hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
2665879f29151dd4bf50f5357e2d4d3726e90112
391
py
Python
Google Drive/Learning/Python/DataScience/Classes/Dog.py
mobiusworkspace/mobiuswebsite
73eef1bd4fc07ea318aad431de09eac10fc4da3a
[ "CC-BY-3.0" ]
null
null
null
Google Drive/Learning/Python/DataScience/Classes/Dog.py
mobiusworkspace/mobiuswebsite
73eef1bd4fc07ea318aad431de09eac10fc4da3a
[ "CC-BY-3.0" ]
null
null
null
Google Drive/Learning/Python/DataScience/Classes/Dog.py
mobiusworkspace/mobiuswebsite
73eef1bd4fc07ea318aad431de09eac10fc4da3a
[ "CC-BY-3.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Mon Feb 17 01:08:13 2020 @author: OAdeoye """ class Dog: def __init__(self, name): self.name = name def respond_to_command(self, command): if (command == self.name): print(self.name + " is Barking!!!") bingo = Dog("Bingo") bingo.respond_to_command("Bingo") bingo = Dog("Winco") bingo.respond_to_command("Bingo")
19.55
47
0.618926
191
0.488491
0
0
0
0
0
0
128
0.327366
26665c848e7389ad3807abd7e96f3f0161f6a4ff
704
py
Python
tests/test_query.py
tikazyq/google-analytics-api-wrapper
91ffc1d6b4cb810aea20541153d64730873903b9
[ "MIT" ]
6
2015-03-11T01:38:54.000Z
2021-07-09T21:40:12.000Z
tests/test_query.py
QPC-database/google-analytics-api-wrapper
91ffc1d6b4cb810aea20541153d64730873903b9
[ "MIT" ]
null
null
null
tests/test_query.py
QPC-database/google-analytics-api-wrapper
91ffc1d6b4cb810aea20541153d64730873903b9
[ "MIT" ]
1
2021-07-09T21:40:13.000Z
2021-07-09T21:40:13.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- import unittest from datetime import datetime, timedelta from analytics_query import analytics_query as aq START_DATE = (datetime.now() - timedelta(7)).strftime('%Y-%m-%d') END_DATE = (datetime.now() - timedelta(1)).strftime('%Y-%m-%d') start_date = '2015-03-03' end_date = '2015-03-05' def main(): df = aq.get_api_query( start_date=start_date, end_date=end_date, dimensions='ga:transactionId,ga:date,ga:dateHour,ga:campaign,ga:source,ga:hostname', metrics='ga:transactionRevenue,ga:itemRevenue,ga:itemQuantity,ga:transactions', oldest_prf=True, ) print df.head() if __name__ == '__main__': main()
24.275862
92
0.674716
0
0
0
0
0
0
0
0
236
0.335227
2669475d57fe48eb8f470f059b2de2b3e28b5b3e
2,864
py
Python
GameManager.py
redxdev/Matching
6d65933a64bf0f22a18a27c675cb8e95f4161e08
[ "MIT" ]
1
2016-05-06T10:23:24.000Z
2016-05-06T10:23:24.000Z
GameManager.py
redxdev/Matching
6d65933a64bf0f22a18a27c675cb8e95f4161e08
[ "MIT" ]
null
null
null
GameManager.py
redxdev/Matching
6d65933a64bf0f22a18a27c675cb8e95f4161e08
[ "MIT" ]
null
null
null
from WordList import WordList, WordCard import pygame class GameManager: def __init__(self): self.wordList = WordList() self.cards = [] self.badCards = (None, None) self.goodCards = (None, None) self.timer = 0 def startGame(self, pairCount): self.cards = self.wordList.getRandomCards(4) def generateCardPosition(self, screenSize, i): cardW, cardH = screenSize cardW /= 9 cardH /= 5 return ((i % 4) * (cardW * 2) + cardW, int(i / 4) * (cardH * 2) + cardH, cardW, cardH) def draw(self, screen): if self.timer <= 0: bad1, bad2 = self.badCards if bad1 is not None and bad2 is not None: bad1.selected = False bad2.selected = False self.badCards = (None, None) good1, good2 = self.goodCards if good1 is not None and good2 is not None: good1.selected = False good2.selected = False good1.active = False good2.active = False self.goodCards = (None, None) self.checkForGameEnd() if self.timer > 0: self.timer -= 0.08 for i in range(0, len(self.cards)): card = self.cards[i] if card.active: screenW, screenH = screen.get_size() x, y, cardW, cardH = self.generateCardPosition((screenW, screenH), i) card.draw(screen, (x, y), (cardW, cardH), screenW / 64) def onClick(self, screen, x, y): bad1, bad2 = self.badCards if bad1 is not None and bad2 is not None: return good1, good2 = self.goodCards if good1 is not None and good2 is not None: return found = None for i in range(0, len(self.cards)): card = self.cards[i] cx, cy, cw, ch = self.generateCardPosition(screen.get_size(), i) if x >= cx and x <= cx + cw and y >= cy and y <= cy + ch: found = card break if found is not None: self.select(found) def select(self, card): if card.selected: card.selected = False return other = None for c in self.cards: if c.selected: other = c break if other == None: card.selected = True return if other.matches(card): card.selected = True self.goodCards = (card, other) self.timer = 3.0 else: card.selected = True self.badCards = (card, other) self.timer = 3.0 def checkForGameEnd(self): for c in self.cards: if c.active: return self.startGame(4)
28.929293
94
0.50419
2,808
0.980447
0
0
0
0
0
0
0
0
266b073ce320af6c6412a8f34133f369b56ae914
1,687
py
Python
src/main.py
ekim1919/TDAGo
014db546dae3dedb4f7206288333756fc358ed8a
[ "MIT" ]
null
null
null
src/main.py
ekim1919/TDAGo
014db546dae3dedb4f7206288333756fc358ed8a
[ "MIT" ]
null
null
null
src/main.py
ekim1919/TDAGo
014db546dae3dedb4f7206288333756fc358ed8a
[ "MIT" ]
null
null
null
from plot import * from experiments import * import warnings warnings.filterwarnings("ignore") #Ignore warnings for now import sys import os import argparse def main(): parser = argparse.ArgumentParser(description='Analysis of Go Games') parser.add_argument('dir',nargs='*') parser.add_argument('--conn',dest="conn",action='store_true') parser.add_argument('--avg',dest="avg",action='store_true') parser.add_argument('--score',dest="score",action='store_true') parser.add_argument('--anim',dest="anim",action='store_true') args = parser.parse_args() if args.conn: run_conn_routine(args.dir[0]) if args.avg: predict_avg_experi(args.dir[0],args.dir[1]) if args.score: test_score_routine(args.dir[0]) if args.anim: test_anim_routine(args.dir[0]) #test_save_routine(str(argv[0])) if __name__ == '__main__': main() #Test routines #Animation routines #Persistence Diagrams?\ #Go analysis features. #Ideas #How to interpret H_1 points on DGMS? For example, if a point has a earlier,later birthtime vs earlier,later deathtime? How do we interpret this as properties of possible enclosed territory. #We can now start to add points to the white/black board to model obstructions to building territory. A good idea would be to find ways to create "meaningful" boards for analysis of specific advantage properties. #Research more about Go fighting strategies and early,late game caveats #Create a modular framework such that you have TDA-DATA -> plot modules -> customizable plot figure -> analysis interface #Create a caching scheme to cache all sequential computations and diagrams made. See cache-tools
35.145833
212
0.740368
0
0
0
0
0
0
0
0
982
0.582098
266b7396a2ed1939667431e7fe0b116000780021
1,358
py
Python
script/python3/util/env.py
setminami/IrControl
bcdd44b7f6aeca75226cdcfc611dc63032c38949
[ "MIT" ]
null
null
null
script/python3/util/env.py
setminami/IrControl
bcdd44b7f6aeca75226cdcfc611dc63032c38949
[ "MIT" ]
2
2018-09-21T11:53:28.000Z
2018-12-30T03:37:23.000Z
script/python3/util/env.py
setminami/IrControl
bcdd44b7f6aeca75226cdcfc611dc63032c38949
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # this made for python3 from os import environ def expand_env(params, verbose=False): """ dotenv like function, but not dotenv """ for key, val in params.items(): _print('try %s, %s'%(key, val), verbose) if isinstance(val, dict): _print('ORDEREDDICT', verbose) params[key] = expand_env(val, verbose) elif isinstance(val, list): _print('LIST', verbose) params[key] = [expand_env(x, verbose) for x in val] elif isinstance(val, str) and (val.startswith('${') \ and val.endswith('}')): _print('LEAF', verbose) env_key = val[2:-1] if env_key in list(environ.keys()): params[key] = environ[env_key] _print('Overwrite env value {} = {}'.format(val, '***'), verbose) _print('If not fire IFTTT triggers, Plase re-check your own IFTTT key settings.') else: _print('## {} not exported for {}. Please check your yaml file and env. ##'.format(env_key, key), verbose) _print('Env {} vs keys = {}'.format(env_key, list(environ.keys())), verbose) exit(1) else: _print('?? %s TYPE is %s'%(val, type(val)), verbose) return params def _print(msg, v=False): if v: print(msg)
39.941176
122
0.54271
0
0
0
0
0
0
0
0
348
0.256259
266c5f9566178c353cbde59b14658db79e486f2e
236
py
Python
script/pipeline/setup/setup.py
cpuabuse/py-deployment-automation
aea0c48ac4c5a81f2e027c984ab65f911ad29d0d
[ "0BSD" ]
1
2020-02-23T22:35:28.000Z
2020-02-23T22:35:28.000Z
script/pipeline/setup/setup.py
cpuabuse/py-deployment-automation
aea0c48ac4c5a81f2e027c984ab65f911ad29d0d
[ "0BSD" ]
null
null
null
script/pipeline/setup/setup.py
cpuabuse/py-deployment-automation
aea0c48ac4c5a81f2e027c984ab65f911ad29d0d
[ "0BSD" ]
null
null
null
""" A file for setup. """ # Metadata __author__ = "cpuabuse.com" __copyright__ = "cpuabuse.com 2019" __license__ = "ISC" __version__ = "0.0.1" __email__ = "[email protected]" __status__ = "Development" # Minimum python version is 3.6
18.153846
35
0.711864
0
0
0
0
0
0
0
0
144
0.610169
266efdf5f618ad871cc4108d4a51b575ba968601
6,392
py
Python
Kinkajou/python/admin/opencode.py
app858216291-github/Kinkajou-shop
ee1e841e26407b1dcbd14601e5fe34b6422eba29
[ "MIT" ]
null
null
null
Kinkajou/python/admin/opencode.py
app858216291-github/Kinkajou-shop
ee1e841e26407b1dcbd14601e5fe34b6422eba29
[ "MIT" ]
null
null
null
Kinkajou/python/admin/opencode.py
app858216291-github/Kinkajou-shop
ee1e841e26407b1dcbd14601e5fe34b6422eba29
[ "MIT" ]
null
null
null
from admin.upload import FileUploadField, ImageUploadField from flask_babelex import Babel from flask_admin._compat import urljoin from flask import redirect from flask_admin._compat import quote from flask_admin.contrib.fileadmin import FileAdmin from flask_admin import Admin, BaseView, expose from flask_admin.babel import gettext, lazy_gettext from flask import flash, redirect, abort, request, send_file from flask_admin import form, helpers import os.path as op import flask_login as login from wtforms.widgets import html_params from common import aliyun, tools from setting import Aliyun allowed_file = lambda filename: '.' in filename and filename.rsplit('.', 1)[1] in set( ['png', 'jpg', 'jpeg', 'gif', 'bmp']) def uploadFile(f): if f and allowed_file(f.filename): filname=aliyun.upload(f,'product') r=tools.shopUtil.docManger(f,"https://"+Aliyun.bucketName+".oss-cn-beijing.aliyuncs.com/product/"+filname,"https://"+Aliyun.bucketName+".oss-cn-beijing.aliyuncs.com/product/") return r else: return "filename is null" class MXFileAdmin(FileAdmin): def is_accessible(self): if login.current_user.is_authenticated: if login.current_user.username=='admin': return True return False return False def _save_form_files(self, directory, path, form): super() filename = self._separator.join([directory, form.upload.data.filename]) if self.storage.path_exists(filename): secure_name = self._separator.join([path, form.upload.data.filename]) raise Exception(gettext('File "%(name)s" already exists.', name=secure_name)) else: self.save_file(filename, form.upload.data) self.on_file_upload(directory, path, filename) @expose('/download/<path:path>') def download(self, path=None): """ Download view method. :param path: File path. """ if not self.can_download: abort(404) base_path, directory, path = self._normalize_path(path) # backward compatibility with base_url base_url = self.get_base_url() if base_url: base_url = urljoin(self.get_url('.index_view'), base_url) path=path.replace('\\', '/') print("------1------") print(base_url) print(path) return redirect(urljoin(quote(base_url), quote(path))) directory=directory.replace('\\', '/') print("-------2-----") print(directory) return self.storage.send_file(directory) @expose('/rename/', methods=('GET', 'POST')) def rename(self): """ Rename view method """ form = self.name_form() path = form.path.data if path: base_path, full_path, path = self._normalize_path(path) return_url = self._get_dir_url('.index_view', op.dirname(path)) else: return redirect(self.get_url('.index_view')) if not self.can_rename: flash(gettext('Renaming is disabled.'), 'error') return redirect(return_url) if not self.is_accessible_path(path): flash(gettext('Permission denied.'), 'error') return redirect(self._get_dir_url('.index_view')) if not self.storage.path_exists(full_path): flash(gettext('Path does not exist.'), 'error') return redirect(return_url) if self.validate_form(form): try: dir_base = op.dirname(full_path) filename = form.name.data # print(fi) self.storage.rename_path(full_path, self._separator.join([dir_base, filename])) self.on_rename(full_path, dir_base, filename) flash(gettext('Successfully renamed "%(src)s" to "%(dst)s"', src=op.basename(path), dst=filename), 'success') except Exception as ex: flash(gettext('Failed to rename: %(error)s', error=ex), 'error') return redirect(return_url) else: helpers.flash_errors(form, message='Failed to rename: %(error)s') if self.rename_modal and request.args.get('modal'): template = self.rename_modal_template else: template = self.rename_template return self.render(template, form=form, path=op.dirname(path), name=op.basename(path), dir_url=return_url, header_text=gettext('Rename %(name)s', name=op.basename(path))) from flask_admin.helpers import get_url from flask_admin._compat import string_types, urljoin class MxImageUploadField(ImageUploadField): def _save_file(self, data, filename): path = self._get_path(filename) data.seek(0) filename=uploadFile(data) return filename # def __call__(self, field, **kwargs): # kwargs.setdefault('id', field.id) # kwargs.setdefault('name', field.name) # # args = { # 'text': html_params(type='hidden', # value=field.data, # name=field.name), # 'file': html_params(type='file', # **kwargs), # 'marker': '_%s-delete' % field.name # } # # if field.data and isinstance(field.data, string_types): # url = self.get_url(field) # args['image'] = html_params(src=url) # # template = self.data_template # else: # template = self.empty_template # print(template % args) # return Markup(template % args) def get_url(self, field): if field.thumbnail_size: filename = field.thumbnail_fn(field.data) else: filename = field.data if field.url_relative_path: filename = urljoin(field.url_relative_path, filename) return get_url(field.endpoint, filename=filename)
37.380117
184
0.571339
5,181
0.810544
0
0
2,991
0.467929
0
0
1,497
0.234199
267010ecd5efb0c3498de085c2712903abc79773
4,137
py
Python
liminal/runners/airflow/operators/kubernetes_pod_operator_with_input_output.py
aviemzur/incubator-liminal
88174a6fe519f9a6052f6e5d366a37a88a915ee4
[ "Apache-2.0" ]
1
2021-03-24T08:23:03.000Z
2021-03-24T08:23:03.000Z
liminal/runners/airflow/operators/kubernetes_pod_operator_with_input_output.py
liorsav/incubator-liminal
88174a6fe519f9a6052f6e5d366a37a88a915ee4
[ "Apache-2.0" ]
null
null
null
liminal/runners/airflow/operators/kubernetes_pod_operator_with_input_output.py
liorsav/incubator-liminal
88174a6fe519f9a6052f6e5d366a37a88a915ee4
[ "Apache-2.0" ]
null
null
null
import json from airflow.contrib.operators.kubernetes_pod_operator import KubernetesPodOperator def _split_list(seq, num): k, m = divmod(len(seq), num) return list( (seq[i * k + min(i, m):(i + 1) * k + min(i + 1, m)] for i in range(num)) ) _IS_SPLIT_KEY = 'is_split' class PrepareInputOperator(KubernetesPodOperator): def __init__(self, input_type=None, input_path=None, split_input=False, executors=1, *args, **kwargs): namespace = kwargs.pop('namespace') image = kwargs.pop('image') name = kwargs.pop('name') super().__init__( namespace=namespace, image=image, name=name, *args, **kwargs) self.input_type = input_type self.input_path = input_path self.executors = executors self.split_input = split_input def execute(self, context): input_dict = {} self.log.info(f'config type: {self.input_type}') ti = context['task_instance'] if self.input_type: if self.input_type == 'file': input_dict = {} # future feature: return config from file elif self.input_type == 'sql': input_dict = {} # future feature: return from sql config elif self.input_type == 'task': self.log.info(self.input_path) input_dict = ti.xcom_pull(task_ids=self.input_path) elif self.input_type == 'static': input_dict = json.loads(self.input_path) else: raise ValueError(f'Unknown config type: {self.input_type}') run_id = context['dag_run'].run_id print(f'run_id = {run_id}') if input_dict: self.log.info(f'Generated input: {input_dict}') if self.split_input: input_splits = _split_list(input_dict, self.executors) numbered_splits = list( zip(range(len(input_splits)), input_splits) ) self.log.info(numbered_splits) ti.xcom_push(key=_IS_SPLIT_KEY, value=True) return input_splits else: return input_dict else: return {} def run_pod(self, context): return super().execute(context) class KubernetesPodOperatorWithInputAndOutput(KubernetesPodOperator): """ TODO: pydoc """ _LIMINAL_INPUT_ENV_VAR = 'LIMINAL_INPUT' def __init__(self, task_split, input_task_id=None, *args, **kwargs): namespace = kwargs.pop('namespace') image = kwargs.pop('image') name = kwargs.pop('name') super().__init__( namespace=namespace, image=image, name=name, *args, **kwargs) self.input_task_id = input_task_id self.task_split = task_split def execute(self, context): task_input = {} if self.input_task_id: ti = context['task_instance'] self.log.info(f'Fetching input for task {self.task_split}.') task_input = ti.xcom_pull(task_ids=self.input_task_id) is_split = ti.xcom_pull(task_ids=self.input_task_id, key=_IS_SPLIT_KEY) self.log.info(f'is_split = {is_split}') if is_split: self.log.info(f'Fetching split {self.task_split} of input.') task_input = task_input[self.task_split] if task_input: self.log.info(f'task input = {task_input}') self.env_vars.update({self._LIMINAL_INPUT_ENV_VAR: json.dumps(task_input)}) else: self.env_vars.update({self._LIMINAL_INPUT_ENV_VAR: '{}'}) self.log.info(f'Empty input for task {self.task_split}.') run_id = context['dag_run'].run_id print(f'run_id = {run_id}') self.env_vars.update({'run_id': run_id}) return super().execute(context)
28.93007
87
0.555958
3,839
0.927967
0
0
0
0
0
0
596
0.144066
2670f782ce4049f02c248c80f13a94aafff1be8d
1,440
py
Python
game/content/ghplots/__init__.py
AmkG/gearhead-caramel
0238378295a09b4b33adb2ec0854fa06b0ad7b1b
[ "Apache-2.0" ]
null
null
null
game/content/ghplots/__init__.py
AmkG/gearhead-caramel
0238378295a09b4b33adb2ec0854fa06b0ad7b1b
[ "Apache-2.0" ]
null
null
null
game/content/ghplots/__init__.py
AmkG/gearhead-caramel
0238378295a09b4b33adb2ec0854fa06b0ad7b1b
[ "Apache-2.0" ]
null
null
null
import inspect from . import actionscenes from . import dd_combatmission from . import dd_customobjectives from . import dd_distanttown from . import dd_homebase from . import dd_intro from . import dd_lancedev from . import dd_main from . import dd_roadedge from . import dd_roadedge_propp from . import dd_roadstops from . import dd_tarot from . import dd_tarotsupport from . import encounters from . import lancemates from . import missionbuilder from . import mocha from . import recovery from . import utility from game.content import mechtarot, PLOT_LIST, UNSORTED_PLOT_LIST, CARDS_BY_NAME from pbge.plots import Plot def harvest( mod ): for name in dir( mod ): o = getattr( mod, name ) if inspect.isclass( o ) and issubclass( o , Plot ) and o is not Plot and o is not mechtarot.TarotCard: PLOT_LIST[ o.LABEL ].append( o ) UNSORTED_PLOT_LIST.append( o ) # print o.__name__ if issubclass(o,mechtarot.TarotCard): CARDS_BY_NAME[o.__name__] = o harvest(actionscenes) harvest(dd_combatmission) harvest(dd_customobjectives) harvest(dd_distanttown) harvest(dd_homebase) harvest(dd_intro) harvest(dd_lancedev) harvest(dd_main) harvest(dd_roadedge) harvest(dd_roadedge_propp) harvest(dd_roadstops) harvest(dd_tarot) harvest(dd_tarotsupport) harvest(encounters) harvest(lancemates) harvest(missionbuilder) harvest(mocha) harvest(recovery) harvest(utility)
26.181818
110
0.758333
0
0
0
0
0
0
0
0
18
0.0125
2671a284c0ed4b2cd6f0faa0d1f0db0edd38447c
27,696
py
Python
reV/handlers/collection.py
pjstanle/reV
c22c620749747022a65d2a98a99beef804849ee6
[ "BSD-3-Clause" ]
37
2020-03-04T05:24:23.000Z
2022-02-24T14:39:49.000Z
reV/handlers/collection.py
pjstanle/reV
c22c620749747022a65d2a98a99beef804849ee6
[ "BSD-3-Clause" ]
174
2020-03-03T18:18:53.000Z
2022-03-08T22:00:40.000Z
reV/handlers/collection.py
pjstanle/reV
c22c620749747022a65d2a98a99beef804849ee6
[ "BSD-3-Clause" ]
16
2020-08-10T13:43:36.000Z
2021-11-19T22:43:36.000Z
# -*- coding: utf-8 -*- """ Base class to handle collection of profiles and means across multiple .h5 files """ import logging import numpy as np import os import sys import psutil import pandas as pd import time import shutil from warnings import warn from reV.handlers.outputs import Outputs from reV.utilities.exceptions import (CollectionRuntimeError, CollectionValueError, CollectionWarning) from reV.utilities import log_versions from rex.utilities.loggers import log_mem logger = logging.getLogger(__name__) class DatasetCollector: """ Class to collect single datasets from several source files into a final output file. """ def __init__(self, h5_file, source_files, gids, dset_in, dset_out=None, mem_util_lim=0.7): """ Parameters ---------- h5_file : str Path to h5_file into which dataset is to be collected source_files : list List of source filepaths. gids : list list of gids to be collected dset_in : str Dataset to collect dset_out : str Dataset into which collected data is to be written mem_util_lim : float Memory utilization limit (fractional). This sets how many sites will be collected at a time. """ self._h5_file = h5_file self._source_files = source_files self._gids = gids self._dset_in = dset_in if dset_out is None: dset_out = dset_in self._dset_out = dset_out tot_mem = psutil.virtual_memory().total self._mem_avail = mem_util_lim * tot_mem self._attrs, self._axis, self._site_mem_req = self._pre_collect() logger.debug('Available memory for collection is {} bytes' .format(self._mem_avail)) logger.debug('Site memory requirement is: {} bytes' .format(self._site_mem_req)) @staticmethod def parse_meta(h5_file): """ Extract and convert meta data from a rec.array to pandas.DataFrame Parameters ---------- h5_file : str Path to .h5 file from which meta is to be parsed Returns ------- meta : pandas.DataFrame Portion of meta data corresponding to sites in h5_file """ with Outputs(h5_file, mode='r') as f: meta = f.meta return meta @staticmethod def _get_site_mem_req(shape, dtype, n=100): """Get the memory requirement to collect one site from a dataset of shape and dtype Parameters ---------- shape : tuple Shape of dataset to be collected (n_time, n_sites) dtype : np.dtype Numpy dtype of dataset (disk dtype) n : int Number of sites to prototype the memory req with. Returns ------- site_mem : float Memory requirement in bytes for one site from a dataset with shape and dtype. """ m = 1 if len(shape) > 1: m = shape[0] site_mem = sys.getsizeof(np.ones((m, n), dtype=dtype)) / n return site_mem def _pre_collect(self): """Run a pre-collection check and get relevant dset attrs. Returns ------- attrs : dict Dictionary of dataset attributes for the dataset being collected. axis : int Axis size (1 is 1D array, 2 is 2D array) site_mem_req : float Memory requirement in bytes to collect a single site from one source file. """ with Outputs(self._source_files[0], mode='r') as f: shape, dtype, chunks = f.get_dset_properties(self._dset_in) attrs = f.get_attrs(self._dset_in) axis = len(f[self._dset_in].shape) with Outputs(self._h5_file, mode='a') as f: if axis == 1: dset_shape = (len(f),) elif axis == 2: if 'time_index' in f.datasets: dset_shape = f.shape else: m = ("'time_index' must be combined " "before profiles can be " "combined.") logger.error(m) raise CollectionRuntimeError(m) else: m = ('Cannot collect dset "{}" with ' 'axis {}'.format(self._dset_in, axis)) logger.error(m) raise CollectionRuntimeError(m) if self._dset_out not in f.datasets: f._create_dset(self._dset_out, dset_shape, dtype, chunks=chunks, attrs=attrs) site_mem_req = self._get_site_mem_req(shape, dtype) return attrs, axis, site_mem_req @staticmethod def _get_gid_slice(gids_out, source_gids, fn_source): """Find the site slice that the chunked set of source gids belongs to. Parameters ---------- gids_out : list List of resource GIDS in the final output meta data f_out source_gids : list List of resource GIDS in one chunk of source data. fn_source : str Source filename for warning printout. Returns ------- site_slice : slice | np.ndarray Slice in the final output file to write data to from source gids. If gids in destination file are non-sequential, a boolean array of indexes is returned and a warning is printed. """ locs = np.where(np.isin(gids_out, source_gids))[0] if not any(locs): e = ('DatasetCollector could not locate source gids in ' 'output gids. \n\t Source gids: {} \n\t Output gids: {}' .format(source_gids, gids_out)) logger.error(e) raise CollectionRuntimeError(e) sequential_locs = np.arange(locs.min(), locs.max() + 1) if not len(locs) == len(sequential_locs): w = ('GID indices for source file "{}" are not ' 'sequential in destination file!'.format(fn_source)) logger.warning(w) warn(w, CollectionWarning) site_slice = np.isin(gids_out, source_gids) else: site_slice = slice(locs.min(), locs.max() + 1) return site_slice def _get_source_gid_chunks(self, f_source): """Split the gids from the f_source into chunks based on memory req. Parameters ---------- f_source : reV.handlers.outputs.Output Source file handler Returns ------- all_source_gids : list List of all source gids to be collected source_gid_chunks : list List of source gid chunks to collect. """ all_source_gids = f_source.get_meta_arr('gid') mem_req = (len(all_source_gids) * self._site_mem_req) if mem_req > self._mem_avail: n = 2 while True: source_gid_chunks = np.array_split(all_source_gids, n) new_mem_req = (len(source_gid_chunks[0]) * self._site_mem_req) if new_mem_req > self._mem_avail: n += 1 else: logger.debug('Collecting dataset "{}" in {} chunks with ' 'an estimated {} bytes in each chunk ' '(mem avail limit is {} bytes).' .format(self._dset_in, n, new_mem_req, self._mem_avail)) break else: source_gid_chunks = [all_source_gids] return all_source_gids, source_gid_chunks def _collect_chunk(self, all_source_gids, source_gids, f_out, f_source, fp_source): """Collect one set of source gids from f_source to f_out. Parameters ---------- all_source_gids : list List of all source gids to be collected source_gids : np.ndarray | list Source gids to be collected f_out : reV.handlers.outputs.Output Output file handler f_source : reV.handlers.outputs.Output Source file handler fp_source : str Source filepath """ out_slice = self._get_gid_slice(self._gids, source_gids, os.path.basename(fp_source)) source_i0 = np.where(all_source_gids == np.min(source_gids))[0][0] source_i1 = np.where(all_source_gids == np.max(source_gids))[0][0] source_slice = slice(source_i0, source_i1 + 1) source_indexer = np.isin(source_gids, self._gids) logger.debug('\t- Running low mem collection of "{}" for ' 'output site {} from source site {} and file : {}' .format(self._dset_in, out_slice, source_slice, os.path.basename(fp_source))) try: if self._axis == 1: data = f_source[self._dset_in, source_slice] if not all(source_indexer): data = data[source_indexer] f_out[self._dset_out, out_slice] = data elif self._axis == 2: data = f_source[self._dset_in, :, source_slice] if not all(source_indexer): data = data[:, source_indexer] f_out[self._dset_out, :, out_slice] = data except Exception as e: logger.exception('Failed to collect source file {}. ' 'Raised the following exception:\n{}' .format(os.path.basename(fp_source), e)) raise e def _collect(self): """Simple & robust serial collection optimized for low memory usage.""" with Outputs(self._h5_file, mode='a') as f_out: for fp in self._source_files: with Outputs(fp, mode='r') as f_source: x = self._get_source_gid_chunks(f_source) all_source_gids, source_gid_chunks = x for source_gids in source_gid_chunks: self._collect_chunk(all_source_gids, source_gids, f_out, f_source, fp) log_mem(logger, log_level='DEBUG') @classmethod def collect_dset(cls, h5_file, source_files, gids, dset_in, dset_out=None, mem_util_lim=0.7): """Collect a single dataset from a list of source files into a final output file. Parameters ---------- h5_file : str Path to h5_file into which dataset is to be collected source_files : list List of source filepaths. gids : list list of gids to be collected dset_in : str Dataset to collect dset_out : str Dataset into which collected data is to be written mem_util_lim : float Memory utilization limit (fractional). This sets how many sites will be collected at a time. """ dc = cls(h5_file, source_files, gids, dset_in, dset_out=dset_out, mem_util_lim=mem_util_lim) dc._collect() class Collector: """ Class to handle the collection and combination of .h5 files """ def __init__(self, h5_file, h5_dir, project_points, file_prefix=None, clobber=False): """ Parameters ---------- h5_file : str Path to .h5 file into which data will be collected h5_dir : str Root directory containing .h5 files to combine project_points : str | slice | list | pandas.DataFrame | None Project points that correspond to the full collection of points contained in the .h5 files to be collected. None if points list is to be ignored (collect all data in h5_files) file_prefix : str .h5 file prefix, if None collect all files in h5_dir clobber : bool Flag to purge .h5 file if it already exists """ log_versions(logger) if clobber: if os.path.isfile(h5_file): warn('{} already exists and is being replaced'.format(h5_file), CollectionWarning) os.remove(h5_file) self._h5_out = h5_file ignore = os.path.basename(self._h5_out) self._h5_files = self.find_h5_files(h5_dir, file_prefix=file_prefix, ignore=ignore) if project_points is not None: self._gids = self.parse_project_points(project_points) else: self._gids = self.parse_gids_from_files(self._h5_files) self.combine_meta() @staticmethod def find_h5_files(h5_dir, file_prefix=None, ignore=None): """ Search h5_dir for .h5 file, return sorted If file_prefix is not None, only return .h5 files with given prefix Parameters ---------- h5_dir : str Root directory to search file_prefix : str Prefix for .h5 file in h5_dir, if None return all .h5 files ignore : str | list | NoneType File name(s) to ignore. """ if not isinstance(ignore, list): ignore = [ignore] h5_files = [] logger.debug('Looking for source files in {}'.format(h5_dir)) for file in os.listdir(h5_dir): if file.endswith('.h5'): if file_prefix is not None: if file.startswith(file_prefix) and file not in ignore: logger.debug('\t- Found source file to collect: {}' .format(file)) h5_files.append(os.path.join(h5_dir, file)) elif file not in ignore: logger.debug('\t- Found source file to collect: {}' .format(file)) h5_files.append(os.path.join(h5_dir, file)) h5_files = sorted(h5_files) logger.debug('Final list of {} source files: {}' .format(len(h5_files), h5_files)) return h5_files @staticmethod def parse_project_points(project_points): """ Extract resource gids from project points Parameters ---------- project_points : str | slice | list | pandas.DataFrame Reference to resource points that were processed and need collecting Returns ------- gids : list List of resource gids that are to be collected """ if isinstance(project_points, str): gids = pd.read_csv(project_points)['gid'].values elif isinstance(project_points, pd.DataFrame): gids = project_points['gid'].values elif isinstance(project_points, list): gids = project_points elif isinstance(project_points, slice): s = project_points.start if s is None: s = 0 e = project_points.stop if e is None: m = "slice must be bounded!" logger.error(m) raise CollectionValueError(m) step = project_points.step if step is None: step = 1 gids = list(range(s, e, step)) else: m = 'Cannot parse project_points' logger.error(m) raise CollectionValueError(m) gids = sorted([int(g) for g in gids]) return gids @staticmethod def parse_gids_from_files(h5_files): """ Extract a sorted gid list from a list of h5_files. Parameters ---------- h5_files : list List of h5 files to be collected. Returns ------- gids : list List of sorted resource gids to be collected. """ meta = [DatasetCollector.parse_meta(file) for file in h5_files] meta = pd.concat(meta, axis=0) gids = list(set(meta['gid'].values.tolist())) gids = sorted([int(g) for g in gids]) return gids def get_dset_shape(self, dset_name): """ Extract the dataset shape from the first file in the collection list. Parameters ---------- dset_name : str Dataset to be collected whose shape is in question. Returns ------- shape : tuple Dataset shape tuple. """ with Outputs(self.h5_files[0], mode='r') as f: shape = f.shapes[dset_name] return shape @property def h5_files(self): """ List of .h5 files to be combined Returns ------- list """ return self._h5_files @property def gids(self): """ List of gids corresponding to all sites to be combined Returns ------- list """ return self._gids def combine_time_index(self): """ Extract time_index, None if not present in .h5 files """ with Outputs(self.h5_files[0], mode='r') as f: if 'time_index' in f.datasets: time_index = f.time_index attrs = f.get_attrs('time_index') else: time_index = None warn("'time_index' was not processed as it is not " "present in .h5 files to be combined.", CollectionWarning) if time_index is not None: with Outputs(self._h5_out, mode='a') as f: f._set_time_index('time_index', time_index, attrs=attrs) def _check_meta(self, meta): """ Check combined meta against self._gids to make sure all sites are present in self._h5_files Parameters ---------- meta : pandas.DataFrame DataFrame of combined meta from all files in self._h5_files Parameters ---------- meta : pandas.DataFrame DataFrame of combined meta from all files in self._h5_files. Duplicate GIDs are dropped and a warning is raised. """ meta_gids = meta['gid'].values gids = np.array(self.gids) missing = gids[~np.in1d(gids, meta_gids)] if any(missing): # TODO: Write missing gids to disk to allow for automated re-run m = "gids: {} are missing".format(missing) logger.error(m) raise CollectionRuntimeError(m) if len(set(meta_gids)) != len(meta): m = ('Meta of length {} has {} unique gids! ' 'There are duplicate gids in the source file list: {}' .format(len(meta), len(set(meta_gids)), self.h5_files)) logger.warning(m) warn(m, CollectionWarning) meta = meta.drop_duplicates(subset='gid', keep='last') meta = meta.sort_values('gid') meta = meta.reset_index(drop=True) return meta def _purge_chunks(self): """Remove the chunked files (after collection). Will not delete files if any datasets were not collected.""" with Outputs(self._h5_out, mode='r') as out: dsets_collected = out.datasets with Outputs(self.h5_files[0], mode='r') as out: dsets_source = out.datasets missing = [d for d in dsets_source if d not in dsets_collected] if any(missing): w = ('Not purging chunked output files. These dsets ' 'have not been collected: {}'.format(missing)) warn(w, CollectionWarning) logger.warning(w) else: for fpath in self.h5_files: os.remove(fpath) def _move_chunks(self, sub_dir): """Move the chunked files to a sub dir (after collection). Parameters ---------- sub_dir : str | None Sub directory name to move chunks to. None to not move files. """ if sub_dir is not None: for fpath in self.h5_files: base_dir, fn = os.path.split(fpath) new_dir = os.path.join(base_dir, sub_dir) if not os.path.exists(new_dir): os.makedirs(new_dir) new_fpath = os.path.join(new_dir, fn) shutil.move(fpath, new_fpath) def combine_meta(self): """ Load and combine meta data from .h5 """ with Outputs(self._h5_out, mode='a') as f: if 'meta' in f.datasets: self._check_meta(f.meta) else: with Outputs(self.h5_files[0], mode='r') as f_in: global_attrs = f_in.get_attrs() meta_attrs = f_in.get_attrs('meta') for key, value in global_attrs.items(): f._h5.attrs[key] = value meta = [DatasetCollector.parse_meta(file) for file in self.h5_files] meta = pd.concat(meta, axis=0) meta = self._check_meta(meta) logger.info('Writing meta data with shape {}' .format(meta.shape)) f._set_meta('meta', meta, attrs=meta_attrs) @classmethod def collect(cls, h5_file, h5_dir, project_points, dset_name, dset_out=None, file_prefix=None, mem_util_lim=0.7): """ Collect dataset from h5_dir to h5_file Parameters ---------- h5_file : str Path to .h5 file into which data will be collected h5_dir : str Root directory containing .h5 files to combine project_points : str | slice | list | pandas.DataFrame | None Project points that correspond to the full collection of points contained in the .h5 files to be collected. None if points list is to be ignored (collect all data in h5_files) dset_name : str Dataset to be collected. If source shape is 2D, time index will be collected. dset_out : str Dataset to collect means into file_prefix : str .h5 file prefix, if None collect all files on h5_dir mem_util_lim : float Memory utilization limit (fractional). This sets how many sites will be collected at a time. """ if file_prefix is None: h5_files = "*.h5" else: h5_files = "{}*.h5".format(file_prefix) logger.info('Collecting dataset "{}" from {} files in {} to {}' .format(dset_name, h5_files, h5_dir, h5_file)) ts = time.time() clt = cls(h5_file, h5_dir, project_points, file_prefix=file_prefix, clobber=True) logger.debug("\t- 'meta' collected") dset_shape = clt.get_dset_shape(dset_name) if len(dset_shape) > 1: clt.combine_time_index() logger.debug("\t- 'time_index' collected") DatasetCollector.collect_dset(clt._h5_out, clt.h5_files, clt.gids, dset_name, dset_out=dset_out, mem_util_lim=mem_util_lim) logger.debug("\t- Collection of '{}' complete".format(dset_name)) tt = (time.time() - ts) / 60 logger.info('Collection complete') logger.debug('\t- Collection took {:.4f} minutes' .format(tt)) @classmethod def add_dataset(cls, h5_file, h5_dir, dset_name, dset_out=None, file_prefix=None, mem_util_lim=0.7): """ Collect and add dataset to h5_file from h5_dir Parameters ---------- h5_file : str Path to .h5 file into which data will be collected h5_dir : str Root directory containing .h5 files to combine dset_name : str Dataset to be collected. If source shape is 2D, time index will be collected. dset_out : str Dataset to collect means into file_prefix : str .h5 file prefix, if None collect all files on h5_dir mem_util_lim : float Memory utilization limit (fractional). This sets how many sites will be collected at a time. """ if file_prefix is None: h5_files = "*.h5" else: h5_files = "{}*.h5".format(file_prefix) logger.info('Collecting "{}" from {} files in {} and adding to {}' .format(dset_name, h5_files, h5_dir, h5_file)) ts = time.time() with Outputs(h5_file, mode='r') as f: points = f.meta clt = cls(h5_file, h5_dir, points, file_prefix=file_prefix) dset_shape = clt.get_dset_shape(dset_name) if len(dset_shape) > 1: clt.combine_time_index() logger.debug("\t- 'time_index' collected") DatasetCollector.collect_dset(clt._h5_out, clt.h5_files, clt.gids, dset_name, dset_out=dset_out, mem_util_lim=mem_util_lim) logger.debug("\t- Collection of '{}' complete".format(dset_name)) tt = (time.time() - ts) / 60 logger.info('{} collected'.format(dset_name)) logger.debug('\t- Collection took {:.4f} minutes' .format(tt)) @classmethod def purge_chunks(cls, h5_file, h5_dir, project_points, file_prefix=None): """ Purge (remove) chunked files from h5_dir (after collection). Parameters ---------- h5_file : str Path to .h5 file into which data will be collected h5_dir : str Root directory containing .h5 files to combine project_points : str | slice | list | pandas.DataFrame Project points that correspond to the full collection of points contained in the .h5 files to be collected file_prefix : str .h5 file prefix, if None collect all files on h5_dir """ clt = cls(h5_file, h5_dir, project_points, file_prefix=file_prefix) clt._purge_chunks() logger.info('Purged chunk files from {}'.format(h5_dir)) @classmethod def move_chunks(cls, h5_file, h5_dir, project_points, file_prefix=None, sub_dir='chunk_files'): """ Move chunked files from h5_dir (after collection) to subdir. Parameters ---------- h5_file : str Path to .h5 file into which data will be collected h5_dir : str Root directory containing .h5 files to combine project_points : str | slice | list | pandas.DataFrame Project points that correspond to the full collection of points contained in the .h5 files to be collected file_prefix : str .h5 file prefix, if None collect all files on h5_dir sub_dir : str | None Sub directory name to move chunks to. None to not move files. """ clt = cls(h5_file, h5_dir, project_points, file_prefix=file_prefix) clt._move_chunks(sub_dir) logger.info('Moved chunk files from {} to sub_dir: {}' .format(h5_dir, sub_dir))
35.326531
79
0.55239
27,096
0.978336
0
0
13,541
0.488915
0
0
12,417
0.448332
267391fe6f529c4f578f96fdbf6f647ec6e040d3
964
py
Python
utility/templatetags/to_price.py
hosseinmoghimi/waiter
9f5f332b6f252a29aa14f67655b423fd9c40fba3
[ "MIT" ]
1
2021-12-02T11:16:53.000Z
2021-12-02T11:16:53.000Z
utility/templatetags/to_price.py
hosseinmoghimi/waiter
9f5f332b6f252a29aa14f67655b423fd9c40fba3
[ "MIT" ]
null
null
null
utility/templatetags/to_price.py
hosseinmoghimi/waiter
9f5f332b6f252a29aa14f67655b423fd9c40fba3
[ "MIT" ]
null
null
null
from core.errors import LEO_ERRORS from django import template register = template.Library() from utility.currency import to_price as to_price_origin from utility.num import to_horuf as to_horuf_num,to_tartib as to_tartib_ @register.filter def to_price(value): return to_price_origin(value=value) @register.filter def to_horuf(value): return to_horuf_num(value) @register.filter def to_tartib(value): return to_tartib_(value) @register.filter def to_price_pure(value): """converts int to string""" try: sign='' if value<0: value=0-value sign='- ' a=separate(value) return sign+a except: # return LEO_ERRORS.error_to_price_template_tag return "" def separate(price): try: price=int(price) except: return None if price<1000: return str(price) else: return separate(price/1000)+','+str(price)[-3:]
18.538462
72
0.65249
0
0
0
0
516
0.53527
0
0
86
0.089212
2674b3c10e1e9d8ebf4b7b0491fb0687920f7025
3,119
py
Python
Python/maximal-rectangle.py
RideGreg/LeetCode
b70818b1e6947bf29519a24f78816e022ebab59e
[ "MIT" ]
1
2022-01-30T06:55:28.000Z
2022-01-30T06:55:28.000Z
Python/maximal-rectangle.py
RideGreg/LeetCode
b70818b1e6947bf29519a24f78816e022ebab59e
[ "MIT" ]
null
null
null
Python/maximal-rectangle.py
RideGreg/LeetCode
b70818b1e6947bf29519a24f78816e022ebab59e
[ "MIT" ]
1
2021-12-31T03:56:39.000Z
2021-12-31T03:56:39.000Z
# Time: O(m*n) # Space: O(n) # 85 # Given a 2D binary matrix filled with 0's and 1's, # find the largest rectangle containing all ones and return its area. # Ascending stack solution. class Solution(object): def maximalRectangle(self, matrix): # USE THIS """ :type matrix: List[List[str]] :rtype: int """ def largestRectangleArea(heights): heights.append(0) # KENG:一定要延申到数列末端之外 e.g. [2,4,5] stk, ans = [-1], 0 for i, h in enumerate(heights): while len(stk) > 1 and h <= heights[stk[-1]]: # 右边界确定。相同高度值也弹出,只保留最后一个 last = stk.pop() width = i - 1 - stk[-1] ans = max(ans, heights[last] * width) stk.append(i) return ans if not matrix: return 0 result = 0 heights = [0] * len(matrix[0]) for i in range(len(matrix)): for j in range(len(matrix[0])): heights[j] = heights[j] + 1 if matrix[i][j] == '1' else 0 result = max(result, largestRectangleArea(heights)) return result # DP solution. class Solution2(object): # Time: O(m*n^2) Space: O(n) def maximalRectangle(self, A): # DONT USE: time complexity """ :type matrix: List[List[str]] :rtype: int """ if not A: return 0 m, n, ans = len(A), len(A[0]), 0 dp = [(0,0)] * (n+1) # number of consecutive 1s on left and top direction for i in range(1, m+1): for j in range(1, n+1): if A[i-1][j-1] == '1': dp[j] = (1+dp[j-1][0], 1+dp[j][1]) minHght = float('inf') for k in range(dp[j][0]): minHght = min(minHght, dp[j-k][1]) ans = max(ans, (k+1)*minHght) else: dp[j] = (0, 0) # need to reset because we reuse the storage return ans # Time: O(n^2) Space: O(n) def maximalRectangle2(self, matrix): # hard to understand: 3 dp array L, H, R if not matrix: return 0 result = 0 m, n = len(matrix), len(matrix[0]) L, H, R = [0] * n, [0] * n, [0] * n for i in range(m): left = 0 for j in range(n): if matrix[i][j] == '1': L[j] = max(L[j], left) H[j] += 1 else: L[j] = 0 H[j] = 0 R[j] = n left = j + 1 right = n for j in reversed(range(n)): if matrix[i][j] == '1': R[j] = min(R[j], right) result = max(result, H[j] * (R[j] - L[j])) else: right = j return result if __name__ == "__main__": matrix = ["01101", "11010", "01110", "11110", "11111", "00000"] print(Solution2().maximalRectangle(matrix)) # 9
31.505051
91
0.430907
2,765
0.867043
0
0
0
0
0
0
766
0.240201
2676b926254be1cabd4bc81bb9a3da1c42ddb39a
299
py
Python
Maximum_Increase.py
Milon34/Python_Learning
b24efbba4751ed51758bf6b907e71f384415a9d5
[ "MIT" ]
null
null
null
Maximum_Increase.py
Milon34/Python_Learning
b24efbba4751ed51758bf6b907e71f384415a9d5
[ "MIT" ]
null
null
null
Maximum_Increase.py
Milon34/Python_Learning
b24efbba4751ed51758bf6b907e71f384415a9d5
[ "MIT" ]
null
null
null
n=int(input()) a = [int(s) for s in input().split(' ')] increment=1 max_increment=1 for i in range(1,n): if a[i]>a[i-1]: increment=increment+1 else: max_increment=max(max_increment,increment) increment=1 max_increment=max(max_increment,increment) print(max_increment)
24.916667
50
0.672241
0
0
0
0
0
0
0
0
3
0.010033
2676fe4e4181d8ea15429d8939404231084cca25
8,869
py
Python
makechart.py
preeve9534/signalk-sensor-log
7f6afd188b1ed95dad0b4d798f66d145a1f10978
[ "Apache-2.0" ]
null
null
null
makechart.py
preeve9534/signalk-sensor-log
7f6afd188b1ed95dad0b4d798f66d145a1f10978
[ "Apache-2.0" ]
null
null
null
makechart.py
preeve9534/signalk-sensor-log
7f6afd188b1ed95dad0b4d798f66d145a1f10978
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python from SocketServer import TCPServer, StreamRequestHandler import socket from subprocess import call import datetime import json import re import sys import os CONF = {} RRDTOOL = '/usr/bin/rrdtool' PERIODS = [] CHART_BACKGROUNDCOLOR = '#000000' CHART_CANVASCOLOR = '#000000' CHART_DIRECTORY = '/tmp/' CHART_FONT = 'LEGEND:8:Courier New' CHART_FONTCOLOR = '#804040' CHART_IMAGETYPE = 'SVG' DISPLAYGROUP_LIST = [] RRDDATABASE_DATABASES = [] RRDDATABASE_DIRECTORY = '/tmp' SENSOR_LIST= [] def init(config): global CONF, PERIODS, CHART_BACKGROUNDCOLOR, CHART_CANVASCOLOR, CHART_DIRECTORY, CHART_FONTCOLOR, DISPLAYGROUP_LIST, RRDDATABASE_DATABASES, RRDDATABASE_DIRECTORY, SENSOR_LIST with open(config) as data_file: CONF = json.load(data_file)["configuration"] PERIODS = CONF['rrddatabase']['periods'] CHART_BACKGROUNDCOLOR = CONF["chart"]["backgroundcolor"] CHART_CANVASCOLOR = CONF["chart"]["canvascolor"] CHART_DIRECTORY = CONF['chart']['directory'] CHART_FONTCOLOR = CONF["chart"]["fontcolor"] DISPLAYGROUP_LIST = CONF['displaygroups'] SENSOR_LIST = CONF['paths'] RRDDATABASE_DATABASES = CONF['rrddatabase']['databases'] RRDDATABASE_DIRECTORY = CONF['rrddatabase']['directory'] return True def makeGraph(group, chart, directory): command = "" if group in map(lambda x: x['id'], DISPLAYGROUP_LIST): displayGroup = reduce(lambda a, v: (v if (v['id'] == group) else a), DISPLAYGROUP_LIST, None) if (chart in map(lambda s: s['name'], PERIODS)): dsIds = map(lambda datasource: datasource['datasource'][datasource['datasource'].find(':') + 1:], displayGroup['datasources']) dsDatabases = map(lambda datasource: datasource['datasource'][0: datasource['datasource'].find(':')], displayGroup['datasources']) dsColors = map(lambda datasource: datasource['color'], displayGroup['datasources']) dsNames = map(lambda datasource: datasource['displayname'], displayGroup['datasources']) dsLineTypes = map(lambda datasource: 'AREA' if ('area' in datasource['options']) else 'LINE', displayGroup['datasources']) dsStack = map(lambda datasource: ('stack' in datasource['options']), displayGroup['datasources']) command = RRDTOOL command += " graph '" + directory + "/" + group + "." + chart + "." + CHART_IMAGETYPE.lower() + "'" command += " -T 80" command += " --imgformat " + CHART_IMAGETYPE command += " --font '" + CHART_FONT + "'" command += " --title '" + displayGroup["title"] + "'" command += " --vertical-label '" + displayGroup["ylabel"] + "'" command += " --watermark 'Generated on " + datetime.datetime.now().replace(microsecond=0).isoformat(' ') + "'" command += " --start '" + reduce(lambda a, v: (v['tag'] if (v['name'] == chart) else a), PERIODS,"end-1h") + "'" command += (" --lower-limit=" + displayGroup["ymin"]) if (displayGroup["ymin"] != "") else "" command += (" --upper-limit=" + displayGroup["ymax"]) if (displayGroup["ymax"] != "") else "" command += " --slope-mode" command += " --rigid" command += " --color CANVAS" + CHART_CANVASCOLOR command += " --color BACK" + CHART_BACKGROUNDCOLOR command += " --color FONT" + CHART_FONTCOLOR command += " --full-size-mode" command += " --width=800" command += " --height=300" for index, dsid in enumerate(dsIds): command += " DEF:" + dsid + "=" + RRDDATABASE_DIRECTORY + "/" + dsDatabases[index] + ":" + dsid + ":" + reduce(lambda a, v: (v['consolidate'] if (v['name'] == chart) else a), PERIODS,"AVERAGE") command += (" VDEF:" + dsid + "min=" + dsid + ",MINIMUM") if ("min" in displayGroup["options"]) else "" command += (" VDEF:" + dsid + "max=" + dsid + ",MAXIMUM") if ("max" in displayGroup["options"]) else "" command += (" VDEF:" + dsid + "avg=" + dsid + ",AVERAGE") if ("avg" in displayGroup["options"]) else "" command += (" VDEF:" + dsid + "lst=" + dsid + ",LAST") if ("lst" in displayGroup["options"]) else "" command += (" CDEF:" + dsid + "eeg=" + dsid + "," + str(index * 1.1) + ",+") if ("eeg" in displayGroup["options"]) else "" #//command += " CDEF:" + dsname + "filled=" + dsname + ",UN," + dsname + "avg," + dsname + ",IF"; #command += " CDEF:" + dsid + "filled=" + dsid + ",UN,PREV," + dsid + ",IF" #command += " CDEF:" + dsid + "fixed=" + dsid + "filled," + str(reduce(lambda a, v: (v['seconds'] if (v['name'] == chart) else a), PERIODS,"1")) + ",/" #command += " VDEF:" + dsid + "total=" + dsid + "fixed,TOTAL" comments = reduce(lambda a, v: (a | (v in displayGroup["options"])), ["min","max","avg","lst"], False) command += (" COMMENT:'" + "Data source".ljust(23) + "'") if (comments) else "" command += (" COMMENT:'" + "Min ".rjust(10) + "'") if ("min" in displayGroup["options"]) else "" command += (" COMMENT:'" + "Max ".rjust(10) + "'") if ("max" in displayGroup["options"]) else "" command += (" COMMENT:'" + "Average ".rjust(10) + "'") if ("avg" in displayGroup["options"]) else "" command += (" COMMENT:'" + "Last ".rjust(10) + "'") if ("lst" in displayGroup["options"]) else "" command += (" COMMENT:'\\n'") if (comments) else "" #command += " COMMENT:'" + "Data stream".ljust(19) + "Min ".rjust(13) + "Max ".rjust(14) + "Average ".rjust(14) + "Derived".rjust(13) + "\\n'"; for i, dsid in enumerate(dsIds): plot = (dsid + "eeg") if ("eeg" in displayGroup["options"]) else dsid command += " " + dsLineTypes[i] + ":" + plot + dsColors[i] + ":'" + dsNames[i].ljust(19) + "'" + (":STACK" if (dsStack[i]) else "") command += (" GPRINT:" + dsid + "min:'%10.2lf'") if ("min" in displayGroup["options"]) else "" command += (" GPRINT:" + dsid + "max:'%10.2lf'") if ("max" in displayGroup["options"]) else "" command += (" GPRINT:" + dsid + "avg:'%10.2lf'") if ("avg" in displayGroup["options"]) else "" command += (" GPRINT:" + dsid + "lst:'%10.2lf'") if ("lst" in displayGroup["options"]) else "" #command += (" GPRINT:" + dsid + "total:'%10.2lf\\n'" command += (" COMMENT:'\\n'") if (comments) else "" call(command, shell=True) return command def dropPrivileges(user, group): import pwd, grp # Get the uid/gid from the name runningUid = pwd.getpwnam(user).pw_uid runningGid = grp.getgrnam(group).gr_gid # Remove group privileges os.setgroups([]) # Try setting the new uid/gid os.setgid(runningGid) os.setuid(runningUid) # Reset logging # self.resetLogging() class Handler(StreamRequestHandler): def handle(self): line = self.rfile.readline() while (line): #self.wfile.write(line) line = line.decode('ascii').strip() if (line == "quit"): break parts = re.split('\s+', line) if (len(parts) == 2): makeGraph(parts[0], parts[1], CHART_DIRECTORY) line = self.rfile.readline() class Server(TCPServer): # The constant would be better initialized by a systemd module SYSTEMD_FIRST_SOCKET_FD = 3 def __init__(self, server_address, handler_cls): # Invoke base but omit bind/listen steps (performed by systemd activation!) TCPServer.__init__(self, server_address, handler_cls, bind_and_activate=False) # Override socket self.socket = socket.fromfd(self.SYSTEMD_FIRST_SOCKET_FD, self.address_family, self.socket_type) if __name__ == '__main__': DAEMONISE = False CONFIG = "/root/.signalk/plugin-config-data/sensor-log.json" USER = None GROUP = None args = sys.argv[1:] if (len(args) > 0) and (args[0] == "-"): DAEMONISE = True; args = args[1:] if (len(args) > 1) and (args[0] == "-c"): CONFIG = args[1] args = args[2:] if (len(args) > 1) and (args[0] == "-U"): USER = args[1] args = args[2:] if (len(args) > 1) and (args[0] == "-G"): GROUP = args[1] args = args[2:] if (init(CONFIG)): if (DAEMONISE): if ((USER != None) and (GROUP != None)): dropPrivileges(USER, GROUP) server = Server(('127.0.0.1', 9999), Handler) server.serve_forever() else: if (len(args) > 1): print(makeGraph(args[0], args[1], "."))
