hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
487c49f921ee4340fdfc140e8ff73bccf0d40cf6
3,273
py
Python
test/broken_test_log.py
Brimizer/python-ant
2b99693b4754156d401a0bd90e02357e8358c1f5
[ "MIT" ]
null
null
null
test/broken_test_log.py
Brimizer/python-ant
2b99693b4754156d401a0bd90e02357e8358c1f5
[ "MIT" ]
null
null
null
test/broken_test_log.py
Brimizer/python-ant
2b99693b4754156d401a0bd90e02357e8358c1f5
[ "MIT" ]
1
2019-01-11T22:22:06.000Z
2019-01-11T22:22:06.000Z
# -*- coding: utf-8 -*- ############################################################################## # # Copyright (c) 2011, Martín Raúl Villalba # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # ############################################################################## LOG_LOCATION = '/tmp/python-ant.logtest.ant' import unittest from ant.core.log import * class LogReaderTest(unittest.TestCase): def setUp(self): lw = LogWriter(LOG_LOCATION) lw.logOpen() lw.logRead(b'\x01') lw.logWrite(b'\x00') lw.logRead(b'TEST') lw.logClose() lw.close() self.log = LogReader(LOG_LOCATION) def test_open_close(self): self.assertTrue(self.log.is_open) self.log.close() self.assertFalse(self.log.is_open) self.log.open(LOG_LOCATION) self.assertTrue(self.log.is_open) def test_read(self): t1 = self.log.read() t2 = self.log.read() t3 = self.log.read() t4 = self.log.read() t5 = self.log.read() self.assertEquals(self.log.read(), '') self.assertEquals(t1[0], EVENT_OPEN) self.assertTrue(isinstance(t1[1], int)) self.assertEquals(len(t1), 2) self.assertEquals(t2[0], EVENT_READ) self.assertTrue(isinstance(t1[1], int)) self.assertEquals(len(t2), 3) self.assertEquals(t2[2], b'\x01') self.assertEquals(t3[0], EVENT_WRITE) self.assertTrue(isinstance(t1[1], int)) self.assertEquals(len(t3), 3) self.assertEquals(t3[2], '\x00') self.assertEquals(t4[0], EVENT_READ) self.assertEquals(t4[2], 'TEST') self.assertEquals(t5[0], EVENT_CLOSE) self.assertTrue(isinstance(t1[1], int)) self.assertEquals(len(t5), 2) class LogWriterTest(unittest.TestCase): def setUp(self): self.log = LogWriter(LOG_LOCATION) def test_open_close(self): self.assertTrue(self.log.is_open) self.log.close() self.assertFalse(self.log.is_open) self.log.open(LOG_LOCATION) self.assertTrue(self.log.is_open) def test_log(self): # Redundant, any error in log* methods will cause the LogReader test # suite to fail. pass
33.397959
78
0.633364
1,890
0.577099
0
0
0
0
0
0
1,419
0.433282
487d11f426857e94a16bf2d204d4f9c9755beb01
3,181
py
Python
python/GafferSceneUI/LightToCameraUI.py
ddesmond/gaffer
4f25df88103b7893df75865ea919fb035f92bac0
[ "BSD-3-Clause" ]
561
2016-10-18T04:30:48.000Z
2022-03-30T06:52:04.000Z
python/GafferSceneUI/LightToCameraUI.py
ddesmond/gaffer
4f25df88103b7893df75865ea919fb035f92bac0
[ "BSD-3-Clause" ]
1,828
2016-10-14T19:01:46.000Z
2022-03-30T16:07:19.000Z
python/GafferSceneUI/LightToCameraUI.py
ddesmond/gaffer
4f25df88103b7893df75865ea919fb035f92bac0
[ "BSD-3-Clause" ]
120
2016-10-18T15:19:13.000Z
2021-12-20T16:28:23.000Z
########################################################################## # # Copyright (c) 2016, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of John Haddon nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import Gaffer import GafferScene import GafferSceneUI def filmFitMetadata(): # Take the metadata from StandardOptionsUI, except not the layout section allOptions = GafferSceneUI.StandardOptionsUI.plugsMetadata[ "options.filmFit" ] + GafferSceneUI.StandardOptionsUI.plugsMetadata[ "options.filmFit.value" ] optionPairs = zip( allOptions[::2], allOptions[1::2] ) return sum( [ [i,j] for i,j in optionPairs if i != "layout:section" ], [] ) Gaffer.Metadata.registerNode( GafferScene.LightToCamera, "description", """ Converts lights into cameras. Spotlights are converted to a perspective camera with the field of view matching the cone angle, and distant lights are converted to an orthographic camera. """, plugs = { "filmFit" : filmFitMetadata(), "distantAperture" : [ "description", """ The orthographic aperture used when converting distant lights ( which are theoretically infinite in extent ) """, ], "clippingPlanes" : [ "description", """ Clipping planes for the created cameras. When creating a perspective camera, a near clip <= 0 is invalid, and will be replaced with 0.01. Also, certain lights only start casting light at some distance - if near clip is less than this, it will be increased. """, ], "filter" : [ "description", """ Specifies which lights to convert. """, ], } )
33.840426
155
0.690663
0
0
0
0
0
0
0
0
2,647
0.832128
487fc233ae954bd5e3c1f681b3650b436f4025ac
2,678
py
Python
eccProg.py
ganey/hm-gwmfr
c931113185a222d6c94c6a2679d39027de6f192f
[ "MIT" ]
1
2021-06-18T02:57:19.000Z
2021-06-18T02:57:19.000Z
eccProg.py
ganey/hm-gwmfr
c931113185a222d6c94c6a2679d39027de6f192f
[ "MIT" ]
9
2021-03-04T10:41:52.000Z
2021-10-18T15:14:37.000Z
eccProg.py
ganey/hm-gwmfr
c931113185a222d6c94c6a2679d39027de6f192f
[ "MIT" ]
4
2021-02-24T10:03:31.000Z
2021-07-09T17:33:59.000Z
#!/usr/bin/env python3 from time import sleep import logging import os import subprocess print("Nebra ECC Tool") preTestFail = 0 afterTestFail = 0 ECC_SUCCESSFUL_TOUCH_FILEPATH = "/var/data/gwmfr_ecc_provisioned" logging.basicConfig(level=os.environ.get("LOGLEVEL", "DEBUG")) def record_successful_provision(): logging.debug("ECC provisioning complete") # Via: https://stackoverflow.com/questions/12654772/create-empty-file-using-python/12654798 # because path lib not included in python3-minimal # https://stackoverflow.com/questions/1158076/implement-touch-using-python open(ECC_SUCCESSFUL_TOUCH_FILEPATH, 'a').close() logging.debug("ECC provisioning recorded. Touched to %s" % ECC_SUCCESSFUL_TOUCH_FILEPATH) while preTestFail < 10: preTest = subprocess.run(["/opt/gateway_mfr/bin/gateway_mfr", "ecc", "onboarding"], capture_output=True) preTestResult = str(preTest.stdout.decode('ascii')).rstrip() if "not responding to pings" not in preTestResult: break else: print("Can't load provisioning tool, retrying") preTestFail += 1 sleep(2) if "ecc_response_exec_error" in preTestResult: print("Provisioning") while afterTestFail < 5: subprocess.run(["/opt/gateway_mfr/bin/gateway_mfr", "ecc", "provision"]) print("Testing") afterTest = subprocess.run(["/opt/gateway_mfr/bin/gateway_mfr", "ecc", "onboarding"], capture_output=True).stdout afterTestResult = str(afterTest.decode('ascii')).rstrip() print(afterTestResult) if "ecc_response_exec_error" in afterTestResult: print("\033[91mProgramming FAILED\033[0m") print("Retrying provisioning") afterTestFail += 1 sleep(2) elif (len(afterTestResult) == 51 or len(afterTestResult) == 52): print("\033[92mProgramming Success!\033[0m") record_successful_provision() break else: print("\033[91mAn Unknown Error Occured\033[0m") print("Retrying provisioning") afterTestFail += 1 sleep(2) elif (len(preTestResult) == 50 or len(preTestResult) == 51 or len(preTestResult) == 52): print("\033[93mKey Already Programmed\033[0m") print(preTestResult) record_successful_provision() else: print("An Unknown Error Occured") print(preTestResult) # This next bit of mank is so we can run the gwmfr container for longer # by providing the OVERRIDE_GWMFR_EXIT environment variable for trouble # shooting purposes. if os.getenv('OVERRIDE_GWMFR_EXIT', None): while(True): print("GWMFR Utility Exit Overriden") sleep(300)
33.898734
121
0.68596
0
0
0
0
0
0
0
0
1,116
0.416729
4880ecda66e3c2c409be46833975599cd4502de6
641
py
Python
doc/tutorial/getargs.py
OliverTED/doit
a6f75f312390aba352c3f00680cd32609323dbc2
[ "MIT" ]
null
null
null
doc/tutorial/getargs.py
OliverTED/doit
a6f75f312390aba352c3f00680cd32609323dbc2
[ "MIT" ]
1
2018-10-02T19:28:08.000Z
2018-10-02T19:28:08.000Z
doc/tutorial/getargs.py
smheidrich/doit
1f9c3c755c96508ca2b1b2668f102f9d2da9c614
[ "MIT" ]
null
null
null
DOIT_CONFIG = {'default_tasks': ['use_cmd', 'use_python']} def task_compute(): def comp(): return {'x':5,'y':10, 'z': 20} return {'actions': [(comp,)]} def task_use_cmd(): return {'actions': ['echo x=%(x)s, z=%(z)s'], 'getargs': {'x': ('compute', 'x'), 'z': ('compute', 'z')}, 'verbosity': 2, } def task_use_python(): return {'actions': [show_getargs], 'getargs': {'x': ('compute', 'x'), 'y': ('compute', 'z')}, 'verbosity': 2, } def show_getargs(x, y): print "this is x:%s" % x print "this is y:%s" % y
24.653846
58
0.452418
0
0
0
0
0
0
0
0
223
0.347894
48823dc4e90bc1cf4bd23d8ad54e5dbd5c6870e3
4,022
py
Python
examples/run_unlinkable.py
danesjenovdan/reference_implementation
8374c45dd05a2e279bd5e53800aa237f64684a2b
[ "Apache-2.0" ]
1
2020-11-09T21:07:00.000Z
2020-11-09T21:07:00.000Z
examples/run_unlinkable.py
ac-ctrl/reference_implementation
e07f10447eaab9853e8f45a5d06e98741e265f5f
[ "Apache-2.0" ]
null
null
null
examples/run_unlinkable.py
ac-ctrl/reference_implementation
e07f10447eaab9853e8f45a5d06e98741e265f5f
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 """ Simple example/demo of the unlinkable DP-3T design This demo simulates some interactions between two phones, represented by the contact tracing modules, and then runs contact tracing. """ __copyright__ = """ Copyright 2020 EPFL Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ __license__ = "Apache 2.0" from datetime import timedelta from dp3t.protocols.unlinkable import ContactTracer, TracingDataBatch def report_broadcasted_ephids(name, app): """ Convenience function to report some broadcasted EphIDs """ reporting_time = app.start_of_today + timedelta(hours=10) ephid = app.get_ephid_for_time(reporting_time) print("At {}: {} broadcasts {}".format(reporting_time.time(), name, ephid.hex())) def report_day(time): """ Convenience function to report start of the day """ print("---- {} ----".format(time)) def process_single_day(alice, bob, interaction_time=None): """ Convenience function, process and report on a single day """ report_day(alice.today) report_broadcasted_ephids("Alice", alice) report_broadcasted_ephids("Bob", bob) if interaction_time: print("Alice and Bob interact:") ephid_bob = bob.get_ephid_for_time(interaction_time) alice.add_observation(ephid_bob, interaction_time) print(" Alice observes Bob's EphID {}".format(ephid_bob.hex())) ephid_alice = alice.get_ephid_for_time(interaction_time) bob.add_observation(ephid_alice, interaction_time) print(" Bob observes Alice's EphID {}".format(ephid_alice.hex())) else: print("Alice and Bob do not interact") # Advance to the next day alice.next_day() bob.next_day() print("") def main(): alice = ContactTracer() bob = ContactTracer() ### Interaction ### process_single_day(alice, bob) process_single_day(alice, bob) interaction_time = alice.start_of_today + timedelta(hours=10) bob_contagious_start = bob.start_of_today process_single_day(alice, bob, interaction_time) print("... skipping 3 days ...\n") for _ in range(4): alice.next_day() bob.next_day() ### Diagnosis and reporting ### report_day(alice.today) print("Bob is diagnosed with SARS-CoV-2") print( "Doctor establishes that Bob started being contagious at {}".format( bob_contagious_start ) ) print("And that Bob was contagious for 3 days") bob_contagious_end = bob_contagious_start + timedelta(days=3) print("\n[Bob -> Server] Bob sends:") tracing_info_bob = bob.get_tracing_information( bob_contagious_start, bob_contagious_end ) print( " * his seeds for the time period {} to {}".format( bob_contagious_start, bob_contagious_end ) ) print(" * and the corresponding epochs\n") ### Contact tracing ### print("[Server] Compiles download batch by:") print(" * Computing hashed observations given the seeds") print(" * Inserts these into a cuckoo filter\n") batch = TracingDataBatch([tracing_info_bob]) print("[Server -> Alice] Alice receives batch") print(" * Alice checks if she was in contact with an infected person") if alice.matches_with_batch(batch) > 0: print(" * CORRECT: Alice's phone concludes she is at risk") else: print(" * ERROR: Alice's phone does not conclude she is at risk") if __name__ == "__main__": main()
30.014925
85
0.680507
0
0
0
0
0
0
0
0
1,922
0.477872
4883b0040e8dc5ec47ef273298b6d359bf3bcacc
2,409
py
Python
EasyRecycle/tests/unittests/core/views/test_BecomeCommercialAPIView.py
YuriyLisovskiy/EasyRecycle
49f1b84931145a3e95224e411d22ed7701e5bfe0
[ "MIT" ]
null
null
null
EasyRecycle/tests/unittests/core/views/test_BecomeCommercialAPIView.py
YuriyLisovskiy/EasyRecycle
49f1b84931145a3e95224e411d22ed7701e5bfe0
[ "MIT" ]
null
null
null
EasyRecycle/tests/unittests/core/views/test_BecomeCommercialAPIView.py
YuriyLisovskiy/EasyRecycle
49f1b84931145a3e95224e411d22ed7701e5bfe0
[ "MIT" ]
null
null
null
from django.urls import reverse from rest_framework import status from rest_framework.test import force_authenticate from rest_framework_simplejwt.state import User from core.views import DeactivateSelfAPIView, BecomeCommercialAPIView from tests.unittests.common import APIFactoryTestCase class BecomeCommercialAPITestCase(APIFactoryTestCase): def setUp(self) -> None: super(BecomeCommercialAPITestCase, self).setUp() self.view = BecomeCommercialAPIView.as_view() self.user = User.objects.get(username='User') self.user_2 = User.objects.get(username='User2') self.user_3 = User.objects.get(username='User3') self.commercial_user = User.objects.get(username='Commercial') def test_BecomeCommercialValid(self): request = self.request_factory.put(reverse('api_v1:core:become_commercial'), { 'password': 'qwerty' }) force_authenticate(request, self.user) response = self.view(request) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertTrue(User.objects.get(username='User').is_commercial) def test_BecomeCommercialInvalid(self): request = self.request_factory.put(reverse('api_v1:core:become_commercial'), { 'password': 'qerty' }) force_authenticate(request, self.user) response = self.view(request) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) def test_BecomeCommercialUnauthenticated(self): request = self.request_factory.put(reverse('api_v1:core:become_commercial'), { 'password': 'qwerty' }) response = self.view(request) self.assertEqual(response.status_code, status.HTTP_401_UNAUTHORIZED) def test_BecomeCommercialNoData(self): request = self.request_factory.put(reverse('api_v1:core:become_commercial')) force_authenticate(request, self.user) response = self.view(request) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) def test_BecomeCommercialAlreadyCommercial(self): request = self.request_factory.put(reverse('api_v1:core:become_commercial'), { 'password': 'qwerty' }) force_authenticate(request, self.commercial_user) response = self.view(request) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST)
42.263158
86
0.71565
2,116
0.878373
0
0
0
0
0
0
264
0.109589
48847182743877e2207fafdce5ef0b412ca3a606
55,929
py
Python
colour/colorimetry/tests/test_spectrum.py
aurelienpierre/colour
3ac45c12fbc0493e49ba4d4b2cb253df9fe14c47
[ "BSD-3-Clause" ]
null
null
null
colour/colorimetry/tests/test_spectrum.py
aurelienpierre/colour
3ac45c12fbc0493e49ba4d4b2cb253df9fe14c47
[ "BSD-3-Clause" ]
null
null
null
colour/colorimetry/tests/test_spectrum.py
aurelienpierre/colour
3ac45c12fbc0493e49ba4d4b2cb253df9fe14c47
[ "BSD-3-Clause" ]
null
null
null
"""Defines the unit tests for the :mod:`colour.colorimetry.spectrum` module.""" import colour import numpy as np import unittest import scipy from distutils.version import LooseVersion from colour.algebra import CubicSplineInterpolator from colour.colorimetry.spectrum import SPECTRAL_SHAPE_DEFAULT from colour.colorimetry.spectrum import ( SpectralShape, SpectralDistribution, MultiSpectralDistributions, reshape_sd, reshape_msds, sds_and_msds_to_sds, sds_and_msds_to_msds, ) from colour.hints import Dict, Tuple from colour.utilities import tstack __author__ = "Colour Developers" __copyright__ = "Copyright 2013 Colour Developers" __license__ = "New BSD License - https://opensource.org/licenses/BSD-3-Clause" __maintainer__ = "Colour Developers" __email__ = "[email protected]" __status__ = "Production" __all__ = [ "DATA_SAMPLE", "DATA_SAMPLE_NON_UNIFORM", "DATA_SAMPLE_INTERPOLATED", "DATA_SAMPLE_INTERPOLATED_NON_UNIFORM", "DATA_SAMPLE_NORMALISED", "DATA_STANDARD_OBSERVER_2_DEGREE_CIE1931", "DATA_CMFS", "DATA_SAMPLE_ABRIDGED", "DATA_MULTI_SAMPLE_ABRIDGED", "TestSpectralShape", "TestSpectralDistribution", "TestMultiSpectralDistributions", "TestReshapeSd", "TestSdsAndMdsToSds", "TestSdsAndMsdsToMsds", ] DATA_SAMPLE: Dict = { 340: 0.0000, 360: 0.0000, 380: 0.0000, 400: 0.0641, 420: 0.0645, 440: 0.0562, 460: 0.0537, 480: 0.0559, 500: 0.0651, 520: 0.0705, 540: 0.0772, 560: 0.0870, 580: 0.1128, 600: 0.1360, 620: 0.1511, 640: 0.1688, 660: 0.1996, 680: 0.2397, 700: 0.2852, 720: 0.0000, 740: 0.0000, 760: 0.0000, 780: 0.0000, 800: 0.0000, 820: 0.0000, } DATA_SAMPLE_NON_UNIFORM: Dict = { 391.898: 16.331740, 392.069: 16.333122, 405.606: 40.197224, 406.794: 39.923366, 406.891: 39.924098, 407.026: 39.925138, 416.286: 40.064293, 418.690: 40.009950, 426.700: 18.045809, 426.726: 18.045986, 432.556: 38.435883, 464.742: 29.534647, 465.025: 29.534647, 465.147: 29.534647, 466.586: 38.226470, 477.175: 7.487795, 493.205: 7.684766, 505.217: 7.684766, 513.294: 20.701285, 513.328: 20.704211, 514.349: 20.704211, 514.516: 20.709788, 515.109: 20.709788, 538.034: 7.684766, 564.807: 20.704211, 566.247: 20.709788, 569.592: 32.103387, 580.133: 37.548490, 581.198: 37.548490, 582.642: 40.197224, 588.977: 18.045986, 589.159: 18.045809, 600.113: 8.643020, 600.603: 8.647157, 600.718: 8.640394, 601.068: 8.640394, 601.322: 8.647157, 601.484: 8.643020, 657.805: 14.448826, 658.288: 14.448826, 658.761: 8.537097, 674.438: 38.22647, 678.390: 20.709788, 703.725: 38.435883, 711.318: 8.647157, 711.519: 8.640394, 711.563: 22.532398, 711.699: 8.647157, 711.990: 22.536906, 723.132: 16.33174, 723.642: 16.333122, 761.265: 41.342187, 786.089: 8.850659, 805.862: 8.850659, } DATA_SAMPLE_INTERPOLATED: Tuple = ( 0.000000000000000, 0.000230709627131, 0.000384144814593, 0.000507137093115, 0.000632114832536, 0.000778810112328, 0.000955965592105, 0.001163041382140, 0.001391921913876, 0.001628622810444, 0.001854997757177, 0.002050445372122, 0.002193616076555, 0.002264118965498, 0.002244228678230, 0.002120592268802, 0.001885936076555, 0.001540772596628, 0.001095107350478, 0.000570145756392, 0.000000000000000, -0.000581325882457, -0.001183945630981, -0.001820338942229, -0.002492278660287, -0.003192248184715, -0.003904858878589, -0.004608267476544, -0.005275593492823, -0.005876336629317, -0.006377794183612, -0.006746478457031, -0.006949534162679, -0.006956155833489, -0.006739005230263, -0.006275628749720, -0.005549874832536, -0.004553311371393, -0.003286643119019, -0.001761129096236, 0.000000000000000, 0.001979832128906, 0.004221516875000, 0.006762744980469, 0.009617760000000, 0.012780285644531, 0.016226453125000, 0.019917728496094, 0.023803840000000, 0.027825705410156, 0.031918359375000, 0.036013880761719, 0.040044320000000, 0.043944626425781, 0.047655575625000, 0.051126696777344, 0.054319200000000, 0.057208903691406, 0.059789161875000, 0.062073791542969, 0.064100000000000, 0.065908998066406, 0.067477265625000, 0.068776060136719, 0.069791040000000, 0.070520520019531, 0.070973726875000, 0.071169054589844, 0.071132320000000, 0.070895018222656, 0.070492578125000, 0.069962617792969, 0.069343200000000, 0.068671087675781, 0.067979999375000, 0.067298864746094, 0.066650080000000, 0.066047763378906, 0.065496010625000, 0.064987150449219, 0.064500000000000, 0.064007805449219, 0.063510900625000, 0.063016138378906, 0.062528640000000, 0.062051989746094, 0.061588429375000, 0.061139052675781, 0.060704000000000, 0.060282652792969, 0.059873828125000, 0.059475973222656, 0.059087360000000, 0.058706279589844, 0.058331236875000, 0.057961145019531, 0.057595520000000, 0.057234675136719, 0.056879915625000, 0.056533733066406, 0.056200000000000, 0.055883811757812, 0.055589516250000, 0.055320009023437, 0.055076960000000, 0.054860961914063, 0.054671678750000, 0.054507994179687, 0.054368160000000, 0.054249944570312, 0.054150781250000, 0.054067916835938, 0.053998560000000, 0.053940029726562, 0.053889903750000, 0.053846166992187, 0.053807360000000, 0.053772727382813, 0.053742366250000, 0.053717374648438, 0.053700000000000, 0.053692483144531, 0.053693175625000, 0.053700270058594, 0.053712960000000, 0.053731311035156, 0.053756131875000, 0.053788845449219, 0.053831360000000, 0.053885940175781, 0.053955078125000, 0.054041364589844, 0.054147360000000, 0.054275465566406, 0.054427794375000, 0.054606042480469, 0.054811360000000, 0.055044222207031, 0.055304300625000, 0.055590334121094, 0.055900000000000, 0.056231407851562, 0.056587597500000, 0.056971279335937, 0.057383360000000, 0.057823168945313, 0.058288685000000, 0.058776762929688, 0.059283360000000, 0.059803762539063, 0.060332812500000, 0.060865134023438, 0.061395360000000, 0.061918358632813, 0.062429460000000, 0.062924682617188, 0.063400960000000, 0.063856367226563, 0.064290347500000, 0.064703938710938, 0.065100000000000, 0.065481647265625, 0.065846786250000, 0.066192982265625, 0.066519040000000, 0.066824853515625, 0.067111256250000, 0.067379871015625, 0.067632960000000, 0.067873274765625, 0.068103906250000, 0.068328134765625, 0.068549280000000, 0.068770551015625, 0.068994896250000, 0.069224853515625, 0.069462400000000, 0.069708802265625, 0.069964466250000, 0.070228787265625, 0.070500000000000, 0.070776270703125, 0.071059446250000, 0.071351597578125, 0.071653920000000, 0.071966845703125, 0.072290156250000, 0.072623095078125, 0.072964480000000, 0.073312815703125, 0.073666406250000, 0.074023467578125, 0.074382240000000, 0.074741100703125, 0.075098676250000, 0.075453955078125, 0.075806400000000, 0.076156060703125, 0.076503686250000, 0.076850837578125, 0.077200000000000, 0.077552701992188, 0.077904262500000, 0.078250762070313, 0.078590880000000, 0.078925561523438, 0.079257685000000, 0.079591729101562, 0.079933440000000, 0.080289498554688, 0.080667187500000, 0.081074058632813, 0.081517600000000, 0.082004903085938, 0.082542330000000, 0.083135180664063, 0.083787360000000, 0.084501045117188, 0.085276352500000, 0.086111005195313, 0.087000000000000, 0.087938453242188, 0.088930890000000, 0.089981833007812, 0.091092960000000, 0.092263452148438, 0.093490342500000, 0.094768864414062, 0.096092800000000, 0.097454828554687, 0.098846875000000, 0.100260458320312, 0.101687040000000, 0.103118372460937, 0.104546847500000, 0.105965844726563, 0.107370080000000, 0.108755953867188, 0.110121900000000, 0.111468733632812, 0.112800000000000, 0.114120657988281, 0.115431176875000, 0.116730532871094, 0.118017600000000, 0.119291174316406, 0.120549998125000, 0.121792784199219, 0.123018240000000, 0.124225091894531, 0.125412109375000, 0.126578129277344, 0.127722080000000, 0.128843005722656, 0.129940090625000, 0.131012683105469, 0.132060320000000, 0.133082750800781, 0.134079961875000, 0.135052200683594, 0.136000000000000, 0.136923531484375, 0.137820920000000, 0.138690739765625, 0.139532640000000, 0.140347216796875, 0.141135885000000, 0.141900750078125, 0.142644480000000, 0.143370177109375, 0.144081250000000, 0.144781285390625, 0.145473920000000, 0.146162712421875, 0.146851015000000, 0.147541845703125, 0.148237760000000, 0.148940722734375, 0.149651980000000, 0.150371931015625, 0.151100000000000, 0.151834687363281, 0.152574745625000, 0.153319862089844, 0.154070560000000, 0.154828088378906, 0.155594311875000, 0.156371600605469, 0.157162720000000, 0.157970720644531, 0.158798828125000, 0.159650332871094, 0.160528480000000, 0.161436359160156, 0.162376794375000, 0.163352233886719, 0.164364640000000, 0.165415378925781, 0.166505110625000, 0.167633678652344, 0.168800000000000, 0.170002988242187, 0.171244585000000, 0.172526722382812, 0.173850400000000, 0.175215795898437, 0.176622377500000, 0.178069012539063, 0.179554080000000, 0.181075581054688, 0.182631250000000, 0.184218665195313, 0.185835360000000, 0.187478933710938, 0.189147162500000, 0.190838110351563, 0.192550240000000, 0.194282523867188, 0.196034555000000, 0.197806658007813, 0.199600000000000, 0.201405046894531, 0.203174116875000, 0.204868198964844, 0.206468000000000, 0.207971350097656, 0.209390608125000, 0.210750067167969, 0.212083360000000, 0.213430864550781, 0.214837109375000, 0.216348179121094, 0.218009120000000, 0.219861345253906, 0.221940040625000, 0.224271569824219, 0.226870880000000, 0.229738907207031, 0.232859981875000, 0.236199234277344, 0.239700000000000, 0.243337282929688, 0.247262056250000, 0.251598942851562, 0.256394240000000, 0.261625952148438, 0.267213823750000, 0.273029372070313, 0.278905920000000, 0.284648628867188, 0.290044531250000, 0.294872563789062, 0.298913600000000, 0.301960483085938, 0.303828058750000, 0.304363208007813, 0.303454880000000, 0.301044124804688, 0.297134126250000, 0.291800234726562, 0.285200000000000, 0.277470396855469, 0.268408756875000, 0.257826504003906, 0.245651040000000, 0.231911267089844, 0.216723110625000, 0.200275041738281, 0.182813600000000, 0.164628916074219, 0.146040234375000, 0.127381435722656, 0.108986560000000, 0.091175328808594, 0.074238668125000, 0.058424230957031, 0.043921920000000, 0.030849410292969, 0.019237671875000, 0.009016492441406, 0.000000000000000, -0.008014721386719, -0.014901410625000, -0.020510217441406, -0.024767360000000, -0.027665856933594, -0.029256259375000, -0.029637382988281, -0.028947040000000, -0.027352771230469, -0.025042578125000, -0.022215654785156, -0.019073120000000, -0.015808749277344, -0.012599706875000, -0.009597277832031, -0.006917600000000, -0.004632396074219, -0.002759705625000, -0.001254617128906, 0.000000000000000, 0.001146203203125, 0.002165737500000, 0.003010363984375, 0.003650560000000, 0.004073291015625, 0.004279782500000, 0.004283291796875, 0.004106880000000, 0.003781183828125, 0.003342187500000, 0.002828994609375, 0.002281600000000, 0.001738661640625, 0.001235272500000, 0.000800732421875, 0.000456320000000, 0.000213064453125, 0.000069517500000, 0.000009525234375, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, ) DATA_SAMPLE_INTERPOLATED_NON_UNIFORM: Tuple = ( 16.329808636577400, 16.722487609243078, 17.780769796558388, 19.388440919210822, 21.429286697887836, 23.787092853276910, 26.345645106065515, 28.988729176941121, 31.600130786591194, 34.063635655703216, 36.263029504964656, 38.082098055062993, 39.404627026685688, 40.114402140520198, 40.111247588026082, 39.925103635141149, 39.890167058876870, 39.799323872976096, 39.680556569501256, 39.561845869769570, 39.471172495098209, 39.436517166804364, 39.485860606205222, 39.647183534617994, 39.948466673359860, 40.374181475729280, 40.480943048717741, 39.587763146544347, 37.399010971904012, 34.259517350145224, 30.574008069142096, 26.747208916768866, 23.183845680899680, 20.288644149408725, 18.466330110170176, 18.131455040802454, 19.618408431271092, 22.601624593221480, 26.621530082560952, 31.218551455196845, 35.933115267036499, 40.312773209586069, 44.121677838324345, 47.374686358105983, 50.100647613008405, 52.328410447109043, 54.086823704485290, 55.404736229214613, 56.310996865374428, 56.834454457042114, 57.003957848295137, 56.848355883210893, 56.396497405866839, 55.677231260340363, 54.719406290708918, 53.551871341049903, 52.203475255440743, 50.703066877958868, 49.079495052681693, 47.361608623686649, 45.578256435051173, 43.758287330852653, 41.930550155168532, 40.123893752076235, 38.367166965653183, 36.689218639976801, 35.118897619124496, 33.685052747173714, 32.416532868201863, 31.342186826286373, 30.490863465504646, 29.891411629934137, 29.572680163652254, 29.538621481156376, 33.594913456316092, 41.048330705400552, 45.551744552213606, 47.142069193311166, 46.264235269850914, 43.363173422990592, 38.883814293887831, 33.271088523700378, 26.969926753585888, 20.425259624702068, 14.082017778206605, 8.385131855257200, 3.728429425651282, 0.156961054721180, -2.429909888236355, -4.133307786198728, -5.054357022143353, -5.294181979047651, -4.953907039889023, -4.134656587644884, -2.937555005292646, -1.463726675809728, 0.185704017826468, 1.909612692638526, 3.606874965649032, 5.176366453880572, 6.516962774355742, 7.527539544097118, 8.122379803803623, 8.331483144611147, 8.237444938631239, 7.923124732066758, 7.471382071120567, 6.965076501995521, 6.487067570894484, 6.120214824020312, 5.947377807575871, 6.051416067764015, 6.515189150787608, 7.421556602849507, 8.833103319101975, 10.654113909347958, 12.714472051171430, 14.843629856075644, 16.871039435563851, 18.626152901139314, 19.938422364305275, 20.637299936564997, 20.706835013628812, 20.713132276905259, 20.620587314150111, 20.396819412610807, 20.054405097058748, 19.605938071902443, 19.064012041550384, 18.441220710411045, 17.750157782892924, 17.003416963404511, 16.213591956354293, 15.393276466150766, 14.555064197202412, 13.711548853917725, 12.875324140705192, 12.058983761973309, 11.275121422130562, 10.536330825585436, 9.855205676746426, 9.244339680022023, 8.716326539820709, 8.283759960550988, 7.959233646621334, 7.755341302440248, 7.684676632416213, 7.756084346822568, 7.961801724157814, 8.289468950531905, 8.726726048591537, 9.261213040983417, 9.880569950354237, 10.572436799350699, 11.324453610619505, 12.124260406807357, 12.959497210560945, 13.817804044526978, 14.686820931352152, 15.554187893683173, 16.407544954166731, 17.234532135449530, 18.022789460178267, 18.759956950999651, 19.433674630560375, 20.031582521507140, 20.541320646486646, 20.950529028145592, 21.246847689130675, 21.417916652088600, 21.451375939666065, 21.334865574509770, 21.056025579266414, 20.604750276779001, 20.494345115463702, 22.221705466331883, 25.661450384670388, 29.775598875658655, 33.531925166546948, 36.383260993760757, 38.399428506854193, 39.690190939354423, 40.365311524788659, 40.534553496684069, 40.307680088567857, 39.794454533967205, 39.104640066409281, 38.347999919421312, 37.634297326530451, 37.374685121273394, 39.119690201154867, 40.253206513156250, 38.299118522290833, 34.130306343480264, 28.883500017392159, 23.695429584694160, 19.702825086053920, 18.042370406596557, 17.942146149526579, 17.437952042997388, 16.603615436175311, 15.527509997088327, 14.298009393764401, 13.003487294231499, 11.732317366517600, 10.572873278650665, 9.613528698658669, 8.942657294569587, 8.648632734411382, 8.638275005914387, 8.608461770725761, 8.468358277399256, 8.236485894689265, 7.918459394063972, 7.519893546991550, 7.046403124940173, 6.503602899378026, 5.897107641773280, 5.232532123594114, 4.515491116308703, 3.751599391385226, 2.946471720291860, 2.105722874496783, 1.234967625468170, 0.339820744674198, -0.574102996416954, -1.501188826337108, -2.435821973618090, -3.372387666791723, -4.305271134389827, -5.228857604944231, -6.137532306986749, -7.025680469049206, -7.887687319663434, -8.717938087361247, -9.510818000674471, -10.260712288134929, -10.962006178274445, -11.609084899624833, -12.196333680717927, -12.718137750085543, -13.168882336259514, -13.542952667771653, -13.834733973153785, -14.038611480937735, -14.148970419655322, -14.160196017838375, -14.066673504018716, -13.862788106728164, -13.542925054498539, -13.101469575861673, -12.532806899349385, -11.831322253493493, -10.991400866825831, -10.007427967878208, -8.873788785182459, -7.584868547270405, -6.135052482673858, -4.518725819924658, -2.730273787554616, -0.764081614095559, 1.385465471920696, 3.723982241962316, 6.257083467497486, 8.990383919994379, 11.929498370921175, 14.976162260830137, 5.084237255461949, -6.729230790271000, -14.622433089729542, -19.038838171389944, -20.421914563728482, -19.215130795221405, -15.861955394344996, -10.805856889575507, -4.490303809389212, 2.641235317737622, 10.145291963328749, 17.578397598907866, 24.497083695998736, 30.457881726125084, 35.017323160810655, 37.731939471579153, 38.169944675202451, 36.103648065327157, 31.478944095141092, 24.247257545409393, 14.377470469911161, 2.089605892978410, -12.208009328653077, -28.102486071018522, -45.180935210153116, -63.030467622092019, -81.238194182870473, -99.391225768523640, -117.076673255086732, -133.881647518594917, -149.393259435083451, -163.198619880587444, -174.884839731142108, -184.039029862782684, -190.248301151544382, -193.099764473462415, -192.180530704571822, -187.077710720907902, -177.378415398505837, -162.669755613400923, -142.538842241628146, -116.572786159222886, -84.358698242220214, -45.483689366655454, 0.465129591436323, 53.867241377821607, 111.906385750398641, 165.969680931356891, 206.832112792864763, 225.268667207090687, 212.054330046203120, 157.964087182370434, 53.772924487761195, 24.128558965593012, 155.948189345952358, 238.667542187567193, 279.823268952005947, 286.952021100836475, 267.590450095627091, 229.275207397946076, 179.542944469361430, 125.930312771441450, 75.973963765754249, 37.210548913868003, 17.176719677350921, 17.152394375030820, 19.379794324130732, 21.517434431022508, 23.565545988087592, 25.524360287707406, 27.394108622263396, 29.175022284136993, 30.867332565709628, 32.471270759362753, 33.987068157477793, 35.414956052436175, 36.755165736619354, 38.007928502408760, 39.173475642185821, 40.252038448331973, 41.243848213228674, 42.149136229257330, 42.968133788799399, 43.701072184236310, 44.348182707949491, 44.909696652320392, 45.385845309730442, 45.776859972561077, 46.082971933193733, 46.304412484009845, 46.441412917390849, 46.494204525718175, 46.463018601373285, 46.348086436737596, 46.149639324192542, 45.867908556119552, 45.503125424900077, 45.055521222915552, 44.525327242547419, 43.912774776177095, 43.218095116186007, 42.441519554955640, 41.583279384867382, 40.643991169034841, 39.627797988936805, 38.540734852902020, 37.388854826093969, 36.178210973676094, 34.914856360811882, 33.604844052664760, 32.254227114398248, 30.869058611175774, 29.455391608160820, 28.019279170516839, 26.566774363407301, 25.103930251995678, 23.636799901445418, 22.171436376920010, 20.713892743582907, 19.270222066597562, 17.846477411127466, 16.448711842336071, 15.082978425386836, 13.755330225443233, 12.471820307668732, 11.238501737226787, 10.061427579280879, 8.946650898994456, 7.900224761530997, 6.928202232053956, 6.036636375726809, 5.231580257713018, 4.519086943176044, 3.905209497279358, 3.396000985186418, 2.997514472060695, 2.715803023065654, 2.556919703364760, 2.526917578121476, 2.631849712499274, 2.877769171661610, 3.270729020771954, 3.816782324993773, 4.521982149490528, 5.392381559425689, 6.434033619962720, 7.652991396265083, ) DATA_SAMPLE_NORMALISED: Tuple = ( 0.000000000000000, 0.000000000000000, 0.000000000000000, 22.475455820476860, 22.615708274894811, 19.705469845722302, 18.828892005610097, 19.600280504908834, 22.826086956521742, 24.719495091164092, 27.068723702664798, 30.504908835904626, 39.551192145862551, 47.685834502103788, 52.980364656381497, 59.186535764375883, 69.985974754558200, 84.046283309957929, 100.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, ) DATA_STANDARD_OBSERVER_2_DEGREE_CIE1931: Dict = { 380: (0.001368, 0.000039, 0.006450), 385: (0.002236, 0.000064, 0.010550), 390: (0.004243, 0.000120, 0.020050), 395: (0.007650, 0.000217, 0.036210), 400: (0.014310, 0.000396, 0.067850), 405: (0.023190, 0.000640, 0.110200), 410: (0.043510, 0.001210, 0.207400), 415: (0.077630, 0.002180, 0.371300), 420: (0.134380, 0.004000, 0.645600), 425: (0.214770, 0.007300, 1.039050), 430: (0.283900, 0.011600, 1.385600), 435: (0.328500, 0.016840, 1.622960), 440: (0.348280, 0.023000, 1.747060), 445: (0.348060, 0.029800, 1.782600), 450: (0.336200, 0.038000, 1.772110), 455: (0.318700, 0.048000, 1.744100), 460: (0.290800, 0.060000, 1.669200), 465: (0.251100, 0.073900, 1.528100), 470: (0.195360, 0.090980, 1.287640), 475: (0.142100, 0.112600, 1.041900), 480: (0.095640, 0.139020, 0.812950), 485: (0.057950, 0.169300, 0.616200), 490: (0.032010, 0.208020, 0.465180), 495: (0.014700, 0.258600, 0.353300), 500: (0.004900, 0.323000, 0.272000), 505: (0.002400, 0.407300, 0.212300), 510: (0.009300, 0.503000, 0.158200), 515: (0.029100, 0.608200, 0.111700), 520: (0.063270, 0.710000, 0.078250), 525: (0.109600, 0.793200, 0.057250), 530: (0.165500, 0.862000, 0.042160), 535: (0.225750, 0.914850, 0.029840), 540: (0.290400, 0.954000, 0.020300), 545: (0.359700, 0.980300, 0.013400), 550: (0.433450, 0.994950, 0.008750), 555: (0.512050, 1.000000, 0.005750), 560: (0.594500, 0.995000, 0.003900), 565: (0.678400, 0.978600, 0.002750), 570: (0.762100, 0.952000, 0.002100), 575: (0.842500, 0.915400, 0.001800), 580: (0.916300, 0.870000, 0.001650), 585: (0.978600, 0.816300, 0.001400), 590: (1.026300, 0.757000, 0.001100), 595: (1.056700, 0.694900, 0.001000), 600: (1.062200, 0.631000, 0.000800), 605: (1.045600, 0.566800, 0.000600), 610: (1.002600, 0.503000, 0.000340), 615: (0.938400, 0.441200, 0.000240), 620: (0.854450, 0.381000, 0.000190), 625: (0.751400, 0.321000, 0.000100), 630: (0.642400, 0.265000, 0.000050), 635: (0.541900, 0.217000, 0.000030), 640: (0.447900, 0.175000, 0.000020), 645: (0.360800, 0.138200, 0.000010), 650: (0.283500, 0.107000, 0.000000), 655: (0.218700, 0.081600, 0.000000), 660: (0.164900, 0.061000, 0.000000), 665: (0.121200, 0.044580, 0.000000), 670: (0.087400, 0.032000, 0.000000), 675: (0.063600, 0.023200, 0.000000), 680: (0.046770, 0.017000, 0.000000), 685: (0.032900, 0.011920, 0.000000), 690: (0.022700, 0.008210, 0.000000), 695: (0.015840, 0.005723, 0.000000), 700: (0.011359, 0.004102, 0.000000), 705: (0.008111, 0.002929, 0.000000), 710: (0.005790, 0.002091, 0.000000), 715: (0.004109, 0.001484, 0.000000), 720: (0.002899, 0.001047, 0.000000), 725: (0.002049, 0.000740, 0.000000), 730: (0.001440, 0.000520, 0.000000), 735: (0.001000, 0.000361, 0.000000), 740: (0.000690, 0.000249, 0.000000), 745: (0.000476, 0.000172, 0.000000), 750: (0.000332, 0.000120, 0.000000), 755: (0.000235, 0.000085, 0.000000), 760: (0.000166, 0.000060, 0.000000), 765: (0.000117, 0.000042, 0.000000), 770: (0.000083, 0.000030, 0.000000), 775: (0.000059, 0.000021, 0.000000), 780: (0.000042, 0.000015, 0.000000), } DATA_CMFS: Dict = { 380: np.array([0.001368, 3.90e-05, 0.006450]), 385: np.array([0.002236, 6.40e-05, 0.010550]), 390: np.array([0.004243, 0.000120, 0.020050]), 395: np.array([0.007650, 0.000217, 0.036210]), 400: np.array([0.014310, 0.000396, 0.067850]), 405: np.array([0.023190, 0.000640, 0.110200]), 410: np.array([0.043510, 0.001210, 0.207400]), 415: np.array([0.077630, 0.002180, 0.371300]), 420: np.array([0.134380, 0.004000, 0.645600]), 425: np.array([0.214770, 0.007300, 1.039050]), 430: np.array([0.283900, 0.011600, 1.385600]), 435: np.array([0.328500, 0.016840, 1.622960]), 440: np.array([0.348280, 0.023000, 1.747060]), 445: np.array([0.348060, 0.029800, 1.782600]), 450: np.array([0.336200, 0.038000, 1.772110]), 455: np.array([0.318700, 0.048000, 1.744100]), 460: np.array([0.290800, 0.060000, 1.669200]), 465: np.array([0.251100, 0.073900, 1.528100]), 470: np.array([0.195360, 0.090980, 1.287640]), 475: np.array([0.142100, 0.112600, 1.041900]), 480: np.array([0.095640, 0.139020, 0.812950]), 485: np.array([0.057950, 0.169300, 0.616200]), 490: np.array([0.032010, 0.208020, 0.465180]), 495: np.array([0.014700, 0.258600, 0.353300]), 500: np.array([0.004900, 0.323000, 0.272000]), 505: np.array([0.002400, 0.407300, 0.212300]), 510: np.array([0.009300, 0.503000, 0.158200]), 515: np.array([0.029100, 0.608200, 0.111700]), 520: np.array([0.063270, 0.710000, 0.078250]), 525: np.array([0.109600, 0.793200, 0.057250]), 530: np.array([0.165500, 0.862000, 0.042160]), 535: np.array([0.225750, 0.914850, 0.029840]), 540: np.array([0.290400, 0.954000, 0.020300]), 545: np.array([0.359700, 0.980300, 0.013400]), 550: np.array([0.433450, 0.994950, 0.008750]), 555: np.array([0.512050, 1.000000, 0.005750]), 560: np.array([0.594500, 0.995000, 0.003900]), 565: np.array([0.678400, 0.978600, 0.002750]), 570: np.array([0.762100, 0.952000, 0.002100]), 575: np.array([0.842500, 0.915400, 0.001800]), 580: np.array([0.916300, 0.870000, 0.001650]), 585: np.array([0.978600, 0.816300, 0.001400]), 590: np.array([1.026300, 0.757000, 0.001100]), 595: np.array([1.056700, 0.694900, 0.001000]), 600: np.array([1.062200, 0.631000, 0.000800]), 605: np.array([1.045600, 0.566800, 0.000600]), 610: np.array([1.002600, 0.503000, 0.000340]), 615: np.array([0.938400, 0.441200, 0.000240]), 620: np.array([0.854450, 0.381000, 0.000190]), 625: np.array([0.751400, 0.321000, 0.000100]), 630: np.array([0.642400, 0.265000, 5.00e-05]), 635: np.array([0.541900, 0.217000, 3.00e-05]), 640: np.array([0.447900, 0.175000, 2.00e-05]), 645: np.array([0.360800, 0.138200, 1.00e-05]), 650: np.array([0.283500, 0.107000, 0.000000]), 655: np.array([0.218700, 0.081600, 0.000000]), 660: np.array([0.164900, 0.061000, 0.000000]), 665: np.array([0.121200, 0.044580, 0.000000]), 670: np.array([0.087400, 0.032000, 0.000000]), 675: np.array([0.063600, 0.023200, 0.000000]), 680: np.array([0.046770, 0.017000, 0.000000]), 685: np.array([0.032900, 0.011920, 0.000000]), 690: np.array([0.022700, 0.008210, 0.000000]), 695: np.array([0.015840, 0.005723, 0.000000]), 700: np.array([0.011359, 0.004102, 0.000000]), 705: np.array([0.008111, 0.002929, 0.000000]), 710: np.array([0.005790, 0.002091, 0.000000]), 715: np.array([0.004109, 0.001484, 0.000000]), 720: np.array([0.002899, 0.001047, 0.000000]), 725: np.array([0.002049, 0.000740, 0.000000]), 730: np.array([0.001440, 0.000520, 0.000000]), 735: np.array([0.001000, 0.000361, 0.000000]), 740: np.array([0.000690, 0.000249, 0.000000]), 745: np.array([0.000476, 0.000172, 0.000000]), 750: np.array([0.000332, 0.000120, 0.000000]), 755: np.array([0.000235, 8.50e-05, 0.000000]), 760: np.array([0.000166, 6.00e-05, 0.000000]), 765: np.array([0.000117, 4.20e-05, 0.000000]), 770: np.array([8.30e-05, 3.00e-05, 0.000000]), 775: np.array([5.90e-05, 2.10e-05, 0.000000]), 780: np.array([4.20e-05, 1.50e-05, 0.000000]), } DATA_SAMPLE_ABRIDGED: Dict = { 500: 0.0651, 520: 0.0705, 540: 0.0772, 560: 0.0870, 580: 0.1128, 600: 0.1360, } DATA_MULTI_SAMPLE_ABRIDGED: Dict = { 500: (0.004900, 0.323000, 0.272000), 510: (0.009300, 0.503000, 0.158200), 520: (0.063270, 0.710000, 0.078250), 530: (0.165500, 0.862000, 0.042160), 540: (0.290400, 0.954000, 0.020300), 550: (0.433450, 0.994950, 0.008750), 560: (0.594500, 0.995000, 0.003900), } class TestSpectralShape(unittest.TestCase): """ Define :class:`colour.colorimetry.spectrum.SpectralShape` class unit tests methods. """ def test_required_attributes(self): """Test the presence of required attributes.""" required_attributes = ("start", "end", "interval", "boundaries") for attribute in required_attributes: self.assertIn(attribute, dir(SpectralShape)) def test_required_methods(self): """Test the presence of required methods.""" required_methods = ( "__init__", "__str__", "__repr__", "__hash__", "__iter__", "__contains__", "__len__", "__eq__", "__ne__", "range", ) for method in required_methods: self.assertIn(method, dir(SpectralShape)) def test_start(self): """ Test :attr:`colour.colorimetry.spectrum.SpectralShape.start` attribute. """ self.assertEqual(SpectralShape(360, 830, 1).start, 360) self.assertRaises(AssertionError, lambda: SpectralShape(360, 360, 1)) self.assertRaises(AssertionError, lambda: SpectralShape(360, 0, 1)) def test_end(self): """Test :attr:`colour.colorimetry.spectrum.SpectralShape.end` property.""" self.assertEqual(SpectralShape(360, 830, 1).end, 830) self.assertRaises(AssertionError, lambda: SpectralShape(830, 830, 1)) self.assertRaises(AssertionError, lambda: SpectralShape(830, 0, 1)) def test_interval(self): """ Test :attr:`colour.colorimetry.spectrum.SpectralShape.interval` property. """ self.assertEqual(SpectralShape(360, 830, 1).interval, 1) def test_boundaries(self): """ Test :attr:`colour.colorimetry.spectrum.SpectralShape.boundaries` property. """ shape = SpectralShape(400, 700, 1) shape.boundaries = (360, 830) self.assertEqual(shape.start, 360) self.assertEqual(shape.end, 830) def test__hash__(self): """ Test :meth:`colour.colorimetry.spectrum.SpectralShape.__hash__` method. """ self.assertIsInstance(hash(SpectralShape(0, 10, 0.1)), int) def test__iter__(self): """ Test :meth:`colour.colorimetry.spectrum.SpectralShape.__iter__` method. """ np.testing.assert_almost_equal( [wavelength for wavelength in SpectralShape(0, 10, 0.1)], np.arange(0, 10 + 0.1, 0.1), ) def test__contains__(self): """ Test :meth:`colour.colorimetry.spectrum.SpectralShape.__contains__` method. """ self.assertIn(360.1, SpectralShape(360, 830, 0.1)) self.assertNotIn(360.11, SpectralShape(360, 830, 0.1)) self.assertIn(np.array([0.5, 0.6]), SpectralShape(0, 10, 0.1)) self.assertNotIn(np.array([0.5, 0.61]), SpectralShape(0, 10, 0.1)) def test__len__(self): """ Test :meth:`colour.colorimetry.spectrum.SpectralShape.__len__` method. """ self.assertEqual(len(SpectralShape(0, 10, 0.1)), 101) def test__eq__(self): """ Test :meth:`colour.colorimetry.spectrum.SpectralShape.__eq__` method. """ self.assertEqual(SpectralShape(0, 10, 0.1), SpectralShape(0, 10, 0.1)) self.assertNotEqual(SpectralShape(0, 10, 0.1), None) def test__ne__(self): """ Test :meth:`colour.colorimetry.spectrum.SpectralShape.