arxiv_id
stringlengths
10
10
published
stringlengths
20
20
titles
stringlengths
9
243
authors
sequencelengths
1
389
abstract
stringlengths
96
3.09k
categories
sequencelengths
1
10
selected
bool
2 classes
2402.11572
2024-02-18T12:36:23Z
Cobra Effect in Reference-Free Image Captioning Metrics
[ "Zheng Ma", "Changxin Wang", "Yawen Ouyang", "Fei Zhao", "Jianbing Zhang", "Shujian Huang", "Jiajun Chen" ]
Evaluating the compatibility between textual descriptions and corresponding images represents a core endeavor within multi-modal research. In recent years, a proliferation of reference-free methods, leveraging visual-language pre-trained models (VLMs), has emerged. Empirical evidence has substantiated that these innovative approaches exhibit a higher correlation with human judgment, marking a significant advancement in the field. However, does a higher correlation with human evaluations alone sufficiently denote the complete of a metric? In response to this question, in this paper, we study if there are any deficiencies in reference-free metrics. Specifically, inspired by the Cobra Effect, we utilize metric scores as rewards to direct the captioning model toward generating descriptions that closely align with the metric's criteria. If a certain metric has flaws, it will be exploited by the model and reflected in the generated sentences. Our findings reveal that descriptions guided by these metrics contain significant flaws, e.g. incoherent statements and excessive repetition. Subsequently, we propose a novel method termed Self-Improving to rectify the identified shortcomings within these metrics. We employ GPT-4V as an evaluative tool to assess generated sentences and the result reveals that our approach achieves state-of-the-art (SOTA) performance. In addition, we also introduce a challenging evaluation benchmark called Flaws Caption to evaluate reference-free image captioning metrics comprehensively. Our code is available at https://github.com/aaronma2020/robust_captioning_metric
[ "cs.CL" ]
false
2402.11573
2024-02-18T12:41:01Z
BGE Landmark Embedding: A Chunking-Free Embedding Method For Retrieval Augmented Long-Context Large Language Models
[ "Kun Luo", "Zheng Liu", "Shitao Xiao", "Kang Liu" ]
Large language models (LLMs) call for extension of context to handle many critical applications. However, the existing approaches are prone to expensive costs and inferior quality of context extension. In this work, we proposeExtensible Embedding, which realizes high-quality extension of LLM's context with strong flexibility and cost-effectiveness. Extensible embedding stand as an enhancement of typical token embedding, which represents the information for an extensible scope of context instead of a single token. By leveraging such compact input units of higher information density, the LLM can access to a vast scope of context even with a small context window. Extensible embedding is systematically optimized in architecture and training method, which leads to multiple advantages. 1) High flexibility of context extension, which flexibly supports ad-hoc extension of diverse context lengths. 2) Strong sample efficiency of training, which enables the embedding model to be learned in a cost-effective way. 3) Superior compatibility with the existing LLMs, where the extensible embedding can be seamlessly introduced as a plug-in component. Comprehensive evaluations on long-context language modeling and understanding tasks verify extensible embedding as an effective, efficient, flexible, and compatible method to extend the LLM's context.
[ "cs.CL" ]
false
2402.11577
2024-02-18T12:50:19Z
Extensible Embedding: A Flexible Multipler For LLM's Context Length
[ "Ninglu Shao", "Shitao Xiao", "Zheng Liu", "Peitian Zhang" ]
Large language models (LLMs) call for extension of context to handle many critical applications. However, the existing approaches are prone to expensive costs and inferior quality of context extension. In this work, we propose Extensible Embedding, which realizes high-quality extension of LLM's context with strong flexibility and cost-effectiveness. Extensible embedding stand as an enhancement of typical token embedding, which represents the information for an extensible scope of context instead of a single token. By leveraging such compact input units of higher information density, the LLM can access to a vast scope of context even with a small context window. Extensible embedding is systematically optimized in architecture and training method, which leads to multiple advantages. 1) High flexibility of context extension, which flexibly supports ad-hoc extension of diverse context lengths. 2) Strong sample efficiency of training, which enables the embedding model to be learned in a cost-effective way. 3) Superior compatibility with the existing LLMs, where the extensible embedding can be seamlessly introduced as a plug-in component. Comprehensive evaluations on long-context language modeling and understanding tasks verify extensible embedding as an effective, efficient, flexible, and compatible method to extend the LLM's context.
