-3-Clause" ]
null
null
null
setup.py
Will-Robin/NorthNet
343238afbefd02b7255ef6013cbfb0e801bc2b3b
[ "BSD-3-Clause" ]
2
2022-02-23T12:03:32.000Z
2022-02-23T14:27:29.000Z
setup.py
Will-Robin/NorthNet
343238afbefd02b7255ef6013cbfb0e801bc2b3b
[ "BSD-3-Clause" ]
null
null
null
from setuptools import setup, version setup( name="NorthNet", version="0.0", author="William E. Robinson", packages = ["NorthNet"], )
16.777778
37
0.635762
0
0
0
0
0
0
0
0
46
0.304636
c87b5c6d8dff26ac4e6274273976c58563c8553b
13,380
py
Python
clustering/runner.py
kburnik/naps-clustering
8ceaad61e7f1c3d76ad9e7c7491b705b936a6f19
[ "MIT" ]
null
null
null
clustering/runner.py
kburnik/naps-clustering
8ceaad61e7f1c3d76ad9e7c7491b705b936a6f19
[ "MIT" ]
null
null
null
clustering/runner.py
kburnik/naps-clustering
8ceaad61e7f1c3d76ad9e7c7491b705b936a6f19
[ "MIT" ]
null
null
null
"""Class with high-level methods for processing NAPS and NAPS BE datasets.""" from config import DATA_NAPS_BE_ALL from lib import partition_naps from lib import plot from lib import plot_clusters from lib import plot_clusters_with_probability from lib import plot_setup from lib import read_naps from lib import read_naps_be from lib import reindex_partitions import json import matplotlib.pyplot as plt import numpy as np import os import scipy import sklearn class Runner: """Provides methods for processing NAPS with the clustering algorithm.""" def __init__(self, input_data, config): self.input_data = input_data self.config = config def compute_raw_partitions(self): """Compute the k-means and returns the cluster index for each sample.""" kmeans = partition_naps( samples=self.input_data.samples, n_clusters=self.config.n_clusters) return kmeans.labels_ def compute_stable_partitions(self): """Same as compute_raw_partition, but with stable index coloring.""" return reindex_partitions( samples=self.input_data.samples, indices=self.compute_raw_partitions()) def compute_average_partitions(self): """ Repeats the stable colored k-means and computes the average membership of each input sample. For each sample, return the percentage of membership to a cluster, as an array of size n_clusters (Monte-Carlo simulation). """ cluster_hist = np.zeros( (self.input_data.size, self.config.n_clusters)) for k in range(self.config.n_iterations): indices = self.compute_stable_partitions() for i, cluster in enumerate(indices): cluster_hist[i][cluster] += 1 return np.divide(cluster_hist, self.config.n_iterations) def compute_stable_argmax_partitions(self): """Computes the stable partitions using the Monte-Carlo simulation, and selects the most frequent cluster based on the probability (argmax).""" indices_prob = self.compute_average_partitions() self._display_undecided_index_count(indices_prob) return np.argmax(indices_prob, axis=1) def compute_naps_results(self, num_samples=5, prefix_dir='naps-clustering'): """Saves the clustering results and plots the NAPS clusters.""" with self.config.fork() as config: p = config.n_iterations for k in range(*config.n_clusters_range): config.n_clusters = k # Partition with caching. indices = np.array(self.cached( func=self.compute_stable_argmax_partitions, prefix_dir=prefix_dir, name='naps-clustering-k=%d-p=%d' % (k, p))) # Split the input data. partitioned_data = self.partition_input_data(indices) # Save the separated datasets. partitions_filename = self.join_path( prefix_dir, 'naps-clustering-partitioned-full-k=%d-p=%d.csv' % (k, p)) with open(partitions_filename, "w") as f: for cluster, data in partitioned_data.items(): f.write(data.serialize() + "\n") # Save the chosen samples. samples_filename = self.join_path( prefix_dir, 'naps-clustering-partitioned-samples-k=%d-p=%d.csv' % (k, p)) with open(samples_filename, "w") as f: for cluster, data in partitioned_data.items(): chunk = data.reduce_to_samples(num_samples) f.write(chunk.serialize(";", use_quotes=False) + "\n") self.plot( indices=indices, filename=self.join_path( prefix_dir, 'naps-clustering-k=%d-p=%d.png' % (k, p)), output_action='save') def compute_naps_be_results( self, x_axis, y_axis, num_samples=5, prefix_dir='naps-be-clustering'): """Saves the clustering results and plots the NAPS BE clusters.""" p = self.config.n_iterations k = self.config.n_clusters # Partition with caching. indices = np.array(self.cached( func=self.compute_stable_argmax_partitions, prefix_dir=prefix_dir, name='naps-be-clustering-%s-%s-k=%d-p=%d' % (x_axis, y_axis, k, p))) # Split the input data. partitioned_data = self.partition_input_data(indices) # Save the separated datasets. partitions_filename = self.join_path( prefix_dir, 'naps-be-clustering-partitioned-full-%s-%s-k=%d-p=%d.csv' % ( x_axis, y_axis, k, p)) with open(partitions_filename, "w") as f: for cluster, data in partitioned_data.items(): f.write(data.serialize() + "\n") # Save the chosen samples. samples_filename = self.join_path( prefix_dir, 'naps-be-clustering-partitioned-samples-%s-%s-k=%d-p=%d.csv' % ( x_axis, y_axis, k, p)) with open(samples_filename, "w") as f: for cluster, data in partitioned_data.items(): chunk = data.reduce_to_samples(num_samples) f.write(chunk.serialize(";", use_quotes=False) + "\n") self.plot( indices=indices, filename=self.join_path( prefix_dir, 'naps-be-clustering-%s-%s-k=%d-p=%d.png' % (x_axis, y_axis, k, p)), output_action='save') def compute_stability_error_of_iterations(self): """Computes the stability error curve as a function of number of iterations.""" with self.config.fork() as config: return [ self._compute_stability_error_point(config.n_iterations) for config.n_iterations in range(*config.n_iterations_range) ] def compute_stability_error_of_partition_count(self): """Computes the stability error curve as a function of number of clusters.""" with self.config.fork() as config: return [ self._compute_stability_error_point(config.n_clusters) for config.n_clusters in range(*config.n_clusters_range) ] def partition_input_data(self, indices): """Splits the input data to partitions as defined by the indices.""" return self.input_data.split_on_key(lambda i, row: indices[i]) def plot(self, indices, output_action='save', filename=None): """Plots the clusters.""" if filename is None: # TODO: Add date? filename = self.join_path('out-single-run.png') plot_clusters( indices=indices, input_data=self.input_data, n_clusters=self.config.n_clusters, output_action=output_action, filename=filename) def plot_repeated( self, partition_factory, n_plots=10, name='out', prefix_dir='.'): """ Runs the partition_factory requested number of times, plots and saves the images. """ for i in range(n_plots): self.plot( indices=partition_factory(), output_action='save', filename=self.join_path(prefix_dir, '%s-%02d.png' % (name, i))) def plot_fuzzy(self, prefix_dir='.', name='out-fuzzy-simple'): """Plots the undecidable points.""" indices_prob = np.array(self.cached( func=self.compute_average_partitions, name=name, prefix_dir=prefix_dir)) plot_clusters_with_probability( indices_prob=indices_prob, input_data=self.input_data, plot_fuzzy_simple=True, output_action='save', filename=self.join_path(prefix_dir, '%s.png' % name)) def plot_cluster_number_evaluation_curve( self, evaluate, title, name, score_label, prefix_dir='.'): """Plots the evaluation curve as a function of number of clusters K.""" samples = self.input_data.samples k_range = range(*self.config.n_clusters_range) score = [evaluate(samples, k) for k in k_range] self.save_csv( data=zip(k_range, score), columns=['partition count', score_label], prefix_dir=prefix_dir, name=name) plt.figure(num=None, figsize=(16, 9), dpi=300) plt.title(title) plt.xlabel('partition count') plt.ylabel(score_label) plt.xticks(np.arange(*self.config.n_clusters_range, 2.0)) plt.plot(k_range, score) plt.grid() plt.savefig(self.join_path(prefix_dir, '%s.png' % name)) return plt def plot_stability_error_curve( self, results, title, name, xlabel, ylabel, xticks=200, yticks=5, figsize=(16, 6), dpi=300, prefix_dir='.'): plt.figure(num=None, figsize=figsize, dpi=dpi) plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.xticks(np.arange(0, 1 + max([x for x, y in results]), xticks)) plt.yticks(np.arange(0, 1 + max([y for x, y in results]), yticks)) plt.plot(*zip(*results)) plt.grid() plt.savefig( self.join_path(prefix_dir, '%s.png' % name), bbox_inches='tight') return plt def plot_multiple_cluster_number_evaluation_curves( self, input_data_list, evaluate, n_clusters_range, title, name, score_label, prefix_dir='.'): """Plots the evaluation curve for a given range of K.""" fig, ax = plot_setup() plt.title(title) plt.xlabel('partition count') plt.ylabel(score_label) plt.xticks(np.arange(*n_clusters_range, 2.0)) color = plt.cm.rainbow(np.linspace(0, 1, len(input_data_list))) k_range = range(*n_clusters_range) score_vectors = [] for i, input_data in enumerate(input_data_list): score = [evaluate(input_data.samples, k) for k in k_range] ax.plot(k_range, score, color=color[i], label=input_data.label_name) score_vectors.append(score) score_average = np.average(score_vectors, axis=0) ax.plot(k_range, score_average, color=(0, 0, 0, 1), label="Average") plt.grid() plt.legend() plt.savefig(self.join_path(prefix_dir, '%s.png' % name)) def _compute_stability_error_point(self, variable): """Computes one error point though the given number of evaluation simulations.""" cluster_hist = np.zeros( (self.input_data.size, self.config.n_clusters)) for i in range(self.config.n_evaluations): indices = self.compute_stable_argmax_partitions() for j, cluster in enumerate(indices): cluster_hist[j][cluster] += 1 total_error = self._compute_total_histogram_error( cluster_hist, self.config.n_evaluations) error_point = (variable, total_error) print(error_point) return error_point def cached(self, func, name, prefix_dir='.'): """Runs the provided method using a caching mechanism.""" filename = self.join_path(prefix_dir, '%s.cached-result.json' % name) if os.path.exists(filename): with open(filename, 'r') as f: results = json.load(f) else: results = func() with open(filename, 'w') as f: try: results = results.tolist() except: pass json.dump(results, f) return results def save_csv( self, data, columns, name, delimiter=';', prefix_dir='.', extension='.csv'): """Saves data into a CSV file.""" filename = self.join_path(prefix_dir, name + extension); def encode(item): return str(item) with open(filename, 'w') as f: f.write(delimiter.join(['"%s"' % column for column in columns]) + '\n') for row in data: f.write(delimiter.join([encode(item) for item in row]) + '\n') def join_path(self, *args): """Joins a path for an output file and creates directories if they don't exist.""" filename = os.path.join(self.config.out_dir, *args) dirname = os.path.dirname(filename) if not os.path.exists(dirname): os.makedirs(dirname, 0o755) print("I/O path:", os.path.abspath(filename)) return filename def _compute_total_histogram_error(self, hist, n_evaluations): """Computes the total error from the histogram of point cluster membership.""" hist[hist == n_evaluations] = 0 sums_per_row = (hist != 0).sum(1) return sums_per_row.sum() - np.count_nonzero(sums_per_row) def _display_undecided_index_count(self, indices_prob): """Counts and prints out how many points have appeared at the edges of clusters (the undecidability region).""" print("Undecided count:", len(list(filter( lambda row: np.max(row) == 0.5, indices_prob)))) @staticmethod def compute_silhouette_score(samples, n_clusters): """Computes the silhouette score for a provided clustering result.""" kmeans = partition_naps(samples, n_clusters) return sklearn.metrics.silhouette_score( samples, kmeans.labels_, metric='euclidean') @staticmethod def stream_naps_be( config, x_dimensions, y_dimensions, x_dimension_names, y_dimension_names): """Generates datasets for chosen pairs of dimensions.""" for i in range(len(x_dimensions)): for j in range(len(y_dimensions)): if len(x_dimensions) == len(y_dimensions) and j <= i: continue x_axis, y_axis = x_dimensions[i], y_dimensions[j] x_name, y_name = x_dimension_names[i], y_dimension_names[j] input_data = read_naps_be( DATA_NAPS_BE_ALL, label_field="label", x_axis=x_axis, y_axis=y_axis, label_name="Label", x_name=x_name, y_name=y_name) yield Runner(input_data=input_data, config=config), x_axis, y_axis
34.307692
78
0.65568
12,915
0.965247
773
0.057773
1,092
0.081614
0
0
2,870
0.214499
c87d1cba2782a99d03e9fe56c04a83d537ce2a1a
2,936
py
Python
Algorithms_medium/1618. Maximum Font to Fit a Sentence in a Screen.py
VinceW0/Leetcode_Python_solutions
09e9720afce21632372431606ebec4129eb79734
[ "Xnet", "X11" ]
4
2020-08-11T20:45:15.000Z
2021-03-12T00:33:34.000Z
Algorithms_medium/1618. Maximum Font to Fit a Sentence in a Screen.py
VinceW0/Leetcode_Python_solutions
09e9720afce21632372431606ebec4129eb79734
[ "Xnet", "X11" ]
null
null
null
Algorithms_medium/1618. Maximum Font to Fit a Sentence in a Screen.py
VinceW0/Leetcode_Python_solutions
09e9720afce21632372431606ebec4129eb79734
[ "Xnet", "X11" ]
null
null
null
""" 1618. Maximum Font to Fit a Sentence in a Screen Medium You are given a string text. We want to display text on a screen of width w and height h. You can choose any font size from array fonts, which contains the available font sizes in ascending order. You can use the FontInfo interface to get the width and height of any character at any available font size. The FontInfo interface is defined as such: interface FontInfo { // Returns the width of character ch on the screen using font size fontSize. // O(1) per call public int getWidth(int fontSize, char ch); // Returns the height of any character on the screen using font size fontSize. // O(1) per call public int getHeight(int fontSize); } The calculated width of text for some fontSize is the sum of every getWidth(fontSize, text[i]) call for each 0 <= i < text.length (0-indexed). The calculated height of text for some fontSize is getHeight(fontSize). Note that text is displayed on a single line. It is guaranteed that FontInfo will return the same value if you call getHeight or getWidth with the same parameters. It is also guaranteed that for any font size fontSize and any character ch: getHeight(fontSize) <= getHeight(fontSize+1) getWidth(fontSize, ch) <= getWidth(fontSize+1, ch) Return the maximum font size you can use to display text on the screen. If text cannot fit on the display with any font size, return -1. Example 1: Input: text = "helloworld", w = 80, h = 20, fonts = [6,8,10,12,14,16,18,24,36] Output: 6 Example 2: Input: text = "leetcode", w = 1000, h = 50, fonts = [1,2,4] Output: 4 Example 3: Input: text = "easyquestion", w = 100, h = 100, fonts = [10,15,20,25] Output: -1 Constraints: 1 <= text.length <= 50000 text contains only lowercase English letters. 1 <= w <= 107 1 <= h <= 104 1 <= fonts.length <= 105 1 <= fonts[i] <= 105 fonts is sorted in ascending order and does not contain duplicates. """ # """ # This is FontInfo's API interface. # You should not implement it, or speculate about its implementation # """ #class FontInfo(object): # Return the width of char ch when fontSize is used. # def getWidth(self, fontSize, ch): # """ # :type fontSize: int # :type ch: char # :rtype int # """ # # def getHeight(self, fontSize): # """ # :type fontSize: int # :rtype int # """ class Solution: def maxFont(self, text: str, w: int, h: int, fonts: List[int], fontInfo : 'FontInfo') -> int: def check(fs): if fontInfo.getHeight(fs) > h: return False if sum(fontInfo.getWidth(fs, c) for c in text) > w: return False return True l, r = -1, len(fonts) - 1 while l < r: m = r - (r - l) // 2 if check(fonts[m]): l = m else: r = m - 1 return fonts[l] if l > -1 else -1
32.622222
260
0.642711
562
0.191417
0
0
0
0
0
0
2,365
0.805518
c880853878e1cff80cb76bcab65d294bfff7d0f4
6,407
py
Python
climateeconomics/sos_wrapping/sos_wrapping_dice/tempchange/tempchange_discipline.py
os-climate/witness-core
3ef9a44d86804c5ad57deec3c9916348cb3bfbb8
[ "MIT", "Apache-2.0", "BSD-3-Clause" ]
1
2022-01-14T06:37:42.000Z
2022-01-14T06:37:42.000Z
climateeconomics/sos_wrapping/sos_wrapping_dice/tempchange/tempchange_discipline.py
os-climate/witness-core
3ef9a44d86804c5ad57deec3c9916348cb3bfbb8
[ "MIT", "Apache-2.0", "BSD-3-Clause" ]
null
null
null
climateeconomics/sos_wrapping/sos_wrapping_dice/tempchange/tempchange_discipline.py
os-climate/witness-core
3ef9a44d86804c5ad57deec3c9916348cb3bfbb8
[ "MIT", "Apache-2.0", "BSD-3-Clause" ]
null
null
null
''' Copyright 2022 Airbus SAS Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' from sos_trades_core.execution_engine.sos_discipline import SoSDiscipline from climateeconomics.core.core_dice.tempchange_model import TempChange from sos_trades_core.tools.post_processing.charts.two_axes_instanciated_chart import InstanciatedSeries, TwoAxesInstanciatedChart from sos_trades_core.tools.post_processing.charts.chart_filter import ChartFilter import pandas as pd class TempChangeDiscipline(SoSDiscipline): " Temperature evolution" # ontology information _ontology_data = { 'label': 'Temperature Change DICE Model', 'type': 'Research', 'source': 'SoSTrades Project', 'validated': '', 'validated_by': 'SoSTrades Project', 'last_modification_date': '', 'category': '', 'definition': '', 'icon': 'fas fa-thermometer-three-quarters fa-fw', 'version': '', } DESC_IN = { 'year_start': {'type': 'int', 'visibility': 'Shared', 'namespace': 'ns_dice'}, 'year_end': {'type': 'int', 'visibility': 'Shared', 'namespace': 'ns_dice'}, 'time_step': {'type': 'int', 'visibility': 'Shared', 'namespace': 'ns_dice'}, 'init_temp_ocean': {'type': 'float', 'default': 0.00687}, 'init_temp_atmo': {'type': 'float', 'default': 0.85}, 'eq_temp_impact': {'type': 'float', 'default': 3.1}, 'init_forcing_nonco': {'type': 'float', 'default': 0.5}, 'hundred_forcing_nonco': {'type': 'float', 'default': 1 }, 'climate_upper': {'type': 'float', 'default': 0.1005}, 'transfer_upper': {'type': 'float', 'default': 0.088}, 'transfer_lower': {'type': 'float', 'default': 0.025}, 'forcing_eq_co2': {'type': 'float', 'default': 3.6813}, 'lo_tocean': {'type': 'float', 'default': -1}, 'up_tatmo': {'type': 'float', 'default': 12}, 'up_tocean': {'type': 'float', 'default' : 20}, 'carboncycle_df': {'type': 'dataframe', 'visibility': 'Shared', 'namespace': 'ns_scenario'}} DESC_OUT = { 'temperature_df': {'type': 'dataframe', 'visibility': 'Shared', 'namespace': 'ns_scenario'}} _maturity = 'Research' def run(self): ''' model execution ''' # get inputs in_dict = self.get_sosdisc_inputs() # carboncycle_df = in_dict.pop('carboncycle_df') # model execution model = TempChange() temperature_df = model.compute(in_dict) # store output data out_dict = {"temperature_df": temperature_df} self.store_sos_outputs_values(out_dict) def get_chart_filter_list(self): # For the outputs, making a graph for tco vs year for each range and for specific # value of ToT with a shift of five year between then chart_filters = [] chart_list = ['temperature evolution'] # First filter to deal with the view : program or actor chart_filters.append(ChartFilter( 'Charts', chart_list, chart_list, 'charts')) return chart_filters def get_post_processing_list(self, chart_filters=None): # For the outputs, making a graph for tco vs year for each range and for specific # value of ToT with a shift of five year between then instanciated_charts = [] # Overload default value with chart filter if chart_filters is not None: for chart_filter in chart_filters: if chart_filter.filter_key == 'charts': chart_list = chart_filter.selected_values if 'temperature evolution' in chart_list: to_plot = ['temp_atmo', 'temp_ocean'] temperature_df = self.get_sosdisc_outputs('temperature_df') temperature_df = resize_df(temperature_df) legend = {'temp_atmo': 'atmosphere temperature', 'temp_ocean': 'ocean temperature'} years = list(temperature_df.index) year_start = years[0] year_end = years[len(years) - 1] max_value = 0 min_value = 0 for key in to_plot: max_value = max(temperature_df[key].values.max(), max_value) min_value = min(temperature_df[key].values.min(), min_value) chart_name = 'temperature evolution over the years' new_chart = TwoAxesInstanciatedChart('years', 'temperature evolution (degrees Celsius above preindustrial)', [year_start - 5, year_end + 5], [ min_value * 0.9, max_value * 1.1], chart_name) for key in to_plot: visible_line = True ordonate_data = list(temperature_df[key]) new_series = InstanciatedSeries( years, ordonate_data, legend[key], 'lines', visible_line) new_chart.series.append(new_series) instanciated_charts.append(new_chart) return instanciated_charts def resize_df(df): index = df.index i = len(index) - 1 key = df.keys() to_check = df.loc[index[i], key[0]] while to_check == 0: i = i - 1 to_check = df.loc[index[i], key[0]] size_diff = len(index) - i new_df = pd.DataFrame() if size_diff == 0: new_df = df else: for element in key: new_df[element] = df[element][0:i + 1] new_df.index = index[0: i + 1] return new_df def resize_array(array): i = len(array) - 1 to_check = array[i] while to_check == 0: i = i - 1 to_check = to_check = array[i] size_diff = len(array) - i new_array = array[0:i] return new_array def resize_index(index, array): l = len(array) new_index = index[0:l] return new_index
