hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
3254729c0575b8bd980f42074c2cb939b0ad6cf0
1,382
py
Python
problems/p012.py
10jmellott/ProjectEuler
eb84d129bbc37ba10ad7814ad2138d81568e0085
[ "Unlicense" ]
null
null
null
problems/p012.py
10jmellott/ProjectEuler
eb84d129bbc37ba10ad7814ad2138d81568e0085
[ "Unlicense" ]
null
null
null
problems/p012.py
10jmellott/ProjectEuler
eb84d129bbc37ba10ad7814ad2138d81568e0085
[ "Unlicense" ]
null
null
null
"""<a href="https://projecteuler.net/problem=12" class="title-custom-link">Highly divisible triangular number</a> The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... Let us list the factors of the first seven triangle numbers: 1: 1 3: 1,3 6: 1,2,3,6 10: 1,2,5,10 15: 1,3,5,15 21: 1,3,7,21 28: 1,2,4,7,14,28 We can see that 28 is the first triangle number to have over five divisors. What is the value of the first triangle number to have over five hundred divisors? """ from utils.oeis import triangular_numbers from utils.fibonacci import trial_division from utils.fibonacci import factors_to_dictionary def main(): """Solves this problem Utilizes [A000005](http://oeis.org/A000005) which is solved via a lemma to Euler's Totient Function Returns: Integer: Solution to this problem """ i = 1 divisors = 0 while divisors <= 500: triangle = triangular_numbers(i) prime_factors = trial_division(triangle) prime_factors = factors_to_dictionary(prime_factors) divisors = 1 for k, v in prime_factors.items(): divisors = divisors * (v + 1) i = i + 1 return triangular_numbers(i - 1)
32.139535
113
0.664978
0
0
0
0
0
0
0
0
859
0.621563
3255418e552bf21eec558aa0897845fa6583a29c
4,984
py
Python
u3s2m1ass1-pt6/code/rpg_queries.py
LambdaTheda/lambdata-Unit3
b44b20f2f3e28d2b17613660ddb562afe4825686
[ "MIT" ]
null
null
null
u3s2m1ass1-pt6/code/rpg_queries.py
LambdaTheda/lambdata-Unit3
b44b20f2f3e28d2b17613660ddb562afe4825686
[ "MIT" ]
null
null
null
u3s2m1ass1-pt6/code/rpg_queries.py
LambdaTheda/lambdata-Unit3
b44b20f2f3e28d2b17613660ddb562afe4825686
[ "MIT" ]
1
2020-05-11T04:33:24.000Z
2020-05-11T04:33:24.000Z
import sqlite3 import os #DB_FILEPATH = "data/chinook.db" DB_FILEPATH = os.path.join(os.path.dirname(__file__), "..", "data", "rpg_db.sqlite3") conn = sqlite3.connect(DB_FILEPATH) conn.row_factory = sqlite3.Row print(type(conn)) #> <class 'sqlite3.Connection'> curs = conn.cursor() print(type(curs)) #> <class 'sqlite3.Cursor'> query = """SELECT count(DISTINCT character_id) as character_count FROM charactercreator_character""" # query1 = """SELECT # count(DISTINCT character_ptr_id) as character_ptr_count # FROM charactercreator_cleric""" # query2 = """SELECT # count(DISTINCT character_ptr_id) as character_ptr_count # FROM charactercreator_fighter""" # query3 = """SELECT # count(DISTINCT character_ptr_id) as character_ptr_count # FROM charactercreator_mage""" # query4 = """SELECT # count(DISTINCT character_ptr_id) as character_ptr_count # FROM charactercreator_thief""" queries_combined = """SELECT count(distinct c.character_ptr_id) as total_clerics ,count(distinct f.character_ptr_id) as total_fighters ,count(distinct m.character_ptr_id) as total_mages ,count(distinct n.mage_ptr_id) as total_necromancers ,count(distinct t.character_ptr_id) as total_thieves FROM charactercreator_character ccc LEFT JOIN charactercreator_fighter f ON ccc.character_id = f.character_ptr_id LEFT JOIN charactercreator_cleric c ON ccc.character_id= c.character_ptr_id LEFT JOIN charactercreator_mage m ON ccc.character_id = m.character_ptr_id LEFT JOIN charactercreator_necromancer n ON ccc.character_id = n.mage_ptr_id LEFT JOIN charactercreator_thief t ON ccc.character_id = t.character_ptr_id""" query5 = """SELECT count(DISTINCT item_id ) as total_item FROM armory_item""" query6 = """SELECT count(DISTINCT item_ptr_id) as weapons FROM armory_weapon""" query7 = """SELECT count(DISTINCT item_id) - count(DISTINCT item_ptr_id) as total_non_weapons FROM armory_item, armory_weapon""" query8 = """SELECT item_id , count(DISTINCT item_id) as item FROM charactercreator_character_inventory GROUP BY character_id LIMIT 20 """ query9 = """SELECT cci.character_id , count(DISTINCT aw.item_ptr_id) as number_of_weapons FROM charactercreator_character_inventory as cci LEFT JOIN armory_item as ai ON cci.item_id = ai.item_id LEFT JOIN armory_weapon as aw ON ai.item_id = aw.item_ptr_id GROUP BY character_id LIMIT 20""" query10 = """SELECT avg(total_items) as avg_items FROM ( -- row per character = 302 SELECT c.character_id ,c.name --,ci.item_id ,count(distinct ci.item_id) as total_items FROM charactercreator_character c LEFT JOIN charactercreator_character_inventory ci ON c.character_id = ci.character_id GROUP BY c.character_id ) subz""" query11 = """SELECT avg(weapon_count) as avg_weapon FROM ( SELECT cci.character_id ,count(DISTINCT aw.item_ptr_id) as weapon_count FROM charactercreator_character_inventory cci LEFT JOIN armory_item ai ON cci.item_id = ai.item_id LEFT JOIN armory_weapon aw ON ai.item_id = aw.item_ptr_id GROUP BY 1 ) subz""" print("----------") result = curs.execute(query).fetchone() print("RESULTS FOR CHARACTERCREATOR_CHARACTER", result) print(result["character_count"]) # print("-------------") # result1 = curs.execute(query1).fetchone() # print("Results for charactercreator_cleric", result1) # print(result1["character_ptr_count"]) # print("---------") # result2 = curs.execute(query2).fetchone() # print("Results for charactercreator_fighter", result2) # print(result2["character_ptr_count"]) # print("---------") # result3 = curs.execute(query3).fetchone() # print("Results for charactercreator_mage", result3) # print(result3["character_ptr_count"]) # print('--------') # result4 = curs.execute(query4).fetchone() # print("Results for charactercreator_thief", result4) # print(result4["character_ptr_count"]) # print("-------------") # result5 = curs.execute(query5).fetchone() # print("Results for total Items", result5) # print(result5["total_item"]) result_queries = curs.execute(queries_combined).fetchall() print("Results of each specific subclass", result_queries) result6 = curs.execute(query6).fetchone() print("Results for total weapons", result6) print(result6["weapons"]) print("---------") result7 = curs.execute(query7).fetchone() print("Results for total non weapons", result7) print(result7["total_non_weapons"]) print("---------") result8 = curs.execute(query8).fetchall() for rw in result8: print(rw[0], rw[1]) print("---------") result9 = curs.execute(query9).fetchall() for rw in result9: print(rw['character_id'], rw['number_of_weapons']) print("---------") result10 = curs.execute(query10).fetchone() print("Average item per character", result10) print(result10["avg_items"]) print("---------") result11= curs.execute(query11).fetchone() print("Average weapon per character", result11) print(result11["avg_weapon"]) print("---------")
30.576687
85
0.731742
0
0
0
0
0
0
0
0
3,926
0.787721
3256173ee4e9a424745cf36c9f1ac6cf9bf2bc08
7,872
py
Python
tools/table.py
asterick/minimon.js
4876544525eb1bfef1b81a12807e7ba37cdd4949
[ "0BSD" ]
5
2019-04-25T00:19:56.000Z
2020-09-02T01:24:40.000Z
tools/table.py
asterick/minimon.js
4876544525eb1bfef1b81a12807e7ba37cdd4949
[ "0BSD" ]
6
2020-05-23T23:17:59.000Z
2022-02-17T21:50:46.000Z
tools/table.py
asterick/minimon.js
4876544525eb1bfef1b81a12807e7ba37cdd4949
[ "0BSD" ]
null
null
null
#!/usr/bin/env python3 # ISC License # # Copyright (c) 2019, Bryon Vandiver # # Permission to use, copy, modify, and/or distribute this software for any # purpose with or without fee is hereby granted, provided that the above # copyright notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF # OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. from json import dumps import os import csv CSV_LOCATION = os.path.join(os.path.abspath(os.path.dirname(__file__)), 's1c88.csv') op0s, op1s, op2s = [None] * 0x100, [None] * 0x100, [None] * 0x100 CONDITIONS = { 'C': 'cpu.reg.flag.c', 'NC': '!cpu.reg.flag.c', 'Z': 'cpu.reg.flag.z', 'NZ': '!cpu.reg.flag.z', 'V': 'cpu.reg.flag.v', 'NV': '!cpu.reg.flag.v', 'M': 'cpu.reg.flag.n', 'P': '!cpu.reg.flag.n', 'LT': 'cpu.reg.flag.n != cpu.reg.flag.v', 'LE': '(cpu.reg.flag.n != cpu.reg.flag.v) || cpu.reg.flag.z', 'GT': '(cpu.reg.flag.n == cpu.reg.flag.v) && !cpu.reg.flag.z', 'GE': 'cpu.reg.flag.n == cpu.reg.flag.v', 'F0': 'cpu.reg.flag.f0', 'F1': 'cpu.reg.flag.f1', 'F2': 'cpu.reg.flag.f2', 'F3': 'cpu.reg.flag.f3', 'NF0': '!cpu.reg.flag.f0', 'NF1': '!cpu.reg.flag.f1', 'NF2': '!cpu.reg.flag.f2', 'NF3': '!cpu.reg.flag.f3', } ARGUMENTS = { 'A': (8, False, False, 'a'), 'B': (8, False, False, 'b'), 'L': (8, False, False, 'l'), 'H': (8, False, False, 'h'), 'BR': (8, False, False, 'br'), 'SC': (8, False, False, 'sc'), 'EP': (8, False, False, 'ep'), 'XP': (8, False, False, 'xp'), 'YP': (8, False, False, 'yp'), 'NB': (8, False, False, 'nb'), 'BA': (16, False, False, 'ba'), 'HL': (16, False, False, 'hl'), 'IX': (16, False, False, 'ix'), 'IY': (16, False, False, 'iy'), 'SP': (16, False, False, 'sp'), 'PC': (16, False, False, 'pc'), '#nn': (8, True, False, 'imm8'), 'rr': (8, True, False, 'imm8'), '#mmnn': (16, True, False, 'imm16'), 'qqrr': (16, True, False, 'imm16'), '[kk]': (16, True, True, 'vect'), # Special '[hhll]': (-1, True, True, 'ind16'), '[HL]': (-1, True, True, 'absHL'), '[IX]': (-1, True, True, 'absIX'), '[IY]': (-1, True, True, 'absIY'), '[BR:ll]': (-1, True, True, 'absBR'), '[SP+dd]': (-1, True, True, 'indDSP'), '[IX+dd]': (-1, True, True, 'indDIX'), '[IY+dd]': (-1, True, True, 'indDIY'), '[IX+L]': (-1, True, True, 'indIIX'), '[IY+L]': (-1, True, True, 'indIIY'), } OPERATIONS = { 'INC': (8, 'ReadWrite'), 'DEC': (8, 'ReadWrite'), 'SLA': (8, 'ReadWrite'), 'SLL': (8, 'ReadWrite'), 'SRA': (8, 'ReadWrite'), 'SRL': (8, 'ReadWrite'), 'RL': (8, 'ReadWrite'), 'RLC': (8, 'ReadWrite'), 'RR': (8, 'ReadWrite'), 'RRC': (8, 'ReadWrite'), 'CPL': (8, 'ReadWrite'), 'NEG': (8, 'ReadWrite'), 'LD': (8, 'Write', 'Read'), 'ADD': (8, 'ReadWrite', 'Read'), 'ADC': (8, 'ReadWrite', 'Read'), 'SUB': (8, 'ReadWrite', 'Read'), 'SBC': (8, 'ReadWrite', 'Read'), 'AND': (8, 'ReadWrite', 'Read'), 'OR': (8, 'ReadWrite', 'Read'), 'XOR': (8, 'ReadWrite', 'Read'), 'CP': (8, 'Read', 'Read'), 'BIT': (8, 'Read', 'Read'), 'CALL': (16, 'Read'), 'CARS': (8, 'Read'), 'CARL': (16, 'Read'), 'JRS': (8, 'Read'), 'JRL': (16, 'Read'), 'JP': (8, 'Read'), 'INT': (8, 'Read'), 'RETE': (8,), 'PUSH': (-1, 'Read'), 'POP': (-1, 'Write'), 'EX': (-1, 'ReadWrite', 'ReadWrite'), 'SWAP': (8, 'ReadWrite') } def get_name(*args): return "inst_%s" % '_'.join([arg.lower() for arg in args if arg]) def format_arg(i, siz, mem, ind, nam): if mem: return "data%i" % i else: return "cpu.reg.%s" % nam def format(cycles, op, *args): condition = None cycles, skipped = [int(c) for c in cycles.split(",") * 2][:2] if len(args) > 0 and args[0] in CONDITIONS: condition, args = args[0], args[1:] try: ops = OPERATIONS[op] args = [ARGUMENTS[arg] for arg in args if arg] default_size, directions = ops[0], ops[1:] if len(args) >= 1: size = max(default_size, *[s for s, i, m, n in args]) else: size = default_size name = get_name(op, condition, *[n for s, i, m, n in args]) print ("static int %s(Machine::State& cpu) {" % name) for i, (siz, mem, ind, nam) in enumerate(args): if ind: print ("\tconst auto addr%i = calc_%s(cpu);" % (i, nam)) safety = "" if "Write" in directions[i] else "const " if "Read" in directions[i]: print ("\t%suint%i_t data%i = cpu_read%s(cpu, addr%i);" % (safety, size, i, size, i)) else: print ("\tuint%i_t data%i;" % (size, i)) elif mem: print ("\tconst uint%i_t data%i = cpu_imm%i(cpu);" % (size, i, siz)) if condition: print ("\tif (!(%s)) {" % CONDITIONS[condition]) print ("\t\tcpu.reg.cb = cpu.reg.nb;") print ("\t\treturn %i;" % skipped) print ("\t}") print ("\top_%s%i(%s);" % (op.lower(), size, ', '.join(['cpu']+[format_arg(i, *a) for i, a in enumerate(args)]))); block = False for i, (siz, mem, ind, nam) in enumerate(args): if ind and "Write" in directions[i]: print ("\tcpu_write%s(cpu, data%i, addr%i);" % (size, i, i)) if nam in ['sc', 'nb'] and "Write" in directions[i]: block = True if block or op == 'RETE': print ("\treturn %i + inst_advance(cpu); // Block IRQs" % cycles) else: print ("\treturn %i;" % cycles) print ("}\n") return name except: name = get_name(op, condition, *args) print ("int clock_%s(Machine::State& cpu) {" % name) print ("\t%s(cpu);" % name) print ("\treturn %i;" % cycles) print ("}\n") return "clock_%s" % name # Generate switch table def dump_table(instructions, indent): for i, t in enumerate(instructions): if not t: continue print ("%scase 0x%02X: return %s(cpu);" % (indent, i, t)) #print (i, t) print ("%sdefault: return inst_undefined(cpu);" % indent) with open(CSV_LOCATION, 'r') as csvfile: spamreader = csv.reader(csvfile) next(spamreader) for row in spamreader: code, cycles0, op0, arg0_1, arg0_2, cycles1, op1, arg1_1, arg1_2, cycles2, op2, arg2_1, arg2_2 = row code = int(code, 16) if op0 != 'undefined': op0s[code] = format(cycles0, op0, arg0_1, arg0_2) if op1 != 'undefined': op1s[code] = format(cycles1, op1, arg1_1, arg1_2) if op2 != 'undefined': op2s[code] = format(cycles2, op2, arg2_1, arg2_2) print ("int inst_advance(Machine::State& cpu) {") print ("\tswitch (cpu_imm8(cpu)) {") dump_table(op0s, '\t') print ("\tcase 0xCE:") print ("\t\tswitch (cpu_imm8(cpu)) {") dump_table(op1s, '\t\t') print ("\t\t}") print ("\tcase 0xCF:") print ("\t\tswitch (cpu_imm8(cpu)) {") dump_table(op2s, '\t\t') print ("\t\t}") print ("\t}") print ("}")
32.528926
123
0.506225
0
0
0
0
0
0
0
0
3,113
0.395452
325927f14aed5b03fe28e7161da22ac9db1b0f2b
15,364
py
Python
test_log.py
erkooi/desp_tools
2bea2e44591ceeeb62cbfe163b4635a3157f6582
[ "Apache-2.0" ]
null
null
null
test_log.py
erkooi/desp_tools
2bea2e44591ceeeb62cbfe163b4635a3157f6582
[ "Apache-2.0" ]
null
null
null
test_log.py
erkooi/desp_tools
2bea2e44591ceeeb62cbfe163b4635a3157f6582
[ "Apache-2.0" ]
null
null
null
############################################################################### # # Copyright (C) 2012 # ASTRON (Netherlands Institute for Radio Astronomy) <http://www.astron.nl/> # P.O.Box 2, 7990 AA Dwingeloo, The Netherlands # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################### """Test logging utilities * Provide logging with standardized prefixes: . time : self, if notime = 0 . verbosity level : self, if noVLevel = 0 . test case ID : self, if noTestId = 0 . message text : argument msgString, the actual text to log * All append_log statements that have verbosity level equal or lower than the test case verbosity level will get logged. * The logging gets output to the stdio and to a file if a file name is provided. * It is also possible to append other files to the test logging file. * Best practise is to use the following verbosity levels for the append_log argument: -v 0 Log test result -v 1 Log test title -v 2 Log errors -v 3 Log info -v 4 Log error details -v 5 Log info details -v 6 Log debug -v 7 Log debug details """ ################################################################################ # System imports import sys import time import common as cm ################################################################################ # Functions class Testlog: V_RESULT = 0 V_TITLE = 1 V_ERRORS = 2 V_INFO = 3 V_ERROR_DETAILS = 4 V_INFO_DETAILS = 5 V_DEBUG = 6 V_DEBUG_DETAILS = 7 _logName=None def __init__(self, verbosity=11, testId='', sectionId='', logName=None): self.verbosity = verbosity # Verbosity threshold used by append_log() to decide whether to log the input string or not self._testId = testId # Test ID that optionally gets used as prefix in append_log line self._sectionId = sectionId # Section ID that optionally gets used as prefix in append_log line self._logName = logName # Name for the file that will contain the append_log if self._logName != None: try: self._logFile = open(self._logName,'w') except IOError: print('ERROR : Can not open log file %s' % self._logName) def __del__(self): if self._logName != None: self.close_log() def close_log(self): if self._logName != None: self._logFile.close() # The testId can should remain fixed at __init__, but the user can change the sectionId during the execution def set_section_id(self, sectionId): self._sectionId = sectionId def verbose_levels(self): return "0=result; 1=title; 2=errors; 3=info; 4=error details; 5=info details; 6=debug; 7=debug details" # Print the message string and append it to the test log file in the Testlog style def append_log(self, vLevel, msgString, noTime=0, noVLevel=0, noTestId=0, noSectionId=0): if vLevel <= self.verbosity: txt = '' if noTime == 0: t = time.localtime() txt = txt + '[%d:%02d:%02d %02d:%02d:%02d]' % (t.tm_year, t.tm_mon, t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec) if noVLevel == 0: txt = txt + ' - (%d) ' % vLevel if noTestId == 0: txt = txt + self._testId if noSectionId == 0: txt = txt + self._sectionId txt = txt + msgString print(txt) #sys.stdout.flush() if self._logName != None: self._logFile.write(txt + '\n') # Print the repeat message string at regular intervals and append it to the test log file in the Testlog style def append_log_rep(self, vLevel, rep, nofRep, nofLog=5, noTime=0, noVLevel=0, noTestId=0, noSectionId=0): if nofRep < nofLog: logInterval = 1 else: logInterval = nofRep//nofLog if rep%logInterval==0 or rep==nofRep-1: self.append_log(3, 'Rep-%d' % rep) # Print the contents of an array to the test log file def append_log_data(self, vLevel, prefixStr, data, radix='dec', dataWidth=8, nofColumns=16, rulers=False, noTime=0, noVLevel=0, noTestId=0, noSectionId=0): if vLevel <= self.verbosity: r = 0 columnWidth = dataWidth + 1 # use 1 space between columns if rulers: rowStr = 'Col:' for i in range(nofColumns): rowStr += '%*d' % (columnWidth, i) self.append_log(vLevel, prefixStr + rowStr, noTime, noVLevel, noTestId, noSectionId) self.append_log(vLevel, prefixStr + 'Row:', noTime, noVLevel, noTestId, noSectionId) rowStr = prefixStr + ('%-4d' % r) else: rowStr = prefixStr k = 0 # Make sure data is a list, otherwise the following fails if cm.depth(data)==0: data=cm.listify(data) n = len(data) for i in range(n): if radix=='uns': rowStr += ' %*d' % (dataWidth, data[i]) if radix=='dec': rowStr += ' %*d' % (dataWidth, data[i]) if radix=='hex': rowStr += ' %0*x' % (dataWidth, data[i]) if k < nofColumns-1: k = k + 1 else: self.append_log(vLevel, prefixStr + rowStr, noTime, noVLevel, noTestId, noSectionId) rowStr = prefixStr r = r + 1 if rulers: rowStr += ('%-4d' % r) k = 0 if k!=0: self.append_log(vLevel, prefixStr + rowStr, noTime, noVLevel, noTestId, noSectionId) def data_to_string(self, data, dataWidth=4, dataLeft=False, fractionWidth=2, fractionExponent=False): """Print data to string with length dataWidth + 1 white space Default print the data as %s string to support any type If the data is float or complex then print it using fraction notation when fractionExponent=False or using exponent notation when fractionExponent=True. The fractionWidth specifies the width of the floating point value. The data is printed left or right aligned dependent on dataLeft. For all data types the returned data string has length dataWidth + 1 for a white space such that it can be used as a fixed size element string when printing a row of data on a line. . data = the data, can be float complex or other e.g. int, string, tuple . dataWidth = width of the printed data string . dataLeft = when True then left align the data in the printed data string, else right align . fractionWidth = width of the fraction in case of float data . fractionExponent = when True print exponent in case of float data, else only print fraction """ if isinstance(data, float): # Log in float format if fractionExponent: dataStr = '%.*e' % (fractionWidth, data) # log data as float with exponent else: dataStr = '%.*f' % (fractionWidth, data) # log data as float elif isinstance(data, complex): # Log in complex float format if fractionExponent: dataStr = '%.*e,' % (fractionWidth, data.real) # log data real part as float with exponent dataStr += '%.*ej' % (fractionWidth, data.imag) # log data imag part as float with exponent else: dataStr = '%.*f,' % (fractionWidth, data.real) # log data real part as float dataStr += '%.*fj' % (fractionWidth, data.imag) # log data imag part as float else: # Default log data as string dataStr = '%s' % str(data) # the data can be any type that fits %s e.g. int, string, tuple # the explicite conversion by str() is needed for tuple # Left or right align the dataStr within dataWidth if dataLeft: dataStr = '%-*s ' % (dataWidth, dataStr) else: dataStr = '%*s ' % (dataWidth, dataStr) return dataStr def append_log_one_dimensional_list(self, vLevel, name, L, prefixStr='', dataWidth=4, dataLeft=False, fractionWidth=0, fractionExponent=False, colIndices=None): """Log list L[col] in one row with index labels . vLevel = verbosity level . name = name, title of the list . L = the one dimensional list . prefixStr = prefix string that is printed before every line, can e.g. be used for grep . dataWidth = of data in column, see self.data_to_string . dataLeft = of data in column, see self.data_to_string . fractionWidth = of data in column, see self.data_to_string . fractionExponent = of data in column, see self.data_to_string . colIndices = when None then log counter index, else use index from list Remarks: . This append_log_one_dimensional_list is similar to using append_log_data with nofColumns=len(L) . This append_log_one_dimensional_list is similar to append_log_two_dimensional_list with 1 row. """ if vLevel <= self.verbosity: self.append_log(vLevel, '') # start with newline self.append_log(vLevel, prefixStr + '%s:' % name) nof_cols = len(L) # Print row with column indices if colIndices == None: colIndices = list(range(nof_cols)) col_index_str = '. index : ' for col in colIndices: col_index_str += '%*d ' % (dataWidth, col) self.append_log(vLevel, prefixStr + col_index_str) # Print row with data line_str = '. value : ' uniqueL = cm.unique(L) if len(uniqueL)==1: line_str += 'all ' + self.data_to_string(uniqueL[0], dataWidth, dataLeft, fractionWidth, fractionExponent) else: for col in range(nof_cols): line_str += self.data_to_string(L[col], dataWidth, dataLeft, fractionWidth, fractionExponent) self.append_log(vLevel, prefixStr + '%s' % line_str) self.append_log(vLevel, '') # end with newline def append_log_two_dimensional_list(self, vLevel, name, A, prefixStr='', transpose=False, reverseCols=False, reverseRows=False, dataWidth=4, dataLeft=False, fractionWidth=0, fractionExponent=False, colIndices=None, rowIndices=None): """ Log two dimensional list A[row][col] per row with index labels . vLevel = verbosity level . name = name, title of the list . A = the two dimensional list . prefixStr = prefix string that is printed before every line, can e.g. be used for grep . transpose = when true transpose(A) to log rows as columns and columns as rows . reverseCols = when true reverse the order of the columns . reverseRows = when true reverse the order of the rows . dataWidth = of data in column, see self.data_to_string . dataLeft = of data in column, see self.data_to_string . fractionWidth = of data in column, see self.data_to_string . fractionExponent = of data in column, see self.data_to_string . colIndices = when None then log counter index, else use index from list . rowIndices = when None then log counter index, else use index from list (can be text index) Remarks: . The example recipy for making a two dimensional list of the form A[rows][cols] is: A = [], row=[], row.append(element) for all cols, A.append(row) for all rows or use cm.create_multidimensional_list([Number of rows][Number of cols]) """ if vLevel <= self.verbosity: self.append_log(vLevel, '') # start with newline self.append_log(vLevel, prefixStr + '%s:' % name) if transpose: #print name, transpose A = cm.transpose(A) if reverseRows: A = cm.reverse_rows_ud(A) if reverseCols: A = cm.reverse_cols_lr(A) nof_rows = len(A) nof_cols = len(A[0]) self.append_log(vLevel, prefixStr + 'col :') # Print row with column indices if colIndices == None: colIndices = list(range(nof_cols)) if rowIndices == None: rowIndices = list(range(nof_rows)) rowIndexLength = 6 # default row_str prefix length else: rowIndexLength = 3 + len(str(rowIndices[-1])) # use last row index string for row_str prefix length col_index_str = ' ' * rowIndexLength for col in colIndices: col_index_str += '%*d ' % (dataWidth, col) self.append_log(vLevel, prefixStr + col_index_str) self.append_log(vLevel, prefixStr + 'row :') # For each row print row index and row with data for ri,row in enumerate(rowIndices): row_str = '%3s : ' % row # row index, log index as string to support also text index uniqueRow = cm.unique(A[ri]) if len(uniqueRow)==1: row_str += 'all ' + self.data_to_string(uniqueRow[0], dataWidth, dataLeft, fractionWidth, fractionExponent) else: for col in range(nof_cols): row_str += self.data_to_string(A[ri][col], dataWidth, dataLeft, fractionWidth, fractionExponent) self.append_log(vLevel, prefixStr + '%s' % row_str) self.append_log(vLevel, '') # end with newline # Read the contents of a file and append that to the test log file def append_log_file(self, vLevel, fileName): try: appFile = open(fileName,'r') self.append_log(vLevel,appFile.read(),1,1,1,1) appFile.close() except IOError: self.append_log(vLevel,'ERROR : Can not open file %s' % fileName)
48.466877
164
0.570034
13,327
0.867417
0
0
0
0
0
0
7,437
0.484054
325b56ca169aa22d3b3e5e502acb535b1e7a8a46
868
py
Python
subaudible/subparse.py
RobbieClarken/subaudible
f22bdec90693727b36eff426e96d6960387fb94d
[ "MIT" ]
null
null
null
subaudible/subparse.py
RobbieClarken/subaudible
f22bdec90693727b36eff426e96d6960387fb94d
[ "MIT" ]
null
null
null
subaudible/subparse.py
RobbieClarken/subaudible
f22bdec90693727b36eff426e96d6960387fb94d
[ "MIT" ]
null
null
null
import re def parse_srt(line_iter): """ Parses SubRip text into caption dicts. Args: line_iter: An iterator that yields lines of a SubRip file. Yields: dict: Caption dicts with `start`, `end` and `text` keys. """ line_iter = iter(line.rstrip('\r\n') for line in line_iter) while True: next(line_iter) # Skip counter start, end = parse_time_line(next(line_iter)) text = '\n'.join(iter(line_iter.__next__, '')) yield {'start': start, 'end': end, 'text': text} def parse_time_line(line): return (parse_time(time_str) for time_str in line.split('-->')) def parse_time(time_str): time_str = time_str.replace(',', '.') match = re.search('(\d\d):(\d\d):(\d\d).(\d\d\d)', time_str) h, m, s, ms = (int(s) for s in match.groups()) return 3600 * h + 60 * m + s + 1e-3 * ms
27.125
67
0.59447
0
0
527
0.607143
0
0
0
0
297
0.342166
325b89ab7374be326978f10a334f001191bd3ead
1,971
py
Python
application/models/basemodel.py
ahmedsadman/festive
e0e739f126de2e8368014398f5c928c410098da5
[ "MIT" ]
2
2020-10-19T23:26:23.000Z
2020-10-20T02:14:10.000Z
application/models/basemodel.py
ahmedsadman/fest-management-api
e0e739f126de2e8368014398f5c928c410098da5
[ "MIT" ]
null
null
null
application/models/basemodel.py
ahmedsadman/fest-management-api
e0e739f126de2e8368014398f5c928c410098da5
[ "MIT" ]
1
2021-08-04T15:45:29.000Z
2021-08-04T15:45:29.000Z
from sqlalchemy import func from application import db from application.helpers.error_handlers import ServerError class BaseModel(db.Model): __abstract__ = True def save(self): """save the item to database""" try: db.session.add(self) db.session.commit() except Exception as e: raise ServerError(message="Failed to save the item", error=e) def delete(self): """delete the item from database""" try: db.session.delete(self) db.session.commit() except Exception as e: raise ServerError(message="Deletion failed", error=e) @classmethod def find_by_id(cls, id): return cls.query.filter_by(id=id).first() @classmethod def find_query(cls, _filter): """Build the query with the given level one filters (filters that has direct match with entity attributes, not any nested relationship). Returns 'query' object""" query = cls.query exclude_lower = [int, bool] for attr, value in _filter.items(): # func.lower doesn't work for INT/BOOL types in some production # databases, so this should be properly handled # ex: lower(event.id) won't work because event.id is INT type # So the logic is, whenever the passed 'value' in this scope is # INT, it means # we don't need to lower anything. Just compare the vanilla value _attr = getattr(cls, attr) _attr = ( _attr if (type(value) in exclude_lower) else func.lower(_attr) ) _value = ( value if (type(value) in exclude_lower) else func.lower(value) ) query = query.filter(_attr == _value) return query @classmethod def find(cls, _filter): """find all entities by given filter""" return cls.find_query(_filter).all()
33.982759
78
0.597666
1,854
0.940639
0
0
1,297
0.658042
0
0
639
0.324201
325ca5543e9808ec6039d4cf69192bb2bde47b8f
522
py
Python
tests/core/resource_test_base.py
alteia-ai/alteia-python-sdk
27ec7458334334ed6a1edae52cb25d5ce8734177
[ "MIT" ]
11
2020-12-22T14:39:21.000Z
2022-02-18T16:34:34.000Z
tests/core/resource_test_base.py
alteia-ai/alteia-python-sdk
27ec7458334334ed6a1edae52cb25d5ce8734177
[ "MIT" ]
1
2021-08-05T14:21:12.000Z
2021-08-09T13:22:55.000Z
tests/core/resource_test_base.py
alteia-ai/alteia-python-sdk
27ec7458334334ed6a1edae52cb25d5ce8734177
[ "MIT" ]
null
null
null
import os from unittest.mock import patch import alteia from tests.alteiatest import AlteiaTestBase class ResourcesTestBase(AlteiaTestBase): @classmethod def setUpClass(cls): with patch('alteia.core.connection.token.TokenManager.renew_token') as mock: mock.return_value = None cls.sdk = alteia.SDK(config_path=cls.get_absolute_path("./config-test.json")) @staticmethod def get_absolute_path(file_path): return os.path.join(os.path.dirname(__file__), file_path)
27.473684
89
0.726054
418
0.800766
0
0
366
0.701149
0
0
75
0.143678
325dd1dcfd3afeca98237f91ac72ec8dacd09a26
137
py
Python
scripts/viterbi.py
Tereshchenkolab/digitize-ecg-cli
fa5a17c5390a11ce07e39e6a8eecb56ed38b16a1
[ "MIT" ]
6
2021-06-12T08:20:33.000Z
2022-03-01T15:32:35.000Z
scripts/viterbi.py
Tereshchenkolab/ecg-digitize
fa5a17c5390a11ce07e39e6a8eecb56ed38b16a1
[ "MIT" ]
null
null
null
scripts/viterbi.py
Tereshchenkolab/ecg-digitize
fa5a17c5390a11ce07e39e6a8eecb56ed38b16a1
[ "MIT" ]
null
null
null
from ecgdigitize.signal.extraction.viterbi import * if __name__ == "__main__": print(list(interpolate(Point(0,0), Point(5,5))))
27.4
56
0.70073
0
0
0
0
0
0
0
0
10
0.072993
325fc49ee449fcf77d594c853f23436486f7b300
2,711
py
Python
tests/io/s3/test_s3_fetcher.py
ToucanToco/PeaKina
afaeec65d9b136d42331f140c3048d27bcddb6b1
[ "BSD-3-Clause" ]
null
null
null
tests/io/s3/test_s3_fetcher.py
ToucanToco/PeaKina
afaeec65d9b136d42331f140c3048d27bcddb6b1
[ "BSD-3-Clause" ]
null
null
null
tests/io/s3/test_s3_fetcher.py
ToucanToco/PeaKina
afaeec65d9b136d42331f140c3048d27bcddb6b1
[ "BSD-3-Clause" ]
null
null
null
from typing import Any, Dict import boto3 import pytest from s3fs import S3FileSystem from peakina.io.s3.s3_fetcher import S3Fetcher @pytest.fixture def s3_fetcher(s3_endpoint_url): return S3Fetcher(client_kwargs={"endpoint_url": s3_endpoint_url}) def test_s3_fetcher_open(s3_fetcher): dirpath = "s3://accessKey1:verySecretKey1@mybucket" filepath = f"{dirpath}/0_0.csv" with s3_fetcher.open(filepath) as f: assert f.read() == b"a,b\n0,0\n0,1" def test_s3_fetcher_listdir(s3_fetcher, mocker): s3_mtime_mock = mocker.patch("peakina.io.s3.s3_fetcher.s3_mtime") dirpath = "s3://accessKey1:verySecretKey1@mybucket" assert s3_fetcher.listdir(dirpath) == [ "0_0.csv", "0_1.csv", "mydir", ] assert s3_fetcher.mtime(f"{dirpath}/0_0.csv") > 0 assert s3_fetcher.mtime(f"{dirpath}/mydir") is None s3_mtime_mock.assert_not_called() def test_s3_fetcher_mtime(s3_fetcher): dirpath = "s3://accessKey1:verySecretKey1@mybucket" filepath = f"{dirpath}/0_0.csv" assert s3_fetcher.mtime(filepath) > 0 def test_s3_fetcher_open_retry(s3_fetcher, s3_endpoint_url, mocker): session = boto3.session.Session() s3_client = session.client( service_name="s3", aws_access_key_id="accessKey1", aws_secret_access_key="verySecretKey1", endpoint_url=s3_endpoint_url, ) dirpath = "s3://accessKey1:verySecretKey1@mybucket" filepath = f"{dirpath}/for_retry_0_0.csv" s3_client.upload_file("tests/fixtures/for_retry_0_0.csv", "mybucket", "for_retry_0_0.csv") class S3FileSystemThatFailsOpen(S3FileSystem): # type:ignore[misc] def __init__(self, key: str, secret: str, client_kwargs: Dict[str, Any]) -> None: super().__init__(key=key, secret=secret, client_kwargs=client_kwargs) self.invalidated_cache = False def open(self, path, mode="rb", block_size=None, cache_options=None, **kwargs): if not self.invalidated_cache: raise Exception("argh!") return super().open(path, mode, block_size, cache_options, **kwargs) def invalidate_cache(self, path=None): self.invalidated_cache = True mocker.patch("peakina.io.s3.s3_utils.s3fs.S3FileSystem", S3FileSystemThatFailsOpen) logger_mock = mocker.patch("peakina.io.s3.s3_utils.logger") with s3_fetcher.open(filepath) as f: # ensure logger doesn't log credentials logger_mock.warning.assert_called_once_with( "could not open mybucket/for_retry_0_0.csv: argh!" ) assert f.read() == b"a,b\n0,0\n0,1" s3_client.delete_object(Bucket="mybucket", Key="tests/fixtures/for_retry_0_0.csv")
33.8875
94
0.693471
626
0.230911
0
0
118
0.043526
0
0
709
0.261527
3262d7cd59e5780cbf71323fcb7c77c193d6904e
324
py
Python
testemunhoweb/consulta/migrations/0002_auto_20191202_0219.py
danielcamilo13/testemunhoWEB
46825e31123058fa6ee21e4e71e9e0bedde32bb4
[ "bzip2-1.0.6" ]
1
2019-12-03T01:37:13.000Z
2019-12-03T01:37:13.000Z
testemunhoweb/consulta/migrations/0002_auto_20191202_0219.py
danielcamilo13/testemunhoWEB
46825e31123058fa6ee21e4e71e9e0bedde32bb4
[ "bzip2-1.0.6" ]
11
2020-06-06T01:28:35.000Z
2022-03-12T00:16:34.000Z
testemunhoweb/consulta/migrations/0002_auto_20191202_0219.py
danielcamilo13/testemunhoWEB
46825e31123058fa6ee21e4e71e9e0bedde32bb4
[ "bzip2-1.0.6" ]
null
null
null
# Generated by Django 2.2.7 on 2019-12-02 05:19 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('consulta', '0001_initial'), ] operations = [ migrations.RenameModel( old_name='generate', new_name='consulta', ), ]
18
47
0.58642
239
0.737654
0
0
0
0
0
0
91
0.280864
32638416d54a115fde42bba19086c99e40948e61
802
py
Python
backend/events/tests/test_views.py
trfoss/parrot
2f120ee1ab82368f85b2b5a7f1c45afc26aa8963
[ "BSD-2-Clause" ]
5
2019-02-25T02:24:51.000Z
2019-04-21T00:56:43.000Z
backend/events/tests/test_views.py
trfoss/parrot
2f120ee1ab82368f85b2b5a7f1c45afc26aa8963
[ "BSD-2-Clause" ]
51
2019-02-06T03:36:27.000Z
2021-06-10T21:11:24.000Z
backend/events/tests/test_views.py
trfoss/parrot
2f120ee1ab82368f85b2b5a7f1c45afc26aa8963
[ "BSD-2-Clause" ]
7
2019-02-06T04:37:10.000Z
2019-03-28T07:52:26.000Z
""" backend/events/tests/test_views.py Tests for the events page views. We use the test client. Read more at https://docs.djangoproject.com/en/2.1/topics/testing/tools/ """ import json from django.test import TestCase class EventsPageViewTests(TestCase): """Events page view tests for route /events/data """ fixtures = [ 'event.json', 'team.json', 'teammember.json', ] def test_events_data(self): """Test route /events/data - it returns status code 200 - it returns a non-empty list """ response = self.client.get('/events/data') self.assertEqual(response.status_code, 200) obj = json.loads(response.content) self.assertTrue(isinstance(obj, list)) self.assertTrue(len(obj) > 0)
26.733333
69
0.63591
577
0.719451
0
0
0
0
0
0
400
0.498753
32649f15ad311acc51f598d331270d3f4fb588d6
497
py
Python
instructors/lessons/practical_utils/examples/os-path-walk.py
mgadagin/PythonClass
70b370362d75720b3fb0e1d6cc8158f9445e9708
[ "MIT" ]
46
2017-09-27T20:19:36.000Z
2020-12-08T10:07:19.000Z
instructors/lessons/practical_utils/examples/os-path-walk.py
mgadagin/PythonClass
70b370362d75720b3fb0e1d6cc8158f9445e9708
[ "MIT" ]
6
2018-01-09T08:07:37.000Z
2020-09-07T12:25:13.000Z
instructors/lessons/practical_utils/examples/os-path-walk.py
mgadagin/PythonClass
70b370362d75720b3fb0e1d6cc8158f9445e9708
[ "MIT" ]
18
2017-10-10T02:06:51.000Z
2019-12-01T10:18:13.000Z
import os import os.path def visit(arg, dirname, names): print dirname, arg for name in names: subname = os.path.join(dirname, name) if os.path.isdir(subname): print ' %s/' % name else: print ' %s' % name print os.mkdir('example') os.mkdir('example/one') f = open('example/one/file.txt', 'wt') f.write('contents') f.close() f = open('example/two.txt', 'wt') f.write('contents') f.close() os.path.walk('example', visit, '(User data)')
22.590909
45
0.591549
0
0
0
0
0
0
0
0
124
0.249497
326587ea3dd2af6a3849b34225b40c151ddc17b4
532
py
Python
tikplay/provider/tests/retriever_test.py
tietokilta-saato/tikplay
8061451c21f06bd07129a8a42543ea86b7518d4a
[ "MIT" ]
2
2015-01-15T14:14:50.000Z
2015-10-23T05:37:34.000Z
tikplay/provider/tests/retriever_test.py
tietokilta-saato/tikplay
8061451c21f06bd07129a8a42543ea86b7518d4a
[ "MIT" ]
8
2015-01-12T10:27:27.000Z
2015-05-11T12:05:03.000Z
tikplay/provider/tests/retriever_test.py
tietokilta-saato/tikplay
8061451c21f06bd07129a8a42543ea86b7518d4a
[ "MIT" ]
null
null
null
#!/usr/bin/env python # Part of tikplay # Yes, this is a bit of a non-test. from nose.tools import * from tikplay.provider.retriever import Retriever class TestRetriever(object): def __init__(self): self.retriever = Retriever({}) @raises(NotImplementedError) def test_handles(self): self.retriever.handles_url("") @raises(NotImplementedError) def test_get(self): self.retriever.get("") def test_str(self): assert str(self.retriever) == "URL retriever 'Unnamed retriever'"
25.333333
73
0.682331
380
0.714286
0
0
178
0.334586
0
0
112
0.210526
3265c12d40cc56aa2b76c483dff904dc52c43391
11,333
py
Python
myfunds/web/views/crypto/views.py
anzodev/myfunds
9f6cda99f443cec064d15d7ff7780f297cbdfe10
[ "MIT" ]
null
null
null
myfunds/web/views/crypto/views.py
anzodev/myfunds
9f6cda99f443cec064d15d7ff7780f297cbdfe10
[ "MIT" ]
null
null
null
myfunds/web/views/crypto/views.py
anzodev/myfunds
9f6cda99f443cec064d15d7ff7780f297cbdfe10
[ "MIT" ]
null
null
null