[ "cs.CL" ]
false
2402.11597
2024-02-18T14:25:19Z
Multi-Task Inference: Can Large Language Models Follow Multiple Instructions at Once?
[ "Guijin Son", "Sangwon Baek", "Sangdae Nam", "Ilgyun Jeong", "Seungone Kim" ]
Large language models (LLMs) are typically prompted to follow a single instruction per inference call. In this work, we analyze whether LLMs also hold the capability to handle multiple instructions simultaneously, denoted as Multi-Task Inference. For this purpose, we introduce the MTI Bench(Multi-Task Inference Benchmark), a comprehensive evaluation benchmark encompassing 5,000 instances across 25 tasks. Each task in the MTI Bench involves 2 to 3 sub-tasks. As expected, we first demonstrate that Multi-Task Inference reduces the total inference time by 1.46 times in average since it does not require multiple inference calls. Interestingly, contrary to the expectation that LLMs would perform better when tasks are divided, we find that state-of-the-art LLMs, such as Llama-2-Chat-70B and GPT-4, show up to 7.3% and 12.4% improved performance with Multi-Task Inference compared to Single-Task Inference on the MTI Bench. We release the MTI Bench dataset and our code at this link https://github.com/guijinSON/MTI-Bench.
[ "cs.CL" ]
false
2402.11608
2024-02-18T14:57:53Z
Metric-Learning Encoding Models Identify Processing Profiles of Linguistic Features in BERT's Representations
[ "Louis Jalouzot", "Robin Sobczyk", "Bastien Lhopitallier", "Jeanne Salle", "Nur Lan", "Emmanuel Chemla", "Yair Lakretz" ]
We introduce Metric-Learning Encoding Models (MLEMs) as a new approach to understand how neural systems represent the theoretical features of the objects they process. As a proof-of-concept, we apply MLEMs to neural representations extracted from BERT, and track a wide variety of linguistic features (e.g., tense, subject person, clause type, clause embedding). We find that: (1) linguistic features are ordered: they separate representations of sentences to different degrees in different layers; (2) neural representations are organized hierarchically: in some layers, we find clusters of representations nested within larger clusters, following successively important linguistic features; (3) linguistic features are disentangled in middle layers: distinct, selective units are activated by distinct linguistic features. Methodologically, MLEMs are superior (4) to multivariate decoding methods, being more robust to type-I errors, and (5) to univariate encoding methods, in being able to predict both local and distributed representations. Together, this demonstrates the utility of Metric-Learning Encoding Methods for studying how linguistic features are neurally encoded in language models and the advantage of MLEMs over traditional methods. MLEMs can be extended to other domains (e.g. vision) and to other neural systems, such as the human brain.
[ "cs.CL" ]
false
2402.11625
2024-02-18T15:33:24Z
SpeCrawler: Generating OpenAPI Specifications from API Documentation Using Large Language Models
[ "Koren Lazar", "Matan Vetzler", "Guy Uziel", "David Boaz", "Esther Goldbraich", "David Amid", "Ateret Anaby-Tavor" ]
In the digital era, the widespread use of APIs is evident. However, scalable utilization of APIs poses a challenge due to structure divergence observed in online API documentation. This underscores the need for automatic tools to facilitate API consumption. A viable approach involves the conversion of documentation into an API Specification format. While previous attempts have been made using rule-based methods, these approaches encountered difficulties in generalizing across diverse documentation. In this paper we introduce SpeCrawler, a comprehensive system that utilizes large language models (LLMs) to generate OpenAPI Specifications from diverse API documentation through a carefully crafted pipeline. By creating a standardized format for numerous APIs, SpeCrawler aids in streamlining integration processes within API orchestrating systems and facilitating the incorporation of tools into LLMs. The paper explores SpeCrawler's methodology, supported by empirical evidence and case studies, demonstrating its efficacy through LLM capabilities.
