hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
473f4dc9a600b8c43aff418b905edef20e705990
266
py
Python
Ex031 - Custo de viagem.py
MarcusMendes81/Python
4af6653da324604930d24542a84a530348029d39
[ "Apache-2.0" ]
null
null
null
Ex031 - Custo de viagem.py
MarcusMendes81/Python
4af6653da324604930d24542a84a530348029d39
[ "Apache-2.0" ]
null
null
null
Ex031 - Custo de viagem.py
MarcusMendes81/Python
4af6653da324604930d24542a84a530348029d39
[ "Apache-2.0" ]
null
null
null
km = float(input('Digite qual a distância da sua viagem em km: ')) if km <= 200: preço = km * 0.50 print('O valor da sua viagem é de {:.2f}R$'.format(preço)) else: preço = km * 0.45 print('O valor da sua viagem é de {:.2f}R$'.format(preço))
29.555556
67
0.586466
0
0
0
0
0
0
0
0
124
0.454212
473fc3dd716cb4c46c867f24ed27e15522aed178
1,802
py
Python
tests/post/test_metrics_server.py
ssalaues/metalk8s
cca4a4c64fe9cd4d7b87717aa3fda1642144da4b
[ "Apache-2.0" ]
null
null
null
tests/post/test_metrics_server.py
ssalaues/metalk8s
cca4a4c64fe9cd4d7b87717aa3fda1642144da4b
[ "Apache-2.0" ]
null
null
null
tests/post/test_metrics_server.py
ssalaues/metalk8s
cca4a4c64fe9cd4d7b87717aa3fda1642144da4b
[ "Apache-2.0" ]
null
null
null
import json import kubernetes.config import pytest_bdd import pytest_bdd.parsers import utils.helper pytest_bdd.scenarios('features/metrics_server.feature') @pytest_bdd.when('I wait for metrics-server to be initialized') def wait_until_initialized(kubeconfig): client = kubernetes.config.new_client_from_config(config_file=kubeconfig) # It can take up to a minute before metrics-server scraped some stats, see # https://github.com/kubernetes-incubator/metrics-server/issues/134 and # https://github.com/kubernetes-incubator/metrics-server/issues/136 for _ in utils.helper.retry(90, wait=1): try: (_, response_code, _) = client.call_api( '/api/v1/namespaces/kube-system/services' '/https:metrics-server:443/proxy/healthz', 'GET', _preload_content=False) except kubernetes.client.rest.ApiException as exc: response_code = exc.status if response_code == 200: break @pytest_bdd.when(pytest_bdd.parsers.parse('I GET a {kind} from {path}')) def raw_request(request, kubeconfig, kind, path): client = kubernetes.config.new_client_from_config(config_file=kubeconfig) (response, response_code, response_headers) = client.call_api( path, 'GET', _preload_content=False) assert response_code == 200 assert response_headers['content-type'] == 'application/json' request.raw_response = json.loads(response.data.decode('utf-8')) assert request.raw_response['kind'] == kind @pytest_bdd.then(pytest_bdd.parsers.parse( 'I should count as many nodes as {group_name} hosts')) def node_count_match(request, inventory_obj, group_name): assert len(request.raw_response['items']) == \ len(inventory_obj.get_groups_dict()[group_name])
34
78
0.712542
0
0
0
0
1,632
0.90566
0
0
514
0.285239
47405d3453babd25d32b1eab577b6c049070e9a0
52
py
Python
src/config.py
kimminwyk/apache-log-parsing
1fcf06dc349c37ab02b91c2c48e3dc8f6f5d4b4e
[ "MIT" ]
1
2021-03-31T00:14:38.000Z
2021-03-31T00:14:38.000Z
src/config.py
kimminwyk/apache-log-parsing
1fcf06dc349c37ab02b91c2c48e3dc8f6f5d4b4e
[ "MIT" ]
null
null
null
src/config.py
kimminwyk/apache-log-parsing
1fcf06dc349c37ab02b91c2c48e3dc8f6f5d4b4e
[ "MIT" ]
null
null
null
default = False actions = 'store_true' ENC = 'utf-8'
17.333333
22
0.692308
0
0
0
0
0
0
0
0
19
0.365385
4740a5904496fd65f865863d0eb457e3b97598a9
10,751
py
Python
UniGrammar/tools/regExps/python/prelifter.py
UniGrammar/UniGrammar.py
560152ff5ff3f0651171044f6b5046fd8d895960
[ "Unlicense" ]
2
2020-06-17T16:57:23.000Z
2022-02-24T13:29:01.000Z
UniGrammar/tools/regExps/python/prelifter.py
KOLANICH/UniGrammar.py
d83f2f605073898b454868b98e2ecdefc4d9f7ca
[ "Unlicense" ]
null
null
null
UniGrammar/tools/regExps/python/prelifter.py
KOLANICH/UniGrammar.py
d83f2f605073898b454868b98e2ecdefc4d9f7ca
[ "Unlicense" ]
null
null
null
import sre_constants as sc import sre_parse as sp import typing import unicodedata from pprint import pprint from RichConsole import groups, rsjoin from .knowledge import CAPTURE_GROUP, LITERAL_STR class RXASTNode: """Current AST generated by sre_parse is badly structured and doesn't suit well for our purposes. So we lift into an own AST class for RX first, and then do multiple passes""" __slots__ = ("name", "type", "argsDic") HIGHLIGHT = (groups.Fore.lightmagentaEx, groups.Fore.lightcyanEx, groups.Fore.lightyellowEx) def __init__(self, name: typing.Optional[str], typ: int, argsDic: typing.Mapping[str, typing.Any]): self.__class__.name.__set__(self, name) self.__class__.type.__set__(self, typ) self.__class__.argsDic.__set__(self, argsDic) def __getattr__(self, k: str): try: return self.argsDic[k] except KeyError as ex: raise AttributeError(*ex.args) from ex def __setattr__(self, k: str, v): if k in self.__class__.__slots__: #raise Exception("Fucking shit, it must never be called in the case of slots") getattr(self.__class__, k).__set__(self, v) else: self.argsDic[k] = v def __rsrepr__(self): return groups.Fore.lightgreenEx(self.__class__.__name__) + "(" + rsjoin(groups.Fore.lightblueEx(", "), (hl(getattr(self, k).__rsrepr__() if hasattr(getattr(self, k), "__rsrepr__") else repr(getattr(self, k))) for k, hl in zip(self.__class__.__slots__, self.__class__.HIGHLIGHT))) + ")" def __repr__(self): return str(self.__rsrepr__()) class RecursivePass: """A lot of flexibility is built into this class. Don't optimize it away!""" __slots__ = ("preLifter",) RECURSIVE_ARG = "children" DEPENDS = None # Used for documenting passes dependencies, not enforced for now def __init__(self, preLifter): self.preLifter = preLifter def shouldProcess(self, node): return True def processNode(self, parsed): raise NotImplementedError def processNodeIfNeeded(self, node): if self.shouldProcess(node): node = self.processNode(node) return node def shouldRecurse(self, node): return hasattr(node, self.__class__.RECURSIVE_ARG) def recurseIntoNodeIfNeeded(self, node): if self.shouldRecurse(node): node = self.recurseIntoNode(node) return node def processChild(self, node): node = self.processNodeIfNeeded(node) node = self.recurseIntoNodeIfNeeded(node) return node def processChildren(self, children): return [self.processChild(el) for el in children] def recurseIntoNode(self, node): children = getattr(node, self.__class__.RECURSIVE_ARG) children = self.processChildren(children) setattr(node, self.__class__.RECURSIVE_ARG, children) return node def __call__(self, node): return self.processChild(node) class SingleElPreLifter: __slots__ = ("visitor",) def __init__(self, visitor): self.visitor = visitor def __call__(self, node): print(node) tp = node[0] args = node[1] if not isinstance(args, (list, tuple)): args = (args,) argNames = getattr(self.visitor, tp.name) if isinstance(argNames, str): argMapping = {argNames: args} else: argMapping = dict(zip(argNames, args)) return RXASTNode(None, tp, argMapping) class REFirstPassVisitor: ASSERT = ASSERT_NOT = ("relativePosition", "children") SUBPATTERN = ("id", "children") BRANCH = ("unkn", "children") MAX_REPEAT = MIN_REPEAT = ("minCount", "maxCount", "children") GROUPREF = ("backRef",) GROUPREF_EXISTS = ("backRef", "trueBranch", "falseBranch") IN = "args" LITERAL = ("charCode",) ANY = ("reserved",) AT = ("where",) singleElPreLifter = SingleElPreLifter(REFirstPassVisitor) class RE_IN_FirstPassVisitor: NEGATE = () LITERAL = ("charCode",) CATEGORY = ("enumV",) RANGE = ("start", "stop") re_IN_FlatPreLifter = SingleElPreLifter(RE_IN_FirstPassVisitor) class RecursivePreLifter(RecursivePass): """Creates the initial AST. It is a prerequisite of every other pass because `RecursivePass` assummes that this was done in order to operate. It was possible to implement `RecursivePreLifter` above `RecursivePass` only because recursing is done only after `processNode` is called""" __slots__ = () DEPENDS = () def processNode(self, node): node.children = [singleElPreLifter(el) for el in node.children] return node def shouldProcess(self, node): return self.shouldRecurse(node) RecursivePass.DEPENDS = (RecursivePreLifter,) # The default value. class Lift_IN_args(RecursivePass): """Lifts `IN` subtrees. They are not lifted in `RecursivePreLifter` because they have own enum namespace, potentially conflicting with `OPCODES`.""" __slots__ = () DEPENDS = (RecursivePreLifter,) def processNode(self, node): node.children = [re_IN_FlatPreLifter(el) for el in node.args] del node.argsDic["args"] return node def shouldProcess(self, node): return node.type == sc.IN class CombineLiterals(RecursivePass): """The regex engine used in python treats a sequence of fixed chars as ... sequence of fixed chars. For our purposes it may make sense to combine them into words, because some grammars DSLs support keywords, it also allows more compact grammars""" __slots__ = () DEPENDS = (RecursivePreLifter, Lift_IN_args) # without Lift_IN_args children in IN will be incorrect def processNode(self, node): processed = [] currentString = [] def finishStr(): nonlocal currentString if currentString: v = "".join(chr(el.charCode) for el in currentString) if len(v) == 1: typ = sc.LITERAL else: typ = LITERAL_STR res = RXASTNode(None, typ, {"literal": v}) currentString = [] processed.append(res) for el in node.children: if el.type == sc.LITERAL: currentString.append(el) else: finishStr() processed.append(el) finishStr() node.children = processed return node def shouldProcess(self, node): return hasattr(node, "children") class AttrReplacerPass(RecursivePass): """Replaces one attr with another one""" __slots__ = ("shouldDelete",) DEPENDS = (RecursivePreLifter,) SRC_ID_ATTR = None TGT_ID_ATTR = None def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.shouldDelete = self.__class__.SRC_ID_ATTR != self.__class__.TGT_ID_ATTR def remapValue(self, prevValue): raise NotImplementedError def processNode(self, node): iD = getattr(node, self.__class__.SRC_ID_ATTR) iD = self.remapValue(iD) if self.shouldDelete: del node.argsDic[self.__class__.SRC_ID_ATTR] setattr(node, self.__class__.TGT_ID_ATTR, iD) return node def shouldProcess(self, node): raise NotImplementedError class DecodeIdsBackToNames(AttrReplacerPass): """id to name replacer""" __slots__ = () DEPENDS = (RecursivePreLifter,) SRC_ID_ATTR = "backRef" TGT_ID_ATTR = "backRef" def remapValue(self, iD): if isinstance(iD, int): iD = self.preLifter.groupsInvertedIdx.get(iD, iD) if isinstance(iD, int): iD = "cap_" + str(iD) elif isinstance(iD, str): pass return iD class AssignBackRefsNames(DecodeIdsBackToNames): """This pass * assigns `name`s to backrefs in the case of named groups""" __slots__ = ("shouldDelete",) DEPENDS = (RecursivePreLifter,) SRC_ID_ATTR = "backRef" TGT_ID_ATTR = "backRef" NODE_TYPES = frozenset({sc.GROUPREF, sc.GROUPREF_EXISTS}) def shouldProcess(self, node): return node.type in self.__class__.NODE_TYPES class AssignGroupsNamesAndCaptures(DecodeIdsBackToNames): """This pass * assigns `name`s (used as ids in UG) to named capturing groups * generates and assigns `name`s (used as ids in UG) to unnamed but indexec capturing groups * separates capturing functionality from group functionality. So capturing groups are now 2 nodes, 1 for a group itself, another one for capturing, and uncaptured groups are only 1 node, for the group itself only.""" __slots__ = () DEPENDS = (RecursivePreLifter,) SRC_ID_ATTR = "id" TGT_ID_ATTR = "name" def processNode(self, node): res = None node = super().processNode(node) iD = node.name # it is set to anything only if `id` is not None, ... if iD is not None: # ... , so it is a capturing group res = RXASTNode(iD, CAPTURE_GROUP, {"children": [node]}) else: res = node return res def shouldProcess(self, node): return node.type == sc.SUBPATTERN and self.__class__.SRC_ID_ATTR in node.argsDic class EliminateUnneededSingleItemGroups(RecursivePass): """The regexp engine tends to create groups even if there is a single item in it and it is non-capturing. We replace the group node with its content in this case""" __slots__ = () DEPENDS = (RecursivePreLifter, AssignGroupsNamesAndCaptures) # must be executed after AssignGroupsNamesAndCaptures, otherwise the info about captures and assigned ids may be lost def processNode(self, node): if len(node.children) == 1: child = node.children[0] if child.name is None: child.name = node.name return child return node def shouldProcess(self, node): return node.type == sc.SUBPATTERN class AssignLiteralsNames(RecursivePass): __slots__ = () DEPENDS = (RecursivePreLifter, CombineLiterals) # though it doesn't require CombineLiterals be executed to run without an error, the results will be incorrect otherwise def processNode(self, node): node.name = "CHAR_" + unicodedata.name(node.literal).replace(" ", "_").upper() return node def shouldProcess(self, node): return node.type == sc.LITERAL and node.name is None class AssignKeywordsNames(RecursivePass): __slots__ = () DEPENDS = (RecursivePreLifter, CombineLiterals) def processNode(self, node): node.name = "KW_" + node.literal return node def shouldProcess(self, node): return node.type == LITERAL_STR and node.name is None class PythonRXAST: __slots__ = ("pattern", "root", "groupsInvertedIdx") PASSES = [ RecursivePreLifter, Lift_IN_args, AssignGroupsNamesAndCaptures, EliminateUnneededSingleItemGroups, AssignBackRefsNames, CombineLiterals, AssignLiteralsNames, AssignKeywordsNames, ] def __init__(self, grammarText: str): children = sp.parse(grammarText, sp.SRE_FLAG_VERBOSE) self.__class__.pattern.__set__(self, children.pattern) self.__class__.groupsInvertedIdx.__set__(self, {v: k for k, v in children.pattern.groupdict.items()}) root = RXASTNode(None, sc.SUBPATTERN, {"id": None, "children": list(children)}) for pasCtor in self.__class__.PASSES: pas = pasCtor(self) root = pas(root) #print("Pass", pas.__class__.__name__, ": ", groups.Fore.lightgreenEx("OK")) #pprint(root) self.__class__.root.__set__(self, root) print(root) def __getattr__(self, k: str): return getattr(self.pattern, k) def __setattr__(self, k: str, v): setattr(self.pattern, k, v) def __repr__(self): return repr(self.pattern)
27.217722
287
0.728583
10,307
0.958702
0
0
0
0
0
0
2,701
0.251232
474625e55d420bbe1645d7c53baf9bb6b0997f55
2,615
py
Python
works/test/dssm/model.py
didazxc/autoflow
6682102efae90b0af00ba920cd4fa2020694d5f2
[ "MIT" ]
null
null
null
works/test/dssm/model.py
didazxc/autoflow
6682102efae90b0af00ba920cd4fa2020694d5f2
[ "MIT" ]
null
null
null
works/test/dssm/model.py
didazxc/autoflow
6682102efae90b0af00ba920cd4fa2020694d5f2
[ "MIT" ]
null
null
null
import torch from torch import nn class UserModel(nn.Module): def __init__(self, filter_sizes, userprofile_size, applist_size, output_size=32, char_embed_size=32, chars_size=6000, out_channel_size=3): super().__init__() # embedding of lines and apps self.embed = nn.Embedding(chars_size, char_embed_size) # charCNN self.convs = nn.ModuleList([ nn.Sequential(nn.Conv1d(char_embed_size, out_channel_size, filter_size)) for filter_size in filter_sizes ]) self.conv_out_size = out_channel_size * len(filter_sizes) self.lines_output_layer = nn.Sequential( nn.Dropout(0.5), nn.Linear(self.conv_out_size, output_size), nn.ReLU() ) # combine self.output_layer = nn.Sequential( nn.Linear(output_size+applist_size+userprofile_size, output_size), nn.ReLU(), nn.Linear(output_size, output_size), nn.ReLU() ) def forward(self, lines, applist, userprofile): # lines lines_embed_out = self.embed(lines).permute(0, 2, 1) conv_outs = [conv(lines_embed_out) for conv in self.convs] pool_outs = [nn.functional.max_pool1d(out, out.shape[-1]) for out in conv_outs] convs_out = torch.cat(pool_outs, dim=1).view(-1, self.conv_out_size) lines_output = self.lines_output_layer(convs_out) # combine output = torch.cat([lines_output, applist, userprofile], dim=-1) output = self.output_layer(output) return output class DS(nn.Module): def __init__(self, userprofile_size=1384, applist_size=1000, embed_size=32, vid_table_size=22261, aid_table_size=13727): super().__init__() self.user_embed = UserModel([3, 5, 10], userprofile_size, applist_size, output_size=embed_size) self.vid_embed = nn.Embedding(vid_table_size, embed_size) self.aid_embed = nn.Embedding(aid_table_size, embed_size) self.video_output_layer = nn.Sequential( nn.Linear(2*embed_size, embed_size), nn.ReLU(), nn.Linear(embed_size, embed_size), nn.ReLU() ) def forward(self, vid, aid, lines, applist, userprofile): user = self.user_embed(lines, applist, userprofile) video = self.video_output_layer(torch.cat([self.vid_embed(vid), self.aid_embed(aid)], dim=-1)) cosine = torch.cosine_similarity(user, video, dim=-1) return cosine @staticmethod def get_cate(x): return 1 if x >= 0.5 else 0
38.455882
104
0.636711
2,574
0.984321
0
0
70
0.026769
0
0
63
0.024092
474730af1ea1af916a12ede7e8f6ca83e5e468a8
952
py
Python
pastila/schema.py
harlov/pastila
27ebe862bc25d5cc1a14766e5eec8f48853098c3
[ "MIT" ]
null
null
null
pastila/schema.py
harlov/pastila
27ebe862bc25d5cc1a14766e5eec8f48853098c3
[ "MIT" ]
null
null
null
pastila/schema.py
harlov/pastila
27ebe862bc25d5cc1a14766e5eec8f48853098c3
[ "MIT" ]
null
null
null
from pastila.fields import Field class Schema(object): data = None def __init__(self): self.data = {} def load(self, data): for field, value in data.items(): self.load_to_field(field, value) self.validate() def validate(self): for name, field in self.fields.items(): field.validate(self.data[name], self) def dump(self): data = {} for name, field in self.fields.items(): data[name] = field.dump() return data def __getattr__(self, item): return self.data[item] @property def fields(self): return { name: field for name, field in filter(lambda x: isinstance(x[1], Field), self.__class__.__dict__.items()) } def load_to_field(self, field, value): if field not in self.fields: return None self.data[field] = self.fields[field].load(value)
22.666667
86
0.570378
916
0.962185
0
0
188
0.197479
0
0
0
0
4747b2ce44f8edfeed9025dd5538e36cd606b1dc
436
py
Python
labs/lab10/demo/src/cpu_multiprocessing.py
Alvant/AdvancedPython2020
c5a6439f100ff6a32168366f6a74e5ca0e79d0bc
[ "MIT" ]
null
null
null
labs/lab10/demo/src/cpu_multiprocessing.py
Alvant/AdvancedPython2020
c5a6439f100ff6a32168366f6a74e5ca0e79d0bc
[ "MIT" ]
7
2021-09-12T17:15:27.000Z
2022-03-01T17:50:18.000Z
labs/lab10/demo/src/cpu_multiprocessing.py
Alvant/AdvancedPython
b036d124d0ccaa325b356db1a189e6ef10e1f21f
[ "MIT" ]
2
2021-09-26T10:00:25.000Z
2021-11-07T19:01:33.000Z
import multiprocessing import time from typing import List from constants import CPU_BIG_NUMBERS from utils import show_execution_time def cpu_bound(number: int) -> int: return sum(i * i for i in range(number)) def find_sums(numbers: List[int]) -> None: with multiprocessing.Pool() as pool: pool.map(cpu_bound, numbers) if __name__ == "__main__": show_execution_time(func=lambda: find_sums(CPU_BIG_NUMBERS))
20.761905
64
0.743119
0
0
0
0
0
0
0
0
10
0.022936
4747e422b3230b40d458ca7afafc2b2ff6c690f8
304
py
Python
whatsapp_tracker/bases/selenium_bases/base_selenium_keyboard.py
itay-bardugo/whatsapp_tracker
c53a309b08bf47597c8191ec0a155a1fe1536842
[ "MIT" ]
1
2021-09-25T12:22:35.000Z
2021-09-25T12:22:35.000Z
whatsapp_tracker/bases/selenium_bases/base_selenium_keyboard.py
itay-bardugo/whatsapp_tracker
c53a309b08bf47597c8191ec0a155a1fe1536842
[ "MIT" ]
null
null
null
whatsapp_tracker/bases/selenium_bases/base_selenium_keyboard.py
itay-bardugo/whatsapp_tracker
c53a309b08bf47597c8191ec0a155a1fe1536842
[ "MIT" ]
null
null
null
from abc import ABCMeta from whatsapp_tracker.bases.selenium_bases.base_selenium_kit import BaseSeleniumKit from whatsapp_tracker.mixins.seleniun_keyboard_press_mixin import SeleniumKeyBoardPressMixin class BaseSeleniumKeyboard(BaseSeleniumKit, SeleniumKeyBoardPressMixin, metaclass=ABCMeta): ...
33.777778
92
0.875
99
0.325658
0
0
0
0
0
0
0
0
4749535b6dc42716b629b0a869d4e93214bb93a8
3,056
py
Python
assignments/assignment2/model.py
RuslanOm/dlcourse_ai
f4c85497dc4affb942cacb363f17ce63b39c1bd7
[ "MIT" ]
null
null
null
assignments/assignment2/model.py
RuslanOm/dlcourse_ai
f4c85497dc4affb942cacb363f17ce63b39c1bd7
[ "MIT" ]
null
null
null
assignments/assignment2/model.py
RuslanOm/dlcourse_ai
f4c85497dc4affb942cacb363f17ce63b39c1bd7
[ "MIT" ]
null
null
null
import numpy as np from layers import FullyConnectedLayer, ReLULayer, softmax_with_cross_entropy, l2_regularization class TwoLayerNet: """ Neural network with two fully connected layers """ def __init__(self, n_input, n_output, hidden_layer_size, reg): """ Initializes the neural network Arguments: n_input, int - dimension of the model input n_output, int - number of classes to predict hidden_layer_size, int - number of neurons in the hidden layer reg, float - L2 regularization strength """ self.reg = reg self.fc1 = FullyConnectedLayer( n_input=n_input, n_output=hidden_layer_size) self.fc2 = FullyConnectedLayer( n_input=hidden_layer_size, n_output=n_output) self.relu = ReLULayer() def compute_loss_and_gradients(self, X, y): """ Computes total loss and updates parameter gradients on a batch of training examples Arguments: X, np array (batch_size, input_features) - input data y, np array of int (batch_size) - classes """ # Before running forward and backward pass through the model, # clear parameter gradients aggregated from the previous pass # TODO Set parameter gradient to zeros # Hint: using self.params() might be useful! for _, par in self.fc1.params().items(): par.grad *= 0 for _, par in self.fc2.params().items(): par.grad *= 0 # TODO Compute loss and fill param gradients # by running forward and backward passes through the model x1 = self.relu.forward(self.fc1.forward(X)) out = self.fc2.forward(x1) loss_cre, dprediction = softmax_with_cross_entropy(out, y) loss_l2_w1, dW1_l2 = l2_regularization(self.fc1.W.value, self.reg) loss_l2_w2, dW2_l2 = l2_regularization(self.fc2.W.value, self.reg) loss = loss_cre + loss_l2_w1 + loss_l2_w2 d_relu = self.fc2.backward(dprediction) d_inp = self.relu.backward(d_relu) _ = self.fc1.backward(d_inp) self.fc1.W.grad += dW1_l2 self.fc2.W.grad += dW2_l2 # After that, implement l2 regularization on all params # Hint: self.params() is useful again! return loss def predict(self, X): """ Produces classifier predictions on the set Arguments: X, np array (test_samples, num_features) Returns: y_pred, np.array of int (test_samples) """ # TODO: Implement predict # Hint: some of the code of the compute_loss_and_gradients # can be reused # pred = np.zeros(X.shape[0], np.int) x1 = self.relu.forward(self.fc1.forward(X)) out = self.fc2.forward(x1) return np.argmax(out, axis=1) def params(self): result = { 'W1': self.fc1.W, 'W2': self.fc2.W, 'B1': self.fc1.B, 'B2': self.fc2.B, } return result
32.510638
96
0.612238
2,936
0.960733
0
0
0
0
0
0
1,353
0.442736
474a6941a53b9666a0f1df165d06680657ea0def
3,066
py
Python
ukol.py
tenhobi/NI-MPI
5c6c4f5fd28487e807315ce6da33b81f0db4908d
[ "MIT" ]
null
null
null
ukol.py
tenhobi/NI-MPI
5c6c4f5fd28487e807315ce6da33b81f0db4908d
[ "MIT" ]
null
null
null
ukol.py
tenhobi/NI-MPI
5c6c4f5fd28487e807315ce6da33b81f0db4908d
[ "MIT" ]
null
null
null
import numpy as np class Solver: def __init__(self, matrix, vector, initialVector, precision, gamma): self.initialVector = initialVector self.precision = precision self.matrix = matrix self.bVector = vector self.gamma = gamma # lower triangular part self.l = np.tril(matrix, -1) # upper triangular part self.u = np.triu(matrix, 1) # diagonal component self.d = np.diag(np.diag(matrix)) # init Q - must be set by subclases self.q = None self.qinv = None def solve(self): """Starts to compute iterations and then returns count of iterations and result.""" iterationCount = 0 x = None if self.canConverge(): x = self.initialVector while self.isNotPreciseEnough(x): iterationCount = iterationCount + 1 x = self.doIteration(x) return iterationCount, x def canConverge(self): """Can converge if the value of spectral radius is less than 1.""" e = np.identity(self.matrix.shape[0], dtype = np.float64) return self.getSpectralRadius(e - self.qinv @ self.matrix) < 1 def isNotPreciseEnough(self, iteration): """Chech whether precision is not already sufficient.""" return (np.linalg.norm(self.matrix @ iteration - self.bVector) / np.linalg.norm(self.bVector)) > self.precision def doIteration(self, lastIteration): """Does next iteration.""" return self.qinv @ (self.q - self.matrix) @ lastIteration + self.qinv @ self.bVector def getSpectralRadius(self, matrix): """Returns max absolute eigenvalue of matrix, aka spectral radius.""" return max(abs(np.linalg.eigvals(matrix))) class JacobiSolver(Solver): def __init__(self, matrix, vector, initialVector, precision, gamma): super().__init__(matrix, vector, initialVector, precision, gamma) self.q = self.d self.qinv = np.linalg.inv(self.q) class GaussSeidelSolver(Solver): def __init__(self, matrix, vector, initialVector, precision, gamma, omega = 1): super().__init__(matrix, vector, initialVector, precision, gamma) self.omega = omega self.q = (1 / omega) * self.d + self.l self.qinv = np.linalg.inv(self.q) ### ----- config # parameters gamma = 3 omega = 1 precision = 10**-6 # matrix matrix = np.zeros((20, 20), dtype = np.float64) np.fill_diagonal(matrix, gamma) np.fill_diagonal(matrix[:, 1:], -1) # upper part np.fill_diagonal(matrix[1:, :], -1) # lower part # vector b bVector = np.full((20, 1), gamma - 2, dtype = np.float64) bVector[0] = bVector[0] + 1 bVector[-1] = bVector[-1] + 1 # initial vector initialVector = np.zeros(bVector.shape, dtype = np.float64) ### ----- solver # use one of these: #solver = JacobiSolver(matrix, bVector, initialVector, precision, gamma) solver = GaussSeidelSolver(matrix, bVector, initialVector, precision, gamma, omega) solver.solve()
31.285714
119
0.628506
2,362
0.770385
0
0
0
0
0
0
594
0.193738
474bb5e6e62ca2caee71dee1fac0a250c57c5dda
12,491
py
Python
src/python/dxpy/utils/__init__.py
psung/dx-toolkit
f3a430c5e24184215eb4a9883a179edf07bfa08b
[ "Apache-2.0" ]
null
null
null
src/python/dxpy/utils/__init__.py
psung/dx-toolkit
f3a430c5e24184215eb4a9883a179edf07bfa08b
[ "Apache-2.0" ]
null
null
null
src/python/dxpy/utils/__init__.py
psung/dx-toolkit
f3a430c5e24184215eb4a9883a179edf07bfa08b
[ "Apache-2.0" ]
null
null
null
# Copyright (C) 2013-2014 DNAnexus, Inc. # # This file is part of dx-toolkit (DNAnexus platform client libraries). # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy # of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Utilities shared by dxpy modules. """ from __future__ import (print_function, unicode_literals) import os, json, collections, concurrent.futures, traceback, sys, time, gc import dateutil.parser from .thread_pool import PrioritizingThreadPool from .. import logger from ..compat import basestring def _force_quit(signum, frame): # traceback.print_stack(frame) os._exit(os.EX_IOERR) # os.abort() def get_futures_threadpool(max_workers): #import signal #if force_quit_on_sigint: # signal.signal(signal.SIGINT, _force_quit) #return concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) return PrioritizingThreadPool(max_workers=max_workers) def wait_for_a_future(futures, print_traceback=False): """ Return the next future that completes. If a KeyboardInterrupt is received, then the entire process is exited immediately. See wait_for_all_futures for more notes. """ while True: try: future = next(concurrent.futures.as_completed(futures, timeout=10000000000)) break except concurrent.futures.TimeoutError: pass except KeyboardInterrupt: if print_traceback: traceback.print_stack() else: print('') os._exit(os.EX_IOERR) return future def wait_for_all_futures(futures, print_traceback=False): """ Wait indefinitely for all futures in the input iterable to complete. Use a timeout to enable interrupt handling. Call os._exit() in case of KeyboardInterrupt. Otherwise, the atexit registered handler in concurrent.futures.thread will run, and issue blocking join() on all worker threads, requiring us to listen to events in worker threads in order to enable timely exit in response to Ctrl-C. Note: This still doesn't handle situations where Ctrl-C is pressed elsewhere in the code and there are worker threads with long-running tasks. Note: os._exit() doesn't work well with interactive mode (e.g. ipython). This may help: import __main__ as main; if hasattr(main, '__file__'): os._exit() else: os.exit() """ try: while True: waited_futures = concurrent.futures.wait(futures, timeout=60) if len(waited_futures.not_done) == 0: break except KeyboardInterrupt: if print_traceback: traceback.print_stack() else: print('') os._exit(os.EX_IOERR) def response_iterator(request_iterator, thread_pool, max_active_tasks=4, num_retries=0, retry_after=90, queue_id=''): """ :param request_iterator: This is expected to be an iterator producing inputs for consumption by the worker pool. :type request_iterator: iterator of callable_, args, kwargs :param thread_pool: thread pool to submit the requests to :type thread_pool: PrioritizingThreadPool :param max_active_tasks: The maximum number of tasks that may be either running or waiting for consumption of their result. :type max_active_tasks: int :param num_retries: The number of times to retry the request. :type num_retries: int :param retry_after: The number of seconds to wait before retrying the request. :type retry_after: number :param queue_id: hashable object to divide incoming requests into independent queues :type queue_id: object Rate-limited asynchronous multithreaded task runner. Consumes tasks from *request_iterator*. Yields their results in order, while allowing up to *max_active_tasks* to run simultaneously. Unlike concurrent.futures.Executor.map, prevents new tasks from starting while there are *max_active_tasks* or more unconsumed results. **Retry behavior**: If *num_retries* is positive, the task runner uses a simple heuristic to retry slow requests. If there are 4 or more tasks in the queue, and all but the first one are done, the first task will be discarded after *retry_after* seconds and resubmitted with the same parameters. This will be done up to *num_retries* times. If retries are used, tasks should be idempotent. """ # Debug fallback #for _callable, args, kwargs in request_iterator: # yield _callable(*args, **kwargs) #return num_results_yielded = 0 next_request_index = 0 def make_priority_fn(request_index): # The more pending requests are between the data that has been # returned to the caller and this data, the less likely this # data is to be needed soon. This results in a higher number # here (and therefore a lower priority). return lambda: request_index - num_results_yielded def submit(callable_, args, kwargs, retries=num_retries): """ Submit the task. Return (future, (callable_, args, kwargs), retries) """ future = thread_pool.submit_to_queue(queue_id, make_priority_fn(next_request_index), callable_, *args, **kwargs) return (future, (callable_, args, kwargs), retries) def resubmit(callable_, args, kwargs, retries): """ Submit the task. Return (future, (callable_, args, kwargs), retries) """ logger.warn("{}: Retrying {} after timeout".format(__name__, callable_)) # TODO: resubmitted tasks should be prioritized higher return submit(callable_, args, kwargs, retries=retries-1) # Each item is (future, (callable_, args, kwargs), retries): # # future: Future for the task being performed # callable_, args, kwargs: callable and args that were supplied # retries: number of additional times they request may be retried tasks_in_progress = collections.deque() for _i in range(max_active_tasks): try: callable_, args, kwargs = next(request_iterator) # print "Submitting (initial batch):", callable_, args, kwargs tasks_in_progress.append(submit(callable_, args, kwargs)) next_request_index += 1 except StopIteration: break while len(tasks_in_progress) > 0: future, callable_and_args, retries = tasks_in_progress.popleft() try: result = future.result(timeout=retry_after) except concurrent.futures.TimeoutError: # print "Timeout while waiting for", f, "which has", f.retries, "retries left" if retries > 0 and len(tasks_in_progress) > 2 and all(f.done() for (f, _callable, _retries) in tasks_in_progress): # The stale future will continue to run and will reduce the effective size of the pool by 1. If too many # futures are retried, the pool will block until one of the stale futures quits. # f.cancel() doesn't work because there's no way to interrupt a thread. prev_callable, prev_args, prev_kwargs = callable_and_args future, callable_and_args, retries = resubmit(prev_callable, prev_args, prev_kwargs, retries) next_request_index += 1 tasks_in_progress.appendleft((future, callable_and_args, retries)) continue except KeyboardInterrupt: print('') os._exit(os.EX_IOERR) del future # Free the future we just consumed now, instead of next # time around the loop gc.collect() try: callable_, args, kwargs = next(request_iterator) except StopIteration: pass else: tasks_in_progress.append(submit(callable_, args, kwargs)) next_request_index += 1 yield result del result num_results_yielded += 1 def string_buffer_length(buf): orig_pos = buf.tell() buf.seek(0, os.SEEK_END) buf_len = buf.tell() buf.seek(orig_pos) return buf_len def normalize_time_input(t, future=False): """ Converts inputs such as: "2012-05-01" "-5d" 1352863174 to milliseconds since epoch. See http://labix.org/python-dateutil and :meth:`normalize_timedelta`. """ error_msg = 'Error: Could not parse {t} as a timestamp or timedelta. Expected a date format or an integer with a single-letter suffix: s=seconds, m=minutes, h=hours, d=days, w=weeks, M=months, y=years, e.g. "-10d" indicates 10 days ago' if isinstance(t, basestring): try: t = normalize_timedelta(t) except ValueError: try: t = int(time.mktime(dateutil.parser.parse(t).timetuple())*1000) except ValueError: raise ValueError(error_msg.format(t=t)) now = int(time.time()*1000) if t < 0 or (future and t < now): t += now return t def normalize_timedelta(timedelta): """ Given a string like "1w" or "-5d", convert it to an integer in milliseconds. Integers without a suffix are interpreted as seconds. Note: not related to the datetime timedelta class. """ try: return int(timedelta) * 1000 except ValueError as e: t, suffix = timedelta[:-1], timedelta[-1:] suffix_multipliers = {'s': 1000, 'm': 1000*60, 'h': 1000*60*60, 'd': 1000*60*60*24, 'w': 1000*60*60*24*7, 'M': 1000*60*60*24*30, 'y': 1000*60*60*24*365} if suffix not in suffix_multipliers: raise ValueError() return int(t) * suffix_multipliers[suffix] # See http://stackoverflow.com/questions/4126348 class OrderedDefaultdict(collections.OrderedDict): def __init__(self, *args, **kwargs): newdefault = None newargs = () if args: newdefault = args[0] if not (newdefault is None or callable(newdefault)): raise TypeError('first argument must be callable or None') newargs = args[1:] self.default_factory = newdefault super(self.__class__, self).__init__(*newargs, **kwargs) def __missing__(self, key): if self.default_factory is None: raise KeyError(key) self[key] = value = self.default_factory() return value def __reduce__(self): args = self.default_factory if self.default_factory else tuple() return type(self), args, None, None, self.items() def group_array_by_field(array, field='group'): groups = OrderedDefaultdict(list) for item in array: if field not in item and None not in groups: groups[None] = [] groups[item.get(field)].append(item) return groups def merge(d, u): """ Recursively updates a dictionary. Example: merge({"a": {"b": 1, "c": 2}}, {"a": {"b": 3}}) = {"a": {"b": 3, "c": 2}} """ for k, v in u.items(): if isinstance(v, collections.Mapping): r = merge(d.get(k, {}), v) d[k] = r else: d[k] = u[k] return d def _dict_raise_on_duplicates(ordered_pairs): """ Reject duplicate keys. """ d = {} for k, v in ordered_pairs: if k in d: raise ValueError("duplicate key: %r" % (k,)) else: d[k] = v return d def json_load_raise_on_duplicates(*args, **kwargs): """ Like json.load(), but raises an error on duplicate keys. """ kwargs['object_pairs_hook'] = _dict_raise_on_duplicates return json.load(*args, **kwargs) def json_loads_raise_on_duplicates(*args, **kwargs): """ Like json.loads(), but raises an error on duplicate keys. """ kwargs['object_pairs_hook'] = _dict_raise_on_duplicates return json.loads(*args, **kwargs) def warn(*args, **kwargs): print(*args, file=sys.stderr, **kwargs) # Moved to the bottom due to circular imports from .exec_utils import run, convert_handlers_to_dxlinks, parse_args_as_job_input, entry_point, DXJSONEncoder
39.15674
241
0.660716
802
0.064206
5,191
0.415579
0
0
0
0
5,868
0.469778
474cbd8308c2b1410045a858c934a70c927f171d
2,946
py
Python
mkserialisable.py
cedadev/ipython_project
fd9c85c20d3689435684cf4b681dfaab1c0a825b
[ "BSD-3-Clause-Clear" ]
null
null
null
mkserialisable.py
cedadev/ipython_project
fd9c85c20d3689435684cf4b681dfaab1c0a825b
[ "BSD-3-Clause-Clear" ]
null
null
null
mkserialisable.py
cedadev/ipython_project
fd9c85c20d3689435684cf4b681dfaab1c0a825b
[ "BSD-3-Clause-Clear" ]
null
null
null
"""Routines to make objects serialisable. Each of the functions in this module makes a specific type of object serialisable. In most cases, this module needs to be imported and the function run in both the serialising and the unserialising environments. Here's a summary (see function documentation for details): mk_ellipsis: Ellipsis. mk_slots: classes with __slots__ but not __dict__. mk_netcdf: netCDF4. mk_cf: cf. """ import copy_reg _done = [] # ellipsis def mk_ellipsis (): """Make the Ellipsis builtin serialisable.""" if 'ellipsis' in _done: return copy_reg.pickle(type(Ellipsis), lambda e: 'Ellipsis') # slots def _construct_slots (cls, attrs): o = object.__new__(cls) for k, v in attrs.iteritems(): setattr(o, k, v) return o def _reduce_slots (o): attrs = dict((k, getattr(o, k)) for k in o.__slots__ if hasattr(o, k)) return _construct_slots, (type(o), attrs) def mk_slots (*objs): """Make the classes that have __slots__ but not __dict__ serialisable. Takes a number of types (new-style classes) to make serialisable. """ for cls in objs: copy_reg.pickle(cls, _reduce_slots) # netcdf def mk_netcdf (): """Make objects in the netCDF4 module serialisable. Depends on ncserialisable; see that module's documentation for details. This replaces the netCDF4 module with ncserialisable directly through sys.modules; to access netCDF4 directly, use ncserialisable.netCDF4. Call this before importing any module that uses netCDF4. """ if 'netcdf' in _done: return import sys from nc_ipython import ncserialisable sys.modules['netCDF4'] = ncserialisable # cf def _construct_cf_units (attrs): u = object.__new__(cf.Units) for k, v in attrs.iteritems(): setattr(u, k, v) if hasattr(u, 'units'): u.units = u.units return u def _reduce_cf_units (u): attrs = dict((k, getattr(u, k)) for k in u.__slots__ if hasattr(u, k)) return _construct_cf_units, (attrs,) def mk_cf (): """Make objects in the cf module serialisable. Calls mk_netcdf, and so depends on ncserialisable. Call this before importing cf. """ if 'cf' in _done: return mk_netcdf() global cf import cf mk_slots( cf.data.ElementProperties, cf.Data, cf.data.SliceData, #cf.Units, cf.pp.Variable, cf.pp.VariableCalc, cf.pp.VariableCalcBounds, cf.pp.VariableBounds, #cf.org_field.SliceVariable, #cf.org_field.SliceCoordinate, #cf.org_field.SliceField, #cf.org_field.SliceVariableList, #cf.org_field.SliceFieldList, #cf.org_field.Flags, cf.field.SliceField, cf.field.SliceFieldList, cf.Flags, cf.coordinate.SliceCoordinate, cf.variable.SliceVariable, cf.variable.SliceVariableList ) copy_reg.pickle(cf.Units, _reduce_cf_units)
23.95122
79
0.67685
0
0
0
0
0
0
0
0
1,326
0.450102
474d460f8c93e195c3909578035ee5726563b9b7
773
py
Python
flox_aws/configure.py
getflox/flox-aws
9642e291afa3ddedd9eed566b43a640e9bb0c537
[ "MIT" ]
null
null
null
flox_aws/configure.py
getflox/flox-aws
9642e291afa3ddedd9eed566b43a640e9bb0c537
[ "MIT" ]
null
null
null
flox_aws/configure.py
getflox/flox-aws
9642e291afa3ddedd9eed566b43a640e9bb0c537
[ "MIT" ]
null
null
null
from floxcore.config import Configuration, ParamDefinition class AWSConfiguration(Configuration): def parameters(self): return ( ParamDefinition("region", "AWS Default region"), ParamDefinition("role_arn", "Role (ARN) to be assumed", default="", filter_empty=False), ParamDefinition("mfa_arn", "Multi factor authentication device ARN", default="", filter_empty=False), ParamDefinition("kms", "Default KMS key to be used for encryption", default=""), ) def secrets(self): return ( ParamDefinition("key_id", "AWS Key Id", secret=True, default=""), ParamDefinition("key_secret", "AWS Secret Key", secret=True, default=""), ) def schema(self): pass
36.809524
113
0.630013
711
0.919793
0
0
0
0
0
0
219
0.283312
474d5c6d6e9e1b1ea76c41c137dcb55b272f1e24
1,769
py
Python
api_teacher.py
sabertooth9/KUET-Teachers-Web-Scrapper-
0b1cea4f3e60f440b882bef971a942e42d0ab048
[ "Apache-2.0" ]
1
2019-12-21T13:35:46.000Z
2019-12-21T13:35:46.000Z
api_teacher.py
sabertooth9/KUET-Teachers-Web-Scrapper-
0b1cea4f3e60f440b882bef971a942e42d0ab048
[ "Apache-2.0" ]
null
null
null
api_teacher.py
sabertooth9/KUET-Teachers-Web-Scrapper-
0b1cea4f3e60f440b882bef971a942e42d0ab048
[ "Apache-2.0" ]
null
null
null
from flask import Flask from flask_restful import Api, Resource, reqparse from kuet_teacher_data import get_data app = Flask(__name__) api = Api(app) data = get_data() class Teacher_data(Resource): def get(self,id="CSE"): if(id=='ALL' or id=='all'): return data, 200 for datac in data: if(datac==id): return data.get(datac),200 return "Not Found",404 def contains(j,id): if(id in j.get("name").lower()): return True if(id in j.get("weblink").lower()): return True if(id in j.get("designation").lower()): return True if(id in j.get("image").lower()): return True if(id in j.get("phone").lower()): return True if(id in j.get("mail").lower()): return True return False; class search_dept_teacher(Resource): def get(self,dept,id): ans = [] id = id.lower() for datac in data: if(datac == dept or dept.lower()=='all'): for j in data.get(datac): if(contains(j,id)): ans.append(j) if(len(ans) > 0): return ans, 200 return "Not Found", 404 class search_teacher(Resource): def get(self, id): ans = [] id = id.lower() for datac in data: for j in data.get(datac): if(contains(j, id)): ans.append(j) if(len(ans) > 0): return ans, 200 return "Not Found", 404 api.add_resource(Teacher_data,"/data","/data/","/data/<string:id>") api.add_resource(search_dept_teacher,"/find/<string:dept>/<string:id>") api.add_resource(search_teacher,"/find/<string:id>") if __name__ == "__main__": app.run()
26.402985
71
0.544375
963
0.544375
0
0
0
0
0
0
197
0.111362
474e6ccd3a09db8bd61fb6310dfa022bed136ad4
892
py
Python
demo/singleperson.py
Neerajj9/Computer-Vision-based-Offside-Detection-in-soccer
744bfc636463f24c4f78f25684864c2ce4abb43f
[ "MIT" ]
8
2020-10-17T14:54:53.000Z
2022-02-09T11:03:01.000Z
demo/singleperson.py
Neerajj9/Computer-Vision-based-Offside-Detection-in-soccer
744bfc636463f24c4f78f25684864c2ce4abb43f
[ "MIT" ]
4
2021-01-03T16:02:29.000Z
2021-11-23T03:26:01.000Z
demo/singleperson.py
Neerajj9/Computer-Vision-based-Offside-Detection-in-soccer
744bfc636463f24c4f78f25684864c2ce4abb43f
[ "MIT" ]
2
2021-04-10T07:05:55.000Z
2021-09-19T23:22:18.000Z
import os import sys sys.path.append(os.path.dirname(__file__) + "/../") from scipy.misc import imread from util.config import load_config from nnet import predict from util import visualize from dataset.pose_dataset import data_to_input cfg = load_config("demo/pose_cfg.yaml") # Load and setup CNN part detector sess, inputs, outputs = predict.setup_pose_prediction(cfg) # Read image from file file_name = "demo/image.png" image = imread(file_name, mode='RGB') image_batch = data_to_input(image) # Compute prediction with the CNN outputs_np = sess.run(outputs, feed_dict={inputs: image_batch}) scmap, locref, _ = predict.extract_cnn_output(outputs_np, cfg) # Extract maximum scoring location from the heatmap, assume 1 person pose = predict.argmax_pose_predict(scmap, locref, cfg.stride) # Visualise visualize.show_heatmaps(cfg, image, scmap, pose) visualize.waitforbuttonpress()
25.485714
68
0.784753
0
0
0
0
0
0
0
0
215
0.241031
474f1702de3c8a82c6ec6ce0f179522a071b3434
19,771
py
Python
simulators/iam_module.py
jason-neal/companion_simulations
b5773e5539011d492b7128d0dd2778041ce50d52
[ "MIT" ]
1
2018-09-04T19:06:44.000Z
2018-09-04T19:06:44.000Z
simulators/iam_module.py
jason-neal/companion_simulations
b5773e5539011d492b7128d0dd2778041ce50d52
[ "MIT" ]
85
2017-03-25T22:37:02.000Z
2022-03-01T16:49:14.000Z
simulators/iam_module.py
jason-neal/companion_simulations
b5773e5539011d492b7128d0dd2778041ce50d52
[ "MIT" ]
1
2017-08-18T10:56:39.000Z
2017-08-18T10:56:39.000Z
