hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
dbfbafe90d8d62c542ce03ef8a862cdef8687b06
5,288
py
Python
radssh/hostkey.py
Eli-Tarrago/radssh
ebf3c8f17c3768268dcd483e899a590698de4452
[ "BSD-3-Clause" ]
39
2015-05-11T15:06:58.000Z
2021-12-29T07:24:23.000Z
radssh/hostkey.py
Eli-Tarrago/radssh
ebf3c8f17c3768268dcd483e899a590698de4452
[ "BSD-3-Clause" ]
45
2015-01-05T22:11:18.000Z
2021-06-02T03:57:49.000Z
radssh/hostkey.py
eorochena/radssh
b1d1ee5822036445f26a34147452df5c3142caee
[ "BSD-3-Clause" ]
13
2015-05-05T12:42:09.000Z
2022-03-03T18:09:49.000Z
# # Copyright (c) 2014, 2016, 2018, 2020 LexisNexis Risk Data Management Inc. # # This file is part of the RadSSH software package. # # RadSSH is free software, released under the Revised BSD License. # You are permitted to use, modify, and redsitribute this software # according to the Revised BSD License, a copy of which should be # included with the distribution as file LICENSE.txt # '''HostKey Handling Module''' import os import threading import warnings import paramiko.hostkeys # Deprecated as of 1.1 - Use known_hosts rewrite instead if using this API warnings.warn(FutureWarning('RadSSH hostkey module is no longer supported, and will be removed in release 2.0. Port existing code to use radssh.known_hosts instead.')) class CodeMap(object): '''CodeMap class''' def __init__(self, **kwargs): self._fwd = kwargs self._reverse = {} for k, v in kwargs.items(): self.__setattr__(k, v) self._reverse[v] = k def code(self, name): '''Given a name, return the code''' return self._fwd[name] def name(self, code): '''Given a code value, return the corresponding code''' return self._reverse[code] verify_mode = CodeMap( # Different options for handling host key verification # Listed in decreasing order of security/paranoia reject=0, # Missing keys are rejected prompt=1, # Missing keys may be accepted, based on user prompt accept_new=2, # Missing keys automatically accepted # After this point, key conflicts no longer hinder connections # Using these options, you become vulnerable to spoofing and # intercepted traffic for SSH sessions, and you don't care. ignore=100, # Turn host key verification OFF overwrite_blindly=666 # Concentrated evil ) def printable_fingerprint(k): '''Convert key fingerprint into OpenSSH printable format''' fingerprint = k.get_fingerprint() # Handle Python3 bytes or Python2 8-bit string style... if isinstance(fingerprint[0], int): seq = [int(x) for x in fingerprint] else: seq = [ord(x) for x in fingerprint] return ':'.join(['%02x' % x for x in seq]) class HostKeyVerifier(object): '''Class to control how (if) host keys are verified''' def __init__(self, mode='reject', known_hosts_file='~/.ssh/known_hosts'): self.mode = verify_mode.code(mode) self.hostkeys = paramiko.hostkeys.HostKeys() self.lock = threading.Lock() if mode == verify_mode.ignore: return self.known_hosts_file = os.path.expanduser(known_hosts_file) if os.path.exists(self.known_hosts_file): self.hostkeys.load(self.known_hosts_file) elif not os.path.exists(os.path.dirname(self.known_hosts_file)): os.makedirs(os.path.dirname(self.known_hosts_file)) def verify_host_key(self, hostname, key): '''Verify a single hostkey against a hostname or IP''' if self.mode == verify_mode.ignore: return True # Special formatting for non-standard ports... if ':' not in hostname: lookup_name = hostname elif hostname.endswith(':22'): lookup_name = hostname[:-3] else: host_base, port_base = hostname.rsplit(':', 1) lookup_name = '[%s]:%s' % (host_base, port_base) # Try remainder of host verification with locking self.lock.acquire() if self.hostkeys.check(lookup_name, key): self.lock.release() return True host_entry = self.hostkeys.lookup(lookup_name) actual = printable_fingerprint(key) if host_entry and key.get_name() in host_entry: # Entry mismatch expected = printable_fingerprint(host_entry[key.get_name()]) print('Host key mismatch for (%s)' % lookup_name) print('Expected:', expected) print('Got :', actual) if self.mode == verify_mode.overwrite_blindly: print('Blindly accepting updated host key for %s' % lookup_name) self.hostkeys.add(lookup_name, key.get_name(), key) self.hostkeys.save(self.known_hosts_file) self.lock.release() return True else: # Missing key if self.mode == verify_mode.reject: self.lock.release() return False accept_and_add = False if self.mode == verify_mode.prompt: print('Unverified connection to "%s"' % lookup_name) print('(Host Key Fingerprint [%s])' % actual) answer = input('Do you want to accept this key? (y/N): ') if answer[0].upper() == 'Y': accept_and_add = True if self.mode in (verify_mode.accept_new, verify_mode.overwrite_blindly): accept_and_add = True if accept_and_add: print('Accepting new host key for %s' % lookup_name) self.hostkeys.add(lookup_name, key.get_name(), key) self.hostkeys.save(self.known_hosts_file) self.lock.release() return True self.lock.release() return False
39.462687
167
0.625946
3,558
0.672844
0
0
0
0
0
0
1,810
0.342284
dbfc3c9f59db54005f9a1ad67dd376c6806f7fa6
14,153
py
Python
nuke/pymmh3.py
jfpanisset/Cryptomatte
d7c71cff17a4e8895eb17520115aa45ff66b8540
[ "BSD-3-Clause" ]
543
2016-07-07T15:31:01.000Z
2022-03-31T10:58:32.000Z
nuke/pymmh3.py
jfpanisset/Cryptomatte
d7c71cff17a4e8895eb17520115aa45ff66b8540
[ "BSD-3-Clause" ]
143
2016-07-07T16:56:38.000Z
2022-02-23T23:16:52.000Z
nuke/pymmh3.py
jfpanisset/Cryptomatte
d7c71cff17a4e8895eb17520115aa45ff66b8540
[ "BSD-3-Clause" ]
158
2016-07-07T16:41:49.000Z
2022-03-21T17:57:28.000Z
''' pymmh3 was written by Fredrik Kihlander and enhanced by Swapnil Gusani, and is placed in the public domain. The authors hereby disclaim copyright to this source code. pure python implementation of the murmur3 hash algorithm https://code.google.com/p/smhasher/wiki/MurmurHash3 This was written for the times when you do not want to compile c-code and install modules, and you only want a drop-in murmur3 implementation. As this is purely python it is FAR from performant and if performance is anything that is needed a proper c-module is suggested! This module is written to have the same format as mmh3 python package found here for simple conversions: https://pypi.python.org/pypi/mmh3/2.3.1 ''' import sys as _sys if (_sys.version_info > (3, 0)): def xrange( a, b, c ): return list(range( a, b, c)) def xencode(x): if isinstance(x, bytes) or isinstance(x, bytearray): return x else: return x.encode() else: def xencode(x): return x del _sys def hash( key, seed = 0x0 ): ''' Implements 32bit murmur3 hash. ''' key = bytearray( xencode(key) ) def fmix( h ): h ^= h >> 16 h = ( h * 0x85ebca6b ) & 0xFFFFFFFF h ^= h >> 13 h = ( h * 0xc2b2ae35 ) & 0xFFFFFFFF h ^= h >> 16 return h length = len( key ) nblocks = int( length / 4 ) h1 = seed c1 = 0xcc9e2d51 c2 = 0x1b873593 # body for block_start in range( 0, nblocks * 4, 4 ): # ??? big endian? k1 = key[ block_start + 3 ] << 24 | \ key[ block_start + 2 ] << 16 | \ key[ block_start + 1 ] << 8 | \ key[ block_start + 0 ] k1 = ( c1 * k1 ) & 0xFFFFFFFF k1 = ( k1 << 15 | k1 >> 17 ) & 0xFFFFFFFF # inlined ROTL32 k1 = ( c2 * k1 ) & 0xFFFFFFFF h1 ^= k1 h1 = ( h1 << 13 | h1 >> 19 ) & 0xFFFFFFFF # inlined ROTL32 h1 = ( h1 * 5 + 0xe6546b64 ) & 0xFFFFFFFF # tail tail_index = nblocks * 4 k1 = 0 tail_size = length & 3 if tail_size >= 3: k1 ^= key[ tail_index + 2 ] << 16 if tail_size >= 2: k1 ^= key[ tail_index + 1 ] << 8 if tail_size >= 1: k1 ^= key[ tail_index + 0 ] if tail_size > 0: k1 = ( k1 * c1 ) & 0xFFFFFFFF k1 = ( k1 << 15 | k1 >> 17 ) & 0xFFFFFFFF # inlined ROTL32 k1 = ( k1 * c2 ) & 0xFFFFFFFF h1 ^= k1 #finalization unsigned_val = fmix( h1 ^ length ) if unsigned_val & 0x80000000 == 0: return unsigned_val else: return -( (unsigned_val ^ 0xFFFFFFFF) + 1 ) def hash128( key, seed = 0x0, x64arch = True ): ''' Implements 128bit murmur3 hash. ''' def hash128_x64( key, seed ): ''' Implements 128bit murmur3 hash for x64. ''' def fmix( k ): k ^= k >> 33 k = ( k * 0xff51afd7ed558ccd ) & 0xFFFFFFFFFFFFFFFF k ^= k >> 33 k = ( k * 0xc4ceb9fe1a85ec53 ) & 0xFFFFFFFFFFFFFFFF k ^= k >> 33 return k length = len( key ) nblocks = int( length / 16 ) h1 = seed h2 = seed c1 = 0x87c37b91114253d5 c2 = 0x4cf5ad432745937f #body for block_start in range( 0, nblocks * 8, 8 ): # ??? big endian? k1 = key[ 2 * block_start + 7 ] << 56 | \ key[ 2 * block_start + 6 ] << 48 | \ key[ 2 * block_start + 5 ] << 40 | \ key[ 2 * block_start + 4 ] << 32 | \ key[ 2 * block_start + 3 ] << 24 | \ key[ 2 * block_start + 2 ] << 16 | \ key[ 2 * block_start + 1 ] << 8 | \ key[ 2 * block_start + 0 ] k2 = key[ 2 * block_start + 15 ] << 56 | \ key[ 2 * block_start + 14 ] << 48 | \ key[ 2 * block_start + 13 ] << 40 | \ key[ 2 * block_start + 12 ] << 32 | \ key[ 2 * block_start + 11 ] << 24 | \ key[ 2 * block_start + 10 ] << 16 | \ key[ 2 * block_start + 9 ] << 8 | \ key[ 2 * block_start + 8 ] k1 = ( c1 * k1 ) & 0xFFFFFFFFFFFFFFFF k1 = ( k1 << 31 | k1 >> 33 ) & 0xFFFFFFFFFFFFFFFF # inlined ROTL64 k1 = ( c2 * k1 ) & 0xFFFFFFFFFFFFFFFF h1 ^= k1 h1 = ( h1 << 27 | h1 >> 37 ) & 0xFFFFFFFFFFFFFFFF # inlined ROTL64 h1 = ( h1 + h2 ) & 0xFFFFFFFFFFFFFFFF h1 = ( h1 * 5 + 0x52dce729 ) & 0xFFFFFFFFFFFFFFFF k2 = ( c2 * k2 ) & 0xFFFFFFFFFFFFFFFF k2 = ( k2 << 33 | k2 >> 31 ) & 0xFFFFFFFFFFFFFFFF # inlined ROTL64 k2 = ( c1 * k2 ) & 0xFFFFFFFFFFFFFFFF h2 ^= k2 h2 = ( h2 << 31 | h2 >> 33 ) & 0xFFFFFFFFFFFFFFFF # inlined ROTL64 h2 = ( h1 + h2 ) & 0xFFFFFFFFFFFFFFFF h2 = ( h2 * 5 + 0x38495ab5 ) & 0xFFFFFFFFFFFFFFFF #tail tail_index = nblocks * 16 k1 = 0 k2 = 0 tail_size = length & 15 if tail_size >= 15: k2 ^= key[ tail_index + 14 ] << 48 if tail_size >= 14: k2 ^= key[ tail_index + 13 ] << 40 if tail_size >= 13: k2 ^= key[ tail_index + 12 ] << 32 if tail_size >= 12: k2 ^= key[ tail_index + 11 ] << 24 if tail_size >= 11: k2 ^= key[ tail_index + 10 ] << 16 if tail_size >= 10: k2 ^= key[ tail_index + 9 ] << 8 if tail_size >= 9: k2 ^= key[ tail_index + 8 ] if tail_size > 8: k2 = ( k2 * c2 ) & 0xFFFFFFFFFFFFFFFF k2 = ( k2 << 33 | k2 >> 31 ) & 0xFFFFFFFFFFFFFFFF # inlined ROTL64 k2 = ( k2 * c1 ) & 0xFFFFFFFFFFFFFFFF h2 ^= k2 if tail_size >= 8: k1 ^= key[ tail_index + 7 ] << 56 if tail_size >= 7: k1 ^= key[ tail_index + 6 ] << 48 if tail_size >= 6: k1 ^= key[ tail_index + 5 ] << 40 if tail_size >= 5: k1 ^= key[ tail_index + 4 ] << 32 if tail_size >= 4: k1 ^= key[ tail_index + 3 ] << 24 if tail_size >= 3: k1 ^= key[ tail_index + 2 ] << 16 if tail_size >= 2: k1 ^= key[ tail_index + 1 ] << 8 if tail_size >= 1: k1 ^= key[ tail_index + 0 ] if tail_size > 0: k1 = ( k1 * c1 ) & 0xFFFFFFFFFFFFFFFF k1 = ( k1 << 31 | k1 >> 33 ) & 0xFFFFFFFFFFFFFFFF # inlined ROTL64 k1 = ( k1 * c2 ) & 0xFFFFFFFFFFFFFFFF h1 ^= k1 #finalization h1 ^= length h2 ^= length h1 = ( h1 + h2 ) & 0xFFFFFFFFFFFFFFFF h2 = ( h1 + h2 ) & 0xFFFFFFFFFFFFFFFF h1 = fmix( h1 ) h2 = fmix( h2 ) h1 = ( h1 + h2 ) & 0xFFFFFFFFFFFFFFFF h2 = ( h1 + h2 ) & 0xFFFFFFFFFFFFFFFF return ( h2 << 64 | h1 ) def hash128_x86( key, seed ): ''' Implements 128bit murmur3 hash for x86. ''' def fmix( h ): h ^= h >> 16 h = ( h * 0x85ebca6b ) & 0xFFFFFFFF h ^= h >> 13 h = ( h * 0xc2b2ae35 ) & 0xFFFFFFFF h ^= h >> 16 return h length = len( key ) nblocks = int( length / 16 ) h1 = seed h2 = seed h3 = seed h4 = seed c1 = 0x239b961b c2 = 0xab0e9789 c3 = 0x38b34ae5 c4 = 0xa1e38b93 #body for block_start in range( 0, nblocks * 16, 16 ): k1 = key[ block_start + 3 ] << 24 | \ key[ block_start + 2 ] << 16 | \ key[ block_start + 1 ] << 8 | \ key[ block_start + 0 ] k2 = key[ block_start + 7 ] << 24 | \ key[ block_start + 6 ] << 16 | \ key[ block_start + 5 ] << 8 | \ key[ block_start + 4 ] k3 = key[ block_start + 11 ] << 24 | \ key[ block_start + 10 ] << 16 | \ key[ block_start + 9 ] << 8 | \ key[ block_start + 8 ] k4 = key[ block_start + 15 ] << 24 | \ key[ block_start + 14 ] << 16 | \ key[ block_start + 13 ] << 8 | \ key[ block_start + 12 ] k1 = ( c1 * k1 ) & 0xFFFFFFFF k1 = ( k1 << 15 | k1 >> 17 ) & 0xFFFFFFFF # inlined ROTL32 k1 = ( c2 * k1 ) & 0xFFFFFFFF h1 ^= k1 h1 = ( h1 << 19 | h1 >> 13 ) & 0xFFFFFFFF # inlined ROTL32 h1 = ( h1 + h2 ) & 0xFFFFFFFF h1 = ( h1 * 5 + 0x561ccd1b ) & 0xFFFFFFFF k2 = ( c2 * k2 ) & 0xFFFFFFFF k2 = ( k2 << 16 | k2 >> 16 ) & 0xFFFFFFFF # inlined ROTL32 k2 = ( c3 * k2 ) & 0xFFFFFFFF h2 ^= k2 h2 = ( h2 << 17 | h2 >> 15 ) & 0xFFFFFFFF # inlined ROTL32 h2 = ( h2 + h3 ) & 0xFFFFFFFF h2 = ( h2 * 5 + 0x0bcaa747 ) & 0xFFFFFFFF k3 = ( c3 * k3 ) & 0xFFFFFFFF k3 = ( k3 << 17 | k3 >> 15 ) & 0xFFFFFFFF # inlined ROTL32 k3 = ( c4 * k3 ) & 0xFFFFFFFF h3 ^= k3 h3 = ( h3 << 15 | h3 >> 17 ) & 0xFFFFFFFF # inlined ROTL32 h3 = ( h3 + h4 ) & 0xFFFFFFFF h3 = ( h3 * 5 + 0x96cd1c35 ) & 0xFFFFFFFF k4 = ( c4 * k4 ) & 0xFFFFFFFF k4 = ( k4 << 18 | k4 >> 14 ) & 0xFFFFFFFF # inlined ROTL32 k4 = ( c1 * k4 ) & 0xFFFFFFFF h4 ^= k4 h4 = ( h4 << 13 | h4 >> 19 ) & 0xFFFFFFFF # inlined ROTL32 h4 = ( h1 + h4 ) & 0xFFFFFFFF h4 = ( h4 * 5 + 0x32ac3b17 ) & 0xFFFFFFFF #tail tail_index = nblocks * 16 k1 = 0 k2 = 0 k3 = 0 k4 = 0 tail_size = length & 15 if tail_size >= 15: k4 ^= key[ tail_index + 14 ] << 16 if tail_size >= 14: k4 ^= key[ tail_index + 13 ] << 8 if tail_size >= 13: k4 ^= key[ tail_index + 12 ] if tail_size > 12: k4 = ( k4 * c4 ) & 0xFFFFFFFF k4 = ( k4 << 18 | k4 >> 14 ) & 0xFFFFFFFF # inlined ROTL32 k4 = ( k4 * c1 ) & 0xFFFFFFFF h4 ^= k4 if tail_size >= 12: k3 ^= key[ tail_index + 11 ] << 24 if tail_size >= 11: k3 ^= key[ tail_index + 10 ] << 16 if tail_size >= 10: k3 ^= key[ tail_index + 9 ] << 8 if tail_size >= 9: k3 ^= key[ tail_index + 8 ] if tail_size > 8: k3 = ( k3 * c3 ) & 0xFFFFFFFF k3 = ( k3 << 17 | k3 >> 15 ) & 0xFFFFFFFF # inlined ROTL32 k3 = ( k3 * c4 ) & 0xFFFFFFFF h3 ^= k3 if tail_size >= 8: k2 ^= key[ tail_index + 7 ] << 24 if tail_size >= 7: k2 ^= key[ tail_index + 6 ] << 16 if tail_size >= 6: k2 ^= key[ tail_index + 5 ] << 8 if tail_size >= 5: k2 ^= key[ tail_index + 4 ] if tail_size > 4: k2 = ( k2 * c2 ) & 0xFFFFFFFF k2 = ( k2 << 16 | k2 >> 16 ) & 0xFFFFFFFF # inlined ROTL32 k2 = ( k2 * c3 ) & 0xFFFFFFFF h2 ^= k2 if tail_size >= 4: k1 ^= key[ tail_index + 3 ] << 24 if tail_size >= 3: k1 ^= key[ tail_index + 2 ] << 16 if tail_size >= 2: k1 ^= key[ tail_index + 1 ] << 8 if tail_size >= 1: k1 ^= key[ tail_index + 0 ] if tail_size > 0: k1 = ( k1 * c1 ) & 0xFFFFFFFF k1 = ( k1 << 15 | k1 >> 17 ) & 0xFFFFFFFF # inlined ROTL32 k1 = ( k1 * c2 ) & 0xFFFFFFFF h1 ^= k1 #finalization h1 ^= length h2 ^= length h3 ^= length h4 ^= length h1 = ( h1 + h2 ) & 0xFFFFFFFF h1 = ( h1 + h3 ) & 0xFFFFFFFF h1 = ( h1 + h4 ) & 0xFFFFFFFF h2 = ( h1 + h2 ) & 0xFFFFFFFF h3 = ( h1 + h3 ) & 0xFFFFFFFF h4 = ( h1 + h4 ) & 0xFFFFFFFF h1 = fmix( h1 ) h2 = fmix( h2 ) h3 = fmix( h3 ) h4 = fmix( h4 ) h1 = ( h1 + h2 ) & 0xFFFFFFFF h1 = ( h1 + h3 ) & 0xFFFFFFFF h1 = ( h1 + h4 ) & 0xFFFFFFFF h2 = ( h1 + h2 ) & 0xFFFFFFFF h3 = ( h1 + h3 ) & 0xFFFFFFFF h4 = ( h1 + h4 ) & 0xFFFFFFFF return ( h4 << 96 | h3 << 64 | h2 << 32 | h1 ) key = bytearray( xencode(key) ) if x64arch: return hash128_x64( key, seed ) else: return hash128_x86( key, seed ) def hash64( key, seed = 0x0, x64arch = True ): ''' Implements 64bit murmur3 hash. Returns a tuple. ''' hash_128 = hash128( key, seed, x64arch ) unsigned_val1 = hash_128 & 0xFFFFFFFFFFFFFFFF if unsigned_val1 & 0x8000000000000000 == 0: signed_val1 = unsigned_val1 else: signed_val1 = -( (unsigned_val1 ^ 0xFFFFFFFFFFFFFFFF) + 1 ) unsigned_val2 = ( hash_128 >> 64 ) & 0xFFFFFFFFFFFFFFFF if unsigned_val2 & 0x8000000000000000 == 0: signed_val2 = unsigned_val2 else: signed_val2 = -( (unsigned_val2 ^ 0xFFFFFFFFFFFFFFFF) + 1 ) return ( int( signed_val1 ), int( signed_val2 ) ) def hash_bytes( key, seed = 0x0, x64arch = True ): ''' Implements 128bit murmur3 hash. Returns a byte string. ''' hash_128 = hash128( key, seed, x64arch ) bytestring = '' for i in range(0, 16, 1): lsbyte = hash_128 & 0xFF bytestring = bytestring + str( chr( lsbyte ) ) hash_128 = hash_128 >> 8 return bytestring if __name__ == "__main__": import argparse parser = argparse.ArgumentParser( 'pymurmur3', 'pymurmur [options] "string to hash"' ) parser.add_argument( '--seed', type = int, default = 0 ) parser.add_argument( 'strings', default = [], nargs='+') opts = parser.parse_args() for str_to_hash in opts.strings: sys.stdout.write( '"%s" = 0x%08X\n' % ( str_to_hash, hash( str_to_hash ) ) )
31.311947
104
0.464283
0
0
0
0
0
0
0
0
1,532
0.108246
dbfc56fb832ee5fc9af604dacd2a35c059519b31
950
py
Python
bindings/python/tests/test_factory.py
pscff/dlite
4365d828dcaa1736cc78ff6ed9a65592f198ba25
[ "MIT" ]
10
2020-04-08T06:25:27.000Z
2022-03-15T06:54:53.000Z
bindings/python/tests/test_factory.py
pscff/dlite
4365d828dcaa1736cc78ff6ed9a65592f198ba25
[ "MIT" ]
117
2019-12-16T14:43:41.000Z
2022-03-21T19:46:58.000Z
bindings/python/tests/test_factory.py
pscff/dlite
4365d828dcaa1736cc78ff6ed9a65592f198ba25
[ "MIT" ]
5
2020-04-15T16:23:29.000Z
2021-12-07T08:40:54.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import dlite thisdir = os.path.abspath(os.path.dirname(__file__)) class Person: def __init__(self, name, age, skills): self.name = name self.age = age self.skills = skills def __repr__(self): return 'Person(%r, %r, %r)' % (self.name, self.age, list(self.skills)) url = 'json://' + thisdir + '/Person.json' print('-- create: ExPerson') ExPerson = dlite.classfactory(Person, url=url) print('-- create: person1') person1 = Person('Jack Daniel', 42, ['distilling', 'tasting']) print('-- create: person2') person2 = ExPerson('Jack Daniel', 42, ['distilling', 'tasting']) person2.dlite_inst.save('json', 'persons.json', 'mode=w') # Print json-representation of person2 using dlite print(person2.dlite_inst.asjson(indent=2)) person3 = dlite.loadfactory(Person, 'json://persons.json') person4 = dlite.objectfactory(person1, meta=person2.dlite_meta)
25
78
0.671579
237
0.249474
0
0
0
0
0
0
315
0.331579
dbfcfb1df1954ace1963bc30983b96adb222d711
807
py
Python
week_11_DS_N_Algorithm/03_Thr_Lecture/실습6_연속 부분 최대합.py
bky373/elice-racer-1st
ddea8079a1083796ed4f59c38650ff8f4333e6ef
[ "FSFAP" ]
1
2021-11-03T18:27:37.000Z
2021-11-03T18:27:37.000Z
week_11_DS_N_Algorithm/03_Thr_Lecture/실습6_연속 부분 최대합.py
bky373/elice-racer-1st
ddea8079a1083796ed4f59c38650ff8f4333e6ef
[ "FSFAP" ]
null
null
null
week_11_DS_N_Algorithm/03_Thr_Lecture/실습6_연속 부분 최대합.py
bky373/elice-racer-1st
ddea8079a1083796ed4f59c38650ff8f4333e6ef
[ "FSFAP" ]
1
2021-02-10T15:21:53.000Z
2021-02-10T15:21:53.000Z
''' 연속 부분 최대합 nn개의 숫자가 주어질 때, 연속 부분을 선택하여 그 합을 최대화 하는 프로그램을 작성하시오. 예를 들어, 다음과 같이 8개의 숫자가 있다고 하자. 1 2 -4 5 3 -2 9 -10 이 때, 연속 부분이란 연속하여 숫자를 선택하는 것을 말한다. 가능한 연속 부분으로써 [1, 2, -4], [5, 3, -2, 9], [9, -10] 등이 있을 수 있다. 이 연속 부분들 중에서 가장 합이 큰 연속 부분은 [5, 3, -2, 9] 이며, 이보다 더 합을 크게 할 수는 없다. 따라서 연속 부분 최대합은 5+3+(-2)+9 = 15 이다. 입력 예시 1 2 -4 5 3 -2 9 -10 출력 예시 15 문제 조건 입력되는 수의 개수는 최대 100개입니다. ''' import sys def getSubsum(data) : ''' n개의 숫자가 list로 주어질 때, 그 연속 부분 최대합을 반환하는 함수를 작성하세요. ''' dp = [0] * len(data) dp[0] = data[0] for i in range(1, len(data)): dp[i] = max(dp[i-1] + data[i], data[i]) return max(dp) def main(): ''' 이 부분은 수정하지 마세요. ''' data = [int(x) for x in input().split()] print(getSubsum(data)) if __name__ == "__main__": main()
17.170213
61
0.537794
0
0
0
0
0
0
0
0
935
0.751004
dbfd1a602dd992f412e1700c617d5bbf9b239826
505
py
Python
tests/test_dns.py
jensstein/mockdock
4eec294f33d929d361973c1708d2aa856a9900a0
[ "MIT" ]
null
null
null
tests/test_dns.py
jensstein/mockdock
4eec294f33d929d361973c1708d2aa856a9900a0
[ "MIT" ]
6
2020-03-24T16:45:10.000Z
2021-02-13T10:03:53.000Z
tests/test_dns.py
jensstein/mockdock
4eec294f33d929d361973c1708d2aa856a9900a0
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import unittest from mockdock import dns class DNSTest(unittest.TestCase): def test_build_packet(self): data = b"^4\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x06google\x03com\x00\x00\x01\x00\x01" packet = dns.build_packet(data, "192.168.0.1") expeced_result = b"^4\x81\x80\x00\x01\x00\x01\x00\x00\x00\x00\x06google\x03com\x00\x00\x01\x00\x01\xc0\x0c\x00\x01\x00\x01\x00\x00\x00<\x00\x04\xc0\xa8\x00\x01" self.assertEqual(packet, expeced_result)
38.846154
168
0.708911
437
0.865347
0
0
0
0
0
0
260
0.514851
dbfd45a1262d4d81ad4ca682e226d591f37c7fd4
1,490
py
Python
tests/conftest.py
zhongnansu/es-cli
e0656c21392e52a8b9cfafa69acfa0c13b743a9c
[ "Apache-2.0" ]
6
2019-08-23T18:06:41.000Z
2020-05-06T18:26:53.000Z
tests/conftest.py
zhongnansu/es-cli
e0656c21392e52a8b9cfafa69acfa0c13b743a9c
[ "Apache-2.0" ]
null
null
null
tests/conftest.py
zhongnansu/es-cli
e0656c21392e52a8b9cfafa69acfa0c13b743a9c
[ "Apache-2.0" ]
null
null
null
""" Copyright 2019, Amazon Web Services Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ """ We can define the fixture functions in this file to make them accessible across multiple test modules. """ import os import pytest from utils import create_index, delete_index, get_connection @pytest.fixture(scope="function") def connection(): test_connection = get_connection() create_index(test_connection) yield test_connection delete_index(test_connection) @pytest.fixture(scope="function") def default_config_location(): from escli.conf import __file__ as package_root package_root = os.path.dirname(package_root) default_config = os.path.join(package_root, "esclirc") yield default_config @pytest.fixture(scope="session", autouse=True) def temp_config(tmpdir_factory): # this function runs on start of test session. # use temporary directory for conf home so user conf will not be used os.environ["XDG_CONFIG_HOME"] = str(tmpdir_factory.mktemp("data"))
29.8
73
0.769799
0
0
368
0.24698
711
0.477181
0
0
857
0.575168
dbfd8140aa71c6ce6288cd86d96c8cf8754cf91f
26,845
py
Python
Cogs/ServerStats.py
Damiian1/techwizardshardware
97ceafc15036be4136e860076d73d74f1887f041
[ "MIT" ]
null
null
null
Cogs/ServerStats.py
Damiian1/techwizardshardware
97ceafc15036be4136e860076d73d74f1887f041
[ "MIT" ]
null
null
null
Cogs/ServerStats.py
Damiian1/techwizardshardware
97ceafc15036be4136e860076d73d74f1887f041
[ "MIT" ]
null
null
null
import asyncio import discord from datetime import datetime from operator import itemgetter from discord.ext import commands from Cogs import Nullify from Cogs import DisplayName from Cogs import UserTime from Cogs import Message def setup(bot): # Add the bot and deps settings = bot.get_cog("Settings") bot.add_cog(ServerStats(bot, settings)) class ServerStats: def __init__(self, bot, settings): self.bot = bot self.settings = settings async def message(self, message): # Check the message and see if we should allow it - always yes. # This module doesn't need to cancel messages. # Don't count your own, Pooter if not message.author.id == self.bot.user.id: server = message.guild messages = int(self.settings.getServerStat(server, "TotalMessages")) if messages == None: messages = 0 messages += 1 self.settings.setServerStat(server, "TotalMessages", messages) return { 'Ignore' : False, 'Delete' : False} @commands.command(pass_context=True) async def serverinfo(self, ctx, *, guild_name = None): """Lists some info about the current or passed server.""" # Check if we passed another guild guild = None if guild_name == None: guild = ctx.guild else: for g in self.bot.guilds: if g.name.lower() == guild_name.lower(): guild = g break if str(g.id) == str(guild_name): guild = g break if guild == None: # We didn't find it await ctx.send("I couldn't find that guild...") return server_embed = discord.Embed(color=ctx.author.color) server_embed.title = guild.name # Get localized user time local_time = UserTime.getUserTime(ctx.author, self.settings, guild.created_at) time_str = "{} {}".format(local_time['time'], local_time['zone']) server_embed.description = "Created at {}".format(time_str) online_members = 0 bot_member = 0 bot_online = 0 for member in guild.members: if member.bot: bot_member += 1 if not member.status == discord.Status.offline: bot_online += 1 continue if not member.status == discord.Status.offline: online_members += 1 # bot_percent = "{:,g}%".format((bot_member/len(guild.members))*100) user_string = "{:,}/{:,} online ({:,g}%)".format( online_members, len(guild.members) - bot_member, round((online_members/(len(guild.members) - bot_member) * 100), 2) ) b_string = "bot" if bot_member == 1 else "bots" user_string += "\n{:,}/{:,} {} online ({:,g}%)".format( bot_online, bot_member, b_string, round((bot_online/bot_member)*100, 2) ) #server_embed.add_field(name="Members", value="{:,}/{:,} online ({:.2f}%)\n{:,} {} ({}%)".format(online_members, len(guild.members), bot_percent), inline=True) server_embed.add_field(name="Members ({:,} total)".format(len(guild.members)), value=user_string, inline=True) server_embed.add_field(name="Roles", value=str(len(guild.roles)), inline=True) chandesc = "{:,} text, {:,} voice".format(len(guild.text_channels), len(guild.voice_channels)) server_embed.add_field(name="Channels", value=chandesc, inline=True) server_embed.add_field(name="Default Role", value=guild.default_role, inline=True) server_embed.add_field(name="Owner", value=guild.owner.name + "#" + guild.owner.discriminator, inline=True) server_embed.add_field(name="AFK Channel", value=guild.afk_channel, inline=True) server_embed.add_field(name="Verification", value=guild.verification_level, inline=True) server_embed.add_field(name="Voice Region", value=guild.region, inline=True) server_embed.add_field(name="Considered Large", value=guild.large, inline=True) # Find out where in our join position this server is joinedList = [] popList = [] for g in self.bot.guilds: joinedList.append({ 'ID' : g.id, 'Joined' : g.me.joined_at }) popList.append({ 'ID' : g.id, 'Population' : len(g.members) }) # sort the guilds by join date joinedList = sorted(joinedList, key=lambda x:x['Joined']) popList = sorted(popList, key=lambda x:x['Population'], reverse=True) check_item = { "ID" : guild.id, "Joined" : guild.me.joined_at } total = len(joinedList) position = joinedList.index(check_item) + 1 server_embed.add_field(name="Join Position", value="{:,} of {:,}".format(position, total), inline=True) # Get our population position check_item = { "ID" : guild.id, "Population" : len(guild.members) } total = len(popList) position = popList.index(check_item) + 1 server_embed.add_field(name="Population Rank", value="{:,} of {:,}".format(position, total), inline=True) emojitext = "" emojicount = 0 for emoji in guild.emojis: if emoji.animated: emojiMention = "<a:"+emoji.name+":"+str(emoji.id)+">" else: emojiMention = "<:"+emoji.name+":"+str(emoji.id)+">" test = emojitext + emojiMention if len(test) > 1024: # TOOO BIIIIIIIIG emojicount += 1 if emojicount == 1: ename = "Emojis ({:,} total)".format(len(guild.emojis)) else: ename = "Emojis (Continued)" server_embed.add_field(name=ename, value=emojitext, inline=True) emojitext=emojiMention else: emojitext = emojitext + emojiMention if len(emojitext): if emojicount == 0: emojiname = "Emojis ({} total)".format(len(guild.emojis)) else: emojiname = "Emojis (Continued)" server_embed.add_field(name=emojiname, value=emojitext, inline=True) if len(guild.icon_url): server_embed.set_thumbnail(url=guild.icon_url) else: # No Icon server_embed.set_thumbnail(url=ctx.author.default_avatar_url) server_embed.set_footer(text="Server ID: {}".format(guild.id)) await ctx.channel.send(embed=server_embed) @commands.command(pass_context=True) async def sharedservers(self, ctx, *, member = None): """Lists how many servers you share with the bot.""" # Check if we're suppressing @here and @everyone mentions if self.settings.getServerStat(ctx.message.guild, "SuppressMentions"): suppress = True else: suppress = False if member == None: member = ctx.author if type(member) is str: member_check = DisplayName.memberForName(member, ctx.guild) if not member_check: msg = "I couldn't find *{}* on this server...".format(member) if suppress: msg = Nullify.clean(msg) await ctx.send(msg) return member = member_check if member.id == self.bot.user.id: count = len(self.bot.guilds) if count == 1: await ctx.send("I'm on *1* server. :blush:") else: await ctx.send("I'm on *{}* servers. :blush:".format(count)) return count = 0 for guild in self.bot.guilds: for mem in guild.members: if mem.id == member.id: count += 1 if ctx.author.id == member.id: targ = "You share" else: targ = "*{}* shares".format(DisplayName.name(member)) if count == 1: await ctx.send("{} *1* server with me. :blush:".format(targ)) else: await ctx.send("{} *{}* servers with me. :blush:".format(targ, count)) @commands.command(pass_context=True) async def listservers(self, ctx, number : int = 10): """Lists the servers I'm connected to - default is 10, max is 50.""" # Check if we're suppressing @here and @everyone mentions if self.settings.getServerStat(ctx.message.guild, "SuppressMentions"): suppress = True else: suppress = False if number > 50: number = 50 if number < 1: await ctx.channel.send('Oookay - look! No servers! Just like you wanted!') return i = 1 msg = '__**Servers I\'m On:**__\n\n' for server in self.bot.guilds: if i > number: break msg += '{}. *{}*\n'.format(i, server.name) i += 1 # Check for suppress if suppress: msg = Nullify.clean(msg) await ctx.channel.send(msg) @commands.command(pass_context=True) async def topservers(self, ctx, number : int = 10): """Lists the top servers I'm connected to ordered by population - default is 10, max is 50.""" # Check if we're suppressing @here and @everyone mentions if self.settings.getServerStat(ctx.message.guild, "SuppressMentions"): suppress = True else: suppress = False if number > 50: number = 50 if number < 1: await ctx.channel.send('Oookay - look! No servers! Just like you wanted!') return serverList = [] for server in self.bot.guilds: memberCount = 0 for member in server.members: memberCount += 1 serverList.append({ 'Name' : server.name, 'Users' : memberCount }) # sort the servers by population serverList = sorted(serverList, key=lambda x:int(x['Users']), reverse=True) if number > len(serverList): number = len(serverList) i = 1 msg = '' for server in serverList: if i > number: break msg += '{}. *{}* - *{:,}* members\n'.format(i, server['Name'], server['Users']) i += 1 if number < len(serverList): msg = '__**Top {} of {} Servers:**__\n\n'.format(number, len(serverList))+msg else: msg = '__**Top {} Servers:**__\n\n'.format(len(serverList))+msg # Check for suppress if suppress: msg = Nullify.clean(msg) await ctx.channel.send(msg) @commands.command(pass_context=True) async def bottomservers(self, ctx, number : int = 10): """Lists the bottom servers I'm connected to ordered by population - default is 10, max is 50.""" # Check if we're suppressing @here and @everyone mentions if self.settings.getServerStat(ctx.message.guild, "SuppressMentions"): suppress = True else: suppress = False if number > 50: number = 50 if number < 1: await ctx.channel.send('Oookay - look! No servers! Just like you wanted!') return serverList = [] for server in self.bot.guilds: serverList.append({ 'Name' : server.name, 'Users' : len(server.members) }) # sort the servers by population serverList = sorted(serverList, key=lambda x:int(x['Users'])) if number > len(serverList): number = len(serverList) i = 1 msg = '' for server in serverList: if i > number: break msg += '{}. *{}* - *{:,}* members\n'.format(i, server['Name'], server['Users']) i += 1 if number < len(serverList): msg = '__**Bottom {} of {} Servers:**__\n\n'.format(number, len(serverList))+msg else: msg = '__**Bottom {} Servers:**__\n\n'.format(len(serverList))+msg # Check for suppress if suppress: msg = Nullify.clean(msg) await ctx.channel.send(msg) @commands.command(pass_context=True) async def users(self, ctx): """Lists the total number of users on all servers I'm connected to.""" message = await Message.EmbedText(title="Counting users...", color=ctx.message.author).send(ctx) servers = members = membersOnline = bots = botsOnline = 0 counted_users = [] counted_bots = [] for server in self.bot.guilds: servers += 1 for member in server.members: if member.bot: bots += 1 if not member.id in counted_bots: counted_bots.append(member.id) if not member.status == discord.Status.offline: botsOnline += 1 else: members += 1 if not member.id in counted_users: counted_users.append(member.id) if not member.status == discord.Status.offline: membersOnline += 1 await Message.Embed( title="Member Stats", description="Current User Information".format(server.name), fields=[ { "name" : "Servers", "value" : "└─ {:,}".format(servers), "inline" : False }, { "name" : "Users", "value" : "└─ {:,}/{:,} online ({:,g}%) - {:,} unique ({:,g}%)".format(membersOnline, members, round((membersOnline/members)*100, 2), len(counted_users), round((len(counted_users)/members)*100, 2)), "inline" : False}, { "name" : "Bots", "value" : "└─ {:,}/{:,} online ({:,g}%) - {:,} unique ({:,g}%)".format(botsOnline, bots, round((botsOnline/bots)*100, 2), len(counted_bots), round(len(counted_bots)/bots*100, 2)), "inline" : False}, { "name" : "Total", "value" : "└─ {:,}/{:,} online ({:,g}%)".format(membersOnline + botsOnline, members+bots, round(((membersOnline + botsOnline)/(members+bots))*100, 2)), "inline" : False} ], color=ctx.message.author).edit(ctx, message) '''userCount = 0 serverCount = 0 counted_users = [] message = await ctx.send("Counting users...") for server in self.bot.guilds: serverCount += 1 userCount += len(server.members) for member in server.members: if not member.id in counted_users: counted_users.append(member.id) await message.edit(content='There are *{:,} users* (*{:,}* unique) on the *{:,} servers* I am currently a part of!'.format(userCount, len(counted_users), serverCount))''' @commands.command(pass_context=True) async def joinpos(self, ctx, *, member = None): """Tells when a user joined compared to other users.""" # Check if we're suppressing @here and @everyone mentions if self.settings.getServerStat(ctx.message.guild, "SuppressMentions"): suppress = True else: suppress = False if member == None: member = ctx.author if type(member) is str: member_check = DisplayName.memberForName(member, ctx.guild) if not member_check: msg = "I couldn't find *{}* on this server...".format(member) if suppress: msg = Nullify.clean(msg) await ctx.send(msg) return member = member_check joinedList = [] for mem in ctx.message.guild.members: joinedList.append({ 'ID' : mem.id, 'Joined' : mem.joined_at }) # sort the users by join date joinedList = sorted(joinedList, key=lambda x:x['Joined']) check_item = { "ID" : member.id, "Joined" : member.joined_at } total = len(joinedList) position = joinedList.index(check_item) + 1 before = "" after = "" msg = "*{}'s* join position is **{:,}**.".format(DisplayName.name(member), position, total) if position-1 == 1: # We have previous members before = "**1** user" elif position-1 > 1: before = "**{:,}** users".format(position-1) if total-position == 1: # There were users after as well after = "**1** user" elif total-position > 1: after = "**{:,}** users".format(total-position) # Build the string! if len(before) and len(after): # Got both msg += "\n\n{} joined before, and {} after.".format(before, after) elif len(before): # Just got before msg += "\n\n{} joined before.".format(before) elif len(after): # Just after msg += "\n\n{} joined after.".format(after) await ctx.send(msg) @commands.command(pass_context=True) async def firstjoins(self, ctx, number : int = 10): """Lists the first users to join - default is 10, max is 25.""" # Check if we're suppressing @here and @everyone mentions if self.settings.getServerStat(ctx.message.guild, "SuppressMentions"): suppress = True else: suppress = False if number > 25: number = 25 if number < 1: await ctx.channel.send('Oookay - look! No users! Just like you wanted!') return joinedList = [] for member in ctx.message.guild.members: joinedList.append({ 'ID' : member.id, 'Joined' : member.joined_at }) # sort the users by join date joinedList = sorted(joinedList, key=lambda x:x['Joined']) i = 1 msg = '' for member in joinedList: if i > number: break # Get localized user time local_time = UserTime.getUserTime(ctx.author, self.settings, member['Joined']) time_str = "{} {}".format(local_time['time'], local_time['zone']) msg += '{}. *{}* - *{}*\n'.format(i, DisplayName.name(DisplayName.memberForID(member['ID'], ctx.message.guild)), time_str) i += 1 if number < len(joinedList): msg = '__**First {} of {} Members to Join:**__\n\n'.format(number, len(joinedList))+msg else: msg = '__**First {} Members to Join:**__\n\n'.format(len(joinedList))+msg # Check for suppress if suppress: msg = Nullify.clean(msg) await ctx.channel.send(msg) @commands.command(pass_context=True) async def recentjoins(self, ctx, number : int = 10): """Lists the most recent users to join - default is 10, max is 25.""" # Check if we're suppressing @here and @everyone mentions if self.settings.getServerStat(ctx.message.guild, "SuppressMentions"): suppress = True else: suppress = False if number > 25: number = 25 if number < 1: await ctx.channel.send('Oookay - look! No users! Just like you wanted!') return joinedList = [] for member in ctx.message.guild.members: joinedList.append({ 'ID' : member.id, 'Joined' : member.joined_at }) # sort the users by join date joinedList = sorted(joinedList, key=lambda x:x['Joined'], reverse=True) i = 1 msg = '' for member in joinedList: if i > number: break # Get localized user time local_time = UserTime.getUserTime(ctx.author, self.settings, member['Joined']) time_str = "{} {}".format(local_time['time'], local_time['zone']) msg += '{}. *{}* - *{}*\n'.format(i, DisplayName.name(DisplayName.memberForID(member['ID'], ctx.message.guild)), time_str) i += 1 if number < len(joinedList): msg = '__**Last {} of {} Members to Join:**__\n\n'.format(number, len(joinedList))+msg else: msg = '__**Last {} Members to Join:**__\n\n'.format(len(joinedList))+msg # Check for suppress if suppress: msg = Nullify.clean(msg) await ctx.channel.send(msg) @commands.command(pass_context=True) async def firstservers(self, ctx, number : int = 10): """Lists the first servers I've joined - default is 10, max is 25.""" # Check if we're suppressing @here and @everyone mentions if self.settings.getServerStat(ctx.message.guild, "SuppressMentions"): suppress = True else: suppress = False if number > 25: number = 25 if number < 1: await ctx.channel.send('Oookay - look! No servers! Just like you wanted!') return joinedList = [] for guild in self.bot.guilds: botmember = DisplayName.memberForID(self.bot.user.id, guild) joinedList.append({ 'Name' : guild.name, 'Joined' : botmember.joined_at, 'Members': len(guild.members) }) # sort the servers by join date joinedList = sorted(joinedList, key=lambda x:x['Joined']) i = 1 msg = '' for member in joinedList: if i > number: break # Get localized user time local_time = UserTime.getUserTime(ctx.author, self.settings, member['Joined']) time_str = "{} {}".format(local_time['time'], local_time['zone']) if member['Members'] == 1: msg += '{}. *{}* - *{}* - *(1 member)*\n'.format(i, member['Name'], time_str) else: msg += '{}. *{}* - *{}* - *({} members)*\n'.format(i, member['Name'], time_str, member['Members']) i += 1 if number < len(joinedList): msg = '__**First {} of {} Servers I Joined:**__\n\n'.format(number, len(joinedList))+msg else: msg = '__**First {} Servers I Joined:**__\n\n'.format(len(joinedList))+msg # Check for suppress if suppress: msg = Nullify.clean(msg) await ctx.channel.send(msg) @commands.command(pass_context=True) async def recentservers(self, ctx, number : int = 10): """Lists the most recent users to join - default is 10, max is 25.""" # Check if we're suppressing @here and @everyone mentions if self.settings.getServerStat(ctx.message.guild, "SuppressMentions"): suppress = True else: suppress = False if number > 25: number = 25 if number < 1: await ctx.channel.send('Oookay - look! No servers! Just like you wanted!') return joinedList = [] for guild in self.bot.guilds: botmember = DisplayName.memberForID(self.bot.user.id, guild) joinedList.append({ 'Name' : guild.name, 'Joined' : botmember.joined_at, 'Members': len(guild.members) }) # sort the servers by join date joinedList = sorted(joinedList, key=lambda x:x['Joined'], reverse=True) i = 1 msg = '' for member in joinedList: if i > number: break # Get localized user time local_time = UserTime.getUserTime(ctx.author, self.settings, member['Joined']) time_str = "{} {}".format(local_time['time'], local_time['zone']) if member['Members'] == 1: msg += '{}. *{}* - *{}* - *(1 member)*\n'.format(i, member['Name'], time_str) else: msg += '{}. *{}* - *{}* - *({} members)*\n'.format(i, member['Name'], time_str, member['Members']) i += 1 if number < len(joinedList): msg = '__**Last {} of {} Servers I Joined:**__\n\n'.format(number, len(joinedList))+msg else: msg = '__**Last {} Servers I Joined:**__\n\n'.format(len(joinedList))+msg # Check for suppress if suppress: msg = Nullify.clean(msg) await ctx.channel.send(msg) @commands.command(pass_context=True) async def messages(self, ctx): """Lists the number of messages I've seen on this sever so far. (only applies after this module's inception, and if I'm online)""" messages = int(self.settings.getServerStat(ctx.message.guild, "TotalMessages")) messages -= 1 self.settings.setServerStat(ctx.message.guild, "TotalMessages", messages) if messages == None: messages = 0 if messages == 1: await ctx.channel.send('So far, I\'ve witnessed *{:,} message!*'.format(messages)) else: await ctx.channel.send('So far, I\'ve witnessed *{:,} messages!*'.format(messages)) @commands.command(pass_context=True) async def allmessages(self, ctx): """Lists the number of messages I've seen on all severs so far. (only applies after this module's inception, and if I'm online)""" messages = 0 for guild in self.bot.guilds: temp = 0 if self.settings.getServerStat(guild, "TotalMessages") is None else self.settings.getServerStat(guild, "TotalMessages") messages += int(temp) messages -= 1 if messages == 1: await ctx.channel.send('So far, I\'ve witnessed *{:,} message across all servers!*'.format(messages)) else: await ctx.channel.send('So far, I\'ve witnessed *{:,} messages across all servers!*'.format(messages)) # Set our message count locally -1 messages = int(self.settings.getServerStat(ctx.message.guild, "TotalMessages")) messages -= 1 self.settings.setServerStat(ctx.message.guild, "TotalMessages", messages)
42.076803
254
0.537568
26,447
0.984587
0
0
25,586
0.952533
25,652
0.954991
6,638
0.247124
dbfdaede95b2536399d16c62c421baf5bd420ceb
6,688
py
Python
chess_commentary_model/transformers_model/dataset_preprocessing.py
Rseiji/TCC-2020
da68a49da38adf1bcf590b3028894d7834a28157
[ "MIT" ]
null
null
null
chess_commentary_model/transformers_model/dataset_preprocessing.py
Rseiji/TCC-2020
da68a49da38adf1bcf590b3028894d7834a28157
[ "MIT" ]
2
2020-08-30T22:47:54.000Z
2021-03-31T19:58:11.000Z
chess_commentary_model/transformers_model/dataset_preprocessing.py
Rseiji/TCC-2020
da68a49da38adf1bcf590b3028894d7834a28157
[ "MIT" ]
null
null
null
"""Métodos de preprocessamento de testes individuais """ import pandas as pd import numpy as np import math def test_1(df, seed=0): """training: balanced; test: balanced training: 80k (40k 0, 40k 1) test: 20k (10k 0, 10k 1) """ df_ones = df[df['label'] == 1] df_zeros = df[df['label'] == 0] df_ones = df_ones.sample(frac=1, random_state=seed).reset_index(drop=True) df_zeros = df_zeros.sample(frac=1, random_state=seed).reset_index(drop=True) df_ones_training = df_ones.loc[:40000] df_zeros_training = df_zeros.loc[:40000] df_ones_test = df_ones.loc[40000:50000] df_zeros_test = df_zeros.loc[40000:50000] df_training = pd.concat([df_ones_training, df_zeros_training]) df_training = df_training.sample(frac=1).reset_index(drop=True) df_test = pd.concat([df_ones_test, df_zeros_test]) df_test = df_test.sample(frac=1).reset_index(drop=True) sentences_train = df_training['comment'].tolist() sentences_test = df_test['comment'].tolist() labels_train = df_training['label'].tolist() labels_test = df_test['label'].tolist() return sentences_train, sentences_test, labels_train, labels_test def test_2(df, seed=0): """training: balanced; test: unbalanced training: 80k (40k 0, 40k 1) test: 20k (4k 0, 16k 1) """ df_ones = df[df['label'] == 1] df_zeros = df[df['label'] == 0] df_ones = df_ones.sample(frac=1, random_state=seed).reset_index(drop=True) df_zeros = df_zeros.sample(frac=1, random_state=seed).reset_index(drop=True) df_ones_training = df_ones.loc[:40000] df_zeros_training = df_zeros.loc[:40000] df_ones_test = df_ones.loc[40000:44000] df_zeros_test = df_zeros.loc[40000:56000] df_training = pd.concat([df_ones_training, df_zeros_training]) df_training = df_training.sample(frac=1).reset_index(drop=True) df_test = pd.concat([df_ones_test, df_zeros_test]) df_test = df_test.sample(frac=1).reset_index(drop=True) sentences_train = df_training['comment'].tolist() sentences_test = df_test['comment'].tolist() labels_train = df_training['label'].tolist() labels_test = df_test['label'].tolist() return sentences_train, sentences_test, labels_train, labels_test def test_3(df, seed=0): """training: unbalanced; test: unbalanced training: 80k (16k 1, 64k 0) test: 20k (4k 1, 16k 0) """ df_ones = df[df['label'] == 1] df_zeros = df[df['label'] == 0] df_ones = df_ones.sample(frac=1, random_state=seed).reset_index(drop=True) df_zeros = df_zeros.sample(frac=1, random_state=seed).reset_index(drop=True) df_ones_training = df_ones.loc[:16000] df_zeros_training = df_zeros.loc[:64000] df_ones_test = df_ones.loc[16000:20000] df_zeros_test = df_zeros.loc[64000:80000] df_training = pd.concat([df_ones_training, df_zeros_training]) df_training = df_training.sample(frac=1).reset_index(drop=True) df_test = pd.concat([df_ones_test, df_zeros_test]) df_test = df_test.sample(frac=1).reset_index(drop=True) sentences_train = df_training['comment'].tolist() sentences_test = df_test['comment'].tolist() labels_train = df_training['label'].tolist() labels_test = df_test['label'].tolist() return sentences_train, sentences_test, labels_train, labels_test ################################## ## Tests on old dataset ################################## def test_4(df, seed=0): """ training: balanced; test: balanced training: 58k (29k 0, 29k 1) test: 14.5k (7.25k 0, 7.25k 1) """ df_ones = df[df['label'] == 1] df_zeros = df[df['label'] == 0] df_ones = df_ones.sample(frac=1, random_state=seed).reset_index(drop=True) df_zeros = df_zeros.sample(frac=1, random_state=seed).reset_index(drop=True) df_ones_training = df_ones.loc[:29000] df_zeros_training = df_zeros.loc[:29000] df_ones_test = df_ones.loc[29000:36250] df_zeros_test = df_zeros.loc[29000:36250] df_training = pd.concat([df_ones_training, df_zeros_training]) df_training = df_training.sample(frac=1).reset_index(drop=True) df_test = pd.concat([df_ones_test, df_zeros_test]) df_test = df_test.sample(frac=1).reset_index(drop=True) sentences_train = df_training['comment'].tolist() sentences_test = df_test['comment'].tolist() labels_train = df_training['label'].tolist() labels_test = df_test['label'].tolist() return sentences_train, sentences_test, labels_train, labels_test def test_5(df, seed=0): """training: balanced; test: unbalanced training: 58k (29000 0, 29000 1) test: 14.5k (12905 0, 1595 1) """ df_ones = df[df['label'] == 1] df_zeros = df[df['label'] == 0] df_ones = df_ones.sample(frac=1, random_state=seed).reset_index(drop=True) df_zeros = df_zeros.sample(frac=1, random_state=seed).reset_index(drop=True) df_ones_training = df_ones.loc[:29000] df_zeros_training = df_zeros.loc[:29000] df_ones_test = df_ones.loc[29000:30595] df_zeros_test = df_zeros.loc[29000:41905] df_training = pd.concat([df_ones_training, df_zeros_training]) df_training = df_training.sample(frac=1).reset_index(drop=True) df_test = pd.concat([df_ones_test, df_zeros_test]) df_test = df_test.sample(frac=1).reset_index(drop=True) sentences_train = df_training['comment'].tolist() sentences_test = df_test['comment'].tolist() labels_train = df_training['label'].tolist() labels_test = df_test['label'].tolist() return sentences_train, sentences_test, labels_train, labels_test def test_6(df, seed=0): """training: unbalanced; test: unbalanced training: 58k (6380 1, 51620 0) test: 14.5k (1595 1, 12905 0) """ df_ones = df[df['label'] == 1] df_zeros = df[df['label'] == 0] df_ones = df_ones.sample(frac=1, random_state=seed).reset_index(drop=True) df_zeros = df_zeros.sample(frac=1, random_state=seed).reset_index(drop=True) df_ones_training = df_ones.loc[:6380] df_zeros_training = df_zeros.loc[:51620] df_ones_test = df_ones.loc[6380:7975] df_zeros_test = df_zeros.loc[51620:64525] df_training = pd.concat([df_ones_training, df_zeros_training]) df_training = df_training.sample(frac=1).reset_index(drop=True) df_test = pd.concat([df_ones_test, df_zeros_test]) df_test = df_test.sample(frac=1).reset_index(drop=True) sentences_train = df_training['comment'].tolist() sentences_test = df_test['comment'].tolist() labels_train = df_training['label'].tolist() labels_test = df_test['label'].tolist() return sentences_train, sentences_test, labels_train, labels_test
36.546448
80
0.689145
0
0
0
0
0
0
0
0
1,144
0.171027
dbfdb987e6de76d1f36bf0f8ce7f9d972b1cbaed
7,103
py
Python
venv/Lib/site-packages/CoolProp/constants.py
kubakoziczak/gasSteamPowerPlant
e6c036cc66ee2ff0b3f2fc923d0991bf57295d61
[ "MIT" ]
null
null
null
venv/Lib/site-packages/CoolProp/constants.py
kubakoziczak/gasSteamPowerPlant
e6c036cc66ee2ff0b3f2fc923d0991bf57295d61
[ "MIT" ]
null
null
null
venv/Lib/site-packages/CoolProp/constants.py
kubakoziczak/gasSteamPowerPlant
e6c036cc66ee2ff0b3f2fc923d0991bf57295d61
[ "MIT" ]
null
null
null
# This file is automatically generated by the generate_constants_module.py script in wrappers/Python. # DO NOT MODIFY THE CONTENTS OF THIS FILE! from __future__ import absolute_import from . import _constants INVALID_PARAMETER = _constants.INVALID_PARAMETER igas_constant = _constants.igas_constant imolar_mass = _constants.imolar_mass iacentric_factor = _constants.iacentric_factor irhomolar_reducing = _constants.irhomolar_reducing irhomolar_critical = _constants.irhomolar_critical iT_reducing = _constants.iT_reducing iT_critical = _constants.iT_critical irhomass_reducing = _constants.irhomass_reducing irhomass_critical = _constants.irhomass_critical iP_critical = _constants.iP_critical iP_reducing = _constants.iP_reducing iT_triple = _constants.iT_triple iP_triple = _constants.iP_triple iT_min = _constants.iT_min iT_max = _constants.iT_max iP_max = _constants.iP_max iP_min = _constants.iP_min idipole_moment = _constants.idipole_moment iT = _constants.iT iP = _constants.iP iQ = _constants.iQ iTau = _constants.iTau iDelta = _constants.iDelta iDmolar = _constants.iDmolar iHmolar = _constants.iHmolar iSmolar = _constants.iSmolar iCpmolar = _constants.iCpmolar iCp0molar = _constants.iCp0molar iCvmolar = _constants.iCvmolar iUmolar = _constants.iUmolar iGmolar = _constants.iGmolar iHelmholtzmolar = _constants.iHelmholtzmolar iSmolar_residual = _constants.iSmolar_residual iDmass = _constants.iDmass iHmass = _constants.iHmass iSmass = _constants.iSmass iCpmass = _constants.iCpmass iCp0mass = _constants.iCp0mass iCvmass = _constants.iCvmass iUmass = _constants.iUmass iGmass = _constants.iGmass iHelmholtzmass = _constants.iHelmholtzmass iviscosity = _constants.iviscosity iconductivity = _constants.iconductivity isurface_tension = _constants.isurface_tension iPrandtl = _constants.iPrandtl ispeed_sound = _constants.ispeed_sound iisothermal_compressibility = _constants.iisothermal_compressibility iisobaric_expansion_coefficient = _constants.iisobaric_expansion_coefficient ifundamental_derivative_of_gas_dynamics = _constants.ifundamental_derivative_of_gas_dynamics ialphar = _constants.ialphar idalphar_dtau_constdelta = _constants.idalphar_dtau_constdelta idalphar_ddelta_consttau = _constants.idalphar_ddelta_consttau ialpha0 = _constants.ialpha0 idalpha0_dtau_constdelta = _constants.idalpha0_dtau_constdelta idalpha0_ddelta_consttau = _constants.idalpha0_ddelta_consttau iBvirial = _constants.iBvirial iCvirial = _constants.iCvirial idBvirial_dT = _constants.idBvirial_dT idCvirial_dT = _constants.idCvirial_dT iZ = _constants.iZ iPIP = _constants.iPIP ifraction_min = _constants.ifraction_min ifraction_max = _constants.ifraction_max iT_freeze = _constants.iT_freeze iGWP20 = _constants.iGWP20 iGWP100 = _constants.iGWP100 iGWP500 = _constants.iGWP500 iFH = _constants.iFH iHH = _constants.iHH iPH = _constants.iPH iODP = _constants.iODP iPhase = _constants.iPhase iundefined_parameter = _constants.iundefined_parameter INPUT_PAIR_INVALID = _constants.INPUT_PAIR_INVALID QT_INPUTS = _constants.QT_INPUTS PQ_INPUTS = _constants.PQ_INPUTS QSmolar_INPUTS = _constants.QSmolar_INPUTS QSmass_INPUTS = _constants.QSmass_INPUTS HmolarQ_INPUTS = _constants.HmolarQ_INPUTS HmassQ_INPUTS = _constants.HmassQ_INPUTS DmolarQ_INPUTS = _constants.DmolarQ_INPUTS DmassQ_INPUTS = _constants.DmassQ_INPUTS PT_INPUTS = _constants.PT_INPUTS DmassT_INPUTS = _constants.DmassT_INPUTS DmolarT_INPUTS = _constants.DmolarT_INPUTS HmolarT_INPUTS = _constants.HmolarT_INPUTS HmassT_INPUTS = _constants.HmassT_INPUTS SmolarT_INPUTS = _constants.SmolarT_INPUTS SmassT_INPUTS = _constants.SmassT_INPUTS TUmolar_INPUTS = _constants.TUmolar_INPUTS TUmass_INPUTS = _constants.TUmass_INPUTS DmassP_INPUTS = _constants.DmassP_INPUTS DmolarP_INPUTS = _constants.DmolarP_INPUTS HmassP_INPUTS = _constants.HmassP_INPUTS HmolarP_INPUTS = _constants.HmolarP_INPUTS PSmass_INPUTS = _constants.PSmass_INPUTS PSmolar_INPUTS = _constants.PSmolar_INPUTS PUmass_INPUTS = _constants.PUmass_INPUTS PUmolar_INPUTS = _constants.PUmolar_INPUTS HmassSmass_INPUTS = _constants.HmassSmass_INPUTS HmolarSmolar_INPUTS = _constants.HmolarSmolar_INPUTS SmassUmass_INPUTS = _constants.SmassUmass_INPUTS SmolarUmolar_INPUTS = _constants.SmolarUmolar_INPUTS DmassHmass_INPUTS = _constants.DmassHmass_INPUTS DmolarHmolar_INPUTS = _constants.DmolarHmolar_INPUTS DmassSmass_INPUTS = _constants.DmassSmass_INPUTS DmolarSmolar_INPUTS = _constants.DmolarSmolar_INPUTS DmassUmass_INPUTS = _constants.DmassUmass_INPUTS DmolarUmolar_INPUTS = _constants.DmolarUmolar_INPUTS FLUID_TYPE_PURE = _constants.FLUID_TYPE_PURE FLUID_TYPE_PSEUDOPURE = _constants.FLUID_TYPE_PSEUDOPURE FLUID_TYPE_REFPROP = _constants.FLUID_TYPE_REFPROP FLUID_TYPE_INCOMPRESSIBLE_LIQUID = _constants.FLUID_TYPE_INCOMPRESSIBLE_LIQUID FLUID_TYPE_INCOMPRESSIBLE_SOLUTION = _constants.FLUID_TYPE_INCOMPRESSIBLE_SOLUTION FLUID_TYPE_UNDEFINED = _constants.FLUID_TYPE_UNDEFINED iphase_liquid = _constants.iphase_liquid iphase_supercritical = _constants.iphase_supercritical iphase_supercritical_gas = _constants.iphase_supercritical_gas iphase_supercritical_liquid = _constants.iphase_supercritical_liquid iphase_critical_point = _constants.iphase_critical_point iphase_gas = _constants.iphase_gas iphase_twophase = _constants.iphase_twophase iphase_unknown = _constants.iphase_unknown iphase_not_imposed = _constants.iphase_not_imposed NORMALIZE_GAS_CONSTANTS = _constants.NORMALIZE_GAS_CONSTANTS CRITICAL_WITHIN_1UK = _constants.CRITICAL_WITHIN_1UK CRITICAL_SPLINES_ENABLED = _constants.CRITICAL_SPLINES_ENABLED SAVE_RAW_TABLES = _constants.SAVE_RAW_TABLES ALTERNATIVE_TABLES_DIRECTORY = _constants.ALTERNATIVE_TABLES_DIRECTORY ALTERNATIVE_REFPROP_PATH = _constants.ALTERNATIVE_REFPROP_PATH ALTERNATIVE_REFPROP_HMX_BNC_PATH = _constants.ALTERNATIVE_REFPROP_HMX_BNC_PATH ALTERNATIVE_REFPROP_LIBRARY_PATH = _constants.ALTERNATIVE_REFPROP_LIBRARY_PATH REFPROP_DONT_ESTIMATE_INTERACTION_PARAMETERS = _constants.REFPROP_DONT_ESTIMATE_INTERACTION_PARAMETERS REFPROP_IGNORE_ERROR_ESTIMATED_INTERACTION_PARAMETERS = _constants.REFPROP_IGNORE_ERROR_ESTIMATED_INTERACTION_PARAMETERS REFPROP_USE_GERG = _constants.REFPROP_USE_GERG REFPROP_USE_PENGROBINSON = _constants.REFPROP_USE_PENGROBINSON MAXIMUM_TABLE_DIRECTORY_SIZE_IN_GB = _constants.MAXIMUM_TABLE_DIRECTORY_SIZE_IN_GB DONT_CHECK_PROPERTY_LIMITS = _constants.DONT_CHECK_PROPERTY_LIMITS HENRYS_LAW_TO_GENERATE_VLE_GUESSES = _constants.HENRYS_LAW_TO_GENERATE_VLE_GUESSES PHASE_ENVELOPE_STARTING_PRESSURE_PA = _constants.PHASE_ENVELOPE_STARTING_PRESSURE_PA R_U_CODATA = _constants.R_U_CODATA VTPR_UNIFAC_PATH = _constants.VTPR_UNIFAC_PATH SPINODAL_MINIMUM_DELTA = _constants.SPINODAL_MINIMUM_DELTA OVERWRITE_FLUIDS = _constants.OVERWRITE_FLUIDS OVERWRITE_DEPARTURE_FUNCTION = _constants.OVERWRITE_DEPARTURE_FUNCTION OVERWRITE_BINARY_INTERACTION = _constants.OVERWRITE_BINARY_INTERACTION USE_GUESSES_IN_PROPSSI = _constants.USE_GUESSES_IN_PROPSSI ASSUME_CRITICAL_POINT_STABLE = _constants.ASSUME_CRITICAL_POINT_STABLE VTPR_ALWAYS_RELOAD_LIBRARY = _constants.VTPR_ALWAYS_RELOAD_LIBRARY FLOAT_PUNCTUATION = _constants.FLOAT_PUNCTUATION
44.672956
120
0.887653
0
0
0
0
0
0
0
0
143
0.020132
dbfe9381e4f6dcc57fd5c5d02265d7f565b40315
2,857
py
Python
torch_datasets/samplers/balanced_batch_sampler.py
mingruimingrui/torch-datasets
2640b8c4fa82156e68e617fc545a546b4e08dc4e
[ "MIT" ]
null
null
null
torch_datasets/samplers/balanced_batch_sampler.py
mingruimingrui/torch-datasets
2640b8c4fa82156e68e617fc545a546b4e08dc4e
[ "MIT" ]
null
null
null
torch_datasets/samplers/balanced_batch_sampler.py
mingruimingrui/torch-datasets
2640b8c4fa82156e68e617fc545a546b4e08dc4e
[ "MIT" ]
null
null
null
import random import torch.utils.data.sampler class BalancedBatchSampler(torch.utils.data.sampler.BatchSampler): def __init__( self, dataset_labels, batch_size=1, steps=None, n_classes=0, n_samples=2 ): """ Create a balanced batch sampler for label based datasets Args dataset_labels : Labels of every entry from a dataset (in the same sequence) batch_size : batch_size no explaination needed step_size : Number of batches to generate (if None, then dataset_size / batch_size will be used) n_classes : Number of classes n_samples : Number of samples per class *** If batch_size > n_classes * n_samples, rest of batch will be randomly filled """ self.batch_size = batch_size self.steps = len(dataset_labels) // batch_size if steps is None else steps self.n_classes = n_classes self.n_samples = n_samples # Create a label_to_entry_ids table self.label_to_entry_ids = {} for entry_id, label in enumerate(dataset_labels): if label in self.label_to_entry_ids: self.label_to_entry_ids[label].append(entry_id) else: self.label_to_entry_ids[label] = [entry_id] # Subset the labels with more than n_samples entries self.labels_subset = [label for (label, entry_ids) in self.label_to_entry_ids.items() if len(entry_ids) >= n_samples] assert len(self.labels_subset) >= n_classes, 'Too little labels have {} entries, choose a smaller n_classes or n_samples'.format(n_samples) def _make_batch_ids(self): batch_ids = [] # Choose classes and entries labels_choosen = random.sample(self.labels_subset, self.n_classes) # Randomly sample n_samples entries from choosen labels for l in labels_choosen: batch_ids += random.sample(self.label_to_entry_ids[l], self.n_samples) if len(batch_ids) < self.batch_size: # Randomly sample remainder labels_choosen = {l: None for l in labels_choosen} remaining_entry_ids = [] for label, entry_ids in self.label_to_entry_ids.items(): if label not in labels_choosen: remaining_entry_ids += entry_ids batch_ids += random.sample(remaining_entry_ids, self.batch_size - len(batch_ids)) # Randomly shuffle batch ids batch_ids = random.sample(batch_ids, self.batch_size) batch_ids = torch.LongTensor(batch_ids) return batch_ids def __iter__(self): self.count = 0 while self.count < self.steps: self.count += 1 yield self._make_batch_ids() def __len__(self): return self.steps
38.608108
147
0.637382
2,808
0.982849
150
0.052503
0
0
0
0
850
0.297515
dbfe9b7374d292dd3a07ffc92b4ebb9e7af2ac5d
1,416
py
Python
ambari-common/src/main/python/resource_management/libraries/functions/get_bare_principal.py
likenamehaojie/Apache-Ambari-ZH
5973025bd694cdbb4b49fb4c4e0d774782811ff6
[ "Apache-2.0" ]
1,664
2015-01-03T09:35:21.000Z
2022-03-31T04:55:24.000Z
ambari-common/src/main/python/resource_management/libraries/functions/get_bare_principal.py
likenamehaojie/Apache-Ambari-ZH
5973025bd694cdbb4b49fb4c4e0d774782811ff6
[ "Apache-2.0" ]
3,018
2015-02-19T20:16:10.000Z
2021-11-13T20:47:48.000Z
ambari-common/src/main/python/resource_management/libraries/functions/get_bare_principal.py
likenamehaojie/Apache-Ambari-ZH
5973025bd694cdbb4b49fb4c4e0d774782811ff6
