hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
410af5985b4b1c70714faefbc090b58a89a67ddd
270
py
Python
main/run_camera_calibrate.py
mcekwonu/pycamera
0d2c9cb70e8cbc9012e252c06ff1827ae8544cf2
[ "MIT" ]
null
null
null
main/run_camera_calibrate.py
mcekwonu/pycamera
0d2c9cb70e8cbc9012e252c06ff1827ae8544cf2
[ "MIT" ]
null
null
null
main/run_camera_calibrate.py
mcekwonu/pycamera
0d2c9cb70e8cbc9012e252c06ff1827ae8544cf2
[ "MIT" ]
null
null
null
"""Script to run camera calibration""" from camera import Camera camera = Camera(source_dir='/home/mce/Documents/bubble3D/calibration/Cam01', outfilename='Cam01', target_dir='results/camera', verbose=True) camera.calibrate() camera.compute_undistort()
30
97
0.740741
0
0
0
0
0
0
0
0
109
0.403704
410b5247c45f5769ae5e7ac2ac703fb1bb25e83e
1,994
py
Python
Hub/Program/Other/Class/ZThreadSingle.py
MPZinke/SmartCurtain
ef9976d7a6b982bb044e6fd914fdea4756d5b5c4
[ "MIT" ]
null
null
null
Hub/Program/Other/Class/ZThreadSingle.py
MPZinke/SmartCurtain
ef9976d7a6b982bb044e6fd914fdea4756d5b5c4
[ "MIT" ]
18
2020-06-21T02:36:52.000Z
2022-03-14T04:17:56.000Z
Hub/Program/Other/Class/ZThreadSingle.py
MPZinke/SmartCurtain
ef9976d7a6b982bb044e6fd914fdea4756d5b5c4
[ "MIT" ]
1
2020-01-19T02:24:38.000Z
2020-01-19T02:24:38.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = "MPZinke" ######################################################################################################################## # # # created by: MPZinke # # on 2021.09.14 # # # # DESCRIPTION: Created to sepparate the crazy logic between repeating and single occurance threads. The flow of this # # class is Sleep -> Action, where as the repeating class is (Action -> Sleep) <- REPEAT. # # BUGS: # # FUTURE: # # # ######################################################################################################################## from collections.abc import Callable; from Other.Class.ZThread import ZThread; from Other.Logger import log_error; class ZThreadSingle(ZThread): def __init__(self, name : str, loop_process : Callable, sleep_time : Callable): ZThread.__init__(self, name, loop_process, sleep_time); # Main loop that runs thread if activated. # Check that the it is supposed to do stuff, then sleeps thread def _thread_loop(self) -> None: try: # make it safe!!! self.sleep(self._sleep_time()); self._loop_process(); except Exception as error: try: log_error(error); except: pass;
51.128205
120
0.336008
470
0.235707
0
0
0
0
0
0
1,496
0.750251
410eb00a7e9f189e5d58a886e9ad9987223272ea
783
py
Python
flasks/conver.py
edgells/python-commons
38c0aa0ec10304a4147ea231c92c9e34da462052
[ "MIT" ]
null
null
null
flasks/conver.py
edgells/python-commons
38c0aa0ec10304a4147ea231c92c9e34da462052
[ "MIT" ]
null
null
null
flasks/conver.py
edgells/python-commons
38c0aa0ec10304a4147ea231c92c9e34da462052
[ "MIT" ]
null
null
null
from flask import Flask from werkzeug.routing import BaseConverter class RegexConverter(BaseConverter): def __init__(self, url_map, *args): super(RegexConverter, self).__init__(url_map) self.regex = args[0] def to_python(self, value): """ 匹配到的值 :param value: :return: """ return int(value) def to_url(self, value): """ 使用 url for 取获取视图时所对应的url :param value: :return: """ pass app = Flask(__name__) app.config['DEBUG'] = True app.url_map.converters['re'] = RegexConverter @app.route('/user/<re("[0-9]{3}"):user_id>/') def users(user_id): return {'data': "user_id: %s" % user_id} if __name__ == '__main__': app.run(host='0.0.0.0', port=8888)
19.575
53
0.583653
469
0.574051
0
0
110
0.134639
0
0
271
0.331701
4111e0047e651eec2b041b914921035fe36454e5
773
py
Python
trend_analyze/src/model/entity_url.py
popper2710/Trend_Analyze
0c98bcd7986bdb2d2b9bdc8022bfa08ddf0e7b0f
[ "MIT" ]
null
null
null
trend_analyze/src/model/entity_url.py
popper2710/Trend_Analyze
0c98bcd7986bdb2d2b9bdc8022bfa08ddf0e7b0f
[ "MIT" ]
2
2020-09-26T14:58:33.000Z
2021-03-31T20:01:40.000Z
trend_analyze/src/model/entity_url.py
popper2710/Trend_Analyze
0c98bcd7986bdb2d2b9bdc8022bfa08ddf0e7b0f
[ "MIT" ]
null
null
null
from pyfields import field from trend_analyze.src.validate import Validate from trend_analyze.config import * class EntityUrl: v = Validate().generate url: str = field(default=DEFAULT_ENTITY_URL, validators=v(is_blank=True, max_len=150), check_type=True) start: int = field(default=-1, check_type=True) end: int = field(default=-1, check_type=True) expanded_url: str = field(default="", validators=v(max_len=2083), check_type=True) created_at: datetime = field(default=DEFAULT_CREATED_AT, check_type=True) def to_vec(self) -> dict: return { "url": self.url, "start": self.start, "end": self.end, "expanded_url": self.expanded_url, "created_at": self.created_at, }
32.208333
107
0.659767
659
0.852523
0
0
0
0
0
0
45
0.058215
41122da858230ceb4c96eb4a8c7375d59b77bc28
8,148
py
Python
kotti/testing.py
mete0r/Kotti
e89103cc57d5d2af8d60eb8208ae9d04c068f6e7
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
kotti/testing.py
mete0r/Kotti
e89103cc57d5d2af8d60eb8208ae9d04c068f6e7
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
kotti/testing.py
mete0r/Kotti
e89103cc57d5d2af8d60eb8208ae9d04c068f6e7
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
# -*- coding: utf-8 -*- """ Inheritance Diagram ------------------- .. inheritance-diagram:: kotti.testing """ import os from os.path import join, dirname from unittest import TestCase from pytest import mark from pyramid import testing from pyramid.events import NewResponse from pyramid.security import ALL_PERMISSIONS from zope.deprecation.deprecation import deprecate import transaction # re-enable deprecation warnings during test runs # however, let the `ImportWarning` produced by Babel's # `localedata.py` vs `localedata/` show up once... from warnings import catch_warnings with catch_warnings(): from babel import localedata import compiler localedata, compiler # make pyflakes happy... :p # py.test markers (see http://pytest.org/latest/example/markers.html) user = mark.user BASE_URL = 'http://localhost:6543' class Dummy(dict): def __init__(self, **kwargs): self.__dict__.update(kwargs) class DummyRequest(testing.DummyRequest): is_xhr = False POST = dict() user = None referrer = None def is_response(self, ob): return (hasattr(ob, 'app_iter') and hasattr(ob, 'headerlist') and hasattr(ob, 'status')) def asset(name): import kotti return open(join(dirname(kotti.__file__), 'tests', name), 'rb') def includeme_login(config): config.add_view( login_view, name='login', renderer='kotti:templates/login.pt') def includeme_layout(config): # override edit master layout with view master layout config.override_asset( to_override='kotti:templates/edit/master.pt', override_with='kotti:templates/view/master.pt') def login_view(request): return {} def dummy_search(search_term, request): return u"Not found. Sorry!" def testing_db_url(): return os.environ.get('KOTTI_TEST_DB_STRING', 'sqlite://') def _initTestingDB(): from sqlalchemy import create_engine from kotti import get_settings from kotti.resources import initialize_sql database_url = testing_db_url() get_settings()['sqlalchemy.url'] = database_url session = initialize_sql(create_engine(database_url), drop_all=True) return session def _populator(): from kotti import DBSession from kotti.resources import Document from kotti.populate import populate populate() for doc in DBSession.query(Document)[1:]: DBSession.delete(doc) transaction.commit() def _turn_warnings_into_errors(): # pragma: no cover # turn all warnings into errors, but let the `ImportWarning` # produced by Babel's `localedata.py` vs `localedata/` show up once... from babel import localedata localedata # make pyflakes happy... :p from warnings import filterwarnings filterwarnings("error") def setUp(init_db=True, **kwargs): # _turn_warnings_into_errors() from kotti import _resolve_dotted from kotti import conf_defaults tearDown() settings = conf_defaults.copy() settings['kotti.secret'] = 'secret' settings['kotti.secret2'] = 'secret2' settings['kotti.populators'] = 'kotti.testing._populator' settings.update(kwargs.get('settings', {})) settings = _resolve_dotted(settings) kwargs['settings'] = settings config = testing.setUp(**kwargs) config.add_default_renderers() if init_db: _initTestingDB() transaction.begin() return config def tearDown(): from kotti import events from kotti import security from kotti.message import _inject_mailer # These should arguable use the configurator, so they don't need # to be torn down separately: events.clear() security.reset() _inject_mailer[:] = [] transaction.abort() testing.tearDown() class UnitTestBase(TestCase): def setUp(self, **kwargs): self.config = setUp(**kwargs) def tearDown(self): tearDown() class EventTestBase(TestCase): def setUp(self, **kwargs): super(EventTestBase, self).setUp(**kwargs) self.config.include('kotti.events') # Functional ---- def _functional_includeme(config): from kotti import DBSession def expire(event): DBSession.flush() DBSession.expire_all() config.add_subscriber(expire, NewResponse) def _zope_testbrowser_pyquery(self): from pyquery import PyQuery return PyQuery( self.contents.replace('xmlns="http://www.w3.org/1999/xhtml', '')) def setUpFunctional(global_config=None, **settings): from kotti import main import wsgi_intercept.zope_testbrowser from webtest import TestApp tearDown() _settings = { 'sqlalchemy.url': testing_db_url(), 'kotti.secret': 'secret', 'kotti.site_title': 'Website des Kottbusser Tors', # for mailing 'kotti.populators': 'kotti.testing._populator', 'mail.default_sender': 'kotti@localhost', 'pyramid.includes': 'kotti.testing._functional_includeme', } _settings.update(settings) host, port = BASE_URL.split(':')[-2:] app = main({}, **_settings) wsgi_intercept.add_wsgi_intercept(host[2:], int(port), lambda: app) Browser = wsgi_intercept.zope_testbrowser.WSGI_Browser Browser.pyquery = property(_zope_testbrowser_pyquery) return dict( Browser=Browser, browser=Browser(), test_app=TestApp(app), ) class FunctionalTestBase(TestCase): BASE_URL = BASE_URL def setUp(self, **kwargs): self.__dict__.update(setUpFunctional(**kwargs)) def tearDown(self): tearDown() def login(self, login=u'admin', password=u'secret'): return self.test_app.post( '/@@login', {'login': login, 'password': password, 'submit': 'submit'}, status=302, ) @deprecate('login_testbrowser is deprecated as of Kotti 0.7. Please use ' 'the `browser` funcarg in conjunction with the `@user` ' 'decorator.') def login_testbrowser(self, login=u'admin', password=u'secret'): browser = self.Browser() browser.open(BASE_URL + '/edit') browser.getControl("Username or email").value = login browser.getControl("Password").value = password browser.getControl(name="submit").click() return browser class TestingRootFactory(dict): __name__ = '' # root is required to have an empty name! __parent__ = None __acl__ = [('Allow', 'role:admin', ALL_PERMISSIONS)] def __init__(self, request): super(TestingRootFactory, self).__init__() def dummy_view(context, request): return {} def include_testing_view(config): config.add_view( dummy_view, context=TestingRootFactory, renderer='kotti:tests/testing_view.pt', ) config.add_view( dummy_view, name='secured', permission='view', context=TestingRootFactory, renderer='kotti:tests/testing_view.pt', ) def setUpFunctionalStrippedDownApp(global_config=None, **settings): # An app that doesn't use Nodes at all _settings = { 'kotti.base_includes': ( 'kotti kotti.views kotti.views.login kotti.views.users'), 'kotti.use_tables': 'principals', 'kotti.populators': 'kotti.populate.populate_users', 'pyramid.includes': 'kotti.testing.include_testing_view', 'kotti.root_factory': 'kotti.testing.TestingRootFactory', 'kotti.site_title': 'My Stripped Down Kotti', } _settings.update(settings) return setUpFunctional(global_config, **_settings) def registerDummyMailer(): from pyramid_mailer.mailer import DummyMailer from kotti.message import _inject_mailer mailer = DummyMailer() _inject_mailer.append(mailer) return mailer # set up deprecation warnings from zope.deprecation.deprecation import deprecated for item in UnitTestBase, EventTestBase, FunctionalTestBase, _initTestingDB: name = getattr(item, '__name__', item) deprecated(name, 'Unittest-style tests are deprecated as of Kotti 0.7. ' 'Please use pytest function arguments instead.')
26.627451
78
0.676976
1,835
0.225209
0
0
509
0.062469
0
0
2,236
0.274423
4113d55c3875b03d32cbc830fabbfbb2cdd11046
694
py
Python
leetcode/trees/level-order.py
vtemian/interviews-prep
ddef96b5ecc699a590376a892a804c143fe18034
[ "Apache-2.0" ]
8
2019-05-14T12:50:29.000Z
2022-03-01T09:08:27.000Z
leetcode/trees/level-order.py
vtemian/interviews-prep
ddef96b5ecc699a590376a892a804c143fe18034
[ "Apache-2.0" ]
46
2019-03-24T20:59:29.000Z
2019-04-09T16:28:43.000Z
leetcode/trees/level-order.py
vtemian/interviews-prep
ddef96b5ecc699a590376a892a804c143fe18034
[ "Apache-2.0" ]
1
2022-01-28T12:46:29.000Z
2022-01-28T12:46:29.000Z
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def levelOrder(self, root: TreeNode) -> List[List[int]]: if not root: return [] result = [] queue = [(root, 0)] while queue: node, level = queue.pop(0) if len(result) <= level: result.append([]) result[level].append(node.val) if node.left: queue.append((node.left, level + 1)) if node.right: queue.append((node.right, level + 1)) return result
22.387097
60
0.487032
529
0.762248
0
0
0
0
0
0
156
0.224784
41141320d4d129bb735e6489daf0039fbb723f89
300
py
Python
Python Files/count_down.py
gerryjenkinslb/cs22-slides-and-py-files
9474f7a2e50d57afa13edc3b13c008f7295da747
[ "MIT" ]
28
2019-07-05T04:00:45.000Z
2022-02-16T09:43:50.000Z
Python Files/count_down.py
gerryjenkinslb/cs22-slides-and-py-files
9474f7a2e50d57afa13edc3b13c008f7295da747
[ "MIT" ]
null
null
null
Python Files/count_down.py
gerryjenkinslb/cs22-slides-and-py-files
9474f7a2e50d57afa13edc3b13c008f7295da747
[ "MIT" ]
22
2018-10-24T04:42:05.000Z
2022-02-04T08:17:27.000Z
# simple recursions def count_down(n): # print n, n-1, n-2, ... , 3, 2, 1 print(n, end=" ") if n > 1: # check for end case count_down(n-1) # do smaller problem print("-"*5, "count down from 10") count_down(10) print() print("-"*5, "count down from 5") count_down(5) print()
20
54
0.576667
0
0
0
0
0
0
0
0
141
0.47
4116fb09afbe45f7f25e769dc8cd6a9b1dcfa4fc
1,513
py
Python
src/activations.py
saman-codes/dldojo
9fd828f1902ba3d46e9bb5f554ef37d07335b29e
[ "MIT" ]
null
null
null
src/activations.py
saman-codes/dldojo
9fd828f1902ba3d46e9bb5f554ef37d07335b29e
[ "MIT" ]
null
null
null
src/activations.py
saman-codes/dldojo
9fd828f1902ba3d46e9bb5f554ef37d07335b29e
[ "MIT" ]
null
null
null
# Standard Python import copy # Thirdparty import numpy as np class Activation(): ''' Base class for an activation layer Inspired by https://github.com/eriklindernoren/ML-From-Scratch/blob/master/mlfromscratch/deep_learning/activation_functions.py ''' def __call__(self, x): return def derivative(self, x): return class Relu(Activation): def __call__(self, x): return np.absolute(x * (x > 0)) def derivative(self, x): return np.absolute(1. * (x > 0)) class LeakyRelu(Activation): def __init__(self, mu=0.05): self.mu = mu return def __call__(self, x): return np.maximum(self.mu*x, x) def derivative(self, x): x[x>=0] = 1 x[x<1] = self.mu return x class Linear(Activation): def __call__(self, x): return x def derivative(self, x): return 1 class Sigmoid(Activation): def __call__(self, x): return 1./(1.+np.nan_to_num((np.exp(-x)))) def derivative(self, x): return self.__call__(x)*(1.-self.__call__(x)) class Softmax(Activation): def __call__(self, x): # Using normalised x for numerical stability norm_x = x - np.max(x, axis=0) return np.exp(norm_x) / np.exp(norm_x).sum(axis=0, keepdims=True) def derivative(self, x): batch_jacobian = np.apply_along_axis( lambda col: np.diag(col) - np.outer(col, col), 0, self.__call__(x)) return batch_jacobian
19.649351
118
0.604759
1,430
0.945142
0
0
0
0
0
0
259
0.171183
411e7327dfc8f59a57e3065bd00dbadcb1b1f18c
302
py
Python
mkdir.py
FunsomMars/Timg
216c994fd0b100996e72f4cda4eace369c8452ef
[ "MIT" ]
null
null
null
mkdir.py
FunsomMars/Timg
216c994fd0b100996e72f4cda4eace369c8452ef
[ "MIT" ]
null
null
null
mkdir.py
FunsomMars/Timg
216c994fd0b100996e72f4cda4eace369c8452ef
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @Time : 2019-07-23 22:47 # @Author : Simon Meng # @Site : # @File : mkdir.py # @Software: PyCharm import os # Make a folder under the current path def mkdir(path): folder = os.path.exists(path) if not folder: os.makedirs(path)
17.764706
38
0.609272
0
0
0
0
0
0
0
0
185
0.612583
411fa137c5df36c387a70295ace27f0afc3352fe
2,183
py
Python
scripts/create-opencl-headers.py
molkoback/icemet-server
9d7a29b38c711534923952d598fc37efff5db154
[ "MIT" ]
null
null
null
scripts/create-opencl-headers.py
molkoback/icemet-server
9d7a29b38c711534923952d598fc37efff5db154
[ "MIT" ]
null
null
null
scripts/create-opencl-headers.py
molkoback/icemet-server
9d7a29b38c711534923952d598fc37efff5db154
[ "MIT" ]
1
2020-09-16T15:33:23.000Z
2020-09-16T15:33:23.000Z
import os import sys header_file_fmt = "{name}_ocl.hpp" header_string = ( "#ifndef {definition}_OCL_HPP\n" "#define {definition}_OCL_HPP\n" "#include <opencv2/core/ocl.hpp>\n" "const cv::ocl::ProgramSource& {module}_{name}_ocl() {{\n" "static cv::ocl::ProgramSource source(\"{module}\", \"{name}\", \"{kernel}\", \"\");\n" "return source;\n" "}}\n" "#endif\n" ) def clear_between(string, del1, del2): pos1 = string.find(del1) if pos1 < 0: return string pos2 = string[pos1:].find(del2) + pos1 if pos2 < 0: return string return string.replace(string[pos1:pos2+len(del2)], "") def clear_all(string, del1, del2): while True: cleared = clear_between(string, del1, del2) if string == cleared: return string string = cleared def clear_repeating(string, tok): while True: cleared = string.replace(tok+tok, tok) if string == cleared: return string string = cleared def compress(code): code = clear_all(code, "/*", "*/") code = clear_all(code, "//", "\n") code = code.replace("\n", "\\n") code = code.replace("\t", "") code = code.replace("\"", "\\\"") code = clear_repeating(code, " ") code = clear_repeating(code, "\\n") return code def create_header_file(kernel_path, header_path): with open(kernel_path) as fp: kernel = compress(fp.read()) base = os.path.splitext(os.path.basename(kernel_path))[0] module, name = base.split("_") data = header_string.format( definition=base.upper(), module=module, name=name, kernel=kernel ) with open(header_path, "w") as fp: fp.write(data) def create_headers(kernel_dir, header_dir): for kernel_file in os.listdir(kernel_dir): kernel_path = os.path.join(kernel_dir, kernel_file) if os.path.isfile(kernel_path) and kernel_file.endswith(".cl"): header_file = header_file_fmt.format(name=os.path.splitext(kernel_file)[0]) header_path = os.path.join(header_dir, header_file) create_header_file(kernel_path, header_path) print("-- Created {}".format(header_file)) if __name__ == "__main__": if len(sys.argv) != 3: print("Usage: {} <kernel_dir> <header_dir>".format(sys.argv[0])) sys.exit(1) os.makedirs(sys.argv[2], exist_ok=True) create_headers(sys.argv[1], sys.argv[2])
27.987179
87
0.685295
0
0
0
0
0
0
0
0
418
0.19148
4120f12f58edfe39a3cbad96c6f37cc20266c8ae
251
py
Python
main.py
aleattene/lotto-game
6871699c44c988f926db986668524c002d3560f2
[ "MIT" ]
null
null
null
main.py
aleattene/lotto-game
6871699c44c988f926db986668524c002d3560f2
[ "MIT" ]
null
null
null
main.py
aleattene/lotto-game
6871699c44c988f926db986668524c002d3560f2
[ "MIT" ]
null
null
null
from lotto_game.lotto_game import LottoGame def main(): # Play Tickets LottoGame.acquire_tickets() # Do Extraction LottoGame.do_extraction() # Check Results LottoGame.check_results() if __name__ == "__main__": main()
14.764706
43
0.681275
0
0
0
0
0
0
0
0
54
0.215139
412189bdca83add7a6eee8aca45c35007f4cbdb4
256
py
Python
models/mail_message.py
billhepeng/wx_tools
64369531bd76a935eff547c50ff68150a240849d
[ "Apache-2.0" ]
1
2021-01-19T02:49:14.000Z
2021-01-19T02:49:14.000Z
models/mail_message.py
billhepeng/wx_tools
64369531bd76a935eff547c50ff68150a240849d
[ "Apache-2.0" ]
null
null
null
models/mail_message.py
billhepeng/wx_tools
64369531bd76a935eff547c50ff68150a240849d
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from odoo import api, fields, models class MailMessage(models.Model): _inherit = 'mail.message' weixin_id = fields.Char('微信ID', required=False)
21.333333
74
0.703125
119
0.457692
0
0
0
0
0
0
121
0.465385
41229bdd678deb184613795447a9a74eef973ea7
2,361
py
Python
src/TheLanguage/Parser/Statements/BinaryStatementParserInfo.py
davidbrownell/DavidBrownell_TheLanguage
07170b448a0ebd7fa2325c9ccd4cefdb3cf7eb98
[ "BSL-1.0" ]
null
null
null
src/TheLanguage/Parser/Statements/BinaryStatementParserInfo.py
davidbrownell/DavidBrownell_TheLanguage
07170b448a0ebd7fa2325c9ccd4cefdb3cf7eb98
[ "BSL-1.0" ]
null
null
null
src/TheLanguage/Parser/Statements/BinaryStatementParserInfo.py
davidbrownell/DavidBrownell_TheLanguage
07170b448a0ebd7fa2325c9ccd4cefdb3cf7eb98
[ "BSL-1.0" ]
1
2021-06-18T18:58:57.000Z
2021-06-18T18:58:57.000Z
# ---------------------------------------------------------------------- # | # | BinaryStatementParserInfo.py # | # | David Brownell <[email protected]> # | 2021-10-12 13:55:27 # | # ---------------------------------------------------------------------- # | # | Copyright David Brownell 2021 # | Distributed under the Boost Software License, Version 1.0. See # | accompanying file LICENSE_1_0.txt or copy at # | http://www.boost.org/LICENSE_1_0.txt. # | # ---------------------------------------------------------------------- """Contains the BinaryStatementParserInfo""" import os from enum import auto, Enum from dataclasses import dataclass import CommonEnvironment from CommonEnvironmentEx.Package import InitRelativeImports # ---------------------------------------------------------------------- _script_fullpath = CommonEnvironment.ThisFullpath() _script_dir, _script_name = os.path.split(_script_fullpath) # ---------------------------------------------------------------------- with InitRelativeImports(): from .StatementParserInfo import StatementParserInfo from ..Expressions.ExpressionParserInfo import ExpressionParserInfo from ..Names.NameParserInfo import NameParserInfo # ---------------------------------------------------------------------- class OperatorType(Enum): # Mathematical AddInplace = auto() SubtractInplace = auto() MultiplyInplace = auto() PowerInplace = auto() DivideInplace = auto() DivideFloorInplace = auto() ModuloInplace = auto() # Bit Manipulation BitShiftLeftInplace = auto() BitShiftRightInplace = auto() BitXorInplace = auto() BitAndInplace = auto() BitOrInplace = auto() # ---------------------------------------------------------------------- @dataclass(frozen=True, repr=False) class BinaryStatementParserInfo(StatementParserInfo): Name: NameParserInfo Operator: OperatorType Expression: ExpressionParserInfo
36.890625
79
0.454892
864
0.365947
0
0
182
0.077086
0
0
911
0.385853
4122eec27606ee355d75c58e79851c7226e97614
10,947
py
Python
deprecated/finder_0.1.py
acic2015/findr
ac3061cb056cfe6a151c4096d04bce0d03545032
[ "MIT" ]
7
2015-11-24T04:44:55.000Z
2018-02-08T02:13:14.000Z
deprecated/finder_0.1.py
acic2015/findr
ac3061cb056cfe6a151c4096d04bce0d03545032
[ "MIT" ]
9
2015-11-24T17:43:13.000Z
2017-09-15T19:37:10.000Z
deprecated/finder_0.1.py
acic2015/findr
ac3061cb056cfe6a151c4096d04bce0d03545032
[ "MIT" ]
4
2015-12-15T03:39:40.000Z
2021-07-20T11:28:09.000Z
__author__ = 'Daniel Kapellusch' import astropy.io.fits as fits import os import csv import json import sys import multiprocessing as mp #necessary imports. Note: this is written in python 2. from os import path import ConfigParser from os import system #necessary imports. Note: this is written in python 2. global path, max_processes,file_shifts,darkmaster,darksub,fitscent def main(argv): if not argv: print "findr_0.1.py, path, config_file name" global imgpath, max_processes,file_shifts,darkmaster,darksub,fitscent imgpath = argv[0] # get path and cfg file name from passed args config_file = argv[1] print "Loading Configuration File..." config = ConfigParser.ConfigParser() # open config file as input file with config parser config.read(config_file) max_processes = config.get("findr","max_processes") # read cfg and get applicable fields file_shifts = config.get("findr","fileshifts") darkmaster = config.get("findr","darkmaster_path") darksub = config.get("findr","darksub_path") fitscent = config.get("findr","fitscent_path") darklist_fn, masterdark_fn, norm_fn = "darks.list", "mastedark.fits","norm.dat" fits_lst = [path+"/"+fit for fit in os.listdir(path) if fit.endswith(".fits")] # get files in dir if they are .fits with fits.open(fits_lst[0]) as fits_file: items = list(set([str(header_field) for header_field in fits_file[0].header.keys()]+["FILENAME"])) # get fieldnames from first fits file pool = mp.Pool(processes=None) # setup multiprocessing pool ls = pool.map(get_metadata_and_sort,fits_lst) #asynchronously gather metadata sorted_dic = sort_list(ls) # sort metadata into dictionary of lists based on VIMTYPE make_tsv(ls,items) #generate tsv of metadata total_dic = {item["FILENAME"]:item for item in ls} # make build_json(total_dic) #create json from list of metadata cleaned_dic = clean_dic(sorted_dic,total_dic) # remove science files from metadata dictionary if AOLOOPST is OPEN runDarkmaster(cleaned_dic,darklist_fn,masterdark_fn,norm_fn) # run master dark with cent_dsub_files = subtractAndCenter(cleaned_dic,masterdark_fn,file_shifts) # run subtractAndCenter #TODO Klip-reduce return(sorted_dic) #return a dictionary of lists of filenames sorted by type def get_metadata_and_sort(image): print("Building Total_Dic") hdulist = fits.open(image) # open each fits file in the list header = hdulist[0].header #get all the metadata from the fits file hdulist hdulist.close() header["FILENAME"] = path.basename(image) temp = str(str(header["COMMENT"]).encode('ascii', 'ignore')) #encode in ascii as unicode doesn't play nice header = {key: value for key, value in header.items() #remove double comment field if key is not "COMMENT"} header["COMMENT"] = temp.replace("\n"," ") #put comments back in return(header) def make_tsv(header,items): print("Outputting metadata.tsv") with open('metadata.tsv',"wb") as csvfile: #create a file called metadata.tsv for the output writer = csv.DictWriter(csvfile,fieldnames=items,delimiter= "\t") #set up the writer, header fields, and delimiter writer.writeheader() # write the headers to the file [writer.writerow({k:str(image[k]) for k in items}) for image in header] def build_json(total_dic): print("Outputting metadata.json") with open("metadata.json",'w') as jsonfile: #builds json file of metadata not sorted by VIMTYPE json.dump(total_dic,jsonfile, separators=(',',':'),indent=4) def sort_list(ls): print("Sorting list into sorted_dic") #sort filenames into dictionary by VIMTYPE dic = {"SCIENCE":[],"DARK":[]} [dic["SCIENCE"].append(i["FILENAME"]) if i["VIMTYPE"] == "SCIENCE" else dic["DARK"].append(i["FILENAME"]) for i in ls] return(dic) def clean_dic(sorted_dic,total_dic): print("Cleaning dic") cleaned_dic = {'SCIENCE':[],"DARK":sorted_dic["DARK"]} for image in sorted_dic["SCIENCE"]: #Search dictionary built by my other script if total_dic[image]["AOLOOPST"] == "CLOSED": cleaned_dic["SCIENCE"].append(image) #store names of good files return(cleaned_dic) #return those names def writeListCfg(lst, cfgname): """ Write out a config file from a list. - Entries: 'listItem\n' :param lst: List to be written as a config file. :param cfgname: Filename or path/to/filename for config file. :return: Config filename or path/to/filename """ cfg_out = open(cfgname, 'w') for e in lst: cfg_out.write(str(e) + '\n') cfg_out.close() return cfgname def writeDictCfg(dct, cfgname): """ Write out a config file from a dictionary. - Entries: 'key=value\n' :param dct: Dictionary to be written as a config file. :param cfgname: Filename or path/to/filename for config file. :return: Config filename or path/to/filename """ cfg_out = open(cfgname, 'w') for k, v in dct.iteritems(): cfg_out.write('%s=%s\n' % (str(k), str(v))) cfg_out.close() return cfgname def runDarkmaster(image_dict, darklist_filename, masterdark_filename, norm_filename, bot_xo=None, bot_xf=None, bot_yo=None, bot_yf=None, top_xo=None, top_xf=None, top_yo=None, top_yf=None, width=None, height=None, config=None, medianNorm=False, medianDark=False): print("Running DarkMaster") global path, darkmaster # Write dark images to config file. darks = [path+'/'+image for image in image_dict['DARK']] writeListCfg(darks, darklist_filename) # Fill out required parameters options = '--fileListFile=%s --darkFileName=%s --normFileName=%s' % (darklist_filename, masterdark_filename, norm_filename) # Fill out bottom/top normalization coordinates, if present. if bot_xo and bot_xf and bot_yo and bot_yf and top_xo and top_xf and top_yo and top_yf: options += ' --bot_xo=%s --bot_xf=%s --bot_yo=%s --bot_yf=%s' % (str(bot_xo), str(bot_xf), str(bot_yo), str(bot_yf)) options += ' --top_xo=%s --top_xf=%s --top_yo=%s --top_yf=%s' % (str(top_xo), str(top_xf), str(top_yo), str(top_yf)) # Fill out height/width of centered normalization region (overrides normalization coordinates), if present. if width and height: options += ' --width=%s --height=%s' % (str(width), str(height)) # Add median options, if present if medianNorm: options += ' --medianNorm' if medianDark: options += ' --medianDark' # Build & call darkmaster command. cmd = darkmaster + ' ' + options print cmd system(cmd) return 1 def prependToFilename(filename, prepending): """ Prepend Text to Filename. :param filename: Filename or path/to/filename to be modified. :param prepending: String to prepend to filename. :return: Modified filename or path/to/filename. """ b = os.path.basename(filename) n = prepending + b return filename.replace(b, n) def spawnDsubCmd(science_img, dark_img, norm_bot=None, norm_top=None): """ Spawn a darksub command. :param science_img: Science image filename or path/to/filename. :param dark_img: Master dark filename or path/to/filename. :param norm_bot: Multiplicative scaling to apply to the bottom amplifier (optional). :param norm_top: Multiplicative scaling to apply to the top amplifier (optional). :return: darksub_command, subtracted_fiilename """ dsub_out = prependToFilename(science_img, 'dsub_') dsub_opts = '--inputFile=%s --darkFile=%s --outputFile=%s' % (science_img, dark_img, dsub_out) if norm_bot: dsub_opts += ' --norm_bot=%s' % str(norm_bot) if norm_top: dsub_opts += ' --norm_top=%s' % str(norm_top) dsub_cmd = darksub + ' ' + dsub_opts return dsub_cmd, dsub_out def spawnCentCmd(subtracted_img, xshift, yshift): """ Spawn a fitscent command. :param subtracted_img: Dark subtracted science image. :param xshift: X shift to apply to image. :param yshift: Y shift to apply to image. :return: fitscent_command, centered_filename """ cent_out = prependToFilename(subtracted_img, 'cent_') cent_opts = '--input=%s --x=%s --y=%s --output=%s' % (subtracted_img, str(xshift), str(yshift), cent_out) cent_cmd = fitscent + ' ' + cent_opts return cent_cmd, cent_out def loadShifts(shifts_file): shifts = {} with open(shifts_file, 'r') as s: for l in s: c = l.split() shifts[c[0]] = {'x': c[1], 'y': c[2]} return shifts def getNorms(img): # TODO """ :param img: Image to obtain normalization s for. :return: """ top = '' bot = '' return top, bot def getShifts(img, fileshifts): # TODOr """ :param img: image to get shift values :return: xshift, yshift """ try: xs = fileshifts[img]['x'] ys = fileshifts[img]['y'] return xs, ys except KeyError: print "Warning (getShifts): %s not found in fileshifts" % str(img) return 0, 0 def runProcess(call): os.system(call) return 1 def subtractAndCenter(image_dict, masterdark, shifts_file): global max_processes print("Subtracting and Centering") # Build list of science images to process. sciences = image_dict['SCIENCE'] # Load shift values from file to memory. fileshifts = loadShifts(shifts_file) # Define necessary variables. scmds = [] souts = [] ccmds = [] couts = [] # Build up commands for each science image. for img in sciences: # Get norm and shift values. tnorm, bnorm = getNorms(img) xshift, yshift = getShifts(img, fileshifts) # Build subtraction task. ds_cmd, ds_out = spawnDsubCmd(img, masterdark, norm_bot=bnorm, norm_top=tnorm) # subtractions[img] = {'cmd': ds_cmd, 'out': ds_out} scmds.append(ds_cmd) souts.append(ds_out) # Build centering task. cn_cmd, cn_out = spawnCentCmd(ds_out, xshift=xshift, yshift=yshift) # centerings[img] = {'cmd': cn_cmd, 'out': cn_out} ccmds.append(cn_cmd) couts.append(cn_out) # Execute subtraction tasks (parallel). sub_pool = mp.Pool(processes=max_processes) sub_pool.map(runProcess, scmds) # Execute centering tasks (parallel). cent_pool = mp.Pool(processes=max_processes) cent_pool.map(runProcess, ccmds) # Return list of final filenames. return couts if __name__ == "__main__": print(main(sys.argv[1:]))
37.108475
145
0.652325
0
0
0
0
0
0
0
0
4,556
0.416187
4122f41a65d52a80ce0e4e61b3b52bf36d00d875
3,143
py
Python
concerned-coyotes/earlyinternet/news/tests.py
Vthechamp22/summer-code-jam-2021
0a8bf1f22f6c73300891fd779da36efd8e1304c1
[ "MIT" ]
40
2020-08-02T07:38:22.000Z
2021-07-26T01:46:50.000Z
concerned-coyotes/earlyinternet/news/tests.py
Vthechamp22/summer-code-jam-2021
0a8bf1f22f6c73300891fd779da36efd8e1304c1
[ "MIT" ]
134
2020-07-31T12:15:45.000Z
2020-12-13T04:42:19.000Z
concerned-coyotes/earlyinternet/news/tests.py
Vthechamp22/summer-code-jam-2021
0a8bf1f22f6c73300891fd779da36efd8e1304c1
[ "MIT" ]
101
2020-07-31T12:00:47.000Z
2021-11-01T09:06:58.000Z
import datetime import random from django.test import TestCase from django.utils.dateparse import parse_datetime from .models import Article class ArticleTestCase(TestCase): def setUp(self) -> None: self.article = Article.objects.create( source="HackerNews", author="Guido van Rossum", title="Why Python is such a nice language", description="...", content="...", url="http://python.org/", published_at=datetime.datetime(2020, 1, 1, 12, 0) ) def test_representation(self): """ Test if Article.__str__ works correctly """ self.assertEqual( str(self.article), "Why Python is such a nice language 2020-01-01T12:00:00" ) def test_article_manager_create_article(self): """ Test if Article.objects.create_article works correctly :return: """ article = { 'source': {'id': 'news-com-au', 'name': 'News.com.au'}, 'author': 'unknown', 'title': 'F1 British Grand Prix live: updates, results, starting grid, Vettel reacts to Ferrari sabotage ' 'questions', 'description': 'The British Grand Prix has ended in incredible drama as the last lap went down to the ' 'wire with Lewis Hamilton winning after his tyre blew on the last lap.', 'url': 'https://www.news.com.au/sport/motorsport/formula-one/live-updates-from-the-2020-british-grand' '-prix/live-coverage/ba297f46d4e91321c092db9d3d5d2e1f', 'urlToImage': 'https://content.api.news/v3/images/bin/2554ff2213b5c8a54e9809d310e697db', 'publishedAt': '2020-08-02T22:04:07Z', 'content': '...' } created = Article.objects.create_article(article) self.assertEqual(article['source']['name'], created.source) self.assertEqual('unknown', created.author) self.assertEqual(article['title'], created.title) self.assertEqual(article['description'], created.description) self.assertEqual(article['url'], created.url) self.assertEqual(parse_datetime(article['publishedAt']), created.published_at) self.assertEqual('...', created.content) def test_article_manager_get_latest(self): """ Test Article.objects.get_latest """ # create 10 articles articles = [self.article] for i in range(9): year = random.randrange(1900, 2020) month = random.randrange(1, 12) day = random.randrange(1, 28) hour = random.randrange(1, 24) article = Article.objects.create( source="", author="", title=str(i), description="", content="", url="http://example.org/", published_at=datetime.datetime(year, month, day, hour) ) articles.append(article) # sort articles articles.sort(key=lambda x: x.published_at, reverse=True) self.assertEqual( articles[:4], list(Article.objects.get_latest(4)) )