__ne__` method. """ self.assertNotEqual( SpectralShape(0, 10, 0.1), SpectralShape(1, 10, 0.1) ) def test_range(self): """Test :func:`colour.colorimetry.spectrum.SpectralShape.range` method.""" np.testing.assert_almost_equal( [wavelength for wavelength in SpectralShape(0, 10, 0.1)], np.arange(0, 10 + 0.1, 0.1), ) class TestSpectralDistribution(unittest.TestCase): """ Define :class:`colour.colorimetry.spectrum.SpectralDistribution` class unit tests methods. """ def setUp(self): """Initialise the common tests attributes.""" self._sd = SpectralDistribution(DATA_SAMPLE, name="Sample") self._non_uniform_sd = SpectralDistribution( DATA_SAMPLE_NON_UNIFORM, name="Non Uniform Sample", strict_name="Strict Non Uniform Sample", ) self._phi = (1 + np.sqrt(5)) / 2 def test_required_attributes(self): """Test the presence of required attributes.""" required_attributes = ("strict_name", "wavelengths", "values", "shape") for attribute in required_attributes: self.assertIn(attribute, dir(SpectralDistribution)) def test_required_methods(self): """Test the presence of required methods.""" required_methods = ( "__init__", "interpolate", "extrapolate", "align", "trim", "normalise", ) for method in required_methods: self.assertIn(method, dir(SpectralDistribution)) def test_strict_name(self): """ Test :attr:`colour.colorimetry.spectrum.SpectralDistribution.strict_name` property. """ self.assertEqual(self._sd.strict_name, "Sample") self.assertEqual( self._non_uniform_sd.strict_name, "Strict Non Uniform Sample" ) def test_wavelengths(self): """ Test :attr:`colour.colorimetry.spectrum.SpectralDistribution.wavelengths` property. """ np.testing.assert_array_equal(self._sd.wavelengths, self._sd.domain) sd = self._sd.copy() sd.wavelengths = sd.wavelengths + 10 np.testing.assert_array_equal(sd.wavelengths, sd.domain) def test_values(self): """ Test :attr:`colour.colorimetry.spectrum.SpectralDistribution.values` property. """ np.testing.assert_array_equal(self._sd.values, self._sd.range) sd = self._sd.copy() sd.values = sd.values + 10 np.testing.assert_array_equal(sd.values, sd.range) def test_shape(self): """ Test :attr:`colour.colorimetry.spectrum.SpectralDistribution.shape` property. """ self.assertEqual(self._sd.shape, SpectralShape(340, 820, 20)) def test__init__(self): """ Test :meth:`colour.colorimetry.spectrum.SpectralDistribution.__init__` method. """ np.testing.assert_almost_equal( SpectralDistribution(DATA_SAMPLE).wavelengths, SpectralDistribution( DATA_SAMPLE.values(), SpectralShape(340, 820, 20), ).wavelengths, ) def test_interpolate(self): """ Test :func:`colour.colorimetry.spectrum.\ SpectralDistribution.interpolate` method. """ np.testing.assert_almost_equal( reshape_sd( self._sd, SpectralShape(self._sd.shape.start, self._sd.shape.end, 1), "Interpolate", ).values, DATA_SAMPLE_INTERPOLATED, decimal=7, ) # TODO: Remove statement whenever we make "Scipy" 0.19.0 the minimum # version. # Skipping tests because of "Scipy" 0.19.0 interpolation code changes. if LooseVersion(scipy.__version__) < LooseVersion("0.19.0"): return # pragma: no cover np.testing.assert_allclose( reshape_sd( self._non_uniform_sd, SpectralShape( self._non_uniform_sd.shape.start, self._non_uniform_sd.shape.end, 1, ), "Interpolate", ).values, DATA_SAMPLE_INTERPOLATED_NON_UNIFORM, rtol=0.0000001, atol=0.0000001, ) def test_extrapolate(self): """ Test :func:`colour.colorimetry.spectrum.\ SpectralDistribution.extrapolate` method. """ data = dict(zip(range(25, 35), [0] * 5 + [1] * 5)) sd = SpectralDistribution(data) sd.extrapolate(SpectralShape(10, 50, 5)) self.assertAlmostEqual(sd[10], 0, places=7) self.assertAlmostEqual(sd[50], 1, places=7) sd = SpectralDistribution( np.linspace(0, 1, 10), np.linspace(25, 35, 10) ) sd.extrapolate( SpectralShape(10, 50, 10), extrapolator_kwargs={ "method": "Linear", "left": None, "right": None, }, ) self.assertAlmostEqual(sd[10], -1.5000000000000004, places=7) self.assertAlmostEqual(sd[50], 2.4999999999999964, places=7) def test_align(self): """ Test :func:`colour.colorimetry.spectrum.\ SpectralDistribution.align` method. """ shape = SpectralShape(100, 900, 5) self.assertEqual(self._sd.copy().align(shape).shape, shape) shape = SpectralShape(600, 650, 1) self.assertEqual(self._sd.copy().align(shape).shape, shape) def test_trim(self): """ Test :func:`colour.colorimetry.spectrum.\ SpectralDistribution.trim` method. """ shape = SpectralShape(400, 700, 20) self.assertEqual(self._sd.copy().trim(shape).shape, shape) shape = SpectralShape(200, 900, 1) self.assertEqual(self._sd.copy().trim(shape).shape, self._sd.shape) def test_normalise(self): """ Test :func:`colour.colorimetry.spectrum.\ SpectralDistribution.normalise` method. """ np.testing.assert_almost_equal( self._sd.copy().normalise(100).values, DATA_SAMPLE_NORMALISED ) class TestMultiSpectralDistributions(unittest.TestCase): """ Define :class:`colour.colorimetry.spectrum.MultiSpectralDistributions` class unit tests methods. """ def setUp(self): """Initialise the common tests attributes.""" self._labels = ("x_bar", "y_bar", "z_bar") self._strict_labels = ( "Strict x_bar", "Strict y_bar", "Strict z_bar", ) self._msds = MultiSpectralDistributions( DATA_STANDARD_OBSERVER_2_DEGREE_CIE1931, name="Observer", labels=self._labels, ) sd = SpectralDistribution(DATA_SAMPLE) domain = sd.domain range_ = tstack([sd.values, sd.values, sd.values]) self._sample_msds = MultiSpectralDistributions( range_, domain, name="Sample Observer", labels=self._labels, ) sd = SpectralDistribution(DATA_SAMPLE_NON_UNIFORM) domain = sd.domain range_ = tstack([sd.values, sd.values, sd.values]) self._non_uniform_sample_msds = MultiSpectralDistributions( range_, domain, name="Non Uniform Sample Observer", strict_name="Strict Non Uniform Sample Observer", labels=self._labels, strict_labels=("Strict x_bar", "Strict y_bar", "Strict z_bar"), ) self._phi = (1 + np.sqrt(5)) / 2 def test_required_attributes(self): """Test the presence of required attributes.""" required_attributes = ( "strict_name", "strict_labels", "wavelengths", "values", "shape", ) for attribute in required_attributes: self.assertIn(attribute, dir(MultiSpectralDistributions)) def test_required_methods(self): """Test the presence of required methods.""" required_methods = ( "__init__", "interpolate", "extrapolate", "align", "trim", "normalise", "to_sds", ) for method in required_methods: self.assertIn(method, dir(MultiSpectralDistributions)) def test_strict_name(self): """ Test :attr:`colour.colorimetry.spectrum.MultiSpectralDistributions.strict_name` property. """ self.assertEqual(self._sample_msds.strict_name, "Sample Observer") self.assertEqual( self._non_uniform_sample_msds.strict_name, "Strict Non Uniform Sample Observer", ) def test_wavelengths(self): """ Test :attr:`colour.colorimetry.spectrum.MultiSpectralDistributions.wavelengths` property. """ np.testing.assert_array_equal( self._msds.wavelengths, self._msds.domain ) msds = self._msds.copy() msds.wavelengths = msds.wavelengths + 10 np.testing.assert_array_equal(msds.wavelengths, msds.domain) def test_values(self): """ Test :attr:`colour.colorimetry.spectrum.MultiSpectralDistributions.values` property. """ np.testing.assert_array_equal(self._msds.values, self._msds.range) msds = self._msds.copy() msds.values = msds.values + 10 np.testing.assert_array_equal(msds.values, msds.range) def test_strict_labels(self): """ Test :attr:`colour.colorimetry.spectrum.MultiSpectralDistributions.\ strict_labels` property. """ self.assertTupleEqual( tuple(self._sample_msds.strict_labels), self._labels ) self.assertEqual( tuple(self._non_uniform_sample_msds.strict_labels), ("Strict x_bar", "Strict y_bar", "Strict z_bar"), ) def test_shape(self): """ Test :attr:`colour.colorimetry.spectrum.MultiSpectralDistributions.shape` property. """ self.assertEqual(self._msds.shape, SpectralShape(380, 780, 5)) def test__init__(self): """ Test :func:`colour.colorimetry.spectrum.\ MultiSpectralDistributions.__init__` method. """ np.testing.assert_almost_equal( MultiSpectralDistributions(DATA_CMFS).wavelengths, MultiSpectralDistributions( DATA_CMFS.values(), SpectralShape(380, 780, 5), ).wavelengths, ) def test_interpolate(self): """ Test :func:`colour.colorimetry.spectrum.\ MultiSpectralDistributions.interpolate` method. """ # pylint: disable=E1102 msds = reshape_msds( self._sample_msds, SpectralShape( self._sample_msds.shape.start, self._sample_msds.shape.end, 1 ), "Interpolate", ) for signal in msds.signals.values(): np.testing.assert_almost_equal( signal.values, DATA_SAMPLE_INTERPOLATED, decimal=7 ) # TODO: Remove statement whenever we make "Scipy" 0.19.0 the minimum # version. # Skipping tests because of "Scipy" 0.19.0 interpolation code changes. if LooseVersion(scipy.__version__) < LooseVersion("0.19.0"): return # pragma: no cover # pylint: disable=E1102 msds = reshape_msds( self._non_uniform_sample_msds, SpectralShape( self._non_uniform_sample_msds.shape.start, self._non_uniform_sample_msds.shape.end, 1, ), "Interpolate", ) for signal in msds.signals.values(): np.testing.assert_allclose( signal.values, DATA_SAMPLE_INTERPOLATED_NON_UNIFORM, rtol=0.0000001, atol=0.0000001, ) def test_extrapolate(self): """ Test :func:`colour.colorimetry.spectrum.\ MultiSpectralDistributions.extrapolate` method. """ data = dict(zip(range(25, 35), tstack([[0] * 5 + [1] * 5] * 3))) msds = MultiSpectralDistributions(data) msds.extrapolate(SpectralShape(10, 50, 5)) np.testing.assert_almost_equal( msds[10], np.array([0.0, 0.0, 0.0]), decimal=7 ) np.testing.assert_almost_equal( msds[50], np.array([1.0, 1.0, 1.0]), decimal=7 ) msds = MultiSpectralDistributions( tstack([np.linspace(0, 1, 10)] * 3), np.linspace(25, 35, 10) ) msds.extrapolate( SpectralShape(10, 50, 10), extrapolator_kwargs={ "method": "Linear", "left": None, "right": None, }, ) np.testing.assert_almost_equal( msds[10], np.array([-1.5, -1.5, -1.5]), decimal=7 ) np.testing.assert_almost_equal( msds[50], np.array([2.5, 2.5, 2.5]), decimal=7 ) def test_align(self): """ Test :func:`colour.colorimetry.spectrum.\ MultiSpectralDistributions.align` method. """ msds = self._sample_msds.copy() shape = SpectralShape(100, 900, 5) self.assertEqual(msds.align(shape).shape, shape) shape = SpectralShape(600, 650, 1) self.assertEqual(msds.align(shape).shape, shape) def test_trim(self): """ Test :func:`colour.colorimetry.spectrum.\ MultiSpectralDistributions.trim` method. """ shape = SpectralShape(400, 700, 5) self.assertEqual(self._msds.copy().trim(shape).shape, shape) shape = SpectralShape(200, 900, 1) self.assertEqual(self._msds.copy().trim(shape).shape, self._msds.shape) def test_normalise(self): """ Test :func:`colour.colorimetry.spectrum. MultiSpectralDistributions.normalise` method. """ np.testing.assert_almost_equal( self._sample_msds.copy().normalise(100).values, tstack([DATA_SAMPLE_NORMALISED] * 3), ) def test_to_sds(self): """ Test :func:`colour.colorimetry.spectrum.\ MultiSpectralDistributions.to_sds` method. """ sds = self._non_uniform_sample_msds.to_sds() self.assertEqual(len(sds), 3) for i, sd in enumerate(sds): self.assertEqual(sd.name, self._labels[i]) self.assertEqual(sd.strict_name, self._strict_labels[i]) class TestReshapeSd(unittest.TestCase): """ Define :func:`colour.colorimetry.spectrum.reshape_sd` definition unit tests methods. """ def test_reshape_sd(self): """Test :func:`colour.colorimetry.spectrum.reshape_sd` definition.""" sd = SpectralDistribution(DATA_SAMPLE_ABRIDGED) sd_reshaped = reshape_sd(sd) self.assertEqual(sd_reshaped, sd.copy().align(SPECTRAL_SHAPE_DEFAULT)) self.assertEqual(reshape_sd(sd), sd_reshaped) shape = colour.SpectralShape(100, 900, 1) extrapolator_kwargs = { "method": "Constant", "left": 0.05, "right": 0.15, } sd_reshaped = reshape_sd( sd, shape, method="Extrapolate", extrapolator_kwargs=extrapolator_kwargs, ) self.assertEqual( sd_reshaped, sd.copy().extrapolate( shape, extrapolator_kwargs=extrapolator_kwargs ), ) shape = colour.SpectralShape(400, 700, 1) interpolator_kwargs = {"fill_value": 0} sd_reshaped = reshape_sd( sd, shape, method="Interpolate", interpolator=CubicSplineInterpolator, interpolator_kwargs=interpolator_kwargs, ) self.assertEqual( sd_reshaped, sd.copy().interpolate( shape, interpolator=CubicSplineInterpolator, interpolator_kwargs=interpolator_kwargs, ), ) sd = SpectralDistribution(DATA_SAMPLE) shape = colour.SpectralShape(500, 600, 1) sd_reshaped = reshape_sd(sd, shape, method="Trim") self.assertEqual(sd_reshaped, sd.copy().trim(shape)) class TestSdsAndMdsToSds(unittest.TestCase): """ Define :func:`colour.colorimetry.spectrum.sds_and_msds_to_sds` definition unit tests methods. """ def test_sds_and_msds_to_sds(self): """ Test :func:`colour.colorimetry.spectrum.sds_and_msds_to_sds` definition. """ sd_1 = SpectralDistribution(DATA_SAMPLE_ABRIDGED) sd_2 = SpectralDistribution(DATA_SAMPLE_ABRIDGED) multi_sds_1 = MultiSpectralDistributions(DATA_MULTI_SAMPLE_ABRIDGED) multi_sds_2 = MultiSpectralDistributions(DATA_MULTI_SAMPLE_ABRIDGED) self.assertEqual( len( sds_and_msds_to_sds( [ sd_1, sd_2, multi_sds_1, multi_sds_2, ] ) ), 8, ) self.assertEqual(len(sds_and_msds_to_sds(multi_sds_1)), 3) class TestSdsAndMsdsToMsds(unittest.TestCase): """ Define :func:`colour.colorimetry.spectrum.sds_and_msds_to_msds` definition unit tests methods. """ def test_sds_and_msds_to_msds(self): """ Test :func:`colour.colorimetry.spectrum.sds_and_msds_to_msds` definition. """ sd_1 = SpectralDistribution(DATA_SAMPLE_ABRIDGED) sd_2 = SpectralDistribution(DATA_SAMPLE_ABRIDGED) multi_sds_1 = MultiSpectralDistributions(DATA_MULTI_SAMPLE_ABRIDGED) multi_sds_2 = MultiSpectralDistributions(DATA_MULTI_SAMPLE_ABRIDGED) self.assertEqual(sds_and_msds_to_msds(multi_sds_1), multi_sds_1) multi_sds_0 = sds_and_msds_to_msds([multi_sds_1]) np.testing.assert_array_equal(multi_sds_0.range, multi_sds_1.range) self.assertEqual(sds_and_msds_to_msds([multi_sds_1]), multi_sds_1) shape = SpectralShape(500, 560, 10) self.assertEqual( sds_and_msds_to_msds([sd_1, sd_2, multi_sds_1, multi_sds_2]).shape, shape, ) np.testing.assert_almost_equal( sds_and_msds_to_msds( [sd_1, sd_2, multi_sds_1, multi_sds_2] ).wavelengths, shape.range(), decimal=7, ) np.testing.assert_almost_equal( sds_and_msds_to_msds( [sd_1, sd_2, multi_sds_1, multi_sds_2] ).values, tstack( [sd_1.align(shape).values, sd_2.align(shape).values] + [ sd.values for sd in sds_and_msds_to_sds(multi_sds_1.align(shape)) ] + [ sd.values for sd in sds_and_msds_to_sds(multi_sds_2.align(shape)) ] ), decimal=7, ) if __name__ == "__main__": unittest.main()
27.687624
87
0.63248
23,032
0.411808
0
0
0
0
0
0
6,791
0.121422
4884cbedf429b58f568f4a96e1328fccb2ba0bb3
5,483
py
Python
experiments/src_exp/data_experimentation/test_clean_store_delete_playground.py
earny-joe/CvDisinfo-Detect
722b07ef2820759fce8e917ffba6654ac5611c23
[ "MIT" ]
4
2020-04-27T04:45:53.000Z
2022-03-28T10:50:07.000Z
experiments/src_exp/data_experimentation/test_clean_store_delete_playground.py
earny-joe/CvDisinfo-Detect
722b07ef2820759fce8e917ffba6654ac5611c23
[ "MIT" ]
16
2020-04-12T19:09:10.000Z
2022-03-12T00:38:18.000Z
experiments/src_exp/data_experimentation/test_clean_store_delete_playground.py
earny-joe/CvDisinfo-Detect
722b07ef2820759fce8e917ffba6654ac5611c23
[ "MIT" ]
1
2020-07-19T23:15:05.000Z
2020-07-19T23:15:05.000Z
# Comment import pandas as pd import re from google.cloud import storage from pathlib import Path def load_data(filename, chunksize=10000): good_columns = [ 'created_at', 'entities', 'favorite_count', 'full_text', 'id_str', 'in_reply_to_screen_name', 'in_reply_to_status_id_str', 'is_quote_status', 'lang', 'retweet_count', 'source', 'user', 'quoted_status_id_str', 'quoted_status_permalink' ] chunks = pd.read_json( filename, lines=True, chunksize=chunksize, dtype={ 'id_str': str, 'in_reply_to_status_id_str': str, 'quoted_status_id_str': str } ) df = pd.concat(chunk for chunk in chunks)[good_columns] return df def entity_extraction(entity, component, urls=False, user_mentions=False): try: if urls is True: if entity[component] == []: return None elif entity[component] != []: return ','.join([url['url'] for url in entity[component]]) elif user_mentions is True: if entity[component] == []: return None elif entity[component] != []: return ','.join( [mention['screen_name'] for mention in entity[component]] ) else: if entity[component] == []: return None elif entity[component] != []: return ','.join([comp['text'] for comp in entity[component]]) except Exception: return None def source_extract(text): try: regex = re.compile(r'(?<=>).*?(?=<)', re.I) return regex.search(text).group() except AttributeError: return None def quoted_status_extract(status): try: return status['url'] except Exception: return None def clean_panacea_data(dataframe): user_components = [ 'created_at', 'description', 'favourites_count', 'followers_count', 'friends_count', 'id_str', 'location', 'name', 'profile_image_url_https', 'screen_name', 'statuses_count', 'verified' ] dataframe['hashtags'] = dataframe['entities']\ .apply(lambda x: entity_extraction(x, 'hashtags')) dataframe['symbols'] = dataframe['entities']\ .apply(lambda x: entity_extraction(x, 'symbols')) dataframe['urls'] = dataframe['entities']\ .apply(lambda x: entity_extraction(x, 'urls', urls=True)) dataframe['user_mentions'] = dataframe['entities']\ .apply(lambda x: entity_extraction(x, 'user_mentions', user_mentions=True)) dataframe['tweet_source'] = dataframe['source'].apply(source_extract) for comp in user_components: dataframe[f'user_{comp}'] = dataframe['user']\ .apply(lambda user: user[comp]) dataframe['quoted_status_url'] = dataframe['quoted_status_permalink']\ .apply(quoted_status_extract) dataframe.drop(labels=[ 'user', 'entities', 'source', 'quoted_status_permalink' ], axis=1, inplace=True) dataframe.fillna('none', inplace=True) return dataframe def cleaning_wrapper(date): print('Loading data...') df = load_data(f'{date}/{date}_clean-dataset.json') print('Cleaning data...') df = clean_panacea_data(dataframe=df) print(f'Cleaned data, converting data for date {date} to pickle format...') df.to_pickle(f'{date}/{date}_clean-dataset.pkl') def download_blob(bucket_name, source_blob_name, destination_file_name): """Downloads a blob from the bucket.""" # bucket_name = "your-bucket-name" # source_blob_name = "storage-object-name" # destination_file_name = "local/path/to/file" storage_client = storage.Client() bucket = storage_client.bucket(bucket_name) blob = bucket.blob(source_blob_name) blob.download_to_filename(destination_file_name) print(f"Blob {source_blob_name} downloaded to {destination_file_name}.") def upload_blob(bucket_name, source_file_name, destination_blob_name): """Uploads a file to the bucket.""" # bucket_name = "your-bucket-name" # source_file_name = "local/path/to/file" # destination_blob_name = "storage-object-name" storage_client = storage.Client() bucket = storage_client.bucket(bucket_name) blob = bucket.blob(destination_blob_name) blob.upload_from_filename(source_file_name) print(f"File {source_file_name} uploaded to {destination_blob_name}.") def main(): date = input('Date whose data will be cleaned (format: YYYY-MM-DD):\n') bucket_name = 'thepanacealab_covid19twitter' download_blob( bucket_name=bucket_name, source_blob_name=f''' dailies/{date}/panacealab_{date}_clean-dataset.json ''', destination_file_name=f'{date}/{date}_clean-dataset.json' ) cleaning_wrapper(date) upload_blob( bucket_name=bucket_name, source_file_name=f'{date}/{date}_clean-dataset.pkl', destination_blob_name=f'dailies/{date}/{date}_clean-dataset.pkl' ) file_delete_path = Path.cwd() / date / f'{date}_clean-dataset.json' file_delete_path.unlink() print(f'{date}_clean-dataset.json removed from {date} folder.') if __name__ == '__main__': main()
31.331429
79
0.61718
0
0
0
0
0
0
0
0
1,739
0.317162
4885063d81ad224f010848be20c3a4db6e1c984c
18,988
py
Python
codes/correl.py
KurmasanaWT/community
5fc9e7da5b3e8df2bc9f85580a070de8c868a656
[ "MIT" ]
null
null
null
codes/correl.py
KurmasanaWT/community
5fc9e7da5b3e8df2bc9f85580a070de8c868a656
[ "MIT" ]
null
null
null
codes/correl.py
KurmasanaWT/community
5fc9e7da5b3e8df2bc9f85580a070de8c868a656
[ "MIT" ]
null
null
null
from dash import dcc, html import dash_bootstrap_components as dbc from dash.dependencies import Input, Output, State import numpy as np import pandas as pd import plotly.io as pio import plotly.graph_objects as go from plotly.subplots import make_subplots import yfinance as yf import math from sklearn.linear_model import LinearRegression from app import app np.seterr(divide='ignore') pd.options.display.float_format = '{:,.2f}'.format # FORMATA E CONFIGURA GRÁFICOS pio.templates["draft"] = go.layout.Template( layout=go.Layout( title_x = 0.0, title_pad = dict(l=10, t=10), margin = dict(l=50,t=50, b=50, r=50, pad=0, autoexpand=True), font = dict(family="Arial", size=10), autosize=True, ), layout_annotations=[ dict( name="draft watermark", text="KWT-Community", textangle=-30, opacity=0.03, font=dict(family="Arial", color="black", size=80), xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False, ) ] ) pio.templates.default = "seaborn+draft" plotres:dict = dict(width=1920, height=1080) config1 = { "displaylogo": False, "toImageButtonOptions": plotres, "modeBarButtonsToAdd": [ "drawline", "drawopenpath", "drawclosedpath", "drawcircle", "drawrect", "eraseshape", "hoverClosestCartesian", "hoverCompareCartesian" ] } # INPUTS PARA DROPDOWN MENU tickers = pd.read_csv('db/tickers.csv', delimiter=';') # ativos da na bolsa brasileira tickers['label'] = tickers['value']+" - "+tickers['label'] tickers['value'] = tickers['value']+".SA" other = pd.read_csv('db/other.csv', delimiter=';') # outros ativos e índices other['label'] = other['value']+" - "+other['label'] tickers=pd.concat([tickers,other]) tickers = tickers.to_dict('records') periods = pd.read_csv('db/periods.csv', delimiter=';').to_dict('records') # períodos de análise intervals = pd.read_csv('db/intervals.csv', delimiter=';').to_dict('records') # intervalos entre dados do período def market_beta(X,Y,N): """ X = The independent variable which is the Market Y = The dependent variable which is the Stock N = The length of the Window It returns the alphas and the betas of the rolling regression """ # all the observations obs = len(X) # initiate the betas with null values betas = np.full(obs, np.nan) # initiate the alphas with null values alphas = np.full(obs, np.nan) for i in range((obs-N)): regressor = LinearRegression() regressor.fit(X.to_numpy()[i : i + N+1].reshape(-1,1), Y.to_numpy()[i : i + N+1]) betas[i+N] = regressor.coef_[0] alphas[i+N] = regressor.intercept_ return(alphas, betas) # LAYOUT layout = dbc.Container( children=[ dcc.Loading( #className="kwtload", id="load_o1", color='#0a0', style={'background-color':'rgba(0, 0, 0, 0.5)'}, parent_style={}, fullscreen=True, children=html.Span(id="correl_load_o1", children=["LOADING..."]), type="default", ), dbc.Row([ html.Div(className='kwtdrops', children=[ html.H5("ATIVO"), dcc.Dropdown( id="ticker", options=tickers, value='VALE3.SA', clearable=False, style={'width':'300px'} ), html.H5("BENCHMARK"), dcc.Dropdown( id="indexer", options=tickers, value='^BVSP', clearable=False, style={'width':'300px'} ), html.H5("PERÍODO"), dcc.Dropdown( id="periods", options=periods, value='1y', clearable=False, style={'width':'10rem'} ), html.H5("INTERVALO"), dcc.Dropdown( id="intervals", options=intervals, value='1d', clearable=False, style={'width':'10rem'} ), dbc.Button(className="kwtchartbtn",id='submitb', n_clicks=0, children='Atualizar') ]), ]), html.Br(), dbc.Row([ dcc.Graph(id="correl_graph", config=config1), dcc.Graph(id="correl_graph1", config=config1), dcc.Graph(id="correl_graph2", config=config1), dcc.Graph(id="correl_graph3", config=config1), ]), ], fluid=True) def get(): return html.Div(layout) ####### CALLBACKS ####### ####### CALLBACK PAINEL MERCADO # @app.callback( [ Output("correl_graph", "figure"), Output("correl_graph1", "figure"), Output("correl_graph2", "figure"), Output("correl_graph3", "figure"), Output("correl_load_o1", "children") ], [ Input('submitb', 'n_clicks') ], [ State("ticker", "value"), State("indexer", "value"), State("periods", "value"), State("intervals", "value") ], ) ###### FUNC. CALLBACK PAINEL MERCADO # def display(sutb, tkr, idx, prd, itv): per21dd=21 per50dd=50 per200dd=200 ####### DOWNLOAD DE PREÇO E VOLUME DO ATIVO ANALISADO df = yf.download(tkr, interval=itv, period=prd) df = pd.DataFrame(df) df = df[df.index.dayofweek < 5] df.dropna(inplace=True) #df.fillna( method ='ffill', inplace = True) #df.fillna( method ='bfill', inplace = True) ### VARIAÇÃO E RETORNO #df['Return'] = (np.log(df.Close / df.Close.shift(1)))*100 df['Return'] = df.Close.pct_change() print(df['Return'].isnull().sum()) df.dropna(inplace=True) print(df['Return'].isnull().sum()) df['PrevClose']=df.Close.shift(1) df['VarClose']=((df.Close - df.Close.shift(1))/df.Close.shift(1))*100 #df['VarClose'] = df.Close.pct_change() df['Return21dd'] = (np.log(df.Close / df.Close.shift(per21dd)))*100 df['Return50dd'] = (np.log(df.Close / df.Close.shift(per50dd)))*100 df['Return200dd'] = (np.log(df.Close / df.Close.shift(per200dd)))*100 df['VarAcum'] = ((df.Close/df.Close.iloc[0])-1)*100 df['RetAcum'] = (np.log(df.Close / df.Close.iloc[0]))*100 df["RetAcumColor"] = np.where(df.RetAcum < 0, 'red', 'green') ### REVERSÃO À MÉDIA ARITIMÉTICA DE 21 DIAS df['CSMA21dd']=df.Close.rolling(per21dd).mean() df['RSMA21dd']=((df.Close/df['CSMA21dd'])-1)*100 df["RSMA21dd_Color"] = np.where(df.RSMA21dd < 0, 'red', 'green') ### REVERSÃO À MÉDIA ARITIMÉTICA DE 50 DIAS df['CSMA50dd']=df.Close.rolling(per50dd).mean() df['RSMA50dd']=((df.Close/df['CSMA50dd'])-1)*100 df["RSMA50dd_Color"] = np.where(df.RSMA50dd < 0, 'red', 'green') ### REVERSÃO À MÉDIA EXPONENCIAL DE 200 DIAS df['CEMA200dd']=df.Close.ewm(span=per200dd, min_periods=per200dd, adjust=True).mean() df['REMA200dd']=((df.Close/df['CEMA200dd'])-1)*100 df["REMA200dd_Color"] = np.where(df.REMA200dd < 0, 'red', 'green') #print(df['Return'].isnull().sum()) #df.Return ####### DOWNLOAD DE PREÇO E VOLUME DO ATIVO DE REFERÊNCIA (BENCHMARK) dfi = yf.download(idx, interval=itv, period=prd) dfi = pd.DataFrame(dfi) dfi = dfi[dfi.index.dayofweek < 5] dfi.dropna(inplace=True) #dfi.fillna( method ='ffill', inplace = True) #dfi.fillna( method ='bfill', inplace = True) ### VARIAÇÃO E RETORNO #dfi['Return'] = (np.log(dfi.Close / dfi.Close.shift(1)))*100 dfi['Return'] = dfi.Close.pct_change() print(dfi['Return'].isnull().sum()) dfi.dropna(inplace=True) print(dfi['Return'].isnull().sum()) dfi['PrevClose']=dfi.Close.shift(1) dfi['VarClose']=((dfi.Close - dfi.Close.shift(1))/dfi.Close.shift(1))*100 #dfi['VarClose'] = dfi.Close.pct_change() dfi['Return21dd'] = (np.log(dfi.Close / dfi.Close.shift(per21dd)))*100 dfi['Return50dd'] = (np.log(dfi.Close / dfi.Close.shift(per50dd)))*100 dfi['Return200dd'] = (np.log(dfi.Close / dfi.Close.shift(per200dd)))*100 dfi['VarAcum'] = ((dfi.Close/dfi.Close.iloc[0])-1)*100 dfi['RetAcum'] = (np.log(dfi.Close / dfi.Close.iloc[0]))*100 dfi["RetAcumColor"] = np.where(dfi.RetAcum < 0, 'red', 'green') ### REVERSÃO À MÉDIA ARITIMÉTICA DE 21 DIAS dfi['CSMA21dd']=dfi.Close.rolling(per21dd).mean() dfi['RSMA21dd']=((dfi.Close/dfi['CSMA21dd'])-1)*100 dfi["RSMA21dd_Color"] = np.where(dfi.RSMA21dd < 0, 'red', 'green') ### REVERSÃO À MÉDIA ARITIMÉTICA DE 50 DIAS dfi['CSMA50dd']=dfi.Close.rolling(per50dd).mean() dfi['RSMA50dd']=((dfi.Close/dfi['CSMA50dd'])-1)*100 dfi["RSMA50dd_Color"] = np.where(dfi.RSMA50dd < 0, 'red', 'green') ### REVERSÃO À MÉDIA EXPONENCIAL DE 200 DIAS dfi['CEMA200dd']=dfi.Close.ewm(span=per200dd, min_periods=per200dd, adjust=True).mean() dfi['REMA200dd']=((dfi.Close/dfi['CEMA200dd'])-1)*100 dfi["REMA200dd_Color"] = np.where(dfi.REMA200dd < 0, 'red', 'green') #print(dfi['Return'].isnull().sum()) #dfi.Return ### ROLLING CORRELATION df['RCorr21dd'] = df['VarClose'].rolling(per21dd).corr(dfi['VarClose']) df['RCorr50dd'] = df['VarClose'].rolling(per50dd).corr(dfi['VarClose']) df['RCorr200dd'] = df['VarClose'].rolling(per200dd).corr(dfi['VarClose']) ### RETORNO COMPARADO df['RetComp'] = df['RetAcum'] / dfi['RetAcum'] ### CALCULA ALPHA E BETA df['Alpha21dd'],df['Beta21dd'] = market_beta(df.Return, dfi.Return, 21) df['Alpha50dd'],df['Beta50dd'] = market_beta(df.Return, dfi.Return, 50) df['Alpha200dd'],df['Beta200dd'] = market_beta(df.Return, dfi.Return, 200) ####### CONSTROI GRÁFICOS # ### FIG 0 --------------------------------------------------------------------------- fig = go.Figure() fig.add_trace( go.Candlestick ( x=df.index, open=df.Open, high=df.High, low=df.Low, close=df.Close, name=tkr) ) fig.add_trace( go.Scatter(x=df.index, y=df.CSMA21dd, mode='lines', name='MMA21', line_width=1,line_color='orange') ) fig.add_trace( go.Scatter(x=df.index, y=df.CSMA50dd, mode='lines', name='MMA50', line_width=1,line_color='navy') ) fig.add_trace( go.Scatter(x=df.index, y=df.CEMA200dd, mode='lines', name='EMA200', line_width=1,line_color='purple') ) ### FIG 1 --------------------------------------------------------------------------- fig1 = make_subplots( rows=1, cols=2, column_widths=[.85,.15], subplot_titles=("", "Histograma (Percent)") ) fig1.add_trace( go.Scatter(x=df.index, y=df.RSMA21dd, mode='lines', name='R_MMA21', line_width=1, line_color='orange'), col=1, row=1 ) fig1.add_trace( go.Scatter(x=df.index, y=df.RSMA50dd, mode='lines', name='R_MMA50', line_width=1,line_color='navy'), col=1, row=1 ) fig1.add_trace( go.Scatter(x=df.index, y=df.REMA200dd, mode='lines', name='R_EMA200', line_width=1,line_color='purple'), col=1, row=1 ) fig1.add_hline(y=0, line_color='black', line_dash='dot', line_width=1, annotation_text="Centro da Média", annotation_position="bottom left", col=1, row=1) fig1.add_trace( go.Histogram(x=df.RSMA21dd, name='R_MMA21', histnorm='percent', offsetgroup=0), col=2, row=1 ) fig1.add_trace( go.Histogram(x=df.RSMA50dd, name='R_MMA50', histnorm='percent', offsetgroup=0), col=2, row=1 ) fig1.add_trace( go.Histogram(x=df.REMA200dd, name='R_EMA200', histnorm='percent', offsetgroup=0), col=2, row=1 ) fig1.update_layout( xaxis=dict(showgrid=False), xaxis2=dict(showgrid=False) ) fig1.update_traces(bingroup='overlay', nbinsx=20, opacity=0.5, col=2, row=1, cumulative_enabled=False) ### FIG 2 --------------------------------------------------------------------------- fig2 = make_subplots( rows=3, cols=2, #subplot_titles=("Reversão à Média", "Indicador"), column_widths=[0.85,.15], row_heights=[.33, .33, .33], specs= [ [{'type' : 'xy'}, {'type' : 'indicator'}], [{'type' : 'xy'}, {'type' : 'indicator'}], [{'type' : 'xy'}, {'type' : 'indicator'}], ], #subplot_titles=('Mercedes', 'Ford', 'BMW') #specs=[ # [{}], # [{}], # [{}], # ] ) fig2.add_trace( go.Scatter(x=df.index, y=df.RSMA21dd, mode='lines', line_width=1, name='R_MMA21', line_color='orange') , row=1, col=1 ), fig2.add_trace( go.Indicator( mode = "gauge+number+delta", value = df.RSMA21dd[-1], #title = {'text': "Reversão MMA21"}, delta = {'reference': df.RSMA21dd.mean(), 'relative': True,'valueformat':'.2%'}, gauge={ 'axis':{ 'range':[math.floor(df.RSMA21dd.min()),math.ceil(df.RSMA21dd.max())], 'dtick': ( math.ceil(df.RSMA21dd.max()) - math.floor(df.RSMA21dd.min()) )/10, 'tickformat':'0.1f' }, 'steps' : [ {'range': [math.floor(df.RSMA21dd.min()), (math.floor(df.RSMA21dd.min())*0.5)], 'color': "rgba(50,50,200,0.55)"}, {'range': [(math.ceil(df.RSMA21dd.max())*0.5), math.ceil(df.RSMA21dd.max())], 'color': "rgba(200,50,50,0.55)"}], 'threshold' : {'line': {'color': "red", 'width': 4}, 'thickness': 1, 'value': df.RSMA21dd.mean()}, 'bar': {'color': "black"} } ), row=1, col=2 ), fig2.add_trace( go.Scatter(x=df.index, y=df.RSMA50dd, mode='lines', line_width=1, name='R_MMA50', line_color='navy') , row=2, col=1 ) fig2.add_trace( go.Indicator( mode = "gauge+number+delta", value = df.RSMA50dd[-1], #title = {'text': "Reversão MMA50"}, delta = {'reference': df.RSMA50dd.mean(), 'relative': True, 'valueformat':'.2%'}, gauge={ 'axis':{ 'range':[math.floor(df.RSMA50dd.min()),math.ceil(df.RSMA50dd.max())], 'dtick': ( math.ceil(df.RSMA50dd.max()) - math.floor(df.RSMA50dd.min()) )/10, 'tickformat':'0.1f' }, 'steps' : [ {'range': [math.floor(df.RSMA50dd.min()), (math.floor(df.RSMA50dd.min())*0.5)], 'color': "rgba(50,50,200,0.55)"}, {'range': [(math.ceil(df.RSMA50dd.max())*0.5), math.ceil(df.RSMA50dd.max())], 'color': "rgba(200,50,50,0.55)"}], 'threshold' : {'line': {'color': "red", 'width': 4}, 'thickness': 1, 'value': df.RSMA50dd.mean()}, 'bar': {'color': "black"} } ), row=2, col=2 ), fig2.add_trace( go.Scatter(x=df.index, y=df.REMA200dd, mode='lines', line_width=1, name='R_EMA200', line_color='purple') , row=3, col=1 ) fig2.add_trace( go.Indicator( mode = "gauge+number+delta", value = df.REMA200dd[-1], #title = {'text': "Reversão EMA200"}, delta = {'reference': df.REMA200dd.mean(), 'relative': True, 'valueformat':'.2%'}, gauge={ 'axis':{ 'range':[math.floor(df.REMA200dd.min()),math.ceil(df.REMA200dd.max())], 'dtick': ( math.ceil(df.REMA200dd.max()) - math.floor(df.REMA200dd.min()) )/10, 'tickformat':'0.1f' }, 'steps' : [ {'range': [math.floor(df.REMA200dd.min()), (math.floor(df.REMA200dd.min())*0.5)], 'color': "rgba(50,50,200,0.55)"}, {'range': [(math.ceil(df.REMA200dd.max())*0.5), math.ceil(df.REMA200dd.max())], 'color': "rgba(200,50,50,0.55)"}], 'threshold' : {'line': {'color': "red", 'width': 4}, 'thickness': 1, 'value': df.REMA200dd.mean()}, 'bar': {'color': "black"} } ), row=3, col=2 ), #fig2.add_hline(y=0, # line_color='black', line_dash='dot', line_width=1, # annotation_text="Centro da Média", # annotation_position="bottom left", # row=1, col=1,) ### FIG 3 --------------------------------------------------------------------------- fig3 = make_subplots( rows=1, cols=3, column_widths=[.33, .33, .33], subplot_titles=("MÉDIA vs RSMA21dd", "MÉDIA vs RSMA50dd", "MÉDIA vs REMA200dd"), ) fig3.add_trace( go.Scatter(name='', x=df.RSMA21dd, y=df.CSMA21dd, text=df.index.strftime("%d/%m/%Y"), mode='markers', marker=dict( size=7, color=df.RSMA21dd, #set color equal to a variable colorscale='Bluered', # one of plotly colorscales opacity=0.5, showscale=False), hovertemplate = "%{text} <br> RSMA21dd : %{x:.2f} </br> MÉDIA PREÇO : %{y:,.2f}" ), row=1, col=1 ) fig3.add_trace( go.Scatter(name='', x=df.RSMA50dd, y=df.CSMA50dd, text=df.index.strftime("%d/%m/%Y"), mode='markers', marker=dict( size=7, color=df.RSMA50dd, #set color equal to a variable colorscale='Bluered', # one of plotly colorscales opacity=0.5, showscale=False), hovertemplate = "%{text} <br> RSMA50dd : %{x:.2f} </br> MÉDIA PREÇO : %{y:,.2f}" ), row=1, col=2 ) fig3.add_trace( go.Scatter(name='', x=df.REMA200dd, y=df.CEMA200dd, text=df.index.strftime("%d/%m/%Y"), mode='markers', marker=dict( size=7, color=df.REMA200dd, #set color equal to a variable colorscale='Bluered', # one of plotly colorscales opacity=0.5, showscale=False), hovertemplate = "%{text} <br> REMA200dd : %{x:.2f} </br> MÉDIA PREÇO : %{y:,.2f}" ), row=1, col=3 ) ####### ATUALIZA LAYOUT, TRACES E AXES DOS GRÁFICOS # fig.update_layout( title='<b>EVOLUÇÃO DO PREÇO</b>', xaxis_title='',yaxis_title='<b>Preço</b>', xaxis_rangeslider_visible=False, hovermode='x unified', legend=dict(orientation="h") ) fig1.update_layout(title_text='REVERSÃO À MÉDIA - Agrupado', yaxis_title='<b>Valor</b>', xaxis_rangeslider_visible=False, hovermode='x unified', legend=dict(orientation="h") ) fig2.update_layout(title_text='REVERSÃO À MÉDIA', yaxis_title='<b>Valor</b>', xaxis_rangeslider_visible=False, hovermode='x unified', legend=dict(orientation="h") ) fig3.update_layout( showlegend=False ) fig.update_xaxes( rangebreaks=[ dict(bounds=["sat", "mon"]) ] ) fig1.update_xaxes( rangebreaks=[ dict(bounds=["sat", "mon"]) ] ) fig2.update_xaxes( rangebreaks=[ dict(bounds=["sat", "mon"]) ] ) fig3.update_xaxes( rangebreaks=[ dict(bounds=["sat", "mon"]) ] ) return fig, fig2, fig1, fig3, ""
39.394191
186
0.555825
0
0
0
0
14,354
0.753412
0
0
6,155
0.323063
488664091cf5f88c9226ceceac51ef1864450390
1,459
py
Python
custom_components/blitzortung/geohash_utils.py
Nag94/HomeAssistantConfig
d5f806e05be8d92bf487c58322d20cd9b08c6b98
[ "Unlicense" ]
163
2020-08-01T12:19:46.000Z
2022-03-28T09:04:57.000Z
custom_components/blitzortung/geohash_utils.py
Nag94/HomeAssistantConfig
d5f806e05be8d92bf487c58322d20cd9b08c6b98
[ "Unlicense" ]
81
2020-08-04T00:28:46.000Z
2022-03-29T15:48:51.000Z
custom_components/blitzortung/geohash_utils.py
Nag94/HomeAssistantConfig
d5f806e05be8d92bf487c58322d20cd9b08c6b98
[ "Unlicense" ]
28
2020-08-02T12:02:24.000Z
2022-03-22T00:07:34.000Z
import math from collections import namedtuple from . import geohash Box = namedtuple("Box", ["s", "w", "n", "e"]) def geohash_bbox(gh): ret = geohash.bbox(gh) return Box(ret["s"], ret["w"], ret["n"], ret["e"]) def bbox(lat, lon, radius): lat_delta = radius * 360 / 40000 lon_delta = lat_delta / math.cos(lat * math.pi / 180.0) return Box(lat - lat_delta, lon - lon_delta, lat + lat_delta, lon + lon_delta) def overlap(a1, a2, b1, b2): return a1 < b2 and a2 > b1 def box_overlap(box1: Box, box2: Box): return overlap(box1.s, box1.n, box2.s, box2.n) and overlap( box1.w, box1.e, box2.w, box2.e ) def compute_geohash_tiles(lat, lon, radius, precision): bounds = bbox(lat, lon, radius) center = geohash.encode(lat, lon, precision) stack = set() checked = set() stack.add(center) checked.add(center) while stack: current = stack.pop() for neighbor in geohash.neighbors(current): if neighbor not in checked and box_overlap(geohash_bbox(neighbor), bounds): stack.add(neighbor) checked.add(neighbor) return checked def geohash_overlap(lat, lon, radius, max_tiles=9): result = [] for precision in range(1, 13): tiles = compute_geohash_tiles(lat, lon, radius, precision) if len(tiles) <= 9: result = tiles precision += 1 else: break return result
24.728814
87
0.607265
0
0
0
0
0
0
0
0
29
0.019877
4887385245fd69a9bed6f6ead371a6a688979596
7,398
py
Python
deepmask/models/DeepMask.py
TJUMMG/SiamDMU
728ba1333b8d600a8b238a7d29901a01b653c33d
[ "Apache-2.0" ]
3
2021-08-25T01:51:04.000Z
2022-03-04T06:30:32.000Z
deepmask/models/DeepMask.py
TJUMMG/SiamDMU
728ba1333b8d600a8b238a7d29901a01b653c33d
[ "Apache-2.0" ]
null
null
null
deepmask/models/DeepMask.py
TJUMMG/SiamDMU
728ba1333b8d600a8b238a7d29901a01b653c33d
[ "Apache-2.0" ]
null
null
null
import torch import torch.nn as nn import torchvision from collections import namedtuple Config = namedtuple('Config', ['iSz', 'oSz', 'gSz']) default_config = Config(iSz=160, oSz=56, gSz=112) class Reshape(nn.Module): def __init__(self, oSz): super(Reshape, self).__init__() self.oSz = oSz def forward(self, x): b = x.shape[0] return x.permute(0, 2, 3, 1).view(b, -1, self.oSz, self.oSz) class SymmetricPad2d(nn.Module): def __init__(self, padding): super(SymmetricPad2d, self).__init__() self.padding = padding try: self.pad_l, self.pad_b, self.pad_r, self.pad_t = padding except: self.pad_l, self.pad_b, self.pad_r, self.pad_t = [padding,]*4 def forward(self, input): assert len(input.shape) == 4, "only Dimension=4 implemented" h = input.shape[2] + self.pad_t + self.pad_b w = input.shape[3] + self.pad_l + self.pad_r assert w >= 1 and h >= 1, "input is too small" output = torch.zeros(input.shape[0], input.shape[1], h, w).to(input.device) c_input = input if self.pad_t < 0: c_input = c_input.narrow(2, -self.pad_t, c_input.shape[2] + self.pad_t) if self.pad_b < 0: c_input = c_input.narrow(2, 0, c_input.shape[2] + self.pad_b) if self.pad_l < 0: c_input = c_input.narrow(3, -self.pad_l, c_input.shape[3] + self.pad_l) if self.pad_r < 0: c_input = c_input.narrow(3, 0, c_input.shape[3] + self.pad_r) c_output = output if self.pad_t > 0: c_output = c_output.narrow(2, self.pad_t, c_output.shape[2] - self.pad_t) if self.pad_b > 0: c_output = c_output.narrow(2, 0, c_output.shape[2] - self.pad_b) if self.pad_l > 0: c_output = c_output.narrow(3, self.pad_l, c_output.shape[3] - self.pad_l) if self.pad_r > 0: c_output = c_output.narrow(3, 0, c_output.shape[3] - self.pad_r) c_output.copy_(c_input) assert w >= 2*self.pad_l and w >= 2*self.pad_r and h >= 2*self.pad_t and h >= 2*self.pad_b "input is too small" for i in range(self.pad_t): output.narrow(2, self.pad_t-i-1, 1).copy_(output.narrow(2, self.pad_t+i, 1)) for i in range(self.pad_b): output.narrow(2, output.shape[2] - self.pad_b + i, 1).copy_( output.narrow(2, output.shape[2] - self.pad_b - i-1, 1)) for i in range(self.pad_l): output.narrow(3, self.pad_l-i-1, 1).copy_(output.narrow(3, self.pad_l+i, 1)) for i in range(self.pad_r): output.narrow(3, output.shape[3] - self.pad_r + i, 1).copy_( output.narrow(3, output.shape[3] - self.pad_r - i-1, 1)) return output def updatePadding(net, nn_padding): typename = torch.typename(net) # print(typename) if typename.find('Sequential') >= 0 or typename.find('Bottleneck') >= 0: modules_keys = list(net._modules.keys()) for i in reversed(range(len(modules_keys))): subnet = net._modules[modules_keys[i]] out = updatePadding(subnet, nn_padding) if out != -1: p = out in_c, out_c, k, s, _, d, g, b = \ subnet.in_channels, subnet.out_channels, \ subnet.kernel_size[0], subnet.stride[0], \ subnet.padding[0], subnet.dilation[0], \ subnet.groups, subnet.bias, conv_temple = nn.Conv2d(in_c, out_c, k, stride=s, padding=0, dilation=d, groups=g, bias=b) conv_temple.weight = subnet.weight conv_temple.bias = subnet.bias if p > 1: net._modules[modules_keys[i]] = nn.Sequential(SymmetricPad2d(p), conv_temple) else: net._modules[modules_keys[i]] = nn.Sequential(nn_padding(p), conv_temple) else: if typename.find('torch.nn.modules.conv.Conv2d') >= 0: k_sz, p_sz = net.kernel_size[0], net.padding[0] if ((k_sz == 3) or (k_sz == 7)) and p_sz != 0: return p_sz return -1 class DeepMask(nn.Module): def __init__(self, config=default_config, context=True): super(DeepMask, self).__init__() self.config = config self.context = context # without context self.strides = 16 self.fSz = -(-self.config.iSz // self.strides) # ceil div self.trunk = self.creatTrunk() updatePadding(self.trunk, nn.ReflectionPad2d) self.crop_trick = nn.ZeroPad2d(-16//self.strides) # for training self.maskBranch = self.createMaskBranch() self.scoreBranch = self.createScoreBranch() # npt = sum(p.numel() for p in self.trunk.parameters()) / 1e+06 # npm = sum(p.numel() for p in self.maskBranch.parameters()) / 1e+06 # nps = sum(p.numel() for p in self.scoreBranch.parameters()) / 1e+06 # print('| number of paramaters trunk: {:.3f} M'.format(npt)) # print('| number of paramaters mask branch: {:.3f} M'.format(npm)) # print('| number of paramaters score branch: {:.3f} M'.format(nps)) # print('| number of paramaters total: {:.3f} M'.format(npt + nps + npm)) def forward(self, x): feat = self.trunk(x) if self.context: feat = self.crop_trick(feat) mask = self.maskBranch(feat) score = self.scoreBranch(feat) return mask, score def creatTrunk(self): resnet50 = torchvision.models.resnet50(pretrained=True) trunk1 = nn.Sequential(*list(resnet50.children())[:-3]) trunk2 = nn.Sequential( nn.Conv2d(1024, 128, 1), nn.ReLU(inplace=True), nn.Conv2d(128, 512, self.fSz) ) return nn.Sequential(trunk1, trunk2) def createMaskBranch(self): maskBranch = nn.Sequential( nn.Conv2d(512, self.config.oSz**2, 1), Reshape(self.config.oSz), ) if self.config.gSz > self.config.oSz: upSample = nn.UpsamplingBilinear2d(size=[self.config.gSz, self.config.gSz]) maskBranch = nn.Sequential(maskBranch, upSample) return maskBranch def createScoreBranch(self): scoreBranch = nn.Sequential( nn.Dropout(0.5), nn.Conv2d(512, 1024, 1), nn.Threshold(0, 1e-6), # do not know why nn.Dropout(0.5), nn.Conv2d(1024, 1, 1), ) return scoreBranch if __name__ == '__main__': a = SymmetricPad2d(3) x = torch.tensor([[[[1, 2, 3], [4, 5, 6], [7, 8, 9]]]]) out = a(x) print(out) import torch Config = namedtuple('Config', ['iSz', 'oSz', 'gSz']) config = Config(iSz=160, oSz=56, gSz=112) model = DeepMask(config).cuda() # training mode x = torch.rand(32, 3, config.iSz+32, config.iSz+32).cuda() pred_mask, pred_cls = model(x) print("Output (training mode)", pred_mask.shape, pred_cls.shape) # full image testing mode model.context = False # really important!! input_size = config.iSz + model.strides * 16 + (model.context * 32) x = torch.rand(8, 3, input_size, input_size).cuda() pred_mask, pred_cls = model(x) print("Output (testing mode)", pred_mask.shape, pred_cls.shape)
40.42623
98
0.577994
4,967
0.671398
0
0
0
0
0
0
831
0.112328
488892bb03ecb663538dd964ad7c41d6e64946b1
363
py
Python
phi.py
filiptronicek/constants
404b6dbff33cff006d8f38ff08f6a4c2eaa19cdf
[ "MIT" ]
null
null
null
phi.py
filiptronicek/constants
404b6dbff33cff006d8f38ff08f6a4c2eaa19cdf
[ "MIT" ]
null
null
null
phi.py
filiptronicek/constants
404b6dbff33cff006d8f38ff08f6a4c2eaa19cdf
[ "MIT" ]
null
null
null
nums = [0,1] def calcFi(): n1 = nums[-2] n2 = nums[-1] sM = n1 + n2 phi = sM/n2 nums.append(sM) return (phi) for i in range(45): if i % 15 == 0 or i == 44: phi = calcFi() print(phi) if i == 44: with open("outputs/phi.txt", "w") as f: f.write(str(phi)) else: calcFi()
17.285714
51
0.429752
0
0
0
0
0
0
0
0
20
0.055096
48891373f826c5ea6da77e9ee603e89703e2f555
3,657
py
Python
var_gp/datasets.py
uber-research/var-gp
1fc3935a84ff58ac529361c53c98e01338244062
[ "Apache-2.0" ]
11
2020-07-07T12:31:46.000Z
2021-04-15T13:38:35.000Z
var_gp/datasets.py
thangbui/var-gp
c445bb5f3b961d179c6741227200329a89517d91
[ "Apache-2.0" ]
1
2021-02-27T20:46:27.000Z
2021-04-22T16:48:10.000Z
var_gp/datasets.py
uber-research/var-gp
1fc3935a84ff58ac529361c53c98e01338244062
[ "Apache-2.0" ]
4
2020-07-06T20:25:34.000Z
2020-08-19T15:23:40.000Z