[ "cs.CL" ]
false
2402.11633
2024-02-18T16:20:43Z
Self-seeding and Multi-intent Self-instructing LLMs for Generating Intent-aware Information-Seeking dialogs
[ "Arian Askari", "Roxana Petcu", "Chuan Meng", "Mohammad Aliannejadi", "Amin Abolghasemi", "Evangelos Kanoulas", "Suzan Verberne" ]
Identifying user intents in information-seeking dialogs is crucial for a system to meet user's information needs. Intent prediction (IP) is challenging and demands sufficient dialogs with human-labeled intents for training. However, manually annotating intents is resource-intensive. While large language models (LLMs) have been shown to be effective in generating synthetic data, there is no study on using LLMs to generate intent-aware information-seeking dialogs. In this paper, we focus on leveraging LLMs for zero-shot generation of large-scale, open-domain, and intent-aware information-seeking dialogs. We propose SOLID, which has novel self-seeding and multi-intent self-instructing schemes. The former improves the generation quality by using the LLM's own knowledge scope to initiate dialog generation; the latter prompts the LLM to generate utterances sequentially, and mitigates the need for manual prompt design by asking the LLM to autonomously adapt its prompt instruction when generating complex multi-intent utterances. Furthermore, we propose SOLID-RL, which is further trained to generate a dialog in one step on the data generated by SOLID. We propose a length-based quality estimation mechanism to assign varying weights to SOLID-generated dialogs based on their quality during the training process of SOLID-RL. We use SOLID and SOLID-RL to generate more than 300k intent-aware dialogs, surpassing the size of existing datasets. Experiments show that IP methods trained on dialogs generated by SOLID and SOLID-RL achieve better IP quality than ones trained on human-generated dialogs.
[ "cs.CL" ]
false
2402.11638
2024-02-18T16:36:00Z
Stumbling Blocks: Stress Testing the Robustness of Machine-Generated Text Detectors Under Attacks
[ "Yichen Wang", "Shangbin Feng", "Abe Bohan Hou", "Xiao Pu", "Chao Shen", "Xiaoming Liu", "Yulia Tsvetkov", "Tianxing He" ]
The widespread use of large language models (LLMs) is increasing the demand for methods that detect machine-generated text to prevent misuse. The goal of our study is to stress test the detectors' robustness to malicious attacks under realistic scenarios. We comprehensively study the robustness of popular machine-generated text detectors under attacks from diverse categories: editing, paraphrasing, prompting, and co-generating. Our attacks assume limited access to the generator LLMs, and we compare the performance of detectors on different attacks under different budget levels. Our experiments reveal that almost none of the existing detectors remain robust under all the attacks, and all detectors exhibit different loopholes. Averaging all detectors, the performance drops by 35% across all attacks. Further, we investigate the reasons behind these defects and propose initial out-of-the-box patches to improve robustness.
[ "cs.CL" ]
false
2402.11655
2024-02-18T17:26:51Z
Competition of Mechanisms: Tracing How Language Models Handle Facts and Counterfactuals
[ "Francesco Ortu", "Zhijing Jin", "Diego Doimo", "Mrinmaya Sachan", "Alberto Cazzaniga", "Bernhard Schölkopf" ]
Interpretability research aims to bridge the gap between the empirical success and our scientific understanding of the inner workings of large language models (LLMs). However, most existing research in this area focused on analyzing a single mechanism, such as how models copy or recall factual knowledge. In this work, we propose the formulation of competition of mechanisms, which instead of individual mechanisms focuses on the interplay of multiple mechanisms, and traces how one of them becomes dominant in the final prediction. We uncover how and where the competition of mechanisms happens within LLMs using two interpretability methods, logit inspection and attention modification. Our findings show traces of the mechanisms and their competition across various model components, and reveal attention positions that effectively control the strength of certain mechanisms. Our code and data are at https://github.com/francescortu/Competition_of_Mechanisms.