import csv import io from datetime import datetime import peewee as pw from flask import Blueprint from flask import g from flask import make_response from flask import redirect from flask import render_template from flask import request from flask import url_for from wtforms import Form from wtforms import IntegerField from wtforms import validators as vals from myfunds.core.constants import CryptoDirection from myfunds.core.models import CryptoActionLog from myfunds.core.models import CryptoBalance from myfunds.core.models import CryptoCurrency from myfunds.core.models import CryptoTransaction from myfunds.core.models import db_proxy from myfunds.modules import cmc from myfunds.web import ajax from myfunds.web import auth from myfunds.web import notify from myfunds.web import utils from myfunds.web.constants import DATETIME_FORMAT from myfunds.web.forms import AddCryptoBalanceForm from myfunds.web.forms import AddCyptoTransactionForm from myfunds.web.forms import DeleteCryptoBalanceForm from myfunds.web.forms import UpdateCryptoBalanceQuantityForm USD_CODE = "USD" USD_PRECISION = 2 CRYPTO_PRECISION = 8 bp = Blueprint("crypto", __name__, template_folder="templates") @bp.route("/crypto") @auth.login_required def index(): currencies = CryptoCurrency.select().order_by(CryptoCurrency.symbol) balances = ( CryptoBalance.select() .join(CryptoCurrency) .where(CryptoBalance.account == g.authorized_account) .order_by(CryptoBalance.name, CryptoCurrency.symbol) ) investments = ( CryptoTransaction.select( pw.fn.COUNT(CryptoTransaction.id), pw.fn.SUM(CryptoTransaction.amount), ) .where( (CryptoTransaction.account == g.authorized_account) & (CryptoTransaction.direction == CryptoDirection.INVESTMENT) ) .scalar(as_tuple=True) ) if investments[1] is None: investments = None fixed_profit = ( CryptoTransaction.select( pw.fn.COUNT(CryptoTransaction.id), pw.fn.SUM(CryptoTransaction.amount), ) .where( (CryptoTransaction.account == g.authorized_account) & (CryptoTransaction.direction == CryptoDirection.FIXED_PROFIT) ) .scalar(as_tuple=True) ) if fixed_profit[1] is None: fixed_profit = None amount_pattern = utils.make_amount_pattern(8) return render_template( "crypto/view.html", currencies=currencies, investments=investments, fixed_profit=fixed_profit, balances=balances, amount_pattern=amount_pattern, ) @bp.route("/crypto/balances/new", methods=["POST"]) @auth.login_required def new_balance(): redirect_url = url_for("crypto.index") form = AddCryptoBalanceForm(request.form) utils.validate_form(form, redirect_url) name = form.name.data currency_id = form.currency_id.data currency = CryptoCurrency.get_or_none(id=currency_id) if currency is None: notify.error("Currency not found.") return redirect(redirect_url) balance = CryptoBalance.create( account=g.authorized_account, currency=currency, name=name, quantity=0, ) notify.info(f"New balance '{balance.name}' was created.") return redirect(redirect_url) @bp.route("/crypto/balances/delete", methods=["POST"]) @auth.login_required def delete_balance(): redirect_url = url_for("crypto.index") form = DeleteCryptoBalanceForm(request.form) utils.validate_form(form, redirect_url) balance_id = form.balance_id.data balance = CryptoBalance.get_or_none(id=balance_id, account=g.authorized_account) if balance is None: notify.error("Balance not found.") return redirect(redirect_url) balance.delete_instance() notify.info(f"Balance '{balance.name}' was deleted.") return redirect(redirect_url) @bp.route("/crypto/balances/update-quantity", methods=["POST"]) @auth.login_required def update_quantity(): redirect_url = url_for("crypto.index") form = UpdateCryptoBalanceQuantityForm(request.form) form.quantity.validators.append( vals.Regexp(utils.make_amount_pattern(CRYPTO_PRECISION)) ) utils.validate_form(form, redirect_url) action = form.action.data balance_id = form.balance_id.data quantity = utils.amount_to_subunits(form.quantity.data, CRYPTO_PRECISION) balance = CryptoBalance.get_or_none(id=balance_id, account=g.authorized_account) if balance is None: notify.error("Balance not found.") return redirect(redirect_url) quantity_before = balance.quantity if action == "set": balance.quantity = quantity elif action == "add": balance.quantity += quantity else: balance.quantity -= quantity if balance.quantity < 0: notify.error("Balance quantity can't be less then zero.") return redirect(redirect_url) with db_proxy.atomic(): CryptoActionLog.create( account=g.authorized_account, message=( f"{action.capitalize()} {form.quantity.data} {balance.currency.symbol} " f"for {balance.name} ({balance.id}), " f"before: {utils.make_hrf_amount(quantity_before, CRYPTO_PRECISION)}, " f"after: {utils.make_hrf_amount(balance.quantity, CRYPTO_PRECISION)}." ), created_at=datetime.now(), ) balance.save() notify.info("Balance quantity was updated.") return redirect(redirect_url) @bp.route("/crypto/invest", methods=["POST"]) @auth.login_required def invest(): redirect_url = url_for("crypto.index") quantity_validator = vals.Regexp(utils.make_amount_pattern(CRYPTO_PRECISION)) price_validator = vals.Regexp(utils.make_amount_pattern(USD_PRECISION)) form = AddCyptoTransactionForm(request.form) form.quantity.validators.append(quantity_validator) form.price.validators.append(price_validator) utils.validate_form(form, redirect_url) currency_id = form.currency_id.data quantity = form.quantity.data price = form.price.data amount = round(float(quantity) * float(price), USD_PRECISION) currency = CryptoCurrency.get_or_none(id=currency_id) if currency is None: notify.error("Currency not found.") return redirect(redirect_url) with db_proxy.atomic(): creation_time = datetime.now() CryptoTransaction.create( account=g.authorized_account, direction=CryptoDirection.INVESTMENT, symbol=currency.symbol, quantity=utils.amount_to_subunits(quantity, CRYPTO_PRECISION), price=utils.amount_to_subunits(price, USD_PRECISION), amount=utils.amount_to_subunits(amount, USD_PRECISION), created_at=creation_time, ) CryptoActionLog.create( account=g.authorized_account, message=( f"Invest ${amount}, bought {quantity} {currency.symbol} by ${price}." ), created_at=creation_time, ) notify.info("New investment was added.") return redirect(redirect_url) @bp.route("/crypto/fix-profit", methods=["POST"]) @auth.login_required def fix_profit(): redirect_url = url_for("crypto.index") quantity_validator = vals.Regexp(utils.make_amount_pattern(CRYPTO_PRECISION)) price_validator = vals.Regexp(utils.make_amount_pattern(USD_PRECISION)) form = AddCyptoTransactionForm(request.form) form.quantity.validators.append(quantity_validator) form.price.validators.append(price_validator) utils.validate_form(form, redirect_url) currency_id = form.currency_id.data quantity = form.quantity.data price = form.price.data amount = round(float(quantity) * float(price), USD_PRECISION) currency = CryptoCurrency.get_or_none(id=currency_id) if currency is None: notify.error("Currency not found.") return redirect(redirect_url) with db_proxy.atomic(): creation_time = datetime.now() CryptoTransaction.create( account=g.authorized_account, direction=CryptoDirection.FIXED_PROFIT, symbol=currency.symbol, quantity=utils.amount_to_subunits(quantity, CRYPTO_PRECISION), price=utils.amount_to_subunits(price, USD_PRECISION), amount=utils.amount_to_subunits(amount, USD_PRECISION), created_at=creation_time, ) CryptoActionLog.create( account=g.authorized_account, message=( f"Fix profit ${amount}, sell {quantity} {currency.symbol} by ${price}." ), created_at=creation_time, ) notify.info("New profit fix was added.") return redirect(redirect_url) @bp.route("/ajax/balances-values") @ajax.ajax_endpoint @auth.login_required def ajax_balances_values(): balances = ( CryptoBalance.select() .join(CryptoCurrency) .where(CryptoBalance.account == g.authorized_account) ) currencies_ids = [i.currency.cmc_id for i in balances] prices = cmc.fetch_prices(currencies_ids, USD_CODE) data = {} for b in balances: price, amount = prices.get(b.currency.cmc_id), None if price is not None: amount = round( float(utils.make_hrf_amount(b.quantity, CRYPTO_PRECISION)) * price, USD_PRECISION, ) data[int(b.id)] = {"price": price, "amount": amount} return data class ActionsFilterForm(Form): offset = IntegerField(validators=[vals.Optional()]) limit = IntegerField(validators=[vals.Optional()]) @bp.route("/crypto/actions") @auth.login_required def actions(): filter_form = ActionsFilterForm(request.args) utils.validate_form(filter_form, url_for("crypto.actions"), error_notify=None) offset = filter_form.offset.data or 0 limit = filter_form.limit.data or 10 filters = {"offset": offset, "limit": limit} limit_plus_one = limit + 1 query = ( CryptoActionLog.select() .where(CryptoActionLog.account == g.authorized_account) .order_by(CryptoActionLog.created_at.desc()) .offset(offset) .limit(limit_plus_one) ) actions = list(query)[:limit] has_prev = offset > 0 has_next = len(query) == limit_plus_one return render_template( "crypto/actions.html", filters=filters, actions=actions, has_prev=has_prev, has_next=has_next, ) @bp.route("/crypto/actions/export") @auth.login_required def export_actions(): actions = ( CryptoActionLog.select() .where(CryptoActionLog.account == g.authorized_account) .order_by(CryptoActionLog.created_at.desc()) ) buffer = io.StringIO() csvwriter = csv.writer(buffer, delimiter=";", quoting=csv.QUOTE_ALL) csvwriter.writerow(["Time", "Message"]) for i in actions.iterator(): csvwriter.writerow([i.created_at.strftime(DATETIME_FORMAT), i.message]) res = make_response(buffer.getvalue()) res.headers["Content-Disposition"] = "attachment; filename=actions.csv" res.headers["Content-type"] = "text/csv" return res
29.667539
88
0.682344
141
0.012442
0
0
9,970
0.879732
0
0
1,212
0.106944
32664ad5a10d717905dcb559f04579027da2c523
268
py
Python
Python/InvertTree.py
lywc20/daily-programming
78529e535aea5bda409e5a2a009274dca7011e29
[ "MIT" ]
null
null
null
Python/InvertTree.py
lywc20/daily-programming
78529e535aea5bda409e5a2a009274dca7011e29
[ "MIT" ]
null
null
null
Python/InvertTree.py
lywc20/daily-programming
78529e535aea5bda409e5a2a009274dca7011e29
[ "MIT" ]
null
null
null
class TreeNode: def __init__(self,val): self.left = None self.right = None self.val = None def invertTree(self,root): if root: root.left, root.right = self.invertTree(root.right), self.invertTree(root.left) return root
24.363636
87
0.619403
118
0.440299
0
0
0
0
0
0
0
0
32665f5e99814a1ca419ee599a7bb327ba8ffbf0
9,115
py
Python
src/modeci_mdf/interfaces/pytorch/mod_torch_builtins.py
29riyasaxena/MDF
476e6950d0f14f29463eb4f6e3be518dfb2160a5
[ "Apache-2.0" ]
12
2021-01-18T20:38:21.000Z
2022-03-29T15:01:10.000Z
src/modeci_mdf/interfaces/pytorch/mod_torch_builtins.py
29riyasaxena/MDF
476e6950d0f14f29463eb4f6e3be518dfb2160a5
[ "Apache-2.0" ]
101
2020-12-14T15:23:07.000Z
2022-03-31T17:06:19.000Z
src/modeci_mdf/interfaces/pytorch/mod_torch_builtins.py
29riyasaxena/MDF
476e6950d0f14f29463eb4f6e3be518dfb2160a5
[ "Apache-2.0" ]
15
2020-12-04T22:37:14.000Z
2022-03-31T09:48:03.000Z
""" Wrap commonly-used torch builtins in nn.Module subclass for easier automatic construction of script """ import torch import torch.nn as nn import torch.nn.functional as F class argmax(torch.nn.Module): def __init__(self): super().__init__() def forward(self, A): return torch.argmax(A) class argmin(torch.nn.Module): def __init__(self): super().__init__() def forward(self, A): return torch.argmin(A) class matmul(torch.nn.Module): def __init__(self): super().__init__() def forward(self, A, B): return torch.matmul(A, B.T) class add(torch.nn.Module): def __init__(self): super().__init__() def forward(self, A, B): return torch.add(A, B) class sin(torch.nn.Module): def __init__(self): super().__init__() def forward(self, A): return torch.sin(A) class cos(torch.nn.Module): def __init__(self): super().__init__() def forward(self, A): return torch.cos(A) class abs(torch.nn.Module): def __init__(self): super().__init__() def forward(self, A): return torch.abs(A) class flatten(torch.nn.Module): def __init__(self): super().__init__() def forward(self, A): return torch.reshape(A, (1, -1)) class clip(torch.nn.Module): def __init__(self): super().__init__() def forward(self, A, min_val, max_val): return torch.clamp(A, min_val, max_val) class shape(torch.nn.Module): def __init__(self): super().__init__() def forward(self, A): return torch.tensor(A.size()).to(torch.int64) class det(torch.nn.Module): def __init__(self): super().__init__() def forward(self, A): return torch.det(A) class And(torch.nn.Module): def __init__(self): super().__init__() def forward(self, A, B): return torch.logical_and(A > 0, B > 0) class Or(torch.nn.Module): def __init__(self): super().__init__() def forward(self, A, B): return torch.logical_or(A > 0, B > 0) class Xor(torch.nn.Module): def __init__(self): super().__init__() def forward(self, A, B): return torch.logical_xor(A > 0, B > 0) class concat(torch.nn.Module): def __init__(self): super().__init__() def forward(self, A, axis=0): return torch.cat(A, axis) class ceil(torch.nn.Module): def __init__(self): super().__init__() def forward(self, A): return torch.ceil(A) class floor(torch.nn.Module): def __init__(self): super().__init__() def forward(self, A): return torch.floor(A) class bitshift(torch.nn.Module): def __init__(self, DIR): super().__init__() self.dir = DIR def forward(self, A, B): if self.dir == "RIGHT": return A.to(torch.int64) >> B.to(torch.int64) else: return A.to(torch.int64) << B.to(torch.int64) class conv(torch.nn.Module): def __init__( self, auto_pad="NOTSET", kernel_shape=None, group=1, strides=[1, 1], dilations=[1, 1], pads=[0, 0, 0, 0], ): super().__init__() self.group = group self.auto_pad = auto_pad self.strides = tuple(strides) self.dilations = tuple(dilations) self.kernel_shape = kernel_shape def forward(self, A, W, B=None): if self.auto_pad == "NOTSET": self.pads = tuple(pads) elif self.auto_pad == "VALID": self.pads = (0, 0, 0, 0) elif self.auto_pad == "SAME_UPPER": pad_dim1 = ( torch.ceil(torch.tensor(A.shape[2]).to(torch.float32) / strides[0]) .to(torch.int64) .item() ) pad_dim2 = ( torch.ceil(torch.tensor(A.shape[3]).to(torch.float32) / strides[1]) .to(torch.int64) .item() ) if pad_dim1 % 2 == 0 and pad_dim2 % 2 == 0: self.pads = (pad_dim1 // 2, pad_dim1 // 2, pad_dim2 // 2, pad_dim2 // 2) elif pad_dim1 % 2 == 0 and pad_dim2 % 2 != 0: self.pads = ( pad_dim1 // 2, pad_dim1 // 2, pad_dim2 // 2, pad_dim2 // 2 + 1, ) elif pad_dim1 % 2 != 0 and pad_dim2 % 2 == 0: self.pads = ( pad_dim1 // 2, pad_dim1 // 2 + 1, pad_dim2 // 2, pad_dim2 // 2, ) elif pad_dim1 % 2 != 0 and pad_dim2 % 2 != 0: self.pads = ( pad_dim1 // 2, pad_dim1 // 2 + 1, pad_dim2 // 2, pad_dim2 // 2 + 1, ) elif self.auto_pad == "SAME_LOWER": pad_dim1 = ( torch.ceil(torch.tensor(A.shape[2]).to(torch.float32) / strides[0]) .to(torch.int64) .item() ) pad_dim2 = ( torch.ceil(torch.tensor(A.shape[3]).to(torch.float32) / strides[1]) .to(torch.int64) .item() ) if pad_dim1 % 2 == 0 and pad_dim2 % 2 == 0: self.pads = (pad_dim1 // 2, pad_dim1 // 2, pad_dim2 // 2, pad_dim2 // 2) elif pad_dim1 % 2 == 0 and pad_dim2 % 2 != 0: self.pads = ( pad_dim1 // 2, pad_dim1 // 2, pad_dim2 // 2 + 1, pad_dim2 // 2, ) elif pad_dim1 % 2 != 0 and pad_dim2 % 2 == 0: self.pads = ( pad_dim1 // 2 + 1, pad_dim1 // 2, pad_dim2 // 2, pad_dim2 / 2, ) elif pad_dim1 % 2 != 0 and pad_dim2 % 2 != 0: self.pads = ( pad_dim1 // 2 + 1, pad_dim1 // 2, pad_dim2 // 2 + 1, pad_dim2 // 2, ) A = F.pad(A, self.pads) return F.conv2d( A, W, bias=B, stride=self.strides, padding=self.pads, dilation=self.dilations, groups=self.group, ) class elu(torch.nn.Module): def __init__(self, alpha=1.0): super().__init__() self.alpha = alpha def forward(self, A): return nn.ELU(alpha=self.alpha)(A.to(torch.float32)) class hardsigmoid(torch.nn.Module): def __init__(self, alpha=0.2, beta=0.5): super().__init__() self.alpha = alpha self.beta = beta def forward(self, A): return torch.clamp(self.alpha * (A.to(torch.float32)) + self.beta, 0, 1) class hardswish(torch.nn.Module): def __init__(self): super().__init__() self.alpha = 1.0 / 6 self.beta = 0.5 def forward(self, A): return A * torch.clamp(self.alpha * (A.to(torch.float32)) + self.beta, 0, 1) class hardmax(torch.nn.Module): def __init__(self, axis=-1): super().__init__() self.axis = axis def forward(self, A): A = A.to(torch.float32) rank = A.shape if self.axis < 0: self.axis += len(rank) tensor = torch.arange(rank[self.axis]) repeats = [] repeats.append(1) for i, idx in enumerate(reversed(rank[: self.axis])): repeats.append(1) tensor = torch.stack([tensor] * idx) for i, idx in enumerate(rank[self.axis + 1 :]): repeats.append(idx) tensor = tensor.unsqueeze(-1).repeat(repeats) repeats[-1] = 1 # b = torch.stack([torch.stack([torch.arange(4)] * 3)] *2) # print(tensor.shape) max_values, _ = torch.max(A, dim=self.axis) # print(max_values, max_values.shape) # tensor = torch.reshape(tensor, tuple(rank)) tensor[A != torch.unsqueeze(max_values, dim=self.axis)] = rank[self.axis] # print(b) first_max, _ = torch.min(tensor, dim=self.axis) one_hot = torch.nn.functional.one_hot(first_max, rank[self.axis]) return one_hot class compress(torch.nn.Module): def __init__(self, axis=None): self.axis = axis super().__init__() def forward(self, A, B): idx = (B.to(torch.bool) != 0).nonzero().reshape(-1) if self.axis != None: return torch.index_select(A, self.axis, idx) else: return torch.index_select(A.reshape(-1), 0, idx) # TODO: Many more to be implemented __all__ = [ "argmax", "argmin", "matmul", "add", "sin", "cos", "abs", "flatten", "clip", "shape", "det", "And", "Or", "Xor", "concat", "ceil", "floor", "bitshift", "conv", "elu", "hardsigmoid", "hardswish", "compress", ]
23.798956
88
0.501042
8,515
0.934174
0
0
0
0
0
0
528
0.057926
326698864c4df87b158debf66bd86b994c325aa0
8,068
py
Python
taf/testlib/snmphelpers.py
stepanandr/taf
75cb85861f8e9703bab7dc6195f3926b8394e3d0
[ "Apache-2.0" ]
10
2016-12-16T00:05:58.000Z
2018-10-30T17:48:25.000Z
taf/testlib/snmphelpers.py
stepanandr/taf
75cb85861f8e9703bab7dc6195f3926b8394e3d0
[ "Apache-2.0" ]
40
2017-01-04T23:07:05.000Z
2018-04-16T19:52:02.000Z
taf/testlib/snmphelpers.py
stepanandr/taf
75cb85861f8e9703bab7dc6195f3926b8394e3d0
[ "Apache-2.0" ]
23
2016-12-30T05:03:53.000Z
2020-04-01T08:40:24.000Z
# Copyright (c) 2011 - 2017, Intel Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """``snmphelpers.py`` `SNMP specific helpers functions` """ import sys import os import shutil import tarfile from subprocess import Popen, PIPE import pytest import paramiko as paramiko from . import helpers from . import loggers # create logger for module def is_mibs_folder_empty(path): """Checks is MIBs folder empty of not. Args: path(str): path to MIBs folder Returns: bool: True if empty and False if not Examples:: is_mibs_folder_empty() """ empty = True if os.path.exists(path): for file_n in os.listdir(path): if 'ONS' in file_n or "ons" in file_n: empty = False return empty def clear_mibs_folder(path): """Removes all ONS mibs from MIBS folder. Args: path(str): path to MIBs folder Examples:: clear_mibs_folder() """ if os.path.exists(path): shutil.rmtree(path) def get_remote_file(hostname, port, username, password, remotepath, localpath): """Get remote file to local machine. Args: hostname(str): Remote IP-address port(int): Remote SSH port username(str): Remote host username for authentication password(str): Remote host password for authentication remotepath(str): Remote file to download location path localpath(str): Local path to save remote file Examples:: get_remote_file(host, port, username, password, tar_remotepath, tar_localpath) """ transport = paramiko.Transport((hostname, port)) transport.connect(username=username, password=password) sftp = paramiko.SFTPClient.from_transport(transport) try: sftp.get(remotepath=remotepath, localpath=localpath) finally: sftp.close() transport.close() def untar_file(tar_path, untar_path): """Unpack tar file. Args: tar_path(str): Path to tar file untar_path(str): Path where to unpack Examples:: untar_file(tar_localpath, mib_path_txt) """ old_folder = os.path.join(untar_path, 'mibs') if os.path.isfile(old_folder): os.remove(old_folder) tar = tarfile.open(tar_path) tar.extractall(untar_path) tar.close() os.remove(tar_path) def file_convert(mib_txt_path, mib_py_path): """Convert .txt MIB to .py. Args: mib_txt_path(str): Full path to .txt MIB. mib_py_path(str): Full path to .py MIB Examples:: file_convert(mib_txt_path, mib_py_path) """ mod_logger_snmp = loggers.module_logger(name=__name__) # translate .txt mib into python format using 3rd party tools 'smidump' smidump = Popen(['smidump', '-k', '-f', 'python', mib_txt_path], stdout=PIPE) list_stdout = smidump.communicate()[0] if len(list_stdout) == 0: return "Fail" # create tmp directory for filling MIBs dictionary mib_path_tmp = os.path.join(mib_py_path, 'tmp') if not os.path.exists(mib_path_tmp): os.makedirs(mib_path_tmp) # added tmp path into sys.path for imports converted MIB's sys.path.append(mib_path_tmp) # get file without extension file_name = os.path.splitext(os.path.basename(mib_txt_path))[0] # create .py name temp_file_name = "{0}.py".format(file_name) # create .tmp file path for imports temp_file_path = os.path.join(mib_path_tmp, temp_file_name) # save and import converted MIB's with open(temp_file_path, "ab") as a: a.write(list_stdout) temp_module = __import__(os.path.splitext(os.path.basename(mib_txt_path))[0]) # update helpers.MIBS_DICT with MIB data if "moduleName" in list(temp_module.MIB.keys()) and "nodes" in list(temp_module.MIB.keys()): helpers.MIBS_DICT.update({temp_module.MIB["moduleName"]: list(temp_module.MIB["nodes"].keys())}) # clear tmp file path sys.path.remove(mib_path_tmp) os.remove(temp_file_path) # translate MIB from .py into pysnmp format using 3rd party tools 'libsmi2pysnmp' pipe = Popen(['libsmi2pysnmp', '--no-text'], stdout=PIPE, stdin=PIPE) stdout = pipe.communicate(input=list_stdout) # get MIB name from itself, add .py and save it. mib_name = "{0}.py".format(temp_module.MIB["moduleName"]) mib_py_path = os.path.join(mib_py_path, mib_name) mod_logger_snmp.debug("Convert %s to %s" % (file_name, temp_file_name)) with open(mib_py_path, 'a') as py_file: for string in stdout: if string is not None: str_dict = string.decode('utf-8').split('\n') for each_str in str_dict: if "ModuleCompliance" in each_str: if "ObjectGroup" in each_str: py_file.write(each_str + '\n') elif "Compliance)" in each_str: pass else: py_file.write(each_str + '\n') return mib_name def convert_to_py(txt_dir_path, py_dir_path): """Converts .txt MIB's to .py. Args: txt_dir_path(str): Path to dir with .txt MIB's. py_dir_path(str): Path to dir with .py MIB's Examples:: convert_to_py(mib_path_tmp, mib_path) """ mod_logger_snmp = loggers.module_logger(name=__name__) txt_dir_path = os.path.join(txt_dir_path, "MIB") mod_logger_snmp.debug("Converts .txt MIB's to .py") os.environ['SMIPATH'] = txt_dir_path for mib in os.listdir(txt_dir_path): mib_txt_path = os.path.join(txt_dir_path, mib) retry_count = 3 retry = 1 while retry <= retry_count: mib_py = file_convert(mib_txt_path, py_dir_path) if mib_py not in os.listdir(py_dir_path): mod_logger_snmp.debug("Converted MIB %s is not present at %s" % (mib, py_dir_path)) retry += 1 if retry > retry_count: mod_logger_snmp.debug("Can not convert %s" % (mib, )) else: mod_logger_snmp.debug("Converted MIB %s is present at %s" % (mib, py_dir_path)) retry = retry_count + 1 shutil.rmtree(txt_dir_path) shutil.rmtree(os.path.join(py_dir_path, "tmp")) def create_mib_folder(config, path, env): """Creates MIB folder. Args: config(dict): Configuration dictionary. path(str): Path to MIB folder. env(Environment): Environment object. Examples:: create_mib_folder() """ if config is None: pytest.fail("UI settings not fount in environment configuration.") host = config['host'] port = int(config['port']) username = config['username'] password = config['password'] tar_folder = config['tar_remotepath'] tar_file = os.path.split(tar_folder)[1] branch = env.env_prop['switchppVersion'] platform = getattr(getattr(env.switch[1], 'hw', None), 'snmp_path', None) tar_remotepath = tar_folder.format(**locals()) if not os.path.exists(path): os.makedirs(path) tar_localpath = os.path.join(path, tar_file) mib_path_tmp = os.path.join(path, 'tmp') if not os.path.exists(mib_path_tmp): os.makedirs(mib_path_tmp) mib_path_txt = os.path.join(path, 'txt') if not os.path.exists(mib_path_txt): os.makedirs(mib_path_txt) get_remote_file(host, port, username, password, tar_remotepath, tar_localpath) untar_file(tar_localpath, mib_path_txt) convert_to_py(mib_path_txt, path)
29.992565
104
0.649603
0
0
0
0
0
0
0
0
3,353
0.415592
3266f7d31cc045815dafabe76a68d2f3cebde4da
6,843
py
Python
cadence/apps/backend/views.py
BitLooter/Cadence
3adbe51f042120f7154711a58a614ce0e8b3664b
[ "BSD-2-Clause" ]
null
null
null
cadence/apps/backend/views.py
BitLooter/Cadence
3adbe51f042120f7154711a58a614ce0e8b3664b
[ "BSD-2-Clause" ]
null
null
null
cadence/apps/backend/views.py
BitLooter/Cadence
3adbe51f042120f7154711a58a614ce0e8b3664b
[ "BSD-2-Clause" ]
null
null
null
import json import logging from django.http import HttpResponse, HttpResponseBadRequest, HttpResponseNotFound from django.core.exceptions import ObjectDoesNotExist from django.views.decorators.csrf import csrf_exempt # See note below on saveplaylist import models # Set up logging logger = logging.getLogger("apps") # View function decorators ########################## def log_request(f): """Records request info to the log file""" def wrapper(*args, **kwargs): request = args[0] # Display simpler message if there are no view parameters if kwargs == {}: message = "{} request from {}".format(f.__name__, request.get_host()) elif "item_id" in kwargs: message = "{} (#{}) request from {}".format(f.__name__, kwargs["item_id"], request.get_host()) else: message = "{} {} request from {}".format(f.__name__, repr(kwargs), request.get_host()) logger.info(message) return f(*args, **kwargs) wrapper.__doc__ = f.__doc__ return wrapper def handle_not_found(f): """ For views that request a specific object (e.g. a playlist), return a 404 page and log an error if the object was not found. Assumes the object being looked for is passed as a kwarg named 'item_id'. If this view does not fit this pattern, you will not be able to handle 404 errors for it with this decorator. """ def wrapper(*args, **kwargs): try: return f(*args, **kwargs) except ObjectDoesNotExist as e: print e.message error = "{} (#{})".format(e.message, kwargs["item_id"]) logger.error(error) return HttpResponseNotFound(error, mimetype="text/plain") wrapper.__doc__ = f.__doc__ return wrapper # View functions ################ #TODO: check for external errors like database access problems def playlists(request): """ Generic view for /data/playlists/, choosing a view function for the request type. Saves a playlist or returns a list of them, depending on request type. A GET request will return a list of available playlists in JSON format; a POST request saves a new playlist to the server, using the POST data (also in JSON format). Does not actually do anything itself, but rather calls the correct function for the task. """ # If POST, we're saving a playlist if request.method == "POST": return saveplaylist(request) # Otherwise, default behavior is to return a list of playlists else: return playlistlist(request) @log_request def playlistlist(request): """View method for list of playlists. Returns list of playlists in JSON.""" lists = models.Playlist.getPlaylistList() return json_response(lists) @log_request def saveplaylist(request): """ View method for saving a playlist (POST). Saves a new playlist to the database. Data is in JSON format, and is expected to take the form of a dict with 'name' and 'tracks' fields, name being a string and tracks being a list of track IDs. Example:: { "name": "Top ten Tuvian throat singing rap singles" "tracks": [553, 1490, 6643, 1186, 6689, 91, 642, 11, 853, 321] } """ try: info = json.loads(request.raw_post_data) except ValueError: response = HttpResponseBadRequest("Error: POST data is not valid JSON", mimetype="text/plain") logger.exception("Not saving playlist from {}, invalid JSON in request - POST data: '{}'".format(request.get_host(), request.raw_post_data)) else: # Sanity check on the data - name is a (unicode) string, tracks are all integers if "name" not in info or "tracks" not in info: logger.debug("data check") response = HttpResponseBadRequest("Error: Not enough parameters were passed", mimetype="text/plain") logger.error("Not saving playlist from {}, not enough information given - POST data: '{}'".format(request.get_host(), request.raw_post_data)) elif (type(info["name"]) != unicode) or not (all(type(t) == int for t in info["tracks"])): response = HttpResponseBadRequest("Error: Given data is invalid", mimetype="text/plain") logger.error("Not saving playlist from {}, given data is invalid - POST data: '{}'".format(request.get_host(), request.raw_post_data)) else: newID = models.Playlist.savePlaylist(info["tracks"], info["name"]) # TODO: return information about the new playlist response = HttpResponse(json.dumps("Playlist saved to {}".format(info["name"])), status=201, mimetype="text/plain") response["Location"] = "/cadence/data/playlist/{}/".format(newID) logger.info("Playlist from {} successfully saved as #{}".format(request.get_host(), newID)) return response @handle_not_found @log_request def playlist_tracks(request, item_id): """View method for playlist tracklist. Returns playlist matching ID.""" return json_response(models.Playlist.getPlaylist(item_id)) @log_request def media(request): """ View method for all media. Returns information on every track in the library. Note that for very large libraries, this could produce a great amount of data and load slowly on the client (not to mention "Holy crap Frank, how'd we go over our data limit again this month?"). Therefore, this view may be disabled depending on the current site settings. """ return json_response(models.Media.getFullLibrary()) @handle_not_found @log_request def media_details(request, item_id): """View method for details on a specific media item""" return json_response(models.Media.getDetails(item_id)) @log_request def albums(request): """View method for albums list. Returns list of albums in the library.""" return json_response(models.Album.getAlbums()) @handle_not_found @log_request def album_tracks(request, item_id): """View method for album tracklist. Returns media for album matching ID.""" return json_response(models.Album.getAlbumTracks(item_id)) @log_request def artists(request): """View method for artists list. Returns list of artists in the library.""" return json_response(models.Artist.getArtists()) @handle_not_found @log_request def artist_tracks(request, item_id): """View method for artist tracklist. Returns media for artist matching ID.""" return json_response(models.Artist.getArtistTracks(item_id)) # Utility methods ################# def json_response(output): """Returns an HTTP Response with the data in output as the content in JSON format""" return HttpResponse(json.dumps(output), mimetype="application/json")
34.736041
153
0.672366
0
0
0
0
3,981
0.581762
0
0
3,447
0.503726
32675e661c420861aca3a72ce984ac5043cdeab4
2,868
py
Python
elexon_api/utils.py
GiorgioBalestrieri/elexon_api_tool
5b271e9d4a52dec5585a232833a699b8392ee6b0
[ "MIT" ]
4
2019-06-07T11:14:46.000Z
2021-04-01T14:15:14.000Z
elexon_api/utils.py
GiorgioBalestrieri/elexon_api_tool
5b271e9d4a52dec5585a232833a699b8392ee6b0
[ "MIT" ]
null
null
null
elexon_api/utils.py
GiorgioBalestrieri/elexon_api_tool
5b271e9d4a52dec5585a232833a699b8392ee6b0
[ "MIT" ]
6
2019-02-28T20:24:26.000Z
2021-03-30T18:08:23.000Z
import os from pathlib import Path import pandas as pd from collections import defaultdict from typing import Dict, List from .config import REQUIRED_D, API_KEY_FILENAME import logging logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) def get_required_parameters(service_code: str) -> List[str]: """Get list of required parameters for service.""" return REQUIRED_D[service_code] def _get_path_to_module() -> Path: """Get path to this module.""" return Path(os.path.realpath(__file__)).parent def get_api_key_path(filename=API_KEY_FILENAME) -> Path: """Load api key.""" path_to_dir = _get_path_to_module() return path_to_dir / filename class ElexonAPIException(Exception): pass def extract_df(r_dict: dict) -> pd.DataFrame: """Extract DataFrame from dictionary. Parameters ---------- r_dict Obtained from response through xmltodict. """ r_body = r_dict['responseBody'] r_items_list = r_body['responseList']['item'] try: df_items = pd.DataFrame(r_items_list) except Exception as e: logger.warning(f"Failed to create DataFrame.", exc_info=True) try: df_items = pd.DataFrame(r_items_list, index=[0]) except Exception as e: logger.error("Failed to create DataFrame.") raise e return df_items def extract_df_by_record_type(r_dict: dict) -> Dict[str,pd.DataFrame]: content: List[dict] = r_dict['responseBody']['responseList']['item'] records_d = split_list_of_dicts(content, 'recordType') return {k: pd.DataFrame(l) for k,l in records_d.items()} def split_list_of_dicts(dict_list: List[dict], key: str) -> Dict[str,List[dict]]: """Split list of dictionaries into multiples lists based on a specific key. Output lists are stored in a dicionary with the value used as key. Example: >>> dict_list = [ { "recordType": "a", "foo": 1, "bar": 1, }, { "recordType": "b", "foo": 2, "bar": 2, }, { "recordType": "b", "foo": 3, "bar": 3, } ] >>> split_list_of_dicts(dict_list, 'recordType') { "a": [ { "recordType": "a", "foo": 1, "bar": 1, }, ], "b": [ { "recordType": "b", "foo": 2, "bar": 2, }, { "recordType": "b", "foo": 3, "bar": 3, } ] } ] """ result = defaultdict(list) for d in dict_list: result[d[key]].append(d) return result
25.380531
81
0.540098
45
0.01569
0
0
0
0
0
0
1,396
0.48675
326881582afe0e7d4f36578fa52df6c3b487641d
1,608
py
Python
relative_connectivity_of_subgraphs.py
doberse/RRI
e2fdc085d8040efc230a25eec670dd6839cbf1f7
[ "MIT" ]
null
null
null
relative_connectivity_of_subgraphs.py
doberse/RRI
e2fdc085d8040efc230a25eec670dd6839cbf1f7
[ "MIT" ]
null
null
null
relative_connectivity_of_subgraphs.py
doberse/RRI
e2fdc085d8040efc230a25eec670dd6839cbf1f7
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import networkx as nx import pandas as pd #Other nodes connected by one node r=open('input_data/BC-related_RRI_network.txt') ll=r.readlines() r.close() rna_pairs=[] node_to_nodes={} for l in ll: ws=l.strip().split('\t') qx=sorted(ws[0:2]) rna_pairs.append((qx[0],qx[1])) for i in [0,1]: if i==0: j=1 else: j=0 if qx[i] not in node_to_nodes: node_to_nodes[qx[i]]=[qx[j]] else: node_to_nodes[qx[i]].append(qx[j]) #Dictionary of Node No. r=open('input_data/RRI_node.csv') r.readline() no2node={} for l in r: ws=l.strip().split(',') no2node[ws[0]]='~'.join(ws[1:7]) r.close() #Sort nodes by node degree node_degree={} for k in node_to_nodes: node_degree[k]=len(node_to_nodes[k]) df=pd.DataFrame(node_degree,index=['Degree']) df=df.sort_values(by='Degree',axis=1,ascending=False) nodes=df.columns.values #Compute the relative conectivity of subgraphs G=nx.Graph() node_G=[] w=open('RC_in_BC-related_RRI_network.csv','w') w.write('Node,No.,Relative connectivity\n') k=0 lim=len(nodes) while k<lim: node_key=nodes[k] node_G.append(node_key) G.add_node(node_key)#Add the node in subgraphs for node in node_G: if node in set(node_to_nodes[node_key]): G.add_edge(node_key,node)#Add the edge in subgraphs largest_components=max(nx.connected_components(G),key=len) k+=1 w.write(no2node[node_key]+','+str(k)+','+str(len(largest_components)/float(len(node_G)))+'\n') w.close()
26.360656
99
0.625622
0
0
0
0
0
0
0
0
382
0.237562
326bc9a28ede548053a0104238484ec204f3ccb0
1,518
py
Python
macdaily/cmd/install.py
JarryShaw/MacDaily
853b841dd1f1f7e6aae7bf2c305ff008bc76055c
[ "BSD-3-Clause" ]
10
2018-09-20T19:57:56.000Z
2021-11-14T18:28:10.000Z
macdaily/cmd/install.py
JarryShaw/jsdaily
3ca7aa7c75a12dc08ab44f78af2b089e1ed41d3d
[ "BSD-3-Clause" ]
2
2020-05-31T08:49:47.000Z
2021-12-28T16:57:42.000Z
macdaily/cmd/install.py
JarryShaw/jsdaily
3ca7aa7c75a12dc08ab44f78af2b089e1ed41d3d
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- import abc from macdaily.cls.command import Command from macdaily.util.tools.print import print_info class InstallCommand(Command): @property def cmd(self): return 'install' @property def act(self): return ('install', 'installed', 'installed') @property def job(self): return ('installation', 'installation') @property def ignored(self): return NotImplemented @property def notfound(self): return NotImplemented def _pkg_args(self, namespace): """Return if there's packages for main process.""" self._merge_packages(namespace) self._parse_args(namespace) self._pkgs = list() self._fail = list() return bool(self._packages) def _run_proc(self): self._pkgs = list() self._fail = list() for path in self._exec: text = f'Using {self.name} executable {path!r}' print_info(text, self._file, redirect=self._qflag) self._var__temp_pkgs = self._packages # pylint: disable=attribute-defined-outside-init if self._check_confirm(path): self._proc_install(path) else: text = f'No {self.desc[1]} to install for executable {path!r}' print_info(text, self._file, redirect=self._qflag) self._proc_fixmissing(path) self._proc_cleanup() @abc.abstractmethod def _proc_install(self, path): pass
25.3
99
0.607378
1,388
0.914361
0
0
402
0.264822
0
0
284
0.187088
326dd27e7ff223645c2d0bf5d397fdea5ed20af2
2,632
py
Python
src/piotr/cmdline/fs.py
orangecms/piotr
f892ce6eaaa08ea81eb01943a388b64fbf3ccc44
[ "MIT" ]
47
2021-07-02T08:39:02.000Z
2021-11-08T22:21:39.000Z
src/piotr/cmdline/fs.py
orangecms/piotr
f892ce6eaaa08ea81eb01943a388b64fbf3ccc44
[ "MIT" ]
2
2021-07-08T09:25:30.000Z
2021-07-12T10:06:51.000Z
src/piotr/cmdline/fs.py
orangecms/piotr
f892ce6eaaa08ea81eb01943a388b64fbf3ccc44
[ "MIT" ]
5
2021-07-08T08:29:17.000Z
2021-10-18T13:35:11.000Z
""" FS commandline module. Allows to: - list host filesystems - remove a specific host filesystem - add a specific host filesystem """ from os.path import basename from piotr.cmdline import CmdlineModule, module, command from piotr.user import UserDirectory as ud from piotr.util import confirm @module('fs', 'List, add, remove Piotr host filesystems') class FsModule(CmdlineModule): def __init__(self): super().__init__() @command('List available host filesystems') def list(self, options): """ List available FSs. """ self.title(' Installed host filesystems:') print('') count = 0 for fs in ud.get().getHostFilesystems(): fs_line = (self.term.bold + '{fs:<40}' + self.term.normal + \ '{extra:<40}').format( fs=' > %s' % fs['file'], extra='(version {version}, platform: {platform}, cpu: {cpu} ({endian}), type: {fstype})'.format( version=fs['version'], platform=fs['platform'], cpu=fs['cpu'], fstype=fs['type'], endian='little-endian' if fs['endian']=='little' else 'big-endian' ) ) print(fs_line) count += 1 print('') print(' %d filesystem(s) available' % count) print('') @command('Remove a specific filesystem', ['fs name']) def remove(self, options): """ Remove filesystem from our repository. Expects options[0] to be the name of the target filesystem to remove. """ if len(options) >= 1: # Ask for confirm if confirm('Are you sure to remove this filesystem'): # Remove kernel by name if ud.get().removeHostFs(options[0]): print('Filesystem %s successfully removed.' % options[0]) else: self.error('An error occurred while removing host filesystem.') else: self.important(' You must provide a host filesystem name to remove.') @command('Add a specific host filesystem', ['path']) def add(self, options): """ Add kernel to our kernel repository. """ if len(options) >= 1: if ud.get().addHostFs(options[0]): print('Host filesystem successfully added to our registry.') else: self.error('An error occurred while importing host filesystem.') else: self.important(' You must provide a filesystem file to add.')