import os import glob import torch import numpy as np # from PIL import Image, UnidentifiedImageError from torch.utils.data import Dataset from torchvision.datasets import MNIST class ToyDataset(Dataset): def __init__(self, N_K=50, K=4, X=None, Y=None): super().__init__() if X is not None: self.data, self.targets = X, Y else: self.data, self.targets = self._init_data(N_K, K) self.task_ids = torch.arange(self.targets.size(0)) def _init_data(self, N_K, K): X1 = torch.cat([ 0.8 + 0.4 * torch.randn(N_K, 1), 1.5 + 0.4 * torch.randn(N_K, 1), ], dim=-1) Y1 = 0 * torch.ones(X1.size(0)).long() X2 = torch.cat([ 0.5 + 0.6 * torch.randn(N_K, 1), -0.2 - 0.1 * torch.randn(N_K, 1), ], dim=-1) Y2 = 1 * torch.ones(X2.size(0)).long() X3 = torch.cat([ 2.5 - 0.1 * torch.randn(N_K, 1), 1.0 + 0.6 * torch.randn(N_K, 1), ], dim=-1) Y3 = 2 * torch.ones(X3.size(0)).long() X4 = torch.distributions.MultivariateNormal( torch.Tensor([-0.5, 1.5]), covariance_matrix=torch.Tensor([[0.2, 0.1], [0.1, 0.1]])).sample(torch.Size([N_K])) Y4 = 3 * torch.ones(X4.size(0)).long() X = torch.cat([X1, X2, X3, X4], dim=0) X[:, 1] -= 1 X[:, 0] -= 0.5 Y = torch.cat([Y1, Y2, Y3, Y4]) return X, Y def filter_by_class(self, class_list=None): if class_list: mask = torch.zeros_like(self.targets).bool() for c in class_list: mask |= self.targets == c else: mask = torch.ones_like(self.targets).bool() self.task_ids = torch.masked_select(torch.arange(self.targets.size(0)), mask) def __getitem__(self, index): return self.data[self.task_ids[index]], self.targets[self.task_ids[index]] def __len__(self): return self.task_ids.size(0) class SplitMNIST(MNIST): def __init__(self, *args, **kwargs): kwargs['download'] = True super().__init__(*args, **kwargs) self.data = self.data.reshape(self.data.size(0), -1).float() / 255. self.task_ids = torch.arange(self.targets.size(0)) def filter_by_class(self, class_list=None): if class_list: mask = torch.zeros_like(self.targets).bool() for c in class_list: mask |= self.targets == c else: mask = torch.ones_like(self.targets).bool() self.task_ids = torch.masked_select(torch.arange(self.targets.size(0)), mask) def filter_by_idx(self, idx): self.data = self.data[idx] self.targets = self.targets[idx] self.task_ids = torch.arange(self.targets.size(0)) def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ return self.data[self.task_ids[index]], self.targets[self.task_ids[index]] def __len__(self): return self.task_ids.size(0) class PermutedMNIST(MNIST): @staticmethod def create_tasks(n=1): return [torch.randperm(784) for _ in range(n)] def __init__(self, *args, **kwargs): kwargs['download'] = True super().__init__(*args, **kwargs) self.data = self.data.reshape(self.data.size(0), -1).float() / 255. self.perm = None def set_task(self, perm): assert self.perm is None, 'Cannot set task again.' self.data = self.data[:, perm] self.perm = perm def filter_by_idx(self, idx): self.data = self.data[idx] self.targets = self.targets[idx] def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ return self.data[index], self.targets[index]
26.309353
95
0.618266
3,470
0.948865
0
0
89
0.024337
0
0
363
0.099262
488967f137108794225619fe7bf8270b7eb07b12
6,834
py
Python
apps/ouvertime_record/views.py
dnetochaves/repense_rh
ba549bdadc90c088f258d9d640bd59fd696bb705
[ "MIT" ]
null
null
null
apps/ouvertime_record/views.py
dnetochaves/repense_rh
ba549bdadc90c088f258d9d640bd59fd696bb705
[ "MIT" ]
3
2021-01-22T06:05:42.000Z
2021-02-16T10:06:36.000Z
apps/ouvertime_record/views.py
dnetochaves/repense_rh
ba549bdadc90c088f258d9d640bd59fd696bb705
[ "MIT" ]
null
null
null
from django.shortcuts import render, HttpResponse from django.views.generic.list import ListView from django.views.generic.edit import UpdateView, DeleteView, CreateView from . models import OuverTimeRecord from django.contrib.auth.models import User from django.urls import reverse_lazy from django.views import View import json import csv # Import for reportlab import io from django.http import FileResponse from reportlab.pdfgen import canvas # Import for Xhtm2 from django.template.loader import get_template from xhtml2pdf import pisa #import Xlwt import xlwt def index(request): return HttpResponse('ok') class OuverTimeRecordListView(ListView): model = OuverTimeRecord # paginate_by = 100 # if pagination is desired def get_queryset(self): logged_company = self.request.user.employee.company.id queryset = OuverTimeRecord.objects.filter(employee=logged_company) return queryset class OuverTimeRecordUpdate(UpdateView): model = OuverTimeRecord fields = ['reason', 'hours'] #Metodo desabilitado por mudança de regra #def form_valid(self, form): # obj = form.save(commit=False) # obj.employee = self.request.user.employee # obj.save() # return super(OuverTimeRecordUpdate, self).form_valid(form) class OuverTimeRecordDelete(DeleteView): model = OuverTimeRecord success_url = reverse_lazy('ouvertime_record:ouver-time') class OuverTimeRecordCreate(CreateView): model = OuverTimeRecord fields = ['reason', 'hours'] def form_valid(self, form): obj = form.save(commit=False) obj.employee = self.request.user.employee obj.save() return super(OuverTimeRecordCreate, self).form_valid(form) class UtilizouHoraExtra(View): def post(self, *args, **kwargs): used = OuverTimeRecord.objects.get(id=kwargs['pk']) used.used = True used.save() employee = self.request.user.employee response = json.dumps( {'mensagem': 'Utilizado', 'hours': float(employee.sum_overtime)}) return HttpResponse(response, content_type='application/json') class CheckedFalse(View): def post(self, *args, **kwargs): used = OuverTimeRecord.objects.get(id=kwargs['pk']) used.used = False used.save() employee = self.request.user.employee response = json.dumps( {'mensagem': 'Não Utilizado', 'hours': float(employee.sum_overtime)}) return HttpResponse(response, content_type='application/json') # ReportLab def some_view(request): response = HttpResponse(content_type='application/pdf') response['Content-Disposition'] = 'attachment; filename="mypdf.pdf"' buffer = io.BytesIO() p = canvas.Canvas(buffer) p.drawString(200, 810, 'Relatorio de Horas ReportLab') times = OuverTimeRecord.objects.filter( employee=request.user.employee.company.id) y = 790 for time in times: p.drawString(10, y, time.reason) p.drawString(100, y, time.employee.name) p.drawString(200, y, str(time.hours)) p.drawString(300, y, str(time.used)) y -= 40 p.showPage() p.save() pdf = buffer.getvalue() buffer.close() response.write(pdf) return response # Xhtml2 def link_callback(uri, rel): """ Convert HTML URIs to absolute system paths so xhtml2pdf can access those resources """ result = finders.find(uri) if result: if not isinstance(result, (list, tuple)): result = [result] result = list(os.path.realpath(path) for path in result) path = result[0] else: sUrl = settings.STATIC_URL # Typically /static/ sRoot = settings.STATIC_ROOT # Typically /home/userX/project_static/ mUrl = settings.MEDIA_URL # Typically /media/ mRoot = settings.MEDIA_ROOT # Typically /home/userX/project_static/media/ if uri.startswith(mUrl): path = os.path.join(mRoot, uri.replace(mUrl, "")) elif uri.startswith(sUrl): path = os.path.join(sRoot, uri.replace(sUrl, "")) else: return uri # make sure that file exists if not os.path.isfile(path): raise Exception( 'media URI must start with %s or %s' % (sUrl, mUrl) ) return path def render_pdf_view(request): template_path = 'ouvertime_record/time_report.html' cols = OuverTimeRecord.objects.filter( employee=request.user.employee.company.id) context = {'cols': cols} # Create a Django response object, and specify content_type as pdf response = HttpResponse(content_type='application/pdf') # response['Content-Disposition'] = 'attachment; filename="report.pdf"' response['Content-Disposition'] = 'attachment; filename="time-report.pdf"' # find the template and render it. template = get_template(template_path) html = template.render(context) # create a pdf pisa_status = pisa.CreatePDF( html, dest=response, link_callback=link_callback) # if error then show some funy view if pisa_status.err: return HttpResponse('We had some errors <pre>' + html + '</pre>') return response class ExportCsv(View): def get(self, request): # Create the HttpResponse object with the appropriate CSV header. response = HttpResponse(content_type='text/csv') response['Content-Disposition'] = 'attachment; filename="somefilename.csv"' times = OuverTimeRecord.objects.filter( employee=request.user.employee.company.id) writer = csv.writer(response) writer.writerow(['Reason', 'Employee', 'Hours', 'Used']) for time in times: writer.writerow( [time.reason, time.employee.name, time.hours, time.used]) return response # Excel class ExportExcel(View): def get(self, request): response = HttpResponse(content_type='application/ms-excel') response['Content-Disposition'] = 'attachment; filename="export_excel.xls"' wb = xlwt.Workbook(encoding='utf-8') ws = wb.add_sheet('export_excel') row_num = 0 columns = ['Reason', 'Employee', 'Hours', 'Used'] for col_num in range(len(columns)): ws.write(row_num, col_num, columns[col_num]) font_style = xlwt.XFStyle() times = OuverTimeRecord.objects.filter( employee=request.user.employee.company.id) row_num = 1 for time in times: ws.write(row_num, 0, time.reason) ws.write(row_num, 1, time.employee.name) ws.write(row_num, 2, time.hours) ws.write(row_num, 3, time.used) row_num += 1 wb.save(response) return response
29.205128
87
0.655692
3,474
0.508192
0
0
0
0
0
0
1,590
0.232592
488992b28e85b2d366e7bc829af9dec94065afc7
1,256
py
Python
second_HW/second_hw_2.py
alex123012/Bioinf_HW
c2689715a8579b2ddccbf5dd1f4aed7dd4a52baa
[ "MIT" ]
null
null
null
second_HW/second_hw_2.py
alex123012/Bioinf_HW
c2689715a8579b2ddccbf5dd1f4aed7dd4a52baa
[ "MIT" ]
null
null
null
second_HW/second_hw_2.py
alex123012/Bioinf_HW
c2689715a8579b2ddccbf5dd1f4aed7dd4a52baa
[ "MIT" ]
1
2021-04-12T11:29:27.000Z
2021-04-12T11:29:27.000Z
import unittest as ut import time class test_magick(ut.TestCase): def test_us(self): list_r = list(range(0, 100)) for i in list_r: with self.subTest(case=i): self.assertEqual(magick(i), i) def magick(x=None, start=0, stop=100): yes = ['да', 'д', 'yes', 'y', 'ye'] while (stop >= start): current_state = (start + stop) // 2 if x is None: ans = input(f'Верно ли, что загаданное число меньше {current_state}?').lower() if ans in yes: stop = current_state - 1 else: start = current_state + 1 elif current_state > x: stop = current_state - 1 else: start = current_state + 1 return stop def main(): x = float(input('Введите число: ')) print('ваше число:', magick()) print('\n\n') def test(): start = time.time() magick(123123123123, 0, 10e100) print(time.time() - start, '\n') start = time.time() magick(123123123123, 0, 10e250) print(time.time() - start, '\n') start = time.time() magick(123123123123, 0, 10e500) print(time.time() - start, '\n') ut.main() if __name__ == '__main__': main() # test()
20.933333
90
0.535032
202
0.154081
0
0
0
0
0
0
197
0.150267
6f7d0aa4d2bf1ce8c8c464a58fa65d15faebfee4
4,593
py
Python
research/vrgripper/episode_to_transitions.py
Xtuden-com/tensor2robot
a3674958a046de711e37445d39afd4e529d8dd09
[ "Apache-2.0" ]
1
2021-10-18T01:27:04.000Z
2021-10-18T01:27:04.000Z
research/vrgripper/episode_to_transitions.py
Xtuden-com/tensor2robot
a3674958a046de711e37445d39afd4e529d8dd09
[ "Apache-2.0" ]
null
null
null
research/vrgripper/episode_to_transitions.py
Xtuden-com/tensor2robot
a3674958a046de711e37445d39afd4e529d8dd09
[ "Apache-2.0" ]
1
2020-09-21T08:29:02.000Z
2020-09-21T08:29:02.000Z
# coding=utf-8 # Copyright 2020 The Tensor2Robot Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as python3 """Functions for converting env episode data to tfrecords of transitions.""" import collections import gin import numpy as np from PIL import Image import six from six.moves import range import tensorflow.compat.v1 as tf _bytes_feature = ( lambda v: tf.train.Feature(bytes_list=tf.train.BytesList(value=v))) _int64_feature = ( lambda v: tf.train.Feature(int64_list=tf.train.Int64List(value=v))) _float_feature = ( lambda v: tf.train.Feature(float_list=tf.train.FloatList(value=v))) _IMAGE_KEY_PREFIX = 'image' @gin.configurable def make_fixed_length( input_list, fixed_length, always_include_endpoints=True, randomized=True): """Create a fixed length list by sampling entries from input_list. Args: input_list: The original list we sample entries from. fixed_length: An integer: the desired length of the output list. always_include_endpoints: If True, always include the first and last entries of input_list in the output. randomized: If True, select entries from input_list by random sampling with replacement. If False, select entries from input_list deterministically. Returns: A list of length fixed_length containing sampled entries of input_list. """ original_length = len(input_list) if original_length <= 2: return None if not randomized: indices = np.sort(np.mod(np.arange(fixed_length), original_length)) return [input_list[i] for i in indices] if always_include_endpoints: # Always include entries 0 and N-1. endpoint_indices = np.array([0, original_length - 1]) # The remaining (fixed_length-2) frames are sampled with replacement # from entries [1, N-1) of input_list. other_indices = 1 + np.random.choice( original_length - 2, fixed_length-2, replace=True) indices = np.concatenate( (endpoint_indices, other_indices), axis=0) else: indices = np.random.choice( original_length, fixed_length, replace=True) indices = np.sort(indices) return [input_list[i] for i in indices] @gin.configurable def episode_to_transitions_reacher(episode_data, is_demo=False): """Converts reacher env data to transition examples.""" transitions = [] for i, transition in enumerate(episode_data): del i feature_dict = {} (obs_t, action, reward, obs_tp1, done, debug) = transition del debug feature_dict['pose_t'] = _float_feature(obs_t) feature_dict['pose_tp1'] = _float_feature(obs_tp1) feature_dict['action'] = _float_feature(action) feature_dict['reward'] = _float_feature([reward]) feature_dict['done'] = _int64_feature([int(done)]) feature_dict['is_demo'] = _int64_feature([int(is_demo)]) example = tf.train.Example(features=tf.train.Features(feature=feature_dict)) transitions.append(example) return transitions @gin.configurable def episode_to_transitions_metareacher(episode_data): """Converts metareacher env data to transition examples.""" context_features = {} feature_lists = collections.defaultdict(list) context_features['is_demo'] = _int64_feature( [int(episode_data[0][-1]['is_demo'])]) context_features['target_idx'] = _int64_feature( [episode_data[0][-1]['target_idx']]) for i, transition in enumerate(episode_data): del i (obs_t, action, reward, obs_tp1, done, debug) = transition del debug feature_lists['pose_t'].append(_float_feature(obs_t)) feature_lists['pose_tp1'].append(_float_feature(obs_tp1)) feature_lists['action'].append(_float_feature(action)) feature_lists['reward'].append(_float_feature([reward])) feature_lists['done'].append(_int64_feature([int(done)])) tf_feature_lists = {} for key in feature_lists: tf_feature_lists[key] = tf.train.FeatureList(feature=feature_lists[key]) return [tf.train.SequenceExample( context=tf.train.Features(feature=context_features), feature_lists=tf.train.FeatureLists(feature_list=tf_feature_lists))]
34.533835
80
0.735249
0
0
0
0
3,429
0.746571
0
0
1,646
0.358371
6f7dbf265364f7b257659f2bfab6a7eebd22f8b8
44,533
py
Python
flopy/plot/map.py
mwtoews/flopy
e566845172380e3eae06981ca180923d2362ee56
[ "CC0-1.0", "BSD-3-Clause" ]
null
null
null
flopy/plot/map.py
mwtoews/flopy
e566845172380e3eae06981ca180923d2362ee56
[ "CC0-1.0", "BSD-3-Clause" ]
null
null
null
flopy/plot/map.py
mwtoews/flopy
e566845172380e3eae06981ca180923d2362ee56
[ "CC0-1.0", "BSD-3-Clause" ]
null
null
null
import numpy as np from ..discretization import StructuredGrid, UnstructuredGrid from ..utils import geometry try: import matplotlib.pyplot as plt import matplotlib.colors from matplotlib.collections import PathCollection, LineCollection from matplotlib.path import Path except (ImportError, ModuleNotFoundError): plt = None from . import plotutil import warnings warnings.simplefilter("always", PendingDeprecationWarning) class PlotMapView: """ Class to create a map of the model. Delegates plotting functionality based on model grid type. Parameters ---------- modelgrid : flopy.discretization.Grid The modelgrid class can be StructuredGrid, VertexGrid, or UnstructuredGrid (Default is None) ax : matplotlib.pyplot axis The plot axis. If not provided it, plt.gca() will be used. If there is not a current axis then a new one will be created. model : flopy.modflow object flopy model object. (Default is None) layer : int Layer to plot. Default is 0. Must be between 0 and nlay - 1. extent : tuple of floats (xmin, xmax, ymin, ymax) will be used to specify axes limits. If None then these will be calculated based on grid, coordinates, and rotation. Notes ----- """ def __init__( self, model=None, modelgrid=None, ax=None, layer=0, extent=None ): if plt is None: s = ( "Could not import matplotlib. Must install matplotlib " + " in order to use ModelMap method" ) raise ImportError(s) self.model = model self.layer = layer self.mg = None if modelgrid is not None: self.mg = modelgrid elif model is not None: self.mg = model.modelgrid else: err_msg = "A model grid instance must be provided to PlotMapView" raise AssertionError(err_msg) if ax is None: try: self.ax = plt.gca() self.ax.set_aspect("equal") except (AttributeError, ValueError): self.ax = plt.subplot(1, 1, 1, aspect="equal", axisbg="white") else: self.ax = ax if extent is not None: self._extent = extent else: self._extent = None @property def extent(self): if self._extent is None: self._extent = self.mg.extent return self._extent def plot_array(self, a, masked_values=None, **kwargs): """ Plot an array. If the array is three-dimensional, then the method will plot the layer tied to this class (self.layer). Parameters ---------- a : numpy.ndarray Array to plot. masked_values : iterable of floats, ints Values to mask. **kwargs : dictionary keyword arguments passed to matplotlib.pyplot.pcolormesh Returns ------- quadmesh : matplotlib.collections.QuadMesh or matplotlib.collections.PatchCollection """ if not isinstance(a, np.ndarray): a = np.array(a) # Use the model grid to pass back an array of the correct shape plotarray = self.mg.get_plottable_layer_array(a, self.layer) # if masked_values are provided mask the plotting array if masked_values is not None: for mval in masked_values: plotarray = np.ma.masked_values(plotarray, mval) # add NaN values to mask plotarray = np.ma.masked_where(np.isnan(plotarray), plotarray) ax = kwargs.pop("ax", self.ax) # use cached patch collection for plotting polygons = self.mg.map_polygons if isinstance(polygons, dict): polygons = polygons[self.layer] if len(polygons) == 0: return if not isinstance(polygons[0], Path): collection = ax.pcolormesh( self.mg.xvertices, self.mg.yvertices, plotarray ) else: plotarray = plotarray.ravel() collection = PathCollection(polygons) collection.set_array(plotarray) # set max and min vmin = kwargs.pop("vmin", None) vmax = kwargs.pop("vmax", None) # set matplotlib kwargs collection.set_clim(vmin=vmin, vmax=vmax) collection.set(**kwargs) ax.add_collection(collection) # set limits ax.set_xlim(self.extent[0], self.extent[1]) ax.set_ylim(self.extent[2], self.extent[3]) return collection def contour_array(self, a, masked_values=None, **kwargs): """ Contour an array. If the array is three-dimensional, then the method will contour the layer tied to this class (self.layer). Parameters ---------- a : numpy.ndarray Array to plot. masked_values : iterable of floats, ints Values to mask. **kwargs : dictionary keyword arguments passed to matplotlib.pyplot.pcolormesh Returns ------- contour_set : matplotlib.pyplot.contour """ try: import matplotlib.tri as tri except ImportError: err_msg = "matplotlib must be installed to use contour_array()" raise ImportError(err_msg) a = np.copy(a) if not isinstance(a, np.ndarray): a = np.array(a) # Use the model grid to pass back an array of the correct shape plotarray = self.mg.get_plottable_layer_array(a, self.layer) # work around for tri-contour ignore vmin & vmax # necessary block for tri-contour NaN issue if "levels" not in kwargs: vmin = kwargs.pop("vmin", np.nanmin(plotarray)) vmax = kwargs.pop("vmax", np.nanmax(plotarray)) levels = np.linspace(vmin, vmax, 7) kwargs["levels"] = levels # workaround for tri-contour nan issue # use -2**31 to allow for 32 bit int arrays plotarray[np.isnan(plotarray)] = -(2 ** 31) if masked_values is None: masked_values = [-(2 ** 31)] else: masked_values = list(masked_values) if -(2 ** 31) not in masked_values: masked_values.append(-(2 ** 31)) ismasked = None if masked_values is not None: for mval in masked_values: if ismasked is None: ismasked = np.isclose(plotarray, mval) else: t = np.isclose(plotarray, mval) ismasked += t ax = kwargs.pop("ax", self.ax) if "colors" in kwargs.keys(): if "cmap" in kwargs.keys(): kwargs.pop("cmap") plot_triplot = False if "plot_triplot" in kwargs: plot_triplot = kwargs.pop("plot_triplot") # Get vertices for the selected layer xcentergrid = self.mg.get_xcellcenters_for_layer(self.layer) ycentergrid = self.mg.get_ycellcenters_for_layer(self.layer) if "extent" in kwargs: extent = kwargs.pop("extent") idx = ( (xcentergrid >= extent[0]) & (xcentergrid <= extent[1]) & (ycentergrid >= extent[2]) & (ycentergrid <= extent[3]) ) plotarray = plotarray[idx] xcentergrid = xcentergrid[idx] ycentergrid = ycentergrid[idx] plotarray = plotarray.flatten() xcentergrid = xcentergrid.flatten() ycentergrid = ycentergrid.flatten() triang = tri.Triangulation(xcentergrid, ycentergrid) if ismasked is not None: ismasked = ismasked.flatten() mask = np.any( np.where(ismasked[triang.triangles], True, False), axis=1 ) triang.set_mask(mask) contour_set = ax.tricontour(triang, plotarray, **kwargs) if plot_triplot: ax.triplot(triang, color="black", marker="o", lw=0.75) ax.set_xlim(self.extent[0], self.extent[1]) ax.set_ylim(self.extent[2], self.extent[3]) return contour_set def plot_inactive(self, ibound=None, color_noflow="black", **kwargs): """ Make a plot of inactive cells. If not specified, then pull ibound from the self.ml Parameters ---------- ibound : numpy.ndarray ibound array to plot. (Default is ibound in 'BAS6' package.) color_noflow : string (Default is 'black') Returns ------- quadmesh : matplotlib.collections.QuadMesh """ if ibound is None: if self.mg.idomain is None: raise AssertionError("Ibound/Idomain array must be provided") ibound = self.mg.idomain plotarray = np.zeros(ibound.shape, dtype=int) idx1 = ibound == 0 plotarray[idx1] = 1 plotarray = np.ma.masked_equal(plotarray, 0) cmap = matplotlib.colors.ListedColormap(["0", color_noflow]) bounds = [0, 1, 2] norm = matplotlib.colors.BoundaryNorm(bounds, cmap.N) quadmesh = self.plot_array(plotarray, cmap=cmap, norm=norm, **kwargs) return quadmesh def plot_ibound( self, ibound=None, color_noflow="black", color_ch="blue", color_vpt="red", **kwargs ): """ Make a plot of ibound. If not specified, then pull ibound from the self.ml Parameters ---------- ibound : numpy.ndarray ibound array to plot. (Default is ibound in the modelgrid) color_noflow : string (Default is 'black') color_ch : string Color for constant heads (Default is 'blue'.) color_vpt: string Color for vertical pass through cells (Default is 'red') Returns ------- quadmesh : matplotlib.collections.QuadMesh """ if ibound is None: if self.model is not None: if self.model.version == "mf6": color_ch = color_vpt if self.mg.idomain is None: raise AssertionError("Ibound/Idomain array must be provided") ibound = self.mg.idomain plotarray = np.zeros(ibound.shape, dtype=int) idx1 = ibound == 0 idx2 = ibound < 0 plotarray[idx1] = 1 plotarray[idx2] = 2 plotarray = np.ma.masked_equal(plotarray, 0) cmap = matplotlib.colors.ListedColormap(["0", color_noflow, color_ch]) bounds = [0, 1, 2, 3] norm = matplotlib.colors.BoundaryNorm(bounds, cmap.N) quadmesh = self.plot_array(plotarray, cmap=cmap, norm=norm, **kwargs) return quadmesh def plot_grid(self, **kwargs): """ Plot the grid lines. Parameters ---------- kwargs : ax, colors. The remaining kwargs are passed into the the LineCollection constructor. Returns ------- lc : matplotlib.collections.LineCollection """ from matplotlib.collections import PatchCollection ax = kwargs.pop("ax", self.ax) colors = kwargs.pop("colors", "grey") colors = kwargs.pop("color", colors) colors = kwargs.pop("ec", colors) colors = kwargs.pop("edgecolor", colors) grid_lines = self.mg.grid_lines if isinstance(grid_lines, dict): grid_lines = grid_lines[self.layer] collection = LineCollection(grid_lines, colors=colors, **kwargs) ax.add_collection(collection) ax.set_xlim(self.extent[0], self.extent[1]) ax.set_ylim(self.extent[2], self.extent[3]) return collection def plot_bc( self, name=None, package=None, kper=0, color=None, plotAll=False, **kwargs ): """ Plot boundary conditions locations for a specific boundary type from a flopy model Parameters ---------- name : string Package name string ('WEL', 'GHB', etc.). (Default is None) package : flopy.modflow.Modflow package class instance flopy package class instance. (Default is None) kper : int Stress period to plot color : string matplotlib color string. (Default is None) plotAll : bool Boolean used to specify that boundary condition locations for all layers will be plotted on the current ModelMap layer. (Default is False) **kwargs : dictionary keyword arguments passed to matplotlib.collections.PatchCollection Returns ------- quadmesh : matplotlib.collections.QuadMesh """ if "ftype" in kwargs and name is None: name = kwargs.pop("ftype") # Find package to plot if package is not None: p = package name = p.name[0] elif self.model is not None: if name is None: raise Exception("ftype not specified") name = name.upper() p = self.model.get_package(name) else: raise Exception("Cannot find package to plot") # trap for mf6 'cellid' vs mf2005 'k', 'i', 'j' convention if isinstance(p, list) or p.parent.version == "mf6": if not isinstance(p, list): p = [p] idx = np.array([]) for pp in p: if pp.package_type in ("lak", "sfr", "maw", "uzf"): t = plotutil.advanced_package_bc_helper(pp, self.mg, kper) else: try: mflist = pp.stress_period_data.array[kper] except Exception as e: raise Exception( "Not a list-style boundary package: " + str(e) ) if mflist is None: return t = np.array( [list(i) for i in mflist["cellid"]], dtype=int ).T if len(idx) == 0: idx = np.copy(t) else: idx = np.append(idx, t, axis=1) else: # modflow-2005 structured and unstructured grid if p.package_type in ("uzf", "lak"): idx = plotutil.advanced_package_bc_helper(p, self.mg, kper) else: try: mflist = p.stress_period_data[kper] except Exception as e: raise Exception( "Not a list-style boundary package: " + str(e) ) if mflist is None: return if len(self.mg.shape) == 3: idx = [mflist["k"], mflist["i"], mflist["j"]] else: idx = mflist["node"] nlay = self.mg.nlay plotarray = np.zeros(self.mg.shape, dtype=int) if plotAll and len(self.mg.shape) > 1: pa = np.zeros(self.mg.shape[1:], dtype=int) pa[tuple(idx[1:])] = 1 for k in range(nlay): plotarray[k] = pa.copy() else: plotarray[tuple(idx)] = 1 # mask the plot array plotarray = np.ma.masked_equal(plotarray, 0) # set the colormap if color is None: # modflow 6 ftype fix, since multiple packages append _0, _1, etc: key = name[:3].upper() if key in plotutil.bc_color_dict: c = plotutil.bc_color_dict[key] else: c = plotutil.bc_color_dict["default"] else: c = color cmap = matplotlib.colors.ListedColormap(["0", c]) bounds = [0, 1, 2] norm = matplotlib.colors.BoundaryNorm(bounds, cmap.N) # create normalized quadmesh or patch object depending on grid type quadmesh = self.plot_array(plotarray, cmap=cmap, norm=norm, **kwargs) return quadmesh def plot_shapefile(self, shp, **kwargs): """ Plot a shapefile. The shapefile must be in the same coordinates as the rotated and offset grid. Parameters ---------- shp : string or pyshp shapefile object Name of the shapefile to plot kwargs : dictionary Keyword arguments passed to plotutil.plot_shapefile() """ return self.plot_shapes(shp, **kwargs) def plot_shapes(self, obj, **kwargs): """ Plot shapes is a method that facilitates plotting a collection of geospatial objects Parameters ---------- obj : collection object obj can accept the following types str : shapefile name shapefile.Reader object list of [shapefile.Shape, shapefile.Shape,] shapefile.Shapes object flopy.utils.geometry.Collection object list of [flopy.utils.geometry, ...] objects geojson.GeometryCollection object geojson.FeatureCollection object shapely.GeometryCollection object list of [[vertices], ...] kwargs : dictionary keyword arguments passed to plotutil.plot_shapefile() Returns ------- matplotlib.Collection object """ ax = kwargs.pop("ax", self.ax) patch_collection = plotutil.plot_shapefile(obj, ax, **kwargs) return patch_collection def plot_cvfd(self, verts, iverts, **kwargs): """ Plot a cvfd grid. The vertices must be in the same coordinates as the rotated and offset grid. Parameters ---------- verts : ndarray 2d array of x and y points. iverts : list of lists should be of len(ncells) with a list of vertex number for each cell kwargs : dictionary Keyword arguments passed to plotutil.plot_cvfd() """ warnings.warn( "plot_cvfd will be deprecated and will be removed in version " "3.3.5. Use plot_grid or plot_array", PendingDeprecationWarning, ) a = kwargs.pop("a", None) if a is None: return self.plot_grid(**kwargs) else: return self.plot_array(a, **kwargs) def contour_array_cvfd(self, vertc, a, masked_values=None, **kwargs): """ Contour a cvfd array. If the array is three-dimensional, then the method will contour the layer tied to this class (self.layer). The vertices must be in the same coordinates as the rotated and offset grid. Parameters ---------- vertc : np.ndarray Array with of size (nc, 2) with centroid location of cvfd a : numpy.ndarray Array to plot. masked_values : iterable of floats, ints Values to mask. **kwargs : dictionary keyword arguments passed to matplotlib.pyplot.pcolormesh Returns ------- contour_set : matplotlib.pyplot.contour """ warnings.warn( "contour_cvfd will be deprecated and removed in version 3.3.5. " " Use contour_array", PendingDeprecationWarning, ) return self.contour_array(a, masked_values=masked_values, **kwargs) def plot_vector( self, vx, vy, istep=1, jstep=1, normalize=False, masked_values=None, **kwargs ): """ Plot a vector. Parameters ---------- vx : np.ndarray x component of the vector to be plotted (non-rotated) array shape must be (nlay, nrow, ncol) for a structured grid array shape must be (nlay, ncpl) for a unstructured grid vy : np.ndarray y component of the vector to be plotted (non-rotated) array shape must be (nlay, nrow, ncol) for a structured grid array shape must be (nlay, ncpl) for a unstructured grid istep : int row frequency to plot (default is 1) jstep : int column frequency to plot (default is 1) normalize : bool boolean flag used to determine if vectors should be normalized using the vector magnitude in each cell (default is False) masked_values : iterable of floats values to mask kwargs : matplotlib.pyplot keyword arguments for the plt.quiver method Returns ------- quiver : matplotlib.pyplot.quiver result of the quiver function """ pivot = kwargs.pop("pivot", "middle") ax = kwargs.pop("ax", self.ax) # get ibound array to mask inactive cells ib = np.ones((self.mg.nnodes,), dtype=int) if self.mg.idomain is not None: ib = self.mg.idomain.ravel() xcentergrid = self.mg.get_xcellcenters_for_layer(self.layer) ycentergrid = self.mg.get_ycellcenters_for_layer(self.layer) vx = self.mg.get_plottable_layer_array(vx, self.layer) vy = self.mg.get_plottable_layer_array(vy, self.layer) ib = self.mg.get_plottable_layer_array(ib, self.layer) try: x = xcentergrid[::istep, ::jstep] y = ycentergrid[::istep, ::jstep] u = vx[::istep, ::jstep] v = vy[::istep, ::jstep] ib = ib[::istep, ::jstep] except IndexError: x = xcentergrid[::jstep] y = ycentergrid[::jstep] u = vx[::jstep] v = vy[::jstep] ib = ib[::jstep] # if necessary, copy to avoid changing the passed values if masked_values is not None or normalize: u = np.copy(u) v = np.copy(v) # mask values if masked_values is not None: for mval in masked_values: to_mask = np.logical_or(u == mval, v == mval) u[to_mask] = np.nan v[to_mask] = np.nan # normalize if normalize: vmag = np.sqrt(u ** 2.0 + v ** 2.0) idx = vmag > 0.0 u[idx] /= vmag[idx] v[idx] /= vmag[idx] u[ib == 0] = np.nan v[ib == 0] = np.nan # rotate and plot, offsets must be zero since # these are vectors not locations urot, vrot = geometry.rotate(u, v, 0.0, 0.0, self.mg.angrot_radians) quiver = ax.quiver(x, y, urot, vrot, pivot=pivot, **kwargs) return quiver def plot_specific_discharge( self, spdis, istep=1, jstep=1, normalize=False, **kwargs ): """ DEPRECATED. Use plot_vector() instead, which should follow after postprocessing.get_specific_discharge(). Method to plot specific discharge from discharge vectors provided by the cell by cell flow output file. In MODFLOW-6 this option is controled in the NPF options block. This method uses matplotlib quiver to create a matplotlib plot of the output. Parameters ---------- spdis : np.recarray specific discharge recarray from cbc file istep : int row frequency to plot. (Default is 1.) jstep : int column frequency to plot. (Default is 1.) normalize : bool boolean flag used to determine if discharge vectors should be normalized using the magnitude of the specific discharge in each cell. (default is False) kwargs : matplotlib.pyplot keyword arguments for the plt.quiver method. Returns ------- quiver : matplotlib.pyplot.quiver quiver plot of discharge vectors """ warnings.warn( "plot_specific_discharge() has been deprecated and will be " "removed in version 3.3.5. Use plot_vector() instead, which " "should follow after postprocessing.get_specific_discharge()", DeprecationWarning, ) if isinstance(spdis, list): print( "Warning: Selecting the final stress period from Specific" " Discharge list" ) spdis = spdis[-1] nodes = self.mg.nnodes qx = np.zeros(nodes) qy = np.zeros(nodes) idx = np.array(spdis["node"]) - 1 qx[idx] = spdis["qx"] qy[idx] = spdis["qy"] return self.plot_vector(qx, qy, istep, jstep, normalize, **kwargs) def plot_discharge( self, frf=None, fff=None, flf=None, head=None, istep=1, jstep=1, normalize=False, **kwargs ): """ DEPRECATED. Use plot_vector() instead, which should follow after postprocessing.get_specific_discharge(). Use quiver to plot vectors. Parameters ---------- frf : numpy.ndarray MODFLOW's 'flow right face' fff : numpy.ndarray MODFLOW's 'flow front face' flf : numpy.ndarray MODFLOW's 'flow lower face' (Default is None.) head : numpy.ndarray MODFLOW's head array. If not provided, then will assume confined conditions in order to calculated saturated thickness. istep : int row frequency to plot. (Default is 1.) jstep : int column frequency to plot. (Default is 1.) normalize : bool boolean flag used to determine if discharge vectors should be normalized using the magnitude of the specific discharge in each cell. (default is False) kwargs : dictionary Keyword arguments passed to plt.quiver() Returns ------- quiver : matplotlib.pyplot.quiver Vectors of specific discharge. """ warnings.warn( "plot_discharge() has been deprecated and will be replaced " "in version 3.3.5. Use plot_vector() instead, which should " "follow after postprocessing.get_specific_discharge()", DeprecationWarning, ) if self.mg.grid_type != "structured": err_msg = "Use plot_specific_discharge for " "{} grids".format( self.mg.grid_type ) raise NotImplementedError(err_msg) else: if self.mg.top is None: err = ( "StructuredGrid must have top and " "botm defined to use plot_discharge()" ) raise AssertionError(err) delr = self.mg.delr delc = self.mg.delc top = np.copy(self.mg.top) botm = np.copy(self.mg.botm) laytyp = None hnoflo = 999.0 hdry = 999.0 laycbd = None if self.model is not None: if self.model.laytyp is not None: laytyp = self.model.laytyp if self.model.hnoflo is not None: hnoflo = self.model.hnoflo if self.model.hdry is not None: hdry = self.model.hdry if self.model.laycbd is not None: laycbd = self.model.laycbd if laycbd is not None and 1 in laycbd: active = np.ones((botm.shape[0],), dtype=int) kon = 0 for cbd in laycbd: if cbd > 0: kon += 1 active[kon] = 0 botm = botm[active == 1] # If no access to head or laytyp, then calculate confined saturated # thickness by setting laytyp to zeros if head is None or laytyp is None: head = np.zeros(botm.shape, np.float32) laytyp = np.zeros((botm.shape[0],), dtype=int) # calculate the saturated thickness sat_thk = plotutil.PlotUtilities.saturated_thickness( head, top, botm, laytyp, [hnoflo, hdry] ) # Calculate specific discharge qx, qy, qz = plotutil.PlotUtilities.centered_specific_discharge( frf, fff, flf, delr, delc, sat_thk ) return self.plot_vector(qx, qy, istep, jstep, normalize, **kwargs) def plot_pathline(self, pl, travel_time=None, **kwargs): """ Plot the MODPATH pathlines. Parameters ---------- pl : list of rec arrays or a single rec array rec array or list of rec arrays is data returned from modpathfile PathlineFile get_data() or get_alldata() methods. Data in rec array is 'x', 'y', 'z', 'time', 'k', and 'particleid'. travel_time : float or str travel_time is a travel time selection for the displayed pathlines. If a float is passed then pathlines with times less than or equal to the passed time are plotted. If a string is passed a variety logical constraints can be added in front of a time value to select pathlines for a select period of time. Valid logical constraints are <=, <, >=, and >. For example, to select all pathlines less than 10000 days travel_time='< 10000' would be passed to plot_pathline. (default is None) kwargs : layer, ax, colors. The remaining kwargs are passed into the LineCollection constructor. If layer='all', pathlines are output for all layers Returns ------- lc : matplotlib.collections.LineCollection """ from matplotlib.collections import LineCollection # make sure pathlines is a list if not isinstance(pl, list): pl = [pl] if "layer" in kwargs: kon = kwargs.pop("layer") if isinstance(kon, bytes): kon = kon.decode() if isinstance(kon, str): if kon.lower() == "all": kon = -1 else: kon = self.layer else: kon = self.layer marker = kwargs.pop("marker", None) markersize = kwargs.pop("markersize", None) markersize = kwargs.pop("ms", markersize) markercolor = kwargs.pop("markercolor", None) markerevery = kwargs.pop("markerevery", 1) ax = kwargs.pop("ax", self.ax) if "colors" not in kwargs: kwargs["colors"] = "0.5" linecol = [] markers = [] for p in pl: tp = plotutil.filter_modpath_by_travel_time(p, travel_time) # transform data! x0r, y0r = geometry.transform( tp["x"], tp["y"], self.mg.xoffset, self.mg.yoffset, self.mg.angrot_radians, ) # build polyline array arr = np.vstack((x0r, y0r)).T # select based on layer if kon >= 0: kk = p["k"].copy().reshape(p.shape[0], 1) kk = np.repeat(kk, 2, axis=1) arr = np.ma.masked_where((kk != kon), arr) else: arr = np.ma.asarray(arr) # append line to linecol if there is some unmasked segment if not arr.mask.all(): linecol.append(arr) if not arr.mask.all(): linecol.append(arr) if marker is not None: for xy in arr[::markerevery]: if not np.all(xy.mask): markers.append(xy) # create line collection lc = None if len(linecol) > 0: lc = LineCollection(linecol, **kwargs) ax.add_collection(lc) if marker is not None: markers = np.array(markers) ax.plot( markers[:, 0], markers[:, 1], lw=0, marker=marker, color=markercolor, ms=markersize, ) return lc def plot_timeseries(self, ts, travel_time=None, **kwargs): """ Plot the MODPATH timeseries. Parameters ---------- ts : list of rec arrays or a single rec array rec array or list of rec arrays is data returned from modpathfile TimeseriesFile get_data() or get_alldata() methods. Data in rec array is 'x', 'y', 'z', 'time', 'k', and 'particleid'. travel_time : float or str travel_time is a travel time selection for the displayed pathlines. If a float is passed then pathlines with times less than or equal to the passed time are plotted. If a string is passed a variety logical constraints can be added in front of a time value to select pathlines for a select period of time. Valid logical constraints are <=, <, >=, and >. For example, to select all pathlines less than 10000 days travel_time='< 10000' would be passed to plot_pathline. (default is None) kwargs : layer, ax, colors. The remaining kwargs are passed into the LineCollection constructor. If layer='all', pathlines are output for all layers Returns ------- lo : list of Line2D objects """ if "color" in kwargs: kwargs["markercolor"] = kwargs["color"] return self.plot_pathline(ts, travel_time=travel_time, **kwargs) def plot_endpoint( self, ep, direction="ending", selection=None, selection_direction=None, **kwargs ): """ Plot the MODPATH endpoints. Parameters ---------- ep : rec array A numpy recarray with the endpoint particle data from the MODPATH 6 endpoint file direction : str String defining if starting or ending particle locations should be considered. (default is 'ending') selection : tuple tuple that defines the zero-base layer, row, column location (l, r, c) to use to make a selection of particle endpoints. The selection could be a well location to determine capture zone for the well. If selection is None, all particle endpoints for the user-sepcified direction will be plotted. (default is None) selection_direction : str String defining is a selection should be made on starting or ending particle locations. If selection is not None and selection_direction is None, the selection direction will be set to the opposite of direction. (default is None) kwargs : ax, c, s or size, colorbar, colorbar_label, shrink. The remaining kwargs are passed into the matplotlib scatter method. If colorbar is True a colorbar will be added to the plot. If colorbar_label is passed in and colorbar is True then colorbar_label will be passed to the colorbar set_label() method. If shrink is passed in and colorbar is True then the colorbar size will be set using shrink. Returns ------- sp : matplotlib.pyplot.scatter """ ax = kwargs.pop("ax", self.ax) tep, _, xp, yp = plotutil.parse_modpath_selection_options( ep, direction, selection, selection_direction ) # scatter kwargs that users may redefine if "c" not in kwargs: c = tep["time"] - tep["time0"] else: c = np.empty((tep.shape[0]), dtype="S30") c.fill(kwargs.pop("c")) s = kwargs.pop("s", np.sqrt(50)) s = float(kwargs.pop("size", s)) ** 2.0 # colorbar kwargs createcb = kwargs.pop("colorbar", False) colorbar_label = kwargs.pop("colorbar_label", "Endpoint Time") shrink = float(kwargs.pop("shrink", 1.0)) # transform data! x0r, y0r = geometry.transform( tep[xp], tep[yp], self.mg.xoffset, self.mg.yoffset, self.mg.angrot_radians, ) # build array to plot arr = np.vstack((x0r, y0r)).T # plot the end point data sp = ax.scatter(arr[:, 0], arr[:, 1], c=c, s=s, **kwargs) # add a colorbar for travel times if createcb: cb = plt.colorbar(sp, ax=ax, shrink=shrink) cb.set_label(colorbar_label) return sp class DeprecatedMapView(PlotMapView): """ Deprecation handler for the PlotMapView class Parameters ---------- model : flopy.modflow.Modflow object modelgrid : flopy.discretization.Grid object ax : matplotlib.pyplot.axes object layer : int model layer to plot, default is layer 1 extent : tuple of floats (xmin, xmax, ymin, ymax) will be used to specify axes limits. If None then these will be calculated based on grid, coordinates, and rotation. """ def __init__( self, model=None, modelgrid=None, ax=None, layer=0, extent=None ): super().__init__( model=model, modelgrid=modelgrid, ax=ax, layer=layer, extent=extent ) def plot_discharge( self, frf, fff, dis=None, flf=None, head=None, istep=1, jstep=1, normalize=False, **kwargs ): """ Use quiver to plot vectors. Deprecated method that uses the old function call to pass the method to PlotMapView Parameters ---------- frf : numpy.ndarray MODFLOW's 'flow right face' fff : numpy.ndarray MODFLOW's 'flow front face' dis : flopy.modflow.ModflowDis package Depricated parameter flf : numpy.ndarray MODFLOW's 'flow lower face' (Default is None.) head : numpy.ndarray MODFLOW's head array. If not provided, then will assume confined conditions in order to calculated saturated thickness. istep : int row frequency to plot. (Default is 1.) jstep : int column frequency to plot. (Default is 1.) normalize : bool boolean flag used to determine if discharge vectors should be normalized using the magnitude of the specific discharge in each cell. (default is False) kwargs : dictionary Keyword arguments passed to plt.quiver() Returns ------- quiver : matplotlib.pyplot.quiver Vectors of specific discharge. """ if dis is not None: self.mg = plotutil._depreciated_dis_handler( modelgrid=self.mg, dis=dis ) super().plot_discharge( frf=frf, fff=fff, flf=flf, head=head, istep=1, jstep=1, normalize=normalize, **kwargs ) class ModelMap: """ DEPRECATED. ModelMap acts as a PlotMapView factory object. Please migrate to PlotMapView for plotting functionality and future code compatibility Parameters ---------- sr : flopy.utils.reference.SpatialReference The spatial reference class (Default is None) ax : matplotlib.pyplot axis The plot axis. If not provided it, plt.gca() will be used. If there is not a current axis then a new one will be created. model : flopy.modflow object flopy model object. (Default is None) dis : flopy.modflow.ModflowDis object flopy discretization object. (Default is None) layer : int Layer to plot. Default is 0. Must be between 0 and nlay - 1. xul : float x coordinate for upper left corner yul : float y coordinate for upper left corner. The default is the sum of the delc array. rotation : float Angle of grid rotation around the upper left corner. A positive value indicates clockwise rotation. Angles are in degrees. extent : tuple of floats (xmin, xmax, ymin, ymax) will be used to specify axes limits. If None then these will be calculated based on grid, coordinates, and rotation. length_multiplier : float scaling factor for conversion from model units to another unit length base ex. ft to m. Notes ----- ModelMap must know the position and rotation of the grid in order to make the plot. This information is contained in the SpatialReference class (sr), which can be passed. If sr is None, then it looks for sr in dis. If dis is None, then it looks for sr in model.dis. If all of these arguments are none, then it uses xul, yul, and rotation. If none of these arguments are provided, then it puts the lower-left-hand corner of the grid at (0, 0). """ def __new__( cls, sr=None, ax=None, model=None, dis=None, layer=0, extent=None, xul=None, yul=None, xll=None, yll=None, rotation=None, length_multiplier=None, ): from ..utils.reference import SpatialReferenceUnstructured err_msg = ( "ModelMap is deprecated and has been replaced by " "PlotMapView(). ModelMap will be removed in version 3.3.5; " "Calling PlotMapView()" ) warnings.warn(err_msg, DeprecationWarning) modelgrid = None if model is not None: if (xul, yul, xll, yll, rotation) != ( None, None, None, None, None, ): modelgrid = plotutil._set_coord_info( model.modelgrid, xul, yul, xll, yll, rotation ) elif sr is not None: if length_multiplier is not None: sr.length_multiplier = length_multiplier if (xul, yul, xll, yll, rotation) != ( None, None, None, None, None, ): sr.set_spatialreference(xul, yul, xll, yll, rotation) if isinstance(sr, SpatialReferenceUnstructured): if dis is not None: modelgrid = UnstructuredGrid( vertices=sr.verts, iverts=sr.iverts, xcenters=sr.xc, ycenters=sr.yc, top=dis.top.array, botm=dis.botm.array, ncpl=sr.ncpl, ) else: modelgrid = UnstructuredGrid( vertices=sr.verts, iverts=sr.iverts, xcenters=sr.xc, ycenters=sr.yc, ncpl=sr.ncpl, ) elif dis is not None: modelgrid = StructuredGrid( delc=sr.delc, delr=sr.delr, top=dis.top.array, botm=dis.botm.array, xoff=sr.xll, yoff=sr.yll, angrot=sr.rotation, ) else: modelgrid = StructuredGrid( delc=sr.delc, delr=sr.delr, xoff=sr.xll, yoff=sr.yll, angrot=sr.rotation, ) else: pass return DeprecatedMapView( model=model, modelgrid=modelgrid, ax=ax, layer=layer, extent=extent )