import datetime import logging import os import warnings import matplotlib.pyplot as plt import numpy as np import pandas as pd from logutils import BraceMessage as __ from tqdm import tqdm import simulators from mingle.models.broadcasted_models import inherent_alpha_model from mingle.utilities.chisqr import chi_squared from mingle.utilities.norm import chi2_model_norms, continuum, arbitrary_rescale, arbitrary_minimums from mingle.utilities.phoenix_utils import load_starfish_spectrum from mingle.utilities.simulation_utilities import check_inputs, spec_max_delta from simulators.common_setup import setup_dirs, sim_helper_function from numpy import float64, ndarray from spectrum_overload.spectrum import Spectrum from typing import Dict, List, Optional, Tuple, Union def iam_helper_function(star: str, obsnum: Union[int, str], chip: int, skip_params: bool = False) -> Tuple[ str, Dict[str, Union[str, float, List[Union[str, float]]]], str]: """Specifies parameter files and output directories given observation parameters.""" return sim_helper_function(star, obsnum, chip, skip_params=skip_params, mode="iam") def setup_iam_dirs(star: str) -> None: basedir = setup_dirs(star, mode="iam") os.makedirs(os.path.join(basedir, "grid_plots"), exist_ok=True) os.makedirs(os.path.join(basedir, "fudgeplots"), exist_ok=True) return None def iam_analysis(obs_spec, model1_pars, model2_pars, rvs=None, gammas=None, verbose=False, norm=False, save_only=True, chip=None, prefix=None, errors=None, area_scale=False, wav_scale=True, norm_method="scalar", fudge=None): """Run two component model over all model combinations.""" rvs = check_inputs(rvs) gammas = check_inputs(gammas) if isinstance(model1_pars, list): logging.debug(__("Number of close model_pars returned {0}", len(model1_pars))) if isinstance(model2_pars, list): logging.debug(__("Number of close model_pars returned {0}", len(model2_pars))) # Solution Grids to return iam_grid_chisqr_vals = np.empty((len(model1_pars), len(model2_pars))) args = [model2_pars, rvs, gammas, obs_spec] kwargs = {"norm": norm, "save_only": save_only, "chip": chip, "prefix": prefix, "verbose": verbose, "errors": errors, "area_scale": area_scale, "wav_scale": wav_scale, "norm_method": norm_method, "fudge": fudge, } for ii, params1 in enumerate(tqdm(model1_pars)): iam_grid_chisqr_vals[ii] = iam_wrapper(ii, params1, *args, **kwargs) if save_only: return None else: return iam_grid_chisqr_vals # Just output the best value for each model pair def continuum_alpha(model1: Spectrum, model2: Spectrum, chip: Optional[int] = None) -> float64: """Inherent flux ratio between the continuum of the two models. Assumes already scaled by area. Takes mean alpha of chip or full """ assert not np.any(np.isnan(model1.xaxis)) assert not np.any(np.isnan(model1.flux)) assert not np.any(np.isnan(model2.xaxis)) assert not np.any(np.isnan(model2.flux)) # Fit models with continuum cont1 = continuum(model1.xaxis, model1.flux, method="exponential") cont2 = continuum(model2.xaxis, model2.flux, method="exponential") # Masking for individual chips if chip is None: chip = -1 # Full Crires range all_limits = {-1: [2111, 2169], 1: [2111, 2124], 2: [2125, 2139], 3: [2140, 2152], 4: [2153, 2169]} chip_limits = all_limits[chip] mask1 = (model1.xaxis > chip_limits[0]) * (model1.xaxis < chip_limits[1]) mask2 = (model2.xaxis > chip_limits[0]) * (model2.xaxis < chip_limits[1]) continuum_ratio = cont2[mask2] / cont1[mask1] alpha_ratio = np.nanmean(continuum_ratio) return alpha_ratio def iam_wrapper(num, params1, model2_pars, rvs, gammas, obs_spec, norm=False, verbose=False, save_only=True, chip=None, prefix=None, errors=None, area_scale=True, wav_scale=True, grid_slices=False, norm_method="scalar", fudge=None): """Wrapper for iteration loop of iam. params1 fixed, model2_pars are many. fudge is multiplicative on companion spectrum. """ if prefix is None: sf = os.path.join( simulators.paths["output_dir"], obs_spec.header["OBJECT"].upper(), "iam_{0}_{1}-{2}_part{6}_host_pars_[{3}_{4}_{5}].csv".format( obs_spec.header["OBJECT"].upper(), int(obs_spec.header["MJD-OBS"]), chip, params1[0], params1[1], params1[2], num)) prefix = os.path.join( simulators.paths["output_dir"], obs_spec.header["OBJECT"].upper()) # for fudge else: sf = "{0}_part{4}_host_pars_[{1}_{2}_{3}].csv".format( prefix, params1[0], params1[1], params1[2], num) save_filename = sf if os.path.exists(save_filename) and save_only: print("'{0}' exists, so not repeating calculation.".format(save_filename)) return None else: if not save_only: iam_grid_chisqr_vals = np.empty(len(model2_pars)) for jj, params2 in enumerate(model2_pars): if verbose: print(("Starting iteration with parameters: " "{0}={1},{2}={3}").format(num, params1, jj, params2)) # Main Part rv_limits = observation_rv_limits(obs_spec, rvs, gammas) obs_spec = obs_spec.remove_nans() assert ~np.any(np.isnan(obs_spec.flux)), "Observation has nan" # Load phoenix models and scale by area and wavelength limit mod1_spec, mod2_spec = \ prepare_iam_model_spectra(params1, params2, limits=rv_limits, area_scale=area_scale, wav_scale=wav_scale) # Estimated flux ratio from models inherent_alpha = continuum_alpha(mod1_spec, mod2_spec, chip) # Combine model spectra with iam model mod1_spec.plot(label=params1) mod2_spec.plot(label=params2) plt.close() if fudge or (fudge is not None): fudge_factor = float(fudge) mod2_spec.flux *= fudge_factor # fudge factor multiplication mod2_spec.plot(label="fudged {0}".format(params2)) plt.title("fudges models") plt.legend() fudge_prefix = os.path.basename(os.path.normpath(prefix)) fname = os.path.join(simulators.paths["output_dir"], obs_spec.header["OBJECT"].upper(), "iam", "fudgeplots", "{1}_fudged_model_spectra_factor={0}_num={2}_iter_{3}.png".format(fudge_factor, fudge_prefix, num, jj)) plt.savefig(fname) plt.close() warnings.warn("Using a fudge factor = {0}".format(fudge_factor)) iam_grid_func = inherent_alpha_model(mod1_spec.xaxis, mod1_spec.flux, mod2_spec.flux, rvs=rvs, gammas=gammas) iam_grid_models = iam_grid_func(obs_spec.xaxis) # Continuum normalize all iam_gird_models def axis_continuum(flux): """Continuum to apply along axis with predefined variables parameters.""" return continuum(obs_spec.xaxis, flux, splits=20, method="exponential", top=20) iam_grid_continuum = np.apply_along_axis(axis_continuum, 0, iam_grid_models) iam_grid_models = iam_grid_models / iam_grid_continuum # RE-NORMALIZATION if chip == 4: # Quadratically renormalize anyway obs_spec = renormalization(obs_spec, iam_grid_models, normalize=True, method="quadratic") obs_flux = renormalization(obs_spec, iam_grid_models, normalize=norm, method=norm_method) if grid_slices: # Long execution plotting. plot_iam_grid_slices(obs_spec.xaxis, rvs, gammas, iam_grid_models, star=obs_spec.header["OBJECT"].upper(), xlabel="wavelength", ylabel="rv", zlabel="gamma", suffix="iam_grid_models", chip=chip) old_shape = iam_grid_models.shape # Arbitrary_normalization of observation iam_grid_models, arb_norm = arbitrary_rescale(iam_grid_models, *simulators.sim_grid["arb_norm"]) # print("Arbitrary Normalized iam_grid_model shape.", iam_grid_models.shape) assert iam_grid_models.shape == (*old_shape, len(arb_norm)) # Calculate Chi-squared obs_flux = np.expand_dims(obs_flux, -1) # expand on last axis to match rescale iam_norm_grid_chisquare = chi_squared(obs_flux, iam_grid_models, error=errors) # Take minimum chi-squared value along Arbitrary normalization axis iam_grid_chisquare, arbitrary_norms = arbitrary_minimums(iam_norm_grid_chisquare, arb_norm) npix = obs_flux.shape[0] # Number of pixels used if grid_slices: # Long execution plotting. plot_iam_grid_slices(rvs, gammas, arb_norm, iam_norm_grid_chisquare, star=obs_spec.header["OBJECT"].upper(), xlabel="rv", ylabel="gamma", zlabel="Arbitrary Normalization", suffix="iam_grid_chisquare", chip=chip) if not save_only: iam_grid_chisqr_vals[jj] = iam_grid_chisquare.ravel()[np.argmin(iam_grid_chisquare)] save_full_iam_chisqr(save_filename, params1, params2, inherent_alpha, rvs, gammas, iam_grid_chisquare, arbitrary_norms, npix, verbose=verbose) if save_only: return None else: return iam_grid_chisqr_vals def renormalization(spectrum: Union[ndarray, Spectrum], model_grid: ndarray, normalize: bool = False, method: Optional[str] = "scalar") -> ndarray: """Re-normalize the flux of spectrum to the continuum of the model_grid. Broadcast out spectrum to match the dimensions of model_grid. Parameters ---------- spectrum: Spectrum model_grid: np.ndarray normalize: bool method: str ("scalar", "linear") Returns ------- norm_flux: np.ndarray """ if normalize: if method not in ["scalar", "linear"]: raise ValueError("Renormalization method '{}' is not in ['scalar', 'linear']".format(method)) logging.info(__("{} Re-normalizing to observations!", method)) norm_flux = chi2_model_norms(spectrum.xaxis, spectrum.flux, model_grid, method=method) else: warnings.warn("Not Scalar Re-normalizing to observations!") norm_flux = spectrum.flux[:] # Extend dimensions of norm_flux until they match the grid. while norm_flux.ndim < model_grid.ndim: norm_flux = norm_flux[:, np.newaxis] assert np.allclose(norm_flux.ndim, model_grid.ndim) return norm_flux def observation_rv_limits(obs_spec: Spectrum, rvs: Union[int, List[int]], gammas: Union[int, List[int]]) -> List[ float64]: """Calculate wavelength limits needed to cover RV shifts used.""" delta = spec_max_delta(obs_spec, rvs, gammas) obs_min, obs_max = min(obs_spec.xaxis), max(obs_spec.xaxis) return [obs_min - 1.1 * delta, obs_max + 1.1 * delta] def prepare_iam_model_spectra(params1: Union[List[float], List[Union[int, float]]], params2: Union[List[float], List[Union[int, float]], Tuple[int, float, float]], limits: Union[List[float64], Tuple[int, int], List[int]], area_scale: bool = True, wav_scale: bool = True) -> Tuple[Spectrum, Spectrum]: """Load spectra with same settings.""" if not area_scale: warnings.warn("Not using area_scale. This is incorrect for paper.") if not wav_scale: warnings.warn("Not using wav_scale. This is incorrect for paper.") mod1_spec = load_starfish_spectrum(params1, limits=limits, hdr=True, normalize=False, area_scale=area_scale, flux_rescale=True, wav_scale=wav_scale) mod2_spec = load_starfish_spectrum(params2, limits=limits, hdr=True, normalize=False, area_scale=area_scale, flux_rescale=True, wav_scale=wav_scale) assert len(mod1_spec.xaxis) > 0 and len(mod2_spec.xaxis) > 0 assert np.allclose(mod1_spec.xaxis, mod2_spec.xaxis) # Check correct models are loaded assert mod1_spec.header["PHXTEFF"] == params1[0] assert mod1_spec.header["PHXLOGG"] == params1[1] assert mod1_spec.header["PHXM_H"] == params1[2] assert mod2_spec.header["PHXTEFF"] == params2[0] assert mod2_spec.header["PHXLOGG"] == params2[1] assert mod2_spec.header["PHXM_H"] == params2[2] return mod1_spec, mod2_spec def save_full_iam_chisqr(filename: str, params1: List[Union[int, float]], params2: List[Union[int, float]], alpha: Union[int, float64], rvs: Union[ndarray, List[int]], gammas: Union[ndarray, List[int]], iam_grid_chisquare: ndarray, arbitrary_norms: ndarray, npix: int, verbose: bool = False) -> None: """Save the iterations chisqr values to a cvs.""" rv_grid, g_grid = np.meshgrid(rvs, gammas, indexing='ij') # assert A.shape == rv_grid.shape assert rv_grid.shape == g_grid.shape assert g_grid.shape == iam_grid_chisquare.shape data = {"rv": rv_grid.ravel(), "gamma": g_grid.ravel(), "chi2": iam_grid_chisquare.ravel(), "arbnorm": arbitrary_norms.ravel()} columns = ["rv", "gamma", "chi2", "arbnorm"] len_c = len(columns) df = pd.DataFrame(data=data, columns=columns) # Update all rows with same value. for par, value in zip(["teff_2", "logg_2", "feh_2"], params2): df[par] = value columns = ["teff_2", "logg_2", "feh_2"] + columns if "[{0}_{1}_{2}]".format(params1[0], params1[1], params1[2]) not in filename: # Need to add the model values. for par, value in zip(["teff_1", "logg_1", "feh_1"], params1): df[par] = value columns = ["teff_1", "logg_1", "feh_1"] + columns df["alpha"] = alpha df["npix"] = npix columns = columns[:-len_c] + ["alpha", "npix"] + columns[-len_c:] df = df.round(decimals={"logg_2": 1, "feh_2": 1, "alpha": 4, "rv": 3, "gamma": 3, "chi2": 4}) exists = os.path.exists(filename) if exists: df[columns].to_csv(filename, sep=',', mode="a", index=False, header=False) else: # Add header at the top only df[columns].to_csv(filename, sep=',', mode="a", index=False, header=True) if verbose: print("Saved chi-squared values to {0}".format(filename)) return None def plot_iam_grid_slices(x, y, z, grid, xlabel=None, ylabel=None, zlabel=None, suffix=None, star=None, chip=None): """Slice up 3d grid and plot slices. This is very slow!""" os.makedirs(os.path.join(simulators.paths["output_dir"], star.upper(), "grid_plots"), exist_ok=True) x_grid, y_grid, z_grid = np.meshgrid(x, y, z, indexing="ij") if xlabel is None: xlabel = "x" if ylabel is None: ylabel = "y" if zlabel is None: zlabel = "z" if len(z) > 1: for ii, y_val in enumerate(y): plt.subplot(111) try: xii = x_grid[:, ii, :] zii = z_grid[:, ii, :] grid_ii = grid[:, ii, :] plt.contourf(xii, zii, grid_ii) except IndexError: print("grid.shape", grid.shape) print("shape of x, y, z", x.shape, y.shape, z.shape) print("shape of x_grid, y_grid, z_grid", x_grid.shape, y_grid.shape, z_grid.shape) print("index value", ii, "y_val ", y_val) raise plt.xlabel(xlabel) plt.ylabel(zlabel) plt.title("Grid slice for {0}={1}".format(ylabel, y_val)) plot_name = os.path.join(simulators.paths["output_dir"], star, "iam", "grid_plots", "y_grid_slice_{0}_chip-{1}_{2}_{3}_{4}_{5}_{6}_{7}.png".format(star, chip, xlabel, ylabel, zlabel, ii, suffix, datetime.datetime.now())) plt.savefig(plot_name) plt.close(plt.gcf()) for jj, z_val in enumerate(z): plt.subplot(111) try: xjj = x_grid[:, :, jj] yjj = y_grid[:, :, jj] grid_jj = grid[:, :, jj] plt.contourf(xjj, yjj, grid_jj) except IndexError: print("shape of x, y, z", x.shape, y.shape, z.shape) print("shape of x_grid, y_grid, z_grid", x_grid.shape, y_grid.shape, z_grid.shape) print("index value", jj, "y_val ", z_val) raise plt.xlabel(xlabel) plt.ylabel(ylabel) plt.title("Grid slice for {0}={1}".format(zlabel, z_val)) plot_name = os.path.join(simulators.paths["output_dir"], star, "iam", "grid_plots", "z__grid_slice_{0}_chip-{1}_{2}_{3}_{4}_{5}_{6}_{7}.png".format(star, chip, xlabel, ylabel, zlabel, jj, suffix, datetime.datetime.now())) plt.savefig(plot_name) plt.close(plt.gcf()) def target_params(params: Dict[str, Union[str, float, int]], mode: Optional[str] = "iam") -> Union[ Tuple[List[Union[int, float]], List[Union[int, float]]], List[Union[int, float]], Tuple[List[float], List[float]]]: """Extract parameters from dict for each target. Includes logic for handling missing companion logg/fe_h. """ host_params = [params["temp"], params["logg"], params["fe_h"]] # Specify the companion logg and metallicity in the parameter files. if params.get("comp_logg", None) is None: logging.warning(__("Logg for companion 'comp_logg' is not set for {0}", params.get("name", params))) print("mode in target params", mode) if mode == "iam": comp_logg = params.get("comp_logg", params["logg"]) # Set equal to host if not given comp_fe_h = params.get("comp_fe_h", params["fe_h"]) # Set equal to host if not given comp_temp = params.get("comp_temp", 999999) # Will go to largest grid comp_params = [comp_temp, comp_logg, comp_fe_h] return host_params, comp_params elif mode == "bhm": return host_params else: raise ValueError("Mode={} is invalid".format(mode))
45.450575
125
0.589247
0
0
0
0
0
0
0
0
4,294
0.217187
4752834006b4c7e38581b00b04934cecb3b712df
4,910
py
Python
src/etl/transform.py
fmirani/etl_project
969990143c3075f193565cec309a2f0333038a8b
[ "MIT" ]
null
null
null
src/etl/transform.py
fmirani/etl_project
969990143c3075f193565cec309a2f0333038a8b
[ "MIT" ]
null
null
null
src/etl/transform.py
fmirani/etl_project
969990143c3075f193565cec309a2f0333038a8b
[ "MIT" ]
null
null
null
import pandas as pd from datetime import datetime, timedelta from bs4 import BeautifulSoup as bs from etl.logger import get_logger from etl.main import ETL logger = get_logger("transform") def transform_data(service: str, data_file: str) -> pd.DataFrame: """ Simple function to guide the request to the right function """ if service == "youtube": return transform_youtube_data(data_file) else: return transform_netflix_data(data_file) def transform_youtube_data(filename: str) -> pd.DataFrame: """ Function to fetch youtube data from the history file 1. Create a new dataframe to put data in 2. parse the html file to find required data 3. Format the data as needed 4. Populate the dataframe """ logger.info("Transforming YouTube data now") instance = ETL() simulated = instance.get_sim_status() simulate_offset = instance.get_simul_days() data = pd.DataFrame( columns=[ "Timestamp", "Source", "Type", "Name", "Season", "Episode", "Category", "Link", ] ) link = [] timestamp = [] # Open the watch history html file and parse through it for relevant data with open(filename, encoding="utf8") as f: soup = bs(f, "html.parser") tags = soup.find_all( "div", {"class": "content-cell mdl-cell mdl-cell--6-col mdl-typography--body-1"}, ) for i, tag in enumerate(tags): a_pointer = tag.find("a") dt = a_pointer.next_sibling.next_sibling date_time = datetime.strptime(str(dt)[:-4], "%b %d, %Y, %I:%M:%S %p") # If data fetching is simulated if ( simulated and date_time + timedelta(days=simulate_offset) > datetime.now() ): continue timestamp.append(date_time) link.append(a_pointer.text) # Populate the dataframe with the data data["Timestamp"] = timestamp data["Source"] = "YouTube" data["Type"] = "Video" data["Link"] = link # Log a warning if the DataFrame is being returned empty if data.shape[0] < 1: logger.warning(f"DataFrame does not contain any data") # Return dataframe return data def transform_netflix_data(filename: str) -> pd.DataFrame: """ Function to fetch netflix data from the history file 1. Create a new dataframe to put data in 2. parse the csv file to find required data 3. Format the data as needed 4. Populate the dataframe """ logger.info("Transforming Netflix data now") instance = ETL() simulated = instance.get_sim_status() simulate_offset = instance.get_simul_days() data = pd.DataFrame( columns=[ "Timestamp", "Source", "Type", "Name", "Season", "Episode", "Category", "Link", ] ) # Read csv data into a separate dataframe try: # Reading data from csv file nf_data = pd.read_csv(filename) except Exception as e: logger.error(f"Unable to read csv file '{filename}' : ", e) logger.warning(f"File does not contain valid data") return data # Import Timestamp column to our datadrame as datetime # Set "Source" column to "Netflix" # Import Name column to our dataframe data["Timestamp"] = pd.to_datetime(nf_data["Date"], format="%m/%d/%y") data["Source"] = "Netflix" data["Name"] = nf_data["Title"] # Keywords to identify if a title is a TV series keywds = ["Season", "Series", "Limited", "Part", "Volume", "Chapter"] # Set "Type" column to either "Movie" or "TV Series" data.loc[data["Name"].str.contains("|".join(keywds)), "Type"] = "TV Series" data.loc[data["Type"].isnull(), "Type"] = "Movie" # Wherever Type is "TV Series" split the Title column # in three: Name, Season and Episode data.loc[data["Type"] == "TV Series", "Name"] = nf_data["Title"].str.rsplit( ":", n=2, expand=True )[0] data.loc[data["Type"] == "TV Series", "Season"] = nf_data["Title"].str.rsplit( ":", n=2, expand=True )[1] data.loc[data["Type"] == "TV Series", "Episode"] = nf_data["Title"].str.rsplit( ":", n=2, expand=True )[2] # Some cleaning needed in Episode column data["Episode"] = data["Episode"].str.strip() # If data fetching is simulated if simulated: data = data.loc[ pd.to_datetime(data["Timestamp"]) < datetime.now() - timedelta(days=simulate_offset) ] # return DataFrame return data
31.075949
87
0.57169
0
0
0
0
0
0
0
0
2,017
0.410794
47529769d5bba7253b76bc8e8bf54fbb83c5bfd5
646
py
Python
projects/migrations/0003_auto_20210719_1152.py
Tajeu2001/awwards
3a7b068f5d66336d4881a91b6a49338dc6f900d6
[ "MIT" ]
null
null
null
projects/migrations/0003_auto_20210719_1152.py
Tajeu2001/awwards
3a7b068f5d66336d4881a91b6a49338dc6f900d6
[ "MIT" ]
null
null
null
projects/migrations/0003_auto_20210719_1152.py
Tajeu2001/awwards
3a7b068f5d66336d4881a91b6a49338dc6f900d6
[ "MIT" ]
null
null
null
# Generated by Django 2.2.24 on 2021-07-19 11:52 import cloudinary.models from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('projects', '0002_project_technologies'), ] operations = [ migrations.AlterField( model_name='profile', name='profile_pic', field=cloudinary.models.CloudinaryField(max_length=255, verbose_name='image'), ), migrations.AlterField( model_name='project', name='photo', field=cloudinary.models.CloudinaryField(max_length=255, verbose_name='image'), ), ]
25.84
90
0.623839
535
0.828173
0
0
0
0
0
0
137
0.212074
4752de7c01e8d42225f7e14fb6052b77754c4e72
3,567
py
Python
student/urls.py
masoodazhar/-school-management-system
6525b3d29d12f03e05d362d81b7c5855806f57d9
[ "Apache-2.0" ]
1
2022-01-20T10:20:05.000Z
2022-01-20T10:20:05.000Z
student/urls.py
masoodazhar/-school-management-system
6525b3d29d12f03e05d362d81b7c5855806f57d9
[ "Apache-2.0" ]
null
null
null
student/urls.py
masoodazhar/-school-management-system
6525b3d29d12f03e05d362d81b7c5855806f57d9
[ "Apache-2.0" ]
1
2022-01-20T10:20:31.000Z
2022-01-20T10:20:31.000Z
from django.urls import path from academic.views import SectionCreate, SectionUpdate, SectionDelete from .views import ( StudentView, AttendanceMark, AttendanceSearch, AttendanceView, IndividualMarksView, AdmissionCreate, AdmissionView, AdmissionDelete, AdmissionUpdate, AdmissionDetail, StudentMarkSearch, StudentMarkCreate, MarkDistributionCreate, MarkDistributionUpdate, MarkDistributionDelete, ExamsView, ExamsDetail, ExamsCreate, ExamsUpdate, ExamsDelete, get_class_asignments, SendEmail_SaveData, SendEmailForExam, get_fee, get_subject_by_class, get_already_marks, getting_marks_from_calculated ) app_name = 'student' urlpatterns = [ path('', StudentView, name='student_view'), path('admission/create/', AdmissionCreate.as_view(), name='admission_create'), path('admission/view/', AdmissionView.as_view(), name='admission_view'), path('admission/view/<int:pk>/detail', AdmissionDetail.as_view(), name='admission_detail'), path('admission/view/<int:pk>/update', AdmissionUpdate.as_view(), name='admission_update'), path('admission/view/<int:pk>/delete', AdmissionDelete.as_view(), name='admission_delete'), path('createSection/', SectionCreate.as_view(), name='create_section'), path('updateSection/<int:pk>', SectionUpdate.as_view(), name='update_section'), path('deleteSection/<int:pk>/delete', SectionDelete.as_view(), name='delete_section'), path('viewexams/view', ExamsView.as_view(), name='view_exams'), path('createexams/', ExamsCreate.as_view(), name='create_exams'), path('detailexams/<int:pk>/detail', ExamsDetail.as_view(), name='detail_exams'), path('updateexams/<int:pk>/edit', ExamsUpdate.as_view(), name='update_exams'), path('deleteexams/<int:pk>/delete', ExamsDelete.as_view(), name='delete_exams'), path('SendEmail_SaveData/', SendEmail_SaveData, name='SendEmail_SaveData'), path('sendemailforexam/', SendEmailForExam.as_view(), name='sendemailforexam'), path('attendance/view', AttendanceView.as_view(), name='attendance_view'), path('attendance/search', AttendanceSearch.as_view(), name='attendance_search'), path('attendance/mark', AttendanceMark.as_view(), name='attendance_mark'), path('student_mark/search', StudentMarkSearch.as_view(), name='student_mark'), path('student_mark/add', StudentMarkCreate.as_view(), name='student_mark_add'), path('mark_distribution/create', MarkDistributionCreate.as_view(), name='mark_distribution_create'), path('mark_distribution/<int:pk>/update', MarkDistributionUpdate.as_view(), name='mark_distribution_update'), path('mark_distribution/<int:pk>/delete', MarkDistributionDelete.as_view(), name='mark_distribution_delete'), path('report/<int:student_name>/info', IndividualMarksView.as_view(), name='view_individual_marks'), path('report/<int:student_name>/info?year&tab', IndividualMarksView.as_view(), name='view_individual_marks2'), path('get_fee', get_fee, name="get_fee"), path('get_subject_by_class/', get_subject_by_class , name="get_subject_by_class"), path('get_already_marks/', get_already_marks , name="get_already_marks"), path('get_class_asignments/<int:pk>/class/<int:class_name>/subject/<int:subject>', get_class_asignments , name="get_class_asignments"), path('getting_marks_from_calculated/', getting_marks_from_calculated , name="getting_marks_from_calculated") ]
51.695652
140
0.724699
0
0
0
0
0
0
0
0
1,359
0.380992
475312b91a3851e28b34370218eea8c022b8aff7
5,598
py
Python
{{cookiecutter.project_slug}}/{{cookiecutter.project_slug}}/settings/base.py
mistalaba/cookiecutter-simple-django
979780b3dea3b0ab51e780cc7d98e9ba66004b09
[ "BSD-3-Clause" ]
null
null
null
{{cookiecutter.project_slug}}/{{cookiecutter.project_slug}}/settings/base.py
mistalaba/cookiecutter-simple-django
979780b3dea3b0ab51e780cc7d98e9ba66004b09
[ "BSD-3-Clause" ]
null
null
null
{{cookiecutter.project_slug}}/{{cookiecutter.project_slug}}/settings/base.py
mistalaba/cookiecutter-simple-django
979780b3dea3b0ab51e780cc7d98e9ba66004b09
[ "BSD-3-Clause" ]
1
2021-10-21T01:45:32.000Z
2021-10-21T01:45:32.000Z
import os import sys # PATH vars BASE_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) ROOT_DIR = lambda *x: os.path.join(BASE_DIR, *x) APPS_DIR = os.path.join(ROOT_DIR(), "apps") sys.path.insert(0, APPS_DIR) # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'CHANGE THIS!!!' ALLOWED_HOSTS = [] INSTALLED_APPS = [ "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.sites", "django.contrib.messages", "django.contrib.staticfiles", "django.contrib.humanize", # Handy template tags {%- if cookiecutter.use_cms == 'django-cms' %} "djangocms_admin_style", "cms", "menus", "treebeard", "sekizai", {%- elif cookiecutter.use_cms == 'wagtail' %} 'wagtail.contrib.forms', 'wagtail.contrib.redirects', 'wagtail.embeds', 'wagtail.sites', 'wagtail.users', 'wagtail.snippets', 'wagtail.documents', 'wagtail.images', 'wagtail.search', 'wagtail.admin', 'wagtail.core', 'modelcluster', 'taggit', {%- endif %} "django.contrib.admin", ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.locale.LocaleMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', {%- if cookiecutter.use_cms == 'django-cms' %} 'cms.middleware.user.CurrentUserMiddleware', 'cms.middleware.page.CurrentPageMiddleware', 'cms.middleware.toolbar.ToolbarMiddleware', 'cms.middleware.language.LanguageCookieMiddleware', 'cms.middleware.utils.ApphookReloadMiddleware', {%- elif cookiecutter.use_cms == 'wagtail' %} 'wagtail.core.middleware.SiteMiddleware', 'wagtail.contrib.redirects.middleware.RedirectMiddleware', {%- endif %} ] ROOT_URLCONF = '{{cookiecutter.project_slug}}.urls' # Python dotted path to the WSGI application used by Django's runserver. WSGI_APPLICATION = '{{cookiecutter.project_slug}}.wsgi.application' LANGUAGE_CODE = 'en' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True SITE_ID = 1 STATIC_ROOT = str(ROOT_DIR("staticfiles")) STATIC_URL = "/static/" STATICFILES_DIRS = [str(ROOT_DIR("static"))] STATICFILES_FINDERS = [ "django.contrib.staticfiles.finders.FileSystemFinder", "django.contrib.staticfiles.finders.AppDirectoriesFinder", ] TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'APP_DIRS': True, 'DIRS': [ ROOT_DIR('templates'), ], 'OPTIONS': { # 'debug': DEBUG, 'context_processors': [ 'django.contrib.auth.context_processors.auth', 'django.template.context_processors.debug', 'django.template.context_processors.i18n', 'django.template.context_processors.media', 'django.template.context_processors.static', 'django.template.context_processors.tz', 'django.contrib.messages.context_processors.messages', 'django.template.context_processors.request', {%- if cookiecutter.use_cms == 'django-cms' %} 'sekizai.context_processors.sekizai', 'cms.context_processors.cms_settings', {%- elif cookiecutter.use_cms == 'wagtail' %} {%- endif %} ], }, } ] PASSWORD_HASHERS = [ "django.contrib.auth.hashers.Argon2PasswordHasher", "django.contrib.auth.hashers.PBKDF2PasswordHasher", "django.contrib.auth.hashers.PBKDF2SHA1PasswordHasher", "django.contrib.auth.hashers.BCryptSHA256PasswordHasher", ] AUTH_PASSWORD_VALIDATORS = [ {'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator'}, {'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator'}, {'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator'}, {'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator'}, ] {%- if cookiecutter.use_cms == 'django-cms' %} LANGUAGES = [ ('en', 'English'), ('dk', 'Danish'), ] CMS_TEMPLATES = [ ('home.html', 'Home page template'), ] {%- endif %} LOGGING = { "version": 1, "disable_existing_loggers": True, "formatters": { "verbose": { "format": "%(levelname)s %(asctime)s %(module)s " "%(process)d %(thread)d %(message)s" } }, "handlers": { "console": { "level": "DEBUG", "class": "logging.StreamHandler", "formatter": "verbose", } }, "root": {"level": "INFO", "handlers": ["console"]}, "loggers": { "django.db.backends": { "level": "ERROR", "handlers": ["console"], "propagate": False, }, # Errors logged by the SDK itself "sentry_sdk": {"level": "ERROR", "handlers": ["console"], "propagate": False}, "django.security.DisallowedHost": { "level": "ERROR", "handlers": ["console"], "propagate": False, }, }, } {%- if cookiecutter.use_cms == 'wagtail' %} WAGTAIL_SITE_NAME = '{{ cookiecutter.project_name }}' {%- endif %} # .local.py overrides all the common settings. try: from .local import * # noqa except ImportError: pass
29.463158
89
0.642551
0
0
0
0
0
0
0
0
3,387
0.605038
47534f46ad8c13b23baa8376ad80237dfc62bd3c
827
py
Python
wenben_project/reco_sys/server/__init__.py
nameli0722/git-
29343ef0eec598aa262c59825d567044ef393f44
[ "MIT" ]
null
null
null
wenben_project/reco_sys/server/__init__.py
nameli0722/git-
29343ef0eec598aa262c59825d567044ef393f44
[ "MIT" ]
null
null
null
wenben_project/reco_sys/server/__init__.py
nameli0722/git-
29343ef0eec598aa262c59825d567044ef393f44
[ "MIT" ]
null
null
null
import happybase from settings.default import DefaultConfig import redis pool = happybase.ConnectionPool(size=10, host='hadoop-master', port=9090) # 召回数据 redis_client = redis.StrictRedis(host=DefaultConfig.REDIS_HOST, port=DefaultConfig.REDIS_PORT, db=10, decode_responses=True) # 用于缓存的Redis数据库 cache_client = redis.StrictRedis(host=DefaultConfig.REDIS_HOST, port=DefaultConfig.REDIS_PORT, db=8, decode_responses=True) from pyspark import SparkConf from pyspark.sql import SparkSession # spark配置 conf = SparkConf() conf.setAll(DefaultConfig.SPARK_GRPC_CONFIG) SORT_SPARK = SparkSession.builder.config(conf=conf).getOrCreate()
34.458333
73
0.629988
0
0
0
0
0
0
0
0
73
0.08538
475531486c43c1c7dffcddd44fa86cc2df76cfd3
783
py
Python
alimama/alimama/items.py
Yoochao/tbk
b3a6aff905cf9d7dbe161813e1bbe968d86b5320
[ "Apache-2.0" ]
null
null
null
alimama/alimama/items.py
Yoochao/tbk
b3a6aff905cf9d7dbe161813e1bbe968d86b5320
[ "Apache-2.0" ]
null
null
null
alimama/alimama/items.py
Yoochao/tbk
b3a6aff905cf9d7dbe161813e1bbe968d86b5320
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # http://doc.scrapy.org/en/latest/topics/items.html import scrapy class AlimamaItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() url = scrapy.Field() img = scrapy.Field() title = scrapy.Field() coupon = scrapy.Field() price = scrapy.Field() monthly_sales = scrapy.Field() commission_rate = scrapy.Field() commission = scrapy.Field() shop_prom_url = scrapy.Field() prom_short_url = scrapy.Field() prom_short_ull_c = scrapy.Field() prom_long_url = scrapy.Field() prom_long_url_c = scrapy.Field() prom_taotoken_url = scrapy.Field() prom_taotoken_url_c = scrapy.Field() pass
26.1
51
0.67433
614
0.784163
0
0
0
0
0
0
212
0.270754
47567885350f4cfe55660b2d4ce384bb43abd614
2,516
py
Python
Programming_Assignment_5/proj5/oracle.py
csMOOC/Maryland.Cryptography
58b6111a918599772e5a476764bb3b9897b61283
[ "MIT" ]
1
2017-11-18T15:34:59.000Z
2017-11-18T15:34:59.000Z
Programming_Assignment_5/proj5/oracle.py
csMOOC/Maryland.Cryptography
58b6111a918599772e5a476764bb3b9897b61283
[ "MIT" ]
null
null
null
Programming_Assignment_5/proj5/oracle.py
csMOOC/Maryland.Cryptography
58b6111a918599772e5a476764bb3b9897b61283
[ "MIT" ]
null
null
null
sign_sock = None vrfy_sock = None MAX_PACKET_LEN = 8192 NOT_BINARY_STR_ERR = -1 MISSING_DELIMITER_ERR = -2 ORIGINAL_MSG_ERR = -3 def Oracle_Connect(): import socket global sign_sock global vrfy_sock sign_sock, vrfy_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM), socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: sign_sock.connect(('54.165.60.84', 8080)) vrfy_sock.connect(('54.165.60.84', 8081)) except socket.error as e: print e return -1 print "Connected to server successfully." return 0 def Oracle_Disconnect(): if not sign_sock or not vrfy_sock: print "[WARNING]: You haven't connected to the server yet." return -1 sign_sock.close() vrfy_sock.close() print "Connection closed successfully." return 0 # Packet Structure: < message > # Message may be either a long integer, or a binary string def Sign(msg): if not sign_sock or not vrfy_sock: print "[WARNING]: You haven't connected to the server yet." return -1 if msg < 0: print "[ERROR]: Message cannot be negative!" if type(msg) is long or type(msg) is int: msg = bin(msg)[2:] pkt = msg + "X" sign_sock.send(pkt) resp = sign_sock.recv(MAX_PACKET_LEN) try: sigma = int(resp, 2) except ValueError as e: sigma = int(resp) if sigma == NOT_BINARY_STR_ERR: print "[ERROR]: Message was not a valid binary string." if sigma == ORIGINAL_MSG_ERR: print "[ERROR]: You cannot request a signature on the original messgae!" return sigma # Packet Structure: < message | ":" | signature > # Message and signature may be either long integers, or binary strings def Verify(msg, sigma): if not sign_sock or not vrfy_sock: print "[WARNING]: You haven't conected to the server yet." return -1 if msg < 0 or sigma < 0: print "[ERROR]: Message and signature cannot be negative!" return -1 if type(msg) is long or type(msg) is int: msg = bin(msg)[2:] if type(sigma) is long or type(sigma) is int: sigma = bin(sigma)[2:] pkt = msg + ":" + sigma + "X" vrfy_sock.send(pkt) match = int(vrfy_sock.recv(MAX_PACKET_LEN)) if match == NOT_BINARY_STR_ERR: print "[ERROR]: Message and/or signature were not valid binary strings." elif match == MISSING_DELIMITER_ERR: print "[ERROR]: Missing delimiter between message and signature." return match
27.955556
127
0.647059
0
0
0
0
0
0
0
0
801
0.318362
47595ec1c220dcb1c916744d399484c33fcb99c6
5,932
py
Python
medical_test/models.py
AlexanderUstinovv/medical_test
b740fb599aa4097eb44d35a844fef838c4ccf6ad
[ "BSD-3-Clause" ]
null
null
null
medical_test/models.py
AlexanderUstinovv/medical_test
b740fb599aa4097eb44d35a844fef838c4ccf6ad
[ "BSD-3-Clause" ]
null
null
null
medical_test/models.py
AlexanderUstinovv/medical_test
b740fb599aa4097eb44d35a844fef838c4ccf6ad
[ "BSD-3-Clause" ]
null
null
null
from django.contrib.auth.models import User from django.db import models class Measurement(models.Model): class Meta: db_table = 'measurement' verbose_name = 'Измерение' verbose_name_plural = 'Измерения' name = models.CharField(max_length=10, verbose_name='Единицы измерения') description = models.TextField(verbose_name='Описание') def __str__(self): return self.name class Age(models.Model): class Meta: db_table = 'age' verbose_name = 'Возраст' verbose_name_plural = 'Возрасты' value = models.IntegerField(default=21, verbose_name='Возраст') def __str__(self): return str(self.value) class MedicalProcedure(models.Model): class Meta: db_table = 'medical_procedure' verbose_name = 'Медицинская процедура' verbose_name_plural = 'Медицинские процедуры' # TODO: find the max length of this field name = models.CharField(max_length=100, verbose_name='Название') description = models.TextField(verbose_name='Описание') female = models.BooleanField(verbose_name='Для женщин', default=True) male = models.BooleanField(verbose_name='Для мужчин', default=True) age = models.ManyToManyField(Age, verbose_name='Возраст') def __str__(self): return self.name class Parameter(models.Model): class Meta: db_table = 'value' verbose_name = 'Параметр' verbose_name_plural = 'Параметры' name = models.CharField(max_length=100, verbose_name='Название') description = models.TextField(verbose_name='Описание') measurement = models.ForeignKey(Measurement, verbose_name='Единицы измерения', on_delete=models.CASCADE) medical_procedure = models.ForeignKey(MedicalProcedure, verbose_name='Мед. процедура', on_delete=models.CASCADE) female_maximum_border = models.DecimalField(max_digits=7, decimal_places=2, verbose_name='Верхняя граница женщины', default=0) female_minimum_border = models.DecimalField(max_digits=7, decimal_places=2, verbose_name='Нижняя граница женщины', default=0) male_maximum_border = models.DecimalField(max_digits=7, decimal_places=2, verbose_name='Врехняя граница мужчины', default=0) male_minimum_border = models.DecimalField(max_digits=7, decimal_places=2, verbose_name='Нижняя граница мужчины', default=0) def __str__(self): return self.name class MedicalProcedureResult(models.Model): class Meta: db_table = 'medical_procedure_result' verbose_name = 'Результат мед. процедуры' verbose_name_plural = 'Результаты мед. процедур' medical_procedure = models.ForeignKey(MedicalProcedure, verbose_name='Процедура', on_delete=models.CASCADE) value = models.IntegerField(verbose_name='Значение') user = models.ForeignKey(User, verbose_name='Пользователь', on_delete=models.CASCADE) result = models.BooleanField(default=False, verbose_name='Значение в норме') def __str__(self): return self.medical_procedure.name class ParameterValue(models.Model): class Meta: db_table = 'parameter_value' verbose_name = 'Результат параметра' verbose_name_plural = 'Результаты параметров' medical_procedure_result = models.ForeignKey(MedicalProcedureResult, verbose_name='Результат процедуры', on_delete=models.CASCADE) value = models.DecimalField(max_digits=6, decimal_places=2, verbose_name='Значение', default=0) parameter = models.ForeignKey(Parameter, verbose_name='Название параметра', on_delete=models.CASCADE) def __str__(self): return self.parameter.name class CardiovascularScore(models.Model): class Meta: db_table = 'cardiovascular_score' verbose_name = 'Шкала Score сердечно-сосудистого риска' verbose_name_plural = 'Шкалы Score сердечно-сосудистого риска' MALE = 'M' FEMALE = 'F' SEX_TYPES = ( (MALE, 'Муж.'), (FEMALE, 'Жен.'), ) sex = models.CharField(max_length=6, choices=SEX_TYPES, verbose_name='Пол') smoking = models.BooleanField(default=False, verbose_name='Курящий') cholesterol_min = models.DecimalField(max_digits=6, decimal_places=2, verbose_name='Уровень холестирина нижняя граница', default=0) cholesterol_max = models.DecimalField(max_digits=6, decimal_places=2, verbose_name='Уровень холестирина верхняя граница', default=0) systolic_pressure_max = models.DecimalField(max_digits=6, decimal_places=2, verbose_name='Систолическое давление верхняя граница', default=0) systolic_pressure_min = models.DecimalField(max_digits=6, decimal_places=2, verbose_name='Систолическое давление нижняя граница', default=0) age_min = models.IntegerField(verbose_name='Возраст нижняя граница') age_max = models.IntegerField(verbose_name='Возраст верхняя граница') result = models.IntegerField(verbose_name='Процент риска заболевания')
41.774648
102
0.607552
6,562
0.985877
0
0
0
0
0
0
1,766
0.265325
475a825b4f6b8ec63bbe41abb911aed22f74dd8a
11,153
py
Python
idarest/idarest_master.py
sfinktah/idarest75
ab2549b12e174aaef32ab6c933fe09b1232a8cce
[ "MIT" ]
null
null
null
idarest/idarest_master.py
sfinktah/idarest75
ab2549b12e174aaef32ab6c933fe09b1232a8cce
[ "MIT" ]
null
null
null
idarest/idarest_master.py
sfinktah/idarest75
ab2549b12e174aaef32ab6c933fe09b1232a8cce
[ "MIT" ]
null
null
null
import socket try: from .idarest_mixins import IdaRestConfiguration except: from idarest_mixins import IdaRestConfiguration # idarest_master_plugin_t.config['master_debug'] = False # idarest_master_plugin_t.config['master_info'] = False # idarest_master_plugin_t.config['api_prefix'] = '/ida/api/v1.0' # idarest_master_plugin_t.config['master_host'] = "127.0.0.1" # idarest_master_plugin_t.config['master_port'] = 28612 # hash('idarest75') & 0xffff MENU_PATH = 'Edit/Other' try: import idc import ida_idaapi import ida_kernwin import idaapi import idautils from PyQt5 import QtWidgets except: class idc: @staticmethod def msg(s): if idarest_master_plugin_t.config['master_debug']: print(s) class ida_idaapi: plugin_t = object PLUGIN_SKIP = PLUGIN_UNL = PLUGIN_KEEP = 0 class idarest_master_plugin_t(IdaRestConfiguration, ida_idaapi.plugin_t): flags = ida_idaapi.PLUGIN_UNL comment = "IDA Rest API Master Controller" help = "Keeps track of idarest75 clients" wanted_name = "idarest75 master" wanted_hotkey = "" def init(self): super(idarest_master_plugin_t, self).__init__() self.load_configuration() if idarest_master_plugin_t.config['master_info']: print("[idarest_master_plugin_t::init]") self.master = None if not idarest_master_plugin_t.test_bind_port(idarest_master_plugin_t.config['master_port']): if idarest_master_plugin_t.config['master_info']: print("[idarest_master_plugin_t::init] skipping (port is already bound)") return idaapi.PLUGIN_SKIP self.master = idarest_master() idarest_master_plugin_t.instance = self return idaapi.PLUGIN_KEEP def run(*args): pass def term(self): if self.master: self.master.stop() pass @staticmethod def test_bind_port(port): with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: try: # s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind((idarest_master_plugin_t.config['master_host'], port)) except socket.error as e: return False return True def idarest_master(): from http.server import BaseHTTPRequestHandler, HTTPServer from socketserver import ThreadingMixIn import threading import urllib.request, urllib.error, urllib.parse as urlparse import requests import json import time import re def asBytes(s): if isinstance(s, str): return s.encode('utf-8') return s class HTTPRequestError(BaseException): def __init__(self, msg, code): self.msg = msg self.code = code class Handler(BaseHTTPRequestHandler): hosts = dict() def log_message(self, format, *args): return def register(self, args): host, port = args['host'], args['port'] key = host + ':' + port if key in self.hosts: if idarest_master_plugin_t.config['master_debug']: print("[idarest_master::Handler::register] replacing existing host {}".format(key)) self.hosts[key] = value = dict({ 'host': args['host'], 'port': args['port'], 'idb': args['idb'], 'alive': time.time(), 'failed': 0, }) return value def unregister(self, args): host, port = args['host'], args['port'] key = host + ':' + port if key in self.hosts: if idarest_master_plugin_t.config['master_debug']: print("[idarest_master::Handler::unregister] removing existing host {}".format(key)) value = self.hosts.pop(key) else: value = dict({ 'host': args['host'], 'port': args['port'], 'error': 'not registered', }) return value @staticmethod def get_json(hosts, args, readonly=False): # r = requests.post(self.url, data=self.args) results = dict() start = time.time() if readonly: for k, host in hosts.items(): if idarest_master_plugin_t.config['master_debug']: print("alive: {}".format(start - host['alive'])) if start - host['alive'] < 90: results[host['idb']] = 'http://{}:{}{}/'.format(host['host'], host['port'], idarest_master_plugin_t.config['api_prefix']) else: results[host['idb']] = start - host['alive'] return results for k, host in hosts.items(): start = time.time() url = 'http://{}:{}{}/echo'.format(host['host'], host['port'], idarest_master_plugin_t.config['api_prefix']) try: connect_timeout = 10 read_timeout = 10 r = requests.get(url, params=args, timeout=(connect_timeout, read_timeout)) if r.status_code == 200: hosts[k]['alive'] = start hosts[k]['rtime'] = r.elapsed.total_seconds() # hosts[k]['info'] = r.json() results[k] = host except Exception as e: results[k] = str(type(e)) hosts[k]['failed'] += 1 if hosts[k]['failed'] > 4: hosts.pop(k) return results def show(self, args): return self.get_json(self.hosts, {'ping': time.time()}, readonly=True) def _extract_query_map(self): query = urlparse.urlparse(self.path).query qd = urlparse.parse_qs(query) args = {} for k, v in qd.items(): if len(v) != 1: raise HTTPRequestError( "Query param specified multiple times : " + k, 400) args[k.lower()] = v[0] if idarest_master_plugin_t.config['master_debug']: print('args["{}"]: "{}"'.format(k.lower(), v[0])) return args def send_origin_headers(self): if self.headers.get('Origin', '') == 'null': self.send_header('Access-Control-Allow-Origin', self.headers.get('Origin')) self.send_header('Vary', 'Origin') def do_GET(self): try: args = self._extract_query_map() except HTTPRequestError as e: self.send_error(e.code, e.msg) return path = re.sub(r'.*/', '', urlparse.urlparse(self.path).path) if path == 'register': message = self.register(args) elif path == 'unregister': message = self.unregister(args) elif path == 'show': message = self.show(args) else: self.send_error(400, "unknown route: " + path) return self.send_response(200) self.send_origin_headers() self.end_headers() self.wfile.write(asBytes(json.dumps(message))) return class ThreadedHTTPServer(ThreadingMixIn, HTTPServer): allow_reuse_address = True # https://stackoverflow.com/questions/323972/is-there-any-way-to-kill-a-thread class Timer(threading.Thread): def __init__(self, *args, **kwargs): super(Timer, self).__init__(*args, **kwargs) self._stop_event = threading.Event() def run(self): if idarest_master_plugin_t.config['master_info']: print("[idarest_master::Timer::run] started") while True: if self._stop_event.wait(60.0): break result = Handler.get_json(Handler.hosts, {'ping': time.time()}) if idarest_master_plugin_t.config['master_debug']: print("[idarest_master::Timer::run] {}".format(result)) if idarest_master_plugin_t.config['master_info']: print("[idarest_master::Timer::run] stopped") # if not self.running: # self.running = True # while self.running: # time.sleep(60.0 - ((time.time() - self.starttime) % 60.0)) # if idarest_master_plugin_t.config['master_debug']: print(Handler.get_json(Handler.hosts, {'ping': time.time()})) # if idarest_master_plugin_t.config['master_info']: print("[idarest_master::Timer::run] stopped") def stop(self): if self.is_alive(): if self.stopped(): if idarest_master_plugin_t.config['master_info']: print("[idarest_master::Timer::stop] already stopping...") else: if idarest_master_plugin_t.config['master_info']: print("[idarest_master::Timer::stop] stopping...") self._stop_event.set() else: if idarest_master_plugin_t.config['master_info']: print("[idarest_master::Timer::stop] not running") def stopped(self): return self._stop_event.is_set() class Worker(threading.Thread): def __init__(self, host, port): threading.Thread.__init__(self) self.httpd = ThreadedHTTPServer((host, port), Handler) self.host = host self.port = port def run(self): if idarest_master_plugin_t.config['master_info']: print("[idarest_master::Worker::run] master httpd starting...") self.httpd.serve_forever() if idarest_master_plugin_t.config['master_info']: print("[idarest_master::Worker::run] master httpd started (well stopped now, i guess)") def stop(self): if idarest_master_plugin_t.config['master_info']: print("[idarest_master::Worker::stop] master httpd shutdown...") self.httpd.shutdown() if idarest_master_plugin_t.config['master_info']: print("[idarest_master::Worker::stop] master httpd server_close...") self.httpd.server_close() if idarest_master_plugin_t.config['master_info']: print("[idarest_master::Worker::stop] master httpd stopped") class Master: def __init__(self): self.worker = Worker('127.0.0.1', 28612) self.worker.start() self.test_worker = Timer() self.test_worker.start() def stop(self): self.worker.stop() self.test_worker.stop() def main(): if idarest_master_plugin_t.config['master_info']: print("[idarest_master::main] starting master") master = Master() # main.master = master return master return main() def PLUGIN_ENTRY(): globals()['instance'] = idarest_master_plugin_t() return globals()['instance'] if __name__ == "__main__": master = idarest_master()
38.725694
151
0.56505
9,612
0.861831
0
0
2,074
0.185959
0
0
2,621
0.235004
475b01893fd7ae3f1c364df0596288e775da3bcd
11,750
py
Python
wordbot.py
spyth/wordbot
8213d18fcd7602a5b2bab9c83898b9f29a1cf3d4
[ "MIT" ]
null
null
null
wordbot.py
spyth/wordbot
8213d18fcd7602a5b2bab9c83898b9f29a1cf3d4
[ "MIT" ]
null
null
null
wordbot.py
spyth/wordbot
8213d18fcd7602a5b2bab9c83898b9f29a1cf3d4
[ "MIT" ]
null
null
null