[ "cs.CL" ]
false
2402.11683
2024-02-18T19:13:52Z
One Prompt To Rule Them All: LLMs for Opinion Summary Evaluation
[ "Tejpalsingh Siledar", "Swaroop Nath", "Sankara Sri Raghava Ravindra Muddu", "Rupasai Rangaraju", "Swaprava Nath", "Pushpak Bhattacharyya", "Suman Banerjee", "Amey Patil", "Sudhanshu Shekhar Singh", "Muthusamy Chelliah", "Nikesh Garera" ]
Evaluation of opinion summaries using conventional reference-based metrics rarely provides a holistic evaluation and has been shown to have a relatively low correlation with human judgments. Recent studies suggest using Large Language Models (LLMs) as reference-free metrics for NLG evaluation, however, they remain unexplored for opinion summary evaluation. Moreover, limited opinion summary evaluation datasets inhibit progress. To address this, we release the SUMMEVAL-OP dataset covering 7 dimensions related to the evaluation of opinion summaries: fluency, coherence, relevance, faithfulness, aspect coverage, sentiment consistency, and specificity. We investigate Op-I-Prompt a dimension-independent prompt, and Op-Prompts, a dimension-dependent set of prompts for opinion summary evaluation. Experiments indicate that Op-I-Prompt emerges as a good alternative for evaluating opinion summaries achieving an average Spearman correlation of 0.70 with humans, outperforming all previous approaches. To the best of our knowledge, we are the first to investigate LLMs as evaluators on both closed-source and open-source models in the opinion summarization domain.
[ "cs.CL" ]
false
2402.11700
2024-02-18T20:47:10Z
Why Lift so Heavy? Slimming Large Language Models by Cutting Off the Layers
[ "Shuzhou Yuan", "Ercong Nie", "Bolei Ma", "Michael Färber" ]
Large Language Models (LLMs) possess outstanding capabilities in addressing various natural language processing (NLP) tasks. However, the sheer size of these models poses challenges in terms of storage, training and inference due to the inclusion of billions of parameters through layer stacking. While traditional approaches such as model pruning or distillation offer ways for reducing model size, they often come at the expense of performance retention. In our investigation, we systematically explore the approach of reducing the number of layers in LLMs. Surprisingly, we observe that even with fewer layers, LLMs maintain similar or better performance levels, particularly in prompt-based fine-tuning for text classification tasks. Remarkably, in certain cases, models with a single layer outperform their fully layered counterparts. These findings offer valuable insights for future work aimed at mitigating the size constraints of LLMs while preserving their performance, thereby opening avenues for significantly more efficient use of LLMs.
[ "cs.CL" ]
false
2402.11710
2024-02-18T21:20:33Z
A Note on Bias to Complete
[ "Jia Xu", "Mona Diab" ]
Minimizing social bias strengthens societal bonds, promoting shared understanding and better decision-making. We revisit the definition of bias by discovering new bias types (e.g., societal status) in dynamic environments and describe them relative to context, such as culture, region, time, and personal background. Our framework includes eight hypotheses about bias and a minimizing bias strategy for each assumption as well as five methods as proposed solutions in LLM. The realization of the framework is yet to be completed.
[ "cs.CL" ]
false
2402.11711
2024-02-18T21:25:09Z
MORL-Prompt: An Empirical Analysis of Multi-Objective Reinforcement Learning for Discrete Prompt Optimization
[ "Yasaman Jafari", "Dheeraj Mekala", "Rose Yu", "Taylor Berg-Kirkpatrick" ]
RL-based techniques can be used to search for prompts that when fed into a target language model maximize a set of user-specified reward functions. However, in many target applications, the natural reward functions are in tension with one another -- for example, content preservation vs. style matching in style transfer tasks. Current techniques focus on maximizing the average of reward functions, which does not necessarily lead to prompts that achieve balance across rewards -- an issue that has been well-studied in the multi-objective and robust optimization literature. In this paper, we adapt several techniques for multi-objective optimization to RL-based discrete prompt optimization -- two that consider volume of the Pareto reward surface, and another that chooses an update direction that benefits all rewards simultaneously. We conduct an empirical analysis of these methods on two NLP tasks: style transfer and machine translation, each using three competing reward functions. Our experiments demonstrate that multi-objective methods that directly optimize volume perform better and achieve a better balance of all rewards than those that attempt to find monotonic update directions.