33.110037
79
0.545663
44,078
0.989783
0
0
134
0.003009
0
0
20,906
0.46945
6f7e5bc7a0c9e42e5042391f78e81e9e318258c0
9,342
py
Python
pacu/modules/rds__explore_snapshots/main.py
damienjburks/pacu
5853f9668a7d78945c40d403bf88a47101ba2b3d
[ "BSD-3-Clause" ]
1
2021-12-22T22:39:49.000Z
2021-12-22T22:39:49.000Z
pacu/modules/rds__explore_snapshots/main.py
damienjburks/pacu
5853f9668a7d78945c40d403bf88a47101ba2b3d
[ "BSD-3-Clause" ]
null
null
null
pacu/modules/rds__explore_snapshots/main.py
damienjburks/pacu
5853f9668a7d78945c40d403bf88a47101ba2b3d
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 import argparse from pathlib import Path import json import random import string from botocore.exceptions import ClientError module_info = { "name": "rds__explore_snapshots", "author": "Alexander Morgenstern [email protected]", "category": "EXFIL", "one_liner": "Creates copies of running RDS databases to access protected information", "description": "Creates a snapshot of all database instances, restores new database instances from those snapshots, and then changes the master password to allow access to the copied database. After the database has been created, the connection information is given. After interactions with the database are complete, the temporary resources are deleted. If there is an unexpected crash during the module's execution, the subsequent run of the module will attempt to clean up any leftover temporary resources.", "services": ["RDS"], "prerequisite_modules": [], "external_dependencies": [], "arguments_to_autocomplete": ["--regions"], } parser = argparse.ArgumentParser(add_help=False, description=module_info["description"]) parser.add_argument( "--regions", required=False, default=None, help="One or more (comma separated) AWS regions in the format us-east-1. Defaults to all session regions.", ) TEMP_FILE = Path(__file__).parent / "temp.json" WAIT_CONFIG = {"Delay": 10} def mark_temp(resource): if "DBInstanceArn" in resource: key = "Instances" identifier = resource["DBInstanceArn"] else: key = "Snapshots" identifier = resource["DBSnapshotArn"] data = read_temp() data[key][identifier] = resource write_temp(data) def remove_temp(resource): if "DBInstanceArn" in resource: key = "Instances" identifier = resource["DBInstanceArn"] else: key = "Snapshots" identifier = resource["DBSnapshotArn"] data = read_temp() del data[key][identifier] write_temp(data) def read_temp(): with TEMP_FILE.open("r") as infile: data = json.load(infile) return data def write_temp(data): with TEMP_FILE.open("w") as outfile: json.dump(data, outfile, default=str) def cleanup(pacu): data = read_temp() success = True for instance in data["Instances"]: client = pacu.get_boto3_client( "rds", data["Instances"][instance]["AvailabilityZone"][:-1] ) if not delete_instance(client, instance, pacu.print): success = False for snapshot in data["Snapshots"]: client = pacu.get_boto3_client( "rds", data["Snapshots"][snapshot]["AvailabilityZone"][:-1] ) if not delete_snapshot(client, snapshot, pacu.print): success = False return success def main(args, pacu): """Main module function, called from Pacu""" args = parser.parse_args(args) if args.regions: regions = args.regions.split(",") else: regions = pacu.get_regions("rds") if not cleanup(pacu): if pacu.input(" Cleanup Failed. Continue? (y/n) ") != "y": return {"fail": "Failed to delete temporary data."} summary_data = {"instances": 0} for region in regions: pacu.print("Region: {}".format(region)) client = pacu.get_boto3_client("rds", region) pacu.print(" Getting RDS instances...") active_instances = get_all_region_instances(client, pacu.print) pacu.print(" Found {} RDS instance(s)".format(len(active_instances))) for instance in active_instances: prompt = " Target: {} (y/n)? ".format(instance["DBInstanceIdentifier"]) if pacu.input(prompt).lower() != "y": continue pacu.print(" Creating temporary snapshot...") temp_snapshot = create_snapshot_from_instance(client, instance, pacu.print) if not temp_snapshot: pacu.print(" Failed to create temporary snapshot") continue pacu.print(" Restoring temporary instance from snapshot...") temp_instance = restore_instance_from_snapshot( client, temp_snapshot, pacu.print ) if not temp_instance: pacu.print(" Failed to create temporary instance") delete_snapshot(client, temp_snapshot, pacu.print) continue process_instance(pacu, client, temp_instance) pacu.print(" Deleting temporary resources...") delete_instance(client, temp_instance, pacu.print) delete_snapshot(client, temp_snapshot, pacu.print) summary_data["instances"] += 1 if not cleanup(pacu): summary_data["fail"] = "Failed to delete temporary data." return summary_data def process_instance(pacu, client, instance): waiter = client.get_waiter("db_instance_available") waiter.wait( DBInstanceIdentifier=instance["DBInstanceIdentifier"], WaiterConfig=WAIT_CONFIG, ) password = "".join( random.choice(string.ascii_uppercase + string.digits) for _ in range(20) ) pacu.print(" Master Password for current instance: {}".format(password)) if modify_master_password(client, instance, password, pacu.print): pacu.print(" Password Change Successful") else: pacu.print(" Password Change Failed") response = client.describe_db_instances( DBInstanceIdentifier=instance["DBInstanceIdentifier"] ) endpoint = response["DBInstances"][0]["Endpoint"] pacu.print(" Connection Information:") pacu.print(" Address: {}".format(endpoint["Address"])) pacu.print(" Port: {}".format(endpoint["Port"])) pacu.input(" Press enter to process next instance...") def modify_master_password(client, instance, password, print): try: client.modify_db_instance( DBInstanceIdentifier=instance["DBInstanceIdentifier"], MasterUserPassword=password, ) return True except ClientError as error: print(" " + error.response["Error"]["Code"]) return False def restore_instance_from_snapshot(client, snapshot, print): waiter = client.get_waiter("db_snapshot_available") waiter.wait( DBSnapshotIdentifier=snapshot["DBSnapshotIdentifier"], WaiterConfig=WAIT_CONFIG, ) try: response = client.restore_db_instance_from_db_snapshot( DBInstanceIdentifier=snapshot["DBSnapshotIdentifier"], DBSnapshotIdentifier=snapshot["DBSnapshotIdentifier"], ) mark_temp(response["DBInstance"]) return response["DBInstance"] except ClientError as error: print(" " + error.response["Error"]["Code"]) return {} def delete_snapshot(client, snapshot, print): waiter = client.get_waiter("db_snapshot_available") waiter.wait( DBSnapshotIdentifier=snapshot["DBSnapshotIdentifier"], WaiterConfig=WAIT_CONFIG, ) try: response = client.delete_db_snapshot( DBSnapshotIdentifier=snapshot["DBSnapshotIdentifier"] ) remove_temp(response["DBSnapshot"]) return True except ClientError as error: print(" " + error.response["Error"]["Code"]) return False def delete_instance(client, instance, print): waiter = client.get_waiter("db_instance_available") waiter.wait( DBInstanceIdentifier=instance["DBInstanceIdentifier"], WaiterConfig=WAIT_CONFIG, ) try: response = client.delete_db_instance( DBInstanceIdentifier=instance["DBInstanceIdentifier"], SkipFinalSnapshot=True, ) remove_temp(response["DBInstance"]) except ClientError as error: print(" " + error.response["Error"]["Code"]) return False waiter = client.get_waiter("db_instance_deleted") waiter.wait( DBInstanceIdentifier=instance["DBInstanceIdentifier"], WaiterConfig=WAIT_CONFIG, ) return True def create_snapshot_from_instance(client, instance, print): waiter = client.get_waiter("db_instance_available") waiter.wait( DBInstanceIdentifier=instance["DBInstanceIdentifier"], WaiterConfig=WAIT_CONFIG, ) try: response = client.create_db_snapshot( DBSnapshotIdentifier=instance["DBInstanceIdentifier"] + "-copy", DBInstanceIdentifier=instance["DBInstanceIdentifier"], ) mark_temp(response["DBSnapshot"]) return response["DBSnapshot"] except ClientError as error: print(" " + error.response["Error"]["Code"]) return {} def get_all_region_instances(client, print): out = [] paginator = client.get_paginator("describe_db_instances") pages = paginator.paginate() try: for page in pages: out.extend(page["DBInstances"]) return out except ClientError as error: print(" " + error.response["Error"]["Code"]) return [] def summary(data, pacu_main): if "fail" in data: out = data["fail"] + "\n" else: out = " No issues cleaning up temporary data\n" out += " {} Copy Instance(s) Launched".format(data["instances"]) return out
34.988764
515
0.650717
0
0
0
0
0
0
0
0
2,771
0.296617
6f7fca20b708629aa57b407552bb18e0a01540bc
9,846
py
Python
mechroutines/trans/_routines/lj.py
sjklipp/mechdriver
17c3d9bc82116954b331955e87a60e9adc5e1de9
[ "Apache-2.0" ]
null
null
null
mechroutines/trans/_routines/lj.py
sjklipp/mechdriver
17c3d9bc82116954b331955e87a60e9adc5e1de9
[ "Apache-2.0" ]
null
null
null
mechroutines/trans/_routines/lj.py
sjklipp/mechdriver
17c3d9bc82116954b331955e87a60e9adc5e1de9
[ "Apache-2.0" ]
null
null
null
""" Executes the automation part of 1DMin """ import statistics import autofile from autorun import run_script from mechroutines.trans._routines import _geom as geom from mechroutines.trans._routines import _gather as gather from mechroutines.trans.runner import lj as lj_runner from mechlib import filesys from mechlib import amech_io from mechlib.amech_io import printer as ioprinter def onedmin(spc_name, spc_dct, thy_dct, etrans_keyword_dct, run_prefix, save_prefix): """ Run the task """ bath_name = etrans_keyword_dct['bath'] tgt_dct, bath_dct = spc_dct[spc_name], spc_dct[bath_name] tgt_info = filesys.inf.get_spc_info(tgt_dct) bath_info = filesys.inf.get_spc_info(bath_dct) lj_info = filesys.inf.combine_spc_info(tgt_info, bath_info) # Build the modified thy objs inp_thy_info = filesys.inf.get_es_info( etrans_keyword_dct['inplvl'], thy_dct) run_thy_info = filesys.inf.get_es_info( etrans_keyword_dct['runlvl'], thy_dct) tgt_mod_thy_info = filesys.inf.modify_orb_restrict( tgt_info, inp_thy_info) bath_mod_thy_info = filesys.inf.modify_orb_restrict( bath_info, inp_thy_info) lj_mod_thy_info = filesys.inf.modify_orb_restrict( lj_info, run_thy_info) # Build the target conformer filesystem objects tgt_cnf_run_fs, tgt_cnf_save_fs = filesys.build_fs( run_prefix, save_prefix, 'CONFORMER', spc_locs=tgt_info, thy_locs=tgt_mod_thy_info[1:]) tgt_loc_info = filesys.mincnf.min_energy_conformer_locators( tgt_cnf_save_fs, tgt_mod_thy_info) tgt_min_cnf_locs, tgt_cnf_save_path = tgt_loc_info # Create run fs if that directory has been deleted to run the jobs tgt_cnf_run_fs[-1].create(tgt_min_cnf_locs) tgt_cnf_run_path = tgt_cnf_run_fs[-1].path(tgt_min_cnf_locs) # Get options from the dct or es options lst # tgt_cnf_run_fs[-1].create(tgt_min_cnf_locs) # tgt_cnf_run_path = filesys.build.cnf_paths_from_locs( # tgt_cnf_run_fs, [tgt_min_cnf_locs])[0] # Build the target energy transfer filesystem objects etrans_run_fs = autofile.fs.energy_transfer(tgt_cnf_run_path) etrans_save_fs = autofile.fs.energy_transfer(tgt_cnf_save_path) etrans_locs = bath_info + lj_mod_thy_info[1:4] # Build the bath conformer filesystem objects # _, bath_thy_save_path = filesys.build.spc_thy_fs_from_root( # save_prefix, bath_info, bath_mod_thy_info) # ioprinter.debug_message('bath path', bath_thy_save_path) # bath_cnf_save_fs = autofile.fs.conformer(bath_thy_save_path) # Calculate and save the Lennard-Jones parameters, if needed run_needed, nsamp_needed = _need_run( etrans_save_fs, etrans_locs, etrans_keyword_dct) if run_needed: _runlj(nsamp_needed, lj_info, lj_mod_thy_info, tgt_mod_thy_info, bath_mod_thy_info, tgt_cnf_save_fs, bath_cnf_save_fs, etrans_run_fs, etrans_locs, etrans_keyword_dct) _savelj(etrans_run_fs, etrans_save_fs, etrans_locs, etrans_keyword_dct) else: epath = etrans_save_fs[-1].file.lennard_jones_epsilon.path(etrans_locs) spath = etrans_save_fs[-1].file.lennard_jones_sigma.path(etrans_locs) ioprinter.info_message( '- Lennard-Jones epsilon found at path {}'.format(epath)) ioprinter.info_message( '- Lennard-Jones sigma found at path {}'.format(spath)) def _need_run(etrans_save_fs, etrans_locs, etrans_keyword_dct): """ Check if job needs to run """ nsamp = etrans_keyword_dct['nsamp'] overwrite = etrans_keyword_dct['overwrite'] ex1 = etrans_save_fs[-1].file.lennard_jones_epsilon.exists(etrans_locs) ex2 = etrans_save_fs[-1].file.lennard_jones_sigma.exists(etrans_locs) if not ex1 or not ex2: ioprinter.info_message( 'Either no Lennard-Jones epsilon or sigma found in', 'save filesys. Running OneDMin for params...') run = True nsamp_need = nsamp elif overwrite: ioprinter.info_message( 'User specified to overwrite parameters with new run...') run = True nsamp_need = nsamp else: inf_obj = etrans_save_fs[-1].file.info.read(etrans_locs) nsampd = inf_obj.nsamp if nsamp < nsampd: run = True nsamp_need = nsampd - nsamp else: run = False nsamp_need = 0 return run, nsamp_need def _runlj(nsamp_needed, lj_info, lj_mod_thy_info, tgt_mod_thy_info, bath_mod_thy_info, tgt_cnf_save_fs, bath_cnf_save_fs, etrans_run_fs, etrans_locs, etrans_keyword_dct): """ Run the Lennard-Jones parameters """ # Pull stuff from dct njobs = etrans_keyword_dct['njobs'] smin = etrans_keyword_dct['smin'] smax = etrans_keyword_dct['smax'] conf = etrans_keyword_dct['conf'] # Determine the number of samples per job nsamp_per_job = nsamp_needed // njobs # Set the path to the executable onedmin_exe_path = '/lcrc/project/CMRP/amech/OneDMin/build' # Obtain the geometry for the target and bath tgt_geo = geom.get_geometry( tgt_cnf_save_fs, tgt_mod_thy_info, conf=conf) bath_geo = geom.get_geometry( bath_cnf_save_fs, bath_mod_thy_info, conf=conf) # Set the path to the etrans lead fs etrans_run_path = etrans_run_fs[-1].path(etrans_locs) # Build the run directory onedmin_run_path = lj_runner.build_rundir(etrans_run_path) # Run an instancw of 1DMin for each processor for idx in range(njobs): # Build run directory onedmin_job_path = lj_runner.make_jobdir(onedmin_run_path, idx) # Write the input files xyz1_str, xyz2_str = lj_runner.write_xyz(tgt_geo, bath_geo) elstruct_inp_str, elstruct_sub_str = lj_runner.write_elstruct_inp( lj_info, lj_mod_thy_info) onedmin_str = lj_runner.write_input( nsamp_per_job, smin=smin, smax=smax, target_name='target.xyz', bath_name='bath.xyz') input_strs = ( xyz1_str, xyz2_str, elstruct_inp_str, elstruct_sub_str, onedmin_str) input_names = ( 'target.xyz', 'bath.xyz', 'qc.mol', 'ene.x', 'input.dat') inp = tuple(zip(input_strs, input_names)) amech_io.writer.write_files( inp, onedmin_job_path, exe_names=('ene.x')) # Write the batch submission script for each instance onedmin_sub_str = lj_runner.write_onedmin_sub( njobs, onedmin_run_path, onedmin_exe_path, exe_name='onedmin-dd-molpro.x') sub_inp = ((onedmin_sub_str, 'build.sh'),) amech_io.writer.write_files( sub_inp, onedmin_run_path, exe_names=('build.sh')) # Submit the all of the OneDMin jobs ioprinter.info_message('Running each OneDMin job...', newline=2) run_script(onedmin_sub_str, onedmin_run_path) def _savelj(etrans_run_fs, etrans_save_fs, etrans_locs, etrans_keyword_dct): """ Save the Lennard-Jones parameters """ # Read the dictionary ljpotential = etrans_keyword_dct['pot'] # Set the run path to read the files etrans_run_path = etrans_run_fs[-1].path(etrans_locs) # Read any epsilons and sigma currently in the filesystem ioprinter.info_message( 'Reading Lennard-Jones parameters and Geoms from filesystem...', newline=1) fs_geoms, fs_epsilons, fs_sigmas = gather.read_filesys( etrans_save_fs, etrans_locs) gather.print_lj_parms(fs_sigmas, fs_epsilons) # Read the lj from all the output files ioprinter.info_message( 'Reading Lennard-Jones parameters and Geoms from output...', newline=1) run_geoms, run_epsilons, run_sigmas = gather.read_output(etrans_run_path) gather.print_lj_parms(run_sigmas, run_epsilons) # Read the program and version for onedmin prog_version = gather.prog_version(etrans_run_path) # Add the lists from the two together geoms = fs_geoms + run_geoms sigmas = fs_sigmas + run_sigmas epsilons = fs_epsilons + run_epsilons # Average the sigma and epsilon values if geoms and sigmas and epsilons: assert len(geoms) == len(sigmas) == len(epsilons), ( 'Number of geoms, sigmas, and epsilons not the same' ) avg_sigma = statistics.mean(sigmas) avg_epsilon = statistics.mean(epsilons) nsampd = len(sigmas) ioprinter.info_message( 'Average Sigma to save [unit]:', avg_sigma, newline=1) ioprinter.info_message('Average Epsilont to save [unit]:', avg_epsilon) ioprinter.info_message('Number of values = ', nsampd) # Update the trajectory file traj = [] for geo, eps, sig in zip(geoms, epsilons, sigmas): comment = 'Epsilon: {} Sigma: {}'.format(eps, sig) traj.append((comment, geo)) # Write the info obj inf_obj = autofile.schema.info_objects.lennard_jones( nsampd, potential=ljpotential, program='OneDMin', version=prog_version) # Set up the electronic structure input file onedmin_inp_str = '<ONEDMIN INP>' els_inp_str = '<ELSTRUCT INP>' # Write the params to the save file system etrans_save_fs[-1].file.lj_input.write(onedmin_inp_str, etrans_locs) etrans_save_fs[-1].file.info.write(inf_obj, etrans_locs) etrans_save_fs[-1].file.molpro_inp_file.write(els_inp_str, etrans_locs) etrans_save_fs[-1].file.epsilon.write(avg_epsilon, etrans_locs) etrans_save_fs[-1].file.sigma.write(avg_sigma, etrans_locs) etrans_save_fs[1].file.trajectory.write(traj, etrans_locs)
36.065934
79
0.683628
0
0
0
0
0
0
0
0
2,521
0.256043
6f801ba5e156e09ae80a405057d4699d1492e731
7,182
py
Python
barry/convert.py
jyotiska/barry
53f3b3f8c070cbc5b2d9dcadebe9f776d170b6ed
[ "MIT" ]
null
null
null
barry/convert.py
jyotiska/barry
53f3b3f8c070cbc5b2d9dcadebe9f776d170b6ed
[ "MIT" ]
null
null
null
barry/convert.py
jyotiska/barry
53f3b3f8c070cbc5b2d9dcadebe9f776d170b6ed
[ "MIT" ]
null
null
null
from exceptions import BarryFileException, BarryConversionException, BarryExportException, BarryDFException import pandas as pd import requests from StringIO import StringIO def detect_file_extension(filename): """Extract and return the extension of a file given a filename. Args: filename (str): name of the file Returns: str: extension of the file Raises: BarryFileException: if extension not present in filename """ if filename is None: raise BarryFileException("Input file name cannot be None") split_filename = filename.split(".") if len(split_filename) > 1: return str(split_filename[-1]).lower() else: raise BarryFileException("Could not determine input file type from file extension") def xls_to_df(filename, skip_rows, skip_header, columns): """Converts a XLS file to Pandas dataframe. Args: filename (str): name of the file skip_rows (int): number of rows to skip from top skip_header (bool): whether to skip header columns (list or None): list of column names Returns: dataframe: a pandas dataframe Raises: BarryConversionException: if file cannot be converted to dataframe """ try: # Check if columns names has been passed if columns is not None and len(columns) > 0: skip_header = 0 # Check if header needs to be skipped if skip_header is True: skip_header = None else: skip_header = 0 return pd.read_excel(filename, skiprows=skip_rows, header=skip_header, names=columns) except Exception as e: raise BarryConversionException("Could not convert file %s to dataframe" % (filename)) def xlsx_to_df(filename, skip_rows, skip_header, columns): """Converts a XLSX file to Pandas dataframe. Args: filename (str): name of the file skip_rows (int): number of rows to skip from top skip_header (bool): whether to skip header columns (list or None): list of column names Returns: dataframe: a pandas dataframe Raises: BarryConversionException: if file cannot be converted to dataframe """ try: # Check if columns names has been passed if columns is not None and len(columns) > 0: skip_header = 0 # Check if header needs to be skipped if skip_header is True: skip_header = None else: skip_header = 0 return pd.read_excel(filename, skiprows=skip_rows, header=skip_header, names=columns) except Exception as e: raise BarryConversionException("Could not convert file %s to dataframe" % (filename)) def csv_to_df(filename, skip_rows, skip_header, columns): """Converts a CSV file to Pandas dataframe. Args: filename (str): name of the file skip_rows (int): number of rows to skip from top skip_header (bool): whether to skip header columns (list or None): list of column names Returns: dataframe: a pandas dataframe Raises: BarryConversionException: if file cannot be converted to dataframe """ try: # Check if columns names has been passed if columns is not None and len(columns) > 0: skip_header = 0 # Check if header needs to be skipped if skip_header is True: skip_header = None else: skip_header = 0 return pd.read_csv(filename, skiprows=skip_rows, header=skip_header, names=columns) except Exception as e: raise BarryConversionException("Could not convert file %s to dataframe" % (filename)) def url_to_df(url, skip_rows, skip_header, columns): """Converts a CSV from HTTP URL to Pandas dataframe. Args: url (str): http url of the csv skip_rows (int): number of rows to skip from top skip_header (bool): whether to skip header columns (list or None): list of column names Returns: dataframe: a pandas dataframe Raises: BarryConversionException: if file cannot be converted to dataframe """ try: # Check if columns names has been passed if columns is not None and len(columns) > 0: skip_header = 0 # Check if header needs to be skipped if skip_header is True: skip_header = None else: skip_header = 0 url_content = requests.get(url).content return pd.read_csv(StringIO(url_content), skiprows=skip_rows, header=skip_header, names=columns) except Exception as e: raise BarryConversionException("Could not convert file %s to dataframe" % (filename)) def df_to_xls(df, out_filename): """Writes a Pandas dataframe to a XLS file. Args: df (dataframe): dataframe to be written to file filename (str): name of the file Raises: BarryExportException: if file cannot be converted to dataframe """ try: df.to_excel(out_filename) except Exception as e: raise BarryExportException("Could not write dataframe to file %s" % (out_filename)) def df_to_xlsx(df, out_filename): """Writes a Pandas dataframe to a XLS file. Args: df (dataframe): dataframe to be written to file filename (str): name of the file Raises: BarryExportException: if file cannot be converted to dataframe """ try: df.to_excel(out_filename) except Exception as e: raise BarryExportException("Could not write dataframe to file %s" % (out_filename)) def df_to_json(df, out_filename): """Writes a Pandas dataframe to a JSON file. Args: df (dataframe): dataframe to be written to file filename (str): name of the file Raises: BarryExportException: if file cannot be converted to dataframe """ try: df.to_json(out_filename) except Exception as e: raise BarryExportException("Could not write dataframe to file %s" % (out_filename)) def df_to_csv(df, out_filename): """Writes a Pandas dataframe to a CSV file. Args: df (dataframe): dataframe to be written to file filename (str): name of the file Raises: BarryExportException: if file cannot be converted to dataframe """ try: df.to_csv(out_filename) except Exception as e: raise BarryExportException("Could not write dataframe to file %s" % (out_filename)) def sort_df(df, sort_column, ascending): """Sort a DataFrame with the column name passed in ascending/descending order. Args: df (dataframe): dataframe that needs to be sorted sort_column (str): column to be sorted on ascending (bool): sort order, ascending if True, descending if False Returns: dataframe: a pandas dataframe Raises: BarryDFException: if there is any error while sorting the dataframe """ try: return df.sort(columns=sort_column, ascending=ascending) except Exception as e: raise BarryDFException("Could not sort dataframe on columns %s" % (sort_column))
31.362445
107
0.657059
0
0
0
0
0
0
0
0
4,006
0.557783
6f812a049e2bbe774645e522bf2bfebedf410de7
451
py
Python
flaskerize/schematics/flask-api/files/{{ name }}.template/commands/seed_command.py
darkguinito/myflaskerize
e76e3e4b6c91e2859b974aabf82e0ea5539bcf1b
[ "BSD-3-Clause" ]
1
2020-11-29T13:00:48.000Z
2020-11-29T13:00:48.000Z
flaskerize/schematics/flask-api/files/{{ name }}.template/commands/seed_command.py
darkguinito/myflaskerize
e76e3e4b6c91e2859b974aabf82e0ea5539bcf1b
[ "BSD-3-Clause" ]
null
null
null
flaskerize/schematics/flask-api/files/{{ name }}.template/commands/seed_command.py
darkguinito/myflaskerize
e76e3e4b6c91e2859b974aabf82e0ea5539bcf1b
[ "BSD-3-Clause" ]
null
null
null
from flask_script import Command from app import db class SeedCommand(Command): """ Seed the DB.""" def run(self): if ( input( "Are you sure you want to drop all tables and recreate? (y/N)\n" ).lower() == "y" ): print("Dropping tables...") db.drop_all() db.create_all() db.session.commit() print("DB successfully seeded.")
22.55
80
0.501109
395
0.875831
0
0
0
0
0
0
131
0.290466
6f83b0761d99f7aecd9538ff15dd5acb4d03288c
118
py
Python
com/aptitute_tests/RSL.py
theeksha101/problem_solving
431c4ff224035bb98ad67ead963860329dd4c9ff
[ "MIT" ]
null
null
null
com/aptitute_tests/RSL.py
theeksha101/problem_solving
431c4ff224035bb98ad67ead963860329dd4c9ff
[ "MIT" ]
null
null
null
com/aptitute_tests/RSL.py
theeksha101/problem_solving
431c4ff224035bb98ad67ead963860329dd4c9ff
[ "MIT" ]
null
null
null
a = [2, 4, 5, 7, 8, 9] sum = 0 for i in range(len(a) - 1): if a[i] % 2 == 0: sum = sum + a[i] print(sum)
14.75
27
0.415254
0
0
0
0
0
0
0
0
0
0
6f8670b2eab9bbcfcba5a2bac0b023bbc676fc76
8,724
py
Python
plivo/rest/client.py
vaibhav-plivo/plivo-python
e4ae7559ba4647ac0e1af523c94d49a3fd6a24ca
[ "MIT" ]
null
null
null
plivo/rest/client.py
vaibhav-plivo/plivo-python
e4ae7559ba4647ac0e1af523c94d49a3fd6a24ca
[ "MIT" ]
10
2020-10-19T06:47:45.000Z
2021-06-25T15:41:34.000Z
plivo/rest/client.py
vaibhav-plivo/plivo-python
e4ae7559ba4647ac0e1af523c94d49a3fd6a24ca
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Core client, used for all API requests. """ import os import platform from collections import namedtuple from plivo.base import ResponseObject from plivo.exceptions import (AuthenticationError, InvalidRequestError, PlivoRestError, PlivoServerError, ResourceNotFoundError, ValidationError) from plivo.resources import (Accounts, Addresses, Applications, Calls, Conferences, Endpoints, Identities, Messages, Numbers, Pricings, Recordings, Subaccounts) from plivo.resources.live_calls import LiveCalls from plivo.resources.queued_calls import QueuedCalls from plivo.utils import is_valid_mainaccount, is_valid_subaccount from plivo.version import __version__ from requests import Request, Session AuthenticationCredentials = namedtuple('AuthenticationCredentials', 'auth_id auth_token') PLIVO_API = 'https://api.plivo.com' PLIVO_API_BASE_URI = '/'.join([PLIVO_API, 'v1/Account']) def get_user_agent(): return 'plivo-python/%s (Python: %s)' % (__version__, platform.python_version()) def fetch_credentials(auth_id, auth_token): """Fetches the right credentials either from params or from environment""" if not (auth_id and auth_token): try: auth_id = os.environ['PLIVO_AUTH_ID'] auth_token = os.environ['PLIVO_AUTH_TOKEN'] except KeyError: raise AuthenticationError('The Plivo Python SDK ' 'could not find your auth credentials.') if not (is_valid_mainaccount(auth_id) or is_valid_subaccount(auth_id)): raise AuthenticationError('Invalid auth_id supplied: %s' % auth_id) return AuthenticationCredentials(auth_id=auth_id, auth_token=auth_token) class Client(object): def __init__(self, auth_id=None, auth_token=None, proxies=None, timeout=5): """ The Plivo API client. Deals with all the API requests to be made. """ self.base_uri = PLIVO_API_BASE_URI self.session = Session() self.session.headers.update({ 'User-Agent': get_user_agent(), 'Content-Type': 'application/json', 'Accept': 'application/json', }) self.session.auth = fetch_credentials(auth_id, auth_token) self.multipart_session = Session() self.multipart_session.headers.update({ 'User-Agent': get_user_agent(), 'Cache-Control': 'no-cache', }) self.multipart_session.auth = fetch_credentials(auth_id, auth_token) self.proxies = proxies self.timeout = timeout self.account = Accounts(self) self.subaccounts = Subaccounts(self) self.applications = Applications(self) self.calls = Calls(self) self.live_calls = LiveCalls(self) self.queued_calls = QueuedCalls(self) self.conferences = Conferences(self) self.endpoints = Endpoints(self) self.messages = Messages(self) self.numbers = Numbers(self) self.pricing = Pricings(self) self.recordings = Recordings(self) self.addresses = Addresses(self) self.identities = Identities(self) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.session.close() self.multipart_session.close() def process_response(self, method, response, response_type=None, objects_type=None): """Processes the API response based on the status codes and method used to access the API """ try: response_json = response.json( object_hook= lambda x: ResponseObject(x) if isinstance(x, dict) else x) if response_type: r = response_type(self, response_json.__dict__) response_json = r if 'objects' in response_json and objects_type: response_json.objects = [ objects_type(self, obj.__dict__) for obj in response_json.objects ] except ValueError: response_json = None if response.status_code == 400: if response_json and 'error' in response_json: raise ValidationError(response_json.error) raise ValidationError( 'A parameter is missing or is invalid while accessing resource' 'at: {url}'.format(url=response.url)) if response.status_code == 401: if response_json and 'error' in response_json: raise AuthenticationError(response_json.error) raise AuthenticationError( 'Failed to authenticate while accessing resource at: ' '{url}'.format(url=response.url)) if response.status_code == 404: if response_json and 'error' in response_json: raise ResourceNotFoundError(response_json.error) raise ResourceNotFoundError( 'Resource not found at: {url}'.format(url=response.url)) if response.status_code == 405: if response_json and 'error' in response_json: raise InvalidRequestError(response_json.error) raise InvalidRequestError( 'HTTP method "{method}" not allowed to access resource at: ' '{url}'.format(method=method, url=response.url)) if response.status_code == 500: if response_json and 'error' in response_json: raise PlivoServerError(response_json.error) raise PlivoServerError( 'A server error occurred while accessing resource at: ' '{url}'.format(url=response.url)) if method == 'DELETE': if response.status_code != 204: raise PlivoRestError('Resource at {url} could not be ' 'deleted'.format(url=response.url)) elif response.status_code not in [200, 201, 202]: raise PlivoRestError( 'Received status code {status_code} for the HTTP method ' '"{method}"'.format( status_code=response.status_code, method=method)) return response_json def create_request(self, method, path=None, data=None): path = path or [] req = Request(method, '/'.join([self.base_uri, self.session.auth[0]] + list([str(p) for p in path])) + '/', **({ 'params': data } if method == 'GET' else { 'json': data })) return self.session.prepare_request(req) def create_multipart_request(self, method, path=None, data=None, files=None): path = path or [] data_args = {} if method == 'GET': data_args['params'] = data else: data_args['data'] = data if files and 'file' in files and files['file'] != '': data_args['files'] = files req = Request(method, '/'.join([self.base_uri, self.multipart_session.auth[0]] + list([str(p) for p in path])) + '/', **( data_args)) return self.multipart_session.prepare_request(req) def send_request(self, request, **kwargs): if 'session' in kwargs: session = kwargs['session'] del kwargs['session'] else: session = self.session return session.send( request, proxies=self.proxies, timeout=self.timeout, **kwargs) def request(self, method, path=None, data=None, response_type=None, objects_type=None, files=None, **kwargs): if files is not None: req = self.create_multipart_request(method, path, data, files) session = self.multipart_session else: req = self.create_request(method, path, data) session = self.session kwargs['session'] = session res = self.send_request(req, **kwargs) return self.process_response(method, res, response_type, objects_type)
38.09607
79
0.568432
6,822
0.781981
0
0
0
0
0
0
1,262
0.144658
6f86c0ab72e5425a1aa9524504a9484391892c01
4,301
py
Python
Project2/part3/part3controller.py
tyrenyabe/CSE461
8a0ae4b4a3f41d659ff784488037583c638d8c43
[ "MIT" ]
null
null
null
Project2/part3/part3controller.py
tyrenyabe/CSE461
8a0ae4b4a3f41d659ff784488037583c638d8c43
[ "MIT" ]
null
null
null
Project2/part3/part3controller.py
tyrenyabe/CSE461
8a0ae4b4a3f41d659ff784488037583c638d8c43
[ "MIT" ]
null
null
null
# Part 3 of UWCSE's Project 3 # # based on Lab Final from UCSC's Networking Class # which is based on of_tutorial by James McCauley from pox.core import core import pox.openflow.libopenflow_01 as of from pox.lib.addresses import IPAddr, IPAddr6, EthAddr log = core.getLogger() #statically allocate a routing table for hosts #MACs used in only in part 4 IPS = { "h10" : ("10.0.1.10", '00:00:00:00:00:01'), "h20" : ("10.0.2.20", '00:00:00:00:00:02'), "h30" : ("10.0.3.30", '00:00:00:00:00:03'), "serv1" : ("10.0.4.10", '00:00:00:00:00:04'), "hnotrust" : ("172.16.10.100", '00:00:00:00:00:05'), } class Part3Controller (object): """ A Connection object for that switch is passed to the __init__ function. """ def __init__ (self, connection): print (connection.dpid) # Keep track of the connection to the switch so that we can # send it messages! self.connection = connection # This binds our PacketIn event listener connection.addListeners(self) #use the dpid to figure out what switch is being created if (connection.dpid == 1): self.s1_setup() elif (connection.dpid == 2): self.s2_setup() elif (connection.dpid == 3): self.s3_setup() elif (connection.dpid == 21): self.cores21_setup() elif (connection.dpid == 31): self.dcs31_setup() else: print ("UNKNOWN SWITCH") exit(1) def s1_setup(self): #put switch 1 rules here fm=of.ofp_flow_mod() fm.actions.append(of.ofp_action_output(port = of.OFPP_FLOOD)) self.connection.send(fm) def s2_setup(self): #put switch 2 rules here fm=of.ofp_flow_mod() fm.actions.append(of.ofp_action_output(port = of.OFPP_FLOOD)) self.connection.send(fm) def s3_setup(self): #put switch 3 rules here fm=of.ofp_flow_mod() fm.actions.append(of.ofp_action_output(port = of.OFPP_FLOOD)) self.connection.send(fm) def cores21_setup(self): #put core switch rules here fm=of.ofp_flow_mod() fm.match.nw_src = IPAddr(IPS["hnotrust"][0]) fm.match.dl_type = 0x0800 fm.match.nw_proto = 1 #ICMP self.connection.send(fm) fm=of.ofp_flow_mod() fm.match.nw_src = IPAddr(IPS["hnotrust"][0]) fm.match.dl_type = 0x0800 fm.match.nw_dst = IPAddr(IPS["serv1"][0]) self.connection.send(fm) fm=of.ofp_flow_mod() # fm.match.dl_type = 0x0806 fm.match.nw_dst = IPAddr(IPS["h10"][0]) fm.actions.append(of.ofp_action_output(port = 1)) self.connection.send(fm) fm=of.ofp_flow_mod() # fm.match.dl_type = 0x0806 fm.match.nw_dst = IPAddr(IPS["h20"][0]) fm.actions.append(of.ofp_action_output(port = 2)) self.connection.send(fm) fm=of.ofp_flow_mod() # fm.match.dl_type = 0x0806 fm.match.nw_dst = IPAddr(IPS["h30"][0]) fm.actions.append(of.ofp_action_output(port = 3)) self.connection.send(fm) fm=of.ofp_flow_mod() # fm.match.dl_type = 0x0806 fm.match.nw_dst = IPAddr(IPS["serv1"][0]) fm.actions.append(of.ofp_action_output(port = 4)) self.connection.send(fm) def dcs31_setup(self): #put datacenter switch rules here fm=of.ofp_flow_mod() fm.actions.append(of.ofp_action_output(port = of.OFPP_FLOOD)) self.connection.send(fm) #used in part 4 to handle individual ARP packets #not needed for part 3 (USE RULES!) #causes the switch to output packet_in on out_port def resend_packet(self, packet_in, out_port): msg = of.ofp_packet_out() msg.data = packet_in action = of.ofp_action_output(port = out_port) msg.actions.append(action) self.connection.send(msg) def _handle_PacketIn (self, event): """ Packets not handled by the router rules will be forwarded to this method to be handled by the controller """ packet = event.parsed # This is the parsed packet data. if not packet.parsed: log.warning("Ignoring incomplete packet") return packet_in = event.ofp # The actual ofp_packet_in message. print ("Unhandled packet from " + str(self.connection.dpid) + ":" + packet.dump()) def launch (): """ Starts the component """ def start_switch (event): log.debug("Controlling %s" % (event.connection,)) Part3Controller(event.connection) core.openflow.addListenerByName("ConnectionUp", start_switch)
29.662069
86
0.670077
3,457
0.803767
0
0
0
0
0
0
1,397
0.324808
6f86e19366559629464f6c94fe703e3f9d6154c1
956
py
Python
lessons/terminal.report.py
thepros847/python_programiing
d177f79d0d1f21df434bf3f8663ae6469fcf8357
[ "MIT" ]
null
null
null
lessons/terminal.report.py
thepros847/python_programiing
d177f79d0d1f21df434bf3f8663ae6469fcf8357
[ "MIT" ]
null
null
null
lessons/terminal.report.py
thepros847/python_programiing
d177f79d0d1f21df434bf3f8663ae6469fcf8357
[ "MIT" ]
null
null
null
#students exams data entries for terminal report card print("Westside Educational Complex--End Of second Terminal Report--Class-KKJA--Name:Theodora Obaa Yaa Gyarbeng") while True: student_score = float(input ("Enter the student score:")) if student_score >= 1.0 and student_score <= 39.9: print("student_score is F9", "fail") elif student_score >= 40 and student_score <= 49.9: print("student_score is E8", "pass" ) elif student_score >= 50 and student_score <= 59.9: print("student_score is D7", "credit") elif student_score >= 60 and student_score <= 69.9: print("student_score is C4", "good") elif student_score >= 70 and student_score <= 79.9: print("student_score is B2", "very_good") elif student_score >= 80 and student_score <= 100: print("student_score is A1", "excellent") else: print("student_score is invalid entry") student = []
39.833333
113
0.654812
0
0
0
0
0
0
0
0
391
0.408996
6f8acfd21a05c8bfceaaf10a028a424c71fb2404
201
py
Python
Python/ex_semanal.py
ArikBartzadok/beecrowd-challenges
ddb0453d1caa75c87c4b3ed6a40309ab99da77f2
[ "MIT" ]
null
null
null
Python/ex_semanal.py
ArikBartzadok/beecrowd-challenges
ddb0453d1caa75c87c4b3ed6a40309ab99da77f2
[ "MIT" ]
null
null
null
Python/ex_semanal.py
ArikBartzadok/beecrowd-challenges
ddb0453d1caa75c87c4b3ed6a40309ab99da77f2
[ "MIT" ]
null
null
null
n = int(input()) l = [] c = 0 for i in range(0,n): p = input() print('c -> ', c) if p in l: c += 1 l.append(p) print("Falta(m) {} pomekon(s).".format(151 - (n-c)))
12.5625
52
0.41791
0
0
0
0
0
0
0
0
32
0.159204
6f8bf885df7a7d6ca45c1dc88e7c1c7b2dc8f976
551
py
Python
util/templatetags/custom_tags.py
dvcolgan/ludumdare27
15387d1313de488ee7503189614d42245e6ae56b
[ "MIT" ]
null
null
null
util/templatetags/custom_tags.py
dvcolgan/ludumdare27
15387d1313de488ee7503189614d42245e6ae56b
[ "MIT" ]
null
null
null
util/templatetags/custom_tags.py
dvcolgan/ludumdare27
15387d1313de488ee7503189614d42245e6ae56b
[ "MIT" ]
null
null
null
from django import template from django.conf import settings from django.utils.safestring import mark_safe register = template.Library() @register.simple_tag def setting(name): return getattr(settings, name, "") #@register.filter #def format_difference(value): # number = int(value) # if number > 0: # return mark_safe('<span style="color: green">+' + str(number) + '</span>') # elif number < 0: # return mark_safe('<span style="color: red">' + str(number) + '</span>') # else: # return mark_safe(str(number))
26.238095
83
0.662432
0
0
0
0
78
0.141561
0
0
324
0.588022
6f8c3e1625cd1f82b18d5c123f61e8f119682b0c
507
py
Python
Day1/day1.py
leblancpj/AoC21
12ceb0fa56245ca803708c042dc72bdefb38e298
[ "MIT" ]
null
null
null
Day1/day1.py
leblancpj/AoC21
12ceb0fa56245ca803708c042dc72bdefb38e298
[ "MIT" ]
null
null
null
Day1/day1.py
leblancpj/AoC21
12ceb0fa56245ca803708c042dc72bdefb38e298
[ "MIT" ]
null
null
null
# Given a series of input numbers, count the number of times # the values increase from one to the next. import pandas as pd # Part 1 sample = pd.read_csv(".\Day1\sample.txt", header=None, squeeze=True) input = pd.read_csv(".\Day1\input.txt", header=None, squeeze=True) #print(type(input)) ans = input.diff(1).apply(lambda x: x > 0).sum() #print(ans) # Part 2 #print(sample) rolling = input.rolling(window=3,min_periods=3,center=True) print(rolling.sum().dropna().diff(1).apply(lambda x: x > 0).sum())
28.166667
69
0.706114
0
0
0
0
0
0
0
0
200
0.394477
6f8ebcc85be160184b266c276cc0f3687216d3eb
206
py
Python
KivyTest.py
ethanmac9/GeneralTools
96d2cd38b2b5f012113c92b751cd6fdfa8e1f1df
[ "MIT" ]
1
2016-09-24T17:38:06.000Z
2016-09-24T17:38:06.000Z
KivyTest.py
ethanmac9/GeneralTools
96d2cd38b2b5f012113c92b751cd6fdfa8e1f1df
[ "MIT" ]
null
null
null
KivyTest.py
ethanmac9/GeneralTools
96d2cd38b2b5f012113c92b751cd6fdfa8e1f1df
[ "MIT" ]
null
null
null
import kivy from kivy.app import App from kivy.uix.boxlayout import BoxLayout kivy.require('1.9.0') class GUITestApp(App): def build(self): return BoxLayout() glApp = GUITestApp() glApp.run()
17.166667
40
0.713592
70
0.339806
0
0
0
0
0
0
7
0.033981
6f8edf6b803563f114318f388210647b9924420a
11,263
py
Python
avalanche/evaluation/metrics/gpu_usage.py
aishikhar/avalanche
39c361aba1663795ed33f093ab2e15cc5792026e
[ "MIT" ]
1
2021-08-11T19:43:38.000Z
2021-08-11T19:43:38.000Z
avalanche/evaluation/metrics/gpu_usage.py
aishikhar/avalanche
39c361aba1663795ed33f093ab2e15cc5792026e
[ "MIT" ]
null
null
null
avalanche/evaluation/metrics/gpu_usage.py
aishikhar/avalanche
39c361aba1663795ed33f093ab2e15cc5792026e
[ "MIT" ]
1
2021-04-09T08:10:27.000Z
2021-04-09T08:10:27.000Z