49.272222
209
0.560379
915
0.103168
0
0
0
0
0
0
2,558
0.28842
267701db0df3dc5669a6ef8609e548969a09888e
410
py
Python
way/python/exercises/various/turtle_draws/turtle_spiral_name.py
only-romano/junkyard
b60a25b2643f429cdafee438d20f9966178d6f36
[ "MIT" ]
null
null
null
way/python/exercises/various/turtle_draws/turtle_spiral_name.py
only-romano/junkyard
b60a25b2643f429cdafee438d20f9966178d6f36
[ "MIT" ]
null
null
null
way/python/exercises/various/turtle_draws/turtle_spiral_name.py
only-romano/junkyard
b60a25b2643f429cdafee438d20f9966178d6f36
[ "MIT" ]
null
null
null
# цветная спираль из имени пользователя import turtle t = turtle.Pen() turtle.bgcolor("black") colors = ["red", "yellow", "blue", "green"] # gui text input name = turtle.textinput("Введи своё имя", "Как тебя зовут?") for x in range(100): t.pencolor(colors[x%4]) t.penup() t.forward(x*4) t.pendown() t.write(name, font=("Arial", int((x + 4) / 4), "bold")) t.left(92)
22.777778
61
0.592683
0
0
0
0
0
0
0
0
193
0.413276
26796efa4885d9b90f7bb3e4e595ebd4603db189
1,537
py
Python
config/base_config.py
xuyouze/DropNet
edbaeb72075b819b96e1ca66e966999a40d3645e
[ "Apache-2.0" ]
1
2021-06-28T06:27:06.000Z
2021-06-28T06:27:06.000Z
config/base_config.py
xuyouze/DropNet
edbaeb72075b819b96e1ca66e966999a40d3645e
[ "Apache-2.0" ]
null
null
null
config/base_config.py
xuyouze/DropNet
edbaeb72075b819b96e1ca66e966999a40d3645e
[ "Apache-2.0" ]
null
null
null
# coding:utf-8 # @Time : 2019/5/15 # @Author : xuyouze # @File Name : base_config.py import importlib import os import sys import torch import logging from .dataset_config import build_dataset_config from .logger_config import config __all__ = ["BaseConfig"] class BaseConfig(object): def __init__(self): # model component parameters self.checkpoints_dir = "ckp" # dataset name [celebA | lfwa | duke | market] self.dataset_name = "celebA" # self.dataset_name = "lfwa" # self.dataset_name = "duke" # self.dataset_name = "market" # model name [common] self.model_name = "common" # model name [resnet] self.network_name = "resnet" # loss name [focal | ghm-c | drop | bce] # self.loss_name = "drop" # self.loss_name = "focal" # self.loss_name = "ghmc" self.loss_name = "bce" # network initialization type [normal] self.init_type = "normal" self.init_gain = 0.2 # scaling factor for normal # global saving and loading parameters self.batch_size = 100 self.num_threads = 4 self.last_epoch = "last" self.load_iter = 0 self.isTrain = None # dataset parameters self.dataset_config = build_dataset_config(self.dataset_name) self.balance_attr_pos_prop = torch.FloatTensor([0.5] * self.dataset_config.attribute_num) # logging config logging.config.dictConfig(config) self.logger = logging.getLogger("TrainLogger") self.test_logger = logging.getLogger("TestLogger") if not os.path.exists(self.checkpoints_dir): os.makedirs(self.checkpoints_dir)
23.646154
91
0.709824
1,253
0.815224
0
0
0
0
0
0
641
0.417046
267b0451a5289dfdcefad895acd9541e3d77721e
814
py
Python
test/test_utils.py
fact-project/ratescan
69a2eb8b2c66024f10e59d6dbf15c84c9b12ede4
[ "MIT" ]
null
null
null
test/test_utils.py
fact-project/ratescan
69a2eb8b2c66024f10e59d6dbf15c84c9b12ede4
[ "MIT" ]
null
null
null
test/test_utils.py
fact-project/ratescan
69a2eb8b2c66024f10e59d6dbf15c84c9b12ede4
[ "MIT" ]
null
null
null
from fact.io import read_data def test_sumupCountsOfRun(): from ratescan.utils import sumupCountsOfRun df = read_data("test/test.hdf5", key="ratescan") df_summed = sumupCountsOfRun(df) assert df_summed.run_id.unique() == 182 assert len(df_summed.ratescan_trigger_thresholds) == 1000 def test_compileRatescanForRun(): from ratescan.utils import compileRatescanForRun df = read_data("test/test.hdf5", key="ratescan") df = compileRatescanForRun(df, ontime=160) assert df[df["ratescan_trigger_counts"] == 75840]["ratescan_trigger_rate"].unique() == 474.0 # # def test_joinOnTimesFromRunDB(): # from ratescan.utils import joinOnTimesFromRunDB # # df = read_data("test/test.hdf5", key="ratescan") # # df_res = joinOnTimesFromRunDB(df)
29.071429
96
0.701474
0
0
0
0
0
0
0
0
288
0.353808
267b7ae665db4a183786b0a16f0d7887f1bbb20e
4,080
py
Python
rbac/cli/cli_test_auth.py
shawnmckinney/py-fortress
ead12bf9b7e37e923c42ccdadd8fd3c5adf027cf
[ "Apache-2.0" ]
16
2018-03-19T02:19:01.000Z
2021-12-30T15:24:40.000Z
rbac/cli/cli_test_auth.py
shawnmckinney/py-fortress
ead12bf9b7e37e923c42ccdadd8fd3c5adf027cf
[ "Apache-2.0" ]
1
2021-12-18T16:46:04.000Z
2021-12-18T16:46:04.000Z
rbac/cli/cli_test_auth.py
shawnmckinney/py-fortress
ead12bf9b7e37e923c42ccdadd8fd3c5adf027cf
[ "Apache-2.0" ]
2
2018-03-14T21:48:43.000Z
2018-03-19T03:25:40.000Z
''' @copyright: 2022 - Symas Corporation ''' import sys import pickle import argparse from rbac.util import global_ids from rbac.model import Perm, User from rbac import access from rbac.util import RbacError from ..cli.utils import print_user, print_entity from rbac.cli.utils import ( load_entity, add_args, ADD, DELETE, AUTH, CHCK, ROLES, PERMS, SHOW, DROP ) OUT_SESS_FILE = "sess.pickle" def process(args): sess = None result = False user = load_entity (User(), args) perm = load_entity (Perm(), args) print(args.operation) try: if args.operation == AUTH: sess = access.create_session(user, False) result = True elif args.operation == CHCK: sess = un_pickle() result = access.check_access(sess, perm) elif args.operation == ROLES: sess = un_pickle() roles = access.session_roles(sess) for idx, role in enumerate(roles): print_entity(role, role.name + ':' + str(idx)) result = True elif args.operation == PERMS: sess = un_pickle() perms = access.session_perms(sess) for idx, perm in enumerate(perms): print_entity(perm, perm.obj_name + '.' + perm.op_name + ':' + str(idx)) result = True elif args.operation == SHOW: sess = un_pickle() print_entity(sess, 'session') print_user(sess.user, 'user') result = True elif args.operation == ADD: sess = un_pickle() if not args.role: print("error --role required for this op") return False print('role=' + args.role) access.add_active_role(sess, args.role) result = True elif args.operation == DROP: sess = un_pickle() if not args.role: print("error --role required for this op") return False print('role=' + args.role) access.drop_active_role(sess, args.role) result = True else: print('process failed, invalid operation=' + args.operation) if result: print('success') else: print('failed') pickle_it(sess) except RbacError as e: if e.id == global_ids.ACTV_FAILED_DAY: print('failed day of week, id=' + str(e.id) + ', msg=' + e.msg) elif e.id == global_ids.ACTV_FAILED_DATE: print('failed for date, id=' + str(e.id) + ', msg=' + e.msg) elif e.id == global_ids.ACTV_FAILED_TIME: print('failed for time of day, id=' + str(e.id) + ', msg=' + e.msg) elif e.id == global_ids.ACTV_FAILED_TIMEOUT: print('failed inactivity timeout, id=' + str(e.id) + ', msg=' + e.msg) elif e.id == global_ids.ACTV_FAILED_LOCK: print('failed locked date') else: print('RbacError id=' + str(e.id) +', ' + e.msg) def pickle_it(sess): if sess is not None: pickling_on = open(OUT_SESS_FILE,"wb") pickle.dump(sess, pickling_on) pickling_on.close() def un_pickle(): pickle_off = open(OUT_SESS_FILE,"rb") sess = pickle.load(pickle_off) return sess def main(argv=None): '''Command line options.''' if argv is None: argv = sys.argv else: sys.argv.extend(argv) program_name = 'Process py-fortress access commands.' parser = argparse.ArgumentParser(description=program_name) parser.add_argument('operation', metavar='operand', choices=[AUTH,CHCK,ROLES,PERMS,ADD,DELETE,SHOW,DROP], help='operation name') parser.add_argument('-r', '--role', dest='role', help='role name') add_args(parser, User()) add_args(parser, Perm()) args = parser.parse_args() process(args) if __name__ == "__main__": sys.exit(main())
34.576271
132
0.554412
0
0
0
0
0
0
0
0
547
0.134069
267b9ff6b529eb0367e6acbbd247f37b5d0c7a4d
1,678
py
Python
httprider/presenters/utility_functions_presenter.py
iSWORD/http-rider
5d9e5cc8c5166ab58f81d30d21b3ce2497bf09b9
[ "MIT" ]
27
2019-12-20T00:10:28.000Z
2022-03-09T18:04:23.000Z
httprider/presenters/utility_functions_presenter.py
iSWORD/http-rider
5d9e5cc8c5166ab58f81d30d21b3ce2497bf09b9
[ "MIT" ]
6
2019-10-13T08:50:21.000Z
2020-06-05T12:23:08.000Z
httprider/presenters/utility_functions_presenter.py
iSWORD/http-rider
5d9e5cc8c5166ab58f81d30d21b3ce2497bf09b9
[ "MIT" ]
7
2019-08-10T01:38:31.000Z
2021-08-23T05:28:46.000Z
from httprider.core.generators import utility_func_map class UtilityFunctionsPresenter: def __init__(self, view, parent): self.view = view self.parent = parent # update list of functions for f in utility_func_map.keys(): self.view.function_selector.addItem(f) # Event handlers to refresh generated values self.view.function_selector.currentIndexChanged[str].connect( self.transform_selected_text ) self.view.btn_copy_transformed.clicked.connect(self.on_copy_clipboard) def init(self): whole_text = self.parent.text() selected_text = self.parent.selected_text self.view.lbl_selected_text.setText( selected_text or whole_text or "Select some text" ) self.transform_selected_text() def apply_transformation(self, selected_text, func_name): try: return utility_func_map.get(func_name)(selected_text) except Exception as e: return "Error: {}".format(e) def on_copy_clipboard(self): self.view.txt_transformed_text.selectAll() self.view.txt_transformed_text.copy() def transform_selected_text(self): selected_text = self.view.lbl_selected_text.text() func_name = self.view.function_selector.currentText() self.view.txt_transformed_text.setPlainText( self.apply_transformation(selected_text, func_name) ) def get_function(self): selected_text = self.view.lbl_selected_text.text() func_name = self.view.function_selector.currentText() return f'${{utils("{func_name}", "{selected_text}")}}'
34.958333
78
0.6764
1,620
0.965435
0
0
0
0
0
0
146
0.087008
267d4a279fad22068d75718ec410431f6a3cbe63
12,745
py
Python
ensembling_sgd.py
suswei/RLCT
e9e04ca5e64250dfbb94134ec5283286dcdc4358
[ "MIT" ]
null
null
null
ensembling_sgd.py
suswei/RLCT
e9e04ca5e64250dfbb94134ec5283286dcdc4358
[ "MIT" ]
null
null
null
ensembling_sgd.py
suswei/RLCT
e9e04ca5e64250dfbb94134ec5283286dcdc4358
[ "MIT" ]
null
null
null
import argparse import numpy as np import os from numpy.linalg import inv import torch import torch.nn as nn from torch.utils.data import TensorDataset import torch.optim as optim from torch.distributions.multivariate_normal import MultivariateNormal from torch.distributions.uniform import Uniform from torch.distributions.normal import Normal from matplotlib import pyplot as plt #TODO: currently only supports realizable reduced rank regression, need to add realizable tanh def main(): # Training settings parser = argparse.ArgumentParser(description='RLCT Variational Inference') parser.add_argument('--n', type=int, default=500) parser.add_argument('--batchsize', type=int, default=10) parser.add_argument('--epochs', type=int, default=500) parser.add_argument('--H', type=int, default=5) parser.add_argument('--dataset',type=str, choices=['tanh','rr']) parser.add_argument('--prior-std', type=float, default=1.0) parser.add_argument('--y-std', type=float, default=1.0) parser.add_argument('--betasbegin', type=float, default=1.0, help='where beta range should begin') parser.add_argument('--betasend', type=float, default=5.0, help='where beta range should end') parser.add_argument('--numbetas', type=int, default=10, help='how many betas should be swept between betasbegin and betasend') parser.add_argument('--R', type=int, default=5) parser.add_argument('--MC', type=int, default=1) parser.add_argument('--taskid',type=int, default=1) args = parser.parse_args() # %% if args.dataset == 'rr': args.output_dim = 6 args.input_dim = 6 args.H = 6 args.H0 = 3 # args.a_params = torch.transpose( # torch.cat((torch.eye(args.H), torch.ones([args.H, args.input_dim - args.H], dtype=torch.float32)), 1), 0, # 1) # input_dim * H # args.b_params = torch.eye(args.output_dim) a = Normal(0.0, 1.0) args.a_params = 0.2 * a.sample((args.H0, args.input_dim)) b = Normal(0.0, 1.0) args.b_params = 0.2 * b.sample((args.output_dim,args.H0)) m = MultivariateNormal(torch.zeros(args.input_dim), torch.eye(args.input_dim)) # the input_dim=output_dim + 3, output_dim = H (the number of hidden units) X = 3.0*m.sample(torch.Size([2 * args.n])) mean = torch.matmul(torch.matmul(X, args.b_params), args.a_params) y_rv = MultivariateNormal(torch.zeros(args.output_dim), torch.eye(args.output_dim)) y = mean + args.y_std * y_rv.sample(torch.Size([2 * args.n])) # The splitting ratio of training set, validation set, testing set is 0.7:0.15:0.15 train_size = args.n valid_size = int(args.n * 0.5) test_size = 2 * args.n - train_size - valid_size dataset_train, dataset_valid, dataset_test = torch.utils.data.random_split(TensorDataset(X, y), [train_size, valid_size, test_size]) train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=args.batchsize, shuffle=True) valid_loader = torch.utils.data.DataLoader(dataset_valid, batch_size=args.batchsize, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=args.batchsize, shuffle=True) args.loss_criterion = nn.MSELoss(reduction='sum') args.trueRLCT = (args.output_dim * args.H - args.H ** 2 + args.input_dim * args.H) / 2 # rank r = H for the 'reducedrank_synthetic' dataset elif args.dataset == 'tanh': # generate features X from unif(-1,1) m = Uniform(torch.tensor([-1.0]), torch.tensor([1.0])) X = m.sample(torch.Size([2 * args.n])) # generate target from N(0,1) i.e. tanh network with zero layers # w = {(a_m,b_m)}_{m=1}^p, p(y|x,w) = N(f(x,w),1) where f(x,w) = \sum_{m=1}^p a_m tanh(b_m x) y_rv = Normal(0.0, args.y_std) # torch.distributions.normal.Normal(loc, scale) where scale is standard deviation y = y_rv.sample(torch.Size([2 * args.n, 1])) # The splitting ratio of training set, validation set, testing set is 0.7:0.15:0.15 train_size = args.n valid_size = int(args.n * 0.5) test_size = 2 * args.n - train_size - valid_size dataset_train, dataset_valid, dataset_test = torch.utils.data.random_split(TensorDataset(X, y), [train_size, valid_size, test_size]) train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=args.batchsize, shuffle=True) valid_loader = torch.utils.data.DataLoader(dataset_valid, batch_size=args.batchsize, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=args.batchsize, shuffle=True) args.input_dim = X.shape[1] args.output_dim = y.shape[1] args.loss_criterion = nn.MSELoss(reduction='sum') max_integer = int(np.sqrt(args.H)) args.trueRLCT = (args.H + max_integer * max_integer + max_integer) / (4 * max_integer + 2) # %% # define network class reducedrank(nn.Module): def __init__(self, input_dim, output_dim, H): super(reducedrank, self).__init__() self.fc1 = nn.Linear(input_dim, H, bias=False) self.fc2 = nn.Linear(H, output_dim, bias=False) def forward(self, x): x = self.fc1(x) x = self.fc2(x) return x class tanh(nn.Module): def __init__(self, input_dim, output_dim, H): super(tanh, self).__init__() self.fc1 = nn.Linear(input_dim, H, bias=False) self.fc2 = nn.Linear(H, output_dim, bias=False) def forward(self, x): x = torch.tanh(self.fc1(x)) x = self.fc2(x) return x args.w_dim = (args.input_dim + args.output_dim) * args.H # TODO: is the log n scale really necessary? # get B inverse temperatures # args.betas = 1 / np.linspace(np.log(args.n) / args.betasbegin, np.log(args.n) / args.betasend, args.numbetas) args.betas = 1 / np.linspace(1 / args.betasbegin, 1 / args.betasend, args.numbetas) # args.betas = np.linspace(args.betasbegin, args.betasend, args.numbetas)/np.log(args.n) # args.recip = np.linspace(0.1,args.numbetas,args.numbetas) #1/beta # args.betas = 1/args.recip # args.betas = np.linspace(args.betasbegin, args.betasend, args.numbetas) # TODO: set automatically? # args.prior_std = np.sqrt(args.w_dim * (args.y_std ** 2) * np.log(args.n) / (args.betasbegin * args.n)) # args.prior_std = np.sqrt(args.w_dim / (args.betasbegin * args.n)) # args.prior_std = 10.0 # print('prior std auto set to {}'.format(args.prior_std)) # %% # %% # define loss function that is specific to anchor point and inverse temperature beta def custom_loss(model, target, output, beta): # TODO: what's the justification for using anchors? # returns ||y-\hat y||^2_2 + \sigma_eps^2/beta*\sigma_{prior}^2 ||theta-\hat theta||^2_2 # anchor_dist = Normal(0.0, args.prior_std) wd = torch.tensor(0.) for p in model.parameters(): # anchor = anchor_dist.sample(p.shape) # wd += ((p - anchor) ** 2).sum() wd += (p ** 2).sum() # wd_factor = torch.tensor(((args.y_std/args.prior_std)**2)) # print('model fit portion {}'.format(beta * args.loss_criterion(target, output) / (args.batchsize))) # print('weight decay portion {}'.format(wd / ((args.prior_std ** 2) * args.n))) # return beta * args.loss_criterion(target, output) / (2 * args.batchsize) + wd / ( # 2 * (args.prior_std ** 2) * args.n) return beta * args.loss_criterion(target, output) /((args.y_std ** 2) * args.batchsize) + wd / ((args.prior_std ** 2) * args.n) # return args.loss_criterion(target, output) / ((args.y_std ** 2) * args.batchsize) + wd / ((args.prior_std ** 2) * args.n) # %% # train ensemble def train(beta): # return ensemble-average of nL_n(w) = -\sum_{i=1}^n \log p(y_i|x_i,w) = \sum_i (y_i-f(x_i,w))^2/ 2\sigma_eps^2 # wd_factor = ((args.y_std/args.prior_std)**2)/beta if args.dataset == 'rr': model = reducedrank(args.input_dim, args.output_dim, args.H) elif args.dataset == 'tanh': model = tanh(args.input_dim, args.output_dim, args.H) # optimizer = optim.SGD(model.parameters(), lr=args.lr, weight_decay=wd_factor) # TODO: how to scale lr automatically so it doesn't explode, does it include beta or not? # lr = 0.01*args.batchsize / (beta * args.n) lr = args.batchsize / args.n optimizer = optim.SGD(model.parameters(), lr=lr) wholex = train_loader.dataset[:][0] wholey = train_loader.dataset[:][1] for epoch in range(1, args.epochs + 1): model.train() for batch_idx, (data, target) in enumerate(train_loader): output = model(data) loss = custom_loss(model, target, output, beta) # loss = args.loss_criterion(target, output) optimizer.zero_grad() loss.backward() optimizer.step() if epoch % 100 == 0: model.eval() with torch.no_grad(): output = model(wholex) eval_loss = custom_loss(model, wholey, output, beta) # eval_loss = args.loss_criterion(wholey, output) print('Epoch {}: total loss on training {}, negloglik {}'.format(epoch, eval_loss, args.loss_criterion(wholey, output).detach() / (2 * (args.y_std ** 2)))) final_output = model(wholex) return ((wholey - final_output) ** 2).sum() / (2 * (args.y_std ** 2)) nll = np.empty((args.numbetas, args.R)) for beta_index in range(0, args.numbetas): beta = args.betas[beta_index] for r in range(0, args.R): print('Training {}/{} ensemble at {}/{} inverse temp, getting colder (negloglik smaller)'.format(r + 1, args.R, beta_index + 1, args.numbetas)) nll[beta_index, r] = train(beta) if beta_index > 0: design_x = np.vstack((np.ones(beta_index+1), 1 / args.betas[0:beta_index+1])).T design_y = np.mean(nll[0:beta_index+1,:], 1) design_y = design_y[:, np.newaxis] fit = inv(design_x.T.dot(design_x)).dot(design_x.T).dot(design_y) print('true RLCT {}, current RLCT estimate {}'.format(args.trueRLCT,fit[1][0])) plt.hist(nll[beta_index,:]) plt.title('nLn(w) at inverse temp {}'.format(beta[beta_index])) plt.show() # %% # average nll array over r # ols_model = OLS(np.mean(nll, 1), add_constant(1 / args.betas)).fit() # ols_intercept_estimate = ols_model.params[0] # RLCT_estimate = ols_model.params[1] design_x = np.vstack((np.ones(args.numbetas), 1/args.betas)).T design_y = np.mean(nll,1) design_y = design_y[:, np.newaxis] fit = inv(design_x.T.dot(design_x)).dot(design_x.T).dot(design_y) ols_intercept_estimate = fit[0][0] RLCT_estimate =fit[1][0] print('RLCT estimate: {}'.format(RLCT_estimate)) print('true RLCT: {}'.format(args.trueRLCT)) # robust ls fit # regr = ElasticNet(random_state=0, fit_intercept=True, alpha=0.5) # regr.fit((1 / args.betas).reshape(args.numbetas, 1), np.mean(nll, 1)) # robust_intercept_estimate = regr.intercept_ # # slope_estimate = min(regr.coef_[0],args.w_dim/2) # robust_slope_estimate = regr.coef_[0] path = './taskid{}'.format(args.taskid) if not os.path.exists(path): os.makedirs(path) args_dict = vars(args) print(args_dict) torch.save(args_dict, '{}/mc{}_config.pt'.format(path, args.MC)) plt.scatter(1 / args.betas, np.mean(nll, 1), label='nll beta') # plt.plot(1 / args.betas, robust_intercept_estimate + robust_slope_estimate * 1 / args.betas, 'g-', # label='robust ols') plt.plot(1 / args.betas, ols_intercept_estimate + RLCT_estimate * 1 / args.betas, 'b-', label='ols') plt.title("d_on_2 = {}, true lambda = {:.1f} " "\n hat lambda ols = {:.1f}" .format(args.w_dim / 2, args.trueRLCT, RLCT_estimate), fontsize=8) plt.xlabel("1/beta", fontsize=8) plt.ylabel("ensemble estimate of E^beta_w [nL_n(w)]", fontsize=8) plt.savefig('{}/mc{}.png'.format(path, args.MC)) plt.legend() plt.show() if __name__ == "__main__": main()
42.342193
175
0.612475
714
0.056022
0
0
0
0
0
0
4,307
0.337936
2681adb86e53921fccea1f698b21e0752d4e5ac6
1,764
py
Python
edge_server/script_server.py
Dspatharakis/alphabot-ppl
1f234548bf3fc7d447663f94cfa49591724563b0
[ "MIT" ]
null
null
null
edge_server/script_server.py
Dspatharakis/alphabot-ppl
1f234548bf3fc7d447663f94cfa49591724563b0
[ "MIT" ]
null
null
null
edge_server/script_server.py
Dspatharakis/alphabot-ppl
1f234548bf3fc7d447663f94cfa49591724563b0
[ "MIT" ]
null
null
null
#!/usr/bin/env python import os import requests import json import time import sys import subprocess import csv import json import numpy as np def main(): start_time = time.time() post_url = "http://0.0.0.0:8000/cpu" mean_cpu = 0 counter = 0 s = 0.75 container_name = subprocess.check_output(["docker", "ps", "-aqf", "name=edge"]) while True: measured_cpu = subprocess.check_output(["docker", "stats", "--no-stream", "--format", "{{ .CPUPerc }}"] )# , ">", "./log.txt"]) measured_cpu = (float(measured_cpu[:-2])) if measured_cpu > 0.2 : mean_cpu += measured_cpu counter += 1 now_time = time.time () #print now_time - start_time if now_time-start_time > 10 : start_time = time.time() if counter > 0 : mean_cpu = mean_cpu /float(counter) mean_cpu = s print "Cpu utilization of this time interval: "+ str(mean_cpu) payload = [{"cpu": mean_cpu,"s": s}] r = requests.post(post_url, json=payload) counter = 0 mean_cpu = 0 ##### KATANOMI GIA UPDATE CORES STO CONTAINER mu, sigma = 0.75, 0.16 # mean and standard deviation s = np.random.normal(mu, sigma) if s < 0.3: s = 0.3 print "Number of cores: "+str(s) number_of_cores = s #/ float(100 ) with open(os.devnull, 'wb') as devnull: # suppress output subprocess.check_call(["docker update --cpus=\"" + str(round(number_of_cores,2)) + "\" " +str(container_name)], shell=True, stdout=devnull, stderr=subprocess.STDOUT) if __name__ == "__main__": main()
34.588235
196
0.549887
0
0
0
0
0
0
0
0
405
0.229592
2683c81a292c3d694af782d7d6d9714cc7c5d078
5,264
py
Python
madic/tests/test_io.py
dcroote/madic
fb00f312f5abc9f5a0bfc4a00a5a2e6e1c4ee563
[ "BSD-3-Clause" ]
2
2017-12-08T03:24:22.000Z
2017-12-13T10:22:09.000Z
madic/tests/test_io.py
dcroote/madic
fb00f312f5abc9f5a0bfc4a00a5a2e6e1c4ee563
[ "BSD-3-Clause" ]
null
null
null
madic/tests/test_io.py
dcroote/madic
fb00f312f5abc9f5a0bfc4a00a5a2e6e1c4ee563
[ "BSD-3-Clause" ]
null
null
null
import os import pandas as pd import numpy as np from pandas.testing import assert_series_equal from madic import io class TestChromatogramExpansion(object): def setup_method(self): # two rows of comma separated intensity chromatograms self.df = pd.DataFrame([['1,2,3,4,5,6,5,4,3,2,1'], ['1,2,3,4,5,4,3,2,1']], columns=['intensities']) def test_expand_comma_sep_series_no_smoothing(self): expected_series = pd.Series([np.array([1., 2., 3., 4., 5., 6., 5., 4., 3., 2., 1.]), np.array([1., 2., 3., 4., 5., 4., 3., 2., 1.])], name='intensities') result = io._expand_comma_sep_series(self.df.intensities) assert_series_equal(result, expected_series) def test_expand_comma_sep_series_with_smoothing(self): expected_series = pd.Series([np.array([1., 2., 3., 4., 4.6, 4.8, 4.6, 4., 3., 2., 1.]), np.array([1., 2., 3., 3.6, 3.8, 3.6, 3., 2., 1.])], name='intensities') result = io._expand_comma_sep_series(self.df.intensities, smooth=True) assert_series_equal(result, expected_series) class TestReplicateColumnSplit(object): def setup_method(self): self.series = pd.Series(['Site4_ConditionA_Part2_094', 'Site4_ConditionA_Part3_095', 'Site4_ConditionB_Part2_096', 'Site4_ConditionB_Part3_097' ]) def test_split_delimiter_position(self): expected_series = pd.Series(['ConditionA', 'ConditionA', 'ConditionB', 'ConditionB'], name='sample_name') result = io.replicate_to_sample_name(self.series, '_', 1) assert_series_equal(result, expected_series) def test_load_skyline_transition_report(): report_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '../../examples/' 'madic_skyline_daily_data.csv')) df = io.read_transition_report(report_path, delimiter='_', delimiter_pos=1) assert sorted(df.label.unique()) == ['heavy', 'light'] assert df.shape[0] == 40 assert df.pep.unique().size == 2 assert df.sample_name.unique().size == 2 assert df.rep.unique().size == 4 def test_write_out_summary(tmpdir): summary = pd.DataFrame([ ['sample1','PEP1',True,True,True,True,False], ['sample1','PEP2',True,False,False,True,False]], columns=['sample_name', 'pep', 'pass_signal_to_noise', 'pass_transition_ratio', 'pass_retention_time', 'pass_all_replicate', 'interference_corrected']) # write data path = tmpdir.join('summary.csv') summary.to_csv(str(path), index=False) # load expected file contents testsdir = os.path.abspath(os.path.dirname(__file__)) expected_file = os.path.join(testsdir, 'data/for_testing_summary.csv') with open(expected_file) as f: expected = f.read() # compare contents assert path.read() == expected def test_write_out_data(tmpdir): df = pd.DataFrame([ ['rep1','PEP1','y5',True,True,True,True,False], ['rep1','PEP1','y6',True,True,True,True,False], ['rep1','PEP1','y7',True,True,True,True,False], ['rep2','PEP1','y5',True,True,True,True,False], ['rep2','PEP1','y6',True,True,True,True,False], ['rep2','PEP1','y7',True,True,True,True,False], ['rep1','PEP2','y5',True,True,False,True,False], ['rep1','PEP2','y6',True,True,True,True,False], ['rep1','PEP2','y7',True,True,True,True,False], ['rep2','PEP2','y5',True,False,True,True,False], ['rep2','PEP2','y6',True,False,True,True,False], ['rep2','PEP2','y7',True,False,True,True,False] ], columns=['rep', 'pep', 'prod_ion', 'pass_signal_to_noise', 'pass_transition_ratio', 'pass_retention_time', 'pass_all_replicate', 'interference']) df['sample_name'] = 'sample1' df['label'] = 'light' df['times_arr'] = [np.arange(3)]*12 df['intensities_arr'] = [[500.1, 800.9, 500.1]]*12 path = tmpdir.join('data.csv') io.write_out_data(df, str(path)) testsdir = os.path.abspath(os.path.dirname(__file__)) expected_file = os.path.join(testsdir, 'data/for_testing_data.csv') with open(expected_file) as f: expected = f.read() assert path.read() == expected
37.6
79
0.510448
2,066
0.392477
0
0
0
0
0
0
1,047
0.198898
2688264518d4b814e3d6dda29397dc244b099dd8
226
py
Python
plot.py
arthtyagi/makefile
d64c38ddad63c7f90dd23c26e3f398229aa7dfa4
[ "MIT" ]
null
null
null
plot.py
arthtyagi/makefile
d64c38ddad63c7f90dd23c26e3f398229aa7dfa4
[ "MIT" ]
null
null
null
plot.py
arthtyagi/makefile
d64c38ddad63c7f90dd23c26e3f398229aa7dfa4
[ "MIT" ]
null
null
null
import matplotlib.pyplot as plt x = [] y = [] with open('points') as f: for point in map(lambda x: x.split(), f.readlines()): x.append(int(point[0])) y.append(int(point[1])) plt.scatter(x, y) plt.show()
17.384615
57
0.588496
0
0
0
0
0
0
0
0
8
0.035398
2689410c8429db9fcdde4ffcfbc17820cb6d3055
509
py
Python
pos_debranding/__manifest__.py
jromeroarg/itpp-labs_pos-addons
ec688a1b06999dc2fa408623a79e93356bf900b3
[ "MIT" ]
null
null
null
pos_debranding/__manifest__.py
jromeroarg/itpp-labs_pos-addons
ec688a1b06999dc2fa408623a79e93356bf900b3
[ "MIT" ]
null
null
null
pos_debranding/__manifest__.py
jromeroarg/itpp-labs_pos-addons
ec688a1b06999dc2fa408623a79e93356bf900b3
[ "MIT" ]
1
2020-08-20T04:21:42.000Z
2020-08-20T04:21:42.000Z
# Copyright 2015-2018,2020 Ivan Yelizariev # License MIT (https://opensource.org/licenses/MIT). { "name": "POS debranding", "version": "13.0.1.0.0", "author": "IT-Projects LLC, Ivan Yelizariev", "license": "Other OSI approved licence", # MIT "category": "Debranding", "support": "[email protected]", "website": "https://odoo-debranding.com", "depends": ["point_of_sale"], "data": ["template.xml"], "qweb": ["static/src/xml/pos_debranding.xml"], "installable": True, }
31.8125
52
0.624754
0
0
0
0
0
0
0
0
403
0.791749
268a1a32773db807fdd5256fd06cf225b0146c23
335
py
Python
drafts/vanish_explode_gradients/freeze_lower_layers.py
quanhua92/deeplearning_tutorials
32fec492ca21c248dd1fb234db0a95a532df3469
[ "MIT" ]
1
2017-07-06T13:00:36.000Z
2017-07-06T13:00:36.000Z
drafts/vanish_explode_gradients/freeze_lower_layers.py
quanhua92/deeplearning_tutorials
32fec492ca21c248dd1fb234db0a95a532df3469
[ "MIT" ]
null
null
null
drafts/vanish_explode_gradients/freeze_lower_layers.py
quanhua92/deeplearning_tutorials
32fec492ca21c248dd1fb234db0a95a532df3469
[ "MIT" ]
null
null
null
import tensorflow as tf # We will train all layers except hidden[12]. Therefore, Layers 1 and 2 are frozen train_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="hidden[34]|outputs") loss = None # Your loss is here train_op = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(loss, var_list=train_vars)
47.857143
100
0.79403
0
0
0
0
0
0
0
0
121
0.361194
268c51ed50d4a8d0b92613024c9ad4e9c61f0c83
371
py
Python
Statistics/PopulationMean.py
cadibemma/Statistical-Calculator
4135487577af9e17b51317e72d7b07c09390f3f6
[ "MIT" ]
1
2020-06-27T22:14:11.000Z
2020-06-27T22:14:11.000Z
Statistics/PopulationMean.py
cadibemma/Statistical-Calculator
4135487577af9e17b51317e72d7b07c09390f3f6
[ "MIT" ]
28
2020-06-28T15:03:56.000Z
2020-07-07T16:29:27.000Z
Statistics/PopulationMean.py
cadibemma/Statistical-Calculator
4135487577af9e17b51317e72d7b07c09390f3f6
[ "MIT" ]
1
2020-06-27T14:33:20.000Z
2020-06-27T14:33:20.000Z
# from Calculator.Addition import addition from Calculator.Division import division def populationmean(num): try: num_values = len(num) total = sum(num) return division(total, num_values) except ZeroDivisionError: print("Error: Enter values greater than 0") except ValueError: print("Error: insert correct data type")
28.538462
51
0.684636
0
0
0
0
0
0
0
0
111
0.299191
268d50e291169e0e5fc4a8c8469d8e4d8109bcce
585
py
Python
code/app/configuration/configuration.py
WesleyAdriann/discord_bot_dota
8a2921ee548f2fc6066bf15e7aed6688037dd434
[ "MIT" ]
null
null
null
code/app/configuration/configuration.py
WesleyAdriann/discord_bot_dota
8a2921ee548f2fc6066bf15e7aed6688037dd434
[ "MIT" ]
null
null
null
code/app/configuration/configuration.py
WesleyAdriann/discord_bot_dota
8a2921ee548f2fc6066bf15e7aed6688037dd434
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import os class Configuration: def __init__(self): self.DOTA_BUFF_BASE_URL = 'https://pt.dotabuff.com' self.HEROES = f'{self.DOTA_BUFF_BASE_URL}/heroes' self.HERO_COUNTERS = '/counters' self.HERO_COUNTERS_FULL = f'{self.DOTA_BUFF_BASE_URL}/hero-name/{self.HERO_COUNTERS}' self.DISCORD_BOT_KEY = os.environ.get('DISCORD_BOT_KEY') def configure_hero_counters_full(self, hero): hero_name = '-'.join(hero.split()).lower() self.HERO_COUNTERS_FULL = f'{self.HEROES}/{hero_name}{self.HERO_COUNTERS}'
34.411765
93
0.676923
547
0.935043
0
0
0
0
0
0
221
0.377778
268f327d0be7b5ea3314ce2aea07749bbbce81aa
908
py
Python
grpc_examples/sending_image/client.py
iwmq/coding_notes
8e406124bcd2dbf3228e945701e952c3a12025c6
[ "MIT" ]
null
null
null
grpc_examples/sending_image/client.py
iwmq/coding_notes
8e406124bcd2dbf3228e945701e952c3a12025c6
[ "MIT" ]
null
null
null
grpc_examples/sending_image/client.py
iwmq/coding_notes
8e406124bcd2dbf3228e945701e952c3a12025c6
[ "MIT" ]
null
null
null
""" The Python implementation of the GRPC image client. Modified from grpc/examples/python/helloworld/greeting_client.py. """ from __future__ import print_function import logging from io import BytesIO from PIL import Image import grpc import image_pb2 import image_pb2_grpc def run(): # NOTE(gRPC Python Team): .close() is possible on a channel and should be # used in circumstances in which the with statement does not fit the needs # of the code. with grpc.insecure_channel('localhost:50051') as channel: stub = image_pb2_grpc.GreeterStub(channel) response = stub.SayHello(image_pb2.HelloRequest(name='you')) message = response.message buf = BytesIO(response.image) buf.seek(0) image = Image.open(buf, formats=["JPEG"]) print(f"Greeter client received: {message}") image.show() if __name__ == '__main__': logging.basicConfig() run()
25.222222
78
0.718062
0
0
0
0
0
0
0
0
362
0.398678
26931376c81cc95ed098daf30d28fcc4518c0ee9
1,842
py
Python
bot/NFQ.py
cyber-meow/Robotic_state_repr_learning
d74fe372bea0b1cf42107450a8c3344a99279e91
[ "MIT" ]
null
null
null
bot/NFQ.py
cyber-meow/Robotic_state_repr_learning
d74fe372bea0b1cf42107450a8c3344a99279e91
[ "MIT" ]
null
null
null
bot/NFQ.py
cyber-meow/Robotic_state_repr_learning
d74fe372bea0b1cf42107450a8c3344a99279e91
[ "MIT" ]
null
null
null
import numpy as np from sklearn.neural_network import MLPRegressor from sklearn.exceptions import NotFittedError from inter.interfaces import QLearning from utility import set_all_args class NFQ(QLearning): gamma = 0.9 beta = 0.8 def __init__(self, **kwargs): self.mlp = MLPRegressor( hidden_layer_sizes=(5,5), activation='logistic', batch_size=400) set_all_args(self, kwargs) def fit(self, data, max_iter=300, intra_step=50): """ data is the triple (ss, as, rs) """ for _ in range(max_iter): inputs, targets = self.compute_inputs_targets(data) for _ in range(intra_step): self.mlp.partial_fit(inputs, targets) def compute_inputs_targets(self, data): inputs, targets = [], [] for i in range(len(data[0])-1): s, a, r = list(data[0][i]), data[1][i], data[2][i] s_next = list(data[0][i+1]) inputs.append(s + [self.actions.index(a)]) to_prs = [s_next + [act] for act in range(len(self.actions))] try: q_values = self.mlp.predict(to_prs) targets.append(r + self.gamma * np.max(q_values)) except NotFittedError: targets.append(r) return np.array(inputs), np.array(targets) def score(self, data): inputs, targes = self.compute_inputs_targets(data) return self.mlp.score(inputs, targes) def decision(self, state): state = list(state) to_prs = [state + [act] for act in range(len(self.actions))] q_values = self.mlp.predict(to_prs) ps = np.exp(self.beta * q_values) a_num = np.random.choice(len(self.actions), p=ps/np.sum(ps)) return self.actions[a_num]
29.238095
76
0.58089
1,649
0.895223
0
0
0
0
0
0
65
0.035288
26941f15190450548abb826ab5e7dae30c53951d
1,062
py
Python
database/chemprop/endpoint_acceptable_parameters.py
mshobair/invitro_cheminformatics
17201496c73453accd440646a1ee81726119a59c
[ "MIT" ]
null
null
null
database/chemprop/endpoint_acceptable_parameters.py
mshobair/invitro_cheminformatics
17201496c73453accd440646a1ee81726119a59c
[ "MIT" ]
null
null
null
database/chemprop/endpoint_acceptable_parameters.py
mshobair/invitro_cheminformatics
17201496c73453accd440646a1ee81726119a59c
[ "MIT" ]
null
null
null
import datetime from database.chemprop.endpoints import Endpoints from database.chemprop.parameters import Parameters from database.database_schemas import Schemas from sqlalchemy import Column, Integer, String, DateTime, ForeignKey from sqlalchemy.orm import relationship from database.base import Base class EndpointAcceptableParameters(Base): """Maps to endpoint_acceptable_parameters table in chemprop databases.""" __tablename__ = "endpoint_acceptable_parameters" __table_args__ = {'schema': Schemas.chemprop_schema} id = Column(Integer, primary_key=True, nullable=False) fk_endpoint_id = Column(ForeignKey(Endpoints.id)) fk_parameter_id = Column(ForeignKey(Parameters.id)) created_by = Column(String(255), nullable=False) updated_by = Column(String(255), nullable=False) created_at = Column(DateTime, default=datetime.datetime.now, nullable=False) updated_at = Column(DateTime, default=datetime.datetime.now, nullable=False) endpoint = relationship("Endpoints") parameter = relationship("Parameters")
37.928571
80
0.785311
753
0.70904
0
0
0
0
0
0
136
0.12806
13fa947a98ef38378e4092dccc8d0f5bf6aced03
2,009
py
Python
label_mapping.py
YoushaaMurhij/CenterPoint_Segmentation_Head
0610c1da18994f494a8609d983ffa21d62d7d876
[ "MIT" ]
null
null
null
label_mapping.py
YoushaaMurhij/CenterPoint_Segmentation_Head
0610c1da18994f494a8609d983ffa21d62d7d876
[ "MIT" ]
null
null
null
label_mapping.py
YoushaaMurhij/CenterPoint_Segmentation_Head
0610c1da18994f494a8609d983ffa21d62d7d876
[ "MIT" ]
null
null
null
label_name_mapping = { 0: "unlabeled", 1: "outlier", 10: "car", 11: "bicycle", 13: "bus", 15: "motorcycle", 16: "on-rails", 18: "truck", 20: "other-vehicle", 30: "person", 31: "bicyclist", 32: "motorcyclist", 40: "road", 44: "parking", 48: "sidewalk", 49: "other-ground", 50: "building", 51: "fence", 52: "other-structure", 60: "lane-marking", 70: "vegetation", 71: "trunk", 72: "terrain", 80: "pole", 81: "traffic-sign", 99: "other-object", 252: "moving-car", 253: "moving-bicyclist", 254: "moving-person", 255: "moving-motorcyclist", 256: "moving-on-rails", 257: "moving-bus", 258: "moving-truck", 259: "moving-other-vehicle" } class2id = { 0: 0, 1: 1, 10: 2, 11: 3, 13: 4, 15: 5, 16: 6, 18: 7, 20: 8, 30: 9, 31: 10, 32: 11, 40: 12, 44: 13, 48: 14, 49: 15, 50: 16, 51: 17, 52: 18, 60: 19, 70: 20, 71: 21, 72: 22, 80: 23, 81: 24, 99: 25, 252: 2, #26, 253: 10, #27, 254: 9, #28, 255: 11, #29, 256: 6, #30, 257: 4, #31, 258: 7, #32, 259: 8 #33 } id2class = { 0:0, 1:1, 2:10, 3:11, 4:13, 5:15, 6:16, 7:18, 8:20, 9:30, 10:31, 11:32, 12:40, 13:44, 14:48, 15:49, 16:50, 17:51, 18:52, 19:60, 20:70, 21:71, 22:72, 23:80, 24:81, 25:99, 26:252, 27:253, 28:254, 29:255, 30:256, 31:257, 32:258, 33:259 } _kitti_labels = { 0: 'unlabeled', 1: 'car', 2: 'bicycle', 3: 'motorcycle', 4: 'truck', 5: 'other-vehicle', 6: 'person', 7: 'bicyclist', 8: 'motorcyclist', 9: 'road', 10: 'parking', 11: 'sidewalk', 12: 'other-ground', 13: 'building', 14: 'fence', 15: 'vegetation', 16: 'trunk', 17: 'terrain', 18: 'pole', 19: 'traffic-sign' }
14.992537
31
0.442509
0
0
0
0
0
0
0
0
623
0.310105
13fb266bbbe1b42018ffaaf4a8dc92668ab6d95f
137
py
Python
src/__init__.py
gitlabbin/zookeeper-kazoo-barrier-snippet
2ab88fa3735b61dd9a94e0e0294e88a12c458ee3
[ "MIT" ]
null
null
null
src/__init__.py
gitlabbin/zookeeper-kazoo-barrier-snippet
2ab88fa3735b61dd9a94e0e0294e88a12c458ee3
[ "MIT" ]
null
null
null
src/__init__.py
gitlabbin/zookeeper-kazoo-barrier-snippet
2ab88fa3735b61dd9a94e0e0294e88a12c458ee3
[ "MIT" ]
null
null
null
#!/usr/bin/env python from __future__ import absolute_import def main(): import src.barrier if __name__ == '__main__': main()
13.7
38
0.693431
0
0
0
0
0
0
0
0
31
0.226277
13fca46c746999501de84f40b50ef047a4b2c610
295
py
Python
archives/02/tootle/tests/test_state.py
asmodehn/caerbannog
47bb1138190748041a4c0d02e522c0924a9af962
[ "MIT" ]
1
2019-01-22T20:57:45.000Z
2019-01-22T20:57:45.000Z
archives/03/footle/tests/test_state.py
asmodehn/functional-python
47bb1138190748041a4c0d02e522c0924a9af962
[ "MIT" ]
3
2019-03-14T17:33:39.000Z
2019-03-14T18:09:42.000Z
archives/03/footle/tests/test_state.py
asmodehn/caerbannog
47bb1138190748041a4c0d02e522c0924a9af962
[ "MIT" ]
null
null
null
from state import TurtleState # TODO : improve... but with useful things for illustrating the point... def test_move(distance): s = TurtleState() s.move(distance) def test_turn(angle): s = TurtleState() s.turn(angle) def test_random_path(): s = TurtleState # TODO
15.526316
72
0.671186
0
0
0
0
0
0
0
0
78
0.264407
13fe23236e035adcc7cad3112d9cc94bfc4481fa
66,843
py
Python
TransitionListener/transitionFinder.py
tasicarl/TransitionListerner_public
b231467e731f51521a85dd962cc08da07eca8226
[ "MIT" ]
null
null
null
TransitionListener/transitionFinder.py
tasicarl/TransitionListerner_public
b231467e731f51521a85dd962cc08da07eca8226
[ "MIT" ]
null
null
null
TransitionListener/transitionFinder.py
tasicarl/TransitionListerner_public
b231467e731f51521a85dd962cc08da07eca8226
[ "MIT" ]
1
2021-11-04T08:12:10.000Z
2021-11-04T08:12:10.000Z