32.9
112
0.549392
2,275
0.864033
0
0
2,333
0.886062
0
0
1,165
0.442461
32717c3bd131867ffad78e96d71e4ee21ce9b1c6
61
py
Python
mct_logging/src/mct_logging/__init__.py
iorodeo/mct
fa8b85f36533c9b1486ca4f6b0c40c3daa6f4e11
[ "Apache-2.0" ]
null
null
null
mct_logging/src/mct_logging/__init__.py
iorodeo/mct
fa8b85f36533c9b1486ca4f6b0c40c3daa6f4e11
[ "Apache-2.0" ]
null
null
null
mct_logging/src/mct_logging/__init__.py
iorodeo/mct
fa8b85f36533c9b1486ca4f6b0c40c3daa6f4e11
[ "Apache-2.0" ]
null
null
null
import tracking_pts_logger_master import tracking_pts_logger
20.333333
33
0.934426
0
0
0
0
0
0
0
0
0
0
32723b5595559318393e20a40362e1d61e41c415
3,133
py
Python
singlecellmultiomics/modularDemultiplexer/demultiplexModules/scartrace.py
zztin/SingleCellMultiOmics
d3035c33eb1375f0703cc49537417b755ad8a693
[ "MIT" ]
17
2019-05-21T09:12:16.000Z
2022-02-14T19:26:58.000Z
singlecellmultiomics/modularDemultiplexer/demultiplexModules/scartrace.py
zztin/SingleCellMultiOmics
d3035c33eb1375f0703cc49537417b755ad8a693
[ "MIT" ]
70
2019-05-20T08:08:45.000Z
2021-06-22T15:58:01.000Z
singlecellmultiomics/modularDemultiplexer/demultiplexModules/scartrace.py
zztin/SingleCellMultiOmics
d3035c33eb1375f0703cc49537417b755ad8a693
[ "MIT" ]
7
2020-04-09T15:11:12.000Z
2022-02-14T15:23:31.000Z
from singlecellmultiomics.modularDemultiplexer.baseDemultiplexMethods import UmiBarcodeDemuxMethod, NonMultiplexable # ScarTrace class ScartraceR1(UmiBarcodeDemuxMethod): def __init__(self, barcodeFileParser, **kwargs): self.barcodeFileAlias = 'scartrace' UmiBarcodeDemuxMethod.__init__( self, umiRead=0, umiStart=0, umiLength=0, barcodeRead=0, barcodeStart=0, barcodeLength=8, barcodeFileAlias=self.barcodeFileAlias, barcodeFileParser=barcodeFileParser, **kwargs) self.shortName = 'SCARC8R1' self.longName = 'Scartrace, CB: 8bp' self.description = '384 well format. Scar amplicon demultiplexing, cell barcode in read 1' self.autoDetectable = True class ScartraceR2(UmiBarcodeDemuxMethod): def __init__(self, barcodeFileParser, **kwargs): self.barcodeFileAlias = 'scartrace' UmiBarcodeDemuxMethod.__init__( self, umiRead=0, umiStart=0, umiLength=0, barcodeRead=1, barcodeStart=0, barcodeLength=8, barcodeFileAlias=self.barcodeFileAlias, barcodeFileParser=barcodeFileParser, **kwargs) self.shortName = 'SCARC8R2' self.longName = 'Scartrace, CB: 8bp' self.description = '384 well format. Scar amplicon demultiplexing, cell barcode in read 2' self.autoDetectable = True def demultiplex(self, records, **kwargs): if kwargs.get( 'probe') and not records[0].sequence.startswith('CCTTGAACTTCTGGTTGTAG'): raise NonMultiplexable taggedRecords = UmiBarcodeDemuxMethod.demultiplex( self, records, **kwargs) return taggedRecords class ScartraceR2RP4(UmiBarcodeDemuxMethod): def __init__(self, barcodeFileParser, **kwargs): self.barcodeFileAlias = 'scartrace' UmiBarcodeDemuxMethod.__init__( self, umiRead=0, umiStart=0, umiLength=0, barcodeRead=1, barcodeStart=0, barcodeLength=8, barcodeFileAlias=self.barcodeFileAlias, barcodeFileParser=barcodeFileParser, random_primer_end=False, random_primer_read=0, random_primer_length=4, **kwargs) self.shortName = 'SCARC8R2R4' self.longName = 'Scartrace, CB: 8bp, with 4bp random sequence in read 1' self.description = '384 well format. Scar amplicon demultiplexing, cell barcode in read , 4bp random sequence in R1' self.autoDetectable = True def demultiplex(self, records, **kwargs): if kwargs.get( 'probe') and not records[0].sequence[4:].startswith('CCTTGAACTTCTGGTTGTAG'): raise NonMultiplexable taggedRecords = UmiBarcodeDemuxMethod.demultiplex( self, records, **kwargs) return taggedRecords
34.054348
125
0.605171
2,976
0.949888
0
0
0
0
0
0
470
0.150016
3272a27a8fc6fa3c964e19b20bd692f8755a0dee
6,151
py
Python
tests/models.py
intellineers/django-bridger
ed097984a99df7da40a4d01bd00c56e3c6083056
[ "BSD-3-Clause" ]
2
2020-03-17T00:53:23.000Z
2020-07-16T07:00:33.000Z
tests/models.py
intellineers/django-bridger
ed097984a99df7da40a4d01bd00c56e3c6083056
[ "BSD-3-Clause" ]
76
2019-12-05T01:15:57.000Z
2021-09-07T16:47:27.000Z
tests/models.py
intellineers/django-bridger
ed097984a99df7da40a4d01bd00c56e3c6083056
[ "BSD-3-Clause" ]
1
2020-02-05T15:09:47.000Z
2020-02-05T15:09:47.000Z
from datetime import date, time from django.contrib.postgres.fields import ArrayField from django.db import models from django.utils import timezone from django_fsm import FSMField, transition from rest_framework.reverse import reverse from simple_history.models import HistoricalRecords from bridger.buttons import ActionButton from bridger.display import FieldSet, InstanceDisplay, Section from bridger.enums import RequestType from bridger.search import register as search_register from bridger.tags import TagModelMixin @search_register(endpoint="modeltest-list") class ModelTest(TagModelMixin, models.Model): @classmethod def search_for_term(cls, search_term, request=None): return ( cls.objects.all() .annotate( _search=models.functions.Concat( models.F("char_field"), models.Value(" "), models.F("text_field"), output_field=models.CharField(), ) ) .annotate(_repr=models.F("char_field")) ) STATUS1 = "status1" STATUS2 = "status2" STATUS3 = "status3" status_choices = ((STATUS1, "Status1"), (STATUS2, "Status2"), (STATUS3, "Status3")) MOVE_BUTTON1 = ActionButton( method=RequestType.PATCH, icon="wb-icon-thumbs-up-full", key="move1", label="Move1", action_label="Move1", description_fields="<p>We will move1 this model.</p>", instance_display=InstanceDisplay(sections=( Section(fields=FieldSet(fields=("char_field", "integer_field"))),) ), identifiers=("tests:modeltest",), ) MOVE_BUTTON2 = ActionButton( method=RequestType.PATCH, icon="wb-icon-thumbs-up-full", key="move2", label="Move2", action_label="Move2", description_fields="<p>We will move2 this model.</p>", instance_display=InstanceDisplay(sections=( Section(fields=FieldSet(fields=("char_field", "integer_field"))),) ), identifiers=("tests:modeltest",), ) # Text char_field = models.CharField(max_length=255, verbose_name="Char", help_text="This is the help text of a char field.",) text_field = models.TextField(null=True, blank=True) # Numbers integer_field = models.IntegerField(verbose_name="Integer") float_field = models.FloatField() decimal_field = models.DecimalField(decimal_places=4, max_digits=7) percent_field = models.FloatField() # Date and Time datetime_field = models.DateTimeField(verbose_name="DateTime") datetime_field1 = models.DateTimeField(verbose_name="DateTime 1") date_field = models.DateField() time_field = models.TimeField() # Boolean boolean_field = models.BooleanField() star_rating = models.PositiveIntegerField() # Choice choice_field = models.CharField(max_length=64, choices=(("a", "A"), ("b", "B")), default="a") # Status status_field = FSMField(default=STATUS1, choices=status_choices, verbose_name="Status") # Files image_field = models.ImageField(null=True, blank=True) file_field = models.FileField(null=True, blank=True) history = HistoricalRecords() def get_tag_detail_endpoint(self): return reverse("modeltest-detail", args=[self.id]) def get_tag_representation(self): return self.char_field @transition( field=status_field, source=[STATUS1], target=STATUS2, custom={"_transition_button": MOVE_BUTTON1}, ) def move1(self): """Moves the model from Status1 to Status2""" pass @transition( field=status_field, source=[STATUS1, STATUS2], target=STATUS3, custom={"_transition_button": MOVE_BUTTON2}, ) def move2(self): """Moves the model from Status1 or Status2 to Status3""" pass @classmethod def get_endpoint_basename(cls): return "modeltest" @classmethod def get_endpoint(cls): return "modeltest-list" @classmethod def get_representation_endpoint(cls): return "modeltestrepresentation-list" @classmethod def get_representation_value_key(cls): return "id" @classmethod def get_representation_label_key(cls): return "{{char_field}}" class Meta: verbose_name = "Test Model" verbose_name_plural = "Test Models" @search_register(endpoint="relatedmodeltest-list") class RelatedModelTest(TagModelMixin, models.Model): @classmethod def search_for_term(cls, request=None): return cls.objects.all().annotate(_search=models.F("char_field")).annotate(_repr=models.F("char_field")) text_json = models.JSONField(default=list, blank=True, null=True) text_markdown = models.TextField(default="") model_test = models.ForeignKey( to="tests.ModelTest", related_name="related_models", null=True, blank=True, on_delete=models.CASCADE, verbose_name="Model Test", ) model_tests = models.ManyToManyField( to="tests.ModelTest", related_name="related_models_m2m", blank=True, verbose_name="Model Tests1", ) char_field = models.CharField(max_length=255, verbose_name="Char") list_field = ArrayField(base_field=models.CharField(max_length=255), null=True, blank=True, default=list) history = HistoricalRecords() def get_tag_detail_endpoint(self): return reverse("relatedmodeltest-detail", args=[self.id]) def get_tag_representation(self): return self.char_field def __str__(self): return self.char_field @property def upper_char_field(self): return self.char_field.upper() @classmethod def get_endpoint_basename(cls): return "relatedmodeltest" @classmethod def get_representation_endpoint(cls): return "relatedmodeltestrepresentation-list" @classmethod def get_representation_value_key(cls): return "id" @classmethod def get_representation_label_key(cls): return "{{char_field}}" class Meta: verbose_name = "Related Model Test" verbose_name_plural = "Related Model Tests"
31.22335
123
0.677451
5,524
0.898065
0
0
5,619
0.91351
0
0
1,070
0.173955
327639bba2a2aa36c47d30fbf67b64ee714db74b
2,975
py
Python
RNAstructure_Source/RNAstructure_python_interface/Error_handling.py
mayc2/PseudoKnot_research
33e94b84435d87aff3d89dbad970c438ac173331
[ "MIT" ]
null
null
null
RNAstructure_Source/RNAstructure_python_interface/Error_handling.py
mayc2/PseudoKnot_research
33e94b84435d87aff3d89dbad970c438ac173331
[ "MIT" ]
null
null
null
RNAstructure_Source/RNAstructure_python_interface/Error_handling.py
mayc2/PseudoKnot_research
33e94b84435d87aff3d89dbad970c438ac173331
[ "MIT" ]
null
null
null
#automated error checking for RNAstructure python interface from __future__ import print_function import inspect from functools import wraps from collections import defaultdict debug = False class StructureError(Exception): pass class RNAstructureInternalError(Exception):pass lookup_exceptions = defaultdict(lambda:RuntimeError, { 1:IOError, 2:IOError, 3:IndexError, 4:IndexError, 5:EnvironmentError, 6:StructureError, 7:StructureError, 8:StructureError, 9:StructureError, 10:ValueError, 11:ValueError, 12:ValueError, 13:IOError, 14:RNAstructureInternalError, 15:ValueError, 16:ValueError, 17:ValueError, 18:ValueError, 19:ValueError, 20:ValueError, 21:RNAstructureInternalError, 22:RNAstructureInternalError, 23:ValueError, 24:ValueError, 25:ValueError, 26:ValueError }) def check_for_errors(method): @wraps(method) def RNAstructure_error_checker(self,*args,**kwargs): if debug: print ("checking for errors in %s" % method.__name__) ret = method(self,*args,**kwargs) error = self.GetErrorCode() self.ResetError() if error != 0: raise lookup_exceptions[error]("Error in %s: " % method.__name__ + self.GetErrorMessage(error)) return ret return RNAstructure_error_checker def check_for_init_errors(method): @wraps(method) def RNAstructure_error_checker(self,*args): if debug: print ("checking for errors in %s" % method.__name__) ret = method(self,*args) error = self.GetErrorCode() if error != 0: raise RuntimeError("Error in call to %s.%s: " % (self.__name__,method.__name__) + self.GetErrorMessage(error)) return ret return RNAstructure_error_checker def is_init(method): result = inspect.ismethod(method) and method.__name__=="__init__" if inspect.ismethod(method): pass return result def not_excluded(method): excluded = ["__repr__","__setattr__","__getattr__","__str__","__init__","<lambda>","swig_repr", "GetErrorCode","GetErrorMessage","GetErrorMessageString","ResetError","fromFile","fromString"] result = inspect.ismethod(method) and method.__name__ not in excluded if inspect.ismethod(method): if debug: print ("checking if", method.__name__ , "should be excluded: ",result) return result def decorate_methods(decorator,methodtype): def decorate(cls): for attr in inspect.getmembers(cls, methodtype): if debug: print ("decorating %s!" % attr[0]) setattr(cls, attr[0], decorator(getattr(cls, attr[0]))) return cls return decorate
35.416667
110
0.621176
84
0.028235
0
0
829
0.278655
0
0
379
0.127395
3276b79a61cf27161c545de376944d5851538c10
52,691
py
Python
Src/si_figs.py
jomimc/FoldAsymCode
1896e5768e738bb5d1921a3f4c8eaf7f66c06be9
[ "MIT" ]
1
2020-10-07T14:24:06.000Z
2020-10-07T14:24:06.000Z
Src/si_figs.py
jomimc/FoldAsymCode
1896e5768e738bb5d1921a3f4c8eaf7f66c06be9
[ "MIT" ]
null
null
null
Src/si_figs.py
jomimc/FoldAsymCode
1896e5768e738bb5d1921a3f4c8eaf7f66c06be9
[ "MIT" ]
null
null
null
from collections import defaultdict, Counter from itertools import product, permutations from glob import glob import json import os from pathlib import Path import pickle import sqlite3 import string import sys import time import matplotlib as mpl from matplotlib import colors from matplotlib import pyplot as plt from matplotlib.gridspec import GridSpec from matplotlib.lines import Line2D import matplotlib.patches as mpatches from multiprocessing import Pool import numpy as np import pandas as pd from palettable.colorbrewer.qualitative import Paired_12 from palettable.colorbrewer.diverging import PuOr_5, RdYlGn_6, PuOr_10, RdBu_10 from palettable.scientific.diverging import Cork_10 from scipy.spatial import distance_matrix, ConvexHull, convex_hull_plot_2d from scipy.stats import linregress, pearsonr, lognorm import seaborn as sns import svgutils.compose as sc import asym_io from asym_io import PATH_BASE, PATH_ASYM, PATH_ASYM_DATA import asym_utils as utils import folding_rate import paper_figs import structure PATH_FIG = PATH_ASYM.joinpath("Figures") PATH_FIG_DATA = PATH_FIG.joinpath("Data") custom_cmap = sns.diverging_palette(230, 22, s=100, l=47, n=13) c_helix = custom_cmap[2] c_sheet = custom_cmap[10] col = [c_helix, c_sheet, "#CB7CE6", "#79C726"] #################################################################### ### SI Figures #################################################################### ### FIG 1 def fig1(df, nx=3, ny=3, N=50): fig, ax = plt.subplots(nx,ny, figsize=(12,12)) ax = ax.reshape(ax.size) fig.subplots_adjust(hspace=.5) lbls = ['Helix', 'Sheet', 'Coil', 'Disorder'] cat = 'HS.D' scop_desc = {row[1]:row[2] for row in pd.read_csv(PATH_BASE.joinpath('SCOP/scop-des-latest.txt')).itertuples()} CF_count = sorted(df.CF.value_counts().items(), key=lambda x:x[1], reverse=True)[1:] bold_idx = [0, 1, 2, 6, 8] for i in range(nx*ny): cf_id, count = CF_count[i] countN, countC = utils.pdb_end_stats_disorder_N_C(df.loc[df.CF==cf_id], N=N, s1='SEQ_PDB2', s2='SS_PDB2') base = np.zeros(len(countN['S']), dtype=float) Yt = np.array([[sum(p.values()) for p in countN[s]] for s in cat]).sum(axis=0) X = np.arange(base.size) for j, s in enumerate(cat): YN = np.array([sum(p.values()) for p in countN[s]]) YC = np.array([sum(p.values()) for p in countC[s]]) ax[i].plot(YN/Yt, '-', c=col[j], label=f"{s} N") ax[i].plot(YC/Yt, ':', c=col[j], label=f"{s} C") if i in bold_idx: ax[i].set_title(f"{scop_desc[int(cf_id)][:40]}\nTotal sequences: {count}", fontweight='bold') else: ax[i].set_title(f"{scop_desc[int(cf_id)][:40]}\nTotal sequences: {count}") ax[i].set_xlabel('Sequence distance from ends') if not i%3: ax[i].set_ylabel('Secondary\nstructure\nprobability') handles = [Line2D([0], [0], ls=ls, c=c, label=l) for ls, c, l in zip(['-', '--'], ['k']*2, ['N', 'C'])] + \ [Line2D([0], [0], ls='-', c=c, label=l) for l, c in zip(lbls, col)] ax[1].legend(handles=handles, bbox_to_anchor=(1.40, 1.45), frameon=False, ncol=6, columnspacing=1.5, handlelength=2.0) fig.savefig(PATH_FIG.joinpath("si1.pdf"), bbox_inches='tight') #################################################################### ### FIG 2 def fig2(): pfdb = asym_io.load_pfdb() fig, ax = plt.subplots(1,2, figsize=(10,5)) fig.subplots_adjust(wspace=0.3) X1 = np.log10(pfdb.loc[pfdb.use, 'L']) X2 = np.log10(pfdb.loc[pfdb.use, 'CO']) Y = pfdb.loc[pfdb.use, 'log_kf'] sns.regplot(X1, Y, ax=ax[0]) sns.regplot(X2, Y, ax=ax[1]) print(pearsonr(X1, Y)) print(pearsonr(X2, Y)) ax[0].set_ylabel(r'$\log_{10} k_f$') ax[1].set_ylabel(r'$\log_{10} k_f$') ax[0].set_xlabel(r'$\log_{10}$ Sequence Length') ax[1].set_xlabel(r'$\log_{10}$ Contact Order') fs = 14 for i, b in zip([0,1], list('ABCDEFGHI')): ax[i].text( -0.10, 1.05, b, transform=ax[i].transAxes, fontsize=fs) fig.savefig(PATH_FIG.joinpath("si2.pdf"), bbox_inches='tight') #################################################################### ### FIG 3 def fig3(pdb, Y='S_ASYM'): LO = folding_rate.get_folding_translation_rates(pdb.copy(), which='lo') HI = folding_rate.get_folding_translation_rates(pdb.copy(), which='hi') fig, ax = plt.subplots() lbls = ['Fit', r"$95\% CI$", r"$95\% CI$"] for i, d in enumerate([pdb, LO, HI]): print(f"{i}: frac R less than 0 = {utils.R_frac_1(d)}") print(f"{i}: Euk frac (.1 < R < 10) = {utils.R_frac_2(d, k=5)}") print(f"{i}: Prok frac (.1 < R < 10) = {utils.R_frac_2(d, k=10)}") print(f"{i}: frac R faster than 'speed-limit' = {utils.R_frac_3(d)}") print(f"{i}: frac R slower than 20 minutes = {utils.R_frac_4(d)}") print() sns.distplot(d['REL_RATE'], label=lbls[i], color=col[i]) ax.legend(loc='best', frameon=False) ax.set_xlim(-6, 6) ax.set_xlabel(r'$\log_{10}R$') ax.set_ylabel('Density') fig.savefig(PATH_FIG.joinpath("si3.pdf"), bbox_inches='tight') #################################################################### ### FIG 4 def fig4(pdb, Y='S_ASYM'): LO = folding_rate.get_folding_translation_rates(pdb.copy(), which='lo') HI = folding_rate.get_folding_translation_rates(pdb.copy(), which='hi') # For the results using only 2-state proteins... # HI = folding_rate.get_folding_translation_rates(pdb.copy(), which='best', only2s=True) fig = plt.figure(figsize=(8,10.5)) gs = GridSpec(5,12, wspace=0.5, hspace=0.0, height_ratios=[1,0.5,1,0.5,1.5]) ax = [fig.add_subplot(gs[i*2,j*4:(j+1)*4]) for i in [0,1] for j in [0,1,2]] + \ [fig.add_subplot(gs[4,:5]), fig.add_subplot(gs[4,7:])] X = np.arange(10) width = .35 ttls = [r'$\alpha$ Helix', r'$\beta$ Sheet'] lbls = [r'$E_{\alpha}$', r'$E_{\beta}$'] custom_cmap = sns.diverging_palette(230, 22, s=100, l=47, n=13) c_helix = custom_cmap[0] c_sheet = custom_cmap[12] col = [c_helix, c_sheet] bins = np.linspace(-0.20, 0.20, 80) width = np.diff(bins[:2]) X = bins[:-1] + width * 0.5 mid = 39 sep = 0.05 for k, pdb in enumerate([LO, HI]): quantiles = pdb['REL_RATE'].quantile(np.arange(0,1.1,.1)).values pdb['quant'] = pdb['REL_RATE'].apply(lambda x: utils.assign_quantile(x, quantiles)) enrich_data = pickle.load(open(PATH_FIG_DATA.joinpath("fig3_enrich.pickle"), 'rb')) for i, Y in enumerate(['H_ASYM', 'S_ASYM']): for j in range(len(quantiles)-1): hist, bins = np.histogram(pdb.loc[pdb.quant==j, Y], bins=bins) hist = hist / hist.sum() if i: ax[k*3+i].bar(X[:mid], (hist/hist.sum())[:mid], width, bottom=[sep*j]*mid, color='grey', alpha=.5) ax[k*3+i].bar(X[-mid:], (hist/hist.sum())[-mid:], width, bottom=[sep*j]*mid, color=col[i], alpha=.5) else: ax[k*3+i].bar(X[:mid], (hist/hist.sum())[:mid], width, bottom=[sep*j]*mid, color=col[i], alpha=.5) ax[k*3+i].bar(X[-mid:], (hist/hist.sum())[-mid:], width, bottom=[sep*j]*mid, color='grey', alpha=.5) ax[k*3+i].plot(X[:mid], (hist/hist.sum()+sep*j)[:mid], '-', c='k', alpha=.5) ax[k*3+i].plot(X[-mid:], (hist/hist.sum()+sep*j)[-mid:], '-', c='k', alpha=.5) mean = np.mean(enrich_data[Y[0]], axis=0) lo = np.abs(mean - np.quantile(enrich_data[Y[0]], 0.025, axis=0)) hi = np.abs(mean - np.quantile(enrich_data[Y[0]], 0.975, axis=0)) ax[k*3+2].barh([sep*j+(i+.7)*sep/3 for j in range(10)], mean, sep/3, xerr=(lo, hi), color=col[i], ec='k', alpha=.5, label=lbls[i], error_kw={'lw':.8}) ax[k*3+2].plot([0,0], [-0.05, 0.5], '-', c='k', lw=.1) for i in [0,2]: ax[k*3+i].set_yticks(np.arange(len(quantiles))*sep) ax[k*3+i].set_yticklabels([round(x,1) for x in quantiles]) for i in range(2): ax[k*3+i].spines['top'].set_visible(False) ax[k*3+i].spines['right'].set_visible(False) for i in range(1,3): ax[k*3+i].spines['left'].set_visible(False) ax[k*3+i].spines['top'].set_visible(False) for i in range(3): ax[k*3+i].set_ylim(0-sep/4, (0.5+sep/4)*1.05) ax[k*3+1].set_yticks([]) ax[k*3+2].yaxis.set_label_position('right') ax[k*3+2].yaxis.tick_right() ax[k*3+0].set_xlabel(r"asym$_{\alpha}$") ax[k*3+1].set_xlabel(r"asym$_{\beta}$") ax[k*3+0].set_ylabel(r'$\log_{10}R$') ax[k*3+2].set_xlabel('N terminal\nEnrichment') plot_metric_space(fig, ax[6:]) fs = 14 for i, b in zip([0,3,6], list('ABCDEFGHI')): ax[i].text( -0.20, 1.05, b, transform=ax[i].transAxes, fontsize=fs) fig.savefig(PATH_FIG.joinpath("si4.pdf"), bbox_inches='tight') def get_ci_index(X, Y): xlo = np.quantile(X, 0.025) xhi = np.quantile(X, 0.975) ylo = np.quantile(Y, 0.025) yhi = np.quantile(Y, 0.975) return np.where((X>=xlo)&(X<=xhi)&(Y>=ylo)&(Y<=yhi))[0] def plot_hull(boot_fit, patt, ax='', c='k', lw=1): idx = get_ci_index(*boot_fit[:,:2].T) tmp = boot_fit[idx].copy() hull = ConvexHull(np.array([boot_fit[idx,1], boot_fit[idx, 0]]).T) for simplex in hull.simplices: if not isinstance(ax, str): ax.plot(tmp[simplex, 1], tmp[simplex, 0], patt, c=c, lw=lw) else: plt.plot(tmp[simplex, 1], tmp[simplex, 0], patt, c=c, lw=lw) def plot_metric_space(fig, ax): fit = pickle.load(open(PATH_FIG_DATA.joinpath("boot_fit_met.pickle"), 'rb'))['AA'] boot_fit = pickle.load(open(PATH_FIG_DATA.joinpath("boot_fit_param.pickle"), 'rb')) boot_fit_0 = pickle.load(open(PATH_FIG_DATA.joinpath("boot_fit_param_useall.pickle"), 'rb')) X, Y = np.meshgrid(fit["c1"], fit["c2"]) cmap = colors.ListedColormap(sns.diverging_palette(230, 22, s=100, l=47, n=8)) bounds = np.linspace(-2, 2, 9) norm = colors.BoundaryNorm(bounds, cmap.N) im = [] ttls = ['Helices', 'Sheets'] for i in range(2): im = ax[i].contourf(X, Y, fit['met'][:,:,i], bounds, cmap=cmap, vmin=-2, vmax=2, norm=norm) cbar = fig.colorbar(im, ax=ax[i], fraction=0.046, pad=0.04, norm=norm, boundaries=bounds, ticks=bounds) cbar.set_label(r"$R_{\mathregular{max}}$", labelpad=-5) ax[i].set_xlabel('A') ax[i].set_xlim(X.min(), X.max()) ax[i].set_ylabel('B') ax[i].set_ylim(Y.max(), Y.min()) ax[i].invert_yaxis() ax[i].set_aspect((np.max(X)-np.min(X))/(np.max(Y)-np.min(Y))) ax[i].set_title(ttls[i]) col = ['k', '#79C726'] for i, boofi in enumerate([boot_fit, boot_fit_0]): for j in range(2): for bf, p in zip(boofi, ['-', ':']): plot_hull(bf, p, ax[j], c=col[i]) c1 = [13.77, -6.07] c1a = [11.36553036, -4.87716477] c1b = [16.17819934, -7.27168306] patt = ['*', 'o', 'o'] lbls = ['Fit', r"$95\% CI$", r"$95\% CI$"] col = "#CB7CE6" for i in range(2): for coef, p, l in zip([c1, c1a, c1b], patt, lbls): ax[i].plot([coef[0]], [coef[1]], p, label=l, fillstyle='none', ms=10, c=col, mew=2) ax[i].legend(loc='best', frameon=False) #################################################################### ### FIG 5 def fig5(): fig, ax = plt.subplots(2,1) fig.subplots_adjust(hspace=0.3) bins = np.arange(0,620,20) X = [bins[:-1] + np.diff(bins[:2])] bins = np.arange(0,61,2.0) X.append(bins[:-1] + np.diff(bins[:2])) yellows = sns.diverging_palette(5, 55, s=95, l=77, n=13) pinks = sns.diverging_palette(5, 55, s=70, l=52, n=13) col = [yellows[12], pinks[0]] col2 = [yellows[10], pinks[3]] data = [pickle.load(open(PATH_FIG_DATA.joinpath(f"dom_{x}_dist_boot.pickle"), 'rb')) for x in ['aa', 'smco']] for j in range(2): for i in [1,2]: MEAN, LO, HI = [np.array(x) for x in data[j][f"pos{i}"]] ax[j].plot(X[j], MEAN, '--', c=col[i-1], label=f'position {i}') ax[j].fill_between(X[j], LO, HI, color=col2[i-1], alpha=0.5) ax[0].set_xlabel('Sequence Length') ax[1].set_xlabel('Contact Order') ax[0].set_ylabel('Density') ax[1].set_ylabel('Density') ax[0].legend(loc='upper right', frameon=False) fig.savefig(PATH_FIG.joinpath("si5.pdf"), bbox_inches='tight') #################################################################### ### FIG 6 def fig6(X='REL_RATE', Y='S_ASYM'): fig, ax = plt.subplots(1,2, figsize=(10,4)) fig.subplots_adjust(hspace=0.7, wspace=0.3) sep = 0.40 col = Paired_12.hex_colors[5] ttls = [f"Position {i}" for i in range(1,3)] dom_pos_boot = pickle.load(open(PATH_FIG_DATA.joinpath("dom_pos_boot.pickle"), 'rb')) custom_cmap = sns.diverging_palette(230, 22, s=100, l=47, n=13) c_helix = custom_cmap[2] c_sheet = custom_cmap[11] col = [c_helix, c_sheet, "#CB7CE6", "#79C726"] # ttls = ["Two-domain", "Three-domain"] xlbls = [r'$E_{\alpha}$', r'$E_{\beta}$'] for i in range(2): for j, (pos, dat) in enumerate(dom_pos_boot[2].items()): quantiles = dat[0].mean(axis=0) mean = dat[1][:,i,:].mean(axis=0) lo = np.abs(np.quantile(dat[1][:,i,:], 0.025, axis=0) - mean) hi = np.abs(np.quantile(dat[1][:,i,:], 0.975, axis=0) - mean) ax[j].bar(np.arange(10)+(i+1)*sep, mean, sep, yerr=(lo, hi), color=col[i], label=xlbls[i], alpha=0.7, error_kw={'lw':.8}) ax[j].set_xticks(np.arange(len(quantiles))) ax[j].set_xticklabels(np.round(quantiles, 1), rotation=90) ax[i].spines['top'].set_visible(False) ax[i].spines['right'].set_visible(False) ax[i].set_title(ttls[i], loc='left') ax[i].set_xlabel(r'$\log_{10}R$') # ax[i,k].set_ylabel('N terminal\nEnrichment') ax[i].set_ylabel("N Terminal Enrichment") ax[0].legend(bbox_to_anchor=(1.17, 1.12), frameon=False, ncol=3) fig.savefig(PATH_FIG.joinpath("si6.pdf"), bbox_inches='tight') #################################################################### ### FIG 7 def fig7(pdb, Y='D_ASYM'): fig, ax = plt.subplots(3,3, figsize=(12,8)) fig.subplots_adjust(hspace=0.5, wspace=0.5) sep = 0.05 col = Paired_12.hex_colors[7] xlbls = [r'$\log_{10} R$', 'Sequence Length', 'Contact Order'] ttls = ['Full sample', 'Eukaryotes', 'Prokaryotes'] for k, df in enumerate([pdb, pdb.loc[pdb.k_trans==5], pdb.loc[pdb.k_trans==10]]): for i, X in enumerate(['REL_RATE', 'AA_PDB', 'CO']): quantiles = df[X].quantile(np.arange(0,1.1,.1)).values df['quant'] = df[X].apply(lambda x: utils.assign_quantile(x, quantiles)) ratio = [] for j in range(len(quantiles)-1): left = len(df.loc[(df.quant==j)&(df[Y]<0)]) / max(1, len(df.loc[(df.quant==j)])) right = len(df.loc[(df.quant==j)&(df[Y]>0)]) / max(1, len(df.loc[(df.quant==j)])) ratio.append((right - left)) # print(ratio) ax[i,k].bar([sep*j+sep/2 for j in range(10)], ratio, sep/2, color=[col if r > 0 else 'grey' for r in ratio], alpha=.5) ax[i,k].set_xticks(np.arange(len(quantiles))*sep) if i == 1: ax[i,k].set_xticklabels([int(x) for x in quantiles], rotation=90) else: ax[i,k].set_xticklabels([round(x,1) for x in quantiles], rotation=90) ax[i,k].set_xlabel(xlbls[i]) ax[i,k].set_ylabel('N terminal\nEnrichment') ax[0,k].set_title(ttls[k]) fig.savefig(PATH_FIG.joinpath("si7.pdf"), bbox_inches='tight') #################################################################### ### FIG 8 def fig8(df_pdb): fig = plt.figure() gs = GridSpec(2,1, wspace=0.0, height_ratios=[.5,1]) ax = [fig.add_subplot(gs[1,0]), fig.add_subplot(gs[0,0])] X = np.arange(-3, 3, 0.01) Y = np.array([(10**x + 1)/max(10**x, 1) for x in X]) Y2 = (1+10**X) / np.array([max(1, 10**x+30./100.) for x in X]) ax[0].plot(X, Y, '-', label=r"$\tau_{ribo}=0$") ax[0].plot(X, Y2, ':', label=r"$\tau_{ribo}=0.3\tau_{trans}$") lbls = ['1ILO', '2OT2', '3BID'] patt = ['o', 's', '^'] for l, p in zip(lbls, patt): X, Y = np.load(PATH_FIG_DATA.joinpath(f"{l}.npy")) ax[0].plot(X, Y, p, label=l, alpha=0.5, mec='k', ms=7) ax[0].set_xlim(-2.3, 2.3) ax[0].set_ylim(1, 2.05) ax[0].set_xlabel(r'$\log_{10} R$') ax[0].set_ylabel("Speed-up") ax[0].spines['top'].set_visible(False) ax[0].spines['right'].set_visible(False) ax[0].legend(loc='upper right', frameon=False, bbox_to_anchor=(1.05, 1.00), ncol=1, labelspacing=.1) fig8a(df_pdb, ax[1]) fig.savefig(PATH_FIG.joinpath("si8.pdf"), bbox_inches='tight') def fig8a(df_pdb, ax): lbls = ['2OT2', '1ILO', '3BID'] idx = [98212, 19922, 127370] SS = df_pdb.loc[idx, 'SS_PDB2'].values custom_cmap = sns.diverging_palette(230, 22, s=100, l=47, n=13) col_key = {'.':'grey', 'D':'grey', 'H':custom_cmap[3], 'S':custom_cmap[9]} ec_key = {'.':'grey', 'D':'grey', 'H':custom_cmap[1], 'S':custom_cmap[11]} wid_key = {'.':0.1, 'D':0.1, 'H':0.3, 'S':0.3} lw_key = {'.':0.7, 'D':0.7, 'H':1.5, 'S':1.5} for i, ss in enumerate(SS): left = 0. for j, strand in enumerate(new_figs.generate_strand(ss)): s = strand[0] ax.barh([i], [len(strand)], wid_key[s], left=[left], color=col_key[s], ec=ec_key[s], linewidth=lw_key[s]) left += len(strand) + 0.20 ax.annotate("N", xy=(-0.01, 1.0), xycoords='axes fraction') ax.annotate("C", xy=(0.59, 1.0), xycoords='axes fraction') for pos in ['left', 'right', 'top', 'bottom']: ax.spines[pos].set_visible(False) col = np.array(custom_cmap)[[3,9,1,11]] ax.legend(handles=[mpatches.Patch(fc=c1, ec=c2, label=l) for c1, c2, l in zip(col[:2], col[2:], ['Helix', 'Sheet'])], loc='upper right', frameon=False, ncol=1, bbox_to_anchor=(0.95, 1.10)) ax.set_xticks([]) ax.set_yticks(range(3)) ax.set_yticklabels(lbls) ax.tick_params(axis='y', which='major', length=0, pad=10) #################################################################### ### FIG 9 def fig9(pdb, s='S'): pdb = pdb.loc[(pdb.USE_RSA)] pdb = pdb.loc[(pdb.SS_PDB2.str.len()==pdb.RSA.apply(len))] path = PATH_FIG_DATA.joinpath("RSA_quantiles.pickle") if path.exists(): quantiles, euk_quantiles, prok_quantiles = pickle.load(open(path, 'rb')) else: quantiles = [np.quantile([x for y in pdb['RSA'] for x in y if np.isfinite(x)], x/3) for x in range(1,4)] euk_quantiles = [np.quantile([x for y in pdb.loc[pdb.k_trans==5, 'RSA'] for x in y if np.isfinite(x)], x/3) for x in range(1,4)] prok_quantiles = [np.quantile([x for y in pdb.loc[pdb.k_trans==10, 'RSA'] for x in y if np.isfinite(x)], x/3) for x in range(1,4)] pickle.dump([quantiles, euk_quantiles, prok_quantiles], open(path, 'wb')) print(quantiles) # fig, ax = plt.subplots(4,3, figsize=(8,8)) # fig.subplots_adjust(wspace=0.5) fig = plt.figure(figsize=(12,9)) gs = GridSpec(5,3, wspace=0.3, height_ratios=[1,1,1,1,1]) ax = [fig.add_subplot(gs[j,i]) for i in range(3) for j in [0,1]] + \ [fig.add_subplot(gs[j,i]) for i in range(3) for j in [3,4]] print("All proteins, all SS") fig9a(pdb['RSA'], pdb['SS_PDB2'], quantiles, ax[:2], s='SH.D') print("euk proteins, all ss") fig9a(pdb.loc[pdb.k_trans==5, 'RSA'], pdb.loc[pdb.k_trans==5, 'SS_PDB2'], euk_quantiles, ax[2:4], s='SH.D') print("Prok proteins, all SS") fig9a(pdb.loc[pdb.k_trans==10, 'RSA'], pdb.loc[pdb.k_trans==10, 'SS_PDB2'], prok_quantiles, ax[4:6], s='SH.D') print("Euk proteins, only SHC") fig9a(pdb.loc[pdb.k_trans==5, 'RSA'], pdb.loc[pdb.k_trans==5, 'SS_PDB2'], euk_quantiles, ax[6:8], s='SH.') print("Euk proteins, only S") fig9a(pdb.loc[pdb.k_trans==5, 'RSA'], pdb.loc[pdb.k_trans==5, 'SS_PDB2'], euk_quantiles, ax[8:10], s='S') print("Prok proteins, only S") fig9a(pdb.loc[pdb.k_trans==10, 'RSA'], pdb.loc[pdb.k_trans==10, 'SS_PDB2'], prok_quantiles, ax[10:12], s='S') ttls = ['All proteins\nAll residues', 'Eukaryotic proteins\nAll residues', 'Prokaryotic proteins\nAll residues', 'Eukaryotic proteins\nHelix, sheet and coil', 'Eukaryotic proteins\nOnly Sheets', 'Prokaryotic proteins\nOnly Sheets'] col = np.array(list(Paired_12.hex_colors))[[0,2,4,6]] lbls = ['Buried', 'Middle', 'Exposed'] ax[0].set_ylabel('Solvent accessibility\nprobability') ax[1].set_ylabel('Solvent accessibility\nasymmetry\n$\\log_2 (N / C)$') ax[6].set_ylabel('Solvent accessibility\nprobability') ax[7].set_ylabel('Solvent accessibility\nasymmetry\n$\\log_2 (N / C)$') handles = [Line2D([0], [0], ls=ls, c=c, label=l) for ls, c, l in zip(['-', '--'], ['k']*2, ['N', 'C'])] + \ [Line2D([0], [0], ls='-', c=c, label=l) for l, c in zip(lbls, col)] ax[8].legend(handles=handles, bbox_to_anchor=(1.30, 1.85), frameon=False, ncol=5, columnspacing=1.5, handlelength=2.0, labelspacing=2.0) for i, a in enumerate(ax): if i % 2: ax[i].set_xticks(range(0, 60, 10)) ax[i].set_xlabel('Sequence distance from ends') else: ax[i].set_xticks([]) ax[i].set_title(ttls[i//2]) ax[i].set_xlim(0, 50) fig.savefig(PATH_FIG.joinpath("si9.pdf"), bbox_inches='tight') def fig9a(rsa_list, ss_list, quantiles, ax, s='S'): cat = 'BME' countN, countC = utils.sheets_rsa_seq_dist(rsa_list, ss_list, quantiles, ss_key=s) col = np.array(list(Paired_12.hex_colors))[[0,2,4,6]] base = np.zeros(len(countN[cat[0]]), dtype=float) YtN = np.array(list(countN.values())).sum(axis=0) YtC = np.array(list(countC.values())).sum(axis=0) X = np.arange(base.size) for i, s in enumerate(cat): YN = countN[s] YC = countC[s] ax[0].plot(YN/YtN, '-', c=col[i], label=f"{s} N") ax[0].plot(YC/YtC, ':', c=col[i], label=f"{s} C") ax[1].plot(np.log2(YN/YC*YtC/YtN), '-', c=col[i], label=f"{s}") print(s, np.round((np.sum(YN[:20]) / np.sum(YtN[:20])) / (np.sum(YC[:20]) / np.sum(YtC[:20])), 2)) ax[1].plot([0]*base.size, ':', c='k') ax[0].set_ylim(0,1) ax[1].set_ylim(-1,1) for a in ax: a.set_xlim(X[0], X[-1]) #################################################################### ### FIG 10 def fig10(pdb): pfdb = asym_io.load_pfdb() acpro = asym_io.load_acpro() fig = plt.figure(figsize=(12,9)) gs = GridSpec(3,7, wspace=0.0, width_ratios=[5,0.2,5,0.4,3,1.0,6], height_ratios=[1,.3,1]) ax = [fig.add_subplot(gs[2,i*2]) for i in range(4)] + \ [fig.add_subplot(gs[0,0:3]), fig.add_subplot(gs[0,5:])] # sns.distplot(pdb.ln_kf, ax=ax[5], label='PDB - PFDB fit', hist=False) pdb = pdb.copy() coef = folding_rate.linear_fit(np.log10(acpro['L']), acpro['log_kf']).params pdb['ln_kf'] = folding_rate.pred_fold(np.log10(pdb.AA_PDB), coef) pdb = utils.get_rel_rate(pdb) fig10a(fig, ax[4]) fig10b(fig, ax[:4], pdb) # sns.distplot(pdb.ln_kf, ax=ax[5], label='PDB - ACPro fit', hist=False) # sns.distplot(pfdb.log_kf, ax=ax[5], label='PFDB data', kde=False, norm_hist=True) # sns.distplot(acpro["ln kf"], ax=ax[5], label='KDB data', kde=False, norm_hist=True) sns.regplot(np.log10(acpro['L']), acpro['log_kf'], label='ACPro data', scatter_kws={"alpha":0.5}) sns.regplot(np.log10(pfdb.loc[pfdb.use, 'L']), pfdb.loc[pfdb.use, 'log_kf'], label='PFDB data', scatter_kws={"alpha":0.5}) ax[5].legend(loc='best', frameon=False) ax[5].set_xlabel(r"$\log_{10}L$") ax[5].set_ylabel(r"$\log_{10}k_f$") fs = 14 for i, b in zip([4,5,0,2,3], list('ABCDEFGHI')): ax[i].text( -0.20, 1.16, b, transform=ax[i].transAxes, fontsize=fs) fig.savefig(PATH_FIG.joinpath("si10.pdf"), bbox_inches='tight') def fig10a(fig, ax): Rdist_data = pickle.load(open(PATH_FIG_DATA.joinpath("R_dist_acpro.pickle"), 'rb')) custom_cmap = sns.diverging_palette(230, 22, s=100, l=47, n=13) c_helix = custom_cmap[2] c_sheet = custom_cmap[10] col = [c_helix, c_sheet, "#CB7CE6", "#79C726"] lbls = ['All', 'Prokaryotes', 'Eukaryotes'] for i, k in enumerate(['All', 'Prok', 'Euk']): ax.plot(Rdist_data['grid'], Rdist_data[k][0], '-', c=col[i], label=lbls[i]) ax.fill_between(Rdist_data['grid'], Rdist_data[k][1], Rdist_data[k][2], color=col[i], alpha=0.5) ax.plot([0,0], [0, 0.60], ':', c='k', alpha=0.7) ax.set_xlabel(r'$\log_{10} R$') ax.set_ylabel('Density') ax.set_xticks(np.arange(-6, 5, 2)) ax.set_xlim(-7, 2) ax.set_ylim(0, 0.60) ax.legend(loc='upper center', bbox_to_anchor=(0.55, 1.17), frameon=False, ncol=3, columnspacing=2) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) def fig10b(fig, ax, pdb, Y='S_ASYM'): ft = 12 X = np.arange(10) width = .35 ttls = [r'$\alpha$ Helix', r'$\beta$ Sheet'] lbls = [r'$E_{\alpha}$', r'$E_{\beta}$'] # col = np.array(Paired_12.hex_colors)[[1,5]] custom_cmap = sns.diverging_palette(230, 22, s=100, l=47, n=13) c_helix = custom_cmap[0] c_sheet = custom_cmap[12] col = [c_helix, c_sheet] bins = np.linspace(-0.20, 0.20, 80) width = np.diff(bins[:2]) X = bins[:-1] + width * 0.5 mid = 39 sep = 0.05 enrich_data = pickle.load(open(PATH_FIG_DATA.joinpath("fig3_enrich_acpro.pickle"), 'rb')) quantiles = enrich_data['edges'].mean(axis=0) for i, Y in enumerate(['H_ASYM', 'S_ASYM']): for j in range(len(quantiles)-1): hist, bins = np.histogram(pdb.loc[pdb.quant==j, Y], bins=bins) hist = hist / hist.sum() # total = len(pdb)/10 # left = len(pdb.loc[(pdb.quant==j)&(pdb[Y]<0)]) / total # right = len(pdb.loc[(pdb.quant==j)&(pdb[Y]>0)]) / total # print(Y, j, ''.join([f"{x:6.3f}" for x in [left, right, left/right, right / left]])) if i: ax[i].bar(X[:mid], (hist/hist.sum())[:mid], width, bottom=[sep*j]*mid, color='grey', alpha=.5) ax[i].bar(X[-mid:], (hist/hist.sum())[-mid:], width, bottom=[sep*j]*mid, color=col[i], alpha=.5) else: ax[i].bar(X[:mid], (hist/hist.sum())[:mid], width, bottom=[sep*j]*mid, color=col[i], alpha=.5) ax[i].bar(X[-mid:], (hist/hist.sum())[-mid:], width, bottom=[sep*j]*mid, color='grey', alpha=.5) ax[i].plot(X[:mid], (hist/hist.sum()+sep*j)[:mid], '-', c='k', alpha=.5) ax[i].plot(X[-mid:], (hist/hist.sum()+sep*j)[-mid:], '-', c='k', alpha=.5) mean = np.mean(enrich_data[Y[0]], axis=0) lo = np.abs(mean - np.quantile(enrich_data[Y[0]], 0.025, axis=0)) hi = np.abs(mean - np.quantile(enrich_data[Y[0]], 0.975, axis=0)) ax[2].barh([sep*j+(i+.7)*sep/3 for j in range(10)], mean, sep/3, xerr=(lo, hi), color=col[i], ec='k', alpha=.5, label=lbls[i], error_kw={'lw':.8}) ax[2].plot([0,0], [-0.05, 0.5], '-', c='k', lw=.1) ax[0].set_yticks(np.arange(len(quantiles))*sep) ax[0].set_yticklabels([round(x,1) for x in quantiles]) ax[2].legend(loc='upper center', ncol=2, columnspacing=1.5, frameon=False, bbox_to_anchor=(0.52, 1.15)) for i, t in zip([0,1], ttls): ax[i].set_title(t) ax[i].set_xlim(-.15, .15) ax[i].set_xticks([-.1, 0, .1]) for i in range(3): ax[i].spines['top'].set_visible(False) ax[i].spines['right'].set_visible(False) ax[i].set_ylim(0-sep/4, 0.5+sep) for i in [1,2]: ax[i].spines['left'].set_visible(False) ax[i].set_yticks([]) ax[0].set_xlabel(r"asym$_{\alpha}$") ax[1].set_xlabel(r"asym$_{\beta}$") ax[0].set_ylabel(r'$\log_{10}R$') ax[2].set_xlabel('N terminal\nEnrichment') pdb = pdb.loc[pdb.OC!='Viruses'] X = np.arange(10) X = np.array([sep*j+(i+.7)*sep/3 for j in range(10)]) width = .175 ttls = ['Eukaryote ', 'Prokaryote '] lbls = [r'$E_{\alpha}$', r'$E_{\beta}$'] custom_cmap = sns.diverging_palette(230, 22, s=100, l=47, n=13) col = [custom_cmap[i] for i in [3, 9, 0, 12]] paths = [f"fig3_enrich_{a}_acpro.pickle" for a in ['eukaryote', 'prokaryote']] for i, path in enumerate(paths): enrich_data = pickle.load(open(PATH_FIG_DATA.joinpath(path), 'rb')) for j, Y in enumerate(['H_ASYM', 'S_ASYM']): # adjust = (j - 1 + i*2)*width adjust = (j*2 - 4.0 + i)*(sep/5) mean = np.mean(enrich_data[Y[0]], axis=0) lo = np.abs(mean - np.quantile(enrich_data[Y[0]], 0.025, axis=0)) hi = np.abs(mean - np.quantile(enrich_data[Y[0]], 0.975, axis=0)) print(i, Y, max(np.abs(mean))) ax[3].barh(X+adjust, mean, sep/5.0, ec='k', xerr=(lo, hi), color=col[i*2+j], label=ttls[i]+lbls[j], lw=0.001, error_kw={'lw':.2}) ax[3].plot([0,0], [-0.05, 0.5], '-', c='k', lw=.1) ax[3].set_yticks(np.arange(len(quantiles))*sep) ax[3].set_ylabel(r'$\log_{10} R$') ax[3].set_yticklabels([round(x,1) for x in quantiles]) ax[3].set_xlabel('N terminal\nEnrichment') ax[3].set_xlim(-.42, .42) ax[3].set_ylim(0-sep/4, 0.5+sep) ax[3].spines['top'].set_visible(False) ax[3].spines['left'].set_visible(False) handles = [mpatches.Patch([], [], color=col[j*2+i], label=ttls[j]+lbls[i]) for i in [0,1] for j in [1,0]] ax[3].legend(handles=handles, bbox_to_anchor=(1.05, 1.25), frameon=False, loc='upper right', ncol=2, columnspacing=1.0, handlelength=1.5) ax[3].yaxis.set_label_position('right') ax[3].yaxis.tick_right() #################################################################### ### FIG 11 def fig11(pdb, X='AA_PDB', Y='CO', w=.1, ax='', fig=''): if isinstance(ax, str): fig, ax = plt.subplots(4,2, figsize=(9,12)) fig.subplots_adjust(wspace=0.0, hspace=0.65) # ax = ax.reshape(ax.size) pdb_CO = np.load(PATH_FIG_DATA.joinpath("pdb_config_CO.npy"))[:,:,0] df = pdb.copy() q = np.arange(w,1+w,w) lbls = ['Helix', 'Sheet'] # cb_lbl = [r"$E_{\alpha}$", r"$E_{\beta}$"] cb_lbl = [r"$asym_{\alpha}$", r"$asym_{\beta}$"] vmax = 0.03 vmin = -vmax for j, co in enumerate(pdb_CO.T): df['CO'] = co quant1 = [df[X].min()] + list(df[X].quantile(q).values) quant2 = [df[Y].min()] + list(df[Y].quantile(q).values) for i, Z in enumerate(['H_ASYM', 'S_ASYM']): mean = [] for l1, h1 in zip(quant1[:-1], quant1[1:]): for l2, h2 in zip(quant2[:-1], quant2[1:]): samp = df.loc[(df[X]>=l1)&(df[X]<h1)&(df[Y]>=l2)&(df[Y]<h2), Z] mean.append(samp.mean()) # left = len(df.loc[(df[X]>=l1)&(df[X]<h1)&(df[Y]>=l2)&(df[Y]<h2)&(df[Z]<0)]) # right = len(df.loc[(df[X]>=l1)&(df[X]<h1)&(df[Y]>=l2)&(df[Y]<h2)&(df[Z]>0)]) # tot = max(len(df.loc[(df[X]>=l1)&(df[X]<h1)&(df[Y]>=l2)&(df[Y]<h2)]), 1) # mean.append((right - left)/tot) cmap = sns.diverging_palette(230, 22, s=100, l=47, as_cmap=True) norm = colors.BoundaryNorm([vmin, vmax], cmap.N) bounds = np.linspace(vmin, vmax, 3) im = ax[j,i].imshow(np.array(mean).reshape(q.size, q.size).T, cmap=cmap, vmin=vmin, vmax=vmax) cbar = fig.colorbar(im, cmap=cmap, ticks=bounds, ax=ax[j,i], fraction=0.046, pad=0.04) cbar.set_label(cb_lbl[i], labelpad=-5) ax[j,i].set_title(lbls[i]) ax[j,i].set_xticks(np.arange(q.size+1)-0.5) ax[j,i].set_yticks(np.arange(q.size+1)-0.5) ax[j,i].set_xticklabels([int(x) for x in quant1], rotation=90) ax[j,i].set_yticklabels([int(round(x,0)) for x in quant2]) for a in ax.ravel(): a.invert_yaxis() a.set_xlabel('Sequence Length') a.set_ylabel('Contact Order') a.tick_params(axis='both', which='major', direction='in') fs = 14 for i, b in zip(range(4), list('ABCDEFGHI')): ax[i,0].text( -0.20, 1.16, b, transform=ax[i,0].transAxes, fontsize=fs) fig.savefig(PATH_FIG.joinpath("si11.pdf"), bbox_inches='tight') def fig12(pdb, X='REL_RATE', Y='S_ASYM', w=0.1): fig = plt.figure(figsize=(8,12)) gs = GridSpec(3,2, wspace=0.4, hspace=0.5, width_ratios=[1,1]) ax_all = [[fig.add_subplot(gs[j,i]) for i in [0,1]] for j in range(3)] custom_cmap = sns.diverging_palette(230, 22, s=100, l=47, n=13) c_helix = custom_cmap[2] c_sheet = custom_cmap[10] col = [c_helix, c_sheet] bins = np.linspace(-0.20, 0.20, 80) width = np.diff(bins[:2]) mid = 39 sep = 0.05 lbls = ['Sheet', 'Helix'] quantiles = pdb[X].quantile(np.arange(0,1+w,w)).values # print(np.round(quantiles, 2)) pdb['quant'] = pdb[X].apply(lambda x: utils.assign_quantile(x, quantiles)) # pdb['quant'] = np.random.choice(pdb['quant'], len(pdb), replace=False) for ax, threshold in zip(ax_all, [0, 0.025, 0.05]): print(f"threshold = {threshold}") for i, Y in enumerate(['S_ASYM', 'H_ASYM']): ratio1 = [] ratio2 = [] lefts = [] rights = [] for j in range(len(quantiles)-1): hist, bins = np.histogram(pdb.loc[pdb.quant==j, Y], bins=bins) hist = hist / hist.sum() left = len(pdb.loc[(pdb.quant==j)&(pdb[Y]<-threshold)]) / max(len(pdb.loc[(pdb.quant==j)]), 1) right = len(pdb.loc[(pdb.quant==j)&(pdb[Y]>threshold)]) / max(len(pdb.loc[(pdb.quant==j)]), 1) lefts.append(left) rights.append(right) ratio1.append((right - left)) ratio2.append(np.log2(right / left)) print(Y, j, left, right) xgrid = [sep*j+(i+1.0)*sep/3 for j in range(len(quantiles)-1)] ax[0].barh(xgrid, ratio1, sep/3, color=col[i], alpha=.5) ax[1].barh(xgrid, ratio2, sep/3, color=col[i], alpha=.5) ax[0].set_xticks(np.arange(-0.3, 0.4, 0.1)) for a in ax: a.set_yticks(np.arange(len(quantiles))*sep) a.set_yticklabels([round(x,1) for x in quantiles]) a.plot([0,0], [-0.05, 0.5], '-', c='k', lw=.1) a.spines['top'].set_visible(False) a.spines['right'].set_visible(False) a.set_ylim(0, 0.5) a.set_ylabel(r'$\log_{10}R$') ax[0].set_xlim(-0.35, 0.35) ax[1].set_xlim(-1.50, 1.50) ax[0].set_xlabel(r'$P(\mathregular{{asym}} \geq {0}) - P(\mathregular{{asym}} \leq -{0})$'.format(*[threshold]*2)) ax[1].set_xlabel(r'$\log_{{2}} \frac{{P(\mathregular{{asym}} \geq {0})}}{{P(\mathregular{{asym}} \leq -{0})}} $'.format(*[threshold]*2)) fig.savefig(PATH_FIG.joinpath("si12.pdf"), bbox_inches='tight') def fig13(df, X='AA_PDB', Y='CO', w=.1, ax='', fig=''): if isinstance(ax, str): fig, ax = plt.subplots(1,3, figsize=(15,4)) fig.subplots_adjust(wspace=0.5) q = np.arange(w,1+w,w) quant1 = [df[X].min()] + list(df[X].quantile(q).values) quant2 = [df[Y].min()] + list(df[Y].quantile(q).values) lbls = ['Helix', 'Sheet'] cb_lbl = [r"$asym_{\alpha}$", r"$asym_{\beta}$"] vmax = 0.03 vmin = -vmax count = [] for i, Z in enumerate(['H_ASYM', 'S_ASYM']): mean = [] for l1, h1 in zip(quant1[:-1], quant1[1:]): for l2, h2 in zip(quant2[:-1], quant2[1:]): samp = df.loc[(df[X]>=l1)&(df[X]<h1)&(df[Y]>=l2)&(df[Y]<h2), Z] mean.append(samp.mean()) # left = len(df.loc[(df[X]>=l1)&(df[X]<h1)&(df[Y]>=l2)&(df[Y]<h2)&(df[Z]<0)]) # right = len(df.loc[(df[X]>=l1)&(df[X]<h1)&(df[Y]>=l2)&(df[Y]<h2)&(df[Z]>0)]) # tot = max(len(df.loc[(df[X]>=l1)&(df[X]<h1)&(df[Y]>=l2)&(df[Y]<h2)]), 1) # mean.append((right - left)/tot) if not i: count.append(len(samp)) # print(len(samp)) mean = np.array(mean).reshape(q.size, q.size) count = np.array(count).reshape(q.size, q.size) cmap = sns.diverging_palette(230, 22, s=100, l=47, as_cmap=True) norm = colors.BoundaryNorm([vmin, vmax], cmap.N) bounds = np.linspace(vmin, vmax, 3) im = ax[i].imshow(mean.T, cmap=cmap, vmin=vmin, vmax=vmax) cbar = fig.colorbar(im, cmap=cmap, ticks=bounds, ax=ax[i], fraction=0.046, pad=0.04) cbar.set_label(cb_lbl[i], labelpad=-5) ax[i].set_title(lbls[i]) ax[i].set_xticks(np.arange(q.size+1)-0.5) ax[i].set_yticks(np.arange(q.size+1)-0.5) ax[i].set_xticklabels([int(x) for x in quant1], rotation=90) ax[i].set_yticklabels([int(round(x,0)) for x in quant2]) for i in [2]: cmap = plt.cm.Greys # norm = colors.BoundaryNorm([-.04, .04], cmap.N) # bounds = np.linspace(-.04, .04, 5) im = ax[i].imshow(np.array(count).reshape(q.size, q.size).T, cmap=cmap, vmin=0) cbar = fig.colorbar(im, cmap=cmap, ax=ax[i], fraction=0.046, pad=0.04) cbar.set_label('Count') ax[i].set_title('Distribution') ax[i].set_xticks(np.arange(q.size+1)-0.5) ax[i].set_yticks(np.arange(q.size+1)-0.5) ax[i].set_xticklabels([int(x) for x in quant1], rotation=90) ax[i].set_yticklabels([int(round(x,0)) for x in quant2]) for a in ax: a.invert_yaxis() a.set_xlabel('Sequence Length') a.set_ylabel('Contact Order') a.tick_params(axis='both', which='major', direction='in') fs = 14 for i, b in zip([0,1,2], list('ABCDEFGHI')): ax[i].text( -0.20, 1.05, b, transform=ax[i].transAxes, fontsize=fs) fig.savefig(PATH_FIG.joinpath("si13.pdf"), bbox_inches='tight') def scop_ss(): fig, ax = plt.subplots(2,1) cat = 'HS.D' N = 50 X = np.arange(50) Nboot, Cboot, asym, enrich_edges, enrich_vals = pickle.load(open(PATH_FIG_DATA.joinpath(f"pdb_scop_indep.pickle"), 'rb')) data = [Nboot, Cboot, asym] custom_cmap = sns.diverging_palette(230, 22, s=100, l=47, n=13) c_helix = custom_cmap[2] c_sheet = custom_cmap[10] col = [c_helix, c_sheet, "#CB7CE6", "#79C726"] lbls = ['Helix', 'Sheet', 'Coil', 'Disorder'] for j, s in enumerate(cat): ax[0].plot(X, data[0][s]['mean']/4, '-', c=col[j], label=f"{s} N") ax[0].fill_between(X, data[0][s]['hi']/4, data[0][s]['lo']/4, color="grey", label=f"{s} N", alpha=0.5) ax[0].plot(X, data[1][s]['mean']/4, '--', c=col[j], label=f"{s} N") ax[0].fill_between(X, data[1][s]['hi']/4, data[1][s]['lo']/4, color="grey", label=f"{s} N", alpha=0.2) print(s, round(np.mean(data[2][s]['mean']), 2), round(np.mean(data[2][s]['mean'][:20]), 2), round(np.mean(data[2][s]['mean'][20:]), 2)) ax[1].plot(X, np.log2(data[2][s]['mean']), '-', c=col[j], label=lbls[j]) ax[1].fill_between(X, np.log2(data[2][s]['hi']), np.log2(data[2][s]['lo']), color="grey", label=f"{s} N", alpha=0.2) ax[1].set_ylim(-1, 1.3) ax[1].plot([0]*50, '-', c='k') ax[1].set_yticks(np.arange(-1,1.5,0.5)) ax[0].set_ylim(0, 0.6) ax[1].set_xlabel('Sequence distance from ends') ax[0].set_ylabel('Secondary structure\nprobability') ax[1].set_ylabel('Structural asymmetry\n$\\log_2 (N / C)$') fs = 14 for i, b in zip([0,1], list('ABCDEFGHI')): ax[i].text( -0.10, 1.05, b, transform=ax[i].transAxes, fontsize=fs) fig.savefig(PATH_FIG.joinpath("si14.pdf"), bbox_inches='tight') def percentage_asym(x): return np.sign(x) * 100*2**(abs(x)) - np.sign(x) * 100 def fig15(): fig, ax = plt.subplots(3,1, figsize=(10,10)) cat = 'HS.D' N = 100 X = np.arange(N) Nboot, Cboot, asym, = pickle.load(open(PATH_FIG_DATA.joinpath(f"pdb_ss_max_asym.pickle"), 'rb')) data = [Nboot, Cboot, asym] custom_cmap = sns.diverging_palette(230, 22, s=100, l=47, n=13) c_helix = custom_cmap[2] c_sheet = custom_cmap[10] col = [c_helix, c_sheet, "#CB7CE6", "#79C726"] lbls = ['Helix', 'Sheet', 'Coil', 'Disorder'] X2 = np.arange(5) for j, s in enumerate(cat): ax[0].plot(X, data[0][s]['mean']/2, '-', c=col[j], label=f"{s} N") ax[0].fill_between(X, data[0][s]['hi']/2, data[0][s]['lo']/2, color="grey", label=f"{s} N", alpha=0.5) ax[0].plot(X, data[1][s]['mean']/2, '--', c=col[j], label=f"{s} N") ax[0].fill_between(X, data[1][s]['hi']/2, data[1][s]['lo']/2, color="grey", label=f"{s} N", alpha=0.2) for k in range(5): print(s, round(np.mean(data[2][s]['mean']), 2), round(np.mean(data[2][s]['mean'][k*20:(k+1)*20]), 2)) ax[1].plot(X, np.log2(data[2][s]['mean']), '-', c=col[j], label=lbls[j]) ax[1].fill_between(X, np.log2(data[2][s]['hi']), np.log2(data[2][s]['lo']), color="grey", label=f"{s} N", alpha=0.2) if s in 'HS': Y2 = [percentage_asym(np.log2(data[2][s]['mean'])[k*20:(k+1)*20].mean()) for k in range(5)] ax[2].bar(X2, Y2, 0.5, color=col[j], label=lbls[j], ec='k') ax[1].set_ylim(-1.5, 2.0) ax[1].plot([0]*100, '-', c='k') ax[2].plot([0]*5, '-', c='k') ax[1].set_yticks(np.arange(-1,2.5,0.5)) ax[0].set_ylim(0, 0.6) ax[2].set_xticks(np.arange(5)) ax[2].set_xticklabels([f"{i*20} - {(i+1)*20}" for i in range(5)]) ax[0].set_xlabel('Sequence distance from ends') ax[1].set_xlabel('Sequence distance from ends') ax[2].set_xlabel('Sequence distance from ends') ax[0].set_ylabel('Secondary structure\nprobability') ax[1].set_ylabel('Structural asymmetry\n$\\log_2 (N / C)$') ax[2].set_ylabel('Percentage asymmetry') fs = 14 for i, b in zip([0,1,2], list('ABCDEFGHI')): ax[i].text( -0.10, 1.05, b, transform=ax[i].transAxes, fontsize=fs) fig.savefig(PATH_FIG.joinpath("si15.pdf"), bbox_inches='tight') def oligomer(pdb, X='REL_RATE', Y='S_ASYM', w=0.1): pdb = pdb.copy() fig = plt.figure(figsize=(8,8)) gs = GridSpec(2,2, wspace=0.4, hspace=0.5, width_ratios=[1,1]) ax_all = [[fig.add_subplot(gs[j,i]) for i in [0,1]] for j in range(2)] custom_cmap = sns.diverging_palette(230, 22, s=100, l=47, n=13) c_helix = custom_cmap[2] c_sheet = custom_cmap[10] col = [c_helix, c_sheet] bins = np.linspace(-0.20, 0.20, 80) width = np.diff(bins[:2]) mid = 39 sep = 0.05 threshold = 0 lbls = [r'$E_{\beta}$', r'$E_{\alpha}$'] ttls = ['Monomers', 'Oligomers'] for ax, idx, ttl in zip(ax_all, [pdb.NPROT==1, pdb.NPROT>1], ttls): quantiles = pdb.loc[idx, X].quantile(np.arange(0,1+w,w)).values pdb['quant'] = pdb.loc[idx, X].apply(lambda x: utils.assign_quantile(x, quantiles)) for i, Y in enumerate(['S_ASYM', 'H_ASYM']): ratio1 = [] ratio2 = [] lefts = [] rights = [] for j in range(len(quantiles)-1): hist, bins = np.histogram(pdb.loc[(idx)&(pdb.quant==j), Y], bins=bins) hist = hist / hist.sum() left = len(pdb.loc[(idx)&(pdb.quant==j)&(pdb[Y]<-threshold)]) / max(len(pdb.loc[(idx)&(pdb.quant==j)]), 1) right = len(pdb.loc[(idx)&(pdb.quant==j)&(pdb[Y]>threshold)]) / max(len(pdb.loc[(idx)&(pdb.quant==j)]), 1) lefts.append(left) rights.append(right) ratio1.append((right - left)) ratio2.append(np.log2(right / left)) xgrid = [sep*j+(i+1.0)*sep/3 for j in range(len(quantiles)-1)] ax[0].barh(xgrid, ratio1, sep/3, color=col[i], alpha=.5, label=lbls[i]) ax[1].barh(xgrid, ratio2, sep/3, color=col[i], alpha=.5) ax[0].set_xticks(np.arange(-0.3, 0.4, 0.1)) for a in ax: a.set_yticks(np.arange(len(quantiles))*sep) a.set_yticklabels([round(x,1) for x in quantiles]) a.plot([0,0], [-0.05, 0.5], '-', c='k', lw=.1) a.spines['top'].set_visible(False) a.spines['right'].set_visible(False) a.set_ylim(0, 0.5) a.set_ylabel(r'$\log_{10}R$') a.set_title(f"{ttl}, N={np.sum(idx)}") ax[0].set_xlim(-0.35, 0.35) ax[1].set_xlim(-1.50, 1.50) ax[0].set_xlabel(r'$P(\mathregular{{asym}} \geq {0}) - P(\mathregular{{asym}} \leq -{0})$'.format(*[threshold]*2)) ax[1].set_xlabel(r'$\log_{{2}} \frac{{P(\mathregular{{asym}} \geq {0})}}{{P(\mathregular{{asym}} \leq -{0})}} $'.format(*[threshold]*2)) ax[0].legend(loc='upper center', ncol=2, columnspacing=3, frameon=False, bbox_to_anchor=(1.20, 1.20)) fig.savefig(PATH_FIG.joinpath("si16.pdf"), bbox_inches='tight') fig.savefig(PATH_FIG.joinpath("oligomers.png"), bbox_inches='tight') def scop2(X='REL_RATE', Y='S_ASYM', w=0.1): fig, ax = plt.subplots(figsize=(10,6)) edges, data = pickle.load(open(PATH_FIG_DATA.joinpath("pdb_scop_indep.pickle"), 'rb'))[3:] edges = edges[0] sep = 0.05 lbls = [r'$E_{\alpha}$', r'$E_{\beta}$'] for i, Y in enumerate(['H_ASYM', 'S_ASYM']): mean = np.mean(data[:,i], axis=0) lo = np.abs(mean - np.quantile(data[:,i], 0.025, axis=0)) hi = np.abs(mean - np.quantile(data[:,i], 0.975, axis=0)) ax.barh([sep*j+(i+.7)*sep/3 for j in range(10)], mean, sep/3, xerr=(lo, hi), color=col[i], ec='k', alpha=.5, label=lbls[i], error_kw={'lw':.8}) ax.plot([0,0], [-0.05, 0.5], '-', c='k', lw=.1) ax.set_yticks(np.arange(len(edges))*sep) ax.set_yticklabels([round(x,1) for x in edges]) ax.legend(loc='upper center', ncol=2, columnspacing=3, frameon=False, bbox_to_anchor=(0.52, 1.06)) ax.set_xlim(-.38, .38) ax.set_xticks(np.arange(-.3, .4, .1)) # To create this figure, you need to download the complete # Human and E. coli proteomes at: # https://alphafold.ebi.ac.uk/download # and then change the code so that "base" points to the # folder that contains the downloaded ".pdb" files def disorder_proteome(N=100): fig, ax = plt.subplots(1,2, figsize=(12,4)) lbls = ["Human", "Ecoli"] ttls = ["Human", "E. coli"] for i, l in enumerate(lbls): path = PATH_FIG_DATA.joinpath(f"alphafold_{l}.npy") if not path.exists(): base = PATH_BASE.joinpath(f"AlphaFold/{l}") countN = np.zeros(N, float) countC = np.zeros(N, float) tot = np.zeros(N, float) with Pool(50) as pool: dis = list(pool.imap_unordered(utils.get_disorder_from_conf, base.glob("*pdb"), 10)) for d in dis: n = min(int(len(d)/2), N) countN[:n] = countN[:n] + d[:n] countC[:n] = countC[:n] + d[-n:][::-1] tot[:n] = tot[:n] + 1 fracN = countN / tot fracC = countC / tot np.save(path, np.array([fracN, fracC])) else: fracN, fracC = np.load(path) ax[i].plot(np.arange(N)+1, fracN, '-', label='N') ax[i].plot(np.arange(N)+1, fracC, '--', label='C') ax[i].set_title(ttls[i]) ax[i].set_xlabel("Sequence distance from ends") ax[i].set_ylabel("Disorder probability") ax[i].set_ylim(0, 1) ax[i].legend(loc='best', frameon=False) fig.savefig(PATH_FIG.joinpath("si17.pdf"), bbox_inches='tight') def kfold_vs_ss(): pfdb = asym_io.load_pfdb() fig, ax = plt.subplots(figsize=(8,8)) for c in pfdb.Class.unique(): X = np.log10(pfdb.loc[pfdb.Class==c, 'L']) Y = pfdb.loc[pfdb.Class==c, 'log_kf'] sns.regplot(X, Y, label=c) ax.set_xlabel(r"$\log_{10}$ Sequence Length") ax.set_ylabel(r"$\log_{10} k_f$") ax.legend(loc='best', frameon=False) fig.savefig(PATH_FIG.joinpath("si18.pdf"), bbox_inches='tight') def hbond_asym(pdb, Xl='REL_RATE', Y='hb_asym', w=0.1): fig = plt.figure(figsize=(9,6)) gs = GridSpec(1,2, wspace=0.2, hspace=0.0, width_ratios=[1,.3]) ax = [fig.add_subplot(gs[i]) for i in [0,1]] col = np.array(Paired_12.hex_colors)[[1,3]] bins = np.linspace(-0.20, 0.20, 80) width = np.diff(bins[:2]) X = bins[:-1] + width * 0.5 mid = 39 sep = 0.05 quantiles = pdb[Xl].quantile(np.arange(0,1+w,w)).values ratio = [] lefts = [] rights = [] threshold = 0.00 for j in range(len(quantiles)-1): hist, bins = np.histogram(pdb.loc[pdb.quant==j, Y], bins=bins) hist = hist / hist.sum() left = len(pdb.loc[(pdb.quant==j)&(pdb[Y]<-threshold)]) / max(len(pdb.loc[(pdb.quant==j)]), 1) right = len(pdb.loc[(pdb.quant==j)&(pdb[Y]>threshold)]) / max(len(pdb.loc[(pdb.quant==j)]), 1) lefts.append(left) rights.append(right) ratio.append((right - left)) ax[0].bar(X[:mid], (hist/hist.sum())[:mid], width, bottom=[sep*j]*mid, color='grey', alpha=.5) ax[0].bar(X[-mid:], (hist/hist.sum())[-mid:], width, bottom=[sep*j]*mid, color=col[0], alpha=.5) ax[0].plot(X[:mid], (hist/hist.sum()+sep*j)[:mid], '-', c='k', alpha=.5) ax[0].plot(X[-mid:], (hist/hist.sum()+sep*j)[-mid:], '-', c='k', alpha=.5) ax[0].set_yticks(np.arange(len(quantiles))*sep) ax[0].set_yticklabels([round(x,1) for x in quantiles]) ax[1].barh([sep*j+sep/2 for j in range(len(quantiles)-1)], ratio, sep/2, color=[col[0] if r > 0 else 'grey' for r in ratio], alpha=.5) ax[1].plot([0,0], [-0.05, 0.5], '-', c='k', lw=.1) ax[0].spines['top'].set_visible(False) ax[0].spines['right'].set_visible(False) ax[1].spines['top'].set_visible(False) ax[1].spines['right'].set_visible(False) ax[1].spines['left'].set_visible(False) ax[1].set_yticks([]) for a in ax: a.set_ylim(0, 0.60) ax[0].set_xlabel('Asymmetry in mean hydrogen bond length') ax[0].set_ylabel(r'$\log_{10}R$') ax[1].set_xlabel('N terminal enrichment') fig.savefig(PATH_FIG.joinpath("si19.pdf"), bbox_inches='tight') def hyd_asym(pdb, Xl='REL_RATE', Y='hyd_asym', w=0.1): fig = plt.figure(figsize=(9,6)) gs = GridSpec(1,2, wspace=0.2, hspace=0.0, width_ratios=[1,.3]) ax = [fig.add_subplot(gs[i]) for i in [0,1]] col = np.array(Paired_12.hex_colors)[[1,3]] bins = np.linspace(-4.5, 4.5, 80) width = np.diff(bins[:2]) X = bins[:-1] + width * 0.5 mid = 39 sep = 0.05 quantiles = pdb[Xl].quantile(np.arange(0,1+w,w)).values ratio = [] lefts = [] rights = [] threshold = 0.00 for j in range(len(quantiles)-1): hist, bins = np.histogram(pdb.loc[pdb.quant==j, Y], bins=bins) hist = hist / hist.sum() left = len(pdb.loc[(pdb.quant==j)&(pdb[Y]<-threshold)]) / max(len(pdb.loc[(pdb.quant==j)]), 1) right = len(pdb.loc[(pdb.quant==j)&(pdb[Y]>threshold)]) / max(len(pdb.loc[(pdb.quant==j)]), 1) lefts.append(left) rights.append(right) ratio.append((right - left)) ax[0].bar(X[:mid], (hist/hist.sum())[:mid], width, bottom=[sep*j]*mid, color='grey', alpha=.5) ax[0].bar(X[-mid:], (hist/hist.sum())[-mid:], width, bottom=[sep*j]*mid, color=col[0], alpha=.5) ax[0].plot(X[:mid], (hist/hist.sum()+sep*j)[:mid], '-', c='k', alpha=.5) ax[0].plot(X[-mid:], (hist/hist.sum()+sep*j)[-mid:], '-', c='k', alpha=.5) ax[0].set_yticks(np.arange(len(quantiles))*sep) ax[0].set_yticklabels([round(x,1) for x in quantiles]) ax[1].barh([sep*j+sep/2 for j in range(len(quantiles)-1)], ratio, sep/2, color=[col[0] if r > 0 else 'grey' for r in ratio], alpha=.5) ax[1].plot([0,0], [-0.05, 0.5], '-', c='k', lw=.1) ax[0].spines['top'].set_visible(False) ax[0].spines['right'].set_visible(False) ax[1].spines['top'].set_visible(False) ax[1].spines['right'].set_visible(False) ax[1].spines['left'].set_visible(False) ax[1].set_yticks([]) for a in ax: a.set_ylim(0, 0.60) ax[0].set_xlabel('Asymmetry in mean hydrophobicity') ax[0].set_ylabel(r'$\log_{10}R$') ax[1].set_xlabel('N terminal enrichment') fig.savefig(PATH_FIG.joinpath("si20.pdf"), bbox_inches='tight')
42.085463
162
0.557723
0
0
0
0
0
0
0
0
9,586
0.181929
327808782f63cb50deaafbd843fb0446afafa40c
81
py
Python
release_ce.py
BTW-Community/BTW-MCP
4422e153525265029754dec222fc0c0064e03962
[ "MIT" ]
2
2021-12-12T17:14:53.000Z
2021-12-25T04:03:18.000Z
release_ce.py
BTW-Community/BTW-MCP
4422e153525265029754dec222fc0c0064e03962
[ "MIT" ]
null
null
null
release_ce.py
BTW-Community/BTW-MCP
4422e153525265029754dec222fc0c0064e03962
[ "MIT" ]
null
null
null
from btw_mcp import * package_release("vanilla", "main", directory="ce_release")
27
58
0.765432
0
0
0
0
0
0
0
0
27
0.333333
327857254668f20b13612c825f93043e95b1c5c9
3,449
py
Python
test_beam_search.py
slegroux/slgBeam
733049ad4a97f582bc169623941cfbdf3efea207
[ "Apache-2.0" ]
null
null
null
test_beam_search.py
slegroux/slgBeam
733049ad4a97f582bc169623941cfbdf3efea207
[ "Apache-2.0" ]
null
null
null
test_beam_search.py
slegroux/slgBeam
733049ad4a97f582bc169623941cfbdf3efea207
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # (c) 2020 Sylvain Le Groux <[email protected]> import pytest from pytest import approx import numpy as np import torch from IPython import embed from beam_search import Tokenizer, Score, BeamSearch @pytest.fixture(scope='module') def data(): mat = torch.Tensor(np.genfromtxt('data/rnnOutput.csv',delimiter=';')[:,: -1]) # mat = mat.unsqueeze(0) classes = ' !"#&\'()*+,-./0123456789:;?ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz_' mat_prob = np.array([[0.2, 0.0, 0.8], [0.4, 0.0, 0.6]]) syms = 'ab-' bs = BeamSearch(syms, mat_prob) bs2 = BeamSearch(classes, mat) data = {'probs': mat_prob, 'syms': syms, 'bs': bs, 'mat': mat, 'classes': classes, 'bs2': bs2} return(data) def test_data(data): assert data['probs'].shape == (2,3) assert data['mat'].shape == (100, 80) assert len(data['classes']) == 79 def test_tokenizer(data): tok = Tokenizer(data['syms']) assert(tok.char2int('b') == 1) assert(tok.int2char(1) == 'b') tok2 = Tokenizer(data['classes']) assert(tok2.char2int('Y') == 51) assert(tok2.int2char(51) == 'Y') def test_score(data): tok = Tokenizer(data['syms']) score = Score(tok, data['probs']) assert score(1,'-') == 0.6 tok2 = Tokenizer(data['classes']) score = Score(tok2, data['mat']) assert float(score(0,' ')) == approx(float(0.946499)) def test_init(data): beam_search = data['bs'] b, nb, s_b, s_nb = beam_search.init_paths() assert b == {''} assert nb == {'a', 'b'} assert s_b == {'-': 0.8} assert s_nb == {'b': 0.0, 'a': 0.2} bs2 = data['bs2'] b, nb, s_b, s_nb = bs2.init_paths() assert b == {''} # assert s_b == {'-': 0.8} def test_prune(data): bs = data['bs'] path_b, path_nb = bs.prune_paths({''}, {'a','b'}, {'-':0.2}, {'a': 0.1,'b': 0.3}, 2) assert path_b == {''} assert path_nb == {'b'} print(bs.score_b, bs.score_nb) def test_extend_blank(data): bs = data['bs'] init_b, init_nb, init_s_b, init_s_nb = bs.init_paths() print("init:", init_b, init_nb, init_s_b, init_s_nb) # incidentally init global b & nb paths path_b, path_nb = bs.prune_paths(init_b, init_nb,init_s_b, init_s_nb, 2) print("Pruned: ", path_b, path_nb) print(bs.score_b, bs.score_nb) new_path_b, new_score_b = bs.extend_with_blank(path_b, path_nb, 1) print(new_path_b, new_score_b) def test_extend_syms(data): bs = data['bs'] init_b, init_nb, init_s_b, init_s_nb = bs.init_paths() print("init:", init_b, init_nb, init_s_b, init_s_nb) # incidentally init global b & nb paths path_b, path_nb = bs.prune_paths(init_b, init_nb,init_s_b, init_s_nb, 2) print("Pruned: ", path_b, path_nb) print(bs.score_b, bs.score_nb) new_path_nb, new_score_nb = bs.extend_with_symbol(path_b, path_nb, 1) print(new_path_nb, new_score_nb) def test_merge(data): bs = data['bs'] init_b, init_nb, init_s_b, init_s_nb = bs.init_paths() path_b, path_nb = bs.prune_paths(init_b, init_nb,init_s_b, init_s_nb, 2) new_path_b, new_score_b = bs.extend_with_blank(path_b, path_nb, 1) new_path_nb, new_score_nb = bs.extend_with_symbol(path_b, path_nb, 1) bs.merge_paths(new_path_b, new_path_nb, new_score_b, new_score_nb) def test_decode(data): bs = data['bs'] print("decoded: ", bs.decode(2)) bs2 = data['bs2'] print("decoded: ", bs2.decode(1))
33.813725
98
0.632647
0
0
0
0
540
0.156567
0
0
573
0.166135
327872875221fcfb18f1db81613c4a83884de390
3,404
py
Python
src/main/python/hydra/kafkatest/maxrate_test.py
bopopescu/hydra
ec0793f8c1f49ceb93bf1f1a9789085b68d55f08
[ "Apache-2.0" ]
10
2016-05-28T15:56:43.000Z
2018-01-03T21:30:58.000Z
src/main/python/hydra/kafkatest/maxrate_test.py
bopopescu/hydra
ec0793f8c1f49ceb93bf1f1a9789085b68d55f08
[ "Apache-2.0" ]
17
2016-06-06T22:15:28.000Z
2020-07-22T20:28:12.000Z
src/main/python/hydra/kafkatest/maxrate_test.py
bopopescu/hydra
ec0793f8c1f49ceb93bf1f1a9789085b68d55f08
[ "Apache-2.0" ]
5
2016-06-01T22:01:44.000Z
2020-07-22T20:12:49.000Z
__author__ = 'annyz' from pprint import pprint, pformat # NOQA import logging import os import sys from datetime import datetime from hydra.lib import util from hydra.kafkatest.runtest import RunTestKAFKA from hydra.lib.boundary import Scanner from optparse import OptionParser l = util.createlogger('runSuitMaxRate', logging.INFO) class RunSuitMaxRate(object): def __init__(self, options): l.info(" Starting Max Rate ....") pwd = os.getcwd() fname = 'kafkasuit.test.log' ofile = open(pwd + '/' + fname, 'w') ofile.truncate() ofile.write('Starting at :' + datetime.now().strftime("%Y-%m-%d %H:%M:%S") + '\n') # setattr(options, 'test_duration', 15) setattr(options, 'msg_batch', 100) setattr(options, 'msg_rate', 10000) setattr(options, 'keep_running', False) setattr(options, 'acks', 0) setattr(options, 'linger_ms', 0) setattr(options, 'consumer_max_buffer_size', 0) self.first_test = None # Parameters client_set = [30, 60, 120, 240, 480, 960, 1920, 3840, 7680, 10000] for client_count in client_set: setattr(options, 'total_sub_apps', int(client_count / 10)) if not self.first_test: runner = RunTestKAFKA(options, None) self.first_test = runner self.first_test.start_appserver() else: # Keep the old runner # But rescale the app runner.set_options(options) runner.scale_sub_app() if client_count < 50: scanner = Scanner(runner.run, 30000) elif client_count < 200: scanner = Scanner(runner.run, 10000) else: scanner = Scanner(runner.run, 500) (status, rate, drop) = scanner.find_max_rate() l.info("Found for Client Count %d Max message Rate %d with drop %f" % (client_count, rate, drop)) maxrate_drop = drop maxrate_rate = rate if True and maxrate_drop != 0: l.info("Searching for no-drop rate") scanner_drop = Scanner(runner.run, maxrate_rate / 2) (status, step_cnt, nodrop, nodrop_rate) = scanner_drop.search(0.5, 0.01) l.info("Found for Client Count %d Max message Rate %d with no drop (%f)" % (client_count, nodrop_rate, nodrop)) else: nodrop_rate = rate # Delete all launched apps once the required drop is achieved for this set runner.delete_all_launched_apps() self.first_test.stop_appserver() l.info("TestSuite Completed.") sys.exit(0) def Run(argv): # NOQA usage = ('python %prog --c_pub --c_sub' ' --test_duration=<time to run test> --msg_batch=<msg burst batch before sleep>') parser = OptionParser(description='kafka scale maxrate test master', version="0.1", usage=usage) parser.add_option("--test_duration", dest='test_duration', type='int', default=15) parser.add_option("--msg_batch", dest='msg_batch', type='int', default=100) parser.add_option("--config_file", dest='config_file', type='string', default='hydra.ini') (options, args) = parser.parse_args() RunSuitMaxRate(options) return True
38.247191
94
0.595476
2,426
0.712691
0
0
0
0
0
0
821
0.241187
327a37a67a58b314caa95c02379bd85e44d7216f
722
py
Python
src/api/v1/villains/serializers.py
reiniervdwindt/power-ranger-api
13ce639a7f5e9d4b106ce5f094c076db0aad398e
[ "MIT" ]
null
null
null
src/api/v1/villains/serializers.py
reiniervdwindt/power-ranger-api
13ce639a7f5e9d4b106ce5f094c076db0aad398e
[ "MIT" ]
null
null
null
src/api/v1/villains/serializers.py
reiniervdwindt/power-ranger-api
13ce639a7f5e9d4b106ce5f094c076db0aad398e
[ "MIT" ]
null
null
null
from rest_framework import serializers from series.models import Series from villains.models import Villain class VillainSeriesSerializer(serializers.ModelSerializer): name = serializers.CharField() class Meta(object): fields = ('id', 'name',) model = Series class VillainDetailSerializer(serializers.ModelSerializer): series = VillainSeriesSerializer(many=True) class Meta(object): fields = ('id', 'name', 'description', 'gender', 'type', 'homeworld', 'series',) model = Villain class VillainListSerializer(serializers.ModelSerializer): class Meta(object): fields = ('id', 'name', 'description', 'gender', 'type', 'homeworld',) model = Villain
26.740741
88
0.688366
604
0.836565
0
0
0
0
0
0
114
0.157895
327a4fc033970cf2fec138ab6d2ea6fa9e580d97
1,574
py
Python
map_report.py
porcpine1967/aoe2stats
52965e437b8471753186ba1fc34cb773807eb496
[ "MIT" ]
null
null
null
map_report.py
porcpine1967/aoe2stats
52965e437b8471753186ba1fc34cb773807eb496
[ "MIT" ]
null
null
null
map_report.py
porcpine1967/aoe2stats
52965e437b8471753186ba1fc34cb773807eb496
[ "MIT" ]
null
null
null
#!/usr/bin/env python """ Writes out map popularity of last two pools.""" from datetime import datetime, timedelta from utils.map_pools import map_type_filter, pools from utils.tools import execute_sql, last_time_breakpoint, map_name_lookup SQL = """SELECT map_type, COUNT(*) as cnt FROM matches WHERE started BETWEEN {:0.0f} AND {:0.0f} {} AND team_size = {} GROUP BY map_type ORDER BY cnt DESC""" def run(): """ Run the report.""" map_names = map_name_lookup() weeks = pools()[-2:] for size in (1, 2): print("TEAM" if size > 1 else "1v1") week_infos = [] for idx, week in enumerate(weeks): week_info = [] year = int(week[:4]) month = int(week[4:6]) day = int(week[6:]) start = last_time_breakpoint(datetime(year, month, day)) end = start + timedelta(days=14) sql = SQL.format( start.timestamp(), end.timestamp(), map_type_filter(week, size), size ) total = 0 for map_type, count in execute_sql(sql): week_info.append((map_names[map_type], count,)) total += count hold = [] for name, count in week_info: hold.append("{:17}: {:4.1f}%".format(name, 100.0 * count / total)) week_infos.append(hold) print("{:^24} {:^24}".format(*weeks)) for idx in range(len(week_infos[0])): print("{} {}".format(week_infos[0][idx], week_infos[1][idx])) if __name__ == "__main__": run()
32.122449
85
0.560991
0
0
0
0
0
0
0
0
314
0.199492
327c981e0a47fcedcb62aea60362f8adb3c7ccec
5,277
py
Python
common/xrd-ui-tests-qautomate/pagemodel/ss_keys_and_cert_dlg_subject_dname.py
ria-ee/XTM
6103f3f5bbba387b8b59b050c0c4f1fb2180fc37
[ "MIT" ]
3
2018-03-15T14:22:50.000Z
2021-11-08T10:30:35.000Z
common/xrd-ui-tests-qautomate/pagemodel/ss_keys_and_cert_dlg_subject_dname.py
ria-ee/XTM
6103f3f5bbba387b8b59b050c0c4f1fb2180fc37
[ "MIT" ]
11
2017-04-06T09:25:41.000Z
2018-06-04T09:08:48.000Z
common/xrd-ui-tests-qautomate/pagemodel/ss_keys_and_cert_dlg_subject_dname.py
ria-ee/XTM
6103f3f5bbba387b8b59b050c0c4f1fb2180fc37
[ "MIT" ]
20
2017-03-14T07:21:58.000Z
2019-05-21T09:26:30.000Z
# -*- coding: utf-8 -*- # Example for using WebDriver object: driver = get_driver() e.g driver.current_url from webframework import TESTDATA from variables import strings from selenium.webdriver.common.by import By from webframework.extension.util.common_utils import * from webframework.extension.util.webtimings import get_measurements from webframework.extension.parsers.parameter_parser import get_parameter from time import sleep class Ss_keys_and_cert_dlg_subject_dname(CommonUtils): """ Pagemodel Changelog: * 27.07.2017 | Docstrings updated """ # Pagemodel timestamp: 20160928092046 # Pagemodel url: https://xroad-lxd-ss1.lxd:4000/keys # Pagemodel area: (680, 330, 560, 307) # Pagemodel screen resolution: (1920, 1080) # Use project settings: True # Used filters: id, css_selector, class_name, link_text, xpath # Xpath type: xpath-position # Create automated methods: True # Depth of css path: 3 # Minimize css selector: True # Use css pattern: False # Allow non unique css pattern: False # Pagemodel template: False # Use testability: True # testability attribute: data-name # Use contains text in xpath: True # Exclude dynamic table filter: True # Row count: 5 # Element count: 20 # Big element filter width: 55 # Big element filter height: 40 # Not filtered elements: button, strong, select # Canvas modeling: False # Pagemodel type: normal # Links found: 0 # Page model constants: MENUBAR_MAXIMIZE = (By.XPATH, u'//div[8]/div[1]/div[1]/button[1]') # x: 1133 y: 336 width: 51 height: 49, tag: button, type: submit, name: None, form_id: keys, checkbox: , table_id: 4, href: MENUBAR_CLOSE = (By.XPATH, u'//div[8]/div[1]/div[1]/button[2]') # x: 1184 y: 336 width: 51 height: 49, tag: button, type: submit, name: None, form_id: keys, checkbox: , table_id: 4, href: NAME_C_UI_STATE_DISABLED_FI_TEXT = (By.CSS_SELECTOR, u'input[name="C"].ui-state-disabled') # x: 877 y: 410 width: 340 height: 33, tag: input, type: text, name: C, form_id: keys, checkbox: , table_id: 4, href: NAME_O_GOFORE_TEXT = (By.CSS_SELECTOR, u'input[name="O"]') # x: 877 y: 453 width: 340 height: 33, tag: input, type: text, name: O, form_id: keys, checkbox: , table_id: 4, href: NAME_SERIAL_NUMBER_UI_STATE_DISABLED_FI_COM_TEXT = (By.CSS_SELECTOR, u'input[name="serialNumber"].ui-state-disabled') # x: 877 y: 496 width: 340 height: 33, tag: input, type: text, name: serialNumber, form_id: keys, checkbox: , table_id: 4, href: NAME_CN_1234_TEXT = (By.CSS_SELECTOR, u'input[name="CN"]') # x: 877 y: 539 width: 340 height: 33, tag: input, type: text, name: CN, form_id: keys, checkbox: , table_id: 4, href: BUTTON_CANCEL = (By.XPATH, u'//div[9]/div[3]/div[1]/button[2]') # x: 1098 y: 590 width: 77 height: 37, tag: button, type: button, name: None, form_id: keys, checkbox: , table_id: 4, href: BUTTON_OK = (By.XPATH, u'//div[9]/div[3]/div[1]/button[1]') # x: 1185 y: 590 width: 45 height: 37, tag: button, type: button, name: None, form_id: keys, checkbox: , table_id: 4, href: def fill_input_values_keys_dname_sign(self, parameters=None): """ Input random text to dna name field :param parameters: Test data section dictionary **Test steps:** * **Step 1:** :func:`~webframework.extension.util.common_utils.CommonUtils.input_text`, *self.NAME_O_GOFORE_TEXT*, *parameters['member_name'] + rword* """ import random, string rword = ''.join(random.choice(string.lowercase) for i in range(4)) self.input_text(self.NAME_O_GOFORE_TEXT, parameters['member_name'] + rword) def submit_keys_dname(self): """ Click button to submit dnaname **Test steps:** * **Step 1:** :func:`~webframework.extension.util.common_utils.CommonUtils.click_element`, *self.BUTTON_OK* * **Step 2:** :func:`~webframework.extension.util.common_utils.CommonUtils.wait_until_jquery_ajax_loaded` """ # AutoGen method submit form: keys self.click_element(self.BUTTON_OK) self.wait_until_jquery_ajax_loaded() def fill_input_values_keys_dname_auth(self, parameters=None): """ Input random text to dna name field :param parameters: Test data section dictionary **Test steps:** * **Step 1:** :func:`~webframework.extension.util.common_utils.CommonUtils.input_text`, *self.NAME_O_GOFORE_TEXT*, *parameters['member_name'] + rword* * **Step 2:** :func:`~webframework.extension.util.common_utils.CommonUtils.input_text`, *self.NAME_CN_1234_TEXT*, *parameters['server_address']* """ # AutoGen methods form: keys import random, string rword = ''.join(random.choice(string.lowercase) for i in range(4)) self.input_text(self.NAME_O_GOFORE_TEXT, parameters['member_name'] + rword) # AutoGen methods form: keys server_address = parameters['server_address'] if strings.server_environment_type() == strings.lxd_type_environment: server_address = server_address.replace("user@", "") self.input_text(self.NAME_CN_1234_TEXT, server_address)
53.30303
250
0.675005
4,840
0.917188
0
0
0
0
0
0
3,500
0.663256
327cb6d4121abb0fa5a0265759fdf829da140dce
6,303
py
Python
tempdb/postgres.py
runfalk/tempdb
a19f7568db1795025c9ec8adfd84a9544f9a6966
[ "MIT" ]
2
2021-01-17T00:01:14.000Z
2021-01-18T09:26:56.000Z
tempdb/postgres.py
runfalk/tempdb
a19f7568db1795025c9ec8adfd84a9544f9a6966
[ "MIT" ]
null
null
null
tempdb/postgres.py
runfalk/tempdb
a19f7568db1795025c9ec8adfd84a9544f9a6966
[ "MIT" ]
null
null
null
import getpass import os import platform import psycopg2 import sys import tempfile from glob import glob from psycopg2.extensions import ISOLATION_LEVEL_AUTOCOMMIT, quote_ident from subprocess import check_output, PIPE, Popen from time import sleep from ._compat import ustr from .utils import is_executable, Uri, Version __all__ = [ "PostgresFactory", "PostgresCluster", ] class PostgresFactory(object): def __init__(self, pg_bin_dir, superuser=None): # Temporary value until the first time we request it self._version = None self.initdb = os.path.join(pg_bin_dir, "initdb") if not is_executable(self.initdb): raise ValueError( "Unable to find initdb command in {}".format(pg_bin_dir) ) self.postgres = os.path.join(pg_bin_dir, "postgres") if not is_executable(self.postgres): raise ValueError( "Unable to find postgres command in {}".format(pg_bin_dir) ) if superuser is None: superuser = getpass.getuser() self.superuser = superuser @property def version(self): if self._version is None: self._version = get_version(self.postgres) return self._version def init_cluster(self, data_dir=None): """ Create a postgres cluster that trusts all incoming connections. This is great for testing, but a horrible idea for production usage. :param data_dir: Directory to create cluster in. This directory will be automatically created if necessary. :return: Path to the created cluster that can be used by load_cluster() """ if data_dir is None: data_dir = tempfile.mkdtemp() # If the target directory is not empty we don't want to risk wiping it if os.listdir(data_dir): raise ValueError(( "The given data directory {} is not empty. A new cluster will " "not be created." ).format(data_dir)) check_output([ self.initdb, "-U", self.superuser, "-A", "trust", data_dir ]) return data_dir def create_temporary_cluster(self): data_dir = self.init_cluster() # Since we know this database should never be loaded again we disable # safe guards Postgres has to prevent data corruption return self.load_cluster( data_dir, is_temporary=True, fsync=False, full_page_writes=False, ) def load_cluster(self, data_dir, is_temporary=False, **params): uri = Uri( scheme="postgresql", user=self.superuser, host=data_dir, params=params, ) return PostgresCluster(self.postgres, uri, is_temporary) class PostgresCluster(object): def __init__(self, postgres_bin, uri, is_temporary=False): if uri.host is None or not uri.host.startswith("/"): msg = "{!r} doesn't point to a UNIX socket directory" raise ValueError(msg.format(uri)) self.uri = uri self.is_temporary = is_temporary self.returncode = None cmd = [ postgres_bin, "-D", uri.host, "-k", uri.host, "-c", "listen_addresses=", ] # Add additional configuration from kwargs for k, v in uri.params.items(): if isinstance(v, bool): v = "on" if v else "off" cmd.extend(["-c", "{}={}".format(k, v)]) # Start cluster self.process = Popen( cmd, stdout=PIPE, stderr=PIPE, ) # Wait for a ".s.PGSQL.<id>" file to appear before continuing while not glob(os.path.join(uri.host, ".s.PGSQL.*")): sleep(0.1) # Superuser connection self.conn = psycopg2.connect( ustr(self.uri.replace(database="postgres")) ) self.conn.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT) def __del__(self): self.close() def iter_databases(self): with self.conn.cursor() as c: default_databases = {"postgres", "template0", "template1"} c.execute("SELECT datname FROM pg_database") for name, in c: if name not in default_databases: yield name def create_database(self, name, template=None): if name in self.iter_databases(): raise KeyError("The database {!r} already exists".format(name)) with self.conn.cursor() as c: sql = "CREATE DATABASE {}".format(quote_ident(name, c)) if template is not None: sql += " TEMPLATE {}".format(quote_ident(template, c)) c.execute(sql) return PostgresDatabase(self, self.uri.replace(database=name)) def get_database(self, name): if name not in self.iter_databases(): raise KeyError("The database {!r} doesn't exist".format(name)) return PostgresDatabase(self, self.uri.replace(database=name)) def close(self): if self.process is None: return # Kill all connections but this control connection. This prevents # the server waiting for connections to close indefinately with self.conn.cursor() as c: c.execute(""" SELECT pg_terminate_backend(pid) FROM pg_stat_activity WHERE pid != pg_backend_pid() """) self.conn.close() self.process.terminate() self.returncode = self.process.wait() # Remove temporary clusters when closing if self.is_temporary: for path, dirs, files in os.walk(self.uri.host, topdown=False): for f in files: os.remove(os.path.join(path, f)) for d in dirs: os.rmdir(os.path.join(path, d)) os.rmdir(self.uri.host) self.process = None class PostgresDatabase(object): def __init__(self, cluster, uri): self.cluster = cluster self.uri = uri @property def dsn(self): return ustr(self.uri)
30.597087
79
0.58369
5,908
0.937331
300
0.047596
208
0.033
0
0
1,610
0.255434
327ee9780e46ebbfd9024596b22934ad7011175f
426
py
Python
nymph/modules/tool.py
smilelight/nymph
c8da2211f7a8f58d1c6d327b243e419ed9e64ead
[ "Apache-2.0" ]
1
2020-08-10T00:58:14.000Z
2020-08-10T00:58:14.000Z
nymph/modules/tool.py
smilelight/nymph
c8da2211f7a8f58d1c6d327b243e419ed9e64ead
[ "Apache-2.0" ]
null
null
null
nymph/modules/tool.py
smilelight/nymph
c8da2211f7a8f58d1c6d327b243e419ed9e64ead
[ "Apache-2.0" ]
1
2021-07-03T07:06:41.000Z
2021-07-03T07:06:41.000Z
# -*- coding: utf-8 -*- import pandas as pd def save_dict_to_csv(dict_data: dict, csv_path: str): indexes = list(dict_data.keys()) columns = list(list(dict_data.values())[0].keys()) data = [] for row in dict_data: data.append([item for item in dict_data[row].values()]) pd_data = pd.DataFrame(data, index=indexes, columns=columns) pd_data.to_csv(csv_path, encoding='utf8') return pd_data
30.428571
64
0.666667
0
0
0
0
0
0
0
0
29
0.068075
327fa5382ee48b811835bb16249bdcc124edd278
1,187
py
Python
apps/core/serializers.py
jfterpstra/onepercentclub-site
43e8e01ac4d3d1ffdd5959ebd048ce95bb2dba0e
[ "BSD-3-Clause" ]
7
2015-01-02T19:31:14.000Z
2021-03-22T17:30:23.000Z
apps/core/serializers.py
jfterpstra/onepercentclub-site
43e8e01ac4d3d1ffdd5959ebd048ce95bb2dba0e
[ "BSD-3-Clause" ]
1
2015-03-06T08:34:59.000Z
2015-03-06T08:34:59.000Z
apps/core/serializers.py
jfterpstra/onepercentclub-site
43e8e01ac4d3d1ffdd5959ebd048ce95bb2dba0e
[ "BSD-3-Clause" ]
null
null
null
from rest_framework import serializers from bluebottle.utils.model_dispatcher import get_donation_model from bluebottle.bb_projects.serializers import ProjectPreviewSerializer as BaseProjectPreviewSerializer from bluebottle.bb_accounts.serializers import UserPreviewSerializer DONATION_MODEL = get_donation_model() class ProjectSerializer(BaseProjectPreviewSerializer): task_count = serializers.IntegerField(source='task_count') owner = UserPreviewSerializer(source='owner') partner = serializers.SlugRelatedField(slug_field='slug', source='partner_organization') class Meta(BaseProjectPreviewSerializer): model = BaseProjectPreviewSerializer.Meta.model fields = ('id', 'title', 'image', 'status', 'pitch', 'country', 'task_count', 'allow_overfunding', 'is_campaign', 'amount_asked', 'amount_donated', 'amount_needed', 'deadline', 'status', 'owner', 'partner') class LatestDonationSerializer(serializers.ModelSerializer): project = ProjectSerializer() user = UserPreviewSerializer() class Meta: model = DONATION_MODEL fields = ('id', 'project', 'fundraiser', 'user', 'created', 'anonymous', 'amount')
42.392857
125
0.754844
864
0.727885
0
0
0
0
0
0
271
0.228307
328065cc7a0c80c52a732c0213b03b1281db7d57
1,035
py
Python
Python/rockpaperscissors/rockpaperscissors.py
rvrheenen/OpenKattis
7fd59fcb54e86cdf10f56c580c218c62e584f391
[ "MIT" ]
12
2016-10-03T20:43:43.000Z
2021-06-12T17:18:42.000Z
Python/rockpaperscissors/rockpaperscissors.py
rvrheenen/OpenKattis
7fd59fcb54e86cdf10f56c580c218c62e584f391
[ "MIT" ]
null
null
null
Python/rockpaperscissors/rockpaperscissors.py
rvrheenen/OpenKattis
7fd59fcb54e86cdf10f56c580c218c62e584f391
[ "MIT" ]
10
2017-11-14T19:56:37.000Z
2021-02-02T07:39:57.000Z
# WORKS BUT ISN'T FAST ENOUGH first_run = True while(True): inp = input().split() if len(inp) == 1: break if first_run: first_run = False else: print() nPlayers, nGames = [int(x) for x in inp] resultsW = [0] * nPlayers resultsL = [0] * nPlayers for i in range( int( ((nGames*nPlayers)*(nPlayers - 1)) / 2 ) ): p1, p1move, p2, p2move = [int(x) if x.isdigit() else x for x in input().split()] if p1move == p2move: continue if (p1move == "scissors" and p2move == "paper") or (p1move == "paper" and p2move == "rock") or (p1move == "rock" and p2move == "scissors"): resultsW[p1-1] += 1 resultsL[p2-1] += 1 else: resultsW[p2-1] += 1 resultsL[p1-1] += 1 for i in range(nPlayers): w_plus_l = resultsL[i] + resultsW[i] if w_plus_l == 0: print("-") else: print("%.3f" % (resultsL[i] / w_plus_l)) print("\n\n\n\n\n\n\n") print(resultsW)
32.34375
147
0.510145
0
0
0
0
0
0
0
0
100
0.096618
3280c700cb467b6fd44a96a8f003a083cb2e0a5f
9,460
py
Python
monitorcontrol/monitor_control.py
klwlau/monitorcontrol
92d07c7a93585de14551ba1f1dd8bb3a009c4842
[ "MIT" ]
null
null
null
monitorcontrol/monitor_control.py
klwlau/monitorcontrol
92d07c7a93585de14551ba1f1dd8bb3a009c4842
[ "MIT" ]
null
null
null
monitorcontrol/monitor_control.py
klwlau/monitorcontrol
92d07c7a93585de14551ba1f1dd8bb3a009c4842
[ "MIT" ]
null
null
null
############################################################################### # Copyright 2019 Alex M. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. ############################################################################### from . import vcp import sys from typing import Type, List, Union, Iterable class Monitor: """ A physical monitor attached to a Virtual Control Panel (VCP). Generated with :py:meth:`get_monitors()` or :py:meth:`iterate_monitors()`. Args: vcp: virtual control panel for the monitor """ #: Power modes and their integer values. POWER_MODES = { "on": 0x01, "standby": 0x02, "suspend": 0x03, "off_soft": 0x04, "off_hard": 0x05, } def __init__(self, vcp: Type[vcp.VCP]): self.vcp = vcp self.code_maximum = {} def __enter__(self): self.open() return self def __exit__(self, exc_type, exc_val, exc_tb): self.close() def open(self): """ Opens the connection to the VCP. Raises: VCPError: failed to open VCP """ self.vcp.open() def close(self): """ Closes the connection to the VCP. Raises: VCPError: failed to close VCP """ self.vcp.close() def _get_code_maximum(self, code: Type[vcp.VCPCode]) -> int: """ Gets the maximum values for a given code, and caches in the class dictionary if not already found. Args: code: feature code definition class Returns: maximum value for the given code Raises: TypeError: code is write only """ if not code.readable: raise TypeError(f"code is not readable: {code.name}") if code.value in self.code_maximum: return self.code_maximum[code.value] else: _, maximum = self.vcp.get_vcp_feature(code.value) self.code_maximum[code.value] = maximum return maximum def _set_vcp_feature(self, code: Type[vcp.VCPCode], value: int): """ Sets the value of a feature on the virtual control panel. Args: code: feature code definition class value: feature value Raises: TypeError: code is ready only ValueError: value is greater than the maximum allowable VCPError: failed to get VCP feature """ if code.type == "ro": raise TypeError(f"cannot write read-only code: {code.name}") elif code.type == "rw": maximum = self._get_code_maximum(code) if value > maximum: raise ValueError( f"value of {value} exceeds code maximum of {maximum}" ) self.vcp.set_vcp_feature(code.value, value) def _get_vcp_feature(self, code: Type[vcp.VCPCode]) -> int: """ Gets the value of a feature from the virtual control panel. Args: code: feature code definition class Returns: current feature value Raises: TypeError: code is write only VCPError: failed to get VCP feature """ if code.type == "wo": raise TypeError(f"cannot read write-only code: {code.name}") current, maximum = self.vcp.get_vcp_feature(code.value) return current @property def luminance(self) -> int: """ Gets the monitors back-light luminance. Returns: current luminance value Raises: VCPError: failed to get luminance from the VCP """ code = vcp.get_vcp_code_definition("image_luminance") return self._get_vcp_feature(code) @luminance.setter def luminance(self, value: int): """ Sets the monitors back-light luminance. Args: value: new luminance value (typically 0-100) Raises:##### have not implemented or checked ValueError: luminance outside of valid range VCPError: failed to set luminance in the VCP """ code = vcp.get_vcp_code_definition("image_luminance") self._set_vcp_feature(code, value) @property def contrast(self) -> int: """ Gets the monitors contrast. Returns: current contrast value Raises: VCPError: failed to get contrast from the VCP """ code = vcp.get_vcp_code_definition("image_contrast") return self._get_vcp_feature(code) @contrast.setter def contrast(self, value: int): """ Sets the monitors back-light contrast. Args: value: new contrast value (typically 0-100) Raises: ValueError: contrast outside of valid range VCPError: failed to set contrast in the VCP """ code = vcp.get_vcp_code_definition("image_contrast") self._set_vcp_feature(code, value) @property def power_mode(self) -> int: """ The monitor power mode. When used as a getter this returns the integer value of the monitor power mode. When used as a setter an integer value or a power mode string from :py:attr:`Monitor.POWER_MODES` may be used. Raises: VCPError: failed to get or set the power mode ValueError: set power state outside of valid range KeyError: set power mode string is invalid """ code = vcp.get_vcp_code_definition("display_power_mode") return self._get_vcp_feature(code) @power_mode.setter def power_mode(self, value: Union[int, str]): if isinstance(value, str): mode_value = Monitor.POWER_MODES[value] elif isinstance(value, int): mode_value = value else: raise TypeError("unsupported mode type: " + repr(type(value))) if mode_value not in Monitor.POWER_MODES.values(): raise ValueError(f"cannot set reserved mode value: {mode_value}") code = vcp.get_vcp_code_definition("display_power_mode") self._set_vcp_feature(code, mode_value) def get_vcps() -> List[Type[vcp.VCP]]: """ Discovers virtual control panels. This function should not be used directly in most cases, use :py:meth:`get_monitors()` or :py:meth:`iterate_monitors()` to get monitors with VCPs. Returns: List of VCPs in a closed state. Raises: NotImplementedError: not implemented for your operating system VCPError: failed to list VCPs """ if sys.platform == "win32" or sys.platform.startswith("linux"): return vcp.get_vcps() else: raise NotImplementedError(f"not implemented for {sys.platform}") def get_monitors() -> List[Monitor]: """ Creates a list of all monitors. Returns: List of monitors in a closed state. Raises: NotImplementedError: not implemented for your operating system VCPError: failed to list VCPs Example: Setting the power mode of all monitors to standby:: for monitor in get_monitors(): try: monitor.open() # put monitor in standby mode monitor.power_mode = "standby" except VCPError: print("uh-oh") raise finally: monitor.close() Setting all monitors to the maximum brightness using the context manager:: for monitor in get_monitors(): with monitor as m: # set back-light luminance to 100% m.luminance = 100 """ return [Monitor(v) for v in get_vcps()] def iterate_monitors() -> Iterable[Monitor]: """ Iterates through all monitors, opening and closing the VCP for each monitor. Yields: Monitor in an open state. Raises: NotImplementedError: not implemented for this platform VCPError: failed to list VCPs Example: Setting all monitors to the maximum brightness:: for monitor in iterate_monitors(): monitor.luminance = 100 """ for v in get_vcps(): monitor = Monitor(v) with monitor: yield monitor