################################################################################ # Copyright (c) 2021 ContinualAI. # # Copyrights licensed under the MIT License. # # See the accompanying LICENSE file for terms. # # # # Date: 19-01-2021 # # Author(s): Vincenzo Lomonaco, Lorenzo Pellegrini # # E-mail: [email protected] # # Website: www.continualai.org # ################################################################################ import GPUtil from threading import Thread import time import warnings from typing import Optional, TYPE_CHECKING, List from avalanche.evaluation import Metric, PluginMetric from avalanche.evaluation.metric_results import MetricValue, MetricResult from avalanche.evaluation.metric_utils import get_metric_name, \ phase_and_task, stream_type if TYPE_CHECKING: from avalanche.training import BaseStrategy class MaxGPU(Metric[float]): """ The standalone GPU usage metric. Important: this metric approximates the real maximum GPU percentage usage since it sample at discrete amount of time the GPU values. Instances of this metric keeps the maximum GPU usage percentage detected. The `start_thread` method starts the usage tracking. The `stop_thread` method stops the tracking. The result, obtained using the `result` method, is the usage in mega-bytes. The reset method will bring the metric to its initial state. By default this metric in its initial state will return an usage value of 0. """ def __init__(self, gpu_id, every=0.5): """ Creates an instance of the GPU usage metric. :param gpu_id: GPU device ID. :param every: seconds after which update the maximum GPU usage """ self.every = every self.gpu_id = gpu_id n_gpus = len(GPUtil.getGPUs()) if n_gpus == 0: warnings.warn("Your system has no GPU!") self.gpu_id = None elif gpu_id < 0: warnings.warn("GPU metric called with negative GPU id." "GPU logging disabled") self.gpu_id = None else: if gpu_id >= n_gpus: warnings.warn(f"GPU {gpu_id} not found. Using GPU 0.") self.gpu_id = 0 self.thread = None """ Thread executing GPU monitoring code """ self.stop_f = False """ Flag to stop the thread """ self.max_usage = 0 """ Main metric result. Max GPU usage. """ def _f(self): """ Until a stop signal is encountered, this function monitors each `every` seconds the maximum amount of GPU used by the process """ start_time = time.monotonic() while not self.stop_f: # GPU percentage gpu_perc = GPUtil.getGPUs()[self.gpu_id].load * 100 if gpu_perc > self.max_usage: self.max_usage = gpu_perc time.sleep(self.every - ((time.monotonic() - start_time) % self.every)) def start_thread(self): if self.gpu_id: assert not self.thread, "Trying to start thread " \ "without joining the previous." self.thread = Thread(target=self._f, daemon=True) self.thread.start() def stop_thread(self): if self.thread: self.stop_f = True self.thread.join() self.stop_f = False self.thread = None def reset(self) -> None: """ Resets the metric. :return: None. """ self.max_usage = 0 def result(self) -> Optional[float]: """ Returns the max GPU percentage value. :return: The percentage GPU usage as a float value in range [0, 1]. """ return self.max_usage class MinibatchMaxGPU(PluginMetric[float]): """ The Minibatch Max GPU metric. This plugin metric only works at training time. """ def __init__(self, gpu_id, every=0.5): """ Creates an instance of the Minibatch Max GPU metric :param gpu_id: GPU device ID. :param every: seconds after which update the maximum GPU usage """ super().__init__() self.gpu_id = gpu_id self._gpu = MaxGPU(gpu_id, every) def before_training(self, strategy: 'BaseStrategy') \ -> None: self._gpu.start_thread() def before_training_iteration(self, strategy: 'BaseStrategy') -> None: self.reset() def after_training_iteration(self, strategy: 'BaseStrategy') \ -> MetricResult: return self._package_result(strategy) def after_training(self, strategy: 'BaseStrategy') -> None: self._gpu.stop_thread() def reset(self) -> None: self._gpu.reset() def result(self) -> float: return self._gpu.result() def _package_result(self, strategy: 'BaseStrategy') -> MetricResult: gpu_usage = self.result() metric_name = get_metric_name(self, strategy) plot_x_position = self.get_global_counter() return [MetricValue(self, metric_name, gpu_usage, plot_x_position)] def __str__(self): return f"MaxGPU{self.gpu_id}Usage_MB" class EpochMaxGPU(PluginMetric[float]): """ The Epoch Max GPU metric. This plugin metric only works at training time. """ def __init__(self, gpu_id, every=0.5): """ Creates an instance of the epoch Max GPU metric. :param gpu_id: GPU device ID. :param every: seconds after which update the maximum GPU usage """ super().__init__() self.gpu_id = gpu_id self._gpu = MaxGPU(gpu_id, every) def before_training(self, strategy: 'BaseStrategy') \ -> None: self._gpu.start_thread() def before_training_epoch(self, strategy) -> MetricResult: self.reset() def after_training_epoch(self, strategy: 'BaseStrategy') \ -> MetricResult: return self._package_result(strategy) def after_training(self, strategy: 'BaseStrategy') -> None: self._gpu.stop_thread() def reset(self) -> None: self._gpu.reset() def result(self) -> float: return self._gpu.result() def _package_result(self, strategy: 'BaseStrategy') -> MetricResult: gpu_usage = self.result() metric_name = get_metric_name(self, strategy) plot_x_position = self.get_global_counter() return [MetricValue(self, metric_name, gpu_usage, plot_x_position)] def __str__(self): return f"MaxGPU{self.gpu_id}Usage_Epoch" class ExperienceMaxGPU(PluginMetric[float]): """ The Experience Max GPU metric. This plugin metric only works at eval time. """ def __init__(self, gpu_id, every=0.5): """ Creates an instance of the Experience CPU usage metric. :param gpu_id: GPU device ID. :param every: seconds after which update the maximum GPU usage """ super().__init__() self.gpu_id = gpu_id self._gpu = MaxGPU(gpu_id, every) def before_eval(self, strategy: 'BaseStrategy') \ -> None: self._gpu.start_thread() def before_eval_exp(self, strategy) -> MetricResult: self.reset() def after_eval_exp(self, strategy: 'BaseStrategy') \ -> MetricResult: return self._package_result(strategy) def after_eval(self, strategy: 'BaseStrategy') -> None: self._gpu.stop_thread() def reset(self) -> None: self._gpu.reset() def result(self) -> float: return self._gpu.result() def _package_result(self, strategy: 'BaseStrategy') -> MetricResult: gpu_usage = self.result() metric_name = get_metric_name(self, strategy, add_experience=True) plot_x_position = self.get_global_counter() return [MetricValue(self, metric_name, gpu_usage, plot_x_position)] def __str__(self): return f"MaxGPU{self.gpu_id}Usage_Experience" class StreamMaxGPU(PluginMetric[float]): """ The Stream Max GPU metric. This plugin metric only works at eval time. """ def __init__(self, gpu_id, every=0.5): """ Creates an instance of the Experience CPU usage metric. :param gpu_id: GPU device ID. :param every: seconds after which update the maximum GPU usage """ super().__init__() self.gpu_id = gpu_id self._gpu = MaxGPU(gpu_id, every) def before_eval(self, strategy) -> MetricResult: self.reset() self._gpu.start_thread() def after_eval(self, strategy: 'BaseStrategy') \ -> MetricResult: packed = self._package_result(strategy) self._gpu.stop_thread() return packed def reset(self) -> None: self._gpu.reset() def result(self) -> float: return self._gpu.result() def _package_result(self, strategy: 'BaseStrategy') -> MetricResult: gpu_usage = self.result() phase_name, _ = phase_and_task(strategy) stream = stream_type(strategy.experience) metric_name = '{}/{}_phase/{}_stream' \ .format(str(self), phase_name, stream) plot_x_position = self.get_global_counter() return [MetricValue(self, metric_name, gpu_usage, plot_x_position)] def __str__(self): return f"MaxGPU{self.gpu_id}Usage_Stream" def gpu_usage_metrics(gpu_id, every=0.5, minibatch=False, epoch=False, experience=False, stream=False) -> List[PluginMetric]: """ Helper method that can be used to obtain the desired set of plugin metrics. :param gpu_id: GPU device ID. :param every: seconds after which update the maximum GPU usage :param minibatch: If True, will return a metric able to log the minibatch max GPU usage. :param epoch: If True, will return a metric able to log the epoch max GPU usage. :param experience: If True, will return a metric able to log the experience max GPU usage. :param stream: If True, will return a metric able to log the evaluation max stream GPU usage. :return: A list of plugin metrics. """ metrics = [] if minibatch: metrics.append(MinibatchMaxGPU(gpu_id, every)) if epoch: metrics.append(EpochMaxGPU(gpu_id, every)) if experience: metrics.append(ExperienceMaxGPU(gpu_id, every)) if stream: metrics.append(StreamMaxGPU(gpu_id, every)) return metrics __all__ = [ 'MaxGPU', 'MinibatchMaxGPU', 'EpochMaxGPU', 'ExperienceMaxGPU', 'StreamMaxGPU', 'gpu_usage_metrics' ]
29.717678
80
0.589097
8,760
0.777768
0
0
0
0
0
0
4,598
0.408239
6f8f1cd00d467ef37a750fa1bf46d98ba2fd1d86
988
py
Python
901-1000/971.flip-binary-tree-to-match-preorder-traversal.py
guangxu-li/leetcode-in-python
8a5a373b32351500342705c141591a1a8f5f1cb1
[ "MIT" ]
null
null
null
901-1000/971.flip-binary-tree-to-match-preorder-traversal.py
guangxu-li/leetcode-in-python
8a5a373b32351500342705c141591a1a8f5f1cb1
[ "MIT" ]
null
null
null
901-1000/971.flip-binary-tree-to-match-preorder-traversal.py
guangxu-li/leetcode-in-python
8a5a373b32351500342705c141591a1a8f5f1cb1
[ "MIT" ]
null
null
null
# # @lc app=leetcode id=971 lang=python3 # # [971] Flip Binary Tree To Match Preorder Traversal # # @lc code=start # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right from collections import deque class Solution: def flipMatchVoyage(self, root: TreeNode, voyage: list[int]) -> list[int]: nodes, i, flipped = deque([root]), 0, [] while nodes: node = nodes.pop() if not node: continue if node.val != voyage[i]: return [-1] i += 1 if node.left and node.left.val != voyage[i]: flipped.append(node.val) nodes.append(node.left) nodes.append(node.right) else: nodes.append(node.right) nodes.append(node.left) return flipped
25.333333
78
0.526316
645
0.652834
0
0
0
0
0
0
295
0.298583
6f8f8270104be3d27614c913a1c738aa92c207d4
5,799
py
Python
hydraulics/ifcb/classifier.py
axiom-data-science/hydraulics
15031d9694cfe1e552c260079ff60a9faa101ba2
[ "MIT" ]
1
2021-09-14T23:07:24.000Z
2021-09-14T23:07:24.000Z
hydraulics/ifcb/classifier.py
axiom-data-science/hydraulics
15031d9694cfe1e552c260079ff60a9faa101ba2
[ "MIT" ]
null
null
null
hydraulics/ifcb/classifier.py
axiom-data-science/hydraulics
15031d9694cfe1e552c260079ff60a9faa101ba2
[ "MIT" ]
null
null
null
import base64 import datetime import io import json import os import requests from collections import namedtuple from urllib.parse import urlparse import faust import numpy as np import keras_preprocessing.image as keras_img from avro import schema from confluent_kafka import avro from confluent_kafka.avro import AvroProducer from confluent_kafka.avro.cached_schema_registry_client import CachedSchemaRegistryClient from confluent_kafka.schema_registry import SchemaRegistryClient from confluent_kafka.schema_registry.avro import AvroSerializer from biovolume import calc_biovolume from blob import Blob, BlobConfig config_path = os.environ.get('IFCB_STREAM_APP_CONFIG', 'config.json') with open(config_path) as config_file: config = json.load(config_file) Stats = namedtuple( 'Stats', ['time', 'ifcb_id', 'roi', 'name', 'classifier', 'prob', 'classification_time', 'biovolume', 'carbon', 'hab'] ) ClassifierStats = namedtuple( 'ClassifierStats', ['sample_name', 'prob', 'classifier', 'classification_time'] ) schema_config = { 'url': config['schema.registry.url'], 'ssl.ca.location': None } # need to use CachedSchemaRegistryClient to get schema # - need to copy config because it is consumed when used in CachedSchemaRegistryClient schema_config_copy = schema_config.copy() cached_schema_client = CachedSchemaRegistryClient(schema_config) key_schema = str(cached_schema_client.get_latest_schema('ifcb-stats-key')[1]) value_schema = str(cached_schema_client.get_latest_schema('ifcb-stats-value')[1]) key_schema = avro.loads(key_schema) value_schema = avro.loads(value_schema) producer = AvroProducer({ 'bootstrap.servers': config['bootstrap.servers'], 'schema.registry.url': config['schema.registry.url'] }, default_key_schema=key_schema, default_value_schema=value_schema ) app = faust.App( config['app_name'], broker=config['broker'], topic_partitions=config['topic_partitions'], store='rocksdb://', consumer_auto_offset_reset='earliest', version=1 ) image_topic = app.topic(config['image_topic']) stats_topic = app.topic(config['stats_topic']) classifier_stats_table = app.Table('ifcb-classifier-stats', default=ClassifierStats) diatoms = config['diatoms'] class_names = config['class_names'] hab_species = config['hab_species'] def publish_stats(feature_key, image, classifier_stats, blob_config=BlobConfig()): """Calculate biovolume, carbon, hab, and publish to Kafka""" # calculate biovolume # - scale biovolume for 3d (from ifcb-analysis) blob = Blob(image, blob_config) biovolume = calc_biovolume(blob) mu = 1/3.4 biovolume = biovolume * mu ** 3 carbon = calc_carbon(classifier_stats[0], biovolume) hab = classifier_stats[0] in hab_species time, ifcb_id, roi = feature_key.split('_') roi = int(roi) timestamp = int(datetime.datetime.strptime(time[1:], '%Y%m%dT%H%M%S').timestamp()) stats = Stats( timestamp, ifcb_id, roi, classifier_stats[0], classifier_stats[2], classifier_stats[1], classifier_stats[3], biovolume, carbon, hab ) # send to topic with Avro schema producer.poll(0) producer.produce( topic=config['stats_topic'], key={ 'pid': f"{time}_{ifcb_id}", 'roi': int(roi) }, value=stats._asdict() ) producer.flush() @app.agent(image_topic) async def classify(images, url=config['tensorflow_url'], target_size=(224, 224)): async for image in images: # decode binary blob to png file then resize and normalize image_str = base64.b64decode(image['image']) image_file = io.BytesIO(image_str) img = keras_img.img_to_array( keras_img.load_img(image_file, target_size=target_size) ) img /= 255 # create payload and send to TF RESTful API headers = {"content-type": "application/json"} data = json.dumps({'instances': [img.tolist()]}) result = requests.post(url, headers=headers, data=data) # save the probabilities for each class (1d ndarray) probs = result.json()['predictions'][0][:] # feature_key is roi time = datetime.datetime.fromtimestamp(image['datetime']) feature_key = f"{time:D%Y%m%dT%H%M%S}_{image['ifcb_id']}_{image['roi']:05}" print(f'processing {feature_key}') # update table if current prob is greater than what is already in the table prob = np.nanmax(probs) if feature_key not in classifier_stats_table or prob > classifier_stats_table[feature_key].prob: name = class_names[np.argmax(probs)] classifier, version = get_classifier(url) classifier_version = f'{classifier}:{version}' classifier_stats_table[feature_key] = ClassifierStats( name, prob, classifier_version, int(datetime.datetime.utcnow().timestamp()) ) # send publish_stats(feature_key, image_str, classifier_stats_table[feature_key]) def get_classifier(url): """Given TF style url, return name and version""" parse_results = urlparse(url) _, version, _, name_raw = parse_results.path.split('/') name = name_raw.split(':')[0] return (name, version) def calc_carbon(english_name, scaled_biovolume, diatom_list=diatoms): """Given volume in u3/cell return carbon in pg C/cell. $log_10(C) = log(a) + b \cdot log_10(V)$ """ if english_name in diatom_list: carbon = 10**(-0.665 + 0.939*np.log10(scaled_biovolume)) else: carbon = 10**(-0.993 + 0.881*np.log10(scaled_biovolume)) return carbon if __name__ == '__main__': app.main()
31.862637
113
0.682876
0
0
0
0
1,704
0.293844
1,680
0.289705
1,490
0.256941
6f8fb26b38bd837cc1990577bdd9ed4c340e3f51
1,296
py
Python
upcfcardsearch/c260.py
ProfessorSean/Kasutamaiza
7a69a69258f67bbb88bebbac6da4e6e1434947e6
[ "MIT" ]
null
null
null
upcfcardsearch/c260.py
ProfessorSean/Kasutamaiza
7a69a69258f67bbb88bebbac6da4e6e1434947e6
[ "MIT" ]
null
null
null
upcfcardsearch/c260.py
ProfessorSean/Kasutamaiza
7a69a69258f67bbb88bebbac6da4e6e1434947e6
[ "MIT" ]
null
null
null
import discord from discord.ext import commands from discord.utils import get class c260(commands.Cog, name="c260"): def __init__(self, bot: commands.Bot): self.bot = bot @commands.command(name='Yikilth_Lair_of_the_Abyssals', aliases=['c260', 'Abyssal_11']) async def example_embed(self, ctx): embed = discord.Embed(title='Yikilth, Lair of the Abyssals', color=0x1D9E74) embed.set_thumbnail(url='https://www.duelingbook.com/images/custom-pics/2300000/2360326.jpg') embed.add_field(name='Status (Archetype)', value='Casual:3/Tournament:3 (Abyssal)', inline=True) embed.add_field(name='Type', value='Spell/Field', inline=False) embed.add_field(name='Card Effect', value='When this card is activated: Add 1 "Abyssal" monster from your Deck to your hand. Once per turn, when your opponent activates a card or effect that targets and/or would destroy a Set monster(s) you control: You can flip 1 Set monster you control into face-up Attack or Defense Position; negate the activation. You can only activate 1 "Yikilth, Lair of the Abyssals" per turn.', inline=False) embed.set_footer(text='Set Code: ANCF') await ctx.send(embed=embed) def setup(bot: commands.Bot): bot.add_cog(c260(bot))
56.347826
442
0.706019
1,159
0.89429
0
0
1,049
0.809414
958
0.739198
631
0.486883
6f904b06f4d8b0199476081eeaa6c6a6c588158e
98
py
Python
test_cookiecutter_ali92hm/__main__.py
ali92hm/test-cookiecutter
5fbfef57e7ea8ae8b826958cb1db21812cc8467e
[ "ISC" ]
null
null
null
test_cookiecutter_ali92hm/__main__.py
ali92hm/test-cookiecutter
5fbfef57e7ea8ae8b826958cb1db21812cc8467e
[ "ISC" ]
null
null
null
test_cookiecutter_ali92hm/__main__.py
ali92hm/test-cookiecutter
5fbfef57e7ea8ae8b826958cb1db21812cc8467e
[ "ISC" ]
null
null
null
from .cli import entrypoint if __name__ == "__main__": # pragma: no cover entrypoint.main()
19.6
46
0.693878
0
0
0
0
0
0
0
0
28
0.285714
6f9177f95c9276da027118820c1944dc489b0063
137
py
Python
backend/elasticsurgery/views/__init__.py
EDITD/ElasticSurgery
458571d48541d1ddbbfeb20e04703592e5f869e0
[ "MIT" ]
null
null
null
backend/elasticsurgery/views/__init__.py
EDITD/ElasticSurgery
458571d48541d1ddbbfeb20e04703592e5f869e0
[ "MIT" ]
27
2019-09-25T14:19:44.000Z
2022-02-12T21:39:17.000Z
backend/elasticsurgery/views/__init__.py
EDITD/ElasticSurgery
458571d48541d1ddbbfeb20e04703592e5f869e0
[ "MIT" ]
null
null
null
from flask import jsonify from ..app import app @app.route('/ping', methods=('GET',)) def get_ping(): return jsonify(ping='pong')
15.222222
37
0.671533
0
0
0
0
85
0.620438
0
0
18
0.131387
6f91ab094e27b4b2253d62e62b30b9f0a9a83bbc
1,726
py
Python
amftrack/notebooks/analysis/data_info.py
Cocopyth/MscThesis
60162bc779a3a668e7447b60bb9a4b2a616b8093
[ "MIT" ]
1
2021-06-10T02:51:53.000Z
2021-06-10T02:51:53.000Z
amftrack/notebooks/analysis/data_info.py
Cocopyth/MscThesis
60162bc779a3a668e7447b60bb9a4b2a616b8093
[ "MIT" ]
null
null
null
amftrack/notebooks/analysis/data_info.py
Cocopyth/MscThesis
60162bc779a3a668e7447b60bb9a4b2a616b8093
[ "MIT" ]
null
null
null
inst_25 = [(35,0,15),(29,0,20),(9,0,11),(9,13,35),(3,0,19),(37,0,8),(11,0,30),(19,0,25),(13,0,25),(39,0,18)] inst_bait = [(10,0,10), (14,0,11), (33,0,26),(4,2,18),(4,20,30),(39,117,137),(12,5,21),(28,0,14),(32,5,14),(32,15,44),(36,0,9),(40,0,14),(2,1,15),(2,17,35),(5,160,168),(11,158,164),(13,116,131)] inst_30 = [] inst_25late = [(32,160,190),(38,61,76),(39,446,466),(40,153,153+37),(39,269,329),(40,262,287),(38,7,42)] inst_25late_extended = [(39,269,369),(40,153,190),(38,7,50),(38,61,105),(32,160,199),(39,446,486),(35,70,119),(38,106,130),(36,204,233),(30,57,94),(29,221,241),(40,262,312),(29,160,184),(30,0,24)] inst_25_100P = [(38,131,131+80)] # treatments = {'25*' : inst_25late,'25' : inst_25,'baits' : inst_bait, '30' : inst_30} treatments = {'25_100' : inst_25_100P, '25*' : inst_25late,'25' : inst_25,'baits' : inst_bait, '30' : inst_30} plate_number = {(9,0,11) : 296, (9,13,35) : 296, (3,0,19) : 340, (37,0,8) : 269,(11,0,30) : 314, (19,0,25) : 344, (13,0,25) : 298, (39,0,18) : 297, (35,0,15) : 351,(10,0,10) : 395,(14,0,11) : 399, (33,0,26) : 420, (4,2,18) : 423, (4,20,30) : 423,(8,0,17): 434 ,(8,20,30) : 434,(39,117,137) : 433, (12,5,21) : 436, (28,0,14): 405,(32,5,45):409,(36,0,9) : 419,(40,0,14) : 425,(2,1,15):435,(2,17,35):435,(5,160,168):382,(11,158,164) : 416,(13,116,131) : 424, (29,0,20) : 373,(32,15,44):409, (32,5,14) : 409, (40,153,153+37) : 69,(39,269,329) : 94, (40,262,287) : 102,(38,7,42) : 59, (32,160,190) : 152,(38,61,76) : 137,(39,446,466) : 26, (38,131,131+80):721} comments = {395 : 'ignore', 399 : 'left', 405 : 'left', 409 : 'right', 416 : 'middle', 419 : 'middle', 420 : 'left', 423: 'right', 424 : 'left', 425 : 'middle', 433 : 'right', 435 : 'middle', 436 : 'left'}
143.833333
656
0.551564
0
0
0
0
0
0
0
0
207
0.11993
6f92f4f38b2cf0fe2438ae66792a5537b2e53d3f
30
py
Python
version.py
iridiumcow/OoT-Randomizer
3a5d2bebb2131e593f6611bd5c062ddd6fdac8ff
[ "MIT" ]
null
null
null
version.py
iridiumcow/OoT-Randomizer
3a5d2bebb2131e593f6611bd5c062ddd6fdac8ff
[ "MIT" ]
null
null
null
version.py
iridiumcow/OoT-Randomizer
3a5d2bebb2131e593f6611bd5c062ddd6fdac8ff
[ "MIT" ]
null
null
null
__version__ = '5.2.158 f.LUM'
15
29
0.666667
0
0
0
0
0
0
0
0
15
0.5
6f93e22cf26c9a478c3691514ddab933b92e050e
280
py
Python
scripts/test_process_traj.py
hyyh28/trajectory-transformer
4a369b6d1c950c76d1792cf004644fa13040319c
[ "MIT" ]
null
null
null
scripts/test_process_traj.py
hyyh28/trajectory-transformer
4a369b6d1c950c76d1792cf004644fa13040319c
[ "MIT" ]
null
null
null
scripts/test_process_traj.py
hyyh28/trajectory-transformer
4a369b6d1c950c76d1792cf004644fa13040319c
[ "MIT" ]
null
null
null
import numpy as np import pickle expert_file = 'maze_expert.npy' imitation_agent_file = 'maze_agent.npy' with open(imitation_agent_file, 'rb') as handle: agent_data = pickle.load(handle) with open(expert_file, 'rb') as handle: expert_data = pickle.load(handle) print("OK")
31.111111
48
0.757143
0
0
0
0
0
0
0
0
45
0.160714
6f949785191c10e7a989c8350cfc26a75e30b461
3,967
py
Python
test/test_strings.py
harthur/celestial-snips-app
5dfb86002e0d109c16c8d01ee77b0e909c263270
[ "MIT" ]
1
2021-11-23T02:44:14.000Z
2021-11-23T02:44:14.000Z
test/test_strings.py
harthur/celestial-snips-app
5dfb86002e0d109c16c8d01ee77b0e909c263270
[ "MIT" ]
null
null
null
test/test_strings.py
harthur/celestial-snips-app
5dfb86002e0d109c16c8d01ee77b0e909c263270
[ "MIT" ]
null
null
null
import unittest from celestial import Celestial from strings import CelestialStrings from datetime import datetime import pytest import math class TestCelestial(unittest.TestCase): """Testing the CelestialStrings class for generating celestial answers for TTS to read aloud""" def setUp(self): ... def test_get_local_time_str(self): input = datetime(2019, 12, 1, 13, 24) expected = "08:24AM" self.assertEqual(CelestialStrings._get_local_time_str(input), expected) def test_get_day_str_today(self): start_dt = datetime(2019, 12, 1, 0, 0) event_dt = datetime(2019, 12, 1, 3, 4) expected = "today" self.assertEqual(CelestialStrings._get_day_str(start_dt, event_dt), expected) def test_get_day_str_tomorrow(self): start_dt = datetime(2019, 12, 1, 0, 0) event_dt = datetime(2019, 12, 2, 3, 4) expected = "tomorrow" self.assertEqual(CelestialStrings._get_day_str(start_dt, event_dt), expected) def test_get_day_str_next_week(self): start_dt = datetime(2019, 12, 1, 0, 0) event_dt = datetime(2019, 12, 8, 3, 4) expected = "Saturday, December 07" self.assertEqual(CelestialStrings._get_day_str(start_dt, event_dt), expected) def test_get_cardinal_str(self): self.assertEqual( CelestialStrings._get_cardinal_str(0), "north", "0 degrees is North" ) self.assertEqual( CelestialStrings._get_cardinal_str(50), "northeast", "50 degrees is NE", ) self.assertEqual( CelestialStrings._get_cardinal_str(88), "east", "88 degrees is East" ) self.assertEqual( CelestialStrings._get_cardinal_str(180), "south", "180 degrees is South" ) self.assertEqual( CelestialStrings._get_cardinal_str(350), "north", "350 degrees is North" ) def test_get_cardinal_str_from_abbr(self): self.assertEqual(CelestialStrings._get_cardinal_str_from_abbr("N"), "north") self.assertEqual( CelestialStrings._get_cardinal_str_from_abbr("SSE"), "south southeast" ) def test_get_event_message(self): body = "moon" event = "rise" dt = datetime(2019, 12, 1, 13, 24) event_info = (dt, 120) self.assertEqual( CelestialStrings.get_event_message(body, event, event_info), "The next moonrise is at 08:24AM Sunday, December 01, in the southeast", ) def test_get_event_message_planet(self): body = "venus" event = "set" dt = datetime(2019, 12, 1, 13, 24) event_info = (dt, 120) self.assertEqual( CelestialStrings.get_event_message(body, event, event_info), "The next venus set is at 08:24AM Sunday, December 01, in the southeast", ) def test_get_moon_phase_message(self): phase_info = ("waning", "crescent", 10) self.assertEqual( CelestialStrings.get_moon_phase_message(phase_info), "The moon is a waning crescent", ) def test_get_next_moon_event_message(self): start_dt = datetime(2019, 12, 1, 0, 0) event_dt = datetime(2019, 12, 8, 3, 4) expected = "The next full moon is on Saturday, December 07, at 10:04PM" self.assertEqual( CelestialStrings.get_next_moon_event_message("full", event_dt), expected ) def test_get_next_iss_sighting_message(self): sighting = { "alt_degrees": 66, "approach_dir": "NW", "depart_dir": "SE", "duration_mins": 6, "time": datetime(2020, 2, 7, 23, 51), } expected = "You can see the space station Friday, February 07 at 06:51PM, moving from the northwest to the southeast" self.assertEqual( CelestialStrings.get_next_iss_sighting_message(sighting), expected )
34.198276
125
0.633224
3,822
0.963448
0
0
0
0
0
0
772
0.194605
6f960fdd0b967c14a7efcefaab212681557a8931
3,290
py
Python
hiburn/config.py
OpenHisiIpCam/hiburn
71d8ab3c5a87401a60cf125d441e25f8b7d3282c
[ "MIT" ]
8
2020-04-06T08:47:26.000Z
2021-02-23T17:10:12.000Z
hiburn/config.py
OpenHisiIpCam/hiburn
71d8ab3c5a87401a60cf125d441e25f8b7d3282c
[ "MIT" ]
2
2020-05-14T16:59:33.000Z
2021-06-19T23:48:35.000Z
hiburn/config.py
OpenHisiIpCam/hiburn
71d8ab3c5a87401a60cf125d441e25f8b7d3282c
[ "MIT" ]
2
2020-05-02T22:49:01.000Z
2020-05-12T02:39:26.000Z
import copy import json import logging from . import utils # ------------------------------------------------------------------------------------------------- def _update_config_by_args(config, args, prefix=""): for k, v in config.items(): arg_name = prefix + k.replace("-", "_") if isinstance(v, dict): _update_config_by_args(v, args, arg_name + "_") continue arg_val = args.get(arg_name) if arg_val is not None: config[k] = arg_val # ------------------------------------------------------------------------------------------------- def _add_args_from_config_desc(parser, config_desc, prefix="--"): for key, val in config_desc.items(): arg_name = prefix + key if isinstance(val, dict): _add_args_from_config_desc(parser, val, arg_name + "-") continue if isinstance(val, tuple): # tuple contains: value, type, help parser.add_argument(arg_name, type=val[1], metavar="V", help="{}, default: {}".format(val[2], val[0])) else: t = utils.str2bool if isinstance(val, bool) else type(val) parser.add_argument(arg_name, type=t, metavar="V", help="{}, default: {}".format(type(val).__name__, val)) # ------------------------------------------------------------------------------------------------- def _update_config(dst, src, config_desc, path=""): for key, new_val in src.items(): orig_val = dst.get(key) field_desc = config_desc.get(key) if isinstance(new_val, dict): _update_config(orig_val, new_val, field_desc, "{}/{}".format(path, key)) else: if (type(field_desc) is tuple) and (type(new_val) is str): dst[key] = field_desc[1](new_val) # perform conversion else: dst[key] = type(field_desc)(new_val) logging.debug("Set {}={} from config file".format(key, dst[key])) # ------------------------------------------------------------------------------------------------- def _create_config_from_desc(config_desc): res = {} for key, val in config_desc.items(): if isinstance(val, tuple): # tuple contains: value, type, help res[key] = val[1](val[0]) elif isinstance(val, dict): res[key] = _create_config_from_desc(val) else: res[key] = val return res # ------------------------------------------------------------------------------------------------- def add_arguments_from_config_desc(parser, config_desc, read_from_file=False): parser.add_argument("--config", "-C", type=str, metavar="PATH", help="Config path") _add_args_from_config_desc(parser, config_desc) # ------------------------------------------------------------------------------------------------- def get_config_from_args(args, config_desc): config = _create_config_from_desc(config_desc) if args.config is not None: logging.debug("Update default config by user's one '{}'".format(args.config)) with open(args.config, "r") as f: user_config = json.load(f) _update_config(config, user_config, config_desc) _update_config_by_args(config, vars(args)) return config
38.255814
99
0.50152
0
0
0
0
0
0
0
0
857
0.260486
6f9664a20f8e76c49fc5cef19c2bbf5957b352e2
746
py
Python
examples/4_randomized_timing.py
jonikula/pyosmo
ab2ec1d97dd3e0faf5e2b62ac7bcfc1042e60575
[ "MIT" ]
null
null
null
examples/4_randomized_timing.py
jonikula/pyosmo
ab2ec1d97dd3e0faf5e2b62ac7bcfc1042e60575
[ "MIT" ]
null
null
null
examples/4_randomized_timing.py
jonikula/pyosmo
ab2ec1d97dd3e0faf5e2b62ac7bcfc1042e60575
[ "MIT" ]
null
null
null
from osmo import Osmo import random import time class PositiveCalculator: @staticmethod def guard_something(): return True @staticmethod def step_something(): print("1. inside step") # Random wait can be added inside test step wait_ms = random.randint(200, 1000) print("{} sleep inside step".format(wait_ms)) time.sleep(wait_ms / 1000) print("2. inside step") @staticmethod def after(): # Random wait can be added also between test steps wait_ms = random.randint(200, 3000) print('Waiting for: {}ms between steps'.format(wait_ms)) time.sleep(wait_ms / 1000) print('') osmo = Osmo(PositiveCalculator()) osmo.generate()
22.606061
64
0.630027
643
0.86193
0
0
601
0.80563
0
0
182
0.243968
6f985fc4f5c199385b03c83c5b2b06f32b9bac8b
3,475
py
Python
ec2/physbam/utils.py
schinmayee/nimbus
170cd15e24a7a88243a6ea80aabadc0fc0e6e177
[ "BSD-3-Clause" ]
20
2017-07-03T19:09:09.000Z
2021-09-10T02:53:56.000Z
ec2/physbam/utils.py
schinmayee/nimbus
170cd15e24a7a88243a6ea80aabadc0fc0e6e177
[ "BSD-3-Clause" ]
null
null
null
ec2/physbam/utils.py
schinmayee/nimbus
170cd15e24a7a88243a6ea80aabadc0fc0e6e177
[ "BSD-3-Clause" ]
9
2017-09-17T02:05:06.000Z
2020-01-31T00:12:01.000Z
#!/usr/bin/env python # Author: Omid Mashayekhi <[email protected]> import sys import os import subprocess import config sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..')) import ec2 temp_file_name = '_temp_file_' def copy_binary_file_to_hosts(ip_addresses): for ip in ip_addresses: command = '' command += ' scp -i ' + config.PRIVATE_KEY command += ' -o UserKnownHostsFile=/dev/null ' command += ' -o StrictHostKeyChecking=no ' command += config.SOURCE_PATH + 'Water ' command += ' ubuntu@' + ip + ':' + config.REMOTE_PATH subprocess.call(command, shell=True) def collect_logs(ip_addresses): subprocess.call(['rm', '-rf', config.OUTPUT_PATH]) subprocess.call(['mkdir', '-p', config.OUTPUT_PATH]) for ip in ip_addresses: subprocess.Popen(['scp', '-q', '-r', '-i', config.PRIVATE_KEY, '-o', 'UserKnownHostsFile=/dev/null', '-o', 'StrictHostKeyChecking=no', 'ubuntu@' + ip + ':' + config.FOLDER_PATH + 'mpi*.log', config.OUTPUT_PATH]) subprocess.Popen(['scp', '-q', '-r', '-i', config.PRIVATE_KEY, '-o', 'UserKnownHostsFile=/dev/null', '-o', 'StrictHostKeyChecking=no', 'ubuntu@' + ip + ':' + config.FOLDER_PATH + '*_lb_log.txt', config.OUTPUT_PATH]) def clean_logs(ip_addresses): command = '' command += 'rm -rf ' + config.FOLDER_PATH + 'mpi*.log' + ';' command += 'rm -rf ' + config.FOLDER_PATH + '*_lb_log.txt' + ';' for ip in ip_addresses: subprocess.Popen(['ssh', '-q', '-i', config.PRIVATE_KEY, '-o', 'UserKnownHostsFile=/dev/null', '-o', 'StrictHostKeyChecking=no', 'ubuntu@' + ip, command]) def make_nodes_file_content(ip_addresses): string = "" for ip in ip_addresses: print ip string = string + ip + " cpu=8\n" file = open(temp_file_name, 'w+') file.write(string) file.close() def copy_nodes_file_to_hosts(ip_addresses): make_nodes_file_content(ip_addresses) for ip in ip_addresses: command = '' command += ' scp -i ' + config.PRIVATE_KEY command += ' -o UserKnownHostsFile=/dev/null ' command += ' -o StrictHostKeyChecking=no ' command += temp_file_name command += ' ubuntu@' + ip + ':' + config.REMOTE_PATH + config.NODES_FILE_NAME subprocess.call(command, shell=True) subprocess.call(['rm', temp_file_name]) def run_experiment(ip): command = '' command += ' ssh -i ' + config.PRIVATE_KEY command += ' -o UserKnownHostsFile=/dev/null ' command += ' -o StrictHostKeyChecking=no ' command += ' ubuntu@' + ip command += ' \"cd ' + config.REMOTE_PATH + '; ' command += ' mpirun -hostfile ' + config.NODES_FILE_NAME command += ' -np ' + str(config.INSTANCE_NUM) command += ' ./Water -scale ' + str(config.SCALE) command += ' -e ' + str(config.FRAME_NUM) + '\" ' print command subprocess.call(command, shell=True) def collect_output_data(ip_addresses): subprocess.call(['rm', '-rf', config.OUTPUT_NAME]) subprocess.call(['mkdir', '-p', config.OUTPUT_NAME]) process_num = 0 for ip in ip_addresses: process_num += 1 command = '' command += ' scp -r -i ' + config.PRIVATE_KEY command += ' -o UserKnownHostsFile=/dev/null ' command += ' -o StrictHostKeyChecking=no ' command += ' ubuntu@' + ip + ':' + config.REMOTE_PATH + config.OUTPUT_NAME + str(process_num) command += ' ' + config.OUTPUT_NAME subprocess.call(command, shell=True)
26.937984
97
0.636835
0
0
0
0
0
0
0
0
933
0.268489
6f9bfb5d1846d96697c801d792f6539b53696861
75
py
Python
Lista5/Lista5ex1.py
hugo-paiva/IntroducaoCienciasDaComputacao
a563f2fd5b773acbffaf4c858b86423b1130ae1f
[ "MIT" ]
null
null
null
Lista5/Lista5ex1.py
hugo-paiva/IntroducaoCienciasDaComputacao
a563f2fd5b773acbffaf4c858b86423b1130ae1f
[ "MIT" ]
null
null
null
Lista5/Lista5ex1.py
hugo-paiva/IntroducaoCienciasDaComputacao
a563f2fd5b773acbffaf4c858b86423b1130ae1f
[ "MIT" ]
null
null
null
frase = input().split() for palavra in frase: print(palavra[2], end='')
25
29
0.64
0
0
0
0
0
0
0
0
2
0.026667
6f9d6fb07fd37fbb906d2b22ed6f41821f271822
198
py
Python
ishashad.py
albusdemens/Twitter-mining-project
67a2bd651459568bb74d64dde9cd76fc7925fd32
[ "MIT" ]
null
null
null
ishashad.py
albusdemens/Twitter-mining-project
67a2bd651459568bb74d64dde9cd76fc7925fd32
[ "MIT" ]
null
null
null
ishashad.py
albusdemens/Twitter-mining-project
67a2bd651459568bb74d64dde9cd76fc7925fd32
[ "MIT" ]
null
null
null
#To run the code, write #from ishashad import ishashad #then ishashad(number) def ishashad(n): if n % sum(map(int,str(n))) == 0: print("True") else: print("False") return
18
37
0.60101
0
0
0
0
0
0
0
0
88
0.444444
6f9e12faf187ffa4348ad42a554949db236c4d07
2,393
py
Python
tests/utils/test_utils.py
OpenLMIS-Angola/superset-patchup
b20a56b274fb4b2f5f765e5d91c290a28bccf635
[ "Apache-2.0" ]
null
null
null
tests/utils/test_utils.py
OpenLMIS-Angola/superset-patchup
b20a56b274fb4b2f5f765e5d91c290a28bccf635
[ "Apache-2.0" ]
null
null
null
tests/utils/test_utils.py
OpenLMIS-Angola/superset-patchup
b20a56b274fb4b2f5f765e5d91c290a28bccf635
[ "Apache-2.0" ]
null
null
null
""" This module tests utils """ from unittest.mock import patch, MagicMock from superset_patchup.utils import get_complex_env_var, is_safe_url, is_valid_provider from superset_patchup.oauth import CustomSecurityManager class TestUtils: """ Class to test the utils module """ @patch("superset_patchup.utils.request") def test_is_safe_url(self, mock): """ Test that only urls from the same domain are set as safe by the is_safe_url function """ mock.host_url = "https://example.com" assert is_safe_url("https://example.com") is True assert is_safe_url("https://google.com") is False @patch("superset_patchup.utils.os.getenv") def test_get_complex_env_var_default(self, mock): """ Test that the get_complex_env_var function returns the default value when the variable is not set """ mock.return_value = None default_params = {"bean": "bag"} params = get_complex_env_var("PARAMS", default_params) # assert that the value returned is a dictionary assert isinstance(params, dict) # assert that the value returned is the default assert params == default_params @patch("superset_patchup.utils.os.getenv") def test_get_complex_env_var(self, mock): """ Test that the get_complex_env_var function is able to return a complex variable """ default_params = {"bean": "bag"} # dict variable params_value = {"spring": "bean"} mock.return_value = str(params_value) params = get_complex_env_var("PARAMS", default_params) assert isinstance(params, dict) assert params == params_value # bool variable mock.return_value = "True" bool_params = get_complex_env_var("PARAMS", default_params) assert isinstance(bool_params, bool) assert bool_params is True def test_case_insensitivity_for_provider(self): """ Test that provider information form user can be case insesitive, to static standard strings that they will be checked against """ assert is_valid_provider("opensrp", "OpenSRP") assert is_valid_provider("OnaData", 'onadata') assert is_valid_provider("OpenlMis", "openlmis") assert not is_valid_provider("oensrp", "OpenSrp")
34.681159
86
0.662766
2,170
0.906812
0
0
1,640
0.685332
0
0
1,017
0.42499
6f9e8adaed53c25080171ad9a2dca161824d3a7c
14,215
py
Python
xitorch/_tests/test_integrate.py
Jaikinator/xitorch
053db8d27a7777baa7f572c2d37004e788ff4cb8
[ "MIT" ]
null
null
null
xitorch/_tests/test_integrate.py
Jaikinator/xitorch
053db8d27a7777baa7f572c2d37004e788ff4cb8
[ "MIT" ]
null
null
null
xitorch/_tests/test_integrate.py
Jaikinator/xitorch
053db8d27a7777baa7f572c2d37004e788ff4cb8
[ "MIT" ]
null
null
null
import random import torch import numpy as np from torch.autograd import gradcheck, gradgradcheck import xitorch as xt from xitorch.integrate import quad, solve_ivp, mcquad, SQuad from xitorch._tests.utils import device_dtype_float_test ################################## quadrature ################################## class IntegrationNNModule(torch.nn.Module): # cos(a*x + b * c) def __init__(self, a, b): super(IntegrationNNModule, self).__init__() self.a = a self.b = b def forward(self, x, c): return torch.cos(self.a * x + self.b * c) class IntegrationModule(xt.EditableModule): # cos(a*x + b * c) def __init__(self, a, b): self.a = a self.b = b def forward(self, x, c): return torch.cos(self.a * x + self.b * c) def getparamnames(self, methodname, prefix=""): return [prefix + "a", prefix + "b"] class IntegrationNNMultiModule(torch.nn.Module): # cos(a*x + b * c), sin(a*x + b*c) def __init__(self, a, b): super(IntegrationNNMultiModule, self).__init__() self.a = a self.b = b def forward(self, x, c): return torch.cos(self.a * x + self.b * c), torch.sin(self.a * x + self.b * c) class IntegrationMultiModule(xt.EditableModule): # cos(a*x + b * c), sin(a*x + b*c) def __init__(self, a, b): self.a = a self.b = b def forward(self, x, c): return torch.cos(self.a * x + self.b * c), torch.sin(self.a * x + self.b * c) def getparamnames(self, methodname, prefix=""): return [prefix + "a", prefix + "b"] class IntegrationInfModule(torch.nn.Module): def __init__(self, w): super(IntegrationInfModule, self).__init__() self.w = w def forward(self, x): return torch.exp(-x * x / (2 * self.w * self.w)) @device_dtype_float_test(only64=True, additional_kwargs={ "clss": [IntegrationModule, IntegrationNNModule], }) def test_quad(dtype, device, clss): torch.manual_seed(100) random.seed(100) nr = 2 fwd_options = { "method": "leggauss", "n": 100, } a = torch.nn.Parameter(torch.rand((nr,), dtype=dtype, device=device).requires_grad_()) b = torch.nn.Parameter(torch.randn((nr,), dtype=dtype, device=device).requires_grad_()) c = torch.randn((nr,), dtype=dtype, device=device).requires_grad_() xl = torch.zeros((1,), dtype=dtype, device=device).requires_grad_() xu = (torch.ones((1,), dtype=dtype, device=device) * 0.5).requires_grad_() module = clss(a, b) y = quad(module.forward, xl, xu, params=(c,), **fwd_options) ytrue = (torch.sin(a * xu + b * c) - torch.sin(a * xl + b * c)) / a assert torch.allclose(y, ytrue) def getloss(a, b, c, xl, xu): module = clss(a, b) y = quad(module.forward, xl, xu, params=(c,), **fwd_options) return y gradcheck(getloss, (a, b, c, xl, xu)) gradgradcheck(getloss, (a, b, c, xl, xu)) # check if not all parameters require grad gradcheck(getloss, (a, b.detach(), c, xl, xu)) @device_dtype_float_test(only64=True, additional_kwargs={ "clss": [IntegrationMultiModule, IntegrationNNMultiModule], }) def test_quad_multi(dtype, device, clss): torch.manual_seed(100) random.seed(100) nr = 4 fwd_options = { "method": "leggauss", "n": 100, } a = torch.nn.Parameter(torch.rand((nr,), dtype=dtype, device=device).requires_grad_()) b = torch.nn.Parameter(torch.randn((nr,), dtype=dtype, device=device).requires_grad_()) c = torch.randn((nr,), dtype=dtype, device=device).requires_grad_() xl = torch.zeros((1,), dtype=dtype, device=device).requires_grad_() xu = (torch.ones((1,), dtype=dtype, device=device) * 0.5).requires_grad_() module = clss(a, b) y = quad(module.forward, xl, xu, params=(c,), **fwd_options) ytrue0 = (torch.sin(a * xu + b * c) - torch.sin(a * xl + b * c)) / a ytrue1 = (-torch.cos(a * xu + b * c) + torch.cos(a * xl + b * c)) / a assert len(y) == 2 assert torch.allclose(y[0], ytrue0) assert torch.allclose(y[1], ytrue1) @device_dtype_float_test(only64=True, additional_kwargs={ "totensor": [True, False] }) def test_quad_inf(dtype, device, totensor): torch.manual_seed(100) random.seed(100) nr = 4 fwd_options = { "method": "leggauss", "n": 100, } w = torch.nn.Parameter(torch.abs(torch.randn((nr,), dtype=dtype, device=device)).requires_grad_()) if totensor: xl = torch.tensor(-float("inf"), dtype=dtype, device=device) xu = torch.tensor(float("inf"), dtype=dtype, device=device) else: xl = -float("inf") xu = float("inf") def get_loss(w): module = IntegrationInfModule(w) y = quad(module.forward, xl, xu, params=[], **fwd_options) return y y = get_loss(w) ytrue = w * np.sqrt(2 * np.pi) assert torch.allclose(y, ytrue) if totensor: gradcheck(get_loss, (w,)) gradgradcheck(get_loss, (w,)) ################################## ivp ################################## class IVPNNModule(torch.nn.Module): # dydt: -a * y * t - b * y - c * y def __init__(self, a, b): super(IVPNNModule, self).__init__() self.a = a self.b = b def forward(self, t, y, c): return -self.a * y * t - self.b * y - c * y class IVPModule(xt.EditableModule): # dydt: -a * y * t - b * y - c * y def __init__(self, a, b): self.a = a self.b = b def forward(self, t, y, c): return -self.a * y * t - self.b * y - c * y def getparamnames(self, methodname, prefix=""): return [prefix + "a", prefix + "b"] @device_dtype_float_test(only64=True, additional_kwargs={ "clss": [IVPModule, IVPNNModule], }) def test_ivp(dtype, device, clss): torch.manual_seed(100) random.seed(100) nr = 2 nt = 5 t0 = 0.0 t1 = 0.2 fwd_options = { "method": "rk4", } a = torch.nn.Parameter(torch.rand((nr,), dtype=dtype, device=device).requires_grad_()) b = torch.nn.Parameter(torch.randn((nr,), dtype=dtype, device=device).requires_grad_()) c = torch.randn((nr,), dtype=dtype, device=device).requires_grad_() ts = torch.linspace(t0, t1, nt, dtype=dtype, device=device).requires_grad_() y0 = torch.rand((nr,), dtype=dtype, device=device).requires_grad_() ts1 = ts.unsqueeze(-1) def getoutput(a, b, c, ts, y0): module = clss(a, b) yt = solve_ivp(module.forward, ts, y0, params=(c,), **fwd_options) return yt yt = getoutput(a, b, c, ts, y0) yt_true = y0 * torch.exp(-(0.5 * a * (ts1 + t0) + b + c) * (ts1 - t0)) assert torch.allclose(yt, yt_true) gradcheck(getoutput, (a, b, c, ts, y0)) gradgradcheck(getoutput, (a, b, c, ts, y0)) @device_dtype_float_test(only64=True, additional_kwargs={ "method_tol": [ ("rk4", (1e-8, 1e-5)), ("rk38", (1e-8, 1e-5)), ("rk45", (1e-8, 1e-5)), ("rk23", (1e-6, 1e-4)), ], "clss": [IVPModule, IVPNNModule], }) def test_ivp_methods(dtype, device, method_tol, clss): torch.manual_seed(100) random.seed(100) nr = 2 nb = 3 # batch dimension nt = 5 t0 = 0.0 t1 = 0.2 a = torch.nn.Parameter(torch.rand((nr,), dtype=dtype, device=device).requires_grad_()) b = torch.nn.Parameter(torch.randn((nr,), dtype=dtype, device=device).requires_grad_()) c = torch.randn((nr,), dtype=dtype, device=device).requires_grad_() ts = torch.linspace(t0, t1, nt, dtype=dtype, device=device).requires_grad_() y0 = torch.rand((nb, nr), dtype=dtype, device=device).requires_grad_() ts1 = ts.unsqueeze(-1).unsqueeze(-1) method, (rtol, atol) = method_tol fwd_options = { "method": method, } def getoutput(a, b, c, ts, y0): module = clss(a, b) yt = solve_ivp(module.forward, ts, y0, params=(c,), **fwd_options) return yt yt = getoutput(a, b, c, ts, y0) yt_true = y0 * torch.exp(-(0.5 * a * (ts1 + t0) + b + c) * (ts1 - t0)) assert torch.allclose(yt, yt_true, rtol=rtol, atol=atol) ################################## mcquad ################################## class MCQuadLogProbNNModule(torch.nn.Module): def __init__(self, w): super(MCQuadLogProbNNModule, self).__init__() self.w = w def forward(self, x): # x, w are single-element tensors return -x * x / (2 * self.w * self.w) class MCQuadFcnModule(xt.EditableModule): def __init__(self, a): self.a = a def forward(self, x): # return self.a*self.a * x * x return torch.exp(-x * x / (2 * self.a * self.a)) def getparamnames(self, methodname, prefix=""): return [prefix + "a"] def get_true_output(w, a): # return a*a*w*w return 1.0 / torch.sqrt(1 + w * w / (a * a)) @device_dtype_float_test(only64=True, additional_kwargs={ "method": ["mh", "_dummy1d"], }) def test_mcquad(dtype, device, method): torch.manual_seed(100) random.seed(100) w = torch.nn.Parameter(torch.tensor(1.2, dtype=dtype, device=device)) a = torch.tensor(0.3, dtype=dtype, device=device).requires_grad_() x0 = torch.tensor(0.0, dtype=dtype, device=device) if method == "mh": fwd_options = { "method": "mh", "step_size": 0.6, "nsamples": 10000, "nburnout": 2, } else: # using deterministic forward method just to check the backward operation fwd_options = { "method": "_dummy1d", "nsamples": 100, "lb": -float("inf"), "ub": float("inf"), } def getoutput(w, a, x0): logp = MCQuadLogProbNNModule(w) fcn = MCQuadFcnModule(a) res = mcquad(fcn.forward, logp.forward, x0, fparams=[], pparams=[], **fwd_options) return res rtol = 2e-2 if method != "_dummy1d" else 1e-3 epf = getoutput(w, a, x0) epf_true = get_true_output(w, a) assert torch.allclose(epf, epf_true, rtol=rtol) # skip gradient check if it is not the deterministic method if method != "_dummy1d": return # manually check the gradient g = torch.tensor(0.7, dtype=dtype, device=device).reshape(epf.shape).requires_grad_() ga, gw = torch.autograd.grad(epf, (a, w), grad_outputs=g, create_graph=True) # different implementation ga2, gw2 = torch.autograd.grad(epf, (a, w), grad_outputs=g, retain_graph=True, create_graph=False) ga_true, gw_true = torch.autograd.grad(epf_true, (a, w), grad_outputs=g, create_graph=True) assert torch.allclose(gw, gw_true) assert torch.allclose(ga, ga_true) assert torch.allclose(gw2, gw_true) assert torch.allclose(ga2, ga_true) ggaw, ggaa, ggag = torch.autograd.grad(ga, (w, a, g), retain_graph=True, allow_unused=True) ggaw_true, ggaa_true, ggag_true = torch.autograd.grad(ga_true, (w, a, g), retain_graph=True, allow_unused=True) print("ggaw", ggaw, ggaw_true, (ggaw - ggaw_true) / ggaw_true) print("ggaa", ggaa, ggaa_true, (ggaa - ggaa_true) / ggaa_true) print("ggag", ggag, ggag_true, (ggag - ggag_true) / ggag_true) assert torch.allclose(ggaa, ggaa_true) assert torch.allclose(ggag, ggag_true) ggww, ggwa, ggwg = torch.autograd.grad(gw, (w, a, g), allow_unused=True) ggww_true, ggwa_true, ggwg_true = torch.autograd.grad(gw_true, (w, a, g), allow_unused=True) print("ggwa", ggwa, ggwa_true, (ggwa - ggwa_true) / ggwa_true) print("ggwg", ggwg, ggwg_true, (ggwg - ggwg_true) / ggwg_true) print("ggww", ggww, ggww_true, (ggww - ggww_true) / ggww_true) assert torch.allclose(ggwa, ggwa_true) assert torch.allclose(ggwg, ggwg_true) assert torch.allclose(ggww, ggww_true) ################################## SQuad ################################## @device_dtype_float_test(only64=True, additional_kwargs={ "imethod": list(enumerate(["trapz", "cspline"])), }) def test_squad(dtype, device, imethod): x = torch.tensor([0.0, 1.0, 2.0, 4.0, 5.0, 7.0], dtype=dtype, device=device).requires_grad_() y = torch.tensor([[1.0, 2.0, 2.0, 1.5, 1.2, 4.0], [0.0, 0.8, 1.0, 1.5, 2.0, 1.4]], dtype=dtype, device=device).requires_grad_() # true values ycumsum_trapz = torch.tensor( # obtained by calculating manually [[0.0, 1.5, 3.5, 7.0, 8.35, 13.55], [0.0, 0.4, 1.3, 3.8, 5.55, 8.95]], dtype=dtype, device=device) ycspline_natural = torch.tensor( # obtained using scipy's CubicSpline and quad [[0.0, 1.5639104372355428, 3.6221791255289135, 7.2068053596614945, 8.4994887166897, 13.11119534565217], [0.0, 0.43834626234132584, 1.3733074753173484, 3.724083215796897, 5.494693230049832, 9.181717209378409]], dtype=dtype, device=device) i, method = imethod option = [{}, {"bc_type": "natural"}][i] ytrue = [ycumsum_trapz, ycspline_natural][i] def getval(x, y, tpe): quad = SQuad(x, method=method, **option) if tpe == "cumsum": return quad.cumsum(y, dim=-1) else: return quad.integrate(y, dim=-1) # getparamnames quad = SQuad(x, method=method, **option) quad.assertparams(quad.cumsum, y, dim=-1) quad.assertparams(quad.integrate, y, dim=-1) # cumsum ycumsum = getval(x, y, "cumsum") assert torch.allclose(ycumsum, ytrue) # integrate yintegrate = getval(x, y, "integrate") assert torch.allclose(yintegrate, ytrue[..., -1]) gradcheck(getval, (x, y, "cumsum")) gradgradcheck(getval, (x, y, "cumsum")) gradcheck(getval, (x, y, "integrate")) gradgradcheck(getval, (x, y, "integrate")) if __name__ == "__main__": # with torch.autograd.detect_anomaly(): test_mcquad()