""" The transitionFinder module is used to calculate finite temperature cosmological phase transitions: it contains functions to find the phase structure as a function of temperature, and functions to find the transition (bubble nucleation) temperature for each phase. In contrast, :mod:`.pathDefomration` is useful for finding the tunneling solution for a fixed potential or a potential at a fixed temperature. The most directly used functions in this module will likely be :func:`traceMultiMin` for finding the phase structure, and :func:`findAllTransitions` and :func:`findCriticalTemperatures` for calculating properties of the phase transitions. """ from collections import namedtuple import numpy as np from scipy import linalg, interpolate, optimize from scipy.optimize import curve_fit from scipy.interpolate import UnivariateSpline import matplotlib.pyplot as plt from . import pathDeformation from . import tunneling1D import sys _traceMinimum_rval = namedtuple("traceMinimum_rval", "X T dXdT overX overT") def traceMinimum(f, d2f_dxdt, d2f_dx2, x0, t0, tstop, dtstart, deltaX_target, dtabsMax=20.0, dtfracMax=.25, dtmin=1e-3, deltaX_tol=1.2, minratio=1e-2, verbose = False): """ Trace the minimum `xmin(t)` of the function `f(x,t)`, starting at `x0, t0`. Parameters ---------- f : callable The scalar function `f(x,t)` which needs to be minimized. The input will be of the same type as `(x0,t0)`. d2f_dxdt, d2f_dx2 : callable Functions which return returns derivatives of `f(x)`. `d2f_dxdt` should return the derivative of the gradient of `f(x)` with respect to `t`, and `d2f_dx2` should return the Hessian matrix of `f(x)` evaluated at `t`. Both should take as inputs `(x,t)`. x0 : array_like The initial starting point. Must be an array even if the potential is one-dimensional (in which case the array should have length 1). t0 : float The initial starting parameter `t`. tstop : float Stop the trace when `t` reaches `tstop`. dtstart : float Initial stepsize. deltaX_target : float The target error in x at each step. Determines the stepsize in t by extrapolation from last error. dtabsMax : float, optional dtfracMax : float, optional The largest stepsize in t will be the LARGEST of ``abs(dtstart)*dtabsMax`` and ``t*dtfracMax``. dtmin : float, optional The smallest stepsize we'll allow before assuming the transition ends, relative to `dtstart` deltaX_tol : float, optional ``deltaX_tol*deltaX_target`` gives the maximum error in x before we want to shrink the stepsize and recalculate the minimum. minratio : float, optional The smallest ratio between smallest and largest eigenvalues in the Hessian matrix before treating the smallest eigenvalue as zero (and thus signaling a saddle point and the end of the minimum). Returns ------- X, T, dXdT : array_like Arrays of the minimum at different values of t, and its derivative with respect to t. overX : array_like The point beyond which the phase seems to disappear. overT : float The t-value beyond which the phase seems to disappear. Notes ----- In prior versions, `d2f_dx2` was optional and called `d2f`, while `d2f_dxdt` was calculated from an optional parameter `df` using finite differences. If Neither of these were supplied, they would be calculated directly from `f(x,t)` using finite differences. This lead to a messier calling signature, since additional parameters were needed to find the finite differences. By instead requiring that the derivatives be supplied, the task of creating the derivative functions can be delegated to more general purpose routines (see e.g. :class:`helper_functions.gradientFunction` and :class:`helper_functions.hessianFunction`). Also new in this version, `dtmin` and `dtabsMax` are now relative to `dtstart`. The idea here is that there should be some required parameter that sets the scale, and then optional parameters can set the tolerances relative to this scale. `deltaX_target` is now not optional for the same reasoning. """ if verbose: print("traceMinimum t0 = %0.6g" % t0) Ndim = len(x0) M0 = d2f_dx2(x0,t0) minratio *= min(abs(linalg.eigvalsh(M0)))/max(abs(linalg.eigvalsh(M0))) def dxmindt(x,t): M = d2f_dx2(x,t) if abs(linalg.det(M)) < (1e-3*np.max(abs(M)))**Ndim: # Assume matrix is singular return None, False b = -d2f_dxdt(x,t) eigs = linalg.eigvalsh(M) try: dxdt = linalg.solve(M,b, overwrite_a=False, overwrite_b=False) # dxdt = linalg.solve(M,b, overwrite_a=True, overwrite_b=True) isneg = ((eigs <= 0).any() or min(eigs)/max(eigs) < minratio) except: dxdt = None isneg = False return dxdt, isneg xeps = deltaX_target * 1e-2 def fmin(x,t): return optimize.fmin(f, x, args=(t,), xtol=xeps, ftol=np.inf, disp=False) deltaX_tol = deltaX_tol * deltaX_target tscale = abs(dtstart) dtabsMax = dtabsMax * tscale dtmin = dtmin * tscale x,t,dt,xerr = x0,t0,dtstart,0.0 dxdt, negeig = dxmindt(x,t) X,T,dXdT = [x],[t],[dxdt] overX = overT = None while dxdt is not None: if verbose: sys.stdout.write('.') sys.stdout.flush() # Get the values at the next step tnext = t+dt xnext = fmin(x+dxdt*dt, tnext) dxdt_next, negeig = dxmindt(xnext,tnext) if dxdt_next is None or negeig == True: # We got stuck on a saddle, so there must be a phase transition # there. dt *= .5 overX, overT = xnext, tnext else: # The step might still be too big if it's outside of our error # tolerance. xerr = max(np.sum((x+dxdt*dt - xnext)**2), np.sum((xnext-dxdt_next*dt - x)**2))**.5 if xerr < deltaX_tol: # Normal step, error is small T.append(tnext) X.append(xnext) dXdT.append(dxdt_next) if overT is None: # change the stepsize only if the last step wasn't # troublesome dt *= deltaX_target/(xerr+1e-100) x,t,dxdt = xnext, tnext, dxdt_next overX = overT = None else: # Either stepsize was too big, or we hit a transition. # Just cut the step in half. dt *= .5 overX, overT = xnext, tnext # Now do some checks on dt. if abs(dt) < abs(dtmin): # Found a transition! Or at least a point where the step is really # small. break if dt > 0 and t >= tstop or dt < 0 and t <= tstop: # Reached tstop, but we want to make sure we stop right at tstop. dt = tstop-t x = fmin(x+dxdt*dt, tstop) dxdt,negeig = dxmindt(x,tstop) t = tstop X[-1], T[-1], dXdT[-1] = x,t,dxdt break dtmax = max(t*dtfracMax, dtabsMax) if abs(dt) > dtmax: dt = np.sign(dt)*dtmax if overT is None: overX, overT = X[-1], T[-1] if verbose: sys.stdout.write('\n') sys.stdout.flush() X = np.array(X) T = np.array(T) dXdT = np.array(dXdT) return _traceMinimum_rval(X, T, dXdT, overX, overT) class Phase(object): """ Describes a temperature-dependent minimum, plus second-order transitions to and from that minimum. Attributes ---------- key : hashable A unique identifier for the phase (usually an int). X, T, dXdT : array_like The minima and its derivative at different temperatures. tck : tuple Spline knots and coefficients, used in `interpolate.splev`. low_trans : set Phases (identified by keys) which are joined by a second-order transition to this phase. high_trans : set Phases (identified by keys) which are joined by a second-order transition to this phase. """ def __init__(self, key, X, T, dXdT): self.key = key # We shouldn't ever really need to sort the array, but there must be # some bug in the above code that makes it so that occasionally the last # step goes backwards. This should fix that. i = np.argsort(T) T, X, dXdT = T[i], X[i], dXdT[i] self.X = X self.T = T self.dXdT = dXdT # Make the spline: k = 3 if len(T) > 3 else 1 tck, u = interpolate.splprep(X.T, u=T, s=0, k=k) self.tck = tck # Make default connections self.low_trans = set() self.high_trans = set() def valAt(self, T, deriv=0): """ Find the minimum at the value `T` using a spline. Parameters ---------- T : float or array_like deriv : int If deriv > 0, instead return the derivative of the minimum with respect to `T`. Can return up to the third derivative for cubic splines (when ``len(X) > 3``) or first derivative for linear splines. """ T = np.asanyarray(T).T y = interpolate.splev(T, self.tck) return np.asanyarray(y).T def addLinkFrom(self, other_phase): """ Add a link from `other_phase` to this phase, checking to see if there is a second-order transition. """ if np.min(self.T) >= np.max(other_phase.T): self.low_trans.add(other_phase.key) other_phase.high_trans.add(self.key) if np.max(self.T) <= np.min(other_phase.T): self.high_trans.add(other_phase.key) other_phase.low_trans.add(self.key) def __repr__(self): popts = np.get_printoptions() np.set_printoptions(formatter={'float': lambda x: "%0.4g" % x}) if len(self.X) > 1: Xstr = "[%s, ..., %s]" % (self.X[0], self.X[-1]) else: Xstr = "[%s]" % self.X[0] if len(self.T) > 1: Tstr = "[%0.4g, ..., %0.4g]" % (self.T[0], self.T[-1]) else: Tstr = "[%0.4g]" % self.T[0] if len(self.dXdT) > 1: dXdTstr = "[%s, ..., %s]" % (self.dXdT[0], self.dXdT[-1]) else: dXdTstr = "[%s]" % self.dXdT[0] s = "Phase(key=%s, X=%s, T=%s, dXdT=%s" % ( self.key, Xstr, Tstr, dXdTstr) np.set_printoptions(**popts) return s def traceMultiMin(f, d2f_dxdt, d2f_dx2, points, tLow, tHigh, deltaX_target, dtstart=1e-6, tjump=1e-5, forbidCrit=None, verbose = False, single_trace_args={}, local_min_args={}): """ Trace multiple minima `xmin(t)` of the function `f(x,t)`. This function will trace the minima starting from the initial `(x,t)` values given in `points`. When a phase disappears, the function will search for new nearby minima, and trace them as well. In this way, if each minimum corresponds to a different phase, this function can find the (possibly) complete phase structure of the potential. Parameters ---------- f : callable The scalar function `f(x,t)` which needs to be minimized. The input will be of the same type as each entry in the `points` parameter. d2f_dxdt, d2f_dx2 : callable Functions which return returns derivatives of `f(x)`. `d2f_dxdt` should return the derivative of the gradient of `f(x)` with respect to `t`, and `d2f_dx2` should return the Hessian matrix of `f(x)` evaluated at `t`. Both should take as inputs `(x,t)`. points : list A list of points [(x1,t1), (x2,t2),...] that we want to trace, where `x1`, `x2`, etc. are each a one-dimensional array. tLow, tHigh : float Lowest and highest temperatures between which to trace. deltaX_target : float Passed to :func:`traceMinimum` and used to set the tolerance in minimization. dtstart : float, optional The starting stepsize, relative to ``tHigh-tLow``. tjump : float, optional The jump in `t` from the end of one phase to the initial tracing point in another. If this is too large, intermediate phases may be skipped. Relative to ``tHigh-tLow``. forbidCrit : callable or None, optional A function that determines whether or not to forbid a phase with a given starting point. Should take a point `x` as input, and return True (if the phase should be discarded) or False (if the phase should be kept). single_trace_args : dict, optional Arguments to pass to :func:`traceMinimum`. local_min_args : dict, optoinal Arguments to pass to :func:`findApproxLocalMinima`. Returns ------- phases : dict A dictionary of :class:`Phase` instances. The keys in the dictionary are integers corresponding to the order in which the phases were constructed. """ #dtstart = 1e-6 #tjump = 1e-6 # We want the minimization here to be very accurate so that we don't get # stuck on a saddle or something. This isn't much of a bottle neck. xeps = deltaX_target*1e-2 def fmin(x,t): return optimize.fmin(f, x+xeps, args=(t,), xtol=xeps*1e-3, ftol=np.inf, disp=False) dtstart = dtstart * (tHigh-tLow) tjump = tjump * (tHigh-tLow) phases = {} nextPoint = [] for p in points: x,t = p nextPoint.append([t,dtstart,fmin(x,t),None]) while len(nextPoint) != 0: t1,dt1,x1,linkedFrom = nextPoint.pop() x1 = fmin(x1, t1) # make sure we start as accurately as possible. # Check to see if this point is outside the bounds if t1 < tLow or (t1 == tLow and dt1 < 0): continue if t1 > tHigh or (t1 == tHigh and dt1 > 0): continue if forbidCrit is not None and forbidCrit(x1) == True: continue # Check to see if it's redudant with another phase for i in list(phases.keys()): phase = phases[i] if (t1 < min(phase.T[0], phase.T[-1]) or t1 > max(phase.T[0], phase.T[-1])): continue x = fmin(phase.valAt(t1), t1) if np.sum((x-x1)**2)**.5 < 2*deltaX_target: # The point is already covered # Skip this phase and change the linkage. if linkedFrom != i and linkedFrom is not None: phase.addLinkFrom(phases[linkedFrom]) break else: # The point is not already covered. Trace the phase. if verbose: print("Tracing phase starting at x =", x1, "; t =", t1) phase_key = len(phases) oldNumPoints = len(nextPoint) if (t1 > tLow): if verbose: print("Tracing minimum down") down_trace = traceMinimum(f, d2f_dxdt, d2f_dx2, x1, t1, tLow, -dt1, deltaX_target, verbose = verbose, **single_trace_args) X_down, T_down, dXdT_down, nX, nT = down_trace t2,dt2 = nT-tjump, .1*tjump x2 = fmin(nX,t2) nextPoint.append([t2,dt2,x2,phase_key]) if np.sum((X_down[-1]-x2)**2) > deltaX_target**2: for point in findApproxLocalMin(f,X_down[-1],x2,(t2,)): nextPoint.append([t2,dt2,fmin(point,t2),phase_key]) X_down = X_down[::-1] T_down = T_down[::-1] dXdT_down = dXdT_down[::-1] if (t1 < tHigh): if verbose: print("Tracing minimum up") up_trace = traceMinimum(f, d2f_dxdt, d2f_dx2, x1, t1, tHigh, +dt1, deltaX_target, verbose = verbose, **single_trace_args) X_up, T_up, dXdT_up, nX, nT = up_trace t2,dt2 = nT+tjump, .1*tjump x2 = fmin(nX,t2) nextPoint.append([t2,dt2,x2,phase_key]) if np.sum((X_up[-1]-x2)**2) > deltaX_target**2: for point in findApproxLocalMin(f,X_up[-1],x2,(t2,)): nextPoint.append([t2,dt2,fmin(point,t2),phase_key]) # Then join the two together if (t1 <= tLow): X,T,dXdT = X_up, T_up, dXdT_up elif (t1 >= tHigh): X,T,dXdT = X_down, T_down, dXdT_down else: X = np.append(X_down, X_up[1:], 0) T = np.append(T_down, T_up[1:], 0) dXdT = np.append(dXdT_down, dXdT_up[1:], 0) if forbidCrit is not None and (forbidCrit(X[0]) or forbidCrit(X[-1])): # The phase is forbidden. # Don't add it, and make it a dead-end. nextPoint = nextPoint[:oldNumPoints] elif len(X) > 1: newphase = Phase(phase_key, X,T,dXdT) if linkedFrom is not None: newphase.addLinkFrom(phases[linkedFrom]) phases[phase_key] = newphase else: # The phase is just a single point. # Don't add it, and make it a dead-end. nextPoint = nextPoint[:oldNumPoints] if verbose: print(phases) return phases def findApproxLocalMin(f, x1, x2, args=(), n=100, edge=.05): """ Find minima on a straight line between two points. When jumping between phases, we want to make sure that we don't jump over an intermediate phase. This function does a rough calculation to find any such intermediate phases. Parameters ---------- f : callable The function `f(x)` to minimize. x1, x2 : array_like The points between which to find minima. args : tuple, optional Extra arguments to pass to `f`. n : int, optional Number of points to test for local minima. edge : float, optional Don't test for minima directly next to the input points. If ``edge==0``, the minima potentially go all the way to input points. If ``edge==0.5``, the range of tested minima shrinks to a single point at the center of the two points. Returns ------- list A list of approximate minima, with each minimum having the same shape as `x1` and `x2`. """ x1,x2 = np.array(x1), np.array(x2) dx = np.sum((x1-x2)**2)**.5 #if dx < mindeltax: # return np.array([]).reshape(0,len(x1)) x = x1 + (x2-x1)*np.linspace(edge,1-edge,n).reshape(n,1) y = f(x,*args) i = (y[2:] > y[1:-1]) & (y[:-2] > y[1:-1]) return x[1:-1][i] def _removeRedundantPhase(phases, removed_phase, redundant_with_phase): for key in removed_phase.low_trans: if key != redundant_with_phase.key: p = phases[key] p.high_trans.discard(removed_phase.key) redundant_with_phase.addLinkFrom(p) for key in removed_phase.high_trans: if key != redundant_with_phase.key: p = phases[key] p.low_trans.discard(removed_phase.key) redundant_with_phase.addLinkFrom(p) del phases[removed_phase.key] def removeRedundantPhases(f, phases, xeps=1e-5, diftol=1e-2, verbose = False): """ Remove redundant phases from a dictionary output by :func:`traceMultiMin`. Although :func:`traceMultiMin` attempts to only trace each phase once, there are still instances where a single phase gets traced twice. If a phase is included twice, the routines for finding transition regions and tunneling get very confused. This attempts to avoid that problem. Parameters ---------- f : callable The function `f(x,t)` which was passed to :func:`traceMultiMin`. phases : dict The output of :func:`traceMultiMin`. xeps : float, optional Error tolerance in minimization. diftol : float, optional Maximum separation between two phases before they are considered to be coincident. Returns ------- None Notes ----- If two phases are merged to get rid of redundancy, the resulting phase has a key that is a string combination of the two prior keys. .. todo:: Make sure to test removeRedundantPhases(). .. todo:: Possibly add extra logic to account for phases which coinincide at one end but not the other. Warning ------- This hasn't been thoroughly tested yet. """ # I want to make the logic extremely simple at the cost of checking the # same thing multiple times. # There's just no way this function is going to be the bottle neck. def fmin(x,t): return np.array(optimize.fmin(f, x, args=(t,), xtol=xeps, ftol=np.inf, disp=False)) has_redundant_phase = True while has_redundant_phase: has_redundant_phase = False for i in list(phases.keys()): for j in list(phases.keys()): if i == j: continue phase1, phase2 = phases[i], phases[j] tmax = min(phase1.T[-1], phase2.T[-1]) tmin = max(phase1.T[0], phase2.T[0]) if tmin > tmax: # no overlap in the phases continue if tmax == phase1.T[-1]: x1 = phase1.X[-1] else: x1 = fmin(phase1.valAt(tmax), tmax) if tmax == phase2.T[-1]: x2 = phase2.X[-1] else: x2 = fmin(phase2.valAt(tmax), tmax) dif = np.sum((x1-x2)**2)**.5 same_at_tmax = (dif < diftol) if tmin == phase1.T[0]: x1 = phase1.X[0] else: x1 = fmin(phase1.valAt(tmin), tmin) if tmin == phase2.T[0]: x2 = phase2.X[0] else: x2 = fmin(phase2.valAt(tmin), tmin) dif = np.sum((x1-x2)**2)**.5 same_at_tmin = (dif < diftol) if same_at_tmin and same_at_tmax: # Phases are redundant has_redundant_phase = True p_low = phase1 if phase1.T[0] < phase2.T[0] else phase2 p_high = phase1 if phase1.T[-1] > phase2.T[-1] else phase2 if p_low is p_high: p_reject = phase1 if p_low is phase2 else phase2 _removeRedundantPhase(phases, p_reject, p_low) else: i = p_low.T <= tmax T_low = p_low.T[i] X_low = p_low.X[i] dXdT_low = p_low.dXdT[i] i = p_high.T > tmax T_high = p_high.T[i] X_high = p_high.X[i] dXdT_high = p_high.dXdT[i] T = np.append(T_low, T_high, axis=0) X = np.append(X_low, X_high, axis=0) dXdT = np.append(dXdT_low, dXdT_high, axis=0) newkey = str(p_low.key) + "_" + str(p_high.key) newphase = Phase(newkey, X, T, dXdT) phases[newkey] = newphase _removeRedundantPhase(phases, p_low, newphase) _removeRedundantPhase(phases, p_high, newphase) break elif same_at_tmin or same_at_tmax: if verbose: print("ERROR, Two phases have been found and the necessary function to combine them is not implemented.") # raise NotImplementedError( # "Two phases have been found to coincide at one end " # "but not the other. Ideally, this function would " # "find where the two diverge, make a cut, and join them " # "such there are no more phase redundancies.\n" # "Instead, just raise an exception." # ) if has_redundant_phase: break def getStartPhase(phases, V=None): """ Find the key for the high-T phase. Parameters ---------- phases : dict Output from :func:`traceMultiMin`. V : callable The potential V(x,T). Only necessary if there are multiple phases with the same Tmax. """ startPhases = [] startPhase = None Tmax = None assert len(phases) > 0 for i in list(phases.keys()): if phases[i].T[-1] == Tmax: # add this to the startPhases list. startPhases.append(i) elif Tmax is None or phases[i].T[-1] > Tmax: startPhases = [i] Tmax = phases[i].T[-1] if len(startPhases) == 1 or V is None: startPhase = startPhases[0] else: # more than one phase have the same maximum temperature # Pick the stable one at high temp. Vmin = None for i in startPhases: V_ = V(phases[i].X[-1], phases[i].T[-1]) if Vmin is None or V_ < Vmin: Vmin = V_ startPhase = i assert startPhase in phases return startPhase def _tunnelFromPhaseAtT(T, phases, start_phase, V, dV, phitol, overlapAngle, nuclCriterion, fullTunneling_params, verbose, outdict): """ Find the lowest action tunneling solution. Return ``nuclCriterion(S,T)``, and store a dictionary describing the transition in outdict for key `T`. """ try: T = T[0] # need this when the function is run from optimize.fmin except: pass if T in outdict: return nuclCriterion(outdict[T]['action'], T) def fmin(x): return optimize.fmin(V, x, args=(T,), xtol=phitol, ftol=np.inf, disp=False) # Loop through all the phases, adding acceptable minima x0 = fmin(start_phase.valAt(T)) V0 = V(x0, T) tunnel_list = [] for key in phases.keys(): if key == start_phase.key: continue p = phases[key] if (p.T[0] > T or p.T[-1] < T): continue x1 = fmin(p.valAt(T)) V1 = V(x1, T) if V1 >= V0: continue tdict = dict(low_vev=x1, high_vev=x0, Tnuc=T, low_phase=key, high_phase=start_phase.key) tunnel_list.append(tdict) # Check for overlap if overlapAngle > 0: excluded = [] cos_overlap = np.cos(overlapAngle * np.pi/180) for i in range(1, len(tunnel_list)): for j in range(i): xi = tunnel_list[i]['low_vev'] xj = tunnel_list[j]['low_vev'] xi2 = np.sum((xi-x0)**2) xj2 = np.sum((xj-x0)**2) dotij = np.sum((xj-x0)*(xi-x0)) if dotij >= np.sqrt(xi2*xj2) * cos_overlap: excluded.append(i if xi2 > xj2 else j) for i in sorted(excluded)[::-1]: del tunnel_list[i] # Get rid of the T parameter for V and dV def V_(x,T=T,V=V): return V(x,T) def dV_(x,T=T,dV=dV): return dV(x,T) # For each item in tunnel_list, try tunneling lowest_action = np.inf lowest_tdict = dict(action=np.inf) for tdict in tunnel_list: x1 = tdict['low_vev'] try: print("Tunneling from phase %s to phase %s at T=%0.4g" % (tdict['high_phase'], tdict['low_phase'], T)) print("high_vev =", tdict['high_vev']) print("low_vev =", tdict['low_vev']) tobj = pathDeformation.fullTunneling( [x1,x0], V_, dV_, callback_data=T, **fullTunneling_params) tdict['instanton'] = tobj tdict['action'] = tobj.action tdict['trantype'] = 1 except tunneling1D.PotentialError as err: if err.args[1] == "no barrier": tdict['trantype'] = 0 tdict['action'] = 0.0 elif err.args[1] == "stable, not metastable": tdict['trantype'] = 0 tdict['action'] = np.inf else: print("Unexpected error message.") raise if tdict['action'] <= lowest_action: lowest_action = tdict['action'] lowest_tdict = tdict outdict[T] = lowest_tdict return nuclCriterion(lowest_action, T) def _tunnelFromPhaseAtTGW(T, phases, start_phase, V, dV, phitol, overlapAngle, nuclCriterion, fullTunneling_params, verbose, outdict, SEucl, TEucl): """ Extends _tunnelFromPhaseAtT by a feature defining the sign of the action in case that it is calculated as np.inf. This is useful since otherways in some cases the used root finder brentq won't work: A different sign for f(a) and f(b) is required, where a and b are the interval's boundaries. Additionally, all potentially interesting points S(T) for the calculation of the derivative of the action are passed over using SEucl and TEucl. Potentially interesting points are defined as those, at which the nucleation criterion is fulfilled up to np.abs(nuclCriterion(lowest_action, T)) < 1. Attributes: ----------- SEucl : list, float Calculated actions while executing the program. Used to calculated the derivative of the action in tunnelFromPhaseGW. TEucl : list, float The temperatures at which the interesting actions SEucl have been calculated. """ sign = 1 if T <= start_phase.T[0]: # Set the sign to -1 for temperatures below Tmin # where Tmin is the lowest t of the start_phase sign = -1 try: T = T[0] # need this when the function is run from optimize.fmin except: pass if T in outdict: return nuclCriterion(outdict[T]['action'], T) def fmin(x): return optimize.fmin(V, x, args=(T,), xtol=phitol, ftol=np.inf, disp=False) # Loop through all the phases, adding acceptable minima x0 = fmin(start_phase.valAt(T)) V0 = V(x0, T) tunnel_list = [] for key in list(phases.keys()): if key == start_phase.key: continue p = phases[key] if (p.T[0] > T or p.T[-1] < T): continue x1 = fmin(p.valAt(T)) V1 = V(x1, T) if V1 >= V0: #if verbose: # print(T, x1, x0, V1, V0) continue tdict = dict(low_vev=x1, high_vev=x0, Tnuc=T, low_phase=key, high_phase=start_phase.key) tunnel_list.append(tdict) # Check for overlap if overlapAngle > 0: excluded = [] cos_overlap = np.cos(overlapAngle * np.pi/180) for i in range(1, len(tunnel_list)): for j in range(i): xi = tunnel_list[i]['low_vev'] xj = tunnel_list[j]['low_vev'] xi2 = np.sum((xi-x0)**2) xj2 = np.sum((xj-x0)**2) dotij = np.sum((xj-x0)*(xi-x0)) if dotij >= np.sqrt(xi2*xj2) * cos_overlap: excluded.append(i if xi2 > xj2 else j) for i in sorted(excluded)[::-1]: del tunnel_list[i] # Get rid of the T parameter for V and dV def V_(x,T=T,V=V): return V(x,T) def dV_(x,T=T,dV=dV): return dV(x,T) #print(T) #lin = np.linspace(0, 200, 1000) #V3 = np.zeros(lin.shape) #for i in range(1000): # V3[i] = V_([lin[i]]) #plt.plot(lin, V3) #plt.show() #print(tunnel_list) # For each item in tunnel_list, try tunneling # Set here the sign to get -np.inf if necessary. lowest_action = sign*np.inf lowest_tdict = dict(action=sign*np.inf) for tdict in tunnel_list: x1 = tdict['low_vev'] try: if verbose: print("Tunneling from phase %s to phase %s at T=%0.8g" % (tdict['high_phase'], tdict['low_phase'], T)) print("high_vev =", tdict['high_vev']) print("low_vev =", tdict['low_vev']) tobj = pathDeformation.fullTunneling( [x1,x0], V_, dV_, callback_data=T, **fullTunneling_params) tdict['instanton'] = tobj tdict['action'] = tobj.action tdict['trantype'] = 1 except tunneling1D.PotentialError as err: if err.args[1] == "no barrier": if verbose: print("No barrier!") tdict['trantype'] = 0 tdict['action'] = 0.0 elif err.args[1] == "stable, not metastable": if verbose: print("Stable, not metastable!") tdict['trantype'] = 0 tdict['action'] = np.inf else: if verbose: print("Unexpected error message.") raise if tdict['action'] <= lowest_action: lowest_action = tdict['action'] lowest_tdict = tdict outdict[T] = lowest_tdict if verbose: # Print the currently calculated euclidean action, the temperature, # their ratio and and the nucleation criterion at that point print("S = ", lowest_action, ", T = ", T, ", S/T = ", lowest_action/(T + 1e-100), ", S/T - crit = ", nuclCriterion(lowest_action, T), "\n") # Fill SEucl and TEucl to pass it over to tunnelFromPhaseGW if np.abs(nuclCriterion(lowest_action, T)) < 1: #if np.abs(lowest_action/(T + 1e-100)) != np.inf: # activate lower 'if' for plot of nucleation criterion in function tunnelFromPhase SEucl.append(lowest_action/(T + 1e-100)) TEucl.append(T + 1e-100) return nuclCriterion(lowest_action, T) def _potentialDiffForPhase(T, start_phase, other_phases, V): """ Returns the maximum difference between the other phases and `start_phase`. Return value is positive/negative when `start_phase` is stable/unstable. """ V0 = V(start_phase.valAt(T),T) delta_V = np.inf for phase in other_phases: V1 = V(phase.valAt(T),T) if V1-V0 < delta_V: delta_V = V1-V0 return delta_V def _maxTCritForPhase(phases, start_phase, V, Ttol): """ Find the maximum temperature at which `start_phase` is degenerate with one of the other phases. """ other_phases = [] for phase in list(phases.values()): if phase.key != start_phase.key: other_phases.append(phase) if len(other_phases) == 0: # No other phases, just return the lowest temperature return start_phase.T[0] Tmin = min([phase.T[0] for phase in other_phases]) Tmax = max([phase.T[-1] for phase in other_phases]) Tmin = max(Tmin, start_phase.T[0]) Tmax = min(Tmax, start_phase.T[-1]) DV_Tmin = _potentialDiffForPhase(Tmin, start_phase, other_phases, V) DV_Tmax = _potentialDiffForPhase(Tmax, start_phase, other_phases, V) if DV_Tmin >= 0: return Tmin # stable at Tmin if DV_Tmax <= 0: return Tmax # unstable at Tmax return optimize.brentq( _potentialDiffForPhase, Tmin, Tmax, args=(start_phase, other_phases, V), xtol=Ttol, maxiter=200, disp=False) def tunnelFromPhase(phases, start_phase, V, dV, Tmax, Ttol=1e-3, maxiter=100, phitol=1e-8, overlapAngle=45.0, nuclCriterion=lambda S,T: S/(T+1e-100) - 140.0, verbose=True, fullTunneling_params={}): """ Find the instanton and nucleation temeprature for tunneling from `start_phase`. Parameters ---------- phases : dict Output from :func:`traceMultiMin`. start_phase : Phase object The metastable phase from which tunneling occurs. V, dV : callable The potential V(x,T) and its gradient. Tmax : float The highest temperature at which to try tunneling. Ttol : float, optional Tolerance for finding the nucleation temperature. maxiter : int, optional Maximum number of times to try tunneling. phitol : float, optional Tolerance for finding the minima. overlapAngle : float, optional If two phases are in the same direction, only try tunneling to the closer one. Set to zero to always try tunneling to all available phases. nuclCriterion : callable Function of the action *S* and temperature *T*. Should return 0 for the correct nucleation rate, > 0 for a low rate and < 0 for a high rate. Defaults to ``S/T - 140``. verbose : bool If true, print a message before each attempted tunneling. fullTunneling_params : dict Parameters to pass to :func:`pathDeformation.fullTunneling`. Returns ------- dict or None A description of the tunneling solution at the nucleation temperature, or None if there is no found solution. Has the following keys: - *Tnuc* : the nucleation temperature - *low_vev, high_vev* : vevs for the low-T phase (the phase that the instanton tunnels to) and high-T phase (the phase that the instanton tunnels from). - *low_phase, high_phase* : identifier keys for the low-T and high-T phases. - *action* : The Euclidean action of the instanton. - *instanton* : Output from :func:`pathDeformation.fullTunneling`, or None for a second-order transition. - *trantype* : 1 or 2 for first or second-order transitions. """ outdict = {} # keys are T values args = (phases, start_phase, V, dV, phitol, overlapAngle, nuclCriterion, fullTunneling_params, verbose, outdict) Tmin = start_phase.T[0] T_highest_other = Tmin for phase in phases.values(): T_highest_other = max(T_highest_other, phase.T[-1]) Tmax = min(Tmax, T_highest_other) assert Tmax >= Tmin try: Tnuc = optimize.brentq(_tunnelFromPhaseAtT, Tmin, Tmax, args=args, xtol=Ttol, maxiter=maxiter, disp=False) except ValueError as err: if err.args[0] != "f(a) and f(b) must have different signs": raise if nuclCriterion(outdict[Tmax]['action'], Tmax) > 0: if nuclCriterion(outdict[Tmin]['action'], Tmax) < 0: # tunneling *may* be possible. Find the minimum. # It's important to make an appropriate initial guess; # otherwise the minimization routine may get get stuck in a # region where the action is infinite. Modify Tmax. Tmax = _maxTCritForPhase(phases, start_phase, V, Ttol) def abort_fmin(T, outdict=outdict, nc=nuclCriterion): T = T[0] # T is an array of size 1 if nc(outdict[T]['action'], T) <= 0: raise StopIteration(T) try: Tmin = optimize.fmin(_tunnelFromPhaseAtT, 0.5*(Tmin+Tmax), args=args, xtol=Ttol*10, ftol=1.0, maxiter=maxiter, disp=0, callback=abort_fmin)[0] except StopIteration as err: Tmin = err.args[0] if nuclCriterion(outdict[Tmin]['action'], Tmin) > 0: # no tunneling possible return None Tnuc = optimize.brentq( _tunnelFromPhaseAtT, Tmin, Tmax, args=args, xtol=Ttol, maxiter=maxiter, disp=False) else: # no tunneling possible return None else: # tunneling happens right away at Tmax Tnuc = Tmax rdict = outdict[Tnuc] return rdict if rdict['trantype'] > 0 else None def tunnelFromPhaseGW(phases, start_phase, V, dV, Tmax, Ttol = 1e-3, maxiter = 100, phitol = 1e-8, overlapAngle = 45.0, nuclCriterion = lambda S, T: S/(T+1e-100) - 140, verbose = False, fullTunneling_params={}): """ Extends the function tunnelFromPhase by the calculation of the GW parameter beta / H. Find the instanton and nucleation temeprature for tunneling from `start_phase`. Compute the derivative of the instanton action at the nucleation temperature to calculate the GW spectrum parameter beta / H. To do that, use _tunnelFromPhaseAtTGW and not _tunnelFromPhaseAtT to pass over points of support of the action S(T) as a function of temperature with which the necessary derivative can be calculated by fitting a linear function to the passed points. To avoid numerical errors, an upper and a lower fit of the data (T > Tnuc, T < Tnuc) are calculated and then compared. If during this procedure an error occurrs: return a dictionary with a code explaining the reason and position of the error. Parameters ---------- phases : dict Output from :func:`traceMultiMin`. start_phase : Phase object The metastable phase from which tunneling occurs. V, dV : callable The potential V(x,T) and its gradient. transC : dict Found transition (including a critical temperature) from findCriticalTemperature. This is necessary to pass over the model's nucleation criterion Tmax : float The highest temperature at which to try tunneling. Ttol : float, optional Tolerance for finding the nucleation temperature. maxiter : int, optional Maximum number of times to try tunneling. phitol : float, optional Tolerance for finding the minima. overlapAngle : float, optional If two phases are in the same direction, only try tunneling to the closer one. Set to zero to always try tunneling to all available phases. nuclCriterion : callable Function of the action *S* and temperature *T*. Should return 0 for the correct nucleation rate, > 0 for a low rate and < 0 for a high rate. Defaults to ``S/T - 140``. verbose : bool If true, print a message before each attempted tunneling. fullTunneling_params : dict Parameters to pass to :func:`pathDeformation.fullTunneling`. Returns ------- dict or None A description of the tunneling solution at the nucleation temperature, or None if there is no found solution. Has the following keys: - *Tnuc* : the nucleation temperature - *betaH*: the GW spectrum parameter beta/H - *low_vev, high_vev* : vevs for the low-T phase (the phase that the instanton tunnels to) and high-T phase (the phase that the instanton tunnels from). - *low_phase, high_phase* : identifier keys for the low-T and high-T phases. - *action* : The Euclidean action of the instanton. - *instanton* : Output from :func:`pathDeformation.fullTunneling`, or None for a second-order transition. - *trantype* : 1 or 2 for first or second-order transitions. """ rel_slope_error = 0.01 # 0.05 N_first_try = 50 # 32 number of points of support generated for a fit above and below Tnuc N_second_try = 100 # 15 N_cutted_fit = 15 # 10 Tmin = start_phase.T[0] if Tmin >= Tmax: if verbose: print("Found that Tmin is bigger than Tmax: Tunneling cannot occurr.") errordict = dict(error = 10) return errordict SEucl = [] TEucl = [] outdict = {} # keys are T values args = (phases, start_phase, V, dV, phitol, overlapAngle, nuclCriterion, fullTunneling_params, verbose, outdict, SEucl, TEucl) try: # Calculate the nucleation temperature by finding the root of the nucleation criterion if verbose: print("\n# Brentq at Tmin = ", Tmin, " Tmax = ", Tmax) Tnuc = optimize.brentq(_tunnelFromPhaseAtTGW, Tmin, Tmax, args=args, xtol=Ttol, maxiter=maxiter, disp=False) if verbose: print("# Brentq done, found Tnuc = ", Tnuc, "\n") except: if verbose: print("No temperature at which the nucleation criterion can be fulfilled was found.") errordict = dict(error = 7) return errordict def plot_nucl_crit(Tmin = Tmin, Tmax = Tmax, N = 100): # Plot the value of the nucleation criterion with N points of support # between Tmin and Tmax Tminplot = Tmin Tmaxplot = Tmax T_list = np.linspace(Tminplot, Tmaxplot, N) for T_extra in T_list: try: _tunnelFromPhaseAtTGW(T_extra, phases, start_phase, V, dV, phitol, overlapAngle, nuclCriterion, fullTunneling_params, verbose, outdict, SEucl, TEucl) except: if verbose: print("Had a problem adding the temperature ", T_extra, " to the outdict.") STEucl = list(zip(TEucl,SEucl)) STEucl.sort() SEucl_srt = [x for T, x in STEucl] TEucl_srt = [y for y, S in STEucl] nucl_list = np.zeros(len(SEucl_srt)) nucl2_list = np.zeros(len(SEucl_srt)) plt.plot(TEucl_srt, SEucl_srt) plt.title("S/T vs. temperature") #plt.plot(TEucl_srt, SEucl_srt, "x") plt.xlim(Tminplot, Tmaxplot) plt.yscale("log") plt.grid() #plt.savefig("nuclcrit_T_g_is_085_l_is_001") plt.show() for i in range(len(SEucl_srt)): nucl_list[i] = nuclCriterion(SEucl_srt[i]*TEucl_srt[i], TEucl_srt[i]) plt.plot(TEucl_srt, np.abs(nucl_list)) plt.title("|Nucleation criterion| vs. temperature") #plt.plot(TEucl_srt, np.abs(nucl_list), "x") plt.xlim(Tminplot, Tmaxplot) plt.yscale("log") plt.grid() #plt.savefig("nuclcrit_T_g_is_085_l_is_001") plt.show() for i in range(len(SEucl_srt)): nucl2_list[i] = -nuclCriterion(SEucl_srt[i]*TEucl_srt[i], TEucl_srt[i]) + SEucl_srt[i] plt.plot(TEucl_srt, nucl2_list) plt.plot(TEucl_srt, SEucl_srt) plt.title("action and criterion vs. temperature") #plt.plot(TEucl_srt, np.abs(nucl_list), "x") plt.xlim(Tminplot, Tmaxplot) plt.yscale("log") plt.grid() #plt.savefig("nuclcrit_T_g_is_085_l_is_001") plt.show() #np.savetxt("T_plot.txt", TEucl_srt) #np.savetxt("S_plot.txt", SEucl_srt) #np.savetxt("N_plot.txt", nucl_list) #plot_nucl_crit(Tmin = 46, Tmax = 51.3, N = 100) # Check, whether there are enough points of support to calculate the necessary derivative # If not the case, calculate more points of support. if len(TEucl) == 0: if verbose: print("Found a temperature which fulfills the nucleation criterion sufficiently well in brentq, but not good enough (|_tunnelFromPhaseAtT| < 1) to go on from here. I.e. most probably: a too-supercooled phase.") errordict = dict(error = 0) return errordict if len(TEucl) == 1: if verbose: print("Found only one point that fulfills the nucleation criterion sufficiently well (|_tunnelFromPhaseAtT| < 1). This isn't suffient for a proper calculation of the beta parameter.") errordict = dict(error = 1) return errordict if len(TEucl) <= N_first_try: #need more points for good regression! N_to_add = N_first_try - len(TEucl) if verbose: print("Found only", len(TEucl), " points. Add", N_to_add, "more to calculate the derivative of the euclidean action properly.") TEucl_min = min(TEucl) TEucl_max = max(TEucl) TEucl_between = np.linspace(TEucl_min, TEucl_max, N_to_add) # Add more points such that alltogether 30 points of support for T_extra in TEucl_between: try: _tunnelFromPhaseAtTGW(T_extra, phases, start_phase, V, dV, phitol, overlapAngle, nuclCriterion, fullTunneling_params, verbose, outdict, SEucl, TEucl) except: if verbose: print("Had a problem adding the temperature ", T_extra, " to the outdict.") # Calculation of beta / H def lin_fit(x, a, b): # General linear function return a*x + b def make_fit(): # Make a linear fit using TEucl and SEucl # return the slope, its error and wether the covariance matrix # has an infinitely large element STEucl = list(zip(TEucl,SEucl)) STEucl.sort() SEucl_srt = [x for T, x in STEucl] TEucl_srt = [y for y, S in STEucl] if verbose: print("\nFit through ", len(TEucl_srt), " points.") np.seterr(over = 'ignore') try: params, covariance_matrix = curve_fit(lin_fit, TEucl_srt, SEucl_srt) except: if verbose: print("Fit was not successfull.") return -1, 1, True errors = np.sqrt(np.diag(np.abs(covariance_matrix))) np.seterr(over = 'warn') def plot_fit(): plt.plot(TEucl_srt, SEucl_srt, "X") a = np.zeros(len(TEucl_srt)) for i in range(len(TEucl_srt)): a[i] = params[0]*TEucl_srt[i] + params[1] plt.plot(TEucl_srt, a) plt.axvline(x=Tnuc) plt.show() #plot_fit() covisinf = np.any(covariance_matrix[covariance_matrix == np.inf]) if verbose: print("Fit was successfull.") return params[0], errors[0], covisinf def make_cutted_fit(): # Make two linear fits above and below Tnuc using TEucl and SEucl. # If slopes don't match up, use single linear regression # make_fit. If slopes coincide within an uncertainty of 5 percent # return a weighted mean of them (weights: number of points of # support of respective fit). If one of the fits is trustworthy, # but the other one is not, take that one to return the # expected values. STEucl = list(zip(TEucl,SEucl)) STEucl.sort() SEucl_srt = [x for T, x in STEucl] TEucl_srt = [y for y, S in STEucl] SEucl_srt_lo = [] TEucl_srt_lo = [] SEucl_srt_hi = [] TEucl_srt_hi = [] for i in range(len(TEucl_srt)): if TEucl_srt[i] < Tnuc: TEucl_srt_lo.append(TEucl_srt[i]) SEucl_srt_lo.append(SEucl_srt[i]) else: TEucl_srt_hi.append(TEucl_srt[i]) SEucl_srt_hi.append(SEucl_srt[i]) if verbose: print("\nFit through ", len(TEucl_srt_lo), " points below and ", len(TEucl_srt_hi), " points above Tnuc.") if len(TEucl_srt_lo) < N_cutted_fit or len(TEucl_srt_hi) < N_cutted_fit: if verbose: print("Not enough points for a fit below or above. Try fitting all points in one line.") return make_fit() np.seterr(over = 'ignore') try: params_hi, covariance_matrix_hi = curve_fit(lin_fit, TEucl_srt_hi, SEucl_srt_hi) errors_hi = np.sqrt(np.diag(np.abs(covariance_matrix_hi))) except: if verbose: print("Upper fit was not successfull.") return -1, 1, True try: params_lo, covariance_matrix_lo = curve_fit(lin_fit, TEucl_srt_lo, SEucl_srt_lo) errors_lo = np.sqrt(np.diag(np.abs(covariance_matrix_lo))) except: if verbose: print("Lower fit was not successfull.") return -1, 1, True np.seterr(over = 'warn') def plot_fit(): plt.plot(TEucl_srt_lo, SEucl_srt_lo, "X") plt.plot(TEucl_srt_hi, SEucl_srt_hi, "X") a = np.zeros(len(TEucl_srt)) b = np.zeros(len(TEucl_srt)) for i in range(len(TEucl_srt)): a[i] = params_hi[0]*TEucl_srt[i] + params_hi[1] b[i] = params_lo[0]*TEucl_srt[i] + params_lo[1] plt.plot(TEucl_srt, a) plt.plot(TEucl_srt, b) plt.axvline(x=Tnuc) plt.show() #plot_fit() if np.abs((params_lo[0] - params_hi[0])/ params_hi[0]) < rel_slope_error: # if upper and lower slopes are compatible covisinf = np.any(covariance_matrix_hi[covariance_matrix_hi == np.inf]) covisinf = covisinf or np.any(covariance_matrix_lo[covariance_matrix_lo == np.inf]) slope_mean = (params_lo[0] * len(TEucl_srt_lo) + params_hi[0] * len(TEucl_srt_hi)) / len(TEucl_srt) errors = max(errors_hi[0], errors_lo[0]) return slope_mean, errors, covisinf elif np.abs(errors_hi[0]/params_hi[0]) < rel_slope_error: covisinf = np.any(covariance_matrix_hi[covariance_matrix_hi == np.inf]) return params_hi[0], errors_hi[0], covisinf elif np.abs(errors_lo[0]/params_lo[0]) < rel_slope_error: covisinf = np.any(covariance_matrix_lo[covariance_matrix_lo == np.inf]) return params_lo[0], errors_lo[0], covisinf else: return make_fit() slope, slope_error, covisinf = make_cutted_fit() # Test if the calculation of the derivative is certain enough, # else, calculate more points of support and retry. if np.abs(slope_error/slope) > rel_slope_error: if verbose: print(r"Found a regression with an too high uncertainty. Calculate more points of support.") TEucl_min = min(TEucl) TEucl_max = max(TEucl) TEucl_between = np.linspace(TEucl_min, TEucl_max, N_second_try) for T_extra in TEucl_between: try: _tunnelFromPhaseAtTGW(T_extra, phases, start_phase, V, dV, phitol, overlapAngle, nuclCriterion, fullTunneling_params, verbose, outdict, SEucl, TEucl) except: if verbose: print("Had a problem adding the temperature ", T_extra, " to the outdict.") slope, slope_error, covisinf = make_cutted_fit() if np.abs(slope_error/slope) > rel_slope_error: # check if still uncertain if covisinf: if verbose: print("There were at least two same points when calculating the linear regression for calculating beta. This yielded an infinte covariance matrix.") print("Slope:", slope, "Slope error: ", slope_error, "Relative slope error: ", slope_error/slope, "Covariance matrix is infinte:", covisinf) errordict = dict(error = 8) if verbose: print(r"Adding more points of support to calculate the derivative of the euclidean action didn't yield a result with a relative error below 1 percent.") print("Slope:", slope, "Slope error: ", slope_error, "Relative slope error: ", slope_error/slope, "Covariance matrix is infinte:", covisinf) errordict = dict(error = 3) return errordict # Calculate beta/H as given by # beta/ H = Tnuc * (dS/dT)_(T = Tnuc) # and pass it to the dictionary rdict = outdict[Tnuc] rdict['betaH'] = Tnuc * slope if rdict['betaH'] < 0: if verbose: print("Due to some strange reason a negative beta was calculated. This shouldn't happen at all.") errordict = dict(error = 2) return errordict if not rdict['trantype'] > 0: if verbose: print("Due to some strange reason a neither first, nor second-order transition has been documented. This shouldn't happen at all.") errordict = dict(error = 6) return errordict return rdict def secondOrderTrans(high_phase, low_phase, Tstr='Tnuc'): """ Assemble a dictionary describing a second-order phase transition. """ rdict = {} rdict[Tstr] = 0.5*(high_phase.T[0] + low_phase.T[-1]) rdict['low_vev'] = rdict['high_vev'] = high_phase.X[0] rdict['low_phase'] = low_phase.key rdict['high_phase'] = high_phase.key rdict['action'] = 0.0 rdict['instanton'] = None rdict['trantype'] = 2 # MANUALLY ADDED GW PARAMETERS rdict['alpha'] = -2. rdict['beta'] = -2. return rdict def findAllTransitions(phases, V, dV, tunnelFromPhase_args={}): """ Find the complete phase transition history for the potential `V`. This functions uses :func:`tunnelFromPhase` to find the transition temperature and instanton for each phase, starting at the highest phase in the potential. Note that if there are multiple transitions that could occur at the same minimum (if, for example, there is a Z2 symmetry or a second-order transition breaks in multiple directions), only one of the transitions will be used. Parameters ---------- phases : dict Output from :func:`traceMultiMin`. V, dV : callable The potential function and its gradient, each a function of field value (which should be an