39.2875
118
0.598473
2,997
0.953548
0
0
0
0
0
0
1,099
0.349666
4122fe432a52c30c10d6907870148cde9432de71
2,648
py
Python
src/shake/sentence_nlp.py
makergabriel/gearmood
cd0e205e6e22f9f4b33d18d93e5bef5a39b8763e
[ "MIT" ]
null
null
null
src/shake/sentence_nlp.py
makergabriel/gearmood
cd0e205e6e22f9f4b33d18d93e5bef5a39b8763e
[ "MIT" ]
null
null
null
src/shake/sentence_nlp.py
makergabriel/gearmood
cd0e205e6e22f9f4b33d18d93e5bef5a39b8763e
[ "MIT" ]
null
null
null
import nltk from nltk.tokenize import sent_tokenize from nltk.tokenize import word_tokenize from nltk.corpus import wordnet # TODO move cut words to config CUT_WORDS = ( "drop", "cut", "leave", "lose", "trim", "shed", "cast", "unload", "strike", "skip", "throw", "shake", "shave", "ditch", ) # phrases to include # shave some weight # phrases to ignore # leave no trace # A verb could be categorized to any of the following codes VERB_CODES = { "VB", # Verb, base form "VBD", # Verb, past tense "VBG", # Verb, gerund or present participle "VBN", # Verb, past participle "VBP", # Verb, non-3rd person singular present "VBZ", # Verb, 3rd person singular present } class Sentence: def __init__(self): self.cut_words = CUT_WORDS #config = env_config.EnvConfig() def parse_candidate_text(self, text): parsed_text = {} cut_word_objs = [] # take a closer look at which cut word is used in the sentence and how it's used for cut_word in self.cut_words: if cut_word in text: # check if the cut_word is used as a verb result = nltk.pos_tag(text) cut_word_obj = { "value": cut_word, "pos_tag": [word_obj[1] for word_obj in result if word_obj[0] == cut_word], } cut_word_objs.append(cut_word_obj) parsed_text["words"] = cut_word_objs return parsed_text # refactor to attach the sentence to the comment id def parse_comments(self, text, word_list): # sent_toknenize doesn't stop at new lines/carriage returns # some comments use just the phrase with a punctuaion paragraphs = [p for p in text.split("\n") if p] sentences = [] for paragraph in paragraphs: sentences.extend(sent_tokenize(paragraph)) cut_sentences = [] # lets look for our cut words in the tokenized senteneces for sentence in sentences: # get the words from the sentence to avoid partial matches tokens = word_tokenize(sentence) tokens = [w.lower() for w in tokens] # get the text from the tokenized words text = nltk.Text(tokens) # only dive into tokenized senntences that have any of our cut words if any(x in text for x in word_list): parsed_text = self.parse_candidate_text(text) parsed_text["sentence"] = sentence cut_sentences.append(parsed_text) return cut_sentences
31.52381
95
0.60423
1,894
0.715257
0
0
0
0
0
0
1,028
0.388218
412303d786bf1234fa947a471b024bc73e098561
173
py
Python
Python/Programming Fundamentals/Exams/72. Ad Astra Second.py
teodoramilcheva/softuni-software-engineering
98dc9faa66f42570f6538fd7ef186d2bd1d39bff
[ "MIT" ]
null
null
null
Python/Programming Fundamentals/Exams/72. Ad Astra Second.py
teodoramilcheva/softuni-software-engineering
98dc9faa66f42570f6538fd7ef186d2bd1d39bff
[ "MIT" ]
null
null
null
Python/Programming Fundamentals/Exams/72. Ad Astra Second.py
teodoramilcheva/softuni-software-engineering
98dc9faa66f42570f6538fd7ef186d2bd1d39bff
[ "MIT" ]
null
null
null
Python 3.9.2 (v3.9.2:1a79785e3e, Feb 19 2021, 09:06:10) [Clang 6.0 (clang-600.0.57)] on darwin Type "help", "copyright", "credits" or "license()" for more information. >>>
43.25
72
0.66474
0
0
0
0
0
0
0
0
37
0.213873
412484a70f53006f985b8a1791e3e361afab8182
2,144
py
Python
tests/test_iam/test_iam_groups.py
mrucci/moto
076a6a7055ad18908b5661e599648c40b251cdc1
[ "Apache-2.0" ]
1
2021-03-06T22:01:41.000Z
2021-03-06T22:01:41.000Z
tests/test_iam/test_iam_groups.py
mrucci/moto
076a6a7055ad18908b5661e599648c40b251cdc1
[ "Apache-2.0" ]
2
2016-07-01T03:43:37.000Z
2016-07-18T19:38:06.000Z
tests/test_iam/test_iam_groups.py
zenefits/moto
8341c722a8e06decf23fd4b5e67de612accebb80
[ "Apache-2.0" ]
1
2017-10-19T00:53:28.000Z
2017-10-19T00:53:28.000Z
from __future__ import unicode_literals import boto import sure # noqa from nose.tools import assert_raises from boto.exception import BotoServerError from moto import mock_iam @mock_iam() def test_create_group(): conn = boto.connect_iam() conn.create_group('my-group') with assert_raises(BotoServerError): conn.create_group('my-group') @mock_iam() def test_get_group(): conn = boto.connect_iam() conn.create_group('my-group') conn.get_group('my-group') with assert_raises(BotoServerError): conn.get_group('not-group') @mock_iam() def test_get_all_groups(): conn = boto.connect_iam() conn.create_group('my-group1') conn.create_group('my-group2') groups = conn.get_all_groups()['list_groups_response']['list_groups_result']['groups'] groups.should.have.length_of(2) @mock_iam() def test_add_user_to_group(): conn = boto.connect_iam() with assert_raises(BotoServerError): conn.add_user_to_group('my-group', 'my-user') conn.create_group('my-group') with assert_raises(BotoServerError): conn.add_user_to_group('my-group', 'my-user') conn.create_user('my-user') conn.add_user_to_group('my-group', 'my-user') @mock_iam() def test_remove_user_from_group(): conn = boto.connect_iam() with assert_raises(BotoServerError): conn.remove_user_from_group('my-group', 'my-user') conn.create_group('my-group') conn.create_user('my-user') with assert_raises(BotoServerError): conn.remove_user_from_group('my-group', 'my-user') conn.add_user_to_group('my-group', 'my-user') conn.remove_user_from_group('my-group', 'my-user') @mock_iam() def test_get_groups_for_user(): conn = boto.connect_iam() conn.create_group('my-group1') conn.create_group('my-group2') conn.create_group('other-group') conn.create_user('my-user') conn.add_user_to_group('my-group1', 'my-user') conn.add_user_to_group('my-group2', 'my-user') groups = conn.get_groups_for_user('my-user')['list_groups_for_user_response']['list_groups_for_user_result']['groups'] groups.should.have.length_of(2)
29.369863
122
0.712687
0
0
0
0
1,947
0.908116
0
0
461
0.215019
41252221870a25e5a2cfca108df770ea4c662895
2,955
py
Python
test/test_storage_v1beta1_api.py
Arvinhub/client-python
d67df30f635231d68dc4c20b9b7e234c616c1e6a
[ "Apache-2.0" ]
1
2021-06-16T02:57:18.000Z
2021-06-16T02:57:18.000Z
test/test_storage_v1beta1_api.py
Arvinhub/client-python
d67df30f635231d68dc4c20b9b7e234c616c1e6a
[ "Apache-2.0" ]
null
null
null
test/test_storage_v1beta1_api.py
Arvinhub/client-python
d67df30f635231d68dc4c20b9b7e234c616c1e6a
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: unversioned Generated by: https://github.com/swagger-api/swagger-codegen.git Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import absolute_import import os import sys import unittest import k8sclient from k8sclient.rest import ApiException from k8sclient.apis.storage_v1beta1_api import StorageV1beta1Api class TestStorageV1beta1Api(unittest.TestCase): """ StorageV1beta1Api unit test stubs """ def setUp(self): self.api = k8sclient.apis.storage_v1beta1_api.StorageV1beta1Api() def tearDown(self): pass def test_create_storage_v1beta1_storage_class(self): """ Test case for create_storage_v1beta1_storage_class """ pass def test_delete_storage_v1beta1_collection_storage_class(self): """ Test case for delete_storage_v1beta1_collection_storage_class """ pass def test_delete_storage_v1beta1_storage_class(self): """ Test case for delete_storage_v1beta1_storage_class """ pass def test_get_storage_v1beta1_api_resources(self): """ Test case for get_storage_v1beta1_api_resources """ pass def test_list_storage_v1beta1_storage_class(self): """ Test case for list_storage_v1beta1_storage_class """ pass def test_patch_storage_v1beta1_storage_class(self): """ Test case for patch_storage_v1beta1_storage_class """ pass def test_read_storage_v1beta1_storage_class(self): """ Test case for read_storage_v1beta1_storage_class """ pass def test_replace_storage_v1beta1_storage_class(self): """ Test case for replace_storage_v1beta1_storage_class """ pass def test_watch_storage_v1beta1_storage_class(self): """ Test case for watch_storage_v1beta1_storage_class """ pass def test_watch_storage_v1beta1_storage_class_list(self): """ Test case for watch_storage_v1beta1_storage_class_list """ pass if __name__ == '__main__': unittest.main()
23.085938
105
0.666328
1,881
0.636548
0
0
0
0
0
0
1,716
0.580711
4125c4ef4416a704e2a8626b154e255f03a002cf
433
py
Python
rampwf/utils/tests/test_sanitize.py
DimitriPapadopoulos/ramp-workflow
c235e80b81fc8d8a5e0c175df50a55cc58dd78aa
[ "BSD-3-Clause" ]
66
2017-08-31T08:48:45.000Z
2022-03-21T16:05:31.000Z
rampwf/utils/tests/test_sanitize.py
DimitriPapadopoulos/ramp-workflow
c235e80b81fc8d8a5e0c175df50a55cc58dd78aa
[ "BSD-3-Clause" ]
265
2017-06-02T19:22:38.000Z
2022-03-31T13:08:00.000Z
rampwf/utils/tests/test_sanitize.py
DimitriPapadopoulos/ramp-workflow
c235e80b81fc8d8a5e0c175df50a55cc58dd78aa
[ "BSD-3-Clause" ]
44
2017-06-03T15:35:58.000Z
2022-03-31T12:46:42.000Z
import pytest from rampwf.utils.sanitize import _sanitize_input def test_sanitize_input(): _sanitize_input('Harmess code') msg = "forbidden key word open detected" with pytest.raises(RuntimeError, match=msg): _sanitize_input("with open('test.txt', 'wr') as fh") msg = "forbidden key word scandir detected" with pytest.raises(RuntimeError, match=msg): _sanitize_input("for _ in os.scandir()")
27.0625
60
0.709007
0
0
0
0
0
0
0
0
143
0.330254
4127cc56a9b643adacb0505a74b957d4c74ed758
118
py
Python
issues/apps.py
6aika/o3-6a-kkhprp
de0373733a0f4a936a86f6a19b28ca2e577beb71
[ "MIT" ]
6
2016-07-08T08:50:51.000Z
2018-06-06T09:58:43.000Z
issues/apps.py
6aika/issue-reporting
de0373733a0f4a936a86f6a19b28ca2e577beb71
[ "MIT" ]
50
2016-04-19T12:22:08.000Z
2021-09-22T17:39:33.000Z
issues/apps.py
6aika/o3-6a-kkhprp
de0373733a0f4a936a86f6a19b28ca2e577beb71
[ "MIT" ]
5
2016-07-08T08:50:56.000Z
2019-07-06T11:34:42.000Z
from django.apps import AppConfig class IssuesAppConfig(AppConfig): name = 'issues' verbose_name = 'Issues'
16.857143
33
0.728814
81
0.686441
0
0
0
0
0
0
16
0.135593
412aadfb4c71d1e45e7e11134561c9b5c2fc6eda
2,018
py
Python
FileNamePurifier/FileNamePurifier.py
dbpiper/FileNamePurifier
620088ea3be1b8874609fa769cfb8e6b636d5e8b
[ "MIT" ]
null
null
null
FileNamePurifier/FileNamePurifier.py
dbpiper/FileNamePurifier
620088ea3be1b8874609fa769cfb8e6b636d5e8b
[ "MIT" ]
null
null
null
FileNamePurifier/FileNamePurifier.py
dbpiper/FileNamePurifier
620088ea3be1b8874609fa769cfb8e6b636d5e8b
[ "MIT" ]
null
null
null
from Parser import Parser from LexicalAnalyzer import LexicalAnalyzer class FileNamePurifier: def __init__(self, stringAppendToFront, stringAppendToEnd, removeFirstInstanceOfStringsInList, removeAllInstancesOfStringsInList, substringsToPreserve, oldSeperators, seperatorToUse, breakUpByBraces, breakUpByParens, breakUpByBrackets, breakUpByCamelCase, camelCaseOldSeparator, camelCaseNewSeparator): self.stringAppendToFront = stringAppendToFront self.stringAppendToEnd = stringAppendToEnd self.removeFirstInstanceOfStringsInList = removeFirstInstanceOfStringsInList self.removeAllInstancesOfStringsInList = removeAllInstancesOfStringsInList self.substringsToPreserve = substringsToPreserve self.oldSeperators = oldSeperators self.seperatorToUse = seperatorToUse self.breakUpByBraces = breakUpByBraces self.breakUpByParens = breakUpByParens self.breakUpByBrackets = breakUpByBrackets self.breakUpByCamelCase = breakUpByCamelCase self.camelCaseOldSeparator = camelCaseOldSeparator self.camelCaseNewSeparator = camelCaseNewSeparator def CreateParserWithString(self, stringToParse): parser = Parser(self.stringAppendToFront, self.stringAppendToEnd, self.removeFirstInstanceOfStringsInList, self.removeAllInstancesOfStringsInList, self.substringsToPreserve, self.oldSeperators, self.seperatorToUse, self.breakUpByBraces, self.breakUpByParens, self.breakUpByBrackets, self.breakUpByCamelCase, self.camelCaseOldSeparator, self.camelCaseNewSeparator, stringToParse); return parser; def PurifyString(self, stringToPurify): return self.CreateParserWithString(stringToPurify).outputString
46.930233
133
0.693756
1,941
0.961843
0
0
0
0
0
0
0
0
412b47d093592288c113a1eac3194f68134c0446
11,406
py
Python
data/transforms.py
raja21068/Federated-Learning-For-Medical-Images
aa30ce9d8106fd4039188fc56fa99bdc9f46f0e0
[ "MIT" ]
27
2021-03-05T05:56:35.000Z
2022-03-30T03:15:43.000Z
data/transforms.py
DiahannWu/FL-MRCM
946c981a044452333791b7da26609c0874da292c
[ "MIT" ]
8
2021-03-08T10:41:19.000Z
2021-12-30T04:53:21.000Z
data/transforms.py
DiahannWu/FL-MRCM
946c981a044452333791b7da26609c0874da292c
[ "MIT" ]
5
2021-03-28T14:02:30.000Z
2022-01-11T08:31:42.000Z
""" Copyright (c) Facebook, Inc. and its affiliates. This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. """ import numpy as np import torch def to_tensor(data): """ Convert numpy array to PyTorch tensor. For complex arrays, the real and imaginary parts are stacked along the last dimension. Args: data (np.array): Input numpy array Returns: torch.Tensor: PyTorch version of data """ if np.iscomplexobj(data): data = np.stack((data.real, data.imag), axis=-1) return torch.from_numpy(data) def to_numpy(data): """ Convert PyTorch tensor to numpy array. For complex tensor with two channels, the complex numpy arrays are used. Args: data (torch.Tensor): Input torch tensor Returns: np.array numpy arrays """ if data.shape[-1] == 2: out = np.zeros(data.shape[:-1], dtype=np.complex64) real = data[..., 0].numpy() imag = data[..., 1].numpy() out.real = real out.imag = imag else: out = data.numpy() return out def apply_mask(data, mask_func, seed=None): """ Subsample given k-space by multiplying with a mask. Args: data (torch.Tensor): The input k-space data. This should have at least 3 dimensions, where dimensions -3 and -2 are the spatial dimensions, and the final dimension has size 2 (for complex values). mask_func (callable): A function that takes a shape (tuple of ints) and a random number seed and returns a mask. seed (int or 1-d array_like, optional): Seed for the random number generator. Returns: (tuple): tuple containing: masked data (torch.Tensor): Subsampled k-space data mask (torch.Tensor): The generated mask """ shape = np.array(data.shape) shape[:-3] = 1 mask = mask_func(shape, seed) return data * mask, mask def fft2(data, normalized=True): """ Apply centered 2 dimensional Fast Fourier Transform. Args: data (torch.Tensor): Complex valued input data containing at least 3 dimensions: dimensions -3 & -2 are spatial dimensions and dimension -1 has size 2. All other dimensions are assumed to be batch dimensions. Returns: torch.Tensor: The FFT of the input. """ assert data.size(-1) == 2 data = ifftshift(data, dim=(-3, -2)) data = torch.fft(data, 2, normalized=normalized) data = fftshift(data, dim=(-3, -2)) return data def rfft2(data): """ Apply centered 2 dimensional Fast Fourier Transform. Args: data (torch.Tensor): Complex valued input data containing at least 3 dimensions: dimensions -3 & -2 are spatial dimensions and dimension -1 has size 2. All other dimensions are assumed to be batch dimensions. Returns: torch.Tensor: The FFT of the input. """ data = ifftshift(data, dim=(-2, -1)) data = torch.rfft(data, 2, normalized=True, onesided=False) data = fftshift(data, dim=(-3, -2)) return data def ifft2(data, normalized=True): """ Apply centered 2-dimensional Inverse Fast Fourier Transform. Args: data (torch.Tensor): Complex valued input data containing at least 3 dimensions: dimensions -3 & -2 are spatial dimensions and dimension -1 has size 2. All other dimensions are assumed to be batch dimensions. Returns: torch.Tensor: The IFFT of the input. """ assert data.size(-1) == 2 data = ifftshift(data, dim=(-3, -2)) data = torch.ifft(data, 2, normalized=normalized) data = fftshift(data, dim=(-3, -2)) return data def irfft2(data): """ Apply centered 2-dimensional Inverse Fast Fourier Transform. Args: data (torch.Tensor): Complex valued input data containing at least 3 dimensions: dimensions -3 & -2 are spatial dimensions and dimension -1 has size 2. All other dimensions are assumed to be batch dimensions. Returns: torch.Tensor: The IFFT of the input. """ data = ifftshift(data, dim=(-3, -2)) data = torch.irfft(data, 2, normalized=True, onesided=False) data = fftshift(data, dim=(-2, -1)) return data def complex_to_mag_phase(data): """ :param data (torch.Tensor): A complex valued tensor, where the size of the third last dimension should be 2 :return: Mag and Phase (torch.Tensor): tensor of same size as input """ assert data.size(-3) == 2 mag = (data ** 2).sum(dim=-3).sqrt() phase = torch.atan2(data[:, 1, :, :], data[:, 0, :, :]) return torch.stack((mag, phase), dim=-3) def mag_phase_to_complex(data): """ :param data (torch.Tensor): Mag and Phase (torch.Tensor): :return: A complex valued tensor, where the size of the third last dimension is 2 """ assert data.size(-3) == 2 real = data[:, 0, :, :] * torch.cos(data[:, 1, :, :]) imag = data[:, 0, :, :] * torch.sin(data[:, 1, :, :]) return torch.stack((real, imag), dim=-3) def partial_fourier(data): """ :param data: :return: """ def complex_abs(data): """ Compute the absolute value of a complex valued input tensor. Args: data (torch.Tensor): A complex valued tensor, where the size of the final dimension should be 2. Returns: torch.Tensor: Absolute value of data """ assert data.size(-1) == 2 or data.size(-3) == 2 return (data ** 2).sum(dim=-1).sqrt() if data.size(-1) == 2 else (data ** 2).sum(dim=-3).sqrt() def root_sum_of_squares(data, dim=0): """ Compute the Root Sum of Squares (RSS) transform along a given dimension of a tensor. Args: data (torch.Tensor): The input tensor dim (int): The dimensions along which to apply the RSS transform Returns: torch.Tensor: The RSS value """ return torch.sqrt((data ** 2).sum(dim)) def center_crop(data, shape): """ Apply a center crop to the input real image or batch of real images. Args: data (torch.Tensor): The input tensor to be center cropped. It should have at least 2 dimensions and the cropping is applied along the last two dimensions. shape (int, int): The output shape. The shape should be smaller than the corresponding dimensions of data. Returns: torch.Tensor: The center cropped image """ assert 0 < shape[0] <= data.shape[-2] assert 0 < shape[1] <= data.shape[-1] w_from = (data.shape[-2] - shape[0]) // 2 h_from = (data.shape[-1] - shape[1]) // 2 w_to = w_from + shape[0] h_to = h_from + shape[1] return data[..., w_from:w_to, h_from:h_to] def complex_center_crop(data, shape): """ Apply a center crop to the input image or batch of complex images. Args: data (torch.Tensor): The complex input tensor to be center cropped. It should have at least 3 dimensions and the cropping is applied along dimensions -3 and -2 and the last dimensions should have a size of 2. shape (int, int): The output shape. The shape should be smaller than the corresponding dimensions of data. Returns: torch.Tensor: The center cropped image """ assert 0 < shape[0] <= data.shape[-3] assert 0 < shape[1] <= data.shape[-2] w_from = (data.shape[-3] - shape[0]) // 2 h_from = (data.shape[-2] - shape[1]) // 2 w_to = w_from + shape[0] h_to = h_from + shape[1] return data[..., w_from:w_to, h_from:h_to, :] def normalize(data, mean, stddev, eps=0.): """ Normalize the given tensor using: (data - mean) / (stddev + eps) Args: data (torch.Tensor): Input data to be normalized mean (float): Mean value stddev (float): Standard deviation eps (float): Added to stddev to prevent dividing by zero Returns: torch.Tensor: Normalized tensor """ return (data - mean) / (stddev + eps) def normalize_instance(data, eps=0.): """ Normalize the given tensor using: (data - mean) / (stddev + eps) where mean and stddev are computed from the data itself. Args: data (torch.Tensor): Input data to be normalized eps (float): Added to stddev to prevent dividing by zero Returns: torch.Tensor: Normalized tensor """ mean = data.mean() std = data.std() return normalize(data, mean, std, eps), mean, std def normalize_volume(data, mean, std, eps=0.): """ Normalize the given tensor using: (data - mean) / (stddev + eps) where mean and stddev are provided and computed from volume. Args: data (torch.Tensor): Input data to be normalized mean: mean of whole volume std: std of whole volume eps (float): Added to stddev to prevent dividing by zero Returns: torch.Tensor: Normalized tensor """ return normalize(data, mean, std, eps), mean, std def normalize_complex(data, eps=0.): """ Normalize the given complex tensor using: (data - mean) / (stddev + eps) where mean and stddev are computed from magnitude of data. Note that data is centered by complex mean so that the result centered data have average zero magnitude. Args: data (torch.Tensor): Input data to be normalized (*, 2) mean: mean of image magnitude std: std of image magnitude eps (float): Added to stddev to prevent dividing by zero Returns: torch.Tensor: Normalized complex tensor with 2 channels (*, 2) """ mag = complex_abs(data) mag_mean = mag.mean() mag_std = mag.std() temp = mag_mean/mag mean_real = data[..., 0] * temp mean_imag = data[..., 1] * temp mean_complex = torch.stack((mean_real, mean_imag), dim=-1) stddev = mag_std return (data - mean_complex) / (stddev + eps), mag_mean, stddev # Helper functions def roll(x, shift, dim): """ Similar to np.roll but applies to PyTorch Tensors """ if isinstance(shift, (tuple, list)): assert len(shift) == len(dim) for s, d in zip(shift, dim): x = roll(x, s, d) return x shift = shift % x.size(dim) if shift == 0: return x left = x.narrow(dim, 0, x.size(dim) - shift) right = x.narrow(dim, x.size(dim) - shift, shift) return torch.cat((right, left), dim=dim) def fftshift(x, dim=None): """ Similar to np.fft.fftshift but applies to PyTorch Tensors """ if dim is None: dim = tuple(range(x.dim())) shift = [dim // 2 for dim in x.shape] elif isinstance(dim, int): shift = x.shape[dim] // 2 else: shift = [x.shape[i] // 2 for i in dim] return roll(x, shift, dim) def ifftshift(x, dim=None): """ Similar to np.fft.ifftshift but applies to PyTorch Tensors """ if dim is None: dim = tuple(range(x.dim())) shift = [(dim + 1) // 2 for dim in x.shape] elif isinstance(dim, int): shift = (x.shape[dim] + 1) // 2 else: shift = [(x.shape[i] + 1) // 2 for i in dim] return roll(x, shift, dim)
29.703125
115
0.608276
0
0
0
0
0
0
0
0
6,827
0.598545
412b523c6ab5df841fbace6c8ecfb1e65fe6d301
171
py
Python
tests/test_entries_to_mt.py
Hagihara-A/migrate-exblog
f5df20e07e74bc1bb14888c143bc43b2d775f666
[ "MIT" ]
null
null
null
tests/test_entries_to_mt.py
Hagihara-A/migrate-exblog
f5df20e07e74bc1bb14888c143bc43b2d775f666
[ "MIT" ]
1
2019-01-07T14:34:14.000Z
2019-01-07T14:34:14.000Z
tests/test_entries_to_mt.py
Hagihara-A/scrape-excite-blog
f5df20e07e74bc1bb14888c143bc43b2d775f666
[ "MIT" ]
null
null
null
import doctest from migrate_exblog import entries_to_mt def load_tests(loader, tests, ignore): tests.addTests(doctest.DocTestSuite(entries_to_mt)) return tests
19
55
0.795322
0
0
0
0
0
0
0
0
0
0
412d18a2cbe30949e9cef10400c6fc6b33fdbee8
97
py
Python
deeppavlov/utils/server/__init__.py
xbodx/DeepPavlov
4b60bf162df4294b8b0db3b72786cdd699c674fa
[ "Apache-2.0" ]
5,893
2018-02-01T18:13:20.000Z
2022-03-31T19:22:21.000Z
deeppavlov/utils/server/__init__.py
xbodx/DeepPavlov
4b60bf162df4294b8b0db3b72786cdd699c674fa
[ "Apache-2.0" ]
749
2018-01-31T11:36:02.000Z
2022-03-30T07:24:22.000Z
deeppavlov/utils/server/__init__.py
xbodx/DeepPavlov
4b60bf162df4294b8b0db3b72786cdd699c674fa
[ "Apache-2.0" ]
1,155
2018-02-01T10:52:15.000Z
2022-03-29T02:12:15.000Z
from .server import get_server_params, get_ssl_params, redirect_root_to_docs, start_model_server
48.5
96
0.886598
0
0
0
0
0
0
0
0
0
0
f5aba0aa3a1bda30d3d5e14338fb55d72ab3b386
1,883
py
Python
b5/lib/state.py
team23/b5
90f45e86966eeb7a259667bbe06a5555648d012d
[ "BSD-3-Clause" ]
14
2018-11-24T23:33:35.000Z
2022-02-04T23:46:49.000Z
b5/lib/state.py
team23/b5
90f45e86966eeb7a259667bbe06a5555648d012d
[ "BSD-3-Clause" ]
3
2020-02-10T11:05:11.000Z
2020-03-04T08:42:11.000Z
b5/lib/state.py
team23/b5
90f45e86966eeb7a259667bbe06a5555648d012d
[ "BSD-3-Clause" ]
1
2020-02-11T19:45:13.000Z
2020-02-11T19:45:13.000Z
import os import tempfile from types import TracebackType from typing import Any, BinaryIO, Optional, TextIO, Type, Union import yaml class StoredState: def __init__(self, state: "State") -> None: self.state = state if self.state.stored_name is not None: raise RuntimeError('You may only store the state once') self.file_handle = tempfile.NamedTemporaryFile(suffix='b5-state', mode='w', encoding='utf-8', delete=False) self.state.stored_name = self.name yaml.dump({ key: getattr(self.state, key) for key in state.KEYS }, self.file_handle, default_flow_style=False) self.file_handle.close() def close(self) -> None: os.unlink(self.file_handle.name) self.state.stored_name = None def __enter__(self) -> "StoredState": return self def __exit__( self, exc_type: Optional[Type[BaseException]], exc: Optional[BaseException], traceback: Optional[TracebackType], ) -> None: self.close() @property def name(self) -> str: return self.file_handle.name class State: KEYS = ('project_path', 'run_path', 'taskfiles', 'configfiles', 'config', 'args', 'stored_name') taskfiles = [] configfiles = [] args = {} def __init__(self, **kwargs: Any) -> None: for key in self.KEYS: if not hasattr(self, key): setattr(self, key, None) for key in kwargs: if key not in self.KEYS: raise RuntimeError('Key %s is not a valid state attribute' % key) setattr(self, key, kwargs[key]) def stored(self) -> StoredState: return StoredState(self) @classmethod def load(cls, file_handle: Union[BinaryIO, TextIO]) -> "State": return cls(**yaml.safe_load(file_handle))
28.969231
115
0.60701
1,742
0.925119
0
0
203
0.107807
0
0
196
0.104089
f5ac35c88920717e7f434d347b3a61d75f1b9fd5
2,711
py
Python
lines_ext.py
subhrajit02/handwritten-digit-recognision
239a4bd1283393865d2655b91ad4674ce8450882
[ "MIT" ]
null
null
null
lines_ext.py
subhrajit02/handwritten-digit-recognision
239a4bd1283393865d2655b91ad4674ce8450882
[ "MIT" ]
null
null
null
lines_ext.py
subhrajit02/handwritten-digit-recognision
239a4bd1283393865d2655b91ad4674ce8450882
[ "MIT" ]
null
null
null
import numpy as np import cv2 def rem_multi_lines(lines, thresh): """ to remove the multiple lines with close proximity :param lines: initial list with all the lines(multiple in place of singular) :param thresh: dist between two lines for them to be considered as same :return: final list with singular lines in place of multiple """ a = [] i = 0 lines.append([800, 0]) # random val/ noise out = [] # this loop collects lines with close proximity in a list (a) and then appends that # complete list in a common list called out. while i < len(lines) - 1: if lines[i] not in a: a.append(lines[i]) if abs(lines[i + 1][0] - lines[i][0]) < thresh: a.append(lines[i + 1]) else: out.append(a) a = [] i += 1 # print(out) final = [] for i in out: a = np.array(i) final.append(np.average(a, axis=0)) # print(final) for i in final.copy(): if i[0] < 0: final.remove(i) return final def draw_r_theta_lines(img, lines, color): """ draw lines on image which are of (r, theta) form :param img: image to draw the lines on :param lines: list of lines on the form (r, theta) :param color: color of lines :return: """ for rho, theta in lines: a = np.cos(theta) b = np.sin(theta) x0 = a * rho y0 = b * rho x1 = int(x0 + 1000 * (-b)) y1 = int(y0 + 1000 * a) x2 = int(x0 - 1000 * (-b)) y2 = int(y0 - 1000 * a) cv2.line(img, (x1, y1), (x2, y2), color, 2) def lines_ext(img, hough_thresh, multilines_thresh): gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray, 45, 10) line_image = img.copy() lines = cv2.HoughLines(edges, 1, np.pi / 180, hough_thresh) lines = lines.reshape(lines.shape[0], 2) draw_r_theta_lines(line_image, lines, (0, 0, 255)) lines = sorted(lines, key=lambda x: x[0]) cv2.imshow("lines", line_image) cv2.waitKey(0) l1 = list(lines) l2 = [] for i in l1: l2.append(list(i)) v_lines = [] h_lines = [] for i in l2: if round(i[1]) == 0: v_lines.append(i) elif round(i[1]) > 0.5: h_lines.append(i) # print('v:', v_lines) # print('h:', h_lines) v_lines = rem_multi_lines(v_lines, multilines_thresh) h_lines = rem_multi_lines(h_lines, multilines_thresh) final = v_lines + h_lines draw_r_theta_lines(line_image, final, (0, 255, 0)) cv2.imshow("lines1", line_image) cv2.waitKey(0) return v_lines, h_lines
25.101852
88
0.560679
0
0
0
0
0
0
0
0
729
0.268904
f5acb14365decf5cb2d85dfdb8cc3ac0e9ffe41f
1,553
py
Python
examples/wmt/tools/scorer/nlm.py
godweiyang/ParaGen
9665d1244ea38a41fc06b4e0a7f6411985e2221f
[ "Apache-2.0" ]
50
2022-01-18T07:25:46.000Z
2022-03-14T13:06:18.000Z
examples/wmt/tools/scorer/nlm.py
JiangtaoFeng/ParaGen
509334bf16e3674e009bb9dc37ecc38ae3b5c977
[ "Apache-2.0" ]
2
2022-01-19T09:36:42.000Z
2022-02-23T07:16:02.000Z
examples/wmt/tools/scorer/nlm.py
JiangtaoFeng/ParaGen
509334bf16e3674e009bb9dc37ecc38ae3b5c977
[ "Apache-2.0" ]
6
2022-01-19T09:28:53.000Z
2022-03-10T10:20:08.000Z
# Before running this command, you should firstly run: # pip install fairseq # pip install fastBPE # wget https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.en.tar.gz # tar zxvf wmt19.en.tar.gz import argparse from itertools import islice import numpy as np from fairseq.models.transformer_lm import TransformerLanguageModel parser = argparse.ArgumentParser() parser.add_argument('--hypo_filename', metavar='N', type=str, help='hypo_filename') parser.add_argument('--out_filename', metavar='N', type=str, help='out_filename') # parser.add_argument('--num_candidates', type=int, help="num_candidates") args, unknown = parser.parse_known_args() en_lm = TransformerLanguageModel.from_pretrained('wmt19.en', 'model.pt', tokenizer='moses', bpe='fastbpe') en_lm.cuda() num_processed = 0 ppl = [] batch_num = 1000 with open(args.hypo_filename, 'r') as f, open(args.out_filename, 'w') as out: while True: n_lines = list(map(lambda x: x.strip(), islice(f, batch_num))) if len(n_lines) == 0: break for ele in en_lm.score(n_lines, beam=1): ppl.append(float(ele['positional_scores'].mean().neg().exp().item())) num_processed += batch_num print(f"Processed {num_processed}") ppl = np.array(ppl) ppl = np.nan_to_num(ppl, nan=np.nanmax(ppl)) # scores = 1 - ppl/ppl.max() # for ele in zip(ppl.tolist(), scores.tolist()): # out.write(f"{np.log(ele[0])}, {ele[0]}, {ele[1]}\n") ppl = np.array(ppl) for ele in ppl.tolist(): out.write(f"{np.log(ele)}\n")
36.116279
106
0.676755
0
0
0
0
0
0
0
0
576
0.370895
f5accc4b43ec1556256e37986ed9a579a786c19a
2,742
py
Python
aioli_openapi/service.py
jimorie/aioli-openapi
5a5ea6471d332adc8361ad39af7421e4686811fd
[ "MIT" ]
null
null
null
aioli_openapi/service.py
jimorie/aioli-openapi
5a5ea6471d332adc8361ad39af7421e4686811fd
[ "MIT" ]
null
null
null
aioli_openapi/service.py
jimorie/aioli-openapi
5a5ea6471d332adc8361ad39af7421e4686811fd
[ "MIT" ]
null
null
null
import warnings from apispec import APISpec from apispec.ext.marshmallow import MarshmallowPlugin from aioli.service import BaseService from aioli.controller import BaseHttpController from aioli.exceptions import NoMatchFound class OpenApiService(BaseService): _specs = {} def oas_schema(self, pkg): spec = APISpec( title=pkg.meta["name"].capitalize(), version=pkg.meta["version"], openapi_version=self.config["oas_version"], plugins=[MarshmallowPlugin()], ) for ctrl in pkg.controllers: if not isinstance(ctrl, BaseHttpController): continue routes = {} for func, handler in ctrl.handlers: if not handler.status: warnings.warn(f"No @returns for {func}, cannot generate OAS3 schema for this handler") break abspath = handler.path_full method = handler.method.lower() if abspath not in routes: routes[abspath] = {} if method not in routes[abspath]: routes[abspath][method] = dict( responses={}, parameters=[] ) route = routes[abspath][method] responses = route["responses"] parameters = route["parameters"] for location, schema_cls in handler.schemas: if location == "response": if not schema_cls: content = {} else: content = {"application/json": {"schema": schema_cls}} responses[handler.status] = dict( description=None, content=content ) elif location in ["path", "query", "header"]: if not schema_cls: continue parameters.append({ "in": location, "schema": schema_cls }) spec.path(handler.path_full, operations=routes[abspath]) return spec.to_dict() async def on_startup(self): for pkg in self.app.registry.imported: if not pkg.config["path"]: continue self._specs[pkg.meta["name"]] = self.oas_schema(pkg) async def get_schemas(self, **query): return self._specs async def get_schema(self, name): if name not in self._specs: raise NoMatchFound return self._specs[name]
31.159091
106
0.496718
2,511
0.915755
0
0
0
0
402
0.146608
203
0.074034
f5ae655bb41bdfdac3cd957f9a322f3eb321c3ad
124
py
Python
wrangle_scripts/wrangle_data.py
es-g/dash
443b04593e66f7f2dcea325937eee4683f4c7a13
[ "MIT" ]
null
null
null
wrangle_scripts/wrangle_data.py
es-g/dash
443b04593e66f7f2dcea325937eee4683f4c7a13
[ "MIT" ]
null
null
null
wrangle_scripts/wrangle_data.py
es-g/dash
443b04593e66f7f2dcea325937eee4683f4c7a13
[ "MIT" ]
null
null
null
import pandas as pd import plotly.graph_objs as go def load_data(): df = pd.read_csv("data/Data.csv") return df
12.4
37
0.685484
0
0
0
0
0
0
0
0
15
0.120968
f5ae7c5fd10eb5c3a55627538569669fa5235f04
399
py
Python
cpdb/popup/factories.py
invinst/CPDBv2_backend
b4e96d620ff7a437500f525f7e911651e4a18ef9
[ "Apache-2.0" ]
25
2018-07-20T22:31:40.000Z
2021-07-15T16:58:41.000Z
cpdb/popup/factories.py
invinst/CPDBv2_backend
b4e96d620ff7a437500f525f7e911651e4a18ef9
[ "Apache-2.0" ]
13
2018-06-18T23:08:47.000Z
2022-02-10T07:38:25.000Z
cpdb/popup/factories.py
invinst/CPDBv2_backend
b4e96d620ff7a437500f525f7e911651e4a18ef9
[ "Apache-2.0" ]
6
2018-05-17T21:59:43.000Z
2020-11-17T00:30:26.000Z
import factory from faker import Faker from popup.models import Popup fake = Faker() class PopupFactory(factory.django.DjangoModelFactory): class Meta: model = Popup name = factory.LazyFunction(lambda: fake.word()) page = factory.LazyFunction(lambda: fake.word()) title = factory.LazyFunction(lambda: fake.word()) text = factory.LazyFunction(lambda: fake.text(512))
23.470588
55
0.719298
309
0.774436
0
0
0
0
0
0
0
0
f5afafed15f47453d454c043799fdd7a4422ab1b
1,863
