hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
1904779111ad03b3fcf85f5ea88241c74cfe55ac
200
py
Python
tushare/bond/bonds.py
li-yong/tushare
26da8129fb770e26128b9c2cebc7ef72c9491243
[ "BSD-3-Clause" ]
12,490
2015-01-11T09:49:07.000Z
2022-03-31T15:03:16.000Z
tushare/bond/bonds.py
li-yong/tushare
26da8129fb770e26128b9c2cebc7ef72c9491243
[ "BSD-3-Clause" ]
1,532
2015-02-05T11:20:59.000Z
2022-03-29T13:30:26.000Z
tushare/bond/bonds.py
li-yong/tushare
26da8129fb770e26128b9c2cebc7ef72c9491243
[ "BSD-3-Clause" ]
4,867
2015-01-07T08:18:09.000Z
2022-03-31T07:03:53.000Z
# -*- coding:utf-8 -*- """ 投资参考数据接口 Created on 2017/10/01 @author: Jimmy Liu @group : waditu @contact: [email protected] """ def get_bond_info(code): pass if __name__ == '__main__': pass
11.764706
26
0.635
0
0
0
0
0
0
0
0
150
0.694444
1905b552f6b906092520144e21a33c6cfbd7fe0b
883
py
Python
src/save_docs.py
j-c-m-code/gutenbergsearch
b08f69d1d35fcca57e8ad0fcceaab614b9104abc
[ "MIT" ]
null
null
null
src/save_docs.py
j-c-m-code/gutenbergsearch
b08f69d1d35fcca57e8ad0fcceaab614b9104abc
[ "MIT" ]
null
null
null
src/save_docs.py
j-c-m-code/gutenbergsearch
b08f69d1d35fcca57e8ad0fcceaab614b9104abc
[ "MIT" ]
null
null
null
""" Processes a folder of .txt files to Spacy docs then saves the docs """ # first import standard modules import glob import os from pathlib import Path # then import third-party modules import spacy # finally import my own code (PEP-8 convention) from askdir import whichdir nlp = spacy.load("en_core_web_lg") source_directory = whichdir() os.chdir(source_directory) filelist = glob.glob("*") output_directory = whichdir() for filename in filelist: with open(filename, "r", encoding="utf-8") as f: novel = f.read() # the novel is too long for the default, so increase allocated memory nlp.max_length = len(novel) + 100 # Process a text doc = nlp(novel) short_name = Path(filename).stem # r for raw string--no escape characters # f for format string--allow me to pass in variable doc.to_disk(rf"{output_directory}\{short_name}")
23.864865
73
0.711212
0
0
0
0
0
0
0
0
425
0.481314
190623703fe56b71a26a9d008afda8919d9e105d
253
py
Python
output/models/nist_data/list_pkg/nmtoken/schema_instance/nistschema_sv_iv_list_nmtoken_max_length_2_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
1
2021-08-14T17:59:21.000Z
2021-08-14T17:59:21.000Z
output/models/nist_data/list_pkg/nmtoken/schema_instance/nistschema_sv_iv_list_nmtoken_max_length_2_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
4
2020-02-12T21:30:44.000Z
2020-04-15T20:06:46.000Z
output/models/nist_data/list_pkg/nmtoken/schema_instance/nistschema_sv_iv_list_nmtoken_max_length_2_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
null
null
null
from output.models.nist_data.list_pkg.nmtoken.schema_instance.nistschema_sv_iv_list_nmtoken_max_length_2_xsd.nistschema_sv_iv_list_nmtoken_max_length_2 import NistschemaSvIvListNmtokenMaxLength2 __all__ = [ "NistschemaSvIvListNmtokenMaxLength2", ]
42.166667
194
0.893281
0
0
0
0
0
0
0
0
37
0.146245
190750f0b978b05cd4e96bab0a727296c6a7e5d0
462
py
Python
jython/src/sample_src.py
adrianpothuaud/Sikuli-WS
6210a949768fb4eb2b80693818ae3eb31ec9c406
[ "MIT" ]
1
2018-02-20T16:28:45.000Z
2018-02-20T16:28:45.000Z
jython/src/sample_src.py
adrianpothuaud/Sikuli-WS
6210a949768fb4eb2b80693818ae3eb31ec9c406
[ "MIT" ]
null
null
null
jython/src/sample_src.py
adrianpothuaud/Sikuli-WS
6210a949768fb4eb2b80693818ae3eb31ec9c406
[ "MIT" ]
null
null
null
# -*- coding:utf-8 -*- """ file: src/sample.py Sample Source file ================== Description ----------- Sample description ... Content ------- - say_hello_sikuli Status ------ Test with: tests/sample.py last verification date: xx/xx/xxxx last verification status: XX """ from sikuli import * def say_hello_sikuli(): """ :return: """ popup("Hello World !", title="Sikuli")
12.486486
42
0.515152
0
0
0
0
0
0
0
0
386
0.835498
190774ef04a1a93a7a9832bb8db9d5fd37d72396
533
py
Python
k8s/images/codalab/apps/chahub/provider.py
abdulari/codalab-competitions
fdfbb77ac62d56c6b4b9439935037f97ffcd1423
[ "Apache-2.0" ]
333
2015-12-29T22:49:40.000Z
2022-03-27T12:01:57.000Z
k8s/images/codalab/apps/chahub/provider.py
abdulari/codalab-competitions
fdfbb77ac62d56c6b4b9439935037f97ffcd1423
[ "Apache-2.0" ]
1,572
2015-12-28T21:54:00.000Z
2022-03-31T13:00:32.000Z
k8s/images/codalab/apps/chahub/provider.py
abdulari/codalab-competitions
fdfbb77ac62d56c6b4b9439935037f97ffcd1423
[ "Apache-2.0" ]
107
2016-01-08T03:46:07.000Z
2022-03-16T08:43:57.000Z
from allauth.socialaccount import providers from allauth.socialaccount.providers.base import ProviderAccount from allauth.socialaccount.providers.oauth2.provider import OAuth2Provider class ChaHubAccount(ProviderAccount): pass class ChaHubProvider(OAuth2Provider): """Chahub OAuth authentication backend""" id = 'chahub' name = 'ChaHub' account_class = ChaHubAccount package = 'apps.chahub' def get_default_scope(self): return ['read', 'write'] providers.registry.register(ChaHubProvider)
23.173913
74
0.75985
297
0.557223
0
0
0
0
0
0
83
0.155722
1907beae999c84a846e911c9160f122031a33418
3,046
py
Python
tools/perf/contrib/cluster_telemetry/screenshot_unittest.py
zipated/src
2b8388091c71e442910a21ada3d97ae8bc1845d3
[ "BSD-3-Clause" ]
2,151
2020-04-18T07:31:17.000Z
2022-03-31T08:39:18.000Z
tools/perf/contrib/cluster_telemetry/screenshot_unittest.py
cangulcan/src
2b8388091c71e442910a21ada3d97ae8bc1845d3
[ "BSD-3-Clause" ]
395
2020-04-18T08:22:18.000Z
2021-12-08T13:04:49.000Z
tools/perf/contrib/cluster_telemetry/screenshot_unittest.py
cangulcan/src
2b8388091c71e442910a21ada3d97ae8bc1845d3
[ "BSD-3-Clause" ]
338
2020-04-18T08:03:10.000Z
2022-03-29T12:33:22.000Z
# Copyright 2017 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os import shutil import tempfile from telemetry import decorators from telemetry.testing import options_for_unittests from telemetry.testing import page_test_test_case from telemetry.util import image_util from contrib.cluster_telemetry import screenshot class ScreenshotUnitTest(page_test_test_case.PageTestTestCase): def setUp(self): self._options = options_for_unittests.GetCopy() self._png_outdir = tempfile.mkdtemp('_png_test') def tearDown(self): shutil.rmtree(self._png_outdir) @decorators.Enabled('linux') def testScreenshot(self): # Screenshots for Cluster Telemetry purposes currently only supported on # Linux platform. page_set = self.CreateStorySetFromFileInUnittestDataDir( 'screenshot_test.html') measurement = screenshot.Screenshot(self._png_outdir) self.RunMeasurement(measurement, page_set, options=self._options) path = self._png_outdir + '/' + page_set.stories[0].file_safe_name + '.png' self.assertTrue(os.path.exists(path)) self.assertTrue(os.path.isfile(path)) self.assertTrue(os.access(path, os.R_OK)) image = image_util.FromPngFile(path) screenshot_pixels = image_util.Pixels(image) special_colored_pixel = bytearray([217, 115, 43]) self.assertTrue(special_colored_pixel in screenshot_pixels) @decorators.Enabled('linux') def testIsScreenshotWithinDynamicContentThreshold(self): # TODO(lchoi): This unit test fails on Windows due to an apparent platform # dependent image decoding behavior that will need to be investigated in the # future if Cluster Telemetry ever becomes compatible with Windows. width = 2 height = 1 num_total_pixels = width * height content_pixels = bytearray([0, 0, 0, 128, 128, 128]) base_screenshot = image_util.FromRGBPixels(width, height, content_pixels) next_pixels = bytearray([1, 1, 1, 128, 128, 128]) next_screenshot = image_util.FromRGBPixels(width, height, next_pixels) expected_pixels = bytearray([0, 255, 255, 128, 128, 128]) self.assertTrue(screenshot.IsScreenshotWithinDynamicContentThreshold( base_screenshot, next_screenshot, content_pixels, num_total_pixels, 0.51)) self.assertTrue(expected_pixels == content_pixels) next_pixels = bytearray([0, 0, 0, 1, 1, 1]) next_screenshot = image_util.FromRGBPixels(2, 1, next_pixels) expected_pixels = bytearray([0, 255, 255, 0, 255, 255]) self.assertTrue(screenshot.IsScreenshotWithinDynamicContentThreshold( base_screenshot, next_screenshot, content_pixels, num_total_pixels, 0.51)) self.assertTrue(expected_pixels == content_pixels) self.assertFalse(screenshot.IsScreenshotWithinDynamicContentThreshold( base_screenshot, next_screenshot, content_pixels, num_total_pixels, 0.49))
41.726027
80
0.738345
2,618
0.859488
0
0
2,363
0.775772
0
0
521
0.171044
1908a3c6547cb1830569167b36fc11ceff479110
652
py
Python
bosm2015/pcradmin_old/urls.py
dvm-bitspilani/BITS-BOSM-2015
df3e69ee6ee9b179a2d6cd6cad61423c177dbe0a
[ "MIT" ]
1
2015-09-15T17:19:30.000Z
2015-09-15T17:19:30.000Z
bosm2015/pcradmin_old/urls.py
DVM-BITS-Pilani/BITS-BOSM-2015
df3e69ee6ee9b179a2d6cd6cad61423c177dbe0a
[ "MIT" ]
null
null
null
bosm2015/pcradmin_old/urls.py
DVM-BITS-Pilani/BITS-BOSM-2015
df3e69ee6ee9b179a2d6cd6cad61423c177dbe0a
[ "MIT" ]
1
2016-03-28T19:44:41.000Z
2016-03-28T19:44:41.000Z
from pcradmin import views from django.conf.urls import url, include urlpatterns = [ url(r'^(?P<pagename>\w+)/', views.index), #url(r'^sendmail$', views.sendmail), #url(r'^sentmail$', views.sentmail), url(r'^changelimit$', views.change_team_limits), url(r'^change_team_limit$', views.change_team_limit_list), url(r'^limit_changed$', views.change_limits), url(r'^changesportslimit$', views.change_sports_limits), url(r'^sports_limits_changed$', views.save_sports_limits), url(r'^setstatus', views.set_status), url(r'^showstatus', views.save_status), url(r'^emailsend', views.send_mail), url(r'^compose', views.compose), ]
38.352941
62
0.71319
0
0
0
0
0
0
0
0
249
0.381902
1908ece0bbcf8875b565e097e59669305dfcf236
354
py
Python
_aulas/ex004.py
CarlosJunn/Aprendendo_Python
cddb29b5ee2058c3fb612574eb4af414770b7422
[ "MIT" ]
null
null
null
_aulas/ex004.py
CarlosJunn/Aprendendo_Python
cddb29b5ee2058c3fb612574eb4af414770b7422
[ "MIT" ]
null
null
null
_aulas/ex004.py
CarlosJunn/Aprendendo_Python
cddb29b5ee2058c3fb612574eb4af414770b7422
[ "MIT" ]
null
null
null
a = input('digite algo :') print('O tipo primitivo desswe valor é ', type(a)) print("Só tem espaços? ", a.isspace()) print('É um número? ', a.isnumeric()) print('E alfabetico?', a.isalpha()) print('É alphanumerico?', a.isalnum()) print('Esta em maiúsculas?', a.isupper()) print('Esta em minúsculas?', a.islower()) print('Está capitalizada', a.istitle())
35.4
50
0.675141
0
0
0
0
0
0
0
0
185
0.509642
190ab0b7b7eed8792f426c4ad62cea8612750811
3,966
py
Python
authentication/login.py
ICTKevinWong/webservices-samples
35a8b8571d88276ff12ad60959192ce20ef5bf19
[ "BSD-3-Clause" ]
6
2018-01-03T14:13:57.000Z
2021-07-28T21:12:35.000Z
authentication/login.py
ICTKevinWong/webservices-samples
35a8b8571d88276ff12ad60959192ce20ef5bf19
[ "BSD-3-Clause" ]
5
2018-01-03T15:28:47.000Z
2020-08-28T08:25:07.000Z
authentication/login.py
ICTKevinWong/webservices-samples
35a8b8571d88276ff12ad60959192ce20ef5bf19
[ "BSD-3-Clause" ]
6
2017-10-17T19:37:44.000Z
2021-08-19T13:10:16.000Z
""" Examples of authenticating to the API. Usage: login <username> <password> <server> login -h Arguments: username ID to provide for authentication password Password corresponding to specified userid. server API endpoint. Options: -h --help Show this screen. --version Show version. Description: There are two ways that you can authenticate to the Web Services API. Both options are viable and are demonstrated below with examples. Basic-Authentication is probably the most popular option, especially for shorter/simpler usages of the API, mostly because of its simplicity. The credentials are simply provided with each request. There is a login endpoint (POST /devmgr/utils/login), that will allow you to explicitly authenticate with the API. Upon authenticating, a JSESSIONID will be provided in the Response headers and as a Cookie that can be utilized to create a persistent session (that will eventually timeout). """ import logging import docopt import requests LOG = logging.getLogger(__name__) def login(server, username, password): # Define a re-usable Session object and set some standard headers con = requests.Session() con.headers.update({'Accept': 'application/json', 'Content-Type': 'application/json'}) # Here we do a login that will define a persistent session on the server-side upon successful authentication result = con.post(server + "/devmgr/utils/login", json={'userId': username, 'password': password}) # You'll notice the JSESSIONID as a part of the Response headers LOG.info("Headers: %s", result.headers) # Notice how the JSESSIONID is now set as a cookie on the Session object? LOG.info("Cookie Set: JSESSIONID: %s", con.cookies.get('JSESSIONID')) # Now we make a subsequent request to a different Resource. Notice how the JESSIONID is persisted on the connection? # Requests is intelligent enough to perist the cookie that is sent back in the Response on the requests.Session()! result = con.get(server + "/devmgr/v2/storage-systems") assert result.cookies.get('JSESSIONID') == con.cookies.get('JSESSIONID') # Now let's avoid using a persistent session with the login result1 = requests.post(server + "/devmgr/utils/login", json={'userId': username, 'password': password}) # Okay, now we have a different JSESSIONID, that's okay, that's what we expected. assert result1.cookies.get('JSESSIONID') != con.cookies.get('JSESSIONID') result2 = requests.get(server + "/devmgr/v2/storage-systems", auth=(username, password)) # Uh oh, we got an authentication error!?! That's because the JESSIONID wasn't set on a persistent session, # and we didn't use Basic-Auth to authenticate directly! LOG.warn("Request without a session or auth: %s", result2.status_code) # This time we'll provide credentials using Basic-Authentication result2 = requests.get(server + "/devmgr/v2/storage-systems", auth=(username, password)) # It works, but we got a new session. assert result1.cookies.get('JSESSIONID') != result2.cookies.get('JSESSIONID') # We can do something similar to what requests does for us by manually persisting the cookie. This may be necessary # for less full-featured clients. result1 = requests.post(server + "/devmgr/utils/login", json={'userId': username, 'password': password}) result2 = requests.get(server + "/devmgr/v2/storage-systems", cookies=result1.cookies) # See, they match, and we don't have to provide authentication for this request! assert result1.cookies.get('JSESSIONID') == result2.cookies.get('JSESSIONID') if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG, format='%(relativeCreated)dms %(levelname)s %(module)s.%(funcName)s:%(lineno)d\n %(message)s') args = docopt.docopt(__doc__) login(args.get('<server>'), args.get('<username>'), args.get('<password>'))
47.783133
120
0.72113
0
0
0
0
0
0
0
0
2,766
0.697428
190b6799d93e741a949b082cb1fde511c62a4b57
487
py
Python
Chapter08/qt08_winBkground03.py
csy1993/PythonQt
c100cd9e1327fc7731bf04c7754cafb8dd578fa5
[ "Apache-2.0" ]
null
null
null
Chapter08/qt08_winBkground03.py
csy1993/PythonQt
c100cd9e1327fc7731bf04c7754cafb8dd578fa5
[ "Apache-2.0" ]
null
null
null
Chapter08/qt08_winBkground03.py
csy1993/PythonQt
c100cd9e1327fc7731bf04c7754cafb8dd578fa5
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- ''' 【简介】 界面背景颜色设置 ''' from PyQt5.QtWidgets import QApplication, QLabel ,QWidget, QVBoxLayout , QPushButton, QMainWindow from PyQt5.QtGui import QPalette , QBrush , QPixmap from PyQt5.QtCore import Qt import sys app = QApplication(sys.argv) win = QMainWindow() win.setWindowTitle("界面背景颜色设置") win.resize(350, 250) palette = QPalette() palette.setColor(QPalette.Background , Qt.red ) win.setPalette(palette) win.show() sys.exit(app.exec_())
20.291667
99
0.710472
0
0
0
0
0
0
0
0
104
0.197343
190c0898a136d9b08e445150bbf358f595547ad3
8,349
py
Python
tcsv.py
eadanfahey/transform-csv
40d3aaf34b286fe9d6262fe69c7245e3a44a5b41
[ "MIT" ]
null
null
null
tcsv.py
eadanfahey/transform-csv
40d3aaf34b286fe9d6262fe69c7245e3a44a5b41
[ "MIT" ]
null
null
null
tcsv.py
eadanfahey/transform-csv
40d3aaf34b286fe9d6262fe69c7245e3a44a5b41
[ "MIT" ]
null
null
null
import csv class ConstraintError(Exception): def __init__(self, column, value, fn_name, rownumber): self.column = column self.value = value self.fn_name = fn_name self.rown = rownumber def __str__(self): message = "{} value {} does not satisfy the constraint {} on row {}" return message.format(self.column, self.value, self.fn_name, self.rown) class TransformError(Exception): def __init__(self, row, err): self.row = row self.err = err def __str__(self): return "on csv row {} with error: {}".format(self.row, self.err) class TransformCSV(object): def __init__(self, input_file, skiprows=0): self.rownumber = 1 self.ifile = open(input_file) self.names = None self.reader = None self.idx = None self._create_reader(skiprows) self.mutation_fns = [] self.constraint_fns = [] self.select_fn = lambda row: row def __iter__(self): return self def __next__(self): row = next(self.reader) self.rownumber += 1 try: mutated = row[:] for fn in self.mutation_fns: mutated = fn(row) mutated_cp = mutated[:] for cfn in self.constraint_fns: cfn(mutated_cp) return self.select_fn(mutated) except Exception as e: raise TransformError(self.rownumber, e) def close(self): self.ifile.close() def _create_reader(self, skiprows): """ Create a csv reader object from the input csv file. """ # with open(self.input_file) as f: reader = csv.reader(self.ifile) for _ in range(skiprows): next(reader) self.rownumber += 1 names = next(reader) self.reader = reader self.names = names self.idx = dict(zip(names, range(len(names)))) def rename(self, name_map): """ Change the column names. Args: name_map: A dictionary mapping the current names to new names. Returns: None """ new_names = [] for name in self.names: new_name = name_map.get(name) if new_name is None: new_names.append(name) else: new_names.append(new_name) self.names = new_names self.idx = dict(zip(self.names, range(len(self.names)))) def add(self, name, val): """ Add a column to the csv containing a constant value. TODO: replace this method with add_column Args: name: The name of the new column. val: The value to place in each row of the new column. Returns: None """ def f(row): row.append(val) return row self.mutation_fns.append(f) self.names.append(name) self.idx[name] = len(self.names) - 1 def add_column(self, name, fn, col): """ Add a column to the csv with the new value produced by a user defined function that can access all entries on the same row. TODO: Perhaps I use inspect.signature to verify that the number of arguments that `fn` takes is the same as the number of columns passed. But, this doesn't work for some builting functions e.g. int. Args: name: The name of the new column. fn: The function to apply to the row. col: The columns that are arguments to the function. Returns: None """ if isinstance(col, str): columns = [col] elif isinstance(col, list) or isinstance(col, tuple): columns = col else: raise TypeError('The parameter col must be of type str, list or tuple') # check that the column names are valid. for c in columns: try: self.idx[c] except KeyError: raise KeyError("The column '{}' does not exist".format(c)) def add_column_fn(row): vals = [row[self.idx[c]] for c in columns] new_val = fn(*vals) row.append(new_val) return row self.mutation_fns.append(add_column_fn) self.names.append(name) self.idx[name] = len(self.names) - 1 def mutate(self, fn, col=None): """ Mutate a column by applying a function to it. Args: fn: The function to apply. Takes a string or numeric argument and returns a string or numeric argument. col: The name of the column to be mutated. Can be of three forms: 1) None (default): the function is applied to all columns. 2) list/tuple of column names to apply the function to. 3) A single column name to apply the function to. Returns: None Raises: TypeError: The parameter `col` is the wrong type. KeyError: When trying to mutate a column that doesn't exist. """ if col is None: columns = self.names elif isinstance(col, str): columns = [col] elif isinstance(col, list) or isinstance(col, tuple): columns = col else: raise TypeError("col must be of type None, str, list or tuple") # check that the column names are valid. for c in columns: try: self.idx[c] except KeyError: raise KeyError("The column '{}' does not exist".format(c)) def mutate_fn(row): for c in columns: row[self.idx[c]] = fn(row[self.idx[c]]) return row self.mutation_fns.append(mutate_fn) def constraint(self, fn, col): """ Check that a column satisfies a constraint. Args: fn: A function of a single argument that returns True if the column value satisfies the constraint, or False otherwise. col: The name of the column to check. Returns: None Raises: ConstraintError: If fn returns False. TypeError: If col is not the correct type. KeyError: If a column name does not exist. """ if col is None: columns = self.names elif isinstance(col, str): columns = [col] elif isinstance(col, list) or isinstance(col, tuple): columns = col else: raise TypeError("col must be of type None, str, list or tuple") # check that the column names are valid. for c in columns: try: self.idx[c] except KeyError: raise KeyError("The column '{}' does not exist".format(c)) def constraint_fn(row): for c in columns: val = row[self.idx[c]] if not fn(val): raise ConstraintError(c, val, fn.__name__, self.rownumber) self.constraint_fns.append(constraint_fn) def select(self, columns): """ Select only the supplied columns. columns: columns: A list of column names to select. Returns: None Raises: KeyError: If a column does not exist. """ for c in columns: try: self.idx[c] except KeyError: raise KeyError("The column '{}' does not exist".format(c)) def select_fn(row): return [row[self.idx[col]] for col in columns] self.names = columns self.select_fn = select_fn def write(self, filename): """ Write the csv to file. This will exhaust the iterator. Args: filename: the name of the csv file. Returns: None Raises: FileNotFoundError: the file could not be created. """ with open(filename, 'w') as f: writer = csv.writer(f) writer.writerow(self.names) while True: try: writer.writerow(self.__next__()) except StopIteration: break
31.387218
83
0.542819
8,329
0.997605
0
0
0
0
0
0
3,300
0.395257
190dc436e49d1655496d4e4796285c2ff4464f81
13,074
py
Python
selim/datasets/lidc.py
tilacyn/dsb2018_topcoders
e0f95ef70bc062d4dea321d2aa73231a9538cd63
[ "MIT" ]
null
null
null
selim/datasets/lidc.py
tilacyn/dsb2018_topcoders
e0f95ef70bc062d4dea321d2aa73231a9538cd63
[ "MIT" ]
null
null
null
selim/datasets/lidc.py
tilacyn/dsb2018_topcoders
e0f95ef70bc062d4dea321d2aa73231a9538cd63
[ "MIT" ]
null
null
null
import numpy as np from tensorflow.keras.preprocessing.image import Iterator import time import os import xml.etree.ElementTree as ET import cv2 import pydicom as dicom from os.path import join as opjoin import json from tqdm import tqdm def make_mask(image, image_id, nodules): height, width = image.shape # print(image.shape) filled_mask = np.full((height, width), 0, np.uint8) contoured_mask = np.full((height, width), 0, np.uint8) # todo OR for all masks for nodule in nodules: for roi in nodule['roi']: if roi['sop_uid'] == image_id: edge_map = roi['xy'] cv2.fillPoly(filled_mask, np.int32([np.array(edge_map)]), 255) # cv2.polylines(contoured_mask, np.int32([np.array(edge_map)]), color=255, isClosed=False) # mask = np.swapaxes(np.array([contoured_mask, filled_mask]), 0, 2) # cv2.imwrite('kek0.jpg', image) # cv2.imwrite('kek1.jpg', filled_mask) return np.reshape(filled_mask, (height, width, 1)) / 255 def get_files_with_nodules(nodules, root): files = os.listdir(root) image_ids_with_nodules = set() for nodule in nodules: for roi in nodule['roi']: image_ids_with_nodules.add(roi['sop_uid']) result = [] for file in files: if not file.endswith('dcm'): continue _, ds = imread(opjoin(root, file)) if ds.SOPInstanceUID in image_ids_with_nodules: result.append(opjoin(root, file)) return result def test(a, b): root = '/Users/mkryuchkov/lung-ds/3000566-03192' nodules = parseXML('/Users/mkryuchkov/lung-ds/3000566-03192') image = cv2.imread('/Users/mkryuchkov/lung-ds/000001.jpg') for im_name in os.listdir(root): if not im_name.endswith('dcm'): continue image, dcm_ds = imread(root + '/' + im_name) print(dcm_ds.SliceLocation) if dcm_ds.SliceLocation == a: print(im_name) return make_mask(image, dcm_ds.SOPInstanceUID, nodules, b) # break # print(dcm_ds.get('UID')) # return make_mask(image, image_id, nodules) def imread(image_path): ds = dicom.dcmread(image_path) img = ds.pixel_array img_2d = img.astype(float) img_2d_scaled = (np.maximum(img_2d, 0) / img_2d.max()) * 255.0 img_2d_scaled = np.uint8(img_2d_scaled) image = img_2d_scaled return image, ds def parseXML(scan_path): ''' parse xml file args: xml file path output: nodule list [{nodule_id, roi:[{z, sop_uid, xy:[[x1,y1],[x2,y2],...]}]}] ''' file_list = os.listdir(scan_path) xml_file = None for file in file_list: if '.' in file and file.split('.')[1] == 'xml': xml_file = file break prefix = "{http://www.nih.gov}" if xml_file is None: print('SCAN PATH: {}'.format(scan_path)) tree = ET.parse(scan_path + '/' + xml_file) root = tree.getroot() readingSession_list = root.findall(prefix + "readingSession") nodules = [] for session in readingSession_list: # print(session) unblinded_list = session.findall(prefix + "unblindedReadNodule") for unblinded in unblinded_list: nodule_id = unblinded.find(prefix + "noduleID").text edgeMap_num = len(unblinded.findall(prefix + "roi/" + prefix + "edgeMap")) if edgeMap_num >= 1: # it's segmentation label nodule_info = {} nodule_info['nodule_id'] = nodule_id nodule_info['roi'] = [] roi_list = unblinded.findall(prefix + "roi") for roi in roi_list: roi_info = {} # roi_info['z'] = float(roi.find(prefix + "imageZposition").text) roi_info['sop_uid'] = roi.find(prefix + "imageSOP_UID").text roi_info['xy'] = [] edgeMap_list = roi.findall(prefix + "edgeMap") for edgeMap in edgeMap_list: x = float(edgeMap.find(prefix + "xCoord").text) y = float(edgeMap.find(prefix + "yCoord").text) xy = [x, y] roi_info['xy'].append(xy) nodule_info['roi'].append(roi_info) nodules.append(nodule_info) return nodules class LIDCDatasetIterator(Iterator): def __init__(self, image_dir, batch_size, val_len, test_len=0, data_shape=(64, 64), grid_size=1): seed = np.uint32(time.time() * 1000) self.image_dir = image_dir self.image_ids = self.create_image_ids() n = len(self.image_ids) self.val_len = val_len self.train_index_list = np.arange(n) np.random.shuffle(self.train_index_list) self.val_index_list = self.train_index_list[:val_len] self.test_index_list = self.train_index_list[val_len:(val_len + test_len)] self.train_index_list = self.train_index_list[val_len + test_len:] self.val_i = 0 self.train_i = 0 self.grid_size = grid_size self.data_shape = data_shape print("total len: {}".format(n)) print("train index array: {}".format(len(self.train_index_list))) print("val index array: {}".format(len(self.val_index_list))) super().__init__(n, batch_size, False, seed) def train_generator(self): def index_inc_function(): prev = self.train_i self.train_i += self.batch_size // 2 if self.train_i >= len(self.train_index_list): np.random.shuffle(self.train_index_list) prev = 0 self.train_i = self.batch_size // 2 return prev, self.train_i return self.generator(index_inc_function, self.train_index_list) def val_generator(self): def index_inc_function(): prev = self.val_i self.val_i += self.batch_size // 2 if self.val_i >= len(self.val_index_list): np.random.shuffle(self.val_index_list) prev = 0 self.val_i = self.batch_size // 2 return prev, self.val_i return self.generator(index_inc_function, self.val_index_list) def generator(self, index_inc_function, index_list): def gen(): while 1: batch_x = [] batch_y = [] index, next_index = index_inc_function() index_array = index_list[index: next_index] for image_index in index_array: file_name, parent_name = self.image_ids[image_index] image, dcm_ds = imread(file_name) image = self.pad_if_need(image) nodules = parseXML(parent_name) mask = make_mask(image, dcm_ds.SOPInstanceUID, nodules) image_parts, mask_parts = self.split(image, mask) for i in range(2): image = image_parts[i] image = self.preprocess_x(image) mask = mask_parts[i] mask = self.preprocess_y(mask) batch_x.append(image) batch_y.append(mask) batch_x = np.array(batch_x, dtype=np.uint8) batch_y = np.array(batch_y, dtype=np.uint8) yield batch_x, batch_y return gen def pad_if_need(self, image): h, w = image.shape if 2022 == h or 2022 == w: hpad = (2048 - h) // 2 wpad = (2048 - w) // 2 image = np.pad(image, ((hpad, hpad), (wpad, wpad)), constant_values=0) return image def preprocess_x(self, image): image = np.reshape(image, (image.shape[0], image.shape[1], 1)) image = np.repeat(image, 3, axis=2) image = cv2.resize(image, self.data_shape) return image def preprocess_y(self, mask): mask = cv2.resize(mask, self.data_shape) mask = np.reshape(mask, (self.data_shape[0], self.data_shape[1], 1)) return mask def split(self, image, mask): if self.grid_size == 1: return [image, image], [mask, mask] h, w = image.shape gs = h // self.grid_size image_parts = image.reshape(h // gs, gs, -1, gs).swapaxes(1, 2).reshape(-1, gs, gs) mask_parts = mask.reshape(h // gs, gs, -1, gs).swapaxes(1, 2).reshape(-1, gs, gs) max_part_idx = np.argmax([np.count_nonzero(part > 0) for part in mask_parts]) max_mask = mask_parts[max_part_idx] random_idx = np.random.randint(self.grid_size * self.grid_size) return [image_parts[max_part_idx], image_parts[random_idx]], [max_mask, mask[random_idx]] def create_image_ids(self): with open("index.json", "r") as read_file: dcms = json.load(read_file) image_ids = {} # print('total training ds len: {}'.format(len(dcms))) for i, dcm in enumerate(dcms): image_ids[i] = dcm, '/'.join(dcm.split('/')[:-1]) return image_ids def create_index(image_dir): dcms = [] for root, folders, files in tqdm(os.walk(image_dir)): xml_file = None for file in files: if 'xml' in file: xml_file = file break if xml_file is None: continue print('extending with {}'.format(root)) dcms.extend(get_files_with_nodules(parseXML(root), root)) print('total training ds len: {}'.format(len(dcms))) with open("index.json", "w") as write_file: json.dump(dcms, write_file) class LIDCTestDatasetIterator(LIDCDatasetIterator): def __init__(self, image_dir, batch_size, test_index_list, val_len, data_shape=(64, 64), grid_size=1): super().__init__(image_dir, batch_size, 0, data_shape=data_shape, grid_size=grid_size) self.test_index_list = test_index_list self.test_i = 0 self.all_images = [] self.create_negative() self.batch_size //= 2 def create_negative(self): for root, folders, files in tqdm(os.walk(self.image_dir)): xml_file = None for file in files: if 'xml' in file: xml_file = file break if xml_file is None: continue else: extension = [(dcm, root) for dcm in files if dcm.endswith('dcm')] self.all_images.extend(extension) if len(self.all_images) > 10000: break def split_for_test(self, image, mask): if self.grid_size == 1: return [image, image], [mask, mask] h, w = image.shape gs = h // self.grid_size image_parts = image.reshape(h // gs, gs, -1, gs).swapaxes(1, 2).reshape(-1, gs, gs) mask_parts = mask.reshape(h // gs, gs, -1, gs).swapaxes(1, 2).reshape(-1, gs, gs) return image_parts, mask_parts def test_generator(self): def index_inc_function(): prev = self.test_i self.test_i += self.batch_size if self.test_i >= len(self.test_index_list): np.random.shuffle(self.test_index_list) prev = 0 self.test_i = self.batch_size return prev, self.test_i index_list = self.test_index_list def gen(): while 1: batch_x = [] batch_y = [] index, next_index = index_inc_function() index_array = index_list[index: next_index] print(index_array) new_index_array = [] for i in index_array: new_index_array.append(i) new_index_array.append(-1) index_array = new_index_array for image_index in index_array: if image_index == -1: ii = np.random.randint(1e4) file_name, parent_name = self.all_images[ii] file_name = opjoin(parent_name, file_name) else: file_name, parent_name = self.image_ids[image_index] image, dcm_ds = imread(file_name) image = self.pad_if_need(image) nodules = parseXML(parent_name) mask = make_mask(image, dcm_ds.SOPInstanceUID, nodules) image_parts, mask_parts = self.split_for_test(image, mask) image_parts = [self.preprocess_x(image_part) for image_part in image_parts] mask_parts = [self.preprocess_y(mask_part) for mask_part in mask_parts] image = self.preprocess_x(image) mask = self.preprocess_y(mask) batch_x.append((image, image_parts)) batch_y.append((mask, mask_parts)) yield batch_x, batch_y return gen
38.795252
106
0.567998
8,140
0.62261
3,222
0.246443
0
0
0
0
1,173
0.08972
190de2ec2acd9e5640757238ffbce83a69af9dc2
2,058
py
Python
hexagon/__main__.py
redbeestudios/hexagon
dc906ae31a14eb750a3f9bde8dd0633d8e1af486
[ "Apache-2.0" ]
8
2021-06-27T21:46:04.000Z
2022-02-26T18:03:10.000Z
hexagon/__main__.py
redbeestudios/hexagon
dc906ae31a14eb750a3f9bde8dd0633d8e1af486
[ "Apache-2.0" ]
31
2021-06-24T14:35:38.000Z
2022-02-17T03:01:23.000Z
hexagon/__main__.py
redbeestudios/hexagon
dc906ae31a14eb750a3f9bde8dd0633d8e1af486
[ "Apache-2.0" ]
1
2021-08-16T16:15:16.000Z
2021-08-16T16:15:16.000Z
from hexagon.support.hooks import HexagonHooks from hexagon.support.execute.tool import select_and_execute_tool from hexagon.support.update.cli import check_for_cli_updates import sys from hexagon.support.args import fill_args from hexagon.domain import cli, tools, envs from hexagon.support.help import print_help from hexagon.support.tracer import tracer from hexagon.support.printer import log from hexagon.support.update.hexagon import check_for_hexagon_updates from hexagon.support.storage import ( HexagonStorageKeys, store_user_data, ) from hexagon.plugins import collect_plugins def main(): _, _tool, _env = fill_args(sys.argv, 3) if _tool == "-h" or _tool == "--help": return print_help(cli, tools, envs) collect_plugins() HexagonHooks.start.run() log.start(f"[bold]{cli.name}") log.gap() check_for_hexagon_updates() if cli.name == "Hexagon": log.info( "This looks like your first time running Hexagon.", 'You should probably run "Install CLI".', gap_end=1, ) else: check_for_cli_updates() try: result = select_and_execute_tool(tools, _tool, _env, sys.argv[3:]) log.gap() if result: for item in result: log.info(item) log.finish() if tracer.has_traced(): log.extra( "[cyan dim]To run again do:[/cyan dim]", f"[cyan] {cli.command} {tracer.command()}[/cyan]", ) command_as_aliases = tracer.command_as_aliases(tools, envs) if command_as_aliases: log.extra( "[cyan dim] or:[/cyan dim]", f"[cyan] {cli.command} {command_as_aliases}[/cyan]", ) store_user_data( HexagonStorageKeys.last_command.value, f"{cli.command} {tracer.command()}", ) except KeyboardInterrupt: sys.exit(1) HexagonHooks.end.run() if __name__ == "__main__": main()
27.078947
76
0.614189
0
0
0
0
0
0
0
0
350
0.170068
190e10d1d867b6f965986f63ffa52b804353b9e8
18,322
py
Python
ligpy/ligpy_utils.py
LigninTools/UWCAP_10
0f665d3a2895657d9dda8ea9cc395583f3437dcc
[ "BSD-2-Clause" ]
7
2016-06-30T18:14:14.000Z
2020-04-20T22:18:47.000Z
ligpy/ligpy_utils.py
LigninTools/UWCAP_10
0f665d3a2895657d9dda8ea9cc395583f3437dcc
[ "BSD-2-Clause" ]
null
null
null
ligpy/ligpy_utils.py
LigninTools/UWCAP_10
0f665d3a2895657d9dda8ea9cc395583f3437dcc
[ "BSD-2-Clause" ]
5
2016-07-30T04:05:29.000Z
2021-08-14T13:58:11.000Z
""" Misc utility functions required by several modules in the ligpy program. """ import os import numpy as np from constants import GAS_CONST, MW def set_paths(): """ Set the absolute path to required files on the current machine. Returns ------- reactionlist_path : str path to the file `complete_reactionlist.dat` rateconstantlist_path : str path to the file `complete_rateconstantlist.dat` compositionlist_path : str path to the file `compositionlist.dat` """ module_dir = os.path.abspath(__file__).split('ligpy_utils')[0] reactionlist_path = module_dir + 'data/complete_reaction_list.dat' rateconstantlist_path = module_dir + 'data/complete_rateconstant_list.dat' compositionlist_path = module_dir + 'data/compositionlist.dat' return reactionlist_path, rateconstantlist_path, compositionlist_path def get_specieslist(completereactionlist): """ Make a list of all the molecular species involved in the kinetic scheme. Parameters ---------- completereactionlist : str the path to the `complete_reaction_list.dat` file Returns ------- specieslist : list a list of all the species in the kinetic scheme """ specieslist = [] for line in open(completereactionlist, 'r').readlines(): for spec in line.split(','): # If the species has already been added to the list then move on. if spec.split('_')[1].split()[0] in specieslist: continue else: specieslist.append(spec.split('_')[1].split()[0]) specieslist.sort() return specieslist def get_speciesindices(specieslist): """ Create a dictionary to assign an arbitrary index to each of the species in the kinetic scheme. Parameters ---------- specieslist : list a list of all the species in the model Returns ------- speciesindices : dict a dictionary of arbitrary indices with the species from specieslist as keys indices_to_species : dict the reverse of speciesindices (keys are the indices and values are the species) """ speciesindices = {} index = 0 for x in specieslist: speciesindices[x] = index index += 1 indices_to_species = dict(zip(speciesindices.values(), speciesindices.keys())) return speciesindices, indices_to_species def define_initial_composition(compositionlist, species): """ Read the plant ID specified and define the initial composition of the lignin polymer in terms of the three model components (PLIGC, PLIGH, PLIGO). Parameters ---------- compositionlist : str the path of the `compositionlist.dat` file species : str the name of a lignin species that exists in the `compositionlist.dat` file Returns ------- pligc_0 : float The initial composition (mol/L) of PLIGC pligh_0 : float The initial composition (mol/L) of PLIGH pligo_0 : float The initial composition (mol/L) of PLIGO """ for line in open(compositionlist, 'rb').readlines(): if line.split(',')[0] == species: # Initial compositions [mole fraction] pligc_mol = float(line.split(',')[1]) pligh_mol = float(line.split(',')[2]) pligo_mol = float(line.split(',')[3]) # The weighted average molar mass of mixture [kg/mol] weighted_m = (301*pligc_mol + 423*pligh_mol + 437*pligo_mol)/1000 # the density of the condensed phase [kg/L] density = 0.75 # Initial compositions [mol/L] pligc_0 = density/weighted_m * pligc_mol pligh_0 = density/weighted_m * pligh_mol pligo_0 = density/weighted_m * pligo_mol break return pligc_0, pligh_0, pligo_0 def build_k_matrix(rateconsts): """ Build a matrix of all the rate constant parameters (A, n, E). Parameters ---------- rateconsts : str the path to the file `complete_rateconstant_list.dat` Returns ------- kmatrix : list a list of lists that defines a matrix. Each entry in the list is A, n, E for a given reaction """ num_lines = sum(1 for line in open(rateconsts)) kmatrix = [None]*num_lines for i, line in enumerate(open(rateconsts, 'r').readlines()): kmatrix[i] = [line.split(' ')[0], line.split(' ')[1], line.split(' ')[2].split()[0]] return kmatrix def get_k_value(T, reaction_index, kmatrix): """ Returns the value of the rate constant for a particular reaction index. Parameters ---------- T : float temperature in Kelvin reaction_index : int the index of the reaction for which you want the rate kmatrix : list the kmatrix generated by build_k_matrix() Returns ------- k : float the value of the rate constant for the given reaction at the given temperature. """ k = (eval(kmatrix[reaction_index][0]) * T**eval(kmatrix[reaction_index][1]) * np.exp(-1 * eval(kmatrix[reaction_index][2]) /(GAS_CONST * T))) return k def get_k_value_list(T, kmatrix): """ Returns a list of all the k-values for a given temperature. Parameters ---------- T : float temperature in Kelvin kmatrix : list the kmatrix generated by build_k_matrix() Returns ------- kvaluelist : list a list of all the rate constant values for a given temperature """ kvaluelist = [] for index, row in enumerate(kmatrix): kvaluelist.append(get_k_value(T, index, kmatrix)) return kvaluelist def build_reactant_dict(completereactionlist, speciesindices): """ Build a dictionary of the reactants involved in each reaction, along with their stoichiometric coefficients. The keys of the dictionary are the reaction numbers, the values are lists of lists [[reactant1index, -1*coeff1],...] Parameters ---------- completereactionlist : str path to the file `complete_reaction_list.dat` speciesindices : dict the dictionary speciesindices from get_speciesindices() Returns ------- reactant_dict : dict a dictionary where keys are reaction numbers and values are lists of lists with the reactants and their stoichiometric coefficients for each reaction """ reactant_dict = {} for rxnindex, reaction in enumerate(open(completereactionlist, 'rb') .readlines()): reactants = [] # x is each coefficient_species set for x in reaction.split(','): # if the species is a reactant if float(x.split('_')[0]) < 0: reactants.append([speciesindices[x.split('_')[1].split()[0]], -1*float(x.split('_')[0])]) # in preceding line: *-1 because I want the |stoich coeff| reactant_dict[rxnindex] = reactants return reactant_dict def build_species_rxns_dict(completereactionlist): """ Build a dictionary where keys are species and values are lists with the reactions that species is involved in, that reaction's sign in the net rate equation, and the stoichiometric coefficient of the species in that reaction. Parameters ---------- completereactionlist : str path to the file `complete_reaction_list.dat` Returns ------- species_rxns : dict keys are the species in the model; values are lists of [reaction that species is involved in, sign of that species in the net rate equation, stoichiometric coefficient] """ specieslist = get_specieslist(set_paths()[0]) species_rxns = {} for species in specieslist: # This loop makes a list of which reactions "species" takes part in # and what sign that term in the net rate eqn has # and what the stoichiometric coefficient is reactions_involved = [] for rxnindex, line in enumerate(open(completereactionlist, 'rb') .readlines()): # example of x = '-1_ADIO' for x in line.split(','): # If the species being iterated over is part of this reaction if species == x.split('_')[1].split()[0]: # if the species is a reactant if float(x.split('_')[0]) < 0: reactions_involved.append( [rxnindex, -1, x.split('_')[0]]) # if the species is a product if float(x.split('_')[0]) > 0: reactions_involved.append( [rxnindex, 1, '+' + x.split('_')[0]]) species_rxns[species] = reactions_involved return species_rxns def build_rates_list(rateconstlist, reactionlist, speciesindices, indices_to_species, human='no'): """ This function writes the list of rate expressions for each reaction. Parameters ---------- rateconstlist : str the path to the file `complete_rateconstant_list.dat` reactionlist : str the path to the file `complete_reaction_list.dat` speciesindices : dict a dictionary of arbitrary indices with the species from specieslist as keys indices_to_species : dict the reverse of speciesindices (keys are the indices and values are the species) human : str, optional indicate whether the output of this function should be formatted for a human to read ('yes'). Default is 'no' Returns ------- rates_list : list a list of the rate expressions for all the reactions in the model """ kmatrix = build_k_matrix(rateconstlist) reactant_dict = build_reactant_dict(reactionlist, speciesindices) rates_list = [] for i, line in enumerate(kmatrix): rate = 'rate[%s] = kvalue(T,%s) ' % (i, i) concentrations = '' for entry in reactant_dict[i]: if entry == 'n': # if there is no reaction concentrations = '* 0' break else: if human == 'no': concentrations += '* y[%s]**%s ' % (entry[0], entry[1]) elif human == 'yes': concentrations += '* [%s]**%s ' % \ (indices_to_species[entry[0]], entry[1]) else: raise ValueError('human must be a string: yes or no') rate += concentrations rates_list.append(rate) return rates_list def build_dydt_list(rates_list, specieslist, species_rxns, human='no'): """This function returns the list of dydt expressions generated for all the reactions from rates_list. Parameters ---------- rates_list : list the output of build_rates_list() specieslist : list a list of all the species in the kinetic scheme species_rxns : dict dictionary where keys that are the model species and values are the reactions they are involved in human : str, optional indicate whether the output of this function should be formatted for a human to read ('yes'). Default is 'no' Returns ------- dydt_expressions : list expressions for the ODEs expressing the concentration of each species with time """ dydt_expressions = [] for species in specieslist: rate_formation = 'd[%s]/dt = ' % (species) # "entry" is [reaction#, sign of that reaction, coefficient] for entry in species_rxns[species]: if human == 'no': rate_formation += '%s*%s ' % \ (entry[2], rates_list[entry[0]].split(' = ')[1]) elif human == 'yes': rate_formation += '%s*rate[%s] ' % (entry[2], entry[0]) else: raise ValueError('human must be a string: yes or no') dydt_expressions.append(rate_formation) return dydt_expressions def write_rates_and_odes(filename, rates, odes): """ Writes a file that contains the model equations to be solved (a list of rate expressions, followed by a list of ODEs for each species). This file is just for reference for humans to be able to look at the specific reactions that are modeled, it is not actually used by the program. Users should only need to generate this file if they've changed anything about the kinetic scheme (it already exists in the data folder). Parameters ---------- filename : str the filename (including relative path if appropriate) of the ratesandodes file to write rates : list the output of build_rates_list() with human='yes' odes : list the output of build_dydt_list() with human='yes' Returns ------- None """ with open(filename, 'wb') as initialize: initialize.write('Reaction Rates:\n') with open(filename, 'ab') as writer: for line in rates: writer.write(line+'\n') writer.write('\n\nODE''s:\n') for line in odes: writer.write(line+'\n') # These are some functions for checking the integrity of some model # components, but they are not used except for exploratory or verification # purposes def check_species_in_MW(specieslist=None): """ Check to make sure that everything in the specieslist is in the MW dictionary from `constants.py`. Parameters ---------- specieslist : list, optional a list of species to check against. If no list is specified then the function get_specieslist() will be used to generate the default list Returns ------- None """ if specieslist == None: specieslist = get_specieslist(set_paths()[0]) for item in MW.keys(): if item in specieslist: print '%s is in specieslist' % ('{: <20}'.format(item)) else: print '********'+item for item in specieslist: if item in MW.keys(): print '%s is in MW dictionary' % ('{: <20}'.format(item)) else: print '********'+item print '\n%s should equal %s' % (len(MW.keys()), len(specieslist)) def check_mass_balance(): """ Check for conservation of mass, and if mass is not conserved, see which reactions are creating or losing mass. Note that mass will not be wholly conserved in this model because protons are not accounted for when radicals are involved in non-Hydrogen-abstraction reactions, but all other reactions should conserve mass. Parameters ---------- None Returns ------- total_mass_balance : numpy array an array with the amount of mass gained or lost in each reaction """ specieslist = get_specieslist(set_paths()[0]) speciesindices = get_speciesindices(specieslist)[0] kmatrix = build_k_matrix(set_paths()[1]) species_rxns = build_species_rxns_dict(set_paths()[0]) # Make vector of the MW's of each species, in the order from speciesindices mw_vector = np.zeros((len(MW), 1)) for species in MW: mw_vector[speciesindices[species]] = MW[species][0] mw_vector = mw_vector.transpose() # In this stoichiometric matrix, rows are species, columns are reactions stoicmatrix = np.zeros((len(speciesindices), len(kmatrix)), dtype='float') for species in species_rxns: i = speciesindices[species] for reaction in species_rxns[species]: j = reaction[0] stoicmatrix[i, j] += float(reaction[2]) # The result of this dot product should be a vector full of zeros. # This will not be the case because protons are not accounted for when # radicals are involved in non-H-abstraction rxns, # but all other reactions should be 0 total_mass_balance = np.dot(mw_vector, stoicmatrix[:, :]) # Use this to look at which reactions are creating or losing mass # (from missing Hydrogen) h_sum = 0 for i, value in enumerate(total_mass_balance[0, :]): if value != 0: print i, value h_sum += value print '\nNet mass change = %s' % h_sum return total_mass_balance def check_species_fate(): """ Check to see which species (if any) are only produced, but never consumed in the model reactions (assuming that all reactions occur). Parameters ---------- None Returns ------- fate_dict : dictionary a dictionary with the fate of model species """ specieslist = get_specieslist(set_paths()[0]) species_rxns = build_species_rxns_dict(set_paths()[0]) fate_dict = {} for species in specieslist: fate_dict[species] = 'produced only' for entry in species_rxns[species]: if entry[1] < 0: fate_dict[species] = 'consumed' for species in specieslist: if fate_dict[species] == 'consumed': del fate_dict[species] return fate_dict
35.370656
79
0.581705
0
0
0
0
0
0
0
0
10,813
0.590165
ef6ac86677970e875c525f92de89d605e9c5d009
7,836
py
Python
data_prep_helper.py
mayofcumtb/PaperWrite
4a2154d68fa00e1912a3d4ce7b514364314c55e3
[ "Apache-2.0" ]
null
null
null
data_prep_helper.py
mayofcumtb/PaperWrite
4a2154d68fa00e1912a3d4ce7b514364314c55e3
[ "Apache-2.0" ]
null
null
null
data_prep_helper.py
mayofcumtb/PaperWrite
4a2154d68fa00e1912a3d4ce7b514364314c55e3
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- import os import sys import random import tempfile import shutil mayan_debug = 1 BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(BASE_DIR) sys.path.append(os.path.dirname(BASE_DIR)) from global_variables import * from caffe_utils import * ''' @brief: extract labels from rendered images @input: xxx/03790512_13a245da7b0567509c6d15186da929c5_a035_e009_t-01_d004.png @output: (35,9,359) ''' def path2label(path): parts = os.path.basename(path).split('_') azimuth = int(parts[2][1:]) % 360 elevation = int(parts[3][1:]) % 360 tilt = int(parts[4][1:]) % 360 return (azimuth, elevation, tilt) def outspath2label(path): ''' :param path: input_labels+=bookshelf_16_a007_e023_t359_d002px_216.00_py_499.00_bbwidth_280.00_bbheight_485.00.jpg=== =====0======1==2=====3===4=====5======6====7===8=======9=======10======11======12========= :return: ''' parts = os.path.basename(path).split('_') class_name = str(parts[0]) cad_index = str(parts[1]) azimuth = int(parts[2][1:]) elevation = int(parts[3][1:]) tilt = -int(parts[4][1:]) distance = float(parts[5][1:-2]) px = float(parts[6]) py = float(parts[8]) bbox_width = float(parts[10]) bbox_height = float(parts[12][:-4]) return (class_name, cad_index, azimuth, elevation, tilt, distance, px, py, bbox_width, bbox_height) ''' @brief: get rendered image filenames and annotations, save to specified files. @input: shape_synset - like '02958343' for car [train,test]_image_label_file - output file list filenames train_ratio - ratio of training images vs. all images @output: save "<image_filepath> <class_idx> <azimuth> <elevation> <tilt>" to files. ''' def get_one_category_image_label_file(shape_synset, train_image_label_file, test_image_label_file, train_ratio = 0.9): if mayan_debug: train_ratio = 1 class_idx = g_shape_synsets.index(shape_synset) image_folder = os.path.join(g_syn_images_bkg_overlaid_folder, shape_synset) all_md5s = os.listdir(image_folder) train_test_split = int(len(all_md5s)*train_ratio) train_md5s = all_md5s[0:train_test_split] test_md5s = all_md5s[train_test_split:] for md5s_list, image_label_file in [(train_md5s, train_image_label_file), (test_md5s, test_image_label_file)]: image_filenames = [] for k,md5 in enumerate(md5s_list): if k%(1+len(md5s_list)/20)==0: print('shape: %s clsidx: %d, %d/%d: %s' % (shape_synset, class_idx, k,len(md5s_list),md5)) shape_folder = os.path.join(image_folder, md5) shape_images = [os.path.join(shape_folder, x) for x in os.listdir(shape_folder)] image_filenames += shape_images image_filename_label_pairs = [(fpath,path2label(fpath)) for fpath in image_filenames] random.shuffle(image_filename_label_pairs) fout = open(image_label_file, 'w') for filename_label in image_filename_label_pairs: label = filename_label[1] fout.write('%s %d %d %d %d\n' % (filename_label[0], class_idx, label[0], label[1], label[2])); fout.close() no_bkg = 0 def ours_get_one_category_image_label_file(shape_synset, train_image_label_file, test_image_label_file, train_ratio = 0.9): class_idx = g_shape_synsets.index(shape_synset) #image_source_file = "/data/zairan.wang/YanMA/RenderForCNN/data_ours/syn_images_cropped_bkg_overlaid_real/" image_folder = os.path.join(g_syn_images_bkg_overlaid_folder, shape_synset) all_md5s = os.listdir(image_folder) train_test_split = int(len(all_md5s)*train_ratio) train_md5s = all_md5s[0:train_test_split] test_md5s = all_md5s[train_test_split:] #############path control########################################################################## all_file_paths = "/data/zairan.wang/YanMA/RenderForCNN/data_ours/VOC_format/SUN_bkg/all_info_cropped_bkg.txt" images_file = "/data/zairan.wang/YanMA/RenderForCNN/data_ours/VOC_format/SUN_bkg/Images_uniform_bkg_cropped/" ###########################################mayan######################################## if os.path.exists(all_file_paths): f_all = open(all_file_paths, 'a') else: f_all = open(all_file_paths, 'w') for md5s_list, image_label_file in [(train_md5s, train_image_label_file), (test_md5s, test_image_label_file)]: image_filenames = [] for k,md5 in enumerate(md5s_list): if k%(1+len(md5s_list)/20)==0: print('shape: %s clsidx: %d, %d/%d: %s' % (shape_synset, class_idx, k,len(md5s_list),md5)) shape_folder = os.path.join(image_folder, md5) shape_images = [os.path.join(shape_folder, x) for x in os.listdir(shape_folder)] image_filenames += shape_images image_filename_label_pairs = [(fpath,outspath2label(fpath)) for fpath in image_filenames] random.shuffle(image_filename_label_pairs) #fout = open(image_label_file, 'w') for filename_label in image_filename_label_pairs: label = filename_label[1] shutil.copy(filename_label[0], images_file) f_all.write('%s %s %s %d %d %d %d %f %f %f %f\n' % (filename_label[0], label[0], label[1], label[2], label[3], label[4], label[5], label[6], label[7], label[8], label[9])); #fout.write('%s %s %s %d %d %d %d %f %f %f %f\n' % (filename_label[0], label[0], label[1], label[2], label[3], label[4], label[5], label[6], label[7], label[8], label[9])); #fout.close() f_all.close() ''' @brief: combine lines from input files and save the shuffled version to output file. @input: input_file_list - a list of input file names output_file - output filename ''' def combine_files(input_file_list, output_file, shuffle=1): all_lines = [] for filelist in input_file_list: lines = [x.rstrip() for x in open(filelist,'r')] all_lines += lines if shuffle: random.shuffle(all_lines) fout = open(output_file,'w') for line in all_lines: fout.write('%s\n' % (line)) fout.close() ''' @brief: convert 360 view degree to view estimation label e.g. for bicycle with class_idx 1, label will be 360~719 ''' def view2label(degree, class_index): return int(degree)%360 + class_index*360 ''' @brief: generate LMDB from files containing image filenames and labels @input: image_label_file - each line is <image_filepath> <class_idx> <azimuth> <elelvation> <tilt> output_lmdb: LMDB pathname-prefix like xxx/xxxx_lmdb image_resize_dim (D): resize image to DxD square @output: write TWO LMDB corresponding to images and labels, i.e. xxx/xxxx_lmdb_label (each item is class_idx, azimuth, elevation, tilt) and xxx/xxxx_lmdb_image ''' def generate_image_view_lmdb(image_label_file, output_lmdb): lines = [line.rstrip() for line in open(image_label_file,'r')] tmp_label_fout = tempfile.NamedTemporaryFile(dir=g_syn_images_lmdb_folder, delete=False) for line in lines: ll = line.split(' ') class_idx, azimuth, elevation, tilt = [int(x) for x in ll[1:]] tmp_label_fout.write('%d %d %d %d\n' % (class_idx, view2label(azimuth, class_idx), view2label(elevation, class_idx), view2label(tilt, class_idx))) tmp_label_fout.close() print("Tmp label file generated: %s" % tmp_label_fout.name) if not os.path.exists(output_lmdb+'_label'): write_vector_lmdb(tmp_label_fout.name, output_lmdb+'_label') print "Label DB done ..." if not os.path.exists(output_lmdb+'_image'): write_image_lmdb(image_label_file, output_lmdb+'_image') print "Image DB done ..." # clean up os.system('rm %s' % (tmp_label_fout.name))
41.026178
185
0.661179
0
0
0
0
0
0
0
0
2,588
0.330271
ef6c9cef1dd0ae3c36a242179a531b49d4c57a72
486
py
Python
pyvisio/__init__.py
i-wan/pyvisio
6beed5a18644793e5c6769c5a4fa5f64f9dc436b
[ "MIT" ]
1
2018-06-05T13:15:35.000Z
2018-06-05T13:15:35.000Z
pyvisio/__init__.py
i-wan/pyvisio
6beed5a18644793e5c6769c5a4fa5f64f9dc436b
[ "MIT" ]
1
2017-06-05T18:17:16.000Z
2017-06-05T18:17:16.000Z
pyvisio/__init__.py
i-wan/pyvisio
6beed5a18644793e5c6769c5a4fa5f64f9dc436b
[ "MIT" ]
1
2019-06-30T17:36:35.000Z
2019-06-30T17:36:35.000Z
# -*- coding: utf-8 -*- """ PyVisio visDocuments - Visio Document manipulation library See docstring for class VisDocument for usage """ #TODO docstring __author__ = 'Ivo Velcovsky' __email__ = '[email protected]' __copyright__ = "Copyright (c) 2015" __license__ = "MIT" __status__ = "Development" from .visCOM import * from .documents import * from .stencils import * from .shapes import * if __name__ == "__main__": import doctest doctest.testmod()
21.130435
59
0.691358
0
0
0
0
0
0
0
0
240
0.493827
ef6ed1166f6e406d8fb8cc64a8cdbbcd50db4769
7,103
py
Python
store/main.py
Soemonewho2/pi-ware
86d2cd84ca85e36cbcdbc7511f6a4565b18e81d9
[ "MIT" ]
null
null
null
store/main.py
Soemonewho2/pi-ware
86d2cd84ca85e36cbcdbc7511f6a4565b18e81d9
[ "MIT" ]
null
null
null
store/main.py
Soemonewho2/pi-ware
86d2cd84ca85e36cbcdbc7511f6a4565b18e81d9
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Pi-Ware main UI from tkinter import * from tkinter.ttk import * import tkinter as tk import os import webbrowser from functools import partial import getpass #Set global var username global username username = getpass.getuser() #Set global install/uninstall scripts global install_script global uninstall_script #Import custom pi-ware functions #import function import classes window = tk.Tk() #Functions def show_desc(apt,*args): mainwinx = str(window.winfo_x()) mainwiny = str(window.winfo_y()) item = tree.selection()[0] app = tree.item(item,"text") global install_script, uninstall_script, desc_win desc_win = tk.Toplevel(window) p2 = PhotoImage(file = f'/home/{username}/pi-ware/apps/{app}/icon.png') # Icon set for program window desc_win.iconphoto(False, p2) window.resizable(0, 0) desc_win.title(f"{app}") print("320x500+" + mainwinx + "+" + mainwiny) desc_win.geometry("320x500+" + mainwinx + "+" + mainwiny) window.withdraw() desc = open(f"/home/{username}/pi-ware/apps/{app}/description.txt", "r") desc_contents = desc.read() text_box = Text(desc_win, height=12, width=40) text_box.pack() text_box.insert('end', desc_contents) text_box.config(state='disabled') #Disabled for now. #app_desc = tk.Label(desc_win, text=desc_contents, font="Arial 9") #app_desc.pack() #Check if website file exist filepath = f"/home/{username}/pi-ware/apps/{app}/website" try: file_tst = open(filepath) file_tst.close() except FileNotFoundError: Web = "False" else: Web = "True" #Add website from file if Web == "True": websiteurlfile = open(f'/home/{username}/pi-ware/apps/{app}/website', 'r') websiteurl = websiteurlfile.readlines() # Strips the newline character for line in websiteurl: #print("{}".format(line.strip())) Website = classes.HyperLink(desc_win, f"""{line}"""); Website.pack() install = tk.Button(desc_win, text="INSTALL", font="Arial 11 bold", width=200, bg="darkblue", fg="white", command=install_app) install.pack() uninstall = tk.Button(desc_win, text="UNINSTALL", font="Arial 11 bold", width=200, bg="red", fg="white", command=uninstall_app) uninstall.pack() ucommand = f"""bash /home/{username}/pi-ware/func/term/uninst '{app}' 'Uninstalling {app}'""" command = f"""bash /home/{username}/pi-ware/func/term/inst '{app}' 'Installing {app}'""" install_script = "'%s'" % command uninstall_script = "'%s'" % ucommand back_to_menu_button = tk.Button(desc_win, text="BACK", font="Arial 11 bold", width=200, height=2, bg="green", fg="white", command=back_to_menu) back_to_menu_button.pack(side = "bottom") desc_win.protocol("WM_DELETE_WINDOW",back_to_menu) def back_to_menu(window, parent, app=None): parent.destroy() window.deiconify() def install_app(): global install_script if IsDev == "True": print(f"bash /home/{username}/pi-ware/func/term/term-run {install_script}") os.system(f"bash /home/{username}/pi-ware/func/term/term-run {install_script}") def uninstall_app(): global uninstall_script if IsDev == "True": print(f"bash /home/{username}/pi-ware/func/term/term-run {uninstall_script}") os.system(f"bash /home/{username}/pi-ware/func/term/term-run {uninstall_script}") def back_to_menu(): window.deiconify() desc_win.destroy() window.title("Pi-Ware") #window.eval('tk::PlaceWindow . center') def quit(): window.destroy() #Check if dev files exist filepath = f"/home/{username}/pi-ware/.dev" try: file_tst = open(filepath) file_tst.close() except FileNotFoundError: IsDev = "False" else: IsDev = "True" #Set window icon p1 = PhotoImage(file = f'/home/{username}/pi-ware/icons/logo.png') window.iconphoto(False, p1) #Main window.resizable(0, 0) window.geometry("330x500") window.eval('tk::PlaceWindow . center') window.title("Pi-Ware") # Window tabs tab_control = Notebook(window) apps_tab = Frame(tab_control) news_tab = Frame(tab_control) credits_tab = Frame(tab_control) DEV_tab = Frame(tab_control) tab_control.add(apps_tab, text="Apps") tab_control.add(news_tab, text="News") tab_control.add(credits_tab, text="Credits") #Show dev tab if dev files are found if IsDev == "True": tab_control.add(DEV_tab, text="Dev") tab_control.pack(expand=0, fill="both") #Show DEV stuff PiWareVersionFile = open(f"/home/{username}/.local/share/pi-ware/version", "r") PiWareVersioncontent = PiWareVersionFile.read() files = folders = 0 for _, dirnames, filenames in os.walk(f"/home/{username}/pi-ware/apps"): files += len(filenames) folders += len(dirnames) InstallibleApps = "{:,} installible Apps".format(folders) PiWareVersion = tk.Label(DEV_tab, text=f"Pi-Ware Version:\n{PiWareVersioncontent}", font="Arial 11 bold") PiWareInstallableApps = tk.Label(DEV_tab, text=f"{InstallibleApps}", font="Arial 11 bold") PiWareVersion.pack() PiWareInstallableApps.pack() #Show latest news message NewsMessagefile = open(f"/home/{username}/pi-ware/func/info/latestnewsmessage", "r") NewsMessagecontent = NewsMessagefile.read() NewsMessage = tk.Label(news_tab, text=f"Latest news:\n{NewsMessagecontent}", font="Arial 11 bold") NewsMessage.pack() #Show info message InfoMessagefile = open(f"/home/{username}/pi-ware/func/info/infomessage", "r") InfoMessagecontent = InfoMessagefile.read() InfoMessage = tk.Label(credits_tab, text=f"{InfoMessagecontent}", font="Arial 11 bold") InfoMessage.pack() #Show commit links commitmessage = tk.Label(credits_tab, text=f"To see commits, please go to the link below.", font="Arial 11 bold") commitmessage.pack() commit = classes.HyperLink(credits_tab, f"""https://github.com/piware14/pi-ware/graphs/contributors"""); commit.pack() #Add pi-ware website piwarewebsite = tk.Label(credits_tab, text=f"To vist the pi-ware website, click the link below.", font="Arial 11 bold") piwarewebsite.pack() Website = classes.HyperLink(credits_tab, f"""https://pi-ware.ml"""); Website.pack() tree = Treeview(apps_tab) tree.pack(expand=YES, fill=BOTH) tree.column("#0", minwidth=0, width=330, stretch=NO) s = Style() s.configure('Treeview', rowheight=35) ap = next(os.walk(f"/home/{username}/pi-ware/apps"))[1] applist = sorted(ap) print("Current apps:\n") for app in applist: print(app) appb = "" for a in app: if(a == " "): appb += "_" else: appb += a tree.bind("<<TreeviewSelect>>", partial(show_desc,app)) exec(appb + """_button = PhotoImage(file=f'/home/{username}/pi-ware/apps/{app}/icon.png')""") exec("""tree.insert('', 'end', text=f"{app}",image=""" + appb + """_button)""") ScrollForMore = tk.Label(apps_tab, text="Scroll down for more apps.", font="Arial 11 bold") ScrollForMore.pack() quitbutton = tk.Button(window, text="Quit", font="Arial 11 bold", width=200, bg="grey", fg="white", command=quit) quitbutton.pack(side="bottom") window.mainloop()
33.504717
147
0.68464
0
0
0
0
0
0
0
0
2,632
0.370548
ef700e08b8631cf4f5d03872e7a2e1c13a5f31f4
50,478
py
Python
shwirl/shaders/render_volume.py
macrocosme/shwirl
87147ba1e99463e96b7f4295fd24ab57440d9981
[ "BSD-3-Clause" ]
3
2018-05-09T17:55:53.000Z
2019-07-22T09:14:41.000Z
shwirl/shaders/render_volume.py
macrocosme/shwirl
87147ba1e99463e96b7f4295fd24ab57440d9981
[ "BSD-3-Clause" ]
9
2017-04-07T01:44:15.000Z
2018-12-16T20:47:08.000Z
shwirl/shaders/render_volume.py
macrocosme/shwirl
87147ba1e99463e96b7f4295fd24ab57440d9981
[ "BSD-3-Clause" ]
null
null
null
from __future__ import division # This file implements a RenderVolumeVisual class. It is derived from the # VolumeVisual class in vispy.visuals.volume, which is released under a BSD # license included here: # # =========================================================================== # Vispy is licensed under the terms of the (new) BSD license: # # Copyright (c) 2015, authors of Vispy # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of Vispy Development Team nor the names of its # contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED # TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A # PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER # OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # =========================================================================== # # This modified version is released under the (new) BSD license: # # Copyright (c) 2015, Dany Vohl # All rights reserved. # # A copy of the license is available in the root directory of this project. # from ..extern.vispy.gloo import Texture3D, TextureEmulated3D, VertexBuffer, IndexBuffer from ..extern.vispy.visuals import Visual from ..extern.vispy.visuals.shaders import Function from ..extern.vispy.color import get_colormap from ..extern.vispy.scene.visuals import create_visual_node from ..extern.vispy.io import load_spatial_filters import numpy as np # Vertex shader VERT_SHADER = """ attribute vec3 a_position; // attribute vec3 a_texcoord; uniform vec3 u_shape; // varying vec3 v_texcoord; varying vec3 v_position; varying vec4 v_nearpos; varying vec4 v_farpos; void main() { // v_texcoord = a_texcoord; v_position = a_position; // Project local vertex coordinate to camera position. Then do a step // backward (in cam coords) and project back. Voila, we get our ray vector. vec4 pos_in_cam = $viewtransformf(vec4(v_position, 1)); // intersection of ray and near clipping plane (z = -1 in clip coords) pos_in_cam.z = -pos_in_cam.w; v_nearpos = $viewtransformi(pos_in_cam); // intersection of ray and far clipping plane (z = +1 in clip coords) pos_in_cam.z = pos_in_cam.w; v_farpos = $viewtransformi(pos_in_cam); gl_Position = $transform(vec4(v_position, 1.0)); } """ # noqa # Fragment shader FRAG_SHADER = """ // uniforms uniform $sampler_type u_volumetex; uniform vec3 u_shape; uniform vec3 u_resolution; uniform float u_threshold; uniform float u_relative_step_size; //uniform int u_color_scale; //uniform float u_data_min; //uniform float u_data_max; // Moving box filter variables uniform int u_filter_size; uniform float u_filter_coeff; uniform int u_filter_arm; uniform int u_filter_type; uniform int u_use_gaussian_filter; uniform int u_gaussian_filter_size; //uniform int u_log_scale; // Volume Stats uniform float u_volume_mean; uniform float u_volume_std; //uniform float u_volume_madfm; uniform float u_high_discard_filter_value; uniform float u_low_discard_filter_value; uniform float u_density_factor; uniform int u_color_method; //varyings // varying vec3 v_texcoord; varying vec3 v_position; varying vec4 v_nearpos; varying vec4 v_farpos; // uniforms for lighting. Hard coded until we figure out how to do lights const vec4 u_ambient = vec4(0.2, 0.4, 0.2, 1.0); const vec4 u_diffuse = vec4(0.8, 0.2, 0.2, 1.0); const vec4 u_specular = vec4(1.0, 1.0, 1.0, 1.0); const float u_shininess = 40.0; //varying vec3 lightDirs[1]; // global holding view direction in local coordinates vec3 view_ray; float rand(vec2 co) {{ // Create a pseudo-random number between 0 and 1. // http://stackoverflow.com/questions/4200224 return fract(sin(dot(co.xy ,vec2(12.9898, 78.233))) * 43758.5453); }} float colorToVal(vec4 color1) {{ return color1.g; }} vec4 movingAverageFilter_line_of_sight(vec3 loc, vec3 step) {{ // Initialise variables vec4 partial_color = vec4(0.0, 0.0, 0.0, 0.0); for ( int i=1; i<=u_filter_arm; i++ ) {{ partial_color += $sample(u_volumetex, loc-i*step); partial_color += $sample(u_volumetex, loc+i*step); }} partial_color += $sample(u_volumetex, loc); // Evaluate mean partial_color *= u_filter_coeff; return partial_color; }} vec4 Gaussian_5(vec4 color_original, vec3 loc, vec3 direction) {{ vec4 color = vec4(0.0); vec3 off1 = 1.3333333333333333 * direction; color += color_original * 0.29411764705882354; color += $sample(u_volumetex, loc + (off1 * u_resolution)) * 0.35294117647058826; color += $sample(u_volumetex, loc - (off1 * u_resolution)) * 0.35294117647058826; return color; }} vec4 Gaussian_9(vec4 color_original, vec3 loc, vec3 direction) {{ vec4 color = vec4(0.0); vec3 off1 = 1.3846153846 * direction; vec3 off2 = 3.2307692308 * direction; color += color_original * 0.2270270270; color += $sample(u_volumetex, loc + (off1 * u_resolution)) * 0.3162162162; color += $sample(u_volumetex, loc - (off1 * u_resolution)) * 0.3162162162; color += $sample(u_volumetex, loc + (off2 * u_resolution)) * 0.0702702703; color += $sample(u_volumetex, loc - (off2 * u_resolution)) * 0.0702702703; return color; }} vec4 Gaussian_13(vec4 color_original, vec3 loc, vec3 direction) {{ vec4 color = vec4(0.0); vec3 off1 = 1.411764705882353 * direction; vec3 off2 = 3.2941176470588234 * direction; vec3 off3 = 5.176470588235294 * direction; color += color_original * 0.1964825501511404; color += $sample(u_volumetex, loc + (off1 * u_resolution)) * 0.2969069646728344; color += $sample(u_volumetex, loc - (off1 * u_resolution)) * 0.2969069646728344; color += $sample(u_volumetex, loc + (off2 * u_resolution)) * 0.09447039785044732; color += $sample(u_volumetex, loc - (off2 * u_resolution)) * 0.09447039785044732; color += $sample(u_volumetex, loc + (off3 * u_resolution)) * 0.010381362401148057; color += $sample(u_volumetex, loc - (off3 * u_resolution)) * 0.010381362401148057; return color; }} // ---------------------------------------------------------------- // ---------------------------------------------------------------- // Edge detection Pass // (adapted from https://www.shadertoy.com/view/MscSzf#) // ---------------------------------------------------------------- float checkSame(vec4 center, vec4 sample, vec3 resolution) {{ vec2 centerNormal = center.xy; float centerDepth = center.z; vec2 sampleNormal = sample.xy; float sampleDepth = sample.z; vec2 sensitivity = (vec2(0.3, 1.5) * resolution.y / 50.0); vec2 diffNormal = abs(centerNormal - sampleNormal) * sensitivity.x; bool isSameNormal = (diffNormal.x + diffNormal.y) < 0.1; float diffDepth = abs(centerDepth - sampleDepth) * sensitivity.y; bool isSameDepth = diffDepth < 0.1; return (isSameNormal && isSameDepth) ? 1.0 : 0.0; }} vec4 edge_detection(vec4 color_original, vec3 loc, vec3 step, vec3 resolution) {{ vec4 sample1 = $sample(u_volumetex, loc + (vec3(1., 1., 0.) / resolution)); vec4 sample2 = $sample(u_volumetex, loc + (vec3(-1., -1., 0.) / resolution)); vec4 sample3 = $sample(u_volumetex, loc + (vec3(-1., 1., 0.) / resolution)); vec4 sample4 = $sample(u_volumetex, loc + (vec3(1., -1., 0.) / resolution)); float edge = checkSame(sample1, sample2, resolution) * checkSame(sample3, sample4, resolution); return vec4(color_original.rgb, 1-edge); }} // ---------------------------------------------------------------- // ---------------------------------------------------------------- // Used with iso surface vec4 calculateColor(vec4 betterColor, vec3 loc, vec3 step) {{ // Calculate color by incorporating lighting vec4 color1; vec4 color2; // View direction vec3 V = normalize(view_ray); // calculate normal vector from gradient vec3 N; // normal color1 = $sample( u_volumetex, loc+vec3(-step[0],0.0,0.0) ); color2 = $sample( u_volumetex, loc+vec3(step[0],0.0,0.0) ); N[0] = colorToVal(color1) - colorToVal(color2); betterColor = max(max(color1, color2),betterColor); color1 = $sample( u_volumetex, loc+vec3(0.0,-step[1],0.0) ); color2 = $sample( u_volumetex, loc+vec3(0.0,step[1],0.0) ); N[1] = colorToVal(color1) - colorToVal(color2); betterColor = max(max(color1, color2),betterColor); color1 = $sample( u_volumetex, loc+vec3(0.0,0.0,-step[2]) ); color2 = $sample( u_volumetex, loc+vec3(0.0,0.0,step[2]) ); N[2] = colorToVal(color1) - colorToVal(color2); betterColor = max(max(color1, color2),betterColor); float gm = length(N); // gradient magnitude N = normalize(N); // Flip normal so it points towards viewer float Nselect = float(dot(N,V) > 0.0); N = (2.0*Nselect - 1.0) * N; // == Nselect * N - (1.0-Nselect)*N; // Get color of the texture (albeido) color1 = betterColor; color2 = color1; // todo: parametrise color1_to_color2 // Init colors vec4 ambient_color = vec4(0.0, 0.0, 0.0, 0.0); vec4 diffuse_color = vec4(0.0, 0.0, 0.0, 0.0); vec4 specular_color = vec4(0.0, 0.0, 0.0, 0.0); vec4 final_color; // todo: allow multiple light, define lights on viewvox or subscene int nlights = 1; for (int i=0; i<nlights; i++) {{ // Get light direction (make sure to prevent zero devision) vec3 L = normalize(view_ray); //lightDirs[i]; float lightEnabled = float( length(L) > 0.0 ); L = normalize(L+(1.0-lightEnabled)); // Calculate lighting properties float lambertTerm = clamp( dot(N,L), 0.0, 1.0 ); vec3 H = normalize(L+V); // Halfway vector float specularTerm = pow( max(dot(H,N),0.0), u_shininess); // Calculate mask float mask1 = lightEnabled; // Calculate colors ambient_color += mask1 * u_ambient; // * gl_LightSource[i].ambient; diffuse_color += mask1 * lambertTerm; specular_color += mask1 * specularTerm * u_specular; }} // Calculate final color by componing different components final_color = color2 * ( ambient_color + diffuse_color) + specular_color; final_color.a = color2.a; // Done return final_color; }} // for some reason, this has to be the last function in order for the // filters to be inserted in the correct place... void main() {{ vec3 farpos = v_farpos.xyz / v_farpos.w; vec3 nearpos = v_nearpos.xyz / v_nearpos.w; // Calculate unit vector pointing in the view direction through this // fragment. view_ray = normalize(farpos.xyz - nearpos.xyz); // Compute the distance to the front surface or near clipping plane float distance = dot(nearpos-v_position, view_ray); distance = max(distance, min((-0.5 - v_position.x) / view_ray.x, (u_shape.x - 0.5 - v_position.x) / view_ray.x)); distance = max(distance, min((-0.5 - v_position.y) / view_ray.y, (u_shape.y - 0.5 - v_position.y) / view_ray.y)); //distance = max(distance, min((-0.5 - v_position.z) / view_ray.z, // (u_shape.z - 0.5 - v_position.z) / view_ray.z)); // Now we have the starting position on the front surface vec3 front = v_position + view_ray * distance; // Decide how many steps to take int nsteps = int(-distance / u_relative_step_size + 0.5); if( nsteps < 1 ) discard; // Get starting location and step vector in texture coordinates vec3 step = ((v_position - front) / u_shape) / nsteps; vec3 start_loc = front / u_shape; // For testing: show the number of steps. This helps to establish // whether the rays are correctly oriented //gl_FragColor = vec4(0.0, nsteps / 3.0 / u_shape.x, 1.0, 1.0); //return; {before_loop} vec3 loc = start_loc; int iter = 0; float discard_ratio = 1.0 / (u_high_discard_filter_value - u_low_discard_filter_value); float low_discard_ratio = 1.0 / u_low_discard_filter_value; for (iter=0; iter<nsteps; iter++) {{ // Get sample color vec4 color; if (u_filter_size == 1) color = $sample(u_volumetex, loc); else {{ color = movingAverageFilter_line_of_sight(loc, step); }} if (u_use_gaussian_filter==1) {{ vec4 temp_color; vec3 direction; if (u_gaussian_filter_size == 5){{ // horizontal direction = vec3(1., 0., 0.); temp_color = Gaussian_5(color, loc, direction); // vertical direction = vec3(0., 1., 0.); temp_color = Gaussian_5(temp_color, loc, direction); // depth direction = vec3(0., 0., 1.); temp_color = Gaussian_5(temp_color, loc, direction); }} if (u_gaussian_filter_size == 9){{ // horizontal direction = vec3(1., 0., 0.); temp_color = Gaussian_9(color, loc, direction); // vertical direction = vec3(0., 1., 0.); temp_color = Gaussian_9(temp_color, loc, direction); // depth direction = vec3(0., 0., 1.); temp_color = Gaussian_9(temp_color, loc, direction); }} if (u_gaussian_filter_size == 13){{ // horizontal direction = vec3(1., 0., 0.); temp_color = Gaussian_13(color, loc, direction); // vertical direction = vec3(0., 1., 0.); temp_color = Gaussian_13(temp_color, loc, direction); // depth direction = vec3(0., 0., 1.); temp_color = Gaussian_13(temp_color, loc, direction); }} color = temp_color; }} float val = color.g; // To force activating the uniform - this should be done differently float density_factor = u_density_factor; if (u_filter_type == 1) {{ // Get rid of very strong signal values if (val > u_high_discard_filter_value) {{ val = 0.; }} // Don't consider noisy values //if (val < u_volume_mean - 3*u_volume_std) if (val < u_low_discard_filter_value) {{ val = 0.; }} if (u_low_discard_filter_value == u_high_discard_filter_value) {{ if (u_low_discard_filter_value != 0.) {{ val *= low_discard_ratio; }} }} else {{ val -= u_low_discard_filter_value; val *= discard_ratio; }} }} else {{ if (val > u_high_discard_filter_value) {{ val = 0.; }} if (val < u_low_discard_filter_value) {{ val = 0.; }} }} {in_loop} // Advance location deeper into the volume loc += step; }} {after_loop} //gl_FragColor = edge_detection(gl_FragColor, loc, step, u_shape); /* Set depth value - from visvis TODO int iter_depth = int(maxi); // Calculate end position in world coordinates vec4 position2 = vertexPosition; position2.xyz += ray*shape*float(iter_depth); // Project to device coordinates and set fragment depth vec4 iproj = gl_ModelViewProjectionMatrix * position2; iproj.z /= iproj.w; gl_FragDepth = (iproj.z+1.0)/2.0; */ }} """ # noqa MIP_SNIPPETS = dict( before_loop=""" float maxval = -99999.0; // The maximum encountered value int maxi = 0; // Where the maximum value was encountered """, in_loop=""" if( val > maxval ) { maxval = val; maxi = iter; } """, after_loop=""" // Refine search for max value loc = start_loc + step * (float(maxi) - 0.5); for (int i=0; i<10; i++) { maxval = max(maxval, $sample(u_volumetex, loc).g); loc += step * 0.1; } if (maxval > u_high_discard_filter_value || maxval < u_low_discard_filter_value) {{ maxval = 0.; }} // Color is associated to voxel intensity // Moment 0 if (u_color_method == 0) { gl_FragColor = $cmap(maxval); } // Moment 1 else if (u_color_method == 1) { gl_FragColor = $cmap(loc.y); gl_FragColor.a = maxval; } // Color is associated to RGB cube else if (u_color_method == 2) { gl_FragColor.r = loc.y; gl_FragColor.g = loc.z; gl_FragColor.b = loc.x; gl_FragColor.a = maxval; } // Color by sigma values else if (u_color_method == 3) { if ( (maxval < (u_volume_mean + (3.0 * u_volume_std))) ) { gl_FragColor = vec4(0., 0., 1., maxval); } // < 3 sigmas if ( (maxval >= (u_volume_mean + (3.0 * u_volume_std))) && (maxval < (u_volume_mean + (4.0 * u_volume_std))) ) { gl_FragColor = vec4(0., 1., 0., maxval); } if ( (maxval >= (u_volume_mean + (4.0 * u_volume_std))) && (maxval < (u_volume_mean + (5.0 * u_volume_std))) ) { gl_FragColor = vec4(1., 0., 0., maxval); } if ( (maxval >= (u_volume_mean + (5.0 * u_volume_std))) ) { gl_FragColor = vec4(1., 1., 1., maxval); } } else { // Moment 2 // TODO: verify implementation of MIP-mom2. gl_FragColor = $cmap((maxval * ((maxval - loc.y) * (maxval - loc.y))) / maxval); } """, ) MIP_FRAG_SHADER = FRAG_SHADER.format(**MIP_SNIPPETS) LMIP_SNIPPETS = dict( before_loop=""" float maxval = -99999.0; // The maximum encountered value float local_maxval = -99999.0; // The local maximum encountered value int maxi = 0; // Where the maximum value was encountered int local_maxi = 0; // Where the local maximum value was encountered bool local_max_found = false; """, in_loop=""" if( val > u_threshold && !local_max_found ) { local_maxval = val; local_maxi = iter; local_max_found = true; } if( val > maxval) { maxval = val; maxi = iter; } """, after_loop=""" if (!local_max_found) { local_maxval = maxval; local_maxi = maxi; } // Refine search for max value loc = start_loc + step * (float(local_maxi) - 0.5); for (int i=0; i<10; i++) { local_maxval = max(local_maxval, $sample(u_volumetex, loc).g); loc += step * 0.1; } if (local_maxval > u_high_discard_filter_value) { local_maxval = 0.; } if (local_maxval < u_low_discard_filter_value) { local_maxval = 0.; } // Color is associated to voxel intensity if (u_color_method == 0) { gl_FragColor = $cmap(local_maxval); gl_FragColor.a = local_maxval; } // Color is associated to redshift/velocity else { gl_FragColor = $cmap(loc.y); gl_FragColor.a = local_maxval; } """, ) LMIP_FRAG_SHADER = FRAG_SHADER.format(**LMIP_SNIPPETS) TRANSLUCENT_SNIPPETS = dict( before_loop=""" vec4 integrated_color = vec4(0., 0., 0., 0.); float mom0 = 0.; float mom1 = 0.; float ratio = 1/nsteps; // final average float a1 = 0.; float a2 = 0.; """, in_loop=""" float alpha; // Case 1: Color is associated to voxel intensity if (u_color_method == 0) { /*color = $cmap(val); a1 = integrated_color.a; a2 = val * density_factor * (1 - a1); alpha = max(a1 + a2, 0.001); integrated_color *= a1 / alpha; integrated_color += color * a2 / alpha;*/ color = $cmap(val); a1 = integrated_color.a; a2 = val * density_factor * (1 - a1); alpha = max(a1 + a2, 0.001); integrated_color *= a1 / alpha; integrated_color += color * a2 / alpha; } else{ // Case 2: Color is associated to redshift/velocity if (u_color_method == 1) { color = $cmap(loc.y); a1 = integrated_color.a; a2 = val * density_factor * (1 - a1); alpha = max(a1 + a2, 0.001); integrated_color *= a1 / alpha; integrated_color.rgb += color.rgb * a2 / alpha; } // Case 3: Color is associated to RGB cube else { if (u_color_method == 2){ color.r = loc.y; color.g = loc.z; color.b = loc.x; a1 = integrated_color.a; a2 = val * density_factor * (1 - a1); alpha = max(a1 + a2, 0.001); integrated_color *= a1 / alpha; integrated_color.rgb += color.rgb * a2 / alpha; } // Case 4: Mom2 // TODO: Finish implementation of mom2 (not correct in its present form). else { // mom0 a1 = mom0; a2 = val * density_factor * (1 - a1); alpha = max(a1 + a2, 0.001); mom0 *= a1 / alpha; mom0 += val * a2 / alpha; // mom1 a1 = mom1; a2 = val * density_factor * (1 - a1); alpha = max(a1 + a2, 0.001); mom1 *= a1 / alpha; mom1 += loc.y * a2 / alpha; } } } integrated_color.a = alpha; // stop integrating if the fragment becomes opaque if( alpha > 0.99 ){ iter = nsteps; } """, after_loop=""" if (u_color_method != 3){ gl_FragColor = integrated_color; } else { gl_FragColor = $cmap((mom0 * (mom0-mom1 * mom0-mom1)) / mom0); } """, ) TRANSLUCENT_FRAG_SHADER = FRAG_SHADER.format(**TRANSLUCENT_SNIPPETS) TRANSLUCENT2_SNIPPETS = dict( before_loop=""" vec4 integrated_color = vec4(0., 0., 0., 0.); float ratio = 1/nsteps; // final average """, in_loop=""" float alpha; // Case 1: Color is associated to voxel intensity if (u_color_method == 0) { color = $cmap(val); integrated_color = (val * density_factor + integrated_color.a * (1 - density_factor)) * color; alpha = integrated_color.a; //alpha = a1+a2; // integrated_color *= a1 / alpha; // integrated_color += color * a2 / alpha; } else{ // Case 2: Color is associated to redshift/velocity if (u_color_method == 1) { color = $cmap(loc.y); float a1 = integrated_color.a; float a2 = val * density_factor * (1 - a1); alpha = max(a1 + a2, 0.001); integrated_color *= a1 / alpha; integrated_color.rgb += color.rgb * a2 / alpha; } // Case 3: Color is associated to RGB cube else { color.r = loc.x; color.g = loc.z; color.b = loc.y; float a1 = integrated_color.a; float a2 = val * density_factor * (1 - a1); alpha = max(a1 + a2, 0.001); integrated_color *= a1 / alpha; integrated_color.rgb += color.rgb * a2 / alpha; } } integrated_color.a = alpha; // stop integrating if the fragment becomes opaque if( alpha > 0.99 ){ iter = nsteps; } """, after_loop=""" gl_FragColor = integrated_color; """, ) TRANSLUCENT2_FRAG_SHADER = FRAG_SHADER.format(**TRANSLUCENT2_SNIPPETS) ADDITIVE_SNIPPETS = dict( before_loop=""" vec4 integrated_color = vec4(0., 0., 0., 0.); """, in_loop=""" color = $cmap(val); integrated_color = 1.0 - (1.0 - integrated_color) * (1.0 - color); """, after_loop=""" gl_FragColor = integrated_color; """, ) ADDITIVE_FRAG_SHADER = FRAG_SHADER.format(**ADDITIVE_SNIPPETS) ISO_SNIPPETS = dict( before_loop=""" vec4 color3 = vec4(0.0); // final color vec3 dstep = 1.5 / u_shape; // step to sample derivative gl_FragColor = vec4(0.0); """, in_loop=""" if (val > u_threshold-0.2) { // Take the last interval in smaller steps vec3 iloc = loc - step; for (int i=0; i<10; i++) { val = $sample(u_volumetex, iloc).g; if (val > u_threshold) { color = $cmap(val); gl_FragColor = calculateColor(color, iloc, dstep); iter = nsteps; break; } iloc += step * 0.1; } } """, after_loop=""" """, ) ISO_FRAG_SHADER = FRAG_SHADER.format(**ISO_SNIPPETS) MINIP_SNIPPETS = dict( before_loop=""" float maxval = -99999.0; // maximum encountered float minval = 99999.0; // The minimum encountered value int mini = 0; // Where the minimum value was encountered """, in_loop=""" if( val > maxval ) { maxval = val; } if( val < minval ) { minval = val; mini = iter; } """, after_loop=""" // Refine search for min value loc = start_loc + step * (float(mini) - 0.5); for (int i=0; i<10; i++) { minval = min(minval, $sample(u_volumetex, loc).g); loc += step * 0.1; } if (minval > u_high_discard_filter_value || minval < u_low_discard_filter_value) {{ minval = 0.; }} // Color is associated to voxel intensity if (u_color_method == 0) { gl_FragColor = $cmap(minval); //gl_FragColor.a = minval; } else{ // Color is associated to redshift/velocity if (u_color_method == 1) { gl_FragColor = $cmap(loc.y); //if (minval == 0) gl_FragColor.a = 1-minval; } // Color is associated to RGB cube else { if (u_color_method == 2) { gl_FragColor.r = loc.y; gl_FragColor.g = loc.z; gl_FragColor.b = loc.x; gl_FragColor.a = minval; } // Color by sigma values else if (u_color_method == 3) { if ( (1-minval < (u_volume_mean + (3.0 * u_volume_std))) ) { gl_FragColor = vec4(0., 0., 1., 1-minval); } // < 3 sigmas if ( (1-minval >= (u_volume_mean + (3.0 * u_volume_std))) && (1-minval < (u_volume_mean + (4.0 * u_volume_std))) ) { gl_FragColor = vec4(0., 1., 0., 1-minval); } if ( (1-minval >= (u_volume_mean + (4.0 * u_volume_std))) && (1-minval < (u_volume_mean + (5.0 * u_volume_std))) ) { gl_FragColor = vec4(1., 0., 0., 1-minval); } if ( (1-minval >= (u_volume_mean + (5.0 * u_volume_std))) ) { gl_FragColor = vec4(1., 1., 1., 1-minval); } } // Case 4: Mom2 // TODO: verify implementation of MIP-mom2. else { gl_FragColor = $cmap((minval * ((minval - loc.y) * (minval - loc.y))) / minval); } } } """, ) MINIP_FRAG_SHADER = FRAG_SHADER.format(**MINIP_SNIPPETS) frag_dict = { 'mip': MIP_FRAG_SHADER, 'lmip': LMIP_FRAG_SHADER, 'iso': ISO_FRAG_SHADER, 'avip': TRANSLUCENT_FRAG_SHADER, 'minip': MINIP_FRAG_SHADER, 'translucent2': TRANSLUCENT2_FRAG_SHADER, 'additive': ADDITIVE_FRAG_SHADER, } # _interpolation_template = """ # #include "misc/spatial-filters.frag" # vec4 texture_lookup_filtered(vec2 texcoord) { # if(texcoord.x < 0.0 || texcoord.x > 1.0 || # texcoord.y < 0.0 || texcoord.y > 1.0) { # discard; # } # return %s($texture, $shape, texcoord); # }""" # # _texture_lookup = """ # vec4 texture_lookup(vec2 texcoord) { # if(texcoord.x < 0.0 || texcoord.x > 1.0 || # texcoord.y < 0.0 || texcoord.y > 1.0) { # discard; # } # return texture2D($texture, texcoord); # }""" class RenderVolumeVisual(Visual): """ Displays a 3D Volume Parameters ---------- vol : ndarray The volume to display. Must be ndim==3. clim : tuple of two floats | None The contrast limits. The values in the volume are mapped to black and white corresponding to these values. Default maps between min and max. method : {'mip', 'avip', 'additive', 'iso'} The render method to use. See corresponding docs for details. Default 'mip'. threshold : float The threshold to use for the isosurafce render method. By default the mean of the given volume is used. relative_step_size : float The relative step size to step through the volume. Default 0.8. Increase to e.g. 1.5 to increase performance, at the cost of quality. cmap : str Colormap to use. emulate_texture : bool Use 2D textures to emulate a 3D texture. OpenGL ES 2.0 compatible, but has lower performance on desktop platforms. """ def __init__(self, vol, clim=None, method='mip', threshold=None, relative_step_size=0.8, cmap='grays', emulate_texture=False, color_scale='linear', filter_type = 0, filter_size = 1, use_gaussian_filter = False, gaussian_filter_size=9, density_factor=0.01, color_method='Moment 0', log_scale=0, interpolation='linear'): tex_cls = TextureEmulated3D if emulate_texture else Texture3D # Storage of information of volume self._vol_shape = () self._clim = None self._need_vertex_update = True # Set the colormap self._cmap = get_colormap(cmap) # Create gloo objects self._vertices = VertexBuffer() self._texcoord = VertexBuffer( np.array([ [0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1], ], dtype=np.float32)) # # load 'float packed rgba8' interpolation kernel # # to load float interpolation kernel use # # `load_spatial_filters(packed=False)` # kernel, self._interpolation_names = load_spatial_filters() # # fun = [Function(_interpolation_template % n) # for n in self._interpolation_names] # # self._interpolation_names = [n.lower() # for n in self._interpolation_names] # # self._interpolation_fun = dict(zip(self._interpolation_names, fun)) # self._interpolation_names.sort() # self._interpolation_names = tuple(self._interpolation_names) # # print self._interpolation_fun # # # overwrite "nearest" and "bilinear" spatial-filters # # with "hardware" interpolation _data_lookup_fn # self._interpolation_fun['nearest'] = Function(_texture_lookup) # self._interpolation_fun['bilinear'] = Function(_texture_lookup) # # if interpolation not in self._interpolation_names: # raise ValueError("interpolation must be one of %s" % # ', '.join(self._interpolation_names)) # # self._interpolation = interpolation # check texture interpolation # if self._interpolation == 'bilinear': # self._interpolation = 'linear' # else: # self._interpolation = 'nearest' self._tex = tex_cls((10, 10, 10), interpolation=interpolation, wrapping='clamp_to_edge') # self._tex = tex_cls((10, 10, 10), interpolation='linear', # wrapping='clamp_to_edge') # Create program Visual.__init__(self, vcode=VERT_SHADER, fcode="") self.shared_program['u_volumetex'] = self._tex self.shared_program['a_position'] = self._vertices self.shared_program['a_texcoord'] = self._texcoord self._draw_mode = 'triangle_strip' self._index_buffer = IndexBuffer() # Only show back faces of cuboid. This is required because if we are # inside the volume, then the front faces are outside of the clipping # box and will not be drawn. self.set_gl_state('translucent', cull_face=False) # Set data self.set_data(vol, clim) # Set params self.method = method self.relative_step_size = relative_step_size #self.color_scale = color_scale # self.data_min = self._clim[0] # self.data_max = self._clim[1] # moving_box_filter (=1 means no filter) self.filter_type = filter_type self.filter_size = filter_size # 3D gaussian filter self.use_gaussian_filter = use_gaussian_filter self.gaussian_filter_size = gaussian_filter_size self.log_scale = log_scale self.density_factor = density_factor self.color_method = color_method self.threshold = threshold if (threshold is not None) else vol.mean() # print ("threshold", self.threshold) self.freeze() def set_data(self, vol, clim=None): """ Set the volume data. Parameters ---------- vol : ndarray The 3D volume. clim : tuple | None Colormap limits to use. None will use the min and max values. """ # Check volume if not isinstance(vol, np.ndarray): raise ValueError('Volume visual needs a numpy array.') if not ((vol.ndim == 3) or (vol.ndim == 4 and vol.shape[-1] <= 4)): raise ValueError('Volume visual needs a 3D image.') # Handle clim if clim is not None: clim = np.array(clim, float) if not (clim.ndim == 1 and clim.size == 2): raise ValueError('clim must be a 2-element array-like') self._clim = tuple(clim) if self._clim is None: self._clim = np.nanmin(vol), np.nanmax(vol) # Apply clim vol = np.flipud(np.array(vol, dtype='float32', copy=False)) if self._clim[1] == self._clim[0]: if self._clim[0] != 0.: vol *= 1.0 / self._clim[0] else: vol -= self._clim[0] vol /= self._clim[1] - self._clim[0] # Deal with nan if np.isnan(vol).any(): vol = np.nan_to_num(vol) self.high_discard_filter_value = self._clim[1] self.low_discard_filter_value = self._clim[0] self.volume_mean = np.mean(vol) self.volume_std = np.std(vol) #self.volume_madfm = self.madfm(vol) # Apply to texture print ("min:", np.min(vol), "max:", np.max(vol)) self._tex.set_data(vol) # will be efficient if vol is same shape self.shared_program['u_shape'] = (vol.shape[2], vol.shape[1], vol.shape[0]) self.shared_program['u_resolution'] = (1/vol.shape[2], 1/vol.shape[1], 1/vol.shape[0]) shape = vol.shape[:3] if self._vol_shape != shape: self._vol_shape = shape self._need_vertex_update = True self._vol_shape = shape # Get some stats self._kb_for_texture = np.prod(self._vol_shape) / 1024 @property def interpolation(self): """ Current interpolation function. """ return self._tex.interpolation @interpolation.setter def interpolation(self, interpolation): # set interpolation technique self._tex.interpolation = interpolation @property def clim(self): """ The contrast limits that were applied to the volume data. Settable via set_data(). """ return self._clim @property def cmap(self): return self._cmap @cmap.setter def cmap(self, cmap): self._cmap = get_colormap(cmap) self.shared_program.frag['cmap'] = Function(self._cmap.glsl_map) self.update() @property def method(self): """The render method to use Current options are: * avip: voxel colors are blended along the view ray until the result is opaque. * mip: maxiumum intensity projection. Cast a ray and display the maximum value that was encountered. * additive: voxel colors are added along the view ray until the result is saturated. * iso: isosurface. Cast a ray until a certain threshold is encountered. At that location, lighning calculations are performed to give the visual appearance of a surface. """ return self._method @method.setter def method(self, method): # Check and save known_methods = list(frag_dict.keys()) if method not in known_methods: raise ValueError('Volume render method should be in %r, not %r' % (known_methods, method)) self._method = method # Get rid of specific variables - they may become invalid if 'u_threshold' in self.shared_program: self.shared_program['u_threshold'] = None self.shared_program.frag = frag_dict[method] self.shared_program.frag['sampler_type'] = self._tex.glsl_sampler_type self.shared_program.frag['sample'] = self._tex.glsl_sample self.shared_program.frag['cmap'] = Function(self._cmap.glsl_map) self.update() @property def color_method(self): """The way color is associated with voxel Current options are: * regular: Color is associated to voxel intensity (defined by the VR method) * velocity/redshit: Color is associated to depth coordinate and alpha to voxel intensity (defined by the VR method) """ return self._color_method @color_method.setter def color_method(self, color_method): if color_method == 'Moment 0': self._color_method = 0 elif color_method == 'Moment 1': self._color_method = 1 elif color_method == 'rgb_cube': self._color_method = 2 elif color_method == 'Sigmas': self._color_method = 3 else: self._color_method = 4 # print ("color_method", self._color_method) self.shared_program['u_color_method'] = int(self._color_method) self.update() @property def threshold(self): """ The threshold value to apply for the isosurface render method. Also used for the lmip transfer function. """ return self._threshold @threshold.setter def threshold(self, value): self._threshold = float(value) if 'u_threshold' in self.shared_program: self.shared_program['u_threshold'] = self._threshold self.update() @property def color_scale(self): return self._color_scale @color_scale.setter def color_scale(self, color_scale): if (color_scale == 'linear'): self._color_scale = 0 else: self._color_scale = 1 self.shared_program['u_color_scale'] = int(self._color_scale) self.update() @property def log_scale(self): return self._log_scale @log_scale.setter def log_scale(self, log_scale): self._log_scale = int(log_scale) #self.shared_program['u_log_scale'] = int(self._log_scale) self.update() @property def data_min(self): return self._data_min @data_min.setter def data_min(self, data_min): self._data_min = 0. self.shared_program['u_data_min'] = float(self._data_min) self.update() @property def data_max(self): return self._data_max @data_max.setter def data_max(self, data_max): self._data_max = 0. self.shared_program['u_data_max'] = float(self._data_max) self.update() @property def moving_box_filter(self): return self._moving_box_filter @moving_box_filter.setter def moving_box_filter(self, moving_box_filter): self.shared_program['u_moving_box_filter'] = int(self._moving_box_filter) self.update() @property def volume_mean(self): return self._volume_mean @volume_mean.setter def volume_mean(self, volume_mean): self._volume_mean = float(volume_mean) self.shared_program['u_volume_mean'] = self._volume_mean print ("self._volume_mean", self._volume_mean) self.update() @property def volume_std(self): return self._volume_std @volume_std.setter def volume_std(self, volume_std): self._volume_std = float(volume_std) self.shared_program['u_volume_std'] = self._volume_std print("self._volume_std", self._volume_std) self.update() @property def volume_madfm(self): return self._volume_madfm @volume_madfm.setter def volume_madfm(self, volume_madfm): self._volume_madfm = float(volume_madfm) self._volume_madfm -= self._clim[0] self._volume_madfm /= self._clim[1] - self._clim[0] self.shared_program['u_volume_madfm'] = self._volume_madfm self.update() @property def filter_size(self): return self._filter_size @filter_size.setter def filter_size(self, filter_size): self._filter_size = int(filter_size) self.shared_program['u_filter_size'] = int(self._filter_size) self.shared_program['u_filter_arm'] = int(np.floor(self._filter_size/2)) self.shared_program['u_filter_coeff'] = float(1/self._filter_size) self.update() @property def filter_type(self): return self._filter_type @filter_type.setter def filter_type(self, filter_type): if filter_type == 'Rescale': self._filter_type = 1 else: self._filter_type = 0 self.shared_program['u_filter_type'] = int(self._filter_type) self.update() @property def use_gaussian_filter(self): return self._use_gaussian_filter @use_gaussian_filter.setter def use_gaussian_filter(self, use_gaussian_filter): # print ("use_gaussian_filter", use_gaussian_filter) self._use_gaussian_filter = int(use_gaussian_filter) self.shared_program['u_use_gaussian_filter'] = int(self._use_gaussian_filter) self.update() @property def gaussian_filter_size(self): return self._gaussian_filter_size @gaussian_filter_size.setter def gaussian_filter_size(self, gaussian_filter_size): self._gaussian_filter_size = int(gaussian_filter_size) self.shared_program['u_gaussian_filter_size'] = int(self._gaussian_filter_size) self.update() @property def high_discard_filter_value(self): return self._high_discard_filter_value @high_discard_filter_value.setter def high_discard_filter_value(self, high_discard_filter_value): self._high_discard_filter_value = float(high_discard_filter_value) self._high_discard_filter_value -= self._clim[0] self._high_discard_filter_value /= self._clim[1] - self._clim[0] self.shared_program['u_high_discard_filter_value'] = self._high_discard_filter_value self.update() @property def low_discard_filter_value(self): return self._low_discard_filter_value @low_discard_filter_value.setter def low_discard_filter_value(self, low_discard_filter_value): self._low_discard_filter_value = float(low_discard_filter_value) self._low_discard_filter_value -= self._clim[0] self._low_discard_filter_value /= self._clim[1] - self._clim[0] self.shared_program['u_low_discard_filter_value'] = self._low_discard_filter_value self.update() @property def density_factor(self): return self._density_factor @density_factor.setter def density_factor(self, density_factor): self._density_factor = float(density_factor) self.shared_program['u_density_factor'] = self._density_factor self.update() @property def relative_step_size(self): """ The relative step size used during raycasting. Larger values yield higher performance at reduced quality. If set > 2.0 the ray skips entire voxels. Recommended values are between 0.5 and 1.5. The amount of quality degradation depends on the render method. """ return self._relative_step_size @relative_step_size.setter def relative_step_size(self, value): value = float(value) if value < 0.1: raise ValueError('relative_step_size cannot be smaller than 0.1') self._relative_step_size = value self.shared_program['u_relative_step_size'] = value def _create_vertex_data(self): """ Create and set positions and texture coords from the given shape We have six faces with 1 quad (2 triangles) each, resulting in 6*2*3 = 36 vertices in total. """ shape = self._vol_shape # Get corner coordinates. The -0.5 offset is to center # pixels/voxels. This works correctly for anisotropic data. x0, x1 = -0.5, shape[2] - 0.5 y0, y1 = -0.5, shape[1] - 0.5 z0, z1 = -0.5, shape[0] - 0.5 pos = np.array([ [x0, y0, z0], [x1, y0, z0], [x0, y1, z0], [x1, y1, z0], [x0, y0, z1], [x1, y0, z1], [x0, y1, z1], [x1, y1, z1], ], dtype=np.float32) """ 6-------7 /| /| 4-------5 | | | | | | 2-----|-3 |/ |/ 0-------1 """ # Order is chosen such that normals face outward; front faces will be # culled. indices = np.array([2, 6, 0, 4, 5, 6, 7, 2, 3, 0, 1, 5, 3, 7], dtype=np.uint32) # Apply self._vertices.set_data(pos) self._index_buffer.set_data(indices) def _compute_bounds(self, axis, view): return 0, self._vol_shape[axis] def _prepare_transforms(self, view): trs = view.transforms view.view_program.vert['transform'] = trs.get_transform() view_tr_f = trs.get_transform('visual', 'document') view_tr_i = view_tr_f.inverse view.view_program.vert['viewtransformf'] = view_tr_f view.view_program.vert['viewtransformi'] = view_tr_i def _prepare_draw(self, view): if self._need_vertex_update: self._create_vertex_data() def madfm(self, volume): # As defined in Whiting, M. T. "DUCHAMP: a 3D source finder for spectral-lines data", MNRAS, 2012. return np.median(volume - np.median(volume)) * 1.4826042 RenderVolume = create_visual_node(RenderVolumeVisual) def get_interpolation_fun(): return get_interpolation_fun()
33.252964
110
0.567297
19,046
0.377313
0
0
9,387
0.185962
0
0
36,163
0.716411
ef703db82c659a484347e75656e30bf7c5cabb9f
854
py
Python
data/transcoder_evaluation_gfg/python/TILING_WITH_DOMINOES.py
mxl1n/CodeGen
e5101dd5c5e9c3720c70c80f78b18f13e118335a
[ "MIT" ]
241
2021-07-20T08:35:20.000Z
2022-03-31T02:39:08.000Z
data/transcoder_evaluation_gfg/python/TILING_WITH_DOMINOES.py
mxl1n/CodeGen
e5101dd5c5e9c3720c70c80f78b18f13e118335a
[ "MIT" ]
49
2021-07-22T23:18:42.000Z
2022-03-24T09:15:26.000Z
data/transcoder_evaluation_gfg/python/TILING_WITH_DOMINOES.py
mxl1n/CodeGen
e5101dd5c5e9c3720c70c80f78b18f13e118335a
[ "MIT" ]
71
2021-07-21T05:17:52.000Z
2022-03-29T23:49:28.000Z
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def f_gold ( n ) : A = [ 0 ] * ( n + 1 ) B = [ 0 ] * ( n + 1 ) A [ 0 ] = 1 A [ 1 ] = 0 B [ 0 ] = 0 B [ 1 ] = 1 for i in range ( 2 , n + 1 ) : A [ i ] = A [ i - 2 ] + 2 * B [ i - 1 ] B [ i ] = A [ i - 1 ] + B [ i - 2 ] return A [ n ] #TOFILL if __name__ == '__main__': param = [ (29,), (13,), (25,), (65,), (27,), (42,), (19,), (50,), (59,), (13,) ] n_success = 0 for i, parameters_set in enumerate(param): if f_filled(*parameters_set) == f_gold(*parameters_set): n_success+=1 print("#Results: %i, %i" % (n_success, len(param)))
21.897436
64
0.456674
0
0
0
0
0
0
0
0
221
0.258782
ef70dbcac1c09bceb1d774bc2a9dbf1cb0f819da
3,342
py
Python
make3d.py
BritishMuseumDH/scaffold3D
314ee4ca5f52304c89fac71b8f293774341d6278
[ "CC0-1.0" ]
4
2017-03-30T09:41:21.000Z
2021-10-01T09:18:02.000Z
make3d.py
BritishMuseumDH/scaffold3D
314ee4ca5f52304c89fac71b8f293774341d6278
[ "CC0-1.0" ]
null
null
null
make3d.py
BritishMuseumDH/scaffold3D
314ee4ca5f52304c89fac71b8f293774341d6278
[ "CC0-1.0" ]
3
2018-01-30T09:18:34.000Z
2019-06-16T17:55:24.000Z
import os import shutil from textwrap import dedent import argparse import subprocess parser = argparse.ArgumentParser(description='This is a script to create 3D model folder structure') parser.add_argument('-p', '--project', help='3D project name', required=True) parser.add_argument('-wd', '--wd', help='Working directory', required=True) args = parser.parse_args() os.chdir(args.wd) root_dir = os.path.join(args.wd, args.project) if os.path.exists(root_dir) and os.listdir(root_dir): # If the path already exists and it is not empty, raise an error err_msg = ''' {directory} already exists and it is not empty. Please try a different project name or root directory. '''.format(directory=root_dir) raise IOError(000, dedent(err_msg)) else: os.mkdir(root_dir) # Create the root directory dirnames = ('images', 'masks', 'models') # Create all the other directories for item in dirnames: path3D = os.path.join(args.wd, args.project, item) os.mkdir(path3D) def write_readme(project, root_dir): readme_path = os.path.join(root_dir, "README.md") readme_content = get_readme_text(project) with open(readme_path, 'w') as readme_file: readme_file.write(readme_content) def get_readme_text(project): readme_text = """ [![License: CC BY-SA 4.0](https://img.shields.io/badge/License-CC%20BY--SA%204.0-lightgrey.svg)](http://creativecommons.org/licenses/by-sa/4.0/) [![ORCiD](https://img.shields.io/badge/ORCiD-0000--0002--0246--2335-green.svg)](http://orcid.org/0000-0002-0246-2335) # {project} 3D data for recreation of a British Museum object. # LICENSE The contents of this repository are licensed under CC-BY-NC-SA # Credits Photographs and models by {author} <{author_email}>, Digital Humanities Lead, British Museum Copyright Trustees of the British Museum """.format( project=project, license=license, author=get_user_name_from_git() or "My Name", author_email=get_user_email_from_git() or "My email.") return dedent(readme_text) def get_user_name_from_git(): try: git_process = subprocess.Popen(['git', 'config', 'user.name'], stdout=subprocess.PIPE , stderr=subprocess.PIPE) user_name, err = git_process.communicate() return user_name.rstrip().decode() except OSError: return None def get_user_email_from_git(): try: git_process = subprocess.Popen(['git', 'config', 'user.email'], stdout=subprocess.PIPE , stderr=subprocess.PIPE) user_email, err = git_process.communicate() return user_email.rstrip().decode() except OSError: return None def write_license(root_dir): license_path = os.path.join(root_dir, "LICENSE.md") shutil.copy(os.path.join(os.path.dirname(os.path.realpath(__file__)),'scaffold3D/templates/LICENSE.md'), license_path) return None def write_ignore(root_dir): ignore_path = os.path.join(root_dir, ".gitignore") shutil.copy(os.path.join(os.path.dirname(os.path.realpath(__file__)),'scaffold3D/templates/.gitignore'), ignore_path) return None write_readme(args.project, root_dir) write_license(root_dir) write_ignore(root_dir)
35.178947
153
0.680132
0
0
0
0
0
0
0
0
1,212
0.362657
ef724512834ae77b7fe4b2559fc21eb34f4025f5
5,476
py
Python
integration/experiment/common_args.py
avilcheslopez/geopm
35ad0af3f17f42baa009c97ed45eca24333daf33
[ "MIT", "BSD-3-Clause" ]
null
null
null
integration/experiment/common_args.py
avilcheslopez/geopm
35ad0af3f17f42baa009c97ed45eca24333daf33
[ "MIT", "BSD-3-Clause" ]
null
null
null
integration/experiment/common_args.py
avilcheslopez/geopm
35ad0af3f17f42baa009c97ed45eca24333daf33
[ "MIT", "BSD-3-Clause" ]
null
null
null
# # Copyright (c) 2015 - 2022, Intel Corporation # SPDX-License-Identifier: BSD-3-Clause # ''' Common command line arguments for experiments. ''' def setup_run_args(parser): """Add common arguments for all run scripts: --output-dir --node-count --trial-count --cool-off-time """ add_output_dir(parser) add_node_count(parser) add_trial_count(parser) add_cool_off_time(parser) add_enable_traces(parser) add_enable_profile_traces(parser) def add_output_dir(parser): parser.add_argument('--output-dir', dest='output_dir', action='store', default='.', help='location for reports and other output files') def add_trial_count(parser): parser.add_argument('--trial-count', dest='trial_count', action='store', type=int, default=2, help='number of experiment trials to launch') def add_node_count(parser): parser.add_argument('--node-count', dest='node_count', default=1, type=int, help='number of nodes to use for launch') def add_show_details(parser): parser.add_argument('--show-details', dest='show_details', action='store_true', default=False, help='print additional data analysis details') def add_min_power(parser): parser.add_argument('--min-power', dest='min_power', action='store', type=float, default=None, help='bottom power limit for the sweep') def add_max_power(parser): parser.add_argument('--max-power', dest='max_power', action='store', type=float, default=None, help='top power limit for the sweep') def add_step_power(parser): parser.add_argument('--step-power', dest='step_power', action='store', type=float, default=10, help='increment between power steps for sweep') def add_label(parser): parser.add_argument('--label', action='store', default="APP", help='name of the application to use for plot titles') def add_min_frequency(parser): parser.add_argument('--min-frequency', dest='min_frequency', action='store', type=float, default=None, help='bottom core frequency limit for the sweep') def add_max_frequency(parser): parser.add_argument('--max-frequency', dest='max_frequency', action='store', type=float, default=None, help='top core frequency limit for the sweep') def add_step_frequency(parser): parser.add_argument('--step-frequency', dest='step_frequency', action='store', type=float, default=None, help='increment between core frequency steps for sweep') def add_run_max_turbo(parser): parser.add_argument("--run-max-turbo", dest="run_max_turbo", action='store_true', default=False, help='add extra run to the experiment at maximum turbo frequency') def add_use_stdev(parser): parser.add_argument('--use-stdev', dest='use_stdev', action='store_true', default=False, help='use standard deviation instead of min-max spread for error bars') def add_cool_off_time(parser): parser.add_argument('--cool-off-time', dest='cool_off_time', action='store', type=float, default=60, help='wait time between workload execution for cool down') def add_agent_list(parser): parser.add_argument('--agent-list', dest='agent_list', action='store', type=str, default=None, help='comma separated list of agents to be compared') def add_enable_traces(parser): parser.add_argument('--enable-traces', dest='enable_traces', action='store_const', const=True, default=False, help='Enable trace generation') parser.add_argument('--disable-traces', dest='enable_traces', action='store_const', const=False, help='Disable trace generation') def add_disable_traces(parser): add_enable_traces(parser) parser.set_defaults(enable_traces=True) def add_enable_profile_traces(parser): parser.add_argument('--enable-profile-traces', dest='enable_profile_traces', action='store_const', const=True, default=False, help='Enable profile trace generation') parser.add_argument('--disable-profile-traces', dest='enable_profile_traces', action='store_const', const=False, help='Disable profile trace generation') def add_disable_profile_traces(parser): add_enable_profile_traces(parser) parser.set_defaults(enable_profile_traces=True) def add_performance_metric(parser): parser.add_argument('--performance-metric', dest='performance_metric', action='store', type=str, default='FOM', help='metric to use for performance (default: figure of merit)') def add_analysis_dir(parser): parser.add_argument('--analysis-dir', dest='analysis_dir', action='store', default='analysis', help='directory for output analysis files')
36.506667
95
0.611578
0
0
0
0
0
0
0
0
1,982
0.361943
ef7445ff5f0dbb5c8605cf8ad95f6ecbcc7f04a5
10,466
py
Python
Source Code.py
S-AlMazrouai/Chess-king-last-position-finder
609346ee660655bd7aa2afe486c4ad074e3d33fc
[ "MIT" ]
1
2022-02-04T11:14:13.000Z
2022-02-04T11:14:13.000Z
Source Code.py
S-AlMazrouai/Chess-king-last-position-finder
609346ee660655bd7aa2afe486c4ad074e3d33fc
[ "MIT" ]
null
null
null
Source Code.py
S-AlMazrouai/Chess-king-last-position-finder
609346ee660655bd7aa2afe486c4ad074e3d33fc
[ "MIT" ]
null
null
null
import requests import json import chess import chess.pgn import io from collections import Counter from openpyxl import load_workbook import numpy #API link: https://api.chess.com/pub/player/{user}/games/{year}/{month}/pgn baseUrl='https://api.chess.com/pub/player/' users=['Mazrouai'] # You can add one or more chess.com profile/s, make sure to type the prfile name/s as it's/they're written in chess.com. for user in users: years = range(2000,2022) # Add the range of the years you want this code to analyze (from,to). months = ['01','02','03','04','05','06','07','08','09','10','11','12'] # Keep this as it is. count=0 winBlackKingPos=[] # Array to collect King position in the games won as black. lossBlackKingPos=[] # Array to collect King position in the games lost as black. winWhiteKingPos=[] # Array to collect King position in the games won as white. lossWhiteKingPos=[] # Array to collect King position in the games lost as white. for i in years: # For loop to irritate through the specified years range. for j in months: # For loop to irritate through the monthes of the specified years. extension=str(str(user)+'/games/'+str(i)+'/'+str(j)+'/pgn') # Creates the extension for the baseUrl. url=baseUrl+extension # Merges baseUrl with the extension. response = requests.get(url) pgns = io.StringIO(response.text) if response.text == '': # Checks if pgn file is empty and if it is, it jumps to the next PGN file. continue while True: games=chess.pgn.read_game(pgns) # Reads PGN file. if games == None: # Checks if there is a game available to read inside the pgn file, if not it exits this loop to the next PGN file. break if games.headers['Black'] == '?': # Checks if game data is missing, if true it jumps to the next game. continue if games.headers['White'] == '?': # Checks if game data is missing, if true it jumps to the next game. continue board=games.board() for move in games.mainline_moves(): # Moves to the last position in the game. board.push(move) map=board.piece_map() # Collect the position of the pieces in thier last move. if games.headers['Black']== str(user): # Checks if the specified user is playing as black for x,y in map.items(): if str(y) == 'k': kingPos=chess.square_name(x) # Gets the black king postion. if games.headers['Result'] == '0-1': # Collects the king position in the games won as black. winBlackKingPos.append(kingPos) if games.headers['Result'] == '1-0': # Collects the king position in the games lost as black. lossBlackKingPos.append(kingPos) else: # If the if condition is not satisfied then the specificed user is playing as white. for x,y in map.items(): if str(y) == 'K': kingPos=chess.square_name(x) # Gets the white king postion. if games.headers['Result'] == '0-1': # Collects the king position in the games lost as white. lossWhiteKingPos.append(kingPos) if games.headers['Result'] == '1-0': # Collects the king position in the games won as white. winWhiteKingPos.append(kingPos) gamesWon=len(winBlackKingPos)+len(winWhiteKingPos) # Counts # of won games. gamesLost=len(lossBlackKingPos)+len(lossWhiteKingPos) # Counts # of lost games. gamesPlayed=gamesWon+gamesLost # counts # of analyzed games print("Player: ",user) # Prints the name of the player. print("games played: ",gamesPlayed) # Prints # of won games. print("games won: ",gamesWon) # Prints # of lost games. print("games lost: ",gamesLost) # Prints # of analyzed games print("\n") winWhiteKingPosCount= Counter(winWhiteKingPos) # Creates a list with a position and the number of times the wining white king was in that position. lossWhiteKingPosCount= Counter(lossWhiteKingPos) # Creates a list with a position and the number of times the losing white king was in that position. winBlackKingPosCount= Counter(winBlackKingPos) # Creates a list with a position and the number of times the wining black king was in that position. lossBlackKingPosCount= Counter(lossBlackKingPos) # Creates a list with a position and the number of times the losing black king was in that position. posCounts=[winWhiteKingPosCount,lossWhiteKingPosCount,winBlackKingPosCount,lossBlackKingPosCount] # Merges the lists into an array. Data = load_workbook(filename='Data_Template.xlsx') # Opens the template excel file . sheets=Data.sheetnames # Register the sheets name. cellLetters=[] # Array for the cell letters in the excel file. cellNum=[] # Array for the cell numbers in the excel file. for j in range(8): # Generates cell letters to get the cells this code will work . for i in range(66, 74): cellLetters.append(chr(i)) for i in [10,9,8,7,6,5,4,3]: # Generates cell numbers to get the cells this code will work . for j in range(8): cellNum.append(i) c = 0 # This variable will be used as an index to go thorugh the lists that have been merged into an array. for sheet in sheets: # For loop to irritate through the excel sheets. workSheet=Data[sheet] posCount=posCounts[c] # Gets the postion list. c=c+1 for i in range(64): # For loop to go through the sheet cells and assign them the king recurrence value. cell=str(cellLetters[i])+str(cellNum[i]) # Constructs the excel cell name (e.g. A12). count=posCount[chess.square_name(i)] # Gets the king postion count that correlates with the cell name. if count== 0: # If king recurrence equals 0 set the cell to None. count= None workSheet[cell] = count # Makes the cell value equales the king recurrence in that position. Data.save(filename='Data_'+str(user)+'.xlsx') # Saves the data into a new xlsx file
87.94958
228
0.391458
0
0
0
0
0
0
0
0
3,286
0.313969
ef798894676eb6e1574bdd64f329e5761081b579
1,464
py
Python
src/FileHandler.py
mohitgupta07/tipr-1st-assgn
be2f742de69dbf7c300410c230eaa541d8d0eab8
[ "MIT" ]
null
null
null
src/FileHandler.py
mohitgupta07/tipr-1st-assgn
be2f742de69dbf7c300410c230eaa541d8d0eab8
[ "MIT" ]
null
null
null
src/FileHandler.py
mohitgupta07/tipr-1st-assgn
be2f742de69dbf7c300410c230eaa541d8d0eab8
[ "MIT" ]
1
2019-02-15T16:44:02.000Z
2019-02-15T16:44:02.000Z
import csv import numpy as np def loadData(path=r'dolphins.csv',type='data',hasHeaders=False): with open(path,'r') as f: reader=csv.reader(f,delimiter=',') if hasHeaders:headers=next(reader)#If Headers are provided data=list(reader) #print(data[0]) if type=='data': data=[list(map(float,tmp[0].strip().split())) for tmp in data] data=np.array(data).astype(float) else: data=[list(map(int,tmp[0].strip().split()))[0] for tmp in data] #print(data) data=np.array(data).astype(int) #print(data.shape) #print(data[:3]) return data def loadDataX(path=r'dolphins.csv',hasHeaders=None): import pandas as pd x=pd.read_csv(path,sep=' ',header=hasHeaders) return x def loadDataText(path=r'twitter.txt',type='data',hasHeaders=False): with open(path,'r') as f: reader=csv.reader(f,delimiter=',') if hasHeaders:headers=next(reader)#If Headers are provided data=list(reader) #print(data[0]) #return data if type=='data': data=[list(map(str,tmp[0].strip().split(' '))) for tmp in data] #data=np.array(data).astype(str) else: data=[list(map(int,tmp[0].strip().split()))[0] for tmp in data] #print(data) data=np.array(data).astype(int) #print(data.shape) #print(data[:3]) return data
32.533333
75
0.57377
0
0
0
0
0
0
0
0
300
0.204918
ef7a8845996df8b5695e947565280cd90979fd06
1,840
py
Python
load.py
ontocord/create_pii_dataset
bfd246a8f8b443e238f260f307bd41d86adc3136
[ "Apache-2.0" ]
null
null
null
load.py
ontocord/create_pii_dataset
bfd246a8f8b443e238f260f307bd41d86adc3136
[ "Apache-2.0" ]
null
null
null
load.py
ontocord/create_pii_dataset
bfd246a8f8b443e238f260f307bd41d86adc3136
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright, 2021 Ontocord, LLC, All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from datasets import load_dataset import os import re import itertools from re import finditer import glob import random import fsspec import json from random import randint, choice from collections import Counter import spacy, itertools import langid from nltk.corpus import stopwords import fsspec, os, gzip from faker import Faker from faker.providers import person, company, geo, address from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer, MarianMTModel, AutoTokenizer, pipeline import torch import sys from tqdm import tqdm model_name = 'Helsinki-NLP/opus-mt-en-hi' model = MarianMTModel.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) model_name = 'Helsinki-NLP/opus-mt-en-ar' model = MarianMTModel.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) model_name = 'Helsinki-NLP/opus-mt-en-zh' model = MarianMTModel.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M") tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M") nlp = spacy.load('en_core_web_lg') stopwords_en = set(stopwords.words('english'))
33.454545
112
0.807609
0
0
0
0
0
0
0
0
754
0.409783
ef7b9c110a5e75cb118c0870480aa130248a1ef2
1,432
py
Python
piWriters/graphiteSender.py
shackledtodesk/piWeather
e0b4b4ded7ebd01fe7844807de6949a83aa3913f
[ "Apache-2.0" ]
null
null
null
piWriters/graphiteSender.py
shackledtodesk/piWeather
e0b4b4ded7ebd01fe7844807de6949a83aa3913f
[ "Apache-2.0" ]
null
null
null
piWriters/graphiteSender.py
shackledtodesk/piWeather
e0b4b4ded7ebd01fe7844807de6949a83aa3913f
[ "Apache-2.0" ]
null
null
null
## Send data to a Graphite/Carbon Server import traceback import sys, time, socket, datetime from datetime import datetime class piSender: carbon_server = '127.0.0.1' carbon_port = 2003 station = "pi2wu" def __init__(self, config): if config.has_option('graphite','server'): self.carbon_server = config.get('graphite','server') if config.has_option('graphite','port'): self.carbon_port = config.get('graphite','port') if config.has_option('general','station'): self.station = config.get('general','station') self.sock = socket.socket() try: self.sock.connect( (self.carbon_server, self.carbon_port) ) except socket.error: raise SystemExit("Could not connect to carbon server.") def genReq(self, inTime, data): epoch_time = time.mktime(datetime.strptime(inTime, "%Y-%m-%dT%H:%M:%S.%fZ").timetuple()) lines = [] for name, value in data.items(): lines.append("%s.%s %s %d" % (self.station, name, value, epoch_time)) message = '\n'.join(lines) + '\n' return message def sendReq(self, req): try: self.sock.sendall(req) except Exception: traceback.print_exc() e = sys.exc_info()[0] return e else: return "ok"
31.130435
96
0.561453
1,293
0.902933
0
0
0
0
0
0
247
0.172486
ef7bcd09324b9928a69882ed98ebf81368b8f074
650
bzl
Python
rules/nunjucks.bzl
MHASgamer/js-samples
56ec58ca91a48da09b62a390efb8c5095a54d06f
[ "Apache-2.0" ]
535
2015-08-06T18:30:26.000Z
2022-03-30T08:34:35.000Z
rules/nunjucks.bzl