33.025773
129
0.605119
4,654
0.726393
0
0
0
0
0
0
2,442
0.381146
c8813251417f083ef4764a6d0d80104c34d5a26a
56,368
py
Python
pymkm/pymkm_app.py
Guibod/pymkm
58ac805c8072979f3059c7faafc264386ae98141
[ "MIT" ]
null
null
null
pymkm/pymkm_app.py
Guibod/pymkm
58ac805c8072979f3059c7faafc264386ae98141
[ "MIT" ]
null
null
null
pymkm/pymkm_app.py
Guibod/pymkm
58ac805c8072979f3059c7faafc264386ae98141
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """ The PyMKM example app. """ __author__ = "Andreas Ehrlund" __version__ = "2.0.4" __license__ = "MIT" import os import csv import json import shelve import logging import logging.handlers import pprint import uuid import sys from datetime import datetime import micromenu import progressbar import requests import tabulate as tb from pkg_resources import parse_version from .pymkm_helper import PyMkmHelper from .pymkmapi import PyMkmApi, CardmarketError class PyMkmApp: logger = None def __init__(self, config=None): self.logger = logging.getLogger(__name__) # self.logger.setLevel(logging.INFO) formatter = logging.Formatter( "%(asctime)s - %(name)s - %(levelname)s - %(message)s" ) fh = logging.handlers.RotatingFileHandler( f"log_pymkm.log", maxBytes=500000, backupCount=2 ) fh.setLevel(logging.WARNING) fh.setFormatter(formatter) self.logger.addHandler(fh) sh = logging.StreamHandler() sh.setLevel(logging.ERROR) # This gets outputted to stdout sh.setFormatter(formatter) self.logger.addHandler(sh) if config is None: self.logger.debug(">> Loading config file") try: self.config = json.load(open("config.json")) # Sync missing attributes to active config template_config = json.load(open("config_template.json")) template_config.update(self.config) self.config = template_config except FileNotFoundError: self.logger.error( "You must copy config_template.json to config.json and populate the fields." ) sys.exit(0) # if no UUID is present, generate one and add it to the file if "uuid" not in self.config: self.config["uuid"] = str(uuid.uuid4()) with open("config.json", "w") as json_config_file: json.dump(self.config, json_config_file, indent=2) else: self.config = config self.DEV_MODE = False try: self.DEV_MODE = self.config["dev_mode"] except Exception as err: pass fh.setLevel(self.config["log_level"]) self.logger.setLevel(self.config["log_level"]) self.api = PyMkmApi(config=self.config) def report(self, command): uuid = self.config["uuid"] # if self.config["reporting"] and not self.DEV_MODE: # try: # r = requests.post( # "https://andli-stats-server.herokuapp.com/pymkm", # json={"command": command, "uuid": uuid, "version": __version__}, # ) # except Exception as err: # self.logger.error("Connection error to stats server.") # pass pass def check_latest_version(self): latest_version = None try: r = requests.get("https://api.github.com/repos/andli/pymkm/releases/latest") latest_version = r.json()["tag_name"] except Exception as err: self.logger.error("Connection error with github.com") if parse_version(__version__) < parse_version(latest_version): return f"Go to Github and download version {latest_version}! It's better!" else: return None def start(self, args=None): if not len(sys.argv) > 1: # if args have been passed while True: top_message = self.check_latest_version() if hasattr(self, "DEV_MODE") and self.DEV_MODE: top_message = "dev mode" menu = micromenu.Menu( f"PyMKM {__version__}", top_message, f"API calls used today: {self.api.requests_count}/{self.api.requests_max}", cycle=False, ) menu.add_function_item( "Update stock prices", self.update_stock_prices_to_trend, {"api": self.api, "cli_called": False}, ) menu.add_function_item( "Update price for a product", self.update_product_to_trend, {"api": self.api}, ) menu.add_function_item( "List competition for a product", self.list_competition_for_product, {"api": self.api}, ) menu.add_function_item( "Find deals from a user", self.find_deals_from_user, {"api": self.api}, ) menu.add_function_item( f"Show top {self.config['show_top_x_expensive_items']} expensive items in stock", self.show_top_expensive_articles_in_stock, { "num_articles": self.config["show_top_x_expensive_items"], "api": self.api, }, ) menu.add_function_item( "Wantslists cleanup suggestions", self.clean_purchased_from_wantslists, {"api": self.api}, ) menu.add_function_item( "Show account info", self.show_account_info, {"api": self.api} ) menu.add_function_item( "Clear entire stock (WARNING)", self.clear_entire_stock, {"api": self.api}, ) menu.add_function_item( f"Import stock from {self.config['csv_import_filename']}", self.import_from_csv, {"api": self.api}, ) menu.add_function_item( f"Track price data to {self.config['csv_prices_filename']}", self.track_prices_to_csv, {"api": self.api}, ) if self.DEV_MODE: menu.add_function_item( f"⚠ Check product id", self.check_product_id, {"api": self.api}, ) menu.add_function_item( f"⚠ Add fake stock", self.add_fake_stock, {"api": self.api}, ) if self.api.requests_count < self.api.requests_max: break_signal = menu.show() else: menu.print_menu() self.logger.error("Out of quota, exiting app.") sys.exit(0) if break_signal: break else: # command line interface if args.price_check_wantslist: self.track_prices_to_csv( self.api, args.price_check_wantslist, args.cached ) if args.update_stock: self.update_stock_prices_to_trend( self.api, args.update_stock, args.cached, args.partial ) def check_product_id(self, api): """ Dev function check on a product id. """ pid = int(PyMkmHelper.prompt_string("pid")) product_json = api.get_product(pid) del product_json["product"]["reprint"] del product_json["product"]["links"] pp = pprint.PrettyPrinter() pp.pprint(product_json) def add_fake_stock(self, api): """ Dev function to add fake stock. """ range_start = int(PyMkmHelper.prompt_string("Range pid start")) range_end = int(PyMkmHelper.prompt_string("Range pid end")) if PyMkmHelper.prompt_bool("Sure?"): print("Adding fake stock...") product_list = [] for product_no in range(range_start, range_end): product_list.append( { "idProduct": product_no, "idLanguage": 1, "count": 1, "price": 1, "comments": "TEST ARTICLE DO NOT BUY", "condition": "PO", "isFoil": "false", } ) api.add_stock(product_list) def clean_json_for_upload(self, not_uploadable_json): for entry in not_uploadable_json: del entry["price_diff"] del entry["old_price"] del entry["name"] return not_uploadable_json def update_stock_prices_to_trend(self, api, cli_called, cached=None, partial=0): """ This function updates all prices in the user's stock to TREND. """ self.report("update stock price to trend") stock_list = self.get_stock_as_array(self.api, cli_called, cached) already_checked_articles = PyMkmHelper.read_from_cache( self.config["local_cache_filename"], "partial_updated" ) if already_checked_articles: print( f"{len(already_checked_articles)} articles found in previous updates, ignoring those." ) partial_stock_update_size = 0 if partial > 0: partial_stock_update_size = partial elif not cli_called: partial_status_string = "" if already_checked_articles: partial_status_string = ( f"({len(already_checked_articles)}/{len(stock_list)} done)" ) partial_stock_update_size = PyMkmHelper.prompt_string( f"Partial update? {partial_status_string} \n" + "If so, enter number of cards (or press Enter to update all remaining stock)" ) if partial_stock_update_size != "": partial_stock_update_size = int(partial_stock_update_size) else: partial_stock_update_size = 0 if cli_called or self.config["never_undercut_local_market"]: undercut_local_market = False else: undercut_local_market = PyMkmHelper.prompt_bool( "Try to undercut local market? (slower, more requests)" ) uploadable_json, checked_articles = self.calculate_new_prices_for_stock( stock_list, undercut_local_market, partial_stock_update_size, already_checked_articles, api=self.api, ) cache_size = 0 if checked_articles: cache_size = PyMkmHelper.append_to_cache( self.config["local_cache_filename"], "partial_updated", checked_articles, ) if cache_size == len(stock_list): PyMkmHelper.clear_cache( self.config["local_cache_filename"], "partial_updated" ) print( f"Entire stock updated in partial updates. Partial update data cleared." ) if len(uploadable_json) > 0: self.display_price_changes_table(uploadable_json) if cli_called or PyMkmHelper.prompt_bool( "Do you want to update these prices?" ): print("Updating prices...") api.set_stock(uploadable_json) print("Prices updated.") else: print("Prices not updated.") else: print("No prices to update.") self.logger.debug("-> update_stock_prices_to_trend: Done") def __filter(self, article_list): sticky_price_char = self.config["sticky_price_char"] # if we find the sticky price marker, filter out articles def filtered(stock_item): if stock_item.get("comments"): return stock_item.get("comments").startswith(sticky_price_char) else: return False filtered_articles = [x for x in article_list if not filtered(x)] return filtered_articles def update_product_to_trend(self, api): """ This function updates one product in the user's stock to TREND. """ self.report("update product price to trend") search_string = PyMkmHelper.prompt_string("Search product name") try: articles = api.find_stock_article(search_string, 1) except Exception as err: print(err) filtered_articles = self.__filter(articles) ### --- refactor? if not filtered_articles: print(f"{len(articles)} articles found, no editable prices.") else: if len(filtered_articles) > 1: article = self.select_from_list_of_articles(filtered_articles) else: article = filtered_articles[0] found_string = f"Found: {article['product']['enName']}" if article["product"].get("expansion"): found_string += f"[{article['product'].get('expansion')}] " if article["isFoil"]: found_string += f"[foil: {article['isFoil']}] " if article["comments"]: found_string += f"[comment: {article['comments']}] " else: found_string += "." print(found_string) undercut_local_market = PyMkmHelper.prompt_bool( "Try to undercut local market? (slower, more requests)" ) product = self.api.get_product(article["idProduct"]) r = self.update_price_for_article( article, product, undercut_local_market, api=self.api ) if r: self.draw_price_changes_table([r]) print( "\nTotal price difference: {}.".format( str( round( sum(item["price_diff"] * item["count"] for item in [r]), 2, ) ) ) ) if PyMkmHelper.prompt_bool("Do you want to update these prices?"): # Update articles on MKM print("Updating prices...") api.set_stock(self.clean_json_for_upload([r])) print("Price updated.") else: print("Prices not updated.") else: print("No prices to update.") self.logger.debug("-> update_product_to_trend: Done") def list_competition_for_product(self, api): self.report("list competition for product") print("Note: does not support playsets, booster displays etc (yet).") search_string = PyMkmHelper.prompt_string("Search product name") is_foil = PyMkmHelper.prompt_bool("Foil?") try: result = api.find_product( search_string, **{ # 'exact ': 'true', "idGame": 1, "idLanguage": 1, # TODO: Add language support }, ) except CardmarketError as err: self.logger.error(err.mkm_msg()) print(err.mkm_msg()) else: if result: products = result stock_list_products = [ x["idProduct"] for x in self.get_stock_as_array(api=self.api) ] products = [ x for x in products if x["idProduct"] in stock_list_products ] if len(products) == 0: print("No matching cards in stock.") else: if len(products) > 1: product = self.select_from_list_of_products( [i for i in products if i["categoryName"] == "Magic Single"] ) elif len(products) == 1: product = products[0] self.show_competition_for_product( product["idProduct"], product["enName"], is_foil, api=self.api ) else: print("No results found.") self.logger.debug("-> list_competition_for_product: Done") def find_deals_from_user(self, api): self.report("find deals from user") search_string = PyMkmHelper.prompt_string("Enter username") try: result = api.find_user_articles(search_string) except CardmarketError as err: self.logger.error(err.mkm_msg()) print(err.mkm_msg()) else: filtered_articles = [x for x in result if x.get("price") > 1] # language from configured filter language_filter_string = self.config["search_filters"]["language"] if language_filter_string: language_filter_code = api.get_language_code_from_string( language_filter_string ) if language_filter_code: filtered_articles = [ x for x in filtered_articles if x.get("language").get("idLanguage") == language_filter_code ] sorted_articles = sorted( filtered_articles, key=lambda x: x["price"], reverse=True ) print( f"User '{search_string}' has {len(sorted_articles)} articles that meet the criteria." ) num_searches = int( PyMkmHelper.prompt_string( f"Searching top X expensive cards for deals, choose X (1-{len(sorted_articles)})" ) ) if 1 <= num_searches <= len(sorted_articles): table_data = [] products_to_get = [] index = 0 bar = progressbar.ProgressBar(max_value=num_searches) bar.update(index) products_to_get = [ x["idProduct"] for x in sorted_articles[:num_searches] ] products = api.get_items_async("products", products_to_get) for article in sorted_articles[:num_searches]: try: p = next( x for x in products if x["product"]["idProduct"] == article["idProduct"] ) except StopIteration: # Stock item not found in update batch, continuing continue name = p["product"]["enName"] expansion = p["product"].get("expansion") price = float(article["price"]) if expansion: expansion_name = expansion.get("enName") else: expansion_name = "N/A" if article.get("isFoil"): market_price = p["product"]["priceGuide"]["TRENDFOIL"] else: market_price = p["product"]["priceGuide"]["TREND"] if market_price > 0: price_diff = price - market_price percent_deal = round(-100 * (price_diff / market_price)) if price_diff < -1 or percent_deal >= 10: table_data.append( [ name, expansion_name, article.get("condition"), article.get("language").get("languageName"), "\u2713" if article.get("isFoil") else "", "\u2713" if article.get("isPlayset") else "", price, market_price, price_diff, percent_deal, ] ) index += 1 bar.update(index) bar.finish() if table_data: print("Found some interesting prices:") print( tb.tabulate( sorted(table_data, key=lambda x: x[9], reverse=True), headers=[ "Name", "Expansion", "Condition", "Language", "Foil", "Playset", "Price", "Market price", "Market diff", "Deal %", ], tablefmt="simple", ) ) else: print("Found no deals. :(") else: print("Invalid number.") self.logger.debug("-> find_deals_from_user: Done") def show_top_expensive_articles_in_stock(self, num_articles, api): self.report("show top expensive in stock") stock_list = self.get_stock_as_array(api=self.api) table_data = [] total_price = 0 for article in stock_list: name = article["product"]["enName"] expansion = article.get("product").get("expansion") foil = article.get("isFoil") playset = article.get("isPlayset") condition = article.get("condition") language_code = article.get("language") language_name = language_code.get("languageName") price = article.get("price") table_data.append( [ name, expansion, "\u2713" if foil else "", "\u2713" if playset else "", language_name, condition, price, ] ) total_price += price if len(table_data) > 0: print( f"Top {str(num_articles)} most expensive articles in stock (total {len(stock_list)} items):\n" ) print( tb.tabulate( sorted(table_data, key=lambda x: x[6], reverse=True)[:num_articles], headers=[ "Name", "Expansion", "Foil", "Playset", "Language", "Condition", "Price", ], tablefmt="simple", ) ) print("\nTotal stock value: {}".format(str(total_price))) return None def track_prices_to_csv(self, api, wantslist_name=None, cached=False): self.report("track prices") wantslists, wantslists_lists = self.get_wantslists_data(api, cached) if wantslist_name is None: selected_list = self.select_from_list_of_wantslists(wantslists) selected_list_id = selected_list["idWantslist"] else: selected_list_id = next( x["idWantslist"] for x in wantslists if x["name"] == wantslist_name ) # TODO: fails for metaproduct products_to_get = [ x["idProduct"] for x in wantslists_lists[selected_list_id] if x["type"] == "product" ] for x in wantslists_lists[selected_list_id]: if x["type"] == "metaproduct": self.logger.warning( f"Wantslist contains metaproduct ({x['metaproduct']['enName']}) which cannot be used to get prices." ) updated_products = [] try: updated_products = api.get_items_async("products", products_to_get) except Exception as err: pass # Write to CSV: if len(updated_products) > 0: # if blank, then header: datetime, productid, priceguide labels example_priceguide = updated_products[0]["product"]["priceGuide"] priceguide_header_items = [k for k in example_priceguide.keys()] header_list = [ "datetime", "product id", "name", "expansion", ] header_list.extend(priceguide_header_items) data_array = [] for product in updated_products: price_data_exploded = [ k for k in product["product"]["priceGuide"].values() ] data_row = [ datetime.now().isoformat(" "), product["product"]["idProduct"], product["product"]["enName"], product["product"]["expansion"]["enName"], ] data_row.extend(price_data_exploded) data_array.append(data_row) self.write_to_csv(header_list, data_array) def write_to_csv(self, header_list, data_array): if len(data_array) > 0: try: with open( self.config["csv_prices_filename"], "a", newline="", encoding="utf-8", ) as csv_a, open(self.config["csv_prices_filename"], "r",) as csv_r: csv_reader = csv.reader(csv_r) row_count = sum(1 for row in csv_reader) csv_writer = csv.writer(csv_a, delimiter=";") if row_count == 0: csv_writer.writerow(header_list) csv_writer.writerows(data_array) self.logger.debug( f"write_to_csv:: {len(data_array)} lines written to {self.config['csv_prices_filename']}." ) print( f"Wrote {len(data_array)} price updates to {self.config['csv_prices_filename']}." ) except Exception as err: print(err.value) def clean_purchased_from_wantslists(self, api): self.report("clean wantslists") print("This will show items in your wantslists you have already received.") wantslists, wantslists_lists = self.get_wantslists_data(api) try: print("Gettings received orders from Cardmarket...") received_orders = api.get_orders("buyer", "received", start=1) except Exception as err: print(err) if wantslists_lists and received_orders: purchased_product_ids = [] purchased_products = [] for ( order ) in received_orders: # TODO: foil in purchase removes non-foil in wants purchased_product_ids.extend( [i["idProduct"] for i in order.get("article")] ) purchased_products.extend( { "id": i["idProduct"], "foil": i.get("isFoil"), "count": i["count"], "date": order["state"]["dateReceived"], } for i in order.get("article") ) purchased_products = sorted( purchased_products, key=lambda t: t["date"], reverse=True ) total_number_of_items = sum([len(x) for x in wantslists_lists.values()]) index = 0 print("Matching received purchases with wantslists...") bar = progressbar.ProgressBar(max_value=total_number_of_items) matches = [] for key, articles in wantslists_lists.items(): metaproducts_article_list = [ x for x in articles if x.get("type") == "metaproduct" ] metaproducts_to_get = [ x["idMetaproduct"] for x in metaproducts_article_list ] metaproduct_list = api.get_items_async( "metaproducts", metaproducts_to_get ) for article in articles: a_type = article.get("type") a_foil = article.get("isFoil") == True product_matches = [] if a_type == "metaproduct": try: metaproduct = next( x for x in metaproduct_list if x["metaproduct"]["idMetaproduct"] == article["idMetaproduct"] ) except StopIteration: # Stock item not found in update batch, continuing continue metaproduct_product_ids = [ i["idProduct"] for i in metaproduct["product"] ] product_matches = [ i for i in purchased_products if i["id"] in metaproduct_product_ids and i["foil"] == a_foil ] else: a_product_id = article.get("idProduct") product_matches = [ i for i in purchased_products if i["id"] == a_product_id and i["foil"] == a_foil ] if product_matches: match = { "wantlist_id": key, "wantlist_name": wantslists[key], "date": product_matches[0]["date"], "is_foil": a_foil, "count": sum([x.get("count") for x in product_matches]), } if a_type == "product": match.update( { "product_id": a_product_id, "product_name": article.get("product").get( "enName" ), "expansion_name": article.get("product").get( "expansionName" ), } ) elif a_type == "metaproduct": match.update( { "metaproduct_id": article.get("idMetaproduct"), "product_name": article.get("metaproduct").get( "enName" ), "expansion_name": article.get("metaproduct").get( "expansionName" ), } ) matches.append(match) index += 1 bar.update(index) bar.finish() if