array, not a scalar) and a temperature. tunnelFromPhase_args : dict Parameters to pass to :func:`tunnelFromPhase`. Returns ------- list of transitions Each item is a dictionary describing the transition (see :func:`tunnelFromPhase` for keys). The first transition is the one at the highest temperature. """ phases = phases.copy() start_phase = phases[getStartPhase(phases, V)] Tmax = start_phase.T[-1] transitions = [] while start_phase is not None: del phases[start_phase.key] trans = tunnelFromPhase(phases, start_phase, V, dV, Tmax, **tunnelFromPhase_args) if trans is None and not start_phase.low_trans: start_phase = None elif trans is None: low_key = None for key in start_phase.low_trans: if key in phases: low_key = key break if low_key is not None: low_phase = phases[low_key] transitions.append(secondOrderTrans(start_phase, low_phase)) start_phase = low_phase Tmax = low_phase.T[-1] else: start_phase = None else: transitions.append(trans) start_phase = phases[trans['low_phase']] Tmax = trans['Tnuc'] return transitions def findAllTransitionsGW(phases, V, dV, transC, verbose = False, tunnelFromPhase_args={}): """ Works just as findAllTransitions, but doesn't call tunnelFromPhase to compute the tunneling parameters but tunnelFromPhaseGW, which takes also transC as an input and calculates beta/H as well (and puts it into the dictionary that findAllTransitionsGW returns). The additional input is necessary to provide the investigated model's nucleation criterion, which the original tunnelFromPhase didn't use. Parameters ---------- phases : dict Output from :func:`traceMultiMin`. V, dV : callable The potential function and its gradient, each a function of field value (which should be an array, not a scalar) and a temperature. transC : dict Found transition (including a critical temperature) from findCriticalTemperature. This is necessary to pass over the model's nucleation criterion verbose : Boolean Decides whether there will be an output or not during the following calculations. tunnelFromPhase_args : dict Parameters to pass to :func:`tunnelFromPhase`. Returns ------- list of transitions Each item is a dictionary describing the transition (see :func:`tunnelFromPhase` for keys). The first transition is the one at the highest temperature. In the case of an error, the dictionary will have the key 'error' in which an explanatory errorkey is saved. """ phases = phases.copy() start_phase = phases[getStartPhase(phases, V)] #start_phase = phases[1] #Tmax = start_phase.T[-1] Tmax = transC['Tcrit'] transitions = [] while start_phase is not None: del phases[start_phase.key] trans = tunnelFromPhaseGW(phases, start_phase, V, dV, Tmax, verbose = verbose, **tunnelFromPhase_args) if 'error' in trans: return trans if trans is None and not start_phase.low_trans: start_phase = None elif trans is None: low_key = None for key in start_phase.low_trans: if key in phases: low_key = key break if low_key is not None: low_phase = phases[low_key] transitions.append(secondOrderTrans(start_phase, low_phase)) start_phase = low_phase Tmax = low_phase.T[-1] else: start_phase = None else: if "low_phase" not in trans: trans["error"] = 8 transitions.append(trans) return transitions transitions.append(trans) start_phase = phases[trans['low_phase']] Tmax = trans['Tnuc'] start_phase = None # to stop program from another run with T interval between 0 and old Tmin return transitions def findCriticalTemperatures(phases, V, start_high=False): """ Find all temperatures `Tcrit` such that there is degeneracy between any two phases. Parameters ---------- phases : dict Output from :func:`traceMultiMin`. V : callable The potential function `V(x,T)`, where `x` is the field value (which should be an array, not a scalar) and `T` is the temperature. start_high : bool, optional If True, only include those transitions which could be reached starting from the high-T phase. NOT IMPLEMENTED YET. Returns ------- list of transitions Transitions are sorted in decreasing temperature. Each transition is a dictionary with the following keys: - *Tcrit* : the critical temperature - *low_vev, high_vev* : vevs for the low-T phase (the phase that the model transitions to) and high-T phase (the phase that the model transitions from). - *low_phase, high_phase* : identifier keys for the low-T and high-T phases. - *trantype* : 1 or 2 for first or second-order transitions. """ transitions = [] for i in list(phases.keys()): for j in list(phases.keys()): if i == j: continue # Try going from i to j (phase1 -> phase2) phase1, phase2 = phases[i], phases[j] #print(phase1, "\n", phase2) tmax = min(phase1.T[-1], phase2.T[-1]) tmin = max(phase1.T[0], phase2.T[0]) #print(tmin, tmax) if tmin >= tmax: # No overlap. Try for second-order. if phase2.key in phase1.low_trans: transitions.append( secondOrderTrans(phase1, phase2, 'Tcrit')) continue def DV(T): return V(phase1.valAt(T), T) - V(phase2.valAt(T), T) if DV(tmin) < 0: # phase1 is lower at tmin, no tunneling continue if DV(tmax) > 0: #phase1 is higher even at tmax, no critical temperature continue Tcrit = optimize.brentq(DV, tmin, tmax, disp=False) tdict = {} tdict['Tcrit'] = Tcrit tdict['high_vev'] = phase1.valAt(Tcrit) tdict['high_phase'] = phase1.key tdict['low_vev'] = phase2.valAt(Tcrit) tdict['low_phase'] = phase2.key tdict['trantype'] = 1 transitions.append(tdict) if not start_high: return sorted(transitions, key=lambda x: x['high_phase'])[::-1] # changed, before key=lambda x: x['Tcrit'] start_phase = getStartPhase(phases, V) raise NotImplementedError("start_high=True not yet supported") def addCritTempsForFullTransitions(phases, crit_trans, full_trans): """ For each transition dictionary in `full_trans`, find the corresponding transition in `crit_trans` and add it to the dictionary for the key `crit_trans`, or add None if no corresponding transition is found. Notes ----- The phases in the supercooled transitions might not be exactly the same as the phases in the critical temperature transitions. This would be the case, for example, if in `full_trans` the phase transitions go like 1 -> 2 -> 3, but in `crit_trans` they go like 1 -> (2 or 3). Parameters ---------- phases : dict crit_trans : list full_trans : list """ parents_dict = {} for i in list(phases.keys()): parents = [i] for tcdict in crit_trans[::-1]: j = tcdict['high_phase'] if tcdict['low_phase'] in parents and j not in parents: parents.append(j) parents_dict[i] = parents for tdict in full_trans: low_parents = parents_dict[tdict['low_phase']] high_parents = parents_dict[tdict['high_phase']] common_parents = set.intersection( set(low_parents), set(high_parents)) for p in common_parents: # exclude the common parents try: k = low_parents.index(p) low_parents = low_parents[:k] except: pass try: k = high_parents.index(p) high_parents = high_parents[:k+1] except: pass for tcdict in crit_trans[::-1]: # start at low-T if tcdict['Tcrit'] < tdict['Tnuc']: continue if (tcdict['low_phase'] in low_parents and tcdict['high_phase'] in high_parents): tdict['crit_trans'] = tcdict break else: tdict['crit_trans'] = None
40.412938
222
0.585536
3,100
0.046377
0
0
0
0
0
0
29,901
0.447332
13fecb8c46693f75faf20fe0071fb2ddb03a2ed2
3,720
py
Python
red-scare/instance-generators/make-words.py
Sebastian-ba/DoDoBing
6edcc18de22ad76505d2c13ac6a207a2c274cc95
[ "MIT" ]
3
2017-09-25T11:59:20.000Z
2017-11-20T12:55:21.000Z
red-scare/instance-generators/make-words.py
ITU-2019/DoDoBing
6edcc18de22ad76505d2c13ac6a207a2c274cc95
[ "MIT" ]
6
2017-09-25T12:04:51.000Z
2017-11-13T07:51:40.000Z
red-scare/instance-generators/make-words.py
ITU-2019/DoDoBing
6edcc18de22ad76505d2c13ac6a207a2c274cc95
[ "MIT" ]
null
null
null
import sys import random import networkx as nx from write_nx_graph import write_graph uncommons = set() # Everything except the 3300 common words in SGB f = open ('data/words.txt','r') words = [] for line in f: if len(line)>0 and line[0] == '*': continue word = line.strip()[:5] words.append(word) if not (len(line.strip())>5 and line[5] == '*'): uncommons.add(word) f.close() def starredwords(word, numstars): # given 'AWORD' returns ['*WORD', 'A*ORD',...,'AWOR*'] if numstars == 1: return [word[:i] + '*' +word[i+1:] for i in range(5)] else: return [word[:i] + '*' + word[i+1:j] + '*' + word[j+1:] for j in range (1,5) for i in range(j)] def _numvowels(word): # returns the number of vowels in word counter = 0 for c in word: counter += (c in 'aeiou') return counter def sorted(word): letters = list(word) letters.sort() sorted = "".join(letters) return sorted class Words(nx.Graph): def __init__(self,L, numstars): nx.Graph.__init__(self) self.add_nodes_from(L) N = dict() for word in L: for starred in starredwords(word,numstars): if not starred in N: N[starred] = set([word]) else: N[starred].add(word) s = sorted(word) if not s in N: N[s] = set([word]) else: N[s].add(word) S = set(L) for word in self.nodes(): for starred in starredwords(word,numstars): for neighbour in N[starred]: if word != neighbour: self.add_edge(word, neighbour) for neighbour in N[sorted(word)]: if word != neighbour: self.add_edge(word, neighbour) def wordgraph(n, numstars, musthaves): L = [] for word in words: if word not in musthaves: L.append(word) random.seed(0) random.shuffle(L) L = L[:n-len(musthaves)] L.extend(musthaves) return Words(L, numstars) def write_rusties(): for n in [2000, 2500, 3000, 3500, 4000, 4500, 5000, 10000]: for numstars in [1,2]: G = wordgraph(n, numstars, ['begin','ender','rusty']) name = "rusty-{0}-{1}".format(numstars, len(G)) write_graph(G, name, 'begin', 'ender', ['rusty']) # write a small graph as well: G = Words(words, 1) V = set() P = nx.all_shortest_paths(G, 'begin', 'rusty') for L in P: for w in L: V.add(w) P = nx.all_shortest_paths(G, 'ender', 'rusty') for L in P: for w in L: V.add(w) L = list(V) for v in L: V.add(v) G = Words(V, 1) name = "rusty-1-{0}".format(len(G)) write_graph(G, name, 'begin', 'ender', ['rusty']) def write_commons(): for n in [20, 50, 100, 250, 500,1000,1500,2000, 2500, 3000, 3500, 4000, 4500, 5000, 10000]: for numstars in [1,2]: G = wordgraph(n, numstars, ['start', 'ender']) name = "common-{0}-{1}".format(numstars,len(G)) R = [word for word in G.nodes() if word in uncommons] write_graph(G, name, 'start', 'ender', R) write_rusties() write_commons()
36.116505
109
0.470968
1,177
0.316398
0
0
0
0
0
0
376
0.101075
13ff78cbd83636d6edec29d58b60fdaa0be4d91a
7,490
py
Python
scripts/strelka-2.9.2.centos6_x86_64/share/scoringModelTraining/somatic/bin/vcf_to_feature_csv.py
dongxuemin666/RNA-combine
13e178aae585e16a9a8eda8151d0f34316de0475
[ "Apache-2.0" ]
7
2021-09-03T09:11:00.000Z
2022-02-14T15:02:12.000Z
scripts/strelka-2.9.2.centos6_x86_64/share/scoringModelTraining/somatic/bin/vcf_to_feature_csv.py
dongxuemin666/RNA-combine
13e178aae585e16a9a8eda8151d0f34316de0475
[ "Apache-2.0" ]
null
null
null
scripts/strelka-2.9.2.centos6_x86_64/share/scoringModelTraining/somatic/bin/vcf_to_feature_csv.py
dongxuemin666/RNA-combine
13e178aae585e16a9a8eda8151d0f34316de0475
[ "Apache-2.0" ]
2
2022-01-10T13:07:29.000Z
2022-01-11T22:14:11.000Z
#!/usr/bin/env python2 # # Strelka - Small Variant Caller # Copyright (c) 2009-2018 Illumina, Inc. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # """ Convert a Strelka somatic VCF to CSV format, annotate TP and FP given a truth VCF and FP / ambiguous region bed files. """ __author__ = "Peter Krusche <[email protected]>" import os import sys import pandas scriptDir = os.path.abspath(os.path.dirname(__file__)) scriptName = os.path.basename(__file__) workflowDir = os.path.abspath(os.path.join(scriptDir, "../lib")) sys.path.append(workflowDir) import evs import evs.features from evs.tools.bedintervaltree import BedIntervalTree def parseArgs(): import argparse parser = argparse.ArgumentParser(description="Converts somatic VCF to annotated CSV", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("input", help="Strelka VCF file", nargs=1) parser.add_argument("-o", "--output", required=True, help="Output CSV filename for training data") parser.add_argument("--testSet", action='append', help="Chromosome (e.g. chr20) to hold out as test data (may be specified more than once; if omitted, all data will be used for training)") parser.add_argument("--testOutput", help="Output CSV filename for test data") parser.add_argument("--truth", help="Truth VCF file") parser.add_argument("--fp-regions", dest="fpRegionsFile", help="Bed file indicating regions where variants that are not true can be labeled as false positives. Outside of these regions variants will be labeled as unknown.") parser.add_argument("--ambiguous", dest="ambiguousRegionsFiles", action='append', help="Bed file conforming to the curium ambiguous region file format" " (may be specified more than once)") parser.add_argument("--features", required=True, choices=evs.features.FeatureSet.sets.keys(), help="Select a feature table to output.") args = parser.parse_args() def checkFile(filename, label) : if not os.path.isfile(filename) : raise Exception("Can't find input %s file: '%s'" % (label,filename)) def checkOptionalFile(filename, label) : if filename is None : return checkFile(filename, label) checkOptionalFile(args.truth,"truth") checkOptionalFile(args.fpRegionsFile,"false positive regions") if args.ambiguousRegionsFiles is not None : for ambiguousRegionsFile in args.ambiguousRegionsFiles : checkFile(ambiguousRegionsFile,"ambiguous regions") return args def main(): args = parseArgs() fset = evs.features.FeatureSet.make(args.features) featuretable = fset.collect(args.input[0]) featuretable["tag"] = "FP" # If no truth set is specified, label all variants as FP. Useful for normal-normal. if args.truth: fset2 = evs.features.FeatureSet.make("posandalleles") truth_alleles = fset2.collect(args.truth) truth_alleles["tag"] = "TP" featuretable = pandas.merge(featuretable, truth_alleles, how="outer", on=["CHROM", "POS", "REF", "ALT"], suffixes=(".query", ".truth")) featuretable["tag.truth"].fillna("", inplace=True) featuretable["tag.query"].fillna("", inplace=True) featuretable.loc[(featuretable["tag.query"] == "FP") & (featuretable["tag.truth"] == "TP"), "tag"] = "TP" featuretable.loc[(featuretable["tag.query"] == "") & (featuretable["tag.truth"] == "TP"), "tag"] = "FN" featuretable.loc[(featuretable["tag.query"] == "FP") & (featuretable["tag.truth"] == ""), "tag"] = "FP" to_keep = [x for x in list(featuretable) if not x.endswith(".query") and not x.endswith(".truth")] featuretable = featuretable[to_keep] if args.ambiguousRegionsFiles or args.fpRegionsFile: # # 1. Load all false positive and ambiguous region information into labeledIntervals # labeledIntervals = BedIntervalTree() if args.fpRegionsFile: labeledIntervals.addFromBed(args.fpRegionsFile, "FP") if args.ambiguousRegionsFiles: # can have multiple ambiguous BED files for ambiguousRegionsFile in args.ambiguousRegionsFiles: labeledIntervals.addFromBed(ambiguousRegionsFile, lambda xe: xe[4]) # # 2. Resolve all interaction rules between truth sets, fp and amiguous regions to produce a final labeling # areFPRegionsProvided = (labeledIntervals.count("FP") > 0) or (labeledIntervals.count("fp") > 0 and args.ambiguousRegionsFiles) def relabeller(xx): """ Resolve various rules regarding how variants should interact with the fp and ambiguous regions they intersect. Rules: - All TP and FN calls are untouched -- even if they fall in a false positive or ambiguous region - Otherwise... - Any call intersecting an FP region is labeled as "FP", regardless of ambiguous region input - Any call intersecting an ambiguous region gets a comma separated list of all ambiguous region labels - Any call falling outside of an ambiguous or fp region will be labeled as: - FP if no fp regions are given the ambiguous region file contains no false positive regions - UNK otherwise. """ if xx["tag"] == "TP" or xx["tag"] == "FN": return xx chrom = xx["CHROM"] start = xx["POS"] stop = xx["POS"] + len(xx["REF"]) overlap = labeledIntervals.intersect(chrom, start, stop) is_fp = False is_ambi = False classes_this_pos = set() for o in overlap: reason = o.value[0].upper() classes_this_pos.add(reason) if reason == "FP": is_fp = True else: is_ambi = True if is_fp: xx["tag"] = "FP" elif is_ambi: xx["tag"] = ",".join(list(classes_this_pos)) elif not areFPRegionsProvided: # when we don't have FP regions, unk stuff becomes FP xx["tag"] = "FP" else: xx["tag"] = "UNK" return xx featuretable = featuretable.apply(relabeller, axis=1) if args.testSet is not None: if args.testOutput is not None: featuretable[featuretable["CHROM"].isin(args.testSet)].to_csv(args.testOutput) featuretable = featuretable[~featuretable["CHROM"].isin(args.testSet)] featuretable.to_csv(args.output) if __name__ == '__main__': main()
41.153846
192
0.633111
0
0
0
0
0
0
0
0
3,189
0.425768
cd0344b2d15b20e60fd3ab647958bb726ead940c
2,750
py
Python
qiskit_neko/backend_plugin.py
garrison/qiskit-neko
50c6f0f6975425c7ff86417cedc094e984dc5d1c
[ "Apache-2.0" ]
5
2022-01-11T16:07:48.000Z
2022-02-01T22:05:34.000Z
qiskit_neko/backend_plugin.py
garrison/qiskit-neko
50c6f0f6975425c7ff86417cedc094e984dc5d1c
[ "Apache-2.0" ]
1
2022-02-03T14:10:57.000Z
2022-02-03T14:10:57.000Z
qiskit_neko/backend_plugin.py
garrison/qiskit-neko
50c6f0f6975425c7ff86417cedc094e984dc5d1c
[ "Apache-2.0" ]
1
2022-03-07T15:06:21.000Z
2022-03-07T15:06:21.000Z
# This code is part of Qiskit. # # (C) Copyright IBM 2022. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=invalid-name """Backend plugin interface.""" import abc import logging import stevedore LOG = logging.getLogger(__name__) class BackendPlugin(abc.ABC): """Abstract class for providing :class:`~qiskit.providers.Backend` objects to tests This class is designed to be implemented by qiskit providers packages or any other user that needs to provide custom backend objects to the test suite. In general the authentication and initialization of working with backends from different vendors or with different simulators are all unique qiskit-neko provides the backend plugin interface to enable a standard interface to return backend objects and leave the specifics of authentication or initialization of providers. """ @abc.abstractmethod def get_backend(self, backend_selection=None): """Return the Backend object to run tests on. :param str backend_selection: An optional user supplied value to select a specific backend. The exact behavior of this option is up to each individual plugin and should be clearly documented in the plugin how this is used if at all. If the plugin doesn't support a selection string a string should still be accepted and a warning just logged. If a string is provided (and they're accepted) but the string is invalid raising an exception is expected. """ pass class BackendPluginManager: """Class to manage installed backend plugins""" def __init__(self): self.ext_plugins = stevedore.ExtensionManager( "qiskit_neko.backend_plugins", invoke_on_load=True, propagate_map_exceptions=True, on_load_failure_callback=self.failure_hook, ) @staticmethod def failure_hook(_, ep, err): """Hook method to execute on import failure.""" LOG.error("Could not load %r: %s", ep.name, err) raise err def get_plugin_backends(self, backend_selection=None): """Return a dictionary of plugin names to backend objects.""" return { plug.name: plug.obj.get_backend(backend_selection=backend_selection) for plug in self.ext_plugins }
36.184211
87
0.704
2,121
0.771273
0
0
858
0.312
0
0
1,916
0.696727
cd037892f04f2a0ec86c850579b001591ee90f88
1,381
py
Python
libkol/request/clan_rumpus.py
danheath/pykol-lib
bdc9aa8dbae64ead07e7dbc36f9d6ba802f65ddc
[ "BSD-3-Clause" ]
6
2019-06-11T19:25:32.000Z
2022-01-21T17:05:01.000Z
libkol/request/clan_rumpus.py
danheath/pykol-lib
bdc9aa8dbae64ead07e7dbc36f9d6ba802f65ddc
[ "BSD-3-Clause" ]
8
2019-06-17T11:41:14.000Z
2019-08-07T17:28:50.000Z
libkol/request/clan_rumpus.py
python-kol/pykollib
bdc9aa8dbae64ead07e7dbc36f9d6ba802f65ddc
[ "BSD-3-Clause" ]
9
2019-06-09T22:23:06.000Z
2021-07-10T00:49:00.000Z
import re from enum import Enum from typing import List import libkol from .request import Request class Furniture(Enum): Nail = (1, 0) GirlsCalendar = (1, 1) BoyCalendar = (1, 2) Painting = (1, 3) MeatOrchid = (1, 4) Bookshelf = (2, 0) ArcaneTomes = (2, 1) SportsMemorabilia = (2, 2) SelfHelpBooks = (2, 3) Outlet = (3, 0) SodaMachine = (3, 1) Jukebox = (3, 2) MrKlaw = (3, 3) Endtable = (4, 0) Radio = (4, 1) MeatBush = (4, 2) InspirationalCalendar = (4, 3) Rug = (5, 0) WrestlingMat = (5, 1) TanningBed = (5, 2) ComfySofa = (5, 3) Corner = (9, 0) HoboFlex = (9, 1) SnackMachine = (9, 2) MeatTree = (9, 3) @classmethod def has_value(cls, value): return any(value == item.value for item in cls) furniture_pattern = re.compile(r"rump([0-9])_([0-9])\.gif") class clan_rumpus(Request[List[Furniture]]): def __init__(self, session: "libkol.Session"): super().__init__(session) self.request = session.request("clan_rumpus.php") @staticmethod async def parser(content: str, **kwargs) -> List[Furniture]: return [ Furniture(coords) for coords in ( (f.group(1), f.group(2)) for f in furniture_pattern.finditer(content) ) if Furniture.has_value(coords) ]
23.40678
85
0.569153
1,212
0.877625
0
0
405
0.293266
288
0.208545
60
0.043447
cd03952161db20fd79bc08d5412273256911f00a
2,155
py
Python
utils/utils.py
ZhenqiSong/OCR_Pytorch
df4e8c53353b6c515509241d4c9af3b153224a10
[ "MIT" ]
null
null
null
utils/utils.py
ZhenqiSong/OCR_Pytorch
df4e8c53353b6c515509241d4c9af3b153224a10
[ "MIT" ]
null
null
null
utils/utils.py
ZhenqiSong/OCR_Pytorch
df4e8c53353b6c515509241d4c9af3b153224a10
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # __author__:Song Zhenqi # 2021-01-20 import os import sys import yaml import logging import functools logger_initialized = set() def get_img_list(img_file): img_lists = [] if img_file is None or not os.path.exists(img_file): raise FileNotFoundError("file path: {} is not exist".format(img_file)) if os.path.isfile(img_file): img_lists.append(img_file) elif os.path.isdir(img_file): for file_name in os.listdir(img_file): file_path = os.path.join(img_file, file_name) if os.path.isfile(file_path): img_lists.append(file_name) if len(img_lists) == 0: raise Exception('not find any img file in {}'.format(img_file)) return img_lists def get_config(file): """ 读取yaml配置文件,获取网络配置 :param file: 配置文件,只支持yaml/yml格式 :return: 配置 dict """ _, ext = os.path.splitext(file) assert ext in ['.yaml', '.yml'], "只支持yaml/yml格式的文件" config = yaml.load(open(file, 'rb'), Loader=yaml.Loader) return config @functools.lru_cache() def get_logger(name: str = 'root', file: str = None, level=logging.INFO) -> logging.Logger: """ 初始化日志logger,配置日志的设置 :param name: 日志名称 :param file: 保存本地的日志文件 :param level: 日志显示的等级 :return: 使用的Logger对象 """ logger = logging.getLogger(name) if name in logger_initialized: return logger for logger_name in logger_initialized: if name.startswith(logger_name): return logger # 设置日志的显示格式 formatter = logging.Formatter('[%(asctime)s] %(name)s %(levelname)s: %(message)s', datefmt="%Y/%m/%d %H:%M:%S") # 设置日志流句柄 stream_handler = logging.StreamHandler(stream=sys.stdout) stream_handler.setFormatter(formatter) logger.addHandler(stream_handler) # 设置日志文件 if file is not None: log_file_folder = os.path.split(file)[0] os.makedirs(log_file_folder, exist_ok=True) file_handle = logging.FileHandler(file, 'a') file_handle.setFormatter(formatter) logger.addHandler(file_handle) logger.setLevel(level) return logger
27.278481
91
0.645476
0
0
0
0
1,226
0.523708
0
0
669
0.285775
cd0601891b2dad5746ac7c08ac9655b6e8d13ab9
2,130
py
Python
monitoring/uss_qualifier/webapp/tasks.py
interuss/InterUSS-Platform
099abaa1159c4c143f8f1fde6b88956c86608281
[ "Apache-2.0" ]
null
null
null
monitoring/uss_qualifier/webapp/tasks.py
interuss/InterUSS-Platform
099abaa1159c4c143f8f1fde6b88956c86608281
[ "Apache-2.0" ]
1
2021-11-29T21:53:39.000Z
2021-11-29T21:53:39.000Z
monitoring/uss_qualifier/webapp/tasks.py
interuss/InterUSS-Platform
099abaa1159c4c143f8f1fde6b88956c86608281
[ "Apache-2.0" ]
null
null
null
from monitoring.uss_qualifier.test_data import test_report from monitoring.uss_qualifier.utils import USSQualifierTestConfiguration from monitoring.uss_qualifier.main import uss_test_executor from monitoring.uss_qualifier.rid.simulator import flight_state_from_kml from monitoring.uss_qualifier.rid.utils import FullFlightRecord from monitoring.uss_qualifier.rid.utils import FullFlightRecord import json from typing import List import redis import rq import uuid from . import resources from monitoring.monitorlib.typing import ImplicitDict def get_rq_job(job_id): try: rq_job = resources.qualifier_queue.fetch_job(job_id) except (redis.exceptions.RedisError, rq.exceptions.NoSuchJobError): return None return rq_job def remove_rq_job(job_id): """Removes a job from the queue.""" try: rq_job = resources.qualifier_queue.remove(job_id) except (redis.exceptions.RedisError, rq.exceptions.NoSuchJobError): return None return rq_job def call_test_executor( user_config_json: str, auth_spec: str, flight_record_jsons: List[str], testruns_id, debug=False, scd_test_definitions_path=None, ): config_json = json.loads(user_config_json) config: USSQualifierTestConfiguration = ImplicitDict.parse( config_json, USSQualifierTestConfiguration ) flight_records: List[FullFlightRecord] = [ ImplicitDict.parse(json.loads(j), FullFlightRecord) for j in flight_record_jsons ] if debug: report = json.dumps(test_report.test_data) else: report = json.dumps( uss_test_executor( config, auth_spec, flight_records, scd_test_definitions_path ) ) resources.redis_conn.hset(resources.REDIS_KEY_TEST_RUNS, testruns_id, report) return report def call_kml_processor(kml_content, output_path): flight_states = flight_state_from_kml.main( kml_content, output_path, from_string=True ) resources.redis_conn.hset( resources.REDIS_KEY_UPLOADED_KMLS, str(uuid.uuid4()), json.dumps(flight_states) ) return flight_states
30.869565
88
0.746948
0
0
0
0
0
0
0
0
35
0.016432
cd06e20fb3a5b8f7301bbddc6604a232ac3d8294
11,853
py
Python
grenades_services/modules/basket.py
Parveen3300/Reans
6dfce046b01099284a8c945a04600ed83e5099a4
[ "Apache-2.0" ]
null
null
null
grenades_services/modules/basket.py
Parveen3300/Reans
6dfce046b01099284a8c945a04600ed83e5099a4
[ "Apache-2.0" ]
null
null
null
grenades_services/modules/basket.py
Parveen3300/Reans
6dfce046b01099284a8c945a04600ed83e5099a4
[ "Apache-2.0" ]
null
null
null
""" BasketManagementRelated modules """ # import basket models from basket.models import Basket from basket.models import BasketProductLine # import configuration models from grenades_services.all_configuration_data import get_currency_instance from grenades_services.all_configuration_data import get_customer_instance_from_request_user from grenades_services.all_configuration_data import product_price_calculator # import home modules from grenades_services.modules.home import Home # import serializers modules from grenades_services.separate_serializers.basket_serializers import \ BasketProductSerializer class UpdateProductsBasket: """ UpdateProductsBasket """ def __init__(self, **kwargs): self.basket_data = kwargs self._request = kwargs.get('request') self.basket_id = None self.customer_instance = None self.filter_query_data = kwargs.get( 'filter_query_data', {'status': 'Open'}) @staticmethod def _use_common_module(filter_input_data): """ in this '_use_common_module' used to get the common request instance as per request filter data In this Home class module will cover all filter logic to help of product basket class modules """ return Home(**filter_input_data) @staticmethod def calculate_offer_value(product_offer_instance, product_price): """ in this calculate_offer_value method we have calculate the product pricing according to the offer product_offer_instance: for get the offer related key fields manage two types of offer price RUPPPEES & PERCENTAGE """ if product_offer_instance.offer_price_type == 'RUPPPEES': if product_price > product_offer_instance.value: return product_price - product_offer_instance.value return product_price if product_offer_instance.offer_price_type == 'PERCENTAGE': if product_price > product_offer_instance.value: return (product_offer_instance.value * product_price) / 100 return product_price def get_basket_instance(self, _filter_query_data=None): """ This 'get_basket_instance' method used to get the basket instance according to auth user and session basket id or with inherit """ try: print(self.filter_query_data) return Basket.objects.get(**_filter_query_data) \ if _filter_query_data else Basket.objects.get(**self.filter_query_data) except Exception as e: print('Basket.DoesNotExist.Error') print(e) return None def collect_basket_product_values(self): """collect_basket_product_values This 'collect_basket_product_values' method used to collect the all basket related value data to entered in basket table with customer and session maintain instance """ home_instance = self._use_common_module(dict( product_get_data={ 'product_alias_name': self.basket_data['product_alias_name'] } ) ) product_instance = home_instance.get_product_instance() if product_instance: home_instance = self._use_common_module( dict(filter_input_data={'mapped_products__id__in': [product_instance.id]})) category_product_mapping_instance = \ home_instance.category_product_mapping_instance() home_instance = self._use_common_module( dict(filter_input_data={ 'included_products__id__in': [product_instance.id], 'offer_type': 'offer' }) ) product_offer_instance = home_instance.offer_products() payable_amount = self.calculate_offer_value( product_offer_instance, product_instance.price) if product_offer_instance else product_instance.price return (product_instance, category_product_mapping_instance, payable_amount) @staticmethod def create_basket_product_line(basket_create_data): """ This 'create_basket_product_line' method used to create the basket """ create_basket_line = BasketProductLine.objects.create( **basket_create_data) return True if create_basket_line else False def collect_basket_details(self, basket_instance): """ This 'collect_basket_details' method collect the basket common code details """ product_instance, category_product_mapping_instance, payable_amount = \ self.collect_basket_product_values() return { 'basket': basket_instance, 'line_reference': str(product_instance.id), 'product': product_instance, 'category': category_product_mapping_instance.last( ).category if category_product_mapping_instance else None, 'quantity': self.basket_data.get('quantity', 1), 'price_currency': get_currency_instance(), 'price_excl_tax': None, 'price_incl_tax': None, 'payable_amount': payable_amount } def add_new_basket(self): """ This 'add_new_basket' method used to create a fresh basket for a customer or user """ if self.customer_instance: self.filter_query_data['owner'] = self.customer_instance create_basket = Basket.objects.create(**self.filter_query_data) print("63546735435463543564", create_basket) if create_basket: if self.create_basket_product_line(self.collect_basket_details(create_basket)): self._request.session['basket_id'] = create_basket.id return True return False def update_product_basket(self): """ This 'update_product_basket' method used to update the product in the basket """ if self.basket_id: self.filter_query_data['id'] = self.basket_id if self.customer_instance: self.filter_query_data['owner'] = self.customer_instance basket_instance = self.get_basket_instance() if basket_instance: if self.create_basket_product_line(self.collect_basket_details( basket_instance)): return True else: return False def add_to_basket(self): """ This 'add_to_basket' method used to add the product in the basket """ self.customer_instance = get_customer_instance_from_request_user( self._request.user) if 'basket_id' in self._request.session.keys(): self.basket_id = self._request.session['basket_id'] return self.update_product_basket() else: return self.add_new_basket() class DisplayProductsBasket(UpdateProductsBasket): """ DisplayProductsBasket return: { 'products_description': { 'id': 14, 'products_list': [], 'line_reference': '2', 'quantity': 1, 'price_currency': 'INR', 'price_excl_tax': None, 'price_incl_tax': None, 'payable_amount': '1000.00', 'date_created': '2021-11-01T10:29:50.091484Z', 'date_updated': '2021-11-01T10:29:50.091502Z', 'basket': 5, 'product': 2, 'category': 5, 'collection': None }, 'product_price_details': {'total_item': 0}, 'random_products_list': <QuerySet [<Product: Instruments>]> } """ def __init__(self, **kwargs): super().__init__(**kwargs) self._request = kwargs.get('request') self.customer_instance = None self.basket_id = None self.products_description_data = [] self.product_price_details = {} self.filter_data = {'status': 'Open'} self.estimate_tax = 0 self.offer_name = '-' self.coupon_name = '-' @staticmethod def get_basket_product_lines(filter_query_data=None): """get_basket_product_lines This 'get_basket_product_lines' method is used to get the all instance of products of basket """ _product_line_instance = BasketProductLine.objects.filter( **filter_query_data) if _product_line_instance: return _product_line_instance def basket_product_description(self): """basket_product_description This 'basket_product_description' method used to get the all product description with all products details from baskets """ if self.basket_id: self.filter_data['id'] = self.basket_id if self.customer_instance: self.filter_data['owner'] = self.customer_instance basket_instance = self.get_basket_instance(self.filter_data) if basket_instance: product_line_last_obj = self.get_basket_product_lines( {'basket': basket_instance}).last() self.products_description_data = BasketProductSerializer( product_line_last_obj).data def create_product_order_summary_dict(self, order_summary_dict): """ This 'create_product_order_summary_dict' method used to create dict for product order summary total_price, coupon_price, offer_price """ self.product_price_details['total'] = order_summary_dict['total_price'] self.product_price_details['sub_total'] = order_summary_dict['total_price'] self.product_price_details['estimate_tax'] = self.estimate_tax self.product_price_details['coupon_name'] = self.coupon_name self.product_price_details['coupon_price'] = order_summary_dict['coupon_price'] self.product_price_details['offer_name'] = self.offer_name self.product_price_details['offer_price'] = order_summary_dict['offer_price'] def order_product_price_details(self): """order_product_price_details This 'order_product_price_details' method used to get the all product order summary with price calculation and manage the all coupon and offers """ self.product_price_details['total_item'] = len( self.products_description_data['products_list']) for _products_details in self.products_description_data['products_list']: order_summary_dict = product_price_calculator(_products_details, self.coupon_details, self.offer_details) # create product order summary # return total_price, coupon_price, offer_price self.create_product_order_summary_dict(order_summary_dict) def display_products(self): """ This 'display_products' method used to get the all session and customer related basket products for help on display """ if 'basket_id' in self._request.session.keys(): self.basket_id = self._request.session.get('basket_id') else: self.basket_id = None self.customer_instance = get_customer_instance_from_request_user( self._request.user) self.basket_product_description() self.order_product_price_details() home_instance = Home() random_products_list = home_instance.random_products_list() return { 'products_description': self.products_description_data, 'product_price_details': self.product_price_details, 'random_products_list': random_products_list if random_products_list else [] }
40.731959
114
0.651312
11,229
0.947355
0
0
1,883
0.158863
0
0
3,884
0.327681
cd08e29c15d2756e6bc4a870585c434ad2c07d7a
2,935
py
Python
plots.py
klowrey/speed_arch
edb002b6d57915fa5e2024b36eb66acf30a7130a
[ "MIT" ]
null
null
null
plots.py
klowrey/speed_arch
edb002b6d57915fa5e2024b36eb66acf30a7130a
[ "MIT" ]
null
null
null
plots.py
klowrey/speed_arch
edb002b6d57915fa5e2024b36eb66acf30a7130a
[ "MIT" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt acc = np.array([7.95549917, 7.46641684, 8.16141701, 8.80025005, 7.29208231, 7.73391724, 8.16333294, 9.02033329, 7.60566664, 7.88175011, 7.77574968, 8.79116631, 8.24524975, 8.98549938, 7.3717494 , 7.32324982, 8.14583302, 8.53608322, 9.30125046, 8.53458309, 8.01708317, 8.36941624, 8.23241711, 8.93550014, 8.73683262, 8.05008316, 8.68758297, 8.59083271, 9.0852499 , 9.07924938, 7.3904171 , 8.82283497, 9.41650009, 8.45791626, 8.04416656, 7.70391607, 9.05191612, 7.78883314, 8.56858349, 9.07366657, 8.77991581, 7.94008255, 8.1746664 , 8.28074932, 7.91550064, 7.4872508 , 8.59158325, 9.33758259, 8.21591663, 8.64350033, 9.00899982, 9.26983356, 8.7885828 , 9.43066692, 9.09299946, 8.55266666, 8.73725033, 7.50575018, 7.99300003, 8.16366673, 8.97633266, 8.19683361, 7.71091652, 8.65974998, 8.97108364, 8.03375053, 8.99700069, 9.18599987, 8.26491737, 8.64508343, 8.00825024, 7.80483294, 7.45008326, 8.23791695, 8.90425014, 9.47108269, 8.0963335 , 8.88658333, 7.99116659, 7.48541689, 8.23633289, 8.61583424, 7.75775003, 8.10883331, 8.57058334, 7.72616577, 7.29199982, 8.26725006, 7.80841637, 8.8257494 , 9.35824871, 8.85208321, 7.50433302, 8.03266716, 8.77825069, 8.94516659, 8.56558323, 8.64266682, 8.70541668, 8.4321661 ]) spd = np.array([-15.733922 , -17.69332123, -15.09789562, -14.98722076, -19.22259712, -20.7837429 , -19.90324211, -13.48655987, -13.42676544, -10.76375103, -18.15335083, -9.28313065, -11.35249805, -12.09126663, -13.63445187, -17.17600822, -11.39536953, -13.01688385, -14.5902586 , -9.40825558, -11.72452641, -9.74875546, -15.47906494, -17.58286476, -13.81764889, -15.5894928 , -9.33745289, -11.58790493, -12.6633606 , -12.95300007, -6.5169816 , -15.54349899, -9.18311691, -11.59814739, -11.74293232, -18.68121147, -12.44590282, -13.20860291, -8.75187683, -23.9044342 , -10.90840054, -11.39770985, -14.83057499, -13.2543335 , -13.18600559, -13.31662369, -12.91320515, -9.9495573 , -10.87206936, -11.35480595, -13.06026745, -10.52530384, -13.57276917, -13.95710754, -9.0244627 , -12.21132755, -9.00012493, -9.07794476, -12.50325108, -9.44294643, -12.86182499, -8.95974827, -10.34585476, -16.70100594, -7.63287163, -11.60797215, -11.73308086, -10.89833736, -11.40105438, -8.59499645, -11.1452837 , -11.61797333, -9.25040531, -9.30110741, -8.68466759, -10.68533611, -11.68466282, -10.05351353, -11.61765003, -9.72268772, -9.05587578, -10.88561535, -11.85619068, -12.46191692, -8.43530369, -6.79801893, -9.91088772, -9.89115238, -16.34910393, -12.32227421, -13.36759472, -17.33267021, -10.66337585, -10.35019398, -11.29328632, -9.45415211, -10.61021137, -14.06766415, -8.31783295, -11.77228069])
56.442308
79
0.65247
0
0
0
0
0
0
0
0
0
0
cd08e9d07146abb0712c59ab83d9a3d247ba38c2
27
py
Python
tool/klint/bpf/__init__.py
kylerky/klint
77be216ec3f4315a835b7bcdaef1b66ed3144603
[ "MIT" ]
2
2022-03-08T16:10:27.000Z
2022-03-11T14:14:04.000Z
tool/klint/bpf/__init__.py
kylerky/klint
77be216ec3f4315a835b7bcdaef1b66ed3144603
[ "MIT" ]
null
null
null
tool/klint/bpf/__init__.py
kylerky/klint
77be216ec3f4315a835b7bcdaef1b66ed3144603
[ "MIT" ]
1
2022-03-24T09:27:41.000Z
2022-03-24T09:27:41.000Z
""" BPF-related stuff. """
6.75
18
0.555556
0
0
0
0
0
0
0
0
26
0.962963
cd094ee5dcfd76a9bf766f06eb8cdcb0b8027094
4,485
py
Python
tests/test_geojson.py
geographika/mappyfile-geojson
9525bb840ae243a0f5072730f6432bf98dcacbe9
[ "MIT" ]
8
2018-08-08T06:47:38.000Z
2022-01-30T13:25:35.000Z
tests/test_geojson.py
geographika/mappyfile-geojson
9525bb840ae243a0f5072730f6432bf98dcacbe9
[ "MIT" ]
4
2020-09-24T05:28:19.000Z
2022-03-29T22:18:13.000Z
tests/test_geojson.py
geographika/mappyfile-geojson
9525bb840ae243a0f5072730f6432bf98dcacbe9
[ "MIT" ]
1
2018-08-08T06:47:42.000Z
2018-08-08T06:47:42.000Z
import os import json import geojson import mappyfile_geojson import mappyfile import pytest def get_geojson(fn): tests = os.path.dirname(os.path.realpath(__file__)) fn = os.path.join(tests, fn) with open(fn) as f: gj = geojson.load(f) return gj def test_point(): gj = get_geojson("Point.json") layer = mappyfile_geojson.convert(gj) s = mappyfile.dumps(layer) print(s) assert s == """LAYER EXTENT 102 0.5 102 0.5 STATUS ON TYPE POINT PROCESSING "ITEMS=prop0" FEATURE POINTS 102.0 0.5 END ITEMS "value0" END END""" def test_pointZ(): """ Z-values are simply removed as they are not supported by inline MapServer Features """ gj = get_geojson("PointZ.json") layer = mappyfile_geojson.convert(gj) s = mappyfile.dumps(layer) print(s) assert s == """LAYER EXTENT 102 0.5 102 0.5 STATUS ON TYPE POINT PROCESSING "ITEMS=prop0" FEATURE POINTS 102.0 0.5 END ITEMS "value0" END END""" def test_linestring(): gj = get_geojson("LineString.json") layer = mappyfile_geojson.convert(gj) s = mappyfile.dumps(layer) print(s) assert s == """LAYER EXTENT 102 0 105 1 STATUS ON TYPE LINE PROCESSING "ITEMS=prop0,prop1" FEATURE POINTS 102.0 0.0 103.0 1.0 104.0 0.0 105.0 1.0 END ITEMS "value0;0.0" END END""" def test_polygon(): gj = get_geojson("Polygon.json") layer = mappyfile_geojson.convert(gj) print(json.dumps(layer, indent=4)) s = mappyfile.dumps(layer) print(s) assert s == """LAYER EXTENT 100 0 101 1 STATUS ON TYPE POLYGON PROCESSING "ITEMS=prop0,prop1" FEATURE POINTS 100.0 0.0 101.0 0.0 101.0 1.0 100.0 1.0 100.0 0.0 END ITEMS "value0;value1" END END""" def test_multipoint(): gj = get_geojson("MultiPoint.json") layer = mappyfile_geojson.convert(gj) s = mappyfile.dumps(layer) print(s) assert s == """LAYER EXTENT 10 10 40 40 STATUS ON TYPE POINT PROCESSING "ITEMS=prop0" FEATURE POINTS 10.0 40.0 40.0 30.0 20.0 20.0 30.0 10.0 END ITEMS "value0" END END""" def test_multilinestring(): gj = get_geojson("MultiLineString.json") layer = mappyfile_geojson.convert(gj) s = mappyfile.dumps(layer) print(s) assert s == """LAYER EXTENT 10 10 40 40 STATUS ON TYPE LINE PROCESSING "ITEMS=prop0,prop1" FEATURE POINTS 10.0 10.0 20.0 20.0 10.0 40.0 END POINTS 40.0 40.0 30.0 30.0 40.0 20.0 30.0 10.0 END ITEMS "value0;0.0" END END""" def test_multipolygon(): gj = get_geojson("MultiPolygon.json") layer = mappyfile_geojson.convert(gj) s = mappyfile.dumps(layer) print(s) assert s == """LAYER EXTENT 5 5 45 40 STATUS ON TYPE POLYGON PROCESSING "ITEMS=prop0,prop1" FEATURE POINTS 30.0 20.0 45.0 40.0 10.0 40.0 30.0 20.0 END POINTS 15.0 5.0 40.0 10.0 10.0 20.0 5.0 10.0 15.0 5.0 END ITEMS "value0;value1" END END""" def test_featurecollection(): gj = get_geojson("FeatureCollection.json") layer = mappyfile_geojson.convert(gj) print(json.dumps(layer, indent=4)) s = mappyfile.dumps(layer) print(s) assert s == """LAYER EXTENT 102 0 105 1 STATUS ON TYPE LINE PROCESSING "ITEMS=prop0" FEATURE POINTS 102.0 0.0 103.0 1.0 104.0 0.0 105.0 1.0 END ITEMS "value0" END FEATURE POINTS 102.0 0.0 103.0 1.0 104.0 0.0 105.0 1.0 END ITEMS "value1" END END""" def run_tests(): pytest.main(["tests/test_geojson.py", "-vv"]) if __name__ == '__main__': # test_multipolygon() run_tests() print("Done!")