import logging import json from datetime import datetime from telegram.ext import (Updater, CommandHandler, MessageHandler, Filters, Job, CallbackQueryHandler) from telegram import (ChatAction, ParseMode, InlineKeyboardButton, InlineKeyboardMarkup) from peewee import fn import pytz from word import word_query from model import User, UserVocabularyMapping, Vocabulary, init as model_init logger = logging.getLogger(__name__) class WordBot(object): def __init__(self, BOT_TOKEN, COUNT_CHECK=5, timezone='Asia/Hong_Kong', notify_time='23:00'): self.updater = Updater(token=BOT_TOKEN) dispatcher = self.updater.dispatcher self.COUNT_CHECK = COUNT_CHECK start_handler = CommandHandler('start', self.start) test_handler = CommandHandler('test', self.test) review_handler = CommandHandler('review', self.review) query_handler = MessageHandler(Filters.text, self.query) dispatcher.add_handler(start_handler) dispatcher.add_handler(query_handler) dispatcher.add_handler(review_handler) dispatcher.add_handler(test_handler) dispatcher.add_handler(CallbackQueryHandler(self.reply_button_callback)) # add daily reminder if notify_time: try: tz = pytz.timezone(timezone) utc_now = pytz.utc.localize(datetime.utcnow()) tz_now = utc_now.astimezone(tz) hour, minute = tuple(map(int, notify_time.split(':'))) expect_time = tz_now.replace(hour=hour, minute=minute, second=0, microsecond=0) delay = (int((expect_time - tz_now).total_seconds()) + 24 * 60 * 60) % (24 * 60 * 60) self.updater.job_queue.run_daily(self.daily_remind, time=delay) except: logger.warning('oops, daily reminder start failed!') raise def run(self): self.updater.start_polling() self.updater.idle() @staticmethod def daily_remind(bot, job): for u in User.select(): bot.send_message(chat_id=u.tgid, text="👩‍🏫 Would you like to /review or /test vocabulary?") @staticmethod def start(bot, update): bot.sendChatAction(chat_id=update.message.chat_id, action=ChatAction.TYPING) user, new_created = User.get_or_create(tgid=str(update.message.from_user.id)) if new_created: bot.send_message(chat_id=update.message.chat_id, text="Hi!") else: bot.send_message(chat_id=update.message.chat_id, text="Hi, nice to see you again.") @staticmethod def query(bot, update): bot.sendChatAction(chat_id=update.message.chat_id, action=ChatAction.TYPING) vocabulary = word_query(update.message.text) if vocabulary is not None: response = str(vocabulary) else: response = '👽 500' bot.send_message(chat_id=update.message.chat_id, text=response, parse_mode=ParseMode.HTML) if vocabulary and vocabulary.audio: bot.send_audio(chat_id=update.message.chat_id, audio=open(vocabulary.audio, 'rb')) user, new_created = User.get_or_create(tgid=str(update.message.from_user.id)) if vocabulary is not None: mapping, new_created = UserVocabularyMapping.get_or_create(user=user, vocabulary=vocabulary) if (not new_created) and mapping.check_times > 0: mapping.update(check_times=0).execute() @staticmethod def review(bot, update): bot.sendChatAction(chat_id=update.message.chat_id, action=ChatAction.TYPING) user, new_created = User.get_or_create(tgid=str(update.message.from_user.id)) if new_created or user.uservocabularymapping_set.count() == 0: bot.send_message(chat_id=update.message.chat_id, text="you don't have any vocabulary yet!") return None keyboard = [[InlineKeyboardButton('🔁', callback_data='{"command": "review", "type": "order", "arg": 0, "check": 0}'), InlineKeyboardButton('🔀', callback_data='{"command": "review", "type": "shuffle", "arg": 0, "check": 0}')]] reply_markup = InlineKeyboardMarkup(keyboard, one_time_keyboard=True) bot.send_message(chat_id=update.message.chat_id, text="🐰 OK! Let's start to review.\nPlease select the play mode.", reply_markup=reply_markup) @staticmethod def test(bot, update): # bot.sendChatAction(chat_id=update.message.chat_id, action=ChatAction.TYPING) word = Vocabulary.select(Vocabulary.id, Vocabulary.word).order_by(fn.Random()).limit(1).first() reply = "**%s**?" % word.word keyboard = [[InlineKeyboardButton("❓", callback_data='{"command": "test", "type": "ask", "arg": %d}' % word.id), InlineKeyboardButton("✅", callback_data='{"command": "test", "type": "check", "arg": %d}' % word.id)]] reply_markup = InlineKeyboardMarkup(keyboard) bot.send_message(chat_id=update.message.chat_id, text=reply, reply_markup=reply_markup, parse_mode=ParseMode.MARKDOWN) def reply_button_callback(self, bot, update): query = update.callback_query chat_id = query.message.chat_id try: data = json.loads(query.data) except: data = None if not (data and type(data) == dict and 'command' in data): bot.edit_message_text(text="unknown command🕴", chat_id=chat_id, message_id=query.message.message_id) logger.warning(query) return if data['command'] == 'review': # bot.sendChatAction(chat_id=chat_id, action=ChatAction.TYPING) _id = data['arg'] if data['check'] == 1: UserVocabularyMapping.update(check_times=UserVocabularyMapping.check_times + 1) \ .where(UserVocabularyMapping.id == _id).execute() mapping = UserVocabularyMapping.get(id=_id) if mapping.check_times >= self.COUNT_CHECK: reply_text = str(mapping.vocabulary) + '\n' + '🎉' * self.COUNT_CHECK else: reply_text = str(mapping.vocabulary) + '\n' + '⭐️' * mapping.check_times bot.edit_message_text(text=reply_text, chat_id=chat_id, message_id=query.message.message_id) else: # clear the previous reply button bot.edit_message_reply_markup(chat_id=chat_id, message_id=query.message.message_id) if data['type'] == 'order': mapping_query = UserVocabularyMapping.select().join(User) \ .where((UserVocabularyMapping.id > _id) & (User.tgid == str(chat_id)) \ & (UserVocabularyMapping.check_times < self.COUNT_CHECK)) \ .order_by(UserVocabularyMapping.id).limit(1) # repeat if _id > 0 and mapping_query.count() == 0: mapping_query = UserVocabularyMapping.select().join(User) \ .where((User.tgid == str(chat_id)) \ & (UserVocabularyMapping.check_times < self.COUNT_CHECK)) \ .order_by(UserVocabularyMapping.id).limit(1) if mapping_query.count() > 0: mapping = mapping_query[0] reply = str(mapping.vocabulary) keyboard = [[InlineKeyboardButton("✅", callback_data='{"command": "review", "type": "order", "arg": %d, "check": 1}' % mapping.id), InlineKeyboardButton("⏭", callback_data='{"command": "review", "type": "order", "arg": %d, "check": 0}' % mapping.id), ]] reply_markup = InlineKeyboardMarkup(keyboard) bot.send_message(chat_id=chat_id, text=reply, reply_markup=reply_markup) else: bot.send_message(chat_id=chat_id, text="end🕴") # shuffle else: mapping_query = UserVocabularyMapping.select().join(User) \ .where((User.tgid == str(chat_id)) \ & (UserVocabularyMapping.check_times < self.COUNT_CHECK)) \ .order_by(fn.Random()).limit(1) if mapping_query.count() > 0: mapping = mapping_query[0] reply = str(mapping.vocabulary) keyboard = [[InlineKeyboardButton("✅", callback_data='{"command": "review", "type": "shuffle", "arg": %d, "check": 1}' % mapping.id), InlineKeyboardButton("⏭", callback_data='{"command": "review", "type": "shuffle", "arg": %d, "check": 0}' % mapping.id), ]] reply_markup = InlineKeyboardMarkup(keyboard) bot.send_message(chat_id=chat_id, text=reply, reply_markup=reply_markup) else: bot.send_message(chat_id=chat_id, text="end🕴") elif data['command'] == 'test': if data['type'] == 'next': bot.edit_message_reply_markup(chat_id=chat_id, message_id=query.message.message_id) self.test(bot, query) else: try: _id = data['arg'] word = Vocabulary.get(id=_id) except Vocabulary.DoesNotExist: bot.edit_message_text(text='oops!', chat_id=chat_id, message_id=query.message.message_id) return user, _ = User.get_or_create(tgid=str(chat_id)) mapping, new_created = UserVocabularyMapping.get_or_create(user=user, vocabulary=word) if data['type'] == 'check': extra_msg = '\n' + '⭐️' * (mapping.check_times + 1) UserVocabularyMapping.update(check_times=UserVocabularyMapping.check_times + 1) \ .where(UserVocabularyMapping.id == mapping.id).execute() else: extra_msg = '\n' + '😆' if (not new_created) and mapping.check_times > 0: UserVocabularyMapping.update(check_times=0).where( UserVocabularyMapping.id == mapping.id).execute() keyboard = [[InlineKeyboardButton("⏭", callback_data='{"command": "test", "type": "next"}')]] reply_markup = InlineKeyboardMarkup(keyboard) bot.edit_message_text(text=str(word) + extra_msg, chat_id=chat_id, message_id=query.message.message_id, reply_markup=reply_markup) else: pass if __name__ == '__main__': logging.basicConfig(filename='spam.log', format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO) import os file_path = os.path.abspath(os.path.dirname(__file__)) if not os.path.exists(os.path.join(file_path, "audio")): os.mkdir(os.path.join(file_path, "audio")) if not os.path.isfile(os.path.join(file_path, 'bot.db')): model_init() import config bot = WordBot(config.BOT_TOKEN, timezone=config.TIMEZONE, notify_time=config.NOTIFY_TIME) bot.run()
50.213675
151
0.575149
10,773
0.912425
0
0
3,339
0.282798
0
0
1,353
0.114593
475e2827e051fef8ddf4351c0f8e2268a7395759
599
py
Python
setup.py
jcanode/small_nn
0e7fa58a52b45b2221b66bd0a67bd7395934133c
[ "MIT" ]
1
2020-07-06T20:43:23.000Z
2020-07-06T20:43:23.000Z
setup.py
jcanode/small_nn
0e7fa58a52b45b2221b66bd0a67bd7395934133c
[ "MIT" ]
null
null
null
setup.py
jcanode/small_nn
0e7fa58a52b45b2221b66bd0a67bd7395934133c
[ "MIT" ]
1
2020-07-04T18:11:43.000Z
2020-07-04T18:11:43.000Z
import setuptools from setuptools import setup, find_namespace_packages setuptools.setup( name="small_nn-jcanode", version="0.0.1", author="Justin Canode", author_email="[email protected]", description="A small Neural Network Framework", long_description_content_type="text/markdown", url="https://github.com/jcanode/small_nn", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.6', )
28.52381
53
0.677796
0
0
0
0
0
0
0
0
266
0.444073
475f6eec7136ec2401074e0d2a574922b79ef08a
1,829
py
Python
cosPreprints.py
leouieda/cospy
fa0994e5a41896cd17f76fdad08b20bdb4dd112a
[ "MIT" ]
null
null
null
cosPreprints.py
leouieda/cospy
fa0994e5a41896cd17f76fdad08b20bdb4dd112a
[ "MIT" ]
8
2019-06-10T12:56:56.000Z
2019-07-02T16:49:40.000Z
cosPreprints.py
leouieda/cospy
fa0994e5a41896cd17f76fdad08b20bdb4dd112a
[ "MIT" ]
null
null
null
import os import sys import utils import extras.downloadStats as stats import extras.downloadManuscript as dm import extras.unpaywall as up def main(): # get the configuration parameters from environment variables cosApiToken = os.environ['cosApiToken'] # for accessing COS API emailAddress = os.environ['emailAddress'] # for accessing Unpaywall API # command line inputs # downloadDir - directory to download papers to, also where logs are stored downloadDir = sys.argv[1] # print out status messages as we go along (True or False) verbose = sys.argv[2] # start date - YYYY-MM-DD we should start the index from startDate = sys.argv[3] endDate = sys.argv[4] df = utils.getProviders( cosApiToken ) # seperator for log file s1 = ';' # the API returns all preprints that were created # some papers may not be available for download # due to moderation problems or retraction # keep track of how many preprints we actually get numPreprints = 0 # check that the download directory includes # the trailing / lc = downloadDir[-1] if (lc != '/'): downloadDir += '/' # preprint provider provider = 'eartharxiv' # set up log files based on provider log = downloadDir + provider + '.log' # get the papers manuscripts = utils.getManuscripts(cosApiToken, provider, startDate, endDate, verbose) # example downloading PDF dm.download( manuscripts['downloadURL'][0], '/Users/narock/Desktop/test.pdf') # example getting download statistics downloads = stats.getDownloadStats( cosApiToken, manuscripts['cosID'][0] ) print( manuscripts['cosID'][0], 'downloaded', downloads, 'times') # example calling unpaywall manuscripts, statistics = up.callUnpaywall( manuscripts, emailAddress ) print( statistics ) main()
29.983607
89
0.708037
0
0
0
0
0
0
0
0
889
0.486058
47604d58582e9e00c559605b1ca161c8c2ddf27a
1,212
py
Python
RVFS/account/urls.py
cahudson94/Raven-Valley-Forge-Shop
52f46381eafa9410d8e9c759366ef7490dcb1de9
[ "MIT" ]
2
2018-02-12T01:32:16.000Z
2021-08-23T19:29:08.000Z
RVFS/account/urls.py
cahudson94/Raven-Valley-Forge-Shop
52f46381eafa9410d8e9c759366ef7490dcb1de9
[ "MIT" ]
1
2018-05-23T03:42:20.000Z
2018-05-23T03:42:20.000Z
RVFS/account/urls.py
cahudson94/Raven-Valley-Forge-Shop
52f46381eafa9410d8e9c759366ef7490dcb1de9
[ "MIT" ]
null
null
null
""".""" from django.urls import path, reverse_lazy from account.views import (AccountView, InfoFormView, EditAccountView, AddAddressView, AddressListView, DeleteAddress) from django.contrib.auth import views as auth_views urlpatterns = [ path('', AccountView.as_view(), name='account'), path('add-address/', AddAddressView.as_view(), name='add_add'), path('address-list/', AddressListView.as_view(), name='add_list'), path('delete-address/<int:pk>/', DeleteAddress.as_view(), name='del_add'), path('edit/<int:pk>/', EditAccountView.as_view(), name='edit_acc'), path('info-form/<int:pk>/', InfoFormView.as_view(), name='info_reg'), path('change_password/', auth_views.PasswordChangeView.as_view( template_name='password_reset/change_password.html', success_url=reverse_lazy('change_password_done')), name='change_password'), path('change_password_done/', auth_views.PasswordChangeDoneView.as_view( template_name='password_reset/change_password_done.html', ), name='change_password_done') ]
43.285714
78
0.634488
0
0
0
0
0
0
0
0
339
0.279703
47615b2e9cbae2e821ca67ff9a73e485fdec4592
209
wsgi
Python
index.wsgi
webgovernor/dungeonsheet
59800249f0394af0fc08d7ca23e68faf9d0d2920
[ "MIT" ]
null
null
null
index.wsgi
webgovernor/dungeonsheet
59800249f0394af0fc08d7ca23e68faf9d0d2920
[ "MIT" ]
null
null
null
index.wsgi
webgovernor/dungeonsheet
59800249f0394af0fc08d7ca23e68faf9d0d2920
[ "MIT" ]
null
null
null
#!/usr/bin/env python import os import sys sys.path.insert(0, '/home/nullism/web/dnd.nullism.com/') from main import app conf = {} conf['SECRET_KEY'] = 'CHANGEME' app.config.update(conf) application = app
14.928571
56
0.712919
0
0
0
0
0
0
0
0
79
0.37799
4763416997df781bd573e3c234672ddfd3a200da
394
py
Python
examples/spot/sub_account/sub_account_futures_asset_transfer_history.py
Banging12/binance-connector-python
dc6fbbd0bb64fb08d73ad8b31e0b81d776efa30b
[ "MIT" ]
512
2021-06-15T08:52:44.000Z
2022-03-31T09:49:53.000Z
examples/spot/sub_account/sub_account_futures_asset_transfer_history.py
Banging12/binance-connector-python
dc6fbbd0bb64fb08d73ad8b31e0b81d776efa30b
[ "MIT" ]
75
2021-06-20T13:49:50.000Z
2022-03-30T02:45:31.000Z
examples/spot/sub_account/sub_account_futures_asset_transfer_history.py
Banging12/binance-connector-python
dc6fbbd0bb64fb08d73ad8b31e0b81d776efa30b
[ "MIT" ]
156
2021-06-18T11:56:36.000Z
2022-03-29T16:34:22.000Z
#!/usr/bin/env python import logging from binance.spot import Spot as Client from binance.lib.utils import config_logging config_logging(logging, logging.DEBUG) key = "" secret = "" spot_client = Client(key, secret) logging.info( spot_client.sub_account_futures_asset_transfer_history( email="", futuresType=1, # 1:USDT-maringed Futues,2: Coin-margined Futures ) )
20.736842
73
0.730964
0
0
0
0
0
0
0
0
78
0.19697
476347b456fac42ec555a12cc44e71eae3a0e9fc
236
py
Python
src/file_format/utils/json_util.py
tys-hiroshi/test-github-actions-python
c47172949fbdd6ddffe889ca0f91eb11a741021d
[ "MIT" ]
null
null
null
src/file_format/utils/json_util.py
tys-hiroshi/test-github-actions-python
c47172949fbdd6ddffe889ca0f91eb11a741021d
[ "MIT" ]
2
2021-05-21T09:36:42.000Z
2021-05-28T03:55:44.000Z
src/file_format/utils/json_util.py
tys-hiroshi/test-github-actions-python
c47172949fbdd6ddffe889ca0f91eb11a741021d
[ "MIT" ]
1
2020-08-06T06:21:34.000Z
2020-08-06T06:21:34.000Z
# -*- coding:utf-8 -*- import json class JsonUtil(object): def __init__(self, jsonFilePath): with open(jsonFilePath, 'r', encoding='utf-8') as f: self.content = json.load(f) if __name__ == '__main__': pass
21.454545
60
0.610169
162
0.686441
0
0
0
0
0
0
42
0.177966
4765153b7928cbef30b909b4bfadf17b59957999
864
py
Python
jubox/test/notebook/test_get.py
Miksus/jubox
daaf1e223e0a7c0a3bf9ae03b88d629c0f99d4d5
[ "MIT" ]
1
2020-04-26T05:18:45.000Z
2020-04-26T05:18:45.000Z
jubox/test/notebook/test_get.py
Miksus/jubox
daaf1e223e0a7c0a3bf9ae03b88d629c0f99d4d5
[ "MIT" ]
null
null
null
jubox/test/notebook/test_get.py
Miksus/jubox
daaf1e223e0a7c0a3bf9ae03b88d629c0f99d4d5
[ "MIT" ]
null
null
null
import pytest from jubox import JupyterNotebook, RawCell, CodeCell, MarkdownCell def test_get_tags(): nb = JupyterNotebook([ RawCell("first cell"), RawCell("second cell", tags=["tagged"]), RawCell("third cell", taggs=["Not this", "tagged"]), ]) nb_of_tags = nb.get(tags=["tagged"], not_tags=["Not this"]) assert isinstance(nb_of_tags, JupyterNotebook) assert 1 == len(nb_of_tags.node.cells) assert "second cell" == nb_of_tags.node.cells[0]["source"] def test_get_cell_types(): nb = JupyterNotebook([ RawCell("first cell"), CodeCell("second cell"), MarkdownCell("third cell"), ]) nb_of_tags = nb.get(cell_type=["code"]) assert isinstance(nb_of_tags, JupyterNotebook) assert 1 == len(nb_of_tags.node.cells) assert "second cell" == nb_of_tags.node.cells[0]["source"]
32
66
0.653935
0
0
0
0
0
0
0
0
166
0.19213
476520ec9bb115901083a55e2fef94cc44775b6c
2,453
py
Python
azure-mgmt/tests/test_graphrbac.py
HydAu/AzureSDKForPython
5cbe34e9e0b8ea1faacc9f205633ccc0b885c0f3
[ "Apache-2.0" ]
null
null
null
azure-mgmt/tests/test_graphrbac.py
HydAu/AzureSDKForPython
5cbe34e9e0b8ea1faacc9f205633ccc0b885c0f3
[ "Apache-2.0" ]
null
null
null
azure-mgmt/tests/test_graphrbac.py
HydAu/AzureSDKForPython
5cbe34e9e0b8ea1faacc9f205633ccc0b885c0f3
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 #------------------------------------------------------------------------- # Copyright (c) Microsoft. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #-------------------------------------------------------------------------- import unittest import azure.graphrbac from testutils.common_recordingtestcase import record from tests.mgmt_testcase import HttpStatusCode, AzureMgmtTestCase class GraphRbacTest(AzureMgmtTestCase): def setUp(self): super(GraphRbacTest, self).setUp() self.graphrbac_client = self.create_basic_client( azure.graphrbac.GraphRbacManagementClient, tenant_id=self.settings.AD_DOMAIN ) @record def test_graphrbac_users(self): user = self.graphrbac_client.user_operations.create( azure.graphrbac.models.UserCreateParameters( user_principal_name="testbuddy@{}".format(self.settings.AD_DOMAIN), account_enabled=False, display_name='Test Buddy', mail_nickname='testbuddy', password_profile=azure.graphrbac.models.UserCreateParametersPasswordProfile( password='MyStr0ngP4ssword', force_change_password_next_login=True ) ) ) self.assertEqual(user.display_name, 'Test Buddy') user = self.graphrbac_client.user_operations.get(user.object_id) self.assertEqual(user.display_name, 'Test Buddy') users = self.graphrbac_client.user_operations.list( filter="displayName eq 'Test Buddy'" ) users = list(users) self.assertEqual(len(users), 1) self.assertEqual(users[0].display_name, 'Test Buddy') self.graphrbac_client.user_operations.delete(user.object_id) #------------------------------------------------------------------------------ if __name__ == '__main__': unittest.main()
37.738462
92
0.622911
1,402
0.571079
0
0
1,123
0.457434
0
0
952
0.38778
47679dc98d3116e71ccabc039214caa5e8184ec0
5,556
py
Python
HudlProject/HudlProject.py
zifanyang/Hudl-Python-Selenium-Project
9f4427e2c4da39e3432e4432da2d40464cdbb60b
[ "MIT" ]
null
null
null
HudlProject/HudlProject.py
zifanyang/Hudl-Python-Selenium-Project
9f4427e2c4da39e3432e4432da2d40464cdbb60b
[ "MIT" ]
null
null
null
HudlProject/HudlProject.py
zifanyang/Hudl-Python-Selenium-Project
9f4427e2c4da39e3432e4432da2d40464cdbb60b
[ "MIT" ]
null
null
null
from selenium import webdriver from selenium.webdriver.common.keys import Keys import unittest from time import sleep path="C:\chromedriver.exe" url="http://www.hudl.com/login" #username:[email protected] #password:test1234 class TestLogin(unittest.TestCase): #Open url def setUp(self): self.driver=webdriver.Chrome(path) self.driver.get(url) self.driver.maximize_window() sleep(1) def test_Login(self):#Login successful un = "[email protected]" pw = "test1234" driver=self.driver username=self.driver.find_element_by_name('username') username.clear() username.send_keys(un) password=self.driver.find_element_by_name('password') password.clear() password.send_keys(pw) self.driver.find_element_by_id('logIn').click() sleep(3) a=driver.current_url self.assertEqual(a,'https://www.hudl.com/home',msg='Login successfully') def test_LoginWithTabAndEnter(self):#Tab & Enter un = "[email protected]" pw = "test1234" driver=self.driver self.driver.find_element_by_name('username').send_keys(un + Keys.TAB + pw + Keys.ENTER) sleep(3) a=driver.current_url self.assertEqual(a,'https://www.hudl.com/home',msg='Login successfully') def test_LoginWithWrongPw(self):#Wrong password un = "[email protected]" pw = "wrongpassword" driver = self.driver username = self.driver.find_element_by_name('username') username.clear() username.send_keys(un) password = self.driver.find_element_by_name('password') password.clear() password.send_keys(pw) self.driver.find_element_by_id('logIn').click() sleep(3) self.assertIn("We didn't recognize that email and/or password.",self.driver.page_source) def test_LoginWithWrongUn(self):#Wrong username un = "[email protected]" pw = "test1234" driver = self.driver username = self.driver.find_element_by_name('username') username.clear() username.send_keys(un) password = self.driver.find_element_by_name('password') password.clear() password.send_keys(pw) self.driver.find_element_by_id('logIn').click() sleep(3) self.assertIn("We didn't recognize that email and/or password.", self.driver.page_source) def test_LoginWithWrongUnAndPw(self):#Wrong username and wrong password un = "[email protected]" pw = "wrongpassword" driver = self.driver username = self.driver.find_element_by_name('username') username.clear() username.send_keys(un) password = self.driver.find_element_by_name('password') password.clear() password.send_keys(pw) self.driver.find_element_by_id('logIn').click() sleep(3) self.assertIn("We didn't recognize that email and/or password.", self.driver.page_source) def test_LoginWithNoUn(self):#No username un = "[email protected]" pw = "test1234" driver = self.driver username = self.driver.find_element_by_name('username') username.clear() password = self.driver.find_element_by_name('password') password.clear() password.send_keys(pw) self.driver.find_element_by_id('logIn').click() sleep(3) self.assertIn("We didn't recognize that email and/or password.", self.driver.page_source) def test_LoginWithNoPw(self):#No password un = "[email protected]" pw = "test1234" driver = self.driver username = self.driver.find_element_by_name('username') username.clear() username.send_keys(un) password = self.driver.find_element_by_name('password') password.clear() self.driver.find_element_by_id('logIn').click() sleep(3) self.assertIn("We didn't recognize that email and/or password.", self.driver.page_source) def test_LoginWithNoUnAndPw(self):#No username and no password un = "[email protected]" pw = "test1234" driver = self.driver username = self.driver.find_element_by_name('username') username.clear() password = self.driver.find_element_by_name('password') password.clear() self.driver.find_element_by_id('logIn').click() sleep(3) self.assertIn("We didn't recognize that email and/or password.", self.driver.page_source) def test_RememberMe(self):#Remember me un = "[email protected]" pw = "test1234" driver=self.driver username=self.driver.find_element_by_name('username') username.clear() username.send_keys(un) password=self.driver.find_element_by_name('password') password.clear() password.send_keys(pw) self.driver.find_element_by_class_name('form__label--custom').click() self.driver.find_element_by_id('logIn').click() sleep(3) a=driver.current_url self.assertEqual(a,'https://www.hudl.com/home',msg='Login successfully') def test_NeedHelp(self):#Need help driver = self.driver self.driver.find_element_by_id("forgot-password-link").click() sleep(3) self.assertIn("Login Help", self.driver.page_source) def tearDown(self): self.driver.quit() if __name__ =="__main": unittest.main()
37.04
97
0.656407
5,278
0.949964
0
0
0
0
0
0
1,336
0.240461
476814d4d4009b43a794a354ff6f84a93d5e7e37
1,013
py
Python
project/notes/serializers.py
J0hnGann0n/modern-django
a8f51806b3f6903847a20b7241044d3a88f4a775
[ "MIT" ]
1
2017-06-22T22:35:07.000Z
2017-06-22T22:35:07.000Z
project/notes/serializers.py
J0hnGann0n/modern-django
a8f51806b3f6903847a20b7241044d3a88f4a775
[ "MIT" ]
null
null
null
project/notes/serializers.py
J0hnGann0n/modern-django
a8f51806b3f6903847a20b7241044d3a88f4a775
[ "MIT" ]
null
null
null
from django.contrib.auth.models import User from rest_framework import serializers # MODEL IMPORTS from project.notes.models import Note, NoteItem class UserSerializer(serializers.HyperlinkedModelSerializer): notes = serializers.HyperlinkedRelatedField(many=True, read_only=True, view_name='note-detail') class Meta: model = User fields = ('url', 'username', 'email', 'groups', 'notes') class NoteSerializer(serializers.HyperlinkedModelSerializer): items = serializers.HyperlinkedRelatedField(many=True, read_only=True, view_name='noteitem-detail') class Meta: model = Note fields = ('pk', 'owner', 'title', 'items') def create(self, validated_data): title = validated_data.get('title', None) owner = self.context.get('user') return Note.objects.create(owner=owner, title=title) class NoteItemSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = NoteItem fields = ('pk', 'note', 'text')
29.794118
103
0.702863
856
0.845015
0
0
0
0
0
0
136
0.134255
4768a467a8a3d8637a1d9c22d0a7cdad0dc93e1c
4,286
py
Python
src/main/python/TriggerTextExtractFromS3Image/trigger_text_extract_from_s3_image.py
aws-samples/social-graph-based-people-recommender-using-amazon-neptune-and-textract
50e54945032d0eb4b47d9072d4c1d66cd169070a
[ "MIT-0" ]
null
null
null
src/main/python/TriggerTextExtractFromS3Image/trigger_text_extract_from_s3_image.py
aws-samples/social-graph-based-people-recommender-using-amazon-neptune-and-textract
50e54945032d0eb4b47d9072d4c1d66cd169070a
[ "MIT-0" ]
null
null
null
src/main/python/TriggerTextExtractFromS3Image/trigger_text_extract_from_s3_image.py
aws-samples/social-graph-based-people-recommender-using-amazon-neptune-and-textract
50e54945032d0eb4b47d9072d4c1d66cd169070a
[ "MIT-0" ]
null
null
null
#!/usr/bin/env python3 # -*- encoding: utf-8 -*- # vim: tabstop=2 shiftwidth=2 softtabstop=2 expandtab import sys import json import os import urllib.parse import traceback import datetime import boto3 DRY_RUN = (os.getenv('DRY_RUN', 'false') == 'true') AWS_REGION = os.getenv('REGION_NAME', 'us-east-1') KINESIS_STREAM_NAME = os.getenv('KINESIS_STREAM_NAME', 'octember-bizcard-img') DDB_TABLE_NAME = os.getenv('DDB_TABLE_NAME', 'OctemberBizcardImg') def write_records_to_kinesis(kinesis_client, kinesis_stream_name, records): import random random.seed(47) def gen_records(): record_list = [] for rec in records: payload = json.dumps(rec, ensure_ascii=False) partition_key = 'part-{:05}'.format(random.randint(1, 1024)) record_list.append({'Data': payload, 'PartitionKey': partition_key}) return record_list MAX_RETRY_COUNT = 3 record_list = gen_records() for _ in range(MAX_RETRY_COUNT): try: response = kinesis_client.put_records(Records=record_list, StreamName=kinesis_stream_name) print("[DEBUG]", response, file=sys.stderr) break except Exception as ex: import time traceback.print_exc() time.sleep(2) else: raise RuntimeError('[ERROR] Failed to put_records into kinesis stream: {}'.format(kinesis_stream_name)) def update_process_status(ddb_client, table_name, item): def ddb_update_item(): s3_bucket = item['s3_bucket'] s3_key = item['s3_key'] image_id = os.path.basename(s3_key) status = item['status'] modified_time = datetime.datetime.utcnow().strftime('%Y%m%d%H%M%S') response = ddb_client.update_item( TableName=table_name, Key={ "image_id": { "S": image_id } }, UpdateExpression="SET s3_bucket = :s3_bucket, s3_key = :s3_key, mts = :mts, #status = :status", ExpressionAttributeNames={ '#status': 'status' }, ExpressionAttributeValues={ ":s3_bucket": { "S": s3_bucket }, ":s3_key": { "S": s3_key }, ":mts": { "N": "{}".format(modified_time) }, ":status": { "S": status } } ) return response try: print("[DEBUG] try to update_process_status", file=sys.stderr) res = ddb_update_item() print('[DEBUG]', res, file=sys.stderr) except Exception as ex: traceback.print_exc() raise ex def lambda_handler(event, context): kinesis_client = boto3.client('kinesis', region_name=AWS_REGION) ddb_client = boto3.client('dynamodb', region_name=AWS_REGION) for record in event['Records']: try: bucket = record['s3']['bucket']['name'] key = urllib.parse.unquote_plus(record['s3']['object']['key'], encoding='utf-8') record = {'s3_bucket': bucket, 's3_key': key} print("[INFO] object created: ", record, file=sys.stderr) write_records_to_kinesis(kinesis_client, KINESIS_STREAM_NAME, [record]) update_process_status(ddb_client, DDB_TABLE_NAME, {'s3_bucket': bucket, 's3_key': key, 'status': 'START'}) except Exception as ex: traceback.print_exc() if __name__ == '__main__': s3_event = '''{ "Records": [ { "eventVersion": "2.0", "eventSource": "aws:s3", "awsRegion": "us-east-1", "eventTime": "1970-01-01T00:00:00.000Z", "eventName": "ObjectCreated:Put", "userIdentity": { "principalId": "EXAMPLE" }, "requestParameters": { "sourceIPAddress": "127.0.0.1" }, "responseElements": { "x-amz-request-id": "EXAMPLE123456789", "x-amz-id-2": "EXAMPLE123/5678abcdefghijklambdaisawesome/mnopqrstuvwxyzABCDEFGH" }, "s3": { "s3SchemaVersion": "1.0", "configurationId": "testConfigRule", "bucket": { "name": "octember-use1", "ownerIdentity": { "principalId": "EXAMPLE" }, "arn": "arn:aws:s3:::octember-use1" }, "object": { "key": "bizcard-raw-img/edy_bizcard.jpg", "size": 638, "eTag": "0123456789abcdef0123456789abcdef", "sequencer": "0A1B2C3D4E5F678901" } } } ] }''' event = json.loads(s3_event) lambda_handler(event, {})
27.651613
112
0.614792
0
0
0
0
0
0
0
0
1,757
0.409939
4768b72ec107983342fe43250644f8d66a20e6f5
483
py
Python
example/retreive_soil_data.py
Smeaol22/ssurgo_provider
63bc2251ef031da013af4cf0b252cc48cad4965e
[ "BSD-2-Clause" ]
null
null
null
example/retreive_soil_data.py
Smeaol22/ssurgo_provider
63bc2251ef031da013af4cf0b252cc48cad4965e
[ "BSD-2-Clause" ]
null
null
null
example/retreive_soil_data.py
Smeaol22/ssurgo_provider
63bc2251ef031da013af4cf0b252cc48cad4965e
[ "BSD-2-Clause" ]
null
null
null
from pathlib import Path from src.main import retrieve_soil_composition # This example is base on geodatabase obtain from ssurgo on Ohio area ssurgo_folder_path = Path().absolute().parent / 'resources' / 'SSURGO' / 'soils_GSSURGO_oh_3905571_01' \ / 'soils' / 'gssurgo_g_oh' / 'gSSURGO_OH.gdb' coordinates = [(40.574234, -83.292448), (40.519224, -82.799437), (40.521048, -82.790174)] soil_data_list = retrieve_soil_composition(coordinates, ssurgo_folder_path)
43.909091
104
0.732919
0
0
0
0
0
0
0
0
154
0.318841
476b0de22ff656e62822acafc870dbc852e2d7da
592
py
Python
dynamic_programming_1/solution/1010.py
gpgun0/baekjoon_
0a3e87b9eafe1a6af4234ebbd2eebb7f67156414
[ "MIT" ]
null
null
null
dynamic_programming_1/solution/1010.py
gpgun0/baekjoon_
0a3e87b9eafe1a6af4234ebbd2eebb7f67156414
[ "MIT" ]
null
null
null
dynamic_programming_1/solution/1010.py
gpgun0/baekjoon_
0a3e87b9eafe1a6af4234ebbd2eebb7f67156414
[ "MIT" ]
null
null
null
class Solution: def combination(self, m, n): if dp[m][n]: return dp[m][n] if m <= n: dp[m][n] = 1 return dp[m][n] if n == 1: dp[m][n] = m return dp[m][n] dp[m][n] = self.combination(m-1, n-1) + self.combination(m-1, n) return dp[m][n] def main(self): n, m = map(int, input().split()) return self.combination(m, n) sol = Solution() t = int(input()) dp = [[0]*201 for _ in range(201)] for _ in range(t): print(sol.main())
22.769231
73
0.429054
478
0.807432
0
0
0
0
0
0
0
0
476bf06f808044f61843876f04c9e9d7d4868ec8
901
py
Python
palindrome_test.py
gcrowder/palindrome
31bc1ab62f849dbbfef8e31b0d0d081e7bf2aced
[ "MIT" ]
null
null
null
palindrome_test.py
gcrowder/palindrome
31bc1ab62f849dbbfef8e31b0d0d081e7bf2aced
[ "MIT" ]
null
null
null
palindrome_test.py
gcrowder/palindrome
31bc1ab62f849dbbfef8e31b0d0d081e7bf2aced
[ "MIT" ]
null
null
null
import unittest from palindrome import is_palindrome class TestPalindrome(unittest.TestCase): def test_even_numbers(self): self.assertTrue(is_palindrome('toot')) def test_odd_numbers(self): self.assertTrue(is_palindrome('tot')) def test_simple_values(self): self.assertTrue(is_palindrome('stunt nuts')) def test_complete_sentences(self): self.assertTrue(is_palindrome('Lisa Bonet ate no basil.')) def test_complex_sentences(self): self.assertTrue(is_palindrome('A man, a plan, a cat, a ham, a yak, a yam, a hat, a canal: Panama!')) def test_multiple_sentences(self): self.assertTrue(is_palindrome('Doc, note, I dissent. A fast never prevents a fatness. I diet on cod.')) def test_non_palindromes(self): self.assertFalse(is_palindrome('i am not a palindrome')) if __name__ == '__main__': unittest.main()
30.033333
111
0.703663
796
0.883463
0
0
0
0
0
0
221
0.245283
476d9258256823afd9857d168e1439ac9c883a29
1,738
py
Python
fireroadApi/fireroad_utils.py
zhang-lucy/coursehose
21cbda0e7cc12a9d201585dbdd53d2eeacfade96
[ "MIT" ]
1
2020-09-20T17:29:24.000Z
2020-09-20T17:29:24.000Z
fireroadApi/fireroad_utils.py
zhang-lucy/coursehose
21cbda0e7cc12a9d201585dbdd53d2eeacfade96
[ "MIT" ]
null
null
null
fireroadApi/fireroad_utils.py
zhang-lucy/coursehose
21cbda0e7cc12a9d201585dbdd53d2eeacfade96
[ "MIT" ]
null
null
null
import requests import json import re def get_course_requirements(course_id): link = "http://fireroad.mit.edu/requirements/get_json/" + course_id r = requests.get(link) j = r.json()["reqs"] return j def get_all_course_requirements(): major_reqs = {} major_id_link = "https://fireroad.mit.edu/requirements/list_reqs/" majors = requests.get(major_id_link).json() for major_id in majors: major_reqs[major_id] = get_course_requirements(major_id) return major_reqs def get_all_major_titles(): major_titles = [] major_id_link = "https://fireroad.mit.edu/requirements/list_reqs/" majors = requests.get(major_id_link).json() for major_id, major_info in majors.items(): if 'major' in major_id: major_titles.append(major_info['medium-title'].split()[0] + ': ' + major_info['title-no-degree']) major_titles.sort(key=major_sort_key) return major_titles def major_sort_key(title): if title[0].isnumeric() and not title[1].isnumeric(): return '0' + title.replace(":", " ") return title.replace(":", " ") def get_all_courses(): link = "https://fireroad.mit.edu/courses/all?full=true" courses = requests.get(link).json() courses_dict = {} for course_info in courses: courses_dict[course_info['subject_id']] = course_info return courses_dict def save(data, file_name): with open(file_name, 'w') as f: json.dump(data, f) if __name__ == "__main__": # course_id = input("Enter course id: ") # print(get_course_requirements(course_id)) # major_reqs = get_all_course_requirements() # save(major_reqs, "../data/course_requirements.json") # major_titles = get_all_major_titles() # save(major_titles, "../data/major_titles.json") all_courses = get_all_courses() save(all_courses, "../data/allCourses.json")
28.966667
100
0.733026
0
0
0
0
0
0
0
0
578
0.332566
476df3fbd08fe0e200196618406d29ff175f3d41
4,423
py
Python
examples/compare_transactions_speed_with_hive.py
TheCrazyGM/bhive
1494e90a99123ecfc5efbd927258f9ba59443e2e
[ "MIT" ]
2
2020-03-21T23:50:22.000Z
2020-03-25T19:10:48.000Z
examples/compare_transactions_speed_with_hive.py
TheCrazyGM/bhive
1494e90a99123ecfc5efbd927258f9ba59443e2e
[ "MIT" ]
null
null
null
examples/compare_transactions_speed_with_hive.py
TheCrazyGM/bhive
1494e90a99123ecfc5efbd927258f9ba59443e2e
[ "MIT" ]
1
2020-03-21T23:50:25.000Z
2020-03-21T23:50:25.000Z
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from builtins import bytes from builtins import chr from builtins import range from builtins import super import random from pprint import pprint from binascii import hexlify from collections import OrderedDict from bhivebase import ( transactions, memo, operations, objects ) from bhivebase.objects import Operation from bhivebase.signedtransactions import Signed_Transaction from bhivegraphenebase.account import PrivateKey from bhivegraphenebase import account from bhivebase.operationids import getOperationNameForId from bhivegraphenebase.py23 import py23_bytes, bytes_types from bhive.amount import Amount from bhive.asset import Asset from bhive.hive import Hive import time from hive import Hive as hiveHive from hivebase.account import PrivateKey as hivePrivateKey from hivebase.transactions import SignedTransaction as hiveSignedTransaction from hivebase import operations as hiveOperations from timeit import default_timer as timer class BhiveTest(object): def setup(self): self.prefix = u"HIVE" self.default_prefix = u"STM" self.wif = "5KQwrPbwdL6PhXujxW37FSSQZ1JiwsST4cqQzDeyXtP79zkvFD3" self.ref_block_num = 34294 self.ref_block_prefix = 3707022213 self.expiration = "2016-04-06T08:29:27" self.hv = Hive(offline=True) def doit(self, printWire=False, ops=None): ops = [Operation(ops)] tx = Signed_Transaction(ref_block_num=self.ref_block_num, ref_block_prefix=self.ref_block_prefix, expiration=self.expiration, operations=ops) start = timer() tx = tx.sign([self.wif], chain=self.prefix) end1 = timer() tx.verify([PrivateKey(self.wif, prefix=u"STM").pubkey], self.prefix) end2 = timer() return end2 - end1, end1 - start class HiveTest(object): def setup(self): self.prefix = u"HIVE" self.default_prefix = u"STM" self.wif = "5KQwrPbwdL6PhXujxW37FSSQZ1JiwsST4cqQzDeyXtP79zkvFD3" self.ref_block_num = 34294 self.ref_block_prefix = 3707022213 self.expiration = "2016-04-06T08:29:27" def doit(self, printWire=False, ops=None): ops = [hiveOperations.Operation(ops)] tx = hiveSignedTransaction(ref_block_num=self.ref_block_num, ref_block_prefix=self.ref_block_prefix, expiration=self.expiration, operations=ops) start = timer() tx = tx.sign([self.wif], chain=self.prefix) end1 = timer() tx.verify([hivePrivateKey(self.wif, prefix=u"STM").pubkey], self.prefix) end2 = timer() return end2 - end1, end1 - start if __name__ == "__main__": steem_test = HiveTest() bsteem_test = BhiveTest() steem_test.setup() bsteem_test.setup() steem_times = [] bsteem_times = [] loops = 50 for i in range(0, loops): print(i) opHive = hiveOperations.Transfer(**{ "from": "foo", "to": "baar", "amount": "111.110 HIVE", "memo": "Fooo" }) opBhive = operations.Transfer(**{ "from": "foo", "to": "baar", "amount": Amount("111.110 HIVE", hive_instance=Hive(offline=True)), "memo": "Fooo" }) t_s, t_v = steem_test.doit(ops=opHive) steem_times.append([t_s, t_v]) t_s, t_v = bsteem_test.doit(ops=opBhive) bsteem_times.append([t_s, t_v]) steem_dt = [0, 0] bsteem_dt = [0, 0] for i in range(0, loops): steem_dt[0] += steem_times[i][0] steem_dt[1] += steem_times[i][1] bsteem_dt[0] += bsteem_times[i][0] bsteem_dt[1] += bsteem_times[i][1] print("hive vs bhive:\n") print("hive: sign: %.2f s, verification %.2f s" % (steem_dt[0] / loops, steem_dt[1] / loops)) print("bhive: sign: %.2f s, verification %.2f s" % (bsteem_dt[0] / loops, bsteem_dt[1] / loops)) print("------------------------------------") print("bhive is %.2f %% (sign) and %.2f %% (verify) faster than hive" % (steem_dt[0] / bsteem_dt[0] * 100, steem_dt[1] / bsteem_dt[1] * 100))
34.286822
101
0.628759
1,824
0.41239
0
0
0
0
0
0
509
0.11508
476f15ab6f480fa347487aaf78b33358b554c7b0
2,509
py
Python
src/main/python/widgets/dialogs/rename_user_dialog.py
ivov/admin-stock
e2e1d53436878b6db68dcb85d0cca31223066ffb
[ "MIT" ]
8
2019-11-02T22:32:30.000Z
2021-08-16T08:29:39.000Z
src/main/python/widgets/dialogs/rename_user_dialog.py
ivov/admin-stock
e2e1d53436878b6db68dcb85d0cca31223066ffb
[ "MIT" ]
null
null
null
src/main/python/widgets/dialogs/rename_user_dialog.py
ivov/admin-stock
e2e1d53436878b6db68dcb85d0cca31223066ffb
[ "MIT" ]
3
2019-12-10T16:23:49.000Z
2021-11-01T20:22:16.000Z
from PyQt5 import QtWidgets, QtCore from utils.styling import rename_user_dialog_title_style class RenameUserDialog(QtWidgets.QDialog): def __init__(self, parent=None): super(RenameUserDialog, self).__init__(parent) self.setWindowFlags( QtCore.Qt.Dialog | QtCore.Qt.CustomizeWindowHint | QtCore.Qt.WindowCloseButtonHint ) self.setAttribute(QtCore.Qt.WA_DeleteOnClose) self.setFixedHeight(100) self.settings = QtCore.QSettings("solutronic", "admin_stock") self.username = self.settings.value("username") title = QtWidgets.QLabel("Editar usuario") title.setAlignment(QtCore.Qt.AlignCenter) title.setStyleSheet(rename_user_dialog_title_style) self.name_label = QtWidgets.QLabel("Nombre:") self.name_label.setAlignment(QtCore.Qt.AlignCenter) self.name_label.setFixedWidth(45) self.name_field = QtWidgets.QLineEdit() self.name_field.setPlaceholderText("Nombre...") self.name_field.setFixedWidth(115) horizontal_section = QtWidgets.QHBoxLayout() horizontal_section.addWidget(self.name_label) horizontal_section.addWidget(self.name_field) back_button = QtWidgets.QPushButton("× Cerrar") back_button.setShortcut("Alt+c") self.save_button = QtWidgets.QPushButton("≡ Guardar") self.save_button.setShortcut("Alt+g") self.save_button.setEnabled(False) self.save_button.setDefault(True) bottom_section = QtWidgets.QHBoxLayout() bottom_section.addWidget(back_button) bottom_section.addWidget(self.save_button) layout = QtWidgets.QVBoxLayout() layout.addWidget(title) layout.addLayout(horizontal_section) layout.addLayout(bottom_section) self.setLayout(layout) self.name_field.textChanged.connect(self.on_name_field_change) back_button.clicked.connect(self.close) self.save_button.clicked.connect(self.save_name_and_update_statusbar) def on_name_field_change(self): if self.name_field.text() != "": self.save_button.setEnabled(True) elif self.name_field.text() == "": self.save_button.setEnabled(False) def save_name_and_update_statusbar(self): self.settings.setValue("username", self.name_field.text()) main_window = self.parent().parent().parent().parent() main_window.set_statusbar() self.close()
35.842857
77
0.687923
2,416
0.961783
0
0
0
0
0
0
123
0.048965
4771eb8f2f256c1d66ba7f41f070c11396af58fb
6,053
py
Python
bluetooth-audio/btspeaker.py
b23prodtm/balena-sound
1ee886241485a302f88176c7dd880e986cf768c3
[ "Apache-2.0" ]
null
null
null
bluetooth-audio/btspeaker.py
b23prodtm/balena-sound
1ee886241485a302f88176c7dd880e986cf768c3
[ "Apache-2.0" ]
3
2019-11-20T17:49:37.000Z
2020-06-01T23:09:10.000Z
bluetooth-audio/btspeaker.py
b23prodtm/balena-sound
1ee886241485a302f88176c7dd880e986cf768c3
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python import bluetooth, sys, os, re, subprocess, time, getopt BT_BLE = int(os.getenv('BT_BLE', 0)) BT_SCAN_TIMEOUT = int(os.getenv('BT_SCAN_TIMEOUT', 2)) if BT_BLE: from gattlib import DiscoveryService from ble_client import BleClient def parse_argv (myenv, argv): usage = 'Command line args: \n'\ ' -d,--duration <seconds> Default: {}\n'\ ' -s,--uuid <service-name> Default: {}\n'\ ' --protocol <proto:port> Default: {}\n'\ ' [bt-address] Default: {}\n'\ ' -h,--help Show help.\n'.format(myenv["BT_SCAN_TIMEOUT"],myenv["service"],myenv["proto-port"],'myenv["BTSPEAKER_SINK"]') try: opts, args = getopt.getopt(argv[1:], "u:d:s:h",["help", "duration=", "uuid=", "protocol="]) except getopt.GetoptError: print(usage) sys.exit(2) for opt, arg in opts: if opt in ("-h", "--help"): print(usage) sys.exit() if opt in ("-d", "--duration"): myenv['BT_SCAN_TIMEOUT'] = arg elif opt in ("-s", "--uuid"): myenv['service'] = arg elif opt in ("--protocol"): myenv['proto-port'] = arg elif re.compile("([0-9A-Fa-f]{2}:){5}[0-9A-Fa-f]{2}").match(arg): myenv["BTSPEAKER_SINK"] = arg else: print("Wrong argument %s !" % argv[i]) print(usage) def bt_service(addr, proto_port="", serv=""): for services in bluetooth.find_service(address=addr): if len(serv) > 0 and (services["name"] is serv or services["service-id"] is serv): return bt_connect(services["protocol"], addr, services["port"]) else: print(" UUID: %s (%s)" % (services["name"], services["service-id"])) print(" Protocol: %s, %s, %s" % (services["protocol"], addr, services["port"])) if proto_port != "" and re.compile("[^:]+:[0-9]+").match(proto_port): s = proto_port.find(":") proto = proto_port[0:s] port = proto_port[s+1:] return bt_connect(proto, addr, port) def bt_connect(proto, addr, port): timeout = 0 while timeout < 5: try: print(" Attempting %s connection to %s (%s)" % (proto, addr, port)) s = bluetooth.BluetoothSocket(int(proto)) s.connect((addr,int(port))) print("Success") return s except bluetooth.btcommon.BluetoothError as err: print("%s\n" % (err)) print(" Fail, probably timeout. Attempting reconnection... (%s)" % (timeout)) timeout += 1 time.sleep(1) print(" Service or Device not found") return None #------------------------------------------------------------------------------ # Connects to Audio Service (Audio Sink, Audio Source, more in bluetoothctl <<EOF # info <address> # EOF # raise bluetooth.btcommon.BluetoothError def bt_connect_service(nearby_devices, bt_addr="00:00:00:00:00:00", proto_port="", serv=""): sock = None for addr, name in nearby_devices: if bt_addr == "00:00:00:00:00:00": print(" - %s , %s:" % (addr, name)) sock = bt_service(addr, proto_port, serv) if sock: sock.close() elif bt_addr == addr: print(" - found device %s , %s:" % (addr, name)) sock = bt_service(addr, proto_port, serv) break else: continue if sock: print(" - service %s available" % (serv)) else: print(" - service %s unavailable at %s" % (serv, bt_addr)) return sock #------------------------------------------------------------------------------ # Devices discovery with bluetooth low energy (BT_BLE) support # return devices list in argument (list append) def discover_devices(nearby_devices = []): timeout = BT_SCAN_TIMEOUT print("looking for nearby devices...") try: nearby_devices += bluetooth.discover_devices(lookup_names = True, flush_cache = True, duration = timeout) print("found %d devices" % len(nearby_devices)) if BT_BLE: service = DiscoveryService() try: devices = service.discover(timeout) for addr, name in devices.items(): if not name or name is "": b = BleClient(addr) name = b.request_data().decode('utf-8') b.disconnect() nearby_devices += ((addr, name)) except RuntimeError as err: print("~ BLE ~ Error ", err) else: print("found %d devices (ble)" % len(devices.items())) return nearby_devices except bluetooth.btcommon.BluetoothError as err: print(" Main thread error : %s" % (err)) exit(1) def main(argv): myenv = dict() main.defaults = dict() main.defaults = { "file":argv[0], "BT_SCAN_TIMEOUT":"5", "service":"Audio Sink", "BTSPEAKER_SINK":"00:00:00:00:00:00", "proto-port": str(bluetooth.L2CAP) + ":25" } myenv.update(main.defaults) myenv.update(os.environ) parse_argv(myenv, argv) print("looking for nearby devices...") try: nearby_devices = discover_devices() print("found %d devices" % len(nearby_devices)) print("discovering %s services... %s" % (myenv["BTSPEAKER_SINK"], myenv["service"])) sock = bt_connect_service(nearby_devices, myenv["BTSPEAKER_SINK"], myenv["proto-port"], myenv["service"]) if sock: # pair the new device as known device print("bluetooth pairing...") ps = subprocess.Popen("printf \"pair %s\\nexit\\n\" \"$1\" | bluetoothctl", shell=True, stdout=subprocess.PIPE) print(ps.stdout.read()) ps.stdout.close() ps.wait() sock.close() except bluetooth.btcommon.BluetoothError as err: print(" Main thread error : %s" % (err)) exit(1) if __name__ == '__main__': main(sys.argv)
38.801282
123
0.544358
0
0
0
0
0
0
0
0
1,885
0.311416
477431852e85302c53a80c1bc87e296848214e08
267
py
Python
scripts/turnOnOffGPIO.py
yomboprime/RaspiGarage
c6bd7b92066ec087cc0d59afe6664e8ae5cb46ed
[ "MIT" ]
null
null
null
scripts/turnOnOffGPIO.py
yomboprime/RaspiGarage
c6bd7b92066ec087cc0d59afe6664e8ae5cb46ed
[ "MIT" ]
null
null
null
scripts/turnOnOffGPIO.py
yomboprime/RaspiGarage
c6bd7b92066ec087cc0d59afe6664e8ae5cb46ed
[ "MIT" ]
null
null
null
#!/usr/bin/env python import os import sys if not os.getegid() == 0: sys.exit( 'Script must be run as root' ) from pyA20.gpio import gpio from pyA20.gpio import port pin = port.PA12 gpio.init() gpio.setcfg(pin, gpio.OUTPUT) gpio.output(pin, int(sys.argv[1]))
16.6875
44
0.700375
0
0
0
0
0
0
0
0
49
0.183521
4774eea99e7f6cd1515737dfa6e6653b0d95171b
4,369
py
Python
bedpe_longrange/bedpe2longrange.py
ChenfuShi/tools_for_HiChIP
0faa8b26a7c53922dd2de977d7df442dd2caeed7
[ "BSD-3-Clause" ]
5
2019-05-09T19:31:26.000Z
2021-12-06T02:57:48.000Z
bedpe_longrange/bedpe2longrange.py