[ "Apache-2.0" ]
1,673
2015-01-06T14:14:42.000Z
2022-03-31T07:22:30.000Z
#!/usr/bin/env python """ Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Ambari Agent """ import re __all__ = ["get_bare_principal"] def get_bare_principal(normalized_principal_name): """ Given a normalized principal name (nimbus/[email protected]) returns just the primary component (nimbus) :param normalized_principal_name: a string containing the principal name to process :return: a string containing the primary component value or None if not valid """ bare_principal = None if normalized_principal_name: match = re.match(r"([^/@]+)(?:/[^@])?(?:@.*)?", normalized_principal_name) if match: bare_principal = match.group(1) return bare_principal
33.714286
97
0.764831
0
0
0
0
0
0
0
0
1,150
0.812147
dbff3b375851c03b4ae31fb20b30423a4b9c6ad5
1,162
py
Python
04/cross_validation.01.py
study-machine-learning/dongheon.shin
6103ef9c73b162603bc39a27e4ecca0f1ac35e57
[ "MIT" ]
2
2017-09-24T02:29:48.000Z
2017-10-05T11:15:22.000Z
04/cross_validation.01.py
study-machine-learning/dongheon.shin
6103ef9c73b162603bc39a27e4ecca0f1ac35e57
[ "MIT" ]
null
null
null
04/cross_validation.01.py
study-machine-learning/dongheon.shin
6103ef9c73b162603bc39a27e4ecca0f1ac35e57
[ "MIT" ]
null
null
null
from sklearn import svm, metrics import random import re def split(rows): data = [] labels = [] for row in rows: data.append(row[0:4]) labels.append(row[4]) return (data, labels) def calculate_score(train, test): train_data, train_label = split(train) test_data, test_label = split(test) classifier = svm.SVC() classifier.fit(train_data, train_label) predict = classifier.predict(test_data) return metrics.accuracy_score(test_label, predict) def to_number(n): return float(n) if re.match(r"^[0-9\.]+$", n) else n def to_columm(line): return list(map(to_number, line.strip().split(","))) lines = open("iris.csv", "r", encoding="utf-8").read().split("\n") csv = list(map(to_columm, lines)) del csv[0] random.shuffle(csv) k = 5 csv_k = [[] for i in range(k)] scores = [] for i in range(len(csv)): csv_k[i % k].append(csv[i]) for test in csv_k: train = [] for data in csv_k: if test != data: train += data score = calculate_score(train, test) scores.append(score) print("score = ", scores) print("avg = ", sum(scores) / len(scores))
16.84058
66
0.620482
0
0
0
0
0
0
0
0
58
0.049914
e002150863388c3c73e7c985abca9ac6c4427a70
2,587
bzl
Python
third_party/org_specs2.bzl
wix/wix-oss-infra
b57ac2f0f66487cfdd08293a8fa389efe3d42c43
[ "MIT" ]
3
2020-01-14T12:57:31.000Z
2021-06-06T20:47:57.000Z
third_party/org_specs2.bzl
wix/wix-oss-infra
b57ac2f0f66487cfdd08293a8fa389efe3d42c43
[ "MIT" ]
20
2020-04-02T13:08:43.000Z
2020-11-05T11:27:40.000Z
third_party/org_specs2.bzl
wix/wix-oss-infra
b57ac2f0f66487cfdd08293a8fa389efe3d42c43
[ "MIT" ]
1
2021-04-02T09:32:35.000Z
2021-04-02T09:32:35.000Z
load("@wix_oss_infra//:import_external.bzl", import_external = "safe_wix_scala_maven_import_external") def dependencies(): import_external( name = "org_specs2_specs2_fp_2_12", artifact = "org.specs2:specs2-fp_2.12:4.8.3", artifact_sha256 = "777962ca58054a9ea86e294e025453ecf394c60084c28bd61956a00d16be31a7", srcjar_sha256 = "6b8bd1e7210754b768b68610709271c0dac29447936a976a2a9881389e6404ca", deps = [ "@org_scala_lang_scala_library" ], ) import_external( name = "org_specs2_specs2_common_2_12", artifact = "org.specs2:specs2-common_2.12:4.8.3", artifact_sha256 = "3b08fecb9e21d3903e48b62cd95c19ea9253d466e03fd4cf9dc9227e7c368708", srcjar_sha256 = "b2f148c75d3939b3cd0d58afddd74a8ce03077bb3ccdc93dae55bd9c3993e9c3", deps = [ "@org_scala_lang_modules_scala_parser_combinators_2_12", "@org_scala_lang_modules_scala_xml_2_12", "@org_scala_lang_scala_library", "@org_scala_lang_scala_reflect", "@org_specs2_specs2_fp_2_12" ], ) import_external( name = "org_specs2_specs2_matcher_2_12", artifact = "org.specs2:specs2-matcher_2.12:4.8.3", artifact_sha256 = "aadf27b6d015572b2e3842627c09bf0797153dbb329262ea3bcbbce129d51ad8", srcjar_sha256 = "01251acc28219aa17aabcb9a26a84e1871aa64980d335cd8f83c2bcea6f4f1be", deps = [ "@org_scala_lang_scala_library", "@org_specs2_specs2_common_2_12" ], ) import_external( name = "org_specs2_specs2_core_2_12", artifact = "org.specs2:specs2-core_2.12:4.8.3", artifact_sha256 = "f73f32156a711a4e83e696dc83e269c5a165d62cc3dd7c652617cb03d140d063", srcjar_sha256 = "0e3cebfc7410051b70e627e35f13978add3d061b8f1233741f9b397638f193e9", deps = [ "@org_scala_lang_scala_library", "@org_scala_sbt_test_interface", "@org_specs2_specs2_common_2_12", "@org_specs2_specs2_matcher_2_12" ], ) import_external( name = "org_specs2_specs2_junit_2_12", artifact = "org.specs2:specs2-junit_2.12:4.8.3", artifact_sha256 = "5d7ad2c0b0bc142ea064edb7a1ea75ab7b17ad37e1a621ac7e578823845098e8", srcjar_sha256 = "84edd1cd6291f6686638225fcbaff970ae36da006efabf2228255c2127b2290c", deps = [ "@junit_junit", "@org_scala_lang_scala_library", "@org_scala_sbt_test_interface", "@org_specs2_specs2_core_2_12" ], )
37.492754
102
0.68535
0
0
0
0
0
0
0
0
1,576
0.6092
e0023b6272774adf06f1384bdb4cb510043c4a82
224
py
Python
task/w2/trenirovka/12-rivnist 2.py
beregok/pythontask
50394ff2b52ab4f3273ec9ddc4b504d1f7b3159e
[ "MIT" ]
1
2019-09-29T14:19:54.000Z
2019-09-29T14:19:54.000Z
task/w2/trenirovka/12-rivnist 2.py
beregok/pythontask
50394ff2b52ab4f3273ec9ddc4b504d1f7b3159e
[ "MIT" ]
null
null
null
task/w2/trenirovka/12-rivnist 2.py
beregok/pythontask
50394ff2b52ab4f3273ec9ddc4b504d1f7b3159e
[ "MIT" ]
null
null
null
a = int(input()) b = int(input()) c = int(input()) d = int(input()) if a == 0 and b == 0: print("INF") else: if (d - b * c / a) != 0 and (- b / a) == (- b // a): print(- b // a) else: print("NO")
18.666667
56
0.397321
0
0
0
0
0
0
0
0
9
0.040179
e004ab57c3294086a91490c226d7c40f3986ad7f
4,265
py
Python
src/reg_resampler.py
atif-hassan/Regression_ReSampling
194b2ae8efea7598a6690792d40e42aba74c111b
[ "BSD-3-Clause" ]
15
2020-06-09T20:08:04.000Z
2021-11-21T15:58:09.000Z
src/reg_resampler.py
atif-hassan/Regression_ReSampling
194b2ae8efea7598a6690792d40e42aba74c111b
[ "BSD-3-Clause" ]
null
null
null
src/reg_resampler.py
atif-hassan/Regression_ReSampling
194b2ae8efea7598a6690792d40e42aba74c111b
[ "BSD-3-Clause" ]
5
2020-06-13T22:07:51.000Z
2021-05-21T03:26:45.000Z
class resampler: def __init__(self): import pandas as pd from sklearn.preprocessing import LabelEncoder from collections import Counter import numpy as np self.bins = 3 self.pd = pd self.LabelEncoder = LabelEncoder self.Counter = Counter self.X = 0 self.Y_classes = 0 self.target = 0 self.np = np # This function adds classes to each sample and returns the class list as a dataframe/numpy array (as per input) # It also merges classes as and when required def fit(self, X, target, bins=3, min_n_samples=6, balanced_binning=False, verbose=2): self.bins = bins tmp = target # If data is numpy, then convert it into pandas if type(target) == int: if target < 0: target = X.shape[1]+target tmp = target self.X = self.pd.DataFrame() for i in range(X.shape[1]): if i!=target: self.X[str(i)] = X[:,i] self.X["target"] = X[:,target] target = "target" else: self.X = X.copy() # Use qcut if balanced binning is required if balanced_binning: self.Y_classes = self.pd.qcut(self.X[target], q=self.bins, precision=0) else: self.Y_classes = self.pd.cut(self.X[target], bins=self.bins) # Pandas outputs ranges after binning. Convert ranges to classes le = self.LabelEncoder() self.Y_classes = le.fit_transform(self.Y_classes) # Merge classes if number of neighbours is more than the number of samples classes_count = list(map(list, self.Counter(self.Y_classes).items())) classes_count = sorted(classes_count, key = lambda x: x[0]) mid_point = len(classes_count) # Logic for merging for i in range(len(classes_count)): if classes_count[i][1] < min_n_samples: self.Y_classes[self.np.where(self.Y_classes == classes_count[i][0])[0]] = classes_count[i-1][0] if verbose > 0: print("INFO: Class " + str(classes_count[i][0]) + " has been merged into Class " + str(classes_count[i-1][0]) + " due to low number of samples") classes_count[i][0] = classes_count[i-1][0] if verbose > 0: print() # Perform label-encoding once again # Avoids class skipping after merging le = self.LabelEncoder() self.Y_classes = le.fit_transform(self.Y_classes) # Pretty print if verbose > 1: print("Class Distribution:\n-------------------") classes_count = list(map(list, self.Counter(self.Y_classes).items())) classes_count = sorted(classes_count, key = lambda x: x[0]) for class_, count in classes_count: print(str(class_)+": "+str(count)) print() # Finally concatenate and return as dataframe or numpy # Based on what type of target was sent self.X["classes"] = self.Y_classes if type(tmp) == int: self.target = tmp else: self.target = target return self.Y_classes # This function performs the re-sampling def resample(self, sampler_obj, trainX, trainY): # If classes haven't yet been created, then run the "fit" function if type(self.Y_classes) == int: print("Error! Run fit method first!!") return None # Finally, perform the re-sampling resampled_data, _ = sampler_obj.fit_resample(trainX, trainY) if type(resampled_data).__module__ == 'numpy': resampled_data = self.pd.DataFrame(resampled_data, columns=self.X.drop("classes", axis=1).columns) # Return the correct X and Y if type(self.target) == int: return resampled_data.drop("target", axis=1).values, resampled_data["target"].values else: return resampled_data.drop(self.target, axis=1), resampled_data[self.target]
41.813725
169
0.562251
4,263
0.999531
0
0
0
0
0
0
975
0.228605
e0063a8b35dfc827fe158a159fe5d8b8ab703065
4,920
py
Python
get_data/speech_commands.py
patrick-kidger/generalised_shapelets
04930c89dc4673e2af402895fe67655f8375a808
[ "MIT" ]
32
2020-05-31T17:41:58.000Z
2022-03-28T18:38:11.000Z
get_data/speech_commands.py
patrick-kidger/generalised_shapelets
04930c89dc4673e2af402895fe67655f8375a808
[ "MIT" ]
1
2022-02-09T22:13:03.000Z
2022-02-09T23:55:28.000Z
get_data/speech_commands.py
patrick-kidger/generalised_shapelets
04930c89dc4673e2af402895fe67655f8375a808
[ "MIT" ]
9
2020-07-17T16:50:24.000Z
2021-12-13T11:29:12.000Z
import os import pathlib import sklearn.model_selection import tarfile import torch import torchaudio import urllib.request here = pathlib.Path(__file__).resolve().parent def _split_data(tensor, stratify): # 0.7/0.15/0.15 train/val/test split (train_tensor, testval_tensor, train_stratify, testval_stratify) = sklearn.model_selection.train_test_split(tensor, stratify, train_size=0.7, random_state=0, shuffle=True, stratify=stratify) val_tensor, test_tensor = sklearn.model_selection.train_test_split(testval_tensor, train_size=0.5, random_state=1, shuffle=True, stratify=testval_stratify) return train_tensor, val_tensor, test_tensor def _save_data(dir, **tensors): for tensor_name, tensor_value in tensors.items(): torch.save(tensor_value, str(dir / tensor_name) + '.pt') def download(): base_base_loc = str(here / '../experiments/data') if not os.path.exists(base_base_loc): raise RuntimeError("data directory does not exist. Please create a directory called 'data' in the 'experiments'" " directory. (We're going to put a lot of data there, so we don't make it automatically - " "thus giving you the opportunity to make it a symlink rather than a normal directory, so " "that the data can be stored elsewhere if you wish.)") base_loc = base_base_loc + '/SpeechCommands' loc = base_loc + '/speech_commands.tar.gz' if os.path.exists(loc): return if not os.path.exists(base_loc): os.mkdir(base_loc) urllib.request.urlretrieve('http://download.tensorflow.org/data/speech_commands_v0.02.tar.gz', loc) with tarfile.open(loc, 'r') as f: f.extractall(base_loc) def _process_data(): base_loc = here / '..' / 'experiments' / 'data' / 'SpeechCommands' X = torch.empty(34975, 16000, 1) y = torch.empty(34975, dtype=torch.long) batch_index = 0 y_index = 0 for foldername in ('yes', 'no', 'up', 'down', 'left', 'right', 'on', 'off', 'stop', 'go'): loc = base_loc / foldername for filename in os.listdir(loc): audio, _ = torchaudio.load_wav(loc / filename, channels_first=False, normalization=False) # for forward compatbility if they fix it audio = audio / 2 ** 15 # Normalization argument doesn't seem to work so we do it manually. # A few samples are shorter than the full length; for simplicity we discard them. if len(audio) != 16000: continue X[batch_index] = audio y[batch_index] = y_index batch_index += 1 y_index += 1 assert batch_index == 34975, "batch_index is {}".format(batch_index) audio_X = X # X is of shape (batch=34975, length=16000, channels=1) X = torchaudio.transforms.MFCC(log_mels=True)(X.squeeze(-1)).transpose(1, 2).detach() # X is of shape (batch=34975, length=81, channels=40). For some crazy reason it requires a gradient, so detach. train_X, _, _ = _split_data(X, y) out = [] means = [] stds = [] for Xi, train_Xi in zip(X.unbind(dim=-1), train_X.unbind(dim=-1)): mean = train_Xi.mean() std = train_Xi.std() means.append(mean) stds.append(std) out.append((Xi - mean) / (std + 1e-5)) X = torch.stack(out, dim=-1) train_audio_X, val_audio_X, test_audio_X = _split_data(audio_X, y) train_X, val_X, test_X = _split_data(X, y) train_y, val_y, test_y = _split_data(y, y) return train_X, val_X, test_X, train_y, val_y, test_y, torch.stack(means), torch.stack(stds), train_audio_X, \ val_audio_X, test_audio_X def main(): download() (train_X, val_X, test_X, train_y, val_y, test_y, means, stds, train_audio_X, val_audio_X, test_audio_X) = _process_data() loc = here / '..' / 'experiments' / 'data' / 'speech_commands_data' if not os.path.exists(loc): os.mkdir(loc) _save_data(loc, train_X=train_X, val_X=val_X, test_X=test_X, train_y=train_y, val_y=val_y, test_y=test_y, means=means, stds=stds, train_audio_X=train_audio_X, val_audio_X=val_audio_X, test_audio_X=test_audio_X) if __name__ == '__main__': main()
42.051282
120
0.566057
0
0
0
0
0
0
0
0
1,019
0.207114
e008ab01b4020e37d916e20d303c66a51a23123e
5,652
py
Python
app/endpoints/products.py
duch94/spark_crud_test
94a514797700c2e929792f0424fb0e9e911489b7
[ "BSD-2-Clause" ]
null
null
null
app/endpoints/products.py
duch94/spark_crud_test
94a514797700c2e929792f0424fb0e9e911489b7
[ "BSD-2-Clause" ]
null
null
null
app/endpoints/products.py
duch94/spark_crud_test
94a514797700c2e929792f0424fb0e9e911489b7
[ "BSD-2-Clause" ]
null
null
null
from datetime import datetime from typing import List from flask import Blueprint, jsonify, request, json from app.models.products import Product, Category, products_categories from app import db products_blueprint = Blueprint('products', __name__) def create_or_get_categories(p: dict) -> List[Category]: """ Func to get existing categories objects or create new otherwise :param p: payload of request :return: list of categories """ recevied_categories: List[Category] = [Category(name=cat) for cat in p['categories']] categories = [] for cat in recevied_categories: exists = db.session.query(db.exists().where(Category.name == cat.name)).all()[0][0] if exists: existing_category = Category.query.filter(Category.name == cat.name).all()[0] categories.append(existing_category) else: categories.append(cat) return categories @products_blueprint.route('/products', methods=['GET']) def get_products(): return jsonify({ 'results': [p.serialized for p in Product.query.all()] }) @products_blueprint.route('/create_product', methods=['POST']) def create_product(): data = request.get_data().decode('utf-8') payload = json.loads(data) datetime_format = '%Y-%m-%d %H:%M:%S' if len(payload['categories']) < 1 or len(payload['categories']) > 5: return '{"status": "error", "msg": "categories number must be between 1 and 5"}', 400 categories = create_or_get_categories(payload) try: new_prod = Product(name=payload['name'], rating=float(payload['rating']), featured=bool(payload['featured'] if 'featured' in payload.keys() else None), expiration_date=(datetime.strptime(payload['expiration_date'], datetime_format) if ('expiration_date' in payload.keys()) else None), brand_id=int(payload['brand_id']), items_in_stock=int(payload['items_in_stock']), receipt_date=(datetime.strptime(payload['receipt_date'], datetime_format) if ('receipt_date' in payload.keys()) else None)) except TypeError as e: return '{"status": "error", "msg": "TypeError occured: check values of fields"}' except KeyError as e: return '{"status": "error", "msg": "field %s have not been found, but is required"}' % str(e), 400 if new_prod.rating > 8.0: new_prod.featured = True [cat.products.append(new_prod) for cat in categories] [db.session.add(cat) for cat in categories] db.session.commit() return jsonify({"status": "ok", "msg": "product received"}) @products_blueprint.route('/update_product', methods=['PUT']) def update_product(): data = request.get_data().decode('utf-8') payload = json.loads(data) datetime_format = '%Y-%m-%d %H:%M:%S' product = Product.query.filter(Product.id == payload['id']) if product: if 'name' in payload.keys(): product.update({'name': payload['name']}) if 'featured' in payload.keys(): product.update({'featured': bool(payload['featured'])}) if 'rating' in payload.keys(): product.update({'rating': float(payload['rating'])}) if product.rating > 8.0: product.featured = True if 'items_in_stock' in payload.keys(): product.update({'items_in_stock': int(payload['items_in_stock'])}) if 'receipt_date' in payload.keys(): product.update({'receipt_date': datetime.strptime(payload['receipt_date'], datetime_format)}) if 'brand' in payload.keys(): product.update({'brand': int(payload['brand'])}) if 'categories' in payload.keys(): categories = create_or_get_categories(payload) db.session.query(products_categories).filter( products_categories.c.product_id == int(payload['id'])).delete(synchronize_session=False) product_obj = product.all()[0] [cat.products.append(product_obj) for cat in categories] [db.session.add(cat) for cat in categories] if 'expiration_date' in payload.keys(): product.update({'expiration_date': datetime.strptime(payload['expiration_date'], datetime_format)}) db.session.commit() return jsonify({"status": "ok", "msg": "product updated"}) else: return '{"status": "error", "msg": "no product found with given id"}', 404 @products_blueprint.route('/delete_product', methods=['DELETE']) def delete_product(): data = request.get_data().decode('utf-8') p = json.loads(data) products_result = Product.query.filter(Product.id == int(p['id'])).delete(synchronize_session=False) products_categories_result = db.session.query(products_categories).filter( products_categories.c.product_id == int(p['id'])).delete(synchronize_session=False) db.session.commit() if products_result == 1: return jsonify({"status": "ok", "msg": "product deleted, also %d product_categories relations deleted" % products_categories_result}) else: return jsonify({"status": "warning", "msg": "%d products deleted, also %d product_categories relations deleted" % (products_result, products_categories_result)})
45.580645
120
0.608457
0
0
0
0
4,674
0.826964
0
0
1,255
0.222045
e008c8c892e467ea561589969c08eaa2c9b808db
1,701
py
Python
util/config/validators/test/test_validate_bitbucket_trigger.py
giuseppe/quay
a1b7e4b51974edfe86f66788621011eef2667e6a
[ "Apache-2.0" ]
2,027
2019-11-12T18:05:48.000Z
2022-03-31T22:25:04.000Z
util/config/validators/test/test_validate_bitbucket_trigger.py
giuseppe/quay
a1b7e4b51974edfe86f66788621011eef2667e6a
[ "Apache-2.0" ]
496
2019-11-12T18:13:37.000Z
2022-03-31T10:43:45.000Z
util/config/validators/test/test_validate_bitbucket_trigger.py
giuseppe/quay
a1b7e4b51974edfe86f66788621011eef2667e6a
[ "Apache-2.0" ]
249
2019-11-12T18:02:27.000Z
2022-03-22T12:19:19.000Z
import pytest from httmock import urlmatch, HTTMock from util.config import URLSchemeAndHostname from util.config.validator import ValidatorContext from util.config.validators import ConfigValidationException from util.config.validators.validate_bitbucket_trigger import BitbucketTriggerValidator from test.fixtures import * @pytest.mark.parametrize( "unvalidated_config", [ (ValidatorContext({})), (ValidatorContext({"BITBUCKET_TRIGGER_CONFIG": {}})), (ValidatorContext({"BITBUCKET_TRIGGER_CONFIG": {"CONSUMER_KEY": "foo"}})), (ValidatorContext({"BITBUCKET_TRIGGER_CONFIG": {"CONSUMER_SECRET": "foo"}})), ], ) def test_validate_invalid_bitbucket_trigger_config(unvalidated_config, app): validator = BitbucketTriggerValidator() with pytest.raises(ConfigValidationException): validator.validate(unvalidated_config) def test_validate_bitbucket_trigger(app): url_hit = [False] @urlmatch(netloc=r"bitbucket.org") def handler(url, request): url_hit[0] = True return { "status_code": 200, "content": "oauth_token=foo&oauth_token_secret=bar", } with HTTMock(handler): validator = BitbucketTriggerValidator() url_scheme_and_hostname = URLSchemeAndHostname("http", "localhost:5000") unvalidated_config = ValidatorContext( { "BITBUCKET_TRIGGER_CONFIG": { "CONSUMER_KEY": "foo", "CONSUMER_SECRET": "bar", }, }, url_scheme_and_hostname=url_scheme_and_hostname, ) validator.validate(unvalidated_config) assert url_hit[0]
29.842105
87
0.671958
0
0
0
0
764
0.449148
0
0
306
0.179894
e008cc40a9e990beff8a7a594350250e113f3691
2,414
py
Python
Refraction.py
silkoch42/Geometric-Optics-from-QM
baf41b54c37835b527d5b98cb480d68bc2ff68c3
[ "MIT" ]
null
null
null
Refraction.py
silkoch42/Geometric-Optics-from-QM
baf41b54c37835b527d5b98cb480d68bc2ff68c3
[ "MIT" ]
null
null
null
Refraction.py
silkoch42/Geometric-Optics-from-QM
baf41b54c37835b527d5b98cb480d68bc2ff68c3
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Fri Mar 15 16:51:16 2019 @author: Silvan """ import numpy as np import scipy import matplotlib.pyplot as plt k=1000 n1=2.0 n2=1.0 alpha=np.pi/6.0 beta=np.arcsin(n2/n1*np.sin(alpha)) ya=1.0 xa=-ya*np.tan(alpha) yb=-1.0 xb=-yb*np.tan(beta) def s(x): return n1*np.sqrt((xa-x)**2+ya**2)+n2*np.sqrt((xb-x)**2+yb**2) def kernel(xa,xb): return 1.0/np.sqrt(xa**2+1)**(3/2.0)+1.0/np.sqrt(xa**2+1)**(3/2.0) def K(R): L=1000 #Maximum Number of subdivisions for integral calculations eps=0.01 N=50 x,dx=np.linspace(0.01,R,N,retstep=True) real=np.empty(N) imag=np.empty(N) real[0]=scipy.integrate.quad(lambda x: np.cos(k*s(x)),-x[0],x[0],epsrel=eps,limit=L)[0] imag[0]=scipy.integrate.quad(lambda x: np.sin(k*s(x)),-x[0],x[0],epsrel=eps,limit=L)[0] for i in range(1,N): r1=scipy.integrate.quad(lambda x: np.cos(k*s(x)),-x[i]-dx,-x[i],epsrel=eps,limit=L)[0] r2=scipy.integrate.quad(lambda x: np.cos(k*s(x)),x[i],x[i]+dx,epsrel=eps,limit=L)[0] real[i]=real[i-1]+r1+r2 i1=scipy.integrate.quad(lambda x: np.sin(k*s(x)),-x[i]-dx,-x[i],epsrel=eps,limit=L)[0] i2=scipy.integrate.quad(lambda x: np.sin(k*s(x)),x[i],x[i]+dx,epsrel=eps,limit=L)[0] imag[i]=imag[i-1]+i1+i2 return np.sqrt(real**2+imag**2),x,real,imag K2,x,r,i=K(3) M=np.mean(K2[25:]) plt.plot(x,K2/M,label=r'$|\int_{-R}^{R}e^{i k s(x)}dx|^2$') #plt.errorbar(x,K2/M,0.1*K2/M) plt.xlabel(r'Integration range $R$') plt.ylabel('Detection probabilty') plt.legend(loc='best') plt.text(2.4,0.2,r'$k=1000$') #plt.text(1.1,0.5,r'$|\int_{-R}^{R}e^{i k s(x)}dx|^2$',fontsize=20) plt.savefig('refraction_v3',dpi=200) plt.show() #N=20 # #dx=np.linspace(0,10,N) # #P=np.ones(N) # #for i in range(N): # print(i+1) # P[i]=trans_amp(dx[i]) # # #plt.figure(1) #plt.plot(dx,P/np.mean(P[20:])) #plt.text(4.0,0.5,r'$|\int_{-\Delta x}^{\Delta x} e^{ik s(x)}dx$|',fontsize=20) #plt.ylabel('Transition Amplitude') #plt.xlabel(r'Integration Interval $ \Delta x$') ##plt.axis([0,10,0,1.1]) #plt.legend(loc='best') ##plt.savefig('refraction',dpi=200) #plt.show() #x=np.linspace(-5,5,100) # #plt.figure(2) #plt.plot(x,s(x)) #plt.show() # #d=np.linspace(0,5,100) #xa=-d/2 #xb=d/2 #plt.figure(3) #plt.plot(d,kernel(xa,xb)**2) #plt.show()
24.383838
95
0.583264
0
0
0
0
0
0
0
0
956
0.396023
e0097d9cfd4f53f9d94ad08b373e659436909217
444
py
Python
readthedocs/docsitalia/management/commands/clear_elasticsearch.py
italia/readthedocs.org
440d3885380d20ec24081f76e26d20701749e179
[ "MIT" ]
19
2018-03-28T12:28:35.000Z
2022-02-14T20:09:42.000Z
readthedocs/docsitalia/management/commands/clear_elasticsearch.py
berez23/docs.italia.it
440d3885380d20ec24081f76e26d20701749e179
[ "MIT" ]
274
2017-10-10T07:59:04.000Z
2022-03-12T00:56:03.000Z
readthedocs/docsitalia/management/commands/clear_elasticsearch.py
italia/readthedocs.org
440d3885380d20ec24081f76e26d20701749e179
[ "MIT" ]
13
2018-04-03T09:49:50.000Z
2021-04-18T22:04:15.000Z
"""Remove the readthedocs elasticsearch index.""" from __future__ import absolute_import from django.conf import settings from django.core.management.base import BaseCommand from elasticsearch import Elasticsearch class Command(BaseCommand): """Clear elasticsearch index.""" def handle(self, *args, **options): """handle command.""" e_s = Elasticsearch(settings.ES_HOSTS) e_s.indices.delete(index='_all')
23.368421
51
0.725225
224
0.504505
0
0
0
0
0
0
108
0.243243
e00b9ee8e43ae71af00a3fe383bedc3df745f04d
7,574
py
Python
train.py
vnbot2/BigGAN-PyTorch
1725269d52e05fbd4d06dac64aa4906a8ae7a760
[ "MIT" ]
null
null
null
train.py
vnbot2/BigGAN-PyTorch
1725269d52e05fbd4d06dac64aa4906a8ae7a760
[ "MIT" ]
null
null
null
train.py
vnbot2/BigGAN-PyTorch
1725269d52e05fbd4d06dac64aa4906a8ae7a760
[ "MIT" ]
null
null
null
""" BigGAN: The Authorized Unofficial PyTorch release Code by A. Brock and A. Andonian This code is an unofficial reimplementation of "Large-Scale GAN Training for High Fidelity Natural Image Synthesis," by A. Brock, J. Donahue, and K. Simonyan (arXiv 1809.11096). Let's go. """ import datetime import time import torch import dataset import BigGAN import train_fns import utils from common import * # IMG_SIZE = 64 # IMG_SIZE_2 = IMG_SIZE * 2 def run(config): # Update the config dict as necessary # This is for convenience, to add settings derived from the user-specified # configuration into the config-dict (e.g. inferring the number of classes # and size of the images from the dataset, passing in a pytorch object # for the activation specified as a string) config['resolution'] = IMG_SIZE config['n_classes'] = 1 config['G_activation'] = utils.activation_dict[config['G_nl']] config['D_activation'] = utils.activation_dict[config['D_nl']] # By default, skip init if resuming training. if config['resume']: print('Skipping initialization for training resumption...') config['skip_init'] = True config = utils.update_config_roots(config) device = 'cuda' # Seed RNG utils.seed_rng(config['seed']) # Prepare root folders if necessary utils.prepare_root(config) # Setup cudnn.benchmark for free speed torch.backends.cudnn.benchmark = True experiment_name = (config['experiment_name'] if config['experiment_name'] else 'generative_dog_images') print('Experiment name is %s' % experiment_name) G = BigGAN.Generator(**config).to(device) D = BigGAN.Discriminator(**config).to(device) # if config['parallel']: G = nn.DataParallel(G) D = nn.DataParallel(D) # If using EMA, prepare it if config['ema']: print('Preparing EMA for G with decay of {}'.format( config['ema_decay'])) G_ema = BigGAN.Generator(**{**config, 'skip_init': True, 'no_optim': True}).to(device) G_ema = nn.DataParallel(G_ema) ema = utils.ema(G, G_ema, config['ema_decay'], config['ema_start']) else: G_ema, ema = None, None GD = BigGAN.G_D(G, D) print(G) print(D) print('Number of params in G: {} D: {}'.format( *[sum([p.data.nelement() for p in net.parameters()]) for net in [G, D]])) # Prepare state dict, which holds things like epoch # and itr # state_dict = {'itr': 0, 'epoch': 0, 'save_num': 0, 'config': config} # If loading from a pre-trained model, load weights if config['resume']: print('Loading weights...') utils.load_weights(G, D, state_dict, config['weights_root'], experiment_name, config['load_weights'] if config['load_weights'] else None, G_ema if config['ema'] else None) # Prepare data; the Discriminator's batch size is all that needs to be passed # to the dataloader, as G doesn't require dataloading. # Note that at every loader iteration we pass in enough data to complete # a full D iteration (regardless of number of D steps and accumulations) D_batch_size = (config['batch_size'] * config['num_D_steps'] * config['num_D_accumulations']) loaders = dataset.get_data_loaders( data_root=config['data_root'], label_root=config['label_root'], batch_size=D_batch_size, num_workers=config['num_workers'], shuffle=config['shuffle'], pin_memory=config['pin_memory'], drop_last=True, load_in_mem=config['load_in_mem'], mask_out=config['mask_out'] ) # Prepare noise and randomly sampled label arrays # Allow for different batch sizes in G G_batch_size = max(config['G_batch_size'], config['batch_size']) num_samples = config['num_fixed_samples'] z_, y_ = utils.prepare_z_y( num_samples, G.module.dim_z, config['n_classes'], device=device, fp16=config['G_fp16']) # Prepare a fixed z & y to see individual sample evolution throghout training fixed_z, fixed_y = utils.prepare_z_y( num_samples, G.module.dim_z, config['n_classes'], device=device, fp16=config['G_fp16']) fixed_z.sample_() fixed_y.sample_() # Loaders are loaded, prepare the training function train = train_fns.create_train_fn( G, D, GD, z_, y_, ema, state_dict, config) print('Beginning training at epoch %d...' % state_dict['epoch']) start_time = time.perf_counter() loader = loaders[0] total_iters = config['num_epochs'] * len(loader) # Train for specified number of epochs, although we mostly track G iterations. pbar = tqdm(total=total_iters) for _ in range(state_dict['itr']): pbar.update() timer = mmcv.Timer() timer.start() start_itr = state_dict['itr'] for epoch in range(state_dict['epoch'], config['num_epochs']): for i, data in enumerate(loader): x, y = data['img'], data['label'] # Increment the iteration counter state_dict['itr'] += 1 # Make sure G and D are in training mode, just in case they got set to eval # For D, which typically doesn't have BN, this shouldn't matter much. G.train() D.train() if config['ema']: G_ema.train() x, y = x.to(device), y.to(device) metrics = train(x, y) if not (state_dict['itr'] % config['log_interval']): curr_time = timer.since_start() curr_time_str = datetime.datetime.fromtimestamp( curr_time).strftime('%H:%M:%S') # quang duong / (quang duong da di / thoi gian da di) eta = ( total_iters - state_dict['itr']) // ((state_dict['itr']-start_itr) / (curr_time+1)) eta_str = datetime.datetime.fromtimestamp( eta).strftime('%H:%M:%S') log = "[{}] [{}] [{} / {}] Ep {}, ".format( curr_time_str, eta_str, state_dict['itr'], total_iters, epoch) log += ', '.join(['%s : %+4.3f' % (key, metrics[key]) for key in metrics]) pbar.set_description(log) # print(log) # Save weights and copies as configured at specified interval if not (state_dict['itr'] % config['sample_every']): if config['G_eval_mode']: # print('Switching G to eval mode...') G.eval() train_fns.save_and_sample(G, D, G_ema, z_, y_, fixed_z, fixed_y, state_dict, config, experiment_name, save_weight=False) if not (state_dict['itr'] % config['save_every']): if config['G_eval_mode']: # print('Switching G to eval mode...') G.eval() train_fns.save_and_sample(G, D, G_ema, z_, y_, fixed_z, fixed_y, state_dict, config, experiment_name, save_weight=True) pbar.update() # Increment epoch counter at end of epoch state_dict['epoch'] += 1 def main(): # parse command line and run parser = utils.prepare_parser() config = vars(parser.parse_args()) print(config) run(config) if __name__ == '__main__': main()
40.287234
103
0.597571
0
0
0
0
0
0
0
0
2,926
0.386322
e00c71d6078595059b1d0af82650622e80499174
1,693
py
Python
geocamUtil/tempfiles.py
geocam/geocamUtilWeb
b64fc063c64b4b0baa140db4c126f2ff980756ab
[ "NASA-1.3" ]
4
2017-03-03T16:24:24.000Z
2018-06-24T05:50:40.000Z
geocamUtil/tempfiles.py
geocam/geocamUtilWeb
b64fc063c64b4b0baa140db4c126f2ff980756ab
[ "NASA-1.3" ]
1
2021-09-29T17:17:30.000Z
2021-09-29T17:17:30.000Z
geocamUtil/tempfiles.py
geocam/geocamUtilWeb
b64fc063c64b4b0baa140db4c126f2ff980756ab
[ "NASA-1.3" ]
1
2017-12-19T20:45:53.000Z
2017-12-19T20:45:53.000Z
# __BEGIN_LICENSE__ #Copyright (c) 2015, United States Government, as represented by the #Administrator of the National Aeronautics and Space Administration. #All rights reserved. # __END_LICENSE__ import os import time import random import shutil from glob import glob import traceback import sys from geocamUtil import FileUtil from django.conf import settings def getTempName(prefix, suffix=''): return '%s/%s-%s-%s%s' % (settings.TMP_DIR, prefix, time.strftime('%Y-%m-%d-%H%M'), '%04x' % random.getrandbits(16), suffix) def deleteStaleFiles(): files = glob('%s/*' % settings.TMP_DIR) now = time.time() for f in files: if (now - os.stat(f).st_ctime > settings.GEOCAM_UTIL_DELETE_TMP_FILE_WAIT_SECONDS and not f.endswith('/README.txt')): try: os.unlink(f) except OSError: traceback.print_exc() print >> sys.stderr, '[tempfiles.deleteStaleFiles: could not unlink %s]' % f def makeTempDir(prefix): d = getTempName(prefix) if not os.path.exists(settings.TMP_DIR): FileUtil.mkdirP(settings.TMP_DIR) os.system('chmod go+rw %s' % settings.TMP_DIR) deleteStaleFiles() FileUtil.mkdirP(d) return d def initZipDir(prefix): return makeTempDir(prefix) def finishZipDir(zipDir): zipFile = '%s.zip' % zipDir oldDir = os.getcwd() os.chdir(os.path.dirname(settings.TMP_DIR)) os.system('zip -r %s %s' % (zipFile, os.path.basename(zipDir))) os.chdir(oldDir) shutil.rmtree(zipDir) return zipFile
27.306452
93
0.617247
0
0
0
0
0
0
0
0
341
0.201418
e00d7dd12724a0363ee40d8c349e7cccfb71d6f4
5,752
py
Python
Ex1:Tests/ex2.py
Lludion/Exercises-SE
4d5b2b4f2989a3e2c7891ba2b766394dbfb43973
[ "MIT" ]
null
null
null
Ex1:Tests/ex2.py
Lludion/Exercises-SE
4d5b2b4f2989a3e2c7891ba2b766394dbfb43973
[ "MIT" ]
null
null
null
Ex1:Tests/ex2.py
Lludion/Exercises-SE
4d5b2b4f2989a3e2c7891ba2b766394dbfb43973
[ "MIT" ]
null
null
null
# Ce fichier contient (au moins) cinq erreurs. # Instructions: # - tester jusqu'à atteindre 100% de couverture; # - corriger les bugs;" # - envoyer le diff ou le dépôt git par email.""" import hypothesis from hypothesis import given, settings from hypothesis.strategies import integers, lists class BinHeap: #structure de tas binaires d'entiers def __init__(self): #initialise un tas binaire d'entiers avec un element 0 self.heapList = [0] self.currentSize = 1#taille de la liste heapList (invariant) def percUp(self,i): #upward percolation until 0 reached or father is bigger while i // 2 > 0 and self.heapList[i] < self.heapList[i // 2]: tmp = self.heapList[i // 2] self.heapList[i // 2] = self.heapList[i] self.heapList[i] = tmp i //= 2 def insert(self,k): #inserting a new value into the heap self.heapList.append(k) self.percUp(self.currentSize) self.currentSize = self.currentSize + 1 def percDown(self,i): while (i * 2) < self.currentSize:#while I have a child mc = self.minChild(i)#mc is the index of the smallest if self.heapList[i] > self.heapList[mc]: tmp = self.heapList[i] self.heapList[i] = self.heapList[mc] self.heapList[mc] = tmp i = mc def minChild(self,i): if i * 2 >= self.currentSize or i == 0: print("No Child. None is returned.") return if i * 2 + 1 >= self.currentSize: return i * 2 else: if self.heapList[i*2] < self.heapList[i*2+1]: return i * 2 else: return i * 2 + 1 def delMin(self): try: rval = self.heapList[1] except IndexError: print("Empty heap. Nothing is changed. None is returned.") return self.currentSize = self.currentSize - 1 self.heapList[1] = self.heapList[self.currentSize] self.heapList.pop() self.percDown(1) return rval def buildHeap(self,alist): #creates a whole heap from a list, by percolating all its elements i = 1 self.currentSize = len(alist) + 1# + 1 self.heapList = [0] + alist # enlever le [:] while (i < self.currentSize): self.percUp(i) i += 1 def assert_isheaplist(x,val,lon,HL): assert ((x * 2 + 1 > lon) or (x * 2 + 1 == lon and HL[2*x] >= val) or (HL[2*x] >= val and HL[2*x+1] >= val)) def assert_goodheap(tau,lon): for x in range(1,lon): assert_isheaplist(x,tau.heapList[x],tau.currentSize,tau.heapList) def test_init(): tau = BinHeap() assert tau.heapList == [0] assert tau.currentSize == 1 @given(integers()) @settings(max_examples=100) def test_percup(integer): gamma = [0,1,3,2,9,99,2,3,10,9,103,102,3,2,3,3] tau = BinHeap() tau.currentsize = 16 tau.heapList = gamma[:] tau.percUp(15) assert tau.heapList == gamma[:] tau.heapList[15] = 2 tau.percUp(15) print(tau.heapList) assert tau.heapList == [0,1,3,2,9,99,2,2,10,9,103,102,3,2,3,3] assert tau.currentsize == 16 tau.heapList.append(8) tau.currentsize = 17 tau.percUp(16) assert tau.heapList == [0,1,3,2,8,99,2,2,9,9,103,102,3,2,3,3,10] tau.heapList.append(integer) tau.currentsize = 18 tau.percUp(17) assert tau.heapList[17] >= tau.heapList[8] assert tau.heapList[8] >= tau.heapList[4] @given(lists(elements=integers())) @settings(max_examples=1000) def test_build(L): tau = BinHeap() tau.buildHeap(L) assert tau.currentSize == len(L) + 1 assert sorted(tau.heapList) == sorted(L+[0]) assert_goodheap(tau,len(L)+1) #for x in range(1,len(L) + 1): # assert_isheaplist(x,tau.heapList[x],tau.currentSize,tau.heapList) @given(lists(elements=integers()),integers()) @settings(max_examples=1000) def test_insert(L,i): tau = BinHeap() tau.buildHeap(L) tau.insert(i) assert_goodheap(tau,len(L)+1) @given(lists(elements=integers()),integers()) @settings(max_examples=100) def test_percDown(L,i): tau = BinHeap() L += [10] tau.buildHeap(L) tau.heapList[1] = i tau.percDown(1) for x in range(1,len(L) + 1): for _ in range(len(L)): tau.percDown(x) #then we test that we got a well-ordered heap assert_goodheap(tau,len(L)+1) @given(lists(elements=integers())) @settings(max_examples=400,deadline=None) def test_delmin(L): L += [10] tau = BinHeap() assert tau.delMin() is None tau.buildHeap(L) #print(L) #print("sorted",sorted(L),"\n") #print("TAU ", tau.heapList,"\n") assert tau.delMin() == min(L) @given(lists(elements=integers()),integers()) @settings(max_examples=400) def test_minChild(L,i): tau = BinHeap() assert tau.minChild(abs(i)) is None tau.buildHeap(2*L+[0,1]) assert tau.minChild(len(L)+1) is not None @given(lists(elements=integers()),lists(elements=integers())) @settings(max_examples=400,deadline=None) def test_general(L,K): tau = BinHeap() tau.buildHeap(L)#tas construit avec L for k in K:tau.insert(k)#on rajoute les elements de K assert_goodheap(tau,tau.currentSize) x = [] while tau.currentSize > 1:x.append(tau.delMin())#on retire tous les elements assert x == sorted(L + K)#verifie qu'on a bien le minimum avec delmin assert tau.delMin() is None x = [] tau.buildHeap(K) for l in L:#teste si 1 suite d'insertion/ suppression maintient la structure tau.delMin() tau.insert(l) assert_goodheap(tau,tau.currentSize)
31.26087
112
0.604312
2,145
0.372719
0
0
2,885
0.501303
0
0
1,033
0.179496
e00dbb3c20046835e182d01718caf34d09944176
22,455
py
Python
python/snewpy/snowglobes.py
svalder/snewpy
5723189ae3dce3506f2fab056bbef24c9ab1a31f
[ "BSD-3-Clause" ]
null
null
null
python/snewpy/snowglobes.py
svalder/snewpy
5723189ae3dce3506f2fab056bbef24c9ab1a31f
[ "BSD-3-Clause" ]
null
null
null
python/snewpy/snowglobes.py
svalder/snewpy
5723189ae3dce3506f2fab056bbef24c9ab1a31f
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """The ``snewpy.snowglobes`` module contains functions for interacting with SNOwGLoBES. `SNOwGLoBES <https://github.com/SNOwGLoBES/snowglobes>`_ can estimate detected event rates from a given input supernova neutrino flux. It supports many different neutrino detectors, detector materials and interaction channels. There are three basic steps to using SNOwGLoBES from SNEWPY: * **Generating input files for SNOwGLoBES:** There are two ways to do this, either generate a time series or a fluence file. This is done taking as input the supernova simulation model. The first will evaluate the neutrino flux at each time step, the latter will compute the integrated neutrino flux (fluence) in the time bin. The result is a compressed .tar file containing all individual input files. * **Running SNOwGLoBES:** This step convolves the fluence generated in the previous step with the cross-sections for the interaction channels happening in various detectors supported by SNOwGLoBES. It takes into account the effective mass of the detector as well as a smearing matrix describing the energy-dependent detection efficiency. The output gives the number of events detected as a function of energy for each interaction channel, integrated in a given time window (or time bin), or in a snapshot in time. * **Collating SNOwGLoBES outputs:** This step puts together all the interaction channels and time bins evaluated by SNOwGLoBES in a single file (for each detector and for each time bin). The output tables allow to build the detected neutrino energy spectrum and neutrino time distribution, for each reaction channel or the sum of them. """ import io import logging import os import re import tarfile from pathlib import Path from tempfile import TemporaryDirectory import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np from astropy import units as u from tqdm.auto import tqdm import snewpy.models from snewpy.flavor_transformation import * from snewpy.neutrino import Flavor, MassHierarchy from snewpy.snowglobes_interface import SNOwGLoBES logger = logging.getLogger(__name__) def generate_time_series(model_path, model_type, transformation_type, d, output_filename=None, ntbins=30, deltat=None): """Generate time series files in SNOwGLoBES format. This version will subsample the times in a supernova model, produce energy tables expected by SNOwGLoBES, and compress the output into a tarfile. Parameters ---------- model_path : str Input file containing neutrino flux information from supernova model. model_type : str Format of input file. Matches the name of the corresponding class in :py:mod:`snewpy.models`. transformation_type : str Name of flavor transformation. See snewpy.flavor_transformation documentation for possible values. d : int or float Distance to supernova in kpc. output_filename : str or None Name of output file. If ``None``, will be based on input file name. ntbins : int Number of time slices. Will be ignored if ``deltat`` is also given. deltat : astropy.Quantity or None Length of time slices. Returns ------- str Path of compressed .tar file with neutrino flux data. """ model_class = getattr(snewpy.models.ccsn, model_type) # Choose flavor transformation. Use dict to associate the transformation name with its class. flavor_transformation_dict = {'NoTransformation': NoTransformation(), 'AdiabaticMSW_NMO': AdiabaticMSW(mh=MassHierarchy.NORMAL), 'AdiabaticMSW_IMO': AdiabaticMSW(mh=MassHierarchy.INVERTED), 'NonAdiabaticMSWH_NMO': NonAdiabaticMSWH(mh=MassHierarchy.NORMAL), 'NonAdiabaticMSWH_IMO': NonAdiabaticMSWH(mh=MassHierarchy.INVERTED), 'TwoFlavorDecoherence': TwoFlavorDecoherence(), 'ThreeFlavorDecoherence': ThreeFlavorDecoherence(), 'NeutrinoDecay_NMO': NeutrinoDecay(mh=MassHierarchy.NORMAL), 'NeutrinoDecay_IMO': NeutrinoDecay(mh=MassHierarchy.INVERTED)} flavor_transformation = flavor_transformation_dict[transformation_type] model_dir, model_file = os.path.split(os.path.abspath(model_path)) snmodel = model_class(model_path) # Subsample the model time. Default to 30 time slices. tmin = snmodel.get_time()[0] tmax = snmodel.get_time()[-1] if deltat is not None: dt = deltat ntbins = int((tmax-tmin)/dt) else: dt = (tmax - tmin) / (ntbins+1) tedges = np.arange(tmin/u.s, tmax/u.s, dt/u.s)*u.s times = 0.5*(tedges[1:] + tedges[:-1]) # Generate output. if output_filename is not None: tfname = output_filename + 'kpc.tar.bz2' else: model_file_root, _ = os.path.splitext(model_file) # strip extension (if present) tfname = model_file_root + '.' + transformation_type + '.{:.3f},{:.3f},{:d}-{:.1f}'.format(tmin, tmax, ntbins, d) + 'kpc.tar.bz2' with tarfile.open(os.path.join(model_dir, tfname), 'w:bz2') as tf: #creates file in tar archive that gives information on parameters output = '\n'.join(map(str, transformation_type)).encode('ascii') tf.addfile(tarfile.TarInfo(name='parameterinfo'), io.BytesIO(output)) MeV = 1.60218e-6 * u.erg energy = np.linspace(0, 100, 501) * MeV # 1MeV # Loop over sampled times. for i, t in enumerate(times): osc_spectra = snmodel.get_transformed_spectra(t, energy, flavor_transformation) osc_fluence = {} table = [] table.append('# TBinMid={:g}sec TBinWidth={:g}s EBinWidth=0.2MeV Fluence at Earth for this timebin in neutrinos per cm^2'.format(t, dt)) table.append('# E(GeV) NuE NuMu NuTau aNuE aNuMu aNuTau') # Generate energy + number flux table. for j, E in enumerate(energy): for flavor in Flavor: osc_fluence[flavor] = osc_spectra[flavor][j] * dt * 0.2 * MeV / (4.*np.pi*(d*1000*3.086e+18)**2) s = '{:17.8E}'.format(E/(1e3 * MeV)) s = '{}{:17.8E}'.format(s, osc_fluence[Flavor.NU_E]) s = '{}{:17.8E}'.format(s, osc_fluence[Flavor.NU_X]) s = '{}{:17.8E}'.format(s, osc_fluence[Flavor.NU_X]) s = '{}{:17.8E}'.format(s, osc_fluence[Flavor.NU_E_BAR]) s = '{}{:17.8E}'.format(s, osc_fluence[Flavor.NU_X_BAR]) s = '{}{:17.8E}'.format(s, osc_fluence[Flavor.NU_X_BAR]) table.append(s) logging.debug(s) # Encode energy/flux table and output to file in tar archive. output = '\n'.join(table).encode('ascii') extension = ".dat" model_file_root, _ = os.path.splitext(model_file) filename = model_file_root + '.tbin{:01d}.'.format(i+1) + transformation_type + \ '.{:.3f},{:.3f},{:01d}-{:.1f}kpc{}'.format(tmin/u.s, tmax/u.s, ntbins, d, extension) info = tarfile.TarInfo(name=filename) info.size = len(output) tf.addfile(info, io.BytesIO(output)) return os.path.join(model_dir, tfname) def generate_fluence(model_path, model_type, transformation_type, d, output_filename=None, tstart=None, tend=None): """Generate fluence files in SNOwGLoBES format. This version will subsample the times in a supernova model, produce energy tables expected by SNOwGLoBES, and compress the output into a tarfile. Parameters ---------- model_path : str Input file containing neutrino flux information from supernova model. model_type : str Format of input file. Matches the name of the corresponding class in :py:mod:`snewpy.models`. transformation_type : str Name of flavor transformation. See snewpy.flavor_transformation documentation for possible values. d : int or float Distance to supernova in kpc. output_filename : str or None Name of output file. If ``None``, will be based on input file name. tstart : astropy.Quantity or None Start of time interval to integrate over, or list of start times of the time series bins. tend : astropy.Quantity or None End of time interval to integrate over, or list of end times of the time series bins. Returns ------- str Path of compressed .tar file with neutrino flux data. """ model_class = getattr(snewpy.models.ccsn, model_type) # Choose flavor transformation. Use dict to associate the transformation name with its class. flavor_transformation_dict = {'NoTransformation': NoTransformation(), 'AdiabaticMSW_NMO': AdiabaticMSW(mh=MassHierarchy.NORMAL), 'AdiabaticMSW_IMO': AdiabaticMSW(mh=MassHierarchy.INVERTED), 'NonAdiabaticMSWH_NMO': NonAdiabaticMSWH(mh=MassHierarchy.NORMAL), 'NonAdiabaticMSWH_IMO': NonAdiabaticMSWH(mh=MassHierarchy.INVERTED), 'TwoFlavorDecoherence': TwoFlavorDecoherence(), 'ThreeFlavorDecoherence': ThreeFlavorDecoherence(), 'NeutrinoDecay_NMO': NeutrinoDecay(mh=MassHierarchy.NORMAL), 'NeutrinoDecay_IMO': NeutrinoDecay(mh=MassHierarchy.INVERTED)} flavor_transformation = flavor_transformation_dict[transformation_type] model_dir, model_file = os.path.split(os.path.abspath(model_path)) snmodel = model_class(model_path) #set the timings up #default if inputs are None: full time window of the model if tstart is None: tstart = snmodel.get_time()[0] tend = snmodel.get_time()[-1] try: if len(tstart/u.s) > 0: t0 = tstart[0] t1 = tend[-1] nbin = len(tstart/u.s) except: t0 = tstart t1 = tend nbin = 1 times = 0.5*(tstart + tend) model_times = snmodel.get_time() model_tstart = model_times*1.0 model_tend = model_times*1.0 model_tstart[0] = model_times[0] for i in range(1, len(model_times), 1): model_tstart[i] = 0.5*(model_times[i]+model_times[i-1]) model_tend[i-1] = model_tstart[i] model_tend[len(model_times)-1] = model_times[-1] if nbin > 1: starting_index = np.zeros(len(times), dtype=np.int64) ending_index = np.zeros(len(times), dtype=np.int64) for i in range(len(tstart)): starting_index[i] = next(j for j, t in enumerate(model_tend) if t > tstart[i]) ending_index[i] = next(j for j, t in enumerate(model_tend) if t >= tend[i]) else: starting_index = [next(j for j, t in enumerate(model_tend) if t > tstart)] ending_index = [next(j for j, t in enumerate(model_tend) if t >= tend)] # Generate output. if output_filename is not None: tfname = output_filename+'.tar.bz2' else: model_file_root, _ = os.path.splitext(model_file) # strip extension (if present) tfname = model_file_root + '.' + transformation_type + '.{:.3f},{:.3f},{:d}-{:.1f}'.format(t0, t1, nbin, d) + 'kpc.tar.bz2' with tarfile.open(os.path.join(model_dir, tfname), 'w:bz2') as tf: #creates file in tar archive that gives information on parameters output = '\n'.join(map(str, transformation_type)).encode('ascii') tf.addfile(tarfile.TarInfo(name='parameterinfo'), io.BytesIO(output)) MeV = 1.60218e-6 * u.erg energy = np.linspace(0, 100, 501) * MeV # Loop over sampled times. for i in range(nbin): if nbin > 1: ta = tstart[i] tb = tend[i] t = times[i] dt = tb-ta else: ta = tstart tb = tend t = times dt = tb-ta #first time bin of model in requested interval osc_spectra = snmodel.get_transformed_spectra(model_times[starting_index[i]], energy, flavor_transformation) if dt < model_tend[starting_index[i]]-ta: dt = dt else: for flavor in Flavor: osc_spectra[flavor] *= (model_tend[starting_index[i]]-ta) #intermediate time bins of model in requested interval for j in range(starting_index[i]+1, ending_index[i], 1): temp_spectra = snmodel.get_transformed_spectra(model_times[j], energy, flavor_transformation) for flavor in Flavor: osc_spectra[flavor] += temp_spectra[flavor]*(model_tend[j]-model_tstart[j]) #last time bin of model in requested interval temp_spectra = snmodel.get_transformed_spectra( model_times[ending_index[i]], energy, flavor_transformation) for flavor in Flavor: osc_spectra[flavor] += temp_spectra[flavor]*(tb-model_tstart[ending_index[i]]) for flavor in Flavor: osc_spectra[flavor] /= (tb-ta) osc_fluence = {} table = [] table.append('# TBinMid={:g}sec TBinWidth={:g}s EBinWidth=0.2MeV Fluence at Earth for this timebin in neutrinos per cm^2'.format(t, dt)) table.append('# E(GeV) NuE NuMu NuTau aNuE aNuMu aNuTau') # Generate energy + number flux table. for j, E in enumerate(energy): for flavor in Flavor: osc_fluence[flavor] = osc_spectra[flavor][j] * dt * 0.2 * MeV / (4.*np.pi*(d*1000*3.086e+18)**2) s = '{:17.8E}'.format(E/(1e3 * MeV)) s = '{}{:17.8E}'.format(s, osc_fluence[Flavor.NU_E]) s = '{}{:17.8E}'.format(s, osc_fluence[Flavor.NU_X]) s = '{}{:17.8E}'.format(s, osc_fluence[Flavor.NU_X]) s = '{}{:17.8E}'.format(s, osc_fluence[Flavor.NU_E_BAR]) s = '{}{:17.8E}'.format(s, osc_fluence[Flavor.NU_X_BAR]) s = '{}{:17.8E}'.format(s, osc_fluence[Flavor.NU_X_BAR]) table.append(s) logging.debug(s) # Encode energy/flux table and output to file in tar archive. output = '\n'.join(table).encode('ascii') extension = ".dat" if output_filename is not None: if nbin > 1: filename = output_filename+"_"+str(i)+extension else: filename = output_filename+extension else: model_file_root, _ = os.path.splitext(model_file) # strip extension (if present) filename = model_file_root + '.tbin{:01d}.'.format(i+1) + transformation_type + \ '.{:.3f},{:.3f},{:01d}-{:.1f}kpc{}'.format(t0, t1, nbin, d, extension) info = tarfile.TarInfo(name=filename) info.size = len(output) tf.addfile(info, io.BytesIO(output)) return os.path.join(model_dir, tfname) def simulate(SNOwGLoBESdir, tarball_path, detector_input="all", verbose=False): """Takes as input the neutrino flux files and configures and runs the supernova script inside SNOwGLoBES, which outputs calculated event rates expected for a given (set of) detector(s). These event rates are given as a function of the neutrino energy and time, for each interaction channel. Parameters ---------- SNOwGLoBESdir : str Path to directory where SNOwGLoBES is installed. tarball_path : str Path of compressed .tar file produced e.g. by ``generate_time_series()`` or ``generate_fluence()``. detector_input : str Name of detector. If ``"all"``, will use all detectors supported by SNOwGLoBES. verbose : bool Whether to generate verbose output, e.g. for debugging. """ sng = SNOwGLoBES(SNOwGLoBESdir) if detector_input == 'all': detector_input = list(sng.detectors) detector_input.remove('d2O') elif isinstance(detector_input,str): detector_input = [detector_input] result = {} #Extracts data from tarfile and sets up lists of paths and fluxfilenames for later use with TemporaryDirectory(prefix='snowglobes') as tempdir: with tarfile.open(tarball_path) as tar: tar.extractall(tempdir) flux_files = list(Path(tempdir).glob('*.dat')) if len(detector_input)>0: detector_input = tqdm(detector_input, desc='Detectors', leave=False) for det in detector_input: res=sng.run(flux_files, det) result[det]=dict(zip((f.stem for f in flux_files),res)) # save result to file for re-use in collate() cache_file = tarball_path[:tarball_path.rfind('.tar')] + '.npy' logging.info(f'Saving simulation results to {cache_file}') np.save(cache_file, result) return result re_chan_label = re.compile(r'nu(e|mu|tau)(bar|)_([A-Z][a-z]*)(\d*)_?(.*)') def get_channel_label(c): mapp = {'nc':'NeutralCurrent', 'ibd':'Inverse Beta Decay', 'e':r'${\nu}_x+e^-$'} def gen_label(m): flv,bar,Nuc,num,res = m.groups() if flv!='e': flv='\\'+flv if bar: bar='\\'+bar s = f'${bar}{{\\nu}}_{flv}$ '+f'${{}}^{{{num}}}{Nuc}$ '+res return s if c in mapp: return mapp[c] else: return re_chan_label.sub(gen_label, c) def collate(SNOwGLoBESdir, tarball_path, detector_input="all", skip_plots=False, verbose=False, remove_generated_files=True): """Collates SNOwGLoBES output files and generates plots or returns a data table. Parameters ---------- SNOwGLoBESdir : str Path to directory where SNOwGLoBES is installed. tarball_path : str Path of compressed .tar file produced e.g. by ``generate_time_series()`` or ``generate_fluence()``. detector_input : str Name of detector. If ``"all"``, will use all detectors supported by SNOwGLoBES. skip_plots: bool If False, it gives as output the plot of the energy distribution for each time bin and for each interaction channel. verbose : bool Whether to generate verbose output, e.g. for debugging. remove_generated_files: bool Remove the output files from SNOwGLoBES, collated files, and .png's made for this snewpy run. Returns ------- dict Dictionary of data tables: One table per time bin; each table contains in the first column the energy bins, in the remaining columns the number of events for each interaction channel in the detector. """ def aggregate_channels(table, **patterns): #rearrange the table to have only channel column levels = list(table.columns.names) levels.remove('channel') t = table.stack(levels) for name,pattern in patterns.items(): #get channels which contain `like` t_sel = t.filter(like=pattern) #sum over them and save to a separate column t_agg = t_sel.sum(axis='columns') #drop processed channels t.drop(t_sel.columns, axis='columns',inplace=True) t[name]=t_agg #fill the column #return table with the original levels order t = t.unstack(levels) t = t.reorder_levels(table.columns.names, axis=1) return t def do_plot(table, params): #plotting the events from given table flux,det,weighted,smeared = params for c in table.columns: if table[c].max() > 0.1: plt.plot(table[c],drawstyle='steps',label=get_channel_label(c), lw=1) plt.xlim(right=0.10) plt.ylim(bottom=0.10) plt.yscale('log') plt.legend(bbox_to_anchor=(0.5, 0.5, 0.5, 0.5), loc='best', borderaxespad=0) # formats complete graph smear_title = 'Interaction' if smeared=='unsmeared' else 'Detected' plt.title(f'{flux} {det.capitalize()} {weighted.capitalize()} {smear_title} Events') if smeared=='smeared': plt.xlabel('Detected Energy (GeV)') plt.ylabel('Events') else: plt.xlabel('Neutrino Energy (GeV)') plt.ylabel('Interaction Events') #read the results from storage cache_file = tarball_path[:tarball_path.rfind('.tar')] + '.npy' logging.info(f'Reading tables from {cache_file}') tables = np.load(cache_file, allow_pickle=True).tolist() #This output is similar to what produced by: #tables = simulate(SNOwGLoBESdir, tarball_path,detector_input) #dict for old-style results, for backward compatibiity results = {} #save collated files: with TemporaryDirectory(prefix='snowglobes') as tempdir: tempdir = Path(tempdir) for det in tables: results[det] = {} for flux,t in tables[det].items(): t = aggregate_channels(t,nc='nc_',e='_e') for w in ['weighted','unweighted']: for s in ['smeared','unsmeared']: table = t[w][s] filename_base = f'{flux}_{det}_events_{s}_{w}' filename = tempdir/f'Collated_{filename_base}.dat' #save results to text files with open(filename,'w') as f: f.write(table.to_string(float_format='%23.15g')) #format the results for the output header = 'Energy '+' '.join(list(table.columns)) data = table.to_numpy().T index = table.index.to_numpy() data = np.concatenate([[index],data]) results[filename.name] = {'header':header,'data':data} #optionally plot the results if skip_plots is False: plt.figure(dpi=300) do_plot(table,(flux,det,w,s)) filename = tempdir/f'{filename_base}_log_plot.png' plt.savefig(filename.with_suffix('.png'), dpi=300, bbox_inches='tight') #Make a tarfile with the condensed data files and plots output_name = Path(tarball_path).stem output_name = output_name[:output_name.rfind('.tar')]+'_SNOprocessed' output_path = Path(tarball_path).parent/(output_name+'.tar.gz') with tarfile.open(output_path, "w:gz") as tar: for file in tempdir.iterdir(): tar.add(file,arcname=output_name+'/'+file.name) logging.info(f'Created archive: {output_path}') return results
46.298969
553
0.631485
0
0
0
0
0
0
0
0
9,347
0.416255
e00e074bf789711cc01d53bcaa030d52c4e69f5b
4,621
py
Python
rlcycle/dqn_base/loss.py
cyoon1729/Rlcycle
5c65b9dd61a6fd5d6dfe92f0b3e04bf309828569
[ "MIT" ]
128
2020-06-29T01:40:36.000Z
2022-03-29T15:37:39.000Z
rlcycle/dqn_base/loss.py
cyoon1729/Rlcycle
5c65b9dd61a6fd5d6dfe92f0b3e04bf309828569
[ "MIT" ]
8
2020-06-29T03:51:50.000Z
2020-07-22T23:55:47.000Z
rlcycle/dqn_base/loss.py
cyoon1729/Rlcycle
5c65b9dd61a6fd5d6dfe92f0b3e04bf309828569
[ "MIT" ]
24
2020-07-02T06:03:03.000Z
2022-03-22T11:59:53.000Z