19.933333
68
0.515942
0
0
0
0
0
0
0
0
2,733
0.609365
cd0b619e6db23ae007998ba9f088e9c319778c9d
517
py
Python
230.py
BYOUINZAKA/LeetCodeNotes
48e1b4522c1f769eeec4944cfbd57abf1281d09a
[ "MIT" ]
null
null
null
230.py
BYOUINZAKA/LeetCodeNotes
48e1b4522c1f769eeec4944cfbd57abf1281d09a
[ "MIT" ]
null
null
null
230.py
BYOUINZAKA/LeetCodeNotes
48e1b4522c1f769eeec4944cfbd57abf1281d09a
[ "MIT" ]
null
null
null
''' @Author: Hata @Date: 2020-05-24 15:30:19 @LastEditors: Hata @LastEditTime: 2020-05-24 15:32:04 @FilePath: \LeetCode\230.py @Description: https://leetcode-cn.com/problems/kth-smallest-element-in-a-bst/ ''' class Solution: def kthSmallest(self, root, k): def gen(r): if r is not None: yield from gen(r.left) yield r.val yield from gen(r.right) it = gen(root) for _ in range(k): ans = next(it) return ans
22.478261
77
0.558994
305
0.589942
285
0.551257
0
0
0
0
208
0.402321
cd0c0c186a507173da38fb9c91812fd94be9043a
3,430
py
Python
Scripts/TestParsers/PyUnittestTestParser.py
davidbrownell/v3-Common_Environment
8f42f256e573cbd83cbf9813db9958025ddf12f2
[ "BSL-1.0" ]
null
null
null
Scripts/TestParsers/PyUnittestTestParser.py
davidbrownell/v3-Common_Environment
8f42f256e573cbd83cbf9813db9958025ddf12f2
[ "BSL-1.0" ]
1
2018-06-08T06:45:16.000Z
2018-06-08T06:45:16.000Z
Scripts/TestParsers/PyUnittestTestParser.py
davidbrownell/v3-Common_Environment
8f42f256e573cbd83cbf9813db9958025ddf12f2
[ "BSL-1.0" ]
1
2018-06-08T04:15:17.000Z
2018-06-08T04:15:17.000Z
# ---------------------------------------------------------------------- # | # | PythonUnittestTestParser.py # | # | David Brownell <[email protected]> # | 2018-05-22 07:59:46 # | # ---------------------------------------------------------------------- # | # | Copyright David Brownell 2018-22. # | Distributed under the Boost Software License, Version 1.0. # | (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) # | # ---------------------------------------------------------------------- """Contains the TestParser object""" import os import re import CommonEnvironment from CommonEnvironment.Interface import staticderived, override, DerivedProperty from CommonEnvironment.TestParserImpl import TestParserImpl # ---------------------------------------------------------------------- _script_fullpath = CommonEnvironment.ThisFullpath() _script_dir, _script_name = os.path.split(_script_fullpath) # ---------------------------------------------------------------------- # ---------------------------------------------------------------------- @staticderived class TestParser(TestParserImpl): """Parses content produced by Python's unittest library""" # ---------------------------------------------------------------------- # | Public Properties Name = DerivedProperty("PyUnittest") Description = DerivedProperty("Parses Python unittest output.") # ---------------------------------------------------------------------- # | Public Methods @staticmethod @override def IsSupportedCompiler(compiler): # Supports any compiler that supports python; use this file as a test subject return compiler.IsSupported(_script_fullpath if os.path.splitext(_script_name)[1] == ".py" else "{}.py".format(os.path.splitext(_script_fullpath)[0])) # ---------------------------------------------------------------------- _IsSupportedTestItem_imports = [ re.compile("^\s*import unittest"), re.compile("^\s*from unittest import"), ] @classmethod @override def IsSupportedTestItem(cls, item): # Use this parser for any python file that imports 'unittest' assert os.path.isfile(item), item with open(item) as f: for line in f.readlines(): for regex in cls._IsSupportedTestItem_imports: if regex.search(line): return True return # ---------------------------------------------------------------------- _Parse_failed = re.compile(r"^FAILED", re.DOTALL | re.MULTILINE) _Parse_ok = re.compile(r"^OK\s*", re.DOTALL | re.MULTILINE) @classmethod @override def Parse(cls, test_data): if cls._Parse_failed.search(test_data): return -1 if cls._Parse_ok.search(test_data): return 0 return 1 # ---------------------------------------------------------------------- @classmethod @override def CreateInvokeCommandLine(cls, context, debug_on_error): command_line = super(TestParser, cls).CreateInvokeCommandLine(context, debug_on_error) return 'python "{}"'.format(command_line)
38.539326
159
0.473178
2,285
0.666181
0
0
2,301
0.670845
0
0
1,536
0.447813
cd0c8d9af792a61f23cb21cb4b226023ec5c2f1f
7,116
py
Python
fairseq/models/transformer_xlm_iwslt_decoder.py
jm-glowienke/fairseq
ca45353322f92776e34a7308bf3fab75af9c1d50
[ "MIT" ]
null
null
null
fairseq/models/transformer_xlm_iwslt_decoder.py
jm-glowienke/fairseq
ca45353322f92776e34a7308bf3fab75af9c1d50
[ "MIT" ]
null
null
null
fairseq/models/transformer_xlm_iwslt_decoder.py
jm-glowienke/fairseq
ca45353322f92776e34a7308bf3fab75af9c1d50
[ "MIT" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from typing import Any, Dict from fairseq import checkpoint_utils from fairseq.data.legacy.masked_lm_dictionary import MaskedLMDictionary from fairseq.models import register_model, register_model_architecture from fairseq.models.transformer import ( TransformerDecoder, TransformerEncoder, TransformerModel, base_architecture as transformer_base_architecture, ) @register_model("transformer_xlm_iwslt_decoder") class TransformerFromPretrainedXLMModel(TransformerModel): @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" TransformerModel.add_args(parser) parser.add_argument( "--pretrained-xlm-checkpoint", type=str, metavar="STR", help="XLM model to use for initializing transformer encoder " "and/or decoder", ) parser.add_argument( "--init-encoder-only", action="store_true", help="if set, don't load the XLM weights and embeddings into " "decoder", ) parser.add_argument( "--init-decoder-only", action="store_true", help="if set, don't load the XLM weights and embeddings into " "encoder", ) @classmethod def build_model(self, args, task, cls_dictionary=MaskedLMDictionary): assert hasattr(args, "pretrained_xlm_checkpoint"), ( "You must specify a path for --pretrained-xlm-checkpoint to use " "--arch transformer_from_pretrained_xlm" ) assert isinstance(task.source_dictionary, cls_dictionary) and isinstance( task.target_dictionary, cls_dictionary ), ( "You should use a MaskedLMDictionary when using --arch " "transformer_from_pretrained_xlm because the pretrained XLM model " "was trained using data binarized with MaskedLMDictionary. " "For translation, you may want to use --task " "translation_from_pretrained_xlm" ) assert not ( getattr(args, "init_encoder_only", False) and getattr(args, "init_decoder_only", False) ), "Only one of --init-encoder-only and --init-decoder-only can be set." return super().build_model(args, task) @classmethod def build_encoder(cls, args, src_dict, embed_tokens): return TransformerEncoderFromPretrainedXLM(args, src_dict, embed_tokens) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): return TransformerDecoder( args, tgt_dict, embed_tokens, no_encoder_attn=getattr(args, "no_cross_attention", False), ) def upgrade_state_dict_with_xlm_weights( state_dict: Dict[str, Any], pretrained_xlm_checkpoint: str ) -> Dict[str, Any]: """ Load XLM weights into a Transformer encoder or decoder model. Args: state_dict: state dict for either TransformerEncoder or TransformerDecoder pretrained_xlm_checkpoint: checkpoint to load XLM weights from Raises: AssertionError: If architecture (num layers, attention heads, etc.) does not match between the current Transformer encoder or decoder and the pretrained_xlm_checkpoint """ if not os.path.exists(pretrained_xlm_checkpoint): raise IOError( "Model file not found: {}".format(pretrained_xlm_checkpoint)) state = checkpoint_utils.load_checkpoint_to_cpu(pretrained_xlm_checkpoint) xlm_state_dict = state["model"] for key in xlm_state_dict.keys(): for search_key in ["embed_tokens", "embed_positions", "layers"]: if search_key in key: subkey = key[key.find(search_key):] if "in_proj_weight" in subkey or \ "in_proj_bias" in subkey: continue else: assert subkey in state_dict, ( "{} \nTransformer encoder / decoder " "state_dict does not contain {}. \nCannot " "load {} from pretrained XLM checkpoint " "{} into Transformer.".format( str(state_dict.keys()), subkey, key, pretrained_xlm_checkpoint ) ) state_dict[subkey] = xlm_state_dict[key] return state_dict class TransformerEncoderFromPretrainedXLM(TransformerEncoder): def __init__(self, args, dictionary, embed_tokens): super().__init__(args, dictionary, embed_tokens) if getattr(args, "init_decoder_only", False): # Don't load XLM weights for encoder if --init-decoder-only return assert hasattr(args, "pretrained_xlm_checkpoint"), ( "--pretrained-xlm-checkpoint must be specified to load Transformer " "encoder from pretrained XLM" ) if args.pretrained_xlm_checkpoint != 'interactive': xlm_loaded_state_dict = upgrade_state_dict_with_xlm_weights( state_dict=self.state_dict(), pretrained_xlm_checkpoint=args.pretrained_xlm_checkpoint, ) self.load_state_dict(xlm_loaded_state_dict, strict=True) # class TransformerDecoderFromPretrainedXLM(TransformerDecoder): # def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False): # super().__init__(args, dictionary, embed_tokens, no_encoder_attn) # if getattr(args, "init_encoder_only", False): # # Don't load XLM weights for decoder if --init-encoder-only # return # assert hasattr(args, "pretrained_xlm_checkpoint"), ( # "--pretrained-xlm-checkpoint must be specified to load Transformer " # "decoder from pretrained XLM" # ) # # xlm_loaded_state_dict = upgrade_state_dict_with_xlm_weights( # state_dict=self.state_dict(), # pretrained_xlm_checkpoint=args.pretrained_xlm_checkpoint, # ) # self.load_state_dict(xlm_loaded_state_dict, strict=True) @register_model_architecture( "transformer_xlm_iwslt_decoder", "transformer_xlm_iwslt_decoder") def transformer_xlm_iwslt_decoder(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 3072) args.encoder_layers = getattr(args, "encoder_layers", 12) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 1024) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4) args.decoder_layers = getattr(args, "decoder_layers", 6) transformer_base_architecture(args)
40.662857
82
0.647274
3,201
0.449831
0
0
3,075
0.432125
0
0
3,035
0.426504
cd0d1977c612b5942005c2d4eceddb8039516a10
7,249
py
Python
test/unit/mysql_db_admin/process_request.py
mjpernot/mysql-mysql-db-admin
4821d6923155a48362869a6f2bf8c69fe3e533d4
[ "MIT" ]
null
null
null
test/unit/mysql_db_admin/process_request.py
mjpernot/mysql-mysql-db-admin
4821d6923155a48362869a6f2bf8c69fe3e533d4
[ "MIT" ]
null
null
null
test/unit/mysql_db_admin/process_request.py
mjpernot/mysql-mysql-db-admin
4821d6923155a48362869a6f2bf8c69fe3e533d4
[ "MIT" ]
null
null
null
#!/usr/bin/python # Classification (U) """Program: process_request.py Description: Unit testing of process_request in mysql_db_admin.py. Usage: test/unit/mysql_db_admin/process_request.py Arguments: """ # Libraries and Global Variables # Standard import sys import os if sys.version_info < (2, 7): import unittest2 as unittest else: import unittest # Third-party import mock # Local sys.path.append(os.getcwd()) import mysql_db_admin import lib.gen_libs as gen_libs import version __version__ = version.__version__ def func_holder(server, dbs, tbl): """Method: func_holder Description: Function stub holder for a generic function call. Arguments: server dbs tbl """ status = True if server and dbs and tbl: status = True return status class Server(object): """Class: Server Description: Class stub holder for mysql_class.Server class. Methods: __init__ """ def __init__(self): """Method: __init__ Description: Class initialization. Arguments: """ pass class UnitTest(unittest.TestCase): """Class: UnitTest Description: Class which is a representation of a unit testing. Methods: setUp test_mysql_80 test_pre_mysql_80 test_single_miss_tbl test_single_tbl test_all_tbls test_all_dbs """ def setUp(self): """Function: setUp Description: Initialization for unit testing. Arguments: """ self.server = Server() self.func_name = func_holder self.db_name = None self.db_name2 = ["db1"] self.tbl_name = None self.tbl_name2 = ["tbl1"] self.tbl_name3 = ["tbl3"] self.version = {"version": "5.7"} self.version2 = {"version": "8.0"} @mock.patch("mysql_db_admin.mysql_class.fetch_sys_var") @mock.patch("mysql_db_admin.gen_libs.dict_2_list") @mock.patch("mysql_db_admin.mysql_libs.fetch_tbl_dict") @mock.patch("mysql_db_admin.mysql_libs.fetch_db_dict") def test_mysql_80(self, mock_fetch_db, mock_fetch_tbl, mock_list, mock_version): """Function: test_mysql_80 Description: Test with processing all databases. Arguments: """ mock_version.return_value = self.version2 mock_fetch_db.return_value = True mock_fetch_tbl.return_value = True mock_list.side_effect = [["db1"], ["tbl1", "tbl2"]] self.assertFalse( mysql_db_admin.process_request( self.server, self.func_name, self.db_name, self.tbl_name)) @mock.patch("mysql_db_admin.mysql_class.fetch_sys_var") @mock.patch("mysql_db_admin.gen_libs.dict_2_list") @mock.patch("mysql_db_admin.mysql_libs.fetch_tbl_dict") @mock.patch("mysql_db_admin.mysql_libs.fetch_db_dict") def test_pre_mysql_80(self, mock_fetch_db, mock_fetch_tbl, mock_list, mock_version): """Function: test_pre_mysql_80 Description: Test with processing all databases. Arguments: """ mock_version.return_value = self.version mock_fetch_db.return_value = True mock_fetch_tbl.return_value = True mock_list.side_effect = [["db1"], ["tbl1", "tbl2"]] self.assertFalse( mysql_db_admin.process_request( self.server, self.func_name, self.db_name, self.tbl_name)) @mock.patch("mysql_db_admin.mysql_class.fetch_sys_var") @mock.patch("mysql_db_admin.detect_dbs") @mock.patch("mysql_db_admin.gen_libs.dict_2_list") @mock.patch("mysql_db_admin.mysql_libs.fetch_tbl_dict") @mock.patch("mysql_db_admin.mysql_libs.fetch_db_dict") def test_single_miss_tbl(self, mock_fetch_db, mock_fetch_tbl, mock_list, mock_detect, mock_version): """Function: test_single_miss_tbl Description: Test with single missing table in a database. Arguments: """ mock_version.return_value = self.version mock_fetch_db.return_value = True mock_fetch_tbl.return_value = True mock_list.side_effect = [["db1"], ["tbl1", "tbl2"]] mock_detect.return_value = True with gen_libs.no_std_out(): self.assertFalse( mysql_db_admin.process_request( self.server, self.func_name, self.db_name2, self.tbl_name3)) @mock.patch("mysql_db_admin.mysql_class.fetch_sys_var") @mock.patch("mysql_db_admin.detect_dbs") @mock.patch("mysql_db_admin.gen_libs.dict_2_list") @mock.patch("mysql_db_admin.mysql_libs.fetch_tbl_dict") @mock.patch("mysql_db_admin.mysql_libs.fetch_db_dict") def test_single_tbl(self, mock_fetch_db, mock_fetch_tbl, mock_list, mock_detect, mock_version): """Function: test_single_tbl Description: Test with single table in a database. Arguments: """ mock_version.return_value = self.version mock_fetch_db.return_value = True mock_fetch_tbl.return_value = True mock_list.side_effect = [["db1"], ["tbl1", "tbl2"]] mock_detect.return_value = True self.assertFalse( mysql_db_admin.process_request( self.server, self.func_name, self.db_name2, self.tbl_name2)) @mock.patch("mysql_db_admin.mysql_class.fetch_sys_var") @mock.patch("mysql_db_admin.detect_dbs") @mock.patch("mysql_db_admin.gen_libs.dict_2_list") @mock.patch("mysql_db_admin.mysql_libs.fetch_tbl_dict") @mock.patch("mysql_db_admin.mysql_libs.fetch_db_dict") def test_all_tbls(self, mock_fetch_db, mock_fetch_tbl, mock_list, mock_detect, mock_version): """Function: test_all_tbls Description: Test with all tables in a database. Arguments: """ mock_version.return_value = self.version mock_fetch_db.return_value = True mock_fetch_tbl.return_value = True mock_list.side_effect = [["db1"], ["tbl1", "tbl2"]] mock_detect.return_value = True self.assertFalse( mysql_db_admin.process_request( self.server, self.func_name, self.db_name2, self.tbl_name)) @mock.patch("mysql_db_admin.mysql_class.fetch_sys_var") @mock.patch("mysql_db_admin.gen_libs.dict_2_list") @mock.patch("mysql_db_admin.mysql_libs.fetch_tbl_dict") @mock.patch("mysql_db_admin.mysql_libs.fetch_db_dict") def test_all_dbs(self, mock_fetch_db, mock_fetch_tbl, mock_list, mock_version): """Function: test_all_dbs Description: Test with processing all databases. Arguments: """ mock_version.return_value = self.version mock_fetch_db.return_value = True mock_fetch_tbl.return_value = True mock_list.side_effect = [["db1"], ["tbl1", "tbl2"]] self.assertFalse( mysql_db_admin.process_request( self.server, self.func_name, self.db_name, self.tbl_name)) if __name__ == "__main__": unittest.main()
26.36
76
0.646986
6,347
0.875569
0
0
5,252
0.724514
0
0
2,992
0.412747
cd0e89b4b693cd65319eaacf6298dcfed09dbd78
594
py
Python
fsttest/__init__.py
eddieantonio/fsttest
8ff71a9aa41a70a30832fa219b72e7478872c16f
[ "MIT" ]
null
null
null
fsttest/__init__.py
eddieantonio/fsttest
8ff71a9aa41a70a30832fa219b72e7478872c16f
[ "MIT" ]
1
2020-01-27T21:43:04.000Z
2020-01-28T15:57:05.000Z
fsttest/__init__.py
eddieantonio/fsttest
8ff71a9aa41a70a30832fa219b72e7478872c16f
[ "MIT" ]
1
2021-04-26T17:46:19.000Z
2021-04-26T17:46:19.000Z
#!/usr/bin/env python3 # -*- coding: UTF-8 -*- """ FST test -- test your Foma finite-state transducers! """ from .__version__ import VERSION as __version__ from ._fst import FST from ._results import FailedTestResult, PassedTestResult, TestResults from ._run import execute_test_case, run_tests from ._test_case import TestCase from .exceptions import FSTTestError, TestCaseDefinitionError __all__ = [ "FST", "FSTTestError", "FailedTestResult", "PassedTestResult", "TestCase", "TestCaseDefinitionError", "TestResults", "execute_test_case", "run_tests", ]
22.846154
69
0.725589
0
0
0
0
0
0
0
0
238
0.400673
cd0ff0154f3a2ed2059c34dae1964cf271d9a2e1
3,674
py
Python
analysis/sharpness.py
sanketvmehta/lifelong-learning-pretraining-and-sam
2fee18a4b13c918f6005f88c19089b86f4a8aae2
[ "Apache-2.0" ]
null
null
null
analysis/sharpness.py
sanketvmehta/lifelong-learning-pretraining-and-sam
2fee18a4b13c918f6005f88c19089b86f4a8aae2
[ "Apache-2.0" ]
null
null
null
analysis/sharpness.py
sanketvmehta/lifelong-learning-pretraining-and-sam
2fee18a4b13c918f6005f88c19089b86f4a8aae2
[ "Apache-2.0" ]
null
null
null
import copy import numpy as np import torch from scipy import optimize import logging def sharpness(model, criterion_fn, A, epsilon=1e-3, p=0, bounds=None): """Computes sharpness metric according to https://arxiv.org/abs/1609.04836. Args: model: Model on which to compute sharpness criterion_fn: Function that takes in a model and returns the loss value and gradients on the appropriate data that will be used in the loss maximization done in the sharpness calculation. A: Projection matrix that defines the subspace in which the loss maximization will be done. If A=1, no projection will be done. epsilon: Defines the size of the neighborhood that will be used in the loss maximization. p: The dimension of the random projection subspace in which maximization will be done. If 0, assumed to be the full parameter space. """ run_fn = create_run_model(model, A, criterion_fn) if bounds is None: bounds = compute_bounds(model, A, epsilon) dim = flatten_parameters(model).shape[0] if p == 0 else p # Find the maximum loss in the neighborhood of the minima y = optimize.minimize( lambda x: run_fn(x), np.zeros(dim), method="L-BFGS-B", bounds=bounds, jac=True, options={"maxiter": 10}, ).x.astype(np.float32) model_copy = copy.deepcopy(model) if A is 1: flat_diffs = y else: flat_diffs = A @ y apply_diffs(model_copy, flat_diffs) maximum = criterion_fn(model_copy)["loss"] loss_value = criterion_fn(model)["loss"] sharpness = 100 * (maximum - loss_value) / (1 + loss_value) return sharpness def flatten_parameters(model): """Returns a flattened numpy array with the parameters of the model.""" return np.concatenate( [ param.detach().cpu().numpy().flatten() for param in model.parameters() if param.requires_grad ] ) def compute_bounds(model, A, epsilon): """Computes the bounds in which to search for the maximum loss.""" x = flatten_parameters(model) if A is 1: bounds = epsilon * (np.abs(x) + 1) else: b, _, _, _ = np.linalg.lstsq(A, x) bounds = epsilon * (np.abs(b) + 1) return optimize.Bounds(-bounds, bounds) def create_run_model(model, A, criterion_fn): """Creates a run function that takes in parameters in the subspace that loss maximization takes place in, and computes the loss and gradients corresponding to those parameters. """ def run(y): y = y.astype(np.float32) model_copy = copy.deepcopy(model) model_copy.zero_grad() if A is 1: flat_diffs = y else: flat_diffs = A @ y apply_diffs(model_copy, flat_diffs) metrics = criterion_fn(model_copy) objective = -metrics["loss"] gradient = -metrics["gradients"] logging.info("Loss: %f", objective) if A is not 1: gradient = gradient @ A return objective, gradient.astype(np.float64) return run def apply_diffs(model, diffs): """Adds deltas to the parameters in the model corresponding to diffs.""" parameters = model.parameters() idx = 0 for parameter in parameters: if parameter.requires_grad: n_elements = parameter.nelement() cur_diff = diffs[idx : idx + n_elements] parameter.data = parameter.data + torch.tensor( cur_diff.reshape(parameter.shape) ).to(device=parameter.device) idx += n_elements
32.803571
80
0.631464
0
0
0
0
0
0
0
0
1,292
0.35166
cd10ef939588bc49c75df0d3a2c4ba2f987aa04b
1,164
py
Python
benchmark_runner.py
mamrehn/simplification
cb43ccadcbe011b89845142910d844b0bf7ca510
[ "MIT" ]
null
null
null
benchmark_runner.py
mamrehn/simplification
cb43ccadcbe011b89845142910d844b0bf7ca510
[ "MIT" ]
null
null
null
benchmark_runner.py
mamrehn/simplification
cb43ccadcbe011b89845142910d844b0bf7ca510
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Standalone benchmark runner """ import cProfile import pstats import profile import numpy as np print("Running Rust + Cython benchmarks") # calibrate pr = profile.Profile() calibration = np.mean([pr.calibrate(100000) for x in xrange(5)]) # add the bias profile.Profile.bias = calibration cProfile.run(open('simplification/test/cprofile_rust_cython.py', 'rb'), 'simplification/test/output_stats_rust_cython') rust_cython = pstats.Stats('simplification/test/output_stats_rust_cython') cProfile.run(open('simplification/test/cprofile_rust_cython_complex.py', 'rb'), 'simplification/test/output_stats_rust_cython_complex') rust_cython_c = pstats.Stats('simplification/test/output_stats_rust_cython_complex') cProfile.run(open('simplification/test/cprofile_rust_cython_shapely.py', 'rb'), 'simplification/test/output_stats_rust_cython_shapely') shapely = pstats.Stats('simplification/test/output_stats_rust_cython_shapely') print("Rust Cython Benchmarks\n") rust_cython.sort_stats('cumulative').print_stats(5) rust_cython_c.sort_stats('cumulative').print_stats(5) shapely.sort_stats('cumulative').print_stats(5)
35.272727
135
0.803265
0
0
0
0
0
0
0
0
671
0.57646
cd13a01142ccf63d717a89caf8e588ed9c337f8d
850
py
Python
D_QuickS.py
rut999/Algo
9180f66452597a758a31073cb2b8fa4a3e6a93fe
[ "MIT" ]
null
null
null
D_QuickS.py
rut999/Algo
9180f66452597a758a31073cb2b8fa4a3e6a93fe
[ "MIT" ]
null
null
null
D_QuickS.py
rut999/Algo
9180f66452597a758a31073cb2b8fa4a3e6a93fe
[ "MIT" ]
null
null
null
import time from random import randint def random_int(x): value = [] for i in range(x): value.append(randint(0, x)) return value def Quick_sort(list1): N = len(list1) if N <=1: return list1 pivot = list1.pop() # mid = len(list1)//2 Left_H = [] Right_H = [] for i in range(len(list1)): if(list1[i]>pivot): Right_H.append(list1[i]) else: Left_H.append(list1[i]) return (Quick_sort(Left_H)+[pivot]+Quick_sort(Right_H)) random_list = random_int(100000) #list2 = [0,0,99,34,56,54,-1,-1,32,2.5,-1.1,1000,1000,-2,30,21,24,15,10,6] t1 = time.time() Quick_sort(random_list) t2 = time.time() print(t2-t1) # def Quick_Sort(list1): # if (list1[0]<list1[-1]): # partition_index =partition(list1) # quicksort(list1,) # quicksort()
22.368421
74
0.583529
0
0
0
0
0
0
0
0
240
0.282353
cd18f52d3cd9d807fe305ade001766cc89245405
1,929
py
Python
cride/circles/views/circles.py
LhernerRemon/Rider
30783cf58513698d23730f5fa477dfeddda8ee6b
[ "MIT" ]
null
null
null
cride/circles/views/circles.py
LhernerRemon/Rider
30783cf58513698d23730f5fa477dfeddda8ee6b
[ "MIT" ]
null
null
null
cride/circles/views/circles.py
LhernerRemon/Rider
30783cf58513698d23730f5fa477dfeddda8ee6b
[ "MIT" ]
null
null
null
#REST from rest_framework import viewsets,mixins from rest_framework.permissions import IsAuthenticated #Filters from rest_framework.filters import SearchFilter,OrderingFilter from django_filters.rest_framework import DjangoFilterBackend #Models, serializers from cride.circles.models import Circle,Membership from cride.circles.serializers import CircleModelSerializer #Permission from cride.circles.permissions import IsCircleAdmin class CircleViewSet(mixins.CreateModelMixin, mixins.RetrieveModelMixin, mixins.UpdateModelMixin, mixins.ListModelMixin, viewsets.GenericViewSet): """ def destroy(self, request, pk=None): raise MethodNotAllowed('DELETE') Circle view set """ serializer_class=CircleModelSerializer lookup_field="slug_name" #permission_classes=(IsAuthenticated,) filter_backends=(SearchFilter,OrderingFilter,DjangoFilterBackend) search_fields=("slug_name","name") ordering_fields=("rides_offered","rides_taken","name","created","member_limit") ordering=("-members__count","-rides_offered","-rides_taken") filter_fields=("verified","is_limit") def get_permissions(self): permissions=[IsAuthenticated] if self.action in ["update","partial_update"]: permissions.append(IsCircleAdmin) return [permission() for permission in permissions] def get_queryset(self): queryset=Circle.objects.all() if self.action=="list": return queryset.filter(is_public=True) return queryset def perform_create(self,serializer): circle=serializer.save() user=self.request.user profile=user.profile Membership.objects.create( user=user, profile=profile, circle=circle, is_admin=True, remaining_invitation=10 )
32.694915
83
0.690513
1,491
0.772939
0
0
0
0
0
0
377
0.195438
cd18f82e759c1f805c2c156a96b2d6d4fe352c3d
780
py
Python
api/service/cidades_atendimento_service.py
FinotelliCarlos/ewipesimple-adminweb-python
3bf779250efeb9f85b4283ffbf210bf227aa8e8c
[ "MIT" ]
1
2021-06-17T06:13:33.000Z
2021-06-17T06:13:33.000Z
api/service/cidades_atendimento_service.py
FinotelliCarlos/ewipesimple-adminweb-python
3bf779250efeb9f85b4283ffbf210bf227aa8e8c
[ "MIT" ]
null
null
null
api/service/cidades_atendimento_service.py
FinotelliCarlos/ewipesimple-adminweb-python
3bf779250efeb9f85b4283ffbf210bf227aa8e8c
[ "MIT" ]
null
null
null
from adminweb.services import cep_service from adminweb.models import Profissional from rest_framework import serializers import json def listar_profissionais_cidade(cep): codigo_ibge = buscar_cidade_cep(cep)['ibge'] try: profissionais = Profissional.objects.filter(codigo_ibge=codigo_ibge).order_by('id') return profissionais except Profissional.DoesNotExist: return [] def buscar_cidade_cep(cep): response = cep_service.buscar_cidade_cep(cep) if response.status_code == 400: raise serializers.ValidationError('O CEP informado está incorreto!') cidade_api = json.loads(response.content) if 'erro' in cidade_api: raise serializers.ValidationError('O CEP informado não foi encontrado!') return cidade_api
32.5
91
0.75
0
0
0
0
0
0
0
0
88
0.112532
cd190e09b3c36d0f4700cf8693b8dfde027f164e
6,680
py
Python
초보를 위한 셀레니움/#1 Google Screenshots Scrapping/main.py
donddog/Nomad_Academy_Online_Course_Codes
391fde26052a67f7b533219ab0de6096830697b6
[ "MIT" ]
1
2021-02-11T16:45:22.000Z
2021-02-11T16:45:22.000Z
초보를 위한 셀레니움/#1 Google Screenshots Scrapping/main.py
donddog/Nomad_Academy_Online_Course_Codes
391fde26052a67f7b533219ab0de6096830697b6
[ "MIT" ]
null
null
null
초보를 위한 셀레니움/#1 Google Screenshots Scrapping/main.py
donddog/Nomad_Academy_Online_Course_Codes
391fde26052a67f7b533219ab0de6096830697b6
[ "MIT" ]
null
null
null
from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.ui import WebDriverWait import shutil import os class GoogleKeywordScreenshooter: def __init__(self, keyword, screenshots_dir): self.browser = webdriver.Chrome('../chromedriver.exe') self.keyword = keyword self.screenshots_dir = screenshots_dir def start(self): try: if not os.path.exists('screenshots'): os.makedirs('screenshots') except Exception: pass self.browser.get("https://google.com") search_bar = self.browser.find_element_by_class_name("gLFyf") search_bar.send_keys(self.keyword) search_bar.send_keys(Keys.ENTER) def repetitive(self): try: shitty_element = WebDriverWait(self.browser, 10).until( EC.presence_of_element_located((By.CLASS_NAME, "g-blk")) ) self.browser.execute_script( """ const shitty = arguments[0]; shitty.parentElement.removeChild(shitty) """, shitty_element, ) except Exception: pass repetitive(self) search_results = self.browser.find_elements_by_class_name("g") for index, search_result in enumerate(search_results): search_result.screenshot( f"{self.screenshots_dir}/{self.keyword}x{index}.png" ) # --------------------------------------------------------------------------- next_page_button = self.browser.find_element_by_xpath('//*[@id="xjs"]/div/table/tbody/tr/td[3]/a') next_page_button.click() repetitive(self) search_results = self.browser.find_elements_by_class_name("g") for index, search_result in enumerate(search_results): search_result.screenshot( f"{self.screenshots_dir}/{self.keyword}x{index+10}.png" ) # --------------------------------------------------------------------------------- next_page_button = self.browser.find_element_by_xpath('//*[@id="xjs"]/div/table/tbody/tr/td[4]/a') next_page_button.click() repetitive(self) search_results = self.browser.find_elements_by_class_name("g") for index, search_result in enumerate(search_results): search_result.screenshot( f"{self.screenshots_dir}/{self.keyword}x{index + 20}.png" ) # ---------------------------------------------------------------------- next_page_button = self.browser.find_element_by_xpath('//*[@id="xjs"]/div/table/tbody/tr/td[5]/a') next_page_button.click() repetitive(self) search_results = self.browser.find_elements_by_class_name("g") for index, search_result in enumerate(search_results): search_result.screenshot( f"{self.screenshots_dir}/{self.keyword}x{index + 30}.png" ) # ---------------------------------------------------------------------- next_page_button = self.browser.find_element_by_xpath('//*[@id="xjs"]/div/table/tbody/tr/td[6]/a') next_page_button.click() repetitive(self) search_results = self.browser.find_elements_by_class_name("g") for index, search_result in enumerate(search_results): search_result.screenshot( f"{self.screenshots_dir}/{self.keyword}x{index + 40}.png" ) # ---------------------------------------------------------------------- next_page_button = self.browser.find_element_by_xpath('//*[@id="xjs"]/div/table/tbody/tr/td[7]/a') next_page_button.click() repetitive(self) search_results = self.browser.find_elements_by_class_name("g") for index, search_result in enumerate(search_results): search_result.screenshot( f"{self.screenshots_dir}/{self.keyword}x{index + 50}.png" ) # ---------------------------------------------------------------------- next_page_button = self.browser.find_element_by_xpath('//*[@id="xjs"]/div/table/tbody/tr/td[8]/a') next_page_button.click() repetitive(self) search_results = self.browser.find_elements_by_class_name("g") for index, search_result in enumerate(search_results): search_result.screenshot( f"{self.screenshots_dir}/{self.keyword}x{index + 60}.png" ) # ---------------------------------------------------------------------- next_page_button = self.browser.find_element_by_xpath('//*[@id="xjs"]/div/table/tbody/tr/td[9]/a') next_page_button.click() repetitive(self) search_results = self.browser.find_elements_by_class_name("g") for index, search_result in enumerate(search_results): search_result.screenshot( f"{self.screenshots_dir}/{self.keyword}x{index + 70}.png" ) # ---------------------------------------------------------------------- next_page_button = self.browser.find_element_by_xpath('//*[@id="xjs"]/div/table/tbody/tr/td[10]/a') next_page_button.click() repetitive(self) search_results = self.browser.find_elements_by_class_name("g") for index, search_result in enumerate(search_results): search_result.screenshot( f"{self.screenshots_dir}/{self.keyword}x{index + 80}.png" ) # ---------------------------------------------------------------------- next_page_button = self.browser.find_element_by_xpath('//*[@id="xjs"]/div/table/tbody/tr/td[11]/a') next_page_button.click() repetitive(self) search_results = self.browser.find_elements_by_class_name("g") for index, search_result in enumerate(search_results): search_result.screenshot( f"{self.screenshots_dir}/{self.keyword}x{index + 90}.png" ) def finish(self): self.browser.quit() def tozipfile(self): shutil.make_archive('screentshotresults', 'zip', 'screenshots') shutil.rmtree('screenshots/') domain_competitors = GoogleKeywordScreenshooter("buy domain", "screenshots") domain_competitors.start() domain_competitors.finish() domain_competitors.tozipfile() # python_competitors = GoogleKeywordScreenshooter("python book", "screenshots") # python_competitors.start() # python_competitors.finish()
38.171429
107
0.572156
6,107
0.914222
0
0
0
0
0
0
2,065
0.309132
cd1a66acf2cfd6c3c481c4c94e53d436215cbbe7
9,414
py
Python
omicron/core/numpy_extensions.py
evimacs/omicron
abe77fd25a93cf3d0d17661ae957373474724535
[ "MIT" ]
4
2020-11-09T02:23:51.000Z
2021-01-24T00:45:21.000Z
omicron/core/numpy_extensions.py
evimacs/omicron
abe77fd25a93cf3d0d17661ae957373474724535
[ "MIT" ]
14
2020-11-09T02:31:34.000Z
2021-12-22T10:15:47.000Z
omicron/core/numpy_extensions.py
evimacs/omicron
abe77fd25a93cf3d0d17661ae957373474724535
[ "MIT" ]
2
2021-01-24T00:45:25.000Z
2021-12-24T06:18:37.000Z
"""Extension function related to numpy """ from __future__ import annotations from typing import List, Tuple import numpy as np import pandas from numpy.typing import ArrayLike def dict_to_numpy_array(d: dict, dtype: List[Tuple]) -> np.array: """convert dictionary to numpy array Examples: >>> d = {"aaron": 5, "jack": 6} >>> dtype = [("name", "S8"), ("score", "<i4")] >>> dict_to_numpy_array(d, dtype) array([(b'aaron', 5), (b'jack', 6)], dtype=[('name', 'S8'), ('score', '<i4')]) Args: d (dict): [description] dtype (List[Tuple]): [description] Returns: np.array: [description] """ return np.fromiter(d.items(), dtype=dtype, count=len(d)) def dataframe_to_structured_array( df: pandas.DataFrame, dtypes: List[Tuple] = None ) -> ArrayLike: """convert dataframe (with all columns, and index possibly) to numpy structured arrays `len(dtypes)` should be either equal to `len(df.columns)` or `len(df.columns) + 1`. In the later case, it implies to include `df.index` into converted array. Args: df: the one needs to be converted dtypes: Defaults to None. If it's `None`, then dtypes of `df` is used, in such case, the `index` of `df` will not be converted. Returns: ArrayLike: [description] """ v = df if dtypes is not None: dtypes_in_dict = {key: value for key, value in dtypes} col_len = len(df.columns) if len(dtypes) == col_len + 1: v = df.reset_index() rename_index_to = set(dtypes_in_dict.keys()).difference(set(df.columns)) v.rename(columns={"index": list(rename_index_to)[0]}, inplace=True) elif col_len != len(dtypes): raise ValueError( f"length of dtypes should be either {col_len} or {col_len + 1}, is {len(dtypes)}" ) # re-arrange order of dtypes, in order to align with df.columns dtypes = [] for name in v.columns: dtypes.append((name, dtypes_in_dict[name])) else: dtypes = df.dtypes return np.array(np.rec.fromrecords(v.values), dtype=dtypes) def numpy_array_to_dict(arr: np.array, key: str, value: str) -> dict: return {item[key]: item[value] for item in arr} def find_runs(x): """Find runs of consecutive items in an array.""" # ensure array x = np.asanyarray(x) if x.ndim != 1: raise ValueError("only 1D array supported") n = x.shape[0] # handle empty array if n == 0: return np.array([]), np.array([]), np.array([]) else: # find run starts loc_run_start = np.empty(n, dtype=bool) loc_run_start[0] = True np.not_equal(x[:-1], x[1:], out=loc_run_start[1:]) run_starts = np.nonzero(loc_run_start)[0] # find run values run_values = x[loc_run_start] # find run lengths run_lengths = np.diff(np.append(run_starts, n)) return run_values, run_starts, run_lengths def count_between(arr, start, end): """计算数组中,`start`元素与`end`元素之间共有多少个元素 要求arr必须是已排序。计算结果会包含区间边界点。 Examples: >>> arr = [20050104, 20050105, 20050106, 20050107, 20050110, 20050111] >>> count_between(arr, 20050104, 20050111) 6 >>> count_between(arr, 20050104, 20050109) 4 """ pos_start = np.searchsorted(arr, start, side="right") pos_end = np.searchsorted(arr, end, side="right") counter = pos_end - pos_start + 1 if start < arr[0]: counter -= 1 if end > arr[-1]: counter -= 1 return counter def shift(arr, start, offset): """在numpy数组arr中,找到start(或者最接近的一个),取offset对应的元素。 要求`arr`已排序。`offset`为正,表明向后移位;`offset`为负,表明向前移位 Examples: >>> arr = [20050104, 20050105, 20050106, 20050107, 20050110, 20050111] >>> shift(arr, 20050104, 1) 20050105 >>> shift(arr, 20050105, -1) 20050104 >>> # 起始点已右越界,且向右shift,返回起始点 >>> shift(arr, 20050120, 1) 20050120 Args: arr : 已排序的数组 start : numpy可接受的数据类型 offset (int): [description] Returns: 移位后得到的元素值 """ pos = np.searchsorted(arr, start, side="right") if pos + offset - 1 >= len(arr): return start else: return arr[pos + offset - 1] def floor(arr, item): """ 在数据arr中,找到小于等于item的那一个值。如果item小于所有arr元素的值,返回arr[0];如果item 大于所有arr元素的值,返回arr[-1] 与`minute_frames_floor`不同的是,本函数不做回绕与进位. Examples: >>> a = [3, 6, 9] >>> floor(a, -1) 3 >>> floor(a, 9) 9 >>> floor(a, 10) 9 >>> floor(a, 4) 3 >>> floor(a,10) 9 Args: arr: item: Returns: """ if item < arr[0]: return arr[0] index = np.searchsorted(arr, item, side="right") return arr[index - 1] def join_by_left(key, r1, r2, mask=True): """左连接 `r1`, `r2` by `key` 如果`r1`中存在`r2`中没有的行,则该行对应的`r2`中的那些字段的取值将使用`fill`来填充。如果 same as numpy.lib.recfunctions.join_by(key, r1, r2, jointype='leftouter'), but allows r1 have duplicat keys [Reference: stackoverflow](https://stackoverflow.com/a/53261882/13395693) Examples: >>> # to join the following >>> # [[ 1, 2], >>> # [ 1, 3], x [[1, 5], >>> # [ 2, 3]] [4, 7]] >>> # only first two rows in left will be joined >>> r1 = np.array([(1, 2), (1,3), (2,3)], dtype=[('seq', 'i4'), ('score', 'i4')]) >>> r2 = np.array([(1, 5), (4,7)], dtype=[('seq', 'i4'), ('age', 'i4')]) >>> joined = join_by_left('seq', r1, r2) >>> print(joined) [(1, 2, 5) (1, 3, 5) (2, 3, --)] >>> print(joined.dtype) (numpy.record, [('seq', '<i4'), ('score', '<i4'), ('age', '<i4')]) >>> joined[2][2] masked >>> joined.tolist()[2][2] == None True Args: key : join关键字 r1 : 数据集1 r2 : 数据集2 fill : 对匹配不上的cell进行填充时使用的值 Returns: a numpy array """ # figure out the dtype of the result array descr1 = r1.dtype.descr descr2 = [d for d in r2.dtype.descr if d[0] not in r1.dtype.names] descrm = descr1 + descr2 # figure out the fields we'll need from each array f1 = [d[0] for d in descr1] f2 = [d[0] for d in descr2] # cache the number of columns in f1 ncol1 = len(f1) # get a dict of the rows of r2 grouped by key rows2 = {} for row2 in r2: rows2.setdefault(row2[key], []).append(row2) # figure out how many rows will be in the result nrowm = 0 for k1 in r1[key]: if k1 in rows2: nrowm += len(rows2[k1]) else: nrowm += 1 # allocate the return array # ret = np.full((nrowm, ), fill, dtype=descrm) _ret = np.recarray(nrowm, dtype=descrm) if mask: ret = np.ma.array(_ret, mask=True) else: ret = _ret # merge the data into the return array i = 0 for row1 in r1: if row1[key] in rows2: for row2 in rows2[row1[key]]: ret[i] = tuple(row1[f1]) + tuple(row2[f2]) i += 1 else: for j in range(ncol1): ret[i][j] = row1[j] i += 1 return ret def numpy_append_fields(base, names, data, dtypes): """给现有的数组`base`增加新的字段 实现了`numpy.lib.recfunctions.rec_append_fields`的功能。因为`rec_append_fields`不能处 理`data`元素的类型为Object的情况 Example: >>> # 新增单个字段 >>> import numpy >>> old = np.array([i for i in range(3)], dtype=[('col1', '<f4')]) >>> new_list = [2 * i for i in range(3)] >>> res = numpy_append_fields(old, 'new_col', new_list, [('new_col', '<f4')]) >>> print(res) ... # doctest: +NORMALIZE_WHITESPACE [(0., 0.) (1., 2.) (2., 4.)] >>> # 新增多个字段 >>> data = [res['col1'].tolist(), res['new_col'].tolist()] >>> print(numpy_append_fields(old, ('col3', 'col4'), data, [('col3', '<f4'), ('col4', '<f4')])) ... # doctest: +NORMALIZE_WHITESPACE [(0., 0., 0.) (1., 1., 2.) (2., 2., 4.)] Args: base ([numpy.array]): 基础数组 name ([type]): 新增字段的名字,可以是字符串(单字段的情况),也可以是字符串列表 data (list): 增加的字段的数据,list类型 dtypes ([type]): 新增字段的dtype """ if isinstance(names, str): names = [ names, ] data = [ data, ] result = np.empty(base.shape, dtype=base.dtype.descr + dtypes) for col in base.dtype.names: result[col] = base[col] for i in range(len(names)): result[names[i]] = data[i] return result def ffill_na(s: np.array) -> np.array: """前向替换一维数组中的np.NaN 如果s以np.NaN起头,则起头处的np.NaN将无法被替换。 Examples: >>> arr = np.arange(6, dtype=np.float32) >>> arr[3:5] = np.NaN >>> ffill_na(arr) ... # doctest: +NORMALIZE_WHITESPACE array([0., 1., 2., 2., 2., 5.], dtype=float32) >>> arr[0:2] = np.nan >>> ffill_na(arr) ... # doctest: +NORMALIZE_WHITESPACE array([nan, nan, 2., 2., 2., 5.], dtype=float32) Args: s (np.array): [description] Returns: np.array: [description] """ mask = np.isnan(s) idx = np.where(~mask, np.arange(len(mask)), 0) np.maximum.accumulate(idx, out=idx) return s[idx]