HazelAndrews/js-samples
b7e5e7ceb411830fa1bf6b125d938e1c415edc21
[ "Apache-2.0" ]
915
2015-08-05T05:36:03.000Z
2022-03-28T17:08:42.000Z
rules/nunjucks.bzl
HazelAndrews/js-samples
b7e5e7ceb411830fa1bf6b125d938e1c415edc21
[ "Apache-2.0" ]
790
2015-08-05T13:51:17.000Z
2022-03-31T16:56:59.000Z
def nunjucks(name, outs, template, json, data, mode): # this genrule moves the generated html file to the correct location # nunjucks-cli does not allow specifying a single output file # nunjucks-cli converts the .njk to a .html by default native.genrule( name = name, srcs = data, tools = ["//rules:nunjucks", "//rules:nunjucks-cli", "//rules:json"], cmd = "$(location //rules:nunjucks) $(location {template}) $(location {json}) $(location //rules:nunjucks-cli) {mode} $@".format(template = template, json = json, mode = mode), outs = outs, visibility = ["//visibility:public"], )
50
184
0.630769
0
0
0
0
0
0
0
0
373
0.573846
ef7c2ae59e8e02d4a104708b8f76dca033259df6
479
py
Python
src/main/python/bots/b_jira.py
jceaser/gcmd_bot
2b2ae0631d69d9f95a3a23b04e12a4467a116ffa
[ "MIT" ]
null
null
null
src/main/python/bots/b_jira.py
jceaser/gcmd_bot
2b2ae0631d69d9f95a3a23b04e12a4467a116ffa
[ "MIT" ]
null
null
null
src/main/python/bots/b_jira.py
jceaser/gcmd_bot
2b2ae0631d69d9f95a3a23b04e12a4467a116ffa
[ "MIT" ]
null
null
null
from b_bot import BBot from rand_str import * class BJira(BBot): def __init__(self): BBot.__init__(self) self.responses = RandomString( [ "Looks like you were talking about ticket" , "You might find that ticket at" , "Try" ]) def action(self, cmd, id, found): url = "https://bugs.earthdata.nasa.gov/browse/%s" % found.group(1) return "%s %s" % (self.responses.pick(), url)
28.176471
74
0.553236
423
0.88309
0
0
0
0
0
0
128
0.267223
ef7c66788463fc4b72dcc5b29d43203643002b12
2,295
py
Python
preprocessors/neg_sample_from_run.py
felipemoraes/pyNeuIR
5256857387c8fe57d28167e42077ad1dcade1983
[ "MIT" ]
4
2019-11-09T19:46:44.000Z
2022-01-03T07:58:20.000Z
preprocessors/neg_sample_from_run.py
felipemoraes/pyNeuIR
5256857387c8fe57d28167e42077ad1dcade1983
[ "MIT" ]
null
null
null
preprocessors/neg_sample_from_run.py
felipemoraes/pyNeuIR
5256857387c8fe57d28167e42077ad1dcade1983
[ "MIT" ]
3
2019-06-18T12:31:49.000Z
2020-11-22T08:35:07.000Z
"""Samples negative pairs from run.""" import argparse from utils import load_qrels, load_run import numpy as np def main(): parser = argparse.ArgumentParser() parser.add_argument('-run') parser.add_argument('-qrel') parser.add_argument('-p', type=int) parser.add_argument('-n', type=int) parser.add_argument('-top', type=int) parser.add_argument('-o') args = parser.parse_args() qrels, _ = load_qrels(args.qrel) n = args.n p = args.p top = args.top f = open(args.o, "w") np.random.seed(230) # Here documents with the lowest label (e.g, 0) should be ranked lower previous_qid = "-" c = 0 for line in open(args.run): qid, _, doc, _, score, _ = line.strip().split() if qid not in qrels: continue # Get relevants for query rels = set() if qid != previous_qid and previous_qid != "-" : c += 1 for label in qrels[qid]: if label != "0": for doc in qrels[qid][label]: rels.add(doc) # Get top 100 non rel docs top_nonrels = [doc for doc in sorted(results, key=results.get, reverse=True) if doc not in rels][:top] rels = list(rels) if len(top_nonrels) == 0: results = {doc: float(score)} break if len(rels) > p: rels = np.random.choice(rels, p, replace=False) for rel_doc in rels: if len(top_nonrels) < n: sample_neg_docs = top_nonrels r = n - len(sample_neg_docs) for i in range(r): sample_neg_docs.append(np.random.choice(top_nonrels, 1)[0]) else: sample_neg_docs = np.random.choice(top_nonrels, n, replace=False) sample_neg_docs = " ".join(sample_neg_docs) f.write("{} {} {}\n".format(qid, rel_doc, sample_neg_docs)) results = {doc: float(score)} elif previous_qid == "-": results = {doc: float(score)} else: results[doc] = float(score) previous_qid = qid print(c) f.close() if __name__ == "__main__": main()
28.333333
114
0.525054
0
0
0
0
0
0
0
0
230
0.100218
ef7cc313a84b2a9b9ea62469241644f5f1b9560b
1,123
py
Python
Search_Algorithms/testing/python_scripts/GridNet.py
JAOP1/GO
48c0275fd37bb552c0db4b968391a5a95ed6c860
[ "MIT" ]
null
null
null
Search_Algorithms/testing/python_scripts/GridNet.py
JAOP1/GO
48c0275fd37bb552c0db4b968391a5a95ed6c860
[ "MIT" ]
null
null
null
Search_Algorithms/testing/python_scripts/GridNet.py
JAOP1/GO
48c0275fd37bb552c0db4b968391a5a95ed6c860
[ "MIT" ]
2
2019-12-12T18:55:35.000Z
2019-12-12T19:03:35.000Z
import torch import torch.nn as nn import torch.nn.functional as F #Unicamente como esta ahorita funciona para un grafo de 5x5. class NNGrid(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(in_channels = 3, out_channels= 5, kernel_size= 3, padding= 1) self.conv2 = nn.Conv2d(in_channels = 5, out_channels= 5, kernel_size= 3, padding= 1) self.conv3 = nn.Conv2d(in_channels = 5, out_channels= 5, kernel_size= 2, padding= 1) self.fc1 = nn.Linear(180,90) self.fc2 = nn.Linear(90,45) self.fc3 = nn.Linear(45,1) self.drop1 = nn.Dropout() self.drop2 = nn.Dropout() def forward(self, x): #print(x.shape) x = F.relu(self.conv1(x)) #print(x.shape) x = F.relu(self.conv2(x)) #print(x.shape) x = F.relu(self.conv3(x)) #print(x.shape) x = x.view(-1,180) #print(x.shape) x = self.drop1(F.relu(self.fc1(x))) #print(x.shape) x = self.drop2(F.relu(self.fc2(x))) #print(x.shape) return torch.tanh(self.fc3(x))
31.194444
92
0.577026
989
0.880677
0
0
0
0
0
0
165
0.146928
ef7d0ee9d64040c9087075b823e521c746835c31
3,436
py
Python
instances/game_instances.py
Napam/MayhemPacman
cbcb3b4a2c83ed920e32748a8aaadb29b19ab5bf
[ "MIT" ]
1
2021-04-07T12:54:13.000Z
2021-04-07T12:54:13.000Z
instances/game_instances.py
Napam/MayhemPacman
cbcb3b4a2c83ed920e32748a8aaadb29b19ab5bf
[ "MIT" ]
null
null
null
instances/game_instances.py
Napam/MayhemPacman
cbcb3b4a2c83ed920e32748a8aaadb29b19ab5bf
[ "MIT" ]
null
null
null
''' Module containing the in-game mayhem instances such as the ship, planets, asteroid objects etc etc... Written by Naphat Amundsen ''' import numpy as np import pygame as pg import configparser import sys import os sys.path.insert(0,'..') from classes import spaceship from classes import planet from classes import maps from classes import interface import user_settings as user_cng from instances import instance_config as icng pg.font.init() w_shape = user_cng.w_shape w_norm = np.linalg.norm(w_shape) COLORS = pg.colordict.THECOLORS # The initial values of the objects # are mostly just educated guesses game_map = maps.game_map( map_shape=(icng.map_shape) ) minimap = maps.minimap( gmap=game_map, w_shape=w_shape, w_norm=w_norm) ship = spaceship.spaceship( pos=(200,200), init_dir=icng.RIGHT ) sun = planet.planet( pos=game_map.center, init_vel=None, init_dir=None, rforce=None ) earth = planet.rotating_planet( pos=(game_map.shape[0]/2, 800), init_vel=[-3,0], init_dir=[1,0], r_force=25000, omega=0.25 ) venus = planet.rotating_planet( pos=(game_map.shape[0]/2, 2000), init_vel=[-5,0], init_dir=[1,0], r_force=40000, omega=0.25 ) asteroids = [ planet.rotating_planet( pos=(3000, 1000), init_vel=[-8,2], init_dir=[1,0], r_force=150000, omega=0.25 ), planet.rotating_planet( pos=(1200, 1000), init_vel=[10,1], init_dir=[1,0], r_force=390000, omega=0.25 ), planet.rotating_planet( pos=(500, 2000), init_vel=[2,10], init_dir=[1,0], r_force=540000, omega=0.25 ), planet.rotating_planet( pos=(6500, 6000), init_vel=[5,-15], init_dir=[1,0], r_force=1500000, omega=0.5 ), planet.rotating_planet( pos=(6000, 6000), init_vel=[-15,1], init_dir=[1,0], r_force=1000000, omega=0.5 ), planet.rotating_planet( pos=(6000, 500), init_vel=[-8,-2], init_dir=[1,0], r_force=600000, omega=0.25 ), planet.rotating_planet( pos=(5000, 2000), init_vel=[-2,-8], init_dir=[1,0], r_force=200000, omega=0.25 ), planet.rotating_planet( pos=(game_map.shape[0]/2, 800), init_vel=[15,0], init_dir=[1,0], r_force=590000, omega=0.25 ), planet.rotating_planet( pos=(5000, game_map.shape[1]/2), init_vel=[0,10], init_dir=[1,0], r_force=150000, omega=0.25 ), ] # For convenience planets = [earth, venus] all_celestials = planets + asteroids minimap_colors = [ COLORS['white'], COLORS['orange'], COLORS['blue'], COLORS['green'] ] minimap_sizes = [ 1, int(500/5000*minimap.shape[0]), int(250/5000*minimap.shape[0]), 1 ] '''Minimap stuff for LAN-mayhem''' minimap_colors_online = [ COLORS['white'], COLORS['orange'], COLORS['blue'], COLORS['green'], COLORS['red'], ] minimap_sizes_online = [ 1, int(500/5000*minimap.shape[0]), int(250/5000*minimap.shape[0]), 1, 3 ]
20.093567
55
0.556752
0
0
0
0
0
0
0
0
331
0.096333
ef7dd46d9034574570b5f449e1ddf8eb84731597
286
py
Python
test.py
RoyLQ/Advanced-_TCGAIntegrator
4767ab74b14e9d7e65e2c1ffe656619ef414148b
[ "MIT" ]
2
2021-09-14T05:53:16.000Z
2021-12-01T23:59:18.000Z
test.py
RoyLQ/Advanced-_TCGAIntegrator
4767ab74b14e9d7e65e2c1ffe656619ef414148b
[ "MIT" ]
null
null
null
test.py
RoyLQ/Advanced-_TCGAIntegrator
4767ab74b14e9d7e65e2c1ffe656619ef414148b
[ "MIT" ]
null
null
null
import sys import os simp_path = 'TCGAIntegrator' abs_path = os.path.abspath(simp_path) sys.path.append(abs_path) from TCGAIntegrator import TCGAData as TCGAData def main(): df = TCGAData.loadData("LGG",mode="Hybird") print(df.shape) if __name__ == '__main__': main()
15.888889
47
0.716783
0
0
0
0
0
0
0
0
39
0.136364
ef7f8e86f21851da0cc13ef9dc3a597eb38daaa9
1,649
py
Python
synergy/conf/global_context.py
mushkevych/scheduler
8228cde0f027c0025852cb63a6698cdd320838f1
[ "BSD-3-Clause" ]
15
2015-02-01T09:20:23.000Z
2021-04-27T08:46:45.000Z
synergy/conf/global_context.py
mushkevych/scheduler
8228cde0f027c0025852cb63a6698cdd320838f1
[ "BSD-3-Clause" ]
26
2015-01-12T22:28:40.000Z
2021-07-05T01:22:17.000Z
synergy/conf/global_context.py
mushkevych/scheduler
8228cde0f027c0025852cb63a6698cdd320838f1
[ "BSD-3-Clause" ]
2
2016-07-21T03:02:46.000Z
2019-10-03T23:59:23.000Z
from synergy.db.model.queue_context_entry import queue_context_entry from synergy.scheduler.scheduler_constants import PROCESS_GC, TOKEN_GC, PROCESS_MX, TOKEN_WERKZEUG, EXCHANGE_UTILS, \ PROCESS_SCHEDULER, TOKEN_SCHEDULER, QUEUE_UOW_STATUS, QUEUE_JOB_STATUS, PROCESS_LAUNCH_PY, TOKEN_LAUNCH_PY, \ ROUTING_IRRELEVANT from synergy.supervisor.supervisor_constants import PROCESS_SUPERVISOR, TOKEN_SUPERVISOR from synergy.db.model.daemon_process_entry import daemon_context_entry process_context = { PROCESS_LAUNCH_PY: daemon_context_entry( process_name=PROCESS_LAUNCH_PY, classname='', token=TOKEN_LAUNCH_PY, routing=ROUTING_IRRELEVANT, exchange=EXCHANGE_UTILS), PROCESS_MX: daemon_context_entry( process_name=PROCESS_MX, token=TOKEN_WERKZEUG, classname=''), PROCESS_GC: daemon_context_entry( process_name=PROCESS_GC, token=TOKEN_GC, classname=''), PROCESS_SCHEDULER: daemon_context_entry( process_name=PROCESS_SCHEDULER, classname='synergy.scheduler.synergy_scheduler.Scheduler.start', token=TOKEN_SCHEDULER, queue='', routing='', exchange=''), PROCESS_SUPERVISOR: daemon_context_entry( process_name=PROCESS_SUPERVISOR, classname='synergy.supervisor.synergy_supervisor.Supervisor.start', token=TOKEN_SUPERVISOR), } mq_queue_context = { QUEUE_UOW_STATUS: queue_context_entry(exchange=EXCHANGE_UTILS, queue_name=QUEUE_UOW_STATUS), QUEUE_JOB_STATUS: queue_context_entry(exchange=EXCHANGE_UTILS, queue_name=QUEUE_JOB_STATUS), } timetable_context = { }
35.085106
117
0.753184
0
0
0
0
0
0
0
0
121
0.073378
ef81335057d05cc62a7c03fc8a45db94b745d375
1,890
py
Python
fylesdk/apis/fyle_v3/fyle_v3.py
fylein/fyle-sdk-py
826f804ec4d94d5f95fb304254a373679a494238
[ "MIT" ]
4
2019-05-07T07:38:27.000Z
2021-09-14T08:39:12.000Z
fylesdk/apis/fyle_v3/fyle_v3.py
snarayanank2/fyle-sdk-py
826f804ec4d94d5f95fb304254a373679a494238
[ "MIT" ]
3
2019-09-23T11:50:31.000Z
2020-02-10T12:12:10.000Z
fylesdk/apis/fyle_v3/fyle_v3.py
fylein/fyle-sdk-py
826f804ec4d94d5f95fb304254a373679a494238
[ "MIT" ]
12
2019-05-06T09:48:51.000Z
2020-11-13T10:00:26.000Z
""" Fyle V3 APIs Base Class """ from .expenses import Expenses from .reports import Reports from .employees import Employees from .orgs import Orgs from .reimbursements import Reimbursements from .cost_centes import CostCenters from .categories import Categories from .projects import Projects from .refunds import Refunds from .balance_transfers import BalanceTransfers from .settlements import Settlements from .advance_requests import AdvanceRequests from .advances import Advances from .bank_transactions import BankTransactions from .trip_requests import TripRequests from .expense_custom_properties import ExpenseCustomProperties from .employee_custom_properties import EmployeeCustomProperties from .advance_request_custom_properties import AdvanceRequestCustomProperties from .trip_request_custom_properties import TripRequestCustomProperties class FyleV3: def __init__(self): """ Constructor to Initialize all APIs """ # Initialize V3 API Classes self.expenses = Expenses() self.reports = Reports() self.employees = Employees() self.orgs = Orgs() self.reimbursements = Reimbursements() self.cost_centers = CostCenters() self.categories = Categories() self.projects = Projects() self.refunds = Refunds() self.balance_transfers = BalanceTransfers() self.settlements = Settlements() self.advance_requests = AdvanceRequests() self.advances = Advances() self.bank_transactions = BankTransactions() self.trip_requests = TripRequests() self.expense_custom_properties = ExpenseCustomProperties() self.employee_custom_properties = EmployeeCustomProperties() self.advance_request_custom_properties = AdvanceRequestCustomProperties() self.trip_request_custom_properties = TripRequestCustomProperties()
37.8
81
0.757672
1,036
0.548148
0
0
0
0
0
0
116
0.061376
ef8179e868198d6a8e03937bb76a29cb988fcda9
6,164
py
Python
67-2.py
paqul/ALX
0f397b53f8208df62ed3bc1f63f27a087799eb32
[ "MIT" ]
null
null
null
67-2.py
paqul/ALX
0f397b53f8208df62ed3bc1f63f27a087799eb32
[ "MIT" ]
null
null
null
67-2.py
paqul/ALX
0f397b53f8208df62ed3bc1f63f27a087799eb32
[ "MIT" ]
null
null
null
from datetime import date as d #---------------------------HOTEL---------------------------# def exit_function(): print("Do zobaczenia!") exit() def forumarz_rezerwacji(var1, var2, var3, var4, var5, var6, var7, var8, ile_dni, ile_osob, sniadanie, imie): print("\n"*3) print("================================") print("| FORMULARZ REJESTRACYJNY |") print("|------------------------------|") print("| Data przybycia: %i%i-%i%i-%i%i%i%i |" % (var7, var8, var5, var6, var1, var2, var3, var4)) print("| Ilość dni pobytu: %3i |" % ile_dni) print("| Ilość osób: %3i |" % ile_osob) print("| Śniadania w każdy dzień: %s |" % sniadanie) print("| Rezerwujący: %15s |" % imie) print("|------------------------------|") print("| ŻYCZYMY MIŁEGO POBYTU |") print("| W NASZYM HOTELU |") print("================================") exit_function() def termin_przybycia(): print("Podaj date przybycia do hotelu w formacie (rrrr-mm-dd) np. 2018-12-07") while True: data_przybycia=input("Data przybycia: ") tab = [] for var in data_przybycia: try: var = int(var) tab.append(var) except: myslnik = var if len(tab) == 8: dzien = int(("%i" + "%i") % (tab[6], tab[7])) miesiac = int(("%i" + "%i") % (tab[4], tab[5])) if dzien > 31 or miesiac > 12: print("Popełniłeś błąd przy wpisywaniu daty - proszę sprawź to i wpisz jeszcze raz poprawnie!") termin_przybycia() else: try: if data_przybycia == ("%i%i%i%i-%i%i-%i%i"% (tab[0], tab[1], tab[2], tab[3], tab[4], tab[5], tab[6], tab[7])): if data_przybycia > str(d.today()): print("Podana data: %s - została zaakceptowana" % data_przybycia) return tab[0], tab[1], tab[2], tab[3], tab[4], tab[5], tab[6], tab[7] else: print("Podana data jest z przeszłości lub teraźniejszości, podaj ją jeszcze raz najbliższy możliwy termin rezerwacji to jutro!") except IndexError: print("Podałeś datę przybycia w niewłaściwym formacie") else: print("Podales date w niewłaściwym formacie - spróboj jeszcze raz") def ilosc_dni(): while True: try: ile_dni = int(input("Podaj liczbę dni, przez jaką zostaniesz w hotelu: ")) if ile_dni > 731: print("Jeżeli chcesz zostać w hotelu powyżej dwóch lat to powinieneś to osobiście ustalić z włąścicielem bezpośrednio podczas pobytu") print("Wpisz np 14 dni - przyjedź na 2 tygodnie i resztę swojego pobytu ustal z właścicielem") elif ile_dni <= 0: print("Dalsze wypełnianie formularza nie ma sensu, skoro nawet 1 dnia nie zostaniesz w hotelu") while True: dec = input("Czy chcesz zacząc wypełniać formularz od początku: (t/n)") dec = dec.lower() if dec == "t": main() elif dec == "n": exit_function() else: print("Wpisałeś nie poprawnie") else: return ile_dni except ValueError: print("Podaj prosze ilość dni (nie używaj ułamków)") def ilosc_osob(): while True: try: ile_osob = int(input("Podaj ile osob z tobą przyjedzie?, Jeżeli będziesz sam to wpisz \"0\"")) ile_osob += 1 if ile_osob > 100: print("Jeżeli chcesz zabrać ze sobą regiment wojska to proszę o bezpośredni kontakt z hotelem") else: return ile_osob except ValueError: print("Podaj prosze ilość osób które przybędą razem z tobą (nie używaj ułamków)") def sniadanie(): while True: sniadanie = input("Czy chcesz zamówić dodatkowo śniadanie w hotelu na każdy dzień pobytu: (T/N)") sniadanie = sniadanie.lower() if sniadanie == "t": return "tak" elif sniadanie == "n": return "nie" else: print("Wpisałeś nie poprawnie") def imie_fun(): imie = input("Podaj swoje imie: ") imie_OK = imie #takie szybkie obejscie :) imie = list(imie) counter_error = 0 for sprawdz in imie: if sprawdz.isdigit() == True or sprawdz in "~!@#$%^&*()_+-={}[]'\/,.<>": counter_error += 1 if counter_error >= 1: print("Błąd! - Podaj imie bez cyfr oraz znaków innych niż litery w imieniu!") return imie_fun() else: return imie_OK.capitalize() def rezerwacja(): print("Prosze o podanie natepujacych informacji w celu rezerwacji w naszym hotelu") [var1, var2, var3, var4, var5, var6, var7, var8] = termin_przybycia() days = ilosc_dni() people = ilosc_osob() breakfest = sniadanie() name = imie_fun() return forumarz_rezerwacji(var1, var2, var3, var4, var5, var6, var7, var8, days, people, breakfest, name) def opishotelu(): print("Nasz hotel wogole jest super i inny \"marketingowy belkot\", \ntak aby zachecic Cie do rezerwacji i wydania pieniedzy na hotel!") while True: decyzja=input("Czy napewno chcesz wyjsc z aplikacji? (t/n)") if decyzja == "t": exit_function() elif decyzja == "n": main() else: print("Wpisz \"t\" lub \"n\"") def main(): print("Witaj w aplikacji Hotelowej!\nCzy chcesz zarezerwować sobie miejsce w Hotelu? (t/n)", end="") while True: decyzja=input() if decyzja == "t": rezerwacja() elif decyzja == "n": opishotelu() else: print("Wpisz \"t\" lub \"n\"", end="") main()
39.512821
157
0.514114
0
0
0
0
0
0
0
0
2,442
0.390283
ef8277ef3ae9c0ea2b164ecadf77b6f20ca717ce
598
py
Python
core/mayaScripts/SimpleCube.py
Bernardrouhi/HandFree
fbb9623cba0b8e7eb18649d29465393f06c2b9ee
[ "MIT" ]
null
null
null
core/mayaScripts/SimpleCube.py
Bernardrouhi/HandFree
fbb9623cba0b8e7eb18649d29465393f06c2b9ee
[ "MIT" ]
null
null
null
core/mayaScripts/SimpleCube.py
Bernardrouhi/HandFree
fbb9623cba0b8e7eb18649d29465393f06c2b9ee
[ "MIT" ]
null
null
null
import sys import maya.standalone maya.standalone.initialize(name='python') from maya import cmds # try: def run(): # get scene file file_path = sys.argv[1] # Open Scene cmds.file(file_path, open=True) #-------------- Script -------------- cmds.polyCube( d=10, h=10 , w=10) cmds.polyCube( d=10, h=10 , w=10) cmds.polyCube( d=10, h=10 , w=10) cmds.polyCube( d=10, h=10 , w=10) cmds.polyCube( d=10, h=10 , w=10) #------------------------------------ # Save Scene cmds.file(save=True, force=True) run() maya.standalone.uninitialize() # except Exception as e: # sys.stdout.write(1)
19.933333
41
0.602007
0
0
0
0
0
0
0
0
174
0.29097
ef841a52c1f626cc7c84690f06d3bbb17715d9c8
3,733
py
Python
GreedyGRASP/Solver_Greedy.py
HamidL/AMMM_Project
7679d1c336578464317b8326311c1ab4b69cbf11
[ "MIT" ]
null
null
null
GreedyGRASP/Solver_Greedy.py
HamidL/AMMM_Project
7679d1c336578464317b8326311c1ab4b69cbf11
[ "MIT" ]
null
null
null
GreedyGRASP/Solver_Greedy.py
HamidL/AMMM_Project
7679d1c336578464317b8326311c1ab4b69cbf11
[ "MIT" ]
null
null
null
from GreedyGRASP.Solver import Solver from GreedyGRASP.Solution import Solution from GreedyGRASP.LocalSearch import LocalSearch # Inherits from a parent abstract solver. class Solver_Greedy(Solver): def greedyFunctionCost(self, solution, remainCap, busesAssignments): for busAssi in busesAssignments: bus = solution.getBuses()[busAssi.bus] service = solution.getServices()[busAssi.service] if (remainCap <= bus.getCapacity()): cost = busAssi.cost + busAssi.cost*(bus.getCapacity()-remainCap)/bus.getCapacity() else: cost = busAssi.cost + (busAssi.cost + service.getMinutes()*solution.inputData.CBM) * remainCap / bus.getCapacity() busAssi.greedyCost = cost return busesAssignments def greedyConstruction(self, config, problem): # get an empty solution for the problem solution = Solution.createEmptySolution(config, problem) # get tasks and sort them by their total required resources in descending order services = problem.getServices() sortedServices = sorted(services, key=lambda service: (service.getPassengers(), service.getNumOverlappingServices()), reverse=True) elapsedEvalTime = 0 evaluatedCandidates = 0 # for each task taken in sorted order for service in sortedServices: serviceId = service.getId() busesAssignments, driversAssignments = solution.findFeasibleAssignments(serviceId) remainCap = service.getPassengers() selBuses = [] while (remainCap > 0 and len(busesAssignments) > 0): busesAssignments = self.greedyFunctionCost(solution, remainCap, busesAssignments) busesAssignments = sorted(busesAssignments, key=lambda busAssi: busAssi.greedyCost) candidate = busesAssignments[0] if (candidate is None): solution.makeInfeasible() break selBuses.append(candidate) busesAssignments.remove(candidate) remainCap -= problem.getBuses()[candidate.bus].getCapacity() if (remainCap > 0): solution.makeInfeasible() break sortedDriversAssignments = sorted(driversAssignments, key=lambda driverAssi: driverAssi.cost) if (len(sortedDriversAssignments) < len(selBuses)): solution.makeInfeasible() break for i in range(0,len(selBuses)): solution.assign(sortedDriversAssignments[i], selBuses[i]) return(solution, elapsedEvalTime, evaluatedCandidates) def solve(self, config, problem): self.startTimeMeasure() self.writeLogLine(float('infinity'), 0) solution, elapsedEvalTime, evaluatedCandidates = self.greedyConstruction(config, problem) self.writeLogLine((solution.cost), 1) localSearch = LocalSearch(config) solution = localSearch.run(solution) self.writeLogLine(solution.cost, 1) avg_evalTimePerCandidate = 0.0 if (evaluatedCandidates != 0): avg_evalTimePerCandidate = 1000.0 * elapsedEvalTime / float(evaluatedCandidates) print ('') print ('Greedy Candidate Evaluation Performance:') print (' Num. Candidates Eval.', evaluatedCandidates) print (' Total Eval. Time ', elapsedEvalTime, 's') print (' Avg. Time / Candidate', avg_evalTimePerCandidate, 'ms') localSearch.printPerformance() return(solution)
41.477778
130
0.625234
3,560
0.953657
0
0
0
0
0
0
332
0.088937
ef854c6d7447ee5fbf75a72fb0ffd6549ac302f6
5,654
py
Python
statslib/_lib/gmodel.py
ashubertt/statslib
5a35c0d10c3ca44c2d48f329c4f3790c91c385ac
[ "Apache-2.0" ]
null
null
null
statslib/_lib/gmodel.py
ashubertt/statslib
5a35c0d10c3ca44c2d48f329c4f3790c91c385ac
[ "Apache-2.0" ]
1
2021-04-06T10:55:34.000Z
2021-04-06T10:55:34.000Z
statslib/_lib/gmodel.py
ashubertt/statslib
5a35c0d10c3ca44c2d48f329c4f3790c91c385ac
[ "Apache-2.0" ]
null
null
null
import inspect import math as _math from copy import deepcopy import matplotlib.pyplot as _plt import numpy as np import pandas as pd import statsmodels.api as _sm from statslib._lib.gcalib import CalibType class GeneralModel: def __init__(self, gc, DM): self.gc = deepcopy(gc) self.DM = deepcopy(DM) self.calibrator = None self.fitted = None self.v_hat = None self.y0 = None self.y_hat = None self.residuals = None def exog(self, idx): return self.DM.gX.iloc[idx] if self.DM.gX is not None else None def endog(self, idx): return self.DM.dm.v.iloc[idx] def fit(self, idx, **kwargs): if self.gc.calib_type is CalibType.sm: self.calibrator = self.gc.cf(endog=self.endog(idx), exog=self.exog(idx), **self.gc.kwargs) self.fitted = self.calibrator.fit(**kwargs) if self.gc.calib_type is CalibType.sk: self.calibrator = self.gc.cf(**self.gc.kwargs) self.fitted = self.calibrator.fit(self.exog(idx), self.endog(idx)) self.y0 = self.DM.dm.y.iloc[idx].tail(self.DM.f.n) def forecast(self, idx): def sumofsq(x, axis=0): """Helper function to calculate sum of squares along first axis""" return np.sum(x ** 2, axis=axis) self.forecast_index = idx if 'start' in inspect.signature(self.fitted.predict).parameters: self.v_hat = self.fitted.predict( self.exog(idx).index.min(), self.exog(idx).index.max(), exog=self.exog(idx)) else: if self.gc.calib_type is CalibType.sm: self.v_hat = self.fitted.predict(exog=self.exog(idx)) if self.gc.calib_type is CalibType.sk: self.v_hat = self.fitted.predict(self.exog(idx)) self.v_hat = pd.Series(self.v_hat, index=self.exog(idx).index).rename('v_hat') self.y_hat = self.DM.f.inv(self.v_hat, y0=self.y0, idx=self.v_hat.index) try: self.residuals = self.DM.dm.loc[self.v_hat.index]['v'].values - self.v_hat.values sigma2 = 1.0 / self.fitted.nobs * sumofsq(self.residuals) self.std_residuals = self.residuals / np.sqrt(sigma2) self.residuals = pd.Series(self.std_residuals, index=self.v_hat.index) self.std_residuals = pd.Series(self.std_residuals, index=self.v_hat.index) except Exception: pass def plot_diagnostics(self, figsize=(15, 15), drop_names=None): import math if drop_names is None: drop_names = list() std_resid = self.std_residuals if std_resid is not None: fig, axs = _plt.subplots(3, 2, figsize=figsize) from statslib.utils.plots import get_standard_colors clrs = get_standard_colors() std_resid.plot(ax=axs[0, 0], color=clrs[1]) axs[0, 0].hlines(0, self.v_hat.index.min(), self.v_hat.index.max()) axs[0, 0].set_title('Standardized residuals') axs[0, 1].hist(std_resid.values, density=True) from scipy.stats import gaussian_kde, norm kde = gaussian_kde(std_resid) xlim = (-1.96 * 2, 1.96 * 2) x = np.linspace(xlim[0], xlim[1]) axs[0, 1].plot(x, kde(x), label="KernelDensityEstimator") axs[0, 1].plot(x, norm.pdf(x), label="N(0,1)") axs[0, 1].set_xlim(xlim) axs[0, 1].legend() axs[0, 1].set_title("Histogram plus estimated density") _sm.graphics.qqplot(std_resid.values, line='q', fit=True, ax=axs[1, 0]) axs[1, 0].set_title('Normal QQ Plot') _sm.graphics.tsa.plot_acf(std_resid, ax=axs[1, 1]) axs[1, 1].set_title('Correlogram') axs[2, 0].scatter(self.fitted.fittedvalues, self.residuals.values, color='red') axs[2, 0].hlines(0, min(self.fitted.fittedvalues), max(self.fitted.fittedvalues), color='blue') axs[2, 0].set_xlabel('fitted') axs[2, 0].set_ylabel('resid') axs[2, 0].set_title('Fitted values vs. Residuals') axs[2, 1].scatter(range(len(self.std_residuals)), self.std_residuals.values, color='red') axs[2, 1].hlines(0, 0, len(self.std_residuals.values), color='blue') axs[2, 1].set_xlabel('index') axs[2, 1].set_ylabel('std_resid') axs[2, 1].set_title('Index plot of standardized residuals') _plt.tight_layout() _plt.show() print(" ") L = 2 K = _math.ceil(len([k for k in self.DM.exog_names if k not in drop_names]) / L) i = j = 0 fig, axs = _plt.subplots(K, L, figsize=(15, 15)) for curve in self.DM.exog_names: if curve not in drop_names: x_vals = self.DM.dm_ext[curve].iloc[self.forecast_index].values.tolist() axs[i, j].scatter(x_vals, self.std_residuals.values) min_max_x = [x for x in x_vals if not math.isnan(x)] axs[i, j].hlines(0, min(min_max_x), max(min_max_x), color='blue') axs[i, j].set_xlabel(curve) axs[i, j].set_ylabel('std_res') j += 1 if j % L == 0: i += 1 j = 0 _plt.suptitle('Standardized Residuals vs. Explanatory Variable') _plt.tight_layout(pad=3) _plt.show()
40.385714
107
0.561726
5,441
0.962328
0
0
0
0
0
0
394
0.069685
ef85c06ba18faf8168c199da975507a6176f5a0a
174
py
Python
Richard.py
Jpowell10/firstrepo
c41ac4a0526b6e56449df5adaa448091d930f731
[ "CC0-1.0" ]
null
null
null
Richard.py
Jpowell10/firstrepo
c41ac4a0526b6e56449df5adaa448091d930f731
[ "CC0-1.0" ]
null
null
null
Richard.py
Jpowell10/firstrepo
c41ac4a0526b6e56449df5adaa448091d930f731
[ "CC0-1.0" ]
null
null
null
List1 = [1, 2, 3, 4] List2 = ['I', 'tripped', 'over', 'and', 'hit', 'the', 'floor'] print(List1 + List2) List3 = List1 + List2 print(List3) fibs = (0, 1, 2, 3) print(fibs[3])
24.857143
62
0.563218
0
0
0
0
0
0
0
0
40
0.229885
ef86d428f2e17ef9b526fc491dcb0a17513a95ba
1,581
py
Python
app.py
Chen-Junbao/MalwareClassification
a2ef045c1e5f1f57ff183bfc6577275b14bf84d2
[ "MIT" ]
4
2020-06-17T03:14:47.000Z
2022-03-29T12:15:33.000Z
app.py
Chen-Junbao/MalwareClassification
a2ef045c1e5f1f57ff183bfc6577275b14bf84d2
[ "MIT" ]
1
2020-12-20T03:14:33.000Z
2021-02-01T17:13:44.000Z
app.py
Chen-Junbao/MalwareClassification
a2ef045c1e5f1f57ff183bfc6577275b14bf84d2
[ "MIT" ]
1
2021-03-07T15:43:20.000Z
2021-03-07T15:43:20.000Z
import os from flask import Flask, render_template, request, jsonify from display.predict import predict_file app = Flask(__name__, static_folder="./display/static", template_folder="./display/templates") @app.route('/') def en(): return render_template('index_EN.html') @app.route('/chs') def chs(): return render_template('index_CHS.html') @app.route('/uploader', methods=['POST', 'GET']) def predict_image(): if request.method == 'POST': # get uploaded file file = request.files['file'] # save uploaded file to "files" directory file.save("./display/files/" + file.filename) file_type = file.filename.split('.')[-1] ans = {} if file_type == "asm": probability = predict_file("./display/files/" + file.filename, "asm") ans = { 'fileName': file.filename, 'probabilityLD': probability } elif file_type == "bytes": probability = predict_file("./display/files/" + file.filename, "bytes") ans = { 'fileName': file.filename, 'probabilityResNet': probability } elif file_type == "bmp": probability = predict_file("./display/files/" + file.filename, "bmp") ans = { 'fileName': file.filename, 'probabilityResNet': probability } return jsonify(ans) if __name__ == '__main__': if not os.path.exists('./display/files'): os.mkdir('./display/files') app.run(debug=True)
29.277778
94
0.571157
0
0
0
0
1,231
0.778621
0
0
409
0.258697
ef873aee93350e545e2097a1a737710da0346193
886
py
Python
test_linprog_curvefit.py
drofp/linprog_curvefit
96ba704edae7cea42d768d7cc6d4036da2ba313a
[ "Apache-2.0" ]
null
null
null
test_linprog_curvefit.py
drofp/linprog_curvefit
96ba704edae7cea42d768d7cc6d4036da2ba313a
[ "Apache-2.0" ]
3
2019-11-22T08:04:18.000Z
2019-11-26T06:55:36.000Z
test_linprog_curvefit.py
drofp/linprog_curvefit
96ba704edae7cea42d768d7cc6d4036da2ba313a
[ "Apache-2.0" ]
null
null
null
import unittest from ortools.linear_solver import pywraplp class TestLinprogCurvefit(unittest.TestCase): def setUp(self): linprog_curvefit = __import__('linprog_curvefit') self.generate_variables = linprog_curvefit._generate_variables self.ErrorDefinition = linprog_curvefit.ErrorDefinition def test_generate_variables_2PointsLinearCorrectVarCnt(self): points = ((0, 0), (1.5, 3)) coeff_ranges = ((-10, 10), (-10, 10)) solver = pywraplp.Solver( 'polynomial_solver', pywraplp.Solver.GLOP_LINEAR_PROGRAMMING) err_def = self.ErrorDefinition.SUM_ABS_DEV expected_num_of_vars = 6 variables = self.generate_variables( solver, points=points, coeff_ranges=coeff_ranges, err_max=10000, error_def=err_def) self.assertEqual(len(variables), expected_num_of_vars)
40.272727
80
0.700903
824
0.930023
0
0
0
0
0
0
37
0.041761
ef87a851b0ff397ab056489c49ee4d54f1a8b8b0
14,278
py
Python
uno_ct_v3.py
simple-circuit/Component-Curve-Tracer
3842f1b0054230325f55296cbc88628b3f88fa88
[ "MIT" ]
1
2021-08-04T03:08:07.000Z
2021-08-04T03:08:07.000Z
uno_ct_v3.py
simple-circuit/Component-Curve-Tracer
3842f1b0054230325f55296cbc88628b3f88fa88
[ "MIT" ]
null
null
null
uno_ct_v3.py
simple-circuit/Component-Curve-Tracer
3842f1b0054230325f55296cbc88628b3f88fa88
[ "MIT" ]
1
2021-08-29T14:05:42.000Z
2021-08-29T14:05:42.000Z
# Uno PWM bipolar curve tracer app by simple-circuit 12-22-19 # rev 3 1-13-20 from tkinter import * from tkinter import ttk from tkinter import filedialog from tkinter import font import numpy as np import serial root = Tk() default_font = font.nametofont("TkDefaultFont") default_font.configure(size=9) canvas = Canvas(root) root.geometry("720x540") root.title('Uno Curve Tracer in Python') canvas.grid(column=0, row=0, sticky=(N,W,E,S)) root.grid_columnconfigure(0, weight=1) root.grid_rowconfigure(0, weight=1) xtvar = BooleanVar() xtvar.set(False) contvar = BooleanVar() contvar.set(False) crampvar = BooleanVar() crampvar.set(False) #ser = serial.Serial('/dev/ttyACM0', baudrate=115200, timeout = 1) ser = serial.Serial('COM10', baudrate=115200, timeout = 1) def globalVar(): global x global y global tms global mkv,mki,mkt global dv,di,dt x = np.zeros((10,256)) y = np.zeros((10,256)) tms = np.zeros((10,256)) mkv = np.zeros((1)) mki = np.zeros((1)) mkt = np.zeros((1)) dv = np.zeros((1)) di = np.zeros((1)) dt = np.zeros((1)) def plotxy(xtra = 0): if xtra == 0: canvas.delete('currentline') canvas.delete('currentcursor') a = int(curvar.get()) n = int(trcvar.get()) m = int(mtrcvar.get()) if m == 1: m=n+1 n2 = n else: n2 = 0 if xtvar.get() == False: if xtra == 0: for j in range(n2,m): for i in range(255): canvas.create_line((256+x[j][i]*22.07, 256-y[j][i]*51.2, 256+x[j][i+1]*22.07, 256-y[j][i+1]*51.2), fill='lime', width=2, tags='currentline') canvas.create_oval(253+x[n][a]*22.07, 253-y[n][a]*51.2, 259+x[n][a]*22.07, 259-y[n][a]*51.2, fill='', outline='white', width=1, tags='currentcursor') else: if xtra == 0: for j in range(n2,m): for i in range(255): canvas.create_line((i*2, 256-y[j][i]*51.2, (i+1)*2, 256-y[j][i+1]*51.2), fill='blue', width=2, tags='currentline') for i in range(255): canvas.create_line((i*2, 256-x[j][i]*22.07, (i+1)*2, 256-x[j][i+1]*22.07), fill='orange', width=2, tags='currentline') canvas.create_oval(a*2-3, 253-x[n][a]*22.07, a*2 + 3, 259-x[n][a]*22.07, fill='', outline='white', width=1, tags='currentcursor') canvas.create_oval(a*2-3, 253-y[n][a]*51.2, a*2 + 3, 259-y[n][a]*51.2, fill='', outline='white', width=1, tags='currentcursor') label1.config(text = str(format(x[n][a],'0.3f')+'V')) label2.config(text = str(format(y[n][a],'0.3f')+'mA')) label3.config(text = str(format(tms[n][a],'3.2f')+'ms')) runDelta() def sweep(c = b'cct'): m = int(trcvar.get()) if c == b'cct': tms[m][:] = np.linspace(0,30.95,256,endpoint=True) else: tms[m][:] = np.linspace(0,240.0,256,endpoint=True) ser.write(b'@' + c + b'0000') for i in range(256): line = ser.readline() x[m][i] = int(line[line.find(c)+3:line.find(c)+7]) x[m][i] = (x[m][i]-512)*0.02266 y[m][i] = int(line[line.find(c)+7:]) y[m][i] = -(y[m][i]-509.7)*0.00977 + x[m][i]*0.0055 plotxy() def runSine(event): sweep(b'cct') def runCont(): if contvar.get() == True: sweep(b'cct') if (crampvar.get() == True) & (contvar.get() == False): if stepn.get() >= 0: trcvar.set(stepn.get()) m = float(startvar.get()) + stepn.get() * float(stepvar.get()) if m > 5.0: m = 5.0 mi = int(m*51) ms = '@dac' + str(mi) + '\r' ser.write(bytes(ms, 'utf-8')) ser.readline() stepn.set(stepn.get() + 1) if stepn.get() > 4: stepn.set(-1) crampvar.set(False) sweep(b'mea') root.after(500, runCont) def runRamp(event): sweep(b'mea') def runMouse(event): xx = canvas.canvasx(event.x) xx = int(xx/2) if xx <= 255: curvar.set(xx) cursor.invoke("buttondown") def runMag(xtra = 0): m = float(sinmag.get()) if m>11.5: m = 11.5 sinmag.invoke("buttonup") if m<2.4: m=2.3 sinmag.invoke("buttonup") mi = int(m*127/11.5) ms = '@mag' + str(mi) + '\r' ser.write(bytes(ms, 'utf-8')) magvar.set(m) def runPos(xtra = 0): m = float(posmag.get()) if m>11.5: m = 11.5 posmag.invoke("buttonup") if m<-11.5: m=-11.6 posmag.invoke("buttonup") mi = int(m*127/11.5) + 128 ms = '@pos' + str(mi) + '\r' ser.write(bytes(ms, 'utf-8')) posvar.set(m) def runNeg(xtra = 0): m = float(negmag.get()) if m>11.5: m = 11.5 negmag.invoke("buttonup") if m<-11.5: m=-11.6 negmag.invoke("buttonup") mi = int(m*127/11.5) + 128 ms = '@neg' + str(mi) + '\r' ser.write(bytes(ms, 'utf-8')) negvar.set(m) def runFreq(xtra = 0): mi = int(freq.get()) if mi>50: mi = 50 if mi<4: mi=4 ms = '@frq' + str(mi) + '\r' ser.write(bytes(ms, 'utf-8')) labelfreq.config(text = str(format(963.234/mi,'3.1f'))+'Hz') def runStart(xtra = 0): m = float(startvar.get()) mi = int(m*51) ms = '@dac' + str(mi) + '\r' ser.write(bytes(ms, 'utf-8')) def runAdc(xtra = 0): c = b'ad' mi = int(adcvar.get()) ms = '@adc' + str(mi) + '\r' ser.write(bytes(ms, 'utf-8')) line = ser.readline() chval = int(line[line.find(c)+4:]) labeladc.config(text = str(format(chval*5.0/1024,'1.3f'))+' V') def runSteps(xtra = 0): stepn.set(0) trcvar.set(0) mtrcvar.set(5) crampvar.set(True) contvar.set(False) def runMark(c = b'cct'): n = int(trcvar.get()) a = int(curvar.get()) mkv[0] = x[n][a] mki[0] = y[n][a] mkt[0] = tms[n][a] labelm1.config(text = str(format(mkv[0],'0.3f'))+'V') labelm2.config(text = str(format(mki[0],'0.3f'))+'mA') labelm3.config(text = str(format(mkt[0],'3.2f'))+'ms') runDelta() def runDelta(): n = int(trcvar.get()) a = int(curvar.get()) mi = int(freq.get()) dv[0] = x[n][a] - mkv di[0] = y[n][a] - mki dt[0] = tms[n][a] - mkt try: f = abs(1000/dt[0]) except: f = 10000 labeld1.config(text = str(format(dv[0],'0.3f'))+'V') labeld2.config(text = str(format(di[0],'0.3f'))+'mA') labeld3.config(text = str(format(dt[0],'3.2f'))+'ms ' + str(format(f,'3.1f'))+' Hz') try: r = abs(dv[0]/di[0]) * 1000 c = (max(y[n][:]) - min(y[n][:]))/(max(x[n][:]) - min(x[n][:])) / (2 * np.pi * 0.963234/mi) labelr.config(text = 'R = ' + str(format(r,'6.0f'))+' ohms') labelc.config(text = 'C = ' + str(format(c,'2.2f'))+' uF') except: labelr.config(text = 'R = inf ohms') def runXt(): plotxy(0) def runPlot(xtra = 0): plotxy(1) def runSave(extra = 0): with filedialog.asksaveasfile() as f: for i in range(256): for j in range(10): f.write(str(format(x[j][i],'1.3f')+' ')) f.write(str(format(y[j][i],'1.3f')+' ')) f.write(str(format(tms[j][i],'1.6f')+' ')) f.write('\n') f.close() def runLoad(extra = 0): with filedialog.askopenfile() as f: for j in range(256): s = f.readline() fs = s.split(' ') for k in range(10): x[k][j] = float(fs[k*3]) y[k][j] = float(fs[k*3+1]) tms[k][j] = float(fs[k*3+2]) f.close() plotxy(0) def endserial(): ser.close() root.destroy() globalVar() stepn = IntVar() stepn.set(-1) canvas.create_rectangle((0,0,512,512),fill='green') for i in range(11): canvas.create_line((51.2*i, 0, 51.2*i, 512), fill='black', width=1) canvas.create_line((0,51.2*i, 512, 51.2*i), fill='black', width=1) for i in range(50): canvas.create_line((10.24*i, 254, 10.24*i, 258), fill='green', width=1) canvas.create_line((254,10.24*i, 258, 10.24*i), fill='green', width=1) canvas.create_line((612,10,612,480), fill='grey', width=3) canvas.create_line((520,10,605,10), fill='grey', width=3) canvas.create_line((520,115,605,115), fill='grey', width=3) canvas.create_line((520,220,605,220), fill='grey', width=3) canvas.create_line((520,247,605,247), fill='grey', width=3) canvas.create_line((520,335,605,335), fill='grey', width=3) canvas.create_line((520,430,605,430), fill='grey', width=3) canvas.create_line((620,10,705,10), fill='grey', width=3) canvas.create_line((620,75,705,75), fill='grey', width=3) canvas.create_line((620,170,705,170), fill='grey', width=3) canvas.create_line((620,275,705,275), fill='grey', width=3) canvas.create_line((620,370,705,370), fill='grey', width=3) canvas.create_line((520,515,705,515), fill='grey', width=3) trcvar = IntVar(value=0) # initial value trc = Spinbox(canvas, from_= 0, to = 4, increment = 1, width = 1, command = plotxy, textvariable=trcvar) trc.place(x = 620, y = 20) trcvar.set(0) labeltrc = Label(canvas) labeltrc.place(x = 655, y = 20) labeltrc.config(text = 'Trace') mtrcvar = IntVar(value=1) # initial value mtrc = Spinbox(canvas, from_= 1, to = 5, increment = 1, width = 1, command = plotxy, textvariable=mtrcvar) mtrc.place(x = 620, y = 45) mtrcvar.set(1) labelmtrc = Label(canvas) labelmtrc.place(x = 655, y = 45) labelmtrc.config(text = 'Multiple') trcsave = ttk.Button(canvas, text="Save", command = runSave) trcsave.place(x = 620, y = 90) trcload = ttk.Button(canvas, text="Load", command = runLoad) trcload.place(x = 620, y = 130) startvar = DoubleVar(value=0.6) # initial value startval = Spinbox(canvas, from_= 0.0, to = 5.0, increment = 0.02, width = 4, command = runStart, textvariable=startvar) startval.place(x = 620, y = 185) startvar.set(0.6) labelstart = Label(canvas) labelstart.place(x = 680, y = 185) labelstart.config(text = 'Start') stepvar = DoubleVar(value=0.88) # initial value stepval = Spinbox(canvas, from_= 0.0, to = 5.0, increment = 0.02, width = 4, textvariable=stepvar) stepval.place(x = 620, y = 205) stepvar.set(0.88) labelstep = Label(canvas) labelstep.place(x = 680, y = 205) labelstep.config(text = 'Step') trcload = ttk.Button(canvas, text="Run Steps", command = runSteps) trcload.place(x = 620, y = 235) adcvar = IntVar(value=0) # initial value adcval = Spinbox(canvas, from_= 0, to = 5, increment = 1, width = 2, textvariable=adcvar) adcval.place(x = 620, y = 325) adcvar.set(0) labeladc = Label(canvas) labeladc.place(x = 660, y = 325) labeladc.config(text = '0.000V') adcread = ttk.Button(canvas, text="Read ADC", command = runAdc) adcread.place(x = 620, y = 295) cts = ttk.Button(canvas, text="Sine") cts.place(x = 520, y = 20) cts.bind("<Button-1>", runSine) magvar = DoubleVar(value=11.5) # initial value sinmag = Spinbox(canvas, from_= 2.4, to = 11.5, increment = 0.1, width = 4, command = runMag, textvariable=magvar) sinmag.place(x = 520, y = 50) magvar.set(11.5) sinmag.bind("<Return>", runMag) labelmag = Label(canvas) labelmag.place(x = 575, y = 50) labelmag.config(text = 'Vp') freqvar = DoubleVar(value=16) # initial value freq = Spinbox(canvas, from_= 4, to =50, increment = 1.0, width = 2, command = runFreq, textvariable=freqvar) freq.place(x = 520, y = 75) freqvar.set(16) labelfreq = Label(canvas) labelfreq.place(x = 555, y = 75) labelfreq.config(text = '60.2 Hz') cnt = ttk.Checkbutton(canvas, text="Cont. Sine", variable=contvar, onvalue=True) cnt.place(x = 520, y = 95) ctr = ttk.Button(canvas, text="Ramp") ctr.place(x = 520, y = 125) ctr.bind("<Button-1>", runRamp) posvar = DoubleVar(value=11.5) # initial value posmag = Spinbox(canvas, from_= -11.5, to = 11.5, increment = 0.1, width = 4, command = runPos, textvariable=posvar) posmag.place(x = 520, y = 155) posvar.set(11.5) posmag.bind("<Return>", runPos) labelpos = Label(canvas) labelpos.place(x = 572, y = 155) labelpos.config(text = 'Vmax') negvar = DoubleVar(value=-11.5) # initial value negmag = Spinbox(canvas, from_= -11.5, to = 11.5, increment = 0.1, width = 4, command = runNeg, textvariable=negvar) negmag.place(x = 520, y = 180) negvar.set(-11.5) negmag.bind("<Return>", runNeg) labelneg = Label(canvas) labelneg.place(x = 572, y = 180) labelneg.config(text = 'Vmin') cramp = ttk.Checkbutton(canvas, text="Cont. Ramp", variable=crampvar, onvalue=True) cramp.place(x = 520, y = 200) xt = ttk.Checkbutton(canvas, text="X-t Plot", variable=xtvar, command=runXt, onvalue=True) xt.place(x = 520, y = 225) curvar = IntVar(value= 0) cursor = Spinbox(canvas, from_= 0, to = 255, width = 3, command = runPlot, textvariable = curvar) cursor.place(x = 520, y = 255) cursor.bind("<Return>", runPlot) labelcur = Label(canvas) labelcur.place(x = 565, y = 255) labelcur.config(text = 'Cursor') label1 = Label(canvas) label1.place(x = 520, y = 275) label1.config(text = 'V') label2 = Label(canvas) label2.place(x = 520, y = 295) label2.config(text = 'mA') label3 = Label(canvas) label3.place(x = 520, y = 315) label3.config(text = 'ms') mrk = ttk.Button(canvas, text="Mark") mrk.place(x = 520, y = 345, height = 22) mrk.bind("<Button-1>", runMark) labelm1 = Label(canvas) labelm1.place(x = 520, y = 370) labelm1.config(text = 'V') labelm2 = Label(canvas) labelm2.place(x = 520, y = 390) labelm2.config(text = 'mA') labelm3 = Label(canvas) labelm3.place(x = 520, y = 410) labelm3.config(text = 'ms') labeldt = Label(canvas) labeldt.place(x = 540, y = 433) labeldt.config(text = 'Delta') labeld1 = Label(canvas) labeld1.place(x = 520, y = 450) labeld1.config(text = 'V') labeld2 = Label(canvas) labeld2.place(x = 520, y = 470) labeld2.config(text = 'mA') labeld3 = Label(canvas) labeld3.place(x = 520, y = 490) labeld3.config(text = 'ms') labelr = Label(canvas) labelr.place(x = 520, y = 520) labelr.config(text = 'ohms') labelc = Label(canvas) labelc.place(x = 640, y = 520) labelc.config(text = 'C = uF') canvas.bind("<Button-1>", runMouse) plotxy() root.after(0, runCont) root.wm_protocol ("WM_DELETE_WINDOW", endserial) root.mainloop()
29.745833
