hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
βŒ€
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
βŒ€
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
βŒ€
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
βŒ€
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
βŒ€
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
βŒ€
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
βŒ€
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
βŒ€
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
βŒ€
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
81b75b5619b0c3e8fbf77d44a083c297724d2365
6,110
py
Python
ConfigUpdater.py
godfatherlmh/LoLAnalyzer
0b265b33230316ab1a1459a9767ef7527a4a4f89
[ "MIT" ]
null
null
null
ConfigUpdater.py
godfatherlmh/LoLAnalyzer
0b265b33230316ab1a1459a9767ef7527a4a4f89
[ "MIT" ]
null
null
null
ConfigUpdater.py
godfatherlmh/LoLAnalyzer
0b265b33230316ab1a1459a9767ef7527a4a4f89
[ "MIT" ]
null
null
null
# Update the working patch and champions list from __future__ import print_function import configparser import json import os import urllib.request from datetime import datetime from slugify import slugify from collections import OrderedDict from InterfaceAPI import InterfaceAPI def run(): config = configparser.ConfigParser() if os.path.isfile('config.ini'): config.read('config.ini') API_KEY = config['PARAMS']['api-key'] else: def validationInput(msg, validAns): while True: ans = input(msg) if ans.lower() in validAns: return ans print('Incorrect value. Only', validAns, 'are accepted') config.add_section('PARAMS') config.add_section('LEAGUES') config.add_section('REGIONS') config.add_section('PATCHES') config.add_section('CHAMPIONS') config.add_section('ROLES') config.add_section('TOP') config.add_section('JUNGLE') config.add_section('MID') config.add_section('CARRY') config.add_section('SUPPORT') print("No config file found. Let's set up a few parameters (you may change them anytime by manually editing config.ini).") API_KEY = input('- API-KEY (https://developer.riotgames.com/): ') config['PARAMS']['api-key'] = API_KEY config['PARAMS']['database'] = input('- Database location (eg. C:\LoLAnalyzerDB): ') print('Leagues you want to download games from (y/n): ') print('challenger league enabled by default') config['LEAGUES']['challenger'] = 'yes' config['LEAGUES']['master'] = 'yes' if validationInput('- master: ', ['y', 'n']) == 'y' else 'no' if config['LEAGUES']['master'] == 'yes' : print('Lower leagues are not recommended unless you have a high rate API-KEY (not given by default)') config['LEAGUES']['diamond'] = 'yes' if validationInput('- diamond: ', ['y', 'n']) == 'y' else 'no' if config['LEAGUES']['diamond'] == 'yes' : config['LEAGUES']['platinum'] = 'yes' if validationInput('- platinum: ', ['y', 'n']) == 'y' else 'no' if config['LEAGUES']['platinum'] == 'yes' : config['LEAGUES']['gold'] = 'yes' if validationInput('- gold: ', ['y', 'n']) == 'y' else 'no' if config['LEAGUES']['gold'] == 'yes' : config['LEAGUES']['silver'] = 'yes' if validationInput('- silver: ', ['y', 'n']) == 'y' else 'no' if config['LEAGUES']['silver'] == 'yes' : config['LEAGUES']['bronze'] = 'yes' if validationInput('- bronze: ', ['y', 'n']) == 'y' else 'no' print('Regions you want to download games from (y/n):') print('API-KEY limitations are server-bounded, so you will download way more games enabling everything') config['REGIONS']['ru'] = 'yes' if validationInput('- ru: ', ['y', 'n']) == 'y' else 'no' config['REGIONS']['kr'] = 'yes' if validationInput('- kr: ', ['y', 'n']) == 'y' else 'no' config['REGIONS']['br1'] = 'yes' if validationInput('- br1: ', ['y', 'n']) == 'y' else 'no' config['REGIONS']['oc1'] = 'yes' if validationInput('- oc1: ', ['y', 'n']) == 'y' else 'no' config['REGIONS']['jp1'] = 'yes' if validationInput('- jp1: ', ['y', 'n']) == 'y' else 'no' config['REGIONS']['na1'] = 'yes' if validationInput('- na1: ', ['y', 'n']) == 'y' else 'no' config['REGIONS']['eun1'] = 'yes' if validationInput('- eun1: ', ['y', 'n']) == 'y' else 'no' config['REGIONS']['euw1'] = 'yes' if validationInput('- euw1: ', ['y', 'n']) == 'y' else 'no' config['REGIONS']['tr1'] = 'yes' if validationInput('- tr1: ', ['y', 'n']) == 'y' else 'no' config['REGIONS']['la1'] = 'yes' if validationInput('- la1: ', ['y', 'n']) == 'y' else 'no' config['REGIONS']['la2'] = 'yes' if validationInput('- la2: ', ['y', 'n']) == 'y' else 'no' # Update to current patch & champions list # euw1 is used as reference api = InterfaceAPI(API_KEY) PATCHES = api.getData('https://euw1.api.riotgames.com/lol/static-data/v3/versions') PATCHES = ['.'.join(s.split('.')[:2]) for s in reversed(PATCHES)] config['PARAMS']['download_patches'] = PATCHES[-1] print('Current patch set to:', config['PARAMS']['download_patches']) PATCHES = OrderedDict((x, True) for x in PATCHES).keys() config['PARAMS']['patches'] = ','.join(PATCHES) print('Patch list updated') json_data = api.getData('https://euw1.api.riotgames.com/lol/static-data/v3/champions', data={'locale': 'en_US', 'dataById': 'true'}) CHAMPIONS = json_data['data'] sortedChamps = [] for champ_id, champ_info in CHAMPIONS.items(): slugname = slugify(champ_info['name'], separator='') config['CHAMPIONS'][slugname] = champ_id sortedChamps.append(slugname) # We need to sort champions by release for the neural network # This is really important for the compatibility of the system over the patches # Unfortunately the API doesn't give this information, so we use: http://universe-meeps.leagueoflegends.com/v1/en_us/champion-browse/index.json response = urllib.request.urlopen('http://universe-meeps.leagueoflegends.com/v1/en_us/champion-browse/index.json') data = json.loads(response.read().decode()) champ_date = {} for champ in data['champions']: date = champ['release-date'] date = date[1:] if date[0] == ' ' else date # solve a problem on annie date = date[:10] # solve a problem on aatrox champ_date[slugify(champ['name'], separator='')] = datetime.strptime(date, '%Y-%m-%d') sortedChamps.sort(key=lambda x: (champ_date[x], x)) # sorted by date and then abc order (eg. annie/yi or xhaya/rakan) config['PARAMS']['sortedChamps'] = ','.join(sortedChamps) print('Champions list updated') with open('config.ini', 'w') as configfile: config.write(configfile) print('-- Update complete --') if __name__ == '__main__': run()
54.553571
147
0.592635
0
0
0
0
0
0
0
0
2,642
0.432406
81b791765a1072aa2be9a40bf2e9fca71ca77b5d
555
py
Python
app/migrations/0010_auto_20200709_1512.py
RuijiaX/w3hacks
79e1eb81836b766737e8f053a26495ec2c6fd963
[ "MIT" ]
1
2020-08-30T04:49:20.000Z
2020-08-30T04:49:20.000Z
app/migrations/0010_auto_20200709_1512.py
RuijiaX/w3hacks
79e1eb81836b766737e8f053a26495ec2c6fd963
[ "MIT" ]
44
2020-06-21T03:10:35.000Z
2020-08-08T23:55:19.000Z
app/migrations/0010_auto_20200709_1512.py
RuijiaX/w3hacks
79e1eb81836b766737e8f053a26495ec2c6fd963
[ "MIT" ]
2
2020-07-01T16:54:58.000Z
2020-07-13T21:13:06.000Z
# Generated by Django 3.0.7 on 2020-07-09 22:12 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('app', '0009_auto_20200709_1430'), ] operations = [ migrations.AlterField( model_name='location', name='lat', field=models.IntegerField(blank=True, null=True), ), migrations.AlterField( model_name='location', name='lng', field=models.IntegerField(blank=True, null=True), ), ]
23.125
61
0.574775
462
0.832432
0
0
0
0
0
0
107
0.192793
81b8a377f7e00482ba8d3e94e5cc8f42cb23bfce
28,078
py
Python
tests/test_fitting.py
adrdrew/viroconcom
3eb748ba8e3e076eddd174a0fcdfee3917aa4045
[ "MIT" ]
null
null
null
tests/test_fitting.py
adrdrew/viroconcom
3eb748ba8e3e076eddd174a0fcdfee3917aa4045
[ "MIT" ]
1
2020-05-18T11:06:28.000Z
2020-05-18T11:06:28.000Z
tests/test_fitting.py
adrdrew/viroconcom
3eb748ba8e3e076eddd174a0fcdfee3917aa4045
[ "MIT" ]
null
null
null
import unittest import csv import numpy as np from viroconcom.fitting import Fit def read_benchmark_dataset(path='tests/testfiles/1year_dataset_A.txt'): """ Reads a datasets provided for the environmental contour benchmark. Parameters ---------- path : string Path to dataset including the file name, defaults to 'examples/datasets/A.txt' Returns ------- x : ndarray of doubles Observations of the environmental variable 1. y : ndarray of doubles Observations of the environmental variable 2. x_label : str Label of the environmantal variable 1. y_label : str Label of the environmental variable 2. """ x = list() y = list() x_label = None y_label = None with open(path, newline='') as csv_file: reader = csv.reader(csv_file, delimiter=';') idx = 0 for row in reader: if idx == 0: x_label = row[1][ 1:] # Ignore first char (is a white space). y_label = row[2][ 1:] # Ignore first char (is a white space). if idx > 0: # Ignore the header x.append(float(row[1])) y.append(float(row[2])) idx = idx + 1 x = np.asarray(x) y = np.asarray(y) return (x, y, x_label, y_label) class FittingTest(unittest.TestCase): def test_2d_fit(self): """ 2-d Fit with Weibull and Lognormal distribution. """ prng = np.random.RandomState(42) # Draw 1000 samples from a Weibull distribution with shape=1.5 and scale=3, # which represents significant wave height. sample_1 = prng.weibull(1.5, 1000)*3 # Let the second sample, which represents spectral peak period increase # with significant wave height and follow a Lognormal distribution with # mean=2 and sigma=0.2 sample_2 = [0.1 + 1.5 * np.exp(0.2 * point) + prng.lognormal(2, 0.2) for point in sample_1] # Describe the distribution that should be fitted to the sample. dist_description_0 = {'name': 'Weibull_3p', 'dependency': (None, None, None), 'width_of_intervals': 2} dist_description_1 = {'name': 'Lognormal', 'dependency': (None, None, 0), 'functions': (None, None, 'exp3')} # Compute the fit. my_fit = Fit((sample_1, sample_2), (dist_description_0, dist_description_1)) dist0 = my_fit.mul_var_dist.distributions[0] dist1 = my_fit.mul_var_dist.distributions[1] self.assertAlmostEqual(dist0.shape(0), 1.4165147571863412, places=5) self.assertAlmostEqual(dist0.scale(0), 2.833833521811032, places=5) self.assertAlmostEqual(dist0.loc(0), 0.07055663251419833, places=5) self.assertAlmostEqual(dist1.shape(0), 0.17742685807554776 , places=5) #self.assertAlmostEqual(dist1.scale, 7.1536437634240135+2.075539206642004e^{0.1515051024957754x}, places=5) self.assertAlmostEqual(dist1.loc, None, places=5) # Now use a 2-parameter Weibull distribution instead of 3-p distr. dist_description_0 = {'name': 'Weibull_2p', 'dependency': (None, None, None), 'width_of_intervals': 2} dist_description_1 = {'name': 'Lognormal', 'dependency': (None, None, 0), 'functions': (None, None, 'exp3')} my_fit = Fit((sample_1, sample_2), (dist_description_0, dist_description_1)) self.assertEqual(str(my_fit)[0:5], 'Fit()') def test_2d_benchmark_case(self): """ Reproduces the baseline results presented in doi: 10.1115/OMAE2019-96523 . """ sample_hs, sample_tz, label_hs, label_tz = read_benchmark_dataset( path='tests/testfiles/allyears_dataset_A.txt') # Describe the distribution that should be fitted to the sample. dist_description_0 = {'name': 'Weibull_3p', 'dependency': (None, None, None), 'width_of_intervals': 0.5} dist_description_1 = {'name': 'Lognormal_SigmaMu', 'dependency': (0, None, 0), 'functions': ('exp3', None, 'power3')} # Shape, location, scale. # Compute the fit. my_fit = Fit((sample_hs, sample_tz), (dist_description_0, dist_description_1)) # Evaluate the fitted parameters. dist0 = my_fit.mul_var_dist.distributions[0] dist1 = my_fit.mul_var_dist.distributions[1] self.assertAlmostEqual(dist0.shape(0), 1.48, delta=0.02) self.assertAlmostEqual(dist0.scale(0), 0.944, delta=0.01) self.assertAlmostEqual(dist0.loc(0), 0.0981, delta=0.001) self.assertAlmostEqual(dist1.shape.a, 0, delta=0.001) self.assertAlmostEqual(dist1.shape.b, 0.308, delta=0.002) self.assertAlmostEqual(dist1.shape.c, -0.250, delta=0.002) self.assertAlmostEqual(dist1.scale.a, 1.47 , delta=0.02) self.assertAlmostEqual(dist1.scale.b, 0.214, delta=0.002) self.assertAlmostEqual(dist1.scale.c, 0.641, delta=0.002) self.assertAlmostEqual(dist1.scale(0), 4.3 , delta=0.1) self.assertAlmostEqual(dist1.scale(2), 6, delta=0.1) self.assertAlmostEqual(dist1.scale(5), 8, delta=0.1) def test_2d_exponentiated_wbl_fit(self): """ Tests if a 2D fit that includes an exp. Weibull distribution works. """ prng = np.random.RandomState(42) # Draw 1000 samples from a Weibull distribution with shape=1.5 and scale=3, # which represents significant wave height. sample_hs = prng.weibull(1.5, 1000)*3 # Let the second sample, which represents zero-upcrossing period increase # with significant wave height and follow a Lognormal distribution with # mean=2 and sigma=0.2 sample_tz = [0.1 + 1.5 * np.exp(0.2 * point) + prng.lognormal(2, 0.2) for point in sample_hs] # Define the structure of the probabilistic model that will be fitted to the # dataset. dist_description_hs = {'name': 'Weibull_Exp', 'dependency': (None, None, None, None), # Shape, Location, Scale, Shape2 'width_of_intervals': 0.5} dist_description_tz = {'name': 'Lognormal_SigmaMu', 'dependency': (0, None, 0), # Shape, Location, Scale 'functions': ('exp3', None, 'power3') # Shape, Location, Scale } # Fit the model to the data, first test a 1D fit. fit = Fit(sample_hs, dist_description_hs) # Now perform the 2D fit. fit = Fit((sample_hs, sample_tz), (dist_description_hs, dist_description_tz)) dist0 = fit.mul_var_dist.distributions[0] self.assertGreater(dist0.shape(0), 1) # Should be about 1.5. self.assertLess(dist0.shape(0), 2) self.assertIsNone(dist0.loc(0)) # Has no location parameter, should be None. self.assertGreater(dist0.scale(0), 2) # Should be about 3. self.assertLess(dist0.scale(0), 4) self.assertGreater(dist0.shape2(0), 0.5) # Should be about 1. self.assertLess(dist0.shape2(0), 2) def test_fit_lnsquare2(self): """ Tests a 2D fit that includes an logarithm square dependence function. """ sample_hs, sample_tz, label_hs, label_tz = read_benchmark_dataset() # Define the structure of the probabilistic model that will be fitted to the # dataset. dist_description_hs = {'name': 'Weibull_Exp', 'dependency': (None, None, None, None), # Shape, Location, Scale, Shape2 'width_of_intervals': 0.5} dist_description_tz = {'name': 'Lognormal_SigmaMu', 'dependency': (0, None, 0), # Shape, Location, Scale 'functions': ('exp3', None, 'lnsquare2') # Shape, Location, Scale } # Fit the model to the data. fit = Fit((sample_hs, sample_tz), (dist_description_hs, dist_description_tz)) # Check whether the logarithmic square fit worked correctly. dist1 = fit.mul_var_dist.distributions[1] self.assertGreater(dist1.scale.a, 1) # Should be about 1-5 self.assertLess(dist1.scale.a, 5) # Should be about 1-5 self.assertGreater(dist1.scale.b, 2) # Should be about 2-10 self.assertLess(dist1.scale.b, 10) # Should be about 2-10 self.assertGreater(dist1.scale(0), 0.1) self.assertLess(dist1.scale(0), 10) self.assertEqual(dist1.scale.func_name, 'lnsquare2') def test_fit_powerdecrease3(self): """ Tests a 2D fit that includes an powerdecrease3 dependence function. """ sample_hs, sample_tz, label_hs, label_tz = read_benchmark_dataset() # Define the structure of the probabilistic model that will be fitted to the # dataset. dist_description_hs = {'name': 'Weibull_Exp', 'dependency': (None, None, None, None), # Shape, Location, Scale, Shape2 'width_of_intervals': 0.5} dist_description_tz = {'name': 'Lognormal_SigmaMu', 'dependency': (0, None, 0), # Shape, Location, Scale 'functions': ('powerdecrease3', None, 'lnsquare2') # Shape, Location, Scale } # Fit the model to the data. fit = Fit((sample_hs, sample_tz), (dist_description_hs, dist_description_tz)) # Check whether the logarithmic square fit worked correctly. dist1 = fit.mul_var_dist.distributions[1] self.assertGreater(dist1.shape.a, -0.1) # Should be about 0 self.assertLess(dist1.shape.a, 0.1) # Should be about 0 self.assertGreater(dist1.shape.b, 1.5) # Should be about 2-5 self.assertLess(dist1.shape.b, 6) # Should be about 2-10 self.assertGreater(dist1.shape.c, 0.8) # Should be about 1.1 self.assertLess(dist1.shape.c, 2) # Should be about 1.1 self.assertGreater(dist1.shape(0), 0.25) # Should be about 0.35 self.assertLess(dist1.shape(0), 0.4) # Should be about 0.35 self.assertEqual(dist1.shape.func_name, 'powerdecrease3') def test_fit_asymdecrease3(self): """ Tests a 2D fit that includes an asymdecrease3 dependence function. """ sample_hs, sample_tz, label_hs, label_tz = read_benchmark_dataset() # Define the structure of the probabilistic model that will be fitted to the # dataset. dist_description_hs = {'name': 'Weibull_Exp', 'dependency': (None, None, None, None), # Shape, Location, Scale, Shape2 'width_of_intervals': 0.5} dist_description_tz = {'name': 'Lognormal_SigmaMu', 'dependency': (0, None, 0), # Shape, Location, Scale 'functions': ('asymdecrease3', None, 'lnsquare2') # Shape, Location, Scale } # Fit the model to the data. fit = Fit((sample_hs, sample_tz), (dist_description_hs, dist_description_tz)) # Check whether the logarithmic square fit worked correctly. dist1 = fit.mul_var_dist.distributions[1] self.assertAlmostEqual(dist1.shape.a, 0, delta=0.1) # Should be about 0 self.assertAlmostEqual(dist1.shape.b, 0.35, delta=0.4) # Should be about 0.35 self.assertAlmostEqual(np.abs(dist1.shape.c), 0.45, delta=0.2) # Should be about 0.45 self.assertAlmostEquals(dist1.shape(0), 0.35, delta=0.2) # Should be about 0.35 def test_min_number_datapoints_for_fit(self): """ Tests if the minimum number of datapoints required for a fit works. """ sample_hs, sample_tz, label_hs, label_tz = read_benchmark_dataset() # Define the structure of the probabilistic model that will be fitted to the # dataset. dist_description_hs = {'name': 'Weibull_Exp', 'dependency': (None, None, None, None), # Shape, Location, Scale, Shape2 'width_of_intervals': 0.5} dist_description_tz = {'name': 'Lognormal_SigmaMu', 'dependency': (0, None, 0), # Shape, Location, Scale 'functions': ('exp3', None, 'lnsquare2'), # Shape, Location, Scale 'min_datapoints_for_fit': 10 } # Fit the model to the data. fit = Fit((sample_hs, sample_tz), (dist_description_hs, dist_description_tz)) # Check whether the logarithmic square fit worked correctly. dist1 = fit.mul_var_dist.distributions[1] a_min_10 = dist1.scale.a # Now require more datapoints for a fit. dist_description_tz = {'name': 'Lognormal_SigmaMu', 'dependency': (0, None, 0), # Shape, Location, Scale 'functions': ('exp3', None, 'lnsquare2'), # Shape, Location, Scale 'min_datapoints_for_fit': 500 } # Fit the model to the data. fit = Fit((sample_hs, sample_tz), (dist_description_hs, dist_description_tz)) # Check whether the logarithmic square fit worked correctly. dist1 = fit.mul_var_dist.distributions[1] a_min_500 = dist1.scale.a # Because in case 2 fewer bins have been used we should get different # coefficients for the dependence function. self.assertNotEqual(a_min_10, a_min_500) def test_multi_processing(selfs): """ 2-d Fit with multiprocessing (specified by setting a value for timeout) """ # Define a sample and a fit. prng = np.random.RandomState(42) sample_1 = prng.weibull(1.5, 1000)*3 sample_2 = [0.1 + 1.5 * np.exp(0.2 * point) + prng.lognormal(2, 0.2) for point in sample_1] dist_description_0 = {'name': 'Weibull', 'dependency': (None, None, None), 'width_of_intervals': 2} dist_description_1 = {'name': 'Lognormal', 'dependency': (None, None, 0), 'functions': (None, None, 'exp3')} # Compute the fit. my_fit = Fit((sample_1, sample_2), (dist_description_0, dist_description_1), timeout=10) def test_wbl_fit_with_negative_location(self): """ Tests fitting a translated Weibull distribution which would result in a negative location parameter. """ sample_hs, sample_tz, label_hs, label_tz = read_benchmark_dataset() # Define the structure of the probabilistic model that will be fitted to the # dataset. dist_description_hs = {'name': 'Weibull_3p', 'dependency': (None, None, None)} # Fit the model to the data. fit = Fit((sample_hs, ), (dist_description_hs, )) # Correct values for 10 years of data can be found in # 10.1115/OMAE2019-96523 . Here we used 1 year of data. dist0 = fit.mul_var_dist.distributions[0] self.assertAlmostEqual(dist0.shape(0) / 10, 1.48 / 10, places=1) self.assertGreater(dist0.loc(0), 0.0) # Should be 0.0981 self.assertLess(dist0.loc(0), 0.3) # Should be 0.0981 self.assertAlmostEqual(dist0.scale(0), 0.944, places=1) # Shift the wave data with -1 m and fit again. sample_hs = sample_hs - 2 # Negative location values will be set to zero instead and a # warning will be raised. with self.assertWarns(RuntimeWarning): fit = Fit((sample_hs, ), (dist_description_hs, )) dist0 = fit.mul_var_dist.distributions[0] self.assertAlmostEqual(dist0.shape(0) / 10, 1.48 / 10, places=1) # Should be estimated to be 0.0981 - 2 and corrected to be 0. self.assertEqual(dist0.loc(0), 0) self.assertAlmostEqual(dist0.scale(0), 0.944, places=1) def test_omae2020_wind_wave_model(self): """ Tests fitting the wind-wave model that was used in the publication 'Global hierarchical models for wind and wave contours' on dataset D. """ sample_v, sample_hs, label_v, label_hs = read_benchmark_dataset(path='tests/testfiles/1year_dataset_D.txt') # Define the structure of the probabilistic model that will be fitted to the # dataset. dist_description_v = {'name': 'Weibull_Exp', 'dependency': (None, None, None, None), 'width_of_intervals': 2} dist_description_hs = {'name': 'Weibull_Exp', 'fixed_parameters' : (None, None, None, 5), # shape, location, scale, shape2 'dependency': (0, None, 0, None), # shape, location, scale, shape2 'functions': ('logistics4', None, 'alpha3', None), # shape, location, scale, shape2 'min_datapoints_for_fit': 20} # Fit the model to the data. fit = Fit((sample_v, sample_hs), (dist_description_v, dist_description_hs)) dist0 = fit.mul_var_dist.distributions[0] self.assertAlmostEqual(dist0.shape(0), 2.42, delta=1) self.assertAlmostEqual(dist0.scale(0), 10.0, delta=2) self.assertAlmostEqual(dist0.shape2(0), 0.761, delta=0.5) dist1 = fit.mul_var_dist.distributions[1] self.assertEqual(dist1.shape2(0), 5) inspection_data1 = fit.multiple_fit_inspection_data[1] self.assertEqual(inspection_data1.shape2_value[0], 5) self.assertAlmostEqual(inspection_data1.shape_value[0], 0.8, delta=0.5) # interval centered at 1 self.assertAlmostEqual(inspection_data1.shape_value[4], 1.5, delta=0.5) # interval centered at 9 self.assertAlmostEqual(inspection_data1.shape_value[9], 2.5, delta=1) # interval centered at 19 self.assertAlmostEqual(dist1.shape(0), 0.8, delta=0.3) self.assertAlmostEqual(dist1.shape(10), 1.6, delta=0.5) self.assertAlmostEqual(dist1.shape(20), 2.3, delta=0.7) self.assertAlmostEqual(dist1.shape.a, 0.582, delta=0.5) self.assertAlmostEqual(dist1.shape.b, 1.90, delta=1) self.assertAlmostEqual(dist1.shape.c, 0.248, delta=0.5) self.assertAlmostEqual(dist1.shape.d, 8.49, delta=5) self.assertAlmostEqual(inspection_data1.scale_value[0], 0.15, delta=0.2) # interval centered at 1 self.assertAlmostEqual(inspection_data1.scale_value[4], 1, delta=0.5) # interval centered at 9 self.assertAlmostEqual(inspection_data1.scale_value[9], 4, delta=1) # interval centered at 19 self.assertAlmostEqual(dist1.scale(0), 0.15, delta=0.5) self.assertAlmostEqual(dist1.scale(10), 1, delta=0.5) self.assertAlmostEqual(dist1.scale(20), 4, delta=1) self.assertAlmostEqual(dist1.scale.a, 0.394, delta=0.5) self.assertAlmostEqual(dist1.scale.b, 0.0178, delta=0.1) self.assertAlmostEqual(dist1.scale.c, 1.88, delta=0.8) def test_wrong_model(self): """ Tests wheter errors are raised when incorrect fitting models are specified. """ sample_v, sample_hs, label_v, label_hs = read_benchmark_dataset(path='tests/testfiles/1year_dataset_D.txt') # This structure is incorrect as there is not distribution called 'something'. dist_description_v = {'name': 'something', 'dependency': (None, None, None, None), 'fixed_parameters': (None, None, None, None), # shape, location, scale, shape2 'width_of_intervals': 2} with self.assertRaises(ValueError): # Fit the model to the data. fit = Fit((sample_v, ), (dist_description_v, )) # This structure is incorrect as there is not dependence function called 'something'. dist_description_v = {'name': 'Weibull_Exp', 'dependency': (None, None, None, None), 'width_of_intervals': 2} dist_description_hs = {'name': 'Weibull_Exp', 'dependency': (0, None, 0, None), # shape, location, scale, shape2 'functions': ('something', None, 'alpha3', None), # shape, location, scale, shape2 'min_datapoints_for_fit': 20} with self.assertRaises(ValueError): # Fit the model to the data. fit = Fit((sample_v, sample_hs), (dist_description_v, dist_description_hs)) # This structure is incorrect as there will be only 1 or 2 intervals # that fit 2000 datapoints. dist_description_v = {'name': 'Weibull_Exp', 'dependency': (None, None, None, None), 'width_of_intervals': 2} dist_description_hs = {'name': 'Weibull_Exp', 'dependency': (0, None, 0, None), # shape, location, scale, shape2 'functions': ('logistics4', None, 'alpha3', None), # shape, location, scale, shape2 'min_datapoints_for_fit': 2000} with self.assertRaises(RuntimeError): # Fit the model to the data. fit = Fit((sample_v, sample_hs), (dist_description_v, dist_description_hs)) # This structure is incorrect as alpha3 is only compatible with # logistics4 . dist_description_v = {'name': 'Weibull_Exp', 'dependency': (None, None, None, None), 'width_of_intervals': 2} dist_description_hs = {'name': 'Weibull_Exp', 'fixed_parameters' : (None, None, None, 5), # shape, location, scale, shape2 'dependency': (0, None, 0, None), # shape, location, scale, shape2 'functions': ('power3', None, 'alpha3', None), # shape, location, scale, shape2 'min_datapoints_for_fit': 20} with self.assertRaises(TypeError): # Fit the model to the data. fit = Fit((sample_v, sample_hs), (dist_description_v, dist_description_hs)) # This structure is incorrect as only shape2 of an exponentiated Weibull # distribution can be fixed at the moment. dist_description_v = {'name': 'Lognormal', 'dependency': (None, None, None, None), 'fixed_parameters': (None, None, 5, None), # shape, location, scale, shape2 'width_of_intervals': 2} with self.assertRaises(NotImplementedError): # Fit the model to the data. fit = Fit((sample_v, ), (dist_description_v, )) # This structure is incorrect as only shape2 of an exponentiated Weibull # distribution can be fixed at the moment. dist_description_v = {'name': 'Weibull_Exp', 'dependency': (None, None, None, None), 'width_of_intervals': 2} dist_description_hs = {'name': 'Weibull_Exp', 'fixed_parameters' : (None, None, 5, None), # shape, location, scale, shape2 'dependency': (0, None, 0, None), # shape, location, scale, shape2 'functions': ('logistics4', None, 'alpha3', None), # shape, location, scale, shape2 'min_datapoints_for_fit': 20} with self.assertRaises(NotImplementedError): # Fit the model to the data. fit = Fit((sample_v, sample_hs), (dist_description_v, dist_description_hs)) def test_weighting_of_dependence_function(self): """ Tests if using weights when the dependence function is fitted works correctly. """ sample_v, sample_hs, label_v, label_hs = read_benchmark_dataset(path='tests/testfiles/1year_dataset_D.txt') # Define the structure of the probabilistic model that will be fitted to the # dataset. dist_description_v = {'name': 'Weibull_Exp', 'dependency': (None, None, None, None), 'width_of_intervals': 2} dist_description_hs = {'name': 'Weibull_Exp', 'fixed_parameters' : (None, None, None, 5), # shape, location, scale, shape2 'dependency': (0, None, 0, None), # shape, location, scale, shape2 'functions': ('logistics4', None, 'alpha3', None), # shape, location, scale, shape2 'min_datapoints_for_fit': 20, 'do_use_weights_for_dependence_function': False} # Fit the model to the data. fit = Fit((sample_v, sample_hs), (dist_description_v, dist_description_hs)) dist1_no_weights = fit.mul_var_dist.distributions[1] # Now perform a fit with weights. dist_description_hs = {'name': 'Weibull_Exp', 'fixed_parameters' : (None, None, None, 5), # shape, location, scale, shape2 'dependency': (0, None, 0, None), # shape, location, scale, shape2 'functions': ('logistics4', None, 'alpha3', None), # shape, location, scale, shape2 'min_datapoints_for_fit': 20, 'do_use_weights_for_dependence_function': True} # Fit the model to the data. fit = Fit((sample_v, sample_hs), (dist_description_v, dist_description_hs)) dist1_with_weights = fit.mul_var_dist.distributions[1] # Make sure the two fitted dependnece functions are different. d = np.abs(dist1_with_weights.scale(0) - dist1_no_weights.scale(0)) / \ np.abs(dist1_no_weights.scale(0)) self.assertGreater(d, 0.01) # Make sure they are not too different. d = np.abs(dist1_with_weights.scale(20) - dist1_no_weights.scale(20)) / \ np.abs(dist1_no_weights.scale(20)) self.assertLess(d, 0.5)
46.563847
121
0.561044
26,704
0.951065
0
0
0
0
0
0
9,823
0.349847
81b9e4775c9ff677415dc6ea782a4181f1639a50
22,100
py
Python
python/scripts/wavsep/wavsep.py
rugheid/OSS-ZAP
d486dde326a9120c9ddd52a3d4dcf1b9a2b4d042
[ "Apache-2.0" ]
4
2016-08-11T05:35:26.000Z
2021-11-15T11:27:28.000Z
python/scripts/wavsep/wavsep.py
rugheid/OSS-ZAP
d486dde326a9120c9ddd52a3d4dcf1b9a2b4d042
[ "Apache-2.0" ]
1
2018-06-12T13:55:16.000Z
2018-06-12T15:27:59.000Z
python/scripts/wavsep/wavsep.py
rugheid/OSS-ZAP
d486dde326a9120c9ddd52a3d4dcf1b9a2b4d042
[ "Apache-2.0" ]
12
2018-05-15T10:14:00.000Z
2019-11-10T07:03:16.000Z
# Zed Attack Proxy (ZAP) and its related class files. # # ZAP is an HTTP/HTTPS proxy for assessing web application security. # # Copyright 2012 ZAP Development Team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This script tests ZAP against wavsep: http://code.google.com/p/wavsep/ # Note wavsep has to be installed somewhere - the above link is to the # project not the test suite! # # To this script: # * Install the ZAP Python API: # Use 'pip install python-owasp-zap-v2' or # download from https://github.com/zaproxy/zaproxy/wiki/Downloads # * Start ZAP (as this is for testing purposes you might not want the # 'standard' ZAP to be started) # * Access wavsep via your browser, proxying through ZAP # * Vist all of the wavsep top level URLs, eg # http://localhost:8080/wavsep/index-active.jsp # http://localhost:8080/wavsep/index-passive.jsp # * Run the Spider against http://localhost:8080 # * Run the Active Scanner against http://localhost:8080/wavsep # * Run this script # * Open the report.html file generated in your browser # # Notes: # This has been tested against wavsep 1.5 from zapv2 import ZAPv2 import datetime, sys, getopt def main(argv): # ------------------------------------------------------------------------- # Default Configurations - use -h and -p for different host and port # ------------------------------------------------------------------------- zapHost = '127.0.0.1' zapPort = '8090' try: opts, args = getopt.getopt(argv,"h:p:") except getopt.GetoptError: print 'wavsep.py -h <ZAPhost> -p <ZAPport>' sys.exit(2) for opt, arg in opts: if opt == '-h': zapHost = arg elif opt == '-p': zapPort = arg zapUrl = 'http://' + zapHost + ':' + zapPort # Dictionary of abbreviation to keep the output a bit shorter abbrev = { 'Active Vulnerability title' : 'Ex',\ 'Cross Site Scripting (DOM Based)' : 'DXSS',\ 'Cross Site Scripting (Reflected)' : 'RXSS',\ 'Absence of Anti-CSRF Tokens' : 'NoCSRF',\ 'Application Error Disclosure' : 'AppError',\ 'Anti CSRF Tokens Scanner' : 'ACSRF',\ 'Buffer Overflow' : 'Buffer',\ 'Cookie set without HttpOnly flag' : 'HttpOnly',\ 'Cookie Slack Detector' : 'CookieSlack',\ 'Cross Site Request Forgery' : 'CSRF',\ 'External Redirect' : 'ExtRedir',\ 'Format String Error' : 'Format',\ 'HTTP Parameter Override' : 'ParamOver',\ 'Information disclosure - database error messages' : 'InfoDb',\ 'Information disclosure - debug error messages' : 'InfoDebug',\ 'Information Disclosure - Sensitive Informations in URL' : 'InfoUrl',\ 'LDAP Injection' : 'LDAP',\ 'Loosely Scoped Cookie' : 'CookieLoose',\ 'None. Warning only.' : 'NoCSRF2',\ 'Password Autocomplete in browser' : 'Auto',\ 'Path Traversal' : 'PathTrav',\ 'Private IP Disclosure' : 'PrivIP',\ 'Remote File Inclusion' : 'RFI',\ 'Session ID in URL Rewrite' : 'SessRewrite',\ 'Source Code Disclosure - File Inclusion' : 'SrcInc',\ 'SQL Injection' : 'SQLi',\ 'SQL Injection - MySQL' : 'SqlMySql',\ 'SQL Injection - Generic SQL RDBMS' : 'SqlGen',\ 'SQL Injection - Boolean Based' : 'SqlBool',\ 'SQL Injection - Error Based - Generic SQL RDBMS' : 'SqlGenE',\ 'SQL Injection - Error Based - MySQL' : 'SqlMySqlE',\ 'SQL Injection - Error Based - Java' : 'SqlJavaE',\ 'SQL Injection - Hypersonic SQL - Time Based' : 'SqlHyperT',\ 'SQL Injection - MySQL - Time Based' : 'SqlMySqlT',\ 'SQL Injection - Oracle - Time Based' : 'SqlOracleT',\ 'SQL Injection - PostgreSQL - Time Based' : 'SqlPostgreT',\ 'URL Redirector Abuse' : 'UrlRedir',\ 'Viewstate without MAC signature (Unsure)' : 'ViewstateNoMac',\ 'Weak Authentication Method' : 'WeakAuth',\ 'Web Browser XSS Protection Not Enabled' : 'XSSoff',\ 'X-Content-Type-Options Header Missing' : 'XContent',\ 'X-Frame-Options Header Not Set' : 'XFrame'} # The rules to apply: # Column 1: String to match against an alert URL # Column 2: Alert abbreviation to match # Column 3: pass, fail, ignore # rules = [ \ # All these appear to be valid ;) ['-', 'InfoDebug', 'ignore'], \ ['-', 'InfoUrl', 'ignore'], \ ['-', 'ACSRF', 'ignore'], \ ['-', 'ACSRF', 'ignore'], \ ['-', 'Ex', 'ignore'], \ ['-', 'CookieLoose', 'ignore'], \ ['-', 'CookieSlack', 'ignore'], \ ['-', 'NoCSRF2', 'ignore'], \ ['-', 'ParamOver', 'ignore'], \ ['-', 'PrivIP', 'ignore'], \ ['-', 'SrcInc', 'ignore'], \ ['-', 'XFrame', 'ignore'], \ ['-', 'XContent', 'ignore'], \ ['-', 'XSSoff', 'ignore'], \ ['LFI-', 'AppError', 'ignore'], \ ['LFI-', 'Buffer', 'ignore'], \ ['LFI-', 'Format', 'ignore'], \ ['LFI-', 'NoCSRF', 'ignore'], \ ['LFI-', 'RFI', 'ignore'], \ ['LFI-', 'DXSS', 'ignore'], \ ['LFI-', 'RXSS', 'ignore'], \ ['LFI-', 'SqlHyperT', 'ignore'], \ ['LFI-', 'SqlMySql', 'ignore'], \ ['LFI-', 'SqlOracleT', 'ignore'], \ ['LFI-', 'SqlPostgreT', 'ignore'], \ ['Redirect-', 'LDAP', 'ignore'], \ ['Redirect-', 'NoCSRF', 'ignore'], \ ['Redirect-', 'RFI', 'ignore'], \ ['Redirect-', 'DXSS', 'ignore'], \ ['Redirect-', 'RXSS', 'ignore'], \ ['Redirect-', 'SqlHyperT', 'ignore'], \ ['Redirect-', 'SqlMySql', 'ignore'], \ ['Redirect-', 'SqlOracleT', 'ignore'], \ ['Redirect-', 'SqlPostgreT', 'ignore'], \ ['RFI-', 'AppError', 'ignore'], \ ['RFI-', 'Buffer', 'ignore'], \ ['RFI-', 'Format', 'ignore'], \ ['RFI-', 'NoCSRF', 'ignore'], \ ['RFI-', 'DXSS', 'ignore'], \ ['RFI-', 'RXSS', 'ignore'], \ ['RFI-', 'SqlHyperT', 'ignore'], \ ['RFI-', 'SqlMySql', 'ignore'], \ ['RFI-', 'SqlOracleT', 'ignore'], \ ['RFI-', 'SqlPostgreT', 'ignore'], \ ['RXSS-', 'Auto', 'ignore'], \ ['RXSS-', 'Buffer', 'ignore'], \ ['RXSS-', 'Format', 'ignore'], \ ['RXSS-', 'HttpOnly', 'ignore'], \ ['RXSS-', 'NoCSRF', 'ignore'], \ ['RXSS-', 'SqlOracleT', 'ignore'], \ ['RXSS-', 'SqlPostgreT', 'ignore'], \ ['RXSS-', 'SqlMySql', 'ignore'], \ ['RXSS-', 'SqlOracleT', 'ignore'], \ ['RXSS-', 'ViewstateNoMac', 'ignore'], \ ['SInjection-', 'AppError', 'ignore'], \ ['SInjection-', 'Auto', 'ignore'], \ ['SInjection-', 'Buffer', 'ignore'], \ ['SInjection-', 'NoCSRF', 'ignore'], \ ['SInjection-', 'Format', 'ignore'], \ ['SInjection-', 'LDAP', 'ignore'], \ ['SInjection-', 'RXSS', 'ignore'], \ ['SInjection-', 'SqlHyperT', 'ignore'], \ ['LoginBypass', 'Auto', 'ignore'], \ ['CrlfRemovalInHttpHeader', 'HttpOnly', 'ignore'], \ ['Tag2HtmlPageScopeValidViewstateRequired', 'ViewstateNoMac', 'ignore'], \ ['session-password-autocomplete', 'NoCSRF', 'ignore'], \ # ['LFI-Detection-Evaluation', 'PathTrav', 'pass'], \ ['LFI-FalsePositives', 'PathTrav', 'fail'], \ ['Redirect-', 'ExtRedir', 'pass'], \ ['RFI-Detection-Evaluation', 'RFI', 'pass'], \ ['RFI-FalsePositives', 'RFI', 'fail'], \ ['RXSS-Detection-Evaluation', 'DXSS', 'pass'], \ ['RXSS-Detection-Evaluation', 'RXSS', 'pass'], \ ['RXSS-FalsePositives-GET', 'DXSS', 'fail'], \ ['RXSS-FalsePositives-GET', 'RXSS', 'fail'], \ ['SInjection-Detection-Evaluation', 'SQLfp', 'pass'], \ ['SInjection-Detection-Evaluation', 'SQLi', 'pass'], \ #['SInjection-Detection-Evaluation', 'SqlHyper', 'pass'], \ ['SInjection-Detection-Evaluation', 'SqlBool', 'pass'], \ ['SInjection-Detection-Evaluation', 'SqlGen', 'pass'], \ ['SInjection-Detection-Evaluation', 'SqlGenE', 'pass'], \ ['SInjection-Detection-Evaluation', 'SqlMySql', 'pass'], \ ['SInjection-Detection-Evaluation', 'SqlMySqlE', 'pass'], \ ['SInjection-Detection-Evaluation', 'SqlMySqlT', 'pass'], \ ['SInjection-Detection-Evaluation', 'SqlOracleT', 'pass'], \ ['SInjection-Detection-Evaluation', 'SqlPostgreT', 'pass'], \ ['SInjection-FalsePositives', 'SQLfp', 'fail'], \ ['SInjection-FalsePositives', 'SQLi', 'fail'], \ ['SInjection-FalsePositives', 'SqlBool', 'fail'], \ ['SInjection-FalsePositives', 'SqlGen', 'fail'], \ ['SInjection-FalsePositives', 'SqlGenE', 'fail'], \ ['SInjection-FalsePositives', 'SqlMySql', 'fail'], \ ['SInjection-FalsePositives', 'SqlMySqlE', 'fail'], \ ['SInjection-FalsePositives', 'SqlMySqlT', 'fail'], \ ['SInjection-FalsePositives', 'SqlHyperT', 'fail'], \ ['SInjection-FalsePositives', 'SqlMySqlT', 'fail'], \ ['SInjection-FalsePositives', 'SqlOracleT', 'fail'], \ ['SInjection-FalsePositives', 'SqlPostgreT', 'fail'], \ ['info-cookie-no-httponly', 'HttpOnly', 'pass'], \ ['info-server-stack-trace', 'AppError', 'pass'], \ ['session-password-autocomplete', 'Auto', 'pass'], \ ['weak-authentication-basic', 'WeakAuth', 'pass'], \ ] zap = ZAPv2(proxies={'http': zapUrl, 'https': zapUrl}) uniqueUrls = set([]) # alertsPerUrl is a disctionary of urlsummary to a dictionary of type to set of alertshortnames ;) alertsPerUrl = {} plugins = set([]) alertPassCount = {} alertFailCount = {} alertIgnoreCount = {} alertOtherCount = {} zapVersion = zap.core.version totalAlerts = 0 offset = 0 page = 100 # Page through the alerts as otherwise ZAP can hang... alerts = zap.core.alerts('', offset, page) while len(alerts) > 0: totalAlerts += len(alerts) for alert in alerts: url = alert.get('url') # Grab the url before any '?' url = url.split('?')[0] #print 'URL: ' + url urlEl = url.split('/') if (len(urlEl) > 6): #print 'URL 4:' + urlEl[4] + ' 6:' + urlEl[6].split('-')[0] if (urlEl[3] != 'wavsep'): print 'Ignoring non wavsep URL 4:' + urlEl[4] + ' URL 5:' + urlEl[5] + ' URL 6:' + urlEl[6] continue if (urlEl[6].split('-')[0][:9] == 'index.jsp'): #print 'Ignoring index URL 4:' + urlEl[4] + ' URL 5:' + urlEl[5] + ' URL 6:' + urlEl[6] continue if (len(urlEl) > 7 and urlEl[4] == 'active'): if (urlEl[7].split('-')[0][:4] != 'Case'): #print 'Ignoring index URL 4:' + urlEl[4] + ' URL 5:' + urlEl[5] + ' URL 6:' + urlEl[6] + ' URL 7:' + urlEl[7] continue urlSummary = urlEl[4] + ' : ' + urlEl[5] + ' : ' + urlEl[6] + ' : ' + urlEl[7].split('-')[0] else: # Passive URLs have different format urlSummary = urlEl[4] + ' : ' + urlEl[5] + ' : ' + urlEl[6] #print 'URL summary:' + urlSummary short = abbrev.get(alert.get('alert')) if (short is None): short = 'UNKNOWN' print 'Unknown alert: ' + alert.get('alert') aDict = alertsPerUrl.get(urlSummary, {'pass' : set([]), 'fail' : set([]), 'ignore' : set([]), 'other' : set([])}) added = False for rule in rules: if (rule[0] in urlSummary and rule[1] == short): aDict[rule[2]].add(short) # Counts per alert if (rule[2] == 'pass'): alertPassCount[short] = alertPassCount.get(short, 0) + 1 elif (rule[2] == 'fail'): alertFailCount[short] = alertFailCount.get(short, 0) + 1 elif (rule[2] == 'ignore'): alertIgnoreCount[short] = alertIgnoreCount.get(short, 0) + 1 added = True break if (not added): aDict['other'].add(short) alertOtherCount[short] = alertOtherCount.get(short, 0) + 1 alertsPerUrl[urlSummary] = aDict plugins.add(alert.get('alert')) uniqueUrls.add(url) offset += page alerts = zap.core.alerts('', offset, page) #for key, value in alertsPerUrl.iteritems(): # print key, value # Generate report file reportFile = open('report.html', 'w') reportFile.write("<html>\n") reportFile.write(" <head>\n") reportFile.write(" <title>ZAP Wavsep Report</title>\n") reportFile.write(" <!--Load the AJAX API-->\n") reportFile.write(" <script type=\"text/javascript\" src=\"https://www.google.com/jsapi\"></script>\n") reportFile.write(" </head>\n") reportFile.write("<body>\n") reportFile.write("<h1><img src=\"https://raw.githubusercontent.com/zaproxy/zaproxy/develop/src/resource/zap64x64.png\" align=\"middle\">OWASP ZAP wavsep results</h1>\n") reportFile.write("Generated: " + datetime.datetime.now().strftime("%Y-%m-%d %H:%M") + "\n") topResults = [] thisTop = ['', 0, 0] groupResults = [] thisGroup = ['', 0, 0] totalPass = 0 totalFail = 0 # Calculate the top level scores for key, value in sorted(alertsPerUrl.iteritems()): top = key.split(' : ')[1] if ('-' in top): top = top.split('-')[0] + '-' + top.split('-')[1] if (top != thisTop[0]): thisTop = [top, 0, 0] # top, pass, fail topResults.append(thisTop) if (len(value.get('pass')) > 0): thisTop[1] += 1 elif (len(value.get('fail')) > 0): thisTop[2] += 1 elif ('FalsePositive' in key): thisTop[1] += 1 else: thisTop[2] += 1 # Calculate the group scores for key, value in sorted(alertsPerUrl.iteritems()): group = key.split(' : ')[1] if (group != thisGroup[0]): thisGroup = [group, 0, 0] # group, pass, fail groupResults.append(thisGroup) if (len(value.get('pass')) > 0): totalPass += 1 thisGroup[1] += 1 elif (len(value.get('fail')) > 0): totalFail += 1 thisGroup[2] += 1 elif ('FalsePositive' in key): totalPass += 1 thisGroup[1] += 1 else: totalFail += 1 thisGroup[2] += 1 # Output the summary scale=8 reportFile.write("<h3>Total Score</h3>\n") reportFile.write("<font style=\"BACKGROUND-COLOR: GREEN\">") for i in range (totalPass/scale): reportFile.write("&nbsp;") reportFile.write("</font>") reportFile.write("<font style=\"BACKGROUND-COLOR: RED\">") for i in range (totalFail/scale): reportFile.write("&nbsp;") reportFile.write("</font>") total = 100 * totalPass / (totalPass + totalFail) reportFile.write(str(total) + "%<br/><br/>\n") reportFile.write('ZAP Version: ' + zapVersion + '<br/>\n') reportFile.write('URLs found: ' + str(len(uniqueUrls))) # Output the top level table reportFile.write("<h3>Top Level Scores</h3>\n") reportFile.write("<table border=\"1\">\n") reportFile.write("<tr><th>Top Level</th><th>Pass</th><th>Fail</th><th>Score</th><th>Chart</th></tr>\n") scale=6 for topResult in topResults: #print "%s Pass: %i Fail: %i Score: %i\%" % (topResult[0], topResult[1], topResult[2], (100*topResult[1]/topResult[1]+topResult[2])) reportFile.write("<tr>") reportFile.write("<td>" + topResult[0] + "</td>") reportFile.write("<td align=\"right\">" + str(topResult[1]) + "</td>") reportFile.write("<td align=\"right\">" + str(topResult[2]) + "</td>") score = 100 * topResult[1] / (topResult[1] + topResult[2]) reportFile.write("<td align=\"right\">" + str(score) + "%</td>") reportFile.write("<td>") reportFile.write("<font style=\"BACKGROUND-COLOR: GREEN\">") for i in range (topResult[1]/scale): reportFile.write("&nbsp;") reportFile.write("</font>") reportFile.write("<font style=\"BACKGROUND-COLOR: RED\">") for i in range (topResult[2]/scale): reportFile.write("&nbsp;") reportFile.write("</font>") reportFile.write("</td>") reportFile.write("</tr>\n") reportFile.write("</table><br/>\n") reportFile.write("<h3>Alerts</h3>\n") reportFile.write("<table border=\"1\">\n") reportFile.write("<tr><th>Alert</th><th>Description</th><th>Pass</th><th>Fail</th><th>Ignore</th><th>Other</th></tr>\n") #for key, value in abbrev.items(): for (k, v) in sorted(abbrev.items(), key=lambda (k,v): v): reportFile.write("<tr>") reportFile.write("<td>" + v + "</td>") reportFile.write("<td>" + k + "</td>") reportFile.write("<td>" + str(alertPassCount.get(v, 0)) +"&nbsp;</td>") reportFile.write("<td>" + str(alertFailCount.get(v, 0)) +"&nbsp;</td>") reportFile.write("<td>" + str(alertIgnoreCount.get(v, 0)) +"&nbsp;</td>") reportFile.write("<td>" + str(alertOtherCount.get(v, 0)) +"&nbsp;</td>") reportFile.write("</tr>\n") reportFile.write("</table><br/>\n") # Output the group table reportFile.write("<h3>Group Scores</h3>\n") reportFile.write("<table border=\"1\">\n") reportFile.write("<tr><th>Group</th><th>Pass</th><th>Fail</th><th>Score</th><th>Chart</th></tr>\n") scale=4 for groupResult in groupResults: #print "%s Pass: %i Fail: %i Score: %i\%" % (groupResult[0], groupResult[1], groupResult[2], (100*groupResult[1]/groupResult[1]+groupResult[2])) reportFile.write("<tr>") reportFile.write("<td>" + groupResult[0] + "</td>") reportFile.write("<td align=\"right\">" + str(groupResult[1]) + "</td>") reportFile.write("<td align=\"right\">" + str(groupResult[2]) + "</td>") score = 100 * groupResult[1] / (groupResult[1] + groupResult[2]) reportFile.write("<td align=\"right\">" + str(score) + "%</td>") reportFile.write("<td>") reportFile.write("<font style=\"BACKGROUND-COLOR: GREEN\">") for i in range (groupResult[1]/scale): reportFile.write("&nbsp;") reportFile.write("</font>") reportFile.write("<font style=\"BACKGROUND-COLOR: RED\">") for i in range (groupResult[2]/scale): reportFile.write("&nbsp;") reportFile.write("</font>") reportFile.write("</td>") reportFile.write("</tr>\n") reportFile.write("</table><br/>\n") # Output the detail table reportFile.write("<h3>Detailed Results</h3>\n") reportFile.write("<table border=\"1\">\n") reportFile.write("<tr><th>Page</th><th>Result</th><th>Pass</th><th>Fail</th><th>Ignore</th><th>Other</th></tr>\n") for key, value in sorted(alertsPerUrl.iteritems()): reportFile.write("<tr>") keyArray = key.split(':') if (len(keyArray) == 4): reportFile.write("<td>" + keyArray[0] + keyArray[2] + keyArray[3] + "</td>") else: reportFile.write("<td>" + keyArray[0] + keyArray[2] + "</td>") reportFile.write("<td>") if (len(value.get('pass')) > 0): reportFile.write("<font style=\"BACKGROUND-COLOR: GREEN\">&nbsp;PASS&nbsp</font>") elif (len(value.get('fail')) > 0): reportFile.write("<font style=\"BACKGROUND-COLOR: RED\">&nbsp;FAIL&nbsp</font>") elif ('FalsePositive' in key): reportFile.write("<font style=\"BACKGROUND-COLOR: GREEN\">&nbsp;PASS&nbsp</font>") else: reportFile.write("<font style=\"BACKGROUND-COLOR: RED\">&nbsp;FAIL&nbsp</font>") reportFile.write("</td>") reportFile.write("<td>") if (value.get('pass') is not None): reportFile.write(" ".join(value.get('pass'))) reportFile.write("&nbsp;</td>") reportFile.write("<td>") if (value.get('fail') is not None): reportFile.write(" ".join(value.get('fail'))) reportFile.write("&nbsp;</td>") reportFile.write("<td>") if (value.get('ignore') is not None): reportFile.write(" ".join(value.get('ignore'))) reportFile.write("&nbsp;</td>") reportFile.write("<td>") if (value.get('other') is not None): reportFile.write(" ".join(value.get('other'))) reportFile.write("&nbsp;</td>") reportFile.write("</tr>\n") reportFile.write("</table><br/>\n") reportFile.write("<h3>Plugin Times</h3>\n") # The start of the chart script reportFile.write("<script type=\"text/javascript\">\n") reportFile.write(" // Load the Visualization API and the piechart package.\n") reportFile.write(" google.load('visualization', '1.0', {'packages':['corechart']});\n") reportFile.write(" // Set a callback to run when the Google Visualization API is loaded.\n") reportFile.write(" google.setOnLoadCallback(drawChart);\n") reportFile.write(" function drawChart() {\n") reportFile.write(" // Create the data table.\n") reportFile.write(" var data = new google.visualization.DataTable();\n") reportFile.write(" data.addColumn('string', 'Plugin');\n") reportFile.write(" data.addColumn('number', 'Time in ms');\n") reportFile.write(" data.addRows([\n") progress = zap.ascan.scan_progress() # Loop through first time for the chart for plugin in progress[1]['HostProcess']: reportFile.write(" ['" + plugin['Plugin'][0] + "', " + plugin['Plugin'][3] + "],\n") # The end of the chart script reportFile.write(" ]);\n") reportFile.write(" // Set chart options\n") reportFile.write(" var options = {'title':'Plugin times',\n") reportFile.write(" 'width':600,\n") reportFile.write(" 'height':500};\n") reportFile.write(" // Instantiate and draw our chart, passing in some options.\n") reportFile.write(" var chart = new google.visualization.PieChart(document.getElementById('chart_div'));\n") reportFile.write(" chart.draw(data, options);\n") reportFile.write(" }\n") reportFile.write("</script>\n") reportFile.write("<div id=\"chart_div\"></div>\n") reportFile.write("<table border=\"1\">\n") reportFile.write("<tr><th>Plugin</th><th>ms</th></tr>\n") # Loop through second time for the table totalTime = 0 for plugin in progress[1]['HostProcess']: reportFile.write("<tr>") reportFile.write("<td>" + plugin['Plugin'][0] + "</td>") # Convert ms into something more readable t = int(plugin['Plugin'][3]) totalTime += t s, ms = divmod(t, 1000) m, s = divmod(s, 60) h, m = divmod(m, 60) time = "%d:%02d:%02d.%03d" % (h, m, s, ms) reportFile.write("<td>" + time + "</td>") reportFile.write("</tr>\n") reportFile.write("<tr><td></td><td></td></tr>") reportFile.write("<tr>") reportFile.write("<td>Total</td>") # Convert ms into something more readable s, ms = divmod(totalTime, 1000) m, s = divmod(s, 60) h, m = divmod(m, 60) time = "%d:%02d:%02d.%03d" % (h, m, s, ms) reportFile.write("<td>" + time + "</td>") reportFile.write("</tr>\n") reportFile.write("</table><br/>\n") reportFile.write("</body></html>\n") reportFile.close() #for key, value in sorted(alertsPerUrl.iteritems()): # print "%s: %s" % (key, value) #print '' print '' print 'Got ' + str(totalAlerts) + ' alerts' print 'Got ' + str(len(uniqueUrls)) + ' unique urls' print 'Took ' + time print 'Score ' + str(total) if __name__ == "__main__": main(sys.argv[1:])
38.368056
170
0.611403
0
0
0
0
0
0
0
0
12,448
0.563258
81ba27f4241d7478bbc576ab7545d0bb01038c41
665
py
Python
ex115/biblioteca/interface/__init__.py
Danilo-Xaxa/python_curso_em_video
9a88e5f579dfc844f936b7759d33e4068b091f09
[ "MIT" ]
4
2021-08-29T02:19:55.000Z
2021-08-30T20:21:30.000Z
ex115/biblioteca/interface/__init__.py
Danilo-Xaxa/python_curso_em_video
9a88e5f579dfc844f936b7759d33e4068b091f09
[ "MIT" ]
null
null
null
ex115/biblioteca/interface/__init__.py
Danilo-Xaxa/python_curso_em_video
9a88e5f579dfc844f936b7759d33e4068b091f09
[ "MIT" ]
null
null
null
def LeiaInt(msg1): pronto = False while True: valor1 = input(msg1) if valor1.isnumeric(): pronto = True else: print('\033[1;31mERRO! FAVOR DIGITAR UM NÚMERO INTEIRO VÁLIDO\033[m') if pronto: break return valor1 def linha(tamanho=42): return '-' * tamanho def cabeçalho(txt): print(linha()) print(txt.center(42)) print(linha()) def menu(lista): cabeçalho('MENU PRINCIPAL') x = 1 for item in lista: print(f'\033[33m{x}\033[m - \033[34m{item}\033[m') x += 1 print(linha()) opç = LeiaInt('\033[32mSua opção: \033[m') return opç
20.78125
81
0.554887
0
0
0
0
0
0
0
0
155
0.230312
81bafa0175de3af83830a52504e9b10d4a89639b
10,439
py
Python
pocketsmith/models/attachment.py
brett-comber/python-pocketsmith-api
a9c7f25abf65e4e022535431dc1d34d6a1bd97e8
[ "MIT" ]
null
null
null
pocketsmith/models/attachment.py
brett-comber/python-pocketsmith-api
a9c7f25abf65e4e022535431dc1d34d6a1bd97e8
[ "MIT" ]
null
null
null
pocketsmith/models/attachment.py
brett-comber/python-pocketsmith-api
a9c7f25abf65e4e022535431dc1d34d6a1bd97e8
[ "MIT" ]
null
null
null
# coding: utf-8 """ PocketSmith The public PocketSmith API # noqa: E501 The version of the OpenAPI document: 2.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from pocketsmith.configuration import Configuration class Attachment(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'content_type': 'str', 'content_type_meta': 'AttachmentContentTypeMeta', 'created_at': 'datetime', 'file_name': 'str', 'id': 'int', 'original_url': 'str', 'title': 'str', 'type': 'str', 'updated_at': 'datetime', 'variants': 'AttachmentVariants' } attribute_map = { 'content_type': 'content_type', 'content_type_meta': 'content_type_meta', 'created_at': 'created_at', 'file_name': 'file_name', 'id': 'id', 'original_url': 'original_url', 'title': 'title', 'type': 'type', 'updated_at': 'updated_at', 'variants': 'variants' } def __init__(self, content_type=None, content_type_meta=None, created_at=None, file_name=None, id=None, original_url=None, title=None, type=None, updated_at=None, variants=None, local_vars_configuration=None): # noqa: E501 """Attachment - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._content_type = None self._content_type_meta = None self._created_at = None self._file_name = None self._id = None self._original_url = None self._title = None self._type = None self._updated_at = None self._variants = None self.discriminator = None if content_type is not None: self.content_type = content_type if content_type_meta is not None: self.content_type_meta = content_type_meta if created_at is not None: self.created_at = created_at if file_name is not None: self.file_name = file_name if id is not None: self.id = id if original_url is not None: self.original_url = original_url if title is not None: self.title = title if type is not None: self.type = type if updated_at is not None: self.updated_at = updated_at if variants is not None: self.variants = variants @property def content_type(self): """Gets the content_type of this Attachment. # noqa: E501 The content type of the attachment. # noqa: E501 :return: The content_type of this Attachment. # noqa: E501 :rtype: str """ return self._content_type @content_type.setter def content_type(self, content_type): """Sets the content_type of this Attachment. The content type of the attachment. # noqa: E501 :param content_type: The content_type of this Attachment. # noqa: E501 :type: str """ self._content_type = content_type @property def content_type_meta(self): """Gets the content_type_meta of this Attachment. # noqa: E501 :return: The content_type_meta of this Attachment. # noqa: E501 :rtype: AttachmentContentTypeMeta """ return self._content_type_meta @content_type_meta.setter def content_type_meta(self, content_type_meta): """Sets the content_type_meta of this Attachment. :param content_type_meta: The content_type_meta of this Attachment. # noqa: E501 :type: AttachmentContentTypeMeta """ self._content_type_meta = content_type_meta @property def created_at(self): """Gets the created_at of this Attachment. # noqa: E501 When the attachment was created # noqa: E501 :return: The created_at of this Attachment. # noqa: E501 :rtype: datetime """ return self._created_at @created_at.setter def created_at(self, created_at): """Sets the created_at of this Attachment. When the attachment was created # noqa: E501 :param created_at: The created_at of this Attachment. # noqa: E501 :type: datetime """ self._created_at = created_at @property def file_name(self): """Gets the file_name of this Attachment. # noqa: E501 The file name of the attachment # noqa: E501 :return: The file_name of this Attachment. # noqa: E501 :rtype: str """ return self._file_name @file_name.setter def file_name(self, file_name): """Sets the file_name of this Attachment. The file name of the attachment # noqa: E501 :param file_name: The file_name of this Attachment. # noqa: E501 :type: str """ self._file_name = file_name @property def id(self): """Gets the id of this Attachment. # noqa: E501 The unique identifier of the attachment # noqa: E501 :return: The id of this Attachment. # noqa: E501 :rtype: int """ return self._id @id.setter def id(self, id): """Sets the id of this Attachment. The unique identifier of the attachment # noqa: E501 :param id: The id of this Attachment. # noqa: E501 :type: int """ self._id = id @property def original_url(self): """Gets the original_url of this Attachment. # noqa: E501 The url of the attachment # noqa: E501 :return: The original_url of this Attachment. # noqa: E501 :rtype: str """ return self._original_url @original_url.setter def original_url(self, original_url): """Sets the original_url of this Attachment. The url of the attachment # noqa: E501 :param original_url: The original_url of this Attachment. # noqa: E501 :type: str """ self._original_url = original_url @property def title(self): """Gets the title of this Attachment. # noqa: E501 The title of the attachment. If blank or not provided, the title will be derived from the file name. # noqa: E501 :return: The title of this Attachment. # noqa: E501 :rtype: str """ return self._title @title.setter def title(self, title): """Sets the title of this Attachment. The title of the attachment. If blank or not provided, the title will be derived from the file name. # noqa: E501 :param title: The title of this Attachment. # noqa: E501 :type: str """ self._title = title @property def type(self): """Gets the type of this Attachment. # noqa: E501 The type of attachment # noqa: E501 :return: The type of this Attachment. # noqa: E501 :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this Attachment. The type of attachment # noqa: E501 :param type: The type of this Attachment. # noqa: E501 :type: str """ self._type = type @property def updated_at(self): """Gets the updated_at of this Attachment. # noqa: E501 When the attachment was last updated # noqa: E501 :return: The updated_at of this Attachment. # noqa: E501 :rtype: datetime """ return self._updated_at @updated_at.setter def updated_at(self, updated_at): """Sets the updated_at of this Attachment. When the attachment was last updated # noqa: E501 :param updated_at: The updated_at of this Attachment. # noqa: E501 :type: datetime """ self._updated_at = updated_at @property def variants(self): """Gets the variants of this Attachment. # noqa: E501 :return: The variants of this Attachment. # noqa: E501 :rtype: AttachmentVariants """ return self._variants @variants.setter def variants(self, variants): """Sets the variants of this Attachment. :param variants: The variants of this Attachment. # noqa: E501 :type: AttachmentVariants """ self._variants = variants def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Attachment): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, Attachment): return True return self.to_dict() != other.to_dict()
28.061828