from typing import List, Tuple from omegaconf import DictConfig import torch import torch.nn as nn import torch.nn.functional as F from rlcycle.common.abstract.loss import Loss class DQNLoss(Loss): """Compute double DQN loss""" def __init__(self, hyper_params: DictConfig, use_cuda: bool): Loss.__init__(self, hyper_params, use_cuda) def __call__( self, networks: Tuple[nn.Module, ...], data: Tuple[torch.Tensor, ...] ) -> Tuple[torch.Tensor, ...]: network, target_network = networks states, actions, rewards, next_states, dones = data q_value = network.forward(states).gather(1, actions) with torch.no_grad(): next_q = torch.max(target_network.forward(next_states), 1)[0].unsqueeze(1) n_step_gamma = self.hyper_params.gamma ** self.hyper_params.n_step target_q = rewards + (1 - dones) * n_step_gamma * next_q element_wise_loss = F.smooth_l1_loss( q_value, target_q.detach(), reduction="none" ) return element_wise_loss class QRLoss(Loss): """Compute quantile regression loss""" def __init__(self, hyper_params: DictConfig, use_cuda: bool): Loss.__init__(self, hyper_params, use_cuda) def __call__( self, networks: Tuple[nn.Module, ...], data: Tuple[torch.Tensor, ...], ) -> Tuple[torch.Tensor, ...]: network, target_network = networks states, actions, rewards, next_states, dones = data z_dists = network.forward(states) z_dists = z_dists[list(range(states.size(0))), actions.view(-1)] with torch.no_grad(): next_z = target_network.forward(next_states) next_actions = torch.max(next_z.mean(2), dim=1)[1] next_z = next_z[list(range(states.size(0))), next_actions] n_step_gamma = self.hyper_params.gamma ** self.hyper_params.n_step target_z = rewards + (1 - dones) * n_step_gamma * next_z distance = target_z - z_dists quantile_huber_loss = ( network.tau - (distance.detach() < 0).float() ).abs() * self.huber_loss(distance) element_wise_loss = torch.mean(quantile_huber_loss, dim=1, keepdim=True) return element_wise_loss @staticmethod def huber_loss(x: List[torch.Tensor], k: float = 1.0): return torch.where(x.abs() <= k, 0.5 * x.pow(2), k * (x.abs() - 0.5 * k)) class CategoricalLoss(Loss): """Compute C51 loss""" def __init__(self, hyper_params: DictConfig, use_cuda: bool): Loss.__init__(self, hyper_params, use_cuda) def __call__( self, networks: Tuple[nn.Module, ...], data: Tuple[torch.Tensor, ...] ) -> Tuple[torch.Tensor, ...]: network, target_network = networks states, actions, rewards, next_states, dones = data batch_size = states.size(0) offset = ( torch.linspace(0, (batch_size - 1) * network.num_atoms, batch_size) .long() .unsqueeze(1) .expand(batch_size, network.num_atoms) ) if self.use_cuda: offset = offset.cuda() z_dists = network.forward(states) z_dists = z_dists[list(range(states.size(0))), actions.view(-1)] with torch.no_grad(): next_z = target_network.forward(next_states) next_actions = torch.max(next_z.mean(2), dim=1)[1] next_z = next_z[list(range(states.size(0))), next_actions] n_step_gamma = self.hyper_params.gamma ** self.hyper_params.n_step target_z = rewards + (1 - dones) * n_step_gamma * network.support target_z = torch.clamp(target_z, min=network.v_min, max=network.v_max) target_proj = self.dist_projection(network, next_z, target_z, offset) log_dist = torch.log(z_dists) element_wise_loss = -(target_proj * log_dist).sum(1) return element_wise_loss def dist_projection( self, network: nn.Module, next_z: torch.Tensor, target_z: torch.Tensor, offset: torch.Tensor, ) -> torch.Tensor: b = (target_z - network.v_min) / network.delta_z lb = b.floor().long() ub = b.ceil().long() proj_dist = torch.zeros(next_z.size()) if self.use_cuda: proj_dist = proj_dist.cuda() proj_dist.view(-1).index_add_( 0, (lb + offset).view(-1), (next_z * (ub.float() - b)).view(-1) ) proj_dist.view(-1).index_add_( 0, (ub + offset).view(-1), (next_z * (b - lb.float())).view(-1) ) return proj_dist
34.485075
86
0.61069
4,433
0.959316
0
0
154
0.033326
0
0
95
0.020558
e00f4579dad4a0f1f3310721291b602f532b6bf5
12,518
py
Python
scripts/gap_filling_viewer.py
raphischer/probgf
01bd2be85aa98afd79fc05c1eb3e260b2bcd2ebd
[ "MIT" ]
3
2020-11-19T10:28:57.000Z
2021-04-15T17:16:24.000Z
scripts/gap_filling_viewer.py
raphischer/probgf
01bd2be85aa98afd79fc05c1eb3e260b2bcd2ebd
[ "MIT" ]
null
null
null
scripts/gap_filling_viewer.py
raphischer/probgf
01bd2be85aa98afd79fc05c1eb3e260b2bcd2ebd
[ "MIT" ]
null
null
null
"""viewer application which allows to interactively view spatio-temporal gap filling results""" import os import argparse from datetime import datetime, timedelta from tkinter import Canvas, Tk, Button, RAISED, DISABLED, SUNKEN, NORMAL import numpy as np from PIL import Image, ImageTk import probgf.media as media class MainWindow(): def next(self, event=None): self.curr_img = (self.curr_img + 1) % len(self.imgs_orig) self.refresh() def prev(self, event=None): self.curr_img = (self.curr_img - 1) % len(self.imgs_orig) self.refresh() def click_wheel(self, event): self.start_drag = (event.x + self.shift_x, event.y + self.shift_y) def click_left(self, event): if not self.over_button: self.prev() def click_right(self, event): if not self.over_button: self.next() def refresh(self): zoom = float(self.zoom) / 100 self.start_x = int(self.img_w_f / 2 - self.img_w_f / zoom / 2) + self.shift_x self.end_x = int(self.start_x + self.img_w_f / zoom) self.start_y = int(self.img_w_f / 2 - self.img_w_f / zoom / 2) + self.shift_y self.end_y = int(self.start_y + self.img_w_f / zoom) if not self.mask_toggle: self.b_masks.config(relief=RAISED) img1 = self.imgs_orig[self.curr_img] img2 = self.imgs_pred[self.curr_img] else: self.b_masks.config(relief=SUNKEN) img1 = self.imgs_orig_m[self.curr_img] img2 = self.imgs_pred_m[self.curr_img] img1 = img1.crop((self.start_x, self.start_y, self.end_x, self.end_y)).resize((self.img_w, self.img_w), Image.ANTIALIAS) img2 = img2.crop((self.start_x, self.start_y, self.end_x, self.end_y)).resize((self.img_w, self.img_w), Image.ANTIALIAS) self.imgs_orig_v[self.curr_img] = ImageTk.PhotoImage(img1) self.imgs_pred_v[self.curr_img] = ImageTk.PhotoImage(img2) self.canvas.itemconfig(self.i_left, image = self.imgs_orig_v[self.curr_img]) self.canvas.itemconfig(self.i_right, image = self.imgs_pred_v[self.curr_img]) self.canvas.itemconfig(self.i_list, image = self.imagelists[self.curr_img]) self.canvas.itemconfig(self.day_info, text='{} - cloud cover {:06.2f}% - estimated MAE {}'.format(self.dates[self.curr_img], self.cc[self.curr_img] * 100, self.errors[self.curr_img])) if self.zoom == 100: self.canvas.itemconfig(self.zoom, text='') self.b_reset.config(state=DISABLED) else: self.canvas.itemconfig(self.zoom, text='ZOOM: {:3d}%'.format(self.zoom)) self.b_reset.config(state=NORMAL) def zoomer(self, event): if event.num == 4 or event.delta == 120 or event.keysym == 'plus': self.zoom += 20 elif event.delta == 240: self.zoom += 40 elif event.delta == 360: self.zoom += 60 else: if self.zoom - 20 >= 100: self.zoom -= 20 if self.zoom == 100: self.reset_transform() self.refresh() def drag_roi(self, event): self.shift_x = min(max(self.start_drag[0] - event.x, 0 - int(self.img_w_f / 2 - self.img_w_f / self.zoom / 2)), int(self.img_w_f / 2 - self.img_w_f / self.zoom / 2)) self.shift_y = min(max(self.start_drag[1] - event.y, 0 - int(self.img_w_f / 2 - self.img_w_f / self.zoom / 2)), int(self.img_w_f / 2 - self.img_w_f / self.zoom / 2)) self.refresh() def toggle_mask(self, event=None): self.mask_toggle = not self.mask_toggle self.refresh() def reset_transform(self, event=None): self.mask_toggle = False self.zoom = 100 self.shift_x = 0 self.shift_y = 0 self.refresh() def button_enter(self, event): self.over_button = True def button_leave(self, enter): self.over_button = False def __init__(self, root, w, h, imgs_p, imgs_o, imgs_m, dates, errors, logos): self.dates = dates self.errors = errors # setup images self.img_w = int(h * 0.68) # width of each displayed image self.imgs_orig_m = [] # masked full images self.imgs_pred_m = [] self.imgs_orig = [] # unmasked full images self.imgs_pred = [] self.cc = [] for index, img in enumerate(imgs_p): self.imgs_orig.append(imgs_o[index].resize((self.img_w, self.img_w), resample=0)) self.imgs_pred.append(img.resize((self.img_w, self.img_w), resample=0)) self.imgs_orig_m.append(Image.blend(self.imgs_orig[-1], imgs_m[index].convert(mode='RGB').resize((self.img_w, self.img_w), resample=0), alpha=.5)) self.imgs_pred_m.append(Image.blend(self.imgs_pred[-1], imgs_m[index].convert(mode='RGB').resize((self.img_w, self.img_w), resample=0), alpha=.5)) self.cc.append(1 - np.count_nonzero(np.array(imgs_m[index])) / np.array(imgs_m[index]).size) self.curr_img = 0 # text labels and logos h_logos = int(h / 17) b_logos = int(w / 100) self.canvas = Canvas(root, width=w, height=h) self.canvas.pack() self.canvas.configure(background='white') self.logo1 = ImageTk.PhotoImage(logos[0].resize((int(h_logos / logos[0].size[1] * logos[0].size[0]), h_logos), Image.ANTIALIAS)) self.logo2 = ImageTk.PhotoImage(logos[1].resize((int(h_logos / logos[1].size[1] * logos[1].size[0]), h_logos), Image.ANTIALIAS)) self.logo3 = ImageTk.PhotoImage(logos[2].resize((int(h_logos / logos[2].size[1] * logos[2].size[0]), h_logos), Image.ANTIALIAS)) self.canvas.create_image(int(self.logo1.width() / 2 + b_logos), int(self.logo1.height() / 2 + b_logos), image=self.logo1) self.canvas.create_image(int(w - self.logo2.width() / 2 - b_logos), int(self.logo2.height() / 2 + b_logos), image=self.logo2) self.canvas.create_image(int(w - self.logo3.width() / 2 - b_logos), int(h - (self.logo3.height() / 2 + b_logos)), image=self.logo3) self.canvas.create_text(w / 2, h * 0.06, font=("Courier", int(h / 25)), text='Gap Filling Viewer') self.canvas.create_text(w / 3.9, h * 0.19, font=("Courier", int(h / 35)), text='Observed') self.canvas.create_text(w - w / 3.9, h * 0.19, font=("Courier", int(h / 35)), text='Predicted') self.day_info = self.canvas.create_text(w / 2, h * 0.13, font=("Courier", int(h / 30)), text='') self.zoom = self.canvas.create_text(w * 0.12, h * 0.94, font=("Courier", int(h / 50)), text='') # image timeline imagelist_h = int(self.img_w / len(self.imgs_pred)) + 1 imagelist_a = np.zeros((len(self.imgs_pred), imagelist_h, imagelist_h, 3), dtype='uint8') for index in range(len(self.imgs_pred)): imagelist_a[index, :, :, :] = np.array(self.imgs_pred[index].resize((imagelist_h, imagelist_h), Image.ANTIALIAS)) self.imagelists = [] for index in range(len(self.imgs_pred)): c_list = np.array(imagelist_a) c_list[index, :int(w / 600), :, :] = 255 c_list[index, (imagelist_h - int(w / 600)):, :, :] = 255 c_list[index, :, :int(w / 600), :] = 255 c_list[index, :, (imagelist_h - int(w / 600)):, :] = 255 self.imagelists.append(ImageTk.PhotoImage(Image.fromarray(c_list.reshape(len(self.imgs_pred) * imagelist_h, imagelist_h, 3)))) self.i_list = self.canvas.create_image(w * 0.5, h * 0.56, image=self.imagelists[self.curr_img]) # images and buttons self.img_w_f = self.imgs_orig[0].size[0] # full image width self.imgs_orig_v = [ImageTk.PhotoImage(img.resize((self.img_w, self.img_w), Image.ANTIALIAS)) for img in self.imgs_orig] # images for visualization self.imgs_pred_v = [ImageTk.PhotoImage(img.resize((self.img_w, self.img_w), Image.ANTIALIAS)) for img in self.imgs_pred] self.i_left = self.canvas.create_image(w / 3.9, h * 0.56, image=self.imgs_orig_v[self.curr_img]) self.i_right = self.canvas.create_image(w - w / 3.9, h * 0.56, image=self.imgs_pred_v[self.curr_img]) self.b_masks = Button(root, font=("Courier", int(h / 50)), text = "Show masks", command=self.toggle_mask) self.b_reset = Button(root, font=("Courier", int(h / 50)), text = "Reset view", command=self.reset_transform, state=DISABLED) self.b_quit = Button(root, font=("Courier", int(h / 50)), text = "Quit", command=self.canvas.master.destroy) self.reset_transform() self.canvas.create_window(w * 0.30, h * 0.94, window=self.b_masks) self.canvas.create_window(w * 0.50, h * 0.94, window=self.b_reset) self.canvas.create_window(w * 0.70, h * 0.94, window=self.b_quit) # bind buttons and keys root.bind("q", lambda e: self.canvas.master.destroy()) root.bind("r", self.reset_transform) root.bind("m", self.toggle_mask) root.bind("<Right>", self.next) root.bind("<Left>", self.prev) root.bind("<Down>", self.next) root.bind("<Up>", self.prev) root.bind("<Button-3>", self.click_right) root.bind("<Button-1>", self.click_left) root.bind("<Button-2>", self.click_wheel) root.bind("<Button-4>", self.zoomer) root.bind("<Button-5>", self.zoomer) root.bind("<MouseWheel>", self.zoomer) root.bind("<B2-Motion>", self.drag_roi) root.bind("+", self.zoomer) root.bind("-", self.zoomer) self.over_button = False self.b_masks.bind("<Enter>", self.button_enter) self.b_masks.bind("<Leave>", self.button_leave) self.b_reset.bind("<Enter>", self.button_enter) self.b_reset.bind("<Leave>", self.button_leave) self.b_quit.bind("<Enter>", self.button_enter) self.b_quit.bind("<Leave>", self.button_leave) parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('-l', '--left', default='imgs/original/', help='directory with images which are shown on the left') parser.add_argument('-r', '--right', default='imgs/pred_outline_lin_spatial_clouds0_2/', help='directory with images which are shown on the right') parser.add_argument('-m', '--masks', default='imgs/mask/', help='directory with mask images') parser.add_argument('-R', '--report', default='report_lin_spatial_clouds0_2.csv', help='report containing date and error information for the right hand images') parser.add_argument('-y', '--year', type=int, default=2018, help='year of data acquisition') parser.add_argument('-W', '--width', type=int, default=1280, help='window width') parser.add_argument('-H', '--height', type=int, default=720, help='window height') args = parser.parse_args() imgs_o = [Image.open(img) for img in sorted([os.path.join(args.left, img) for img in os.listdir(args.left)])] imgs_p = [Image.open(img) for img in sorted([os.path.join(args.right, img) for img in os.listdir(args.right)])] imgs_m = [Image.open(img) for img in sorted([os.path.join(args.masks, img) for img in os.listdir(args.masks)])] report = np.genfromtxt(args.report, delimiter=',', dtype=float)[1:-1] dates = [(datetime(args.year, 1, 1) + timedelta(int(report[day, 1]) - 1)).strftime('%b %d %Y') for day in range(report.shape[0])] errors = ['{:4.1f}'.format(error) if error != 0.0 else 'n.a. ' for error in report[:, 5]] logos = [media.logo1, media.logo2, media.logo3] if len(imgs_o) != len(dates): raise RuntimeError('Different number of images in {} than days in the report {}!'.format(args.left, args.report)) if len(imgs_p) != len(dates): raise RuntimeError('Different number of images in {} than days in the report {}!'.format(args.right, args.report)) if len(imgs_m) != len(dates): raise RuntimeError('Different number of images in {} than days in the report {}!'.format(args.masks, args.report)) root = Tk() root.title('Gap Filling Viewer') root.geometry("%dx%d+0+0" % (args.width, args.height)) MainWindow(root, args.width, args.height, imgs_p, imgs_o, imgs_m, dates, errors, logos) root.focus_set() root.mainloop()
51.941909
158
0.616552
9,852
0.787027
0
0
0
0
0
0
1,434
0.114555
e00f57f732929e05a58cd0ef2eae47d08e8561a9
4,946
py
Python
paypal/pro/tests.py
pdfcrowd/django-paypal
0ea56dc6c799204f0f8719481f94d0c79de6eff5
[ "Unlicense", "MIT" ]
1
2019-06-13T15:59:48.000Z
2019-06-13T15:59:48.000Z
pro/tests.py
sirmmo/django-paypal
0c8aeec1c319a08ce1bfdf828534d01b69b8fa27
[ "MIT", "Unlicense" ]
null
null
null
pro/tests.py
sirmmo/django-paypal
0c8aeec1c319a08ce1bfdf828534d01b69b8fa27
[ "MIT", "Unlicense" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- from django.conf import settings from django.core.handlers.wsgi import WSGIRequest from django.forms import ValidationError from django.http import QueryDict from django.test import TestCase from django.test.client import Client from paypal.pro.fields import CreditCardField from paypal.pro.helpers import PayPalWPP, PayPalError class RequestFactory(Client): # Used to generate request objects. def request(self, **request): environ = { 'HTTP_COOKIE': self.cookies, 'PATH_INFO': '/', 'QUERY_STRING': '', 'REQUEST_METHOD': 'GET', 'SCRIPT_NAME': '', 'SERVER_NAME': 'testserver', 'SERVER_PORT': 80, 'SERVER_PROTOCOL': 'HTTP/1.1', } environ.update(self.defaults) environ.update(request) return WSGIRequest(environ) RF = RequestFactory() REQUEST = RF.get("/pay/", REMOTE_ADDR="127.0.0.1:8000") class DummyPayPalWPP(PayPalWPP): pass # """Dummy class for testing PayPalWPP.""" # responses = { # # @@@ Need some reals data here. # "DoDirectPayment": """ack=Success&timestamp=2009-03-12T23%3A52%3A33Z&l_severitycode0=Error&l_shortmessage0=Security+error&l_longmessage0=Security+header+is+not+valid&version=54.0&build=854529&l_errorcode0=&correlationid=""", # } # # def _request(self, data): # return self.responses["DoDirectPayment"] class CreditCardFieldTest(TestCase): def testCreditCardField(self): field = CreditCardField() field.clean('4797503429879309') self.assertEquals(field.card_type, "Visa") self.assertRaises(ValidationError, CreditCardField().clean, '1234567890123455') class PayPalWPPTest(TestCase): def setUp(self): # Avoding blasting real requests at PayPal. self.old_debug = settings.DEBUG settings.DEBUG = True self.item = { 'amt': '9.95', 'inv': 'inv', 'custom': 'custom', 'next': 'http://www.example.com/next/', 'returnurl': 'http://www.example.com/pay/', 'cancelurl': 'http://www.example.com/cancel/' } self.wpp = DummyPayPalWPP(REQUEST) def tearDown(self): settings.DEBUG = self.old_debug def test_doDirectPayment_missing_params(self): data = {'firstname': 'Chewbacca'} self.assertRaises(PayPalError, self.wpp.doDirectPayment, data) def test_doDirectPayment_valid(self): data = { 'firstname': 'Brave', 'lastname': 'Star', 'street': '1 Main St', 'city': u'San Jos\xe9', 'state': 'CA', 'countrycode': 'US', 'zip': '95131', 'expdate': '012019', 'cvv2': '037', 'acct': '4797503429879309', 'creditcardtype': 'visa', 'ipaddress': '10.0.1.199',} data.update(self.item) self.assertTrue(self.wpp.doDirectPayment(data)) def test_doDirectPayment_invalid(self): data = { 'firstname': 'Epic', 'lastname': 'Fail', 'street': '100 Georgia St', 'city': 'Vancouver', 'state': 'BC', 'countrycode': 'CA', 'zip': 'V6V 1V1', 'expdate': '012019', 'cvv2': '999', 'acct': '1234567890', 'creditcardtype': 'visa', 'ipaddress': '10.0.1.199',} data.update(self.item) self.assertFalse(self.wpp.doDirectPayment(data)) def test_setExpressCheckout(self): # We'll have to stub out tests for doExpressCheckoutPayment and friends # because they're behind paypal's doors. nvp_obj = self.wpp.setExpressCheckout(self.item) self.assertTrue(nvp_obj.ack == "Success") ### DoExpressCheckoutPayment # PayPal Request: # {'amt': '10.00', # 'cancelurl': u'http://xxx.xxx.xxx.xxx/deploy/480/upgrade/?upgrade=cname', # 'custom': u'website_id=480&cname=1', # 'inv': u'website-480-cname', # 'method': 'DoExpressCheckoutPayment', # 'next': u'http://xxx.xxx.xxx.xxx/deploy/480/upgrade/?upgrade=cname', # 'payerid': u'BN5JZ2V7MLEV4', # 'paymentaction': 'Sale', # 'returnurl': u'http://xxx.xxx.xxx.xxx/deploy/480/upgrade/?upgrade=cname', # 'token': u'EC-6HW17184NE0084127'} # # PayPal Response: # {'ack': 'Success', # 'amt': '10.00', # 'build': '848077', # 'correlationid': '375f4773c3d34', # 'currencycode': 'USD', # 'feeamt': '0.59', # 'ordertime': '2009-03-04T20:56:08Z', # 'paymentstatus': 'Completed', # 'paymenttype': 'instant', # 'pendingreason': 'None', # 'reasoncode': 'None', # 'taxamt': '0.00', # 'timestamp': '2009-03-04T20:56:09Z', # 'token': 'EC-6HW17184NE0084127', # 'transactionid': '3TG42202A7335864V', # 'transactiontype': 'expresscheckout', # 'version': '54.0'}
32.973333
234
0.593207
3,009
0.60837
0
0
0
0
0
0
2,468
0.498989
e00f75413d6a65ba71109974edd248bc1533ce8f
1,010
py
Python
Hackerrank_Bot_Saves_Princess.py
madhurgupta96/Algorithmic-Journey
75868af1050c99fc25e295812ba1a47468c6737f
[ "Apache-2.0" ]
null
null
null
Hackerrank_Bot_Saves_Princess.py
madhurgupta96/Algorithmic-Journey
75868af1050c99fc25e295812ba1a47468c6737f
[ "Apache-2.0" ]
null
null
null
Hackerrank_Bot_Saves_Princess.py
madhurgupta96/Algorithmic-Journey
75868af1050c99fc25e295812ba1a47468c6737f
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Mon Dec 7 19:46:40 2020 @author: Intel """ def displayPathtoPrincess(n,grid): me_i=n//2 me_j=n//2 for i in range(n): if 'p' in grid[i]: pe_i=i for j in range(n): if 'p'==grid[i][j]: pe_j=j break break while((me_i!=pe_i) | (me_j!=pe_j)): if(me_i-pe_i<0): print('DOWN') me_i=me_i+1 elif(me_i-pe_i>0): print('UP') me_i=me_i-1 else: if(me_j-pe_j>0): print('LEFT') me_j=me_j-1 elif(me_j-pe_j<0): print('RIGHT') me_j=me_j+1 else: break m = int(input()) grid = [] for i in range(0, m): grid.append(input().strip()) displayPathtoPrincess(m,grid)
22.954545
40
0.372277
0
0
0
0
0
0
0
0
116
0.114851
e01063b5b93496a8c88b374770c28bc942feb23d
65,397
py
Python
gelviz/basic.py
HiDiHlabs/gelviz
515f0462738b44609679c2a26c7d8ac3ed3b4b2b
[ "BSD-3-Clause" ]
null
null
null
gelviz/basic.py
HiDiHlabs/gelviz
515f0462738b44609679c2a26c7d8ac3ed3b4b2b
[ "BSD-3-Clause" ]
null
null
null
gelviz/basic.py
HiDiHlabs/gelviz
515f0462738b44609679c2a26c7d8ac3ed3b4b2b
[ "BSD-3-Clause" ]
null
null
null
import matplotlib.pyplot as plt import pybedtools import pandas as pnd import numpy as np import tabix import matplotlib.ticker as ticker from matplotlib.patches import Rectangle from matplotlib.patches import Arrow from matplotlib.path import Path from matplotlib.patches import PathPatch import matplotlib.cm as cm import matplotlib import tabix import math def plotGenes(genes_bed, exons_bed, introns_bed, region_bed, blacklist=None, gene_map=None, plot_gene_ids=True, y_max=None, distance_ratio=0.1, ax=None, plot_legend=False, legend_loc="lower right", color_plus="#80b1d3", color_minus="#fb8072"): """Function for plotting gene structures, i.e. introns exons of genes. :param genes_bed: :class:`pybedtools.BedTool` object containing TX start, and TX end of genes. :type genes_bed: :class:`pybedtools.BedTool` :param exons_bed: :class:`pybedtools.BedTool` object containing exons of genes. :type exons_bed: :class:`pybedtools.BedTool` :param introns_bed: :class:`pybedtools.BedTool` object containing introns :type introns_bed: :class:`pybedtools.BedTool` :param region_bed: :class:`pybedtools.BedTool` object containing the one region, for which the gene plot is created. :type region_bed: :class:`pybedtools.BedTool` :param blacklist: List of gene names, for genes that should not be shown on the plot, default is None :type blacklist: list, optional :param plot_gene_ids: If True, all gene ids will be included in the plot, False otherwise, default is True :type plot_gene_ids: bool, optional :param y_max: Max y value in the gene plot. If not set, then y_max is the max number of stacked genes, default is None. :type y_max: bool, optional :param distance_ratio: Minimal distance between two genes, as ratio of ax width, such that two genes are plotted side by side. If this ratio is underwent, the genes will be stacked, default is 0.1. :type distance_ratio: float, optional :param ax: Axes instance on which the genes are plotted, default is None. :type ax: :class:`matplotlib.axes._subplots.AxesSubplot`, optional :param plot_legend: If True, a legend describing plus or minus stranded genes is plotted, False otherwise. Default is False. :type plot_legend: bool, optional :param legend_loc: Location of the legend. Either of "lower left", "lower right", "upper left", "upper right", default is "lower right". :type legend_loc: str, optional :param color_plus: Color code for plus stranded genes, default is "#80b1d3". :type color_plus: str, optional. :param color_minus: Color code for minus stranded genes, default is "#fb8072". :type color_minus: str, optional. :return: Tuple of max_y_pos+1.5, patch_list, patch_description_list, where 1. max_y_pos+1.5 is the max_y_position + 1.5. max_y_pos defines the \ number of stacked genes. 2. patch_list is the list of patches drawn on the ax. 3. patch_description_list is the list of descriptions for the patches \ drawn on the ax. :rtype: list """ ax = ax if ax is not None else plt.gca() genes_in_region = genes_bed exons_in_region = exons_bed introns_in_region = introns_bed region_border_up = int(region_bed[0][1]) region_border_down = int(region_bed[0][2]) region_size = region_border_down-region_border_up color_forward = color_plus color_reverse = color_minus max_y_pos = None if(not len(genes_in_region) == 0): # Determine y positions of genes for plotting max_y_pos, y_pos_dict = determineYPosGene(genes_in_region, (region_border_down- region_border_up), distance_ratio) if(not y_max is None): max_y_pos = y_max # Plot Exons for i in exons_in_region: start = int(i[1]) end = int(i[2]) gene_name = str(i[3]) if(not blacklist is None and gene_map[gene_name] in blacklist): continue # Define color for gene plotting strand = str(i[5]) color = color_forward if(strand == "-"): color = color_reverse y = max_y_pos-y_pos_dict[gene_name]+0.5 rect = Rectangle((start, y-.2), end-start, .4, color=color, capstyle='butt', linewidth=0) ax.add_patch(rect) patch_list = [] patch_description_list = [] met_forward = False met_reverse = False # Plot Introns for i in introns_in_region: start = int(i[1]) end = int(i[2]) gene_name = str(i[3]) if(not blacklist is None and gene_map[gene_name] in blacklist): continue # Define color for gene plotting strand = str(i[5]) color = color_forward if(strand == "-"): color = color_reverse y = max_y_pos-y_pos_dict[gene_name]+0.5 patch = Rectangle((start, y-.03), end-start, .06, color=color, capstyle='butt', linewidth=0) ax.add_patch(patch) if(strand == "+" and not(met_forward)): patch_list += [patch] patch_description_list += ["forward strand"] met_forward = True elif(strand == "-" and not(met_reverse)): patch_list += [patch] patch_description_list += ["reverse strand"] met_reverse = True # Plot Gene Names if(plot_gene_ids): for i in genes_in_region: start = int(i[1]) gene_name = str(i[3]) if(not blacklist is None and gene_map[gene_name] in blacklist): continue # Define color for gene plotting strand = str(i[5]) color = color_forward if(strand == "-"): color = color_reverse border_distance_down = region_border_down-start if(start < region_border_up): start = region_border_up border_distance_down = region_border_down-start if(not(float(border_distance_down)/float(region_size) < distance_ratio)): gene_name = str(i[3]) gene_name_label = gene_name if(not gene_map is None): gene_name_label = gene_map[gene_name] y = max_y_pos-y_pos_dict[gene_name]+.8 plt.text(start, y, gene_name_label, size=5, color = color) gene_name = str(i[3]) gene_name_label = gene_name if(not gene_map is None): gene_name_label = gene_map[gene_name] y = max_y_pos-y_pos_dict[gene_name]+.8 plt.text(start, y, gene_name_label, size=5, color = color) plt.xlim([region_border_up, region_border_down]) plt.ylim([0, max_y_pos+1.5]) plt.yticks([], []) if(plot_legend): plt.legend(patch_list, patch_description_list, loc=legend_loc, fontsize=5) return max_y_pos+1.5, patch_list, patch_description_list def determineYPosGene(genes_bed, region_size, distance_ratio): '''Function that determines the max y position for gene plotting via function plotGenes. :param genes_bed: :class:`pybedtools.BedTool` object containing genes to be plotted. :type genes_bed: :class:`pybedtools.BedTool` :param region_size: Size of region to be plotted in base pairs. :type region_size: int :param distance_ratio: Minimal distance between two genes, as ratio of ax width, such that two genes are plotted side by side. If this ratio is underwent, the genes will be stacked. :type distance_ratio: float :return: Tuple of 1. max_y_pos: Defines the number of stacked genes. 2. y_pos_dict: Dictionary with keys = gene ids and values = y position \ of gene. :rtype: tuple ''' sort_indices = [int(idx) for idx in np.argsort([i[1] for i in genes_bed])] genes_sorted_bed = [genes_bed[i] for i in sort_indices] y_pos_dict = {} y_level_dict = {} max_y_pos = 0 for interval in genes_sorted_bed: gene_name = interval[3] gene_start = int(interval[1]) gene_end = int(interval[2]) for i in range(max_y_pos+1): if(i == 0 and not max_y_pos in y_level_dict): y_pos_dict[gene_name] = i y_level_dict[i] = [[gene_start, gene_end]] break elif(gene_start > y_level_dict[i][-1][1] and float(gene_start-y_level_dict[i][-1][0])/float(region_size) > distance_ratio): y_pos_dict[gene_name] = i y_level_dict[i] += [[gene_start, gene_end]] break elif(i == max_y_pos): max_y_pos += 1 y_pos_dict[gene_name] = max_y_pos y_level_dict[max_y_pos] = [[gene_start, gene_end]] break else: continue return max_y_pos, y_pos_dict def createGeneNameMap(gene_name_mapping_filename): '''Function that creates a mapping between gene ids :param gene_name_mapping_file: Path to a tab separated file, for which the first column is a ensemble gene id, and the second column is the HUGO gene name :type gene_name_mapping_file: str :return: Dictionary containing the gene id mapping. :rtype: dictionary ''' gene_name_mapping_file = open(gene_name_mapping_filename, "r") gene_map = {} for line in gene_name_mapping_file: split_line = line.rstrip().split("\t") ensembl_gene_id = split_line[0].split(".")[0] hugo_gene_symbol = split_line[1].split(".")[0] gene_map[ensembl_gene_id] = hugo_gene_symbol gene_name_mapping_file.close() return gene_map def plotGeneExpression(genes_bed, region_bed, expression_df_g1, expression_df_g2, gene_names_map, blacklist=None, ax=None, plot_legend=False, color_g1="#fb8072", color_g2="#80b1d3", g1_id="tumor", g2_id="normal", plot_gene_names=True): '''Function for plotting paired gene expression (e.g. tumor and normal) on a gene region scale retaining the position of genes. :param genes_bed: :class:`pybedtools.BedTool` object containing TXstart, and TXend of genes. :type genes_bed: :class:`pybedtools.BedTool` :param region_bed: :class:`pybedtools.BedTool` object containing the region to be plotted :type region_bed: :class:`pybedtools.BedTool` :param expression_df_g1: :class:`pandas.Dataframe` containing the expression values of g1 samples (columns: sample ids; index: gene ids) :type expression_df_g1: :class:`pandas.DataFrame` :param expression_df_g2: :class:`pandas.Dataframe` containing the expression values of g2 samples (columns: sample ids; index: gene ids) :type expression_df_g2: :class:`pandas.DataFrame` :param gene_names_map: Dictionary with keys: ENSEMBL GENE IDs, and values: HUGO GENE SYMBOLs. :type gene_names_map: dict. :param blacklist: Set containing gene ids not to be plotted, default to None. :type blacklist: set, optional :param ax: Axis used for plotting, defaults to None. :type ax: :class:`matplotlib.axes._subplots.AxesSubplot`, optional :param plot_legend: If True legend is plotted, False otherwise, defaults to False. :type plot_legend: bool :param color_g1: Color used for plotting g1 samples expression, defaults to "#fb8072". :type color_g1: str, optional :param color_g2: Color used for plotting g2 samples expression, defaults to "#80b1d3". :type color_g2: str, optional :param g1_id: ID of g1 used for legend plotting, defaults to "tumor". :type g1_id: str, optional :param g2_id: ID of g2 used for legend plotting, defaults to "normal". :type g2_id: str, optional :param plot_gene_names: If True, the HUGO GENE SYMBOLs will be shown, else the GENE SYMBOLs are hidden. :type plot_gene_names: bool. :return: Axis on which plot was placed. :rtype: :class:`matplotlib.axes._subplots.AxesSubplot` ''' ax = ax if ax is not None else plt.gca() # Get gene names and regions genes_in_region_bed = genes_bed.intersect(region_bed, wa=True, u=True).sort() gene_names = [] gene_regions = [] for e in genes_in_region_bed: gene_name_ens = str(e[3]) gene_names += [gene_names_map[gene_name_ens]] gene_regions += [[int(e[1]), int(e[2])]] region_right_border = int(region_bed[0][2]) region_left_border = int(region_bed[0][1]) # Determine minimal extension of barplot extension=None for i in range(len(gene_regions)): if(not blacklist is None and gene_names[i] in blacklist): continue left_border = gene_regions[i][0] right_border = None if(i < len(gene_names)-1): right_border = gene_regions[i+1][0] else: right_border = region_right_border current_extension = right_border-left_border if(current_extension == 0.): continue if(extension is None): extension = float(current_extension) elif(current_extension < extension): extension = float(current_extension) boxprops = {"color": "k", "linewidth": .3} flierprops = {"color": "k"} medianprops = {"color": "k", "linewidth": .3} whiskerprops = {"color": "k", "linewidth": .3} capprops={"color": "k", "linewidth": .3} patch_list = None patch_description_list = None tick_positions = [] gene_names_clean = [] counter=0 patch_saved = False for gene_name in gene_names: left_border = gene_regions[counter][0] right_border = region_right_border if(not blacklist is None and gene_name in blacklist): counter += 1 continue if(counter < len(gene_names)-1): right_border = gene_regions[counter+1][0] bplot_g1_pos = left_border + extension/4. bplot_g2_pos = left_border + 3*(extension/4.) tick_positions += [left_border + extension/2.] gene_names_clean += [gene_name] exp_values_g1 = expression_df_g1.loc[gene_name, :] if(type(exp_values_g1).__name__ == "Series"): exp_values_g1 = list(exp_values_g1) else: exp_values_g1 = list(exp_values_g1.iloc[0, :]) exp_values_g2 = expression_df_g2.loc[gene_name, :] if(type(exp_values_g2).__name__ == "Series"): exp_values_g2 = list(exp_values_g2) else: exp_values_g2 = list(exp_values_g2.iloc[0, :]) bplot_g1 = ax.boxplot([np.log2([i if i >= 1. else 1. for i in exp_values_g1])], positions=[bplot_g1_pos], widths=extension/2., patch_artist=True, boxprops=boxprops, flierprops=flierprops, medianprops=medianprops, whiskerprops=whiskerprops, capprops=capprops, showfliers=False) bplot_g2 = ax.boxplot([np.log2([i if i >= 1. else 1. for i in exp_values_g2])], positions=[bplot_g2_pos], widths=extension/2., patch_artist = True, boxprops=boxprops, flierprops=flierprops, medianprops=medianprops, whiskerprops=whiskerprops, capprops=capprops, showfliers=False) bplot_g1["boxes"][0].set_facecolor(color_g1) bplot_g2["boxes"][0].set_facecolor(color_g2) if(not patch_saved): patch_saved=True patch_list = [bplot_g1["boxes"][0], bplot_g2["boxes"][0]] patch_description_list = [g1_id, g2_id] counter += 1 ax.set_xlim(region_left_border, region_right_border) ax.xaxis.set_major_locator(ticker.FixedLocator((tick_positions))) ax.xaxis.set_major_formatter(ticker.FixedFormatter((gene_names_clean))) if(not plot_gene_names): ax.xaxis.set_major_formatter( ticker.FixedFormatter(([ " " for i in gene_names_clean]))) for tick in ax.get_xticklabels(): tick.set_rotation(45) tick.set_size(6) for ytick in ax.get_yticklabels(): ytick.set_size(6) if(plot_legend): ax.legend(patch_list, patch_description_list, fontsize=5, loc='lower left') return ax def plotGeneExpressionEqualDist(genes_bed, gene_mid_points, region, expression_df, groups, gene_names_map=None, blacklist=None, ax=None, plot_legend=False, colors=None, ids=None, plot_gene_names=True, position_gene_names="bottom", log_transformed=True, plot_points=False, alpha=.5): '''Function for plotting grouped gene expression (e.g. tumor and normal) on a gene region scale equalizing the position of genes. :param genes_bed: :class:`pybedtools.BedTool` object containing gene regions. :type genes_bed: :class:`pybedtools.BedTool` :param gene_mid_points: list of integer values containing center positions of genes. :type gene_mid_points: list :param region: List containing the region to be plotted ([<chrom>, <start>, <end>]). :type region: list :param groups: List of lists containing the IDs of the different groups. :type groups: list :param gene_names_map: Dictionary with keys: ENSEMBL GENE IDs, and values: HUGO GENE SYMBOLs. :type gene_names_map: dict. :param expression_df: class:`pandas.DataFrame` object containing the expression values of all samples (columns: sample ids; index: gene ids). :type expression_df: class:`pandas.DataFrame` :param blacklist: Set containing gene ids not to be plotted, defaults to None, :type blacklist: set, optional :param ax: (default: None) Axis used for plotting, defaults to None. :type ax: :class:`matplotlib.axes._subplots.AxesSubplot`, optional :param plot_legend: If True plot legend, False otherwise, defaults to False. :type plot_legend: bool, optional :param colors: List of colors used for plotting samples expression. The number of colors must be the same as the number of groups, defaults to None. :type colors: str, optional :param ids: IDs used for legend plotting, defaults to None. Number of ids must be the same as the number of groups. :type ids: list, optional. :param plot_gene_names: True if gene names shall be plotted, False otherwise, defaults to True. :type plot_gene_names: bool, optional :param position_gene_names: Either of "top", or "bottom", defaults to "bottom". :type position_gene_names: str, optional :param log_transformed: If True use log transformed values for plotting, non-transformed values otherwise. :type log_transformed: bool, optional :param plot_points: If True, a point per expression value is plotted in addition to the boxplot, no points are plotted otherwise, defaults to False. :type plot_points: bool, optional :param alpha: Alpha value for the background color of the boxplots boxes, defaults to 0.5. :type alpha: float, optional :return: Plots axis. :rtype: :class:`matplotlib.axes._subplots.AxesSubplot` ''' standard_colors = ["#66c2a5", "#fc8d62", "#8da0cb", "#ec87c2", "#a6d854", "#ffd92f", "#e5c494", "#bbbbbb"] ax = ax if ax is not None else plt.gca() region_bed = pybedtools.BedTool("\t".join([str(i) for i in region]), from_string=True) # Get gene names and regions genes_in_region_bed = genes_bed.intersect(region_bed, wa=True, u=True).sort() gene_names = [] gene_regions = [] for e in genes_in_region_bed: gene_name_ens = str(e[3]) if(not gene_names_map is None): gene_names += [gene_names_map[gene_name_ens]] else: gene_names += [gene_name_ens] gene_regions += [[int(e[1]), int(e[2])]] region_right_border = int(region_bed[0][2]) region_left_border = int(region_bed[0][1]) # Determine minimal extension of barplot extension=None if(len(gene_mid_points) <= 1): extension=region[2]-region[1] else: extension=gene_mid_points[1]-gene_mid_points[0] # Subtract a small percentage of region size from extension extension=extension-(region[2]-region[1])*.01 boxprops = {"color": "k", "linewidth": .3, "alpha":alpha} flierprops = {"color": "k"} medianprops = {"color": "k", "linewidth": .3} whiskerprops = {"color": "k", "linewidth": .3} capprops={"color": "k", "linewidth": .3} patch_list = [] patch_description_list = [] tick_positions = [] gene_names_clean = [] counter=0 for gene_name in gene_names: left_border = gene_mid_points[counter]-extension/2 right_border = gene_mid_points[counter]+extension/2 if(not blacklist is None and gene_name in blacklist): counter += 1 continue n_groups = len(groups) for g in range(n_groups): bplot_pos = left_border + (2*g+1)*extension/float((n_groups*2.)) tick_positions += [left_border + extension/2.] gene_names_clean += [gene_name] exp_values = expression_df.loc[gene_name, groups[g]] if(type(exp_values).__name__ == "Series"): exp_values = list(exp_values) else: exp_values = list(exp_values.iloc[0, :]) expression_values = exp_values if(log_transformed): expression_values = np.log2([i if i >= 1. else 1. for i in exp_values]) bplot = ax.boxplot(expression_values, positions=[bplot_pos], widths=extension/float(n_groups), patch_artist=True, boxprops=boxprops, flierprops=flierprops, medianprops=medianprops, whiskerprops=whiskerprops, capprops=capprops, showfliers=False) color = None if(not colors is None): color = colors[g] else: color = standard_colors[g] bplot["boxes"][0].set_facecolor(color) if(plot_points): x_positions = [ (bplot_pos+ (i-.5)* ((2*extension)/(float(n_groups)*3))) for i in list(np.random.rand(len(expression_values))) ] plt.plot(x_positions, expression_values, "k.", markersize=3) g_id = None if(not ids is None): g_id = ids[g] else: g_id = "group "+str(g) if(not g_id in patch_description_list): patch_list += [bplot["boxes"][0]] patch_description_list += [g_id] counter += 1 ax.set_xlim(region_left_border, region_right_border) if(position_gene_names == "top"): ax.xaxis.set_ticks_position("top") ax.xaxis.set_major_locator(ticker.FixedLocator((tick_positions))) ax.xaxis.set_major_formatter(ticker.FixedFormatter((gene_names_clean))) if(not plot_gene_names): ax.xaxis.set_major_formatter(ticker.FixedFormatter( ([ " " for i in gene_names_clean]))) for tick in ax.get_xticklabels(): tick.set_rotation(45) tick.set_size(5) for ytick in ax.get_yticklabels(): ytick.set_size(5) if(plot_legend): ax.legend(patch_list, patch_description_list, fontsize=5, loc='lower left') return ax def plotGenomicSegments(segments_list, chrom, start, end, ax = None): '''Function for plotting genomix segments in different colors :param segments_tabix_filename: Path to tabixed bed file containing (chrom, start, end, name, score, strand, start, end, color). The color field is used to determine the color for plotting (R,G,B). :type segments_Tabix_filename: str :param chrom: Chromosome of the region to be plotted. :type chrom: str :param start: Start position of the region to be plotted. :type start: str :param end: End position of the region to be plotted. :type end: str :param ax: Axis used for plotting, defaults to None. :type ax: :class:`matplotlib.axes._subplots.AxesSubplot`, optional :return: Dictionary with keys = names of segments, and values patch :rtype: dict ''' ax = ax if ax is not None else plt.gca() patches_dict = {} for segment in segments_list: segment_start = int(segment[1]) segment_end = int(segment[2]) color = tuple([ float(i)/256. for i in str(segment[-1]).split(",") ]+[1]) segment_type = str(segment[3]) if(segment_type == "R"): color = (1,1,1,1) rect = Rectangle((segment_start, 0), segment_end-segment_start, 1, color=color) ax.add_patch(rect) patches_dict[segment_type] = rect plt.xlim(int(start), int(end)) plt.ylim(0, 1) plt.yticks([], []) return patches_dict def plotCNVs(cnvs_bed, chromosome, start, end, ploidy=2, cnv_threshold=0.7, color_gain="g", color_loss="r", color_neutral="k", ax=None): '''Function for plotting CNV segments :param cnvs_bed: :class:`pybedtools.BedTool` object containing CNVs with following entries: 1. Chromosome, 2. Start Position, 3. End Position, 4. Deviation from ploidy, 5. True Copy Number) :type cnvs_bed: :class:`pybedtools.BedTool` :param chromosome: Chromosome for which to plot CNVs. :type chromosome: str :param start: Start position on chromosome. :type start: int :param end: End position on chromosome. :type end: int :param ploidy: Assumed ploidy of tumor, defaults to 2. :type ploidy: int, optional :param cnv_threshold: Minimal deviation from ploidy to be considered as a CNV, defaults to 0.7. :type cnv_threshold: float, optional :param color_gain: Plot color of copy number gains, defaults to "g". :type color_gain: str, optional :param color_loss: Plot color of copy number losses, defaults to "r". :type color_loss: str, optional :param color_neutral: Plot color of copy number neutral regions, defaults to "k". :type color_neutral: str, optional :param ax: Axis used for plotting. :type ax: :class:`matplotlib.axes._subplots.AxesSubplot`, optional :return: Nothing to be returned :rtype: None ''' # Use given axis for plotting ax = ax if ax is not None else plt.gca() for interval in cnvs_bed: current_start = int(interval[1]) current_end = int(interval[2]) ploidy_dev = float(interval[3]) tcn = float(interval[4]) # Smooth tcn, if ploidy_dev is smaller than cnv_threshold if(abs(ploidy_dev) < cnv_threshold): tcn = ploidy color = color_neutral if(ploidy_dev >= cnv_threshold): color=color_gain elif(ploidy_dev <= -1.*cnv_threshold): color = color_loss if(abs(ploidy_dev) > cnv_threshold): rect = Rectangle((current_start, tcn-.2), current_end-current_start, .4, color=color, edgecolor='none', capstyle='butt', linewidth=0) ax.add_patch(rect) else: rect = Rectangle((current_start, tcn-.1), current_end-current_start, .2, color=color, edgecolor='none', capstyle='butt', linewidth=0) ax.add_patch(rect) # Plot thresholds color_threshold=(189./255., 189./255., 189./255., 0.5) if(ploidy == 2): plt.plot([int(start), int(end)], [1, 1], color=color_threshold, linestyle="--", linewidth=.5) plt.plot([int(start), int(end)], [2, 2], color=color_threshold, linestyle="--", linewidth=.5) plt.plot([int(start), int(end)], [3, 3], color=color_threshold, linestyle="--", linewidth=.5) plt.plot([int(start), int(end)], [4, 4], color=color_threshold, linestyle="--", linewidth=.5) elif(ploidy == 4): plt.plot([int(start), int(end)], [1, 1], color=color_threshold, linestyle="--", linewidth=.5) plt.plot([int(start), int(end)], [2, 2], color=color_threshold, linestyle="--", linewidth=.5) plt.plot([int(start), int(end)], [3, 3], color=color_threshold, linestyle="--", linewidth=.5) plt.plot([int(start), int(end)], [4, 4], color=color_threshold, linestyle="--", linewidth=.5) plt.plot([int(start), int(end)], [5, 5], color=color_threshold, linestyle="--", linewidth=.5) plt.plot([int(start), int(end)], [6, 6], color=color_threshold, linestyle="--", linewidth=.5) plt.xlim([int(start), int(end)]) if(ploidy == 2): plt.ylim([0, 4.5]) plt.yticks([0, 1, 2, 3, 4], ["0", "1", "2", "3", "4"], size=6) elif(ploidy == 4): plt.ylim([0, 6.5]) plt.yticks([0, 2, 4, 6], ["0", "2", "4", "6"], size=6) plt.xticks(rotation=45) def plotCNVsHeat(cnvs_bed, chromosome, start, end, ploidy=2, cnv_threshold=0.7, cmap="bwr", max_dev=None, ax=None): '''Function for plotting CNV segments as heatmap :param cnvs_bed: :class:`pybedtools.BedTool` object containing CNVs with following entries: 1. Chromosome, 2. Start Position, 3. End Position, 4. Deviation from ploidy, 5. True Copy Number) :type cnvs_bed: :class:`pybedtools.BedTool` :param chromosome: Chromosome for which to plot CNVs. :type chromosome: str :param start: Start position on chromosome. :type start: int :param end: End position on chromosome. :type end: int :param ploidy: Assumed ploidy of tumor, defaults to 2. :type ploidy: int, optional :param cnv_threshold: Minimal deviation from ploidy to be considered as a CNV, defaults to 0.7. :type cnv_threshold: float, optional :param cmap: Colormap used for plotting CNVs, defaults to "bwr". :type cmap: str, optional :param max_dev: Maximal deviation from ploidy to plot, defaults to None. :type max_dev: float, optional :param ax: Axis used for plotting, defaults to None. :type ax: :class:`matplotlib.axes._subplots.AxesSubplot`, optional :return: Nothing to be returned. :rtype: None ''' # Use given axis for plotting ax = ax if ax is not None else plt.gca() colors = plt.cm.get_cmap(cmap) if(max_dev is None): max_dev = max([abs(float(i[3])) for i in cnvs_bed]) for interval in cnvs_bed: current_start = int(interval[1]) current_end = int(interval[2]) ploidy_dev = float(interval[3]) tcn = float(interval[4]) if(tcn < -1.*max_dev): tcn = -1.*max_dev elif(tcn > max_dev): tcn = max_dev color = colors((ploidy_dev+max_dev)/(2*max_dev)) if(abs(ploidy_dev) < cnv_threshold): color=colors(.5) rect = Rectangle((current_start, .5), current_end-current_start, 1, color=color, edgecolor='none', capstyle='butt', linewidth=0) ax.add_patch(rect) plt.xlim([int(start), int(end)]) plt.ylim([.5, 1.5]) plt.xticks([], []) plt.yticks([], []) def readACESeqAsBed(input_filename): '''Function that reads CNVs from ACESeq ("*most_important*") files and converts them to pybedtools.BedTool object :param input_filename: Full path to ACESeq "most_important" file :type input_filename: str :return: :class:`pybedtools.BedTool` object containing CNVs from ACESeq :rtype: :class:`pybedtools.BedTool` ''' input_file = open(input_filename, "r") cnv_bed_list = [] ploidy = None for line in input_file: if(line[:7] == "#ploidy"): ploidy = float(line.rstrip().split(":")[1]) print(ploidy) if(line[0] == "#" or line[:5] == "chrom"): continue split_line = line.rstrip().split("\t") ploidy_dev = float(split_line[5])-ploidy chrom = split_line[0] if(chrom == "23"): chrom="X" elif(chrom == "24"): chrom = "Y" cnv_bed_list += [ [chrom, split_line[1], split_line[2], str(ploidy_dev), split_line[5], "+"] ] input_file.close() return pybedtools.BedTool("\n".join(["\t".join(e) for e in cnv_bed_list]), from_string=True) def plotChIPSignals(chip_signals, r_chrom, r_start, r_end, ax=None, color="b", offset=None, merge=None): '''Function that plots bedGraph like iterators. :param chip_signals: Iterator for which each element is a list-ike object containing: 1. Chromosome 2. Start postion 3. End position 4. Value to be plotted as bar :type chip_signals: iterator :param r_chrom: Chromosome of region to be plotted. :type r_chrom: str :param r_start: Start position of region to be plotted. :type r_start: int :param r_end: End position of region to be plotted. :type r_end: int :param ax: Axis of plot :type ax: :class:`matplotlib.axes._subplots.AxesSubplot`, optional :param color: color of bars, defaults to "b". :type color: str, optional :param offset: Length of intervals, defaults to None. :type offset: int, optional :param merge: Number of elements to be merged. If this value is not equal to 0, than merge elements will be averaged an plotted, defaults to 0. :type merge: int, optional :return: Nothing to be returned. :rtype: None ''' ax = ax if ax is not None else plt.gca() max_signal = 0 left = [] height = [] for signal in chip_signals: start = int(signal[1]) end = int(signal[2]) value = float(signal[3]) if(value > max_signal): max_signal = value if(not offset is None): end = start + offset left += [start] height += [value] left_merged = [] height_merged = [] if(not merge is None): heights = [] lefts = [] for i in range(len(left)): if(i % merge == 0 and not (i == 0)): left_merged += [lefts[0]] lefts = [] height_merged += [np.mean(heights)] heights = [] heights += [height[i]] lefts += [left[i]] if(not i % merge == 0): left_merged += [lefts[0]] lefts = [] height_merged += [np.mean(heights)] heights = [] offset = merge*offset left = left_merged height = height_merged plt.bar(left, height, offset, color = color, edgecolor = color) plt.xlim(r_start, r_end) def plotMethylationProfileHeat(methylation_bed, chrom, start, end, bin_size=1000, ax = None): '''Function for plotting methylation values as heatmap :param methylation_bed: Methylation calls. Following fields must be included: Chrom, Start, End, Methylated Cs, Unmethylated Cs. :type methylation_bed: :class:`pybedtools.BedTool` :param chrom: Chromosome of region to be plotted. :type chrom: str :param start: Start position of region to be plotted. :type start: int :param end: End position of region to be plotted. :type end: int :param bin_size: size of bin to average methylation values, defaults to 1000. :type bin_size: int, optional :param ax: Axis to be used for plotting, defaults to None. :type ax: :class:`matplotlib.axes._subplots.AxesSubplot`, optional :return: Nothing to be returned :rtype: None ''' ax = ax if ax is not None else plt.gca() binned_meth_calls = [ [0, 0] for i in range(int(((end-start)/bin_size)+1)) ] counter = 0 for element in methylation_bed: # Determine bin position = int(element[1]) if(position < start or position > end): continue n_meth = int(element[3]) n_unmeth = int(element[4]) current_bin = int((position-start)/bin_size) counter += 1 binned_meth_calls[current_bin][0] += n_meth binned_meth_calls[current_bin][1] += n_unmeth binned_average_meth = [ float(i[0])/(float(i[0])+float(i[1])) if (float(i[0])+float(i[1])) > 0 else "NA" for i in binned_meth_calls ] binned_average_meth_no_missing = [] n = len(binned_average_meth) for i in range(n): if(not binned_average_meth[i] == "NA"): binned_average_meth_no_missing += [binned_average_meth[i]] else: meth_before = (binned_average_meth[i-1] if not i == 0 else "NA") meth_after = (binned_average_meth[i+1] if not i == len(binned_average_meth)-1 else "NA") average_list = [ j for j in [meth_before, meth_after] if not j == "NA" ] binned_average_meth_no_missing += [ (float(sum(average_list))/ float(len(average_list))) if len(average_list) > 0 else 0. ] binned_average_meth = binned_average_meth_no_missing # Plot average methylation values per bin # Define Colormap cmap = cm.bwr norm = matplotlib.colors.Normalize(vmin=0., vmax=1.) m = matplotlib.cm.ScalarMappable(norm = norm, cmap = cmap) for cbin in range(len(binned_average_meth)): rect = Rectangle((start+cbin*bin_size, 0), bin_size, 1, color=m.to_rgba(binned_average_meth[cbin])) ax.add_patch(rect) plt.xlim([start, end]) plt.ylim([0, 1]) plt.xticks([], []) plt.yticks([], []) def plotMethylationProfile(meth_calls, chrom, start, end, color="k", ax=None): '''Function that plots methylation values as dot plots. :param meth_calls: Iterator containing list-like elements with the following entries: 1. Chromsome 2. Start position 3. end position 4. Number methylated cytosines 5. Number unmethylated cytosines Or 1. Chromsome 2. Start position 3. end position 4. Beta Value :type meth_calles: iterator :param chrom: Chromosome of region to be plotted. :type chrom: str :param start: Start position of region to be plotted. :type start: int :param end: End position of region to be plotted. :type end: int :param color: Color of points representing methylation values, defaults to "k". :type color: str, optional :param ax: Axis of plot, defaults to None. :type ax: :class:`matplotlib.axes._subplots.AxesSubplot`, optional :return: Nothing to be returned :rtype: None ''' ax = ax if ax is not None else plt.gca() n_entries = len(meth_calls[0]) if(n_entries == 5): plt.plot([ (float(m[1])+float(m[2]))/2. for m in meth_calls ], [ float(m[3])/(float(m[3])+float(m[4])) if not(float(m[3])+float(m[4]) == 0.) else 0. for m in meth_calls], color=color, marker=".", linestyle='None', markersize=1, alpha=.5) elif(n_entries == 4): plt.plot([ (float(m[1])+float(m[2]))/2. for m in meth_calls ], [ float(m[4]) for m in m in meth_calls], color=color, marker=".", linestyle='None', markersize=1, alpha=.5) plt.ylim([0, 1]) plt.xticks([], []) plt.xlim([start, end]) def plotTX(chrom_r, start_r, end_r, TX_pos, direction="right", color="k", ax=None): '''Function that plots a translocation event as a bar, showing the part of the genome that is translocated. :param chrom_r: Chromosome of the region to be plotted. :type chrom_r: str :param start_r: Start position of the region to be plotted. :type start_r: int :param end_r: End position of the region to be plotted. :type end_r: int :param TX_pos: Position of the translocation. :type TX_pos: int :param direction: Direction of the genomic part that is translocated. Either of "left" (upstream), or "right" (downstream), defaults to "left". :type direction: str, optional :param color: Color of the bar representing the translocation, defaults to "k". :type color: str, optional :param ax: Axis of plot, defaults to None. :type ax: :class:`matplotlib.axes._subplots.AxesSubplot`, optional :return: Nothing to be returned. :rtype: None ''' ax = ax if ax is not None else plt.gca() TX_start = TX_pos TX_end = end_r if(direction == "left"): TX_start = start_r TX_end = TX_pos rect = Rectangle((TX_start, .4), TX_end-TX_start, .2, color=color, capstyle='butt', linewidth=0) ax.add_patch(rect) plt.xlim([start_r, end_r]) plt.ylim([0.3, 0.7]) def plotRegions(regions, start, end, color="#cbebc4", edgecolor=False, alpha=1, ax = None): '''Functions that plots genomic regions as simple rectangles. :param regions: Iterator containig list-like elements with the following entries: 1. Chromosome 2. Start position 3. End position :type regions: iterator :param start: Start position of the region to be plotted. :type start: int :param end: End position of the region to be plotted. :type end: int :param color: Color of the rectangles representing the regions to be plotted, defaults to "#cbebc4". :type color: str, optional :param edge_color: Color of region edge. If False, no edge is plotted, defaults to False. :type edge_color: str, optional :param alpha: Alpha value of the rectangle, representing the region to be plotted, defaults to 1. :type alpha: float, optional. :param ax: Axis of plot, defaults to None. :type ax: :class:`matplotlib.axes._subplots.AxesSubplot`, optional :return: Nothing to be returned :rtype: None ''' ax = ax if ax is not None else plt.gca() c = 0 for region in regions: if(not edgecolor): current_color = color rect = Rectangle([int(region[1]), -.75], int(region[2])-int(region[1]), 1.5, facecolor=current_color, edgecolor='none', alpha=alpha) c += 1 else: current_color = color rect = Rectangle([int(region[1]), -.75], int(region[2])-int(region[1]), 1.5, facecolor=current_color, edgecolor=edgecolor, alpha=alpha) c += 1 ax.add_patch(rect) plt.xticks([], []) plt.yticks([], []) plt.xlim([start, end]) plt.ylim([-1, 1]) def plotMotifDirections(motifs_bed, start, end, head_width=0.2, head_length=1000, overhang=0, color_plus="#80b1d3", color_minus="#fb8072", ax=None): '''Function that plots TF motifs as arrows, indicating their directionality. :param motifs_bed: :class:`pybedtools.BedTool` object containing regions of the TF sited to be plotted. :type motifs_bed: :class:`pybedtools.BedTool` :param start: Start position of the region to be plotted. :type start: int :param end: End position of the region to be plotted. :type end: int :param head_width: Width of the arrow head as proportion of the arrow, defaults to 0.2 :type head_width: float, optional :param head_length: Length of the arrow in bp (depends on the region that is plotted), defaults to 1000. :type head_length: int, optional :param overhang: Fraction that the arrow is swept back (0 overhang means triangular shape). Can be negative or greater than one. Defaults to 0. :type overhang: float, optional :param color_plus: Color of plus stranded TF regions, defaults to "#80b1d3". :type color_plus: str, optional :param color_minus: Color of plus stranded TF regions, defaults to "#fb8072". :type color_minus: str, optional :param ax: Axis on which to plot contact map, defaults to None. :type ax: :class:`matplotlib.axes._subplots.AxesSubplot`, optional :return: Nothing to be returned. :rtype: None ''' ax = ax if ax is not None else plt.gca() for motif in motifs_bed: motif_start = int(motif[1]) motif_end = int(motif[2]) strand = str(motif[3]) arrow_start = motif_start arrow_end = motif_end color=color_plus dx = head_length if(strand == "-"): arrow_start = motif_end arrow_end = motif_start color = color_minus dx = -1.*head_length plt.arrow(arrow_start, .5, dx, 0, head_width=head_width, head_length=head_length, overhang=overhang, head_starts_at_zero=False, edgecolor="none", facecolor=color, length_includes_head=True) plt.xlim([start, end]) plt.ylim([0.4, 0.6]) def plotHiCContactMap(contact_map, start, end, segment_size, cmap="Greys", vmin=None, vmax=None, location="top", ax=None): '''Function that plots HiC contact maps as pyramid plots :param contact_map: Matrix that contains the intensity values of HiC contacts. :type contact_map: :class:`pandas.DataFrame` :param start: Chromosomal start position of region to be plotted. :type start: int :param end: Chromosomal end position of region to be plotted. :type end: int :param segment_size: Size of the segments for which contacts were called. :type segment_size: int :param cmap: Name of the colormap to be used for plotting HiC intensities, defaults to "Greys". :type cmap: str, optional :param vmin: Minimal value of intensity range to be plotted, defaults to None :type vmin: float, optional :param vmax: Maximal value of intensity range to be plotted, defaults to None. :type vmax: float, optional :param location: Either of "top" | "bottom". If location == "top", the pyramid points upwards, else if location == "bottom" the pyramid points downwards, defaults to top, :type location: str, optional :param ax: Axis on which to plot contact map, defaults to None. :type ax: :class:`matplotlib.axes._subplots.AxesSubplot`, optional :return: Nothing to be returned. :rtype: None ''' ax = ax if ax is not None else plt.gca() contact_map_index1 = (start)/segment_size contact_map_index2 = ((end)/segment_size)+1 sliced_contact_map = contact_map.iloc[contact_map_index1:contact_map_index2, contact_map_index1:contact_map_index2] if(vmin is None): vmin = 0 if(vmax is None): vmax = np.percentile(contact_map, 99.9) colormap = plt.get_cmap(cmap) for i in range(contact_map_index1, contact_map_index2): y_range = (range(contact_map_index1+(i-contact_map_index1), contact_map_index2) if location == "top" else range(contact_map_index1, contact_map_index2-(contact_map_index2-i))) for j in y_range: # Define midpoint of rectangle midpoint = (i*segment_size+(j*segment_size-i*segment_size)/2., (j*segment_size-i*segment_size)/2.) vertices = [(midpoint[0]-segment_size/2., midpoint[1]), (midpoint[0], midpoint[1]-segment_size/2.), (midpoint[0]+segment_size/2., midpoint[1]), (midpoint[0], midpoint[1]+segment_size/2.), (midpoint[0]-segment_size/2., midpoint[1]) ] codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY, ] path = Path(vertices, codes) intensity_value = contact_map.iloc[i, j] intensity_value = (intensity_value/vmax if intensity_value <= vmax else 1.) facecolor = colormap(intensity_value) patch = matplotlib.patches.PathPatch(path, facecolor=facecolor, edgecolor='none') ax.add_patch(patch) ax.set_xlim(start, end) if(location == "top"): ax.set_ylim(0, (end-start)/2.) else: ax.set_ylim(-1.*(end-start)/2., 0) def distanceEqualizer(genomic_segments, start, end, direction="top_down", color="k", ax = None): '''Function that plots arcs from unequal distances of genomic segments to equal distances. :param genomic_segments: List of segments for which distances shall be equalized (each segment is of the form [<chrom>, <start>, <end>]) :type genomic_segments: list :param start: Start position of the genomic region. :type start: int :param end: End position of the genomic region. :type end: int :param color: Color of lines equalizing distances, defaults to "k". :type color: str, optional :param direction: Direction of distance equalization (top_down | bottom_up), defaults to "top_down". :type direction: str, optional. :param ax: Axis on which to plot, defaults to None. :type ax: :class:`matplotlib.axes._subplots.AxesSubplot`, optional :return: List of equalized region midpoints. :rtype: list ''' ax = ax if ax is not None else plt.gca() # Calculate midpoints of original and distance equalized segments n_segments = len(genomic_segments) equalized_region_size = (end-start) if(n_segments > 0): equalized_region_size=(end-start)/n_segments equalized_region_mid_points = [] for i in range(1, n_segments+1): equalized_region_mid_points += [((start+ i*equalized_region_size)- equalized_region_size/2)] region_mid_points = [] for e in genomic_segments: if(int(e[1]) < start): region_mid_points += [start+(int(e[2])-start)/2] elif(int(e[2]) > end): region_mid_points += [int(e[1])+(end-int(e[1]))/2] else: region_mid_points += [int(e[1])+(int(e[2])-int(e[1]))/2] for i in range(len(region_mid_points)): region_mid_point = region_mid_points[i] equalized_region_mid_point = equalized_region_mid_points[i] codes = [] vertices = [] if(direction == "top_down"): codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO] vertices = [(region_mid_point, 1), (region_mid_point, .8), (equalized_region_mid_point, .2), (equalized_region_mid_point, 0)] else: codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO] vertices = [(region_mid_point, 0), (region_mid_point, .2), (equalized_region_mid_point, .8), (equalized_region_mid_point, 1)] path = Path(vertices, codes) path_patch = PathPatch(path, facecolor="none", edgecolor=color, linewidth=.5) ax.add_patch(path_patch) ax.axis("off") plt.xlim([start, end]) plt.ylim([0, 1]) return equalized_region_mid_points def plotCoordinates(chrom, start, end, color="k", ax = None, upper=True, loc_coordinates="up", revert_coordinates=False, rotation=0): '''Function that plots genomic coordinates in a linea fashion. :param chrom: Chromosome of the region to be plotted. :type chrom: str :param start: Start position of the region to be plotted. :type start: int :param end: End position of the region to be plotted. :type end: int :param color: Color of the genomic scales elements, defaults to "k". :type color: str, optional :param ax: Axis of plot, defaults to None. :type ax: :class:`matplotlib.axes._subplots.AxesSubplot`, optional :param upper: If True, make less ticks, else if False make more ticks. :type upper: bool, optional :param loc_coordinates: Either of "up" | "down". If "up", plot ticks to upper direction, else if "down", plot ticks to lower direction, defaults to "up". :type loc_coordinates: str, optional :param revert_coordinates: If True, coordinates are reverted to decreasing order. Else, coordinates stay in increasing order, defaults to False. :type revert_coordinates: bool, optional :param rotation: Rotational angle of coordinate strings, defaults to 0. :type rotation: int, optional :return: Nothing to be returned. :rtype: None ''' ax = ax if ax is not None else plt.gca() tick_size = 10**math.ceil((np.log10((end-start)/10))) if(not upper): tick_size = 10**int((np.log10((end-start)/10))) # Determine first tick position first_tick = start+(tick_size-start%tick_size) ticks = [] current_tick = first_tick while(current_tick <= end): ticks += [current_tick] current_tick = current_tick + tick_size scale = None if(first_tick > 1000000): scale = "Mb" else: scale="Kb" digits_to_round = None divisor = None if(scale == "Mb"): digits_to_round = int(6-np.log10(tick_size)) divisor = 1000000 else: digits_to_round = int(5-np.log10(tick_size)) divisor = 100000 tick_labels = [ str(round(i/float(divisor), digits_to_round))+scale for i in ticks ] if(loc_coordinates == "up"): plt.plot([start, end], [0, 0], linestyle="-", color=color, linewidth=1) else: plt.plot([start, end], [0.3, 0.3], linestyle="-", color=color, linewidth=1) if(revert_coordinates): ticks = [ start + end-i for i in ticks ] ticks.reverse() tick_labels.reverse() print(tick_labels) for i in range(len(ticks)): if(loc_coordinates == "up"): plt.plot([ticks[i], ticks[i]], [0., .3], linestyle="-", color=color, linewidth=1) plt.text(ticks[i], .4, tick_labels[i], horizontalalignment="center", verticalalignment="bottom", fontsize=5, color=color, rotation=rotation) else: plt.plot([ticks[i], ticks[i]], [.3, .0], linestyle="-", color=color, linewidth=1) plt.text(ticks[i], -.1, tick_labels[i], horizontalalignment="center", fontsize=5, color=color, verticalalignment="top", rotation=rotation) plt.xlim([start, end]) plt.yticks([], []) if(loc_coordinates == "up"): plt.ylim([-.1, .8]) else: plt.ylim([-1.5, .3]) plt.xticks([], []) ax.spines["bottom"].set_visible(False) ax.spines["top"].set_visible(False) ax.spines["left"].set_visible(False) ax.spines["right"].set_visible(False) def plotLinksAsArcs(links_bed, chrom_r, start_r, end_r, lw=1, color="k", ax = None): '''Function that plots links between genomic regions as arcs. :param links_bed: Iterator, that contains bed-like structured lists with the following elements: 1. Chromosome region1 2. Start region1 3. End region1 4. Chromosome region2 5. Start region2 6. End region2 :type links_bed: iterator :param chrom_r: Chromosome of the region to be plotted. :type chrom_r: str :param start_r: Chromosomal start position of the region to be plotted. :type start_r: int :param end_r: Chromosomal end positiont of the region to be plotted. :type end_r: int :param color: Color of the arc, defaults to "k". :type color: str, optional. :param ax: Axis where the plot is drawn, defaults to None. :type ax: :class:`matplotlib.axes._subplots.AxesSubplot`, optional :return: Nothing to be returned. :rtype: None ''' ax = ax if ax is not None else plt.gca() max_dist = 0 for e in links_bed: link_pos1 = int(e[1])+(int(e[2])-int(e[1]))/2 link_pos2 = int(e[4])+(int(e[5])-int(e[4]))/2 distance = abs(link_pos2-link_pos1) if(distance > max_dist): max_dist = distance mid_point = link_pos1 + (link_pos2-link_pos1)/2 if(link_pos2 < link_pos2): mid_point = link_pos2 + (link_pos1-link_pos2)/2 vertices = [(link_pos1, 0), (mid_point, distance), (link_pos2, 0)] codes = [Path.MOVETO, Path.CURVE3, Path.CURVE3] path = Path(vertices, codes) patch = PathPatch(path, facecolor = "None", edgecolor = color, lw = lw) ax.add_patch(patch) #ax.spines["bottom"].set_visible(False) ax.spines["top"].set_visible(False) ax.spines["left"].set_visible(False) ax.spines["right"].set_visible(False) plt.xticks([], []) plt.yticks([], []) plt.xlim([start_r, end_r]) plt.ylim([0, max_dist/2])