172
0.583975
0
0
0
0
0
0
0
0
1,381
0.096722
ef8970f817cb168ae688aab739b624cb804e885d
665
py
Python
logger/TMP102.py
scsibug/Raspberry-Pi-Sensor-Node
606cf2a15a72ac1503c7318a39c9f3cc523a9c4a
[ "Unlicense" ]
1
2015-12-23T04:27:16.000Z
2015-12-23T04:27:16.000Z
logger/TMP102.py
scsibug/Raspberry-Pi-Sensor-Node
606cf2a15a72ac1503c7318a39c9f3cc523a9c4a
[ "Unlicense" ]
null
null
null
logger/TMP102.py
scsibug/Raspberry-Pi-Sensor-Node
606cf2a15a72ac1503c7318a39c9f3cc523a9c4a
[ "Unlicense" ]
null
null
null
import time import smbus from Adafruit_I2C import Adafruit_I2C # =========================================================================== # TMP102 Class # =========================================================================== class TMP102: #i2c = None # Constructor def __init__(self, address=0x48, debug=False): #self.i2c = Adafruit_I2C(address) #self.address = address self.debug = debug # Make sure the specified mode is in the appropriate range def readTemperature(self): bus = smbus.SMBus(1) data = bus.read_i2c_block_data(0x49, 0) msb = data[0] lsb = data[1] return (((msb << 8) | lsb) >> 4) * 0.0625
24.62963
77
0.508271
427
0.642105
0
0
0
0
0
0
306
0.46015
ef8bac5da5b68c79dd574b7a205be89cb3f23f5d
178
py
Python
headlines.py
plamenbelev/headlines
49e5995042abf31b2f898ca1daaf7ee99005dde9
[ "MIT" ]
null
null
null
headlines.py
plamenbelev/headlines
49e5995042abf31b2f898ca1daaf7ee99005dde9
[ "MIT" ]
null
null
null
headlines.py
plamenbelev/headlines
49e5995042abf31b2f898ca1daaf7ee99005dde9
[ "MIT" ]
null
null
null
from flask import Flask app = Flask(__name__) @app.route("/") def get_news(): return 'No news is good news' if __name__ == '__main__': app.run(port=5000, debug=True)
14.833333
34
0.662921
0
0
0
0
65
0.365169
0
0
35
0.196629
ef90aefef6921157afac229b23fbddf7cab99743
854
py
Python
help_desk/help_desk/doctype/department_name/department_name.py
shrikant9867/mycfohelpdesk
b285b156aec53ecff5873f4630638687ff5a0e92
[ "MIT" ]
null
null
null
help_desk/help_desk/doctype/department_name/department_name.py
shrikant9867/mycfohelpdesk
b285b156aec53ecff5873f4630638687ff5a0e92
[ "MIT" ]
null
null
null
help_desk/help_desk/doctype/department_name/department_name.py
shrikant9867/mycfohelpdesk
b285b156aec53ecff5873f4630638687ff5a0e92
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2015, Indictrans and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe import json import string from frappe.model.document import Document from frappe.utils import cstr, flt, getdate, comma_and, cint from frappe import _ from erpnext.controllers.item_variant import get_variant, copy_attributes_to_variant, ItemVariantExistsError class DepartmentName(Document): def autoname(self): self.name = self.department_abbriviation.upper() def validate(self): self.validate_name_of_department() def validate_name_of_department(self): if(self.name_of_department): self.name_of_department = self.name_of_department.title() if(self.department_abbriviation): self.department_abbriviation = self.department_abbriviation.upper()
32.846154
108
0.799766
404
0.473068
0
0
0
0
0
0
121
0.141686
ef911bdd33ff81cae4898bfd37e8a89b765f201c
2,565
py
Python
src/medical_test_service/medical_test.py
phamnam-mta/know-life
f7c226c41e315f21b5d7fe2ccbc9ec4f9961ed1d
[ "MIT" ]
null
null
null
src/medical_test_service/medical_test.py
phamnam-mta/know-life
f7c226c41e315f21b5d7fe2ccbc9ec4f9961ed1d
[ "MIT" ]
null
null
null
src/medical_test_service/medical_test.py
phamnam-mta/know-life
f7c226c41e315f21b5d7fe2ccbc9ec4f9961ed1d
[ "MIT" ]
null
null
null
import logging from typing import Text, List from src.utils.io import read_json from src.utils.fuzzy import is_relevant_string from src.utils.common import is_float from src.utils.constants import ( MEDICAL_TEST_PATH, QUANTITATIVE_PATH, POSITIVE_TEXT, TestResult ) logger = logging.getLogger(__name__) class MedicalTest(): def __init__(self, medical_test_path=MEDICAL_TEST_PATH, quantitative_path= QUANTITATIVE_PATH) -> None: self.medical_test = read_json(medical_test_path) self.quantitative = read_json(quantitative_path) logger.info("Medical test loaded") def get_suggestions(self, indicators: List): suggestions = [] count = 0 for i in indicators: count += 1 sg = { "id": count, "input": i, } references = [] for m in self.medical_test: if is_relevant_string(i["test_name"], m["name"], method=['exact','fuzzy'], score=90): sg["name"] = m["name"] sg["overview"] = m["overview"] if m["references"]: references.extend(m["references"]) for q in self.quantitative: if q["medical_test"]["id"] == m["id"]: if q["test_result"] == TestResult.positive.value and is_relevant_string(str(i["result"]), POSITIVE_TEXT, score=90, remove_accent=True): sg["note"] = q["note"] sg["cause"] = q["cause"] sg["recommend"] = q["recommend"] if m["references"]: references.extend(m["references"]) break elif is_float(str(i["result"])): test_result = float(str(i["result"])) if test_result >= q["min_value"] and test_result <= q["max_value"]: sg["note"] = q["note"] sg["cause"] = q["cause"] sg["recommend"] = q["recommend"] if m["references"]: references.extend(m["references"]) break break sg["references"] = list(dict.fromkeys(references)) suggestions.append(sg) return suggestions
43.474576
163
0.474854
2,234
0.870955
0
0
0
0
0
0
356
0.138791
ef933f2244982928a2ce88206760be93146f1a77
1,064
py
Python
scam.py
TheToddLuci0/Tarkov-Scammer
5fced3952c6cec72fe3eb85384bc11f65ee6af9c
[ "BSD-3-Clause" ]
2
2021-02-09T19:13:14.000Z
2021-02-23T08:41:14.000Z
scam.py
TheToddLuci0/Tarkov-Scammer
5fced3952c6cec72fe3eb85384bc11f65ee6af9c
[ "BSD-3-Clause" ]
null
null
null
scam.py
TheToddLuci0/Tarkov-Scammer
5fced3952c6cec72fe3eb85384bc11f65ee6af9c
[ "BSD-3-Clause" ]
null
null
null
import requests import sys from time import sleep from tabulate import tabulate def get_scams(api_key): scams = [] headers = {"x-api-key": api_key} r = requests.get('https://tarkov-market.com/api/v1/items/all', headers=headers) for i in r.json(): r2 = requests.get('https://tarkov-market.com/api/v1/item?uid='+i['uid'], headers=headers) while r2.status_code == 429: print("Got rate limited, sleeping") sleep(15) r2 = requests.get('https://tarkov-market.com/api/v1/item?uid=' + i['uid'], headers=headers) data = r2.json()[0] if data['traderPrice'] > data["price"]: scams.append([i['name'], data['price'], data['traderName'], data['traderPrice']-data['price']]) scams.sort(key=lambda x: x[3]) print(tabulate(scams, headers=["Item", "Market Price", "Trader", "Profit"])) if __name__=='__main__': try: with open('.secret', 'r') as f: secret = f.read().strip() except IOException: secret = sys.argv[1] get_scams(secret)
34.322581
107
0.599624
0
0
0
0
0
0
0
0
304
0.285714
ef955712af3bae4edd3cd451907984d2f75e38d0
101
py
Python
hair_segmentation/model.py
shoman2/mediapipe-models
c588321f3b5056f2239d834c603046de7901d02e
[ "Apache-2.0" ]
28
2019-10-08T06:07:45.000Z
2021-06-12T07:01:32.000Z
hair_segmentation/model.py
shoman2/mediapipe-models
c588321f3b5056f2239d834c603046de7901d02e
[ "Apache-2.0" ]
null
null
null
hair_segmentation/model.py
shoman2/mediapipe-models
c588321f3b5056f2239d834c603046de7901d02e
[ "Apache-2.0" ]
8
2019-10-10T04:59:02.000Z
2021-03-28T16:11:09.000Z
# Real-time Hair Segmentation and Recoloring on Mobile GPUs (https://arxiv.org/abs/1907.06740) # TODO
50.5
94
0.772277
0
0
0
0
0
0
0
0
100
0.990099
ef978b1341d6c5d5f3129e9244bedb2f75765eb8
996
py
Python
blog/viewmixins.py
pincoin/rakmai
d9daa399aff50712a86b2dec9d94e622237b25b0
[ "MIT" ]
11
2018-04-02T16:36:19.000Z
2019-07-10T05:54:58.000Z
blog/viewmixins.py
pincoin/rakmai
d9daa399aff50712a86b2dec9d94e622237b25b0
[ "MIT" ]
22
2019-01-01T20:40:21.000Z
2022-02-10T08:06:39.000Z
blog/viewmixins.py
pincoin/rakmai
d9daa399aff50712a86b2dec9d94e622237b25b0
[ "MIT" ]
4
2019-03-12T14:24:37.000Z
2022-01-07T16:20:22.000Z
import logging from .forms import PostSearchForm from .models import Blog class BlogContextMixin(object): logger = logging.getLogger(__name__) def dispatch(self, *args, **kwargs): self.blog = Blog.objects.get(slug=self.kwargs['blog']) self.block_size = self.blog.block_size self.chunk_size = self.blog.chunk_size return super(BlogContextMixin, self).dispatch(*args, **kwargs) def get_context_data(self, **kwargs): context = super(BlogContextMixin, self).get_context_data(**kwargs) context['blog'] = self.blog return context class SearchContextMixin(object): logger = logging.getLogger(__name__) search_form_class = PostSearchForm def get_context_data(self, **kwargs): context = super(SearchContextMixin, self).get_context_data(**kwargs) context['search_form'] = self.search_form_class( q=self.request.GET.get('q') if self.request.GET.get('q') else '') return context
27.666667
77
0.684739
915
0.918675
0
0
0
0
0
0
33
0.033133
ef978c724ad463ecd7562dae7e149d5ae0ce4282
677
py
Python
mapclientplugins/scaffoldfiniteelementmeshfitterstep/model/imageplanemodel.py
mahyar-osn/mapclientplugins.scaffoldfiniteelementmeshfitterstep
b35f6c0b2e264e2913d0a1c432bf89c7b329bf52
[ "Apache-2.0" ]
null
null
null
mapclientplugins/scaffoldfiniteelementmeshfitterstep/model/imageplanemodel.py
mahyar-osn/mapclientplugins.scaffoldfiniteelementmeshfitterstep
b35f6c0b2e264e2913d0a1c432bf89c7b329bf52
[ "Apache-2.0" ]
null
null
null
mapclientplugins/scaffoldfiniteelementmeshfitterstep/model/imageplanemodel.py
mahyar-osn/mapclientplugins.scaffoldfiniteelementmeshfitterstep
b35f6c0b2e264e2913d0a1c432bf89c7b329bf52
[ "Apache-2.0" ]
null
null
null
from opencmiss.utils.maths.algorithms import calculate_line_plane_intersection class ImagePlaneModel(object): def __init__(self, master_model): self._master_model = master_model self._region = None self._frames_per_second = -1 self._images_file_name_listing = [] self._image_dimensions = [-1, -1] self._duration_field = None self._image_based_material = None self._scaled_coordinate_field = None self._time_sequence = [] def set_image_information(self, frames_per_second, image_dimensions): self._frames_per_second = frames_per_second self._image_dimensions = image_dimensions
33.85
78
0.713442
595
0.878877
0
0
0
0
0
0
0
0
ef97b640d54812e21c1fdb002e84f00eb0d09eea
76
py
Python
antools/shared/data_validation/__init__.py
antonin-drozda/antools
550310a61aae8d11e50e088731211197b7ee790b
[ "MIT" ]
1
2021-02-27T07:22:39.000Z
2021-02-27T07:22:39.000Z
antools/shared/data_validation/__init__.py
antonin-drozda/antools
550310a61aae8d11e50e088731211197b7ee790b
[ "MIT" ]
null
null
null
antools/shared/data_validation/__init__.py
antonin-drozda/antools
550310a61aae8d11e50e088731211197b7ee790b
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ SHARED - DATA VALIDATION """ # %% FILE IMPORT
9.5
24
0.526316
0
0
0
0
0
0
0
0
71
0.934211
ef9836ec7a3a89d88130ef5b51f413cd84a57435
2,152
py
Python
test/test/host_test_default.py
noralsydmp/mbed-os-tools
5a14958aa49eb5764afba8e1dc3208cae2955cd7
[ "Apache-2.0" ]
29
2018-11-30T19:45:22.000Z
2022-03-29T17:02:16.000Z
test/test/host_test_default.py
noralsydmp/mbed-os-tools
5a14958aa49eb5764afba8e1dc3208cae2955cd7
[ "Apache-2.0" ]
160
2018-11-30T21:55:52.000Z
2022-01-18T10:58:09.000Z
test/test/host_test_default.py
noralsydmp/mbed-os-tools
5a14958aa49eb5764afba8e1dc3208cae2955cd7
[ "Apache-2.0" ]
73
2018-11-30T21:34:41.000Z
2021-10-02T05:51:40.000Z
# Copyright (c) 2018, Arm Limited and affiliates. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from mbed_os_tools.test.host_tests_runner.host_test_default import DefaultTestSelector class HostTestDefaultTestCase(unittest.TestCase): def test_os_info(self): expected = { "grm_module" : "module_name", "grm_host" : "10.2.123.43", "grm_port" : "3334", } # Case that includes an IP address but no protocol arg = [expected["grm_module"], expected["grm_host"], expected["grm_port"]] result = DefaultTestSelector._parse_grm(":".join(arg)) self.assertEqual(result, expected) # Case that includes an IP address but no protocol nor a no port expected["grm_port"] = None arg = [expected["grm_module"], expected["grm_host"]] result = DefaultTestSelector._parse_grm(":".join(arg)) self.assertEqual(result, expected) # Case that includes an IP address and a protocol expected["grm_host"] = "https://10.2.123.43" expected["grm_port"] = "443" arg = [expected["grm_module"], expected["grm_host"], expected["grm_port"]] result = DefaultTestSelector._parse_grm(":".join(arg)) self.assertEqual(result, expected) # Case that includes an IP address and a protocol, but no port expected["grm_port"] = None arg = [expected["grm_module"], expected["grm_host"]] result = DefaultTestSelector._parse_grm(":".join(arg)) self.assertEqual(result, expected) if __name__ == '__main__': unittest.main()
39.127273
86
0.676115
1,363
0.633364
0
0
0
0
0
0
1,105
0.513476
ef9847d747aab77361f5e75e1a5b9c126c9e90f9
3,359
py
Python
lib/surface/debug/logpoints/delete.py
bopopescu/SDK
e6d9aaee2456f706d1d86e8ec2a41d146e33550d
[ "Apache-2.0" ]
null
null
null
lib/surface/debug/logpoints/delete.py
bopopescu/SDK
e6d9aaee2456f706d1d86e8ec2a41d146e33550d
[ "Apache-2.0" ]
null
null
null
lib/surface/debug/logpoints/delete.py
bopopescu/SDK
e6d9aaee2456f706d1d86e8ec2a41d146e33550d
[ "Apache-2.0" ]
1
2020-07-25T12:23:41.000Z
2020-07-25T12:23:41.000Z
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Delete command for gcloud debug logpoints command group.""" from googlecloudsdk.api_lib.debug import debug from googlecloudsdk.calliope import base from googlecloudsdk.core import log from googlecloudsdk.core import properties class Delete(base.DeleteCommand): """Delete debug logpoints. This command deletes logpoints from a Cloud Debugger debug target. """ @staticmethod def Args(parser): parser.add_argument( 'id_or_location_regexp', metavar='(ID|LOCATION-REGEXP)', nargs='+', help="""\ A logpoint ID or a regular expression to match against logpoint locations. The logpoint with the given ID, or all logpoints whose locations (file:line) contain the regular expression, will be deleted. """) parser.add_argument( '--all-users', action='store_true', default=False, help="""\ If set, any location regexp will match logpoints from all users, rather than only logpoints created by the current user. This flag is not required when specifying the exact ID of a logpoint created by another user. """) parser.add_argument( '--include-inactive', action='store_true', default=False, help="""\ If set, any location regexp will also match inactive logpoints, rather than only logpoints which have not expired. This flag is not required when specifying the exact ID of an inactive logpoint. """) def Run(self, args): """Run the delete command.""" project_id = properties.VALUES.core.project.Get(required=True) debugger = debug.Debugger(project_id) debuggee = debugger.FindDebuggee(args.target) logpoints = debuggee.ListMatchingBreakpoints( args.id_or_location_regexp, include_all_users=args.all_users, include_inactive=args.include_inactive, restrict_to_type=debugger.LOGPOINT_TYPE) for s in logpoints: debuggee.DeleteBreakpoint(s.id) return logpoints def Collection(self): return 'debug.logpoints' def Format(self, args): """Format for printing the results of the Run() method. Args: args: The arguments that command was run with. Returns: A format string """ fields = ['id'] if args.all_users: fields.append('userEmail:label=USER') fields.append('location') fields.append('logLevel:label=LEVEL') fields.append('short_status():label="STATUS BEFORE DELETION"') return 'table({0})'.format(','.join(fields)) def Epilog(self, resources_were_displayed): if resources_were_displayed: log.status.write('Deleted Logpoints') else: log.status.write('No logpoints matched the requested values')
36.51087
80
0.693659
2,529
0.752903
0
0
1,145
0.340875
0
0
2,032
0.604942
ef99c583c045deb51df0a2fd8b0f81216762f3eb
3,844
py
Python
day-07/solution.py
wangjoshuah/Advent-Of-Code-2018
6bda7956bb7c6f9a54feffb19147961b56dc5d81
[ "MIT" ]
null
null
null
day-07/solution.py
wangjoshuah/Advent-Of-Code-2018
6bda7956bb7c6f9a54feffb19147961b56dc5d81
[ "MIT" ]
null
null
null
day-07/solution.py
wangjoshuah/Advent-Of-Code-2018
6bda7956bb7c6f9a54feffb19147961b56dc5d81
[ "MIT" ]
null
null
null
# directed graph problem or breadth first search variant from collections import defaultdict import re input_file = open("input.txt", "r") input_lines = input_file.readlines() letter_value = { 'A': 1, 'B': 2, 'C': 3, 'D': 4, 'E': 5, 'F': 6, 'G': 7, 'H': 8, 'I': 9, 'J': 10, 'K': 11, 'L': 12, 'M': 13, 'N': 14, 'O': 15, 'P': 16, 'Q': 17, 'R': 18, 'S': 19, 'T': 20, 'U': 21, 'V': 22, 'W': 23, 'X': 24, 'Y': 25, 'Z': 26 } # construct graph of nodes and edges # Read nodes and edges from input with regex def construct_graph(lines): # Graph is a Dictionary of String to Set # { Node : Set of children } edges = defaultdict(set) nodes = set() pattern = r"Step (.?) must be finished before step (.?) can begin\." for line in lines: matches = re.search(pattern, line) edges[matches.group(1)].add(matches.group(2)) nodes.add(matches.group(1)) nodes.add(matches.group(2)) return nodes, edges # A set of possible nodes to work on (starts with C) # pick the first alphabetical node and remove it and its edges def find_all_nodes_to_work(nodes, edges): possible_nodes_to_work = nodes.copy() for parent, children in edges.items(): for child in children: if child in possible_nodes_to_work: possible_nodes_to_work.remove(child) sorted_work = list(possible_nodes_to_work) sorted_work.sort() return sorted_work def find_next_node_to_work(nodes, edges): return find_all_nodes_to_work(nodes, edges)[0] def work_nodes(nodes, edges): work_order = "" while len(nodes) > 0: node_to_work = find_next_node_to_work(nodes, edges) nodes.remove(node_to_work) if node_to_work in edges: del edges[node_to_work] work_order += node_to_work return work_order class Worker: def __init__(self, base_time) -> None: super().__init__() self.current_node = None self.seconds_left = 0 self.free = True self.base_time = base_time def assign(self, node): self.current_node = node self.seconds_left = letter_value[node] + self.base_time self.free = False def tick(self): self.seconds_left -= 1 if self.seconds_left <= 0: finished_node = self.current_node self.current_node = None self.free = True self.seconds_left = 0 return finished_node def work_nodes_in_parallel(nodes, edges, workers, base_time): timer = 0 worker_pool = list() nodes_worked = set() for i in range(workers): worker_pool.append(Worker(base_time)) while len(nodes) > 0: print(f"Second {timer}") nodes_to_work = find_all_nodes_to_work(nodes, edges) for node in nodes_to_work: if node not in nodes_worked: for worker in worker_pool: if worker.free and node not in nodes_worked: worker.assign(node) nodes_worked.add(node) for worker in worker_pool: print(f"Worker is working on {worker.current_node} with {worker.seconds_left} seconds left.") finished_node = worker.tick() if finished_node is not None: # if a worker finishes a node nodes.remove(finished_node) nodes_worked.remove(finished_node) if finished_node in edges: del edges[finished_node] timer += 1 return timer # Part 1 # print(work_nodes(construct_graph(input_lines))) # Part 2 nodes, edges = construct_graph(input_lines) total_time = work_nodes_in_parallel(nodes, edges, 5, 60) print(f"It took {total_time} seconds")
27.070423
105
0.601977
624
0.162331
0
0
0
0
0
0
698
0.181582
ef99d022220363214630da6ad916a3a41900d8d7
2,862
py
Python
src/infi/pypi_manager/scripts/compare_pypi_repos.py
Infinidat/infi.pypi_manager
7b5774b395ef47a23be2957a091b607b35a049f2
[ "BSD-3-Clause" ]
null
null
null
src/infi/pypi_manager/scripts/compare_pypi_repos.py
Infinidat/infi.pypi_manager
7b5774b395ef47a23be2957a091b607b35a049f2
[ "BSD-3-Clause" ]
1
2020-11-05T10:04:45.000Z
2020-11-05T11:03:25.000Z
src/infi/pypi_manager/scripts/compare_pypi_repos.py
Infinidat/infi.pypi_manager
7b5774b395ef47a23be2957a091b607b35a049f2
[ "BSD-3-Clause" ]
null
null
null
from __future__ import print_function from .. import PyPI, DjangoPyPI, PackageNotFound from prettytable import PrettyTable from pkg_resources import parse_version, resource_filename import requests import re try: from urlparse import unquote except ImportError: # Python 3 from urllib.parse import unquote def get_versions_from_reference(reference_repo): reference_pypi_html = requests.get("{}/pypi".format(reference_repo.server)).text search_result = re.findall("""href=["'](?:/pypi/)?([^/]+)/([^/]+)/["']""", reference_pypi_html) return dict((k, unquote(v)) for k, v in search_result) def get_skipped_packages(): with open(resource_filename(__name__, "skipped_packages.txt"), "r") as fd: return [line.split("#")[0].strip() for line in fd.readlines()] def get_major(version_string): return int(version_string.split('.')[0]) def compare_pypi_repos(reference_repo, other_repo): upgrade_packages = [] upgrade_table = PrettyTable(["Package", reference_repo.server, other_repo.server, 'Major']) downgrade_table = PrettyTable(["Package", reference_repo.server, other_repo.server]) skipped_table = PrettyTable(["Package", reference_repo.server, other_repo.server]) skipped_packages = get_skipped_packages() reference_repo_versions = get_versions_from_reference(reference_repo) packages_to_check = list(reference_repo_versions.keys()) for name in sorted(packages_to_check): try: reference_repo_version = reference_repo_versions[name] other_repo_version = other_repo.get_latest_version(name) except PackageNotFound: continue if other_repo_version != reference_repo_version: if name in skipped_packages or any(x in other_repo_version for x in ['a', 'b', 'dev', 'post', 'rc']): skipped_table.add_row([name, reference_repo_version, other_repo_version]) elif parse_version(reference_repo_version) < parse_version(other_repo_version): major_change = get_major(reference_repo_version) != get_major(other_repo_version) upgrade_table.add_row([name, reference_repo_version, other_repo_version, 'Yes' if major_change else '']) upgrade_packages.append((name, other_repo_version)) else: downgrade_table.add_row([name, reference_repo_version, other_repo_version]) print("Upgradable Packages:") print(upgrade_table) print() print("Downgradable Packages:") print(downgrade_table) print() print("Skipped Packages:") print(skipped_table) print() print("Upgrade commands:") for name, version in upgrade_packages: print("mirror_package %s %s" % (name, version)) def main(): import sys local = DjangoPyPI(sys.argv[-1]) pypi = PyPI() compare_pypi_repos(local, pypi)
40.885714
120
0.70615
0
0
0
0
0
0
0
0
264
0.092243
ef9afc42c7347b259e757e59b46b756f7ac092fc
6,954
py
Python
src/GNLSE_specific.py
Computational-Nonlinear-Optics-ORC/Compare-CNLSE
9b56cedbca2a06af3baa9f64e46ebfd4263f86c2
[ "MIT" ]
null
null
null
src/GNLSE_specific.py
Computational-Nonlinear-Optics-ORC/Compare-CNLSE
9b56cedbca2a06af3baa9f64e46ebfd4263f86c2
[ "MIT" ]
null
null
null
src/GNLSE_specific.py
Computational-Nonlinear-Optics-ORC/Compare-CNLSE
9b56cedbca2a06af3baa9f64e46ebfd4263f86c2
[ "MIT" ]
3
2018-06-04T18:43:03.000Z
2021-11-24T07:57:03.000Z
import numpy as np from scipy.interpolate import InterpolatedUnivariateSpline from scipy.fftpack import fft from combined_functions import check_ft_grid from scipy.constants import pi, c, hbar from numpy.fft import fftshift from scipy.io import loadmat from time import time import sys import matplotlib.pyplot as plt from scipy.integrate import simps def fv_creator(fp, df, F, int_fwm): """ Cretes frequency grid such that the estimated MI-FWM bands will be on the grid and extends this such that to avoid fft boundary problems. Inputs:: lamp: wavelength of the pump (float) lamda_c: wavelength of the zero dispersion wavelength(ZDW) (float) int_fwm: class that holds nt (number of points in each band) betas: Taylor coeffiencts of beta around the ZDW (Array) M : The M coefficient (or 1/A_eff) (float) P_p: pump power Df_band: band frequency bandwidth in Thz, (float) Output:: fv: Frequency vector of bands (Array of shape [nt]) """ f_centrals = [fp + i * F for i in range(-1, 2)] fv1 = np.linspace(f_centrals[0], f_centrals[1], int_fwm.nt//4 - 1, endpoint=False) df = fv1[1] - fv1[0] fv2 = np.linspace(f_centrals[1], f_centrals[2], int_fwm.nt//4) try: assert df == fv2[1] - fv2[0] except AssertionError: print(df, fv2[1] - fv2[0]) fv0, fv3 = np.zeros(int_fwm.nt//4 + 1), np.zeros(int_fwm.nt//4) fv0[-1] = fv1[0] - df fv3[0] = fv2[-1] + df for i in range(1, len(fv3)): fv3[i] = fv3[i - 1] + df for i in range(len(fv0) - 2, -1, -1): fv0[i] = fv0[i + 1] - df assert not(np.any(fv0 == fv1)) assert not(np.any(fv1 == fv2)) assert not(np.any(fv2 == fv3)) fv = np.concatenate((fv0, fv1, fv2, fv3)) for i in range(3): assert f_centrals[i] in fv check_ft_grid(fv, df) p_pos = np.where(np.abs(fv - fp) == np.min(np.abs(fv - fp)))[0] return fv, p_pos, f_centrals class raman_object(object): """ Warning: hf comes back normalised but ht does not!!! """ def __init__(self, b=None): self.how = b self.hf = None self.ht = None def raman_load(self, t, dt): if self.how == 'analytic': t11 = 12.2e-3 # [ps] t2 = 32e-3 # [ps] # analytical response ht = (t11**2 + t2**2)/(t11*t2**2) * \ np.exp(-t/t2*(t >= 0))*np.sin(t/t11)*(t >= 0) self.ht = ht # * dt ht_norm = ht / simps(ht, t) # Fourier transform of the analytic nonlinear response self.hf = fft(ht_norm) elif self.how == 'load': # loads the measured response (Stolen et al. JOSAB 1989) mat = loadmat('loading_data/silicaRaman.mat') ht = mat['ht'] t1 = mat['t1'] htmeas_func = InterpolatedUnivariateSpline(t1*1e-3, ht) ht = htmeas_func(t) ht *= (t > 0)*(t < 1) # only measured between +/- 1 ps) self.ht = ht / simps(ht, t) ht_norm = ht / simps(ht, t) # Fourier transform of the measured nonlinear response self.hf = fft(ht_norm) else: sys.exit("No raman response on the GNLSE") return None class sim_window(object): def __init__(self, fv, lamda, F, lamda_c, int_fwm, where): self.fv = fv self.type = 'GNLSE' self.lamda = lamda self.fp = 1e-12*c/self.lamda self.fmed = 0.5*(fv[-1] + fv[0])*1e12 # [Hz] self.deltaf = np.max(self.fv) - np.min(self.fv) # [THz] self.df = self.deltaf/int_fwm.nt # [THz] self.T = 1 / self.df # Time window (period)[ps] self.woffset = 2*pi*(self.fmed - c/lamda)*1e-12 # [rad/ps] self.w0 = 2*pi*self.fmed # central angular frequency [rad/s] self.tsh = (1/self.w0)*1e12 # shock time [ps] self.dt = self.T/int_fwm.nt # timestep (dt) [ps] # time vector [ps] self.t = (range(int_fwm.nt)-np.ones(int_fwm.nt)*int_fwm.nt/2)*self.dt self.w = fftshift(2*pi * (self.fv - 1e-12*self.fmed)) self.t_band = self.t self.lv = 1e-3*c/self.fv self.zv = int_fwm.dzstep*np.asarray(range(0, 2)) self.p_pos = where self.F = F self.f_centrals = np.array( [1e-12 * c/lamda + i * F for i in range(-1, 2)]) self.w_tiled = fftshift( 2*pi * (self.fv - self.f_centrals[1])) # w of self-step class Loss(object): def __init__(self, int_fwm, sim_wind, amax=None, apart_div=8): """ Initialise the calss Loss, takes in the general parameters and the freequenbcy window. From that it determines where the loss will become freequency dependent. With the default value being an 8th of the difference of max and min. """ self.alpha = int_fwm.alphadB/4.343 if amax is None: self.amax = self.alpha else: self.amax = amax/4.343 self.flims_large = (np.min(sim_wind.fv), np.max(sim_wind.fv)) try: self.begin = apart_div[0] self.end = apart_div[1] except TypeError: self.apart = np.abs(self.flims_large[1] - self.flims_large[0]) self.apart /= apart_div self.begin = self.flims_large[0] + self.apart self.end = self.flims_large[1] - self.apart def atten_func_full(self, fv): aten = [] a_s = ((self.amax - self.alpha) / (self.flims_large[0] - self.begin), (self.amax - self.alpha) / (self.flims_large[1] - self.end)) b_s = (-a_s[0] * self.begin, -a_s[1] * self.end) for f in fv: if f <= self.begin: aten.append(a_s[0] * f + b_s[0]) elif f >= self.end: aten.append(a_s[1] * f + b_s[1]) else: aten.append(0) return np.asanyarray(aten) + self.alpha def plot(self, fv): fig = plt.figure() y = self.atten_func_full(fv) plt.plot(fv, y) plt.xlabel("Frequency (Thz)") plt.ylabel("Attenuation (cm -1 )") plt.savefig( "loss_function_fibre.png", bbox_inches='tight') plt.close(fig) class Noise(object): def __init__(self, int_fwm, sim_wind): self.pquant = np.sum( hbar*(sim_wind.w*1e12 + sim_wind.w0)/(sim_wind.T*1e-12)) self.pquant = (self.pquant/2)**0.5 return None def noise_func(self, int_fwm): seed = np.random.seed(int(time()*np.random.rand())) noise = self.pquant * (np.random.randn(int_fwm.nt) + 1j*np.random.randn(int_fwm.nt)) return noise def noise_func_freq(self, int_fwm, sim_wind): noise = self.noise_func(int_fwm) noise_freq = fftshift(fft(noise)) return noise_freq
33.757282
77
0.560397
4,952
0.712108
0
0
0
0
0
0
1,551
0.223037
ef9b8a20ac811d824f51d3976e30e0eeef10150a
172
py
Python
recipe/run_test.py
regro-cf-autotick-bot/astropy-healpix-feedstock
c859aa66fbdcc397e82ef3bb1940a99da0deb8fc
[ "BSD-3-Clause" ]
null
null
null
recipe/run_test.py
regro-cf-autotick-bot/astropy-healpix-feedstock
c859aa66fbdcc397e82ef3bb1940a99da0deb8fc
[ "BSD-3-Clause" ]
24
2017-10-15T20:52:48.000Z
2021-11-11T00:45:54.000Z
recipe/run_test.py
regro-cf-autotick-bot/astropy-healpix-feedstock
c859aa66fbdcc397e82ef3bb1940a99da0deb8fc
[ "BSD-3-Clause" ]
4
2017-10-15T20:37:19.000Z
2021-08-05T14:42:53.000Z
# The test suite runs in <20 seconds so is worth running here to # make sure there are no issues with the C/Cython extensions import astropy_healpix astropy_healpix.test()
34.4
64
0.796512
0
0
0
0
0
0
0
0
124
0.72093
ef9bbe1541d0c953af96d087b8ca600f95dd7284
45
py
Python
way2sms/__init__.py
shubhamc183/way2sms
33d8c9e69ab9b053e50501baf887191c718d2d2a
[ "MIT" ]
38
2016-12-15T14:03:00.000Z
2022-03-22T01:28:29.000Z
way2sms/__init__.py
shubhamc183/way2sms
33d8c9e69ab9b053e50501baf887191c718d2d2a
[ "MIT" ]
10
2017-11-18T08:13:18.000Z
2020-09-06T11:18:32.000Z
way2sms/__init__.py
shubhamc183/way2sms
33d8c9e69ab9b053e50501baf887191c718d2d2a
[ "MIT" ]
41
2016-12-26T16:52:59.000Z
2022-03-22T01:31:40.000Z
""" Way2sms """ from way2sms.app import Sms
7.5
27
0.666667
0
0
0
0
0
0
0
0
15
0.333333
ef9be069a058d33204131a55950dcf855daf7d54
1,164
py
Python
example.py
jasonkatz/py-graphql-client
9f938f3d379a8f4d8810961c87baf25dbe35889d
[ "BSD-3-Clause" ]
38
2019-03-22T16:27:08.000Z
2022-03-30T11:07:55.000Z
example.py
anthonyhiga/py-graphql-client
9c59b32bae5c5c6a12634b2bd6353f76328aa31a
[ "BSD-3-Clause" ]
31
2019-03-25T20:28:40.000Z
2022-01-26T21:22:47.000Z
example.py
anthonyhiga/py-graphql-client
9c59b32bae5c5c6a12634b2bd6353f76328aa31a
[ "BSD-3-Clause" ]
11
2019-03-25T18:54:32.000Z
2021-09-11T17:00:27.000Z
import time from graphql_client import GraphQLClient # some sample GraphQL server which supports websocket transport and subscription client = GraphQLClient('ws://localhost:9001') # Simple Query Example # query example with GraphQL variables query = """ query getUser($userId: Int!) { users (id: $userId) { id username } } """ # This is a blocking call, you receive response in the `res` variable print('Making a query first') res = client.query(query, variables={'userId': 2}) print('query result', res) # Subscription Example subscription_query = """ subscription getUser { users (id: 2) { id username } } """ # Our callback function, which will be called and passed data everytime new data is available def my_callback(op_id, data): print(f"Got data for Operation ID: {op_id}. Data: {data}") print('Making a graphql subscription now...') sub_id = client.subscribe(subscription_query, callback=my_callback) print('Created subscription and waiting. Callback function is called whenever there is new data') # do some operation while the subscription is running... time.sleep(10) client.stop_subscribe(sub_id) client.close()
23.755102
97
0.734536
0
0
0
0
0
0
0
0
787
0.676117
ef9c140412569fc3198bcf6324071fb38dea2030
2,465
py
Python
Scopus2Histcite.py
hengxyz/Scopus4HistCite
87395afe5d8a520b9c32a0efeed2288225430244
[ "Apache-2.0" ]
2
2020-07-09T13:10:44.000Z
2020-07-10T13:00:52.000Z
Scopus2Histcite.py
hengxyz/Scopus4HistCite
87395afe5d8a520b9c32a0efeed2288225430244
[ "Apache-2.0" ]
null
null
null
Scopus2Histcite.py
hengxyz/Scopus4HistCite
87395afe5d8a520b9c32a0efeed2288225430244
[ "Apache-2.0" ]
null
null
null
# coding:utf-8 import os import sys def Scopus2HistCite(): try: wrt_lines = [] if len(sys.argv) >= 2 and os.path.isfile(sys.argv[1]): print("You are going to convert {}".format(sys.argv[1])) Scopus_file = sys.argv[1] elif os.path.isfile("./Scopus.ris"): print("You are going to convert ./Scopus.ris") Scopus_file = './Scopus.ris' else: raise Exception("No file spcified") auth_started = False ref_started = False LT = [ 'TI', # title 'T2', # jounal 'AU', # author 'VL', # volumn 'IS', # issue 'SP', # start page 'EP', # end page 'PY', # public year 'DO', # maybe doi? not important ] wrt_lines.append('FN Thomson Reuters Web of Knowledge™') wrt_lines.append('VR 1.0') with open(Scopus_file, 'rb') as Scopus: for each in Scopus.readlines(): line = each.strip() line = line.decode().replace(' - ', ' ') mark = line[:2] if ref_started: if mark == 'ER': wrt_lines.append('ER') wrt_lines.append('') auth_started = False ref_started = False else: wrt_lines.append(line) elif line[:14] == 'N1 References:': ref_started = True line = line.replace(line[:14], 'CR') wrt_lines.append(line) elif mark in LT: if mark == 'TI': wrt_lines.append('PT J') else: line = line.replace('T2 ', 'SO ').replace('SP ', 'BP ') if not auth_started and mark == 'AU': auth_started = True else: line = line.replace('AU ', '') wrt_lines.append(line) with open("./savedres.txt", "w", encoding = "utf-8") as f: for line in wrt_lines: print(line) f.write(line) f.write("\n") except Exception as e: raise e if __name__ == '__main__': Scopus2HistCite()
35.724638
80
0.416633
0
0
0
0
0
0
0
0
445
0.180381
ef9d373a85947b14498743498aaf4ab814a074db
2,449
py
Python
mel_scale.py
zjlww/dsp
d7bcbf49bc8693560f3203c55b73956cc61dcd50
[ "MIT" ]
9
2021-07-22T19:59:34.000Z
2021-12-16T06:37:27.000Z
mel_scale.py
zjlww/dsp
d7bcbf49bc8693560f3203c55b73956cc61dcd50
[ "MIT" ]
null
null
null
mel_scale.py
zjlww/dsp
d7bcbf49bc8693560f3203c55b73956cc61dcd50
[ "MIT" ]
2
2021-07-26T07:14:58.000Z
2021-12-16T06:37:30.000Z
""" Mel-scale definition. """ import torch from torch import Tensor from typing import Union import numpy as np from math import log import librosa from librosa.filters import mel as mel_fn def hz_to_mel( frequencies: Union[float, int, Tensor, np.ndarray], htk=False) -> Union[float, int, Tensor, np.ndarray]: """Convert Hz to Mels. Extending librosa.hz_to_mel to accepting Tensor. """ if not isinstance(frequencies, Tensor): return librosa.hz_to_mel(frequencies) if htk: return 2595.0 * torch.log10(1.0 + frequencies / 700.0) f_min = 0.0 f_sp = 200.0 / 3 mels = (frequencies - f_min) / f_sp min_log_hz = 1000.0 # beginning of log region (Hz) min_log_mel = (min_log_hz - f_min) / f_sp # same (Mels) logstep = log(6.4) / 27.0 # step size for log region log_t = frequencies >= min_log_hz mels[log_t] = min_log_mel + torch.log(frequencies[log_t] / min_log_hz) / \ logstep return mels def mel_to_hz( mels: Union[int, float, Tensor, np.ndarray], htk=False) -> Union[int, float, Tensor, np.ndarray]: """Convert mel bin numbers to frequencies.""" if not isinstance(mels, Tensor): return librosa.mel_to_hz(mels, htk=htk) if htk: return 700.0 * (10.0 ** (mels / 2595.0) - 1.0) f_min = 0.0 f_sp = 200.0 / 3 freqs = f_min + f_sp * mels min_log_hz = 1000.0 # beginning of log region (Hz) min_log_mel = (min_log_hz - f_min) / f_sp # same (Mels) logstep = log(6.4) / 27.0 # step size for log region log_t = mels >= min_log_mel freqs[log_t] = min_log_hz * \ torch.exp(logstep * (mels[log_t] - min_log_mel)) return freqs def linear_mel_matrix( sampling_rate: int, fft_size: int, mel_size: int, mel_min_f0: Union[int, float], mel_max_f0: Union[int, float], device: torch.device ) -> Tensor: """ Args: sampling_rate: Sampling rate in Hertz. fft_size: FFT size, must be an even number. mel_size: Number of mel-filter banks. mel_min_f0: Lowest frequency in the mel spectrogram. mel_max_f0: Highest frequency in the mel spectrogram. device: Target device of the transformation matrix. Returns: basis: [mel_size, fft_size // 2 + 1]. """ basis = torch.FloatTensor( mel_fn(sampling_rate, fft_size, mel_size, mel_min_f0, mel_max_f0) ).transpose(-1, -2) return basis.to(device)
31.805195
78
0.642303
0
0
0
0
0
0
0
0
704
0.287464
ef9edac80f3106bed3243580dd908ece6900cb29
379
py
Python
order/urls.py
xxcfun/trip-api
a51c8b6033ba2a70cf0e400180f31809f4ce476a
[ "Apache-2.0" ]
1
2021-06-18T03:03:40.000Z
2021-06-18T03:03:40.000Z
order/urls.py
xxcfun/trip-api
a51c8b6033ba2a70cf0e400180f31809f4ce476a
[ "Apache-2.0" ]
null
null
null
order/urls.py
xxcfun/trip-api
a51c8b6033ba2a70cf0e400180f31809f4ce476a
[ "Apache-2.0" ]
null
null
null
from django.urls import path from order import views urlpatterns = [ # 订单提交接口 path('ticket/submit/', views.TicketOrderSubmitView.as_view(), name='ticket_submit'), # 订单详情(支付、取消、删除) path('order/detail/<int:sn>/', views.OrderDetail.as_view(), name='order_detail'), # 订单列表 path('order/list/', views.OrderListView.as_view(), name='order_list') ]
29.153846
89
0.664908
0
0
0
0
0
0
0
0
175
0.409836
ef9f39f03563135dc82bcc1a0e27d1ea6a62e525
349
py
Python
api/models.py
yaroshyk/todo
828d5afc9abd85cd7f8f25e4d01f90c765231357
[ "MIT" ]
3
2021-05-30T19:04:37.000Z
2021-08-30T14:16:57.000Z
api/models.py
yaroshyk/todo
828d5afc9abd85cd7f8f25e4d01f90c765231357
[ "MIT" ]
null
null
null
api/models.py
yaroshyk/todo
828d5afc9abd85cd7f8f25e4d01f90c765231357
[ "MIT" ]
null
null
null
from django.db import models class Todo(models.Model): title = models.CharField(max_length=100) details = models.TextField() date = models.DateTimeField(auto_now_add=True) group = models.TextField(default='home') user_id = models.IntegerField() objects = models.Manager() def __str__(self): return self.title
23.266667
50
0.696275
317
0.908309
0
0
0
0
0
0
6
0.017192
ef9fbd19157663838a068e78c39ee7e40bade1b6
127
py
Python
delightfulsoup/utils/unminify.py
etpinard/delightfulsoup
6d8cf976bf216e0e311808ffbd871a5915ba7b09
[ "MIT" ]
null
null
null
delightfulsoup/utils/unminify.py
etpinard/delightfulsoup
6d8cf976bf216e0e311808ffbd871a5915ba7b09
[ "MIT" ]
null
null
null
delightfulsoup/utils/unminify.py
etpinard/delightfulsoup
6d8cf976bf216e0e311808ffbd871a5915ba7b09
[ "MIT" ]
null
null
null
""" unminify ======== """ def unminify(soup, encoding='utf-8'): """ """ return soup.prettify().encode(encoding)
10.583333
43
0.527559
0
0
0
0
0
0
0
0
44
0.346457
ef9feaf45807510f4cf448436f428cc436b0de04
744
py
Python