matches: print( tb.tabulate( [ [ item["wantlist_name"], item["count"], "\u2713" if item["is_foil"] else "", item["product_name"], item["expansion_name"], item["date"], ] for item in matches ], headers=[ "Wantlist", "# bought", "Foil", "Name", "Expansion", "Date (last) received", ], tablefmt="simple", ) ) else: print("No cleanup needed.") else: print("No wantslists or received orders.") def show_account_info(self, api): self.report("show account info") pp = pprint.PrettyPrinter() pp.pprint(api.get_account()) self.logger.debug("-> show_account_info: Done") def clear_entire_stock(self, api): self.report("clear entire stock") stock_list = self.get_stock_as_array(api=self.api) if PyMkmHelper.prompt_bool( "Do you REALLY want to clear your entire stock ({} items)?".format( len(stock_list) ) ): # for article in stock_list: # article['count'] = 0 delete_list = [ {"count": x["count"], "idArticle": x["idArticle"]} for x in stock_list ] print("Clearing stock...") api.delete_stock(delete_list) self.logger.debug("-> clear_entire_stock: done") print("Stock cleared.") PyMkmHelper.clear_cache(self.config["local_cache_filename"], "stock") else: print("Aborted.") def import_from_csv(self, api): self.report("import from csv") print( "Note the required format: Card, Set name, Quantity, Foil, Language (with header row)." ) problem_cards = [] with open(self.config["csv_import_filename"], newline="") as csvfile: csv_reader = csvfile.readlines() index = 0 card_rows = (sum(1 for row in csv_reader)) - 1 bar = progressbar.ProgressBar(max_value=card_rows) self.logger.debug(f"-> import_from_csv: {card_rows} cards in csv file.") csvfile.seek(0) for row in csv_reader: row = row.rstrip() row_array = row.split(",") if index > 0: row_array = [x.strip('"') for x in row_array] try: (name, set_name, count, foil, language, *other) = row_array except Exception as err: problem_cards.append(row_array) else: foil = True if foil.lower() == "foil" else False if not self.match_card_and_add_stock( api, name, set_name, count, foil, language, *other ): problem_cards.append(row_array) bar.update(index) index += 1 bar.finish() if len(problem_cards) > 0: try: with open( "failed_imports.csv", "w", newline="", encoding="utf-8" ) as csvfile: csv_writer = csv.writer(csvfile) csv_writer.writerows(problem_cards) self.logger.debug( f"import_from_csv:: {len(problem_cards)} failed imports." ) print( f"Wrote {len(problem_cards)} failed imports to failed_imports.csv" ) print("Report failures as an issue in the pymkm GitHub repo, please!") except Exception as err: print(err.value) else: print("All cards added successfully") # End of menu item functions ============================================ def get_wantslists_data(self, api, cached=False): # Check for cached wantslists local_wantslists_cache = None PyMkmHelper.read_from_cache(self.config["local_cache_filename"], "wantslists") local_wantslists_lists_cache = None PyMkmHelper.read_from_cache( self.config["local_cache_filename"], "wantslists_lists" ) if local_wantslists_cache: if cached or PyMkmHelper.prompt_bool( f"Cached wantslists ({len(local_wantslists_cache)} items) found, use it? (if not, then it will be cleared)" ): return local_wantslists_cache, local_wantslists_lists_cache else: PyMkmHelper.clear_cache( self.config["local_cache_filename"], "wantslists" ) PyMkmHelper.clear_cache( self.config["local_cache_filename"], "wantslists_lists" ) self.get_wantslists_data(api) else: # no local cache wantslists = [] wantslists_lists = {} try: print("Gettings wantslists from Cardmarket...") wantslists = api.get_wantslists() wantslists_lists = { item["idWantslist"]: api.get_wantslist_items(item["idWantslist"])[ "item" ] for item in wantslists } except Exception as err: print(err) PyMkmHelper.store_to_cache( self.config["local_cache_filename"], "wantslists", wantslists ) PyMkmHelper.store_to_cache( self.config["local_cache_filename"], "wantslists_lists", wantslists_lists, ) return wantslists, wantslists_lists def match_card_and_add_stock( self, api, name, set_name, count, foil, language, *other ): if all(v != "" for v in [name, set_name, count]): try: possible_products = api.find_product(name, idGame="1") # ["product"] except CardmarketError as err: self.logger.error(err.mkm_msg()) print(err.mkm_msg()) except Exception as err: return False else: if len(possible_products) == 0: # no viable match return False else: product_match = [ x for x in possible_products if x["categoryName"] == "Magic Single" and self.card_equals( x["enName"], x["expansionName"], name, set_name ) ] if len(product_match) == 1: language_id = ( 1 if language == "" else api.languages.index(language) + 1 ) product = api.get_product(product_match[0]["idProduct"]) price = self.get_price_for_product( product, product_match[0]["rarity"], self.config["csv_import_condition"], foil, False, language_id=language_id, api=self.api, ) card = { "idProduct": product_match[0]["idProduct"], "idLanguage": language_id, "count": count, "price": str(price), "condition": self.config["csv_import_condition"], "isFoil": ("true" if foil else "false"), } api.add_stock([card]) return True else: # no single matching card return False else: # incomplete data from card scanner return False def card_equals(self, db_cardname, db_setname, local_cardname, local_setname): # TODO: add some sort of string distance like Levenshtein filtered_db_cardname = db_cardname.replace(",", "") filtered_db_cardname = filtered_db_cardname.replace("Æ", "Ae") if db_setname != local_setname: return False else: # filter for flip card / split card names if filtered_db_cardname == local_cardname or ( "/" in filtered_db_cardname and filtered_db_cardname.startswith(local_cardname) ): return True else: return False def select_from_list_of_wantslists(self, wantslists): index = 1 for wantlist in wantslists: print(f"{index}: {wantlist['name']} ({wantlist['game']['abbreviation']})") index += 1 choice = int(input("Choose wantslist: ")) return wantslists[choice - 1] def select_from_list_of_products(self, products): index = 1 for product in products: print( "{}: {} [{}] {}".format( index, product["enName"], product["expansionName"], product["rarity"], ) ) index += 1 choice = "" while not isinstance(choice, int) or choice > len(products): try: choice = int(input("Choose card: ")) except ValueError as err: print("Not a number.") return products[choice - 1] def select_from_list_of_articles(self, articles): index = 1 for article in articles: product = article["product"] print( f'{index}: {product["enName"]}[{product["expansion"]}], foil: {article["isFoil"]}, comment: {article["comments"]}' ) index += 1 choice = int(input("Choose card: ")) return articles[choice - 1] def show_competition_for_product(self, product_id, product_name, is_foil, api): print("Selected product: {}".format(product_name)) table_data_local, table_data = self.get_competition(api, product_id, is_foil) if table_data_local: self.print_product_top_list("Local competition:", table_data_local, 4, 20) if table_data: self.print_product_top_list("Top 20 cheapest:", table_data, 4, 20) else: print("No prices found.") def get_competition(self, api, product_id, is_foil): # TODO: Add support for playsets # TODO: Add support for card condition self.account = api.get_account()["account"] country_code = self.account["country"] config = self.config is_altered = config["search_filters"]["isAltered"] is_signed = config["search_filters"]["isSigned"] min_condition = config["search_filters"]["minCondition"] user_type = config["search_filters"]["userType"] id_language = config["search_filters"]["idLanguage"] articles = api.get_articles( product_id, **{ "isFoil": str(is_foil).lower(), "isAltered": is_altered, "isSigned": is_signed, "minCondition": min_condition, "country": country_code, "userType": user_type, "idLanguage": id_language, }, ) table_data = [] table_data_local = [] for article in articles: username = article["seller"]["username"] if article["seller"]["username"] == self.account["username"]: username = "-> " + username item = [ username, article["seller"]["address"]["country"], article["condition"], article["language"]["languageName"], article["count"], article["price"], ] if article["seller"]["address"]["country"] == country_code: table_data_local.append(item) table_data.append(item) return table_data_local, table_data def print_product_top_list(self, title_string, table_data, sort_column, rows): print(70 * "-") print("{} \n".format(title_string)) print( tb.tabulate( sorted(table_data, key=lambda x: x[sort_column], reverse=False)[:rows], headers=[ "Username", "Country", "Condition", "Language", "Count", "Price", ], tablefmt="simple", ) ) print(70 * "-") print( "Total average price: {}, Total median price: {}, Total # of articles: {}\n".format( str(PyMkmHelper.calculate_average(table_data, 4, 5)), str(PyMkmHelper.calculate_median(table_data, 4, 5)), str(len(table_data)), ) ) def calculate_new_prices_for_stock( self, stock_list, undercut_local_market, partial_stock_update_size, already_checked_articles, api, ): filtered_stock_list = self.__filter(stock_list) sticky_count = len(stock_list) - len(filtered_stock_list) # articles_in_shoppingcarts = api.get_articles_in_shoppingcarts() if already_checked_articles: filtered_stock_list = [ x for x in filtered_stock_list if x["idArticle"] not in already_checked_articles ] if len(filtered_stock_list) == 0: PyMkmHelper.clear_cache( self.config["local_cache_filename"], "partial_updated" ) print( f"Entire stock updated in partial updates. Partial update data cleared." ) return [], [] if partial_stock_update_size: filtered_stock_list = filtered_stock_list[:partial_stock_update_size] result_json = [] checked_articles = [] total_price = 0 index = 0 bar = progressbar.ProgressBar(max_value=len(filtered_stock_list)) bar.update(index) products_to_get = [x["idProduct"] for x in filtered_stock_list] product_list = api.get_items_async("products", products_to_get) product_list = [x for x in product_list if x] for article in filtered_stock_list: try: product = next( x for x in product_list if x["product"]["idProduct"] == article["idProduct"] ) except StopIteration: # Stock item not found in update batch, continuing self.logger.error( f"aid {article['idArticle']} pid {article['idProduct']} - {article['product']['enName']} {article['product']['expansion']} failed to find a product" ) continue checked_articles.append(article.get("idArticle")) updated_article = self.update_price_for_article( article, product, undercut_local_market, api=self.api ) if updated_article: result_json.append(updated_article) total_price += updated_article.get("price") else: total_price += article.get("price") index += 1 bar.update(index) bar.finish() print("Value in this update: {}".format(str(round(total_price, 2)))) if len(stock_list) != len(filtered_stock_list): print(f"Note: {sticky_count} items filtered out because of sticky prices.") return result_json, checked_articles def update_price_for_article( self, article, product, undercut_local_market=False, api=None ): new_price = self.get_price_for_product( product, article["product"].get("rarity"), article.get("condition"), article.get("isFoil", False), article.get("isPlayset", False), language_id=article["language"]["idLanguage"], undercut_local_market=undercut_local_market, api=self.api, ) if new_price: price_diff = new_price - article["price"] if price_diff != 0: return { "name": article["product"]["enName"], "isFoil": article.get("isFoil", False), "isPlayset": article.get("isPlayset", False), "language": article["language"]["languageName"], "condition": article["condition"], "old_price": article["price"], "price": new_price, "price_diff": price_diff, "idArticle": article["idArticle"], "count": article["count"], } def get_rounding_limit_for_rarity(self, rarity, product_id): rounding_limit = float(self.config["price_limit_by_rarity"]["default"]) try: rounding_limit = float(self.config["price_limit_by_rarity"][rarity.lower()]) except KeyError as err: print( f"ERROR: Unknown rarity '{rarity}' (pid: {product_id}). Using default rounding." ) return rounding_limit def get_discount_for_condition(self, condition): try: discount = float(self.config["discount_by_condition"][condition]) except KeyError as err: print(f"ERROR: Unknown condition '{condition}'.") raise err else: return discount def get_price_for_product( self, product, rarity, condition, is_foil, is_playset, language_id=1, undercut_local_market=False, api=None, ): rounding_limit = self.get_rounding_limit_for_rarity( rarity, product["product"]["idProduct"] ) if not is_foil: trend_price = product["product"]["priceGuide"]["TREND"] else: trend_price = product["product"]["priceGuide"]["TRENDFOIL"] # Set competitive price for region if undercut_local_market: table_data_local, table_data = self.get_competition( api, product["product"]["idProduct"], is_foil ) if len(table_data_local) > 0: # Undercut if there is local competition lowest_in_country = PyMkmHelper.get_lowest_price_from_table( table_data_local, 4 ) new_price = max( rounding_limit, min(trend_price, lowest_in_country - rounding_limit), ) else: # No competition in our country, set price a bit higher. new_price = trend_price * 1.2 else: # don't try to undercut local market new_price = trend_price if new_price is None: raise ValueError("No price found!") else: if is_playset: new_price = 4 * new_price old_price = new_price # Apply condition discount if condition: new_price = new_price * self.get_discount_for_condition(condition) # Round new_price = PyMkmHelper.round_up_to_multiple_of_lower_limit( rounding_limit, new_price ) return new_price def display_price_changes_table(self, changes_json): num_items = self.config["show_num_best_worst_items"] print("\nBest diffs:\n") sorted_best = sorted(changes_json, key=lambda x: x["price_diff"], reverse=True)[ :num_items ] self.draw_price_changes_table(i for i in sorted_best if i["price_diff"] > 0) print("\nWorst diffs:\n") sorted_worst = sorted(changes_json, key=lambda x: x["price_diff"])[:num_items] self.draw_price_changes_table(i for i in sorted_worst if i["price_diff"] < 0) print( "\nTotal price difference: {}.".format( # TODO: fix bug where summary is wrong str( round( sum(item["price_diff"] * item["count"] for item in sorted_best), 2, ) ) ) ) def draw_price_changes_table(self, sorted_best): print( tb.tabulate( [ [ item["count"], item["name"], "\u2713" if item["isFoil"] else "", "\u2713" if item["isPlayset"] else "", item["condition"], item["language"], item["old_price"], item["price"], item["price_diff"], ] for item in sorted_best ], headers=[ "Count", "Name", "Foil", "Playset", "Condition", "Language", "Old price", "New price", "Diff", ], tablefmt="simple", ) ) def get_stock_as_array(self, api, cli_called=False, cached=None): # Check for cached stock local_stock_cache = None local_stock_cache = PyMkmHelper.read_from_cache( self.config["local_cache_filename"], "stock" ) if local_stock_cache: if not cli_called: if PyMkmHelper.prompt_bool( f"Cached stock ({len(local_stock_cache)} items) found, use it? Note that prices may be outdated." ): return local_stock_cache else: if cached: return local_stock_cache PyMkmHelper.clear_cache(self.config["local_cache_filename"], "stock") print( "Getting your stock from Cardmarket (the API can be slow for large stock)..." ) try: d = api.get_stock() except CardmarketError as err: self.logger.error(err.mkm_msg()) print(err.mkm_msg()) sys.exit(0) # except Exception as err: # msg = f"No response from API. Error: {err}" # print(msg) # self.logger.error(msg) # sys.exit(0) else: keys = [ "idArticle", "idProduct", "product", "count", "comments", "price", "condition", "isFoil", "isPlayset", "isSigned", "language", ] stock_list = [ {x: y for x, y in article.items() if x in keys} for article in d ] print("Stock fetched.") PyMkmHelper.store_to_cache( self.config["local_cache_filename"], "stock", stock_list ) return stock_list
38.319511
168
0.482064
55,886
0.991361
0
0
0
0
0
0
11,795
0.209231
c8829aec3d5b9877236b2115916c5ca2a14ab73b
333
py
Python
Datasets/Terrain/us_ned_physio_diversity.py
monocilindro/qgis-earthengine-examples
82aea8926d34ed3f4ad4a4a345ddbd225819d28f
[ "MIT" ]
646
2019-12-03T06:09:03.000Z
2022-03-28T03:37:08.000Z
Datasets/Terrain/us_ned_physio_diversity.py
csaybar/qgis-earthengine-examples
ba8942683834d2847ff3246bdd1859b36e50fe44
[ "MIT" ]
10
2019-12-30T03:42:44.000Z
2021-05-22T07:34:07.000Z
Datasets/Terrain/us_ned_physio_diversity.py
csaybar/qgis-earthengine-examples
ba8942683834d2847ff3246bdd1859b36e50fe44
[ "MIT" ]
219
2019-12-06T02:20:53.000Z
2022-03-30T15:14:27.000Z
import ee from ee_plugin import Map dataset = ee.Image('CSP/ERGo/1_0/US/physioDiversity') physiographicDiversity = dataset.select('b1') physiographicDiversityVis = { 'min': 0.0, 'max': 1.0, } Map.setCenter(-94.625, 39.825, 7) Map.addLayer( physiographicDiversity, physiographicDiversityVis, 'Physiographic Diversity')
23.785714
54
0.738739
0
0
0
0
0
0
0
0
72
0.216216
c88407b58490b10ee7b7b9dec303ca0721d6f4c4
281
py
Python
timesheet/forms.py
pincoin/windmill
fe373e5ca27c775a926e9a5538931f9394196d90
[ "MIT" ]
null
null
null
timesheet/forms.py
pincoin/windmill
fe373e5ca27c775a926e9a5538931f9394196d90
[ "MIT" ]
7
2020-02-12T01:22:46.000Z
2021-06-10T18:43:01.000Z
timesheet/forms.py
pincoin/windmill
fe373e5ca27c775a926e9a5538931f9394196d90
[ "MIT" ]
null
null
null
from django import forms from . import models class PunchLogForm(forms.ModelForm): latitude = forms.DecimalField(widget=forms.HiddenInput()) longitude = forms.DecimalField(widget=forms.HiddenInput()) class Meta: model = models.PunchLog fields = ()
20.071429
62
0.701068
231
0.822064
0
0
0
0
0
0
0
0
c8845f1c14219b145ec8b7fa1bba57f5b2418dfb
497
py
Python
bin/base64util.py
SnowleopardXI/stash
a14f016e5b568095af8d1e78addedc562e3cde70
[ "MIT" ]
null
null
null
bin/base64util.py
SnowleopardXI/stash
a14f016e5b568095af8d1e78addedc562e3cde70
[ "MIT" ]
null
null
null
bin/base64util.py
SnowleopardXI/stash
a14f016e5b568095af8d1e78addedc562e3cde70
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import base64 print('Choose your choice:') n=''' 1:Encode string to base64 2:Decode base64 to string ''' c=int(eval(input(n))) #定义菜单变量 if c == 1: #进入菜单1的判断 print('Type string to be encoded:') inp=input() out = str(base64.encodebytes(inp.encode("utf-8")), "utf-8") print(out) # 去掉编码结果前的 b if c == 2: print('Type string to be decoded:') inp2=bytes(input(),('utf-8')) dec = base64.decodebytes(inp2) print(dec.decode())
24.85
63
0.593561
0
0
0
0
0
0
0
0
274
0.508349
c884c97e5f0b08128955897f09554f008fe34589
9,781
py
Python
Code/nebulae/lib/sc/sc.py
CarlColglazier/QB_Nebulae_V2
3326fa1c672ba0845b28cb55847bea0c9b8e9a05
[ "MIT" ]
8
2020-05-14T20:18:29.000Z
2021-08-08T15:18:28.000Z
Code/nebulae/lib/sc/sc.py
alex-thibodeau/QB_Nebulae_V2
34bcf341ea8eddaa9f9ce2e7c2d2438e00e50f54
[ "MIT" ]
null
null
null
Code/nebulae/lib/sc/sc.py
alex-thibodeau/QB_Nebulae_V2
34bcf341ea8eddaa9f9ce2e7c2d2438e00e50f54
[ "MIT" ]
null
null
null