35.254447
80
0.545101
0
0
0
0
0
0
0
0
24,154
0.369344
e010b163b6fbc347a75063de7760418370bb37d6
31,171
py
Python
toc/fsa/fsa.py
djrochford/toc
934d19b4acda55a6d4610c8a91b1a6005ff7b683
[ "MIT" ]
null
null
null
toc/fsa/fsa.py
djrochford/toc
934d19b4acda55a6d4610c8a91b1a6005ff7b683
[ "MIT" ]
null
null
null
toc/fsa/fsa.py
djrochford/toc
934d19b4acda55a6d4610c8a91b1a6005ff7b683
[ "MIT" ]
null
null
null
""" File containing DFA and NFA public classes """ import collections.abc from itertools import product, chain, combinations from string import printable from typing import ( AbstractSet, Container, FrozenSet, Iterable, List, Mapping, MutableMapping, Optional, Set, Tuple, Union, cast ) from .base import ( _Base, _extract_states_alphabet, _error_message, _good_alphabet, _check_input ) State = str Symbol = str Regex = str FsaTransitionFunction = Mapping[ Tuple[State, Symbol], Union[State, AbstractSet[State]] ] class _FSA(_Base): def __init__( self, *, transition_function: FsaTransitionFunction, start_state: State, accept_states: AbstractSet[State] ): super().__init__( transition_function=transition_function, start_state=start_state ) self._accept_states = accept_states self._states, self._alphabet = _extract_states_alphabet( self._transition_function.keys() ) self._well_defined() @property def alphabet(self) -> FrozenSet[Symbol]: return self._alphabet @property def accept_states(self) -> AbstractSet[State]: return self._accept_states def _well_defined(self) -> None: super()._well_defined() _good_alphabet(alphabet=self.alphabet, name="alphabet") self._good_accept() self._good_domain(self.alphabet) def _good_accept(self) -> None: bad_accept_states = self.accept_states - self.states _error_message( bad_set=bad_accept_states, message_singular=("Accept state {} is not a member of the fsa's " "state set."), message_plural=("Accept states {} are not members of the fsa's " "state set.") ) def _good_range(self): raise NotImplementedError GnfaTransitionFunction = Mapping[Tuple[State, State], Regex] MutableGnfaTF = MutableMapping[Tuple[State, State], Regex] class _GNFA: def __init__( self, transition_function: GnfaTransitionFunction, body_states: Set[State], start_state: State, accept_state: State ): self.transition_function = transition_function self.body_states = body_states self.start_state = start_state self.accept_state = accept_state self.states = ( self.body_states | {self.start_state} | {self.accept_state} ) def reduce(self) -> "_GNFA": """ Output a GNFA equivalent to `self` with one less state in it. """ def union_main_scope(regex: Regex) -> bool: paren_count = 0 for char in regex: if char == '(': paren_count += 1 elif char == ')': paren_count -= 1 elif char == '|': if paren_count == 0: return True return False def regex_star(regex: Regex) -> Regex: if regex in EMPTIES: return '€' if len(regex) == 1: return regex + '*' return f"({regex})*" def regex_concat(regex1: Regex, regex2: Regex) -> Regex: if regex1 == 'Ø' or regex2 == 'Ø': return 'Ø' if regex1 == '€': return regex2 if regex2 == '€': return regex1 if union_main_scope(regex1): regex1 = f'({regex1})' if union_main_scope(regex2): regex2 = f'({regex2})' return regex1 + regex2 def regex_union(regex1: Regex, regex2: Regex) -> Regex: if regex1 == "Ø": return regex2 if regex2 == "Ø": return regex1 return f"{regex1}|{regex2}" rip = self.body_states.pop() r2 = self.transition_function[(rip, rip)] reduced_tf = {} for state1 in self.states - {self.accept_state, rip}: r1 = self.transition_function[(state1, rip)] for state2 in self.states - {self.start_state, rip}: r3 = self.transition_function[(rip, state2)] r4 = self.transition_function[(state1, state2)] new_regex = regex_union( regex_concat(regex_concat(r1, regex_star(r2)), r3), r4 ) reduced_tf[(state1, state2)] = new_regex return _GNFA( reduced_tf, self.body_states - {rip}, self.start_state, self.accept_state ) NfaTransitionFunction = Mapping[Tuple[State, Symbol], AbstractSet[State]] MutableNfaTF = MutableMapping[Tuple[State, Symbol], Set[State]] class NFA(_FSA): """ A nondeterministic finite automaton class. Takes three keyword arguments: - `transition_function`: Mapping[Tuple[State, Symbol], AbstractSet[State]] - `start_state`: State - `accept_states`: AbstractSet[State] (Where States are strings, and Symbols are one-char strings.) The transition function' keys implicitly define the nfa's state-set and alphabet; the first elements of the tuples represent the nfa's states, and the second elements are the symbols in the alphabet. The domain of the transition function is the power-set of the nfa's state set --- i.e., the values of the transition function dictionary should be sets (or frozensets). The empty set is a valid value; in fact, you are required to specify that the successor set for a given state-symbol pair is the empty set, if it is. You can define epsilon-moves by using the empty string in place of an alphabet symbol in the transition function. Note that the empty string will not be inferred to be a member of the alphabet (and hence the checks below will work as you would expect). The class will raise a ValueError exception on instantiation if any of the following are true: 1. the start state is not a member of the set of states inferred from the transition function; 2. the set of accept states is not a subset of the set of states inferred from the transition function; 3. a member of the alphabet inferred from the transition function is not a one-character string; 4. a member of the transition function's range is not a set; 5. the range of the transition function is not a subset of the power set of states inferred from the transition function; 6. the transition function is missing cases -- i.e., it is not the case that every pair of a state and a symbol is in the domain of the transition function. The exception message will specify which of these six conditions things triggered the exception, and which states/symbols are the source of the problem. """ def __or__(self, other: "NFA") -> "NFA": """ Let A be the language recognised by nfa1, and B be the language recognized by nfa2. `nfa1 | nfa2` returns an nfa that recognizes A union B. The cardinality of the state-set of nfa1 | nfa2 is the cardinality of the state set of nfa1 plus the cardinality of the state-set of nfa2 plus 1. There is no problem with the input NFAs having different alphabets. """ new_self, new_other, union_tf = self._combine(other) union_start_state = _get_new_state(new_self.states | new_other.states) union_tf[(union_start_state, '')] = { new_self.start_state, new_other.start_state } for symbol in new_self.alphabet | new_other.alphabet: union_tf[(union_start_state, symbol)] = set() union_accept_states = new_self.accept_states | new_other.accept_states return NFA( transition_function=union_tf, start_state=union_start_state, accept_states=union_accept_states ) def __add__(self, other: "NFA") -> "NFA": """ Let A be the language recognised by nfa1, and B be the language recognized by nfa2. `nfa1 + nfa2` returns an nfa that recognizes A concat B -- i.e., the language consisting of the set of strings of the form a concat b, where a is an element of A and b is an element of B. Note that this `+` operation is not commutative. """ new_self, new_other, concat_tf = self._combine(other) for state in new_self.accept_states: if (state, '') in concat_tf: concat_tf[(state, '')].add(new_other.start_state) else: concat_tf[(state, '')] = {new_other.start_state} return NFA( transition_function=concat_tf, start_state=new_self.start_state, accept_states=new_other.accept_states ) def _combine(self, other: "NFA") -> Tuple["NFA", "NFA", MutableNfaTF]: def prime(state: State): return state + '`' def copy(nfa: NFA) -> NFA: copy_tf = {} for state, symbol in nfa.transition_function.keys(): copy_tf[(prime(state), symbol)] = { prime(x) for x in nfa.transition_function[(state, symbol)] } copy_start = prime(nfa.start_state) copy_accept = {prime(x) for x in nfa.accept_states} return NFA( transition_function=copy_tf, start_state=copy_start, accept_states=copy_accept ) overlap = self.states & other.states while overlap: other = copy(other) overlap = self.states & other.states def add_empty_transitions( nfa1: NFA, nfa2: NFA ) -> Tuple[NfaTransitionFunction, NfaTransitionFunction]: def add_one_way(nfa1: NFA, nfa2: NFA) -> NfaTransitionFunction: new_tf = nfa1.transition_function extra_symbols = nfa2.alphabet - nfa1.alphabet if extra_symbols: for pair in product(nfa1.states, extra_symbols): new_tf[pair] = set() return new_tf return add_one_way(nfa1, nfa2), add_one_way(nfa2, nfa1) self_tf, other_tf = add_empty_transitions(self, other) new_self = NFA( transition_function=self_tf, start_state=self.start_state, accept_states=self.accept_states ) new_other = NFA( transition_function=other_tf, start_state=other.start_state, accept_states=other.accept_states ) combination_tf = {} combination_tf.update(new_self.transition_function) combination_tf.update(new_other.transition_function) return new_self, new_other, combination_tf def _good_range(self) -> None: bad_range = { x for x in self.transition_function.values() if not isinstance(x, collections.abc.Set) } _error_message( bad_set=bad_range, message_singular=("Value {} in the range of the transition " "function is not a set."), message_plural=("Values {} in the range of the transition " "function are not sets.") ) transition_range: Set[Optional[AbstractSet[State]]] = set.union( *self.transition_function.values() ) _error_message( bad_set=transition_range - self.states, message_singular=("State {} in the range of the transition " "function is not in the fsa's state set."), message_plural=("States {} in the range of the transition " "function are not in the fsa's state set.") ) def _get_successors( self, *, state_set: AbstractSet[State], symbol: Symbol ) -> FrozenSet[State]: def get_successor(state: State, sym: Symbol) -> AbstractSet[State]: self._transition_function = cast( NfaTransitionFunction, self._transition_function ) return self._transition_function.get((state, sym), frozenset()) empty: FrozenSet[State] = frozenset() # This avoids a mypy bug. return empty.union( *[frozenset(get_successor(state, symbol)) for state in state_set] ) def _add_epsilons(self, state_set: AbstractSet[State]) -> FrozenSet[State]: epsilon_neighbours = self._get_successors( state_set=state_set, symbol='' ) while epsilon_neighbours - state_set: state_set = state_set | epsilon_neighbours epsilon_neighbours = self._get_successors( state_set=epsilon_neighbours, symbol='' ) return frozenset(state_set) def _transition(self, state_set: AbstractSet[State], symbol: Symbol): return self._add_epsilons(self._get_successors(state_set=state_set, symbol=symbol)) def accepts(self, string: str) -> bool: """ Determines whether nfa accepts input string. Will raise a ValueError exception is the string contains symbols that aren't in the nfa's alphabet. """ _check_input(string=string, alphabet=self.alphabet) current_states = self._add_epsilons({self.start_state}) for symbol in string: current_states = self._transition(current_states, symbol) return not current_states & self.accept_states == set() def determinize(self) -> "DFA": """Returns a DFA that recognizes the same same language as the NFA instance. WARNING: The set of DFA states has the cardinality of the power-set of the set of NFA states. For related reasons, the time complexity of this method is exponential in the number of states of the NFA. Don't determinize big NFAs. """ # powerset code an itertools recipe, from # https://docs.python.org/3/library/itertools.html#recipes # (minor modification to make the return a set of frozensets). def powerset(iterable: Iterable) -> Set[FrozenSet]: s = list(iterable) return { frozenset(item) for item in chain.from_iterable( combinations(s, r) for r in range(len(s)+1) ) } state_sets = powerset(self.states) determinized_tf = {} determinized_accept = set() for (state_set, symbol) in product(state_sets, self._alphabet): determinzed_state = _stringify(state_set) determinized_tf[(determinzed_state, symbol)] = _stringify( self._transition(state_set, symbol) ) if set(state_set) & self.accept_states: determinized_accept.add(determinzed_state) determinized_start = _stringify( self._add_epsilons({self._start_state}) ) return DFA( transition_function=determinized_tf, start_state=determinized_start, accept_states=determinized_accept ) def star(self) -> "NFA": """ Let A be the language recognised by nfa. `nfa.self()` returns an nfa that recognizes A* -- i.e., the set of all strings formed by concatenating any number of members of A. """ star_start = _get_new_state(self.states) star_tf = self.transition_function star_tf[(star_start, '')] = {self.start_state} for symbol in self.alphabet: star_tf[(star_start, symbol)] = set() for state in self.accept_states: star_tf[(state, '')] = {self.start_state} star_accepts = self.accept_states | {star_start} return NFA( transition_function=star_tf, start_state=star_start, accept_states=star_accepts ) @staticmethod def fit( regex: Regex, alphabet: AbstractSet[Symbol] = ( set(printable) - {'(', ')', '|', '*'} ) ) -> "NFA": """ Takes a regular expression and an alphabet (i.e., a set of one-character strings) as input; returns an NFA that recognises the language defined by that regular expression and that alphabet. The alphabet parameter is optional; it's default value is string.printable -- i.e., the set of "printable" characters, which includes the standard ASCII letters and digits, and most common punctuation and white space. Actually, that's not quite right -- the default value is string.printable *minus* parentheses, the vertical bar, the star symbol, and the tilde, for reasons that I will explain presently. As of now, the syntax of the regular expressions that this method takes as input is very simple -- much simpler than the standard python regular expresssions. All characters are intepreted as literals for symbols in the alphabet except for '(', '')', '|', '*', '•', '€' and 'Ø'. The parentheses, vertical bar and star mean what you'd expect them to mean if you are familiar with regular expressions. '•' (option-8 on a mac keyboard) means concatenation. You can leave concatentation implicit, as is usual; no need to write '•'' explicitly if you don't want to. But it gets used internally. '€' (option-shift-2) is used to match the empty string (because it kind of looks like an epsilon); there's no other way to match, for instance, {'', '0'} with the current syntax. (Quick challenge: it's not totally obvious how to match the empty string in normal python regex syntax either, though it can be done; give it a go.) 'Ø' (option-shift-o) represents the empty set; you can match to the empty language with it. For reaons related to the above, the characters '(', ')', '|', '*', '•', '€' and 'Ø' cannot be symbols in the alphabet of the NFA. (My apologies to speakers of Scandinavian languages for the last one; I am very against English chauvinism, but your letter is so very close to the empty-set symbol. If, by some miracle, there is someone who cares about this, I will change the symbol for empty-set.) In the absence of parentheses, the order of operations is: `*`, then `•`, then `|`. This method uses a version of Dijkstra's shunting yard algorithm to parse the regex and build the NFA. The method will raise a ValueError exception if any of the following conditions hold: 1. the alphabet contains any of the verboten characters -- i.e.,`(` , `)`, `|`, `*`, `•`, `€` and `Ø`, 2. the input regex string contains a character not in the alphabet, and not one of the above veboten characters, 3. the input regex contain a binary operator followed by an operator, or 4. the input regex does not have properly matching parentheses. """ operator_to_operation = { '|': NFA.__or__, '•': NFA.__add__ } _error_message( bad_set=set(NOT_SYMBOLS) & alphabet, message_singular="Alphabet cannot contain character {}.", message_plural="Alphabet cannot contain characters {}." ) def fit_empty(empty: Regex) -> NFA: tf: NfaTransitionFunction = { pair: set() for pair in product({'q1'}, alphabet) } accept_states = set() if empty == 'Ø' else {'q1'} return NFA( transition_function=tf, start_state='q1', accept_states=accept_states ) def fit_symbol(symbol: Symbol) -> NFA: tf: MutableNfaTF = { pair: set() for pair in product({'q1', 'q2'}, alphabet) } tf[('q1', symbol)] = {'q2'} return NFA( transition_function=tf, start_state='q1', accept_states={'q2'} ) machine_stack: List[NFA] = [] operator_stack = ['sentinel'] def binary_operate() -> None: right_operand = machine_stack.pop() left_operand = machine_stack.pop() machine = operator_to_operation[operator_stack.pop()]( left_operand, right_operand ) machine_stack.append(machine) def compare(operator: Regex) -> int: return ( OPERATORS.index(operator) - OPERATORS.index(operator_stack[-1]) ) regex = _pre_process(regex, alphabet) for char in regex: if char in EMPTIES: machine_stack.append(fit_empty(char)) elif char in alphabet: machine_stack.append(fit_symbol(char)) elif char == '*': machine_stack[-1] = machine_stack[-1].star() elif char in OPERATORS: if operator_stack[-1] in PARENTHE or compare(char) > 0: operator_stack.append(char) else: while ( operator_stack[-1] not in PARENTHE and compare(char) <= 0 ): binary_operate() operator_stack.append(char) elif char == '(': operator_stack.append(char) else: while operator_stack[-1] != '(': binary_operate() operator_stack.pop() while len(operator_stack) > 1: binary_operate() return machine_stack.pop() OPERATORS = ['sentinel', '|', '•', '*'] PARENTHE = ['(', ')'] EMPTIES = ['€', 'Ø'] NOT_SYMBOLS = OPERATORS + PARENTHE + EMPTIES def _pre_process(regex: Regex, alphabet: AbstractSet[Symbol]) -> Regex: first_char = regex[0] if first_char in OPERATORS: raise ValueError(f"Regex cannot start with '{first_char}'.") processed = '' paren_count = 0 for char in regex: if char in alphabet or char == '(': if len(processed) > 0: processed += ( '•' if processed[-1] not in {'(', '|'} else '' ) if char not in alphabet | set(NOT_SYMBOLS): raise ValueError( f"Regex contains character '{char}' that is not in " "alphabet and not an accepted regex character." ) if char in OPERATORS and processed[-1] in {'|', '•'}: raise ValueError( "Regex contains binary operator followed by an " "operator; not cool." ) if char == '(': paren_count += 1 if char == ')': paren_count -= 1 if paren_count < 0: raise ValueError( "Right parenthesis occurs in regex withour matching " "left parenthesis." ) processed += char if paren_count > 0: raise ValueError( "Left parenthesis occurs in regex without matching right " "parenthesis." ) return processed DfaTransitionFunction = Mapping[Tuple[State, Symbol], State] class DFA(_FSA): """ A deterministic finite automaton class. Takes three keyword arguments: - `transition_function`: Mapping[Tuple[State, Symbol], State] - `start_state`: State - `accept_state`: AbstractSet[State] (where States are strings and Symbols are one-char strings). The keys of the `transition_function` implicitly define the dfa's state-set and alphabet. The class will raise a ValueError exception on instantiation if any of th following are true: * the start state is not a member of the set of states inferred from the transition function; * the set of accept states is not a subset of the set of states inferred from the transition function; * the range of the transition function is not a subset of the set of states inferred from the transition function; * a member of the alphabet inferred from the transition function is not a one-character string; * the transition function is missing a case -- i.e., it is not the case that every pair of a state and a symbol is in the domain of the transition function. The exception message will specify which of these above conditions things triggered the exception, and which states/symbols are the source of the problem. """ def __or__(self, other: "DFA") -> "DFA": """ Let A be the language recognised by dfa1, and B be the language recognized by dfa2. `dfa1 | dfa2` returns a dfa that recognizes A union B. The states of dfa1 | dfa2 are ordered pairs of states from dfa1 and dfa2. There is no problem with the input DFAs having different alphabets. """ union_alphabet = self.alphabet | other.alphabet def maybe_add_state( dfa1: DFA, dfa2: DFA ) -> Tuple[FrozenSet[State], DfaTransitionFunction]: new_tf = dfa1.transition_function new_states = dfa1.states extra_symbols = dfa2.alphabet - dfa1.alphabet if extra_symbols: error_state = _get_new_state(dfa1.states) new_states = dfa1.states | {error_state} for symbol in union_alphabet: new_tf[(error_state, symbol)] = error_state for symbol in extra_symbols: for state in dfa1.states: new_tf[(state, symbol)] = error_state return new_states, new_tf self_states, self_tf = maybe_add_state(self, other) other_states, other_tf = maybe_add_state(other, self) state_pairs = product(self_states, other_states) union_transition_function = {} for (state1, state2), symbol in product(state_pairs, union_alphabet): union_transition_function[(state1 + state2, symbol)] = ( self_tf[(state1, symbol)] + other_tf[(state2, symbol)] ) union_start_state = self.start_state + other.start_state union_accept_states = { _stringify(item) for item in ( set(product(self.accept_states, other_states)) | set(product(self_states, other.accept_states)) ) } return DFA( transition_function=union_transition_function, start_state=union_start_state, accept_states=union_accept_states ) def __add__(self, other: "DFA") -> "DFA": """ Let A be the language recognised by dfa1, B be the language recognised by dfa2. `dfa1 + dfa2` returns a DFA that recognises the set of all concatenations of strings in A with strings in B. This DFA operator is parasitic on the NFA operator; it converts the input DFAs into NFAs, uses the NFA '+', then converts the result back to a DFA. That makes for a relatively simple but, sadly, computationally expensive algorith. For that reason, I recommend you don't `+` dfas with large numbers of states. """ return (self.non_determinize() + other.non_determinize()).determinize() def _gnfize(self) -> _GNFA: gnfa_tf: MutableGnfaTF = {} for state1, symbol in self.transition_function.keys(): state2 = self.transition_function[(state1, symbol)] if (state1, state2) in gnfa_tf.keys(): gnfa_tf[(state1, state2)] += '|' + symbol else: gnfa_tf[(state1, state2)] = symbol gnfa_start = _get_new_state(self.states) gnfa_accept = _get_new_state(self.states | {gnfa_start}) gnfa_tf[(gnfa_start, self.start_state)] = '€' for state in self.accept_states: gnfa_tf[(state, gnfa_accept)] = '€' for state1, state2 in product( self.states | {gnfa_start}, self.states | {gnfa_accept} ): if (state1, state2) not in gnfa_tf: gnfa_tf[(state1, state2)] = 'Ø' return _GNFA(gnfa_tf, set(self.states), gnfa_start, gnfa_accept) def _good_range(self) -> None: transition_range = set(self.transition_function.values()) bad_range = transition_range - self.states _error_message( bad_set=bad_range, message_singular=("State {} in the range of the transition " "function is not in the fsa's state set."), message_plural=("States {} in the range of the transition " "function are not in the fsa's state set.") ) def accepts(self, string: str) -> bool: """ `my_dfa.accepts("some string")` returns `True` if my_dfa accepts "some string", and `False` otherwise. Will raise a ValueError exception is the string contains symbols that aren't in the DFA's alphabet. """ _check_input(string=string, alphabet=self.alphabet) current_state = self.start_state for symbol in string: current_state = self.transition_function[(current_state, symbol)] return current_state in self.accept_states def encode(self) -> Regex: """ Let A be the language accepted by dfa. `dfa.encode()` returns a regex string that generates A. That regex string is liable to be much more complicated than necessary; maybe I'll figure out how to improve on average simplicity, eventually. """ gnfa = self._gnfize() while len(gnfa.states) > 2: gnfa = gnfa.reduce() return gnfa.transition_function[(gnfa.start_state, gnfa.accept_state)] def non_determinize(self) -> NFA: """ Convenience method that takes a DFA instance and returns an NFA instance. """ nd_transition_function = { key: {value} for key, value in self.transition_function.items() } return NFA( transition_function=nd_transition_function, start_state=self.start_state, accept_states=self.accept_states ) def _stringify(states: Iterable[State]) -> str: if not isinstance(states, collections.abc.Sequence): states = list(states) states.sort() return "".join(states) def _get_new_state(state_set: Container) -> State: counter = 1 new_state = 'new_state1' while new_state in state_set: counter += 1 new_state = "new_state" + str(counter) return new_state
39.506971
91
0.595939
28,343
0.90776
0
0
6,111
0.195721
0
0
11,318
0.362489
e0112c386596780c5a86b0d6086dc2f7b6c2be8a
429
py
Python
Numbers/Roman Number Generator/tests.py
fossabot/IdeaBag2-Solutions
73b554d9796510fc86e5fc55016732aa866266c6
[ "MIT" ]
10
2018-07-06T22:05:45.000Z
2021-05-22T11:29:04.000Z
Numbers/Roman Number Generator/tests.py
jarik-marwede/IdeaBag2-Projects
c5fe9524ef03a6ebc098ab8aaee7448f5b877828
[ "MIT" ]
22
2018-07-13T17:16:43.000Z
2022-01-11T11:16:08.000Z
Numbers/Roman Number Generator/tests.py
jarik-marwede/IdeaBag2-Projects
c5fe9524ef03a6ebc098ab8aaee7448f5b877828
[ "MIT" ]
1
2020-06-13T18:53:51.000Z
2020-06-13T18:53:51.000Z
#!/usr/bin/env python3 import unittest from roman_number_generator import arabic_to_roman class Test(unittest.TestCase): def _start_arabic_to_roman(self): self.assertRaises(ValueError, arabic_to_roman, 4000) self.assertEqual(arabic_to_roman(4), "IV") self.assertEqual(arabic_to_roman(12), "XII") self.assertEqual(arabic_to_roman(20), "XX") if __name__ == "__main__": unittest.main()
23.833333
60
0.717949
286
0.666667
0
0
0
0
0
0
45
0.104895
e012a92e1f872614d01a6331fee5e35c430a31f7
261
py
Python
modules/moduleBase.py
saintaardvark/glouton-satnogs-data-downloader
dc8671340f558b1a21b41b9b04bab05fc15c7809
[ "MIT" ]
null
null
null
modules/moduleBase.py
saintaardvark/glouton-satnogs-data-downloader
dc8671340f558b1a21b41b9b04bab05fc15c7809
[ "MIT" ]
null
null
null
modules/moduleBase.py
saintaardvark/glouton-satnogs-data-downloader
dc8671340f558b1a21b41b9b04bab05fc15c7809
[ "MIT" ]
null
null
null
from infrastructure.satnogClient import SatnogClient import os class ModuleBase: def __init__(self, working_dir): self.working_dir = working_dir def runAfterDownload(self, file_name, full_path, observation): raise NotImplementedError()
29
66
0.762452
197
0.754789
0
0
0
0
0
0
0
0
e013ea72c2e27425fa2415a60a17282e347acbb7
45,537
py
Python
oregano_plugins/fusion/server.py
MrNaif2018/Oregano
cc08f813f9cbdb80d1ac607892f8439ec064ee04
[ "MIT" ]
null
null
null
oregano_plugins/fusion/server.py
MrNaif2018/Oregano
cc08f813f9cbdb80d1ac607892f8439ec064ee04
[ "MIT" ]
null
null
null
oregano_plugins/fusion/server.py
MrNaif2018/Oregano
cc08f813f9cbdb80d1ac607892f8439ec064ee04
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # # Oregano - a lightweight Ergon client # CashFusion - an advanced coin anonymizer # # Copyright (C) 2020 Mark B. Lundeberg # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ A basic server implementation for CashFusion. Does not natively offer SSL support, however a server admin may run an SSL server proxy such as nginx for that purpose. """ import secrets import sys import threading import time import traceback from collections import defaultdict import oregano.schnorr as schnorr from oregano.address import Address from oregano.util import PrintError, ServerError, TimeoutException from . import fusion_pb2 as pb from .comms import send_pb, recv_pb, ClientHandlerThread, GenericServer, get_current_genesis_hash from .protocol import Protocol from .util import (FusionError, sha256, calc_initial_hash, calc_round_hash, gen_keypair, tx_from_components, rand_position) from .validation import (check_playercommit, check_covert_component, validate_blame, ValidationError, check_input_electrumx) # Resistor "E series" values -- round numbers that are almost geometrically uniform E6 = [1.0, 1.5, 2.2, 3.3, 4.7, 6.8] E12 = [1.0, 1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2] E24 = [1.0, 1.1, 1.2, 1.3, 1.5, 1.6, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.6, 3.9, 4.3, 4.7, 5.1, 5.6, 6.2, 6.8, 7.5, 8.2, 9.1] # TODO - make these configurable class Params: num_components = 23 component_feerate = 1000 # sats/kB max_excess_fee = 300000 # sats tiers = [round(b*s) for b in [10000, 100000, 1000000, 10000000, 100000000] for s in E12] # How many clients do we want before starting a fusion? min_clients = 8 # If all clients submitted largest possible component (uncompressed p2pkh input), how many could we take until the result would exceed 100 kB standard tx size limitation? max_clients = (100000 - 12) // (num_components * 173) # Every round, clients leave ... How many clients do we need as an absolute minimum (for privacy)? min_safe_clients = 6 # Choose the minimum excess fee based on dividing the overhead amongst players, in the smallest fusion # (these overhead numbers assume op_return script size of 1 + 5 (lokad) + 33 (session hash) ) if min_safe_clients * num_components >= 2 * 0xfc: # the smallest fusion could require 3-byte varint for both inputs and outputs lists overhead = 62 elif min_safe_clients * num_components >= 0xfc: # the smallest fusion could require 3-byte varint for either inputs or outputs lists overhead = 60 else: # the smallest fusion will use 1-byte varint for both inputs and outputs lists overhead = 58 min_excess_fee = (overhead + min_safe_clients - 1) // min_safe_clients # How many clients can share same tag on a given tier (if more try to join, reject) max_tier_client_tags = 100 # For a given IP, how many players can they represent in the same fuse? ip_max_simul_fuse = 3 # Guaranteed time to launch a fusion if the pool has stayed at or above min_clients for this long. start_time_max = 1200 # Inter-fusion delay -- after starting any fusion, wait this long before starting the next one (unless hit max time or pool is full). start_time_spacing = 120 # But don't start a fusion if it has only been above min_clients for a short time (unless pool is full). start_time_min = 400 # whether to print a lot of logs noisy = False # How long covert connections are allowed to stay open without activity. # note this needs to consider the maximum interval between messages: # - how long from first connection to last possible Tor component submission? # - how long from one round's component submission to the next round's component submission? COVERT_CLIENT_TIMEOUT = 40 # used for non-cryptographic purposes import random rng = random.Random() rng.seed(secrets.token_bytes(32)) def clientjob_send(client, msg, timeout = Protocol.STANDARD_TIMEOUT): client.send(msg, timeout=timeout) def clientjob_goodbye(client, text): # a gentler goodbye than killing if text is not None: client.send_error(text) raise client.Disconnect class ClientThread(ClientHandlerThread): """Basic thread per connected client.""" def recv(self, *expected_msg_names, timeout=Protocol.STANDARD_TIMEOUT): submsg, mtype = recv_pb(self.connection, pb.ClientMessage, *expected_msg_names, timeout=timeout) return submsg def send(self, submsg, timeout=Protocol.STANDARD_TIMEOUT): send_pb(self.connection, pb.ServerMessage, submsg, timeout=timeout) def send_error(self, msg): self.send(pb.Error(message = msg), timeout=Protocol.STANDARD_TIMEOUT) def error(self, msg): self.send_error(msg) raise FusionError(f'Rejected client: {msg}') class ClientTag(bytes): """ enhanced bytes object to represent a pool tag """ __slots__ = () def __new__(cls, ipstr, tagbytes, maxsimul): ipb = ipstr.encode() b = bytes([maxsimul, len(ipb)]) + ipb + tagbytes return super().__new__(cls, b) @property def maxsimul(self): return self[0] class TagStatus: __slots__ = ('pool', 'all_') def __init__(self): self.pool = 0 self.all_ = 0 class WaitingPool: """ a waiting pool for a specific tier """ def __init__(self, fill_threshold, tag_max): self.pool = set() # clients who will be put into fusion round if started at this tier self.queue = list() # clients who are waiting due to tags being full self.tags = defaultdict(TagStatus) # how are the various tags self.fill_threshold = fill_threshold # minimum number of pool clients to trigger setting fill_time self.fill_time = None # when did pool exceed fill_threshold self.tag_max = tag_max # how many clients can share same tag (in pool and queue) def check_add(self, client): for t in client.tags: ts = self.tags.get(t) if ts is not None and ts.all_ >= self.tag_max: return "too many clients with same tag" def _add_pool(self, client): self.pool.add(client) for t in client.tags: ts = self.tags[t] ts.pool += 1 if len(self.pool) == self.fill_threshold: self.fill_time = time.monotonic() def add(self, client): can_pool = True for t in client.tags: ts = self.tags[t] ts.all_ += 1 if ts.pool >= t.maxsimul: can_pool = False if can_pool: self._add_pool(client) else: self.queue.append(client) return can_pool def remove(self, client): # make sure to call try_move_from_queue() after calling this try: self.pool.remove(client) except KeyError: in_pool = False try: self.queue.remove(client) except ValueError: return False else: in_pool = True if len(self.pool) < self.fill_threshold: self.fill_time = None for t in client.tags: ts = self.tags[t] ts.all_ -= 1 if in_pool: ts.pool -= 1 if ts.all_ == 0: # cleanup for no-longer-used tags del self.tags[t] return True def try_move_from_queue(self): # attempt to move clients from queue into pool moved = [] for client in self.queue: for t in client.tags: ts = self.tags[t] if ts.pool >= t.maxsimul: break else: self._add_pool(client) moved.append(client) for client in moved: self.queue.remove(client) class FusionServer(GenericServer): """Server for clients waiting to start a fusion. New clients get a ClientThread made for them, and they are put into the waiting pools. Once a Fusion thread is started, the ClientThreads are passed over to a FusionController to run the rounds.""" def __init__(self, config, network, bindhost, port, upnp = None, announcehost = None, donation_address = None): assert network assert isinstance(donation_address, (Address, type(None))) if not schnorr.has_fast_sign() or not schnorr.has_fast_verify(): raise RuntimeError("Fusion requires libsecp256k1") super().__init__(bindhost, port, ClientThread, upnp = upnp) self.config = config self.network = network self.announcehost = announcehost self.donation_address = donation_address self.waiting_pools = {t: WaitingPool(Params.min_clients, Params.max_tier_client_tags) for t in Params.tiers} self.t_last_fuse = time.monotonic() # when the last fuse happened; as a placeholder, set this to startup time. self.reset_timer() def run(self): try: super().run() finally: self.waiting_pools.clear() # gc clean def reset_timer(self, ): """ Scan pools for the favoured fuse: - Out of the pool(s) with the most number of players, - Choose the pool with the earliest fill time; - If no pools are filled then there is no favoured fuse. (since fill time is a float, this will almost always be unique) """ with self.lock: time_best = None tier_best = None size_best = 0 for t, pool in self.waiting_pools.items(): ft = pool.fill_time if ft is None: continue size = len(pool.pool) if size >= size_best: if time_best is None or ft < time_best or size > size_best: time_best = ft tier_best = t size_best = size if time_best is None: self.tier_best_starttime = None else: self.tier_best_starttime = max(time_best + Params.start_time_min, self.t_last_fuse + Params.start_time_spacing) self.tier_best = tier_best def start_fuse(self, tier): """ Immediately launch Fusion at the selected tier. """ with self.lock: chosen_clients = list(self.waiting_pools[tier].pool) # Notify that we will start. for c in chosen_clients: c.start_ev.set() # Remove those clients from all pools for t, pool in self.waiting_pools.items(): for c in chosen_clients: pool.remove(c) pool.try_move_from_queue() # Update timing info self.t_last_fuse = time.monotonic() self.reset_timer() # Uncomment the following to: Remove from spawned clients list, so that the fusion can continue independently of waiting server. # self.spawned_clients.difference_update(chosen_clients) # Kick off the fusion. rng.shuffle(chosen_clients) fusion = FusionController(self. network, tier, chosen_clients, self.bindhost, upnp = self.upnp, announcehost = self.announcehost) fusion.start() return len(chosen_clients) def new_client_job(self, client): client_ip = client.connection.socket.getpeername()[0] msg = client.recv('clienthello') if msg.version != Protocol.VERSION: client.error("Mismatched protocol version, please upgrade") if msg.genesis_hash: if msg.genesis_hash != get_current_genesis_hash(): # For now, msg.genesis_hash is optional and we tolerate it # missing. However, if the client declares the genesis_hash, we # do indeed disallow them connecting if they are e.g. on testnet # and we are mainnet, etc. client.error("This server is on a different chain, please switch servers") else: client.print_error("👀 No genesis hash declared by client, we'll let them slide...") if self.stopping: return donation_address = '' if isinstance(self.donation_address, Address): donation_address = self.donation_address.to_full_ui_string() client.send(pb.ServerHello( num_components = Params.num_components, component_feerate = Params.component_feerate, min_excess_fee = Params.min_excess_fee, max_excess_fee = Params.max_excess_fee, tiers = Params.tiers, donation_address = donation_address )) # We allow a long timeout for clients to choose their pool. msg = client.recv('joinpools', timeout=120) if len(msg.tiers) == 0: client.error("No tiers") if len(msg.tags) > 5: client.error("Too many tags") # Event for signalling us that a pool started. start_ev = threading.Event() client.start_ev = start_ev if client_ip.startswith('127.'): # localhost is whitelisted to allow unlimited access client.tags = [] else: # Default tag: this IP cannot be present in too many fuses. client.tags = [ClientTag(client_ip, b'', Params.ip_max_simul_fuse)] for tag in msg.tags: if len(tag.id) > 20: client.error("Tag id too long") if not (0 < tag.limit < 6): client.error("Tag limit out of range") ip = '' if tag.no_ip else client_ip client.tags.append(ClientTag(ip, tag.id, tag.limit)) try: mytierpools = {t: self.waiting_pools[t] for t in msg.tiers} except KeyError: if self.stopping: return client.error(f"Invalid tier selected: {t}") try: mytiers = list(mytierpools) rng.shuffle(mytiers) # shuffle the adding order so that if filling more than one pool, we don't have bias towards any particular tier with self.lock: if self.stopping: return # add this client to waiting pools for pool in mytierpools.values(): res = pool.check_add(client) if res is not None: client.error(res) for t in mytiers: pool = mytierpools[t] pool.add(client) if len(pool.pool) >= Params.max_clients: # pool filled up to the maximum size, so start immediately self.start_fuse(t) return # we have added to pools, which may have changed the favoured tier self.reset_timer() inftime = float('inf') while True: with self.lock: if self.stopping or start_ev.is_set(): return tnow = time.monotonic() # scan through tiers and collect statuses, also check start times. statuses = dict() tfill_thresh = tnow - Params.start_time_max for t, pool in mytierpools.items(): if client not in pool.pool: continue status = pb.TierStatusUpdate.TierStatus(players = len(pool.pool), min_players = Params.min_clients) remtime = inftime if pool.fill_time is not None: # a non-favoured pool will start eventually remtime = pool.fill_time - tfill_thresh if t == self.tier_best: # this is the favoured pool, can start at a special time remtime = min(remtime, self.tier_best_starttime - tnow) if remtime <= 0: self.start_fuse(t) return elif remtime != inftime: status.time_remaining = round(remtime) statuses[t] = status client.send(pb.TierStatusUpdate(statuses = statuses)) start_ev.wait(2) except: # Remove client from waiting pools on failure (on success, we are already removed; on stop we don't care.) with self.lock: for t, pool in mytierpools.items(): if pool.remove(client): pool.try_move_from_queue() if self.tier_best in mytierpools: # we left from best pool, so it might not be best anymore. self.reset_timer() raise class ResultsCollector: # Collect submissions from different sources, with a deadline. def __init__(self, num_results, done_on_fail = True): self.num_results = int(num_results) self.done_on_fail = bool(done_on_fail) self.done_ev = threading.Event() self.lock = threading.Lock() self.results = [] self.fails = [] def __enter__(self, ): return self def __exit__(self, exc_type, exc_value, traceback): if exc_type is not None: self.fails.append(exc_value) if self.done_on_fail: self.done_ev.set() elif len(self.fails) + len(getattr(self, 'results', ())) >= self.num_results: self.done_ev.set() def gather(self, *, deadline): remtime = deadline - time.monotonic() self.done_ev.wait(max(0., remtime)) with self.lock: ret = self.results del self.results return ret def add(self, result): with self.lock: try: self.results.append(result) except AttributeError: return False else: if len(self.fails) + len(self.results) >= self.num_results: self.done_ev.set() return True class FusionController(threading.Thread, PrintError): """ This controls the Fusion rounds running from server side. """ def __init__(self, network, tier, clients, bindhost, upnp = None, announcehost = None): super().__init__(name="FusionController") self.network = network self.tier = tier self.clients = list(clients) self.bindhost = bindhost self.upnp = upnp self.announcehost = announcehost self.daemon = True def sendall(self, msg, timeout = Protocol.STANDARD_TIMEOUT): for client in self.clients: client.addjob(clientjob_send, msg, timeout) def check_client_count(self,): live = [c for c in self.clients if not c.dead] if len(live) < Params.min_safe_clients: for c in live: c.kill("too few remaining live players") raise FusionError("too few remaining live players") def run (self, ): self.print_error(f'Starting fusion with {len(self.clients)} players at tier={self.tier}') covert_server = CovertServer(self.bindhost, upnp = self.upnp) try: annhost = covert_server.host if self.announcehost is None else self.announcehost annhost_b = annhost.encode('ascii') annport = covert_server.port covert_server.noisy = Params.noisy covert_server.start() self.print_error(f'Covert server started @ {covert_server.host}:{covert_server.port} (announcing as: {annhost_b}:{annport})') begin_time = round(time.time()) self.sendall(pb.FusionBegin(tier = self.tier, covert_domain = annhost_b, covert_port = annport, covert_ssl = False, server_time = begin_time)) self.last_hash = calc_initial_hash(self.tier, annhost_b, annport, False, begin_time) time.sleep(Protocol.WARMUP_TIME) # repeatedly run rounds until successful or exception while True: covert_server.reset() # Clean up dead clients self.clients = [c for c in self.clients if not c.dead] self.check_client_count() if self.run_round(covert_server): break self.print_error('Ended successfully!') except FusionError as e: self.print_error(f"Ended with error: {e}") except Exception as e: self.print_error('Failed with exception!') traceback.print_exc(file=sys.stderr) for c in self.clients: c.addjob(clientjob_goodbye, 'internal server error') finally: covert_server.stop() for c in self.clients: c.addjob(clientjob_goodbye, None) self.clients = [] # gc def kick_missing_clients(self, goodclients, reason = None): baddies = set(self.clients).difference(goodclients) for c in baddies: c.kill(reason) def run_round(self, covert_server): covert_priv, covert_Upub, covert_Cpub = gen_keypair() round_pubkey = covert_Cpub # start to accept covert components covert_server.start_components(round_pubkey, Params.component_feerate) # generate blind nonces (slow!) for c in self.clients: c.blinds = [schnorr.BlindSigner() for _co in range(Params.num_components)] lock = threading.Lock() seen_salthashes = set() # Send start message to players; record the time we did this round_time = round(time.time()) collector = ResultsCollector(len(self.clients), done_on_fail = False) def client_start(c, collector): with collector: c.send(pb.StartRound(round_pubkey = round_pubkey, blind_nonce_points = [b.get_R() for b in c.blinds], server_time = round_time )) msg = c.recv('playercommit') commit_messages = check_playercommit(msg, Params.min_excess_fee, Params.max_excess_fee, Params.num_components) newhashes = set(m.salted_component_hash for m in commit_messages) with lock: expected_len = len(seen_salthashes) + len(newhashes) seen_salthashes.update(newhashes) if len(seen_salthashes) != expected_len: c.error('duplicate component commitment') if not collector.add((c, msg.initial_commitments, msg.excess_fee)): c.error("late commitment") # record for later c.blind_sig_requests = msg.blind_sig_requests c.random_number_commitment = msg.random_number_commitment for client in self.clients: client.addjob(client_start, collector) # Record the time that we sent 'startround' message to players; this # will form the basis of our covert timeline. covert_T0 = time.monotonic() self.print_error(f"startround sent at {time.time()}; accepting covert components") # Await commitment messages then process results results = collector.gather(deadline = covert_T0 + Protocol.TS_EXPECTING_COMMITMENTS) # Filter clients who didn't manage to give a good commitment. prev_client_count = len(self.clients) self.clients = [c for c, _, _ in results] self.check_client_count() self.print_error(f"got commitments from {len(self.clients)} clients (dropped {prev_client_count - len(self.clients)})") total_excess_fees = sum(f for _,_,f in results) # Generate scrambled commitment list, but remember exactly where each commitment originated. commitment_master_list = [(commit, ci, cj) for ci, (_, commitments, _) in enumerate(results) for cj,commit in enumerate(commitments)] rng.shuffle(commitment_master_list) all_commitments = tuple(commit for commit,ci,cj in commitment_master_list) # Send blind signatures for c in self.clients: scalars = [b.sign(covert_priv, e) for b,e in zip(c.blinds, c.blind_sig_requests)] c.addjob(clientjob_send, pb.BlindSigResponses(scalars = scalars)) del c.blinds, c.blind_sig_requests del results, collector # Sleep a bit before uploading commitments, as clients are doing this. remtime = covert_T0 + Protocol.T_START_COMPS - time.monotonic() if remtime > 0: time.sleep(remtime) # Upload the full commitment list; we're a bit generous with the timeout but that's OK. self.sendall(pb.AllCommitments(initial_commitments = all_commitments), timeout=Protocol.TS_EXPECTING_COVERT_SIGNATURES) # Sleep until end of covert components phase remtime = covert_T0 + Protocol.TS_EXPECTING_COVERT_COMPONENTS - time.monotonic() assert remtime > 0, "timings set up incorrectly" time.sleep(remtime) component_master_list = list(covert_server.end_components().items()) self.print_error(f"ending covert component acceptance. {len(component_master_list)} received.") # Sort the components & contribs list, then separate it out. component_master_list.sort(key=lambda x:x[1][0]) all_components = [comp for comp, (sort_key, contrib) in component_master_list] component_contribs = [contrib for comp, (sort_key, contrib) in component_master_list] del component_master_list # Do some preliminary checks to see whether we should just skip the # signing phase and go directly to blame, or maybe even restart / end # without sharing components. skip_signatures = False if len(all_components) != len(self.clients)*Params.num_components: skip_signatures = True self.print_error("problem detected: too few components submitted") if total_excess_fees != sum(component_contribs): skip_signatures = True self.print_error("problem detected: excess fee mismatch") self.last_hash = session_hash = calc_round_hash(self.last_hash, round_pubkey, round_time, all_commitments, all_components) #TODO : Check the inputs and outputs to see if we even have reasonable # privacy with what we have. bad_components = set() ### if skip_signatures: self.print_error("skipping covert signature acceptance") self.sendall(pb.ShareCovertComponents(components = all_components, skip_signatures = True)) else: self.print_error("starting covert signature acceptance") tx, input_indices = tx_from_components(all_components, session_hash) sighashes = [sha256(sha256(bytes.fromhex(tx.serialize_preimage(i, 0x41, use_cache = True)))) for i in range(len(tx.inputs()))] pubkeys = [bytes.fromhex(inp['pubkeys'][0]) for inp in tx.inputs()] covert_server.start_signatures(sighashes,pubkeys) self.sendall(pb.ShareCovertComponents(components = all_components, session_hash = session_hash)) # Sleep until end of covert signatures phase remtime = covert_T0 + Protocol.TS_EXPECTING_COVERT_SIGNATURES - time.monotonic() if remtime < 0: # really shouldn't happen, we had plenty of time raise FusionError("way too slow") time.sleep(remtime) signatures = list(covert_server.end_signatures()) missing_sigs = len([s for s in signatures if s is None]) ### self.print_error(f"ending covert signature acceptance. {missing_sigs} missing :{'(' if missing_sigs else ')'}") # mark all missing-signature components as bad. bad_inputs = set(i for i,sig in enumerate(signatures) if sig is None) # further, search for duplicated inputs (through matching the prevout and claimed pubkey). prevout_spenders = defaultdict(list) for i, inp in enumerate(tx.inputs()): prevout_spenders[f"{inp['prevout_hash']}:{inp['prevout_n']} {inp['pubkeys'][0]}"].append(i) for prevout, spenders in prevout_spenders.items(): if len(spenders) == 1: continue self.print_error(f"multi-spend of f{prevout} detected") # If exactly one of the inputs is signed, we don't punish him # because he's the honest guy and all the other components were # just imposters who didn't have private key. If more than one # signed, then it's malicious behaviour! if sum((signatures[i] is not None) for i in spenders) != 1: bad_inputs.update(spenders) if bad_inputs: bad_components.update(input_indices[i] for i in bad_inputs) else: for i, (inp, sig) in enumerate(zip(tx.inputs(), signatures)): inp['signatures'][0] = sig.hex() + '41' assert tx.is_complete() txid = tx.txid() self.print_error("completed the transaction! " + txid) try: self.network.broadcast_transaction2(tx, timeout=3) except ServerError as e: nice_msg, = e.args server_msg = e.server_msg self.print_error(f"could not broadcast the transaction! {nice_msg}") except TimeoutException: self.print_error("timed out while trying to broadcast transaction! misconfigured?") # This probably indicates misconfiguration since fusion server ought # to have a good connection to the EC server. Report this back to clients # as an 'internal server error'. raise else: self.print_error("broadcast was successful!") # Give our transaction a small head start in relaying, before sharing the # signatures. This makes it slightly harder for one of the players to # broadcast a malleated version by re-signing one of their inputs. time.sleep(2) self.sendall(pb.FusionResult(ok = True, txsignatures = signatures)) return True self.sendall(pb.FusionResult(ok = False, bad_components = sorted(bad_components))) ### self.print_error(f"entering blame phase. bad components: {bad_components}") if len(self.clients) < 2: # Sanity check for testing -- the proof sharing thing doesn't even make sense with one player. for c in self.clients: c.kill('blame yourself!') return # scan the commitment list and note where each client's commitments ended up client_commit_indexes = [[None]*Params.num_components for _ in self.clients] for i, (commit, ci, cj) in enumerate(commitment_master_list): client_commit_indexes[ci][cj] = i collector = ResultsCollector(len(self.clients), done_on_fail = False) def client_get_proofs(client, collector): with collector: msg = client.recv('myproofslist') seed = msg.random_number if sha256(seed) != client.random_number_commitment: client.error("seed did not match commitment") proofs = msg.encrypted_proofs if len(proofs) != Params.num_components: client.error("wrong number of proofs") if any(len(p) > 200 for p in proofs): client.error("too-long proof") # they should only be 129 bytes long. # generate the possible destinations list (all commitments, but leaving out the originating client's commitments). myindex = self.clients.index(client) possible_commitment_destinations = [(ci,cj) for commit, ci, cj in commitment_master_list if ci != myindex] N = len(possible_commitment_destinations) assert N == len(all_commitments) - Params.num_components # calculate the randomly chosen destinations, same way as client did. relays = [] for i, proof in enumerate(proofs): dest_client_idx, dest_key_idx = possible_commitment_destinations[rand_position(seed, N, i)] src_commitment_idx = client_commit_indexes[myindex][i] relays.append((proof, src_commitment_idx, dest_client_idx, dest_key_idx)) if not collector.add((client, relays)): client.error("late proofs") for client in self.clients: client.addjob(client_get_proofs, collector) results = collector.gather(deadline = time.monotonic() + Protocol.STANDARD_TIMEOUT) # Now, repackage the proofs according to destination. proofs_to_relay = [list() for _ in self.clients] for src_client, relays in results: for proof, src_commitment_idx, dest_client_idx, dest_key_idx in relays: proofs_to_relay[dest_client_idx].append((proof, src_commitment_idx, dest_key_idx, src_client)) live_clients = len(results) collector = ResultsCollector(live_clients, done_on_fail = False) def client_get_blames(client, myindex, proofs, collector): with collector: # an in-place sort by source commitment idx removes ordering correlations about which client sent which proof proofs.sort(key = lambda x:x[1]) client.send(pb.TheirProofsList(proofs = [ dict(encrypted_proof=x, src_commitment_idx=y, dst_key_idx=z) for x,y,z, _ in proofs])) msg = client.recv('blames', timeout = Protocol.STANDARD_TIMEOUT + Protocol.BLAME_VERIFY_TIME) # More than one blame per proof is malicious. Boot client # immediately since client may be trying to DoS us by # making us check many inputs against blockchain. if len(msg.blames) > len(proofs): client.error('too many blames') if len(set(blame.which_proof for blame in msg.blames)) != len(msg.blames): client.error('multiple blames point to same proof') # Note, the rest of this function might run for a while if many # checks against blockchain need to be done, perhaps even still # running after run_round has exited. For this reason we try to # not reference self.<variables> that may change. for blame in msg.blames: try: encproof, src_commitment_idx, dest_key_idx, src_client = proofs[blame.which_proof] except IndexError: client.kill(f'bad proof index {blame.which_proof} / {len(proofs)}') continue src_commit_blob, src_commit_client_idx, _ = commitment_master_list[src_commitment_idx] dest_commit_blob = all_commitments[client_commit_indexes[myindex][dest_key_idx]] try: ret = validate_blame(blame, encproof, src_commit_blob, dest_commit_blob, all_components, bad_components, Params.component_feerate) except ValidationError as e: self.print_error("got bad blame; clamed reason was: "+repr(blame.blame_reason)) client.kill(f'bad blame message: {e} (you claimed: {blame.blame_reason!r})') continue if isinstance(ret, str): self.print_error(f"verified a bad proof (for {src_commitment_idx}): {ret}") src_client.kill(f'bad proof (for {src_commitment_idx}): {ret}') continue if src_client.dead: # If the blamed client is already dead, don't waste more time. # Since nothing after this point can report back to the # verifier, there is no privacy leak by the ommission. continue assert ret, 'expecting input component' outpoint = ret.prev_txid[::-1].hex() + ':' + str(ret.prev_index) try: check_input_electrumx(self.network, ret) except ValidationError as e: reason = f'{e.args[0]} ({outpoint})' self.print_error(f"blaming[{src_commitment_idx}] for bad input: {reason}") src_client.kill('you provided a bad input: ' + reason) continue except Exception as e: self.print_error(f"player indicated bad input but checking failed with exception {repr(e)} ({outpoint})") else: self.print_error(f"player indicated bad input but it was fine ({outpoint})") # At this point we could blame the originator, however # blockchain checks are somewhat subjective. It would be # appropriate to add some 'ban score' to the player. # we aren't collecting any results, rather just marking that # 'checking finished' so that if all blames are checked, we # can start next round right away. collector.add(None) for idx, (client, proofs) in enumerate(zip(self.clients, proofs_to_relay)): client.addjob(client_get_blames, idx, proofs, collector) _ = collector.gather(deadline = time.monotonic() + Protocol.STANDARD_TIMEOUT + Protocol.BLAME_VERIFY_TIME * 2) self.sendall(pb.RestartRound()) class CovertClientThread(ClientHandlerThread): def recv(self, *expected_msg_names, timeout=None): submsg, mtype = recv_pb(self.connection, pb.CovertMessage, *expected_msg_names, timeout=timeout) return submsg, mtype def send(self, submsg, timeout=None): send_pb(self.connection, pb.CovertResponse, submsg, timeout=timeout) def send_ok(self,): self.send(pb.OK(), timeout=5) def send_error(self, msg): self.send(pb.Error(message = msg), timeout=5) def error(self, msg): self.send_error(msg) raise FusionError(f'Rejected client: {msg}') class CovertServer(GenericServer): """ Server for covert submissions. How it works: - Launch the server at any time. By default, will bind to an ephemeral port. - Before start of covert components phase, call start_components. - To signal the end of covert components phase, owner calls end_components, which returns a dict of {component: contrib}, where contrib is (+- amount - fee). - Before start of covert signatures phase, owner calls start_signatures. - To signal the end of covert signatures phase, owner calls end_signatures, which returns a list of signatures (which will have None at positions of missing signatures). - To reset the server for a new round, call .reset(); to kill all connections, call .stop(). """ def __init__(self, bindhost, port=0, upnp = None): super().__init__(bindhost, port, CovertClientThread, upnp = upnp) self.round_pubkey = None def start_components(self, round_pubkey, feerate): self.components = dict() self.feerate = feerate self.round_pubkey = round_pubkey for c in self.spawned_clients: c.got_submit = False def end_components(self): with self.lock: ret = self.components del self.components return ret def start_signatures(self, sighashes, pubkeys): num_inputs = len(sighashes) assert num_inputs == len(pubkeys) self.signatures = [None]*num_inputs self.sighashes = sighashes self.pubkeys = pubkeys for c in self.spawned_clients: c.got_submit = False def end_signatures(self): with self.lock: ret = self.signatures del self.signatures return ret def reset(self): try: del self.round_pubkey del self.components del self.feerate except AttributeError: pass try: del self.sighashes del self.pubkeys except AttributeError: pass def new_client_job(self, client): client.got_submit = False while True: msg, mtype = client.recv('component', 'signature', 'ping', timeout = COVERT_CLIENT_TIMEOUT) if mtype == 'ping': continue if client.got_submit: # We got a second submission before a new phase started. As # an anti-spam measure we only allow one submission per connection # per phase. client.error('multiple submission in same phase') if mtype == 'component': try: round_pubkey = self.round_pubkey feerate = self.feerate _ = self.components except AttributeError: client.error('component submitted at wrong time') sort_key, contrib = check_covert_component(msg, round_pubkey, feerate) with self.lock: try: self.components[msg.component] = (sort_key, contrib) except AttributeError: client.error('component submitted at wrong time') else: assert mtype == 'signature' try: sighash = self.sighashes[msg.which_input] pubkey = self.pubkeys[msg.which_input] existing_sig = self.signatures[msg.which_input] except AttributeError: client.error('signature submitted at wrong time') except IndexError: raise ValidationError('which_input too high') sig = msg.txsignature if len(sig) != 64: raise ValidationError('signature length is wrong') # It might be we already have this signature. This is fine # since it might be a resubmission after ack failed delivery, # but we don't allow it to consume our CPU power. if sig != existing_sig: if not schnorr.verify(pubkey, sig, sighash): raise ValidationError('bad transaction signature') if existing_sig: # We received a distinct valid signature. This is not # allowed and we break the connection as a result. # Note that we could have aborted earlier but this # way third parties can't abuse us to find out the # timing of a given input's signature submission. raise ValidationError('conflicting valid signature') with self.lock: try: self.signatures[msg.which_input] = sig except AttributeError: client.error('signature submitted at wrong time') client.send_ok() client.got_submit = True