main.py
bhaskar-nair2/Coded-Passwords
306d01e54bf43c46267ed12c907a49932326b931
[ "MIT" ]
null
null
null
main.py
bhaskar-nair2/Coded-Passwords
306d01e54bf43c46267ed12c907a49932326b931
[ "MIT" ]
null
null
null
main.py
bhaskar-nair2/Coded-Passwords
306d01e54bf43c46267ed12c907a49932326b931
[ "MIT" ]
null
null
null
import hashlib class data: def __init__(self,username,password): self.username=username self.hash=self.get_hash(password) def get_hash(self,password): for _ in range(0,9999999): head=(str(_)+self.username+password).encode() i=hashlib.sha3_256(head).hexdigest() if(i[:4]=='0000'): self.num=_ return i @staticmethod def retrive(username,password,hash,num): head = (str(num) + username + password).encode() i = hashlib.sha3_256(head).hexdigest() if(i==hash): return True else: return False def maker(self): arr = {"hash": self.hash, "num": self.num} return arr
28.615385
57
0.555108
729
0.979839
0
0
246
0.330645
0
0
17
0.022849
efa05bae4ae4b077bd16954d59ff3b20aac6edc2
17,709
py
Python
src/upper/utils.py
USArmyResearchLab/ARL-UPPER
2f79f25338f18655b2a19c8afe3fed267cc0f198
[ "Apache-2.0" ]
4
2020-09-14T06:13:04.000Z
2020-11-21T07:10:36.000Z
src/upper/utils.py
USArmyResearchLab/ARL-UPPER
2f79f25338f18655b2a19c8afe3fed267cc0f198
[ "Apache-2.0" ]
null
null
null
src/upper/utils.py
USArmyResearchLab/ARL-UPPER
2f79f25338f18655b2a19c8afe3fed267cc0f198
[ "Apache-2.0" ]
2
2020-03-15T17:59:26.000Z
2020-09-14T06:13:05.000Z
from typing import Tuple from rdkit import Chem from rdkit.Chem import Draw import re import itertools import numpy as np import networkx as nx import logging import collections def FindBreakingBonds(cnids: list, bids: list, bts: list, atomic_nums: list) -> list: """Returns bond ids to be broken. Check for double/triple bonds; if exists, check if heteroatom; if heteroatom, bonds of that C atom are not broken.""" x1s = [] rmflag = None for (i, bt) in enumerate(bts): for (j, x) in enumerate(bt): if x == Chem.rdchem.BondType.DOUBLE or x == Chem.rdchem.BondType.TRIPLE: if atomic_nums[cnids[i][j]] != 6 and atomic_nums[cnids[i][j]] != 1: rmflag = True break if not rmflag: x1s.append(i) rmflag = None return [bids[x1] for x1 in x1s] def FragNeighborBreakingBondTypes( neighbor_ids: list, fnids: list, faids: list, bond_type_matrix: list ) -> list: """Determine broken bond types between fragments and fragment neighbors.""" # neighbor ids of fragment neighbors nids_of_fnids = [[neighbor_ids[x] for x in y] for y in fnids] # atom ids 'bonded' to fragment neighbor int_ = [ [Intersection(x, faids[i])[0] for x in y] for (i, y) in enumerate(nids_of_fnids) ] return [ [bond_type_matrix[x[i]][y[i]] for (i, z) in enumerate(x)] for (x, y) in zip(fnids, int_) ] def EditFragNeighborIds(fnids: list, bbtps: list) -> list: """Remove fragment neighbor ids that are doubly/triply bonded to fragment.""" # not double/triple bonds n23bonds = [ [ (x != Chem.rdchem.BondType.DOUBLE and x != Chem.rdchem.BondType.TRIPLE) for x in y ] for y in bbtps ] # return new fragment neighbor ids return [ [x for (j, x) in enumerate(y) if n23bonds[i][j]] for (i, y) in enumerate(fnids) ] def num_atom_rings_1bond(atom_rings: tuple, bond_rings: tuple, num_atoms: int) -> list: """Number of rings each atoms is in. Only rings sharing at most 1 bond with neighboring rings are considered.""" # atom ids of rings that share at most 1 bond with neighboring rings atom_rings_1bond = [ atom_rings[i] for (i, y) in enumerate(bond_rings) if not any( IntersectionBoolean(x, y, 2) for x in [z for (j, z) in enumerate(bond_rings) if i != j] ) ] return [sum(i in x for x in atom_rings_1bond) for i in range(num_atoms)] def UniqueElements(x: list) -> list: """Returns unique elements of a list (not order preserving).""" keys = {} for e in x: keys[e] = 1 return list(keys.keys()) def NeighborIDs(neighbor_ids: list, atomic_nums: list, y: list) -> list: """Find neighbor ids of a list of atoms (Hs not included).""" # neighbor ids z = [neighbor_ids[x] for x in y] # remove Hs return [[x for x in y if atomic_nums[x] != 1] for y in z] def GetFragments( smiles: str, mol: Chem.rdchem.Mol, neighbor_ids: list, atomic_nums: list, bond_id_matrix: list, bond_type_matrix: list, ) -> Tuple[list, list]: """Fragment the molecule with isolated carbons method, see Lian and Yalkowsky, JOURNAL OF PHARMACEUTICAL SCIENCES 103:2710-2723.""" # carbons cids = [i for (i, x) in enumerate(atomic_nums) if x == 6] # carbon neighbor ids cnids = NeighborIDs(neighbor_ids, atomic_nums, cids) # bond ids bids = [ [bond_id_matrix[cid][cnid] for cnid in cnids] for (cid, cnids) in zip(cids, cnids) ] # bond types bts = [ [bond_type_matrix[cid][cnid] for cnid in cnids] for (cid, cnids) in zip(cids, cnids) ] # broken bond ids bbids = FindBreakingBonds(cnids, bids, bts, atomic_nums) # break bonds, get fragments try: fmol = Chem.FragmentOnBonds( mol, UniqueElements(list(itertools.chain.from_iterable(bbids))) ) except: fmol = mol logging.info("fragmentation exception: %s" % (smiles)) # draw fragments, debugging only, expensive # Draw.MolToFile(fmol,'fmol.png') # fragment atom ids faids = [list(x) for x in Chem.rdmolops.GetMolFrags(fmol)] # fragment smiles fsmiles = [Chem.rdmolfiles.MolFragmentToSmiles(fmol, frag) for frag in faids] # fragment smarts fsmarts = [Chem.rdmolfiles.MolFragmentToSmarts(fmol, frag) for frag in faids] return faids, fsmiles, fsmarts def FragNeighborID(fsmile: str) -> list: """End atoms bonded to a fragment.""" fnid = re.compile(r"(%s|%s)" % ("\d+(?=\*)", "\*[^\]]")).findall(fsmile) fnid = fnid if fnid else ["-1"] return [int(x) if "*" not in x else 0 for x in fnid] def FragNeighborIDs(fsmiles: list) -> list: """End atoms bonded to fragments.""" fnids = list(map(FragNeighborID, fsmiles)) return [x if (-1 not in x) else [] for x in fnids] def BondedFragNeighborIDs(true_faids: list, fnids: list) -> list: """Neighbor fragment ids (not atom ids).""" return [[k for (k, x) in enumerate(true_faids) for j in i if j in x] for i in fnids] def NumHybridizationType(htype: Chem.rdchem.HybridizationType, fnhybrds: list) -> list: """Number of specified hybridization type for each fragment.""" return [sum(x == htype for x in fnhybrd) for fnhybrd in fnhybrds] def Intersection(x: list, y: list) -> list: """Elements that match between two lists.""" return list(set(x) & set(y)) def IntersectionBoolean(x: list, y: list, z: int) -> bool: """Returns whether or not two lists overlap with at least z common elements.""" return len(set(x) & set(y)) >= z def FindIdsWithHtype( fids: list, fnids: list, fnhybrds: list, htype: Chem.rdchem.HybridizationType ) -> list: """Find fragment neighbor ids with htype.""" fnhybrds_in_fids = [fnhybrds[x] for x in fids] fnids_in_fids = [fnids[x] for x in fids] hids = [] x1 = 0 for x in fnhybrds_in_fids: x2 = 0 for y in x: if y == htype: hids.append(fnids_in_fids[x1][x2]) x2 += 1 x1 += 1 return hids def AromaticRings(atom_ids_in_rings: list, bond_type_matrix: list) -> list: """Return if bonds in rings are aromatic.""" # atom ids in rings atom_ids_in_rings = [np.array(x) for x in atom_ids_in_rings] return [ [ (bond_type_matrix[int(x)][int(y)] == Chem.rdchem.BondType.AROMATIC) for (x, y) in zip(z, z.take(range(1, len(z) + 1), mode="wrap")) ] for z in atom_ids_in_rings ] def TrueFragAtomIDs(num_atoms: int, faids: list) -> list: """Remove dummy atom ids from fragments.""" return [[x for x in y if x < num_atoms] for y in faids] def FindCentralCarbonsOfBiphenyl( biphenyl_substructs: list, neighbor_ids: list, atomic_nums: list, bond_matrix: list, bond_type_matrix: list, ) -> list: """Find central carbons of biphenyl substructures.""" # find one of the central carbons in biphenyl substructures cc = [] for z in biphenyl_substructs: for (x, y) in zip(z, z.take(range(1, len(z) + 1), mode="wrap")): if not bond_matrix[int(x)][int(y)]: cc.append(int(y)) break # find carbon that is singly bonded - other central carbon ccs = [] for (i, y) in enumerate(NeighborIDs(neighbor_ids, atomic_nums, cc)): for x in y: if bond_type_matrix[cc[i]][x] == Chem.rdchem.BondType.SINGLE: ccs.append([cc[i], x]) break return ccs def Flatten(x: list) -> list: """Flatten a list.""" return list(itertools.chain.from_iterable(x)) def RemoveElements(x: list, y: list) -> list: """Remove elements (y) from a list (x).""" for e in y: x.remove(e) return x def Graph(x: tuple) -> nx.classes.graph.Graph: """Make graph structure from atom ids. Used to find independent ring systems.""" # initialize graph graph = nx.Graph() # add nodes and edges for part in x: graph.add_nodes_from(part) graph.add_edges_from(zip(part[:-1], part[1:])) return graph def NumIndRings(x: tuple) -> int: """Number of independent single, fused, or conjugated rings.""" return len(list(nx.connected_components(Graph(x)))) def ReduceFsmarts(fsmarts: list) -> list: """Rewrite fragment smarts.""" return [re.sub(r"\d+\#", "#", x) for x in fsmarts] def EndLabels(fnbbtps: list) -> list: """End label of group. - : bonded to one neighbor and btype = single = : one neighbor is bonded with btype = double tri- : one neighbor is bonded with btype = triple allenic : allenic atom, two neighbors are bonded with btype = double""" l = ["" for x in fnbbtps] for (i, x) in enumerate(fnbbtps): if len(x) == 1 and x.count(Chem.rdchem.BondType.SINGLE) == 1: l[i] = "-" continue if x.count(Chem.rdchem.BondType.DOUBLE) == 1: l[i] = "=" continue if x.count(Chem.rdchem.BondType.TRIPLE) == 1: l[i] = "tri-" continue if x.count(Chem.rdchem.BondType.DOUBLE) == 2: l[i] = "allenic-" return l def FragAtomBondTypeWithSp2( fnhybrds: list, fnids: list, neighbor_ids: list, atomic_nums: list, faids: list, bond_type_matrix: list, ) -> list: """Bond type between fragment atom and neighboring sp2 atom.""" # fragment ids bonded to one sp2 atom fids = [ i for i, x in enumerate( NumHybridizationType(Chem.rdchem.HybridizationType.SP2, fnhybrds) ) if x == 1 ] # atom id in fragments corresponding to the sp2 atom sp2ids = FindIdsWithHtype(fids, fnids, fnhybrds, Chem.rdchem.HybridizationType.SP2) # neighbor atom ids of sp2 atoms sp2nids = NeighborIDs(neighbor_ids, atomic_nums, sp2ids) # intersection between sp2nids and atom ids in fragments with one sp2 atom faid = list( itertools.chain.from_iterable( [Intersection(x, y) for (x, y) in zip([faids[x] for x in fids], sp2nids)] ) ) # bond type fragment atom and sp2 atom bts = [bond_type_matrix[x][y] for (x, y) in zip(sp2ids, faid)] # generate list with bond types for each fragment, zero for fragments without one sp2 atom afbts = [0] * len(fnhybrds) for (x, y) in zip(fids, bts): afbts[x] = y return afbts symm_rules: dict = { 2: { 1: { Chem.rdchem.HybridizationType.SP: 2, Chem.rdchem.HybridizationType.SP2: 2, Chem.rdchem.HybridizationType.SP3: 2, }, 2: { Chem.rdchem.HybridizationType.SP: 1, Chem.rdchem.HybridizationType.SP2: 1, Chem.rdchem.HybridizationType.SP3: 1, }, }, 3: { 1: {Chem.rdchem.HybridizationType.SP2: 6, Chem.rdchem.HybridizationType.SP3: 3}, 2: {Chem.rdchem.HybridizationType.SP2: 2, Chem.rdchem.HybridizationType.SP3: 1}, 3: {Chem.rdchem.HybridizationType.SP2: 1, Chem.rdchem.HybridizationType.SP3: 1}, }, 4: { 1: {Chem.rdchem.HybridizationType.SP3: 12}, 2: {Chem.rdchem.HybridizationType.SP3: 0}, 3: {Chem.rdchem.HybridizationType.SP3: 1}, 4: {Chem.rdchem.HybridizationType.SP3: 1}, }, } def Symm( smiles: str, num_attached_atoms: int, num_attached_types: int, center_hybrid: Chem.rdchem.HybridizationType, count_rankings: collections.Counter, ) -> int: """Molecular symmetry.""" try: symm = symm_rules[num_attached_atoms][num_attached_types][center_hybrid] except: logging.warning("symmetry exception: {}".format(smiles)) symm = np.nan # special case if symm == 0: vals = list(count_rankings.values()) symm = 3 if (vals == [1, 3] or vals == [3, 1]) else 2 return symm def DataReduction(y: dict, group_labels: list) -> None: """Remove superfluous data for single molecule.""" for l in group_labels: y[l] = list(itertools.compress(zip(y["fsmarts"], range(y["num_frags"])), y[l])) def NFragBadIndices(d: np.ndarray, group_labels: list, smiles: list) -> None: """Indices of compounds that do not have consistent number of fragments.""" def NFragCheck(y: dict) -> bool: """Check number of fragments and group contributions are consistent.""" num_frags = 0 for l in group_labels: num_frags += len(y[l]) return num_frags != y["num_frags"] x = list(map(NFragCheck, d)) indices = list(itertools.compress(range(len(x)), x)) logging.info( "indices of molecules with inconsistent number of fragments:\n{}".format( indices ) ) logging.info("and their smiles:\n{}".format([smiles[x] for x in indices])) def UniqueGroups(d: np.ndarray, num_mol: int, group_labels: list) -> list: """Unique fragments for each environmental group.""" # fragments for each group groups = [[d[i][j] for i in range(num_mol)] for j in group_labels] # eliminate fragment ids groups = [[x[0] for x in Flatten(y)] for y in groups] return [UniqueElements(x) for x in groups] def UniqueLabelIndices(flabels: list) -> list: """Indices of unique fingerprint labels.""" sort_ = [sorted(x) for x in flabels] tuple_ = [tuple(x) for x in sort_] unique_labels = [list(x) for x in sorted(set(tuple_), key=tuple_.index)] return [[i for (i, x) in enumerate(sort_) if x == y] for y in unique_labels] def UniqueLabels(flabels: list, indices: list) -> list: """Unique fingerprint labels.""" return [flabels[x[0]] for x in indices] def UniqueFingerprint(indices: list, fingerprint: np.ndarray) -> np.ndarray: """Reduce fingerprint according to unique labels.""" fp = np.zeros((fingerprint.shape[0], len(indices))) for (j, x) in enumerate(indices): fp[:, j] = np.sum(fingerprint[:, x], axis=1) return fp def UniqueLabelsAndFingerprint( flabels: list, fingerprint: np.ndarray ) -> Tuple[list, np.ndarray]: """Reduced labels and fingerprint.""" uli = UniqueLabelIndices(flabels) ul = UniqueLabels(flabels, uli) fp = UniqueFingerprint(uli, fingerprint) return ul, fp def CountGroups(fingerprint_groups: list, group_labels: list, d: dict) -> list: """Count groups for fingerprint.""" return [ [[x[0] for x in d[y]].count(z) for z in fingerprint_groups[i]] for (i, y) in enumerate(group_labels) ] def Concat(x: list, y: list) -> list: """Concatenate groups and singles in fingerprint.""" return x + y def MakeFingerprint( fingerprint_groups: list, labels: dict, d: np.ndarray, num_mol: int ) -> np.ndarray: """Make fingerprint.""" # count groups and make fingerprint fp_groups = [ Flatten(CountGroups(fingerprint_groups, labels["groups"], d[:, 0][i])) for i in range(num_mol) ] # reduce singles to requested fp_singles = [[d[:, 1][i][j] for j in labels["singles"]] for i in range(num_mol)] # concat groups and singles return np.array(list(map(Concat, fp_groups, fp_singles))) def ReduceMultiCount(d: dict) -> None: """Ensure each fragment belongs to one environmental group. Falsify Y, Z when YZ true Falsify YY, Z when YYZ true Falsify YYY, Z when YYYZ true Falsify RG when AR true ...""" def TrueIndices(group: str) -> list: """Return True indices.""" x = d[group] return list(itertools.compress(range(len(x)), x)) def ReplaceTrue(replace_group: list, actual_group: list) -> None: """Replace True elements with False to avoid overcounting fragment contribution.""" replace_indices = list(map(TrueIndices, replace_group)) actual_indices = list(map(TrueIndices, actual_group)) for actual_index in actual_indices: for (group, replace_index) in zip(replace_group, replace_indices): int_ = Intersection(replace_index, actual_index) for x in int_: d[group][x] = False replace_groups = [ ["Y", "Z"], ["YY", "Z"], ["YYY", "Z"], ["RG"], ["X", "Y", "YY", "YYY", "YYYY", "YYYYY", "Z", "ZZ", "YZ", "YYZ"], ["RG", "AR"], ["AR", "BR2", "BR3", "FU"], ["RG", "AR"], ] actual_groups = [ ["YZ"], ["YYZ"], ["YYYZ"], ["AR"], ["RG", "AR"], ["BR2", "BR3"], ["BIP"], ["FU"], ] list(map(ReplaceTrue, replace_groups, actual_groups)) def RewriteFsmarts(d: dict) -> None: """Rewrite fsmarts to 'fsmiles unique' fsmarts.""" def FsmartsDict(d: dict) -> dict: """Dict of original fsmarts to 'fsmiles unique' fsmarts.""" # unique smarts in dataset, mols fsmarts = UniqueElements(Flatten([x[0]["fsmarts"] for x in d])) fmols = [Chem.MolFromSmarts(x) for x in fsmarts] # smiles, not necessarily unique fsmiles = [Chem.MolToSmiles(x) for x in fmols] # dict: original fsmarts to 'fsmiles unique' fsmarts dict_ = collections.defaultdict(lambda: len(dict_)) fsmarts_dict = {} for (i, x) in enumerate(fsmarts): fsmarts_dict[x] = fsmarts[dict_[fsmiles[i]]] return fsmarts_dict fsmarts_dict = FsmartsDict(d) # rewrite fsmarts for (i, y) in enumerate(d): d[i][0]["fsmarts"] = [fsmarts_dict[x] for x in y[0]["fsmarts"]]
28.65534
94
0.611666
0
0
0
0
0
0
0
0
4,391
0.247953
efa2c84741d3637cb65c8fc32a0abc9a577fb053
3,317
py
Python
025_reverse-nodes-in-k-group.py
tasselcui/leetcode
5c32446b8b5bf3711cf28e465f448c6a0980f259
[ "MIT" ]
null
null
null
025_reverse-nodes-in-k-group.py
tasselcui/leetcode
5c32446b8b5bf3711cf28e465f448c6a0980f259
[ "MIT" ]
null
null
null
025_reverse-nodes-in-k-group.py
tasselcui/leetcode
5c32446b8b5bf3711cf28e465f448c6a0980f259
[ "MIT" ]
null
null
null
# ============================================================================= # # -*- coding: utf-8 -*- # """ # Created on Sun Aug 5 08:07:19 2018 # # @author: lenovo # """ # 25. Reverse Nodes in k-Group # Given a linked list, reverse the nodes of a linked list k at a time and return its modified list. # # k is a positive integer and is less than or equal to the length of the linked list. If the number of nodes is not a multiple of k then left-out nodes in the end should remain as it is. # # Example: # # Given this linked list: 1->2->3->4->5 # # For k = 2, you should return: 2->1->4->3->5 # # For k = 3, you should return: 3->2->1->4->5 # # Note: # # Only constant extra memory is allowed. # You may not alter the values in the list's nodes, only nodes itself may be changed. # ============================================================================= # ============================================================================= # difficulty: hard # acceptance: 32.7% # contributor: LeetCode # ============================================================================= class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: def reverseKGroup(self, head, k): """ :type head: ListNode :type k: int :rtype: ListNode """ def reverseList(head, k): pre = None cur = head while cur and k: temp = cur.next cur.next = pre pre = cur cur = temp k -= 1 return (cur, pre) p1 = head length = 0 while p1: length += 1 p1 = p1.next if length < k: return head step = length // k p = head res = None pre = None while p and step: nextp, newhead = reverseList(p, k) if not res: res = newhead if pre: pre.next = newhead pre = p p = nextp step -= 1 pre.next = p return res # reverseList(head, k) # ============================================================================= # def reverseList(head, k): # pre = None # cur = head # while cur and k: # temp = cur.next # cur.next = pre # pre = cur # cur = temp # k -= 1 # return (cur, pre) # ============================================================================= #------------------------------------------------------------------------------ # note: below is the test code a = ListNode(1) b = ListNode(2) c = ListNode(3) d = ListNode(4) a.next = b b.next = c c.next = d test = a S = Solution() result = S.reverseKGroup(test, 3) #result = a while result: print(result.val) result = result.next #------------------------------------------------------------------------------ # note: below is the submission detail # ============================================================================= # Submission Detail # 81 / 81 test cases passed. # Status: Accepted # Runtime: 56 ms # Submitted: 0 minutes ago # beats 93.99% python3 submissions # =============================================================================
28.843478
186
0.403075
1,037
0.312632
0
0
0
0
0
0
2,093
0.630992
efa5e69113b0347792c870829c3f62690cf050bb
2,708
py
Python
perma_web/perma/tests/test_views_common.py
leppert/perma
adb0cec29679c3d161d72330e19114f89f8c42ac
[ "MIT", "Unlicense" ]
null
null
null
perma_web/perma/tests/test_views_common.py
leppert/perma
adb0cec29679c3d161d72330e19114f89f8c42ac
[ "MIT", "Unlicense" ]
null
null
null
perma_web/perma/tests/test_views_common.py
leppert/perma
adb0cec29679c3d161d72330e19114f89f8c42ac
[ "MIT", "Unlicense" ]
null
null
null
from django.conf import settings from django.core import mail from django.core.urlresolvers import reverse from perma.urls import urlpatterns from .utils import PermaTestCase class CommonViewsTestCase(PermaTestCase): def test_public_views(self): # test static template views for urlpattern in urlpatterns: if urlpattern.callback.func_name == 'DirectTemplateView': resp = self.get(urlpattern.name) def test_misformatted_nonexistent_links_404(self): response = self.client.get(reverse('single_linky', kwargs={'guid': 'JJ99--JJJJ'})) self.assertEqual(response.status_code, 404) response = self.client.get(reverse('single_linky', kwargs={'guid': '988-JJJJ=JJJJ'})) self.assertEqual(response.status_code, 404) def test_properly_formatted_nonexistent_links_404(self): response = self.client.get(reverse('single_linky', kwargs={'guid': 'JJ99-JJJJ'})) self.assertEqual(response.status_code, 404) # Test the original ID style. We shouldn't get a redirect. response = self.client.get(reverse('single_linky', kwargs={'guid': '0J6pkzDeQwT'})) self.assertEqual(response.status_code, 404) def test_contact(self): # Does our contact form behave reasonably? # The form should be fine will all fields message_body = 'Just some message here' from_email = '[email protected]' self.submit_form('contact', data={ 'email': from_email, 'message': message_body}, success_url=reverse('contact_thanks')) # check contents of sent email message = mail.outbox[0] self.assertIn(message_body, message.body) self.assertEqual(message.subject, 'New message from Perma contact form') self.assertEqual(message.from_email, settings.DEFAULT_FROM_EMAIL) self.assertEqual(message.recipients(), [settings.DEFAULT_FROM_EMAIL]) self.assertDictEqual(message.extra_headers, {'Reply-To': from_email}) # We should fail if we don't get a from email response = self.client.post(reverse('contact'), data={ 'email': '', 'message': message_body}) self.assertEqual(response.request['PATH_INFO'], reverse('contact')) # We need at least a message. We should get the contact page back # instead of the thanks page. response = self.client.post(reverse('contact'), data={ 'email': from_email, 'message': ''}) self.assertEqual(response.request['PATH_INFO'], reverse('contact'))
43.677419
93
0.642171
2,530
0.934269
0
0
0
0
0
0
716
0.264402
efa68642041c99f789a40f12b356c9ba93e64adc
1,708
py
Python
GeneratorInterface/Pythia8Interface/python/Py8PtLxyGun_4tau_cfi.py
menglu21/cmssw
c3d6cb102c0aaddf652805743370c28044d53da6
[ "Apache-2.0" ]
null
null
null
GeneratorInterface/Pythia8Interface/python/Py8PtLxyGun_4tau_cfi.py
menglu21/cmssw
c3d6cb102c0aaddf652805743370c28044d53da6
[ "Apache-2.0" ]
null
null
null
GeneratorInterface/Pythia8Interface/python/Py8PtLxyGun_4tau_cfi.py
menglu21/cmssw
c3d6cb102c0aaddf652805743370c28044d53da6
[ "Apache-2.0" ]
null
null
null
import FWCore.ParameterSet.Config as cms #Note: distances in mm instead of in cm usually used in CMS generator = cms.EDFilter("Pythia8PtAndLxyGun", maxEventsToPrint = cms.untracked.int32(1), pythiaPylistVerbosity = cms.untracked.int32(1), pythiaHepMCVerbosity = cms.untracked.bool(True), PGunParameters = cms.PSet( ParticleID = cms.vint32(-15, -15), AddAntiParticle = cms.bool(True), # antiparticle has opposite momentum and production point symmetric wrt (0,0,0) compared to corresponding particle MinPt = cms.double(15.00), MaxPt = cms.double(300.00), MinEta = cms.double(-2.5), MaxEta = cms.double(2.5), MinPhi = cms.double(-3.14159265359), MaxPhi = cms.double(3.14159265359), LxyMin = cms.double(0.0), LxyMax = cms.double(550.0), # most tau generated within TOB (55cm) LzMax = cms.double(300.0), dxyMax = cms.double(30.0), dzMax = cms.double(120.0), ConeRadius = cms.double(1000.0), ConeH = cms.double(3000.0), DistanceToAPEX = cms.double(850.0), LxyBackFraction = cms.double(0.0), # fraction of particles going back towards to center at transverse plan; numbers outside the [0,1] range are set to 0 or 1 LzOppositeFraction = cms.double(0.0), # fraction of particles going in opposite direction wrt to center along beam-line than in transverse plane; numbers outside the [0,1] range are set to 0 or 1 ), Verbosity = cms.untracked.int32(0), ## set to 1 (or greater) for printouts psethack = cms.string('displaced taus'), firstRun = cms.untracked.uint32(1), PythiaParameters = cms.PSet(parameterSets = cms.vstring()) )
47.444444
203
0.668618
0
0
0
0
0
0
0
0
565
0.330796
efabd851d1c220194dc0597eebe6be9a8b117165
5,492
py
Python
questions/models.py
stkrizh/otus-django-hasker
9692b8060a789b0b66b4cf3591a78e32c8a10380
[ "MIT" ]
null
null
null
questions/models.py
stkrizh/otus-django-hasker
9692b8060a789b0b66b4cf3591a78e32c8a10380
[ "MIT" ]
10
2020-06-05T22:56:30.000Z
2022-02-10T08:54:18.000Z
questions/models.py
stkrizh/otus-django-hasker
9692b8060a789b0b66b4cf3591a78e32c8a10380
[ "MIT" ]
null
null
null
import logging from typing import List, Optional from django.conf import settings from django.contrib.auth import get_user_model from django.core.exceptions import ObjectDoesNotExist from django.db import models VOTE_UP = 1 VOTE_DOWN = -1 VOTE_CHOICES = ((VOTE_UP, "Vote Up"), (VOTE_DOWN, "Vote Down")) User = get_user_model() logger = logging.getLogger(__name__) class AbstractPost(models.Model): """ Abstract model that defines common fields and methods for Question / Answer models. """ vote_class: Optional[models.Model] = None author = models.ForeignKey( User, on_delete=models.CASCADE, related_name="%(class)ss", related_query_name="%(class)s", ) content = models.TextField(blank=False) posted = models.DateTimeField(auto_now_add=True) rating = models.IntegerField(default=0) number_of_votes = models.IntegerField(default=0) class Meta: abstract = True ordering = ["-posted"] def vote(self, user, value: int) -> int: """ Add vote from `user` and return new rating. """ assert self.vote_class is not None assert value in (VOTE_DOWN, VOTE_UP), value try: current = self.vote_class.objects.get(user=user, to=self) except ObjectDoesNotExist: self.vote_class.objects.create(user=user, to=self, value=value) logger.debug( f"New vote ({value}) by {user} hase been created for {self}" ) return self.rating + value if current.value == value: return self.rating self.vote_class.objects.filter(to=self, user=user).delete() logger.debug(f"Vote by {user} has been deleted for {self}") return self.rating + value class AnswerVote(models.Model): timestamp = models.DateTimeField(auto_now=True) to = models.ForeignKey( "Answer", on_delete=models.CASCADE, related_name="votes", related_query_name="votes", ) user = models.ForeignKey( to=User, on_delete=models.CASCADE, related_name="%(class)ss", related_query_name="%(class)s", ) value = models.SmallIntegerField(choices=VOTE_CHOICES) class Meta: ordering = ["-timestamp"] unique_together = ["to", "user"] def __str__(self): return f"{self.user.username} {self.value:+d}" class Answer(AbstractPost): vote_class = AnswerVote is_accepted = models.BooleanField(default=False) question = models.ForeignKey( "Question", on_delete=models.CASCADE, related_name="answers", related_query_name="answer", ) def __str__(self): return f"{self.question.title} - {self.content[:50]} ..." def mark(self): """ Mark the answer as accepted. """ self.question.answers.update(is_accepted=False) self.is_accepted = True self.save(update_fields=["is_accepted"]) logger.debug( f"Answer ({self.pk}) by {self.author} has been marked " f"for question ({self.question.pk})." ) def unmark(self): """ Unmark acceptance from the answer. """ self.is_accepted = False self.save(update_fields=["is_accepted"]) logger.debug( f"Answer ({self.pk}) by {self.author} has been unmarked " f"for question ({self.question.pk})." ) class QuestionVote(models.Model): timestamp = models.DateTimeField(auto_now=True) to = models.ForeignKey( "Question", on_delete=models.CASCADE, related_name="votes", related_query_name="votes", ) user = models.ForeignKey( to=User, on_delete=models.CASCADE, related_name="%(class)ss", related_query_name="%(class)s", ) value = models.SmallIntegerField(choices=VOTE_CHOICES) class Meta: ordering = ["-timestamp"] unique_together = ["to", "user"] def __str__(self): return f"{self.user.username} {self.value:+d}" class Question(AbstractPost): vote_class = QuestionVote number_of_answers = models.IntegerField(default=0) tags = models.ManyToManyField("Tag") title = models.CharField( blank=False, max_length=settings.QUESTIONS_MAX_TITLE_LEN ) def __str__(self): return self.title @classmethod def trending(cls, count: int = 5) -> models.QuerySet: """ Returns a query set of trending questions. """ return cls.objects.order_by("-number_of_votes")[:count] def add_tags(self, tags: List[str], user) -> None: if self.pk is None: raise ValueError("Instance should be saved.") for raw_tag in tags: try: tag = Tag.objects.get(name=raw_tag) except ObjectDoesNotExist: tag = Tag.objects.create(added=user, name=raw_tag) self.tags.add(tag) logger.debug(f"Tags ({tags}) have been added to question {self.pk}") class Tag(models.Model): added = models.DateTimeField(auto_now_add=True) added_by = models.ForeignKey( User, blank=True, null=True, on_delete=models.SET_NULL, related_name="added_tags", related_query_name="added_tag", ) name = models.CharField( blank=False, max_length=settings.QUESTIONS_MAX_TAG_LEN ) def __str__(self): return self.name
27.878173
76
0.619993
5,104
0.929352
0
0
201
0.036599
0
0
1,097
0.199745
efac998014549cc9e8410daf8e8486e66ec92ef3
1,430
py
Python
backend/routers/bookmarks.py
heshikirihasebe/fastapi-instagram-clone
7bc265a62160171c5c5c1b2f18b3c86833cb64e7
[ "MIT" ]
1
2022-02-08T19:35:22.000Z
2022-02-08T19:35:22.000Z
backend/routers/bookmarks.py
heshikirihasebe/fastapi-instagram-clone
7bc265a62160171c5c5c1b2f18b3c86833cb64e7
[ "MIT" ]
null
null
null
backend/routers/bookmarks.py
heshikirihasebe/fastapi-instagram-clone
7bc265a62160171c5c5c1b2f18b3c86833cb64e7
[ "MIT" ]
null
null
null
from datetime import datetime from fastapi import APIRouter, Request from ..classes.jwt_authenticator import JWTAuthenticator from ..repositories import bookmark_repository from ..schemas.bookmark_schema import RequestSchema, ResponseSchema router = APIRouter( prefix='/bookmarks', tags=['bookmarks'], ) # Index @router.get('/') async def index(): pass # Store a new bookmark, or update if exists @router.post('/', response_model=ResponseSchema, status_code=200) async def store(request: Request, req: RequestSchema): authenticator = JWTAuthenticator() # get a user from http headers auth = await authenticator.get_current_user(request) # check the record bookmark = await bookmark_repository.select_one(user_id=auth['id'], post_id=req.post_id) if bookmark is None: # insert a new record await bookmark_repository.insert(user_id=auth['id'], post_id=req.post_id) is_bookmarked = True else: if bookmark.deleted_at is not None: # bookmark await bookmark_repository.update(user_id=auth['id'], post_id=req.post_id, deleted_at=None) is_bookmarked = True else: # unbookmark await bookmark_repository.update(user_id=auth['id'], post_id=req.post_id, deleted_at=datetime.now()) is_bookmarked = False response = ResponseSchema(is_bookmarked=is_bookmarked) return response
31.086957
112
0.706294
0
0
0
0
1,059
0.740559
976
0.682517
186
0.13007
efae6e71bf3ea6317e5681aeac0b15d509089b29
2,044
py
Python
legos/input_type.py
kamongi/legos
0b4b5b1300af6677ae4e9c642a211ba3c96726a9
[ "MIT" ]
null
null
null
legos/input_type.py
kamongi/legos
0b4b5b1300af6677ae4e9c642a211ba3c96726a9
[ "MIT" ]
null
null
null
legos/input_type.py
kamongi/legos
0b4b5b1300af6677ae4e9c642a211ba3c96726a9
[ "MIT" ]
null
null
null
import os, urllib, datetime, time, sys import getpass from franz.openrdf.sail.allegrographserver import AllegroGraphServer from franz.openrdf.repository.repository import Repository from franz.miniclient import repository from franz.openrdf.query.query import QueryLanguage from franz.openrdf.model import URI from franz.openrdf.vocabulary.rdf import RDF from franz.openrdf.vocabulary.rdfs import RDFS from franz.openrdf.vocabulary.owl import OWL from franz.openrdf.vocabulary.xmlschema import XMLSchema from franz.openrdf.query.dataset import Dataset from franz.openrdf.rio.rdfformat import RDFFormat from franz.openrdf.rio.rdfwriter import NTriplesWriter from franz.openrdf.rio.rdfxmlwriter import RDFXMLWriter class Inputs(object): """ This class service our legos tool cmd line inputs. """ def __init__(self): """ Set important default parameters to use throughout this project. """ self.username = "" self.password = "" self.agHostIp = "" self.agPort = 10035 # Default self.repoName = "" self.conn = None def createRepo(self): """ Repository.ACCESS opens an existing repository, or creates a new one if the repository is not found. """ print "\n-------\nPrelude\n-------\n" try: print "Defining connnection to AllegroGraph server -- host:'%s' port:%s" % (self.agHostIp, self.agPort) server = AllegroGraphServer(self.agHostIp, self.agPort, self.username, self.password) catalog = server.openCatalog() myRepository = catalog.getRepository(self.repoName, Repository.ACCESS) myRepository.initialize() connection = myRepository.getConnection() print "Repository <%s> is up! It contains <%i> statements.\n" % (myRepository.getDatabaseName(), connection.size()) self.conn = connection return 0 # All is well. except: print "\n***Oops ... :(\n" return -1 # Oops def recycleConns(self): """ Close any open AllegroGraph connection """ self.conn.close() connRepository = self.conn.repository connRepository.shutDown() return "\nRecycling is done.\n"
31.9375
119
0.741683
1,328
0.649706
0
0
0
0
0
0
528
0.258317
efaec7b2aeea24ccd064fbf8dcfa28faac52b446
1,635
py
Python
analysis/scripts/project_functions_Tom.py
data301-2020-winter2/course-project-group_1052
3733aacac0812811752d77e5f3d822ef5251c17b
[ "MIT" ]
null
null
null
analysis/scripts/project_functions_Tom.py
data301-2020-winter2/course-project-group_1052
3733aacac0812811752d77e5f3d822ef5251c17b
[ "MIT" ]
1
2021-03-24T17:16:52.000Z
2021-03-24T17:16:52.000Z
analysis/scripts/project_functions_Tom.py
data301-2020-winter2/course-project-group_1052
3733aacac0812811752d77e5f3d822ef5251c17b
[ "MIT" ]
null
null
null
import pandas as pd def load_and_process(path): df1 = pd.read_csv(path) df2 = ( df1.drop(columns=['songName', 'ogLyric', 'kbLyric']) .rename(columns={'badword':'badWord'}) .sort_values("ogArtist", ascending = True) .sort_values("year", ascending = True) ) return df2 def badword_count(dataframe): df1 = (pd.DataFrame(dataframe['badWord'] .value_counts()) .reset_index() .rename(columns={'index':'badWord','badWord':'frequency'}) ) return df1 def unique_word_count(dataframe): df1 = (dataframe.groupby('ogArtist')['badWord'] .nunique() .sort_values(ascending = False)) return df1 def words_per_year(dataframe): df1 = dataframe.drop(columns = ['ogArtist', 'songName', 'category', 'ogLyric', 'kbLyric', 'count']) df2 = df1.loc[(df1['badWord'] == 'fuck') | (df1['badWord'] == 'shit') |(df1['badWord'] == 'damn') |(df1['badWord'] == 'man') |(df1['badWord'] == 'kiss')] df3 = df2.value_counts() df4 = df3.reset_index() df5 = df4.rename(columns={0:'count'}) return df5 def words_per_year_T4(dataframe): df1 = dataframe.drop(columns = ['ogArtist', 'category', 'isCensored', 'isPresent', 'count']) df2 = df1.loc[(df1['badWord'] == 'fuck') | (df1['badWord'] == 'shit') |(df1['badWord'] == 'damn') |(df1['badWord'] == 'man') |(df1['badWord'] == 'kiss')] df3 = df2.value_counts() df4 = df3.reset_index() df5 = df4.rename(columns={0:'count'}) return df5
30.277778
157
0.55107
0
0
0
0
0
0
0
0
393
0.240367
efaec9e129260471f4d26372fd487df99a205a00
4,887
py
Python
utils.py
loc-trinh/GrandmasterZero
58365890fe2b0145344f17be5fb59e08c8f1993a
[ "MIT" ]
null
null
null
utils.py
loc-trinh/GrandmasterZero
58365890fe2b0145344f17be5fb59e08c8f1993a
[ "MIT" ]
null
null
null
utils.py
loc-trinh/GrandmasterZero
58365890fe2b0145344f17be5fb59e08c8f1993a
[ "MIT" ]
null
null
null
import pprint import time import chess.pgn import IPython.display as display import ipywidgets as widgets def who(player): return 'White' if player == chess.WHITE else 'Black' def get_last_move_san_from_board(board): if len(board.move_stack) == 0: return chess.Move.null() else: last_move = board.pop() move_san = board.san(last_move) board.push(last_move) return move_san def view_game(pgn_file, manual=False, pause=0.1, print_text=False): pgn_file = open(pgn_file) game = chess.pgn.read_game(pgn_file) board = game.board() mainline_moves = list(reversed(game.mainline_moves())) def print_game_info(game): print('Event:', game.headers['Event']) print('White:', game.headers['White']) print('Black:', game.headers['Black']) print('Result:', game.headers['Result']) def backward_click(event): if len(board.move_stack) == 0: return move = board.pop() mainline_moves.append(move) render(with_manual=manual) def fbackward_click(event): if len(board.move_stack) == 0: return while len(board.move_stack) > 0: move = board.pop() mainline_moves.append(move) render(with_manual=manual) def foward_click(event): if len(mainline_moves) == 0: return move = mainline_moves.pop() board.push(move) render(with_manual=manual) def ffoward_click(event): if len(mainline_moves) == 0: return while len(mainline_moves) > 0: move = mainline_moves.pop() board.push(move) render(with_manual=manual) def render(with_manual): with output: html = "<b>Move {} {}, Play '{}':</b><br/>{}".format( len(board.move_stack), who(not board.turn), get_last_move_san_from_board(board), board._repr_svg_()) display.clear_output(wait=True) display.display(display.HTML(html)) if with_manual: layout = widgets.Layout(width='95px') btn_fbackward = widgets.Button(description='<<', layout=layout) btn_backward = widgets.Button(description='<', layout=layout) btn_forward = widgets.Button(description='>', layout=layout) btn_fforward = widgets.Button(description='>>', layout=layout) display.display( widgets.HBox((btn_fbackward, btn_backward, btn_forward, btn_fforward))) btn_fbackward.on_click(fbackward_click) btn_backward.on_click(backward_click) btn_forward.on_click(foward_click) btn_fforward.on_click(ffoward_click) time.sleep(pause) print_game_info(game) if print_text: print(game.mainline_moves()) else: output = widgets.Output() display.display(output) if manual: render(with_manual=manual) else: while len(mainline_moves) > 0: move = mainline_moves.pop() board.push(move) render(with_manual=manual) time.sleep(pause) def play_game(white_player, black_player, visualize=False, move_limit=None, pause=0.1): board = chess.Board() try: while not board.is_game_over(claim_draw=True): if move_limit is not None and len(board.move_stack) >= move_limit: return (None, 'draw: reached move limit', board) if board.turn == chess.WHITE: move = white_player.move(board) else: move = black_player.move(board) board.push(move) if visualize: html = "<b>Move %s %s, Play '%s':</b><br/>%s" % ( len(board.move_stack), who(not board.turn), get_last_move_san_from_board(board), board._repr_svg_()) display.clear_output(wait=True) display.display(display.HTML(html)) time.sleep(pause) except KeyboardInterrupt: msg = 'Game interrupted!' return (None, msg, board) result = None if board.is_checkmate(): result = who(not board.turn) msg = 'checkmate: ' + result + ' wins!' elif board.is_stalemate(): msg = 'draw: stalemate' elif board.is_fivefold_repetition(): msg = 'draw: 5-fold repetition' elif board.is_insufficient_material(): msg = 'draw: insufficient material' elif board.can_claim_draw(): msg = 'draw: claim' else: raise Exception( 'error: game ended without reaching correct ending conditions') return (result, msg, board)
32.58
79
0.575609
0
0
0
0
0
0
0
0
384
0.078576
efaff942ac5c5e8e164b052efc98c4fab3a41b3b
1,401
py
Python
falco/svc/version_pb2_grpc.py
jasondellaluce/client-py
694780796289fdd20f1588d06e66c5a1b52ecb26
[ "Apache-2.0" ]
20
2019-10-14T15:01:14.000Z
2021-08-09T19:13:08.000Z
falco/svc/version_pb2_grpc.py
jasondellaluce/client-py
694780796289fdd20f1588d06e66c5a1b52ecb26
[ "Apache-2.0" ]
45
2019-10-14T14:55:30.000Z
2022-02-11T03:27:37.000Z
falco/svc/version_pb2_grpc.py
jasondellaluce/client-py
694780796289fdd20f1588d06e66c5a1b52ecb26
[ "Apache-2.0" ]
11
2019-10-14T17:41:06.000Z
2022-02-21T05:40:44.000Z
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! import grpc import version_pb2 as version__pb2 class serviceStub(object): """This service defines a RPC call to request the Falco version. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.version = channel.unary_unary( '/falco.version.service/version', request_serializer=version__pb2.request.SerializeToString, response_deserializer=version__pb2.response.FromString, ) class serviceServicer(object): """This service defines a RPC call to request the Falco version. """ def version(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_serviceServicer_to_server(servicer, server): rpc_method_handlers = { 'version': grpc.unary_unary_rpc_method_handler( servicer.version, request_deserializer=version__pb2.request.FromString, response_serializer=version__pb2.response.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'falco.version.service', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,))
28.591837
70
0.730193
802
0.572448
0
0
0
0
0
0
449
0.320485
efb0224997c2a73db24a06482baa1e76838ea1f0