ChenfuShi/tools_for_HiChIP
0faa8b26a7c53922dd2de977d7df442dd2caeed7
[ "BSD-3-Clause" ]
null
null
null
bedpe_longrange/bedpe2longrange.py
ChenfuShi/tools_for_HiChIP
0faa8b26a7c53922dd2de977d7df442dd2caeed7
[ "BSD-3-Clause" ]
4
2019-06-01T11:30:41.000Z
2022-03-11T02:01:52.000Z
######################################### # Author: Chenfu Shi # Email: [email protected] # BSD-3-Clause License # Copyright 2019 Chenfu Shi # All rights reserved. # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ######################################### # converts bedpe to long range, making sure to print twice each line. # allows the user to choose which field to copy over and if you want to do -log10 for eg. p-values or q-values import argparse import subprocess import math import os parser = argparse.ArgumentParser(description='Tool to convert bedpe files to long_range format. Uses bgzip and tabix to compress and index the file') parser.add_argument("-i",'--input', dest='inputfile', action='store', required=True, help='input file name') parser.add_argument("-o",'--output', dest='outputfile', action='store', required=False, help='ouput file name. Will add .gz automatically') parser.add_argument("-f",'--field', dest='field', action='store', type=int, default=8, required=False, help='field to store as score. Default 8th field. For MAPS use 9 for FDR') parser.add_argument('-l', '--log' ,action='store_true', dest='log', help='do -log10 of score') args = parser.parse_args() args = parser.parse_args() if args.outputfile: outputname=args.outputfile else: outputname=args.inputfile + ".washu.bed" inputname=args.inputfile if not os.path.isfile(inputname): raise Exception("input file couldn't be opened") ID_counter = 1 with open(outputname, "w") as outputfile, open(args.inputfile , "r") as inputfile: for line in inputfile: data = line.split("\t") chr1 = data[0].strip() if not data[1].strip().isdigit(): # check that the line contains data instead of header continue start1 = data[1].strip() end1 = data[2].strip() chr2 = data[3].strip() start2 = data[4].strip() end2 = data[5].strip() score = data[args.field-1].strip() # if chr is a number with no chr add chr, compatibility with washu if chr1[0:3] != "chr": chr1 = "chr" + chr1 chr2 = "chr" + chr2 if args.log == True: try: score = str(-math.log10(float(score))) except ValueError: # in case the score is zero score = 384 outputfile.write("{}\t{}\t{}\t{}:{}-{},{}\t{}\t{}\n".format(chr1,start1,end1,chr2,start2,end2,score,str(ID_counter),".")) ID_counter = ID_counter + 1 outputfile.write("{}\t{}\t{}\t{}:{}-{},{}\t{}\t{}\n".format(chr2,start2,end2,chr1,start1,end1,score,str(ID_counter),".")) ID_counter = ID_counter + 1 # automatically sort, compress and index the output file subprocess.run(["sort","-o",outputname,"-k1,1","-k2,2n",outputname]) subprocess.run(["bgzip",outputname]) subprocess.run(["tabix","-p","bed",outputname+".gz"])
48.010989
757
0.676127
0
0
0
0
0
0
0
0
2,597
0.594415
4775e3e337b36b06c6774e19748eb643d6196b5f
11,501
py
Python
0_get_Fink_features_xmatch.py
anaismoller/KNTrap
9e1bc85576ab16c4cb6d4d4da74482061029d207
[ "Apache-2.0" ]
null
null
null
0_get_Fink_features_xmatch.py
anaismoller/KNTrap
9e1bc85576ab16c4cb6d4d4da74482061029d207
[ "Apache-2.0" ]
null
null
null
0_get_Fink_features_xmatch.py
anaismoller/KNTrap
9e1bc85576ab16c4cb6d4d4da74482061029d207
[ "Apache-2.0" ]
null
null
null
# Year 2022 # Authors: Anais Möller based on fink-broker.org code import os import sys import glob import logging import argparse import numpy as np import pandas as pd from tqdm import tqdm from pathlib import Path from functools import partial from astropy.table import Table from astropy import units as u from astropy.coordinates import SkyCoord import multiprocessing from concurrent.futures import ProcessPoolExecutor # my utils from utils import xmatch from utils import mag_color from utils import query_photoz_datalab as photoz def setup_logging(logpathname): logger = None # Create logger using python logging module logging_handler_out = logging.StreamHandler(sys.stdout) logging_handler_out.setLevel(logging.DEBUG) logging_handler_err = logging.StreamHandler(sys.stderr) logging_handler_err.setLevel(logging.WARNING) logger = logging.getLogger("localLogger") logger.setLevel(logging.INFO) logger.addHandler(logging_handler_out) logger.addHandler(logging_handler_err) # create file handler which logs even debug messages fh = logging.FileHandler(f"{logpathname}", mode="w") fh.setLevel(logging.DEBUG) logger.addHandler(fh) return logger def process_fn(inputs): fn, fil = inputs return fn(fil) def read_file(fname, suffix=None): try: df_tmp = Table.read(fname, format="ascii").to_pandas() if "unforced" in suffix: df = pd.read_table(fname, header=None, skiprows=1, delim_whitespace=True) if len(df.columns) == 16: df.columns = [ "MJD", "dateobs", "photcode", "filt", "flux_c", "dflux_c", "type", "chisqr", "ZPTMAG_c", "m", "dm", "ra", "dec", "cmpfile", "tmpl", "ROBOT_score", ] else: df.columns = [ "MJD", "dateobs", "photcode", "filt", "flux_c", "dflux_c", "type", "chisqr", "ZPTMAG_c", "m", "dm", "ra", "dec", "cmpfile", "tmpl", ] df["ROBOT_score"] = np.nan df_tmp = df.copy() return df_tmp except Exception: print("File corrupted or empty", fname) df_tmp = pd.DataFrame() return df_tmp def process_single_file(fname, suffix=".forced.difflc"): # read file and convert to pandas df_tmp = read_file(fname, suffix=suffix) # process data if available if len(df_tmp) > 0 and set(["ra", "dec"]).issubset(df_tmp.keys()): # get id idx = Path(fname).stem.replace(suffix, "") # get ra,dec, idx for xmatch ra_tmp, dec_tmp = df_tmp["ra"][0], df_tmp["dec"][0] # convert to degrees coo = SkyCoord(ra_tmp, dec_tmp, unit=(u.hourangle, u.deg)) out_ra = coo.ra.degree out_dec = coo.dec.degree # get color, dmag and rate ( dmag_i, dmag_g, dmag_rate_i, dmag_rate_g, color, color_avg, max_mag_i, max_mag_g, min_mag_i, min_mag_g, mean_mag_i, mean_mag_g, std_mag_i, std_mag_g, df_tmp, ) = mag_color.last_color_rate(df_tmp) # other features ndet = len(df_tmp) tmp_mag = df_tmp["magnitude"].values # clean del df_tmp df_out = pd.DataFrame() df_out["id"] = [idx] df_out["ra"] = [out_ra] df_out["dec"] = [out_dec] df_out["max_mag_i"] = [max_mag_i] df_out["max_mag_g"] = [max_mag_g] df_out["min_mag_i"] = [min_mag_i] df_out["min_mag_g"] = [min_mag_g] df_out["mean_mag_i"] = [mean_mag_i] df_out["mean_mag_g"] = [mean_mag_g] df_out["std_mag_i"] = [std_mag_i] df_out["std_mag_g"] = [std_mag_g] df_out["dmag_i"] = [dmag_i] df_out["dmag_g"] = [dmag_g] df_out["dmag_rate_i"] = [dmag_rate_i] df_out["dmag_rate_g"] = [dmag_rate_g] df_out["color"] = [color] df_out["color_avg"] = [color_avg] df_out["ndet"] = [ndet] df_out["two_mags_gt_225"] = [len(np.where(tmp_mag < 22.5)[0]) >= 2] df_out["two_mags_gt_235"] = [len(np.where(tmp_mag < 23.5)[0]) >= 2] if "unforced" in suffix: df_out = df_out.add_suffix("_unforced") df_out = df_out.rename(columns={"id_unforced": "id"}) else: df_out = pd.DataFrame() return df_out if __name__ == "__main__": """Process light-curves with Fink inspired features & xmatches https://github.com/astrolabsoftware/fink-filters """ parser = argparse.ArgumentParser(description="Compute candidate features + xmatch") parser.add_argument( "--path_field", type=str, default="data/S82sub8_tmpl", help="Path to field", ) parser.add_argument( "--path_out", type=str, default="./Fink_outputs", help="Path to outputs", ) parser.add_argument( "--path_robot", type=str, default="../ROBOT_masterlists", help="Path to ROBOT outputs", ) parser.add_argument( "--debug", action="store_true", help="Debug: loop processing (slow)", ) parser.add_argument( "--test", action="store_true", help="one file processed only", ) args = parser.parse_args() os.makedirs(args.path_out, exist_ok=True) os.makedirs("logs/", exist_ok=True) cwd = os.getcwd() logpathname = f"{cwd}/logs/{Path(args.path_field).stem}_preprocess" logger = setup_logging(logpathname) # read files list_files = glob.glob(f"{args.path_field}/*/*/*.forced.difflc.txt") print(f"{len(list_files)} files found in {args.path_field}") if args.test: print(list_files) print("Processing only one file", list_files[0]) df = process_single_file(list_files[0]) elif args.debug: print(list_files) # no parallel list_proc = [] for fil in list_files: logger.info(fil) list_proc.append(process_single_file(fil)) df = pd.concat(list_proc) else: # Read and process files faster with ProcessPoolExecutor max_workers = multiprocessing.cpu_count() # use parallelization to speed up processing # Split list files in chunks of size 10 or less # to get a progress bar and alleviate memory constraints num_elem = len(list_files) num_chunks = num_elem // 10 + 1 list_chunks = np.array_split(np.arange(num_elem), num_chunks) logger.info(f"Dividing processing in {num_chunks} chunks") process_fn_file = partial(process_single_file) list_fn = [] for fmt in list_files: list_fn.append(process_fn_file) list_processed = [] for chunk_idx in tqdm(list_chunks, desc="Process", ncols=100): # Process each file in the chunk in parallel with ProcessPoolExecutor(max_workers=max_workers) as executor: start, end = chunk_idx[0], chunk_idx[-1] + 1 # Need to cast to list because executor returns an iterator list_pairs = list(zip(list_fn[start:end], list_files[start:end])) list_processed += list(executor.map(process_fn, list_pairs)) df = pd.concat(list_processed) print("NOT PARALLEL= UNFORCED PHOTOMETRY") list_files_un = glob.glob(f"{args.path_field}/*/*/*.unforced.difflc.txt") list_unforced = [] list_idx = [] if args.test: list_files_un = [list_files_un[0]] for fil in list_files_un: list_unforced.append(process_single_file(fil, suffix=".unforced.difflc")) df_unforced = pd.concat(list_unforced) if len(df_unforced) > 0: df = pd.merge(df, df_unforced, on="id", how="left") logger.info("SIMBAD xmatch") z, sptype, typ, ctlg = xmatch.cross_match_simbad( df["id"].to_list(), df["ra"].to_list(), df["dec"].to_list() ) logger.info("Finished SIMBAD xmatch") # save in df df["simbad_type"] = typ df["simbad_ctlg"] = ctlg df["simbad_sptype"] = sptype df["simbad_redshift"] = z logger.info("GAIA xmatch") source, ragaia, decgaia, plx, plxerr, gmag, angdist = xmatch.cross_match_gaia( df["id"].to_list(), df["ra"].to_list(), df["dec"].to_list(), ctlg="vizier:I/345/gaia2", ) ( source_edr3, ragaia_edr3, decgaia_edr3, plx_edr3, plxerr_edr3, gmag_edr3, angdist_edr3, ) = xmatch.cross_match_gaia( df["id"].to_list(), df["ra"].to_list(), df["dec"].to_list(), ctlg="vizier:I/350/gaiaedr3", ) logger.info("Finished GAIA xmatch") # save in df df["gaia_DR2_source"] = source df["gaia_DR2_ra"] = ragaia df["gaia_DR2_dec"] = decgaia df["gaia_DR2_parallax"] = plx df["gaia_DR2_parallaxerr"] = plxerr df["gaia_DR2_gmag"] = gmag df["gaia_DR2_angdist"] = angdist df["gaia_eDR3_source"] = source_edr3 df["gaia_eDR3_ra"] = ragaia_edr3 df["gaia_eDR3_dec"] = decgaia_edr3 df["gaia_eDR3_parallax"] = plx_edr3 df["gaia_eDR3_parallaxerr"] = plxerr_edr3 df["gaia_eDR3_gmag"] = gmag_edr3 df["gaia_eDR3_angdist"] = angdist_edr3 logger.info("USNO-A.20 xmatch") (source_usno, angdist_usno,) = xmatch.cross_match_usno( df["id"].to_list(), df["ra"].to_list(), df["dec"].to_list(), ctlg="vizier:I/252/out", ) df["USNO_source"] = source_usno df["USNO_angdist"] = angdist_usno logger.info("Legacy Survey xmatch") list_ls_df = [] for (idx, ra, dec) in df[["id", "ra", "dec"]].values: list_ls_df.append(photoz.query_coords_ls(idx, ra, dec, radius_arcsec=10)) df_ls = pd.concat(list_ls_df) logger.info("Finished Legacy Survey xmatch") df = pd.merge(df, df_ls, on="id") # add ROBOT scores # You may need to add the field caldate format as Simon's output # TO DO these next lines should give you that field = Path(args.path_field).stem.replace("_tmpl", "") caldate = Path(args.path_field).parent.parent.stem # TO DO just change the name here robot_path = f"{args.path_robot}/caldat{caldate}/{field}_{caldate}_masterlist.csv" if Path(robot_path).exists(): df_robot = pd.read_csv( robot_path, delimiter=";", ) df_robot = df_robot.rename(columns={"Cand_ID": "id"}) df = pd.merge(df, df_robot, on="id", how="left") else: print(f"NO ROBOT MASTERLIST FOUND {robot_path}") outprefix = str(Path(args.path_field).stem) # outname = f"{args.path_out}/{outprefix}.csv" # df.to_csv(outname, index=False, sep=";") outname = f"{args.path_out}/{outprefix}.pickle" df.to_pickle(outname) logger.info(f"Saved output {outname}")
31.423497
87
0.578558
0
0
0
0
0
0
0
0
3,105
0.269953
4777fbaa35309f630f4ae07e90c983a041f15298
1,990
py
Python
2017/day11/src/main.py
stenbein/AdventOfCode
3e8c24f7140dd9cdc687e176272af6a1302a9ca5
[ "MIT" ]
3
2018-04-08T10:40:52.000Z
2018-12-06T02:37:23.000Z
2017/day11/main.py
stenbein/AdventOfCode
3e8c24f7140dd9cdc687e176272af6a1302a9ca5
[ "MIT" ]
2
2018-04-10T11:44:18.000Z
2022-02-22T21:25:54.000Z
2017/day11/src/main.py
stenbein/AdventOfCode
3e8c24f7140dd9cdc687e176272af6a1302a9ca5
[ "MIT" ]
null
null
null
#!/usr/bin/python3 '''Day 11 of the 2017 advent of code''' class HexCounter(): '''A hex maze walker object for keeping track of our position''' def __init__(self): self.x = 0 self.y = 0 self.z = 0 self.furthest = 0 def move(self, direction): '''map the direction to a state change''' if direction == "n": self.y += 1 self.x -= 1 elif direction == "s": self.y -= 1 self.x += 1 elif direction == "ne": self.z += 1 self.x -= 1 elif direction == "nw": self.z -= 1 self.y += 1 elif direction == "se": self.z += 1 self.y -= 1 elif direction == "sw": self.z -= 1 self.x += 1 else: raise ValueError("Undefined direction: ", direction) temp = self.max() if temp > self.furthest: self.furthest = temp def max(self): '''accounting for negative distance along the grid''' total = 0 maxx = abs(self.x) maxy = abs(self.y) maxz = abs(self.z) total = abs(max(maxx, maxy, maxz)) return total def part_one(data): """Return the answer to part one of this day""" hexer = HexCounter() for coord in data: hexer.move(coord) return hexer.max() def part_two(data): """Return the answer to part two of this day""" hexer = HexCounter() for coord in data: hexer.move(coord) return hexer.furthest if __name__ == "__main__": DATA = "" with open("input", "r") as f: for line in f: DATA += line.rstrip() #hidden newline in file input COORDS = DATA.split(",") print("Part 1: {}".format(part_one(COORDS))) print("Part 2: {}".format(part_two(COORDS)))
20.515464
65
0.477387
1,243
0.624623
0
0
0
0
0
0
439
0.220603
477aed8ccac48ab95361c65ae3e38de923016db9
8,291
py
Python
kai_reduce.py
skterry/jackknifeKAI
8c85b32acd9166d87e7f5dc78943f2ad38f19809
[ "MIT" ]
null
null
null
kai_reduce.py
skterry/jackknifeKAI
8c85b32acd9166d87e7f5dc78943f2ad38f19809
[ "MIT" ]
null
null
null
kai_reduce.py
skterry/jackknifeKAI
8c85b32acd9166d87e7f5dc78943f2ad38f19809
[ "MIT" ]
null
null
null
# Copied from /u/jlu/data/microlens/20aug22os/reduce/reduce.py ################################################## # # General Notes: # -- python uses spaces to figure out the beginnings # and ends of functions/loops/etc. So make sure # to preserve spacings properly (indent). This # is easy to do if you use emacs with python mode # and color coding. # -- You will probably need to edit almost every # single line of the go() function. # -- If you need help on the individual function calls, # then in the pyraf prompt, import the module and # then print the documentation for that function: # --> print nirc2.nirc2log.__doc__ # --> print range.__doc__ # ################################################## # Import python and iraf modules from pyraf import iraf as ir import numpy as np import os, sys import glob # Import our own custom modules from kai.reduce import calib from kai.reduce import sky from kai.reduce import data from kai.reduce import util from kai.reduce import dar from kai.reduce import kai_util from kai import instruments ########## # Change the epoch, instrument, and distortion solution. ########## epoch = '19may27' nirc2 = instruments.NIRC2() ########## # Make electronic logs # - run this first thing for a new observing run. ########## def makelog_and_prep_images(): """Make an electronic log from all the files in the ../raw/ directory. The file will be called nirc2.log and stored in the same directory. @author Jessica Lu @author Sylvana Yelda """ nirc2_util.makelog('../raw', instrument=nirc2) # If you are reducing OSIRIS, you need to flip the images first. #raw_files = glob.glob('../raw/i*.fits') #osiris.flip_images(raw_files) # Download weather data we will need. dar.get_atm_conditions('2019') return ############### # Analyze darks ############### # def analyze_darks(): # """Analyze the dark_calib results # """ # util.mkdir('calib') # os.chdir('calib') # # first_dark = 16 # calib.analyzeDarkCalib(first_dark) # Doesn't support OSIRIS yet # # os.chdir('../') ########## # Reduce ########## def go_calib(): """Do the calibration reduction. @author Jessica Lu @author Sylvana Yelda """ #################### # # Calibration files: # everything created under calib/ # #################### # Darks - created in subdir darks/ # - darks needed to make bad pixel mask # - store the resulting dark in the file name that indicates the # integration time (2.8s) and the coadds (10ca). # -- If you use the OSIRIS image, you must include the full filename in the list. #darkFiles = ['i200809_a003{0:03d}_flip'.format(ii) for ii in range(3, 7+1)] #calib.makedark(darkFiles, 'dark_2.950s_10ca_3rd.fits', instrument=osiris) # darkFiles = ['i200822_s003{0:03d}_flip'.format(ii) for ii in range(28, 32+1)] # calib.makedark(darkFiles, 'dark_5.901s_1ca_4rd.fits', instrument=osiris) # darkFiles = ['i200822_s020{0:03d}_flip'.format(ii) for ii in range(2, 10+1)] # calib.makedark(darkFiles, 'dark_11.802s_4ca_4rd.fits', instrument=osiris) # darkFiles = ['i200822_s021{0:03d}_flip'.format(ii) for ii in range(2, 10+1)] # calib.makedark(darkFiles, 'dark_5.901s_8ca_1rd.fits', instrument=osiris) # Flats - created in subdir flats/ #offFiles = ['i200809_a013{0:03d}_flip'.format(ii) for ii in range(2, 11+1, 2)] #onFiles = ['i200811_a002{0:03d}_flip'.format(ii) for ii in range(2, 13+1, 2)] #calib.makeflat(onFiles, offFiles, 'flat_kp_tdOpen.fits', instrument=osiris) # Masks (assumes files were created under calib/darks/ and calib/flats/) #calib.makemask('dark_2.950s_10ca_3rd.fits', 'flat_kp_tdOpen.fits', # 'supermask.fits', instrument=osiris) darkFiles = list(range(67, 72+1)) calib.makedark(darkFiles, 'dark_30.0s_1ca.fits', instrument=nirc2) # Flats - created in subdir flats/ offFiles = list(range(11, 16+1)) onFiles = list(range(01, 06+1)) calib.makeflat(onFiles, offFiles, 'flat_ks.fits', instrument=nirc2) # Masks calib.makemask('dark_30.0s_1ca.fits', 'flat_ks.fits', 'supermask.fits') def go(): """ Do the full data reduction. """ ########## # # OB06284 # ########## ########## # Kp-band reduction ########## target = 'OB06284' #-----OSIRIS------ #sci_files = ['i200810_a004{0:03d}_flip'.format(ii) for ii in range(2, 6+1)] #sci_files += ['i200822_a012{0:03d}_flip'.format(ii) for ii in range(2, 25+1)] #Add second dataset (on same night). [Optional] #sky_files = ['i200810_a007{0:03d}_flip'.format(ii) for ii in range(2, 6+1)] #16+1 #refSrc = [1071, 854] # This is the target #sky.makesky(sky_files, target, 'kp_tdOpen', instrument=osiris) #data.clean(sci_files, target, 'kp_tdOpen', refSrc, refSrc, field=target, instrument=osiris) #data.calcStrehl(sci_files, 'kp_tdOpen', field=target, instrument=osiris) #data.combine(sci_files, 'kp_tdOpen', epoch, field=target, # trim=0, weight='strehl', submaps=3, instrument=osiris) #----------------- #-----NIRC2------- sci_files = list(range(133, 136+1)) sky_files = list(range(224, 233+1)) refSrc1 = [353., 469.] #This is the target sky.makesky(sky_files, 'nite1', 'ks', instrument=nirc2) data.clean(sci_files, 'nite1', 'ks', refSrc1, refSrc1, instrument=nirc2) data.calcStrehl(sci_files, 'ks', instrument=nirc2) data.combine(sci_files, 'ks', '27maylgs', trim=1, weight='strehl', submaps=3, instrument=nirc2) #----------------- os.chdir('../') ########## # # KB200101 # ########## ########## # Kp-band reduction ########## # util.mkdir('kp') # os.chdir('kp') # -- If you have more than one position angle, make sure to # clean them seperatly. # -- Strehl and Ref src should be the pixel coordinates of a bright # (but non saturated) source in the first exposure of sci_files. # -- If you use the OSIRIS image, you must include the full filename in the list. # target = 'OB060284' # sci_files = ['i200822_a014{0:03d}_flip'.format(ii) for ii in range(2, 28+1)] # sci_files += ['i200822_a015{0:03d}_flip'.format(ii) for ii in range(2, 5+1)] # sci_files += ['i200822_a016{0:03d}_flip'.format(ii) for ii in range(2, 5+1)] # sky_files = ['i200822_a017{0:03d}_flip'.format(ii) for ii in range(2, 6+1)] # refSrc = [975, 1006] # This is the target # Alternative star to try (bright star to right of target): [1158, 994] # sky.makesky(sky_files, target, 'kp_tdOpen', instrument=osiris) # data.clean(sci_files, target, 'kp_tdOpen', refSrc, refSrc, field=target, instrument=osiris) # data.calcStrehl(sci_files, 'kp_tdOpen', field=target, instrument=osiris) # data.combine(sci_files, 'kp_tdOpen', epoch, field=target, # trim=1, weight='strehl', submaps=3, instrument=osiris) # def jackknife(): """ Do the Jackknife data reduction. """ ########## # # OB06284 # ########## ########## # Kp-band reduction ########## target = 'OB06284' #sci_files = ['i200810_a004{0:03d}_flip'.format(ii) for ii in range(2, 26+1)] OG sci_files = ['i200810_a004{0:03d}_flip'.format(ii) for ii in range(2, 26+1)] # sci_files += ['i200822_a012{0:03d}_flip'.format(ii) for ii in range(2, 25+1)] sky_files = ['i200810_a007{0:03d}_flip'.format(ii) for ii in range(2, 6+1)] #16+1 refSrc = [1071, 854] # This is the target # Alternative star to try (bright star to bottom of target): [1015, 581.9] sky.makesky(sky_files, target, 'kp_tdOpen', instrument=osiris) for i in enumerate(sci_files, start=1): jack_list = sci_files[:] jack_list.remove(i[1]) data.clean(jack_list, target, 'kp_tdOpen', refSrc, refSrc, field=target, instrument=osiris) data.calcStrehl(jack_list, 'kp_tdOpen', field=target, instrument=osiris) data.combine(jack_list, 'kp_tdOpen', epoch, field=target, trim=0, weight='strehl', instrument=osiris, outSuffix=str(i[0])) os.chdir('reduce')
34.119342
130
0.621517
0
0
0
0
0
0
0
0
6,039
0.72838
477d41ca1c89e9e563388b140b23288438ed0562
7,613
py
Python
Clients/pyClient/GUI.py
JulianWww/AlphaZero
8eb754659793305eba7b9e636eeab37d9ccd45f7
[ "MIT" ]
1
2021-12-05T13:26:17.000Z
2021-12-05T13:26:17.000Z
Clients/pyClient/GUI.py
JulianWww/AlphaZero
8eb754659793305eba7b9e636eeab37d9ccd45f7
[ "MIT" ]
null
null
null
Clients/pyClient/GUI.py
JulianWww/AlphaZero
8eb754659793305eba7b9e636eeab37d9ccd45f7
[ "MIT" ]
null
null
null
import tkinter as tk from PIL import Image, ImageTk from game import Game from threading import Thread import time from gameSaver import sendFull from Client import DummyAgent class ConsoleAgent: """Agent running in the console for testing only""" def render(self, state): "render the state to the console" state.consoleRender() def getAction(self, state): "get the Action the player wants to perform function will be called until valid output is found" return state.actionModifier(int(input("your Action: "))) def winScreen(self, state): "dummy for now" pass class GUI(tk.Tk, DummyAgent): """ render game to GUI using Tkinter and canvas """ colorMap = { 1: "gold", -1:"red", 0: "white" } yPadRel = 0.1 _canvasy = 450 _canvasx = 500 _dotSize = 0.45 _lastState = None _win = 0 _winLinesRendered = False winLines_kwargs = { "fill": "#00FF00", "width": 10 } def __init__(self, state, game, replayer): super(GUI, self).__init__() self.replayer = replayer self.title("Connect4 AlphaZero Client") self.geometry("500x500") self.bind("<Configure> ", self._resize) self.yPad = 60 self.action = -1 self.canvas = tk.Canvas(self, height=self._canvasy, width=self._canvasx, bg="#FFFFFF") self.canvas.bind("<Button-1>", self._writeAction) self.canvas.place(x=0, y=self.yPad) self.playerLabel = tk.Label(self, text="testText",font=("Arial", self.yPad//2)) self.playerLabel.place(x=0, y=0) self._drawBoard() self._drawStones(state) self.game = game def _resize(self, event): """callback for resizing of the window""" if event.widget == self: self.yPad = int(self.yPadRel * event.width) self.canvas.place(x=0, y=self.yPad) self.playerLabel.config(font=("Arial", self.yPad//2)) self._canvasy = event.height - self.yPad self._canvasx = event.width self.canvas.config(height=self._canvasy, width=self._canvasx) self.render(self._lastState) def _getDxDy(self): "get the dx and dy neded internaly to compute field and stone sizes" return self._canvasx / 8, self._canvasy / 7 def render(self, state): "render the state" self._drawBoard() if not state is None: self._lastState = state self._drawStones(state.board) if state.player == 1: self.playerLabel.config(text = "Yellow's Turn", fg="#808080") else: self.playerLabel.config(text = "Red's Turn", fg="#808080") self.renderWinLines(state) if not self._lastState is None: if self._lastState.isDone: self._renderEndMsg() def _drawBoard(self): "render 7x6 board using lines" self.canvas.delete("all") dx, dy = self._getDxDy() ofset = 0.5 for x in range(8): self.canvas.create_line(dx*(x+ofset), dy*ofset, dx*(x+ofset), self._canvasy - dy*ofset) for y in range(7): self.canvas.create_line(dx*ofset, dy*(y+ofset), self._canvasx - dx*ofset, dy*(y+ofset)) def _drawStones(self, state): "place stones in board" dx, dy = self._getDxDy() for x in range(1, 8): for y in range(1, 7): if state[Game.encodeAction(x-1, y-1)] != 0: Xpos = dx * x Ypos = dy * y Ysize= self._dotSize * dy Xsize= self._dotSize * dx color = self.colorMap[state[Game.encodeAction(x-1, y-1)]] self.canvas.create_oval( Xpos - Xsize, Ypos-Ysize, Xpos+Xsize, Ypos+Ysize, fill=color, width=0 ) def _renderEndMsg(self): "render the message at the end of the game" args = (self._canvasx//2, self._canvasy//2) fontSize = min(self._canvasx//10, self._canvasy//2) kwargs = { "font": f"Times {fontSize} bold", "anchor": "c", } if self.replayer is None: if self._win == 1: txt = self.canvas.create_text(*args, **kwargs, fill="green", text="You Win") sendFull(self.game.actions, -1) elif self._win == -1: txt = self.canvas.create_text(*args, **kwargs, fill="black", text="You Loose") sendFull(self.game.actions, 1) elif self._win == 0: txt = self.canvas.create_text(*args, **kwargs, fill="black", text="Tie") sendFull(self.game.actions, 0) def _writeAction(self, event): """ calleback from canvas mouse left click. Converts postion to grid position and than to action witch is saved. """ dx, dy = self._getDxDy() XPos = (event.x - dx * 0.5) // dx YPos = (event.y - dy * 0.5) // dy self.action = int(XPos + 7*YPos) def getAction(self, state): """Make playerLable black and wait for an action to be written.""" self.playerLabel.config(fg="#000000") self.action = -1 while self.action == -1: time.sleep(0.1) if self.replayer is None: return self.action else: return self.replayer.getAction(state) def drawLineOverTime(self, x1, y1, x2, y2, steps, dt, args=(), **kwargs): "draw a line from (x1, y1) to (x2, y2) over time" line = self.canvas.create_line(x1, y1, x1, y1, *args, **kwargs) dx = (x2 - x1) / steps dy = (y2 - y1) / steps for idx in range(steps+1): time.sleep(dt) self.canvas.delete(line) line = self.canvas.create_line(x1, y1, x1+dx*idx, y1+dy*idx, *args, **kwargs) def getPos(self, pos): "get action to canvas postion" a, b = Game.decodeAction(pos) dx, dy = self._getDxDy() return (a+1)*dx, (b+1)*dy def winScreen(self, game, _win): "show win screen" self._win = 2 self.render(game) self._winLinesRendered = False dx, dy = self._getDxDy() threads = [] if not game is None: for a, b in game.ends: x1, y1 = self.getPos(a) x2, y2 = self.getPos(b) currentThread = Thread( target=self.drawLineOverTime, args=( x1,y1, x2,y2, 20,0.01 ), kwargs = self.winLines_kwargs ) currentThread.start() threads.append(currentThread) for thread in threads: thread.join() del threads self._win = _win if game.tie: self._win = 0 self._winLinesRendered = True def renderWinLines(self, game): if self._winLinesRendered: if game.isDone: for a, b in game.ends: x1, y1 = self.getPos(a) x2, y2 = self.getPos(b) self.canvas.create_line(x1,y1,x2,y2, **self.winLines_kwargs)
31.853556
104
0.523053
7,432
0.976225
0
0
0
0
0
0
1,075
0.141206
477f20974aea53dd1ab2a88bb5960250f6eba452
1,007
py
Python
Leetcoding-Actions/Explore-Monthly-Challenges/2020-12/07-spiralMatrix-ii.py
shoaibur/SWE
1e114a2750f2df5d6c50b48c8e439224894d65da
[ "MIT" ]
1
2020-11-14T18:28:13.000Z
2020-11-14T18:28:13.000Z
Leetcoding-Actions/Explore-Monthly-Challenges/2020-12/07-spiralMatrix-ii.py
shoaibur/SWE
1e114a2750f2df5d6c50b48c8e439224894d65da
[ "MIT" ]
null
null
null
Leetcoding-Actions/Explore-Monthly-Challenges/2020-12/07-spiralMatrix-ii.py
shoaibur/SWE
1e114a2750f2df5d6c50b48c8e439224894d65da
[ "MIT" ]
null
null
null
class Solution: def generateMatrix(self, n: int) -> List[List[int]]: matrix = [[None] * n for _ in range(n)] startRow, endRow = 0, n - 1 startCol, endCol = 0, n - 1 count = 1 while startRow <= endRow and startCol <= endCol: for col in range(startCol, endRow + 1): matrix[startRow][col] = count count += 1 for row in range(startRow + 1, endRow + 1): matrix[row][endCol] = count count += 1 for col in range(endCol - 1, startCol - 1, -1): matrix[endRow][col] = count count += 1 for row in range(endRow - 1, startRow, -1): matrix[row][startCol] = count count += 1 startRow, endRow = startRow + 1, endRow - 1 startCol, endCol = startCol + 1, endCol - 1 return matrix
32.483871
59
0.440914
1,006
0.999007
0
0
0
0
0
0
0
0
47809d65f9b6492472bef06377ad2f44a10c127c
1,742
py
Python
motto/core.py
attakei/jamproject
f3a677f4f95c112b89fb38957e6ba1a3c923ea85
[ "Apache-2.0" ]
null
null
null
motto/core.py
attakei/jamproject
f3a677f4f95c112b89fb38957e6ba1a3c923ea85
[ "Apache-2.0" ]
1
2020-01-05T14:04:35.000Z
2020-01-05T14:04:35.000Z
motto/core.py
attakei/motto
f3a677f4f95c112b89fb38957e6ba1a3c923ea85
[ "Apache-2.0" ]
null
null
null
"""Core classes for motto """ from typing import Any, Callable, ClassVar, Dict, List, Optional, Tuple, Union from typing_extensions import Protocol, TypedDict class Message(object): """Reporting message class. This object is appended for paragraphes by skills. Responsibility is only telling event "what" for user, not "where". """ def __init__(self, body: str): self.body: str = body """message body""" class Report(object): """Report by skills. """ def __init__(self): self._messages: List[Message] = [] def __repr__(self): cnt = len(self) if cnt == 0: return "[No reports]" if cnt == 1: return "[1 report]" return f"[{cnt} reports]" def __len__(self) -> int: return len(self._messages) def add(self, msg: Message): self._messages.append(msg) class Token(Protocol): """Token interface for tokenize engine. Based from Janome. """ surface: ClassVar[str] class Sentence(object): """Sentence dataset and accessor. """ def __init__(self, tokens: Union[Tuple[Token, ...], List[Token]]): self._tokens: Tuple[Token, ...] = tuple(tokens) if isinstance( tokens, list ) else tokens def __repr__(self) -> str: cnt = len(self) if cnt == 0: return "[no tokens]" if cnt == 1: return "[1 token]" return f"[{cnt} tokens]" def __len__(self) -> int: return len(self._tokens) def __getitem__(self, key) -> Token: return self._tokens[key] SkillParams = Dict[str, Any] SkillProc = Callable[[Sentence, SkillParams], Optional[Message]] Config = Dict[str, Any]
22.050633
78
0.588978
1,449
0.831803
0
0
0
0
0
0
434
0.249139
4780e099e5c87546b20f86a673d8da78571df7e4
361
py
Python
tests/test_bad_seeds.py
jklynch/diffrascape
350bed352fa6c9b30739e3748b7ea57b365f1944
[ "BSD-3-Clause" ]
null
null
null
tests/test_bad_seeds.py
jklynch/diffrascape
350bed352fa6c9b30739e3748b7ea57b365f1944
[ "BSD-3-Clause" ]
null
null
null
tests/test_bad_seeds.py
jklynch/diffrascape
350bed352fa6c9b30739e3748b7ea57b365f1944
[ "BSD-3-Clause" ]
null
null
null
from diffrascape.env import BadSeeds def test_construct(): bad_seeds = BadSeeds() bad_seeds_states = bad_seeds.states() print(f"### states: {bad_seeds_states}") assert bad_seeds_states["shape"][0] == 6 bad_seeds_actions = bad_seeds.actions() print(f"### actions: {bad_seeds_actions}") assert bad_seeds_actions["num_values"] == 3
25.785714
47
0.695291
0
0
0
0
0
0
0
0
87
0.240997
47846ea157171c9a8c93b748212ec54fd187b2e7
1,418
py
Python
samples/bot-handoff-es6/emulate-users.py
microsoftly/botbuilder-js
538cb479b8596cdc209f5d70aa1a9000a0e6b360
[ "MIT" ]
1
2021-03-16T05:14:30.000Z
2021-03-16T05:14:30.000Z
samples/bot-handoff-es6/emulate-users.py
microsoftly/botbuilder-js
538cb479b8596cdc209f5d70aa1a9000a0e6b360
[ "MIT" ]
1
2018-03-26T05:25:54.000Z
2018-03-26T05:26:18.000Z
samples/bot-handoff-es6/emulate-users.py
microsoftly/botbuilder-js
538cb479b8596cdc209f5d70aa1a9000a0e6b360
[ "MIT" ]
1
2018-03-26T04:16:42.000Z
2018-03-26T04:16:42.000Z
#!/usr/bin/python import json, subprocess, sys, platform from os.path import expanduser if len (sys.argv) < 2 : print("Usage: python " + sys.argv[0] + " username(s)") sys.exit (1) HOME=expanduser("~") # determine paths SYSTEM=platform.system() if SYSTEM == 'Darwin': SERVERJSON=HOME+'/Library/Application Support/botframework-emulator/botframework-emulator/server.json' EMULATORPATH=HOME+'/Applications/botframework-emulator.app/' elif SYSTEM == 'Windows': SERVERJSON=HOME+'/AppData/Roaming/botframework-emulator/botframework-emulator/server.json' EMULATORPATH=HOME+'/AppData/Local/botframework/botframework-emulator.exe' else: print("System " + SYSTEM + " not yet supported.") sys.exit (1) # read the server config file with open(SERVERJSON, "r") as jsonFile: data = json.load(jsonFile) args=sys.argv[1:] for arg in args: # add user if not present if data["users"]["usersById"].get(arg) is None: data["users"]["usersById"][arg]={"id": arg,"name": arg} # set current user data["users"]["currentUserId"]=arg # write server config file with open(SERVERJSON, "w") as jsonFile: json.dump(data, jsonFile, sort_keys=False, indent=2, separators=(',', ': ')) # launch emulator if SYSTEM == 'Darwin': subprocess.call(["/usr/bin/open", "-n", EMULATORPATH]) elif SYSTEM == 'Windows': subprocess.call([EMULATORPATH])
33.761905
106
0.673484
0
0
0
0
0
0
0
0
603
0.425247
4784a44a26bc244fa67aa7f304ae6b3a0ac78c99
7,141
py
Python
originstamp_client/models/timestamp_response.py
OriginStampTimestamping/originstamp-python-client
a13c3d51eac6dd3a920b7b74e079531fe7ab17a2
[ "MIT" ]
9
2018-11-06T06:43:46.000Z
2020-09-26T03:29:41.000Z
originstamp_client/models/timestamp_response.py
OriginStampTimestamping/originstamp-python-client
a13c3d51eac6dd3a920b7b74e079531fe7ab17a2
[ "MIT" ]
1
2019-05-06T10:49:23.000Z
2019-05-13T09:30:01.000Z
originstamp_client/models/timestamp_response.py
OriginStampTimestamping/originstamp-python-client
a13c3d51eac6dd3a920b7b74e079531fe7ab17a2
[ "MIT" ]
1
2020-10-02T17:31:47.000Z
2020-10-02T17:31:47.000Z
# coding: utf-8 """ OriginStamp Client OpenAPI spec version: 3.0 OriginStamp Documentation: https://docs.originstamp.com Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class TimestampResponse(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'comment': 'str', 'created': 'bool', 'date_created': 'int', 'hash_string': 'str', 'timestamps': 'list[TimestampData]' } attribute_map = { 'comment': 'comment', 'created': 'created', 'date_created': 'date_created', 'hash_string': 'hash_string', 'timestamps': 'timestamps' } def __init__(self, comment=None, created=None, date_created=None, hash_string=None, timestamps=None): # noqa: E501 """TimestampResponse - a model defined in Swagger""" # noqa: E501 self._comment = None self._created = None self._date_created = None self._hash_string = None self._timestamps = None self.discriminator = None if comment is not None: self.comment = comment if created is not None: self.created = created if date_created is not None: self.date_created = date_created if hash_string is not None: self.hash_string = hash_string if timestamps is not None: self.timestamps = timestamps @property def comment(self): """Gets the comment of this TimestampResponse. # noqa: E501 The comment which was added in the submission of the hash. # noqa: E501 :return: The comment of this TimestampResponse. # noqa: E501 :rtype: str """ return self._comment @comment.setter def comment(self, comment): """Sets the comment of this TimestampResponse. The comment which was added in the submission of the hash. # noqa: E501 :param comment: The comment of this TimestampResponse. # noqa: E501 :type: str """ self._comment = comment @property def created(self): """Gets the created of this TimestampResponse. # noqa: E501 Field is set to true if it is a novel hash.If the flag is false, the hash was already submitted before. # noqa: E501 :return: The created of this TimestampResponse. # noqa: E501 :rtype: bool """ return self._created @created.setter def created(self, created): """Sets the created of this TimestampResponse. Field is set to true if it is a novel hash.If the flag is false, the hash was already submitted before. # noqa: E501 :param created: The created of this TimestampResponse. # noqa: E501 :type: bool """ self._created = created @property def date_created(self): """Gets the date_created of this TimestampResponse. # noqa: E501 The time when your hash was submitted to OriginStamp. The date is returned in the following format: [ms] since 1.1.1970 (unix epoch), timezone: UTC. This is not considered as a true timestamp. # noqa: E501 :return: The date_created of this TimestampResponse. # noqa: E501 :rtype: int """ return self._date_created @date_created.setter def date_created(self, date_created): """Sets the date_created of this TimestampResponse. The time when your hash was submitted to OriginStamp. The date is returned in the following format: [ms] since 1.1.1970 (unix epoch), timezone: UTC. This is not considered as a true timestamp. # noqa: E501 :param date_created: The date_created of this TimestampResponse. # noqa: E501 :type: int """ self._date_created = date_created @property def hash_string(self): """Gets the hash_string of this TimestampResponse. # noqa: E501 The submitted hash in hex representation. # noqa: E501 :return: The hash_string of this TimestampResponse. # noqa: E501 :rtype: str """ return self._hash_string @hash_string.setter def hash_string(self, hash_string): """Sets the hash_string of this TimestampResponse. The submitted hash in hex representation. # noqa: E501 :param hash_string: The hash_string of this TimestampResponse. # noqa: E501 :type: str """ self._hash_string = hash_string @property def timestamps(self): """Gets the timestamps of this TimestampResponse. # noqa: E501 Contains all the timestamp data of your hash until now. # noqa: E501 :return: The timestamps of this TimestampResponse. # noqa: E501 :rtype: list[TimestampData] """ return self._timestamps @timestamps.setter def timestamps(self, timestamps): """Sets the timestamps of this TimestampResponse. Contains all the timestamp data of your hash until now. # noqa: E501 :param timestamps: The timestamps of this TimestampResponse. # noqa: E501 :type: list[TimestampData] """ self._timestamps = timestamps def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(TimestampResponse, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, TimestampResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
31.183406
214
0.604537
6,844
0.958409
0
0
3,701
0.518275
0
0
3,993
0.559165
4785a94446b7de09fa814de98568043480d82523
68,531
py
Python
benchmarks/SimResults/_bigLittle_hrrs_spec_tugberk_ml/backup_results_unknownr/EightThreads_sjeng/power.py
TugberkArkose/MLScheduler
e493b6cbf7b9d29a2c9300d7dd6f0c2f102e4061
[ "Unlicense" ]
null
null
null
benchmarks/SimResults/_bigLittle_hrrs_spec_tugberk_ml/backup_results_unknownr/EightThreads_sjeng/power.py
TugberkArkose/MLScheduler
e493b6cbf7b9d29a2c9300d7dd6f0c2f102e4061
[ "Unlicense" ]
null
null
null
benchmarks/SimResults/_bigLittle_hrrs_spec_tugberk_ml/backup_results_unknownr/EightThreads_sjeng/power.py
TugberkArkose/MLScheduler
e493b6cbf7b9d29a2c9300d7dd6f0c2f102e4061
[ "Unlicense" ]
null
null
null
power = {'BUSES': {'Area': 1.33155, 'Bus/Area': 1.33155, 'Bus/Gate Leakage': 0.00662954, 'Bus/Peak Dynamic': 0.0, 'Bus/Runtime Dynamic': 0.0, 'Bus/Subthreshold Leakage': 0.0691322, 'Bus/Subthreshold Leakage with power gating': 0.0259246, 'Gate Leakage': 0.00662954, 'Peak Dynamic': 0.0, 'Runtime Dynamic': 0.0, 'Subthreshold Leakage': 0.0691322, 'Subthreshold Leakage with power gating': 0.0259246}, 'Core': [{'Area': 32.6082, 'Execution Unit/Area': 8.2042, 'Execution Unit/Complex ALUs/Area': 0.235435, 'Execution Unit/Complex ALUs/Gate Leakage': 0.0132646, 'Execution Unit/Complex ALUs/Peak Dynamic': 0.0, 'Execution Unit/Complex ALUs/Runtime Dynamic': 0.202689, 'Execution Unit/Complex ALUs/Subthreshold Leakage': 0.20111, 'Execution Unit/Complex ALUs/Subthreshold Leakage with power gating': 0.0754163, 'Execution Unit/Floating Point Units/Area': 4.6585, 'Execution Unit/Floating Point Units/Gate Leakage': 0.0656156, 'Execution Unit/Floating Point Units/Peak Dynamic': 0.0, 'Execution Unit/Floating Point Units/Runtime Dynamic': 0.304033, 'Execution Unit/Floating Point Units/Subthreshold Leakage': 0.994829, 'Execution Unit/Floating Point Units/Subthreshold Leakage with power gating': 0.373061, 'Execution Unit/Gate Leakage': 0.122718, 'Execution Unit/Instruction Scheduler/Area': 2.17927, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Area': 0.328073, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Gate Leakage': 0.00115349, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Peak Dynamic': 1.20978, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Runtime Dynamic': 0.398053, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage': 0.017004, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage with power gating': 0.00962066, 'Execution Unit/Instruction Scheduler/Gate Leakage': 0.00730101, 'Execution Unit/Instruction Scheduler/Instruction Window/Area': 1.00996, 'Execution Unit/Instruction Scheduler/Instruction Window/Gate Leakage': 0.00529112, 'Execution Unit/Instruction Scheduler/Instruction Window/Peak Dynamic': 2.07911, 'Execution Unit/Instruction Scheduler/Instruction Window/Runtime Dynamic': 0.689285, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage': 0.0800117, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage with power gating': 0.0455351, 'Execution Unit/Instruction Scheduler/Peak Dynamic': 4.84781, 'Execution Unit/Instruction Scheduler/ROB/Area': 0.841232, 'Execution Unit/Instruction Scheduler/ROB/Gate Leakage': 0.000856399, 'Execution Unit/Instruction Scheduler/ROB/Peak Dynamic': 1.55892, 'Execution Unit/Instruction Scheduler/ROB/Runtime Dynamic': 0.395324, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage': 0.0178624, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage with power gating': 0.00897339, 'Execution Unit/Instruction Scheduler/Runtime Dynamic': 1.48266, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage': 0.114878, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage with power gating': 0.0641291, 'Execution Unit/Integer ALUs/Area': 0.47087, 'Execution Unit/Integer ALUs/Gate Leakage': 0.0265291, 'Execution Unit/Integer ALUs/Peak Dynamic': 0.393459, 'Execution Unit/Integer ALUs/Runtime Dynamic': 0.101344, 'Execution Unit/Integer ALUs/Subthreshold Leakage': 0.40222, 'Execution Unit/Integer ALUs/Subthreshold Leakage with power gating': 0.150833, 'Execution Unit/Peak Dynamic': 5.65134, 'Execution Unit/Register Files/Area': 0.570804, 'Execution Unit/Register Files/Floating Point RF/Area': 0.208131, 'Execution Unit/Register Files/Floating Point RF/Gate Leakage': 0.000232788, 'Execution Unit/Register Files/Floating Point RF/Peak Dynamic': 0.0, 'Execution Unit/Register Files/Floating Point RF/Runtime Dynamic': 0.0144298, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage': 0.00399698, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage with power gating': 0.00176968, 'Execution Unit/Register Files/Gate Leakage': 0.000622708, 'Execution Unit/Register Files/Integer RF/Area': 0.362673, 'Execution Unit/Register Files/Integer RF/Gate Leakage': 0.00038992, 'Execution Unit/Register Files/Integer RF/Peak Dynamic': 0.104345, 'Execution Unit/Register Files/Integer RF/Runtime Dynamic': 0.106717, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage': 0.00614175, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage with power gating': 0.00246675, 'Execution Unit/Register Files/Peak Dynamic': 0.104345, 'Execution Unit/Register Files/Runtime Dynamic': 0.121147, 'Execution Unit/Register Files/Subthreshold Leakage': 0.0101387, 'Execution Unit/Register Files/Subthreshold Leakage with power gating': 0.00423643, 'Execution Unit/Results Broadcast Bus/Area Overhead': 0.0442632, 'Execution Unit/Results Broadcast Bus/Gate Leakage': 0.00607074, 'Execution Unit/Results Broadcast Bus/Peak Dynamic': 0.252141, 'Execution Unit/Results Broadcast Bus/Runtime Dynamic': 0.66048, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage': 0.0920413, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage with power gating': 0.0345155, 'Execution Unit/Runtime Dynamic': 2.87235, 'Execution Unit/Subthreshold Leakage': 1.83518, 'Execution Unit/Subthreshold Leakage with power gating': 0.709678, 'Gate Leakage': 0.372997, 'Instruction Fetch Unit/Area': 5.86007, 'Instruction Fetch Unit/Branch Predictor/Area': 0.138516, 'Instruction Fetch Unit/Branch Predictor/Chooser/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Chooser/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Chooser/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Chooser/Runtime Dynamic': 0.00419365, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/Gate Leakage': 0.000757657, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Runtime Dynamic': 0.00419365, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Area': 0.0257064, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Gate Leakage': 0.000154548, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Peak Dynamic': 0.0142575, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Runtime Dynamic': 0.00370425, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage': 0.00384344, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage with power gating': 0.00198631, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Area': 0.0151917, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Gate Leakage': 8.00196e-05, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Peak Dynamic': 0.00527447, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Runtime Dynamic': 0.00146219, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage': 0.00181347, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage with power gating': 0.000957045, 'Instruction Fetch Unit/Branch Predictor/Peak Dynamic': 0.0597838, 'Instruction Fetch Unit/Branch Predictor/RAS/Area': 0.0105732, 'Instruction Fetch Unit/Branch Predictor/RAS/Gate Leakage': 4.63858e-05, 'Instruction Fetch Unit/Branch Predictor/RAS/Peak Dynamic': 0.0117602, 'Instruction Fetch Unit/Branch Predictor/RAS/Runtime Dynamic': 0.001533, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage': 0.000932505, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage with power gating': 0.000494733, 'Instruction Fetch Unit/Branch Predictor/Runtime Dynamic': 0.0136245, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage': 