26.222841
161
0.546633
0
0
0
0
0
0
0
0
6,242
0.613766
cd1bfaec0e66cc493fec447100454ceabadeff14
838
py
Python
pepy/domain/read_model.py
daghan/pepy
11e15e0a7af922cf72647dde95b6cc26760ee8ab
[ "MIT" ]
null
null
null
pepy/domain/read_model.py
daghan/pepy
11e15e0a7af922cf72647dde95b6cc26760ee8ab
[ "MIT" ]
null
null
null
pepy/domain/read_model.py
daghan/pepy
11e15e0a7af922cf72647dde95b6cc26760ee8ab
[ "MIT" ]
null
null
null
from datetime import date from typing import List from attr import attrs, attrib @attrs() class ProjectListProjection: name: str = attrib() total_downloads: int = attrib() @attrs() class DownloadProjection: date: date = attrib() downloads: int = attrib() @attrs() class ProjectProjection: name: str = attrib() total_downloads: int = attrib() last_downloads: List[DownloadProjection] = attrib() # the last 30 days downloads @property def total_downloads_last_30_days(self) -> int: downloads = 0 for d in self.last_downloads: downloads += d.downloads return downloads @property def total_downloads_last_7_days(self) -> int: downloads = 0 for d in self.last_downloads[:7]: downloads += d.downloads return downloads
22.052632
85
0.657518
720
0.859189
0
0
747
0.891408
0
0
28
0.033413
cd1c390db89d68211aa13e58ba3a2a89676c5247
3,039
py
Python
finetuning/pretrain_scripts/create_sentiment_mask.py
tatsu-lab/mlm_inductive_bias
2d99e2477293036949ba356c88513729244dc1f9
[ "MIT" ]
10
2021-04-14T22:06:19.000Z
2022-01-12T19:41:12.000Z
finetuning/pretrain_scripts/create_sentiment_mask.py
tatsu-lab/mlm_inductive_bias
2d99e2477293036949ba356c88513729244dc1f9
[ "MIT" ]
null
null
null
finetuning/pretrain_scripts/create_sentiment_mask.py
tatsu-lab/mlm_inductive_bias
2d99e2477293036949ba356c88513729244dc1f9
[ "MIT" ]
3
2021-06-06T09:43:14.000Z
2022-02-20T00:40:42.000Z
""" This script computes word masks based on sentiment lexicons """ import os import torch import argparse from tqdm import tqdm from transformers import AutoTokenizer from transformers import GlueDataTrainingArguments as DataTrainingArguments from transformers import GlueDataset as Dataset parser = argparse.ArgumentParser() parser.add_argument("--data-dir", type=str, default="./data/SST-2", help="path to the dir containing lm data.") parser.add_argument("--lexicon-dir", type=str, default="./data/sentiment_lexicon", help="path to the dir containing sentiment lexicon.") parser.add_argument("--tokenizer-name", type=str, default="bert-base-uncased", help="name of the tokenizer to use.") parser.add_argument("--block_size", type=int, default=72, help="maximum length of the mask") args = parser.parse_args() positive_words = set() with open(os.path.join(args.lexicon_dir, "positive-words.txt"), "r", encoding="ISO-8859-1") as f: for line in f: line = line.strip() # skip the initial comments with ; and empty lines if not line.startswith(";") and len(line) > 0: positive_words.add(line.lower()) negative_words = set() with open(os.path.join(args.lexicon_dir, "negative-words.txt"), "r", encoding="ISO-8859-1") as f: for line in f: line = line.strip() # skip the initial comments with ; and empty lines if not line.startswith(";") and len(line) > 0: negative_words.add(line.lower()) salient_words = positive_words | negative_words tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name) splits = ["train", "dev", "test"] for split in splits: with open(os.path.join(args.data_dir, f"{split}.lm"), "r") as f: all_sens = [s.strip() for s in f.readlines()] salient_word_masks = torch.zeros(len(all_sens), args.block_size, dtype=torch.bool) total_word_count = 0 salient_word_count = 0 # Main loop that handles subword tokenization for i, sen in tqdm(enumerate(all_sens), total=len(all_sens)): words = sen.split() curr_idx = 1 # skip the [CLS] token total_word_count += len(words) for word in words: tokens = tokenizer.tokenize(word) # Need to truncate SQuAD if curr_idx + len(tokens) > args.block_size: raise ValueError("Encountered examples longer than block size.") if word in salient_words: salient_word_count += 1 for j in range(len(tokens)): salient_word_masks[i, curr_idx + j] = 1 curr_idx += len(tokens) print(f"{(salient_word_count/total_word_count):.2%} salient words") salient_pct = salient_word_masks.any(dim=1).sum().float() / len(all_sens) print(f"{split} {salient_pct:.2%} documents have salient words") torch.save( salient_word_masks, os.path.join( args.data_dir, f"cached_{split}_{args.tokenizer_name.replace('-', '_')}_{args.block_size}.sentiment_mask", ), )
37.518519
136
0.66535
0
0
0
0
0
0
0
0
882
0.290227
cd1f80834765c75ab8a5bfc49335f1d5e1f2a008
456
py
Python
Leetcode/443. String Compression/solution2.py
asanoviskhak/Outtalent
c500e8ad498f76d57eb87a9776a04af7bdda913d
[ "MIT" ]
51
2020-07-12T21:27:47.000Z
2022-02-11T19:25:36.000Z
Leetcode/443. String Compression/solution2.py
CrazySquirrel/Outtalent
8a10b23335d8e9f080e5c39715b38bcc2916ff00
[ "MIT" ]
null
null
null
Leetcode/443. String Compression/solution2.py
CrazySquirrel/Outtalent
8a10b23335d8e9f080e5c39715b38bcc2916ff00
[ "MIT" ]
32
2020-07-27T13:54:24.000Z
2021-12-25T18:12:50.000Z
class Solution: def compress(self, chars: List[str]) -> int: l = 0 while l < len(chars): r = l + 1 while r < len(chars) and chars[l] == chars[r]: r += 1 num = r - l for k in range(r - l, 1, -1): chars.pop(l) if num > 1: for i, v in enumerate(str(num)): chars.insert(l + i + 1, v) l += len(str(num)) l += 1 return len(chars)
32.571429
75
0.41886
455
0.997807
0
0
0
0
0
0
0
0
cd26104c6eb130ab45214eda4f1934869ef8a4f2
3,524
py
Python
src/data_reader.py
jazzsewera/mops-projekt
75924546eb73c266ba81e8e22c68ad939dea19d6
[ "MIT" ]
null
null
null
src/data_reader.py
jazzsewera/mops-projekt
75924546eb73c266ba81e8e22c68ad939dea19d6
[ "MIT" ]
null
null
null
src/data_reader.py
jazzsewera/mops-projekt
75924546eb73c266ba81e8e22c68ad939dea19d6
[ "MIT" ]
null
null
null
from logger import Logger from numpy import average log = Logger(None) def show_queue_length_average(number_of_packets): timestamps = [] vals = [] if len(number_of_packets) == 0: log.info(f"Average number of packets: NO DATA") return 0 for k, v in number_of_packets.items(): timestamps.append(float(k)) vals.append(v) vals.pop() timedeltas = [] for i in range(len(timestamps) - 1): timedeltas.append(timestamps[i + 1] - timestamps[i]) av = average(vals, weights=timedeltas) log.info(f"Average number of packets: {av}") return av def show_average_queue_waiting_time_Q1(sent_packets): ts = [] if len(sent_packets) == 0: log.info(f"Average waiting time: NO DATA") return 0 for packet in sent_packets: ts.append(packet.out_of_queue_time - packet.in_queue_time) av = sum(ts) / len(ts) log.info(f"Average waiting time: {av}") return av def show_average_delay_Q1(sent_packets): ts = [] if len(sent_packets) == 0: log.info(f"Average delay time: NO DATA") return 0 for packet in sent_packets: ts.append(packet.in_second_queue_time - packet.in_queue_time) av = sum(ts) / len(ts) log.info(f"Average delay time: {av}") return av def show_average_server_load_Q1(sent_packets): if len(sent_packets) == 0: log.info(f"Average server load: NO DATA") return 0 av_service_time = ( sent_packets[0].in_second_queue_time - sent_packets[0].out_of_queue_time ) vals = [] for i in range(len(sent_packets) - 1): vals.append(sent_packets[i + 1].in_queue_time - sent_packets[i].in_queue_time) if sum(vals) == 0 or len(vals) == 0: log.info(f"Average server load: NO DATA") return 0 av_time_between_in_queue = sum(vals) / len(vals) influx = 1 / av_time_between_in_queue outflow = 1 / av_service_time av = influx / outflow log.info(f"Average server load: {av}") return av def show_average_queue_waiting_time_Q2(sent_packets): ts = [] if len(sent_packets) == 0: log.info(f"Average waiting time: NO DATA") return 0 for packet in sent_packets: ts.append(packet.out_of_second_queue - packet.in_second_queue_time) av = sum(ts) / len(ts) log.info(f"Average waiting time: {av}") return av def show_average_delay_Q2(sent_packets): ts = [] if len(sent_packets) == 0: log.info(f"Average delay time: NO DATA") return 0 for packet in sent_packets: ts.append(packet.out_of_system_time - packet.in_second_queue_time) av = sum(ts) / len(ts) log.info(f"Average delay time: {av}") return av def show_average_server_load_Q2(sent_packets): if len(sent_packets) == 0: log.info(f"Average server load: NO DATA") return 0 av_service_time = ( sent_packets[0].out_of_system_time - sent_packets[0].out_of_second_queue ) vals = [] for i in range(len(sent_packets) - 1): vals.append( sent_packets[i + 1].in_second_queue_time - sent_packets[i].in_second_queue_time ) if sum(vals) == 0 or len(vals) == 0: log.info(f"Average server load: NO DATA") return 0 av_time_between_in_queue = sum(vals) / len(vals) influx = 1 / av_time_between_in_queue outflow = 1 / av_service_time av = influx / outflow log.info(f"Average server load: {av}") return av
24.136986
86
0.638763
0
0
0
0
0
0
0
0
487
0.138195
cd2798a9ad4d90fcc9bb40c5df39c9d1117edd80
5,946
py
Python
fetch.py
kirillvarn/grocerycomparator-stat
861f90a2d5b4c2b52d89b6cdb574b722eae2327d
[ "MIT" ]
null
null
null
fetch.py
kirillvarn/grocerycomparator-stat
861f90a2d5b4c2b52d89b6cdb574b722eae2327d
[ "MIT" ]
null
null
null
fetch.py
kirillvarn/grocerycomparator-stat
861f90a2d5b4c2b52d89b6cdb574b722eae2327d
[ "MIT" ]
null
null
null
import repo import export.csv as csv # CONSTANTS milk_q = "SELECT * FROM \"%s\" WHERE price != 0 AND discount = false AND (name ILIKE '%%1l%%' OR name ILIKE '%%1 l%%') AND (name ILIKE '%%piim %%' OR name ILIKE '%%piim,%%') AND name NOT ILIKE '%%juust%%' AND name NOT ILIKE '%%kohupiim%%' AND name NOT ILIKE '%%laktoos%%' AND name NOT ILIKE '%%täis%%' AND name NOT ILIKE '%%kookos%%' AND name NOT ILIKE '%%latte%%'" wheat_kilos = 1 query_to_parse: dict = { "milk": milk_q, "cookies": "SELECT * FROM \"%s\" WHERE price != 0 AND discount = false AND (name ILIKE '%%küpsised %%' OR name ILIKE '%%küpsis %%') AND name NOT ILIKE '%%koer%%';", "sugar": "SELECT * FROM \"%s\" WHERE price != 0 AND discount = false AND name ILIKE '%%suhkur%%'", #"rimi milk": f"{milk_q} AND shop ILIKE '%%rimi%%'", #"other shop milk": f"{milk_q} AND shop NOT ILIKE '%%rimi%%'", #"eggs": f"SELECT * FROM \"%s\" WHERE price != 0 AND discount = false AND (name ILIKE '%%munad %%' OR name ILIKE '%%munad, %%' OR name ILIKE '%%muna,%%') AND name NOT ilike '%%salvrät%%' AND name NOT ILIKE '%%Šokolaad%%' AND name NOT ILIKE '%%Martsipani%%' AND name NOT ILIKE '%%SELVERI KÖÖK%%' AND name NOT ILIKE '%%kitkat%%'" , "wheat": f"SELECT * FROM \"%s\" WHERE price != 0 AND discount = false AND (name ILIKE '%%{wheat_kilos}kg%%' OR name ILIKE '%%{wheat_kilos} kg%%') AND (name ILIKE '%%nisujahu %%' OR name ILIKE '%%nisujahu,%%')", "beef": f"SELECT * FROM \"%s\" WHERE price != 0 AND discount = false AND (name ILIKE '%%veise %%' OR name ILIKE '%%veisepraad%%' OR name ILIKE '%%lihaveise%%') AND name NOT ILIKE '%%koera%%' AND name NOT ILIKE '%%pelmeen%%' AND name NOT ILIKE '%%põltsama%%' AND name NOT ILIKE '%%sink%%'", "tomatoes": "SELECT * FROM \"%s\" WHERE price != 0 AND discount = false AND (name ILIKE '%%tomat %%' OR name ILIKE '%%tomat, %%') AND name NOT ILIKE '%%pasta%%' AND name NOT ILIKE '%%0g%%' AND name NOT ILIKE '%%0 g%%' AND name NOT ILIKE '%%harilik%%' AND name NOT ILIKE '%%krõpsud%%' AND name NOT ILIKE '%%marinaad%%' AND name NOT ILIKE '%%eine%%'", #"cucumber": "SELECT * FROM \"%s\" WHERE price != 0 AND discount = false AND name ILIKE '%%kg%%' AND (name ILIKE '%%kurk %%' OR name ILIKE '%%kurk,%%')", #"banana": "SELECT * FROM \"%s\" WHERE price != 0 AND discount = false AND (name ILIKE '%%kg%%' OR name ILIKE '%%chiq%%') AND (name ILIKE '%%banaan %%' OR name ILIKE '%%banaan,%%')", "apple": "SELECT * FROM \"%s\" WHERE price != 0 AND discount = false AND name ILIKE '%%kg%%' AND (name ILIKE '%%õun %%' OR name ILIKE '%%õun,%%')", "pear": "SELECT * FROM \"%s\" WHERE price != 0 AND discount = false AND name ILIKE '%%kg%%' AND (name ILIKE '%%pirn %%' OR name ILIKE '%%pirn,%%')", "pizza": "SELECT * FROM \"%s\" WHERE price != 0 AND discount = false AND (name ILIKE '%%pizza%%' OR name ILIKE '%%pitsa%%' AND name NOT ILIKE '%%pitsamaitseline%%')", "pig meat": f"SELECT * FROM \"%s\" WHERE price != 0 AND discount = false AND (name ILIKE '%%sea kaela%%' OR name ILIKE '%%sea välisfilee%%' OR name ILIKE '%%sea sisefilee%%')", "cake": f"SELECT * FROM \"%s\" WHERE price != 0 AND discount = false AND (name ILIKE '%%kook,%%' OR name ILIKE '%%kook%%') AND name NOT ILIKE '%%van kook%%' AND name NOT ILIKE '%%selveri köök%%' AND name NOT ILIKE '%%kookos%%' AND name NOT LIKE '%%smuuti%%' AND name NOT ILIKE '%%pannkook%%'", "chicken": "SELECT * FROM \"%s\" WHERE price != 0 AND discount = false AND (name ILIKE '%%broileri rinnafilee%%' OR name ILIKE '%%pooltiivad%%' OR name ILIKE '%%poolkoivad%%' OR name ILIKE '%%kanafilee%%' OR name ILIKE '%%broilerifilee%%') AND name NOT ILIKE '%%HAU-HAU%%'" } def get_products(): return repo.get_prices(repo.connect(db="naive_products"))[1] def get_products_by_name(name: str = "", query: str = ""): if len(name) != 0: return repo.get_prices(repo.connect(db="naive_products"), search_string=name)[1] else: return repo.get_prices(repo.connect(db="naive_products"), query=query)[1] def get_normalized_price(data: list) -> list: new_data = list() for index, item in enumerate(data): if index == 0 and item == None: new_data.append(next(item for item in data if item is not None)) elif index != 0 and data[index] == None: new_data.append(new_data[index - 1]) else: new_data.append(item) return new_data def get_trend(data: list) -> list: new_data = list() for index, item in enumerate(data): if index != 0: trend = "still" if data[index - 1] != None: if item > data[index - 1]: trend = "up" elif item < data[index - 1]: trend = "down" new_data.append({"value": item, "trend": trend}) return new_data # def save_to_excel(dataset, sheet_name: str = "Sheet") -> None: # tables = [i[0] for i in main.get_tables(main.connect(db="naive_products"))] # # tables.remove("initial_products") # header = ["Product name", "Shop name"] + tables # data = [] # for item in dataset: # prices = get_normalized_price( # [dataset[item]["prices"][value] # for value in dataset[item]["prices"]] # ) # prices = get_trend(prices) # value = [item, dataset[item]["shop"]] + prices # data.append(value) # table.append_header(header, sheet_name) # table.put_data(data, sheet_name) def save_to_csv(filename, dataset) -> None: data = [] for item in dataset: prices = get_normalized_price( [dataset[item]["prices"][value] for value in dataset[item]["prices"]] ) value = [item] + prices data.append(value) csv.write_to_csv(f"datasets/{filename}.csv", zip(*data)) for i in query_to_parse: products = get_products_by_name(query=query_to_parse[i]) save_to_csv(i, products)
58.871287
365
0.601245
0
0
0
0
0
0
0
0
4,205
0.705537
cd27a3a7d166518d8d7678101792de0e23b578ef
1,755
py
Python
code1.py
roshangol/executed-path-visualize
1759c12b0048fe117205990b151d2f5f57ad9616
[ "MIT" ]
null
null
null
code1.py
roshangol/executed-path-visualize
1759c12b0048fe117205990b151d2f5f57ad9616
[ "MIT" ]
null
null
null
code1.py
roshangol/executed-path-visualize
1759c12b0048fe117205990b151d2f5f57ad9616
[ "MIT" ]
null
null
null
# EX1 # if x < y: # y = 0 # x = x + 1 # else: # x = y def max(a, b, c): if a > b and a > c: print(a,' is maximum among all') elif b > a and b > c: print(b, ' is maximum among all') else: print(c, ' is maximum among all') max(30, 28, 18) # def triangleType(a, b, c): # isATriangle = False # if (a < b + c) and\ # (b < a + c) and\ # (c < a + b): # isATriangle = True # if isATriangle: # if (a == b) and (b == c): # print("the triangle was a EQUILATERAL") # elif (a != b) and \ # (a != c) and \ # (b != c): # print("the triangle was a SCALENE") # else: # print("invalid") # # triangleType(3, 5, 8) # def testfunc(x, y): # if x >= 0 and y >= 0: # if y*y >= x*10 and y <= math.sin(math.radians(x*30))*25: # if y >= math.cos(math.radians(x*40))*15: # print('oooookk') # testfunc(2, 3) # EX2 # if (x < y): # y = 0 # x = x + 1 # EX3 # if x < y: # return # print(x) # return # EX4 # x = 0 # while (x < y): # y = f(x,y) # x = x + 1 # EX5 # for x in range(10): # y = f(x,y) # a = [2 * x for x in y if x > 0 for y in z if y[0] < 3] # # digits = [0, 1, 5] # a = 0 # # for i in digits: # a += i # if i == 5: # print("5 in list") # break # else: # print("out of the loop") # try: # b = b + 5 # except KeyError: # a += 1 # except ZeroDivisionError: # a += 2 # else: # a += 3 # finally: # b += 1 # a = a - b # # x = 0 # while(x < y): # y = f(x, y) # if(y == 0): # break # elif(y < 0): # y = y * 2 # continue # x = x + 1
16.25
66
0.4
0
0
0
0
0
0
0
0
1,506
0.85812
cd28f531641b97aa10ded06e3c6b7fdb2de0d2e7
1,193
py
Python
GameProject/dice.py
CreativeUsernameThatWontInsultAnyone/GameProject
998274e4587d93ff0564af174f4fc1e3a3e60174
[ "CC0-1.0" ]
1
2021-11-13T17:14:03.000Z
2021-11-13T17:14:03.000Z
GameProject/dice.py
CreativeUsernameThatWontInsultAnyone/GameProject
998274e4587d93ff0564af174f4fc1e3a3e60174
[ "CC0-1.0" ]
null
null
null
GameProject/dice.py
CreativeUsernameThatWontInsultAnyone/GameProject
998274e4587d93ff0564af174f4fc1e3a3e60174
[ "CC0-1.0" ]
null
null
null
import random import time while (1): def clear(): ##Placeholder code time.sleep(1) clearConsole = lambda: print('\n' * 150) ## clearConsole() wmsg = "Good morning!" events = { 1 : "calm", 2 : "calm", 3 : "rainy", 4 : "rainy", 5 : "rainy", 6 : "thunder", } array = [1,2,3,4,5,6] ## Array used to get events or smth output = random.choice(array) defevent = events[output] if defevent == "calm": print(wmsg ,"It's a sunny day outside.") clear() elif defevent == "rainy": print(wmsg, "You can hear the droplets falling onto your tent.") clear() else: print(wmsg,"You hear thunder rumbling outside") clear() del array[output - 1] if len(array) == 0: ##Array reset array.append('1','2','3','4','5','6') ##Actually, we could throw out them specifics outta window and use it's skelly as ##our primary dice. def could take out the variables from other files and juggle them to our delight break
28.404762
105
0.506287
0
0
0
0
0
0
0
0
460
0.385583
cd2c1598eaae27b2b8504f6e96bc81711b260dde
774
py
Python
multivision/oa_image_io.py
olaals/tpktools
50416ca554809e3d2f364b25531c78cf4751311c
[ "MIT" ]
null
null
null
multivision/oa_image_io.py
olaals/tpktools
50416ca554809e3d2f364b25531c78cf4751311c
[ "MIT" ]
null
null
null
multivision/oa_image_io.py
olaals/tpktools
50416ca554809e3d2f364b25531c78cf4751311c
[ "MIT" ]
null
null
null
import numpy as np import OpenEXR as exr import cv2 import Imath import matplotlib.pyplot as plt def readEXR(filename): exrfile = exr.InputFile(filename) header = exrfile.header() dw = header['dataWindow'] isize = (dw.max.y - dw.min.y + 1, dw.max.x - dw.min.x + 1) channelData = dict() # convert all channels in the image to numpy arrays for c in header['channels']: C = exrfile.channel(c, Imath.PixelType(Imath.PixelType.FLOAT)) C = np.frombuffer(C, dtype=np.float32) C = np.reshape(C, isize) channelData[c] = C colorChannels = ['R', 'G', 'B', 'A'] if 'A' in header['channels'] else ['R', 'G', 'B'] img = np.concatenate([channelData[c][...,np.newaxis] for c in colorChannels], axis=2) return img
29.769231
90
0.630491
0
0
0
0
0
0
0
0
107
0.138243
cd314573d937025d1a50953b27cb47b89f485e85
2,972
py
Python
yggdrasil/serialize/FunctionalSerialize.py
astro-friedel/yggdrasil
5ecbfd083240965c20c502b4795b6dc93d94b020
[ "BSD-3-Clause" ]
22
2019-02-05T15:20:07.000Z
2022-02-25T09:00:40.000Z
yggdrasil/serialize/FunctionalSerialize.py
astro-friedel/yggdrasil
5ecbfd083240965c20c502b4795b6dc93d94b020
[ "BSD-3-Clause" ]
48
2019-02-15T20:41:24.000Z
2022-03-16T20:52:02.000Z
yggdrasil/serialize/FunctionalSerialize.py
astro-friedel/yggdrasil
5ecbfd083240965c20c502b4795b6dc93d94b020
[ "BSD-3-Clause" ]
16
2019-04-27T03:36:40.000Z
2021-12-02T09:47:06.000Z
from yggdrasil.serialize.SerializeBase import SerializeBase class FunctionalSerialize(SerializeBase): r"""Class for serializing/deserializing a Python object into/from a bytes message using defined functions. Args: encoded_datatype (schema, optional): JSON schema describing the type that serialized objects should conform to. Defaults to the class attribute default_encoded_datatype. If either func_serialize or func_deserialize are not provided, this needs to be specified in order to serialize non-bytes objects. func_serialize (func, optional): Callable object that takes Python objects as input and returns a representation that conforms to encoded_datatype. Defaults to None and the default serialization for encoded_datatype will be used. func_deserialize (func, optional): Callable object that takes objects of a type that conforms to encoded_datatype and returns a deserialized Python object. Defaults to None and the default deserialization for encoded_datatype will be used. **kwargs: Additional keyword args are passed to the parent class's constructor. """ _seritype = 'functional' _schema_subtype_description = ('Serializer that uses provied function to ' 'serialize messages.') _schema_requried = [] _schema_properties = { 'encoded_datatype': {'type': 'schema'}, 'func_serialize': {'type': 'function'}, 'func_deserialize': {'type': 'function'}} func_serialize = None func_deserialize = None def __init__(self, **kwargs): if isinstance(kwargs.get('func_serialize', None), SerializeBase): kwargs['func_serialize'] = kwargs['func_serialize'].func_serialize if isinstance(kwargs.get('func_deserialize', None), SerializeBase): kwargs['func_deserialize'] = kwargs['func_deserialize'].func_deserialize super(FunctionalSerialize, self).__init__(**kwargs) # @property # def base_class(self): # r"""DefaultSerialize: Default version of serialization.""" # if getattr(self, '_base_class', None) is None: # self._base_class = DefaultSerialize(datatype=self.typedef, # **self.serializer_info) # return self._base_class # TODO: In some cases this should be the object typedef # @property # def typedef(self): # r"""dict: Type definition.""" # return self.encoded_typedef @property def serializer_info(self): r"""dict: Serializer info.""" raise RuntimeError("Cannot define serializer information for user " + "supplied functions.") @property def empty_msg(self): r"""obj: Object indicating empty message.""" return self.encoded_datatype._empty_msg
43.072464
84
0.654778
2,909
0.978802
0
0
341
0.114738
0
0
2,033
0.684051
cd3156dd0e4a0a15e50945d8d1d506c7eefae69c
2,046
py
Python
wordy_chat.py
thecodingchannel/wordy-discord-bot-tutorial
be70d237abcb302b6516f985ae900c61b598296a
[ "Apache-2.0" ]
null
null
null
wordy_chat.py
thecodingchannel/wordy-discord-bot-tutorial
be70d237abcb302b6516f985ae900c61b598296a
[ "Apache-2.0" ]
null
null
null
wordy_chat.py
thecodingchannel/wordy-discord-bot-tutorial
be70d237abcb302b6516f985ae900c61b598296a
[ "Apache-2.0" ]
1
2022-03-09T04:55:56.000Z
2022-03-09T04:55:56.000Z
''' This file is the glue between the Discord bot and the game logic. ''' from wordle_logic import evaluate_guess, generate_new_word from wordy_types import ActiveGame, EndResult, LetterState def begin_game() -> ActiveGame: """ Begin a game for a user. """ # Select a word answer = generate_new_word() # Create and store new game state new_game = ActiveGame(answer=answer) return new_game def enter_guess(guess: str, game: ActiveGame) -> EndResult: """ Enter a guess for a user's game, updating the game state. >>> game=ActiveGame(answer="abcd") >>> enter_guess("aaaa", game) == EndResult.PLAYING True >>> render_result(game.results[-1]) '🟩⬛⬛⬛' >>> game=ActiveGame(answer="abca") >>> enter_guess("aaaz", game) == EndResult.PLAYING True >>> render_result(game.results[-1]) '🟩🟨⬛⬛' >>> game=ActiveGame(answer="abca") >>> enter_guess("aaab", game) == EndResult.PLAYING True >>> render_result(game.results[-1]) '🟩🟨⬛🟨' """ if game.state != EndResult.PLAYING: return game.state # Evaluate guess result = tuple(evaluate_guess(guess, game.answer)) # Update game state game.board_state.append(guess) game.results.append(result) # Check if game is over if result == (LetterState.CORRECT,)*len(game.answer): game.state = EndResult.WIN elif len(game.board_state) > len(game.answer): game.state = EndResult.LOSE return game.state def render_result(result: tuple[LetterState]) -> str: """ Render a result to a string. >>> render_result((LetterState.ABSENT, LetterState.PRESENT, LetterState.CORRECT)) '⬛🟨🟩' >>> render_result((LetterState.ABSENT,)*4) '⬛⬛⬛⬛' """ absent, present, correct = '⬛', '🟨', '🟩' return "".join( absent if state == LetterState.ABSENT else present if state == LetterState.PRESENT else correct for state in result )
26.230769
86
0.608504
0
0
0
0
0
0
0
0
1,053
0.501429
cd318b68f4231a08be74b1a2c64d0b4969b29c51
2,422
py
Python
NNet/utils/readNNet.py
noyahoch/Marabou
03eb551498287e5372d462e3c2ad4fcc3210a5fa
[ "BSD-3-Clause" ]
7
2020-01-27T21:25:49.000Z
2022-01-07T04:37:37.000Z
NNet/utils/readNNet.py
noyahoch/Marabou
03eb551498287e5372d462e3c2ad4fcc3210a5fa
[ "BSD-3-Clause" ]
1
2022-01-25T17:41:54.000Z
2022-01-26T02:27:51.000Z
NNet/utils/readNNet.py
noyahoch/Marabou
03eb551498287e5372d462e3c2ad4fcc3210a5fa
[ "BSD-3-Clause" ]
3
2020-03-14T17:12:17.000Z
2022-03-16T09:50:46.000Z
import numpy as np def readNNet(nnetFile, withNorm=False): ''' Read a .nnet file and return list of weight matrices and bias vectors Inputs: nnetFile: (string) .nnet file to read withNorm: (bool) If true, return normalization parameters Returns: weights: List of weight matrices for fully connected network biases: List of bias vectors for fully connected network ''' # Open NNet file f = open(nnetFile,'r') # Skip header lines line = f.readline() while line[:2]=="//": line = f.readline() # Extract information about network architecture record = line.split(',') numLayers = int(record[0]) inputSize = int(record[1]) line = f.readline() record = line.split(',') layerSizes = np.zeros(numLayers+1,'int') for i in range(numLayers+1): layerSizes[i]=int(record[i]) # Skip extra obsolete parameter line f.readline() # Read the normalization information line = f.readline() inputMins = [float(x) for x in line.strip().split(",")[:-1]] line = f.readline() inputMaxes = [float(x) for x in line.strip().split(",")[:-1]] line = f.readline() means = [float(x) for x in line.strip().split(",")[:-1]] line = f.readline() ranges = [float(x) for x in line.strip().split(",")[:-1]] # Initialize list of weights and biases weights = [np.zeros((layerSizes[i],layerSizes[i+1])) for i in range(numLayers)] biases = [np.zeros(layerSizes[i+1]) for i in range(numLayers)] # Read remainder of file and place each value in the correct spot in a weight matrix or bias vector layer=0 i=0 j=0 line = f.readline() record = line.split(',') while layer+1 < len(layerSizes): while i<layerSizes[layer+1]: while record[j]!="\n": weights[layer][j,i] = float(record[j]) j+=1 j=0 i+=1 line = f.readline() record = line.split(',') i=0 while i<layerSizes[layer+1]: biases[layer][i] = float(record[0]) i+=1 line = f.readline() record = line.split(',') layer+=1 i=0 j=0 f.close() if withNorm: return weights, biases, inputMins, inputMaxes, means, ranges return weights, biases
27.83908
103
0.562758
0
0
0
0
0
0
0
0
707
0.291908
cd336f08882633e139c7b8cf8e6bbf9503123d24
13,668
py
Python
models/model.py
hearai/hearai
2f2bc2923fa2bb170d9ed895c3f638e99811442f
[ "MIT" ]
16
2021-12-16T20:19:31.000Z
2022-03-19T15:59:23.000Z
models/model.py
hearai/hearai
2f2bc2923fa2bb170d9ed895c3f638e99811442f
[ "MIT" ]
34
2021-12-21T19:33:31.000Z
2022-03-31T19:04:39.000Z
models/model.py
hearai/hearai
2f2bc2923fa2bb170d9ed895c3f638e99811442f
[ "MIT" ]
5
2021-12-18T22:35:20.000Z
2022-02-20T12:26:39.000Z
from typing import Dict import neptune.new as neptune import numpy as np import pytorch_lightning as pl import torch import torch.nn as nn from config import NEPTUNE_API_TOKEN, NEPTUNE_PROJECT_NAME from sklearn.metrics import classification_report, f1_score from utils.summary_loss import SummaryLoss from math import ceil from models.feature_extractors.multi_frame_feature_extractor import ( MultiFrameFeatureExtractor, ) from models.model_loader import ModelLoader from models.common.simple_sequential_model import SimpleSequentialModel from models.landmarks_models.lanmdarks_sequential_model import LandmarksSequentialModel from models.head_models.head_sequential_model import HeadClassificationSequentialModel # initialize neptune logging def initialize_neptun(tags): return neptune.init( api_token=NEPTUNE_API_TOKEN, project=NEPTUNE_PROJECT_NAME, tags=tags, capture_stdout=False, capture_stderr=False, ) class GlossTranslationModel(pl.LightningModule): """Awesome model for Gloss Translation""" def __init__( self, general_parameters: Dict = None, train_parameters: Dict = None, feature_extractor_parameters: Dict = None, transformer_parameters: Dict = None, heads: Dict = None, freeze_scheduler: Dict = None, loss_function=nn.BCEWithLogitsLoss, steps_per_epoch: int = 1000 ): """ Args: general_parameters (Dict): Dict containing general parameters not parameterizing training process. [Warning] Must contain fields: - path_to_save (str) - neptune (bool) feature_extractor_parameters (Dict): Dict containing parameters regarding currently used feature extractor. [Warning] Must contain fields: - "name" (str) - "model_path" (str) - "representation_size" (int) transformer_parameters (Dict): Dict containing parameters regarding currently used transformer. [Warning] Must contain fields: - "name" (str) - "output_size" (int) - "feedforward_size" (int) - "num_encoder_layers" (int) - "num_attention_heads" (int) - "dropout_rate" (float) train_parameters (Dict): Dict containing parameters parameterizing the training process. [Warning] Must contain fields: - "num_segments" (int) - "lr" (float) - "multiply_lr_step" (float) - "warmup_steps" (float) - "classification_mode" (str) heads (Dict): Dict containg information describing structure of output heads for specific tasks (gloss/hamnosys). freeze_scheduler (Dict): Dict containing information describing feature_extractor & transformer freezing/unfreezing process. loss_function (torch.nn.Module): Loss function. """ super().__init__() if general_parameters["neptune"]: tags = [train_parameters["classification_mode"], feature_extractor_parameters["name"], transformer_parameters["name"]] self.run = initialize_neptun(tags) self.run["parameters"] = { "general_parameters": general_parameters, "train_parameters": train_parameters, "feature_extractor_parameters": feature_extractor_parameters, "transformer_parameters": transformer_parameters, "heads": heads, "freeze_scheduler": freeze_scheduler, "loss_function": loss_function } else: self.run = None # parameters self.lr = train_parameters["lr"] self.model_save_dir = general_parameters["path_to_save"] self.warmup_steps = train_parameters["warmup_steps"] self.multiply_lr_step = train_parameters["multiply_lr_step"] self.use_frames = train_parameters["use_frames"] self.use_landmarks = train_parameters["use_landmarks"] self.classification_heads = heads[train_parameters['classification_mode']] self.cls_head = nn.ModuleList() self.loss_weights = [] for value in self.classification_heads.values(): self.cls_head.append( HeadClassificationSequentialModel( classes_number=value["num_class"], representation_size=3 * value["num_class"], additional_layers=1, dropout_rate=heads["model"]["dropout_rate"] ) ) self.loss_weights.append(value["loss_weight"]) # losses self.summary_loss = SummaryLoss(loss_function, self.loss_weights) # models-parts self.model_loader = ModelLoader() representation_size = feature_extractor_parameters["representation_size"] self.adjustment_to_representatios_size = nn.LazyLinear(out_features=representation_size) if self.use_frames: self.multi_frame_feature_extractor = MultiFrameFeatureExtractor( self.model_loader.load_feature_extractor( feature_extractor_name=feature_extractor_parameters["name"], representation_size=representation_size, model_path=feature_extractor_parameters["model_path"], ) ) else: self.multi_frame_feature_extractor = None self.transformer = self.model_loader.load_transformer( transformer_name=transformer_parameters["name"], feature_extractor_parameters=feature_extractor_parameters, transformer_parameters=transformer_parameters, train_parameters=train_parameters ) self.steps_per_epoch = steps_per_epoch if freeze_scheduler is not None: self.freeze_scheduler = freeze_scheduler self.configure_freeze_scheduler() def forward(self, input, **kwargs): predictions = [] frames, landmarks = input if self.use_frames: x = self.multi_frame_feature_extractor(frames.to(self.device)) if self.use_landmarks: x_landmarks = self._prepare_landmarks_tensor(landmarks) if self.use_frames: x = torch.concat([x, x_landmarks], dim=-1) else: x = x_landmarks x = self.adjustment_to_representatios_size(x) x = self.transformer(x) for head in self.cls_head: predictions.append(head(x)) return predictions def _prepare_landmarks_tensor(self, landmarks): concatenated_landmarks = np.concatenate( [landmarks[landmarks_name] for landmarks_name in landmarks.keys()], axis=-1 ) return torch.as_tensor(concatenated_landmarks, dtype=torch.float32, device=self.device) def training_step(self, batch, batch_idx): targets, predictions, losses = self._process_batch(batch) self.scheduler.step() if self.global_step < 2: for name, child in self.named_children(): for param in child.parameters(): param.requires_grad = True if self.freeze_scheduler["freeze_mode"] == "step": self.freeze_step() if self.run: self.run["metrics/batch/training_loss"].log(losses) return {"loss": losses} def validation_step(self, batch, batch_idx): targets, predictions, losses = self._process_batch(batch) if self.run: self.run["metrics/batch/validation_loss"].log(losses) return {"val_loss": losses, "targets": targets, "predictions": predictions} def _process_batch(self, batch): frames, landmarks, targets = batch predictions = self((frames, landmarks)) losses = self.summary_loss(predictions, targets) return targets, predictions, losses def validation_epoch_end(self, out): head_names = list(self.classification_heads.keys()) # initialize empty list with list per head all_targets = [[] for name in head_names] all_predictions = [[] for name in head_names] for single_batch in out: targets, predictions = single_batch["targets"], single_batch["predictions"] # append predictions and targets for every head for nr_head, head_targets in enumerate(targets): all_targets[nr_head] += list(torch.argmax(targets[nr_head], dim=1).cpu().detach().numpy()) all_predictions[nr_head] += list(torch.argmax(predictions[nr_head], dim=1).cpu().detach().numpy()) for nr_head, targets_for_head in enumerate(all_targets): head_name = head_names[nr_head] predictions_for_head = all_predictions[nr_head] head_report = "\n".join( [ head_name, classification_report( targets_for_head, predictions_for_head, zero_division=0 ), ] ) print(head_report) f1 = f1_score(targets_for_head, predictions_for_head, average='macro', zero_division=0) if self.run: log_path = "/".join(["metrics/epoch/", head_name]) self.run[log_path].log(head_report) self.run[f'/metrics/epoch/f1/{head_name}'].log(f1) if self.trainer.global_step > 0: print("Saving model...") torch.save(self.state_dict(), self.model_save_dir) self.scheduler.step() if (self.freeze_scheduler is not None) and self.freeze_scheduler["freeze_mode"] == "epoch": self.freeze_step() def configure_optimizers(self): optimizer = torch.optim.RAdam(self.parameters(), lr=self.lr) self.scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=self.lr, div_factor=100, final_div_factor=10, pct_start=0.2, total_steps=self.trainer.max_epochs * self.steps_per_epoch + 2) return [optimizer], [self.scheduler] def optimizer_step( self, epoch, batch_idx, optimizer, optimizer_idx, optimizer_closure, on_tpu=False, using_native_amp=False, using_lbfgs=False, ): optimizer.step(closure=optimizer_closure) if self.run: self.run["params/lr"].log(optimizer.param_groups[0]["lr"]) def configure_freeze_scheduler(self): ### TO-DO check if all params are correctly set # e.g. check if all lists are the same length # check if values are bools self.freeze_scheduler["current_pattern"] = 0 self.freeze_scheduler["current_counter"] = 0 self.freeze_step() def freeze_step(self): ### TO- DO # If the `freeze_pattern_repeats` is set as an integer isntead of a list, # e.g. `freeze_pattern_repeats = 3`, it is equal to a pattern # `feature_extractor = [True, False] * freeze_pattern_repeats`, # hence it is exactly the same as: # ``` # "model_params": { # "feature_extractor": [True, False, True, False, True, False], # "transformer": [False, True,False, True, False, True], # } # ``` if self.freeze_scheduler is not None: self.freeze_update() for params_to_freeze in list(self.freeze_scheduler["model_params"].keys()): if self.freeze_scheduler["current_pattern"] >= len( self.freeze_scheduler["model_params"][params_to_freeze] ): current_pattern = True else: current_pattern = self.freeze_scheduler["model_params"][ params_to_freeze ][self.freeze_scheduler["current_pattern"]] for name, child in self.named_children(): if params_to_freeze in name: for param in child.parameters(): param.requires_grad = not current_pattern if self.freeze_scheduler["verbose"]: print( "Freeze status:", params_to_freeze, "set to", str(current_pattern), ) def freeze_update(self): if self.freeze_scheduler["current_pattern"] >= len( self.freeze_scheduler["model_params"][ list(self.freeze_scheduler["model_params"].keys())[0] ] ): return if ( self.freeze_scheduler["current_counter"] >= self.freeze_scheduler["freeze_pattern_repeats"][ self.freeze_scheduler["current_pattern"] ] ): self.freeze_scheduler["current_pattern"] += 1 self.freeze_scheduler["current_counter"] = 0 self.freeze_scheduler["current_counter"] += 1
41.92638
136
0.592479
12,701
0.929251
0
0
0
0
0
0
3,339
0.244293
cd33abe036b992ac7ac194a0541c5439617437c4
2,305
py
Python
solutions/day09/solution.py
dbjohnson/advent-of-code-2021
2ed1d30362afa0a73c890730cea46de3291be21f
[ "MIT" ]
null
null
null
solutions/day09/solution.py
dbjohnson/advent-of-code-2021
2ed1d30362afa0a73c890730cea46de3291be21f
[ "MIT" ]
null
null
null
solutions/day09/solution.py
dbjohnson/advent-of-code-2021
2ed1d30362afa0a73c890730cea46de3291be21f
[ "MIT" ]
null
null
null
from functools import lru_cache from collections import defaultdict import pandas as pd import numpy as np with open('input.txt') as fh: depthmap = pd.DataFrame([{ 'row': row, 'col': col, 'height': int(d) } for row, line in enumerate(fh) for col, d in enumerate(line.strip()) ]).pivot_table( index='row', columns='col', values='height' ).values idx = ( # right neighbor np.pad( depthmap[:, :-1] < depthmap[:, 1:], ((0, 0), (0, 1)), 'constant', constant_values=1 ) & # left neighbor np.pad( depthmap[:, 1:] < depthmap[:, :-1], ((0, 0), (1, 0)), 'constant', constant_values=1 ) & # lower neighbor np.pad( depthmap[:-1, :] < depthmap[1:, :], ((0, 1), (0, 0)), 'constant', constant_values=1 ) & # upper neighbor np.pad( depthmap[1:, :] < depthmap[:-1, :], ((1, 0), (0, 0)), 'constant', constant_values=1 ) ) print('part 1', (depthmap[np.where(idx)] + 1).sum()) # lru_cache here is essentially cheap DP - once we've calculated # the basin for any point A, we know the basin for any point B that # flows through point A @lru_cache(maxsize=None) def lowpoint(row, col): if depthmap[row, col] == 9: return None drains = {(row, col)} for r, c in ( (row - 1, col), (row + 1, col), (row, col - 1), (row, col + 1) ): if ( 0 <= r < depthmap.shape[0] and 0 <= c < depthmap.shape[1] and depthmap[r, c] < depthmap[row, col] ): drains.add(lowpoint(r, c)) return min( drains, key=lambda rowcol: depthmap[rowcol] ) lowpoint_to_basin = defaultdict(list) for r in range(depthmap.shape[0]): for c in range(depthmap.shape[1]): lowpoint_to_basin[lowpoint(r, c)].append((r, c)) print( 'part 2', np.prod(sorted([ len(points) for basin, points in lowpoint_to_basin.items() if basin ])[-3:]) ) # part 1 now that we solved part 2... print( 'part 1 redux', sum([ depthmap[lowpoint] + 1 for lowpoint in lowpoint_to_basin if lowpoint ]) )
21.342593
67
0.516269
0
0
0
0
527
0.228633
0
0
371
0.160954
cd3470135bfe7a2b8866c6a268c9e629dad7a8b7
3,467
py
Python
docs/conf.py
ocefpaf/pystac-client
ddf0e0566b2b1783a4d32d3d77f9f51b80270df3
[ "Apache-2.0" ]
52
2021-04-15T23:24:12.000Z
2022-03-09T23:02:27.000Z
docs/conf.py
ocefpaf/pystac-client
ddf0e0566b2b1783a4d32d3d77f9f51b80270df3
[ "Apache-2.0" ]
119
2021-04-13T11:42:01.000Z
2022-02-24T10:02:35.000Z
docs/conf.py
ocefpaf/pystac-client
ddf0e0566b2b1783a4d32d3d77f9f51b80270df3
[ "Apache-2.0" ]
14
2021-04-13T19:00:19.000Z
2022-02-23T09:17:30.000Z