py
Python
src_old/tests/delete_migrations.py
rishikesh67/django-tenant-oracle-schemas
918a64e842b678fc506eadbb4d7e51b0b38ab0a2
[ "MIT" ]
null
null
null
src_old/tests/delete_migrations.py
rishikesh67/django-tenant-oracle-schemas
918a64e842b678fc506eadbb4d7e51b0b38ab0a2
[ "MIT" ]
8
2019-12-04T23:26:11.000Z
2022-02-10T09:42:18.000Z
src/tests/delete_migrations.py
rishikesh67/django-tenant-oracle-schemas
918a64e842b678fc506eadbb4d7e51b0b38ab0a2
[ "MIT" ]
2
2019-06-26T05:31:16.000Z
2019-07-01T12:22:50.000Z
import os import glob import shutil import logging # logging.basicConfig(level=logging.DEBUG) # DEBUG:root:Skipping file /Users/hygull/Projects/Python3/DjangoTenantOracleSchemas/django-tenant-oracle-schemas/src/tenants/models.py # logging.basicConfig(format='%(asctime)s %(message)s', level=logging.DEBUG) # 2019-06-24 16:19:29,898 Skipping file /Users/hygull/Projects/Python3/DjangoTenantOracleSchemas/django-tenant-oracle-schemas/src/manage.py # logging.basicConfig(format='%(asctime)s %(message)s', level=logging.DEBUG, datefmt='%d/%m/%Y %H:%M:%S %p') # 24/06/2019 04:23:31 PM Skipping file /Users/hygull/Projects/Python3/DjangoTenantOracleSchemas/django-tenant-oracle-schemas/src/manage.py logging.basicConfig(format='%(asctime)s %(message)s', level=logging.DEBUG, datefmt='[%d/%m/%Y %H:%M:%S %p] =>') # 24/06/2019 16:24:02 PM Skipping file /Users/hygull/Projects/Python3/DjangoTenantOracleSchemas/django-tenant-oracle-schemas/src/manage.py def delete_migrations( dir_path='/Users/hygull/Projects/Python3/DjangoTenantOracleSchemas/django-tenant-oracle-schemas/', migrations=True, pycaches=False, **kwargs ): dir_path = os.path.join(os.path.abspath(dir_path)) logging.info(dir_path) if os.path.isdir(dir_path): files = os.listdir(dir_path) for file in files: abspath = os.path.join(dir_path, file) if os.path.isdir(abspath): logging.debug('file ---> {0} {1}'.format(file, pycaches)) if (migrations and file == 'migrations') or (pycaches and file == "__pycache__"): logging.debug('Found migration as ' + abspath) shutil.rmtree(abspath) logging.debug(abspath + ' is removed') else: logging.debug('Iteration over -> ' + abspath) delete_migrations(abspath, pycaches, migrations, **kwargs) else: logging.debug('Skipping file ' + abspath) else: logging.debug('Path is not a directory')
38.8125
139
0.7343
0
0
0
0
0
0
0
0
1,054
0.565754
f5b0b5d5e4ce7c8e9669a43f27a5226a60590d4f
6,075
py
Python
qa2nli/converters/processors.py
nli-for-qa/conversion
588de7fbbcdeb9698fe888b6e3ece7dfadf25238
[ "MIT" ]
null
null
null
qa2nli/converters/processors.py
nli-for-qa/conversion
588de7fbbcdeb9698fe888b6e3ece7dfadf25238
[ "MIT" ]
null
null
null
qa2nli/converters/processors.py
nli-for-qa/conversion
588de7fbbcdeb9698fe888b6e3ece7dfadf25238
[ "MIT" ]
1
2021-07-04T01:59:56.000Z
2021-07-04T01:59:56.000Z
from typing import Callable, List, Union, Optional, Dict, Tuple import re import spacy import logging import math from enum import Enum logger = logging.getLogger(__name__) def remove_excess_space(inp: str) -> str: return ' '.join(inp.split()).strip() def get_spacy_model(model: str) -> spacy.language.Model: try: spacy_model = spacy.load(model) except OSError: logger.warning( f"Spacy models '{model}' not found. Downloading and installing.") spacy.cli.download(model) # Import the downloaded model module directly and load from there spacy_model_module = __import__(model) spacy_model = spacy_model_module.load() return spacy_model class PreprocessorBase: """Override the __call__ method in inherited class to change functionallity""" def __call__(self, q: str, o: str) -> Tuple[str, Dict]: """ Very basic preprocessor which concats question and option. Handles fill in the black type questions. """ if '_' in q: # FITB h = q.replace('_', o) else: h = q + ' ' + o h = remove_excess_space(h) meta = {'question': q, 'option': o} return h, meta Preprocessor = PreprocessorBase dots = re.compile(r"[\.\'\"\?, ]{2,}[\w ]*") def remove_dots(inp: str) -> str: return dots.sub('.', inp) class ConversionIssue(Enum): NONE = 'none' TOO_SHORT = 'too_short' TOO_LONG = 'too_long' COULD_NOT_FIX = 'could_not_fix' INVALID_QUESTION = 'invalid_question' INVALID_OPTION = 'invalid_option' MISSING_INFORMATION = 'missing_info' UNGRAMTICAL_RESULT = 'ungramatical_result' UNKNOWN = 'unknown' def __str__(self) -> str: return self.value class PostprocessorBase: def __init__(self, lower_length_ratio: Optional[float] = None, upper_length_ratio: float = 1.3) -> None: self.lower_length_ratio = lower_length_ratio self.upper_length_ratio = upper_length_ratio def __call__(self, inp: str, meta: Dict) -> Tuple[str, Dict]: # if the list does not exists add an empty meta['conversion_issues'] = meta.get('conversion_issues', []) return inp, meta def _length_check(self, output: str, question: str, option: str) -> ConversionIssue: total_ratio = (len(output) / (len(question) + len(option))) if total_ratio > self.upper_length_ratio: # too long. Cut the output return ConversionIssue.TOO_LONG elif self.lower_length_ratio is None and len(output) < len(option): return ConversionIssue.TOO_SHORT elif self.lower_length_ratio is not None: if total_ratio < self.lower_length_ratio: return ConversionIssue.TOO_SHORT return ConversionIssue.NONE class Postprocessor(PostprocessorBase): def __init__(self, sentence_splitter: str = 'period', cleaner: str = None, lower_length_ratio: float = None, upper_length_ratio: float = 1.3) -> None: self.sentence_splitter = sentence_splitter if cleaner == 'remove_dots': self.cleaner: Callable[[str], str] = remove_dots else: self.cleaner = lambda x: x if sentence_splitter == 'spacy': self.spacy_nlp = get_spacy_model('en_core_web_sm') else: self.spacy_nlp = None super().__init__( lower_length_ratio=lower_length_ratio, upper_length_ratio=upper_length_ratio) def _fix_too_short(self, all_sentences: List[str], meta: Dict) -> Tuple[str, bool]: next_ = 1 could_not_fix = False current_output = all_sentences[0] # add sentences till legth is not too short max_tries = min(5, len(all_sentences)) length_issue = ConversionIssue.TOO_SHORT if max_tries == 1: could_not_fix = True while length_issue == ConversionIssue.TOO_SHORT and ( not could_not_fix): current_output = current_output + f" {all_sentences[next_]}" length_issue = self._length_check(current_output, meta['question'], meta['option']) next_ += 1 if next_ >= max_tries: could_not_fix = True break return current_output, could_not_fix def __call__(self, inp: str, meta: Dict) -> Tuple[str, Dict]: cleaned = self.cleaner(inp) if self.sentence_splitter == 'spacy': sentences = [ s.text.strip() for s in list(self.spacy_nlp(cleaned).sents) ] first_sent = (sentences[0]).strip() elif self.sentence_splitter == 'period': sentences = cleaned.split('.') first_sent = sentences[0] meta['all_sentences'] = sentences output = first_sent issues_encountered = [] length_issue = self._length_check(output, meta['question'], meta['option']) if length_issue == ConversionIssue.TOO_SHORT: issues_encountered.append(length_issue) output, could_not_fix = self._fix_too_short(sentences, meta) if could_not_fix: issues_encountered.append(ConversionIssue.COULD_NOT_FIX) # check again length_issue = self._length_check(output, meta['question'], meta['option']) if length_issue == ConversionIssue.TOO_LONG: issues_encountered.append(length_issue) output = output[:int( math.ceil(self.upper_length_ratio * (len(meta['question']) + len(meta['option']))))] meta['conversion_issues'] = [ str(issue) for issue in issues_encountered ] output = remove_excess_space(output) return output, meta
31.806283
82
0.597366
5,200
0.855967
0
0
0
0
0
0
877
0.144362
f5b0c54a48711381cd579c3094b7c9b18f185760
2,106
py
Python
trphysx/data_utils/dataset_cylinder.py
zabaras/transformer-physx
eb28d09957641cc594b3e5acf4ace2e4dc193584
[ "MIT" ]
33
2020-10-15T06:43:36.000Z
2022-03-24T10:46:12.000Z
trphysx/data_utils/dataset_cylinder.py
zabaras/transformer-physx
eb28d09957641cc594b3e5acf4ace2e4dc193584
[ "MIT" ]
2
2021-05-18T14:31:38.000Z
2021-07-30T18:18:50.000Z
trphysx/data_utils/dataset_cylinder.py
zabaras/transformer-physx
eb28d09957641cc594b3e5acf4ace2e4dc193584
[ "MIT" ]
6
2020-12-01T05:54:01.000Z
2022-03-25T21:22:09.000Z
""" ===== Distributed by: Notre Dame SCAI Lab (MIT Liscense) - Associated publication: url: https://arxiv.org/abs/2010.03957 doi: github: https://github.com/zabaras/transformer-physx ===== """ import logging import h5py import torch from .dataset_phys import PhysicalDataset from ..embedding.embedding_model import EmbeddingModel logger = logging.getLogger(__name__) class CylinderDataset(PhysicalDataset): """Dataset for 2D flow around a cylinder numerical example """ def embed_data(self, h5_file: h5py.File, embedder: EmbeddingModel) -> None: """Embeds cylinder flow data into a 1D vector representation for the transformer. Args: h5_file (h5py.File): HDF5 file object of raw data embedder (EmbeddingModel): Embedding neural network """ # Iterate through stored time-series samples = 0 embedder.eval() for key in h5_file.keys(): ux = torch.Tensor(h5_file[key + '/ux']) uy = torch.Tensor(h5_file[key + '/uy']) p = torch.Tensor(h5_file[key + '/p']) data_series = torch.stack([ux, uy, p], dim=1).to(embedder.devices[0]) visc = (2.0 / float(key))*torch.ones(ux.size(0), 1).to(embedder.devices[0]) with torch.no_grad(): embedded_series = embedder.embed(data_series, visc).cpu() # Stride over time-series for i in range(0, data_series.size(0) - self.block_size + 1, self.stride): # Truncate in block of block_size data_series0 = embedded_series[i: i + self.block_size] # .repeat(1, 4) self.examples.append(data_series0) if self.eval: self.states.append(data_series[i: i + self.block_size].cpu()) samples = samples + 1 if (self.ndata > 0 and samples >= self.ndata): # If we have enough time-series samples break loop break logger.info( 'Collected {:d} time-series from hdf5 file. Total of {:d} time-series.'.format(samples, len(self.examples)) )
37.607143
121
0.61396
1,735
0.823837
0
0
0
0
0
0
737
0.349953
f5b4beb61d529163a339e65d180ea7a983c8e73d
359
py
Python
HLTrigger/Configuration/python/HLT_75e33/paths/L1T_SingleTkMuon_22_cfi.py
PKUfudawei/cmssw
8fbb5ce74398269c8a32956d7c7943766770c093
[ "Apache-2.0" ]
1
2021-11-30T16:24:46.000Z
2021-11-30T16:24:46.000Z
HLTrigger/Configuration/python/HLT_75e33/paths/L1T_SingleTkMuon_22_cfi.py
PKUfudawei/cmssw
8fbb5ce74398269c8a32956d7c7943766770c093
[ "Apache-2.0" ]
4
2021-11-29T13:57:56.000Z
2022-03-29T06:28:36.000Z
HLTrigger/Configuration/python/HLT_75e33/paths/L1T_SingleTkMuon_22_cfi.py
PKUfudawei/cmssw
8fbb5ce74398269c8a32956d7c7943766770c093
[ "Apache-2.0" ]
1
2021-11-30T16:16:05.000Z
2021-11-30T16:16:05.000Z
import FWCore.ParameterSet.Config as cms #from ..modules.hltL1TkMuons_cfi import * from ..modules.hltL1TkSingleMuFiltered22_cfi import * from ..sequences.HLTBeginSequence_cfi import * from ..sequences.HLTEndSequence_cfi import * L1T_SingleTkMuon_22 = cms.Path( HLTBeginSequence + # hltL1TkMuons + hltL1TkSingleMuFiltered22 + HLTEndSequence )
25.642857
53
0.788301
0
0
0
0
0
0
0
0
60
0.167131
f5b575448dfd3070de7e8cc30de61a51b143522f
927
py
Python
strategies/forest.py
aladics/DeepBugHunter
564f2417eafc50e99de60d5d6c0a1b4193d1bf8b
[ "Apache-2.0" ]
6
2019-03-01T13:17:09.000Z
2022-03-07T04:07:04.000Z
strategies/forest.py
aladics/DeepBugHunter
564f2417eafc50e99de60d5d6c0a1b4193d1bf8b
[ "Apache-2.0" ]
null
null
null
strategies/forest.py
aladics/DeepBugHunter
564f2417eafc50e99de60d5d6c0a1b4193d1bf8b
[ "Apache-2.0" ]
2
2020-08-02T07:36:00.000Z
2021-01-13T15:04:00.000Z
import os import math import argparse import dbh_util as util from sklearn.ensemble import RandomForestClassifier parser = argparse.ArgumentParser() parser.add_argument('--n-estimators', type=int, default=10, help='The number of trees in the forest') parser.add_argument('--max-depth', type=int, default=5, help='Max decision tree leaf node depth') parser.add_argument('--criterion', default='gini', help='Split quality criterion, "gini" or "entropy"') # # Random Forest approach # def predict(classifier, test, args, sargs_str, threshold=None): sargs = util.parse(parser, sargs_str.split()) preds = classifier.predict(test[0]) if threshold is not None: preds = [1 if x >= threshold else 0 for x in preds] return preds def learn(train, dev, test, args, sargs_str): sargs = util.parse(parser, sargs_str.split()) return util.sklearn_wrapper(train, dev, test, RandomForestClassifier(**sargs))
34.333333
103
0.73247
0
0
0
0
0
0
0
0
190
0.204962
f5b7476abd3046a860b7d297b7e32e4ae0dcc3db
9,476
py
Python
vitrage_tempest_plugin/tests/e2e/test_overlapping_actions.py
openstack/vitrage-tempest-plugin
69acc7f3ea26f8c3a652cdf9d1fd842dbf9af58f
[ "Apache-2.0" ]
6
2018-08-02T12:11:09.000Z
2019-03-05T11:45:09.000Z
vitrage_tempest_plugin/tests/e2e/test_overlapping_actions.py
openstack/vitrage-tempest-plugin
69acc7f3ea26f8c3a652cdf9d1fd842dbf9af58f
[ "Apache-2.0" ]
null
null
null
vitrage_tempest_plugin/tests/e2e/test_overlapping_actions.py
openstack/vitrage-tempest-plugin
69acc7f3ea26f8c3a652cdf9d1fd842dbf9af58f
[ "Apache-2.0" ]
1
2018-08-22T12:29:54.000Z
2018-08-22T12:29:54.000Z
# Copyright 2017 - Nokia # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import time from oslo_log import log as logging from vitrage_tempest_plugin.tests.base import IsEmpty from vitrage_tempest_plugin.tests.common.constants import DOCTOR_DATASOURCE from vitrage_tempest_plugin.tests.common.constants import EntityCategory from vitrage_tempest_plugin.tests.common.constants import VertexProperties \ as VProps from vitrage_tempest_plugin.tests.common.constants import VITRAGE_DATASOURCE from vitrage_tempest_plugin.tests.common import general_utils as g_utils from vitrage_tempest_plugin.tests.common.tempest_clients import TempestClients from vitrage_tempest_plugin.tests.common import vitrage_utils as v_utils from vitrage_tempest_plugin.tests.e2e.test_actions_base import TestActionsBase from vitrage_tempest_plugin.tests import utils LOG = logging.getLogger(__name__) TRIGGER_ALARM_1 = 'e2e.test_overlapping_actions.trigger.alarm1' TRIGGER_ALARM_2 = 'e2e.test_overlapping_actions.trigger.alarm2' TRIGGER_ALARM_3 = 'e2e.test_overlapping_actions.trigger.alarm3' TRIGGER_ALARM_4 = 'e2e.test_overlapping_actions.trigger.alarm4' DEDUCED = 'e2e.test_overlapping_actions.deduced.alarm' TRIGGER_ALARM_1_PROPS = { VProps.NAME: TRIGGER_ALARM_1, VProps.VITRAGE_CATEGORY: EntityCategory.ALARM, VProps.VITRAGE_TYPE: DOCTOR_DATASOURCE, } TRIGGER_ALARM_2_PROPS = { VProps.NAME: TRIGGER_ALARM_2, VProps.VITRAGE_CATEGORY: EntityCategory.ALARM, VProps.VITRAGE_TYPE: DOCTOR_DATASOURCE, } DEDUCED_PROPS = { VProps.NAME: DEDUCED, VProps.VITRAGE_CATEGORY: EntityCategory.ALARM, VProps.VITRAGE_TYPE: VITRAGE_DATASOURCE, } class TestOverlappingActions(TestActionsBase): @classmethod def setUpClass(cls): super(TestOverlappingActions, cls).setUpClass() cls._template = v_utils.add_template( 'e2e_test_overlapping_actions.yaml') @classmethod def tearDownClass(cls): if cls._template is not None: v_utils.delete_template(cls._template['uuid']) @utils.tempest_logger def test_overlapping_action_set_state(self): try: # Do - first self._trigger_do_action(TRIGGER_ALARM_1) curr_host = v_utils.get_first_host() self.assertEqual( 'ERROR', curr_host.get(VProps.VITRAGE_AGGREGATED_STATE), 'state should change after set_state action') # Do - second self._trigger_do_action(TRIGGER_ALARM_2) curr_host = v_utils.get_first_host() self.assertEqual( 'ERROR', curr_host.get(VProps.VITRAGE_AGGREGATED_STATE), 'state should remain unchanged') # Undo - first self._trigger_undo_action(TRIGGER_ALARM_1) curr_host = v_utils.get_first_host() self.assertEqual( 'ERROR', curr_host.get(VProps.VITRAGE_AGGREGATED_STATE), 'state should remain unchanged') # Undo - second self._trigger_undo_action(TRIGGER_ALARM_2) curr_host = v_utils.get_first_host() self.assertEqual( self.orig_host.get(VProps.VITRAGE_AGGREGATED_STATE), curr_host.get(VProps.VITRAGE_AGGREGATED_STATE), 'state should change after undo set_state action') finally: self._trigger_undo_action(TRIGGER_ALARM_1) self._trigger_undo_action(TRIGGER_ALARM_2) @utils.tempest_logger def test_overlapping_action_mark_down(self): try: host_name = self.orig_host.get(VProps.NAME) # Do - first self._trigger_do_action(TRIGGER_ALARM_3) nova_service = TempestClients.nova().services.list( host=host_name, binary='nova-compute')[0] self.assertEqual("down", nova_service.state) # Do - second self._trigger_do_action(TRIGGER_ALARM_4) nova_service = TempestClients.nova().services.list( host=host_name, binary='nova-compute')[0] self.assertEqual("down", nova_service.state) # Undo - first self._trigger_undo_action(TRIGGER_ALARM_3) nova_service = TempestClients.nova().services.list( host=host_name, binary='nova-compute')[0] self.assertEqual("down", nova_service.state) # Undo - second self._trigger_undo_action(TRIGGER_ALARM_4) nova_service = TempestClients.nova().services.list( host=host_name, binary='nova-compute')[0] self.assertEqual("up", nova_service.state) finally: self._trigger_undo_action(TRIGGER_ALARM_3) self._trigger_undo_action(TRIGGER_ALARM_4) # nova.host datasource may take up to snapshot_interval to update time.sleep(130) @utils.tempest_logger def test_overlapping_action_deduce_alarm(self): try: host_id = self.orig_host.get(VProps.VITRAGE_ID) # Do - first self._trigger_do_action(TRIGGER_ALARM_1) self._check_deduced(1, DEDUCED_PROPS, host_id) # Do - second self._trigger_do_action(TRIGGER_ALARM_2) self._check_deduced(1, DEDUCED_PROPS, host_id) # Undo - first self._trigger_undo_action(TRIGGER_ALARM_1) self._check_deduced(1, DEDUCED_PROPS, host_id) # Undo - second self._trigger_undo_action(TRIGGER_ALARM_2) self._check_deduced(0, DEDUCED_PROPS, host_id) finally: self._trigger_undo_action(TRIGGER_ALARM_1) self._trigger_undo_action(TRIGGER_ALARM_2) @utils.tempest_logger def test_overlapping_action_add_causal_relationship(self): try: # ---- Do first & second ---- self._trigger_do_action(TRIGGER_ALARM_1) self._trigger_do_action(TRIGGER_ALARM_2) alarms = self.vitrage_client.alarm.list( vitrage_id=self.orig_host.get(VProps.VITRAGE_ID), all_tenants=True) deduced = g_utils.first_match(alarms, **DEDUCED_PROPS) trigger1 = g_utils.first_match(alarms, **TRIGGER_ALARM_1_PROPS) trigger2 = g_utils.first_match(alarms, **TRIGGER_ALARM_2_PROPS) # Get Rca for the deduced rca = self.vitrage_client.rca.get(deduced[VProps.VITRAGE_ID], all_tenants=True) self._check_rca(rca, [deduced, trigger1, trigger2], DEDUCED_PROPS) # Get Rca for trigger 1 rca = self.vitrage_client.rca.get(trigger1[VProps.VITRAGE_ID], all_tenants=True) self._check_rca(rca, [deduced, trigger1], TRIGGER_ALARM_1_PROPS) # Get Rca for trigger 2 rca = self.vitrage_client.rca.get(trigger2[VProps.VITRAGE_ID], all_tenants=True) self._check_rca(rca, [deduced, trigger2], TRIGGER_ALARM_2_PROPS) # ---- Undo - first ---- self._trigger_undo_action(TRIGGER_ALARM_1) alarms = self.vitrage_client.alarm.list( vitrage_id=self.orig_host.get(VProps.VITRAGE_ID), all_tenants=True) deduced = g_utils.first_match(alarms, **DEDUCED_PROPS) trigger2 = g_utils.first_match(alarms, **TRIGGER_ALARM_2_PROPS) # Get Rca for the deduced rca = self.vitrage_client.rca.get(deduced[VProps.VITRAGE_ID], all_tenants=True) self._check_rca(rca, [deduced, trigger2], DEDUCED_PROPS) # Get Rca for trigger 2 rca = self.vitrage_client.rca.get(trigger2[VProps.VITRAGE_ID], all_tenants=True) self._check_rca(rca, [deduced, trigger2], TRIGGER_ALARM_2_PROPS) # ---- Undo - second ---- self._trigger_undo_action(TRIGGER_ALARM_2) alarms = self.vitrage_client.alarm.list( vitrage_id=self.orig_host.get(VProps.VITRAGE_ID), all_tenants=True) self.assertThat( g_utils.all_matches(alarms, **TRIGGER_ALARM_1_PROPS), IsEmpty(), 'trigger alarm 1 should have been removed') self.assertThat( g_utils.all_matches(alarms, **TRIGGER_ALARM_2_PROPS), IsEmpty(), 'trigger alarm 2 should have been removed') self.assertThat( g_utils.all_matches(alarms, **DEDUCED_PROPS), IsEmpty(), 'deduced alarm should have been removed') finally: self._trigger_undo_action(TRIGGER_ALARM_1) self._trigger_undo_action(TRIGGER_ALARM_2)
40.495726
78
0.646264
7,323
0.772794
0
0
7,241
0.764141
0
0
1,626
0.171591
f5b80f86d6e5672de1791e2d08c1fbaf96195a02
4,137
py
Python
clone_tests/clone_compilation_errors.py
dcz-purism/glib
eccd097166cdf7dfea9be17869868d45f8ef4ef6
[ "MIT-0", "MIT" ]
null
null
null
clone_tests/clone_compilation_errors.py
dcz-purism/glib
eccd097166cdf7dfea9be17869868d45f8ef4ef6
[ "MIT-0", "MIT" ]
null
null
null
clone_tests/clone_compilation_errors.py
dcz-purism/glib
eccd097166cdf7dfea9be17869868d45f8ef4ef6
[ "MIT-0", "MIT" ]
null
null
null
import json import os import subprocess import sys TEST_FILENAME = "tmp_py_file" TEST_FOLDER = "clone_tests" TESTS = [ ("clone!( => move || {})", "If you have nothing to clone, no need to use this macro!"), ("clone!(|| {})", "If you have nothing to clone, no need to use this macro!"), ("clone!(|a, b| {})", "If you have nothing to clone, no need to use this macro!"), ("clone!(@strong self => move |x| {})", "Can't use `self` as variable name. Try storing it in a temporary variable or rename it using `as`."), ("clone!(@strong self.v => move |x| {})", "Field accesses are not allowed as is, you must rename it!"), ("clone!(@weak v => @default-return false, || {})", "Closure needs to be \"moved\" so please add `move` before closure"), ("clone!(@weak v => @default-return false, |bla| {})", "Closure needs to be \"moved\" so please add `move` before closure"), ("clone!(@weak v => default-return false, move || {})", "Missing `@` before `default-return`"), ("clone!(@weak v => @default-return false move || {})", "Missing comma after `@default-return`'s value"), ("clone!(@yolo v => move || {})", "Unknown keyword, only `weak` and `strong` are allowed"), ("clone!(v => move || {})", "You need to specify if this is a weak or a strong clone."), ] def convert_to_string(s): if s.__class__.__name__ == 'bytes': return s.decode('utf-8') return s def exec_command(command): child = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = child.communicate() return (child.returncode == 0, convert_to_string(stdout), convert_to_string(stderr)) def run_test(code, expected_str): with open("{}/{}.rs".format(TEST_FOLDER, TEST_FILENAME), 'w') as f: f.write('extern crate glib;use glib::clone;use std::rc::Rc;fn main(){{let v = Rc::new(1);{};}}'.format(code)) code, stdout, stderr = exec_command([ "bash", "-c", "cd {} && cargo build --message-format json".format(TEST_FOLDER), ]) os.remove("{}/{}.rs".format(TEST_FOLDER, TEST_FILENAME)) if code is True: return "This isn't supposed to compile!" parts = stdout.split('}\n{') compiler_message = None for (pos, part) in enumerate(parts): try: if pos > 0: part = "{" + part if pos + 1 < len(parts): part += "}" x = json.loads(part) if (x["reason"] != "compiler-message" or x["message"]["message"] == "aborting due to previous error"): continue compiler_message = x["message"]["message"] break except Exception: continue if compiler_message is None: return "Weird issue: no compiler-message found..." if expected_str not in compiler_message: return "`{}` not found in `{}`".format(expected_str, compiler_message) return None def run_tests(): print("About to start the tests on the clone! macro.") print("It might be slow to run the first one since cargo has to build dependencies...") print("") errors = 0 with open('{}/Cargo.toml'.format(TEST_FOLDER), 'w') as f: f.write("""[package] name = "test" version = "0.0.1" authors = ["gtk-rs developers"] [dependencies] glib = {{ path = ".." }} [[bin]] name = "{0}" path = "{0}.rs" """.format(TEST_FILENAME)) for (code, expected_str) in TESTS: sys.stdout.write('Running `{}`...'.format(code)) sys.stdout.flush() err = run_test(code, expected_str) if err is not None: print(" FAILED\n{}".format(err)) errors += 1 else: print(" OK") print("Ran {} tests, got {} failure{}".format(len(TESTS), errors, "s" if errors > 1 else "")) os.remove("{}/Cargo.toml".format(TEST_FOLDER)) os.remove("{}/Cargo.lock".format(TEST_FOLDER)) exec_command(['bash', '-c', 'rm -r {}/target'.format(TEST_FOLDER)]) return errors if __name__ == "__main__": sys.exit(run_tests())
35.358974
117
0.578922
0
0
0
0
0
0
0
0
1,916
0.463138
f5b9371efb3fb18aace487077f47abfd7957e4b2
2,437
py
Python
tests/test_tags.py
wbcsmarteezgithub/django-snakeoil
ae1a8dab9e14194e48963101ff3349f45aee0ccf
[ "BSD-2-Clause" ]
1
2020-07-03T15:52:25.000Z
2020-07-03T15:52:25.000Z
tests/test_tags.py
wbcsmarteezgithub/django-snakeoil
ae1a8dab9e14194e48963101ff3349f45aee0ccf
[ "BSD-2-Clause" ]
null
null
null
tests/test_tags.py
wbcsmarteezgithub/django-snakeoil
ae1a8dab9e14194e48963101ff3349f45aee0ccf
[ "BSD-2-Clause" ]
null
null
null
from __future__ import unicode_literals from django.http import HttpRequest from django.template import Context, Template, TemplateSyntaxError from django.test import TestCase from snakeoil.models import SeoUrl from .models import TestModel class GetSeoDataTagTests(TestCase): def test_invalid_syntax(self): request = HttpRequest() request.path = '/' with self.assertRaises(TemplateSyntaxError): Template( '{% load snakeoil %}' '{% get_seo_data spam %}' '{{ seo.head_title }}' '{{ seo.meta_description }}' ).render(Context({'request': request})) def test_no_data(self): request = HttpRequest() request.path = '/' out = Template( '{% load snakeoil %}' '{% get_seo_data %}' '{{ seo.head_title }}' '{{ seo.meta_description }}' ).render(Context({'request': request})) self.assertEqual(out, '') def test_data_from_url(self): SeoUrl.objects.create(url='/', head_title='spam', meta_description='eggs') request = HttpRequest() request.path = '/' out = Template( '{% load snakeoil %}' '{% get_seo_data %}' '{{ seo.head_title }}' '{{ seo.meta_description }}' ).render(Context({'request': request})) self.assertEqual(out, 'spameggs') def test_as_parameter(self): SeoUrl.objects.create(url='/', head_title='spam', meta_description='eggs') request = HttpRequest() request.path = '/' out = Template( '{% load snakeoil %}' '{% get_seo_data as spam %}' '{{ spam.head_title }}' '{{ spam.meta_description }}' ).render(Context({'request': request})) self.assertEqual(out, 'spameggs') def test_data_from_model(self): obj = TestModel.objects.create(head_title='spam', meta_description='eggs') request = HttpRequest() request.path = '/' out = Template( '{% load snakeoil %}' '{% get_seo_data %}' '{{ seo.head_title }}' '{{ seo.meta_description }}' ).render(Context({'request': request, 'obj': obj})) self.assertEqual(out, 'spameggs')
29.719512
66
0.531801
2,190
0.898646
0
0
0
0
0
0
609
0.249897
f5b9906a08803c2fec8e92b95456e8a8ee69c95c
50
py
Python
src/runner/__init__.py
Tung-I/nips2019_template
a1fcf35b7633d192d2706a533731cb8c457ac230
[ "MIT" ]
11
2020-08-09T08:08:56.000Z
2022-01-18T14:25:22.000Z
src/runner/__init__.py
Tung-I/nips2019_template
a1fcf35b7633d192d2706a533731cb8c457ac230
[ "MIT" ]
2
2021-09-13T09:48:41.000Z
2021-11-08T14:20:58.000Z
src/runner/__init__.py
Tung-I/nips2019_template
a1fcf35b7633d192d2706a533731cb8c457ac230
[ "MIT" ]
4
2020-08-30T14:13:35.000Z
2021-09-14T09:26:55.000Z
from .trainers import * from .predictors import *
16.666667
25
0.76
0
0
0
0
0
0
0
0
0
0
f5ba98b5a8a467c1237f20ea32bee34cf54cde58
420
py
Python
test/nn/conv/test_gravnet_conv.py
shrey-bansal/pytorch_geometric
17108a08066b0a73530544d01719b186f2625ef2
[ "MIT" ]
2
2020-09-08T15:22:08.000Z
2020-09-08T15:22:09.000Z
test/nn/conv/test_gravnet_conv.py
shrey-bansal/pytorch_geometric
17108a08066b0a73530544d01719b186f2625ef2
[ "MIT" ]
null
null
null
test/nn/conv/test_gravnet_conv.py
shrey-bansal/pytorch_geometric
17108a08066b0a73530544d01719b186f2625ef2
[ "MIT" ]
1
2021-07-06T06:50:21.000Z
2021-07-06T06:50:21.000Z
import torch from torch_geometric.nn import GravNetConv def test_gravnet_conv(): num_nodes, in_channels, out_channels = 20, 16, 32 x = torch.randn((num_nodes, in_channels)) conv = GravNetConv(in_channels, out_channels, space_dimensions=4, propagate_dimensions=8, k=12) assert conv.__repr__() == 'GravNetConv(16, 32, k=12)' assert conv(x).size() == (num_nodes, out_channels)
32.307692
69
0.688095
0
0
0
0
0
0
0
0
27
0.064286
f5baf25c3fc1ee4bca1c0e0df333ed41bd65f476
2,216
py
Python
base/CrossPlotter.py
pulsatrixwx/PulsatrixWx
aae6ac36e2460dcf7f4a592d709139cd0d6a2e91
[ "MIT" ]
3
2016-03-27T00:21:46.000Z
2018-06-01T09:20:57.000Z
base/CrossPlotter.py
pulsatrixwx/PulsatrixWx
aae6ac36e2460dcf7f4a592d709139cd0d6a2e91
[ "MIT" ]
null
null
null
base/CrossPlotter.py
pulsatrixwx/PulsatrixWx
aae6ac36e2460dcf7f4a592d709139cd0d6a2e91
[ "MIT" ]
null
null
null
from datetime import datetime from hootpy import HootPy class CrossPlotter(HootPy): """ CrossPlotter Purpose: Handles the plotting of cross section products. Started: 14 June 2010 by Tim Supinie ([email protected]) Completed: [not yet] Modified: [not yet] """ def __init__(self, config): """ __init__() Purpose: Constructor for the CrossPlotter class. Parameters: config [type=dictionary] Dictionary containing configuration parameters for the run. """ super(CrossPlotter, self).__init__(config) return def loadData(self): """ loadData() [public] Purpose: Handles the loading in of data. Parameters: [none] Returns: [nothing] """ return def plot(self): """ plot() [public] Purpose: Plot cross section products. For model products, plots products for all forecast hours. Parameters: [none] Returns: [nothing] """ if self._forecast_hours is None: # Plot cross section here ... self._finalizeCrossSection(None) else: for fh in self._forecast_hours: # Plot the cross section here ... self._finalizeCrossSection(fh) return def _finalizeCrossSection(self, forecast_hour): """ _finalizeCrossSection() [protected] Purpose: Add final things to the profile, such as the background, title, valid time, and image border, and then save the image. Parameters: forecast_hour [type=int] Forecast hour for model products (pass in None for an observed product). Returns: [nothing] """ # Finish creating the product. Should be last. self._finalizeProduct(forecast_hour) return if __name__ == "__main__": cfg = { 'forecast_hours':[0, 3, 6, 9, 12], 'product_title':"NAM Forecast Cross Section KDRT-KGRB", 'image_file_name':"nam_fcross_KDRT-KGRB_f%02d.png" } hpc = CrossPlotter(cfg) hpc.loadData() hpc.plot()
28.410256
108
0.581679
1,882
0.849278
0
0
0
0
0
0
1,418
0.639892
f5bb1ebe52102d71c8810bac844699880019ddf3
3,072
py
Python
management/commands/syncldap.py
LUH-CHI/chiffee
78ec85d36a6c757e5f56113089f1b56fdb0ed494
[ "MIT" ]
1
2018-03-22T09:53:06.000Z
2018-03-22T09:53:06.000Z
management/commands/syncldap.py
LUH-CHI/chiffee
78ec85d36a6c757e5f56113089f1b56fdb0ed494
[ "MIT" ]
4
2019-04-01T08:44:40.000Z
2020-02-07T17:44:16.000Z
management/commands/syncldap.py
LUH-CHI/chiffee
78ec85d36a6c757e5f56113089f1b56fdb0ed494
[ "MIT" ]
4
2018-05-04T12:01:50.000Z
2019-10-11T09:47:33.000Z
import logging import ldap from django.conf import settings from django.contrib.auth.models import Group from django.core.management.base import BaseCommand from django_auth_ldap.backend import LDAPBackend from chiffee.models import User logger = logging.getLogger('syncldap') # This command synchronizes local database with the LDAP server. # New LDAP user -> new user in the local database. # Deleted LDAP user -> local user is set to inactive. class Command(BaseCommand): help = 'Syncing local users with LDAP... ' def handle(self, *args, **options): self.populate_db() self.find_inactive_user() # Find all users in LDAP and add them to the database if needed. def populate_db(self): connection = ldap.initialize(settings.AUTH_LDAP_SERVER_URI) connection.simple_bind_s(settings.AUTH_LDAP_BIND_DN, settings.AUTH_LDAP_BIND_PASSWORD) filter_ = '(&(uid=*))' # Customize this if necessary. ldap_users = connection.search_s(settings.BASE_DN, ldap.SCOPE_SUBTREE, filter_) connection.unbind() for ldap_user in ldap_users: username = ldap_user[1]['uid'][0].decode('UTF-8') if not User.objects.filter(username=username).exists(): logger.info('Adding new user %s...' % username) user = LDAPBackend().populate_user( ldap_user[1]['uid'][0].decode('UTF-8')) user.is_active = True # Add a single group to the user. # When group information is not stored as part of the user info, # code needs to be modified. try: groups = ldap_user[1]['group'] except KeyError: logger.info( 'User could not be added to a group and won\'t be able to ' 'purchase anything.') continue groups = [g.decode('UTF-8') for g in groups] self.add_user_to_group(user, groups) user.save() # A user should belong to only one group. # Group priority: professors > employees > students def add_user_to_group(self, user, groups): if 'professors' in groups: group_name = 'professors' elif 'employees' in groups: group_name = 'employees' else: group_name = 'students' group = Group.objects.get(name=group_name) if len(user.groups.all()) == 0: group.user_set.add(user) else: user.groups.clear() group.user_set.add(user) # Mark all users with no LDAP entry inactive. def find_inactive_user(self): for user in User.objects.filter(is_active=True): ldap_user = LDAPBackend().populate_user(user.username) if ldap_user is None and not user.is_superuser: logger.info('User %s set to inactive.' % user) user.is_active = False user.save()
36.571429
79
0.595378
2,619
0.852539
0
0
0
0
0
0
802
0.261068
f5bc7050656c4c3afee2238a72f86661143054d5
598
py
Python
pysal/spreg/__init__.py
cubensys/pysal
8d50990f6e6603ba79ae1a887a20a1e3a0734e51
[ "MIT", "BSD-3-Clause" ]
null
null
null
pysal/spreg/__init__.py
cubensys/pysal
8d50990f6e6603ba79ae1a887a20a1e3a0734e51
[ "MIT", "BSD-3-Clause" ]
null
null
null
pysal/spreg/__init__.py
cubensys/pysal
8d50990f6e6603ba79ae1a887a20a1e3a0734e51
[ "MIT", "BSD-3-Clause" ]
1
2021-07-19T01:46:17.000Z
2021-07-19T01:46:17.000Z
from ols import * from diagnostics import * from diagnostics_sp import * from user_output import * from twosls import * from twosls_sp import * from error_sp import * from error_sp_het import * from error_sp_hom import * from ols_regimes import * from twosls_regimes import * from twosls_sp_regimes import * from error_sp_regimes import * from error_sp_het_regimes import * from error_sp_hom_regimes import * from probit import * from ml_lag import * from ml_lag_regimes import * from ml_error import * from ml_error_regimes import * from sur import * from sur_error import * from sur_lag import *
24.916667
34
0.807692
0
0
0
0
0
0
0
0
0
0
f5bdaf65264833d8c298cbab96f3a7c910693f18
209
py
Python
tests/conftest.py
lambertsbennett/Encountertk
708aedb38cb1689da8d2f39c68bd8694c64a79da
[ "MIT" ]
null
null
null
tests/conftest.py
lambertsbennett/Encountertk
708aedb38cb1689da8d2f39c68bd8694c64a79da
[ "MIT" ]
null
null
null
tests/conftest.py
lambertsbennett/Encountertk
708aedb38cb1689da8d2f39c68bd8694c64a79da
[ "MIT" ]
null
null
null
from pytest import fixture from encountertk.e_model import EncounterModel, ps_encounter, mean_vol_encountered @fixture(scope='function') def EModel(): return EncounterModel(kernel=1,pop2c=[1],pop1c=[1])
26.125
82
0.789474
0
0
0
0
96
0.45933
0
0
10
0.047847
f5beb267f6635aef6117ff273b49cdca310125ca
367
py
Python
jp.atcoder/abc045/abc045_b/8983851.py
kagemeka/atcoder-submissions
91d8ad37411ea2ec582b10ba41b1e3cae01d4d6e
[ "MIT" ]
1
2022-02-09T03:06:25.000Z
2022-02-09T03:06:25.000Z