2,904
py
Python
query.py
urmi-21/COVID-biorxiv
6dfe713c2634197b6c9983eb2aa3fa6676f7d045
[ "MIT" ]
2
2020-06-29T16:55:17.000Z
2020-09-21T14:00:16.000Z
query.py
urmi-21/COVID-biorxiv
6dfe713c2634197b6c9983eb2aa3fa6676f7d045
[ "MIT" ]
null
null
null
query.py
urmi-21/COVID-biorxiv
6dfe713c2634197b6c9983eb2aa3fa6676f7d045
[ "MIT" ]
1
2020-09-21T14:00:23.000Z
2020-09-21T14:00:23.000Z
import sys import json import requests import subprocess from datetime import datetime #dict storing data collection={} def execute_commandRealtime(cmd): """Execute shell command and print stdout in realtime. Function taken from pyrpipe Singh et.al. 2020 usage: for output in execute_commandRealtime(['curl','-o',outfile,link]): print (output) """ popen = subprocess.Popen(cmd, stdout=subprocess.PIPE, universal_newlines=True) for stdout_line in iter(popen.stdout.readline, ""): yield stdout_line popen.stdout.close() return_code = popen.wait() if return_code: raise subprocess.CalledProcessError(return_code, cmd) def update_collection(): ''' Download bioarxiv and medarxiv collections ''' link='https://connect.biorxiv.org/relate/collection_json.php?grp=181' outfile='collection.json' print('Downloading ...') for output in execute_commandRealtime(['curl','-o',outfile,link]): print (output) def read_collection(): ''' open file ''' filename='collection.json' with open(filename) as f: data = json.load(f) i=0 for key,value in data.items() : #print (key,":",value) if key=='rels': val=data[key] print('{} records found'.format(len(val))) return value def get_terms(): print('Available terms:') for key,value in collection[0].items(): print(key) def searchall(keywords): result=[] for k in keywords: result.extend(search(k)) return result def search(term): #search in collection is a list of dicts print('Searching',term) result=[] for d in collection: #seach in all keys for key,value in d.items(): if term.lower() in str(value).lower(): #print (d['rel_title']) result.append(d) #print('total matches: {}'.format(len(result))) return result def get_title(res): titles=[] for d in res: if not d['rel_title'] in titles: titles.append(d['rel_title']) #print(d['rel_title']) return titles def filter_date(res,startdate): ''' keep results by date ''' filtered=[] for d in res: if datetime.strptime(d['rel_date'], '%Y-%m-%d')>=startdate: filtered.append(d) return filtered #step 1 update collection downloads around 15 MB .json data #update_collection() #read collection in memory collection=read_collection() #see available terms #get_terms() #perform search #res=search(' RNA-seq') tosearch=[' RNA-seq','transcriptom','express','sequencing'] res=searchall(tosearch) print(len(res)) print(len(get_title(res))) fdate=datetime.strptime('2020-06-25', '%Y-%m-%d') print('filtering results before',fdate) final_res=get_title(filter_date(res,fdate)) print(len(final_res)) print('\n'.join(final_res))
25.034483
82
0.64084
0
0
564
0.194215
0
0
0
0
1,020
0.35124
efb3562ab2f0bc0a7a96ac315758b6464fb9c4ea
1,336
py
Python
core/server/wx_handler.py
Maru-zhang/FilmHub-Tornado
870da52cec65920565439d2d5bb1424ae614665d
[ "Apache-2.0" ]
2
2017-07-19T01:24:05.000Z
2017-07-19T09:12:46.000Z
core/server/wx_handler.py
Maru-zhang/FilmHub-Tornado
870da52cec65920565439d2d5bb1424ae614665d
[ "Apache-2.0" ]
null
null
null
core/server/wx_handler.py
Maru-zhang/FilmHub-Tornado
870da52cec65920565439d2d5bb1424ae614665d
[ "Apache-2.0" ]
1
2017-07-28T09:31:42.000Z
2017-07-28T09:31:42.000Z
import tornado.web from core.logger_helper import logger from core.server.wxauthorize import WxConfig from core.server.wxauthorize import WxAuthorServer from core.cache.tokencache import TokenCache class WxHandler(tornado.web.RequestHandler): """ 微信handler处理类 """ '''微信配置文件''' wx_config = WxConfig() '''微信网页授权server''' wx_author_server = WxAuthorServer() '''redis服务''' wx_token_cache = TokenCache() def post(self, flag): if flag == 'wxauthor': '''微信网页授权''' code = self.get_argument('code') state = self.get_argument('state') # 获取重定向的url redirect_url = self.wx_config.wx_menu_state_map[state] logger.debug('【微信网页授权】将要重定向的地址为:redirct_url[' + redirect_url + ']') logger.debug('【微信网页授权】用户同意授权,获取code>>>>code[' + code + ']state[' + state + ']') if code: # 通过code换取网页授权access_token data = self.wx_author_server.get_auth_access_token(code) openid = data['openid'] logger.debug('【微信网页授权】openid>>>>openid[' + openid + ']') if openid: # 跳到自己的业务界面 self.redirect(redirect_url) else: # 获取不到openid logger.debug('获取不到openid')
32.585366
91
0.569611
1,331
0.868799
0
0
0
0
0
0
491
0.320496
efb4030a249dafcb2be0137ce898a4f573bed62c
2,771
py
Python
Recipes/Convert_Files_Into_JSON_And_CSV/Mapping_JsonToCsvConverter.py
Lotame/DataStream_Cookbook
3ec7ded6bd1e3a59fa4d06bb76e81be9da9c97a6
[ "MIT" ]
1
2022-02-28T10:40:53.000Z
2022-02-28T10:40:53.000Z
Recipes/Convert_Files_Into_JSON_And_CSV/Mapping_JsonToCsvConverter.py
Lotame/DataStream_Cookbook
3ec7ded6bd1e3a59fa4d06bb76e81be9da9c97a6
[ "MIT" ]
2
2021-01-08T17:51:10.000Z
2021-03-29T11:36:07.000Z
Recipes/Convert_Files_Into_JSON_And_CSV/Mapping_JsonToCsvConverter.py
Lotame/DataStream_Cookbook
3ec7ded6bd1e3a59fa4d06bb76e81be9da9c97a6
[ "MIT" ]
3
2020-01-26T23:31:23.000Z
2022-02-18T19:29:30.000Z
#!/usr/bin/python # # Write in Python3.6 # Filename: # # Mapping_JsonToCsvExtractor.py # # # Basic Usage: # # python Mapping_JsonToCsvExtractor.py /directory/containing/datastream/mapping/json/files # # Utilities import sys import os import json import argparse def writeCsvHeader(delimiter, csv_file, *args): csv_file.write(delimiter.join(args)) csv_file.write("\n") # write a line to the target file def writeCsvLine(delimiter, csv_file, *args): csv_file.write(delimiter.join([str(i) for i in args])) csv_file.write("\n") def main(): parser = argparse.ArgumentParser(description='Parse the mapping json file to CSV format') parser.add_argument('--mapping_path', dest='mapping_path', required=True, help='the path for the mapping json file') parser.add_argument('--csv_name', dest='csv_name', required=False, default='mapping.csv', help='specify the file name to write the csv file') parser.add_argument('--csv_dir', dest='csv_dir', required=False, default='', help='specify the dir to write the output file') parser.add_argument('--delimiter', dest='delimiter', required=False, default='\001', help='specify the delimiter to write the output file') args = parser.parse_args() mapping_path = args.mapping_path csv_dir = args.csv_dir if args.csv_dir else mapping_path csv_name = args.csv_name delimiter = args.delimiter if not os.path.isdir(mapping_path): print("The mapping file path does not exist, confirm it again") sys.exit() if not os.path.isdir(csv_dir): print("the specific csv_dir path %s does not exist, create it now" % csv_dir) os.system("mkdir -p %s" % csv_dir) output_path = os.path.join(csv_dir, csv_name) output = open(output_path, 'w') writeCsvHeader(delimiter, output, "behavior_id", "hierarchy_path", "hierarchy_id") for file in os.listdir(mapping_path): if not file.endswith("json"): print("%s is not a json file, skip it" % file) continue file_path = os.path.join(mapping_path, file) with open(file_path, 'r') as f: for line in f: js = json.loads(line.strip()) behid = js.get('behavior_id') # if behavior id smaller than 0, it should be illegal skip if behid < 0: continue # for each hierarchy, write a line for hierpath in js.get('hierarchy_nodes', []): writeCsvHeader(delimiter, output, str(behid), str(hierpath.get("path", "")), str(hierpath.get("id", -1))) output.close() if __name__ == '__main__': sys.exit(main())
35.987013
125
0.631902
0
0
0
0
0
0
0
0
940
0.339228
efb4a4c9d9efe6b7461d24bff10a128e9ce9296a
2,692
py
Python
shuttl/__init__.py
shuttl-io/shuttl-cms
50c85db0de42e901c371561270be6425cc65eccc
[ "MIT" ]
2
2017-06-26T18:06:58.000Z
2017-10-11T21:45:29.000Z
shuttl/__init__.py
shuttl-io/shuttl-cms
50c85db0de42e901c371561270be6425cc65eccc
[ "MIT" ]
null
null
null
shuttl/__init__.py
shuttl-io/shuttl-cms
50c85db0de42e901c371561270be6425cc65eccc
[ "MIT" ]
null
null
null
import sys from flask import Flask, redirect, request, session, url_for from flask.ext.sqlalchemy import SQLAlchemy from flask.ext.login import LoginManager, current_user from flask_script import Manager from flask_migrate import Migrate, MigrateCommand from flask_wtf.csrf import CsrfProtect from .sessions import ShuttlSessionInterface app = Flask(__name__) app.config.from_object("shuttl.settings.DevelopmentConfig") app.session_interface = ShuttlSessionInterface() csrf = CsrfProtect(app) db = SQLAlchemy(app) login_manager = LoginManager() login_manager.init_app(app) from shuttl.MiddleWare import OrganizationMiddleware from .Views import * from .Models import * from .misc import shuttl, shuttlOrgs @login_manager.unauthorized_handler def unauthorized(): url = redirect(url_for("shuttlOrgs.login", organization=request.organization.sys_name)) return url @login_manager.user_loader def load_user(id): return User.query.get(int(id)) migrate = Migrate(app, db) manager = Manager(app) manager.add_command('db', MigrateCommand) from .Commands.FillDB import FillDB from .Commands.TestSuite import TestSuite from .Commands.Add import Add from .Commands.DemoFiller import DemoFiller from .Commands.ResetPublishers import ResetPublishers from .Commands.UploadToS3 import UploadS3 from .Templates.Tags import load_tags # load_tags(app.jinja_env) manager.add_command('test', TestSuite()) manager.add_command('add', Add()) manager.add_command('filldb', FillDB()) manager.add_command('demofiller', DemoFiller()) manager.add_command("resetQueue", ResetPublishers()) manager.add_command('upload', UploadS3) app.register_blueprint(shuttl) app.register_blueprint(shuttlOrgs) from .Models.Reseller import Reseller, ResellerDoesNotExist from .Models.organization import Organization, OrganizationDoesNotExistException @app.before_request def before_request(): request.organization = None # hostname = request.headers.get("host") # try: # reseller = Reseller.GetNameFromHost(hostname) # try: # hostname = request.headers.get("host").split("//", 1)[-1] # subdomain = hostname.split(".", 1)[0] # request.organization = Organization.Get(name=subdomain.replace("_", " "), vendor = reseller) # except OrganizationDoesNotExistException: # pass # pass # except ResellerDoesNotExist: # pass pass @app.teardown_request def teardown_request(exception): pass from .Models.FileTree.FileObjects.FileObject import FileObject FileObject.LoadMapper() @app.before_first_request def beforeFirstRequest(): from .Templates.Tags import load_tags load_tags(app.jinja_env)
28.041667
106
0.76523
0
0
0
0
1,003
0.372585
0
0
568
0.210996
efb55216c30cf2837e4576480260417e73138279
4,088
py
Python
main.py
DayvsonAlmeida/Programa-o-Gen-tica
6edaceab99c61f55f4157e81fcf7cbad580f81d1
[ "MIT" ]
null
null
null
main.py
DayvsonAlmeida/Programa-o-Gen-tica
6edaceab99c61f55f4157e81fcf7cbad580f81d1
[ "MIT" ]
null
null
null
main.py
DayvsonAlmeida/Programa-o-Gen-tica
6edaceab99c61f55f4157e81fcf7cbad580f81d1
[ "MIT" ]
null
null
null
from utils import initialize from pandas import DataFrame from genetic import GA import numpy as np import argparse import random import time import sys sys.setrecursionlimit(2000) random.seed(time.time()) parser = argparse.ArgumentParser() parser.add_argument('--mr', help='Mutation Rate') parser.add_argument('--cr', help='Crossover Rate') parser.add_argument('--size', help='Population Size') parser.add_argument('--ngen', help='Number of Generations') parser.add_argument('--base', help='Base de Teste [Easy, Middle, Hard, Newton, Einstein, Pythagorean]') args, unknown = parser.parse_known_args() #cls && python main.py --mr 0.05 --cr 0.8 --size 100 --ngen 5000 --base Easy #cr:[0.7, 0.75, 0.8] mr:[0.05, 0.1, 0.2] size:[10, 50, 100] mutation_rate = float(args.mr) crossover_rate = float(args.cr) size = int(args.size) ngen = int(args.ngen) test = args.base # f(x) = 2*x easy = {} easy['x'] = {'a':np.array(np.arange(100), dtype='float64')} easy['y'] = easy['x']['a']*2 easy['terminal_symb'] = ['a'] # f(x,y,z) = sqrt(x+y)+z medium = {} medium['x'] = {'x':np.array(np.arange(100), dtype='float64'), 'y':np.array(np.random.randint(100)),#, dtype='float64'), 'z':np.array(np.random.randint(100))}#, dtype='float64')} medium['y'] = (medium['x']['x']+medium['x']['y'])**0.5 + medium['x']['z'] medium['terminal_symb'] = ['x','y','z'] # f(x,y,z) = sin(x)+sqrt(y)-tan(z+x) hard = {} hard['x'] = {'x':np.array(np.arange(100), dtype='float64'), 'y':np.array(np.random.randint(100), dtype='float64'),#, dtype='float64'), 'z':np.array(np.random.randint(100), dtype='float64')}#, dtype='float64')} hard['y'] = np.sin(hard['x']['x']) + hard['x']['y']**0.5 - np.tan(hard['x']['z'] + hard['x']['x']) hard['terminal_symb'] = ['x','y','z'] #Pythagorean Theorem # c² = a²+b² pythagorean_theorem = {} pythagorean_theorem['x'] = {'a': np.array(np.random.randint(100, size=100), dtype='float64'), 'b': np.array(np.arange(100), dtype='float64')} pythagorean_theorem['y'] = pythagorean_theorem['x']['a']**2 +pythagorean_theorem['x']['b']**2 pythagorean_theorem['terminal_symb'] = ['a','b'] #Einstein's Theory of Relativity # E = m*c² # c = 299.792.458 m/s einstein_relativity = {} einstein_relativity['x'] = {'m': np.random.random(100)} einstein_relativity['y'] = einstein_relativity['x']['m']*(299792458**2) #c²=89875517873681764 einstein_relativity['terminal_symb'] = ['m'] #Newton's Universal Law of Gravitation # F = G*m1*m2/d² G = 6.674*10E-11 newton_law = {} newton_law['x'] = {'m1': 10*np.array(np.random.random(100), dtype='float64'), 'm2': np.array(np.random.randint(100, size=100), dtype='float64'), 'd': np.array(np.random.randint(100, size=100)+np.random.rand(100)+10E-11, dtype='float64')} newton_law['y'] = (newton_law['x']['m1']*newton_law['x']['m2']*G)/(newton_law['x']['d']**2) newton_law['terminal_symb'] = ['m1','m2','d'] base = {'Easy': easy, 'Pythagorean':pythagorean_theorem, 'Middle': medium, 'Hard': hard, 'Newton': newton_law, "Einstein": einstein_relativity} #cr:[0.7, 0.75, 0.8] mr:[0.05, 0.1, 0.2] size:[10, 50, 100] results = {} duration = {} ngen = 2000 for test in ['Hard']:#,'Hard','Hard']: for crossover_rate in [0.7, 0.8]: for mutation_rate in [0.05]:#, 0.1, 0.2]: for size in [10, 100]: ga = GA(terminal_symb=base[test]['terminal_symb'], x=base[test]['x'], y=base[test]['y'], size=size, num_generations=ngen, crossover_rate=crossover_rate, mutation_rate=mutation_rate, early_stop=0.1) ga.run() loss = ga.loss_history loss = np.concatenate((loss, [loss[len(loss)-1] for i in range(ngen - len(loss))] ) ) results[test+'_cr_'+str(crossover_rate)+'_mr_'+str(mutation_rate)+'_size_'+str(size)] = loss duration[test+'_cr_'+str(crossover_rate)+'_mr_'+str(mutation_rate)+'_size_'+str(size)] = [ga.duration] df = DataFrame(results) df.to_csv('Resultados Hard GA.csv', index=False, decimal=',', sep=';') df = DataFrame(duration) df.to_csv('Duração Hard GA.csv', index=False, decimal=',', sep=';')
40.88
107
0.634785
0
0
0
0
0
0
0
0
1,307
0.319092
efb70cec858af5a7d681ffd1896f1dd46735a318
1,774
py
Python
Dictionary.py
edisoncast/DES-UOC
cd179e21c03ad780c9ea3876a6219c32b8e34cad
[ "MIT" ]
null
null
null
Dictionary.py
edisoncast/DES-UOC
cd179e21c03ad780c9ea3876a6219c32b8e34cad
[ "MIT" ]
null
null
null
Dictionary.py
edisoncast/DES-UOC
cd179e21c03ad780c9ea3876a6219c32b8e34cad
[ "MIT" ]
null
null
null
#Creado por Jhon Edison Castro Sánchez #Diccionario tomado de https://github.com/danielmiessler/SecLists/blob/bb915befb208fd900592bb5a25d0c5e4f869f8ea/Passwords/Leaked-Databases/rockyou.txt.tar.gz #Se usa para generar el mismo comportamiento de openssl de linux #https://docs.python.org/2/library/crypt.html import crypt #Funcion que me permite generar los hash de las palabras de 8 caracteres #Se usa el hash dado en la PEC #La salida es un archivo con un par de valores por linea #la primera es el hash y al frente el valor del password en texto plano def generateHash(filename, outputfilename, salt): with open(outputfilename, "w") as out: with open(filename,'r')as f: for line in f: Hash = crypt.crypt(line, salt) result = " ".join([Hash, line]) print result out.write(result + "\n") #Funcion que recibe el archivo de entrada y el de salida y llama a otra funcion #que valida el tamaño de los strings def DESDictionary(filename,outputFile): plaintext = inputText(filename, outputFile) #Funcion que verifica cada linea y si es de 8 caracteres me genera un archivo nuevo #Con esto ya puedo generar los hash y comparar. def inputText(filename, outputfilename): with open(outputfilename, "w") as out: with open(filename,'r')as f: for line in f: if len(" ".join(line.split())) == 8: print line out.write(line) #Llamado a las funciones if __name__ == "__main__": with open('rockyou.txt','r')as f: text = f.read() DESDictionary('rockyou.txt','pec1.txt') salt1='tl' salt2='as' generateHash('pec1.txt','hashed1.txt', salt1) generateHash('pec1.txt','hashed2.txt', salt2)
39.422222
157
0.673055
0
0
0
0
0
0
0
0
929
0.523086
efb866a60e5d0e5a7b79c81d5acd283c1c39df92
227
py
Python
.test/test/task1/aufgabe4.py
sowinski/testsubtree
d09b72e6b366e8e29e038445a1fa6987b2456625
[ "MIT" ]
null
null
null
.test/test/task1/aufgabe4.py
sowinski/testsubtree
d09b72e6b366e8e29e038445a1fa6987b2456625
[ "MIT" ]
null
null
null
.test/test/task1/aufgabe4.py
sowinski/testsubtree
d09b72e6b366e8e29e038445a1fa6987b2456625
[ "MIT" ]
null
null
null
from nltk.book import * def letterFrequ(text): freq_dist = FreqDist() for word in text: for char in word: freq_dist.inc(char) return freq_dist print letterFrequ(text1) print letterFrequ(text5)
15.133333
26
0.669604
0
0
0
0
0
0
0
0
0
0
efbe9e033668c8068ec57cb141083c350416dc90
1,668
py
Python
src/controllers/userController.py
gioliveirass/fatec-BDNR-MercadoLivre
dd2c407f6728e4f11e8292463cc2ba3ad562de1e
[ "MIT" ]
null
null
null
src/controllers/userController.py
gioliveirass/fatec-BDNR-MercadoLivre
dd2c407f6728e4f11e8292463cc2ba3ad562de1e
[ "MIT" ]
null
null
null
src/controllers/userController.py
gioliveirass/fatec-BDNR-MercadoLivre
dd2c407f6728e4f11e8292463cc2ba3ad562de1e
[ "MIT" ]
null
null
null
import connectBD as connectDB from pprint import pprint def findSort(): mydb = connectDB.connect() mycol = mydb.usuario print("\n===========================") print("==== TODOS OS USUARIOS ====") print("===========================\n") mydoc = mycol.find().sort("nome") for x in mydoc: pprint(x) def insert(name, cpf): mydb = connectDB.connect() mycol = mydb.usuario print("\n=========================") print("=== USUARIO INSERIDO ===") print("=========================\n") mydict = { "nome": name, "cpf": cpf } x = mycol.insert_one(mydict) pprint(x.inserted_id) print("Usuario cadastrado com sucesso.") def findQuery(name): mydb = connectDB.connect() mycol = mydb.usuario print("\n=========================") print("==== USUARIO BUSCADO ====") print("=========================\n") myquery = { "nome": name } mydoc = mycol.find(myquery) for x in mydoc: pprint(x) def update(name, newName): mydb = connectDB.connect() mycol = mydb.usuario print("\n============================") print("==== USUARIO ATUALIZADO ====") print("============================\n") myquery = { "nome": name } newvalues = { "$set": { "nome": newName } } mycol.update_one(myquery, newvalues) pprint("Usuario atualizado com sucesso.") def delete(name): mydb = connectDB.connect() mycol = mydb.usuario print("\n==========================") print("==== USUARIO DELETADO ====") print("==========================\n") myquery = { "nome": name } mycol.delete_one(myquery) pprint("Usuario deletado com sucesso.")
30.327273
49
0.492206
0
0
0
0
0
0
0
0
586
0.351319
efc074386633ac80149d8065fe9a27e3e95d188c
374
py
Python
models/sample.py
OttrOne/suivi
9e53a39b0f50054b89cb960eb9055fd0a28a5ebf
[ "MIT" ]
null
null
null
models/sample.py
OttrOne/suivi
9e53a39b0f50054b89cb960eb9055fd0a28a5ebf
[ "MIT" ]
2
2022-01-11T15:50:04.000Z
2022-01-13T01:53:53.000Z
models/sample.py
OttrOne/suivi
9e53a39b0f50054b89cb960eb9055fd0a28a5ebf
[ "MIT" ]
null
null
null
from utils import hrsize from time import time_ns class Sample: cpu : float memory: int round: int = 5 def __init__(self, cpu: int, mem: int) -> None: self.cpu = cpu self.memory = mem self.timestamp = time_ns() def __str__(self) -> str: return f"CPU: {round(self.cpu * 100.0,self.round)}%, MEM: {hrsize(self.memory)}"
22
88
0.59893
322
0.860963
0
0
0
0
0
0
73
0.195187
efc4891e8e505e8dc24f5447323153c9667f9326
1,220
py
Python
file-convertors/pdf-to-image/pdf_to_image.py
fraserlove/python-productivity-scripts
4a667446250042b01e307c7e4be53defc905207e
[ "MIT" ]
null
null
null
file-convertors/pdf-to-image/pdf_to_image.py
fraserlove/python-productivity-scripts
4a667446250042b01e307c7e4be53defc905207e
[ "MIT" ]
null
null
null
file-convertors/pdf-to-image/pdf_to_image.py
fraserlove/python-productivity-scripts
4a667446250042b01e307c7e4be53defc905207e
[ "MIT" ]
null
null
null
''' PDF to Image Converter Author: Fraser Love, [email protected] Created: 2020-06-13 Latest Release: v1.0.1, 2020-06-21 Python: v3.6.9 Dependancies: pdf2image Converts multiple pdf's to images (JPEG format) and stores them in a logical folder structure under the desired image directory. Usage: Update the pdf_dir and img_dir paths to point to the directory that holds the pdf files and the directory that the generated images should be placed under. ''' from pdf2image import convert_from_path import os pdf_dir = 'pdfs/' # Include trailing forward slash img_dir = 'images/' first_page_only = True # Only convert the first page of the pdf to an image pdf_names = [pdf_name.split('.')[0] for pdf_name in os.listdir(pdf_dir) if pdf_name[-4:] == ".pdf"] for pdf_name in pdf_names: pages = convert_from_path('{}{}.pdf'.format(pdf_dir, pdf_name)) if first_page_only: pages[0].save('{}/{}.jpg'.format(img_dir, pdf_name), 'JPEG') else: directory = '{}{}'.format(img_dir, pdf_name) if not os.path.exists(directory): os.makedirs(directory) for i, page in enumerate(pages): page.save('{}{}/{}-{}.jpg'.format(img_dir, pdf_name, pdf_name, i), 'JPEG')
36.969697
128
0.694262
0
0
0
0
0
0
0
0
625
0.512295
efc5229f2a8966dc64e04e1c67caf2f4bee4df93
4,217
py
Python
tests/test/search/test_references_searcher_string.py
watermelonwolverine/fvttmv
8689d47d1f904dd2bf0a083de515fda65713c460
[ "MIT" ]
1
2022-03-30T19:12:14.000Z
2022-03-30T19:12:14.000Z
tests/test/search/test_references_searcher_string.py
watermelonwolverine/fvttmv
8689d47d1f904dd2bf0a083de515fda65713c460
[ "MIT" ]
null
null
null
tests/test/search/test_references_searcher_string.py
watermelonwolverine/fvttmv
8689d47d1f904dd2bf0a083de515fda65713c460
[ "MIT" ]
null
null
null
from fvttmv.exceptions import FvttmvException from fvttmv.reference_tools import ReferenceTools from fvttmv.search.__references_searcher_string import ReferencesSearcherString from test.common import TestCase class ReferencesSearcherStringTest(TestCase): json_base_str = "\"img\":\"{0}\"" html_base_str = "<img src=\\\"{0}\\\">" reference = "this/is/just/a/test" json_str = json_base_str.format(reference) html_str = html_base_str.format(reference) def test_contain_json_references(self): print("test_contain_json_references") result = ReferencesSearcherString._does_contain_json_references(self.json_str, self.reference) self.assertTrue(result) def test_contain_json_references2(self): print("test_contain_json_references2") result = ReferencesSearcherString._does_contain_json_references(self.json_str, "this/is/just/a") self.assertFalse(result) def test_contain_json_references3(self): print("test_contain_json_references3") result = ReferencesSearcherString._does_contain_json_references(self.json_str, "this/is/a/false/test") self.assertFalse(result) def test_contain_json_references4(self): print("test_contain_json_references4") result = ReferencesSearcherString._does_contain_json_references(self.html_str, self.reference) self.assertFalse(result) def test_contain_html_references1(self): print("test_contain_html_references1") result = ReferencesSearcherString._does_contain_html_references(self.html_str, self.reference) self.assertTrue(result) def test_contain_html_references2(self): print("test_contain_html_references2") result = ReferencesSearcherString._does_contain_html_references(self.html_str, "this/is/just/a") self.assertFalse(result) def test_contain_html_references3(self): print("test_contain_html_references3") result = ReferencesSearcherString._does_contain_html_references(self.html_str, "this/is/a/false/test") self.assertFalse(result) def test_contain_html_references4(self): print("test_contain_html_references4") result = ReferencesSearcherString._does_contain_html_references(self.json_str, self.reference) self.assertFalse(result) def test_contain_references1(self): print("test_contain_references1") result = ReferencesSearcherString.does_contain_references(self.html_str + self.json_str, self.reference) self.assertTrue(result) def test_contain_references2(self): print("test_contain_references2") result = ReferencesSearcherString.does_contain_references(self.html_str + self.json_str, "this/is/just/a") self.assertFalse(result) def test_contain_references3(self): print("test_contain_references3") result = ReferencesSearcherString.does_contain_references(self.html_str + self.json_str, "this/is/a/false/test") self.assertFalse(result) def test_does_references_exceptions(self): print("test_does_contain_html_references_exceptions") for char in ReferenceTools.illegal_chars: try: ReferencesSearcherString.does_contain_references(self.json_str, char) self.fail() except FvttmvException: pass
40.548077
96
0.591653
4,005
0.949727
0
0
0
0
0
0
546
0.129476
efc64b0b3d469f8a4e23675a9039dc1fed37be48
4,999
py
Python
vtk.py
becklabs/geotag-gui
c8b1c3a0c6ca0c3eed09fab69d9dbb8b974b1b03
[ "MIT" ]
null
null
null
vtk.py
becklabs/geotag-gui
c8b1c3a0c6ca0c3eed09fab69d9dbb8b974b1b03
[ "MIT" ]
null
null
null
vtk.py
becklabs/geotag-gui
c8b1c3a0c6ca0c3eed09fab69d9dbb8b974b1b03
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Wed Aug 19 19:50:43 2020 @author: beck """ import cv2 import datetime import dateparser import os import sys import pandas as pd import pytz from hachoir.parser import createParser from hachoir.metadata import extractMetadata from PIL import Image import numpy as np import pytesseract import imutils import time from GPSPhoto import gpsphoto from threading import Thread def firstFrame(video): if 'timestamp_frame' not in os.listdir(os.getcwd()): os.mkdir('timestamp_frame/') video_capture = cv2.VideoCapture(video) file = 'timestamp_frame/'+video+'_'+ str(0)+'.jpg' while(True): ret, frame = video_capture.read() if not ret: break im = frame break video_capture.release() PIL_image = Image.fromarray(im.astype('uint8'), 'RGB') return PIL_image def formatFrame(image, LEFT = 50, TOP = 20, RIGHT = 250, BOTTOM = 90): image = image.crop((LEFT, TOP, RIGHT, BOTTOM)) image = np.array(image.convert('RGB'))[:, :, ::-1].copy() image = imutils.resize(image, width=500) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1] return thresh def getCreationDate(filename, config): if config == 'trident': pytesseract.pytesseract.tesseract_cmd = 'Tesseract-OCR\\tesseract.exe' image = formatFrame(firstFrame(filename)) data = pytesseract.image_to_string(image, lang='eng',config='--psm 6') data_str = str(data).split('\n') metadata = dateparser.parse(data_str[0]+ ' '+data_str[1]) else: parser = createParser(filename) metadata = extractMetadata(parser).get('creation_date') return metadata def getOffsets(file): #GET DELTA SECONDS FOR EVERY FRAME cap = cv2.VideoCapture(file) totalframes = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) fps = int(cap.get(cv2.CAP_PROP_FPS)) offsets = [0] for i in range(totalframes-1): offsets.append(offsets[-1]+1000/fps) offsets = [datetime.timedelta(milliseconds=i) for i in offsets] return offsets def getTimestamps(file, config): offsets = getOffsets(file) creationdate = getCreationDate(file, config) #CALCULATE TIMESTAMPS timestamps = [(creationdate+offset).replace(tzinfo = pytz.timezone('UTC')) for offset in offsets] #GENERATE FRAME NAMES frames = [file.split('/')[-1]+'_'+str(i)+'.jpg' for i in range(len(timestamps))] #EXPORT DATA AS CSV df = pd.DataFrame() df['Frame'] = frames df['Timestamp'] = timestamps return df def getFps(file): cap = cv2.VideoCapture(file) return int(cap.get(cv2.CAP_PROP_FPS)) class Writer: def __init__(self, stream, export_path, taggedDF, parent, controller): self.taggedDF = taggedDF.reset_index() self.export_path = export_path self.taggedList = [self.taggedDF.loc[i,'Frame'] for i in range(len(self.taggedDF['Frame']))] self.frame_inds = [int(i.split('.')[1].split('_')[1]) for i in self.taggedList] self.parent = parent self.controller = controller self.stream = cv2.VideoCapture(stream) self.thread = Thread(target=self.write, args=()) self.thread.setDaemon(True) def write(self): i = 0 for frame_ind in self.frame_inds: self.stream.set(cv2.CAP_PROP_POS_FRAMES, frame_ind) (grabbed, frame) = self.stream.read() frame_path = self.export_path+self.taggedList[self.frame_inds.index(frame_ind)] cv2.imwrite(frame_path, frame) #ADD METADATA photo = gpsphoto.GPSPhoto(frame_path) info = gpsphoto.GPSInfo((self.taggedDF.loc[i, 'Latitude'], self.taggedDF.loc[i, 'Longitude']), timeStamp=self.taggedDF.loc[i, 'Timestamp'], alt=int(self.taggedDF.loc[i, 'Elevation'])) photo.modGPSData(info, frame_path) self.parent.num+=1 i+=1 self.parent.e_status.set('Writing: '+str(self.parent.num)+'/'+str(self.parent.denom)) self.stream.release() return def createFrames(path, export_path, taggedDF, parent, controller): x = len(taggedDF) a = int(round(x/3)) b = int(a*2) writer1 = Writer(path, export_path, taggedDF.iloc[:a], parent, controller) writer2 = Writer(path, export_path, taggedDF.iloc[a:b], parent, controller) writer3 = Writer(path, export_path, taggedDF.iloc[b:], parent, controller) writer1.thread.start() writer2.thread.start() writer3.thread.start() writer1.thread.join() writer2.thread.join() writer3.thread.join() parent.e_status.set('Done')
35.707143
102
0.619324
1,555
0.311062
0
0
0
0
0
0
471
0.094219
efc6952d49bfc96baa0e1e3a017cc887fba50c18
4,237
py
Python
ROS_fall_detection/src/detector.py
SeanChen0220/Posefall
f27eedc0a624cc2875d14ffa276cf96cdfc1b410
[ "MIT" ]
15
2021-08-08T08:41:54.000Z
2022-03-30T10:12:49.000Z
ROS_fall_detection/src/detector.py
SeanChen0220/Posefall
f27eedc0a624cc2875d14ffa276cf96cdfc1b410
[ "MIT" ]
1
2021-11-24T16:51:51.000Z
2021-12-03T06:20:11.000Z
ROS_fall_detection/src/detector.py
SeanChen0220/Posefall
f27eedc0a624cc2875d14ffa276cf96cdfc1b410
[ "MIT" ]
3
2021-08-08T08:41:55.000Z
2022-03-15T07:28:53.000Z
#! /home/seanchen/anaconda3/bin/python from __future__ import absolute_import from __future__ import division from __future__ import print_function #import sys import rospy from std_msgs.msg import String import torch import torch.nn.parallel import torch.nn.functional as F import numpy as np import cv2 from LPN import LPN from fall_net import Fall_Net from pose_utils import Cropmyimage from pose_utils import Drawkeypoints import plot_sen from time import * from sensor_msgs.msg import Image from cv_bridge import CvBridge, CvBridgeError #sys.path.remove('/opt/ros/kinetic/lib/python2.7/dist-packages') global cam_image def callback(data): try: global cam_image cam_image = np.frombuffer(data.data, dtype=np.uint8).reshape((data.height, data.width, -1)) #print(cam_image.shape) # show_image = bridge.imgmsg_to_cv2(data, "bgr8") except CvBridgeError as e: print(e) if __name__ == '__main__': rospy.init_node('detector', anonymous=True) pub = rospy.Publisher('det_result', Image, queue_size=10) rospy.Subscriber('cam_image', Image, callback) rate = rospy.Rate(50) # 10hz # model pose_net = LPN(nJoints=17) pose_net.load_state_dict(torch.load('/home/seanchen/robot_fall_det/pose_net_pred100.pth.tar')) pose_net.cuda() fall_net = Fall_Net(64, 48, 17, device=torch.device('cuda')) fall_net.cuda().double() fall_net.load_state_dict(torch.load('/home/seanchen/robot_fall_det/fall_net_pred5.pth.tar')) pose_net.eval() fall_net.eval() print('Load successfully!') bridge = CvBridge() global cam_image cam_image = np.array([]) fall_count = [] while not rospy.is_shutdown(): rate.sleep() if not cam_image.any(): print('waiting!') continue start = time() # 每来一张图检测一次,更新显示 # image initialize #photo_file = '/home/seanchen/robot_fall_det/fall1.jpg' #input = cv2.imread(photo_file)# cv2 返回np.array类型,为(w,h,channel) input = cam_image bbox = [0, 0, input.shape[1], input.shape[0]] input_image, details = Cropmyimage(input, bbox) input_image = np.array([input_image.numpy()]) #print(input_image.shape) input_image = torch.from_numpy(input_image) #input_image.cuda() # get posedetails pose_out = pose_net(input_image.cuda()) fall_out, pose_cor = fall_net(pose_out) # 跌倒结果计算 # 姿态可视化 neck = (pose_cor[:, 5:6, :] + pose_cor[:, 6:7, :]) / 2 pose_cor = torch.cat((pose_cor, neck), dim=1) pose_cor = pose_cor * 4 + 2. scale = torch.Tensor([[256, 192]]).cuda() pose_cor = pose_cor / scale scale = torch.Tensor([[details[3]-details[1], details[2]-details[0]]]).cuda() pose_cor = pose_cor * scale scale = torch.Tensor([[details[1], details[0]]]).cuda() pose_cor = pose_cor + scale #pose_cor_1 = (4*pose_cor[:, :, 0]+2.)/64*(details[3]-details[1])/4+details[1] #pose_cor_2 = (4*pose_cor[:, :, 1]+2.)/48*(details[2]-details[0])/4+details[0] pose_cor = torch.flip(pose_cor, dims=[2]) ones = torch.ones(1, 18, 1).cuda() pose_cor = torch.cat((pose_cor, ones), dim=2).cpu().detach().numpy() #det_result = torch.zeros(64, 48, 3).numpy() det_result = plot_sen.plot_poses(input, pose_cor) #print(det_result.shape) # 跌倒估计 #if fall_out.indices == 1: # print('Down!') #if fall_out.indices == 0: # print('Not Down!') fall_out = torch.max(F.softmax(fall_out, dim=0), dim=0) fall_count.append(fall_out.indices) fall_dis = sum(fall_count[len(fall_count)-30 : len(fall_count)]) #print(len(fall_count)) end = time() run_time = end-start if fall_dis > 24: print('Normal!', 1. / run_time) else: print('Down!', 1. / run_time) det_result = bridge.cv2_to_imgmsg(det_result, encoding="passthrough") pub.publish(det_result) #print(1. / run_time) # spin() simply keeps python from exiting until this node is stopped #rospy.spin() #while True: #pass
35.605042
99
0.630399
0
0
0
0
0
0
0
0
1,182
0.274437
efc705c5b7dd44b358486c8f4931ee3c4faede41
3,696
py
Python
tensorflow1.x/sound_conv.py
wikeex/tensorflow-learning
a6ab7c99455711e9f3c015e0abb04fa58342e0cb
[ "MIT" ]
null
null
null
tensorflow1.x/sound_conv.py
wikeex/tensorflow-learning
a6ab7c99455711e9f3c015e0abb04fa58342e0cb
[ "MIT" ]
null
null
null
tensorflow1.x/sound_conv.py
wikeex/tensorflow-learning
a6ab7c99455711e9f3c015e0abb04fa58342e0cb
[ "MIT" ]
null
null
null
import tensorflow as tf from sound_lstm_test import data batch_size = 10 x = tf.placeholder(tf.float32, [batch_size, 512, 80]) y_ = tf.placeholder(tf.float32, [batch_size, 59]) w_conv1 = tf.Variable(tf.truncated_normal([16, 2, 1, 64], stddev=0.1), name='conv1_w') b_conv1 = tf.Variable(tf.constant(0.1, shape=[64]), name='conv1_b') x_image = tf.reshape(x, [-1, 512, 80, 1]) h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, w_conv1, strides=[1, 2, 1, 1], padding='VALID') + b_conv1) h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') w_conv2 = tf.Variable(tf.truncated_normal([2, 16, 64, 128], stddev=0.1), name='conv2_w') b_conv2 = tf.Variable(tf.constant(0.1, shape=[128]), name='conv2_b') h_conv2 = tf.nn.relu(tf.nn.conv2d(h_pool1, w_conv2, strides=[1, 1, 1, 1], padding='VALID') + b_conv2) h_pool2 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') w_fc1 = tf.Variable(tf.truncated_normal([61 * 12 * 128, 1024], stddev=0.1), name='fc1_w') b_fc1 = tf.Variable(tf.constant(0.1, shape=[1024]), name='fc1_b') h_pool2_flat = tf.reshape(h_pool2, [-1, 61 * 12 * 128]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1) rate = tf.placeholder(tf.float32) h_fc1_drop = tf.nn.dropout(h_fc1, rate=rate) w_fc2 = tf.Variable(tf.truncated_normal([1024, 59], stddev=0.1), name='fc2_w') b_fc2 = tf.Variable(tf.constant(0.1, shape=[59]), name='fc2_b') y_conv = tf.matmul(h_fc1_drop, w_fc2) + b_fc2 variables = tf.trainable_variables() conv1_variable = [t for t in variables if t.name.startswith('conv1')] conv2_variable = [t for t in variables if t.name.startswith('conv2')] fc1_variable = [t for t in variables if t.name.startswith('fc1')] fc2_variable = [t for t in variables if t.name.startswith('fc2')] correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.arg_max(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_, logits=y_conv)) grads_conv1, _ = tf.clip_by_global_norm(tf.gradients(loss, conv1_variable), clip_norm=5) grads_conv2, _ = tf.clip_by_global_norm(tf.gradients(loss, conv2_variable), clip_norm=5) grads_fc1, _ = tf.clip_by_global_norm(tf.gradients(loss, fc1_variable), clip_norm=5) grads, _ = tf.clip_by_global_norm(tf.gradients(loss, variables), clip_norm=5) conv1_optimizer = tf.train.AdamOptimizer(0.001) conv2_optimizer = tf.train.AdamOptimizer(0.001) fc1_optimizer = tf.train.AdamOptimizer(0.001) fc2_optimizer = tf.train.AdamOptimizer(0.001) optimizer = tf.train.AdamOptimizer(0.001) conv1_op = conv1_optimizer.apply_gradients(zip(grads_conv1, conv1_variable)) conv2_op = conv2_optimizer.apply_gradients(zip(grads_conv2, conv2_variable)) fc1_op = fc1_optimizer.apply_gradients(zip(grads_fc1, fc1_variable)) fc2_op = fc2_optimizer.apply_gradients(zip(grads_fc2, fc2_variable)) op = optimizer.apply_gradients(zip(grads, variables)) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) train_data = data.np_load(batch_size=10, batch_type='train/') test_data = data.np_load(batch_size=10, batch_type='test/') for i in range(1000): for _ in range(100): input_, label = next(train_data) sess.run([conv1_op, conv2_op, fc1_op, fc2_op], feed_dict={x: input_, y_: label, rate: 0}) test_total_accuracy = 0 for i in range(10): test_input_, test_label = next(test_data) test_accuracy, _ = sess.run([accuracy, tf.no_op()], feed_dict={x: test_input_, y_: test_label, rate: 0}) test_total_accuracy += test_accuracy print('测试集准确度:%.3f' % (test_total_accuracy / 10))
44.53012
116
0.717532
0
0
0
0
0
0
0
0
158
0.042588
efc7713fd5edcdf52845e8c0b576613822945b28
2,213
py
Python
interviewPractice/python/02_linkedLists/03_addTwoHugeNumbers.py
netor27/codefights-arcade-solutions
69701ab06d45902c79ec9221137f90b75969d8c8
[ "MIT" ]
null
null
null
interviewPractice/python/02_linkedLists/03_addTwoHugeNumbers.py
netor27/codefights-arcade-solutions
69701ab06d45902c79ec9221137f90b75969d8c8
[ "MIT" ]
null
null
null
interviewPractice/python/02_linkedLists/03_addTwoHugeNumbers.py
netor27/codefights-arcade-solutions
69701ab06d45902c79ec9221137f90b75969d8c8
[ "MIT" ]
null
null
null
'''' You're given 2 huge integers represented by linked lists. Each linked list element is a number from 0 to 9999 that represents a number with exactly 4 digits. The represented number might have leading zeros. Your task is to add up these huge integers and return the result in the same format. Example For a = [9876, 5432, 1999] and b = [1, 8001], the output should be addTwoHugeNumbers(a, b) = [9876, 5434, 0]. Explanation: 987654321999 + 18001 = 987654340000. For a = [123, 4, 5] and b = [100, 100, 100], the output should be addTwoHugeNumbers(a, b) = [223, 104, 105]. Explanation: 12300040005 + 10001000100 = 22301040105. Input/Output [execution time limit] 4 seconds (py3) [input] linkedlist.integer a The first number, without its leading zeros. Guaranteed constraints: 0 ≤ a size ≤ 104, 0 ≤ element value ≤ 9999. [input] linkedlist.integer b The second number, without its leading zeros. Guaranteed constraints: 0 ≤ b size ≤ 104, 0 ≤ element value ≤ 9999. [output] linkedlist.integer The result of adding a and b together, returned without leading zeros in the same format. '''' # Definition for singly-linked list: class ListNode(object): def __init__(self, x): self.value = x self.next = None def addTwoHugeNumbers(a, b): a = reverseList(a) b = reverseList(b) helper = ListNode(None) r = helper carry = 0 while a != None or b != None or carry > 0: aValue = 0 if a == None else a.value bValue = 0 if b == None else b.value total = aValue + bValue + carry carry = total // 10000 total = total % 10000 r.next = ListNode(total) r = r.next if a != None: a = a.next if b != None: b = b.next return reverseList(helper.next) def reverseList(a): if a == None: return None stack = [] while a != None: stack.append(a.value) a = a.next r = ListNode(stack.pop()) head = r while len(stack) > 0: r.next = ListNode(stack.pop()) r = r.next return head def printList(a): while a != None: print (a.value) a = a.next
24.054348
291
0.615002
0
0
0
0
0
0
0
0
1,155
0.51817
efc7a9d58bb127091a58a8679f3c1f9062aeca6a
3,123
py
Python
src/ensae_projects/datainc/data_medical.py
sdpython/ensae_projects
9647751da053c09fa35402527b294e02a4e6e2ad
[ "MIT" ]
1
2020-11-22T10:24:54.000Z
2020-11-22T10:24:54.000Z
src/ensae_projects/datainc/data_medical.py
sdpython/ensae_projects
9647751da053c09fa35402527b294e02a4e6e2ad
[ "MIT" ]
13
2017-11-20T00:20:45.000Z
2021-01-05T14:13:51.000Z
src/ensae_projects/datainc/data_medical.py
sdpython/ensae_projects
9647751da053c09fa35402527b294e02a4e6e2ad
[ "MIT" ]
null
null
null