45.310448
174
0.599798
42,368
0.930347
0
0
56
0.00123
0
0
13,317
0.292424
e014451ff2d26b3e408bb00a4f1a954adc75daa5
2,229
py
Python
Excercici4Package/ex4.py
jtorrenth/CienciaDades
81f005ed1ddcc218dcde8c5e2f1a297444389a82
[ "MIT" ]
null
null
null
Excercici4Package/ex4.py
jtorrenth/CienciaDades
81f005ed1ddcc218dcde8c5e2f1a297444389a82
[ "MIT" ]
null
null
null
Excercici4Package/ex4.py
jtorrenth/CienciaDades
81f005ed1ddcc218dcde8c5e2f1a297444389a82
[ "MIT" ]
null
null
null
import matplotlib.pyplot as plt def countvalues(dataframe, subject): # Filtrem i tractem el dataset economydf = filtrar(dataframe, "economy") # el printem printar(economydf, subject) # Filtrem ara per subject infected i ho desem en un altre df infectedf = filtrar(dataframe, "infected") # Calculem els percentatjes percentvery = (infectedf['ppl_very'].sum()/infectedf['sample_size'].sum())*100 percentnotatall = (infectedf['ppl_not_at_all'].sum() / infectedf['sample_size'].sum()) * 100 # Els printem print("percentatge very: {}%".format(percentvery)) print("percentatge not_at_all: {}%".format(percentnotatall)) grafic4('People_Very', 'People_Not_At_All', percentvery, percentnotatall, " % Persones", "Satisfacció", "% de persones preocupades o no per infected") def printar(df, subject): # Printem a la consola els valors print("Valors per subject {}".format(subject)) pplvery = df['ppl_very'].sum() pplnot = df['ppl_not_at_all'].sum() print("Very: {}".format(pplvery)) print("Not at All: {}".format(pplnot)) # Finalment, grafiquem # Cal tancar el grafic per a seguir amb l'execució grafic4('People_Very', 'People_Not_At_All', pplvery, pplnot, "Persones", "Satisfacció", "Nombre de persones preocupades o no per l'economia") def filtrar(dataframe, subject1): df = dataframe[dataframe['subject'].str.contains(subject1, case=False)].copy() # Afegim els valors en funció del samplesize a dues noves columnes df['ppl_very'] = df['very'] / 100 * df['sample_size'] df['ppl_not_at_all'] = df['not_at_all'] / 100 * df['sample_size'] return df def grafic4(label1, label2, valor1, valor2, leyenday, leyendax, titulo): # Declaramos valors per l'eix x eje_x = [label1, label2] # Declaramos valors per l'eix y eje_y = [valor1, valor2] # Fem la grafica plt.bar(eje_x, eje_y) # Llegenda de l'eix x plt.ylabel(leyenday) # Legenda en el eje x plt.xlabel(leyendax) # Títol de Grafica plt.title(titulo) # Mostrem Grafica plt.show() #Funcio per a l'excercici 4.4 def grades(df): df['538 Grade']=df['538 Grade'].str[0] print(df.groupby('538 Grade').size())
31.842857
154
0.674742
0
0
0
0
0
0
0
0
1,022
0.457475
e0161b99cffb06588c8cd2a39e9f07abf59540ea
18,987
bzl
Python
build/rules.bzl
filmil/bazel-ebook
433f1e157c6c1b7867abf72bc0e882c07477d60d
[ "Apache-2.0" ]
9
2020-05-31T10:24:57.000Z
2021-12-21T10:07:51.000Z
build/rules.bzl
filmil/bazel-ebook
433f1e157c6c1b7867abf72bc0e882c07477d60d
[ "Apache-2.0" ]
2
2021-11-09T23:25:01.000Z
2021-11-10T08:42:22.000Z
build/rules.bzl
filmil/bazel-ebook
433f1e157c6c1b7867abf72bc0e882c07477d60d
[ "Apache-2.0" ]
2
2020-06-03T13:21:33.000Z
2021-12-01T20:17:46.000Z
# Copyright (C) 2020 Google Inc. # # This file has been licensed under Apache 2.0 license. Please see the LICENSE # file at the root of the repository. # Build rules for building ebooks. # This is the container CONTAINER = "filipfilmar/ebook-buildenv:1.1" # Use this for quick local runs. #CONTAINER = "ebook-buildenv:local" EbookInfo = provider(fields=["figures", "markdowns"]) # Returns the docker_run script invocation command based on the # script path and its reference directory. # # Params: # script_path: (string) The full path to the script to invoke # dir_reference: (string) The path to a file used for figuring out # the reference directories (build root and repo root). def _script_cmd(script_path, dir_reference): return """\ {script} \ --container={container} \ --dir-reference={dir_reference}""".format( script=script_path, container=CONTAINER, dir_reference=dir_reference, ) def _drawtiming_png_impl(ctx): cmd = "drawtiming" docker_run = ctx.executable._script figures = [] for target in ctx.attr.srcs: for src in target.files.to_list(): in_file = src out_file = ctx.actions.declare_file(in_file.basename + ".png") figures += [out_file] script_cmd = _script_cmd(docker_run.path, in_file.path) ctx.actions.run_shell( progress_message = "timing diagram to PNG with {1}: {0}".format(in_file.short_path, cmd), inputs = [in_file], outputs = [out_file], tools = [docker_run], command = """\ {script} \ {cmd} --output "{out_file}" "{in_file}" """.format( cmd=cmd, out_file=out_file.path, in_file=in_file.path, script=script_cmd), ) deps = [] for target in ctx.attr.deps: ebook_provider = target[EbookInfo] if not ebook_provider: continue deps += ebook_provider.figures runfiles = ctx.runfiles(files = figures) return [ EbookInfo(figures=figures+deps, markdowns=[]), DefaultInfo(files=depset(figures+deps), runfiles=runfiles), ] drawtiming_png = rule(implementation = _drawtiming_png_impl, attrs = { "srcs": attr.label_list( allow_files = [".t"], doc = "The file to compile", ), "deps": attr.label_list( doc = "The dependencies, any targets should be allowed", ), "output": attr.output(doc="The generated file"), "_script": attr.label( default="//build:docker_run", executable=True, cfg="host"), }, doc = "Transform a timing diagram file into png using drawtiming", ) def _generalized_graphviz_rule_impl(ctx, cmd): docker_run = ctx.executable._script figures = [] for target in ctx.attr.srcs: for src in target.files.to_list(): in_file = src out_file = ctx.actions.declare_file(in_file.basename + ".png") figures += [out_file] script_cmd = _script_cmd(docker_run.path, in_file.path) ctx.actions.run_shell( progress_message = "graphviz to PNG with {1}: {0}".format(in_file.short_path, cmd), inputs = [in_file], outputs = [out_file], tools = [docker_run], command = """\ {script} \ {cmd} -Tpng -o "{out_file}" "{in_file}" """.format( cmd=cmd, out_file=out_file.path, in_file=in_file.path, script=script_cmd), ) deps = [] for target in ctx.attr.deps: ebook_provider = target[EbookInfo] if not ebook_provider: continue deps += ebook_provider.figures runfiles = ctx.runfiles(files = figures) return [ EbookInfo(figures=figures+deps, markdowns=[]), DefaultInfo(files=depset(figures+deps), runfiles=runfiles), ] def _neato_png_impl(ctx): return _generalized_graphviz_rule_impl(ctx, "neato") neato_png = rule(implementation = _neato_png_impl, attrs = { "srcs": attr.label_list( allow_files = [".dot"], doc = "The file to compile", ), "deps": attr.label_list( doc = "The dependencies, any targets should be allowed", ), "output": attr.output(doc="The generated file"), "_script": attr.label( default="//build:docker_run", executable=True, cfg="host"), }, doc = "Transform a graphviz dot file into png using neato", ) def _dot_png_impl(ctx): return _generalized_graphviz_rule_impl(ctx, "dot") dot_png = rule(implementation = _dot_png_impl, attrs = { "srcs": attr.label_list( allow_files = [".dot"], doc = "The file to compile", ), "deps": attr.label_list( doc = "The dependencies, any targets should be allowed", ), "output": attr.output(doc="The generated file"), "_script": attr.label( default="//build:docker_run", executable=True, cfg="host"), }, doc = "Transform a graphviz dot file into png using dot", ) def _asymptote_impl(ctx): asycc = ctx.executable._script figures = [] for target in ctx.attr.srcs: for src in target.files.to_list(): in_file = src out_file = ctx.actions.declare_file(in_file.basename + ".png") figures += [out_file] script_cmd = _script_cmd(asycc.path, in_file.path) ctx.actions.run_shell( progress_message = "ASY to PNG: {0}".format(in_file.short_path), inputs = [in_file], outputs = [out_file], tools = [asycc], command = """\ {script} \ asy -render 5 -f png -o "{out_file}" "{in_file}" """.format( out_file=out_file.path, in_file=in_file.path, script=script_cmd), ) deps = [] for target in ctx.attr.deps: ebook_provider = target[EbookInfo] if not ebook_provider: continue deps += ebook_provider.figures runfiles = ctx.runfiles(files=figures+deps) for dep in ctx.attr.deps: runfiles = runfiles.merge(dep[DefaultInfo].data_runfiles) return [ EbookInfo(figures=figures+deps, markdowns=[]), DefaultInfo(files=depset(figures+deps), runfiles=runfiles), ] asymptote = rule(implementation = _asymptote_impl, attrs = { "srcs": attr.label_list( allow_files = [".asy"], doc = "The file to compile", ), "deps": attr.label_list( doc = "The dependencies, any targets should be allowed", ), "output": attr.output(doc="The generated file"), "_script": attr.label( default="//build:docker_run", executable=True, cfg="host"), }, doc = "Transform an asymptote file into png", ) def _copy_file_to_workdir_renamed(ctx, src): src_copy = ctx.actions.declare_file("{}_{}".format(ctx.label.name, src.short_path)) ctx.actions.run_shell( progress_message = "Copying {} to {}".format(src.short_path, src_copy.short_path), outputs = [src_copy], inputs = [src], command="cp {} {}".format(src.path, src_copy.path), ) return src_copy def _copy_file_to_workdir(ctx, src): src_copy = ctx.actions.declare_file(src.basename) ctx.actions.run_shell( progress_message = "Copying {}".format(src.short_path), outputs = [src_copy], inputs = [src], command="cp {} {}".format(src.path, src_copy.path), ) return src_copy def _markdown_lib_impl(ctx): markdowns = [] for target in ctx.attr.srcs: for src in target.files.to_list(): markdowns += [_copy_file_to_workdir(ctx, src)] figures = [] for target in ctx.attr.deps: provider = target[EbookInfo] figures += (provider.figures or []) markdowns += (provider.markdowns or []) runfiles = ctx.runfiles(files=figures+markdowns) for dep in ctx.attr.deps: runfiles = runfiles.merge(dep[DefaultInfo].data_runfiles) return [ EbookInfo(figures=figures, markdowns=markdowns), DefaultInfo( files=depset(figures+markdowns), runfiles=runfiles, ), ] markdown_lib = rule( implementation = _markdown_lib_impl, doc = "Declares a set of markdown files", attrs = { "srcs": attr.label_list( allow_files = [".md"], doc = "The markdown source files", ), "deps": attr.label_list( doc = "The file to compile", providers = [EbookInfo], ), }, ) def _ebook_epub_impl(ctx): name = ctx.label.name # This is duplicated in _ebook_pdf_impl. # steps # run htex on all *md, gives book.htex markdowns = [] figures = [] for dep in ctx.attr.deps: provider = dep[EbookInfo] markdowns += provider.markdowns figures += provider.figures dir_reference = markdowns[0] htex_file = ctx.actions.declare_file("{}.htex".format(name)) markdowns_paths = [file.path for file in markdowns] markdowns_paths_stripped = _strip_reference_dir_from_files(dir_reference, markdowns) script = ctx.executable._script script_cmd = _script_cmd(script.path, markdowns_paths[0]) ctx.actions.run_shell( progress_message = "Building equation environments for: {}".format(name), inputs = markdowns, outputs = [htex_file], tools = [script], command = """\ {script} \ pandoc -s --gladtex -o {target} {sources} \ """.format( script=script_cmd, target=htex_file.path, sources=" ".join(markdowns_paths)) ) # run gladtex on the resulting htex to obtain html and output directory with figures. outdir = ctx.actions.declare_directory("{}.eqn".format(name)) html_file = ctx.actions.declare_file("{}.html".format(name)) ctx.actions.run_shell( progress_message = "Extracting equations for: {}".format(name), inputs = [htex_file], outputs = [outdir, html_file], tools = [script], command = """\ {script} --cd-to-dir-reference \ gladtex -r 200 -d {outdir} {htex_file} \ """.format( script=script_cmd, outdir=_strip_reference_dir(dir_reference, outdir.path), htex_file=_strip_reference_dir(dir_reference, htex_file.path), ) ) outdir_tar = ctx.actions.declare_file("{}.tar".format(outdir.basename)) tar_command = "(cd {base} ; tar cf {archive} {dir})".format( base=outdir_tar.dirname, archive=outdir_tar.basename, dir=outdir.basename) ctx.actions.run_shell( progress_message = "Archiving equations: {}".format(outdir_tar.short_path), inputs = [outdir], outputs = [outdir_tar], command = tar_command, ) # run htexepub to obtain book.epub. # This is gonna be fun! epub_metadata = ctx.attr.metadata_xml.files.to_list()[0] epub_metadata = _copy_file_to_workdir_renamed(ctx, epub_metadata) title_yaml = ctx.attr.title_yaml.files.to_list()[0] title_yaml = _copy_file_to_workdir_renamed(ctx, epub_metadata) ebook_epub = ctx.actions.declare_file("{}.epub".format(name)) inputs = [epub_metadata, title_yaml, html_file, outdir, outdir_tar] + markdowns + figures ctx.actions.run_shell( progress_message = "Building EPUB for: {}".format(name), inputs = inputs, tools = [script], outputs = [ebook_epub], command = """\ {script} --cd-to-dir-reference \ pandoc --epub-metadata={epub_metadata} \ -f html -t epub3 -o {ebook_epub} {html_file} \ """.format( script=script_cmd, epub_metadata=_strip_reference_dir(dir_reference, epub_metadata.path), ebook_epub=_strip_reference_dir(dir_reference, ebook_epub.path), html_file=_strip_reference_dir(dir_reference, html_file.path), )) runfiles = ctx.runfiles(files=[ebook_epub]) for dep in ctx.attr.deps: runfiles = runfiles.merge(dep[DefaultInfo].data_runfiles) return [ dep[EbookInfo], DefaultInfo( files=depset([ebook_epub, outdir, outdir_tar]), runfiles=runfiles, ) ] ebook_epub = rule( implementation = _ebook_epub_impl, attrs = { "deps": attr.label_list( doc = "All the targets you need to make this book work.", providers = [EbookInfo], ), "title_yaml": attr.label( allow_files = True, doc = "The title.yaml file to use for this book", ), "metadata_xml": attr.label( allow_files = True, doc = "The epub-metadata.xml file to use for this book", ), "_script": attr.label( default="//build:docker_run", executable=True, cfg="host"), }, doc = "Generate an ebook in EPUB format" ) def _strip_reference_dir(reference_dir, path): return path.replace(reference_dir.dirname+"/", "") def _strip_reference_dir_from_files(reference_dir, files): return [ _strip_reference_dir(reference_dir, file.path) for file in files] def _ebook_pdf_impl(ctx): name = ctx.label.name # steps # run htex on all *md, gives book.htex markdowns = [] figures = [] for dep in ctx.attr.deps: provider = dep[EbookInfo] markdowns += provider.markdowns figures += provider.figures dir_reference = markdowns[0] # Fixed up paths -- relative to the directory dir_reference, not the # directory where the build happens! This is needed because we can not control # figure inclusion. markdowns_paths = _strip_reference_dir_from_files(dir_reference, markdowns) script = ctx.executable._script script_cmd = _script_cmd(script.path, dir_reference.path) # run htexepub to obtain book.epub. # This is gonna be fun! epub_metadata = ctx.attr.metadata_xml.files.to_list()[0] epub_metadata = _copy_file_to_workdir(ctx, epub_metadata) title_yaml = ctx.attr.title_yaml.files.to_list()[0] title_yaml = _copy_file_to_workdir(ctx, title_yaml) ebook_pdf = ctx.actions.declare_file("{}.pdf".format(name)) inputs = [epub_metadata, title_yaml] + markdowns + figures ctx.actions.run_shell( progress_message = "Building PDF for: {}".format(name), inputs = inputs, tools = [script], outputs = [ebook_pdf], command = """\ {script} --cd-to-dir-reference \ pandoc --epub-metadata={epub_metadata} \ --mathml -o {ebook_pdf} {markdowns} \ """.format( script=script_cmd, epub_metadata=_strip_reference_dir(dir_reference, epub_metadata.path), ebook_pdf=_strip_reference_dir(dir_reference, ebook_pdf.path), markdowns=" ".join(markdowns_paths), )) runfiles = ctx.runfiles(files=[ebook_pdf]) for dep in ctx.attr.deps: runfiles = runfiles.merge(dep[DefaultInfo].data_runfiles) return [ DefaultInfo( files=depset([ebook_pdf]), runfiles=runfiles, ) ] ebook_pdf = rule( implementation = _ebook_pdf_impl, attrs = { "deps": attr.label_list( doc = "All the targets you need to make this book work.", providers = [EbookInfo], ), "title_yaml": attr.label( allow_files = True, doc = "The title.yaml file to use for this book", ), "metadata_xml": attr.label( allow_files = True, doc = "The epub-metadata.xml file to use for this book", ), "_script": attr.label( default="//build:docker_run", executable=True, cfg="host"), }, doc = "Generate an ebook in PDF format" ) def _ebook_kindle_impl(ctx): mobi_file = ctx.actions.declare_file("{}.mobi".format(ctx.label.name)) # First provider is EbookInfo, second is DefaultInfo. (ebook_info, default_info) = _ebook_epub_impl(ctx) # There can be only one such file outputs = default_info.files.to_list() epub_file = outputs[0] equation_outdir = outputs[1] equation_outdir_tar = outputs[2] captured_output = ctx.actions.declare_file( "{}.untar-out".format(ctx.label.name)) # untar the equation dir # Maybe this is not needed. tar_command = "(cd {base} ; tar xvf {archive}) > {output}".format( base=equation_outdir_tar.dirname, archive=equation_outdir_tar.basename, output=captured_output.path) ctx.actions.run_shell( progress_message = "Unarchiving equations: {}".format(equation_outdir_tar.short_path), inputs = [equation_outdir_tar], outputs = [captured_output], command = tar_command, ) dir_reference = epub_file script = ctx.executable._script name = ctx.label.name script_cmd = _script_cmd(script.path, epub_file.path) ctx.actions.run_shell( progress_message = "Building MOBI for: {}".format(name), inputs = [epub_file, equation_outdir], tools = [script], outputs = [mobi_file], command = """\ {script} --cd-to-dir-reference \ ebook-convert {epub_file} {mobi_file} \ """.format( script=script_cmd, epub_file=_strip_reference_dir(dir_reference, epub_file.path), mobi_file=_strip_reference_dir(dir_reference, mobi_file.path), )) runfiles = ctx.runfiles(files=[mobi_file]) for dep in ctx.attr.deps: runfiles = runfiles.merge(dep[DefaultInfo].data_runfiles) return [ DefaultInfo( files=depset([mobi_file, captured_output]), runfiles=runfiles, ) ] ebook_kindle = rule( implementation = _ebook_kindle_impl, attrs = { "deps": attr.label_list( doc = "All the targets you need to make this book work.", providers = [EbookInfo], ), "title_yaml": attr.label( allow_files = True, doc = "The title.yaml file to use for this book", ), "metadata_xml": attr.label( allow_files = True, doc = "The epub-metadata.xml file to use for this book", ), "_script": attr.label( default="//build:docker_run", executable=True, cfg="host"), }, doc = "Generate an ebook in the Kindle's MOBI format" )
32.126904
103
0.599357
0
0
0
0
0
0
0
0
4,564
0.240375
e0164a1f4fee849a8bca46fb970244ecbfd603fe
715
py
Python
1094 EXPERIENCIAS.py
castrolimoeiro/Uri-exercise
7a9227c55a79f14fe8bde4aa0ebb4c268bbda4bb
[ "MIT" ]
null
null
null
1094 EXPERIENCIAS.py
castrolimoeiro/Uri-exercise
7a9227c55a79f14fe8bde4aa0ebb4c268bbda4bb
[ "MIT" ]
null
null
null
1094 EXPERIENCIAS.py
castrolimoeiro/Uri-exercise
7a9227c55a79f14fe8bde4aa0ebb4c268bbda4bb
[ "MIT" ]
null
null
null
n = int(input()) coelho = rato = sapo = contador = 0 for i in range(0, n): q, t = input().split(' ') t = t.upper() q = int(q) if 1 <= q <= 15: contador += q if t == 'C': coelho += q elif t == 'R': rato += q elif t == 'S': sapo += q porccoelho = (coelho * 100) / contador porcrato = (rato * 100) / contador porcsapo = (sapo * 100) / contador print(f'Total: {contador} cobaias') print(f'Total de coelhos: {coelho}') print(f'Total de ratos: {rato}') print(f'Total de sapos: {sapo}') print(f'Percentual de coelhos: {porccoelho:.2f} %') print(f'Percentual de ratos: {porcrato:.2f} %') print(f'Percentual de sapos: {porcsapo:.2f} %')
25.535714
51
0.544056
0
0
0
0
0
0
0
0
243
0.33986
e016b94fa3454d62f7b448ca14631899dd78dc4c
299
py
Python
gravur/common/amountinput.py
F483/gravur
575c268d9ac28aa0ba00f1e5109bd74c3b7b69a5
[ "MIT" ]
3
2015-07-20T17:56:21.000Z
2017-10-22T05:52:13.000Z
gravur/common/amountinput.py
F483/gravur
575c268d9ac28aa0ba00f1e5109bd74c3b7b69a5
[ "MIT" ]
null
null
null
gravur/common/amountinput.py
F483/gravur
575c268d9ac28aa0ba00f1e5109bd74c3b7b69a5
[ "MIT" ]
null
null
null
# coding: utf-8 # Copyright (c) 2015 Fabian Barkhau <[email protected]> # License: MIT (see LICENSE file) from kivy.uix.boxlayout import BoxLayout from gravur.common.labelbox import LabelBox # NOQA from gravur.utils import load_widget @load_widget class AmountInput(BoxLayout): pass
21.357143
62
0.772575
38
0.12709
0
0
51
0.170569
0
0
116
0.38796
e018a8edf8d16988caad3f9660a381b73b1f97c4
17,156
py
Python
tibanna/top.py
4dn-dcic/tibanna
bb84597c425a481a230be30cb0ed9b99c774e53d
[ "MIT" ]
62
2017-02-16T02:16:22.000Z
2022-02-07T08:26:12.000Z
tibanna/top.py
4dn-dcic/tibanna
bb84597c425a481a230be30cb0ed9b99c774e53d
[ "MIT" ]
77
2017-10-26T20:17:35.000Z
2022-03-25T22:56:32.000Z
tibanna/top.py
4dn-dcic/tibanna
bb84597c425a481a230be30cb0ed9b99c774e53d
[ "MIT" ]
19
2017-01-27T16:37:37.000Z
2021-12-12T13:52:01.000Z
import datetime class Top(object): """class TopSeries stores the information of a series of top commands :: echo -n 'Timestamp: '; date +%F-%H:%M:%S top -b -n1 [-i] [-c] over short intervals to monitor the same set of processes over time. An example input content looks like below, or a series of these. The initialization works at any time interval and can be used as a generic class, but the class is designed for the output of a regular top commands above run at about 1-minute intervals, which is performed by awsf3 on an AWSEM instance through cron jobs. (some can be skipped but there should be no more than 1 per minute). This top output can be obtained through ``tibanna log -j <job_id> -t`` or through API ``API().log(job_id=<job_id>, top=True)``. :: Timestamp: 2020-12-18-18:55:37 top - 18:55:37 up 4 days, 2:37, 0 users, load average: 5.59, 5.28, 5.76 Tasks: 7 total, 1 running, 6 sleeping, 0 stopped, 0 zombie %Cpu(s): 6.6 us, 0.1 sy, 0.0 ni, 93.2 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st KiB Mem : 12971188+total, 10379019+free, 20613644 used, 5308056 buff/cache KiB Swap: 0 total, 0 free, 0 used. 10834606+avail Mem PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 712 root 20 0 36.464g 8.223g 19572 S 100.0 6.6 125:55.12 java -Xmx32g -Xms32g -jar juicer_tools.jar addNorm -w 1000 -d -F out.hic 17919 ubuntu 20 0 40676 3828 3144 R 6.2 0.0 0:00.01 top -b -n1 -c -i -w 10000 The default timestamp from top output does not contain dates, which can screw up multi-day processes which is common for bioinformatics pipelines. So, an extra timestamp is added before each top command. To parse top output content, simply create an object. This will create processes attribute, which is a raw parsed result organized by time stamps. :: top = Top(top_output_content) To reorganize the contents by commands, run digest. By default, the max number of commands is 16, and if there are more than 16 unique commands, they will be collapsed into prefixes. :: top.digest() To write a csv / tsv file organized by both timestamps (rows) and commands (columns), use :func: write_to_csv. :: top.write_to_csv(...) """ # assume this format for timestamp timestamp_format = '%Y-%m-%d-%H:%M:%S' # These commands are excluded when parsing the top output # Currently only 1-, 2- or 3-word prefixes work. exclude_list = ['top', 'docker', 'dockerd', '/usr/bin/dockerd', 'cron', 'docker-untar', 'containerd', 'goofys-latest', 'cwltool', '/usr/bin/containerd-shim-runc-v2', 'goofys', 'nodejs --eval', '/usr/bin/python3 /usr/local/bin/cwltool', 'containerd-shim', '/usr/bin/python3 /bin/unattended-upgrade', '/usr/bin/python3 /usr/local/bin/awsf3', '/usr/bin/python3 /usr/local/bin/aws s3', 'java -jar /usr/local/bin/cromwell.jar', 'java -jar /usr/local/bin/cromwell-35.jar'] def __init__(self, contents): """initialization parsed top output content and creates processes which is a dictionary with timestamps as keys and a list of Process class objects as a value. It also creates empty attributes timestamps, commands, cpus and mems which can be filled through method :func: digest. """ self.processes = dict() self.timestamps = [] self.commands = [] self.cpus = dict() self.mems = dict() self.parse_contents(contents) def parse_contents(self, contents): is_in_table = False for line in contents.splitlines(): if line.startswith('Timestamp:'): timestamp = line.split()[1] continue if line.lstrip().startswith('PID'): is_in_table = True continue if not line or line.isspace(): is_in_table = False if is_in_table: if timestamp not in self.processes: self.processes[timestamp] = [] process = Process(line) if not self.should_skip_process(process): self.processes[timestamp].append(Process(line)) def digest(self, max_n_commands=16, sort_by='alphabetical'): """Fills in timestamps, commands, cpus and mems attributes from processes attribute. :param max_n_commands: When the number of unique commands exceeds this value, they are collapsed into unique prefixes. :sort_by: alphabetical|cpu|mem The commands are by default sorted alphabetically, but optionally can be sorted by total cpus or total mem (in reverser order) (e.g. the first command consumed the most cpu) """ # Reinitializat these so that you get the same results if you run it twice self.timestamps = [] self.commands = [] self.cpus = dict() self.mems = dict() # First fill in commands from commands in processes (and collapse if needed.) self.commands = self.get_collapsed_commands(max_n_commands) # Fill in timestamps, cpus and mems from processes, matching collapsed commands. self.nTimepoints = len(self.processes) timestamp_ind = 0 for timestamp in sorted(self.processes): # sorted timestamps (columns) self.timestamps.append(timestamp) # commands (rows) for process in self.processes[timestamp]: # find a matching collapsed command (i.e. command prefix) and use that as command. command = Top.convert_command_to_collapsed_command(process.command, self.commands) if command not in self.cpus: self.cpus[command] = [0] * self.nTimepoints self.mems[command] = [0] * self.nTimepoints self.cpus[command][timestamp_ind] += process.cpu self.mems[command][timestamp_ind] += process.mem timestamp_ind += 1 # sort commands according to total cpu self.sort_commands(by=sort_by) def get_collapsed_commands(self, max_n_commands): """If the number of commands exceeds max_n_commands, return a collapsed set of commands that consists of prefixes of commands so that the total number is within max_n_commands. First decide the number of words from the beginning of the commands to collapse commands that start with the same words, i.e. find the maximum number of words that makes the number of unique commands to be bounded by max_n_commands. If using only the first word is not sufficient, go down to the characters of the first word. If that's still not sufficient, collapse all of them into a single command ('all_commands') After the collapse, commands that are unique to a collapsed prefix are extended back to the original command. """ all_commands = set() for timestamp in self.processes: all_commands.update(set([pr.command for pr in self.processes[timestamp]])) if len(all_commands) <= max_n_commands: # no need to collapse return list(all_commands) # decide the number of words from the beginning of the commands # to collapse commands starting with the same words all_cmd_lengths = [len(cmd.split()) for cmd in all_commands] # number of words per command max_cmd_length = max(all_cmd_lengths) min_cmd_length = min(all_cmd_lengths) collapsed_len = max_cmd_length - 1 n_commands = len(all_commands) while(n_commands > max_n_commands and collapsed_len > 1): reduced_commands = set() for cmd in all_commands: reduced_commands.add(Top.first_words(cmd, collapsed_len)) n_commands = len(reduced_commands) collapsed_len -= 1 # went down to the first words but still too many commands - start splitting characters then if n_commands > max_n_commands: all_cmd_lengths = [len(cmd.split()[0]) for cmd in all_commands] # number of characters of the first word max_cmd_length = max(all_cmd_lengths) min_cmd_length = min(all_cmd_lengths) collapsed_len = max_cmd_length - 1 while(n_commands > max_n_commands and collapsed_len > 1): reduced_commands = set() for cmd in all_commands: reduced_commands.add(Top.first_characters(cmd.split()[0], collapsed_len)) n_commands = len(reduced_commands) collapsed_len -= 1 if n_commands > max_n_commands: return ['all_commands'] else: # extend reduced commands that don't need to be reduced for r_cmd in list(reduced_commands): # wrap in list so that we can remove elements in the loop uniq_cmds = [cmd for cmd in all_commands if cmd.startswith(r_cmd)] if len(uniq_cmds) == 1: reduced_commands.remove(r_cmd) reduced_commands.add(uniq_cmds[0]) return reduced_commands def write_to_csv(self, csv_file, metric='cpu', delimiter=',', colname_for_timestamps='timepoints', timestamp_start=None, timestamp_end=None, base=0): """write metrics as csv file with commands as columns :param metric: 'cpu' or 'mem' :param delimiter: default ',' :param colname_for_timestamps: colunm name for the timepoint column (1st column). default 'timepoints' :param timestamp_start: start time in the same timestamp format (e.g. 01:23:45), time stamps will be converted to minutes since start time. The report starts with minute 0. Time points with no top records will be filled with 0. If not specified, the first timestamp in the top commands will be used. :param timestamp_end: end time in the same timestamp format (e.g. 01:23:45), The reports will be generated only up to the end time. Time points with no top records will be filled with 0. If not specified, the last timestamp in the top commands will be used. :param base: default 0. If 0, minutes start with 0, if 1, minutes are 1-based (shifted by 1). """ metric_array = getattr(self, metric + 's') if self.timestamps: if not timestamp_start: timestamp_start = self.timestamps[0] if not timestamp_end: timestamp_end = self.timestamps[-1] timestamps_as_minutes = self.timestamps_as_minutes(timestamp_start) last_minute = self.as_minutes(timestamp_end, timestamp_start) else: # default when timestamps is not available (empty object) timestamps_as_minutes = range(0, 5) last_minute = 5 with open(csv_file, 'w') as fo: # header # we have to escape any double quotes that are present in the cmd, before wrapping it in double quotes. Otherwise we # will get incorrect column counts when creating the metrics report. fo.write(delimiter.join([colname_for_timestamps] + [Top.wrap_in_double_quotes(cmd.replace('"', '""')) for cmd in self.commands])) fo.write('\n') # contents # skip timepoints earlier than timestamp_start for i in range(0, len(timestamps_as_minutes)): if timestamps_as_minutes[i] >= 0: break for clock in range(0, last_minute + 1): clock_shifted = clock + base if i < len(timestamps_as_minutes) and timestamps_as_minutes[i] == clock: fo.write(delimiter.join([str(clock_shifted)] + [str(metric_array[cmd][i]) for cmd in self.commands])) i += 1 else: fo.write(delimiter.join([str(clock_shifted)] + ['0' for cmd in self.commands])) # add 0 for timepoints not reported fo.write('\n') def should_skip_process(self, process): """A predicate function to check if the process should be skipped (excluded). It returns True if the input process should be skipped. e.g. the top command itself is excluded, as well as docker, awsf3, cwltool, etc. the list to be excluded is in self.exclude_list. It compares either first word or first two or three words only. Kernel threads (single-word commands wrapped in bracket (e.g. [perl]) are also excluded. """ first_word = Top.first_words(process.command, 1) first_two_words = Top.first_words(process.command, 2) first_three_words = Top.first_words(process.command, 3) if first_word in self.exclude_list: return True elif first_two_words in self.exclude_list: return True elif first_three_words in self.exclude_list: return True if first_word.startswith('[') and first_word.endswith(']'): return True return False @staticmethod def convert_command_to_collapsed_command(cmd, collapsed_commands): if collapsed_commands == 'all_commands': # collapsed to one command return 'all_commands' elif cmd in collapsed_commands: # not collapsed return cmd else: # collapsed to prefix all_prefixes = [_ for _ in collapsed_commands if cmd.startswith(_)] longest_prefix = sorted(all_prefixes, key=lambda x: len(x), reverse=True)[0] return longest_prefix def total_cpu_per_command(self, command): return sum([v for v in self.cpus[command]]) def total_mem_per_command(self, command): return sum([v for v in self.mems[command]]) def sort_commands(self, by='cpu'): """sort self.commands by total cpu (default) or mem in reverse order, or alphabetically (by='alphabetical')""" if by == 'cpu': self.commands = sorted(self.commands, key=lambda x: self.total_cpu_per_command(x), reverse=True) elif by == 'mem': self.commands = sorted(self.commands, key=lambda x: self.total_mem_per_command(x), reverse=True) elif by == 'alphabetical': self.commands = sorted(self.commands) @classmethod def as_minutes(cls, timestamp, timestamp_start): """timestamp as minutes since timestamp_start. :param timestamp: given timestamp in the same format (e.g. 01:23:45) :param timestamp_start: start timestamp in the same format (e.g. 01:20:45) In the above example, 3 will be the return value. """ dt = cls.as_datetime(timestamp) dt_start = cls.as_datetime(timestamp_start) # negative numbers are not supported by timedelta, so do each case separately if dt > dt_start: return round((dt - dt_start).seconds / 60) else: return -round((dt_start - dt).seconds / 60) def timestamps_as_minutes(self, timestamp_start): """convert self.timestamps to a list of minutes since timestamp_start :param timestamp_start: timestamp in the same format (e.g. 01:23:45) """ return [self.as_minutes(t, timestamp_start) for t in self.timestamps] @classmethod def as_datetime(cls, timestamp): return datetime.datetime.strptime(timestamp, cls.timestamp_format) @staticmethod def wrap_in_double_quotes(string): """wrap a given string with double quotes (e.g. haha -> "haha") """ return '\"' + string + '\"' @staticmethod def first_words(string, n_words): """returns first n words of a string e.g. first_words('abc def ghi', 2) ==> 'abc def' """ words = string.split() return ' '.join(words[0:min(n_words, len(words))]) @staticmethod def first_characters(string, n_letters): """returns first n letters of a string e.g. first_characters('abc def ghi', 2) ==> 'ab' """ letters = list(string) return ''.join(letters[0:min(n_letters, len(letters))]) def as_dict(self): return self.__dict__ class Process(object): def __init__(self, top_line): prinfo_as_list = top_line.lstrip().split() self.pid = prinfo_as_list[0] self.user = prinfo_as_list[1] self.cpu = float(prinfo_as_list[8]) self.mem = float(prinfo_as_list[9]) self.command = ' '.join(prinfo_as_list[11:]) def as_dict(self): return self.__dict__
47.392265
148
0.6199
17,134
0.998718
0
0
2,015
0.117452
0
0
8,467
0.49353
e01a18c1d0d2ecbc1fcb6159c9f9c87becb0c6cc
1,458
py
Python
venv/Lib/site-packages/zmq/tests/test_draft.py
ajayiagbebaku/NFL-Model
afcc67a85ca7138c58c3334d45988ada2da158ed
[ "MIT" ]
603
2020-12-23T13:49:32.000Z
2022-03-31T23:38:03.000Z
venv/Lib/site-packages/zmq/tests/test_draft.py
ajayiagbebaku/NFL-Model
afcc67a85ca7138c58c3334d45988ada2da158ed
[ "MIT" ]
387
2020-12-15T14:54:04.000Z
2022-03-31T07:00:21.000Z
venv/Lib/site-packages/zmq/tests/test_draft.py
ajayiagbebaku/NFL-Model
afcc67a85ca7138c58c3334d45988ada2da158ed
[ "MIT" ]
35
2021-03-26T03:12:04.000Z
2022-03-23T10:15:10.000Z
# -*- coding: utf8 -*- # Copyright (C) PyZMQ Developers # Distributed under the terms of the Modified BSD License. import os import platform import time import pytest import zmq from zmq.tests import BaseZMQTestCase, skip_pypy class TestDraftSockets(BaseZMQTestCase): def setUp(self): if not zmq.DRAFT_API: raise pytest.skip("draft api unavailable") super(TestDraftSockets, self).setUp() def test_client_server(self): client, server = self.create_bound_pair(zmq.CLIENT, zmq.SERVER) client.send(b'request') msg = self.recv(server, copy=False) assert msg.routing_id is not None server.send(b'reply', routing_id=msg.routing_id) reply = self.recv(client) assert reply == b'reply' def test_radio_dish(self): dish, radio = self.create_bound_pair(zmq.DISH, zmq.RADIO) dish.rcvtimeo = 250 group = 'mygroup' dish.join(group) received_count = 0 received = set() sent = set() for i in range(10): msg = str(i).encode('ascii') sent.add(msg) radio.send(msg, group=group) try: recvd = dish.recv() except zmq.Again: time.sleep(0.1) else: received.add(recvd) received_count += 1 # assert that we got *something* assert len(received.intersection(sent)) >= 5
29.16
71
0.593964
1,226
0.840878
0
0
0
0
0
0
209
0.143347
e01a5f16e11613ae6cff496ae606faff7b1d0e27
460
py
Python
home/push/mipush/APIError.py
he0119/smart-home
bdd3a59a8c46c0fdc07ac3049bf589c7f95a2683
[ "MIT" ]
null
null
null
home/push/mipush/APIError.py
he0119/smart-home
bdd3a59a8c46c0fdc07ac3049bf589c7f95a2683
[ "MIT" ]
223
2020-02-21T06:16:56.000Z
2022-03-01T22:24:19.000Z
home/push/mipush/APIError.py
he0119/smart-home
bdd3a59a8c46c0fdc07ac3049bf589c7f95a2683
[ "MIT" ]
null
null
null
class APIError(Exception): """ raise APIError if receiving json message indicating failure. """ def __init__(self, error_code, error, request): self.error_code = error_code self.error = error self.request = request Exception.__init__(self, error) def __str__(self): return "APIError: %s: %s, request: %s" % ( self.error_code, self.error, self.request, )
25.555556
64
0.576087
459
0.997826
0
0
0
0
0
0
107
0.232609
e01cbf8a1a1ab981a1d993596c3a332451dcd74d
367
py
Python
pythonlibs/mantis/templates/webapp/src/webapp/base.py
adoggie/Tibet.6
3c53060edafd80b9c4dafa10699a68d86a410c66
[ "MIT" ]
22
2019-10-28T07:28:12.000Z
2022-03-19T15:36:41.000Z
AliceBackend/src/AliceBackend/base.py
adoggie/Tibet.6
3c53060edafd80b9c4dafa10699a68d86a410c66
[ "MIT" ]
1
2019-11-07T04:54:14.000Z
2019-11-07T07:12:48.000Z
AliceBackend/src/AliceBackend/base.py
adoggie/Tibet.6
3c53060edafd80b9c4dafa10699a68d86a410c66
[ "MIT" ]
13
2019-10-28T07:29:07.000Z
2021-11-03T06:53:12.000Z
#coding:utf-8 class SystemDeviceType(object): InnerBox = 1 # 主屏分离的室内主机 InnerScreen = 2 # 主屏分离的室内屏 OuterBox = 3 # 室外机 PropCallApp = 4 # 物业值守 PropSentryApp = 5 # 物业岗亭机 Others = 10 ValidatedList = (1,2,3,4,5) class Constants(object): SUPER_ACCESS_TOKEN = 'YTU3NzVlYjktYjQwMi00MGY2LTkxZjktYWMxYjIxZjM4NjNlCg =='
24.466667
80
0.643052
407
0.957647
0
0
0
0
0
0
165
0.388235
e01cd6185b052b2c9153c8eec135e9e3a2cf7572
667
py
Python
base/site-packages/django_qbe/urls.py
edisonlz/fastor
342078a18363ac41d3c6b1ab29dbdd44fdb0b7b3
[ "Apache-2.0" ]
285
2019-12-23T09:50:21.000Z
2021-12-08T09:08:49.000Z
base/site-packages/django_qbe/urls.py
jeckun/fastor
342078a18363ac41d3c6b1ab29dbdd44fdb0b7b3
[ "Apache-2.0" ]
null
null
null
base/site-packages/django_qbe/urls.py
jeckun/fastor
342078a18363ac41d3c6b1ab29dbdd44fdb0b7b3
[ "Apache-2.0" ]
9
2019-12-23T12:59:25.000Z
2022-03-15T05:12:11.000Z
# -*- coding: utf-8 -*- from django.conf.urls.defaults import patterns, url from django_qbe.exports import formats urlpatterns = patterns('django_qbe.views', url(r'^$', 'qbe_form', name="qbe_form"), url(r'^js/$', 'qbe_js', name="qbe_js"), url(r'^results/bookmark/$', 'qbe_bookmark', name="qbe_bookmark"), url(r'^results/export/(?P<format>(%s))/$' % "|".join(formats.keys()), 'qbe_export', name="qbe_export"), url(r'^results/proxy/$', 'qbe_proxy', name="qbe_proxy"), url(r'^results/(?P<query_hash>(.*))/$', 'qbe_results', name="qbe_results"), url(r'^auto/$', 'qbe_autocomplete', name="qbe_autocomplete"), )
37.055556
73
0.611694
0
0
0
0
0
0
0
0
351
0.526237
e01d041f8b5c1564d154529462e58e50b56f4910
5,264
py
Python
augment.py
docongminh/Text-Image-Augmentation-python
da27e8346ce2339f801335923faf7b14e026fd90
[ "Apache-2.0" ]
217
2020-02-09T07:44:18.000Z
2022-03-24T03:52:51.000Z
ocraug/augment.py
lzmisscc/Text-Image-Augmentation-python
12f104452e939444eb0fd4ac96143b78d091845b
[ "Apache-2.0" ]
5
2020-03-23T02:24:33.000Z
2022-03-13T07:02:04.000Z
ocraug/augment.py
lzmisscc/Text-Image-Augmentation-python
12f104452e939444eb0fd4ac96143b78d091845b
[ "Apache-2.0" ]
42
2020-02-10T06:42:31.000Z
2022-03-13T11:54:18.000Z
# -*- coding:utf-8 -*- # Author: RubanSeven # import cv2 import numpy as np # from transform import get_perspective_transform, warp_perspective from warp_mls import WarpMLS def distort(src, segment): img_h, img_w = src.shape[:2] cut = img_w // segment thresh = cut // 3 # thresh = img_h // segment // 3 # thresh = img_h // 5 src_pts = list() dst_pts = list() src_pts.append([0, 0]) src_pts.append([img_w, 0]) src_pts.append([img_w, img_h]) src_pts.append([0, img_h]) dst_pts.append([np.random.randint(thresh), np.random.randint(thresh)]) dst_pts.append([img_w - np.random.randint(thresh), np.random.randint(thresh)]) dst_pts.append([img_w - np.random.randint(thresh), img_h - np.random.randint(thresh)]) dst_pts.append([np.random.randint(thresh), img_h - np.random.randint(thresh)]) half_thresh = thresh * 0.5 for cut_idx in np.arange(1, segment, 1): src_pts.append([cut * cut_idx, 0]) src_pts.append([cut * cut_idx, img_h]) dst_pts.append([cut * cut_idx + np.random.randint(thresh) - half_thresh, np.random.randint(thresh) - half_thresh]) dst_pts.append([cut * cut_idx + np.random.randint(thresh) - half_thresh, img_h + np.random.randint(thresh) - half_thresh]) trans = WarpMLS(src, src_pts, dst_pts, img_w, img_h) dst = trans.generate() return dst def stretch(src, segment): img_h, img_w = src.shape[:2] cut = img_w // segment thresh = cut * 4 // 5 # thresh = img_h // segment // 3 # thresh = img_h // 5 src_pts = list() dst_pts = list() src_pts.append([0, 0]) src_pts.append([img_w, 0]) src_pts.append([img_w, img_h]) src_pts.append([0, img_h]) dst_pts.append([0, 0]) dst_pts.append([img_w, 0]) dst_pts.append([img_w, img_h]) dst_pts.append([0, img_h]) half_thresh = thresh * 0.5 for cut_idx in np.arange(1, segment, 1): move = np.random.randint(thresh) - half_thresh src_pts.append([cut * cut_idx, 0]) src_pts.append([cut * cut_idx, img_h]) dst_pts.append([cut * cut_idx + move, 0]) dst_pts.append([cut * cut_idx + move, img_h]) trans = WarpMLS(src, src_pts, dst_pts, img_w, img_h) dst = trans.generate() return dst def perspective(src): img_h, img_w = src.shape[:2] thresh = img_h // 2 src_pts = list() dst_pts = list() src_pts.append([0, 0]) src_pts.append([img_w, 0]) src_pts.append([img_w, img_h]) src_pts.append([0, img_h]) dst_pts.append([0, np.random.randint(thresh)]) dst_pts.append([img_w, np.random.randint(thresh)]) dst_pts.append([img_w, img_h - np.random.randint(thresh)]) dst_pts.append([0, img_h - np.random.randint(thresh)]) trans = WarpMLS(src, src_pts, dst_pts, img_w, img_h) dst = trans.generate() return dst # def distort(src, segment): # img_h, img_w = src.shape[:2] # dst = np.zeros_like(src, dtype=np.uint8) # # cut = img_w // segment # thresh = img_h // 8 # # src_pts = list() # # dst_pts = list() # # src_pts.append([-np.random.randint(thresh), -np.random.randint(thresh)]) # src_pts.append([-np.random.randint(thresh), img_h + np.random.randint(thresh)]) # # # dst_pts.append([0, 0]) # # dst_pts.append([0, img_h]) # dst_box = np.array([[0, 0], [0, img_h], [cut, 0], [cut, img_h]], dtype=np.float32) # # half_thresh = thresh * 0.5 # # for cut_idx in np.arange(1, segment, 1): # src_pts.append([cut * cut_idx + np.random.randint(thresh) - half_thresh, # np.random.randint(thresh) - half_thresh]) # src_pts.append([cut * cut_idx + np.random.randint(thresh) - half_thresh, # img_h + np.random.randint(thresh) - half_thresh]) # # # dst_pts.append([cut * i, 0]) # # dst_pts.append([cut * i, img_h]) # # src_box = np.array(src_pts[-4:-2] + src_pts[-2:-1] + src_pts[-1:], dtype=np.float32) # # # mat = cv2.getPerspectiveTransform(src_box, dst_box) # # print(mat) # # dst[:, cut * (cut_idx - 1):cut * cut_idx] = cv2.warpPerspective(src, mat, (cut, img_h)) # # mat = get_perspective_transform(dst_box, src_box) # dst[:, cut * (cut_idx - 1):cut * cut_idx] = warp_perspective(src, mat, (cut, img_h)) # # print(mat) # # src_pts.append([img_w + np.random.randint(thresh) - half_thresh, # np.random.randint(thresh) - half_thresh]) # src_pts.append([img_w + np.random.randint(thresh) - half_thresh, # img_h + np.random.randint(thresh) - half_thresh]) # src_box = np.array(src_pts[-4:-2] + src_pts[-2:-1] + src_pts[-1:], dtype=np.float32) # # # mat = cv2.getPerspectiveTransform(src_box, dst_box) # # dst[:, cut * (segment - 1):] = cv2.warpPerspective(src, mat, (img_w - cut * (segment - 1), img_h)) # mat = get_perspective_transform(dst_box, src_box) # dst[:, cut * (segment - 1):] = warp_perspective(src, mat, (img_w - cut * (segment - 1), img_h)) # # return dst
33.74359
107
0.586816
0
0
0
0
0
0
0
0
2,442
0.463906
e01de102906f7a6f8c39855d08b6adaa53f5663c
1,347
py
Python
Graph/print all paths from two vertices in a directed graph.py
ikaushikpal/DS-450-python
9466f77fb9db9e6a5bb3f20aa89ba6332f49e848
[ "MIT" ]
3
2021-06-28T12:04:19.000Z
2021-09-07T07:23:41.000Z
Graph/print all paths from two vertices in a directed graph.py
SupriyoDam/DS-450-python
5dc21ce61b3279e9bd9d6ef3ad236667227ca283
[ "MIT" ]
null
null
null
Graph/print all paths from two vertices in a directed graph.py
SupriyoDam/DS-450-python
5dc21ce61b3279e9bd9d6ef3ad236667227ca283
[ "MIT" ]
1
2021-06-28T15:42:55.000Z
2021-06-28T15:42:55.000Z
from collections import defaultdict class Graph: def __init__(self): self.graph = defaultdict(list) def addEdge(self, starting_vertex, end_vertex): self.graph[starting_vertex].append(end_vertex) def printAllPaths(self, starting_vertex, target_vertex): visitedVertices = defaultdict(bool) self.resultPaths = [] self.dfsUtil(starting_vertex, visitedVertices, target_vertex, "") return self.resultPaths def dfsUtil(self, current_vertex, visitedVertices, target_vertex, output_string): visitedVertices[current_vertex] = True if output_string == "": output_string = current_vertex else: output_string = output_string + "->" + current_vertex if current_vertex == target_vertex: self.resultPaths.append(output_string) return for vertex in self.graph[current_vertex]: if visitedVertices[vertex] == False: self.dfsUtil(vertex, visitedVertices, target_vertex, output_string) visitedVertices[vertex] = False if __name__ == "__main__": g = Graph() g.addEdge("A", "B") g.addEdge("B", "D") g.addEdge("A", "D") g.addEdge("C", "A") g.addEdge("C", "B") g.addEdge("A", "C") paths = g.printAllPaths("A", "B") print(paths)
28.659574
85
0.628062
1,063
0.789161
0
0
0
0
0
0
60
0.044543
e01e00717692398432049be3d51d551f012c222e
1,958
py
Python
tests/pipegeojson_test/test_pipegeojson.py
kamyarrasta/berrl
1cf2ba8194498ec8f80d2908399ad00f1e963d83
[ "Apache-2.0" ]
1
2016-03-04T18:30:48.000Z
2016-03-04T18:30:48.000Z
tests/pipegeojson_test/test_pipegeojson.py
kamyarrasta/berrl
1cf2ba8194498ec8f80d2908399ad00f1e963d83
[ "Apache-2.0" ]
null
null
null
tests/pipegeojson_test/test_pipegeojson.py
kamyarrasta/berrl
1cf2ba8194498ec8f80d2908399ad00f1e963d83
[ "Apache-2.0" ]
null
null
null
# testing the output of pipegeojson against different input types import berrl as bl import itertools # making line with csv file location line1=bl.make_line('csvs/line_example.csv') # making line with list testlist=bl.read('csvs/line_example.csv') line2=bl.make_line(testlist,list=True) # testing each line geojson against each other ind=0 for a,b in itertools.izip(line1,line2): if not a==b: ind=1 # carrying the passing of status down to the test for the rest if ind==0: passing=0 else: passing=1 # making points with csv file location points1=bl.make_line('csvs/points_example.csv') # making points with list testlist=bl.read('csvs/points_example.csv') points2=bl.make_line(testlist,list=True) # testing each points geojson against each other ind=0 for a,b in itertools.izip(points1,points2): if not a==b: ind=1 # carrying the passing of status down to the test for the rest if ind==0 and passing==0: passing=0 else: passing=1 # making blocks with csv file location blocks1=bl.make_line('csvs/blocks_example.csv') # making blocks with list testlist=bl.read('csvs/blocks_example.csv') blocks2=bl.make_line(testlist,list=True) # testing each bloocks geojson against each other ind=0 for a,b in itertools.izip(blocks1,blocks2): if not a==b: ind=1 # carrying the passing of status down to the test for the rest if ind==0 and passing==0: passing=0 else: passing=1 # making blocks with csv file location polygon1=bl.make_line('csvs/polygon_example.csv') # making blocks with list testlist=bl.read('csvs/polygon_example.csv') polygon2=bl.make_line(testlist,list=True) # testing each bloocks geojson against each other ind=0 for a,b in itertools.izip(polygon1,polygon2): if not a==b: ind=1 # carrying the passing of status down to the test for the rest if ind==0 and passing==0: passing=0 else: passing=1 # printing output result if passing==0: print 'pipegeojson build passed' else: print 'pipegeojson build failed'
22.25
65
0.759959
0
0
0
0
0
0
0
0
1,031
0.526558
e01f044aab30cbd5165bae297a319d57b579704e
912
py
Python
tierpsy/debugging/catch_infinite_loop.py
mgh17/tierpsy-tracker
a18c06aa80a5fb22fd51563d82c639b520742777
[ "MIT" ]
9
2021-01-11T10:49:21.000Z
2022-02-28T15:48:00.000Z
tierpsy/debugging/catch_infinite_loop.py
mgh17/tierpsy-tracker
a18c06aa80a5fb22fd51563d82c639b520742777
[ "MIT" ]
18
2020-05-08T15:43:08.000Z
2022-03-23T10:19:24.000Z
tierpsy/debugging/catch_infinite_loop.py
mgh17/tierpsy-tracker
a18c06aa80a5fb22fd51563d82c639b520742777
[ "MIT" ]
10
2019-12-18T12:10:12.000Z
2022-01-05T09:12:47.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon May 8 16:19:07 2017 @author: ajaver """ import os import cv2 import sys import glob import threading from functools import partial main_dir = '/Volumes/behavgenom_archive$/Celine/raw/' fnames = glob.glob(os.path.join(main_dir, '**', '*.avi')) fnames = [x for x in fnames if not x.endswith('_seg.avi')] fnames = sorted(fnames) def get_and_release(video_file): original = sys.stderr f = open(os.devnull, 'w') sys.stderr = f print('here') vid = cv2.VideoCapture(video_file) vid.release() sys.stderr = original return vid all_threads = [] for ii, video_file in enumerate(fnames): print(ii, video_file) vid = cv2.VideoCapture(video_file) vid.release() t = threading.Thread(target = partial(get_and_release, video_file)) t.start() all_threads.append((video_file, t))
21.714286
71
0.663377
0
0
0
0
0
0
0
0
177
0.194079
e0201884251a727105b3a8b3946ca3bc3aefd73d
480
py
Python
devito/passes/iet/languages/C.py
guaacoelho/devito
7e0b873114675752c4a49ed9076ee5d52997833c
[ "MIT" ]
199
2016-08-18T23:33:05.000Z
2019-12-24T07:08:48.000Z
devito/passes/iet/languages/C.py
guaacoelho/devito
7e0b873114675752c4a49ed9076ee5d52997833c
[ "MIT" ]
949
2016-04-25T11:41:34.000Z
2019-12-27T10:43:40.000Z
devito/passes/iet/languages/C.py
guaacoelho/devito
7e0b873114675752c4a49ed9076ee5d52997833c
[ "MIT" ]
78
2016-08-30T07:42:34.000Z
2019-12-13T20:34:45.000Z
from devito.ir import Call from devito.passes.iet.definitions import DataManager from devito.passes.iet.langbase import LangBB __all__ = ['CBB', 'CDataManager'] class CBB(LangBB): mapper = { 'aligned': lambda i: '__attribute__((aligned(%d)))' % i, 'host-alloc': lambda i, j, k: Call('posix_memalign', (i, j, k)), 'host-free': lambda i: Call('free', (i,)), } class CDataManager(DataManager): lang = CBB
21.818182
53
0.591667
312
0.65
0
0
0
0
0
0
103
0.214583
e0215d4c222f248ad7105000615a748c88340354
2,026
py
Python
tests/_test_image.py
Freakwill/ell
8aa510cefb5d63db35071820208971013fac154c
[ "MIT" ]
null
null
null
tests/_test_image.py
Freakwill/ell
8aa510cefb5d63db35071820208971013fac154c
[ "MIT" ]
null
null
null
tests/_test_image.py
Freakwill/ell
8aa510cefb5d63db35071820208971013fac154c
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """Test methods about image process Make sure the existance of the images """ from ell import * import numpy as np _filter = Filter.from_name('db4') def test_resize(): chennal=0 c = ImageRGB.open('src/lenna.jpg') d=c.resize(minInd=(-100,-100), maxInd=(100,100)) d.to_image() assert True def test_quantize(): im = ImageRGB.open('src/lenna.jpg') d = im.quantize(128) d.to_image() assert True def test_convolve(): im = ImageRGB.open('src/lenna.jpg') d = (im @ _filter.H).D # print(f"{d:i}, {d.shape}") assert True def test_filter(): im = ImageRGB.open('src/lenna.jpg') rec = (im @ _filter.H).D.U @ _filter assert True def test_rec(): im = ImageRGB.open('src/lenna.jpg') def _f(im, h1, h2=None): if h2 is None: h2 = h1 return (im.conv1d(h1.H, axis=0).conv1d(h2.H, axis=1)).P.conv1d(h1, axis=0).conv1d(h2, axis=1) rec = _f(im, _filter) + _f(im, _filter.H) + _f(im, _filter, _filter.H) + _f(im, _filter.H, _filter) assert True def test_rec2(): im = ImageRGB.open('../src/lenna.jpg') def _f(im, h1, h2=None): if h2 is None: h2 = h1 # return (im @ h1.tensor(h2).H).P @ h1.tensor(h2) return (im.conv1d(h1.H, axis=0).conv1d(h2.H, axis=1)).P.conv1d(h1, axis=0).conv1d(h2, axis=1) im1 = _f(im, _filter) rec1 = _f(im1, _filter) + _f(im1, _filter.H) + _f(im1, _filter, _filter.H) + _f(im1, _filter.H, _filter) rec2 = rec1 + _f(im, _filter.H) + _f(im, _filter, _filter.H) + _f(im, _filter.H, _filter) assert True def test_rec3(): im = ImageRGB.open('src/lenna.jpg') def _f(im, h1, h2=None): if h2 is None: h2 = h1 f = h1.tensor(h2) return im.reduce(f).expand(f) im1 = im.reduce(_filter) rec1 = _f(im1, _filter) + _f(im1, _filter.H) + _f(im1, _filter, _filter.H) + _f(im1, _filter.H, _filter) rec2 = rec1.expand(_filter) + _f(im, _filter.H) + _f(im, _filter, _filter.H) + _f(im, _filter.H, _filter) assert True