jp.atcoder/abc045/abc045_b/8983851.py
kagemeka/atcoder-submissions
91d8ad37411ea2ec582b10ba41b1e3cae01d4d6e
[ "MIT" ]
1
2022-02-05T22:53:18.000Z
2022-02-09T01:29:30.000Z
jp.atcoder/abc045/abc045_b/8983851.py
kagemeka/atcoder-submissions
91d8ad37411ea2ec582b10ba41b1e3cae01d4d6e
[ "MIT" ]
null
null
null
import sys from collections import deque a, b, c = sys.stdin.read().split() def main(): deck = dict([("a", deque(a)), ("b", deque(b)), ("c", deque(c))]) p = "a" while True: if deck[p]: p = deck[p].popleft() else: return p.upper() if __name__ == "__main__": ans = main() print(ans)
17.47619
69
0.46594
0
0
0
0
0
0
0
0
22
0.059946
f5bed273a043f28510a7c31520baff8cb6ddab43
16,504
py
Python
src/pipelines/azureml/lightgbm_training.py
microsoft/lightgbm-benchmark
286668d698d9d166857f924ecb775d5de224d489
[ "MIT" ]
13
2021-08-20T01:03:51.000Z
2022-02-12T05:34:46.000Z
src/pipelines/azureml/lightgbm_training.py
microsoft/lightgbm-benchmark
286668d698d9d166857f924ecb775d5de224d489
[ "MIT" ]
199
2021-08-21T21:18:53.000Z
2022-03-27T23:08:44.000Z
src/pipelines/azureml/lightgbm_training.py
microsoft/lightgbm-benchmark
286668d698d9d166857f924ecb775d5de224d489
[ "MIT" ]
4
2021-08-20T06:53:26.000Z
2022-01-24T22:22:39.000Z
""" Runs LightGBM using distributed (mpi) training. to execute: > python src/pipelines/azureml/lightgbm_training.py --exp-config conf/experiments/lightgbm_training/cpu.yaml """ # pylint: disable=no-member # NOTE: because it raises 'dict' has no 'outputs' member in dsl.pipeline construction import os import sys import json import logging import argparse # config management from dataclasses import dataclass from omegaconf import OmegaConf, MISSING from typing import Optional, Any, List # AzureML from azure.ml.component import Component from azure.ml.component import dsl from azure.ml.component.environment import Docker # when running this script directly, needed to import common LIGHTGBM_REPO_ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..', '..')) SCRIPTS_SOURCES_ROOT = os.path.join(LIGHTGBM_REPO_ROOT, 'src') if SCRIPTS_SOURCES_ROOT not in sys.path: logging.info(f"Adding {SCRIPTS_SOURCES_ROOT} to path") sys.path.append(str(SCRIPTS_SOURCES_ROOT)) from common.tasks import training_task, training_variant from common.sweep import SweepParameterParser from common.aml import load_dataset_from_data_input_spec from common.aml import apply_sweep_settings from common.pipelines import ( parse_pipeline_config, azureml_connect, pipeline_submit, COMPONENTS_ROOT ) ### CONFIG DATACLASS ### # Step 1 : to configure your pipeline, add all your fields inside a # properly defined dataclass, pipeline_cli_main will figure out how # to read that config from a given yaml file + hydra override commands @dataclass class lightgbm_training_config: # pylint: disable=invalid-name """ Config object constructed as a dataclass. NOTE: the name of this class will be used as namespace in your config yaml file. """ # NOTE: all those values are REQUIRED in your yaml config file benchmark_name: str = MISSING # INPUT DATASETS tasks: List[training_task] = MISSING # TRAINING PARAMS reference: training_variant = MISSING # free changing parameters on top of reference variants: Optional[Any] = None ### PIPELINE COMPONENTS ### # Step 2 : your pipeline consists in assembling components # load those components from local yaml specifications # use COMPONENTS_ROOT as base folder lightgbm_train_module = Component.from_yaml(yaml_file=os.path.join(COMPONENTS_ROOT, "training", "lightgbm_python", "spec.yaml")) lightgbm_train_sweep_module = Component.from_yaml(yaml_file=os.path.join(COMPONENTS_ROOT, "training", "lightgbm_python", "sweep_spec.yaml")) partition_data_module = Component.from_yaml(yaml_file=os.path.join(COMPONENTS_ROOT, "data_processing", "partition_data", "spec.yaml")) lightgbm_data2bin_module = Component.from_yaml(yaml_file=os.path.join(COMPONENTS_ROOT, "data_processing", "lightgbm_data2bin", "spec.yaml")) ### PIPELINE SPECIFIC CODE ### def process_sweep_parameters(params_dict, sweep_algorithm): """Parses config and spots sweepable paraneters Args: params_dict (dict): configuration object (see get_config_class()) sweep_algorithm (str): random, grid, bayesian Returns: tunable_params (dict) """ # the class below automates parsing of sweepable parameters sweep_param_parser = SweepParameterParser( tunable_parameters=[ # those are keys and their default values "num_iterations", "num_leaves", "min_data_in_leaf", "learning_rate", "max_bin", "feature_fraction" ], cli_prefix=None, # this is not argparse parameter_sampling=sweep_algorithm ) # provide config as a dictionary to the parser sweep_parameters = { "num_iterations": params_dict['num_iterations'], "num_leaves": params_dict['num_leaves'], "min_data_in_leaf": params_dict['min_data_in_leaf'], "learning_rate": params_dict['learning_rate'], "max_bin": params_dict['max_bin'], "feature_fraction": params_dict['feature_fraction'], } # parser gonna parse sweep_param_parser.parse_from_dict(sweep_parameters) # and return params as we want them tunable_params = sweep_param_parser.get_tunable_params() fixed_params = sweep_param_parser.get_fixed_params() # return dictionaries to fed as params into our pipeline return tunable_params, fixed_params ### TRAINING PIPELINE ### # Step 3: your pipeline consists in creating a python function # decorated with @dsl.pipeline. # You can create as many subgraphs as you want, # but `pipeline_cli_main` will need one pipeline function # taking a single config argument, not a pipeline parameter. # Here you should create an instance of a pipeline function (using your custom config dataclass) @dsl.pipeline( name="lightgbm_training", # pythonic name description="LightGBM distributed training (mpi)", non_pipeline_parameters=['config', 'benchmark_custom_properties'] ) def lightgbm_training_pipeline_function(config, benchmark_custom_properties, train_dataset, test_dataset): """Pipeline function for this graph. Args: TODO Returns: dict[str->PipelineOutputData]: a dictionary of your pipeline outputs for instance to be consumed by other graphs """ # create list of all variants params training_variants_params = [ config.lightgbm_training_config.reference ] # if there's any variant specified if config.lightgbm_training_config.variants: # create distinct training params for each variant for variant_index, training_variant_config in enumerate(config.lightgbm_training_config.variants): # create a specific dict of params for the variant variant_config = OmegaConf.merge(config.lightgbm_training_config.reference, training_variant_config) training_variants_params.append(variant_config) # for each variant, check if sweep needs to be applied for variant_index, variant_params in enumerate(training_variants_params): ############ ### DATA ### ############ # if we're using multinode, add partitioning if variant_params.data.auto_partitioning and (variant_params.training.tree_learner == "data" or variant_params.training.tree_learner == "voting"): # if using data parallel, train data has to be partitioned first if (variant_params.runtime.nodes * variant_params.runtime.processes) > 1: partition_data_step = partition_data_module( input_data=train_dataset, mode="roundrobin", number=(variant_params.runtime.nodes * variant_params.runtime.processes), header=variant_params.data.header, verbose=variant_params.training.verbose ) partition_data_step.runsettings.configure(target=config.compute.linux_cpu) partitioned_train_data = partition_data_step.outputs.output_data else: # for other modes, train data has to be one file partitioned_train_data = train_dataset else: # for other modes, train data has to be one file partitioned_train_data = train_dataset # convert into binary files if variant_params.data.pre_convert_to_binary: convert_data2bin_step = lightgbm_data2bin_module( train=partitioned_train_data, test=test_dataset, header=variant_params.data.header, label_column=variant_params.data.label_column, group_column=variant_params.data.group_column, max_bin=variant_params.training.max_bin, custom_params=json.dumps(dict(variant_params.training.custom_params or {})), verbose=variant_params.training.verbose ) convert_data2bin_step.runsettings.configure(target=config.compute.linux_cpu) prepared_train_data = convert_data2bin_step.outputs.output_train prepared_test_data = convert_data2bin_step.outputs.output_test else: prepared_train_data = partitioned_train_data prepared_test_data = test_dataset ################ ### TRAINING ### ################ # copy params into dict for flexibility training_params = dict(variant_params.training) # add all data-related params training_params['header'] = variant_params.data.header training_params['label_column'] = variant_params.data.label_column training_params['group_column'] = variant_params.data.group_column # extract and construct "sweepable" params if variant_params.sweep: tunable_params, fixed_params = process_sweep_parameters( variant_params.training, variant_params.sweep.algorithm ) # test if we have sweepable parameters in the learning params if len(tunable_params) > 0: use_sweep = True training_params.update(tunable_params) else: use_sweep = False else: use_sweep = False # create custom properties and serialize to pass as argument variant_custom_properties = { 'variant_index': variant_index, 'framework': "lightgbm", 'framework_build': variant_params.runtime.build, } variant_custom_properties.update(benchmark_custom_properties) training_params['custom_properties'] = json.dumps(variant_custom_properties) # serialize custom_params to pass as argument training_params['custom_params'] = json.dumps(dict(variant_params.training.custom_params or {})) # some debug outputs to expose variant parameters print(f"*** lightgbm variant#{variant_index}: {training_params}") # figuring out target (cpu/gpu) training_target = variant_params.runtime.target if not training_target: if (variant_params.training.device_type == 'gpu' or variant_params.training.device_type == 'cuda'): training_target = config.compute.linux_gpu else: training_target = config.compute.linux_cpu if use_sweep: # sweep training if variant_params.sweep.primary_metric is None: variant_params.sweep.primary_metric=f"node_0/valid_0.{variant_params.training.metric}" lightgbm_train_step = lightgbm_train_sweep_module( train = prepared_train_data, test = prepared_test_data, **training_params ) # apply runsettings lightgbm_train_step.runsettings.target=training_target lightgbm_train_step.runsettings.resource_layout.node_count = variant_params.runtime.nodes lightgbm_train_step.runsettings.resource_layout.process_count_per_node = variant_params.runtime.processes # apply settings from our custom yaml config apply_sweep_settings(lightgbm_train_step, variant_params.sweep) else: # regular training, no sweep lightgbm_train_step = lightgbm_train_module( train = prepared_train_data, test = prepared_test_data, **training_params ) # apply runsettings lightgbm_train_step.runsettings.target=training_target lightgbm_train_step.runsettings.resource_layout.node_count = variant_params.runtime.nodes lightgbm_train_step.runsettings.resource_layout.process_count_per_node = variant_params.runtime.processes ############### ### RUNTIME ### ############### # # optional: override docker (ex: to test custom builds) if 'build' in variant_params.runtime and variant_params.runtime.build: custom_docker = Docker(file=os.path.join(LIGHTGBM_REPO_ROOT, variant_params.runtime.build)) lightgbm_train_step.runsettings.environment.configure( docker=custom_docker ) ############## ### OUTPUT ### ############## # add some relevant comments on the component lightgbm_train_step.comment = " -- ".join( [ f"variant #{variant_index}", # add more ] ) # optional: save output model if variant_params.output and variant_params.output.register_model: # "{register_model_prefix}-{task_key}-{num_iterations}trees-{num_leaves}leaves-{register_model_suffix}" model_basename = "{num_iterations}trees-{num_leaves}leaves".format( num_iterations=variant_params.training.num_iterations, num_leaves=variant_params.training.num_leaves ) # prepend task_key if given if benchmark_custom_properties.get('benchmark_task_key', None): model_basename = benchmark_custom_properties['benchmark_task_key'] + "-" + model_basename # prepend prefix if given if variant_params.output.register_model_prefix: model_basename = variant_params.output.register_model_prefix + "-" + model_basename # append suffix if given if variant_params.output.register_model_suffix: model_basename += "-" + variant_params.output.register_model_suffix print(f"*** Will output model at {model_basename}") # auto-register output with model basename lightgbm_train_step.outputs.model.register_as( name=model_basename, create_new_version=True ) # return {key: output}' return {} # creating an overall pipeline using pipeline_function for each task given @dsl.pipeline( name="training_all_tasks", non_pipeline_parameters=['workspace', 'config'] ) def training_all_tasks(workspace, config): # loop on all training tasks for training_task in config.lightgbm_training_config.tasks: # load the given train dataset train_data = load_dataset_from_data_input_spec(workspace, training_task.train) test_data = load_dataset_from_data_input_spec(workspace, training_task.test) # create custom properties for this task # they will be passed on to each job as tags benchmark_custom_properties = { 'benchmark_name' : config.lightgbm_training_config.benchmark_name, 'benchmark_task_key' : training_task.task_key } # call pipeline_function as a subgraph here training_task_subgraph_step = lightgbm_training_pipeline_function( # NOTE: benchmark_custom_properties is not an actual pipeline input, just passed to the python code config=config, benchmark_custom_properties=benchmark_custom_properties, train_dataset=train_data, test_dataset=test_data ) # add some relevant comments on the subgraph training_task_subgraph_step.comment = " -- ".join([ "LightGBM training pipeline", f"benchmark name: {config.lightgbm_training_config.benchmark_name}", f"benchmark task key: {training_task.task_key}" ]) ### MAIN BLOCK ### # Step 4: implement main block using helper functions def main(): # use parse helper function to get arguments from CLI config = parse_pipeline_config(lightgbm_training_config) # you'll need a workspace object to connect workspace = azureml_connect(config) # run the pipeline function with the given arguments pipeline_instance = training_all_tasks(workspace, config) # generate a nice markdown description experiment_description="\n".join([ "Training on all specified tasks (see yaml below).", "```yaml""", "data_generation_config:", OmegaConf.to_yaml(config.lightgbm_training_config), "```" ]) # validate/submit the pipeline (if run.submit=True) pipeline_submit( workspace, config, pipeline_instance, experiment_description=experiment_description ) if __name__ == "__main__": main()
39.961259
154
0.673534
522
0.031629
0
0
11,241
0.681108
0
0
5,811
0.352096
f5bf990b580312d748c5534bd056ce7638df5fe7
3,319
py
Python
twinfield/metadata.py
zypp-io/twinfield
b4306e79f514ae691584c2d47ce072a3619469b8
[ "Apache-2.0" ]
4
2020-12-20T23:02:33.000Z
2022-01-13T19:40:13.000Z
twinfield/metadata.py
zypp-io/twinfield
b4306e79f514ae691584c2d47ce072a3619469b8
[ "Apache-2.0" ]
9
2020-12-18T07:27:07.000Z
2022-02-17T09:23:51.000Z
twinfield/metadata.py
zypp-io/twinfield
b4306e79f514ae691584c2d47ce072a3619469b8
[ "Apache-2.0" ]
null
null
null
from xml.etree import ElementTree as Et import pandas as pd import requests from twinfield.core import Base from twinfield.exceptions import ServerError from twinfield.messages import METADATA_XML class Metadata(Base): def __init__(self, access_token: str, code: str, company: str): """ This class is for building the Browse SOAP requests for getting metadata of browse codes Parameters ---------- access_token: str access_token obtained from TwinfieldLogin class. code: str specific browsecode of which we want to get the metadata company: str specific the office code of the request """ super().__init__() self.browsecode = code self.access_token = access_token self.company = company def create_metadata_query(self) -> str: """ Returns ------- columns: str combination of fields and filters, that together make up for the <columns> section in the XML template. """ metadata_request = f"""<read> <type>browse</type> <code>{self.browsecode}</code> </read>""" return metadata_request def body(self) -> str: """ Returns ------- body: str the full XML SOAP message for the request. The body is build up in a base template, string formatted with the current session_id , the module requested and the columns. """ xml = self.create_metadata_query() body = METADATA_XML.format(self.access_token, self.company, xml) return body def parse_metadata_response(self, response: requests.Response) -> pd.DataFrame: """ Parameters ---------- response Response object containing the twinfield server response Returns ------- df: pd.DataFrame dataframe of metadata """ root = Et.fromstring(response.text) body = root.find("env:Body", self.namespaces) if body.find("env:Fault", self.namespaces): raise ServerError() data = body.find("tw:ProcessXmlStringResponse/tw:ProcessXmlStringResult", self.namespaces) data = Et.fromstring(data.text) col = data.find("columns") rec = list() for records in col: ttl = dict() for record in records: ttl[record.tag] = record.text rec.append(ttl) df = pd.DataFrame(rec) return df def send_request(self, cluster) -> pd.DataFrame: """ Parameters ---------- cluster: cluster obtained from TwinfieldApi class Returns ------- df: pd.DataFrame dataframe containing the records. """ body = self.body() response = requests.post( url=f"{cluster}/webservices/processxml.asmx?wsdl", headers={"Content-Type": "text/xml", "Accept-Charset": "utf-8"}, data=body, ) metadata = self.parse_metadata_response(response) metadata.loc[metadata.label.isna(), "label"] = metadata.field metadata.set_index("field", inplace=True) return metadata
27.658333
98
0.577584
3,117
0.939138
0
0
0
0
0
0
1,599
0.481772
f5c0bee32dd9418b4866fcc07b3ab0eea9c2d30b
172
py
Python
sru_lm/load_data/__init__.py
Fast-LM-WordEvalRu/SRU-LM
dd69d6c7b7b6c0164e83a874aee5e6f6766070d5
[ "Apache-2.0" ]
null
null
null
sru_lm/load_data/__init__.py
Fast-LM-WordEvalRu/SRU-LM
dd69d6c7b7b6c0164e83a874aee5e6f6766070d5
[ "Apache-2.0" ]
null
null
null
sru_lm/load_data/__init__.py
Fast-LM-WordEvalRu/SRU-LM
dd69d6c7b7b6c0164e83a874aee5e6f6766070d5
[ "Apache-2.0" ]
2
2019-11-06T13:07:30.000Z
2020-02-04T11:21:19.000Z
# Author: Artem Skiba # Created: 20/01/2020 from .dataset import FastDataset from .dataloader import get_dataloader __all__ = [ 'FastDataset', 'get_dataloader' ]
17.2
38
0.726744
0
0
0
0
0
0
0
0
75
0.436047
f5c48e8b3a21158680b98773692e8c83b730ba87
5,053
py
Python
libs/complex2epz.py
ledummy/CoMPlEx
f315df7a1b13cfcbdafd9879ff93a974f2e2c38b
[ "MIT" ]
null
null
null
libs/complex2epz.py
ledummy/CoMPlEx
f315df7a1b13cfcbdafd9879ff93a974f2e2c38b
[ "MIT" ]
1
2020-04-08T12:55:50.000Z
2020-04-08T12:55:50.000Z
libs/complex2epz.py
ledummy/CoMPlEx
f315df7a1b13cfcbdafd9879ff93a974f2e2c38b
[ "MIT" ]
1
2020-04-08T12:44:47.000Z
2020-04-08T12:44:47.000Z
INIT = 1 REST = ['START_MODSAFE',[0,0]] NEUTRAL = ['START_MODSAFE',[1,INIT]] FDBK = ['START_MODSAFE',[2,INIT]] LIN = ['START_MODSAFE',[3,INIT]] SIN = ['START_MODSAFE',[4,INIT]] TYPES = {'Vconst':LIN,'Fconst':FDBK,'Zconst':NEUTRAL} try: import epz as tempEpz import inspect _,_,keys,_ = inspect.getargspec(tempEpz.CMD.__init__()) if 'tag' not in keys: from libs.epz import epz as tempEpz epz = tempEpz except: from libs.epz import epz # N set the triggers. The triggers are, in order, adc (deflection), dac (z position), time # 1 = used, 0 = not used #Triggers # K = set adc (deflection) stop trigger (Volts) # L = set dac (z position) stop trigger (Volts) # M = set time stop trigger in microseconds # P = set the setpoint for the feedback (-1, +1) # Q = set the proportional gain for the feedback (0.0 to 1.0) # R = set the integral gain for the feedback (0.0 to 1.0) # S = set the differential gain for the feedback (0.0 to 1.0) # B = set DAC output (Volts) # D = set the piezo speed (Volt/s) # C = set the piezo speed sign ''' SET_DACSTEP:D SET_NUMT6TRIG:T SET_TIMETRIG:M SET_DAC_SOFT:B SET_DAC_HARD:U SET_TRIGGERS:N SET_ZTRIG:L SET_FTRIG:K SET_TIM8PER:8 SET_SETPOINT:P SET_PGAIN:Q SET_IGAIN:R SET_DGAIN:S START_MODSAFE:O SET_DACMODE:F SET_TESTPIN:H INIT_SPI2:I SET_RAMPSIGN:C SET_USECIRCBUFF:G SET_MODEDBG:E SET_DACTO0:J SET_DAC_2OR4:A SWITCH_SPI2:g KILL:k ''' class Interpreter(object): def __init__(self,env,device=None,tag='CMD'): if device is not None: env.device = device self.cmd = epz.CMD(env,tag=tag) ## Start the SPI communication def startDev(self): self.cmd.send('SWITCH_SPI2',1) ## Close the communication between the PIC and the raspberry PI def stopDev(self): self.cmd.send('SWITCH_SPI2',0) ## Turns the DSPIC circula buffer on def circulaBufferOn(self): self.cmd.send('SET_USECIRCBUFF',1) ## Turns the DSPIC circula buffer off def circulaBufferOff(self): self.cmd.send('SET_USECIRCBUFF',0) ## Set the unipolar DAC mode def goUnipolar(self): self.cmd.send('SET_DACMODE',0) ## Set the bipolar DAC mode def goBipolar(self): self.cmd.send('SET_DACMODE',1) ## Kill the epizmq process on the target raspberry PI def killDev(self): self.cmd.send('KILL') ## Set the Z piezo position # @param value The new wanted z position in Volt def setZ(self,value): self.cmd.send('SET_Z',value) ## Set the speed at which the piezo has to move # @param dacStep The number of steps to perform every 'T6' microseconds # @param t6TickNum The number of 'T6'you have to wait before tacking another step def setZramp(self,dacStep,t6TicksTum): self.cmd.send('SET_DACSTEP',dacStep) self.cmd.send('SET_NUMT6TRIG',t6TicksTum) ## Set the speed sign # @param value The wanted speed sign (0 = positive, 1 = negative) def setZrampSign(self,value): self.cmd.send('SET_RAMPSIGN',value) ## Set the PI feedback integral gain # @param value The new integral gain def setI(self,value): self.cmd.send('SET_IGAIN',value) ## Set the PI feedback proportional gain # @param value The new proportional gain def setP(self,value): self.cmd.send('SET_PGAIN',value) ## Set the PI feedback set point # @param value The new set point in Volt def setSetPoint(self,value): self.cmd.send('SET_SETPOINT',value) ## Set the deflection stop trigger # @param value The stop trigger value in Volt for the deflection # @param sign 0 = greathern than, 1 = less than def setDeflStopTrig(self,value,sign): self.cmd.send('SET_FTRIG',[value,sign]) ## Set the z position stop trigger # @param value The stop trigger value in Volt for the z position # @param sign 0 = greathern than, 1 = less than def setZposStopTrig(self,value,sign): self.cmd.send('SET_ZTRIG',[value,sign]) ## Set the time stop trigger # @param value The time stop trigger value in microseconds # @param sign 0 = greathern than, 1 = less than def setTimeStopTrig(self,value,sign): self.cmd.send('SET_TIMETRIG',[value,sign]) ## Set which trigger you want to use # @param t 1 = time trigger in use, 0 = time trigger not in use # @param z 1 = z trigger in use, 0 = z trigger not in use # @param d 1 = deflection trigger in use, 0 = deflection trigger not in use def setTriggersSwitch(self,t,z,d): self.cmd.send('SET_TRIGGERS',[d,z,t]) ## Start a chosen type of segment, determined by "type" # @param type The type of segment that has to be started def startSegment(self,type): self.cmd.send(*TYPES[type]) ## Turns on the feedback def feedbackOn(self): self.cmd.send('START_MODSAFE',[2,0]) def setSine(self): pass ## Brings he system to the "rest" state def goToRest(self): self.cmd.send(*REST)
23.723005
90
0.660993
3,645
0.721354
0
0
0
0
0
0
2,954
0.584603
f5c4f96d849731c4a186b3fef06e21bef4391f32
1,177
py
Python
test/device/test_brakes.py
uOstar/barista
ab62ec6320fb9b5e9c305f23be7fc7e828c25ab1
[ "MIT" ]
4
2017-11-05T19:37:23.000Z
2018-06-18T13:18:11.000Z
test/device/test_brakes.py
uOstar/barista
ab62ec6320fb9b5e9c305f23be7fc7e828c25ab1
[ "MIT" ]
24
2017-11-05T19:22:08.000Z
2018-06-14T13:50:39.000Z
test/device/test_brakes.py
uorocketry/barista
ab62ec6320fb9b5e9c305f23be7fc7e828c25ab1
[ "MIT" ]
1
2022-03-25T04:01:25.000Z
2022-03-25T04:01:25.000Z
import pytest from mock import patch from app.device.brakes import Brakes from app.utils.servo import Servo from app.utils.exceptions import InvalidArguments @patch.object(Servo, 'write') @patch.object(Servo, '__init__') def test_init_creates_servo_on_pin_21(servo_init_mock, servo_write_mock): servo_init_mock.return_value = None servo_write_mock.return_value = None brakes = Brakes() servo_init_mock.assert_called_once_with(21) servo_write_mock.assert_called_once_with(0) @patch.object(Servo, 'write') @patch.object(Servo, '__init__') def test_write_full_close_is_20_precent(servo_init_mock, servo_write_mock): servo_init_mock.return_value = None servo_write_mock.return_value = None brakes = Brakes() brakes.deploy(0) servo_write_mock.assert_called_with(0.2) assert brakes.percentage == 0 @patch.object(Servo, 'write') @patch.object(Servo, '__init__') def test_write_full_open(servo_init_mock, servo_write_mock): servo_init_mock.return_value = None servo_write_mock.return_value = None brakes = Brakes() brakes.deploy(1.0) servo_write_mock.assert_called_with(1.0) assert brakes.percentage == 1.0
28.02381
75
0.773152
0
0
0
0
1,012
0.859813
0
0
51
0.043331
f5c957427e5b93fcfc4229d7e7efbe7a5cf8ce25
601
py
Python
4 kyu/Most_frequently_used_words_in_a_text.py
jonathansnolan/Codewars
9d6a3fd10ffb2c61ae292961f384067cdede0470
[ "MIT" ]
null
null
null
4 kyu/Most_frequently_used_words_in_a_text.py
jonathansnolan/Codewars
9d6a3fd10ffb2c61ae292961f384067cdede0470
[ "MIT" ]
null
null
null
4 kyu/Most_frequently_used_words_in_a_text.py
jonathansnolan/Codewars
9d6a3fd10ffb2c61ae292961f384067cdede0470
[ "MIT" ]
null
null
null
from collections import Counter def top_3_words(text): text = text.lower() count = "" j = [] for u in text: if ord(u) > 96 and ord(u) < 123 or ord(u) == 39: count += u else: j.append(count) count = "" i = [] for k in j: temp = "" for u in k: if ord(u) > 96 and ord(u) < 123 or ord(u) == 39 and len(k) > 3: temp += u if temp != "": i.append(temp) u = dict(Counter(i)) ans = sorted(u, key=u.get) ans = ans[::-1] ans = ans[:3] return ans
22.259259
75
0.425957
0
0
0
0
0
0
0
0
8
0.013311
f5cb0863a83b32aad95be43c48206bffad748391
33
py
Python
test/__init__.py
rbn920/robosync
1d430f64f6c7156920f92546770a1d2ddb558fea
[ "MIT" ]
null
null
null
test/__init__.py
rbn920/robosync
1d430f64f6c7156920f92546770a1d2ddb558fea
[ "MIT" ]
null
null
null
test/__init__.py
rbn920/robosync
1d430f64f6c7156920f92546770a1d2ddb558fea
[ "MIT" ]
null
null
null
'''Test package for robosync'''
16.5
32
0.666667
0
0
0
0
0
0
0
0
32
0.969697
f5cc6aee2d43d9f8f6fc9d61aea78cd19c169feb
4,921
py
Python
tadpole/template/app/lib/auth.py
echoyuanliang/pine
22175e6aea0ca9b02d6542677b27a690c1501c9c
[ "MIT" ]
2
2017-12-02T07:02:31.000Z
2020-10-13T02:20:18.000Z
tadpole/template/app/lib/auth.py
echoyuanliang/pine
22175e6aea0ca9b02d6542677b27a690c1501c9c
[ "MIT" ]
null
null
null
tadpole/template/app/lib/auth.py
echoyuanliang/pine
22175e6aea0ca9b02d6542677b27a690c1501c9c
[ "MIT" ]
1
2018-04-23T04:59:38.000Z
2018-04-23T04:59:38.000Z
#!/usr/bin/env python # coding: utf-8 """ create at 2017/11/22 by allen """ import re from flask import request, session, current_app from app.lib.constant import ResourceType from app.models.auth import Resource, role_resource, Role, user_role, User from app.lib.exceptions import AuthError, PermissionError class HttpBasicAuth(object): def __init__(self, user_loader, hash_password_handler=None, verify_password_handler=None): self.user_loader = user_loader self.hash_password_handler = hash_password_handler self.verify_password_handler = verify_password_handler def hash_password(self, auth): if self.hash_password_handler: try: return self.hash_password_handler(auth.password) except Exception as e: current_app.logger.exception(str(e)) try: return self.hash_password_handler(auth.username, auth.password) except Exception as e: current_app.logger.exception(str(e)) return auth.password def get_user(self, auth): if not auth or not auth.username: return None user = self.user_loader(auth.username) return user def auth_user(self, auth): if session.get('user_account'): return self.user_loader(session['user_account']) user = self.get_user(auth) stored_password = user.password if user else None if not stored_password: return None if self.verify_password_handler: return self.verify_password_handler(auth.username, auth.password) client_password = self.hash_password(auth) if stored_password == client_password: session['user_account'] = user.account return user return None def __call__(self, auth): return self.auth_user(auth=auth) class AuthLoaderBase(object): @staticmethod def get_user_resources(user_id): raise NotImplemented @staticmethod def load_user(account): raise NotImplemented @staticmethod def get_user_resources(user_id): raise NotImplemented @staticmethod def load_resources(rtype, name, operation): raise NotImplemented class AuthDbLoader(AuthLoaderBase): @staticmethod def get_user_resources(user_id): return Resource.query.join(role_resource, Role, user_role, User). \ filter(User.id == user_id) @staticmethod def load_user(account): return User.get_by(account=account).first() @staticmethod def get_user_resources(user_id): return Resource.query.join(role_resource, Role, user_role, User). \ filter(User.id == user_id) @staticmethod def load_resources(rtype, name, operation): http_resources = Resource.get_by(rtype=rtype) return (resource for resource in http_resources if re.match(resource.name, name) and operation in resource.operation.split(',')) @staticmethod def load_user_roles(user_id): return Role.query.join(user_role).filter(user_id=user_id) _auth_db_loader = AuthDbLoader() _http_basic_auth = HttpBasicAuth(user_loader=_auth_db_loader.load_user) class PermissionAuth(object): def __init__(self, http_auth_handler=_http_basic_auth, auth_info_loader=_auth_db_loader): self.auth_info_loader = auth_info_loader self.auth_handler = http_auth_handler def validate_user_permission(self, user, resources): user_resources = set(resource.id for resource in self.auth_info_loader. get_user_resources(user.id)) access_resources = set(resource.id for resource in resources) if access_resources.issubset(user_resources): return True def is_root_user(self, user): roles = self.auth_info_loader.load_user_roles(user.id) return any(role.name == 'root' for role in roles) def validate_request_permission(self): path_resources = list(self.auth_info_loader.load_resources( ResourceType.HTTP, request.path, request.method.upper())) if not path_resources: return True user = self.auth_handler(request.authorization) if not user: raise AuthError(u'authenticate failed,' u' please check your username or password') # super admin, ignore permission if self.is_root_user(user): return True # validate permission if not self.validate_user_permission(user, path_resources): raise PermissionError(u'permission denied, your have not' u' permission to do {0} on {1}'.format( request.path, request.method.upper()))
30.190184
79
0.65251
4,486
0.911603
0
0
1,139
0.231457
0
0
313
0.063605
f5d03f80ba9950414b41050d76a8ec9d43425ee6
656
py
Python
src/easy/plus_one_66.py
ahmet9cengiz/leetCode
9e9a61f059072d7791dd19706b7a3e0d0a446669
[ "MIT" ]
null
null
null
src/easy/plus_one_66.py
ahmet9cengiz/leetCode
9e9a61f059072d7791dd19706b7a3e0d0a446669
[ "MIT" ]
null
null
null
src/easy/plus_one_66.py
ahmet9cengiz/leetCode
9e9a61f059072d7791dd19706b7a3e0d0a446669
[ "MIT" ]
null
null
null
class Solution(object): # Time Complexity: O(n) @staticmethod def plus_one(digits): keep_going = True for i, e in reversed(list(enumerate(digits))): if keep_going: if e == 9: digits[i] = 0 else: digits[i] += 1 keep_going = False else: break if keep_going: new_digits = [1] new_digits[1:] = [digits[i] for i in range(len(digits))] return new_digits return digits if __name__ == '__main__': s = Solution() print(s.plus_one([9,9,9]))
24.296296
69
0.464939
577
0.879573
0
0
520
0.792683
0
0
33
0.050305
f5d07d12c4b5747b9b1b9f630c617df1ba338e16
1,607
py
Python
timetracker/vms/test/models/test_client_admin_invite_model.py
comp523-jarvis/timetracker-web
af638f0b3aab8a69a974bdb9a18118198488657c
[ "Apache-2.0" ]
1
2019-04-09T16:46:53.000Z
2019-04-09T16:46:53.000Z
timetracker/vms/test/models/test_client_admin_invite_model.py
comp523-jarvis/timetracker-web
af638f0b3aab8a69a974bdb9a18118198488657c
[ "Apache-2.0" ]
105
2018-10-12T17:57:20.000Z
2020-06-05T19:35:21.000Z
timetracker/vms/test/models/test_client_admin_invite_model.py
comp523-jarvis/timetracker-web
af638f0b3aab8a69a974bdb9a18118198488657c
[ "Apache-2.0" ]
1
2019-04-11T14:43:42.000Z
2019-04-11T14:43:42.000Z
from django.conf import settings from django.template.loader import render_to_string from vms import models def test_accept(client_admin_invite_factory, user_factory): """ Accepting the invitation should create a new client admin for the user who accepts. """ invite = client_admin_invite_factory() user = user_factory() admin = invite.accept(user) assert admin.client == invite.client assert models.ClientAdminInvite.objects.count() == 0 def test_send(client_admin_invite_factory, request_factory, mailoutbox): """ Sending the invitation should send an email to the email address attached to the invite. """ request = request_factory.get('/') invite = client_admin_invite_factory() invite.send(request) context = { 'accept_url': f'{request.get_host()}{invite.accept_url}', 'client': invite.client, } expected_msg = render_to_string( 'vms/emails/client-admin-invite.txt', context=context, ) assert len(mailoutbox) == 1 msg = mailoutbox[0] assert msg.body == expected_msg assert msg.from_email == settings.DEFAULT_FROM_EMAIL assert msg.subject == 'Client Administrator Invitation' assert msg.to == [invite.email] def test_string_conversion(client_admin_invite_factory): """ Converting an invite to a string should return a string containing the email it was sent to and the linked client. """ invite = client_admin_invite_factory() expected = f'Admin invite for {invite.email} from {invite.client}' assert str(invite) == expected
27.706897
72
0.701929
0
0
0
0
0
0
0
0
534
0.332296
f5d0bd552a2206b2e1b134ade80b6b88f2ce3b53
3,489
py
Python
_from_pydot/lambdas/dev/pyppeteer.py
owasp-sbot/pbx-gs-python-utils
f448aa36c4448fc04d30c3a5b25640ea4d44a267
[ "Apache-2.0" ]
3
2018-12-14T15:43:46.000Z
2019-04-25T07:44:58.000Z
_from_pydot/lambdas/dev/pyppeteer.py
owasp-sbot/pbx-gs-python-utils
f448aa36c4448fc04d30c3a5b25640ea4d44a267
[ "Apache-2.0" ]
1
2019-05-11T14:19:37.000Z
2019-05-11T14:51:04.000Z
_from_pydot/lambdas/dev/pyppeteer.py
owasp-sbot/pbx-gs-python-utils
f448aa36c4448fc04d30c3a5b25640ea4d44a267
[ "Apache-2.0" ]
4
2018-12-27T04:54:14.000Z
2019-05-11T14:07:47.000Z