227
0.590861
10,116
0.969058
0
0
5,838
0.559249
0
0
5,486
0.525529
81bce2f74bd4337a65e512dbd85c7e158418982f
16,476
py
Python
pynsq/nsq/NSQReader.py
ghorges/nsq-2.0
b8dc67fa9467e9f39f976f923b798f574d12d8a9
[ "MIT" ]
null
null
null
pynsq/nsq/NSQReader.py
ghorges/nsq-2.0
b8dc67fa9467e9f39f976f923b798f574d12d8a9
[ "MIT" ]
null
null
null
pynsq/nsq/NSQReader.py
ghorges/nsq-2.0
b8dc67fa9467e9f39f976f923b798f574d12d8a9
[ "MIT" ]
null
null
null
""" high-level NSQ reader class built on top of a Tornado IOLoop supporting both sync and async modes of operation. supports various hooks to modify behavior when heartbeats are received, temporarily disable the reader, and pre-process/validate messages. when supplied a list of nsqlookupd addresses, a reader instance will periodically poll the specified topic in order to discover new producers and reconnect to existing ones. sync ex. import nsq def task1(message): print message return True def task2(message): print message return True all_tasks = {"task1": task1, "task2": task2} r = nsq.Reader(all_tasks, lookupd_http_addresses=['http://127.0.0.1:4161'], topic="nsq_reader", channel="asdf", lookupd_poll_interval=15) nsq.run() async ex. import nsq buf = [] def process_message(message, finisher): global buf # cache both the message and the finisher callable for later processing buf.append((message, finisher)) if len(buf) >= 3: print '****' for msg, finish_fxn in buf: print msg finish_fxn(True) # use finish_fxn to tell NSQ of success print '****' buf = [] else: print 'deferring processing' all_tasks = {"task1": process_message} r = nsq.Reader(all_tasks, lookupd_http_addresses=['http://127.0.0.1:4161'], topic="nsq_reader", channel="async", async=True) nsq.run() """ import logging try: import simplejson as json except ImportError: import json import time import signal import socket import functools import urllib import random import tornado.ioloop import tornado.httpclient import BackoffTimer import nsq import async class RequeueWithoutBackoff(Exception): """exception for requeueing a message without incrementing backoff""" pass class Reader(object): def __init__(self, all_tasks, topic, channel, nsqd_tcp_addresses=None, lookupd_http_addresses=None, async=False, max_tries=5, max_in_flight=1, requeue_delay=90, lookupd_poll_interval=120): """ Reader receives messages over the specified ``topic/channel`` and provides an async loop that calls each task method provided by ``all_tasks`` up to ``max_tries``. It will handle sending FIN or REQ commands based on feedback from the task methods. When re-queueing, an increasing delay will be calculated automatically. Additionally, when message processing fails, it will backoff for increasing multiples of ``requeue_delay`` between updating of RDY count. ``all_tasks`` defines the a mapping of tasks and callables that will be executed for each message received. ``topic`` specifies the desired NSQ topic ``channel`` specifies the desired NSQ channel ``nsqd_tcp_addresses`` a sequence of string addresses of the nsqd instances this reader should connect to ``lookupd_http_addresses`` a sequence of string addresses of the nsqlookupd instances this reader should query for producers of the specified topic ``async`` determines whether handlers will do asynchronous processing. If set to True, handlers must accept a keyword argument called ``finisher`` that will be a callable used to signal message completion, taking a boolean argument indicating success. ``max_tries`` the maximum number of attempts the reader will make to process a message after which messages will be automatically discarded ``max_in_flight`` the maximum number of messages this reader will pipeline for processing. this value will be divided evenly amongst the configured/discovered nsqd producers. ``requeue_delay`` the base multiple used when re-queueing (multiplied by # of attempts) ``lookupd_poll_interval`` the amount of time in between querying all of the supplied nsqlookupd instances. a random amount of time based on thie value will be initially introduced in order to add jitter when multiple readers are running. """ assert isinstance(all_tasks, dict) for key, method in all_tasks.items(): assert callable(method), "key %s must have a callable value" % key assert isinstance(topic, (str, unicode)) and len(topic) > 0 assert isinstance(channel, (str, unicode)) and len(channel) > 0 assert isinstance(max_in_flight, int) and 0 < max_in_flight < 2500 if nsqd_tcp_addresses: if not isinstance(nsqd_tcp_addresses, (list, set, tuple)): assert isinstance(nsqd_tcp_addresses, (str, unicode)) nsqd_tcp_addresses = [nsqd_tcp_addresses] else: nsqd_tcp_addresses = [] if lookupd_http_addresses: if not isinstance(lookupd_http_addresses, (list, set, tuple)): assert isinstance(lookupd_http_addresses, (str, unicode)) lookupd_http_addresses = [lookupd_http_addresses] else: lookupd_http_addresses = [] assert nsqd_tcp_addresses or lookupd_http_addresses self.topic = topic self.channel = channel self.nsqd_tcp_addresses = nsqd_tcp_addresses self.lookupd_http_addresses = lookupd_http_addresses self.requeue_delay = int(requeue_delay * 1000) self.max_tries = max_tries self.max_in_flight = max_in_flight self.lookupd_poll_interval = lookupd_poll_interval self.async = async self.task_lookup = all_tasks self.backoff_timer = dict((k, BackoffTimer.BackoffTimer(0, 120)) for k in self.task_lookup.keys()) self.hostname = socket.gethostname() self.short_hostname = self.hostname.split('.')[0] self.conns = {} self.http_client = tornado.httpclient.AsyncHTTPClient() self.last_recv_timestamps = {} logging.info("starting reader for topic '%s'..." % self.topic) for task in self.task_lookup: for addr in self.nsqd_tcp_addresses: address, port = addr.split(':') self.connect_to_nsqd(address, int(port), task) # trigger the first one manually self.query_lookupd() tornado.ioloop.PeriodicCallback(self.check_last_recv_timestamps, 60 * 1000).start() periodic = tornado.ioloop.PeriodicCallback(self.query_lookupd, self.lookupd_poll_interval * 1000) # randomize the time we start this poll loop so that all servers don't query at exactly the same time # randomize based on 10% of the interval delay = random.random() * self.lookupd_poll_interval * .1 tornado.ioloop.IOLoop.instance().add_timeout(time.time() + delay, periodic.start) def _client_callback(self, success, message=None, task=None, conn=None): ''' This is the method that an asynchronous nsqreader should call to indicate async completion of a message. This will most likely be exposed as the finisher callable created in `callback` above with some functools voodoo ''' if success: self.backoff_timer[task].success() self.finish(conn, message.id) else: self.backoff_timer[task].failure() self.requeue(conn, message) def requeue(self, conn, message, delay=True): if message.attempts > self.max_tries: self.giving_up(message) return self.finish(conn, message.id) try: # ms requeue_delay = self.requeue_delay * message.attempts if delay else 0 conn.send(nsq.requeue(message.id, str(requeue_delay))) except Exception: conn.close() logging.exception('[%s] failed to send requeue %s @ %d' % (conn, message.id, requeue_delay)) def finish(self, conn, message_id): ''' This is an internal method for NSQReader ''' try: conn.send(nsq.finish(message_id)) except Exception: conn.close() logging.exception('[%s] failed to send finish %s' % (conn, message_id)) def connection_max_in_flight(self): return max(1, self.max_in_flight / max(1, len(self.conns))) def handle_message(self, conn, task, message): conn.ready -= 1 # update ready count if necessary... # if we're in a backoff state for this task # set a timer to actually send the ready update per_conn = self.connection_max_in_flight() if not conn.is_sending_ready and (conn.ready <= 1 or conn.ready < int(per_conn * 0.25)): backoff_interval = self.backoff_timer[task].get_interval() if self.disabled(): backoff_interval = 15 if backoff_interval > 0: conn.is_sending_ready = True logging.info('[%s] backing off for %0.2f seconds' % (conn, backoff_interval)) send_ready_callback = functools.partial(self.send_ready, conn, per_conn) tornado.ioloop.IOLoop.instance().add_timeout(time.time() + backoff_interval, send_ready_callback) else: self.send_ready(conn, per_conn) try: processed_message = self.preprocess_message(message) if not self.validate_message(processed_message): return self.finish(conn, message.id) except Exception: logging.exception('[%s] caught exception while preprocessing' % conn) return self.requeue(conn, message) method_callback = self.task_lookup[task] try: if self.async: # this handler accepts the finisher callable as a keyword arg finisher = functools.partial(self._client_callback, message=message, task=task, conn=conn) return method_callback(processed_message, finisher=finisher) else: # this is an old-school sync handler, give it just the message if method_callback(processed_message): self.backoff_timer[task].success() return self.finish(conn, message.id) self.backoff_timer[task].failure() except RequeueWithoutBackoff: logging.info('RequeueWithoutBackoff') except Exception: logging.exception('[%s] caught exception while handling %s' % (conn, task)) self.backoff_timer[task].failure() return self.requeue(conn, message) def send_ready(self, conn, value): if self.disabled(): logging.info('[%s] disabled, delaying ready state change', conn) send_ready_callback = functools.partial(self.send_ready, conn, value) tornado.ioloop.IOLoop.instance().add_timeout(time.time() + 15, send_ready_callback) return try: conn.send(nsq.ready(value)) conn.ready = value except Exception: conn.close() logging.exception('[%s] failed to send ready' % conn) conn.is_sending_ready = False def _data_callback(self, conn, raw_data, task): self.last_recv_timestamps[get_conn_id(conn, task)] = time.time() frame, data = nsq.unpack_response(raw_data) if frame == nsq.FRAME_TYPE_MESSAGE: message = nsq.decode_message(data) try: self.handle_message(conn, task, message) except Exception: logging.exception('[%s] failed to handle_message() %r' % (conn, message)) elif frame == nsq.FRAME_TYPE_RESPONSE and data == "_heartbeat_": self.heartbeat(conn) conn.send(nsq.nop()) def connect_to_nsqd(self, address, port, task): assert isinstance(address, (str, unicode)) assert isinstance(port, int) conn_id = address + ':' + str(port) + ':' + task if conn_id in self.conns: return logging.info("[%s] connecting to nsqd for '%s'", address + ':' + str(port), task) connect_callback = functools.partial(self._connect_callback, task=task) data_callback = functools.partial(self._data_callback, task=task) close_callback = functools.partial(self._close_callback, task=task) conn = async.AsyncConn(address, port, connect_callback, data_callback, close_callback) conn.connect() self.conns[conn_id] = conn def _connect_callback(self, conn, task): if len(self.task_lookup) > 1: channel = self.channel + '.' + task else: channel = self.channel initial_ready = self.connection_max_in_flight() try: conn.send(nsq.subscribe(self.topic, channel, self.short_hostname, self.hostname)) conn.send(nsq.ready(initial_ready)) conn.ready = initial_ready conn.is_sending_ready = False except Exception: conn.close() logging.exception('[%s] failed to bootstrap connection' % conn) def _close_callback(self, conn, task): conn_id = get_conn_id(conn, task) if conn_id in self.conns: del self.conns[conn_id] logging.warning("[%s] connection closed... %d left open", conn, len(self.conns)) if len(self.conns) == 0 and len(self.lookupd_http_addresses) == 0: logging.warning("all connections closed and no lookupds... exiting") tornado.ioloop.IOLoop.instance().stop() def query_lookupd(self): for endpoint in self.lookupd_http_addresses: lookupd_url = endpoint + "/lookup?topic=" + urllib.quote(self.topic) req = tornado.httpclient.HTTPRequest(lookupd_url, method="GET", connect_timeout=1, request_timeout=2) callback = functools.partial(self._finish_query_lookupd, endpoint=endpoint) self.http_client.fetch(req, callback=callback) def _finish_query_lookupd(self, response, endpoint): if response.error: logging.warning("[%s] lookupd error %s", endpoint, response.error) return try: lookup_data = json.loads(response.body) except json.JSONDecodeError: logging.warning("[%s] failed to parse JSON from lookupd: %r", endpoint, response.body) return if lookup_data['status_code'] != 200: logging.warning("[%s] lookupd responded with %d", endpoint, lookup_data['status_code']) return for task in self.task_lookup: for producer in lookup_data['data']['producers']: self.connect_to_nsqd(producer['address'], producer['tcp_port'], task) def check_last_recv_timestamps(self): now = time.time() for conn_id, conn in dict(self.conns).iteritems(): timestamp = self.last_recv_timestamps.get(conn_id, 0) if (now - timestamp) > 60: # this connection hasnt received data beyond # the normal heartbeat interval, close it logging.warning("[%s] connection is stale, closing", conn) conn = self.conns[conn_id] conn.close() # # subclass overwriteable # def giving_up(self, message): logging.warning("giving up on message '%s' after max tries %d", message.id, self.max_tries) def disabled(self): return False def heartbeat(self, conn): pass def validate_message(self, message): return True def preprocess_message(self, message): return message def get_conn_id(conn, task): return str(conn) + ':' + task def _handle_term_signal(sig_num, frame): logging.info('TERM Signal handler called with signal %r' % sig_num) tornado.ioloop.IOLoop.instance().stop() def run(): signal.signal(signal.SIGTERM, _handle_term_signal) tornado.ioloop.IOLoop.instance().start()
40.581281
113
0.624059
14,319
0.869082
0
0
0
0
0
0
5,521
0.335093
81bed88a93d034618c88d318a0da803628905ccb
337
py
Python
main.py
ygidtu/mountainClimber
37a1b2934741a755c90000af8d2f9e8256f24ca6
[ "Apache-2.0" ]
null
null
null
main.py
ygidtu/mountainClimber
37a1b2934741a755c90000af8d2f9e8256f24ca6
[ "Apache-2.0" ]
null
null
null
main.py
ygidtu/mountainClimber
37a1b2934741a755c90000af8d2f9e8256f24ca6
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding:utf-8 -*- u""" Created at 2020.09.04 by Zhang Yiming """ import warnings warnings.filterwarnings("ignore") import click from cli.climb import climb from cli.diff import diff @click.group() def main(): pass main.add_command(climb) main.add_command(diff) if __name__ == '__main__': main()
14.041667
37
0.700297
0
0
0
0
35
0.103858
0
0
108
0.320475
81bf3cce63eb0d81e1cb3c04efffcbc893d011ef
2,023
py
Python
app/fednlp/data/raw_data_loader/CNN_Dailymail/data_loader.py
ray-ruisun/FedML
24ff30d636bb70f64e94e9ca205375033597d3dd
[ "Apache-2.0" ]
null
null
null
app/fednlp/data/raw_data_loader/CNN_Dailymail/data_loader.py
ray-ruisun/FedML
24ff30d636bb70f64e94e9ca205375033597d3dd
[ "Apache-2.0" ]
null
null
null
app/fednlp/data/raw_data_loader/CNN_Dailymail/data_loader.py
ray-ruisun/FedML
24ff30d636bb70f64e94e9ca205375033597d3dd
[ "Apache-2.0" ]
null
null
null
import os from data.raw_data_loader.base.base_raw_data_loader import Seq2SeqRawDataLoader class RawDataLoader(Seq2SeqRawDataLoader): def __init__(self, data_path): super().__init__(data_path) self.cnn_path = "cnn/stories" self.dailymail_path = "dailymail/stories" def load_data(self): if len(self.X) == 0 or len(self.Y) == 0: total_size = 0 for root, dirs, files in os.walk( os.path.join(self.data_path, self.cnn_path) ): for file_name in files: file_path = os.path.join(root, file_name) processed_size = self.process_data_file(file_path) total_size += processed_size for root, dirs, files in os.walk( os.path.join(self.data_path, self.dailymail_path) ): for file_name in files: file_path = os.path.join(root, file_name) processed_size = self.process_data_file(file_path) total_size += processed_size index_list = [i for i in range(total_size)] self.attributes["index_list"] = index_list def process_data_file(self, file_path): cnt = 0 article_lines = [] abstract_lines = [] next_is_highlight = False with open(file_path, "r") as f: for line in f: line = line.strip() if line: if line.startswith("@highlight"): next_is_highlight = True elif next_is_highlight: abstract_lines.append(line) else: article_lines.append(line) assert len(self.X) == len(self.Y) idx = len(self.X) self.X[idx] = " ".join(article_lines) self.Y[idx] = " ".join( ["%s %s %s" % ("<s>", sent, "</s>") for sent in abstract_lines] ) cnt += 1 return cnt
36.125
79
0.527435
1,928
0.95304
0
0
0
0
0
0
86
0.042511
81bf6ad4a1d9f400fda048a534023120e5946c0a
4,098
py
Python
packages/utils/propagate_license.py
justi/m2g
09e8b889889ee8d8fb08b9b6fcd726fb3d901644
[ "Apache-2.0" ]
12
2015-03-11T22:07:17.000Z
2016-01-29T21:24:29.000Z
packages/utils/propagate_license.py
youngmook/m2g
09e8b889889ee8d8fb08b9b6fcd726fb3d901644
[ "Apache-2.0" ]
213
2015-01-30T16:02:57.000Z
2016-01-29T21:45:02.000Z
packages/utils/propagate_license.py
youngmook/m2g
09e8b889889ee8d8fb08b9b6fcd726fb3d901644
[ "Apache-2.0" ]
5
2015-02-04T13:58:12.000Z
2016-01-29T21:24:46.000Z
#!/usr/bin/env python # Copyright 2014 Open Connectome Project (http://openconnecto.me) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # propagate_license.py # Created by Disa Mhembere on 2014-05-16. # Email: [email protected] __license_header__ = """ {} Copyright 2014 Open Connectome Project (http://openconnecto.me) {} {} Licensed under the Apache License, Version 2.0 (the "License"); {} you may not use this file except in compliance with the License. {} You may obtain a copy of the License at {} {} http://www.apache.org/licenses/LICENSE-2.0 {} {} Unless required by applicable law or agreed to in writing, software {} distributed under the License is distributed on an "AS IS" BASIS, {} WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. {} See the License for the specific language governing permissions and {} limitations under the License. {} """ COMM_COUNT = 14 comm = {".py":"#", ".pyx":"#", "": "#", ".html":"", ".sh":"#", ".r":"#", ".m":"%", ".c":"//", ".c++":"//", ".java":"//", ".js":"//"} import argparse import os def add(files): global __license_header__ for full_fn in files: license_header = __license_header__ print "Processing file: %s ..." % full_fn script = open(full_fn, "rb") lines = script.read().splitlines() script.close() # Exception for html comment_style = comm[os.path.splitext(full_fn)[1].lower()] if lines[0].startswith("#!/usr/bin"): if lines[5].startswith("# Copyright"): # get rid of copyright year del lines[5], lines[1] lines.insert(1, license_header.format(*([comment_style]*COMM_COUNT))) else: #license_header += "{} Created by Disa Mhembere\n{} Email: [email protected]".format(*([comment_style]*2)) if os.path.splitext(full_fn)[1].lower().strip() == ".html": license_header = "<!-- " + license_header + " -->" lines.insert(0, license_header.format(*([comment_style]*COMM_COUNT))) script = open(full_fn, "wb") script.write("\n".join(lines)) def hidden(path): breakdown = path.split("/") for item in breakdown: if item.startswith("."): return True return False def rm(dirname): pass def main(): parser = argparse.ArgumentParser(description="Add or Update license headers to code") parser.add_argument("-r", "--remove", action="store_true", help="Remove the license") parser.add_argument("-d", "--dirname", action="store", default=".", help="Directory where to start walk") parser.add_argument("-f", "--files", action="store", nargs="*", help="Files you want license added to") parser.add_argument("-e", "--file_exts", nargs="*", action="store", \ default=[".py", ".pyx", ".html", ".sh", ".R", ".m", ""], \ help="File extensions to add to the files altered") parser.add_argument("-i", "--ignore", nargs="*", action="store", \ default=["README", "__init__.py", "TODO", __file__], \ help="Files to ignore") result = parser.parse_args() if result.files: print "Licensing individual files ..." add(result.files) exit(1) else: print "Licensing a directory of files ..." files = [] for root, dirnames, filenames in os.walk(os.path.abspath(result.dirname)): for filename in filenames: full_fn = os.path.join(root, filename) if os.path.isfile(full_fn) and not hidden(full_fn) \ and not os.path.basename(full_fn) in result.ignore \ and ( os.path.splitext(full_fn)[-1].lower().strip() in result.file_exts ): files.append(full_fn) add(files) if __name__ == "__main__": main()
35.327586
107
0.656418
0
0
0
0
0
0
0
0
2,115
0.516105
81c0253c14333698b3786f1e30f1b538f9b67736
1,384
py
Python
core/gf/test.py
zorrock/accelerated-text
942bacf653fc4c901748b06eaba72da4aeaaec9e
[ "Apache-2.0" ]
1
2021-05-05T01:37:51.000Z
2021-05-05T01:37:51.000Z
core/gf/test.py
zorrock/accelerated-text
942bacf653fc4c901748b06eaba72da4aeaaec9e
[ "Apache-2.0" ]
null
null
null
core/gf/test.py
zorrock/accelerated-text
942bacf653fc4c901748b06eaba72da4aeaaec9e
[ "Apache-2.0" ]
null
null
null
import pytest import server @pytest.fixture(scope="session") def authorship_grammar(): with open("test_grammars/Authorship.gf", "r") as f: abstract = {"content": f.read()} with open("test_grammars/AuthorshipEng.gf", "r") as f: inst = {"content": f.read(), "key": "Eng"} return server.compile_grammar("Authorship", abstract, [inst]) def test_compile_grammar(authorship_grammar): result = authorship_grammar print(result) assert result langs = result.languages assert len(langs) == 1 assert "AuthorshipEng" in langs def test_generation_results(authorship_grammar): expressions = server.generate_expressions(authorship_grammar) results = list([(k, server.generate_variants(expressions, concrete)) for k, concrete in authorship_grammar.languages.items()]) print(results) (_, r0) = results[0] assert set(r0) == set([ "good {{TITLE}} is authored by {{AUTHOR}}", "good {{TITLE}} is written by {{AUTHOR}}", "excellent {{TITLE}} is authored by {{AUTHOR}}", "excellent {{TITLE}} is written by {{AUTHOR}}", "{{AUTHOR}} is the author of excellent {{TITLE}}", "{{AUTHOR}} is the author of good {{TITLE}}", "{{AUTHOR}} was authored by good {{TITLE}}", "{{AUTHOR}} was authored by excellent {{TITLE}}", ])
32.186047
77
0.62211
0
0
0
0
341
0.246387
0
0
491
0.354769
81c086bf3828eec5887f2980268193fc09c2dd9d
3,126
py
Python
troposphere/validators/dynamodb.py
compose-x/troposphere
9a94a8fafd8b4da1cd1f4239be0e7aa0681fd8d4
[ "BSD-2-Clause" ]
null
null
null
troposphere/validators/dynamodb.py
compose-x/troposphere
9a94a8fafd8b4da1cd1f4239be0e7aa0681fd8d4
[ "BSD-2-Clause" ]
null
null
null
troposphere/validators/dynamodb.py
compose-x/troposphere
9a94a8fafd8b4da1cd1f4239be0e7aa0681fd8d4
[ "BSD-2-Clause" ]
null
null
null
# Copyright (c) 2012-2022, Mark Peek <[email protected]> # All rights reserved. # # See LICENSE file for full license. from .. import AWSHelperFn, If def attribute_type_validator(x): """ Property: AttributeDefinition.AttributeType """ valid_types = ["S", "N", "B"] if x not in valid_types: raise ValueError("AttributeType must be one of: %s" % ", ".join(valid_types)) return x def key_type_validator(x): """ Property: KeySchema.KeyType """ valid_types = ["HASH", "RANGE"] if x not in valid_types: raise ValueError("KeyType must be one of: %s" % ", ".join(valid_types)) return x def projection_type_validator(x): """ Property: Projection.ProjectionType """ valid_types = ["KEYS_ONLY", "INCLUDE", "ALL"] if x not in valid_types: raise ValueError("ProjectionType must be one of: %s" % ", ".join(valid_types)) return x def billing_mode_validator(x): """ Property: Table.BillingMode """ valid_modes = ["PROVISIONED", "PAY_PER_REQUEST"] if x not in valid_modes: raise ValueError( "Table billing mode must be one of: %s" % ", ".join(valid_modes) ) return x def table_class_validator(x): """ Property: Table.TableClass """ valid_table_classes = ["STANDARD", "STANDARD_INFREQUENT_ACCESS"] if x not in valid_table_classes: raise ValueError( "Table class must be one of: %s" % ", ".join(valid_table_classes) ) return x def validate_table(self): """ Class: Table """ billing_mode = self.properties.get("BillingMode", "PROVISIONED") indexes = self.properties.get("GlobalSecondaryIndexes", []) tput_props = [self.properties] tput_props.extend([x.properties for x in indexes if not isinstance(x, AWSHelperFn)]) def check_if_all(name, props): validated = [] for prop in props: is_helper = isinstance(prop.get(name), AWSHelperFn) validated.append(name in prop or is_helper) return all(validated) def check_any(name, props): validated = [] for prop in props: is_helper = isinstance(prop.get(name), AWSHelperFn) validated.append(name in prop and not is_helper) return any(validated) if isinstance(billing_mode, If): if check_any("ProvisionedThroughput", tput_props): raise ValueError( "Table billing mode is per-request. " "ProvisionedThroughput property is mutually exclusive" ) return if billing_mode == "PROVISIONED": if not check_if_all("ProvisionedThroughput", tput_props): raise ValueError( "Table billing mode is provisioned. " "ProvisionedThroughput required if available" ) elif billing_mode == "PAY_PER_REQUEST": if check_any("ProvisionedThroughput", tput_props): raise ValueError( "Table billing mode is per-request. " "ProvisionedThroughput property is mutually exclusive" )
29.214953
88
0.619962
0
0
0
0
0
0
0
0
1,093
0.349648
81c08bcad1b73822669737a9c7a8c3b7773030bc
430
py
Python
videoclip_sources/e004.py
ChrisScarred/misty2py-skills
30557d246b91fb525866fe8b92e280d2609ca26b
[ "MIT" ]
null
null
null
videoclip_sources/e004.py
ChrisScarred/misty2py-skills
30557d246b91fb525866fe8b92e280d2609ca26b
[ "MIT" ]
null
null
null
videoclip_sources/e004.py
ChrisScarred/misty2py-skills
30557d246b91fb525866fe8b92e280d2609ca26b
[ "MIT" ]
null
null
null
import time from misty2py.robot import Misty from misty2py.utils.env_loader import EnvLoader from misty2py_skills.utils.utils import get_abs_path env_loader = EnvLoader(get_abs_path(".env")) m = Misty(env_loader.get_ip()) d = m.event("subscribe", type="BatteryCharge") e_name = d.get("event_name") time.sleep(1) d = m.event("get_data", name=e_name) # do something with the data here d = m.event("unsubscribe", name=e_name)
21.5
52
0.755814
0
0
0
0
0
0
0
0
100
0.232558
81c1b8a6fb449ff2c4c107dcaec453b46983daed
2,302
py
Python
p2/Python Files/audit_street.py
priyankaswadi/Udacity-Data-Analyst-Nanodegree
52989f7e447e69c6fb08119f4e39a4500dcdf571
[ "Apache-2.0" ]
null
null
null
p2/Python Files/audit_street.py
priyankaswadi/Udacity-Data-Analyst-Nanodegree
52989f7e447e69c6fb08119f4e39a4500dcdf571
[ "Apache-2.0" ]
null
null
null
p2/Python Files/audit_street.py
priyankaswadi/Udacity-Data-Analyst-Nanodegree
52989f7e447e69c6fb08119f4e39a4500dcdf571
[ "Apache-2.0" ]
null
null
null
#Map incorrect and abbreviated street names with correct/better ones import xml.etree.cElementTree as ET from collections import defaultdict import re import pprint OSMFILE = "albany.osm" street_type_re = re.compile(r'\b\S+\.?$', re.IGNORECASE) # UPDATE THIS VARIABLE mapping = {"rd": "Road", "Rd": "Road", "road": "Road", "Ave": "Avenue", "Ave.": "Avenue", "AVE": "Avenue", "way" : "Way", "street": "Street", "way":"Way", "Dr.":"Drive", "Blvd":"Boulevard", "rt":"Route", "Ext": "Extension", "Jay":"Jay Street", "Nott St E":"Nott Street East", "Troy-Schenetady-Road":"Troy Schenectady Road", "Troy-Schenetady Rd" :"Troy Schenectady Road", "Delatour":"Delatour Road", "Deltour": "Delatour Road", "Sparrowbush": "Sparrowbush Road" } def audit_street_type(street_types, street_name): m = street_type_re.search(street_name) if m: street_type = m.group() if street_type not in expected: street_types[street_type].add(street_name) def is_street_name(elem): return (elem.attrib['k'] == "addr:street") def audit(osmfile): osm_file = open(osmfile, "r") street_types = defaultdict(set) for event, elem in ET.iterparse(osm_file, events=("start",)): if elem.tag == "node" or elem.tag == "way": for tag in elem.iter("tag"): if is_street_name(tag): audit_street_type(street_types, tag.attrib['v']) osm_file.close() return street_types def update_name(name, mapping): n = street_type_re.search(name) if n: n = n.group() for m in mapping: if n == m: name = name[:-len(n)] + mapping[m] return name def test(): st_types = audit(OSMFILE) pprint.pprint(dict(st_types)) for st_type, ways in st_types.iteritems(): for name in ways: better_name = update_name(name, mapping) if (name == better_name): continue print name + " --> " + better_name if __name__ == '__main__': test()
27.73494
68
0.541703
0
0
0
0
0
0
0
0
554
0.24066
81c1bcd0f7ae70104609fcbc8c962b13a08d4c00
1,943
py
Python
modules/week2/utils.py
tobias-z/4-sem-python
35c0a73f0a2085f2dc539c8ec8761c26675aa078
[ "MIT" ]
null
null
null
modules/week2/utils.py
tobias-z/4-sem-python
35c0a73f0a2085f2dc539c8ec8761c26675aa078
[ "MIT" ]
null
null
null
modules/week2/utils.py
tobias-z/4-sem-python
35c0a73f0a2085f2dc539c8ec8761c26675aa078
[ "MIT" ]
null
null
null
from io import TextIOWrapper import os from typing import List OUTPUT = "files/output.csv" FOLDER = "modules/week2/folders" def get_file_names(folderpath, out=OUTPUT): """takes a path to a folder and writes all filenames in the folder to a specified output file""" dir_list = os.listdir(folderpath) with open(out, "w") as file: for line in dir_list: file.write(line + "\n") def get_all_file_names(folderpath, out=OUTPUT): """takes a path to a folder and write all filenames recursively (files of all sub folders to)""" def write_dir_to_file(file: TextIOWrapper, dir: List[str], folderpath: str): for line in dir: path_to_file = f"{folderpath}/{line}" if os.path.isdir(path_to_file): write_dir_to_file(file, os.listdir(path_to_file), path_to_file) continue file.write(line + "\n") with open(out, "w") as file: write_dir_to_file(file, os.listdir(folderpath), folderpath) def print_line_one(file_names: List[str]): """takes a list of filenames and print the first line of each""" for file_name in file_names: with open(file_name) as file: print(file.readline()) def print_emails(file_names: List[str]): """takes a list of filenames and print each line that contains an email (just look for @)""" for file_name in file_names: with open(file_name) as file: for line in file.readlines(): if "@" in line: print(line) def write_headlines(md_files: List[str], out=OUTPUT): """takes a list of md files and writes all headlines (lines starting with #) to a file""" with open(out, "w") as output_file: for md_file in md_files: with open(md_file) as file: for line in file.readlines(): if line.startswith("#"): output_file.write(line)
34.696429
100
0.629439
0
0
0
0
0
0
0
0
523
0.269171
81c234494317e86e4d284863eff810f848405889
4,480
py
Python
src/api/providers.py
ismetacar/ertis-auth
64727cc8201d5fcc955485e94262500d63ff4b17
[ "MIT" ]
17
2020-06-17T15:28:59.000Z
2021-09-21T19:18:14.000Z
src/api/providers.py
ismetacar/Ertis-Auth
5521eb8a0b11fca7c5ff2a4ecc6cc0b9af59aa8f
[ "MIT" ]
5
2020-06-17T21:22:56.000Z
2021-05-02T19:10:05.000Z
src/api/providers.py
ismetacar/Ertis-Auth
5521eb8a0b11fca7c5ff2a4ecc6cc0b9af59aa8f
[ "MIT" ]
2
2021-03-02T17:08:07.000Z
2021-04-07T18:11:59.000Z
import json from sanic import response from sanic_openapi import doc from src.plugins.authorization import authorized from src.plugins.validator import validated from src.request_models.providers import Provider from src.request_models.query_model import Query from src.resources.generic import ensure_membership_is_exists, QUERY_BODY_SCHEMA from src.resources.providers.resource import CREATE_PROVIDER_SCHEMA from src.utils import query_helpers from src.utils.json_helpers import bson_to_json def init_providers_api(app, settings): # region Create Provider @app.route('/api/v1/memberships/<membership_id>/providers', methods=['POST']) @doc.tag("Providers") @doc.operation("Create Provider") @doc.consumes(Provider, location="body", content_type="application/json") @validated(CREATE_PROVIDER_SCHEMA) @authorized(app, settings, methods=['POST'], required_permission='providers.create') async def create_provider(request, membership_id, *args, **kwargs): await ensure_membership_is_exists(app.db, membership_id, request.ctx.utilizer) body = request.json resource = await app.provider_service.create_provider(body, request.ctx.utilizer) return response.json(json.loads(json.dumps(resource, default=bson_to_json)), 201) # endregion # region Get Provider @app.route('/api/v1/memberships/<membership_id>/providers/<provider_id>', methods=['GET']) @doc.tag("Providers") @doc.operation("Get Provider") @authorized(app, settings, methods=['GET'], required_permission='providers.read') async def get_provider(request, membership_id, provider_id, *args, **kwargs): await ensure_membership_is_exists(app.db, membership_id, request.ctx.utilizer) resource = await app.provider_service.get_provider(provider_id, request.ctx.utilizer) return response.json(json.loads(json.dumps(resource, default=bson_to_json))) # endregion # region Update Provider @app.route('/api/v1/memberships/<membership_id>/providers/<provider_id>', methods=['PUT']) @doc.tag("Providers") @doc.operation("Update Provider") @doc.consumes(Provider, location="body", content_type="application/json") @authorized(app, settings, methods=['PUT'], required_permission='providers.update') async def update_provider(request, membership_id, provider_id, **kwargs): await ensure_membership_is_exists(app.db, membership_id, request.ctx.utilizer) body = request.json resource = await app.provider_service.update_provider(provider_id, body, request.ctx.utilizer, app.persist_event) return response.json(json.loads(json.dumps(resource, default=bson_to_json)), 200) # endregion # region Delete Provider @app.route('/api/v1/memberships/<membership_id>/providers/<provider_id>', methods=['DELETE']) @doc.tag("Providers") @doc.operation("Delete Provider") @authorized(app, settings, methods=['DELETE'], required_permission='providers.delete') async def delete_provider(request, membership_id, provider_id, **kwargs): await ensure_membership_is_exists(app.db, membership_id, request.ctx.utilizer) await app.provider_service.delete_provider(provider_id, request.ctx.utilizer, app.persist_event) return response.json({}, 204) # endregion # region Query Applications # noinspection DuplicatedCode @app.route('/api/v1/memberships/<membership_id>/providers/_query', methods=['POST']) @doc.tag("Providers") @doc.operation("Query Providers") @doc.consumes(Query, location="body", content_type="application/json") @authorized(app, settings, methods=['POST'], required_permission='providers.read') @validated(QUERY_BODY_SCHEMA) async def query_providers(request, membership_id, **kwargs): await ensure_membership_is_exists(app.db, membership_id, request.ctx.utilizer) where, select, limit, skip, sort = query_helpers.parse(request) providers, count = await app.provider_service.query_providers( membership_id, where, select, limit, skip, sort ) response_json = json.loads(json.dumps({ 'data': { 'items': providers, 'count': count } }, default=bson_to_json)) return response.json(response_json, 200) # endregion
43.076923
104
0.705134
0
0
0
0
3,650
0.814732
2,129
0.475223
863
0.192634
81c238300e9927729e01076aa4674e5af0b62cf8
3,078
py
Python
lista08_pesquisa/questao02.py
mayararysia/ESTD
65aa8816aa8773066201cb410b02c1cb72ad5611
[ "MIT" ]
null
null
null
lista08_pesquisa/questao02.py
mayararysia/ESTD
65aa8816aa8773066201cb410b02c1cb72ad5611
[ "MIT" ]
null
null
null
lista08_pesquisa/questao02.py
mayararysia/ESTD
65aa8816aa8773066201cb410b02c1cb72ad5611
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- #Lista de Exercícios 08 (Pesquisa) - Questão 02 #Mayara Rysia from time import time from time import sleep from random import randint """ 2. Use as duas funçáes de busca binÑria apresentadas (iterativa e recursiva). Gere uma lista de números aleatórios, ordene-os e verifique o desempenho delas. Qual os resultados? """ #Busca BinÑria - código recursivo def busca_binaria(uma_lista, item_procurado): if len(uma_lista) == 0: return False meio = len(uma_lista)//2 if uma_lista[meio] == item_procurado: return True if item_procurado < uma_lista[meio]: return busca_binaria(uma_lista[:meio], item_procurado) else: return busca_binaria(uma_lista[meio+1:], item_procurado) #Busca BinÑria - código iterativo def busca_binaria_it(uma_lista, item_pesquisado): inicio = 0 fim = len(uma_lista)-1 encontrou = False while inicio<=fim and not encontrou: meio = (inicio + fim)//2 if uma_lista[meio] == item_pesquisado: encontrou = True else: if item_pesquisado < uma_lista[meio]: fim = meio-1 else: inicio = meio+1 return encontrou #ordena a lista def ordena(lista): quant = tam = len(lista) continua = True while quant>=1 and continua: continua = False for i in range(tam): j=i+1 if j != tam and lista[i] > lista[j]: continua = True ant = lista[i] lista[i] = lista[j] lista[j] = ant i=j quant-=1 return lista #cria a lista def criaLista(): lista = [] for i in range(9): num = randint(0, 42) lista.append(num) return lista def Teste(lista, num): print('Procurando ', num,'na lista', lista) inicio = time() result = busca_binaria(lista, num) fim = time() tempo_gasto = fim-inicio print('resultado', result) return tempo_gasto def Teste_it(lista, num): print('Procurando ', num,'na lista', lista) inicio = time() result = busca_binaria_it(lista, num) fim = time() tempo_gasto = fim-inicio print('resultado', result) return tempo_gasto if __name__ == '__main__': l = criaLista() lista = ordena(l) qtd_br = qtd_bi = 0 #Testes for i in range(5): num = randint(0, 42) print("<< Busca Recursiva >> \n") tempo_gasto_br = Teste(lista, num) print('\ttempo gasto: ', tempo_gasto_br) print('\n\n') sleep(2) print("<< Busca Iterativa >> \n") tempo_gasto_bi = Teste_it(lista, num) print('\ttempo gasto: ', tempo_gasto_bi) print('\n\n') if tempo_gasto_br < tempo_gasto_bi: qtd_br +=1 print('\n-> Busca Recursiva levou o menor tempo\n') else: qtd_bi +=1 print('\n-> Busca Iterativa levou o menor tempo\n') print("------- ------- ------- ------- -------") print("\nCONCLUSÃO\n\n ") if qtd_br > qtd_bi: print("Busca BinÑria Recursiva teve o melhor desempenho!") else: print("Busca BinÑria Iterativa teve o melhor desempenho!") print("Quantidade BinÑria Recursiva: ", qtd_br) print("Quantidade BinÑria Iterativa: ", qtd_bi)
20.938776
82
0.635153
0
0
0
0
0
0
0
0
874
0.282482
81c3777bd3aa3fe5f25a3ee068f24e1720ba3426
3,290
py
Python
ccvpn/views/__init__.py
CCrypto/ccvpn
6bbfd01f41816bea905518f302f4cec474fdd221
[ "MIT" ]
81
2015-03-07T20:26:55.000Z
2016-05-16T10:22:05.000Z
ccvpn/views/__init__.py
CCrypto/ccvpn2
6bbfd01f41816bea905518f302f4cec474fdd221
[ "MIT" ]
1
2017-09-21T15:56:31.000Z
2017-11-30T15:10:56.000Z
ccvpn/views/__init__.py
CCrypto/ccvpn
6bbfd01f41816bea905518f302f4cec474fdd221
[ "MIT" ]
20
2015-03-07T22:36:46.000Z
2016-04-23T22:47:12.000Z
import codecs import markdown import os import logging from pyramid.view import view_config from pyramid.httpexceptions import HTTPOk, HTTPNotFound from sqlalchemy import func from mako.lookup import TemplateLookup import mako.exceptions logger = logging.getLogger(__name__) from ccvpn.models import DBSession, User, IcingaError, IcingaQuery, Gateway, VPNSession from ccvpn.views import account, admin, api, order # noqa @view_config(context=Exception) def error_view(exc, request): logger.exception('Exception', exc_info=exc) raise @view_config(route_name='home', renderer='home.mako') def home(request): settings = request.registry.settings return { 'eur_price': float(settings.get('paypal.month_price', 2)), 'btc_price': float(settings.get('bitcoin.month_price', 0.02)), 'motd': settings.get('motd'), } @view_config(route_name='ca_crt') def ca_crt(request): return HTTPOk(body=account.openvpn_ca) @view_config(route_name='page', renderer='page.mako') def page(request): root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) pagesdir = os.path.join(root, 'pages/') basename = pagesdir + request.matchdict['page'] irc_username = request.user.username if request.user else '?' try: translated_file = basename + '.' + request.locale_name + '.md' fallback_file = basename + '.md' if os.path.isfile(translated_file): template = translated_file elif os.path.isfile(fallback_file): template = fallback_file else: raise FileNotFoundError() with open(template, encoding='utf8') as template_f: mdt = template_f.read() mdt = mdt.replace('${irc_username}', irc_username) md = markdown.Markdown(extensions=['toc', 'meta', 'codehilite(noclasses=True)']) content = md.convert(mdt) title = md.Meta['title'][0] if 'title' in md.Meta else None return {'content': content, 'title': title} except FileNotFoundError: return HTTPNotFound() def format_bps(bits): multiples = ((1e9, 'G'), (1e6, 'M'), (1e3, 'K'), (0, '')) for d, m in multiples: if bits < d: continue n = bits / (d or 1) return '{:2g}{}bps'.format(n, m) @view_config(route_name='status', renderer='status.mako') def status(request): settings = request.registry.settings domain = settings.get('net_domain', '') gateways = DBSession.query(Gateway) \ .filter_by(enabled=True) \ .order_by(Gateway.country, Gateway.name) \ .all() l = list(gateways) for host in l: host.host_name = '%s-%s.%s'%(host.country, host.name, domain) host.bps_formatted = format_bps(host.bps) return { 'gateways': l, 'n_users': DBSession.query(func.count(User.id)) .filter_by(is_paid=True).scalar(), 'n_connected': DBSession.query(func.count(VPNSession.id)) \ .filter(VPNSession.is_online==True).scalar(), 'n_countries': len(set(i.country for i in l)), 'total_bw': format_bps(sum(i.bps for i in l)), }
33.571429
87
0.619149
0
0
0
0
2,628
0.798784
0
0
379
0.115198
81c43cdcda51abd9a7c25faabe42afd1a69a3e45
3,142
py
Python
rx/subjects/subject.py
MichaelSchneeberger/RxPY
994f974d37783f63c5d9e018a316fa9b06ba9337
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
rx/subjects/subject.py
MichaelSchneeberger/RxPY
994f974d37783f63c5d9e018a316fa9b06ba9337
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
rx/subjects/subject.py
MichaelSchneeberger/RxPY
994f974d37783f63c5d9e018a316fa9b06ba9337
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
import threading from typing import Any, List, Optional from rx.disposable import Disposable from rx.core.typing import Observer, Scheduler from rx.core import Observable, typing from rx.internal import DisposedException from .anonymoussubject import AnonymousSubject from .innersubscription import InnerSubscription class Subject(Observable, Observer): """Represents an object that is both an observable sequence as well as an observer. Each notification is broadcasted to all subscribed observers. """ def __init__(self) -> None: super().__init__() self.is_disposed = False self.is_stopped = False self.observers: List[Observer] = [] self.exception: Optional[Exception] = None self.lock = threading.RLock() def check_disposed(self): if self.is_disposed: raise DisposedException() def _subscribe_core(self, observer: Observer, scheduler: Scheduler = None) -> typing.Disposable: with self.lock: self.check_disposed() if not self.is_stopped: self.observers.append(observer) return InnerSubscription(self, observer) if self.exception: observer.on_error(self.exception) return Disposable() observer.on_completed() return Disposable() def on_completed(self) -> None: """Notifies all subscribed observers of the end of the sequence.""" observers = None with self.lock: self.check_disposed() if not self.is_stopped: observers = self.observers[:] self.observers = [] self.is_stopped = True if observers: for observer in observers: observer.on_completed() def on_error(self, error: Exception) -> None: """Notifies all subscribed observers with the exception. Args: error: The exception to send to all subscribed observers. """ os = None with self.lock: self.check_disposed() if not self.is_stopped: os = self.observers[:] self.observers = [] self.is_stopped = True self.exception = error if os: for observer in os: observer.on_error(error) def on_next(self, value: Any) -> None: """Notifies all subscribed observers with the value. Args: value: The value to send to all subscribed observers. """ os = None with self.lock: self.check_disposed() if not self.is_stopped: os = self.observers[:] if os: for observer in os: observer.on_next(value) def dispose(self) -> None: """Unsubscribe all observers and release resources.""" with self.lock: self.is_disposed = True self.observers = [] @classmethod def create(cls, observer, observable): return AnonymousSubject(observer, observable)
28.825688
100
0.590707
2,820
0.897518
0
0
109
0.034691
0
0
588
0.187142
81c467ca6111d33d242e6a5ccd32ee27968ad970
931
py
Python
scripts/uda.py
nng555/fairseq
c9730a125825a85f33042e1b9fd1959b8ca829e5
[ "MIT" ]
2
2020-10-05T08:52:01.000Z
2021-03-03T15:26:35.000Z
scripts/uda.py
nng555/fairseq
c9730a125825a85f33042e1b9fd1959b8ca829e5
[ "MIT" ]
null
null
null
scripts/uda.py
nng555/fairseq
c9730a125825a85f33042e1b9fd1959b8ca829e5
[ "MIT" ]
null
null
null
import os import hydra import subprocess import logging from omegaconf import DictConfig from hydra import slurm_utils log = logging.getLogger(__name__) @hydra.main(config_path='/h/nng/conf/robust/config.yaml', strict=False) def launch(cfg: DictConfig): os.environ['NCCL_DEBUG'] = 'INFO' if cfg.data.task in ['nli']: base_path = '/scratch/ssd001/datasets/' elif cfg.data.task in ['sentiment']: base_path = '/h/nng/data' else: raise Exception('task %s data path not found'.format(cfg.data.task)) data_dir = os.path.join(base_path, cfg.data.task, cfg.data.name, cfg.data.fdset) flags = [data_dir, str(cfg.gen.num_shards), str(cfg.gen.shard), str(cfg.gen.sampling_temp), cfg.gen.fname] command = ['bash', 'run.sh'] + flags os.chdir('/h/nng/programs/uda/back_translate') log.info(' '.join(command)) subprocess.call(command) if __name__ == "__main__": launch()
29.09375
110
0.684211
0
0
0
0
734
0.7884
0
0
198
0.212675
81c5bce0c4d9254a207a213c3a227fa2fcf0908d
2,062
py
Python
06_Business/application_iris/app.py
MaryMP11/The_Bridge_School_DataScience_PT
8b4a24d0b79608061a470e806de542dbbcccf75d
[ "Apache-2.0" ]
null
null
null
06_Business/application_iris/app.py
MaryMP11/The_Bridge_School_DataScience_PT
8b4a24d0b79608061a470e806de542dbbcccf75d
[ "Apache-2.0" ]
null
null
null
06_Business/application_iris/app.py
MaryMP11/The_Bridge_School_DataScience_PT
8b4a24d0b79608061a470e806de542dbbcccf75d
[ "Apache-2.0" ]
null
null
null
from flask import Flask, request, jsonify, session, url_for, redirect, render_template import joblib from flower_form import FlowerForm classifier_loaded = joblib.load("application_iris/saved_models/knn_iris_dataset.pkl") encoder_loaded = joblib.load("application_iris/saved_models/iris_label_encoder.pkl") # prediction function def make_prediction(model, encoder, sample_json): # parse input from request SepalLengthCm = sample_json['SepalLengthCm'] SepalWidthCm = sample_json['SepalWidthCm'] PetalLengthCm = sample_json['PetalLengthCm'] PetalWidthCm = sample_json['PetalWidthCm'] # Make an input vector flower = [[SepalLengthCm, SepalWidthCm, PetalLengthCm, PetalWidthCm]] # Predict prediction_raw = model.predict(flower) # Convert Species index to Species name prediction_real = encoder.inverse_transform(prediction_raw) return prediction_real[0] app = Flask(__name__) app.config['SECRET_KEY'] = 'mysecretkey' @app.route("/", methods=['GET','POST']) def index(): form = FlowerForm() if form.validate_on_submit(): session['SepalLengthCm'] = form.SepalLengthCm.data session['SepalWidthCm'] = form.SepalWidthCm.data session['PetalLengthCm'] = form.PetalLengthCm.data session['PetalWidthCm'] = form.PetalWidthCm.data return redirect(url_for("prediction")) return render_template("home.html", form=form) # Read models # classifier_loaded = joblib.load("saved_models/01.knn_with_iris_dataset.pkl") # encoder_loaded = joblib.load("saved_models/02.iris_label_encoder.pkl") @app.route('/prediction') def prediction(): content = {'SepalLengthCm': float(session['SepalLengthCm']), 'SepalWidthCm': float(session['SepalWidthCm']), 'PetalLengthCm': float(session['PetalLengthCm']), 'PetalWidthCm': float(session['PetalWidthCm'])} results = make_prediction(classifier_loaded, encoder_loaded, content) return render_template('prediction.html', results=results) if __name__ == '__main__': app.run(host='0.0.0.0', port=8080)
32.21875
112
0.734724
0
0
0
0
850
0.412221
0
0
729
0.35354
81c63070aaf168ec47a744d51e1a20dd220ae56b
8,522
py
Python
test.py
EdwinChan/python-physical
44383280acddd77b35adf8923b7d8cdb512553a0
[ "MIT" ]
2
2021-07-13T05:58:13.000Z
2021-08-19T04:37:57.000Z
test.py
EdwinChan/python-physical
44383280acddd77b35adf8923b7d8cdb512553a0
[ "MIT" ]
null
null
null
test.py
EdwinChan/python-physical
44383280acddd77b35adf8923b7d8cdb512553a0
[ "MIT" ]
null
null
null
import math import re import unittest import urllib.error import urllib.request from .core import Quantity from .define import defined_systems si = defined_systems['si'] esu = defined_systems['esu'] emu = defined_systems['emu'] gauss = defined_systems['gauss'] class PhysicalQuantitiesTest(unittest.TestCase): def assert_quantity_equal(self, first, second): self.assertAlmostEqual(first.value, second.value) self.assertAlmostEqual(first.error, second.error) self.assertEqual(first.units, second.units) self.assertEqual(first.system, second.system) def test_sign(self): a = Quantity(1, 0.2, {'Kilogram': 1}, si) b = Quantity(-1, 0.2, {'Kilogram': 1}, si) self.assert_quantity_equal(+a, a) self.assert_quantity_equal(+b, b) self.assert_quantity_equal(-a, b) self.assert_quantity_equal(-b, a) self.assert_quantity_equal(abs(a), a) self.assert_quantity_equal(abs(b), a) def test_add(self): a = Quantity(1, 0.2, {'Newton': 1}, si) b = Quantity(3, 0.4, {'Kilogram': 1, 'Meter': 1, 'Second': -2}, si) c = Quantity(4, 1 / math.sqrt(5), {'Newton': 1}, si) d = Quantity(1, 0.2, {'Kilogram': 1}, si) self.assert_quantity_equal(a + b, c.expand()) with self.assertRaises(TypeError): a + d with self.assertRaises(TypeError): a + 1 def test_subtract(self): a = Quantity(1, 0.2, {'Newton': 1}, si) b = Quantity(3, 0.4, {'Kilogram': 1, 'Meter': 1, 'Second': -2}, si) c = Quantity(-2, 1 / math.sqrt(5), {'Newton': 1}, si) d = Quantity(1, 0.2, {'Kilogram': 1}, si) self.assert_quantity_equal(a - b, c.expand()) with self.assertRaises(TypeError): a - d with self.assertRaises(TypeError): a - 1 def test_multiply(self): a = Quantity(1, 0.2, {'Kilogram': 1}, si) b = Quantity(3, 0.4, {'Meter': -2}, si) c = Quantity(3, math.sqrt(13) / 5, {'Kilogram': 1, 'Meter': -2}, si) self.assert_quantity_equal(a * b, c) a = Quantity(1, 0.2, {'Kilogram': 1}, si) * 5 b = Quantity(5, 1, {'Kilogram': 1}, si) self.assert_quantity_equal(a, b) a = Quantity(1, 0.2, {'Kilogram': 1}, si) * -5 b = Quantity(-5, 1, {'Kilogram': 1}, si) self.assert_quantity_equal(a, b) a = 5 * Quantity(3, 0.4, {'Kilogram': 1}, si) b = Quantity(15, 2, {'Kilogram': 1}, si) self.assert_quantity_equal(a, b) a = -5 * Quantity(3, 0.4, {'Kilogram': 1}, si) b = Quantity(-15, 2, {'Kilogram': 1}, si) self.assert_quantity_equal(a, b) def test_divide(self): a = Quantity(2, 0.1, {'Kilogram': 1}, si) b = Quantity(4, 0.3, {'Meter': -2}, si) c = Quantity(0.5, math.sqrt(13) / 80, {'Kilogram': 1, 'Meter': 2}, si) self.assert_quantity_equal(a / b, c) a = Quantity(1, 0.2, {'Kilogram': 1}, si) / 5 b = Quantity(0.2, 0.04, {'Kilogram': 1}, si) self.assert_quantity_equal(a, b) a = Quantity(1, 0.2, {'Kilogram': 1}, si) / -5 b = Quantity(-0.2, 0.04, {'Kilogram': 1}, si) self.assert_quantity_equal(a, b) a = 5 / Quantity(3, 0.4, {'Kilogram': 1}, si) b = Quantity(5/3, 2/9, {'Kilogram': -1}, si) self.assert_quantity_equal(a, b) a = -5 / Quantity(3, 0.4, {'Kilogram': 1}, si) b = Quantity(-5/3, 2/9, {'Kilogram': -1}, si) self.assert_quantity_equal(a, b) def test_power(self): a = Quantity(3, 0.4, {'Kilogram': 1, 'Meter': 1}, si) ** 5 b = Quantity(243, 162, {'Kilogram': 5, 'Meter': 5}, si) self.assert_quantity_equal(a, b) def test_almost_equals(self): a = Quantity(1, 0.5, {'Kilogram': 1}, si) b = Quantity(2, 0.7, {'Kilogram': 1}, si) c = Quantity(3, 0.9, {'Kilogram': 1}, si) d = Quantity(1, 0.5, {'Meter': 1}, si) e = Quantity(1, 0.5, {}, si) f = Quantity(2, 0.7, {}, si) self.assertTrue(a.almost_equals(b)) self.assertFalse(a.almost_equals(c)) self.assertRaises(TypeError, a.almost_equals, d) for x in [a, b, c, d]: self.assertRaises(TypeError, x.almost_equals, 1) self.assertTrue(e.almost_equals(1)) self.assertTrue(f.almost_equals(2)) self.assertFalse(e.almost_equals(2)) self.assertFalse(f.almost_equals(1)) self.assertTrue(e.almost_equals(f)) def test_float(self): a = Quantity(1, 0, {'Second': 1, 'Hertz': 1}, si) b = Quantity(365.25 * 86400, 0, {'Second': 1, 'JulianYear': -1}, si) self.assertEqual(math.cos(a), math.cos(1)) self.assertEqual(math.cos(b), math.cos(1)) def test_expand(self): # Lorentz force a = Quantity(1, 0, {'Coulomb': 1, 'Meter': 1, 'Second': -1, 'Tesla': 1}, si) b = Quantity(1, 0, {'Newton': 1}, si) self.assert_quantity_equal(a.expand(), b.expand()) # Faraday's law a = Quantity(1, 0, {'Weber': 1, 'Second': -1}, si) b = Quantity(1, 0, {'Volt': 1}, si) self.assert_quantity_equal(a.expand(), b.expand()) # torque of a motor a = Quantity(1, 0, {'Ampere': 1, 'Tesla': 1, 'Meter': 2}, si) b = Quantity(1, 0, {'Newton': 1, 'Meter': 1}, si) self.assert_quantity_equal(a.expand(), b.expand()) # resonance frequency of an RLC circuit a = Quantity(1, 0, {'Henry': -1/2, 'Farad': -1/2}, si) b = Quantity(1, 0, {'Hertz': 1}, si) self.assert_quantity_equal(a.expand(), b.expand()) def test_simple_constants(self): for system in defined_systems.values(): a = Quantity(13.6, 0, {'ElectronVolt': 1, 'RydbergEnergy': -1}, system).expand() self.assertAlmostEqual(a.value, 1, places=3) self.assertEqual(a.units, {}) a = system.get_constant('FineStructureConstant').expand() * 137 self.assertAlmostEqual(a.value, 1, places=3) self.assertEqual(a.units, {}) def test_electromagnetic_constants(self): from . import si, esu, emu, gauss a = (si.e**2 / si.a0 / (4*math.pi*si.epsilon0) / (1e-7*si.J)).expand() b = (esu.e**2 / esu.a0 / esu.erg).expand() c = (emu.e**2 / emu.a0 * emu.c**2 / emu.erg).expand() d = (gauss.e**2 / gauss.a0 / gauss.erg).expand() self.assertAlmostEqual(a.value * 1e11, b.value * 1e11) self.assertAlmostEqual(a.value * 1e11, c.value * 1e11) self.assertAlmostEqual(a.value * 1e11, d.value * 1e11) a = (si.muB**2 / si.a0**3 * si.mu0 / (1e-7*si.J)).expand() b = (esu.muB**2 / esu.a0**3 / esu.c**2 / esu.erg).expand() c = (emu.muB**2 / emu.a0**3 / emu.erg).expand() d = (gauss.muB**2 / gauss.a0**3 / gauss.erg).expand() self.assertAlmostEqual(a.value * 1e3, b.value * 1e3) self.assertAlmostEqual(a.value * 1e3, c.value * 1e3) self.assertAlmostEqual(a.value * 1e3, d.value * 1e3) def test_codata(self): url = 'http://physics.nist.gov/cuu/Constants/Table/allascii.txt' units = { 'AtomicMassUnit': 'unified atomic mass unit'} constants = { 'AvogadroConstant': 'Avogadro constant', 'ElectronGFactor': 'electron g factor', 'ProtonGFactor': 'proton g factor', 'NeutronGFactor': 'neutron g factor', 'MuonGFactor': 'muon g factor', 'LightSpeed': 'speed of light in vacuum', 'ElementaryCharge': 'atomic unit of charge', 'PlanckConstant': 'Planck constant', 'BoltzmannConstant': 'Boltzmann constant', 'GravitationalConstant': 'Newtonian constant of gravitation', 'VacuumPermeability': 'vacuum mag. permeability', 'ElectronMass': 'electron mass', 'ProtonMass': 'proton mass', 'NeutronMass': 'neutron mass', 'MuonMass': 'muon mass'} try: response = urllib.request.urlopen(url) except urllib.error.URLError: raise ValueError('Cannot download data.') data = iter(response.read().decode('ascii').rstrip('\n').split('\n')) while not next(data).startswith('--'): pass data = (re.split(' {2,}', x) for x in data) def parse_value(x): return float(x.replace(' ', '').replace('...', '')) def parse_error(x): return 0 if x == '(exact)' else float(x.replace(' ', '')) data = {x: (parse_value(y), parse_error(z)) for x, y, z, *_ in data} for local_name, codata_name in units.items(): quantity = Quantity(1, 0, {local_name: 1}, si).expand() x, y = data[codata_name] assert math.isclose(quantity.value, x) assert math.isclose(quantity.error, y) for local_name, codata_name in constants.items(): quantity = si.get_constant(local_name).expand() x, y = data[codata_name] assert math.isclose(quantity.value, x) assert math.isclose(quantity.error, y) if __name__ == '__main__': unittest.main()