""" @file @brief Functions to handle data coming from :epkg:`Cancer Imaging Archive`. """ import os import pydicom import pandas import cv2 from pyquickhelper.filehelper.synchelper import explore_folder_iterfile # pylint: disable=C0411 def _recurse_fill(obs, dataset, parent=""): for data_element in dataset: if isinstance(data_element.value, bytes): continue if data_element.VR == "SQ": # a sequence name = data_element.name for i, ds in enumerate(data_element.value): _recurse_fill(obs, ds, parent="{parent}.{name}[{i}]".format( parent=parent, name=name, i=i)) else: text = str(data_element.value) name = str(data_element.name) key = name if parent == '' else parent + "." + name obs[key] = text def convert_dcm2png(folder, dest, fLOG=None): """ Converts all medical images in a folder from format :epkg:`dcm` to :epkg:`png`. @param folder source folder @param dest destination folder @param fLOG logging function @return :epkg:`pandas:DataFrame` with many data The function uses module :epkg:`pydicom`. """ if not os.path.exists(dest): raise FileNotFoundError("Unable to find folder '{}'.".format(dest)) if fLOG is not None: fLOG("[convert_dcm2png] convert dcm files from '{}'.".format(folder)) fLOG("[convert_dcm2png] into '{}'.".format(dest)) done = {} rows = [] for name in explore_folder_iterfile(folder, ".*[.]dcm$"): relname = os.path.relpath(name, folder) if fLOG is not None: fLOG("[convert_dcm2png] read {}: '{}'.".format( len(rows) + 1, relname)) f1 = relname.replace("\\", "/").split("/")[0] name_ = "img_%06d.png" % len(done) if "_" in f1: sub = f1.split('_')[0] fsub = os.path.join(dest, sub) if not os.path.exists(fsub): if fLOG is not None: fLOG("[convert_dcm2png] create folder '{}'.".format(sub)) os.mkdir(fsub) new_name = os.path.join(sub, name_) else: new_name = name_ # read ds = pydicom.dcmread(name) # data obs = dict(_src=relname, _dest=new_name, _size=len(ds.pixel_array)) _recurse_fill(obs, ds) rows.append(obs) # image full_name = os.path.join(dest, new_name) if os.path.exists(full_name): done[name] = full_name continue pixel_array_numpy = ds.pixel_array cv2.imwrite(full_name, pixel_array_numpy) # pylint: disable=E1101 done[name] = full_name final = os.path.join(dest, "_summary.csv") if fLOG is not None: fLOG("[convert_dcm2png] converted {} images.".format(len(rows))) fLOG("[convert_dcm2png] write '{}'.".format(final)) df = pandas.DataFrame(rows) df.to_csv(final, index=False, encoding="utf-8") return df
33.945652
96
0.565802
0
0
0
0
0
0
0
0
861
0.275696
efca70e500dca1e2e95cfa22dacbadf959220409
8,743
py
Python
preprocessing_data.py
sharathrao13/seq2seq
0768ea0b765ed93617a8e9e5cb907deae042c83d
[ "Apache-2.0" ]
1
2021-02-12T00:01:45.000Z
2021-02-12T00:01:45.000Z
preprocessing_data.py
sharathrao13/seq2seq
0768ea0b765ed93617a8e9e5cb907deae042c83d
[ "Apache-2.0" ]
null
null
null
preprocessing_data.py
sharathrao13/seq2seq
0768ea0b765ed93617a8e9e5cb907deae042c83d
[ "Apache-2.0" ]
null
null
null
import re import collections import shutil from tensorflow.python.platform import gfile num_movie_scripts = 10 vocabulary_size = 10000 fraction_dev = 50 path_for_x_train = 'X_train.txt' path_for_y_train = 'y_train.txt' path_for_x_dev = 'X_dev.txt' path_for_y_dev = 'y_dev.txt' _PAD = b"_PAD" _GO = b"_GO" _EOS = b"_EOS" _UNK = b"_UNK" _START_VOCAB = [_PAD, _GO, _EOS, _UNK] PAD_ID = 0 GO_ID = 1 EOS_ID = 2 UNK_ID = 3 _WORD_SPLIT = re.compile(b"([.,!?\":;)(])") _DIGIT_RE = re.compile(br"\d") #FROM DATA UTILS # Build the dictionary with word-IDs from self-made dictionary and replace rare words with UNK token. def build_dataset(words, vocabulary_size): count = [['_UNK', -1]] count.extend(collections.Counter(words).most_common(vocabulary_size - 1)) dictionary = dict() for word, _ in count: dictionary[word] = len(dictionary) data = list() unk_count = 0 for word in words: if word in dictionary: index = dictionary[word] else: index = 0 # dictionary['UNK'] unk_count = unk_count + 1 data.append(index) count[0][1] = unk_count reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys())) return data, count, dictionary, reverse_dictionary def create_vocabulary(dictionary, vocabulary_path): f = open(vocabulary_path, 'w') for key in dictionary: f.write(dictionary[key] + '\n') f.close() def initialize_vocabulary(vocabulary_path): # finds vocabulary file if gfile.Exists(vocabulary_path): rev_vocab = [] with gfile.GFile(vocabulary_path, mode="rb") as f: rev_vocab.extend(f.readlines()) rev_vocab = [line.strip() for line in rev_vocab] vocab = dict([(x, y) for (y, x) in enumerate(rev_vocab)]) return vocab, rev_vocab else: raise ValueError("Vocabulary file %s not found.", vocabulary_path) def generate_encoded_files2(x_train_file, y_train_file, x_dev_file, y_dev_file, tokenized_sentences, dictionary): """Sentence A is in x_train, Sentence B in y_train""" encoded_holder = [] unk_id = dictionary['_UNK'] for sentence in tokenized_sentences: encoded_holder.append(encode_sentence(sentence, dictionary, unk_id)) f1 = open(x_train_file, 'w') f2 = open(y_train_file, 'w') fraction = int(len(encoded_holder) / fraction_dev) if (len(encoded_holder) % 2 == 0): end = len(encoded_holder) else: end = len(encoded_holder)-1 for i in xrange(0,fraction,2): f1.write(str(encoded_holder[i]) + '\n') f2.write(str(encoded_holder[i+1]) + '\n') f1.close() f2.close() d1 = open(x_dev_file, 'w') d2 = open(y_dev_file, 'w') for i in xrange(fraction, end, 2): d1.write(str(encoded_holder[i]) + '\n') d2.write(str(encoded_holder[i+1]) + '\n') d1.close() d2.close() def generate_encoded_files(x_train_file, y_train_file, x_dev_file, y_dev_file, tokenized_sentences, dictionary): """Sentence A is in x_train and y_train, Sentence B in X_train and y_train""" encoded_holder = [] f1 = open(x_train_file, 'w') last_line = tokenized_sentences.pop() first_line = tokenized_sentences.pop(0) dev_counter = int(len(tokenized_sentences) - len(tokenized_sentences)/fraction_dev) unk_id = dictionary['_UNK'] first_line_encoded = encode_sentence(first_line, dictionary, unk_id) f1.write(first_line_encoded + '\n') # Creates data for X_train for x in xrange(dev_counter): encoded_sentence = encode_sentence(tokenized_sentences[x], dictionary, unk_id) encoded_holder.append(encoded_sentence) f1.write(encoded_sentence + '\n') # Write sentence to file f1.close() d1 = open(x_dev_file, 'w') # Creates data for x_dev_file for x in xrange(dev_counter, len(tokenized_sentences)): encoded_sentence = encode_sentence(tokenized_sentences[x], dictionary, unk_id) encoded_holder.append(encoded_sentence) d1.write(encoded_sentence + '\n') # Write sentence to file d1.close() # Creates data for y_train f2 = open(y_train_file, 'w') for x in xrange(dev_counter + 1): f2.write(encoded_holder[x] + '\n') # Write sentence to file f2.close() # Creates data for y_dev d2 = open(y_dev_file, 'w') for x in xrange(dev_counter + 1, len(tokenized_sentences)): d2.write(encoded_holder[x] + '\n') # Write sentence to file last_line_encoded = encode_sentence(last_line, dictionary, unk_id) d2.write(last_line_encoded + '\n') d2.close() def basic_tokenizer(sentence): """Very basic tokenizer: split the sentence into a list of tokens""" words = [] for space_separated_fragment in sentence.strip().split(): words.extend(re.split(_WORD_SPLIT, space_separated_fragment)) return [w for w in words if w] def encode_sentence(sentence, dictionary, unk_id): # Extract first word (and don't add any space) if not sentence: return "" first_word = sentence.pop(0) if first_word in dictionary: encoded_sentence = str(dictionary[first_word]) else: encoded_sentence = str(unk_id) # Loop rest of the words (and add space in front) for word in sentence: if word in dictionary: encoded_word = dictionary[word] else: encoded_word = unk_id encoded_sentence += " " + str(encoded_word) return encoded_sentence def sentence_to_token_ids(sentence, vocabulary): """Convert a string to list of integers representing token-ids. For example, a sentence "I have a dog" may become tokenized into ["I", "have", "a", "dog"] and with vocabulary {"I": 1, "have": 2, "a": 4, "dog": 7"} this function will return [1, 2, 4, 7]. Returns: a list of integers, the token-ids for the sentence. """ words = basic_tokenizer(sentence) return [vocabulary.get(w, UNK_ID) for w in words] def read_data(num_movie_scripts): data_tokens = [] # Append each line in file to the set for i in range(0, num_movie_scripts): path = 'data/'+str(i)+'raw.txt' print 'Reading ', path, '...' lines = [line.rstrip('\n') for line in open(path)] data_tokens_temp = [] for line in lines: # Tokenize each sentence data_tokens_temp.extend(re.findall(r'\S+', line)) data_tokens.extend(data_tokens_temp) return data_tokens # Reads data and puts every sentence in a TWO DIMENSIONAL array as tokens # data_tokens[0] = ['This', 'is', 'a', 'sentence'] def read_sentences(num_movie_scripts): data_tokens = [] # Append each line in file to the set for i in range(0, num_movie_scripts): path = 'data/'+str(i)+'raw.txt' print 'Reading ', path, '...' lines = [line.rstrip('\n') for line in open(path)] data_tokens_temp = [] for line in lines: # Tokenize each sentence data_tokens_temp.append(re.findall(r'\S+', line)) data_tokens.extend(data_tokens_temp) return data_tokens def make_files(num_movie_scripts, vocabulary_size, fraction_dev=50, path_for_x_train = 'X_train.txt', path_for_y_train = 'y_train.txt', path_for_x_dev = 'X_dev.txt', path_for_y_dev = 'y_dev.txt'): # Generate dictionary for dataset print '------------------------------------------------' print ' Generating dictionary based on ', str(num_movie_scripts), ' scripts' print '------------------------------------------------' tokenized_data = read_data(num_movie_scripts) data, count, dictionary, reverse_dictionary = build_dataset(tokenized_data, vocabulary_size) create_vocabulary(reverse_dictionary, 'vocabulary_for_movies.txt') # Generate an encoded file using the freated dictionary print '------------------------------------------------' print ' Creating encoded file using created dictionary' print ' (Saved in ', path_for_x_train, ')' print '------------------------------------------------' tokenized_sentences = read_sentences(num_movie_scripts) generate_encoded_files(path_for_x_train, path_for_y_train, path_for_x_dev, path_for_y_dev, tokenized_sentences, dictionary) #-----------------------Printing methods---------------------------- def print_dic(dic, counter): c = 0 for x in dic: print x c += 1 if(c == counter): break def print_info(data, count, dictionary, reverse_dictionary): print '-------- data' print data print '-------- count' print count print '-------- dictionary' print_dic(dictionary, 5) print dictionary print '-------- reverse_dictionary' print_dic(reverse_dictionary, 5) print reverse_dictionary
32.501859
196
0.649663
0
0
0
0
0
0
0
0
2,163
0.247398
efcb531829013e0d275069585a78eef303453aa5
851
py
Python
dfirtrack_api/serializers.py
0xflotus/dfirtrack
632ebe582c2b40a4ac4b9fb12b7a118c2c49ede5
[ "MIT" ]
4
2020-03-06T17:37:09.000Z
2020-03-17T07:50:55.000Z
dfirtrack_api/serializers.py
0xflotus/dfirtrack
632ebe582c2b40a4ac4b9fb12b7a118c2c49ede5
[ "MIT" ]
null
null
null
dfirtrack_api/serializers.py
0xflotus/dfirtrack
632ebe582c2b40a4ac4b9fb12b7a118c2c49ede5
[ "MIT" ]
1
2020-03-06T20:54:52.000Z
2020-03-06T20:54:52.000Z
from rest_framework import serializers from dfirtrack_main.models import System, Systemtype class SystemtypeSerializer(serializers.ModelSerializer): """ create serializer for systemtype (needed because of foreignkey relationsship) """ class Meta: model = Systemtype # attributes made available for api fields = ( 'systemtype_name', ) class SystemSerializer(serializers.ModelSerializer): """ create serializer for system """ # get serializer for systemtype (needed because of foreignkey relationsship) systemtype = SystemtypeSerializer(many=False, read_only=True) class Meta: model = System # attributes made available for api fields = ( 'system_id', 'system_uuid', 'system_name', 'systemtype', )
27.451613
89
0.654524
755
0.887192
0
0
0
0
0
0
333
0.391304
efcedab7fe4be160e4d524567ddc2da000250f7a
185
py
Python
exasol_advanced_analytics_framework/udf_framework/create_event_handler_udf_call.py
exasol/advanced-analytics-framework
78cb9c92fa905132c346d289623598d39def480c
[ "MIT" ]
null
null
null
exasol_advanced_analytics_framework/udf_framework/create_event_handler_udf_call.py
exasol/advanced-analytics-framework
78cb9c92fa905132c346d289623598d39def480c
[ "MIT" ]
12
2022-02-21T15:54:47.000Z
2022-03-30T08:35:52.000Z
exasol_advanced_analytics_framework/udf_framework/create_event_handler_udf_call.py
exasol/advanced-analytics-framework
78cb9c92fa905132c346d289623598d39def480c
[ "MIT" ]
null
null
null
from exasol_advanced_analytics_framework.interface.create_event_handler_udf \ import CreateEventHandlerUDF udf = CreateEventHandlerUDF(exa) def run(ctx): return udf.run(ctx)
20.555556
77
0.810811
0
0
0
0
0
0
0
0
0
0
efd02e3f34305859967db711ac4399efc0f26e99
7,489
py
Python
corrct/utils_proc.py
cicwi/PyCorrectedEmissionCT
424449e1879a03cdbb8910c806417962e5b9faff
[ "BSD-3-Clause" ]
3
2020-12-08T17:09:08.000Z
2022-01-21T22:46:56.000Z
corrct/utils_proc.py
cicwi/PyCorrectedEmissionCT
424449e1879a03cdbb8910c806417962e5b9faff
[ "BSD-3-Clause" ]
11
2021-03-19T11:34:34.000Z
2022-03-31T13:22:02.000Z
corrct/utils_proc.py
cicwi/PyCorrectedEmissionCT
424449e1879a03cdbb8910c806417962e5b9faff
[ "BSD-3-Clause" ]
1
2021-03-11T18:27:48.000Z
2021-03-11T18:27:48.000Z
# -*- coding: utf-8 -*- """ Created on Tue Mar 24 15:25:14 2020 @author: Nicola VIGANÒ, Computational Imaging group, CWI, The Netherlands, and ESRF - The European Synchrotron, Grenoble, France """ import numpy as np from . import operators from . import solvers def get_circular_mask(vol_shape, radius_offset=0, coords_ball=None, mask_drop_off="const", data_type=np.float32): """Computes a circular mask for the reconstruction volume. :param vol_shape: The size of the volume. :type vol_shape: numpy.array_like :param radius_offset: The offset with respect to the volume edge. :type radius_offset: float. Optional, default: 0 :param coords_ball: The coordinates to consider for the non-masked region. :type coords_ball: list of dimensions. Optional, default: None :param data_type: The mask data type. :type data_type: numpy.dtype. Optional, default: np.float32 :returns: The circular mask. :rtype: (numpy.array_like) """ vol_shape = np.array(vol_shape, dtype=np.intp) coords = [np.linspace(-(s - 1) / 2, (s - 1) / 2, s, dtype=data_type) for s in vol_shape] coords = np.meshgrid(*coords, indexing="ij") if coords_ball is None: coords_ball = np.arange(-np.fmin(2, len(vol_shape)), 0, dtype=np.intp) else: coords_ball = np.array(coords_ball, dtype=np.intp) radius = np.min(vol_shape[coords_ball]) / 2 + radius_offset coords = np.stack(coords, axis=0) if coords_ball.size == 1: dists = np.abs(coords[coords_ball, ...]) else: dists = np.sqrt(np.sum(coords[coords_ball, ...] ** 2, axis=0)) if mask_drop_off.lower() == "const": return dists <= radius elif mask_drop_off.lower() == "sinc": cut_off = np.min(vol_shape[coords_ball]) / np.sqrt(2) - radius outter_region = 1 - (dists <= radius) outter_vals = 1 - np.sinc((dists - radius) / cut_off) return np.fmax(1 - outter_region * outter_vals, 0) else: raise ValueError("Unknown drop-off function: %s" % mask_drop_off) def pad_sinogram(sinogram, width, pad_axis=-1, mode="edge", **kwds): """Pads the sinogram. :param sinogram: The sinogram to pad. :type sinogram: numpy.array_like :param width: The width of the padding. :type width: either an int or tuple(int, int) :param pad_axis: The axis to pad. :type pad_axis: int. Optional, default: -1 :param mode: The padding type (from numpy.pad). :type mode: string. Optional, default: 'edge'. :param kwds: The numpy.pad arguments. :returns: The padded sinogram. :rtype: (numpy.array_like) """ pad_size = [(0, 0)] * len(sinogram.shape) if len(width) == 1: width = (width, width) pad_size[pad_axis] = width return np.pad(sinogram, pad_size, mode=mode, **kwds) def apply_flat_field(projs, flats, darks=None, crop=None, data_type=np.float32): """Apply flat field. :param projs: Projections :type projs: numpy.array_like :param flats: Flat fields :type flats: numpy.array_like :param darks: Dark noise, defaults to None :type darks: numpy.array_like, optional :param crop: Crop region, defaults to None :type crop: numpy.array_like, optional :param data_type: numpy.dtype, defaults to np.float32 :type data_type: Data type of the processed data, optional :return: Falt-field corrected and linearized projections :rtype: numpy.array_like """ if crop is not None: projs = projs[..., crop[0] : crop[2], crop[1] : crop[3]] flats = flats[..., crop[0] : crop[2], crop[1] : crop[3]] if darks is not None: darks = darks[..., crop[0] : crop[2], crop[1] : crop[3]] if darks is not None: projs -= darks flats -= darks flats = np.mean(flats.astype(data_type), axis=0) return projs.astype(data_type) / flats def apply_minus_log(projs): """Apply -log. :param projs: Projections :type projs: numpy.array_like :return: Falt-field corrected and linearized projections :rtype: numpy.array_like """ return np.fmax(-np.log(projs), 0.0) def denoise_image( img, reg_weight=1e-2, stddev=None, error_norm="l2b", iterations=250, axes=(-2, -1), lower_limit=None, verbose=False ): """Image denoiser based on (simple, weighted or dead-zone) least-squares and wavelets. The weighted least-squares requires the local pixel-wise standard deviations. It can be used to denoise sinograms and projections. :param img: The image or sinogram to denoise. :type img: `numpy.array_like` :param reg_weight: Weight of the regularization term, defaults to 1e-2 :type reg_weight: float, optional :param stddev: The local standard deviations. If None, it performs a standard least-squares. :type stddev: `numpy.array_like`, optional :param error_norm: The error weighting mechanism. When using std_dev, options are: {'l2b'} | 'l1b' | 'hub' | 'wl2' \ (corresponding to: 'l2 dead-zone', 'l1 dead-zone', 'Huber', 'weighted least-squares'). :type error_norm: str, optional :param iterations: Number of iterations, defaults to 250 :type iterations: int, optional :param axes: Axes along which the regularization should be done, defaults to (-2, -1) :type iterations: int or tuple, optional :param lower_limit: Lower clipping limit of the image, defaults to None :type iterations: float, optional :param verbose: Turn verbosity on, defaults to False :type verbose: boolean, optional :return: Denoised image or sinogram. :rtype: `numpy.array_like` """ def compute_wls_weights(stddev, At, reg_weights): stddev_zeros = stddev == 0 stddev_valid = np.invert(stddev_zeros) min_valid_stddev = np.min(stddev[stddev_valid]) reg_weights = reg_weights * (At(stddev_zeros) == 0) * min_valid_stddev img_weights = min_valid_stddev / np.fmax(stddev, min_valid_stddev) return (img_weights, reg_weights) def compute_lsb_weights(stddev): stddev_zeros = stddev == 0 stddev_valid = np.invert(stddev_zeros) min_valid_stddev = np.min(stddev[stddev_valid]) return np.fmax(stddev, min_valid_stddev) OpI = operators.TransformIdentity(img.shape) if stddev is not None: if error_norm.lower() == "l2b": img_weight = compute_lsb_weights(stddev) data_term = solvers.DataFidelity_l2b(img_weight) elif error_norm.lower() == "l1b": img_weight = compute_lsb_weights(stddev) data_term = solvers.DataFidelity_l1b(img_weight) elif error_norm.lower() == "hub": img_weight = compute_lsb_weights(stddev) data_term = solvers.DataFidelity_Huber(img_weight) elif error_norm.lower() == "wl2": (img_weight, reg_weight) = compute_wls_weights(stddev, OpI.T, reg_weight) data_term = solvers.DataFidelity_wl2(img_weight) else: raise ValueError('Unknown error method: "%s". Options are: {"l2b"} | "l1b" | "hub" | "wl2"' % error_norm) else: data_term = error_norm if isinstance(axes, int): axes = (axes,) reg_wl = solvers.Regularizer_l1swl(reg_weight, "bior4.4", 2, axes=axes, normalized=False) sol_wls_wl = solvers.CP(verbose=verbose, regularizer=reg_wl, data_term=data_term) (denoised_img, _) = sol_wls_wl(OpI, img, iterations, x0=img, lower_limit=lower_limit) return denoised_img
37.633166
120
0.667646
0
0
0
0
0
0
0
0
3,521
0.470093
efd15e7fb718ba74481d809759853c9e66bc24c0
80
py
Python
bcap/__init__.py
keioku/bcap-python
5f1c912fcac515d8f26bda113f644d55a38e15d6
[ "MIT" ]
null
null
null
bcap/__init__.py
keioku/bcap-python
5f1c912fcac515d8f26bda113f644d55a38e15d6
[ "MIT" ]
null
null
null
bcap/__init__.py
keioku/bcap-python
5f1c912fcac515d8f26bda113f644d55a38e15d6
[ "MIT" ]
null
null
null
from .b_cap_client import BCapClient from .b_cap_exception import BCapException
26.666667
42
0.875
0
0
0
0
0
0
0
0
0
0
efd1c5307f2a5343f619264248d49a40d7ec14ee
675
py
Python
84.py
gdmanandamohon/leetcode
a691a4e37ee1fdad69c710e3710c5faf8b0a7d76
[ "MIT" ]
null
null
null
84.py
gdmanandamohon/leetcode
a691a4e37ee1fdad69c710e3710c5faf8b0a7d76
[ "MIT" ]
null
null
null
84.py
gdmanandamohon/leetcode
a691a4e37ee1fdad69c710e3710c5faf8b0a7d76
[ "MIT" ]
null
null
null
''' @author: l4zyc0d3r People who are happy makes other happy. I am gonna finish it slowly but definitely.cdt ''' class Solution: def largestRectangleArea(self, H: List[int]) -> int: st, mx, i = [], 0, 0 while i<len(H): if len(st)==0 or H[st[-1]]<=H[i]: st.append(i) i+=1 else: rb = i h = H[st.pop()] lb = st[-1] if len(st) else -1 mx = max(mx, (rb-lb-1)*h) while len(st): rb = len(H) h = H[st.pop()] lb = st[-1] if len(st) else -1 mx = max(mx, (rb-lb-1)*h) return mx
29.347826
86
0.422222
559
0.828148
0
0
0
0
0
0
114
0.168889
efd28e21b75921adf9dd8a8cb27c1319019eacfc
402
py
Python
delete_event.py
garymcwilliams/py-google-calendar
546b412f0ffc1bdc9a81868bddf4de18a0c20899
[ "Apache-2.0" ]
null
null
null
delete_event.py
garymcwilliams/py-google-calendar
546b412f0ffc1bdc9a81868bddf4de18a0c20899
[ "Apache-2.0" ]
1
2021-04-30T20:59:15.000Z
2021-04-30T20:59:15.000Z
delete_event.py
garymcwilliams/py-google-calendar
546b412f0ffc1bdc9a81868bddf4de18a0c20899
[ "Apache-2.0" ]
null
null
null
from cal_setup import get_calendar_service def main(): # Delete the event service = get_calendar_service() try: service.events().delete( calendarId='primary', eventId='njdev79d574rdmkv0180t7t7lo', ).execute() except googleapiclient.errors.HttpError: print("Failed to delete event") print("Event deleted") if __name__ == '__main__': main()
23.647059
48
0.659204
0
0
0
0
0
0
0
0
104
0.258706
efd293b0fad7a4595a31aa160b88ccb1aa88a456
37
py
Python
rses/src/flask_app/blueprints/client/__init__.py
iScrE4m/RSES
88299f105ded8838243eab8b25ab1626c97d1179
[ "MIT" ]
1
2022-02-16T15:06:22.000Z
2022-02-16T15:06:22.000Z
rses/src/flask_app/blueprints/client/__init__.py
djetelina/RSES
88299f105ded8838243eab8b25ab1626c97d1179
[ "MIT" ]
null
null
null
rses/src/flask_app/blueprints/client/__init__.py
djetelina/RSES
88299f105ded8838243eab8b25ab1626c97d1179
[ "MIT" ]
null
null
null
# coding=utf-8 """Client blueprint"""
18.5
22
0.675676
0
0
0
0
0
0
0
0
36
0.972973
efd30ee41ca03d2e23b35a990fdeba3358b3d6c7
15,351
py
Python
pycdp/asyncio.py
HMaker/python-chrome-devtools-protocol
a9646a1c4e172ce458c15e2fcb3860ca8c9b4599
[ "MIT" ]
null
null
null
pycdp/asyncio.py
HMaker/python-chrome-devtools-protocol
a9646a1c4e172ce458c15e2fcb3860ca8c9b4599
[ "MIT" ]
null
null
null
pycdp/asyncio.py
HMaker/python-chrome-devtools-protocol
a9646a1c4e172ce458c15e2fcb3860ca8c9b4599
[ "MIT" ]
null
null
null
from __future__ import annotations import json import asyncio import itertools import typing as t from collections import defaultdict from contextlib import asynccontextmanager from aiohttp import ClientSession from aiohttp.client import ClientWebSocketResponse from aiohttp.http_websocket import WSMsgType, WSCloseCode from aiohttp.client_exceptions import ( ClientResponseError, ClientConnectorError, ClientConnectionError, ServerDisconnectedError ) from pycdp.utils import ContextLoggerMixin, LoggerMixin, SingleTaskWorker, retry_on from pycdp import cdp T = t.TypeVar('T') class CDPError(Exception): pass class CDPBrowserError(CDPError): ''' This exception is raised when the browser's response to a command indicates that an error occurred. ''' def __init__(self, obj): self.code: int = obj['code'] self.message: str = obj['message'] self.detail = obj.get('data') def __str__(self): return 'BrowserError<code={} message={}> {}'.format(self.code, self.message, self.detail) class CDPConnectionClosed(CDPError): ''' Raised when a public method is called on a closed CDP connection. ''' def __init__(self, reason): ''' Constructor. :param reason: :type reason: wsproto.frame_protocol.CloseReason ''' self.reason = reason def __repr__(self): ''' Return representation. ''' return '{}<{}>'.format(self.__class__.__name__, self.reason) class CDPSessionClosed(CDPError): pass class CDPInternalError(CDPError): ''' This exception is only raised when there is faulty logic in TrioCDP or the integration with PyCDP. ''' class CDPEventListenerClosed(CDPError): pass _CLOSE_SENTINEL = object class CDPEventListener: def __init__(self, queue: asyncio.Queue): self._queue = queue self._closed = False @property def closed(self): return self._closed def put(self, elem: dict): if self._closed: raise CDPEventListenerClosed self._queue.put_nowait(elem) def close(self): self._closed = True try: self._queue.put_nowait(_CLOSE_SENTINEL) except asyncio.QueueFull: pass async def __aiter__(self): try: while not self._closed: elem = await self._queue.get() if elem is _CLOSE_SENTINEL: return yield elem finally: self._closed = True def __str__(self) -> str: return f'{self.__class__.__name__}(buffer={self._queue.qsize()}/{self._queue.maxsize}, closed={self._closed})' class CDPBase(LoggerMixin): ''' Contains shared functionality between the CDP connection and session. ''' def __init__(self, ws: ClientWebSocketResponse=None, session_id=None, target_id=None): super().__init__() self._listeners: t.Dict[type, t.Set[CDPEventListener]] = defaultdict(set) self._id_iter = itertools.count() self._inflight_cmd: t.Dict[int, t.Tuple[t.Generator[dict, dict , t.Any], asyncio.Future]] = {} self._session_id = session_id self._target_id = target_id self._ws = ws @property def session_id(self) -> cdp.target.SessionID: return self._session_id async def execute(self, cmd: t.Generator[dict, dict , T]) -> T: ''' Execute a command on the server and wait for the result. :param cmd: any CDP command :returns: a CDP result ''' cmd_id = next(self._id_iter) cmd_response = asyncio.get_running_loop().create_future() self._inflight_cmd[cmd_id] = cmd, cmd_response request = next(cmd) request['id'] = cmd_id if self._session_id: request['sessionId'] = self._session_id self._logger.debug('sending command %r', request) request_str = json.dumps(request) try: try: await self._ws.send_str(request_str) except ConnectionResetError as e: del self._inflight_cmd[cmd_id] raise CDPConnectionClosed(e.args[0]) from e return await cmd_response except asyncio.CancelledError: if cmd_id in self._inflight_cmd: del self._inflight_cmd[cmd_id] raise def listen(self, *event_types: t.Type[T], buffer_size=100) -> t.AsyncIterator[T]: '''Return an async iterator that iterates over events matching the indicated types.''' receiver = CDPEventListener(asyncio.Queue(buffer_size)) for event_type in event_types: self._listeners[event_type].add(receiver) return receiver.__aiter__() @asynccontextmanager async def wait_for(self, event_type: t.Type[T], buffer_size=100) -> t.AsyncGenerator[T, None]: ''' Wait for an event of the given type and return it. This is an async context manager, so you should open it inside an async with block. The block will not exit until the indicated event is received. ''' async for event in self.listen(event_type, buffer_size): yield event return def close_listeners(self): for listener in itertools.chain.from_iterable(self._listeners.values()): listener.close() self._listeners.clear() def _handle_data(self, data): ''' Handle incoming WebSocket data. :param dict data: a JSON dictionary ''' if 'id' in data: self._handle_cmd_response(data) else: self._handle_event(data) def _handle_cmd_response(self, data): ''' Handle a response to a command. This will set an event flag that will return control to the task that called the command. :param dict data: response as a JSON dictionary ''' cmd_id = data['id'] try: cmd, event = self._inflight_cmd.pop(cmd_id) except KeyError: self._logger.debug('got a message with a command ID that does not exist: %s', data) return if 'error' in data: # If the server reported an error, convert it to an exception and do # not process the response any further. event.set_exception(CDPBrowserError(data['error'])) else: # Otherwise, continue the generator to parse the JSON result # into a CDP object. try: cmd.send(data['result']) event.set_exception(CDPInternalError("the command's generator function did not exit when expected!")) except StopIteration as e: event.set_result(e.value) def _handle_event(self, data): ''' Handle an event. :param dict data: event as a JSON dictionary ''' event = cdp.util.parse_json_event(data) self._logger.debug('dispatching event %s', event) to_remove = set() for listener in self._listeners[type(event)]: try: listener.put(event) except asyncio.QueueFull: self._logger.warning('event %s dropped because listener %s queue is full', type(event), listener) except CDPEventListenerClosed: to_remove.add(listener) self._listeners[type(event)] -= to_remove self._logger.debug('event dispatched') class CDPConnection(CDPBase, SingleTaskWorker): ''' Contains the connection state for a Chrome DevTools Protocol server. CDP can multiplex multiple "sessions" over a single connection. This class corresponds to the "root" session, i.e. the implicitly created session that has no session ID. This class is responsible for reading incoming WebSocket messages and forwarding them to the corresponding session, as well as handling messages targeted at the root session itself. You should generally call the :func:`open_cdp()` instead of instantiating this class directly. ''' def __init__(self, debugging_url: str, http_client: ClientSession): super().__init__() self._debugging_url = debugging_url.rstrip('/') self._http_client = http_client self._wsurl: str = None self._ws_context = None self._sessions: t.Dict[str, CDPSession] = {} @property def closed(self) -> bool: return self._ws.closed @property def had_normal_closure(self) -> bool: return self._ws.close_code == WSCloseCode.OK @retry_on( ClientConnectorError, asyncio.TimeoutError, retries=10, delay=3.0, delay_growth=1.3, log_errors=True ) async def connect(self): if self._ws is not None: raise RuntimeError('already connected') if self._wsurl is None: if self._debugging_url.startswith('http://'): async with self._http_client.get(f'{self._debugging_url}/json/version') as resp: if resp.status != 200: raise ClientResponseError( resp.request_info, resp.history, status=resp.status, message=resp.reason, headers=resp.headers ) self._wsurl = (await resp.json())['webSocketDebuggerUrl'] elif self._debugging_url.startswith('ws://'): self._wsurl = self._debugging_url else: raise ValueError('bad debugging URL scheme') self._ws = await self._http_client.ws_connect(self._wsurl, compress=15, autoping=True, autoclose=True).__aenter__() def add_session(self, session_id: str, target_id: str) -> CDPSession: if session_id is self._sessions: return self._sessions[session_id] session = CDPSession(self._ws, session_id, target_id) self._sessions[session_id] = session return session def remove_session(self, session_id: str): if session_id in self._sessions: self._sessions.pop(session_id).close() async def connect_session(self, target_id: cdp.target.TargetID) -> 'CDPSession': ''' Returns a new :class:`CDPSession` connected to the specified target. ''' session_id = await self.execute(cdp.target.attach_to_target(target_id, True)) session = CDPSession(self._ws, session_id, target_id) self._sessions[session_id] = session return session async def _run(self): while True: message = await self._ws.receive() if message.type == WSMsgType.TEXT: try: data = json.loads(message.data) except json.JSONDecodeError: raise CDPBrowserError({ 'code': -32700, 'message': 'Client received invalid JSON', 'data': message }) if 'sessionId' in data: session_id = cdp.target.SessionID(data['sessionId']) try: session = self._sessions[session_id] except KeyError: self._logger.debug(f'received message for unknown session: {data}') continue session._handle_data(data) else: self._handle_data(data) elif message.type == WSMsgType.CLOSE or message.type == WSMsgType.CLOSING or message.type == WSMsgType.CLOSED: return elif message.type == WSMsgType.ERROR: raise message.data else: await self._ws.close(code=WSCloseCode.UNSUPPORTED_DATA) raise CDPConnectionClosed('received non text frame from remote peer') async def _close(self): try: await super()._close() for session in self._sessions.values(): session.close() self._sessions.clear() self.close_listeners() if self._ws is not None and not self._ws.closed: await self._ws.close() finally: await self._http_client.close() class CDPSession(CDPBase, ContextLoggerMixin): ''' Contains the state for a CDP session. Generally you should not instantiate this object yourself; you should call :meth:`CdpConnection.open_session`. ''' def __init__(self, ws: ClientWebSocketResponse, session_id: cdp.target.SessionID, target_id: cdp.target.TargetID): super().__init__(ws, session_id, target_id) self._dom_enable_count = 0 self._dom_enable_lock = asyncio.Lock() self._page_enable_count = 0 self._page_enable_lock = asyncio.Lock() self.set_logger_context(extra_name=session_id) @asynccontextmanager async def dom_enable(self): ''' A context manager that executes ``dom.enable()`` when it enters and then calls ``dom.disable()``. This keeps track of concurrent callers and only disables DOM events when all callers have exited. ''' async with self._dom_enable_lock: self._dom_enable_count += 1 if self._dom_enable_count == 1: await self.execute(cdp.dom.enable()) yield async with self._dom_enable_lock: self._dom_enable_count -= 1 if self._dom_enable_count == 0: await self.execute(cdp.dom.disable()) @asynccontextmanager async def page_enable(self): ''' A context manager that executes ``page.enable()`` when it enters and then calls ``page.disable()`` when it exits. This keeps track of concurrent callers and only disables page events when all callers have exited. ''' async with self._page_enable_lock: self._page_enable_count += 1 if self._page_enable_count == 1: await self.execute(cdp.page.enable()) yield async with self._page_enable_lock: self._page_enable_count -= 1 if self._page_enable_count == 0: await self.execute(cdp.page.disable()) def close(self): if len(self._inflight_cmd) > 0: exc = CDPSessionClosed() for (_, event) in self._inflight_cmd.values(): if not event.done(): event.set_exception(exc) self._inflight_cmd.clear() self.close_listeners() @retry_on(ClientConnectionError, ServerDisconnectedError, retries=10, delay=3.0, delay_growth=1.3, log_errors=True) async def connect_cdp(url: str) -> CDPConnection: ''' Connect to the browser specified by debugging ``url``. This connection is not automatically closed! You can either use the connection object as a context manager (``async with conn:``) or else call ``await conn.aclose()`` on it when you are done with it. ''' http = ClientSession() cdp_conn = CDPConnection(url, http) try: await cdp_conn.connect() cdp_conn.start() except: await http.close() raise return cdp_conn
35.7
123
0.614162
14,051
0.915315
2,062
0.134323
4,018
0.261742
6,806
0.443359
3,963
0.258159
efd3aea1c3cf0426d8d1f43ef851162a882e6a5f
7,680
py
Python
src/manager/om/script/gspylib/inspection/items/cluster/CheckSpecialFile.py
wotchin/openGauss-server
ebd92e92b0cfd76b121d98e4c57a22d334573159
[ "MulanPSL-1.0" ]
1
2020-06-30T15:00:50.000Z
2020-06-30T15:00:50.000Z
src/manager/om/script/gspylib/inspection/items/cluster/CheckSpecialFile.py
wotchin/openGauss-server
ebd92e92b0cfd76b121d98e4c57a22d334573159
[ "MulanPSL-1.0" ]
null
null
null
src/manager/om/script/gspylib/inspection/items/cluster/CheckSpecialFile.py
wotchin/openGauss-server
ebd92e92b0cfd76b121d98e4c57a22d334573159
[ "MulanPSL-1.0" ]
null
null
null
# -*- coding:utf-8 -*- # Copyright (c) 2020 Huawei Technologies Co.,Ltd. # # openGauss is licensed under Mulan PSL v2. # You can use this software according to the terms # and conditions of the Mulan PSL v2. # You may obtain a copy of Mulan PSL v2 at: # # http://license.coscl.org.cn/MulanPSL2 # # THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, # WITHOUT WARRANTIES OF ANY KIND, # EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, # MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. # See the Mulan PSL v2 for more details. # ---------------------------------------------------------------------------- import os import subprocess from multiprocessing.dummy import Pool as ThreadPool from gspylib.common.Common import DefaultValue from gspylib.inspection.common.CheckItem import BaseItem from gspylib.inspection.common.CheckResult import ResultStatus from gspylib.os.gsfile import g_file class CheckSpecialFile(BaseItem): def __init__(self): super(CheckSpecialFile, self).__init__(self.__class__.__name__) def getDiskPath(self): nodeDirs = [] # get PGHOST Dir tmpDir = DefaultValue.getEnv("PGHOST") nodeDirs.append(tmpDir) # get gphome dir gphome_path = DefaultValue.getEnv("GPHOME") nodeDirs.append(gphome_path) # get log dir log_path = DefaultValue.getEnv("GAUSSLOG") nodeDirs.append(log_path) # get gausshome dir gausshome_path = DefaultValue.getEnv("GAUSSHOME") nodeDirs.append(os.path.realpath(gausshome_path)) hostName = DefaultValue.GetHostIpOrName() dbNode = self.cluster.getDbNodeByName(hostName) # including dn for dbInst in dbNode.datanodes: nodeDirs.append(dbInst.datadir) return nodeDirs def checkPathVaild(self, envValue): """ function: check path vaild input : envValue output: NA """ if (envValue.strip() == ""): return 0 # check path vaild for rac in DefaultValue.PATH_CHECK_LIST: flag = envValue.find(rac) if flag >= 0: return 1 return 0 def ignorePath(self, path): # Part of the root path and file permissions need to be ignored ignorePathList = [] toolPath = DefaultValue.getEnv("GPHOME") sudoPath = os.path.join(toolPath, "sudo") inspectionPath = os.path.join(toolPath, "script/inspection") ignorePathList.append("%s/script/gs_preinstall" % toolPath) ignorePathList.append("%s/script/gs_postuninstall" % toolPath) ignorePathList.append("%s/script/gs_checkos" % toolPath) scriptPath = os.path.join(toolPath, "script") scriptDirList = scriptPath.split('/') inspectionDirList = inspectionPath.split('/') # ignore own special files if (path in ignorePathList or os.path.dirname(path) == sudoPath): return True else: (filename, suffix) = os.path.splitext(path) pathDirList = path.split('/') # ignore .pyc file in GPHOME/script if (path.find(scriptPath) == 0 and pathDirList[:len( scriptDirList)] == scriptDirList and suffix == ".pyc"): return True # ignore GPHOME/script/inspection dir elif (path.find(inspectionPath) == 0 and pathDirList[:len( inspectionDirList)] == inspectionDirList): return True else: return False def checkSpecialChar(self): outputList = [] failList = [] pathList = [] paths = self.getDiskPath() for path in paths: if (not path or not os.path.isdir(path)): continue else: pathList.append(path) pool = ThreadPool(DefaultValue.getCpuSet()) results = pool.map(self.checkSingleSpecialChar, pathList) pool.close() pool.join() for outlist, flist in results: if (outlist): outputList.extend(outlist) if (flist): failList.extend(flist) if (len(outputList) > 0): outputList = DefaultValue.Deduplication(outputList) if (failList): failList = DefaultValue.Deduplication(failList) return outputList, failList def checkSingleSpecialChar(self, path): # Check a single path outputList = [] failList = [] cmd = "find '%s' -name '*'" % path (status, output) = subprocess.getstatusoutput(cmd) FileList = output.split('\n') while '' in FileList: FileList.remove('') if (status != 0 and output.find("Permission denied") > 0): for realPath in FileList: if (realPath.find("Permission denied") > 0): failList.append(realPath) elif (self.checkPathVaild(realPath) != 0): outputList.append(realPath) else: for realPath in FileList: if (self.checkPathVaild(realPath) != 0): outputList.append(realPath) return outputList, failList ######################################################### # get the files which under the all useful directory and # its owner is not current execute use ######################################################### def checkErrorOwner(self, ownername): outputList = [] failList = [] path = "" for path in self.getDiskPath(): if (not path or not os.path.isdir(path)): continue cmd = "find '%s' -iname '*' ! -user %s -print" % (path, ownername) (status, output) = subprocess.getstatusoutput(cmd) if (status == 0 and output != ""): pathList = output.split("\n") for path in pathList: if (self.ignorePath(path)): continue outputList.append(path) elif (output.find("Permission denied") > 0): pathList = output.split("\n") for path in pathList: if (path.find("Permission denied") > 0): failList.append(path) continue if (self.ignorePath(path)): continue outputList.append(path) if (len(outputList) > 0): outputList = DefaultValue.Deduplication(outputList) return outputList, failList def doCheck(self): parRes = "" flag = 0 output = "" outputList, failList = self.checkSpecialChar() for output in outputList: if (output != ""): flag = 1 parRes += "\nSpecial characters file: \"%s\"" % output outputList, errorList = self.checkErrorOwner(self.user) for output in outputList: if (output != ""): flag = 1 parRes += "\nFile owner should be %s." \ " Incorrect owner file: \"%s\"" \ % (self.user, output) failList.extend(errorList) if (failList): flag = 1 failList = DefaultValue.Deduplication(failList) parRes += "\n%s" % ("\n".join(failList)) if (flag == 1): self.result.rst = ResultStatus.NG self.result.val = parRes else: self.result.rst = ResultStatus.OK self.result.val = "All files are normal."
37.101449
78
0.552344
6,757
0.879818
0
0
0
0
0
0
1,661
0.216276