import base64 import os import asyncio from pbx_gs_python_utils.utils.Process import Process from osbot_aws.Dependencies import load_dependency def run(event, context): load_dependency("pyppeteer") # (on first run downloads a zip file from S3 to /tmp/lambdas-dependencies/pyppeteer/ which contains # the contents of `pip3 install pyppeteer - t pyppeteer` and the headless_shell file created by # https://github.com/sambaiz/puppeteer-lambda-starter-kit # This command also sets the add the /tmp/lambdas-dependencies/pyppeteer/ to sys.path path_headless_shell = '/tmp/lambdas-dependencies/pyppeteer/headless_shell' # path to headless_shell AWS Linux executable path_page_screenshot = '/tmp/screenshot.png' # path to store screenshot of url loaded os.environ['PYPPETEER_HOME'] = '/tmp' # tell pyppeteer to use this read-write path in Lambda aws target_url = event.get('url') # get url to load from lambda params doc_type = event.get('doc_type') async def get_screenshot(): # async method to run request from pyppeteer import launch # import pyppeteer dependency Process.run("chmod", ['+x', path_headless_shell]) # set the privs of path_headless_shell to execute browser = await launch(executablePath = path_headless_shell, # lauch chrome (i.e. headless_shell) args = ['--no-sandbox','--single-process']) # two key settings or the requests will not work page = await browser.newPage() # typical pyppeteer code, where we create a new Page object await page.goto(target_url) # - open an url await page.waitFor(2 * 1000); # To Remove #await page.waitForNavigation(); not working if doc_type and doc_type == 'pdf': await page.pdf({'path': path_page_screenshot}); else: await page.screenshot({'path': path_page_screenshot}) # - take a screenshot of the page loaded and save it await browser.close() # - close the browser asyncio.get_event_loop().run_until_complete(get_screenshot()) # event loop to start the run async method which will open the #  url provided in the lambda params and save it as an png with open(path_page_screenshot, "rb") as image_file: # open path_page_screenshot file encoded_png = base64.b64encode(image_file.read()).decode() # save it as a png string (base64 encoded to make it easier to return) return { "base64_data" : encoded_png} # return value to Lambda caller
67.096154
162
0.509888
0
0
0
0
0
0
1,402
0.401719
1,373
0.39341
f5d23a181d6fd76675487606efe26f43a22cb25e
2,757
py
Python
filter_plugins/net_textfsm_parse.py
iamroddo/ansible_helpers
420b9d7a1bb637f52209aeeea4cd424d03cf4eef
[ "Apache-2.0" ]
44
2017-05-19T19:55:39.000Z
2022-02-08T17:21:22.000Z
filter_plugins/net_textfsm_parse.py
iamroddo/ansible_helpers
420b9d7a1bb637f52209aeeea4cd424d03cf4eef
[ "Apache-2.0" ]
2
2017-07-17T14:28:23.000Z
2020-12-11T15:54:00.000Z
filter_plugins/net_textfsm_parse.py
iamroddo/ansible_helpers
420b9d7a1bb637f52209aeeea4cd424d03cf4eef
[ "Apache-2.0" ]
18
2017-07-27T07:58:34.000Z
2021-06-06T04:06:33.000Z
""" Filter to convert results from network device show commands obtained from ios_command, eos_command, et cetera to structured data using TextFSM templates. """ from __future__ import unicode_literals from __future__ import print_function import os from textfsm.clitable import CliTableError import textfsm.clitable as clitable def get_template_dir(): """Find and return the ntc-templates/templates dir.""" try: template_dir = os.environ['NET_TEXTFSM'] index = os.path.join(template_dir, 'index') if not os.path.isfile(index): # Assume only base ./ntc-templates specified template_dir = os.path.join(template_dir, 'templates') except KeyError: # Construct path ~/ntc-templates/templates home_dir = os.path.expanduser("~") template_dir = os.path.join(home_dir, 'ntc-templates', 'templates') index = os.path.join(template_dir, 'index') if not os.path.isdir(template_dir) or not os.path.isfile(index): msg = """ Valid ntc-templates not found, please install https://github.com/networktocode/ntc-templates and then set the NET_TEXTFSM environment variable to point to the ./ntc-templates/templates directory.""" raise ValueError(msg) return template_dir def get_structured_data(raw_output, platform, command): """Convert raw CLI output to structured data using TextFSM template.""" template_dir = get_template_dir() index_file = os.path.join(template_dir, 'index') textfsm_obj = clitable.CliTable(index_file, template_dir) attrs = {'Command': command, 'Platform': platform} try: # Parse output through template textfsm_obj.ParseCmd(raw_output, attrs) return clitable_to_dict(textfsm_obj) except CliTableError: return raw_output def clitable_to_dict(cli_table): """Converts TextFSM cli_table object to list of dictionaries.""" objs = [] for row in cli_table: temp_dict = {} for index, element in enumerate(row): temp_dict[cli_table.header[index].lower()] = element objs.append(temp_dict) return objs def net_textfsm_parse(output, platform, command): """Process config find interfaces using ip helper.""" try: output = output['stdout'][0] except (KeyError, IndexError, TypeError): pass return get_structured_data(output, platform, command) class FilterModule(object): """Filter to convert results from network device show commands obtained from ios_command, eos_command, et cetera to structured data using TextFSM templates.""" def filters(self): return { 'net_textfsm_parse': net_textfsm_parse, } if __name__ == "__main__": # Test code pass
32.821429
93
0.696772
297
0.107726
0
0
0
0
0
0
1,026
0.372144
f5d2d84344ef95aeed5c0f078a4e133508f0ccd9
5,705
py
Python
firebaseClient/firebaseClientGPIO.py
tabris2015/personCounter
0cd7f8698afefdd9e913a97820b9ff9c01752274
[ "MIT" ]
null
null
null
firebaseClient/firebaseClientGPIO.py
tabris2015/personCounter
0cd7f8698afefdd9e913a97820b9ff9c01752274
[ "MIT" ]
null
null
null
firebaseClient/firebaseClientGPIO.py
tabris2015/personCounter
0cd7f8698afefdd9e913a97820b9ff9c01752274
[ "MIT" ]
null
null
null
#!/usr/bin/python import threading import Queue import serial import time from datetime import datetime from firebase import firebase import sqlite3 from datetime import datetime, timedelta from gpiozero import Button, LED #/////////////////////////////////////////// import firebase_admin from firebase_admin import credentials from firebase_admin import firestore #///////////////////////////////////////////////// missed_events = [] DB_INTERVAL = 180 ##### pin definitions FAULT = LED(5) FALLA = False IN1 = 13 OUT1 = 6 IN2 = 26 OUT2 = 19 in1_button = Button(IN1, pull_up=False) out1_button = Button(OUT1, pull_up=False) in2_button = Button(IN2, pull_up=False) out2_button = Button(OUT2, pull_up=False) eventQueue = Queue.Queue() #### connected = False def queue_get_all(q): items = [] maxItemsToRetreive = 10000 for numOfItemsRetrieved in range(0, maxItemsToRetreive): try: if numOfItemsRetrieved == maxItemsToRetreive: break items.append(q.get_nowait()) except: break return items def in1Event(): print("in1!") event_dic = {} event_dic["tipo_marcado"] = 1 event_dic["fecha"] = datetime.utcnow() event_dic["id_sensor"] = 1 eventQueue.put(event_dic) def out1Event(): print("out1!") event_dic = {} event_dic["tipo_marcado"] = 0 event_dic["fecha"] = datetime.utcnow() event_dic["id_sensor"] = 1 eventQueue.put(event_dic) def in2Event(): print("in2!") event_dic = {} event_dic["tipo_marcado"] = 1 event_dic["fecha"] = datetime.utcnow() event_dic["id_sensor"] = 2 eventQueue.put(event_dic) def out2Event(): print("out2!") event_dic = {} event_dic["tipo_marcado"] = 0 event_dic["fecha"] = datetime.utcnow() event_dic["id_sensor"] = 2 eventQueue.put(event_dic) def periodicDBInsert(key): insert_SQL = '''INSERT INTO personEvent(fecha, tipo_marcado, id_sensor) VALUES(?, ?, ?)''' db = sqlite3.connect('/home/pi/projects/personCounter/firebaseClient/local.db') c = db.cursor() global DB_INTERVAL global FALLA #/////////////////// global missed_events try: print("conectando a la DB...") cred = credentials.Certificate(key) firebase_admin.initialize_app(cred) dbFs = firestore.client() FAULT.off() FALLA = False except: FAULT.on() FALLA = True return # for sqlite while True: if eventQueue.empty() and not missed_events: print("no hay eventos!") else: print("insertando eventos...") # for event in events: # pushToLocalDB(db, event) # creando doc events = [] if not eventQueue.empty(): print("eventos nuevos en cola: ", eventQueue.qsize()) events = queue_get_all(eventQueue) eventQueue.task_done() try: print("eventos perdidos en cola: ", len(missed_events)) total_events = events + missed_events print("accediendo a coleccion...") doc_data = { 'marcados':total_events, 'id_evento': 1, } ###### events_sqlite = [] for event in total_events: events_sqlite.append( ( event['fecha'], event['tipo_marcado'], event['id_sensor'] ) ) c.executemany(insert_SQL, events_sqlite) print('ingresando datos a db local...') db.commit() ###### print('ingresando datos a db remota...') doc_ref = dbFs.collection(u'marcados_eventos').document(unicode(datetime.now())) doc_ref.set(doc_data) ################## events = [] missed_events = [] FAULT.off() FALLA = False print('actualizacion de db finalizada!') except Exception: print(Exception.message) print('salvando datos...') missed_events = events FAULT.on() FALLA = True #c.executemany(insert_SQL, events2) #db.commit() #select_last_events(db) events = [] time.sleep(DB_INTERVAL) if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='contador de personas') parser.add_argument('-key', required=True, action='store',help='path to key for remote connection') args = parser.parse_args() keyPath = "" if args.key != None: keyPath = args.key #first_event = False dbTh = threading.Thread(target=periodicDBInsert, args=(keyPath,)) #dbTh = threading.Timer(5, periodicDBInsert, args=(db,)) dbTh.daemon = True # ----- dbTh.start() ### #firebase = firebase.FirebaseApplication(URL, authentication=authentication) in1_button.when_pressed = in1Event out1_button.when_pressed = out1Event in2_button.when_pressed = in2Event out2_button.when_pressed = out2Event while True: if not FALLA: FAULT.on() time.sleep(0.1) FAULT.off() time.sleep(0.9) else: FAULT.on() time.sleep(1) FAULT.on() FAULT.on()
26.784038
103
0.540053
0
0
0
0
0
0
0
0
1,198
0.209991
f5d40b58d32d09631a74deab03cacd263794a4ed
3,204
py
Python
look-for.py
barnesrobert/find-aws-resource-in-all-accounts
5f02aacca3ce3a28894d7d497c4158ed9b08c238
[ "Apache-2.0" ]
null
null
null
look-for.py
barnesrobert/find-aws-resource-in-all-accounts
5f02aacca3ce3a28894d7d497c4158ed9b08c238
[ "Apache-2.0" ]
null
null
null
look-for.py
barnesrobert/find-aws-resource-in-all-accounts
5f02aacca3ce3a28894d7d497c4158ed9b08c238
[ "Apache-2.0" ]
null
null
null
#-------------------------------------------------------------------------------------------------- # Function: look-for # Purpose: Loops through all AWS accounts and regions within an Organization to find a specific resource # Inputs: # # { # "view_only": "true|false", # "regions": ["us-east-1", ...] # } # # Leave the regions sections blank to apply to all regions # #-------------------------------------------------------------------------------------------------- import json import boto3 import botocore from botocore.exceptions import ClientError from botocore.exceptions import EndpointConnectionError sts_client = boto3.client('sts') organizations_client = boto3.client('organizations') #-------------------------------------------------------------------------------------------------- # Function handler #-------------------------------------------------------------------------------------------------- def lambda_handler(event, context): # Determine whether the user just wants to view the orphaned logs. view_only = ('view_only' in event and event['view_only'].lower() == 'true') regions = [] #-------------------------------------------------- # Determine which regions to include. Apply to all regions by default. #-------------------------------------------------- if 'regions' in event and type(event['regions']) == list: regions = event['regions'] # Get all regions if not otherwise specified. if not regions: region_response = boto3.client('ec2').describe_regions() regions = [region['RegionName'] for region in region_response['Regions']] # Loop through the accounts in the organization. response = organizations_client.list_accounts() for account in response['Accounts']: if account['Status'] == 'ACTIVE': member_account = sts_client.assume_role( RoleArn='arn:aws:iam::{}:role/AWSControlTowerExecution'.format(account['Id']), RoleSessionName='look_for' ) loop_through_account(account['Id'], member_account, regions, view_only) return #-------------------------------------------------- # function: loop_through_account #-------------------------------------------------- def loop_through_account(account_id, assumed_role, regions, view_only): ACCESS_KEY = assumed_role['Credentials']['AccessKeyId'] SECRET_KEY = assumed_role['Credentials']['SecretAccessKey'] SESSION_TOKEN = assumed_role['Credentials']['SessionToken'] #-------------------------------------------------- # Iterate through the specified regions. #-------------------------------------------------- for region in regions: print({ "Account": account_id, "Region": region } ) try: # Create service client using the assumed role credentials, e.g. S3 client = boto3.client( 'SERVICE_NAME', aws_access_key_id=ACCESS_KEY, aws_secret_access_key=SECRET_KEY, aws_session_token=SESSION_TOKEN, region_name=region ) for RESOURCE in client.METHOD()['RESOURCES']: print('DO SOMETHING HERE') except botocore.exceptions.SERVCICE_METHOD_ERROR as error: print(ValueError(error))
32.693878
105
0.542447
0
0
0
0
0
0
0
0
1,696
0.529338
f5d6cff69b0e62527106143d8be0c05d4bcd4fe7
2,972
py
Python
opennem/spiders/aemo/monitoring.py
paulculmsee/opennem
9ebe4ab6d3b97bdeebc352e075bbd5c22a8ddea1
[ "MIT" ]
22
2020-06-30T05:27:21.000Z
2022-02-21T12:13:51.000Z
opennem/spiders/aemo/monitoring.py
paulculmsee/opennem
9ebe4ab6d3b97bdeebc352e075bbd5c22a8ddea1
[ "MIT" ]
71
2020-08-07T13:06:30.000Z
2022-03-15T06:44:49.000Z
opennem/spiders/aemo/monitoring.py
paulculmsee/opennem
9ebe4ab6d3b97bdeebc352e075bbd5c22a8ddea1
[ "MIT" ]
13
2020-06-30T03:28:32.000Z
2021-12-30T08:17:16.000Z
import logging from typing import Any, Dict from pydantic import ValidationError from scrapy import Spider from scrapy.http import Response from opennem.pipelines.aemo.downloads import DownloadMonitorPipeline from opennem.schema.aemo.downloads import AEMOFileDownloadSection from opennem.utils.dates import parse_date from opennem.utils.numbers import filesize_from_string from opennem.utils.url import strip_query_string class AEMOMonitorRelSpider(Spider): name = "au.aemo.downloads" start_urls = [ "https://aemo.com.au/en/energy-systems/electricity/national-electricity-market-nem/participate-in-the-market/registration", "https://www.aemo.com.au/energy-systems/electricity/national-electricity-market-nem/nem-forecasting-and-planning/forecasting-and-planning-data/generation-information", ] pipelines = set([DownloadMonitorPipeline]) def parse(self, response: Any) -> Dict[str, Any]: file_downloads = [] source_title = response.css("title::text").get() download_sections = response.xpath("//div[@class='file-list-wrapper']/..") if not download_sections or len(download_sections) < 1: raise Exception("{} spider could not find any download sections".format(self.name)) for download_section in download_sections: date_text = download_section.css("div.field-publisheddate span::text").get() if not date_text: raise Exception( "{} could not get download section published date".format(self.name) ) published_date = parse_date(date_text) publish_link_relative = download_section.css("a::attr(href)").get() if not publish_link_relative: raise Exception("{} could not get rel published link".format(self.name)) publish_link = response.urljoin(publish_link_relative) publish_link = strip_query_string(publish_link) download_title = download_section.css(".field-title::text").get() download_size_raw = download_section.css(".field-size span::text").get() download_size = None if download_size_raw: download_size, _ = filesize_from_string(download_size_raw) # create a model from the extracted fields section_model = None try: section_model = AEMOFileDownloadSection( published_date=published_date, filename=download_title, download_url=publish_link, file_size=download_size, source_url=response.url, source_title=source_title, ) file_downloads.append(section_model) except ValidationError as e: self.log("Validation error: {}".format(e), logging.ERROR) return {"_data": file_downloads, "items": file_downloads}
37.620253
175
0.657133
2,545
0.856326
0
0
0
0
0
0
666
0.224092
f5d87e21f9ec6f8ae018914ba1e9c0e382bc83dd
319
py
Python
python/13/servo.py
matsujirushi/raspi_parts_kouryaku
35cd6f34d21c5e3160636671175fa8d5aff2d4dc
[ "Apache-2.0" ]
6
2022-03-05T02:36:57.000Z
2022-03-12T12:31:27.000Z
python/13/servo.py
matsujirushi/raspi_parts_kouryaku
35cd6f34d21c5e3160636671175fa8d5aff2d4dc
[ "Apache-2.0" ]
null
null
null
python/13/servo.py
matsujirushi/raspi_parts_kouryaku
35cd6f34d21c5e3160636671175fa8d5aff2d4dc
[ "Apache-2.0" ]
null
null
null
import wiringpi as pi pi.wiringPiSetupGpio() pi.pinMode(18, pi.PWM_OUTPUT) pi.pwmSetMode(pi.PWM_MODE_MS) pi.pwmSetClock(2) pi.pwmSetRange(192000) while True: for i in list(range(-90, 90, 10)) + list(range(90, -90, -10)): pi.pwmWrite(18, int(((i + 90) / 180 * (2.4 - 0.5) + 0.5) / 20 * 192000)) pi.delay(200)
26.583333
76
0.652038
0
0
0
0
0
0
0
0
0
0
f5d9d9ea4f3e787d1de8f24aa36d4dcbede900ec
2,549
py
Python
src/vswarm/object_detection/blob_detector.py
Faust-Wang/vswarm
d18ce643218c18ef1e762f40562104b2a0926ad7
[ "MIT" ]
21
2021-03-03T10:51:46.000Z
2022-03-28T11:00:35.000Z
src/vswarm/object_detection/blob_detector.py
Faust-Wang/vswarm
d18ce643218c18ef1e762f40562104b2a0926ad7
[ "MIT" ]
2
2021-07-21T07:57:16.000Z
2022-03-17T12:41:51.000Z
src/vswarm/object_detection/blob_detector.py
hvourtsis/vswarm
d18ce643218c18ef1e762f40562104b2a0926ad7
[ "MIT" ]
8
2021-02-27T14:29:55.000Z
2022-01-05T19:40:38.000Z
import cv2 as cv from geometry_msgs.msg import Pose2D from vision_msgs.msg import (BoundingBox2D, Detection2D, Detection2DArray, ObjectHypothesisWithPose) THRESHOLD_MAX = 255 THRESHOLD = 240 class BlobDetector: def __init__(self): pass def detect_multi(self, images): detections_list = [] for image in images: detections = self.detect(image) detections_list.append(detections) return detections_list def detect(self, image): # Convert to grayscale if needed if image.ndim == 3: image = cv.cvtColor(image, cv.COLOR_BGR2GRAY) image_height, image_width = image.shape image_area = image_height * image_width # Apply (inverse) binary threshold to input image mask = cv.threshold(image, THRESHOLD, THRESHOLD_MAX, cv.THRESH_BINARY_INV)[1] # Dilate mask to find more reliable contours # kernel = np.ones((5, 5), np.uint8) # mask_dilated = cv.dilate(mask, kernel, iterations=1) # Find external approximate contours in dilated mask contours, hierarchy = cv.findContours(mask, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) # Filter out contours that don't qualify as a detection detections = [] for contour in contours: # Filer out if the contour touches the image border x, y, w, h = cv.boundingRect(contour) if x == 0 or y == 0 or x + w == image_width or y + h == image_height: continue # Filter out if the contour is too small if cv.contourArea(contour) < 1e-4 * image_area: continue detections.append((x, y, w, h)) # Fill detections msg detection_array_msg = Detection2DArray() for detection in detections: x, y, w, h = detection center_x = x + w / 2. center_y = y + h / 2. bbox = BoundingBox2D() bbox.center = Pose2D(x=center_x, y=center_y, theta=0) bbox.size_x = w bbox.size_y = h object_hypothesis = ObjectHypothesisWithPose() object_hypothesis.id = 0 object_hypothesis.score = 1.0 detection_msg = Detection2D() detection_msg.bbox = bbox detection_msg.results.append(object_hypothesis) detection_array_msg.detections.append(detection_msg) return detection_array_msg
32.265823
85
0.59592
2,325
0.912122
0
0
0
0
0
0
434
0.170263
f5dc231bdf053f390dc67dc11fbefb6147ad20d2
188
py
Python
setup.py
wicrep/triplet-reid
251c24d828e223de75b45ae65aa3f38171f9676b
[ "MIT" ]
null
null
null
setup.py
wicrep/triplet-reid
251c24d828e223de75b45ae65aa3f38171f9676b
[ "MIT" ]
null
null
null
setup.py
wicrep/triplet-reid
251c24d828e223de75b45ae65aa3f38171f9676b
[ "MIT" ]
null
null
null
from setuptools import find_packages, setup setup( name="triplet-reid", version="0.1.0", description="Triplet-based Person Re-Identification", packages=find_packages(), )
20.888889
57
0.712766
0
0
0
0
0
0
0
0
61
0.324468
f5dc6d973bebdd28a311046ec3c5d189663906f8
530
py
Python
sentences.py
vanatteveldt/perspectives
6d537082b915ccde15031d94983bd2d575cdc380
[ "MIT" ]
null
null
null
sentences.py
vanatteveldt/perspectives
6d537082b915ccde15031d94983bd2d575cdc380
[ "MIT" ]
null
null
null
sentences.py
vanatteveldt/perspectives
6d537082b915ccde15031d94983bd2d575cdc380
[ "MIT" ]
null
null
null
import csv import sys from KafNafParserPy import KafNafParser from naflib import * woorden = [r['original'] for r in csv.DictReader(open("klimaatwoorden.csv"))] o = csv.writer(sys.stdout) o.writerow(["file", "sentence", "term", "text"]) for fn in sys.argv[1:]: naf = KafNafParser(fn) for klimaterm in find_terms(naf, woorden): sent = get_sentence(naf, klimaterm) text = " ".join([get_word(naf, t) for t in get_terms_in_sentence(naf, sent)]) o.writerow([fn, sent, klimaterm.get_lemma(), text])
27.894737
85
0.677358
0
0
0
0
0
0
0
0
61
0.115094
f5dd11fe9a9263410d61440cc6794ca854255416
1,127
py
Python
view/user/__init__.py
archever/flask-web
cd120f64deec31fd1a87285372abaa22fc379b9f
[ "MIT" ]
null
null
null
view/user/__init__.py
archever/flask-web
cd120f64deec31fd1a87285372abaa22fc379b9f
[ "MIT" ]
null
null
null
view/user/__init__.py
archever/flask-web
cd120f64deec31fd1a87285372abaa22fc379b9f
[ "MIT" ]
null
null
null
# coding=utf-8 from flask import Blueprint, render_template, redirect from controlers.user import UserCtr from libs.login import login_user, logout_user, current_user bp = Blueprint("user", __name__, url_prefix="/user") @bp.route("/login", methods=["GET"]) def login_form(): return render_template("user/login.html") @bp.route("/regist", methods=["GET"]) def regist_form(): return render_template("user/regist.html") @bp.route("/logout", methods=["GET"]) def logout(): logout_user() return redirect("/") @bp.route("/login", methods=["POST"]) def login(): email = request.form.get("email") password = request.form.get("password") if not email or not password: raise AppError("参数错误") user = UserCtr.login(email, password) user.sid = login_user(user) return redirect("/") @bp.route("/regist", methods=["POST"]) def login(): email = request.form.get("email") password = request.form.get("password") if not email or not password: raise AppError("参数错误") user = UserCtr.regist(email, password) sid = session.login(user) return redirect("/")
23.978723
60
0.668146
0
0
0
0
907
0.793526
0
0
203
0.177603
f5deb3f2744fe175063b1c389f169973e74ce044
9,607
py
Python
recipes/Python/52275_sparse_dictionary_based_sparse_matrix/recipe-52275.py
tdiprima/code
61a74f5f93da087d27c70b2efe779ac6bd2a3b4f
[ "MIT" ]
2,023
2017-07-29T09:34:46.000Z
2022-03-24T08:00:45.000Z
recipes/Python/52275_sparse_dictionary_based_sparse_matrix/recipe-52275.py
unhacker/code
73b09edc1b9850c557a79296655f140ce5e853db
[ "MIT" ]
32
2017-09-02T17:20:08.000Z
2022-02-11T17:49:37.000Z
recipes/Python/52275_sparse_dictionary_based_sparse_matrix/recipe-52275.py
unhacker/code
73b09edc1b9850c557a79296655f140ce5e853db
[ "MIT" ]
780
2017-07-28T19:23:28.000Z
2022-03-25T20:39:41.000Z
#!/usr/bin/env python import vector import math, types, operator """ A sparse matrix class based on a dictionary, supporting matrix (dot) product and a conjugate gradient solver. In this version, the sparse class inherits from the dictionary; this requires Python 2.2 or later. """ class sparse(dict): """ A complex sparse matrix A. Pletzer 5 Jan 00/12 April 2002 Dictionary storage format { (i,j): value, ... } where (i,j) are the matrix indices """ # no c'tor def size(self): " returns # of rows and columns " nrow = 0 ncol = 0 for key in self.keys(): nrow = max([nrow, key[0]+1]) ncol = max([ncol, key[1]+1]) return (nrow, ncol) def __add__(self, other): res = sparse(self.copy()) for ij in other: res[ij] = self.get(ij,0.) + other[ij] return res def __neg__(self): return sparse(zip(self.keys(), map(operator.neg, self.values()))) def __sub__(self, other): res = sparse(self.copy()) for ij in other: res[ij] = self.get(ij,0.) - other[ij] return res def __mul__(self, other): " element by element multiplication: other can be scalar or sparse " try: # other is sparse nval = len(other) res = sparse() if nval < len(self): for ij in other: res[ij] = self.get(ij,0.)*other[ij] else: for ij in self: res[ij] = self[ij]*other.get(ij,0j) return res except: # other is scalar return sparse(zip(self.keys(), map(lambda x: x*other, self.values()))) def __rmul__(self, other): return self.__mul__(other) def __div__(self, other): " element by element division self/other: other is scalar" return sparse(zip(self.keys(), map(lambda x: x/other, self.values()))) def __rdiv__(self, other): " element by element division other/self: other is scalar" return sparse(zip(self.keys(), map(lambda x: other/x, self.values()))) def abs(self): return sparse(zip(self.keys(), map(operator.abs, self.values()))) def out(self): print '# (i, j) -- value' for k in self.keys(): print k, self[k] def plot(self, width_in=400, height_in=400): import colormap import Tkinter cmax = max(self.values()) cmin = min(self.values()) offset = 0.05*min(width_in, height_in) xmin, ymin, xmax, ymax = 0,0,self.size()[0], self.size()[1] scale = min(0.9*width_in, 0.9*height_in)/max(xmax-xmin, ymax-ymin) root = Tkinter.Tk() frame = Tkinter.Frame(root) frame.pack() text = Tkinter.Label(width=20, height=10, text='matrix sparsity') text.pack() canvas = Tkinter.Canvas(bg="black", width=width_in, height=height_in) canvas.pack() button = Tkinter.Button(frame, text="OK?", fg="red", command=frame.quit) button.pack() for index in self.keys(): ix, iy = index[0], ymax-index[1]-1 ya, xa = offset+scale*(ix ), height_in -offset-scale*(iy ) yb, xb = offset+scale*(ix+1), height_in -offset-scale*(iy ) yc, xc = offset+scale*(ix+1), height_in -offset-scale*(iy+1) yd, xd = offset+scale*(ix ), height_in -offset-scale*(iy+1) color = colormap.strRgb(self[index], cmin, cmax) canvas.create_polygon(xa, ya, xb, yb, xc, yc, xd, yd, fill=color) root.mainloop() def CGsolve(self, x0, b, tol=1.0e-10, nmax = 1000, verbose=1): """ Solve self*x = b and return x using the conjugate gradient method """ if not vector.isVector(b): raise TypeError, self.__class__,' in solve ' else: if self.size()[0] != len(b) or self.size()[1] != len(b): print '**Incompatible sizes in solve' print '**size()=', self.size()[0], self.size()[1] print '**len=', len(b) else: kvec = diag(self) # preconditionner n = len(b) x = x0 # initial guess r = b - dot(self, x) try: w = r/kvec except: print '***singular kvec' p = vector.zeros(n); beta = 0.0; rho = vector.dot(r, w); err = vector.norm(dot(self,x) - b); k = 0 if verbose: print " conjugate gradient convergence (log error)" while abs(err) > tol and k < nmax: p = w + beta*p; z = dot(self, p); alpha = rho/vector.dot(p, z); r = r - alpha*z; w = r/kvec; rhoold = rho; rho = vector.dot(r, w); x = x + alpha*p; beta = rho/rhoold; err = vector.norm(dot(self, x) - b); if verbose: print k,' %5.1f ' % math.log10(err) k = k+1 return x def biCGsolve(self,x0, b, tol=1.0e-10, nmax = 1000): """ Solve self*x = b and return x using the bi-conjugate gradient method """ try: if not vector.isVector(b): raise TypeError, self.__class__,' in solve ' else: if self.size()[0] != len(b) or self.size()[1] != len(b): print '**Incompatible sizes in solve' print '**size()=', self.size()[0], self.size()[1] print '**len=', len(b) else: kvec = diag(self) # preconditionner n = len(b) x = x0 # initial guess r = b - dot(self, x) rbar = r w = r/kvec; wbar = rbar/kvec; p = vector.zeros(n); pbar = vector.zeros(n); beta = 0.0; rho = vector.dot(rbar, w); err = vector.norm(dot(self,x) - b); k = 0 print " bi-conjugate gradient convergence (log error)" while abs(err) > tol and k < nmax: p = w + beta*p; pbar = wbar + beta*pbar; z = dot(self, p); alpha = rho/vector.dot(pbar, z); r = r - alpha*z; rbar = rbar - alpha* dot(pbar, self); w = r/kvec; wbar = rbar/kvec; rhoold = rho; rho = vector.dot(rbar, w); x = x + alpha*p; beta = rho/rhoold; err = vector.norm(dot(self, x) - b); print k,' %5.1f ' % math.log10(err) k = k+1 return x except: print 'ERROR ',self.__class__,'::biCGsolve' def save(self, filename, OneBased=0): """ Save matrix in file <filaname> using format: OneBased, nrow, ncol, nnonzeros [ii, jj, data] """ m = n = 0 nnz = len(self) for ij in self.keys(): m = max(ij[0], m) n = max(ij[1], n) f = open(filename,'w') f.write('%d %d %d %d\n' % (OneBased, m+1,n+1,nnz)) for ij in self.keys(): i,j = ij f.write('%d %d %20.17f \n'% \ (i+OneBased,j+OneBased,self[ij])) f.close() ############################################################################### def isSparse(x): return hasattr(x,'__class__') and x.__class__ is sparse def transp(a): " transpose " new = sparse({}) for ij in a: new[(ij[1], ij[0])] = a[ij] return new def dotDot(y,a,x): " double dot product y^+ *A*x " if vector.isVector(y) and isSparse(a) and vector.isVector(x): res = 0. for ij in a.keys(): i,j = ij res += y[i]*a[ij]*x[j] return res else: print 'sparse::Error: dotDot takes vector, sparse , vector as args' def dot(a, b): " vector-matrix, matrix-vector or matrix-matrix product " if isSparse(a) and vector.isVector(b): new = vector.zeros(a.size()[0]) for ij in a.keys(): new[ij[0]] += a[ij]* b[ij[1]] return new elif vector.isVector(a) and isSparse(b): new = vector.zeros(b.size()[1]) for ij in b.keys(): new[ij[1]] += a[ij[0]]* b[ij] return new elif isSparse(a) and isSparse(b): if a.size()[1] != b.size()[0]: print '**Warning shapes do not match in dot(sparse, sparse)' new = sparse({}) n = min([a.size()[1], b.size()[0]]) for i in range(a.size()[0]): for j in range(b.size()[1]): sum = 0. for k in range(n): sum += a.get((i,k),0.)*b.get((k,j),0.) if sum != 0.: new[(i,j)] = sum return new else: raise TypeError, 'in dot' def diag(b): # given a sparse matrix b return its diagonal res = vector.zeros(b.size()[0]) for i in range(b.size()[0]): res[i] = b.get((i,i), 0.) return res def identity(n): if type(n) != types.IntType: raise TypeError, ' in identity: # must be integer' else: new = sparse({}) for i in range(n): new[(i,i)] = 1+0. return new ############################################################################### if __name__ == "__main__": print 'a = sparse()' a = sparse() print 'a.__doc__=',a.__doc__ print 'a[(0,0)] = 1.0' a[(0,0)] = 1.0 a.out() print 'a[(2,3)] = 3.0' a[(2,3)] = 3.0 a.out() print 'len(a)=',len(a) print 'a.size()=', a.size() b = sparse({(0,0):2.0, (0,1):1.0, (1,0):1.0, (1,1):2.0, (1,2):1.0, (2,1):1.0, (2,2):2.0}) print 'a=', a print 'b=', b b.out() print 'a+b' c = a + b c.out() print '-a' c = -a c.out() a.out() print 'a-b' c = a - b c.out() print 'a*1.2' c = a*1.2 c.out() print '1.2*a' c = 1.2*a c.out() print 'a=', a print 'dot(a, b)' print 'a.size()[1]=',a.size()[1],' b.size()[0]=', b.size()[0] c = dot(a, b) c.out() print 'dot(b, a)' print 'b.size()[1]=',b.size()[1],' a.size()[0]=', a.size()[0] c = dot(b, a) c.out() try: print 'dot(b, vector.vector([1,2,3]))' c = dot(b, vector.vector([1,2,3])) c.out() print 'dot(vector.vector([1,2,3]), b)' c = dot(vector.vector([1,2,3]), b) c.out() print 'b.size()=', b.size() except: pass print 'a*b -> element by element product' c = a*b c.out() print 'b*a -> element by element product' c = b*a c.out() print 'a/1.2' c = a/1.2 c.out() print 'c = identity(4)' c = identity(4) c.out() print 'c = transp(a)' c = transp(a) c.out() b[(2,2)]=-10.0 b[(2,0)]=+10.0 try: import vector print 'Check conjugate gradient solver' s = vector.vector([1, 0, 0]) print 's' s.out() x0 = s print 'x = b.biCGsolve(x0, s, 1.0e-10, len(b)+1)' x = b.biCGsolve(x0, s, 1.0e-10, len(b)+1) x.out() print 'check validity of CG' c = dot(b, x) - s c.out() except: pass print 'plot b matrix' b.out() b.plot() print 'del b[(2,2)]' del b[(2,2)] print 'del a' del a #a.out()
22.819477
90
0.565525
5,822
0.606016
0
0
0
0
0
0
2,363
0.245966
f5dedc85895871ad1a7086cfc4fa5d80500516b2
7,557
py
Python
bibref_parser/parser.py
glooney/python-bibref-parser
9ca6b99a917659425fe7b4759f523c78f0180124
[ "MIT" ]
null
null
null
bibref_parser/parser.py
glooney/python-bibref-parser
9ca6b99a917659425fe7b4759f523c78f0180124
[ "MIT" ]
null
null
null
bibref_parser/parser.py
glooney/python-bibref-parser
9ca6b99a917659425fe7b4759f523c78f0180124
[ "MIT" ]
null
null
null
import re class BibRefParser: def __init__(self): self.reset() def reset(self, reference=''): self._ref = reference self.reference = reference self.title = '' self.authors = '' # publication date self.date = '' self.publisher = '' self._ref = self._normalise(self._ref) @classmethod def _normalise(cls, s): return s.replace('“', '"').replace('”', '"').replace('–', '-') def _extract(self, pattern, field, first=False): ret = '' matches = re.findall(pattern, self._ref) if len(matches): if (len(matches) == 1) or first: match = matches[0] self._ref = self._ref.replace(match[0], '{' + field + '}') ret = match[1] return ret def parse(self, reference): self.reset(reference) # get quoted title self.title = self._extract(r'("([^"]+)")', 'title') datep = r'(\b(18|19|20)\d\d[abc]?\b)' while not self.date: # get bracketed year self.date = self._extract( r'(\([^)]*' + datep + r'[^)]*\))', 'date') # get unique year if not self.date: self.date = self._extract(r'(' + datep + r')', 'date') if not self.date: self.date = self._extract( r'(\. ' + datep + r'\.)', 'date' ) if not self.date: self.date = self._extract( r'(, ' + datep + r'\.)', 'date' ) if not self.date: self.date = self._extract( r'(, ' + datep + r',)', 'date' ) # get unique year not preceded or followed by - # if 0 and not self.date: # self.date = self._extract( # r'((?<![-0-9])' + datep + r'(?![-0-9]))', 'date') # remove access date if 1 and not self.date: access_date = self._extract( r'(\[[^\]]*' + datep + r'[^\]]*\])', 'access_date') if not access_date: break else: break if self.date: self._extract(r'({date}([.,;]))', 'date') if 1 and self.title and not self.authors: # anything in front of title (or date) that isn't a date # catches 40% of authors on test set self.authors = self._extract( r'^((([^{](?!\d{4,4}))+))', 'authors', ) # if 0: # # author (without . or ,) -> title # # Works sometimes BUT # # NO: b/c title can be after # if self.authors and not self.title: # if not re.search(r'\.|,', self.authors): # self.title = self.authors # self.authors = '' if 1 and not self.authors: # the authors field most likely captured the title # we need to split them # # #80, ACS # Evans, D. A.; Fitch, D. M.; Smith, T. E.; Cee, V. J. # #69, AMA # Venkat Narayan, KM. # #4, ? # Bagdikian, B.H. # 22, APA # Greene, C. (Producer), del Toro, G.(Director) # # sentence with lowercase words (other than and/et) indicate title # if not self.authors: # #32, IEEE # B. Klaus and P. Horn # #34 # L. Bass, P. Clements, and R. Kazman # #84 # W. Zeng, H. Yu, C. Lin # self.authors = self._extract( # r'^(((( ?[A-Z]{1,2}\.)+ [^.,]+[,.]( and)?)+))', # 'authors1' # ) self.authors = self._extract( r'^((((^|,|,? and)( ?[A-Z]{1,2}\.)+ ([^,{.](?!and ))+)+))', 'authors1' ) if not self.authors: # #10 xxx # Ellman, M., and F. Germano # #19 APA # Carter, S., & Dunbar-Odom, D. # #20 # Gaudio, J. L., & Snowdon, C. T. # included = [19, 80, 20, 69, 4, 22] self.authors = self._extract( # r'^((([^,.{]+,((| |-)[A-Z]{1,2}\.)+(\s*\([^)]+\))?,?)+))', r'^((((^|,|,? (and|&) )[^,.{]+,((| |-)[A-Z]{1,2}\.)+(\s*\([^)]+\))?)+))', 'authors2' ) if not self.authors: # #49, MLA # #50 # Smith, John, and Bob Anderson # #51 # Campbell, Megan, et al. self.authors = self._extract( r'^(([A-Z][a-z]+, [A-Z][a-z]+[^.{]+\.))', 'authors3' ) if 1 and not self.authors: # #68, AMA # Boyd B, Basic C, Bethem R, eds # #70, AMA # Guyton JL, Crockarell JR # #76 # Florez H, Martinez R, Chakra W, Strickman-Stein M, Levis S self.authors = self._extract( r'^((((^| )[A-Z][a-z][-\w]* [A-Z]{1,2}[,.])+))', 'authors4' ) if 1 and self.authors: self.authors += self._extract( r'(\{authors\d?\}((\.? ?(,? ?(et al|and others)\.?)?(,? ?[Ee]ds\.?))?))', 'authors9', True ) if 1 and not self.authors: # authors = anything from start to . or { # catches 80% # BUT also a lot of FALSE POSITIVES # (i.e. include title and other stuff in the authors) # e.g. Goh, S. L. Polymer Chemistry part = self._extract( # r'^(([^{]+?))(?:\{|(?<![A-Z)])\.)', r'^((((?<=[A-Z])\.|[^{.])+))', 'authors8' ) if not self.title and ( re.match(r'(The|A|An) ', part) # Fast facts or ( re.search(r' [a-z]+\.?$', part) and not re.search(r' et al\.?$', part) ) ): self.title = part else: self.authors = part if 0 and self.authors and not self.title: # we might have captured the title in the authors # Michael Pollan, The Omnivore's Dilemma # if self.authors pass if self.authors and self.date and not self.title: # title = anything between } and { with a dot in it # assumes that the date is after the title self.title = self._extract( r'\}\s*\.*\s*(([^.{}]{2,}))', 'title', True ) # clean the title if self.title: # Crimson peak [Motion picture] self.title = re.sub(r'\[[^\]]+\]$', '', self.title) # The New Media Monopoly, Boston: Beacon Press self.title = re.sub(r',[^,:]+:[^,:]+$', '', self.title) self.title = self.title.strip(' ').strip( '.').strip(',') self.title = re.sub(r"^'(.+)'$", r"\1", self.title)