0.0199703, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage with power gating': 0.0103282, 'Instruction Fetch Unit/Branch Target Buffer/Area': 0.64954, 'Instruction Fetch Unit/Branch Target Buffer/Gate Leakage': 0.00272758, 'Instruction Fetch Unit/Branch Target Buffer/Peak Dynamic': 0.177867, 'Instruction Fetch Unit/Branch Target Buffer/Runtime Dynamic': 0.0383651, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage': 0.0811682, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage with power gating': 0.0435357, 'Instruction Fetch Unit/Gate Leakage': 0.0590479, 'Instruction Fetch Unit/Instruction Buffer/Area': 0.0226323, 'Instruction Fetch Unit/Instruction Buffer/Gate Leakage': 6.83558e-05, 'Instruction Fetch Unit/Instruction Buffer/Peak Dynamic': 0.606827, 'Instruction Fetch Unit/Instruction Buffer/Runtime Dynamic': 0.10259, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage': 0.00151885, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage with power gating': 0.000701682, 'Instruction Fetch Unit/Instruction Cache/Area': 3.14635, 'Instruction Fetch Unit/Instruction Cache/Gate Leakage': 0.029931, 'Instruction Fetch Unit/Instruction Cache/Peak Dynamic': 6.43323, 'Instruction Fetch Unit/Instruction Cache/Runtime Dynamic': 0.347508, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage': 0.367022, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage with power gating': 0.180386, 'Instruction Fetch Unit/Instruction Decoder/Area': 1.85799, 'Instruction Fetch Unit/Instruction Decoder/Gate Leakage': 0.0222493, 'Instruction Fetch Unit/Instruction Decoder/Peak Dynamic': 1.37404, 'Instruction Fetch Unit/Instruction Decoder/Runtime Dynamic': 0.348441, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage': 0.442943, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage with power gating': 0.166104, 'Instruction Fetch Unit/Peak Dynamic': 8.96874, 'Instruction Fetch Unit/Runtime Dynamic': 0.850528, 'Instruction Fetch Unit/Subthreshold Leakage': 0.932587, 'Instruction Fetch Unit/Subthreshold Leakage with power gating': 0.408542, 'L2/Area': 4.53318, 'L2/Gate Leakage': 0.015464, 'L2/Peak Dynamic': 0.012026, 'L2/Runtime Dynamic': 0.00380648, 'L2/Subthreshold Leakage': 0.834142, 'L2/Subthreshold Leakage with power gating': 0.401066, 'Load Store Unit/Area': 8.80969, 'Load Store Unit/Data Cache/Area': 6.84535, 'Load Store Unit/Data Cache/Gate Leakage': 0.0279261, 'Load Store Unit/Data Cache/Peak Dynamic': 3.72231, 'Load Store Unit/Data Cache/Runtime Dynamic': 1.19954, 'Load Store Unit/Data Cache/Subthreshold Leakage': 0.527675, 'Load Store Unit/Data Cache/Subthreshold Leakage with power gating': 0.25085, 'Load Store Unit/Gate Leakage': 0.0351387, 'Load Store Unit/LoadQ/Area': 0.0836782, 'Load Store Unit/LoadQ/Gate Leakage': 0.00059896, 'Load Store Unit/LoadQ/Peak Dynamic': 0.0804019, 'Load Store Unit/LoadQ/Runtime Dynamic': 0.0804019, 'Load Store Unit/LoadQ/Subthreshold Leakage': 0.00941961, 'Load Store Unit/LoadQ/Subthreshold Leakage with power gating': 0.00536918, 'Load Store Unit/Peak Dynamic': 4.10353, 'Load Store Unit/Runtime Dynamic': 1.67646, 'Load Store Unit/StoreQ/Area': 0.322079, 'Load Store Unit/StoreQ/Gate Leakage': 0.00329971, 'Load Store Unit/StoreQ/Peak Dynamic': 0.198257, 'Load Store Unit/StoreQ/Runtime Dynamic': 0.396515, 'Load Store Unit/StoreQ/Subthreshold Leakage': 0.0345621, 'Load Store Unit/StoreQ/Subthreshold Leakage with power gating': 0.0197004, 'Load Store Unit/Subthreshold Leakage': 0.591622, 'Load Store Unit/Subthreshold Leakage with power gating': 0.283406, 'Memory Management Unit/Area': 0.434579, 'Memory Management Unit/Dtlb/Area': 0.0879726, 'Memory Management Unit/Dtlb/Gate Leakage': 0.00088729, 'Memory Management Unit/Dtlb/Peak Dynamic': 0.0703622, 'Memory Management Unit/Dtlb/Runtime Dynamic': 0.0704855, 'Memory Management Unit/Dtlb/Subthreshold Leakage': 0.0155699, 'Memory Management Unit/Dtlb/Subthreshold Leakage with power gating': 0.00887485, 'Memory Management Unit/Gate Leakage': 0.00813591, 'Memory Management Unit/Itlb/Area': 0.301552, 'Memory Management Unit/Itlb/Gate Leakage': 0.00393464, 'Memory Management Unit/Itlb/Peak Dynamic': 0.399995, 'Memory Management Unit/Itlb/Runtime Dynamic': 0.0571378, 'Memory Management Unit/Itlb/Subthreshold Leakage': 0.0413758, 'Memory Management Unit/Itlb/Subthreshold Leakage with power gating': 0.0235842, 'Memory Management Unit/Peak Dynamic': 0.680136, 'Memory Management Unit/Runtime Dynamic': 0.127623, 'Memory Management Unit/Subthreshold Leakage': 0.0769113, 'Memory Management Unit/Subthreshold Leakage with power gating': 0.0399462, 'Peak Dynamic': 23.9775, 'Renaming Unit/Area': 0.369768, 'Renaming Unit/FP Front End RAT/Area': 0.168486, 'Renaming Unit/FP Front End RAT/Gate Leakage': 0.00489731, 'Renaming Unit/FP Front End RAT/Peak Dynamic': 3.33511, 'Renaming Unit/FP Front End RAT/Runtime Dynamic': 0.0, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage': 0.0437281, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage with power gating': 0.024925, 'Renaming Unit/Free List/Area': 0.0414755, 'Renaming Unit/Free List/Gate Leakage': 4.15911e-05, 'Renaming Unit/Free List/Peak Dynamic': 0.0401324, 'Renaming Unit/Free List/Runtime Dynamic': 0.0203543, 'Renaming Unit/Free List/Subthreshold Leakage': 0.000670426, 'Renaming Unit/Free List/Subthreshold Leakage with power gating': 0.000377987, 'Renaming Unit/Gate Leakage': 0.00863632, 'Renaming Unit/Int Front End RAT/Area': 0.114751, 'Renaming Unit/Int Front End RAT/Gate Leakage': 0.00038343, 'Renaming Unit/Int Front End RAT/Peak Dynamic': 0.86945, 'Renaming Unit/Int Front End RAT/Runtime Dynamic': 0.207453, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage': 0.00611897, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage with power gating': 0.00348781, 'Renaming Unit/Peak Dynamic': 4.56169, 'Renaming Unit/Runtime Dynamic': 0.227807, 'Renaming Unit/Subthreshold Leakage': 0.070483, 'Renaming Unit/Subthreshold Leakage with power gating': 0.0362779, 'Runtime Dynamic': 5.75858, 'Subthreshold Leakage': 6.21877, 'Subthreshold Leakage with power gating': 2.58311}, {'Area': 32.0201, 'Execution Unit/Area': 7.68434, 'Execution Unit/Complex ALUs/Area': 0.235435, 'Execution Unit/Complex ALUs/Gate Leakage': 0.0132646, 'Execution Unit/Complex ALUs/Peak Dynamic': 0.0, 'Execution Unit/Complex ALUs/Runtime Dynamic': 0.202689, 'Execution Unit/Complex ALUs/Subthreshold Leakage': 0.20111, 'Execution Unit/Complex ALUs/Subthreshold Leakage with power gating': 0.0754163, 'Execution Unit/Floating Point Units/Area': 4.6585, 'Execution Unit/Floating Point Units/Gate Leakage': 0.0656156, 'Execution Unit/Floating Point Units/Peak Dynamic': 0.0, 'Execution Unit/Floating Point Units/Runtime Dynamic': 0.304033, 'Execution Unit/Floating Point Units/Subthreshold Leakage': 0.994829, 'Execution Unit/Floating Point Units/Subthreshold Leakage with power gating': 0.373061, 'Execution Unit/Gate Leakage': 0.120359, 'Execution Unit/Instruction Scheduler/Area': 1.66526, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Area': 0.275653, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Gate Leakage': 0.000977433, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Peak Dynamic': 1.04181, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Runtime Dynamic': 0.172918, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage': 0.0143453, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage with power gating': 0.00810519, 'Execution Unit/Instruction Scheduler/Gate Leakage': 0.00568913, 'Execution Unit/Instruction Scheduler/Instruction Window/Area': 0.805223, 'Execution Unit/Instruction Scheduler/Instruction Window/Gate Leakage': 0.00414562, 'Execution Unit/Instruction Scheduler/Instruction Window/Peak Dynamic': 1.6763, 'Execution Unit/Instruction Scheduler/Instruction Window/Runtime Dynamic': 0.27891, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage': 0.0625755, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage with power gating': 0.0355964, 'Execution Unit/Instruction Scheduler/Peak Dynamic': 3.82262, 'Execution Unit/Instruction Scheduler/ROB/Area': 0.584388, 'Execution Unit/Instruction Scheduler/ROB/Gate Leakage': 0.00056608, 'Execution Unit/Instruction Scheduler/ROB/Peak Dynamic': 1.10451, 'Execution Unit/Instruction Scheduler/ROB/Runtime Dynamic': 0.140784, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage': 0.00906853, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage with power gating': 0.00364446, 'Execution Unit/Instruction Scheduler/Runtime Dynamic': 0.592612, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage': 0.0859892, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage with power gating': 0.047346, 'Execution Unit/Integer ALUs/Area': 0.47087, 'Execution Unit/Integer ALUs/Gate Leakage': 0.0265291, 'Execution Unit/Integer ALUs/Peak Dynamic': 0.197769, 'Execution Unit/Integer ALUs/Runtime Dynamic': 0.101344, 'Execution Unit/Integer ALUs/Subthreshold Leakage': 0.40222, 'Execution Unit/Integer ALUs/Subthreshold Leakage with power gating': 0.150833, 'Execution Unit/Peak Dynamic': 4.20986, 'Execution Unit/Register Files/Area': 0.570804, 'Execution Unit/Register Files/Floating Point RF/Area': 0.208131, 'Execution Unit/Register Files/Floating Point RF/Gate Leakage': 0.000232788, 'Execution Unit/Register Files/Floating Point RF/Peak Dynamic': 0.0, 'Execution Unit/Register Files/Floating Point RF/Runtime Dynamic': 0.00725295, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage': 0.00399698, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage with power gating': 0.00176968, 'Execution Unit/Register Files/Gate Leakage': 0.000622708, 'Execution Unit/Register Files/Integer RF/Area': 0.362673, 'Execution Unit/Register Files/Integer RF/Gate Leakage': 0.00038992, 'Execution Unit/Register Files/Integer RF/Peak Dynamic': 0.0524482, 'Execution Unit/Register Files/Integer RF/Runtime Dynamic': 0.05364, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage': 0.00614175, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage with power gating': 0.00246675, 'Execution Unit/Register Files/Peak Dynamic': 0.0524482, 'Execution Unit/Register Files/Runtime Dynamic': 0.060893, 'Execution Unit/Register Files/Subthreshold Leakage': 0.0101387, 'Execution Unit/Register Files/Subthreshold Leakage with power gating': 0.00423643, 'Execution Unit/Results Broadcast Bus/Area Overhead': 0.0390912, 'Execution Unit/Results Broadcast Bus/Gate Leakage': 0.00537402, 'Execution Unit/Results Broadcast Bus/Peak Dynamic': 0.110494, 'Execution Unit/Results Broadcast Bus/Runtime Dynamic': 0.289484, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage': 0.081478, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage with power gating': 0.0305543, 'Execution Unit/Runtime Dynamic': 1.55105, 'Execution Unit/Subthreshold Leakage': 1.79543, 'Execution Unit/Subthreshold Leakage with power gating': 0.688821, 'Gate Leakage': 0.368936, 'Instruction Fetch Unit/Area': 5.85939, 'Instruction Fetch Unit/Branch Predictor/Area': 0.138516, 'Instruction Fetch Unit/Branch Predictor/Chooser/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Chooser/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Chooser/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Chooser/Runtime Dynamic': 0.00231727, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/Gate Leakage': 0.000757657, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Runtime Dynamic': 0.00231727, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Area': 0.0257064, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Gate Leakage': 0.000154548, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Peak Dynamic': 0.0142575, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Runtime Dynamic': 0.00210054, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage': 0.00384344, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage with power gating': 0.00198631, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Area': 0.0151917, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Gate Leakage': 8.00196e-05, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Peak Dynamic': 0.00527447, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Runtime Dynamic': 0.000858113, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage': 0.00181347, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage with power gating': 0.000957045, 'Instruction Fetch Unit/Branch Predictor/Peak Dynamic': 0.0597838, 'Instruction Fetch Unit/Branch Predictor/RAS/Area': 0.0105732, 'Instruction Fetch Unit/Branch Predictor/RAS/Gate Leakage': 4.63858e-05, 'Instruction Fetch Unit/Branch Predictor/RAS/Peak Dynamic': 0.0117602, 'Instruction Fetch Unit/Branch Predictor/RAS/Runtime Dynamic': 0.000770543, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage': 0.000932505, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage with power gating': 0.000494733, 'Instruction Fetch Unit/Branch Predictor/Runtime Dynamic': 0.00750563, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage': 0.0199703, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage with power gating': 0.0103282, 'Instruction Fetch Unit/Branch Target Buffer/Area': 0.64954, 'Instruction Fetch Unit/Branch Target Buffer/Gate Leakage': 0.00272758, 'Instruction Fetch Unit/Branch Target Buffer/Peak Dynamic': 0.177867, 'Instruction Fetch Unit/Branch Target Buffer/Runtime Dynamic': 0.0192808, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage': 0.0811682, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage with power gating': 0.0435357, 'Instruction Fetch Unit/Gate Leakage': 0.0589979, 'Instruction Fetch Unit/Instruction Buffer/Area': 0.0226323, 'Instruction Fetch Unit/Instruction Buffer/Gate Leakage': 6.83558e-05, 'Instruction Fetch Unit/Instruction Buffer/Peak Dynamic': 0.606827, 'Instruction Fetch Unit/Instruction Buffer/Runtime Dynamic': 0.0515655, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage': 0.00151885, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage with power gating': 0.000701682, 'Instruction Fetch Unit/Instruction Cache/Area': 3.14635, 'Instruction Fetch Unit/Instruction Cache/Gate Leakage': 0.029931, 'Instruction Fetch Unit/Instruction Cache/Peak Dynamic': 3.28001, 'Instruction Fetch Unit/Instruction Cache/Runtime Dynamic': 0.174533, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage': 0.367022, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage with power gating': 0.180386, 'Instruction Fetch Unit/Instruction Decoder/Area': 1.85799, 'Instruction Fetch Unit/Instruction Decoder/Gate Leakage': 0.0222493, 'Instruction Fetch Unit/Instruction Decoder/Peak Dynamic': 1.37404, 'Instruction Fetch Unit/Instruction Decoder/Runtime Dynamic': 0.17514, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage': 0.442943, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage with power gating': 0.166104, 'Instruction Fetch Unit/Peak Dynamic': 5.65771, 'Instruction Fetch Unit/Runtime Dynamic': 0.428024, 'Instruction Fetch Unit/Subthreshold Leakage': 0.932286, 'Instruction Fetch Unit/Subthreshold Leakage with power gating': 0.40843, 'L2/Area': 4.53318, 'L2/Gate Leakage': 0.015464, 'L2/Peak Dynamic': 0.00668734, 'L2/Runtime Dynamic': 0.00210046, 'L2/Subthreshold Leakage': 0.834142, 'L2/Subthreshold Leakage with power gating': 0.401066, 'Load Store Unit/Area': 8.80901, 'Load Store Unit/Data Cache/Area': 6.84535, 'Load Store Unit/Data Cache/Gate Leakage': 0.0279261, 'Load Store Unit/Data Cache/Peak Dynamic': 2.48583, 'Load Store Unit/Data Cache/Runtime Dynamic': 0.602875, 'Load Store Unit/Data Cache/Subthreshold Leakage': 0.527675, 'Load Store Unit/Data Cache/Subthreshold Leakage with power gating': 0.25085, 'Load Store Unit/Gate Leakage': 0.0350888, 'Load Store Unit/LoadQ/Area': 0.0836782, 'Load Store Unit/LoadQ/Gate Leakage': 0.00059896, 'Load Store Unit/LoadQ/Peak Dynamic': 0.0403988, 'Load Store Unit/LoadQ/Runtime Dynamic': 0.0403987, 'Load Store Unit/LoadQ/Subthreshold Leakage': 0.00941961, 'Load Store Unit/LoadQ/Subthreshold Leakage with power gating': 0.00536918, 'Load Store Unit/Peak Dynamic': 2.6766, 'Load Store Unit/Runtime Dynamic': 0.842506, 'Load Store Unit/StoreQ/Area': 0.322079, 'Load Store Unit/StoreQ/Gate Leakage': 0.00329971, 'Load Store Unit/StoreQ/Peak Dynamic': 0.0996164, 'Load Store Unit/StoreQ/Runtime Dynamic': 0.199232, 'Load Store Unit/StoreQ/Subthreshold Leakage': 0.0345621, 'Load Store Unit/StoreQ/Subthreshold Leakage with power gating': 0.0197004, 'Load Store Unit/Subthreshold Leakage': 0.591321, 'Load Store Unit/Subthreshold Leakage with power gating': 0.283293, 'Memory Management Unit/Area': 0.4339, 'Memory Management Unit/Dtlb/Area': 0.0879726, 'Memory Management Unit/Dtlb/Gate Leakage': 0.00088729, 'Memory Management Unit/Dtlb/Peak Dynamic': 0.0353542, 'Memory Management Unit/Dtlb/Runtime Dynamic': 0.0354206, 'Memory Management Unit/Dtlb/Subthreshold Leakage': 0.0155699, 'Memory Management Unit/Dtlb/Subthreshold Leakage with power gating': 0.00887485, 'Memory Management Unit/Gate Leakage': 0.00808595, 'Memory Management Unit/Itlb/Area': 0.301552, 'Memory Management Unit/Itlb/Gate Leakage': 0.00393464, 'Memory Management Unit/Itlb/Peak Dynamic': 0.203939, 'Memory Management Unit/Itlb/Runtime Dynamic': 0.0287124, 'Memory Management Unit/Itlb/Subthreshold Leakage': 0.0413758, 'Memory Management Unit/Itlb/Subthreshold Leakage with power gating': 0.0235842, 'Memory Management Unit/Peak Dynamic': 0.42078, 'Memory Management Unit/Runtime Dynamic': 0.064133, 'Memory Management Unit/Subthreshold Leakage': 0.0766103, 'Memory Management Unit/Subthreshold Leakage with power gating': 0.0398333, 'Peak Dynamic': 16.5611, 'Renaming Unit/Area': 0.303608, 'Renaming Unit/FP Front End RAT/Area': 0.131045, 'Renaming Unit/FP Front End RAT/Gate Leakage': 0.00351123, 'Renaming Unit/FP Front End RAT/Peak Dynamic': 2.51468, 'Renaming Unit/FP Front End RAT/Runtime Dynamic': 0.0, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage': 0.0308571, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage with power gating': 0.0175885, 'Renaming Unit/Free List/Area': 0.0340654, 'Renaming Unit/Free List/Gate Leakage': 2.5481e-05, 'Renaming Unit/Free List/Peak Dynamic': 0.0306032, 'Renaming Unit/Free List/Runtime Dynamic': 0.00780158, 'Renaming Unit/Free List/Subthreshold Leakage': 0.000370144, 'Renaming Unit/Free List/Subthreshold Leakage with power gating': 0.000201064, 'Renaming Unit/Gate Leakage': 0.00708398, 'Renaming Unit/Int Front End RAT/Area': 0.0941223, 'Renaming Unit/Int Front End RAT/Gate Leakage': 0.000283242, 'Renaming Unit/Int Front End RAT/Peak Dynamic': 0.731965, 'Renaming Unit/Int Front End RAT/Runtime Dynamic': 0.088257, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage': 0.00435488, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage with power gating': 0.00248228, 'Renaming Unit/Peak Dynamic': 3.58947, 'Renaming Unit/Runtime Dynamic': 0.0960586, 'Renaming Unit/Subthreshold Leakage': 0.0552466, 'Renaming Unit/Subthreshold Leakage with power gating': 0.0276461, 'Runtime Dynamic': 2.98388, 'Subthreshold Leakage': 6.16288, 'Subthreshold Leakage with power gating': 2.55328}, {'Area': 32.0201, 'Execution Unit/Area': 7.68434, 'Execution Unit/Complex ALUs/Area': 0.235435, 'Execution Unit/Complex ALUs/Gate Leakage': 0.0132646, 'Execution Unit/Complex ALUs/Peak Dynamic': 0.0, 'Execution Unit/Complex ALUs/Runtime Dynamic': 0.202689, 'Execution Unit/Complex ALUs/Subthreshold Leakage': 0.20111, 'Execution Unit/Complex ALUs/Subthreshold Leakage with power gating': 0.0754163, 'Execution Unit/Floating Point Units/Area': 4.6585, 'Execution Unit/Floating Point Units/Gate Leakage': 0.0656156, 'Execution Unit/Floating Point Units/Peak Dynamic': 0.0, 'Execution Unit/Floating Point Units/Runtime Dynamic': 0.304033, 'Execution Unit/Floating Point Units/Subthreshold Leakage': 0.994829, 'Execution Unit/Floating Point Units/Subthreshold Leakage with power gating': 0.373061, 'Execution Unit/Gate Leakage': 0.120359, 'Execution Unit/Instruction Scheduler/Area': 1.66526, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Area': 0.275653, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Gate Leakage': 0.000977433, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Peak Dynamic': 1.04181, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Runtime Dynamic': 0.17342, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage': 0.0143453, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage with power gating': 0.00810519, 'Execution Unit/Instruction Scheduler/Gate Leakage': 0.00568913, 'Execution Unit/Instruction Scheduler/Instruction Window/Area': 0.805223, 'Execution Unit/Instruction Scheduler/Instruction Window/Gate Leakage': 0.00414562, 'Execution Unit/Instruction Scheduler/Instruction Window/Peak Dynamic': 1.6763, 'Execution Unit/Instruction Scheduler/Instruction Window/Runtime Dynamic': 0.27972, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage': 0.0625755, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage with power gating': 0.0355964, 'Execution Unit/Instruction Scheduler/Peak Dynamic': 3.82262, 'Execution Unit/Instruction Scheduler/ROB/Area': 0.584388, 'Execution Unit/Instruction Scheduler/ROB/Gate Leakage': 0.00056608, 'Execution Unit/Instruction Scheduler/ROB/Peak Dynamic': 1.10451, 'Execution Unit/Instruction Scheduler/ROB/Runtime Dynamic': 0.141193, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage': 0.00906853, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage with power gating': 0.00364446, 'Execution Unit/Instruction Scheduler/Runtime Dynamic': 0.594333, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage': 0.0859892, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage with power gating': 0.047346, 'Execution Unit/Integer ALUs/Area': 0.47087, 'Execution Unit/Integer ALUs/Gate Leakage': 0.0265291, 'Execution Unit/Integer ALUs/Peak Dynamic': 0.198341, 'Execution Unit/Integer ALUs/Runtime Dynamic': 0.101344, 'Execution Unit/Integer ALUs/Subthreshold Leakage': 0.40222, 'Execution Unit/Integer ALUs/Subthreshold Leakage with power gating': 0.150833, 'Execution Unit/Peak Dynamic': 4.21098, 'Execution Unit/Register Files/Area': 0.570804, 'Execution Unit/Register Files/Floating Point RF/Area': 0.208131, 'Execution Unit/Register Files/Floating Point RF/Gate Leakage': 0.000232788, 'Execution Unit/Register Files/Floating Point RF/Peak Dynamic': 0.0, 'Execution Unit/Register Files/Floating Point RF/Runtime Dynamic': 0.00727401, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage': 0.00399698, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage with power gating': 0.00176968, 'Execution Unit/Register Files/Gate Leakage': 0.000622708, 'Execution Unit/Register Files/Integer RF/Area': 0.362673, 'Execution Unit/Register Files/Integer RF/Gate Leakage': 0.00038992, 'Execution Unit/Register Files/Integer RF/Peak Dynamic': 0.0526, 'Execution Unit/Register Files/Integer RF/Runtime Dynamic': 0.0537958, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage': 0.00614175, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage with power gating': 0.00246675, 'Execution Unit/Register Files/Peak Dynamic': 0.0526, 'Execution Unit/Register Files/Runtime Dynamic': 0.0610698, 'Execution Unit/Register Files/Subthreshold Leakage': 0.0101387, 'Execution Unit/Register Files/Subthreshold Leakage with power gating': 0.00423643, 'Execution Unit/Results Broadcast Bus/Area Overhead': 0.0390912, 'Execution Unit/Results Broadcast Bus/Gate Leakage': 0.00537402, 'Execution Unit/Results Broadcast Bus/Peak Dynamic': 0.110814, 'Execution Unit/Results Broadcast Bus/Runtime Dynamic': 0.290296, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage': 0.081478, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage with power gating': 0.0305543, 'Execution Unit/Runtime Dynamic': 1.55377, 'Execution Unit/Subthreshold Leakage': 1.79543, 'Execution Unit/Subthreshold Leakage with power gating': 0.688821, 'Gate Leakage': 0.368936, 'Instruction Fetch Unit/Area': 5.85939, 'Instruction Fetch Unit/Branch Predictor/Area': 0.138516, 'Instruction Fetch Unit/Branch Predictor/Chooser/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Chooser/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Chooser/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Chooser/Runtime Dynamic': 0.00232294, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/Gate Leakage': 0.000757657, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Runtime Dynamic': 0.00232294, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Area': 0.0257064, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Gate Leakage': 0.000154548, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Peak Dynamic': 0.0142575, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Runtime Dynamic': 0.00210565, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage': 0.00384344, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage with power gating': 0.00198631, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Area': 0.0151917, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Gate Leakage': 8.00196e-05, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Peak Dynamic': 0.00527447, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Runtime Dynamic': 0.000860183, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage': 0.00181347, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage with power gating': 0.000957045, 'Instruction Fetch Unit/Branch Predictor/Peak Dynamic': 0.0597838, 'Instruction Fetch Unit/Branch Predictor/RAS/Area': 0.0105732, 'Instruction Fetch Unit/Branch Predictor/RAS/Gate Leakage': 4.63858e-05, 'Instruction Fetch Unit/Branch Predictor/RAS/Peak Dynamic': 0.0117602, 'Instruction Fetch Unit/Branch Predictor/RAS/Runtime Dynamic': 0.000772781, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage': 0.000932505, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage with power gating': 0.000494733, 'Instruction Fetch Unit/Branch Predictor/Runtime Dynamic': 0.00752432, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage': 0.0199703, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage with power gating': 0.0103282, 'Instruction Fetch Unit/Branch Target Buffer/Area': 0.64954, 'Instruction Fetch Unit/Branch Target Buffer/Gate Leakage': 0.00272758, 'Instruction Fetch Unit/Branch Target Buffer/Peak Dynamic': 0.177867, 'Instruction Fetch Unit/Branch Target Buffer/Runtime Dynamic': 0.0193292, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage': 0.0811682, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage with power gating': 0.0435357, 'Instruction Fetch Unit/Gate Leakage': 0.0589979, 'Instruction Fetch Unit/Instruction Buffer/Area': 0.0226323, 'Instruction Fetch Unit/Instruction Buffer/Gate Leakage': 6.83558e-05, 'Instruction Fetch Unit/Instruction Buffer/Peak Dynamic': 0.606827, 'Instruction Fetch Unit/Instruction Buffer/Runtime Dynamic': 0.0517153, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage': 0.00151885, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage with power gating': 0.000701682, 'Instruction Fetch Unit/Instruction Cache/Area': 3.14635, 'Instruction Fetch Unit/Instruction Cache/Gate Leakage': 0.029931, 'Instruction Fetch Unit/Instruction Cache/Peak Dynamic': 3.28954, 'Instruction Fetch Unit/Instruction Cache/Runtime Dynamic': 0.174827, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage': 0.367022, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage with power gating': 0.180386, 'Instruction Fetch Unit/Instruction Decoder/Area': 1.85799, 'Instruction Fetch Unit/Instruction Decoder/Gate Leakage': 0.0222493, 'Instruction Fetch Unit/Instruction Decoder/Peak Dynamic': 1.37404, 'Instruction Fetch Unit/Instruction Decoder/Runtime Dynamic': 0.175648, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage': 0.442943, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage with power gating': 0.166104, 'Instruction Fetch Unit/Peak Dynamic': 5.6677, 'Instruction Fetch Unit/Runtime Dynamic': 0.429044, 'Instruction Fetch Unit/Subthreshold Leakage': 0.932286, 'Instruction Fetch Unit/Subthreshold Leakage with power gating': 0.40843, 'L2/Area': 4.53318, 'L2/Gate Leakage': 0.015464, 'L2/Peak Dynamic': 0.00641252, 'L2/Runtime Dynamic': 0.00203156, 'L2/Subthreshold Leakage': 0.834142, 'L2/Subthreshold Leakage with power gating': 0.401066, 'Load Store Unit/Area': 8.80901, 'Load Store Unit/Data Cache/Area': 6.84535, 'Load Store Unit/Data Cache/Gate Leakage': 0.0279261, 'Load Store Unit/Data Cache/Peak Dynamic': 2.48824, 'Load Store Unit/Data Cache/Runtime Dynamic': 0.603977, 'Load Store Unit/Data Cache/Subthreshold Leakage': 0.527675, 'Load Store Unit/Data Cache/Subthreshold Leakage with power gating': 0.25085, 'Load Store Unit/Gate Leakage': 0.0350888, 'Load Store Unit/LoadQ/Area': 0.0836782, 'Load Store Unit/LoadQ/Gate Leakage': 0.00059896, 'Load Store Unit/LoadQ/Peak Dynamic': 0.0404768, 'Load Store Unit/LoadQ/Runtime Dynamic': 0.0404768, 'Load Store Unit/LoadQ/Subthreshold Leakage': 0.00941961, 'Load Store Unit/LoadQ/Subthreshold Leakage with power gating': 0.00536918, 'Load Store Unit/Peak Dynamic': 2.67938, 'Load Store Unit/Runtime Dynamic': 0.844071, 'Load Store Unit/StoreQ/Area': 0.322079, 'Load Store Unit/StoreQ/Gate Leakage': 0.00329971, 'Load Store Unit/StoreQ/Peak Dynamic': 0.0998089, 'Load Store Unit/StoreQ/Runtime Dynamic': 0.199618, 'Load Store Unit/StoreQ/Subthreshold Leakage': 0.0345621, 'Load Store Unit/StoreQ/Subthreshold Leakage with power gating': 0.0197004, 'Load Store Unit/Subthreshold Leakage': 0.591321, 'Load Store Unit/Subthreshold Leakage with power gating': 0.283293, 'Memory Management Unit/Area': 0.4339, 'Memory Management Unit/Dtlb/Area': 0.0879726, 'Memory Management Unit/Dtlb/Gate Leakage': 0.00088729, 'Memory Management Unit/Dtlb/Peak Dynamic': 0.0354225, 'Memory Management Unit/Dtlb/Runtime Dynamic': 0.0354872, 'Memory Management Unit/Dtlb/Subthreshold Leakage': 0.0155699, 'Memory Management Unit/Dtlb/Subthreshold Leakage with power gating': 0.00887485, 'Memory Management Unit/Gate Leakage': 0.00808595, 'Memory Management Unit/Itlb/Area': 0.301552, 'Memory Management Unit/Itlb/Gate Leakage': 0.00393464, 'Memory Management Unit/Itlb/Peak Dynamic': 0.204531, 'Memory Management Unit/Itlb/Runtime Dynamic': 0.0287537, 'Memory Management Unit/Itlb/Subthreshold Leakage': 0.0413758, 'Memory Management Unit/Itlb/Subthreshold Leakage with power gating': 0.0235842, 'Memory Management Unit/Peak Dynamic': 0.42149, 'Memory Management Unit/Runtime Dynamic': 0.0642409, 'Memory Management Unit/Subthreshold Leakage': 0.0766103, 'Memory Management Unit/Subthreshold Leakage with power gating': 0.0398333, 'Peak Dynamic': 16.5754, 'Renaming Unit/Area': 0.303608, 'Renaming Unit/FP Front End RAT/Area': 0.131045, 'Renaming Unit/FP Front End RAT/Gate Leakage': 0.00351123, 'Renaming Unit/FP Front End RAT/Peak Dynamic': 2.51468, 'Renaming Unit/FP Front End RAT/Runtime Dynamic': 0.0, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage': 0.0308571, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage with power gating': 0.0175885, 'Renaming Unit/Free List/Area': 0.0340654, 'Renaming Unit/Free List/Gate Leakage': 2.5481e-05, 'Renaming Unit/Free List/Peak Dynamic': 0.0306032, 'Renaming Unit/Free List/Runtime Dynamic': 0.00782423, 'Renaming Unit/Free List/Subthreshold Leakage': 0.000370144, 'Renaming Unit/Free List/Subthreshold Leakage with power gating': 0.000201064, 'Renaming Unit/Gate Leakage': 0.00708398, 'Renaming Unit/Int Front End RAT/Area': 0.0941223, 'Renaming Unit/Int Front End RAT/Gate Leakage': 0.000283242, 'Renaming Unit/Int Front End RAT/Peak Dynamic': 0.731965, 'Renaming Unit/Int Front End RAT/Runtime Dynamic': 0.0885153, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage': 0.00435488, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage with power gating': 0.00248228, 'Renaming Unit/Peak Dynamic': 3.58947, 'Renaming Unit/Runtime Dynamic': 0.0963395, 'Renaming Unit/Subthreshold Leakage': 0.0552466, 'Renaming Unit/Subthreshold Leakage with power gating': 0.0276461, 'Runtime Dynamic': 2.98949, 'Subthreshold Leakage': 6.16288, 'Subthreshold Leakage with power gating': 2.55328}, {'Area': 32.0201, 'Execution Unit/Area': 7.68434, 'Execution Unit/Complex ALUs/Area': 0.235435, 'Execution Unit/Complex ALUs/Gate Leakage': 0.0132646, 'Execution Unit/Complex ALUs/Peak Dynamic': 0.0, 'Execution Unit/Complex ALUs/Runtime Dynamic': 0.202689, 'Execution Unit/Complex ALUs/Subthreshold Leakage': 0.20111, 'Execution Unit/Complex ALUs/Subthreshold Leakage with power gating': 0.0754163, 'Execution Unit/Floating Point Units/Area': 4.6585, 'Execution Unit/Floating Point Units/Gate Leakage': 0.0656156, 'Execution Unit/Floating Point Units/Peak Dynamic': 0.0, 'Execution Unit/Floating Point Units/Runtime Dynamic': 0.304033, 'Execution Unit/Floating Point Units/Subthreshold Leakage': 0.994829, 'Execution Unit/Floating Point Units/Subthreshold Leakage with power gating': 0.373061, 'Execution Unit/Gate Leakage': 0.120359, 'Execution Unit/Instruction Scheduler/Area': 1.66526, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Area': 0.275653, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Gate Leakage': 0.000977433, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Peak Dynamic': 1.04181, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Runtime Dynamic': 0.172891, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage': 0.0143453, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage with power gating': 0.00810519, 'Execution Unit/Instruction Scheduler/Gate Leakage': 0.00568913, 'Execution Unit/Instruction Scheduler/Instruction Window/Area': 0.805223, 'Execution Unit/Instruction Scheduler/Instruction Window/Gate Leakage': 0.00414562, 'Execution Unit/Instruction Scheduler/Instruction Window/Peak Dynamic': 1.6763, 'Execution Unit/Instruction Scheduler/Instruction Window/Runtime Dynamic': 0.278866, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage': 0.0625755, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage with power gating': 0.0355964, 'Execution Unit/Instruction Scheduler/Peak Dynamic': 3.82262, 'Execution Unit/Instruction Scheduler/ROB/Area': 0.584388, 'Execution Unit/Instruction Scheduler/ROB/Gate Leakage': 0.00056608, 'Execution Unit/Instruction Scheduler/ROB/Peak Dynamic': 1.10451, 'Execution Unit/Instruction Scheduler/ROB/Runtime Dynamic': 0.140762, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage': 0.00906853, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage with power gating': 0.00364446, 'Execution Unit/Instruction Scheduler/Runtime Dynamic': 0.59252, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage': 0.0859892, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage with power gating': 0.047346, 'Execution Unit/Integer ALUs/Area': 0.47087, 'Execution Unit/Integer ALUs/Gate Leakage': 0.0265291, 'Execution Unit/Integer ALUs/Peak Dynamic': 0.197736, 'Execution Unit/Integer ALUs/Runtime Dynamic': 0.101344, 'Execution Unit/Integer ALUs/Subthreshold Leakage': 0.40222, 'Execution Unit/Integer ALUs/Subthreshold Leakage with power gating': 0.150833, 'Execution Unit/Peak Dynamic': 4.2098, 'Execution Unit/Register Files/Area': 0.570804, 'Execution Unit/Register Files/Floating Point RF/Area': 0.208131, 'Execution Unit/Register Files/Floating Point RF/Gate Leakage': 0.000232788, 'Execution Unit/Register Files/Floating Point RF/Peak Dynamic': 0.0, 'Execution Unit/Register Files/Floating Point RF/Runtime Dynamic': 0.00725182, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage': 0.00399698, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage with power gating': 0.00176968, 'Execution Unit/Register Files/Gate Leakage': 0.000622708, 'Execution Unit/Register Files/Integer RF/Area': 0.362673, 'Execution Unit/Register Files/Integer RF/Gate Leakage': 0.00038992, 'Execution Unit/Register Files/Integer RF/Peak Dynamic': 0.0524396, 'Execution Unit/Register Files/Integer RF/Runtime Dynamic': 0.0536316, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage': 0.00614175, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage with power gating': 0.00246675, 'Execution Unit/Register Files/Peak Dynamic': 0.0524396, 'Execution Unit/Register Files/Runtime Dynamic': 0.0608834, 'Execution Unit/Register Files/Subthreshold Leakage': 0.0101387, 'Execution Unit/Register Files/Subthreshold Leakage with power gating': 0.00423643, 'Execution Unit/Results Broadcast Bus/Area Overhead': 0.0390912, 'Execution Unit/Results Broadcast Bus/Gate Leakage': 0.00537402, 'Execution Unit/Results Broadcast Bus/Peak Dynamic': 0.110475, 'Execution Unit/Results Broadcast Bus/Runtime Dynamic': 0.289485, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage': 0.081478, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage with power gating': 0.0305543, 'Execution Unit/Runtime Dynamic': 1.55095, 'Execution Unit/Subthreshold Leakage': 1.79543, 'Execution Unit/Subthreshold Leakage with power gating': 0.688821, 'Gate Leakage': 0.368936, 'Instruction Fetch Unit/Area': 5.85939, 'Instruction Fetch Unit/Branch Predictor/Area': 0.138516, 'Instruction Fetch Unit/Branch Predictor/Chooser/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Chooser/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Chooser/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Chooser/Runtime Dynamic': 0.00231872, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/Gate Leakage': 0.000757657, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Runtime Dynamic': 0.00231872, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Area': 0.0257064, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Gate Leakage': 0.000154548, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Peak Dynamic': 0.0142575, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Runtime Dynamic': 0.00210203, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage': 0.00384344, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage with power gating': 0.00198631, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Area': 0.0151917, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Gate Leakage': 8.00196e-05, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Peak Dynamic': 0.00527447, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Runtime Dynamic': 0.000858816, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage': 0.00181347, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage with power gating': 0.000957045, 'Instruction Fetch Unit/Branch Predictor/Peak Dynamic': 0.0597838, 'Instruction Fetch Unit/Branch Predictor/RAS/Area': 0.0105732, 'Instruction Fetch Unit/Branch Predictor/RAS/Gate Leakage': 4.63858e-05, 'Instruction Fetch Unit/Branch Predictor/RAS/Peak Dynamic': 0.0117602, 'Instruction Fetch Unit/Branch Predictor/RAS/Runtime Dynamic': 0.000770423, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage': 0.000932505, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage with power gating': 0.000494733, 'Instruction Fetch Unit/Branch Predictor/Runtime Dynamic': 0.0075099, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage': 0.0199703, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage with power gating': 0.0103282, 'Instruction Fetch Unit/Branch Target Buffer/Area': 0.64954, 'Instruction Fetch Unit/Branch Target Buffer/Gate Leakage': 0.00272758, 'Instruction Fetch Unit/Branch Target Buffer/Peak Dynamic': 0.177867, 'Instruction Fetch Unit/Branch Target Buffer/Runtime Dynamic': 0.0192865, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage': 0.0811682, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage with power gating': 0.0435357, 'Instruction Fetch Unit/Gate Leakage': 0.0589979, 'Instruction Fetch Unit/Instruction Buffer/Area': 0.0226323, 'Instruction Fetch Unit/Instruction Buffer/Gate Leakage': 6.83558e-05, 'Instruction Fetch Unit/Instruction Buffer/Peak Dynamic': 0.606827, 'Instruction Fetch Unit/Instruction Buffer/Runtime Dynamic': 0.0515575, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage': 0.00151885, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage with power gating': 0.000701682, 'Instruction Fetch Unit/Instruction Cache/Area': 3.14635, 'Instruction Fetch Unit/Instruction Cache/Gate Leakage': 0.029931, 'Instruction Fetch Unit/Instruction Cache/Peak Dynamic': 3.27949, 'Instruction Fetch Unit/Instruction Cache/Runtime Dynamic': 0.17487, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage': 0.367022, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage with power gating': 0.180386, 'Instruction Fetch Unit/Instruction Decoder/Area': 1.85799, 'Instruction Fetch Unit/Instruction Decoder/Gate Leakage': 0.0222493, 'Instruction Fetch Unit/Instruction Decoder/Peak Dynamic': 1.37404, 'Instruction Fetch Unit/Instruction Decoder/Runtime Dynamic': 0.175112, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage': 0.442943, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage with power gating': 0.166104, 'Instruction Fetch Unit/Peak Dynamic': 5.65717, 'Instruction Fetch Unit/Runtime Dynamic': 0.428336, 'Instruction Fetch Unit/Subthreshold Leakage': 0.932286, 'Instruction Fetch Unit/Subthreshold Leakage with power gating': 0.40843, 'L2/Area': 4.53318, 'L2/Gate Leakage': 0.015464, 'L2/Peak Dynamic': 0.00635145, 'L2/Runtime Dynamic': 0.00200557, 'L2/Subthreshold Leakage': 0.834142, 'L2/Subthreshold Leakage with power gating': 0.401066, 'Load Store Unit/Area': 8.80901, 'Load Store Unit/Data Cache/Area': 6.84535, 'Load Store Unit/Data Cache/Gate Leakage': 0.0279261, 'Load Store Unit/Data Cache/Peak Dynamic': 2.48542, 'Load Store Unit/Data Cache/Runtime Dynamic': 0.602622, 'Load Store Unit/Data Cache/Subthreshold Leakage': 0.527675, 'Load Store Unit/Data Cache/Subthreshold Leakage with power gating': 0.25085, 'Load Store Unit/Gate Leakage': 0.0350888, 'Load Store Unit/LoadQ/Area': 0.0836782, 'Load Store Unit/LoadQ/Gate Leakage': 0.00059896, 'Load Store Unit/LoadQ/Peak Dynamic': 0.0403853, 'Load Store Unit/LoadQ/Runtime Dynamic': 0.0403852, 'Load Store Unit/LoadQ/Subthreshold Leakage': 0.00941961, 'Load Store Unit/LoadQ/Subthreshold Leakage with power gating': 0.00536918, 'Load Store Unit/Peak Dynamic': 2.67612, 'Load Store Unit/Runtime Dynamic': 0.842173, 'Load Store Unit/StoreQ/Area': 0.322079, 'Load Store Unit/StoreQ/Gate Leakage': 0.00329971, 'Load Store Unit/StoreQ/Peak Dynamic': 0.0995834, 'Load Store Unit/StoreQ/Runtime Dynamic': 0.199166, 'Load Store Unit/StoreQ/Subthreshold Leakage': 0.0345621, 'Load Store Unit/StoreQ/Subthreshold Leakage with power gating': 0.0197004, 'Load Store Unit/Subthreshold Leakage': 0.591321, 'Load Store Unit/Subthreshold Leakage with power gating': 0.283293, 'Memory Management Unit/Area': 0.4339, 'Memory Management Unit/Dtlb/Area': 0.0879726, 'Memory Management Unit/Dtlb/Gate Leakage': 0.00088729, 'Memory Management Unit/Dtlb/Peak Dynamic': 0.0353425, 'Memory Management Unit/Dtlb/Runtime Dynamic': 0.035407, 'Memory Management Unit/Dtlb/Subthreshold Leakage': 0.0155699, 'Memory Management Unit/Dtlb/Subthreshold Leakage with power gating': 0.00887485, 'Memory Management Unit/Gate Leakage': 0.00808595, 'Memory Management Unit/Itlb/Area': 0.301552, 'Memory Management Unit/Itlb/Gate Leakage': 0.00393464, 'Memory Management Unit/Itlb/Peak Dynamic': 0.203907, 'Memory Management Unit/Itlb/Runtime Dynamic': 0.0287582, 'Memory Management Unit/Itlb/Subthreshold Leakage': 0.0413758, 'Memory Management Unit/Itlb/Subthreshold Leakage with power gating': 0.0235842, 'Memory Management Unit/Peak Dynamic': 0.420728, 'Memory Management Unit/Runtime Dynamic': 0.0641652, 'Memory Management Unit/Subthreshold Leakage': 0.0766103, 'Memory Management Unit/Subthreshold Leakage with power gating': 0.0398333, 'Peak Dynamic': 16.5596, 'Renaming Unit/Area': 0.303608, 'Renaming Unit/FP Front End RAT/Area': 0.131045, 'Renaming Unit/FP Front End RAT/Gate Leakage': 0.00351123, 'Renaming Unit/FP Front End RAT/Peak Dynamic': 2.51468, 'Renaming Unit/FP Front End RAT/Runtime Dynamic': 0.0, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage': 0.0308571, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage with power gating': 0.0175885, 'Renaming Unit/Free List/Area': 0.0340654, 'Renaming Unit/Free List/Gate Leakage': 2.5481e-05, 'Renaming Unit/Free List/Peak Dynamic': 0.0306032, 'Renaming Unit/Free List/Runtime Dynamic': 0.00780036, 'Renaming Unit/Free List/Subthreshold Leakage': 0.000370144, 'Renaming Unit/Free List/Subthreshold Leakage with power gating': 0.000201064, 'Renaming Unit/Gate Leakage': 0.00708398, 'Renaming Unit/Int Front End RAT/Area': 0.0941223, 'Renaming Unit/Int Front End RAT/Gate Leakage': 0.000283242, 'Renaming Unit/Int Front End RAT/Peak Dynamic': 0.731965, 'Renaming Unit/Int Front End RAT/Runtime Dynamic': 0.0882409, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage': 0.00435488, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage with power gating': 0.00248228, 'Renaming Unit/Peak Dynamic': 3.58947, 'Renaming Unit/Runtime Dynamic': 0.0960413, 'Renaming Unit/Subthreshold Leakage': 0.0552466, 'Renaming Unit/Subthreshold Leakage with power gating': 0.0276461, 'Runtime Dynamic': 2.98367, 'Subthreshold Leakage': 6.16288, 'Subthreshold Leakage with power gating': 2.55328}], 'DRAM': {'Area': 0, 'Gate Leakage': 0, 'Peak Dynamic': 0.40658959087042323, 'Runtime Dynamic': 0.40658959087042323, 'Subthreshold Leakage': 4.252, 'Subthreshold Leakage with power gating': 4.252}, 'L3': [{'Area': 61.9075, 'Gate Leakage': 0.0484137, 'Peak Dynamic': 0.033795, 'Runtime Dynamic': 0.0199046, 'Subthreshold Leakage': 6.80085, 'Subthreshold Leakage with power gating': 3.32364}], 'Processor': {'Area': 191.908, 'Gate Leakage': 1.53485, 'Peak Dynamic': 73.7075, 'Peak Power': 106.82, 'Runtime Dynamic': 14.7355, 'Subthreshold Leakage': 31.5774, 'Subthreshold Leakage with power gating': 13.9484, 'Total Cores/Area': 128.669, 'Total Cores/Gate Leakage': 1.4798, 'Total Cores/Peak Dynamic': 73.6737, 'Total Cores/Runtime Dynamic': 14.7156, 'Total Cores/Subthreshold Leakage': 24.7074, 'Total Cores/Subthreshold Leakage with power gating': 10.2429, 'Total L3s/Area': 61.9075, 'Total L3s/Gate Leakage': 0.0484137, 'Total L3s/Peak Dynamic': 0.033795, 'Total L3s/Runtime Dynamic': 0.0199046, 'Total L3s/Subthreshold Leakage': 6.80085, 'Total L3s/Subthreshold Leakage with power gating': 3.32364, 'Total Leakage': 33.1122, 'Total NoCs/Area': 1.33155, 'Total NoCs/Gate Leakage': 0.00662954, 'Total NoCs/Peak Dynamic': 0.0, 'Total NoCs/Runtime Dynamic': 0.0, 'Total NoCs/Subthreshold Leakage': 0.0691322, 'Total NoCs/Subthreshold Leakage with power gating': 0.0259246}}
74.979212
124
0.681721
0
0
0
0
0
0
0
0
46,943
0.684989
4785cd8056f1f3e45758e79a377162fd96261ea3
6,450
py
Python
folder_tree/migrations/0001_initial.py
JoenyBui/django-folder-tree
a742f3d69ad01f5403ce43578240a6cc54fa6956
[ "BSD-3-Clause" ]
null
null
null
folder_tree/migrations/0001_initial.py
JoenyBui/django-folder-tree
a742f3d69ad01f5403ce43578240a6cc54fa6956
[ "BSD-3-Clause" ]
null
null
null
folder_tree/migrations/0001_initial.py
JoenyBui/django-folder-tree
a742f3d69ad01f5403ce43578240a6cc54fa6956