40.198113
74
0.602558
8,211
0.963506
0
0
0
0
0
0
1,444
0.169444
81c77ad5e87d4cea69ce9a40ad25f9768714ae45
3,828
py
Python
test/test_cirrus_ngs/test_cfnCluster/test_ConnectionManager.py
ucsd-ccbb/cirrus-ngs
8f51450b3d971b03d4fd08a1aab11d5a076aa23e
[ "MIT" ]
8
2017-01-20T00:00:45.000Z
2022-02-11T00:20:45.000Z
test/test_cirrus_ngs/test_cfnCluster/test_ConnectionManager.py
miko-798/cirrus-ngs
2c005f0fe29e298652ed2164e08ada75e908229b
[ "MIT" ]
3
2018-03-23T19:09:06.000Z
2018-03-26T19:49:55.000Z
test/test_cirrus_ngs/test_cfnCluster/test_ConnectionManager.py
miko-798/cirrus-ngs
2c005f0fe29e298652ed2164e08ada75e908229b
[ "MIT" ]
2
2018-03-29T06:24:31.000Z
2019-04-01T18:34:53.000Z
import unittest import sys import os sys.path.append(os.getcwd().replace("test", "src")) import cirrus_ngs.cfnCluster.ConnectionManager as ConnectionManager import paramiko import tempfile import re ##THIS TEST WILL NOT WORK## class test_ConnectionManager(unittest.TestCase): def test_paramiko(self): key_file = tempfile.NamedTemporaryFile() key_file.write(b"notakey") self.assertRaises(paramiko.SSHException, paramiko.RSAKey.from_private_key_file, key_file.name) key_file.close() #key path new_key = "" #checks to make sure a real key file works. will not be portable #leaving my ssh key for users to download for tests seems not smart paramiko.RSAKey.from_private_key_file(new_key) def test_connect_master(self): #ip hostname = "" username = "ec2-user" key_file = tempfile.NamedTemporaryFile() key_file.write(b"not_a_key") key_file.seek(0) self.assertRaises(paramiko.SSHException, ConnectionManager.connect_master, hostname, username, key_file.name) key_file.close() #this won't even work elsewhere but I don't want to put my keyfile into the eepo #key path new_key = "" ConnectionManager.connect_master(hostname, username, new_key) #checks if last line in the standard output is "connected" out = sys.stdout.getvalue().strip() last_line = out.split()[-1] self.assertEqual(last_line, "connected") #checks that connected and connecting only are printed once exactly num_connected = len(re.findall("connected", out)) self.assertEqual(1, num_connected) num_connecting = len(re.findall("connecting", out)) self.assertEqual(1, num_connecting) def test_execute_command(self): #ip hostname = "" username = "ec2-user" #key path key = "" ssh_client = ConnectionManager.connect_master(hostname, username, key) command = "pwd" #checks that the pwd command worked self.assertEqual(ConnectionManager.execute_command(ssh_client, command), "/home/ec2-user\n") ssh_client = "not an ssh_client" #makes sure that an error is raised when a non sshclient is passed in self.assertRaises(AttributeError, ConnectionManager.execute_command, ssh_client, command) def test_copy_file(self): #ip hostname = "" username = "ec2-user" #key path key = "" ssh_client = ConnectionManager.connect_master(hostname, username, key) temp = tempfile.NamedTemporaryFile() localpath = temp.name remotepath = "/home/ec2-user" ConnectionManager.copy_file(ssh_client, localpath, remotepath) out = sys.stdout.getvalue().strip().split()[-2:] #checks that the copy file prints the local and remote paths self.assertEqual(out, [localpath, remotepath]) ls_output = ConnectionManager.execute_command(ssh_client, "ls tmp* | wc -l") ConnectionManager.execute_command(ssh_client, "rm tmp*") #checks that there is exactly 1 tempfile in the home directory of the server self.assertEqual(ls_output.strip(), "1") #makes sure it doesn't work with a nonfile self.assertRaises(FileNotFoundError, ConnectionManager.copy_file, ssh_client, "fakefile", "/home/ec2-user") ######################################################################### #copy_gatk, list_dir, and close_connection are considered trivial methods #and are not tested ######################################################################### if __name__ == "__main__": unittest.main(module=__name__, buffer=True, exit=False)
35.775701
117
0.637931
3,510
0.916928
0
0
0
0
0
0
1,163
0.303814
81c7caa0739efb8823c259206d2c89fc45540cae
3,166
py
Python
src/backend/opus/opusctl/cmds/process.py
DTG-FRESCO/opus
8975e154524802efead82794ab2f70d4a1611000
[ "Apache-2.0" ]
null
null
null
src/backend/opus/opusctl/cmds/process.py
DTG-FRESCO/opus
8975e154524802efead82794ab2f70d4a1611000
[ "Apache-2.0" ]
null
null
null
src/backend/opus/opusctl/cmds/process.py
DTG-FRESCO/opus
8975e154524802efead82794ab2f70d4a1611000
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- ''' Commands for launching processes with or without OPUS interposition. ''' from __future__ import absolute_import, division, print_function import argparse import os import psutil from .. import config, server_start, utils def get_current_shell(): ppid = os.getppid() parent = psutil.Process(ppid); cur_shell = parent.exe() shell_args = parent.cmdline()[1:] return cur_shell, shell_args @config.auto_read_config def handle_launch(cfg, binary, arguments): if not utils.is_server_active(cfg=cfg): if not server_start.start_opus_server(cfg): print("Aborting command launch.") return opus_preload_lib = utils.path_normalise(os.path.join(cfg['install_dir'], 'lib', 'libopusinterpose.so') ) if 'LD_PRELOAD' in os.environ: if opus_preload_lib not in os.environ['LD_PRELOAD']: os.environ['LD_PRELOAD'] = (os.environ['LD_PRELOAD'] + " " + opus_preload_lib) else: os.environ['LD_PRELOAD'] = opus_preload_lib if cfg['server_addr'][:4] == "unix": os.environ['OPUS_UDS_PATH'] = utils.path_normalise(cfg['server_addr'][7:]) os.environ['OPUS_PROV_COMM_MODE'] = cfg['server_addr'][:4] else: os.environ['OPUS_PROV_COMM_MODE'] = cfg['server_addr'][:3] addr = cfg['server_addr'][6:].split(":") os.environ['OPUS_TCP_ADDRESS'] = addr[0] os.environ['OPUS_TCP_PORT'] = addr[1] os.environ['OPUS_MSG_AGGR'] = "1" os.environ['OPUS_MAX_AGGR_MSG_SIZE'] = "65536" os.environ['OPUS_LOG_LEVEL'] = "3" # Log critical os.environ['OPUS_INTERPOSE_MODE'] = "1" # OPUS lite if not binary: binary, arguments = get_current_shell() os.execvp(binary, [binary] + arguments) @config.auto_read_config def handle_exclude(cfg, binary, arguments): if utils.is_opus_active(): utils.reset_opus_env(cfg) else: print("OPUS is not active.") if not binary: binary, arguments = get_current_shell() os.execvp(binary, [binary] + arguments) def handle(cmd, **params): if cmd == "launch": handle_launch(**params) elif cmd == "exclude": handle_exclude(**params) def setup_parser(parser): cmds = parser.add_subparsers(dest="cmd") launch = cmds.add_parser( "launch", help="Launch a process under OPUS.") launch.add_argument( "binary", nargs='?', help="The binary to be launched. Defaults to the current shell.") launch.add_argument( "arguments", nargs=argparse.REMAINDER, help="Any arguments to be passed.") exclude = cmds.add_parser( "exclude", help="Launch a process excluded from OPUS interposition.") exclude.add_argument( "binary", nargs='?', help="The binary to be launched. Defaults to the current shell.") exclude.add_argument( "arguments", nargs=argparse.REMAINDER, help="Any arguments to be passed.")
31.979798
82
0.609602
0
0
0
0
1,803
0.569488
0
0
870
0.274795
81c8df8164adec85e55f94629c0090d4dd609286
1,718
py
Python
tests/unit/l2_infrastructure/test_app_collection_config_parser.py
ansible-self-service/ansible-self-service
80840f02b68c6ba5fe6c55ab9a317b310c185b4d
[ "MIT" ]
null
null
null
tests/unit/l2_infrastructure/test_app_collection_config_parser.py
ansible-self-service/ansible-self-service
80840f02b68c6ba5fe6c55ab9a317b310c185b4d
[ "MIT" ]
null
null
null
tests/unit/l2_infrastructure/test_app_collection_config_parser.py
ansible-self-service/ansible-self-service
80840f02b68c6ba5fe6c55ab9a317b310c185b4d
[ "MIT" ]
null
null
null
import pytest from ansible_self_service.l2_infrastructure.app_collection_config_parser import AppCollectionConfigValidationException, \ YamlAppCollectionConfigParser from ansible_self_service.l4_core.models import AppCategory, App VALID_CATEGORY_NAME = 'Misc' VALID_ITEM_NAME = 'Cowsay' VALID_ITEM_DESCRIPTION = 'Let an ASCII cow say stuff in your terminal!' VALID_CONFIG = f""" categories: {VALID_CATEGORY_NAME}: {{}} items: {VALID_ITEM_NAME}: description: | {VALID_ITEM_DESCRIPTION} categories: - {VALID_CATEGORY_NAME} image_url: https://upload.wikimedia.org/wikipedia/commons/8/80/Cowsay_Typical_Output.png playbook: playbooks/cowsay.yml params: ansible_become_password: type: secret mandatory: true requirements: > # any expression that we could use for a tasks "when" clause; items are ANDed - ansible_distribution == 'Ubuntu' """ INVALID_CONFIG = ''' this is not even YAML ''' def test_parse_valid_file(tmpdir): config_file = tmpdir.join('self-service.yaml') config_file.write(VALID_CONFIG) repo_config_parser = YamlAppCollectionConfigParser() categories, apps = repo_config_parser.from_file(config_file) assert categories == [AppCategory(name=VALID_CATEGORY_NAME)] assert apps == [App( name=VALID_ITEM_NAME, description=VALID_ITEM_DESCRIPTION, categories=[AppCategory(name=VALID_CATEGORY_NAME)]) ] def test_parse_invalid_file(tmpdir): config_file = tmpdir.join('self-service.yaml') config_file.write(INVALID_CONFIG) repo_config_parser = YamlAppCollectionConfigParser() with pytest.raises(AppCollectionConfigValidationException): repo_config_parser.from_file(config_file)
33.038462
121
0.760186
0
0
0
0
0
0
0
0
657
0.382421
81ca35091868d035a8a09d9c9753adadf774b179
6,088
py
Python
api-server.py
proatria/sftpplus-api-example
1fc3af66beef06d66ad46a0cf74bb0905793cf7f
[ "MIT" ]
null
null
null
api-server.py
proatria/sftpplus-api-example
1fc3af66beef06d66ad46a0cf74bb0905793cf7f
[ "MIT" ]
null
null
null
api-server.py
proatria/sftpplus-api-example
1fc3af66beef06d66ad46a0cf74bb0905793cf7f
[ "MIT" ]
null
null
null
""" Run a simple HTTP server which provides API endpoint for SFTPPlus. Usage: server.py [options] -h --help Show this help. -p --port=8000 Listen to a specific port. [default: 8080] -a --address=127.0.0.1 Listen on specific address. [default: 0.0.0.0] -c --certificate=PATH Enable HTTPS by defining the path to a file containing server key, certificate, and CA chain all PEM format and stored in a single file. -f --flaky Introduce random errors to test SFTPPlus API retry functionality. The following API endpoints are provided: * /auth-api - For the authentication API * /event-api - For the event handler API """ from __future__ import absolute_import, unicode_literals import base64 import json import ssl from random import randint from aiohttp import web from docopt import docopt # Command line handling part. arguments = docopt(__doc__) # Convert arguments to usable types. port = int(arguments["--port"]) # Need to escape the address for ipv6. address = arguments["--address"].replace(":", r"\:") is_flaky = arguments["--flaky"] certificate = arguments["--certificate"] # Set to lower values to increase the probability of a failure. _FLAKY_DEGREE = 3 # DB with accepted accounts. # Each key is the name of an user. # Each value contains the accepted password and/or SSH-key. ACCOUNTS = { # An account with some custom configuration. # Configuration that is not explicitly defined here is extracted based on # the SFTPPlus group. "test-user": { "password": "test-pass", # Just the public key value, in OpenSSH format. # Without hte key type or comments. "ssh-public-key": "AAAAB3NzaC1yc2EAAAADAQABAAAAgQC4fV6tSakDSB6ZovygLsf1iC9P3tJHePTKAPkPAWzlu5BRHcmAu0uTjn7GhrpxbjjWMwDVN0Oxzw7teI0OEIVkpnlcyM6L5mGk+X6Lc4+lAfp1YxCR9o9+FXMWSJP32jRwI+4LhWYxnYUldvAO5LDz9QeR0yKimwcjRToF6/jpLw==", "configuration": { "home_folder_path": "/tmp", # EXTRA_DATA is not yet supported. # 'extra_data': { # 'file_api_token': 'fav1_some_value', # }, }, }, # An account with default configuration extracted from # the default SFTPPlus group. # SSH-Key authentication is disabled for this user. "default-user": { "password": "default-pass", "ssh-public-key": "", "configuration": {}, }, } async def handle_root(request): return web.Response(text="Demo SFTPPlus API endpoints.") async def handle_auth(request): """ This is triggered for authentication API calls. """ request_json = await get_json(request) print("\n\n") print("-" * 80) print("New authentication request received") print(json.dumps(request_json, indent=2)) if is_flaky and randint(0, _FLAKY_DEGREE) == 0: print("TRIGGERING AN EMULATED FAILURE") return web.Response(status=500, text="Failed to process the request") credentials = request_json["credentials"] account = ACCOUNTS.get(credentials["username"], None) if account is None: # This is not an account handled by this authentication API. # Inform SFTPPus that it can try to authenticate the user via other # method (LDAP, or another HTTP authentication server). print("UNKNOWN USER") return web.Response( status=401, text="User not handled by our API. Try other method." ) response = {"account": account.get("configuration", {})} if credentials["type"] in ["password", "password-basic-auth"]: # We have password based authentication. if credentials["content"] != account["password"]: print("INVALID PASSWORD") return web.Response(status=403, text="Password rejected.") # Valid password. print("VALID PASSWORD") return web.json_response(response) if credentials["type"] == "ssh-key": # We have SSH-key based authentication. # The keys are encoded as BASE64, but we compare them as bytes. if base64.b64decode(credentials["content"]) != base64.b64decode( account["ssh-public-key"] ): print("INVALID SSH-KEY") return web.Response(status=403, text="SSH-Key rejected.") # Valid SSH key authentication. print("VALID SSH-KEY") return web.json_response(response) return web.Response(status=403, text="Credentials type not supported.") async def handle_event(request): """ This is triggered by the event handler API calls. """ print("\n\n") print("-" * 80) print("New event handler call") print("-" * 80) print("Headers:") for key, value in request.headers.items(): print(f" {key}: {value}") print("-" * 80) print("Payload:") await get_json(request) if is_flaky and randint(0, _FLAKY_DEGREE) == 0: print("TRIGGERING AN EMULATED FAILURE") return web.Response(status=500, text="Failed to process the request") # An empty response body can be used to confirm that the event # was received successfully by the API server. # This instruct SFTPPlus not to retry. return web.Response(status=204, text="") async def get_json(request): """ Return the json dict from `request`. It also logs the JSON """ result = {} try: result = await request.json() except json.JSONDecodeError: print("INVALID JSON RECEIVED") text = await request.text() print(text) result = {} else: print(json.dumps(result, indent=2)) return result app = web.Application() app.add_routes( [ web.get("/", handle_root), web.post("/auth-api", handle_auth), web.post("/event-api", handle_event), ] ) ssl_context = None if certificate: ssl_context = ssl.create_default_context(ssl.Purpose.SERVER_AUTH) ssl_context.load_cert_chain(certificate, certificate) if __name__ == "__main__": web.run_app(app, host=address, port=port, ssl_context=ssl_context)
31.220513
233
0.655388
0
0
0
0
0
0
3,215
0.528088
3,241
0.532359
81ca610dec0f1e1d5519b0914515a58eb09c500b
55
py
Python
arkfbp/flow/__init__.py
arkfbp/arkfbp-py
2444736462e8b4f09ae1ffe56779d9f515deb39f
[ "MIT" ]
2
2020-09-11T09:26:43.000Z
2020-12-17T07:32:38.000Z
arkfbp/flow/__init__.py
arkfbp/arkfbp-py
2444736462e8b4f09ae1ffe56779d9f515deb39f
[ "MIT" ]
4
2020-12-02T03:42:38.000Z
2020-12-14T07:56:06.000Z
arkfbp/flow/__init__.py
arkfbp/arkfbp-py
2444736462e8b4f09ae1ffe56779d9f515deb39f
[ "MIT" ]
2
2020-12-08T01:11:54.000Z
2021-01-25T04:29:15.000Z
from .base import Flow from .view_flow import ViewFlow
18.333333
31
0.818182
0
0
0
0
0
0
0
0
0
0
81cb6312561698f081c8ea3ba400b666e569a740
740
py
Python
ethereumetl/mappers/event_mapper.py
thanhnv2303/ethereum-etl
94381feadf1f1602a95db44aea5e944559628271
[ "MIT" ]
null
null
null
ethereumetl/mappers/event_mapper.py
thanhnv2303/ethereum-etl
94381feadf1f1602a95db44aea5e944559628271
[ "MIT" ]
null
null
null
ethereumetl/mappers/event_mapper.py
thanhnv2303/ethereum-etl
94381feadf1f1602a95db44aea5e944559628271
[ "MIT" ]
null
null
null
from config.constant import ExportItemConstant, ExportItemTypeConstant, EventConstant, TransactionConstant from ethereumetl.service.eth_event_service import EthEvent class EthEventMapper(object): def eth_event_to_dict(self, eth_event: EthEvent): d1 = { ExportItemConstant.type: ExportItemTypeConstant.event, EventConstant.event_type: eth_event.event_type, EventConstant.contract_address: eth_event.contract_address, TransactionConstant.transaction_hash: eth_event.transaction_hash, EventConstant.log_index: eth_event.log_index, TransactionConstant.block_number: eth_event.block_number, } d2 = eth_event.params return {**d1, **d2}
43.529412
106
0.731081
571
0.771622
0
0
0
0
0
0
0
0
81cc09d97179b0455468e2dd08a57556c6ae600f
5,934
py
Python
openerp/addons/crm_partner_assign/wizard/crm_forward_to_partner.py
ntiufalara/openerp7
903800da0644ec0dd9c1dcd34205541f84d45fe4
[ "MIT" ]
3
2016-01-29T14:39:49.000Z
2018-12-29T22:42:00.000Z
openerp/addons/crm_partner_assign/wizard/crm_forward_to_partner.py
ntiufalara/openerp7
903800da0644ec0dd9c1dcd34205541f84d45fe4
[ "MIT" ]
2
2016-03-23T14:29:41.000Z
2017-02-20T17:11:30.000Z
openerp/addons/crm_partner_assign/wizard/crm_forward_to_partner.py
ntiufalara/openerp7
903800da0644ec0dd9c1dcd34205541f84d45fe4
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2010 Tiny SPRL (<http://tiny.be>). All Rights Reserved # $Id$ # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from openerp.osv import fields, osv from openerp.tools.translate import _ class crm_lead_forward_to_partner(osv.TransientModel): """ Forward info history to partners. """ _name = 'crm.lead.forward.to.partner' _inherit = "mail.compose.message" def _get_composition_mode_selection(self, cr, uid, context=None): composition_mode = super(crm_lead_forward_to_partner, self)._get_composition_mode_selection(cr, uid, context=context) composition_mode.append(('forward', 'Forward')) return composition_mode _columns = { 'partner_ids': fields.many2many('res.partner', 'lead_forward_to_partner_res_partner_rel', 'wizard_id', 'partner_id', 'Additional contacts'), 'attachment_ids': fields.many2many('ir.attachment', 'lead_forward_to_partner_attachment_rel', 'wizard_id', 'attachment_id', 'Attachments'), 'history_mode': fields.selection([('info', 'Internal notes'), ('latest', 'Latest email'), ('whole', 'Whole Story')], 'Send history', required=True), } _defaults = { 'history_mode': 'info', } def default_get(self, cr, uid, fields, context=None): if context is None: context = {} # set as comment, perform overrided document-like action that calls get_record_data old_mode = context.get('default_composition_mode', 'forward') context['default_composition_mode'] = 'comment' res = super(crm_lead_forward_to_partner, self).default_get(cr, uid, fields, context=context) # back to forward mode context['default_composition_mode'] = old_mode res['composition_mode'] = context['default_composition_mode'] return res def get_record_data(self, cr, uid, model, res_id, context=None): """ Override of mail.compose.message, to add default values coming form the related lead. """ if context is None: context = {} res = super(crm_lead_forward_to_partner, self).get_record_data(cr, uid, model, res_id, context=context) if model not in ('crm.lead') or not res_id: return res template_id = self.pool.get('ir.model.data').get_object_reference(cr, uid, 'crm_partner_assign', 'crm_partner_assign_email_template')[1] context['history_mode'] = context.get('history_mode','whole') mail_body_fields = ['partner_id', 'partner_name', 'title', 'function', 'street', 'street2', 'zip', 'city', 'country_id', 'state_id', 'email_from', 'phone', 'fax', 'mobile', 'description'] lead = self.pool.get('crm.lead').browse(cr, uid, res_id, context=context) context['mail_body'] = self.pool.get('crm.lead')._mail_body(cr, uid, lead, mail_body_fields, context=context) template = self.generate_email_for_composer(cr, uid, template_id, res_id, context) res['subject'] = template['subject'] res['body'] = template['body'] return res def on_change_history_mode(self, cr, uid, ids, history_mode, model, res_id, context=None): """ Update body when changing history_mode """ if context is None: context = {} if model and model == 'crm.lead' and res_id: lead = self.pool.get(model).browse(cr, uid, res_id, context=context) context['history_mode'] = history_mode body = self.get_record_data(cr, uid, 'crm.lead', res_id, context=context)['body'] return {'value': {'body': body}} def create(self, cr, uid, values, context=None): """ TDE-HACK: remove 'type' from context, because when viewing an opportunity form view, a default_type is set and propagated to the wizard, that has a not matching type field. """ default_type = context.pop('default_type', None) new_id = super(crm_lead_forward_to_partner, self).create(cr, uid, values, context=context) if default_type: context['default_type'] = default_type return new_id def action_forward(self, cr, uid, ids, context=None): """ Forward the lead to a partner """ if context is None: context = {} res = {'type': 'ir.actions.act_window_close'} wizard = self.browse(cr, uid, ids[0], context=context) if wizard.model not in ('crm.lead'): return res lead = self.pool.get(wizard.model) lead_ids = wizard.res_id and [wizard.res_id] or [] if wizard.composition_mode == 'mass_mail': lead_ids = context and context.get('active_ids', []) or [] value = self.default_get(cr, uid, ['body', 'email_to', 'email_cc', 'subject', 'history_mode'], context=context) self.write(cr, uid, ids, value, context=context) return self.send_mail(cr, uid, ids, context=context) # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
47.472
195
0.635322
4,780
0.805527
0
0
0
0
0
0
2,652
0.446916
81cd30e6f9de401088d486d770c3328acf7f5008
5,033
py
Python
losses.py
DensenDavis/yolov5_tf2
5b2f38e3f0391e5beee1551a386e9b81512db179
[ "Unlicense" ]
null
null
null
losses.py
DensenDavis/yolov5_tf2
5b2f38e3f0391e5beee1551a386e9b81512db179
[ "Unlicense" ]
null
null
null
losses.py
DensenDavis/yolov5_tf2
5b2f38e3f0391e5beee1551a386e9b81512db179
[ "Unlicense" ]
null
null
null
import tensorflow as tf from tensorflow.keras.losses import binary_crossentropy,sparse_categorical_crossentropy from config import Configuration cfg = Configuration() class YOLOLoss(tf.losses.Loss): def __init__(self, anchors): super(YOLOLoss, self).__init__(reduction="none", name="YOLOLoss") self.anchors = tf.constant(anchors) def _meshgrid(self, n_a, n_b): return [ tf.reshape(tf.tile(tf.range(n_a), [n_b]), (n_b, n_a)), tf.reshape(tf.repeat(tf.range(n_b), n_a), (n_b, n_a)) ] def broadcast_iou(self, box_1, box_2): # box_1: (..., (x1, y1, x2, y2)) # box_2: (N, (x1, y1, x2, y2)) # broadcast boxes box_1 = tf.expand_dims(box_1, -2) box_2 = tf.expand_dims(box_2, 0) # new_shape: (..., N, (x1, y1, x2, y2)) new_shape = tf.broadcast_dynamic_shape(tf.shape(box_1), tf.shape(box_2)) box_1 = tf.broadcast_to(box_1, new_shape) box_2 = tf.broadcast_to(box_2, new_shape) int_w = tf.maximum(tf.minimum(box_1[..., 2], box_2[..., 2]) - tf.maximum(box_1[..., 0], box_2[..., 0]), 0) int_h = tf.maximum(tf.minimum(box_1[..., 3], box_2[..., 3]) - tf.maximum(box_1[..., 1], box_2[..., 1]), 0) int_area = int_w * int_h box_1_area = (box_1[..., 2] - box_1[..., 0]) * \ (box_1[..., 3] - box_1[..., 1]) box_2_area = (box_2[..., 2] - box_2[..., 0]) * \ (box_2[..., 3] - box_2[..., 1]) return int_area / (box_1_area + box_2_area - int_area) def yolo_boxes(self, pred, classes): # pred: (batch_size, grid, grid, anchors, (x, y, w, h, obj, ...classes)) grid_size = tf.shape(pred)[1:3] box_xy, box_wh, objectness, class_probs = tf.split(pred, (2, 2, 1, classes), axis=-1) box_xy = tf.sigmoid(box_xy) objectness = tf.sigmoid(objectness) class_probs = tf.sigmoid(class_probs) pred_box = tf.concat((box_xy, box_wh), axis=-1) # original xywh for loss # !!! grid[x][y] == (y, x) grid = self._meshgrid(grid_size[1],grid_size[0]) grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2) # [gx, gy, 1, 2] box_xy = (box_xy + tf.cast(grid, tf.float32)) / tf.cast(grid_size, tf.float32) box_wh = tf.exp(box_wh) * self.anchors box_x1y1 = box_xy - box_wh / 2 box_x2y2 = box_xy + box_wh / 2 bbox = tf.concat([box_x1y1, box_x2y2], axis=-1) return bbox, objectness, class_probs, pred_box def call(self, y_true, y_pred): # 1. transform all pred outputs # y_pred: (batch_size, grid, grid, anchors, (x, y, w, h, obj, ...cls)) pred_box, pred_obj, pred_class, pred_xywh = self.yolo_boxes(y_pred, cfg.num_classes) pred_xy = pred_xywh[..., 0:2] pred_wh = pred_xywh[..., 2:4] # 2. transform all true outputs # y_true: (batch_size, grid, grid, anchors, (x1, y1, x2, y2, obj, cls)) true_box, true_obj, true_class_idx = tf.split(y_true, (4, 1, 1), axis=-1) true_xy = (true_box[..., 0:2] + true_box[..., 2:4]) / 2 true_wh = true_box[..., 2:4] - true_box[..., 0:2] # give higher weights to small boxes box_loss_scale = 2 - true_wh[..., 0] * true_wh[..., 1] # 3. inverting the pred box equations grid_size = tf.shape(y_true)[1] grid = tf.meshgrid(tf.range(grid_size), tf.range(grid_size)) grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2) true_xy = true_xy * tf.cast(grid_size, tf.float32) - tf.cast(grid, tf.float32) true_wh = tf.math.log(true_wh / self.anchors) true_wh = tf.where(tf.math.is_inf(true_wh),tf.zeros_like(true_wh), true_wh) # 4. calculate all masks obj_mask = tf.squeeze(true_obj, -1) # ignore false positive when iou is over threshold best_iou = tf.map_fn( lambda x: tf.reduce_max(self.broadcast_iou(x[0], tf.boolean_mask( x[1], tf.cast(x[2], tf.bool))), axis=-1), (pred_box, true_box, obj_mask), tf.float32) ignore_mask = tf.cast(best_iou < cfg.train_iou_threshold, tf.float32) # 5. calculate all losses xy_loss = obj_mask * box_loss_scale * tf.reduce_sum(tf.square(true_xy - pred_xy), axis=-1) wh_loss = obj_mask * box_loss_scale * tf.reduce_sum(tf.square(true_wh - pred_wh), axis=-1) obj_loss = binary_crossentropy(true_obj, pred_obj) obj_loss = obj_mask * obj_loss + (1 - obj_mask) * ignore_mask * obj_loss class_loss = obj_mask * sparse_categorical_crossentropy(true_class_idx, pred_class) # 6. sum over (batch, gridx, gridy, anchors) => (batch, 1) xy_loss = tf.reduce_sum(xy_loss, axis=(1, 2, 3)) wh_loss = tf.reduce_sum(wh_loss, axis=(1, 2, 3)) obj_loss = tf.reduce_sum(obj_loss, axis=(1, 2, 3)) class_loss = tf.reduce_sum(class_loss, axis=(1, 2, 3)) return xy_loss + wh_loss + obj_loss + class_loss
44.9375
98
0.587522
4,864
0.966422
0
0
0
0
0
0
705
0.140076
81cd44adfb162f86e55541035a3d572728194cd3
2,235
py
Python
test/stress/mmlogic.py
dzlier-gcp/open-match
8db449b307468e20c9835cc22dcca9511c38025a
[ "Apache-2.0" ]
null
null
null
test/stress/mmlogic.py
dzlier-gcp/open-match
8db449b307468e20c9835cc22dcca9511c38025a
[ "Apache-2.0" ]
12
2019-08-10T00:37:58.000Z
2019-08-14T22:47:26.000Z
test/stress/mmlogic.py
dzlier-gcp/open-match
8db449b307468e20c9835cc22dcca9511c38025a
[ "Apache-2.0" ]
2
2019-08-10T00:31:54.000Z
2019-08-10T00:33:10.000Z
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import json from locust import HttpLocust, TaskSequence, task, seq_task from util import ticket_generator, pool_generator, ATTRIBUTE_LIST NUM_QUERY_ATTR = 20 class ClientBehavior(TaskSequence): def on_start(self): """ on_start is called when a Locust start before any task is scheduled """ self.init() def init(self): # Placeholder for initialize future TLS materials and request generators create_payload = { "method": "POST", "endpoint": "/v1/frontend/tickets", "params": None, "body": None } # Each spawned client first generate 10 tickets then do the query to mmlogic (data) layer # Total number of tickets in open-match would be 10 * # of spawned clients for i in range(10): self.client.request(create_payload["method"], create_payload["endpoint"], params=None, data=json.dumps(ticket_generator())) @task(1) def query_ticket(self): query_payload = { "method": "POST", "endpoint": "/v1/mmlogic/tickets:query", "params": None, "body": pool_generator(random.choices(ATTRIBUTE_LIST, k=NUM_QUERY_ATTR)) } method, endpoint, params, data, name = query_payload["method"], query_payload["endpoint"], None, json.dumps(query_payload["body"]), "Query: {}".format(query_payload["endpoint"]) with self.client.request(method, endpoint, name=name, params=params, data=data, catch_response=True) as response: if response.status_code != 200: response.failure("Got status code {}, was expected 200.".format(response.content)) class WebsiteUser(HttpLocust): task_set = ClientBehavior min_wait = 500 max_wait = 1500
35.47619
181
0.714541
1,478
0.661298
0
0
664
0.297092
0
0
1,101
0.492617
81cdcd944d2ec3787c0800a16240ad15e52f16bd
500
py
Python
benchmarks_sphere/report_konwihr_rexi_nl/compare_wt_dt_vs_accuracy_galewsky_new_rexi_cmlarge_elrexi/postprocessing_pickle.py
valentinaschueller/sweet
27e99c7a110c99deeadee70688c186d82b39ac90
[ "MIT" ]
6
2017-11-20T08:12:46.000Z
2021-03-11T15:32:36.000Z
benchmarks_sphere/report_konwihr_rexi_nl/compare_wt_dt_vs_accuracy_galewsky_new_rexi_cmlarge_elrexi/postprocessing_pickle.py
valentinaschueller/sweet
27e99c7a110c99deeadee70688c186d82b39ac90
[ "MIT" ]
4
2018-02-02T21:46:33.000Z
2022-01-11T11:10:27.000Z
benchmarks_sphere/report_konwihr_rexi_nl/compare_wt_dt_vs_accuracy_galewsky_new_rexi_cmlarge_elrexi/postprocessing_pickle.py
valentinaschueller/sweet
27e99c7a110c99deeadee70688c186d82b39ac90
[ "MIT" ]
12
2016-03-01T18:33:34.000Z
2022-02-08T22:20:31.000Z
#! /usr/bin/env python3 import sys import math import glob from mule_local.postprocessing.pickle_SphereDataSpectralDiff import * from mule.exec_program import * # Ugly hack! #output, retval = exec_program('ls *benchref*/*prog_h* | sort | tail -n 1 | sed "s/.*prog_h//"') #if retval != 0: # print(output) # raise Exception("Something went wrong") #output = output.replace("\n", '') #output = output.replace("\r", '') #p = pickle_SphereDataSpectralDiff(output) p = pickle_SphereDataSpectralDiff()
23.809524
96
0.72
0
0
0
0
0
0
0
0
313
0.626
81ceeac6fb9c99499e11e6ba24211d641629642f
4,355
py
Python
src/houdini_package_runner/items/base.py
captainhammy/houdini_package_runner
40f8b60ebe32c64fd9b37328a9a5eefacd1c6ebd
[ "MIT" ]
3
2022-02-06T23:31:17.000Z
2022-02-07T11:10:03.000Z
src/houdini_package_runner/items/base.py
captainhammy/houdini_package_runner
40f8b60ebe32c64fd9b37328a9a5eefacd1c6ebd
[ "MIT" ]
null
null
null
src/houdini_package_runner/items/base.py
captainhammy/houdini_package_runner
40f8b60ebe32c64fd9b37328a9a5eefacd1c6ebd
[ "MIT" ]
null
null
null
"""This module contains a base runnable item.""" # ============================================================================= # IMPORTS # ============================================================================= # Future from __future__ import annotations # Standard Library from abc import ABC, abstractmethod from typing import TYPE_CHECKING, List # Imports for type checking. if TYPE_CHECKING: import pathlib import houdini_package_runner.runners.base # ============================================================================= # CLASSES # ============================================================================= class BaseItem(ABC): """Base class for a runnable item. :param write_back: Whether the item should write itself back to disk. """ def __init__(self, write_back: bool = False) -> None: self._contents_changed = False self._ignored_builtins: List[str] = [] self._is_single_line = False self._is_test_item = False self._write_back = write_back def __repr__(self): return f"<{self.__class__.__name__}>" # ------------------------------------------------------------------------- # PROPERTIES # ------------------------------------------------------------------------- @property def contents_changed(self) -> bool: """Whether the contents of the item have changed.""" return self._contents_changed @contents_changed.setter def contents_changed(self, contents_changed: bool): self._contents_changed = contents_changed # ------------------------------------------------------------------------- @property def ignored_builtins(self) -> List[str]: """A list of known builtins to ignore for checks which look for imports.""" return self._ignored_builtins # ------------------------------------------------------------------------- @property def is_single_line(self) -> bool: """Whether the item code on a single line.""" return self._is_single_line # ------------------------------------------------------------------------- @property def is_test_item(self) -> bool: """Whether the item is a test related item.""" return self._is_test_item @is_test_item.setter def is_test_item(self, is_test_item: bool): self._is_test_item = is_test_item # ------------------------------------------------------------------------- @property def write_back(self) -> bool: """Whether the item should write changes back.""" return self._write_back @write_back.setter def write_back(self, write_back): self._write_back = write_back # ------------------------------------------------------------------------- # METHODS # ------------------------------------------------------------------------- @abstractmethod def process( self, runner: houdini_package_runner.runners.base.HoudiniPackageRunner ) -> int: """Process an item. :param runner: The package runner processing the item. :return: The process return code. """ class BaseFileItem(BaseItem): """Base class for a runnable item. :param path: The path for the item. :param write_back: Whether the item should write itself back to disk. """ def __init__(self, path: pathlib.Path, write_back: bool = False) -> None: super().__init__(write_back=write_back) self._path = path def __repr__(self): return f"<{self.__class__.__name__} {self.path}>" # ------------------------------------------------------------------------- # PROPERTIES # ------------------------------------------------------------------------- @property def path(self) -> pathlib.Path: """The path on disk.""" return self._path # ------------------------------------------------------------------------- # METHODS # ------------------------------------------------------------------------- @abstractmethod def process( self, runner: houdini_package_runner.runners.base.HoudiniPackageRunner ) -> int: """Process an item. :param runner: The package runner processing the item. :return: The process return code. """
29.828767
83
0.461538
3,702
0.850057
0
0
1,709
0.392423
0
0
2,292
0.526292
81cf7c347a9efbb6723692e303da22251c98208b
71
py
Python
visualizer/__init__.py
AndreasMadsen/bachelor-code
115fd2b955de07f34cdec998ba2a7f103ae253e3
[ "MIT" ]
1
2015-06-16T06:53:52.000Z
2015-06-16T06:53:52.000Z
visualizer/__init__.py
AndreasMadsen/bachelor-code
115fd2b955de07f34cdec998ba2a7f103ae253e3
[ "MIT" ]
null
null
null
visualizer/__init__.py
AndreasMadsen/bachelor-code
115fd2b955de07f34cdec998ba2a7f103ae253e3
[ "MIT" ]
null
null
null
from graph.graph_server import GraphServer __all__ = ['GraphServer']
14.2
42
0.788732
0
0
0
0
0
0
0
0
13
0.183099
81cfb18746180392d2ab217e02dc844bfc9a910e
4,485
py
Python
djangoplicity/blog/migrations/0001_initial.py
djangoplicity/blog
2465b34228d794db9f746e314fa04657cbf18d38
[ "BSD-3-Clause" ]
null
null
null
djangoplicity/blog/migrations/0001_initial.py
djangoplicity/blog
2465b34228d794db9f746e314fa04657cbf18d38
[ "BSD-3-Clause" ]
1
2021-10-20T00:11:16.000Z
2021-10-20T00:17:51.000Z
djangoplicity/blog/migrations/0001_initial.py
djangoplicity/djangoplicity-blog
2465b34228d794db9f746e314fa04657cbf18d38
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.9.13 on 2017-08-15 16:23 from __future__ import unicode_literals import django.contrib.postgres.fields.jsonb from django.db import migrations, models import django.db.models.deletion import djangoplicity.archives.base import djangoplicity.archives.fields class Migration(migrations.Migration): initial = True dependencies = [ ('media', '0021_auto_20170207_1749'), ] operations = [ migrations.CreateModel( name='Author', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('biography', models.TextField(blank=True)), ('photo', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='media.Image')), ], ), migrations.CreateModel( name='AuthorDescription', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('description', models.CharField(blank=True, help_text='Optional description, e.g.: "Author: ", or "Interview with"', max_length=100)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='blog.Author')), ], ), migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('footer', models.TextField(blank=True, help_text='Optional footer added to the bottom of posts')), ], ), migrations.CreateModel( name='Post', fields=[ ('slug', models.SlugField(help_text='Used for the URL', primary_key=True, serialize=False)), ('title', models.CharField(max_length=255)), ('subtitle', models.CharField(blank=True, help_text='Optional subtitle', max_length=255)), ('lede', models.TextField()), ('body', models.TextField()), ('discover_box', models.TextField(blank=True)), ('numbers_box', models.TextField(blank=True)), ('links', models.TextField(blank=True)), ('release_date', djangoplicity.archives.fields.ReleaseDateTimeField(blank=True, db_index=True, null=True)), ('embargo_date', djangoplicity.archives.fields.ReleaseDateTimeField(blank=True, db_index=True, null=True)), ('published', models.BooleanField(db_index=True, default=False, verbose_name='Published')), ('last_modified', models.DateTimeField(auto_now=True, verbose_name='Last modified')), ('created', models.DateTimeField(auto_now_add=True, verbose_name='Created')), ('release_task_id', models.CharField(blank=True, max_length=64, null=True)), ('embargo_task_id', models.CharField(blank=True, max_length=64, null=True)), ('checksums', django.contrib.postgres.fields.jsonb.JSONField(blank=True, null=True)), ('authors', models.ManyToManyField(through='blog.AuthorDescription', to='blog.Author')), ('banner', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='media.Image', verbose_name='Banner Image')), ('category', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='blog.Category')), ], options={ 'ordering': ('-release_date',), }, bases=(djangoplicity.archives.base.ArchiveModel, models.Model), ), migrations.CreateModel( name='Tag', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ], ), migrations.AddField( model_name='post', name='tags', field=models.ManyToManyField(to='blog.Tag'), ), migrations.AddField( model_name='authordescription', name='post', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='blog.Post'), ), ]
48.75
151
0.599331
4,178
0.93155
0
0
0
0
0
0
819
0.182609
81d02a1b1d708206e4f47e1ceb3bcbc7a7b7f3aa
4,386
py
Python
picklesize/test_picklesize.py
pydron/picklesize
c524ccae7beecfada663fbcf251c4166158f2995
[ "MIT" ]
null
null
null
picklesize/test_picklesize.py
pydron/picklesize
c524ccae7beecfada663fbcf251c4166158f2995
[ "MIT" ]
null
null
null
picklesize/test_picklesize.py
pydron/picklesize
c524ccae7beecfada663fbcf251c4166158f2995
[ "MIT" ]
null
null
null
''' Created on 20.07.2015 @author: stefan ''' import unittest import pickle import picklesize import copy_reg class TestEstimator(unittest.TestCase): def setUp(self): self.target = picklesize.PickleSize() def compare(self, obj): data = pickle.dumps(obj, protocol=pickle.HIGHEST_PROTOCOL) expected = len(data) actual = self.target.picklesize(obj, pickle.HIGHEST_PROTOCOL) self.assertEqual(expected, actual, "Wrong estimate (%s instead of %s) for %r." % (actual, expected, obj)) def test_None(self): self.compare(None) def test_True(self): self.compare(True) def test_False(self): self.compare(False) def test_int(self): self.compare(0) self.compare(1) self.compare(0xFF-1) self.compare(0xFF) self.compare(0xFF+1) self.compare(0xFFFF-1) self.compare(0xFFFF) self.compare(0xFFFF+1) self.compare(-0xFF-1) self.compare(-0xFF) self.compare(-0xFF+1) self.compare(-0xFFFF-1) self.compare(-0xFFFF) self.compare(-0xFFFF+1) def test_long(self): self.compare(0L) self.compare(1L) self.compare(10L**100) self.compare(10L**1000) def test_float(self): self.compare(0.0) self.compare(-42.42) def test_string(self): self.compare("") self.compare(255*"x") self.compare(256*"x") self.compare(257*"x") def test_unicode(self): self.compare(u"") self.compare(255*u"x") self.compare(256*u"x") self.compare(257*u"x") def test_tuple(self): self.compare(tuple()) self.compare((1,)) self.compare((1,2)) self.compare((1,2,3)) self.compare((1,2,3,4)) def test_list(self): self.compare([]) self.compare([1]) self.compare(999*[1]) self.compare(1000*[1]) self.compare(1001*[1]) self.compare(1002*[1]) self.compare(5412*[1]) def test_dict(self): self.compare({}) self.compare({1:2}) self.compare({1:1, 2:2}) def test_instance(self): self.compare(OldStyle_WithAttribs()) self.compare(OldStyle_WithInit()) def test_Type(self): self.compare(long) self.compare(OldStyle_WithAttribs) self.compare(global_function) self.compare(max) def test_Ref(self): x = "abc" self.compare([x,x]) def test_Reducer(self): self.compare(NewStyle_Reducer()) def test_NewStyleInstance(self): self.compare(NewStyle_WithAttribs()) def test_numpy(self): import numpy as np self.compare(np.ones((10,10))) self.compare(np.ones((10,10))[0:5,:]) self.compare(np.ones((10,10))[:,0:5]) def test_numpy_multiple_arrays(self): import numpy as np self.compare([np.ones((10,10)), np.ones((10,10))]) def test_numpy_large(self): import numpy as np self.compare(np.ones(1024*1024)) class TestFast(TestEstimator): def setUp(self): self.target = picklesize.FastPickleSize() def compare(self, obj): data = pickle.dumps(obj, protocol=pickle.HIGHEST_PROTOCOL) expected = len(data) actual = self.target.picklesize(obj, pickle.HIGHEST_PROTOCOL) self.assertLessEqual(actual, 2*expected+100, "Over estimate (%s instead of %s) for %r." % (actual, expected, obj)) self.assertGreaterEqual(actual, 0.5*expected-100, "Gross under estimate (%s instead of %s) for %r." % (actual, expected, obj)) class OldStyle_WithAttribs(): def __init__(self): self.a = 12 self.b = 42 class OldStyle_WithInit(): def __getinitargs__(self): return (1,2,3) class NewStyle_Reducer(object): pass class NewStyle_WithAttribs(object): def __init__(self): self.a = 12 self.b = 42 def tuple_reducer(obj): return (NewStyle_Reducer, tuple()) copy_reg.pickle(NewStyle_Reducer, tuple_reducer) def global_function(): pass
24.779661
110
0.564979
4,083
0.930917
0
0
0
0
0
0
211
0.048108
81d18ed12d722ad07b48dba575ac241b64bc31f0
1,691
py
Python
setup.py
extensive-nlp/ttc_nlp
b84892b4f6856baf99d9a5975cdcbf2fe3b19b7a
[ "Apache-2.0" ]
null
null
null
setup.py
extensive-nlp/ttc_nlp
b84892b4f6856baf99d9a5975cdcbf2fe3b19b7a
[ "Apache-2.0" ]
null
null
null
setup.py
extensive-nlp/ttc_nlp
b84892b4f6856baf99d9a5975cdcbf2fe3b19b7a
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Setup process.""" from io import open from os import path from setuptools import find_packages, setup with open( path.join(path.abspath(path.dirname(__file__)), "README.md"), encoding="utf-8" ) as f: long_description = f.read() setup( # Basic project information name="ttctext", version="0.0.1", # Authorship and online reference author="Satyajit Ghana", author_email="[email protected]", url="https://github.com/extensive-nlp/ttc_nlp", # Detailled description description="TTC NLP Module", long_description=long_description, long_description_content_type="text/markdown", keywords="sample setuptools development", classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "Natural Language :: English", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", ], # Package configuration packages=find_packages(exclude=("tests",)), include_package_data=True, python_requires=">= 3.6", install_requires=[ "torch>=1.9.0", "torchtext>=0.10.0", "torchmetrics>=0.4.1", "omegaconf>=2.1.0", "pytorch-lightning>=1.3.8", "gdown>=3.13.0", "spacy>=3.1.0", "pandas~=1.1.0", "seaborn>=0.11.1", "matplotlib>=3.1.3", "tqdm>=4.61.2", "scikit-learn~=0.24.2", ], # Licensing and copyright license="Apache 2.0", )
28.661017
82
0.607333
0
0
0
0
0
0
0
0
912
0.539326
81d3e9a297bdf6007923e315c9b06917f0723c4c
216
py
Python
auxein/fitness/__init__.py
auxein/auxein
5388cb572b65aecc282f915515c35dc3b987154c
[ "Apache-2.0" ]
1
2019-05-08T14:53:27.000Z
2019-05-08T14:53:27.000Z
auxein/fitness/__init__.py
auxein/auxein
5388cb572b65aecc282f915515c35dc3b987154c
[ "Apache-2.0" ]
2
2020-08-26T09:16:47.000Z
2020-10-30T16:47:03.000Z
auxein/fitness/__init__.py
auxein/auxein
5388cb572b65aecc282f915515c35dc3b987154c
[ "Apache-2.0" ]
null
null
null
# flake8: noqa from .core import Fitness from .kernel_based import GlobalMinimum from .observation_based import ObservationBasedFitness, MultipleLinearRegression, SimplePolynomialRegression, MultipleLinearRegression
43.2
134
0.87963
0
0
0
0
0
0
0
0
14
0.064815
81d542769cfc331b3bf5ee9b379987289db08efb
1,071
py
Python
steelpy/codes/main.py
svortega/steelpy
bef35eb8ab8728fc29f57b7070b5f3bac0b0e840
[ "MIT" ]
4
2021-09-28T12:52:01.000Z
2022-02-24T22:30:22.000Z
steelpy/codes/main.py
svortega/steelpy
bef35eb8ab8728fc29f57b7070b5f3bac0b0e840
[ "MIT" ]
null
null
null
steelpy/codes/main.py
svortega/steelpy
bef35eb8ab8728fc29f57b7070b5f3bac0b0e840
[ "MIT" ]
null
null
null
# Copyright (c) 2019-2020 steelpy # Python stdlib imports # package imports #from steelpy.codes.aisc.aisc360 import AISC_360_16 #from steelpy.codes.aisc.aisc335 import AISC_335_89 #from steelpy.codes.iso.ISO19902 import ISOCodeCheck from steelpy.codes.piping.pipeline import Pipeline_Assessment #from steelpy.codes.api.wsd_22ed import APIwsd22ed from steelpy.codes.dnv.pannel import CodeCheckPanel # #from steelpy.process.units.main import Units #from steelpy.material.material import Material #from steelpy.sections.tubular import Tubular from steelpy.codes.api.main import API_design class CodeCheck: """ """ def __init__(self): """""" #self._units = Units() pass #@property #def units(self): # """ # """ # return self._units # @property def API(self): """ """ return API_design() # @property def pipe(self): """ """ return Pipeline_Assessment() # def DNV_pannel(self): """ """ return CodeCheckPanel()
22.3125
61
0.644258
479
0.447246
0
0
162
0.151261
0
0
556
0.519141
81d63e7ca9da71f50fffa4b00a77a421574650e4
347
py
Python
main.py
soyoung97/MixText
22993cd028a4223a54e138a89b53cd7978a5e38b
[ "MIT" ]
null
null
null
main.py
soyoung97/MixText
22993cd028a4223a54e138a89b53cd7978a5e38b
[ "MIT" ]
null
null
null
main.py
soyoung97/MixText
22993cd028a4223a54e138a89b53cd7978a5e38b
[ "MIT" ]
null
null
null
import os os.system("pip install pytorch_transformers") import nsml print(nsml.DATASET_PATH) os.system('python ./code/train.py --n-labeled 10 --data-path '+ nsml.DATASET_PATH + '/train/ --batch-size 4 --batch-size-u 8 --epochs 20 --val-iteration 1000 --lambda-u 1 --T 0.5 --alpha 16 --mix-layers-set 7 9 12 --lrmain 0.000005 --lrlast 0.00005' )
38.555556
249
0.706052
0
0
0
0
0
0
0
0
251
0.723343
81d742485fceccd1810f61f429cd089c6e0b112d
1,126
py
Python
test.py
IldusTim/QAStudy
f2f5e9c673259e7e1c8d0ab2887f28326300abe3
[ "Apache-2.0" ]
null
null
null
test.py
IldusTim/QAStudy
f2f5e9c673259e7e1c8d0ab2887f28326300abe3
[ "Apache-2.0" ]
null
null
null
test.py
IldusTim/QAStudy
f2f5e9c673259e7e1c8d0ab2887f28326300abe3
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from selenium import webdriver from selenium.webdriver.support.ui import WebDriverWait import math from selenium.webdriver.support.ui import Select import os import time from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as EC link = "http://suninjuly.github.io/explicit_wait2.html" opt = webdriver.ChromeOptions() opt.add_experimental_option('w3c', False) browser = webdriver.Chrome(chrome_options=opt) browser.implicitly_wait(5, 0.5) browser.get(link) button = browser.find_element_by_id("book") price = WebDriverWait(browser, 12).until(EC.text_to_be_present_in_element((By.ID, "price"),"10000 RUR")) button.click() def calc(x): return str(math.log(abs(12*math.sin(int(x))))) browser.find_element_by_class_name("btn-primary").click() # new_window = browser.window_handles[1] # browser.switch_to.window(new_window) x_element = browser.find_element_by_id("input_value") x = x_element.text y = calc(x) browser.find_element_by_id("answer").click() browser.find_element_by_id("answer").send_keys(y) browser.find_element_by_id("solve").click()
31.277778
104
0.785968
0
0
0
0
0
0
0
0
227
0.201599
81d761dcf0b173ad97a22e411c04701a33909ebc
1,224
py
Python
django_backend/product/migrations/0002_product.py
itsmahadi007/E-Commerce-VueJS-Django
4fc298f2181fd22c6aeb74439edef78a397d5447
[ "MIT" ]
null
null
null
django_backend/product/migrations/0002_product.py
itsmahadi007/E-Commerce-VueJS-Django
4fc298f2181fd22c6aeb74439edef78a397d5447
[ "MIT" ]
4
2022-01-13T03:56:36.000Z
2022-03-12T01:01:24.000Z
django_backend/product/migrations/0002_product.py
itsmahadi007/E-Commerce-VueJS-Django
4fc298f2181fd22c6aeb74439edef78a397d5447
[ "MIT" ]
null
null
null
# Generated by Django 3.2.7 on 2021-09-01 17:46 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('product', '0001_initial'), ] operations = [ migrations.CreateModel( name='Product', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=200)), ('slug', models.SlugField()), ('description', models.TextField(blank=True, null=True)), ('price', models.DecimalField(decimal_places=2, max_digits=10)), ('image', models.ImageField(blank=True, null=True, upload_to='uploads/')), ('thumbnail', models.ImageField(blank=True, null=True, upload_to='uploads/')), ('data_added', models.DateTimeField(auto_now_add=True)), ('category', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='product', to='product.category')), ], options={ 'ordering': ('-data_added',), }, ), ]
38.25
140
0.580882
1,098
0.897059
0
0
0
0
0
0
229
0.187092
81d9ca381791e7e9b4231c86815a9f9bf5fa4886
40,400
py
Python
kraken/ketos.py
zjsteyn/kraken
eaa9f4290db5425ddf80d0aebfa3944713558ab5
[ "Apache-2.0" ]
null
null
null
kraken/ketos.py
zjsteyn/kraken
eaa9f4290db5425ddf80d0aebfa3944713558ab5
[ "Apache-2.0" ]
null
null
null
kraken/ketos.py
zjsteyn/kraken
eaa9f4290db5425ddf80d0aebfa3944713558ab5