28.535211
109
0.605133
0
0
0
0
0
0
0
0
290
0.143139
e02439282d17416800f4bfd8e050f404bc4d7706
5,991
py
Python
donkeycar/parts/pytorch/torch_data.py
adricl/donkeycar
8eb2705ed4161c0d6a9cfd9c7b0a1c0ca5abaeef
[ "MIT" ]
1,100
2017-01-18T16:08:33.000Z
2018-11-04T00:42:54.000Z
donkeycar/parts/pytorch/torch_data.py
adricl/donkeycar
8eb2705ed4161c0d6a9cfd9c7b0a1c0ca5abaeef
[ "MIT" ]
199
2016-12-20T07:45:16.000Z
2018-11-01T02:30:12.000Z
donkeycar/parts/pytorch/torch_data.py
adricl/donkeycar
8eb2705ed4161c0d6a9cfd9c7b0a1c0ca5abaeef
[ "MIT" ]
521
2017-01-10T21:53:24.000Z
2018-11-01T18:17:52.000Z
# PyTorch import torch from torch.utils.data import IterableDataset, DataLoader from donkeycar.utils import train_test_split from donkeycar.parts.tub_v2 import Tub from torchvision import transforms from typing import List, Any from donkeycar.pipeline.types import TubRecord, TubDataset from donkeycar.pipeline.sequence import TubSequence import pytorch_lightning as pl def get_default_transform(for_video=False, for_inference=False, resize=True): """ Creates a default transform to work with torchvision models Video transform: All pre-trained models expect input images normalized in the same way, i.e. mini-batches of 3-channel RGB videos of shape (3 x T x H x W), where H and W are expected to be 112, and T is a number of video frames in a clip. The images have to be loaded in to a range of [0, 1] and then normalized using mean = [0.43216, 0.394666, 0.37645] and std = [0.22803, 0.22145, 0.216989]. """ mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] input_size = (224, 224) if for_video: mean = [0.43216, 0.394666, 0.37645] std = [0.22803, 0.22145, 0.216989] input_size = (112, 112) transform_items = [ transforms.ToTensor(), transforms.Normalize(mean=mean, std=std) ] if resize: transform_items.insert(0, transforms.Resize(input_size)) return transforms.Compose(transform_items) class TorchTubDataset(IterableDataset): ''' Loads the dataset, and creates a train/test split. ''' def __init__(self, config, records: List[TubRecord], transform=None): """Create a PyTorch Tub Dataset Args: config (object): the configuration information records (List[TubRecord]): a list of tub records transform (function, optional): a transform to apply to the data """ self.config = config # Handle the transforms if transform: self.transform = transform else: self.transform = get_default_transform() self.sequence = TubSequence(records) self.pipeline = self._create_pipeline() self.len = len(records) def _create_pipeline(self): """ This can be overridden if more complicated pipelines are required """ def y_transform(record: TubRecord): angle: float = record.underlying['user/angle'] throttle: float = record.underlying['user/throttle'] predictions = torch.tensor([angle, throttle], dtype=torch.float) # Normalize to be between [0, 1] # angle and throttle are originally between [-1, 1] predictions = (predictions + 1) / 2 return predictions def x_transform(record: TubRecord): # Loads the result of Image.open() img_arr = record.image(cached=True, as_nparray=False) return self.transform(img_arr) # Build pipeline using the transformations pipeline = self.sequence.build_pipeline(x_transform=x_transform, y_transform=y_transform) return pipeline def __len__(self): return len(self.sequence) def __iter__(self): return iter(self.pipeline) class TorchTubDataModule(pl.LightningDataModule): def __init__(self, config: Any, tub_paths: List[str], transform=None): """Create a PyTorch Lightning Data Module to contain all data loading logic Args: config (object): the configuration information tub_paths (List[str]): a list of paths to the tubs to use (minimum size of 1). Each tub path corresponds to another training run. transform (function, optional): a transform to apply to the data """ super().__init__() self.config = config self.tub_paths = tub_paths # Handle the transforms if transform: self.transform = transform else: self.transform = get_default_transform() self.tubs: List[Tub] = [Tub(tub_path, read_only=True) for tub_path in self.tub_paths] self.records: List[TubRecord] = [] def setup(self, stage=None): """Load all the tub data and set up the datasets. Args: stage ([string], optional): setup expects a string arg stage. It is used to separate setup logic for trainer.fit and trainer.test. Defaults to None. """ # Loop through all the different tubs and load all the records for each of them for tub in self.tubs: for underlying in tub: record = TubRecord(self.config, tub.base_path, underlying=underlying) self.records.append(record) train_records, val_records = train_test_split( self.records, test_size=(1. - self.config.TRAIN_TEST_SPLIT)) assert len(val_records) > 0, "Not enough validation data. Add more data" self.train_dataset = TorchTubDataset( self.config, train_records, transform=self.transform) self.val_dataset = TorchTubDataset( self.config, val_records, transform=self.transform) def train_dataloader(self): # The number of workers are set to 0 to avoid errors on Macs and Windows # See: https://github.com/rusty1s/pytorch_geometric/issues/366#issuecomment-498022534 return DataLoader(self.train_dataset, batch_size=self.config.BATCH_SIZE, num_workers=0) def val_dataloader(self): # The number of workers are set to 0 to avoid errors on Macs and Windows # See: https://github.com/rusty1s/pytorch_geometric/issues/366#issuecomment-498022534 return DataLoader(self.val_dataset, batch_size=self.config.BATCH_SIZE, num_workers=0)
37.21118
95
0.633951
4,556
0.760474
0
0
0
0
0
0
2,320
0.387248
e0251d7f1fc5a3340792a778c923482bb49bcf13
316
py
Python
lite/__init__.py
CleverInsight/sparx-lite
1b729e8d11292e9737d57e092ee8916999ab1338
[ "MIT" ]
null
null
null
lite/__init__.py
CleverInsight/sparx-lite
1b729e8d11292e9737d57e092ee8916999ab1338
[ "MIT" ]
null
null
null
lite/__init__.py
CleverInsight/sparx-lite
1b729e8d11292e9737d57e092ee8916999ab1338
[ "MIT" ]
null
null
null
import os from tornado.template import Template __SNIPPET__ = os.path.join(os.path.dirname(os.path.abspath(__file__)), '_snippet') def T(name, **kw): t = Template(open(os.path.join(__SNIPPET__, name + '.html'), 'rb').read()) return t.generate(**dict([('template_file', name)] + globals().items() + kw.items()))
31.6
86
0.686709
0
0
0
0
0
0
0
0
36
0.113924
e025cd2fbcd0226b08e7474394109f24f199f13c
3,857
py
Python
homeassistant/components/sensor/hddtemp.py
mdonoughe/home-assistant
d9805160bc787146bff0c434fdcab995716f0f8c
[ "Apache-2.0" ]
2
2020-02-20T18:47:55.000Z
2021-11-09T11:33:28.000Z
homeassistant/components/sensor/hddtemp.py
mdonoughe/home-assistant
d9805160bc787146bff0c434fdcab995716f0f8c
[ "Apache-2.0" ]
1
2021-02-08T20:56:06.000Z
2021-02-08T20:56:06.000Z
homeassistant/components/sensor/hddtemp.py
diophung/home-assistant
a5aa1118937702ca8bec050614ee52dc14f8466b
[ "Apache-2.0" ]
1
2020-11-21T09:37:47.000Z
2020-11-21T09:37:47.000Z
""" Support for getting the disk temperature of a host. For more details about this platform, please refer to the documentation at https://home-assistant.io/components/sensor.hddtemp/ """ import logging from datetime import timedelta from telnetlib import Telnet import voluptuous as vol import homeassistant.helpers.config_validation as cv from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import ( CONF_NAME, CONF_HOST, CONF_PORT, TEMP_CELSIUS, TEMP_FAHRENHEIT, CONF_DISKS) from homeassistant.helpers.entity import Entity _LOGGER = logging.getLogger(__name__) ATTR_DEVICE = 'device' ATTR_MODEL = 'model' DEFAULT_HOST = 'localhost' DEFAULT_PORT = 7634 DEFAULT_NAME = 'HD Temperature' DEFAULT_TIMEOUT = 5 SCAN_INTERVAL = timedelta(minutes=1) PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Optional(CONF_DISKS, default=[]): vol.All(cv.ensure_list, [cv.string]), vol.Optional(CONF_HOST, default=DEFAULT_HOST): cv.string, vol.Optional(CONF_PORT, default=DEFAULT_PORT): cv.port, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, }) def setup_platform(hass, config, add_devices, discovery_info=None): """Set up the HDDTemp sensor.""" name = config.get(CONF_NAME) host = config.get(CONF_HOST) port = config.get(CONF_PORT) disks = config.get(CONF_DISKS) hddtemp = HddTempData(host, port) hddtemp.update() if hddtemp.data is None: return False if not disks: disks = [next(iter(hddtemp.data)).split('|')[0]] dev = [] for disk in disks: if disk in hddtemp.data: dev.append(HddTempSensor(name, disk, hddtemp)) add_devices(dev, True) class HddTempSensor(Entity): """Representation of a HDDTemp sensor.""" def __init__(self, name, disk, hddtemp): """Initialize a HDDTemp sensor.""" self.hddtemp = hddtemp self.disk = disk self._name = '{} {}'.format(name, disk) self._state = None self._details = None @property def name(self): """Return the name of the sensor.""" return self._name @property def state(self): """Return the state of the device.""" return self._state @property def unit_of_measurement(self): """Return the unit the value is expressed in.""" if self._details[3] == 'C': return TEMP_CELSIUS return TEMP_FAHRENHEIT @property def device_state_attributes(self): """Return the state attributes of the sensor.""" return { ATTR_DEVICE: self._details[0], ATTR_MODEL: self._details[1], } def update(self): """Get the latest data from HDDTemp daemon and updates the state.""" self.hddtemp.update() if self.hddtemp.data and self.disk in self.hddtemp.data: self._details = self.hddtemp.data[self.disk].split('|') self._state = self._details[2] else: self._state = None class HddTempData(object): """Get the latest data from HDDTemp and update the states.""" def __init__(self, host, port): """Initialize the data object.""" self.host = host self.port = port self.data = None def update(self): """Get the latest data from HDDTemp running as daemon.""" try: connection = Telnet( host=self.host, port=self.port, timeout=DEFAULT_TIMEOUT) data = connection.read_all().decode( 'ascii').lstrip('|').rstrip('|').split('||') self.data = {data[i].split('|')[0]: data[i] for i in range(0, len(data), 1)} except ConnectionRefusedError: _LOGGER.error( "HDDTemp is not available at %s:%s", self.host, self.port) self.data = None
29.219697
79
0.637283
2,167
0.561836
0
0
620
0.160747
0
0
796
0.206378
e026ba13c5f7c12090e3dee6c5f9a4f65eca3bb7
1,402
py
Python
boomer.py
JohnnySn0w/BabbleBot
03a383b063e4f28049f27f8ec669f22767ed8a87
[ "MIT" ]
1
2019-07-07T01:46:55.000Z
2019-07-07T01:46:55.000Z
boomer.py
JohnnySn0w/BabbleBot
03a383b063e4f28049f27f8ec669f22767ed8a87
[ "MIT" ]
1
2019-07-26T18:34:02.000Z
2019-07-26T18:34:02.000Z
boomer.py
JohnnySn0w/BabbleBot
03a383b063e4f28049f27f8ec669f22767ed8a87
[ "MIT" ]
1
2020-05-10T01:27:48.000Z
2020-05-10T01:27:48.000Z
import random prefix = [ 'Look at you! ', 'Bless ', 'Bless! ', 'I heard about that! ', 'Amen!', 'You and the kids doing alright?', 'Miss ya\'ll!' ] suffix = [ '. Amen!', '. God bless america', '. God bless!', ' haha', '. love ya!', '. love ya\'ll!', ] def add_pre_suf(sentence): if random.randint(1,10) <= 6: if random.randint(1,10) <= 5: sentence = prefix[random.randint(0, len(prefix) - 1)] + sentence else: sentence += suffix[random.randint(0, len(suffix) - 1)] return sentence def add_elipses(sentence): words = sentence.split() for i in range(4, len(words), 5): if random.randint(1,10) <= 7: words[i] += "..." return " ".join(words) def boomer_caps(sentence): seed = random.randint(1, 10) sent_array = sentence.split() if seed in (1, 2, 3): return sentence elif seed in (4, 5): temp_sent = [] for x in sent_array: if random.random() < 0.25: x = x.upper() temp_sent.append(x) return " ".join(temp_sent) elif seed in (6, 7): temp_sent = [] for x in sent_array: if random.random() < 0.5: x = x.upper() temp_sent.append(x) return " ".join(temp_sent) elif seed in (8, 9): return sentence.title() elif seed == 10: return sentence.upper()
23.366667
76
0.53067
0
0
0
0
0
0
0
0
201
0.143367
e026dd61a71f4c0236cf71cd04ff440228426371
1,303
py
Python
bot/views.py
eyobofficial/COVID-19-Mutual-Aid
42d30ce95b0e9c717c5eda3ecaafea2812ec34f7
[ "MIT" ]
null
null
null
bot/views.py
eyobofficial/COVID-19-Mutual-Aid
42d30ce95b0e9c717c5eda3ecaafea2812ec34f7
[ "MIT" ]
5
2020-03-19T17:49:50.000Z
2021-06-10T20:06:14.000Z
bot/views.py
eyobofficial/COVID-19-Mutual-Aid
42d30ce95b0e9c717c5eda3ecaafea2812ec34f7
[ "MIT" ]
null
null
null
import telegram from django.conf import settings from django.shortcuts import redirect from django.utils.decorators import method_decorator from django.views.generic import View from django.views.decorators.csrf import csrf_exempt from braces.views import CsrfExemptMixin from rest_framework.authentication import BasicAuthentication from rest_framework import status from rest_framework.response import Response from rest_framework.views import APIView from rest_framework.permissions import AllowAny from .bots import TelegramBot from .models import TelegramUser as User @method_decorator(csrf_exempt, name='dispatch') class TelegramBotView(APIView): permission_classes = (AllowAny, ) def post(self, request, *args, **kwargs): context = request.data bot = TelegramBot(context) user, _ = User.objects.get_or_create( id=bot.sender['id'], defaults={ 'first_name': bot.sender['first_name'], 'last_name': bot.sender.get('last_name', ''), 'username': bot.sender.get('username', ''), 'is_bot': bot.sender.get('is_bot', False) } ) user.access_count += 1 user.save() bot.process(user) return Response(status=status.HTTP_200_OK)
29.613636
61
0.692249
672
0.515733
0
0
720
0.552571
0
0
100
0.076746
e026df5666a9c260f8a2d313e1edc3eee3cad4f7
9,053
py
Python
code/counterfactual_generative_networks-main/imagenet/train_cgn.py
dummyxyz1/re_counterfactual_generative
4dda8e17a1123a564d60be82c17e9589155fb2e2
[ "MIT" ]
null
null
null
code/counterfactual_generative_networks-main/imagenet/train_cgn.py
dummyxyz1/re_counterfactual_generative
4dda8e17a1123a564d60be82c17e9589155fb2e2
[ "MIT" ]
null
null
null
code/counterfactual_generative_networks-main/imagenet/train_cgn.py
dummyxyz1/re_counterfactual_generative
4dda8e17a1123a564d60be82c17e9589155fb2e2
[ "MIT" ]
null
null
null
import os from datetime import datetime from os.path import join import pathlib from tqdm import tqdm import argparse import torch from torch import nn, optim from torch.autograd import Variable import torchvision from torchvision.transforms import Pad from torchvision.utils import make_grid import repackage repackage.up() from imagenet.models import CGN from imagenet.config import get_cfg_defaults from shared.losses import * from utils import Optimizers from inception_score import * def save_sample_sheet(cgn, u_fixed, sample_path, ep_str): cgn.eval() dev = u_fixed.to(cgn.get_device()) ys = [15, 251, 330, 382, 385, 483, 559, 751, 938, 947, 999] to_save = [] with torch.no_grad(): for y in ys: # generate y_vec = cgn.get_class_vec(y, sz=1) inp = (u_fixed.to(dev), y_vec.to(dev), cgn.truncation) x_gt, mask, premask, foreground, background, bg_mask = cgn(inp) x_gen = mask * foreground + (1 - mask) * background # build class grid to_plot = [premask, foreground, background, x_gen, x_gt] grid = make_grid(torch.cat(to_plot).detach().cpu(), nrow=len(to_plot), padding=2, normalize=True) # add unnormalized mask mask = Pad(2)(mask[0].repeat(3, 1, 1)).detach().cpu() grid = torch.cat([mask, grid], 2) # save to disk to_save.append(grid) del to_plot, mask, premask, foreground, background, x_gen, x_gt # save the image path = join(sample_path, f'cls_sheet_' + ep_str + '.png') torchvision.utils.save_image(torch.cat(to_save, 1), path) cgn.train() def save_sample_single(cgn, u_fixed, sample_path, ep_str): cgn.eval() dev = u_fixed.to(cgn.get_device()) ys = [15, 251, 330, 382, 385, 483, 559, 751, 938, 947, 999] with torch.no_grad(): for y in ys: # generate y_vec = cgn.get_class_vec(y, sz=1) inp = (u_fixed.to(dev), y_vec.to(dev), cgn.truncation) _, mask, premask, foreground, background, _ = cgn(inp) x_gen = mask * foreground + (1 - mask) * background # save_images path = join(sample_path, f'{y}_1_premask_' + ep_str + '.png') torchvision.utils.save_image(premask, path, normalize=True) path = join(sample_path, f'{y}_2_mask_' + ep_str + '.png') torchvision.utils.save_image(mask, path, normalize=True) path = join(sample_path, f'{y}_3_texture_' + ep_str + '.png') torchvision.utils.save_image(foreground, path, normalize=True) path = join(sample_path, f'{y}_4_bgs_' + ep_str + '.png') torchvision.utils.save_image(background, path, normalize=True) path = join(sample_path, f'{y}_5_gen_ims_' + ep_str + '.png') torchvision.utils.save_image(x_gen, path, normalize=True) cgn.train() def fit(cfg, cgn, opts, losses): inception_score_val = list() # total number of episodes, accounted for batch accumulation episodes = cfg.TRAIN.EPISODES episodes *= cfg.TRAIN.BATCH_ACC # directories for experiments time_str = datetime.now().strftime("%Y_%m_%d_%H_%M") if cfg.WEIGHTS_PATH: weights_path = str(pathlib.Path(cfg.WEIGHTS_PATH).parent) start_ep = int(pathlib.Path(cfg.WEIGHTS_PATH).stem[3:]) sample_path = weights_path.replace('weights', 'samples') ep_range = (start_ep, start_ep + episodes) else: model_path = join('imagenet', 'experiments', f'cgn_{time_str}_{cfg.MODEL_NAME}') weights_path = join(model_path, 'weights') sample_path = join(model_path, 'samples') pathlib.Path(weights_path).mkdir(parents=True, exist_ok=True) pathlib.Path(sample_path).mkdir(parents=True, exist_ok=True) ep_range = (0, episodes) # fixed noise sample u_fixed_path = join('imagenet', 'experiments', 'u_fixed.pt') if not os.path.isfile(u_fixed_path) or cfg.LOG.SAMPLED_FIXED_NOISE: u_fixed = cgn.get_noise_vec() torch.save(u_fixed, u_fixed_path) else: u_fixed = torch.load(u_fixed_path) # Training Loop cgn.train() L_l1, L_perc, L_binary, L_mask, L_text, L_bg = losses save_samples = save_sample_single if cfg.LOG.SAVE_SINGLES else save_sample_sheet pbar = tqdm(range(*ep_range)) for i, ep in enumerate(pbar): x_gt, mask, premask, foreground, background, background_mask = cgn() x_gen = mask * foreground + (1 - mask) * background # Losses losses_g = {} losses_g['l1'] = L_l1(x_gen, x_gt) losses_g['perc'] = L_perc(x_gen, x_gt) losses_g['binary'] = L_binary(mask) losses_g['mask'] = L_mask(mask) losses_g['perc_text'] = L_text(x_gt, mask, foreground) losses_g['bg'] = L_bg(background_mask) # backprop losses_g = {k: v.mean() for k, v in losses_g.items()} g_loss = sum(losses_g.values()) g_loss.backward() if (i+1) % cfg.TRAIN.BATCH_ACC == 0: opts.step(['shape', 'bg', 'texture']) # Saving if not i % cfg.LOG.SAVE_ITER: ep_str = f'ep_{ep:07}' save_samples(cgn, u_fixed, sample_path, ep_str) torch.save(cgn.state_dict(), join(weights_path, ep_str + '.pth')) # Logging if cfg.LOG.LOSSES: msg = ''.join([f"[{k}: {v:.3f}]" for k, v in losses_g.items()]) pbar.set_description(msg) # Calculate Inception SCore if cfg.LOG.INCEPTION_SCORE: score, score_std = inception_score(x_gen) inception_score_val.append(score) def main(cfg): # model init cgn = CGN( batch_sz=cfg.TRAIN.BATCH_SZ, truncation=cfg.MODEL.TRUNCATION, pretrained=True, ) print("------CGN-------") print(cgn) if cfg.WEIGHTS_PATH: weights = torch.load(cfg.WEIGHTS_PATH) weights = {k.replace('module.', ''): v for k, v in weights.items()} cgn.load_state_dict(weights) # optimizers opts = Optimizers() opts.set('shape', cgn.f_shape, cfg.LR.SHAPE) opts.set('texture', cgn.f_text, cfg.LR.TEXTURE) opts.set('bg', cgn.f_bg, cfg.LR.BG) # losses L_l1 = ReconstructionLoss(mode='l1', loss_weight=cfg.LAMBDA.L1) L_perc = PerceptualLoss(style_wgts=cfg.LAMBDA.PERC) L_binary = BinaryLoss(loss_weight=cfg.LAMBDA.BINARY) L_mask = MaskLoss(loss_weight=cfg.LAMBDA.MASK) L_text = PercLossText(style_wgts=cfg.LAMBDA.TEXT) L_bg = BackgroundLoss(loss_weight=cfg.LAMBDA.BG) losses = (L_l1, L_perc, L_binary, L_mask, L_text, L_bg) # push to device and train device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') cgn = cgn.to(device) losses = (l.to(device) for l in losses) fit(cfg, cgn, opts, losses) def merge_args_and_cfg(args, cfg): cfg.MODEL_NAME = args.model_name cfg.WEIGHTS_PATH = args.weights_path cfg.LOG.SAMPLED_FIXED_NOISE = args.sampled_fixed_noise cfg.LOG.SAVE_SINGLES = args.save_singles cfg.LOG.SAVE_ITER = args.save_iter cfg.LOG.LOSSES = args.log_losses cfg.LOG.INCEPTION_SCORE = True cfg.TRAIN.EPISODES = args.episodes cfg.TRAIN.BATCH_SZ = args.batch_sz cfg.TRAIN.BATCH_ACC = args.batch_acc cfg.MODEL.TRUNCATION = args.truncation return cfg if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--model_name', default='tmp', help='Weights and samples will be saved under experiments/model_name') parser.add_argument('--weights_path', default='', help='provide path to continue training') parser.add_argument('--sampled_fixed_noise', default=False, action='store_true', help='If you want a different noise vector than provided in the repo') parser.add_argument('--save_singles', default=False, action='store_true', help='Save single images instead of sheets') parser.add_argument('--truncation', type=float, default=1.0, help='Truncation value for noise sampling') parser.add_argument('--episodes', type=int, default=300, help="We don't do dataloading, hence, one episode = one gradient update.") parser.add_argument('--batch_sz', type=int, default=1, help='Batch size, use in conjunciton with batch_acc') parser.add_argument('--batch_acc', type=int, default=4000, help='pseudo_batch_size = batch_acc*batch size') parser.add_argument('--save_iter', type=int, default=4000, help='Save samples/weights every n iter') parser.add_argument('--log_losses', default=False, action='store_true', help='Print out losses') args = parser.parse_args() cfg = get_cfg_defaults() cfg = merge_args_and_cfg(args, cfg) print(cfg) main(cfg)
37.720833
98
0.629515
0
0
0
0
0
0
0
0
1,428
0.157738
e0274bb01109146cf480d663260e32b7e8a8cc2d
580
py
Python
portfolio/urls.py
ramza007/Ramza.io
2172d9ac13e87becbc8644ad5755070f48fab8da
[ "Apache-2.0" ]
3
2019-12-16T16:47:16.000Z
2020-07-28T19:47:34.000Z
portfolio/urls.py
ramza007/Ramza.io
2172d9ac13e87becbc8644ad5755070f48fab8da
[ "Apache-2.0" ]
15
2019-12-05T03:38:19.000Z
2022-03-13T02:35:30.000Z
portfolio/urls.py
ramza007/Ramza.io
2172d9ac13e87becbc8644ad5755070f48fab8da
[ "Apache-2.0" ]
null
null
null
from django.conf.urls import url from django.urls import path, include,re_path from . import views from rest_framework.authtoken.views import obtain_auth_token urlpatterns = [ path('', views.index, name='index'), path('about', views.about, name='about'), path('projects', views.projects, name='projects'), path('photos', views.photos, name='photos'), re_path(r'^api/projects/$', views.ProjectList.as_view()), re_path(r'^api-token-auth/', obtain_auth_token), re_path(r'api/project/project-id/(?P<pk>[0-9]+)/$', views.ProjectDescription.as_view()), ]
34.117647
92
0.7
0
0
0
0
0
0
0
0
138
0.237931
e027abc215159b586950e87882ad8ad4be055155
407
py
Python
tests/resources/mlflow-test-plugin/mlflow_test_plugin/file_store.py
iPieter/kiwi
76b66872fce68873809a0dea112e2ed552ae5b63
[ "Apache-2.0" ]
null
null
null
tests/resources/mlflow-test-plugin/mlflow_test_plugin/file_store.py
iPieter/kiwi
76b66872fce68873809a0dea112e2ed552ae5b63
[ "Apache-2.0" ]
1
2021-01-24T13:34:51.000Z
2021-01-24T13:34:51.000Z
tests/resources/mlflow-test-plugin/mlflow_test_plugin/file_store.py
iPieter/kiwi
76b66872fce68873809a0dea112e2ed552ae5b63
[ "Apache-2.0" ]
null
null
null
from six.moves import urllib from kiwi.store.tracking.file_store import FileStore class PluginFileStore(FileStore): """FileStore provided through entrypoints system""" def __init__(self, store_uri=None, artifact_uri=None): path = urllib.parse.urlparse(store_uri).path if store_uri else None self.is_plugin = True super(PluginFileStore, self).__init__(path, artifact_uri)
31.307692
75
0.746929
321
0.788698
0
0
0
0
0
0
51
0.125307
e02820e74734d672d90f15bf093da7319a0c92ba
12,815
py
Python
tests/server/test_flask_api.py
YuhangCh/terracotta
867ba5f7425fa88881f4c161d81cc7311f4f9c4e
[ "MIT" ]
null
null
null
tests/server/test_flask_api.py
YuhangCh/terracotta
867ba5f7425fa88881f4c161d81cc7311f4f9c4e
[ "MIT" ]
null
null
null
tests/server/test_flask_api.py
YuhangCh/terracotta
867ba5f7425fa88881f4c161d81cc7311f4f9c4e
[ "MIT" ]
null
null
null
from io import BytesIO import json import urllib.parse from collections import OrderedDict from PIL import Image import numpy as np import pytest @pytest.fixture(scope='module') def flask_app(): from terracotta.server import create_app return create_app() @pytest.fixture(scope='module') def client(flask_app): with flask_app.test_client() as client: yield client def test_get_keys(client, use_testdb): rv = client.get('/keys') expected_response = [ {'key': 'key1'}, {'key': 'akey'}, {'key': 'key2', 'description': 'key2'} ] assert rv.status_code == 200 assert expected_response == json.loads(rv.data)['keys'] def test_get_metadata(client, use_testdb): rv = client.get('/metadata/val11/x/val12/') assert rv.status_code == 200 assert ['extra_data'] == json.loads(rv.data)['metadata'] def test_get_metadata_nonexisting(client, use_testdb): rv = client.get('/metadata/val11/x/NONEXISTING/') assert rv.status_code == 404 def test_get_datasets(client, use_testdb): rv = client.get('/datasets') assert rv.status_code == 200 datasets = json.loads(rv.data, object_pairs_hook=OrderedDict)['datasets'] assert len(datasets) == 4 assert OrderedDict([('key1', 'val11'), ('akey', 'x'), ('key2', 'val12')]) in datasets def test_get_datasets_pagination(client, use_testdb): # no page (implicit 0) rv = client.get('/datasets?limit=2') assert rv.status_code == 200 response = json.loads(rv.data, object_pairs_hook=OrderedDict) assert response['limit'] == 2 assert response['page'] == 0 first_datasets = response['datasets'] assert len(first_datasets) == 2 assert OrderedDict([('key1', 'val11'), ('akey', 'x'), ('key2', 'val12')]) in first_datasets # second page rv = client.get('/datasets?limit=2&page=1') assert rv.status_code == 200 response = json.loads(rv.data, object_pairs_hook=OrderedDict) assert response['limit'] == 2 assert response['page'] == 1 last_datasets = response['datasets'] assert len(last_datasets) == 2 assert OrderedDict([('key1', 'val11'), ('akey', 'x'), ('key2', 'val12')]) not in last_datasets # page out of range rv = client.get('/datasets?limit=2&page=1000') assert rv.status_code == 200 assert not json.loads(rv.data)['datasets'] # invalid page rv = client.get('/datasets?page=-1') assert rv.status_code == 400 # invalid limit rv = client.get('/datasets?limit=-1') assert rv.status_code == 400 def test_get_datasets_selective(client, use_testdb): rv = client.get('/datasets?key1=val21') assert rv.status_code == 200 assert len(json.loads(rv.data)['datasets']) == 3 rv = client.get('/datasets?key1=val21&key2=val23') assert rv.status_code == 200 assert len(json.loads(rv.data)['datasets']) == 1 def test_get_datasets_unknown_key(client, use_testdb): rv = client.get('/datasets?UNKNOWN=val21') assert rv.status_code == 400 def test_get_singleband_greyscale(client, use_testdb, raster_file_xyz): import terracotta settings = terracotta.get_settings() x, y, z = raster_file_xyz rv = client.get(f'/singleband/val11/x/val12/{z}/{x}/{y}.png') assert rv.status_code == 200 img = Image.open(BytesIO(rv.data)) assert np.asarray(img).shape == settings.DEFAULT_TILE_SIZE def test_get_singleband_extra_args(client, use_testdb, raster_file_xyz): import terracotta settings = terracotta.get_settings() x, y, z = raster_file_xyz rv = client.get(f'/singleband/val11/x/val12/{z}/{x}/{y}.png?foo=bar&baz=quz') assert rv.status_code == 200 img = Image.open(BytesIO(rv.data)) assert np.asarray(img).shape == settings.DEFAULT_TILE_SIZE def test_get_singleband_cmap(client, use_testdb, raster_file_xyz): import terracotta settings = terracotta.get_settings() x, y, z = raster_file_xyz rv = client.get(f'/singleband/val11/x/val12/{z}/{x}/{y}.png?colormap=jet') assert rv.status_code == 200 img = Image.open(BytesIO(rv.data)) assert np.asarray(img).shape == settings.DEFAULT_TILE_SIZE def test_get_singleband_preview(client, use_testdb): import terracotta settings = terracotta.get_settings() rv = client.get(f'/singleband/val11/x/val12/preview.png?colormap=jet') assert rv.status_code == 200 img = Image.open(BytesIO(rv.data)) assert np.asarray(img).shape == settings.DEFAULT_TILE_SIZE def urlsafe_json(payload): payload_json = json.dumps(payload) return urllib.parse.quote_plus(payload_json, safe=r',.[]{}:"') def test_get_singleband_explicit_cmap(client, use_testdb, raster_file_xyz): import terracotta settings = terracotta.get_settings() x, y, z = raster_file_xyz explicit_cmap = {1: (0, 0, 0), 2.0: (255, 255, 255, 20), 3: '#ffffff', 4: 'abcabc'} rv = client.get(f'/singleband/val11/x/val12/{z}/{x}/{y}.png?colormap=explicit' f'&explicit_color_map={urlsafe_json(explicit_cmap)}') assert rv.status_code == 200, rv.data.decode('utf-8') img = Image.open(BytesIO(rv.data)) assert np.asarray(img).shape == settings.DEFAULT_TILE_SIZE def test_get_singleband_explicit_cmap_invalid(client, use_testdb, raster_file_xyz): x, y, z = raster_file_xyz explicit_cmap = {1: (0, 0, 0), 2: (255, 255, 255), 3: '#ffffff', 4: 'abcabc'} rv = client.get(f'/singleband/val11/x/val12/{z}/{x}/{y}.png?' f'explicit_color_map={urlsafe_json(explicit_cmap)}') assert rv.status_code == 400 rv = client.get(f'/singleband/val11/x/val12/{z}/{x}/{y}.png?colormap=jet' f'&explicit_color_map={urlsafe_json(explicit_cmap)}') assert rv.status_code == 400 rv = client.get(f'/singleband/val11/x/val12/{z}/{x}/{y}.png?colormap=explicit') assert rv.status_code == 400 explicit_cmap[3] = 'omgomg' rv = client.get(f'/singleband/val11/x/val12/{z}/{x}/{y}.png?colormap=explicit' f'&explicit_color_map={urlsafe_json(explicit_cmap)}') assert rv.status_code == 400 explicit_cmap = [(255, 255, 255)] rv = client.get(f'/singleband/val11/x/val12/{z}/{x}/{y}.png?colormap=explicit' f'&explicit_color_map={urlsafe_json(explicit_cmap)}') assert rv.status_code == 400 rv = client.get(f'/singleband/val11/x/val12/{z}/{x}/{y}.png?colormap=explicit' f'&explicit_color_map=foo') assert rv.status_code == 400 def test_get_singleband_stretch(client, use_testdb, raster_file_xyz): import terracotta settings = terracotta.get_settings() x, y, z = raster_file_xyz for stretch_range in ('[0,1]', '[0,null]', '[null, 1]', '[null,null]', 'null'): rv = client.get(f'/singleband/val11/x/val12/{z}/{x}/{y}.png?stretch_range={stretch_range}') assert rv.status_code == 200 img = Image.open(BytesIO(rv.data)) assert np.asarray(img).shape == settings.DEFAULT_TILE_SIZE def test_get_singleband_out_of_bounds(client, use_testdb): import terracotta settings = terracotta.get_settings() x, y, z = (0, 0, 10) rv = client.get(f'/singleband/val11/x/val12/{z}/{x}/{y}.png') assert rv.status_code == 200 img = Image.open(BytesIO(rv.data)) assert np.asarray(img).shape == settings.DEFAULT_TILE_SIZE assert np.all(np.asarray(img) == 0) def test_get_singleband_unknown_cmap(client, use_testdb, raster_file_xyz): x, y, z = raster_file_xyz rv = client.get(f'/singleband/val11/x/val12/{z}/{x}/{y}.png?colormap=UNKNOWN') assert rv.status_code == 400 def test_get_rgb(client, use_testdb, raster_file_xyz): import terracotta settings = terracotta.get_settings() x, y, z = raster_file_xyz rv = client.get(f'/rgb/val21/x/{z}/{x}/{y}.png?r=val22&g=val23&b=val24') assert rv.status_code == 200 img = Image.open(BytesIO(rv.data)) assert np.asarray(img).shape == (*settings.DEFAULT_TILE_SIZE, 3) def test_get_rgb_preview(client, use_testdb): import terracotta settings = terracotta.get_settings() rv = client.get(f'/rgb/val21/x/preview.png?r=val22&g=val23&b=val24') assert rv.status_code == 200 img = Image.open(BytesIO(rv.data)) assert np.asarray(img).shape == (*settings.DEFAULT_TILE_SIZE, 3) def test_get_rgb_extra_args(client, use_testdb, raster_file_xyz): import terracotta settings = terracotta.get_settings() x, y, z = raster_file_xyz rv = client.get(f'/rgb/val21/x/{z}/{x}/{y}.png?r=val22&g=val23&b=val24&foo=bar&baz=quz') assert rv.status_code == 200 img = Image.open(BytesIO(rv.data)) assert np.asarray(img).shape == (*settings.DEFAULT_TILE_SIZE, 3) def test_get_rgb_stretch(client, use_testdb, raster_file_xyz): import terracotta settings = terracotta.get_settings() x, y, z = raster_file_xyz for stretch_range in ('[0,10000]', '[0,null]', '[null, 10000]', '[null,null]', 'null'): rv = client.get(f'/rgb/val21/x/{z}/{x}/{y}.png?r=val22&g=val23&b=val24&' f'r_range={stretch_range}&b_range={stretch_range}&g_range={stretch_range}') assert rv.status_code == 200, rv.data img = Image.open(BytesIO(rv.data)) assert np.asarray(img).shape == (*settings.DEFAULT_TILE_SIZE, 3) def test_get_compute(client, use_testdb, raster_file_xyz): import terracotta settings = terracotta.get_settings() # default tile size x, y, z = raster_file_xyz rv = client.get( f'/compute/val21/x/{z}/{x}/{y}.png' '?expression=v1*v2&v1=val22&v2=val23' '&stretch_range=[0,10000]' ) assert rv.status_code == 200 img = Image.open(BytesIO(rv.data)) assert np.asarray(img).shape == settings.DEFAULT_TILE_SIZE # custom tile size rv = client.get( f'/compute/val21/x/{z}/{x}/{y}.png' '?expression=v1*v2&v1=val22&v2=val23' '&stretch_range=[0,10000]' '&tile_size=[128,128]' ) assert rv.status_code == 200 img = Image.open(BytesIO(rv.data)) assert np.asarray(img).shape == (128, 128) def test_get_compute_preview(client, use_testdb): import terracotta settings = terracotta.get_settings() rv = client.get( f'/compute/val21/x/preview.png' '?expression=v1*v2&v1=val22&v2=val23' '&stretch_range=[0,10000]' ) assert rv.status_code == 200 img = Image.open(BytesIO(rv.data)) assert np.asarray(img).shape == settings.DEFAULT_TILE_SIZE def test_get_compute_invalid(client, use_testdb, raster_file_xyz): x, y, z = raster_file_xyz # too few keys rv = client.get( f'/compute/val21/{z}/{x}/{y}.png' '?expression=v1*v2&v1=val22&v2=val23' '&stretch_range=[0,10000]' ) assert rv.status_code == 400 # invalid expression rv = client.get( f'/compute/val21/x/preview.png' '?expression=__builtins__["dir"](v1)&v1=val22' '&stretch_range=[0,10000]' ) assert rv.status_code == 400 # no stretch range rv = client.get( f'/compute/val21/x/{z}/{x}/{y}.png' '?expression=v1*v2&v1=val22&v2=val23' ) assert rv.status_code == 400 # no expression rv = client.get( f'/compute/val21/x/{z}/{x}/{y}.png' '?stretch_range=[0,10000)' ) assert rv.status_code == 400 # missing operand rv = client.get( f'/compute/val21/x/{z}/{x}/{y}.png' '?expression=v1*v2' '&stretch_range=[0,10000)' ) assert rv.status_code == 400 # invalid stretch range (syntax) rv = client.get( f'/compute/val21/x/{z}/{x}/{y}.png' '?expression=v1*v2&v1=val22&v2=val23' '&stretch_range=[0,10000)' ) assert rv.status_code == 400 # invalid stretch range (value) rv = client.get( f'/compute/val21/x/{z}/{x}/{y}.png' '?expression=v1*v2&v1=val22&v2=val23' '&stretch_range=[10000,0]' ) assert rv.status_code == 400 def test_get_colormap(client): rv = client.get('/colormap?stretch_range=[0,1]&num_values=100') assert rv.status_code == 200 assert len(json.loads(rv.data)['colormap']) == 100 def test_get_colormap_invalid(client): rv = client.get('/colormap?stretch_range=[0,1') assert rv.status_code == 400 def test_get_colormap_extra_args(client): rv = client.get('/colormap?stretch_range=[0,1]&num_values=100&foo=bar&baz=quz') assert rv.status_code == 200 assert len(json.loads(rv.data)['colormap']) == 100 def test_get_spec(client): from terracotta import __version__ rv = client.get('/swagger.json') assert rv.status_code == 200 assert json.loads(rv.data) assert __version__ in rv.data.decode('utf-8') rv = client.get('/apidoc') assert rv.status_code == 200 assert b'Terracotta' in rv.data
30.731415
99
0.65595
0
0
87
0.006789
236
0.018416
0
0
3,504
0.27343
e02908fac191deeaa9eb04515ee51d7d466320c5
1,695
py
Python
url.py
matthieucan/shorturl
a7f7fab61e8b23b352590797ca4959ed166c865e
[ "WTFPL" ]
1
2018-10-19T01:57:29.000Z
2018-10-19T01:57:29.000Z
url.py
matthieucan/shorturl
a7f7fab61e8b23b352590797ca4959ed166c865e
[ "WTFPL" ]
null
null
null
url.py
matthieucan/shorturl
a7f7fab61e8b23b352590797ca4959ed166c865e
[ "WTFPL" ]
null
null
null
def base_conv(n, input_base=10, output_base=10): """ Converts a number n from base input_base to base output_base. The following symbols are used to represent numbers: 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ n can be an int if input_base <= 10, and a string otherwise. The result will be a string. """ numbers = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" ## base 10 conversion n = str(n) size = len(n) baseten = 0 for i in range(size): baseten += numbers.index(n[i]) * input_base ** (size - 1 - i) ## base output_base conversion # we search the biggest number m such that n^m < x max_power = 0 while output_base ** (max_power + 1) <= baseten: max_power += 1 result = "" for i in range(max_power + 1): coeff = baseten / (output_base ** (max_power - i)) baseten -= coeff * (output_base ** (max_power - i)) result += numbers[coeff] return result if __name__ == "__main__": assert(base_conv(10) == "10") assert(base_conv(42) == "42") assert(base_conv(5673576) == "5673576") assert(base_conv(10, input_base=2) == "2") assert(base_conv(101010, input_base=2) == "42") assert(base_conv(43, input_base=10, output_base=2) == "101011") assert(base_conv(256**3 - 1, input_base=10, output_base=16) == "ffffff") assert(base_conv("d9bbb9d0ceabf", input_base=16, output_base=8) == "154673563503165277") assert(base_conv("154673563503165277", input_base=8, output_base=10) == "3830404793297599") assert(base_conv(0, input_base=3, output_base=50) == "0")
36.06383
78
0.640708
0
0
0
0
0
0
0
0
597
0.352212
e02960393a5a94bda69769c1a73c609b148e700d
13,612
py
Python
src/qtt/qiskit/passes.py
codecrap/qtt
39a8bf21f7bcab94940a66f4d553a14bf34f82b0
[ "MIT" ]
null
null
null
src/qtt/qiskit/passes.py
codecrap/qtt
39a8bf21f7bcab94940a66f4d553a14bf34f82b0
[ "MIT" ]
null
null
null
src/qtt/qiskit/passes.py
codecrap/qtt
39a8bf21f7bcab94940a66f4d553a14bf34f82b0
[ "MIT" ]
null
null
null
import logging from typing import Dict, List, Optional import numpy as np import qiskit from qiskit.circuit import Barrier, Delay, Reset from qiskit.circuit.library import (CRXGate, CRYGate, CRZGate, CZGate, PhaseGate, RXGate, RYGate, RZGate, U1Gate, U2Gate, U3Gate, UGate) from qiskit.circuit.library.standard_gates import (CU1Gate, RZZGate, SdgGate, SGate, TdgGate, TGate, ZGate) from qiskit.circuit.quantumcircuit import QuantumCircuit from qiskit.converters.circuit_to_dag import circuit_to_dag from qiskit.dagcircuit import DAGCircuit from qiskit.transpiler.basepasses import TransformationPass logger = logging.getLogger(__name__) class RemoveSmallRotations(TransformationPass): """Return a circuit with small rotation gates removed.""" def __init__(self, epsilon: float = 0, modulo2pi=False): """Remove all small rotations from a circuit Args: epsilon: Threshold for rotation angle to be removed modulo2pi: If True, then rotations multiples of 2pi are removed as well """ super().__init__() self.epsilon = epsilon self._empty_dag1 = qiskit.converters.circuit_to_dag(QuantumCircuit(1)) self._empty_dag2 = qiskit.converters.circuit_to_dag(QuantumCircuit(2)) self.mod2pi = modulo2pi def run(self, dag: DAGCircuit) -> DAGCircuit: """Run the pass on `dag`. Args: dag: input dag. Returns: Output dag with small rotations removed """ def modulo_2pi(x): x = float(x) return np.mod(x + np.pi, 2 * np.pi) - np.pi for node in dag.op_nodes(): if isinstance(node.op, (PhaseGate, RXGate, RYGate, RZGate)): if node.op.is_parameterized(): # for parameterized gates we do not optimize pass else: phi = float(node.op.params[0]) if self.mod2pi: phi = modulo_2pi(phi) if np.abs(phi) <= self.epsilon: dag.substitute_node_with_dag(node, self._empty_dag1) elif isinstance(node.op, (CRXGate, CRYGate, CRZGate)): if node.op.is_parameterized(): # for parameterized gates we do not optimize pass else: phi = float(node.op.params[0]) if self.mod2pi: phi = modulo_2pi(phi) if np.abs(phi) <= self.epsilon: dag.substitute_node_with_dag(node, self._empty_dag2) return dag class RemoveDiagonalGatesAfterInput(TransformationPass): """Remove diagonal gates (including diagonal 2Q gates) at the start of a circuit. Transpiler pass to remove diagonal gates (like RZ, T, Z, etc) at the start of a circuit. Including diagonal 2Q gates. Nodes after a reset are also included. """ def run(self, dag): """Run the RemoveDiagonalGatesBeforeMeasure pass on `dag`. Args: dag (DAGCircuit): the DAG to be optimized. Returns: DAGCircuit: the optimized DAG. """ diagonal_1q_gates = (RZGate, ZGate, TGate, SGate, TdgGate, SdgGate, U1Gate) diagonal_2q_gates = (CZGate, CRZGate, CU1Gate, RZZGate) nodes_to_remove = set() for input_node in (dag.input_map.values()): try: successor = next(dag.quantum_successors(input_node)) except StopIteration: continue if successor.type == "op" and isinstance(successor.op, diagonal_1q_gates): nodes_to_remove.add(successor) def valid_predecessor(s): """ Return True of node is valid predecessor for removal """ if s.type == 'in': return True if s.type == "op" and isinstance(s.op, Reset): return True return False if successor.type == "op" and isinstance(successor.op, diagonal_2q_gates): predecessors = dag.quantum_predecessors(successor) if all(valid_predecessor(s) for s in predecessors): nodes_to_remove.add(successor) for node_to_remove in nodes_to_remove: dag.remove_op_node(node_to_remove) return dag class DecomposeU(TransformationPass): """ Decompose U gates into elementary rotations Rx, Ry, Rz The U gates are decomposed using McKay decomposition. """ def __init__(self, verbose=0): """ Args: """ super().__init__() self._subdags = [] self.verbose = verbose self.initial_layout = None def ugate_replacement_circuit(self, ugate): qc = QuantumCircuit(1) if isinstance(ugate, (U3Gate, UGate)): theta, phi, lam = ugate.params if theta == np.pi/2: # a u2 gate qc.rz(lam - np.pi / 2, 0) qc.rx(np.pi / 2, 0) qc.rz(phi + np.pi / 2, 0) else: # from https://arxiv.org/pdf/1707.03429.pdf qc.rz(lam, 0) qc.rx(np.pi / 2, 0) qc.rz(theta + np.pi, 0) qc.rx(np.pi / 2, 0) qc.rz(phi + np.pi, 0) elif isinstance(ugate, U2Gate): phi, lam = ugate.params qc.rz(lam - np.pi / 2, 0) qc.rx(np.pi / 2, 0) qc.rz(phi + np.pi / 2, 0) elif isinstance(ugate, (U1Gate, PhaseGate)): lam, = ugate.params qc.rz(lam, 0) else: raise Exception(f'unknown gate type {ugate}') return qc def run(self, dag: DAGCircuit) -> DAGCircuit: """Run the Decompose pass on `dag`. Args: dag: input DAG. Returns: Output DAG where ``U`` gates have been decomposed. """ # Walk through the DAG and expand each node if required for node in dag.op_nodes(): if isinstance(node.op, (PhaseGate, U1Gate, U2Gate, U3Gate, UGate)): subdag = circuit_to_dag(self.ugate_replacement_circuit(node.op)) dag.substitute_node_with_dag(node, subdag) return dag class DecomposeCX(TransformationPass): """ Decompose CX into CZ and single qubit rotations """ def __init__(self, mode: str = 'ry'): """ Args: """ super().__init__() self._subdags: List = [] self.initial_layout = None self.gate = qiskit.circuit.library.CXGate self.decomposition = QuantumCircuit(2) if mode == 'ry': self.decomposition.ry(-np.pi / 2, 1) self.decomposition.cz(0, 1) self.decomposition.ry(np.pi / 2, 1) else: self.decomposition.h(1) self.decomposition.cz(0, 1) self.decomposition.h(1) self._dag = circuit_to_dag(self.decomposition) def run(self, dag: DAGCircuit) -> DAGCircuit: """Run the Decompose pass on `dag`. Args: dag: input dag. Returns: output dag where ``CX`` was expanded. """ # Walk through the DAG and expand each non-basis node for node in dag.op_nodes(self.gate): dag.substitute_node_with_dag(node, self._dag) return dag class SequentialPass(TransformationPass): """Adds barriers between gates to make the circuit sequential.""" def run(self, dag): new_dag = DAGCircuit() for qreg in dag.qregs.values(): new_dag.add_qreg(qreg) for creg in dag.cregs.values(): new_dag.add_creg(creg) for node in dag.op_nodes(): new_dag.apply_operation_back(node.op, node.qargs, node.cargs) logger.info('SequentialPass: adding node {node.name}') if node.name in ['barrier', 'measure']: continue new_dag.apply_operation_back(Barrier(new_dag.num_qubits()), list(new_dag.qubits), []) return new_dag class LinearTopologyParallelPass(TransformationPass): """Adds barriers to enforce a linear topology The barrier are placed between gates such that no two qubit gates are executed at the same time and only single qubit gates on non-neighboring qubits can be executed in parallel. It assumes a linear topology.""" def run(self, dag): new_dag = DAGCircuit() for qreg in dag.qregs.values(): new_dag.add_qreg(qreg) for creg in dag.cregs.values(): new_dag.add_creg(creg) for ii, layer in enumerate(dag.layers()): gates_1q = [] gates_2q = [] other_gates = [] for node in layer['graph'].op_nodes(): if len(node.qargs) == 2: gates_2q.append(node) elif len(node.qargs) == 1: gates_1q.append(node) else: logging.info(f'layer {ii}: other type of node {node}') other_gates.append(node) even = [] odd = [] for node in gates_1q: if node.qargs[0].index % 2 == 0: even.append(node) else: odd.append(node) logging.info( f'layer {ii}: 2q gates {len(gates_2q)}, even {len(even)} odd {len(odd)}, other {len(other_gates)}') if len(even) > 0: for node in even: new_dag.apply_operation_back(node.op, node.qargs, node.cargs) if not isinstance(node.op, Barrier): new_dag.apply_operation_back(Barrier(new_dag.num_qubits()), list(new_dag.qubits), []) if len(odd) > 0: for node in odd: new_dag.apply_operation_back(node.op, node.qargs, node.cargs) if not isinstance(node.op, Barrier): new_dag.apply_operation_back(Barrier(new_dag.num_qubits()), list(new_dag.qubits), []) for node in gates_2q: new_dag.apply_operation_back(node.op, node.qargs, node.cargs) if not isinstance(node.op, Barrier): new_dag.apply_operation_back(Barrier(new_dag.num_qubits()), list(new_dag.qubits), []) for node in other_gates: new_dag.apply_operation_back(node.op, node.qargs, node.cargs) if not isinstance(node.op, Barrier): new_dag.apply_operation_back(Barrier(new_dag.num_qubits()), list(new_dag.qubits), []) return new_dag class DelayPass(TransformationPass): """Adds delay gates when the qubits are idle. For every layer of the circuit it finds the gate that lasts the longest and applies appropriate delays on the other qubits. """ def __init__(self, gate_durations: Dict[str, float], delay_quantum: Optional[float] = None): """ Args: gate_durations: Gate durations in the units of dt """ super().__init__() self.gate_durations = gate_durations self.delay_quantum = delay_quantum def add_delay_to_dag(self, duration, dag, qargs, cargs): if self.delay_quantum: number_of_delays = int(duration/self.delay_quantum) for ii in range(number_of_delays): dag.apply_operation_back(Delay(self.delay_quantum), qargs, cargs) else: dag.apply_operation_back(Delay(duration), qargs, cargs) @staticmethod def _determine_delay_target_qubits(dag, layer): """ Determine qubits in specified layer which require a delay gate """ partition = layer['partition'] lst = list(dag.qubits) for el in partition: for q in el: if q in lst: lst.remove(q) return lst def run(self, dag): new_dag = DAGCircuit() for qreg in dag.qregs.values(): new_dag.add_qreg(qreg) for creg in dag.cregs.values(): new_dag.add_creg(creg) for layer_idx, layer in enumerate(dag.layers()): max_duration = 0 durations = {} for node in layer['graph'].op_nodes(): if node.name in self.gate_durations: max_duration = max(max_duration, self.gate_durations[node.name]) for q in node.qargs: durations[q] = self.gate_durations[node.name] else: logger.info('layer {layer_idx}, could not find duration for node {node.name}') new_dag.apply_operation_back(node.op, node.qargs, node.cargs) partition = layer['partition'] if len(partition) == 0: continue lst = DelayPass._determine_delay_target_qubits(dag, layer) logger.info(f'layer: {layer_idx}: lst {lst}, durations {durations}') for el in lst: logger.info(f'apply_operation_back: {[el]}') self.add_delay_to_dag(max_duration, new_dag, [el], []) for q in durations: if max_duration - durations[q] > 0: self.add_delay_to_dag(max_duration - durations[q], new_dag, [q], []) return new_dag
36.591398
115
0.563914
12,778
0.938731
0
0
350
0.025713
0
0
2,881
0.211651
e029ad3e92c68df36a0c0c69723e696b156c5364
5,616
py
Python
IAFNNESTA.py
JonathanAlis/IAFNNESTA
6845bed7e41a162a60e65d709f37cf975c8c8a4e
[ "MIT" ]
3
2021-05-13T05:51:42.000Z
2022-02-06T13:36:52.000Z
IAFNNESTA.py
JonathanAlis/IAFNNESTA
6845bed7e41a162a60e65d709f37cf975c8c8a4e
[ "MIT" ]
null
null
null
IAFNNESTA.py
JonathanAlis/IAFNNESTA
6845bed7e41a162a60e65d709f37cf975c8c8a4e
[ "MIT" ]
1
2022-02-06T13:36:39.000Z
2022-02-06T13:36:39.000Z
def help(): return ''' Isotropic-Anisotropic Filtering Norm Nesterov Algorithm Solves the filtering norm minimization + quadratic term problem Nesterov algorithm, with continuation: argmin_x || iaFN(x) ||_1/2 subjected to ||b - Ax||_2^2 < delta If no filter is provided, solves the L1. Continuation is performed by sequentially applying Nesterov's algorithm with a decreasing sequence of values of mu0 >= mu >= muf The observation matrix A must be a projector (non projector not implemented yet) Inputs: IAFNNESTA(b, #Observed data, a m x 1 array A=identity,At=identity, # measurement matrix and adjoint (either a matrix, function handles) muf=0.0001, #final mu value, smaller leads to higher accuracy delta, #l2 error bound. This enforces how close the variable #must fit the observations b, i.e. || y - Ax ||_2 <= delta #If delta = 0, enforces y = Ax #delta = sqrt(m + 2*sqrt(2*m))*sigma, where sigma=std(noise). L1w=1,L2w=0, #weights of L1 (anisotropic) and L2(isotropic) norms verbose=0, #whether to print internal steps maxit=1000, #maximum iterations at the inner loop x0=[], #initial solution, if not provided, will be At(b) U=identity,Ut=identity, #Analysis/Synthesis operators stopTest=1, #stopTest == 1 : stop when the relative change in the objective function is less than TolVar stopTest == 2 : stop with the l_infinity norm of difference in the xk variable is less than TolVar TolVar = 1e-5, #tolerance for the stopping criteria AAtinv=[], #not implemented normU=1, #if U is provided, this should be norm(U) H=[],Ht=[]): #filter operations in sparse matrix form #also accepts the string 'tv' as input, #in that case, calculates the tv norm Outputs: return xk, #estimated x reconstructed signal niter, #number of iterations residuals #first column is the residual at every step, #second column is the value of f_mu at every step ''' import IAFNNesterov import numpy as np from scipy import sparse import fil2mat def identity(x): return x def IAFNNESTA(b,sig_size=0,A=identity,At=identity,muf=0.0001,delta=0,L1w=1,L2w=0,verbose=0,MaxIntIter=5,maxit=1000,x0=[],U=identity,Ut=identity,stopTest=1,TolVar = 1e-5,AAtinv=[],normU=1,H=[]): if delta<0: raise Exception('Delta must not be negative') if not callable(A): #If not function A=lambda x:np.matmul(A,x) At=lambda x:np.matmul(np.transpose(A),x) b=b.reshape((-1,1)) Atb=At(b) if sig_size==0: sig_size=Atb.shape if callable(AAtinv): AtAAtb = At( AAtinv(b) ) else: if len(AAtinv)>0: AAtinv=lambda x: np.matmul(AAtinv,x) AtAAtb = At( AAtinv(b) ) else: #default AtAAtb = Atb AAtinv=identity if len(x0)==0: x0 = AtAAtb if len(H)==0: Hf=identity Hft=identity else: if not sparse.issparse(H): if isinstance(H, str): if H=='tv': hs=[] hs.append(np.array([[1,-1]])) hs.append(np.array([[1],[-1]])) H,_,_,_=fil2mat.fil2mat(hs,sig_size) else: print('H not recognized. Must be a sparse matrix, a list of filters or the string tv') else: #list of filters: H,_,_,_=fil2mat.fil2mat(H,sig_size) #print(H.shape) #print(H) #print(type(H)) Ht=H.transpose() Hf=lambda x: H@x Hft=lambda x: Ht@x HU=lambda x: Hf(U(x)) UtHt=lambda x: Ut(Hft(x)) typemin='' if L1w>0: typemin+="iso" if L2w>0: typemin+="aniso" typemin+='tropic ' if callable(H): typemin+='filtering norm ' mu0=0 if L1w>0: mu0+=L1w*0.9*np.max(np.linalg.norm(HU(x0),1)) if L2w>0: mu0+=L2w*0.9*np.max(np.linalg.norm(HU(x0),2)) niter = 0 Gamma = np.power(muf/mu0,1/MaxIntIter) mu = mu0 Gammat= np.power(TolVar/0.1,1/MaxIntIter) TolVar = 0.1 for i in range(MaxIntIter): mu = mu*Gamma TolVar=TolVar*Gammat; if verbose>0: #if k%verbose==0: print("\tBeginning %s Minimization; mu = %g\n" %(typemin,mu)) xk,niter_int,res = IAFNNesterov.IAFNNesterov(b,A=A,At=At,mu=mu,delta=delta,L1w=L1w,L2w=L2w,verbose=verbose,maxit=maxit,x0=x0,U=U,Ut=Ut,stopTest=stopTest,TolVar = TolVar,AAtinv=AAtinv,normU=normU,H=Hf,Ht=Hft) xplug = xk niter = niter_int + niter if i==0: residuals=res else: residuals = np.vstack((residuals, res)) return xk.reshape(sig_size) if __name__ == "__main__": print(help())
35.770701
215
0.51834
0
0
0
0
0
0
0
0
2,982
0.530983
e029f3704209eae0d9983e10eec83eadf0c6a288
6,952
py
Python
hypatia/util/__init__.py
pfw/hypatia
407cd62e4817c85188aa6abdf204c5aaff5ab570
[ "ZPL-2.1" ]
null
null
null
hypatia/util/__init__.py
pfw/hypatia
407cd62e4817c85188aa6abdf204c5aaff5ab570
[ "ZPL-2.1" ]
null
null
null
hypatia/util/__init__.py
pfw/hypatia
407cd62e4817c85188aa6abdf204c5aaff5ab570
[ "ZPL-2.1" ]
null
null
null
import itertools import BTrees from persistent import Persistent from ZODB.broken import Broken from zope.interface import implementer _marker = object() from .. import exc from ..interfaces import ( IResultSet, STABLE, ) @implementer(IResultSet) class ResultSet(object): """Implements :class:`hypatia.interfaces.IResultSet`""" family = BTrees.family64 def __init__(self, ids, numids, resolver, sort_type=None): self.ids = ids # only guaranteed to be iterable, not sliceable self.numids = numids self.resolver = resolver self.sort_type = sort_type def __len__(self): return self.numids def sort( self, index, reverse=False, limit=None, sort_type=None, raise_unsortable=True ): if sort_type is None: sort_type = self.sort_type ids = self.ids if not hasattr(ids, "__len__"): # indexes have no obligation to be able to sort generators ids = list(ids) self.ids = ids ids = index.sort( self.ids, reverse=reverse, limit=limit, sort_type=sort_type, raise_unsortable=raise_unsortable, ) numids = self.numids if limit: numids = min(numids, limit) return self.__class__(ids, numids, self.resolver, sort_type=STABLE) def first(self, resolve=True): # return the first object or None resolver = self.resolver if resolver is None or not resolve: for id_ in self.ids: # if self.ids is not a list or a tuple, allow this result set # to be iterated after first() is called and allow first() to # be idempotent if not hasattr(self.ids, "__len__"): self.ids = itertools.chain([id_], self.ids) return id_ else: for id_ in self.ids: # if self.ids is not a list or a tuple, allow this result set # to be iterated after first() is called and allow first() to # be idempotent if not hasattr(self.ids, "__len__"): self.ids = itertools.chain([id_], self.ids) return resolver(id_) def one(self, resolve=True): if self.numids == 1: return self.first(resolve=resolve) if self.numids > 1: raise exc.MultipleResults(self) else: raise exc.NoResults(self) def _resolve_all(self, resolver): for id_ in self.ids: yield resolver(id_) def all(self, resolve=True): resolver = self.resolver if resolver is None or not resolve: return self.ids else: return self._resolve_all(resolver) def __iter__(self): return iter(self.all()) def intersect(self, docids): """Intersect this resultset with a sequence of docids or another resultset. Returns a new ResultSet.""" # NB: we can't use an intersection function here because # self.ids may be a generator if isinstance(docids, ResultSet): docids = docids.ids filtered_ids = [x for x in self.ids if x in docids] return self.__class__(filtered_ids, len(filtered_ids), self.resolver) class BaseIndexMixin(object): """Mixin class for indexes that implements common behavior""" family = BTrees.family64 def discriminate(self, obj, default): """See interface IIndexInjection""" if callable(self.discriminator): value = self.discriminator(obj, _marker) else: value = getattr(obj, self.discriminator, _marker) if value is _marker: return default if isinstance(value, Persistent): raise ValueError("Catalog cannot index persistent object %s" % value) if isinstance(value, Broken): raise ValueError("Catalog cannot index broken object %s" % value) return value def reindex_doc(self, docid, obj): """See interface IIndexInjection""" self.unindex_doc(docid) self.index_doc(docid, obj) def indexed_count(self): """See IIndexedDocuments""" return len(self.indexed()) def not_indexed_count(self): """See IIndexedDocuments""" return len(self.not_indexed()) def docids(self): """See IIndexedDocuments""" not_indexed = self.not_indexed() indexed = self.indexed() if len(not_indexed) == 0: return self.family.IF.Set(indexed) elif len(indexed) == 0: return not_indexed indexed = self.family.IF.Set(indexed) return self.family.IF.union(not_indexed, indexed) def docids_count(self): """See IIndexedDocuments""" return len(self.docids()) def apply_intersect(self, query, docids): """Default apply_intersect implementation""" result = self.apply(query) if docids is None: return result return self.family.IF.weightedIntersection(result, docids)[1] def _negate(self, apply_func, *args, **kw): positive = apply_func(*args, **kw) all = self.docids() if len(positive) == 0: return all return self.family.IF.difference(all, positive) def qname(self): # used in query representations; __name__ should be set by # catalog __setitem__ but if it's not, we fall back to a generic # representation return getattr( self, "__name__", str(self), ) def resultset_from_query(self, query, names=None, resolver=None): # default resultset factory; meant to be overridden by systems that # have a default resolver. NB: although the default implementation # below does not access "self", so it would appear that this could be # turned into a classmeth or staticmethod, subclasses that override may # expect self, so this is a plain method. docids = query._apply(names) numdocs = len(docids) return ResultSet(docids, numdocs, resolver) def flush(self, *arg, **kw): """Hookable by upstream systems""" pass class RichComparisonMixin(object): # Stolen from http://www.voidspace.org.uk/python/recipebook.shtml#comparison def __eq__(self, other): raise NotImplementedError("Equality not implemented") def __lt__(self, other): raise NotImplementedError("Less than not implemented") def __ne__(self, other): return not self.__eq__(other) def __gt__(self, other): return not (self.__lt__(other) or self.__eq__(other)) def __le__(self, other): return self.__eq__(other) or self.__lt__(other) def __ge__(self, other): return self.__eq__(other) or self.__gt__(other)
31.174888
85
0.60889
6,685
0.961594
94
0.013521
3,120
0.448792
0
0
1,682
0.241945
e02a89e62a53d61fc9086acef78dc03df26f1de7
2,140
py
Python
backend/listings/migrations/0001_initial.py
relaxxpls/Music-Control
76f5d10904f820607b3eb756850d5c5d7d89d875
[ "MIT" ]
null
null
null
backend/listings/migrations/0001_initial.py
relaxxpls/Music-Control
76f5d10904f820607b3eb756850d5c5d7d89d875
[ "MIT" ]
null
null
null
backend/listings/migrations/0001_initial.py
relaxxpls/Music-Control
76f5d10904f820607b3eb756850d5c5d7d89d875
[ "MIT" ]
null
null
null