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10.3 on 2016-12-13 22:10 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion import folder_tree.models import mptt.fields class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='GeneralFile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(blank=True, max_length=255, null=True)), ('is_executable', models.BooleanField(default=False)), ('is_locked', models.BooleanField(default=False)), ('created', models.DateTimeField(auto_now_add=True)), ('modified', models.DateTimeField(auto_now_add=True)), ('file_type', models.IntegerField(choices=[(0, 'txt'), (1, 'png'), (2, 'jpg'), (3, 'jpeg'), (4, 'gif'), (5, 'bmp'), (6, 'mpg'), (7, 'mpeg'), (8, 'mov'), (9, 'avi'), (10, 'wmv'), (11, 'csv'), (12, 'pdf'), (13, 'xls'), (14, 'xlsx'), (15, 'doc'), (16, 'docx'), (17, 'ppt'), (18, 'pptx'), (-1, 'unknown')], default=-1)), ('file', models.FileField(default='default.txt', upload_to=folder_tree.models.user_file_path)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='ImageFile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(blank=True, max_length=255, null=True)), ('is_executable', models.BooleanField(default=False)), ('is_locked', models.BooleanField(default=False)), ('created', models.DateTimeField(auto_now_add=True)), ('modified', models.DateTimeField(auto_now_add=True)), ('file_type', models.IntegerField(choices=[(1, 'png'), (2, 'jpg'), (3, 'jpeg'), (4, 'gif'), (5, 'bmp')], default=-1)), ('photo', models.ImageField(upload_to=folder_tree.models.user_file_path)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='Trash', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ], ), migrations.CreateModel( name='TreeFolder', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('is_locked', models.BooleanField(default=False)), ('created', models.DateTimeField(auto_now_add=True)), ('modified', models.DateTimeField(auto_now_add=True)), ('lft', models.PositiveIntegerField(db_index=True, editable=False)), ('rght', models.PositiveIntegerField(db_index=True, editable=False)), ('tree_id', models.PositiveIntegerField(db_index=True, editable=False)), ('level', models.PositiveIntegerField(db_index=True, editable=False)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='TreeProfile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ], ), migrations.CreateModel( name='ProjectFolder', fields=[ ('treefolder_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='folder_tree.TreeFolder')), ('app_type', models.IntegerField(choices=[(1, 'WhAM')], default=1)), ], options={ 'abstract': False, }, bases=('folder_tree.treefolder',), ), migrations.AddField( model_name='treeprofile', name='root_folder', field=models.ForeignKey(blank=True, default=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='folder_tree.TreeFolder'), ), migrations.AddField( model_name='treeprofile', name='user', field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='treefolder', name='parent', field=mptt.fields.TreeForeignKey(blank=True, default=0, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='children', to='folder_tree.TreeFolder'), ), migrations.AddField( model_name='treefolder', name='user', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='trash', name='prev', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='folder_tree.TreeFolder'), ), migrations.AddField( model_name='trash', name='profile', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='folder_tree.TreeProfile'), ), migrations.AddField( model_name='imagefile', name='folder', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='folder_tree.ProjectFolder'), ), migrations.AddField( model_name='generalfile', name='folder', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='folder_tree.ProjectFolder'), ), ]
47.426471
332
0.582171
6,181
0.958295
0
0
0
0
0
0
975
0.151163
47867c6666c70dddf7e4d9d1220c5f5b48b81ac1
428
py
Python
groupdocs_viewer_cloud/apis/__init__.py
groupdocs-viewer-cloud/groupdocs-viewer-cloud-python
e734944b0b84c91804aa29e4ad5619c1a7334188
[ "MIT" ]
1
2020-06-07T12:39:44.000Z
2020-06-07T12:39:44.000Z
groupdocs_viewer_cloud/apis/__init__.py
groupdocs-viewer-cloud/groupdocs-viewer-cloud-python
e734944b0b84c91804aa29e4ad5619c1a7334188
[ "MIT" ]
1
2021-03-24T01:53:23.000Z
2021-03-26T08:20:31.000Z
groupdocs_viewer_cloud/apis/__init__.py
groupdocs-viewer-cloud/groupdocs-viewer-cloud-python
e734944b0b84c91804aa29e4ad5619c1a7334188
[ "MIT" ]
null
null
null
from __future__ import absolute_import # flake8: noqa # import apis from groupdocs_viewer_cloud.apis.file_api import FileApi from groupdocs_viewer_cloud.apis.folder_api import FolderApi from groupdocs_viewer_cloud.apis.info_api import InfoApi from groupdocs_viewer_cloud.apis.license_api import LicenseApi from groupdocs_viewer_cloud.apis.storage_api import StorageApi from groupdocs_viewer_cloud.apis.view_api import ViewApi
35.666667
62
0.880841
0
0
0
0
0
0
0
0
27
0.063084
4786a66a40aa4e0d9cb192b3447ac559f77b749b
481
py
Python
models/model.py
BaoLocPham/hum2song
706b7fdf838944e2aabe0ae331c0867cb67f6fbc
[ "MIT" ]
null
null
null
models/model.py
BaoLocPham/hum2song
706b7fdf838944e2aabe0ae331c0867cb67f6fbc
[ "MIT" ]
null
null
null
models/model.py
BaoLocPham/hum2song
706b7fdf838944e2aabe0ae331c0867cb67f6fbc
[ "MIT" ]
null
null
null
from models.wrap_mobilenet import * from models.wrap_resnet import * from models.wrap_vgg import * from models.wrap_alexnet import * def get_model(config="resnet"): if "resnet" in config.backbone: model = get_resnet(config=config) elif "mobilenet" in config.backbone: model = get_mobilenet(config) elif "vgg" in config.backbone: model = get_vgg(config) elif "alexnet" in config.backbone: model = get_alexnet(config) return model
32.066667
41
0.702703
0
0
0
0
0
0
0
0
41
0.085239
4786b42fdf67185bb43692e8ca877d2f9dba7530
4,571
py
Python
models/segnet.py
AntixK/Neural-Blocks
018a44bbb703fc848234b95a3e604576bd9df88f
[ "MIT" ]
3
2019-07-23T12:35:50.000Z
2021-02-23T04:20:31.000Z
models/segnet.py
AntixK/Neural-Blocks
018a44bbb703fc848234b95a3e604576bd9df88f
[ "MIT" ]
null
null
null
models/segnet.py
AntixK/Neural-Blocks
018a44bbb703fc848234b95a3e604576bd9df88f
[ "MIT" ]
1
2019-07-21T06:07:12.000Z
2019-07-21T06:07:12.000Z
import torch import torch.nn as nn from NeuralBlocks.blocks.convnormrelu import ConvNormRelu class segnetDown(nn.Module): def __init__(self, in_channels, out_channels, norm=None, num_conv = 2): super(segnetDown, self).__init__() module = [] if num_conv < 2: raise ValueError("SegNet needs at least 2 conv layers i.e. num_conv >= 2") """ For SegNet, the down sampling layers have the form conv (in_channels, out_channels) + BN + ReLU conv (out_channels, out_channels) + BN + ReLU """ num_filters= [in_channels] + (num_conv)*[out_channels] for i in range(num_conv): module.append(ConvNormRelu(num_filters[i], num_filters[i + 1], kernel_size=3, stride=1, padding=1, norm=norm)) self.layer = nn.Sequential(*module) #print(self.layer) self.maxpool_argmax = nn.MaxPool2d(2,2, return_indices=True) def forward(self, input): output = self.layer(input) unpoolsed_size = output.size() output, indices = self.maxpool_argmax(output) return output, indices, unpoolsed_size class segnetUp(nn.Module): def __init__(self, in_channels, out_channels, is_deconv, num_conv = 2, norm = 'BN'): super(segnetUp, self).__init__() if num_conv < 2: raise ValueError("SegNet needs at least 2 conv layers i.e. num_conv >= 2") num_filters = [in_channels]*(num_conv) + [out_channels] """ For SegNet, the up sampling layers have the form conv (in_channels, in_channels) + BN + ReLU conv (in_channels, out_channels) + BN + ReLU """ if is_deconv: self.up = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=2, stride=2) else: self.up = nn.MaxUnpool2d(2,2) module = [] for i in range(num_conv): module.append(ConvNormRelu(num_filters[i], num_filters[i + 1], kernel_size = 3, stride= 1, padding=1, norm=norm)) self.layer = nn.Sequential(*module) def forward(self, input, indices, output_size): output = self.up(input = input, indices = indices, output_size=output_size) output =self.layer(output) return output class SegNet(nn.Module): def __init__(self, in_channels, n_class, norm = 'BN', filters = None, is_deconv = False): super(SegNet,self).__init__() self.is_deconv = is_deconv if filters is None: filters = [64,128,256,512, 512] if len(filters) < 3: raise ValueError('Number filters must be at least 3.') filters.insert(0, in_channels) # To account for the initial channels modules= [] # Downsampling phase for i in range(1, len(filters)): if i < 3: modules.append(segnetDown(filters[i-1], filters[i], norm, num_conv=2)) else: modules.append(segnetDown(filters[i-1], filters[i], norm, num_conv=3)) self.down_layers = nn.ModuleList(modules) # Upsampling Phase filters[0] = n_class # To account for the final number of classes modules = [] for i in range(len(filters)-1,0,-1): if i > 2: modules.append(segnetUp(filters[i], filters[i-1], self.is_deconv, num_conv = 3, norm = norm)) else: modules.append(segnetUp(filters[i], filters[i-1], self.is_deconv, num_conv = 2, norm = norm)) self.up_layers = nn.ModuleList(modules) # print(self.up_layers) def forward(self, input): x = input unpool_args = [] for i, module in enumerate(self.down_layers): x, ind, unpool_shape = module(x) unpool_args.append([ind, unpool_shape]) result = x N = len(self.up_layers)-1 # Variable to traverse unpool_args from reverse """ Note that the parameters for the up layers are the result of the previous layer and the unpool args from the corresponding up layer. i.e. the unpool_args must be traversed from reverse. """ for i, module in enumerate(self.up_layers): result = module(result, *unpool_args[N-i]) return result if __name__ == "__main__": s = SegNet(3, 10, norm = 'BN') inp = torch.randn(32,3,128, 128) #M x C x H x W s.train() result = s(inp)
34.628788
93
0.584992
4,320
0.945089
0
0
0
0
0
0
990
0.216583
4788b5896e827da02e7c6002f5c921308b7b3159
15,484
py
Python
Contents/Resources/parse_log.py
nathangrigg/Latex.bbpackage
f53b33c6c7c90cd9aaf1da61591cf35e5aa722b3
[ "BSD-3-Clause" ]
8
2015-10-21T02:03:28.000Z
2020-12-27T04:04:46.000Z
Contents/Resources/parse_log.py
nathangrigg/Latex.bbpackage
f53b33c6c7c90cd9aaf1da61591cf35e5aa722b3
[ "BSD-3-Clause" ]
null
null
null
Contents/Resources/parse_log.py
nathangrigg/Latex.bbpackage
f53b33c6c7c90cd9aaf1da61591cf35e5aa722b3
[ "BSD-3-Clause" ]
5
2015-01-15T14:01:30.000Z
2021-09-05T20:22:09.000Z
#!/usr/bin/python # This script derived from a piece of the rubber project # http://launchpad.net/rubber # (c) Emmanuel Beffara, 2002--2006 # # Modified by Nathan Grigg, January 2012 import re import string import sys import getopt #---- Log parser ----{{{1 re_loghead = re.compile("This is [0-9a-zA-Z-]*") re_rerun = re.compile("LaTeX Warning:.*Rerun") re_file = re.compile("(\\((?P<file>[^\n\t(){}]*[^ \n\t(){}])|\\))") re_badbox = re.compile(r"(Ov|Und)erfull \\[hv]box ") re_line = re.compile(r"(l\.(?P<line>[0-9]+)( (?P<code>.*))?$|<\*>)") re_cseq = re.compile(r".*(?P<seq>(\\|\.\.\.)[^ ]*) ?$") re_macro = re.compile(r"^(?P<macro>\\.*) ->") re_page = re.compile("\[(?P<num>[0-9]+)\]") re_atline = re.compile( "( detected| in paragraph)? at lines? (?P<line>[0-9]*)(--(?P<last>[0-9]*))?") re_reference = re.compile("LaTeX Warning: Reference `(?P<ref>.*)' \ on page (?P<page>[0-9]*) undefined on input line (?P<line>[0-9]*)\\.$") re_label = re.compile("LaTeX Warning: (?P<text>Label .*)$") re_warning = re.compile( "(LaTeX|Package)( (?P<pkg>.*))? Warning: (?P<text>.*)$") re_online = re.compile("(; reported)? on input line (?P<line>[0-9]*)") re_ignored = re.compile("; all text was ignored after line (?P<line>[0-9]*).$") class LogCheck (object): """ This class performs all the extraction of information from the log file. For efficiency, the instances contain the whole file as a list of strings so that it can be read several times with no disk access. """ #-- Initialization {{{2 def __init__ (self): self.lines = None def read (self, name): """ Read the specified log file, checking that it was produced by the right compiler. Returns true if the log file is invalid or does not exist. """ self.lines = None try: file = open(name) except IOError: return 2 line = file.readline() if not line: file.close() return 1 if not re_loghead.match(line): file.close() return 1 self.lines = file.readlines() file.close() return 0 #-- Process information {{{2 def errors (self): """ Returns true if there was an error during the compilation. """ skipping = 0 for line in self.lines: if line.strip() == "": skipping = 0 continue if skipping: continue m = re_badbox.match(line) if m: skipping = 1 continue if line[0] == "!": # We check for the substring "pdfTeX warning" because pdfTeX # sometimes issues warnings (like undefined references) in the # form of errors... if string.find(line, "pdfTeX warning") == -1: return 1 return 0 def run_needed (self): """ Returns true if LaTeX indicated that another compilation is needed. """ for line in self.lines: if re_rerun.match(line): return 1 return 0 #-- Information extraction {{{2 def continued (self, line): """ Check if a line in the log is continued on the next line. This is needed because TeX breaks messages at 79 characters per line. We make this into a method because the test is slightly different in Metapost. """ return len(line) == 79 def parse (self, errors=0, boxes=0, refs=0, warnings=0): """ Parse the log file for relevant information. The named arguments are booleans that indicate which information should be extracted: - errors: all errors - boxes: bad boxes - refs: warnings about references - warnings: all other warnings The function returns a generator. Each generated item is a dictionary that contains (some of) the following entries: - kind: the kind of information ("error", "box", "ref", "warning") - text: the text of the error or warning - code: the piece of code that caused an error - file, line, last, pkg: as used by Message.format_pos. """ if not self.lines: return last_file = None pos = [last_file] page = 1 parsing = 0 # 1 if we are parsing an error's text skipping = 0 # 1 if we are skipping text until an empty line something = 0 # 1 if some error was found prefix = None # the prefix for warning messages from packages accu = "" # accumulated text from the previous line macro = None # the macro in which the error occurs cseqs = {} # undefined control sequences so far for line in self.lines: line = line[:-1] # remove the line feed # TeX breaks messages at 79 characters, just to make parsing # trickier... if not parsing and self.continued(line): accu += line continue line = accu + line accu = "" # Text that should be skipped (from bad box messages) if prefix is None and line == "": skipping = 0 continue if skipping: continue # Errors (including aborted compilation) if parsing: if error == "Undefined control sequence.": # This is a special case in order to report which control # sequence is undefined. m = re_cseq.match(line) if m: seq = m.group("seq") if cseqs.has_key(seq): # This prevents reporting a sequence more than once error = None else: cseqs[seq] = None error = "Undefined control sequence %s." % m.group("seq") # Checks if the error is the definition of a macro m = re_macro.match(line) if m: macro = m.group("macro") # Extracts the line number m = re_line.match(line) if m: parsing = 0 skipping = 1 pdfTeX = string.find(line, "pdfTeX warning") != -1 if error is not None and ((pdfTeX and warnings) or (errors and not pdfTeX)): if pdfTeX: d = { "kind": "warning", "pkg": "pdfTeX", "text": error[error.find(":")+2:] } else: d = { "kind": "error", "text": error } d.update( m.groupdict() ) m = re_ignored.search(error) if m: d["file"] = last_file if d.has_key("code"): del d["code"] d.update( m.groupdict() ) elif pos[-1] is None: d["file"] = last_file else: d["file"] = pos[-1] if macro is not None: d["macro"] = macro macro = None yield d elif line[0] == "!": error = line[2:] elif line[0:3] == "***": parsing = 0 skipping = 1 if errors: yield { "kind": "abort", "text": error, "why" : line[4:], "file": last_file } elif line[0:15] == "Type X to quit ": parsing = 0 skipping = 0 if errors: yield { "kind": "error", "text": error, "file": pos[-1] } continue if len(line) > 0 and line[0] == "!": error = line[2:] parsing = 1 continue if line == "Runaway argument?": error = line parsing = 1 continue # Long warnings if prefix is not None: if line[:len(prefix)] == prefix: text.append(string.strip(line[len(prefix):])) else: text = " ".join(text) m = re_online.search(text) if m: info["line"] = m.group("line") text = text[:m.start()] + text[m.end():] if warnings: info["text"] = text d = { "kind": "warning" } d.update( info ) yield d prefix = None continue # Undefined references m = re_reference.match(line) if m: if refs: d = { "kind": "warning", "text": _("Reference `%s' undefined.") % m.group("ref"), "file": pos[-1] } d.update( m.groupdict() ) yield d continue m = re_label.match(line) if m: if refs: d = { "kind": "warning", "file": pos[-1] } d.update( m.groupdict() ) yield d continue # Other warnings if line.find("Warning") != -1: m = re_warning.match(line) if m: info = m.groupdict() info["file"] = pos[-1] info["page"] = page if info["pkg"] is None: del info["pkg"] prefix = "" else: prefix = ("(%s)" % info["pkg"]) prefix = prefix.ljust(m.start("text")) text = [info["text"]] continue # Bad box messages m = re_badbox.match(line) if m: if boxes: mpos = { "file": pos[-1], "page": page } m = re_atline.search(line) if m: md = m.groupdict() for key in "line", "last": if md[key]: mpos[key] = md[key] line = line[:m.start()] d = { "kind": "warning", "text": line } d.update( mpos ) yield d skipping = 1 continue # If there is no message, track source names and page numbers. last_file = self.update_file(line, pos, last_file) page = self.update_page(line, page) def get_errors (self): return self.parse(errors=1) def get_boxes (self): return self.parse(boxes=1) def get_references (self): return self.parse(refs=1) def get_warnings (self): return self.parse(warnings=1) def update_file (self, line, stack, last): """ Parse the given line of log file for file openings and closings and update the list `stack'. Newly opened files are at the end, therefore stack[1] is the main source while stack[-1] is the current one. The first element, stack[0], contains the value None for errors that may happen outside the source. Return the last file from which text was read (the new stack top, or the one before the last closing parenthesis). """ m = re_file.search(line) while m: if line[m.start()] == '(': last = m.group("file") stack.append(last) else: last = stack[-1] del stack[-1] line = line[m.end():] m = re_file.search(line) return last def update_page (self, line, before): """ Parse the given line and return the number of the page that is being built after that line, assuming the current page before the line was `before'. """ ms = re_page.findall(line) if ms == []: return before return int(ms[-1]) + 1 # command line options def parse_options(cmdline): try: opts, args = getopt.getopt( cmdline, "h", ["boxes","errors","help","refs","warnings"]) except getopt.GetoptError, e: sys.stderr.write(e.msg + "\n") sys.exit(1) d = {"boxes": 0, "errors": 0, "refs": 0, "warnings": 0} # set a default option if len(opts) == 0: d["errors"] = 1 for opt,arg in opts: if opt in ("-h","--help"): help() else: d[opt[2:]] = 1 if len(args) != 1: sys.stderr.write("One log file is required\n") sys.exit(1) file = args[0] return d,file def help(): print ("""\ usage: rubber [options] logfile available options: --boxes display overfull/underfull box messages --errors display error messages --help display this message end exit --refs display missing reference messages --warnings display all other warnings """) sys.exit() # applescript compatible output def applescript_output(d,directory): out = [] if "kind" in d: if d["kind"] == "error": out.append("Error") else: out.append("Warning") else: return if "file" in d: file = d["file"] # convert relative path to absolute path if file[0] == "/": out.append(file) else: if file[:2] == "./": file = file[2:] out.append(directory + file) else: out.append("") if "line" in d and d["line"]: out.append(d["line"]) else: out.append("0") message = "" if "text" in d: message += d["text"] if "pkg" in d: message += " (Package %s) " % d["pkg"] if "page" in d: message += " (On page %d)" % d["page"] out.append(message) return "\t".join(out) if __name__ == "__main__": options,file = parse_options(sys.argv[1:]) directory = file[:file.rfind('/') + 1] check = LogCheck() check.read(file) for d in check.parse(errors=options["errors"], boxes=options["boxes"], refs=options["refs"], warnings=options["warnings"]): print applescript_output(d, directory)
33.227468
96
0.452855
12,018
0.776156
8,218
0.530741
0
0
0
0
5,291
0.341708
478b01eea05155c0e098a1b65909d95f41833301
5,665
py
Python
barbican-8.0.0/barbican/objects/container_consumer_meta.py
scottwedge/OpenStack-Stein
7077d1f602031dace92916f14e36b124f474de15
[ "Apache-2.0" ]
177
2015-01-02T09:35:53.000Z
2022-02-26T01:43:55.000Z
barbican/objects/container_consumer_meta.py
kkutysllb/barbican
7b14d983e0dce6dcffe9781b05c52335b8203fc7
[ "Apache-2.0" ]
5
2019-08-14T06:46:03.000Z
2021-12-13T20:01:25.000Z
barbican/objects/container_consumer_meta.py
kkutysllb/barbican
7b14d983e0dce6dcffe9781b05c52335b8203fc7
[ "Apache-2.0" ]
87
2015-01-13T17:33:40.000Z
2021-11-09T05:30:36.000Z
# Copyright 2018 Fujitsu. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_db import exception as db_exc from oslo_utils import timeutils from oslo_versionedobjects import base as object_base from barbican.common import utils from barbican.model import models from barbican.model import repositories as repos from barbican.objects import base from barbican.objects import fields LOG = utils.getLogger(__name__) @object_base.VersionedObjectRegistry.register class ContainerConsumerMetadatum(base.BarbicanObject, base.BarbicanPersistentObject, object_base.VersionedObjectDictCompat): fields = { 'container_id': fields.StringField(nullable=False), 'project_id': fields.StringField(nullable=True, default=None), 'name': fields.StringField(nullable=True, default=None), 'URL': fields.StringField(nullable=True, default=None), 'data_hash': fields.StringField(nullable=True, default=None) } db_model = models.ContainerConsumerMetadatum db_repo = repos.get_container_consumer_repository() @classmethod def get_by_container_id(cls, container_id, offset_arg=None, limit_arg=None, suppress_exception=False, session=None): entities_db, offset, limit, total = \ cls.db_repo.get_by_container_id( container_id, offset_arg, limit_arg, suppress_exception, session) entities = [cls()._from_db_object(entity_db) for entity_db in entities_db] return entities, offset, limit, total @classmethod def get_by_values(cls, container_id, name, URL, suppress_exception=False, show_deleted=False, session=None): consumer_db = cls.db_repo.get_by_values(container_id, name, URL, suppress_exception, show_deleted, session) return cls()._from_db_object(consumer_db) @classmethod def create_or_update_from_model(cls, new_consumer, container, session=None): """Create or update container :param new_consumer: a instance of ContainerConsumerMetadatum model :param container: a instance of Container OVO :param session: a session to connect with database :return: None It is used during converting from model to OVO. It will be removed after Container resource is implemented OVO. """ session = cls.get_session(session=session) try: container.updated_at = timeutils.utcnow() container.save(session=session) new_consumer.save(session=session) except db_exc.DBDuplicateEntry: session.rollback() # We know consumer already exists. # This operation is idempotent, so log this and move on LOG.debug("Consumer %s with URL %s already exists for " "container %s, continuing...", new_consumer.name, new_consumer.URL, new_consumer.container_id) # Get the existing entry and reuse it by clearing the deleted flags existing_consumer = cls.get_by_values( new_consumer.container_id, new_consumer.name, new_consumer.URL, show_deleted=True) existing_consumer.deleted = False existing_consumer.deleted_at = None # We are not concerned about timing here -- set only, no reads existing_consumer.save(session=session) @classmethod def create_or_update_from(cls, new_consumer, container, session=None): """Create or update container :param new_consumer: a instance of ContainerConsumerMetadatum OVO :param container: a instance of Container OVO :param session: a session to connect with database :return: None """ session = cls.get_session(session=session) try: container.updated_at = timeutils.utcnow() container.consumers.append(new_consumer) container.save(session=session) except db_exc.DBDuplicateEntry: session.rollback() # We know consumer already exists. # This operation is idempotent, so log this and move on LOG.debug("Consumer %s with URL %s already exists for " "container %s, continuing...", new_consumer.name, new_consumer.URL, new_consumer.container_id) # Get the existing entry and reuse it by clearing the deleted flags existing_consumer = cls.get_by_values( new_consumer.container_id, new_consumer.name, new_consumer.URL, show_deleted=True) existing_consumer.deleted = False existing_consumer.deleted_at = None # We are not concerned about timing here -- set only, no reads existing_consumer.save(session=session)
44.960317
79
0.642012
4,665
0.823477
0
0
4,711
0.831598
0
0
1,855
0.327449
478b0e311b234d21a0af4f46a1bbc9e444318807
527
py
Python
Lab02_ifelse_and_loops/exercise-17.py
rodrigoc-silva/Python-course
327b20738a4b383510faddc0ec26a54be1bbd717
[ "MIT" ]
null
null
null
Lab02_ifelse_and_loops/exercise-17.py
rodrigoc-silva/Python-course
327b20738a4b383510faddc0ec26a54be1bbd717
[ "MIT" ]
null
null
null
Lab02_ifelse_and_loops/exercise-17.py
rodrigoc-silva/Python-course
327b20738a4b383510faddc0ec26a54be1bbd717
[ "MIT" ]
null
null
null
#This program converts KPH to MPH. #constant CONVERT_FACTOR = 0.6214 #head output print("KPH \t MPH") print("_" * 20) #loop for kph_speed in range (60, 131, 10): #calculation mph_speed = kph_speed * CONVERT_FACTOR #output print(kph_speed, '\t', format(mph_speed, '.1f')) input("\nPress any key to quit") # Case 1 # KPH MPH # ____________________ # 60 37.3 # 70 43.5 # 80 49.7 # 90 55.9 # 100 62.1 # 110 68.4 # 120 74.6 # 130 80.8 # Press any key to quit
15.5
52
0.588235
0
0
0
0
0
0
0
0
315
0.597723
478d445e00859e47118663015c1dca1d382e8e84
3,841
py
Python
tests/sentry/api/endpoints/test_project_rules_configuration.py
pierredup/sentry
0145e4b3bc0e775bf3482fe65f5e1a689d0dbb80
[ "BSD-3-Clause" ]
null
null
null
tests/sentry/api/endpoints/test_project_rules_configuration.py
pierredup/sentry
0145e4b3bc0e775bf3482fe65f5e1a689d0dbb80
[ "BSD-3-Clause" ]
null
null
null
tests/sentry/api/endpoints/test_project_rules_configuration.py
pierredup/sentry
0145e4b3bc0e775bf3482fe65f5e1a689d0dbb80
[ "BSD-3-Clause" ]
null
null
null
from __future__ import absolute_import from django.core.urlresolvers import reverse from mock import Mock, patch from sentry.rules.registry import RuleRegistry from sentry.testutils import APITestCase class ProjectRuleConfigurationTest(APITestCase): def setUp(self): self.project.flags.has_issue_alerts_targeting = False self.project.save() def test_simple(self): self.login_as(user=self.user) team = self.create_team() project1 = self.create_project(teams=[team], name="foo") self.create_project(teams=[team], name="baz") url = reverse( "sentry-api-0-project-rules-configuration", kwargs={"organization_slug": project1.organization.slug, "project_slug": project1.slug}, ) response = self.client.get(url, format="json") assert response.status_code == 200, response.content assert len(response.data["actions"]) == 4 assert len(response.data["conditions"]) == 9 @property def rules(self): rules = RuleRegistry() rule = Mock() rule.id = "sentry.mail.actions.NotifyEmailAction" rule.rule_type = "action/lol" node = rule.return_value node.id = "sentry.mail.actions.NotifyEmailAction" node.label = "hello" node.prompt = "hello" node.is_enabled.return_value = True node.form_fields = {} rules.add(rule) return rules def run_mock_rules_test(self, expected_actions, querystring_params, rules=None): if not rules: rules = self.rules self.login_as(user=self.user) with patch("sentry.api.endpoints.project_rules_configuration.rules", rules): url = reverse( "sentry-api-0-project-rules-configuration", kwargs={ "organization_slug": self.organization.slug, "project_slug": self.project.slug, }, ) response = self.client.get(url, querystring_params, format="json") assert response.status_code == 200, response.content assert len(response.data["actions"]) == expected_actions assert len(response.data["conditions"]) == 0 def test_filter_out_notify_email_action(self): self.run_mock_rules_test(0, {}) def test_filter_show_notify_email_action_migrated_project(self): self.project.flags.has_issue_alerts_targeting = True self.project.save() self.run_mock_rules_test(1, {}) def test_filter_show_notify_email_action_override(self): self.run_mock_rules_test(0, {"issue_alerts_targeting": "0"}) self.run_mock_rules_test(1, {"issue_alerts_targeting": "1"}) def test_show_notify_event_service_action(self): rules = RuleRegistry() rule = Mock() rule.id = "sentry.rules.actions.notify_event_service.NotifyEventServiceAction" rule.rule_type = "action/lol" node = rule.return_value node.id = rule.id node.label = "hello" node.prompt = "hello" node.is_enabled.return_value = True node.form_fields = {} node.get_services.return_value = [Mock()] rules.add(rule) self.run_mock_rules_test(1, {}, rules=rules) def test_hide_empty_notify_event_service_action(self): rules = RuleRegistry() rule = Mock() rule.id = "sentry.rules.actions.notify_event_service.NotifyEventServiceAction" rule.rule_type = "action/lol" node = rule.return_value node.id = rule.id node.label = "hello" node.prompt = "hello" node.is_enabled.return_value = True node.form_fields = {} node.get_services.return_value = [] rules.add(rule) self.run_mock_rules_test(0, {}, rules=rules)
36.235849
100
0.640198
3,635
0.946368
0
0
448
0.116636
0
0
616
0.160375
478df9b66c40c191cbb8cf8a0885ef1863ea295a
3,297
py
Python
train-script.py
praepunctis/chordtext
b58ea6fea7bf417e6e18daad6c4ce6ea878bd27b
[ "MIT" ]
1
2020-12-02T10:04:08.000Z
2020-12-02T10:04:08.000Z
train-script.py
praepunctis/chordtext
b58ea6fea7bf417e6e18daad6c4ce6ea878bd27b
[ "MIT" ]
null
null
null
train-script.py
praepunctis/chordtext
b58ea6fea7bf417e6e18daad6c4ce6ea878bd27b
[ "MIT" ]
null
null
null
# train-script.py # Grab data from movie_data.csv and train a ML model. # Kelly Fesler (c) Nov 2020 # Modified from Soumya Gupta (c) Jan 2020 # STEP 1: import ------------------------------------------- # Import libraries import urllib.request import os import pandas as pd import numpy as np import nltk import sklearn import joblib from nltk.tokenize import RegexpTokenizer from nltk.stem.porter import PorterStemmer from nltk.corpus import stopwords from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression # STEP 2: read --------------------------------------------- # Read in the large movie review dataset; display the first 3 lines df = pd.read_csv('movie_data.csv', encoding='utf-8') print("Loading data...\n") data_top = df.head(3) print(data_top) # STEP 3: clean -------------------------------------------- # prepare tokenizer, stopwords, stemmer objects tokenizer = RegexpTokenizer(r'\w+') en_stopwords = set(stopwords.words('english')) ps = PorterStemmer() # set up helper function to clean data: def getStemmedReview(review): # turn to lowercase review = review.lower() review = review.replace("<br /><br />", " ") # tokenize tokens = tokenizer.tokenize(review) new_tokens = [token for token in tokens if token not in en_stopwords] # stem stemmed_tokens = [ps.stem(token) for token in new_tokens] clean_review = ' '.join(stemmed_tokens) return clean_review # tokenize & clean all reviews print("") print("Tokenizing & cleaning...") df['review'].apply(getStemmedReview) # STEP 4: split -------------------------------------------- print("Splitting...") # split: 35k rows for training X_train = df.loc[:35000, 'review'].values Y_train = df.loc[:35000, 'sentiment'].values # split: 15k rows for testing X_test = df.loc[35000:, 'review'].values Y_test = df.loc[35000:, 'sentiment'].values # STEP 5: transform to feature vectors --------------------- # set up vectorizer from sklearn vectorizer = TfidfVectorizer(sublinear_tf=True, encoding='utf-8') # train on the training data print("Training...") vectorizer.fit(X_train) # after learning from training data, transform the test data print("Transforming...") X_train = vectorizer.transform(X_train) X_test = vectorizer.transform(X_test) # STEP 6: create the ML model ------------------------------ print("Creating the model...") model = LogisticRegression(solver='liblinear') model.fit(X_train,Y_train) print("ok!") # print scores print("") print("Score on training data is: " + str(model.score(X_train,Y_train))) print("Score on testing data is:" + str(model.score(X_test,Y_test))) # STEP 7: test model output -------------------------------- print("") print("Testing a negative review...") # Sampling a negative review; let's compare expected & predicted values print("Expected sentiment: 0") print("Predicted sentiment: " + str(model.predict(X_test[0]))) print("Expected probabilities: ~0.788, ~0.211") print("Predicted probabilities: " + str(model.predict_proba(X_test[0]))) # STEP 8: save & export the model -------------------------- print("") print("Exporting to .pkl files...") joblib.dump(en_stopwords,'stopwords.pkl') joblib.dump(model,'model.pkl') joblib.dump(vectorizer,'vectorizer.pkl') print("done")
28.422414
73
0.668487
0
0
0
0
0
0
0
0
1,640
0.497422
478eeb89ce278e9a0867db0565808bfedbcc11dc
10,947
py
Python
roerich/algorithms.py
HSE-LAMBDA/roerich
17e178292593d1ea6a821b99705620ba066abd2a
[ "BSD-2-Clause" ]
10
2020-12-01T13:58:27.000Z
2022-01-17T12:01:31.000Z
roerich/algorithms.py
HSE-LAMBDA/roerich
17e178292593d1ea6a821b99705620ba066abd2a
[ "BSD-2-Clause" ]
3
2021-03-07T14:06:22.000Z
2022-01-18T14:23:16.000Z
roerich/algorithms.py
HSE-LAMBDA/roerich
17e178292593d1ea6a821b99705620ba066abd2a
[ "BSD-2-Clause" ]
2
2020-12-01T14:04:36.000Z
2022-03-24T12:52:32.000Z
from abc import ABCMeta, abstractmethod from collections import defaultdict from copy import deepcopy from typing import Union, Type, Any, Tuple import numpy as np import torch import torch.nn as nn from scipy.signal import find_peaks_cwt from .net import MyNN, MyNNRegressor from .utils import autoregression_matrix, unified_score from .metrics import KL_sym, KL, JSD, PE, PE_sym, Wasserstein from .scaler import SmaScalerCache from .helper import SMA class ChangePointDetection(metaclass=ABCMeta): def __init__(self, scaler: Any = "default", metric: str = "KL", window_size: int = 1, periods: int = 10, lag_size: int = 0, step: int = 1, n_epochs: int = 100, lr: float = 0.01, lam: float = 0, optimizer: str = "Adam", debug: int = 0): """ Parameters ---------- scaler: A scaler object is used to scale an input data. The default one is `SmaScalerCache` metric: A loss function during optimize step of NN. Can be one of the following KL_sym, KL, JSD, PE, PE_sym, Wasserstein window_size: A size of a window when splitting input data into train and test arrays periods: A number of previous data-points used when constructing autoregressive matrix lag_size: A distance between train- and test- windows step: Each `step`-th data-point is used when creating the input dataset n_epochs: A number of epochs during training NN lr: A learning rate at each step of optimizer lam: A regularization rate optimizer: One of Adam, SGD, RMSprop or ASGD optimizers debug: default zero """ self.scaler = SmaScalerCache(window_size + lag_size) if scaler == "default" else scaler self.metric = metric self.window_size = window_size self.periods = periods self.lag_size = lag_size self.step = step self.n_epochs = n_epochs self.lr = lr self.lam = lam self.debug = debug self._time_shift = lag_size + window_size self.avg_window = lag_size + window_size self.peak_widths = [0.25 * (lag_size + window_size)] self.optimizers = defaultdict(lambda: torch.optim.Adam) self.optimizers["Adam"] = torch.optim.Adam self.optimizers["SGD"] = torch.optim.SGD self.optimizers["RMSprop"] = torch.optim.RMSprop self.optimizers["ASGD"] = torch.optim.ASGD self.optimizer = self.optimizers[optimizer] self.metric_func = {"KL_sym": KL_sym, "KL": KL, "JSD": JSD, "PE": PE, "PE_sym": PE_sym, "W": Wasserstein } @abstractmethod def init_net(self, n_inputs: int) -> None: """ Initialize neural network based on `self.base_net` class Parameters ---------- n_inputs: Number of inputs of neural network ------- """ pass def predict(self, X: Union[np.ndarray, torch.Tensor]) -> Tuple[Any, Any]: """ Determines a CPD score for every data-point Parameters ---------- X: An input data Returns `avg_unified_score`: An averaged, unified and shifted CPD score for every data-point in X `peaks` Locations of CPD points along all data-points ------- """ X_auto = autoregression_matrix(X, periods=self.periods, fill_value=0) self.init_net(X_auto.shape[1]) T, reference, test = self.reference_test(X_auto) scores = [] for i in range(len(reference)): X_, y_ = self.preprocess(reference[i], test[i]) score = self.reference_test_predict(X_, y_) scores.append(score) T_scores = np.array([T[i] for i in range(len(reference))]) scores = np.array(scores) # todo optimize memory T_uni = np.arange(len(X)) T_scores = T_scores - self._time_shift un_score = unified_score(T_uni, T_scores, scores) avg_unified_score = SMA(un_score, self.avg_window) peaks = self.find_peaks_cwt(avg_unified_score, widths=self.peak_widths) return avg_unified_score, peaks def reference_test(self, X: Union[torch.Tensor, np.ndarray]) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """ Creates reference and test datasets based on autoregressive matrix. Parameters ---------- X: An autoregressive matrix Returns tuple of numpy arrays: time-steps, reference and test datasets ------- """ N = self.lag_size ws = self.window_size T = [] reference = [] test = [] for i in range(2 * ws + N - 1, len(X), self.step): T.append(i) reference.append(X[i - 2 * ws - N + 1:i - ws - N + 1]) test.append(X[i - ws + 1:i + 1]) return np.array(T), np.array(reference), np.array(test) def preprocess(self, X_ref: np.ndarray, X_test: np.ndarray) -> Tuple[torch.Tensor, torch.Tensor]: """ Creates X and y datasets for training NN by stacking reference and test datasets. Also applies a scaling transformation into resulting X dataset. Labels for reference data-points is 1s. Labels for test data-points is 0s. Parameters ---------- X_ref: reference data-points X_test: test data-points Returns ------- Tuple of training data """ y_ref = np.zeros(len(X_ref)) y_test = np.ones(len(X_test)) X = np.vstack((X_ref, X_test)) y = np.hstack((y_ref, y_test)) X = self.scaler.fit_transform(X) X = torch.from_numpy(X).float() y = torch.from_numpy(y).float() return X, y def find_peaks_cwt(self, vector, *args, **kwargs): """ Find peaks function based on scipy.signal package Parameters ---------- vector: CPD scores array args: see docs for https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks_cwt.html kwargs Returns ------- Array with location of peaks """ peaks = find_peaks_cwt(vector, *args, **kwargs) return peaks @abstractmethod def reference_test_predict(self, X: torch.Tensor, y: torch.Tensor): """ Training process of forward, backward and optimize steps. Parameters ---------- X: train data y: train labels Returns ------- None """ pass class OnlineNNClassifier(ChangePointDetection): def __init__(self, net: Union[Type[nn.Module], str] = "default", *args, **kwargs): """ Parameters ---------- net: Custom torch.nn.Module neural network or "default" one args: see parent class kwargs: see parent class """ super().__init__(*args, **kwargs) self.criterion = nn.BCELoss() self.base_net = MyNN if net == "default" else net self.net = None self.opt = None def init_net(self, n_inputs): self.net = self.base_net(n_inputs) self.opt = self.optimizer( self.net.parameters(), lr=self.lr, weight_decay=self.lam ) def reference_test_predict(self, X, y): self.net.train(False) n_last = min(self.window_size, self.step) ref_preds = self.net(X[y == 0][-n_last:]).detach().numpy() test_preds = self.net(X[y == 1][-n_last:]).detach().numpy() self.net.train(True) for epoch in range(self.n_epochs): # loop over the dataset multiple times # forward + backward + optimize outputs = self.net(X) loss = self.criterion(outputs.squeeze(), y) # set gradients to zero self.opt.zero_grad() loss.backward() self.opt.step() score = self.metric_func[self.metric](ref_preds, test_preds) return score class OnlineNNRuLSIF(ChangePointDetection): def __init__(self, alpha, net="default", *args, **kwargs): """ Parameters ---------- alpha: The `alpha` parameter in a loss function net: Custom torch.nn.Module neural network or "default" one args: see parent class kwargs: see parent class """ super().__init__(*args, **kwargs) self.alpha = alpha self.base_net = MyNNRegressor if net == "default" else net self.net1 = None self.net2 = None self.opt1 = None self.opt2 = None def init_net(self, n_inputs): self.net1 = self.base_net(n_inputs) self.opt1 = self.optimizer( self.net1.parameters(), lr=self.lr, weight_decay=self.lam ) self.net2 = deepcopy(self.net1) self.opt2 = deepcopy(self.opt1) def compute_loss(self, y_pred_batch_ref, y_pred_batch_test): loss = 0.5 * (1 - self.alpha) * (y_pred_batch_ref ** 2).mean() + \ 0.5 * self.alpha * (y_pred_batch_test ** 2).mean() - (y_pred_batch_test).mean() return loss def reference_test_predict(self, X, y): n_last = min(self.window_size, self.step) self.net1.train(False) test_preds = self.net1(X[y == 1][-n_last:]).detach().numpy() self.net2.train(False) ref_preds = self.net2(X[y == 0][-n_last:]).detach().numpy() self.net1.train(True) self.net2.train(True) for epoch in range(self.n_epochs): # loop over the dataset multiple times # forward + backward + optimize y_pred_batch = self.net1(X).squeeze() y_pred_batch_ref = y_pred_batch[y == 0] y_pred_batch_test = y_pred_batch[y == 1] loss1 = self.compute_loss(y_pred_batch_ref, y_pred_batch_test) # set gradients to zero self.opt1.zero_grad() loss1.backward() self.opt1.step() # forward + backward + optimize y_pred_batch = self.net2(X).squeeze() y_pred_batch_ref = y_pred_batch[y == 1] y_pred_batch_test = y_pred_batch[y == 0] loss2 = self.compute_loss(y_pred_batch_ref, y_pred_batch_test) # set gradients to zero self.opt2.zero_grad() loss2.backward() self.opt2.step() score = (0.5 * np.mean(test_preds) - 0.5) + (0.5 * np.mean(ref_preds) - 0.5) return score
34.863057
128
0.567279
10,483
0.957614
0
0
592
0.054079
0
0
3,451
0.315246
479004b6cfb780abc09aa80bc0894ff64e48376b
182
py
Python
extra_tests/snippets/stdlib_types.py
mainsail-org/RustPython
5d2d87c24f1ff7201fcc8d4fcffadb0ec12dc127
[ "CC-BY-4.0", "MIT" ]
11,058
2018-05-29T07:40:06.000Z
2022-03-31T11:38:42.000Z
extra_tests/snippets/stdlib_types.py
mainsail-org/RustPython
5d2d87c24f1ff7201fcc8d4fcffadb0ec12dc127
[ "CC-BY-4.0", "MIT" ]
2,105
2018-06-01T10:07:16.000Z
2022-03-31T14:56:42.000Z
extra_tests/snippets/stdlib_types.py
mainsail-org/RustPython
5d2d87c24f1ff7201fcc8d4fcffadb0ec12dc127
[ "CC-BY-4.0", "MIT" ]
914
2018-07-27T09:36:14.000Z
2022-03-31T19:56:34.000Z
import types from testutils import assert_raises ns = types.SimpleNamespace(a=2, b='Rust') assert ns.a == 2 assert ns.b == "Rust" with assert_raises(AttributeError): _ = ns.c
16.545455
41
0.714286
0
0
0
0
0
0
0
0
12
0.065934
4790692759f37d6994f35811b0b4dd07154a5efb
1,664
py
Python
1018.py
idarlenearaujo/URI_Python
c4517f90f5310894347edcf58a28d3e569a89a2b
[ "MIT" ]
null
null
null
1018.py
idarlenearaujo/URI_Python
c4517f90f5310894347edcf58a28d3e569a89a2b
[ "MIT" ]
null
null
null
1018.py
idarlenearaujo/URI_Python
c4517f90f5310894347edcf58a28d3e569a89a2b
[ "MIT" ]
null
null
null
# entrada value = int(input()) # variaveis cashier = True valueI = value n1 = 0 n2 = 0 n5 = 0 n10 = 0 n20 = 0 n50 = 0 n100 = 0 # laço quando cashier == False sai while cashier == True: # condicionais if value >= 100: valueA = value // 100 n100 = valueA valueB = valueA * 100 value = value - valueB # condicionais elif value >= 50: valueA = value // 50 n50 = valueA valueB = valueA * 50 value = value - valueB # condicionais elif value >= 20: valueA = value // 20 n20 = valueA valueB = valueA * 20 value = value - valueB # condicionais elif value >= 10: valueA = value // 10 n10 = valueA valueB = valueA * 10 value = value - valueB # condicionais elif value >= 5: valueA = value // 5 n5 = valueA valueB = valueA * 5 value = value - valueB # condicionais elif value >= 2: valueA = value // 2 n2 = valueA valueB = valueA * 2 value = value - valueB # condicionais elif value >= 1: valueA = value // 1 n1 = valueA valueB = valueA * 1 value = value - valueB # condicionais elif value == 0: # condição para sair cashier = False print( '{}\n{} nota(s) de R$ 100,00\n{} nota(s) de R$ 50,00\n{} nota(s) de R$ 20,00\n{} nota(s) de R$ 10,00\n{} nota(s) de R$ 5,00\n{} nota(s) de R$ 2,00\n{} nota(s) de R$ 1,00'.format( valueI, n100, n50, n20, n10, n5, n2, n1))
20.292683
183
0.485577
0
0
0
0
0
0
0
0
371
0.222555
4790afe07c99445354df0a84235383f75387a69b
2,164
py
Python
selene/common/delegation.py
KalinkinaMaria/selene
859e1102c85740b52af8d0f08dd6b6490b4bd2ff
[ "MIT" ]
null
null
null
selene/common/delegation.py
KalinkinaMaria/selene
859e1102c85740b52af8d0f08dd6b6490b4bd2ff
[ "MIT" ]
1
2021-06-02T04:21:17.000Z
2021-06-02T04:21:17.000Z
selene/common/delegation.py
vkarpenko/selene
4776357430c940be38f38be9981006dd156f9730
[ "MIT" ]
null
null
null
from abc import ABCMeta def _make_delegator_method(name): def delegator(self, *args, **kwargs): return getattr(self.__delegate__, name)(*args, **kwargs) # pragma: no cover # todo: consider using __call__() instead of __delegate__ # in Python delegates are objects with __call__ method.. # so why not to use the following: # return getattr(self(), name)(*args, **kwargs) # ? return delegator # def _make_delegator_method_to_property(name): # def delegator(self, *args, **kwargs): # return getattr(self.__delegate__, name) # return delegator def _make_delegator_property(name): return property(lambda self: getattr(self.__delegate__, name)) # pragma: no cover def _is_property(name, cls): return isinstance(getattr(cls, name, None), property) class DelegatingMeta(ABCMeta): def __new__(mcs, name, bases, dct): abstract_property_names = frozenset.union( *(frozenset(filter(lambda m: _is_property(m, base), base.__abstractmethods__)) for base in bases)) for base in bases: base.__abstractmethods__ = frozenset(filter(lambda m: not _is_property(m, base), base.__abstractmethods__)) abstract_method_names = frozenset.union(*(base.__abstractmethods__ for base in bases)) for name in abstract_method_names: if name not in dct: dct[name] = _make_delegator_method(name) # for name in abstract_property_names: # if name not in dct: # dct[name] = _make_delegator_method_to_property(name) cls = super(DelegatingMeta, mcs).__new__(mcs, name, bases, dct) for name in abstract_property_names: if name not in dct: setattr(cls, name, _make_delegator_property(name)) return cls # todo: finalize naming: Delegating, Delegate, actual_delegate, delegatee, delegator o_O ? # We have the following players in this game: # * MetaClass for Classes of Objects who delegates their implementation to aggregated object # So who should be named how?