30.031746
79
0.595455
5,947
0.628647
567
0.059937
2,764
0.292178
0
0
6,268
0.662579
328135201e01cdb2208c77c5703c4b619db0d327
6,201
py
Python
algorithms/vae.py
ENSP-AI-Mentoring/machine-learning-algorithms
d53d5342f79d08066e158228cab6240872f61f72
[ "Apache-2.0" ]
1
2021-11-14T19:46:46.000Z
2021-11-14T19:46:46.000Z
algorithms/vae.py
ENSP-AI-Mentoring/machine-learning-algorithms
d53d5342f79d08066e158228cab6240872f61f72
[ "Apache-2.0" ]
null
null
null
algorithms/vae.py
ENSP-AI-Mentoring/machine-learning-algorithms
d53d5342f79d08066e158228cab6240872f61f72
[ "Apache-2.0" ]
null
null
null
import numpy as np import torch from torch.optim import Adam from torch.utils.data import DataLoader from tqdm import tqdm class VAE: def __init__( self, train_data, test_data, in_dim, encoder_width, decoder_width, latent_dim, device=None, ): # device self.name = "VAE" if device is None: device = torch.device("cuda") if device else torch.device("cpu") self.device = device self.latent_dim = latent_dim self.encoder_width = encoder_width self.decoder_width = decoder_width self.in_dim = in_dim # initialize encoder/decoder weights and biases self.weights, self.biases = self.init_vae_params( in_dim, encoder_width, decoder_width, latent_dim ) # config dataset self.train_data = train_data data = next(iter(train_data)) self.example_size = data.size() self.test_data = test_data def train(self, batch_size, max_epoch, lr, weight_decay): optimizer = self._get_optimizer(lr, weight_decay) hist_loss = [] train_dataloader = DataLoader( self.train_data, batch_size, shuffle=True, drop_last=True, num_workers=0 ) # print initial loss data = next(iter(train_dataloader)) Xground = data.view((batch_size, -1)).to(self.device) loss = self._vae_loss(Xground) tk = tqdm(range(max_epoch)) for epoch in tk: for ii, data in enumerate(train_dataloader): Xground = data.view((batch_size, -1)).to(self.device) optimizer.zero_grad() loss = self._vae_loss(Xground) # backward propagate loss.backward() optimizer.step() hist_loss.append(loss.item()) tk.set_postfix({"val_loss": hist_loss[-1], "epoch": epoch}) return np.array(hist_loss) def test1(self, batch_size): """data reconstruction test""" test_dataloader = DataLoader( self.test_data, batch_size, shuffle=True, drop_last=True, num_workers=0 ) data = next(iter(test_dataloader)) Xground = data.view((batch_size, -1)).to(self.device) z_mean, z_logstd = self._encoding(Xground) epsi = torch.randn(z_logstd.size()).to(self.device) z_star = z_mean + torch.exp(0.5 * z_logstd) * epsi Xstar = self._decoding(z_star) Xstar = torch.sigmoid(Xstar) Xstar = Xstar.view(data.size()) return data, Xstar def test2(self, batch_size): """distribution transformation test(generate artificial dataset from random noises)""" Z = torch.randn((batch_size, self.latent_dim)).to(self.device) Xstar = self._decoding(Z).view((-1, *self.example_size)) return Xstar def _vae_loss(self, Xground): """compute VAE loss = kl_loss + likelihood_loss""" # KL loss z_mean, z_logstd = self._encoding(Xground) kl_loss = 0.5 * torch.sum( 1 + z_logstd - z_mean ** 2 - torch.exp(z_logstd), dim=1 ) # likelihood loss epsi = torch.randn(z_logstd.size()).to(self.device) z_star = z_mean + torch.exp(0.5 * z_logstd) * epsi # reparameterize trick Xstar = self._decoding(z_star) llh_loss = Xground * torch.log(1e-12 + Xstar) + (1 - Xground) * torch.log( 1e-12 + 1 - Xstar ) llh_loss = torch.sum(llh_loss, dim=1) var_loss = -torch.mean(kl_loss + llh_loss) return var_loss def _get_optimizer(self, lr, weight_decay): opt_params = [] # adding weights to optimization paramters list for k, v in self.weights.items(): opt_params.append({"params": v, "lr": lr}) # adding biases to optimization parameters list for k, v in self.biases.items(): opt_params.append({"params": v, "lr": lr}) return Adam(opt_params, lr=lr, weight_decay=weight_decay) def _encoding(self, X): # Kingma Supplemtary C.2 output = ( torch.matmul(X, self.weights["encoder_hidden_w"]) + self.biases["encoder_hidden_b"] ) output = torch.tanh(output) mean_output = ( torch.matmul(output, self.weights["latent_mean_w"]) + self.biases["latent_mean_b"] ) logstd_output = ( torch.matmul(output, self.weights["latent_std_w"]) + self.biases["latent_std_b"] ) return mean_output, logstd_output def _decoding(self, Z): output = ( torch.matmul(Z, self.weights["decoder_hidden_w"]) + self.biases["decoder_hidden_b"] ) output = torch.tanh(output) Xstar = ( torch.matmul(output, self.weights["decoder_out_w"]) + self.biases["decoder_out_b"] ) Xstar = torch.sigmoid(Xstar) return Xstar def init_vae_params(self, in_dim, encoder_width, decoder_width, latent_dim): weights = { "encoder_hidden_w": self.xavier_init(in_dim, encoder_width), "latent_mean_w": self.xavier_init(encoder_width, latent_dim), "latent_std_w": self.xavier_init(encoder_width, latent_dim), "decoder_hidden_w": self.xavier_init(latent_dim, decoder_width), "decoder_out_w": self.xavier_init(decoder_width, in_dim), } biases = { "encoder_hidden_b": self.xavier_init(1, encoder_width), "latent_mean_b": self.xavier_init(1, latent_dim), "latent_std_b": self.xavier_init(1, latent_dim), "decoder_hidden_b": self.xavier_init(1, decoder_width), "decoder_out_b": self.xavier_init(1, in_dim), } return weights, biases def xavier_init(self, in_d, out_d): xavier_stddev = np.sqrt(2.0 / (in_d + out_d)) W = torch.normal( size=(in_d, out_d), mean=0.0, std=xavier_stddev, requires_grad=True, device=self.device, ) return W
31.8
94
0.588776
6,075
0.979681
0
0
0
0
0
0
820
0.132237
32837c01862960b0796752083e66eefb2afb0c24
1,244
py
Python
qfig.py
mth1haha/BlockchainQueueingNetwork
611dc84b857efbec22edfe5f3a1bb8f7052a39aa
[ "Apache-2.0" ]
1
2021-11-30T08:22:43.000Z
2021-11-30T08:22:43.000Z
qfig.py
mth1haha/BlockchainQueueingNetwork
611dc84b857efbec22edfe5f3a1bb8f7052a39aa
[ "Apache-2.0" ]
null
null
null
qfig.py
mth1haha/BlockchainQueueingNetwork
611dc84b857efbec22edfe5f3a1bb8f7052a39aa
[ "Apache-2.0" ]
1
2020-11-25T08:48:25.000Z
2020-11-25T08:48:25.000Z
import simpy as sp import numpy as np import seaborn as sns import matplotlib.pyplot as plt from scipy import stats, integrate def client(env, lamda, q, tic): meant = 1/lamda while True: t = np.random.exponential(meant) yield env.timeout(t) q.put('job') tic.append(env.now) def server(env, alpha, mu1, mu2, q, toc): mean1 = 1/mu1 mean2 = 1/mu2 while True: yield q.get() p = np.random.uniform() if p < alpha: t = np.random.exponential(mean1) else: t = np.random.exponential(mean2) yield env.timeout(t) toc.append(env.now) lamda = 75 alpha = 0.333 mu1 = 370 mu2 = 370*(0.666) num_bins = 50 runtime = 1000 #运行多长时间 tic = [] #每个任务进系统的时间点 toc = [] #每个任务出系统的时间点 env = sp.Environment() q = sp.Store(env) env.process(client(env, lamda, q, tic)) env.process(server(env, alpha, mu1, mu2, q, toc)) env.run(until=runtime) l = len(tic) a = toc b = toc #b = toc[0:l:40] histdata = [b[i] - b[i-1] for i in range(1, len(b))] sns.distplot(histdata, kde=False, fit=stats.expon) plt.xlabel("inter departure time (s)") plt.xlim(0,0.15) #plt.ylim(0,100) plt.savefig('dist1.png') plt.show() #plt.hist(histdata, num_bins) #plt.show()
20.393443
52
0.619775
0
0
516
0.396923
0
0
0
0
201
0.154615
328382e2d62ec49094cab44e02a8b760c1f9a700
4,756
py
Python
all_words.py
secureterminal/100-Days-of-Code
04383ae541938d8a551b5aac9a0dad3348a6ef23
[ "MIT" ]
1
2022-01-28T13:55:39.000Z
2022-01-28T13:55:39.000Z
Day 7/all_words.py
secureterminal/100-Days-of-Code
04383ae541938d8a551b5aac9a0dad3348a6ef23
[ "MIT" ]
1
2022-02-02T00:13:18.000Z
2022-02-03T11:32:53.000Z
Day 7/all_words.py
secureterminal/100-Days-of-Code
04383ae541938d8a551b5aac9a0dad3348a6ef23
[ "MIT" ]
2
2022-02-07T20:49:36.000Z
2022-02-19T21:22:15.000Z
word_list = ['pseudolamellibranchiate', 'microcolorimetrically', 'pancreaticoduodenostomy', 'theologicoastronomical', 'pancreatoduodenectomy', 'tetraiodophenolphthalein', 'choledocholithotripsy', 'hematospectrophotometer', 'deintellectualization', 'pharyngoepiglottidean', 'psychophysiologically', 'pathologicopsychological', 'pseudomonocotyledonous', 'philosophicohistorical', 'Pseudolamellibranchia', 'chlamydobacteriaceous', 'cholecystoduodenostomy', 'anemometrographically', 'duodenopancreatectomy', 'dacryocystoblennorrhea', 'thymolsulphonephthalein', 'aminoacetophenetidine', 'ureterocystanastomosis', 'undistinguishableness', 'disestablishmentarian', 'cryptocrystallization', 'scientificogeographical', 'chemicopharmaceutical', 'overindustrialization', 'counterinterpretation', 'superincomprehensible', 'dacryocystorhinostomy', 'choledochoduodenostomy', 'cholecystogastrostomy', 'photochronographically', 'philosophicoreligious', 'scleroticochoroiditis', 'pyopneumocholecystitis', 'crystalloluminescence', 'phoneticohieroglyphic', 'historicogeographical', 'counterreconnaissance', 'pathologicoanatomical', 'omnirepresentativeness', 'establishmentarianism', 'glossolabiopharyngeal', 'pseudohermaphroditism', 'anthropoclimatologist', 'cholecystojejunostomy', 'epididymodeferentectomy', 'pericardiomediastinitis', 'cholecystolithotripsy', 'tessarescaedecahedron', 'electrotelethermometer', 'pharmacoendocrinology', 'poliencephalomyelitis', 'duodenocholedochotomy', 'cholecystonephrostomy', 'formaldehydesulphoxylate', 'dacryocystosyringotomy', 'counterpronunciamento', 'cholecystenterorrhaphy', 'deanthropomorphization', 'microseismometrograph', 'pseudoparthenogenesis', 'Pseudolamellibranchiata', 'ureteropyelonephritis', 'electroencephalography', 'anticonstitutionalist', 'electroencephalograph', 'hypsidolichocephalism', 'mandibulosuspensorial', 'acetylphenylhydrazine', 'hexanitrodiphenylamine', 'historicocabbalistical', 'hexachlorocyclohexane', 'anatomicophysiological', 'pseudoanthropological', 'microcryptocrystalline', 'lymphangioendothelioma', 'nonrepresentationalism', 'blepharoconjunctivitis', 'hydropneumopericardium', 'stereoroentgenography', 'otorhinolaryngologist', 'scientificohistorical', 'phenolsulphonephthalein', 'mechanicointellectual', 'counterexcommunication', 'duodenocholecystostomy', 'noninterchangeability', 'thermophosphorescence', 'naphthylaminesulphonic', 'polioencephalomyelitis', 'stereophotomicrograph', 'philosophicotheological', 'theologicometaphysical', 'benzalphenylhydrazone', 'scleroticochorioiditis', 'anthropomorphologically', 'thyroparathyroidectomize', 'disproportionableness', 'heterotransplantation', 'membranocartilaginous', 'scientificophilosophical', 'thyroparathyroidectomy', 'enterocholecystostomy', 'Prorhipidoglossomorpha', 'constitutionalization', 'poluphloisboiotatotic', 'anatomicopathological', 'zoologicoarchaeologist', 'protransubstantiation', 'labioglossopharyngeal', 'pneumohydropericardium', 'choledochoenterostomy', 'zygomaticoauricularis', 'anthropomorphological', 'stereophotomicrography', 'aquopentamminecobaltic', 'hexamethylenetetramine', 'macracanthrorhynchiasis', 'palaeodendrologically', 'intertransformability', 'hyperconscientiousness', 'laparocolpohysterotomy', 'indistinguishableness', 'formaldehydesulphoxylic', 'blepharosphincterectomy', 'transubstantiationalist', 'transubstantiationite', 'prostatovesiculectomy', 'pathologicohistological', 'platydolichocephalous', 'pneumoventriculography', 'photochromolithograph', 'gastroenteroanastomosis', 'chromophotolithograph', 'pentamethylenediamine', 'historicophilosophica', 'intellectualistically', 'gastroenterocolostomy', 'pancreaticogastrostomy', 'appendorontgenography', 'photospectroheliograph'] stages = [''' +---+ | | O | /|\ | / \ | | ========= ''', ''' +---+ | | O | /|\ | / | | ========= ''', ''' +---+ | | O | /|\ | | | ========= ''', ''' +---+ | | O | /| | | | =========''', ''' +---+ | | O | | | | | ========= ''', ''' +---+ | | O | | | | ========= ''', ''' +---+ | | | | | | ========= '''] logo = ''' _ | | | |__ __ _ _ __ __ _ _ __ ___ __ _ _ __ | '_ \ / _` | '_ \ / _` | '_ ` _ \ / _` | '_ \ | | | | (_| | | | | (_| | | | | | | (_| | | | | |_| |_|\__,_|_| |_|\__, |_| |_| |_|\__,_|_| |_| __/ | |___/ '''
21.716895
47
0.676409
0
0
0
0
0
0
0
0
4,270
0.897813
32839d586b1955e1c6b167959e736b233c1def5e
363
py
Python
vandal/objects/__init__.py
vandal-dev/vandal
1981c86f4de6632776a4132ecbc206fac5188f32
[ "Apache-2.0" ]
1
2022-02-22T18:39:57.000Z
2022-02-22T18:39:57.000Z
vandal/objects/__init__.py
vandal-dev/vandal
1981c86f4de6632776a4132ecbc206fac5188f32
[ "Apache-2.0" ]
null
null
null
vandal/objects/__init__.py
vandal-dev/vandal
1981c86f4de6632776a4132ecbc206fac5188f32
[ "Apache-2.0" ]
null
null
null
# import all relevant contents from the associated module. from vandal.objects.montecarlo import ( MonteCarlo, MCapp, ) from vandal.objects.eoq import( EOQ, EOQapp, ) from vandal.objects.dijkstra import Dijkstra # all relevant contents. __all__ = [ 'MonteCarlo', 'EOQ', 'Dijkstra', 'MCapp', 'EOQapp', ]
16.5
59
0.628099
0
0
0
0
0
0
0
0
126
0.347107
3283d11b9d4cf8bd45f4150291dcecd926809bd7
124
py
Python
authentication/admin.py
jatingupta14/cruzz
9a00f1555cdd5c76c9ef250d7037d72d725de367
[ "MIT" ]
7
2018-11-09T14:40:54.000Z
2019-12-20T08:10:17.000Z
authentication/admin.py
jatingupta14/cruzz
9a00f1555cdd5c76c9ef250d7037d72d725de367
[ "MIT" ]
25
2018-11-30T17:38:36.000Z
2018-12-27T17:21:09.000Z
authentication/admin.py
jatingupta14/cruzz
9a00f1555cdd5c76c9ef250d7037d72d725de367
[ "MIT" ]
6
2018-12-03T14:44:29.000Z
2018-12-26T11:49:43.000Z
# Django from django.contrib import admin # local Django from authentication.models import User admin.site.register(User)
15.5
38
0.806452
0
0
0
0
0
0
0
0
22
0.177419
328414bd2a696253fdce02e567455456707be002
480
py
Python
src/dlkp/datasets/__init__.py
midas-research/dlkp
5f47a780a6b05a71f799287d8ad612542a897047
[ "MIT" ]
2
2022-03-12T15:08:55.000Z
2022-03-14T09:11:43.000Z
src/dlkp/datasets/__init__.py
midas-research/dlkp
5f47a780a6b05a71f799287d8ad612542a897047
[ "MIT" ]
14
2022-02-19T07:42:09.000Z
2022-03-20T21:43:42.000Z
src/dlkp/datasets/__init__.py
midas-research/dlkp
5f47a780a6b05a71f799287d8ad612542a897047
[ "MIT" ]
null
null
null
class KPDatasets: def __init__(self) -> None: pass def get_train_dataset(self): if "train" not in self.datasets: return None return self.datasets["train"] def get_eval_dataset(self): if "validation" not in self.datasets: return None return self.datasets["validation"] def get_test_dataset(self): if "test" not in self.datasets: return None return self.datasets["test"]
25.263158
45
0.597917
479
0.997917
0
0
0
0
0
0
50
0.104167
3287cec655cdef3ec14897e557822dfcd28c5019
84
py
Python
nv/__init__.py
3stack-software/nv
7b00fb857aea238ed060a9eb017e351aac19258e
[ "Apache-2.0" ]
null
null
null
nv/__init__.py
3stack-software/nv
7b00fb857aea238ed060a9eb017e351aac19258e
[ "Apache-2.0" ]
1
2017-06-19T00:52:37.000Z
2017-06-19T00:52:37.000Z
nv/__init__.py
3stack-software/nv
7b00fb857aea238ed060a9eb017e351aac19258e
[ "Apache-2.0" ]
null
null
null
from .__version__ import __version__ from .core import create, remove, launch_shell
28
46
0.833333
0
0
0
0
0
0
0
0
0
0
32885105782d33bbebe4c4cc904fbc2149735713
784
py
Python
app/live/tests.py
B-ROY/TESTGIT
40221cf254c90d37d21afb981635740aebf11949
[ "Apache-2.0" ]
2
2017-12-02T13:58:30.000Z
2018-08-02T17:07:59.000Z
app/live/tests.py
B-ROY/TESTGIT
40221cf254c90d37d21afb981635740aebf11949
[ "Apache-2.0" ]
null
null
null
app/live/tests.py
B-ROY/TESTGIT
40221cf254c90d37d21afb981635740aebf11949
[ "Apache-2.0" ]
null
null
null
import os from django.conf import settings from django.contrib.auth.models import User from django.contrib.auth.tests.utils import skipIfCustomUser from django.contrib.flatpages.models import FlatPage from django.test import TestCase from django.test.utils import override_settings class HeyDoAppTest(unittest.TestCase): def createUser(self): is_new, user = User.create_user( openid="1234567890", source=1, nick="username", gender=1, ip=self.request.remote_ip, province="", city="", country="", headimgurl="", ) #success,message = QCloudIM.account_import(user) return is_new, user if __name__ == '__main__': unittest.main()
27.034483
60
0.632653
444
0.566327
0
0
0
0
0
0
88
0.112245
328b211073d9f2b0d84385aebf512b9639d8569d
1,133
py
Python
application/utils/data_transfer_objects.py
charles-crawford/sentiment
38cfd6af1cc81ad1858621a182cd76dc3e5f04db
[ "MIT" ]
null
null
null
application/utils/data_transfer_objects.py
charles-crawford/sentiment
38cfd6af1cc81ad1858621a182cd76dc3e5f04db
[ "MIT" ]
null
null
null
application/utils/data_transfer_objects.py
charles-crawford/sentiment
38cfd6af1cc81ad1858621a182cd76dc3e5f04db
[ "MIT" ]
null
null
null
from flask_restx.fields import String, Boolean, Raw, List, Float, Nested class DataTransferObjects: def __init__(self, ns): self.ns = ns self.general_responses = {200: 'OK', 404: "Resource not found", 400: "Bad Request", 500: "Internal Server Error"} self.plain_text = self.ns.model('plain_text', { 'plain_text': String(example='some sample text') }) self.text_list = self.ns.model('text_list', { 'text_list': List(String(), example=['This is the first sentence.', 'This is the second sentence.']) }) self.label = self.ns.model('label', { 'value': String(example='POSITIVE'), 'confidence': Float(example=.9) }) self.prediction = self.ns.model('prediction', { 'text': String(example='some sample text'), 'labels': List(Nested(self.label)) }) self.predictions = self.ns.model('predictions', { 'predictions': List(Nested(self.prediction)) })
33.323529
112
0.529568
1,057
0.932921
0
0
0
0
0
0
289
0.255075
328faff3ddad6381d560dd2330552d383362af7f
91
py
Python
utils.py
Spratiher9/newsnuggets
1147e55a9a0c8a483384711840462b1526cf7681
[ "MIT" ]
1
2021-11-17T19:18:42.000Z
2021-11-17T19:18:42.000Z
utils.py
Spratiher9/newsnuggets
1147e55a9a0c8a483384711840462b1526cf7681
[ "MIT" ]
null
null
null
utils.py
Spratiher9/newsnuggets
1147e55a9a0c8a483384711840462b1526cf7681
[ "MIT" ]
null
null
null
from gnews import GNews def get_client(): news_client = GNews() return news_client
18.2
25
0.725275
0
0
0
0
0
0
0
0
0
0
329003760fc6877a5fb340f8c2de344d9c2c4d3e
13,284
py
Python
grover.py
raulillo82/TFG-Fisica-2021
8acfd748c7f49ea294606a9c185227927ec2e256
[ "MIT" ]
null
null
null
grover.py
raulillo82/TFG-Fisica-2021
8acfd748c7f49ea294606a9c185227927ec2e256
[ "MIT" ]
null
null
null
grover.py
raulillo82/TFG-Fisica-2021
8acfd748c7f49ea294606a9c185227927ec2e256
[ "MIT" ]
null
null
null
#!/usr/bin/python3 ''' * Copyright (C) 2021 Raúl Osuna Sánchez-Infante * * This software may be modified and distributed under the terms * of the MIT license. See the LICENSE.txt file for details. ''' ################## #Needed libraries# ################## import matplotlib as mpl mpl.use('TkAgg') import matplotlib.pyplot as plt import qiskit as q import sys from qiskit.visualization import plot_histogram from qiskit.providers.ibmq import least_busy from random import getrandbits ''' Grover's algorithim. Intro ''' ####################### #Functions definitions# ####################### ''' Usage function calling the program with "-h" or "--help" will display the help without returning an error (help was intended) calling the progam with no options or wrong ones, will display the same help but returning an error Please bear in mind that some combination of options are simply ignored, see the text of this function itself ''' def usage(): print("Usage: " + str((sys.argv)[0]) + " i j k l") print("i: Number of qubits (2 or 3, will yield error if different)") print("j: Number of solutions (only taken into account if i=3, otherwise ignored). Can only be 1 or 2, will yield error otherwise") print("k: Number of iterations (only taken into account for i=3 and j=1, othwerise ignored). Can only be 1 or 2, will yield error otherwise") print("l: Perform computations in real quantum hardware, can only be 0 (no) or 1 (yes), will yield error otherwise") if len(sys.argv) == 2 and (str((sys.argv)[1]) == "-h" or str((sys.argv)[1]) == "--help"): exit(0) else: exit(1) ''' Check whether parameter is an integer ''' def is_intstring(s): try: int(s) return True except ValueError: return False ''' Initialization: Simply apply an H gate to every qubit ''' def initialize(): if len(sys.argv) == 1: print ("No arguments given") usage() elif len(sys.argv) > 5 or str((sys.argv)[1]) == "-h" or str((sys.argv)[1]) == "--help" or (not (is_intstring(sys.argv[1]))) or (int((sys.argv)[1]) != 2 and (int((sys.argv)[1]) != 3)): #elif (int((sys.argv)[1]) != 2 and (int((sys.argv)[1]) != 3)): usage() else: #print ("Rest of cases") for arg in sys.argv[2:]: if not is_intstring(arg): sys.exit("All arguments must be integers. Exit.") qc = q.QuantumCircuit((sys.argv)[1]) #Apply a H-gate to all qubits in qc for i in range(qc.num_qubits): qc.h(i) qc.barrier() return qc ''' Implement multi controlled Z-gate, easy to reutilize ''' def mctz(qc): qc.h(2) qc.mct(list(range(2)), 2) qc.h(2) ''' Oracle metaimplementation This function will simply call one of the possibles oracles functions ''' def oracle (qc): #Generate some random bits and implement the oracle accordingly with the result bits=getrandbits(qc.num_qubits) #2 qubits if int((sys.argv)[1]) == 2: print("Random bits to search for are (decimal representation): " + str(bits)) oracle_2_qubits(qc,bits) #3 qubits elif int((sys.argv)[1]) == 3: #Single solution if int((sys.argv)[2]) == 1: ''' Explanation: less than sqrt(N) iterations will be needed (so will need to "floor" (truncate) the result) As 2 < sqrt(8) < 3 --> n=2 for 100% prob. With n=1, p=0.78125=78,125% In the classical case, p=1/4=25% (single query followed by a random guess: 1/8 + 7/8 · 1/7 = 1/4 = 25%) Classical results with two runs, p=1/8+7/8·1/7+6/8·1/6= 1/4 + 1/8 = 3/8 = 0.375 = 37,5% ''' print("Random bits to search for are (decimal representation): " + str(bits)) #Check whether 1 or 2 iterations were requested if (int((sys.argv)[3]) == 1) or (int((sys.argv)[3]) == 2): iterations = int((sys.argv)[3]) for i in range(iterations): oracle_3_qubits_single_solution(qc,bits) diffusion(grover_circuit) #For any other case, wrong arguments were used, exit else: usage() #2 possible solutions elif int((sys.argv)[2]) == 2: ''' Explanation: less than sqrt(N/M) times (M=2 different results to look for) will be needed (so will need to "floor" (truncate) the result) As sqrt(8/2) = 2 --> n=1 for a theoretical 100% prob. In the classical case, 13/28 = 46,4% ''' #A list instead of a single element will be used, initialize it with the previous value as first element bits=[bits] #Generate the second element, also randomly bits.append(getrandbits(qc.num_qubits)) #Elements have to be different, regenerate as many times as needed till different while bits[0] == bits[1]: bits[1]=getrandbits(3) #When done, sort the list of random bits. Order does not matter for our upcoming permutations bits.sort() print("Random bits to search for are (decimal representation): " + str(bits[0]) + " and " + str(bits[1])) oracle_3_qubits_2_solutions(qc,bits) #Algorithm only implemented for 1 or 2 possible solution(s), exit if something different requested else: usage() #Algorithm only implemented for 1 or 2 qubits, exit if something different requested else: usage() ''' Oracle implementation for 2 qubits. Simply a controlled-Z gate (cz in qiskit). For qubits different to 1, an x-gate is needed before and after the cz-gate ''' def oracle_2_qubits(qc,bits): if bits == 0: #00 qc.x(0) qc.x(1) qc.cz(0, 1) qc.x(0) qc.x(1) elif bits == 1: #01 qc.x(1) qc.cz(0,1) qc.x(1) elif bits == 2: #10 qc.x(0) qc.cz(0,1) qc.x(0) elif bits == 3: #11 qc.cz(0,1) qc.barrier() ''' Oracle implementation for 3 qubits and single solution. Reference for oracles: https://www.nature.com/articles/s41467-017-01904-7 (table 1) ''' def oracle_3_qubits_single_solution(qc,bits): if bits == 0: for i in range(3): qc.x(i) mctz(qc) for i in range(3): qc.x(i) elif bits == 1: for i in range(1, 3): qc.x(i) mctz(qc) for i in range(1, 3): qc.x(i) elif bits == 2: for i in range(0, 3, 2): qc.x(i) mctz(qc) for i in range(0, 3, 2): qc.x(i) elif bits == 3: qc.x(2) mctz(qc) qc.x(2) elif bits == 4: for i in range(2): qc.x(i) mctz(qc) for i in range(2): qc.x(i) elif bits == 5: qc.x(1) mctz(qc) qc.x(1) elif bits == 6: qc.x(0) mctz(qc) qc.x(0) elif bits == 7: mctz(qc) qc.barrier() ''' Oracle implementation for 3 qubits and two possible solutions. Reference for oracles: https://www.nature.com/articles/s41467-017-01904-7 (table 2) ''' def oracle_3_qubits_2_solutions(qc,bits): if (bits[0] == 0 and bits[1] == 1): for i in range(1,3): qc.z(i) qc.cz(1, 2) elif (bits[0] == 0 and bits[1] == 2): for i in range(0, 3, 2): qc.z(i) qc.cz(0, 2) elif (bits[0] == 0 and bits[1] == 3): for i in range(3): qc.z(i) qc.cz(1, 2) qc.cz(0, 2) elif (bits[0] == 0 and bits[1] == 4): for i in range(2): qc.z(i) qc.cz(0, 1) elif (bits[0] == 0 and bits[1] == 5): for i in range(3): qc.z(i) qc.cz(1, 2) qc.cz(0, 1) elif (bits[0] == 0 and bits[1] == 6): for i in range(3): qc.z(i) qc.cz(0, 2) qc.cz(0, 1) elif (bits[0] == 0 and bits[1] == 7): for i in range(3): qc.z(i) qc.cz(1, 2) qc.cz(0, 2) qc.cz(0, 1) elif (bits[0] == 1 and bits[1] == 2): for i in range(2): qc.z(i) qc.cz(1, 2) qc.cz(0, 2) elif (bits[0] == 1 and bits[1] == 3): qc.z(0) qc.cz(0, 2) elif (bits[0] == 1 and bits[1] == 4): for i in range(0, 3, 2): qc.z(i) qc.cz(1, 2) qc.cz(0, 1) elif (bits[0] == 1 and bits[1] == 5): qc.z(0) qc.cz(0, 1) elif (bits[0] == 1 and bits[1] == 6): qc.z(0) qc.cz(1, 2) qc.cz(0, 2) qc.cz(0, 1) elif (bits[0] == 1 and bits[1] == 7): qc.z(0) qc.cz(0, 2) qc.cz(0, 1) elif (bits[0] == 2 and bits[1] == 3): qc.z(1) qc.cz(1, 2) elif (bits[0] == 2 and bits[1] == 4): for i in range(1,3): qc.z(i) qc.cz(0, 2) qc.cz(0, 1) elif (bits[0] == 2 and bits[1] == 5): qc.z(1) qc.cz(1, 2) qc.cz(0, 2) qc.cz(0, 1) elif (bits[0] == 2 and bits[1] == 6): qc.z(1) qc.cz(0, 1) elif (bits[0] == 2 and bits[1] == 7): qc.z(1) qc.cz(1, 2) qc.cz(0, 1) elif (bits[0] == 3 and bits[1] == 4): qc.z(2) qc.cz(1, 2) qc.cz(0, 2) qc.cz(0, 1) elif (bits[0] == 3 and bits[1] == 5): qc.cz(0, 2) qc.cz(0, 1) elif (bits[0] == 3 and bits[1] == 6): qc.cz(1, 2) qc.cz(0, 1) elif (bits[0] == 3 and bits[1] == 7): qc.cz(0, 1) elif (bits[0] == 4 and bits[1] == 5): qc.z(2) qc.cz(1, 2) elif (bits[0] == 4 and bits[1] == 6): qc.z(2) qc.cz(0, 2) elif (bits[0] == 4 and bits[1] == 7): qc.z(2) qc.cz(1, 2) qc.cz(0, 2) elif (bits[0] == 5 and bits[1] == 6): qc.cz(1, 2) qc.cz(0, 2) elif (bits[0] == 5 and bits[1] == 7): qc.cz(0, 2) elif (bits[0] == 6 and bits[1] == 7): qc.cz(1, 2) qc.barrier() ''' Diffusion operator: Flip sign and amplify For 2 qubits, simply apply H and Z to each qubit, then cz, and then apply H again to each qubit: ''' def diffusion(qc): if qc.num_qubits == 2: qc.h(0) qc.h(1) qc.z(0) qc.z(1) qc.cz(0,1) qc.h(0) qc.h(1) elif qc.num_qubits == 3: #Apply diffusion operator for i in range(3): qc.h(i) qc.x(i) # multi-controlled-toffoli mctz(qc) qc.barrier() for i in range(3): qc.x(i) qc.h(i) #qc.barrier() ''' Add measurements and plot the quantum circuit: ''' def measure(qc): qc.measure_all() qc.draw('mpl') plt.draw() plt.title("Quantum Circuit") ''' Generate results from quantum simulator (no plotting) ''' def results_qsim(qc): backend = q.Aer.get_backend('qasm_simulator') job = q.execute(qc, backend, shots = 1024) return job ''' Generate results from real quantum hardware (no plotting) ''' def results_qhw(qc): ''' #Only needed if credentials are not stored (e.g., deleted and regeneration is needed token='XXXXXXXX' #Use token from ibm quantum portal if needed to enable again, should be stored under ~/.qiskit directory q.IBMQ.save_account(token) ''' provider = q.IBMQ.load_account() provider = q.IBMQ.get_provider() device = q.providers.ibmq.least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and not x.configuration().simulator and x.status().operational==True)) print("Running on current least busy device: ", device) transpiled_grover_circuit = q.transpile(qc, device, optimization_level=3) qobj = q.assemble(transpiled_grover_circuit) job = device.run(qobj) q.tools.monitor.job_monitor(job, interval=2) return job ''' Plot results ''' def draw_job (job,title): result = job.result() counts = result.get_counts() plot_histogram(counts) plt.draw() plt.title(title) ############################## #End of functions definitions# ############################## ################################ #Program actually starts here!!# ################################ #Initialization grover_circuit = initialize() #Generate the oracle randomly according to the command line arguments oracle(grover_circuit) #Diffusion if (not(int(sys.argv[1]) == 3 and int(sys.argv[2]) == 1)): diffusion(grover_circuit) #Add measurements measure(grover_circuit) #Generate results in simulator job_sim = results_qsim(grover_circuit) #Plot these results draw_job(job_sim, "Quantum simulator output") #Generate results in quantum hw if requested if int(sys.argv[4]) == 1: plt.show(block=False) plt.draw() #Next line needed for keeping computations in background while still seeing the previous plots plt.pause(0.001) #Generate results in real quantum hardware job_qhw = results_qhw(grover_circuit) #Plot these results as well draw_job(job_qhw, "Quantum hardware output") #Keep plots active when done till they're closed, used for explanations during presentations plt.show()
29.851685
187
0.546522
0
0
0
0
0
0
0
0
5,201
0.391376
3291b0fa03bb75af83a902f66fc3f91285f8e9a3
9,147
py
Python
TM1py/Services/GitService.py
adscheevel/tm1py
8a53c7a63e3c0e2c6198c2cd0c2f57d10a7cfe43
[ "MIT" ]
113
2019-03-12T19:42:39.000Z
2022-03-31T22:40:05.000Z
TM1py/Services/GitService.py
adscheevel/tm1py
8a53c7a63e3c0e2c6198c2cd0c2f57d10a7cfe43
[ "MIT" ]
459
2019-01-25T09:32:18.000Z
2022-03-24T21:57:16.000Z
TM1py/Services/GitService.py
adscheevel/tm1py
8a53c7a63e3c0e2c6198c2cd0c2f57d10a7cfe43
[ "MIT" ]
107
2019-01-31T15:08:34.000Z
2022-03-16T14:58:38.000Z
# -*- coding: utf-8 -*- import json from typing import List from TM1py.Objects.Git import Git from TM1py.Objects.GitCommit import GitCommit from TM1py.Objects.GitPlan import GitPushPlan, GitPullPlan, GitPlan from TM1py.Services.ObjectService import ObjectService from TM1py.Services.RestService import RestService, Response from TM1py.Utils.Utils import format_url class GitService(ObjectService): """ Service to interact with GIT """ COMMON_PARAMETERS = {'username': 'Username', 'password': 'Password', 'message': 'Message', 'author': 'Author', 'email': 'Email', 'branch': 'Branch', 'new_branch': 'NewBranch', 'force': 'Force', 'public_key': 'PublicKey', 'private_key': 'PrivateKey', 'passphrase': 'Passphrase', 'config': 'Config'} def __init__(self, rest: RestService): super().__init__(rest) def git_init(self, git_url: str, deployment: str, username: str = None, password: str = None, public_key: str = None, private_key: str = None, passphrase: str = None, force: bool = None, config: dict = None, **kwargs) -> Git: """ Initialize GIT service, returns Git object :param git_url: file or http(s) path to GIT repository :param deployment: name of selected deployment group :param username: GIT username :param password: GIT password :param public_key: SSH public key, available from PAA V2.0.9.4 :param private_key: SSH private key, available from PAA V2.0.9.4 :param passphrase: Passphrase for decrypting private key, if set :param force: reset git context on True :param config: Dictionary containing git configuration parameters """ url = "/api/v1/GitInit" body = {'URL': git_url, 'Deployment': deployment} for key, value in locals().items(): if value is not None and key in self.COMMON_PARAMETERS.keys(): body[self.COMMON_PARAMETERS.get(key)] = value body_json = json.dumps(body) response = self._rest.POST(url=url, data=body_json, **kwargs) return Git.from_dict(response.json()) def git_uninit(self, force: bool = False, **kwargs): """ Unitialize GIT service :param force: clean up git context when True """ url = "/api/v1/GitUninit" body = json.dumps(force) return self._rest.POST(url=url, data=body, **kwargs) def git_status(self, username: str = None, password: str = None, public_key: str = None, private_key: str = None, passphrase: str = None, **kwargs) -> Git: """ Get GIT status, returns Git object :param username: GIT username :param password: GIT password :param public_key: SSH public key, available from PAA V2.0.9.4 :param private_key: SSH private key, available from PAA V2.0.9.4 :param passphrase: Passphrase for decrypting private key, if set """ url = "/api/v1/GitStatus" body = {} for key, value in locals().items(): if value is not None and key in self.COMMON_PARAMETERS.keys(): body[self.COMMON_PARAMETERS.get(key)] = value response = self._rest.POST(url=url, data=json.dumps(body), **kwargs) return Git.from_dict(response.json()) def git_push(self, message: str, author: str, email: str, branch: str = None, new_branch: str = None, force: bool = False, username: str = None, password: str = None, public_key: str = None, private_key: str = None, passphrase: str = None, execute: bool = None, **kwargs) -> Response: """ Creates a gitpush plan, returns response :param message: Commit message :param author: Name of commit author :param email: Email of commit author :param branch: The branch which last commit will be used as parent commit for new branch. Must be empty if GIT repo is empty :param new_branch: If specified, creates a new branch and pushes the commit onto it. If not specified, pushes to the branch specified in "Branch" :param force: A flag passed in for evaluating preconditions :param username: GIT username :param password: GIT password :param public_key: SSH public key, available from PAA V2.0.9.4 :param private_key: SSH private key, available from PAA V2.0.9.4 :param passphrase: Passphrase for decrypting private key, if set :param execute: Executes the plan right away if True """ url = "/api/v1/GitPush" body = {} for key, value in locals().items(): if value is not None and key in self.COMMON_PARAMETERS.keys(): body[self.COMMON_PARAMETERS.get(key)] = value response = self._rest.POST(url=url, data=json.dumps(body), **kwargs) if execute: plan_id = json.loads(response.content).get('ID') self.git_execute_plan(plan_id=plan_id) return response def git_pull(self, branch: str, force: bool = None, execute: bool = None, username: str = None, password: str = None, public_key: str = None, private_key: str = None, passphrase: str = None, **kwargs) -> Response: """ Creates a gitpull plan, returns response :param branch: The name of source branch :param force: A flag passed in for evaluating preconditions :param execute: Executes the plan right away if True :param username: GIT username :param password: GIT password :param public_key: SSH public key, available from PAA V2.0.9.4 :param private_key: SSH private key, available from PAA V2.0.9.4 :param passphrase: Passphrase for decrypting private key, if set """ url = "/api/v1/GitPull" body = {} for key, value in locals().items(): if value is not None and key in self.COMMON_PARAMETERS.keys(): body[self.COMMON_PARAMETERS.get(key)] = value body_json = json.dumps(body) response = self._rest.POST(url=url, data=body_json, **kwargs) if execute: plan_id = json.loads(response.content).get('ID') self.git_execute_plan(plan_id=plan_id) return response def git_execute_plan(self, plan_id: str, **kwargs) -> Response: """ Executes a plan based on the planid :param plan_id: GitPlan id """ url = format_url("/api/v1/GitPlans('{}')/tm1.Execute", plan_id) return self._rest.POST(url=url, **kwargs) def git_get_plans(self, **kwargs) -> List[GitPlan]: """ Gets a list of currently available GIT plans """ url = "/api/v1/GitPlans" plans = [] response = self._rest.GET(url=url, **kwargs) # Every individual plan is wrapped in a "value" parent, iterate through those to get the actual plans for plan in response.json().get('value'): plan_id = plan.get('ID') # Check if plan has an ID, sometimes there's a null in the mix that we don't want if plan_id is None: continue plan_branch = plan.get('Branch') plan_force = plan.get('Force') # A git plan can either be a PushPlan or a PullPlan, these have slightly different variables, # so we need to handle those differently if plan.get('@odata.type') == '#ibm.tm1.api.v1.GitPushPlan': plan_new_branch = plan.get('NewBranch') plan_source_files = plan.get('SourceFiles') new_commit = GitCommit( commit_id=plan.get('NewCommit').get('ID'), summary=plan.get('NewCommit').get('Summary'), author=plan.get('NewCommit').get('Author')) parent_commit = GitCommit( commit_id=plan.get('ParentCommit').get('ID'), summary=plan.get('ParentCommit').get('Summary'), author=plan.get('ParentCommit').get('Author')) current_plan = GitPushPlan( plan_id=plan_id, branch=plan_branch, force=plan_force, new_branch=plan_new_branch, new_commit=new_commit, parent_commit=parent_commit, source_files=plan_source_files) elif plan.get('@odata.type') == '#ibm.tm1.api.v1.GitPullPlan': plan_commit = GitCommit( commit_id=plan.get('Commit').get('ID'), summary=plan.get('Commit').get('Summary'), author=plan.get('Commit').get('Author')) plan_operations = plan.get('Operations') current_plan = GitPullPlan(plan_id=plan_id, branch=plan_branch, force=plan_force, commit=plan_commit, operations=plan_operations) else: raise RuntimeError(f"Invalid plan detected: {plan.get('@odata.type')}") plans.append(current_plan) return plans
44.619512
117
0.608396
8,778
0.959659
0
0
0
0
0
0
3,750
0.40997
3294741b0f8e1bf0eeabf4019d19a68a63e99c23
1,419
py
Python
tests/bind_tests/diagram_tests/strategies.py
lycantropos/voronoi
977e0b3e5eff2dd294e2e6ce1a8030c763e86233
[ "MIT" ]
null
null
null
tests/bind_tests/diagram_tests/strategies.py
lycantropos/voronoi
977e0b3e5eff2dd294e2e6ce1a8030c763e86233
[ "MIT" ]
null
null
null
tests/bind_tests/diagram_tests/strategies.py
lycantropos/voronoi
977e0b3e5eff2dd294e2e6ce1a8030c763e86233
[ "MIT" ]
null
null
null
from hypothesis import strategies from hypothesis_geometry import planar from tests.bind_tests.hints import (BoundCell, BoundDiagram, BoundEdge, BoundVertex) from tests.bind_tests.utils import (bound_source_categories, to_bound_multipoint, to_bound_multisegment) from tests.strategies import (doubles, integers_32, sizes) from tests.utils import to_maybe booleans = strategies.booleans() coordinates = doubles empty_diagrams = strategies.builds(BoundDiagram) source_categories = strategies.sampled_from(bound_source_categories) cells = strategies.builds(BoundCell, sizes, source_categories) vertices = strategies.builds(BoundVertex, coordinates, coordinates) edges = strategies.builds(BoundEdge, to_maybe(vertices), cells, booleans, booleans) cells_lists = strategies.lists(cells) edges_lists = strategies.lists(edges) vertices_lists = strategies.lists(vertices) diagrams = strategies.builds(BoundDiagram, cells_lists, edges_lists, vertices_lists) multipoints = planar.multipoints(integers_32).map(to_bound_multipoint) multisegments = planar.multisegments(integers_32).map(to_bound_multisegment)
44.34375
76
0.653982
0
0
0
0
0
0
0
0
0
0
32955f3ecdc5ec46e6e7127a3ed57f1411af2c54
2,381
py
Python
apps/blog/serializers.py
yc19890920/dble_fastapi_blog
dd9b8984d849df893d4fea270e8b75ac12d01241
[ "Apache-2.0" ]
null
null
null
apps/blog/serializers.py
yc19890920/dble_fastapi_blog
dd9b8984d849df893d4fea270e8b75ac12d01241
[ "Apache-2.0" ]
2
2021-03-31T19:56:46.000Z
2021-04-30T21:19:15.000Z
apps/blog/serializers.py
yc19890920/dble_fastapi_blog
dd9b8984d849df893d4fea270e8b75ac12d01241
[ "Apache-2.0" ]
null
null
null
""" @Author: YangCheng @contact: [email protected] @Software: Y.C @Time: 2020/7/21 15:22 """ from typing import List from pydantic import BaseModel, Field from tortoise import Tortoise from tortoise.contrib.pydantic import pydantic_model_creator, pydantic_queryset_creator from lib.tortoise.pydantic import json_encoders from .models import Tag, Category, Article Tortoise.init_models(["apps.blog.models"], "models") class PydanticResponse(BaseModel): index: int limit: int total: int # -*- tag -*- # Tag create/update TagCreateRequest = pydantic_model_creator( Tag, name="TagCreateRequest", exclude_readonly=True ) TagCreateResponse = pydantic_model_creator( Category, name="TagCreateResponse", exclude=["articles"] ) TagCreateResponse.Config.json_encoders = json_encoders # Tag List TagListSerializer = pydantic_queryset_creator( Tag, name="TagListSerializer", exclude=["articles"] ) class TagListResponse(PydanticResponse): results: List[TagListSerializer] class TagResponse(BaseModel): id: int name: str # -*- Category -*- # Category create/update CategoryCreateRequest = pydantic_model_creator( Category, name="CategoryCreateRequest", exclude_readonly=True ) CategoryCreateResponse = pydantic_model_creator( Category, name="CategoryCreateResponse", exclude=("articles",) ) CategoryCreateResponse.Config.json_encoders = json_encoders # Category List CategoryListSerializer = pydantic_queryset_creator( Category, name="CategoryListSerializer", exclude=("articles",) ) class CategoryListResponse(PydanticResponse): results: List[CategoryListSerializer] # -*- Article -*- # Article create/update class ArticleCreateRequest(BaseModel): title: str = Field(..., description="Title") content: str = Field(..., description="Content") abstract: str = None status: str = Field(default="publish", description="Content") category_id: int = Field(..., description="category_id") tags: List[int] = Field(..., description="tag_id list") ArticleCreateResponse = pydantic_model_creator( Article, name="ArticleCreateResponse" ) ArticleCreateResponse.Config.json_encoders = json_encoders ArticleListSerializer = pydantic_queryset_creator( Article, name="ArticleListSerializer" ) # Article List class ArticleListResponse(PydanticResponse): results: List[ArticleCreateResponse]
25.063158
87
0.761025
735
0.308694
0
0
0
0
0
0
551
0.231415
329a1a34027b83c6621340af222a98c0d43067e0
1,102
py
Python
Python/image_analysis_centerlines/analysis_example.py
fromenlab/guides
ac9831265f8219d5b5a8ee3a441fc77c7ae4fe3b
[ "MIT" ]
null
null
null
Python/image_analysis_centerlines/analysis_example.py
fromenlab/guides
ac9831265f8219d5b5a8ee3a441fc77c7ae4fe3b
[ "MIT" ]
null
null
null
Python/image_analysis_centerlines/analysis_example.py
fromenlab/guides
ac9831265f8219d5b5a8ee3a441fc77c7ae4fe3b
[ "MIT" ]
null
null
null
from skimage import img_as_bool, io, color, morphology import matplotlib.pyplot as plt import numpy as np import pandas as pd # Testing process # Import images one = img_as_bool(color.rgb2gray(io.imread('1.jpg'))) cross = img_as_bool(color.rgb2gray(io.imread('cross.jpg'))) grid = img_as_bool(color.rgb2gray(io.imread('grid.jpg'))) # Get skeleton one_skel = morphology.skeletonize(one) cross_skel = morphology.skeletonize(cross) grid_skel = morphology.skeletonize(grid) # Get medial axis one_med, one_med_distance = morphology.medial_axis(one, return_distance=True) cross_med, cross_med_distance = morphology.medial_axis(cross, return_distance=True) grid_med, grid_med_distance = morphology.medial_axis(grid, return_distance=True) # Get skeleton distance one_skel_distance = one_med_distance*one_skel # Data processing for "1.jpg" one_skel_nonzero = one_skel_distance.nonzero() trans = np.transpose(one_skel_nonzero) df_coords = pd.DataFrame(data = trans, columns = ["y", "x"]) df_dist = pd.DataFrame(data = one_skel_distance[one_skel_nonzero]) combined = pd.concat([df_coords, df_dist], axis=1)
34.4375
83
0.791289
0
0
0
0
0
0
0
0
149
0.135209
329a5ba2f15a3280c3c7c2b2a6a0114abcec0cf9
485
py
Python
resources/settings.py
Miriel-py/Room-Wizard
83d86fe8e8fed8bb073b38465cd0e97b1a6113b8
[ "MIT" ]
null
null
null
resources/settings.py
Miriel-py/Room-Wizard
83d86fe8e8fed8bb073b38465cd0e97b1a6113b8
[ "MIT" ]
null
null
null
resources/settings.py
Miriel-py/Room-Wizard
83d86fe8e8fed8bb073b38465cd0e97b1a6113b8
[ "MIT" ]
null
null
null
# global_data.py import os from dotenv import load_dotenv # Read the bot token from the .env file load_dotenv() TOKEN = os.getenv('DISCORD_TOKEN') DEBUG_MODE = os.getenv('DEBUG_MODE') BOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) DB_FILE = os.path.join(BOT_DIR, 'database/room_wizard_db.db') LOG_FILE = os.path.join(BOT_DIR, 'logs/discord.log') DEV_GUILDS = [730115558766411857] # Embed color EMBED_COLOR = 0x6C48A7 DEFAULT_FOOTER = 'Just pinning things.'