import time, os, sys import scsynth, scosc server = 0 # reference to app's sc server process sndLoader = 0 synthon = 0 # did we start the scsythn process? ##workingpath = os.getcwd() # must be set to the right path in case something special is need sndpath = os.path.join( os.getcwd() , 'sounds' ) synthdefpath = os.path.join( os.getcwd() , 'synthdefs' ) def start( exedir='', port=57110, inputs=2, outputs=2, samplerate=44100, verbose=0, spew=0, startscsynth=0 ) : """ starts scsynth process. interfaces scsynth module. Inits the OSC communication and classes that handle it exe='', exedir='', port=57110, inputs=2, outputs=2, samplerate=44100, verbose=0, spew=0 """ global server, sndLoader # because they are init in this func exe = 'scsynth' # if none is set take workingdir as exedir on mac and windows if sys.platform == 'win32' : exe += '.exe' # add extension if exedir == '' : exedir = 'C:\Program Files\SuperCollider' elif os.uname()[0] == 'Linux' : if exedir == '' : exedir = '/usr/bin' if not os.path.isfile(os.path.join(exedir, exe)): # in case it is in /usr/bin/local print 'Error : /usr/bin/scsynth does not exist. Trying to find scsnth in /usr/local/bin...' exedir = '/usr/local/bin' elif sys.platform == 'darwin': if exedir == '' : exedir = '/Applications/SuperCollider' print "trying to run scsynth from :", exedir server = scsynth.start( #exe = exe, #exedir = exedir, port = port, #inputs = inputs, #outputs = outputs, #samplerate = samplerate, verbose = verbose, spew = spew, ) if startscsynth : # starts scsynth server process global synthon synthon = 1 server.instance = scsynth.startServer( exe = exe, exedir = exedir, port = port, inputs = inputs, outputs = outputs, samplerate = samplerate, verbose = verbose, #spew = spew, ) time.sleep(1) # wait to start up sndLoader = scsynth.Loader(server) # manages sound files def quit() : if synthon : # it was started try : server.quit() server.ensure_dead() except : print 'server was not running' def register(address, fun) : """ bind OSC address to function callback """ server.listener.register( address, fun ) # sound buffer related utilities. def loadSnd(filename, wait=False) : """ load sound buffer from current sound folder (sc.sndpath) and return buffer's id sends back /b_info labeled OSC message. The arguments to /b_info are as follows: int - buffer number int - number of frames int - number of channels """ abspath = os.path.join( sndpath, filename ) return loadSndAbs(abspath, wait) def unloadSnd(buf_id) : """ unload sound buffer from server memory by buffer id """ sndLoader.unload( buf_id, wait=False ) def loadSndAbs(path, wait=False) : """ same as loadSnd but takes absolute path to snd file """ if os.path.isfile(path) : return sndLoader.load( path, wait, b_query=True ) else : print "file %s does NOT exist" % path return 0 # classes class Synth(object) : """ wraps supercollider synthdefs /s_new args : stringdefname, synth ID (nodeID), addaction, addtargetID, args:[controlindexorname, control value] Create a new synth from a synth definition, give it an ID, and add it to the tree of nodes. There are four ways to add the node to the tree as determined by the add action argument which is defined as follows: add actions: 0 - add the new node to the the head of the group specified by the add target ID. 1 - add the new node to the the tail of the group specified by the add target ID. 2 - add the new node just before the node specified by the add target ID. 3 - add the new node just after the node specified by the add target ID. 4 - the new node replaces the node specified by the add target ID. The target node is freed. Controls may be set when creating the synth. The control arguments are the same as for the n_set command. If you send /s_new with a synth ID of -1, then the server will generate an ID for you. The server reserves all negative IDs. Since you don't know what the ID is, you cannot talk to this node directly later. So this is useful for nodes that are of finite duration and that get the control information they need from arguments and buses or messages directed to their group. In addition no notifications are sent when there are changes of state for this node, such as /go, /end, /on, /off. If you use a node ID of -1 for any other command, such as /n_map, then it refers to the most recently created node by /s_new (auto generated ID or not). This is how you can map the controls of a node with an auto generated ID. In a multi-client situation, the only way you can be sure what node -1 refers to is to put the messages in a bundle. """ loadedSynthdefs = [] def __init__(self, stringdefname='', nodeID=-1, addAction=1, addTargetID=0) : #, args=[] ) : if nodeID == -1 : server.synthpool.check() self.nodeID = server.synthpool.get() print self.nodeID, '< created node id' else : self.nodeID = nodeID self.defpath = os.path.join( synthdefpath, stringdefname+'.scsyndef' ) # the sc synth abs path if Synth.loadedSynthdefs.count(self.defpath) == 0 : # already loaded? if os.path.isfile( self.defpath ) : server.sendMsg('/d_load', self.defpath) time.sleep(0.5) #wait till loaded self.position = len(Synth.loadedSynthdefs) Synth.loadedSynthdefs.append(self.defpath) else : print 'error : synthdef %s file does NOT exist' % self.defpath server.sendMsg('/s_new', stringdefname, self.nodeID, addAction, addTargetID) def __setattr__(self, item, value): """ set a property and send it to the scsynth automatically via OSC """ object.__setattr__(self, item, value) server.sendMsg('/n_set', self.nodeID, item, value) ## def __getattr__(self, item, value): ## """ set a property and send it to the scsynth automatically via OSC ## """ ## def dothis(msg) : ## print 'play head at ', msg[3] ## ## server.listener.register( '/tr', doThis ) # call dothis function when a /tr message arrives def free(self) : ## if Synth.loadedSynthdefs.count(self.defpath) : # if there ## i = Synth.loadedSynthdefs.index(self.defpath) # only me ## Synth.loadedSynthdefs.pop(i) if self.position : Synth.loadedSynthdefs.pop(self.position) server.sendMsg("/n_free", self.nodeID) def run(self, b=1) : """ If the run flag set to zero then the node will not be executed. If the run flag is set back to one, then it will be executed. Using this method to start and stop nodes can cause a click if the node is not silent at the time run flag is toggled. """ server.sendMsg('/n_run', self.nodeID, b) class Group(object) : """ Create a new group and add it to the tree of nodes. There are four ways to add the group to the tree as determined by the add action argu- ment which is defined as follows (the same as for "/s_new"): add actions: 0 - add the new group to the the head of the group specified by the add target ID. 1 - add the new group to the the tail of the group specified by the add target ID. 2 - add the new group just before the node specified by the add target ID. 3 - add the new group just after the node specified by the add target ID. 4 - the new node replaces the node specified by the add target ID. The target node is freed. Multiple groups may be created in one command by adding arguments. """ def __init__(self, groupID=-1, addAction=1, addTargetID=0) : if groupID == -1 : server.synthpool.check() self.groupID = server.synthpool.get() else : self.groupID = groupID server.sendMsg('/g_new', self.groupID, addAction, addTargetID) def __setattr__(self, item, value): object.__setattr__(self, item, value) server.sendMsg('/n_set', self.groupID, item, value) def addToHead(self, node) : """ add node to head of group """ server.sendMsg('/g_head', self.groupdID, node.nodeID) def addToTail(self, node) : """ add node to tail of group """ server.sendMsg('/g_tail', self.groupdID, node.nodeID) def freeAll(self) : """ Frees all nodes in the group. A list of groups may be specified. """ server.sendMsg('/g_freeAll', self.groupID ) def deepFree(self) : """ traverses all groups below this group and frees all the synths. Sub-groups are not freed. """ server.sendMsg('/g_deepFree ', self.groupID)
37.190114
120
0.600552
6,235
0.63746
0
0
0
0
0
0
5,644
0.577037
c884d28504ed798c203413f680ec73fe70726669
357
py
Python
test/test_api/test_routes/test_about.py
MRmlik12/biblioteczka
3fcde24cd42d0155c3a20585d20ac0d0a7989101
[ "MIT" ]
null
null
null
test/test_api/test_routes/test_about.py
MRmlik12/biblioteczka
3fcde24cd42d0155c3a20585d20ac0d0a7989101
[ "MIT" ]
3
2021-07-29T08:34:09.000Z
2021-07-29T10:12:34.000Z
test/test_api/test_routes/test_about.py
MRmlik12/catana
3fcde24cd42d0155c3a20585d20ac0d0a7989101
[ "MIT" ]
null
null
null
import pytest from fastapi import FastAPI from httpx import AsyncClient from starlette.status import HTTP_200_OK pytestmark = pytest.mark.asyncio async def test_about_route_if_status_code_is_ok(app: FastAPI, client: AsyncClient): response = await client.request("GET", app.url_path_for("index_router")) assert response.status_code == HTTP_200_OK
29.75
83
0.809524
0
0
0
0
0
0
207
0.579832
19
0.053221
c88551ac723dd08106aa9434592b74d5d60bf757
2,614
py
Python
linefinder/job_scripts/linefinder_sightlines.py
zhafen/linefinder
0f4f36a83246f1b833d0c281e635d86be3d1eb95
[ "MIT" ]
null
null
null
linefinder/job_scripts/linefinder_sightlines.py
zhafen/linefinder
0f4f36a83246f1b833d0c281e635d86be3d1eb95
[ "MIT" ]
12
2018-08-26T14:10:18.000Z
2021-04-15T21:48:58.000Z
linefinder/job_scripts/linefinder_sightlines.py
zhafen/linefinder
0f4f36a83246f1b833d0c281e635d86be3d1eb95
[ "MIT" ]
1
2021-05-19T16:45:21.000Z
2021-05-19T16:45:21.000Z
import linefinder.linefinder as linefinder import linefinder.config as linefinder_config import linefinder.utils.file_management as file_management ######################################################################## sim_name = 'm12i' '''The simulation to run tracking on.''' tag = '{}_sightline'.format( sim_name ) '''Identifying tag used as part of the filenames. E.g. the IDs file will have the format `ids_{}.hdf5.format( tag )`. ''' # Tracking Parameters tracker_kwargs = { # What particle types to track. Typically just stars and gas. 'p_types': [ 0, 4,], # What snapshots to compile the particle tracks for. 'snum_start': 1, 'snum_end': 600, 'snum_step': 1, } file_manager = file_management.FileManager() sampler_kwargs = { 'ignore_duplicates': True, 'p_types': [ 0, 4 ], 'snapshot_kwargs': { 'sdir': file_manager.get_sim_dir( sim_name ), 'halo_data_dir': file_manager.get_halo_dir( sim_name ), 'main_halo_id': linefinder_config.MAIN_MT_HALO_ID[sim_name], 'ahf_index': 600, 'length_scale_used': 'R_vir', } } visualization_kwargs = { 'install_firefly': True, 'export_to_firefly_kwargs': { 'firefly_dir': '/work/03057/zhafen/firefly_repos/sightline', 'classifications': [ 'is_in_CGM', 'is_CGM_IGM_accretion', 'is_CGM_wind', 'is_CGM_satellite_wind', 'is_CGM_satellite_ISM', ], 'classification_ui_labels': [ 'All', 'IGMAcc', 'Wind', 'SatWind', 'Sat' ], 'tracked_properties': [ 'logT', 'logZ', 'logDen', 'vr_div_v_cool', 'logvr_div_v_cool_offset', ], 'tracked_filter_flags': [ True, ] * 5, 'tracked_colormap_flags': [ True, ] * 5, 'snum': 465, }, } # This is the actual function that runs linefinder. # In general you don't need to touch this function but if you want to, # for example, turn off one of the steps because you're rerunning and you # already did that step, you can do so below. linefinder.run_linefinder_jug( sim_name = sim_name, tag = tag, galdef = '_galdefv3', # The galdef is a set of parameters used for the galaxy linking and # classification steps. Don't touch this unless you know what you're doing. tracker_kwargs = tracker_kwargs, sampler_kwargs = sampler_kwargs, visualization_kwargs = visualization_kwargs, run_id_selecting = False, run_id_sampling = False, run_tracking = False, run_galaxy_linking = False, run_classifying = False, )
30.045977
82
0.630451
0
0
0
0
0
0
0
0
1,337
0.511477
c8864bea2e2f25d967c38986aef9fb5517d5143b
285
py
Python
SwordToOffer/SwordToOffer-PythonSolution/47_Sum_Solution.py
dingchaofan/AlgorithmSolution
46198e3f0dbda867e7b75f0d0e52be5f0181238a
[ "MIT" ]
1
2020-06-23T02:18:39.000Z
2020-06-23T02:18:39.000Z
SwordToOffer/SwordToOffer-PythonSolution/47_Sum_Solution.py
dingchaofan/AlgorithmSolution
46198e3f0dbda867e7b75f0d0e52be5f0181238a
[ "MIT" ]
null
null
null
SwordToOffer/SwordToOffer-PythonSolution/47_Sum_Solution.py
dingchaofan/AlgorithmSolution
46198e3f0dbda867e7b75f0d0e52be5f0181238a
[ "MIT" ]
1
2021-01-11T12:07:03.000Z
2021-01-11T12:07:03.000Z
# 47. 求1+2+3+...+n # 求1+2+3+...+n,要求不能使用乘除法、for、while、if、else、switch、case等关键字及条件判断语句(A?B:C)。 # -*- coding:utf-8 -*- class Solution: def Sum_Solution(self, n): # write code here res = n if(res): res += self.Sum_Solution(n-1) return res
21.923077
73
0.540351
166
0.475645
0
0
0
0
0
0
194
0.555874
c8870211f55a315e2890fcb0bc548ae67550546d
137
py
Python
apps/users/urls.py
akundev/akundotdev
98b47925b948c920789c5acebad86944162bf53a
[ "Apache-2.0" ]
null
null
null
apps/users/urls.py
akundev/akundotdev
98b47925b948c920789c5acebad86944162bf53a
[ "Apache-2.0" ]
3
2021-03-30T14:21:08.000Z
2021-07-07T03:04:26.000Z
apps/users/urls.py
almazkun/akundotdev
98b47925b948c920789c5acebad86944162bf53a
[ "Apache-2.0" ]
null
null
null
from django.urls import path from .views import AboutTemplateView urlpatterns = [path("", AboutTemplateView.as_view(), name="about")]
19.571429
67
0.759124
0
0
0
0
0
0
0
0
9
0.065693
c8879bded50ae8fbfe4e76e5d099e8ada2d7784b
2,969
py
Python
fedireads/broadcast.py
thricedotted/fedireads
a1fbba1ba31e569489378176b0894a0a8907c14c
[ "CC0-1.0" ]
null
null
null
fedireads/broadcast.py
thricedotted/fedireads
a1fbba1ba31e569489378176b0894a0a8907c14c
[ "CC0-1.0" ]
null
null
null
fedireads/broadcast.py
thricedotted/fedireads
a1fbba1ba31e569489378176b0894a0a8907c14c
[ "CC0-1.0" ]
1
2021-01-30T22:38:20.000Z
2021-01-30T22:38:20.000Z
''' send out activitypub messages ''' from base64 import b64encode from Crypto.PublicKey import RSA from Crypto.Signature import pkcs1_15 from Crypto.Hash import SHA256 from datetime import datetime import json import requests from fedireads import incoming from fedireads.settings import DOMAIN def get_recipients(user, post_privacy, direct_recipients=None): ''' deduplicated list of recipient inboxes ''' recipients = direct_recipients or [] if post_privacy == 'direct': # all we care about is direct_recipients, not followers return recipients # load all the followers of the user who is sending the message followers = user.followers.all() if post_privacy == 'public': # post to public shared inboxes shared_inboxes = set(u.shared_inbox for u in followers) recipients += list(shared_inboxes) # TODO: not every user has a shared inbox # TODO: direct to anyone who's mentioned if post_privacy == 'followers': # don't send it to the shared inboxes inboxes = set(u.inbox for u in followers) recipients += list(inboxes) return recipients def broadcast(sender, activity, recipients): ''' send out an event ''' errors = [] for recipient in recipients: try: sign_and_send(sender, activity, recipient) except requests.exceptions.HTTPError as e: # TODO: maybe keep track of users who cause errors errors.append({ 'error': e, 'recipient': recipient, 'activity': activity, }) return errors def sign_and_send(sender, activity, destination): ''' crpyto whatever and http junk ''' # TODO: handle http[s] with regex inbox_fragment = sender.inbox.replace('https://%s' % DOMAIN, '') now = datetime.utcnow().isoformat() signature_headers = [ '(request-target): post %s' % inbox_fragment, 'host: https://%s' % DOMAIN, 'date: %s' % now ] message_to_sign = '\n'.join(signature_headers) # TODO: raise an error if the user doesn't have a private key signer = pkcs1_15.new(RSA.import_key(sender.private_key)) signed_message = signer.sign(SHA256.new(message_to_sign.encode('utf8'))) signature = { 'keyId': '%s#main-key' % sender.actor, 'algorithm': 'rsa-sha256', 'headers': '(request-target) host date', 'signature': b64encode(signed_message).decode('utf8'), } signature = ','.join('%s="%s"' % (k, v) for (k, v) in signature.items()) response = requests.post( destination, data=json.dumps(activity), headers={ 'Date': now, 'Signature': signature, 'Host': 'https://%s' % DOMAIN, 'Content-Type': 'application/activity+json; charset=utf-8', }, ) if not response.ok: response.raise_for_status() incoming.handle_response(response)
32.988889
76
0.630852
0
0
0
0
0
0
0
0
890
0.299764
c887c627a5de312187bb987f26d6bea4c3b72084
733
py
Python
polls/views.py
druss16/danslist
ad06f8fa8df5936db7a60e9820f0c89a77f8879a
[ "MIT" ]
null
null
null
polls/views.py
druss16/danslist
ad06f8fa8df5936db7a60e9820f0c89a77f8879a
[ "MIT" ]
null
null
null
polls/views.py
druss16/danslist
ad06f8fa8df5936db7a60e9820f0c89a77f8879a
[ "MIT" ]
null
null
null
from django.shortcuts import render from django.http import HttpResponse from django.template import RequestContext, loader from .models import Question # Create your views here. def index(request): latest_question_list = Question.objects.order_by('-pub_date')[:5] context = {'latest_question_list': latest_question_list} return render(request, 'polls/index.html', context) def detail(request, question_id): return HttpResponse("You're looking at question %s." % question_id) def results(request, question_id): response = "You're looking at the results of the question %s." return HttpResponse(response % question_id) def vote(request, question_id): return HttpResponse("You're voting on question %s." % question_id)
29.32
68
0.777626
0
0
0
0
0
0
0
0
190
0.259209
c889096998408750f88d5b4c179ee06539614ee4
48,562
py
Python
hawc_hal/HAL.py
torresramiro350/hawc_hal
048536df22bdfa3ace2925e60d802beb76775849
[ "BSD-3-Clause" ]
null
null
null
hawc_hal/HAL.py
torresramiro350/hawc_hal
048536df22bdfa3ace2925e60d802beb76775849
[ "BSD-3-Clause" ]
null
null
null
hawc_hal/HAL.py
torresramiro350/hawc_hal
048536df22bdfa3ace2925e60d802beb76775849
[ "BSD-3-Clause" ]
null
null
null
from __future__ import division from builtins import str from builtins import range from astropy.utils.misc import isiterable from past.utils import old_div import copy import collections import numpy as np import healpy as hp import astropy.units as u import matplotlib.pyplot as plt import matplotlib as mpl from scipy.stats import poisson from astropy.convolution import Gaussian2DKernel from astropy.convolution import convolve_fft as convolve from astropy.coordinates import Angle from threeML.plugin_prototype import PluginPrototype from threeML.utils.statistics.gammaln import logfactorial from threeML.parallel import parallel_client from threeML.io.logging import setup_logger log = setup_logger(__name__) log.propagate = False from tqdm.auto import tqdm from astromodels import Parameter from hawc_hal.maptree import map_tree_factory from hawc_hal.maptree.map_tree import MapTree from hawc_hal.maptree.data_analysis_bin import DataAnalysisBin from hawc_hal.response import hawc_response_factory from hawc_hal.convolved_source import ConvolvedPointSource, \ ConvolvedExtendedSource3D, ConvolvedExtendedSource2D, ConvolvedSourcesContainer from hawc_hal.healpix_handling import FlatSkyToHealpixTransform from hawc_hal.healpix_handling import SparseHealpix from hawc_hal.healpix_handling import get_gnomonic_projection from hawc_hal.psf_fast import PSFConvolutor from hawc_hal.log_likelihood import log_likelihood from hawc_hal.util import ra_to_longitude class HAL(PluginPrototype): """ The HAWC Accelerated Likelihood plugin for 3ML. :param name: name for the plugin :param maptree: Map Tree (either ROOT or hdf5 format) :param response: Response of HAWC (either ROOT or hd5 format) :param roi: a ROI instance describing the Region Of Interest :param flat_sky_pixels_size: size of the pixel for the flat sky projection (Hammer Aitoff) """ def __init__(self, name, maptree, response_file, roi, flat_sky_pixels_size=0.17): # Store ROI self._roi = roi # Set up the flat-sky projection self.flat_sky_pixels_size=flat_sky_pixels_size self._flat_sky_projection = self._roi.get_flat_sky_projection(self.flat_sky_pixels_size) # Read map tree (data) self._maptree = map_tree_factory(maptree, roi=self._roi) # Read detector response_file self._response = hawc_response_factory(response_file) # Use a renormalization of the background as nuisance parameter # NOTE: it is fixed to 1.0 unless the user explicitly sets it free (experimental) self._nuisance_parameters = collections.OrderedDict() #self._nuisance_parameters['%s_bkg_renorm' % name] = Parameter('%s_bkg_renorm' % name, 1.0, self._nuisance_parameters[f'{name}_bkg_renorm'] = Parameter(f'{name}_bkg_renorm', 1.0, min_value=0.5, max_value=1.5, delta=0.01, desc="Renormalization for background map", free=False, is_normalization=False) # Instance parent class super(HAL, self).