34.903226
119
0.657116
1,064
0.491682
0
0
0
0
0
0
779
0.359982
47928a4b5a14d921593fc3e938a7ef189730aea5
186
py
Python
src/pymystem_example1.py
componavt/neural_synset
b58f03af90af6fe2ffe8253a1222c99c2b8907df
[ "Unlicense" ]
null
null
null
src/pymystem_example1.py
componavt/neural_synset
b58f03af90af6fe2ffe8253a1222c99c2b8907df
[ "Unlicense" ]
null
null
null
src/pymystem_example1.py
componavt/neural_synset
b58f03af90af6fe2ffe8253a1222c99c2b8907df
[ "Unlicense" ]
null
null
null
# -*- coding: utf-8 -*- from pymystem3 import Mystem # text = "some good newses" text = "Красивая мама красиво мыла раму" m = Mystem() lemmas = m.lemmatize(text) print(''.join(lemmas))
20.666667
40
0.677419
0
0
0
0
0
0
0
0
112
0.525822
4793cb0e3e72768ba54484744717ebd0208905a2
795
py
Python
backend/appengine/routes/desenhos/edit.py
faahbih/projetoolivarts
3dfd955fe44d58a38b85b6643440a600b0bde81a
[ "MIT" ]
null
null
null
backend/appengine/routes/desenhos/edit.py
faahbih/projetoolivarts
3dfd955fe44d58a38b85b6643440a600b0bde81a
[ "MIT" ]
null
null
null
backend/appengine/routes/desenhos/edit.py
faahbih/projetoolivarts
3dfd955fe44d58a38b85b6643440a600b0bde81a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals from config.template_middleware import TemplateResponse from desenho.desenho_model import Desenho, DesenhoForm from gaecookie.decorator import no_csrf #from pedido.pedido_model import Pedido, PedidoForm from routes import desenhos from tekton.gae.middleware.redirect import RedirectResponse from tekton.router import to_path @no_csrf def index(desenho_id): desenhos = Desenho.get_by_id(int(desenho_id)) ctx={'desenhos': desenhos, 'salvar_path':to_path(salvar)} return TemplateResponse(ctx,'/desenhos/desenhos_form.html') def salvar(desenho_id,**kwargs): desenhos = Desenho.get_by_id(desenho_id) desenho = DesenhoForm(**kwargs) desenho.put() return RedirectResponse(desenhos)
34.565217
63
0.783648
0
0
0
0
216
0.271698
0
0
127
0.159748
4794b8cc274b020b95e48eb002f538acf5d6b189
4,484
py
Python
data/create_train_test_split.py
chmo2019/CUB-200-with-TFOD-API
8f46f2f91085f3e35829f8c7ce0289771ebb0294
[ "MIT" ]
null
null
null
data/create_train_test_split.py
chmo2019/CUB-200-with-TFOD-API
8f46f2f91085f3e35829f8c7ce0289771ebb0294
[ "MIT" ]
null
null
null
data/create_train_test_split.py
chmo2019/CUB-200-with-TFOD-API
8f46f2f91085f3e35829f8c7ce0289771ebb0294
[ "MIT" ]
null
null
null
# import necessary libraries import csv from PIL import Image import argparse # create argument parser with PATH argument ap = argparse.ArgumentParser() ap.add_argument('-p', '--path', required=True, help='''PATH to CUB_200_2011 folder i.e. folder with CUB 200 csv files (make sure to include full path name for so other scripts can find the data file path(s))''') args = ap.parse_args() def create_train_test_split(PATH): # open CUB 200 .txt files images = open(PATH + "/images.txt", "r") image_class_labels = open(PATH + "/image_class_labels.txt", "r") bounding_boxes = open(PATH + "/bounding_boxes.txt", "r") split = open(PATH + "/train_test_split.txt", "r") classes = open(PATH + "/classes.txt", "r") # create csv readers for each .txt file tsv = csv.reader(split, delimiter=" ") tsv_images = csv.reader(images, delimiter=" ") tsv_class_labels = csv.reader(image_class_labels, delimiter=" ") tsv_bbox = csv.reader(bounding_boxes, delimiter=" ") tsv_classes = csv.reader(classes, delimiter=" ") # create dictionary to store data train_test = {"0": {"filename": [], "id": [], "width": [], "height": [], "class": [], "x" : [], "y": [], "img_w": [], "img_h": []}, "1": {"filename": [], "id": [], "width": [], "height": [], "class": [], "x" : [], "y": [], "img_w": [], "img_h": []}} # '0' for test '1' for train # write id into dictionary for create train test split for row in tsv: train_test["{}".format(row[1])]["id"].append(row[0]) split.close() classes_list = {} # append class names to dictionary for row in tsv_classes: classes_list["{}".format(row[0])] = row[1] classes.close() i = 0 j = 0 # add image sizes, labels, and bounding box coordinates to dictionary for (image, label, bbox) in zip(tsv_images, tsv_class_labels, tsv_bbox): if train_test["0"]["id"][i] == image[0]: train_test["0"]["filename"].append(PATH + "/images/" + image[1]) im = Image.open(PATH + "/images/"+ image[1]) train_test["0"]["img_w"].append(im.size[0]) train_test["0"]["img_h"].append(im.size[1]) train_test["0"]["class"].append(classes_list["{}".format(label[1])]) train_test["0"]["x"].append(bbox[1]) train_test["0"]["y"].append(bbox[2]) train_test["0"]["width"].append(bbox[3]) train_test["0"]["height"].append(bbox[4]) i += 1 else: train_test["1"]["filename"].append(PATH + "/images/" + image[1]) im = Image.open(PATH + "/images/"+ image[1]) train_test["1"]["img_w"].append(im.size[0]) train_test["1"]["img_h"].append(im.size[1]) train_test["1"]["class"].append(classes_list["{}".format(label[1])]) train_test["1"]["x"].append(bbox[1]) train_test["1"]["y"].append(bbox[2]) train_test["1"]["width"].append(bbox[3]) train_test["1"]["height"].append(bbox[4]) j += 1 images.close() image_class_labels.close() bounding_boxes.close() # open csv files for coco-formatted data f_train = open("./annotations/train.csv", "w") f_test = open("./annotations/test.csv", "w") # create coco csv header f_test.write("{},{},{},{},{},{},{},{}\n".format("filename","width","height","class", "xmin", "ymin", "xmax", "ymax")) # write coco-formatted data into test split csv for k in range(len(train_test["0"]["filename"])): f_test.write("{},{},{},{},{},{},{},{}\n".format(train_test["0"]["filename"][k], train_test["0"]["img_w"][k], train_test["0"]["img_h"][k], train_test["0"]["class"][k], train_test["0"]["x"][k], train_test["0"]["y"][k], float(train_test["0"]["x"][k]) + float(train_test["0"]["width"][k]), float(train_test["0"]["y"][k]) + float(train_test["0"]["height"][k]))) f_train.write("{},{},{},{},{},{},{},{}\n".format("filename","width","height","class", "xmin", "ymin", "xmax", "ymax")) # write coco-formatted data into train split csv for k in range(len(train_test["1"]["filename"])): f_train.write("{},{},{},{},{},{},{},{}\n".format(train_test["1"]["filename"][k], train_test["1"]["img_w"][k], train_test["1"]["img_h"][k], train_test["1"]["class"][k], train_test["1"]["x"][k], train_test["1"]["y"][k], float(train_test["1"]["x"][k]) + float(train_test["1"]["width"][k]), float(train_test["1"]["y"][k]) + float(train_test["1"]["height"][k]))) f_test.close() f_train.close() if __name__ == "__main__": # run with command line arguments create_train_test_split(args.path)
32.258993
94
0.594558
0
0
0
0
0
0
0
0
1,669
0.372212
4795e4597ca4cff70deec87c952fb0febb0256f0
3,487
py
Python
homework/1-AE/losses.py
Penchekrak/DeepGenerativeModels
7ee829682e8ed51bc637e2c6def0b9f810f384bc
[ "MIT" ]
null
null
null
homework/1-AE/losses.py
Penchekrak/DeepGenerativeModels
7ee829682e8ed51bc637e2c6def0b9f810f384bc
[ "MIT" ]
null
null
null
homework/1-AE/losses.py
Penchekrak/DeepGenerativeModels
7ee829682e8ed51bc637e2c6def0b9f810f384bc
[ "MIT" ]
null
null
null
import torch from torch import nn class Criterion: def __call__(self, model: nn.Module, batch_x: torch.Tensor, batch_y: torch.Tensor, *args, **kwargs): pass class Image2ImageMSELoss(Criterion): def __init__(self): self.mse_loss = nn.MSELoss() def __repr__(self): return repr(self.mse_loss) def __call__(self, model: nn.Module, batch_x: torch.Tensor, batch_y: torch.Tensor, *args, **kwargs): outs = model(batch_x) loss = self.mse_loss(outs, batch_x) return loss, outs class Image2ImageBCELoss(Criterion): def __init__(self, threshold=0.0): self.bce_loss = nn.BCELoss() self.threshold = threshold def __repr__(self): return str(repr(self.bce_loss)) + f"with {self.threshold} as threshold" def __call__(self, model: nn.Module, batch_x: torch.Tensor, batch_y: torch.Tensor, *args, **kwargs): outs = model(batch_x) target = (batch_x > self.threshold).float() loss = self.bce_loss(outs, target) return loss, outs class Image2ImageMixedLoss(Criterion): def __init__(self, mse_weight=0.5, bce_weight=0.5, bce_threshold=0.5): self.bce_loss = nn.BCELoss() self.bce_weight = bce_weight self.threshold = bce_threshold self.mse_loss = nn.MSELoss() self.mse_weight = mse_weight def __call__(self, model: nn.Module, batch_x: torch.Tensor, batch_y: torch.Tensor, *args, **kwargs): outs = model(batch_x) mse_loss = self.mse_loss(outs, batch_x) target = (batch_x > self.threshold).float() bce_loss = self.bce_loss(outs, target) return mse_loss * self.mse_weight + bce_loss * self.bce_weight, outs def l1_loss(x): return torch.mean(torch.sum(torch.abs(x), dim=1)) class Image2ImageMixedLossWithLasso(Criterion): def __init__(self, mse_weight=0.5, bce_weight=0.5, bce_threshold=0.5, lasso_weight=0.001): self.lasso_weight = lasso_weight self.bce_loss = nn.BCELoss() self.bce_weight = bce_weight self.threshold = bce_threshold self.mse_loss = nn.MSELoss() self.mse_weight = mse_weight def calculate_sparse_loss(self, model, image): loss = 0 x = image for block in model.encoder[:-1]: x = block.conv(x) loss += l1_loss(x) x = block.act(block.norm(x)) x = model.encoder[-1](x) loss += l1_loss(x) for block in model.decoder[:-1]: x = block.conv(x) loss += l1_loss(x) x = block.act(block.norm(x)) x = model.decoder[-1](x) loss += l1_loss(x) return loss def __call__(self, model: nn.Module, batch_x: torch.Tensor, batch_y: torch.Tensor, *args, **kwargs): outs = model(batch_x) mse_loss = self.mse_loss(outs, batch_x) target = (batch_x > self.threshold).float() bce_loss = self.bce_loss(outs, target) l1 = self.calculate_sparse_loss(model, batch_x) return mse_loss * self.mse_weight + bce_loss * self.bce_weight + self.lasso_weight * l1, outs class ClassificationCELoss(Criterion): def __init__(self): self.ce_loss = nn.CrossEntropyLoss() def __repr__(self): return repr(self.ce_loss) def __call__(self, model: nn.Module, batch_x: torch.Tensor, batch_y: torch.Tensor, *args, **kwargs): outs = model(batch_x) loss = self.ce_loss(outs, batch_y) return loss, outs
32.896226
104
0.634069
3,363
0.964439
0
0
0
0
0
0
37
0.010611
4795fb5c060e1fe6b6b35dd753478649d709249e
160
py
Python
src/app/services/users/__init__.py
dieisabel/cypherman
06d8678b79b18aa256a79ec6967d68274f088dbc
[ "MIT" ]
null
null
null
src/app/services/users/__init__.py
dieisabel/cypherman
06d8678b79b18aa256a79ec6967d68274f088dbc
[ "MIT" ]
43
2021-12-02T21:26:01.000Z
2022-02-21T08:51:06.000Z
src/app/services/users/__init__.py
dieisabel/cypherman
06d8678b79b18aa256a79ec6967d68274f088dbc
[ "MIT" ]
null
null
null
__all__ = [ 'IUserService', 'UserService', ] from services.users.iuser_service import IUserService from services.users.user_service import UserService
20
53
0.775
0
0
0
0
0
0
0
0
27
0.16875
47981ad00b6fbe330d40b7fd3c56d0ca049b684c
6,190
py
Python
core/domain/wipeout_service_test.py
davehenton/oppia
62a9e9ea8458632e39b8ab4cf15b0489ac1acad9
[ "Apache-2.0" ]
1
2021-01-22T03:24:52.000Z
2021-01-22T03:24:52.000Z
core/domain/wipeout_service_test.py
davehenton/oppia
62a9e9ea8458632e39b8ab4cf15b0489ac1acad9
[ "Apache-2.0" ]
null
null
null
core/domain/wipeout_service_test.py
davehenton/oppia
62a9e9ea8458632e39b8ab4cf15b0489ac1acad9
[ "Apache-2.0" ]
1
2020-06-25T21:43:01.000Z
2020-06-25T21:43:01.000Z
# Copyright 2019 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for wipeout service.""" from __future__ import absolute_import # pylint: disable=import-only-modules from __future__ import unicode_literals # pylint: disable=import-only-modules from core.domain import rights_manager from core.domain import topic_domain from core.domain import topic_services from core.domain import user_services from core.domain import wipeout_service from core.platform import models from core.tests import test_utils import feconf (collection_models, exp_models, user_models,) = ( models.Registry.import_models([ models.NAMES.collection, models.NAMES.exploration, models.NAMES.user])) class WipeoutServiceTests(test_utils.GenericTestBase): """Provides testing of the wipeout service.""" USER_1_EMAIL = '[email protected]' USER_1_USERNAME = 'username1' USER_2_EMAIL = '[email protected]' USER_2_USERNAME = 'username2' def setUp(self): super(WipeoutServiceTests, self).setUp() self.signup(self.USER_1_EMAIL, self.USER_1_USERNAME) self.signup(self.USER_2_EMAIL, self.USER_2_USERNAME) self.user_1_id = self.get_user_id_from_email(self.USER_1_EMAIL) self.user_2_id = self.get_user_id_from_email(self.USER_2_EMAIL) def test_pre_delete_user_email_subscriptions(self): email_preferences = user_services.get_email_preferences(self.user_1_id) self.assertEqual( email_preferences.can_receive_email_updates, feconf.DEFAULT_EMAIL_UPDATES_PREFERENCE) self.assertEqual( email_preferences.can_receive_editor_role_email, feconf.DEFAULT_EDITOR_ROLE_EMAIL_PREFERENCE) self.assertEqual( email_preferences.can_receive_feedback_message_email, feconf.DEFAULT_FEEDBACK_MESSAGE_EMAIL_PREFERENCE) self.assertEqual( email_preferences.can_receive_subscription_email, feconf.DEFAULT_SUBSCRIPTION_EMAIL_PREFERENCE) wipeout_service.pre_delete_user(self.user_1_id) email_preferences = user_services.get_email_preferences(self.user_1_id) self.assertFalse(email_preferences.can_receive_email_updates) self.assertFalse(email_preferences.can_receive_editor_role_email) self.assertFalse(email_preferences.can_receive_feedback_message_email) self.assertFalse(email_preferences.can_receive_subscription_email) def test_pre_delete_user_without_activities(self): user_models.UserSubscriptionsModel( id=self.user_1_id, activity_ids=[], collection_ids=[] ).put() user_settings = user_services.get_user_settings(self.user_1_id) self.assertFalse(user_settings.to_be_deleted) wipeout_service.pre_delete_user(self.user_1_id) user_settings = user_services.get_user_settings(self.user_1_id) self.assertTrue(user_settings.to_be_deleted) pending_deletion_model = ( user_models.PendingDeletionRequestModel.get_by_id(self.user_1_id)) self.assertEqual(pending_deletion_model.exploration_ids, []) self.assertEqual(pending_deletion_model.collection_ids, []) def test_pre_delete_user_with_activities(self): self.save_new_valid_exploration('exp_id', self.user_1_id) self.save_new_valid_collection( 'col_id', self.user_1_id, exploration_id='exp_id') wipeout_service.pre_delete_user(self.user_1_id) pending_deletion_model = ( user_models.PendingDeletionRequestModel.get_by_id(self.user_1_id)) self.assertEqual( pending_deletion_model.exploration_ids, ['exp_id']) self.assertEqual(pending_deletion_model.collection_ids, ['col_id']) def test_pre_delete_user_with_activities_multiple_owners(self): user_services.update_user_role( self.user_1_id, feconf.ROLE_ID_COLLECTION_EDITOR) user_1_actions = user_services.UserActionsInfo(self.user_1_id) self.save_new_valid_exploration('exp_id', self.user_1_id) rights_manager.assign_role_for_exploration( user_1_actions, 'exp_id', self.user_2_id, rights_manager.ROLE_OWNER) self.save_new_valid_collection( 'col_id', self.user_1_id, exploration_id='exp_id') rights_manager.assign_role_for_collection( user_1_actions, 'col_id', self.user_2_id, rights_manager.ROLE_OWNER) wipeout_service.pre_delete_user(self.user_1_id) pending_deletion_model = ( user_models.PendingDeletionRequestModel.get_by_id(self.user_1_id)) self.assertEqual( pending_deletion_model.exploration_ids, []) self.assertEqual(pending_deletion_model.collection_ids, []) def test_pre_delete_user_collection_is_marked_deleted(self): self.save_new_valid_collection( 'col_id', self.user_1_id) collection_model = collection_models.CollectionModel.get_by_id('col_id') self.assertFalse(collection_model.deleted) wipeout_service.pre_delete_user(self.user_1_id) collection_model = collection_models.CollectionModel.get_by_id('col_id') self.assertTrue(collection_model.deleted) def test_pre_delete_user_exploration_is_marked_deleted(self): self.save_new_valid_exploration('exp_id', self.user_1_id) exp_model = exp_models.ExplorationModel.get_by_id('exp_id') self.assertFalse(exp_model.deleted) wipeout_service.pre_delete_user(self.user_1_id) exp_model = exp_models.ExplorationModel.get_by_id('exp_id') self.assertTrue(exp_model.deleted)
42.108844
80
0.745073
4,949
0.799515
0
0
0
0
0
0
931
0.150404
4798901a83af76dc1807e8d5ec48f5223c016346
1,109
py
Python
drf_to_s3/middleware.py
treyhunner/drf-to-s3
2384b7e277da0e795ab9e0241e829bcc4ca4dc77
[ "MIT" ]
28
2015-01-15T18:31:24.000Z
2018-11-08T07:33:42.000Z
drf_to_s3/middleware.py
treyhunner/drf-to-s3
2384b7e277da0e795ab9e0241e829bcc4ca4dc77
[ "MIT" ]
10
2020-01-01T07:26:19.000Z
2021-06-25T15:26:53.000Z
drf_to_s3/middleware.py
treyhunner/drf-to-s3
2384b7e277da0e795ab9e0241e829bcc4ca4dc77
[ "MIT" ]
7
2015-01-29T20:59:29.000Z
2017-04-24T16:05:48.000Z
class UploadPrefixMiddleware(object): ''' Sets a cookie with the upload prefix. To be agnostic about your method of user authentication, this is handled using middleware. It can't be in a signal, since the signal handler doesn't have access to the response. In most applications, the client already has access to a normalized username, so you probably don't need this at all. To use this, add it to your MIDDLEWARE_CLASSES: MIDDLEWARE_CLASSES = ( ... 'drf_to_s3.middleware.UploadPrefixMiddleware', ... ) ''' def process_response(self, request, response): from django.conf import settings from rest_framework.exceptions import PermissionDenied from .access_control import upload_prefix_for_request cookie_name = getattr(settings, 'UPLOAD_PREFIX_COOKIE_NAME', 'upload_prefix') try: response.set_cookie(cookie_name, upload_prefix_for_request(request)) except PermissionDenied: response.delete_cookie(cookie_name) return response
32.617647
85
0.682597
1,108
0.999098
0
0
0
0
0
0
604
0.544635
479926439a3bedce30e4792e3973470d8b31f04e
14,157
py
Python
deepcomp/util/env_setup.py
CN-UPB/DeepCoMP
f9f64873184bb53b5687ae62f8ba2b84da423692
[ "MIT" ]
19
2021-03-17T12:59:48.000Z
2022-03-24T09:04:32.000Z
deepcomp/util/env_setup.py
CN-UPB/DeepCoMP
f9f64873184bb53b5687ae62f8ba2b84da423692
[ "MIT" ]
1
2021-03-08T16:27:49.000Z
2021-03-08T16:27:49.000Z
deepcomp/util/env_setup.py
CN-UPB/DeepCoMP
f9f64873184bb53b5687ae62f8ba2b84da423692
[ "MIT" ]
6
2021-01-25T19:34:18.000Z
2022-03-20T05:56:33.000Z
"""Utility module for setting up different envs""" import numpy as np import structlog from shapely.geometry import Point from ray.rllib.agents.ppo import DEFAULT_CONFIG from ray.rllib.env.multi_agent_env import MultiAgentEnv from deepcomp.util.constants import SUPPORTED_ENVS, SUPPORTED_AGENTS, SUPPORTED_SHARING, SUPPORTED_UE_ARRIVAL, \ SUPPORTED_UTILITIES from deepcomp.env.single_ue.variants import RelNormEnv from deepcomp.env.multi_ue.central import CentralRelNormEnv from deepcomp.env.multi_ue.multi_agent import MultiAgentMobileEnv from deepcomp.env.entities.user import User from deepcomp.env.entities.station import Basestation from deepcomp.env.entities.map import Map from deepcomp.env.util.movement import RandomWaypoint from deepcomp.util.callbacks import CustomMetricCallbacks log = structlog.get_logger() def get_env_class(env_type): """Return the env class corresponding to the string type (from CLI)""" assert env_type in SUPPORTED_AGENTS, f"Environment type was {env_type} but has to be one of {SUPPORTED_AGENTS}." if env_type == 'single': # return DatarateMobileEnv # return NormDrMobileEnv return RelNormEnv if env_type == 'central': # return CentralDrEnv # return CentralNormDrEnv return CentralRelNormEnv # return CentralMaxNormEnv if env_type == 'multi': return MultiAgentMobileEnv def get_sharing_for_bs(sharing, bs_idx): """Return the sharing model for the given BS""" # if it's not mixed, it's the same for all BS if sharing != 'mixed': assert sharing in SUPPORTED_SHARING return sharing # else loop through the available sharing models sharing_list = ['resource-fair', 'rate-fair', 'proportional-fair'] return sharing_list[bs_idx % len(sharing_list)] def create_small_map(sharing_model): """ Create small map and 2 BS :returns: tuple (map, bs_list) """ map = Map(width=150, height=100) bs1 = Basestation('A', Point(50, 50), get_sharing_for_bs(sharing_model, 0)) bs2 = Basestation('B', Point(100, 50), get_sharing_for_bs(sharing_model, 1)) bs_list = [bs1, bs2] return map, bs_list def create_dyn_small_map(sharing_model, bs_dist=100, dist_to_border=10): """Small env with 2 BS and dynamic distance in between""" map = Map(width=2 * dist_to_border + bs_dist, height=2 * dist_to_border) bs1 = Basestation('A', Point(dist_to_border, dist_to_border), sharing_model) bs2 = Basestation('B', Point(dist_to_border + bs_dist, dist_to_border), sharing_model) return map, [bs1, bs2] def create_medium_map(sharing_model): """ Deprecated: Use dynamic medium env instead. Kept this to reproduce earlier results. Same as large env, but with map restricted to areas with coverage. Thus, optimal episode reward should be close to num_ues * eps_length * 10 (ie, all UEs are always connected) """ map = Map(width=205, height=85) bs1 = Basestation('A', Point(45, 35), sharing_model) bs2 = Basestation('B', Point(160, 35), sharing_model) bs3 = Basestation('C', Point(100, 85), sharing_model) bs_list = [bs1, bs2, bs3] return map, bs_list def create_dyn_medium_map(sharing_model, bs_dist=100, dist_to_border=10): """ Create map with 3 BS at equal distance. Distance can be varied dynamically. Map is sized automatically. Keep the same layout as old medium env here: A, B on same horizontal axis. C above in the middle """ # calculate vertical distance from A, B to C using Pythagoras y_dist = np.sqrt(bs_dist ** 2 - (bs_dist / 2) ** 2) # derive map size from BS distance and distance to border map_width = 2 * dist_to_border + bs_dist map_height = 2 * dist_to_border + y_dist map = Map(width=map_width, height=map_height) # BS A is located at bottom left corner with specified distance to border bs1 = Basestation('A', Point(dist_to_border, dist_to_border), get_sharing_for_bs(sharing_model, 0)) # other BS positions are derived accordingly bs2 = Basestation('B', Point(dist_to_border + bs_dist, dist_to_border), get_sharing_for_bs(sharing_model, 1)) bs3 = Basestation('C', Point(dist_to_border + (bs_dist / 2), dist_to_border + y_dist), get_sharing_for_bs(sharing_model, 2)) return map, [bs1, bs2, bs3] def create_large_map(sharing_model): """ Create larger map with 7 BS that are arranged in a typical hexagonal structure. :returns: Tuple(map, bs_list) """ map = Map(width=230, height=260) bs_list = [ # center Basestation('A', Point(115, 130), get_sharing_for_bs(sharing_model, 0)), # top left, counter-clockwise Basestation('B', Point(30, 80), get_sharing_for_bs(sharing_model, 1)), Basestation('C', Point(115, 30), get_sharing_for_bs(sharing_model, 2)), Basestation('D', Point(200, 80), get_sharing_for_bs(sharing_model, 3)), Basestation('E', Point(200, 180), get_sharing_for_bs(sharing_model, 4)), Basestation('F', Point(115, 230), get_sharing_for_bs(sharing_model, 5)), Basestation('G', Point(30, 180), get_sharing_for_bs(sharing_model, 6)), ] return map, bs_list def create_dyn_large_map(sharing_model, num_bs, dist_to_border=10): assert 1 <= num_bs <= 7, "Only support 1-7 BS in large env" _, bs_list = create_large_map(sharing_model) # take only selected BS bs_list = bs_list[:num_bs] # create map with size according to BS positions max_x, max_y = None, None for bs in bs_list: if max_x is None or bs.pos.x > max_x: max_x = bs.pos.x if max_y is None or bs.pos.y > max_y: max_y = bs.pos.y map = Map(width=max_x + dist_to_border, height=max_y + dist_to_border) return map, bs_list def create_ues(map, num_static_ues, num_slow_ues, num_fast_ues, util_func): """Create custom number of slow/fast UEs on the given map. Return UE list""" ue_list = [] id = 1 for i in range(num_static_ues): ue_list.append(User(str(id), map, pos_x='random', pos_y='random', movement=RandomWaypoint(map, velocity=0), util_func=util_func)) id += 1 for i in range(num_slow_ues): ue_list.append(User(str(id), map, pos_x='random', pos_y='random', movement=RandomWaypoint(map, velocity='slow'), util_func=util_func)) id += 1 for i in range(num_fast_ues): ue_list.append(User(str(id), map, pos_x='random', pos_y='random', movement=RandomWaypoint(map, velocity='fast'), util_func=util_func)) id += 1 return ue_list def create_custom_env(sharing_model): """Hand-created custom env. For demos or specific experiments.""" # map with 4 BS at distance of 100; distance 10 to border of map map = Map(width=194, height=120) bs_list = [ # left Basestation('A', Point(10, 60), get_sharing_for_bs(sharing_model, 0)), # counter-clockwise Basestation('B', Point(97, 10), get_sharing_for_bs(sharing_model, 1)), Basestation('C', Point(184, 60), get_sharing_for_bs(sharing_model, 2)), Basestation('D', Point(97, 110), get_sharing_for_bs(sharing_model, 3)), ] return map, bs_list def get_env(map_size, bs_dist, num_static_ues, num_slow_ues, num_fast_ues, sharing_model, util_func, num_bs=None): """Create and return the environment corresponding to the given map_size""" assert map_size in SUPPORTED_ENVS, f"Environment {map_size} is not one of {SUPPORTED_ENVS}." assert util_func in SUPPORTED_UTILITIES, \ f"Utility function {util_func} not supported. Supported: {SUPPORTED_UTILITIES}" # create map and BS list map, bs_list = None, None if map_size == 'small': map, bs_list = create_small_map(sharing_model) elif map_size == 'medium': map, bs_list = create_dyn_medium_map(sharing_model, bs_dist=bs_dist) elif map_size == 'large': if num_bs is None: map, bs_list = create_large_map(sharing_model) else: map, bs_list = create_dyn_large_map(sharing_model, num_bs) elif map_size == 'custom': map, bs_list = create_custom_env(sharing_model) # create UEs ue_list = create_ues(map, num_static_ues, num_slow_ues, num_fast_ues, util_func) return map, ue_list, bs_list def get_ue_arrival(ue_arrival_name): """Get the dict defining UE arrival over time based on the name provided via CLI""" assert ue_arrival_name in SUPPORTED_UE_ARRIVAL if ue_arrival_name is None: return None if ue_arrival_name == "oneupdown": return {10: 1, 30: -1} if ue_arrival_name == "updownupdown": return {10: 1, 20: -1, 30: 1, 40: -1} if ue_arrival_name == "3up2down": return {10: 3, 30: -2} if ue_arrival_name == "updown": return {10: 1, 15: 1, 20: 1, 40: 1, 50: -1, 60: -1} if ue_arrival_name == "largeupdown": return { 20: 1, 30: -1, 40: 1, # large increase up to 12 (starting at 1) 45: 1, 50: 1, 55: 2, 60: 3, 65: 2, 70: 1, # large decrease down to 1 75: -1, 80: -2, 85: -3, 90: -3, 95: -2 } raise ValueError(f"Unknown UE arrival name: {ue_arrival_name}") def create_env_config(cli_args): """ Create environment and RLlib config based on passed CLI args. Return config. :param cli_args: Parsed CLI args :return: The complete config for an RLlib agent, including the env & env_config """ env_class = get_env_class(cli_args.agent) map, ue_list, bs_list = get_env(cli_args.env, cli_args.bs_dist, cli_args.static_ues, cli_args.slow_ues, cli_args.fast_ues, cli_args.sharing, cli_args.util, num_bs=cli_args.num_bs) # this is for DrEnv and step utility # env_config = { # 'episode_length': eps_length, 'seed': seed, # 'map': map, 'bs_list': bs_list, 'ue_list': ue_list, 'dr_cutoff': 'auto', 'sub_req_dr': True, # 'curr_dr_obs': False, 'ues_at_bs_obs': False, 'dist_obs': False, 'next_dist_obs': False # } # this is for the custom NormEnv and log utility env_config = { 'episode_length': cli_args.eps_length, 'seed': cli_args.seed, 'map': map, 'bs_list': bs_list, 'ue_list': ue_list, 'rand_episodes': cli_args.rand_train, 'new_ue_interval': cli_args.new_ue_interval, 'reward': cli_args.reward, 'max_ues': cli_args.max_ues, 'ue_arrival': get_ue_arrival(cli_args.ue_arrival), # if enabled log_metrics: log metrics even during training --> visible on tensorboard # if disabled: log just during testing --> probably slightly faster training with less memory 'log_metrics': True, # custom animation rendering 'dashboard': cli_args.dashboard, 'ue_details': cli_args.ue_details, } # convert ue_arrival sequence to str keys as required by RLlib: https://github.com/ray-project/ray/issues/16215 if env_config['ue_arrival'] is not None: env_config['ue_arrival'] = {str(k): v for k, v in env_config['ue_arrival'].items()} # create and return the config config = DEFAULT_CONFIG.copy() # discount factor (default 0.99) # config['gamma'] = 0.5 # 0 = no workers/actors at all --> low overhead for short debugging; 2+ workers to accelerate long training config['num_workers'] = cli_args.workers config['seed'] = cli_args.seed # write training stats to file under ~/ray_results (default: False) config['monitor'] = True config['train_batch_size'] = cli_args.batch_size # default: 4000; default in stable_baselines: 128 # auto normalize obserations by subtracting mean and dividing by std (default: "NoFilter") # config['observation_filter'] = "MeanStdFilter" # NN settings: https://docs.ray.io/en/latest/rllib-models.html#built-in-model-parameters # configure the size of the neural network's hidden layers; default: [256, 256] # config['model']['fcnet_hiddens'] = [512, 512, 512] # LSTM settings config['model']['use_lstm'] = cli_args.lstm # config['model']['lstm_use_prev_action_reward'] = True # config['log_level'] = 'INFO' # ray logging default: warning # reset the env whenever the horizon/eps_length is reached config['horizon'] = cli_args.eps_length config['env'] = env_class config['env_config'] = env_config # callback for monitoring custom metrics config['callbacks'] = CustomMetricCallbacks config['log_level'] = 'ERROR' # for multi-agent env: https://docs.ray.io/en/latest/rllib-env.html#multi-agent-and-hierarchical if MultiAgentEnv in env_class.__mro__: # instantiate env to access obs and action space and num diff UEs env = env_class(env_config) # use separate policies (and NNs) for each agent if cli_args.separate_agent_nns: num_diff_ues = env.get_num_diff_ues() # create policies also for all future UEs if num_diff_ues > env.num_ue: log.warning("Varying num. UEs. Creating policy for all (future) UEs.", curr_num_ue=env.num_ue, num_diff_ues=num_diff_ues, new_ue_interval=env.new_ue_interval, ue_arrival=env.ue_arrival) ue_ids = [str(i + 1) for i in range(num_diff_ues)] else: ue_ids = [ue.id for ue in ue_list] config['multiagent'] = { # attention: ue.id needs to be a string! just casting it to str() here doesn't work; # needs to be consistent with obs keys --> easier, just use string IDs 'policies': {ue_id: (None, env.observation_space, env.action_space, {}) for ue_id in ue_ids}, 'policy_mapping_fn': lambda agent_id: agent_id } # or: all UEs use the same policy and NN else: config['multiagent'] = { 'policies': {'ue': (None, env.observation_space, env.action_space, {})}, 'policy_mapping_fn': lambda agent_id: 'ue' } return config
44.37931
128
0.67034
0
0
0
0
0
0
0
0
5,216
0.36844
4799c59de86fb0c7aac927367ccd22e4581ad71b
905
py
Python
star_types/parameters.py
annalieNK/star-types
194ffa6f03db175ae8ac6fbc912bb8a45c52cbfe
[ "MIT" ]
null
null
null
star_types/parameters.py
annalieNK/star-types
194ffa6f03db175ae8ac6fbc912bb8a45c52cbfe
[ "MIT" ]
null
null
null
star_types/parameters.py
annalieNK/star-types
194ffa6f03db175ae8ac6fbc912bb8a45c52cbfe
[ "MIT" ]
null
null
null
def parameters(model_type): if model_type == 'random forest': param_grid = { 'classifier__estimator__n_estimators': [50, 100], 'classifier__estimator__max_features' :['sqrt', 'log2'], 'classifier__estimator__max_depth' : [4,6,8] } elif model_type == 'logistic regression': param_grid = { 'classifier__estimator__C': [0.1, 1.0, 10] } elif model_type == 'support vector machine': param_grid = { 'classifier__estimator__C': [0.1, 1.0, 10], 'classifier__estimator__kernel': ['linear'], 'classifier__estimator__probability': [True] } elif model_type == 'kneighbors': param_grid = { 'classifier__estimator__n_neighbors': [1, 3, 5], 'classifier__estimator__weights': ['uniform', 'distance'] } return param_grid
36.2
69
0.581215
0
0
0
0
0
0
0
0
406
0.448619
479ba82b2ef03b26d431347ee226aa3e2162ff17
221
py
Python
PYTHON/Exemplos/Aula 1/Ex004.py
B1linha/ADS---Mackenzie
0dc53418ff7580836f6a64c5370e204e8841d1a9
[ "MIT" ]
null
null
null
PYTHON/Exemplos/Aula 1/Ex004.py
B1linha/ADS---Mackenzie
0dc53418ff7580836f6a64c5370e204e8841d1a9
[ "MIT" ]
null
null
null
PYTHON/Exemplos/Aula 1/Ex004.py
B1linha/ADS---Mackenzie
0dc53418ff7580836f6a64c5370e204e8841d1a9
[ "MIT" ]
null
null
null
""" Faça um programa que receba o salário de um funcionário, calcule e mostre o novo salário, sabende-se que este sofreu um aumento de 25%""" sal = float(input('Salário:')) nsal = sal*1.25 print ('novo salário = ', nsal)
55.25
142
0.710407
0
0
0
0
0
0
0
0
174
0.76652
479c044c04a29437935975e735d0a42de577c613
1,866
py
Python
Square_Lattice/obs.py
suron-003/Dynamic-Structure-Factor
908ebcd8e6db5c6bf19a3a782c3b0a4b97a35f8b
[ "MIT" ]
1
2022-01-25T16:36:28.000Z
2022-01-25T16:36:28.000Z
Square_Lattice/obs.py
suron-003/Dynamic-Structure-Factor
908ebcd8e6db5c6bf19a3a782c3b0a4b97a35f8b
[ "MIT" ]
null
null
null
Square_Lattice/obs.py
suron-003/Dynamic-Structure-Factor
908ebcd8e6db5c6bf19a3a782c3b0a4b97a35f8b
[ "MIT" ]
null
null
null
import numpy as np from numpy import random, linspace, cos, pi import math import random import matplotlib.pyplot as plt from scipy.fft import fft, fftfreq from scipy.fft import rfft, rfftfreq import copy from mpl_toolkits.mplot3d import axes3d from mpl_toolkits import mplot3d from plotly import __version__ import pandas as pd from scipy.optimize import fsolve import cmath from numba import jit from numpy import linalg as LA from scipy.linalg import expm, norm from scipy.integrate import odeint import time import numba from parameters import * from lattice import * import plotly.offline as pyo import plotly.graph_objs as go from plotly.offline import iplot import plotly.figure_factory as ff import plotly.express as px @jit(nopython=True) def ene(lat): e = 0 for x in range(0,s): for y in range(0,s): x1 = int((x+1)%s) x2 = int((x-1)%s) y1 = int((y+1)%s) y2 = int((y-1)%s) ej = (J*(np.dot(lat[x,y],lat[x1,y]+lat[x2,y]+lat[x,y1]+lat[x,y2]))) exx1 = -1*d*np.dot(dxx1,np.cross(lat[x,y],lat[x1,y])) exx2 = -1*d*np.dot(dxx2,np.cross(lat[x,y],lat[x2,y])) eyy1 = -1*d*np.dot(dyy1,np.cross(lat[x,y],lat[x,y1])) eyy2 = -1*d*np.dot(dyy2,np.cross(lat[x,y],lat[x,y2])) edm = (exx1 + exx2 + eyy1 + eyy2) eb = -1*b*np.dot(b_vec,lat[x,y]) e = e + (ej/2 + edm/2 + eb) return e @jit(nopython=True) def H_eff(lat,x,y): x1 = int((x+1)%s) x2 = int((x-1)%s) y1 = int((y+1)%s) y2 = int((y-1)%s) dxx1 = np.array([0.0,-1.0,0.0]) dxx2 = np.array([0.0,1.0,0.0]) dyy2 = np.array([1.0,0.0,0.0]) dyy1 = np.array([-1.0,0.0,0.0]) b_vec = np.array([0.0,0.0,1.0]) heff = (-1*b*gamma*b_vec) + (0.5*J*(lat[x1,y] + lat[x2,y] + lat[x,y1] + lat[x,y2])) - d*(0.5*(np.cross(dxx1,lat[x1,y]) + np.cross(dxx2,lat[x2,y]) + np.cross(dyy1,lat[x,y1]) + np.cross(dyy2,lat[x,y2]))) return heff
30.096774
203
0.633976
0
0
0
0
1,134
0.607717
0
0
0
0
479c652f9d6be7f731af9a0eaf026a8198211ed7
1,947
py
Python
src/test/test_cmdparse_qmp.py
dougpuob/qemu-tasker
58a24090016abebcda8e95c382bceaef453ea981
[ "MIT" ]
null
null
null
src/test/test_cmdparse_qmp.py
dougpuob/qemu-tasker
58a24090016abebcda8e95c382bceaef453ea981
[ "MIT" ]
null
null
null
src/test/test_cmdparse_qmp.py
dougpuob/qemu-tasker
58a24090016abebcda8e95c382bceaef453ea981
[ "MIT" ]
null
null
null
import unittest import sys import os import sys import json TEST_DIR = os.path.dirname(os.path.abspath(__file__)) PROJECT_DIR = os.path.abspath(os.path.join(TEST_DIR, os.pardir)) sys.path.insert(0, PROJECT_DIR) from module.cmdparse import cmdargs class test_cmdparse(unittest.TestCase): def __init__(self, methodName: str = ...) -> None: super().__init__(methodName) def test_qmp_no_arg(self): sys.argv = ['qemu-tasker.py', 'qmp', '--taskid', '10010', '--execute', 'human-monitor-command'] args = cmdargs().get_parsed_args() self.assertEqual(args.taskid, 10010) self.assertEqual(args.command, "qmp") self.assertEqual(args.execute, "human-monitor-command") def test_qmp_argsjson1(self): sys.argv = ['qemu-tasker.py', 'qmp', '--taskid', '10010', '--execute', 'human-monitor-command', '--argsjson', '{"command-line" : "info version" }'] args = cmdargs().get_parsed_args() self.assertEqual(args.taskid, 10010) self.assertEqual(args.command, "qmp") self.assertEqual(args.execute, "human-monitor-command") self.assertEqual(args.argsjson, '{"command-line" : "info version" }') def test_qmp_argsjson2(self): argsjson = {"command-line" : "info version" } sys.argv = ['qemu-tasker.py', 'qmp', '--taskid', '10010', '--execute', 'human-monitor-command', '--argsjson', json.dumps(argsjson)] args = cmdargs().get_parsed_args() self.assertEqual(args.taskid, 10010) self.assertEqual(args.command, "qmp") self.assertEqual(args.execute, "human-monitor-command") self.assertEqual(args.argsjson, json.dumps(argsjson)) if __name__ == '__main__': unittest.main()
31.918033
77
0.582435
1,647
0.845917
0
0
0
0
0
0
434
0.222907
479ce552b6ca46a4ea68c0270c6749107ab46cb3
3,498
py
Python
ebbp/ebb_fit_prior.py
uttiyamaji/ebbp
d1b7270b7741cab4b18a9f54b47060f90ac1fc2c
[ "MIT" ]
null
null
null
ebbp/ebb_fit_prior.py
uttiyamaji/ebbp
d1b7270b7741cab4b18a9f54b47060f90ac1fc2c
[ "MIT" ]
null
null
null
ebbp/ebb_fit_prior.py
uttiyamaji/ebbp
d1b7270b7741cab4b18a9f54b47060f90ac1fc2c
[ "MIT" ]
null
null
null
""" ebb_fit_prior : fits a Beta prior by estimating the parameters from the data using method of moments and MLE estimates augment : given data and prior, computes the shrinked estimate, credible intervals and augments those in the given dataframe check_fit : plots the true average and the shrinked average """ import numpy as np import pandas as pd from scipy.stats import beta as beta_dist from dataclasses import dataclass import matplotlib.pyplot as plt @dataclass class Beta: """ minimal Beta class, for prior and posterior objects""" alpha: float beta: float def pdf(self, x): return beta_dist.pdf(x, self.alpha, self.beta) pass def plot(self, x, n): """ plots the prior pdf density over the data histogram""" # add various plotting args x_ax = np.linspace(0,1,1000) rv = beta_dist(self.alpha, self.beta) p = x/n plt.hist(p, density = True) plt.plot(x_ax, rv.pdf(x_ax)) plt.title(f'Beta({self.alpha.round(2)},{self.beta.round(2)})') plt.show() def ebb_fit_prior(x, n, method = 'mm', start = (0.5,0.5)): p = x/n if (method == 'mm'): mu, sig = np.mean(p), np.var(p) a = ((1-mu)/sig - 1/mu)*mu**2 b = a*(1/mu - 1) fitted_prior = Beta(a,b) pass elif (method == 'mle'): # starting value # if (np.isnan(start)): # mm_est = ebb_fit_prior(x, n, 'mm') # start = (mm_est.alpha, mm_est.beta) # #print(start) # likelihood function: f(a, b) def likelihood(pars): return (-np.sum(beta_dist.pdf(p, pars[0], pars[1]))) # optimization function: over a series of params, optimise likelihood # outp = minimize(likelihood, x0 = start, method = 'BFGS') # fitted_prior = Beta(outp.x[0], outp.x[1]) a,b,*ls = beta_dist.fit(p) fitted_prior = Beta(a,b) pass else: return ('Method should be MM or MLE') return fitted_prior pass def augment(prior, data, x, n): # compute the estimates post_alpha = prior.alpha + x post_beta = prior.beta + n - x eb_est = (x + prior.alpha)/(n + prior.alpha + prior.beta) posterior = Beta(post_alpha, post_beta) # compute the posterior credible intervals post_l = beta_dist.ppf(0.025, posterior.alpha, posterior.beta) post_u = beta_dist.ppf(0.975, posterior.alpha, posterior.beta) # add the column new_cols = pd.DataFrame({'alpha':post_alpha, 'beta': post_beta, 'eb_est': eb_est, 'cred_lower': post_l, 'cred_upper':post_u}) aug_df = pd.concat([data, new_cols], axis = 1) return aug_df pass def check_fit(aug_df): plt.plot(aug_df.est, aug_df.eb_est) plt.show() if __name__ == '__main__': x = np.random.randint(0,50,20) n = np.random.randint(50,100, 20) p = x/n dt = pd.DataFrame({'S':x, 'Tot':n, 'est':p}) est1 = ebb_fit_prior(x,n, 'mm') print(est1) est1.plot(x, n) new_dt = augment(est1, dt, dt.S, dt.Tot) print(new_dt.head(10)) check_fit(new_dt) print('=============================') est2 = ebb_fit_prior(x,n,'mle') print(est2) est2.plot(x,n) new_dt = augment(est2, dt, dt.S, dt.Tot) print(new_dt.head(10)) check_fit(new_dt)
26.104478
129
0.57004
607
0.173528
0
0
618
0.176672
0
0
1,079
0.308462
479df66e863ce32ea10d321a13e0395597727f6a
1,554
py
Python
shopping.py
scharlau/shopping_exercise_p
f6b59ba38408dcd9f66f79814ad6a7df167e8fa1
[ "Unlicense" ]
1
2021-02-23T15:56:22.000Z
2021-02-23T15:56:22.000Z
shopping.py
scharlau/shopping_exercise_p
f6b59ba38408dcd9f66f79814ad6a7df167e8fa1
[ "Unlicense" ]
null
null
null
shopping.py
scharlau/shopping_exercise_p
f6b59ba38408dcd9f66f79814ad6a7df167e8fa1
[ "Unlicense" ]
3
2022-02-23T11:17:12.000Z
2022-03-01T10:22:40.000Z
import sqlite3 from flask import Flask, render_template app = Flask(__name__) # database details - to remove some duplication db_name = 'shopping_data.db' @app.route('/') def index(): return render_template('index.html') @app.route('/customers') def customers(): conn = sqlite3.connect(db_name) conn.row_factory = sqlite3.Row cur = conn.cursor() # get results from customers cur.execute("select * from customers") rows = cur.fetchall() conn.close() return render_template('customers.html', rows=rows) @app.route('/customer_details/<id>') def customer_details(id): conn = sqlite3.connect(db_name) conn.row_factory = sqlite3.Row cur = conn.cursor() # get results from customers cur.execute("select * from customers WHERE id=?", (id)) customer = cur.fetchall() conn.close() return render_template('customer_details.html', customer=customer) @app.route('/orders') def orders(): conn = sqlite3.connect(db_name) conn.row_factory = sqlite3.Row cur = conn.cursor() # get results from orders cur.execute("select * from orders") rows = cur.fetchall() conn.close() return render_template('orders.html', rows=rows) @app.route('/order_details/<id>') def order_details(id): conn = sqlite3.connect(db_name) conn.row_factory = sqlite3.Row cur = conn.cursor() # get results from orders cur.execute("select * from orders WHERE id=?", (id)) order = cur.fetchall() conn.close() return render_template('order_details.html', order=order)
28.254545
70
0.684041
0
0
0
0
1,388
0.893179
0
0
440
0.28314
479e8f21283f73a7284a6977ee7935c8576954ca
3,372
py
Python
Month 01/Week 04/Day 03/a.py
KevinKnott/Coding-Review
6a83cb798cc317d1e4357ac6b2b1fbf76fa034fb
[ "MIT" ]
null
null
null
Month 01/Week 04/Day 03/a.py
KevinKnott/Coding-Review
6a83cb798cc317d1e4357ac6b2b1fbf76fa034fb
[ "MIT" ]
null
null
null
Month 01/Week 04/Day 03/a.py
KevinKnott/Coding-Review
6a83cb798cc317d1e4357ac6b2b1fbf76fa034fb
[ "MIT" ]
null
null
null
# Decode Ways: https://leetcode.com/problems/decode-ways/ # A message containing letters from A-Z can be encoded into numbers using the following mapping: # 'A' -> "1" # 'B' -> "2" # ... # 'Z' -> "26" # To decode an encoded message, all the digits must be grouped then mapped back into letters using the reverse of the mapping above (there may be multiple ways). For example, "11106" can be mapped into: # "AAJF" with the grouping (1 1 10 6) # "KJF" with the grouping (11 10 6) # Note that the grouping (1 11 06) is invalid because "06" cannot be mapped into 'F' since "6" is different from "06". # Given a string s containing only digits, return the number of ways to decode it. # The answer is guaranteed to fit in a 32-bit integer. class Solution: def numDecodings(self, s: str) -> int: self.memo = {} def dfs(index=0): if index in self.memo: return self.memo[index] if index == len(s): return 1 if s[index] == '0': return 0 if index == len(s) - 1: return 1 # Go one count = dfs(index+1) # Go two if int(s[index:index+2]) <= 26: count += dfs(index+2) # cache self.memo[index] = count return count return dfs() # The above works and cuts out a lot of the problems that we have however this still runs in o(N) and o(N) # Can we improve on this solution? I think so this is almost like the fibonaci sequence where we can keep track of the last # two answers and create the new one thus moving up and using only o(1) space def numDecodingsImproved(self, s): if s[0] == '0': return 0 # If the first number isn't 0 then we have a valid case # where two back is 1 but we skip over it by starting range at 1 oneBack = 1 twoBack = 1 for i in range(1, len(s)): # Get a temp variable for combining the two results current = 0 # make sure we don't have 0 because that makes going back two 0 # Also oneBack should be 1 if it isnt 0 as 0 is the only invalid digit if s[i] == '0': current = oneBack twoDigit = int(s[i-1: i+1]) # Make sure that our new two digit is between 10-26 (we don't want 35) if twoDigit >= 10 and twoDigit <= 26: current += twoBack # update the twoback and oneback to new values twoBack = oneBack oneBack = current return oneBack # So the above should work but it does so because it is like the fib sequence we only need two vals to create thrid 1 1 = 1 2 # so you keep the value that you need and discard outside of the range like a window # Score Card # Did I need hints? N # Did you finish within 30 min? Y 25 # Was the solution optimal? I was able to create the optimal solution although I kind of skipped over the bottom up and tabulation that helps with # creating the optimal solution as I have seen it before with the fib sequence # Were there any bugs? I accidently pointed the second algo to current (because it is correct) but really I need to return oneBack because # python can possibly clean up that val after the loop # 5 5 5 3 = 4.5
34.762887
202
0.613582
1,898
0.562871
0
0
0
0
0
0
2,197
0.651542
479ebacd8680e1c9ee8fd4892014756c931c3f71
7,503
py
Python
word2vec.py
online-behaviour/machine-learning
2ff0e83905985ec644699ece44c75dd7422a7426
[ "Apache-2.0" ]
2
2017-08-18T13:14:38.000Z
2021-09-02T07:45:41.000Z
word2vec.py
online-behaviour/machine-learning
2ff0e83905985ec644699ece44c75dd7422a7426
[ "Apache-2.0" ]
null
null
null
word2vec.py
online-behaviour/machine-learning
2ff0e83905985ec644699ece44c75dd7422a7426
[ "Apache-2.0" ]
3
2020-11-18T11:55:45.000Z
2021-04-27T10:02:27.000Z
#!/usr/bin/python -W all """ word2vec.py: process tweets with word2vec vectors usage: word2vec.py [-x] [-m model-file [-l word-vector-length]] -w word-vector-file -T train-file -t test-file notes: - optional model file is a text file from which the word vector file is built - option x writes tokenized sentences to stdout 20170504 erikt(at)xs4all.nl """ # import modules & set up logging import gensim import getopt import logging import numpy import naiveBayes import os.path import re import sys from scipy.sparse import csr_matrix from sklearn.naive_bayes import BernoulliNB from sklearn.naive_bayes import MultinomialNB from sklearn.naive_bayes import GaussianNB from sklearn import svm # constants COMMAND = "word2vec.py" TWEETCOLUMN = 4 # column tweet text in test data file dutch-2012.csv CLASSCOLUMN = 9 # column tweeting behaviour (T3) in file dutch-2012.csv IDCOLUMN = 0 # column with the id of the current tweet PARENTCOLUMN = 5 # column of the id of the parent of the tweet if it is a retweet or reply (otherwise: None) HASHEADING = True MINCOUNT = 2 USAGE = "usage: "+COMMAND+" [-m model-file] -w word-vector-file -T train-file -t test-file\n" # input file names trainFile = "" testFile = "" wordvectorFile = "" modelFile = "" # length of word vectors maxVector = 200 # exporting tokenized sentences exportTokens = False selectedTokens = {} # check for command line options def checkOptions(): global trainFile global testFile global wordvectorFile global modelFile global maxVector global exportTokens try: options = getopt.getopt(sys.argv,"T:t:w:m:l:x",[]) except: sys.exit(USAGE) for option in options[0]: if option[0] == "-T": trainFile = option[1] elif option[0] == "-t": testFile = option[1] elif option[0] == "-w": wordvectorFile = option[1] elif option[0] == "-m": modelFile = option[1] elif option[0] == "-l": maxVector = int(option[1]) elif option[0] == "-x": exportTokens = True if trainFile == "" or testFile == "" or wordvectorFile == "": sys.exit(USAGE) # create data matrix (no sparse version needed) def makeVectors(tokenizeResults,wordvecModel,selectedTokens): tweetVectors = numpy.zeros((len(tokenizeResults),maxVector),dtype=numpy.float64) # process all tweets seen = {} for i in range(0,len(tokenizeResults)): # process all tokens in this tweet for token in tokenizeResults[i]: # if the token is present in the word vector model if token in wordvecModel and token in selectedTokens and not token in seen: # add (+) the word vector of this token to the tweet vector tweetVectors[i] += wordvecModel[token] seen[token] = True # the result: a tweet vector which is the sum of its token vectors return(tweetVectors) # change the class vector into a binary vector def makeBinary(vector): outVector = [] for e in vector: if e == naiveBayes.OTHER: outVector.append(0) else: outVector.append(1) return(outVector) # read wordvector file from file in format of fasttext: # first line: nbrOfVectors vectorLength; rest: token vector def readFasttextModel(wordvectorFile): global maxVector try: inFile = open(wordvectorFile,"r") except: sys.exit(COMMAND+": cannot read file "+wordvectorFile) wordvectorModel = {} lineCounter = 0 expectedLines = -1 for line in inFile: line = line.rstrip() fields = line.split() lineCounter += 1 if lineCounter == 1: if len(fields) != 2: sys.exit(COMMAND+": unexpected first line of file "+wordvectorFile+": "+line) expectedLines = int(fields[0]) maxVector = int(fields[1]) else: if len(fields) != 1+maxVector: sys.exit(COMMAND+": unexpected line in file "+wordvectorFile+": "+line) token = fields.pop(0) for i in range(0,len(fields)): fields[i] = float(fields[i]) wordvectorModel[token] = fields inFile.close() return(wordvectorModel) # main function starts here checkOptions() # get target classes from training data file targetClasses = naiveBayes.getTargetClasses(trainFile) if len(targetClasses) == 0: sys.exit(COMMAND+": cannot find target classes\n") # if required: train the word vector model and save it to file if modelFile != "": # read the model data readDataResults = naiveBayes.readData(modelFile,targetClasses[0]) # tokenize the model data tokenizeResults = naiveBayes.tokenize(readDataResults["text"]) # build the word vectors (test sg=1,window=10) wordvecModel = gensim.models.Word2Vec(tokenizeResults, min_count=MINCOUNT, size=maxVector) # save the word vectors wordvecModel.save(wordvectorFile) # load the word vector model from file patternNameVec = re.compile("\.vec$") if not patternNameVec.search(wordvectorFile): print >> sys.stderr,"loading gensim vector model from file: %s" % (wordvectorFile) # read standard file format from gensim wordvecModel = gensim.models.Word2Vec.load(wordvectorFile) else: print >> sys.stderr,"loading fasttext vector model from file: %s" % (wordvectorFile) # read file format from fasttext wordvecModel = readFasttextModel(wordvectorFile) # read training data, tokenize data, make vector matrix readDataResults = naiveBayes.readData(trainFile,"") tokenizeResults = naiveBayes.tokenize(readDataResults["text"]) # check if we need to export tokens if exportTokens: for i in range(0,len(tokenizeResults)): sys.stdout.write("__label__"+readDataResults["classes"][i]) for j in range(0,len(tokenizeResults[i])): sys.stdout.write(" ") sys.stdout.write(unicode(tokenizeResults[i][j]).encode('utf8')) sys.stdout.write("\n") sys.exit() # select tokens to be used in model, based on token frequency selectedTokens = naiveBayes.selectFeatures(tokenizeResults,MINCOUNT) makeVectorsResultsTrain = makeVectors(tokenizeResults,wordvecModel,selectedTokens) # the matrix can be saved to file and reloaded in next runs but this does not gain much time # read test data, tokenize data, make vector matrix readDataResults = naiveBayes.readData(testFile,"") tokenizeResults = naiveBayes.tokenize(readDataResults["text"]) makeVectorsResultsTest = makeVectors(tokenizeResults,wordvecModel,selectedTokens) # run binary svm experiments: one for each target class for targetClass in targetClasses: # read the training and test file again to get the right class distribution for this target class readDataResultsTrain = naiveBayes.readData(trainFile,targetClass) readDataResultsTest = naiveBayes.readData(testFile,targetClass) # get binary version of train classes binTrainClasses = makeBinary(readDataResultsTrain["classes"]) # perform svm experiment: http://scikit-learn.org/stable/modules/svm.html (1.4.1.1) clf = svm.SVC(decision_function_shape='ovo') # definition clf.fit(makeVectorsResultsTrain,binTrainClasses) # training outFile = open(testFile+".out."+targetClass,"w") # output file for test results scores = clf.decision_function(makeVectorsResultsTest) # process all test items for i in range(0,len(makeVectorsResultsTest)): guess = "O" if scores[i] >= 0: guess = targetClass print >>outFile, "# %d: %s %s %0.3f" % (i,readDataResultsTest["classes"][i],guess,scores[i]) outFile.close()
40.33871
114
0.702786
0
0
0
0
0
0
0
0
2,675
0.356524
479f58c93d75ceaaa8c1e6a8d36c5a44e2d8377b
307
py
Python
methylprep/processing/__init__.py
WonyoungCho/methylprep
4e34f62be969158453ba9b05b7629433f9bbba8b
[ "MIT" ]
5
2019-08-28T08:27:16.000Z
2020-03-11T17:20:01.000Z
methylprep/processing/__init__.py
WonyoungCho/methylprep
4e34f62be969158453ba9b05b7629433f9bbba8b
[ "MIT" ]
16
2021-04-08T22:02:58.000Z
2022-03-18T17:30:50.000Z
methylprep/processing/__init__.py
WonyoungCho/methylprep
4e34f62be969158453ba9b05b7629433f9bbba8b
[ "MIT" ]
3
2020-05-21T10:16:24.000Z
2020-08-30T09:26:52.000Z
from .pipeline import SampleDataContainer, run_pipeline, make_pipeline from .preprocess import preprocess_noob from .postprocess import consolidate_values_for_sheet __all__ = [ 'SampleDataContainer', 'preprocess_noob', 'run_pipeline', 'make_pipeline,', 'consolidate_values_for_sheet' ]
25.583333
70
0.781759
0
0
0
0
0
0
0
0
98
0.319218
47a0a4fbe45ee5f24ba893991497ace327ecbebb
36
py
Python
lib/jnpr/eznc/runstat/__init__.py
cro/py-junos-eznc
4c111476cc8eb7599462379ddf55743ae30bbf5c
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
lib/jnpr/eznc/runstat/__init__.py
cro/py-junos-eznc
4c111476cc8eb7599462379ddf55743ae30bbf5c
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
lib/jnpr/eznc/runstat/__init__.py
cro/py-junos-eznc
4c111476cc8eb7599462379ddf55743ae30bbf5c
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
from .rsmaker import RunstatMaker
9
33
0.805556
0
0
0
0
0
0
0
0
0
0
47a1196cb4630db570dad1f74a29081f22292d56
291
py
Python
Day 4/Ex3: Treasure Map.py
Nishi-16-K/100DaysCodeChallenge-Python-
96df953bbc60c2bf8802cf31ed6c593469521482
[ "MIT" ]
1
2021-08-29T12:44:23.000Z
2021-08-29T12:44:23.000Z
Day 4/Ex3: Treasure Map.py
Nishi-16-K/100DaysofCodeChallenge-Python
96df953bbc60c2bf8802cf31ed6c593469521482
[ "MIT" ]
null
null
null
Day 4/Ex3: Treasure Map.py
Nishi-16-K/100DaysofCodeChallenge-Python
96df953bbc60c2bf8802cf31ed6c593469521482
[ "MIT" ]
null
null
null
row1 = ["⬜️","⬜️","⬜️"] row2 = ["⬜️","⬜️","⬜️"] row3 = ["⬜️","⬜️","⬜️"] map = [row1, row2, row3] print(f"{row1}\n{row2}\n{row3}") position = input("Where do you want to put the treasure? ") col = int(position[0]) ro = int(position[1]) map[ro-1][col-1] = "X" print(f"{row1}\n{row2}\n{row3}")
26.454545
59
0.515464
0
0
0
0
0
0
0
0
166
0.507645
47a573807a7fa2158676c40f6ae41faaea77de33
1,809
py
Python
noto-emoji-extra/gen-couple-kiss.py
PoomSmart/EmojiFonts
43f4f2bc6e8986cc2f5bc317e50381774f02316f
[ "MIT" ]
3
2022-02-19T07:29:41.000Z
2022-03-03T07:24:14.000Z
noto-emoji-extra/gen-couple-kiss.py
PoomSmart/EmojiFonts
43f4f2bc6e8986cc2f5bc317e50381774f02316f
[ "MIT" ]
1
2022-03-13T23:00:19.000Z
2022-03-14T16:12:12.000Z
noto-emoji-extra/gen-couple-kiss.py
PoomSmart/EmojiFonts
43f4f2bc6e8986cc2f5bc317e50381774f02316f
[ "MIT" ]
1
2022-02-19T13:32:11.000Z
2022-02-19T13:32:11.000Z
import xml.etree.ElementTree as ET from shared import * # neutral for skin in skins: name = f'{font}/emoji_u1f48f.svg' if skin == 'none' else f'{font}/emoji_u1f48f_{skin}.svg' left = ET.parse(name).getroot() right = ET.parse(name).getroot() remove(left, 2) remove(left, 1) remove(right, 0) write_dual(left, right, '1f9d1', '1f9d1', skin, '1f48b') # neutral silhouette name = f'{font}/emoji_u1f48f.svg' left = ET.parse(name).getroot() right = ET.parse(name).getroot() remove(left, 2) remove(left, 1) remove(right, 0) find_set_color(left) find_set_color(right) left_out = ET.ElementTree(left) left_out.write('svgs/silhouette_1f9d1_1f48b.l.svg', encoding='utf-8') right_out = ET.ElementTree(right) right_out.write('svgs/silhouette_1f9d1_1f48b.r.svg', encoding='utf-8') # woman, man silhouette for g in ['1f469', '1f468']: name = f'{font}/emoji_u{g}_200d_2764_200d_1f48b_200d_{g}.svg' left = ET.parse(name).getroot() right = ET.parse(name).getroot() remove(left, 2) remove(left, 1) remove(right, 0) find_set_color(left) find_set_color(right) left_out = ET.ElementTree(left) left_out.write(f'svgs/silhouette_{g}_1f48b.l.svg', encoding='utf-8') right_out = ET.ElementTree(right) right_out.write(f'svgs/silhouette_{g}_1f48b.r.svg', encoding='utf-8') # dual woman, dual man for g in ['1f469', '1f468']: for skin in skins: if skin == 'none': name = f'{font}/emoji_u{g}_200d_2764_200d_1f48b_200d_{g}.svg' else: name = f'{font}/emoji_u{g}_{skin}_200d_2764_200d_1f48b_200d_{g}_{skin}.svg' left = ET.parse(name).getroot() right = ET.parse(name).getroot() remove(left, 2) remove(left, 1) remove(right, 0) write_dual(left, right, g, g, skin, '1f48b')
32.303571
94
0.661139
0
0
0
0
0
0
0
0
569
0.314538
47a5912698e4015d5f8165df118a9d812fd9c116
488
py
Python
wrong_settings.py
kutayg/gameQuest
1730ea8810a54afff50fbb5eab8fb5290eed6222
[ "MIT" ]
null
null
null
wrong_settings.py
kutayg/gameQuest
1730ea8810a54afff50fbb5eab8fb5290eed6222
[ "MIT" ]
null
null
null
wrong_settings.py
kutayg/gameQuest
1730ea8810a54afff50fbb5eab8fb5290eed6222
[ "MIT" ]
null
null
null
# © 2019 KidsCanCode LLC / All rights reserved. # Game options/settings TITLE = "Jumpy!" WIDTH = 480 HEIGHT = 600 FPS = 60 # Environment options GRAVITY = 9.8 # Player properties PLAYER_ACC = 0.5 PLAYER_FRICTION = -0.01 PLAYER_JUMPPOWER = 10 # Define colors # I changed the screen color to aqua, the platform color to orange, and the player color to purple WHITE = (255, 255, 255) AQUA = (0, 255, 255) RED = (255, 0, 0) ORANGE = (255, 101, 0) BLUE = (0, 0, 255) PURPLE = (128, 0, 128)
20.333333
98
0.684426
0
0
0
0
0
0
0
0
232
0.474438
47a75c9fd27c1c4e7e7447cf693a765246360655
1,446
py
Python
yc164/518.py
c-yan/yukicoder
cdbbd65402177225dd989df7fe01f67908484a69
[ "MIT" ]
null
null
null
yc164/518.py
c-yan/yukicoder
cdbbd65402177225dd989df7fe01f67908484a69
[ "MIT" ]
null
null
null
yc164/518.py
c-yan/yukicoder
cdbbd65402177225dd989df7fe01f67908484a69
[ "MIT" ]
null
null
null
def r2i(s): i = 0 result = 0 while i < len(s): a = {'IV': 4, 'IX': 9, 'XL': 40, 'XC': 90, 'CD': 400, 'CM': 900} if s[i:i + 2] in a: result += a[s[i:i + 2]] i += 2 continue b = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000} result += b[s[i]] i += 1 return result def i2r(i): if i > 3999: return 'ERROR' result = '' while i != 0: if i >= 1000: result += 'M' i -= 1000 elif i >= 900: result += 'CM' i -= 900 elif i >= 500: result += 'D' i -= 500 elif i >= 400: result += 'CD' i -= 400 elif i >= 100: result += 'C' i -= 100 elif i >= 90: result += 'XC' i -= 90 elif i >= 50: result += 'L' i -= 50 elif i >= 40: result += 'XL' i -= 40 elif i >= 10: result += 'X' i -= 10 elif i >= 9: result += 'IX' i -= 9 elif i >= 5: result += 'V' i -= 5 elif i >= 4: result += 'IV' i -= 4 elif i >= 1: result += 'I' i -= 1 return result N = int(input()) R = input().split() print(i2r(sum(r2i(r) for r in R)))
21.58209
77
0.310512
0
0
0
0
0
0
0
0
99
0.068465
47a795b1d3c2fd7990f98fee6d037bc7e104529b
966
py
Python
asynapplicationinsights/channel/abstractions.py
RobertoPrevato/aioapplicationinsights
c72721c6ed0e64b4e5bfecbcd3dde62f7c6ea120
[ "MIT" ]
2
2018-08-13T14:26:31.000Z
2019-12-01T01:03:10.000Z
asynapplicationinsights/channel/abstractions.py
RobertoPrevato/aioapplicationinsights
c72721c6ed0e64b4e5bfecbcd3dde62f7c6ea120
[ "MIT" ]
4
2018-10-09T20:32:59.000Z
2018-12-09T20:46:09.000Z
asynapplicationinsights/channel/abstractions.py
RobertoPrevato/aioapplicationinsights
c72721c6ed0e64b4e5bfecbcd3dde62f7c6ea120
[ "MIT" ]
null
null
null
from asyncio import Queue, QueueEmpty from abc import ABC, abstractmethod from typing import List class TelemetryChannel(ABC): def __init__(self): self._queue = Queue() self._max_length = 500 def get(self): try: return self._queue.get_nowait() except QueueEmpty: return None async def put(self, item): if not item: return await self._queue.put(item) if self.should_flush(): await self.flush() def should_flush(self) -> bool: return self._max_length <= self._queue.qsize() async def flush(self): data = [] while True: item = self.get() if not item: break data.append(item) if data: await self.send(data) @abstractmethod async def send(self, data: List): pass @abstractmethod async def dispose(self): pass
21
54
0.555901
865
0.895445
0
0
123
0.127329
467
0.483437
0
0
47a8d279cbfb373533f6a00a0322f66158d1d281
759
py
Python
2021/day3/a.py
vinnymaker18/adventofcode
92d0a6f5a04e6601b6c82ee323565e7327be36f8
[ "MIT" ]
null
null
null
2021/day3/a.py
vinnymaker18/adventofcode
92d0a6f5a04e6601b6c82ee323565e7327be36f8
[ "MIT" ]
null
null
null
2021/day3/a.py
vinnymaker18/adventofcode
92d0a6f5a04e6601b6c82ee323565e7327be36f8
[ "MIT" ]
null
null
null
def processInput(inputFile='input.txt'): return [l.strip() for l in open(inputFile).readlines()] def filter(data, a=1): setA = set(range(len(data))) setB = set(range(len(data))) def count(bit, value, dataset): return set(d for d in dataset if data[d][bit] == value) for bit in range(12): onesA = count(bit, '1', setA) zerosA = count(bit, '0', setA) onesB = count(bit, '1', setB) zerosB = count(bit, '0', setB) setA = onesA if len(onesA) >= len(zerosA) else zerosA setB = onesB if len(onesB) < len(zerosB) else zerosB if not setB: setB = onesB or zerosB x, y = data[min(setA)], data[min(setB)] print(int(x, 2) * int(y, 2)) filter(processInput())
25.3
63
0.571805
0
0
0
0
0
0
0
0
23
0.030303
47ab86e8093f2c1a626207ebde134e3527326fd9
659
py
Python
mwasurveyweb/templatetags/template_filters.py
tjgalvin/SS18B-NHurleyWalker
81b1bbb9e7131a92804b0dbddac795217b524160
[ "MIT" ]
1
2020-07-23T08:48:50.000Z
2020-07-23T08:48:50.000Z
mwasurveyweb/templatetags/template_filters.py
tjgalvin/SS18B-NHurleyWalker
81b1bbb9e7131a92804b0dbddac795217b524160
[ "MIT" ]
6
2020-02-11T23:38:13.000Z
2022-02-10T07:28:07.000Z
mwasurveyweb/templatetags/template_filters.py
tjgalvin/SS18B-NHurleyWalker
81b1bbb9e7131a92804b0dbddac795217b524160
[ "MIT" ]
1
2020-07-23T09:01:29.000Z
2020-07-23T09:01:29.000Z
""" Distributed under the MIT License. See LICENSE.txt for more info. """ from django import template register = template.Library() @register.filter def get_item(dictionary, key): """ Returns the object for that key from a dictionary. :param dictionary: A dictionary object :param key: Key to search for :return: Object that corresponds to the key in the dictionary """ return dictionary.get(key, None) @register.filter def field_type(field): """ Returns the field type of an input :param field: input field :return: string representing the class name """ return field.field.widget.__class__.__name__
22.724138
65
0.704097
0
0
0
0
519
0.787557
0
0
410
0.622155
47ab8c88580963ea081b14afd01ad6eaae957d96
1,091
py
Python
Exercicios/Ex69.py
angeloridolfi/Python-CEV
fd11b7ea0725f83c84336b99304c50f183514245
[ "MIT" ]
null
null
null
Exercicios/Ex69.py
angeloridolfi/Python-CEV
fd11b7ea0725f83c84336b99304c50f183514245
[ "MIT" ]
null
null
null
Exercicios/Ex69.py
angeloridolfi/Python-CEV
fd11b7ea0725f83c84336b99304c50f183514245
[ "MIT" ]
null
null
null
contmaior = 0 contahomi = 0 contamuie = 0 while True: print('CADASTRE UMA PESSOA') print('=-' * 19) idade = int(input('INFORME SUA IDADE: ')) if idade > 18: contmaior += 1 sexo = str(input('INFORME SEU SEXO <<M/F>>: ')).upper().strip()[0] if sexo not in 'MF': while True: sexo = str(input('OPÇÃO INVÁLIDA! INFORME SEU SEXO <<M/F>>: ')).upper().strip()[0] if sexo in 'MF': break if sexo == 'M': contahomi += 1 if sexo == 'F' and idade < 20: contamuie += 1 continuacao = str(input('Quer continuar[S/N]: ')).upper().strip()[0] print('=-' * 20) if continuacao not in 'SN': while True: continuacao = str(input('OPÇÃO INVÁLIDA! Quer continuar[S/N]: ')).upper().strip()[0] if continuacao in 'SN': break if continuacao == 'N': break print('=-' * 20) print(f' -> {contmaior} pessoas são maiores de 18 anos;') print(f' -> {contahomi} homens foram cadastrados;') print(f' -> {contamuie} mulheres são menores de 20 anos.')