[ "cs.CL" ]
false
2402.11712
2024-02-18T21:28:06Z
Modelling Political Coalition Negotiations Using LLM-based Agents
[ "Farhad Moghimifar", "Yuan-Fang Li", "Robert Thomson", "Gholamreza Haffari" ]
Coalition negotiations are a cornerstone of parliamentary democracies, characterised by complex interactions and strategic communications among political parties. Despite its significance, the modelling of these negotiations has remained unexplored with the domain of Natural Language Processing (NLP), mostly due to lack of proper data. In this paper, we introduce coalition negotiations as a novel NLP task, and model it as a negotiation between large language model-based agents. We introduce a multilingual dataset, POLCA, comprising manifestos of European political parties and coalition agreements over a number of elections in these countries. This dataset addresses the challenge of the current scope limitations in political negotiation modelling by providing a diverse, real-world basis for simulation. Additionally, we propose a hierarchical Markov decision process designed to simulate the process of coalition negotiation between political parties and predict the outcomes. We evaluate the performance of state-of-the-art large language models (LLMs) as agents in handling coalition negotiations, offering insights into their capabilities and paving the way for future advancements in political modelling.
[ "cs.CL" ]
false
2402.11436
2024-02-18T03:10:39Z
Perils of Self-Feedback: Self-Bias Amplifies in Large Language Models
[ "Wenda Xu", "Guanglei Zhu", "Xuandong Zhao", "Liangming Pan", "Lei Li", "William Yang Wang" ]
Recent studies show that self-feedback improves large language models (LLMs) on certain tasks while worsens other tasks. We discovered that such a contrary is due to LLM's bias towards their own output. In this paper, we formally define LLM's self-bias -- the tendency to favor its own generation -- using two statistics. We analyze six LLMs on translation, constrained text generation, and mathematical reasoning tasks. We find that self-bias is prevalent in all examined LLMs across multiple languages and tasks. Our analysis reveals that while the self-refine pipeline improves the fluency and understandability of model outputs, it further amplifies self-bias. To mitigate such biases, we discover that larger model size and external feedback with accurate assessment can significantly reduce bias in the self-refine pipeline, leading to actual performance improvement in downstream tasks.
[ "cs.CL", "cs.AI" ]
false
2402.11505
2024-02-18T08:32:59Z
Federated Fine-tuning of Large Language Models under Heterogeneous Language Tasks and Client Resources
[ "Jiamu Bai", "Daoyuan Chen", "Bingchen Qian", "Liuyi Yao", "Yaliang Li" ]
Federated Learning (FL) has recently been applied to the parameter-efficient fine-tuning of Large Language Models (LLMs). While promising, it raises significant challenges due to the heterogeneous resources and data distributions of clients.This study introduces FlexLoRA, a simple yet effective aggregation scheme for LLM fine-tuning, which mitigates the "buckets effect" in traditional FL that restricts the potential of clients with ample resources by tying them to the capabilities of the least-resourced participants. FlexLoRA allows for dynamic adjustment of local LoRA ranks, fostering the development of a global model imbued with broader, less task-specific knowledge. By synthesizing a full-size LoRA weight from individual client contributions and employing Singular Value Decomposition (SVD) for weight redistribution, FlexLoRA fully leverages heterogeneous client resources. Involving over 1,600 clients performing diverse NLP tasks, our experiments validate the efficacy of FlexLoRA, with the federated global model achieving up to a 3.1% average improvement in downstream NLP task performance. FlexLoRA's practicality is further underscored by its seamless integration with existing LoRA-based FL methods and theoretical analysis, offering a path toward scalable, privacy-preserving federated tuning for LLMs.