35.987342
116
0.578825
2,724
0.191629
0
0
10,673
0.750827
0
0
1,483
0.104326
6fa1472d7ffbd2b29874a36ce2b115c7eb0c4881
120
py
Python
biothings-hub/files/nde-hub/hub/dataload/sources/figshare/dumper.py
NIAID-Data-Ecosystem/nde-crawlers
c0aff7dc1625ece1e67d03ad56555da7dbdc4a11
[ "Apache-2.0" ]
null
null
null
biothings-hub/files/nde-hub/hub/dataload/sources/figshare/dumper.py
NIAID-Data-Ecosystem/nde-crawlers
c0aff7dc1625ece1e67d03ad56555da7dbdc4a11
[ "Apache-2.0" ]
null
null
null
biothings-hub/files/nde-hub/hub/dataload/sources/figshare/dumper.py
NIAID-Data-Ecosystem/nde-crawlers
c0aff7dc1625ece1e67d03ad56555da7dbdc4a11
[ "Apache-2.0" ]
null
null
null
from hub.dataload.nde import NDEFileSystemDumper class FigshareDumper(NDEFileSystemDumper): SRC_NAME = "figshare"
20
48
0.808333
68
0.566667
0
0
0
0
0
0
10
0.083333
6fa203b91e4061ab9a5aeb13af78a9c24d505f2c
785
py
Python
faiss_utils.py
yizt/keras-lbl-IvS
3f98b698c56ae40954b4920da167f7c9e32024c8
[ "Apache-2.0" ]
22
2019-01-13T12:56:56.000Z
2020-11-03T01:39:20.000Z
faiss_utils.py
yizt/keras-lbl-IvS
3f98b698c56ae40954b4920da167f7c9e32024c8
[ "Apache-2.0" ]
null
null
null
faiss_utils.py
yizt/keras-lbl-IvS
3f98b698c56ae40954b4920da167f7c9e32024c8
[ "Apache-2.0" ]
5
2019-04-01T09:19:55.000Z
2020-05-26T14:38:06.000Z
# -*- coding: utf-8 -*- """ File Name: faiss_utils Description : faiss工具类 Author : mick.yi date: 2019/1/4 """ import faiss import numpy as np def get_index(dimension): sub_index = faiss.IndexFlatL2(dimension) index = faiss.IndexIDMap(sub_index) return index def update_multi(index, vectors, ids): """ :param index: :param vectors: :param ids: :return: 备注:ValueError: array is not C-contiguous """ idx = np.argsort(ids) # 先删除再添加 index.remove_ids(ids[idx]) index.add_with_ids(vectors[idx], ids[idx]) def update_one(index, vector, label_id): vectors = np.expand_dims(vector, axis=0) ids = np.array([label_id]) update_multi(index, vectors, ids)
21.216216
47
0.602548
0
0
0
0
0
0
0
0
315
0.387454
6fa21afd208bf7323dcf7c8f05508069120736b0
475
py
Python
relogio.py
Glightman/project_jogo_POO
c5557871f7e4a2a264c03180581cb2a6b1dec1b9
[ "MIT" ]
1
2021-05-29T23:43:36.000Z
2021-05-29T23:43:36.000Z
relogio.py
Glightman/project_jogo_POO
c5557871f7e4a2a264c03180581cb2a6b1dec1b9
[ "MIT" ]
null
null
null
relogio.py
Glightman/project_jogo_POO
c5557871f7e4a2a264c03180581cb2a6b1dec1b9
[ "MIT" ]
2
2021-06-01T01:36:01.000Z
2021-06-01T01:36:59.000Z
class Relogio: def __init__(self): self.horas = 6 self.minutos = 0 self.dia = 1 def __str__(self): return f"{self.horas:02d}:{self.minutos:02d} do dia {self.dia:02d}" def avancaTempo(self, minutos): self.minutos += minutos while(self.minutos >= 60): self.minutos -= 60 self.horas += 1 if self.horas >= 24: self.horas = 0 self.dia +=1
23.75
75
0.492632
472
0.993684
0
0
0
0
0
0
60
0.126316
6fa2447d022693958e9639f974d13fb89a57e078
3,201
py
Python
custom/logistics/api.py
dslowikowski/commcare-hq
ad8885cf8dab69dc85cb64f37aeaf06106124797
[ "BSD-3-Clause" ]
1
2017-02-10T03:14:51.000Z
2017-02-10T03:14:51.000Z
custom/logistics/api.py
dslowikowski/commcare-hq
ad8885cf8dab69dc85cb64f37aeaf06106124797
[ "BSD-3-Clause" ]
null
null
null
custom/logistics/api.py
dslowikowski/commcare-hq
ad8885cf8dab69dc85cb64f37aeaf06106124797
[ "BSD-3-Clause" ]
null
null
null
import requests from custom.api.utils import EndpointMixin class MigrationException(Exception): pass class LogisticsEndpoint(EndpointMixin): models_map = {} def __init__(self, base_uri, username, password): self.base_uri = base_uri.rstrip('/') self.username = username self.password = password self.products_url = self._urlcombine(self.base_uri, '/products/') self.webusers_url = self._urlcombine(self.base_uri, '/webusers/') self.smsusers_url = self._urlcombine(self.base_uri, '/smsusers/') self.locations_url = self._urlcombine(self.base_uri, '/locations/') self.productstock_url = self._urlcombine(self.base_uri, '/productstocks/') self.stocktransactions_url = self._urlcombine(self.base_uri, '/stocktransactions/') def get_objects(self, url, params=None, filters=None, limit=1000, offset=0, **kwargs): params = params if params else {} if filters: params.update(filters) params.update({ 'limit': limit, 'offset': offset }) if 'next_url_params' in kwargs and kwargs['next_url_params']: url = url + "?" + kwargs['next_url_params'] params = {} response = requests.get(url, params=params, auth=self._auth()) if response.status_code == 200 and 'objects' in response.json(): meta = response.json()['meta'] objects = response.json()['objects'] elif response.status_code == 401: raise MigrationException('Invalid credentials.') else: raise MigrationException('Something went wrong during migration.') return meta, objects def get_products(self, **kwargs): meta, products = self.get_objects(self.products_url, **kwargs) for product in products: yield (self.models_map['product'])(product) def get_webusers(self, **kwargs): meta, users = self.get_objects(self.webusers_url, **kwargs) return meta, [(self.models_map['webuser'])(user) for user in users] def get_smsusers(self, **kwargs): meta, users = self.get_objects(self.smsusers_url, **kwargs) return meta, [(self.models_map['smsuser'])(user) for user in users] def get_location(self, id, params=None): response = requests.get(self.locations_url + str(id) + "/", params=params, auth=self._auth()) return response.json() def get_locations(self, **kwargs): meta, locations = self.get_objects(self.locations_url, **kwargs) return meta, [(self.models_map['location'])(location) for location in locations] def get_productstocks(self, **kwargs): meta, product_stocks = self.get_objects(self.productstock_url, **kwargs) return meta, [(self.models_map['product_stock'])(product_stock) for product_stock in product_stocks] def get_stocktransactions(self, **kwargs): meta, stock_transactions = self.get_objects(self.stocktransactions_url, **kwargs) return meta, [(self.models_map['stock_transaction'])(stock_transaction) for stock_transaction in stock_transactions]
41.038462
108
0.650109
3,136
0.979694
193
0.060294
0
0
0
0
319
0.099656
6fa2c35d5d796a2e58e703cd256e4f54f2acff9f
432
py
Python
users/migrations/0004_auto_20191028_2154.py
icnmtrx/classified
c9515352e046293dacd66ba28cb32ae378edf832
[ "MIT" ]
null
null
null
users/migrations/0004_auto_20191028_2154.py
icnmtrx/classified
c9515352e046293dacd66ba28cb32ae378edf832
[ "MIT" ]
2
2021-06-08T20:56:16.000Z
2021-09-08T01:41:42.000Z
users/migrations/0004_auto_20191028_2154.py
icnmtrx/classified
c9515352e046293dacd66ba28cb32ae378edf832
[ "MIT" ]
null
null
null
# Generated by Django 2.2.5 on 2019-10-28 21:54 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0003_auto_20191028_1802'), ] operations = [ migrations.AlterField( model_name='profile', name='registered_at', field=models.DateTimeField(auto_now_add=True, verbose_name='date_registered'), ), ]
22.736842
90
0.62963
339
0.784722
0
0
0
0
0
0
120
0.277778
6fa38b8004759e97015cce47bf001559adb56f2e
3,426
py
Python
functionaltests/api/v2/test_pool.py
kiall/designate-py3
2b135d64bb0ced77327a563e037b270d1e5ca308
[ "Apache-2.0" ]
null
null
null
functionaltests/api/v2/test_pool.py
kiall/designate-py3
2b135d64bb0ced77327a563e037b270d1e5ca308
[ "Apache-2.0" ]
null
null
null
functionaltests/api/v2/test_pool.py
kiall/designate-py3
2b135d64bb0ced77327a563e037b270d1e5ca308
[ "Apache-2.0" ]
null
null
null
# Copyright 2015 Hewlett-Packard Development Company, L.P. # # Author: Endre Karlson <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import uuid from tempest_lib import exceptions from functionaltests.common import datagen from functionaltests.api.v2.base import DesignateV2Test from functionaltests.api.v2.clients.pool_client import PoolClient class PoolTest(DesignateV2Test): def _create_pool(self, pool_model, user='admin'): resp, model = PoolClient.as_user(user).post_pool(pool_model) self.assertEqual(resp.status, 201) return resp, model def test_list_pools(self): self._create_pool(datagen.random_pool_data()) resp, model = PoolClient.as_user('admin').list_pools() self.assertEqual(resp.status, 200) self.assertGreater(len(model.pools), 0) def test_create_pool(self): self._create_pool(datagen.random_pool_data(), user='admin') def test_update_pool(self): post_model = datagen.random_pool_data() resp, old_model = self._create_pool(post_model) patch_model = datagen.random_pool_data() resp, new_model = PoolClient.as_user('admin').patch_pool( old_model.id, patch_model) self.assertEqual(resp.status, 202) resp, model = PoolClient.as_user('admin').get_pool(new_model.id) self.assertEqual(resp.status, 200) self.assertEqual(new_model.id, old_model.id) self.assertEqual(new_model.name, patch_model.name) def test_delete_pool(self): resp, model = self._create_pool(datagen.random_pool_data()) resp, model = PoolClient.as_user('admin').delete_pool(model.id) self.assertEqual(resp.status, 204) def test_get_pool_404(self): client = PoolClient.as_user('admin') self._assert_exception( exceptions.NotFound, 'pool_not_found', 404, client.get_pool, str(uuid.uuid4())) def test_update_pool_404(self): model = datagen.random_pool_data() client = PoolClient.as_user('admin') self._assert_exception( exceptions.NotFound, 'pool_not_found', 404, client.patch_pool, str(uuid.uuid4()), model) def test_delete_pool_404(self): client = PoolClient.as_user('admin') self._assert_exception( exceptions.NotFound, 'pool_not_found', 404, client.delete_pool, str(uuid.uuid4())) def test_get_pool_invalid_uuid(self): client = PoolClient.as_user('admin') self._assert_invalid_uuid(client.get_pool, 'fooo') def test_update_pool_invalid_uuid(self): model = datagen.random_pool_data() client = PoolClient.as_user('admin') self._assert_invalid_uuid(client.patch_pool, 'fooo', model) def test_delete_pool_invalid_uuid(self): client = PoolClient.as_user('admin') self._assert_invalid_uuid(client.get_pool, 'fooo')
36.83871
75
0.700525
2,553
0.745184
0
0
0
0
0
0
790
0.23059
6fa4cb77b9686bd974f4ba0799278420d18f452c
1,928
py
Python
fewshot/models/basic_model_VAT_ENT.py
AhmedAyad89/Consitent-Prototypical-Networks-Semi-Supervised-Few-Shot-Learning
b0b805733ee6c42cee5ddd9eace94edd29f6120d
[ "MIT" ]
22
2019-03-13T02:19:17.000Z
2021-08-06T03:13:00.000Z
fewshot/models/basic_model_VAT_ENT.py
mattochal/Consitent-Prototypical-Networks-Semi-Supervised-Few-Shot-Learning
b0b805733ee6c42cee5ddd9eace94edd29f6120d
[ "MIT" ]
1
2019-07-27T14:33:02.000Z
2020-06-01T11:03:20.000Z
fewshot/models/basic_model_VAT_ENT.py
mattochal/Consitent-Prototypical-Networks-Semi-Supervised-Few-Shot-Learning
b0b805733ee6c42cee5ddd9eace94edd29f6120d
[ "MIT" ]
5
2019-03-07T06:18:51.000Z
2019-10-22T05:33:23.000Z
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np import tensorflow as tf from fewshot.models.kmeans_utils import compute_logits from fewshot.models.model import Model from fewshot.models.refine_model import RefineModel from fewshot.models.basic_model_VAT import BasicModelVAT from fewshot.models.model_factory import RegisterModel from fewshot.models.nnlib import (concat, weight_variable) from fewshot.utils import logger from fewshot.utils.debug import debug_identity from fewshot.models.SSL_utils import * l2_norm = lambda t: tf.sqrt(tf.reduce_sum(tf.pow(t, 2))) log = logger.get() @RegisterModel("basic-VAT-ENT") class BasicModelVAT_ENT(BasicModelVAT): def get_train_op(self, logits, y_test): loss, train_op = BasicModelVAT.get_train_op(self, logits, y_test) config = self.config ENT_weight = config.ENT_weight VAT_ENT_step_size = config.VAT_ENT_step_size logits = self._unlabel_logits s = tf.shape(logits) s = s[0] p = tf.stop_gradient(self.h_unlabel) affinity_matrix = compute_logits(p, p) - (tf.eye(s, dtype=tf.float32) * 1000.0) # logits = tf.Print(logits, [tf.shape(point_logits)]) ENT_loss = walking_penalty(logits, affinity_matrix) loss += ENT_weight * ENT_loss ENT_opt = tf.train.AdamOptimizer(VAT_ENT_step_size * self.learn_rate, name="Entropy-optimizer") ENT_grads_and_vars = ENT_opt.compute_gradients(loss) train_op = ENT_opt.apply_gradients(ENT_grads_and_vars) for gradient, variable in ENT_grads_and_vars: if gradient is None: gradient = tf.constant(0.0) self.adv_summaries.append(tf.summary.scalar("ENT/gradients/" + variable.name, l2_norm(gradient), family="Grads")) self.adv_summaries.append(tf.summary.histogram("ENT/gradients/" + variable.name, gradient, family="Grads")) self.summaries.append(tf.summary.scalar('entropy loss', ENT_loss)) return loss, train_op
33.824561
116
0.769191
1,222
0.633817
0
0
1,254
0.650415
0
0
147
0.076245
6fa4dc608c43d4d875d4dbb6404a617e1898a215
169
py
Python
FileStorage/utils/__init__.py
Thiefxt/FileStorage
db2882b2ea861f4412cb453edef6439501b13705
[ "MIT" ]
1
2020-07-15T10:02:40.000Z
2020-07-15T10:02:40.000Z
FileStorage/utils/__init__.py
Thiefxt/FileStorage
db2882b2ea861f4412cb453edef6439501b13705
[ "MIT" ]
null
null
null
FileStorage/utils/__init__.py
Thiefxt/FileStorage
db2882b2ea861f4412cb453edef6439501b13705
[ "MIT" ]
null
null
null
""" @Author : xiaotao @Email : [email protected] @Lost modifid : 2020/4/24 10:02 @Filename : __init__.py.py @Description : @Software : PyCharm """
21.125
32
0.609467
0
0
0
0
0
0
0
0
169
1
6fa61d901e4c25cb458862fd5a69f1d44a079c88
3,864
py
Python
molsysmt/tools/items.py
dprada/molsysmt
83f150bfe3cfa7603566a0ed4aed79d9b0c97f5d
[ "MIT" ]
null
null
null
molsysmt/tools/items.py
dprada/molsysmt
83f150bfe3cfa7603566a0ed4aed79d9b0c97f5d
[ "MIT" ]
null
null
null
molsysmt/tools/items.py
dprada/molsysmt
83f150bfe3cfa7603566a0ed4aed79d9b0c97f5d
[ "MIT" ]
null
null
null
import numpy as np import re as re from molsysmt._private_tools.lists_and_tuples import is_list_or_tuple def compatibles_for_a_single_molecular_system(items): from molsysmt.basic.get_form import get_form from molsysmt.basic.get import get from molsysmt.forms import dict_has output = True if not is_list_or_tuple(items): items=[items] if len(items)>1: list_n_atoms = [] list_n_groups = [] list_forms = [] for item in items: tmp_form = get_form(item) tmp_n_atoms, tmp_n_groups = get(item, target='atom', n_atoms=True, n_groups=True) list_forms.append(tmp_form) list_n_atoms.append(tmp_n_atoms) list_n_groups.append(tmp_n_groups) Not_none_values = filter(None.__ne__, list_n_atoms) set_n_atoms = set(Not_none_values) if len(set_n_atoms)>1: output = False if output: Not_none_values = filter(None.__ne__, list_n_groups) set_n_groups = set(Not_none_values) if len(set_n_groups)>1: output = False return output def has_topology(items): from molsysmt.basic import get_form from molsysmt.basic import dict_get if type(items) in [list, tuple]: output = [] for item in items: form_in = get_form(item) w_topology = dict_get[form_in]["system"]["has_topology"](item) output.append(w_topology) else: form_in = get_form(items) output = dict_get[form_in]["system"]["has_topology"](items) return output def has_trajectory(items): from molsysmt.basic import get_form from molsysmt.basic import dict_get if type(items) in [list, tuple]: output = [] for item in items: form_in = get_form(item) w_trajectory = dict_get[form_in]["system"]["has_trajectory"](item) output.append(w_trajectory) else: form_in = get_form(items) output = dict_get[form_in]["system"]["has_trajectory"](items) return output def has_coordinates(items): from molsysmt.basic import get_form from molsysmt.basic import dict_get if type(items) in [list, tuple]: output = [] for item in items: form_in = get_form(item) w_coordinates = dict_get[form_in]["system"]["has_coordinates"](item) output.append(w_coordinates) else: form_in = get_form(items) output = dict_get[form_in]["system"]["has_coordinates"](items) return output def has_box(items): from molsysmt.basic import get_form from molsysmt.basic import dict_get if type(items) in [list, tuple]: output = [] for item in items: form_in = get_form(item) w_box = dict_get[form_in]["system"]["has_box"](item) output.append(w_box) else: form_in = get_form(items) output = dict_get[form_in]["system"]["has_box"](items) return output def item_is_file(item): from molsysmt.forms import file_extensions_recognized output = False if type(item) is str: file_extension = item.split('.')[-1].lower() if file_extension in file_extensions_recognized: output = 'file:'+file_extension return output def item_is_string(item): from molsysmt.forms import string_names_recognized from .strings import guess_form_from_string output = False if type(item) is str: if ':' in item: string_name = item.split(':')[0] if string_name in string_names_recognized: output = 'string:'+string_name if output==False: output = guess_form_from_string(item) if output is None: output = False return output return output
26.465753
93
0.626812
0
0
0
0
0
0
0
0
207
0.053571
6fa63eda0afd91d2591e9bd285c10c6a046d2252
5,021
py
Python
runner/monitor.py
wynterl/federated-learning-lib
5d6cc0a5f4a45d97525ff2dec328b3901b71b7a3
[ "IBM-pibs" ]
null
null
null
runner/monitor.py
wynterl/federated-learning-lib
5d6cc0a5f4a45d97525ff2dec328b3901b71b7a3
[ "IBM-pibs" ]
null
null
null
runner/monitor.py
wynterl/federated-learning-lib
5d6cc0a5f4a45d97525ff2dec328b3901b71b7a3
[ "IBM-pibs" ]
1
2021-05-11T05:09:30.000Z
2021-05-11T05:09:30.000Z
#!/usr/bin/env python3 import argparse import subprocess as sp import select import sys import time import yaml if __name__ == '__main__': """ We can daemonize our connections to our remote machines, list the FL processes on remote machines, or kill FL processes on remote machines. We can either pass a specfic run's metadata file, or we can use a 'global' metadata file to list all processes on a list of machines. """ parser = argparse.ArgumentParser() parser.add_argument('action', choices=['daemonize', 'list', 'kill']) parser.add_argument('--config') # read metadata config for the specified run args = parser.parse_args() if (args.config): with open(args.config) as config_file: config = yaml.load(config_file.read(), Loader=yaml.Loader) if 'timestamp' in config: machines = [config['agg_machine']] + config['party_machines'] usernames = [config['agg_username']] + config['party_usernames'] run_id = config['timestamp'] if 'timestamp' in config else '' else: machines = config['machines'] usernames = config['usernames'] run_id = '' localp = sp.Popen('mkdir -p {}/.ssh'.format(config['local_staging_dir']).split()) exit_code = localp.wait() # decide what to run based on input if args.action == 'daemonize': daemonize_cmd = 'ssh '\ '-o "ControlMaster=auto" '\ '-o "ControlPath={}/.ssh/master-%r@%h:%p" '\ '-o "ControlPersist=yes" '\ '-Nn {}@{}' cmds = [daemonize_cmd.format(config['local_staging_dir'], u, m) for m, u in zip(machines,usernames)] elif args.action == 'list': if 'timestamp' in config: list_cmd = \ 'ssh -o "ControlMaster=no" -o "ControlPath={}/.ssh/master-%r@%h:%p" {}@{} '\ '"set -o pipefail; '\ 'pgrep -u {} -f \\"bash.*run_agg\.py.*{}|bash.*run_party\.py.*{}\\" '\ '| xargs --no-run-if-empty -I@ pgrep -P @ -f \\"run\\" -a"' cmds = [list_cmd.format(config['local_staging_dir'], u, m, u, run_id, run_id, u, run_id, run_id) for m, u in zip(machines, usernames)] else: list_cmd = \ 'ssh -o "ControlMaster=no" -o "ControlPath={}/.ssh/master-%r@%h:%p" {}@{} ' \ '"set -o pipefail; '\ 'pgrep -f \\"bash.*run_agg\.py|bash.*run_party\.py\\" '\ '| tee >(xargs --no-run-if-empty -I@ pgrep -P @) '\ '| xargs --no-run-if-empty ps -o user:8,pid,ppid,cmd p"' cmds = [list_cmd.format(config['local_staging_dir'], u, m) for m, u in zip(machines, usernames)] elif args.action == 'kill': if 'timestamp' in config: kill_cmd = \ 'ssh -o "ControlMaster=no" -o "ControlPath={}/.ssh/master-%r@%h:%p" {}@{} '\ '"set -o pipefail; '\ 'pgrep -u {} -f \\"bash.*run_agg\.py.*{}|run_party\.py.*{}\\" '\ '| tee >(xargs --no-run-if-empty pgrep -P) | tee >(xargs --no-run-if-empty kill)"' cmds = [kill_cmd.format(config['local_staging_dir'], u, m, u, run_id, run_id, u, run_id, run_id) for m, u in zip(machines, usernames)] else: kill_cmd = \ 'ssh -o "ControlMaster=no" -o "ControlPath={}/.ssh/master-%r@%h:%p" {}@{} '\ '"set -o pipefail; '\ 'pgrep -u {} -f \\"run_agg\.py|run_party\.py\\" '\ '&& pkill -u {} -f \\"run_agg\.py|run_party\.py\\""' cmds = [kill_cmd.format(config['local_staging_dir'], u, m, u, u) for m, u in zip(machines, usernames)] else: print('Action not handled. Exiting.') exit(1) # start all processes procs = [sp.Popen(c, stdout=sp.PIPE, stderr=sp.PIPE, shell=True, universal_newlines=True) for c in cmds] stdout = ['' for _ in machines] stderr = ['' for _ in machines] loops = 0 # wait for output and finally exit when processes end, obtaining all output polls = list(p.poll() for p in procs) while any(r == None for r in polls): ret = select.select([p.stdout.fileno() for p,r in zip(procs,polls) if r == None], [], []) for fd in ret[0]: for i,p in enumerate(procs): if p.stdout.fileno() == fd: stdout[i] += '\t{}'.format(p.stdout.readline()) polls = tuple(p.poll() for p in procs) loops += 1 for i,p in enumerate(procs): for line in p.stdout: stdout[i] += '\t{}'.format(line) for line in p.stderr: stderr[i] += '\t{}'.format(line) if not stdout[i].strip(): stderr[i] += '\tNo processes found.\n' # print output if args.action != 'daemonize': for i,m in enumerate(machines): print("{}:".format(m)) if stdout[i].strip(): print(stdout[i]) if stderr[i].strip(): print(stderr[i])
44.04386
146
0.54292
0
0
0
0
0
0
0
0
1,974
0.393149
6fa6d9568fc3d20a8fc6e092cfbe18e8adeb1122
134
py
Python
brian2sampledevice/__init__.py
brian-team/brian2sampledevice
d4b4e932aff35b3350e22039b05fcb022623e5fc
[ "MIT" ]
null
null
null
brian2sampledevice/__init__.py
brian-team/brian2sampledevice
d4b4e932aff35b3350e22039b05fcb022623e5fc
[ "MIT" ]
null
null
null
brian2sampledevice/__init__.py
brian-team/brian2sampledevice
d4b4e932aff35b3350e22039b05fcb022623e5fc
[ "MIT" ]
null
null
null
from .device import SampleDevice from .codeobject import SampleDeviceCodeObject __all__ = ['SampleDevice', 'SampleDeviceCodeObject']
26.8
52
0.828358
0
0
0
0
0
0
0
0
38
0.283582
6fa6de489d3ecbdc05135c1a882460c438344d63
149
py
Python
tests/node_test.py
allenai/beaker-py
99c8d7f6e9938807ca5405964ef35633a19e8d68
[ "Apache-2.0" ]
null
null
null
tests/node_test.py
allenai/beaker-py
99c8d7f6e9938807ca5405964ef35633a19e8d68
[ "Apache-2.0" ]
20
2021-12-16T13:23:07.000Z
2022-03-31T16:40:02.000Z
tests/node_test.py
allenai/beaker-py
99c8d7f6e9938807ca5405964ef35633a19e8d68
[ "Apache-2.0" ]
null
null
null
from beaker import Beaker def test_node_get(client: Beaker, beaker_node_id: str): assert client.node.get(beaker_node_id).limits.gpu_count == 8
24.833333
64
0.778523
0
0
0
0
0
0
0
0
0
0
6fa73ff97a0db35ad4fb506ba2a01779a69e92b2
5,984
py
Python
crawling/data_crawler_set.py
CLUG-kr/cau_hashkeyword
f2b747ce8c5705ea58fd94d2a1d10110d6f4f511
[ "MIT" ]
5
2019-01-20T06:12:47.000Z
2019-06-27T13:29:26.000Z
crawling/data_crawler_set.py
AllyHyeseongKim/cau_hashkeyword
1050dbc74d28765aec6e5870d6f3dae325f5caad
[ "MIT" ]
4
2019-01-10T14:58:45.000Z
2019-05-16T05:02:53.000Z
crawling/data_crawler_set.py
AllyHyeseongKim/cau_hashkeyword
1050dbc74d28765aec6e5870d6f3dae325f5caad
[ "MIT" ]
1
2019-02-20T09:11:54.000Z
2019-02-20T09:11:54.000Z
# coding: utf-8 # In[2]: import firebase_admin from firebase_admin import credentials from firebase_admin import db # Fetch the service account key JSON file contents cred = credentials.Certificate('/Users/Solomon/Desktop/cau-hashkeyword-serviceAccountKey.json') # Initialize the app with a service account, granting admin privileges firebase_admin.initialize_app(cred, { 'databaseURL': 'https://cau-hashkeyword.firebaseio.com' }) ref = db.reference('server/saving-data/crawling') # In[3]: from bs4 import BeautifulSoup from urllib.request import urlopen from selenium import webdriver import re # In[3]: options = webdriver.ChromeOptions() options.add_argument('headless') options.add_argument('window-size=1920x1080') options.add_argument('disable-gpu') # In[10]: cau_title_list = [] cau_date_list = [] cau_url_list = [] driver = webdriver.Chrome("/usr/local/bin/chromedriver", chrome_options=options) driver.get("https://www.cau.ac.kr/cms/FR_CON/index.do?MENU_ID=100") driver.implicitly_wait(3) cau_base_url = "https://www.cau.ac.kr/cms/FR_CON/BoardView.do?MENU_ID=100&CONTENTS_NO=1&SITE_NO=2&P_TAB_NO=&TAB_NO=&BOARD_SEQ=4&BOARD_CATEGORY_NO=&BBS_SEQ=" # BBS_SEQ=19642 (id=board_19642) board_list = driver.find_element_by_id("tbody").find_elements_by_tag_name("li") board_list.reverse() # count = 0 for item in board_list: # if count < 10: pass # 테스트용 # else: cau_title_list.append(item.find_element_by_class_name("txtL").find_element_by_tag_name('a').text) cau_date_list.append(item.find_element_by_class_name("txtInfo").find_element_by_class_name("date").text) cau_url_list.append(cau_base_url + item.get_attribute("id").replace("board_","")) # count += 1 driver.close() # list 앞에 원소를 추가할 때, insert(0,data) 사용 시 O(n) # class collections.deque([iterable[, maxlen]])의 dequeue() 사용 시 O(1) # High Performance를 원한다면 사용하자. # 혹은 list reverse 후, append 계속 사용 (단, reverse의 경우 O(n)) # In[11]: lib_title_list = [] lib_date_list = [] lib_url_list = [] driver = webdriver.Chrome("/usr/local/bin/chromedriver", chrome_options=options) driver.get("https://library.cau.ac.kr/#/bbs/notice?offset=0&max=20") driver.implicitly_wait(3) try: # tbody[0]는 회색 상단 공지 부분으로 아래 공지 중에서 중요한 것들만 올려놓은듯. 즉, 겹치는 내용임. board_list = driver.find_elements_by_tag_name("tbody")[1].find_elements_by_class_name("ikc-item") board_list.reverse() for item in board_list: # tbody 검색후 ikc-item 검색시, 가끔씩 IndexError: list index out of range 발생 (이유 모름) lib_title_list.append(item.find_elements_by_tag_name("td")[2].find_element_by_tag_name('a').text) # 대체 lib_date_list.append(item.find_elements_by_tag_name("td")[3].find_elements_by_tag_name("span")[1].text) except IndexError: print("IndexError") pass lib_base_url = "https://library.cau.ac.kr/#/bbs/notice/" # 사이에 id 추가 lib_sub_url = "?offset=0&max=20" # url id는 어떻게 가져올까.. driver.close() # In[14]: # 노란색 공지 부분만 가져온다 dorm_title_list = [] dorm_date_list = [] dorm_url_list = [] dormnotice_url = "https://dormitory.cau.ac.kr/bbs/bbs_list.php?bbsID=notice" dormnotice_page = urlopen(dormnotice_url) dormnotice_soup = BeautifulSoup(dormnotice_page, "lxml") dormnotice_list = dormnotice_soup.find(id='content').find('div').find_all('tr',{'bgcolor':'#fffcdb'}) dormnotice_list.reverse() if dormnotice_list == []: print("No data") else : for item in dormnotice_list: dorm_title_list.append(item.find('span',class_='bbsTitle').get_text()) dorm_url_list.append(item.find('a')['href']) dorm_date_list.append("20" + item.find_all('td',class_='t_c')[3].get_text()) #try-except 적용하기? # In[13]: ict_title_list = [] ict_date_list = [] ict_url_list = [] ictnotice_url = "http://ict.cau.ac.kr/20150610/sub05/sub05_01_list.php" ictnotice_page = urlopen(ictnotice_url) ictnotice_soup = BeautifulSoup(ictnotice_page, "lxml") ict_base_url = "http://ict.cau.ac.kr/20150610/sub05/sub05_01_list.php?cmd=view&cpage=1&idx=" # 사이에 id 작성 ict_sub_url = "&search_gbn=1&search_keyword=" ictnotice_list = ictnotice_soup.find('tbody').find_all('tr') ictnotice_list.reverse() if ictnotice_list == []: print("No data") else: for item in ictnotice_list: ict_title_list.append(item.find('td',class_='cont').find('a').get_text()) ict_url_list.append(ict_base_url + item.find('td',class_='cont').find('a')['href'][-7:-3] + ict_sub_url) ict_date_list.append(item.find_all('td')[2].get_text()) # In[10]: # 공지표시 되어있는 게시글 제목도 수집? (겹치는 내용임) cse_title_list = [] cse_date_list = [] cse_url_list = [] csenotice_url = "http://cse.cau.ac.kr/20141201/sub05/sub0501.php" csenotice_page = urlopen(csenotice_url) csenotice_soup = BeautifulSoup(csenotice_page, "lxml") csenotice_list = csenotice_soup.find('table',class_='nlist').find_all('tr') csenotice_list.reverse() if csenotice_list == []: print("No data") else: for item in csenotice_list: if item.find('td').get_text() != '': cse_title_list.append(re.sub('[\n\t\xa0]','',item.find('a').get_text())) # sub메소드 사용법 검토하기 cse_url_list.append(csenotice_url + item.find_all('td')[2].find('a')['href']) cse_date_list.append(item.find_all('td')[4].get_text()) # In[15]: # Firebase에 크롤링한 데이터 저장하기 import json from collections import OrderedDict crawling_data = OrderedDict() crawling_data['caunotice'] = {'title':cau_title_list, 'date':cau_date_list, 'url':cau_url_list} crawling_data['library'] = {'title':lib_title_list, 'date':lib_date_list, 'url':"https://library.cau.ac.kr/#/bbs/notice?offset=0&max=20"} crawling_data['dorm'] = {'title':dorm_title_list, 'date':dorm_date_list, 'url':dorm_url_list} crawling_data['ict'] = {'title':ict_title_list, 'date':ict_date_list, 'url':ict_url_list} crawling_data['cse'] = {'title':cse_title_list, 'date':cse_date_list, 'url':cse_url_list} crawling_json = json.dumps(crawling_data, ensure_ascii=False, indent="\t") webpage_ref = ref.child('webpages') webpage_ref.set(json.loads(crawling_json))
30.070352
156
0.723429
0
0
0
0
0
0
0
0
2,482
0.392349
6fa85d4b0b5bfa6ac386b4e088bb46a5cbd9b94a
614
py
Python
compose.py
luyao777/speech-robot
a00c9ac554b7b7a86af4a57d33acb50bbdc17822
[ "Apache-2.0" ]
null
null
null
compose.py
luyao777/speech-robot
a00c9ac554b7b7a86af4a57d33acb50bbdc17822
[ "Apache-2.0" ]
null
null
null
compose.py
luyao777/speech-robot
a00c9ac554b7b7a86af4a57d33acb50bbdc17822
[ "Apache-2.0" ]
null
null
null
#coding: utf-8 from aip import AipSpeech from config import DefaultConfig as opt class composer(): def __init__(self): pass def compose(self,text ='你好'): #百度后台获取的秘�? APP_ID = opt.baidu_app_id API_KEY = opt.baidu_api_key SECRET_KEY =opt.baidu_secret_key client = AipSpeech(APP_ID, API_KEY, SECRET_KEY) result = client.synthesis(text,'zh',1,{ 'vol':5,}) file_name = 'ans.mp3' if not isinstance(result, dict): with open(file_name, 'wb') as f: f.write(result) return file_name
26.695652
55
0.583062
551
0.866352
0
0
0
0
0
0
74
0.116352
6fa87cb16c669518081acc3c339dbfde1687dc05
8,754
py
Python
tests/test_input_output.py
dpanici/DESC
e98a16394d02411952efc18cc6c009e5226b11e4
[ "MIT" ]
1
2020-11-20T17:17:50.000Z
2020-11-20T17:17:50.000Z
tests/test_input_output.py
dpanici/DESC
e98a16394d02411952efc18cc6c009e5226b11e4
[ "MIT" ]
12
2020-11-19T05:22:13.000Z
2020-12-15T03:50:33.000Z
tests/test_input_output.py
dpanici/DESC
e98a16394d02411952efc18cc6c009e5226b11e4
[ "MIT" ]
null
null
null
import unittest import os import pathlib import h5py from desc.input_reader import InputReader from desc.equilibrium_io import hdf5Writer, hdf5Reader from desc.configuration import Configuration, Equilibrium #from desc.input_output import read_input #class TestIO(unittest.TestCase): # """tests for input/output functions""" # # def test_min_input(self): # dirname = os.path.dirname(__file__) # filename = os.path.join(dirname, 'MIN_INPUT') # inputs = read_input(filename) # # self.assertEqual(len(inputs), 26) class TestInputReader(unittest.TestCase): def setUp(self): self.argv0 = [] self.argv1 = ['nonexistant_input_file'] self.argv2 = ['./tests/MIN_INPUT'] def test_no_input_file(self): with self.assertRaises(NameError): ir = InputReader(cl_args=self.argv0) def test_nonexistant_input_file(self): with self.assertRaises(FileNotFoundError): ir = InputReader(cl_args=self.argv1) def test_min_input(self): ir = InputReader(cl_args=self.argv2) #self.assertEqual(ir.args.prog, 'DESC', 'Program is incorrect.') self.assertEqual(ir.args.input_file[0], self.argv2[0], 'Input file name does not match') #self.assertEqual(ir.output_path, self.argv2[0] + '.output', # 'Default output file does not match.') self.assertEqual(ir.input_path, str(pathlib.Path('./'+self.argv2[0]).resolve()), 'Path to input file is incorrect.') #Test defaults self.assertFalse(ir.args.plot, 'plot is not default False') self.assertFalse(ir.args.quiet, 'quiet is not default False') self.assertFalse(ir.args.verbose, 'verbose is not default False') #self.assertEqual(ir.args.vmec_path, '', "vmec path is not default ''") #self.assertFalse(ir.args.gpuID, 'gpu argument was given') self.assertFalse(ir.args.numpy, 'numpy is not default False') self.assertEqual(os.environ['DESC_USE_NUMPY'], '', 'numpy environment ' 'variable incorrect with default argument') self.assertFalse(ir.args.version, 'version is not default False') self.assertEqual(len(ir.inputs), 28, 'number of inputs does not match ' 'number expected in MIN_INPUT') # test equality of arguments def test_np_environ(self): argv = self.argv2 + ['--numpy'] ir = InputReader(cl_args=argv) self.assertEqual(os.environ['DESC_USE_NUMPY'], 'True', 'numpy ' 'environment variable incorrect on use') def test_quiet_verbose(self): ir = InputReader(self.argv2) self.assertEqual(ir.inputs['verbose'], 1, "value of inputs['verbose'] " "incorrect on no arguments") argv = self.argv2 + ['-v'] ir = InputReader(argv) self.assertEqual(ir.inputs['verbose'], 2, "value of inputs['verbose'] " "incorrect on verbose argument") argv.append('-q') ir = InputReader(argv) self.assertEqual(ir.inputs['verbose'], 0, "value of inputs['verbose'] " "incorrect on quiet argument") def test_vmec_to_desc_input(self): pass class MockObject: def __init__(self): self._save_attrs_ = ['a', 'b', 'c'] class Testhdf5Writer(unittest.TestCase): def setUp(self): self.filename = 'writer_test_file' self.file_mode = 'w' def test_given_filename(self): writer = hdf5Writer(self.filename, self.file_mode) self.assertFalse(writer.check_type(writer.target)) self.assertTrue(writer.check_type(writer.base)) self.assertTrue(writer._close_base_) writer.close() self.assertFalse(writer._close_base_) def test_given_file(self): f = h5py.File(self.filename, self.file_mode) writer = hdf5Writer(f, self.file_mode) self.assertTrue(writer.check_type(writer.target)) self.assertTrue(writer.check_type(writer.base)) self.assertFalse(writer._close_base_) #with self.assertWarns(RuntimeWarning): # writer.close() self.assertFalse(writer._close_base_) f.close() def test_close_on_delete(self): writer = hdf5Writer(self.filename, self.file_mode) with self.assertRaises(OSError): newwriter = hdf5Writer(self.filename, self.file_mode) del writer newwriter = hdf5Writer(self.filename, self.file_mode) del newwriter def test_write_dict(self): thedict = {'1':1, '2':2, '3':3} writer = hdf5Writer(self.filename, self.file_mode) writer.write_dict(thedict) writer.write_dict(thedict, where=writer.sub('subgroup')) with self.assertRaises(SyntaxError): writer.write_dict(thedict, where='not a writable type') writer.close() f = h5py.File(self.filename, 'r') g = f['subgroup'] for key in thedict.keys(): self.assertTrue(key in f.keys()) self.assertTrue(key in g.keys()) f.close() def test_write_obj(self): mo = MockObject() writer = hdf5Writer(self.filename, self.file_mode) #writer should throw runtime warning if any save_attrs are undefined with self.assertWarns(RuntimeWarning): writer.write_obj(mo) writer.close() writer = hdf5Writer(self.filename, self.file_mode) for name in mo._save_attrs_: setattr(mo, name, name) writer.write_obj(mo) groupname = 'initial' writer.write_obj(mo, where=writer.sub(groupname)) writer.close() f = h5py.File(self.filename, 'r') for key in mo._save_attrs_: self.assertTrue(key in f.keys()) self.assertTrue(groupname in f.keys()) initial = f[groupname] for key in mo._save_attrs_: self.assertTrue(key in initial.keys()) f.close() class Testhdf5Reader(unittest.TestCase): def setUp(self): self.filename = 'reader_test_file' self.file_mode = 'r' self.thedict = {'a':'a', 'b':'b', 'c':'c'} f = h5py.File(self.filename, 'w') self.subgroup = 'subgroup' g = f.create_group(self.subgroup) for key in self.thedict.keys(): f.create_dataset(key, data=self.thedict[key]) g.create_dataset(key, data=self.thedict[key]) f.close() def test_given_filename(self): reader = hdf5Reader(self.filename) self.assertFalse(reader.check_type(reader.target)) self.assertTrue(reader.check_type(reader.base)) self.assertTrue(reader._close_base_) reader.close() self.assertFalse(reader._close_base_) def test_given_file(self): f = h5py.File(self.filename, self.file_mode) reader = hdf5Reader(f) self.assertTrue(reader.check_type(reader.target)) self.assertTrue(reader.check_type(reader.base)) self.assertFalse(reader._close_base_) #with self.assertWarns(RuntimeWarning): # reader.close() self.assertFalse(reader._close_base_) f.close() #def test_close_on_delete(self): # reader = hdf5Reader(self.filename) # with self.assertRaises(OSError): # newreader = hdf5Reader(self.filename) # del reader # newreader = hdf5Reader(self.filename) # del newreader def test_read_dict(self): reader = hdf5Reader(self.filename) newdict = {} newsubdict = {} otherdict = {} reader.read_dict(newdict) reader.read_dict(newsubdict, where=reader.sub(self.subgroup)) with self.assertRaises(SyntaxError): reader.read_dict(otherdict, where='not a readable type') reader.close() if type(newdict['a']) is bytes: for key in newdict.keys(): newdict[key] = newdict[key].decode('ascii') for key in newsubdict.keys(): newsubdict[key] = newsubdict[key].decode('ascii') self.assertTrue(self.thedict == newdict) self.assertTrue(self.thedict == newsubdict) def test_read_obj(self): mo = MockObject() reader = hdf5Reader(self.filename) reader.read_obj(mo) mo._save_attrs_ += '4' with self.assertWarns(RuntimeWarning): reader.read_obj(mo) del mo._save_attrs_[-1] submo = MockObject() reader.read_obj(submo, where=reader.sub(self.subgroup)) for key in mo._save_attrs_: self.assertTrue(hasattr(mo, key)) self.assertTrue(hasattr(submo, key)) def test_load_configuration(self): pass def test_load_equilibrium(self): pass
37.09322
79
0.629312
8,199
0.9366
0
0
0
0
0
0
1,957
0.223555
6fa98703634598fbfefb544679b794421049f04d
880
py
Python
backend/vcdat/test_end_to_end.py
CDAT/vcdat
0d257da607bd2ed064917922af29247c6c0aaae1
[ "BSD-3-Clause" ]
4
2018-03-29T01:51:37.000Z
2019-09-11T14:07:34.000Z
backend/vcdat/test_end_to_end.py
CDAT/vcdat
0d257da607bd2ed064917922af29247c6c0aaae1
[ "BSD-3-Clause" ]
101
2018-03-20T16:58:20.000Z
2019-11-25T19:26:52.000Z
backend/vcdat/test_end_to_end.py
CDAT/vcdat
0d257da607bd2ed064917922af29247c6c0aaae1
[ "BSD-3-Clause" ]
1
2018-10-22T20:50:25.000Z
2018-10-22T20:50:25.000Z
from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.support import expected_conditions as EC import pytest # Declare Fixtures # -------------------------------------------------------------------- @pytest.fixture() def driver(): driver = webdriver.Chrome() driver.implicitly_wait(5) driver.get("localhost:5000") yield driver driver.close() # End to End testing with Selenium # -------------------------------------------------------------------- @pytest.mark.selenium def test_server_running(driver): assert "vCDAT" in driver.title @pytest.mark.selenium def test_variable_loads(driver): app = driver.find_element_by_xpath("//div[@id='app']") print("xxx found app xxx") app_container = driver.find_element_by_xpath("//div[@id='app-container']") print("xxx found app_container xxx")
26.666667
78
0.621591
0
0
144
0.163636
515
0.585227
0
0
309
0.351136
6fa9d472e775eb87721d162cdd4f797206aefbc8
264
py
Python
scripts/makeToast.py
zgrannan/Technical-Theatre-Assistant
8928e5f4f179f75f92035e898d102dd55f32e3f3
[ "MIT" ]
3
2017-01-05T20:02:23.000Z
2017-10-02T19:55:58.000Z
scripts/makeToast.py
zgrannan/Technical-Theatre-Assistant
8928e5f4f179f75f92035e898d102dd55f32e3f3
[ "MIT" ]
1
2016-05-17T20:20:19.000Z
2016-05-17T20:20:28.000Z
scripts/makeToast.py
zgrannan/Technical-Theatre-Assistant
8928e5f4f179f75f92035e898d102dd55f32e3f3
[ "MIT" ]
null
null
null
#makes a toast with the given string ID from sys import argv def make_toast (string_id): return "Toast.makeText(getBaseContext(), getString(R.string." + string_id + "), Toast.LENGTH_SHORT).show();" if ( argv[0] == "makeToast.py" ): print make_toast(argv[1])
24
109
0.708333
0
0
0
0
0
0
0
0
139
0.526515
6fab9608b18da127d6b2008d803781b981e8468d
334
py
Python
crisiscleanup/calls/migrations/0011_merge_20180122_2308.py
CrisisCleanup/wcicp-call-service
0a00e092625e2a48c9807737a4b72e343e1ab0b9
[ "Apache-1.1" ]
null
null
null
crisiscleanup/calls/migrations/0011_merge_20180122_2308.py
CrisisCleanup/wcicp-call-service
0a00e092625e2a48c9807737a4b72e343e1ab0b9
[ "Apache-1.1" ]
null
null
null
crisiscleanup/calls/migrations/0011_merge_20180122_2308.py
CrisisCleanup/wcicp-call-service
0a00e092625e2a48c9807737a4b72e343e1ab0b9
[ "Apache-1.1" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.6 on 2018-01-22 23:08 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('calls', '0010_auto_20180119_2117'), ('calls', '0007_auto_20180122_2157'), ] operations = [ ]
19.647059
48
0.658683
184
0.550898
0
0
0
0
0
0
135
0.404192
6faccc1a6a5c598d0d380be6821bb6343c6e2509
572
py
Python
test/market_feature_1/test_nose_plugin.py
StefanRatzke/nose-market-features
e63b2367b77e860c919d3a33612a3ba6ff632f5f
[ "Apache-2.0" ]
5
2015-01-12T10:04:15.000Z
2018-12-20T13:49:47.000Z
test/market_feature_1/test_nose_plugin.py
StefanRatzke/nose-market-features
e63b2367b77e860c919d3a33612a3ba6ff632f5f
[ "Apache-2.0" ]
16
2015-10-06T12:35:20.000Z
2019-04-01T15:05:17.000Z
test/market_feature_1/test_nose_plugin.py
StefanRatzke/nose-market-features
e63b2367b77e860c919d3a33612a3ba6ff632f5f
[ "Apache-2.0" ]
2
2015-03-02T09:49:11.000Z
2019-03-26T15:27:41.000Z
from unittest import skip import unittest2 from nose.plugins.attrib import attr from nose.tools import assert_equals @attr('test_nose_plugin') class TestNosePlugin(unittest2.TestCase): def setUp(self): pass def tearDown(self): pass def test_one(self): """first test, simulation passing test""" assert_equals(1, 1) def test_one6(self): """first test, simulation passing test""" assert_equals(1, 1) def test_three(self): """third test, simulation failing test""" assert_equals(1, 1)
21.185185
49
0.653846
425
0.743007
0
0
451
0.788462
0
0
141
0.246503
6fad4b2d42f41ae40846094b93b5343afe778c0f
2,359
py
Python
charmcraft/manifest.py
aznashwan/charmcraft
9310ddaf800307b7ff96438173766309f7cb616f
[ "Apache-2.0" ]
32
2020-05-21T09:19:52.000Z
2022-03-31T17:05:59.000Z
charmcraft/manifest.py
aznashwan/charmcraft
9310ddaf800307b7ff96438173766309f7cb616f
[ "Apache-2.0" ]
417
2020-05-11T14:06:02.000Z
2022-03-31T16:15:59.000Z
charmcraft/manifest.py
aznashwan/charmcraft
9310ddaf800307b7ff96438173766309f7cb616f
[ "Apache-2.0" ]
44
2020-05-27T09:33:42.000Z
2022-03-30T14:34:03.000Z