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright 2015 Benjamin Kiessling # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing # permissions and limitations under the License. import os import json import glob import uuid import click import logging import unicodedata from click import open_file from bidi.algorithm import get_display from typing import cast, Set, List, IO, Any from kraken.lib import log from kraken.lib.exceptions import KrakenCairoSurfaceException from kraken.lib.exceptions import KrakenEncodeException from kraken.lib.exceptions import KrakenInputException APP_NAME = 'kraken' logger = logging.getLogger('kraken') def message(msg, **styles): if logger.getEffectiveLevel() >= 30: click.secho(msg, **styles) @click.group() @click.version_option() @click.option('-v', '--verbose', default=0, count=True) @click.option('-s', '--seed', default=None, type=click.INT, help='Seed for numpy\'s and torch\'s RNG. Set to a fixed value to ' 'ensure reproducable random splits of data') def cli(verbose, seed): if seed: import numpy.random numpy.random.seed(seed) from torch import manual_seed manual_seed(seed) log.set_logger(logger, level=30-min(10*verbose, 20)) def _validate_manifests(ctx, param, value): images = [] for manifest in value: for entry in manifest.readlines(): im_p = entry.rstrip('\r\n') if os.path.isfile(im_p): images.append(im_p) else: logger.warning('Invalid entry "{}" in {}'.format(im_p, manifest.name)) return images def _expand_gt(ctx, param, value): images = [] for expression in value: images.extend([x for x in glob.iglob(expression, recursive=True) if os.path.isfile(x)]) return images @cli.command('train') @click.pass_context @click.option('-p', '--pad', show_default=True, type=click.INT, default=16, help='Left and right ' 'padding around lines') @click.option('-o', '--output', show_default=True, type=click.Path(), default='model', help='Output model file') @click.option('-s', '--spec', show_default=True, default='[1,48,0,1 Cr3,3,32 Do0.1,2 Mp2,2 Cr3,3,64 Do0.1,2 Mp2,2 S1(1x12)1,3 Lbx100 Do]', help='VGSL spec of the network to train. CTC layer will be added automatically.') @click.option('-a', '--append', show_default=True, default=None, type=click.INT, help='Removes layers before argument and then appends spec. Only works when loading an existing model') @click.option('-i', '--load', show_default=True, type=click.Path(exists=True, readable=True), help='Load existing file to continue training') @click.option('-F', '--freq', show_default=True, default=1.0, type=click.FLOAT, help='Model saving and report generation frequency in epochs during training') @click.option('-q', '--quit', show_default=True, default='early', type=click.Choice(['early', 'dumb']), help='Stop condition for training. Set to `early` for early stooping or `dumb` for fixed number of epochs') @click.option('-N', '--epochs', show_default=True, default=-1, help='Number of epochs to train for') @click.option('--lag', show_default=True, default=5, help='Number of evaluations (--report frequence) to wait before stopping training without improvement') @click.option('--min-delta', show_default=True, default=None, type=click.FLOAT, help='Minimum improvement between epochs to reset early stopping. Default is scales the delta by the best loss') @click.option('-d', '--device', show_default=True, default='cpu', help='Select device to use (cpu, cuda:0, cuda:1, ...)') @click.option('--optimizer', show_default=True, default='Adam', type=click.Choice(['Adam', 'SGD', 'RMSprop']), help='Select optimizer') @click.option('-r', '--lrate', show_default=True, default=2e-3, help='Learning rate') @click.option('-m', '--momentum', show_default=True, default=0.9, help='Momentum') @click.option('-w', '--weight-decay', show_default=True, default=0.0, help='Weight decay') @click.option('--schedule', show_default=True, type=click.Choice(['constant', '1cycle']), default='constant', help='Set learning rate scheduler. For 1cycle, cycle length is determined by the `--epoch` option.') @click.option('-p', '--partition', show_default=True, default=0.9, help='Ground truth data partition ratio between train/validation set') @click.option('-u', '--normalization', show_default=True, type=click.Choice(['NFD', 'NFKD', 'NFC', 'NFKC']), default=None, help='Ground truth normalization') @click.option('-n', '--normalize-whitespace/--no-normalize-whitespace', show_default=True, default=True, help='Normalizes unicode whitespace') @click.option('-c', '--codec', show_default=True, default=None, type=click.File(mode='r', lazy=True), help='Load a codec JSON definition (invalid if loading existing model)') @click.option('--resize', show_default=True, default='fail', type=click.Choice(['add', 'both', 'fail']), help='Codec/output layer resizing option. If set to `add` code ' 'points will be added, `both` will set the layer to match exactly ' 'the training data, `fail` will abort if training data and model ' 'codec do not match.') @click.option('--reorder/--no-reorder', show_default=True, default=True, help='Reordering of code points to display order') @click.option('-t', '--training-files', show_default=True, default=None, multiple=True, callback=_validate_manifests, type=click.File(mode='r', lazy=True), help='File(s) with additional paths to training data') @click.option('-e', '--evaluation-files', show_default=True, default=None, multiple=True, callback=_validate_manifests, type=click.File(mode='r', lazy=True), help='File(s) with paths to evaluation data. Overrides the `-p` parameter') @click.option('--preload/--no-preload', show_default=True, default=None, help='Hard enable/disable for training data preloading') @click.option('--threads', show_default=True, default=1, help='Number of OpenMP threads and workers when running on CPU.') #@click.option('--load-hyper-parameters/--no-load-hyper-parameters', show_default=True, default=False, # help='When loading an existing model, retrieve hyperparameters from the model') @click.argument('ground_truth', nargs=-1, callback=_expand_gt, type=click.Path(exists=False, dir_okay=False)) def train(ctx, pad, output, spec, append, load, freq, quit, epochs, lag, min_delta, device, optimizer, lrate, momentum, weight_decay, schedule, partition, normalization, normalize_whitespace, codec, resize, reorder, training_files, evaluation_files, preload, threads, ground_truth): """ Trains a model from image-text pairs. """ if not load and append: raise click.BadOptionUsage('append', 'append option requires loading an existing model') if resize != 'fail' and not load: raise click.BadOptionUsage('resize', 'resize option requires loading an existing model') import re import torch import shutil import numpy as np from torch.utils.data import DataLoader from kraken.lib import models, vgsl, train from kraken.lib.util import make_printable from kraken.lib.train import EarlyStopping, EpochStopping, TrainStopper, TrainScheduler, add_1cycle from kraken.lib.codec import PytorchCodec from kraken.lib.dataset import GroundTruthDataset, generate_input_transforms logger.info('Building ground truth set from {} line images'.format(len(ground_truth) + len(training_files))) completed_epochs = 0 # load model if given. if a new model has to be created we need to do that # after data set initialization, otherwise to output size is still unknown. nn = None #hyper_fields = ['freq', 'quit', 'epochs', 'lag', 'min_delta', 'optimizer', 'lrate', 'momentum', 'weight_decay', 'schedule', 'partition', 'normalization', 'normalize_whitespace', 'reorder', 'preload', 'completed_epochs', 'output'] if load: logger.info('Loading existing model from {} '.format(load)) message('Loading existing model from {}'.format(load), nl=False) nn = vgsl.TorchVGSLModel.load_model(load) #if nn.user_metadata and load_hyper_parameters: # for param in hyper_fields: # if param in nn.user_metadata: # logger.info('Setting \'{}\' to \'{}\''.format(param, nn.user_metadata[param])) # message('Setting \'{}\' to \'{}\''.format(param, nn.user_metadata[param])) # locals()[param] = nn.user_metadata[param] message('\u2713', fg='green', nl=False) # preparse input sizes from vgsl string to seed ground truth data set # sizes and dimension ordering. if not nn: spec = spec.strip() if spec[0] != '[' or spec[-1] != ']': raise click.BadOptionUsage('spec', 'VGSL spec {} not bracketed'.format(spec)) blocks = spec[1:-1].split(' ') m = re.match(r'(\d+),(\d+),(\d+),(\d+)', blocks[0]) if not m: raise click.BadOptionUsage('spec', 'Invalid input spec {}'.format(blocks[0])) batch, height, width, channels = [int(x) for x in m.groups()] else: batch, channels, height, width = nn.input try: transforms = generate_input_transforms(batch, height, width, channels, pad) except KrakenInputException as e: raise click.BadOptionUsage('spec', str(e)) # disable automatic partition when given evaluation set explicitly if evaluation_files: partition = 1 ground_truth = list(ground_truth) # merge training_files into ground_truth list if training_files: ground_truth.extend(training_files) if len(ground_truth) == 0: raise click.UsageError('No training data was provided to the train command. Use `-t` or the `ground_truth` argument.') np.random.shuffle(ground_truth) if len(ground_truth) > 2500 and not preload: logger.info('Disabling preloading for large (>2500) training data set. Enable by setting --preload parameter') preload = False # implicit preloading enabled for small data sets if preload is None: preload = True tr_im = ground_truth[:int(len(ground_truth) * partition)] if evaluation_files: logger.debug('Using {} lines from explicit eval set'.format(len(evaluation_files))) te_im = evaluation_files else: te_im = ground_truth[int(len(ground_truth) * partition):] logger.debug('Taking {} lines from training for evaluation'.format(len(te_im))) # set multiprocessing tensor sharing strategy if 'file_system' in torch.multiprocessing.get_all_sharing_strategies(): logger.debug('Setting multiprocessing tensor sharing strategy to file_system') torch.multiprocessing.set_sharing_strategy('file_system') gt_set = GroundTruthDataset(normalization=normalization, whitespace_normalization=normalize_whitespace, reorder=reorder, im_transforms=transforms, preload=preload) with log.progressbar(tr_im, label='Building training set') as bar: for im in bar: logger.debug('Adding line {} to training set'.format(im)) try: gt_set.add(im) except FileNotFoundError as e: logger.warning('{}: {}. Skipping.'.format(e.strerror, e.filename)) except KrakenInputException as e: logger.warning(str(e)) val_set = GroundTruthDataset(normalization=normalization, whitespace_normalization=normalize_whitespace, reorder=reorder, im_transforms=transforms, preload=preload) with log.progressbar(te_im, label='Building validation set') as bar: for im in bar: logger.debug('Adding line {} to validation set'.format(im)) try: val_set.add(im) except FileNotFoundError as e: logger.warning('{}: {}. Skipping.'.format(e.strerror, e.filename)) except KrakenInputException as e: logger.warning(str(e)) logger.info('Training set {} lines, validation set {} lines, alphabet {} symbols'.format(len(gt_set._images), len(val_set._images), len(gt_set.alphabet))) alpha_diff_only_train = set(gt_set.alphabet).difference(set(val_set.alphabet)) alpha_diff_only_val = set(val_set.alphabet).difference(set(gt_set.alphabet)) if alpha_diff_only_train: logger.warning('alphabet mismatch: chars in training set only: {} (not included in accuracy test during training)'.format(alpha_diff_only_train)) if alpha_diff_only_val: logger.warning('alphabet mismatch: chars in validation set only: {} (not trained)'.format(alpha_diff_only_val)) logger.info('grapheme\tcount') for k, v in sorted(gt_set.alphabet.items(), key=lambda x: x[1], reverse=True): char = make_printable(k) if char == k: char = '\t' + char logger.info(u'{}\t{}'.format(char, v)) logger.debug('Encoding training set') # use model codec when given if append: # is already loaded nn = cast(vgsl.TorchVGSLModel, nn) gt_set.encode(codec) message('Slicing and dicing model ', nl=False) # now we can create a new model spec = '[{} O1c{}]'.format(spec[1:-1], gt_set.codec.max_label()+1) logger.info('Appending {} to existing model {} after {}'.format(spec, nn.spec, append)) nn.append(append, spec) nn.add_codec(gt_set.codec) message('\u2713', fg='green') logger.info('Assembled model spec: {}'.format(nn.spec)) elif load: # is already loaded nn = cast(vgsl.TorchVGSLModel, nn) # prefer explicitly given codec over network codec if mode is 'both' codec = codec if (codec and resize == 'both') else nn.codec try: gt_set.encode(codec) except KrakenEncodeException as e: message('Network codec not compatible with training set') alpha_diff = set(gt_set.alphabet).difference(set(codec.c2l.keys())) if resize == 'fail': logger.error('Training data and model codec alphabets mismatch: {}'.format(alpha_diff)) ctx.exit(code=1) elif resize == 'add': message('Adding missing labels to network ', nl=False) logger.info('Resizing codec to include {} new code points'.format(len(alpha_diff))) codec.c2l.update({k: [v] for v, k in enumerate(alpha_diff, start=codec.max_label()+1)}) nn.add_codec(PytorchCodec(codec.c2l)) logger.info('Resizing last layer in network to {} outputs'.format(codec.max_label()+1)) nn.resize_output(codec.max_label()+1) gt_set.encode(nn.codec) message('\u2713', fg='green') elif resize == 'both': message('Fitting network exactly to training set ', nl=False) logger.info('Resizing network or given codec to {} code sequences'.format(len(gt_set.alphabet))) gt_set.encode(None) ncodec, del_labels = codec.merge(gt_set.codec) logger.info('Deleting {} output classes from network ({} retained)'.format(len(del_labels), len(codec)-len(del_labels))) gt_set.encode(ncodec) nn.resize_output(ncodec.max_label()+1, del_labels) message('\u2713', fg='green') else: raise click.BadOptionUsage('resize', 'Invalid resize value {}'.format(resize)) else: gt_set.encode(codec) logger.info('Creating new model {} with {} outputs'.format(spec, gt_set.codec.max_label()+1)) spec = '[{} O1c{}]'.format(spec[1:-1], gt_set.codec.max_label()+1) nn = vgsl.TorchVGSLModel(spec) # initialize weights message('Initializing model ', nl=False) nn.init_weights() nn.add_codec(gt_set.codec) # initialize codec message('\u2713', fg='green') # half the number of data loading processes if device isn't cuda and we haven't enabled preloading if device == 'cpu' and not preload: loader_threads = threads // 2 else: loader_threads = threads train_loader = DataLoader(gt_set, batch_size=1, shuffle=True, num_workers=loader_threads, pin_memory=True) threads -= loader_threads # don't encode validation set as the alphabets may not match causing encoding failures val_set.training_set = list(zip(val_set._images, val_set._gt)) logger.debug('Constructing {} optimizer (lr: {}, momentum: {})'.format(optimizer, lrate, momentum)) # set mode to trainindg nn.train() # set number of OpenMP threads logger.debug('Set OpenMP threads to {}'.format(threads)) nn.set_num_threads(threads) logger.debug('Moving model to device {}'.format(device)) optim = getattr(torch.optim, optimizer)(nn.nn.parameters(), lr=0) if 'accuracy' not in nn.user_metadata: nn.user_metadata['accuracy'] = [] tr_it = TrainScheduler(optim) if schedule == '1cycle': add_1cycle(tr_it, int(len(gt_set) * epochs), lrate, momentum, momentum - 0.10, weight_decay) else: # constant learning rate scheduler tr_it.add_phase(1, (lrate, lrate), (momentum, momentum), weight_decay, train.annealing_const) if quit == 'early': st_it = EarlyStopping(min_delta, lag) elif quit == 'dumb': st_it = EpochStopping(epochs - completed_epochs) else: raise click.BadOptionUsage('quit', 'Invalid training interruption scheme {}'.format(quit)) #for param in hyper_fields: # logger.debug('Setting \'{}\' to \'{}\' in model metadata'.format(param, locals()[param])) # nn.user_metadata[param] = locals()[param] trainer = train.KrakenTrainer(model=nn, optimizer=optim, device=device, filename_prefix=output, event_frequency=freq, train_set=train_loader, val_set=val_set, stopper=st_it) trainer.add_lr_scheduler(tr_it) with log.progressbar(label='stage {}/{}'.format(1, trainer.stopper.epochs if trainer.stopper.epochs > 0 else '∞'), length=trainer.event_it, show_pos=True) as bar: def _draw_progressbar(): bar.update(1) def _print_eval(epoch, accuracy, chars, error): message('Accuracy report ({}) {:0.4f} {} {}'.format(epoch, accuracy, chars, error)) # reset progress bar bar.label = 'stage {}/{}'.format(epoch+1, trainer.stopper.epochs if trainer.stopper.epochs > 0 else '∞') bar.pos = 0 bar.finished = False trainer.run(_print_eval, _draw_progressbar) if quit == 'early': message('Moving best model {0}_{1}.mlmodel ({2}) to {0}_best.mlmodel'.format(output, trainer.stopper.best_epoch, trainer.stopper.best_loss)) logger.info('Moving best model {0}_{1}.mlmodel ({2}) to {0}_best.mlmodel'.format(output, trainer.stopper.best_epoch, trainer.stopper.best_loss)) shutil.copy('{}_{}.mlmodel'.format(output, trainer.stopper.best_epoch), '{}_best.mlmodel'.format(output)) @cli.command('test') @click.pass_context @click.option('-m', '--model', show_default=True, type=click.Path(exists=True, readable=True), multiple=True, help='Model(s) to evaluate') @click.option('-e', '--evaluation-files', show_default=True, default=None, multiple=True, callback=_validate_manifests, type=click.File(mode='r', lazy=True), help='File(s) with paths to evaluation data.') @click.option('-d', '--device', show_default=True, default='cpu', help='Select device to use (cpu, cuda:0, cuda:1, ...)') @click.option('-p', '--pad', show_default=True, type=click.INT, default=16, help='Left and right ' 'padding around lines') @click.option('--threads', show_default=True, default=1, help='Number of OpenMP threads when running on CPU.') @click.argument('test_set', nargs=-1, callback=_expand_gt, type=click.Path(exists=False, dir_okay=False)) def test(ctx, model, evaluation_files, device, pad, threads, test_set): """ Evaluate on a test set. """ if not model: raise click.UsageError('No model to evaluate given.') import numpy as np from PIL import Image from kraken.serialization import render_report from kraken.lib import models from kraken.lib.dataset import global_align, compute_confusions, generate_input_transforms logger.info('Building test set from {} line images'.format(len(test_set) + len(evaluation_files))) nn = {} for p in model: message('Loading model {}\t'.format(p), nl=False) nn[p] = models.load_any(p) message('\u2713', fg='green') test_set = list(test_set) # set number of OpenMP threads logger.debug('Set OpenMP threads to {}'.format(threads)) next(iter(nn.values())).nn.set_num_threads(threads) # merge training_files into ground_truth list if evaluation_files: test_set.extend(evaluation_files) if len(test_set) == 0: raise click.UsageError('No evaluation data was provided to the test command. Use `-e` or the `test_set` argument.') def _get_text(im): with open(os.path.splitext(im)[0] + '.gt.txt', 'r') as fp: return get_display(fp.read()) acc_list = [] for p, net in nn.items(): algn_gt: List[str] = [] algn_pred: List[str] = [] chars = 0 error = 0 message('Evaluating {}'.format(p)) logger.info('Evaluating {}'.format(p)) batch, channels, height, width = net.nn.input ts = generate_input_transforms(batch, height, width, channels, pad) with log.progressbar(test_set, label='Evaluating') as bar: for im_path in bar: i = ts(Image.open(im_path)) text = _get_text(im_path) pred = net.predict_string(i) chars += len(text) c, algn1, algn2 = global_align(text, pred) algn_gt.extend(algn1) algn_pred.extend(algn2) error += c acc_list.append((chars-error)/chars) confusions, scripts, ins, dels, subs = compute_confusions(algn_gt, algn_pred) rep = render_report(p, chars, error, confusions, scripts, ins, dels, subs) logger.info(rep) message(rep) logger.info('Average accuracy: {:0.2f}%, (stddev: {:0.2f})'.format(np.mean(acc_list) * 100, np.std(acc_list) * 100)) message('Average accuracy: {:0.2f}%, (stddev: {:0.2f})'.format(np.mean(acc_list) * 100, np.std(acc_list) * 100)) @cli.command('extract') @click.pass_context @click.option('-b', '--binarize/--no-binarize', show_default=True, default=True, help='Binarize color/grayscale images') @click.option('-u', '--normalization', show_default=True, type=click.Choice(['NFD', 'NFKD', 'NFC', 'NFKC']), default=None, help='Normalize ground truth') @click.option('-s', '--normalize-whitespace/--no-normalize-whitespace', show_default=True, default=True, help='Normalizes unicode whitespace') @click.option('-n', '--reorder/--no-reorder', default=False, show_default=True, help='Reorder transcribed lines to display order') @click.option('-r', '--rotate/--no-rotate', default=True, show_default=True, help='Skip rotation of vertical lines') @click.option('-o', '--output', type=click.Path(), default='training', show_default=True, help='Output directory') @click.option('--format', default='{idx:06d}', show_default=True, help='Format for extractor output. valid fields are `src` (source file), `idx` (line number), and `uuid` (v4 uuid)') @click.argument('transcriptions', nargs=-1, type=click.File(lazy=True)) def extract(ctx, binarize, normalization, normalize_whitespace, reorder, rotate, output, format, transcriptions): """ Extracts image-text pairs from a transcription environment created using ``ketos transcribe``. """ import regex import base64 from io import BytesIO from PIL import Image from lxml import html, etree from kraken import binarization try: os.mkdir(output) except Exception: pass text_transforms = [] if normalization: text_transforms.append(lambda x: unicodedata.normalize(normalization, x)) if normalize_whitespace: text_transforms.append(lambda x: regex.sub('\s', ' ', x)) if reorder: text_transforms.append(get_display) idx = 0 manifest = [] with log.progressbar(transcriptions, label='Reading transcriptions') as bar: for fp in bar: logger.info('Reading {}'.format(fp.name)) doc = html.parse(fp) etree.strip_tags(doc, etree.Comment) td = doc.find(".//meta[@itemprop='text_direction']") if td is None: td = 'horizontal-lr' else: td = td.attrib['content'] im = None dest_dict = {'output': output, 'idx': 0, 'src': fp.name, 'uuid': str(uuid.uuid4())} for section in doc.xpath('//section'): img = section.xpath('.//img')[0].get('src') fd = BytesIO(base64.b64decode(img.split(',')[1])) im = Image.open(fd) if not im: logger.info('Skipping {} because image not found'.format(fp.name)) break if binarize: im = binarization.nlbin(im) for line in section.iter('li'): if line.get('contenteditable') and (not u''.join(line.itertext()).isspace() and u''.join(line.itertext())): dest_dict['idx'] = idx dest_dict['uuid'] = str(uuid.uuid4()) logger.debug('Writing line {:06d}'.format(idx)) l_img = im.crop([int(x) for x in line.get('data-bbox').split(',')]) if rotate and td.startswith('vertical'): im.rotate(90, expand=True) l_img.save(('{output}/' + format + '.png').format(**dest_dict)) manifest.append((format + '.png').format(**dest_dict)) text = u''.join(line.itertext()).strip() for func in text_transforms: text = func(text) with open(('{output}/' + format + '.gt.txt').format(**dest_dict), 'wb') as t: t.write(text.encode('utf-8')) idx += 1 logger.info('Extracted {} lines'.format(idx)) with open('{}/manifest.txt'.format(output), 'w') as fp: fp.write('\n'.join(manifest)) @cli.command('transcribe') @click.pass_context @click.option('-d', '--text-direction', default='horizontal-lr', type=click.Choice(['horizontal-lr', 'horizontal-rl', 'vertical-lr', 'vertical-rl']), help='Sets principal text direction', show_default=True) @click.option('--scale', default=None, type=click.FLOAT) @click.option('--bw/--orig', default=True, show_default=True, help="Put nonbinarized images in output") @click.option('-m', '--maxcolseps', default=2, type=click.INT, show_default=True) @click.option('-b/-w', '--black_colseps/--white_colseps', default=False, show_default=True) @click.option('-f', '--font', default='', help='Font family to use') @click.option('-fs', '--font-style', default=None, help='Font style to use') @click.option('-p', '--prefill', default=None, help='Use given model for prefill mode.') @click.option('-p', '--pad', show_default=True, type=(int, int), default=(0, 0), help='Left and right padding around lines') @click.option('-l', '--lines', type=click.Path(exists=True), show_default=True, help='JSON file containing line coordinates') @click.option('-o', '--output', type=click.File(mode='wb'), default='transcription.html', help='Output file', show_default=True) @click.argument('images', nargs=-1, type=click.File(mode='rb', lazy=True)) def transcription(ctx, text_direction, scale, bw, maxcolseps, black_colseps, font, font_style, prefill, pad, lines, output, images): """ Creates transcription environments for ground truth generation. """ from PIL import Image from kraken import rpred from kraken import pageseg from kraken import transcribe from kraken import binarization from kraken.lib import models from kraken.lib.util import is_bitonal ti = transcribe.TranscriptionInterface(font, font_style) if len(images) > 1 and lines: raise click.UsageError('--lines option is incompatible with multiple image files') if prefill: logger.info('Loading model {}'.format(prefill)) message('Loading RNN', nl=False) prefill = models.load_any(prefill) message('\u2713', fg='green') with log.progressbar(images, label='Reading images') as bar: for fp in bar: logger.info('Reading {}'.format(fp.name)) im = Image.open(fp) if im.mode not in ['1', 'L', 'P', 'RGB']: logger.warning('Input {} is in {} color mode. Converting to RGB'.format(fp.name, im.mode)) im = im.convert('RGB') logger.info('Binarizing page') im_bin = binarization.nlbin(im) im_bin = im_bin.convert('1') logger.info('Segmenting page') if not lines: res = pageseg.segment(im_bin, text_direction, scale, maxcolseps, black_colseps, pad=pad) else: with open_file(lines, 'r') as fp: try: fp = cast(IO[Any], fp) res = json.load(fp) except ValueError as e: raise click.UsageError('{} invalid segmentation: {}'.format(lines, str(e))) if prefill: it = rpred.rpred(prefill, im_bin, res) preds = [] logger.info('Recognizing') for pred in it: logger.debug('{}'.format(pred.prediction)) preds.append(pred) ti.add_page(im, res, records=preds) else: ti.add_page(im, res) fp.close() logger.info('Writing transcription to {}'.format(output.name)) message('Writing output', nl=False) ti.write(output) message('\u2713', fg='green') @cli.command('linegen') @click.pass_context @click.option('-f', '--font', default='sans', help='Font family to render texts in.') @click.option('-n', '--maxlines', type=click.INT, default=0, help='Maximum number of lines to generate') @click.option('-e', '--encoding', default='utf-8', help='Decode text files with given codec.') @click.option('-u', '--normalization', type=click.Choice(['NFD', 'NFKD', 'NFC', 'NFKC']), default=None, help='Normalize ground truth') @click.option('-ur', '--renormalize', type=click.Choice(['NFD', 'NFKD', 'NFC', 'NFKC']), default=None, help='Renormalize text for rendering purposes.') @click.option('--reorder/--no-reorder', default=False, help='Reorder code points to display order') @click.option('-fs', '--font-size', type=click.INT, default=32, help='Font size to render texts in.') @click.option('-fw', '--font-weight', type=click.INT, default=400, help='Font weight to render texts in.') @click.option('-l', '--language', help='RFC-3066 language tag for language-dependent font shaping') @click.option('-ll', '--max-length', type=click.INT, default=None, help="Discard lines above length (in Unicode codepoints).") @click.option('--strip/--no-strip', help="Remove whitespace from start and end " "of lines.") @click.option('-d', '--disable-degradation', is_flag=True, help='Dont degrade ' 'output lines.') @click.option('-a', '--alpha', type=click.FLOAT, default=1.5, help="Mean of folded normal distribution for sampling foreground pixel flip probability") @click.option('-b', '--beta', type=click.FLOAT, default=1.5, help="Mean of folded normal distribution for sampling background pixel flip probability") @click.option('-d', '--distort', type=click.FLOAT, default=1.0, help='Mean of folded normal distribution to take distortion values from') @click.option('-ds', '--distortion-sigma', type=click.FLOAT, default=20.0, help='Mean of folded normal distribution to take standard deviations for the ' 'Gaussian kernel from') @click.option('--legacy/--no-legacy', default=False, help='Use ocropy-style degradations') @click.option('-o', '--output', type=click.Path(), default='training_data', help='Output directory') @click.argument('text', nargs=-1, type=click.Path(exists=True)) def line_generator(ctx, font, maxlines, encoding, normalization, renormalize, reorder, font_size, font_weight, language, max_length, strip, disable_degradation, alpha, beta, distort, distortion_sigma, legacy, output, text): """ Generates artificial text line training data. """ import errno import numpy as np from kraken import linegen from kraken.lib.util import make_printable lines: Set[str] = set() if not text: return with log.progressbar(text, label='Reading texts') as bar: for t in text: with click.open_file(t, encoding=encoding) as fp: logger.info('Reading {}'.format(t)) for l in fp: lines.add(l.rstrip('\r\n')) if normalization: lines = set([unicodedata.normalize(normalization, line) for line in lines]) if strip: lines = set([line.strip() for line in lines]) if max_length: lines = set([line for line in lines if len(line) < max_length]) logger.info('Read {} lines'.format(len(lines))) message('Read {} unique lines'.format(len(lines))) if maxlines and maxlines < len(lines): message('Sampling {} lines\t'.format(maxlines), nl=False) llist = list(lines) lines = set(llist[idx] for idx in np.random.randint(0, len(llist), maxlines)) message('\u2713', fg='green') try: os.makedirs(output) except OSError as e: if e.errno != errno.EEXIST: raise # calculate the alphabet and print it for verification purposes alphabet: Set[str] = set() for line in lines: alphabet.update(line) chars = [] combining = [] for char in sorted(alphabet): k = make_printable(char) if k != char: combining.append(k) else: chars.append(k) message('Σ (len: {})'.format(len(alphabet))) message('Symbols: {}'.format(''.join(chars))) if combining: message('Combining Characters: {}'.format(', '.join(combining))) lg = linegen.LineGenerator(font, font_size, font_weight, language) with log.progressbar(lines, label='Writing images') as bar: for idx, line in enumerate(bar): logger.info(line) try: if renormalize: im = lg.render_line(unicodedata.normalize(renormalize, line)) else: im = lg.render_line(line) except KrakenCairoSurfaceException as e: logger.info('{}: {} {}'.format(e.message, e.width, e.height)) continue if not disable_degradation and not legacy: im = linegen.degrade_line(im, alpha=alpha, beta=beta) im = linegen.distort_line(im, abs(np.random.normal(distort)), abs(np.random.normal(distortion_sigma))) elif legacy: im = linegen.ocropy_degrade(im) im.save('{}/{:06d}.png'.format(output, idx)) with open('{}/{:06d}.gt.txt'.format(output, idx), 'wb') as fp: if reorder: fp.write(get_display(line).encode('utf-8')) else: fp.write(line.encode('utf-8')) @cli.command('publish') @click.pass_context @click.option('-i', '--metadata', show_default=True, type=click.File(mode='r', lazy=True), help='Metadata for the ' 'model. Will be prompted from the user if not given') @click.option('-a', '--access-token', prompt=True, help='Zenodo access token') @click.argument('model', nargs=1, type=click.Path(exists=False, readable=True, dir_okay=False)) def publish(ctx, metadata, access_token, model): """ Publishes a model on the zenodo model repository. """ import json import pkg_resources from functools import partial from jsonschema import validate from jsonschema.exceptions import ValidationError from kraken import repo from kraken.lib import models with pkg_resources.resource_stream(__name__, 'metadata.schema.json') as fp: schema = json.load(fp) nn = models.load_any(model) if not metadata: author = click.prompt('author') affiliation = click.prompt('affiliation') summary = click.prompt('summary') description = click.edit('Write long form description (training data, transcription standards) of the model here') accuracy_default = None # take last accuracy measurement in model metadata if 'accuracy' in nn.nn.user_metadata and nn.nn.user_metadata['accuracy']: accuracy_default = nn.nn.user_metadata['accuracy'][-1][1] * 100 accuracy = click.prompt('accuracy on test set', type=float, default=accuracy_default) script = [click.prompt('script', type=click.Choice(sorted(schema['properties']['script']['items']['enum'])), show_choices=True)] license = click.prompt('license', type=click.Choice(sorted(schema['properties']['license']['enum'])), show_choices=True) metadata = { 'authors': [{'name': author, 'affiliation': affiliation}], 'summary': summary, 'description': description, 'accuracy': accuracy, 'license': license, 'script': script, 'name': os.path.basename(model), 'graphemes': ['a'] } while True: try: validate(metadata, schema) except ValidationError as e: message(e.message) metadata[e.path[-1]] = click.prompt(e.path[-1], type=float if e.schema['type'] == 'number' else str) continue break else: metadata = json.load(metadata) validate(metadata, schema) metadata['graphemes'] = [char for char in ''.join(nn.codec.c2l.keys())] oid = repo.publish_model(model, metadata, access_token, partial(message, '.', nl=False)) print('\nmodel PID: {}'.format(oid)) if __name__ == '__main__': cli()
47.251462
234
0.62146
0
0
0
0
38,606
0.955476
0
0
12,280
0.303923
81daacebc9755ed9fad67d0bb9146bb8f488fc5d
2,728
py
Python
util/visualize_loss.py
whq-hqw/detr_change
142f75cc5e0b59ca6e07928ddcbed3e461816611
[ "Apache-2.0" ]
2
2020-07-17T15:09:47.000Z
2020-11-20T13:52:48.000Z
util/visualize_loss.py
whq-hqw/detr_change
142f75cc5e0b59ca6e07928ddcbed3e461816611
[ "Apache-2.0" ]
null
null
null
util/visualize_loss.py
whq-hqw/detr_change
142f75cc5e0b59ca6e07928ddcbed3e461816611
[ "Apache-2.0" ]
null
null
null
from os.path import * import glob import json import numpy as np from util.plot_utils import plot_curves, plot_multi_loss_distribution TMPJPG = expanduser("~/Pictures/") def plot_multi_logs(exp_name, keys, save_name, epoch, addition_len): root_path = expanduser("/raid/dataset/detection/detr_exp") folder_candidate = glob.glob(join(root_path, "*")) folders = [] for name in exp_name: for folder in folder_candidate: if folder[-len(name):] == name: folders.append(folder) break assert len(exp_name) == len(folders) exp_data = np.stack(get_experiment_logs(folders, keys, epoch, addition_len)).transpose((1, 0, 2)) if len(addition_len) > 0 and "test_coco_eval_bbox" in keys: idx = keys.index("test_coco_eval_bbox") addition_len.extend(keys[idx + 1:]) keys = keys[:idx] + addition_len plot_multi_loss_distribution( multi_line_data=exp_data, multi_line_labels=[exp_name] * len(keys), save_path=TMPJPG, window=5, name=save_name, titles=keys, fig_size=(12, 3 * len(keys)), legend_loc="upper left" ) def get_experiment_logs(folders, keys, epoch, addition_len): exp_data = [] for folder in folders: print(folder) contents = np.array(load_log(join(folder, "log.txt"), keys, addition_len)) if contents.shape[-1] >= epoch: contents = contents[:, :epoch] else: zeros = np.zeros((contents.shape[0], epoch - contents.shape[1]), dtype=contents.dtype) contents = np.concatenate((contents, zeros), axis = 1) exp_data.append(contents) return exp_data def load_log(path, keys, addition=6): if "test_coco_eval_bbox" in keys: contents = [[] for _ in range(len(keys) + len(addition) - 1)] else: contents = [[] for _ in range(len(keys))] with open(path, "r") as txt: for line in txt.readlines(): data = json.loads(line) j = 0 for i, key in enumerate(keys): if key == "test_coco_eval_bbox": for j in range(len(addition)): contents[i + j].append(data[key][j]) else: contents[i + j].append(data[key]) return contents if __name__ == '__main__': exp_name = ["be", "be_768", "be_1024", "be_mid_layer_only", "origin"] keys = ["train_loss_bbox", "train_loss_ce", "train_loss_giou", "test_coco_eval_bbox"] eval_name = ["AP", "AP50", "AP75", "AP_small", "AP_mid", "AP_Big", "AR", "AR50", "AR75", "AR_small", "AR_mid", "AR_Big"] plot_multi_logs(exp_name, keys, save_name="loss", epoch=50, addition_len=eval_name[:6])
38.422535
101
0.612903
0
0
0
0
0
0
0
0
376
0.13783
81dab8323f10c78c0bf2886a1ab5569f40f742ad
12,616
py
Python
tower_cli/resources/job.py
kedark3/tower-cli
487a1b9a8e96509798fee108e4f7d2c187177771
[ "Apache-2.0" ]
363
2015-01-14T17:48:34.000Z
2022-01-29T06:37:04.000Z
tower_cli/resources/job.py
kedark3/tower-cli
487a1b9a8e96509798fee108e4f7d2c187177771
[ "Apache-2.0" ]
703
2015-01-06T17:17:20.000Z
2020-09-16T15:54:17.000Z
tower_cli/resources/job.py
kedark3/tower-cli
487a1b9a8e96509798fee108e4f7d2c187177771
[ "Apache-2.0" ]
203
2015-01-18T22:38:23.000Z
2022-01-28T19:19:05.000Z
# Copyright 2015, Ansible, Inc. # Luke Sneeringer <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, unicode_literals from getpass import getpass from distutils.version import LooseVersion import click from tower_cli import models, get_resource, resources, exceptions as exc from tower_cli.api import client from tower_cli.cli import types from tower_cli.utils import debug, parser PROMPT_LIST = ['diff_mode', 'limit', 'tags', 'skip_tags', 'job_type', 'verbosity', 'inventory', 'credential'] class Resource(models.ExeResource): """A resource for jobs. This resource has ordinary list and get methods, but it does not have create or modify. Instead of being created, a job is launched. """ cli_help = 'Launch or monitor jobs.' endpoint = '/jobs/' job_template = models.Field( key='-J', type=types.Related('job_template'), required=False, display=True ) job_explanation = models.Field(required=False, display=False, read_only=True) created = models.Field(required=False, display=True) status = models.Field(required=False, display=True) elapsed = models.Field(required=False, display=True, type=float) @resources.command( use_fields_as_options=('job_template',) ) @click.option('--monitor', is_flag=True, default=False, help='If sent, immediately calls `job monitor` on the newly ' 'launched job rather than exiting with a success.') @click.option('--wait', is_flag=True, default=False, help='Monitor the status of the job, but do not print ' 'while job is in progress.') @click.option('--timeout', required=False, type=int, help='If provided with --monitor, this command (not the job)' ' will time out after the given number of seconds. ' 'Does nothing if --monitor is not sent.') @click.option('--no-input', is_flag=True, default=False, help='Suppress any requests for input.') @click.option('-e', '--extra-vars', required=False, multiple=True, help='yaml format text that contains extra variables ' 'to pass on. Use @ to get these from a file.') @click.option('--diff-mode', type=bool, required=False, help='Specify diff mode for job template to run.') @click.option('--limit', required=False, help='Specify host limit for job template to run.') @click.option('--tags', required=False, help='Specify tagged actions in the playbook to run.') @click.option('--skip-tags', required=False, help='Specify tagged actions in the playbook to omit.') @click.option('--job-type', required=False, type=click.Choice(['run', 'check']), help='Specify job type for job template to run.') @click.option('--verbosity', type=int, required=False, help='Specify verbosity of the playbook run.') @click.option('--inventory', required=False, type=types.Related('inventory'), help='Specify inventory for job template to run.') @click.option('--credential', required=False, multiple=True, type=types.Related('credential'), help='Specify any type of credential(s) for job template to run.') def launch(self, job_template=None, monitor=False, wait=False, timeout=None, no_input=True, extra_vars=None, **kwargs): """Launch a new job based on a job template. Creates a new job in Ansible Tower, immediately starts it, and returns back an ID in order for its status to be monitored. =====API DOCS===== Launch a new job based on a job template. :param job_template: Primary key or name of the job template to launch new job. :type job_template: str :param monitor: Flag that if set, immediately calls ``monitor`` on the newly launched job rather than exiting with a success. :type monitor: bool :param wait: Flag that if set, monitor the status of the job, but do not print while job is in progress. :type wait: bool :param timeout: If provided with ``monitor`` flag set, this attempt will time out after the given number of seconds. :type timeout: int :param no_input: Flag that if set, suppress any requests for input. :type no_input: bool :param extra_vars: yaml formatted texts that contains extra variables to pass on. :type extra_vars: array of strings :param diff_mode: Specify diff mode for job template to run. :type diff_mode: bool :param limit: Specify host limit for job template to run. :type limit: str :param tags: Specify tagged actions in the playbook to run. :type tags: str :param skip_tags: Specify tagged actions in the playbook to omit. :type skip_tags: str :param job_type: Specify job type for job template to run. :type job_type: str :param verbosity: Specify verbosity of the playbook run. :type verbosity: int :param inventory: Specify machine credential for job template to run. :type inventory: str :param credential: Specify machine credential for job template to run. :type credential: str :returns: Result of subsequent ``monitor`` call if ``monitor`` flag is on; Result of subsequent ``wait`` call if ``wait`` flag is on; Result of subsequent ``status`` call if none of the two flags are on. :rtype: dict =====API DOCS===== """ # Get the job template from Ansible Tower. # This is used as the baseline for starting the job. jt_resource = get_resource('job_template') jt = jt_resource.get(job_template) # Update the job data for special treatment of certain fields # Special case for job tags, historically just called --tags tags = kwargs.get('tags', None) data = {} if tags: data['job_tags'] = tags # Special case for cross-version compatibility with credentials cred_arg = kwargs.pop('credential', ()) if isinstance(cred_arg, (list, tuple)): credentials = cred_arg else: credentials = [cred_arg] if credentials: if 'credentials' in jt['related']: # Has Tower 3.3 / multi-cred support # combine user-provided credentials with JT credentials jt_creds = set( c['id'] for c in jt['summary_fields']['credentials'] ) kwargs['credentials'] = list(set(credentials) | jt_creds) else: if len(credentials) > 1: raise exc.UsageError( 'Providing multiple credentials on launch can only be ' 'done with Tower version 3.3 and higher or recent AWX.' ) kwargs['credential'] = credentials[0] # Initialize an extra_vars list that starts with the job template # preferences first, if they exist extra_vars_list = [] if 'extra_vars' in data and len(data['extra_vars']) > 0: # But only do this for versions before 2.3 debug.log('Getting version of Tower.', header='details') r = client.get('/config/') if LooseVersion(r.json()['version']) < LooseVersion('2.4'): extra_vars_list = [data['extra_vars']] # Add the runtime extra_vars to this list if extra_vars: extra_vars_list += list(extra_vars) # accept tuples # If the job template requires prompting for extra variables, # do so (unless --no-input is set). if jt.get('ask_variables_on_launch', False) and not no_input \ and not extra_vars: # If JT extra_vars are JSON, echo them to user as YAML initial = parser.process_extra_vars( [jt['extra_vars']], force_json=False ) initial = '\n'.join(( '# Specify extra variables (if any) here as YAML.', '# Lines beginning with "#" denote comments.', initial, )) extra_vars = click.edit(initial) or '' if extra_vars != initial: extra_vars_list = [extra_vars] # Data is starting out with JT variables, and we only want to # include extra_vars that come from the algorithm here. data.pop('extra_vars', None) # Replace/populate data fields if prompted. modified = set() for resource in PROMPT_LIST: if jt.pop('ask_' + resource + '_on_launch', False) and not no_input: resource_object = kwargs.get(resource, None) if type(resource_object) == types.Related: resource_class = get_resource(resource) resource_object = resource_class.get(resource).pop('id', None) if resource_object is None: debug.log('{0} is asked at launch but not provided'. format(resource), header='warning') elif resource != 'tags': data[resource] = resource_object modified.add(resource) # Dump extra_vars into JSON string for launching job if len(extra_vars_list) > 0: data['extra_vars'] = parser.process_extra_vars( extra_vars_list, force_json=True ) # Create the new job in Ansible Tower. start_data = {} endpoint = '/job_templates/%d/launch/' % jt['id'] if 'extra_vars' in data and len(data['extra_vars']) > 0: start_data['extra_vars'] = data['extra_vars'] if tags: start_data['job_tags'] = data['job_tags'] for resource in PROMPT_LIST: if resource in modified: start_data[resource] = data[resource] # There's a non-trivial chance that we are going to need some # additional information to start the job; in particular, many jobs # rely on passwords entered at run-time. # # If there are any such passwords on this job, ask for them now. debug.log('Asking for information necessary to start the job.', header='details') job_start_info = client.get(endpoint).json() for password in job_start_info.get('passwords_needed_to_start', []): start_data[password] = getpass('Password for %s: ' % password) # Actually start the job. debug.log('Launching the job.', header='details') self._pop_none(kwargs) kwargs.update(start_data) job_started = client.post(endpoint, data=kwargs) # Get the job ID from the result. job_id = job_started.json()['id'] # If returning json indicates any ignored fields, display it in # verbose mode. if job_started.text == '': ignored_fields = {} else: ignored_fields = job_started.json().get('ignored_fields', {}) has_ignored_fields = False for key, value in ignored_fields.items(): if value and value != '{}': if not has_ignored_fields: debug.log('List of ignored fields on the server side:', header='detail') has_ignored_fields = True debug.log('{0}: {1}'.format(key, value)) # Get some information about the running job to print result = self.status(pk=job_id, detail=True) result['changed'] = True # If we were told to monitor the job once it started, then call # monitor from here. if monitor: return self.monitor(job_id, timeout=timeout) elif wait: return self.wait(job_id, timeout=timeout) return result
46.212454
112
0.611367
11,555
0.9159
0
0
10,872
0.861763
0
0
6,541
0.518469
81db0f62ce609e284136aef25e5f81fbdf1a0feb
1,643
py
Python
src/backend/expungeservice/models/charge_types/traffic_offense.py
april96415/recordexpungPDX
43ec60ddfb7fe1ec7940b2a38c6e7d7f85286506
[ "MIT" ]
38
2019-05-09T03:13:43.000Z
2022-03-16T22:59:25.000Z
src/backend/expungeservice/models/charge_types/traffic_offense.py
april96415/recordexpungPDX
43ec60ddfb7fe1ec7940b2a38c6e7d7f85286506
[ "MIT" ]
938
2019-05-02T15:13:21.000Z
2022-02-27T20:59:00.000Z
src/backend/expungeservice/models/charge_types/traffic_offense.py
april96415/recordexpungPDX
43ec60ddfb7fe1ec7940b2a38c6e7d7f85286506
[ "MIT" ]
65
2019-05-09T03:28:12.000Z
2022-03-21T00:06:39.000Z
from dataclasses import dataclass from typing import Any from expungeservice.models.charge import ChargeType from expungeservice.models.charge import ChargeUtil from expungeservice.models.expungement_result import TypeEligibility, EligibilityStatus @dataclass(frozen=True) class TrafficOffense(ChargeType): type_name: str = "Traffic Offense" expungement_rules: Any = ( "A conviction for a State or municipal traffic offense is not eligible for expungement under ORS 137.225(7)(a).", "Common convictions under this category include:", ( "ul", ( "Reckless Driving", "Driving While Suspended", "Driving Under the Influence of Intoxicants", "Failure to Perform Duties of a Driver", "Giving False Information to a Police Officer (when in a car)", "Fleeing/Attempting to Elude a Police Officer", "Possession of a Stolen Vehicle", ), ), "Notably, Unauthorized Use of a Vehicle is not considered a traffic offense.", "A dismissed traffic offense that is of charge level misdemeanor or higher, other than a Diverted DUII, is identified as a Dismissed Criminal Charge, and is thus eligible.", ) def type_eligibility(self, disposition): if ChargeUtil.dismissed(disposition): raise ValueError("Dismissed criminal charges should have been caught by another class.") elif ChargeUtil.convicted(disposition): return TypeEligibility(EligibilityStatus.INELIGIBLE, reason="Ineligible under 137.225(7)(a)")
45.638889
181
0.677419
1,366
0.831406
0
0
1,390
0.846013
0
0
799
0.486306
81dbffa128ea7c27541a642445edf3ebd5fd3197
8,918
py
Python
os_migrate/plugins/modules/import_workload_create_instance.py
jbadiapa/os-migrate
19b591a672bc9e4af72e62dbd96be94a238a6dc2
[ "Apache-2.0" ]
35
2020-01-22T18:38:27.000Z
2022-03-22T16:19:56.000Z
os_migrate/plugins/modules/import_workload_create_instance.py
jbadiapa/os-migrate
19b591a672bc9e4af72e62dbd96be94a238a6dc2
[ "Apache-2.0" ]
292
2019-12-09T11:15:26.000Z
2022-03-31T14:37:52.000Z
os_migrate/plugins/modules/import_workload_create_instance.py
jbadiapa/os-migrate
19b591a672bc9e4af72e62dbd96be94a238a6dc2
[ "Apache-2.0" ]
32
2019-12-09T11:09:44.000Z
2022-03-24T01:13:31.000Z
#!/usr/bin/python from __future__ import (absolute_import, division, print_function) __metaclass__ = type ANSIBLE_METADATA = { 'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community' } DOCUMENTATION = ''' --- module: import_workload_create_instance short_description: Create NBD exports of OpenStack volumes extends_documentation_fragment: openstack version_added: "2.9.0" author: "OpenStack tenant migration tools (@os-migrate)" description: - "Take an instance from an OS-Migrate YAML structure, and export its volumes over NBD." options: auth: description: - Dictionary with parameters for chosen auth type on the destination cloud. required: true type: dict auth_type: description: - Auth type plugin for destination OpenStack cloud. Can be omitted if using password authentication. required: false type: str region_name: description: - Destination OpenStack region name. Can be omitted if using default region. required: false type: str availability_zone: description: - Availability zone. required: false type: str cloud: description: - Ignored. Present for backwards compatibility. required: false type: raw validate_certs: description: - Validate HTTPS certificates when logging in to OpenStack. required: false type: bool data: description: - Data structure with server parameters as loaded from OS-Migrate workloads YAML file. required: true type: dict block_device_mapping: description: - A block_device_mapping_v2 structure from the transfer_volumes module. - Used to attach destination volumes to the new instance in the right order. required: true type: list elements: dict ''' EXAMPLES = ''' main.yml: - name: validate loaded resources os_migrate.os_migrate.validate_resource_files: paths: - "{{ os_migrate_data_dir }}/workloads.yml" register: workloads_file_validation when: import_workloads_validate_file - name: read workloads resource file os_migrate.os_migrate.read_resources: path: "{{ os_migrate_data_dir }}/workloads.yml" register: read_workloads - name: get source conversion host address os_migrate.os_migrate.os_conversion_host_info: auth: auth_url: https://src-osp:13000/v3 username: migrate password: migrate project_domain_id: default project_name: migration-source user_domain_id: default server_id: ce4dda96-5d8e-4b67-aee2-9845cdc943fe register: os_src_conversion_host_info - name: get destination conversion host address os_migrate.os_migrate.os_conversion_host_info: auth: auth_url: https://dest-osp:13000/v3 username: migrate password: migrate project_domain_id: default project_name: migration-destination user_domain_id: default server_id: 2d2afe57-ace5-4187-8fca-5f10f9059ba1 register: os_dst_conversion_host_info - name: import workloads include_tasks: workload.yml loop: "{{ read_workloads.resources }}" workload.yml: - block: - name: preliminary setup for workload import os_migrate.os_migrate.import_workload_prelim: auth: auth_url: https://dest-osp:13000/v3 username: migrate password: migrate project_domain_id: default project_name: migration-destination user_domain_id: default validate_certs: False src_conversion_host: "{{ os_src_conversion_host_info.openstack_conversion_host }}" src_auth: auth_url: https://src-osp:13000/v3 username: migrate password: migrate project_domain_id: default project_name: migration-source user_domain_id: default src_validate_certs: False data: "{{ item }}" data_dir: "{{ os_migrate_data_dir }}" register: prelim - debug: msg: - "{{ prelim.server_name }} log file: {{ prelim.log_file }}" - "{{ prelim.server_name }} progress file: {{ prelim.state_file }}" when: prelim.changed - name: expose source volumes os_migrate.os_migrate.import_workload_export_volumes: auth: "{{ os_migrate_src_auth }}" auth_type: "{{ os_migrate_src_auth_type|default(omit) }}" region_name: "{{ os_migrate_src_region_name|default(omit) }}" validate_certs: "{{ os_migrate_src_validate_certs|default(omit) }}" ca_cert: "{{ os_migrate_src_ca_cert|default(omit) }}" client_cert: "{{ os_migrate_src_client_cert|default(omit) }}" client_key: "{{ os_migrate_src_client_key|default(omit) }}" conversion_host: "{{ os_src_conversion_host_info.openstack_conversion_host }}" data: "{{ item }}" log_file: "{{ os_migrate_data_dir }}/{{ prelim.server_name }}.log" state_file: "{{ os_migrate_data_dir }}/{{ prelim.server_name }}.state" ssh_key_path: "{{ os_migrate_conversion_keypair_private_path }}" register: exports when: prelim.changed - name: transfer volumes to destination os_migrate.os_migrate.import_workload_transfer_volumes: auth: "{{ os_migrate_dst_auth }}" auth_type: "{{ os_migrate_dst_auth_type|default(omit) }}" region_name: "{{ os_migrate_dst_region_name|default(omit) }}" validate_certs: "{{ os_migrate_dst_validate_certs|default(omit) }}" ca_cert: "{{ os_migrate_dst_ca_cert|default(omit) }}" client_cert: "{{ os_migrate_dst_client_cert|default(omit) }}" client_key: "{{ os_migrate_dst_client_key|default(omit) }}" data: "{{ item }}" conversion_host: "{{ os_dst_conversion_host_info.openstack_conversion_host }}" ssh_key_path: "{{ os_migrate_conversion_keypair_private_path }}" transfer_uuid: "{{ exports.transfer_uuid }}" src_conversion_host_address: "{{ os_src_conversion_host_info.openstack_conversion_host.address }}" volume_map: "{{ exports.volume_map }}" state_file: "{{ os_migrate_data_dir }}/{{ prelim.server_name }}.state" log_file: "{{ os_migrate_data_dir }}/{{ prelim.server_name }}.log" register: transfer when: prelim.changed - name: create destination instance os_migrate.os_migrate.import_workload_create_instance: auth: "{{ os_migrate_dst_auth }}" auth_type: "{{ os_migrate_dst_auth_type|default(omit) }}" region_name: "{{ os_migrate_dst_region_name|default(omit) }}" validate_certs: "{{ os_migrate_dst_validate_certs|default(omit) }}" ca_cert: "{{ os_migrate_dst_ca_cert|default(omit) }}" client_cert: "{{ os_migrate_dst_client_cert|default(omit) }}" client_key: "{{ os_migrate_dst_client_key|default(omit) }}" data: "{{ item }}" block_device_mapping: "{{ transfer.block_device_mapping }}" register: os_migrate_destination_instance when: prelim.changed rescue: - fail: msg: "Failed to import {{ item.params.name }}!" ''' RETURN = ''' server_id: description: The ID of the newly created server. returned: On successful creation of migrated server on destination cloud. type: str sample: 059635b7-451f-4a64-978a-7c2e9e4c15ff ''' from ansible.module_utils.basic import AnsibleModule # Import openstack module utils from ansible_collections.openstack.cloud.plugins as per ansible 3+ try: from ansible_collections.openstack.cloud.plugins.module_utils.openstack \ import openstack_full_argument_spec, openstack_cloud_from_module except ImportError: # If this fails fall back to ansible < 3 imports from ansible.module_utils.openstack \ import openstack_full_argument_spec, openstack_cloud_from_module from ansible_collections.os_migrate.os_migrate.plugins.module_utils import server def run_module(): argument_spec = openstack_full_argument_spec( auth=dict(type='dict', no_log=True, required=True), data=dict(type='dict', required=True), block_device_mapping=dict(type='list', required=True, elements='dict'), ) result = dict( changed=False, ) module = AnsibleModule( argument_spec=argument_spec, ) sdk, conn = openstack_cloud_from_module(module) block_device_mapping = module.params['block_device_mapping'] ser_server = server.Server.from_data(module.params['data']) sdk_server = ser_server.create(conn, block_device_mapping) # Some info (e.g. flavor ID) will only become available after the # server is in ACTIVE state, we need to wait for it. sdk_server = conn.compute.wait_for_server(sdk_server, failures=['ERROR'], wait=600) dst_ser_server = server.Server.from_sdk(conn, sdk_server) if sdk_server: result['changed'] = True result['server'] = dst_ser_server.data result['server_id'] = sdk_server.id module.exit_json(**result) def main(): run_module() if __name__ == '__main__': main()
33.152416
106
0.703185
0
0
0
0
0
0
0
0
7,362
0.825521
81dc5fd1549c9df6ac26331817777ce1242a46e7
427
py
Python
PythonExercicio/ex081.py
fotavio16/PycharmProjects
f5be49db941de69159ec543e8a6dde61f9f94d86
[ "MIT" ]
null
null
null
PythonExercicio/ex081.py
fotavio16/PycharmProjects
f5be49db941de69159ec543e8a6dde61f9f94d86
[ "MIT" ]
null
null
null
PythonExercicio/ex081.py
fotavio16/PycharmProjects
f5be49db941de69159ec543e8a6dde61f9f94d86
[ "MIT" ]
null
null
null
valores = [] while True: num = int(input('Digite um valor: ')) valores.append(num) cont = str(input('Quer continuar? [S/N] ')).upper() if cont == 'N': break print(f'VocΓͺ digitou {len(valores)} elememtos.') valores.sort(reverse=True) print(f'Os valores em ordem decrescente sΓ£o {valores}') if 5 in valores: print('O valor 5 faz parte da lista!') else: print('O valor 5 nΓ£o faz parte da lista.')