# Generated by Django 3.2.3 on 2021-05-30 04:28 from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ('realtors', '0001_initial'), ] operations = [ migrations.CreateModel( name='Listing', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('slug', models.CharField(max_length=200, unique=True)), ('title', models.CharField(max_length=150)), ('address', models.CharField(default='', max_length=150)), ('city', models.CharField(max_length=100)), ('state', models.CharField(max_length=100)), ('zipcode', models.CharField(max_length=15)), ('description', models.TextField(blank=True)), ('sale_type', models.CharField(choices=[('For Sale', 'For Sale'), ('For Rent', 'For Rent')], default='For Sale', max_length=50)), ('price', models.IntegerField()), ('bedrooms', models.IntegerField()), ('bathrooms', models.DecimalField(decimal_places=1, max_digits=2)), ('home_type', models.CharField(choices=[('House', 'House'), ('Condo', 'Condo'), ('Townhouse', 'Townhouse')], default='House', max_length=50)), ('sqft', models.IntegerField()), ('open_house', models.BooleanField(default=False)), ('photo_main', models.ImageField(upload_to='photos/%Y/%m/%d')), ('photo_1', models.ImageField(blank=True, upload_to='photos/%Y/%m/%d')), ('photo_2', models.ImageField(blank=True, upload_to='photos/%Y/%m/%d')), ('is_published', models.BooleanField(default=True)), ('list_date', models.DateTimeField(blank=True, default=django.utils.timezone.now)), ('realtor', models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING, to='realtors.realtor')), ], ), ]
48.636364
158
0.583645
1,985
0.92757
0
0
0
0
0
0
455
0.212617
e02ae313e5c6ccbda99f1c423609cc20c6a48485
483
py
Python
examples/example_without_CommandSet/my_listeners.py
LeConstellationniste/DiscordFramework
24d4b9b7cb0a21d3cec9d5362ab0828c5e15a3af
[ "CC0-1.0" ]
1
2021-01-27T14:55:03.000Z
2021-01-27T14:55:03.000Z
examples/example_without_CommandSet/my_listeners.py
LeConstellationniste/DiscordFramework
24d4b9b7cb0a21d3cec9d5362ab0828c5e15a3af
[ "CC0-1.0" ]
null
null
null
examples/example_without_CommandSet/my_listeners.py
LeConstellationniste/DiscordFramework
24d4b9b7cb0a21d3cec9d5362ab0828c5e15a3af
[ "CC0-1.0" ]
null
null
null
import asyncio import discord # Just with a function to add to the bot. async def on_message(message): if not message.author.bot: await message.channel.send(f"{message.author.mention} a envoyé un message!") # A Listener already created with the function from discordEasy.objects import Listener async def on_message(message): if not message.author.bot: await message.channel.send(f"{message.author.mention} a envoyé un message!") listener_on_message = Listener(on_message)
28.411765
78
0.784679
0
0
0
0
0
0
276
0.569072
185
0.381443
e02beca3eabc9ebe9a2e1d16196b54fbf1a8bc1b
4,024
py
Python
pianonet/serving/app.py
robgon-art/pianonet
8d8a827bc8d310b8ce3f66259bbdf72648e9ca32
[ "MIT" ]
14
2020-09-01T11:16:28.000Z
2021-05-02T18:04:21.000Z
pianonet/serving/app.py
robgon-art/pianonet
8d8a827bc8d310b8ce3f66259bbdf72648e9ca32
[ "MIT" ]
5
2020-11-13T18:46:05.000Z
2022-02-10T01:16:13.000Z
pianonet/serving/app.py
robgon-art/pianonet
8d8a827bc8d310b8ce3f66259bbdf72648e9ca32
[ "MIT" ]
3
2020-09-02T15:05:00.000Z
2021-05-02T18:04:24.000Z
import os import random from flask import Flask, request, send_from_directory from werkzeug.utils import secure_filename from pianonet.core.pianoroll import Pianoroll from pianonet.model_inspection.performance_from_pianoroll import get_performance_from_pianoroll app = Flask(__name__) base_path = "/app/" # base_path = "/Users/angsten/PycharmProjects/pianonet" performances_path = os.path.join(base_path, 'data', 'performances') def get_random_midi_file_name(): """ Get a random midi file name that will not ever collide. """ return str(random.randint(0, 10000000000000000000)) + ".midi" def get_performance_path(midi_file_name): """ Returns full path to performaqnce midi file given a file name. """ return os.path.join(performances_path, midi_file_name) @app.route('/') def alive(): return 'OK' @app.route('/performances/', methods=['GET']) def get_performance(): """ Returns the requested performance as midi file. Expected query string is 'midi_file_name', such as 1234.midi """ performance_midi_file_name = request.args.get('midi_file_name') performance_midi_file_name = secure_filename(performance_midi_file_name) print(performance_midi_file_name) if performance_midi_file_name == None: return {"http_code": 400, "code": "BadRequest", "message": "midi_file_name not found in request."} midi_file_path = get_performance_path(performance_midi_file_name) if not os.path.exists(midi_file_path): return { "http_code": 404, "code": "Not Found", "message": "midi_file " + performance_midi_file_name + " not found." } with open(midi_file_path, 'rb') as midi_file: return send_from_directory(performances_path, performance_midi_file_name) @app.route('/create-performance', methods=['POST']) def performance(): """ Expects post form data as follows: seed_midi_file_data: Midi file that forms the seed for a performance as string encoding like "8,2,3,4,5..." seconds_to_generate: Number of seconds of new notes to generate model_complexity: Quality of model to use, one of ['low', 'medium', 'high', 'highest'] """ seed_midi_file_data = request.form.get('seed_midi_file_data') if seed_midi_file_data == None: return {"http_code": 400, "code": "BadRequest", "message": "seed_midi_file_data not found in request."} else: seed_midi_file_int_array = [int(x) for x in seed_midi_file_data.split(',')] frame = bytearray() for i in seed_midi_file_int_array: frame.append(i) saved_seed_midi_file_path = os.path.join(base_path, 'data', 'seeds', get_random_midi_file_name()) with open(saved_seed_midi_file_path, 'wb') as midi_file: midi_file.write(frame) seconds_to_generate = request.form.get('seconds_to_generate') if seconds_to_generate == None: return {"http_code": 400, "code": "BadRequest", "message": "seconds_to_generate not found in request."} else: seconds_to_generate = float(seconds_to_generate) model_complexity = request.form.get('model_complexity', 'low') if model_complexity == 'low': model_name = "micro_1" else: model_name = "r9p0_3500kparams_approx_9_blocks_model" model_path = os.path.join(base_path, 'models', model_name) input_pianoroll = Pianoroll(saved_seed_midi_file_path, use_custom_multitrack=True) input_pianoroll.trim_silence_off_ends() final_pianoroll = get_performance_from_pianoroll( pianoroll_seed=input_pianoroll, num_time_steps=int(48 * seconds_to_generate), model_path=model_path, ) midi_file_name = get_random_midi_file_name() midi_file_path = get_performance_path(midi_file_name) final_pianoroll.save_to_midi_file(midi_file_path) return {"http_code": 200, "code": "Success", "message": "", "midi_file_name": midi_file_name} if __name__ == '__main__': app.run(host='0.0.0.0')
31.685039
115
0.706511
0
0
0
0
3,158
0.784791
0
0
1,293
0.321322
e02cef0666c1161f8f7f1e91555b80b350dae71e
4,965
py
Python
app.py
rafalbigaj/epidemic-model-visualization
35829180b5a53697b336e8615d854a21b3395f59
[ "Apache-2.0" ]
null
null
null
app.py
rafalbigaj/epidemic-model-visualization
35829180b5a53697b336e8615d854a21b3395f59
[ "Apache-2.0" ]
null
null
null
app.py
rafalbigaj/epidemic-model-visualization
35829180b5a53697b336e8615d854a21b3395f59
[ "Apache-2.0" ]
null
null
null
import dash import dash_bootstrap_components as dbc import dash_core_components as dcc import dash_html_components as html import plotly.graph_objects as go from plotly.subplots import make_subplots import logging import json import os import pandas as pd from datetime import datetime from datetime import timedelta from urllib import parse import requests logger = logging.getLogger(__name__) external_stylesheets = [dbc.themes.DARKLY] is_cf_instance = os.environ.get('CF_INSTANCE_GUID', '') != '' port = int(os.environ.get('PORT', 8050)) host = os.environ.get('CF_INSTANCE_INTERNAL_IP', '127.0.0.1') wml_api_key = os.environ['WML_API_KEY'] wml_scoring_url = os.environ['WML_SCORING_URL'] url = parse.urlparse(wml_scoring_url) wml_base_url = url._replace(path='').geturl() wml_instance_id = url.path.split('/')[3] logger.setLevel(logging.INFO if is_cf_instance else logging.DEBUG) logger.info('Starting %s server: %s:%d', 'CF' if is_cf_instance else 'local', host, port) logger.info('WML URL: %s', wml_base_url) logger.info('WML instance ID: %s', wml_instance_id) wml_credentials = { "apikey": wml_api_key, "instance_id": wml_instance_id, "url": wml_base_url, } iam_token_endpoint = 'https://iam.cloud.ibm.com/identity/token' def _get_token(): data = { 'grant_type': 'urn:ibm:params:oauth:grant-type:apikey', 'apikey': wml_credentials['apikey'] } headers = {'Content-Type': 'application/x-www-form-urlencoded'} response = requests.post(iam_token_endpoint, data=data, headers=headers) return response.json()['access_token'] def score(token, algorithm, start_date, country, predict_range, s, i, r): headers = {'Authorization': 'Bearer ' + token} payload = { "fields": ["algorithm", "start_date", "country", "predict_range", "S0", "I0", "R0"], "values": [[algorithm, start_date.strftime('%-m/%-d/%y'), country, predict_range, s, i, r]] } logger.info('Scoring with payload: %s', json.dumps(payload)) response = requests.post(wml_scoring_url, json=payload, headers=headers) if response.status_code == 200: result = response.json() else: raise Exception('Scoring error [{}]: {}'.format(response.status_code, response.text)) n_days = len(result['values']) index = [(start_date + timedelta(days=i)).strftime('%d/%m/%y') for i in range(n_days)] return pd.DataFrame(result['values'], columns=result['fields'], index=index) def serve_layout(): token = _get_token() # predict_range = 14 # sir_result = score(token, 'SIR', datetime(2020, 3, 3), 'Poland', predict_range, 10_000, 20, 10) # logistic_result = score(token, 'LOGISTIC', datetime(2020, 3, 3), 'Poland', predict_range, 10_000, 20, 10) calibration_result = score(token, 'CALIBRATION', datetime(2020, 1, 22), 'Poland', 40, 10_000, 20, 10) # days = list(sir_result.index) days = list(calibration_result.index) calibration_result['ActualChange'] = calibration_result['Actual'] - calibration_result['Actual'].shift(1, fill_value=0) calibration_result['PredictedChange'] = calibration_result['Predicted'] - calibration_result['Predicted'].shift(1, fill_value=0) fig = make_subplots(specs=[[{"secondary_y": True}]]) fig.add_trace( go.Bar(x=days, y=calibration_result['PredictedChange'], name='Predicted Change', opacity=0.5), secondary_y=True, ) fig.add_trace( go.Bar(x=days, y=calibration_result['ActualChange'], name='Actual Change', opacity=0.5), secondary_y=True, ) fig.add_trace( go.Scatter(x=days, y=calibration_result['Predicted'], name='Calibration'), secondary_y=False, ) fig.add_trace( go.Scatter(x=days, y=calibration_result['Actual'], name='Actual', mode="markers", marker=dict(size=8)), secondary_y=False, ) fig.update_layout( title="Prediction of confirmed cases for Poland", template="plotly_dark", height=900 ) fig.update_xaxes(title_text="Date") fig.update_yaxes(title_text="Total confirmed cases", secondary_y=False, range=[0, 6000]) fig.update_yaxes(title_text="New cases per day", secondary_y=True, range=[0, 1000]) # fig = go.Figure( # data=[ # go.Scatter(x=days, y=sir_result['I'], name='SIR'), # go.Scatter(x=days, y=logistic_result['I'], name='Logistic'), # ], # layout=go.Layout( # title="COVID19 infected prediction in Poland", # template="plotly_dark", # height=600 # ) # ) return html.Div(children=[ html.H1(children='COVID-19 Predictions with Watson Machine Learning'), dcc.Graph( id='example-graph', figure=fig ) ]) app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.layout = serve_layout if __name__ == '__main__': app.run_server(debug=(not is_cf_instance), port=port, host=host)
34.006849
132
0.67291
0
0
0
0
0
0
0
0
1,525
0.30715
e02d1d4df9c56883a92d8546af5497c549276afd
1,106
py
Python
src/sweetrpg_library_api/application/blueprints/systems/manager.py
paulyhedral/sweetrpg-library-api
0105e963ef4321398aa66d7cb3aa9c2df1c4f375
[ "MIT" ]
null
null
null
src/sweetrpg_library_api/application/blueprints/systems/manager.py
paulyhedral/sweetrpg-library-api
0105e963ef4321398aa66d7cb3aa9c2df1c4f375
[ "MIT" ]
33
2021-09-18T23:52:05.000Z
2022-03-30T12:25:49.000Z
src/sweetrpg_library_api/application/blueprints/systems/manager.py
sweetrpg/library-api
0105e963ef4321398aa66d7cb3aa9c2df1c4f375
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- __author__ = "Paul Schifferer <[email protected]>" """ """ from flask_rest_jsonapi import ResourceList, ResourceDetail, ResourceRelationship from sweetrpg_library_objects.api.system.schema import SystemAPISchema from sweetrpg_api_core.data import APIData from sweetrpg_library_objects.model.system import System from sweetrpg_library_api.application.db import db from sweetrpg_library_api.application.blueprints.setup import model_info class SystemList(ResourceList): schema = SystemAPISchema data_layer = {"class": APIData, "type": "system", "model": System, "db": db, "model_info": model_info} class SystemDetail(ResourceDetail): schema = SystemAPISchema data_layer = { "class": APIData, "type": "system", "model": System, "db": db, "model_info": model_info } # class SystemAuthorRelationship(ResourceRelationship): # schema = SystemAPISchema # data_layer = { # "class": APIData, # "type": "system", # "model": System, # "db": db, # "model_info": model_info # }
28.358974
106
0.683544
384
0.347197
0
0
0
0
0
0
398
0.359855
e02e416aacee98cfdb91a5328f2267836f5a1229
6,862
py
Python
tests/test_ordering.py
deepio-oc/pabot
ebf1894c6d35b2ddd5c4bca01bceb25189358106
[ "Apache-2.0" ]
379
2015-02-02T17:47:45.000Z
2022-03-20T16:51:05.000Z
tests/test_ordering.py
deepio-oc/pabot
ebf1894c6d35b2ddd5c4bca01bceb25189358106
[ "Apache-2.0" ]
406
2015-02-12T07:41:53.000Z
2022-03-28T23:35:32.000Z
tests/test_ordering.py
deepio-oc/pabot
ebf1894c6d35b2ddd5c4bca01bceb25189358106
[ "Apache-2.0" ]
159
2015-01-16T13:42:20.000Z
2022-03-30T19:48:15.000Z
from robot import __version__ as ROBOT_VERSION import sys import tempfile import textwrap import unittest import shutil import subprocess class PabotOrderingGroupTest(unittest.TestCase): def setUp(self): self.tmpdir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.tmpdir) def _run_tests_with(self, testfile, orderfile): robot_file = open("{}/test.robot".format(self.tmpdir), "w") robot_file.write(textwrap.dedent(testfile)) robot_file.close() with open("{}/order.dat".format(self.tmpdir), "w") as f: f.write(textwrap.dedent(orderfile)) process = subprocess.Popen( [ sys.executable, "-m" "pabot.pabot", "--testlevelsplit", "--ordering", "{}/order.dat".format(self.tmpdir), "{}/test.robot".format(self.tmpdir), ], cwd=self.tmpdir, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) return process.communicate() def test_orders(self): stdout, stderr = self._run_tests_with( """ *** Variables *** ${SCALAR} Hello, globe! *** Test Cases *** First Test Set Suite Variable ${SCALAR} Hello, world! Second Test Should Be Equal ${SCALAR} Hello, world! Third Test Should Be Equal ${SCALAR} Hello, globe! """, """ { --test Test.First Test --test Test.Second Test } --test Test.Third Test """, ) if sys.version_info < (3, 0): self.assertIn("PASSED", stdout, stderr) self.assertNotIn("FAILED", stdout, stderr) self.assertEqual(stdout.count("PASSED"), 2) else: self.assertIn(b"PASSED", stdout, stderr) self.assertNotIn(b"FAILED", stdout, stderr) self.assertEqual(stdout.count(b"PASSED"), 2) def test_two_orders(self): stdout, stderr = self._run_tests_with( """ *** Variables *** ${SCALAR} Hello, globe! *** Test Cases *** First Test Set Suite Variable ${SCALAR} Hello, world! Second Test Should Be Equal ${SCALAR} Hello, world! Second And Quarter Should Be Equal ${SCALAR} Hello, globe! Second And Half Should Be Equal ${SCALAR} Hello, globe! Third Test Should Be Equal ${SCALAR} Hello, globe! """, """ { --test Test.First Test --test Test.Second Test } { --test Test.Second And Quarter --test Test.Second And Half } --test Test.Third Test """, ) if sys.version_info < (3, 0): self.assertIn("PASSED", stdout, stderr) self.assertNotIn("FAILED", stdout, stderr) if ROBOT_VERSION < "4.0": expected_write = "5 critical tests, 5 passed, 0 failed" else: expected_write = "5 tests, 5 passed, 0 failed, 0 skipped." self.assertIn(expected_write, stdout, stderr) self.assertEqual(stdout.count("PASSED"), 3) else: self.assertIn(b"PASSED", stdout, stderr) self.assertNotIn(b"FAILED", stdout, stderr) if ROBOT_VERSION < "4.0": expected_write = b"5 critical tests, 5 passed, 0 failed" else: expected_write = b"5 tests, 5 passed, 0 failed, 0 skipped." self.assertIn(expected_write, stdout, stderr) self.assertEqual(stdout.count(b"PASSED"), 3) def test_too_big_testname(self): stdout, stderr = self._run_tests_with( """ *** Test Cases *** Test Lorem ipsum dolor sit amet, consectetur adipiscing elit. Mauris eu velit nunc. Duis eget purus eget orci porta blandit sed ut tortor. Nunc vel nulla bibendum, auctor sem ac, molestie risus. Sed eu metus volutpat, hendrerit nibh in, auctor urna. Nunc a sodales. Log Test """, """ --test Invalid """, ) if sys.version_info < (3, 0): self.assertIn("PASSED", stdout, stderr) self.assertNotIn("FAILED", stdout, stderr) self.assertEqual(stdout.count("PASSED"), 1) else: self.assertIn(b"PASSED", stdout, stderr) self.assertNotIn(b"FAILED", stdout, stderr) self.assertEqual(stdout.count(b"PASSED"), 1) def test_longnames_in_tests(self): stdout, stderr = self._run_tests_with( """ *** Settings *** Test Template Test1 *** Test Cases *** The Somewhat Long Name Of The Test S1Test 01 1 The Somewhat Long Name Of The Test S1Test 02 1 The Somewhat Long Name Of The Test S1Test 03 1 The Somewhat Long Name Of The Test S1Test 04 1 The Somewhat Long Name Of The Test S1Test 05 1 The Somewhat Long Name Of The Test S1Test 06 1 The Somewhat Long Name Of The Test S1Test 07 1 The Somewhat Long Name Of The Test S1Test 08 1 The Somewhat Long Name Of The Test S1Test 09 1 The Somewhat Long Name Of The Test S1Test 10 1 The Somewhat Long Name Of The Test S1Test 11 1 The Somewhat Long Name Of The Test S1Test 12 1 *** Keywords *** Test1 [Arguments] ${arg} Log Test """, """ { --test Test.The Somewhat Long Name Of The Test S1Test 01 --test Test.The Somewhat Long Name Of The Test S1Test 02 --test Test.The Somewhat Long Name Of The Test S1Test 03 --test Test.The Somewhat Long Name Of The Test S1Test 04 --test Test.The Somewhat Long Name Of The Test S1Test 05 --test Test.The Somewhat Long Name Of The Test S1Test 06 } { --test Test.The Somewhat Long Name Of The Test S1Test 07 --test Test.The Somewhat Long Name Of The Test S1Test 08 --test Test.The Somewhat Long Name Of The Test S1Test 09 --test Test.The Somewhat Long Name Of The Test S1Test 10 --test Test.The Somewhat Long Name Of The Test S1Test 11 --test Test.The Somewhat Long Name Of The Test S1Test 12 } """, ) if sys.version_info < (3, 0): self.assertIn("PASSED", stdout, stderr) self.assertNotIn("FAILED", stdout, stderr) self.assertEqual(stdout.count("PASSED"), 2) else: self.assertIn(b"PASSED", stdout, stderr) self.assertNotIn(b"FAILED", stdout, stderr) self.assertEqual(stdout.count(b"PASSED"), 2)
35.189744
273
0.557418
6,721
0.979452
0
0
0
0
0
0
3,745
0.545759
e02e814aa08f31a0fd4f302fa151aca0b7af7756
984
py
Python
setup.py
Commonists/pageview-api
39e8b3c3c82f64a500e3dd4f306451c81c7e31b7
[ "MIT" ]
21
2015-12-02T12:06:38.000Z
2022-02-11T16:16:06.000Z
setup.py
Commonists/pageview-api
39e8b3c3c82f64a500e3dd4f306451c81c7e31b7
[ "MIT" ]
3
2016-04-19T19:56:25.000Z
2020-08-27T09:52:42.000Z
setup.py
Commonists/pageview-api
39e8b3c3c82f64a500e3dd4f306451c81c7e31b7
[ "MIT" ]
6
2017-10-27T15:39:51.000Z
2020-12-17T02:11:52.000Z
#!/usr/bin/python # -*- coding: latin-1 -*- """Setup script.""" try: from setuptools import setup except ImportError: from distutils.core import setup try: import pageviewapi version = pageviewapi.__version__ except ImportError: version = 'Undefined' classifiers = [ 'Development Status :: 4 - Beta', 'Environment :: Console', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Utilities' ] packages = ['pageviewapi'] requires = ['requests', 'attrdict'] setup( name='pageviewapi', version=version, author='Commonists', author_email='[email protected]', url='http://github.com/Commonists/pageview-api', description='Wikimedia Pageview API client', long_description=open('README.md').read(), license='MIT', packages=packages, install_requires=requires, classifiers=classifiers )
22.883721
52
0.670732
0
0
0
0
0
0
0
0
457
0.464431
e030b341c624d43cef697abc742e82664391c682
416
py
Python
task1b.py
juby-gif/assignment1
3d39478fdc371e80a546caac545561145afbb080
[ "BSD-3-Clause" ]
null
null
null
task1b.py
juby-gif/assignment1
3d39478fdc371e80a546caac545561145afbb080
[ "BSD-3-Clause" ]
null
null
null
task1b.py
juby-gif/assignment1
3d39478fdc371e80a546caac545561145afbb080
[ "BSD-3-Clause" ]
null
null
null
#a2_t1b.py #This program is to convert Celsius to Kelvin def c_to_k(c): k = c + 273.15 #Formula to convert Celsius to Kelvin return k def f_to_c(f): fa = (f-32) * 5/9 #Formula to convert Fareheit to Celsius return fa c = 25.0 f = 100.0 k = c_to_k(c) fa = f_to_c(f) print("Celsius of " + str(c) + " is " + str(k) + " in Kelvin") print("Farenheit of " + str(f) + " is " + str(fa) + " in Celsius")
24.470588
67
0.605769
0
0
0
0
0
0
0
0
198
0.475962
e0315471bd1a35e31c6a9cdd93a2a2a27365d479
2,702
py
Python
TWLight/emails/views.py
jajodiaraghav/TWLight
22359ab0b95ee3653e8ffa0eb698acd7bb8ebf70
[ "MIT" ]
1
2019-10-24T04:49:52.000Z
2019-10-24T04:49:52.000Z
TWLight/emails/views.py
jajodiaraghav/TWLight
22359ab0b95ee3653e8ffa0eb698acd7bb8ebf70
[ "MIT" ]
1
2019-03-29T15:29:45.000Z
2019-03-29T15:57:20.000Z
TWLight/emails/views.py
jajodiaraghav/TWLight
22359ab0b95ee3653e8ffa0eb698acd7bb8ebf70
[ "MIT" ]
1
2019-09-26T14:40:27.000Z
2019-09-26T14:40:27.000Z
from django.contrib import messages from django.contrib.auth.decorators import login_required from django.core.exceptions import PermissionDenied from django.core.urlresolvers import reverse, reverse_lazy from django.core.mail import BadHeaderError, send_mail from django.http import HttpResponse, HttpResponseRedirect from django.utils.decorators import method_decorator from django.utils.translation import ugettext_lazy as _ from django.views.generic.edit import FormView from TWLight.emails.forms import ContactUsForm from TWLight.emails.signals import ContactUs @method_decorator(login_required, name='post') class ContactUsView(FormView): template_name = 'emails/contact.html' form_class = ContactUsForm success_url = reverse_lazy('contact') def get_initial(self): initial = super(ContactUsView, self).get_initial() # @TODO: This sort of gets repeated in ContactUsForm. # We could probably be factored out to a common place for DRYness. if self.request.user.is_authenticated(): if self.request.user.email: initial.update({ 'email': self.request.user.email, }) if ('message' in self.request.GET): initial.update({ 'message': self.request.GET['message'], }) initial.update({ 'next': reverse_lazy('contact'), }) return initial def form_valid(self, form): # Adding an extra check to ensure the user is a wikipedia editor. try: assert self.request.user.editor email = form.cleaned_data['email'] message = form.cleaned_data['message'] carbon_copy = form.cleaned_data['cc'] ContactUs.new_email.send( sender=self.__class__, user_email=email, cc=carbon_copy, editor_wp_username=self.request.user.editor.wp_username, body=message ) messages.add_message(self.request, messages.SUCCESS, # Translators: Shown to users when they successfully submit a new message using the contact us form. _('Your message has been sent. We\'ll get back to you soon!')) return HttpResponseRedirect(reverse('contact')) except (AssertionError, AttributeError) as e: messages.add_message (self.request, messages.WARNING, # Translators: This message is shown to non-wikipedia editors who attempt to post data to the contact us form. _('You must be a Wikipedia editor to do that.')) raise PermissionDenied return self.request.user.editor
43.580645
126
0.657661
2,086
0.772021
0
0
2,133
0.789415
0
0
610
0.225759
e0322ebc94878f3dc7b69955feb764a97d3db29b
1,997
py
Python
frontend/config.py
lcbm/cs-data-ingestion
314525285bfefe726d86c232937b05d273e44e7f
[ "0BSD" ]
null
null
null
frontend/config.py
lcbm/cs-data-ingestion
314525285bfefe726d86c232937b05d273e44e7f
[ "0BSD" ]
null
null
null
frontend/config.py
lcbm/cs-data-ingestion
314525285bfefe726d86c232937b05d273e44e7f
[ "0BSD" ]
null
null
null
"""Flask App configuration file.""" import logging import os import dotenv import frontend.constants as constants dotenv.load_dotenv(os.path.join(constants.BASEDIR, "frontend.env")) class Base: """Configuration class used as base for all environments.""" DEBUG = False TESTING = False LOGGING_FORMAT = "[%(asctime)s] %(levelname)s in %(message)s" LOGGING_LOCATION = "frontend.log" LOGGING_LEVEL = os.environ.get("LOGGING_LEVEL", logging.DEBUG) class Development(Base): """Configuration class for development environment. Parameters ---------- Base: base configuration object. """ DEBUG = True TESTING = False ENV = "dev" class Staging(Base): """Configuration class for development staging environment. Parameters ---------- Base: base configuration object. """ DEBUG = False TESTING = True ENV = "staging" class Production(Base): """Configuration class for development production environment. Parameters ---------- Base: base configuration object. """ DEBUG = False TESTING = False ENV = "prod" config = { "development": "frontend.config.Development", "staging": "frontend.config.Staging", "production": "frontend.config.Production", "default": "frontend.config.Development", } def configure_app(app): """Configures the Flask app according to the FLASK_ENV envar. In case FLASK_ENV is not defined, then use the 'default' configuration. Parameters ---------- app: flask.Flask Flask app Module. """ # Configure app config_name = os.environ.get("FLASK_ENV", "default") app.config.from_object(config[config_name]) # Configure logging handler = logging.FileHandler(app.config["LOGGING_LOCATION"]) handler.setLevel(app.config["LOGGING_LEVEL"]) formatter = logging.Formatter(app.config["LOGGING_FORMAT"]) handler.setFormatter(formatter) app.logger.addHandler(handler)
21.473118
67
0.667001
937
0.469204
0
0
0
0
0
0
1,086
0.543816
e032bc66a6f5b0a211c59ba883502067921d3427
2,961
py
Python
tests/test_dsl.py
goodreferences/ElasticQuery
579e387c5a7c1cbbeab999050c0d2faa80ded821
[ "MIT" ]
null
null
null
tests/test_dsl.py
goodreferences/ElasticQuery
579e387c5a7c1cbbeab999050c0d2faa80ded821
[ "MIT" ]
null
null
null
tests/test_dsl.py
goodreferences/ElasticQuery
579e387c5a7c1cbbeab999050c0d2faa80ded821
[ "MIT" ]
null
null
null
# ElasticQuery # File: tests/test_dsl.py # Desc: tests for ElasticQuery DSL objects (Filter, Query, Aggregate) from os import path from unittest import TestCase from jsontest import JsonTest from elasticquery import Query, Aggregate, Suggester from elasticquery.exceptions import ( NoQueryError, NoAggregateError, NoSuggesterError, MissingArgError ) from .util import assert_equal CLASS_NAMES = { '_query': Query } def _test_query(self, query, test_name, test_data): method = getattr(query, test_name) def parse_arg(arg): if isinstance(arg, list): return [parse_arg(a) for a in arg] else: return ( CLASS_NAMES[arg](arg, {}) if (isinstance(arg, basestring) and arg.startswith('_')) else arg ) args = test_data.get('args', []) args = parse_arg(args) kwargs = test_data.get('kwargs', {}) kwargs = { k: parse_arg(v) if isinstance(v, list) else parse_arg(v) for k, v in kwargs.iteritems() } output = method(*args, **kwargs).dict() assert_equal(self, output, test_data['output']) class TestQueries(TestCase): __metaclass__ = JsonTest jsontest_files = path.join('tests', 'queries') jsontest_function = lambda self, test_name, test_data: ( _test_query(self, Query, test_name, test_data) ) class TestAggregates(TestCase): __metaclass__ = JsonTest jsontest_files = path.join('tests', 'aggregates') jsontest_function = lambda self, test_name, test_data: ( _test_query(self, Aggregate, test_name, test_data) ) class TestSuggesters(TestCase): __metaclass__ = JsonTest jsontest_files = path.join('tests', 'suggesters') jsontest_function = lambda self, test_name, test_data: ( _test_query(self, Suggester, test_name, test_data) ) class TestFails(TestCase): def test_no_query(self): with self.assertRaises(NoQueryError): Query.doesnotexist() def test_no_aggregate(self): with self.assertRaises(NoAggregateError): Aggregate.doesnotexist() def test_no_suggester(self): with self.assertRaises(NoSuggesterError): Suggester.doesnotexist() def test_missing_arg(self): with self.assertRaises(MissingArgError): Query.term(None) def test_invalid_arg(self): # Test passing not a list with self.assertRaises(ValueError): Query.bool(must=set()) # And now an invalid list with self.assertRaises(ValueError): Query.bool(must=[None]) # And now an invalid list with self.assertRaises(ValueError): Query.bool(must=[Aggregate.terms('test', 'test')]) # And now an invalid list with self.assertRaises(ValueError): Query.range('field', gte=['error']) # Empty list should be OK/ignored Query.bool(must=[])
26.675676
72
0.646066
1,801
0.60824
0
0
0
0
0
0
354
0.119554
e033806ab7ea22ebae1fd718d44b4fe732b6c01d
360
py
Python
models/SelectionGAN/person_transfer/tool/rm_insnorm_running_vars.py
xianjian-xie/pose-generation
ad0495e80c6fe1e7690fa8691f1eb11b4e9bca32
[ "MIT" ]
445
2019-04-14T17:48:11.000Z
2022-03-20T11:53:30.000Z
models/SelectionGAN/person_transfer/tool/rm_insnorm_running_vars.py
xianjian-xie/pose-generation
ad0495e80c6fe1e7690fa8691f1eb11b4e9bca32
[ "MIT" ]
17
2019-06-03T11:34:22.000Z
2022-02-28T01:26:13.000Z
models/SelectionGAN/person_transfer/tool/rm_insnorm_running_vars.py
xianjian-xie/pose-generation
ad0495e80c6fe1e7690fa8691f1eb11b4e9bca32
[ "MIT" ]
71
2019-04-16T01:55:39.000Z
2022-03-22T05:09:59.000Z
import torch ckp_path = './checkpoints/fashion_PATN/latest_net_netG.pth' save_path = './checkpoints/fashion_PATN_v1.0/latest_net_netG.pth' states_dict = torch.load(ckp_path) states_dict_new = states_dict.copy() for key in states_dict.keys(): if "running_var" in key or "running_mean" in key: del states_dict_new[key] torch.save(states_dict_new, save_path)
32.727273
65
0.794444
0
0
0
0
0
0
0
0
128
0.355556
e03555c89ef682c9881524e84b3f99fb40c60411
3,916
py
Python
script/dummy/arm_control.py
amazon-picking-challenge/team_pfn
2f76524b067d816d8407f6c4fae4e6d33939c024
[ "Apache-2.0" ]
7
2016-09-04T02:07:04.000Z
2017-05-25T02:31:07.000Z
script/dummy/arm_control.py
amazon-picking-challenge/team_pfn
2f76524b067d816d8407f6c4fae4e6d33939c024
[ "Apache-2.0" ]
null
null
null
script/dummy/arm_control.py
amazon-picking-challenge/team_pfn
2f76524b067d816d8407f6c4fae4e6d33939c024
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # Copyright 2016 Preferred Networks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy import rospy import actionlib from geometry_msgs.msg import Twist, Vector3 from apc2016.msg import * class DummyArmControl(object): def __init__(self): self.srv_lowlevel_left = \ actionlib.SimpleActionServer('move_to_left', RobotArmMoveAction, execute_cb=self.cb_move_to_left, auto_start=False) self.srv_highlevel_left = \ actionlib.SimpleActionServer('move_to_bin_left', BinToteMoveAction, execute_cb=self.cb_move_to_bin_left, auto_start=False) self.srv_lowlevel_right = \ actionlib.SimpleActionServer('move_to_right', RobotArmMoveAction, execute_cb=self.cb_move_to_right, auto_start=False) self.srv_highlevel_right = \ actionlib.SimpleActionServer('move_to_bin_right', BinToteMoveAction, execute_cb=self.cb_move_to_bin_right, auto_start=False) self.srv_lowlevel_left.start() self.srv_highlevel_left.start() self.srv_lowlevel_right.start() self.srv_highlevel_right.start() def cb_move_to_left(self, goal): print "moving away right arm, then moving left arm:" print goal.target_position result = RobotArmMoveResult(success=True, position=goal.target_position) self.srv_lowlevel_left.set_succeeded(result) def cb_move_to_bin_left(self, goal): if goal.position: pos = goal.position else: pos = "photo" print "looking up position for %s/%s" % (goal.bin, pos) pos = numpy.asarray([550, -146, 752, 181, 0, 180]) p = Vector3(pos[0], pos[1], pos[2]) r = Vector3(pos[3], pos[4], pos[5]) print "moving away right arm, then moving left arm" result = BinToteMoveResult(success=True, position=Twist(p, r)) self.srv_highlevel_left.set_succeeded(result) def cb_move_to_right(self, goal): print "moving away left arm, then moving right arm:" print goal.target_position result = RobotArmMoveResult(success=True, position=goal.target_position) self.srv_lowlevel_right.set_succeeded(result) def cb_move_to_bin_right(self, goal): if goal.position: pos = goal.position else: pos = "photo" print "looking up position for %s/%s" % (goal.bin, pos) pos = numpy.asarray([550, -146, 752, 184, 0, 180]) p = Vector3(pos[0], pos[1], pos[2]) r = Vector3(pos[3], pos[4], pos[5]) print "moving away left arm, then moving right arm" result = BinToteMoveResult(success=True, position=Twist(p, r)) self.srv_highlevel_right.set_succeeded(result) if __name__ == '__main__': rospy.init_node("arm_control_dummy", anonymous=True) DummyArmControl() rospy.spin()
39.959184
78
0.589122
3,064
0.782431
0
0
0
0
0
0
945
0.241318
e035deed8737a8c4ccc24d990b915152d4728210
3,115
py
Python
cogs/events.py
rompdodger/RompDodger
9c8b481d9f69e05c15f01271f6c18e09ab2723e6
[ "MIT" ]
null
null
null
cogs/events.py
rompdodger/RompDodger
9c8b481d9f69e05c15f01271f6c18e09ab2723e6
[ "MIT" ]
null
null
null
cogs/events.py
rompdodger/RompDodger
9c8b481d9f69e05c15f01271f6c18e09ab2723e6
[ "MIT" ]
null
null
null
import json import discord from utils.time import format_time from utils import utilities from discord.ext import commands from discord import Embed class Events(commands.Cog): """Event Handler for RompDodger""" def __init__(self, bot): self.bot = bot @commands.Cog.listener() async def on_command_error(self, ctx, error): if hasattr(ctx.command, 'on_error'): return if isinstance(error, (commands.CommandNotFound, commands.NoPrivateMessage)): return elif isinstance(error, commands.MissingRequiredArgument): await ctx.send(embed=await utilities.generate_embed(f"Command {ctx.prefix} {ctx.command} requires **{error.param.name}** argument, but you missed giving that")) elif isinstance(error, commands.BotMissingPermissions): perms = "".join(error.missing_perms) await ctx.send(embed=await utilities.generate_embed(f"To finish the command bot must have {perms} permission, give the bot appropriate permissions and re-try")) self.bot.logger.critical(f"Ignoring Exception in {ctx.command}\nError: {error}") @commands.Cog.listener() async def on_guild_join(self, guild): #TODO: implement blacklist sytem self.bot.logger.info(f"Joined on {guild} > Total Guilds: {len(self.bot.guilds)}") @commands.Cog.listener() async def on_guild_remove(self, guild): self.bot.logger.info(f"Removed on {guild} > Total Guilds: {len(self.bot.guilds)}") @commands.Cog.listener() async def on_member_join(self, member): cursor = await self.bot.db.execute(f"SELECT channel FROM welcomer WHERE guild_id = {member.guild.id}") chrow = await cursor.fetchone() if chrow is None: return else: msgrow = await self.bot.db.execute(f"SELECT message FROM welcomer WHERE guild_id = {member.guild.id}") msg = await msgrow.fetchone() name = member.name mention = member.mention members = member.guild.member_count server = member.guild embed = discord.Embed(color=discord.Color.dark_green(), description=msg[0].format(name=name, mention=mention, members=members, server=server)) embed.set_thumbnail(url=f"{member.avatar_url_as(format='png', size=2048)}") created = format_time(member.created_at) embed.set_footer(text=f"{member.name} Created on {created}") ch = self.bot.get_channel(int(chrow[0])) await ch.send(embed=embed) await cursor.close() @commands.Cog.listener() async def on_member_remove(self, member): cursor = await self.bot.db.execute(f"SELECT channel FROM leaver WHERE guild_id = {ctx.guild.id}") chrow = await cursor.fetchone() if chrow is None: return else: msg = await self.bot.db.execute(f"SELECT msg FROM leaver WHERE guild_id = {member.guild.id}") name = member.name mention = member.mention server = member.server members = member.guild.member_count embed.set_thumbnail(url=f"{member.avatar_url_as(format='png', size=2048)}") created = format_time(member.joined_at) embed.set_footer(text=f"{member.name} Created joined on {joined}") ch = self.bot.get_channel(int(chrow[0])) await ch.send(embed=embed) await cursor.close() def setup(bot): bot.add_cog(Events(bot))
39.43038
163
0.733547
2,920
0.9374
0
0
2,786
0.894382
2,656
0.852648
896
0.28764
e036c8bce2480207e7560bdb8a009054bcbca43d
1,333
py
Python
Task/Parallel-calculations/Python/parallel-calculations-2.py
LaudateCorpus1/RosettaCodeData
9ad63ea473a958506c041077f1d810c0c7c8c18d
[ "Info-ZIP" ]
1
2018-11-09T22:08:38.000Z
2018-11-09T22:08:38.000Z
Task/Parallel-calculations/Python/parallel-calculations-2.py
seanwallawalla-forks/RosettaCodeData
9ad63ea473a958506c041077f1d810c0c7c8c18d
[ "Info-ZIP" ]
null
null
null
Task/Parallel-calculations/Python/parallel-calculations-2.py
seanwallawalla-forks/RosettaCodeData
9ad63ea473a958506c041077f1d810c0c7c8c18d
[ "Info-ZIP" ]
1
2018-11-09T22:08:40.000Z
2018-11-09T22:08:40.000Z
import multiprocessing # ========== #Python3 - concurrent from math import floor, sqrt numbers = [ 112272537195293, 112582718962171, 112272537095293, 115280098190773, 115797840077099, 1099726829285419] # numbers = [33, 44, 55, 275] def lowest_factor(n, _start=3): if n % 2 == 0: return 2 search_max = int(floor(sqrt(n))) + 1 for i in range(_start, search_max, 2): if n % i == 0: return i return n def prime_factors(n, lowest): pf = [] while n > 1: pf.append(lowest) n //= lowest lowest = lowest_factor(n, max(lowest, 3)) return pf # ========== #Python3 - concurrent def prime_factors_of_number_with_lowest_prime_factor(numbers): pool = multiprocessing.Pool(processes=5) factors = pool.map(lowest_factor,numbers) low_factor,number = max((l,f) for l,f in zip(factors,numbers)) all_factors = prime_factors(number,low_factor) return number,all_factors if __name__ == '__main__': print('For these numbers:') print('\n '.join(str(p) for p in numbers)) number, all_factors = prime_factors_of_number_with_lowest_prime_factor(numbers) print(' The one with the largest minimum prime factor is {}:'.format(number)) print(' All its prime factors in order are: {}'.format(all_factors))
28.361702
84
0.650413
0
0
0
0
0
0
0
0
237
0.177794
e036f44b7fa0f2862267ed2ae2bb354dffc8bc0b
260
py
Python
setup.py
clin366/airpollutionnowcast
f9152583eebc4ad747c8d0510460334a5fb23ff9
[ "MIT" ]
null
null
null
setup.py
clin366/airpollutionnowcast
f9152583eebc4ad747c8d0510460334a5fb23ff9
[ "MIT" ]
9
2020-03-24T18:12:45.000Z
2022-02-10T00:36:57.000Z
setup.py
clin366/airpollutionnowcast
f9152583eebc4ad747c8d0510460334a5fb23ff9
[ "MIT" ]
null
null
null
from setuptools import find_packages, setup setup( name='src', packages=find_packages(), version='0.1.0', description='Project: Nowcasting the air pollution using online search log', author='Emory University(IR Lab)', license='MIT', )
23.636364
80
0.692308
0
0
0
0
0
0
0
0
106
0.407692
e037cc498ab758b47d57f427145d459d775fb063
339
py
Python
problems/p0048/s48.py
ahrarmonsur/euler
4174790637806521a4ea2973abeb76c96c64a782
[ "MIT" ]
1
2017-12-19T21:18:48.000Z
2017-12-19T21:18:48.000Z
problems/p0048/s48.py
ahrarmonsur/euler
4174790637806521a4ea2973abeb76c96c64a782
[ "MIT" ]
null
null
null
problems/p0048/s48.py
ahrarmonsur/euler
4174790637806521a4ea2973abeb76c96c64a782
[ "MIT" ]
null
null
null
""" Project Euler Problem 48 Self powers Solved by Ahrar Monsur The series, 1^1 + 2^2 + 3^3 + ... + 10^10 = 10405071317. Find the last ten digits of the series, 1^1 + 2^2 + 3^3 + ... + 1000^1000. """ def main(): max_digits = 1000 sum = 0 for i in range(1, max_digits+1): sum += i**i print str(sum)[-10:] main()
17.842105
74
0.575221
0
0
0
0
0
0
0
0
201
0.59292
e037f80102198e6c3f910c89e80dfa13f614bfb4
1,109
py
Python
BigData/sparkTask/test.py
Rainstyd/rainsty
9a0d5f46c20faf909c4194f315fb9960652cffc6
[ "Apache-2.0" ]
1
2020-03-25T01:13:35.000Z
2020-03-25T01:13:35.000Z
BigData/sparkTask/test.py
Rainstyed/rainsty
f74e0ccaf16d1871c9d1870bd8a7c8a63243fcf5
[ "Apache-2.0" ]
1
2022-01-06T23:49:21.000Z
2022-01-06T23:49:21.000Z
BigData/sparkTask/test.py
rainstyd/rainsty
9a0d5f46c20faf909c4194f315fb9960652cffc6
[ "Apache-2.0" ]
1
2020-03-20T08:48:36.000Z
2020-03-20T08:48:36.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- """ @author: rainsty @file: test.py @time: 2020-01-04 18:36:57 @description: """ import os from pyspark.sql import SparkSession os.environ['JAVA_HOME'] = '/root/jdk' os.environ['SPARK_HOME'] = '/root/spark' os.environ['PYTHON_HOME'] = "/root/python" os.environ['PYSPARK_PYTHON'] = "/usr/bin/python" os.environ['SPARK_MASTER_IP'] = 'rainsty' def create_spark_context(): sc = SparkSession.builder \ .appName("TestSparkSession") \ .master("spark://rainsty:7077") \ .config('spark.executor.num', '1')\ .config('spark.executor.memory', '512m')\ .config("spark.executor.cores", '1')\ .config('spark.cores.max', '1')\ .config('spark.driver.memory', '512m') \ .getOrCreate() return sc logFile = "/root/spark/README.md" spark = create_spark_context() logData = spark.read.text(logFile).cache() numAs = logData.filter(logData.value.contains('a')).count() numBs = logData.filter(logData.value.contains('b')).count() print("Lines with a: %i, lines with b: %i" % (numAs, numBs)) spark.stop()
24.108696
60
0.640216
0
0
0
0
0
0
0
0
486
0.438233
e03860989956f152e97aacd3a94938522a675b8e
1,042
py
Python
esercizi/areaSottesaCompareNumPy.py
gdv/python-alfabetizzazione
d87561222de8a230db11d8529c49cf1702aec326
[ "MIT" ]
null
null
null
esercizi/areaSottesaCompareNumPy.py
gdv/python-alfabetizzazione
d87561222de8a230db11d8529c49cf1702aec326
[ "MIT" ]
null
null
null
esercizi/areaSottesaCompareNumPy.py
gdv/python-alfabetizzazione
d87561222de8a230db11d8529c49cf1702aec326
[ "MIT" ]
1
2019-03-26T11:14:33.000Z
2019-03-26T11:14:33.000Z
import numpy as np import timeit def effe(x): y = -x * (x - 1.0) return y numIntervalli = input('inserire il numero di intervalli in [0.0, 1.0] ') deltaIntervallo = 1.0 / float(numIntervalli) print "larghezza intervallo", deltaIntervallo start = timeit.default_timer() xIntervalli = [] yIntervalli = [] i = 0 while i < numIntervalli: xIntervallo = i*deltaIntervallo xIntervalli.append(xIntervallo) yIntervalli.append(effe(xIntervallo)) i += 1 areaSottesa = 0.0 for altezza in yIntervalli: areaSottesa += altezza * deltaIntervallo endOld = timeit.default_timer() print "l'area sottesa dalla curva vale ", areaSottesa xNPIntervalli = np.linspace(0.0, 1.0, numIntervalli, endpoint=False) yNPIntervalli = -xNPIntervalli * (xNPIntervalli - 1.0) npArea = np.sum(yNPIntervalli*deltaIntervallo) endNP = timeit.default_timer() # print xNPIntervalli # print xIntervalli # print yNPIntervalli # print yIntervalli print "area numpy = ", npArea print "old timing = ", endOld - start, "numPy timing = ", endNP - endOld
24.809524
72
0.726488
0
0
0
0
0
0
0
0
232
0.222649
e039092d052960d2f6c3a01770cd6d300e7b630a
8,810
py
Python
json_codegen/generators/python3_marshmallow/object_generator.py
expobrain/json-schema-codegen
e22b386333c6230e5d6f5984fd947fdd7b947e82
[ "MIT" ]
21
2018-06-15T16:08:57.000Z
2022-02-11T16:16:11.000Z
json_codegen/generators/python3_marshmallow/object_generator.py
expobrain/json-schema-codegen
e22b386333c6230e5d6f5984fd947fdd7b947e82
[ "MIT" ]
14
2018-08-09T18:02:19.000Z
2022-01-24T18:04:17.000Z
json_codegen/generators/python3_marshmallow/object_generator.py
expobrain/json-schema-codegen
e22b386333c6230e5d6f5984fd947fdd7b947e82
[ "MIT" ]
4
2018-11-30T18:19:10.000Z
2021-11-18T04:04:36.000Z
import ast from json_codegen.generators.python3_marshmallow.utils import Annotations, class_name class ObjectGenerator(object): @staticmethod def _get_property_name(node_assign): name = node_assign.targets[0] return name.id @staticmethod def _nesting_class(node_assign): for node in ast.walk(node_assign): if isinstance(node, ast.Call): if node.func.attr == "Nested": return class_name(node.args[0].id) @staticmethod def _non_primitive_nested_list(node_assign): if node_assign.value.func.attr == "List": return ( len(node_assign.value.args) > 0 and node_assign.value.args[0].func.attr == "Nested" ) else: return False @staticmethod def _init_non_primitive_nested_class(node_assign, object_, prop): """ If the nested list is non-primitive, initialise sub-classes in a list comp If the nest is primitive, we can simply get it Marshmallow will do the type marshalling """ return ast.ListComp( elt=ast.Call( func=ast.Name(id=ObjectGenerator._nesting_class(node_assign)), args=[ast.Name(id="el")], keywords=[], ), generators=[ ast.comprehension( target=ast.Name(id="el"), iter=ast.Call( func=ast.Attribute(value=ast.Name(id=object_), attr="get"), args=[ast.Str(s=prop), ast.Dict(keys=[], values=[])], keywords=[], ), ifs=[], is_async=0, ) ], ) @staticmethod def _get_key_from_object(object_, prop): return ast.Call( func=ast.Attribute(value=ast.Name(id=object_), attr="get"), args=[ast.Str(s=prop)], keywords=[], ) @staticmethod def _hint_required_property(node_assign, value, object_, prop): for node in ast.walk(node_assign): if isinstance(node, ast.keyword): if "required" in node.arg: value = ast.Subscript( value=ast.Name(id=object_), slice=ast.Index(value=ast.Str(s=prop)) ) return value @staticmethod def _get_default_for_property(node_assign, value, object_, prop): for node in ast.walk(node_assign): if isinstance(node, ast.keyword) and node.arg == "required": return value for node in ast.walk(node_assign): if isinstance(node, ast.keyword) and node.arg == "default": default_value = [ keyword.value for keyword in node_assign.value.keywords if keyword.arg == "default" ][0] value.args.append(default_value) return value else: return value @staticmethod def assign_property(node_assign, object_): """ Required property -> self.prop = parent_dict["prop"] Optional property -> self.prop = parent_dict.get("prop") Primative nested list -> self.prop = parent_dict.get("prop") Non-primative nested list -> self.props = [PropertyClass(el) for el in parent_dict.get('props', {})] """ prop = ObjectGenerator._get_property_name(node_assign) if ObjectGenerator._non_primitive_nested_list(node_assign): value = ObjectGenerator._init_non_primitive_nested_class(node_assign, object_, prop) else: # Assign the property as self.prop = table.get("prop") value = ObjectGenerator._get_key_from_object(object_, prop) # If the property is required, assign as self.prop = table["prop"] value = ObjectGenerator._hint_required_property(node_assign, value, object_, prop) value = ObjectGenerator._get_default_for_property(node_assign, value, object_, prop) return ast.AnnAssign( target=ast.Attribute(value=ast.Name(id="self"), attr=prop), value=value, simple=0, annotation=Annotations(node_assign).type, ) @staticmethod def construct_class(schema): name = class_name(schema.name) name_lower = name.lower() # Bundle function arguments and keywords fn_arguments = ast.arguments( args=[ ast.arg(arg="self", annotation=None), ast.arg(arg=name_lower, annotation=ast.Name(id="dict")), ], vararg=None, kwarg=None, kwonlyargs=[], kw_defaults=[], defaults=[], ) fn_body = [ ObjectGenerator.assign_property(node, name_lower) for node in schema.body if isinstance(node, ast.Assign) ] # pass if no Assign nodes if len(fn_body) == 0: fn_body = [ast.Pass()] # Generate class constructor class_body = [ ast.FunctionDef( name="__init__", args=fn_arguments, body=fn_body, decorator_list=[], returns=None ), ObjectGenerator._construct_to_("json")(schema), ObjectGenerator._construct_to_("dict")(schema), ObjectGenerator.construct_from_json(schema), ] return ast.ClassDef(name=name, bases=[], body=class_body, decorator_list=[], keywords=[]) @staticmethod def _construct_to_(output): if output == "json": method = "dumps" elif output == "dict": method = "dump" else: raise NotImplementedError("Only deserialisation to json or dict supported") def _construct_to_helper(schema): fn_args = ast.arguments( args=[ast.arg(arg="self", annotation=None)], vararg=None, kwonlyargs=[], kw_defaults=[], kwarg=None, defaults=[], ) fn_body = [ ast.Return( value=ast.Attribute( value=ast.Call( func=ast.Attribute( value=ast.Call( func=ast.Name(id=schema.name), args=[], keywords=[ ast.keyword( arg="strict", value=ast.NameConstant(value=True) ) ], ), attr=method, ), args=[ast.Name(id="self")], keywords=[], ), attr="data", ) ) ] return ast.FunctionDef( name=f"to_{output}", args=fn_args, body=fn_body, decorator_list=[], returns=None ) return _construct_to_helper @staticmethod def construct_from_json(schema): fn_args = ast.arguments( args=[ ast.arg(arg="json", annotation=ast.Name(id="str")), ast.arg(arg="only", annotation=None), ], vararg=None, kwonlyargs=[], kw_defaults=[], kwarg=None, defaults=[ast.NameConstant(value=None)], ) fn_body = [ ast.Return( ast.Attribute( value=ast.Call( func=ast.Attribute( value=ast.Call( func=ast.Name(id=schema.name), args=[], keywords=[ ast.keyword(arg="strict", value=ast.NameConstant(value=True)), ast.keyword(arg="only", value=ast.Name(id="only")), ], ), attr="loads", ), args=[ast.Name(id="json")], keywords=[], ), attr="data", ) ) ] return ast.FunctionDef( name="from_json", args=fn_args, body=fn_body, decorator_list=[ast.Name(id="staticmethod")], returns=None, )
34.414063
108
0.484222
8,709
0.988536
0
0
8,614
0.977753
0
0
1,069
0.121339
e039c81acd8d1fcb88f92f04b6556a716666da98
12,736
py
Python
testing/regrid/testEsmfGridToMeshRegridCsrv.py
xylar/cdat
8a5080cb18febfde365efc96147e25f51494a2bf
[ "BSD-3-Clause" ]
62
2018-03-30T15:46:56.000Z
2021-12-08T23:30:24.000Z
testing/regrid/testEsmfGridToMeshRegridCsrv.py
xylar/cdat
8a5080cb18febfde365efc96147e25f51494a2bf
[ "BSD-3-Clause" ]
114
2018-03-21T01:12:43.000Z
2021-07-05T12:29:54.000Z
testing/regrid/testEsmfGridToMeshRegridCsrv.py
CDAT/uvcdat
5133560c0c049b5c93ee321ba0af494253b44f91
[ "BSD-3-Clause" ]
14
2018-06-06T02:42:47.000Z
2021-11-26T03:27:00.000Z
#!/usr/bin/env python # # $Id: ESMP_GridToMeshRegridCsrv.py,v 1.5 2012/04/23 23:00:14 rokuingh Exp $ #=============================================================================== # ESMP/examples/ESMP_GridToMeshRegrid.py #=============================================================================== """ ESMP_GridToMeshRegridCsrv.py Two ESMP_Field objects are created, one on a Grid and the other on a Mesh. The source Field is set to an analytic function, and a conservative regridding operation is performed from the source to the destination Field. After the regridding is completed, the destination Field is compared to the exact solution over that domain. """ import cdms2 import ESMP import numpy as _NP import unittest def grid_create(): ''' PRECONDITIONS: ESMP has been initialized. POSTCONDITIONS: A ESMP_Grid has been created. ''' ub_x = float(4) ub_y = float(4) lb_x = float(0) lb_y = float(0) max_x = float(4) max_y = float(4) min_x = float(0) min_y = float(0) cellwidth_x = (max_x-min_x)/(ub_x-lb_x) cellwidth_y = (max_y-min_y)/(ub_y-lb_y) cellcenter_x = cellwidth_x/2 cellcenter_y = cellwidth_y/2 maxIndex = _NP.array([ub_x,ub_y], dtype=_NP.int32) grid = ESMP.ESMP_GridCreateNoPeriDim(maxIndex, coordSys=ESMP.ESMP_COORDSYS_CART) ## CORNERS ESMP.ESMP_GridAddCoord(grid, staggerloc=ESMP.ESMP_STAGGERLOC_CORNER) exLB_corner, exUB_corner = ESMP.ESMP_GridGetCoord(grid, \ ESMP.ESMP_STAGGERLOC_CORNER) # get the coordinate pointers and set the coordinates [x,y] = [0, 1] gridXCorner = ESMP.ESMP_GridGetCoordPtr(grid, x, ESMP.ESMP_STAGGERLOC_CORNER) gridYCorner = ESMP.ESMP_GridGetCoordPtr(grid, y, ESMP.ESMP_STAGGERLOC_CORNER) #print 'lower corner bounds = [{0},{1}]'.format(exLB_corner[0],exLB_corner[1]) #print 'upper corner bounds = [{0},{1}]'.format(exUB_corner[0],exUB_corner[1]) p = 0 for i1 in range(exLB_corner[1], exUB_corner[1]): for i0 in range(exLB_corner[0], exUB_corner[0]): gridXCorner[p] = float(i0)*cellwidth_x gridYCorner[p] = float(i1)*cellwidth_y p = p + 1 #print 'Grid corner coordinates:' p = 0 for i1 in range(exLB_corner[1], exUB_corner[1]): for i0 in range(exLB_corner[0], exUB_corner[0]): #print '[{0},{1}]'.format(gridXCorner[p], gridYCorner[p]) p = p + 1 #print '\n' ## CENTERS ESMP.ESMP_GridAddCoord(grid, staggerloc=ESMP.ESMP_STAGGERLOC_CENTER) exLB_center, exUB_center = ESMP.ESMP_GridGetCoord(grid, \ ESMP.ESMP_STAGGERLOC_CENTER) # get the coordinate pointers and set the coordinates [x,y] = [0, 1] gridXCenter = ESMP.ESMP_GridGetCoordPtr(grid, x, ESMP.ESMP_STAGGERLOC_CENTER) gridYCenter = ESMP.ESMP_GridGetCoordPtr(grid, y, ESMP.ESMP_STAGGERLOC_CENTER) #print 'lower corner bounds = [{0},{1}]'.format(exLB_center[0],exLB_center[1]) #print 'upper corner bounds = [{0},{1}]'.format(exUB_center[0],exUB_center[1]) p = 0 for i1 in range(exLB_center[1], exUB_center[1]): for i0 in range(exLB_center[0], exUB_center[0]): gridXCenter[p] = float(i0)*cellwidth_x + cellwidth_x/2.0 gridYCenter[p] = float(i1)*cellwidth_y + cellwidth_y/2.0 p = p + 1 #print 'Grid center coordinates:' p = 0 for i1 in range(exLB_center[1], exUB_center[1]): for i0 in range(exLB_center[0], exUB_center[0]): #print '[{0},{1}]'.format(gridXCenter[p], gridYCenter[p]) p = p + 1 #print '\n' return grid def mesh_create_3x3(mesh): ''' PRECONDITIONS: An ESMP_Mesh has been declared. POSTCONDITIONS: A 3x3 ESMP_Mesh has been created. 3x3 Mesh 3.0 2.0 13 -------14 --------15--------16 | | | | | 7 | 8 | 9 | | | | | 2.5 1.5 9 ------- 10 --------11--------12 | | | | | 4 | 5 | 6 | | | | | 1.5 0.5 5 ------- 6 -------- 7-------- 8 | | | | | 1 | 2 | 3 | | | | | 1.0 0.0 1 ------- 2 -------- 3-------- 4 0.0 0.5 1.5 2.0 1.0 1.5 2.5 3.0 Node Ids at corners Element Ids in centers (Everything owned by PET 0) ''' # set up a simple mesh num_node = 16 num_elem = 9 nodeId = _NP.array([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]) ''' # this is for grid to mesh nodeCoord = _NP.array([1.0,1.0, 1.5,1.0, 2.5,1.0, 3.0,1.0, 1.0,1.5, 1.5,1.5, 2.5,1.5, 3.0,1.5, 1.0,2.5, 1.5,2.5, 2.5,2.5, 3.0,2.5, 1.0,3.0, 1.5,3.0, 2.5,3.0, 3.0,3.0]) ''' # this is for mesh to grid nodeCoord = _NP.array([0.0,0.0, 1.5,0.0, 2.5,0.0, 4.0,0.0, 0.0,1.5, 1.5,1.5, 2.5,1.5, 4.0,1.5, 0.0,2.5, 1.5,2.5, 2.5,2.5, 4.0,2.5, 0.0,4.0, 1.5,4.0, 2.5,4.0, 4.0,4.0]) nodeOwner = _NP.zeros(num_node, dtype=_NP.int32) elemId = _NP.array([1,2,3,4,5,6,7,8,9], dtype=_NP.int32) elemType = _NP.ones(num_elem, dtype=_NP.int32) elemType*=ESMP.ESMP_MESHELEMTYPE_QUAD elemConn = _NP.array([0,1,5,4, 1,2,6,5, 2,3,7,6, 4,5,9,8, 5,6,10,9, 6,7,11,10, 8,9,13,12, 9,10,14,13, 10,11,15,14], dtype=_NP.int32) ESMP.ESMP_MeshAddNodes(mesh,num_node,nodeId,nodeCoord,nodeOwner) ESMP.ESMP_MeshAddElements(mesh,num_elem,elemId,elemType,elemConn) #print 'Mesh coordinates:' for i in range(num_node): x = nodeCoord[2*i] y = nodeCoord[2*i+1] #print '[{0},{1}]'.format(x, y) #print '\n' return mesh, nodeCoord, elemType, elemConn def create_ESMPmesh_3x3(): ''' PRECONDITIONS: ESMP is initialized. POSTCONDITIONS: An ESMP_Mesh (3x3) has been created and returned as 'mesh'. ''' # Two parametric dimensions, and three spatial dimensions mesh = ESMP.ESMP_MeshCreate(2,2) mesh, nodeCoord, elemType, elemConn = mesh_create_3x3(mesh) return mesh, nodeCoord, elemType, elemConn def create_ESMPfieldgrid(grid, name): ''' PRECONDITIONS: An ESMP_Grid has been created, and 'name' is a string that will be used to initialize the name of a new ESMP_Field. POSTCONDITIONS: An ESMP_Field has been created. ''' # defaults to center staggerloc field = ESMP.ESMP_FieldCreateGrid(grid, name) return field def build_analyticfieldgrid(field, grid): ''' PRECONDITIONS: An ESMP_Field has been created. POSTCONDITIONS: The 'field' has been initialized to an analytic field. ''' # get the field pointer first fieldPtr = ESMP.ESMP_FieldGetPtr(field) # get the grid bounds and coordinate pointers exLB, exUB = ESMP.ESMP_GridGetCoord(grid, ESMP.ESMP_STAGGERLOC_CENTER) # get the coordinate pointers and set the coordinates [x,y] = [0, 1] gridXCoord = ESMP.ESMP_GridGetCoordPtr(grid, x, ESMP.ESMP_STAGGERLOC_CENTER) gridYCoord = ESMP.ESMP_GridGetCoordPtr(grid, y, ESMP.ESMP_STAGGERLOC_CENTER) #print "Grid center coordinates" p = 0 for i1 in range(exLB[1], exUB[1]): for i0 in range(exLB[0], exUB[0]): xc = gridXCoord[p] yc = gridYCoord[p] fieldPtr[p] = 20.0+xc+yc #fieldPtr[p] = 20.0+xc*yc+yc**2 #print '[{0},{1}] = {2}'.format(xc,yc,fieldPtr[p]) p = p + 1 #print "\n" return field def create_ESMPfield(mesh, name): ''' PRECONDITIONS: An ESMP_Mesh has been created, and 'name' is a string that will be used to initialize the name of a new ESMP_Field. POSTCONDITIONS: An ESMP_Field has been created. ''' field = ESMP.ESMP_FieldCreate(mesh, name, meshloc=ESMP.ESMP_MESHLOC_ELEMENT) return field def build_analyticfield(field, nodeCoord, elemType, elemConn): ''' PRECONDITIONS: An ESMP_Field has been created. POSTCONDITIONS: The 'field' has been initialized to an analytic field. ''' # get the field pointer first fieldPtr = ESMP.ESMP_FieldGetPtr(field, 0) # set the field to a vanilla initial field for now #print "Mesh center coordinates" offset = 0 for i in range(field.size): # this routine assumes this field is on elements if (elemType[i] == ESMP.ESMP_MESHELEMTYPE_TRI): raise NameError("Cannot compute a non-constant analytic field for a mesh\ with triangular elements!") x1 = nodeCoord[(elemConn[offset])*2] x2 = nodeCoord[(elemConn[offset+1])*2] y1 = nodeCoord[(elemConn[offset+1])*2+1] y2 = nodeCoord[(elemConn[offset+3])*2+1] x = (x1+x2)/2.0 y = (y1+y2)/2.0 fieldPtr[i] = 20.0+x+y #fieldPtr[i] = 20.0+x*y+y**2 #print '[{0},{1}] = {2}'.format(x,y,fieldPtr[i]) offset = offset + 4 #print "\n" return field def run_regridding(srcfield, dstfield): ''' PRECONDITIONS: Two ESMP_Fields have been created and a regridding operation is desired from 'srcfield' to 'dstfield'. POSTCONDITIONS: An ESMP regridding operation has set the data on 'dstfield'. ''' # call the regridding functions routehandle = ESMP.ESMP_FieldRegridStore(srcfield, dstfield, regridmethod=ESMP.ESMP_REGRIDMETHOD_CONSERVE, unmappedaction=ESMP.ESMP_UNMAPPEDACTION_ERROR) ESMP.ESMP_FieldRegrid(srcfield, dstfield, routehandle) ESMP.ESMP_FieldRegridRelease(routehandle) return dstfield def compare_fields(field1, field2): ''' PRECONDITIONS: Two ESMP_Fields have been created and a comparison of the the values is desired between 'srcfield' and 'dstfield'. POSTCONDITIONS: The values on 'srcfield' and 'dstfield' are compared. returns True if the fileds are comparable (success) ''' # get the data pointers for the fields field1ptr = ESMP.ESMP_FieldGetPtr(field1) field2ptr = ESMP.ESMP_FieldGetPtr(field2) # compare point values of field1 to field2 # first verify they are the same size if (field1.size != field2.size): raise NameError('compare_fields: Fields must be the same size!') # initialize to True, and check for False point values correct = True totalErr = 0.0 for i in range(field1.size): err = abs(field1ptr[i] - field2ptr[i])/abs(field2ptr[i]) if err > .06: correct = False print "ACCURACY ERROR - "+str(err) print "field1 = {0} : field2 = {1}\n".format(field1ptr[i], field2ptr[i]) totalErr += err if correct: print " - PASS - Total Error = "+str(totalErr) return True else: print " - FAIL - Total Error = "+str(totalErr) return False class TestESMP_GridToMeshRegridCsrv(unittest.TestCase): def setUp(self): pass def test_test1(self): # create two unique ESMP_Mesh objects grid = grid_create() mesh, nodeCoord, elemType, elemConn = create_ESMPmesh_3x3() ''' # this is for grid to mesh # create ESMP_Field objects on the Meshes srcfield = create_ESMPfieldgrid(grid, 'srcfield') dstfield = create_ESMPfield(mesh, 'dstfield') dstfield2 = create_ESMPfield(mesh, 'dstfield_exact') # initialize the Fields to an analytic function srcfield = build_analyticfieldgrid(srcfield, grid) dstfield2 = build_analyticfield(dstfield2, nodeCoord, elemType, elemConn) ''' # this is for mesh to grid # create ESMP_Field objects on the Meshes srcfield = create_ESMPfield(mesh, 'srcfield') dstfield = create_ESMPfieldgrid(grid, 'dstfield') dstfield2 = create_ESMPfieldgrid(grid, 'dstfield_exact') # initialize the Fields to an analytic function srcfield = build_analyticfield(srcfield, nodeCoord, elemType, elemConn) dstfield2 = build_analyticfieldgrid(dstfield2, grid) # run the ESMF regridding dstfield = run_regridding(srcfield, dstfield) # compare results and output PASS or FAIL ok = compare_fields(dstfield, dstfield2) # clean up ESMP.ESMP_FieldDestroy(srcfield) ESMP.ESMP_FieldDestroy(dstfield) ESMP.ESMP_FieldDestroy(dstfield2) ESMP.ESMP_GridDestroy(grid) ESMP.ESMP_MeshDestroy(mesh) self.assertEqual(ok, True) if __name__ == '__main__': ESMP.ESMP_LogSet(True) print "" # Spacer suite = unittest.TestLoader().loadTestsFromTestCase(TestESMP_GridToMeshRegridCsrv) unittest.TextTestRunner(verbosity = 1).run(suite)