__init__(name, self._nuisance_parameters) self._likelihood_model = None # These lists will contain the maps for the point sources self._convolved_point_sources = ConvolvedSourcesContainer() # and this one for extended sources self._convolved_ext_sources = ConvolvedSourcesContainer() # All energy/nHit bins are loaded in memory self._all_planes = list(self._maptree.analysis_bins_labels) # The active planes list always contains the list of *indexes* of the active planes self._active_planes = None # Set up the transformations from the flat-sky projection to Healpix, as well as the list of active pixels # (one for each energy/nHit bin). We make a separate transformation because different energy bins might have # different nsides self._active_pixels = collections.OrderedDict() self._flat_sky_to_healpix_transform = collections.OrderedDict() for bin_id in self._maptree: this_maptree = self._maptree[bin_id] this_nside = this_maptree.nside this_active_pixels = roi.active_pixels(this_nside) this_flat_sky_to_hpx_transform = FlatSkyToHealpixTransform(self._flat_sky_projection.wcs, 'icrs', this_nside, this_active_pixels, (self._flat_sky_projection.npix_width, self._flat_sky_projection.npix_height), order='bilinear') self._active_pixels[bin_id] = this_active_pixels self._flat_sky_to_healpix_transform[bin_id] = this_flat_sky_to_hpx_transform # This will contain a list of PSF convolutors for extended sources, if there is any in the model self._psf_convolutors = None # Pre-compute the log-factorial factor in the likelihood, so we do not keep to computing it over and over # again. self._log_factorials = collections.OrderedDict() # We also apply a bias so that the numerical value of the log-likelihood stays small. This helps when # fitting with algorithms like MINUIT because the convergence criterium involves the difference between # two likelihood values, which would be affected by numerical precision errors if the two values are # too large self._saturated_model_like_per_maptree = collections.OrderedDict() # The actual computation is in a method so we can recall it on clone (see the get_simulated_dataset method) self._compute_likelihood_biases() # This will save a clone of self for simulations self._clone = None # Integration method for the PSF (see psf_integration_method) self._psf_integration_method = "exact" @property def psf_integration_method(self): """ Get or set the method for the integration of the PSF. * "exact" is more accurate but slow, if the position is free to vary it adds a lot of time to the fit. This is the default, to be used when the position of point sources are fixed. The computation in that case happens only once so the impact on the run time is negligible. * "fast" is less accurate (up to an error of few percent in flux) but a lot faster. This should be used when the position of the point source is free, because in that case the integration of the PSF happens every time the position changes, so several times during the fit. If you have a fit with a free position, use "fast". When the position is found, you can fix it, switch to "exact" and redo the fit to obtain the most accurate measurement of the flux. For normal sources the difference will be small, but for very bright sources it might be up to a few percent (most of the time < 1%). If you are interested in the localization contour there is no need to rerun with "exact". :param mode: either "exact" or "fast" :return: None """ return self._psf_integration_method @psf_integration_method.setter def psf_integration_method(self, mode): assert mode.lower() in ["exact", "fast"], ( "PSF integration method must be either 'exact' or 'fast'" ) self._psf_integration_method = mode.lower() def _setup_psf_convolutors(self): central_response_bins = self._response.get_response_dec_bin(self._roi.ra_dec_center[1]) self._psf_convolutors = collections.OrderedDict() for bin_id in central_response_bins: #Only set up PSF convolutors for active bins. if bin_id in self._active_planes: self._psf_convolutors[bin_id] = PSFConvolutor(central_response_bins[bin_id].psf, self._flat_sky_projection) def _compute_likelihood_biases(self): for bin_label in self._maptree: data_analysis_bin = self._maptree[bin_label] this_log_factorial = np.sum(logfactorial(data_analysis_bin.observation_map.as_partial().astype(int))) self._log_factorials[bin_label] = this_log_factorial # As bias we use the likelihood value for the saturated model obs = data_analysis_bin.observation_map.as_partial() bkg = data_analysis_bin.background_map.as_partial() sat_model = np.clip(obs - bkg, 1e-50, None).astype(np.float64) self._saturated_model_like_per_maptree[bin_label] = log_likelihood(obs, bkg, sat_model) - this_log_factorial def get_saturated_model_likelihood(self): """ Returns the likelihood for the saturated model (i.e. a model exactly equal to observation - background). :return: """ return sum(self._saturated_model_like_per_maptree.values()) def set_active_measurements(self, bin_id_min=None, bin_id_max=None, bin_list=None): """ Set the active analysis bins to use during the analysis. It can be used in two ways: - Specifying a range: if the response and the maptree allows it, you can specify a minimum id and a maximum id number. This only works if the analysis bins are numerical, like in the normal fHit analysis. For example: > set_active_measurement(bin_id_min=1, bin_id_max=9) - Specifying a list of bins as strings. This is more powerful, as allows to select any bins, even non-contiguous bins. For example: > set_active_measurement(bin_list=[list]) :param bin_id_min: minimum bin (only works for fHit analysis. For the others, use bin_list) :param bin_id_max: maximum bin (only works for fHit analysis. For the others, use bin_list) :param bin_list: a list of analysis bins to use :return: None """ # Check for legal input if bin_id_min is not None: assert bin_id_max is not None, ( "If you provide a minimum bin, you also need to provide a maximum bin." ) # Make sure they are integers bin_id_min = int(bin_id_min) bin_id_max = int(bin_id_max) self._active_planes = [] for this_bin in range(bin_id_min, bin_id_max + 1): this_bin = str(this_bin) if this_bin not in self._all_planes: raise ValueError(f"Bin {this_bin} is not contained in this maptree.") self._active_planes.append(this_bin) else: assert bin_id_max is None, ( "If you provie a maximum bin, you also need to provide a minimum bin." ) assert bin_list is not None self._active_planes = [] for this_bin in bin_list: if not this_bin in self._all_planes: raise ValueError(f"Bin {this_bin} is not contained in this maptree.") self._active_planes.append(this_bin) if self._likelihood_model: self.set_model( self._likelihood_model ) def display(self, verbose=False): """ Prints summary of the current object content. """ log.info("Region of Interest: ") log.info("-------------------") self._roi.display() log.info("") log.info("Flat sky projection: ") log.info("--------------------") log.info( f"Width x height {self._flat_sky_projection.npix_width} x {self._flat_sky_projection.npix_height} px" ) #log.info("Width x height: %s x %s px" % (self._flat_sky_projection.npix_width, # self._flat_sky_projection.npix_height)) log.info(f"Pixel sizes: {self._flat_sky_projection.pixel_size} deg") #log.info("Pixel sizes: %s deg" % self._flat_sky_projection.pixel_size) log.info("") log.info("Response: ") log.info("---------") self._response.display(verbose) log.info("") log.info("Map Tree: ") log.info("----------") self._maptree.display() log.info("") #log.info("Active energy/nHit planes ({}):".format(len(self._active_planes))) log.info(f"Active energy/nHit planes ({len(self._active_planes)}):") log.info("-------------------------------") log.info(self._active_planes) def set_model(self, likelihood_model_instance): """ Set the model to be used in the joint minimization. Must be a LikelihoodModel instance. """ self._likelihood_model = likelihood_model_instance # Reset self._convolved_point_sources.reset() self._convolved_ext_sources.reset() # For each point source in the model, build the convolution class for source in list(self._likelihood_model.point_sources.values()): this_convolved_point_source = ConvolvedPointSource(source, self._response, self._flat_sky_projection) self._convolved_point_sources.append(this_convolved_point_source) # Samewise for extended sources ext_sources = list(self._likelihood_model.extended_sources.values()) # NOTE: ext_sources evaluate to False if empty if ext_sources: # We will need to convolve self._setup_psf_convolutors() for source in ext_sources: if source.spatial_shape.n_dim == 2: this_convolved_ext_source = ConvolvedExtendedSource2D(source, self._response, self._flat_sky_projection) else: this_convolved_ext_source = ConvolvedExtendedSource3D(source, self._response, self._flat_sky_projection) self._convolved_ext_sources.append(this_convolved_ext_source) def get_excess_background(self, ra, dec, radius): """ Calculates area, excess (data - background) and model counts of source at different distance from the source. :param: radius: radial distance away from the center (degrees). :returns: tuple of numpy.ndarrays for areas, excess, model, and background this information is used in the get_radial_profile function. """ radius_radians = np.deg2rad(radius) total_counts = np.zeros(len(self._active_planes), dtype=float) background = np.zeros_like(total_counts) observation = np.zeros_like(total_counts) model = np.zeros_like(total_counts) signal = np.zeros_like(total_counts) area = np.zeros_like(total_counts) n_point_sources = self._likelihood_model.get_number_of_point_sources() n_ext_sources = self._likelihood_model.get_number_of_extended_sources() longitude = ra_to_longitude(ra) latitude = dec center = hp.ang2vec(longitude, latitude, lonlat=True) for i, energy_id in enumerate(self._active_planes): data_analysis_bin = self._maptree[energy_id] this_nside = data_analysis_bin.observation_map.nside pixels_at_radius = hp.query_disc( this_nside, center, radius_radians, inclusive=False, ) # calculate the areas per bin by the product # of pixel area by the number of pixels at each radial bin area[i] = hp.nside2pixarea(this_nside)*pixels_at_radius.shape[0] # NOTE: select active pixels according to each radial bin bin_active_pixel_indexes = np.searchsorted(self._active_pixels[energy_id], pixels_at_radius) # obtain the excess, background, and expected excess at each radial bin data = data_analysis_bin.observation_map.as_partial() bkg = data_analysis_bin.background_map.as_partial() mdl = self._get_model_map(energy_id, n_point_sources, n_ext_sources).as_partial() bin_data = np.array([data[i] for i in bin_active_pixel_indexes]) bin_bkg = np.array([bkg[i] for i in bin_active_pixel_indexes]) bin_model = np.array([mdl[i] for i in bin_active_pixel_indexes]) this_data_tot = np.sum(bin_data) this_bkg_tot = np.sum(bin_bkg) this_model_tot = np.sum(bin_model) background[i] = this_bkg_tot observation[i] = this_data_tot model[i] = this_model_tot signal[i] = this_data_tot - this_bkg_tot return area, signal, model, background def get_radial_profile( self, ra, dec, active_planes=None, max_radius=3.0, n_radial_bins=30, model_to_subtract=None, subtract_model_from_model=False, ): """ Calculates radial profiles of data - background & model. :param ra: R.A. of origin for radial profile. :param dec: Declination of origin of radial profile. :param active_planes: List of analysis over which to average; if None, use HAWC default (bins 1-9). :param: max_radius: Radius up to which the radial profile is evaluated; for the disk to calculate the gamma/hadron weights (Default: 3.0). :param n_radial_bins: Number of bins for the radial profile (Default: 30). :param model_to_subtract: Another model that is to be subtracted from the data excess (Default: None). :param subtract_model_from_model: If True and model_to_subtract is not None, subtract model from model too (Defalt: False). :return: np.arrays with the radii, model profile, data profile, data uncertainty, and list of analysis bins used. """ # default is to use all active bins if active_planes is None: active_planes = self._active_planes # Make sure we use bins with data good_planes = [plane_id in active_planes for plane_id in self._active_planes] plane_ids = set(active_planes) & set(self._active_planes) delta_r = 1.0*max_radius/n_radial_bins radii = np.array([delta_r*(r + 0.5) for r in range(0, n_radial_bins)]) # Get area of all pixels in a given circle # The area of each ring is then given by the difference between two # subsequent circe areas. area = np.array( [self.get_excess_background(ra, dec, r + 0.5*delta_r)[0] for r in radii ] ) temp = area[1:] - area[:-1] area[1:] = temp # model # convert 'top hat' excess into 'ring' excesses. model = np.array( [self.get_excess_background(ra, dec, r + 0.5*delta_r)[2] for r in radii] ) temp = model[1:] - model[:-1] model[1:] = temp # signals signal = np.array( [self.get_excess_background(ra, dec, r + 0.5*delta_r)[1] for r in radii] ) temp = signal[1:] - signal[:-1] signal[1:] = temp # backgrounds bkg = np.array( [self.get_excess_background(ra, dec, r + 0.5*delta_r)[3] for r in radii] ) temp = bkg[1:] - bkg[:-1] bkg[1:] = temp counts = signal + bkg if model_to_subtract is not None: this_model = copy.deepcopy(self._likelihood_model) self.set_model(model_to_subtract) model_subtract = np.array( [self.get_excess_background(ra, dec, r + 0.5*delta_r)[2] for r in radii] ) temp = model_subtract[1:] - model_subtract[:-1] model_subtract[1:] = temp signal -= model_subtract if subtract_model_from_model: model -= model_subtract self.set_model(this_model) # NOTE: weights are calculated as expected number of gamma-rays/number of background counts. # here, use max_radius to evaluate the number of gamma-rays/bkg counts. # The weights do not depend on the radius, but fill a matrix anyway so # there's no confusion when multiplying them to the data later. # Weight is normalized (sum of weights over the bins = 1). total_excess = np.array( self.get_excess_background(ra, dec, max_radius)[1] )[good_planes] total_model = np.array( self.get_excess_background(ra, dec, max_radius)[2] )[good_planes] total_bkg = np.array( self.get_excess_background(ra, dec, max_radius)[3] )[good_planes] w = np.divide(total_model, total_bkg) weight = np.array([w/np.sum(w) for r in radii]) # restric profiles to the user-specified analysis bins area = area[:, good_planes] signal = signal[:, good_planes] model = model[:, good_planes] counts = counts[:, good_planes] bkg = bkg[:, good_planes] # average over the analysis bins excess_data = np.average(signal/area, weights=weight, axis=1) excess_error = np.sqrt(np.sum(counts*weight*weight/(area*area), axis=1)) excess_model = np.average(model/area, weights=weight, axis=1) return radii, excess_model, excess_data, excess_error, sorted(plane_ids) def plot_radial_profile( self, ra, dec, active_planes=None, max_radius=3.0, n_radial_bins=30, model_to_subtract=None, subtract_model_from_model=False ): """ Plots radial profiles of data - background & model. :param ra: R.A. of origin for radial profile. :param dec: Declination of origin of radial profile. :param active_planes: List of analysis bins over which to average; if None, use HAWC default (bins 1-9). :param max_radius: Radius up to which the radial profile is evaluated; also used as the radius for the disk to calculate the gamma/hadron weights. Default: 3.0 :param model_to_subtract: Another model that is to be subtracted from the data excess (Default: None). :param subtract_model_from_model: If True and model_to_subtract is not None, subtract from model too (Default: False). :return: plot of data - background vs model radial profiles. """ ( radii, excess_model, excess_data, excess_error, plane_ids, ) = self.get_radial_profile( ra, dec, active_planes, max_radius, n_radial_bins, model_to_subtract, subtract_model_from_model, ) #font = { # "family":"serif", # "weight":"regular", # "size":12 #} #mpl.rc("font", **font) fig, ax = plt.subplots(figsize=(10,8)) plt.errorbar( radii, excess_data, yerr=excess_error, capsize=0, color="black", label="Excess (data-bkg)", fmt=".", ) plt.plot(radii, excess_model, color="red", label="Model") plt.legend(bbox_to_anchor=(1.0, 1.0), loc="upper right", numpoints=1) plt.axhline(0, color="deepskyblue", linestyle="--") x_limits=[0, max_radius] plt.xlim(x_limits) plt.ylabel(r"Apparent Radial Excess [sr$^{-1}$]") plt.xlabel( f"Distance from source at ({ra:0.2f} $^{{\circ}}$, {dec:0.2f} $^{{\circ}}$)" ) if len(plane_ids) == 1: title = f"Radial Profile, bin {plane_ids[0]}" else: tmptitle=f"Radial Profile, bins \n{plane_ids}" width=70 title="\n".join( tmptitle[i:i+width] for i in range(0, len(tmptitle), width) ) title=tmptitle plt.title(title) ax.grid(True) try: plt.tight_layout() except: pass return fig def display_spectrum(self): """ Make a plot of the current spectrum and its residuals (integrated over space) :return: a matplotlib.Figure """ n_point_sources = self._likelihood_model.get_number_of_point_sources() n_ext_sources = self._likelihood_model.get_number_of_extended_sources() total_counts = np.zeros(len(self._active_planes), dtype=float) total_model = np.zeros_like(total_counts) model_only = np.zeros_like(total_counts) net_counts = np.zeros_like(total_counts) yerr_low = np.zeros_like(total_counts) yerr_high = np.zeros_like(total_counts) for i, energy_id in enumerate(self._active_planes): data_analysis_bin = self._maptree[energy_id] this_model_map_hpx = self._get_expectation(data_analysis_bin, energy_id, n_point_sources, n_ext_sources) this_model_tot = np.sum(this_model_map_hpx) this_data_tot = np.sum(data_analysis_bin.observation_map.as_partial()) this_bkg_tot = np.sum(data_analysis_bin.background_map.as_partial()) total_counts[i] = this_data_tot net_counts[i] = this_data_tot - this_bkg_tot model_only[i] = this_model_tot this_wh_model = this_model_tot + this_bkg_tot total_model[i] = this_wh_model if this_data_tot >= 50.0: # Gaussian limit # Under the null hypothesis the data are distributed as a Gaussian with mu = model # and sigma = sqrt(model) # NOTE: since we neglect the background uncertainty, the background is part of the # model yerr_low[i] = np.sqrt(this_data_tot) yerr_high[i] = np.sqrt(this_data_tot) else: # Low-counts # Under the null hypothesis the data are distributed as a Poisson distribution with # mean = model, plot the 68% confidence interval (quantile=[0.16,1-0.16]). # NOTE: since we neglect the background uncertainty, the background is part of the # model quantile = 0.16 mean = this_wh_model y_low = poisson.isf(1-quantile, mu=mean) y_high = poisson.isf(quantile, mu=mean) yerr_low[i] = mean-y_low yerr_high[i] = y_high-mean residuals = old_div((total_counts - total_model), np.sqrt(total_model)) residuals_err = [old_div(yerr_high, np.sqrt(total_model)), old_div(yerr_low, np.sqrt(total_model))] yerr = [yerr_high, yerr_low] return self._plot_spectrum(net_counts, yerr, model_only, residuals, residuals_err) def _plot_spectrum(self, net_counts, yerr, model_only, residuals, residuals_err): fig, subs = plt.subplots(2, 1, gridspec_kw={'height_ratios': [2, 1], 'hspace': 0}, figsize=(12,6)) planes = np.array(self._active_planes) subs[0].errorbar(planes, net_counts, yerr=yerr, capsize=0, color='black', label='Net counts', fmt='.') subs[0].plot(planes, model_only, label='Convolved model') subs[0].legend(bbox_to_anchor=(1.0, 1.0), loc="upper right", numpoints=1) # Residuals subs[1].axhline(0, linestyle='--') subs[1].errorbar( planes, residuals, yerr=residuals_err, capsize=0, fmt='.' ) y_limits = [min(net_counts[net_counts > 0]) / 2., max(net_counts) * 2.] subs[0].set_yscale("log", nonpositive='clip') subs[0].set_ylabel("Counts per bin") subs[0].set_xticks([]) subs[1].set_xlabel("Analysis bin") subs[1].set_ylabel(r"$\frac{{cts - mod - bkg}}{\sqrt{mod + bkg}}$") subs[1].set_xticks(planes) subs[1].set_xticklabels(self._active_planes) subs[0].set_ylim(y_limits) return fig def get_log_like(self): """ Return the value of the log-likelihood with the current values for the parameters """ n_point_sources = self._likelihood_model.get_number_of_point_sources() n_ext_sources = self._likelihood_model.get_number_of_extended_sources() # Make sure that no source has been added since we filled the cache assert (n_point_sources == self._convolved_point_sources.n_sources_in_cache and n_ext_sources == self._convolved_ext_sources.n_sources_in_cache), ( "The number of sources has changed. Please re-assign the model to the plugin." ) #assert n_point_sources == self._convolved_point_sources.n_sources_in_cache and \ # n_ext_sources == self._convolved_ext_sources.n_sources_in_cache, \ # "The number of sources has changed. Please re-assign the model to the plugin." # This will hold the total log-likelihood total_log_like = 0 for bin_id in self._active_planes: data_analysis_bin = self._maptree[bin_id] this_model_map_hpx = self._get_expectation(data_analysis_bin, bin_id, n_point_sources, n_ext_sources) # Now compare with observation bkg_renorm = list(self._nuisance_parameters.values())[0].value obs = data_analysis_bin.observation_map.as_partial() # type: np.array bkg = data_analysis_bin.background_map.as_partial() * bkg_renorm # type: np.array this_pseudo_log_like = log_likelihood(obs, bkg, this_model_map_hpx) total_log_like += this_pseudo_log_like - self._log_factorials[bin_id] \ - self._saturated_model_like_per_maptree[bin_id] return total_log_like def write(self, response_file_name, map_tree_file_name): """ Write this dataset to disk in HDF format. :param response_file_name: filename for the response :param map_tree_file_name: filename for the map tree :return: None """ self._maptree.write(map_tree_file_name) self._response.write(response_file_name) def get_simulated_dataset(self, name): """ Return a simulation of this dataset using the current model with current parameters. :param name: new name for the new plugin instance :return: a HAL instance """ # First get expectation under the current model and store them, if we didn't do it yet if self._clone is None: n_point_sources = self._likelihood_model.get_number_of_point_sources() n_ext_sources = self._likelihood_model.get_number_of_extended_sources() expectations = collections.OrderedDict() for bin_id in self._maptree: data_analysis_bin = self._maptree[bin_id] if bin_id not in self._active_planes: expectations[bin_id] = None else: expectations[bin_id] = self._get_expectation(data_analysis_bin, bin_id, n_point_sources, n_ext_sources) + \ data_analysis_bin.background_map.as_partial() if parallel_client.is_parallel_computation_active(): # Do not clone, as the parallel environment already makes clones clone = self else: clone = copy.deepcopy(self) self._clone = (clone, expectations) # Substitute the observation and background for each data analysis bin for bin_id in self._clone[0]._maptree: data_analysis_bin = self._clone[0]._maptree[bin_id] if bin_id