26.6875
55
0.641686
0
0
0
0
0
0
0
0
204
0.474419
81dc7fd7e49eea8472a8c802075bd5a03af475ce
10,670
py
Python
huobi/client/margin.py
codemonkey89/huobi_Python
92b96679f6e239c785df7c4354a0a94deda2768f
[ "Apache-2.0" ]
1
2021-09-06T00:09:11.000Z
2021-09-06T00:09:11.000Z
huobi/client/margin.py
codemonkey89/huobi_Python
92b96679f6e239c785df7c4354a0a94deda2768f
[ "Apache-2.0" ]
null
null
null
huobi/client/margin.py
codemonkey89/huobi_Python
92b96679f6e239c785df7c4354a0a94deda2768f
[ "Apache-2.0" ]
null
null
null
from huobi.utils.input_checker import * class MarginClient(object): def __init__(self, **kwargs): """ Create the request client instance. :param kwargs: The option of request connection. api_key: The public key applied from Huobi. secret_key: The private key applied from Huobi. url: The URL name like "https://api.huobi.pro". init_log: to init logger """ self.__kwargs = kwargs def post_transfer_in_margin(self, symbol: 'str', currency: 'str', amount: 'float') -> int: """ Transfer asset from spot account to margin account. :param symbol: The symbol, like "btcusdt". (mandatory) :param currency: The currency of transfer. (mandatory) :param amount: The amount of transfer. (mandatory) :return: """ check_symbol(symbol) check_should_not_none(currency, "currency") check_should_not_none(amount, "amount") params = { "symbol": symbol, "currency": currency, "amount": amount } from huobi.service.margin.post_transfer_in_margin import PostTransferInMarginService return PostTransferInMarginService(params).request(**self.__kwargs) def post_transfer_out_margin(self, symbol: 'str', currency: 'str', amount: 'float') -> int: """ Transfer asset from margin account to spot account. :param symbol: The symbol, like "btcusdt". (mandatory) :param currency: The currency of transfer. (mandatory) :param amount: The amount of transfer. (mandatory) :return: """ check_symbol(symbol) check_should_not_none(currency, "currency") check_should_not_none(amount, "amount") params = { "symbol": symbol, "currency": currency, "amount": amount } from huobi.service.margin.post_transfer_out_margin import PostTransferOutMarginService return PostTransferOutMarginService(params).request(**self.__kwargs) def get_margin_account_balance(self, symbol: 'str') -> list: """ Get the Balance of the Margin Loan Account. :param symbol: The currency, like "btc". (mandatory) :return: The margin loan account detail list. """ check_symbol(symbol) params = { "symbol": symbol } from huobi.service.margin.get_margin_account_balance import GetMarginAccountBalanceService return GetMarginAccountBalanceService(params).request(**self.__kwargs) def post_create_margin_order(self, symbol: 'str', currency: 'str', amount: 'float') -> int: """ Submit a request to borrow with margin account. :param symbol: The trading symbol to borrow margin, e.g. "btcusdt", "bccbtc". (mandatory) :param currency: The currency to borrow,like "btc". (mandatory) :param amount: The amount of currency to borrow. (mandatory) :return: The margin order id. """ check_symbol(symbol) check_should_not_none(currency, "currency") check_should_not_none(amount, "amount") params = { "symbol": symbol, "currency" : currency, "amount" : amount } from huobi.service.margin.post_create_margin_order import PostCreateMarginOrderService return PostCreateMarginOrderService(params).request(**self.__kwargs) def post_repay_margin_order(self, loan_id: 'int', amount: 'float') -> int: """ Get the margin loan records. :param load_id: The previously returned order id when loan order was created. (mandatory) :param amount: The amount of currency to repay. (mandatory) :return: The margin order id. """ check_should_not_none(loan_id, "loan_id") check_should_not_none(amount, "amount") params = { "loan_id": loan_id, "amount": amount } from huobi.service.margin.post_repay_margin_order import PostRepayMarginOrderService return PostRepayMarginOrderService(params).request(**self.__kwargs) def get_margin_loan_orders(self, symbol: 'str', start_date: 'str' = None, end_date: 'str' = None, states: 'LoanOrderState' = None, from_id: 'int' = None, size: 'int' = None, direction: 'QueryDirection' = None) -> list: """ Get the margin loan records. :param symbol: The symbol, like "btcusdt" (mandatory). :param start_date: The search starts date in format yyyy-mm-dd. (optional). :param end_date: The search end date in format yyyy-mm-dd.(optional, can be null). :param states: The loan order states, it could be created, accrual, cleared or invalid. (optional) :param from_id: Search order id to begin with. (optional) :param size: The number of orders to return.. (optional) :param direction: The query direction, prev or next. (optional) :return: The list of the margin loan records. """ check_symbol(symbol) start_date = format_date(start_date, "start_date") end_date = format_date(end_date, "end_date") params = { "symbol" : symbol, "start-date" : start_date, "end-date" : end_date, "states" : states, "from" : from_id, "size" : size, "direct" : direction } from huobi.service.margin.get_margin_loan_orders import GetMarginLoanOrdersService return GetMarginLoanOrdersService(params).request(**self.__kwargs) def get_margin_loan_info(self, symbols: 'str'=None) -> list: """ The request of get margin loan info, can return currency loan info list. :param symbols: The symbol, like "btcusdt,htusdt". (optional) :return: The cross margin loan info. """ check_symbol(symbols) params = { "symbols" : symbols } from huobi.service.margin.get_margin_loan_info import GetMarginLoanInfoService return GetMarginLoanInfoService(params).request(**self.__kwargs) def get_cross_margin_loan_info(self) -> list: """ The request of currency loan info list. :return: The cross margin loan info list. """ params = {} from huobi.service.margin.get_cross_margin_loan_info import GetCrossMarginLoanInfoService return GetCrossMarginLoanInfoService(params).request(**self.__kwargs) def post_cross_margin_transfer_in(self, currency: 'str', amount:'float') -> int: """ transfer currency to cross account. :param currency: currency name (mandatory) :param amount: transfer amount (mandatory) :return: return transfer id. """ check_should_not_none(currency, "currency") check_should_not_none(amount, "amount") params = { "amount": amount, "currency": currency } from huobi.service.margin.post_cross_margin_transfer_in import PostCrossMarginTransferInService return PostCrossMarginTransferInService(params).request(**self.__kwargs) def post_cross_margin_transfer_out(self, currency: 'str', amount:'float') -> int: """ transfer currency to cross account. :param currency: currency name (mandatory) :param amount: transfer amount (mandatory) :return: return transfer id. """ check_should_not_none(currency, "currency") check_should_not_none(amount, "amount") params = { "amount": amount, "currency": currency } from huobi.service.margin.post_cross_margin_transfer_out import PostCrossMarginTransferOutService return PostCrossMarginTransferOutService(params).request(**self.__kwargs) def post_cross_margin_create_loan_orders(self, currency:'str', amount: 'float') -> int: """ create cross margin loan orders :param currency: currency name (mandatory) :param amount: transfer amount (mandatory) :return: return order id. """ check_should_not_none(currency, "currency") check_should_not_none(amount, "amount") params = { "amount": amount, "currency": currency } from huobi.service.margin.post_cross_margin_create_loan_orders import PostCrossMarginCreateLoanOrdersService return PostCrossMarginCreateLoanOrdersService(params).request(**self.__kwargs) def post_cross_margin_loan_order_repay(self, order_id: 'str', amount: 'float'): """ repay cross margin loan orders :param order_id: order_id for loan (mandatory) :param amount: transfer amount (mandatory) :return: return order id. """ check_should_not_none(order_id, "order-id") check_should_not_none(amount, "amount") params = { "amount": amount, "order-id": order_id } from huobi.service.margin.post_cross_margin_loan_order_repay import PostCrossMarginLoanOrderRepayService return PostCrossMarginLoanOrderRepayService(params).request(**self.__kwargs) def get_cross_margin_loan_orders(self, currency: 'str' = None, state: 'str' = None, start_date: 'str' = None, end_date: 'str' = None, from_id: 'int' = None, size: 'int' = None, direct: 'str' = None, sub_uid: 'int' = None) -> list: """ get cross margin loan orders :return: return list. """ params = { "currency": currency, "state": state, "start-date": start_date, "end-date": end_date, "from": from_id, "size": size, "direct": direct, "sub-uid": sub_uid } from huobi.service.margin.get_cross_margin_loan_orders import GetCrossMarginLoanOrdersService return GetCrossMarginLoanOrdersService(params).request(**self.__kwargs) def get_cross_margin_account_balance(self, sub_uid:'int'=None): """ get cross margin account balance :return: cross-margin account. """ params = { "sub-uid": sub_uid } from huobi.service.margin.get_cross_margin_account_balance import GetCrossMarginAccountBalanceService return GetCrossMarginAccountBalanceService(params).request(**self.__kwargs)
36.541096
116
0.624649
10,627
0.99597
0
0
0
0
0
0
4,326
0.405436
81dd1a8439621b09316ab23b0da1c48479109ea1
2,297
py
Python
vine/commit.py
robinson96/GRAPE
f6404ae6ee2933647e515a9480077ab01fb2c430
[ "BSD-3-Clause" ]
4
2017-04-30T17:08:42.000Z
2019-11-15T04:44:09.000Z
vine/commit.py
robinson96/GRAPE
f6404ae6ee2933647e515a9480077ab01fb2c430
[ "BSD-3-Clause" ]
1
2016-02-12T07:51:30.000Z
2016-02-12T07:51:30.000Z
vine/commit.py
robinson96/GRAPE
f6404ae6ee2933647e515a9480077ab01fb2c430
[ "BSD-3-Clause" ]
null
null
null
import os import option import grapeGit as git import grapeConfig import utility class Commit(option.Option): """ Usage: grape-commit [-m <message>] [-a | <filetree>] Options: -m <message> The commit message. -a Commit modified files that have not been staged. Arguments: <filetree> The relative path of files to include in this commit. """ def __init__(self): super(Commit,self).__init__() self._key = "commit" self._section = "Workspace" def description(self): return "runs git commit in all projects in this workspace" def commit(self, commitargs, repo): try: git.commit(commitargs) return True except git.GrapeGitError as e: utility.printMsg("Commit in %s failed. Perhaps there were no staged changes? Use -a to commit all modified files." % repo) return False def execute(self, args): commitargs = "" if args['-a']: commitargs = commitargs + " -a" elif args["<filetree>"]: commitargs = commitargs + " %s"% args["<filetree>"] if not args['-m']: args["-m"] = utility.userInput("Please enter commit message:") commitargs += " -m \"%s\"" % args["-m"] wsDir = utility.workspaceDir() os.chdir(wsDir) submodules = [(True, x ) for x in git.getModifiedSubmodules()] subprojects = [(False, x) for x in grapeConfig.GrapeConfigParser.getAllActiveNestedSubprojectPrefixes()] for stage,sub in submodules + subprojects: os.chdir(os.path.join(wsDir,sub)) subStatus = git.status("--porcelain -uno") if subStatus: utility.printMsg("Committing in %s..." % sub) if self.commit(commitargs, sub) and stage: os.chdir(wsDir) utility.printMsg("Staging committed change in %s..." % sub) git.add(sub) os.chdir(wsDir) if submodules or git.status("--porcelain"): utility.printMsg("Performing commit in outer level project...") self.commit(commitargs, wsDir) return True def setDefaultConfig(self,config): pass
33.289855
134
0.573792
2,214
0.963866
0
0
0
0
0
0
678
0.295168
81ddc6f0c5c1c51183abe91817be444c4671d793
2,743
py
Python
allopy/optimize/regret/abstract.py
wangcj05/allopy
0d97127e5132df1449283198143994b45fb11214
[ "MIT" ]
1
2021-04-06T04:33:03.000Z
2021-04-06T04:33:03.000Z
allopy/optimize/regret/abstract.py
wangcj05/allopy
0d97127e5132df1449283198143994b45fb11214
[ "MIT" ]
null
null
null
allopy/optimize/regret/abstract.py
wangcj05/allopy
0d97127e5132df1449283198143994b45fb11214
[ "MIT" ]
null
null
null
from abc import ABC from typing import List, Optional, Union import numpy as np from allopy import OptData from allopy.penalty import NoPenalty, Penalty __all__ = ["AbstractObjectiveBuilder", "AbstractConstraintBuilder"] class AbstractObjectiveBuilder(ABC): def __init__(self, data: List[OptData], cvar_data: List[OptData], rebalance: bool, time_unit): self.data, self.cvar_data = format_inputs(data, cvar_data, time_unit) self.rebalance = rebalance self.num_scenarios = len(data) assert self.num_scenarios > 0, "Provide data to the optimizer" assert self.num_scenarios == len(cvar_data), "data and cvar data must have same number of scenarios" self.num_assets = data[0].n_assets assert all(d.n_assets == self.num_assets for d in data), \ f"number of assets in data should equal {self.num_assets}" assert all(d.n_assets == self.num_assets for d in cvar_data), \ f"number of assets in cvar data should equal {self.num_assets}" self._penalties = [NoPenalty(self.num_assets)] * self.num_scenarios @property def penalties(self): return self._penalties @penalties.setter def penalties(self, penalties): assert penalties is None or isinstance(penalties, Penalty) or hasattr(penalties, "__iter__"), \ "penalties can be None, a subsclass of the Penalty class or a list which subclasses the Penalty class" if penalties is None: self._penalties = [NoPenalty(self.num_assets)] * self.num_scenarios elif isinstance(penalties, penalties): self._penalties = [penalties] * self.num_scenarios else: penalties = list(penalties) assert len(penalties) == self.num_scenarios, "number of penalties given must match number of scenarios" assert all(isinstance(p, Penalty) for p in penalties), "non-Penalty instance detected" self._penalties = penalties class AbstractConstraintBuilder(ABC): def __init__(self, data: List[OptData], cvar_data: List[OptData], rebalance: bool, time_unit): self.data, self.cvar_data = format_inputs(data, cvar_data, time_unit) self.rebalance = rebalance self.num_scenarios = len(self.data) def format_inputs(data: List[Union[OptData, np.ndarray]], cvar_data: Optional[List[Union[OptData, np.ndarray]]], time_unit: int): data = [d if isinstance(data, OptData) else OptData(d, time_unit) for d in data] if cvar_data is None: return [d.cut_by_horizon(3) for d in data] else: cvar_data = [c if isinstance(c, OptData) else OptData(c, time_unit) for c in cvar_data] return data, cvar_data
40.338235
115
0.682829
2,048
0.746628
0
0
867
0.316077
0
0
461
0.168064
81de227f0a3f6458399634f490d77c2bd9c293a6
3,786
py
Python
dataset-processor3.py
Pawel762/class5-homework
8e48dcda1ed91b7a5e28bea6db13b2a82182e074
[ "MIT" ]
null
null
null
dataset-processor3.py
Pawel762/class5-homework
8e48dcda1ed91b7a5e28bea6db13b2a82182e074
[ "MIT" ]
null
null
null
dataset-processor3.py
Pawel762/class5-homework
8e48dcda1ed91b7a5e28bea6db13b2a82182e074
[ "MIT" ]
null
null
null
import os import pandas as pd import matplotlib.pyplot as plt wine_df = pd.read_csv(filepath_or_buffer='~/class5-homework/wine.data', sep=',', header=None) wine_df.columns = ['Class','Alcohol','Malic_Acid','Ash','Alcalinity_of_Ash','Magnesium', 'Total_Phenols','Flavanoids','Nonflavanoid_Phenols','Proanthocyanins', 'Color_Intensity','Hue','OD280_OD315_of_Diluted_Wines','Proline'] wine_B = wine_df.drop(['Class'], axis = 1) os.makedirs('graphs', exist_ok=True) #Ploting line for alcohol plt.plot(wine_B['Alcohol'], color='g') plt.title('Alcohol by Index') plt.xlabel('Index') plt.ylabel('Alcohol') plt.savefig(f'graphs/Alcohol_by_index_plot.png', format='png') plt.clf() #Ploting line for Malic_Acid plt.plot(wine_B['Malic_Acid'], color='g') plt.title('Malic_Acid by Index') plt.xlabel('Index') plt.ylabel('Malic_Acid') plt.savefig(f'graphs/Malic_Acid_by_index_plot.png', format='png') plt.clf() #Ploting line for Ash plt.plot(wine_B['Ash'], color='g') plt.title('Ash by Index') plt.xlabel('Index') plt.ylabel('Ash') plt.savefig(f'graphs/Ash_by_index_plot.png', format='png') plt.clf() #Ploting line for Alcalinity_of_Ash plt.plot(wine_B['Alcalinity_of_Ash'], color='g') plt.title('Alcalinity_of_Ash by Index') plt.xlabel('Index') plt.ylabel('Alcalinity_of_Ash') plt.savefig(f'graphs/Alcalinity_of_Ash_by_index_plot.png', format='png') plt.clf() #Ploting line for Magnesium plt.plot(wine_B['Magnesium'], color='g') plt.title('Magnesium by Index') plt.xlabel('Index') plt.ylabel('Magnesium') plt.savefig(f'graphs/Magnesium_by_index_plot.png', format='png') plt.clf() #Ploting line for Total_Phenols plt.plot(wine_B['Total_Phenols'], color='g') plt.title('Total_Phenols by Index') plt.xlabel('Index') plt.ylabel('Total_Phenols') plt.savefig(f'graphs/Total_Phenols_by_index_plot.png', format='png') plt.clf() #Ploting line for Flavanoids plt.plot(wine_B['Flavanoids'], color='g') plt.title('Flavanoids by Index') plt.xlabel('Index') plt.ylabel('Flavanoids') plt.savefig(f'graphs/Flavanoids_by_index_plot.png', format='png') plt.clf() #Ploting line for Nonflavanoid_Phenols plt.plot(wine_B['Nonflavanoid_Phenols'], color='g') plt.title('Nonflavanoid_Phenols by Index') plt.xlabel('Index') plt.ylabel('Nonflavanoid_Phenols') plt.savefig(f'graphs/Nonflavanoid_Phenols_by_index_plot.png', format='png') plt.clf() #Ploting line for Proanthocyanins plt.plot(wine_B['Proanthocyanins'], color='g') plt.title('Proanthocyanins by Index') plt.xlabel('Index') plt.ylabel('Proanthocyanins') plt.savefig(f'graphs/Proanthocyanins_by_index_plot.png', format='png') plt.clf() #Ploting line for Color_Intensity plt.plot(wine_B['Color_Intensity'], color='g') plt.title('Color_Intensity by Index') plt.xlabel('Index') plt.ylabel('Color_Intensity') plt.savefig(f'graphs/Color_Intensity_by_index_plot.png', format='png') plt.clf() #Ploting line for Hue plt.plot(wine_B['Hue'], color='g') plt.title('Hue by Index') plt.xlabel('Index') plt.ylabel('Hue') plt.savefig(f'graphs/Hue_by_index_plot.png', format='png') plt.clf() #Ploting line for OD280_OD315_of_Diluted_Wines plt.plot(wine_B['OD280_OD315_of_Diluted_Wines'], color='g') plt.title('OD280_OD315_of_Diluted_Wines by Index') plt.xlabel('Index') plt.ylabel('OD280_OD315_of_Diluted_Wines') plt.savefig(f'graphs/OD280_OD315_of_Diluted_Wines_by_index_plot.png', format='png') plt.clf() #Ploting line for Proline plt.plot(wine_B['Proline'], color='g') plt.title('Proline by Index') plt.xlabel('Index') plt.ylabel('Proline') plt.savefig(f'graphs/Proline_by_index_plot.png', format='png') plt.clf() #plt.plot(wine_B[i], color='green') #plt.title(str(i)+' by Index') #plt.xlabel('Index') #plt.ylabel(i) #plt.savefig(f'graphs/'+str(i)+'_by_index_plot.png', format='png') #plt.clf()
29.578125
88
0.744057
0
0
0
0
0
0
0
0
2,185
0.577126
81e0b2153d543771f9ccb08bc53b840667a38757
7,451
py
Python
ares/attack/bim.py
KuanKuanQAQ/ares
40dbefc18f6438e1812021fe6d6c3195f22ca295
[ "MIT" ]
206
2020-12-31T09:43:11.000Z
2022-03-30T07:02:41.000Z
ares/attack/bim.py
afoolboy/ares
89610d41fdde194e4ad916d29961aaed73383692
[ "MIT" ]
7
2021-01-26T06:45:44.000Z
2022-02-26T05:25:48.000Z
ares/attack/bim.py
afoolboy/ares
89610d41fdde194e4ad916d29961aaed73383692
[ "MIT" ]
61
2020-12-29T14:02:41.000Z
2022-03-26T14:21:10.000Z
import tensorflow as tf import numpy as np from ares.attack.base import BatchAttack from ares.attack.utils import get_xs_ph, get_ys_ph, maybe_to_array, get_unit class BIM(BatchAttack): ''' Basic Iterative Method (BIM). A white-box iterative constraint-based method. Require a differentiable loss function and a ``ares.model.Classifier`` model. - Supported distance metric: ``l_2``, ``l_inf``. - Supported goal: ``t``, ``tm``, ``ut``. - References: https://arxiv.org/abs/1607.02533. ''' def __init__(self, model, batch_size, loss, goal, distance_metric, session, iteration_callback=None): ''' Initialize BIM. :param model: The model to attack. A ``ares.model.Classifier`` instance. :param batch_size: Batch size for the ``batch_attack()`` method. :param loss: The loss function to optimize. A ``ares.loss.Loss`` instance. :param goal: Adversarial goals. All supported values are ``'t'``, ``'tm'``, and ``'ut'``. :param distance_metric: Adversarial distance metric. All supported values are ``'l_2'`` and ``'l_inf'``. :param session: The ``tf.Session`` to run the attack in. The ``model`` should be loaded into this session. :param iteration_callback: A function accept a ``xs`` ``tf.Tensor`` (the original examples) and a ``xs_adv`` ``tf.Tensor`` (the adversarial examples for ``xs``). During ``batch_attack()``, this callback function would be runned after each iteration, and its return value would be yielded back to the caller. By default, ``iteration_callback`` is ``None``. ''' self.model, self.batch_size, self._session = model, batch_size, session self.loss, self.goal, self.distance_metric = loss, goal, distance_metric # placeholder for batch_attack's input self.xs_ph = get_xs_ph(model, batch_size) self.ys_ph = get_ys_ph(model, batch_size) # flatten shape of xs_ph xs_flatten_shape = (batch_size, np.prod(self.model.x_shape)) # store xs and ys in variables to reduce memory copy between tensorflow and python # variable for the original example with shape of (batch_size, D) self.xs_var = tf.Variable(tf.zeros(shape=xs_flatten_shape, dtype=self.model.x_dtype)) # variable for labels self.ys_var = tf.Variable(tf.zeros(shape=(batch_size,), dtype=self.model.y_dtype)) # variable for the (hopefully) adversarial example with shape of (batch_size, D) self.xs_adv_var = tf.Variable(tf.zeros(shape=xs_flatten_shape, dtype=self.model.x_dtype)) # magnitude self.eps_ph = tf.placeholder(self.model.x_dtype, (self.batch_size,)) self.eps_var = tf.Variable(tf.zeros((self.batch_size,), dtype=self.model.x_dtype)) # step size self.alpha_ph = tf.placeholder(self.model.x_dtype, (self.batch_size,)) self.alpha_var = tf.Variable(tf.zeros((self.batch_size,), dtype=self.model.x_dtype)) # expand dim for easier broadcast operations eps = tf.expand_dims(self.eps_var, 1) alpha = tf.expand_dims(self.alpha_var, 1) # calculate loss' gradient with relate to the adversarial example # grad.shape == (batch_size, D) self.xs_adv_model = tf.reshape(self.xs_adv_var, (batch_size, *self.model.x_shape)) self.loss = loss(self.xs_adv_model, self.ys_var) grad = tf.gradients(self.loss, self.xs_adv_var)[0] if goal == 't' or goal == 'tm': grad = -grad elif goal != 'ut': raise NotImplementedError # update the adversarial example if distance_metric == 'l_2': grad_unit = get_unit(grad) xs_adv_delta = self.xs_adv_var - self.xs_var + alpha * grad_unit # clip by max l_2 magnitude of adversarial noise xs_adv_next = self.xs_var + tf.clip_by_norm(xs_adv_delta, eps, axes=[1]) elif distance_metric == 'l_inf': xs_lo, xs_hi = self.xs_var - eps, self.xs_var + eps grad_sign = tf.sign(grad) # clip by max l_inf magnitude of adversarial noise xs_adv_next = tf.clip_by_value(self.xs_adv_var + alpha * grad_sign, xs_lo, xs_hi) else: raise NotImplementedError # clip by (x_min, x_max) xs_adv_next = tf.clip_by_value(xs_adv_next, self.model.x_min, self.model.x_max) self.update_xs_adv_step = self.xs_adv_var.assign(xs_adv_next) self.config_eps_step = self.eps_var.assign(self.eps_ph) self.config_alpha_step = self.alpha_var.assign(self.alpha_ph) self.setup_xs = [self.xs_var.assign(tf.reshape(self.xs_ph, xs_flatten_shape)), self.xs_adv_var.assign(tf.reshape(self.xs_ph, xs_flatten_shape))] self.setup_ys = self.ys_var.assign(self.ys_ph) self.iteration = None self.iteration_callback = None if iteration_callback is not None: xs_model = tf.reshape(self.xs_var, (self.batch_size, *self.model.x_shape)) self.iteration_callback = iteration_callback(xs_model, self.xs_adv_model) def config(self, **kwargs): ''' (Re)config the attack. :param magnitude: Max distortion, could be either a float number or a numpy float number array with shape of (batch_size,). :param alpha: Step size for each iteration, could be either a float number or a numpy float number array with shape of (batch_size,). :param iteration: Iteration count. An integer. ''' if 'magnitude' in kwargs: eps = maybe_to_array(kwargs['magnitude'], self.batch_size) self._session.run(self.config_eps_step, feed_dict={self.eps_ph: eps}) if 'alpha' in kwargs: alpha = maybe_to_array(kwargs['alpha'], self.batch_size) self._session.run(self.config_alpha_step, feed_dict={self.alpha_ph: alpha}) if 'iteration' in kwargs: self.iteration = kwargs['iteration'] def _batch_attack_generator(self, xs, ys, ys_target): ''' Attack a batch of examples. It is a generator which yields back ``iteration_callback()``'s return value after each iteration if the ``iteration_callback`` is not ``None``, and returns the adversarial examples. ''' labels = ys if self.goal == 'ut' else ys_target self._session.run(self.setup_xs, feed_dict={self.xs_ph: xs}) self._session.run(self.setup_ys, feed_dict={self.ys_ph: labels}) for _ in range(self.iteration): self._session.run(self.update_xs_adv_step) if self.iteration_callback is not None: yield self._session.run(self.iteration_callback) return self._session.run(self.xs_adv_model) def batch_attack(self, xs, ys=None, ys_target=None): ''' Attack a batch of examples. :return: When the ``iteration_callback`` is ``None``, return the generated adversarial examples. When the ``iteration_callback`` is not ``None``, return a generator, which yields back the callback's return value after each iteration and returns the generated adversarial examples. ''' g = self._batch_attack_generator(xs, ys, ys_target) if self.iteration_callback is None: try: next(g) except StopIteration as exp: return exp.value else: return g
53.992754
120
0.65414
7,286
0.977855
757
0.101597
0
0
0
0
3,009
0.403838
81e170cb1bf7f677e6d97334533f66e198b1aa28
3,148
py
Python
parasite/resolver.py
SGevorg/parasite
574b3992abeef03406524a94b6a8a2d662ca13e7
[ "MIT" ]
9
2020-09-21T11:21:01.000Z
2020-12-18T08:21:27.000Z
parasite/resolver.py
bittlingmayer/parasite
daac95eeaa19d5b05c0a3af076e364ca21708ff4
[ "MIT" ]
1
2020-11-21T09:45:45.000Z
2020-11-21T09:45:45.000Z
parasite/resolver.py
bittlingmayer/parasite
daac95eeaa19d5b05c0a3af076e364ca21708ff4
[ "MIT" ]
4
2020-11-21T09:08:30.000Z
2020-12-05T15:46:56.000Z
import numpy as np from functools import lru_cache from typing import Tuple class DynamicResolver: def __init__(self, matrix: np.ndarray, *, num_src_lines: int = None, num_tgt_lines: int = None, max_k: int = 3, windows_importance: bool = False ): self.matrix = 100 - matrix self.max_k = max_k self.windows_importance = windows_importance self.n, self.m = matrix.shape self.num_src_lines = num_src_lines or self.n self.num_tgt_lines = num_tgt_lines or self.m def __call__(self) -> Tuple[float, Tuple]: best, path = self.resolve() return best, path @lru_cache(maxsize=None) def offset(self, begin: int, end: int, num_lines: int) -> int: if end - begin == 1: return begin num_window_elements = num_lines - (end - begin) + 2 prev_offset = self.offset(begin, end - 1, num_lines) return prev_offset + num_window_elements def extract_candidate(self, i: int, src_window_size: int, j: int, tgt_window_size: int,) -> Tuple[float, Tuple]: from_i = i - src_window_size from_j = j - tgt_window_size if from_i < 0 or from_j < 0: return 0, () candidate_score, candidate_path = self.resolve(from_i, from_j) if src_window_size == 0 or tgt_window_size == 0: return candidate_score, candidate_path offset_i = self.offset(from_i, i, self.num_src_lines) offset_j = self.offset(from_j, j, self.num_tgt_lines) if offset_i >= self.n or offset_j >= self.m: return 0, () added_score = self.matrix[offset_i, offset_j] if self.windows_importance: added_score *= (src_window_size + tgt_window_size) candidate_score += added_score candidate_path = ((offset_i, offset_j), candidate_path) return candidate_score, candidate_path @lru_cache(maxsize=None) def resolve(self, i: int = None, j: int = None) -> Tuple[float, Tuple]: if i is None: i = self.num_src_lines if j is None: j = self.num_tgt_lines if i <= 0 or j <= 0: return 0, () best_score: float = 0.0 best_path: Tuple = () for src_window_size in range(self.max_k + 1): for tgt_window_size in range(self.max_k + 1): if src_window_size == 0 and tgt_window_size == 0: continue if src_window_size > 1 and tgt_window_size > 1: continue candidate = self.extract_candidate(i, src_window_size, j, tgt_window_size) candidate_score, candidate_path = candidate if candidate_score > best_score: best_score = candidate_score best_path = candidate_path return best_score, best_path
32.453608
80
0.55432
3,067
0.974269
0
0
1,395
0.443139
0
0
0
0
81e2d167ec9fa89c74b62f2bf234fc1429ff2619
3,864
py
Python
utils/preprocess.py
Deep-MI/3d-neuro-seg
57cc1e16e5ecbef8caf9f6f1e735a0e7339d1152
[ "Apache-2.0" ]
null
null
null
utils/preprocess.py
Deep-MI/3d-neuro-seg
57cc1e16e5ecbef8caf9f6f1e735a0e7339d1152
[ "Apache-2.0" ]
null
null
null
utils/preprocess.py
Deep-MI/3d-neuro-seg
57cc1e16e5ecbef8caf9f6f1e735a0e7339d1152
[ "Apache-2.0" ]
null
null
null
import numpy as np """ Contains preprocessing code for creating additional information based on MRI volumes and true segmentation maps (asegs). Eg. weight masks for median frequency class weighing, edge weighing etc. """ def create_weight_mask(aseg): """ Main function for calculating weight mask of segmentation map for loss function. Currently only Median Frequency Weighing is implemented. Other types can be additively added to the 'weights' variable Args: aseg (numpy.ndarray): Segmentation map with shape l x w x d Returns: numpy.ndarray: Weight Mask of same shape as aseg """ if len(aseg.shape)==4: _, h,w,d = aseg.shape elif len(aseg.shape)==3: h,w,d = aseg.shape weights = np.zeros((h,w,d), dtype=float) # Container ndarray of zeros for weights weights += median_freq_class_weighing(aseg) # Add median frequency weights # Further weights (eg. extra weights for region borders) can be added here # Eg. weights += edge_weights(aseg) return weights def median_freq_class_weighing(aseg): """ Median Frequency Weighing. Guarded against class absence of certain classes. Args: aseg (numpy.ndarray): Segmentation map with shape l x w x d Returns: numpy.ndarray: Median frequency weighted mask of same shape as aseg """ # Calculates median frequency based weighing for classes unique, counts = np.unique(aseg, return_counts=True) if len(aseg.shape)==4: _, h,w,d = aseg.shape elif len(aseg.shape)==3: h,w,d = aseg.shape class_wise_weights = np.median(counts)/counts aseg = aseg.astype(int) # Guards against the absence of certain classes in sample discon_guard_lut = np.zeros(int(max(unique))+1)-1 for idx, val in enumerate(unique): discon_guard_lut[int(val)] = idx discon_guard_lut = discon_guard_lut.astype(int) # Assigns weights to w_mask and resets the missing classes w_mask = np.reshape(class_wise_weights[discon_guard_lut[aseg.ravel()]], (h, w, d)) return w_mask # Label mapping functions (to aparc (eval) and to label (train)) def map_label2aparc_aseg(mapped_aseg): """ Function to perform look-up table mapping from label space to aparc.DKTatlas+aseg space :param np.ndarray mapped_aseg: label space segmentation (aparc.DKTatlas + aseg) :return: """ aseg = np.zeros_like(mapped_aseg) labels = np.array([0, 2, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 24, 26, 28, 31, 41, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 58, 60, 63, 77, 1002, 1003, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1034, 1035, 2002, 2005, 2010, 2012, 2013, 2014, 2016, 2017, 2021, 2022, 2023, 2024, 2025, 2028]) h, w, d = aseg.shape aseg = labels[mapped_aseg.ravel()] aseg = aseg.reshape((h, w, d)) return aseg # if __name__ == "__main__": # #a = np.random.randint(0, 5, size=(10,10,10)) # #b = np.random.randint(5, 10, size=(10000)) # # #map_masks_into_5_classes(np.random.randint(0, 250, size=(256, 256, 256))) # # import nibabel as nib # from data_utils.process_mgz_into_hdf5 import map_aparc_aseg2label, map_aseg2label # path = r"abide_ii/sub-28675/mri/aparc.DKTatlas+aseg.mgz" # aseg = nib.load(path).get_data() # labels_full, _ = map_aparc_aseg2label(aseg) # only for 79 classes case # # labels_full, _ = map_aseg2label(aseg) # only for 37 classes case # aseg = labels_full # # print(aseg.shape) # median_freq_class_weighing(aseg) # # print(edge_weighing(aseg, 1.5))
35.777778
120
0.646222
0
0
0
0
0
0
0
0
2,152
0.556936
81e2ef476be7e9c25d158962fb2d60491bb44e8a
4,381
py
Python
test/test_oneview_hypervisor_cluster_profile_facts.py
nabhajit-ray/oneview-ansible
b31af8a696013bac7a1900748a2fa5ba491fe8e2
[ "Apache-2.0" ]
108
2016-06-28T18:14:08.000Z
2022-02-21T09:16:06.000Z
test/test_oneview_hypervisor_cluster_profile_facts.py
HPE-Japan-Presales/oneview-ansible
26eb13354333d862d9e80f07e3fe9bbe2eb59af3
[ "Apache-2.0" ]
248
2016-07-14T12:50:17.000Z
2022-02-06T18:57:16.000Z
test/test_oneview_hypervisor_cluster_profile_facts.py
HPE-Japan-Presales/oneview-ansible
26eb13354333d862d9e80f07e3fe9bbe2eb59af3
[ "Apache-2.0" ]
88
2016-06-29T15:52:44.000Z
2022-03-10T12:34:41.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- ### # Copyright (2016-2020) Hewlett Packard Enterprise Development LP # # Licensed under the Apache License, Version 2.0 (the "License"); # You may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ### import pytest import mock from copy import deepcopy from hpe_test_utils import OneViewBaseFactsTest from oneview_module_loader import HypervisorClusterProfileFactsModule PROFILE_URI = '/rest/hypervisor-cluster-profiles/57d3af2a-b6d2-4446-8645-f38dd808ea4d' PARAMS_GET_ALL = dict( config='config.json' ) PARAMS_GET_BY_NAME = dict( config='config.json', name="Test Cluster Profile" ) PARAMS_GET_BY_URI = dict( config='config.json', uri="/rest/test/123" ) PARAMS_WITH_OPTIONS = dict( config='config.json', name="Test Cluster Profile", options=[ 'compliancePreview', ] ) @pytest.mark.resource(TestHypervisorClusterProfileFactsModule='hypervisor_cluster_profiles') class TestHypervisorClusterProfileFactsModule(OneViewBaseFactsTest): """ FactsParamsTestCase has common tests for the parameters support. """ def test_should_get_all_cluster_profiles(self): cluster_profiles = [ {"name": "Cluster Profile Name 1"}, {"name": "Cluster Profile Name 2"} ] self.mock_ov_client.hypervisor_cluster_profiles.get_all.return_value = cluster_profiles self.mock_ansible_module.params = deepcopy(PARAMS_GET_ALL) HypervisorClusterProfileFactsModule().run() self.mock_ansible_module.exit_json.assert_called_once_with( changed=False, ansible_facts=dict(hypervisor_cluster_profiles=cluster_profiles) ) def test_should_get_by_name(self): profile = {"name": "Test Cluster Profile", 'uri': '/rest/test/123'} obj = mock.Mock() obj.data = profile self.mock_ov_client.hypervisor_cluster_profiles.get_by_name.return_value = obj self.mock_ansible_module.params = deepcopy(PARAMS_GET_BY_NAME) HypervisorClusterProfileFactsModule().run() self.mock_ansible_module.exit_json.assert_called_once_with( changed=False, ansible_facts=dict(hypervisor_cluster_profiles=[profile]) ) def test_should_get_by_uri(self): cluster_profile = {"name": "Test Cluster Profile", 'uri': '/rest/test/123'} obj = mock.Mock() obj.data = cluster_profile self.mock_ov_client.hypervisor_cluster_profiles.get_by_uri.return_value = obj self.mock_ansible_module.params = deepcopy(PARAMS_GET_BY_URI) HypervisorClusterProfileFactsModule().run() self.mock_ansible_module.exit_json.assert_called_once_with( changed=False, ansible_facts=dict(hypervisor_cluster_profiles=[cluster_profile]) ) def test_should_get_cluster_profile_by_name_with_all_options(self): mock_option_return = {'subresource': 'value'} self.mock_ov_client.hypervisor_cluster_profiles.data = {"name": "Test Cluster Profile", "uri": PROFILE_URI} self.mock_ov_client.hypervisor_cluster_profiles.get_by_name.return_value = \ self.mock_ov_client.hypervisor_cluster_profiles self.mock_ov_client.hypervisor_cluster_profiles.get_compliance_preview.return_value = mock_option_return self.mock_ansible_module.params = deepcopy(PARAMS_WITH_OPTIONS) HypervisorClusterProfileFactsModule().run() self.mock_ov_client.hypervisor_cluster_profiles.get_compliance_preview.assert_called_once_with() self.mock_ansible_module.exit_json.assert_called_once_with( changed=False, ansible_facts={'hypervisor_cluster_profiles': [{'name': 'Test Cluster Profile', 'uri': PROFILE_URI}], 'hypervisor_cluster_profile_compliance_preview': mock_option_return, } ) if __name__ == '__main__': pytest.main([__file__])
35.048
115
0.71947
2,953
0.674047
0
0
3,046
0.695275
0
0
1,283
0.292856
81e5c39849311e6837ffa50cd43accfe28aa75bf
1,339
py
Python
utils/predictions.py
jaingaurav3/ML_sample
4e53de198f7965fa96f0db44717df27032df4b48
[ "MIT" ]
19
2018-06-08T05:33:47.000Z
2021-04-26T16:19:32.000Z
utils/predictions.py
jaingaurav3/ML_sample
4e53de198f7965fa96f0db44717df27032df4b48
[ "MIT" ]
null
null
null
utils/predictions.py
jaingaurav3/ML_sample
4e53de198f7965fa96f0db44717df27032df4b48
[ "MIT" ]
13
2018-09-24T21:52:06.000Z
2021-02-26T10:40:25.000Z
import os import scipy import numpy as np import pandas as pd import torch from torch.autograd import Variable def predict_batch(net, inputs): v = Variable(inputs.cuda(), volatile=True) return net(v).data.cpu().numpy() def get_probabilities(model, loader): model.eval() return np.vstack(predict_batch(model, data[0]) for data in loader) def get_predictions(probs, thresholds): preds = np.copy(probs) preds[preds >= thresholds] = 1 preds[preds < thresholds] = 0 return preds.astype('uint8') def get_argmax(output): val,idx = torch.max(output, dim=1) return idx.data.cpu().view(-1).numpy() def get_targets(loader): targets = None for data in loader: if targets is None: shape = list(data[1].size()) shape[0] = 0 targets = np.empty(shape) target = data[1] if len(target.size()) == 1: target = target.view(-1,1) target = target.numpy() targets = np.vstack([targets, target]) return targets def ensemble_with_method(arr, method): if method == c.MEAN: return np.mean(arr, axis=0) elif method == c.GMEAN: return scipy.stats.mstats.gmean(arr, axis=0) elif method == c.VOTE: return scipy.stats.mode(arr, axis=0)[0][0] raise Exception("Operation not found")
25.264151
70
0.630321
0
0
0
0
0
0
0
0
28
0.020911
81e5f55f1de69308bb6ff205c3967683e8097ccc
3,806
py
Python
gammapy/data/tests/test_pointing.py
Rishank2610/gammapy
3cd64fdb2c53c8e5c697a9b85ef8d0486bff0b76
[ "BSD-3-Clause" ]
155
2015-02-25T12:38:02.000Z
2022-03-13T17:54:30.000Z
gammapy/data/tests/test_pointing.py
Rishank2610/gammapy
3cd64fdb2c53c8e5c697a9b85ef8d0486bff0b76
[ "BSD-3-Clause" ]
3,131
2015-01-06T15:36:23.000Z
2022-03-31T17:30:57.000Z
gammapy/data/tests/test_pointing.py
Rishank2610/gammapy
3cd64fdb2c53c8e5c697a9b85ef8d0486bff0b76
[ "BSD-3-Clause" ]
158
2015-03-16T20:36:44.000Z
2022-03-30T16:05:37.000Z
# Licensed under a 3-clause BSD style license - see LICENSE.rst from numpy.testing import assert_allclose from astropy.time import Time from gammapy.data import FixedPointingInfo, PointingInfo from gammapy.utils.testing import assert_time_allclose, requires_data @requires_data() class TestFixedPointingInfo: @classmethod def setup_class(cls): filename = "$GAMMAPY_DATA/tests/pointing_table.fits.gz" cls.fpi = FixedPointingInfo.read(filename) def test_location(self): lon, lat, height = self.fpi.location.geodetic assert_allclose(lon.deg, 16.5002222222222) assert_allclose(lat.deg, -23.2717777777778) assert_allclose(height.value, 1834.999999999783) def test_time_ref(self): expected = Time(51910.00074287037, format="mjd", scale="tt") assert_time_allclose(self.fpi.time_ref, expected) def test_time_start(self): time = self.fpi.time_start expected = Time(53025.826414166666, format="mjd", scale="tt") assert_time_allclose(time, expected) def test_time_stop(self): time = self.fpi.time_stop expected = Time(53025.844770648146, format="mjd", scale="tt") assert_time_allclose(time, expected) def test_duration(self): duration = self.fpi.duration assert_allclose(duration.sec, 1586.0000000044238) def test_radec(self): pos = self.fpi.radec assert_allclose(pos.ra.deg, 83.633333333333) assert_allclose(pos.dec.deg, 24.51444444) assert pos.name == "icrs" def test_altaz(self): pos = self.fpi.altaz assert_allclose(pos.az.deg, 7.48272) assert_allclose(pos.alt.deg, 41.84191) assert pos.name == "altaz" @requires_data() class TestPointingInfo: @classmethod def setup_class(cls): filename = "$GAMMAPY_DATA/tests/pointing_table.fits.gz" cls.pointing_info = PointingInfo.read(filename) def test_str(self): ss = str(self.pointing_info) assert "Pointing info" in ss def test_location(self): lon, lat, height = self.pointing_info.location.geodetic assert_allclose(lon.deg, 16.5002222222222) assert_allclose(lat.deg, -23.2717777777778) assert_allclose(height.value, 1834.999999999783) def test_time_ref(self): expected = Time(51910.00074287037, format="mjd", scale="tt") assert_time_allclose(self.pointing_info.time_ref, expected) def test_table(self): assert len(self.pointing_info.table) == 100 def test_time(self): time = self.pointing_info.time assert len(time) == 100 expected = Time(53025.826414166666, format="mjd", scale="tt") assert_time_allclose(time[0], expected) def test_duration(self): duration = self.pointing_info.duration assert_allclose(duration.sec, 1586.0000000044238) def test_radec(self): pos = self.pointing_info.radec[0] assert_allclose(pos.ra.deg, 83.633333333333) assert_allclose(pos.dec.deg, 24.51444444) assert pos.name == "icrs" def test_altaz(self): pos = self.pointing_info.altaz[0] assert_allclose(pos.az.deg, 11.45751357) assert_allclose(pos.alt.deg, 41.34088901) assert pos.name == "altaz" def test_altaz_from_table(self): pos = self.pointing_info.altaz_from_table[0] assert_allclose(pos.az.deg, 11.20432353385406) assert_allclose(pos.alt.deg, 41.37921408774436) assert pos.name == "altaz" def test_altaz_interpolate(self): time = self.pointing_info.time[0] pos = self.pointing_info.altaz_interpolate(time) assert_allclose(pos.az.deg, 11.45751357) assert_allclose(pos.alt.deg, 41.34088901) assert pos.name == "altaz"
34.6
69
0.679453
3,503
0.920389
0
0
3,537
0.929322
0
0
251
0.065949
81e620b1dfd869927a5135342a7294ba02276c08
1,183
py
Python
src/config.py
BRAVO68WEB/architus
21b9f94a64b142ee6e9b5efd79bd872a13ce8f6a
[ "MIT" ]
null
null
null
src/config.py
BRAVO68WEB/architus
21b9f94a64b142ee6e9b5efd79bd872a13ce8f6a
[ "MIT" ]
null
null
null
src/config.py
BRAVO68WEB/architus
21b9f94a64b142ee6e9b5efd79bd872a13ce8f6a
[ "MIT" ]
null
null
null
from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker # from src.commands import * # import src.commands as command_modules secret_token = None db_user = None db_pass = None sessions = {} try: lines = [line.rstrip('\n') for line in open('.secret_token')] secret_token = lines[0] db_user = lines[1] db_pass = lines[2] client_id = lines[3] client_secret = lines[4] twitter_consumer_key = lines[5] twitter_consumer_secret = lines[6] twitter_access_token_key = lines[7] twitter_access_token_secret = lines[8] scraper_token = lines[9] except Exception as e: print(e) print('error reading .secret_token, make it you aut') def get_session(pid=None): if pid in sessions: return sessions[pid] print("creating postgres session") try: engine = create_engine("postgresql://{}:{}@localhost/autbot".format(db_user, db_pass)) Session = sessionmaker(bind=engine) session = Session() sessions[pid] = session except Exception as e: session = None print('failed to connect to database') print(e) return session session = get_session()
25.170213
94
0.674556
0
0
0
0
0
0
0
0
228
0.19273
81e6447d74e137ba6ed7fb43a3550f34c92da3a7
2,876
py
Python
aict_tools/scripts/plot_regressor_performance.py
LukasBeiske/aict-tools
ccf61c051c58040cf4b676180ae7184021d1b81b
[ "MIT" ]
null
null
null
aict_tools/scripts/plot_regressor_performance.py
LukasBeiske/aict-tools
ccf61c051c58040cf4b676180ae7184021d1b81b
[ "MIT" ]
null
null
null
aict_tools/scripts/plot_regressor_performance.py
LukasBeiske/aict-tools
ccf61c051c58040cf4b676180ae7184021d1b81b
[ "MIT" ]
null
null
null
import click import logging import matplotlib import matplotlib.pyplot as plt import joblib import fact.io from ..configuration import AICTConfig from ..plotting import ( plot_regressor_confusion, plot_bias_resolution, plot_feature_importances, ) if matplotlib.get_backend() == 'pgf': from matplotlib.backends.backend_pgf import PdfPages else: from matplotlib.backends.backend_pdf import PdfPages @click.command() @click.argument('configuration_path', type=click.Path(exists=True, dir_okay=False)) @click.argument('performance_path', type=click.Path(exists=True, dir_okay=False)) @click.argument('model_path', type=click.Path(exists=True, dir_okay=False)) @click.option('-o', '--output', type=click.Path(exists=False, dir_okay=False)) @click.option('-k', '--key', help='HDF5 key for hdf5', default='data') def main(configuration_path, performance_path, model_path, output, key): ''' Create some performance evaluation plots for the separator ''' logging.basicConfig(level=logging.INFO) log = logging.getLogger() log.info('Loading perfomance data') df = fact.io.read_data(performance_path, key=key) log.info('Loading model') model = joblib.load(model_path) config = AICTConfig.from_yaml(configuration_path) model_config = config.energy energy_unit = config.energy_unit figures = [] # Plot confusion figures.append(plt.figure()) ax = figures[-1].add_subplot(1, 1, 1) ax.set_title('Reconstructed vs. True Energy (log color scale)') plot_regressor_confusion( df, ax=ax, label_column=model_config.target_column, prediction_column=model_config.output_name, energy_unit=energy_unit, ) # Plot confusion figures.append(plt.figure()) ax = figures[-1].add_subplot(1, 1, 1) ax.set_title('Reconstructed vs. True Energy (linear color scale)') plot_regressor_confusion( df, log_z=False, ax=ax, label_column=model_config.target_column, prediction_column=model_config.output_name, energy_unit=energy_unit, ) # Plot bias/resolution figures.append(plt.figure()) ax = figures[-1].add_subplot(1, 1, 1) ax.set_title('Bias and Resolution') plot_bias_resolution( df, bins=15, ax=ax, label_column=model_config.target_column, prediction_column=model_config.output_name, energy_unit=energy_unit, ) if hasattr(model, 'feature_importances_'): # Plot feature importances figures.append(plt.figure()) ax = figures[-1].add_subplot(1, 1, 1) features = model_config.features plot_feature_importances(model, features, ax=ax) if output is None: plt.show() else: with PdfPages(output) as pdf: for fig in figures: fig.tight_layout(pad=0) pdf.savefig(fig)
30.924731
83
0.691586
0
0
0
0
2,454
0.853268
0
0
435
0.151252
c48c8a45a8bc31ea98b3b0eb49ac12298185c634
2,426
py
Python
kenlm_training/cc_net/tokenizer.py
ruinunca/data_tooling
297e1f8c2898d00b523ccafb7bdd19c6d6aac9ff
[ "Apache-2.0" ]
435
2019-11-04T22:35:50.000Z
2022-03-29T20:15:07.000Z
kenlm_training/cc_net/tokenizer.py
ruinunca/data_tooling
297e1f8c2898d00b523ccafb7bdd19c6d6aac9ff
[ "Apache-2.0" ]
331
2021-11-02T00:30:56.000Z
2022-03-08T16:48:13.000Z
kenlm_training/cc_net/tokenizer.py
ruinunca/data_tooling
297e1f8c2898d00b523ccafb7bdd19c6d6aac9ff
[ "Apache-2.0" ]
66
2019-11-06T01:28:12.000Z
2022-03-01T09:18:32.000Z