# Copyright 2020-2021 Canonical Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # For further info, check https://github.com/canonical/charmcraft """Charmcraft manifest.yaml related functionality.""" import datetime import logging import pathlib from typing import Optional, List import yaml from charmcraft import __version__, config, linters logger = logging.getLogger(__name__) def create_manifest( basedir: pathlib.Path, started_at: datetime.datetime, bases_config: Optional[config.BasesConfiguration], linting_results: List[linters.CheckResult], ): """Create manifest.yaml in basedir for given base configuration. For packing bundles, `bases` will be skipped when bases_config is None. Charms should always include a valid bases_config. :param basedir: Directory to create Charm in. :param started_at: Build start time. :param bases_config: Relevant bases configuration, if any. :returns: Path to created manifest.yaml. """ content = { "charmcraft-version": __version__, "charmcraft-started-at": started_at.isoformat() + "Z", } # Annotate bases only if bases_config is not None. if bases_config is not None: bases = [ { "name": r.name, "channel": r.channel, "architectures": r.architectures, } for r in bases_config.run_on ] content["bases"] = bases # include the linters results (only for attributes) attributes_info = [ {"name": result.name, "result": result.result} for result in linting_results if result.check_type == linters.CheckType.attribute ] content["analysis"] = {"attributes": attributes_info} filepath = basedir / "manifest.yaml" filepath.write_text(yaml.dump(content)) return filepath
31.039474
75
0.693514
0
0
0
0
0
0
0
0
1,325
0.561679
6fae14b3638b39a8b273b347bee6855c94403d97
5,034
py
Python
ricnn/RICNN.py
jiangruoqiao/RICNN_RepeatGongCheng-sPaper
6e8ee6955f6c1c60aa5c32e341664fe350902482
[ "Apache-2.0" ]
33
2018-12-02T12:15:39.000Z
2021-12-06T14:10:32.000Z
ricnn/RICNN.py
jiangruoqiao/RICNN_RepeatGongCheng-sPaper
6e8ee6955f6c1c60aa5c32e341664fe350902482
[ "Apache-2.0" ]
5
2019-02-10T20:04:00.000Z
2021-07-03T12:52:20.000Z
ricnn/RICNN.py
jiangruoqiao/RICNN_RepeatGongCheng-sPaper
6e8ee6955f6c1c60aa5c32e341664fe350902482
[ "Apache-2.0" ]
9
2018-12-02T12:39:51.000Z
2020-05-07T08:30:38.000Z
#ecoding:utf-8 import DatasetLoader import RICNNModel import tensorflow as tf import sys import numpy as np import regularization as re import os import trainLoader os.environ["CUDA_VISIBLE_DEVICES"] = "1" TRAIN_FILENAME = '/media/liuqi/Files/dataset/test_mnist_ricnn_raw_100.h5' TEST_FILENAME = '/media/liuqi/Files/dataset/test_mnist_ricnn_raw.h5' TRAIN_LABELS = '/media/liuqi/Files/dataset/rotate_100_simple.h5' TEST_LABELS = '/home/liuqi/Desktop/mnist_rotation_new/mnist_all_rotation_normalized_float_test.amat' LOADED_SIZE = 28 DESIRED_SIZE = 227 # model constants NUMBER_OF_CLASSES = 10 NUMBER_OF_FILTERS = 40 NUMBER_OF_FC_FEATURES = 5120 NUMBER_OF_TRANSFORMATIONS = 8 # optimization constants BATCH_SIZE = 64 TEST_CHUNK_SIZE = 100 ADAM_LEARNING_RATE = 1e-5 PRINTING_INTERVAL = 10 # set seeds np.random.seed(100) tf.set_random_seed(100) x = tf.placeholder(tf.float32, shape=[None, DESIRED_SIZE, DESIRED_SIZE, 1, NUMBER_OF_TRANSFORMATIONS]) y_gt = tf.placeholder(tf.float32, shape=[None, NUMBER_OF_CLASSES]) keep_prob = tf.placeholder(tf.float32) logits, raw_feature, regularization_loss = RICNNModel.define_model(x, keep_prob, NUMBER_OF_CLASSES, NUMBER_OF_FILTERS, NUMBER_OF_FC_FEATURES) with tf.name_scope('loss'): with tf.name_scope('re_loss'): re_loss = re.regu_constraint(raw_feature, logits) with tf.name_scope('sotfmax_loss'): sotfmax_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y_gt)) with tf.name_scope('total_loss'): total_loss = sotfmax_loss train_step = tf.train.AdamOptimizer(ADAM_LEARNING_RATE).minimize(total_loss) correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(y_gt, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) session = tf.Session() session.run(tf.initialize_all_variables()) train_data_loader = trainLoader.DataLoader(TRAIN_FILENAME, TRAIN_LABELS, NUMBER_OF_CLASSES, NUMBER_OF_TRANSFORMATIONS, LOADED_SIZE, DESIRED_SIZE) test_data_loader = DatasetLoader.DataLoader(TEST_FILENAME, TEST_LABELS, NUMBER_OF_CLASSES, NUMBER_OF_TRANSFORMATIONS, LOADED_SIZE, DESIRED_SIZE) test_size = test_data_loader.all()[1].shape[0] assert test_size % TEST_CHUNK_SIZE == 0 number_of_test_chunks = test_size / TEST_CHUNK_SIZE while (True): batch = train_data_loader.next_batch(BATCH_SIZE) # next_batch from the loader txt_name = "accary_ricnn.txt" txt_file = file(txt_name, "a+") if (train_data_loader.is_new_epoch()): train_accuracy = session.run(accuracy, feed_dict={x : batch[0], y_gt : batch[1], keep_prob : 1.0}) print_loss = session.run(re_loss,feed_dict={x : batch[0], y_gt : batch[1], keep_prob : 1.0}) print_loss_1 = session.run(sotfmax_loss, feed_dict={x: batch[0], y_gt: batch[1], keep_prob: 1.0}) print(print_loss) print(print_loss_1) train_context = "epochs:" + str(train_data_loader.get_completed_epochs()) + '\n' txt_file.write(train_context) loss_context = "softmax_loss:" + str(print_loss_1) + '\n' txt_file.write(loss_context) txt_file.close() print("completed_epochs %d, training accuracy %g" % (train_data_loader.get_completed_epochs(), train_accuracy)) sys.stdout.flush() if (train_data_loader.get_completed_epochs() % PRINTING_INTERVAL == 0): sum = 0.0 xt_name = "accary_ricnn.txt" txt_file = file(txt_name, "a+") for chunk_index in xrange(number_of_test_chunks): chunk = test_data_loader.next_batch(TEST_CHUNK_SIZE) sum += session.run(accuracy, feed_dict={x : chunk[0], y_gt : chunk[1], keep_prob : 1.0}) test_accuracy = sum / number_of_test_chunks new_context = "testing accuracy: " + str(test_accuracy) + '\n' txt_file.write(new_context) txt_file.close() print("testing accuracy %g" % test_accuracy) sys.stdout.flush() session.run(train_step, feed_dict={x : batch[0], y_gt : batch[1], keep_prob : 0.5})
43.025641
106
0.585419
0
0
0
0
0
0
0
0
567
0.112634
6fae2120fe92d529be7069156c9a883d0d04d5b4
820
py
Python
mcot/core/_scripts/gcoord/split.py
MichielCottaar/mcot.core
de00c15b946a99a048694f3d8b6ad822a835b299
[ "MIT" ]
null
null
null
mcot/core/_scripts/gcoord/split.py
MichielCottaar/mcot.core
de00c15b946a99a048694f3d8b6ad822a835b299
[ "MIT" ]
null
null
null
mcot/core/_scripts/gcoord/split.py
MichielCottaar/mcot.core
de00c15b946a99a048694f3d8b6ad822a835b299
[ "MIT" ]
null
null
null
#!/usr/bin/env python """Extract radial, sulcal, and gyral orientations from gyral coordinate NIFTI file""" def main(): import argparse parser = argparse.ArgumentParser("Extract radial, sulcal, and gyral dyads from a coord NIFTI file") parser.add_argument('coord', help='name of the coord file') parser.add_argument('-b', '--base', help='Basename of the output files') parser.add_argument('-r', '--radial', help='Filename for the radial output (overrides the --base option)') parser.add_argument('-s', '--sulcal', help='Filename for the sulcal output (overrides the --base option)') parser.add_argument('-g', '--gyral', help='Filename for the gyral output (overrides the --base option)') args = parser.parse_args() from mcot.core.surface import utils utils.gcoord_split(args)
45.555556
110
0.704878
0
0
0
0
0
0
0
0
470
0.573171
6faf92769295dcd3722767bcf2f74a8c180b6d9e
3,558
py
Python
src/pyshark/packet/fields.py
Lovemma/pyshark
06d00edacf75aa4a9abd77e0c8cab8de33ea27fb
[ "MIT" ]
10
2018-09-13T15:50:43.000Z
2021-01-30T19:55:36.000Z
src/pyshark/packet/fields.py
Lovemma/pyshark
06d00edacf75aa4a9abd77e0c8cab8de33ea27fb
[ "MIT" ]
1
2019-09-09T14:15:34.000Z
2019-09-09T14:15:34.000Z
src/pyshark/packet/fields.py
Lovemma/pyshark
06d00edacf75aa4a9abd77e0c8cab8de33ea27fb
[ "MIT" ]
9
2018-07-24T09:32:55.000Z
2021-01-22T21:23:06.000Z
import binascii from pyshark.packet.common import Pickleable, SlotsPickleable class LayerField(SlotsPickleable): """ Holds all data about a field of a layer, both its actual value and its name and nice representation. """ # Note: We use this object with slots and not just a dict because # it's much more memory-efficient (cuts about a third of the memory). __slots__ = ['name', 'showname', 'raw_value', 'show', 'hide', 'pos', 'size', 'unmaskedvalue'] def __init__(self, name=None, showname=None, value=None, show=None, hide=None, pos=None, size=None, unmaskedvalue=None): self.name = name self.showname = showname self.raw_value = value self.show = show self.pos = pos self.size = size self.unmaskedvalue = unmaskedvalue if hide and hide == 'yes': self.hide = True else: self.hide = False def __repr__(self): return '<LayerField %s: %s>' % (self.name, self.get_default_value()) def get_default_value(self): """ Gets the best 'value' string this field has. """ val = self.show if not val: val = self.raw_value if not val: val = self.showname return val @property def showname_value(self): """ For fields which do not contain a normal value, we attempt to take their value from the showname. """ if self.showname and ': ' in self.showname: return self.showname.split(': ', 1)[1] @property def showname_key(self): if self.showname and ': ' in self.showname: return self.showname.split(': ', 1)[0] @property def binary_value(self): """ Converts this field to binary (assuming it's a binary string) """ return binascii.unhexlify(self.raw_value) @property def int_value(self): """ Returns the int value of this field (assuming it's an integer integer). """ return int(self.raw_value) @property def hex_value(self): """ Returns the int value of this field if it's in base 16 (either as a normal number or in a "0xFFFF"-style hex value) """ return int(self.raw_value, 16) base16_value = hex_value class LayerFieldsContainer(str, Pickleable): """ An object which contains one or more fields (of the same name). When accessing member, such as showname, raw_value, etc. the appropriate member of the main (first) field saved in this container will be shown. """ def __new__(cls, main_field, *args, **kwargs): value = main_field.get_default_value() if value is None: value = '' obj = str.__new__(cls, value, *args, **kwargs) obj.fields = [main_field] return obj def __dir__(self): return dir(type(self)) + list(self.__dict__.keys()) + dir(self.main_field) def add_field(self, field): self.fields.append(field) @property def main_field(self): return self.fields[0] @property def alternate_fields(self): """ Return the alternate values of this field containers (non-main ones). """ return self.fields[1:] @property def all_fields(self): """ Returns all fields in a list, the main field followed by the alternate fields. """ return self.fields def __getattr__(self, item): return getattr(self.main_field, item)
29.65
124
0.603991
3,474
0.976391
0
0
1,407
0.395447
0
0
1,302
0.365936
6faffdb266238fb5626bfa67ef31c69f49889449
1,264
py
Python
tasks/swipe_card.py
devBezel/among_us_tasker
dd13c13a7d2d776143522ccfa27696d69524707b
[ "MIT" ]
null
null
null
tasks/swipe_card.py
devBezel/among_us_tasker
dd13c13a7d2d776143522ccfa27696d69524707b
[ "MIT" ]
null
null
null
tasks/swipe_card.py
devBezel/among_us_tasker
dd13c13a7d2d776143522ccfa27696d69524707b
[ "MIT" ]
null
null
null
import pyautogui import time import datetime class SwipeCard: def __init__(self): self.resolution = pyautogui.size() def resolve_task(self): try: hide_card_position = pyautogui.center( pyautogui.locateOnScreen(f"assets/tasks/swipe_card/main.png", confidence=0.7)) pyautogui.click(hide_card_position[0], hide_card_position[1]) time.sleep(1) card_position = pyautogui.center( pyautogui.locateOnScreen(f"assets/tasks/swipe_card/card.png", confidence=0.8)) pyautogui.moveTo(card_position[0], card_position[1]) pyautogui.mouseDown(button="left") mouse_pos_x = card_position[0] while (mouse_pos_x < 1450): pyautogui.moveTo(mouse_pos_x, card_position[1]) mouse_pos_x += 60 pyautogui.click() return True except Exception as e: print(e) def log(self): time = datetime.datetime.now() print( f"[{time.hour}:{time.minute}][ZADANIE] Rozwiązauje kartę w adminie" ) def run(self): return self.resolve_task()
29.395349
79
0.557753
1,219
0.962875
0
0
0
0
0
0
145
0.114534
6fb000a6fd5b519a73bbb7413dd210206c96960d
370
py
Python
python/geeksforgeeks/arrays/rearrengment/reverse_a_string.py
othonreyes/code_problems
6e65b26120b0b9d6e5ac7342a4d964696b7bd5bf
[ "MIT" ]
null
null
null
python/geeksforgeeks/arrays/rearrengment/reverse_a_string.py
othonreyes/code_problems
6e65b26120b0b9d6e5ac7342a4d964696b7bd5bf
[ "MIT" ]
null
null
null
python/geeksforgeeks/arrays/rearrengment/reverse_a_string.py
othonreyes/code_problems
6e65b26120b0b9d6e5ac7342a4d964696b7bd5bf
[ "MIT" ]
null
null
null
# https://www.geeksforgeeks.org/write-a-program-to-reverse-an-array-or-string/ # Time: O(n) # Space: 1 def reverseByMiddles(arr): n = len(arr) limit = n//2 for i in range(limit): temp = arr[i] arr[i] = arr[(n-1)-i] arr[(n-1)-i] = temp return arr arr = [1,2,3] result = reverseByMiddles(arr) print(result) print(reverseByMiddles(arr = [1,2,3,4]))
18.5
78
0.627027
0
0
0
0
0
0
0
0
100
0.27027
6fb0bb046f2c82f4fc248ab9913d7e957fa16a08
1,397
py
Python
test_service.py
cmput401-fall2018/web-app-ci-cd-with-travis-ci-derek-repka
c724a2b921fdb1e6ba1200b477a4add291941107
[ "MIT" ]
null
null
null
test_service.py
cmput401-fall2018/web-app-ci-cd-with-travis-ci-derek-repka
c724a2b921fdb1e6ba1200b477a4add291941107
[ "MIT" ]
4
2018-10-09T17:16:38.000Z
2021-06-10T20:56:30.000Z
test_service.py
cmput401-fall2018/web-app-ci-cd-with-travis-ci-derek-repka
c724a2b921fdb1e6ba1200b477a4add291941107
[ "MIT" ]
null
null
null
from service import Service from unittest import TestCase from mock import patch import sys class TestService(TestCase): @patch('service.Service.bad_random', return_value=10) def test_bad_random(self, bad_random): self.assertEqual(bad_random(), 10) @patch('service.Service.bad_random', return_value=10) def test_divide(self, bad_random): x = Service() self.assertEqual(x.divide(2),5) self.assertEqual(x.divide(-2),-5) bad_random.return_value=-10 self.assertEqual(x.divide(2),-5) bad_random.return_value=0 self.assertEqual(x.divide(sys.maxsize),0) self.assertEqual(x.divide(-sys.maxsize+1),0) def test_abs_plus(self): x=Service() self.assertEqual(x.abs_plus(10),11) self.assertEqual(x.abs_plus(0),1) self.assertEqual(x.abs_plus(-10),11) self.assertEqual(x.abs_plus(-sys.maxsize+1),sys.maxsize) self.assertEqual(x.abs_plus(10),11) @patch('service.Service.bad_random', return_value=10) def test_complicated_function(self, bad_random): x = Service() results = x.complicated_function(20) self.assertEqual(results[0], 0.5) self.assertEqual(results[1], 0) bad_random.return_value=-13 results = x.complicated_function(-1) self.assertEqual(results[0], 13) self.assertEqual(results[1], 1) bad_random.return_value=0 results = x.complicated_function(sys.maxsize) self.assertEqual(results[0], 0) self.assertEqual(results[1], 0)
27.94
58
0.740873
1,301
0.931281
0
0
1,013
0.725125
0
0
84
0.060129
6fb2b10f3d4883634b84a549a2f3de0c0993ed24
1,512
py
Python
libweasyl/libweasyl/alembic/versions/eff79a07a88d_use_timestamp_column_for_latest_.py
akash143143/weasyl
be42a2313e657e97c4a48432379e37b6a3d4a4af
[ "Apache-2.0" ]
111
2016-05-18T04:18:18.000Z
2021-11-03T02:05:19.000Z
libweasyl/libweasyl/alembic/versions/eff79a07a88d_use_timestamp_column_for_latest_.py
akash143143/weasyl
be42a2313e657e97c4a48432379e37b6a3d4a4af
[ "Apache-2.0" ]
1,103
2016-05-29T05:17:53.000Z
2022-03-31T18:12:40.000Z
libweasyl/libweasyl/alembic/versions/eff79a07a88d_use_timestamp_column_for_latest_.py
TheWug/weasyl
a568a542cc58c11e30621fb672c701531d4306a8
[ "Apache-2.0" ]
47
2016-05-29T20:48:37.000Z
2021-11-12T09:40:40.000Z
"""Use TIMESTAMP column for latest submission Revision ID: eff79a07a88d Revises: 83e6b2a46191 Create Date: 2017-01-08 22:20:43.814375 """ # revision identifiers, used by Alembic. revision = 'eff79a07a88d' down_revision = '83e6b2a46191' from alembic import op # lgtm[py/unused-import] import sqlalchemy as sa # lgtm[py/unused-import] import libweasyl from libweasyl.legacy import UNIXTIME_OFFSET def upgrade(): op.alter_column( 'profile', 'latest_submission_time', new_column_name='latest_submission_time_old', ) op.add_column( 'profile', sa.Column('latest_submission_time', libweasyl.models.helpers.ArrowColumn(), nullable=False, server_default='epoch'), ) op.execute( "UPDATE profile SET latest_submission_time = TIMESTAMP WITHOUT TIME ZONE 'epoch' + " "(latest_submission_time_old - %d) * INTERVAL '1 second'" % (UNIXTIME_OFFSET,)) op.drop_column('profile', 'latest_submission_time_old') def downgrade(): op.alter_column( 'profile', 'latest_submission_time', new_column_name='latest_submission_time_new', ) op.add_column( 'profile', sa.Column('latest_submission_time', libweasyl.models.helpers.WeasylTimestampColumn(), nullable=False, server_default='0'), ) op.execute( "UPDATE profile SET latest_submission_time = extract(epoch from latest_submission_time_new) + %d" % (UNIXTIME_OFFSET,)) op.drop_column('profile', 'latest_submission_time_new')
30.857143
130
0.707011
0
0
0
0
0
0
0
0
765
0.505952
6fb43ce461d11d32148db76a6319e68f78bca70e
3,499
py
Python
MBTA/step1_group.py
404nofound/MBTA_Python
eb5c1bb3fe5f2640dc42949402955c0f73e1c8b1
[ "Apache-2.0" ]
1
2019-04-15T04:39:13.000Z
2019-04-15T04:39:13.000Z
MBTA/step1_group.py
404nofound/MBTA_Python
eb5c1bb3fe5f2640dc42949402955c0f73e1c8b1
[ "Apache-2.0" ]
null
null
null
MBTA/step1_group.py
404nofound/MBTA_Python
eb5c1bb3fe5f2640dc42949402955c0f73e1c8b1
[ "Apache-2.0" ]
null
null
null
import pandas as pd import numpy as np import os # Function, divided all data into groups by time period, like [1AM-3AM; 3AM-5Am ...] def binning(column, points, labels=None, month=0, stop=0): ''' Notes: The Row Data from MBTA webiste The Time format is from 3:00 to 27:00, means 3:00 AM today to next day 3:00 AM And in the csv file, it use int to replace date format, like 300 means 3:00 AM; 1500 means 3:00 PM :param column: use which column to divide, here we use TIME_PERIOD column :param points: the break points we use to divide :param labels: the labels for result groups that have been divided :param month: used to record error :param stop: used to record error ''' # Get max time and min time from data minval = column.min() maxval = column.max() # Handle break points and labels errors and print while maxval <= points[len(points)-1]: print ('Month: ' + str(month) + ' Stop: ' + stop) del points[len(points)-1] del labels[len(points)-1] while minval >= points[0]: print ('Month: ' + str(month) + ' Stop: ' + stop) del points[0] del labels[0] # The full break points includes min, max time break_points = [minval] + points + [maxval] # If user doesn't provide labels, using int number to replace, here I have provided labels, so it doesn't work if not labels: labels = range(len(points)+1) # cut() function to divide data into groups and return them columnbin = pd.cut(column, bins=break_points, labels=labels, include_lowest=True) return columnbin # Function, make directory. if exist, do nothing def mkdir(path): folder = os.path.exists(path) if not folder: os.makedirs(path) # Using Pandas read every months' row data, from January to July, there only 7 months provide by MBTA this year until now for month in range(1,8): csvfile = pd.read_csv('/Users/Eddy/Desktop/Python_MBTA/MBTA_Raw_Entry_Data/2018_0' + str(month) + '.csv') # Format file to prepare data analysis df = pd.DataFrame(csvfile) # Divide data into different part group by stop id grouped = df.groupby('GTFS_STOP_ID', as_index=False) # For every stop's data, using binning() function to divide into different time period for stop, group in grouped: # Define break points points = [500, 700, 900, 1100, 1300, 1500, 1700, 1900, 2100, 2300, 2500] # Define labels labels = ['3AM-5AM', '5AM-7AM', '7AM-9AM', '9AM-11AM', '11AM-1PM', '1PM-3PM', '3PM-5PM', '5PM-7PM', '7PM-9PM', '9PM-11PM', '11PM-1AM', '1AM-3AM'] # Create new column [TIME_PERIOD_Bin] for the result returned by binning() function group['TIME_PERIOD_Bin'] = binning(group['TIME_PERIOD'], points, labels, month, stop) # Format all the data again df_station = pd.DataFrame(group) # Until now, all data have been grouped by stop_id, and then grouped by time period that we create group_time = df_station.groupby('TIME_PERIOD_Bin') # Make directory to store new csv files mkdir('/Users/Eddy/Desktop/Python_MBTA/Step1/' + str(month)) # Calculate the sum of entry people number for every stops and every periods data1 = pd.DataFrame(group_time['STATION_ENTRIES'].agg(np.sum)) # Write into the csv files data1.to_csv('/Users/Eddy/Desktop/Python_MBTA/Step1/' + str(month) + "/" + stop + '.csv')
38.877778
121
0.656759
0
0
0
0
0
0
0
0
2,027
0.579308
6fb582e0d7d4fa8f242a226b9d6f0299b62ae75d
1,574
py
Python
tests/dags/test_job_operator_jinja.py
Fahadsaadullahkhan/KubernetesJobOperator
d96f9498667f937503d1e45142060904674f823f
[ "MIT" ]
null
null
null
tests/dags/test_job_operator_jinja.py
Fahadsaadullahkhan/KubernetesJobOperator
d96f9498667f937503d1e45142060904674f823f
[ "MIT" ]
null
null
null
tests/dags/test_job_operator_jinja.py
Fahadsaadullahkhan/KubernetesJobOperator
d96f9498667f937503d1e45142060904674f823f
[ "MIT" ]
null
null
null
from utils import default_args from datetime import timedelta from airflow import DAG from airflow_kubernetes_job_operator import ( KubernetesJobOperator, JobRunnerDeletePolicy, KubernetesLegacyJobOperator, ) dag = DAG( "kub-job-op-test-jinja", default_args=default_args, description="Test base job operator", schedule_interval=None, catchup=False, user_defined_macros={ "test_macro": lambda a: f"my {a}", "default_image": "ubuntu", }, ) namespace = None envs = { "TIC_COUNT": 3, "PASS_ARG": "a test", "JINJA_ENV": "{{ ds }}", } default_delete_policy = JobRunnerDeletePolicy.Never KubernetesJobOperator( task_id="test-job-success", namespace=namespace, image="{{default_image}}", body_filepath="./templates/test_job.success.jinja.yaml", envs=envs, dag=dag, delete_policy=default_delete_policy, jinja_job_args={"test": "lama"}, ) # bash_script = """ # #/usr/bin/env bash # echo "Legacy start for taskid {{ti.task_id}} {{job.test}}" # cur_count=0 # while true; do # cur_count=$((cur_count + 1)) # if [ "$cur_count" -ge "$TIC_COUNT" ]; then # break # fi # date # sleep 1 # done # echo "Complete" # """ # KubernetesLegacyJobOperator( # task_id="legacy-test-job-success", # image="{{default_image}}", # cmds=["bash", "-c", bash_script], # dag=dag, # is_delete_operator_pod=True, # env_vars=envs, # delete_policy=default_delete_policy, # ) if __name__ == "__main__": dag.clear(reset_dag_runs=True) dag.run()
22.169014
60
0.653113
0
0
0
0
0
0
0
0
779
0.494917
6fb591a1133b9da158581aa46d45eeabf6264943
6,458
py
Python
spacecapsule/executor.py
zengzhilong/space-capsule
26fd0bd42f83c918dfb06bb188009971406e7965
[ "Apache-2.0" ]
7
2022-02-18T03:14:43.000Z
2022-03-16T08:38:55.000Z
spacecapsule/executor.py
zengzhilong/space-capsule
26fd0bd42f83c918dfb06bb188009971406e7965
[ "Apache-2.0" ]
6
2022-03-10T12:16:59.000Z
2022-03-18T01:19:00.000Z
spacecapsule/executor.py
zengzhilong/space-capsule
26fd0bd42f83c918dfb06bb188009971406e7965
[ "Apache-2.0" ]
3
2022-02-17T08:40:33.000Z
2022-03-29T01:38:46.000Z
import json import jsonpath import paramiko from spacecapsule.history import store_experiment, rollback_command from subprocess import Popen, PIPE from spacecapsule.k8s import prepare_api, copy_tar_file_to_namespaced_pod, executor_command_inside_namespaced_pod from spacecapsule.template import chaosblade_prepare_script, resource_path, chaosblade_inject, chaosblade_prepare, \ chaosblade_jvm_delay, chaosblade_prepare_script_vm def bash_executor(create_script, create_template, create_rollback_args, rollback_template_file, args): # TODO 部分参数需要executor选择 script = create_script(create_template, args) process = Popen(script, shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE) out, err = process.communicate() args.update(create_rollback_args(args)) store_experiment(args, rollback_command(rollback_template_file, args), out.decode(), err.decode()) def inject_code(namespace, pod, process_name, pid, classname, methodname, kube_config, script_file, script_name, experiment_name): args = locals() agent_uid, api_instance, stderr = chaosblade_jvm_prepare(args, kube_config, namespace, pod) print("Prepare finished, start to inject!") # Ask k8s_executor to inject target code inject_command = chaosblade_prepare_script(chaosblade_inject, args) inject_msg, stderr = executor_command_inside_namespaced_pod(api_instance, namespace, pod, inject_command) if stderr is not None: print(stderr) experiment_uid = jsonpath.jsonpath(json.loads(inject_msg), 'result') # Save the UID which blade create args.update(agent_uid=agent_uid, experiment_uid=experiment_uid[0]) args.update(desc=args) store_experiment(args, rollback_command('chaosbladeJvm-rollback.sh', args), inject_msg, stderr) def delay_code(namespace, pod, process, pid, classname, methodname, time, offset, kube_config, experiment_name): args = locals() agent_uid, api_instance, stderr = chaosblade_jvm_prepare(args, kube_config, namespace, pod) delay_command = chaosblade_prepare_script(chaosblade_jvm_delay,args) delay_msg, delay_err = executor_command_inside_namespaced_pod(api_instance, namespace, pod, delay_command) experiment_uid = jsonpath.jsonpath(json.loads(delay_msg), 'result') # Save the UID which blade create args.update(agent_uid=agent_uid, experiment_uid=experiment_uid[0]) args.update(desc=args) store_experiment(args, rollback_command('chaosbladeJvm-rollback.sh', args), "Success", stderr) def chaosblade_jvm_prepare(args, kube_config, namespace, pod): api_instance = prepare_api(kube_config) check_result, _ = check_chaosblade_exists(api_instance, namespace, pod) print('Check result', check_result) if check_result == 'False': print('Copy file') copy_tar_file_to_namespaced_pod(api_instance, namespace, pod, resource_path('./resources/chaosblade-exec'), '/opt/chaosblade') copy_tar_file_to_namespaced_pod(api_instance, namespace, pod, resource_path('./resources/chaosblade-jvm'), '/opt/chaosblade') copy_tar_file_to_namespaced_pod(api_instance, namespace, pod, resource_path('./resources/chaosblade-module'), '/opt/chaosblade') out, err = executor_command_inside_namespaced_pod(api_instance, namespace, pod, [ "bash", "-c", "chmod -R 755 /opt/chaosblade" ]) else: print('Chaosblade Exist') print('Copy file finished') prepare_args = {'process': 'java'} prepare_command = chaosblade_prepare_script(chaosblade_prepare, prepare_args) prepare_msg, stderr = executor_command_inside_namespaced_pod(api_instance, namespace, pod, prepare_command) print(prepare_msg, stderr) agent_uid = jsonpath.jsonpath(json.loads(prepare_msg), 'result') return agent_uid[0], api_instance, stderr def check_chaosblade_exists(api_instance, namespace, pod): commands = ["bash", "-c", "[ -d /opt/chaosblade ] && echo True || echo False"] check_msg, check_err = executor_command_inside_namespaced_pod(api_instance, namespace, pod, commands) return check_msg, check_err def ssh_executor(ip, user, pwd, command): ssh = paramiko.SSHClient() key = paramiko.AutoAddPolicy() ssh.set_missing_host_key_policy(key) ssh.connect(ip, 22, user, pwd, timeout=5) return ssh.exec_command(command) def chaosblade_ssh_executor(ip, user, pwd, command, experiment_name): args = locals() ssh = paramiko.SSHClient() key = paramiko.AutoAddPolicy() ssh.set_missing_host_key_policy(key) ssh.connect(ip, 22, user, pwd, timeout=5) stdin, stdout, stderr = ssh_executor(ip, user, pwd, command) exec_msg = stdout.readline().replace('\n', '') experiment_uid = jsonpath.jsonpath(json.loads(exec_msg), 'result') args['rollback_command'] = '/opt/chaosblade/blade destroy ' + experiment_uid[0] store_experiment(args, rollback_command('chaosblade-ssh-rollback.sh', args), exec_msg, stderr.read().decode()) def chaosblade_ssh_jvm_executor(ip, user, pwd, process_name, pid, classname, methodname, script_file, script_name, experiment_name): args = locals() ssh = paramiko.SSHClient() key = paramiko.AutoAddPolicy() ssh.set_missing_host_key_policy(key) ssh.connect(ip, 22, user, pwd, timeout=5) prepare_args = {'pid': pid} prepare_command = chaosblade_prepare_script_vm(chaosblade_prepare, prepare_args) stdin, stdout, stderr = ssh_executor(ip, user, pwd, prepare_command) prepare_msg = stdout.readline().replace('\n', '') print(prepare_command) print(prepare_msg, stderr.readlines()) agent_uid = jsonpath.jsonpath(json.loads(prepare_msg), 'result') inject_command = chaosblade_prepare_script_vm(chaosblade_inject, args) stdin, stdout, stderr = ssh_executor(ip, user, pwd, inject_command) inject_msg = stdout.readline().replace('\n', '') experiment_uid = jsonpath.jsonpath(json.loads(inject_msg), 'result') print('exe', experiment_uid) print('agent', agent_uid) # Save the UID which blade create args.update(agent_uid=agent_uid[0], experiment_uid=experiment_uid[0]) args.update() store_experiment(args, rollback_command('chaosblade-ssh-jvm-rollback.sh', args), inject_msg, stderr.read().decode())
48.19403
120
0.722979
0
0
0
0
0
0
0
0
795
0.122799
6fb7c5d5fb34e77d36095b18c408e6edbe184b8f
2,952
py
Python
experiments/2d_shallowwater/gen.py
flabowski/POD-UQNN
1c81be432e69d24ae894828f42918fbc1fe54bc1
[ "MIT" ]
15
2020-05-29T11:42:14.000Z
2022-03-20T03:53:44.000Z
experiments/2d_shallowwater/gen.py
flabowski/POD-UQNN
1c81be432e69d24ae894828f42918fbc1fe54bc1
[ "MIT" ]
null
null
null
experiments/2d_shallowwater/gen.py
flabowski/POD-UQNN
1c81be432e69d24ae894828f42918fbc1fe54bc1
[ "MIT" ]
11
2020-06-09T01:16:22.000Z
2021-04-27T08:53:02.000Z
"""POD-NN modeling for 1D, unsteady Burger Equation.""" #%% Imports import sys import os import pickle import numpy as np sys.path.append(os.path.join("..", "..")) from poduqnn.podnnmodel import PodnnModel from poduqnn.mesh import read_multi_space_sol_input_mesh from poduqnn.handling import clean_dir, split_dataset from hyperparams import HP as hp resdir = "cache" clean_dir(resdir) # Getting data from the files # fake_x = np.zeros(hp["n_s"] + hp["n_s_tst"]) # test_size = hp["n_s_tst"] / (hp["n_s"] + hp["n_s_tst"]) # train_tst_idx = split_dataset(fake_x, fake_x, test_size, idx_only=True) train_tst_idx = ([129, 13, 161, 10, 3, 4, 68, 19, 108, 63, 62, 147, 117, 113, 165, 80, 124, 33, 41, 37, 79, 184, 154, 83, 102, 190, 195, 148, 46, 114, 16, 155, 121, 104, 120, 58, 53, 78, 160, 193, 126, 115, 95, 127, 166, 131, 49, 100, 84, 35, 12, 27, 118, 167, 66, 56, 106, 175, 143, 97, 87, 1, 183, 111, 36, 158, 153, 199, 17, 31, 177, 194, 182, 59, 187, 130, 163, 92, 48, 96, 82, 6, 123, 98, 192, 43, 26, 181, 170, 134, 72, 50, 24, 174, 122, 103, 71, 138, 110, 7, 65, 51, 28, 173, 172, 34, 90, 119, 185, 15, 186, 101, 85, 60, 75, 39, 38, 5, 141, 89, 57, 144, 64, 67, 171, 157, 94, 70, 142, 54, 74, 146, 191, 112, 107, 189, 30, 32, 133, 169, 151, 23, 21, 99, 2, 22, 116, 91, 145, 178, 137, 135, 40, 73, 47, 52, 25, 93, 128, 88, 109, 44, 29, 198, 159, 125, 11, 45, 197, 149, 69, 188, 164, 0, 18, 176, 9, 168, 77, 132], [76, 42, 179, 61, 105, 136, 86, 196, 8, 14, 139, 20, 150, 152, 180, 162, 140, 81, 55, 156]) with open(os.path.join("cache", "train_tst_idx.pkl"), "wb") as f: pickle.dump(train_tst_idx, f) datadir = "data" mu_path = os.path.join(datadir, "INPUT_MONTE_CARLO.dat") # x_mesh, connectivity, X_v, U = \ # read_multi_space_sol_input_mesh(hp["n_s"], 1, 1, train_tst_idx[0], # hp["mesh_idx"], datadir, mu_path, # hp["mu_idx"]) # np.save(os.path.join("cache", "x_mesh.npy"), x_mesh) # np.save(os.path.join("cache", "connectivity.npy"), connectivity) # np.save(os.path.join("cache", "X_v.npy"), X_v) # np.save(os.path.join("cache", "U.npy"), U) x_mesh = np.load(os.path.join("cache", "x_mesh.npy")) connectivity = np.load(os.path.join("cache", "connectivity.npy")) X_v = np.load(os.path.join("cache", "X_v.npy")) U = np.load(os.path.join("cache", "U.npy")) # x_mesh = np.load(os.path.join("cache", "x_mesh.npy")) # connectivity = np.load(os.path.join("cache", "connectivity.npy")) # X_v = np.load(os.path.join("cache", "X_v.npy")) # U = np.load(os.path.join("cache", "U.npy")) #%% Init the model model = PodnnModel(resdir, hp["n_v"], x_mesh, hp["n_t"]) #%% Generate the dataset from the mesh and params X_v_train, v_train, \ X_v_val, v_val, \ U_val = model.convert_multigpu_data(U, X_v, hp["train_val"], hp["eps"]) model.initVNNs(hp["n_M"], hp["h_layers"], hp["lr"], hp["lambda"], hp["adv_eps"], hp["soft_0"], hp["norm"])
50.033898
910
0.618225
0
0
0
0
0
0
0
0
1,230
0.416667
6fb84b781b83af75ecf875a208c9ad2d89873dec
13,981
py
Python
template_container_human/labels/slice_7.py
lkondratova/Brainplot
3c8a88c1995dedeaa5cbd88ee71499c7cf9c571d
[ "MIT" ]
null
null
null
template_container_human/labels/slice_7.py
lkondratova/Brainplot
3c8a88c1995dedeaa5cbd88ee71499c7cf9c571d
[ "MIT" ]
null
null
null
template_container_human/labels/slice_7.py
lkondratova/Brainplot
3c8a88c1995dedeaa5cbd88ee71499c7cf9c571d
[ "MIT" ]
null
null
null
coordinates_01EE00 = ((121, 126), (121, 132), (121, 134), (121, 135), (121, 137), (121, 138), (121, 139), (121, 140), (121, 141), (122, 114), (122, 115), (122, 116), (122, 117), (122, 119), (122, 125), (122, 127), (122, 128), (122, 142), (123, 110), (123, 111), (123, 112), (123, 113), (123, 120), (123, 124), (123, 126), (123, 130), (123, 132), (123, 133), (123, 134), (123, 135), (123, 136), (123, 137), (123, 138), (123, 139), (123, 140), (123, 141), (123, 144), (124, 107), (124, 109), (124, 114), (124, 115), (124, 116), (124, 117), (124, 118), (124, 120), (124, 124), (124, 125), (124, 126), (124, 127), (124, 128), (124, 129), (124, 131), (124, 132), (124, 133), (124, 134), (124, 135), (124, 136), (124, 137), (124, 138), (124, 139), (124, 140), (124, 141), (124, 142), (124, 146), (125, 105), (125, 110), (125, 111), (125, 112), (125, 113), (125, 114), (125, 115), (125, 116), (125, 117), (125, 118), (125, 119), (125, 120), (125, 122), (125, 124), (125, 125), (125, 126), (125, 127), (125, 128), (125, 129), (125, 130), (125, 131), (125, 132), (125, 133), (125, 134), (125, 135), (125, 136), (125, 137), (125, 138), (125, 139), (125, 140), (125, 141), (125, 142), (125, 143), (125, 144), (125, 148), (126, 103), (126, 107), (126, 108), (126, 109), (126, 110), (126, 111), (126, 112), (126, 113), (126, 114), (126, 115), (126, 116), (126, 117), (126, 118), (126, 119), (126, 120), (126, 124), (126, 125), (126, 126), (126, 127), (126, 128), (126, 129), (126, 130), (126, 131), (126, 132), (126, 133), (126, 134), (126, 135), (126, 136), (126, 137), (126, 138), (126, 139), (126, 140), (126, 141), (126, 142), (126, 143), (126, 144), (126, 145), (126, 146), (126, 149), (127, 102), (127, 105), (127, 106), (127, 107), (127, 108), (127, 109), (127, 110), (127, 111), (127, 112), (127, 113), (127, 114), (127, 115), (127, 116), (127, 117), (127, 118), (127, 119), (127, 120), (127, 121), (127, 122), (127, 123), (127, 124), (127, 125), (127, 126), (127, 127), (127, 128), (127, 129), (127, 130), (127, 131), (127, 132), (127, 133), (127, 134), (127, 135), (127, 136), (127, 137), (127, 138), (127, 139), (127, 140), (127, 141), (127, 142), (127, 143), (127, 144), (127, 145), (127, 146), (127, 147), (127, 148), (127, 150), (128, 103), (128, 105), (128, 106), (128, 107), (128, 108), (128, 109), (128, 110), (128, 111), (128, 112), (128, 113), (128, 114), (128, 115), (128, 116), (128, 117), (128, 118), (128, 119), (128, 120), (128, 121), (128, 122), (128, 123), (128, 124), (128, 125), (128, 126), (128, 127), (128, 128), (128, 129), (128, 130), (128, 131), (128, 132), (128, 133), (128, 134), (128, 135), (128, 136), (128, 137), (128, 138), (128, 139), (128, 140), (128, 141), (128, 142), (128, 143), (128, 144), (128, 145), (128, 146), (128, 147), (128, 149), (129, 103), (129, 105), (129, 106), (129, 107), (129, 108), (129, 109), (129, 110), (129, 111), (129, 112), (129, 113), (129, 114), (129, 115), (129, 116), (129, 117), (129, 118), (129, 119), (129, 120), (129, 121), (129, 122), (129, 123), (129, 124), (129, 125), (129, 126), (129, 127), (129, 128), (129, 129), (129, 130), (129, 131), (129, 132), (129, 133), (129, 134), (129, 135), (129, 136), (129, 137), (129, 138), (129, 139), (129, 140), (129, 141), (129, 142), (129, 143), (129, 144), (129, 145), (129, 146), (129, 147), (129, 149), (130, 104), (130, 107), (130, 108), (130, 109), (130, 110), (130, 111), (130, 112), (130, 113), (130, 114), (130, 115), (130, 116), (130, 117), (130, 118), (130, 119), (130, 120), (130, 121), (130, 122), (130, 123), (130, 124), (130, 125), (130, 126), (130, 127), (130, 128), (130, 129), (130, 130), (130, 131), (130, 132), (130, 133), (130, 134), (130, 135), (130, 136), (130, 137), (130, 138), (130, 139), (130, 140), (130, 141), (130, 142), (130, 143), (130, 144), (130, 145), (130, 146), (130, 148), (131, 104), (131, 106), (131, 107), (131, 108), (131, 109), (131, 110), (131, 111), (131, 112), (131, 113), (131, 114), (131, 115), (131, 116), (131, 117), (131, 118), (131, 119), (131, 120), (131, 121), (131, 122), (131, 123), (131, 124), (131, 125), (131, 126), (131, 127), (131, 128), (131, 129), (131, 130), (131, 131), (131, 132), (131, 133), (131, 134), (131, 135), (131, 136), (131, 137), (131, 138), (131, 139), (131, 140), (131, 141), (131, 142), (131, 143), (131, 144), (131, 145), (131, 147), (132, 108), (132, 109), (132, 110), (132, 111), (132, 112), (132, 113), (132, 114), (132, 115), (132, 116), (132, 117), (132, 118), (132, 119), (132, 120), (132, 121), (132, 122), (132, 123), (132, 124), (132, 125), (132, 126), (132, 127), (132, 128), (132, 129), (132, 130), (132, 131), (132, 132), (132, 133), (132, 134), (132, 135), (132, 136), (132, 137), (132, 138), (132, 139), (132, 140), (132, 141), (132, 142), (132, 143), (132, 144), (132, 146), (133, 108), (133, 110), (133, 111), (133, 112), (133, 113), (133, 114), (133, 115), (133, 116), (133, 117), (133, 118), (133, 119), (133, 120), (133, 121), (133, 122), (133, 123), (133, 124), (133, 125), (133, 126), (133, 127), (133, 128), (133, 129), (133, 130), (133, 131), (133, 132), (133, 133), (133, 134), (133, 135), (133, 136), (133, 137), (133, 138), (133, 139), (133, 140), (133, 141), (133, 142), (133, 143), (133, 144), (133, 146), (134, 107), (134, 108), (134, 109), (134, 110), (134, 111), (134, 112), (134, 113), (134, 114), (134, 115), (134, 116), (134, 117), (134, 118), (134, 119), (134, 120), (134, 121), (134, 122), (134, 123), (134, 124), (134, 125), (134, 126), (134, 127), (134, 128), (134, 129), (134, 130), (134, 131), (134, 132), (134, 133), (134, 134), (134, 135), (134, 136), (134, 137), (134, 138), (134, 139), (134, 140), (134, 141), (134, 142), (134, 143), (134, 145), (135, 106), (135, 108), (135, 109), (135, 110), (135, 111), (135, 112), (135, 113), (135, 114), (135, 115), (135, 116), (135, 117), (135, 118), (135, 119), (135, 120), (135, 121), (135, 122), (135, 123), (135, 124), (135, 125), (135, 126), (135, 127), (135, 128), (135, 129), (135, 130), (135, 131), (135, 132), (135, 133), (135, 134), (135, 135), (135, 136), (135, 137), (135, 138), (135, 139), (135, 140), (135, 141), (135, 142), (135, 143), (135, 145), (136, 105), (136, 107), (136, 110), (136, 111), (136, 112), (136, 113), (136, 114), (136, 115), (136, 116), (136, 117), (136, 118), (136, 119), (136, 120), (136, 121), (136, 122), (136, 123), (136, 124), (136, 125), (136, 126), (136, 127), (136, 128), (136, 129), (136, 130), (136, 131), (136, 132), (136, 133), (136, 134), (136, 135), (136, 136), (136, 137), (136, 138), (136, 139), (136, 140), (136, 141), (136, 142), (136, 144), (137, 105), (137, 109), (137, 110), (137, 111), (137, 112), (137, 113), (137, 114), (137, 115), (137, 116), (137, 117), (137, 118), (137, 119), (137, 120), (137, 121), (137, 122), (137, 123), (137, 124), (137, 125), (137, 126), (137, 127), (137, 128), (137, 129), (137, 130), (137, 131), (137, 132), (137, 133), (137, 134), (137, 135), (137, 136), (137, 137), (137, 138), (137, 139), (137, 140), (137, 141), (137, 142), (137, 144), (138, 105), (138, 107), (138, 110), (138, 112), (138, 113), (138, 114), (138, 115), (138, 116), (138, 117), (138, 118), (138, 119), (138, 120), (138, 121), (138, 122), (138, 123), (138, 124), (138, 125), (138, 126), (138, 127), (138, 128), (138, 129), (138, 130), (138, 131), (138, 132), (138, 133), (138, 134), (138, 135), (138, 136), (138, 137), (138, 138), (138, 139), (138, 140), (138, 141), (138, 143), (139, 106), (139, 110), (139, 112), (139, 113), (139, 114), (139, 115), (139, 116), (139, 117), (139, 118), (139, 119), (139, 120), (139, 121), (139, 122), (139, 123), (139, 124), (139, 125), (139, 126), (139, 127), (139, 128), (139, 129), (139, 130), (139, 131), (139, 132), (139, 133), (139, 134), (139, 135), (139, 136), (139, 137), (139, 138), (139, 139), (139, 140), (139, 142), (140, 110), (140, 112), (140, 113), (140, 114), (140, 115), (140, 116), (140, 117), (140, 118), (140, 119), (140, 120), (140, 121), (140, 122), (140, 123), (140, 124), (140, 125), (140, 126), (140, 127), (140, 128), (140, 129), (140, 130), (140, 131), (140, 132), (140, 133), (140, 134), (140, 135), (140, 138), (140, 139), (140, 141), (141, 110), (141, 115), (141, 116), (141, 117), (141, 118), (141, 119), (141, 120), (141, 121), (141, 122), (141, 123), (141, 124), (141, 125), (141, 126), (141, 127), (141, 128), (141, 129), (141, 130), (141, 131), (141, 132), (141, 133), (141, 134), (141, 136), (141, 137), (141, 138), (141, 139), (141, 141), (142, 110), (142, 112), (142, 113), (142, 114), (142, 115), (142, 116), (142, 117), (142, 118), (142, 119), (142, 120), (142, 121), (142, 122), (142, 123), (142, 124), (142, 125), (142, 126), (142, 127), (142, 128), (142, 129), (142, 130), (142, 131), (142, 132), (142, 133), (142, 135), (142, 138), (142, 141), (143, 115), (143, 117), (143, 118), (143, 119), (143, 120), (143, 121), (143, 122), (143, 123), (143, 124), (143, 125), (143, 126), (143, 127), (143, 128), (143, 129), (143, 130), (143, 131), (143, 132), (143, 134), (143, 138), (143, 140), (144, 115), (144, 117), (144, 118), (144, 119), (144, 120), (144, 121), (144, 122), (144, 123), (144, 124), (144, 125), (144, 126), (144, 127), (144, 128), (144, 129), (144, 130), (144, 131), (144, 138), (145, 115), (145, 117), (145, 118), (145, 119), (145, 120), (145, 121), (145, 122), (145, 123), (145, 124), (145, 125), (145, 126), (145, 127), (145, 128), (145, 129), (145, 133), (145, 138), (145, 139), (146, 116), (146, 119), (146, 120), (146, 121), (146, 122), (146, 123), (146, 124), (146, 125), (146, 126), (146, 127), (146, 128), (146, 138), (147, 117), (147, 119), (147, 120), (147, 121), (147, 122), (147, 123), (147, 124), (147, 125), (147, 126), (147, 127), (147, 129), (148, 119), (148, 121), (148, 122), (148, 123), (148, 124), (148, 125), (148, 126), (148, 128), (149, 119), (149, 121), (149, 122), (149, 123), (149, 128), (150, 118), (150, 120), (150, 121), (150, 125), (150, 126), (150, 129), (151, 118), (151, 123), (151, 127), (151, 128), (151, 130), (151, 132), (152, 120), (152, 121), (152, 128), (152, 133), ) coordinates_00EE00 = ((98, 135), (99, 121), (99, 122), (99, 135), (99, 136), (100, 120), (100, 122), (100, 135), (101, 114), (101, 120), (101, 123), (101, 129), (101, 135), (101, 137), (102, 114), (102, 119), (102, 121), (102, 123), (102, 128), (102, 130), (102, 136), (103, 114), (103, 119), (103, 121), (103, 122), (103, 123), (103, 125), (103, 126), (103, 130), (104, 112), (104, 115), (104, 118), (104, 120), (104, 123), (104, 128), (104, 130), (105, 111), (105, 114), (105, 116), (105, 117), (105, 119), (105, 120), (105, 121), (105, 122), (105, 123), (105, 124), (105, 125), (105, 126), (105, 127), (105, 128), (105, 129), (105, 130), (105, 132), (106, 111), (106, 113), (106, 114), (106, 115), (106, 118), (106, 120), (106, 123), (106, 125), (106, 126), (106, 127), (106, 128), (106, 129), (106, 130), (106, 134), (107, 111), (107, 113), (107, 114), (107, 115), (107, 116), (107, 117), (107, 118), (107, 120), (107, 123), (107, 124), (107, 125), (107, 126), (107, 127), (107, 128), (107, 129), (107, 130), (107, 131), (107, 132), (107, 134), (108, 111), (108, 113), (108, 114), (108, 115), (108, 116), (108, 117), (108, 118), (108, 119), (108, 120), (108, 123), (108, 126), (108, 127), (108, 128), (108, 129), (108, 130), (108, 131), (108, 132), (108, 133), (108, 135), (109, 111), (109, 115), (109, 116), (109, 117), (109, 118), (109, 119), (109, 120), (109, 121), (109, 123), (109, 124), (109, 125), (109, 128), (109, 129), (109, 130), (109, 131), (109, 132), (109, 133), (109, 134), (109, 136), (110, 110), (110, 112), (110, 113), (110, 114), (110, 117), (110, 118), (110, 119), (110, 120), (110, 121), (110, 123), (110, 126), (110, 127), (110, 128), (110, 129), (110, 130), (110, 131), (110, 132), (110, 133), (110, 134), (110, 135), (110, 138), (111, 109), (111, 111), (111, 115), (111, 117), (111, 118), (111, 119), (111, 120), (111, 122), (111, 128), (111, 130), (111, 131), (111, 132), (111, 133), (111, 134), (111, 135), (111, 136), (111, 140), (112, 107), (112, 111), (112, 117), (112, 119), (112, 120), (112, 121), (112, 123), (112, 128), (112, 130), (112, 131), (112, 132), (112, 133), (112, 134), (112, 135), (112, 136), (112, 137), (112, 138), (113, 105), (113, 109), (113, 110), (113, 111), (113, 113), (113, 118), (113, 120), (113, 121), (113, 122), (113, 123), (113, 124), (113, 125), (113, 126), (113, 127), (113, 130), (113, 131), (113, 132), (113, 133), (113, 134), (113, 135), (113, 136), (113, 137), (113, 138), (113, 139), (113, 141), (114, 105), (114, 107), (114, 108), (114, 109), (114, 110), (114, 111), (114, 114), (114, 118), (114, 119), (114, 120), (114, 121), (114, 122), (114, 123), (114, 128), (114, 129), (114, 131), (114, 132), (114, 133), (114, 134), (114, 135), (114, 136), (114, 137), (114, 138), (114, 139), (114, 141), (115, 105), (115, 107), (115, 108), (115, 109), (115, 110), (115, 111), (115, 112), (115, 113), (115, 116), (115, 117), (115, 118), (115, 119), (115, 120), (115, 121), (115, 122), (115, 123), (115, 124), (115, 127), (115, 130), (115, 132), (115, 133), (115, 134), (115, 135), (115, 136), (115, 137), (115, 138), (115, 139), (115, 141), (116, 105), (116, 126), (116, 131), (116, 133), (116, 134), (116, 135), (116, 136), (116, 137), (116, 138), (116, 139), (116, 141), (117, 106), (117, 108), (117, 109), (117, 110), (117, 111), (117, 112), (117, 113), (117, 114), (117, 115), (117, 116), (117, 117), (117, 118), (117, 119), (117, 120), (117, 121), (117, 122), (117, 124), (117, 131), (117, 140), (118, 132), (118, 134), (118, 135), (118, 136), (118, 138), (118, 140), (119, 132), (119, 135), (119, 139), (119, 140), ) coordinates_E0E1E1 = ((126, 127), (126, 134), (127, 118), (127, 126), (127, 134), (128, 118), (128, 125), (128, 128), (129, 119), (129, 128), (129, 129), (130, 123), (130, 128), (130, 130), (131, 122), (131, 128), (131, 129), (132, 122), (132, 128), (134, 122), (136, 121), (137, 121), ) coordinates_E1E1E1 = ((111, 125), (112, 114), )