24.25
69
0.764948
0
0
0
0
0
0
0
0
163
0.336082
329e532aeccbe51ed3829d6a07920bf7c69171ef
602
py
Python
Python OOP/Exams/23 August 2021/1, 2/project/astronaut/astronaut_repository.py
a-shiro/SoftUni-Courses
7d0ca6401017a28b5ff7e7fa3e5df8bba8ddbe77
[ "MIT" ]
null
null
null
Python OOP/Exams/23 August 2021/1, 2/project/astronaut/astronaut_repository.py
a-shiro/SoftUni-Courses
7d0ca6401017a28b5ff7e7fa3e5df8bba8ddbe77
[ "MIT" ]
null
null
null
Python OOP/Exams/23 August 2021/1, 2/project/astronaut/astronaut_repository.py
a-shiro/SoftUni-Courses
7d0ca6401017a28b5ff7e7fa3e5df8bba8ddbe77
[ "MIT" ]
null
null
null
class AstronautRepository: def __init__(self): self.astronauts = [] def add(self, astronaut): self.astronauts.append(astronaut) def remove(self, astronaut): self.astronauts.remove(astronaut) def find_by_name(self, name: str): for astronaut in self.astronauts: if astronaut.name == name: return astronaut def find_suited_astronauts(self): return sorted([astronaut for astronaut in self.astronauts if astronaut.oxygen > 30], key=lambda x: x.oxygen, reverse=True)[0:5]
30.1
92
0.609635
601
0.998339
0
0
0
0
0
0
0
0
329eec6934c9b0ff2824d0ffd01a1902dae80850
1,767
py
Python
detection_algorithms/temporal_anomaly_detection/model_def.py
hanahs-deepfake-detection/detection-algorithms
6d7ec53eaf333adb10a1aba448f80fceaf7722be
[ "MIT" ]
null
null
null
detection_algorithms/temporal_anomaly_detection/model_def.py
hanahs-deepfake-detection/detection-algorithms
6d7ec53eaf333adb10a1aba448f80fceaf7722be
[ "MIT" ]
null
null
null
detection_algorithms/temporal_anomaly_detection/model_def.py
hanahs-deepfake-detection/detection-algorithms
6d7ec53eaf333adb10a1aba448f80fceaf7722be
[ "MIT" ]
null
null
null
""" Model Definition """ from tensorflow import keras from tensorflow.keras.applications import ResNet101V2 from tensorflow.keras.layers import ( BatchNormalization, Conv2D, Dense, Dropout, Flatten, LSTM, MaxPool2D, TimeDistributed, Lambda ) import tensorflow as tf from .spatial_transformer.bilinear_sampler import BilinearSampler def gen_model(batch_size, video_frames): inputs = keras.Input((video_frames, 384, 512, 3), batch_size=batch_size) x = TimeDistributed(Conv2D(32, kernel_size=(3, 3), activation='relu'))(inputs) x = TimeDistributed(MaxPool2D())(x) x = TimeDistributed(Conv2D(32, kernel_size=(3, 3), activation='relu'))(x) x = TimeDistributed(MaxPool2D())(x) x = TimeDistributed(Flatten())(x) x = TimeDistributed(Dense(64, activation='tanh', kernel_initializer='zeros'))(x) x = TimeDistributed(Dropout(0.5))(x) x = TimeDistributed(Dense(6, activation='tanh', kernel_initializer='zeros', bias_initializer=lambda shape, dtype=None: tf.constant( [1, 0, 0, 0, 1, 0], tf.float32 )))(x) x = Lambda(lambda ls: tf.concat([ls[0], tf.reshape(ls[1], (batch_size, video_frames, -1))], -1))([x, inputs]) x = TimeDistributed(BilinearSampler(input_shape=(batch_size, 384, 512, 3), output_shape=(batch_size, 224, 224, 3)))(x) resnet = ResNet101V2(include_top=False, weights=None) x = TimeDistributed(resnet)(x) x = TimeDistributed(Flatten())(x) x = LSTM(32, return_sequences=True)(x) x = LSTM(32)(x) x = Dense(10, activation='relu')(x) x = BatchNormalization()(x) x = Dense(1, activation='sigmoid')(x) model = keras.Model(inputs=inputs, outputs=x) return model
42.071429
84
0.654782
0
0
0
0
0
0
0
0
77
0.043577
329f38947acdd5b4c36b6e62995a1a5be5206f16
1,515
py
Python
scripts/lwtnn-build-dummy-inputs.py
aghoshpub/lwtnn
979069b372f8c3d001d08fb0c756ff98954db644
[ "MIT" ]
98
2016-11-27T04:05:56.000Z
2022-02-28T17:14:19.000Z
scripts/lwtnn-build-dummy-inputs.py
aghoshpub/lwtnn
979069b372f8c3d001d08fb0c756ff98954db644
[ "MIT" ]
90
2016-11-24T15:13:31.000Z
2021-11-29T14:09:34.000Z
scripts/lwtnn-build-dummy-inputs.py
aghoshpub/lwtnn
979069b372f8c3d001d08fb0c756ff98954db644
[ "MIT" ]
46
2016-12-15T17:21:43.000Z
2022-01-27T22:45:42.000Z
#!/usr/bin/env python3 """Generate fake serialized NNs to test the lightweight classes""" import argparse import json import h5py import numpy as np def _run(): args = _get_args() _build_keras_arch("arch.json") _build_keras_inputs_file("variable_spec.json") _build_keras_weights("weights.h5", verbose=args.verbose) def _get_args(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('-v', '--verbose', action='store_true') return parser.parse_args() def _build_keras_arch(name): arch = { 'layers': [ {'activation': 'relu', 'name': 'Dense'} ] } with open(name, 'w') as out_file: out_file.write(json.dumps(arch, indent=2)) def _build_keras_inputs_file(name): def build_input(num): return {"name": "in{}".format(num), "offset": 0.0, "scale": 1.0} top = { "inputs": [build_input(x) for x in range(1,5)], "class_labels": ["out{}".format(x) for x in range(1,5)] } with open(name, 'w') as out_file: out_file.write(json.dumps(top, indent=2)) def _build_keras_weights(name, verbose): half_swap = np.zeros((4,4)) half_swap[0,3] = 1.0 half_swap[1,2] = 1.0 if verbose: print(half_swap) bias = np.zeros(4) with h5py.File(name, 'w') as h5_file: layer0 = h5_file.create_group("layer_0") layer0.create_dataset("param_0", data=half_swap) layer0.create_dataset("param_1", data=bias) if __name__ == "__main__": _run()
27.545455
72
0.634323
0
0
0
0
0
0
0
0
299
0.19736
329f8f1e2538fb2f56b719613eee2ed54216347d
4,884
py
Python
osspeak/platforms/windows.py
OSSpeak/OSSpeak
327c38a37684165f87bf8d76ab2ca135b43b8ab7
[ "MIT" ]
1
2020-03-17T10:24:41.000Z
2020-03-17T10:24:41.000Z
osspeak/platforms/windows.py
OSSpeak/OSSpeak
327c38a37684165f87bf8d76ab2ca135b43b8ab7
[ "MIT" ]
12
2016-09-28T05:16:00.000Z
2020-11-27T22:32:40.000Z
osspeak/platforms/windows.py
OSSpeak/OSSpeak
327c38a37684165f87bf8d76ab2ca135b43b8ab7
[ "MIT" ]
null
null
null
''' Collection of Windows-specific I/O functions ''' import msvcrt import time import ctypes from platforms import winconstants, winclipboard EnumWindows = ctypes.windll.user32.EnumWindows EnumWindowsProc = ctypes.WINFUNCTYPE(ctypes.c_bool, ctypes.POINTER(ctypes.c_int), ctypes.POINTER(ctypes.c_int)) GetWindowText = ctypes.windll.user32.GetWindowTextW GetWindowTextLength = ctypes.windll.user32.GetWindowTextLengthW IsWindowVisible = ctypes.windll.user32.IsWindowVisible def flush_io_buffer(): while msvcrt.kbhit(): print(msvcrt.getch().decode('utf8'), end='') def close_active_window(): hwnd = ctypes.windll.user32.GetForegroundWindow() ctypes.windll.user32.PostMessageA(hwnd, winconstants.WM_CLOSE, 0, 0) def get_active_window_name(): hwnd = ctypes.windll.user32.GetForegroundWindow() return get_window_title(hwnd) def maximize_active_window(): hwnd = ctypes.windll.user32.GetForegroundWindow() ctypes.windll.user32.ShowWindow(hwnd, 3) def minimize_active_window(): hwnd = ctypes.windll.user32.GetForegroundWindow() ctypes.windll.user32.ShowWindow(hwnd, 6) def get_window_title(hwnd): length = GetWindowTextLength(hwnd) buff = ctypes.create_unicode_buffer(length + 1) GetWindowText(hwnd, buff, length + 1) return buff.value def get_matching_windows(title_list): matches = {} def window_enum_callback(hwnd, lParam): if IsWindowVisible(hwnd): window_name = get_window_title(hwnd).lower() for name in title_list: if name not in window_name: return True matches[window_name] = hwnd return True EnumWindows(EnumWindowsProc(window_enum_callback), 0) return matches def activate_window(title, position=1): if position > 0: position -= 1 matches = get_matching_windows(title) sorted_keys = list(sorted(matches.keys(), key=len)) key = sorted_keys[position] hwnd = matches[key] # magic incantations to activate window consistently IsIconic = ctypes.windll.user32.IsIconic ShowWindow = ctypes.windll.user32.ShowWindow GetForegroundWindow = ctypes.windll.user32.GetForegroundWindow GetWindowThreadProcessId = ctypes.windll.user32.GetWindowThreadProcessId BringWindowToTop = ctypes.windll.user32.BringWindowToTop AttachThreadInput = ctypes.windll.user32.AttachThreadInput SetForegroundWindow = ctypes.windll.user32.SetForegroundWindow SystemParametersInfo = ctypes.windll.user32.SystemParametersInfoA if IsIconic(hwnd): ShowWindow(hwnd, winconstants.SW_RESTORE) if GetForegroundWindow() == hwnd: return True ForegroundThreadID = GetWindowThreadProcessId(GetForegroundWindow(), None) ThisThreadID = GetWindowThreadProcessId(hwnd, None) if AttachThreadInput(ThisThreadID, ForegroundThreadID, True): BringWindowToTop(hwnd) SetForegroundWindow(hwnd) AttachThreadInput(ThisThreadID, ForegroundThreadID, False) if GetForegroundWindow() == hwnd: return True timeout = ctypes.c_int() zero = ctypes.c_int(0) SystemParametersInfo(winconstants.SPI_GETFOREGROUNDLOCKTIMEOUT, 0, ctypes.byref(timeout), 0) (winconstants.SPI_SETFOREGROUNDLOCKTIMEOUT, 0, ctypes.byref(zero), winconstants.SPIF_SENDCHANGE) BringWindowToTop(hwnd) SetForegroundWindow(hwnd) SystemParametersInfo(winconstants.SPI_SETFOREGROUNDLOCKTIMEOUT, 0, ctypes.byref(timeout), winconstants.SPIF_SENDCHANGE) if GetForegroundWindow() == hwnd: return True return False def get_mouse_location(): pt = winconstants.POINT() ctypes.windll.user32.GetCursorPos(ctypes.byref(pt)) return pt.x, pt.y def mouse_click(button, direction, number): event_nums = get_mouse_event_nums(button, direction) for i in range(number): for num in event_nums: ctypes.windll.user32.mouse_event(num, 0, 0, 0, 0) def mouse_move(x=None, y=None, relative=False): startx, starty = get_mouse_location() if not relative: if x is None: x = startx if y is None: y = starty ctypes.windll.user32.SetCursorPos(x, y) return if x is None: x = 0 if y is None: y = 0 ctypes.windll.user32.SetCursorPos(startx + x, starty + y) def get_clipboard_contents(): return winclipboard.init_windows_clipboard()[1]() def set_clipboard_contents(text): return winclipboard.init_windows_clipboard()[0](str(text)) def get_mouse_event_nums(button, direction): if button == 'left' and direction == 'down': return [2] if button == 'left' and direction == 'up': return [4] if button == 'left' and direction == 'both': return [2, 4] if button == 'right' and direction == 'down': return [8] if button == 'right' and direction == 'up': return [16] if button == 'right' and direction == 'both': return [8, 16]
37.282443
123
0.719287
0
0
0
0
0
0
0
0
183
0.037469
32a0d30f56c4a1916c5ad0aef5a7b50495e1860b
715
py
Python
sudokusolver/common/messenger.py
Blondberg/SudokuSolver
4a6f1f927d41f7a39a953b9784b28d570edf1f09
[ "MIT" ]
null
null
null
sudokusolver/common/messenger.py
Blondberg/SudokuSolver
4a6f1f927d41f7a39a953b9784b28d570edf1f09
[ "MIT" ]
null
null
null
sudokusolver/common/messenger.py
Blondberg/SudokuSolver
4a6f1f927d41f7a39a953b9784b28d570edf1f09
[ "MIT" ]
null
null
null
# messenger.py - contains functions to create different kinds of messages like info or error # color the text, usage: print bcolors.WARNING + "Warning: No active frommets remain. Continue?" + bcolors.ENDC BCOLORS = { 'HEADER': '\033[95m', 'OKBLUE': '\033[94m', 'OKGREEN': '\033[92m', 'WARNING': '\033[93m', 'FAIL': '\033[91m', 'ENDC': '\033[0m', 'BOLD': '\033[1m', 'UNDERLINE': '\033[4m' } # Information message def info(message): print(BCOLORS['OKBLUE'] + message + BCOLORS['ENDC']) # Action message def action(message): print(BCOLORS['OKGREEN'] + message + BCOLORS['ENDC']) # Error message def error(message): print(BCOLORS['FAIL'] + message + BCOLORS['ENDC'])
23.833333
111
0.633566
0
0
0
0
0
0
0
0
436
0.60979
32a23291b7486cbc9a87ce5a914dd735071b20e4
554
py
Python
test.py
w0w/miniPFC
63b1bf608de03efada2a1b57c0370b6a7c2bf1ad
[ "MIT" ]
null
null
null
test.py
w0w/miniPFC
63b1bf608de03efada2a1b57c0370b6a7c2bf1ad
[ "MIT" ]
null
null
null
test.py
w0w/miniPFC
63b1bf608de03efada2a1b57c0370b6a7c2bf1ad
[ "MIT" ]
null
null
null
import json import RPi.GPIO as GPIO from modules.sensor import getTempC, getHumidity def loadConfig(): with open('./config/pin.json') as data_file: data = json.load(data_file) return data currentPins = loadConfig().values() def bootActuators(): '''Assumes that pi is booting and set off all the relays''' GPIO.setmode(GPIO.BOARD) for i, p in enumerate(currentPins): GPIO.setup(p, GPIO.OUT) GPIO.output(p, GPIO.HIGH) print(p, GPIO.input(p)) print('Actuators turned off') bootActuators()
25.181818
63
0.66426
0
0
0
0
0
0
0
0
100
0.180505
32a426fd1c9efac97183a6c708ae91ac77c14062
1,170
py
Python
example.py
clagraff/habu
28d05c2fa2204b26177bbaed969648b92b89c735
[ "MIT" ]
null
null
null
example.py
clagraff/habu
28d05c2fa2204b26177bbaed969648b92b89c735
[ "MIT" ]
null
null
null
example.py
clagraff/habu
28d05c2fa2204b26177bbaed969648b92b89c735
[ "MIT" ]
null
null
null
import json import habu def do_req(uri, *args, **kwargs): route_data = { "/": { "_links": { "people": { "href": "/people" }, "animals": { "href": "/animals" } } }, "/people": { "_links": { "self": { "href": "/products" } }, "_embedded": { "people": [ { "_links": { "self": { "href": "/people/clagraff" } }, "name": "Curtis", "age": 22 } ] }, "total": 1 }, "/people/clagraff": { "_links": { "self": { "href": "/people/clagraff" } }, "name": "Curtis", "age": 22 } } return route_data[uri] def main(): habu.set_request_func(do_req) api = habu.enter("/") people = api.people() print("There are %i people" % people.total) for person in people.embedded.people: print("Hi! I am %s and I am %i years old" % (person.name, person.age)) curtis = habu.enter("/people/clagraff") print(curtis) if __name__ == "__main__": main()
23.4
105
0.417949
0
0
0
0
0
0
0
0
344
0.294017
32a62b611ae086d7c010dc8106960f0f8f3738b2
1,162
py
Python
notify_tweet.py
mkaraki/WatchTweets
9b0a4ef66e38311453fff99d02091758b1bd0df5
[ "MIT" ]
null
null
null
notify_tweet.py
mkaraki/WatchTweets
9b0a4ef66e38311453fff99d02091758b1bd0df5
[ "MIT" ]
1
2022-01-26T18:03:15.000Z
2022-01-26T18:03:35.000Z
notify_tweet.py
mkaraki/WatchTweets
9b0a4ef66e38311453fff99d02091758b1bd0df5
[ "MIT" ]
null
null
null
import json import os import requests from dotenv import load_dotenv # You have to configure in this file to notify other services def notifyHandler(tweet): notifyDiscord(tweet) return def notifyDiscord(tweet, find_user_info=False): msg = tweet['text'] if ('entities' in tweet and 'urls' in tweet['entities']): for (i, url) in enumerate(tweet['entities']['urls']): msg = msg.replace(url['url'], url['expanded_url']) c = { 'embeds': [{ 'description': msg, 'author': { 'name': tweet['author_id'], 'url': 'https://twitter.com/intent/user?user_id=' + tweet['author_id'], }, 'title': 'Tweet', 'url': 'https://twitter.com/intent/like?tweet_id=' + tweet['id'], 'footer': { 'text': 'Twitter', 'icon_url': 'http://github.com/twitter.png', }, 'timestamp': tweet['created_at'], }] } requests.post(os.getenv('DISCORD_WEBHOOK_URL'), json.dumps( c), headers={'Content-Type': 'application/json'}) return load_dotenv(override=True)
26.409091
87
0.553356
0
0
0
0
0
0
0
0
438
0.376936
32aa7faedb604f995e124967e180cd9dc0c8087d
2,245
py
Python
credentials.py
Ken-mbira/Trust_Password_Protector
7d4d25e6d10582c21cc84ce0ffdffe45d45c0d63
[ "MIT" ]
null
null
null
credentials.py
Ken-mbira/Trust_Password_Protector
7d4d25e6d10582c21cc84ce0ffdffe45d45c0d63
[ "MIT" ]
null
null
null
credentials.py
Ken-mbira/Trust_Password_Protector
7d4d25e6d10582c21cc84ce0ffdffe45d45c0d63
[ "MIT" ]
1
2021-09-07T05:08:02.000Z
2021-09-07T05:08:02.000Z
import random import string class Cred: """ This is a class that makes the user credentials for their different accounts """ def __init__(self,account_name,user_name,email,password): """ This will construct an instance of the credentials class """ self.account_name = account_name self.user_name = user_name self.email = email self.password = password credential_list = [] def save_credential(self): """ This will add a newly created credential to the credentials list """ Cred.credential_list.append(self) def delete_credential(self): """ This method will delete a credential from the credential list """ Cred.credential_list.remove(self) @classmethod def display_credentials(cls): """ This will display all the credentials in the credentials list """ return Cred.credential_list @classmethod def find_account(cls,account): """ This will return the credentials after being given an account name Args: account_name: This is the account of the credentials that will be used to locate the credential """ for credential in cls.credential_list: if credential.account_name == account: return credential @classmethod def credential_found(cls,account): """ This is a method that returns a boolean on finding or not finding a credential Args: account: This is the name of the account that is used to find the credential """ for credential in cls.credential_list: if credential.account_name == account: return True return False @classmethod def password_generator(cls,length): """ this method generates a random password with letters, symbols and digits Args: length: This is the desired length of the password """ characters = string.ascii_letters + string.ascii_lowercase + string.ascii_uppercase + string.digits + string.punctuation return "".join(random.choice(characters) for i in range(length))
32.071429
128
0.632962
2,216
0.987082
0
0
1,425
0.634744
0
0
1,023
0.455679
32ac15da27e5771cb19e9b355fd09244b1a2fee3
561
py
Python
misprogs/sensor_Luz_LCD.py
dacocube/CursoGalileo
1dac903031d9ff61174cb0c5e00e3f3795ea60de
[ "Apache-2.0" ]
null
null
null
misprogs/sensor_Luz_LCD.py
dacocube/CursoGalileo
1dac903031d9ff61174cb0c5e00e3f3795ea60de
[ "Apache-2.0" ]
null
null
null
misprogs/sensor_Luz_LCD.py
dacocube/CursoGalileo
1dac903031d9ff61174cb0c5e00e3f3795ea60de
[ "Apache-2.0" ]
null
null
null
import signal import sys import time import pyupm_grove as grove import pyupm_i2clcd as lcd def interruptHandler(signal, frame): sys.exit(0) if __name__=='__main__': signal.signal(signal.SIGINT, interruptHandler) myLcd = lcd.Jhd1313m1(0, 0x3E,0x62) sensorluz=grove.GroveLight(0) coloR=255 colorG=200 colorB=100 myLcd.setColor(coloR,colorG,colorB) #read the input and print, waiting 1/2 seconds between reading while True: valorSensor=sensorluz.value() myLcd.setCursor(0,0) myLcd.write('%6d'% valorSensor) time.sleep(0.5) del sensorluz
20.777778
63
0.761141
0
0
0
0
0
0
0
0
77
0.137255
32b0d4c387e53daeda7939c3bdfe5d3e18cb6dbb
210
py
Python
setup.py
cogsy23/pyfsm
22236994f7455a39489d1438b7c8bbcd081352be
[ "MIT" ]
null
null
null
setup.py
cogsy23/pyfsm
22236994f7455a39489d1438b7c8bbcd081352be
[ "MIT" ]
null
null
null
setup.py
cogsy23/pyfsm
22236994f7455a39489d1438b7c8bbcd081352be
[ "MIT" ]
null
null
null
from setuptools import setup, find_packages setup( name='FSM', version='0.1', author='Ben Coughlan', author_email='[email protected]', packages=find_packages(), license_file='LICENSE', )
19.090909
43
0.666667
0
0
0
0
0
0
0
0
50
0.238095
32b26100558c8d0079fd4f055056d994cd62c099
9,553
py
Python
clustviz/clarans.py
barbarametzler/ClustViz
a460e1ffb5195dfe1e12bca106366901d169a690
[ "MIT" ]
6
2019-11-14T11:22:54.000Z
2020-03-01T09:14:21.000Z
clustviz/clarans.py
barbarametzler/ClustViz
a460e1ffb5195dfe1e12bca106366901d169a690
[ "MIT" ]
2
2020-07-21T07:49:07.000Z
2021-04-06T16:16:09.000Z
clustviz/clarans.py
barbarametzler/ClustViz
a460e1ffb5195dfe1e12bca106366901d169a690
[ "MIT" ]
5
2020-07-14T15:22:00.000Z
2022-03-19T19:45:32.000Z
import random from typing import Tuple, Dict, Any import scipy import itertools import graphviz import numpy as np import pandas as pd from clustviz.pam import plot_pam from pyclustering.utils import euclidean_distance_square from pyclustering.cluster.clarans import clarans as clarans_pyclustering class clarans(clarans_pyclustering): def process(self, plotting: bool = False): """! @brief Performs cluster analysis in line with rules of CLARANS algorithm. @return (clarans) Returns itself (CLARANS instance). @see get_clusters() @see get_medoids() """ random.seed() # loop for a numlocal number of times for _ in range(0, self.__numlocal): print("numlocal: ", _) # set (current) random medoids self.__current = random.sample( range(0, len(self.__pointer_data)), self.__number_clusters ) # update clusters in line with random allocated medoids self.__update_clusters(self.__current) # optimize configuration self.__optimize_configuration() # obtain cost of current cluster configuration and compare it with the best obtained estimation = self.__calculate_estimation() if estimation < self.__optimal_estimation: print( "Better configuration found with medoids: {0} and cost: {1}".format( self.__current[:], estimation ) ) self.__optimal_medoids = self.__current[:] self.__optimal_estimation = estimation if plotting is True: self.__update_clusters(self.__optimal_medoids) plot_pam( self.__pointer_data, dict(zip(self.__optimal_medoids, self.__clusters)), ) else: print( "Configuration found does not improve current best one because its cost is {0}".format( estimation ) ) if plotting is True: self.__update_clusters(self.__current[:]) plot_pam( self.__pointer_data, dict(zip(self.__current[:], self.__clusters)), ) self.__update_clusters(self.__optimal_medoids) if plotting is True: print("FINAL RESULT:") plot_pam( self.__pointer_data, dict(zip(self.__optimal_medoids, self.__clusters)), ) return self def __optimize_configuration(self): """! @brief Finds quasi-optimal medoids and updates in line with them clusters in line with algorithm's rules. """ index_neighbor = 0 counter = 0 while index_neighbor < self.__maxneighbor: # get random current medoid that is to be replaced current_medoid_index = self.__current[ random.randint(0, self.__number_clusters - 1) ] current_medoid_cluster_index = self.__belong[current_medoid_index] # get new candidate to be medoid candidate_medoid_index = random.randint( 0, len(self.__pointer_data) - 1 ) while candidate_medoid_index in self.__current: candidate_medoid_index = random.randint( 0, len(self.__pointer_data) - 1 ) candidate_cost = 0.0 for point_index in range(0, len(self.__pointer_data)): if point_index not in self.__current: # get non-medoid point and its medoid point_cluster_index = self.__belong[point_index] point_medoid_index = self.__current[point_cluster_index] # get other medoid that is nearest to the point (except current and candidate) other_medoid_index = self.__find_another_nearest_medoid( point_index, current_medoid_index ) other_medoid_cluster_index = self.__belong[ other_medoid_index ] # for optimization calculate all required distances # from the point to current medoid distance_current = euclidean_distance_square( self.__pointer_data[point_index], self.__pointer_data[current_medoid_index], ) # from the point to candidate median distance_candidate = euclidean_distance_square( self.__pointer_data[point_index], self.__pointer_data[candidate_medoid_index], ) # from the point to nearest (own) medoid distance_nearest = float("inf") if (point_medoid_index != candidate_medoid_index) and ( point_medoid_index != current_medoid_cluster_index ): distance_nearest = euclidean_distance_square( self.__pointer_data[point_index], self.__pointer_data[point_medoid_index], ) # apply rules for cost calculation if point_cluster_index == current_medoid_cluster_index: # case 1: if distance_candidate >= distance_nearest: candidate_cost += ( distance_nearest - distance_current ) # case 2: else: candidate_cost += ( distance_candidate - distance_current ) elif point_cluster_index == other_medoid_cluster_index: # case 3 ('nearest medoid' is the representative object of that cluster and object is more # similar to 'nearest' than to 'candidate'): if distance_candidate > distance_nearest: pass # case 4: else: candidate_cost += ( distance_candidate - distance_nearest ) if candidate_cost < 0: counter += 1 # set candidate that has won self.__current[ current_medoid_cluster_index ] = candidate_medoid_index # recalculate clusters self.__update_clusters(self.__current) # reset iterations and starts investigation from the begining index_neighbor = 0 else: index_neighbor += 1 print("Medoid set changed {0} times".format(counter)) def compute_cost_clarans(data: pd.DataFrame, _cur_choice: list) -> Tuple[float, Dict[Any, list]]: """ A function to compute the configuration cost. (modified from that of CLARA) :param data: The input dataframe. :param _cur_choice: The current set of medoid choices. :return: The total configuration cost, the medoids. """ total_cost = 0.0 medoids = {} for idx in _cur_choice: medoids[idx] = [] for i in list(data.index): choice = -1 min_cost = np.inf for m in medoids: # fast_euclidean from CLARA tmp = np.linalg.norm(data.loc[m] - data.loc[i]) if tmp < min_cost: choice = m min_cost = tmp medoids[choice].append(i) total_cost += min_cost # print("total_cost: ", total_cost) return total_cost, medoids def plot_tree_clarans(data: pd.DataFrame, k: int) -> None: """ plot G_{k,n} as in the paper of CLARANS; only to use with small input data. :param data: input DataFrame. :param k: number of points in each combination (possible set of medoids). """ n = len(data) num_points = int(scipy.special.binom(n, k)) num_neigh = k * (n - k) if (num_points > 50) or (num_neigh > 10): print( "Either graph nodes are more than 50 or neighbors are more than 10, the graph would be too big" ) return # all possibile combinations of k elements from input data name_nodes = list(itertools.combinations(list(data.index), k)) dot = graphviz.Digraph(comment="Clustering") # draw nodes, also adding the configuration cost for i in range(num_points): tot_cost, meds = compute_cost_clarans(data, list(name_nodes[i])) tc = round(tot_cost, 3) dot.node(str(name_nodes[i]), str(name_nodes[i]) + ": " + str(tc)) # only connect nodes if they have k-1 common elements for i in range(num_points): for j in range(num_points): if i != j: if ( len(set(list(name_nodes[i])) & set(list(name_nodes[j]))) == k - 1 ): dot.edge(str(name_nodes[i]), str(name_nodes[j])) graph = graphviz.Source(dot) # .view() display(graph)
36.185606
114
0.539098
6,934
0.725845
0
0
0
0
0
0
2,233
0.233749
32b489e63deb6a7323ecb9996f33d06edac172bd
1,507
py
Python
bin/demo_findit_backup_url.py
cariaso/metapub
bfa361dd6e5de8ee0859e596d490fb478f7dcfba
[ "Apache-2.0" ]
28
2019-09-09T08:12:31.000Z
2021-12-17T00:09:14.000Z
bin/demo_findit_backup_url.py
cariaso/metapub
bfa361dd6e5de8ee0859e596d490fb478f7dcfba
[ "Apache-2.0" ]
33
2019-11-07T05:36:04.000Z
2022-01-29T01:14:57.000Z
bin/demo_findit_backup_url.py
cariaso/metapub
bfa361dd6e5de8ee0859e596d490fb478f7dcfba
[ "Apache-2.0" ]
10
2019-09-09T10:04:05.000Z
2021-06-08T16:00:14.000Z
from __future__ import absolute_import, print_function, unicode_literals import os import requests from metapub.findit import FindIt from metapub.exceptions import * from requests.packages import urllib3 urllib3.disable_warnings() OUTPUT_DIR = 'findit' CURL_TIMEOUT = 4000 def try_request(url): # verify=False means it ignores bad SSL certs OK_STATUS_CODES = [200, 301, 302, 307] response = requests.get(url, stream=True, timeout=CURL_TIMEOUT, verify=False) if response.status_code in OK_STATUS_CODES: if response.headers.get('content-type').find('pdf') > -1: return True return False def try_backup_url(pmid): source = FindIt(pmid=pmid) if not source.pma: return if source.url: print(pmid, source.pma.journal, source.url, try_request(source.url)) else: print(pmid, source.pma.journal, source.reason) try: if source.backup_url is not None: print(pmid, source.pma.journal, source.backup_url, try_request(source.backup_url)) else: print(pmid, source.pma.journal, "no backup url") except Exception as err: print(pmid, '%r' % err) if __name__=='__main__': import sys try: start_pmid = int(sys.argv[1]) except (IndexError, TypeError) as err: print("Supply a pubmed ID as the starting point for this script.") sys.exit() for pmid in range(start_pmid, start_pmid+1000): try_backup_url(pmid)
28.433962
98
0.666224
0
0
0
0
0
0
0
0
160
0.106171
32b5c206b4bd2dca61a6557018af529be9b8ba2f
3,939
py
Python
kgcnn/layers/conv/dmpnn_conv.py
the16thpythonist/gcnn_keras
27d794095b684333d93149c825d84b85df8c30ff
[ "MIT" ]
47
2021-03-10T10:15:42.000Z
2022-03-14T00:53:40.000Z
kgcnn/layers/conv/dmpnn_conv.py
the16thpythonist/gcnn_keras
27d794095b684333d93149c825d84b85df8c30ff
[ "MIT" ]
36
2021-05-06T15:06:51.000Z
2022-03-02T13:06:16.000Z
kgcnn/layers/conv/dmpnn_conv.py
the16thpythonist/gcnn_keras
27d794095b684333d93149c825d84b85df8c30ff
[ "MIT" ]
11
2021-04-05T02:14:27.000Z
2022-03-02T03:25:52.000Z
import tensorflow as tf from kgcnn.layers.base import GraphBaseLayer from kgcnn.layers.gather import GatherNodesOutgoing, GatherNodesIngoing from kgcnn.layers.pooling import PoolingLocalEdges from kgcnn.layers.modules import LazySubtract @tf.keras.utils.register_keras_serializable(package='kgcnn', name='DMPNNGatherEdgesPairs') class DMPNNGatherEdgesPairs(GraphBaseLayer): """Gather edge pairs that also works for invalid indices given a certain pair, i.e. if a edge does not have its reverse counterpart in the edge indices list. This class is used in `DMPNN <https://pubs.acs.org/doi/full/10.1021/acs.jcim.9b00237>`_ . """ def __init__(self, **kwargs): """Initialize layer.""" super(DMPNNGatherEdgesPairs, self).__init__(**kwargs) self.gather_layer = GatherNodesIngoing() def build(self, input_shape): """Build layer.""" super(DMPNNGatherEdgesPairs, self).build(input_shape) def call(self, inputs, **kwargs): """Forward pass. Args: inputs (list): [edges, pair_index] - edges (tf.RaggedTensor): Node embeddings of shape (batch, [M], F) - pair_index (tf.RaggedTensor): Edge indices referring to edges of shape (batch, [M], 1) Returns: list: Gathered edge embeddings that match the reverse edges of shape (batch, [M], F) for selection_index. """ self.assert_ragged_input_rank(inputs) edges, pair_index = inputs index_corrected = tf.RaggedTensor.from_row_splits( tf.where(pair_index.values >= 0, pair_index.values, tf.zeros_like(pair_index.values)), pair_index.row_splits, validate=self.ragged_validate) edges_paired = self.gather_layer([edges, index_corrected], **kwargs) edges_corrected = tf.RaggedTensor.from_row_splits( tf.where(pair_index.values >= 0, edges_paired.values, tf.zeros_like(edges_paired.values)), edges_paired.row_splits, validate=self.ragged_validate) return edges_corrected @tf.keras.utils.register_keras_serializable(package='kgcnn', name='DMPNNPPoolingEdgesDirected') class DMPNNPPoolingEdgesDirected(GraphBaseLayer): """Pooling of edges for around a target node as defined by `DMPNN <https://pubs.acs.org/doi/full/10.1021/acs.jcim.9b00237>`_ . This slightly different than the normal node aggregation from message passing like networks. Requires edge pairs for this implementation. """ def __init__(self, **kwargs): """Initialize layer.""" super(DMPNNPPoolingEdgesDirected, self).__init__(**kwargs) self.pool_edge_1 = PoolingLocalEdges(pooling_method="sum") self.gather_edges = GatherNodesOutgoing() self.gather_pairs = DMPNNGatherEdgesPairs() self.subtract_layer = LazySubtract() def build(self, input_shape): """Build layer.""" super(DMPNNPPoolingEdgesDirected, self).build(input_shape) def call(self, inputs, **kwargs): """Forward pass. Args: inputs: [nodes, edges, edge_index, edge_reverse_pair] - nodes (tf.RaggedTensor): Node embeddings of shape (batch, [N], F) - edges (tf.RaggedTensor): Edge or message embeddings of shape (batch, [M], F) - edge_index (tf.RaggedTensor): Edge indices referring to nodes of shape (batch, [M], 2) - edge_reverse_pair (tf.RaggedTensor): Pair mappings for reverse edges (batch, [M], 1) Returns: tf.RaggedTensor: Edge embeddings of shape (batch, [M], F) """ n, ed, edi, edp = inputs pool_edge_receive = self.pool_edge_1([n, ed, edi], **kwargs) # Sum pooling of all edges ed_new = self.gather_edges([pool_edge_receive, edi], **kwargs) ed_not = self.gather_pairs([ed, edp], **kwargs) out = self.subtract_layer([ed_new, ed_not], **kwargs) return out
43.766667
117
0.67276
3,507
0.890327
0
0
3,694
0.937801
0
0
1,724
0.437675
32b80da9076a6963ab2a24a72478920a41611e59
181
py
Python
src/keys_management/secret_key/types.py
nielsen-oss/keys-management
ddeeceb19dae68516272fe13dfc6521dcbe295f2
[ "Apache-2.0" ]
6
2021-06-25T17:21:18.000Z
2021-07-13T17:31:28.000Z
src/keys_management/secret_key/types.py
nielsen-oss/keys-management
ddeeceb19dae68516272fe13dfc6521dcbe295f2
[ "Apache-2.0" ]
null
null
null
src/keys_management/secret_key/types.py
nielsen-oss/keys-management
ddeeceb19dae68516272fe13dfc6521dcbe295f2
[ "Apache-2.0" ]
null
null
null
from typing import Callable, Tuple, Union StrOrBytes = Union[str, bytes] StrOrBytesPair = Tuple[StrOrBytes, StrOrBytes] KeysStore = Callable[[], Union[StrOrBytes, StrOrBytesPair]]
30.166667
59
0.78453
0
0
0
0
0
0
0
0
0
0
32b877d4916dd5d40bd6976997b7ef7d01823785
349
py
Python
api/admin.py
jchmura/suchary-django
af2e8a62d222fd6eb18f29af95c23ab098ccc2a6
[ "MIT" ]
null
null
null
api/admin.py
jchmura/suchary-django
af2e8a62d222fd6eb18f29af95c23ab098ccc2a6
[ "MIT" ]
2
2021-03-19T21:54:17.000Z
2021-06-10T19:20:12.000Z
api/admin.py
jchmura/suchary-django
af2e8a62d222fd6eb18f29af95c23ab098ccc2a6
[ "MIT" ]
null
null
null
from django.contrib import admin from api.models import Device class DeviceAdmin(admin.ModelAdmin): list_display = ['android_id', 'alias', 'model', 'os_version', 'version', 'created', 'last_seen', 'active'] list_filter = ['active'] search_fields = ['registration_id', 'android_id', 'alias'] admin.site.register(Device, DeviceAdmin)
26.846154
110
0.713467
239
0.684814
0
0
0
0
0
0
119
0.340974
32b93fe289994ee8aa84e901e1536e526ce09b82
169
py
Python
project/help/urls.py
samuraii/otus_python_backend
1bc7c8953a03008c94dd4b0ca89a7c830772f79a
[ "MIT" ]
null
null
null
project/help/urls.py
samuraii/otus_python_backend
1bc7c8953a03008c94dd4b0ca89a7c830772f79a
[ "MIT" ]
null
null
null
project/help/urls.py
samuraii/otus_python_backend
1bc7c8953a03008c94dd4b0ca89a7c830772f79a
[ "MIT" ]
null
null
null
# from django.contrib import admin # from django.urls import path from django.conf.urls import url from help import views urlpatterns = [ url(r'^$', views.index) ]
18.777778
34
0.727811
0
0
0
0
0
0
0
0
69
0.408284
32b9a1053b526032d5d6c19f20fe7c9cbc1b1859
5,299
py
Python
social_network/utils.py
diana-gv/django-social-network
48bafca81f28874ceead59e263ce5b7e3853dbfb
[ "BSD-3-Clause" ]
3
2015-01-13T05:45:04.000Z
2020-01-10T19:05:35.000Z
social_network/utils.py
diana-gv/django-social-network
48bafca81f28874ceead59e263ce5b7e3853dbfb
[ "BSD-3-Clause" ]
null
null
null
social_network/utils.py
diana-gv/django-social-network
48bafca81f28874ceead59e263ce5b7e3853dbfb
[ "BSD-3-Clause" ]
6
2015-01-13T04:40:53.000Z
2021-08-13T01:07:40.000Z
# coding=utf-8 import random from django.core.cache import cache from django.core.exceptions import ObjectDoesNotExist from django.utils.translation import ugettext as _ from notifications.models import EventType from social_graph import EdgeType try: from hashlib import sha1 as sha_constructor, md5 as md5_constructor except ImportError: pass #---------------------NOTIFICATIONS--------------------------------- def group_comment_event_type(): comment_event_type = cache.get('SOCIAL_NETWORK_COMMENT_EVENT_TYPE') if comment_event_type is not None: return comment_event_type try: from . import SOCIAL_GROUP_COMMENT_EVENT_TYPE_NAME comment_event_type = EventType.objects.get(name=SOCIAL_GROUP_COMMENT_EVENT_TYPE_NAME) cache.set('SOCIAL_NETWORK_COMMENT_EVENT_TYPE', comment_event_type) return comment_event_type except ObjectDoesNotExist as e: pass # TODO Log this def group_shared_link_event_type(): shared_link = cache.get('SOCIAL_NETWORK_SHARED_LINK_EVENT_TYPE') if shared_link is not None: return shared_link try: from . import SOCIAL_GROUP_SHARED_LINK_EVENT_TYPE_NAME shared_link = EventType.objects.get(name=SOCIAL_GROUP_SHARED_LINK_EVENT_TYPE_NAME) cache.set('SOCIAL_NETWORK_SHARED_LINK_EVENT_TYPE', shared_link) return shared_link except ObjectDoesNotExist as e: pass # TODO Log this def group_photo_event_type(): photo_event_type = cache.get('SOCIAL_NETWORK_PHOTO_EVENT_TYPE') if photo_event_type is not None: return photo_event_type try: from . import SOCIAL_GROUP_PHOTO_EVENT_TYPE_NAME photo_event_type = EventType.objects.get(name=SOCIAL_GROUP_PHOTO_EVENT_TYPE_NAME) cache.set('SOCIAL_NETWORK_PHOTO_EVENT_TYPE', photo_event_type) return photo_event_type except ObjectDoesNotExist as e: pass # TODO Log this #---------------------EDGES----------------------------------------- def friendship_edge(): _friendship = cache.get('FRIENDSHIP_EDGE_TYPE') if _friendship is not None: return _friendship try: _friendship = EdgeType.objects.get(name="Friendship") cache.set('FRIENDSHIP_EDGE_TYPE', _friendship) return _friendship except ObjectDoesNotExist as e: pass # TODO Log this def integrated_by_edge(): _integrated_by = cache.get('INTEGRATED_BY_EDGE_TYPE') if _integrated_by is not None: return _integrated_by try: _integrated_by = EdgeType.objects.get(name="Integrated by") cache.set('INTEGRATED_BY_EDGE_TYPE', _integrated_by) return _integrated_by except ObjectDoesNotExist as e: pass # TODO Log this def member_of_edge(): _member_of = cache.get('MEMBER_OF_EDGE_TYPE') if _member_of is not None: return _member_of try: _member_of = EdgeType.objects.get(name="Member") cache.set('MEMBER_OF_EDGE_TYPE', _member_of) return _member_of except ObjectDoesNotExist as e: pass # TODO Log this def follower_of_edge(): _follower_of = cache.get('FOLLOWER_OF_EDGE_TYPE') if _follower_of is not None: return _follower_of try: _follower_of = EdgeType.objects.get(name="Follower") cache.set('FOLLOWER_OF_EDGE_TYPE', _follower_of) return _follower_of except ObjectDoesNotExist: pass def followed_by_edge(): _followed_by = cache.get('FOLLOWED_BY_EDGE_TYPE') if _followed_by is not None: return _followed_by try: _followed_by = EdgeType.objects.get(name="Followed by") cache.set('FOLLOWED_BY_EDGE_TYPE', _followed_by) return _followed_by except ObjectDoesNotExist: pass #---------------------GENERAL----------------------------------------- def generate_sha1(string, salt=None): """ Generates a sha1 hash for supplied string. Doesn't need to be very secure because it's not used for password checking. We got Django for that. :param string: The string that needs to be encrypted. :param salt: Optionally define your own salt. If none is supplied, will use a random string of 5 characters. :return: Tuple containing the salt and hash. """ if not isinstance(string, (str, unicode)): string = str(string) if isinstance(string, unicode): string = string.encode("utf-8") if not salt: salt = sha_constructor(str(random.random())).hexdigest()[:5] hash = sha_constructor(salt+string).hexdigest() return (salt, hash) # A tuple of standard large number to their converters intword_converters = ( (3, lambda number: _('%(value)dK')), (6, lambda number: _('%(value)dM')), (9, lambda number: _('%(value)dG')), ) def intmin(value): """ """ try: value = int(value) except (TypeError, ValueError): return value if value < 1000: return value for exponent, converter in intword_converters: large_number = 10 ** exponent if value < large_number * 1000: new_value = value / large_number tpl = "+%s" if value > large_number else "%s" return tpl % converter(new_value) % {'value': new_value} return value
31.35503
93
0.670881
0
0
0
0
0
0
0
0
1,344
0.253633
32ba91d9753d50c77b106fbc0d73eade94889fbb
219
py
Python
datavis/urls.py
poulomihore/iot-hackathon
4f90c12c164f3ee09341fc1381b1f7898a5d3055
[ "MIT" ]
null
null
null
datavis/urls.py
poulomihore/iot-hackathon
4f90c12c164f3ee09341fc1381b1f7898a5d3055
[ "MIT" ]
null
null
null
datavis/urls.py
poulomihore/iot-hackathon
4f90c12c164f3ee09341fc1381b1f7898a5d3055
[ "MIT" ]
null
null
null
from django.urls import path from . import views urlpatterns = [ path('', views.get_percentage, name='get_percentage'), path('get_percentage_value', views.get_percentage_value, name='get_percentage_value'), ]
24.333333
90
0.748858
0
0
0
0
0
0
0
0
62
0.283105
32bb0cd05fa6989d453a40177c162d1a6d206545
10,866
py
Python
datafiles/migrations/0001_initial.py
ChalkLab/SciFlow
5bf021007d6184402ebfe6cefc2111d99160cb69
[ "MIT" ]
1
2021-04-26T20:03:11.000Z
2021-04-26T20:03:11.000Z
datafiles/migrations/0001_initial.py
ChalkLab/SciFlow
5bf021007d6184402ebfe6cefc2111d99160cb69
[ "MIT" ]
17
2021-04-23T16:51:59.000Z
2021-12-13T21:17:41.000Z
datafiles/migrations/0001_initial.py
ChalkLab/SciFlow
5bf021007d6184402ebfe6cefc2111d99160cb69
[ "MIT" ]
null
null
null
# Generated by Django 3.2.8 on 2021-10-12 15:54 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='AspectActlog', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('activitycode', models.CharField(max_length=16)), ('comment', models.CharField(max_length=256)), ('updated', models.DateTimeField()), ], options={ 'db_table': 'aspect_actlog', 'managed': False, }, ), migrations.CreateModel( name='AspectErrors', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('errorcode', models.CharField(max_length=16)), ('comment', models.CharField(max_length=256)), ('updated', models.DateTimeField()), ], options={ 'db_table': 'aspect_errors', 'managed': False, }, ), migrations.CreateModel( name='AspectFiles', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('file', models.TextField()), ('type', models.CharField(max_length=32)), ('version', models.IntegerField()), ('updated', models.DateTimeField()), ], options={ 'db_table': 'aspect_files', 'managed': False, }, ), migrations.CreateModel( name='AspectLookup', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('uniqueid', models.CharField(max_length=128)), ('title', models.CharField(max_length=256)), ('type', models.CharField(max_length=16)), ('graphname', models.CharField(max_length=256)), ('currentversion', models.IntegerField()), ('auth_user_id', models.PositiveIntegerField()), ('updated', models.DateTimeField()), ], options={ 'db_table': 'aspect_lookup', 'managed': False, }, ), migrations.CreateModel( name='Datasets', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(default='', max_length=64)), ('sourcecode', models.CharField(max_length=16, null=True)), ('source', models.CharField(default='', max_length=64)), ('sourceurl', models.CharField(default='', max_length=256)), ('datasetname', models.CharField(max_length=16, null=True)), ('uniqueidformat', models.CharField(max_length=128, null=True)), ('protected', models.CharField(choices=[('yes', 'Yes'), ('no', 'No')], default='no', max_length=16)), ('count', models.IntegerField(default=0)), ], options={ 'db_table': 'datasets', 'managed': False, }, ), migrations.CreateModel( name='FacetActlog', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('activitycode', models.CharField(max_length=16)), ('comment', models.CharField(max_length=256)), ('updated', models.DateTimeField()), ], options={ 'db_table': 'facet_actlog', 'managed': False, }, ), migrations.CreateModel( name='FacetErrors', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('errorcode', models.CharField(max_length=16)), ('comment', models.CharField(max_length=256)), ('updated', models.DateTimeField()), ], options={ 'db_table': 'facet_errors', 'managed': False, }, ), migrations.CreateModel( name='FacetFiles', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('file', models.TextField()), ('type', models.CharField(max_length=32)), ('version', models.IntegerField()), ('updated', models.DateTimeField()), ], options={ 'db_table': 'facet_files', 'managed': False, }, ), migrations.CreateModel( name='FacetLookup', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('uniqueid', models.CharField(max_length=128)), ('title', models.CharField(max_length=256)), ('type', models.CharField(max_length=16)), ('graphname', models.CharField(max_length=256)), ('currentversion', models.IntegerField()), ('auth_user_id', models.PositiveIntegerField()), ('updated', models.DateTimeField()), ], options={ 'db_table': 'facet_lookup', 'managed': False, }, ), migrations.CreateModel( name='JsonActlog', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('session', models.CharField(default=None, max_length=24)), ('activitylog', models.CharField(default='', max_length=2048)), ('comment', models.CharField(default=None, max_length=256)), ('updated', models.DateTimeField(auto_now=True)), ], options={ 'db_table': 'json_actlog', 'managed': False, }, ), migrations.CreateModel( name='JsonAspects', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('updated', models.DateTimeField(auto_now=True)), ], options={ 'db_table': 'json_aspects', 'managed': False, }, ), migrations.CreateModel( name='JsonErrors', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('session', models.CharField(default=None, max_length=24)), ('errorcode', models.CharField(default='', max_length=128)), ('comment', models.CharField(default=None, max_length=256)), ('updated', models.DateTimeField(auto_now=True)), ], options={ 'db_table': 'json_errors', 'managed': False, }, ), migrations.CreateModel( name='JsonFacets', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('updated', models.DateTimeField(auto_now=True)), ], options={ 'db_table': 'json_facets', 'managed': False, }, ), migrations.CreateModel( name='JsonFiles', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('file', models.TextField(default='')), ('type', models.CharField(default='', max_length=32)), ('version', models.IntegerField(default='')), ('jhash', models.CharField(blank=True, max_length=52, null=True)), ('comments', models.CharField(blank=True, max_length=32, null=True)), ('updated', models.DateTimeField(auto_now=True)), ], options={ 'db_table': 'json_files', 'managed': False, }, ), migrations.CreateModel( name='JsonLookup', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('uniqueid', models.CharField(default='', max_length=128, unique=True)), ('title', models.CharField(default='', max_length=256)), ('graphname', models.CharField(default='', max_length=256)), ('currentversion', models.IntegerField(default=0)), ('auth_user_id', models.IntegerField(default='')), ('updated', models.DateTimeField(auto_now=True)), ], options={ 'db_table': 'json_lookup', 'managed': False, }, ), migrations.CreateModel( name='References', fields=[ ('id', models.SmallAutoField(primary_key=True, serialize=False)), ('journal', models.CharField(blank=True, max_length=256, null=True)), ('authors', models.CharField(blank=True, max_length=2048, null=True)), ('aulist', models.CharField(blank=True, max_length=1024, null=True)), ('year', models.PositiveSmallIntegerField(blank=True, null=True)), ('volume', models.CharField(blank=True, max_length=12, null=True)), ('issue', models.CharField(blank=True, max_length=16, null=True)), ('startpage', models.CharField(blank=True, max_length=16, null=True)), ('endpage', models.CharField(blank=True, max_length=16, null=True)), ('title', models.CharField(blank=True, max_length=512, null=True)), ('url', models.CharField(blank=True, max_length=256, null=True)), ('doi', models.CharField(max_length=256)), ('count', models.SmallIntegerField(blank=True, null=True)), ('updated', models.DateTimeField()), ], options={ 'db_table': 'references', 'managed': False, }, ), ]
43.119048