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import time from typing import Dict, Optional import sacremoses # type: ignore from cc_net import jsonql, text_normalizer class RobustTokenizer(jsonql.Transformer): """Moses tokenizer with the expected preprocessing.""" LANG_WITHOUT_ACCENT = {"en", "my"} def __init__(self, lang: str): super().__init__() self.lang = lang self.moses = sacremoses.MosesTokenizer(lang) self.rm_accent = lang in self.LANG_WITHOUT_ACCENT self.ready = True def do(self, text: str): text = text_normalizer.normalize( text, accent=self.rm_accent, case=False, numbers=False, punct=True ) text = text_normalizer.normalize_spacing_for_tok(text, language=self.lang) return self.moses.tokenize(text, return_str=True, escape=False) class DocTokenizer(jsonql.Transformer): """Tokenize the text found in `output_field and store the result in `output_field`.""" def __init__( self, field: str, output_field: str = "tokenized", language_field: str = "language", ): super().__init__() self.field = field self.output_field = output_field self.language_field = language_field self.n_docs = 0 self.tokenizers: Dict[str, RobustTokenizer] = {} def get_tokenizer(self, lang: str) -> Optional[RobustTokenizer]: cache = self.tokenizers if lang in cache: return cache[lang] if lang in ("th", "zh", "ja"): # TODO find a tokenizer for those languages return None cache[lang] = RobustTokenizer(lang) return cache[lang] def do(self, document): lang = document[self.language_field] tok = self.get_tokenizer(lang) if not tok: return document self.n_docs += 1 lines = document[self.field].split("\n") tokenized = "\n".join(tok(l) for l in lines) document[self.output_field] = tokenized return document def summary(self): delay = (time.time() - self.start_time) / 3600 speed = self.n_docs / delay return [ f"Tokenized {self.n_docs:_} documents in {delay:.2}h ({speed:.1} doc/s)." ]
30.325
90
0.626958
2,115
0.871805
0
0
0
0
0
0
493
0.203215
c48caf2d700cbc3c512434c652a6ac5a08e2206b
346
py
Python
scripts/exercicios/ex063.py
RuanBarretodosSantos/python
4142ccd71c4ffb4bb6a10d61c85f612758f5bb41
[ "MIT" ]
null
null
null
scripts/exercicios/ex063.py
RuanBarretodosSantos/python
4142ccd71c4ffb4bb6a10d61c85f612758f5bb41
[ "MIT" ]
null
null
null
scripts/exercicios/ex063.py
RuanBarretodosSantos/python
4142ccd71c4ffb4bb6a10d61c85f612758f5bb41
[ "MIT" ]
null
null
null
cont = 3 t1 = 0 t2 = 1 print('-----' * 12) print('SequΓͺncia de Fibonacci') print('-----' * 12) valor = int(input('Quantos termos vocΓͺ quer mostrar ? ')) print('~~~~~' * 12) print(f'{t1} βž™ {t2} ' , end='βž™ ') while cont <= valor: t3 = t1 + t2 print(f' {t3}', end=' βž™ ') t1 = t2 t2 = t3 t3 = t1 cont += 1 print(' F I M')
19.222222
57
0.482659
0
0
0
0
0
0
0
0
131
0.370056
c48ce6625a976f83a24cccf09278351389aa811f
3,991
py
Python
CGAT/Sra.py
861934367/cgat
77fdc2f819320110ed56b5b61968468f73dfc5cb
[ "BSD-2-Clause", "BSD-3-Clause" ]
null
null
null
CGAT/Sra.py
861934367/cgat
77fdc2f819320110ed56b5b61968468f73dfc5cb
[ "BSD-2-Clause", "BSD-3-Clause" ]
null
null
null
CGAT/Sra.py
861934367/cgat
77fdc2f819320110ed56b5b61968468f73dfc5cb
[ "BSD-2-Clause", "BSD-3-Clause" ]
1
2019-08-04T22:46:38.000Z
2019-08-04T22:46:38.000Z
########################################################################## # # MRC FGU Computational Genomics Group # # $Id$ # # Copyright (C) 2009 Andreas Heger # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ########################################################################## ''' Sra.py - Methods for dealing with short read archive files ========================================================== Utility functions for dealing with :term:`SRA` formatted files from the Short Read Archive. Requirements: * fastq-dump >= 2.1.7 Code ---- ''' import os import glob import tempfile import shutil import CGAT.Experiment as E import CGAT.Fastq as Fastq import CGAT.IOTools as IOTools def peek(sra, outdir=None): """return the full file names for all files which will be extracted Parameters ---------- outdir : path perform extraction in outdir. If outdir is None, the extraction will take place in a temporary directory, which will be deleted afterwards. Returns ------- files : list A list of fastq formatted files that are contained in the archive. format : string The quality score format in the :term:`fastq` formatted files. """ if outdir is None: workdir = tempfile.mkdtemp() else: workdir = outdir # --split-files creates files called prefix_#.fastq.gz, # where # is the read number. # If file cotains paired end data: # output = prefix_1.fastq.gz, prefix_2.fastq.gz # *special case: unpaired reads in a paired end --> prefix.fastq.gz # *special case: if paired reads are stored in a single read, # fastq-dump will split. There might be a joining # sequence. The output would thus be: # prefix_1.fastq.gz, prefix_2.fastq.gz, prefix_3.fastq.gz # You want files 1 and 3. E.run("""fastq-dump --split-files --gzip -X 1000 --outdir %(workdir)s %(sra)s""" % locals()) f = sorted(glob.glob(os.path.join(workdir, "*.fastq.gz"))) ff = [os.path.basename(x) for x in f] if len(f) == 1: # sra file contains one read: output = prefix.fastq.gz pass elif len(f) == 2: # sra file contains read pairs: # output = prefix_1.fastq.gz, prefix_2.fastq.gz assert ff[0].endswith( "_1.fastq.gz") and ff[1].endswith("_2.fastq.gz") elif len(f) == 3: if ff[2].endswith("_3.fastq.gz"): f = glob.glob(os.path.join(workdir, "*_[13].fastq.gz")) else: f = glob.glob(os.path.join(workdir, "*_[13].fastq.gz")) # check format of fastqs in .sra fastq_format = Fastq.guessFormat(IOTools.openFile(f[0], "r"), raises=False) fastq_datatype = Fastq.guessDataType(IOTools.openFile(f[0], "r"), raises=True) if outdir is None: shutil.rmtree(workdir) return f, fastq_format, fastq_datatype def extract(sra, outdir, tool="fastq-dump"): """return statement for extracting the SRA file in `outdir`. possible tools are fastq-dump and abi-dump. Use abi-dump for colorspace""" if tool == "fastq-dump": tool += " --split-files" statement = """%(tool)s --gzip --outdir %(outdir)s %(sra)s""" % locals() return statement
32.447154
82
0.607367
0
0
0
0
0
0
0
0
2,825
0.707843
c48d9b9b2d55aa3083a0ad90f19c76032b967b27
11,902
py
Python
LipidFinder/LFDataFrame.py
s-andrews/LipidFinder
c91d6caa8008e0a67188914e48f30913deff888d
[ "MIT" ]
null
null
null
LipidFinder/LFDataFrame.py
s-andrews/LipidFinder
c91d6caa8008e0a67188914e48f30913deff888d
[ "MIT" ]
null
null
null
LipidFinder/LFDataFrame.py
s-andrews/LipidFinder
c91d6caa8008e0a67188914e48f30913deff888d
[ "MIT" ]
null
null
null
# Copyright (c) 2019 J. Alvarez-Jarreta and C.J. Brasher # # This file is part of the LipidFinder software tool and governed by the # 'MIT License'. Please see the LICENSE file that should have been # included as part of this software. """Represent a DataFrame to be processed with LipidFinder's workflow.""" import glob import logging import os import pandas class LFDataFrame(pandas.core.frame.DataFrame): """A LFDataFrame object stores a dataframe to be used as input data in LipidFinder. The input data file(s) must comply with the following requirements: - The format must be: CSV, TSV, XLS or XLSX. For the last two the user can also specify the sheet to be read (or the list of sheets if a folder is given as 'src'). - The first column contains an identifier for each row that is unique throughout every file. - There is one column named as "mzCol" parameter and another one as "rtCol" parameter. - Starting from the column index in "firstSampleIndex" parameter, every intensity column must follow. For instance, for 2 samples with 2 technical replicates, 1 quality control sample and 2 solvents, the columns would be as follows: sample11 , sample12 , sample21 , sample22 , QC1 , sol1, sol2 Ensure that samples with multiple technical replicates are given names in the format name1, name2, etc. such that each name is unique for each column. Replicates should be suffixed 1, 2, etc. Attributes: src (Public[str]) Source path where the data was loaded from. _resolution (Private[int]) Number of digits after the radix point in floats. Examples: LFDataFrame objects can be created in two different ways: >>> from Configuration import LFParameters >>> from LFDataFrame import LFDataFrame >>> params = LFParameters(module='peakfilter') >>> csvData = LFDataFrame('input_data.csv', params) >>> xlsData = LFDataFrame('input_data.xls', params, sheet=2) >>> folderData = LFDataFrame('/home/user/data/', params) After loading the required set of parameters, the data can be loaded from a single file ('csvData' and 'xlsData' examples) or from multiple files located in the same folder ('folderData' example). The latter is meant to be used to merge multiple files split by time ranges that represent a single run. The first and last retention time (RT) minutes of every file are trimmed as they are considered unreliable (except for the first and last minutes of the first and last files, respectively). The method supports overlap (after trimming), and the frames retained will be those from the file with the most frames for each overlapping minute. The number of decimal places to keep from the input m/z column can be changed assigning a value to 'resolution' variable. It has been predefined to 6, a standard value in high-resolution liquid-chromatography coupled to mass-spectrometry. """ def __init__(self, src, parameters, resolution=6, sheet=0): # type: (str, LFParameters, int, object) -> LFDataFrame """Constructor of the class LFDataFrame. Keyword Arguments: src -- source path where to load the data from parameters -- LipidFinder's parameters instance (can be for any module) resolution -- number of decimal places to keep from m/z column [default: 6] sheet -- sheet number or list of sheet numbers to read when input file(s) have XLS or XLSX extension (zero-indexed position) [default: 0] """ rtCol = parameters['rtCol'] if (not os.path.isdir(src)): data = self._read_file(src, parameters, sheet) else: # Create a list of the input files in the source folder (in # alphabetical order) fileList = sorted(glob.iglob(os.path.join(src, '*.*'))) if (len(fileList) == 0): raise FileNotFoundError("No files found in '{0}'".format(src)) data = self._read_file(fileList[0], parameters, sheet[0]) if (len(fileList) > 1): # Sort first dataframe by RT data.sort_values([rtCol], inplace=True, kind='mergesort') # Append "minute" column to the dataframe with the # integer part of the float values of its RT column timeCol = 'minute' data = data.assign(minute=data[rtCol].astype(int)) # Since it is the first file, remove the frames # corresponding to the last minute data = data[data[timeCol] != data.iloc[-1][timeCol]] for index, filePath in enumerate(fileList[1:], start=1): chunk = self._read_file(filePath, parameters, sheet[index]) # Sort next chunk dataframe by RT chunk.sort_values([rtCol], inplace=True, kind='mergesort') # Append "minute" column to the dataframe with the # integer part of the float values of its RT column chunk = chunk.assign(minute=chunk[rtCol].astype(int)) # Remove the frames of the first minute chunk = chunk[chunk[timeCol] != chunk.iloc[0][timeCol]] if (index < (len(fileList) - 1)): # Since it is not the last file, remove the # frames corresponding to the last minute chunk = chunk[chunk[timeCol] != chunk.iloc[-1][timeCol]] # Create a dataframe with the number of frames per # minute for both the dataframe and the next chunk overlap = pandas.DataFrame( {'data': data.groupby(timeCol).size(), 'chunk': chunk.groupby(timeCol).size()} ).fillna(0) # Keep the minutes where the number of frames in the # next chunk is higher than in the current dataframe overlap = overlap[overlap['chunk'] > overlap['data']] minutesToReplace = overlap.index.tolist() if (minutesToReplace): # Remove the dataframe frames to be replaced data = data[~data[timeCol].isin(minutesToReplace)] # Append chunk frames preserving the column # order of the main dataframe data = data.append( chunk[chunk[timeCol].isin(minutesToReplace)], ignore_index=True )[data.columns.tolist()] # Drop "minute" column as it will be no longer necessary data.drop(timeCol, axis=1, inplace=True) # Rename first column if no name was given in the input file(s) data.rename(columns={'Unnamed: 0': 'id'}, inplace=True) # Sort dataframe by m/z and RT, and reset the indexing mzCol = parameters['mzCol'] data.sort_values([mzCol, rtCol], inplace=True, kind='mergesort') data.reset_index(drop=True, inplace=True) # Adjust m/z column values to the machine's maximum float # resolution data[mzCol] = data[mzCol].apply(round, ndigits=resolution) super(LFDataFrame, self).__init__(data=data) self.src = src self._resolution = resolution def drop_empty_frames(self, module, parameters, means=False): # type: (str, LFParameters, bool) -> None """Remove empty frames from the dataframe and reset the index. An empty frame is a row for which every sample replicate or sample mean has a zero intensity. Keyword Arguments: module -- module name to write in the logging file parameters -- LipidFinder's parameters instance (can be for any module) means -- check sample means instead of each sample replicate? [default: False] """ if (means): meanColIndexes = [i for i, col in enumerate(self.columns) if col.endswith('_mean')] if (parameters['numSolventReps'] > 0): # The first mean column is for the solvents firstIndex = meanColIndexes[1] else: firstIndex = meanColIndexes[0] lastIndex = meanColIndexes[-1] else: firstIndex = parameters['firstSampleIndex'] - 1 lastIndex = firstIndex \ + (parameters['numSamples'] * parameters['numTechReps']) # Get the indices of all empty frames emptyFrames = self.iloc[:, firstIndex : lastIndex].eq(0).all(axis=1) indices = self[emptyFrames].index.tolist() if (indices): # Drop empty frames and reset the index self.drop(module, labels=indices, axis=0, inplace=True) self.reset_index(drop=True, inplace=True) def drop(self, module, **kwargs): # type: (str, ...) -> LFDataFrame """Wrapper of pandas.DataFrame.drop() with logging report. The report will be updated only if the labels correspond to rows, i.e. kwargs['axis'] == 0 (default value). Keyword Arguments: module -- module name to write in the logging file *kwargs -- arguments to pass to pandas.DataFrame.drop() """ # Create logger to print message to the log file logger = logging.getLogger(module) logger.setLevel(logging.INFO) if ((len(kwargs['labels']) > 0) and (kwargs.get('axis', 0) == 0)): idCol = self.columns[0] idList = [str(x) for x in sorted(self.loc[kwargs['labels'], idCol])] logger.info('%s: removed %d rows. IDs: %s', module, len(idList), ','.join(idList)) return super(LFDataFrame, self).drop(**kwargs) @staticmethod def _read_file(src, parameters, sheet): # type: (str, LFParameters, int) -> pandas.core.frame.DataFrame """Return a dataframe with the same content as the source file, but with retention time in minutes. The read function will be configured based on the file's extension. Accepted extensions: CSV, TSV, XLS, XLSX. Keyword Arguments: src -- source file path parameters -- LipidFinder's parameters instance (can be for any module) sheet -- sheet number to read when the input file has XLS or XLSX extension (zero-indexed position) """ extension = os.path.splitext(src)[1].lower()[1:] # Load file based on its extension if (extension == 'csv'): data = pandas.read_csv(src, float_precision='high') elif (extension == 'tsv'): data = pandas.read_csv(src, sep='\t', float_precision='high') elif (extension in ['xls', 'xlsx']): data = pandas.read_excel(src, sheet_name=sheet) else: raise IOError(("Unknown file extension '{0}'. Expected: csv, tsv, " "xls, xlsx").format(extension)) if (('timeUnit' in parameters) and (parameters['timeUnit'] == 'Seconds')): rtCol = parameters['rtCol'] data[rtCol] = data[rtCol].apply(lambda x: round(x / 60.0, 2)) return data
50.008403
80
0.584272
11,537
0.969333
0
0
1,501
0.126113
0
0
6,969
0.585532
c48f04379334e4d1150bc95e2f72b0aa259025e8
4,836
py
Python
tensorflow/python/ops/fused_embedding_ops.py
lixy9474/DeepRec-1
dbfdf98af68505201a4f647348cce56ecbb652b2
[ "Apache-2.0" ]
null
null
null
tensorflow/python/ops/fused_embedding_ops.py
lixy9474/DeepRec-1
dbfdf98af68505201a4f647348cce56ecbb652b2
[ "Apache-2.0" ]
null
null
null
tensorflow/python/ops/fused_embedding_ops.py
lixy9474/DeepRec-1
dbfdf98af68505201a4f647348cce56ecbb652b2
[ "Apache-2.0" ]
null
null
null
from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import ops from tensorflow.python.ops import variables from tensorflow.python.ops import array_ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import gen_fused_embedding_ops from tensorflow.python.ops.gen_fused_embedding_ops import fused_embedding_local_sparse_look_up_grad from tensorflow.python.ops.gen_fused_embedding_ops import fused_embedding_local_sparse_look_up from tensorflow.python.ops.gen_fused_embedding_ops import fused_embedding_sparse_pre_look_up from tensorflow.python.ops.gen_fused_embedding_ops import fused_embedding_sparse_post_look_up from tensorflow.python.ops.gen_fused_embedding_ops import fused_embedding_sparse_post_look_up_grad from tensorflow.python.util.tf_export import tf_export def fused_embedding_lookup_sparse(embedding_weights, sparse_ids, combiner=None, name=None, max_norm=None): if embedding_weights is None: raise ValueError("Missing embedding_weights %s." % embedding_weights) if isinstance(embedding_weights, variables.PartitionedVariable): # get underlying Variables. embedding_weights = list(embedding_weights) if not isinstance(embedding_weights, list): embedding_weights = [embedding_weights] if len(embedding_weights) < 1: raise ValueError("Missing embedding_weights %s." % embedding_weights) with ops.name_scope(name, "fused_embedding_lookup", embedding_weights + [sparse_ids]) as scope: if combiner is None: logging.warn("The default value of combiner will change from \"mean\" " "to \"sqrtn\" after 2016/11/01.") combiner = "mean" if combiner not in ("mean", "sqrtn", "sum"): raise ValueError("combiner must be one of 'mean', 'sqrtn' or 'sum'") if not isinstance(sparse_ids, sparse_tensor.SparseTensor): raise TypeError("sparse_ids must be SparseTensor") partition_nums = len(embedding_weights) # Local fused embedding lookup. Only support local look up and tf.Variable as # embedding weight. So skip it for now. #emb_vectors, _ = fused_embedding_local_sparse_look_up(sp_values=sparse_ids.values, # sp_indices=sparse_ids.indices, # sp_dense_shape=sparse_ids.dense_shape, # emb_variable=embedding_weights[0], # combiner=combiner, # max_norm=max_norm) partition_shapes = [w.shape for w in embedding_weights] partitioned_values, partitioned_indices = fused_embedding_sparse_pre_look_up( partition_shapes=partition_shapes, sp_values=sparse_ids.values, sp_indices=sparse_ids.indices, ) emb_shards = [] for i in range(partition_nums): embedding = embedding_weights[i] sub_partition_values = partitioned_values[i] with ops.colocate_with(embedding): shard = array_ops.gather(embedding, sub_partition_values) emb_shards.append(shard) emb_vectors, _ = fused_embedding_sparse_post_look_up( emb_shards=emb_shards, partitioned_indices=partitioned_indices, sp_dense_shape=sparse_ids.dense_shape, partitioned_values=partitioned_values, combiner=combiner, max_norm=max_norm ) return emb_vectors @ops.RegisterGradient("FusedEmbeddingLocalSparseLookUp") def fused_embedding_local_sparse_look_up_grad(op, top_grad_emb_vec, _): grad_sp_values = gen_fused_embedding_ops.fused_embedding_local_sparse_look_up_grad( top_grad=top_grad_emb_vec, emb_variable=op.inputs[3], sp_values=op.inputs[0], sp_values_offset=op.outputs[1], combiner=op.get_attr("combiner"), max_norm=op.get_attr("max_norm") ) grads = ops.IndexedSlices(values=grad_sp_values, indices=op.inputs[0]) return [None, None, None, grads] @ops.RegisterGradient("FusedEmbeddingSparsePostLookUp") def fused_embedding_sparse_post_look_up_grad(op, top_grad_emb_vec, _): num_partitions = op.get_attr("num_partitions") grad_shards = gen_fused_embedding_ops.fused_embedding_sparse_post_look_up_grad( top_grad=top_grad_emb_vec, emb_shards=[op.inputs[i] for i in range(0, num_partitions)], partitioned_indices=[op.inputs[i] for i in range(num_partitions, 2 * num_partitions)], feature_nums=op.outputs[1], combiner=op.get_attr("combiner"), max_norm=op.get_attr("max_norm") ) return grad_shards + [None for _ in range(0, 2 * num_partitions + 1)]
49.346939
99
0.709884
0
0
0
0
1,166
0.241108
0
0
1,043
0.215674
c48f102d83062572178277d6397d5fa6395d6e36
705
py
Python
docs/source/conf.py
deeplook/ipycanvas
c42a5540c55534f919da0fd462cef4593ac7d755
[ "BSD-3-Clause" ]
null
null
null
docs/source/conf.py
deeplook/ipycanvas
c42a5540c55534f919da0fd462cef4593ac7d755
[ "BSD-3-Clause" ]
null
null
null
docs/source/conf.py
deeplook/ipycanvas
c42a5540c55534f919da0fd462cef4593ac7d755
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- import sphinx_rtd_theme extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.napoleon', # 'sphinx.ext.intersphinx', # 'sphinx.ext.autosummary', # 'sphinx.ext.viewcode', # 'jupyter_sphinx.embed_widgets', ] templates_path = ['_templates'] master_doc = 'index' source_suffix = '.rst' # General information about the project. project = 'ipycanvas' author = 'Martin Renou' exclude_patterns = [] highlight_language = 'python' pygments_style = 'sphinx' # Output file base name for HTML help builder. html_theme = "sphinx_rtd_theme" html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] htmlhelp_basename = 'ipycanvasdoc' autodoc_member_order = 'bysource'
21.363636
58
0.721986
0
0
0
0
0
0
0
0
369
0.523404
c48f34eb08cb0b005af06224c4565e27b18c0cb3
672
py
Python
pyTuplingUtils/io.py
umd-lhcb/pyTuplingUtils
dd2efe154f1418a70295eabd8919e16ace2785cc
[ "BSD-2-Clause" ]
null
null
null
pyTuplingUtils/io.py
umd-lhcb/pyTuplingUtils
dd2efe154f1418a70295eabd8919e16ace2785cc
[ "BSD-2-Clause" ]
7
2020-04-20T17:25:45.000Z
2021-06-13T21:05:14.000Z
pyTuplingUtils/io.py
umd-lhcb/pyTuplingUtils
dd2efe154f1418a70295eabd8919e16ace2785cc
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python3 # # Author: Yipeng Sun # License: BSD 2-clause # Last Change: Sun May 09, 2021 at 02:52 AM +0200 import numpy as np ARRAY_TYPE = 'np' def read_branch(ntp, tree, branch, idx=None): data = ntp[tree][branch].array(library=ARRAY_TYPE) return data if not idx else data[idx] def read_branches_dict(ntp, tree, branches): return ntp[tree].arrays(branches, library=ARRAY_TYPE) def read_branches(ntp, tree, branches, idx=None, transpose=False): data = list(ntp[tree].arrays(branches, library=ARRAY_TYPE).values()) if idx is not None: data = [d[idx] for d in data] return np.column_stack(data) if transpose else data
23.172414
72
0.699405
0
0
0
0
0
0
0
0
119
0.177083
c4900758f320c35b4e8aaebac80f973e8645fdc4
483
py
Python
clinnotes/reminders/forms.py
mattnickerson993/clinnotes2
bc44e516a5042e22de8c6618425966bd58919eff
[ "MIT" ]
null
null
null
clinnotes/reminders/forms.py
mattnickerson993/clinnotes2
bc44e516a5042e22de8c6618425966bd58919eff
[ "MIT" ]
null
null
null
clinnotes/reminders/forms.py
mattnickerson993/clinnotes2
bc44e516a5042e22de8c6618425966bd58919eff
[ "MIT" ]
null
null
null
from django import forms from .models import Reminder from clinnotes.users.models import EpisodeOfCare class ReminderForm(forms.ModelForm): class Meta: model = Reminder fields = ['category', 'title', 'details', 'episode_of_care'] def __init__(self, *args, **kwargs): user = kwargs.pop('user') super(ReminderForm, self).__init__(*args, **kwargs) self.fields['episode_of_care'].queryset = EpisodeOfCare.objects.filter(clinician=user)
34.5
94
0.693582
378
0.782609
0
0
0
0
0
0
66
0.136646
c491762e38ab524f8ee85b6bd6fa42008e8b092d
3,583
py
Python
AlgorithmB.py
tejaDhulipala/SnowflakeGen
effabafb790a1a407c5c27cf249806a4775127e4
[ "MIT" ]
null
null
null
AlgorithmB.py
tejaDhulipala/SnowflakeGen
effabafb790a1a407c5c27cf249806a4775127e4
[ "MIT" ]
null
null
null
AlgorithmB.py
tejaDhulipala/SnowflakeGen
effabafb790a1a407c5c27cf249806a4775127e4
[ "MIT" ]
null
null
null
import pygame as pg from shapely.geometry import Point, Polygon from time import perf_counter # Vars A = [(100, 600), (700, 600), (400, 80)] triangles = [[(100, 600), (700, 600), (400, 80)]] SQRT_3 = 3 ** (1 / 2) WHITE = (255, 255, 255) # Graphics part pg.init() screen = pg.display.set_mode((800, 800)) # Funcs distance = lambda x, y: ((x[0] - y[0]) ** 2 + (x[1] - y[1]) ** 2) ** 0.5 def generatePoints(pt1, pt2, reference): slope = (pt1[1] - pt2[1]) / (pt1[0] - pt2[0]) a = pt1[0] + (pt2[0] - pt1[0]) / 3 b = pt1[1] + (pt2[1] - pt1[1]) / 3 c = pt1[0] + (pt2[0] - pt1[0]) * 2 / 3 d = pt1[1] + (pt2[1] - pt1[1]) * 2 / 3 ptm = (pt1[0] + pt2[0]) / 2, (pt1[1] + pt2[1]) / 2 dis = distance((a, b), (c, d)) h = SQRT_3/2 * dis if slope == 0: ptc1 = ptm[0], ptm[1] - h ptc2 = ptm[0], ptm[1] + h ptc = ptc1 if distance(reference, ptc1) > distance(ptc2, reference) else ptc2 return (round(a), round(b)), (round(c), round(d)), ptc perp = -1 / slope x_c = h / (perp ** 2 + 1) ** 0.5 y_c = perp * x_c ptc1 = round(ptm[0] - x_c), round(ptm[1] - y_c) ptc2 = round(ptm[0] + x_c), round(ptm[1] + y_c) ptc = ptc1 if distance(reference, ptc1) > distance(ptc2, reference) else ptc2 return (round(a), round(b)), (round(c), round(d)), ptc def generatePoints_2(pt1, pt2, father: Polygon): slope = (pt1[1] - pt2[1]) / (pt1[0] - pt2[0]) a = pt1[0] + (pt2[0] - pt1[0]) / 3 b = pt1[1] + (pt2[1] - pt1[1]) / 3 c = pt1[0] + (pt2[0] - pt1[0]) * 2 / 3 d = pt1[1] + (pt2[1] - pt1[1]) * 2 / 3 ptm = (pt1[0] + pt2[0]) / 2, (pt1[1] + pt2[1]) / 2 dis = distance((a, b), (c, d)) h = SQRT_3/2 * dis if slope == 0: ptc1 = ptm[0], ptm[1] - h ptc2 = ptm[0], ptm[1] + h ptc = ptc1 if father.contains(Point(*ptc2)) else ptc2 return (round(a), round(b)), (round(c), round(d)), ptc perp = -1 / slope x_c = h / (perp ** 2 + 1) ** 0.5 y_c = perp * x_c ptc1 = round(ptm[0] - x_c), round(ptm[1] - y_c) ptc2 = round(ptm[0] + x_c), round(ptm[1] + y_c) ptc = ptc1 if father.contains(Point(*ptc2)) else ptc2 return (round(a), round(b)), (round(c), round(d)), ptc def generateSnowflake(array: list, level): for i in range(level): org = array.copy() for j in range(len(org)): pt1 = org[j] pt2 = org[(j + 1) % (len(org))] ref = None for triangle in triangles: if pt1 in triangle and pt2 in triangle: b = triangle.copy() b.remove(pt1) b.remove(pt2) ref = b[0] if ref == None: pta, ptb, ptc = generatePoints_2(pt1, pt2, Polygon(array)) else: pta, ptb, ptc = generatePoints(pt1, pt2, ref) index = array.index(pt2) array.insert(index, ptb) array.insert(index, ptc) array.insert(index, pta) triangles.append([pta, ptb, ptc]) start = perf_counter() # Call Func generateSnowflake(A, 6) print(len(A)) # Game Loop while True: screen.fill(WHITE) A.append(A[0]) for i in range(len(A) - 1): pg.draw.line(screen, (0, 0, 0), A[i], A[i + 1]) # exit code for event in pg.event.get(): if event.type == pg.QUIT: pg.quit() quit(0) # Updating pg.display.update() print(perf_counter() - start)
32.87156
86
0.487301
0
0
0
0
0
0
0
0
78
0.021769
c492c9c90d1fe8546ec965192035975153cc63a2
39,839
py
Python
validator/testcases/javascript/actions.py
AutomatedTester/amo-validator
a063002497395ce04085a3940713b4467f12e9fd
[ "BSD-3-Clause" ]
null
null
null
validator/testcases/javascript/actions.py
AutomatedTester/amo-validator
a063002497395ce04085a3940713b4467f12e9fd
[ "BSD-3-Clause" ]
null
null
null
validator/testcases/javascript/actions.py
AutomatedTester/amo-validator
a063002497395ce04085a3940713b4467f12e9fd
[ "BSD-3-Clause" ]
null
null
null
from copy import deepcopy from functools import partial import sys import types # Global import of predefinedentities will cause an import loop import instanceactions from validator.constants import (BUGZILLA_BUG, DESCRIPTION_TYPES, FENNEC_GUID, FIREFOX_GUID, MAX_STR_SIZE, MDN_DOC) from validator.decorator import version_range from jstypes import JSArray, JSContext, JSLiteral, JSObject, JSWrapper NUMERIC_TYPES = (int, long, float, complex) # None of these operations (or their augmented assignment counterparts) should # be performed on non-numeric data. Any time we get non-numeric data for these # guys, we just return window.NaN. NUMERIC_OPERATORS = ('-', '*', '/', '%', '<<', '>>', '>>>', '|', '^', '&') NUMERIC_OPERATORS += tuple('%s=' % op for op in NUMERIC_OPERATORS) def get_NaN(traverser): # If we've cached the traverser's NaN instance, just use that. ncache = getattr(traverser, 'NAN_CACHE', None) if ncache is not None: return ncache # Otherwise, we need to import GLOBAL_ENTITIES and build a raw copy. from predefinedentities import GLOBAL_ENTITIES ncache = traverser._build_global('NaN', GLOBAL_ENTITIES[u'NaN']) # Cache it so we don't need to do this again. traverser.NAN_CACHE = ncache return ncache def _get_member_exp_property(traverser, node): """Return the string value of a member expression's property.""" if node['property']['type'] == 'Identifier' and not node.get('computed'): return unicode(node['property']['name']) else: eval_exp = traverser._traverse_node(node['property']) return _get_as_str(eval_exp.get_literal_value()) def _expand_globals(traverser, node): """Expands a global object that has a lambda value.""" if node.is_global and callable(node.value.get('value')): result = node.value['value'](traverser) if isinstance(result, dict): output = traverser._build_global('--', result) elif isinstance(result, JSWrapper): output = result else: output = JSWrapper(result, traverser) # Set the node context. if 'context' in node.value: traverser._debug('CONTEXT>>%s' % node.value['context']) output.context = node.value['context'] else: traverser._debug('CONTEXT>>INHERITED') output.context = node.context return output return node def trace_member(traverser, node, instantiate=False): 'Traces a MemberExpression and returns the appropriate object' traverser._debug('TESTING>>%s' % node['type']) if node['type'] == 'MemberExpression': # x.y or x[y] # x = base base = trace_member(traverser, node['object'], instantiate) base = _expand_globals(traverser, base) identifier = _get_member_exp_property(traverser, node) # Handle the various global entity properties. if base.is_global: # If we've got an XPCOM wildcard, return a copy of the entity. if 'xpcom_wildcard' in base.value: traverser._debug('MEMBER_EXP>>XPCOM_WILDCARD') from predefinedentities import CONTRACT_ENTITIES if identifier in CONTRACT_ENTITIES: kw = dict(err_id=('js', 'actions', 'dangerous_contract'), warning='Dangerous XPCOM contract ID') kw.update(CONTRACT_ENTITIES[identifier]) traverser.warning(**kw) base.value = base.value.copy() del base.value['xpcom_wildcard'] return base test_identifier(traverser, identifier) traverser._debug('MEMBER_EXP>>PROPERTY: %s' % identifier) output = base.get( traverser=traverser, instantiate=instantiate, name=identifier) output.context = base.context if base.is_global: # In the cases of XPCOM objects, methods generally # remain bound to their parent objects, even when called # indirectly. output.parent = base return output elif node['type'] == 'Identifier': traverser._debug('MEMBER_EXP>>ROOT:IDENTIFIER') test_identifier(traverser, node['name']) # If we're supposed to instantiate the object and it doesn't already # exist, instantitate the object. if instantiate and not traverser._is_defined(node['name']): output = JSWrapper(JSObject(), traverser=traverser) traverser.contexts[0].set(node['name'], output) else: output = traverser._seek_variable(node['name']) return _expand_globals(traverser, output) else: traverser._debug('MEMBER_EXP>>ROOT:EXPRESSION') # It's an expression, so just try your damndest. return traverser._traverse_node(node) def test_identifier(traverser, name): 'Tests whether an identifier is banned' import predefinedentities if name in predefinedentities.BANNED_IDENTIFIERS: traverser.err.warning( err_id=('js', 'actions', 'banned_identifier'), warning='Banned or deprecated JavaScript Identifier', description=predefinedentities.BANNED_IDENTIFIERS[name], filename=traverser.filename, line=traverser.line, column=traverser.position, context=traverser.context) def _function(traverser, node): 'Prevents code duplication' def wrap(traverser, node): me = JSObject() traverser.function_collection.append([]) # Replace the current context with a prototypeable JS object. traverser._pop_context() me.type_ = 'default' # Treat the function as a normal object. traverser._push_context(me) traverser._debug('THIS_PUSH') traverser.this_stack.append(me) # Allow references to "this" # Declare parameters in the local scope params = [] for param in node['params']: if param['type'] == 'Identifier': params.append(param['name']) elif param['type'] == 'ArrayPattern': for element in param['elements']: # Array destructuring in function prototypes? LOL! if element is None or element['type'] != 'Identifier': continue params.append(element['name']) local_context = traverser._peek_context(1) for param in params: var = JSWrapper(lazy=True, traverser=traverser) # We can assume that the params are static because we don't care # about what calls the function. We want to know whether the # function solely returns static values. If so, it is a static # function. local_context.set(param, var) traverser._traverse_node(node['body']) # Since we need to manually manage the "this" stack, pop off that # context. traverser._debug('THIS_POP') traverser.this_stack.pop() # Call all of the function collection's members to traverse all of the # child functions. func_coll = traverser.function_collection.pop() for func in func_coll: func() # Put the function off for traversal at the end of the current block scope. traverser.function_collection[-1].append(partial(wrap, traverser, node)) return JSWrapper(traverser=traverser, callable=True, dirty=True) def _define_function(traverser, node): me = _function(traverser, node) traverser._peek_context(2).set(node['id']['name'], me) return me def _func_expr(traverser, node): 'Represents a lambda function' return _function(traverser, node) def _define_with(traverser, node): 'Handles `with` statements' object_ = traverser._traverse_node(node['object']) if isinstance(object_, JSWrapper) and isinstance(object_.value, JSObject): traverser.contexts[-1] = object_.value traverser.contexts.append(JSContext('block')) return def _define_var(traverser, node): 'Creates a local context variable' traverser._debug('VARIABLE_DECLARATION') traverser.debug_level += 1 declarations = (node['declarations'] if 'declarations' in node else node['head']) kind = node.get('kind', 'let') for declaration in declarations: # It could be deconstruction of variables :( if declaration['id']['type'] == 'ArrayPattern': vars = [] for element in declaration['id']['elements']: # NOTE : Multi-level array destructuring sucks. Maybe implement # it someday if you're bored, but it's so rarely used and it's # so utterly complex, there's probably no need to ever code it # up. if element is None or element['type'] != 'Identifier': vars.append(None) continue vars.append(element['name']) # The variables are not initialized if declaration['init'] is None: # Simple instantiation; no initialization for var in vars: if not var: continue traverser._declare_variable(var, None) # The variables are declared inline elif declaration['init']['type'] == 'ArrayPattern': # TODO : Test to make sure len(values) == len(vars) for value in declaration['init']['elements']: if vars[0]: traverser._declare_variable( vars[0], JSWrapper(traverser._traverse_node(value), traverser=traverser)) vars = vars[1:] # Pop off the first value # It's being assigned by a JSArray (presumably) elif declaration['init']['type'] == 'ArrayExpression': assigner = traverser._traverse_node(declaration['init']) for value in assigner.value.elements: if vars[0]: traverser._declare_variable(vars[0], value) vars = vars[1:] elif declaration['id']['type'] == 'ObjectPattern': init = traverser._traverse_node(declaration['init']) def _proc_objpattern(init_obj, properties): for prop in properties: # Get the name of the init obj's member if prop['key']['type'] == 'Literal': prop_name = prop['key']['value'] elif prop['key']['type'] == 'Identifier': prop_name = prop['key']['name'] else: continue if prop['value']['type'] == 'Identifier': traverser._declare_variable( prop['value']['name'], init_obj.get(traverser, prop_name)) elif prop['value']['type'] == 'ObjectPattern': _proc_objpattern(init_obj.get(traverser, prop_name), prop['value']['properties']) if init is not None: _proc_objpattern(init_obj=init, properties=declaration['id']['properties']) else: var_name = declaration['id']['name'] traverser._debug('NAME>>%s' % var_name) var_value = traverser._traverse_node(declaration['init']) traverser._debug('VALUE>>%s' % (var_value.output() if var_value is not None else 'None')) if not isinstance(var_value, JSWrapper): var = JSWrapper(value=var_value, const=kind == 'const', traverser=traverser) else: var = var_value var.const = kind == 'const' traverser._declare_variable(var_name, var, type_=kind) if 'body' in node: traverser._traverse_node(node['body']) traverser.debug_level -= 1 # The "Declarations" branch contains custom elements. return True def _define_obj(traverser, node): 'Creates a local context object' var = JSObject() for prop in node['properties']: if prop['type'] == 'PrototypeMutation': var_name = 'prototype' else: key = prop['key'] if key['type'] == 'Literal': var_name = key['value'] elif isinstance(key['name'], basestring): var_name = key['name'] else: if 'property' in key['name']: name = key['name'] else: name = {'property': key['name']} var_name = _get_member_exp_property(traverser, name) var_value = traverser._traverse_node(prop['value']) var.set(var_name, var_value, traverser) # TODO: Observe "kind" if not isinstance(var, JSWrapper): return JSWrapper(var, lazy=True, traverser=traverser) var.lazy = True return var def _define_array(traverser, node): """Instantiate an array object from the parse tree.""" arr = JSArray() arr.elements = map(traverser._traverse_node, node['elements']) return arr def _define_template_strings(traverser, node): """Instantiate an array of raw and cooked template strings.""" cooked = JSArray() cooked.elements = map(traverser._traverse_node, node['cooked']) raw = JSArray() raw.elements = map(traverser._traverse_node, node['raw']) cooked.set('raw', raw, traverser) return cooked def _define_template(traverser, node): """Instantiate a template literal.""" elements = map(traverser._traverse_node, node['elements']) return reduce(partial(_binary_op, '+', traverser=traverser), elements) def _define_literal(traverser, node): """ Convert a literal node in the parse tree to its corresponding interpreted value. """ value = node['value'] if isinstance(value, dict): return JSWrapper(JSObject(), traverser=traverser, dirty=True) wrapper = JSWrapper(value if value is not None else JSLiteral(None), traverser=traverser) test_literal(traverser, wrapper) return wrapper def test_literal(traverser, wrapper): """ Test the value of a literal, in particular only a string literal at the moment, against possibly dangerous patterns. """ value = wrapper.get_literal_value() if isinstance(value, basestring): # Local import to prevent import loop. from validator.testcases.regex import validate_string validate_string(value, traverser, wrapper=wrapper) def _call_expression(traverser, node): args = node['arguments'] for arg in args: traverser._traverse_node(arg, source='arguments') member = traverser._traverse_node(node['callee']) if (traverser.filename.startswith('defaults/preferences/') and ('name' not in node['callee'] or node['callee']['name'] not in (u'pref', u'user_pref'))): traverser.err.warning( err_id=('testcases_javascript_actions', '_call_expression', 'complex_prefs_defaults_code'), warning='Complex code should not appear in preference defaults ' 'files', description="Calls to functions other than 'pref' and 'user_pref' " 'should not appear in defaults/preferences/ files.', filename=traverser.filename, line=traverser.line, column=traverser.position, context=traverser.context) if member.is_global and callable(member.value.get('dangerous', None)): result = member.value['dangerous'](a=args, t=traverser._traverse_node, e=traverser.err) name = member.value.get('name', '') if result and name: kwargs = { 'err_id': ('testcases_javascript_actions', '_call_expression', 'called_dangerous_global'), 'warning': '`%s` called in potentially dangerous manner' % member.value['name'], 'description': 'The global `%s` function was called using a set ' 'of dangerous parameters. Calls of this nature ' 'are deprecated.' % member.value['name']} if isinstance(result, DESCRIPTION_TYPES): kwargs['description'] = result elif isinstance(result, dict): kwargs.update(result) traverser.warning(**kwargs) elif (node['callee']['type'] == 'MemberExpression' and node['callee']['property']['type'] == 'Identifier'): # If we can identify the function being called on any member of any # instance, we can use that to either generate an output value or test # for additional conditions. identifier_name = node['callee']['property']['name'] if identifier_name in instanceactions.INSTANCE_DEFINITIONS: result = instanceactions.INSTANCE_DEFINITIONS[identifier_name]( args, traverser, node, wrapper=member) return result if member.is_global and 'return' in member.value: if 'object' in node['callee']: member.parent = trace_member(traverser, node['callee']['object']) return member.value['return'](wrapper=member, arguments=args, traverser=traverser) return JSWrapper(JSObject(), dirty=True, traverser=traverser) def _call_settimeout(a, t, e): """ Handler for setTimeout and setInterval. Should determine whether a[0] is a lambda function or a string. Strings are banned, lambda functions are ok. Since we can't do reliable type testing on other variables, we flag those, too. """ if not a: return if a[0]['type'] in ('FunctionExpression', 'ArrowFunctionExpression'): return if t(a[0]).callable: return return {'err_id': ('javascript', 'dangerous_global', 'eval'), 'description': 'In order to prevent vulnerabilities, the `setTimeout` ' 'and `setInterval` functions should be called only with ' 'function expressions as their first argument.', 'signing_help': ( 'Please do not ever call `setTimeout` or `setInterval` with ' 'string arguments. If you are passing a function which is ' 'not being correctly detected as such, please consider ' 'passing a closure or arrow function, which in turn calls ' 'the original function.'), 'signing_severity': 'high'} def _call_require(a, t, e): """ Tests for unsafe uses of `require()` in SDK add-ons. """ args, traverse, err = a, t, e if not err.metadata.get('is_jetpack') and len(args): return module = traverse(args[0]).get_literal_value() if not isinstance(module, basestring): return if module.startswith('sdk/'): module = module[len('sdk/'):] LOW_LEVEL = { # Added from bugs 689340, 731109 'chrome', 'window-utils', 'observer-service', # Added from bug 845492 'window/utils', 'sdk/window/utils', 'sdk/deprecated/window-utils', 'tab/utils', 'sdk/tab/utils', 'system/events', 'sdk/system/events', } if module in LOW_LEVEL: err.metadata['requires_chrome'] = True return {'warning': 'Usage of low-level or non-SDK interface', 'description': 'Your add-on uses an interface which bypasses ' 'the high-level protections of the add-on SDK. ' 'This interface should be avoided, and its use ' 'may significantly complicate your review ' 'process.'} if module == 'widget': return {'warning': 'Use of deprecated SDK module', 'description': "The 'widget' module has been deprecated due to a number " 'of performance and usability issues, and has been ' 'removed from the SDK as of Firefox 40. Please use the ' "'sdk/ui/button/action' or 'sdk/ui/button/toggle' module " 'instead. See ' 'https://developer.mozilla.org/Add-ons/SDK/High-Level_APIs' '/ui for more information.'