not in self._active_planes: continue else: # Active plane. Generate new data expectation = self._clone[1][bin_id] new_data = np.random.poisson(expectation, size=(1, expectation.shape[0])).flatten() # Substitute data data_analysis_bin.observation_map.set_new_values(new_data) # Now change name and return self._clone[0]._name = name # Adjust the name of the nuisance parameter old_name = list(self._clone[0]._nuisance_parameters.keys())[0] new_name = old_name.replace(self.name, name) self._clone[0]._nuisance_parameters[new_name] = self._clone[0]._nuisance_parameters.pop(old_name) # Recompute biases self._clone[0]._compute_likelihood_biases() return self._clone[0] def _get_expectation(self, data_analysis_bin, energy_bin_id, n_point_sources, n_ext_sources): # Compute the expectation from the model this_model_map = None for pts_id in range(n_point_sources): this_conv_src = self._convolved_point_sources[pts_id] expectation_per_transit = this_conv_src.get_source_map(energy_bin_id, tag=None, psf_integration_method=self._psf_integration_method) expectation_from_this_source = expectation_per_transit * data_analysis_bin.n_transits if this_model_map is None: # First addition this_model_map = expectation_from_this_source else: this_model_map += expectation_from_this_source # Now process extended sources if n_ext_sources > 0: this_ext_model_map = None for ext_id in range(n_ext_sources): this_conv_src = self._convolved_ext_sources[ext_id] expectation_per_transit = this_conv_src.get_source_map(energy_bin_id) if this_ext_model_map is None: # First addition this_ext_model_map = expectation_per_transit else: this_ext_model_map += expectation_per_transit # Now convolve with the PSF if this_model_map is None: # Only extended sources this_model_map = (self._psf_convolutors[energy_bin_id].extended_source_image(this_ext_model_map) * data_analysis_bin.n_transits) else: this_model_map += (self._psf_convolutors[energy_bin_id].extended_source_image(this_ext_model_map) * data_analysis_bin.n_transits) # Now transform from the flat sky projection to HEALPiX if this_model_map is not None: # First divide for the pixel area because we need to interpolate brightness #this_model_map = old_div(this_model_map, self._flat_sky_projection.project_plane_pixel_area) this_model_map = this_model_map/self._flat_sky_projection.project_plane_pixel_area this_model_map_hpx = self._flat_sky_to_healpix_transform[energy_bin_id](this_model_map, fill_value=0.0) # Now multiply by the pixel area of the new map to go back to flux this_model_map_hpx *= hp.nside2pixarea(data_analysis_bin.nside, degrees=True) else: # No sources this_model_map_hpx = 0.0 return this_model_map_hpx @staticmethod def _represent_healpix_map(fig, hpx_map, longitude, latitude, xsize, resolution, smoothing_kernel_sigma): proj = get_gnomonic_projection(fig, hpx_map, rot=(longitude, latitude, 0.0), xsize=xsize, reso=resolution) if smoothing_kernel_sigma is not None: # Get the sigma in pixels sigma = old_div(smoothing_kernel_sigma * 60, resolution) proj = convolve(list(proj), Gaussian2DKernel(sigma), nan_treatment='fill', preserve_nan=True) return proj def display_fit(self, smoothing_kernel_sigma=0.1, display_colorbar=False): """ Make a figure containing 4 maps for each active analysis bins with respectively model, data, background and residuals. The model, data and residual maps are smoothed, the background map is not. :param smoothing_kernel_sigma: sigma for the Gaussian smoothing kernel, for all but background maps :param display_colorbar: whether or not to display the colorbar in the residuals :return: a matplotlib.Figure """ n_point_sources = self._likelihood_model.get_number_of_point_sources() n_ext_sources = self._likelihood_model.get_number_of_extended_sources() # This is the resolution (i.e., the size of one pixel) of the image resolution = 3.0 # arcmin # The image is going to cover the diameter plus 20% padding xsize = self._get_optimal_xsize(resolution) n_active_planes = len(self._active_planes) n_columns = 4 fig, subs = plt.subplots(n_active_planes, n_columns, figsize=(2.7 * n_columns, n_active_planes * 2), squeeze=False) prog_bar = tqdm(total = len(self._active_planes), desc="Smoothing planes") images = ['None'] * n_columns for i, plane_id in enumerate(self._active_planes): data_analysis_bin = self._maptree[plane_id] # Get the center of the projection for this plane this_ra, this_dec = self._roi.ra_dec_center # Make a full healpix map for a second whole_map = self._get_model_map(plane_id, n_point_sources, n_ext_sources).as_dense() # Healpix uses longitude between -180 and 180, while R.A. is between 0 and 360. We need to fix that: longitude = ra_to_longitude(this_ra) # Declination is already between -90 and 90 latitude = this_dec # Background and excess maps bkg_subtracted, _, background_map = self._get_excess(data_analysis_bin, all_maps=True) # Make all the projections: model, excess, background, residuals proj_model = self._represent_healpix_map(fig, whole_map, longitude, latitude, xsize, resolution, smoothing_kernel_sigma) # Here we removed the background otherwise nothing is visible # Get background (which is in a way "part of the model" since the uncertainties are neglected) proj_data = self._represent_healpix_map(fig, bkg_subtracted, longitude, latitude, xsize, resolution, smoothing_kernel_sigma) # No smoothing for this one (because a goal is to check it is smooth). proj_bkg = self._represent_healpix_map(fig, background_map, longitude, latitude, xsize, resolution, None) proj_residuals = proj_data - proj_model # Common color scale range for model and excess maps vmin = min(np.nanmin(proj_model), np.nanmin(proj_data)) vmax = max(np.nanmax(proj_model), np.nanmax(proj_data)) # Plot model images[0] = subs[i][0].imshow(proj_model, origin='lower', vmin=vmin, vmax=vmax) subs[i][0].set_title('model, bin {}'.format(data_analysis_bin.name)) # Plot data map images[1] = subs[i][1].imshow(proj_data, origin='lower', vmin=vmin, vmax=vmax) subs[i][1].set_title('excess, bin {}'.format(data_analysis_bin.name)) # Plot background map. images[2] = subs[i][2].imshow(proj_bkg, origin='lower') subs[i][2].set_title('background, bin {}'.format(data_analysis_bin.name)) # Now residuals images[3] = subs[i][3].imshow(proj_residuals, origin='lower') subs[i][3].set_title('residuals, bin {}'.format(data_analysis_bin.name)) # Remove numbers from axis for j in range(n_columns): subs[i][j].axis('off') if display_colorbar: for j, image in enumerate(images): plt.colorbar(image, ax=subs[i][j]) prog_bar.update(1) fig.set_tight_layout(True) return fig def _get_optimal_xsize(self, resolution): return 2.2 * self._roi.data_radius.to("deg").value / (resolution / 60.0) def display_stacked_image(self, smoothing_kernel_sigma=0.5): """ Display a map with all active analysis bins stacked together. :param smoothing_kernel_sigma: sigma for the Gaussian smoothing kernel to apply :return: a matplotlib.Figure instance """ # This is the resolution (i.e., the size of one pixel) of the image in arcmin resolution = 3.0 # The image is going to cover the diameter plus 20% padding xsize = self._get_optimal_xsize(resolution) active_planes_bins = [self._maptree[x] for x in self._active_planes] # Get the center of the projection for this plane this_ra, this_dec = self._roi.ra_dec_center # Healpix uses longitude between -180 and 180, while R.A. is between 0 and 360. We need to fix that: longitude = ra_to_longitude(this_ra) # Declination is already between -90 and 90 latitude = this_dec total = None for i, data_analysis_bin in enumerate(active_planes_bins): # Plot data background_map = data_analysis_bin.background_map.as_dense() this_data = data_analysis_bin.observation_map.as_dense() - background_map idx = np.isnan(this_data) # this_data[idx] = hp.UNSEEN if i == 0: total = this_data else: # Sum only when there is no UNSEEN, so that the UNSEEN pixels will stay UNSEEN total[~idx] += this_data[~idx] delta_coord = (self._roi.data_radius.to("deg").value * 2.0) / 15.0 fig, sub = plt.subplots(1, 1) proj = self._represent_healpix_map(fig, total, longitude, latitude, xsize, resolution, smoothing_kernel_sigma) cax = sub.imshow(proj, origin='lower') fig.colorbar(cax) sub.axis('off') hp.graticule(delta_coord, delta_coord) return fig def inner_fit(self): """ This is used for the profile likelihood. Keeping fixed all parameters in the LikelihoodModel, this method minimize the logLike over the remaining nuisance parameters, i.e., the parameters belonging only to the model for this particular detector. If there are no nuisance parameters, simply return the logLike value. """ return self.get_log_like() def get_number_of_data_points(self): """ Return the number of active bins across all active analysis bins :return: number of active bins """ n_points = 0 for bin_id in self._maptree: n_points += self._maptree[bin_id].observation_map.as_partial().shape[0] return n_points def _get_model_map(self, plane_id, n_pt_src, n_ext_src): """ This function returns a model map for a particular bin """ if plane_id not in self._active_planes: raise ValueError( f"{plane_id} not a plane in the current model" ) model_map = SparseHealpix(self._get_expectation(self._maptree[plane_id], plane_id, n_pt_src, n_ext_src), self._active_pixels[plane_id], self._maptree[plane_id].observation_map.nside) return model_map def _get_excess(self, data_analysis_bin, all_maps=True): """ This function returns the excess counts for a particular bin if all_maps=True, also returns the data and background maps """ data_map = data_analysis_bin.observation_map.as_dense() bkg_map = data_analysis_bin.background_map.as_dense() excess = data_map - bkg_map if all_maps: return excess, data_map, bkg_map return excess def _write_a_map(self, file_name, which, fluctuate=False, return_map=False): """ This writes either a model map or a residual map, depending on which one is preferred """ which = which.lower() assert which in ['model', 'residual'] n_pt = self._likelihood_model.get_number_of_point_sources() n_ext = self._likelihood_model.get_number_of_extended_sources() map_analysis_bins = collections.OrderedDict() if fluctuate: poisson_set = self.get_simulated_dataset("model map") for plane_id in self._active_planes: data_analysis_bin = self._maptree[plane_id] bkg = data_analysis_bin.background_map obs = data_analysis_bin.observation_map if fluctuate: model_excess = poisson_set._maptree[plane_id].observation_map \ - poisson_set._maptree[plane_id].background_map else: model_excess = self._get_model_map(plane_id, n_pt, n_ext) if which == 'residual': bkg += model_excess if which == 'model': obs = model_excess + bkg this_bin = DataAnalysisBin(plane_id, observation_hpx_map=obs, background_hpx_map=bkg, active_pixels_ids=self._active_pixels[plane_id], n_transits=data_analysis_bin.n_transits, scheme='RING') map_analysis_bins[plane_id] = this_bin # save the file new_map_tree = MapTree(map_analysis_bins, self._roi) new_map_tree.write(file_name) if return_map: return new_map_tree def write_model_map(self, file_name, poisson_fluctuate=False, test_return_map=False): """ This function writes the model map to a file. The interface is based off of HAWCLike for consistency """ if test_return_map: log.warning("test_return_map=True should only be used for testing purposes!") return self._write_a_map(file_name, 'model', poisson_fluctuate, test_return_map) def write_residual_map(self, file_name, test_return_map=False): """ This function writes the residual map to a file. The interface is based off of HAWCLike for consistency """ if test_return_map: log.warning("test_return_map=True should only be used for testing purposes!") return self._write_a_map(file_name, 'residual', False, test_return_map)
38.20771
126
0.609942
47,086
0.969606
0
0
2,267
0.046683
0
0
15,292
0.314896
c88aff50b9e6ce0d5c309be594a03b1f208a90db
15,227
py
Python
sshcustodian/sshcustodian.py
jkglasbrenner/sshcustodian
870d1088f27e1528e27f94f55f2efad7dad32d5d
[ "MIT" ]
null
null
null
sshcustodian/sshcustodian.py
jkglasbrenner/sshcustodian
870d1088f27e1528e27f94f55f2efad7dad32d5d
[ "MIT" ]
null
null
null
sshcustodian/sshcustodian.py
jkglasbrenner/sshcustodian
870d1088f27e1528e27f94f55f2efad7dad32d5d
[ "MIT" ]
null
null
null
# File: sshcustodian/sshcustodian.py # -*- coding: utf-8 -*- # Python 2/3 Compatibility from __future__ import (unicode_literals, division, absolute_import, print_function) from six.moves import filterfalse """ This module creates a subclass of the main Custodian class in the Custodian project (github.com/materialsproject/custodian), which is a wrapper that manages jobs running on computing clusters. The Custodian module is part of The Materials Project (materialsproject.org/). This subclass adds the functionality to copy the temporary directory created via monty to the scratch partitions on slave compute nodes, provided that the cluster's filesystem is configured in this way. The implementation invokes a subprocess to utilize the ssh executable installed on the cluster, so it is not particularly elegant or platform independent, nor is this solution likely to be general to all clusters. This is why this modification has not been submitted as a pull request to the main Custodian project. """ # Import modules import logging import subprocess import sys import datetime import time import os import re from itertools import islice, groupby from socket import gethostname from monty.tempfile import ScratchDir from monty.shutil import gzip_dir from monty.json import MontyEncoder from monty.serialization import dumpfn from custodian.custodian import Custodian from custodian.custodian import CustodianError # Module-level logger logger = logging.getLogger(__name__) class SSHCustodian(Custodian): """ The SSHCustodian class modifies the Custodian class from the custodian module to be able to handle clusters that have separate scratch partitions for each node. When scratch_dir_node_only is enabled, the temp_dir that monty creates will be copied to all other compute nodes used in the calculation and subsequently removed when the job is finished. """ __doc__ += Custodian.__doc__ def __init__(self, handlers, jobs, validators=None, max_errors=1, polling_time_step=10, monitor_freq=30, skip_over_errors=False, scratch_dir=None, gzipped_output=False, checkpoint=False, scratch_dir_node_only=False, pbs_nodefile=None): """ scratch_dir_node_only (bool): If set to True, custodian will grab the list of nodes in the file path provided to pbs_nodefile and use copy the temp_dir to the scratch_dir on each node over ssh. This is necessary on cluster setups where each node has its own independent scratch partition. pbs_nodefile (str): The filepath to the list of nodes to be used in a calculation. If this path does not point to a valid file, then scratch_dir_node_only will be automatically set to False. """ super(SSHCustodian, self).__init__(handlers, jobs, validators, max_errors, polling_time_step, monitor_freq, skip_over_errors, scratch_dir, gzipped_output, checkpoint) self.hostname = gethostname() if pbs_nodefile is None: self.scratch_dir_node_only = False self.slave_compute_node_list = None elif os.path.exists(pbs_nodefile): self.scratch_dir_node_only = scratch_dir_node_only self.pbs_nodefile = pbs_nodefile self.slave_compute_node_list = ( self._process_pbs_nodefile(self.pbs_nodefile, self.hostname)) else: self.scratch_dir_node_only = False self.pbs_nodefile = None self.slave_compute_node_list = None @staticmethod def _process_pbs_nodefile(pbs_nodefile, hostname): with open(pbs_nodefile) as in_file: nodelist = in_file.read().splitlines() slave_compute_node_list = [ node for node, _ in groupby(filterfalse(lambda x: x == hostname, nodelist)) ] return slave_compute_node_list def _copy_to_slave_node_dirs(self, temp_dir_path): """ Copy temporary scratch directory from master node to other nodes. Args: temp_dir_path (str): The path to the temporary scratch directory. It is assumed here that the root path of the scratch directory is the same on all nodes. """ process_list = [] for node in self.slave_compute_node_list: command = ['rsync', '-azhq', temp_dir_path, '{0}:{1}'.format(node, os.path.abspath(self.scratch_dir))] p = subprocess.Popen(command, shell=False) process_list.append(p) # Wait for syncing to finish before moving on for process in process_list: process.wait() def _update_slave_node_vasp_input_files(self, temp_dir_path): """ Update VASP input files in the scratch partition on the slave compute nodes. Args: temp_dir_path (str): The path to the temporary scratch directory. It is assumed here that the root path of the scratch directory is the same on all nodes. """ VASP_INPUT_FILES = [x for x in ["{0}/CHGCAR".format(temp_dir_path), "{0}/WAVECAR".format(temp_dir_path), "{0}/INCAR".format(temp_dir_path), "{0}/POSCAR".format(temp_dir_path), "{0}/POTCAR".format(temp_dir_path), "{0}/KPOINTS".format(temp_dir_path)] if os.path.exists(x)] process_list = [] for node in self.slave_compute_node_list: for filepath in VASP_INPUT_FILES: command = 'scp {0} {1}:{2}/'.format(filepath, node, temp_dir_path) p = subprocess.Popen(command, shell=True) process_list.append(p) # Wait for syncing to finish before moving on for process in process_list: process.wait() def _delete_slave_node_dirs(self, temp_dir_path): """ Delete the temporary scratch directory on the slave nodes. Args: temp_dir_path (str): The path to the temporary scratch directory. It is assumed here that the root path of the scratch directory is the same on all nodes. """ process_list = [] for node in self.slave_compute_node_list: command = 'ssh {0} "rm -rf {1}"'.format(node, temp_dir_path) p = subprocess.Popen(command, shell=True) process_list.append(p) # Wait for deletion to finish before moving on for process in process_list: process.wait() def _manage_node_scratch(self, temp_dir_path, job_start): """ Checks whether the user wants to make use of scratch partitions on each compute node, and if True, either copies the temporary directory to or deletes the temporary directory from each slave compute node. If the user does not specify to use node-specific scratch partitions, then the function does nothing. Args: temp_dir_path (str): The path to the temporary scratch directory. job_start (bool): If True, then the job has started and the temporary directory will be copied to the slave compute nodes. If False, then the temporary directories will be deleted from the slave compute nodes. """ if self.scratch_dir_node_only: if job_start: self._copy_to_slave_node_dirs(temp_dir_path) else: self._delete_slave_node_dirs(temp_dir_path) else: pass def _update_node_scratch(self, temp_dir_path, job): """ Method to update the scratch partitions on the slave compute nodes if they exist and are running a VASP job. Args: temp_dir_path (str): The path to the temporary scratch directory. job (object): The job object you intend to run. Currently supports VASP jobs. """ vasp_re = re.compile(r'vasp') if self.scratch_dir is not None: try: jobtype = job.get_jobtype() if self.scratch_dir_node_only: if vasp_re.match(jobtype): self._update_slave_node_vasp_input_files(temp_dir_path) else: pass else: pass except: pass else: pass def run(self): """ Override of Custodian.run() to include instructions to copy the temp_dir to the scratch partition on slave compute nodes if requested. """ cwd = os.getcwd() with ScratchDir(self.scratch_dir, create_symbolic_link=True, copy_to_current_on_exit=True, copy_from_current_on_enter=True) as temp_dir: self._manage_node_scratch(temp_dir_path=temp_dir, job_start=True) self.total_errors = 0 start = datetime.datetime.now() logger.info("Run started at {} in {}.".format( start, temp_dir)) v = sys.version.replace("\n", " ") logger.info("Custodian running on Python version {}".format(v)) try: # skip jobs until the restart for job_n, job in islice(enumerate(self.jobs, 1), self.restart, None): self._run_job(job_n, job, temp_dir) # Checkpoint after each job so that we can recover from # last point and remove old checkpoints if self.checkpoint: super(SSHCustodian, self)._save_checkpoint(cwd, job_n) except CustodianError as ex: logger.error(ex.message) if ex.raises: raise RuntimeError("{} errors reached: {}. Exited..." .format(self.total_errors, ex)) finally: # Log the corrections to a json file. logger.info("Logging to {}...".format(super(SSHCustodian, self).LOG_FILE)) dumpfn(self.run_log, super(SSHCustodian, self).LOG_FILE, cls=MontyEncoder, indent=4) end = datetime.datetime.now() logger.info("Run ended at {}.".format(end)) run_time = end - start logger.info("Run completed. Total time taken = {}." .format(run_time)) # Remove duplicate copy of log file, provided it ends with # ".log" for x in ([x for x in os.listdir(temp_dir) if re.match(r'\w*\.log', x)]): os.remove(os.path.join(temp_dir, x)) self._manage_node_scratch(temp_dir_path=temp_dir, job_start=False) if self.gzipped_output: gzip_dir(".") # Cleanup checkpoint files (if any) if run is successful. super(SSHCustodian, self)._delete_checkpoints(cwd) return self.run_log def _run_job(self, job_n, job, temp_dir): """ Overrides custodian.custodian._run_job() to propagate changes to input files on different scratch partitions on compute nodes, if needed. """ self.run_log.append({"job": job.as_dict(), "corrections": []}) job.setup() for attempt in range(1, self.max_errors - self.total_errors + 1): # Propagate updated input files, if needed self._update_node_scratch(temp_dir, job) logger.info( "Starting job no. {} ({}) attempt no. {}. Errors " "thus far = {}.".format( job_n, job.name, attempt, self.total_errors)) p = job.run() # Check for errors using the error handlers and perform # corrections. has_error = False # While the job is running, we use the handlers that are # monitors to monitor the job. if isinstance(p, subprocess.Popen): if self.monitors: n = 0 while True: n += 1 time.sleep(self.polling_time_step) if p.poll() is not None: break if n % self.monitor_freq == 0: has_error = self._do_check(self.monitors, p.terminate) else: p.wait() logger.info("{}.run has completed. " "Checking remaining handlers".format(job.name)) # Check for errors again, since in some cases non-monitor # handlers fix the problems detected by monitors # if an error has been found, not all handlers need to run if has_error: self._do_check([h for h in self.handlers if not h.is_monitor]) else: has_error = self._do_check(self.handlers) # If there are no errors detected, perform # postprocessing and exit. if not has_error: for v in self.validators: if v.check(): s = "Validation failed: {}".format(v) raise CustodianError(s, True, v) job.postprocess() return # check that all errors could be handled for x in self.run_log[-1]["corrections"]: if not x["actions"] and x["handler"].raises_runtime_error: s = "Unrecoverable error for handler: {}. " \ "Raising RuntimeError".format(x["handler"]) raise CustodianError(s, True, x["handler"]) for x in self.run_log[-1]["corrections"]: if not x["actions"]: s = "Unrecoverable error for handler: %s" % x["handler"] raise CustodianError(s, False, x["handler"]) logger.info("Max errors reached.") raise CustodianError("MaxErrors", True) # Inherit Custodian docstrings __init__.__doc__ = Custodian.__init__.__doc__ + __init__.__doc__ run.__doc__ = Custodian.run.__doc__ _run_job.__doc__ = Custodian._run_job.__doc__
43.505714