117
0.510307
10,773
0.991441
0
0
0
0
0
0
1,657
0.152494
32bd83533b8a10d702670e0618e12d21f2714992
712
py
Python
f8a_jobs/handlers/flow.py
sawood14012/fabric8-analytics-jobs
a7d850dfef5785144676b9a3b4e29942161e5347
[ "Apache-2.0" ]
5
2017-05-04T11:22:31.000Z
2018-08-24T16:12:30.000Z
f8a_jobs/handlers/flow.py
sawood14012/fabric8-analytics-jobs
a7d850dfef5785144676b9a3b4e29942161e5347
[ "Apache-2.0" ]
325
2017-05-03T08:44:03.000Z
2021-12-13T21:03:49.000Z
f8a_jobs/handlers/flow.py
sawood14012/fabric8-analytics-jobs
a7d850dfef5785144676b9a3b4e29942161e5347
[ "Apache-2.0" ]
28
2017-05-02T05:09:32.000Z
2021-03-11T09:42:34.000Z
"""Schedule multiple flows of a type.""" from .base import BaseHandler class FlowScheduling(BaseHandler): """Schedule multiple flows of a type.""" def execute(self, flow_name, flow_arguments): """Schedule multiple flows of a type, do filter expansion if needed. :param flow_name: flow name that should be scheduled :param flow_arguments: a list of flow arguments per flow """ for node_args in flow_arguments: if self.is_filter_query(node_args): for args in self.expand_filter_query(node_args): self.run_selinon_flow(flow_name, args) else: self.run_selinon_flow(flow_name, node_args)
33.904762
76
0.651685
637
0.894663
0
0
0
0
0
0
287
0.40309
32bdf6c9f66952e90bfd46bcfa58f2ec034c3c0d
1,032
py
Python
mako/stats/notifier.py
zer0tonin/mako
12420056e13e1acd333e686537d5ebc909450620
[ "MIT" ]
null
null
null
mako/stats/notifier.py
zer0tonin/mako
12420056e13e1acd333e686537d5ebc909450620
[ "MIT" ]
1
2021-06-02T04:22:46.000Z
2021-06-02T04:22:46.000Z
mako/stats/notifier.py
zer0tonin/mako
12420056e13e1acd333e686537d5ebc909450620
[ "MIT" ]
null
null
null
import logging logger = logging.getLogger(__name__) class Notifier: def __init__(self, redis): self.redis = redis async def notify_guilds(self): guilds_set = "guilds" logger.debug("Scanning {}".format(guilds_set)) result = [] async for guild_id in self.redis.isscan(guilds_set): result.extend(await self.notify_guild(guild_id)) return result async def notify_guild(self, guild_id): notify_list = "guilds:{}:notify".format(guild_id) level_zset = "guilds:{}:levels".format(guild_id) result = [] logger.debug("Popping {} queue".format(notify_list)) user_id = await self.redis.lpop(notify_list) while user_id is not None: logger.debug("Accessing {} zset for user: {}".format(level_zset, user_id)) level = await self.redis.zscore(level_zset, user_id) result.append((guild_id, user_id, level)) user_id = await self.redis.lpop(notify_list) return result
30.352941
86
0.631783
975
0.944767
0
0
0
0
890
0.862403
107
0.103682
32be27b57feb5ea94289c2693437fff5fe254149
286
py
Python
app/models/users.py
muzzammilh/valid-voice
7e5f8211471cfeb1f404de6b0b715196e8276b41
[ "MIT" ]
null
null
null
app/models/users.py
muzzammilh/valid-voice
7e5f8211471cfeb1f404de6b0b715196e8276b41
[ "MIT" ]
null
null
null
app/models/users.py
muzzammilh/valid-voice
7e5f8211471cfeb1f404de6b0b715196e8276b41
[ "MIT" ]
null
null
null
from app.helpers.sqlalchemy import db class Role(db.Model): __tablename__ = 'tt' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(64), unique=True) default = db.Column(db.Boolean, default=False, index=True) permissions = db.Column(db.Integer)
35.75
62
0.706294
247
0.863636
0
0
0
0
0
0
4
0.013986
32c012e2243ac30d8702a0e4c7e1a09c458c9ec8
12,819
py
Python
pysnmp/HUAWEI-CDP-COMPLIANCE-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
11
2021-02-02T16:27:16.000Z
2021-08-31T06:22:49.000Z
pysnmp/HUAWEI-CDP-COMPLIANCE-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
75
2021-02-24T17:30:31.000Z
2021-12-08T00:01:18.000Z
pysnmp/HUAWEI-CDP-COMPLIANCE-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
10
2019-04-30T05:51:36.000Z
2022-02-16T03:33:41.000Z
# # PySNMP MIB module HUAWEI-CDP-COMPLIANCE-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/HUAWEI-CDP-COMPLIANCE-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 19:31:50 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # ObjectIdentifier, OctetString, Integer = mibBuilder.importSymbols("ASN1", "ObjectIdentifier", "OctetString", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsIntersection, ConstraintsUnion, ValueRangeConstraint, SingleValueConstraint, ValueSizeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsIntersection", "ConstraintsUnion", "ValueRangeConstraint", "SingleValueConstraint", "ValueSizeConstraint") hwDatacomm, = mibBuilder.importSymbols("HUAWEI-MIB", "hwDatacomm") InterfaceIndex, = mibBuilder.importSymbols("IF-MIB", "InterfaceIndex") EnabledStatus, = mibBuilder.importSymbols("P-BRIDGE-MIB", "EnabledStatus") ZeroBasedCounter32, TimeFilter = mibBuilder.importSymbols("RMON2-MIB", "ZeroBasedCounter32", "TimeFilter") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") Unsigned32, TimeTicks, Counter32, IpAddress, iso, NotificationType, ObjectIdentity, ModuleIdentity, Counter64, Bits, Gauge32, MibScalar, MibTable, MibTableRow, MibTableColumn, MibIdentifier, Integer32 = mibBuilder.importSymbols("SNMPv2-SMI", "Unsigned32", "TimeTicks", "Counter32", "IpAddress", "iso", "NotificationType", "ObjectIdentity", "ModuleIdentity", "Counter64", "Bits", "Gauge32", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "MibIdentifier", "Integer32") TextualConvention, TruthValue, TimeStamp, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "TruthValue", "TimeStamp", "DisplayString") hwCdpComplianceMIB = ModuleIdentity((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198)) if mibBuilder.loadTexts: hwCdpComplianceMIB.setLastUpdated('200905050000Z') if mibBuilder.loadTexts: hwCdpComplianceMIB.setOrganization('Huawei Technologies co.,Ltd.') hwCdpComplianceObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 1)) hwCdpComplianceNotifications = MibIdentifier((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 2)) hwCdpComplianceConformance = MibIdentifier((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 3)) hwCdpComplianceConfiguration = MibIdentifier((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 1, 1)) hwCdpComplianceStatistics = MibIdentifier((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 1, 2)) hwCdpComplianceRemoteSystemsData = MibIdentifier((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 1, 3)) hwCdpComplianceEnable = MibScalar((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 1, 1, 1), EnabledStatus().clone()).setMaxAccess("readwrite") if mibBuilder.loadTexts: hwCdpComplianceEnable.setStatus('current') hwCdpComplianceNotificationInterval = MibScalar((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 1, 1, 2), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 10)).clone(5)).setUnits('seconds').setMaxAccess("readwrite") if mibBuilder.loadTexts: hwCdpComplianceNotificationInterval.setStatus('current') hwCdpCompliancePortConfigTable = MibTable((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 1, 1, 3), ) if mibBuilder.loadTexts: hwCdpCompliancePortConfigTable.setStatus('current') hwCdpCompliancePortConfigEntry = MibTableRow((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 1, 1, 3, 1), ).setIndexNames((0, "HUAWEI-CDP-COMPLIANCE-MIB", "hwCdpCompliancePortConfigIfIndex")) if mibBuilder.loadTexts: hwCdpCompliancePortConfigEntry.setStatus('current') hwCdpCompliancePortConfigIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 1, 1, 3, 1, 1), InterfaceIndex()) if mibBuilder.loadTexts: hwCdpCompliancePortConfigIfIndex.setStatus('current') hwCdpCompliancePortConfigAdminStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 1, 1, 3, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("disabled", 1), ("rxOnly", 2))).clone('disabled')).setMaxAccess("readwrite") if mibBuilder.loadTexts: hwCdpCompliancePortConfigAdminStatus.setStatus('current') hwCdpCompliancePortConfigHoldTime = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 1, 1, 3, 1, 3), Integer32().subtype(subtypeSpec=ValueRangeConstraint(10, 254)).clone(180)).setUnits('seconds').setMaxAccess("readwrite") if mibBuilder.loadTexts: hwCdpCompliancePortConfigHoldTime.setStatus('current') hwCdpCompliancePortConfigNotificationEnable = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 1, 1, 3, 1, 4), TruthValue().clone('false')).setMaxAccess("readwrite") if mibBuilder.loadTexts: hwCdpCompliancePortConfigNotificationEnable.setStatus('current') hwCdpCompliancePortStatsReset = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 1, 1, 3, 1, 5), EnabledStatus()).setMaxAccess("readwrite") if mibBuilder.loadTexts: hwCdpCompliancePortStatsReset.setStatus('current') hwCdpComplianceStatsRemTablesLastChangeTime = MibScalar((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 1, 2, 1), TimeStamp()).setMaxAccess("readonly") if mibBuilder.loadTexts: hwCdpComplianceStatsRemTablesLastChangeTime.setStatus('current') hwCdpComplianceStatsRemTablesAgeouts = MibScalar((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 1, 2, 2), ZeroBasedCounter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hwCdpComplianceStatsRemTablesAgeouts.setStatus('current') hwCdpComplianceStatsRxPortTable = MibTable((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 1, 2, 3), ) if mibBuilder.loadTexts: hwCdpComplianceStatsRxPortTable.setStatus('current') hwCdpComplianceStatsRxPortEntry = MibTableRow((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 1, 2, 3, 1), ).setIndexNames((0, "HUAWEI-CDP-COMPLIANCE-MIB", "hwCdpComplianceStatsRxPortIfIndex")) if mibBuilder.loadTexts: hwCdpComplianceStatsRxPortEntry.setStatus('current') hwCdpComplianceStatsRxPortIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 1, 2, 3, 1, 1), InterfaceIndex()) if mibBuilder.loadTexts: hwCdpComplianceStatsRxPortIfIndex.setStatus('current') hwCdpComplianceStatsRxPortFramesTotal = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 1, 2, 3, 1, 2), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hwCdpComplianceStatsRxPortFramesTotal.setStatus('current') hwCdpComplianceStatsRxPortAgeoutsTotal = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 1, 2, 3, 1, 3), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hwCdpComplianceStatsRxPortAgeoutsTotal.setStatus('current') hwCdpComplianceRemoteTable = MibTable((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 1, 3, 1), ) if mibBuilder.loadTexts: hwCdpComplianceRemoteTable.setStatus('current') hwCdpComplianceRemoteEntry = MibTableRow((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 1, 3, 1, 1), ).setIndexNames((0, "HUAWEI-CDP-COMPLIANCE-MIB", "hwCdpComplianceRemLocalPortIfIndex")) if mibBuilder.loadTexts: hwCdpComplianceRemoteEntry.setStatus('current') hwCdpComplianceRemLocalPortIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 1, 3, 1, 1, 1), InterfaceIndex()) if mibBuilder.loadTexts: hwCdpComplianceRemLocalPortIfIndex.setStatus('current') hwCdpComplianceRemTimeMark = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 1, 3, 1, 1, 2), TimeFilter()).setMaxAccess("readonly") if mibBuilder.loadTexts: hwCdpComplianceRemTimeMark.setStatus('current') hwCdpComplianceRemoteInfo = MibTableColumn((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 1, 3, 1, 1, 3), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 1600))).setMaxAccess("readonly") if mibBuilder.loadTexts: hwCdpComplianceRemoteInfo.setStatus('current') hwCdpComplianceNotificationPrefix = MibIdentifier((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 2, 1)) hwCdpComplianceRemTablesChange = NotificationType((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 2, 1, 1)).setObjects(("HUAWEI-CDP-COMPLIANCE-MIB", "hwCdpComplianceStatsRemTablesLastChangeTime"), ("HUAWEI-CDP-COMPLIANCE-MIB", "hwCdpComplianceStatsRemTablesAgeouts")) if mibBuilder.loadTexts: hwCdpComplianceRemTablesChange.setStatus('current') hwCdpComplianceCompliances = MibIdentifier((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 3, 1)) hwCdpComplianceGroups = MibIdentifier((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 3, 2)) hwCdpComplianceCompliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 3, 1, 1)).setObjects(("HUAWEI-CDP-COMPLIANCE-MIB", "hwCdpComplianceConfigGroup"), ("HUAWEI-CDP-COMPLIANCE-MIB", "hwCdpComplianceStatsGroup"), ("HUAWEI-CDP-COMPLIANCE-MIB", "hwCdpComplianceRemSysGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): hwCdpComplianceCompliance = hwCdpComplianceCompliance.setStatus('current') hwCdpComplianceConfigGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 3, 2, 1)).setObjects(("HUAWEI-CDP-COMPLIANCE-MIB", "hwCdpComplianceEnable"), ("HUAWEI-CDP-COMPLIANCE-MIB", "hwCdpComplianceNotificationInterval"), ("HUAWEI-CDP-COMPLIANCE-MIB", "hwCdpCompliancePortConfigAdminStatus"), ("HUAWEI-CDP-COMPLIANCE-MIB", "hwCdpCompliancePortConfigHoldTime"), ("HUAWEI-CDP-COMPLIANCE-MIB", "hwCdpCompliancePortConfigNotificationEnable")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): hwCdpComplianceConfigGroup = hwCdpComplianceConfigGroup.setStatus('current') hwCdpComplianceStatsGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 3, 2, 2)).setObjects(("HUAWEI-CDP-COMPLIANCE-MIB", "hwCdpComplianceStatsRxPortFramesTotal"), ("HUAWEI-CDP-COMPLIANCE-MIB", "hwCdpCompliancePortStatsReset"), ("HUAWEI-CDP-COMPLIANCE-MIB", "hwCdpComplianceStatsRemTablesLastChangeTime"), ("HUAWEI-CDP-COMPLIANCE-MIB", "hwCdpComplianceStatsRemTablesAgeouts"), ("HUAWEI-CDP-COMPLIANCE-MIB", "hwCdpComplianceStatsRxPortAgeoutsTotal")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): hwCdpComplianceStatsGroup = hwCdpComplianceStatsGroup.setStatus('current') hwCdpComplianceRemSysGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 3, 2, 3)).setObjects(("HUAWEI-CDP-COMPLIANCE-MIB", "hwCdpComplianceRemoteInfo"), ("HUAWEI-CDP-COMPLIANCE-MIB", "hwCdpComplianceRemTimeMark")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): hwCdpComplianceRemSysGroup = hwCdpComplianceRemSysGroup.setStatus('current') hwCdpComplianceTrapGroup = NotificationGroup((1, 3, 6, 1, 4, 1, 2011, 5, 25, 198, 3, 2, 4)).setObjects(("HUAWEI-CDP-COMPLIANCE-MIB", "hwCdpComplianceRemTablesChange")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): hwCdpComplianceTrapGroup = hwCdpComplianceTrapGroup.setStatus('current') mibBuilder.exportSymbols("HUAWEI-CDP-COMPLIANCE-MIB", hwCdpComplianceRemoteTable=hwCdpComplianceRemoteTable, hwCdpCompliancePortConfigAdminStatus=hwCdpCompliancePortConfigAdminStatus, hwCdpComplianceRemoteInfo=hwCdpComplianceRemoteInfo, hwCdpComplianceGroups=hwCdpComplianceGroups, hwCdpComplianceRemoteEntry=hwCdpComplianceRemoteEntry, hwCdpCompliancePortConfigIfIndex=hwCdpCompliancePortConfigIfIndex, hwCdpComplianceEnable=hwCdpComplianceEnable, hwCdpComplianceNotifications=hwCdpComplianceNotifications, hwCdpComplianceCompliance=hwCdpComplianceCompliance, hwCdpCompliancePortConfigTable=hwCdpCompliancePortConfigTable, hwCdpComplianceNotificationPrefix=hwCdpComplianceNotificationPrefix, hwCdpComplianceStatsGroup=hwCdpComplianceStatsGroup, hwCdpComplianceStatsRemTablesAgeouts=hwCdpComplianceStatsRemTablesAgeouts, hwCdpComplianceStatsRemTablesLastChangeTime=hwCdpComplianceStatsRemTablesLastChangeTime, hwCdpComplianceStatsRxPortIfIndex=hwCdpComplianceStatsRxPortIfIndex, hwCdpComplianceRemTimeMark=hwCdpComplianceRemTimeMark, hwCdpComplianceRemoteSystemsData=hwCdpComplianceRemoteSystemsData, hwCdpComplianceStatsRxPortAgeoutsTotal=hwCdpComplianceStatsRxPortAgeoutsTotal, hwCdpCompliancePortStatsReset=hwCdpCompliancePortStatsReset, hwCdpComplianceRemTablesChange=hwCdpComplianceRemTablesChange, hwCdpComplianceConfiguration=hwCdpComplianceConfiguration, hwCdpComplianceTrapGroup=hwCdpComplianceTrapGroup, hwCdpComplianceMIB=hwCdpComplianceMIB, hwCdpComplianceRemLocalPortIfIndex=hwCdpComplianceRemLocalPortIfIndex, hwCdpComplianceObjects=hwCdpComplianceObjects, hwCdpComplianceNotificationInterval=hwCdpComplianceNotificationInterval, hwCdpComplianceStatsRxPortEntry=hwCdpComplianceStatsRxPortEntry, hwCdpCompliancePortConfigEntry=hwCdpCompliancePortConfigEntry, PYSNMP_MODULE_ID=hwCdpComplianceMIB, hwCdpComplianceCompliances=hwCdpComplianceCompliances, hwCdpComplianceRemSysGroup=hwCdpComplianceRemSysGroup, hwCdpCompliancePortConfigHoldTime=hwCdpCompliancePortConfigHoldTime, hwCdpComplianceStatsRxPortTable=hwCdpComplianceStatsRxPortTable, hwCdpComplianceConformance=hwCdpComplianceConformance, hwCdpComplianceConfigGroup=hwCdpComplianceConfigGroup, hwCdpComplianceStatistics=hwCdpComplianceStatistics, hwCdpCompliancePortConfigNotificationEnable=hwCdpCompliancePortConfigNotificationEnable, hwCdpComplianceStatsRxPortFramesTotal=hwCdpComplianceStatsRxPortFramesTotal)
140.868132
2,381
0.791715
0
0
0
0
0
0
0
0
2,843
0.22178
32c0b9c3ba62988df85d3108c0c4b36be8f563b9
1,223
py
Python
pybb/contrib/mentions/processors.py
thoas/pybbm
0e7ab7ef60f15951660015f2b9be0ff7192f1095
[ "BSD-2-Clause" ]
1
2015-05-18T09:19:30.000Z
2015-05-18T09:19:30.000Z
pybb/contrib/mentions/processors.py
ulule/pybbm
0e7ab7ef60f15951660015f2b9be0ff7192f1095
[ "BSD-2-Clause" ]
5
2017-06-13T16:25:34.000Z
2018-07-17T20:30:56.000Z
pybb/contrib/mentions/processors.py
ulule/pybbm
0e7ab7ef60f15951660015f2b9be0ff7192f1095
[ "BSD-2-Clause" ]
1
2018-10-29T13:12:59.000Z
2018-10-29T13:12:59.000Z
import re from pybb.processors import BaseProcessor from pybb.compat import get_user_model from . import settings class MentionProcessor(BaseProcessor): username_re = r'@([\w\-]+)' format = '@%(username)s' tag = '[mention=%(user_id)s]%(username)s[/mention]' model = get_user_model() def get_user_url(self, user): return settings.PYBB_MENTIONS_USER_URL(user) def get_users(self, username_list): return self.model.objects.filter(username__in=username_list).values_list('username', 'id') def _format(self, user, body): username, user_id = user format = self.format % { 'username': username } body = body.replace(format, self.tag % { 'user_id': user_id, 'username': username }) return body def render(self): body = self.body username_list = [m.group(1) for m in re.finditer(self.username_re, body, re.MULTILINE)] users = self.get_users(username_list) for user in users: body = self._format(user, body) return body
25.479167
98
0.562551
1,104
0.902698
0
0
0
0
0
0
116
0.094849
32c304191982cf35da8aed8e53fd875c3bef3ba2
1,505
py
Python
PageObjectModel/Test/addAndEditionData.py
lblaszkowski/Arena
61f924bc7c3994ec7714fe68f60b02b35ccd286b
[ "Apache-2.0" ]
null
null
null
PageObjectModel/Test/addAndEditionData.py
lblaszkowski/Arena
61f924bc7c3994ec7714fe68f60b02b35ccd286b
[ "Apache-2.0" ]
null
null
null
PageObjectModel/Test/addAndEditionData.py
lblaszkowski/Arena
61f924bc7c3994ec7714fe68f60b02b35ccd286b
[ "Apache-2.0" ]
null
null
null
import unittest from selenium import webdriver from PageObjectModel.Pages.addAndEditionDataPage import AddAndEditionData_Page from time import sleep url = 'https://buggy-testingcup.pgs-soft.com/' class AddAndEditionDataPage(unittest.TestCase): def setUp(self, browser="mozilla", task="task_3"): if browser == "chrome" or browser == "ch": self.driver = webdriver.Chrome(executable_path=r'../Drivers/ChromeDrive_74/chromedriver.exe') self.driver.maximize_window() self.driver.get(url + task) elif browser == "mozilla" or browser == "ff": self.driver = webdriver.Firefox(executable_path=r'../Drivers/FirefoxDrive_24/geckodriver.exe') self.driver.maximize_window() self.driver.get(url + task) else: print("Brak przeglądarki") raise Exception("Brak przeglądarki") return self.driver def tearDown(self): self.driver.close() self.driver.quit() def test_AddAndEditionData(self): AddandEditionData = AddAndEditionData_Page(self.driver) AddandEditionData.menuButtonClick() AddandEditionData.dropdownMenuClick() AddandEditionData.editFile() AddandEditionData.fieldName("Jan") AddandEditionData.fieldSurname("Nowak") AddandEditionData.fieldNotes("Testowy napis") AddandEditionData.fieldPhone("10981234098") AddandEditionData.fieldImage() AddandEditionData.saveButton()
32.717391
106
0.67907
1,302
0.863968
0
0
0
0
0
0
252
0.16722
32c40b429ba7f1090b72fd13e36b8055346940c3
827
py
Python
q2_api_client/clients/mobile_ws/calendar_client.py
jcook00/q2-api-client
4431af164eb4baf52e26e8842e017cad1609a279
[ "BSD-2-Clause" ]
null
null
null
q2_api_client/clients/mobile_ws/calendar_client.py
jcook00/q2-api-client
4431af164eb4baf52e26e8842e017cad1609a279
[ "BSD-2-Clause" ]
null
null
null
q2_api_client/clients/mobile_ws/calendar_client.py
jcook00/q2-api-client
4431af164eb4baf52e26e8842e017cad1609a279
[ "BSD-2-Clause" ]
null
null
null
from q2_api_client.clients.base_q2_client import BaseQ2Client from q2_api_client.endpoints.mobile_ws_endpoints import CalendarEndpoint class CalendarClient(BaseQ2Client): def get_calendar(self): """GET /mobilews/calendar :return: Response object :rtype: requests.Response """ endpoint = CalendarEndpoint.CALENDAR.value return self._get(url=self._build_url(endpoint)) def get_calendar_by_type(self, transaction_type): """GET /mobilews/calendar/{transactionType} :param str transaction_type: path parameter :return: Response object :rtype: requests.Response """ endpoint = CalendarEndpoint.CALENDAR_TRANSACTION_TYPE.value.format(transactionType=transaction_type) return self._get(url=self._build_url(endpoint))
33.08
108
0.718259
689
0.833132
0
0
0
0
0
0
280
0.338573
32c4baf38f537ef55e48bae1faabe6aee1fe7ca3
11,477
py
Python
cg_token.py
gmnicke2/GISolve-API-Util
74d10d2ae60c1f000ef151a394ef9276b284867a
[ "MIT" ]
null
null
null
cg_token.py
gmnicke2/GISolve-API-Util
74d10d2ae60c1f000ef151a394ef9276b284867a
[ "MIT" ]
null
null
null
cg_token.py
gmnicke2/GISolve-API-Util
74d10d2ae60c1f000ef151a394ef9276b284867a
[ "MIT" ]
null
null
null
#!/usr/bin/env python """ Set of utilities to issue/verify/revoke a CG token with REST calls Requires valid username and password either in bash environment or given at the command line. Issue Token: Token can be easily created (and stored to env) with the folloing: # create token using CG_USERNAME, CG_PASSWORD, and CG_API env variables ./cg_token.py # create token specifying all the parameters on command line ./cg_token.py --username <login> --password <password> --endpoint <url> # create token using CG_USERNAME, CG_API, but prompt for password ./cg_token.py --password - # add token to environmental variables export CG_TOKEN=`./cg_token.py` # add token to environmental variable, specify extra parameters export CG_TOKEN=`./cg_token.py --username <login> --endpoint <newurl>` Verify or Revoke Token: Verifying or Revoking requires the positional 'verify' or 'revoke' command line argument. User can still override env variables with command-line arguments. Uses CG_API, and CG_TOKEN env variables for both. Verify uses CG_CLIENT_ID and CG_CLIENT_IP for consumer ID & user client IP, Revoke uses CG_USERNAME and CG_PASSWORD for security purposes : # Verify token, overriding CG_CLIENT_ID and CG_CLIENT_IP with command # line (Upon success, it will print the remaining lifetime of the token # in seconds) ./cg_token.py verify --clientid <ID> --clientip <IP> # Revoke token, overriding CG_TOKEN with command line ./cg_token.py revoke --token <token> Print debug info to stderr: Append the flag "--debug" or "-d" : ./cg_token.py --debug """ import sys, os, getpass import json import logging import requests import argparse from requests import exceptions as rex # This is used sed to disable InsecureRequestWarning. requests.packages.urllib3.disable_warnings() logger = logging.getLogger(__name__) class CGException(Exception) : def __init__(self, result) : self.message = result['message'] self.error_code = result['error_code'] def __str__(self) : return ("Error %d: %s" %(self.error_code, self.message)) def logger_initialize(debug) : """Initializes the format and level for the logger""" _format = ("%(levelname)s - %(asctime)s\n%(message)s\n") if debug : logging.basicConfig(format=_format, level=logging.DEBUG) else : logging.basicConfig(format=_format, level=logging.WARNING) def log_response(method, url, response, request) : """Logs request and response when in debug mode""" if request.get('password', '') : request['password'] = '*******' logger.debug("URL: " + url) logger.debug("Request: " + method) logger.debug("Request Data (in JSON format)" ": " + json.dumps(request,indent=4,separators=(',',': '))) logger.debug("Response (in JSON format)" ": " + json.dumps(response,indent=4,separators=(',',': '))) def parse_args() : """Defines command line positional and optional arguments and checks for valid action input if present. Additionally prompts with getpass if user specifies "--password -" to override CG_PASSWORD Args: none Returns: A (tuple) containing the following: args (namespace) : used to overwrite env variables when necessary action (string) : for main to use as a switch for calls to perform """ parser = argparse.ArgumentParser() parser.add_argument("-d", "--debug", action="store_true", help='Allow debug info to be written to stderr') parser.add_argument("-e", "--endpoint", default=os.getenv('CG_API',''), help="Set API url") parser.add_argument("-p", "--password", default=os.getenv('CG_PASSWORD',''), help="Set password. '-' for secure prompting") parser.add_argument("-u", "--username", default=os.getenv('CG_USERNAME',''), help="Set Username") parser.add_argument("-t", "--token", default=os.getenv('CG_TOKEN',''), help="Set Token for Verify/Revoke") parser.add_argument("-l", "--lifetime", type=long, default=43200, help="Set Lifetime for Token Issue in seconds" ". minimum=3600 (1hr), maximum=12*3600 (12hr)") parser.add_argument("-b", "--binding", type=int, default=1, help="1: Bind with IP Address, 0: Don't Bind") parser.add_argument("-c", "--clientid", default=os.getenv('CG_CLIENT_ID',''), help="Set Client ID for Verify") parser.add_argument("-i", "--clientip", default=os.getenv('CG_CLIENT_IP',''), help="Set Client IP for Verify") parser.add_argument("action", nargs='?', type=str, default='issue', help='issue/verify/revoke') args = parser.parse_args() logger_initialize(args.debug) if args.password and args.password == '-' : args.password = getpass.getpass("Enter desired CG Password: ") if not args.endpoint : logger.error('CG_API (API url for REST calls) ' 'not specified\n') sys.exit(1) if args.action.lower() not in ['issue','verify','revoke'] : logger.error('Invalid Action') sys.exit(1) return (args,args.action.lower()) def cg_rest(method, endpoint, headers={}, **kwargs) : """Calls the CG REST endpoint passing keyword arguments given. 'cg_rest' provides a basic wrapper around the HTTP request to the rest endpoint, and attempts to provide informative error messages when errors occur. Exceptions are passed to the calling function for final resolution. cg_rest('POST', <url>, headers=<HTTP headers dict>, username=<username>, password=<password>, ...) or with a previously constructed data/params dict cg_rest('POST', <url>, headers=headers, **data/params) or with no header necessary cg_rest('POST', <url>, **data/params) Args: method (str): the HTTP method that will be called endpoint (str, URL): the REST endpoint headers (dict, optional): HTTP headers kwargs (optional): common keywords include username, password, etc. Returns: (dict): decodes the response and returns it as a dictionary Raises: Raises CGException when the gateway server return an error status. Other exceptions may be raised based errors with the HTTP request and response. See documentation of Python's request module for a complete list. """ try : if method.upper() == 'POST' or method.upper() == 'PUT' : r = requests.request(method.upper(), endpoint, timeout=50, verify=False, headers=headers, data=kwargs) else : # Must be 'GET' or 'DELETE' r = requests.request(method.upper(), endpoint, timeout=50, verify=False, headers=headers, params=kwargs) r.raise_for_status() except (rex.ConnectionError, rex.HTTPError, rex.MissingSchema) as e : logger.debug("Problem with API endpoint '%s', " "is it entered correctly?" %endpoint) raise except (rex.Timeout) as e : logger.debug('Request timed out, the service may be ' 'temporarily unavailable') raise response = r.json() log_response(method, endpoint, response, kwargs) # If status is not provided, default to error. if response.get('status','') and response.get('status','') == 'error' : logger.debug("Call fails with '%s'" %response['result']['message']) raise CGException(response['result']) return response def issue_token(endpoint, username, password, lifetime, binding) : """Calls the Gateway issueToken function and returns token. Args: endpoint (string, URL): the REST endpoint username (string): the user's login password (string): the user's password lifetime (int): the lifetime of a token in seconds (3600 <= lifetime <= 12*3600) binding (int): 1 if user wants token to be bound to user IP 0 else Returns: (string): Open Service API token Raises: Passes any exceptions raised in cg_rest. """ data = { 'username' : username, 'password' : password, 'lifetime' : lifetime, 'binding' : binding } url = endpoint.rstrip('/') + '/token' logger.debug('Issuing token from %s' %url) response = cg_rest('POST', url, **data) return response['result']['token'] def verify_token(endpoint, username, token, client_id, client_ip) : """Calls the Gateway verifyToken function, returns remaining token lifetime. Args: endpoint(string, URL): the REST endpoint username (string): token (string): Token to verify client_id (string): Consumer ID client_ip (string): User Client's IP Address Returns: (int): Remaining lifetime of token (in seconds) Raises: Passes any exceptions raised in cg_rest. """ data = { 'token' : token, 'consumer' : client_id, 'remote_addr' : client_ip, 'username' : username } url = endpoint.rstrip('/') + '/token' logger.debug("Verifying token '%s' from '%s'" %(token,url)) data_length = str(len(json.dumps(data))) headers = {'Content-Length' : data_length} response = cg_rest('PUT', url, headers=headers, **data) return response['result']['lifetime'] def revoke_token(endpoint, username, password, token) : """Calls the Gateway revokeToken function Args: endpoint (string, URL): the REST endpoint username (string): the user's login password (string): the user's password token (string): The token to be revoked Returns: void Raises: Passes any exceptions raised in cg_rest. """ params = { 'token' : token, 'username' : username, 'password' : password, } url = endpoint.rstrip('/') + "/token" logger.debug("Revoking token '%s' from '%s'" %(token,url)) response = cg_rest('DELETE', url, **params) def main() : (args, action) = parse_args() try : if action == "issue" : if ((args.binding not in [0,1]) or not (3600<=args.lifetime<=43200)) : logger.error("Lifetime must be between 3600 and 43200," "\nBinding must be 0 or 1") sys.exit(1) print issue_token(args.endpoint, args.username, args.password, args.lifetime, args.binding) else : if not args.token : logger.error('No valid CG_TOKEN given') sys.exit(1) if action == "verify" : print verify_token(args.endpoint, args.username, args.token, args.clientid, args.clientip) else : revoke_token(args.endpoint, args.username, args.password, args.token) except CGException as e : logger.error(e) sys.exit(1) if __name__ == '__main__' : main()
33.55848
81
0.611658
241
0.020999
0
0
0
0
0
0
6,487
0.565217
32c57ec480ef32335403cba14fba78c713f0eb97
741
py
Python
azext_script/compilers/az/handlers/HDInsight.py
yorek/adl
d9da1b7d46c71415e38a6efe5b1c8d45b02b3704
[ "MIT" ]
null
null
null
azext_script/compilers/az/handlers/HDInsight.py
yorek/adl
d9da1b7d46c71415e38a6efe5b1c8d45b02b3704
[ "MIT" ]
1
2018-10-15T05:51:38.000Z
2018-10-15T05:51:38.000Z
azext_script/compilers/az/handlers/HDInsight.py
yorek/adl
d9da1b7d46c71415e38a6efe5b1c8d45b02b3704
[ "MIT" ]
1
2018-10-18T18:41:02.000Z
2018-10-18T18:41:02.000Z
from .Generic import GenericHandler class HDInsightHandler(GenericHandler): azure_object = "hdinsight" def execute(self): fqn = self.get_full_resource_name() self.add_context_parameter("resource-group", "group") if fqn == "hdinsight" and self.action == "create": self.add_context_parameter("location", "location") if 'storage account' in self.context: storage_account = self.context["storage account"] storage_account += ".blob.core.windows.net" self.add_parameter("storage-account", storage_account) cmd = super(HDInsightHandler, self).execute() self.save_to_context() return cmd
30.875
70
0.618084
702
0.947368
0
0
0
0
0
0
148
0.19973
32c59fc06a151e5b5740b23fbb1aff371ee1d8f2
30,841
py
Python
a2-py-beta/erd_converter.py
francisgerman70/CSC370
0682ea5abdfdbc87b76efd18f98e27a6c49d2b45
[ "MIT" ]
null
null
null
a2-py-beta/erd_converter.py
francisgerman70/CSC370
0682ea5abdfdbc87b76efd18f98e27a6c49d2b45
[ "MIT" ]
null
null
null
a2-py-beta/erd_converter.py
francisgerman70/CSC370
0682ea5abdfdbc87b76efd18f98e27a6c49d2b45
[ "MIT" ]
null
null
null
from audioop import add from erd import * from table import * # This function converts an ERD object into a Database object # The Database object should correspond to a fully correct implementation # of the ERD, including both data structure and constraints, such that the # CREATE TABLE statements generated by the Database object will populate an # empty MySQL database to exactly implement the conceptual design communicated # by the ERD. # # @TODO: Implement me! def convert_to_table( erd ): if len(erd.entity_sets[0].connections) != 0 and len(erd.entity_sets[1].connections) != 0: divide0 = erd.entity_sets[0].connections[0] set1, set2 = zip(divide0) divide1 = erd.entity_sets[1].connections[0] set11, set22 = zip(divide1) entity_length = len(erd.entity_sets) if entity_length == 1: end = one_entity(erd) return end elif len(erd.entity_sets) == 3 and ((len(erd.entity_sets[0].parents) != 0) or (len(erd.entity_sets[1].parents) != 0) or (len(erd.entity_sets[2].parents) != 0)): end = threeEntitySetWithParents(erd) return end elif erd.entity_sets[0].supporting_relations != [] and len(erd.entity_sets) == 2: end = twoEntitySetWithSupportingRelation(erd) return end elif len(erd.entity_sets) == 3 and len(erd.relationships) == 1: end = threeEntitySetsOneManyRelationship(erd) return end elif erd.entity_sets[1].supporting_relations != [] and len(erd.entity_sets) == 2: end = twoEntitySetWithSupportingRelation(erd) return end elif entity_length == 2 and ((len(erd.entity_sets[0].parents) != 0) or (len(erd.entity_sets[1].parents) != 0)): end = TwoEntityNoRelationship(erd) return end elif entity_length == 2 and len(erd.relationships[0].primary_key) != 0 and set22[0].value == 0: end = oneManyWithRelationshipAttr(erd, set2) return end elif entity_length == 2 and len(erd.relationships[0].primary_key) != 0 and set2[0].value == 0: end = manyOneWithRelationshipAttr(erd,set22) return end elif entity_length == 4: end = fourEntitySetsWeak(erd) return end else: #rel_length = len(erd.relationships) #erd_length = entity_length + rel_length split = erd.entity_sets[0].connections[0] list1, list2 = zip(split) split2 = erd.entity_sets[1].connections[0] list11, list22 = zip(split2) #print(list22[0].value) #print(list2[0].value) if list22[0].value == 0: finish = one_many(erd , entity_length) return finish elif list2[0].value ==0: finish2 = many_one(erd, entity_length) return finish2 else: # if entity_length == 1: # one_entity(erd) # return #elif erd_length == 1 and list2[0].value == 1: # two_entity(erd) # return foreign_key = [] my_db = [] #db = Database([]) entity_length = len(erd.entity_sets) rel_length = len(erd.relationships) erd_length = entity_length + rel_length split = erd.entity_sets[0].connections[0] list1, list2 = zip(split) amount_primary1 = len(erd.entity_sets[0].primary_key) amount_primary2 = len(erd.entity_sets[1].primary_key) if (list1[0]) == erd.relationships[0].name and list2[0].value == 1: for x in range(amount_primary1): erd.relationships[0].attributes.append(erd.entity_sets[0].primary_key[x]) erd.relationships[0].primary_key.append(erd.entity_sets[0].primary_key[x]) for x in range(amount_primary2): erd.relationships[0].attributes.append(erd.entity_sets[1].primary_key[x]) erd.relationships[0].primary_key.append(erd.entity_sets[1].primary_key[x]) t = ((*erd.entity_sets[0].primary_key,),erd.entity_sets[0].name,(*erd.entity_sets[0].primary_key,)),((*erd.entity_sets[1].primary_key,),erd.entity_sets[1].name,(*erd.entity_sets[1].primary_key,)) foreign_key = t for x in range(entity_length): if erd.entity_sets[x].name != [] and erd.entity_sets[x].attributes != [] and erd.entity_sets[x].primary_key != []: my_db.append(Table(erd.entity_sets[x].name,set(erd.entity_sets[x].attributes),set(erd.entity_sets[x].primary_key),set())) for x in range(rel_length): if erd.relationships[x].name != []: my_db.append(Table(erd.relationships[x].name,set(erd.relationships[x].attributes),set(erd.relationships[x].primary_key),set(foreign_key))) db = Database(my_db) cat = erd.entity_sets[0].primary_key[0] #print(erd.entity_sets[0].name) #print(erd_length) #print(db.tables) #print(amount_primary1) #print(cat) #print(sample_db.tables) #for y in db: # print(y.tables) #print(erd.entity_sets[1].attributes[0]) #return sample_db return db def one_entity(erd): my_db = [] db = Database([]) entity_length = len(erd.entity_sets) for x in range(entity_length): if erd.entity_sets[x].name != '' and erd.entity_sets[x].attributes != '' and erd.entity_sets[x].primary_key != '': #my_db.append(Table(erd.entity_sets[x].name,erd.entity_sets[x].attributes,erd.entity_sets[x].primary_key,'')) my_db.append(Table(erd.entity_sets[x].name,set(erd.entity_sets[x].attributes),set(erd.entity_sets[x].primary_key),set())) db = Database(my_db) #print(db.tables) return db def one_many(erd, entity_length): foreign_key = [] my_db = [] amount_primary1 = len(erd.entity_sets[1].primary_key) for x in range(amount_primary1): erd.entity_sets[0].attributes.append(erd.entity_sets[1].primary_key[x]) #erd.entity_sets[0].primary_key.append(erd.entity_sets[1].primary_key[x]) t = ((*erd.entity_sets[1].primary_key,),erd.entity_sets[1].name,(*erd.entity_sets[1].primary_key,)), foreign_key = t #print(t) #print(entity_length) my_db.append(Table(erd.entity_sets[0].name,set(erd.entity_sets[0].attributes),set(erd.entity_sets[0].primary_key), set(foreign_key))) my_db.append(Table(erd.entity_sets[1].name,set(erd.entity_sets[1].attributes),set(erd.entity_sets[1].primary_key), set())) db = Database(my_db) #print(db.tables) return db def many_one(erd, entity_length): foreign_key = [] my_db = [] amount_primary1 = len(erd.entity_sets[0].primary_key) for x in range(amount_primary1): erd.entity_sets[1].attributes.append(erd.entity_sets[0].primary_key[x]) #erd.entity_sets[1].primary_key.append(erd.entity_sets[0].primary_key[x]) t = ((*erd.entity_sets[0].primary_key,),erd.entity_sets[0].name,(*erd.entity_sets[0].primary_key,)) foreign_key = t #print(t) #print(entity_length) #my_db.append(Table(erd.entity_sets[0].name,set(erd.entity_sets[0].attributes),set(erd.entity_sets[0].primary_key), set([((erd.entity_sets[1].primary_key[1],), erd.entity_sets[1].name, (erd.entity_sets[1].primary_key[1],))]))) #my_db.append(Table(erd.entity_sets[1].name,set(erd.entity_sets[1].attributes),set(erd.entity_sets[1].primary_key), set())) my_db.append(Table(erd.entity_sets[0].name,set(erd.entity_sets[0].attributes),set(erd.entity_sets[0].primary_key), set())) my_db.append(Table(erd.entity_sets[1].name,set(erd.entity_sets[1].attributes),set(erd.entity_sets[1].primary_key), set(foreign_key))) db = Database(my_db) #print(db.tables) return db def TwoEntityNoRelationship(erd): foreign_key = [] my_db = [] entity_length = len(erd.entity_sets) for x in range(1): if erd.entity_sets[0].parents != []: for x in range(len(erd.entity_sets[1].primary_key)): erd.entity_sets[0].attributes.append(erd.entity_sets[1].primary_key[x]) erd.entity_sets[0].primary_key.append(erd.entity_sets[1].primary_key[x]) elif erd.entity_sets[1].parents != []: for x in range(len(erd.entity_sets[0].primary_key)): erd.entity_sets[1].attributes.append(erd.entity_sets[0].primary_key[x]) erd.entity_sets[1].primary_key.append(erd.entity_sets[0].primary_key[x]) if erd.entity_sets[0].parents != []: t = ((*erd.entity_sets[1].primary_key,),erd.entity_sets[1].name,(*erd.entity_sets[1].primary_key,)), elif erd.entity_sets[1].parents != []: t = ((*erd.entity_sets[0].primary_key,),erd.entity_sets[0].name,(*erd.entity_sets[0].primary_key,)), foreign_key = t for x in range(entity_length): if erd.entity_sets[x].name != [] and erd.entity_sets[x].parents != []: my_db.append(Table(erd.entity_sets[x].name,set(erd.entity_sets[x].attributes),set(erd.entity_sets[x].primary_key),set(foreign_key))) elif erd.entity_sets[x].name != []: my_db.append(Table(erd.entity_sets[x].name,set(erd.entity_sets[x].attributes),set(erd.entity_sets[x].primary_key),set())) db = Database(my_db) #print(db.tables) return db def oneManyWithRelationshipAttr(erd, set2): foreign_key = [] my_db = [] entity_length = len(erd.entity_sets) amount_primary1 = len(erd.entity_sets[1].primary_key) for