} def _call_create_pref(a, t, e): """ Handler for pref() and user_pref() calls in defaults/preferences/*.js files to ensure that they don't touch preferences outside of the "extensions." branch. """ # We really need to clean up the arguments passed to these functions. traverser = t.im_self if not traverser.filename.startswith('defaults/preferences/') or not a: return instanceactions.set_preference(JSWrapper(JSLiteral(None), traverser=traverser), a, traverser) value = _get_as_str(t(a[0])) return test_preference(value) def test_preference(value): for branch in 'extensions.', 'services.sync.prefs.sync.extensions.': if value.startswith(branch) and value.rindex('.') > len(branch): return return ('Extensions should not alter preferences outside of the ' "'extensions.' preference branch. Please make sure that " "all of your extension's preferences are prefixed with " "'extensions.add-on-name.', where 'add-on-name' is a " 'distinct string unique to and indicative of your add-on.') def _readonly_top(traverser, right, node_right): """Handle the readonly callback for window.top.""" traverser.notice( err_id=('testcases_javascript_actions', '_readonly_top'), notice='window.top is a reserved variable', description='The `top` global variable is reserved and cannot be ' 'assigned any values starting with Gecko 6. Review your ' 'code for any uses of the `top` global, and refer to ' '%s for more information.' % BUGZILLA_BUG % 654137, for_appversions={FIREFOX_GUID: version_range('firefox', '6.0a1', '7.0a1'), FENNEC_GUID: version_range('fennec', '6.0a1', '7.0a1')}, compatibility_type='warning', tier=5) def _expression(traverser, node): """ This is a helper method that allows node definitions to point at `_traverse_node` without needing a reference to a traverser. """ return traverser._traverse_node(node['expression']) def _get_this(traverser, node): 'Returns the `this` object' if not traverser.this_stack: from predefinedentities import GLOBAL_ENTITIES return traverser._build_global('window', GLOBAL_ENTITIES[u'window']) return traverser.this_stack[-1] def _new(traverser, node): 'Returns a new copy of a node.' # We don't actually process the arguments as part of the flow because of # the Angry T-Rex effect. For now, we just traverse them to ensure they # don't contain anything dangerous. args = node['arguments'] if isinstance(args, list): for arg in args: traverser._traverse_node(arg, source='arguments') else: traverser._traverse_node(args) elem = traverser._traverse_node(node['callee']) if not isinstance(elem, JSWrapper): elem = JSWrapper(elem, traverser=traverser) if elem.is_global: traverser._debug('Making overwritable') elem.value = deepcopy(elem.value) elem.value['overwritable'] = True return elem def _ident(traverser, node): 'Initiates an object lookup on the traverser based on an identifier token' name = node['name'] # Ban bits like "newThread" test_identifier(traverser, name) if traverser._is_defined(name): return traverser._seek_variable(name) return JSWrapper(JSObject(), traverser=traverser, dirty=True) def _expr_assignment(traverser, node): """Evaluate an AssignmentExpression node.""" traverser._debug('ASSIGNMENT_EXPRESSION') traverser.debug_level += 1 traverser._debug('ASSIGNMENT>>PARSING RIGHT') right = traverser._traverse_node(node['right']) right = JSWrapper(right, traverser=traverser) # Treat direct assignment different than augmented assignment. if node['operator'] == '=': from predefinedentities import GLOBAL_ENTITIES, is_shared_scope global_overwrite = False readonly_value = is_shared_scope(traverser) node_left = node['left'] traverser._debug('ASSIGNMENT:DIRECT(%s)' % node_left['type']) if node_left['type'] == 'Identifier': # Identifiers just need the ID name and a value to push. # Raise a global overwrite issue if the identifier is global. global_overwrite = traverser._is_global(node_left['name']) # Get the readonly attribute and store its value if is_global if global_overwrite: global_dict = GLOBAL_ENTITIES[node_left['name']] if 'readonly' in global_dict: readonly_value = global_dict['readonly'] traverser._declare_variable(node_left['name'], right, type_='glob') elif node_left['type'] == 'MemberExpression': member_object = trace_member(traverser, node_left['object'], instantiate=True) global_overwrite = (member_object.is_global and not ('overwritable' in member_object.value and member_object.value['overwritable'])) member_property = _get_member_exp_property(traverser, node_left) traverser._debug('ASSIGNMENT:MEMBER_PROPERTY(%s)' % member_property) traverser._debug('ASSIGNMENT:GLOB_OV::%s' % global_overwrite) # Don't do the assignment if we're facing a global. if not member_object.is_global: if member_object.value is None: member_object.value = JSObject() if not member_object.is_global: member_object.value.set(member_property, right, traverser) else: # It's probably better to do nothing. pass elif 'value' in member_object.value: member_object_value = _expand_globals(traverser, member_object).value if member_property in member_object_value['value']: # If it's a global and the actual member exists, test # whether it can be safely overwritten. member = member_object_value['value'][member_property] if 'readonly' in member: global_overwrite = True readonly_value = member['readonly'] traverser._debug('ASSIGNMENT:DIRECT:GLOB_OVERWRITE %s' % global_overwrite) traverser._debug('ASSIGNMENT:DIRECT:READONLY %r' % readonly_value) if callable(readonly_value): readonly_value = readonly_value(traverser, right, node['right']) if readonly_value and global_overwrite: kwargs = dict( err_id=('testcases_javascript_actions', '_expr_assignment', 'global_overwrite'), warning='Global variable overwrite', description='An attempt was made to overwrite a global ' 'variable in some JavaScript code.') if isinstance(readonly_value, DESCRIPTION_TYPES): kwargs['description'] = readonly_value elif isinstance(readonly_value, dict): kwargs.update(readonly_value) traverser.warning(**kwargs) return right lit_right = right.get_literal_value() traverser._debug('ASSIGNMENT>>PARSING LEFT') left = traverser._traverse_node(node['left']) traverser._debug('ASSIGNMENT>>DONE PARSING LEFT') traverser.debug_level -= 1 if isinstance(left, JSWrapper): if left.dirty: return left lit_left = left.get_literal_value() token = node['operator'] # Don't perform an operation on None. Python freaks out if lit_left is None: lit_left = 0 if lit_right is None: lit_right = 0 # Give them default values so we have them in scope. gleft, gright = 0, 0 # All of the assignment operators operators = {'=': lambda: right, '+=': lambda: lit_left + lit_right, '-=': lambda: gleft - gright, '*=': lambda: gleft * gright, '/=': lambda: 0 if gright == 0 else (gleft / gright), '%=': lambda: 0 if gright == 0 else (gleft % gright), '<<=': lambda: int(gleft) << int(gright), '>>=': lambda: int(gleft) >> int(gright), '>>>=': lambda: float(abs(int(gleft)) >> gright), '|=': lambda: int(gleft) | int(gright), '^=': lambda: int(gleft) ^ int(gright), '&=': lambda: int(gleft) & int(gright)} # If we're modifying a non-numeric type with a numeric operator, return # NaN. if (not isinstance(lit_left, NUMERIC_TYPES) and token in NUMERIC_OPERATORS): left.set_value(get_NaN(traverser), traverser=traverser) return left # If either side of the assignment operator is a string, both sides # need to be casted to strings first. if (isinstance(lit_left, types.StringTypes) or isinstance(lit_right, types.StringTypes)): lit_left = _get_as_str(lit_left) lit_right = _get_as_str(lit_right) gleft, gright = _get_as_num(left), _get_as_num(right) traverser._debug('ASSIGNMENT>>OPERATION:%s' % token) if token not in operators: # We don't support that operator. (yet?) traverser._debug('ASSIGNMENT>>OPERATOR NOT FOUND', 1) return left elif token in ('<<=', '>>=', '>>>=') and gright < 0: # The user is doing weird bitshifting that will return 0 in JS but # not in Python. left.set_value(0, traverser=traverser) return left elif (token in ('<<=', '>>=', '>>>=', '|=', '^=', '&=') and (abs(gleft) == float('inf') or abs(gright) == float('inf'))): # Don't bother handling infinity for integer-converted operations. left.set_value(get_NaN(traverser), traverser=traverser) return left traverser._debug('ASSIGNMENT::L-value global? (%s)' % ('Y' if left.is_global else 'N'), 1) try: new_value = operators[token]() except Exception: traverser.system_error(exc_info=sys.exc_info()) new_value = None # Cap the length of analyzed strings. if (isinstance(new_value, types.StringTypes) and len(new_value) > MAX_STR_SIZE): new_value = new_value[:MAX_STR_SIZE] traverser._debug('ASSIGNMENT::New value >> %s' % new_value, 1) left.set_value(new_value, traverser=traverser) return left # Though it would otherwise be a syntax error, we say that 4=5 should # evaluate out to 5. return right def _expr_binary(traverser, node): 'Evaluates a BinaryExpression node.' traverser.debug_level += 1 # Select the proper operator. operator = node['operator'] traverser._debug('BIN_OPERATOR>>%s' % operator) # Traverse the left half of the binary expression. with traverser._debug('BIN_EXP>>l-value'): if (node['left']['type'] == 'BinaryExpression' and '__traversal' not in node['left']): # Process the left branch of the binary expression directly. This # keeps the recursion cap in line and speeds up processing of # large chains of binary expressions. left = _expr_binary(traverser, node['left']) node['left']['__traversal'] = left else: left = traverser._traverse_node(node['left']) # Traverse the right half of the binary expression. with traverser._debug('BIN_EXP>>r-value'): if (operator == 'instanceof' and node['right']['type'] == 'Identifier' and node['right']['name'] == 'Function'): # We make an exception for instanceof's r-value if it's a # dangerous global, specifically Function. return JSWrapper(True, traverser=traverser) else: right = traverser._traverse_node(node['right']) traverser._debug('Is dirty? %r' % right.dirty, 1) return _binary_op(operator, left, right, traverser) def _binary_op(operator, left, right, traverser): """Perform a binary operation on two pre-traversed nodes.""" # Dirty l or r values mean we can skip the expression. A dirty value # indicates that a lazy operation took place that introduced some # nondeterminacy. # FIXME(Kris): We should process these as if they're strings anyway. if left.dirty: return left elif right.dirty: return right # Binary expressions are only executed on literals. left = left.get_literal_value() right_wrap = right right = right.get_literal_value() # Coerce the literals to numbers for numeric operations. gleft = _get_as_num(left) gright = _get_as_num(right) operators = { '==': lambda: left == right or gleft == gright, '!=': lambda: left != right, '===': lambda: left == right, # Be flexible. '!==': lambda: type(left) != type(right) or left != right, '>': lambda: left > right, '<': lambda: left < right, '<=': lambda: left <= right, '>=': lambda: left >= right, '<<': lambda: int(gleft) << int(gright), '>>': lambda: int(gleft) >> int(gright), '>>>': lambda: float(abs(int(gleft)) >> int(gright)), '+': lambda: left + right, '-': lambda: gleft - gright, '*': lambda: gleft * gright, '/': lambda: 0 if gright == 0 else (gleft / gright), '%': lambda: 0 if gright == 0 else (gleft % gright), 'in': lambda: right_wrap.contains(left), # TODO : implement instanceof # FIXME(Kris): Treat instanceof the same as `QueryInterface` } output = None if (operator in ('>>', '<<', '>>>') and (left is None or right is None or gright < 0)): output = False elif operator in operators: # Concatenation can be silly, so always turn undefineds into empty # strings and if there are strings, make everything strings. if operator == '+': if left is None: left = '' if right is None: right = '' if isinstance(left, basestring) or isinstance(right, basestring): left = _get_as_str(left) right = _get_as_str(right) # Don't even bother handling infinity if it's a numeric computation. if (operator in ('<<', '>>', '>>>') and (abs(gleft) == float('inf') or abs(gright) == float('inf'))): return get_NaN(traverser) try: output = operators[operator]() except Exception: traverser.system_error(exc_info=sys.exc_info()) output = None # Cap the length of analyzed strings. if (isinstance(output, types.StringTypes) and len(output) > MAX_STR_SIZE): output = output[:MAX_STR_SIZE] wrapper = JSWrapper(output, traverser=traverser) # Test the newly-created literal for dangerous values. # This may cause duplicate warnings for strings which # already match a dangerous value prior to concatenation. test_literal(traverser, wrapper) return wrapper return JSWrapper(output, traverser=traverser) def _expr_unary(traverser, node): """Evaluate a UnaryExpression node.""" expr = traverser._traverse_node(node['argument']) expr_lit = expr.get_literal_value() expr_num = _get_as_num(expr_lit) operators = {'-': lambda: -1 * expr_num, '+': lambda: expr_num, '!': lambda: not expr_lit, '~': lambda: -1 * (expr_num + 1), 'void': lambda: None, 'typeof': lambda: _expr_unary_typeof(expr), 'delete': lambda: None} # We never want to empty the context if node['operator'] in operators: output = operators[node['operator']]() else: output = None if not isinstance(output, JSWrapper): output = JSWrapper(output, traverser=traverser) return output def _expr_unary_typeof(wrapper): """Evaluate the "typeof" value for a JSWrapper object.""" if (wrapper.callable or (wrapper.is_global and 'return' in wrapper.value and 'value' not in wrapper.value)): return 'function' value = wrapper.value if value is None: return 'undefined' elif isinstance(value, JSLiteral): value = value.value if isinstance(value, bool): return 'boolean' elif isinstance(value, (int, long, float)): return 'number' elif isinstance(value, types.StringTypes): return 'string' return 'object' def _get_as_num(value): """Return the JS numeric equivalent for a value.""" if isinstance(value, JSWrapper): value = value.get_literal_value() if value is None: return 0 try: if isinstance(value, types.StringTypes): if value.startswith('0x'): return int(value, 16) else: return float(value) elif isinstance(value, (int, float, long)): return value else: return int(value) except (ValueError, TypeError): return 0 def _get_as_str(value): """Return the JS string equivalent for a literal value.""" if isinstance(value, JSWrapper): value = value.get_literal_value() if value is None: return '' if isinstance(value, bool): return u'true' if value else u'false' elif isinstance(value, (int, float, long)): if value == float('inf'): return u'Infinity' elif value == float('-inf'): return u'-Infinity' # Try to see if we can shave off some trailing significant figures. try: if int(value) == value: return unicode(int(value)) except ValueError: pass return unicode(value)
37.407512
79
0.588192
0
0
0
0
0
0
0
0
12,717
0.31921
c4930d25761ee9d797224e253c155e8643ca0fdb
14,588
py
Python
geometry_utils/tests/test_bound_box.py
NOAA-ORR-ERD/geometry_utils
0417a8c459fb17f101945f53d048191dc22e97c0
[ "BSD-3-Clause" ]
null
null
null
geometry_utils/tests/test_bound_box.py
NOAA-ORR-ERD/geometry_utils
0417a8c459fb17f101945f53d048191dc22e97c0
[ "BSD-3-Clause" ]
null
null
null
geometry_utils/tests/test_bound_box.py
NOAA-ORR-ERD/geometry_utils
0417a8c459fb17f101945f53d048191dc22e97c0
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python """ Test code for the BBox Object """ import numpy as np import pytest from geometry_utils.bound_box import (BBox, asBBox, NullBBox, InfBBox, fromBBArray, from_points, ) class TestConstructors(): def test_creates(self): B = BBox(((0, 0), (5, 5))) assert isinstance(B, BBox) def test_type(self): B = np.array(((0, 0), (5, 5))) assert not isinstance(B, BBox) def testDataType(self): B = BBox(((0, 0), (5, 5))) assert B.dtype == np.float def testShape(self): B = BBox((0, 0, 5, 5)) assert B.shape == (2, 2) def testShape2(self): with pytest.raises(ValueError): BBox((0, 0, 5)) def testShape3(self): with pytest.raises(ValueError): BBox((0, 0, 5, 6, 7)) def testArrayConstruction(self): A = np.array(((4, 5), (10, 12)), np.float_) B = BBox(A) assert isinstance(B, BBox) def testMinMax(self): with pytest.raises(ValueError): BBox((0, 0, -1, 6)) def testMinMax2(self): with pytest.raises(ValueError): BBox((0, 0, 1, -6)) def testMinMax3(self): # OK to have a zero-sized BB B = BBox(((0, 0), (0, 5))) assert isinstance(B, BBox) def testMinMax4(self): # OK to have a zero-sized BB B = BBox(((10., -34), (10., -34.0))) assert isinstance(B, BBox) def testMinMax5(self): # OK to have a tiny BB B = BBox(((0, 0), (1e-20, 5))) assert isinstance(B, BBox) def testMinMax6(self): # Should catch tiny difference with pytest.raises(ValueError): BBox(((0, 0), (-1e-20, 5))) class TestAsBBox(): def testPassThrough(self): B = BBox(((0, 0), (5, 5))) C = asBBox(B) assert B is C def testPassThrough2(self): B = ((0, 0), (5, 5)) C = asBBox(B) assert B is not C def testPassArray(self): # Different data type A = np.array(((0, 0), (5, 5))) C = asBBox(A) assert A is not C def testPassArray2(self): # same data type -- should be a view A = np.array(((0, 0), (5, 5)), np.float_) C = asBBox(A) A[0, 0] = -10 assert C[0, 0] == A[0, 0] class TestIntersect(): def testSame(self): B = BBox(((-23.5, 456), (56, 532.0))) C = BBox(((-23.5, 456), (56, 532.0))) assert B.Overlaps(C) def testUpperLeft(self): B = BBox(((5, 10), (15, 25))) C = BBox(((0, 12), (10, 32.0))) assert B.Overlaps(C) def testUpperRight(self): B = BBox(((5, 10), (15, 25))) C = BBox(((12, 12), (25, 32.0))) assert B.Overlaps(C) def testLowerRight(self): B = BBox(((5, 10), (15, 25))) C = BBox(((12, 5), (25, 15))) assert B.Overlaps(C) def testLowerLeft(self): B = BBox(((5, 10), (15, 25))) C = BBox(((-10, 5), (8.5, 15))) assert B.Overlaps(C) def testBelow(self): B = BBox(((5, 10), (15, 25))) C = BBox(((-10, 5), (8.5, 9.2))) assert not B.Overlaps(C) def testAbove(self): B = BBox(((5, 10), (15, 25))) C = BBox(((-10, 25.001), (8.5, 32))) assert not B.Overlaps(C) def testLeft(self): B = BBox(((5, 10), (15, 25))) C = BBox(((4, 8), (4.95, 32))) assert not B.Overlaps(C) def testRight(self): B = BBox(((5, 10), (15, 25))) C = BBox(((17.1, 8), (17.95, 32))) assert not B.Overlaps(C) def testInside(self): B = BBox(((-15, -25), (-5, -10))) C = BBox(((-12, -22), (-6, -8))) assert B.Overlaps(C) def testOutside(self): B = BBox(((-15, -25), (-5, -10))) C = BBox(((-17, -26), (3, 0))) assert B.Overlaps(C) def testTouch(self): B = BBox(((5, 10), (15, 25))) C = BBox(((15, 8), (17.95, 32))) assert B.Overlaps(C) def testCorner(self): B = BBox(((5, 10), (15, 25))) C = BBox(((15, 25), (17.95, 32))) assert B.Overlaps(C) def testZeroSize(self): B = BBox(((5, 10), (15, 25))) C = BBox(((15, 25), (15, 25))) assert B.Overlaps(C) def testZeroSize2(self): B = BBox(((5, 10), (5, 10))) C = BBox(((15, 25), (15, 25))) assert not B.Overlaps(C) def testZeroSize3(self): B = BBox(((5, 10), (5, 10))) C = BBox(((0, 8), (10, 12))) assert B.Overlaps(C) def testZeroSize4(self): B = BBox(((5, 1), (10, 25))) C = BBox(((8, 8), (8, 8))) assert B.Overlaps(C) class TestEquality(): def testSame(self): B = BBox(((1.0, 2.0), (5., 10.))) C = BBox(((1.0, 2.0), (5., 10.))) assert B == C def testIdentical(self): B = BBox(((1.0, 2.0), (5., 10.))) assert B == B def testNotSame(self): B = BBox(((1.0, 2.0), (5., 10.))) C = BBox(((1.0, 2.0), (5., 10.1))) assert not B == C def testWithArray(self): B = BBox(((1.0, 2.0), (5., 10.))) C = np.array(((1.0, 2.0), (5., 10.))) assert B == C def testWithArray2(self): B = BBox(((1.0, 2.0), (5., 10.))) C = np.array(((1.0, 2.0), (5., 10.))) assert C == B def testWithArray3(self): B = BBox(((1.0, 2.0), (5., 10.))) C = np.array(((1.01, 2.0), (5., 10.))) assert not C == B class TestInside(): def testSame(self): B = BBox(((1.0, 2.0), (5., 10.))) C = BBox(((1.0, 2.0), (5., 10.))) assert B.Inside(C) def testPoint(self): B = BBox(((1.0, 2.0), (5., 10.))) C = BBox(((3.0, 4.0), (3.0, 4.0))) assert B.Inside(C) def testPointOutside(self): B = BBox(((1.0, 2.0), (5., 10.))) C = BBox(((-3.0, 4.0), (0.10, 4.0))) assert not B.Inside(C) def testUpperLeft(self): B = BBox(((5, 10), (15, 25))) C = BBox(((0, 12), (10, 32.0))) assert not B.Inside(C) def testUpperRight(self): B = BBox(((5, 10), (15, 25))) C = BBox(((12, 12), (25, 32.0))) assert not B.Inside(C) def testLowerRight(self): B = BBox(((5, 10), (15, 25))) C = BBox(((12, 5), (25, 15))) assert not B.Inside(C) def testLowerLeft(self): B = BBox(((5, 10), (15, 25))) C = BBox(((-10, 5), (8.5, 15))) assert not (B.Inside(C)) def testBelow(self): B = BBox(((5, 10), (15, 25))) C = BBox(((-10, 5), (8.5, 9.2))) assert not (B.Inside(C)) def testAbove(self): B = BBox(((5, 10), (15, 25))) C = BBox(((-10, 25.001), (8.5, 32))) assert not (B.Inside(C)) def testLeft(self): B = BBox(((5, 10), (15, 25))) C = BBox(((4, 8), (4.95, 32))) assert not (B.Inside(C)) def testRight(self): B = BBox(((5, 10), (15, 25))) C = BBox(((17.1, 8), (17.95, 32))) assert not (B.Inside(C)) class TestPointInside(): def testPointIn(self): B = BBox(((1.0, 2.0), (5., 10.))) P = (3.0, 4.0) assert (B.PointInside(P)) def testUpperLeft(self): B = BBox(((5, 10), (15, 25))) P = (4, 30) assert not (B.PointInside(P)) def testUpperRight(self): B = BBox(((5, 10), (15, 25))) P = (16, 30) assert not (B.PointInside(P)) def testLowerRight(self): B = BBox(((5, 10), (15, 25))) P = (16, 4) assert not (B.PointInside(P)) def testLowerLeft(self): B = BBox(((5, 10), (15, 25))) P = (-10, 5) assert not (B.PointInside(P)) def testBelow(self): B = BBox(((5, 10), (15, 25))) P = (10, 5) assert not (B.PointInside(P)) def testAbove(self): B = BBox(((5, 10), (15, 25))) P = (10, 25.001) assert not (B.PointInside(P)) def testLeft(self): B = BBox(((5, 10), (15, 25))) P = (4, 12) assert not (B.PointInside(P)) def testRight(self): B = BBox(((5, 10), (15, 25))) P = (17.1, 12.3) assert not (B.PointInside(P)) def testPointOnTopLine(self): B = BBox(((1.0, 2.0), (5., 10.))) P = (3.0, 10.) assert (B.PointInside(P)) def testPointLeftTopLine(self): B = BBox(((1.0, 2.0), (5., 10.))) P = (-3.0, 10.) assert not (B.PointInside(P)) def testPointOnBottomLine(self): B = BBox(((1.0, 2.0), (5., 10.))) P = (3.0, 5.) assert (B.PointInside(P)) def testPointOnLeft(self): B = BBox(((-10., -10.), (-1.0, -1.0))) P = (-10, -5.) assert (B.PointInside(P)) def testPointOnRight(self): B = BBox(((-10., -10.), (-1.0, -1.0))) P = (-1, -5.) assert (B.PointInside(P)) def testPointOnBottomRight(self): B = BBox(((-10., -10.), (-1.0, -1.0))) P = (-1, -10.) assert (B.PointInside(P)) class Test_from_points(): def testCreate(self): Pts = np.array(((5, 2), (3, 4), (1, 6)), np.float64) B = from_points(Pts) assert (B[0, 0] == 1.0 and B[0, 1] == 2.0 and B[1, 0] == 5.0 and B[1, 1] == 6.0) def testCreateInts(self): Pts = np.array(((5, 2), (3, 4), (1, 6))) B = from_points(Pts) assert (B[0, 0] == 1.0 and B[0, 1] == 2.0 and B[1, 0] == 5.0 and B[1, 1] == 6.0) def testSinglePoint(self): Pts = np.array((5, 2), np.float_) B = from_points(Pts) assert (B[0, 0] == 5. and B[0, 1] == 2.0 and B[1, 0] == 5. and B[1, 1] == 2.0) def testListTuples(self): Pts = [(3, 6.5), (13, 43.2), (-4.32, -4), (65, -23), (-0.0001, 23.432)] B = from_points(Pts) assert (B[0, 0] == -4.32 and B[0, 1] == -23.0 and B[1, 0] == 65.0 and B[1, 1] == 43.2) class TestMerge(): A = BBox(((-23.5, 456), (56, 532.0))) B = BBox(((-20.3, 460), (54, 465))) # B should be completely inside A C = BBox(((-23.5, 456), (58, 540.))) # up and to the right or A D = BBox(((-26.5, 12), (56, 532.0))) def testInside(self): C = self.A.copy() C.Merge(self.B) assert (C == self.A) def testFullOutside(self): C = self.B.copy() C.Merge(self.A) assert (C == self.A) def testUpRight(self): A = self.A.copy() A.Merge(self.C) assert (A[0] == self.A[0] and A[1] == self.C[1]) def testDownLeft(self): A = self.A.copy() A.Merge(self.D) assert (A[0] == self.D[0] and A[1] == self.A[1]) class TestWidthHeight(): B = BBox(((1.0, 2.0), (5., 10.))) def testWidth(self): assert (self.B.Width == 4.0) def testWidth2(self): assert (self.B.Height == 8.0) def testSetW(self): with pytest.raises(AttributeError): self.B.Height = 6 def testSetH(self): with pytest.raises(AttributeError): self.B.Width = 6 class TestCenter(): B = BBox(((1.0, 2.0), (5., 10.))) def testCenter(self): assert ((self.B.Center == (3.0, 6.0)).all()) def testSetCenter(self): with pytest.raises(AttributeError): self.B.Center = (6, 5) class TestBBarray(): BBarray = np.array((((-23.5, 456), (56, 532.0)), ((-20.3, 460), (54, 465)), ((-23.5, 456), (58, 540.)), ((-26.5, 12), (56, 532.0))), dtype=np.float) BB = asBBox(((-26.5, 12.), (58., 540.))) def testJoin(self): BB = fromBBArray(self.BBarray) assert BB == self.BB class TestNullBBox(): B1 = NullBBox() B2 = NullBBox() B3 = BBox(((1.0, 2.0), (5., 10.))) def testValues(self): assert (np.alltrue(np.isnan(self.B1))) def testIsNull(self): assert (self.B1.IsNull) def testEquals(self): assert ((self.B1 == self.B2) is True) def testNotEquals(self): assert not self.B1 == self.B3 def testNotEquals2(self): assert not self.B3 == self.B1 def testMerge(self): C = self.B1.copy() C.Merge(self.B3) assert C == self.B3, 'merge failed, got: %s' % C def testOverlaps(self): assert self.B1.Overlaps(self.B3) is False def testOverlaps2(self): assert self.B3.Overlaps(self.B1) is False class TestInfBBox(): B1 = InfBBox() B2 = InfBBox() B3 = BBox(((1.0, 2.0), (5., 10.))) NB = NullBBox() def testValues(self): assert (np.alltrue(np.isinf(self.B1))) # def testIsNull(self): # assert ( self.B1.IsNull ) def testEquals(self): assert self.B1 == self.B2 def testNotEquals(self): assert not self.B1 == self.B3 def testNotEquals2(self): assert self.B1 != self.B3 def testNotEquals3(self): assert not self.B3 == self.B1 def testMerge(self): C = self.B1.copy() C.Merge(self.B3) assert C == self.B2, 'merge failed, got: %s' % C def testMerge2(self): C = self.B3.copy() C.Merge(self.B1) assert C == self.B1, 'merge failed, got: %s' % C def testOverlaps(self): assert (self.B1.Overlaps(self.B2) is True) def testOverlaps2(self): assert (self.B3.Overlaps(self.B1) is True) def testOverlaps3(self): assert (self.B1.Overlaps(self.B3) is True) def testOverlaps4(self): assert (self.B1.Overlaps(self.NB) is True) def testOverlaps5(self): assert (self.NB.Overlaps(self.B1) is True) class TestSides(): B = BBox(((1.0, 2.0), (5., 10.))) def testLeft(self): assert self.B.Left == 1.0 def testRight(self): assert self.B.Right == 5.0 def testBottom(self): assert self.B.Bottom == 2.0 def testTop(self): assert self.B.Top == 10.0 class TestAsPoly(): B = BBox(((5, 0), (10, 20))) corners = np.array([(5., 0.), (5., 20.), (10., 20.), (10., 0.)], dtype=np.float64) def testCorners(self): print(self.B.AsPoly()) assert np.array_equal(self.B.AsPoly(), self.corners)
25.151724
75
0.466822
14,120
0.967919
0
0
0
0
0
0
411
0.028174
c493107b1fd8b943176b6566abf9ca29701a3c9c
4,789
py
Python
cresi/net/augmentations/functional.py
ankshah131/cresi
99328e065910c45a626e761cd308670e4a60f058
[ "Apache-2.0" ]
117
2019-08-29T08:43:55.000Z
2022-03-24T20:56:23.000Z
cresi/net/augmentations/functional.py
ankshah131/cresi
99328e065910c45a626e761cd308670e4a60f058
[ "Apache-2.0" ]
9
2019-11-23T10:55:13.000Z
2021-06-22T12:26:21.000Z
cresi/net/augmentations/functional.py
ankshah131/cresi
99328e065910c45a626e761cd308670e4a60f058
[ "Apache-2.0" ]
33
2019-08-08T16:56:37.000Z
2022-02-24T20:52:44.000Z
import cv2 cv2.setNumThreads(0) cv2.ocl.setUseOpenCL(False) import numpy as np import math from functools import wraps def clip(img, dtype, maxval): return np.clip(img, 0, maxval).astype(dtype) def clipped(func): """ wrapper to clip results of transform to image dtype value range """ @wraps(func) def wrapped_function(img, *args, **kwargs): dtype, maxval = img.dtype, np.max(img) return clip(func(img, *args, **kwargs), dtype, maxval) return wrapped_function def fix_shift_values(img, *args): """ shift values are normally specified in uint, but if your data is float - you need to remap values """ if img.dtype == np.float32: return list(map(lambda x: x / 255, args)) return args def vflip(img): return cv2.flip(img, 0) def hflip(img): return cv2.flip(img, 1) def flip(img, code): return cv2.flip(img, code) def transpose(img): return img.transpose(1, 0, 2) if len(img.shape) > 2 else img.transpose(1, 0) def rot90(img, times): img = np.rot90(img, times) return np.ascontiguousarray(img) def rotate(img, angle): """ rotate image on specified angle :param angle: angle in degrees """ height, width = img.shape[0:2] mat = cv2.getRotationMatrix2D((width/2, height/2), angle, 1.0) img = cv2.warpAffine(img, mat, (width, height), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101) return img def shift_scale_rotate(img, angle, scale, dx, dy): """ :param angle: in degrees :param scale: relative scale """ height, width = img.shape[:2] cc = math.cos(angle/180*math.pi) * scale ss = math.sin(angle/180*math.pi) * scale rotate_matrix = np.array([[cc, -ss], [ss, cc]]) box0 = np.array([[0, 0], [width, 0], [width, height], [0, height], ]) box1 = box0 - np.array([width/2, height/2]) box1 = np.dot(box1, rotate_matrix.T) + np.array([width/2+dx*width, height/2+dy*height]) box0 = box0.astype(np.float32) box1 = box1.astype(np.float32) mat = cv2.getPerspectiveTransform(box0, box1) img = cv2.warpPerspective(img, mat, (width, height), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101) return img def center_crop(img, height, width): h, w, c = img.shape dy = (h-height)//2 dx = (w-width)//2 y1 = dy y2 = y1 + height x1 = dx x2 = x1 + width img = img[y1:y2, x1:x2, :] return img def shift_hsv(img, hue_shift, sat_shift, val_shift): dtype = img.dtype maxval = np.max(img) img = cv2.cvtColor(img, cv2.COLOR_RGB2HSV).astype(np.int32) h, s, v = cv2.split(img) h = cv2.add(h, hue_shift) h = np.where(h < 0, maxval - h, h) h = np.where(h > maxval, h - maxval, h) h = h.astype(dtype) s = clip(cv2.add(s, sat_shift), dtype, maxval) v = clip(cv2.add(v, val_shift), dtype, maxval) img = cv2.merge((h, s, v)).astype(dtype) img = cv2.cvtColor(img, cv2.COLOR_HSV2RGB) return img def shift_channels(img, r_shift, g_shift, b_shift): img[...,0] = clip(img[...,0] + r_shift, np.uint8, 255) img[...,1] = clip(img[...,1] + g_shift, np.uint8, 255) img[...,2] = clip(img[...,2] + b_shift, np.uint8, 255) return img def clahe(img, clipLimit=2.0, tileGridSize=(8,8)): img_yuv = cv2.cvtColor(img, cv2.COLOR_RGB2LAB) clahe = cv2.createCLAHE(clipLimit=clipLimit, tileGridSize=tileGridSize) img_yuv[:, :, 0] = clahe.apply(img_yuv[:, :, 0]) img_output = cv2.cvtColor(img_yuv, cv2.COLOR_LAB2RGB) return img_output def blur(img, ksize): return cv2.blur(img, (ksize, ksize)) def invert(img): return 255 - img def channel_shuffle(img): ch_arr = [0, 1, 2] np.random.shuffle(ch_arr) img = img[..., ch_arr] return img def img_to_tensor(im, verbose=False): '''AVE edit''' im_out = np.moveaxis(im / (255. if im.dtype == np.uint8 else 1), -1, 0).astype(np.float32) if verbose: print ("augmentations.functiona.py.img_to_tensor(): im_out.shape:", im_out.shape) print ("im_out.unique:", np.unique(im_out)) return im_out def mask_to_tensor(mask, num_classes, verbose=False): '''AVE edit''' if num_classes > 1: mask = img_to_tensor(mask) else: mask = np.expand_dims(mask / (255. if mask.dtype == np.uint8 else 1), 0).astype(np.float32) if verbose: print ("augmentations.functiona.py.img_to_tensor(): mask.shape:", mask.shape) print ("mask.unique:", np.unique(mask)) return mask
28.005848
102
0.595114
0
0
0
0
173
0.036124
0
0
531
0.110879
c493ccaae899498f57b59dd3ded561a78518f5a9
417
py
Python
regtestsWin_customBuildPy.py
greenwoodms/TRANSFORM-Library
dc152d4f0298d3f18385f2ea33645d87d7812915
[ "Apache-2.0" ]
29
2018-04-24T17:06:19.000Z
2021-11-21T05:17:28.000Z
regtestsWin_customBuildPy.py
greenwoodms/TRANSFORM-Library
dc152d4f0298d3f18385f2ea33645d87d7812915
[ "Apache-2.0" ]
13
2018-04-05T08:34:27.000Z
2021-10-04T14:24:41.000Z
regtestsWin_customBuildPy.py
greenwoodms/TRANSFORM-Library
dc152d4f0298d3f18385f2ea33645d87d7812915
[ "Apache-2.0" ]
17
2018-08-06T22:18:01.000Z
2022-01-29T21:38:17.000Z
# -*- coding: utf-8 -*- """ Created on Mon Aug 14 09:49:13 2017 @author: vmg """ import os import buildingspy.development.regressiontest as r rt = r.Tester(check_html=False)#,tool="dymola") LibPath = os.path.join("TRANSFORM") ResPath = LibPath rt.showGUI(True) rt.setLibraryRoot(LibPath, ResPath) rt.setNumberOfThreads(1) #rt.TestSinglePackage('Media.Solids.Examples.Hastelloy_N_Haynes', SinglePack=True) rt.run()
23.166667
82
0.748201
0
0
0
0
0
0
0
0
189
0.453237
c49410af0e45267e29dfed5b9b7fc2e415dd48a2
2,039
py
Python
src/deoxys/model/activations.py
huynhngoc/deoxys
b2e9936b723807e129fda36d8d6131ca00db558f
[ "MIT" ]
1
2021-12-28T15:48:45.000Z
2021-12-28T15:48:45.000Z
src/deoxys/model/activations.py
huynhngoc/deoxys
b2e9936b723807e129fda36d8d6131ca00db558f
[ "MIT" ]
2
2020-06-26T11:03:53.000Z
2020-06-26T11:05:09.000Z
src/deoxys/model/activations.py
huynhngoc/deoxys
b2e9936b723807e129fda36d8d6131ca00db558f
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- __author__ = "Ngoc Huynh Bao" __email__ = "[email protected]" from ..keras.layers import Activation from ..keras.activations import deserialize from ..utils import Singleton class Activations(metaclass=Singleton): """ A singleton that contains all the registered customized activations """ def __init__(self): self._activations = {} def register(self, key, activation): if not issubclass(activation, Activation): raise ValueError( "The customized activation has to be a subclass" + " of keras.activations.Activation" ) if key in self._activations: raise KeyError( "Duplicated key, please use another key for this activation" ) else: self._activations[key] = activation def unregister(self, key): if key in self._activations: del self._activations[key] @property def activations(self): return self._activations def register_activation(key, activation): """ Register the customized activation. If the key name is already registered, it will raise a KeyError exception Parameters ---------- key: str The unique key-name of the activation activation: tensorflow.keras.activations.Activation The customized activation class """ Activations().register(key, activation) def unregister_activation(key): """ Remove the registered activation with the key-name Parameters ---------- key: str The key-name of the activation to be removed """ Activations().unregister(key) def activation_from_config(config): if 'class_name' not in config: raise ValueError('class_name is needed to define activation') if 'config' not in config: # auto add empty config for activation with only class_name config['config'] = {} return deserialize(config, custom_objects=Activations().activations)
26.141026
77
0.647376
840
0.411967
0
0
69
0.03384
0
0
896
0.439431
c4950cd78452abf9ab6be8b01808431c4aeef93d
2,618
py
Python
raspisump/reading.py
seanm/raspi-sump
65456b5e0d1e93bb2574a46527f410a08f9f51ba
[ "MIT" ]
79
2015-03-11T12:13:35.000Z
2022-03-30T04:35:09.000Z
raspisump/reading.py
seanm/raspi-sump
65456b5e0d1e93bb2574a46527f410a08f9f51ba
[ "MIT" ]
72
2015-02-20T02:26:25.000Z
2022-02-19T01:22:36.000Z
raspisump/reading.py
seanm/raspi-sump
65456b5e0d1e93bb2574a46527f410a08f9f51ba
[ "MIT" ]
36
2015-01-11T12:11:43.000Z
2022-01-07T01:35:30.000Z
""" Module to take a water_level reading.""" # Raspi-sump, a sump pump monitoring system. # Al Audet # http://www.linuxnorth.org/raspi-sump/ # # All configuration changes should be done in raspisump.conf # MIT License -- http://www.linuxnorth.org/raspi-sump/license.html try: import ConfigParser as configparser # Python2 except ImportError: import configparser # Python3 from hcsr04sensor import sensor from raspisump import log, alerts, heartbeat config = configparser.RawConfigParser() config.read("/home/pi/raspi-sump/raspisump.conf") configs = { "critical_water_level": config.getint("pit", "critical_water_level"), "pit_depth": config.getint("pit", "pit_depth"), "temperature": config.getint("pit", "temperature"), "trig_pin": config.getint("gpio_pins", "trig_pin"), "echo_pin": config.getint("gpio_pins", "echo_pin"), "unit": config.get("pit", "unit"), } # If item in raspisump.conf add to configs dict. If not provide defaults. try: configs["alert_when"] = config.get("pit", "alert_when") except configparser.NoOptionError: configs["alert_when"] = "high" try: configs["heartbeat"] = config.getint("email", "heartbeat") except configparser.NoOptionError: configs["heartbeat"] = 0 def initiate_heartbeat(): """Initiate the heartbeat email process if needed""" if configs["heartbeat"] == 1: heartbeat.determine_if_heartbeat() else: pass def water_reading(): """Initiate a water level reading.""" pit_depth = configs["pit_depth"] trig_pin = configs["trig_pin"] echo_pin = configs["echo_pin"] temperature = configs["temperature"] unit = configs["unit"] value = sensor.Measurement(trig_pin, echo_pin, temperature, unit) try: raw_distance = value.raw_distance(sample_wait=0.3) except SystemError: log.log_errors( "**ERROR - Signal not received. Possible cable or sensor problem." ) exit(0) return round(value.depth(raw_distance, pit_depth), 1) def water_depth(): """Determine the depth of the water, log result and generate alert if needed. """ critical_water_level = configs["critical_water_level"] water_depth = water_reading() if water_depth < 0.0: water_depth = 0.0 log.log_reading(water_depth) if water_depth > critical_water_level and configs["alert_when"] == "high": alerts.determine_if_alert(water_depth) elif water_depth < critical_water_level and configs["alert_when"] == "low": alerts.determine_if_alert(water_depth) else: pass initiate_heartbeat()
29.088889
79
0.688312
0
0
0
0
0
0
0
0
1,026
0.391902
c49a318a7b8ef2bfca67b0d3b643cbd37094de2d
2,830
py
Python
pipelines/pancreas_pipeline.py
marvinquiet/RefConstruction_supervisedCelltyping
7bdd02a0486c175785ec24461dc6356c4d172091
[ "MIT" ]
null
null
null
pipelines/pancreas_pipeline.py
marvinquiet/RefConstruction_supervisedCelltyping
7bdd02a0486c175785ec24461dc6356c4d172091
[ "MIT" ]
null
null
null
pipelines/pancreas_pipeline.py
marvinquiet/RefConstruction_supervisedCelltyping
7bdd02a0486c175785ec24461dc6356c4d172091
[ "MIT" ]
null
null
null
''' Configuration generation for running Pancreas datasets ''' import os, argparse from pipelines import method_utils, dataloading_utils from preprocess.process_train_test_data import * if __name__ == "__main__": data_dir = "~/gpu/data" ## parse arguments import argparse parser = argparse.ArgumentParser(description="Celltyping pipeline.") parser.add_argument('data_source', help="Load which dataset", choices=[ 'pancreas', 'pancreas_seg_cond', 'pancreas_custom', 'pancreas_seg_mix', 'pancreas_multi_to_multi' ]) parser.add_argument('-m', '--method', help="Run which method", choices=['MLP', 'MLP_GO', 'MLP_CP', 'GEDFN', 'ItClust', 'SVM_RBF', 'SVM_linear', 'RF'], ## remove DFN required=True) parser.add_argument('--select_on', help="Feature selection on train or test, or None of them", choices=['train', 'test']) parser.add_argument('--select_method', help="Feature selection method, Seurat/FEAST or None", choices=['Seurat', 'FEAST', 'F-test']) parser.add_argument('--n_features', help="Number of features selected", default=1000, type=int) parser.add_argument('--train', help="Specify which as train", required=True) parser.add_argument('--test', help="Specify which as test", required=True) parser.add_argument('--sample_seed', help="Downsample seed in combined individual effect", default=0, type=int) args = parser.parse_args() pipeline_dir = "pipelines/result_Pancreas_collections" result_prefix = pipeline_dir+os.sep+"result_"+args.data_source+'_'+\ args.train+'_to_'+args.test os.makedirs(result_prefix, exist_ok=True) ## create file directory if args.select_on is None and args.select_method is None: result_dir = result_prefix+os.sep+"no_feature" else: result_dir = result_prefix+os.sep+args.select_method+'_'+\ str(args.n_features)+'_on_'+args.select_on os.makedirs(result_dir, exist_ok=True) load_ind, train_adata, test_adata = load_adata(result_dir) if not load_ind: train_adata, test_adata = dataloading_utils.load_Pancreas_adata( data_dir, result_dir, args=args) ## whether to purify reference dataset purify_method = "" if "purify_dist" in args.data_source: purify_method = "distance" elif "purify_SVM" in args.data_source: purify_method = "SVM" train_adata, test_adata = dataloading_utils.process_loaded_data( train_adata, test_adata, result_dir, args=args, purify_method=purify_method) print("Train anndata: \n", train_adata) print("Test anndata: \n", test_adata) method_utils.run_pipeline(args, train_adata, test_adata, data_dir, result_dir)
41.617647
109
0.677032
0
0
0
0
0
0
0
0
909
0.321201
c49b19da4180160b333ba71b17f93e31d23578f0
436
py
Python
MachineLearning/StandardScaler/standardization.py
yexianyi/AI_Practice
80499ab3a06ac055641aa069fe1e37864c9e41c4
[ "Apache-2.0" ]
null
null
null
MachineLearning/StandardScaler/standardization.py
yexianyi/AI_Practice
80499ab3a06ac055641aa069fe1e37864c9e41c4
[ "Apache-2.0" ]
null
null
null
MachineLearning/StandardScaler/standardization.py
yexianyi/AI_Practice
80499ab3a06ac055641aa069fe1e37864c9e41c4
[ "Apache-2.0" ]
null
null
null
import pandas as pd from sklearn.preprocessing import StandardScaler def stand_demo(): data = pd.read_csv("dating.txt") print(data) transfer = StandardScaler() data = transfer.fit_transform(data[['milage', 'Liters', 'Consumtime']]) print("Standardization result: \n", data) print("Mean of each figure: \n", transfer.mean_) print("Variance of each figure: \n", transfer.var_) return None stand_demo()
25.647059
75
0.692661
0
0
0
0
0
0
0
0
122
0.279817
c49cdbfcdbfea8b874ccc9f3311ef29e7510510a
716
py
Python
tests/test_primitive_roots.py
greysonDEV/rng
5af76f5edff4de1b502c21ca1c1ce93243a618c8
[ "MIT" ]
null
null
null
tests/test_primitive_roots.py
greysonDEV/rng
5af76f5edff4de1b502c21ca1c1ce93243a618c8
[ "MIT" ]
null
null
null
tests/test_primitive_roots.py
greysonDEV/rng
5af76f5edff4de1b502c21ca1c1ce93243a618c8
[ "MIT" ]
null
null
null
from prng.util.util import primitive_roots import pytest def test_primitive_roots(): prim_roots_sets = [ [3, [2]], [7, [3,5]], [13, [2,6,7,11]], [17, [3,5,6,7,10,11,12,14]], [19, [2,3,10,13,14,15]], [31, [3,11,12,13,17,21,22,24]], [53, [2,3,5,8,12,14,18,19,20,21,22,26,27,31,32,33,34,35,39,41,45,48,50,51]], [61, [2,6,7,10,17,18,26,30,31,35,43,44,51,54,55,59]], [79, [3,6,7,28,29,30,34,35,37,39,43,47,48,53,54,59,60,63,66,68,70,74,75,77]], [103, [5,6,11,12,20,21,35,40,43,44,45,48,51,53,54,62,65,67,70,71,74,75,77,78,84,85,86,87,88,96,99,101]], ] assert all(sorted(primitive_roots(a)) == prs for a,prs in prim_roots_sets)
37.684211
112
0.544693
0
0
0
0
0
0
0
0
0
0
c49d07ec16361493f21d1cdf3590979db22f9935
383
py
Python
hackerrank-python/xml-1-find-the-score.py
fmelihh/competitive-programming-solutions
c15c2f7d90153f35f9bd9ffcea20ac921564eacf
[ "MIT" ]
2
2021-09-06T22:13:12.000Z
2021-11-22T08:50:04.000Z
hackerrank-python/xml-1-find-the-score.py
fmelihh/competitive-programming-solutions
c15c2f7d90153f35f9bd9ffcea20ac921564eacf
[ "MIT" ]
null
null
null
hackerrank-python/xml-1-find-the-score.py
fmelihh/competitive-programming-solutions
c15c2f7d90153f35f9bd9ffcea20ac921564eacf
[ "MIT" ]
null
null
null
# https://www.hackerrank.com/challenges/xml-1-find-the-score/problem import sys import xml.etree.ElementTree as etree def get_attr_number(node): return etree.tostring(node).count(b'=') if __name__ == '__main__': sys.stdin.readline() xml = sys.stdin.read() tree = etree.ElementTree(etree.fromstring(xml)) root = tree.getroot() print(get_attr_number(root))
23.9375
68
0.710183
0
0
0
0
0
0
0
0
82
0.214099
c49d9514c95f15c6be6ba6695dcb54d27f071828
347
py
Python
CodeChef/Contest/June Long/pricecon.py
GSri30/Competetive_programming
0dc1681500a80b6f0979d0dc9f749357ee07bcb8
[ "MIT" ]
22
2020-01-03T17:32:00.000Z
2021-11-07T09:31:44.000Z
CodeChef/Contest/June Long/pricecon.py
GSri30/Competetive_programming
0dc1681500a80b6f0979d0dc9f749357ee07bcb8
[ "MIT" ]
10
2020-09-30T09:41:18.000Z
2020-10-11T11:25:09.000Z
CodeChef/Contest/June Long/pricecon.py
GSri30/Competetive_programming
0dc1681500a80b6f0979d0dc9f749357ee07bcb8
[ "MIT" ]
25
2019-10-14T19:25:01.000Z
2021-05-26T08:12:20.000Z
test = int(input()) while test > 0 : n,k = map(int,input().split()) p = list(map(int,input().split())) original = 0 later = 0 for i in p : if i > k : later += k original += i else : later += i original += i print(original-later) test -= 1
23.133333
39
0.414986
0
0
0
0
0
0
0
0
0
0
c49e67e8dbe87dd913b66006fd7f5daf6198c333
2,948
py
Python
src/utils/Shell.py
vlab-cs-ucsb/quacky
c031577883550820e2586ce530e59eb30aeccc37
[ "BSD-2-Clause" ]
1
2022-02-28T18:10:29.000Z
2022-02-28T18:10:29.000Z
src/utils/Shell.py
vlab-cs-ucsb/quacky
c031577883550820e2586ce530e59eb30aeccc37
[ "BSD-2-Clause" ]
null
null
null
src/utils/Shell.py
vlab-cs-ucsb/quacky
c031577883550820e2586ce530e59eb30aeccc37
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Mon Aug 18 22:20:01 2014 @author: baki """ import shlex from subprocess import Popen, PIPE from .Log import Log class Shell: def __init__(self, TAG=""): self.log = Log(TAG=TAG) self.current_process = None self.process_output = None def setTag(self, tag): self.log.setTag(tag) def runcmd(self, cmd, cwd=None, shell=False): # self.log.v("cmd: {}\n with params: cwd={}, shell={}".format(cmd, cwd, shell)) args = shlex.split(cmd) p = Popen(args, stdout=PIPE, stderr=PIPE, cwd=cwd, shell=shell) out, err = p.communicate() if out: out = out.decode("ascii") # self.log.v("cmd output: {}\n".format(out)) if err: err = err.decode("ascii") # self.log.v("cmd error: {}\n".format(err)) return out, err def runcmdBgrnd(self, cmd, out=PIPE, cwd=None, shell=False): assert self.current_process == None, "currently, one shell object supports only one background process" self.log.v("cmd: {}\n with params: out={}, cwd={}, shell={}".format(cmd, out, cwd, shell)) redirect_to = out if out is not PIPE: assert self.process_output == None, "currently, one shell object supports only one background process" redirect_to = open(out, "w") args = shlex.split(cmd) p = Popen(args, stdout=redirect_to, stderr=redirect_to, cwd=cwd, shell=shell) self.current_process = p self.process_output = redirect_to return p def kill(self, process=None): if process is None: process = self.current_process process and process.kill() self.process_output and self.process_output.close() def terminate(self, process=None): if process is None: process = self.current_process process and process.terminate() self.process_output and self.process_output.close() def runGrep(self, search, subject, options): cmd = "grep {} \"{}\" {}".format(options, search, subject) return self.runcmd(cmd) def rm(self, name): cmd = "rm {}".format(name) return self.runcmd(cmd) def rmdir(self, name): cmd = "rmdir {}".format(name) return self.runcmd(cmd) def rmrdir(self, name): cmd = "rm -r {}".format(name) return self.runcmd(cmd) def mv(self, src, dst): cmd = "mv {} {}".format(src, dst) return self.runcmd(cmd) def cp(self, src, dst): cmd = "cp -r {} {}".format(src, dst) return self.runcmd(cmd) def mkdir(self, name): cmd = "mkdir {} -p".format(name) return self.runcmd(cmd) def clean(self, name): self.rmrdir(name) self.mkdir(name)
32.043478
119
0.557327
2,792
0.947083
0
0
0
0
0
0
544
0.184532
c49f689d742bf5ec9d22f74b83fe32c9c62c281f
4,458
py
Python
scrapy_autounit/middleware.py
ogiaquino/scrapy-autounit
97f00d2d62c1ad49bbac462018907abe6a20e4cd
[ "BSD-3-Clause" ]
null
null
null
scrapy_autounit/middleware.py
ogiaquino/scrapy-autounit
97f00d2d62c1ad49bbac462018907abe6a20e4cd
[ "BSD-3-Clause" ]
null
null
null
scrapy_autounit/middleware.py
ogiaquino/scrapy-autounit
97f00d2d62c1ad49bbac462018907abe6a20e4cd
[ "BSD-3-Clause" ]
null
null
null
import os import six import copy import pickle import random import logging from scrapy.http import Request from scrapy.exceptions import NotConfigured from scrapy.commands.genspider import sanitize_module_name from scrapy.spiders import CrawlSpider from .utils import ( add_sample, response_to_dict, get_or_create_test_dir, parse_request, parse_object, get_project_dir, get_middlewares, create_dir, ) logger = logging.getLogger(__name__) def _copy_settings(settings): out = {} for name in settings.getlist('AUTOUNIT_INCLUDED_SETTINGS', []): out[name] = settings.get(name) return out class AutounitMiddleware: def __init__(self, settings): if not any( self.__class__.__name__ in s for s in settings.getwithbase('SPIDER_MIDDLEWARES').keys() ): raise ValueError( '%s must be in SPIDER_MIDDLEWARES' % ( self.__class__.__name__,)) if not settings.getbool('AUTOUNIT_ENABLED'): raise NotConfigured('scrapy-autounit is not enabled') if settings.getint('CONCURRENT_REQUESTS') > 1: logger.warn( 'Recording with concurrency > 1! ' 'Data races in shared object modification may create broken ' 'tests.' ) self.max_fixtures = settings.getint( 'AUTOUNIT_MAX_FIXTURES_PER_CALLBACK', default=10 ) self.max_fixtures = \ self.max_fixtures if self.max_fixtures >= 10 else 10 self.base_path = settings.get( 'AUTOUNIT_BASE_PATH', default=os.path.join(get_project_dir(), 'autounit') ) create_dir(self.base_path, exist_ok=True) self.fixture_counters = {} @classmethod def from_crawler(cls, crawler): return cls(crawler.settings) def process_spider_input(self, response, spider): filter_args = {'crawler', 'settings', 'start_urls'} if isinstance(spider, CrawlSpider): filter_args |= {'rules', '_rules'} response.meta['_autounit'] = pickle.dumps({ 'request': parse_request(response.request, spider), 'response': response_to_dict(response), 'spider_args': { k: v for k, v in spider.__dict__.items() if k not in filter_args }, 'middlewares': get_middlewares(spider), }) return None def process_spider_output(self, response, result, spider): settings = spider.settings processed_result = [] out = [] for elem in result: out.append(elem) is_request = isinstance(elem, Request) if is_request: _data = parse_request(elem, spider) else: _data = parse_object(copy.deepcopy(elem), spider) processed_result.append({ 'type': 'request' if is_request else 'item', 'data': _data }) input_data = pickle.loads(response.meta.pop('_autounit')) request = input_data['request'] callback_name = request['callback'] spider_attr_out = { k: v for k, v in spider.__dict__.items() if k not in ('crawler', 'settings', 'start_urls') } data = { 'spider_name': spider.name, 'request': request, 'response': input_data['response'], 'spider_args_out': spider_attr_out, 'result': processed_result, 'spider_args_in': input_data['spider_args'], 'settings': _copy_settings(settings), 'middlewares': input_data['middlewares'], 'python_version': 2 if six.PY2 else 3, } callback_counter = self.fixture_counters.setdefault(callback_name, 0) self.fixture_counters[callback_name] += 1 test_dir, test_name = get_or_create_test_dir( self.base_path, sanitize_module_name(spider.name), callback_name, settings.get('AUTOUNIT_EXTRA_PATH'), ) if callback_counter < self.max_fixtures: add_sample(callback_counter + 1, test_dir, test_name, data) else: r = random.randint(0, callback_counter) if r < self.max_fixtures: add_sample(r + 1, test_dir, test_name, data) return out
31.617021
77
0.593091
3,814