34.040541
93
0.382162
7,550
0.998281
0
0
117
0.01547
0
0
3,053
0.403676
f5e083f241a88c8c9d72629bf0fc59c5c51dd648
392
py
Python
FlaskApp/sql_connection.py
pjneelam/pjneelam.eportfolio2022
3f55c1da6214e3eabab949ff83b34c0553c52866
[ "CC-BY-3.0" ]
null
null
null
FlaskApp/sql_connection.py
pjneelam/pjneelam.eportfolio2022
3f55c1da6214e3eabab949ff83b34c0553c52866
[ "CC-BY-3.0" ]
null
null
null
FlaskApp/sql_connection.py
pjneelam/pjneelam.eportfolio2022
3f55c1da6214e3eabab949ff83b34c0553c52866
[ "CC-BY-3.0" ]
null
null
null
#https://www.youtube.com/watch?v=f9PR1qcwOyg #create global convention import mysql.connector __cnx=None def get_sql_connection(): global __cnx if __cnx is None: __cnx = mysql.connector.connect(user='root', password='password', host='127.0.0.1', database='assignment2') return __cnx cnx.close()
30.153846
74
0.584184
0
0
0
0
0
0
0
0
112
0.285714
f5e2b3958e10bba2c1126d9063cd6d9ca99a6bc2
1,217
py
Python
kernellib/utils/visualization.py
jejjohnson/kernellib
eb9f80c1b605c8a6b5e8a324efd4ef07d8f59050
[ "MIT" ]
1
2021-02-04T08:52:04.000Z
2021-02-04T08:52:04.000Z
kernellib/utils/visualization.py
jejjohnson/kernellib
eb9f80c1b605c8a6b5e8a324efd4ef07d8f59050
[ "MIT" ]
null
null
null
kernellib/utils/visualization.py
jejjohnson/kernellib
eb9f80c1b605c8a6b5e8a324efd4ef07d8f59050
[ "MIT" ]
1
2018-04-17T06:42:09.000Z
2018-04-17T06:42:09.000Z
import matplotlib.pyplot as plt def plot_gp(xtest, predictions, std=None, xtrain=None, ytrain=None, title=None, save_name=None): xtest, predictions = xtest.squeeze(), predictions.squeeze() fig, ax = plt.subplots() # Plot the training data if (xtrain is not None) and (ytrain is not None): xtrain, ytrain = xtrain.squeeze(), ytrain.squeeze() ax.scatter(xtrain, ytrain, s=100, color='r', label='Training Data') # plot the testing data ax.plot(xtest, predictions, linewidth=5, color='k', label='Predictions') # plot the confidence interval if std is not None: std = std.squeeze() upper_bound = predictions + 1.960 * std lower_bound = predictions - 1.960 * std ax.fill_between(xtest, upper_bound, lower_bound, color='red', alpha=0.2, label='95% Condidence Interval') # ax.legend() if title is not None: ax.set_title(title) ax.tick_params( axis='both', which='both', bottom=False, top=False, left=False, labelleft=False, labelbottom=False) if save_name: fig.savefig(save_name) else: plt.show() return fig
25.354167
97
0.612161
0
0
0
0
0
0
0
0
166
0.136401
f5e3743f51af18cff1772397d3d93a0c7e89bca0
2,780
py
Python
edit/editseries.py
lokal-profil/isfdb_site
0ce20d6347849926d4eda961ea9249c31519eea5
[ "BSD-3-Clause" ]
null
null
null
edit/editseries.py
lokal-profil/isfdb_site
0ce20d6347849926d4eda961ea9249c31519eea5
[ "BSD-3-Clause" ]
null
null
null
edit/editseries.py
lokal-profil/isfdb_site
0ce20d6347849926d4eda961ea9249c31519eea5
[ "BSD-3-Clause" ]
null
null
null
#!_PYTHONLOC # # (C) COPYRIGHT 2004-2021 Al von Ruff, Bill Longley and Ahasuerus # ALL RIGHTS RESERVED # # The copyright notice above does not evidence any actual or # intended publication of such source code. # # Version: $Revision$ # Date: $Date$ from isfdb import * from isfdblib import * from isfdblib_help import * from isfdblib_print import * from library import * from SQLparsing import * if __name__ == '__main__': series_number = SESSION.Parameter(0, 'int') series = SQLget1Series(series_number) if not series: SESSION.DisplayError('Record Does Not Exist') PrintPreSearch('Series Editor') PrintNavBar('edit/editseries.cgi', series_number) help = HelpSeries() printHelpBox('series', 'SeriesData') print "Note:" print "<ul>" print "<li>Changing the Name field changes the name of the series for all books currently in this series." print "<li>Changing the Parent field does NOT change the name of the parent series." print "<li>If the Parent exists, changing the Parent field relinks the Named series to that parent." print "<li>If the Parent does not exist, a new Parent series will be created and the Named series will be linked to that parent." print "</ul>" print "<hr>" print "<p>" print '<form id="data" METHOD="POST" ACTION="/cgi-bin/edit/submitseries.cgi">' print '<table border="0">' print '<tbody id="tagBody">' # Display the series name printfield("Name", "series_name", help, series[SERIES_NAME]) trans_series_names = SQLloadTransSeriesNames(series[SERIES_PUBID]) printmultiple(trans_series_names, "Transliterated Name", "trans_series_names", help) # Display the name of this series' parent (if one exists) parent_series_name = '' if series[SERIES_PARENT]: parent_series = SQLget1Series(series[SERIES_PARENT]) parent_series_name = parent_series[SERIES_NAME] printfield("Parent", "series_parent", help, parent_series_name) # Display this series' ordering position within its superseries printfield("Series Parent Position", "series_parentposition", help, series[SERIES_PARENT_POSITION]) webpages = SQLloadSeriesWebpages(series[SERIES_PUBID]) printWebPages(webpages, 'series', help) printtextarea('Note', 'series_note', help, SQLgetNotes(series[SERIES_NOTE])) printtextarea('Note to Moderator', 'mod_note', help, '') print '</tbody>' print '</table>' print '<p>' print '<hr>' print '<p>' print '<input NAME="series_id" VALUE="%d" TYPE="HIDDEN">' % series_number print '<input TYPE="SUBMIT" VALUE="Submit Data" tabindex="1">' print '</form>' print '<p>' print '<hr>' PrintPostSearch(0, 0, 0, 0, 0, 0)
32.325581
130
0.685612
0
0
0
0
0
0
0
0
1,401
0.503957
f5e3d0985186fbf72ce1898f6d250fd384de7e07
2,154
py
Python
sound.py
ITNano/soundserver
b84cbfd821987ad8af72a6c2677caa0b949abff6
[ "MIT" ]
null
null
null
sound.py
ITNano/soundserver
b84cbfd821987ad8af72a6c2677caa0b949abff6
[ "MIT" ]
null
null
null
sound.py
ITNano/soundserver
b84cbfd821987ad8af72a6c2677caa0b949abff6
[ "MIT" ]
null
null
null
import pyaudio import numpy as np import mixer class Sound(object): def __init__(self): self.p = pyaudio.PyAudio() self.mixers = [] self.streams = [] for i in range(self.p.get_device_count()-3): self.streams.append(SoundcardStream(self.p, i)) def start_stream(self, index): self.streams[index].start_stream() def start_streams(self): for stream in self.streams: stream.start_stream() def add_sound(self, index, sound): self.streams[index].add_sound(sound) def stop_stream(self, index): self.streams[index].stop_stream() def stop_streams(self): for stream in self.streams: stream.stop_stream() def terminate(self): for stream in self.streams: stream.close() self.p.terminate() class SoundcardStream(object): def __init__(self, p, soundcard, width=2, channels=2, rate=44100): self.soundcard = soundcard self.mixer = mixer.Mixer(width, channels, rate) try: print("Loading soundcard "+str(soundcard)) self.stream = p.open(format=p.get_format_from_width(width), channels=channels, rate=rate, output_device_index=soundcard, output=True, stream_callback=self.get_data) except: self.stream = None print("Device unavailable (index "+str(soundcard)+")") def get_data(self, in_data, frame_count, time_info, status): return (self.mixer.get_data(frame_count, time_info["input_buffer_adc_time"]), pyaudio.paContinue) def add_sound(self, sound): print("Adding sound to soundcard "+str(self.soundcard)) self.mixer.add_sound(sound) def start_stream(self): if self.stream is not None: self.stream.start_stream() def stop_stream(self): if self.stream is not None: self.stream.stop_stream() def close(self): if self.stream is not None: self.stream.close() self.mixer.close()
32.149254
176
0.596565
2,087
0.968895
0
0
0
0
0
0
102
0.047354
f5e5cd56b7a8f566083c50626d4a1f1f2165bd63
2,284
py
Python
noxutils.py
sphinx-contrib/zopeext
b749d0023f4fb8b8eea3a8f3216f63397c6272de
[ "BSD-2-Clause" ]
1
2020-03-16T07:20:58.000Z
2020-03-16T07:20:58.000Z
noxutils.py
sphinx-contrib/zopeext
b749d0023f4fb8b8eea3a8f3216f63397c6272de
[ "BSD-2-Clause" ]
3
2021-12-19T09:39:45.000Z
2022-01-06T05:05:03.000Z
noxutils.py
sphinx-contrib/zopeext
b749d0023f4fb8b8eea3a8f3216f63397c6272de
[ "BSD-2-Clause" ]
null
null
null
""" From https://github.com/brechtm/rinohtype/blob/master/noxutil.py https://github.com/cjolowicz/nox-poetry/discussions/289 """ import json from collections.abc import Iterable from pathlib import Path from typing import Optional from urllib.request import urlopen, Request from poetry.core.factory import Factory from poetry.core.semver import parse_single_constraint as parse_version VERSION_PARTS = ("major", "minor", "patch") def get_versions( dependency: str, granularity: str = "minor", # ascending: bool = False, limit: Optional[int] = None, # allow_prerelease: bool = False, ) -> Iterable[str]: """Yield all versions of `dependency` considering version constraints Args: dependency: the name of the dependency granularity: yield only the newest patch version of each major/minor release ascending: count backwards from latest version, by default (not much use without the 'limit' arg) limit: maximum number of entries to return allow_prerelease: whether to include pre-release versions Yields: All versions of `dependency` that match the version constraints defined and in this project's pyproject.toml and the given `granularity`. """ package = Factory().create_poetry(Path(__file__).parent).package for requirement in package.requires: if requirement.name == dependency: break else: raise ValueError(f"{package.name} has no dependency '{dependency}'") filtered_versions = [ version for version in all_versions(dependency) if requirement.constraint.allows(version) ] parts = VERSION_PARTS[: VERSION_PARTS.index(granularity) + 1] result = {} for version in filtered_versions: key = tuple(getattr(version, part) for part in parts) result[key] = max((result[key], version)) if key in result else version return [str(version) for version in result.values()] def all_versions(dependency): request = Request(f"https://pypi.org/pypi/{dependency}/json") response = urlopen(request) json_string = response.read().decode("utf8") json_data = json.loads(json_string) yield from (parse_version(version) for version in json_data["releases"])
35.138462
79
0.700088
0
0
293
0.128284
0
0
0
0
985
0.431261
f5e6032fc8e0c3163e2cd3542bdd970f3cb1268b
423
py
Python
tbutton_maker/admin.py
codefisher/tbutton_web
357bddc26b42c8511e7b5ce087bb0ac115f97e4c
[ "MIT" ]
null
null
null
tbutton_maker/admin.py
codefisher/tbutton_web
357bddc26b42c8511e7b5ce087bb0ac115f97e4c
[ "MIT" ]
null
null
null
tbutton_maker/admin.py
codefisher/tbutton_web
357bddc26b42c8511e7b5ce087bb0ac115f97e4c
[ "MIT" ]
null
null
null
from django.contrib import admin from tbutton_web.tbutton_maker.models import Application, Button, DownloadSession, UpdateSession class DownloadSessionAdmin(admin.ModelAdmin): list_display = ['time', 'query_string'] admin.site.register(DownloadSession, DownloadSessionAdmin) class UpdateSessionAdmin(admin.ModelAdmin): list_display = ['time', 'query_string'] admin.site.register(UpdateSession, UpdateSessionAdmin)
42.3
96
0.820331
176
0.416076
0
0
0
0
0
0
40
0.094563
f5e6080e840c71c64f246a6744ac59598bb42ed0
1,359
py
Python
abi_recursion.py
Abirami33/python-75-hackathon
c15505615d92cf304c27eabd3136406b08c59078
[ "MIT" ]
null
null
null
abi_recursion.py
Abirami33/python-75-hackathon
c15505615d92cf304c27eabd3136406b08c59078
[ "MIT" ]
null
null
null
abi_recursion.py
Abirami33/python-75-hackathon
c15505615d92cf304c27eabd3136406b08c59078
[ "MIT" ]
null
null
null
#PASCALS TRIANGLE USING RECURSION def pascal(n): if n == 0: #if 0 number of rows return [] #return a null list elif n == 1: #if 1 row return [[1]] #return a list with 1 else: initial= [1] #initial list contains 1 as first element ret = pascal(n-1) #recursively pass n-1 to function final = ret[-1] #last row with -1 as depicting end for i in range(len(final)-1): initial.append(final[i] + final[i+1]) #add top and top left and goes on initial=initial+[1] ret.append(initial) #append it and set it as initial return ret #return the whole list of lists if __name__ == "__main__": print("Enter the number of rows:") n=int(input()) #getting user input print(pascal(n)) #call the pascal triangle function ''' OUTPUT:Enter the number of rows:5 [[1], [1, 1], [1, 2, 1], [1, 3, 3, 1], [1, 4, 6, 4, 1]] '''
48.535714
106
0.40103
0
0
0
0
0
0
0
0
561
0.412804
f5e6d7bb0bd30f9540f1c0b749f54516092b6ca3
3,806
py
Python
nodes/centered_mocap_and_tag_rebroadcaster.py
rislab/apriltag_tracker
41c4deb4b5bcd94e5f666f3d4b1f1d141c705582
[ "BSD-3-Clause" ]
null
null
null
nodes/centered_mocap_and_tag_rebroadcaster.py
rislab/apriltag_tracker
41c4deb4b5bcd94e5f666f3d4b1f1d141c705582
[ "BSD-3-Clause" ]
null
null
null
nodes/centered_mocap_and_tag_rebroadcaster.py
rislab/apriltag_tracker
41c4deb4b5bcd94e5f666f3d4b1f1d141c705582
[ "BSD-3-Clause" ]
1
2019-02-18T00:40:20.000Z
2019-02-18T00:40:20.000Z
#!/usr/bin/env python2.7 from __future__ import division import roslib import rospy import tf from nav_msgs.msg import Odometry from nav_msgs.msg import Path from geometry_msgs.msg import PoseStamped import numpy as np import pdb from message_filters import Subscriber, ApproximateTimeSynchronizer class GT_cleaner: def __init__(self): self.init = [False, False] self.broadcaster = tf.TransformBroadcaster() self.mocap_pub = rospy.Publisher( '/gt_clean_odom', Odometry, queue_size=10) self.april_pub = rospy.Publisher( '/april_clean_odom', Odometry, queue_size=10) self.first_quat = None self.first_pos = np.array([0, 0, 0]) self.prev_frame = [np.eye(4), np.eye(4)] self.first_frame = [np.eye(4),np.eye(4)] self.first_frame_inv = [np.eye(4),np.eye(4)] self.last_time = [rospy.Time.now(),rospy.Time.now()] self.sub = ApproximateTimeSynchronizer([Subscriber("/mocap/odom", Odometry),Subscriber("/apriltag_tracker/odom", Odometry)],100, 0.05) self.sub.registerCallback(self.callback) def callback(self, mocap_msg, odom_msg): for i,msg in enumerate([mocap_msg, odom_msg]): q = msg.pose.pose.orientation p = msg.pose.pose.position quat = np.array([q.x, q.y, q.z, q.w]) pos = np.array([p.x, p.y, p.z]) frame = tf.transformations.quaternion_matrix(quat) frame[:3, 3] = pos if i==1: frame = np.linalg.inv(frame) # Because track tag in body is the other way around if self.init[i] == False: self.last_time[i] = msg.header.stamp self.init[i] = True self.first_frame[i] = frame self.first_frame_inv[i] = np.linalg.inv(frame) continue dt = (msg.header.stamp - self.last_time[i]).to_sec() self.last_time[i] = msg.header.stamp frame_in_first = np.dot(self.first_frame_inv[i], frame) # add to path odom = Odometry() odom.header.frame_id = msg.header.frame_id odom.pose.pose.position.x = frame_in_first[0, 3] odom.pose.pose.position.y = frame_in_first[1, 3] odom.pose.pose.position.z = frame_in_first[2, 3] q = tf.transformations.quaternion_from_matrix(frame_in_first) odom.pose.pose.orientation.x = q[0] odom.pose.pose.orientation.y = q[1] odom.pose.pose.orientation.z = q[2] odom.pose.pose.orientation.w = q[3] odom.header.stamp = msg.header.stamp #Now time for the velocities # Get the delta transform to obtain the velocities delta_frame = np.dot(np.linalg.inv(self.prev_frame[i]), frame_in_first) self.prev_frame[i] = frame_in_first # Linear part is easy odom.twist.twist.linear.x = delta_frame[0,3]/dt odom.twist.twist.linear.y = delta_frame[1,3]/dt odom.twist.twist.linear.z = delta_frame[2,3]/dt # For the angular velocity, we compute the angle axis result = tf.transformations.rotation_from_matrix(delta_frame) angle = result[0] direction = result[1] omega = direction * angle/dt odom.twist.twist.angular.x = omega[0] odom.twist.twist.angular.y = omega[1] odom.twist.twist.angular.z = omega[2] if i == 0: self.mocap_pub.publish(odom) else: self.april_pub.publish(odom) if __name__ == '__main__': rospy.init_node('gt_cleaner', anonymous=True) cleaner_obj = GT_cleaner() rospy.spin()
37.313725
142
0.59196
3,379
0.887809
0
0
0
0
0
0
334
0.087756
f5e74389c152886253bc86c73ff3f6d23bab1e6e
3,266
py
Python
garage.py
DidymusRex/garage-pi
4f4dcc0251f8cb5f5150ddaff7dac01a64eac948
[ "CC0-1.0" ]
null
null
null
garage.py
DidymusRex/garage-pi
4f4dcc0251f8cb5f5150ddaff7dac01a64eac948
[ "CC0-1.0" ]
null
null
null
garage.py
DidymusRex/garage-pi
4f4dcc0251f8cb5f5150ddaff7dac01a64eac948
[ "CC0-1.0" ]
null
null
null
from datetime import datetime from gpiozero import DistanceSensor from garage_door import garage_door from garage_camera import garage_camera import MQTT_Config import paho.mqtt.client as mqtt from temp_sensor import temp_sensor from time import sleep """ GPIO pin assignments: relays range finder sensor (echo passes thru voltage converter) DHT11 temperature/huidity sensor """ GPIO_Pins = {'temp_1':21, 'relay_1':6, 'relay_2':12, 'trig_1':17, 'echo_1':18, 'trig_2':22, 'echo_2':23} """ MQTT connect callback Subscribing in on_connect() means that if we lose the connection and reconnect then subscriptions will be renewed. """ def on_connect(client, userdata, flags, rc): client.subscribe(mqtt_topic) """ MQTT receive message callback (garage/command) Take action on a subject """ def on_message(client, userdata, msg): print("message received ", str(msg.payload.decode("utf-8"))) print("message topic=", msg.topic) print("message qos=", msg.qos) print("message retain flag=", msg.retain) cmd = str(msg.payload.decode("utf-8")).split(",") bad_command = False if len(cmd) == 2: (subject, action) = cmd if subject in garage_doors: if action == "open": garage_doors[subject].open() elif action == "close": garage_doors[subject].close() elif action == "check": garage_doors[subject].get_position() else: bad_command = True elif subject == "dht11": dht11.check_temp() elif subject == "camera": if action == "still": garage_cam.take_still() else: bad_command = True else: bad_command = True else: bad_command = True if bad_command: print("Invalid payload {}".format(msg.payload.decode("utf-8"))) """ MQTT publish callback Mainly for debugging """ def on_publish(client, userdata, mid): print("message id {} published".format(mid)) """ Just in case """ def main(): pass """ Create client and connect it to the MQTT broker """ mqc = mqtt.Client("garage-pi", clean_session=True) mqc.on_connect = on_connect mqc.on_message = on_message mqc.on_publish = on_publish mqc.username_pw_set(mqtt_account, mqtt_passwd) mqc.connect(mqtt_broker) mqc.loop_start() mqc.publish("garage/foo", "go!") """ Create temperature sensor object """ dht11 = temp_sensor(mqc, GPIO_Pins['temp_1']) """ Create garage camera object """ garage_cam = garage_camera(mqc) """ Create garage door objects """ garage_doors = dict() garage_doors["left"] = garage_door(mqc, "left", GPIO_Pins['relay_1'], GPIO_Pins['echo_1'], GPIO_Pins['trig_1']) garage_doors["right"] = garage_door(mqc, "right", GPIO_Pins['relay_2'], GPIO_Pins['echo_2'], GPIO_Pins['trig_2']) if __name__ == "__main__": main()
26.33871
72
0.580527
0
0
0
0
0
0
0
0
973
0.297918
f5e7ef3d480cf9bb53271fcd48200dc95c179ef9
5,887
py
Python
app.py
leemengtaiwan/gist-evernote
90d8573870ded37dc82575ba25968d7a06efe219
[ "MIT" ]
35
2018-01-29T00:50:36.000Z
2021-04-04T13:59:26.000Z
app.py
leemengtaiwan/gist-evernote
90d8573870ded37dc82575ba25968d7a06efe219
[ "MIT" ]
5
2021-02-08T20:18:24.000Z
2022-03-11T23:15:12.000Z
app.py
leemengtaiwan/gist-evernote
90d8573870ded37dc82575ba25968d7a06efe219
[ "MIT" ]
4
2018-02-06T12:13:09.000Z
2019-12-20T09:12:41.000Z
# encoding: utf-8 import os import time from multiprocessing import Pool, cpu_count from selenium import webdriver from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.common.exceptions import TimeoutException from enote.util import get_note, get_notebook, get_notebooks, \ create_resource, create_note, create_notebook, update_note from github.util import get_user_name, get_all_gists from web.util import fullpage_screenshot, get_gist_hash, create_chrome_driver from settings import NOTEBOOK_TO_SYNC from db import get_db DATE_FORMAT = "%Y-%m-%dT%H:%M:%SZ" GIST_BASE_URL = 'https://gist.github.com' notebook = None github_user = get_user_name() # get current login github user for fetching gist content db = get_db() # database to store synchronization info def app(): start = time.time() global notebook # find notebook to put new notes notebooks = get_notebooks() for n in notebooks: if n.name == NOTEBOOK_TO_SYNC: notebook = get_notebook(n.guid) # create notebook with the specified name if not found if not notebook: notebook = create_notebook(NOTEBOOK_TO_SYNC) print('Using notebook: %s' % notebook.name) # initialize, get all available gists if db.is_empty() or db.is_cold_start(): gists = get_all_gists() # sync only gists that were pushed after last synchronization else: last_sync_date = db.get_last_sync() print("Find gists that are updated after last sync (UTC): {}".format(last_sync_date)) gists = get_all_gists(after_date=last_sync_date) print("Total number of gists to be synchronized: %d" % len(gists)) # headless mode to reduce overhead and distraction driver = create_chrome_driver() if gists else None for gist in gists: _ = sync_gist(gist, driver=driver) if driver: driver.quit() # TODO multi-processes + mysql # setup multiple selenium drivers to speed up if multiple cpu available # num_processes = min(4, cpu_count() - 1) if cpu_count() > 1 else 1 # print("Number of %d processes being created" % num_processes) # pool = Pool(num_processes) # # notes = pool.map(sync_gist, gists) # # pool.terminate() # pool.close() # pool.join() # sync all gists successfully, set to warm-start mode if db.is_cold_start(): db.toggle_cold_start() print("Synchronization took {:.0f} seconds.".format(time.time() - start)) def sync_gist(gist, driver): """Sync the Github gist to the corresponding Evernote note. Create a new Evernote note if there is no corresponding one with the gist. Overwrite existing note's content if gist has been changed. Parameters ---------- gist : dict A Gist acquired by Github GraphQL API with format like: { 'id': 'gist_id', 'name': 'gist_name', 'description': 'description', 'pushAt': '2018-01-15T00:48:23Z' } driver : selenium.webdriver The web driver used to access gist url Returns ------- note : evernote.edam.type.ttpyes.Note None if no new note created or updated """ note_exist = False gist_url = '/'.join((GIST_BASE_URL, gist['name'])) # check existing gist hash before fetch if available prev_hash = db.get_hash_by_id(gist['id']) note_guid = db.get_note_guid_by_id(gist['id']) if prev_hash and note_guid: note_exist = True cur_hash = get_gist_hash(github_user, gist['name']) if prev_hash == cur_hash: print('Gist {} remain the same, ignore.'.format(gist_url)) db.update_gist(gist, note_guid, cur_hash) return None driver.get(gist_url) # wait at most x seconds for Github rendering gist context delay_seconds = 10 try: WebDriverWait(driver, delay_seconds).until(EC.presence_of_element_located((By.CLASS_NAME, 'is-render-ready'))) except TimeoutException: print("Take longer than {} seconds to load page.".format(delay_seconds)) # get first file name as default note title gist_title = driver.find_element(By.CLASS_NAME, 'gist-header-title>a').text # take screen shot for the gist and save it temporally image_path = 'images/{}.png'.format(gist['name']) fullpage_screenshot(driver, image_path) # build skeleton for note (including screenshot) resource, _ = create_resource(image_path) note_title = gist['description'] if gist['description'] else gist_title note_body = format_note_body(gist) # get hash of raw gist content and save gist info to database gist_hash = get_gist_hash(github_user, gist['name']) # create new note / update existing note if not note_exist: note = create_note(note_title, note_body, [resource], parent_notebook=notebook) db.save_gist(gist, note.guid, gist_hash) else: note = get_note(note_guid) update_note(note, note_title, note_body, note_guid, [resource]) db.update_gist(gist, note_guid, gist_hash) os.remove(image_path) print("Finish creating note for gist {}".format(gist_url)) return note def format_note_body(gist): """Create the note content that will be shown before attachments. Parameters ---------- gist : dict Dict that contains all information of the gist Returns ------- note_body : str """ blocks = [] desc = gist['description'] if desc: blocks.append(desc) gist_url = '/'.join((GIST_BASE_URL, gist['name'])) blocks.append('<a href="{}">Gist on Github</a>'.format(gist_url)) note_body = '<br/>'.join(blocks) return note_body if __name__ == '__main__': app()
31.821622
118
0.674367
0
0
0
0
0
0
0
0
2,532
0.4301
f5e7fdab1587e4d6e66ab3defb25c9ecd73fb773
20
py
Python
hello-fortran-dependency/hello/__init__.py
Nicholaswogan/skbuild-f2py-examples
e47d0a9ce483e54b678e31789dbfcc90ff4a8e74
[ "MIT" ]
4
2021-07-28T02:16:52.000Z
2021-12-23T00:20:21.000Z
hello-fortran-dependency/hello/__init__.py
Nicholaswogan/skbuild-f2py-examples
e47d0a9ce483e54b678e31789dbfcc90ff4a8e74
[ "MIT" ]
1
2021-09-14T21:17:49.000Z
2021-09-14T23:17:47.000Z
hello-fortran-dependency/hello/__init__.py
Nicholaswogan/skbuild-f2py-examples
e47d0a9ce483e54b678e31789dbfcc90ff4a8e74
[ "MIT" ]
null
null
null
from .hola import *
10
19
0.7
0
0
0
0
0
0
0
0
0
0
f5e81680dbe98070292ce77eaa7479aa8b7e1630
326
py
Python
python-leetcode/350.py
MDGSF/interviews
9faa9aacdb0cfbb777d4d3d4d1b14b55ca2c9f76
[ "MIT" ]
12
2020-01-16T08:55:27.000Z
2021-12-02T14:52:39.000Z
python-leetcode/350.py
MDGSF/interviews
9faa9aacdb0cfbb777d4d3d4d1b14b55ca2c9f76
[ "MIT" ]
null
null
null
python-leetcode/350.py
MDGSF/interviews
9faa9aacdb0cfbb777d4d3d4d1b14b55ca2c9f76
[ "MIT" ]
1
2019-12-11T12:00:38.000Z
2019-12-11T12:00:38.000Z
import collections class Solution: def intersect(self, nums1: List[int], nums2: List[int]) -> List[int]: m = collections.Counter(nums1) result = [] for num in nums2: if num in m: result.append(num) if m[num] == 1: del m[num] else: m[num] -= 1 return result
21.733333
71
0.546012
305
0.935583
0
0
0
0
0
0
0
0
f5e9dfce4e604e5d08d5833b9e96482b6754ad47
217
py
Python
finally.py
rkjin/algorithm
5661dd621a43bcbb37b4113fd0918854e7a24310
[ "Apache-2.0" ]
null
null
null
finally.py
rkjin/algorithm
5661dd621a43bcbb37b4113fd0918854e7a24310
[ "Apache-2.0" ]
null
null
null
finally.py
rkjin/algorithm
5661dd621a43bcbb37b4113fd0918854e7a24310
[ "Apache-2.0" ]
null
null
null
import numpy as np if __name__ == '__main__': try: f = open('test_file.txt', 'w') f.write('this is exception finally') except Exception as e: pass finally: f.close pass
15.5
44
0.557604
0
0
0
0
0
0
0
0
55
0.253456
f5ea24e7021ff1af76d60fe6869f59dd63386b1e
198
py
Python
autokey/data/Emacs/c_g.py
Curiosidad-Racional/.config
af5a8901510e4b87dff1be024d3d29987c148f3f
[ "MIT" ]
2
2021-05-29T18:11:26.000Z
2021-10-21T20:53:16.000Z
autokey/data/Emacs/c_g.py
Curiosidad-Racional/.config
af5a8901510e4b87dff1be024d3d29987c148f3f
[ "MIT" ]
null
null
null
autokey/data/Emacs/c_g.py
Curiosidad-Racional/.config
af5a8901510e4b87dff1be024d3d29987c148f3f
[ "MIT" ]
null
null
null
import os store.set_global_value("ctrl-space", False) with open(os.path.expanduser("~/.config/polybar/keys.fifo"), "wb") as f: f.write(b"TITLE:\n") store.set_global_value("emacs-chain-keys", [])
39.6
72
0.712121
0
0
0
0
0
0
0
0
74
0.373737
f5eaea013c4c8e9169d5648e9946cf1e2ab0fb60
520
py
Python
lupin/fields/__init__.py
Clustaar/lupin
9ef73642d84a99adb80abf5a922a9422ddae9254
[ "MIT" ]
22
2017-10-18T08:27:20.000Z
2022-03-25T18:53:43.000Z
lupin/fields/__init__.py
Clustaar/lupin
9ef73642d84a99adb80abf5a922a9422ddae9254
[ "MIT" ]
5
2019-09-16T15:31:55.000Z
2022-02-10T08:29:14.000Z
lupin/fields/__init__.py
Clustaar/lupin
9ef73642d84a99adb80abf5a922a9422ddae9254
[ "MIT" ]
null
null
null
from .field import Field # NOQA from .datetime_field import DateTime # NOQA from .date import Date # NOQA from .string import String # NOQA from .object import Object # NOQA from .list import List # NOQA from .polymorphic_object import PolymorphicObject # NOQA from .polymorphic_list import PolymorphicList # NOQA from .constant import Constant # NOQA from .int import Int # NOQA from .float import Float # NOQA from .number import Number # NOQA from .bool import Bool # NOQA from .dict import Dict # NOQA
34.666667
57
0.757692
0
0
0
0
0
0
0
0
84
0.161538
f5edd88e2d458d89d6714005f92ae5a2d900050e
564
py
Python
polls/urls.py
SkyFlame00/webpolls
d137da1aaaa8af78520af7762b8002428842d617
[ "MIT" ]
null
null
null
polls/urls.py
SkyFlame00/webpolls
d137da1aaaa8af78520af7762b8002428842d617
[ "MIT" ]
null
null
null
polls/urls.py
SkyFlame00/webpolls
d137da1aaaa8af78520af7762b8002428842d617
[ "MIT" ]
null
null
null
from django.urls import path from django.conf.urls import url from . import views urlpatterns = [ path('', views.index, name='index'), path('logout/', views.logoutView, name='logout'), path('signup/', views.signup, name='signup'), url(r'^activate/(?P<uidb64>[0-9A-Za-z_\-]+)/(?P<token>[0-9A-Za-z]{1,13}-[0-9A-Za-z]{1,20})/$', views.activate, name='activate'), path('myprofile/', views.myprofile, name='myprofile'), path('myprofile/edit/', views.myprofile_edit, name='myprofile_edit'), path('testing', views.testing, name='testing') ]
37.6
132
0.654255
0
0
0
0
0
0
0
0
216
0.382979
f5ee0fc5d74aae0b09b30c0e37603f02a2ea4deb
14,918
py
Python
forceDAQ/gui/plotter.py
gftabor/pyForceDAQ
3eababb41d855b961d228d8366fdd154bb6314ea
[ "MIT" ]
null
null
null
forceDAQ/gui/plotter.py
gftabor/pyForceDAQ
3eababb41d855b961d228d8366fdd154bb6314ea
[ "MIT" ]
null
null
null
forceDAQ/gui/plotter.py
gftabor/pyForceDAQ
3eababb41d855b961d228d8366fdd154bb6314ea
[ "MIT" ]
null
null
null