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html import re import subprocess import sys from pathlib import Path # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, str(Path(__file__).parent.parent.parent.resolve())) from pystac_client import __version__ # noqa: E402 git_branch = ( subprocess.check_output(["git", "rev-parse", "--abbrev-ref", "HEAD"]) .decode("utf-8") .strip() ) # -- Project information ----------------------------------------------------- project = 'pystac-client' copyright = '2021, Jon Duckworth' author = 'Matthew Hanson, Jon Duckworth' github_user = 'stac-utils' github_repo = 'pystac-client' package_description = 'A Python client for the STAC and STAC-API specs' # The full version, including alpha/beta/rc tags version = re.fullmatch(r'^(\d+\.\d+\.\d).*$', __version__).group(1) release = __version__ # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.viewcode', 'sphinx.ext.intersphinx', 'sphinx.ext.napoleon', 'sphinx.ext.extlinks', 'sphinxcontrib.fulltoc', 'nbsphinx', 'myst_parser' ] extlinks = { "tutorial": ( "https://github.com/stac-utils/pystac-client/" "tree/{}/docs/tutorials/%s".format(git_branch), "tutorial", ) } nbsphinx_allow_errors = True # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. source_suffix = [".rst", "*.md", "*.ipynb"] exclude_patterns = ['build/*'] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' html_theme_options = { # 'sidebar_collapse': False, 'fixed_sidebar': True, 'github_button': True, 'github_user': github_user, 'github_repo': github_repo, 'description': package_description } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = [] # -- Options for intersphinx extension --------------------------------------- intersphinx_mapping = { 'python': ('https://docs.python.org/3', None), 'requests': ('https://requests.readthedocs.io/en/master', None), 'pystac': ('https://pystac.readthedocs.io/en/latest', None), 'dateutil': ('https://dateutil.readthedocs.io/en/stable/', None), } # -- Options for autodoc extension ------------------------------------------- autodoc_typehints = "none"
33.660194
97
0.654168
0
0
0
0
0
0
0
0
2,527
0.728872
cd358b914861d3a881968cfd805aae9c0f7bed42
1,345
py
Python
modules/lexer/token.py
DavidMacDonald11/sea-to-c-transpiler-python-based
20c41931346b13d4bf2a12e96037f44b1add8145
[ "MIT" ]
null
null
null
modules/lexer/token.py
DavidMacDonald11/sea-to-c-transpiler-python-based
20c41931346b13d4bf2a12e96037f44b1add8145
[ "MIT" ]
11
2021-04-22T13:09:34.000Z
2022-01-29T22:53:58.000Z
modules/lexer/token.py
DavidMacDonald11/sea-to-c-transpiler-python-based
20c41931346b13d4bf2a12e96037f44b1add8145
[ "MIT" ]
null
null
null
from .token_types import TT from .token_types import BadTT from .position import Position from .keywords import is_keyword from .keywords import keyword_declared_type from ..lexer import errors class Token: def __init__(self, token_type, value = None, position = None): self.type = token_type self.value = value self.position = Position() if position is None else position def __repr__(self): return f"{self.type}" + ("" if self.value is None else f":{self.value}") def matches(self, token_type, value = None): if value is None: return self.type is token_type return self.type is token_type and self.value == value def matches_type_keyword(self): return self.type is TT.KEYWORD and keyword_declared_type(self.value) @classmethod def match_type(cls, token_string): for token_type in TT: if token_type.value.fullmatch(token_string) is not None: if token_type not in (TT.KEYWORD, TT.IDENTIFIER): return token_type return TT.KEYWORD if is_keyword(token_string) else TT.IDENTIFIER for bad_type in BadTT: if bad_type.value[0].fullmatch(token_string) is not None: raise bad_type.value[1]() raise errors.UnknownTokenError(token_string)
33.625
80
0.665428
1,149
0.854275
0
0
534
0.397026
0
0
32
0.023792
cd36eb6513428b0c0f981f91eaea0aa21154992a
689
py
Python
cb_scripts/nums_square_cube.py
christopher-burke/python-scripts
bdbea2456130e0958b6a6ab8d138f4f19b39b934
[ "MIT" ]
1
2022-02-05T06:39:05.000Z
2022-02-05T06:39:05.000Z
cb_scripts/nums_square_cube.py
christopher-burke/python-scripts
bdbea2456130e0958b6a6ab8d138f4f19b39b934
[ "MIT" ]
null
null
null
cb_scripts/nums_square_cube.py
christopher-burke/python-scripts
bdbea2456130e0958b6a6ab8d138f4f19b39b934
[ "MIT" ]
1
2021-06-10T22:04:35.000Z
2021-06-10T22:04:35.000Z
#!/usr/bin/env python3 """Squares and Cubes for a range of numbers. Given a start and end, calucate the Square x**2 and the Cube x**3 for all numbers. Example of generator and functools.partial. """ from functools import partial def power(base, exponent): """Raise a base to the exponent.""" return base ** exponent square = partial(power, exponent=2) cube = partial(power, exponent=3) def main(start, end): """Square and cube all numbers in range of start to end.""" for i in range(start, end+1): yield i, square(i), cube(i) if __name__ == "__main__": print("number\tsquare\tcube") for x in main(1, 10): print("{}\t{}\t{}".format(*x))
20.264706
63
0.651669
0
0
155
0.224964
0
0
0
0
337
0.489115
cd36ecd76329e8d74ce6fdd1bc24ac05a02cc921
101
py
Python
Darlington/phase2/LIST/day 41 solution/qtn2.py
CodedLadiesInnovateTech/-python-challenge-solutions
430cd3eb84a2905a286819eef384ee484d8eb9e7
[ "MIT" ]
6
2020-05-23T19:53:25.000Z
2021-05-08T20:21:30.000Z
Darlington/phase2/LIST/day 41 solution/qtn2.py
CodedLadiesInnovateTech/-python-challenge-solutions
430cd3eb84a2905a286819eef384ee484d8eb9e7
[ "MIT" ]
8
2020-05-14T18:53:12.000Z
2020-07-03T00:06:20.000Z
Darlington/phase2/LIST/day 41 solution/qtn2.py
CodedLadiesInnovateTech/-python-challenge-solutions
430cd3eb84a2905a286819eef384ee484d8eb9e7
[ "MIT" ]
39
2020-05-10T20:55:02.000Z
2020-09-12T17:40:59.000Z
#program to find the index of an item in a specified list. num =[10, 30, 4, -6] print(num.index(30))
25.25
58
0.683168
0
0
0
0
0
0
0
0
58
0.574257
cd36fd075f7cd95707b64e346e7a7db96e365eac
1,748
py
Python
mozdns/txt/tests.py
jlin/inventory
c098c98e570c3bf9fadfd811eb75e1213f6ea428
[ "BSD-3-Clause" ]
22
2015-01-16T01:36:32.000Z
2020-06-08T00:46:18.000Z
mozdns/txt/tests.py
jlin/inventory
c098c98e570c3bf9fadfd811eb75e1213f6ea428
[ "BSD-3-Clause" ]
8
2015-12-28T18:56:19.000Z
2019-04-01T17:33:48.000Z
mozdns/txt/tests.py
jlin/inventory
c098c98e570c3bf9fadfd811eb75e1213f6ea428
[ "BSD-3-Clause" ]
13
2015-01-13T20:56:22.000Z
2022-02-23T06:01:17.000Z
from django.test import TestCase from django.core.exceptions import ValidationError from mozdns.txt.models import TXT from mozdns.domain.models import Domain class TXTTests(TestCase): def setUp(self): self.o = Domain(name="org") self.o.save() self.o_e = Domain(name="oregonstate.org") self.o_e.save() def do_generic_add(self, data): txt = TXT(**data) txt.__repr__() txt.save() self.assertTrue(txt.details()) self.assertTrue(txt.get_absolute_url()) self.assertTrue(txt.get_edit_url()) self.assertTrue(txt.get_delete_url()) rtxt = TXT.objects.filter(**data) self.assertTrue(len(rtxt) == 1) return txt def do_remove(self, data): txt = self.do_generic_add(data) txt.delete() rmx = TXT.objects.filter(**data) self.assertTrue(len(rmx) == 0) def test_add_remove_txt(self): label = "asdf" data = "asdf" data = {'label': label, 'txt_data': data, 'domain': self.o_e} self.do_generic_add(data) label = "asdf" data = "asdfasfd" data = {'label': label, 'txt_data': data, 'domain': self.o_e} self.do_generic_add(data) label = "df" data = "aasdf" data = {'label': label, 'txt_data': data, 'domain': self.o_e} self.do_generic_add(data) label = "12314" data = "dd" data = {'label': label, 'txt_data': data, 'domain': self.o} self.do_generic_add(data) def test_bad_data(self): label = "asdf" data = '"dfa f' data = {'label': label, 'txt_data': data, 'domain': self.o_e} self.assertRaises(ValidationError, self.do_generic_add, data)
29.627119
69
0.587529
1,586
0.907323
0
0
0
0
0
0
211
0.120709
cd39f1397ad328542fed8bb62d6c47dc4c191597
6,698
py
Python
xtesting/tests/unit/core/test_behaveframework.py
collivier/functest-xtesting
17739d718901a10f7ec0aaf9a6d53141294a347d
[ "Apache-2.0" ]
1
2020-05-15T12:58:58.000Z
2020-05-15T12:58:58.000Z
xtesting/tests/unit/core/test_behaveframework.py
collivier/functest-xtesting
17739d718901a10f7ec0aaf9a6d53141294a347d
[ "Apache-2.0" ]
null
null
null
xtesting/tests/unit/core/test_behaveframework.py
collivier/functest-xtesting
17739d718901a10f7ec0aaf9a6d53141294a347d
[ "Apache-2.0" ]
3
2018-02-28T15:55:14.000Z
2022-02-24T15:46:12.000Z
#!/usr/bin/env python # Copyright (c) 2019 Orange and others. # # All rights reserved. This program and the accompanying materials # are made available under the terms of the Apache License, Version 2.0 # which accompanies this distribution, and is available at # http://www.apache.org/licenses/LICENSE-2.0 """Define the classes required to fully cover behave.""" import logging import os import unittest import mock from xtesting.core import behaveframework __author__ = "Deepak Chandella <[email protected]>" class ParseResultTesting(unittest.TestCase): """The class testing BehaveFramework.parse_results().""" # pylint: disable=missing-docstring _response = [{'status': 'passed'}] def setUp(self): self.test = behaveframework.BehaveFramework( case_name='behave', project_name='xtesting') @mock.patch('builtins.open', side_effect=OSError) def test_raises_exc_open(self, *args): # pylint: disable=unused-argument with self.assertRaises(OSError): self.test.parse_results() @mock.patch('json.load', return_value=[{'foo': 'bar'}]) @mock.patch('builtins.open', mock.mock_open()) def test_raises_exc_key(self, *args): # pylint: disable=unused-argument with self.assertRaises(KeyError): self.test.parse_results() @mock.patch('json.load', return_value=[]) @mock.patch('builtins.open', mock.mock_open()) def test_raises_exe_zerodivision(self, *args): # pylint: disable=unused-argument with self.assertRaises(ZeroDivisionError): self.test.parse_results() def _test_result(self, response, result): with mock.patch('builtins.open', mock.mock_open()), \ mock.patch('json.load', return_value=response): self.test.parse_results() self.assertEqual(self.test.result, result) def test_null_passed(self): data = [{'status': 'dummy'}] self._test_result(data, 0) def test_half_success(self): data = [{'status': 'passed'}, {'status': 'failed'}] self._test_result(data, 50) def test_success(self): data = [{'status': 'passed'}, {'status': 'passed'}] self._test_result(data, 100) @mock.patch('builtins.open', mock.mock_open()) def test_count(self, *args): # pylint: disable=unused-argument self._response.extend([{'status': 'failed'}, {'status': 'skipped'}]) with mock.patch('json.load', mock.Mock(return_value=self._response)): self.test.parse_results() self.assertEqual(self.test.details['pass_tests'], 1) self.assertEqual(self.test.details['fail_tests'], 1) self.assertEqual(self.test.details['skip_tests'], 1) self.assertEqual(self.test.details['total_tests'], 3) class RunTesting(unittest.TestCase): """The class testing BehaveFramework.run().""" # pylint: disable=missing-docstring suites = ["foo"] tags = ["bar"] def setUp(self): self.test = behaveframework.BehaveFramework( case_name='behave', project_name='xtesting') def test_exc_key_error(self): self.assertEqual(self.test.run(), self.test.EX_RUN_ERROR) @mock.patch('xtesting.core.behaveframework.behave_main') def _test_makedirs_exc(self, *args): with mock.patch.object(self.test, 'parse_results') as mock_method: self.assertEqual( self.test.run( suites=self.suites, tags=self.tags), self.test.EX_RUN_ERROR) args[0].assert_not_called() mock_method.assert_not_called() @mock.patch('os.makedirs', side_effect=Exception) @mock.patch('os.path.exists', return_value=False) def test_makedirs_exc(self, *args): self._test_makedirs_exc() args[0].assert_called_once_with(self.test.res_dir) args[1].assert_called_once_with(self.test.res_dir) @mock.patch('xtesting.core.behaveframework.behave_main') def _test_makedirs(self, *args): with mock.patch.object(self.test, 'parse_results') as mock_method: self.assertEqual( self.test.run(suites=self.suites, tags=self.tags), self.test.EX_OK) html_file = os.path.join(self.test.res_dir, 'output.html') args_list = [ '--junit', f'--junit-directory={self.test.res_dir}', '--format=json', f'--outfile={self.test.json_file}', '--format=behave_html_formatter:HTMLFormatter', f'--outfile={html_file}', '--tags='+','.join(self.tags)] args_list.append('foo') args[0].assert_called_once_with(args_list) mock_method.assert_called_once_with() @mock.patch('os.makedirs') @mock.patch('os.path.exists', return_value=False) def test_makedirs(self, *args): self._test_makedirs() args[0].assert_called_once_with(self.test.res_dir) args[1].assert_called_once_with(self.test.res_dir) @mock.patch('os.makedirs') @mock.patch('os.path.exists', return_value=True) def test_makedirs_oserror17(self, *args): self._test_makedirs() args[0].assert_called_once_with(self.test.res_dir) args[1].assert_not_called() @mock.patch('os.makedirs') @mock.patch('xtesting.core.behaveframework.behave_main') def _test_parse_results(self, status, console, *args): self.assertEqual( self.test.run( suites=self.suites, tags=self.tags, console=console), status) html_file = os.path.join(self.test.res_dir, 'output.html') args_list = [ '--junit', f'--junit-directory={self.test.res_dir}', '--format=json', f'--outfile={self.test.json_file}', '--format=behave_html_formatter:HTMLFormatter', f'--outfile={html_file}', '--tags='+','.join(self.tags)] if console: args_list += ['--format=pretty', '--outfile=-'] args_list.append('foo') args[0].assert_called_once_with(args_list) args[1].assert_called_once_with(self.test.res_dir) def test_parse_results_exc(self, console=False): with mock.patch.object(self.test, 'parse_results', side_effect=Exception) as mock_method: self._test_parse_results(self.test.EX_RUN_ERROR, console) mock_method.assert_called_once_with() def test_parse_results_exc_console(self): self.test_parse_results_exc(console=True) if __name__ == "__main__": logging.disable(logging.CRITICAL) unittest.main(verbosity=2)
37.418994
77
0.640042
6,067
0.905793
0
0
4,260
0.636011
0
0
1,770
0.264258
cd3a28ba018f4c08dd5b0ec2fb2ba69c859e803c
963
py
Python
data/test/python/cd3a28ba018f4c08dd5b0ec2fb2ba69c859e803cdjango.py
harshp8l/deep-learning-lang-detection
2a54293181c1c2b1a2b840ddee4d4d80177efb33
[ "MIT" ]
84
2017-10-25T15:49:21.000Z
2021-11-28T21:25:54.000Z
data/test/python/cd3a28ba018f4c08dd5b0ec2fb2ba69c859e803cdjango.py
vassalos/deep-learning-lang-detection
cbb00b3e81bed3a64553f9c6aa6138b2511e544e
[ "MIT" ]
5
2018-03-29T11:50:46.000Z
2021-04-26T13:33:18.000Z
data/test/python/cd3a28ba018f4c08dd5b0ec2fb2ba69c859e803cdjango.py
vassalos/deep-learning-lang-detection
cbb00b3e81bed3a64553f9c6aa6138b2511e544e
[ "MIT" ]
24
2017-11-22T08:31:00.000Z
2022-03-27T01:22:31.000Z
# coding=utf-8 from fabric.api import env, run COMMAND_COLLECTSTATIC = 'collectstatic' COMMAND_SYNCDB = 'syncdb' COMMAND_MIGRATE = 'migrate' _default_command = '{python} {manage} {command}' _commands_list = { COMMAND_COLLECTSTATIC: 'yes yes | {python} {manage} {command}', COMMAND_MIGRATE: '{python} {manage} {command} --noinput', } def django_commands(os_environment=None): for command in env.django_commands: _django_command(command, os_environment) def _django_command(command, os_environment): command_to_run = _commands_list.get(command, _default_command) command_to_run = command_to_run.format( python=env.server_python, manage=env.server_manage, command=command ) if os_environment is None: run(command_to_run) return prefix = ' '.join([ '{}={}'.format(k, v) for k, v in os_environment.items() ]) run('{} {}'.format(prefix, command_to_run))
24.075
67
0.677051
0
0
0
0
0
0
0
0
170
0.176532
cd3da08c421072d75aa5562437930fcd09889489
8,820
py
Python
commercialoperator/components/bookings/utils.py
wilsonc86/ledger
a60a681e547f37e4ac81cb93dffaf90aea8c8151
[ "Apache-2.0" ]
null
null
null
commercialoperator/components/bookings/utils.py
wilsonc86/ledger
a60a681e547f37e4ac81cb93dffaf90aea8c8151
[ "Apache-2.0" ]
null
null
null
commercialoperator/components/bookings/utils.py
wilsonc86/ledger
a60a681e547f37e4ac81cb93dffaf90aea8c8151
[ "Apache-2.0" ]
null
null
null
from django.http import HttpResponseRedirect from django.core.urlresolvers import reverse from django.conf import settings from django.core.exceptions import ValidationError from datetime import datetime, timedelta from commercialoperator.components.main.models import Park from commercialoperator.components.proposals.models import Proposal from ledger.checkout.utils import create_basket_session, create_checkout_session, calculate_excl_gst from ledger.payments.models import Invoice from ledger.payments.utils import oracle_parser import json from decimal import Decimal from commercialoperator.components.bookings.models import Booking, ParkBooking, ApplicationFee import logging logger = logging.getLogger('payment_checkout') def create_booking(request, proposal_id): """ Create the ledger lines - line items for invoice sent to payment system """ #import ipdb; ipdb.set_trace() booking = Booking.objects.create(proposal_id=proposal_id) tbody = json.loads(request.POST['payment'])['tbody'] for row in tbody: park_id = row[0]['value'] arrival = row[1] no_adults = int(row[2]) if row[2] else 0 no_children = int(row[3]) if row[3] else 0 no_free_of_charge = int(row[4]) if row[4] else 0 park = Park.objects.get(id=park_id) if any([no_adults, no_children, no_free_of_charge]) > 0: park_booking = ParkBooking.objects.create( booking = booking, park_id = park_id, arrival = datetime.strptime(arrival, '%Y-%m-%d').date(), no_adults = no_adults, no_children = no_children, no_free_of_charge = no_free_of_charge, cost = no_adults*park.adult_price + no_children*park.child_price ) if not park_booking: raise ValidationError('Must have at least one person visiting the park') return booking def get_session_booking(session): if 'cols_booking' in session: booking_id = session['cols_booking'] else: raise Exception('Booking not in Session') try: return Booking.objects.get(id=booking_id) except Booking.DoesNotExist: raise Exception('Booking not found for booking_id {}'.format(booking_id)) def set_session_booking(session, booking): session['cols_booking'] = booking.id session.modified = True def delete_session_booking(session): if 'cols_booking' in session: del session['cols_booking'] session.modified = True def get_session_application_invoice(session): """ Application Fee session ID """ if 'cols_app_invoice' in session: application_fee_id = session['cols_app_invoice'] else: raise Exception('Application not in Session') try: #return Invoice.objects.get(id=application_invoice_id) #return Proposal.objects.get(id=proposal_id) return ApplicationFee.objects.get(id=application_fee_id) except Invoice.DoesNotExist: raise Exception('Application not found for application {}'.format(application_fee_id)) def set_session_application_invoice(session, application_fee): """ Application Fee session ID """ session['cols_app_invoice'] = application_fee.id session.modified = True def delete_session_application_invoice(session): """ Application Fee session ID """ if 'cols_app_invoice' in session: del session['cols_app_invoice'] session.modified = True def create_fee_lines(proposal, invoice_text=None, vouchers=[], internal=False): """ Create the ledger lines - line item for application fee sent to payment system """ #import ipdb; ipdb.set_trace() now = datetime.now().strftime('%Y-%m-%d %H:%M') price = proposal.application_type.application_fee line_items = [{ 'ledger_description': 'Application Fee - {} - {}'.format(now, proposal.lodgement_number), 'oracle_code': proposal.application_type.oracle_code, 'price_incl_tax': price, 'price_excl_tax': price if proposal.application_type.is_gst_exempt else calculate_excl_gst(price), 'quantity': 1, }] logger.info('{}'.format(line_items)) return line_items def create_lines(request, invoice_text=None, vouchers=[], internal=False): """ Create the ledger lines - line items for invoice sent to payment system """ #import ipdb; ipdb.set_trace() def add_line_item(park, arrival, age_group, price, no_persons): price = Decimal(price) if no_persons > 0: return { 'ledger_description': '{} - {} - {}'.format(park.name, arrival, age_group), 'oracle_code': park.oracle_code, 'price_incl_tax': price, 'price_excl_tax': price if park.is_gst_exempt else calculate_excl_gst(price), 'quantity': no_persons, } return None lines = [] tbody = json.loads(request.POST['payment'])['tbody'] for row in tbody: park_id = row[0]['value'] arrival = row[1] no_adults = int(row[2]) if row[2] else 0 no_children = int(row[3]) if row[3] else 0 no_free_of_charge = int(row[4]) if row[4] else 0 park= Park.objects.get(id=park_id) if no_adults > 0: lines.append(add_line_item(park, arrival, 'Adult', price=park.adult_price, no_persons=no_adults)) if no_children > 0: lines.append(add_line_item(park, arrival, 'Child', price=park.child_price, no_persons=no_children)) if no_free_of_charge > 0: lines.append(add_line_item(park, arrival, 'Free', price=0.0, no_persons=no_free_of_charge)) return lines def checkout(request, proposal, lines, return_url_ns='public_booking_success', return_preload_url_ns='public_booking_success', invoice_text=None, vouchers=[], internal=False): #import ipdb; ipdb.set_trace() basket_params = { 'products': lines, 'vouchers': vouchers, 'system': settings.PS_PAYMENT_SYSTEM_ID, 'custom_basket': True, } basket, basket_hash = create_basket_session(request, basket_params) #fallback_url = request.build_absolute_uri('/') checkout_params = { 'system': settings.PS_PAYMENT_SYSTEM_ID, 'fallback_url': request.build_absolute_uri('/'), # 'http://mooring-ria-jm.dbca.wa.gov.au/' 'return_url': request.build_absolute_uri(reverse(return_url_ns)), # 'http://mooring-ria-jm.dbca.wa.gov.au/success/' 'return_preload_url': request.build_absolute_uri(reverse(return_url_ns)), # 'http://mooring-ria-jm.dbca.wa.gov.au/success/' #'fallback_url': fallback_url, #'return_url': fallback_url, #'return_preload_url': fallback_url, 'force_redirect': True, 'proxy': True if internal else False, 'invoice_text': invoice_text, # 'Reservation for Jawaid Mushtaq from 2019-05-17 to 2019-05-19 at RIA 005' } # if not internal: # checkout_params['check_url'] = request.build_absolute_uri('/api/booking/{}/booking_checkout_status.json'.format(booking.id)) if internal or request.user.is_anonymous(): #checkout_params['basket_owner'] = booking.customer.id checkout_params['basket_owner'] = proposal.submitter_id create_checkout_session(request, checkout_params) # if internal: # response = place_order_submission(request) # else: response = HttpResponseRedirect(reverse('checkout:index')) # inject the current basket into the redirect response cookies # or else, anonymous users will be directionless response.set_cookie( settings.OSCAR_BASKET_COOKIE_OPEN, basket_hash, max_age=settings.OSCAR_BASKET_COOKIE_LIFETIME, secure=settings.OSCAR_BASKET_COOKIE_SECURE, httponly=True ) # if booking.cost_total < 0: # response = HttpResponseRedirect('/refund-payment') # response.set_cookie( # settings.OSCAR_BASKET_COOKIE_OPEN, basket_hash, # max_age=settings.OSCAR_BASKET_COOKIE_LIFETIME, # secure=settings.OSCAR_BASKET_COOKIE_SECURE, httponly=True # ) # # # Zero booking costs # if booking.cost_total < 1 and booking.cost_total > -1: # response = HttpResponseRedirect('/no-payment') # response.set_cookie( # settings.OSCAR_BASKET_COOKIE_OPEN, basket_hash, # max_age=settings.OSCAR_BASKET_COOKIE_LIFETIME, # secure=settings.OSCAR_BASKET_COOKIE_SECURE, httponly=True # ) return response def oracle_integration(date,override): system = '0557' oracle_codes = oracle_parser(date, system, 'Commercial Operator Licensing', override=override)
40.090909
175
0.675057
0
0
0
0
0
0
0
0
2,898
0.328571
cd3eb5a68afae376fb0cdba9c6455dc19c74e74f
3,552
py
Python
src/application/models.py
Chitrank-Dixit/WikiG
74d99a16afc635a991c17de8d237eb4f6eccbe86
[ "CNRI-Python" ]
1
2015-11-05T03:51:44.000Z
2015-11-05T03:51:44.000Z
src/application/models.py
Chitrank-Dixit/WikiG
74d99a16afc635a991c17de8d237eb4f6eccbe86
[ "CNRI-Python" ]
null
null
null
src/application/models.py
Chitrank-Dixit/WikiG
74d99a16afc635a991c17de8d237eb4f6eccbe86
[ "CNRI-Python" ]
null
null
null
""" models.py App Engine datastore models Documentation: https://developers.google.com/appengine/docs/python/ndb/entities """ from google.appengine.ext import ndb from google.appengine.ext import blobstore from google.appengine.api import users import functools import flask from flaskext import login from flaskext.login import current_user from flaskext import oauth from hashlib import md5 import util import model import config from application import app import urls # from application.metadata import Session, Base ################################################################################ # Flaskext Login ################################################################################ login_manager = login.LoginManager() class AnonymousUser(login.AnonymousUserMixin): id = 0 admin = False name = 'Anonymous' user_db = None def key(self): return None login_manager.anonymous_user = AnonymousUser class FlaskUser(AnonymousUser): def __init__(self, user_db): self.user_db = user_db self.id = user_db.key.id() self.name = user_db.name self.email = user_db.email self.followed = user_db.followed self.admin = user_db.admin def get_name(self): return self.user_db.name def key(self): return self.user_db.key.urlsafe() def get_id(self): return self.user_db.key.urlsafe() def is_authenticated(self): return True def is_active(self): return self.user_db.active def is_anonymous(self): return False def avatar(self, size): return 'http://www.gravatar.com/avatar/' + md5(self.email).hexdigest() + '?d=mm&s=' + str(size) def follow(self, user): if not self.is_following(user): self.followed.put(user) return self def unfollow(self, user): if self.is_following(user): self.followed.remove(user) return self def is_following(self, user): model_ex = model.Followers.query() for entry in model_ex: if entry.follower_name.string_id() == current_user.name and entry.followed_name.string_id() == user.name: return True return False #return (cur_user.string_id() == current_user.name and to_follow.string_id() == user.name) def has_follower(self,user): model_ex = model.Followers.query() for entry in model_ex: if entry.follower_name.string_id() == user.name and entry.followed_name.string_id() == current_user.name: return True return False def followed_posts(self): return Post.query.join(followers, (followers.c.followed_id == Post.user_id)).filter(followers.c.follower_id == self.id).order_by(Post.timestamp.desc()) def __repr__(self): # pragma: no cover return '<User %r>' % (self.name) @login_manager.user_loader def load_user(key): user_db = ndb.Key(urlsafe=key).get() if user_db: return FlaskUser(user_db) return None login_manager.init_app(app) login_manager.login_view = 'signin' def current_user_id(): return login.current_user.id def current_user_key(): return login.current_user.user_db.key if login.current_user.user_db else None def current_user_db(): return login.current_user.user_db def is_logged_in(): return login.current_user.id != 0 class EventData(model.Event): def __init__(self, event_db): self.event_db = event_db self.id = event_db.key.id() self.name = event_db.name self.email = event_db.email def avatar(self, size): return 'http://www.gravatar.com/avatar/' + md5(self.email).hexdigest() + '?d=mm&s=' + str(size)
23.368421
155
0.677928
2,249
0.633164
0
0
143
0.040259
0
0
575
0.161881
cd3ebb35376a9ad6bb35907b043a70f74ff3d06d
2,488
py
Python
driver.py
Nobregaigor/Robot-path-tracking-and-obstacle-avoidance-simulation
23ab060316c5978724b3f109d851ea33206d0e10
[ "MIT" ]
6
2020-05-01T23:33:13.000Z
2021-12-18T08:13:50.000Z
driver.py
Nobregaigor/Robot-path-tracking-and-obstacle-avoidance-simulation--Python
23ab060316c5978724b3f109d851ea33206d0e10
[ "MIT" ]
null
null
null
driver.py
Nobregaigor/Robot-path-tracking-and-obstacle-avoidance-simulation--Python
23ab060316c5978724b3f109d851ea33206d0e10
[ "MIT" ]
2
2020-05-06T11:54:10.000Z
2020-07-30T01:58:06.000Z
import pygame import math import path_planning as pp class Driver(): def __init__(self, vehicle, path, settings): """ Driver """ #_______main objects references_______ #reference to driver vehicle object: self.vehicle = vehicle #creating a plan object: self.plan = pp.path_plan(path) #___________Settings_________ #initial velocity self.velocity = settings._velocity_ #allowed error range for angle self.angle_allowed_error = math.radians(settings._angle_allowed_error_) #_______Class variables_______ #amount of degrees that it needs to turn to match desired path self.angle_to_turn = None #diretion that it needs to turn the wheel self.direction_to_turn = None #Boolean to indicate when to stop self.safe_to_drive = False self.settings = settings ####################################################### def update_settings(self): self.angle_allowed_error = math.radians(self.settings._angle_allowed_error_) self.velocity = self.settings._velocity_ def update_driving_condition(self,conditions): self.safe_to_drive = conditions['safe_to_drive'] self.angle_to_turn = conditions['angle_to_turn'] self.direction_to_turn = conditions['direction_to_turn'] def turn_wheel(self): if self.angle_to_turn > self.angle_allowed_error: if self.direction_to_turn == 'CCW': #opposite to match screens coordinates self.vehicle.turn_left(self.velocity) return "Turning left" elif self.direction_to_turn == 'CW': #opposite to match screens coordinates self.vehicle.turn_right(self.velocity) return "Turning Right" else: print("I am confused!") return "I am confused!" else: self.vehicle.move_forward(self.velocity) return "Moving forward" def drive(self, win, draw_plan=False, draw_sensor=False, debug=False): self.update_settings() conditions = self.plan.update_plan(win,self.vehicle.position,self.vehicle.direction, draw_plan, draw_sensor, debug) self.update_driving_condition(conditions) # print(conditions) if self.safe_to_drive == True: response = self.turn_wheel() else: response = "Not safe to drive" return response
35.542857
123
0.63545
2,432
0.977492
0
0
0
0
0
0
658
0.264469
cd423af6c5271daa0eac7f6a8ca5e2cf87ffc2fe
2,752
py
Python
test/test_api_v1_module.py
feizhihui/deepnlp
cc6647d65ec39aadd35e4a4748da92df5b79bd48
[ "MIT" ]
null
null
null
test/test_api_v1_module.py
feizhihui/deepnlp
cc6647d65ec39aadd35e4a4748da92df5b79bd48
[ "MIT" ]
null
null
null
test/test_api_v1_module.py
feizhihui/deepnlp
cc6647d65ec39aadd35e4a4748da92df5b79bd48
[ "MIT" ]
1
2019-05-13T14:24:15.000Z
2019-05-13T14:24:15.000Z
#coding:utf-8 ''' Demo for calling API of deepnlp.org web service Anonymous user of this package have limited access on the number of API calling 100/day Please Register and Login Your Account to deepnlp.org to get unlimited access to fully support api_service API module, now supports both windows and linux platforms. ''' from __future__ import unicode_literals import json, requests, sys, os if (sys.version_info>(3,0)): from urllib.parse import quote else : from urllib import quote from deepnlp import api_service login = api_service.init() # registration, if failed, load default empty login {} with limited access login = {} # use your personal login {'username': 'your_user_name' , 'password': 'your_password'} conn = api_service.connect(login) # save the connection with login cookies # API Setting text = ("我爱吃北京烤鸭").encode('utf-8') # convert text from unicode to utf-8 bytes, quote() function # Segmentation url_segment = "http://www.deepnlp.org/api/v1.0/segment/?" + "lang=zh" + "&text=" + quote(text) web = requests.get(url_segment, cookies = conn) tuples = json.loads(web.text) wordsList = tuples['words'] # segmentation json {'words', [w1, w2,...]} return list print ("Segmentation API:") print (" ".join(wordsList).encode("utf-8")) # POS tagging url_pos = "http://www.deepnlp.org/api/v1.0/pos/?"+ "lang=zh" + "&text=" + quote(text) web = requests.get(url_pos, cookies = conn) tuples = json.loads(web.text) pos_str = tuples['pos_str'] # POS json {'pos_str', 'w1/t1 w2/t2'} return string print ("POS API:") print (pos_str.encode("utf-8")) # NER tagging url_ner = "http://www.deepnlp.org/api/v1.0/ner/?" + "lang=zh" + "&text=" + quote(text) web = requests.get(url_ner, cookies = conn) tuples = json.loads(web.text) ner_str = tuples['ner_str'] # NER json {'ner_str', 'w1/t1 w2/t2'} return list print ("NER API:") print (ner_str.encode("utf-8")) # Pipeline annotators = "segment,pos,ner" url_pipeline = "http://www.deepnlp.org/api/v1.0/pipeline/?" + "lang=zh" + "&text=" + quote(text) + "&annotators=" + quote(annotators) web = requests.get(url_pipeline, cookies = conn) tuples = json.loads(web.text) segment_str = tuples['segment_str'] # segment module pos_str = tuples['pos_str'] # pos module ner_str = tuples['ner_str'] # ner module ner_json = tuples['ner_json'] # ner result in json # output def json_to_str(json_dict): json_str = "" for k, v in json_dict.items(): json_str += ("'" + k + "'" + ":" + "'" + v + "'" + ",") json_str = "{" + json_str + "}" return json_str print ("Pipeline API:") print (segment_str.encode("utf-8")) print (pos_str.encode("utf-8")) print (ner_str.encode("utf-8")) print ("NER JSON:") print (json_to_str(ner_json).encode("utf-8"))
38.222222
133
0.682776
0
0
0
0
0
0
0
0
1,371
0.495662
cd448e3854b74fee56a6672cdae1ce1e148e593d
1,195
py
Python
spring_cloud/commons/client/loadbalancer/round_robin.py
haribo0915/Spring-Cloud-in-Python
0bcd7093869c797df14428bf2d1b0a779f96e573
[ "Apache-2.0" ]
5
2020-10-06T09:48:23.000Z
2020-10-07T13:19:46.000Z
spring_cloud/commons/client/loadbalancer/round_robin.py
haribo0915/Spring-Cloud-in-Python
0bcd7093869c797df14428bf2d1b0a779f96e573
[ "Apache-2.0" ]
5
2020-10-05T09:57:01.000Z
2020-10-12T19:52:48.000Z
spring_cloud/commons/client/loadbalancer/round_robin.py
haribo0915/Spring-Cloud-in-Python
0bcd7093869c797df14428bf2d1b0a779f96e573
[ "Apache-2.0" ]
8
2020-10-05T06:34:49.000Z
2020-10-07T13:19:46.000Z
# -*- coding: utf-8 -*- """ The built-in Round-Robin algorithm. """ # standard library from typing import Union # scip plugin from spring_cloud.commons.client.service_instance import ServiceInstance from spring_cloud.utils.atomic import AtomicInteger from .loadbalancer import LoadBalancer from .supplier import ServiceInstanceListSupplier __author__ = "Waterball ([email protected])" __license__ = "Apache 2.0" class RoundRobinLoadBalancer(LoadBalancer): """ A very easy thread-safe implementation adopting round-robin (RR) algorithm. """ def __init__(self, instances_supplier: ServiceInstanceListSupplier, service_id): assert instances_supplier.service_id == service_id, "Inconsistent service's id." self.__instances_supplier = instances_supplier self.__service_id = service_id self.__position = AtomicInteger(-1) @property def service_id(self) -> str: return self.__service_id def choose(self, request=None) -> Union[ServiceInstance, None]: instances = self.__instances_supplier.get(request=request) pos = abs(self.__position.increment_and_get()) return instances[pos % len(instances)]
30.641026
88
0.738075
771
0.645188
0
0
75
0.062762
0
0
264
0.220921
cd46541bba89d45678808a7b911ed3c9f61dd510
4,245
py
Python
utils/dataset_utils.py
dpaiton/DeepSparseCoding
5ea01fa8770794df5e13743aa3f2d85297c27eb1
[ "MIT" ]
12
2017-04-27T17:19:31.000Z
2021-11-07T03:37:59.000Z
utils/dataset_utils.py
dpaiton/DeepSparseCoding
5ea01fa8770794df5e13743aa3f2d85297c27eb1
[ "MIT" ]
12
2018-03-21T01:16:25.000Z
2022-02-10T00:21:58.000Z
utils/dataset_utils.py
dpaiton/DeepSparseCoding
5ea01fa8770794df5e13743aa3f2d85297c27eb1
[ "MIT" ]
12
2017-02-01T19:49:57.000Z
2021-12-08T03:16:58.000Z
import os import sys import numpy as np import torch from torchvision import datasets, transforms ROOT_DIR = os.path.dirname(os.getcwd()) if ROOT_DIR not in sys.path: sys.path.append(ROOT_DIR) import DeepSparseCoding.utils.data_processing as dp import DeepSparseCoding.datasets.synthetic as synthetic class CustomTensorDataset(torch.utils.data.Dataset): def __init__(self, data_tensor): self.data_tensor = data_tensor def __getitem__(self, index): return self.data_tensor[index], self.data_tensor[index] def __len__(self): return self.data_tensor.size(0) def load_dataset(params): new_params = {} if(params.dataset.lower() == 'mnist'): preprocessing_pipeline = [ transforms.ToTensor(), transforms.Lambda(lambda x: x.permute(1, 2, 0)) # channels last ] if params.standardize_data: preprocessing_pipeline.append( transforms.Lambda(lambda x: dp.standardize(x, eps=params.eps)[0])) if params.rescale_data_to_one: preprocessing_pipeline.append( transforms.Lambda(lambda x: dp.rescale_data_to_one(x, eps=params.eps, samplewise=True)[0])) train_loader = torch.utils.data.DataLoader( datasets.MNIST(root=params.data_dir, train=True, download=True, transform=transforms.Compose(preprocessing_pipeline)), batch_size=params.batch_size, shuffle=params.shuffle_data, num_workers=0, pin_memory=False) val_loader = None test_loader = torch.utils.data.DataLoader( datasets.MNIST(root=params.data_dir, train=False, download=True, transform=transforms.Compose(preprocessing_pipeline)), batch_size=params.batch_size, shuffle=params.shuffle_data, num_workers=0, pin_memory=False) elif(params.dataset.lower() == 'dsprites'): root = os.path.join(*[params.data_dir]) dsprites_file = os.path.join(*[root, 'dsprites/dsprites_ndarray_co1sh3sc6or40x32y32_64x64.npz']) if not os.path.exists(dsprites_file): import subprocess print(f'Now downloading the dsprites-dataset to {root}/dsprites') subprocess.call(['./scripts/download_dsprites.sh', f'{root}']) print('Finished') data = np.load(dsprites_file, encoding='bytes') data = torch.from_numpy(data['imgs']).unsqueeze(1).float() train_kwargs = {'data_tensor':data} dset = CustomTensorDataset train_data = dset(**train_kwargs) train_loader = torch.utils.data.DataLoader(train_data, batch_size=params.batch_size, shuffle=params.shuffle_data, num_workers=0, pin_memory=False) val_loader = None test_loader = None elif(params.dataset.lower() == 'synthetic'): preprocessing_pipeline = [transforms.ToTensor(), transforms.Lambda(lambda x: x.permute(1, 2, 0)) # channels last ] train_loader = torch.utils.data.DataLoader( synthetic.SyntheticImages(params.epoch_size, params.data_edge_size, params.dist_type, params.rand_state, params.num_classes, transform=transforms.Compose(preprocessing_pipeline)), batch_size=params.batch_size, shuffle=params.shuffle_data, num_workers=0, pin_memory=False) val_loader = None test_loader = None new_params["num_pixels"] = params.data_edge_size**2 else: assert False, (f'Supported datasets are ["mnist", "dsprites", "synthetic"], not {dataset_name}') new_params = {} new_params['epoch_size'] = len(train_loader.dataset) if(not hasattr(params, 'num_val_images')): if val_loader is None: new_params['num_val_images'] = 0 else: new_params['num_val_images'] = len(val_loader.dataset) if(not hasattr(params, 'num_test_images')): if test_loader is None: new_params['num_test_images'] = 0 else: new_params['num_test_images'] = len(test_loader.dataset) new_params['data_shape'] = list(next(iter(train_loader))[0].shape)[1:] return (train_loader, val_loader, test_loader, new_params)
42.878788
107
0.660306
291
0.068551
0
0
0
0
0
0
465
0.109541
cd4856841cf209c6c31d8cf4b1d4a02e1669fe87
1,051
py
Python
adi_study_watch/nrf5_sdk_15.2.0/adi_study_watch/cli/m2m2/inc/master_definitions/led_interface.py
ArrowElectronics/Vital-Signs-Monitoring
ba43fe9a116d94170561433910fd7bffba5726e7
[ "Unlicense" ]
5
2021-06-13T17:11:19.000Z
2021-12-01T18:20:38.000Z
adi_study_watch/nrf5_sdk_15.2.0/adi_study_watch/cli/m2m2/inc/master_definitions/led_interface.py
ArrowElectronics/Vital-Signs-Monitoring
ba43fe9a116d94170561433910fd7bffba5726e7
[ "Unlicense" ]
null
null
null
adi_study_watch/nrf5_sdk_15.2.0/adi_study_watch/cli/m2m2/inc/master_definitions/led_interface.py
ArrowElectronics/Vital-Signs-Monitoring
ba43fe9a116d94170561433910fd7bffba5726e7
[ "Unlicense" ]
1
2022-01-08T15:01:44.000Z
2022-01-08T15:01:44.000Z
#!/usr/bin/env python3 from ctypes import * import m2m2_core class M2M2_LED_COMMAND_ENUM_t(c_uint8): M2M2_LED_COMMAND_GET = 0x0 M2M2_LED_COMMAND_SET = 0x1 class M2M2_LED_PATTERN_ENUM_t(c_uint8): M2M2_LED_PATTERN_OFF = 0x0 M2M2_LED_PATTERN_SLOW_BLINK_DC_12 = 0x1 M2M2_LED_PATTERN_SLOW_BLINK_DC_12_N = 0xFE M2M2_LED_PATTERN_FAST_BLINK_DC_50 = 0xAA M2M2_LED_PATTERN_FAST_BLINK_DC_50_N = 0x55 M2M2_LED_PATTERN_MED_BLINK_DC_50 = 0xCC M2M2_LED_PATTERN_SLOW_BLINK_DC_50 = 0xF0 M2M2_LED_PATTERN_ON = 0xFF class M2M2_LED_PRIORITY_ENUM_t(c_uint8): M2M2_LED_PRIORITY_LOW = 0x0 M2M2_LED_PRIORITY_MED = 0x1 M2M2_LED_PRIORITY_HIGH = 0x2 M2M2_LED_PRIORITY_CRITICAL = 0x3 class m2m2_led_ctrl_t(Structure): fields = [ ("command", M2M2_LED_COMMAND_ENUM_t), ("priority", M2M2_LED_PRIORITY_ENUM_t), ("r_pattern", M2M2_LED_PATTERN_ENUM_t), ("g_pattern", M2M2_LED_PATTERN_ENUM_t), ("b_pattern", M2M2_LED_PATTERN_ENUM_t), ]
30.028571
53
0.726927
980
0.932445
0
0
0
0
0
0
74
0.070409
cd485ea8847607e1b8262b17b33a7d95c7b05c48
2,327
py
Python
src/empirical_study.py
arshajithwolverine/Recommentation-System_KGNN-LS
82ad10633a56794bbc38dc7e6c40a3636c7d570a
[ "MIT" ]
133
2019-06-20T08:38:04.000Z
2022-03-30T07:57:14.000Z
src/empirical_study.py
piaofu110/KGNN-LS
3afd76361b623e9e38b822861c79bcd61dae41aa
[ "MIT" ]
10
2019-07-06T12:53:01.000Z
2021-11-10T12:58:50.000Z
src/empirical_study.py
piaofu110/KGNN-LS
3afd76361b623e9e38b822861c79bcd61dae41aa
[ "MIT" ]
40
2019-08-07T06:02:31.000Z
2022-01-05T15:19:29.000Z