0.855541
0
0
85
0.019067
0
0
681
0.152759
c4a06bb562106e2918ecce48527f9b40a6d8d42c
2,735
py
Python
python_examples/create_tags/utils.py
kirank0220/api-examples
9d6c51eeb2d4e38d95b0b7d88fd30fe96ef28d20
[ "MIT" ]
1
2021-12-20T16:49:00.000Z
2021-12-20T16:49:00.000Z
python_examples/create_tags/utils.py
kirank0220/api-examples
9d6c51eeb2d4e38d95b0b7d88fd30fe96ef28d20
[ "MIT" ]
2
2020-11-20T04:51:16.000Z
2021-06-16T17:02:35.000Z
python_examples/create_tags/utils.py
kirank0220/api-examples
9d6c51eeb2d4e38d95b0b7d88fd30fe96ef28d20
[ "MIT" ]
1
2020-11-20T04:46:17.000Z
2020-11-20T04:46:17.000Z
######################################################################### # _________ ___. ______________________ ___ # \_ ___ \___.__.\_ |__ ___________ / _____/\______ \ \/ / # / \ \< | | | __ \_/ __ \_ __ \/ \ ___ | _/\ / # \ \___\___ | | \_\ \ ___/| | \/\ \_\ \| | \/ \ # \______ / ____| |___ /\___ >__| \______ /|____|_ /___/\ \ # \/\/ \/ \/ \/ \/ \_/ # # import os import json import requests from collections import OrderedDict from openpyxl import Workbook from openpyxl.styles.fills import FILL_SOLID from openpyxl.styles import Color, PatternFill, Font, Border, Side from openpyxl.styles import colors from openpyxl.cell import Cell from tqdm import tqdm from glom import glom def _cell_value(cell): return "{}".format(cell.value).strip() if cell and cell.value else "" def columns_for_headers(row, header_map): mapping = {} for idx, col in enumerate(row): column = _cell_value(col) if column and header_map.get(column, None): mapping[idx] = header_map.get(column, None) return mapping def process_companies(sheet, header_mapping): companies = [] headers = {} for _, row in enumerate(sheet.iter_rows()): if not headers: headers = columns_for_headers(row, header_mapping) if headers and len(headers) != 2: print(headers) raise Exception("Need column headers for both company names and tags") else: company = OrderedDict() for column_index, col in enumerate(row): if column_index not in headers: continue if col.value is not None: try: company[headers[column_index]] = bytearray(col.value, "utf-8").decode("utf-8") except: company[headers[column_index]] = col.value if not company: continue if "tags" not in company: print("Company did not have any tags: ", company, " did you provide the correct column header?") continue if "name" not in company: print("Company did not have a name: ", company, " did you provide the correct column header?") continue company["tags"] = [str(tag).strip() for tag in company["tags"].split(",") if tag and str(tag).strip()] if not company["tags"]: print("Company did not have any tags: ", company) else: companies.append(company) return companies
35.064103
114
0.527971
0
0
0
0
0
0
0
0
798
0.291773
c4a0dfed3531558a43bad867fbac20a6c63fe3e4
3,104
py
Python
gpytorch/lazy/non_lazy_tensor.py
phumm/gpytorch
4e8042bcecda049956f8f9e823d82ba6340766d5
[ "MIT" ]
1
2019-09-30T06:51:03.000Z
2019-09-30T06:51:03.000Z
gpytorch/lazy/non_lazy_tensor.py
phumm/gpytorch
4e8042bcecda049956f8f9e823d82ba6340766d5
[ "MIT" ]
null
null
null
gpytorch/lazy/non_lazy_tensor.py
phumm/gpytorch
4e8042bcecda049956f8f9e823d82ba6340766d5
[ "MIT" ]
1
2020-09-16T16:35:27.000Z
2020-09-16T16:35:27.000Z
#!/usr/bin/env python3 import torch from .lazy_tensor import LazyTensor class NonLazyTensor(LazyTensor): def _check_args(self, tsr): if not torch.is_tensor(tsr): return "NonLazyTensor must take a torch.Tensor; got {}".format(tsr.__class__.__name__) if tsr.dim() < 2: return "NonLazyTensor expects a matrix (or batches of matrices) - got a Tensor of size {}.".format( tsr.shape ) def __init__(self, tsr): """ Not a lazy tensor Args: - tsr (Tensor: matrix) a Tensor """ super(NonLazyTensor, self).__init__(tsr) self.tensor = tsr def _expand_batch(self, batch_shape): return self.__class__(self.tensor.expand(*batch_shape, *self.matrix_shape)) def _get_indices(self, row_index, col_index, *batch_indices): # Perform the __getitem__ res = self.tensor[(*batch_indices, row_index, col_index)] return res def _getitem(self, row_index, col_index, *batch_indices): # Perform the __getitem__ res = self.tensor[(*batch_indices, row_index, col_index)] return self.__class__(res) def _matmul(self, rhs): return torch.matmul(self.tensor, rhs) def _prod_batch(self, dim): return self.__class__(self.tensor.prod(dim)) def _quad_form_derivative(self, left_vecs, right_vecs): res = left_vecs.matmul(right_vecs.transpose(-1, -2)) return (res,) def _size(self): return self.tensor.size() def _sum_batch(self, dim): return self.__class__(self.tensor.sum(dim)) def _transpose_nonbatch(self): return NonLazyTensor(self.tensor.transpose(-1, -2)) def _t_matmul(self, rhs): return torch.matmul(self.tensor.transpose(-1, -2), rhs) def diag(self): if self.tensor.ndimension() < 3: return self.tensor.diag() else: row_col_iter = torch.arange(0, self.matrix_shape[-1], dtype=torch.long, device=self.device) return self.tensor[..., row_col_iter, row_col_iter].view(*self.batch_shape, -1) def evaluate(self): return self.tensor def __add__(self, other): if isinstance(other, NonLazyTensor): return NonLazyTensor(self.tensor + other.tensor) else: return super(NonLazyTensor, self).__add__(other) def mul(self, other): if isinstance(other, NonLazyTensor): return NonLazyTensor(self.tensor * other.tensor) else: return super(NonLazyTensor, self).mul(other) def lazify(obj): """ A function which ensures that `obj` is a LazyTensor. If `obj` is a LazyTensor, this function does nothing. If `obj` is a (normal) Tensor, this function wraps it with a `NonLazyTensor`. """ if torch.is_tensor(obj): return NonLazyTensor(obj) elif isinstance(obj, LazyTensor): return obj else: raise TypeError("object of class {} cannot be made into a LazyTensor".format(obj.__class__.__name__)) __all__ = ["NonLazyTensor", "lazify"]
30.431373
111
0.634665
2,513
0.809601
0
0
0
0
0
0
585
0.188466
c4a0e5d601dd26ad6e285ee33bc0cea8cb5b622e
1,956
py
Python
aoc_wim/aoc2019/q19.py
wimglenn/advent-of-code-wim
6308c3fa5d29b318680419f877fd5b8ac1359b5d
[ "WTFPL" ]
20
2019-10-15T07:33:13.000Z
2022-01-19T13:40:36.000Z
aoc_wim/aoc2019/q19.py
wimglenn/advent-of-code-wim
6308c3fa5d29b318680419f877fd5b8ac1359b5d
[ "WTFPL" ]
5
2019-02-01T23:31:27.000Z
2021-12-03T06:55:58.000Z
aoc_wim/aoc2019/q19.py
wimglenn/advent-of-code-wim
6308c3fa5d29b318680419f877fd5b8ac1359b5d
[ "WTFPL" ]
8
2019-12-03T15:41:23.000Z
2021-12-06T17:13:57.000Z
""" --- Day 19: Tractor Beam --- https://adventofcode.com/2019/day/19 """ from aocd import data from aoc_wim.aoc2019 import IntComputer from aoc_wim.zgrid import ZGrid from aoc_wim.search import Bisect import functools @functools.lru_cache(maxsize=100**2) def beam(z): comp = IntComputer(data, inputs=[int(z.imag), int(z.real)]) comp.run(until=IntComputer.op_output) [result] = comp.output return result def left_edge_of_beam(y, gradient, beam=beam): x = int(y / gradient) z = x + y*1j if beam(z): while beam(z - 1): z -= 1 else: while not beam(z + 1): z += 1 z += 1 assert beam(z) and not beam(z - 1) return z def locate_square(beam, width, gradient_estimate=1., hi=None): d = width - 1 def check(y): z = left_edge_of_beam(y, gradient_estimate, beam) val = beam(z + d * ZGrid.NE) print(f"y={y}", "wide" if val else "narrow") return val bisect = Bisect(check, lo=d, hi=hi) print("bisecting...") y = bisect.run() + 1 z = left_edge_of_beam(y, gradient_estimate, beam) + d * ZGrid.N return z if __name__ == "__main__": print("populating 50x50 zgrid...") grid = ZGrid() x0 = 0 for y in range(50): on = False for x in range(x0, 50): z = x + y * 1j val = grid[z] = beam(z) if not on and val: on = True x0 = x if x0: m = y / x0 if on and not val: break print("part a", sum(grid.values())) grid.translate({0: ".", 1: "#"}) grid.draw() print("initial gradient is approx -->", m) print("refining gradient estimate -->", end=" ") z = left_edge_of_beam(2000, gradient=m) m = z.imag/z.real print(m) z = locate_square(beam, width=100, gradient_estimate=m) print("part b", int(z.real)*10000 + int(z.imag))
24.759494
67
0.552147
0
0
0
0
200
0.102249
0
0
235
0.120143
c4a20cea738e338abf0c6eb0710a2bbf72908f18
378
py
Python
BlurDetection.py
samaritan-security/samaritan-backend
3a4450e4a2e7a823d6d2fb1e982871ac0aa97744
[ "WTFPL" ]
null
null
null
BlurDetection.py
samaritan-security/samaritan-backend
3a4450e4a2e7a823d6d2fb1e982871ac0aa97744
[ "WTFPL" ]
59
2020-02-05T03:09:43.000Z
2020-04-23T19:29:58.000Z
BlurDetection.py
samaritan-security/samaritan-backend
3a4450e4a2e7a823d6d2fb1e982871ac0aa97744
[ "WTFPL" ]
null
null
null
import cv2 def variance_of_laplacian(image): return cv2.Laplacian(image, cv2.CV_64F).var() """ checks if an image is blurry returns True if blurry, False otherwise """ def detect_blurry_image(image, threshold): gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) blur = variance_of_laplacian(image) if(blur < threshold): return True return False
19.894737
50
0.708995
0
0
0
0
0
0
0
0
76
0.201058
c4a251a0e7e64524dd68b799ffbb2a257e20933b
894
py
Python
python-essential-training/4_operators/main.py
alexprodan99/python-workspace
8c805afc29fafe3916759d1cf07e597f945b8b45
[ "MIT" ]
null
null
null
python-essential-training/4_operators/main.py
alexprodan99/python-workspace
8c805afc29fafe3916759d1cf07e597f945b8b45
[ "MIT" ]
null
null
null
python-essential-training/4_operators/main.py
alexprodan99/python-workspace
8c805afc29fafe3916759d1cf07e597f945b8b45
[ "MIT" ]
null
null
null
def main(): # Arithmetic operators a = 7 b = 2 print(f'{a} + {b} = {a+b}') print(f'{a} - {b} = {a-b}') print(f'{a} * {b} = {a*b}') print(f'{a} / {b} = {a/b}') print(f'{a} // {b} = {a//b}') print(f'{a} % {b} = {a%b}') print(f'{a} ^ {b} = {a**b}') # Bitwise operators # &, |, ^, <<, >> print(f'{a} & {b} = {a&b}') print(f'{a} | {b} = {a|b}') print(f'{a} ^ {b} = {a^b}') print(f'{a} << {b} = {a<<b}') print(f'{a} >> {b} = {a>>b}') a = 0xff print(a) # 255 # fill with zeroes and second arg is the minimum number of bits that will be displayed print(f'hex(a)={a:03x}') # 0ff print(f'bin(a)={a:09b}') # Comparison operators # >,<,==,!=, >=, <= # Boolean operators # and, or, not, in, not in, is, is not if __name__ == '__main__': main()
21.804878
90
0.401566
0
0
0
0
0
0
0
0
543
0.607383
c4a2a593c0a2d8ff337685d877ea3ffe9f0a0f35
2,689
py
Python
UPGen/utils.py
HenryLiangzy/COMP9517_Group
83be7304bee47d52781ea71f06838cd148dbd0bd
[ "Apache-2.0" ]
21
2020-04-24T01:14:30.000Z
2021-11-26T09:44:00.000Z
UPGen/utils.py
HenryLiangzy/COMP9517_Group
83be7304bee47d52781ea71f06838cd148dbd0bd
[ "Apache-2.0" ]
null
null
null
UPGen/utils.py
HenryLiangzy/COMP9517_Group
83be7304bee47d52781ea71f06838cd148dbd0bd
[ "Apache-2.0" ]
2
2020-05-18T11:43:17.000Z
2020-06-19T13:13:14.000Z
""" Helper functions and utilities """ from datetime import datetime as dt from mrcnn import visualize import numpy as np import os import cv2 TIMESTAMP_FORMAT = "%d/%m/%Y %H:%M:%S" class Logger(object): """ Log events and information to a file """ def __init__(self, savePath): self.savePath = savePath self.log_file = open(self.savePath, 'a') self.log_line("Start of Log File") def close(self): self.log_line("End of Log File") self.log_file.close() def flush(self): self.log_file.flush() def time_stamp(self): now = dt.now() date_time = now.strftime(TIMESTAMP_FORMAT) self.log_file.write(date_time + ': ') def log_line(self, *args): ''' Write each thing to the log file ''' self.time_stamp() for log_item in args: self.log_file.write(str(log_item) + ' ') self.log_file.write('\n') self.flush() def log(self, *args): ''' Write each thing to the log file ''' self.time_stamp() for log_item in args: self.log_file.write(str(log_item) + ' ') self.flush() def newline(self): self.log_file.write("\n") self.flush() def mask_to_rgb(mask): """ Converts a mask to RGB Format """ colours = visualize.random_colors(mask.shape[2]) rgb_mask = np.zeros((mask.shape[0], mask.shape[1], 3)) for i in range(mask.shape[2]): for c in range(3): rgb_mask[:, :, c] = np.where(mask[:, :, i] != 0, int(colours[i][c] * 255), rgb_mask[:, :, c]) return rgb_mask def mask_to_outlined(mask): """ Converts a mask to RGB Format """ colours = visualize.random_colors(mask.shape[2]) rgb_mask = np.zeros((mask.shape[0], mask.shape[1], 3)) for i in range(mask.shape[2]): for c in range(3): rgb_mask[:, :, c] = np.where(mask[:, :, i] != 0, int(colours[i][c] * 255), rgb_mask[:, :, c]) # put edges over the top of the colours for i in range(mask.shape[2]): # Find the contour of the leaf threshold = mask[:, :, i] threshold[threshold != 0] = 255 _, contours, hierarchy = cv2.findContours(threshold.astype(np.uint8),cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) # Draw outline on mask if len(contours) > 0: cv2.drawContours(rgb_mask, [contours[0]], 0, (255, 255, 255), thickness=1) return rgb_mask def check_create_dir(directory): if not os.path.isdir(directory): print("creating directory:", directory) os.mkdir(directory) return True return False
25.855769
115
0.579026
1,103
0.41019
0
0
0
0
0
0
480
0.178505
c4a31e4a9faadb779ad5e3539b89e160045375e9
108
py
Python
lmctl/project/mutate/base.py
manojn97/lmctl
844925cb414722351efac90cb97f10c1185eef7a
[ "Apache-2.0" ]
3
2021-07-19T09:46:01.000Z
2022-03-07T13:51:25.000Z
lmctl/project/mutate/base.py
manojn97/lmctl
844925cb414722351efac90cb97f10c1185eef7a
[ "Apache-2.0" ]
43
2019-08-27T12:36:29.000Z
2020-08-27T14:50:40.000Z
lmctl/project/mutate/base.py
manojn97/lmctl
844925cb414722351efac90cb97f10c1185eef7a
[ "Apache-2.0" ]
7
2020-09-22T20:32:17.000Z
2022-03-29T12:25:51.000Z
import abc class Mutator(abc.ABC): def apply(self, original_content): return original_content
15.428571
38
0.712963
95
0.87963
0
0
0
0
0
0
0
0
c4a3253a85318d51afd9e6db7f79225a1972648a
630
py
Python
src/django_otp/conf.py
jaap3/django-otp
d7980bf516018319158570cc75353c905375a3ab
[ "BSD-2-Clause" ]
318
2019-08-27T15:57:05.000Z
2022-03-30T08:38:29.000Z
src/django_otp/conf.py
jaap3/django-otp
d7980bf516018319158570cc75353c905375a3ab
[ "BSD-2-Clause" ]
77
2019-09-17T11:48:38.000Z
2022-03-13T17:26:56.000Z
src/django_otp/conf.py
jaap3/django-otp
d7980bf516018319158570cc75353c905375a3ab
[ "BSD-2-Clause" ]
76
2019-08-30T20:29:40.000Z
2022-03-30T09:14:36.000Z
import django.conf class Settings: """ This is a simple class to take the place of the global settings object. An instance will contain all of our settings as attributes, with default values if they are not specified by the configuration. """ defaults = { 'OTP_LOGIN_URL': django.conf.settings.LOGIN_URL, 'OTP_ADMIN_HIDE_SENSITIVE_DATA': False, } def __getattr__(self, name): if name in self.defaults: return getattr(django.conf.settings, name, self.defaults[name]) else: return getattr(django.conf.settings, name) settings = Settings()
27.391304
80
0.668254
584
0.926984
0
0
0
0
0
0
269
0.426984
c4a3547cec59bda0f54c29fe3708b9bf82715b42
544
py
Python
Moderation/purge.py
DevFlock/Multis
8332edddcbb957ad8fc47766d102295da8aef591
[ "MIT" ]
3
2020-12-27T20:32:14.000Z
2021-09-02T08:59:34.000Z
Moderation/purge.py
DevFlock/Multis
8332edddcbb957ad8fc47766d102295da8aef591
[ "MIT" ]
1
2021-05-09T21:44:42.000Z
2022-03-01T22:36:53.000Z
Moderation/purge.py
DevFlock/Multis
8332edddcbb957ad8fc47766d102295da8aef591
[ "MIT" ]
1
2021-05-10T22:55:41.000Z
2021-05-10T22:55:41.000Z
import asyncio import discord from discord.ext import commands from discord.ext.commands.core import has_permissions class cog(commands.Cog): def __init__(self, client): self.client = client @commands.command(aliases=["clear"]) @has_permissions(ban_members=True) async def purge(self, ctx, count): await ctx.channel.purge(limit=count+1) message = await ctx.send(f"Deleted {count} messages.") asyncio.sleep(2) await message.delete() def setup(client): client.add_cog(cog(client))
24.727273
62
0.693015
373
0.685662
0
0
281
0.516544
201
0.369485
35
0.064338
c4a3b7fd35e583f4df4df37c10b28021b5e84c76
184
py
Python
tensorboard/acceptance/__init__.py
DeepLearnI/atlas
8aca652d7e647b4e88530b93e265b536de7055ed
[ "Apache-2.0" ]
296
2020-03-16T19:55:00.000Z
2022-01-10T19:46:05.000Z
tensorboard/acceptance/__init__.py
DeepLearnI/atlas
8aca652d7e647b4e88530b93e265b536de7055ed
[ "Apache-2.0" ]
57
2020-03-17T11:15:57.000Z
2021-07-10T14:42:27.000Z
tensorboard/acceptance/__init__.py
DeepLearnI/atlas
8aca652d7e647b4e88530b93e265b536de7055ed
[ "Apache-2.0" ]
38
2020-03-17T21:06:05.000Z
2022-02-08T03:19:34.000Z
from .test_tensorboard_rest_api import TestTensorboardRestAPI from .test_tensorboard_server import TestTensorboardServer from .test_tensorboard_endpoints import TestTensorboardEndpoint
61.333333
63
0.923913
0
0
0
0
0
0
0
0
0
0
c4a3dde4993c9a95e8e97065cdef59f7fea5aa64
3,988
py
Python
tests/store/test_fetch_purchases_to_ship.py
yuzi-ziyu/alphasea-agent
a8ff803fd7dedd50c757630aa83b79fb624c0414
[ "CC0-1.0" ]
1
2022-01-27T14:29:39.000Z
2022-01-27T14:29:39.000Z
tests/store/test_fetch_purchases_to_ship.py
yuzi-ziyu/alphasea-agent
a8ff803fd7dedd50c757630aa83b79fb624c0414
[ "CC0-1.0" ]
null
null
null
tests/store/test_fetch_purchases_to_ship.py
yuzi-ziyu/alphasea-agent
a8ff803fd7dedd50c757630aa83b79fb624c0414
[ "CC0-1.0" ]
null
null
null
from unittest import TestCase from ..helpers import ( create_web3, create_contract, get_future_execution_start_at_timestamp, proceed_time, get_prediction_time_shift, get_purchase_time_shift, get_shipping_time_shift, get_publication_time_shift, get_tournament_id, get_chain_id, create_store, generate_redis_namespace, BaseHardhatTestCase ) from src.web3 import get_account_address execution_start_at = get_future_execution_start_at_timestamp() content = 'abc'.encode() model_id = 'model1' model_id_other = 'model_other' class TestStoreFetchPurchasesToShip(BaseHardhatTestCase): def setUp(self): super().setUp() w3 = create_web3() contract = create_contract(w3) store = create_store(w3, contract) self.store = store self.w3 = w3 w3_other = create_web3(account_index=1) contract_other = create_contract(w3_other) store_other = create_store(w3_other, contract_other) w3_purchaser = create_web3(account_index=2) contract_purchaser = create_contract(w3_purchaser) store_purchaser = create_store(w3_purchaser, contract_purchaser) self.store_purchaser = store_purchaser self.w3_purchaser = w3_purchaser # predict proceed_time(w3, execution_start_at + get_prediction_time_shift()) store.create_models_if_not_exist([dict( model_id=model_id, tournament_id=get_tournament_id(), prediction_license='CC0-1.0', )]) store.create_predictions([dict( model_id=model_id, execution_start_at=execution_start_at, content=content, price=1, )]) # other predict store_other.create_models_if_not_exist([dict( model_id=model_id_other, tournament_id=get_tournament_id(), prediction_license='CC0-1.0', )]) store_other.create_predictions([dict( model_id=model_id_other, execution_start_at=execution_start_at, content=content, price=1, )]) # purchase proceed_time(w3, execution_start_at + get_purchase_time_shift()) store_purchaser.create_purchases([dict( model_id=model_id, execution_start_at=execution_start_at, ), dict( model_id=model_id_other, execution_start_at=execution_start_at, )]) def test_ok(self): purchases = self.store.fetch_purchases_to_ship( tournament_id=get_tournament_id(), execution_start_at=execution_start_at ) self.assertEqual(purchases, [{ **purchases[0], 'model_id': model_id, 'execution_start_at': execution_start_at, 'purchaser': get_account_address(self.w3_purchaser.eth.default_account), }]) def test_different_tournament_id(self): purchases = self.store.fetch_purchases_to_ship( tournament_id='different', execution_start_at=execution_start_at ) self.assertEqual(purchases, []) def test_different_execution_start_at(self): purchases = self.store.fetch_purchases_to_ship( tournament_id=get_tournament_id(), execution_start_at=execution_start_at + 1, ) self.assertEqual(purchases, []) def test_already_shipped(self): store = self.store # ship proceed_time(self.w3, execution_start_at + get_shipping_time_shift()) store.ship_purchases([dict( model_id=model_id, execution_start_at=execution_start_at, purchaser=get_account_address(self.w3_purchaser.eth.default_account), )]) purchases = store.fetch_purchases_to_ship( tournament_id=get_tournament_id(), execution_start_at=execution_start_at, ) self.assertEqual(purchases, [])
31.904
84
0.654965
3,412
0.855567
0
0
0
0
0
0
136
0.034102
c4a4559c8dad0a9248c5e83d6827ea4d86bb7ecb
579
py
Python
tests/test_add_option_backtrace.py
ponponon/loguru
d38ced7539b888e9e9db7495f49f4499b3ee77e1
[ "MIT" ]
11,391
2018-12-08T17:44:13.000Z
2022-03-31T17:55:24.000Z
tests/test_add_option_backtrace.py
ponponon/loguru
d38ced7539b888e9e9db7495f49f4499b3ee77e1
[ "MIT" ]
610
2018-12-08T18:03:03.000Z
2022-03-31T22:28:14.000Z
tests/test_add_option_backtrace.py
ponponon/loguru
d38ced7539b888e9e9db7495f49f4499b3ee77e1
[ "MIT" ]
601
2018-12-08T17:46:42.000Z
2022-03-30T04:23:56.000Z
from loguru import logger # See "test_catch_exceptions.py" for extended testing def test_backtrace(writer): logger.add(writer, format="{message}", backtrace=True) try: 1 / 0 except Exception: logger.exception("") result_with = writer.read().strip() logger.remove() writer.clear() logger.add(writer, format="{message}", backtrace=False) try: 1 / 0 except Exception: logger.exception("") result_without = writer.read().strip() assert len(result_with.splitlines()) > len(result_without.splitlines())
23.16
75
0.651123
0
0
0
0
0
0
0
0
79
0.136442
c4a4edff90f57692413fd77c390b6d607d322a51
251
py
Python
BasicPythonPrograms/PythonDestructor.py
Pushkar745/PythonProgramming
ea60e97b70d46fb63ef203913c8b3f9570232dd3
[ "Apache-2.0" ]
null
null
null
BasicPythonPrograms/PythonDestructor.py
Pushkar745/PythonProgramming
ea60e97b70d46fb63ef203913c8b3f9570232dd3
[ "Apache-2.0" ]
null
null
null
BasicPythonPrograms/PythonDestructor.py
Pushkar745/PythonProgramming
ea60e97b70d46fb63ef203913c8b3f9570232dd3
[ "Apache-2.0" ]
null
null
null
class Employee: #Initializaing def __init__(self): print('Employee created ') #Deleting (Calling destructor) def __del__(self): print('Destructor called,Employee deleted') obj=Employee() del obj
25.1
55
0.609562
216
0.860558
0
0
0
0
0
0
99
0.394422
c4a64cd498868ef1b6019445d7127a1f346b9fe4
13,670
py
Python
envi/registers.py
ConfusedMoonbear/vivisect
8d6048037f85f745cd11923c6a8d662c150fe330
[ "ECL-2.0", "Apache-2.0" ]
1
2019-12-11T19:13:59.000Z
2019-12-11T19:13:59.000Z
envi/registers.py
ConfusedMoonbear/vivisect
8d6048037f85f745cd11923c6a8d662c150fe330
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
envi/registers.py
ConfusedMoonbear/vivisect
8d6048037f85f745cd11923c6a8d662c150fe330
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
""" Similar to the memory subsystem, this is a unified way to access information about objects which contain registers """ import envi.bits as e_bits from envi.const import * class InvalidRegisterName(Exception): pass class RegisterContext: def __init__(self, regdef=(), metas=(), pcindex=None, spindex=None, srindex=None): """ Hand in a register definition which consists of a list of (<name>, <width>) tuples. """ self.loadRegDef(regdef) self.loadRegMetas(metas) self.setRegisterIndexes(pcindex, spindex, srindex=srindex) self._rctx_dirty = False def getRegisterSnap(self): """ Use this to bulk save off the register state. """ return list(self._rctx_vals) def setRegisterSnap(self, snap): """ Use this to bulk restore the register state. NOTE: This may only be used under the assumption that the RegisterContext has been initialized the same way (like context switches in tracers, or emulaction snaps) """ self._rctx_vals = list(snap) def isDirty(self): """ Returns true if registers in this context have been modififed since their import. """ return self._rctx_dirty def setIsDirty(self, bool): self._rctx_dirty = bool def setRegisterIndexes(self, pcindex, spindex, srindex=None): self._rctx_pcindex = pcindex self._rctx_spindex = spindex self._rctx_srindex = srindex def loadRegDef(self, regdef, defval=0): """ Load a register definition. A register definition consists of a list of tuples with the following format: (regname, regwidth) NOTE: All widths in envi RegisterContexts are in bits. """ self._rctx_regdef = regdef # Save this for snaps etc.. self._rctx_names = {} self._rctx_ids = {} self._rctx_widths = [] self._rctx_vals = [] self._rctx_masks = [] for i, (name, width) in enumerate(regdef): self._rctx_names[name] = i self._rctx_ids[i] = name self._rctx_widths.append(width) self._rctx_masks.append((2**width)-1) self._rctx_vals.append(defval) def getRegDef(self): return self._rctx_regdef def loadRegMetas(self, metas, statmetas=None): """ Load a set of defined "meta" registers for this architecture. Meta registers are defined as registers who exist as a subset of the bits in some other "real" register. The argument metas is a list of tuples with the following format: (regname, regidx, reg_shift_offset, reg_width) The given example is for the AX register in the i386 subsystem regname: "ax" reg_shift_offset: 0 reg_width: 16 Optionally a set of status meta registers can be loaded as well. The argument is a list of tuples with the following format: (regname, regidx, reg_shift_offset, reg_width, description) """ self._rctx_regmetas = metas for name, idx, offset, width in metas: self.addMetaRegister(name, idx, offset, width) self._rctx_statmetas = statmetas def addMetaRegister(self, name, idx, offset, width): """ Meta registers are registers which are really just directly addressable parts of already existing registers (eax -> al). To add a meta register, you give the name, the idx of the *real* register, the width of the meta reg, and it's left shifted (in bits) offset into the real register value. The RegisterContext will take care of accesses after that. """ newidx = (offset << 24) + (width << 16) + idx self._rctx_names[name] = newidx self._rctx_ids[newidx] = name def isMetaRegister(self, index): return (index & 0xffff) != index def _rctx_Import(self, sobj): """ Given an object with attributes with the same names as registers in our context, populate our values from it. NOTE: This also clears the dirty flag """ # On import from a structure, we are clean again. self._rctx_dirty = False for name,idx in self._rctx_names.items(): # Skip meta registers if (idx & 0xffff) != idx: continue x = getattr(sobj, name, None) if x != None: self._rctx_vals[idx] = x def _rctx_Export(self, sobj): """ Given an object with attributes with the same names as registers in our context, set the ones he has to match our values. """ for name,idx in self._rctx_names.items(): # Skip meta registers if (idx & 0xffff) != idx: continue if hasattr(sobj, name): setattr(sobj, name, self._rctx_vals[idx]) def getRegisterInfo(self, meta=False): """ Return an object which can be stored off, and restored to re-initialize a register context. (much like snapshot but it takes the definitions with it) """ regdef = self._rctx_regdef regmeta = self._rctx_regmetas pcindex = self._rctx_pcindex spindex = self._rctx_spindex snap = self.getRegisterSnap() return (regdef, regmeta, pcindex, spindex, snap) def setRegisterInfo(self, info): regdef, regmeta, pcindex, spindex, snap = info self.loadRegDef(regdef) self.loadRegMetas(regmeta) self.setRegisterIndexes(pcindex, spindex) self.setRegisterSnap(snap) def getRegisterName(self, index): return self._rctx_ids.get(index,"REG%.8x" % index) def getProgramCounter(self): """ Get the value of the program counter for this register context. """ return self.getRegister(self._rctx_pcindex) def setProgramCounter(self, value): """ Set the value of the program counter for this register context. """ self.setRegister(self._rctx_pcindex, value) def getStackCounter(self): return self.getRegister(self._rctx_spindex) def setStackCounter(self, value): self.setRegister(self._rctx_spindex, value) def hasStatusRegister(self): ''' Returns True if this context is aware of a status register. ''' if self._rctx_srindex == None: return False return True def getStatusRegNameDesc(self): ''' Return a list of status register names and descriptions. ''' return [(name, desc) for name, idx, offset, width, desc in self._rctx_statmetas] def getStatusRegister(self): ''' Gets the status register for this register context. ''' return self.getRegister(self._rctx_srindex) def setStatusRegister(self, value): ''' Sets the status register for this register context. ''' self.setRegister(self._rctx_srindex, value) def getStatusFlags(self): ''' Return a dictionary of reg name and reg value for the meta registers that are part of the status register. ''' ret = {} for name, idx, offset, width, desc in self._rctx_statmetas: ret[name] = self.getRegisterByName(name) return ret def getRegisterByName(self, name): idx = self._rctx_names.get(name) if idx == None: raise InvalidRegisterName("Unknown Register: %s" % name) return self.getRegister(idx) def setRegisterByName(self, name, value): idx = self._rctx_names.get(name) if idx == None: raise InvalidRegisterName("Unknown Register: %s" % name) self.setRegister(idx, value) def getRegisterNames(self): ''' Returns a list of the 'real' (non meta) registers. ''' regs = [rname for rname, ridx in self._rctx_names.items() if not self.isMetaRegister(ridx)] return regs def getRegisterNameIndexes(self): ''' Return a list of all the 'real' (non meta) registers and their indexes. Example: for regname, regidx in x.getRegisterNameIndexes(): ''' regs = [(rname, ridx) for rname, ridx in self._rctx_names.items() if not self.isMetaRegister(ridx)] return regs def getRegisters(self): """ Get all the *real* registers from this context as a dictionary of name value pairs. """ ret = {} for name,idx in self._rctx_names.items(): if (idx & 0xffff) != idx: continue ret[name] = self.getRegister(idx) return ret def setRegisters(self, regdict): """ For any name value pairs in the specified dictionary, set the current register values in this context. """ for name,value in regdict.items(): self.setRegisterByName(name, value) def getRegisterIndex(self, name): """ Get a register index by name. (faster to use the index multiple times) """ return self._rctx_names.get(name) def getRegisterWidth(self, index): """ Return the width of the register which lives at the specified index (width is always in bits). """ ridx = index & 0xffff if ridx == index: return self._rctx_widths[index] width = (index >> 16) & 0xff return width def getRegister(self, index): """ Return the current value of the specified register index. """ ridx = index & 0xffff value = self._rctx_vals[ridx] if ridx != index: value = self._xlateToMetaReg(index, value) return value def getMetaRegInfo(self, index): ''' Return the appropriate realreg, shift, mask info for the specified metareg idx (or None if it's not meta). Example: real_reg, lshift, mask = r.getMetaRegInfo(x) ''' ridx = index & 0xffff if ridx == index: return None offset = (index >> 24) & 0xff width = (index >> 16) & 0xff mask = (2**width)-1 return ridx, offset, mask def _xlateToMetaReg(self, index, value): ''' Translate a register value to the meta register value (used when getting a meta register) ''' ridx = index & 0xffff offset = (index >> 24) & 0xff width = (index >> 16) & 0xff mask = (2**width)-1 if offset != 0: value >>= offset return value & mask def _xlateToNativeReg(self, index, value): ''' Translate a register value to the native register value (used when setting a meta register) ''' ridx = index & 0xffff width = (index >> 16) & 0xff offset = (index >> 24) & 0xff # FIXME is it faster to generate or look these up? mask = (2 ** width) - 1 mask = mask << offset # NOTE: basewidth is in *bits* basewidth = self._rctx_widths[ridx] basemask = (2 ** basewidth) - 1 # cut a whole in basemask at the size/offset of mask finalmask = basemask ^ mask curval = self._rctx_vals[ridx] if offset: value <<= offset return value | (curval & finalmask) def setRegister(self, index, value): """ Set a register value by index. """ self._rctx_dirty = True ridx = index & 0xffff # If it's a meta register index, lets mask it into # the real thing... if ridx != index: value = self._xlateToNativeReg(index, value) self._rctx_vals[ridx] = (value & self._rctx_masks[ridx]) def getRealRegisterNameByIdx(self, regidx): """ Returns the Name of the Containing register (in the case of meta-registers) or the name of the register. (by Index) """ return self.getRegisterName(regidx& RMETA_NMASK) def getRealRegisterName(self, regname): """ Returns the Name of the Containing register (in the case of meta-registers) or the name of the register. """ ridx = self.getRegisterIndex(regname) if ridx != None: return self.getRegisterName(ridx & RMETA_NMASK) return regname def addLocalEnums(l, regdef): """ Update a dictionary (or module locals) with REG_FOO index values for all the base registers defined in regdef. """ for i,(rname,width) in enumerate(regdef): l["REG_%s" % rname.upper()] = i def addLocalStatusMetas(l, metas, statmetas, regname): ''' Dynamically create data based on the status register meta register definition. Adds new meta registers and bitmask constants. ''' for metaname, idx, offset, width, desc in statmetas: # create meta registers metas.append( (metaname, idx, offset, width) ) # create local bitmask constants (EFLAGS_%) l['%s_%s' % (regname, metaname)] = 1 << offset # TODO: fix for arbitrary width def addLocalMetas(l, metas): """ Update a dictionary (or module locals) with REG_FOO index values for all meta registers defined in metas. """ for name, idx, offset, width in metas: l["REG_%s" % name.upper()] = (offset << 24) | (width << 16) | idx
31.643519
88
0.59744
12,466
0.911924
0
0
0
0
0
0
5,689
0.416167
c4a6ac024777e5d5757393235c2f8a34ef55a681
531
py
Python
services/nris-api/backend/app/extensions.py
parc-jason/mds
8f181a429442208a061ed72065b71e6c2bd0f76f
[ "Apache-2.0" ]
null
null
null
services/nris-api/backend/app/extensions.py
parc-jason/mds
8f181a429442208a061ed72065b71e6c2bd0f76f
[ "Apache-2.0" ]
null
null
null
services/nris-api/backend/app/extensions.py
parc-jason/mds
8f181a429442208a061ed72065b71e6c2bd0f76f
[ "Apache-2.0" ]
null
null
null
from flask_caching import Cache from flask_jwt_oidc import JwtManager from flask_sqlalchemy import SQLAlchemy from flask_migrate import Migrate, MigrateCommand from flask import current_app from elasticapm.contrib.flask import ElasticAPM from .config import Config from .helper import Api apm = ElasticAPM() db = SQLAlchemy() migrate = Migrate() jwt = JwtManager() cache = Cache() api = Api( prefix=f'{Config.BASE_PATH}', doc=f'{Config.BASE_PATH}/', default='nris_api', default_label='NRIS related operations')
23.086957
49
0.770245
0
0
0
0
0
0
0
0
78
0.146893
c4a933bda29b080bd1aab7e22c3ee0df61cffb17
3,510
py
Python
tests/test_mqtt_async.py
mpi-sws-rse/antevents-python
5b9226813583141986014fc83f6f74342a5f271e
[ "Apache-2.0" ]
7
2016-09-27T00:21:46.000Z
2017-03-18T20:04:29.000Z
tests/test_mqtt_async.py
mpi-sws-rse/antevents-python
5b9226813583141986014fc83f6f74342a5f271e
[ "Apache-2.0" ]
null
null
null
tests/test_mqtt_async.py
mpi-sws-rse/antevents-python
5b9226813583141986014fc83f6f74342a5f271e
[ "Apache-2.0" ]
2
2017-03-16T21:47:43.000Z
2020-10-20T22:58:03.000Z
# Copyright 2017 by MPI-SWS and Data-Ken Research. # Licensed under the Apache 2.0 License. """Test async version of mqtt libraries. Depends on hbmqtt (https://github.com/beerfactory/hbmqtt) """ import unittest import sys import asyncio import string from random import choice, seed from antevents.base import Scheduler, SensorPub, SensorEvent import antevents.linq.output import antevents.linq.combinators import antevents.linq.select from antevents.adapters.mqtt_async import QueueWriter, QueueReader from antevents.linq.transducer import PeriodicMedianTransducer from utils import ValueListSensor, ValidateAndStopSubscriber seed() try: import hbmqtt HBMQTT_AVAILABLE = True except ImportError: HBMQTT_AVAILABLE = False URL = "mqtt://localhost:1883" VALUES = [ 1.0, 2.5, 3.7, 4.1, 8.1, 0.5, 6.5, 4.5, 3.9, 6.5 ] EXPECTED = [ 2.5, 4.1, 4.5, 6.5 ] def msg_to_event(msg): return SensorEvent(sensor_id=msg[0], ts=msg[1], val=msg[2]) CHARS=string.ascii_letters+string.digits def get_topic_name(test_class): return test_class.__class__.__name__ + ''.join([ choice(CHARS) for i in range(5) ]) @unittest.skipUnless(HBMQTT_AVAILABLE, "HBMQTT library not installed for python at %s" % sys.executable) class TestCase(unittest.TestCase): def setUp(self): # Creating a new event loop each test case does not seem to work. # I think it is due to hbmqtt not cleaning up some state in the asyncio # layer. #self.loop = asyncio.new_event_loop() self.loop = asyncio.get_event_loop() self.sched = Scheduler(self.loop) def tearDown(self): pass #self.loop.stop() #self.loop.close() def test_client_only(self): SENSOR_ID='sensor-1' TOPIC=get_topic_name(self) sensor = SensorPub(ValueListSensor(SENSOR_ID, VALUES)) td = sensor.transduce(PeriodicMedianTransducer(period=3)) qw = QueueWriter(td, URL, TOPIC, self.sched) qw.output() self.sched.schedule_periodic(sensor, 0.5) self.sched.run_forever() self.assertFalse(qw.has_pending_requests(), "QueueWriter has pending requests: %s" % qw.dump_state()) print("test_client_only completed") def send_and_recv_body(self, sleep_timeout): SENSOR_ID='sensor-1' TOPIC=get_topic_name(self) sensor = SensorPub(ValueListSensor(SENSOR_ID, VALUES)) td = sensor.transduce(PeriodicMedianTransducer(period=3)) qw = QueueWriter(td, URL, TOPIC, self.sched) qw.output() qr = QueueReader(URL, TOPIC, self.sched, timeout=sleep_timeout) self.sched.schedule_periodic(sensor, 0.5) stop_qr = self.sched.schedule_on_main_event_loop(qr) vs = ValidateAndStopSubscriber(EXPECTED, self, stop_qr) qr.select(msg_to_event).subscribe(vs) self.sched.run_forever() self.assertFalse(qw.has_pending_requests(), "QueueWriter has pending requests: %s" % qw.dump_state()) self.assertEqual(qr.state, QueueReader.FINAL_STATE) self.assertEqual(vs.next_idx, len(EXPECTED)) print("send_and_recv_bod(%s) completed" % sleep_timeout) def test_short_timeout(self): self.send_and_recv_body(0.1) def test_long_timeout(self): self.send_and_recv_body(3.0) if __name__ == '__main__': unittest.main()
30
88
0.665242
2,116
0.602849
0
0
2,263
0.644729
0
0
648
0.184615
c4ac27bb61de371ddbaa59cbf8dcb19f1eb8972f
7,407
py
Python
edit/main.py
team-alpha-kr/Partner-pyWeb
da88f10b4c511616219a701a794fa0a5ef33f01b
[ "Apache-2.0" ]
null
null
null
edit/main.py
team-alpha-kr/Partner-pyWeb
da88f10b4c511616219a701a794fa0a5ef33f01b
[ "Apache-2.0" ]
null
null
null
edit/main.py
team-alpha-kr/Partner-pyWeb
da88f10b4c511616219a701a794fa0a5ef33f01b
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf8 -*- import os from flask import Flask, request, render_template, request, redirect, url_for, jsonify from flask_discord import DiscordOAuth2Session, requires_authorization from discord import Webhook, RequestsWebhookAdapter webhook = Webhook.partial(814742019489660939, "rvSBVHtGPflSASjeGEEKdZxC5Z_w1UM_ovc_xD0ZPcFy1UeUybFM4ClGANu6CEWTQame", adapter=RequestsWebhookAdapter()) run_webhook = Webhook.partial(804602090537091072, "6ZMww14Nh7OVeeHUt5bWeixreoWQmSzPVfFmIpU3BEr8OYLGqickY1VyoqH2IeMs1Kd8", adapter=RequestsWebhookAdapter()) app = Flask(__name__) app.secret_key = b"%\xe0'\x01\xdeH\x8e\x85m|\xb3\xffCN\xc9g" os.environ["OAUTHLIB_INSECURE_TRANSPORT"] = "false" app.config["DISCORD_CLIENT_ID"] = "801279922722045962" app.config["DISCORD_CLIENT_SECRET"] = "zosKMQ95etnO1dZv7D5vet7TyVhyXwt5" # Discord client secret. # app.config["DISCORD_REDIRECT_URI"] = "http://localhost:3333/callback" # URL to your callback endpoint. app.config["DISCORD_REDIRECT_URI"] = "https://partner-e.alphakr.xyz/callback" # URL to your callback endpoint. app.config["DISCORD_BOT_TOKEN"] = "ODAxMjc5OTIyNzIyMDQ1OTYy.YAeYFA.G9TddtDdPZ3Xlb7AAHD6ddVWVbY" discord = DiscordOAuth2Session(app) def on_json_loading_failed_return_dict(e): return 'μ—†μŒ' @app.route('/', methods=['GET','POST']) def index(): return render_template('form/1.html') @app.route("/login", methods=["GET"]) def login(): if not discord.authorized: return discord.create_session(scope=['guilds', 'email', 'identify']) else: return render_template("login.html") @app.route("/callback", methods=["GET", "POST"]) def callback(): data = discord.callback() redirect_to = data.get("redirect", "/form/1") return redirect(redirect_to) @app.route("/logout", methods=['GET', 'POST']) def logout(): if discord.authorized: discord.revoke() return redirect(url_for("index")) else: return redirect(url_for("index")) @app.route('/form/1', methods=['GET','POST']) def form1(): if request.method == 'GET': if discord.authorized: #둜그인이 λ˜μ–΄μžˆλŠ”κ°€ try: discord.fetch_guilds() #λ‘œκ·ΈμΈμ •λ³΄μ„ 가져와라 except: return redirect(url_for("logout")) #λͺ»κ°€μ Έμ˜€λ©΄ λ‘œκ·Έμ•„μ›ƒ user = discord.fetch_user() return render_template('form/1.html', user=user) else: #둜그인이 μ•ˆλ˜μ–΄μžˆλŠ”κ°€? return redirect(url_for("login")) else: if discord.authorized: #둜그인이 λ˜μ–΄μžˆλŠ”κ°€ try: discord.fetch_guilds() #λ‘œκ·ΈμΈμ •λ³΄μ„ 가져와라 except: return redirect(url_for("logout")) #λͺ»κ°€μ Έμ˜€λ©΄ λ‘œκ·Έμ•„μ›ƒ user = discord.fetch_user() run_webhook.send(f"β›” [ 403 ERROR ] {user}λ‹˜μ΄ νŒŒνŠΈλ„ˆ μ‹ μ²­ 1단계 νŽ˜μ΄μ§€μ— 정상적이지 μ•Šμ€ 접근을 μ‹œλ„ ν–ˆμŠ΅λ‹ˆλ‹€.") return "<script>alert('정상적이지 μ•Šμ€ μ ‘κ·Όμž…λ‹ˆλ‹€.');location.replace('/');</script>" else: #둜그인이 μ•ˆλ˜μ–΄μžˆλŠ”κ°€? ip = request.environ.get('HTTP_X_REAL_IP', request.remote_addr) run_webhook.send(f"β›” [ 403 ERROR ] λΉ„ 둜그인 μœ μ €({ip})κ°€ νŒŒνŠΈλ„ˆ μ‹ μ²­ 1단계 νŽ˜μ΄μ§€μ— 정상적이지 μ•Šμ€ 접근을 μ‹œλ„ ν–ˆμŠ΅λ‹ˆλ‹€.") return "<script>alert('정상적이지 μ•Šμ€ μ ‘κ·Όμž…λ‹ˆλ‹€.');location.replace('/');</script>" @app.route('/form/2', methods=['GET','POST']) def form2(): if request.method == 'POST': if discord.authorized: #둜그인이 λ˜μ–΄μžˆλŠ”κ°€ try: discord.fetch_guilds() #λ‘œκ·ΈμΈμ •λ³΄μ„ 가져와라 except: return redirect(url_for("logout")) #λͺ»κ°€μ Έμ˜€λ©΄ λ‘œκ·Έμ•„μ›ƒ code = request.form['code'] nickname = request.form['nickname'] return render_template('form/2.html', code=code, nickname=nickname) else: #둜그인이 μ•ˆλ˜μ–΄μžˆλŠ”κ°€? return redirect(url_for("login")) else: if discord.authorized: #둜그인이 λ˜μ–΄μžˆλŠ”κ°€ try: discord.fetch_guilds() #λ‘œκ·ΈμΈμ •λ³΄μ„ 가져와라 except: return redirect(url_for("logout")) #λͺ»κ°€μ Έμ˜€λ©΄ λ‘œκ·Έμ•„μ›ƒ user = discord.fetch_user() run_webhook.send(f"β›” [ 403 ERROR ] {user}λ‹˜μ΄ νŒŒνŠΈλ„ˆ μ‹ μ²­ 2단계 νŽ˜μ΄μ§€μ— 정상적이지 μ•Šμ€ 접근을 μ‹œλ„ ν–ˆμŠ΅λ‹ˆλ‹€.") return "<script>alert('정상적이지 μ•Šμ€ μ ‘κ·Όμž…λ‹ˆλ‹€.');location.replace('/');</script>" else: #둜그인이 μ•ˆλ˜μ–΄μžˆλŠ”κ°€? ip = request.environ.get('HTTP_X_REAL_IP', request.remote_addr) run_webhook.send(f"β›” [ 403 ERROR ] λΉ„ 둜그인 μœ μ €({ip})κ°€ νŒŒνŠΈλ„ˆ μ‹ μ²­ 2단계 νŽ˜μ΄μ§€μ— 정상적이지 μ•Šμ€ 접근을 μ‹œλ„ ν–ˆμŠ΅λ‹ˆλ‹€.") return "<script>alert('정상적이지 μ•Šμ€ μ ‘κ·Όμž…λ‹ˆλ‹€.');location.replace('/');</script>" @app.route('/form/3', methods=['GET','POST']) def form3(): if request.method == 'POST': if discord.authorized: #둜그인이 λ˜μ–΄μžˆλŠ”κ°€ try: discord.fetch_guilds() #λ‘œκ·ΈμΈμ •λ³΄μ„ 가져와라 except: return redirect(url_for("logout")) #λͺ»κ°€μ Έμ˜€λ©΄ λ‘œκ·Έμ•„μ›ƒ code = request.form['code'] nickname = request.form['nickname'] server = request.form['server'] member = request.form['member'] category = request.form['category'] etc_text = request.form['etc_text'] return render_template('form/3.html', code=code, nickname=nickname, server=server, member=member, category=category, etc_text=etc_text) else: #둜그인이 μ•ˆλ˜μ–΄μžˆλŠ”κ°€? return redirect(url_for("login")) else: if discord.authorized: #둜그인이 λ˜μ–΄μžˆλŠ”κ°€ try: discord.fetch_guilds() #λ‘œκ·ΈμΈμ •λ³΄μ„ 가져와라 except: return redirect(url_for("logout")) #λͺ»κ°€μ Έμ˜€λ©΄ λ‘œκ·Έμ•„μ›ƒ return "<script>alert('정상적이지 μ•Šμ€ μ ‘κ·Όμž…λ‹ˆλ‹€.');location.replace('/');</script>" else: #둜그인이 μ•ˆλ˜μ–΄μžˆλŠ”κ°€? return "<script>alert('정상적이지 μ•Šμ€ μ ‘κ·Όμž…λ‹ˆλ‹€.');location.replace('/');</script>" @app.route('/form/action', methods=['GET','POST']) def action(): if request.method == 'GET': if discord.authorized: #둜그인이 λ˜μ–΄μžˆλŠ”κ°€ try: discord.fetch_guilds() #λ‘œκ·ΈμΈμ •λ³΄μ„ 가져와라 except: return redirect(url_for("logout")) #λͺ»κ°€μ Έμ˜€λ©΄ λ‘œκ·Έμ•„μ›ƒ user = discord.fetch_user() run_webhook.send(f"β›” [ 403 ERROR ] {user}λ‹˜μ΄ νŒŒνŠΈλ„ˆ μ‹ μ²­ κ²°κ³Ό 전솑 νŽ˜μ΄μ§€μ— 정상적이지 μ•Šμ€ 접근을 μ‹œλ„ ν–ˆμŠ΅λ‹ˆλ‹€.") return "<script>alert('정상적이지 μ•Šμ€ μ ‘κ·Όμž…λ‹ˆλ‹€.');location.replace('/');</script>" else: #둜그인이 μ•ˆλ˜μ–΄μžˆλŠ”κ°€? ip = request.environ.get('HTTP_X_REAL_IP', request.remote_addr) run_webhook.send(f"β›” [ 403 ERROR ] λΉ„ 둜그인 μœ μ €({ip})κ°€ νŒŒνŠΈλ„ˆ μ‹ μ²­ κ²°κ³Ό 전솑 νŽ˜μ΄μ§€μ— 정상적이지 μ•Šμ€ 접근을 μ‹œλ„ ν–ˆμŠ΅λ‹ˆλ‹€.") return "<script>alert('정상적이지 μ•Šμ€ μ ‘κ·Όμž…λ‹ˆλ‹€.');location.replace('/');</script>" else: if discord.authorized: #둜그인이 λ˜μ–΄μžˆλŠ”κ°€ try: discord.fetch_guilds() #λ‘œκ·ΈμΈμ •λ³΄μ„ 가져와라 except: return redirect(url_for("logout")) #λͺ»κ°€μ Έμ˜€λ©΄ λ‘œκ·Έμ•„μ›ƒ code = request.form['code'] nickname = request.form['nickname'] server = request.form['server'] member = request.form['member'] category = request.form['category'] etc_text = request.form['etc_text'] message = request.form['message'] image = request.form['image'] video = request.form['video'] if etc_text == '': etc_text = 'Unknown' webhook.send(f"<@627292715956043785>\nβœ… νŒŒνŠΈλ„ˆ μˆ˜μ • 신청이 λ„μ°©ν–ˆμŠ΅λ‹ˆλ‹€.\n\nνŒŒνŠΈλ„ˆ μ½”λ“œ: {code}\nμ‹ μ²­μž: {nickname}\nμ„œλ²„(μ΄ˆλŒ€ 링크): {server}\n멀버 수: {member}\nμΉ΄ν…Œκ³ λ¦¬ 정보: {category} ({etc_text})\n홍보지: {message}\n이미지: {image}\nμ˜μƒ: {video}") return render_template('form/action.html', code = code) else: #둜그인이 μ•ˆλ˜μ–΄μžˆλŠ”κ°€? return redirect(url_for("index")) @app.route('/guide/<id>', methods=['GET', 'POST']) def guide(id): return f"<script>location.replace('https://team-alpha-kr.github.io/Partner-Guide/{id}.html');</script>" # S: 2021 νŒŒνŠΈλ„ˆ μ›Ήμ‚¬μ΄νŠΈ 개편 μ½”λ“œ # S: 210210 곡지사항 @app.route('/notice/<id>', methods=['GET', 'POST']) def notice(id): return render_template(f"2021temp/notice/{id}.html") # E: 210210 곡지사항 # E: 2021 νŒŒνŠΈλ„ˆ μ›Ήμ‚¬μ΄νŠΈ 개편 μ½”λ“œ @app.errorhandler(404) def page_not_found(error): return render_template("error/404.html") @app.errorhandler(500) def servererror(error): run_webhook.send(f"<@673776952578146315> β›” [ 500 ERROR ] μ„œλ²„μ— 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€.") return render_template("error/500.html") @app.errorhandler(400) def badrequest(error): run_webhook.send(f"<@673776952578146315> β›” [ 400 ERROR ] μ„œλ²„μ— 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€.") return render_template("error/400.html") run_webhook.send("βœ… νŒŒνŠΈλ„ˆ 정보 μˆ˜μ • - μ›Ήμ‚¬μ΄νŠΈκ°€ 싀행이 λ˜μ—ˆμŠ΅λ‹ˆλ‹€!") app.run(host='0.0.0.0', port=3333, debug=False)
37.984615
212
0.699743
0
0
0
0
7,281
0.822247
0
0
4,670
0.527386
c4ad485be7bdd5e1ac650e5ab444023836dc2e62
257
py
Python
protocols/tpkt.py
dparnishchev/s7scan
87a7aeeb3c932491745dfded2577d221083f87df
[ "Unlicense" ]
98
2018-10-12T10:36:55.000Z
2022-03-31T15:55:46.000Z
protocols/tpkt.py
FOGSEC/s7scan
d7f9c3bbd6a97a7f83991ea865be95b0e9280346
[ "Unlicense" ]
null
null
null
protocols/tpkt.py
FOGSEC/s7scan
d7f9c3bbd6a97a7f83991ea865be95b0e9280346
[ "Unlicense" ]
35
2018-10-12T17:08:25.000Z
2022-03-28T20:12:27.000Z
from scapy.fields import ByteField, ShortField from scapy.packet import Packet class TPKT(Packet): name = "TPKT" fields_desc = [ByteField("version", 3), ByteField("reserved", 0), ShortField("length", 0x0000)]
25.7
48
0.614786
175
0.680934
0
0
0
0
0
0
33
0.128405