__version__ = "0.2" import threading import numpy as np import pygame from expyriment.stimuli import Canvas, Rectangle, TextLine from expyriment.stimuli._visual import Visual from expyriment.misc import constants lock_expyriment = threading.Lock() Numpy_array_type = type(np.array([])) class Scaling(object): """littel helper object function to handle plotter scaling""" step_size = 5 # for increasing/decreasing def __init__(self, min, max, pixel_min, pixel_max): """xy-value arrays""" self._min = min self._max = max self.pixel_min = pixel_min self.pixel_max = pixel_max self._update() @property def max(self): return self._max @max.setter def max(self, value): self._max = value self._update() @property def min(self): return self._min @min.setter def min(self, value): self._min = value self._update() def _update(self): self._zero_shift = (self._min + self._max)/2.0 self._range = float(self._max - self._min) def get_pixel_factor(self): return (self.pixel_max - self.pixel_min) / self._range def increase_data_range(self): self.min += Scaling.step_size self.max -= Scaling.step_size if self.min >= self.max: self.decrease_data_range() def decrease_data_range(self): self.min -= Scaling.step_size self.max += Scaling.step_size def data_range_up(self): self.min += Scaling.step_size self.max += Scaling.step_size def data_range_down(self): self.min -= Scaling.step_size self.max -= Scaling.step_size def data2pixel(self, values): """ values: numeric or numpy array pixel_min_max: 2D array""" return (values - self._zero_shift) * \ (self.pixel_max - self.pixel_min) / self._range # pixel_factor def trim(self, value): """trims value to the range, ie. set to min or max if <min or > max """ if value < self.min: return self.min elif value > self.max: return self.max return value class PGSurface(Canvas): """PyGame Surface: Expyriment Stimulus for direct Pygame operations and PixelArrays In contrast to other Expyriment stimuli the class does not generate temporary surfaces. """ def __init__(self, size, position=None, colour=None): Canvas.__init__(self, size, position, colour) self._px_array = None @property def surface(self): """todo""" if not self.has_surface: ok = self._set_surface(self._get_surface()) # create surface if not ok: raise RuntimeError(Visual._compression_exception_message.format( "surface")) return self._surface @property def pixel_array(self): """todo""" if self._px_array is None: self._px_array = pygame.PixelArray(self.surface) return self._px_array @pixel_array.setter def pixel_array(self, value): if self._px_array is None: self._px_array = pygame.PixelArray(self.surface) self._px_array = value def unlock_pixel_array(self): """todo""" self._px_array = None def preload(self, inhibit_ogl_compress=False): self.unlock_pixel_array() return Canvas.preload(self, inhibit_ogl_compress) def compress(self): self.unlock_pixel_array() return Canvas.compress(self) def decompress(self): self.unlock_pixel_array() return Canvas.decompress(self) def plot(self, stimulus): self.unlock_pixel_array() return Canvas.plot(self, stimulus) def clear_surface(self): self.unlock_pixel_array() return Canvas.clear_surface(self) def copy(self): self.unlock_pixel_array() return Canvas.copy(self) def unload(self, keep_surface=False): if not keep_surface: self.unlock_pixel_array() return Canvas.unload(self, keep_surface) def rotate(self, degree): self.unlock_pixel_array() return Canvas.rotate(self, degree) def scale(self, factors): self.unlock_pixel_array() return Canvas.scale(self, factors) # expyriment 0.8.0 # def scale_to_fullscreen(self, keep_aspect_ratio=True): # self.unlock_pixel_array() # return Canvas.scale_to_fullscreen(self, keep_aspect_ratio) def flip(self, booleans): self.unlock_pixel_array() return Canvas.flip(self, booleans) def blur(self, level): self.unlock_pixel_array() return Canvas.blur(self, level) def scramble(self, grain_size): self.unlock_pixel_array() return Canvas.scramble(self, grain_size) def add_noise(self, grain_size, percentage, colour): self.unlock_pixel_array() return Canvas.add_noise(self, grain_size, percentage, colour) class Plotter(PGSurface): """Pygame Plotter""" def __init__(self, n_data_rows, data_row_colours, width=600, y_range=(-100, 100), background_colour=(180, 180, 180), marker_colour=(200, 200, 200), position=None, axis_colour=None): self.n_data_rows = n_data_rows self.data_row_colours = data_row_colours self.width = width self.y_range = y_range self._background_colour = background_colour self.marker_colour = marker_colour self._horizontal_lines = None if axis_colour is None: self.axis_colour = background_colour else: self.axis_colour = axis_colour self._previous = [None] * n_data_rows PGSurface.__init__(self, size=(self.width, self._height), position=position) self.clear_area() @property def y_range(self): return self.y_range @y_range.setter def y_range(self, values): """tuple with lower and upper values""" self._y_range = values self._height = self._y_range[1] - self._y_range[0] @property def data_row_colours(self): return self._data_row_colours @data_row_colours.setter def data_row_colours(self, values): """data_row_colours: list of colour""" try: if not isinstance(values[0], list) and \ not isinstance(values[0], tuple): # one dimensional values = [values] except: values = [[]] # values is not listpixel_array if len(values) != self.n_data_rows: raise RuntimeError('Number of data row colour does not match the ' + 'defined number of data rows!') self._data_row_colours = values def clear_area(self): self.pixel_array[:, :] = self._background_colour def set_horizontal_line(self, y_values): """y_values: array""" try: self._horizontal_lines = np.array(y_values, dtype=int) except: self._horizontal_lines = None def write_values(self, position, values, set_marker=False, set_point_marker=False): """ additional points: np.array """ if set_marker: self.pixel_array[position, :] = self.marker_colour else: self.pixel_array[position, :] = self._background_colour if set_point_marker: self.pixel_array[position, 0:2] = self.marker_colour if self._horizontal_lines is not None: for c in (self._y_range[1] - self._horizontal_lines): self.pixel_array[:, c:c+1] = self.marker_colour for c, plot_value in enumerate(self._y_range[1] - \ np.array(values, dtype=int)): if plot_value >= 0 and self._previous[c] >= 0 \ and plot_value <= self._height and \ self._previous[c] <= self._height: if self._previous[c] > plot_value: self.pixel_array[position, plot_value:self._previous[c] + 1] = \ self._data_row_colours[c] else: self.pixel_array[position, self._previous[c]:plot_value + 1] = \ self._data_row_colours[c] self._previous[c] = plot_value def add_values(self, values, set_marker=False): """ high level function of write values with type check and shifting to left not used by plotter thread """ if type(values) is not Numpy_array_type and \ not isinstance(values, tuple) and \ not isinstance(values, list): values = [values] if len(values) != self.n_data_rows: raise RuntimeError('Number of data values does not match the ' + 'defined number of data rows!') # move plot one pixel to the left self.pixel_array[:-1, :] = self.pixel_array[1:, :] self.write_values(position=-1, values=values, set_marker=set_marker) class PlotterThread(threading.Thread): def __init__(self, n_data_rows, data_row_colours, width=600, y_range=(-100, 100), background_colour=(80, 80, 80), marker_colour=(200, 200, 200), position=None, axis_colour=None): super(PlotterThread, self).__init__() self._plotter = Plotter(n_data_rows=n_data_rows, data_row_colours=data_row_colours, width=width, y_range=y_range, background_colour=background_colour, marker_colour=marker_colour, position=position, axis_colour=axis_colour) self._new_values = [] self._lock_new_values = threading.Lock() self._running = threading.Event() self._stop_request = threading.Event() self._clear_area_event = threading.Event() self.unpause() def get_plotter_rect(self, screen_size): half_screen_size = (screen_size[0] / 2, screen_size[1] / 2) pos = self._plotter.absolute_position stim_size = self._plotter.surface_size rect_pos = (pos[0] + half_screen_size[0] - stim_size[0] / 2, - pos[1] + half_screen_size[1] - stim_size[1] / 2) return pygame.Rect(rect_pos, stim_size) def clear_area(self): self._clear_area_event.set() def pause(self): self._running.clear() def unpause(self): self._running.set() def stop(self): self.join() def join(self, timeout=None): self._stop_request.set() super(PlotterThread, self).join(timeout) def run(self): """the plotter thread is constantly updating the the pixel_area""" while not self._stop_request.is_set(): if not self._running.is_set(): self._running.wait(timeout=1) continue if self._clear_area_event.is_set(): self._plotter.clear_area() self._clear_area_event.clear() # get data if self._lock_new_values.acquire(False): values = self._new_values self._new_values = [] self._lock_new_values.release() # release to receive new values else: values = [] n = len(values) if n > 0: if n > self._plotter.width: values = values[-1 * self._plotter.width:] # only the last n = len(values) self._plotter.pixel_array[:-1 * n, :] = \ self._plotter.pixel_array[n:, :] for x in range(-1 * n, 0): self._plotter.write_values(position=x, values=values[x][0], set_marker=values[x][1], set_point_marker=values[x][2]) # Expyriment present lock_expyriment.acquire() self._plotter.present(update=False, clear=False) lock_expyriment.release() def set_horizontal_lines(self, y_values): """adds new values to the plotter y_values has to be an array """ self._lock_new_values.acquire() self._plotter.set_horizontal_line(y_values=y_values) self._lock_new_values.release() def add_values(self, values, set_marker=False, set_point_marker=False): """adds new values to the plotter""" self._lock_new_values.acquire() self._new_values.append((values, set_marker, set_point_marker)) self._lock_new_values.release() def level_indicator(value, text, scaling, width=20, text_size=14, text_gap=20, position=(0,0), thresholds = None, colour=constants.C_EXPYRIMENT_ORANGE): """make an level indicator in for of an Expyriment stimulus text_gap: gap between indicator and text scaling: Scaling object Returns -------- expyriment.Canvas """ value = scaling.trim(value) # indicator height = scaling.pixel_max - scaling.pixel_min indicator = Canvas(size=[width + 2, height + 2], colour=(30, 30, 30)) zero = scaling.data2pixel(0) px_bar_height = scaling.data2pixel(value) - zero bar = Rectangle(size=(width, abs(px_bar_height)), position=(0, zero + int((px_bar_height + 1) / 2)), colour=colour) bar.plot(indicator) # levels & horizontal lines try: px_horizontal_lines = scaling.data2pixel(values=np.array(thresholds.thresholds)) except: px_horizontal_lines = None if px_horizontal_lines is not None: for px in px_horizontal_lines: level = Rectangle(size=(width+6, 2), position=(0, px), colour=constants.C_WHITE) level.plot(indicator) # text labels txt = TextLine(text=text, text_size=text_size, position=(0, -1 * (int(height / 2.0) + text_gap)), text_colour=constants.C_YELLOW) # make return canvas w = max(txt.surface_size[0], indicator.size[0]) h = height + 2 * (txt.surface_size[1]) + text_gap rtn = Canvas(size=(w, h), colour=(0, 0, 0), position=position) indicator.plot(rtn) txt.plot(rtn) return rtn if __name__ == "__main__": pass
32.714912
88
0.58292
12,792
0.857488
0
0
1,872
0.125486
0
0
1,737
0.116437
f5eeb057bded5c49089e78a2d6eb892367d91cd2
3,528
py
Python
gcp/extract/lib/weights_vcv.py
dylanhogan/prospectus-tools
662b2629290cd27c74cd34769773e0d6e73c7048
[ "MIT" ]
null
null
null
gcp/extract/lib/weights_vcv.py
dylanhogan/prospectus-tools
662b2629290cd27c74cd34769773e0d6e73c7048
[ "MIT" ]
null
null
null
gcp/extract/lib/weights_vcv.py
dylanhogan/prospectus-tools
662b2629290cd27c74cd34769773e0d6e73c7048
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- ################################################################################ # Copyright 2014, Distributed Meta-Analysis System ################################################################################ """ This file provides methods for handling weighting across GCMs under delta method calculations. """ __copyright__ = "Copyright 2014, Distributed Meta-Analysis System" __author__ = "James Rising" __credits__ = ["James Rising"] __maintainer__ = "James Rising" __email__ = "[email protected]" __status__ = "Production" __version__ = "$Revision$" # $Source$ import numpy as np from scipy.optimize import brentq from scipy.stats import norm class WeightedGMCDF(object): """ A weighted Gaussian mixture model. """ def __init__(self, means, variances, weights): self.means = means self.sds = np.sqrt(variances) # as std. dev. self.weights = weights / np.sum(weights) # as fractions of 1 def inverse(self, pp): # pp is a scalar or vector of probabilities # make it an array, if not already if len(np.array(pp).shape) == 0: pp = np.array([pp]) # determine extreme left and right bounds for root-finding pp = np.array(pp) # needs to be np array left = np.min(norm.ppf(np.min(pp), self.means, self.sds)) right = np.max(norm.ppf(np.max(pp[pp < 1]), self.means, self.sds)) # find root for each probability roots = [] for p in pp: if p == 2: roots.append(np.average(self.means, weights=self.weights)) continue # Set up mixed distribution CDF with root and find it func = lambda x: sum(self.weights * norm.cdf(x, self.means, self.sds)) - p roots.append(brentq(func, left, right)) return roots @staticmethod def encode_evalqvals(evalqvals): encoder = {'mean': 2} return map(lambda p: p if isinstance(p, float) else encoder[p], evalqvals) if __name__ == '__main__': ## Example between R and python ## R: # means <- rnorm(10) # sds <- rexp(10) # weights <- runif(10) # weights <- weights / sum(weights) # draws <- sapply(1:100000, function(ii) sample(rnorm(10, means, sds), 1, prob=weights)) # pp <- runif(10) # quantile(draws, pp) ## For the values below: # > quantile(draws, pp) # 4.261865% 57.54305% 9.961645% 13.1325% 68.3729% 89.93871% 37.68216% 25.06827% 72.6134% 92.35501% # -2.70958468 0.77240194 -2.15403320 -1.90146370 1.17428553 1.95475922 -0.06482985 -0.92293638 1.36865349 2.00405179 ## Python: means = [-1.10402809, 1.91300947, -2.21007153, 0.65175650, 0.56314868, -0.28337581, 0.98788803, 1.10211432, -0.06220629, -1.45807086] variances = np.array([0.65422226, 0.13413332, 0.61493262, 0.29639041, 2.20748648, 1.69513869, 1.15008972, 0.41550756, 0.03384455, 1.07446232])**2 weights = [0.07420341, 0.16907337, 0.11439943, 0.08439015, 0.01868190, 0.14571485, 0.07630478, 0.17063990, 0.09951820, 0.04707401] pp = [0.04261865, 0.57543051, 0.09961645, 0.13132502, 0.68372897, 0.89938713, 0.37682157, 0.25068274, 0.72613404, 0.92355014] dist = WeightedGMCDF(means, variances, weights) print dist.inverse(pp) # [-2.708582712985005, 0.7720415676939508, -2.152969315647189, -1.8999500392063315, 1.1698917665106159, 1.955783738182657, -0.0641650435162273, -0.9150700927430755, 1.3660161904436894, 2.004650382993468]
40.551724
207
0.614229
1,338
0.379252
0
0
163
0.046202
0
0
1,583
0.448696
f5efba2cc27e11d0b24ffd544963fe1fe77b60d3
764
py
Python
ecojunk/users/api/v1/resources.py
PIN-UPV/EcoJunkWebServer
53a42687c303ffe345f59dc1f11fa41c3526f6d7
[ "MIT" ]
1
2018-10-02T11:54:26.000Z
2018-10-02T11:54:26.000Z
ecojunk/users/api/v1/resources.py
PIN-UPV/EcoJunkWebServer
53a42687c303ffe345f59dc1f11fa41c3526f6d7
[ "MIT" ]
8
2018-10-03T08:02:39.000Z
2018-11-21T07:42:26.000Z
ecojunk/users/api/v1/resources.py
PIN-UPV/EcoJunkWebServer
53a42687c303ffe345f59dc1f11fa41c3526f6d7
[ "MIT" ]
1
2018-10-02T11:54:32.000Z
2018-10-02T11:54:32.000Z
from rest_framework import status from rest_framework.generics import RetrieveUpdateAPIView from rest_framework.response import Response from ecojunk.users.api.v1.serializers import UserSerializer class UserResource(RetrieveUpdateAPIView): serializer_class = UserSerializer def retrieve(self, request, *args, **kwargs): serializer = self.serializer_class(request.user) return Response(serializer.data, status=status.HTTP_200_OK) def update(self, request, *args, **kwargs): serializer = self.serializer_class( request.user, data=request.data, partial=True ) serializer.is_valid(raise_exception=True) serializer.save() return Response(serializer.data, status=status.HTTP_200_OK)
31.833333
67
0.740838
563
0.736911
0
0
0
0
0
0
0
0
f5f03ea17d8bc72c5ae1602cba0dbeef3ed61e6b
2,905
py
Python
app/modules/payments/resources.py
almlys/sample_paymentsapi
d7ba4d2effeb7654ee06aab6dbb15e22f8d213cc
[ "MIT" ]
null
null
null
app/modules/payments/resources.py
almlys/sample_paymentsapi
d7ba4d2effeb7654ee06aab6dbb15e22f8d213cc
[ "MIT" ]
null
null
null
app/modules/payments/resources.py
almlys/sample_paymentsapi
d7ba4d2effeb7654ee06aab6dbb15e22f8d213cc
[ "MIT" ]
null
null
null
# encoding: utf-8 # pylint: disable=bad-continuation """ RESTful API Payments resources -------------------------- """ import logging from flask_login import current_user from flask_restplus_patched import Resource from flask_restplus._http import HTTPStatus from app.extensions import db from app.extensions.api import Namespace, abort from app.extensions.api.parameters import PaginationParameters from . import parameters, schemas from .models import Payment log = logging.getLogger(__name__) # pylint: disable=invalid-name api = Namespace('payments', description="Payments") # pylint: disable=invalid-name @api.route('/') class Payments(Resource): """ Manipulations with Payments. """ @api.parameters(PaginationParameters()) @api.response(schemas.BasePaymentSchema(many=True)) def get(self, args): """ List of Payment. Returns a list of Payment starting from ``offset`` limited by ``limit`` parameter. """ return Payment.query.offset(args['offset']).limit(args['limit']) @api.parameters(parameters.CreatePaymentParameters()) @api.response(schemas.DetailedPaymentSchema()) @api.response(code=HTTPStatus.CONFLICT) def post(self, args): """ Create a new instance of Payment. """ with api.commit_or_abort( db.session, default_error_message="Failed to create a new Payment" ): payment = Payment(**args) db.session.add(payment) return payment @api.route('/<payment_id>') @api.response( code=HTTPStatus.NOT_FOUND, description="Payment not found.", ) @api.resolve_object_by_model(Payment, 'payment') class PaymentByID(Resource): """ Manipulations with a specific Payment. """ @api.response(schemas.DetailedPaymentSchema()) def get(self, payment): """ Get Payment details by ID. """ return payment @api.parameters(parameters.PatchPaymentDetailsParameters()) @api.response(schemas.DetailedPaymentSchema()) @api.response(code=HTTPStatus.CONFLICT) def patch(self, args, payment): """ Patch Payment details by ID. """ with api.commit_or_abort( db.session, default_error_message="Failed to update Payment details." ): parameters.PatchPaymentDetailsParameters.perform_patch(args, obj=payment) db.session.merge(payment) return payment @api.response(code=HTTPStatus.CONFLICT) @api.response(code=HTTPStatus.NO_CONTENT) def delete(self, payment): """ Delete a Payment by ID. """ with api.commit_or_abort( db.session, default_error_message="Failed to delete the Payment." ): db.session.delete(payment) return None
27.666667
85
0.640275
2,101
0.723236
0
0
2,280
0.784854
0
0
800
0.275387
f5f344323771b9cf37b06554ddc6a58b22178367
1,616
py
Python
bin/list-teams.py
kws/python-msgraphy
a5dad8bd834c476974fae151f30865c229e0f798
[ "MIT" ]
1
2022-01-06T08:06:47.000Z
2022-01-06T08:06:47.000Z
bin/list-teams.py
kws/python-msgraphy
a5dad8bd834c476974fae151f30865c229e0f798
[ "MIT" ]
null
null
null
bin/list-teams.py
kws/python-msgraphy
a5dad8bd834c476974fae151f30865c229e0f798
[ "MIT" ]
null
null
null
import msgraphy_util import argparse from msgraphy import GraphApi def main(name, starts_with, exact, channels, folder): api = GraphApi(scopes=["Group.Read.All"]) response = api.team.list_teams(search=name, starts_with=starts_with, exact=exact) for team in response.value: print(f"{team.display_name} [{team.id}]") print(team.description) if channels or folder: response = api.team.list_channels(team.id) for ch in response.value: print(f"* {ch.display_name} [{ch.id}]") if folder: response = api.team.get_channel_files_folder(team.id, ch.id) if response.ok: folder = response.value print(f" {folder.web_url}") else: print(" [Folder not found]") print("") if __name__ == "__main__": parser = argparse.ArgumentParser( description='List or search for MS team' ) parser.add_argument("name", type=str, nargs="?", help="show only teams which contains [name]") parser.add_argument("--starts_with", "-s", type=str, nargs="?", metavar="value", help="only teams starting with [value]") parser.add_argument("--exact", "-e", type=str, nargs="?", metavar="value", help="only teams exactly matching [value]") parser.add_argument("--channels", "-c", action='store_true', help="include channels") parser.add_argument("--folder", "-f", action='store_true', help="include channel folder (implies -c)") args = parser.parse_args() main(**vars(args))
41.435897
125
0.603342
0
0
0
0
0
0
0
0
445
0.275371
f5f35c0e3a98205f6d6bd8dde9d15ab552f7d436
21,372
py
Python
tileEditor.py
haywireSSC/Level-Editor
34fedbe36b90afeb8c0d995fcecbed845ffd6253
[ "CC0-1.0" ]
null
null
null
tileEditor.py
haywireSSC/Level-Editor
34fedbe36b90afeb8c0d995fcecbed845ffd6253
[ "CC0-1.0" ]
null
null
null
tileEditor.py
haywireSSC/Level-Editor
34fedbe36b90afeb8c0d995fcecbed845ffd6253
[ "CC0-1.0" ]
null
null
null
import pygame as p from math import floor from copy import deepcopy import Tkinter, tkFileDialog root = Tkinter.Tk() root.withdraw() p.init() running = True tileWidth = 16 tileHeight = 16 mapWidth = 100 mapHeight = 100 camX = 0 camY = 0 scale = 2 uiScale = 2 hand = 1 layerStack = True file_path = '' file_path = tkFileDialog.askopenfilename() if file_path[-3:] != 'png': exit() layers = [] currentLayer = 1 layers.append([-1] * (mapWidth * mapHeight)) layers.append([-1] * (mapWidth * mapHeight)) prevLayers = deepcopy(layers) prevLayerLists = [] prevLayerListsRedo = [] brush = p.image.load('brush.png') brushHover = p.image.load('brushHover.png') square = p.image.load('square.png') squareHover = p.image.load('squareHover.png') brushRect = brush.get_rect() squareRect = square.get_rect() brushRect.width, brushRect.height = brushRect.width * uiScale, brushRect.height * uiScale squareRect.width, squareRect.height = squareRect.width * uiScale, squareRect.height * uiScale (width, height) = (480, 360) p.display.set_caption('Tile Editor') font = p.font.Font('Minecraftia-Regular.ttf', 8) s = p.display.set_mode((width, height), p.RESIZABLE) clock = p.time.Clock() middleClick = False leftClick = False leftClickPrev = False rightClick = False rightClickDown = False rightClickPrev = False mouseOffset = (0, 0) mousePos = (0, 0) buttonClick = False buttonHover = False sDown = False squareT = False sDownStart = False startPos = (0,0) def drawBox(width, height, filled): surf = p.Surface((width, height)) if(filled): surf.fill((41,48,50)) else: surf.fill((0,0,0,0)) p.draw.rect(surf, (113,58,41), (0, 0, width, height), 1) surf.set_at((0, 0), (0,0,0,0)) surf.set_at((width-1, 0), (0,0,0,0)) surf.set_at((0, height-1), (0,0,0,0)) surf.set_at((width-1, height-1), (0,0,0,0)) p.draw.rect(surf, (10,21,27), (1, 1, width-2, height-2), 1) surf.set_at((1, 1), (88,41,24)) surf.set_at((width-2, 1), (88,41,24)) surf.set_at((1, height-2), (88,41,24)) surf.set_at((width-2, height-2), (88,41,24)) p.draw.lines(surf, (34,30,21), False, ((2, height-3), (2, 2), (width-3, 2))) p.draw.lines(surf, (86,92,86), False, ((3, height-3), (width-3, height-3), (width-3, 3))) #p.draw.rect(surf, (225,0,225), (3, 3, width-6, height-6)) return(p.transform.scale(surf, (uiScale * width, uiScale * height))) def drawButton(textt, x, y): global buttonClick buttonClick = False global buttonHover buttonHover = False text = font.render(textt, False, (251,175,113)) width = text.get_width() + 5 height = text.get_height() + 3 if textt[-1] == str(currentLayer): text = font.render(textt, False, (150,179,174)) if textt == 'Layer Stack' and layerStack: text = font.render(textt, False, (150,179,174)) if p.Rect(x, y, width * uiScale, height * uiScale).collidepoint(mousePos[0], mousePos[1]): text = font.render(textt, False, (150,179,174)) buttonHover = True if leftClick: y += uiScale if not leftClickPrev: buttonClick = True surf = p.Surface((width, height), p.SRCALPHA) surf.fill((41,48,50)) surf.blit(text, (3, 1)) p.draw.rect(surf, (113,58,41), (0, 0, width, height), 1) surf.set_at((0, 0), (0,0,0,0)) surf.set_at((width-1, 0), (0,0,0,0)) surf.set_at((0, height-1), (0,0,0,0)) surf.set_at((width-1, height-1), (0,0,0,0)) p.draw.rect(surf, (10,21,27), (1, 1, width-2, height-2), 1) surf.set_at((1, 1), (88,41,24)) surf.set_at((width-2, 1), (88,41,24)) surf.set_at((1, height-2), (88,41,24)) surf.set_at((width-2, height-2), (88,41,24)) p.draw.lines(surf, (34,30,21), False, ((2, height-3), (2, 2), (width-3, 2))) p.draw.lines(surf, (86,92,86), False, ((3, height-3), (width-3, height-3), (width-3, 3))) s.blit(p.transform.scale(surf, (uiScale * width, uiScale * height)), (x, y)) tiles = [] sheetHeight = 0 sheetWidth = 0 def load_sheet(path): global tiles global sheetHeight global sheetWidth sheet = p.image.load(path) if sheet.get_width() >= tileWidth and sheet.get_height() >= tileHeight: tiles = [] sheetWidth = sheet.get_width() sheetHeight = sheet.get_height() for y in range(sheetHeight // tileHeight): for x in range(sheetWidth // tileWidth): image = p.Surface((tileWidth, tileHeight), p.SRCALPHA) image.blit(sheet, (0, 0), (x * tileWidth, y * tileHeight, tileWidth, tileHeight)) tiles.append((image, x * tileWidth, y * tileHeight)) load_sheet(file_path) while running: windowResize = False for event in p.event.get(): if event.type == p.QUIT: running = False elif event.type == p.MOUSEMOTION: mousePos = p.mouse.get_pos() elif event.type == p.MOUSEBUTTONDOWN: mousePos = p.mouse.get_pos() if event.button == 2: mouseOffset = (mousePos[0] - camX, mousePos[1] - camY); middleClick = True elif event.button == 1: leftClick = True elif event.button == 3: rightClick = True rightClickDown = True elif event.type == p.MOUSEBUTTONUP: if event.button == 2: middleClick = False elif event.button == 1: leftClick = False elif event.button == 3: rightClick = False elif event.type == p.MOUSEWHEEL and not middleClick: scale += event.y if(scale < 1): scale = 1 elif event.type == p.VIDEORESIZE: width = event.w height = event.h windowResize = True elif event.type == p.KEYDOWN: if event.key == p.K_z and p.key.get_mods() & p.KMOD_CTRL: if len(prevLayerLists) != 0: prevLayerListsRedo.append(layers) layers = prevLayerLists[-1] del prevLayerLists[-1] elif event.key == p.K_y and p.key.get_mods() & p.KMOD_CTRL: if len(prevLayerListsRedo) != 0: prevLayerLists.append(layers) layers = prevLayerListsRedo[-1] del prevLayerListsRedo[-1] elif event.key == p.K_s: sDown = True elif event.type == p.KEYUP: if event.key == p.K_s: sDown = False prevLayers = deepcopy(layers) if middleClick: camX, camY = mousePos[0] - mouseOffset[0], mousePos[1] - mouseOffset[1] x = int(round((mousePos[0] - camX) / (tileWidth * scale))) y = int(round((mousePos[1] - camY) / (tileHeight * scale))) layers[0][(y * mapWidth) + x] = hand if leftClick and not sDownStart: if(mousePos[0] > (9 * uiScale) and mousePos[0] < (sheetWidth + 9) * uiScale and mousePos[1] > (9 * uiScale) and mousePos[1] < (sheetHeight + 9) * uiScale): x = int(round((mousePos[0] - (9 * uiScale)) / (tileWidth * uiScale))) y = int(round((mousePos[1] - (9 * uiScale)) / (tileHeight * uiScale))) hand = (y * (sheetWidth // (tileWidth))) + x else: if(mousePos[0] > camX and mousePos[0] < camX + ((tileWidth * scale) * mapWidth) and mousePos[1] > camY and mousePos[1] < camY + ((tileHeight * scale) * mapHeight)): layers[currentLayer][(y * mapWidth) + x] = hand elif rightClick and not sDown: if(mousePos[0] > camX and mousePos[0] < camX + ((tileWidth * scale) * mapWidth) and mousePos[1] > camY and mousePos[1] < camY + ((tileHeight * scale) * mapHeight)): layers[currentLayer][(y * mapWidth) + x] = -1 s.fill((41,48,50)) renderList = [] for i in range(0, len(layers)): if not i == 0: for x in range(mapWidth): for y in range(mapHeight): if (x * tileWidth * scale) + camX > tileWidth * -scale and (x * tileWidth * scale) + camX < width and (y * tileHeight * scale) + camY > tileHeight * -scale and (y * tileHeight * scale) + camY < height: tile = layers[0][y * mapWidth + x] if not layerStack: if i == currentLayer and tile != -1 and not [x,y] in renderList: renderList.append([x,y]) s.blit(p.transform.scale(tiles[tile][0], (tileWidth * scale, tileHeight * scale)), ((x * tileWidth * scale) + camX, (y * tileHeight * scale) + camY)) else: tile = layers[i][y * mapWidth + x] if not [x,y] in renderList: if tile == -1 and i == currentLayer: if uiScale >= scale: p.draw.rect(s, (86,92,86), p.Rect((x * tileWidth * scale) + camX, (y * tileHeight * scale) + camY, tileWidth * scale, tileHeight * scale), 1) else: p.draw.rect(s, (86,92,86), p.Rect((x * tileWidth * scale) + camX, (y * tileHeight * scale) + camY, tileWidth * scale, tileHeight * scale), uiScale) elif tile != -1: renderList.append([x,y]) s.blit(p.transform.scale(tiles[tile][0], (tileWidth * scale, tileHeight * scale)), ((x * tileWidth * scale) + camX, (y * tileHeight * scale) + camY)) else: if i == currentLayer and tile != -1: renderList.append([x,y,tile]) else: tile = layers[i][y * mapWidth + x] if tile == -1 and i == currentLayer: if uiScale >= scale: p.draw.rect(s, (86,92,86), p.Rect((x * tileWidth * scale) + camX, (y * tileHeight * scale) + camY, tileWidth * scale, tileHeight * scale), 1) else: p.draw.rect(s, (86,92,86), p.Rect((x * tileWidth * scale) + camX, (y * tileHeight * scale) + camY, tileWidth * scale, tileHeight * scale), uiScale) elif tile != -1: renderList.append([x,y,tile]) if layerStack: for i in range(len(renderList)-1, 0, -1): s.blit(p.transform.scale(tiles[renderList[i][2]][0], (tileWidth * scale, tileHeight * scale)), ((renderList[i][0] * tileWidth * scale) + camX, (renderList[i][1] * tileHeight * scale) + camY)) i = sheetHeight + int(tileHeight * 1.5 + 12) s.blit(drawBox(sheetWidth + 12, i, True), (3 * uiScale, 3 * uiScale)) drawButton('New Layer', 3 * uiScale, (i + 6) * uiScale) if buttonClick: layers.append([-1] * (mapWidth * mapHeight)) currentLayer = len(layers)-1 for layer in range(0, len(layers)-1): drawButton('Layer ' + str(layer + 1), 3 * uiScale, (i + 26 * (layer + 1)) * uiScale) if buttonClick: currentLayer = layer + 1 if buttonHover and rightClickDown and len(layers) > 2: prevLayerLists.append(deepcopy(layers)) del layers[layer + 1] if currentLayer > len(layers) - 1: currentLayer -= 1 prevLayers = layers for image in tiles: s.blit(p.transform.scale(image[0], (tileWidth * uiScale, tileHeight * uiScale)), ((image[1] + 9) * uiScale, (image[2] + 9) * uiScale)) s.blit(p.transform.scale(tiles[hand][0], (tileWidth * uiScale, tileHeight * uiScale)), (9 * uiScale, (sheetHeight + tileHeight) * uiScale)) drawButton('Open Tilesheet', (sheetWidth + 18) * uiScale, 3 * uiScale) if buttonClick: file_path = tkFileDialog.askopenfilename() if file_path[-3:] == 'png': load_sheet(file_path) drawButton('Layer Stack', (sheetWidth + 18) * uiScale, 23 * uiScale) if buttonClick: layerStack = not layerStack layers[0] = [-1] * (mapWidth * mapHeight) if not leftClick and leftClickPrev and sDownStart: sDownStart = False for x in range(startPos[0], int(round((mousePos[0] - camX) / (tileWidth * scale))) + 1): for y in range(startPos[1], int(round((mousePos[1] - camY) / (tileHeight * scale))) + 1): if(mousePos[0] > camX and mousePos[0] < camX + ((tileWidth * scale) * mapWidth) and mousePos[1] > camY and mousePos[1] < camY + ((tileHeight * scale) * mapHeight)): layers[currentLayer][(y * mapWidth) + x] = hand for x in range(startPos[0], int(round((mousePos[0] - camX) / (tileWidth * scale))) - 1, -1): for y in range(startPos[1], int(round((mousePos[1] - camY) / (tileHeight * scale))) - 1, -1): if(mousePos[0] > camX and mousePos[0] < camX + ((tileWidth * scale) * mapWidth) and mousePos[1] > camY and mousePos[1] < camY + ((tileHeight * scale) * mapHeight)): layers[currentLayer][(y * mapWidth) + x] = hand for x in range(startPos[0], int(round((mousePos[0] - camX) / (tileWidth * scale))) + 1): for y in range(startPos[1], int(round((mousePos[1] - camY) / (tileHeight * scale))) - 1, -1): if(mousePos[0] > camX and mousePos[0] < camX + ((tileWidth * scale) * mapWidth) and mousePos[1] > camY and mousePos[1] < camY + ((tileHeight * scale) * mapHeight)): layers[currentLayer][(y * mapWidth) + x] = hand for x in range(startPos[0], int(round((mousePos[0] - camX) / (tileWidth * scale))) - 1, -1): for y in range(startPos[1], int(round((mousePos[1] - camY) / (tileHeight * scale))) + 1): if(mousePos[0] > camX and mousePos[0] < camX + ((tileWidth * scale) * mapWidth) and mousePos[1] > camY and mousePos[1] < camY + ((tileHeight * scale) * mapHeight)): layers[currentLayer][(y * mapWidth) + x] = hand elif leftClick and sDownStart: for x in range(startPos[0], int(round((mousePos[0] - camX) / (tileWidth * scale))) + 1): for y in range(startPos[1], int(round((mousePos[1] - camY) / (tileHeight * scale))) + 1): if(mousePos[0] > camX and mousePos[0] < camX + ((tileWidth * scale) * mapWidth) and mousePos[1] > camY and mousePos[1] < camY + ((tileHeight * scale) * mapHeight)): layers[0][(y * mapWidth) + x] = hand for x in range(startPos[0], int(round((mousePos[0] - camX) / (tileWidth * scale))) - 1, -1): for y in range(startPos[1], int(round((mousePos[1] - camY) / (tileHeight * scale))) - 1, -1): if(mousePos[0] > camX and mousePos[0] < camX + ((tileWidth * scale) * mapWidth) and mousePos[1] > camY and mousePos[1] < camY + ((tileHeight * scale) * mapHeight)): layers[0][(y * mapWidth) + x] = hand for x in range(startPos[0], int(round((mousePos[0] - camX) / (tileWidth * scale))) + 1): for y in range(startPos[1], int(round((mousePos[1] - camY) / (tileHeight * scale))) - 1, -1): if(mousePos[0] > camX and mousePos[0] < camX + ((tileWidth * scale) * mapWidth) and mousePos[1] > camY and mousePos[1] < camY + ((tileHeight * scale) * mapHeight)): layers[0][(y * mapWidth) + x] = hand for x in range(startPos[0], int(round((mousePos[0] - camX) / (tileWidth * scale))) - 1, -1): for y in range(startPos[1], int(round((mousePos[1] - camY) / (tileHeight * scale))) + 1): if(mousePos[0] > camX and mousePos[0] < camX + ((tileWidth * scale) * mapWidth) and mousePos[1] > camY and mousePos[1] < camY + ((tileHeight * scale) * mapHeight)): layers[0][(y * mapWidth) + x] = hand if not rightClick and rightClickPrev and sDownStart: sDownStart = False for x in range(startPos[0], int(round((mousePos[0] - camX) / (tileWidth * scale))) + 1): for y in range(startPos[1], int(round((mousePos[1] - camY) / (tileHeight * scale))) + 1): if(mousePos[0] > camX and mousePos[0] < camX + ((tileWidth * scale) * mapWidth) and mousePos[1] > camY and mousePos[1] < camY + ((tileHeight * scale) * mapHeight)): layers[currentLayer][(y * mapWidth) + x] = -1 for x in range(startPos[0], int(round((mousePos[0] - camX) / (tileWidth * scale))) - 1, -1): for y in range(startPos[1], int(round((mousePos[1] - camY) / (tileHeight * scale))) - 1, -1): if(mousePos[0] > camX and mousePos[0] < camX + ((tileWidth * scale) * mapWidth) and mousePos[1] > camY and mousePos[1] < camY + ((tileHeight * scale) * mapHeight)): layers[currentLayer][(y * mapWidth) + x] = -1 for x in range(startPos[0], int(round((mousePos[0] - camX) / (tileWidth * scale))) + 1): for y in range(startPos[1], int(round((mousePos[1] - camY) / (tileHeight * scale))) - 1, -1): if(mousePos[0] > camX and mousePos[0] < camX + ((tileWidth * scale) * mapWidth) and mousePos[1] > camY and mousePos[1] < camY + ((tileHeight * scale) * mapHeight)): layers[currentLayer][(y * mapWidth) + x] = -1 for x in range(startPos[0], int(round((mousePos[0] - camX) / (tileWidth * scale))) - 1, -1): for y in range(startPos[1], int(round((mousePos[1] - camY) / (tileHeight * scale))) + 1): if(mousePos[0] > camX and mousePos[0] < camX + ((tileWidth * scale) * mapWidth) and mousePos[1] > camY and mousePos[1] < camY + ((tileHeight * scale) * mapHeight)): layers[currentLayer][(y * mapWidth) + x] = -1 elif rightClick and sDownStart: for x in range(startPos[0], int(round((mousePos[0] - camX) / (tileWidth * scale))) + 1): for y in range(startPos[1], int(round((mousePos[1] - camY) / (tileHeight * scale))) + 1): if(mousePos[0] > camX and mousePos[0] < camX + ((tileWidth * scale) * mapWidth) and mousePos[1] > camY and mousePos[1] < camY + ((tileHeight * scale) * mapHeight)): layers[0][(y * mapWidth) + x] = -2 for x in range(startPos[0], int(round((mousePos[0] - camX) / (tileWidth * scale))) - 1, -1): for y in range(startPos[1], int(round((mousePos[1] - camY) / (tileHeight * scale))) - 1, -1): if(mousePos[0] > camX and mousePos[0] < camX + ((tileWidth * scale) * mapWidth) and mousePos[1] > camY and mousePos[1] < camY + ((tileHeight * scale) * mapHeight)): layers[0][(y * mapWidth) + x] = -2 for x in range(startPos[0], int(round((mousePos[0] - camX) / (tileWidth * scale))) + 1): for y in range(startPos[1], int(round((mousePos[1] - camY) / (tileHeight * scale))) - 1, -1): if(mousePos[0] > camX and mousePos[0] < camX + ((tileWidth * scale) * mapWidth) and mousePos[1] > camY and mousePos[1] < camY + ((tileHeight * scale) * mapHeight)): layers[0][(y * mapWidth) + x] = -2 for x in range(startPos[0], int(round((mousePos[0] - camX) / (tileWidth * scale))) - 1, -1): for y in range(startPos[1], int(round((mousePos[1] - camY) / (tileHeight * scale))) + 1): if(mousePos[0] > camX and mousePos[0] < camX + ((tileWidth * scale) * mapWidth) and mousePos[1] > camY and mousePos[1] < camY + ((tileHeight * scale) * mapHeight)): layers[0][(y * mapWidth) + x] = -2 if leftClick and not leftClickPrev or rightClick and not rightClickPrev: if sDown: sDownStart = True startPos = (int(round((mousePos[0] - camX) / (tileWidth * scale))), int(round((mousePos[1] - camY) / (tileHeight * scale)))) if prevLayers != layers: prevLayerLists.append(deepcopy(prevLayers)) leftClickPrev = leftClick backDown = False rightClickDown = False brushRect.x,brushRect.y = (sheetWidth + 18) * uiScale, 43 * uiScale if brushRect.collidepoint(mousePos[0], mousePos[1]) or not squareT: if leftClick and brushRect.collidepoint(mousePos[0], mousePos[1]): squareT = False sDown = False s.blit(p.transform.scale(brushHover, (brushRect.width, brushRect.height)), (brushRect.x, brushRect.y + uiScale)) else: s.blit(p.transform.scale(brushHover, (brushRect.width, brushRect.height)), brushRect) else: s.blit(p.transform.scale(brush, (brushRect.width, brushRect.height)), brushRect) squareRect.x,squareRect.y = (sheetWidth + 34) * uiScale, 43 * uiScale if squareRect.collidepoint(mousePos[0], mousePos[1]) or squareT: if leftClick and squareRect.collidepoint(mousePos[0], mousePos[1]): squareT = True s.blit(p.transform.scale(squareHover, (squareRect.width, squareRect.height)), (squareRect.x, squareRect.y + uiScale)) else: s.blit(p.transform.scale(squareHover, (squareRect.width, squareRect.height)), squareRect) else: s.blit(p.transform.scale(square, (squareRect.width, squareRect.height)), squareRect) if squareT: sDown = True rightClickPrev = rightClick p.display.update() clock.tick(60)