33.515789
86
0.613693
1,513
0.118797
0
0
0
0
0
0
5,881
0.461762
e03a335c46211edd43cb24ddb42d950cbfd7fa71
1,184
py
Python
test/mock_module.py
ariffyasri/lale
326012c3c3dd884fae0093fe0c45596e4f9c0d72
[ "Apache-2.0" ]
1
2020-04-28T11:27:48.000Z
2020-04-28T11:27:48.000Z
test/mock_module.py
ariffyasri/lale
326012c3c3dd884fae0093fe0c45596e4f9c0d72
[ "Apache-2.0" ]
null
null
null
test/mock_module.py
ariffyasri/lale
326012c3c3dd884fae0093fe0c45596e4f9c0d72
[ "Apache-2.0" ]
1
2020-07-30T10:06:23.000Z
2020-07-30T10:06:23.000Z
# Copyright 2019 IBM Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sklearn.neighbors # class that follows scikit-learn conventions but lacks schemas, # for the purpose of testing how to wrap an operator without schemas class UnknownOp: def __init__(self, n_neighbors=5, algorithm='auto'): self._hyperparams = { 'n_neighbors': n_neighbors, 'algorithm': algorithm} def get_params(self, deep:bool=False): return self._hyperparams def fit(self, X, y): self._wrapped_model = sklearn.neighbors.KNeighborsClassifier( **self._hyperparams) def predict(self, X): return self._wrapped_model.predict(X)
34.823529
74
0.72973
446
0.376689
0
0
0
0
0
0
724
0.611486
e03bee15bfc41f500be41ba4168c4029ea4dba20
3,770
py
Python
scripts/beautify.py
lukaschoebel/POTUSgen
7b88ba63f0ddab199937df909c5af3271a833cf3
[ "MIT" ]
null
null
null
scripts/beautify.py
lukaschoebel/POTUSgen
7b88ba63f0ddab199937df909c5af3271a833cf3
[ "MIT" ]
5
2020-03-25T08:02:45.000Z
2020-04-08T20:07:42.000Z
scripts/beautify.py
lukaschoebel/POTUSgen
7b88ba63f0ddab199937df909c5af3271a833cf3
[ "MIT" ]
null
null
null
import json import re import sys def beautify(name): ''' Loading, filtering and saving the JSON tweet file to a newly generated .txt file :type: name: String :rtype: output: .txt ''' filename = name + '.json' output_name = name + "_filtered.txt" with open(filename, "r", encoding="utf-8") as input: with open(output_name, "w", encoding="utf-8") as output: document = json.load(input) # Filter only the messages that are not retweeted # >> Version i): for tweets from archive "master_XXXX.json" # document = [x['full_text'] for x in document if x['user']['screen_name'] == 'realDonaldTrump' and 'full_text' in x] # >> Version ii): for self-scraped tweets via https://github.com/bpb27/twitter_scraping # document = [x['text'] for x in document if x['user']['screen_name'] == 'realDonaldTrump' and 'text' in x] # >> Version iii): Data set from https://github.com/MatthewWolff/MarkovTweets/ document = [x['text'] for x in document] # Clean and only include not retweeted messages document = [deep_clean(x) for x in document if deep_clean(x) is not None] # Preventing unicode characters by ensuring false ascii encoding for _, value in enumerate(document): output.write(json.dumps(value, ensure_ascii=False) + "\n") # json.dump(document, output, ensure_ascii=False, indent=4) print(f">> Sucessfully cleaned {filename} and saved it to {output_name}") def deep_clean(s): ''' Deep cleaning of filtered tweets. Replaces common symbols and kills quotation marks/apostrophes. :type: s: String :rtype: s: String ''' # Return None if given tweet is a retweet if s[:2] == 'RT': return None # Delete all URLs because they don't make for interesting tweets. s = re.sub(r'http[\S]*', '', s) # Replace some common unicode symbols with raw character variants s = re.sub(r'\\u2026', '...', s) s = re.sub(r'…', '', s) s = re.sub(r'\\u2019', "'", s) s = re.sub(r'\\u2018', "'", s) s = re.sub(r"&amp;", r"&", s) s = re.sub(r'\\n', r"", s) # Delete emoji modifying characters s = re.sub(chr(127996), '', s) s = re.sub(chr(65039), '', s) # Kill apostrophes & punctuation because they confuse things. s = re.sub(r"'", r"", s) s = re.sub(r"“", r"", s) s = re.sub(r"”", r"", s) s = re.sub('[()]', r'', s) s = re.sub(r'"', r"", s) # Collapse multiples of certain chars s = re.sub('([.-])+', r'\1', s) # Pad sentence punctuation chars with whitespace s = re.sub('([^0-9])([.,!?])([^0-9])', r'\1 \2 \3', s) # Remove extra whitespace (incl. newlines) s = ' '.join(s.split()).lower() # Define emoji_pattern emoji_pattern = re.compile("[" u"\U0001F600-\U0001F64F" # emoticons u"\U0001F300-\U0001F5FF" # symbols & pictographs u"\U0001F680-\U0001F6FF" # transport & map symbols u"\U0001F1E0-\U0001F1FF" # flags (iOS) u"\U0001F1F2-\U0001F1F4" # Macau flag u"\U0001F1E6-\U0001F1FF" # flags u"\U0001F600-\U0001F64F" u"\U00002702-\U000027B0" u"\U000024C2-\U0001F251" u"\U0001f926-\U0001f937" u"\U0001F1F2" u"\U0001F1F4" u"\U0001F620" u"\u200d" u"\u2640-\u2642" "]+", flags=re.UNICODE) s = emoji_pattern.sub(r'', s) # Care for a special case where the first char is a "." # return s[1:] if s[0] == "." else s if len(s): return s[1:] if s[0] == "." else s return None if __name__ == "__main__": if len(sys.argv) - 1: beautify(sys.argv[1])
33.963964
129
0.571088
0
0
0
0
0
0
0
0
2,190
0.579979
e03c2a58883f30a7a78a6973c7fd5ce571d96bba
1,746
py
Python
result2gaofentype/pkl2txt_ggm.py
G-Naughty/Fine-grained-OBB-Detection
8c82c4c178f0b6bba077ff9d906a81bf8e04789c
[ "Apache-2.0" ]
2
2022-02-06T07:45:03.000Z
2022-03-11T14:18:32.000Z
result2gaofentype/pkl2txt_ggm.py
G-Naughty/Fine-grained-OBB-Detection
8c82c4c178f0b6bba077ff9d906a81bf8e04789c
[ "Apache-2.0" ]
null
null
null
result2gaofentype/pkl2txt_ggm.py
G-Naughty/Fine-grained-OBB-Detection
8c82c4c178f0b6bba077ff9d906a81bf8e04789c
[ "Apache-2.0" ]
null
null
null
import BboxToolkit as bt import pickle import copy import numpy as np path1="/home/hnu1/GGM/OBBDetection/work_dir/oriented_obb_contrast_catbalance/dets.pkl" path2="/home/hnu1/GGM/OBBDetection/data/FaIR1M/test/annfiles/ori_annfile.pkl"# with open(path2,'rb') as f: #/home/disk/FAIR1M_1000_split/val/annfiles/ori_annfile.pkl data2 = pickle.load(f) with open(path1,'rb') as f: obbdets = pickle.load(f) polydets=copy.deepcopy(obbdets) for i in range(len(obbdets)): for j in range(len(obbdets[0][1])): data=obbdets[i][1][j] if data.size!= 0: polys=[] for k in range(len(data)): poly = bt.obb2poly(data[k][0:5]) poly=np.append(poly,data[k][5]) polys.append(poly) else: polys=[] polydets[i][1][j]=polys savepath="/home/hnu1/GGM/OBBDetection/work_dir/oriented_obb_contrast_catbalance/result_txt/" for i in range(len(polydets)): txtfile=savepath+polydets[i][0]+".txt" f = open(txtfile, "w") for j in range(len(polydets[0][1])): if polydets[i][1][j]!=[]: for k in range(len(polydets[i][1][j])): f.write(str(polydets[i][1][j][k][0])+" "+ str(polydets[i][1][j][k][1])+" "+ str(polydets[i][1][j][k][2])+" "+ str(polydets[i][1][j][k][3])+" "+ str(polydets[i][1][j][k][4])+" "+ str(polydets[i][1][j][k][5])+" "+ str(polydets[i][1][j][k][6])+" "+ str(polydets[i][1][j][k][7])+" "+ str(data2["cls"][j])+" "+ str(polydets[i][1][j][k][8])+"\n") f.close()
40.604651
95
0.512027
0
0
0
0
0
0
0
0
346
0.198167
e03e3fafddd8bfe7f29e435a8b1b27b522698dbd
938
py
Python
initializer_3d.py
HarperCallahan/taichi_ferrofluid
6113f6c7d9d9d612b6dadc500cf91b576c2d05ea
[ "MIT" ]
null
null
null
initializer_3d.py
HarperCallahan/taichi_ferrofluid
6113f6c7d9d9d612b6dadc500cf91b576c2d05ea
[ "MIT" ]
null
null
null
initializer_3d.py
HarperCallahan/taichi_ferrofluid
6113f6c7d9d9d612b6dadc500cf91b576c2d05ea
[ "MIT" ]
null
null
null
import taichi as ti import utils from apic_extension import * @ti.data_oriented class Initializer3D: # tmp initializer def __init__(self, res, x0, y0, z0, x1, y1, z1): self.res = res self.x0 = int(res * x0) self.y0 = int(res * y0) self.z0 = int(res * z0) self.x1 = int(res * x1) self.y1 = int(res * y1) self.z1 = int(res * z1) @ti.kernel def init_kernel(self, cell_type : ti.template()): for i, j, k in cell_type: if i >= self.x0 and i <= self.x1 and \ j >= self.y0 and j <= self.y1 and \ k >= self.z0 and k <= self.z1: cell_type[i, j, k] = utils.FLUID def init_scene(self, simulator): self.init_kernel(simulator.cell_type) dx = simulator.dx simulator.level_set.initialize_with_aabb((self.x0 * dx, self.y0 * dx, self.z0 * dx), (self.x1 * dx, self.y1 * dx, self.z1 * dx))
31.266667
136
0.557569
855
0.911514
0
0
873
0.930704
0
0
17
0.018124
e03ebf0129e76590fab9b3f72a3301cc3f5c22ca
1,265
py
Python
copy_block_example.py
MilesCranmer/bifrost_paper
654408cd7e34e7845cee58100fe459e1422e4859
[ "MIT" ]
null
null
null
copy_block_example.py
MilesCranmer/bifrost_paper
654408cd7e34e7845cee58100fe459e1422e4859
[ "MIT" ]
null
null
null
copy_block_example.py
MilesCranmer/bifrost_paper
654408cd7e34e7845cee58100fe459e1422e4859
[ "MIT" ]
null
null
null
from copy import deepcopy import bifrost as bf from bifrost.pipeline import TransformBlock from bifrost.ndarray import copy_array class CopyBlock(TransformBlock):# $\tikzmark{block-start}$ """Copy the input ring to output ring""" def __init__(self, iring, space): super(CopyBlock, self).__init__(iring) self.orings = [self.create_ring(space=space)] def on_sequence(self, iseq): return deepcopy(iseq.header) def on_data(self, ispan, ospan): copy_array(ospan.data, ispan.data)#$\tikzmark{block-end}$ def copy_block(iring, space): return CopyBlock(iring, space) bc = bf.BlockChainer() bc.blocks.read_wav(['hey_jude.wav'], gulp_nframe=4096) bc.custom(copy_block)(space='cuda')# $\tikzmark{gpu-start}$ bc.views.split_axis('time', 256, label='fine_time') bc.blocks.fft(axes='fine_time', axis_labels='freq') bc.blocks.detect(mode='scalar') bc.blocks.transpose(['time', 'pol', 'freq'])#$\tikzmark{gpu-end}$ bc.blocks.copy(space='system') bc.blocks.quantize('i8') bc.blocks.write_sigproc() pipeline = bf.get_default_pipeline()# $\tikzmark{pipeline-start}$ pipeline.shutdown_on_signals() pipeline.run()#$\tikzmark{pipeline-end}$
30.853659
98
0.674308
455
0.359684
0
0
0
0
0
0
351
0.27747
e0404632a7378b088279de3e94aac11c26a9e183
1,540
py
Python
monasca_persister/conf/influxdb.py
zhangjianweibj/monasca-persister
0c5d8a7c5553001f2d38227347f482201f92c8e1
[ "Apache-2.0" ]
null
null
null
monasca_persister/conf/influxdb.py
zhangjianweibj/monasca-persister
0c5d8a7c5553001f2d38227347f482201f92c8e1
[ "Apache-2.0" ]
1
2020-03-13T12:30:29.000Z
2020-03-13T12:38:16.000Z
monasca_persister/conf/influxdb.py
zhangjianweibj/monasca-persister
0c5d8a7c5553001f2d38227347f482201f92c8e1
[ "Apache-2.0" ]
null
null
null
# (C) Copyright 2016-2017 Hewlett Packard Enterprise Development LP # Copyright 2017 FUJITSU LIMITED # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from oslo_config import cfg influxdb_opts = [ cfg.StrOpt('database_name', help='database name where metrics are stored', default='mon'), cfg.HostAddressOpt('ip_address', help='Valid IP address or hostname ' 'to InfluxDB instance'), cfg.PortOpt('port', help='port to influxdb', default=8086), cfg.StrOpt('user', help='influxdb user ', default='mon_persister'), cfg.StrOpt('password', secret=True, help='influxdb password')] influxdb_group = cfg.OptGroup(name='influxdb', title='influxdb') def register_opts(conf): conf.register_group(influxdb_group) conf.register_opts(influxdb_opts, influxdb_group) def list_opts(): return influxdb_group, influxdb_opts
32.765957
69
0.653896
0
0
0
0
0
0
0
0
865
0.561688
e040676396d83dae688cf225c1f4290cf1100f35
192
py
Python
test_print_json.py
huangsen365/boto3-docker
42d46ce4433dd037006d6b8d01db3fe444b9d8dd
[ "Apache-2.0" ]
null
null
null
test_print_json.py
huangsen365/boto3-docker
42d46ce4433dd037006d6b8d01db3fe444b9d8dd
[ "Apache-2.0" ]
null
null
null
test_print_json.py
huangsen365/boto3-docker
42d46ce4433dd037006d6b8d01db3fe444b9d8dd
[ "Apache-2.0" ]
null
null
null
import json your_json = '["foo", {"bar":["baz", null, 1.0, 2]}]' parsed = json.loads(your_json) print(type(your_json)) print(type(parsed)) #print(json.dumps(parsed, indent=4, sort_keys=True))
27.428571
52
0.6875
0
0
0
0
0
0
0
0
92
0.479167
e041875337916a4d8560bbab0e0b68edca74373b
13,929
py
Python
src/solutions/common/integrations/cirklo/api.py
goubertbrent/oca-backend
b9f59cc02568aecb55d4b54aec05245790ea25fd
[ "Apache-2.0" ]
null
null
null
src/solutions/common/integrations/cirklo/api.py
goubertbrent/oca-backend
b9f59cc02568aecb55d4b54aec05245790ea25fd
[ "Apache-2.0" ]
null
null
null
src/solutions/common/integrations/cirklo/api.py
goubertbrent/oca-backend
b9f59cc02568aecb55d4b54aec05245790ea25fd
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2020 Green Valley Belgium NV # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # @@license_version:1.7@@ import cloudstorage import logging from babel.dates import format_datetime from datetime import datetime from google.appengine.ext import ndb, deferred, db from typing import List from xlwt import Worksheet, Workbook, XFStyle from mcfw.cache import invalidate_cache from mcfw.consts import REST_TYPE_TO from mcfw.exceptions import HttpBadRequestException, HttpForbiddenException, HttpNotFoundException from mcfw.restapi import rest from mcfw.rpc import returns, arguments from rogerthat.bizz.gcs import get_serving_url from rogerthat.bizz.service import re_index_map_only from rogerthat.consts import FAST_QUEUE from rogerthat.models import ServiceIdentity from rogerthat.models.settings import ServiceInfo from rogerthat.rpc import users from rogerthat.rpc.users import get_current_session from rogerthat.utils import parse_date from rogerthat.utils.service import create_service_identity_user from shop.models import Customer from solutions import translate from solutions.common.bizz import SolutionModule, broadcast_updates_pending from solutions.common.bizz.campaignmonitor import send_smart_email_without_check from solutions.common.consts import OCA_FILES_BUCKET from solutions.common.dal import get_solution_settings from solutions.common.integrations.cirklo.cirklo import get_city_id_by_service_email, whitelist_merchant, \ list_whitelisted_merchants, list_cirklo_cities from solutions.common.integrations.cirklo.models import CirkloCity, CirkloMerchant, SignupLanguageProperty, \ SignupMails, CirkloAppInfo from solutions.common.integrations.cirklo.to import CirkloCityTO, CirkloVoucherListTO, CirkloVoucherServiceTO, \ WhitelistVoucherServiceTO from solutions.common.restapi.services import _check_is_city def _check_permission(city_sln_settings): if SolutionModule.CIRKLO_VOUCHERS not in city_sln_settings.modules: raise HttpForbiddenException() if len(city_sln_settings.modules) != 1: _check_is_city(city_sln_settings.service_user) @rest('/common/vouchers/cities', 'get', silent_result=True) @returns([dict]) @arguments(staging=bool) def api_list_cirklo_cities(staging=False): return list_cirklo_cities(staging) @rest('/common/vouchers/services', 'get', silent_result=True) @returns(CirkloVoucherListTO) @arguments() def get_cirklo_vouchers_services(): city_service_user = users.get_current_user() city_sln_settings = get_solution_settings(city_service_user) _check_permission(city_sln_settings) to = CirkloVoucherListTO() to.total = 0 to.results = [] to.cursor = None to.more = False cirklo_city = CirkloCity.get_by_service_email(city_service_user.email()) if not cirklo_city: return to cirklo_merchants = list_whitelisted_merchants(cirklo_city.city_id) cirklo_dict = {} cirklo_emails = [] for merchant in cirklo_merchants: if merchant['email'] in cirklo_emails: logging.error('Duplicate found %s', merchant['email']) continue cirklo_emails.append(merchant['email']) cirklo_dict[merchant['email']] = merchant qry = CirkloMerchant.list_by_city_id(cirklo_city.city_id) # type: List[CirkloMerchant] osa_merchants = [] for merchant in qry: if merchant.service_user_email: osa_merchants.append(merchant) else: cirklo_merchant = cirklo_dict.get(merchant.data['company']['email']) if cirklo_merchant: if merchant.data['company']['email'] in cirklo_emails: cirklo_emails.remove(merchant.data['company']['email']) if not merchant.whitelisted: merchant.whitelisted = True merchant.put() elif merchant.whitelisted: merchant.whitelisted = False merchant.put() whitelist_date = cirklo_merchant['createdAt'] if cirklo_merchant else None merchant_registered = 'shopInfo' in cirklo_merchant if cirklo_merchant else False to.results.append( CirkloVoucherServiceTO.from_model(merchant, whitelist_date, merchant_registered, u'Cirklo signup')) if osa_merchants: customer_to_get = [Customer.create_key(merchant.customer_id) for merchant in osa_merchants] customers_dict = {customer.id: customer for customer in db.get(customer_to_get)} info_keys = [ServiceInfo.create_key(users.User(merchant.service_user_email), ServiceIdentity.DEFAULT) for merchant in osa_merchants] models = ndb.get_multi(info_keys) for service_info, merchant in zip(models, osa_merchants): customer = customers_dict[merchant.customer_id] if not customer.service_user: merchant.key.delete() continue cirklo_merchant = cirklo_dict.get(customer.user_email) should_save = False if cirklo_merchant: if customer.user_email in cirklo_emails: cirklo_emails.remove(customer.user_email) if not merchant.whitelisted: merchant.whitelisted = True should_save = True elif merchant.whitelisted: merchant.whitelisted = False should_save = True if should_save: merchant.put() service_identity_user = create_service_identity_user(customer.service_user) deferred.defer(re_index_map_only, service_identity_user) whitelist_date = cirklo_merchant['createdAt'] if cirklo_merchant else None merchant_registered = 'shopInfo' in cirklo_merchant if cirklo_merchant else False service_to = CirkloVoucherServiceTO.from_model(merchant, whitelist_date, merchant_registered, u'OSA signup') service_to.populate_from_info(service_info, customer) to.results.append(service_to) for email in cirklo_emails: cirklo_merchant = cirklo_dict[email] to.results.append(CirkloVoucherServiceTO.from_cirklo_info(cirklo_merchant)) return to @rest('/common/vouchers/services/whitelist', 'put', type=REST_TYPE_TO) @returns(CirkloVoucherServiceTO) @arguments(data=WhitelistVoucherServiceTO) def whitelist_voucher_service(data): city_service_user = users.get_current_user() city_sln_settings = get_solution_settings(city_service_user) _check_permission(city_sln_settings) cirklo_city = CirkloCity.get_by_service_email(city_service_user.email()) # type: CirkloCity if not cirklo_city: raise HttpNotFoundException('No cirklo settings found.') is_cirklo_only_merchant = '@' not in data.id if is_cirklo_only_merchant: merchant = CirkloMerchant.create_key(long(data.id)).get() # type: CirkloMerchant language = merchant.get_language() else: merchant = CirkloMerchant.create_key(data.id).get() language = get_solution_settings(users.User(merchant.service_user_email)).main_language if data.accepted: email_id = cirklo_city.get_signup_accepted_mail(language) if not email_id: raise HttpBadRequestException('City settings aren\'t fully setup yet.') whitelist_merchant(cirklo_city.city_id, data.email) deferred.defer(send_smart_email_without_check, email_id, [data.email], _countdown=1, _queue=FAST_QUEUE) else: email_id = cirklo_city.get_signup_accepted_mail(language) if not email_id: raise HttpBadRequestException('City settings aren\'t fully setup yet.') deferred.defer(send_smart_email_without_check, email_id, [data.email], _countdown=1, _queue=FAST_QUEUE) whitelist_date = datetime.now().isoformat() + 'Z' if data.accepted else None if not is_cirklo_only_merchant: if data.accepted: merchant.whitelisted = True else: merchant.denied = True merchant.put() service_info = ServiceInfo.create_key(users.User(merchant.service_user_email), ServiceIdentity.DEFAULT).get() customer = Customer.get_by_id(merchant.customer_id) # type: Customer if data.accepted: service_identity_user = create_service_identity_user(customer.service_user) deferred.defer(re_index_map_only, service_identity_user) to = CirkloVoucherServiceTO.from_model(merchant, whitelist_date, False, u'OSA signup') to.populate_from_info(service_info, customer) return to else: if data.accepted: merchant.whitelisted = True else: merchant.denied = True merchant.put() return CirkloVoucherServiceTO.from_model(merchant, whitelist_date, False, u'Cirklo signup') @rest('/common/vouchers/cirklo', 'get') @returns(CirkloCityTO) @arguments() def api_vouchers_get_cirklo_settings(): service_user = users.get_current_user() city = CirkloCity.get_by_service_email(service_user.email()) return CirkloCityTO.from_model(city) @rest('/common/vouchers/cirklo', 'put') @returns(CirkloCityTO) @arguments(data=CirkloCityTO) def api_vouchers_save_cirklo_settings(data): service_user = users.get_current_user() if not get_current_session().shop: lang = get_solution_settings(service_user).main_language raise HttpForbiddenException(translate(lang, 'no_permission')) other_city = CirkloCity.get_by_service_email(service_user.email()) # type: CirkloCity if not data.city_id: if other_city: other_city.key.delete() return CirkloCityTO.from_model(None) key = CirkloCity.create_key(data.city_id) city = key.get() if not city: city = CirkloCity(key=key, service_user_email=service_user.email()) elif city.service_user_email != service_user.email(): raise HttpBadRequestException('City id %s is already in use by another service' % data.city_id) if other_city and other_city.key != key: other_city.key.delete() invalidate_cache(get_city_id_by_service_email, service_user.email()) city.logo_url = data.logo_url city.signup_enabled = data.signup_enabled city.signup_logo_url = data.signup_logo_url city.signup_names = None city.signup_mail = SignupMails.from_to(data.signup_mail) if data.signup_name_nl and data.signup_name_fr: city.signup_names = SignupLanguageProperty(nl=data.signup_name_nl, fr=data.signup_name_fr) elif data.signup_name_nl: city.signup_names = SignupLanguageProperty(nl=data.signup_name_nl, fr=data.signup_name_nl) elif data.signup_name_fr: city.signup_names = SignupLanguageProperty(nl=data.signup_name_fr, fr=data.signup_name_fr) og_info = city.app_info and city.app_info.to_dict() info = CirkloAppInfo(enabled=data.app_info.enabled, title=data.app_info.title, buttons=data.app_info.buttons) sln_settings = get_solution_settings(service_user) if info.to_dict() != og_info and not sln_settings.ciklo_vouchers_only(): city.app_info = info sln_settings.updates_pending = True sln_settings.put() broadcast_updates_pending(sln_settings) city.put() return CirkloCityTO.from_model(city) @rest('/common/vouchers/cirklo/export', 'post') @returns(dict) @arguments() def api_export_cirklo_services(): service_user = users.get_current_user() city_sln_settings = get_solution_settings(service_user) _check_permission(city_sln_settings) all_services = get_cirklo_vouchers_services() if all_services.cursor: raise NotImplementedError() book = Workbook(encoding='utf-8') sheet = book.add_sheet('Cirklo') # type: Worksheet language = city_sln_settings.main_language sheet.write(0, 0, translate(language, 'reservation-name')) sheet.write(0, 1, translate(language, 'Email')) sheet.write(0, 2, translate(language, 'address')) sheet.write(0, 3, translate(language, 'Phone number')) sheet.write(0, 4, translate(language, 'created')) sheet.write(0, 5, translate(language, 'merchant_registered')) date_format = XFStyle() date_format.num_format_str = 'dd/mm/yyyy' row = 0 for service in all_services.results: row += 1 sheet.write(row, 0, service.name) sheet.write(row, 1, service.email) sheet.write(row, 2, service.address) sheet.write(row, 3, service.phone_number) sheet.write(row, 4, parse_date(service.creation_date), date_format) sheet.write(row, 5, translate(language, 'Yes') if service.merchant_registered else translate(language, 'No')) date = format_datetime(datetime.now(), format='medium', locale='en_GB') gcs_path = '/%s/tmp/cirklo/export-cirklo-%s.xls' % (OCA_FILES_BUCKET, date.replace(' ', '-')) content_type = 'application/vnd.ms-excel' with cloudstorage.open(gcs_path, 'w', content_type=content_type) as gcs_file: book.save(gcs_file) deferred.defer(cloudstorage.delete, gcs_path, _countdown=86400) return { 'url': get_serving_url(gcs_path), }
42.858462
120
0.710604
0
0
0
0
11,286
0.810252
0
0
1,523
0.10934
e042a55525baf01a1dd738c8dd3863fa44f09d50
1,624
py
Python
aplpy/tests/test_grid.py
nbrunett/aplpy
f5d128faf3568adea753d52c11ba43014d25d90a
[ "MIT" ]
null
null
null
aplpy/tests/test_grid.py
nbrunett/aplpy
f5d128faf3568adea753d52c11ba43014d25d90a
[ "MIT" ]
null
null
null
aplpy/tests/test_grid.py
nbrunett/aplpy
f5d128faf3568adea753d52c11ba43014d25d90a
[ "MIT" ]
1
2018-02-26T03:04:19.000Z
2018-02-26T03:04:19.000Z
import matplotlib matplotlib.use('Agg') import numpy as np from astropy.tests.helper import pytest from .. import FITSFigure def test_grid_addremove(): data = np.zeros((16, 16)) f = FITSFigure(data) f.add_grid() f.remove_grid() f.add_grid() f.close() def test_grid_showhide(): data = np.zeros((16, 16)) f = FITSFigure(data) f.add_grid() f.grid.hide() f.grid.show() f.close() def test_grid_spacing(): data = np.zeros((16, 16)) f = FITSFigure(data) f.add_grid() f.grid.set_xspacing(1.) f.grid.set_xspacing('tick') with pytest.raises(ValueError): f.grid.set_xspacing('auto') f.grid.set_yspacing(2.) f.grid.set_yspacing('tick') with pytest.raises(ValueError): f.grid.set_yspacing('auto') f.close() def test_grid_color(): data = np.zeros((16, 16)) f = FITSFigure(data) f.add_grid() f.grid.set_color('black') f.grid.set_color('#003344') f.grid.set_color((1.0, 0.4, 0.3)) f.close() def test_grid_alpha(): data = np.zeros((16, 16)) f = FITSFigure(data) f.add_grid() f.grid.set_alpha(0.0) f.grid.set_alpha(0.3) f.grid.set_alpha(1.0) f.close() def test_grid_linestyle(): data = np.zeros((16, 16)) f = FITSFigure(data) f.add_grid() f.grid.set_linestyle('solid') f.grid.set_linestyle('dashed') f.grid.set_linestyle('dotted') f.close() def test_grid_linewidth(): data = np.zeros((16, 16)) f = FITSFigure(data) f.add_grid() f.grid.set_linewidth(0) f.grid.set_linewidth(2) f.grid.set_linewidth(5) f.close()
20.049383
39
0.618842
0
0
0
0
0
0
0
0
68
0.041872
e0435a8bdb5ad3ee4a83d670d6af34fbe9094657
12,910
py
Python
vz.py
ponyatov/vz
f808dd0dca9b6aa7a3e492d2ee0797ab96cd23a1
[ "MIT" ]
null
null
null
vz.py
ponyatov/vz
f808dd0dca9b6aa7a3e492d2ee0797ab96cd23a1
[ "MIT" ]
null
null
null
vz.py
ponyatov/vz
f808dd0dca9b6aa7a3e492d2ee0797ab96cd23a1
[ "MIT" ]
null
null
null
import os, sys class Object: ## @name constructor def __init__(self, V): self.value = V self.nest = [] def box(self, that): if isinstance(that, Object): return that if isinstance(that, str): return S(that) raise TypeError(['box', type(that), that]) ## @name dump / string def test(self): return self.dump(test=True) def __repr__(self): return self.dump(test=False) def dump(self, cycle=[], depth=0, prefix='', test=False): # head def pad(depth): return '\n' + '\t' * depth ret = pad(depth) + self.head(prefix, test) # subtree return ret def head(self, prefix='', test=False): gid = '' if test else f' @{id(self):x}' return f'{prefix}<{self.tag()}:{self.val()}>{gid}' def __format__(self, spec=''): if not spec: return self.val() raise TypeError(['__format__', spec]) def tag(self): return self.__class__.__name__.lower() def val(self): return f'{self.value}' ## @name operator def __iter__(self): return iter(self.nest) def __floordiv__(self, that): self.nest.append(self.box(that)); return self class Primitive(Object): pass class S(Primitive): def __init__(self, V=None, end=None, pfx=None, sfx=None): super().__init__(V) self.end = end; self.pfx = pfx; self.sfx = sfx def gen(self, to, depth=0): ret = '' if self.pfx is not None: ret += f'{to.tab*depth}{self.pfx}\n' if self.value is not None: ret += f'{to.tab*depth}{self.value}\n' for i in self: ret += i.gen(to, depth + 1) if self.end is not None: ret += f'{to.tab*depth}{self.end}\n' if self.sfx is not None: ret += f'{to.tab*depth}{self.sfx}\n' return ret class Sec(S): def gen(self, to, depth=0): ret = '' if self.pfx is not None: ret += f'{to.tab*depth}{self.pfx}\n' if self.pfx else '\n' if self.nest and self.value is not None: ret += f'{to.tab*depth}{to.comment} \\ {self}\n' for i in self: ret += i.gen(to, depth + 0) if self.nest and self.value is not None: ret += f'{to.tab*depth}{to.comment} / {self}\n' if self.sfx is not None: ret += f'{to.tab*depth}{self.sfx}\n' if self.pfx else '\n' return ret class IO(Object): def __init__(self, V): super().__init__(V) self.path = V class Dir(IO): def __floordiv__(self, that): assert isinstance(that, IO) that.path = f'{self.path}/{that.path}' return super().__floordiv__(that) def sync(self): try: os.mkdir(self.path) except FileExistsError: pass for i in self: i.sync() class File(IO): def __init__(self, V, ext='', tab=' ' * 4, comment='#'): super().__init__(V + ext) self.top = Sec(); self.bot = Sec() self.tab = tab; self.comment = comment def sync(self): with open(self.path, 'w') as F: F.write(self.top.gen(self)) for i in self: F.write(i.gen(self)) F.write(self.bot.gen(self)) class giti(File): def __init__(self, V='.gitignore'): super().__init__(V) self.bot // f'!{self}' class Makefile(File): def __init__(self, V='Makefile'): super().__init__(V, tab='\t') class pyFile(File): def __init__(self, V, ext='.py'): super().__init__(V, ext) class jsonFile(File): def __init__(self, V, ext='.json', comment='//'): super().__init__(V, ext, comment=comment) class Meta(Object): pass class Class(Meta): def __init__(self, C, sup=[]): assert callable(C) super().__init__(C.__name__) self.clazz = C; self.sup = sup def gen(self, to, depth=0): ret = S(f'class {self}:', pfx='') // 'pass' return ret.gen(to, depth) class Project(Meta): def __init__(self, V=None, title='', about=''): if not V: V = os.getcwd().split('/')[-1] super().__init__(V) # self.TITLE = title if title else f'{self}' self.ABOUT = about self.AUTHOR = 'Dmitry Ponyatov' self.EMAIL = '[email protected]' self.GITHUB = 'https://github.com/ponyatov' self.YEAR = 2020 self.LICENSE = 'All rights reserved' self.COPYRIGHT = f'(c) {self.AUTHOR} <{self.EMAIL}> {self.YEAR} {self.LICENSE}' # self.dirs() self.mk() self.src() self.vscode() self.apt() def apt(self): self.apt = File('apt', '.txt'); self.d // self.apt self.apt \ // 'git make curl' // 'code meld' \ // 'python3 python3-venv' \ // 'build-essential g++' def vscode(self): self.vscode = Dir('.vscode'); self.d // self.vscode self.settings() self.tasks() def settings(self): self.settings = jsonFile('settings'); self.vscode // self.settings # def multi(key, cmd): return (S('{', '},') // f'"command": "multiCommand.{key}",' // (S('"sequence": [', ']') // '"workbench.action.files.saveAll",' // (S('{"command": "workbench.action.terminal.sendSequence",') // f'"args": {{"text": "\\u000D {cmd} \\u000D"}}}}' ))) self.multi = \ (Sec('multi') // (S('"multiCommand.commands": [', '],') // multi('f11', 'make meta') // multi('f12', 'make all') )) # self.files = (Sec() // f'"{self}/**":true,' ) self.exclude = \ (Sec() // (S('"files.exclude": {', '},') // self.files)) self.watcher = \ (Sec() // (S('"files.watcherExclude": {', '},') // self.files)) self.assoc = \ (Sec() // (S('"files.associations": {', '},'))) self.files = (Sec('files', pfx='') // self.exclude // self.watcher // self.assoc) # self.editor = (Sec('editor', pfx='') // '"editor.tabSize": 4,' // '"editor.rulers": [80],' // '"workbench.tree.indent": 32,' ) # self.settings \ // (S('{', '}') // self.multi // self.files // self.editor) def tasks(self): self.tasks = jsonFile('tasks'); self.vscode // self.tasks def task(clazz, cmd): return (S('{', '},') // f'"label": "{clazz}: {cmd}",' // f'"type": "shell",' // f'"command": "make {cmd}",' // f'"problemMatcher": []' ) self.tasks \ // (S('{', '}') // '"version": "2.0.0",' // (S('"tasks": [', ']') // task('project', 'install') // task('project', 'update') // task('git', 'dev') // task('git', 'shadow') )) def src(self): self.py() self.test() self.config() def config(self): self.config = pyFile('config'); self.d // self.config self.config \ // f"{'SECURE_KEY':<11} = {os.urandom(0x22)}" \ // f"{'HOST':<11} = '127..0.0.1'" \ // f"{'PORT':<11} = 12345" def py(self): self.py = pyFile(f'{self}'); self.d // self.py self.py \ // 'import os, sys' for i in [Object, S, Sec, IO, Dir, File, Meta, Class, Project]: self.py // Class(i) self.py // Class(Primitive, [Object]) self.py \ // S('Project().sync()', pfx='') def test(self): self.test = pyFile(f'test_{self}'); self.d // self.test self.test \ // 'import pytest' \ // f'from {self} import *' \ // 'def test_any(): assert True' def dirs(self): self.d = Dir(f'{self}'); self.giti = giti(); self.d // self.giti self.giti.top // '*~' // '*.swp' // '*.log'; self.giti.top.sfx = '' self.giti // f'/{self}/' // '/__pycache__/' self.giti.bot.pfx = '' # self.bin = Dir('bin'); self.d // self.bin def mk(self): self.mk = Makefile(); self.d // self.mk # self.mk.var = Sec('var', pfx=''); self.mk // self.mk.var self.mk.var \ // f'{"MODULE":<11} = $(notdir $(CURDIR))' \ // f'{"OS":<11} = $(shell uname -s)' \ // f'{"CORES":<11} = $(shell grep processor /proc/cpuinfo | wc -l)' # self.mk.dir = Sec('dir', pfx=''); self.mk // self.mk.dir self.mk.dir \ // f'{"CWD":<11} = $(CURDIR)' \ // f'{"BIN":<11} = $(CWD)/bin' \ // f'{"DOC":<11} = $(CWD)/doc' \ // f'{"LIB":<11} = $(CWD)/lib' \ // f'{"SRC":<11} = $(CWD)/src' \ // f'{"TMP":<11} = $(CWD)/tmp' # self.mk.tool = Sec('tool', pfx=''); self.mk // self.mk.tool self.mk.tool \ // f'CURL = curl -L -o' \ // f'PY = $(shell which python3)' \ // f'PYT = $(shell which pytest)' \ // f'PEP = $(shell which autopep8)' # self.mk.package = Sec('package', pfx=''); self.mk // self.mk.package self.mk.package \ // f'SYSLINUX_VER = 6.0.3' # self.mk.src = Sec('src', pfx=''); self.mk // self.mk.src self.mk.src \ // f'Y += $(MODULE).py test_$(MODULE).py' \ // f'P += config.py' \ // f'S += $(Y)' # self.mk.cfg = Sec('cfg', pfx=''); self.mk // self.mk.cfg self.mk.cfg \ // f'PEPS = E26,E302,E305,E401,E402,E701,E702' # self.mk.all = Sec('all', pfx=''); self.mk // self.mk.all self.mk.all \ // (S('meta: $(Y)', pfx='.PHONY: meta') // '$(MAKE) test' // '$(PY) $(MODULE).py' // '$(PEP) --ignore=$(PEPS) --in-place $?') self.mk.all \ // (S('test: $(Y)', pfx='\n.PHONY: test') // '$(PYT) test_$(MODULE).py') # self.mk.rule = Sec('rule', pfx=''); self.mk // self.mk.rule # self.mk.doc = Sec('doc', pfx=''); self.mk // self.mk.doc self.mk.doc \ // S('doc: doc/pyMorphic.pdf', pfx='.PHONY: doc') self.mk.doc \ // (S('doc/pyMorphic.pdf:') // '$(CURL) $@ http://www.diva-portal.org/smash/get/diva2:22296/FULLTEXT01.pdf') # self.mk.install = Sec('install', pfx=''); self.mk // self.mk.install self.mk.install // '.PHONY: install update' self.mk.install \ // (S('install: $(OS)_install doc') // '$(MAKE) test' ) self.mk.install \ // (S('update: $(OS)_update doc') // '$(MAKE) test' ) self.mk.install \ // (S('Linux_install Linux_update:', pfx='.PHONY: Linux_install Linux_update') // 'sudo apt update' // 'sudo apt install -u `cat apt.txt`') # self.mk.merge = Sec('merge', pfx=''); self.mk // self.mk.merge self.mk.merge \ // 'SHADOW ?= ponymuck' self.mk.merge \ // 'MERGE = Makefile .gitignore README.md apt.txt $(S)' \ // 'MERGE += .vscode bin doc lib src tmp' self.mk.merge \ // (S('dev:', pfx='\n.PHONY: dev') // 'git push -v' // 'git checkout $@' // 'git checkout $(SHADOW) -- $(MERGE)' ) self.mk.merge \ // (S('shadow:', pfx='\n.PHONY: shadow') // 'git push -v' // 'git checkout $(SHADOW)' ) self.mk.merge \ // (S('release:', pfx='\n.PHONY: release') ) self.mk.merge \ // (S('zip:', pfx='\n.PHONY: zip') ) def sync(self): self.readme() self.d.sync() def readme(self): self.readme = File('README', '.md'); self.d // self.readme self.readme \ // f'# ![logo](doc/logo.png) `{self}`' // f'## {self.TITLE}' self.readme \ // '' // self.COPYRIGHT // '' // f'github: {self.GITHUB}/{self}' self.readme // self.ABOUT Project( title='ViZual language environment', about=''' * object (hyper)graph interpreter ''' ).sync()
32.849873
96
0.449109
12,756
0.988071
0
0
0
0
0
0
3,482
0.269713
e044775152d95d5fb032af9b89fee05b4ac263fe
2,630
py
Python
src/server.py
FlakM/fastai_text_serving
8262c2c1192c5e11df2e06b494ab9cf88c1dcd2a
[ "Apache-2.0" ]
null
null
null
src/server.py
FlakM/fastai_text_serving
8262c2c1192c5e11df2e06b494ab9cf88c1dcd2a
[ "Apache-2.0" ]
null
null
null
src/server.py
FlakM/fastai_text_serving
8262c2c1192c5e11df2e06b494ab9cf88c1dcd2a
[ "Apache-2.0" ]
null
null
null
import asyncio import logging import aiohttp import uvicorn from fastai.vision import * from starlette.applications import Starlette from starlette.middleware.cors import CORSMiddleware from starlette.responses import JSONResponse # put your url here here model_file_url = 'https://www.dropbox.com/s/...?raw=1' model_file_name = 'model' path = Path(__file__).parent logging.basicConfig(format="%(levelname)s: %(message)s", level=logging.INFO) logger = logging.getLogger() logger.setLevel(logging.INFO) app = Starlette() app.add_middleware(CORSMiddleware, allow_origins=['*'], allow_headers=['X-Requested-With', 'Content-Type']) def hashsum(path, hex=True, hash_type=hashlib.md5): hashinst = hash_type() with open(path, 'rb') as f: for chunk in iter(lambda: f.read(hashinst.block_size * 128), b''): hashinst.update(chunk) return hashinst.hexdigest() if hex else hashinst.digest() async def download_file(url, dest): if dest.exists(): return async with aiohttp.ClientSession() as session: async with session.get(url) as response: data = await response.read() with open(dest, 'wb') as f: f.write(data) async def setup_learner(): model_file = path.parent / 'models' / f'{model_file_name}.pkl' if not model_file.exists(): logging.info("Will download file %s from %s", model_file, model_file_url) await download_file(model_file_url, model_file) logging.info("Downloaded file md5sum: %s", hashsum(model_file)) else: logging.info("File %s already exists will reuse md5sum: %s", model_file, hashsum(model_file)) # Loading the saved model using fastai's load_learner method model = load_learner(model_file.parent, f'{model_file_name}.pkl') classes = model.data.classes return model, classes loop = asyncio.get_event_loop() tasks = [asyncio.ensure_future(setup_learner())] model, classes = loop.run_until_complete(asyncio.gather(*tasks))[0] loop.close() def sortByProb(val): return val["prob"] @app.route('/predict', methods=['POST']) async def analyze(request): data = await request.form() text = data['text'] predict_class, predict_idx, predict_values = model.predict(text) results = [] for idx, val in enumerate(predict_values): prob = val.item() if prob > 0.01: record = {"value": classes[idx], "prob": prob} results.append(record) results.sort(key=sortByProb, reverse=True) return JSONResponse(results[:5]) if __name__ == '__main__': if 'serve' in sys.argv: uvicorn.run(app, host='0.0.0.0' port=4000)
30.941176
107
0.692776
0
0
0
0
488
0.185551
1,349
0.512928
434
0.165019
e0448da70febec0759bc638d5a460760c3964480
402
py
Python
tcpserver.py
justforbalance/CSnet
c1e049f63d245c5d464a2d6e9aa7d3daf15bf2b6
[ "MIT" ]
null
null
null
tcpserver.py
justforbalance/CSnet
c1e049f63d245c5d464a2d6e9aa7d3daf15bf2b6
[ "MIT" ]
null
null
null
tcpserver.py
justforbalance/CSnet
c1e049f63d245c5d464a2d6e9aa7d3daf15bf2b6
[ "MIT" ]
null
null
null
from socket import * serverPort = 12001 serverSocket = socket(AF_INET, SOCK_STREAM) serverSocket.bind(('', serverPort)) serverSocket.listen(1) print("the server is ready to receive") while True: connectionSocket,addr = serverSocket.accept() sentence = connectionSocket.recv(1024).decode() sentence = sentence.upper() connectionSocket.send(sentence.encode()) connectionSocket.close()
33.5
51
0.753731
0
0
0
0
0
0
0
0
34
0.084577
e044ab975c816db8531273f338dcef5b52d8c7ce
1,061
py
Python
src/geneflow/extend/local_workflow.py
jhphan/geneflow2
a39ab97e6425ee45584cfc15b5740e94a5bf7512
[ "Apache-2.0" ]
7
2019-04-11T03:50:51.000Z
2020-03-27T15:59:04.000Z
src/geneflow/extend/local_workflow.py
jhphan/geneflow2
a39ab97e6425ee45584cfc15b5740e94a5bf7512
[ "Apache-2.0" ]
1
2019-05-06T14:18:42.000Z
2019-05-08T22:06:12.000Z
src/geneflow/extend/local_workflow.py
jhphan/geneflow2
a39ab97e6425ee45584cfc15b5740e94a5bf7512
[ "Apache-2.0" ]
6
2019-04-10T20:25:27.000Z
2021-12-16T15:59:59.000Z
"""This module contains the GeneFlow LocalWorkflow class.""" class LocalWorkflow: """ A class that represents the Local Workflow objects. """ def __init__( self, job, config, parsed_job_work_uri ): """ Instantiate LocalWorkflow class. """ self._job = job self._config = config self._parsed_job_work_uri = parsed_job_work_uri def initialize(self): """ Initialize the LocalWorkflow class. This workflow class has no additional functionality. Args: None. Returns: True. """ return True def init_data(self): """ Initialize any data specific to this context. """ return True def get_context_options(self): """ Return dict of options specific for this context. Args: None. Returns: {} - no options specific for this context. """ return {}
18.293103
60
0.524034
998
0.940622
0
0
0
0
0
0
624
0.588124
e0453a8ff093c7c5f6bb2239656a47c98c50cec7
2,849
py
Python
S12/tensornet/engine/ops/lr_scheduler.py
abishek-raju/EVA4B2
189f4062c85d91f43c1381087a9c89ff794e5428
[ "Apache-2.0" ]
4
2020-06-18T13:07:19.000Z
2022-01-07T10:51:10.000Z
S12/tensornet/engine/ops/lr_scheduler.py
abishek-raju/EVA4B2
189f4062c85d91f43c1381087a9c89ff794e5428
[ "Apache-2.0" ]
1
2021-07-31T04:34:46.000Z
2021-08-11T05:55:57.000Z
S12/tensornet/engine/ops/lr_scheduler.py
abishek-raju/EVA4B2
189f4062c85d91f43c1381087a9c89ff794e5428
[ "Apache-2.0" ]
4
2020-08-09T07:10:46.000Z
2021-01-16T14:57:23.000Z
from torch.optim.lr_scheduler import StepLR, ReduceLROnPlateau, OneCycleLR def step_lr(optimizer, step_size, gamma=0.1, last_epoch=-1): """Create LR step scheduler. Args: optimizer (torch.optim): Model optimizer. step_size (int): Frequency for changing learning rate. gamma (float): Factor for changing learning rate. (default: 0.1) last_epoch (int): The index of last epoch. (default: -1) Returns: StepLR: Learning rate scheduler. """ return StepLR(optimizer, step_size=step_size, gamma=gamma, last_epoch=last_epoch) def reduce_lr_on_plateau(optimizer, factor=0.1, patience=10, verbose=False, min_lr=0): """Create LR plateau reduction scheduler. Args: optimizer (torch.optim): Model optimizer. factor (float, optional): Factor by which the learning rate will be reduced. (default: 0.1) patience (int, optional): Number of epoch with no improvement after which learning rate will be will be reduced. (default: 10) verbose (bool, optional): If True, prints a message to stdout for each update. (default: False) min_lr (float, optional): A scalar or a list of scalars. A lower bound on the learning rate of all param groups or each group respectively. (default: 0) Returns: ReduceLROnPlateau instance. """ return ReduceLROnPlateau( optimizer, factor=factor, patience=patience, verbose=verbose, min_lr=min_lr ) def one_cycle_lr( optimizer, max_lr, epochs, steps_per_epoch, pct_start=0.5, div_factor=10.0, final_div_factor=10000 ): """Create One Cycle Policy for Learning Rate. Args: optimizer (torch.optim): Model optimizer. max_lr (float): Upper learning rate boundary in the cycle. epochs (int): The number of epochs to train for. This is used along with steps_per_epoch in order to infer the total number of steps in the cycle. steps_per_epoch (int): The number of steps per epoch to train for. This is used along with epochs in order to infer the total number of steps in the cycle. pct_start (float, optional): The percentage of the cycle (in number of steps) spent increasing the learning rate. (default: 0.5) div_factor (float, optional): Determines the initial learning rate via initial_lr = max_lr / div_factor. (default: 10.0) final_div_factor (float, optional): Determines the minimum learning rate via min_lr = initial_lr / final_div_factor. (default: 1e4) Returns: OneCycleLR instance. """ return OneCycleLR( optimizer, max_lr, epochs=epochs, steps_per_epoch=steps_per_epoch, pct_start=pct_start, div_factor=div_factor, final_div_factor=final_div_factor )
40.7
102
0.679537
0
0
0
0
0
0
0
0
2,082
0.730783
e045d172e3aa9769db37dd0c8977af6b2b83dca1
10,889
py
Python
armi/reactor/tests/test_zones.py
youngmit/armi
67688e4e67d2a217dfc7b1ccfa64028c20b57a5b
[ "Apache-2.0" ]
null
null
null
armi/reactor/tests/test_zones.py
youngmit/armi
67688e4e67d2a217dfc7b1ccfa64028c20b57a5b
[ "Apache-2.0" ]
null
null
null
armi/reactor/tests/test_zones.py
youngmit/armi
67688e4e67d2a217dfc7b1ccfa64028c20b57a5b
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 TerraPower, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test for Zones""" import copy import unittest import armi from armi import settings from armi.reactor import assemblies from armi.reactor import blueprints from armi.reactor import geometry from armi.reactor import grids from armi.reactor import reactors from armi.reactor import zones from armi.reactor.flags import Flags from armi.reactor.tests import test_reactors from armi.utils import pathTools from armi.settings.fwSettings import globalSettings THIS_DIR = pathTools.armiAbsDirFromName(__name__) class Zone_TestCase(unittest.TestCase): def setUp(self): bp = blueprints.Blueprints() geom = geometry.SystemLayoutInput() geom.symmetry = "third core periodic" r = reactors.Reactor(settings.getMasterCs(), bp) r.add(reactors.Core("Core", settings.getMasterCs(), geom)) r.core.spatialGrid = grids.hexGridFromPitch(1.0) aList = [] for ring in range(10): a = assemblies.HexAssembly("fuel") a.spatialLocator = r.core.spatialGrid[ring, 1, 0] a.parent = r.core aList.append(a) self.aList = aList def test_addAssemblyLocations(self): zone = zones.Zone("TestZone") zone.addAssemblyLocations(self.aList) for a in self.aList: self.assertIn(a.getLocation(), zone) self.assertRaises(RuntimeError, zone.addAssemblyLocations, self.aList) def test_iteration(self): locs = [a.getLocation() for a in self.aList] zone = zones.Zone("TestZone") zone.addAssemblyLocations(self.aList) for aLoc in zone: self.assertIn(aLoc, locs) # loop twice to make sure it iterates nicely. for aLoc in zone: self.assertIn(aLoc, locs) def test_addRing(self): zone = zones.Zone("TestZone") zone.addRing(5) self.assertIn("A5003", zone) self.assertNotIn("A6002", zone) zone.addRing(6, 3, 9) self.assertIn("A6003", zone) self.assertIn("A6009", zone) self.assertNotIn("A6002", zone) self.assertNotIn("A6010", zone) class Zones_InReactor(unittest.TestCase): def setUp(self): self.o, self.r = test_reactors.loadTestReactor() def test_buildRingZones(self): o, r = self.o, self.r cs = o.cs cs[globalSettings.CONF_ZONING_STRATEGY] = "byRingZone" cs["ringZones"] = [] zonez = zones.buildZones(r.core, cs) self.assertEqual(len(list(zonez)), 1) self.assertEqual(9, r.core.numRings) cs["ringZones"] = [5, 8] zonez = zones.buildZones(r.core, cs) self.assertEqual(len(list(zonez)), 2) zone = zonez["ring-1"] self.assertEqual(len(zone), (5 * (5 - 1) + 1)) zone = zonez["ring-2"] # Note that the actual number of rings in the reactor model is 9. Even though we # asked for the last zone to to to 8, the zone engine should bump it out. Not # sure if this is behavior that we want to preserve, but at least it's being # tested properly now. self.assertEqual(len(zone), (9 * (9 - 1) + 1) - (5 * (5 - 1) + 1)) cs["ringZones"] = [5, 7, 8] zonez = zones.buildZones(r.core, cs) self.assertEqual(len(list(zonez)), 3) zone = zonez["ring-3"] self.assertEqual(len(zone), 30) # rings 8 and 9. See above comment def test_removeZone(self): o, r = self.o, self.r cs = o.cs cs[globalSettings.CONF_ZONING_STRATEGY] = "byRingZone" cs["ringZones"] = [5, 8] # produce 2 zones, with the names ringzone0 and ringzone1 daZones = zones.buildZones(r.core, cs) daZones.removeZone("ring-1") # The names list should only house the only other remaining zone now self.assertEqual(["ring-2"], daZones.names) # if indexed like a dict, the zones object should give a key error from the removed zone with self.assertRaises(KeyError): daZones["ring-1"] # Ensure we can still iterate through our zones object for name in daZones.names: aZone = daZones[name] def test_findZoneAssemblyIsIn(self): cs = self.o.cs cs["ringZones"] = [5, 7, 8] daZones = zones.buildZones(self.r.core, cs) for zone in daZones: a = self.r.core.getAssemblyWithStringLocation(zone.locList[0]) aZone = daZones.findZoneAssemblyIsIn(a) self.assertEqual(aZone, zone) # lets test if we get a none and a warning if the assembly does not exist in a zone a = self.r.core.getAssemblyWithStringLocation( daZones[daZones.names[0]].locList[0] ) # get assem from first zone daZones.removeZone( daZones.names[0] ) # remove a zone to ensure that our assem does not have a zone anymore self.assertEqual(daZones.findZoneAssemblyIsIn(a), None) class Zones_InRZReactor(unittest.TestCase): def test_splitZones(self): # Test to make sure that we can split a zone containing control and fuel assemblies. # Also test that we can separate out assemblies with differing numbers of blocks. o, r = test_reactors.loadTestReactor(inputFileName="partisnTestReactor.yaml") cs = o.cs cs["splitZones"] = False cs[globalSettings.CONF_ZONING_STRATEGY] = "byRingZone" cs["ringZones"] = [1, 2, 3, 4, 5, 6, 7, 8, 9] diverseZone = "ring-4" r.core.buildZones(cs) daZones = r.core.zones # lets make one of the assemblies have an extra block zoneLocations = daZones.getZoneLocations(diverseZone) originalAssemblies = r.core.getLocationContents( zoneLocations, assemblyLevel=True ) fuel = [a for a in originalAssemblies if a.hasFlags(Flags.FUEL)][0] newBlock = copy.deepcopy(fuel[-1]) fuel.add(newBlock) # should contain a zone for every ring zone # we only want one ring zone for this test, containing assemblies of different types. zoneTup = tuple(daZones.names) for zoneName in zoneTup: if zoneName != diverseZone: daZones.removeZone(zoneName) # this should split diverseZone into multiple zones by nodalization type. cs["splitZones"] = True zones.splitZones(r.core, cs, daZones) # test to make sure that we split the ring zone correctly self.assertEqual(len(daZones["ring-4-primary-control-5"]), 2) self.assertEqual(len(daZones["ring-4-middle-fuel-5"]), 3) self.assertEqual(len(daZones["ring-4-middle-fuel-6"]), 1) def test_createHotZones(self): # Test to make sure createHotZones identifies the highest p/f location in a zone # Test to make sure createHotZones can remove the peak assembly from that zone and place it in a new zone # Test that the power in the old zone and the new zone is conserved. # Test that if a hot zone can not be created from a single assembly zone. o, r = test_reactors.loadTestReactor(inputFileName="partisnTestReactor.yaml") cs = o.cs cs["splitZones"] = False cs[globalSettings.CONF_ZONING_STRATEGY] = "byRingZone" cs["ringZones"] = [9] # build one giant zone r.core.buildZones(cs) daZones = r.core.zones originalassemblies = [] originalPower = 0.0 peakZonePFRatios = [] # Create a single assembly zone to verify that it will not create a hot zone single = zones.Zone("single") daZones.add(single) aLoc = r.core.getFirstAssembly(Flags.FUEL).getLocation() single.append(aLoc) # Set power and flow. # Also gather channel peak P/F ratios, assemblies and power. for zone in daZones: powerToFlow = [] zoneLocations = daZones.getZoneLocations(zone.name) assems = r.core.getLocationContents(zoneLocations, assemblyLevel=True) power = 300.0 flow = 300.0 for a in assems: a.getFirstBlock().p.power = power assemblyPower = a.calcTotalParam("power") a[-1].p.THmassFlowRate = flow powerToFlow.append(assemblyPower / a[-1].p.THmassFlowRate) originalPower += assemblyPower originalassemblies.append(a) power += 1 flow -= 1 peakZonePFRatios.append(max(powerToFlow)) daZones = zones.createHotZones(r.core, daZones) # Test that the hot zones have the peak P/F from the host channels i = 0 for zone in daZones: if zone.hotZone: hotAssemLocation = daZones.getZoneLocations(zone.name) hotAssem = r.core.getLocationContents( hotAssemLocation, assemblyLevel=True )[0] self.assertEqual( peakZonePFRatios[i], hotAssem.calcTotalParam("power") / hotAssem[-1].p.THmassFlowRate, ) i += 1 powerAfterHotZoning = 0.0 assembliesAfterHotZoning = [] # Check that power is conserved and that we did not lose any assemblies for zone in daZones: locs = daZones.getZoneLocations(zone.name) assems = r.core.getLocationContents(locs, assemblyLevel=True) for a in assems: assembliesAfterHotZoning.append(a) powerAfterHotZoning += a.calcTotalParam("power") self.assertEqual(powerAfterHotZoning, originalPower) self.assertEqual(len(assembliesAfterHotZoning), len(originalassemblies)) # check that the original zone with 1 channel has False for hotzone self.assertEqual(single.hotZone, False) # check that we have the correct number of hot and normal zones. hotCount = 0 normalCount = 0 for zone in daZones: if zone.hotZone: hotCount += 1 else: normalCount += 1 self.assertEqual(hotCount, 1) self.assertEqual(normalCount, 2) if __name__ == "__main__": # import sys;sys.argv = ['', 'Zones_InReactor.test_buildRingZones'] unittest.main()
39.740876
113
0.629718
9,671
0.888144
0
0
0
0
0
0
3,163
0.290477
e04601e1749bc51e7e5f74ca383f947dc25e7da9
562
py
Python
islam_fitz/survey/migrations/0005_auto_20210712_2132.py
OmarEhab177/Islam_fitz
6ad0eb21549895a6fe537e8413022b82bc530c57
[ "MIT" ]
null
null
null
islam_fitz/survey/migrations/0005_auto_20210712_2132.py
OmarEhab177/Islam_fitz
6ad0eb21549895a6fe537e8413022b82bc530c57
[ "MIT" ]
2
2022-03-01T12:17:05.000Z
2022-03-30T12:19:55.000Z
islam_fitz/survey/migrations/0005_auto_20210712_2132.py
OmarEhab177/Islam_fitz
6ad0eb21549895a6fe537e8413022b82bc530c57
[ "MIT" ]
null
null
null
# Generated by Django 3.1.12 on 2021-07-12 19:32 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('survey', '0004_lastpage_whatsapp_button'), ] operations = [ migrations.RemoveField( model_name='lastpage', name='whatsapp_button', ), migrations.AddField( model_name='lastpage', name='whatsapp_number', field=models.CharField(default=1, max_length=50), preserve_default=False, ), ]
23.416667
61
0.592527
468
0.83274
0
0
0
0
0
0
141
0.25089
e046ccaf1594be44b4bc74501cfe08b79d45a1d7
490
py
Python
Examples/WorkingWithOutlookMSGs/CreateAndSaveOutlookNote.py
Muzammil-khan/Aspose.Email-Python-Dotnet
04ca3a6f440339f3ddf316218f92d15d66f24e7e
[ "MIT" ]
5
2019-01-28T05:17:12.000Z
2020-04-14T14:31:34.000Z
Examples/WorkingWithOutlookMSGs/CreateAndSaveOutlookNote.py
Muzammil-khan/Aspose.Email-Python-Dotnet
04ca3a6f440339f3ddf316218f92d15d66f24e7e
[ "MIT" ]
1
2019-01-28T16:07:26.000Z
2021-11-25T10:59:52.000Z
Examples/WorkingWithOutlookMSGs/CreateAndSaveOutlookNote.py
Muzammil-khan/Aspose.Email-Python-Dotnet
04ca3a6f440339f3ddf316218f92d15d66f24e7e
[ "MIT" ]
6
2018-07-16T14:57:34.000Z
2020-08-30T05:59:52.000Z
import aspose.email.mapi.msg as msg from aspose.email.mapi import MapiNote, NoteSaveFormat, NoteColor def run(): dataDir = "Data/" #ExStart: CreateAndSaveOutlookNote note3 = MapiNote() note3.subject = "Blue color note" note3.body = "This is a blue color note"; note3.color = NoteColor.YELLOW note3.height = 500 note3.width = 500 note3.save(dataDir + "CreateAndSaveOutlookNote_out.msg", NoteSaveFormat.MSG) #ExEnd: CreateAndSaveOutlookNote if __name__ == '__main__': run()
25.789474
77
0.746939
0
0
0
0
0
0
0
0
161
0.328571
e04830a8bb6dffa22a3b7aa461ea3221561a26cd
6,114
py
Python
nonebot/internal/adapter/template.py
mobyw/nonebot2
36663f1a8a51bd89f4a60110047e73719adcc73d
[ "MIT" ]
null
null
null
nonebot/internal/adapter/template.py
mobyw/nonebot2
36663f1a8a51bd89f4a60110047e73719adcc73d
[ "MIT" ]
null
null
null
nonebot/internal/adapter/template.py
mobyw/nonebot2
36663f1a8a51bd89f4a60110047e73719adcc73d
[ "MIT" ]
null
null
null
import functools from string import Formatter from typing import ( TYPE_CHECKING, Any, Set, Dict, List, Type, Tuple, Union, Generic, Mapping, TypeVar, Callable, Optional, Sequence, cast, overload, ) if TYPE_CHECKING: from .message import Message, MessageSegment TM = TypeVar("TM", bound="Message") TF = TypeVar("TF", str, "Message") FormatSpecFunc = Callable[[Any], str] FormatSpecFunc_T = TypeVar("FormatSpecFunc_T", bound=FormatSpecFunc) class MessageTemplate(Formatter, Generic[TF]): """消息模板格式化实现类。 参数: template: 模板 factory: 消息类型工厂,默认为 `str` """ @overload def __init__( self: "MessageTemplate[str]", template: str, factory: Type[str] = str ) -> None: ... @overload def __init__( self: "MessageTemplate[TM]", template: Union[str, TM], factory: Type[TM] ) -> None: ... def __init__(self, template, factory=str) -> None: self.template: TF = template self.factory: Type[TF] = factory self.format_specs: Dict[str, FormatSpecFunc] = {} def add_format_spec( self, spec: FormatSpecFunc_T, name: Optional[str] = None ) -> FormatSpecFunc_T: name = name or spec.__name__ if name in self.format_specs: raise ValueError(f"Format spec {name} already exists!") self.format_specs[name] = spec return spec def format(self, *args, **kwargs): """根据传入参数和模板生成消息对象""" return self._format(args, kwargs) def format_map(self, mapping: Mapping[str, Any]) -> TF: """根据传入字典和模板生成消息对象, 在传入字段名不是有效标识符时有用""" return self._format([], mapping) def _format(self, args: Sequence[Any], kwargs: Mapping[str, Any]) -> TF: msg = self.factory() if isinstance(self.template, str): msg += self.vformat(self.template, args, kwargs) elif isinstance(self.template, self.factory): template = cast("Message[MessageSegment]", self.template) for seg in template: msg += self.vformat(str(seg), args, kwargs) if seg.is_text() else seg else: raise TypeError("template must be a string or instance of Message!") return msg # type:ignore def vformat( self, format_string: str, args: Sequence[Any], kwargs: Mapping[str, Any] ) -> TF: used_args = set() result, _ = self._vformat(format_string, args, kwargs, used_args, 2) self.check_unused_args(list(used_args), args, kwargs) return result def _vformat( self, format_string: str, args: Sequence[Any], kwargs: Mapping[str, Any], used_args: Set[Union[int, str]], recursion_depth: int, auto_arg_index: int = 0, ) -> Tuple[TF, int]: if recursion_depth < 0: raise ValueError("Max string recursion exceeded") results: List[Any] = [self.factory()] for (literal_text, field_name, format_spec, conversion) in self.parse( format_string ): # output the literal text if literal_text: results.append(literal_text) # if there's a field, output it if field_name is not None: # this is some markup, find the object and do # the formatting # handle arg indexing when empty field_names are given. if field_name == "": if auto_arg_index is False: raise ValueError( "cannot switch from manual field specification to " "automatic field numbering" ) field_name = str(auto_arg_index) auto_arg_index += 1 elif field_name.isdigit(): if auto_arg_index: raise ValueError( "cannot switch from manual field specification to " "automatic field numbering" ) # disable auto arg incrementing, if it gets # used later on, then an exception will be raised auto_arg_index = False # given the field_name, find the object it references # and the argument it came from obj, arg_used = self.get_field(field_name, args, kwargs) used_args.add(arg_used) assert format_spec is not None # do any conversion on the resulting object obj = self.convert_field(obj, conversion) if conversion else obj # expand the format spec, if needed format_control, auto_arg_index = self._vformat( format_spec, args, kwargs, used_args, recursion_depth - 1, auto_arg_index, ) # format the object and append to the result formatted_text = self.format_field(obj, str(format_control)) results.append(formatted_text) return functools.reduce(self._add, results), auto_arg_index def format_field(self, value: Any, format_spec: str) -> Any: formatter: Optional[FormatSpecFunc] = self.format_specs.get(format_spec) if formatter is None and not issubclass(self.factory, str): segment_class: Type["MessageSegment"] = self.factory.get_segment_class() method = getattr(segment_class, format_spec, None) if callable(method) and not cast(str, method.__name__).startswith("_"): formatter = getattr(segment_class, format_spec) return ( super().format_field(value, format_spec) if formatter is None else formatter(value) ) def _add(self, a: Any, b: Any) -> Any: try: return a + b except TypeError: return a + str(b)
33.048649
85
0.56248
5,742
0.917839
0
0
267
0.042679
0
0
1,181
0.188779