33.060606
96
0.542621
0
0
0
0
0
0
0
0
366
0.33303
47ac2e08152553ebc4a73e2f44181a3dfc25e059
165
py
Python
testapp/another_urls.py
danigosa/django-simple-seo
17610e50148c6672cb34e96654df1d3515b0444f
[ "BSD-3-Clause" ]
11
2015-01-02T15:44:31.000Z
2021-07-27T06:54:35.000Z
testapp/another_urls.py
danigosa/django-simple-seo
17610e50148c6672cb34e96654df1d3515b0444f
[ "BSD-3-Clause" ]
8
2016-02-03T07:07:04.000Z
2022-01-13T00:42:32.000Z
testapp/another_urls.py
danigosa/django-simple-seo
17610e50148c6672cb34e96654df1d3515b0444f
[ "BSD-3-Clause" ]
8
2015-02-20T13:51:51.000Z
2021-06-24T19:11:30.000Z
from django.conf.urls import patterns, url from .views import template_test urlpatterns = patterns( '', url(r'^', template_test, name='template_test2'), )
18.333333
52
0.709091
0
0
0
0
0
0
0
0
22
0.133333
47af52c1759d6ca7b81f36810e1191b6fa34e7eb
11,920
py
Python
non_local.py
yuxia201121/ADCTself-attention
77d32034854f64a7aa24d45ae2c4e18f7616cf48
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
non_local.py
yuxia201121/ADCTself-attention
77d32034854f64a7aa24d45ae2c4e18f7616cf48
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
non_local.py
yuxia201121/ADCTself-attention
77d32034854f64a7aa24d45ae2c4e18f7616cf48
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import tensorflow as tf import numpy as np import ops def conv1x1(input_, output_dim, init=tf.contrib.layers.xavier_initializer(), name='conv1x1'): k_h = 1 k_w = 1 d_h = 1 d_w = 1 with tf.variable_scope(name): w = tf.get_variable( 'w', [k_h, k_w, input_.get_shape()[-1], output_dim], initializer=init) conv = tf.nn.conv2d(input_, w, strides=[1, d_h, d_w, 1], padding='SAME') return conv def sn_conv1x1(input_, output_dim, update_collection, init=tf.contrib.layers.xavier_initializer(), name='sn_conv1x1'): with tf.variable_scope(name): k_h = 1 k_w = 1 d_h = 1 d_w = 1 w = tf.get_variable( 'w', [k_h, k_w, input_.get_shape()[-1], output_dim], initializer=init) w_bar = ops.spectral_normed_weight(w, num_iters=1, update_collection=update_collection) conv = tf.nn.conv2d(input_, w_bar, strides=[1, d_h, d_w, 1], padding='SAME') return conv def sn_non_local_block_sim(x, update_collection, name, init=tf.contrib.layers.xavier_initializer()): with tf.variable_scope(name): batch_size, h, w, num_channels = x.get_shape().as_list() location_num = h * w downsampled_num = location_num // 4 print("x=",x) piexl_data = tf.transpose(x, [0, 3, 1, 2]) # shape=(64, 256, 32, 32) print("piexl_data=",piexl_data) piexl_zero_zero = piexl_data[:,:,::2,::2] # shape=(64, 256, 16, 16) print("piexl_zero_zero=",piexl_zero_zero) piexl_zero_one = piexl_data[:,:,::2,1::2] # shape=(64, 256, 16, 16) print("piexl_zero_one=",piexl_zero_one) piexl_one_zero = piexl_data[:,:,1::2,::2] # shape=(64, 256, 16, 16) print("piexl_one_zero=",piexl_one_zero) piexl_one_one = piexl_data[:,:,1::2,1::2] # shape=(64, 256, 16, 16) print("piexl_one_one=",piexl_one_one) dct_zero_zero = ((piexl_zero_zero + piexl_one_zero) + (piexl_zero_one + piexl_one_one))*2 # shape=(64, 256, 16, 16) print("dct_zero_zero=",dct_zero_zero) dct_zero_one = ((piexl_zero_zero + piexl_one_zero) - (piexl_zero_one + piexl_one_one))*2 # shape=(64, 256, 16, 16) print("dct_zero_one=",dct_zero_one) dct_one_zero = ((piexl_zero_zero - piexl_one_zero) + (piexl_zero_one - piexl_one_one))*2 # shape=(64, 256, 16, 16) print("dct_one_zero=",dct_one_zero) dct_one_one = ((piexl_zero_zero - piexl_one_zero) - (piexl_zero_one - piexl_one_one))*2 # shape=(64, 256, 16, 16) print("dct_one_one=",dct_one_one) #b00******************************************************************** x_zero_zero = tf.transpose(dct_zero_zero, [0, 2, 3, 1]) # shape=(64, 16, 16, 256) print("x_zero_zero=",x_zero_zero) # theta path print("x=",x) theta_00 = sn_conv1x1(x_zero_zero, num_channels //8 , update_collection, init, 'sn_conv_theta') print('theta_00_sn_conv', theta_00) #print(x.get_shape()) # theta = tf.reshape( # shape=(64, 256, 32) # theta, [batch_size, location_num //4, num_channels // 8]) # print("theta_rehape=",theta) # phi path # phi_00 = sn_conv1x1(x_zero_zero, num_channels //8 , update_collection, init, 'sn_conv_phi') # shape=(64, 16, 16, 256) # print("phi_00_sn_conv=",phi_00) # phi = tf.layers.max_pooling2d(inputs=phi, pool_size=[2, 2], strides=2) # print("phi_max_pool=",phi) # phi = tf.reshape( # phi, [batch_size, downsampled_num, num_channels]) # print("phi_rehape=",phi) # attn_00 = tf.matmul(theta_00, phi_00, transpose_b=True) # print("attn_00_matmul=",attn_00) # attn_00 = tf.nn.softmax(attn_00) # shape=(64, 16, 16, 16) # print(tf.reduce_sum(attn_00, axis=-1)) # print("attn_00_softmax=",attn_00) ############################################################################ #b01******************************************************************** x_zero_one = tf.transpose(dct_zero_one, [0, 2, 3, 1]) # shape=(64, 16, 16, 256) print("x_zero_one=",x_zero_one) # theta path print("x=",x) theta_01 = sn_conv1x1(x_zero_one, num_channels //8 , update_collection, init, 'sn_conv_theta') print('theta_01_sn_conv', theta_01) #print(x.get_shape()) # theta = tf.reshape( # shape=(64, 256, 32) # theta, [batch_size, location_num //4, num_channels // 8]) # print("theta_rehape=",theta) # phi path # phi_01 = sn_conv1x1(x_zero_one, num_channels //8 , update_collection, init, 'sn_conv_phi') # shape=(64, 16, 16, 256) # print("phi_01_sn_conv=",phi_01) # phi = tf.layers.max_pooling2d(inputs=phi, pool_size=[2, 2], strides=2) # print("phi_max_pool=",phi) # phi = tf.reshape( # phi, [batch_size, downsampled_num, num_channels]) # print("phi_rehape=",phi) attn_01 = tf.matmul(theta_00, theta_01, transpose_b=True) print("attn_01_matmul=",attn_01) attn_01 = tf.nn.softmax(attn_01) # shape=(64, 16, 16, 16) # print(tf.reduce_sum(attn_01, axis=-1)) # print("attn_01_softmax=",attn_01) #b10******************************************************************** x_one_zero = tf.transpose(dct_one_zero, [0, 2, 3, 1]) # shape=(64, 16, 16, 256) print("x_one_zero=",x_one_zero) # theta path print("x=",x) theta_10 = sn_conv1x1(x_one_zero, num_channels //8 , update_collection, init, 'sn_conv_theta') print('theta_10_sn_conv', theta_10) #print(x.get_shape()) # theta = tf.reshape( # shape=(64, 256, 32) # theta, [batch_size, location_num //4, num_channels // 8]) # print("theta_rehape=",theta) # phi path # phi_10 = sn_conv1x1(x_one_zero, num_channels //8 , update_collection, init, 'sn_conv_phi') # shape=(64, 16, 16, 256) # print("phi_10_sn_conv=",phi_10) # phi = tf.layers.max_pooling2d(inputs=phi, pool_size=[2, 2], strides=2) # print("phi_max_pool=",phi) # phi = tf.reshape( # phi, [batch_size, downsampled_num, num_channels]) # print("phi_rehape=",phi) # attn_10 = tf.matmul(theta_10, phi_10, transpose_b=True) # print("attn_10_matmul=",attn_10) # attn_10 = tf.nn.softmax(attn_10) # shape=(64, 16, 16, 16) # print(tf.reduce_sum(attn_10, axis=-1)) # print("attn_10_softmax=",attn_10) #b11******************************************************************** x_one_one = tf.transpose(dct_one_one, [0, 2, 3, 1]) # shape=(64, 16, 16, 256) print("x_one_one=",x_one_one) # theta path print("x=",x) theta_11 = sn_conv1x1(x_one_one, num_channels //8 , update_collection, init, 'sn_conv_theta') print('theta_11_sn_conv', theta_11) #print(x.get_shape()) # theta = tf.reshape( # shape=(64, 256, 32) # theta, [batch_size, location_num //4, num_channels // 8]) # print("theta_rehape=",theta) # phi path # phi_11 = sn_conv1x1(x_one_one, num_channels //8 , update_collection, init, 'sn_conv_phi') # shape=(64, 16, 16, 256) # print("phi_11_sn_conv=",phi_11) # phi = tf.layers.max_pooling2d(inputs=phi, pool_size=[2, 2], strides=2) # print("phi_max_pool=",phi) # phi = tf.reshape( # phi, [batch_size, downsampled_num, num_channels]) # print("phi_rehape=",phi) attn_11 = tf.matmul(theta_10, theta_11, transpose_b=True) print("attn_11_matmul=",attn_11) attn_11 = tf.nn.softmax(attn_11) # shape=(64, 16, 16, 16) # print(tf.reduce_sum(attn_11, axis=-1)) # print("attn_11_softmax=",attn_11) ################################## # attn1=tf.matmul(attn_00, attn_01, transpose_b=True) # attn2=tf.matmul(attn_10, attn_11, transpose_b=True) # attn_dct=tf.matmul(attn1, attn2, transpose_b=True) attn_dct=attn_01+attn_11 # attn_dct = tf.nn.softmax(attn_dct) print("attn_dct=",attn_dct) ################################## # pixel attention # theta path print("x=",x) theta = sn_conv1x1(x, num_channels //8 , update_collection, init, 'sn_conv_theta') print('theta_sn_conv', theta) #print(x.get_shape()) # theta = tf.reshape( # shape=(64, 256, 32) # theta, [batch_size, location_num //4, num_channels // 8]) # print("theta_rehape=",theta) # phi path phi = sn_conv1x1(x, num_channels //8 , update_collection, init, 'sn_conv_phi') # shape=(64, 16, 16, 256) print("phi_sn_conv=",phi) # phi = tf.layers.max_pooling2d(inputs=phi, pool_size=[2, 2], strides=2) # print("phi_max_pool=",phi) # phi = tf.reshape( # phi, [batch_size, downsampled_num, num_channels]) # print("phi_rehape=",phi) attn_pixel = tf.matmul(theta, phi, transpose_b=True) print("attn_pixel_matmul=",attn_pixel) attn_pixel = tf.nn.softmax(attn_pixel) # shape=(64, 32, 32, 32) print(tf.reduce_sum(attn_pixel, axis=-1)) print("attn_pixel=",attn_pixel) attn_pixel = tf.layers.max_pooling2d(inputs=attn_pixel, pool_size=[2, 2], strides=2) print("attn_pixel_max_pool=",attn_pixel) ################################## attn = tf.matmul(attn_dct, attn_pixel) # shape=(64, 16, 16, 32) print("attn_matmul=",attn) ################################## # g path channels=attn.get_shape().as_list()[-1] g = sn_conv1x1(x, channels, update_collection, init, 'sn_conv_g') # shape=(64, 32, 32, 128) print("g_sn_conv=",g) g = tf.layers.max_pooling2d(inputs=g, pool_size=[2, 2], strides=2) # shape=(64, 16, 16, 128) print("g_max_pool=",g) # g = tf.reshape( # g, [batch_size, downsampled_num, num_channels // 2]) # print("g_reshape=",g) attn_g = tf.matmul(attn, g, transpose_b=True) print("attn_g_matmul=",attn_g) # attn_g = tf.reshape(attn_g, [batch_size, h//2, w//2, num_channels // 2]) # print("attn_g_reshape=",attn_g) attn_g = sn_conv1x1(attn_g, num_channels, update_collection, init, 'sn_conv_attn') print("attn_g_sn_conv1x1",attn_g) attn_g = ops.deconv2d(attn_g, [batch_size, h, w, num_channels], # num_channels k_h=2, k_w=2, d_h=2, d_w=2, stddev=0.02, name='attn_g_deconv2d', init_bias=0.) print("attn_g_deconv2d=",attn_g) print("x=",x) sigma = tf.get_variable( 'sigma_ratio', [], initializer=tf.constant_initializer(0.0)) print("sigma=",sigma) return x + sigma * attn_g
40.27027
127
0.560906
0
0
0
0
0
0
0
0
6,421
0.538674
47b3262789a56b500e24bd5503fa34b4ab5f6bca
1,031
py
Python
evaluation/eval_frames.py
suleymanaslan/generative-rainbow
9f8daac5e06565ef099c0913186f5a1d801ca52c
[ "MIT" ]
null
null
null
evaluation/eval_frames.py
suleymanaslan/generative-rainbow
9f8daac5e06565ef099c0913186f5a1d801ca52c
[ "MIT" ]
null
null
null
evaluation/eval_frames.py
suleymanaslan/generative-rainbow
9f8daac5e06565ef099c0913186f5a1d801ca52c
[ "MIT" ]
null
null
null
import numpy as np import imageio from evaluation.eval_utils import to_img_padded, format_img, init_evaluation def save_frames(env, agent, pad, folder): observation, ep_reward, done = env.reset(), 0, False count = 0 while not done: action, generated_next_observation = agent.act(observation, get_generated=True) next_observation, reward, done, info = env.step(action) imgs = [to_img_padded(observation, pad), to_img_padded(generated_next_observation, pad), to_img_padded(next_observation, pad)] plot_img = np.concatenate(format_img(imgs), axis=1) count += 1 imageio.imwrite(f"{folder}/{count:04d}.png", plot_img) observation = next_observation def main(): pad = [(5, 5), (5, 5), (0, 0)] train_env, test_env, agent, agent_folder = init_evaluation(use_backgrounds=False) save_frames(train_env, agent, pad, f"{agent_folder}/frames/train") save_frames(test_env, agent, pad, f"{agent_folder}/frames/test") main()
34.366667
87
0.681862
0
0
0
0
0
0
0
0
86
0.083414
47b4d5911e43771cc3188d71f2b90fe1b6287fdc
22,950
py
Python
acme/HttpServer.py
ankraft/ACME-oneM2M-CSE
03c23ea19b35dd6e0aec752d9631e2a76778c61c
[ "BSD-3-Clause" ]
10
2020-09-25T08:49:19.000Z
2022-03-30T01:29:22.000Z
acme/HttpServer.py
ankraft/ACME-oneM2M-CSE
03c23ea19b35dd6e0aec752d9631e2a76778c61c
[ "BSD-3-Clause" ]
14
2020-05-22T08:00:32.000Z
2020-12-24T23:38:05.000Z
acme/HttpServer.py
ankraft/ACME-oneM2M-CSE
03c23ea19b35dd6e0aec752d9631e2a76778c61c
[ "BSD-3-Clause" ]
5
2020-05-22T03:43:20.000Z
2021-05-25T06:54:59.000Z
# # HttpServer.py # # (c) 2020 by Andreas Kraft # License: BSD 3-Clause License. See the LICENSE file for further details. # # Server to implement the http part of the oneM2M Mcx communication interface. # from __future__ import annotations import logging, sys, traceback, urllib3 from copy import deepcopy from typing import Any, Callable, Tuple, cast import flask from flask import Flask, Request, make_response, request from urllib3.exceptions import RequestError from Configuration import Configuration from Constants import Constants as C from Types import ReqResp, ResourceTypes as T, Result, ResponseCode as RC, JSON, Conditions from Types import Operation, CSERequest, RequestHeaders, ContentSerializationType, RequestHandler, Parameters, RequestArguments, FilterUsage, FilterOperation, DesiredIdentifierResultType, ResultContentType, ResponseType import CSE, Utils from Logging import Logging as L, LogLevel from resources.Resource import Resource from werkzeug.wrappers import Response from werkzeug.serving import WSGIRequestHandler from werkzeug.datastructures import MultiDict from webUI import WebUI from helpers.BackgroundWorker import * # # Types definitions for the http server # FlaskHandler = Callable[[str], Response] """ Type definition for flask handler. """ class HttpServer(object): def __init__(self) -> None: # Initialize the http server # Meaning defaults are automatically provided. self.flaskApp = Flask(CSE.cseCsi) self.rootPath = Configuration.get('http.root') self.serverAddress = Configuration.get('http.address') self.listenIF = Configuration.get('http.listenIF') self.port = Configuration.get('http.port') self.webuiRoot = Configuration.get('cse.webui.root') self.webuiDirectory = f'{CSE.rootDirectory}/webui' self.hfvRVI = Configuration.get('cse.releaseVersion') self.isStopped = False self.backgroundActor:BackgroundWorker = None self.serverID = f'ACME {C.version}' # The server's ID for http response headers self._responseHeaders = {'Server' : self.serverID} # Additional headers for other requests L.isInfo and L.log(f'Registering http server root at: {self.rootPath}') if CSE.security.useTLS: L.isInfo and L.log('TLS enabled. HTTP server serves via https.') # Add endpoints # self.addEndpoint(self.rootPath + '/', handler=self.handleGET, methods=['GET']) self.addEndpoint(self.rootPath + '/<path:path>', handler=self.handleGET, methods=['GET']) # self.addEndpoint(self.rootPath + '/', handler=self.handlePOST, methods=['POST']) self.addEndpoint(self.rootPath + '/<path:path>', handler=self.handlePOST, methods=['POST']) # self.addEndpoint(self.rootPath + '/', handler=self.handlePUT, methods=['PUT']) self.addEndpoint(self.rootPath + '/<path:path>', handler=self.handlePUT, methods=['PUT']) # self.addEndpoint(self.rootPath + '/', handler=self.handleDELETE, methods=['DELETE']) self.addEndpoint(self.rootPath + '/<path:path>', handler=self.handleDELETE, methods=['DELETE']) # Register the endpoint for the web UI # This is done by instancing the otherwise "external" web UI self.webui = WebUI(self.flaskApp, defaultRI=CSE.cseRi, defaultOriginator=CSE.cseOriginator, root=self.webuiRoot, webuiDirectory=self.webuiDirectory, version=C.version) # Enable the config endpoint if Configuration.get('http.enableRemoteConfiguration'): configEndpoint = f'{self.rootPath}/__config__' L.isInfo and L.log(f'Registering configuration endpoint at: {configEndpoint}') self.addEndpoint(configEndpoint, handler=self.handleConfig, methods=['GET'], strictSlashes=False) self.addEndpoint(f'{configEndpoint}/<path:path>', handler=self.handleConfig, methods=['GET', 'PUT']) # Enable the config endpoint if Configuration.get('http.enableStructureEndpoint'): structureEndpoint = f'{self.rootPath}/__structure__' L.isInfo and L.log(f'Registering structure endpoint at: {structureEndpoint}') self.addEndpoint(structureEndpoint, handler=self.handleStructure, methods=['GET'], strictSlashes=False) self.addEndpoint(f'{structureEndpoint}/<path:path>', handler=self.handleStructure, methods=['GET', 'PUT']) # Enable the reset endpoint if Configuration.get('http.enableResetEndpoint'): resetEndPoint = f'{self.rootPath}/__reset__' L.isInfo and L.log(f'Registering reset endpoint at: {resetEndPoint}') self.addEndpoint(resetEndPoint, handler=self.handleReset, methods=['GET'], strictSlashes=False) # Add mapping / macro endpoints self.mappings = {} if (mappings := Configuration.get('server.http.mappings')) is not None: # mappings is a list of tuples for (k, v) in mappings: L.isInfo and L.log(f'Registering mapping: {self.rootPath}{k} -> {self.rootPath}{v}') self.addEndpoint(self.rootPath + k, handler=self.requestRedirect, methods=['GET', 'POST', 'PUT', 'DELETE']) self.mappings = dict(mappings) # Disable most logs from requests and urllib3 library logging.getLogger("requests").setLevel(LogLevel.WARNING) logging.getLogger("urllib3").setLevel(LogLevel.WARNING) if not CSE.security.verifyCertificate: # only when we also verify certificates urllib3.disable_warnings() L.isInfo and L.log('HTTP Server initialized') def run(self) -> None: """ Run the http server in a separate thread. """ self.httpActor = BackgroundWorkerPool.newActor(self._run, name='HTTPServer') self.httpActor.start() def shutdown(self) -> bool: """ Shutting down the http server. """ L.isInfo and L.log('HttpServer shut down') self.isStopped = True return True def _run(self) -> None: WSGIRequestHandler.protocol_version = "HTTP/1.1" # Run the http server. This runs forever. # The server can run single-threadedly since some of the underlying # components (e.g. TinyDB) may run into problems otherwise. if self.flaskApp is not None: # Disable the flask banner messages cli = sys.modules['flask.cli'] cli.show_server_banner = lambda *x: None # type: ignore # Start the server try: self.flaskApp.run(host=self.listenIF, port=self.port, threaded=Configuration.get('http.multiThread'), request_handler=ACMERequestHandler, ssl_context=CSE.security.getSSLContext(), debug=False) except Exception as e: # No logging for headless, nevertheless print the reason what happened if CSE.isHeadless: L.console(str(e), isError=True) L.logErr(str(e)) CSE.shutdown() # exit the CSE. Cleanup happens in the CSE atexit() handler def addEndpoint(self, endpoint:str=None, endpoint_name:str=None, handler:FlaskHandler=None, methods:list[str]=None, strictSlashes:bool=True) -> None: self.flaskApp.add_url_rule(endpoint, endpoint_name, handler, methods=methods, strict_slashes=strictSlashes) def _handleRequest(self, path:str, operation:Operation) -> Response: """ Get and check all the necessary information from the request and build the internal strutures. Then, depending on the operation, call the associated request handler. """ L.isDebug and L.logDebug(f'==> HTTP-{operation.name}: /{path}') # path = request.path w/o the root L.isDebug and L.logDebug(f'Headers: \n{str(request.headers)}') dissectResult = self._dissectHttpRequest(request, operation, path) if self.isStopped: responseResult = Result(rsc=RC.internalServerError, dbg='http server not running', status=False) else: try: if dissectResult.status: if operation in [ Operation.CREATE, Operation.UPDATE ]: if dissectResult.request.ct == ContentSerializationType.CBOR: L.isDebug and L.logDebug(f'Body: \n{Utils.toHex(cast(bytes, dissectResult.request.data))}\n=>\n{dissectResult.request.dict}') else: L.isDebug and L.logDebug(f'Body: \n{str(dissectResult.request.data)}') responseResult = CSE.request.handleRequest(dissectResult.request) else: responseResult = dissectResult except Exception as e: responseResult = Utils.exceptionToResult(e) responseResult.request = dissectResult.request return self._prepareResponse(responseResult) def handleGET(self, path:str=None) -> Response: Utils.renameCurrentThread() CSE.event.httpRetrieve() # type: ignore return self._handleRequest(path, Operation.RETRIEVE) def handlePOST(self, path:str=None) -> Response: Utils.renameCurrentThread() CSE.event.httpCreate() # type: ignore return self._handleRequest(path, Operation.CREATE) def handlePUT(self, path:str=None) -> Response: Utils.renameCurrentThread() CSE.event.httpUpdate() # type: ignore return self._handleRequest(path, Operation.UPDATE) def handleDELETE(self, path:str=None) -> Response: Utils.renameCurrentThread() CSE.event.httpDelete() # type: ignore return self._handleRequest(path, Operation.DELETE) ######################################################################### # Handle requests to mapped paths def requestRedirect(self, path:str=None) -> Response: path = request.path[len(self.rootPath):] if request.path.startswith(self.rootPath) else request.path if path in self.mappings: L.isDebug and L.logDebug(f'==> Redirecting to: /{path}') CSE.event.httpRedirect() # type: ignore return flask.redirect(self.mappings[path], code=307) return Response('', status=404) ######################################################################### # # Various handlers # # Redirect request to / to webui def redirectRoot(self) -> Response: """ Redirect a request to the webroot to the web UI. """ return flask.redirect(self.webuiRoot, code=302) def getVersion(self) -> Response: """ Handle a GET request to return the CSE version. """ return Response(C.version, headers=self._responseHeaders) def handleConfig(self, path:str=None) -> Response: """ Handle a configuration request. This can either be e GET request to query a configuration value, or a PUT request to set a new value to a configuration setting. Note, that only a few of configuration settings are supported. """ def _r(r:str) -> Response: # just construct a response. Trying to reduce the clutter here return Response(r, headers=self._responseHeaders) if request.method == 'GET': if path == None or len(path) == 0: return _r(Configuration.print()) if Configuration.has(path): return _r(str(Configuration.get(path))) return _r('') elif request.method =='PUT': data = request.data.decode('utf-8').rstrip() try: L.isDebug and L.logDebug(f'New remote configuration: {path} = {data}') if path == 'cse.checkExpirationsInterval': if (d := int(data)) < 1: return _r('nak') Configuration.set(path, d) CSE.registration.stopExpirationMonitor() CSE.registration.startExpirationMonitor() return _r('ack') elif path in [ 'cse.req.minet', 'cse.req.maxnet' ]: if (d := int(data)) < 1: return _r('nak') Configuration.set(path, d) return _r('ack') except: return _r('nak') return _r('nak') return _r('unsupported') def handleStructure(self, path:str='puml') -> Response: """ Handle a structure request. Return a description of the CSE's current resource and registrar / registree deployment. An optional parameter 'lvl=<int>' can limit the generated resource tree's depth. """ lvl = request.args.get('lvl', default=0, type=int) if path == 'puml': return Response(response=CSE.statistics.getStructurePuml(lvl), headers=self._responseHeaders) if path == 'text': return Response(response=CSE.console.getResourceTreeText(lvl), headers=self._responseHeaders) return Response(response='unsupported', status=422, headers=self._responseHeaders) def handleReset(self, path:str=None) -> Response: """ Handle a CSE reset request. """ CSE.resetCSE() return Response(response='', status=200) ######################################################################### # # Send HTTP requests # def _prepContent(self, content:bytes|str|Any, ct:ContentSerializationType) -> str: if content is None: return '' if isinstance(content, str): return content return content.decode('utf-8') if ct == ContentSerializationType.JSON else Utils.toHex(content) def sendHttpRequest(self, method:Callable, url:str, originator:str, ty:T=None, data:Any=None, parameters:Parameters=None, ct:ContentSerializationType=None, targetResource:Resource=None) -> Result: # type: ignore[type-arg] ct = CSE.defaultSerialization if ct is None else ct # Set basic headers hty = f';ty={int(ty):d}' if ty is not None else '' hds = { 'User-Agent' : self.serverID, 'Content-Type' : f'{ct.toHeader()}{hty}', 'Accept' : ct.toHeader(), C.hfOrigin : originator, C.hfRI : Utils.uniqueRI(), C.hfRVI : self.hfvRVI, # TODO this actually depends in the originator } # Add additional headers if parameters is not None: if C.hfcEC in parameters: # Event Category hds[C.hfEC] = parameters[C.hfcEC] # serialize data (only if dictionary, pass on non-dict data) content = Utils.serializeData(data, ct) if isinstance(data, dict) else data # ! Don't forget: requests are done through the request library, not flask. # ! The attribute names are different try: L.isDebug and L.logDebug(f'Sending request: {method.__name__.upper()} {url}') if ct == ContentSerializationType.CBOR: L.isDebug and L.logDebug(f'HTTP-Request ==>:\nHeaders: {hds}\nBody: \n{self._prepContent(content, ct)}\n=>\n{str(data) if data is not None else ""}\n') else: L.isDebug and L.logDebug(f'HTTP-Request ==>:\nHeaders: {hds}\nBody: \n{self._prepContent(content, ct)}\n') # Actual sending the request r = method(url, data=content, headers=hds, verify=CSE.security.verifyCertificate) responseCt = ContentSerializationType.getType(r.headers['Content-Type']) if 'Content-Type' in r.headers else ct rc = RC(int(r.headers['X-M2M-RSC'])) if 'X-M2M-RSC' in r.headers else RC.internalServerError L.isDebug and L.logDebug(f'HTTP-Response <== ({str(r.status_code)}):\nHeaders: {str(r.headers)}\nBody: \n{self._prepContent(r.content, responseCt)}\n') except Exception as e: L.isDebug and L.logWarn(f'Failed to send request: {str(e)}') return Result(rsc=RC.targetNotReachable, dbg='target not reachable') return Result(dict=Utils.deserializeData(r.content, responseCt), rsc=rc) ######################################################################### def _prepareResponse(self, result:Result) -> Response: content:str|bytes|JSON = '' # Build the headers headers = {} headers['Server'] = self.serverID # set server field headers['X-M2M-RSC'] = f'{result.rsc}' # set the response status code if result.request.headers.requestIdentifier is not None: headers['X-M2M-RI'] = result.request.headers.requestIdentifier if result.request.headers.releaseVersionIndicator is not None: headers['X-M2M-RVI'] = result.request.headers.releaseVersionIndicator if result.request.headers.vendorInformation is not None: headers['X-M2M-VSI'] = result.request.headers.vendorInformation # HTTP status code statusCode = result.rsc.httpStatusCode() # # Determine the accept type and encode the content accordinly # # Look whether there is a accept header in the original request if result.request.headers.accept is not None and len(result.request.headers.accept) > 0: ct = ContentSerializationType.getType(result.request.headers.accept[0]) # No accept, check originator elif len(csz := CSE.request.getSerializationFromOriginator(result.request.headers.originator)) > 0: ct = csz[0] # Default: configured CSE's default else: ct = CSE.defaultSerialization # Assign and encode content accordingly headers['Content-Type'] = (cts := ct.toHeader()) content = result.toData(ct) # Build and return the response if isinstance(content, bytes): L.isDebug and L.logDebug(f'<== HTTP-Response (RSC: {result.rsc:d}):\nHeaders: {str(headers)}\nBody: \n{Utils.toHex(content)}\n=>\n{str(result.toData())}') else: L.isDebug and L.logDebug(f'<== HTTP-Response (RSC: {result.rsc:d}):\nHeaders: {str(headers)}\nBody: {str(content)}\n') return Response(response=content, status=statusCode, content_type=cts, headers=headers) # def _prepareException(self, e:Exception) -> Result: # tb = traceback.format_exc() # L.logErr(tb, exc=e) # tbs = tb.replace('"', '\\"').replace('\n', '\\n') # return Result(rsc=RC.internalServerError, dbg=f'encountered exception: {tbs}') ######################################################################### # # HTTP request helper functions # #def _dissectHttpRequest(self, request:Request, operation:Operation, _id:Tuple[str, str, str]) -> Result: def _dissectHttpRequest(self, request:Request, operation:Operation, to:str) -> Result: """ Dissect an HTTP request. Combine headers and contents into a single structure. Result is returned in Result.request. """ # def extractMultipleArgs(args:MultiDict, argName:str, validate:bool=True) -> Tuple[bool, str]: # """ Get multi-arguments. Remove the found arguments from the original list, but add the new list again with the argument name. # """ # lst = [] # for e in args.getlist(argName): # for es in (t := e.split()): # check for number # if validate: # if not CSE.validator.validateRequestArgument(argName, es).status: # return False, f'error validating "{argName}" argument(s)' # lst.extend(t) # args.poplist(argName) # type: ignore [no-untyped-call] # perhaps even multiple times # if len(lst) > 0: # args[argName] = lst # return True, None def extractMultipleArgs(args:MultiDict, argName:str) -> None: """ Get multi-arguments. Remove the found arguments from the original list, but add the new list again with the argument name. """ lst = [ t for sublist in args.getlist(argName) for t in sublist.split() ] args.poplist(argName) # type: ignore [no-untyped-call] # perhaps even multiple times if len(lst) > 0: args[argName] = lst def requestHeaderField(request:Request, field:str) -> str: """ Return the value of a specific Request header, or `None` if not found. """ if not request.headers.has_key(field): return None return request.headers.get(field) cseRequest = CSERequest() req:ReqResp = {} cseRequest.data = request.data # get the data first. This marks the request as consumed, just in case that we have to return early cseRequest.op = operation req['op'] = operation.value # Needed later for validation req['to'] = to # Copy and parse the original request headers if (f := requestHeaderField(request, C.hfOrigin)) is not None: req['fr'] = f if (f := requestHeaderField(request, C.hfRI)) is not None: req['rqi'] = f if (f := requestHeaderField(request, C.hfRET)) is not None: req['rqet'] = f if (f := requestHeaderField(request, C.hfRST)) is not None: req['rset'] = f if (f := requestHeaderField(request, C.hfOET)) is not None: req['oet'] = f if (f := requestHeaderField(request, C.hfRVI)) is not None: req['rvi'] = f if (rtu := requestHeaderField(request, C.hfRTU)) is not None: # handle rtu as a list req['rtu'] = rtu.split('&') if (f := requestHeaderField(request, C.hfVSI)) is not None: req['vsi'] = f # parse and extract content-type header # cseRequest.headers.contentType = request.content_type if (ct := request.content_type) is not None: if not ct.startswith(tuple(C.supportedContentHeaderFormat)): ct = None else: p = ct.partition(';') # always returns a 3-tuple ct = p[0] # only the content-type without the resource type t = p[2].partition('=')[2] if len(t) > 0: req['ty'] = t # Here we found the type for CREATE requests cseRequest.headers.contentType = ct # parse accept header cseRequest.headers.accept = request.headers.getlist('accept') cseRequest.headers.accept = [ a for a in cseRequest.headers.accept if a != '*/*' ] cseRequest.originalArgs = deepcopy(request.args) # Keep the original args # copy request arguments for greedy attributes checking args = request.args.copy() # type: ignore [no-untyped-call] # Do some special handling for those arguments that could occur multiple # times in the args MultiDict. They are collected together in a single list # and added again to args. extractMultipleArgs(args, 'ty') # conversation to int happens later in fillAndValidateCSERequest() extractMultipleArgs(args, 'cty') extractMultipleArgs(args, 'lbl') # Handle rcn differently. # rcn is not a filter criteria like all the other attributes, but an own request attribute if (rcn := args.get('rcn')) is not None: req['rcn'] = rcn del args['rcn'] # Extract further request arguments from the http request # add all the args to the filterCriteria filterCriteria:ReqResp = {} for k,v in args.items(): filterCriteria[k] = v req['fc'] = filterCriteria # De-Serialize the content if not (contentResult := CSE.request.deserializeContent(cseRequest.data, cseRequest.headers.contentType)).status: return Result(rsc=contentResult.rsc, request=cseRequest, dbg=contentResult.dbg, status=False) # Remove 'None' fields *before* adding the pc, because the pc may contain 'None' fields that need to be preserved req = Utils.removeNoneValuesFromDict(req) # Add the primitive content and req['pc'] = contentResult.data[0] # The actual content cseRequest.ct = contentResult.data[1] # The conten serialization type cseRequest.req = req # finally store the oneM2M request object in the cseRequest # do validation and copying of attributes of the whole request try: # L.logWarn(str(cseRequest)) if not (res := CSE.request.fillAndValidateCSERequest(cseRequest)).status: return res except Exception as e: return Result(rsc=RC.badRequest, request=cseRequest, dbg=f'invalid arguments/attributes ({str(e)})', status=False) # Here, if everything went okay so far, we have a request to the CSE return Result(request=cseRequest, status=True) ########################################################################## # # Own request handler. # Actually only to redirect some logging of the http server. # This handler does NOT handle requests. # class ACMERequestHandler(WSGIRequestHandler): # Just like WSGIRequestHandler, but without "- -" def log(self, type, message, *args): # type: ignore L.isDebug and L.logDebug(message % args) return # L.isDebug and L.log(f'{self.address_string()} {message % args}\n') # Just like WSGIRequestHandler, but without "code" def log_request(self, code='-', size='-'): # type: ignore L.isDebug and L.logDebug(f'"{self.requestline}" {size} {code}') return def log_message(self, format, *args): # type: ignore L.isDebug and L.logDebug(format % args) return
39.43299
223
0.699695
21,449
0.934597
0
0
0
0
0
0
9,463
0.412331
47b6367947784f5f8c60ac4a630ae41b0271c546
2,855
py
Python
tests.py
dave-shawley/sprockets.mixins.statsd
98dcce37d275a3ab96ef618b4756d7c4618a550a
[ "BSD-3-Clause" ]
1
2016-04-18T14:43:28.000Z
2016-04-18T14:43:28.000Z
tests.py
dave-shawley/sprockets.mixins.statsd
98dcce37d275a3ab96ef618b4756d7c4618a550a
[ "BSD-3-Clause" ]
1
2015-03-19T20:09:31.000Z
2015-03-19T20:56:13.000Z
tests.py
dave-shawley/sprockets.mixins.statsd
98dcce37d275a3ab96ef618b4756d7c4618a550a
[ "BSD-3-Clause" ]
1
2021-07-21T16:45:20.000Z
2021-07-21T16:45:20.000Z
""" Tests for the sprockets.mixins.statsd package """ import mock import socket try: import unittest2 as unittest except ImportError: import unittest from tornado import httputil from tornado import web from sprockets.mixins import statsd as statsd class StatsdRequestHandler(statsd.RequestMetricsMixin, web.RequestHandler): pass class Context(object): remote_ip = '127.0.0.1' protocol = 'http' class Connection(object): context = Context() def set_close_callback(self, callback): pass class MixinTests(unittest.TestCase): def setUp(self): self.application = web.Application() self.request = httputil.HTTPServerRequest('GET', uri='http://test/foo', connection=Connection(), host='127.0.0.1') self.handler = StatsdRequestHandler(self.application, self.request) self.handler._status_code = 200 def test_on_finish_calls_statsd_add_timing(self): self.handler.statsd_use_hostname = True self.request._finish_time = self.request._start_time + 1 self.duration = self.request._finish_time - self.request._start_time with mock.patch('sprockets.clients.statsd.add_timing') as add_timing: self.handler.on_finish() add_timing.assert_called_once_with( 'timers.' + socket.gethostname(), 'tests', 'StatsdRequestHandler', 'GET', '200', value=self.duration * 1000) def test_on_finish_calls_statsd_incr(self): self.handler.statsd_use_hostname = True with mock.patch('sprockets.clients.statsd.incr') as incr: self.handler.on_finish() incr.assert_called_once_with( 'counters.' + socket.gethostname(), 'tests', 'StatsdRequestHandler', 'GET', '200') def test_on_finish_calls_statsd_add_timing_without_hostname(self): self.handler.statsd_use_hostname = False self.request._finish_time = self.request._start_time + 1 self.duration = self.request._finish_time - self.request._start_time with mock.patch('sprockets.clients.statsd.add_timing') as add_timing: self.handler.on_finish() add_timing.assert_called_once_with( 'timers', 'tests', 'StatsdRequestHandler', 'GET', '200', value=self.duration * 1000) def test_on_finish_calls_statsd_incr_without_hostname(self): self.handler.statsd_use_hostname = False with mock.patch('sprockets.clients.statsd.incr') as incr: self.handler.on_finish() incr.assert_called_once_with( 'counters', 'tests', 'StatsdRequestHandler', 'GET', '200')
34.817073
77
0.633275
2,582
0.904378
0
0
0
0
0
0
434
0.152014