x in range(amount_primary1): erd.entity_sets[0].attributes.append(erd.entity_sets[1].primary_key[x]) #erd.entity_sets[0].primary_key.append(erd.entity_sets[1].primary_key[x]) for x in range(len(erd.relationships[0].primary_key)): erd.entity_sets[0].attributes.append(erd.relationships[0].primary_key[x]) erd.entity_sets[0].primary_key.append(erd.relationships[0].primary_key[x]) t = ((*erd.entity_sets[1].primary_key,),erd.entity_sets[1].name,(*erd.entity_sets[1].primary_key,)), foreign_key = t #for x in range(entity_length): # if erd.entity_sets[x].name != '' and erd.entity_sets[x].attributes != '' and erd.entity_sets[x].primary_key != '' and set2 == 1: # my_db.append(Table(erd.entity_sets[x].name,set(erd.entity_sets[x].attributes),set(erd.entity_sets[x].primary_key),set(foreign_key))) # elif erd.entity_sets[x].name != '' and erd.entity_sets[x].attributes != '' and erd.entity_sets[x].primary_key != '': # my_db.append(Table(erd.entity_sets[x].name,set(erd.entity_sets[x].attributes),set(erd.entity_sets[x].primary_key),set())) my_db.append(Table(erd.entity_sets[0].name,set(erd.entity_sets[0].attributes),set(erd.entity_sets[0].primary_key), set(foreign_key))) my_db.append(Table(erd.entity_sets[1].name,set(erd.entity_sets[1].attributes),set(erd.entity_sets[1].primary_key), set())) db = Database(my_db) #print(db.tables) return db def manyOneWithRelationshipAttr(erd,set22): foreign_key = [] my_db = [] entity_length = len(erd.entity_sets) amount_primary1 = len(erd.entity_sets[0].primary_key) for x in range(amount_primary1): erd.entity_sets[1].attributes.append(erd.entity_sets[0].primary_key[x]) erd.entity_sets[1].primary_key.append(erd.entity_sets[0].primary_key[x]) for x in range(len(erd.relationships[0].primary_key)): erd.entity_sets[1].attributes.append(erd.relationships[0].primary_key[x]) erd.entity_sets[1].primary_key.append(erd.relationships[0].primary_key[x]) t = ((*erd.entity_sets[0].primary_key,),erd.entity_sets[0].name,(*erd.entity_sets[0].primary_key,)), foreign_key = t #for x in range(entity_length): # if erd.entity_sets[x].name != '' and erd.entity_sets[x].attributes != '' and erd.entity_sets[x].primary_key != '' and set22 == 1: # my_db.append(Table(erd.entity_sets[x].name,set(erd.entity_sets[x].attributes),set(erd.entity_sets[x].primary_key),set(foreign_key))) # elif erd.entity_sets[x].name != '' and erd.entity_sets[x].attributes != '' and erd.entity_sets[x].primary_key != '': # my_db.append(Table(erd.entity_sets[x].name,set(erd.entity_sets[x].attributes),set(erd.entity_sets[x].primary_key),set())) my_db.append(Table(erd.entity_sets[0].name,set(erd.entity_sets[0].attributes),set(erd.entity_sets[0].primary_key), set())) my_db.append(Table(erd.entity_sets[1].name,set(erd.entity_sets[1].attributes),set(erd.entity_sets[1].primary_key), set(foreign_key))) db = Database(my_db) #print(db.tables) return db def twoEntitySetWithSupportingRelation(erd): foreign_key = [] my_db = [] entity_length = len(erd.entity_sets) for x in range(1): if erd.entity_sets[0].supporting_relations != []: amount_primary1 = len(erd.entity_sets[1].primary_key) for x in range(amount_primary1): erd.entity_sets[0].attributes.append(erd.entity_sets[1].primary_key[x]) erd.entity_sets[0].primary_key.append(erd.entity_sets[1].primary_key[x]) t = ((*erd.entity_sets[1].primary_key,),erd.entity_sets[1].name,(*erd.entity_sets[1].primary_key,)), foreign_key = t my_db.append(Table(erd.entity_sets[0].name,set(erd.entity_sets[0].attributes),set(erd.entity_sets[0].primary_key), set(foreign_key))) my_db.append(Table(erd.entity_sets[1].name,set(erd.entity_sets[1].attributes),set(erd.entity_sets[1].primary_key), set())) db = Database(my_db) #print(db.tables) return db elif erd.entity_sets[1].supporting_relations != []: amount_primary1 = len(erd.entity_sets[0].primary_key) for x in range(amount_primary1): erd.entity_sets[1].attributes.append(erd.entity_sets[0].primary_key[x]) erd.entity_sets[1].primary_key.append(erd.entity_sets[0].primary_key[x]) t = ((erd.entity_sets[0].primary_key[0],),erd.entity_sets[0].name,(erd.entity_sets[0].primary_key[0],)), foreign_key = t my_db.append(Table(erd.entity_sets[0].name,set(erd.entity_sets[0].attributes),set(erd.entity_sets[0].primary_key), set())) my_db.append(Table(erd.entity_sets[1].name,set(erd.entity_sets[1].attributes),set(erd.entity_sets[1].primary_key), set(foreign_key))) db = Database(my_db) #print(db.tables) return db def threeEntitySetsOneManyRelationship( erd ): foreign_key = [] my_db = [] t = set() entity_length = len(erd.entity_sets) divide00 = erd.entity_sets[0].connections[0] set1, set2 = zip(divide00) divide11 = erd.entity_sets[1].connections[0] set11, set22 = zip(divide11) divide22 = erd.entity_sets[2].connections[0] set111, set222 = zip(divide22) for x in range(1): if set2[0].value == 0: for x in range(len(erd.entity_sets[0].primary_key)): erd.relationships[0].attributes.append(erd.entity_sets[0].primary_key[x]) for x in range(len(erd.entity_sets[1].primary_key)): erd.relationships[0].attributes.append(erd.entity_sets[1].primary_key[x]) erd.relationships[0].primary_key.append(erd.entity_sets[1].primary_key[x]) for x in range(len(erd.entity_sets[2].primary_key)): erd.relationships[0].attributes.append(erd.entity_sets[2].primary_key[x]) erd.relationships[0].primary_key.append(erd.entity_sets[2].primary_key[x]) t = ((*erd.entity_sets[1].primary_key,),erd.entity_sets[1].name,(*erd.entity_sets[1].primary_key,)),((*erd.entity_sets[2].primary_key,),erd.entity_sets[2].name,(*erd.entity_sets[2].primary_key,)),((*erd.entity_sets[0].primary_key,),erd.entity_sets[0].name,(*erd.entity_sets[0].primary_key,)) foreign_key = t for x in range(entity_length): if erd.entity_sets[x].name != [] and erd.entity_sets[x].attributes != [] and erd.entity_sets[x].primary_key != []: my_db.append(Table(erd.entity_sets[x].name,set(erd.entity_sets[x].attributes),set(erd.entity_sets[x].primary_key),set())) for x in range(1): if erd.relationships[x].name != [] and erd.relationships[x].attributes != []: my_db.append(Table(erd.relationships[x].name,set(erd.relationships[x].attributes),set(erd.relationships[x].primary_key),set(foreign_key))) db = Database(my_db) #print(db.tables) return db elif set22[0].value == 0: for x in range(len(erd.entity_sets[0].primary_key)): erd.relationships[0].attributes.append(erd.entity_sets[0].primary_key[x]) erd.relationships[0].primary_key.append(erd.entity_sets[0].primary_key[x]) for x in range(len(erd.entity_sets[1].primary_key)): erd.relationships[0].attributes.append(erd.entity_sets[1].primary_key[x]) for x in range(len(erd.entity_sets[2].primary_key)): erd.relationships[0].attributes.append(erd.entity_sets[2].primary_key[x]) erd.relationships[0].primary_key.append(erd.entity_sets[2].primary_key[x]) t = ((*erd.entity_sets[1].primary_key,),erd.entity_sets[1].name,(*erd.entity_sets[1].primary_key,)),((*erd.entity_sets[2].primary_key,),erd.entity_sets[2].name,(*erd.entity_sets[2].primary_key,)),((*erd.entity_sets[0].primary_key,),erd.entity_sets[0].name,(*erd.entity_sets[0].primary_key,)) foreign_key = t for x in range(entity_length): if erd.entity_sets[x].name != [] and erd.entity_sets[x].attributes != [] and erd.entity_sets[x].primary_key != []: my_db.append(Table(erd.entity_sets[x].name,set(erd.entity_sets[x].attributes),set(erd.entity_sets[x].primary_key),set())) for x in range(1): if erd.relationships[x].name != [] and erd.relationships[x].attributes != []: my_db.append(Table(erd.relationships[x].name,set(erd.relationships[x].attributes),set(erd.relationships[x].primary_key),set(foreign_key))) db = Database(my_db) #print(db.tables) return db elif set222[0].value == 0: for x in range(len(erd.entity_sets[0].primary_key)): erd.relationships[0].attributes.append(erd.entity_sets[0].primary_key[x]) erd.relationships[0].primary_key.append(erd.entity_sets[0].primary_key[x]) for x in range(len(erd.entity_sets[1].primary_key)): erd.relationships[0].attributes.append(erd.entity_sets[1].primary_key[x]) erd.relationships[0].primary_key.append(erd.entity_sets[1].primary_key[x]) for x in range(len(erd.entity_sets[2].primary_key)): erd.relationships[0].attributes.append(erd.entity_sets[2].primary_key[x]) t = ((*erd.entity_sets[1].primary_key,),erd.entity_sets[1].name,(*erd.entity_sets[1].primary_key,)),((*erd.entity_sets[2].primary_key,),erd.entity_sets[2].name,(*erd.entity_sets[2].primary_key,)),((*erd.entity_sets[0].primary_key,),erd.entity_sets[0].name,(*erd.entity_sets[0].primary_key,)) foreign_key = t for x in range(entity_length): if erd.entity_sets[x].name != [] and erd.entity_sets[x].attributes != [] and erd.entity_sets[x].primary_key != []: my_db.append(Table(erd.entity_sets[x].name,set(erd.entity_sets[x].attributes),set(erd.entity_sets[x].primary_key),set())) for x in range(1): if erd.relationships[x].name != [] and erd.relationships[x].attributes != []: my_db.append(Table(erd.relationships[x].name,set(erd.relationships[x].attributes),set(erd.relationships[x].primary_key),set(foreign_key))) db = Database(my_db) #print(db.tables) return db else: for x in range(len(erd.entity_sets[0].primary_key)): erd.relationships[0].attributes.append(erd.entity_sets[0].primary_key[x]) erd.relationships[0].primary_key.append(erd.entity_sets[0].primary_key[x]) for x in range(len(erd.entity_sets[1].primary_key)): erd.relationships[0].attributes.append(erd.entity_sets[1].primary_key[x]) erd.relationships[0].primary_key.append(erd.entity_sets[1].primary_key[x]) for x in range(len(erd.entity_sets[2].primary_key)): erd.relationships[0].attributes.append(erd.entity_sets[2].primary_key[x]) erd.relationships[0].primary_key.append(erd.entity_sets[2].primary_key[x]) t = ((*erd.entity_sets[1].primary_key,),erd.entity_sets[1].name,(*erd.entity_sets[1].primary_key,)),((*erd.entity_sets[2].primary_key,),erd.entity_sets[2].name,(*erd.entity_sets[2].primary_key,)),((*erd.entity_sets[0].primary_key,),erd.entity_sets[0].name,(*erd.entity_sets[0].primary_key,)) foreign_key = t for x in range(entity_length): if erd.entity_sets[x].name != [] and erd.entity_sets[x].attributes != [] and erd.entity_sets[x].primary_key != []: my_db.append(Table(erd.entity_sets[x].name,set(erd.entity_sets[x].attributes),set(erd.entity_sets[x].primary_key),set())) for x in range(1): if erd.relationships[x].name != [] and erd.relationships[x].attributes != []: my_db.append(Table(erd.relationships[x].name,set(erd.relationships[x].attributes),set(erd.relationships[x].primary_key),set(foreign_key))) db = Database(my_db) #print(db.tables) return db def threeEntitySetWithParents(erd): foreign_key = [] foreign_key2 = [] my_db = [] entity_length = len(erd.entity_sets) hi = 0 for x in range(entity_length): if erd.entity_sets[x].parents != []: hi +=1 #print(hi) if erd.entity_sets[0].parents != [] and erd.entity_sets[1].parents != []: t2 = ((*erd.entity_sets[2].primary_key,),erd.entity_sets[2].name,(*erd.entity_sets[2].primary_key,)),((*erd.entity_sets[0].primary_key,),erd.entity_sets[0].name,(*erd.entity_sets[0].primary_key,)), for x in range(len(erd.entity_sets[2].primary_key)): erd.entity_sets[0].attributes.append(erd.entity_sets[2].primary_key[x]) erd.entity_sets[0].primary_key.append(erd.entity_sets[2].primary_key[x]) t = ((*erd.entity_sets[2].primary_key,),erd.entity_sets[2].name,(*erd.entity_sets[2].primary_key,)), for x in range(len(erd.entity_sets[0].primary_key)): erd.entity_sets[1].attributes.append(erd.entity_sets[0].primary_key[x]) erd.entity_sets[1].primary_key.append(erd.entity_sets[0].primary_key[x]) foreign_key = t foreign_key2 = t2 my_db.append(Table(erd.entity_sets[0].name,set(erd.entity_sets[0].attributes),set(erd.entity_sets[0].primary_key),set(foreign_key))) my_db.append(Table(erd.entity_sets[1].name,set(erd.entity_sets[1].attributes),set(erd.entity_sets[1].primary_key),set(foreign_key2))) my_db.append(Table(erd.entity_sets[2].name,set(erd.entity_sets[2].attributes),set(erd.entity_sets[2].primary_key),set())) db = Database(my_db) #print(db.tables) return db elif erd.entity_sets[1].parents != [] and erd.entity_sets[2].parents != []: t2 = ((*erd.entity_sets[1].primary_key,),erd.entity_sets[1].name,(*erd.entity_sets[1].primary_key,)),((*erd.entity_sets[0].primary_key,),erd.entity_sets[0].name,(*erd.entity_sets[0].primary_key,)), for x in range(len(erd.entity_sets[0].primary_key)): erd.entity_sets[1].attributes.append(erd.entity_sets[0].primary_key[x]) erd.entity_sets[1].primary_key.append(erd.entity_sets[0].primary_key[x]) t = ((*erd.entity_sets[0].primary_key,),erd.entity_sets[0].name,(*erd.entity_sets[0].primary_key,)), for x in range(len(erd.entity_sets[1].primary_key)): erd.entity_sets[2].attributes.append(erd.entity_sets[1].primary_key[x]) erd.entity_sets[2].primary_key.append(erd.entity_sets[1].primary_key[x]) foreign_key = t foreign_key2 = t2 my_db.append(Table(erd.entity_sets[0].name,set(erd.entity_sets[0].attributes),set(erd.entity_sets[0].primary_key),set())) my_db.append(Table(erd.entity_sets[1].name,set(erd.entity_sets[1].attributes),set(erd.entity_sets[1].primary_key),set(foreign_key))) my_db.append(Table(erd.entity_sets[2].name,set(erd.entity_sets[2].attributes),set(erd.entity_sets[2].primary_key),set(foreign_key2))) db = Database(my_db) #print(db.tables) return db elif erd.entity_sets[0].parents != [] and erd.entity_sets[2].parents != []: t2 = ((*erd.entity_sets[1].primary_key,),erd.entity_sets[1].name,(*erd.entity_sets[1].primary_key,)),((*erd.entity_sets[0].primary_key,),erd.entity_sets[0].name,(*erd.entity_sets[0].primary_key,)), for x in range(len(erd.entity_sets[0].primary_key)): erd.entity_sets[1].attributes.append(erd.entity_sets[0].primary_key[x]) erd.entity_sets[1].primary_key.append(erd.entity_sets[0].primary_key[x]) t = ((*erd.entity_sets[0].primary_key,),erd.entity_sets[0].name,(*erd.entity_sets[0].primary_key,)), for x in range(len(erd.entity_sets[1].primary_key)): erd.entity_sets[2].attributes.append(erd.entity_sets[1].primary_key[x]) erd.entity_sets[2].primary_key.append(erd.entity_sets[1].primary_key[x]) foreign_key = t foreign_key2 = t2 my_db.append(Table(erd.entity_sets[0].name,set(erd.entity_sets[0].attributes),set(erd.entity_sets[0].primary_key),set())) my_db.append(Table(erd.entity_sets[1].name,set(erd.entity_sets[1].attributes),set(erd.entity_sets[1].primary_key),set(foreign_key))) my_db.append(Table(erd.entity_sets[2].name,set(erd.entity_sets[2].attributes),set(erd.entity_sets[2].primary_key),set(foreign_key2))) db = Database(my_db) #print(db.tables) return db return entity_length def fourEntitySetsWeak(erd): foreign_key = [] foreign_key2 = [] my_db = [] entity_length = len(erd.entity_sets) #print(entity_length) #entity_length = len(erd.entity_sets) divi001 = erd.entity_sets[0].connections[0] set123, set223 = zip(divi001) div = erd.entity_sets[3].connections[0] #hi, hello = zip(div) #print(div) count = 0 for y in range(entity_length-1): # print(x) if len(erd.entity_sets[y].supporting_relations) == 0 and count == 0: count+=1 #print(count) #amount_primary1 = len(erd.entity_sets[1].primary_key) #for x in range(amount_primary1): # erd.entity_sets[0].attributes.append(erd.entity_sets[1].primary_key[x]) # erd.entity_sets[0].primary_key.append(erd.entity_sets[1].primary_key[x]) #t = ((*erd.entity_sets[1].primary_key,),erd.entity_sets[1].name,(*erd.entity_sets[1].primary_key,)), #foreign_key = t #my_db.append(Table(erd.entity_sets[0].name,set(erd.entity_sets[0].attributes),set(erd.entity_sets[0].primary_key), set(foreign_key))) my_db.append(Table(erd.entity_sets[y].name,set(erd.entity_sets[y].attributes),set(erd.entity_sets[y].primary_key), set())) # db = Database(my_db) #print(db.tables) #return db elif len(erd.entity_sets[y].supporting_relations) == 1 and erd.entity_sets[y].supporting_relations[0] == erd.relationships[0].name: count+=1 #print(count) amount_primary1 = len(erd.entity_sets[0].primary_key) for x in range(amount_primary1): erd.entity_sets[y].attributes.append(erd.entity_sets[0].primary_key[x]) erd.entity_sets[y].primary_key.append(erd.entity_sets[0].primary_key[x]) t = ((erd.entity_sets[0].primary_key[0],),erd.entity_sets[0].name,(erd.entity_sets[0].primary_key[0],)), foreign_key = t #print(y) #my_db.append(Table(erd.entity_sets[0].name,set(erd.entity_sets[0].attributes),set(erd.entity_sets[0].primary_key), set())) my_db.append(Table(erd.entity_sets[y].name,set(erd.entity_sets[y].attributes),set(erd.entity_sets[y].primary_key), set(foreign_key))) #db = Database(my_db) #print(db.tables) #return db elif erd.entity_sets[y].supporting_relations[0] == erd.relationships[1].name: count+=1 #print(count) amount_primary1 = len(erd.entity_sets[1].primary_key) for x in range(amount_primary1): erd.entity_sets[y].attributes.append(erd.entity_sets[1].primary_key[x]) erd.entity_sets[y].primary_key.append(erd.entity_sets[1].primary_key[x]) t = ((*erd.entity_sets[1].primary_key,),erd.entity_sets[1].name,(*erd.entity_sets[1].primary_key,)), foreign_key = t #my_db.append(Table(erd.entity_sets[0].name,set(erd.entity_sets[0].attributes),set(erd.entity_sets[0].primary_key), set())) my_db.append(Table(erd.entity_sets[y].name,set(erd.entity_sets[y].attributes),set(erd.entity_sets[y].primary_key), set(foreign_key))) #db = Database(my_db) #print(db.tables) #return db else: #len(erd.entity_sets[y].supporting_relations) == 0 : count+=1 #print(count) amount_primary1 = len(erd.entity_sets[1].primary_key) for x in range(amount_primary1): erd.entity_sets[3].attributes.append(erd.entity_sets[1].primary_key[x]) #erd.entity_sets[y].primary_key.append(erd.entity_sets[1].primary_key[x]) t = ((*erd.entity_sets[1].primary_key,),erd.entity_sets[1].name,(*erd.entity_sets[1].primary_key,)), foreign_key = t #my_db.append(Table(erd.entity_sets[0].name,set(erd.entity_sets[0].attributes),set(erd.entity_sets[0].primary_key), set())) my_db.append(Table(erd.entity_sets[3].name,set(erd.entity_sets[3].attributes),set(erd.entity_sets[3].primary_key), set(foreign_key))) #print(erd.entity_sets[1].supporting_relations[0]) #print(erd.relationships[0].name) db = Database(my_db) #print(db.tables) return db
55.171735
303
0.642489
0
0
0
0
0
0
0
0
4,371
0.141727
32c6b6ee54440932d94dc43f2f2f342cc123a082
1,848
py
Python
ObitSystem/ObitSD/scripts/scriptResidCal.py
sarrvesh/Obit
e4ce6029e9beb2a8c0316ee81ea710b66b2b7986
[ "Linux-OpenIB" ]
5
2019-08-26T06:53:08.000Z
2020-10-20T01:08:59.000Z
ObitSystem/ObitSD/scripts/scriptResidCal.py
sarrvesh/Obit
e4ce6029e9beb2a8c0316ee81ea710b66b2b7986
[ "Linux-OpenIB" ]
null
null
null
ObitSystem/ObitSD/scripts/scriptResidCal.py
sarrvesh/Obit
e4ce6029e9beb2a8c0316ee81ea710b66b2b7986
[ "Linux-OpenIB" ]
8
2017-08-29T15:12:32.000Z
2022-03-31T12:16:08.000Z
# Program to self calibrate OTF data import Obit, OTF, Image, OSystem, OErr, OTFGetSoln, InfoList, Table # Init Obit err=OErr.OErr() ObitSys=OSystem.OSystem ("Python", 1, 103, 1, ["None"], 1, ["./"], 1, 0, err) OErr.printErrMsg(err, "Error with Obit startup") # Files disk = 1 # Dirty inFullFile = "OTFDirtyFull.fits" # input Full OTF data inSubFile = "OTFDirtySub.fits" # input Full OTF data #Clean #inFullFile = "OTFCleanFull.fits" # input Full OTF data #inSubFile = "OTFCleanSub.fits" # input Full OTF data # Set data fullData = OTF.newPOTF("Input data", inFullFile, disk, 1, err) subData = OTF.newPOTF("Input data", inSubFile, disk, 1, err) OErr.printErrMsg(err, "Error creating input data object") # Calibration parameters calType = "Filter" solint = 5.0 / 86400.0 minRMS = 0.0 minEl = 0.0 calJy = [1.0,1.0] dim = OTF.dim dim[0] = 1 inInfo = OTF.POTFGetList(subData) InfoList.PInfoListAlwaysPutFloat(inInfo, "SOLINT", dim, [solint]) InfoList.PInfoListAlwaysPutFloat(inInfo, "MINRMS", dim, [minRMS]) InfoList.PInfoListAlwaysPutFloat(inInfo, "MINEL", dim, [minEl]) dim[0] = len(calJy) InfoList.PInfoListAlwaysPutFloat(inInfo, "CALJY", dim, calJy) dim[0] = len(calType) InfoList.PInfoListAlwaysPutString(inInfo, "calType", dim, [calType]) dim[0] = 1 solnTable = OTFGetSoln.POTFGetSolnFilter (subData, fullData, err) soln = Table.PTableGetVer(solnTable) # Update Cal table # Soln2Cal parameters (most defaulted) OTF.Soln2CalInput["InData"] = fullData OTF.Soln2CalInput["soln"] = soln # Use highest extant Cal table as input oldCal = Obit.OTFGetHighVer(fullData.me, "OTFCal") if oldCal == 0: # Must not be one oldCal = -1 OTF.Soln2CalInput["oldCal"] = oldCal OTF.Soln2CalInput["newCal"] = 0 OTF.Soln2Cal(err,OTF.Soln2CalInput) # Shutdown OErr.printErr(err) print 'Done, calibrated',inFullFile
31.862069
77
0.715368
0
0
0
0
0
0
0
0
631
0.34145
32c6c31592e8107e78ef2bb52771dcffacd50781
393
py
Python
html_mining/twitter.py
sourceperl/sandbox
bbe1be52c3e51906a8ec94411c4df6a95dcbb39c
[ "MIT" ]
null
null
null
html_mining/twitter.py
sourceperl/sandbox
bbe1be52c3e51906a8ec94411c4df6a95dcbb39c
[ "MIT" ]
null
null
null
html_mining/twitter.py
sourceperl/sandbox
bbe1be52c3e51906a8ec94411c4df6a95dcbb39c
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import requests from bs4 import BeautifulSoup r = requests.get("https://twitter.com/ThePSF", headers={"User-Agent": ""}) if r.status_code == 200: s = BeautifulSoup(r.content, "html.parser") # extract tweets l_tw = [] for p in s.find_all("p", attrs={"class": "tweet-text"}): l_tw.append(p.text.strip()) print(l_tw)
23.117647
74
0.62341
0
0
0
0
0
0
0
0
138
0.351145
32c80a80f478110db9183291633d248502cd65ad
590
py
Python
warehouse_labeling_machines/libs/utils.py
sdg97/warehouse_labeling_machines
3650b9fb2d3fef85ee01925acf0a9266dafe746a
[ "Apache-2.0" ]
null
null
null
warehouse_labeling_machines/libs/utils.py
sdg97/warehouse_labeling_machines
3650b9fb2d3fef85ee01925acf0a9266dafe746a
[ "Apache-2.0" ]
null
null
null
warehouse_labeling_machines/libs/utils.py
sdg97/warehouse_labeling_machines
3650b9fb2d3fef85ee01925acf0a9266dafe746a
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- import decimal import multiprocessing import random def roundDecimal(v): ''' Sembra che l'arrotondamento di un decimal sia più complicato del previsto ''' return v.quantize(decimal.Decimal('0.01'), rounding=decimal.ROUND_HALF_UP) def maybeStart(startCb, debug): ''' Ogni tanto esegue questa callback... Ad ogni restart di un worker in maniera casuale esegue la callback ''' if debug: return workers = multiprocessing.cpu_count() * 2 + 1 if random.randrange(workers) == 0: startCb()
21.851852
78
0.666102
0
0
0
0
0
0
0
0
259
0.43824
32c8f25c548f019704dfb22f0db7ab07f62d2dd9
504
py
Python
projeto/main/migrations/0017_alter_user_room.py
neilom18/g5-chess
8998199b3432f0b83aa27e5c2126173ecc87f311
[ "MIT" ]
null
null
null
projeto/main/migrations/0017_alter_user_room.py
neilom18/g5-chess
8998199b3432f0b83aa27e5c2126173ecc87f311
[ "MIT" ]
1
2021-10-03T22:26:45.000Z
2021-10-03T22:26:45.000Z
projeto/main/migrations/0017_alter_user_room.py
neilom18/g5-chess
8998199b3432f0b83aa27e5c2126173ecc87f311
[ "MIT" ]
null
null
null
# Generated by Django 3.2.4 on 2021-09-24 15:29 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('main', '0016_alter_user_usercode'), ] operations = [ migrations.AlterField( model_name='user', name='room', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='room', to='main.room'), ), ]
25.2
141
0.640873
378
0.75
0
0
0
0
0
0
108
0.214286
08613adf55222eb81cf9aea8d6ff94d2cf2ab660
105
py
Python
groups/views.py
AliAkberAakash/learn-in-groups
850601ddd5520c850ebec12003c8337670762948
[ "MIT" ]
null
null
null
groups/views.py
AliAkberAakash/learn-in-groups
850601ddd5520c850ebec12003c8337670762948
[ "MIT" ]
null
null
null
groups/views.py
AliAkberAakash/learn-in-groups
850601ddd5520c850ebec12003c8337670762948
[ "MIT" ]
null
null
null
from django.shortcuts import render def group_list(request): return render(request, 'group_list.html')
21
42
0.8
0
0
0
0
0
0
0
0
17
0.161905
086749fe086bfe8b53982e2dc76e87c1e91b6cc7
1,596
py
Python
code/p3.py
OscarFlores-IFi/CDINP19
7fb0cb6ff36b9a10bcfa0772b172c5e49996df48
[ "MIT" ]
null
null
null
code/p3.py
OscarFlores-IFi/CDINP19
7fb0cb6ff36b9a10bcfa0772b172c5e49996df48
[ "MIT" ]
null
null
null
code/p3.py
OscarFlores-IFi/CDINP19
7fb0cb6ff36b9a10bcfa0772b172c5e49996df48
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Mon Feb 11 09:18:37 2019 @author: if715029 """ import pandas as pd import numpy as np import sklearn.metrics as skm import scipy.spatial.distance as sc #%% Leer datos data = pd.read_excel('../data/Test de películas(1-16).xlsx', encoding='latin_1') #%% Seleccionar datos (a mi estilo) pel = pd.DataFrame() for i in range((len(data.T)-5)//3): pel = pel.append(data.iloc[:,6+i*3]) pel = pel.T print(pel) #%% Seleccionar datos (estilo Riemann) csel = np.arange(6,243,3) cnames = list(data.columns.values[csel]) datan = data[cnames] #%% Promedios movie_prom = datan.mean(axis=0) user_prom = datan.mean(axis=1) #%% Calificaciones a binarios (>= 3) datan = datan.copy() datan[datan<3] = 0 datan[datan>=3] = 1 #%% Calcular distancias de indices de similitud #D1 = sc.pdist(datan,'hamming') # hamming == matching D1 = sc.pdist(datan,'jaccard') D1 = sc.squareform(D1) #D2 = sc.pdist(data_b,'jaccard') # hamming == matching #D2 = sc.squareform(D2) Isim1 = 1-D1 #%% Seleccionar usuario y determinar sus parecidos user = 1 Isim_user = Isim1[user] Isim_user_sort = np.sort(Isim_user) indx_user = np.argsort(Isim_user) #%% Recomendación de películas p1. USER = datan.loc[user] USER_sim = datan.loc[indx_user[-2]] indx_recomend1 = (USER_sim==1)&(USER==0) recomend1 = list(USER.index[indx_recomend1]) #%% Recomendación peliculas p2. USER = datan.loc[user] USER_sim = np.mean(datan.loc[indx_user[-6:-1]],axis = 0) USER_sim[USER_sim<=.5]=0 USER_sim[USER_sim>.5]=1 indx_recomend2 = (USER_sim==1)&(USER==0) recomend2 = list(USER.index[indx_recomend2])
21.863014
80
0.697368
0
0
0
0
0
0
0
0
575
0.359375
0867a27f2b0a9d65b0fbacf348d77dfbc3427264
1,187
py
Python
itao/utils/qt_logger.py
MaxChangInnodisk/itao
b0745eb48bf67718ef00db566c4cc19896d903a7
[ "MIT" ]
null
null
null
itao/utils/qt_logger.py
MaxChangInnodisk/itao
b0745eb48bf67718ef00db566c4cc19896d903a7
[ "MIT" ]
null
null
null
itao/utils/qt_logger.py
MaxChangInnodisk/itao
b0745eb48bf67718ef00db566c4cc19896d903a7
[ "MIT" ]
null
null
null
import logging class CustomLogger: def __init__(self): pass """ Create logger which name is 'dev' """ def create_logger(self, name='dev', log_file='itao.log', write_mode='w'): logger = logging.getLogger(name) # setup LEVEL logger.setLevel(logging.DEBUG) # setup formatter formatter = logging.Formatter( "%(asctime)s %(levelname)-.4s %(message)s", "%m-%d %H:%M:%S") # setup handler stream_handler = logging.StreamHandler() file_handler = logging.FileHandler(log_file, write_mode, 'utf-8') # add formatter into handler stream_handler.setFormatter(formatter) file_handler.setFormatter(formatter) # add handler into logger logger.addHandler(stream_handler) logger.addHandler(file_handler) logger.info('Create Logger: {}'.format(name)) return logger """ get logger """ def get_logger(self, name='dev', log_file='itao.log', write_mode='w'): logger = logging.getLogger(name) return logger if logger.hasHandlers() else self.create_logger(name, log_file, write_mode)
34.911765
97
0.615838
1,171
0.986521
0
0
0
0
0
0
277
0.233361
0867ca55ebc85e21b29f1ca39ad6e18f1d0c662a
99
py
Python
pypupil/serializer.py
choisuyeon/pypupil
3fdb1f29c6b28613b6b39094c01e61560214daff
[ "MIT" ]
9
2018-08-07T11:00:54.000Z
2021-02-13T04:36:05.000Z
pypupil/serializer.py
choisuyeon/pypupil
3fdb1f29c6b28613b6b39094c01e61560214daff
[ "MIT" ]
null
null
null
pypupil/serializer.py
choisuyeon/pypupil
3fdb1f29c6b28613b6b39094c01e61560214daff
[ "MIT" ]
1
2020-12-03T00:44:29.000Z
2020-12-03T00:44:29.000Z
class Serializer: """ send data serially """ def __init__(self): return
14.142857
27
0.525253
97
0.979798
0
0
0
0
0
0
31
0.313131
08687783aacc944c351fc37618c9c87ef69b3d6b
2,296
py
Python
scripts/ndvi_diff.py
hkfrei/pythonRemoteSensing
c8681d859313ee5ad01e5b9753f8c43462268624
[ "MIT" ]
1
2019-12-18T21:54:22.000Z
2019-12-18T21:54:22.000Z
scripts/ndvi_diff.py
hkfrei/pythonRemoteSensing
c8681d859313ee5ad01e5b9753f8c43462268624
[ "MIT" ]
null
null
null
scripts/ndvi_diff.py
hkfrei/pythonRemoteSensing
c8681d859313ee5ad01e5b9753f8c43462268624
[ "MIT" ]
1
2020-07-01T16:44:21.000Z
2020-07-01T16:44:21.000Z
import numpy import rasterio import gdal print('all modules imported') # path to the folder with the ndvi rasters base_path = "/Users/hk/Downloads/gaga/" # shapefile with forest mask forest_mask = base_path + "waldmaske_wgs84.shp" # initialize the necessary rasters for the ndvi calculation. ndvi_2017 = rasterio.open(base_path + "ndvi_17.tiff", driver="GTiff") ndvi_2018 = rasterio.open(base_path + "ndvi_18.tiff", driver="GTiff") # print out metadata about the ndvi's print(ndvi_2018.count) # number of raster bands print(ndvi_2017.count) # number of raster bands print(ndvi_2018.height) # column count print(ndvi_2018.dtypes) # data type of the raster e.g. ('float64',) print(ndvi_2018.crs) # projection of the raster e.g. EPSG:32632 print("calculate ndvi difference") # this is will give us an array of values, not an actual raster image. ndvi_diff_array = numpy.subtract(ndvi_2018.read(1), ndvi_2017.read(1)) print("reclassify") # reclassify ndvi_diff_reclass_array = numpy.where( ndvi_diff_array <= -0.05, 1, 9999.0 ) # create a new (empty) raster for the "original" diff ndvi_diff_image = rasterio.open(base_path + "ndvi_diff.tif", "w", driver="Gtiff", width=ndvi_2018.width, height=ndvi_2018.height, count=1, crs=ndvi_2018.crs, transform=ndvi_2018.transform, dtype='float64') # create a new (empty) raster for the reclassified diff ndvi_diff_reclass_image = rasterio.open(base_path + "ndvi_reclass_diff.tif", "w", driver="Gtiff", width=ndvi_2018.width, height=ndvi_2018.height, count=1, crs=ndvi_2018.crs, transform=ndvi_2018.transform, dtype='float64') # write the ndvi's to raster ndvi_diff_image.write(ndvi_diff_array.astype("float64"), 1) ndvi_diff_reclass_image.write(ndvi_diff_reclass_array.astype("float64"), 1) ndvi_diff_image.close() ndvi_diff_reclass_image.close() # extract forest areas # Make sure to add correct Nodata and Alpha values. They have to match the reclassified values. warp_options = gdal.WarpOptions(cutlineDSName=forest_mask, cropToCutline=True, dstNodata=9999, dstAlpha=9999) gdal.Warp(base_path + "change_masked.tif", base_path + "ndvi_reclass_diff.tif", options=warp_options) print("finished")
41.745455
120
0.726916
0
0
0
0
0
0
0
0
946
0.412021
08691612fc229c4b74017cbf49ecddb0965a12ea
462
py
Python
helga_umb/signals/util.py
ktdreyer/helga-umb
f0c6858745d90205e74eec0eb5ebaafa655b2336
[ "MIT" ]
null
null
null
helga_umb/signals/util.py
ktdreyer/helga-umb
f0c6858745d90205e74eec0eb5ebaafa655b2336
[ "MIT" ]
2
2018-04-27T15:37:10.000Z
2018-08-22T21:00:40.000Z
helga_umb/signals/util.py
ktdreyer/helga-umb
f0c6858745d90205e74eec0eb5ebaafa655b2336
[ "MIT" ]
null
null
null
def product_from_branch(branch): """ Return a product name from this branch name. :param branch: eg. "ceph-3.0-rhel-7" :returns: eg. "ceph" """ if branch.startswith('private-'): # Let's just return the thing after "private-" and hope there's a # product string match somewhere in there. return branch[8:] # probably not gonna work for "stream" branches :( parts = branch.split('-', 1) return parts[0]
30.8
73
0.621212
0
0
0
0
0
0
0
0
297
0.642857
08698150dd4c0d31ae984574dc2eb2d108201474
752
py
Python
work/2021/ne201076/src/cpu_notify.py
tora01/SkillLab
61ebfaf45c503b9e6f4a3d05a7edd4de2fcad93e
[ "CC0-1.0" ]
2
2020-09-09T02:40:23.000Z
2021-09-12T18:08:15.000Z
work/2021/ne201076/src/cpu_notify.py
tora01/SkillLab
61ebfaf45c503b9e6f4a3d05a7edd4de2fcad93e
[ "CC0-1.0" ]
1
2021-09-14T09:36:38.000Z
2021-09-14T09:36:38.000Z
work/2021/ne201076/src/cpu_notify.py
tora01/SkillLab
61ebfaf45c503b9e6f4a3d05a7edd4de2fcad93e
[ "CC0-1.0" ]
19
2021-09-07T06:11:29.000Z
2021-09-07T07:45:08.000Z
import requests url = 'https://notify-api.line.me/api/notify'#LINE NotifyのAPIのURL token = '2RNdAKwlaj69HK0KlEdMX1y575gDWNKrPpggFcLnh82' #自分のアクセストークン ms = "新たなソフトを開くと負担が過剰にかかってしまいます。"#送信する通知内容 def line(message,url,token): post_data = {'message': message} headers = {'Authorization': 'Bearer ' + token} #送信する res = requests.post(url, data=post_data, headers=headers) print(res.text)#メッセージが送信されたかどうかの確認 while True: now=dt.('cpu_temps') dt = getCpuTempFromFile(data_file) #CPU温度取得 print(cpu_temps) if print(cpu_temp) == "print >= 80":#CPU温度が80度以上の際にラインが送られるようにする line(postdate=message, date=postdate, palams=postdate )#lineを呼び出す break time.sleep(1)
31.333333
73
0.670213
0
0
0
0
0
0
0
0
480
0.503145
0869ba6e18dfa77decb88cf8144acde0c451215e
49
py
Python
src/titiler/application/titiler/application/__init__.py
kalxas/titiler
5e4e497f1033eb64b65315068c094abe8259cd8c
[ "MIT" ]
null
null
null
src/titiler/application/titiler/application/__init__.py
kalxas/titiler
5e4e497f1033eb64b65315068c094abe8259cd8c
[ "MIT" ]
null
null
null
src/titiler/application/titiler/application/__init__.py
kalxas/titiler
5e4e497f1033eb64b65315068c094abe8259cd8c
[ "MIT" ]
null
null
null
"""titiler.application""" __version__ = "0.6.0"
12.25
25
0.653061
0
0
0
0
0
0
0
0
32
0.653061
0869cc3c4f8fe0eb7c864da5eb1b5caf6b676944
550
py
Python
testScripts/getAllFiles.py
ryanemerson/JGroups-HiTab
8fd8c6c45219e4c04618630be7e2449ebb0578dc
[ "Apache-2.0" ]
null
null
null
testScripts/getAllFiles.py
ryanemerson/JGroups-HiTab
8fd8c6c45219e4c04618630be7e2449ebb0578dc
[ "Apache-2.0" ]
null
null
null
testScripts/getAllFiles.py
ryanemerson/JGroups-HiTab
8fd8c6c45219e4c04618630be7e2449ebb0578dc
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import os from collections import defaultdict hosts = {'mill001', 'mill004', 'mill005'} user = 'a7109534' file_location = '/work/a7109534/' #file_location = '/home/ryan/workspace/JGroups' #file_location = '/home/pg/p11/a7109534/' file_wildcard = '*' extension = ".csv" get_file = file_location + file_wildcard + extension destination = '.' number_of_rounds = 18 os.system("rm *" + extension) for hostname in hosts: cmd = "scp " + user + "@" + hostname + ":" + get_file + " " + destination print cmd os.system(cmd)
26.190476
77
0.681818
0
0
0
0
0
0
0
0
196
0.356364
0869fc3b1af3273cc468fc0da2d162910f894bff
3,610
py
Python
studio/model.py
NunoEdgarGFlowHub/studio
42b221892a81535842ff25cbbcc434d6422a19e5
[ "Apache-2.0" ]
null
null
null
studio/model.py
NunoEdgarGFlowHub/studio
42b221892a81535842ff25cbbcc434d6422a19e5
[ "Apache-2.0" ]
null
null
null
studio/model.py
NunoEdgarGFlowHub/studio
42b221892a81535842ff25cbbcc434d6422a19e5
[ "Apache-2.0" ]
null
null
null
"""Data providers.""" import os try: # try-except statement needed because # pip module is not available in google app engine import pip except ImportError: pip = None import yaml import six from .artifact_store import get_artifact_store from .http_provider import HTTPProvider from .firebase_provider import FirebaseProvider from .s3_provider import S3Provider from .gs_provider import GSProvider from . import logs def get_config(config_file=None): config_paths = [] if config_file: if not os.path.exists(config_file): raise ValueError('User config file {} not found' .format(config_file)) config_paths.append(os.path.expanduser(config_file)) config_paths.append(os.path.expanduser('~/.studioml/config.yaml')) config_paths.append( os.path.join( os.path.dirname(os.path.realpath(__file__)), "default_config.yaml")) for path in config_paths: if not os.path.exists(path): continue with(open(path)) as f: config = yaml.load(f.read()) def replace_with_env(config): for key, value in six.iteritems(config): if isinstance(value, six.string_types): config[key] = os.path.expandvars(value) elif isinstance(value, dict): replace_with_env(value) replace_with_env(config) return config raise ValueError('None of the config paths {} exits!' .format(config_paths)) def get_db_provider(config=None, blocking_auth=True): if not config: config = get_config() verbose = parse_verbosity(config.get('verbose')) logger = logs.getLogger("get_db_provider") logger.setLevel(verbose) logger.debug('Choosing db provider with config:') logger.debug(config) if 'storage' in config.keys(): artifact_store = get_artifact_store( config['storage'], blocking_auth=blocking_auth, verbose=verbose) else: artifact_store = None assert 'database' in config.keys() db_config = config['database'] if db_config['type'].lower() == 'firebase': return FirebaseProvider( db_config, blocking_auth, verbose=verbose, store=artifact_store) elif db_config['type'].lower() == 'http': return HTTPProvider(db_config, verbose=verbose, blocking_auth=blocking_auth) elif db_config['type'].lower() == 's3': return S3Provider(db_config, verbose=verbose, store=artifact_store, blocking_auth=blocking_auth) elif db_config['type'].lower() == 'gs': return GSProvider(db_config, verbose=verbose, store=artifact_store, blocking_auth=blocking_auth) else: raise ValueError('Unknown type of the database ' + db_config['type']) def parse_verbosity(verbosity=None): if verbosity is None: return parse_verbosity('info') if verbosity == 'True': return parse_verbosity('info') logger_levels = { 'debug': 10, 'info': 20, 'warn': 30, 'error': 40, 'crit': 50 } if isinstance(verbosity, six.string_types) and \ verbosity in logger_levels.keys(): return logger_levels[verbosity] else: return int(verbosity)
28.88
77
0.591967
0
0
0
0
0
0
0
0
455
0.126039
086a788b83deae56a16772a629310d3b84a228a0
570
py
Python
Server/server/model_inference/predictor.py
thaiminhpv/Doctor-Cyclop-Hackathon-2021
afb943f7d00ceccb408c895077517ddd06d87fd7
[ "MIT" ]
6
2021-04-30T05:28:04.000Z
2022-03-21T14:50:43.000Z
Server/server/model_inference/predictor.py
thaiminhpv/Doctor-Cyclop-Hackathon-2021
afb943f7d00ceccb408c895077517ddd06d87fd7
[ "MIT" ]
null
null
null
Server/server/model_inference/predictor.py
thaiminhpv/Doctor-Cyclop-Hackathon-2021
afb943f7d00ceccb408c895077517ddd06d87fd7
[ "MIT" ]
1
2022-01-10T14:58:02.000Z
2022-01-10T14:58:02.000Z
import numpy as np import pandas as pd from server.model_inference.config import labels from server.model_inference.core_model import get_model_prediction from server.util.prediction_to_json import pandas_to_json def get_predictions(images): ids = list(images.keys()) out = np.hstack((np.asarray(ids)[np.newaxis,].T, (np.zeros((len(ids), len(labels)))))) df_sub = pd.DataFrame(out, columns=['StudyInstanceUID', *labels]) predicted_df = get_model_prediction(df_sub, images) predicted_json = pandas_to_json(predicted_df) return predicted_json
31.666667
90
0.764912
0
0
0
0
0
0
0
0
18
0.031579
086b6939a15a14e2ba2c7a9bf78818444b385782
7,310
py
Python
extendPlugins/minecraft.py
f88af65a/XyzB0ts
21a557288877b24f337f16002d8bb72b155f2551
[ "MIT" ]
4
2021-10-17T11:54:07.000Z
2022-03-18T13:10:11.000Z
extendPlugins/minecraft.py
f88af65a/XyzB0ts
21a557288877b24f337f16002d8bb72b155f2551
[ "MIT" ]
null
null
null
extendPlugins/minecraft.py
f88af65a/XyzB0ts
21a557288877b24f337f16002d8bb72b155f2551
[ "MIT" ]
1
2021-10-16T09:51:25.000Z
2021-10-16T09:51:25.000Z
import asyncio import json import socket import time from botsdk.util.BotPlugin import BotPlugin from botsdk.util.Error import printTraceBack def getMcRequestData(ip, port): data = (b"\x00\xff\xff\xff\xff\x0f" + bytes([len(ip.encode("utf8"))]) + ip.encode("utf8") + int.to_bytes(port, 2, byteorder="big") + b"\x01\x01\x00") return bytes([len(data) - 2]) + data def getVarInt(b): b = list(b) b.reverse() ans = 0 for i in b: ans <<= 7 ans |= (i & 127) return ans class plugin(BotPlugin): "/[mcbe/mcpe] ip [端口]" def onLoad(self): self.name = "minecraft" self.addTarget("GroupMessage", "mc", self.getMc) self.addTarget("GroupMessage", "mcbe", self.getBe) self.addTarget("GROUP:1", "mc", self.getMc) self.addTarget("GROUP:1", "mcbe", self.getBe) self.addBotType("Mirai") self.addBotType("Kaiheila") self.canDetach = True async def getMc(self, request): "/mc ip [端口]不写默认25565" data = request.getFirstTextSplit() serverIp = None serverPort = 25565 if len(data) < 2: await request.sendMessage("缺少参数\n/mc ip [端口]不写默认25565") return if len(data) >= 2: serverIp = data[1] if len(data) >= 3: if not (data[2].isnumeric() and int(data[2]) >= 0 and int(data[2]) <= 65535): request.sendMessage("端口有误") return serverPort = int(data[2]) # 初始化socket with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock: sock.settimeout(0) loop = asyncio.get_event_loop() # 连接 try: await loop.sock_connect(sock, (serverIp, serverPort)) except Exception: await request.sendMessage("连接失败") return requestData = getMcRequestData(serverIp, serverPort) # 发送 try: await loop.sock_sendall(sock, requestData) except Exception: await request.sendMessage("请求发送失败") return # 接受 responseData = bytes() breakFlag = True dataSize = 10000000 stime = time.time() while time.time() - stime <= 2 and breakFlag: for i in range(0, len(responseData)): if int(responseData[i]) & 128 == 0: dataSize = getVarInt(responseData[0:i + 1]) + i + 1 break if len(responseData) == dataSize: breakFlag = False break rdata = await loop.sock_recv(sock, 10240) if len(rdata) == 0: await request.sendMessage("接受请求时连接断开") return -1 responseData += rdata await asyncio.sleep(0) for i in range(0, len(responseData)): if int(responseData[i]) & 128 == 0: responseData = responseData[i + 2:] break for i in range(0, len(responseData)): if int(responseData[i]) & 128 == 0: responseData = responseData[i + 1:] break responseData = json.loads(responseData) description = "" if "text" in responseData["description"]: description = responseData["description"]["text"] if "extra" in responseData["description"]: for i in responseData["description"]["extra"]: if "text" in i: description += i["text"] try: printData = "信息:{0}\n版本:{1}\n人数:{2}/{3}".format( description, responseData["version"]["name"], responseData["players"]["online"], responseData["players"]["max"]) if "playerlist" in data: printData += "\n在线玩家:\n" for i in range(0, len(responseData["players"]["sample"])): printData += (responseData ["players"]["sample"][i]["name"]) if i != len(responseData["players"]["sample"]) - 1: printData += "\n" await request.sendMessage(printData) except Exception: await request.sendMessage("解析过程中出错") printTraceBack() async def getBe(self, request): "/mcbe ip [端口]不写默认19132" data = request.getFirstTextSplit() serverIp = None serverPort = 19132 if len(data) < 2: await request.sendMessage("缺少参数\n/mcbe ip [端口]不写默认19132") return if len(data) >= 2: serverIp = data[1] if len(data) == 3: if not (data[2].isnumeric() and int(data[2]) >= 0 and int(data[2]) <= 65535): request.sendMessage("端口有误") return serverPort = int(data[2]) # 初始化socket with socket.socket(socket.AF_INET, socket.SOCK_DGRAM) as sock: sock.settimeout(0) loop = asyncio.get_event_loop() # 连接 try: await loop.sock_connect(sock, (serverIp, serverPort)) except Exception: await request.sendMessage("连接失败") return requestData = (b"\x01" + b"\x00" * 8 + b"\x00\xff\xff\x00\xfe\xfe\xfe" + b"\xfe\xfd\xfd\xfd\xfd\x12\x34\x56\x78" + b"\x00" * 8) # 发送 try: await loop.sock_sendall(sock, requestData) except Exception: await request.sendMessage("请求发送失败") return # 接受 responseData = bytes() breakFlag = True stime = time.time() while time.time() - stime <= 2 and breakFlag: try: responseData = await loop.sock_recv(sock, 10240) except Exception: responseData = b"" if len(responseData) == 0: sock.close() await request.sendMessage("接收过程中连接断开") return breakFlag = False await asyncio.sleep(0) responseData = responseData[35:].decode() responseData = responseData.split(";") printData = "" try: printData += f"服务器名:{responseData[1]}\n" printData += f"人数:{responseData[4]}/{responseData[5]}\n" printData += f"游戏模式:{responseData[8]}\n" printData += ( f"版本:{responseData[0]} {responseData[2]} {responseData[3]}" ) await request.sendMessage(printData) except Exception: await request.sendMessage("解析过程中出错") printTraceBack() def handle(*args, **kwargs): return plugin(*args, **kwargs)
36.733668
79
0.477291
6,951
0.91726
0
0
0
0
6,508
0.858802
1,178
0.15545