80
0.568858
13,715
0.900703
0
0
388
0.025481
0
0
5,862
0.384974
c88ca1454e3c43e792033b4722a580761e424d90
17,217
py
Python
sherlock/__init__.py
akudelka/sherlock
9e85f36c01e0cb1d495283f024423bc60c3f7a4e
[ "MIT" ]
165
2015-01-12T09:09:19.000Z
2022-03-14T11:26:23.000Z
sherlock/__init__.py
akudelka/sherlock
9e85f36c01e0cb1d495283f024423bc60c3f7a4e
[ "MIT" ]
35
2015-01-07T14:57:24.000Z
2022-03-24T17:43:28.000Z
sherlock/__init__.py
akudelka/sherlock
9e85f36c01e0cb1d495283f024423bc60c3f7a4e
[ "MIT" ]
38
2015-03-11T09:10:05.000Z
2022-01-17T11:29:38.000Z
''' Sherlock: Distributed Locks with a choice of backend ==================================================== :mod:`sherlock` is a library that provides easy-to-use distributed inter-process locks and also allows you to choose a backend of your choice for lock synchronization. |Build Status| |Coverage Status| .. |Build Status| image:: https://travis-ci.org/vaidik/sherlock.png :target: https://travis-ci.org/vaidik/sherlock/ .. |Coverage Status| image:: https://coveralls.io/repos/vaidik/incoming/badge.png :target: https://coveralls.io/r/vaidik/incoming Overview -------- When you are working with resources which are accessed by multiple services or distributed services, more than often you need some kind of locking mechanism to make it possible to access some resources at a time. Distributed Locks or Mutexes can help you with this. :mod:`sherlock` provides the exact same facility, with some extra goodies. It provides an easy-to-use API that resembles standard library's `threading.Lock` semantics. Apart from this, :mod:`sherlock` gives you the flexibilty of using a backend of your choice for managing locks. :mod:`sherlock` also makes it simple for you to extend :mod:`sherlock` to use backends that are not supported. Features ++++++++ * API similar to standard library's `threading.Lock`. * Support for With statement, to cleanly acquire and release locks. * Backend agnostic: supports `Redis`_, `Memcached`_ and `Etcd`_ as choice of backends. * Extendable: can be easily extended to work with any other of backend of choice by extending base lock class. Read :ref:`extending`. .. _Redis: http://redis.io .. _Memcached: http://memcached.org .. _Etcd: http://github.com/coreos/etcd Supported Backends and Client Libraries +++++++++++++++++++++++++++++++++++++++ Following client libraries are supported for every supported backend: * Redis: `redis-py`_ * Memcached: `pylibmc`_ * Etcd: `python-etcd`_ .. _redis-py: http://github.com .. _pylibmc: http://github.com .. _python-etcd: https://github.com/jplana/python-etcd As of now, only the above mentioned libraries are supported. Although :mod:`sherlock` takes custom client objects so that you can easily provide settings that you want to use for that backend store, but :mod:`sherlock` also checks if the provided client object is an instance of the supported clients and accepts client objects which pass this check, even if the APIs are the same. :mod:`sherlock` might get rid of this issue later, if need be and if there is a demand for that. Installation ------------ Installation is simple. .. code:: bash pip install sherlock .. note:: :mod:`sherlock` will install all the client libraries for all the supported backends. Basic Usage ----------- :mod:`sherlock` is simple to use as at the API and semantics level, it tries to conform to standard library's :mod:`threading.Lock` APIs. .. code-block:: python import sherlock from sherlock import Lock # Configure :mod:`sherlock`'s locks to use Redis as the backend, # never expire locks and retry acquiring an acquired lock after an # interval of 0.1 second. sherlock.configure(backend=sherlock.backends.REDIS, expire=None, retry_interval=0.1) # Note: configuring sherlock to use a backend does not limit you # another backend at the same time. You can import backend specific locks # like RedisLock, MCLock and EtcdLock and use them just the same way you # use a generic lock (see below). In fact, the generic Lock provided by # sherlock is just a proxy that uses these specific locks under the hood. # acquire a lock called my_lock lock = Lock('my_lock') # acquire a blocking lock lock.acquire() # check if the lock has been acquired or not lock.locked() == True # release the lock lock.release() Support for ``with`` statement ++++++++++++++++++++++++++++++ .. code-block:: python # using with statement with Lock('my_lock'): # do something constructive with your locked resource here pass Blocking and Non-blocking API +++++++++++++++++++++++++++++ .. code-block:: python # acquire non-blocking lock lock1 = Lock('my_lock') lock2 = Lock('my_lock') # successfully acquire lock1 lock1.acquire() # try to acquire lock in a non-blocking way lock2.acquire(False) == True # returns False # try to acquire lock in a blocking way lock2.acquire() # blocks until lock is acquired to timeout happens Using two backends at the same time +++++++++++++++++++++++++++++++++++ Configuring :mod:`sherlock` to use a backend does not limit you from using another backend at the same time. You can import backend specific locks like RedisLock, MCLock and EtcdLock and use them just the same way you use a generic lock (see below). In fact, the generic Lock provided by :mod:`sherlock` is just a proxy that uses these specific locks under the hood. .. code-block:: python import sherlock from sherlock import Lock # Configure :mod:`sherlock`'s locks to use Redis as the backend sherlock.configure(backend=sherlock.backends.REDIS) # Acquire a lock called my_lock, this lock uses Redis lock = Lock('my_lock') # Now acquire locks in Memcached from sherlock import MCLock mclock = MCLock('my_mc_lock') mclock.acquire() Tests ----- To run all the tests (including integration), you have to make sure that all the databases are running. Make sure all the services are running: .. code:: bash # memcached memcached # redis-server redis-server # etcd (etcd is probably not available as package, here is the simplest way # to run it). wget https://github.com/coreos/etcd/releases/download/<version>/etcd-<version>-<platform>.tar.gz tar -zxvf etcd-<version>-<platform>.gz ./etcd-<version>-<platform>/etcd Run tests like so: .. code:: bash python setup.py test Documentation ------------- Available `here`_. .. _here: http://sher-lock.readthedocs.org Roadmap ------- * Support for `Zookeeper`_ as backend. * Support for `Gevent`_, `Multithreading`_ and `Multiprocessing`_. .. _Zookeeper: http://zookeeper.apache.org/ .. _Gevent: http://www.gevent.org/ .. _Multithreading: http://docs.python.org/2/library/multithreading.html .. _Multiprocessing: http://docs.python.org/2/library/multiprocessing.html License ------- See `LICENSE`_. **In short**: This is an open-source project and exists in the public domain for anyone to modify and use it. Just be nice and attribute the credits wherever you can. :) .. _LICENSE: http://github.com/vaidik/sherlock/blob/master/LICENSE.rst Distributed Locking in Other Languages -------------------------------------- * NodeJS - https://github.com/thedeveloper/warlock ''' import etcd import pylibmc import redis class _Backends(object): ''' A simple object that provides a list of available backends. ''' REDIS = { 'name': 'REDIS', 'library': 'redis', 'client_class': redis.StrictRedis, 'lock_class': 'RedisLock', 'default_args': (), 'default_kwargs': {}, } ETCD = { 'name': 'ETCD', 'library': 'etcd', 'client_class': etcd.Client, 'lock_class': 'EtcdLock', 'default_args': (), 'default_kwargs': {}, } MEMCACHED = { 'name': 'MEMCACHED', 'library': 'pylibmc', 'client_class': pylibmc.Client, 'lock_class': 'MCLock', 'default_args': ( ['localhost'], ), 'default_kwargs': { 'binary': True, }, } _valid_backends = ( REDIS, ETCD, MEMCACHED, ) def register(self, name, lock_class, library, client_class, default_args=(), default_kwargs={}): ''' Register a custom backend. :param str name: Name of the backend by which you would want to refer this backend in your code. :param class lock_class: the sub-class of :class:`sherlock.lock.BaseLock` that you have implemented. The reference to your implemented lock class will be used by :class:`sherlock.Lock` proxy to use your implemented class when you globally set that the choice of backend is the one that has been implemented by you. :param str library: dependent client library that this implementation makes use of. :param client_class: the client class or valid type which you use to connect the datastore. This is used by the :func:`configure` function to validate that the object provided for the `client` parameter is actually an instance of this class. :param tuple default_args: default arguments that need to passed to create an instance of the callable passed to `client_class` parameter. :param dict default_kwargs: default keyword arguments that need to passed to create an instance of the callable passed to `client_class` parameter. Usage: >>> import some_db_client >>> class MyLock(sherlock.lock.BaseLock): ... # your implementation comes here ... pass >>> >>> sherlock.configure(name='Mylock', ... lock_class=MyLock, ... library='some_db_client', ... client_class=some_db_client.Client, ... default_args=('localhost:1234'), ... default_kwargs=dict(connection_pool=6)) ''' if not issubclass(lock_class, lock.BaseLock): raise ValueError('lock_class parameter must be a sub-class of ' 'sherlock.lock.BaseLock') setattr(self, name, { 'name': name, 'lock_class': lock_class, 'library': library, 'client_class': client_class, 'default_args': default_args, 'default_kwargs': default_kwargs, }) valid_backends = list(self._valid_backends) valid_backends.append(getattr(self, name)) self._valid_backends = tuple(valid_backends) @property def valid_backends(self): ''' Return a tuple of valid backends. :returns: a list of valid supported backends :rtype: tuple ''' return self._valid_backends def configure(**kwargs): ''' Set basic global configuration for :mod:`sherlock`. :param backend: global choice of backend. This backend will be used for managing locks by :class:`sherlock.Lock` class objects. :param client: global client object to use to connect with backend store. This client object will be used to connect to the backend store by :class:`sherlock.Lock` class instances. The client object must be a valid object of the client library. If the backend has been configured using the `backend` parameter, the custom client object must belong to the same library that is supported for that backend. If the backend has not been set, then the custom client object must be an instance of a valid supported client. In that case, :mod:`sherlock` will set the backend by introspecting the type of provided client object. :param str namespace: provide global namespace :param float expire: provide global expiration time. If expicitly set to `None`, lock will not expire. :param float timeout: provide global timeout period :param float retry_interval: provide global retry interval Basic Usage: >>> import sherlock >>> from sherlock import Lock >>> >>> # Configure sherlock to use Redis as the backend and the timeout for >>> # acquiring locks equal to 20 seconds. >>> sherlock.configure(timeout=20, backend=sherlock.backends.REDIS) >>> >>> import redis >>> redis_client = redis.StrictRedis(host='X.X.X.X', port=6379, db=1) >>> sherlock.configure(client=redis_client) ''' _configuration.update(**kwargs) class _Configuration(object): def __init__(self): # Choice of backend self._backend = None # Client object to connect with the backend store self._client = None # Namespace to use for setting lock keys in the backend store self.namespace = None # Lock expiration time. If explicitly set to `None`, lock will not # expire. self.expire = 60 # Timeout to acquire lock self.timeout = 10 # Retry interval to retry acquiring a lock if previous attempts failed self.retry_interval = 0.1 @property def backend(self): return self._backend @backend.setter def backend(self, val): if val not in backends.valid_backends: backend_names = list(map( lambda x: 'sherlock.backends.%s' % x['name'], backends.valid_backends)) error_str = ', '.join(backend_names[:-1]) backend_names = '%s and %s' % (error_str, backend_names[-1]) raise ValueError('Invalid backend. Valid backends are: ' '%s.' % backend_names) self._backend = val @property def client(self): if self._client is not None: return self._client else: if self.backend is None: raise ValueError('Cannot create a default client object when ' 'backend is not configured.') for backend in backends.valid_backends: if self.backend == backend: self.client = self.backend['client_class']( *self.backend['default_args'], **self.backend['default_kwargs']) return self._client @client.setter def client(self, val): # When backend is set, check client type if self.backend is not None: exc_msg = ('Only a client of the %s library can be used ' 'when using %s as the backend store option.') if isinstance(val, self.backend['client_class']): self._client = val else: raise ValueError(exc_msg % (self.backend['library'], self.backend['name'])) else: for backend in backends.valid_backends: if isinstance(val, backend['client_class']): self._client = val self.backend = backend if self._client is None: raise ValueError('The provided object is not a valid client' 'object. Client objects can only be ' 'instances of redis library\'s client class, ' 'python-etcd library\'s client class or ' 'pylibmc library\'s client class.') def update(self, **kwargs): ''' Update configuration. Provide keyword arguments where the keyword parameter is the configuration and its value (the argument) is the value you intend to set. :param backend: global choice of backend. This backend will be used for managing locks. :param client: global client object to use to connect with backend store. :param str namespace: optional global namespace to namespace lock keys for your application in order to avoid conflicts. :param float expire: set lock expiry time. If explicitly set to `None`, lock will not expire. :param float timeout: global timeout for acquiring a lock. :param float retry_interval: global timeout for retrying to acquire the lock if previous attempts failed. ''' for key, val in kwargs.items(): if key not in dir(self): raise AttributeError('Invalid configuration. No such ' 'configuration as %s.' % key) setattr(self, key, val) # Create a backends singleton backends = _Backends() # Create a configuration singleton _configuration = _Configuration() # Import important Lock classes from . import lock from .lock import *
34.228628
100
0.606319
8,265
0.480049
0
0
2,561
0.148748
0
0
13,491
0.783586
c88d252547df6d3f79fae0aefc72512a6ebb61d4
7,199
py
Python
misc.py
ChristophReich1996/Semantic_Pyramid_for_Image_Generation
00e6e7787a5d90b9c09f50a5d7039cb9b5cd4509
[ "MIT" ]
46
2020-04-13T07:54:49.000Z
2022-03-01T06:29:15.000Z
misc.py
ChristophReich1996/Semantic_Pyramid_for_Image_Generation
00e6e7787a5d90b9c09f50a5d7039cb9b5cd4509
[ "MIT" ]
2
2020-07-27T15:11:09.000Z
2021-04-04T10:58:03.000Z
misc.py
ChristophReich1996/Semantic_Pyramid_for_Image_Generation
00e6e7787a5d90b9c09f50a5d7039cb9b5cd4509
[ "MIT" ]
5
2020-06-22T01:56:30.000Z
2021-12-22T04:34:49.000Z
from typing import List, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import random from skimage.draw import random_shapes import os import json def get_masks_for_training( mask_shapes: List[Tuple] = [(1, 128, 128), (1, 64, 64), (1, 32, 32), (1, 16, 16), (1, 8, 8), (4096,), (365,)], device: str = 'cpu', add_batch_size: bool = False, p_random_mask: float = 0.3) -> List[torch.Tensor]: ''' Method returns random masks similar to 3.2. of the paper :param mask_shapes: (List[Tuple]) Shapes of the features generated by the vgg16 model :param device: (str) Device to store tensor masks :param add_batch_size: (bool) If true a batch size is added to each mask :param p_random_mask: (float) Probability that a random mask is generated else no mask is utilized :return: (List[torch.Tensor]) Generated masks for each feature tensor ''' # Select layer where no masking is used. Every output from the deeper layers get mapped out. Every higher layer gets # masked by a random shape selected_stage = random.choice(list(range(len(mask_shapes))) + [0, 1]) # Make masks masks = [] # Apply spatial varying masks spatial_varying_masks = (np.random.rand() < p_random_mask) \ and (selected_stage < (len(mask_shapes) - 1)) \ and (selected_stage > 0) # Init random mask if spatial_varying_masks: random_mask = random_shapes(tuple(reversed(mask_shapes))[selected_stage + 1][1:], min_shapes=1, max_shapes=4, min_size=min(8, tuple(reversed(mask_shapes))[selected_stage + 1][1] // 2), allow_overlap=True)[0][:, :, 0] # Random mask to torch tensor random_mask = torch.tensor(random_mask, dtype=torch.float32, device=device)[None, :, :] # Change range of mask to [0, 1] random_mask = (random_mask == 255.0).float() # Loop over all shapes for index, mask_shape in enumerate(reversed(mask_shapes)): # Case if spatial varying masks are applied after selected stage if spatial_varying_masks: if index == selected_stage: masks.append(torch.ones(mask_shape, dtype=torch.float32, device=device)) elif index < selected_stage: masks.append(torch.zeros(mask_shape, dtype=torch.float32, device=device)) else: masks.append(F.interpolate(random_mask[None], size=mask_shape[1:], mode='nearest')[0]) # Case if only one stage is selected else: if index == selected_stage: masks.append(torch.ones(mask_shape, dtype=torch.float32, device=device)) else: masks.append(torch.zeros(mask_shape, dtype=torch.float32, device=device)) # Add batch size dimension if add_batch_size: for index in range(len(masks)): masks[index] = masks[index].unsqueeze(dim=0) # Reverse order of masks to match the features of the vgg16 model masks.reverse() return masks def get_masks_for_validation(mask_shapes: Tuple[Tuple[int, int, int], ...] = ((1, 128, 128), (1, 64, 64), (1, 32, 32), (1, 16, 16), (1, 8, 8), (4096,), (365,)), device: str = 'cpu', add_batch_size: bool = False) -> List[torch.Tensor]: return get_masks_for_inference(stage_index_to_choose=random.choice(range(len(mask_shapes))), mask_shapes=mask_shapes, device=device, add_batch_size=add_batch_size) def get_masks_for_inference(stage_index_to_choose: int, mask_shapes: Tuple[Tuple[int, int, int], ...] = ( (1, 128, 128), (1, 64, 64), (1, 32, 32), (1, 16, 16), (1, 8, 8), (4096,), (365,)), device: str = 'cpu', add_batch_size: bool = False) -> List[torch.Tensor]: # Init list for masks masks = [] # Loop over all shapes for index, mask_shape in enumerate(reversed(mask_shapes)): if index == stage_index_to_choose: masks.append(torch.ones(mask_shape, dtype=torch.float32, device=device)) else: masks.append(torch.zeros(mask_shape, dtype=torch.float32, device=device)) # Add batch size dimension if add_batch_size: for index in range(len(masks)): masks[index] = masks[index].unsqueeze(dim=0) # Reverse order of masks to match the features of the vgg16 model masks.reverse() return masks def normalize_0_1_batch(input: torch.tensor) -> torch.tensor: ''' Normalize a given tensor to a range of [-1, 1] :param input: (Torch tensor) Input tensor :return: (Torch tensor) Normalized output tensor ''' input_flatten = input.view(input.shape[0], -1) return ((input - torch.min(input_flatten, dim=1)[0][:, None, None, None]) / ( torch.max(input_flatten, dim=1)[0][:, None, None, None] - torch.min(input_flatten, dim=1)[0][:, None, None, None])) def normalize_m1_1_batch(input: torch.tensor) -> torch.tensor: ''' Normalize a given tensor to a range of [-1, 1] :param input: (Torch tensor) Input tensor :return: (Torch tensor) Normalized output tensor ''' input_flatten = input.view(input.shape[0], -1) return 2 * ((input - torch.min(input_flatten, dim=1)[0][:, None, None, None]) / ( torch.max(input_flatten, dim=1)[0][:, None, None, None] - torch.min(input_flatten, dim=1)[0][:, None, None, None])) - 1 class Logger(object): """ Class to log different metrics """ def __init__(self) -> None: self.metrics = dict() self.hyperparameter = dict() def log(self, metric_name: str, value: float) -> None: """ Method writes a given metric value into a dict including list for every metric :param metric_name: (str) Name of the metric :param value: (float) Value of the metric """ if metric_name in self.metrics: self.metrics[metric_name].append(value) else: self.metrics[metric_name] = [value] def save_metrics(self, path: str) -> None: """ Static method to save dict of metrics :param metrics: (Dict[str, List[float]]) Dict including metrics :param path: (str) Path to save metrics :param add_time_to_file_name: (bool) True if time has to be added to filename of every metric """ # Save dict of hyperparameter as json file with open(os.path.join(path, 'hyperparameter.txt'), 'w') as json_file: json.dump(self.hyperparameter, json_file) # Iterate items in metrics dict for metric_name, values in self.metrics.items(): # Convert list of values to torch tensor to use build in save method from torch values = torch.tensor(values) # Save values torch.save(values, os.path.join(path, '{}.pt'.format(metric_name)))