48.794521
221
0.561623
0
0
0
0
0
0
0
0
225
0.010528
f5f4c4714755e8b9549c5e4949c349f3b753fe90
5,148
py
Python
EditGroupWindow.py
TheYargonaut/lucre
1abd472993df01b443ab4811379dfe52e18cf790
[ "MIT" ]
null
null
null
EditGroupWindow.py
TheYargonaut/lucre
1abd472993df01b443ab4811379dfe52e18cf790
[ "MIT" ]
null
null
null
EditGroupWindow.py
TheYargonaut/lucre
1abd472993df01b443ab4811379dfe52e18cf790
[ "MIT" ]
null
null
null
import tkinter as tk from tkinter.colorchooser import askcolor from tkinter import ttk from Scrollable import Scrollable from ViewLedgerWidget import ViewLedgerWidget from List import ListView from Group import Group # window for editing a group prevLens = [ 10, 25, 100 ] class EditGroupWindow( tk.Toplevel ): def __init__( self, master, group, ledger, psize, *args, **kwargs ): tk.Toplevel.__init__( self, master, *args, **kwargs ) self.title( "edit group" ) self.groupBack = group self.group = Group( **dict( group ) ) self.ledger = ledger self.psize = psize self.highlight = self.group.color # "white" self.ignored = "#E00E00E00" # gray self.view = None self.build() self.matchListCb( self.view ) def matchListCb( self, view ): 'set the highlights when group lists change' mask = self.group.filter( self.ledger.df.head( len( view ) ) ) for r, m in enumerate( mask ): view.highlightRow( r, self.highlight if m else self.ignored ) def finalize( self ): self.groupBack.whitelist = [ r for r in self.group.whitelist if r ] self.groupBack.blacklist = [ r for r in self.group.blacklist if r ] self.groupBack.negate = self.group.negate self.groupBack.title = self.group.title self.groupBack.color = self.group.color self.ledger.updateCb( self.ledger.df ) self.destroy() def whiteListCb( self, idx, txt ): self.group.whitelist[ idx ] = txt self.matchListCb( self.view ) def blackListCb( self, idx, txt ): self.group.blacklist[ idx ] = txt self.matchListCb( self.view ) def nameCb( self, *args ): self.group.title = self.nameVar.get() def expenseCb( self, value ): self.group.negate = value == 'expense' def colorCb( self ): self.group.color = askcolor( self.group.color, parent=self )[ 1 ] self.highlight = self.group.color self.color.config( fg=self.group.color ) self.matchListCb( self.view ) def build( self ): self.grid_rowconfigure( 0, weight=1 ) self.grid_columnconfigure( 0, weight=1 ) mainFrame = ttk.Frame( self ) mainFrame.grid( row=0, column=0, sticky=tk.NSEW ) mainFrame.grid_rowconfigure( 1, weight=1 ) mainFrame.grid_columnconfigure( 0, weight=1 ) listFrame = ttk.Frame( self ) listFrame.grid( row=0, column=1, sticky=tk.NSEW ) listFrame.grid_rowconfigure( 0, weight=1 ) listFrame.grid_rowconfigure( 1, weight=1 ) listFrame.grid_columnconfigure( 0, weight=1 ) whiteFrame = ttk.Frame( listFrame ) whiteFrame.grid( row=0, column=0, sticky=tk.NSEW ) whiteLabel = tk.Label( whiteFrame, text='whitelist' ) whiteLabel.pack( side=tk.TOP, fill=tk.X ) whiteScroll = Scrollable( whiteFrame, vertical=True ) whiteScroll.pack( side=tk.TOP, fill=tk.BOTH ) whiteList = ListView( whiteScroll, self.group.whitelist, '+', self.whiteListCb ) whiteList.pack() blackFrame = ttk.Frame( listFrame ) blackFrame.grid( row=1, column=0, sticky=tk.NSEW ) blackLabel = tk.Label( blackFrame, text='blacklist' ) blackLabel.pack( side=tk.TOP, fill=tk.X ) blackScroll = Scrollable( blackFrame, vertical=True ) blackScroll.pack( side=tk.TOP, fill=tk.BOTH ) blackList = ListView( blackScroll, self.group.blacklist, '+', self.blackListCb ) blackList.pack() button = ttk.Frame( self ) button.grid( row=1, column=0, columnspan=2, sticky=tk.W + tk.E ) cancel = ttk.Button( button, text="Cancel", command=self.destroy ) cancel.pack( side=tk.RIGHT ) confirm = ttk.Button( button, text="Confirm", command=self.finalize ) confirm.pack( side=tk.RIGHT ) nameFrame = ttk.Frame( mainFrame ) nameFrame.grid( row=0, column=0, sticky=tk.NSEW ) self.color = tk.Button( nameFrame, text="\u2B1B", command=self.colorCb, width=3 ) self.color.config( fg=self.group.color ) self.color.pack( side=tk.LEFT, fill=tk.NONE, expand=False ) self.nameVar = tk.StringVar( nameFrame ) self.nameVar.set( self.group.title ) self.nameVar.trace( 'w', self.nameCb ) name = ttk.Entry( nameFrame, textvariable=self.nameVar, exportselection=0 ) name.pack( side=tk.LEFT, fill=tk.X, expand=True ) style = ttk.OptionMenu( nameFrame, tk.StringVar( nameFrame ), ( "expense" if self.group.negate else "income" ), "income", "expense", command=self.expenseCb ) style.pack( side=tk.RIGHT, fill=tk.NONE, expand=False ) self.view = ViewLedgerWidget( mainFrame, self.ledger.df, lenCb=self.matchListCb ) self.view.grid( row=1, column=0, sticky=tk.NE + tk.S ) def editGroupCb( master, group, ledger, psize ): def cb( master=master, group=group, ledger=ledger, psize=psize ): window = EditGroupWindow( master, group, ledger, psize ) master.wait_window( window ) return cb
43.260504
165
0.633061
4,636
0.900544
0
0
0
0
0
0
210
0.040793
f5f611d50ecae53133cd83f244cc01c20777a693
261
py
Python
day_07/task_1.py
Korred/advent_of_code_2021
89afcaae3343653106d36fb7ad08558c0fbb4732
[ "Unlicense" ]
null
null
null
day_07/task_1.py
Korred/advent_of_code_2021
89afcaae3343653106d36fb7ad08558c0fbb4732
[ "Unlicense" ]
null
null
null
day_07/task_1.py
Korred/advent_of_code_2021
89afcaae3343653106d36fb7ad08558c0fbb4732
[ "Unlicense" ]
null
null
null
crabs = sorted(map(int, open("input.txt", "r").readline().strip().split(","))) # position with minimal fuel usage is at the median position median_pos = crabs[len(crabs) // 2] min_fuel = sum([abs(crab_pos - median_pos) for crab_pos in crabs]) print(min_fuel)
32.625
78
0.704981
0
0
0
0
0
0
0
0
77
0.295019
f5f839cc33260b873ad589657cb5b87f8a948df8
5,172
py
Python
dialmonkey/nlu/basketball.py
alexandergazo/NPFL123
c52b6a880abf9fe694ce6a2d775c7db1bd765fba
[ "Apache-2.0" ]
null
null
null
dialmonkey/nlu/basketball.py
alexandergazo/NPFL123
c52b6a880abf9fe694ce6a2d775c7db1bd765fba
[ "Apache-2.0" ]
null
null
null
dialmonkey/nlu/basketball.py
alexandergazo/NPFL123
c52b6a880abf9fe694ce6a2d775c7db1bd765fba
[ "Apache-2.0" ]
null
null
null
# Author: Matej Mik from ..component import Component from ..da import DAI import re def add_team_g(string, attributes): if 'tym' in string: if re.search('(muj|moj|meh)[^ ]{0,3} tym', string): attributes.append('team=default') else: team = string.split('tym')[-1].split(' ', 1)[1] if team.startswith('na '): team = team[3:] attributes.append(f'team={team}') return attributes def add_team_s(string, attributes): if 'tym' in string: if re.search('(vychozi[^ ]{0,2}|(muj|moj|meh)[^ ]{0,3}) tym', string): attributes.append('default') team = string.split('tym')[-1].split(' ', 1)[1] if team.startswith('na '): team = team[3:] attributes.append(f'team={team}') return attributes def add_type(string, attributes): if ' hrac' in string: attributes.append('type=player') elif ' tym' in string: attributes.append('type=team') return attributes def add_nums(string, attributes): nums = re.findall('[0-9]+[^ ]?', string) if len(nums) == 1: num = nums[0] if num.endswith('.'): attributes.append('rank=' + num.rstrip('.')) else: attributes.append('value=' + num) elif any([stem in string for stem in [' nejv', ' nejlepsi']]): attributes.append('rank=1') return attributes def add_time(string, attributes): if ' dnes' in string: attributes.append('time=today') elif ' zitr' in string: attributes.append('time=tommorow') else: time = re.findall('[0-9]{1,2}[. ]{1,2}[0-9]{1,2}[.]?', string) if len(time) == 1: attributes.append(f'time={time[0]}') return attributes def add_name(string, attributes): if re.search('(vychozi[^ ]{0,2}|(muj|moj|meh)[^ ]{0,3}) tym', string): attributes.append('name=default') else: names = re.findall(' hrac.*$', string) + re.findall(' tym.*$', string) if len(names) == 1: name = names[0].lstrip().split(' ', 1) if len(name) == 2: attributes.append(f'name={name[1]}') return attributes def add_stat(string, attributes): if re.search('dv(.{2}bod|oje?k)', string): attributes.append('stat=2_pt_made') elif re.search('tr(.{1,2}bod|oje?k)', string): attributes.append('stat=3_pt_made') elif any([stem in string for stem in ['trestn', 'sestk', 'sestek']]): if any([stem in string for stem in ['uspesn', 'procent']]): attributes.append('stat=ft_percentage') else: attributes.append('stat=ft_made') elif any([stem in string for stem in ['vyher', 'vyhr']]): attributes.append('stat=wins') elif any([stem in string for stem in ['strelec', 'strelc', ' bod']]): attributes.append('stat=points') return attributes def to_DAIs(intent, attributes): items = [] if intent: if attributes: for att in attributes: items.append(DAI.parse(f'{intent}({att})')) else: items.append(DAI.parse(f'{intent}()')) return items class BasketballNLU(Component): def __call__(self, dial, logger): intent= '' attributes = [] if dial['user'].startswith('kde'): intent = 'request_game' attributes.append('place=?') attributes = add_team_g(dial['user'], attributes) elif dial['user'].startswith('kdy'): intent = 'request_game' attributes.append('time=?') attributes = add_team_g(dial['user'], attributes) elif any([stem in dial['user'] for stem in ['zapas', 'utkani']]): intent = 'request_game' attributes = add_time(dial['user'], attributes) elif any([dial['user'].startswith(stem) for stem in ['kolik', 'jaky pocet', 'na jake']]): intent = 'request_stats' if any([stem in dial['user'] for stem in ['kolikat', 'mist', 'pozic']]): attributes.append('rank=?') else: attributes.append('value=?') attributes = add_stat(dial['user'], attributes) attributes = add_type(dial['user'], attributes) attributes = add_name(dial['user'], attributes) elif any([dial['user'].startswith(stem) for stem in ['kter', 'kdo', 'jak']]): intent = 'request_stats' attributes.append('name=?') attributes = add_type(dial['user'], attributes) attributes = add_nums(dial['user'], attributes) attributes = add_stat(dial['user'], attributes) elif any([stem in dial['user'] for stem in ['zmen', 'nastav']]): intent = 'set' years = re.findall('[0-9]{4}', dial['user']) if len(years) == 1: attributes.append(f'season={years[0]}') attributes = add_team_s(dial['user'], attributes) for item in to_DAIs(intent, attributes): dial['nlu'].append(item) logger.info('NLU: %s', str(dial['nlu'])) return dial
37.478261
97
0.552204
1,998
0.386311
0
0
0
0
0
0
1,091
0.210944
f5f954fff242094361f8f329de47188d709c63c7
1,447
py
Python
test_SSstache.py
jonschull/Lyte
e9ba2bb1b07c9398b81a6f591898d2474d1a4609
[ "MIT" ]
1
2018-06-07T17:54:27.000Z
2018-06-07T17:54:27.000Z
test_SSstache.py
jonschull/Lyte
e9ba2bb1b07c9398b81a6f591898d2474d1a4609
[ "MIT" ]
1
2018-06-28T05:08:57.000Z
2018-06-28T05:08:57.000Z
test_SSstache.py
jonschull/Lyte
e9ba2bb1b07c9398b81a6f591898d2474d1a4609
[ "MIT" ]
null
null
null
from SSstache import * from plumbum.path.utils import delete from plumbum.cmd import ls, touch, mkdir def test_makeSupportScriptStache(): delete('xyz') assert makeSupportScriptStache(stacheDir='xyz').endswith('xyz') assert ls('xyz').split()==['RSrun.2.7.min.js', 'glow.2.7.min.js', 'ide.css', 'jquery-ui.custom.css', 'jquery-ui.custom.min.js', 'jquery.min.js'] delete('xyz') def test_prepareHTMLdir(): delete('xyz') prepareHTMLdir('xyz') assert('xyz' in ls().strip()) delete('xyz') def test_makeHTMLdir(): HTMLdirName = '123' delete( HTMLdirName ) fakeSSname = 'fakeSupportScripts' delete(fakeSSname) mkdir(fakeSSname) scriptNames=['xyz.test', 'xyz2.test'] for scriptName in scriptNames: touch(f'{fakeSSname}/{scriptName}') makeHTMLdir( HTMLdirName , stacheDir = fakeSSname, GLOWPATH='.', scriptNames= scriptNames) assert('supportScripts' in ls( HTMLdirName ).split() ) assert( ls('123/supportScripts').split() == scriptNames ) delete( HTMLdirName ) delete(fakeSSname) def test_putInHTMLdir(): open('box2.py','w').write('box(color=color.green)') putInHTMLdir('box2.py') assert( 'box2.py' in ls('box2').split() ) delete('box2.py') delete('box2') #prepareHTMLdir(dirName='xyz') #test_makeHTMLdir()
27.301887
148
0.608846
0
0
0
0
0
0
0
0
388
0.268141
f5fc2d7fa7991a4448eb7eb0d16d8da0aa0e1f7e
173
py
Python
graphic/introductions/graficoNormal.py
jonathanccardoso/data-science
d5977e5cd26b6a9ad05ef8940841158911a91586
[ "MIT" ]
null
null
null
graphic/introductions/graficoNormal.py
jonathanccardoso/data-science
d5977e5cd26b6a9ad05ef8940841158911a91586
[ "MIT" ]
null
null
null
graphic/introductions/graficoNormal.py
jonathanccardoso/data-science
d5977e5cd26b6a9ad05ef8940841158911a91586
[ "MIT" ]
null
null
null
import matplotlib.pyplot as plt x = [1, 2, 5] y = [2, 3, 7] plt.title("1 grafico com python") # Eixos plt.xlabel("Eixo X") plt.ylabel("Eixo Y") plt.plot(x,y) plt.show()
12.357143
33
0.630058
0
0
0
0
0
0
0
0
45
0.260116
f5fc99298c4f8aba96ad5b5882efa8fbf637939b
421
py
Python
makevideo.py
bitrogen/sorting-algorithms
f7eada32db9e0ce385878f49d79b3d6b8c09280a
[ "CC0-1.0" ]
null
null
null
makevideo.py
bitrogen/sorting-algorithms
f7eada32db9e0ce385878f49d79b3d6b8c09280a
[ "CC0-1.0" ]
1
2021-04-05T20:20:30.000Z
2021-04-05T20:22:41.000Z
makevideo.py
bitrogen/sorting-algorithms
f7eada32db9e0ce385878f49d79b3d6b8c09280a
[ "CC0-1.0" ]
null
null
null
import cv2 import numpy import glob import os images = [] path = os.getcwd()+"\\frames\\" myVideo = cv2.VideoWriter("quicksort-1.mkv", cv2.VideoWriter_fourcc(*"DIVX"), 60, (1920,1080)) for filename in range(len(os.listdir(path))): filename = f"frame-{filename}.png" img = cv2.imread(f"{path}{filename}") height, width, layers = img.shape myVideo.write(img) myVideo.release()
20.047619
95
0.638955
0
0
0
0
0
0
0
0
77
0.182898
f5fce2318bd81cf7ddc8f556365d8f472f7cc726
18,008
py
Python
darknet.py
sugey/pytorch-yolov3
cb6b46fd798debca5d8d066eabb2bd2e6c679953
[ "MIT" ]
3
2019-10-21T16:05:15.000Z
2019-10-25T00:43:17.000Z
darknet.py
sugey/pytorch-yolov3
cb6b46fd798debca5d8d066eabb2bd2e6c679953
[ "MIT" ]
null
null
null
darknet.py
sugey/pytorch-yolov3
cb6b46fd798debca5d8d066eabb2bd2e6c679953
[ "MIT" ]
null
null
null
import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import numpy as np from model.layers import * from model.build import * import cv2 from model.utils import * def get_test_input(): img = cv2.imread("images/dog-cycle-car.png") img = cv2.resize(img, (416, 416)) # Resize to the input dimension # BGR -> RGB | H X W C -> C X H X W img_ = img[:, :, ::-1].transpose((2, 0, 1)) # Add a channel at 0 (for batch) | Normalise img_ = img_[np.newaxis, :, :, :]/255.0 img_ = torch.from_numpy(img_).float() # Convert to float img_ = Variable(img_) # Convert to Variable return img_ class Darknet(nn.Module): """ Main Darknet class. It is a subclass of nn.Module """ def __init__(self, cfgfile): super(Darknet, self).__init__() # Translate our YOLOv3 CFG file to blocks self.blocks = parse_cfg(cfgfile) # Convert those blocks to a module list for Pytorch self.net_info, self.module_list = create_modules(self.blocks) # These are for loading the weights below self.header = torch.IntTensor([0, 0, 0, 0]) self.seen = 0 def get_blocks(self): """ Getter function for blocks Returns: blocks """ return self.blocks def get_module_list(self): """ Getter function for module_list Returns: module_list """ return self.module_list # Main forward pass def forward(self, x, CUDA): """ Does the forward pass Params: x: The input CUDA: Use GPU to accelerate task """ detections = [] # We don't want the first block, that contains the network info modules = self.blocks[1:] # We cache the output feature maps of every layer in a dict outputs. # The keys are the the indices of the layers, and the values are # the feature maps. We can then search through the keys to look up # a layers feature maps for route or shortcuts. outputs = {} write = 0 # Go through every module (layer) for i in range(len(modules)): # Get the module type value from the current index module_type = (modules[i]["type"]) if module_type == "convolutional" or module_type == "upsample" or module_type == "maxpool": # Not 100% sure, but I think because the module list is a # Pytorch nn.ModuleList(), you can multiply the index of this list, # that is, the block, by the inputs to this function (x), to get the output. # I believe this is the matrix multiplication part. x = self.module_list[i](x) # Set the key to the index, and set the value to the computed # calculation of the block and the input outputs[i] = x elif module_type == "route": layers = modules[i]["layers"] # The two layers designated in the layer get turned into a list with indexes # of 0 and 1 layers = [int(a) for a in layers] # Route layers[0] is never greater than 0, so candidate for optimization deletion if (layers[0]) > 0: layers[0] = layers[0] - i # This happens only on the 2 smaller detection laters, i.e. on a 416x416 image, # the 13x13 and 26x26 detection region levels if len(layers) == 1: # Grab the out put from the index plus the first value, usually # a -4 in this situation. This is what allows a kind of independent route # for the detection region layers. This will then go back and take the layer # where the split happen, pull those weights forward past the detection # layer, and prepare them as a piece of input for the next convolution. x = outputs[i + (layers[0])] else: # These are the two large skip connections, from layers 37 -> 99 and 62 -> 87 if (layers[1]) > 0: # Reset layer 1 to the difference between the desired layer index # and the current layer. So, from 37 - 99 = (-62). We then add # it to the current layer below in map2 layers[1] = layers[1] - i # map1 is the output of the previous layer (layers[0] is always a # negative number), here an upsample layer in the YOLO Cfg map1 = outputs[i + layers[0]] # map2 is the previous convolution to pull the data from map2 = outputs[i + layers[1]] # We're adding together the values of the outputs from the routed layers # along the depth of the tensor since the param of 1 corresponds to # the depth dimension. `Cat` method stands for concatenate. x = torch.cat((map1, map2), 1) # Set the key to the current module index, and set the dict value to the computed # calculation of the block x variable outputs[i] = x elif module_type == "shortcut": from_ = int(modules[i]["from"]) # Grab the output from the previous layer, as well as the `from` layer (which # is always -3) before. This is either a downsampling, upsampling or shortcut # connection.This simply adds the weights together without the tensor # concatenation you find in the routings. The is what creates the residual # blocks throughout the YOLO network # x = outputs[i-1] + outputs[i+from_] x = outputs[i-1] + outputs[i+from_] # Set the key to the current module index, and value to x variable calculation outputs[i] = x elif module_type == 'yolo': # Get the anchor list anchors = self.module_list[i][0].anchors # Get the input dimensions inp_dim = int(self.net_info["height"]) # Get the number of classes num_classes = int(modules[i]["classes"]) # Output the result x = x.data # Run a prediction on a particular region size x = predict_transform(x, inp_dim, anchors, num_classes, CUDA) if type(x) == int: continue # If write = 0, that means this is the first detection if not write: detections = x write = 1 # Otherise, concatenate the different predictions together along the # depth of the tensor else: detections = torch.cat((detections, x), 1) # Since this is a detection layer, we still need to pull the weights from the previous layer # output, so that we can use it as input to the next later outputs[i] = outputs[i-1] try: # After all the modules have been gone through, return the detections tensor, which is a # combined tensor for all three region size return detections except: return 0 def load_weights(self, weightfile): """ Loads the weightfile. It is all 32-bit floats with 5 bytes as headers. There are only weights for convolution and batch_normalization layers. Params: weightfile: link to weightfile Return: loads weights """ # Open the weights file fp = open(weightfile, "rb") # The first 4 values are header information # 1. Major version number # 2. Minor Version Number # 3. Subversion number # 4. Images seen header = np.fromfile(fp, dtype=np.int32, count=5) # Turn the numpy header file into a tensor self.header = torch.from_numpy(header) # The total number of images seen self.seen = self.header[3] # The rest of the values are the weights, let's load them up # into a numpy weights = np.fromfile(fp, dtype=np.float32) # This variable keeps track of where we are in the weight list # which is different than the module list ptr = 0 # Let's go through every item in the module list of this # instantiated class for i in range(len(self.module_list)): # We have to add one to this list because the first block # is the netinfo block. This is different then the module # list which took the netinfo block out module_type = self.blocks[i + 1]["type"] if module_type == "convolutional": # Grab the current module model = self.module_list[i] try: # If there is batch normalize on this convolutional layer # let's grab that batch_normalize = int(self.blocks[i+1]["batch_normalize"]) except: batch_normalize = 0 # The first value in the model is the Conv2D module, so, for example # Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) conv = model[0] if (batch_normalize): # The second value in the model is a BatchNorm2d module, so, for example # BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) bn = model[1] # Get the number of weights of Batch Norm Layer # This is the first value in the module, so 32 in previous example # PyTorch numel method stands for number of elements, which it returns num_bn_biases = bn.bias.numel() # Load the weights. Batch norm layers have a sequences of values stored # for them in weights file. It goes: # 1. bn_biases # 2. bn_weights # 3. bn_running mean # 4. bn_running_var # After those 4 items, then the convolutional weights are added, which # we see once you exit this conditional loop # Weight values are a numpy file, so we turn them into a tensor here via torch. # We grab from the current ptr index, which is the (full file - header), # and then add the number of biases for first section. We then increment the ptr # variable so we can continue moving through the chunks of file data. # First time through on 416, we get weights[0:32], so the first 32 bias values bn_biases = torch.from_numpy( weights[ptr:ptr + num_bn_biases]) ptr += num_bn_biases # Grab the weights next. Following previous example, we get weights[32:64], which # is the next chunk of 32 float values assigned to the weights for this # batch norm layer bn_weights = torch.from_numpy( weights[ptr: ptr + num_bn_biases]) ptr += num_bn_biases # Grab the runing_mean next. Following previous example, we get weights[64:96], which # is the next chunk of 32 float values assigned to the running_mean for this # batch norm layer bn_running_mean = torch.from_numpy( weights[ptr: ptr + num_bn_biases]) ptr += num_bn_biases # Grab the running variance next. Following previous example, we get weights[96:128], # which is the next chunk of 32 float values assigned to the running_mean for this # batch norm layer bn_running_var = torch.from_numpy( weights[ptr: ptr + num_bn_biases]) ptr += num_bn_biases # Cast the loaded weights into dims of model weights. This doens't # seem like it's necessary since all of these are currently in # the proper tensor format. Under consideration for deletion # under optimization bn_biases = bn_biases.view_as(bn.bias.data) bn_weights = bn_weights.view_as(bn.weight.data) bn_running_mean = bn_running_mean.view_as(bn.running_mean) bn_running_var = bn_running_var.view_as(bn.running_var) # Copy all the tensor data pulled from the files to the # model BatchNorm2d data (bn) which we can process bn.bias.data.copy_(bn_biases) bn.weight.data.copy_(bn_weights) bn.running_mean.copy_(bn_running_mean) bn.running_var.copy_(bn_running_var) else: # Remember the format for the model is: # Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) # The only places there are biases in convolution layers are in the # pre-detection layers where there are 255. Three of them in the CFG. num_biases = conv.bias.numel() # Load the biases. Convolution layers have a sequences of values stored # for them in weights file. It goes: # 1. conv_biases # 2. conv_weights # Since we add the conv_weights outside this loop, we only have to focus # on preparing the biases here. In 416 example, the first ptr and bias # values are 56367712, 255, which is what we expect since the first # detection layer isn't until layer 83 out of 106, far into the CFG conv_biases = torch.from_numpy( weights[ptr: ptr + num_biases]) ptr = ptr + num_biases # reshape the loaded weights according to the dims of the model weights # Again, tensors in proper shape so candidate for # optimization deletion conv_biases = conv_biases.view_as(conv.bias.data) # Copy all the tensor data pulled from the files to the # model Conv2d data (conv) which we can process conv.bias.data.copy_(conv_biases) # Total the weight slots for the Convolutional layers # Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) num_weights = conv.weight.numel() # Load the weights from the weights file into a tensor # at the current ptr values plus the rest of chunk necessary # from the file conv_weights = torch.from_numpy(weights[ptr:ptr+num_weights]) # reset ptr to where we are in file ptr = ptr + num_weights # Reformat the weights tensor into a format that matches # the model conv placeholder tensor conv_weights = conv_weights.view_as(conv.weight.data) # Copy the weights into the conv model conv.weight.data.copy_(conv_weights) def save_weights(self, savedfile, cutoff=0): if cutoff <= 0: cutoff = len(self.blocks) - 1 fp = open(savedfile, 'wb') # Attach the header at the top of the file self.header[3] = self.seen header = self.header header = header.numpy() header.tofile(fp) # Now, let us save the weights for i in range(len(self.module_list)): # We have to add one to this list because the first block # is the netinfo block. This is different then the module # list which took the netinfo block out module_type = self.blocks[i+1]["type"] if (module_type) == "convolutional": # Grab the full module model = self.module_list[i] try: # If this is a batch normalize layer batch_normalize = int(self.blocks[i+1]["batch_normalize"]) except: batch_normalize = 0 conv = model[0] if (batch_normalize): bn = model[1] # If the parameters are on GPU, convert them back to CPU # We don't convert the parameter to GPU # Instead. we copy the parameter and then convert it to CPU # This is done as weight are need to be saved during training cpu(bn.bias.data).numpy().tofile(fp) cpu(bn.weight.data).numpy().tofile(fp) cpu(bn.running_mean).numpy().tofile(fp) cpu(bn.running_var).numpy().tofile(fp) else: cpu(conv.bias.data).numpy().tofile(fp) # Let us save the weights for the Convolutional layers cpu(conv.weight.data).numpy().tofile(fp) model = Darknet("cfg/yolov3.cfg") model.load_weights("yolov3.weights") inp = get_test_input() pred = model(inp, torch.cuda.is_available())
44.907731
108
0.549034
17,182
0.954131
0
0
0
0
0
0
8,953
0.497168
f5fd8ae5a3e3e11874751c948747bc877e5305d4
1,131
py
Python
src/icemac/addressbook/browser/search/result/handler/test_manager.py
icemac/icemac.addressbook
6197e6e01da922feb100dd0943576523050cd703
[ "BSD-2-Clause" ]
1
2020-03-26T20:16:44.000Z
2020-03-26T20:16:44.000Z
src/icemac/addressbook/browser/search/result/handler/test_manager.py
icemac/icemac.addressbook
6197e6e01da922feb100dd0943576523050cd703
[ "BSD-2-Clause" ]
2
2020-02-21T13:04:23.000Z
2020-02-21T13:06:10.000Z
src/icemac/addressbook/browser/search/result/handler/test_manager.py
icemac/icemac.addressbook
6197e6e01da922feb100dd0943576523050cd703
[ "BSD-2-Clause" ]
null
null
null
from icemac.addressbook.browser.search.result.handler.manager import ( SearchResultHandler) def makeSRHandler(viewName): """Create a `SearchResultHandler` with the specified `viewName`.""" handler = SearchResultHandler(None, None, None, None) handler.viewName = viewName return handler def test_manager__SearchResultHandler____eq____1(): """It is equal when `viewName` is equal.""" assert makeSRHandler('@@asdf.html') == makeSRHandler('@@asdf.html') def test_manager__SearchResultHandler____eq____2(): """It is not equal with unequal `viewName`.""" # There is no __neq__ implemented! assert not(makeSRHandler('@@foo.html') == makeSRHandler('@@bar.html')) def test_manager__SearchResultHandler____eq____3(): """It is not equal to anything else.""" # There is no __neq__ implemented! assert not(makeSRHandler(None) == object()) def test_manager__SearchResultHandler____hash____1(): """It is hashable. It is only needed for Python 3 where classes having an __eq__ method do not have a __hash__ method. """ assert hash(makeSRHandler(None)) is not None
31.416667
75
0.72237
0
0
0
0
0
0
0
0
448
0.39611
eb03b18815a588a66491abb92833213166f65e34
2,271
py
Python
superset/shuju_into_mysql.py
LCM1999/superset_secondary_dev
293e3df9d46ef6096d35ee7d523ce5c7898902bc
[ "Apache-2.0" ]
1
2021-06-29T05:36:30.000Z
2021-06-29T05:36:30.000Z
superset/shuju_into_mysql.py
LCM1999/superset_secondary_dev
293e3df9d46ef6096d35ee7d523ce5c7898902bc
[ "Apache-2.0" ]
null
null
null
superset/shuju_into_mysql.py
LCM1999/superset_secondary_dev
293e3df9d46ef6096d35ee7d523ce5c7898902bc
[ "Apache-2.0" ]
null
null
null
import json import pymysql import random import string import time # def get_data(): # with open('E:\\QQ文档\\1420944066\\FileRecv\\Code (2)\\data\\nice looking data\\与gooddata里重复\\20_30(1).json', 'r') as f: # camera_text = json.load(f) # 解析每一行数据 # print(camera_text) # return camera_text # def data_insert(text): # db = pymysql.connect(host = "localhost",user = "root",password = "lxyroot",database = "superset-test") # cur = db.cursor() # try: # cur.execute("drop table liutu_data") # cur.execute("create table liutu_data(id int,name char(20),fillcolor char(20),time char(20),size_data TINYTEXT)") # except: # cur.execute("create table liutu_data(id int,name char(20),fillcolor char(20),time char(20),size_data TINYTEXT)") # for i in text: # for j in range(0,len(text[0]['size'])): # sql="INSERT INTO liutu_data (id,name,fillcolor,time,size_data) VALUES ('"+str(i['id'])+"','"+i['name']+"','"+i['fillcolor']+"','"+str(j)+"','"+str(i['size'][j])+"');" # cur.execute(sql) # db.commit() # cur.close() def new_table(): db = pymysql.connect(host = "10.0.2.15",user = "mysqluser",password = "mysqlpw",database = "inventory") cur = db.cursor() #cur.execute("drop table refresh_data") cur.execute("create table refresh_data(id int,name char(20),email char(20),view_data char(30))") for i in range(0,30): name = ''.join(random.sample(string.ascii_letters + string.digits, 8)) email = random.choice('abcdefghijklmnopqrstuvwxyz!@#$%^&*()') view_data = random.random()*100 sql="INSERT INTO refresh_data (id,name,email,view_data) VALUES ("+str(i)+",'"+name+"','"+email+"','"+str(view_data)+"');" print(sql) cur.execute(sql) db.commit() return cur,db def data_update(cur,update_num,db): for i in range(0,update_num): view_data = random.random()*100 sql = 'update refresh_data set view_data="'+str(view_data)+'" where id='+str(random.randint(1,30))+';' cur.execute(sql) db.commit() if __name__ == "__main__": cur,db = new_table() i = 0 while 1==1: time.sleep(5) print('one update') data_update(cur,20,db) i = i+1
37.85
180
0.607221
0
0
0
0
0
0
0
0
1,402
0.610361
eb03b84ad235ef7df8266830a1654259db309611
3,290
py
Python
Experiments/create_mean_optimization_sets.py
ariel415el/PerceptualLossGLO-Pytorch
7caa743b719cd95066103a69f3e78a70507de8b5
[ "MIT" ]
null
null
null
Experiments/create_mean_optimization_sets.py
ariel415el/PerceptualLossGLO-Pytorch
7caa743b719cd95066103a69f3e78a70507de8b5
[ "MIT" ]
null
null
null
Experiments/create_mean_optimization_sets.py
ariel415el/PerceptualLossGLO-Pytorch
7caa743b719cd95066103a69f3e78a70507de8b5
[ "MIT" ]
null
null
null
import os import random import cv2 import numpy as np import torch from Experiments.all import load_models, embedd_data, save_batch from GenerativeModels.utils.data_utils import get_dataset device = torch.device("cuda") def sample_latent_neighbors(outputs_dir, models_dir): """Find nearest latent neighbors of data samples and create sets of original/reconstructed similar images """ # Load models n = 32 train_dataset = get_dataset('ffhq', split='train', resize=128, val_percent=0.15) encoder, generator = load_models(device, models_dir) embeddings = embedd_data(train_dataset, encoder, 32, device) for i in [11, 15, 16, 25, 48, 53, 60, 67, 68, 78, 122]: os.makedirs(os.path.join(outputs_dir, os.path.basename(models_dir), f"data_neighbors{i}"), exist_ok=True) dists = torch.norm(embeddings - embeddings[i], dim=1) neighbor_indices = torch.argsort(dists)[:n] neighbors = torch.from_numpy(np.array([train_dataset[x][1] for x in neighbor_indices])) save_batch(neighbors, os.path.join(outputs_dir, os.path.basename(models_dir), f"data_neighbors{i}")) def center_crop_image_to_square(img, edge_perc=None): h = img.shape[0] w = img.shape[1] if h > w: e = int(np.ceil((h - w) / 2)) img = img[e:-e] elif h < w: e = int(np.ceil((w - h) / 2)) img = img[:, e:-e] if edge_perc: z = int(img.shape[0] * edge_perc) img = img[z:-z, z:-z] return img def make_shift_sets(root, edge_size=7, zoom=0.2): for path in os.listdir(root): img = cv2.imread(os.path.join(root, path)) img = center_crop_image_to_square(img, zoom) img = cv2.resize(img, (128+edge_size, 128 + edge_size)) dir_name = os.path.join(root, 'jitters', f"{os.path.splitext(path)[0]}_e-{edge_size}_z-{zoom}") os.makedirs(dir_name, exist_ok=True) for i, (x1, y1) in enumerate([(0, 0), (0, edge_size), (edge_size, 0), (edge_size, edge_size)]): # x1 = np.random.randint(0, edge_size) # y1 = np.random.randint(0, edge_size) img2 = img[y1:img.shape[0] - edge_size + y1] img2 = img2[:, x1:img.shape[1] - edge_size + x1] img2 = cv2.resize(img2, (128, 128)) x = cv2.imwrite(os.path.join(dir_name, f"{i}.png"), img2) print(x) def create_shifted_colorfull_box_images(): im_dim = 128 n_images = 32 box_dim = 32 colors = [[128, 128, 255], [255, 128, 128], [128, 255, 128], [0, 128, 255], [255, 0, 128], [128, 255, 0]] os.makedirs('color_box_dataset', exist_ok=True) for i in range(n_images): x = random.choice(range(0, im_dim - box_dim + 3, 3)) y = random.choice(range(0, im_dim - box_dim + 3, 3)) im = np.ones((im_dim, im_dim, 3)) * 127 im[y:y + box_dim, x:x + box_dim] = colors[i % len(colors)] cv2.imwrite(f"color_box_dataset/{i}.png", im) if __name__ == '__main__': # sample_latent_neighbors("latent_neighbors_sets", 'trained_models/VGG-None_PT') # sample_latent_neighbors("latent_neighbors_sets", 'trained_models/VGG-random') make_shift_sets('/home/ariel/university/PerceptualLoss/PerceptualLossExperiments/style_transfer/imgs/textures') # create_shifted_colorfull_box_images()
39.166667
115
0.643161
0
0
0
0
0
0
0
0
678
0.206079