582.541667
865
0.500036
0
0
0
0
0
0
0
0
0
0
6fb8b1b58b2f38e1b4575b537fc9d0698a19d441
565
py
Python
day1/ex4.py
dsky1990/python_30days
3a9d8a29bd32979be1f4ef01be44999073dab5c4
[ "MIT" ]
1
2018-10-20T14:45:31.000Z
2018-10-20T14:45:31.000Z
day1/ex4.py
dsky1990/python_30days
3a9d8a29bd32979be1f4ef01be44999073dab5c4
[ "MIT" ]
null
null
null
day1/ex4.py
dsky1990/python_30days
3a9d8a29bd32979be1f4ef01be44999073dab5c4
[ "MIT" ]
null
null
null
cars = 100 space_in_a_car = 4.0 drivers = 30 passengers = 90 cars_not_driven = cars -drivers cars_driven = drivers carpool_carpacity = cars_driven * space_in_a_car average_passengers_per_car = passengers / cars_driven print("There are", cars, "cars available") print("There are only", drivers, "drivers available") print("There will be", cars_not_driven, "empty cars today") print("We can transport", carpool_carpacity, "people today") print("We have", passengers, "to carpool today") print("We need to put about", average_passengers_per_car, "people in each car")
37.666667
79
0.771681
0
0
0
0
0
0
0
0
196
0.346903
6fb8b2f2709c0ffde62b6fe00c0e82cc6d0aeb7e
6,599
py
Python
faculty_xval/bin/jobs_cross_validation_executor.py
facultyai/faculty-xval
73468b6c7b2be1a21728ac01f0fe16e7c20110a0
[ "Apache-2.0" ]
4
2019-04-10T17:57:29.000Z
2019-04-17T16:13:49.000Z
faculty_xval/bin/jobs_cross_validation_executor.py
facultyai/faculty-xval
73468b6c7b2be1a21728ac01f0fe16e7c20110a0
[ "Apache-2.0" ]
4
2019-04-12T08:26:24.000Z
2019-04-20T06:21:09.000Z
faculty_xval/bin/jobs_cross_validation_executor.py
facultyai/faculty-xval
73468b6c7b2be1a21728ac01f0fe16e7c20110a0
[ "Apache-2.0" ]
1
2021-04-04T10:48:14.000Z
2021-04-04T10:48:14.000Z
import json import logging import os import click import numpy as np from keras import backend as K from keras.models import load_model as keras_load from sklearn.base import clone as sklearn_clone from sklearn.externals import joblib from faculty_xval.utilities import keras_clone_and_compile LOGGER = logging.getLogger(__name__) logging.basicConfig(format="%(asctime)s %(message)s", level=logging.INFO) def load_model(path, model_type): """ Load the model using the method appropriate for its type ("keras" or other). Parameters ---------- path: String File path to look for the model. model_type: String String specifying the type of model to be loaded. Anything other than "keras" will be loaded using joblib. """ if model_type == "keras": # Load Keras model. LOGGER.info("Loading Keras model") model = keras_load(path) LOGGER.info("Model loading complete") else: # Load model of other type. LOGGER.info("Loading model with joblib") model = joblib.load(path) LOGGER.info("Model loading complete") return model def clone_model(model, model_type): """ Clone the model using the method appropriate for its type ("keras", "sklearn" or other). Reset the state of the model so that each train/test split is independent. Parameters ---------- model: Scikit-Learn/Keras Model Model to be cloned. model_type: String String specifying the type of model to be cloned. Recognised options are "keras" and "sklearn". Any other option results in the function returning the input model, thus doing nothing. Returns ------- cloned: Scikit-Learn/Keras Model The cloned model with reset state. """ if model_type == "keras": cloned = keras_clone_and_compile(model) elif model_type == "sklearn": cloned = sklearn_clone(model) else: cloned = model LOGGER.warning( "Model type not recognised. " + "Cannot reset the state of the model automatically" ) return cloned def validate( model, features, targets, i_train, i_test, fit_kwargs=None, predict_kwargs=None ): """ Fit the model on specific training data, and predict on specific test data. Parameters ---------- model: sklearn/keras Model Model to cross-validate. features: list of np.array Features for training/testing. For multi-input models, the list contains multiple Numpy arrays. targets: list of np.array Targets for training/testing. For multi-output models, the list contains multiple Numpy arrays. i_train: np.array np.array of indices corresponding to the rows used for training i_test: np.array np.array of indices corresponding to the rows used for testing fit_kwargs: dict, optional, default = None Dictionary of any additional kwargs to be used by the model during fitting. predict_kwargs: dict, optional, default = None Dictionary of any additional kwargs to be used by the model during prediction. Returns -------- predictions: np.array Model predictions. """ if fit_kwargs is None: fit_kwargs = {} if predict_kwargs is None: predict_kwargs = {} LOGGER.info("Training the model") features_train = [x[i_train] for x in features] targets_train = [y[i_train] for y in targets] if len(features_train) == 1: features_train = features_train[0].copy() if len(targets_train) == 1: targets_train = targets_train[0].copy() model.fit(features_train, targets_train, **fit_kwargs) LOGGER.info("Generating model predictions") features_test = [x[i_test] for x in features] if len(features_test) == 1: features_test = features_test[0].copy() predictions = model.predict(features_test, **predict_kwargs) return np.array(predictions) @click.command() @click.argument("input_paths") def main(input_paths): """ Validate the model for the different train/test splits corresponding to the input file paths. Parameters ---------- input_paths: String String that defines the paths to load job instructions from. Distinct paths are separated by a colon ":". """ # Get a list of input file paths. input_paths = [x.strip() for x in input_paths.split(":")] # Load data. LOGGER.info("Loading features and targets from disk") with open(input_paths[0], "r") as f: _instructions = json.load(f) with open(_instructions["features_path"], "r") as f: features = json.load(f) with open(_instructions["targets_path"], "r") as f: targets = json.load(f) # Convert datasets to Numpy arrays. features = [np.array(x) for x in features] targets = [np.array(y) for y in targets] # Iterate over train/test splits. K.clear_session() for input_path in input_paths: with open(input_path, "r") as f: instructions = json.load(f) LOGGER.info("Processing split {}".format(instructions["split_id"])) # Load model. archetype = load_model(instructions["model_path"], instructions["model_type"]) # Reset the state of the model to ensure # that all splits are independent. LOGGER.info("Cloning the model. Resetting the state of the model") model = clone_model(archetype, instructions["model_type"]) # Run validation on specific training and testing datasets. predictions = validate( model, features, targets, instructions["training_indices"], instructions["test_indices"], fit_kwargs=instructions["fit_kwargs"], predict_kwargs=instructions["predict_kwargs"], ) # Save the predictions alongside an identifier. output_dir = os.path.dirname(input_path) output_path_predictions = os.path.join(output_dir, "output.json") LOGGER.info("Saving predictions to {}".format(output_path_predictions)) with open(output_path_predictions, "w") as f: json.dump({instructions["split_id"]: predictions.tolist()}, f) # Clear session to avoid memory build-up. K.clear_session() del model del archetype if __name__ == "__main__": main()
29.859729
86
0.641612
0
0
0
0
2,417
0.366268
0
0
3,381
0.51235
6fb91a03150c13b0761acd74d5215ec8826d01b1
2,262
py
Python
Solution.py
TheMLGuy/Simple-Web-Scraper
4b4a27e7af3c0cf7bbe5aea4036f52487666dd85
[ "Apache-2.0" ]
null
null
null
Solution.py
TheMLGuy/Simple-Web-Scraper
4b4a27e7af3c0cf7bbe5aea4036f52487666dd85
[ "Apache-2.0" ]
null
null
null
Solution.py
TheMLGuy/Simple-Web-Scraper
4b4a27e7af3c0cf7bbe5aea4036f52487666dd85
[ "Apache-2.0" ]
1
2021-02-06T15:47:04.000Z
2021-02-06T15:47:04.000Z
from bs4 import BeautifulSoup import requests import math import time start_url='https://www.macys.com' domain='https://www.macys.com' ''' get soup ''' def get_soup(url): # get contents from url content='' while content=='': try: content = requests.get(url, headers={'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.100 Safari/537.36'}).content except: time.sleep(5) continue return BeautifulSoup(content,'lxml') # choose lxml parser '''find all anchor tags''' def findAllATags(url): soup = get_soup(url) a_tags = soup.findAll('a') a_tags=[a for a in [a for a in a_tags if 'href' in a.attrs] if a.attrs['href'].find('/shop')==0] return a_tags '''print all 'title' attributes''' def printTitles(url,f): soup=get_soup(domain+url) temp=[i.find('a') for i in soup.findAll('div',{'class':'productThumbnailImage'})] for i in temp: f.write(i['title']+'\n') '''iterate through all pages for each soup object''' def pagination(count, url,f,u): count_=math.ceil(count/60) i=2 printTitles(url,f) u.write(url+'\n') while i<=count_: printTitles(url.replace("?","/Pageindex/"+str(i)+"?"),f) i+=1 '''filehandlers for output.txt and urlHandler.txt''' def fileHandler(): f=open('output.txt','a') return f def urlHandler(): f=open('urlHandler.txt','a') return f '''generates soup object for each url''' def getItems(url): soup=get_soup(domain+url) try: f=fileHandler() u=urlHandler() f.write(soup.find('span', {'id' : 'currentCategory'}).text+'\n') pagination(int(soup.find('span',{'id':'productCount'}).text),url,f, u) except: pass finally: f.close() u.close() '''main function''' if __name__=='__main__': start_time=time.time() items=[] tags=findAllATags(url=start_url) '''executing getItems for tags[12:] because first 11 have no relevant information''' for i in tags[12:]: getItems(i.attrs['href']) print(time.time()-start_time)
29.763158
188
0.59107
0
0
0
0
0
0
0
0
758
0.335102
6fb98dc934dbec999a997933b56e8bd368d485a6
1,243
py
Python
contactnetwork/urls.py
pszgaspar/protwis
4989a67175ef3c95047d795c843cf6b9cf4141fa
[ "Apache-2.0" ]
21
2016-01-20T09:33:14.000Z
2021-12-20T19:19:45.000Z
contactnetwork/urls.py
pszgaspar/protwis
4989a67175ef3c95047d795c843cf6b9cf4141fa
[ "Apache-2.0" ]
75
2016-02-26T16:29:58.000Z
2022-03-21T12:35:13.000Z
contactnetwork/urls.py
pszgaspar/protwis
4989a67175ef3c95047d795c843cf6b9cf4141fa
[ "Apache-2.0" ]
77
2016-01-22T08:44:26.000Z
2022-02-01T15:54:56.000Z
from django.conf.urls import url from contactnetwork import views # from django.views.generic import TemplateView urlpatterns = [ url(r'^clusteringdata$', views.ClusteringData, name='clusteringdata'), url(r'^clustering$', views.Clustering, name='clustering'), url(r'^structure_clustering$', views.Clustering, name='clustering'), url(r'^distances', views.ShowDistances, name='distances'), url(r'^distancedatagroups', views.DistanceDataGroups, name='distancedatagroups'), url(r'^distancedata', views.DistanceData, name='distancedata'), url(r'^interactions[/]?$', views.Interactions, name='interactions'), url(r'^comparative_analysis[/]?$', views.Interactions, name='interactions'), url(r'^interactiondata', views.InteractionData, name='interactiondata'), url(r'^browser[/]?$', views.InteractionBrowser, name='interactionsbrowser'), url(r'^browserdata', views.InteractionBrowserData, name='interactionsbrowserdata'), url(r'^state_contacts[/]?$', views.StateContacts, name='statecontacts'), url(r'^pdbtreedata', views.PdbTreeData, name='pdbtreedata'), url(r'^pdbtabledata', views.PdbTableData, name='pdbtabledata'), url(r'^pdb/(?P<pdbname>\w+)$', views.ServePDB, name='serve_pdb'), ]
51.791667
87
0.722446
0
0
0
0
0
0
0
0
565
0.454545
6fb9c69f0b059e1e502f8dc0059898eb346e1f36
320
py
Python
app.py
jero2rome/HelloWorld-Python
67a4b600415e4c0011e4598efea874d0b49abd79
[ "MIT" ]
null
null
null
app.py
jero2rome/HelloWorld-Python
67a4b600415e4c0011e4598efea874d0b49abd79
[ "MIT" ]
null
null
null
app.py
jero2rome/HelloWorld-Python
67a4b600415e4c0011e4598efea874d0b49abd79
[ "MIT" ]
null
null
null
course = "Python Programming" print(course.upper()) print(course.lower()) print(course.title()) course = " Python Programming" print(course) print(course.strip()) print(course.find("Pro")) print(course.find("pro")) print(course.replace("P", "-")) print("Programming" in course) print("Programming" not in course)
18.823529
34
0.709375
0
0
0
0
0
0
0
0
86
0.26875
6fbc9ebec03dc29c3a7fc5b24ded057f188d61a0
1,401
py
Python
FPN_Backend/api_utility/validators.py
DeeMATT/friendly-invention
c308168b088ad8e65ab6eddcdba22552a9c6987a
[ "MIT" ]
null
null
null
FPN_Backend/api_utility/validators.py
DeeMATT/friendly-invention
c308168b088ad8e65ab6eddcdba22552a9c6987a
[ "MIT" ]
null
null
null
FPN_Backend/api_utility/validators.py
DeeMATT/friendly-invention
c308168b088ad8e65ab6eddcdba22552a9c6987a
[ "MIT" ]
null
null
null
import re from data_transformer.views import stringIsInteger def validateEmailFormat(email): emailPattern = r'^([a-zA-Z0-9_\-\.]+)@([a-zA-Z0-9_\-\.]+)\.([a-zA-Z]{2,5})$' if(re.search(emailPattern, email)): return True return False def validatePhoneFormat(phone): if not stringIsInteger(phone): return False # valid phone format for Nigeria without international dialing code e.g 081******** if phone.startswith('+'): return len(phone) == 14 elif phone.startswith('234'): return len(phone) == 13 else: return len(phone) == 11 def validateThatAStringIsClean(value): regex = re.compile(r'[@_!#$%^&*()<>?/\|}{~:]') return (regex.search(value) == None) def validateThatStringIsEmpty(value): return (len(value.strip()) > 0) def validateThatStringIsEmptyAndClean(value): is_clean = (re.compile(r'[@_!#$%^&*()<>?/\|}{~:]').search(value) == None) not_empty = (len(value.strip()) != 0) return (is_clean and not_empty) def validateThatListIsEmpty(value): return (len(value) > 0) def validateKeys(payload, requiredKeys): # extract keys from payload payloadKeys = list(payload.keys()) # check if extracted keys is present in requiredKeys missingKeys = [] for key in requiredKeys: if key not in payloadKeys: missingKeys.append(key) return missingKeys
24.155172
87
0.635974
0
0
0
0
0
0
0
0
283
0.201999
6fbe42378fbc286f445856d3f64bebf5d1265f7a
1,173
py
Python
app/model.py
hfikry92/fast-api-auth-starter
4d90980da7084961f8f25591aea587509e790f80
[ "MIT" ]
43
2020-12-14T18:19:15.000Z
2022-03-30T05:57:43.000Z
app/model.py
hfikry92/fast-api-auth-starter
4d90980da7084961f8f25591aea587509e790f80
[ "MIT" ]
3
2021-02-19T09:56:35.000Z
2022-03-30T13:26:50.000Z
app/model.py
hfikry92/fast-api-auth-starter
4d90980da7084961f8f25591aea587509e790f80
[ "MIT" ]
16
2020-12-14T02:49:35.000Z
2022-02-15T10:39:39.000Z
from pydantic import BaseModel, Field, EmailStr class PostSchema(BaseModel): id: int = Field(default=None) title: str = Field(...) content: str = Field(...) class Config: schema_extra = { "example": { "title": "Securing FastAPI applications with JWT.", "content": "In this tutorial, you'll learn how to secure your application by enabling authentication using JWT. We'll be using PyJWT to sign, encode and decode JWT tokens...." } } class UserSchema(BaseModel): fullname: str = Field(...) email: EmailStr = Field(...) password: str = Field(...) class Config: schema_extra = { "example": { "fullname": "Abdulazeez Abdulazeez Adeshina", "email": "[email protected]", "password": "weakpassword" } } class UserLoginSchema(BaseModel): email: EmailStr = Field(...) password: str = Field(...) class Config: schema_extra = { "example": { "email": "[email protected]", "password": "weakpassword" } }
27.27907
191
0.535379
1,117
0.952259
0
0
0
0
0
0
388
0.330776
6fbf3fd6784e5fc825699ad96db6d0683069d114
188
py
Python
griffin_powermate/__init__.py
alex-ong/griffin-powermate
59f53647de2fd025b27552c37e22e4c8c176aba6
[ "MIT" ]
11
2015-07-06T03:48:00.000Z
2022-03-08T15:45:02.000Z
griffin_powermate/__init__.py
alex-ong/griffin-powermate
59f53647de2fd025b27552c37e22e4c8c176aba6
[ "MIT" ]
2
2018-03-30T17:11:53.000Z
2018-03-31T10:49:22.000Z
griffin_powermate/__init__.py
alex-ong/griffin-powermate
59f53647de2fd025b27552c37e22e4c8c176aba6
[ "MIT" ]
6
2015-07-10T23:12:38.000Z
2021-07-05T05:17:22.000Z
__version__ = '1.0.2' __author__ = 'Christian Musa <[email protected]>' __url__ = 'https://github.com/crash7/griffin-powermate' __all__ = [] from griffin_powermate import *
31.333333
59
0.718085
0
0
0
0
0
0
0
0
94
0.5
6fc09d38fc6e352436484c44be3ed1f477d458b5
109
py
Python
servermn/core/__init__.py
masterhung0112/servermn
d518f2fa394bb3e22c29e74802357c2aa054f392
[ "Unlicense" ]
null
null
null
servermn/core/__init__.py
masterhung0112/servermn
d518f2fa394bb3e22c29e74802357c2aa054f392
[ "Unlicense" ]
null
null
null
servermn/core/__init__.py
masterhung0112/servermn
d518f2fa394bb3e22c29e74802357c2aa054f392
[ "Unlicense" ]
null
null
null
def init(): # Set locale environment # Set config # Set user and group # init logger pass
18.166667
28
0.59633
0
0
0
0
0
0
0
0
69
0.633028
6fc12a48d65fbf13cb0aa456154ff1b694f2a2ec
3,142
py
Python
flink/test_flink.py
chekanskiy/bi-dataproc-initialization-actions
8682ca537153f50ab58dc081a9d222ec61f8aa8e
[ "Apache-2.0" ]
1
2020-10-28T01:19:16.000Z
2020-10-28T01:19:16.000Z
flink/test_flink.py
chekanskiy/bi-dataproc-initialization-actions
8682ca537153f50ab58dc081a9d222ec61f8aa8e
[ "Apache-2.0" ]
null
null
null
flink/test_flink.py
chekanskiy/bi-dataproc-initialization-actions
8682ca537153f50ab58dc081a9d222ec61f8aa8e
[ "Apache-2.0" ]
null
null
null
import unittest from parameterized import parameterized import os from integration_tests.dataproc_test_case import DataprocTestCase METADATA = 'flink-start-yarn-session=false' class FlinkTestCase(DataprocTestCase): COMPONENT = 'flink' INIT_ACTION = 'gs://dataproc-initialization-actions/flink/flink.sh' TEST_SCRIPT_FILE_NAME = 'validate.sh' def verify_instance(self, name, yarn_session=True): self.upload_test_file(os.path.join( os.path.dirname(os.path.abspath(__file__)), self.TEST_SCRIPT_FILE_NAME ), name) self.__run_test_file(name, yarn_session) self.remove_test_script(self.TEST_SCRIPT_FILE_NAME, name) def __run_test_file(self, name, yarn_session): if yarn_session == True: cmd = 'gcloud compute ssh {} -- "bash {}"'.format( name, self.TEST_SCRIPT_FILE_NAME ) else: cmd = 'gcloud compute ssh {} -- "bash {} {}"'.format( name, self.TEST_SCRIPT_FILE_NAME, yarn_session ) ret_code, stdout, stderr = self.run_command(cmd) self.assertEqual(ret_code, 0, "Failed to run test file. Error: {}".format(stderr)) @parameterized.expand([ ("SINGLE", "1.1", ["m"], METADATA), ("STANDARD", "1.1", ["m"], None), ("HA", "1.1", ["m-0", "m-1", "m-2"], None), ("SINGLE", "1.2", ["m"], METADATA), ("STANDARD", "1.2", ["m"], None), ("HA", "1.2", ["m-0", "m-1", "m-2"], None), ("SINGLE", "1.3", ["m"], METADATA), ("STANDARD", "1.3", ["m"], None), ("HA", "1.3", ["m-0", "m-1", "m-2"], None), ], testcase_func_name=DataprocTestCase.generate_verbose_test_name) def test_flink(self, configuration, dataproc_version, machine_suffixes, metadata): self.createCluster(configuration, self.INIT_ACTION, dataproc_version, metadata=metadata) for machine_suffix in machine_suffixes: self.verify_instance( "{}-{}".format( self.getClusterName(), machine_suffix ) ) @parameterized.expand([ ("STANDARD", "1.1", ["m"], METADATA), ("HA", "1.1", ["m-0", "m-1", "m-2"], METADATA), ("STANDARD", "1.2", ["m"], METADATA), ("HA", "1.2", ["m-0", "m-1", "m-2"], METADATA), ("SINGLE", "1.3", ["m"], METADATA), ("STANDARD", "1.3", ["m"], None), ("HA", "1.3", ["m-0", "m-1", "m-2"], None), ], testcase_func_name=DataprocTestCase.generate_verbose_test_name) def test_flink_with_optional_metadata(self, configuration, dataproc_version, machine_suffixes, metadata): self.createCluster(configuration, self.INIT_ACTION, dataproc_version, metadata=metadata) for machine_suffix in machine_suffixes: self.verify_instance( "{}-{}".format( self.getClusterName(), machine_suffix ), yarn_session=False ) if __name__ == '__main__': unittest.main()
37.404762
109
0.559198
2,912
0.926798
0
0
1,819
0.578931
0
0
556
0.176957
6fc1e91d9ee7bd81df3b499400e72d6a896fdb9d
4,017
py
Python
regression/testplan/firmware_small.py
sld-columbia/nvdla-sw
79538ba1b52b040a4a4645f630e457fa01839e90
[ "Apache-2.0" ]
407
2017-10-25T14:24:25.000Z
2022-03-31T08:02:01.000Z
regression/testplan/firmware_small.py
sld-columbia/nvdla-sw
79538ba1b52b040a4a4645f630e457fa01839e90
[ "Apache-2.0" ]
227
2017-11-02T07:15:38.000Z
2022-01-19T02:29:51.000Z
regression/testplan/firmware_small.py
sld-columbia/nvdla-sw
79538ba1b52b040a4a4645f630e457fa01839e90
[ "Apache-2.0" ]
199
2017-10-26T07:26:40.000Z
2022-03-27T20:02:13.000Z
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import test_plan import settings class Module(test_plan.Testplan): runScript = settings.KMD_RUNSCRIPT deviceTargets = ['sim', 'ufpga'] def __init__(self): super(Module, self).__init__(__name__) # Convenience globals kmd = Module.runScript devices = Module.deviceTargets ces = ["Core Engine Scheduler"] nn = ["Neural Network"] convd = ["CONV HW - Direct"] convi = ["CONV HW - Image"] convw = ["CONV HW - Winograd"] convp = ["CONV HW - Pipeline"] sdpx1 = ["SDP X1 HW"] sdpx2 = ["SDP X2 HW"] sdpy = ["SDP Y HW"] sdpf = ["SDP HW - Full"] cdp = ["CDP HW"] pdp = ["PDP HW"] def registerNvSmallTests(self, testplan): testplan.append( [0, "Written", kmd, "CONV_D_L0_0_small", None, convd, devices, "Convolution test - Sanity test direct convolution", "Direct convolution, 8x8x128 input cube, 3x3x128 kernel cube and 32 kernels input and weight read from DRAM, no mean and bias data, output written to DRAM through SDP."]) testplan.append( [0, "Written", kmd, "SDP_X1_L0_0_small", None, sdpx1, devices, "SDP test - Sanity test for SDP, only X1 enabled with ALU, X2 and Y disable. No DMA used", "Element wise sum operation in X1, 8x8x32 input cube and 8x8x32 bias cube. Activation function as ReLU"]) testplan.append( [0, "Written", kmd, "CDP_L0_0_small", None, cdp, devices, "CDP test - Sanity test for CDP", "Use only linear table with LUT configured with all 1. 8x8x32 input cube and 8x8x32 output cube."]) testplan.append( [0, "Written", kmd, "PDP_L0_0_small", None, pdp, devices, "PDP test - Sanity test for PDP with max pooling", "Max pooling, 8x8x32 input cube, 8x8x32 output cube, no padding, 1x1 kernel size. No need to compare data. It is enough if task succeeds to pass this test."]) testplan.append( [0, "Written", kmd, "NN_L0_1_small", None, nn, devices, "AlexNet", "AlexNet"]) def registerFirmwareSmallTests(self): testplan = [] registerNvSmallTests(self, testplan) for item in testplan: test = test_plan.Test() test.level = item[0] test.status = item[1] test.runscript = item[2] test.name = item[3] test.options = item[4] test.features = item[5] test.targets = item[6] test.description = item[7] test.dependencies = None self.add_test(test) def registerTests(self): registerFirmwareSmallTests(self) Module.register_tests = registerTests
42.284211
179
0.707742
181
0.045059
0
0
0
0
0
0
2,611
0.649988
6fc2f27600b643c88618b8d387f08bcf982ed303
790
py
Python
peaksql/datasets/narrowpeak.py
vanheeringen-lab/PeakSQL
b9290394605273b3a92815a8662fe22406254bfc
[ "MIT" ]
null
null
null
peaksql/datasets/narrowpeak.py
vanheeringen-lab/PeakSQL
b9290394605273b3a92815a8662fe22406254bfc
[ "MIT" ]
17
2020-02-22T19:05:00.000Z
2020-05-20T10:15:01.000Z
peaksql/datasets/narrowpeak.py
vanheeringen-lab/PeakSQL
b9290394605273b3a92815a8662fe22406254bfc
[ "MIT" ]
4
2020-02-28T12:47:18.000Z
2020-03-06T13:00:20.000Z
import numpy as np from typing import List, Tuple from .base import _DataSet class NarrowPeakDataSet(_DataSet): """ The NarrowPeakDataSet expects that narrowPeak files have been added to the DataBase. """ SELECT_LABEL = ( " Bed.ChromosomeId, Bed.ConditionId, BedVirtual_{assembly}.ChromStart, Bed.Peak" ) def array_from_query( self, query: List[Tuple[int, int, int]], chromstart: int, chromend: int, ) -> np.ndarray: positions = np.zeros((len(self.all_conditions), self.inner_range), dtype=bool) for condition_id, start, peak in query: peak_idx = int(start - chromstart + peak) if 0 <= peak_idx < positions.shape[1]: positions[condition_id, peak_idx] = True return positions
29.259259
88
0.653165
709
0.897468
0
0
0
0
0
0
180
0.227848
6fc517dc6f5fe11349e844166e7ed87944abff49
2,654
py
Python
strip_ansi_escape_codes.py
neilrjones/DevOps-Python-tools
12646de550ba296cf26e4a058e9a1cc1cc723c8f
[ "MIT" ]
1
2022-02-22T00:20:00.000Z
2022-02-22T00:20:00.000Z
strip_ansi_escape_codes.py
neilrjones/DevOps-Python-tools
12646de550ba296cf26e4a058e9a1cc1cc723c8f
[ "MIT" ]
null
null
null
strip_ansi_escape_codes.py
neilrjones/DevOps-Python-tools
12646de550ba296cf26e4a058e9a1cc1cc723c8f
[ "MIT" ]
null
null
null
#!/usr/bin/env python # vim:ts=4:sts=4:sw=4:et # # Author: Hari Sekhon # Date: 2018-09-09 23:06:06 +0100 (Sun, 09 Sep 2018) # # https://github.com/harisekhon/devops-python-tools # # License: see accompanying Hari Sekhon LICENSE file # # If you're using my code you're welcome to connect with me on LinkedIn and optionally send me feedback # to help improve or steer this or other code I publish # pylint: disable=line-too-long # # https://www.linkedin.com/in/harisekhon # """ Strip ANSI Escape Codes from Text String input Works as a standard unix filter program, reading from file arguments or standard input and printing to standard output """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os import sys libdir = os.path.abspath(os.path.join(os.path.dirname(__file__), 'pylib')) sys.path.append(libdir) try: # pylint: disable=wrong-import-position from harisekhon.utils import die, ERRORS, log_option, strip_ansi_escape_codes from harisekhon import CLI except ImportError as _: print('module import failed: %s' % _, file=sys.stderr) print("Did you remember to build the project by running 'make'?", file=sys.stderr) print("Alternatively perhaps you tried to copy this program out without it's adjacent libraries?", file=sys.stderr) sys.exit(4) __author__ = 'Hari Sekhon' __version__ = '0.2' # pylint: disable=too-few-public-methods class StripAnsiEscapeCodes(CLI): # def __init__(self): # # Python 2.x # super(StripAnsiEscapeCodes, self).__init__() # # Python 3.x # # super().__init__() def run(self): if not self.args: self.args.append('-') for arg in self.args: if arg == '-': continue if not os.path.exists(arg): print("'%s' not found" % arg) sys.exit(ERRORS['WARNING']) if os.path.isfile(arg): log_option('file', arg) elif os.path.isdir(arg): log_option('directory', arg) else: die("path '%s' could not be determined as either a file or directory" % arg) for filename in self.args: if filename == '-': for line in sys.stdin: print(strip_ansi_escape_codes(line), end='') else: with open(filename) as filehandle: for line in filehandle: print(strip_ansi_escape_codes(line), end='') if __name__ == '__main__': StripAnsiEscapeCodes().main()
31.223529
119
0.637905
1,100
0.414469
0
0
0
0
0
0
1,198
0.451394
6fc58731a5e67b957a08a7b99ed3506623297e19
301
py
Python
vk_bot/mods/other/counting.py
triangle1984/GLaDOS
39dea7bf8043e791ef079ea1ac6616f95d5b5312
[ "BSD-3-Clause" ]
3
2019-12-12T05:48:34.000Z
2020-12-07T19:23:41.000Z
vk_bot/mods/other/counting.py
anar66/vk-bot
39dea7bf8043e791ef079ea1ac6616f95d5b5312
[ "BSD-3-Clause" ]
1
2019-11-15T14:28:49.000Z
2019-11-15T14:28:49.000Z
vk_bot/mods/other/counting.py
triangle1984/vk-bot
39dea7bf8043e791ef079ea1ac6616f95d5b5312
[ "BSD-3-Clause" ]
5
2019-11-20T14:20:30.000Z
2022-02-05T10:37:01.000Z
from vk_bot.core.modules.basicplug import BasicPlug import time class Counting(BasicPlug): command = ("отсчет",) doc = "Отсчет от 1 до 3" def main(self): for x in range(3, -1, -1): if x == 0: return self.sendmsg(x) time.sleep(1)
25.083333
51
0.538206
252
0.794953
0
0
0
0
0
0
42
0.132492
6fc63d77d8ed73c401918b676d06084cc00b6c87
954
py
Python
wind-oci-marketplace/setup.py
LaudateCorpus1/wind
d10dbc6baa98acab4927ff2b7a880b4727185582
[ "UPL-1.0", "Apache-2.0" ]
1
2022-02-07T15:56:24.000Z
2022-02-07T15:56:24.000Z
wind-oci-marketplace/setup.py
LaudateCorpus1/wind
d10dbc6baa98acab4927ff2b7a880b4727185582
[ "UPL-1.0", "Apache-2.0" ]
null
null
null
wind-oci-marketplace/setup.py
LaudateCorpus1/wind
d10dbc6baa98acab4927ff2b7a880b4727185582
[ "UPL-1.0", "Apache-2.0" ]
1
2022-02-18T01:23:46.000Z
2022-02-18T01:23:46.000Z
## Copyright © 2021, Oracle and/or its affiliates. ## Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl. #!/usr/bin/env python from setuptools import setup setup(name='wind-marketplace-library', version="1.0.0", description='Robot Framework test library for OCI Marketplace', long_description='Robot Framework test library for OCI Marketplace', classifiers=[ 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3.6', 'Framework :: WIND Robot Framework', ], author='[email protected]', author_email='[email protected]', packages=['MarketplaceLibrary'], license = "UPL-1.0", install_requires=[ ], extras_require={ 'dev': [ ] }, platforms='any', include_package_data=True, zip_safe=False)
31.8
105
0.634172
0
0
0
0
0
0
0
0
540
0.565445
6fc8616e9f969ac9e3ee973ff4f5b06bdc7a38e6
17
py
Python
pointcloud2raster/__version__.py
NorthArrowResearch/pointcloud2raster
419d82c9a62947e0258e308d2812f745df09794d
[ "MIT" ]
null
null
null
pointcloud2raster/__version__.py
NorthArrowResearch/pointcloud2raster
419d82c9a62947e0258e308d2812f745df09794d
[ "MIT" ]
null
null
null
pointcloud2raster/__version__.py
NorthArrowResearch/pointcloud2raster
419d82c9a62947e0258e308d2812f745df09794d
[ "MIT" ]
null
null
null
__version__="0.3"
17
17
0.764706
0
0
0
0
0
0
0
0
5
0.294118
6fc8809070d19daecb0e75b0cf66f5240983ed79
1,392
py
Python
api/views.py
oil-rope/oil-and-rope
6d59c87d4809f120417a90c1624952085486bb06
[ "MIT" ]
8
2019-08-27T20:08:22.000Z
2021-07-23T22:49:47.000Z
api/views.py
oil-rope/oil-and-rope
6d59c87d4809f120417a90c1624952085486bb06
[ "MIT" ]
73
2020-03-11T18:07:29.000Z
2022-03-28T18:07:47.000Z
api/views.py
oil-rope/oil-and-rope
6d59c87d4809f120417a90c1624952085486bb06
[ "MIT" ]
4
2020-02-22T19:44:17.000Z
2022-03-08T09:42:45.000Z
from django.http import JsonResponse from django.shortcuts import reverse from django.urls import NoReverseMatch from django.views import View from rest_framework import __version__ as drf_version from rest_framework.exceptions import ValidationError from rest_framework.permissions import AllowAny from rest_framework.response import Response from rest_framework.viewsets import ViewSet from oilandrope import __version__ class ApiVersionView(View): http_method_names = ['get'] data = { 'version': __version__, 'powered_by': 'Django Rest Framework', 'drf_version': drf_version, } def get(self, request, *args, **kwargs): return JsonResponse(self.data) class URLResolverViewSet(ViewSet): """ Returns URL with given resolver and params. """ permission_classes = [AllowAny] def resolve_url(self, request, *args, **kwargs): data = request.data.copy() if 'resolver' not in data: raise ValidationError() resolver = data.pop('resolver') if isinstance(resolver, list): resolver = resolver[0] extra_params = {} for key, value in data.items(): extra_params[key] = value try: url = reverse(resolver, kwargs=extra_params) except NoReverseMatch: url = '#no-url' return Response({'url': url})
27.294118
56
0.66954
962
0.691092
0
0
0
0
0
0
155
0.111351
6fc9a185be50739efc8e58ecf9750c6070063f42
1,525
py
Python
5_AIOps/Mlflow.py
stormsinbrewing/Covid-19-Predictor
36bd768be8ac4aa81de86fe7f6bb592a7a711856
[ "MIT" ]
3
2021-05-22T02:03:57.000Z
2021-05-23T07:45:01.000Z
5_AIOps/Mlflow.py
stormsinbrewing/Covid-19-Predictor
36bd768be8ac4aa81de86fe7f6bb592a7a711856
[ "MIT" ]
null
null
null
5_AIOps/Mlflow.py
stormsinbrewing/Covid-19-Predictor
36bd768be8ac4aa81de86fe7f6bb592a7a711856
[ "MIT" ]
null
null
null
from verta import Client import pickle import mlflow import mlflow.sklearn from mlflow.tracking import MlflowClient import os def downloadArtifact(proj,exp_name,exp_run, serialization): client = Client("http://localhost:3000") proj = client.set_project(proj) expt = client.set_experiment(exp_name) run = client.set_experiment_run(exp_run) if serialization.lower() == 'pickle': run.download_model('model.pkl') def logModel(library, modelName): infile = open('./model.pkl','rb') model = pickle.load(infile) print ('Loaded Model') infile.close() mlflow.set_tracking_uri("sqlite:///mlruns.db") if library.lower() == 'pytorch': mlflow.pytorch.log_model (model, "covid-predictor",registered_model_name=modelName) # mlflow.tensorflow.log_model (tf_saved_model_dir='.',registered_model_name=modelName,tf_meta_graph_tags=[],tf_signature_def_key='covid-predictor', artifact_path='model_dir/') client = MlflowClient() client.transition_model_version_stage( name=modelName, version=1, stage="Production" ) print ('Logged model') def serveModel(modelName): os.environ["MLFLOW_TRACKING_URI"]="sqlite:///mlruns.db" os.system("mlflow models serve -m models:/CovidPredictor/production -p 2000 --no-conda") # Function Calls ("MajorII","CovidPredictor","Version 1","model.pkl","pickle","pytorch") downloadArtifact("MajorII","CovidPredictor","Version 1","pickle") logModel("pytorch","CovidPredictor") #serveModel("CovidPredictor")
36.309524
182
0.72459
0
0
0
0
0
0
0
0
633
0.415082
6fc9dcd451ff1e384504442cc9b3cb27f7b5e6af
3,832
py
Python
src/arclink/apps/misc/dump_db.py
yannikbehr/seiscomp3
ebb44c77092555eef7786493d00ac4efc679055f
[ "Naumen", "Condor-1.1", "MS-PL" ]
94
2015-02-04T13:57:34.000Z
2021-11-01T15:10:06.000Z
src/arclink/apps/misc/dump_db.py
yannikbehr/seiscomp3
ebb44c77092555eef7786493d00ac4efc679055f
[ "Naumen", "Condor-1.1", "MS-PL" ]
233
2015-01-28T15:16:46.000Z
2021-08-23T11:31:37.000Z
src/arclink/apps/misc/dump_db.py
yannikbehr/seiscomp3
ebb44c77092555eef7786493d00ac4efc679055f
[ "Naumen", "Condor-1.1", "MS-PL" ]
95
2015-02-13T15:53:30.000Z
2021-11-02T14:54:54.000Z
#!/usr/bin/env python #***************************************************************************** # dump_db.py # # Dump inventory database in XML format # # (c) 2006 Andres Heinloo, GFZ Potsdam # (c) 2007 Mathias Hoffmann, GFZ Potsdam # # This program is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 2, or (at your option) any later # version. For more information, see http://www.gnu.org/ #***************************************************************************** import sys from seiscomp import logs from seiscomp.db.seiscomp3 import sc3wrap from seiscomp.db.seiscomp3.inventory import Inventory as SC3Inventory from seiscomp.db.seiscomp3.routing import Routing as SC3Routing from seiscomp3 import Core, Client, DataModel, Logging VERSION = "1.2 (2012.313)" class DumpDB(Client.Application): def __init__(self, argc, argv): Client.Application.__init__(self, argc, argv) self.routingMode = False self.addAccess = False self.output_file = None self.setLoggingToStdErr(True) self.setMessagingEnabled(True) self.setDatabaseEnabled(True, True) self.setAutoApplyNotifierEnabled(False) self.setInterpretNotifierEnabled(False) self.setPrimaryMessagingGroup("LISTENER_GROUP") def createCommandLineDescription(self): Client.Application.createCommandLineDescription(self) self.commandline().addGroup("ArcLink") self.commandline().addOption("ArcLink", "routing", "dump routing instead of inventory") self.commandline().addOption("ArcLink", "with-access", "dump access together with routing information") def validateParameters(self): try: if self.commandline().hasOption("routing"): self.routingMode = True if self.commandline().hasOption("with-access"): self.addAccess = True args = self.commandline().unrecognizedOptions() if len(args) != 1: print >>sys.stderr, "Usage: dump_db [options] file" return False self.output_file = args[0] except Exception: logs.print_exc() return False return True def initConfiguration(self): if not Client.Application.initConfiguration(self): return False # force logging to stderr even if logging.file = 1 self.setLoggingToStdErr(True) return True def run(self): try: sc3wrap.dbQuery = self.query() DataModel.Notifier.Enable() DataModel.Notifier.SetCheckEnabled(False) if not self.routingMode: self.inv = SC3Inventory(self.query().loadInventory()) self.inv.load_stations("*") self.inv.load_stations("*", "*") self.inv.load_stations("*", "*", "*") self.inv.load_stations("*", "*", "*", "*") self.inv.load_instruments() self.inv.save_xml(self.output_file, instr=2) else: self.rtn = SC3Routing(self.query().loadRouting()) self.rtn.load_routes("*", "*") if self.addAccess: self.rtn.load_access() self.rtn.save_xml(self.output_file, self.addAccess) except Exception: logs.print_exc() return False return True if __name__ == "__main__": logs.debug = Logging.debug logs.info = Logging.info logs.notice = Logging.notice logs.warning = Logging.warning logs.error = Logging.error app = DumpDB(len(sys.argv), sys.argv) sys.exit(app())
33.034483
111
0.592119
2,684
0.700418
0
0
0
0
0
0
897
0.234081
6fca5a30c5488af2b1fdbc0fc7967e56d0f30371
619
py
Python
ypricemagic/magic.py
cartercarlson/ypricemagic
f17fec155db7fb44ee624cd6e75193f17c6238cf
[ "MIT" ]
1
2022-03-28T16:07:07.000Z
2022-03-28T16:07:07.000Z
ypricemagic/magic.py
cartercarlson/ypricemagic
f17fec155db7fb44ee624cd6e75193f17c6238cf
[ "MIT" ]
null
null
null
ypricemagic/magic.py
cartercarlson/ypricemagic
f17fec155db7fb44ee624cd6e75193f17c6238cf
[ "MIT" ]
null
null
null
import logging from typing import Optional from y import magic from y.datatypes import UsdPrice from y.typing import AnyAddressType, Block logger = logging.getLogger(__name__) def get_price(token: AnyAddressType, block: Optional[Block] = None) -> UsdPrice: logger.warn('ypricemagic is in the process of being migrated to y.' 'y can do all of the same old stuff you expect, plus some new stuff.' 'This method still works for now, but will be removed soon.' 'Please update your scripts to use `y.get_price(token, block)`.') return magic.get_price(token, block)
36.411765
85
0.704362
0
0
0
0
0
0
0
0
248
0.400646
6fcab68471b1398dafce699d3dbe1a96583efdf6
4,248
py
Python
zerver/tests/test_realm_playgrounds.py
moazzammoriani/zulip
ca506f71dc8b733827a6bf532b107291b4839e55
[ "Apache-2.0" ]
3
2021-09-12T05:05:28.000Z
2021-12-30T09:45:20.000Z
zerver/tests/test_realm_playgrounds.py
moazzammoriani/zulip
ca506f71dc8b733827a6bf532b107291b4839e55
[ "Apache-2.0" ]
null
null
null
zerver/tests/test_realm_playgrounds.py
moazzammoriani/zulip
ca506f71dc8b733827a6bf532b107291b4839e55
[ "Apache-2.0" ]
null
null
null
from zerver.lib.actions import do_add_realm_playground from zerver.lib.test_classes import ZulipTestCase from zerver.models import RealmPlayground, get_realm class RealmPlaygroundTests(ZulipTestCase): def test_create_one_playground_entry(self) -> None: iago = self.example_user("iago") payload = { "name": "Python playground", "pygments_language": "Python", "url_prefix": "https://python.example.com", } # Now send a POST request to the API endpoint. resp = self.api_post(iago, "/json/realm/playgrounds", payload) self.assert_json_success(resp) # Check if the actual object exists realm = get_realm("zulip") self.assertTrue( RealmPlayground.objects.filter(realm=realm, name="Python playground").exists() ) def test_create_multiple_playgrounds_for_same_language(self) -> None: iago = self.example_user("iago") data = [ { "name": "Python playground 1", "pygments_language": "Python", "url_prefix": "https://python.example.com", }, { "name": "Python playground 2", "pygments_language": "Python", "url_prefix": "https://python2.example.com", }, ] for payload in data: resp = self.api_post(iago, "/json/realm/playgrounds", payload) self.assert_json_success(resp) realm = get_realm("zulip") self.assertTrue( RealmPlayground.objects.filter(realm=realm, name="Python playground 1").exists() ) self.assertTrue( RealmPlayground.objects.filter(realm=realm, name="Python playground 2").exists() ) def test_invalid_params(self) -> None: iago = self.example_user("iago") payload = { "name": "Invalid URL", "pygments_language": "Python", "url_prefix": "https://invalid-url", } resp = self.api_post(iago, "/json/realm/playgrounds", payload) self.assert_json_error(resp, "url_prefix is not a URL") payload["url_prefix"] = "https://python.example.com" payload["pygments_language"] = "a$b$c" resp = self.api_post(iago, "/json/realm/playgrounds", payload) self.assert_json_error(resp, "Invalid characters in pygments language") def test_create_already_existing_playground(self) -> None: iago = self.example_user("iago") payload = { "name": "Python playground", "pygments_language": "Python", "url_prefix": "https://python.example.com", } resp = self.api_post(iago, "/json/realm/playgrounds", payload) self.assert_json_success(resp) resp = self.api_post(iago, "/json/realm/playgrounds", payload) self.assert_json_error( resp, "Realm playground with this Realm, Pygments language and Name already exists." ) def test_not_realm_admin(self) -> None: hamlet = self.example_user("hamlet") resp = self.api_post(hamlet, "/json/realm/playgrounds") self.assert_json_error(resp, "Must be an organization administrator") resp = self.api_delete(hamlet, "/json/realm/playgrounds/1") self.assert_json_error(resp, "Must be an organization administrator") def test_delete_realm_playground(self) -> None: iago = self.example_user("iago") realm = get_realm("zulip") playground_info = dict( name="Python playground", pygments_language="Python", url_prefix="https://python.example.com", ) playground_id = do_add_realm_playground(realm, acting_user=iago, **playground_info) self.assertTrue(RealmPlayground.objects.filter(name="Python playground").exists()) result = self.api_delete(iago, f"/json/realm/playgrounds/{playground_id + 1}") self.assert_json_error(result, "Invalid playground") result = self.api_delete(iago, f"/json/realm/playgrounds/{playground_id}") self.assert_json_success(result) self.assertFalse(RealmPlayground.objects.filter(name="Python").exists())
38.27027
96
0.62194
4,087
0.9621
0
0
0
0
0
0
1,333
0.313795
6fcb558a97ebc6e7f0af8053d4b5eef0ee0f741f
2,733
py
Python
seisflows/plugins/optimize/NLCG.py
niyiyu2316/seisflows
f861f1bf59b24854e7ca6a0dfc383f2dcd396969
[ "BSD-2-Clause" ]
1
2021-12-01T07:37:57.000Z
2021-12-01T07:37:57.000Z
seisflows/plugins/optimize/NLCG.py
niyiyu/seisflows
f861f1bf59b24854e7ca6a0dfc383f2dcd396969
[ "BSD-2-Clause" ]
null
null
null
seisflows/plugins/optimize/NLCG.py
niyiyu/seisflows
f861f1bf59b24854e7ca6a0dfc383f2dcd396969
[ "BSD-2-Clause" ]
null
null
null
# # This is Seisflows # # See LICENCE file # # ############################################################################### # Import system modules import os # Import Numpy import numpy as np # Local imports from seisflows.tools import unix from seisflows.tools.math import dot from seisflows.tools.tools import loadtxt, savetxt, loadnpy, savenpy class NLCG: """ Nonlinear conjugate gradient method """ def __init__(self, path='.', load=loadnpy, save=savenpy, thresh=1., maxiter=np.inf, precond=None): self.path = path self.load = load self.save = save self.maxiter = maxiter self.thresh = thresh self.precond = precond try: self.iter = loadtxt(self.path+'/'+'NLCG/iter') except IOError: unix.mkdir(self.path+'/'+'NLCG') self.iter = 0 def __call__(self): """ Returns NLCG search direction """ self.iter += 1 savetxt(self.path+'/'+'NLCG/iter', self.iter) unix.cd(self.path) g_new = self.load('g_new') if self.iter == 1: return -g_new, 0 elif self.iter > self.maxiter: print('restarting NLCG... [periodic restart]') self.restart() return -g_new, 1 # compute search direction g_old = self.load('g_old') p_old = self.load('p_old') if self.precond: beta = pollak_ribere(g_new, g_old, self.precond) p_new = -self.precond(g_new) + beta*p_old else: beta = pollak_ribere(g_new, g_old) p_new = -g_new + beta*p_old # check restart conditions if check_conjugacy(g_new, g_old) > self.thresh: print('restarting NLCG... [loss of conjugacy]') self.restart() return -g_new, 1 elif check_descent(p_new, g_new) > 0.: print('restarting NLCG... [not a descent direction]') self.restart() return -g_new, 1 else: return p_new, 0 def restart(self): """ Restarts algorithm """ self.iter = 1 savetxt(self.path+'/'+'NLCG/iter', self.iter) # Utility functions def fletcher_reeves(g_new, g_old, precond=lambda x: x): num = dot(precond(g_new), g_new) den = dot(g_old, g_old) beta = num/den return beta def pollak_ribere(g_new, g_old, precond=lambda x: x): num = dot(precond(g_new), g_new-g_old) den = dot(g_old, g_old) beta = num/den return beta def check_conjugacy(g_new, g_old): return abs(dot(g_new, g_old) / dot(g_new, g_new)) def check_descent(p_new, g_new): return dot(p_new, g_new) / dot(g_new, g_new)
24.621622
79
0.559458
1,861
0.680937
0
0
0
0
0
0
569
0.208196