44.99375
120
0.607862
1,461
0.202945
0
0
0
0
0
0
2,154
0.299208
c88f24e0c4f56b49a1514bbc5fcfcc00efd5e15c
4,204
py
Python
EasyMCDM/models/Irmo.py
qanastek/EasyMCDM
7fa2e2dfe9397834ca9f50211ea2717a16785394
[ "MIT" ]
4
2022-03-05T20:51:38.000Z
2022-03-15T17:10:22.000Z
EasyMCDM/models/Irmo.py
qanastek/EasyMCDM
7fa2e2dfe9397834ca9f50211ea2717a16785394
[ "MIT" ]
null
null
null
EasyMCDM/models/Irmo.py
qanastek/EasyMCDM
7fa2e2dfe9397834ca9f50211ea2717a16785394
[ "MIT" ]
1
2022-03-08T13:45:22.000Z
2022-03-08T13:45:22.000Z
import math from typing import Dict, List, Tuple, Union from EasyMCDM.models.MCDM import MCDM # Instant-Runoff Multicriteria Optimization (IRMO) class Irmo(MCDM): # Memory allocation __slots__ = ['verbose', 'matrix', 'names', 'indexes', 'preferences', 'matrix'] # Constructor def __init__(self, data : Union[str, dict], col_sep=',', row_sep='\n', verbose=True): super().__init__(data, col_sep=col_sep, row_sep=row_sep, verbose=verbose) # Read the lines of indexes def get_indexes(self, path) -> List: f = open(path,"r") content = f.read() f.close() return [[int(i) for i in w.split(self.col_sep)] for w in content.split(self.row_sep) if len(w) > 0] def __getVector(self, i, idx, banned, nbr_rounds): items_lst = [] for s in self.matrix.keys(): # Check if already banned if s not in banned: insert_value = self.matrix[s][i] else: # Best item value if (idx == nbr_rounds - 1 and self.preferences[idx] == "min") or (idx != nbr_rounds - 1 and self.preferences[idx] == "max"): insert_value = math.inf else: insert_value = -math.inf items_lst.append(insert_value) return items_lst # Compute def __compute(self) -> Tuple[float, float]: banned = [] # Check if the number of criteria is higher than the number of subjects else reduce the number of rounds nbr_rounds = len(self.indexes) if len(self.indexes) <= len(self.matrix.keys()) else len(self.matrix.keys()) # For each criteria for idx, i in enumerate(self.indexes): # Values for the subjects left items_vec = self.__getVector(i, idx, banned, nbr_rounds) # Best item value if (idx == nbr_rounds - 1 and self.preferences[idx] == "min") or (idx != nbr_rounds - 1 and self.preferences[idx] == "max"): value = min(items_vec) else: value = max(items_vec) # Worst item index item_idx = items_vec.index(value) item_name = list(self.matrix.keys())[item_idx] # Ban Worst item banned.append(item_name) # Reverse the rank banned.reverse() return { "best": banned[0], # Return best "eleminated": banned } # Solve the problem def solve( self, indexes : Union[str, list], prefs : Union[str, List[str]], indexes_idx = 0 ) -> Dict: # Define the indexes of the attributes if type(indexes) == str: self.indexes = self.get_indexes(indexes)[indexes_idx] elif type(indexes) == list: self.indexes = indexes # Check if the lengths matches togethers assert len(self.indexes) <= self.constraints_length, '\033[91m' + "The number of indexes as a variable length, please give a consistent length with the matrix constraints !" + '\033[0m' # Check variable types assert all(isinstance(e, (int)) for e in self.indexes), '\033[91m' + "The indexes as variable types, please give only integers !" + '\033[0m' # Get preferences if type(prefs) == str: self.preferences = self.get_preferences(prefs) elif type(prefs) == list: self.preferences = prefs # Check if has preferences other than max and min assert all([a in ['max', 'min'] for a in sorted(list(set(self.preferences)))]), '\033[91m' + "The preferences need to containt only min and max. Found : " + str(sorted(list(set(self.preferences)))) + '\033[0m' # Check if the lengths matches togethers assert len(self.preferences) == len(self.indexes), '\033[91m' + "The number of preferences as a variable length, please give a consistent length with the indexes !" + '\033[0m' return self.__compute()
37.873874
218
0.562559
4,051
0.963606
0
0
0
0
0
0
1,159
0.27569
c8919966f9b0c8cb69e17d80a649cb9b3d0b7138
2,046
py
Python
ramp/estimators/r.py
kvh/ramp
8618ce673e49b95f40c9659319c3cb72281dacac
[ "MIT" ]
214
2015-01-01T07:42:25.000Z
2022-03-08T08:57:49.000Z
ramp/estimators/r.py
Marigold/ramp
f9ddea84bc3b5097c0ddb8a3f71a0fce1775ba76
[ "MIT" ]
8
2020-05-19T20:15:40.000Z
2020-05-19T20:15:41.000Z
ramp/estimators/r.py
Marigold/ramp
f9ddea84bc3b5097c0ddb8a3f71a0fce1775ba76
[ "MIT" ]
87
2015-01-13T19:25:15.000Z
2021-05-16T10:40:05.000Z
import numpy as np from rpy2.robjects import FloatVector from rpy2.robjects.packages import importr from rpy2 import robjects stats = importr('stats') base = importr('base') def matrix_to_r_dataframe(x): rx = FloatVector(np.ravel(x)) rx = robjects.r['matrix'](rx, nrow = len(x), byrow=True) return robjects.r["data.frame"](rx) class REstimator(object): def __init__(self, r_estimator, **kwargs): self.estimator = r_estimator self.kwargs = kwargs def fit(self, x, y): rx = matrix_to_r_dataframe(x) ry = FloatVector(y) robjects.globalenv["y"] = ry self.estimator_fit = self.estimator("y ~ .", data=rx, **self.kwargs) def predict(self, x): rx = matrix_to_r_dataframe(x) return np.array(stats.predict(self.estimator_fit, rx)[0]) class OrderedLogit(object): def fit(self, x, y): ordinal = importr('ordinal') rx = matrix_to_r_dataframe(x) self.levels = range(int(round(min(y))), int(round(max(y)))+1) ry = base.factor(FloatVector(y), levels=self.levels, ordered=True) robjects.globalenv["y"] = ry self.clmfit = ordinal.clm("y ~ .", data=rx) #print base.summary(self.clmfit) def predict(self, x): rx = matrix_to_r_dataframe(x) rfac = stats.predict(self.clmfit, rx, type="class")[0] rvec = [self.levels[v - 1] for v in rfac] return rvec class WeightedLM(object): def fit(self, x, y, weights): rx = matrix_to_r_dataframe(x) ry = FloatVector(y) rw = FloatVector(weights) robjects.globalenv["score"] = ry self.lmfit = stats.lm("score ~ .", data=rx, weights=rw) #print base.summary(self.clmfit) def predict(self, x): rx = matrix_to_r_dataframe(x) rvec = stats.predict(self.lmfit, rx)[0] return np.array(rvec) class GBM(REstimator): def __init__(self, **kwargs): gbm = importr('gbm') super(GBM, self).__init__(gbm.gbm, **kwargs)
29.652174
74
0.610948
1,680
0.821114
0
0
0
0
0
0
156
0.076246
c89234777cdd2b2357d8a397dcec12fefab43a56
1,138
py
Python
tests/decorators/test_timer.py
ShaneMicro/azure-functions-python-library
f56564effbf291a27e1bd5751a38484af387bb7f
[ "MIT" ]
null
null
null
tests/decorators/test_timer.py
ShaneMicro/azure-functions-python-library
f56564effbf291a27e1bd5751a38484af387bb7f
[ "MIT" ]
1
2022-03-02T11:49:02.000Z
2022-03-02T11:49:02.000Z
tests/decorators/test_timer.py
ShaneMicro/azure-functions-python-library
f56564effbf291a27e1bd5751a38484af387bb7f
[ "MIT" ]
null
null
null
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. import unittest from azure.functions.decorators.constants import TIMER_TRIGGER from azure.functions.decorators.core import BindingDirection, DataType from azure.functions.decorators.timer import TimerTrigger class TestTimer(unittest.TestCase): def test_timer_trigger_valid_creation(self): trigger = TimerTrigger(name="req", schedule="dummy_schedule", data_type=DataType.UNDEFINED, run_on_startup=False, use_monitor=False, dummy_field="dummy") self.assertEqual(trigger.get_binding_name(), "timerTrigger") self.assertEqual(trigger.get_dict_repr(), { "type": TIMER_TRIGGER, "direction": BindingDirection.IN, 'dummyField': 'dummy', "name": "req", "dataType": DataType.UNDEFINED, "schedule": "dummy_schedule", "runOnStartup": False, "useMonitor": False })
37.933333
70
0.598418
830
0.72935
0
0
0
0
0
0
245
0.21529
c895e6b35498811fbcaa8204ceff2eff7744a4b3
8,368
py
Python
src/client.py
Da3dalu2/SimpleNetworkSimulator
447bc099b35720ab8d6e8a9703bb2354f1f01cae
[ "MIT" ]
null
null
null
src/client.py
Da3dalu2/SimpleNetworkSimulator
447bc099b35720ab8d6e8a9703bb2354f1f01cae
[ "MIT" ]
null
null
null
src/client.py
Da3dalu2/SimpleNetworkSimulator
447bc099b35720ab8d6e8a9703bb2354f1f01cae
[ "MIT" ]
null
null
null
import socket import threading import time from threading import Thread import utilities as utils import error_handling as check BUFFER_SIZE = 1024 BROADCAST_MAC = "FF:FF:FF:FF:FF:FF" class ClientThread(threading.Thread): """ Initializes the client. The event synchronization primitive, among the initialization parameters given, is used to guarantee that the client will send its message when the router is actually listening. """ def __init__(self, init_params): self.connected = False self.clients_threads = init_params["clients_threads"] self.arp_table_mac = init_params["arp_table_mac"] self.client_data = init_params["client_data"] self.client_id = init_params["client_id"] self.router_thread = init_params["router_thread"] self.router_id = init_params["router_id"] self.sync_event_message = init_params["sync_event_message"] self.sync_event_connection = init_params["sync_event_connection"] self.stop_event = threading.Event() self.sleep_time = 1.0 port = self.client_data["port"] address = ("localhost", port) self.client_connection = check.socket_create( address, backlog = 0, timeout = 3, reuse_address = True ) threading.Thread.__init__(self, name=self.client_id) """ Client main loop. Listens for messages from the network. """ def run(self): utils.show_status(self.getName(), "starting") connected = self.go_online() if(connected is True): utils.show_status(self.client_id, "listening for incoming packets") while not self.stop_event.isSet(): self.listen_packets() # exit procedure utils.show_status(self.client_id, "going offline") utils.show_status(self.client_id, "closing connection") self.client_connection.close() self.stop_event.clear() del self.clients_threads[self.client_id] """ Tells the client to exit from its main loop. It goes offline thus closing its connection to the network. """ def join(self, timeout=None): self.stop_event.set() threading.Thread.join(self, timeout) """ Tells the router of its network to start listening for a message from this client. """ def notify_incoming_message(self): msg = " ".join(["notifying", self.router_id, "of an incoming message"]) utils.show_status(self.client_id, msg) my_ip_address = self.client_data["ip_address"] listen_task = threading.Thread( target=self.router_thread.listen_client_side, args=[my_ip_address], daemon=True ) listen_task.start() """ Tells the router of its network to start listening for a connection from this client. """ def notify_incoming_connection(self): msg = " ".join(["notifying",self.router_id, \ "of an incoming connection"]) utils.show_status(self.client_id, msg) listen_task = threading.Thread( target=self.router_thread.listen_connections_client_side, daemon=True ) listen_task.start() """ Sends packets to other clients. """ def send_message(self, recipient_ip, message): gateway_ip = self.client_data["gateway_ip"] packet = utils.write_packet( self.client_data["ip_address"], recipient_ip, self.client_data.get("mac_address"), self.arp_table_mac[gateway_ip], message ) utils.show_status( self.client_id, "waiting for router listening messages" ) self.notify_incoming_message() # waiting for router approving message sending self.sync_event_message.wait() sent = check.socket_send(self.client_connection, packet, self.router_id) if(sent is True): msg = " ".join(["message sent to", gateway_ip]) utils.show_status(self.client_id, msg) self.sync_event_message.clear() """ Sends a special packet to notify the server it is currently online. Returns false if the connection was not established or the packet could not be sent (in the latter case the server will not recognize the client as online, hence the action go_online is considered failed even if a connection has been created) """ def go_online(self): utils.show_status(self.client_id, "connecting to the network") server_ip = self.client_data["server_ip"] router_port = self.client_data["gateway_port"] router_address = ("localhost", router_port) gateway_ip = self.client_data["gateway_ip"] self.notify_incoming_connection() # waiting for router approving connection self.sync_event_connection.wait() self.sync_event_connection.clear() # ready for reuse connected = check.socket_connect( self.client_connection, router_address, self.client_id ) if(connected is True): utils.show_status(self.client_id, "going online") # waiting for router completing connection procedure self.sync_event_connection.wait() self.sync_event_connection.clear() # ready for reuse greeting_packet = utils.write_packet( self.client_data.get("ip_address"), server_ip, self.client_data.get("mac_address"), self.arp_table_mac[gateway_ip], "{going online}" ) utils.show_status( self.client_id, "waiting for router accepting message" ) self.notify_incoming_message() # waiting for router approving message sending self.sync_event_message.wait() self.sync_event_message.clear() check.socket_send( self.client_connection, greeting_packet, self.client_id, "Greeting packet could not be sent" ) return connected """ Sends a special packet to notify the server it is currently offline. Then closes its connection to the network. """ def go_offline(self): utils.show_status(self.client_id, "going offline") gateway_ip = self.client_data["gateway_ip"] server_ip = self.client_data["server_ip"] leave_packet = utils.write_packet( self.client_data.get("ip_address"), server_ip, self.client_data.get("mac_address"), self.arp_table_mac[gateway_ip], "{going offline}" ) self.notify_incoming_message() self.sync_event_message.wait() # wait for router approval self.sync_event_message.clear() check.socket_send( self.client_connection, leave_packet, self.client_id, "Leave packet could not be sent" ) self.join() """ Listens for packets from the server. """ def listen_packets(self): received_message = check.socket_recv( self.client_connection, self.client_id ) if(received_message is not None and len(received_message) > 0): parsed_message = utils.read_packet(received_message) time.sleep(2) # give time to router to show its status msg = " ".join(["message received from:", parsed_message["source_ip"]]) utils.show_status(self.client_id, msg) utils.report( self.client_id, parsed_message, "reading received packet" ) if(parsed_message["destination_mac"] == BROADCAST_MAC): msg = " ".join(["received an ARP request from", parsed_message["source_ip"]]) utils.show_status(self.client_id, msg) self.send_message( parsed_message.get("source_ip"), "{ARP reply}" )
32.30888
80
0.603848
8,181
0.977653
0
0
0
0
0
0
2,403
0.287165
c8962401f6f771809773c10b2765a3a3a3c92f1b
2,569
py
Python
great_expectations/rule_based_profiler/types/builder.py
afeld/great_expectations
ca2dc1f8951c727040d680b543aee91753c2c862
[ "Apache-2.0" ]
1
2022-01-26T18:51:29.000Z
2022-01-26T18:51:29.000Z
great_expectations/rule_based_profiler/types/builder.py
afeld/great_expectations
ca2dc1f8951c727040d680b543aee91753c2c862
[ "Apache-2.0" ]
null
null
null
great_expectations/rule_based_profiler/types/builder.py
afeld/great_expectations
ca2dc1f8951c727040d680b543aee91753c2c862
[ "Apache-2.0" ]
1
2021-11-29T07:37:28.000Z
2021-11-29T07:37:28.000Z
import json from great_expectations.core.util import convert_to_json_serializable from great_expectations.types import SerializableDictDot, safe_deep_copy from great_expectations.util import deep_filter_properties_iterable class Builder(SerializableDictDot): """ A Builder provides methods to serialize any builder object of a rule generically. """ def to_json_dict(self) -> dict: """ # TODO: <Alex>2/4/2022</Alex> This implementation of "SerializableDictDot.to_json_dict() occurs frequently and should ideally serve as the reference implementation in the "SerializableDictDot" class itself. However, the circular import dependencies, due to the location of the "great_expectations/types/__init__.py" and "great_expectations/core/util.py" modules make this refactoring infeasible at the present time. """ dict_obj: dict = self.to_dict() serializeable_dict: dict = convert_to_json_serializable(data=dict_obj) return serializeable_dict def __deepcopy__(self, memo): cls = self.__class__ result = cls.__new__(cls) memo[id(self)] = result for key, value in self.to_raw_dict().items(): value_copy = safe_deep_copy(data=value, memo=memo) setattr(result, key, value_copy) return result def __repr__(self) -> str: """ # TODO: <Alex>2/4/2022</Alex> This implementation of a custom "__repr__()" occurs frequently and should ideally serve as the reference implementation in the "SerializableDictDot" class. However, the circular import dependencies, due to the location of the "great_expectations/types/__init__.py" and "great_expectations/core/util.py" modules make this refactoring infeasible at the present time. """ json_dict: dict = self.to_json_dict() deep_filter_properties_iterable( properties=json_dict, inplace=True, ) return json.dumps(json_dict, indent=2) def __str__(self) -> str: """ # TODO: <Alex>2/4/2022</Alex> This implementation of a custom "__str__()" occurs frequently and should ideally serve as the reference implementation in the "SerializableDictDot" class. However, the circular import dependencies, due to the location of the "great_expectations/types/__init__.py" and "great_expectations/core/util.py" modules make this refactoring infeasible at the present time. """ return self.__repr__()
42.114754
119
0.69093
2,342
0.911639
0
0
0
0
0
0
1,470
0.572207
c8963aa9c2fd19d072617ac3bc9699a61aa29633
449
py
Python
Day_3_Boolean_Logic_Conditionals/Day3_ex1_RL.py
lenovreg/Python_TietoEvry_Feb2022
1e37f524c1b78bb9752500261a953b812fc697db
[ "MIT" ]
null
null
null
Day_3_Boolean_Logic_Conditionals/Day3_ex1_RL.py
lenovreg/Python_TietoEvry_Feb2022
1e37f524c1b78bb9752500261a953b812fc697db
[ "MIT" ]
null
null
null
Day_3_Boolean_Logic_Conditionals/Day3_ex1_RL.py
lenovreg/Python_TietoEvry_Feb2022
1e37f524c1b78bb9752500261a953b812fc697db
[ "MIT" ]
null
null
null
# #1. Health check # # Ask user for their temperature. # # If the user enters below 35, then output "not too cold" # # If 35 to 37 (inclusive), output "all right" # # If the temperature over 37, then output "possible fever" # user_temp = float(input('What is your temperature?')) if user_temp < 35: print('not too cold?') elif user_temp >= 35 and user_temp <= 37: print('all right') else: # temperature over 37 print('possible fever')
32.071429
62
0.679287
0
0
0
0
0
0
0
0
312
0.694878