import networkx as nx import numpy as np import argparse if __name__ == '__main__': np.random.seed(555) NUM = 10000 parser = argparse.ArgumentParser() parser.add_argument('-d', type=str, default='music') args = parser.parse_args() DATASET = args.d kg_np = np.load('../data/' + DATASET + '/kg_final.npy') kg = nx.Graph() kg.add_edges_from([(triple[0], triple[2]) for triple in kg_np]) # construct knowledge graph rating_np = np.load('../data/' + DATASET + '/ratings_final.npy') item_history = dict() item_set = set() for record in rating_np: user = record[0] item = record[1] rating = record[2] if rating == 1: if item not in item_history: item_history[item] = set() item_history[item].add(user) item_set.add(item) item_pair_num_no_common_rater = 0 item_pair_num_with_common_rater = 0 sp_no_common_rater = dict() sp_with_common_rater = dict() while True: item1, item2 = np.random.choice(list(item_set), size=2, replace=False) if item_pair_num_no_common_rater == NUM and item_pair_num_with_common_rater == NUM: break if item_pair_num_no_common_rater < NUM and len(item_history[item1] & item_history[item2]) == 0: item_pair_num_no_common_rater += 1 if not nx.has_path(kg, item1, item2): sp = 'infinity' else: sp = nx.shortest_path_length(kg, item1, item2) if sp not in sp_no_common_rater: sp_no_common_rater[sp] = 0 sp_no_common_rater[sp] += 1 print(item_pair_num_no_common_rater, item_pair_num_with_common_rater) if item_pair_num_with_common_rater < NUM and len(item_history[item1] & item_history[item2]) > 0: item_pair_num_with_common_rater += 1 if not nx.has_path(kg, item1, item2): sp = 'infinity' else: sp = nx.shortest_path_length(kg, item1, item2) if sp not in sp_with_common_rater: sp_with_common_rater[sp] = 0 sp_with_common_rater[sp] += 1 print(item_pair_num_no_common_rater, item_pair_num_with_common_rater) print(sp_no_common_rater) print(sp_with_common_rater)
36.359375
104
0.621401
0
0
0
0
0
0
0
0
123
0.052858
cd48bacc37dd1b8304c3c30daa2f346ee7aa4309
6,317
py
Python
Survival_Pygame/data.py
Lily-Li828/effective-octo-fiesta
4dbfeaec6158141bb03005aa25240dd337694ee3
[ "Apache-2.0" ]
null
null
null
Survival_Pygame/data.py
Lily-Li828/effective-octo-fiesta
4dbfeaec6158141bb03005aa25240dd337694ee3
[ "Apache-2.0" ]
null
null
null
Survival_Pygame/data.py
Lily-Li828/effective-octo-fiesta
4dbfeaec6158141bb03005aa25240dd337694ee3
[ "Apache-2.0" ]
null
null
null
import pygame from pygame.locals import* from pygame import mixer pygame.init() # loading in background image backgroundClassic_image=pygame.image.load('image/WallPaper.png') backgroundAncient_image=pygame.image.load('image/WallPaper2.png') # loading in player image player_imageClassic=pygame.image.load('image/player.png') player_imageAncient=pygame.image.load('image/player2.png') player_imageClassicR=pygame.image.load('image/playerR.png') player_imageAncientR=pygame.image.load('image/player2R.png') #loading sound for bullet BulletSound=mixer.Sound('sound/bullet.wav') #Loading sound for collision with enemy: CollidewithEnemy=mixer.Sound('sound/Collide.wav') #Loading sound for opening of game: Opening_Sound=mixer.Sound('sound/opening.wav') Mouse_Sound=mixer.Sound('sound/mouseclick.wav') Selection_Sound=mixer.Sound('sound/selection.wav') #loading sound for end of game: End_GameSound=mixer.Sound('sound/gameover.wav') #loading sound for win game: Win_GameSound=mixer.Sound('sound/wingame.wav') Door_GameSound=mixer.Sound('sound/doorappear.wav') #Loading in image for opening animation: Opening_Image= [pygame.image.load('image/opening.png'),pygame.image.load('image/opening.png'), pygame.image.load('image/opening.png'),pygame.image.load('image/opening.png'), pygame.image.load('image/opening.png'),pygame.image.load('image/opening.png'), pygame.image.load('image/opening.png'),pygame.image.load('image/opening.png'), pygame.image.load('image/opening.png'),pygame.image.load('image/opening.png'), pygame.image.load('image/opening.png'),pygame.image.load('image/opening.png'), pygame.image.load('image/opening.png'),pygame.image.load('image/opening.png'), pygame.image.load('image/opening.png'),pygame.image.load('image/opening.png'), pygame.image.load('image/opening.png'),pygame.image.load('image/opening1.png'), pygame.image.load('image/opening1.png'),pygame.image.load('image/opening1.png'), pygame.image.load('image/opening.png')] #loading in image for opening game mode selection: OpeningSelect_BG=pygame.image.load('image/ModeSelection.png') ClassicMode_image=pygame.image.load('image/ClassicMode.png') AncientMode_image=pygame.image.load('image/AncientMode.png') Glow_image=pygame.image.load('image/glow.png') #Loading image for win game: Won_Light=pygame.image.load('image/light.png') Won_Door=pygame.image.load('image/door.png') #Loading win game page: Escape_image=pygame.image.load('image/Wingame.png') #loading in image: direction_key=pygame.image.load('image/direction1.png') direction_arrow=pygame.image.load('image/direction2.png') #loading in endgame page: End_image=pygame.image.load('image/gameover.png') # load in image of platform platformClassic_img= pygame.image.load('image/icicle.png') platformAncient_img=pygame.image.load('image/brickwall.png') #Game map for two different game modes: Classic_map = [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0], [1,1,1,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,0,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0], [0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] Ancient_map=[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,0,0,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,1,0,0,0], [1,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,1,1,1,0,1,0,0,1,0,0,0,0,1,1,1,1,0,0,0], [1,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0,1,0,0,0,0,1,1,0,1,0,1,0,0,1,1,1,0,1,0,0,1,0,0,0,0,1,1,0,0,0,0,0], [1,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0,1,0,0,0,0,1,1,0,1,0,1,0,0,1,1,1,0,1,0,0,1,0,1,0,0,1,1,0,0,0,0,0], [1,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0,1,0,0,0,0,1,1,0,1,0,1,0,0,1,1,1,0,1,0,0,1,0,1,0,0,1,1,0,0,0,0,0]] #Upload font type: fontd1= pygame.font.Font('font/Pieces.ttf',32) fontd2= pygame.font.Font('font/OldeEnglish.ttf',18) fontdO= pygame.font.Font('font/Opening.ttf',28) # Font (Opening) fontdS= pygame.font.Font('font/Pieces.ttf',30) # Font (For Game Mode Selection)
54.930435
114
0.625139
0
0
0
0
0
0
0
0
1,544
0.24442
cd4c852bd50c3ecb65653b4479673255f18bc5fa
8,170
py
Python
test/filters_iso_test.py
todofixthis/filters-iso
da6052b49a2f71a3b3d6b66e2633debbb64f5b16
[ "MIT" ]
null
null
null
test/filters_iso_test.py
todofixthis/filters-iso
da6052b49a2f71a3b3d6b66e2633debbb64f5b16
[ "MIT" ]
null
null
null
test/filters_iso_test.py
todofixthis/filters-iso
da6052b49a2f71a3b3d6b66e2633debbb64f5b16
[ "MIT" ]
null
null
null
import filters as f from filters.test import BaseFilterTestCase # noinspection PyProtectedMember from iso3166 import Country, countries_by_alpha3 from language_tags import tags from language_tags.Tag import Tag from moneyed import Currency, get_currency class CountryTestCase(BaseFilterTestCase): filter_type = f.ext.Country def test_pass_none(self): """ ``None`` always passes this filter. Use ``Required | Country`` if you want to reject ``None``. """ self.assertFilterPasses(None) def test_pass_valid_alpha_3(self): """ The incoming value is a valid ISO-3316-1 alpha-3 country code. """ filtered = self._filter('FRA') self.assertFilterPasses(filtered, self.skip_value_check) country = filtered.cleaned_data self.assertIsInstance(country, Country) self.assertEqual(country.name, 'France') def test_pass_valid_alpha_2(self): """ The incoming value is a valid ISO-3166-1 alpha-2 country code. """ filtered = self._filter('IE') self.assertFilterPasses(filtered, self.skip_value_check) country = filtered.cleaned_data self.assertIsInstance(country, Country) self.assertEqual(country.name, 'Ireland') def test_pass_case_insensitive(self): """ The incoming value is basically valid, but it has the wrong case. """ filtered = self._filter('arg') self.assertFilterPasses(filtered, self.skip_value_check) country = filtered.cleaned_data self.assertIsInstance(country, Country) self.assertEqual(country.name, 'Argentina') def test_fail_invalid_code(self): """ The incoming value is not a valid ISO-3316-1 country code. """ # Surrender is not an option! self.assertFilterErrors('\u2690', [f.ext.Country.CODE_INVALID]) def test_fail_subdivision(self): """ Subdivisions are not accepted, even though certain ones are technically part of ISO-3166-1. After all, the filter is named ``Country``, not ``ISO_3166_1``! """ self.assertFilterErrors('IE-L', [f.ext.Country.CODE_INVALID]) def test_fail_wrong_type(self): """ The incoming value is not a string. """ self.assertFilterErrors(['CHN', 'JPN'], [f.Type.CODE_WRONG_TYPE]) def test_pass_country_object(self): """ The incoming value is already a :py:class:`Country` object. """ self.assertFilterPasses(countries_by_alpha3.get('USA')) class CurrencyTestCase(BaseFilterTestCase): filter_type = f.ext.Currency def test_pass_none(self): """ ``None`` always passes this filter. Use ``Required | Currency`` if you do want to reject ``None``. """ self.assertFilterPasses(None) def test_pass_valid_code(self): """ The incoming value is a valid ISO-4217 currency code. """ filtered = self._filter('PEN') self.assertFilterPasses(filtered, self.skip_value_check) currency = filtered.cleaned_data self.assertIsInstance(currency, Currency) self.assertEqual(currency.name, 'Nuevo Sol') def test_pass_case_insensitive(self): """ The incoming value is basically valid, but it has the wrong case. """ filtered = self._filter('ars') self.assertFilterPasses(filtered, self.skip_value_check) currency = filtered.cleaned_data self.assertIsInstance(currency, Currency) self.assertEqual(currency.name, 'Argentine Peso') def test_fail_invalid_code(self): """ The incoming value is not a valid ISO-4217 currency code. """ # You can't use the currency symbol, silly! self.assertFilterErrors('\u00a3', [f.ext.Currency.CODE_INVALID]) def test_fail_wrong_type(self): """ The incoming value is not a string. """ self.assertFilterErrors(['USD', 'CNY'], [f.Type.CODE_WRONG_TYPE]) def test_pass_currency_object(self): """ The incoming value is already a :py:class:`moneyed.Currency` object. """ self.assertFilterPasses(get_currency(code='USD')) class LocaleTestCase(BaseFilterTestCase): """ Note that unit tests will focus on the functionality of the Filter rather than the underlying library; the variety of formats and values that the Locale Filter accepts FAR exceeds the scope demonstrated in these tests. References: - http://r12a.github.io/apps/subtags/ - https://pypi.python.org/pypi/language-tags - https://github.com/mattcg/language-tags """ filter_type = f.ext.Locale def test_pass_none(self): """ ``None`` always passes this filter. Use `Required | Locale` if you want to reject `None`. """ self.assertFilterPasses(None) def test_valid_locale(self): """ Valid locale string is valid. """ # There are a LOT of possible values that can go here. # http://r12a.github.io/apps/subtags/ filtered = self._filter('en-cmn-Hant-HK') self.assertFilterPasses(filtered, self.skip_value_check) tag = filtered.cleaned_data self.assertIsInstance(tag, Tag) self.assertTrue(tag.valid) # # Language tags have LOTS of attributes. # We will check a few of them to make sure the Filter returned # the correct tag, but you should be aware that there is a # LOT of information available in the value returned by the # Locale Filter. # # For more information, check out the repo for the Javascript # version of the underlying `language_tags` library (the # Python version is a port with the same API... and no usage # documentation of its own). # https://github.com/mattcg/language-tags # self.assertEqual(str(tag), 'en-cmn-Hant-HK') self.assertEqual(str(tag.language), 'en') self.assertEqual(str(tag.region), 'HK') self.assertEqual(str(tag.script), 'Hant') def test_pass_case_insensitive(self): """ The incoming value is basically valid, except it uses the wrong case. """ filtered = self._filter('Az-ArAb-Ir') self.assertFilterPasses(filtered, self.skip_value_check) tag = filtered.cleaned_data self.assertIsInstance(tag, Tag) self.assertTrue(tag.valid) self.assertEqual(str(tag), 'az-Arab-IR') self.assertEqual(str(tag.language), 'az') self.assertEqual(str(tag.region), 'IR') self.assertEqual(str(tag.script), 'Arab') def test_fail_invalid_value(self): """ The incoming value generates parsing errors. """ # noinspection SpellCheckingInspection filtered = self._filter( 'sl-Cyrl-YU-rozaj-solba-1994-b-1234-a-Foobar-x-b-1234-a-Foobar' ) self.assertFilterErrors(filtered, [f.ext.Locale.CODE_INVALID]) # Parse errors included here for demonstration purposes. self.assertListEqual( filtered.filter_messages[''][0].context.get('parse_errors'), [ # Sorry about the magic values. # These are defined in the Tag initializer, so they're # a bit tricky to get at without complicating the # test. # :py:meth:`Tag.__init__` (11, "The subtag 'YU' is deprecated."), (8, "Duplicate variant subtag 'solba' found."), (8, "Duplicate variant subtag '1994' found."), ], ) def test_fail_wrong_type(self): """ The incoming value is not a string. """ self.assertFilterErrors(['en', 'US'], [f.Type.CODE_WRONG_TYPE]) def test_pass_tag_object(self): """ The incoming value is already a Tag object. """ self.assertFilterPasses(tags.tag('en-cmn-Hant-HK'))
31.914063
75
0.623745
7,907
0.967809
0
0
0
0
0
0
3,607
0.441493
cd4d5dd7883050a254679a4b1f93de18a8465561
1,179
py
Python
datacamp-master/22-introduction-to-time-series-analysis-in-python/04-moving-average-ma-and-arma-models/08-equivalance-of-ar(1)-and-ma(infinity).py
vitthal10/datacamp
522d2b192656f7f6563bf6fc33471b048f1cf029
[ "MIT" ]
1
2020-06-11T01:32:36.000Z
2020-06-11T01:32:36.000Z
22-introduction-to-time-series-analysis-in-python/04-moving-average-ma-and-arma-models/08-equivalance-of-ar(1)-and-ma(infinity).py
AndreasFerox/DataCamp
41525d7252f574111f4929158da1498ee1e73a84
[ "MIT" ]
null
null
null
22-introduction-to-time-series-analysis-in-python/04-moving-average-ma-and-arma-models/08-equivalance-of-ar(1)-and-ma(infinity).py
AndreasFerox/DataCamp
41525d7252f574111f4929158da1498ee1e73a84
[ "MIT" ]
1
2021-08-08T05:09:52.000Z
2021-08-08T05:09:52.000Z
''' Equivalence of AR(1) and MA(infinity) To better understand the relationship between MA models and AR models, you will demonstrate that an AR(1) model is equivalent to an MA(∞ ∞ ) model with the appropriate parameters. You will simulate an MA model with parameters 0.8,0.82,0.83,… 0.8 , 0.8 2 , 0.8 3 , … for a large number (30) lags and show that it has the same Autocorrelation Function as an AR(1) model with ϕ=0.8 ϕ = 0.8 . INSTRUCTIONS 100XP Import the modules for simulating data and plotting the ACF from statsmodels Use a list comprehension to build a list with exponentially decaying MA parameters: 1,0.8,0.82,0.83,… 1 , 0.8 , 0.8 2 , 0.8 3 , … Simulate 5000 observations of the MA(30) model Plot the ACF of the simulated series ''' # import the modules for simulating data and plotting the ACF from statsmodels.tsa.arima_process import ArmaProcess from statsmodels.graphics.tsaplots import plot_acf # Build a list MA parameters ma = [0.8**i for i in range(30)] # Simulate the MA(30) model ar = np.array([1]) AR_object = ArmaProcess(ar, ma) simulated_data = AR_object.generate_sample(nsample=5000) # Plot the ACF plot_acf(simulated_data, lags=30) plt.show()
19.983051
136
0.74894
0
0
0
0
0
0
0
0
892
0.747695
cd4e4c3a86cc4a31b024c46ddddde1fa3e66e93b
3,752
py
Python
imutils.py
shimoda-uec/ssdd
564c3e08fae7a158516cdbd9f3599a74dc748aff
[ "MIT" ]
33
2019-11-05T07:15:36.000Z
2021-04-27T06:33:47.000Z
imutils.py
shimoda-uec/ssdd
564c3e08fae7a158516cdbd9f3599a74dc748aff
[ "MIT" ]
1
2019-11-18T13:02:40.000Z
2019-11-18T13:02:54.000Z
imutils.py
shimoda-uec/ssdd
564c3e08fae7a158516cdbd9f3599a74dc748aff
[ "MIT" ]
3
2019-11-25T11:00:39.000Z
2021-03-27T06:53:21.000Z
import PIL.Image import random import numpy as np import cv2 class RandomHorizontalFlip(): def __init__(self): return def __call__(self, inputs): if bool(random.getrandbits(1)): outputs=[] for inp in inputs: out = np.fliplr(inp).copy() outputs.append(out) return outputs else: return inputs class RandomResizeLong(): def __init__(self, min_long, max_long): self.min_long = min_long self.max_long = max_long def __call__(self, inputs): img=inputs[0] target_long = random.randint(self.min_long, self.max_long) #w, h = img.size h, w, c = img.shape target_shape = (target_long, target_long) """ if w > h: target_shape = (int(round(w * target_long / h)), target_long) else: target_shape = (target_long, int(round(h * target_long / w))) """ outputs=[] for inp in inputs: out = cv2.resize(inp, target_shape) if len(out.shape)==2: out=np.expand_dims(out,2) outputs.append(out) return outputs class RandomCrop(): def __init__(self, cropsize): self.cropsize = cropsize def __call__(self, inputs): imgarr = np.concatenate(inputs, axis=-1) h, w, c = imgarr.shape ch = min(self.cropsize, h) cw = min(self.cropsize, w) w_space = w - self.cropsize h_space = h - self.cropsize if w_space > 0: cont_left = 0 img_left = random.randrange(w_space+1) else: cont_left = random.randrange(-w_space+1) img_left = 0 if h_space > 0: cont_top = 0 img_top = random.randrange(h_space+1) else: cont_top = random.randrange(-h_space+1) img_top = 0 outputs=[] for inp in inputs: container = np.zeros((self.cropsize, self.cropsize, inp.shape[-1]), np.float32) container[cont_top:cont_top+ch, cont_left:cont_left+cw] = \ inp[img_top:img_top+ch, img_left:img_left+cw] outputs.append(container) return outputs class Normalize(): def __init__(self, mean = (0.485, 0.456, 0.406), std = (0.229, 0.224, 0.225)): self.mean = mean self.std = std def __call__(self, img): imgarr = np.asarray(img) proc_img = np.empty_like(imgarr, np.float32) proc_img[..., 0] = (imgarr[..., 0] / 255. - self.mean[0]) / self.std[0] proc_img[..., 1] = (imgarr[..., 1] / 255. - self.mean[1]) / self.std[1] proc_img[..., 2] = (imgarr[..., 2] / 255. - self.mean[2]) / self.std[2] return proc_img def HWC_to_CHW(img): return np.transpose(img, (2, 0, 1)) class Rescale(): def __init__(self, scale): self.scale=scale def __call__(self, inputs): outputs=[] for inp in inputs: out = cv2.resize(inp, self.scale) if len(out.shape)==2: out=np.expand_dims(out,2) outputs.append(out) return outputs def crf_inference(img, probs, t=3, scale_factor=1, labels=21): import pydensecrf.densecrf as dcrf from pydensecrf.utils import unary_from_softmax h, w = img.shape[:2] n_labels = labels d = dcrf.DenseCRF2D(w, h, n_labels) unary = unary_from_softmax(probs) unary = np.ascontiguousarray(unary) d.setUnaryEnergy(unary) d.addPairwiseGaussian(sxy=3/scale_factor, compat=3) d.addPairwiseBilateral(sxy=80/scale_factor, srgb=13, rgbim=np.copy(img), compat=10) Q = d.inference(t) return np.array(Q).reshape((n_labels, h, w))
32.068376
91
0.567697
3,053
0.813699
0
0
0
0
0
0
211
0.056237
cd503144da89b34c7f7e0c6f7d30f63249106454
398
py
Python
dfmt/svg/run.py
wangrl2016/coding
fd6cd342cade42379c4a0447d83e17c6596fd3a3
[ "MIT" ]
4
2021-02-20T03:47:48.000Z
2021-11-09T17:25:43.000Z
dfmt/svg/run.py
wangrl2016/coding
fd6cd342cade42379c4a0447d83e17c6596fd3a3
[ "MIT" ]
null
null
null
dfmt/svg/run.py
wangrl2016/coding
fd6cd342cade42379c4a0447d83e17c6596fd3a3
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import os import subprocess if __name__ == '__main__': out_dir = 'out' if not os.path.exists(out_dir): os.mkdir(out_dir) subprocess.run(['cargo', 'build', '--release']) exe = 'target/release/svg' subprocess.run([exe, '-i', 'test/simple-text.svg', '-o', 'out/simple-text.png', '--perf', '--dump-svg', 'out/simple-text.svg'])
26.533333
93
0.585427
0
0
0
0
0
0
0
0
174
0.437186
cd517441104b9bb84c95422e46c5a618c55415fc
79
py
Python
project/enums/string_types_enum.py
vinibiavatti1/PythonFlaskCms
e43a4db84d1f77a5f66b1f8fcb9dc96e05e6c023
[ "MIT" ]
null
null
null
project/enums/string_types_enum.py
vinibiavatti1/PythonFlaskCms
e43a4db84d1f77a5f66b1f8fcb9dc96e05e6c023
[ "MIT" ]
null
null
null
project/enums/string_types_enum.py
vinibiavatti1/PythonFlaskCms
e43a4db84d1f77a5f66b1f8fcb9dc96e05e6c023
[ "MIT" ]
null
null
null
""" String format type value enumeration. """ TRUE = '1' FALSE = '0' NONE = ''
11.285714
37
0.594937
0
0
0
0
0
0
0
0
53
0.670886
cd52a473787d5199c37a49a98543ea8b45caa074
90
py
Python
LTA/museums/admin.py
valeriimartsyshyn/lviv_tourist_adviser
e8ce0c7ba97262b2d181e3373eb806f4dcc9bbf1
[ "MIT" ]
null
null
null
LTA/museums/admin.py
valeriimartsyshyn/lviv_tourist_adviser
e8ce0c7ba97262b2d181e3373eb806f4dcc9bbf1
[ "MIT" ]
1
2021-09-27T06:33:26.000Z
2021-09-27T06:33:26.000Z
LTA/museums/admin.py
valeriimartsyshyn/lviv_tourist_adviser
e8ce0c7ba97262b2d181e3373eb806f4dcc9bbf1
[ "MIT" ]
null
null
null
from django.contrib import admin from .models import Museums admin.site.register(Museums)
22.5
32
0.833333
0
0
0
0
0
0
0
0
0
0
cd537e30b909d9612963bfa8b8f1c4d920b60f98
1,584
py
Python
grailapp-osc-6a60f9376f69/setup.py
yuan7407/TD_OpenCV_PythonOSC
f4424b1f7155f7942397212b97183cb749612f50
[ "MIT" ]
20
2018-12-06T21:35:10.000Z
2022-02-08T23:22:35.000Z
grailapp-osc-6a60f9376f69/setup.py
phoebezhung/TD_OpenCV_PythonOSC
f4424b1f7155f7942397212b97183cb749612f50
[ "MIT" ]
null
null
null
grailapp-osc-6a60f9376f69/setup.py
phoebezhung/TD_OpenCV_PythonOSC
f4424b1f7155f7942397212b97183cb749612f50
[ "MIT" ]
4
2019-02-27T08:13:45.000Z
2021-11-02T15:14:41.000Z
#!/usr/bin/env python # -*- coding: UTF-8 -*- """ setup ~~~~~ Setup Script Run the build process by running the command 'python setup.py build' :copyright: (c) 2018 by Oleksii Lytvyn. :license: MIT, see LICENSE for more details. """ import osc.osc as osc try: from setuptools import setup except ImportError: from distutils.core import setup setup( name='osc', version=osc.__version__, author='Oleksii Lytvyn', author_email='[email protected]', description='OSC implementation in pure Python', long_description=open('README.rst').read(), url='https://bitbucket.org/grailapp/osc', download_url='https://bitbucket.org/grailapp/osc/get/default.zip', platforms='any', packages=['osc'], keywords=['osc', 'protocol', 'utilities', 'osc-1.0', 'network', 'communication', 'udp'], zip_safe=False, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Programming Language :: Python :: 3', "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", 'Programming Language :: Python :: 3 :: Only', 'Programming Language :: Python :: Implementation :: CPython', 'Topic :: Multimedia :: Sound/Audio', 'Topic :: System :: Networking', 'License :: OSI Approved :: MIT License' ], install_requires=[] )
31.058824
92
0.621212
0
0
0
0
0
0
0
0
1,037
0.654672
cd5534b9b393b4ca6ad72c44a3438fcc6e74b3d0
2,501
py
Python
socketshark/utils.py
Play2Live/socketshark
9b1e40654bf629c593079fb44c548911d4c864af
[ "MIT" ]
null
null
null
socketshark/utils.py
Play2Live/socketshark
9b1e40654bf629c593079fb44c548911d4c864af
[ "MIT" ]
null
null
null
socketshark/utils.py
Play2Live/socketshark
9b1e40654bf629c593079fb44c548911d4c864af
[ "MIT" ]
null
null
null
import asyncio import ssl import aiohttp from . import constants as c def _get_rate_limit_wait(log, resp, opts): """ Returns the number of seconds we should wait given a 429 HTTP response and HTTP options. """ max_wait = 3600 wait = opts['wait'] header_name = opts['rate_limit_reset_header_name'] if header_name and header_name in resp.headers: header_value = resp.headers[header_name] try: new_wait = float(header_value) # Make sure we have a valid value (not negative, NaN, or Inf) if 0 <= new_wait <= max_wait: wait = new_wait elif new_wait > max_wait: log.warn('rate reset value too high', name=header_name, value=header_value) wait = max_wait else: log.warn('invalid rate reset value', name=header_name, value=header_value) except ValueError: log.warn('invalid rate reset value', name=header_name, value=header_value) return wait async def http_post(shark, url, data): log = shark.log.bind(url=url) opts = shark.config['HTTP'] if opts.get('ssl_cafile'): ssl_context = ssl.create_default_context(cafile=opts['ssl_cafile']) else: ssl_context = None conn = aiohttp.TCPConnector(ssl_context=ssl_context) async with aiohttp.ClientSession(connector=conn) as session: wait = opts['wait'] for n in range(opts['tries']): if n > 0: await asyncio.sleep(wait) try: log.debug('http request', data=data) async with session.post(url, json=data, timeout=opts['timeout']) as resp: if resp.status == 429: # Too many requests. wait = _get_rate_limit_wait(log, resp, opts) continue else: wait = opts['wait'] resp.raise_for_status() data = await resp.json() log.debug('http response', data=data) return data except aiohttp.ClientError: log.exception('unhandled exception in http_post') except asyncio.TimeoutError: log.exception('timeout in http_post') return {'status': 'error', 'error': c.ERR_SERVICE_UNAVAILABLE}
35.225352
78
0.551779
0
0
0
0
0
0
1,389
0.555378
469
0.187525
cd592812165ebec71f40378868573e5f9eda72b9
252
py
Python
download_and_create_reference_datasets/v02/create_ht__clinvar.py
NLSVTN/hail-elasticsearch-pipelines
8b895a2e46a33d347dd2a1024101a6d515027a03
[ "MIT" ]
15
2017-11-22T14:48:04.000Z
2020-10-05T18:22:24.000Z
download_and_create_reference_datasets/v02/create_ht__clinvar.py
NLSVTN/hail-elasticsearch-pipelines
8b895a2e46a33d347dd2a1024101a6d515027a03
[ "MIT" ]
94
2020-10-21T17:37:57.000Z
2022-03-29T14:59:46.000Z
download_and_create_reference_datasets/v02/create_ht__clinvar.py
NLSVTN/hail-elasticsearch-pipelines
8b895a2e46a33d347dd2a1024101a6d515027a03
[ "MIT" ]
7
2019-01-29T09:08:10.000Z
2020-02-25T16:22:57.000Z
#!/usr/bin/env python3 from kubernetes.shell_utils import simple_run as run run(( "python3 gcloud_dataproc/v02/run_script.py " "--cluster create-ht-clinvar " "download_and_create_reference_datasets/v02/hail_scripts/write_clinvar_ht.py"))
28
83
0.77381
0
0
0
0
0
0
0
0
173
0.686508
cd597b04327e251c7079f983fdc1e98e38cf4a8a
4,324
py
Python
cogs/member_.py
himo1101/NFlegel
7621f5d71b41b71faaf44d142f3b903b0471873a
[ "MIT" ]
null
null
null
cogs/member_.py
himo1101/NFlegel
7621f5d71b41b71faaf44d142f3b903b0471873a
[ "MIT" ]
null
null
null
cogs/member_.py
himo1101/NFlegel
7621f5d71b41b71faaf44d142f3b903b0471873a
[ "MIT" ]
null
null
null
from discord.ext import commands from flegelapi.pg import default, server from distutils.util import strtobool import discord member_table= """ member_( id serial PRIMARY KEY, server_id interger NOT NULL, role_ld interger, channel_id interger, custom_mes character varying DEFAULT が入出しました。, on_off boolean DEFAULT False)""" class Member_(commands.Cog): def __init__(self,bot): self.bot=bot self.pool=bot.pool @commands.command() async def enable(self, ctx, enable:str='on'): try: result_enable=strtobool(enable) except ValueError: return await ctx.send(f'{enable}は正常な値ではありません') before_content=await server.fetch(self.pool, 'member_', ctx.guild) await default.update(self.pool, 'member_', 'on_off', result_enable, 'server_id', ctx.guild.id) await embed.default(ctx, 'enable change', f'{before_content} -> {"有効" if enable else "無効"}化') @commands.command() async def add_mrole(self, ctx, role: discord.Role=None): if role is None: return await ctx.send('役職が指定されていません') before_content= await server.fetch(self.pool, 'member', ctx.guild) await default.update(self.pool, 'member_', 'role_id', role.id, 'server_id', ctx.guild.id) await embed.default(ctx, 'role change', f'{before_content} -> {role.name}') @commands.command() async def add_channel(self, ctx, channel:discord.TextChannel=None): if channel is None: return await ctx.send('チャンネルが指定されていません') before_content=await server.fetch(self.pool, 'member_', ctx.guild) await default.update(self.pool, 'member_', 'channel_id', channel, 'server_id', ctx.guild.id) await embed.default(ctx, 'channel change', f'{before_content} -> {channel.mention}') @commands.command() async def add_mes(self, ctx, mes:str=None): if mes is None: return await ctx.send('メッセージが指定されていません') before_content=await server.fetch(self.pool, 'member_', ctx.guild) await default.update(self.pool, 'member_', 'custom_mes', mes, 'server_id', ctx.guild.id) await embed.default(ctx, 'custom message change', f'{before_content} -> {mes}') @commands.Cog.listener() async def on_member_join(self, member): server_date=await server.fetch(self.pool, 'member_', ctx.guild) if server_date['on_off']== False: return role= member.guild.get_role(int(server_date['role_id'])) await member.add_roles(role) status = str(member.status) if status == 'online': status = 'オンライン' elif status == 'offline': status = 'オフライン' elif status == 'idle': status = '退席中' elif status == 'dnd': status = '起こさないで' roles = [role.name for role in member.roles if role.name != '@everyone'] roles = ', '.join(roles) if roles != [] else 'なし' e = discord.Embed( title = '新しい人が来ました。', description=f'ユーザー情報: {user.display_name}', colour=discord.Colour.purple() ) e.set_author(name=member.name, icon_url=member.avatar_url) e.set_thumbnail(url=member.avatar_url) e.add_field( name='ステータス', value=status ) e.add_field( name='サーバー参加日時', value=self.fmt.format(member.joined_at) ) e.add_field( name='アカウント作成日時', value=self.fmt.format(member.created_at) ) e.add_field( name='役職', value=roles ) if server_date['custom_mes'] is not None: e.set_footer( text=f'ID: {user.id} ' ) else: e.set_footer( text= server_date['custom_mes'] ) channel= self.bot.get_channel(int(server_date['channel_id'])) await channel.send(embed=e) def setup(bot): bot.add_cog(Member_(bot)) bot.add_table(member_table)
32.757576
102
0.56568
4,104
0.89607
0
0
3,916
0.855022
3,791
0.827729
1,142
0.249345
cd59d9b93bd906d8d50478926274bfcb5696cb98
4,388
py
Python
old/policy_grads2.py
DarkElement75/cartpole-policy-gradients
ca6b7fb826fa023e2d845408d3d16d8032b07508
[ "MIT" ]
null
null
null
old/policy_grads2.py
DarkElement75/cartpole-policy-gradients
ca6b7fb826fa023e2d845408d3d16d8032b07508
[ "MIT" ]
null
null
null
old/policy_grads2.py
DarkElement75/cartpole-policy-gradients
ca6b7fb826fa023e2d845408d3d16d8032b07508
[ "MIT" ]
null
null
null
import gym import numpy as np import sys import theano import theano.tensor as T import layers from layers import FullyConnectedLayer, SoftmaxLayer env = gym.make('CartPole-v0') #Number of actions action_n = env.action_space.n #Number of features observed feature_n = env.observation_space.shape[0] epochs = 100 mini_batch_size = 10 timesteps = 100 learning_rate = 1.0 epsilon_decay_rate = -0.04 initial_epsilon = 1.0 #avg_solved_perc = 97.5 #avg_solved_threshold = (avg_solved_perc/100*timesteps) render = False def exp_decay(initial, rate, iteration): #Do our k*e^(r*t) exponential decay return initial*np.exp(rate*iteration) def epsilon_greedy(epsilon): #Return True if exploring, False if exploiting r = np.random.rand(1)[0] if r < epsilon: return True else: return False def get_action(observation): #test_x, test_y = test_data i = T.lscalar() # mini-batch index self.test_mb_predictions = theano.function( [i], self.layers[-1].y_out, givens={ self.x: observation }, on_unused_input='warn') return self.test_mb_predictions(0) #Initialize network layers = [ FullyConnectedLayer(n_in=4, n_out=10), FullyConnectedLayer(n_in=10, n_out=10), SoftmaxLayer(n_in=10, n_out=2) ] params = [param for layer in layers for param in layer.params] iterations = mini_batch_size x = T.vector("x") y = T.ivector("y") init_layer = layers[0] init_layer.set_inpt(x, 1) for j in xrange(1, len(layers)): prev_layer, layer = layers[j-1], layers[j] layer.set_inpt( prev_layer.output, 1) cost = T.argmax(T.log(layers[-1].output)) R = 0 #iter_grads = [theano.shared([np.zeros(shape=param.get_value().shape, dtype=theano.config.floatX) for param in params])] #grads = [theano.shared([np.zeros(shape=param.get_value().shape, dtype=theano.config.floatX) for param in params])] grads = T.grad(cost, params) iter_grads = [T.zeros_like(grad) for grad in grads] t_updates = [] iter_updates = [] mb_updates = [] #t_updates.append((iter_grads, iter_grads+T.grad(cost, params))) #iter_updates.append((iter_grads, T.dot(T.dot(iter_grads, R), 1/mini_batch_size))) #iter_updates.append((grads, grads+iter_grads)) #mb_updates.append((params, params+learning_rate*grads)) for param, grad in zip(params, grads): mb_updates.append((param, param+learning_rate*grad))#Update our params as we were #To execute our updates when necessary exec_t_updates = theano.function([], None, updates=t_updates) exec_iter_updates = theano.function([], None, updates=iter_updates) #exec_mb_updates = theano.function([], None, updates=mb_updates) """ mb = T.iscalar() train_mb = theano.function( [], cost, updates=mb_updates) """ #To get our action a possibilities from state s s = T.vector() NN_output = theano.function( [s], layers[-1].output, givens={ x: s }) for e in range(epochs): #grads = T.set_subtensor(grads, T.zeros_like(grads)) grads = grads * 0 epsilon = exp_decay(initial_epsilon, epsilon_decay_rate, e) for mb in range(mini_batch_size): s = env.reset() R = 0 #iter_grads = T.set_subtensor(iter_grads, T.zeros_like(iter_grads)) iter_grads = grads * 0 for t in range(timesteps): if render: env.render() if epsilon_greedy(epsilon): #Random action action = env.action_space.sample() tmp = T.scalar("tmp") max_action = T.ones_like(tmp) else: #Policy Action a = NN_output(s) action = np.argmax(a, axis=1)[0] max_action = T.max(a) #exec_t_update() iter_grads = iter_grads + T.grad(max_action, params) s, r, done, info = env.step(action) R += r if done: break #exec_iter_update() iter_grads = [iter_grad * R / mini_batch_size for iter_grad in iter_grads] grads += iter_grads print "Epoch: %i, Reward: %i, Epsilon: %f" % (e, R, epsilon) #exec_mb_updates() #cost_asdf = train_mb() #print "Updating params..." for param, grad in zip(params, grads): param = param + learning_rate * grad
26.756098
120
0.635369
0
0
0
0
0
0
0
0
1,337
0.304695
cd5a19f0cbafdf639c273ea9eebb620d7cbc509e
7,720
py
Python
client.py
andreidorin13/cs544-messaging-protocol
40d26cb20234a4ad58095150795946aceaf9e4d4
[ "MIT" ]
null
null
null
client.py
andreidorin13/cs544-messaging-protocol
40d26cb20234a4ad58095150795946aceaf9e4d4
[ "MIT" ]
null
null
null
client.py
andreidorin13/cs544-messaging-protocol
40d26cb20234a4ad58095150795946aceaf9e4d4
[ "MIT" ]
null
null
null
#!/usr/bin/python ''' Andrei Dorin 06/10/2018 User interface for WISP chat implementation ''' import argparse import logging import signal import sys import time import queue import select import getpass from wisp_client import WispClient from wisp_common import State, WispRequest, WispResponse, WispMessage, WISP_DEFAULT_PORT class Client(): ''' Chat client class Handles drawing menu and buttons Uses inner WispClient for networking ''' def __init__(self): self._logger = logging.getLogger() self._wclient = WispClient() self._friend_list = None # ---- Public Functions ---- def connect(self, host, port): '''Connect to chat server''' if not self._wclient.connect(host, port): self._logger.error('Client exiting') sys.exit(1) def discover(self): '''Attempt to discover IP of chat server on network''' if not self._wclient.discover(WISP_DEFAULT_PORT): self._logger.error('Client exiting') sys.exit(1) def start(self): ''' Start WispClient event loop Begin authentication procedure ''' self._wclient.start() response = self._auth() while response.code != WispResponse.OK: print(f'\033[31m{response.data}\033[39m') response = self._auth() self._wclient.state = State.Command self._draw_main_menu() def _draw_main_menu(self): ''' UI Main application menu Delegates to sub-menus ''' user_cmd = None cmd_list = [ self._search, self._delete, self._talk, self._quit ] while user_cmd != len(cmd_list): self._friends() print(f'Commands:\n1. Search for Friends\n2. Delete Friend\n3. Talk to Friend\n4. Exit') user_cmd = self._get_user_input(1, len(cmd_list)) cmd_list[user_cmd-1]() # ---- Client Commands + Menus ---- def _auth(self): '''Gather username and password, attempt blocking authentication call''' username = input('Username: ') while len(username) > 16: username = input('Username too long, try again: ') password = getpass.getpass() while len(password) > 16: password = input('Password too long, try again: ') return self._blocking_request(WispRequest.AUTH, username, password) def _search(self): ''' Query server for users containting search phrase Offer option of adding them as friends ''' phrase = input('Search phrase: ') while len(phrase) > 16: phrase = input('Phrase too long, try again: ') # Display search results results = self._blocking_request(WispRequest.SEARCH, phrase).data index = self._draw_menu('Results', results) if index == -1: return # If here then make friend request response = self._blocking_request(WispRequest.ADD, results[index]) if response.code == WispResponse.OK: print(f'Friend added succesfully!') else: print(f'\033[31m{response.data}\033[39m') def _friends(self): '''Retrieve and draw friend list''' self._friend_list = self._blocking_request(WispRequest.LIST).data print('Friends:') for i, friend in enumerate(self._friend_list): print(f'{i+1}. {friend}') def _delete(self): '''Delete a friend''' index = self._draw_menu('Deleting Friend:', self._friend_list) if index == -1: return self._blocking_request(WispRequest.DEL, self._friend_list[index]) def _talk(self): '''Start a conversation with a friend''' index = self._draw_menu('Select Friend to talk to: ', self._friend_list) if index == -1: return response = self._blocking_request(WispRequest.CONV, self._friend_list[index]) if response.code == WispResponse.OK: self._wclient.state = State.Conversation self._async_conv() self._wclient.state = State.Command else: print(f'\033[31m{response.data}\033[39m') def _quit(self): '''Nicely close connection to server''' print('Sending goodbye message') self._wclient.reqq.put(WispRequest(WispRequest.QUIT)) time.sleep(.250) # make sure request get processed before exiting sys.exit(0) # ----- Helper Functions ----- def _blocking_request(self, cmd, arg1=None, arg2=None): '''Sends command to server and awaits response''' res = None self._wclient.reqq.put(WispRequest(cmd, arg1, arg2)) while res is None: try: res = self._wclient.resq.get(block=False) except queue.Empty: pass time.sleep(0.01) return res def _async_conv(self): print('New conversion! Empty line to return to menu') line = None while line != '': read, _, _ = select.select([sys.stdin], [], [], 0) if read: line = sys.stdin.readline().rstrip() if len(line) > 127: for batch in [line[i:i+127] for i in range(0, len(line), 127)]: self._wclient.reqq.put(WispMessage(batch)) else: self._wclient.reqq.put(WispMessage(line)) try: res = self._wclient.resq.get(block=False) print(f'\033[92m{res}\033[39m') except queue.Empty: pass time.sleep(0.01) print('Returning to menu!') @classmethod def _draw_menu(cls, header, options): '''Draws menu based on list of options''' upper = len(options)+1 print(header) for i, opt in enumerate(options): print(f'{i+1}. {opt}') print(f'Press {upper} to go back') index = cls._get_user_input(1, upper) return -1 if index == upper else index-1 @classmethod def _get_user_input(cls, lower, upper): '''Gets user input as int within lower/upper bounds''' user_cmd = -1 while not lower <= user_cmd <= upper: try: user_cmd = int(input('Choose Number: ')) except (ValueError, EOFError): continue return user_cmd def signal_sigint(_, __): ''' Signal handler for KeyboardInterrupt or SIGINT ''' print('SIGINT Received, shutting down') sys.exit(0) def main(): ''' Main entry point of client Argument parsing and initializing client ''' parser = argparse.ArgumentParser(description='WISP protocol chat client') parser.add_argument('-H', '--host', type=str, help='IP of server, if none is specified, service discovery will be attempted') parser.add_argument('-p', '--port', type=int, default=32500, help='Port of server to connect, if none is specified, protocol default 32500 will be used') parser.add_argument('-v', '--verbosity', type=int, default=4, choices=[4, 3, 2, 1], help='Verbosity of logger, 4: Error, 3: Warning, 2: Info, 1: Debug') args = parser.parse_args() logging.basicConfig() logging.getLogger().setLevel(args.verbosity * 10) signal.signal(signal.SIGINT, signal_sigint) # CLIENT client = Client() if args.host: client.connect(args.host, args.port) else: client.discover() client.start() if __name__ == '__main__': main()
32.166667
116
0.584197
6,178
0.800259
0
0
725
0.093912
0
0
2,244
0.290674
cd5a2073c9ceff87b49af728a52895c0f1961f0b
61
py
Python
newpy/loggers/__init__.py
janithPet/newpy
feb264f4e3da371c3f2ddc7633f3fdd5a25db661
[ "MIT" ]
null
null
null
newpy/loggers/__init__.py
janithPet/newpy
feb264f4e3da371c3f2ddc7633f3fdd5a25db661
[ "MIT" ]
4
2021-09-03T06:18:29.000Z
2021-09-03T08:36:25.000Z
newpy/loggers/__init__.py
janithPet/newpy
feb264f4e3da371c3f2ddc7633f3fdd5a25db661
[ "MIT" ]
null
null
null
from newpy.loggers.colored_formatter import ColoredFormatter
30.5
60
0.901639
0
0
0
0
0
0
0
0
0
0
cd5d8710df3d01c40879c8b39d50c6ffb79da254
181
py
Python
putao/source/__init__.py
ongyx/putao
e901402308b9b4c3c9acf8dae15eb4781ddfcede
[ "MIT" ]
7
2021-06-29T00:50:46.000Z
2021-10-14T23:31:12.000Z
putao/source/__init__.py
ongyx/putao
e901402308b9b4c3c9acf8dae15eb4781ddfcede
[ "MIT" ]
2
2021-08-28T05:34:01.000Z
2021-08-29T05:03:34.000Z
putao/source/__init__.py
ongyx/putao
e901402308b9b4c3c9acf8dae15eb4781ddfcede
[ "MIT" ]
null
null
null
# coding: utf8 """Sources provide an abstraction between a source of music notes and putao projects.""" from . import mml # noqa from .reg import formats, loads, register # noqa
30.166667
88
0.734807
0
0
0
0
0
0
0
0
114
0.629834
cd5dd7dda160122dc7f0149e4f5abf4d8e95ebe4
206
py
Python
parser/src/test/test-data/math_csc.py
luciansmith/sedml-script
d891645d0b3f89ff190fc7e719659c8e229c07da
[ "MIT" ]
null
null
null
parser/src/test/test-data/math_csc.py
luciansmith/sedml-script
d891645d0b3f89ff190fc7e719659c8e229c07da
[ "MIT" ]
null
null
null
parser/src/test/test-data/math_csc.py
luciansmith/sedml-script
d891645d0b3f89ff190fc7e719659c8e229c07da
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created by libsedmlscript v0.0.1 """ from sed_roadrunner import model, task, plot from mpmath import csc #---------------------------------------------- csc(0.5)
15.846154
48
0.475728
0
0
0
0
0
0
0
0
116
0.563107