[ "cs.CL", "cs.AI" ]
false
2402.11518
2024-02-18T09:21:12Z
Large Language Model-driven Meta-structure Discovery in Heterogeneous Information Network
[ "Lin Chen", "Fengli Xu", "Nian Li", "Zhenyu Han", "Meng Wang", "Yong Li", "Pan Hui" ]
Heterogeneous information networks (HIN) have gained increasing popularity for being able to capture complex relations between nodes of diverse types. Meta-structure was proposed to identify important patterns of relations on HIN, which has been proven effective for extracting rich semantic information and facilitating graph neural networks to learn expressive representations. However, hand-crafted meta-structures pose challenges for scaling up, which draws wide research attention for developing automatic meta-structure search algorithms. Previous efforts concentrate on searching for meta-structures with good empirical prediction performance, overlooking explainability. Thus, they often produce meta-structures prone to overfitting and incomprehensible to humans. To address this, we draw inspiration from the emergent reasoning abilities of large language models (LLMs). We propose a novel REasoning meta-STRUCTure search (ReStruct) framework that integrates LLM reasoning into the evolutionary procedure. ReStruct uses a grammar translator to encode meta-structures into natural language sentences, and leverages the reasoning power of LLMs to evaluate semantically feasible meta-structures. ReStruct also employs performance-oriented evolutionary operations. These two competing forces jointly optimize for semantic explainability and empirical performance of meta-structures. We also design a differential LLM explainer that can produce natural language explanations for the discovered meta-structures, and refine the explanation by reasoning through the search history. Experiments on five datasets demonstrate ReStruct achieve SOTA performance in node classification and link recommendation tasks. Additionally, a survey study involving 73 graduate students shows that the meta-structures and natural language explanations generated by ReStruct are substantially more comprehensible.
[ "cs.LG", "cs.CL" ]
false
2402.11534
2024-02-18T10:15:38Z
PreAct: Predicting Future in ReAct Enhances Agent's Planning Ability
[ "Dayuan Fu", "Jianzhao Huang", "Siyuan Lu", "Guanting Dong", "Yejie Wang", "Keqing He", "Weiran Xu" ]
Addressing the discrepancies between predictions and actual outcomes often aids individuals in expanding their thought processes and engaging in reflection, thereby facilitating reasoning in the correct direction. In this paper, we introduce $\textbf{PreAct}$, an agent framework that integrates $\textbf{pre}$diction with $\textbf{rea}$soning and $\textbf{act}$ion. Leveraging the information provided by predictions, a large language model (LLM) based agent can offer more diversified and strategically oriented reasoning, which in turn leads to more effective actions that help the agent complete complex tasks. Our experiments demonstrate that PreAct outperforms the ReAct approach in accomplishing complex tasks and that PreAct can be co-enhanced when combined with Reflexion methods. We prompt the model with different numbers of historical predictions and find that historical predictions have a sustained positive effect on LLM planning. The differences in single-step reasoning between PreAct and ReAct show that PreAct indeed offers advantages in terms of diversity and strategic directivity over ReAct.
[ "cs.CL", "cs.AI" ]
false
2402.11542
2024-02-18T10:44:48Z
Question Answering Over Spatio-Temporal Knowledge Graph
[ "Xinbang Dai", "Huiying Li", "Guilin Qi" ]
Spatio-temporal knowledge graphs (STKGs) extend the concept of knowledge graphs (KGs) by incorporating time and location information. While the research community's focus on Knowledge Graph Question Answering (KGQA), the field of answering questions incorporating both spatio-temporal information based on STKGs remains largely unexplored. Furthermore, a lack of comprehensive datasets also has hindered progress in this area. To address this issue, we present STQAD, a dataset comprising 10,000 natural language questions for spatio-temporal knowledge graph question answering (STKGQA). Unfortunately, various state-of-the-art KGQA approaches fall far short of achieving satisfactory performance on our dataset. In response, we propose STCQA, a new spatio-temporal KGQA approach that utilizes a novel STKG embedding method named STComplEx. By extracting temporal and spatial information from a question, our QA model can better comprehend the question and retrieve accurate answers from the STKG. Through extensive experiments, we demonstrate the quality of our dataset and the effectiveness of our STKGQA method.
[ "cs.CL", "cs.AI", "I.2.4; I.2.7" ]
false
2402.11626
2024-02-18T15:41:31Z
Metacognitive Retrieval-Augmented Large Language Models
[ "Yujia Zhou", "Zheng Liu", "Jiajie Jin", "Jian-Yun Nie", "Zhicheng Dou" ]
Retrieval-augmented generation have become central in natural language processing due to their efficacy in generating factual content. While traditional methods employ single-time retrieval, more recent approaches have shifted towards multi-time retrieval for multi-hop reasoning tasks. However, these strategies are bound by predefined reasoning steps, potentially leading to inaccuracies in response generation. This paper introduces MetaRAG, an approach that combines the retrieval-augmented generation process with metacognition. Drawing from cognitive psychology, metacognition allows an entity to self-reflect and critically evaluate its cognitive processes. By integrating this, MetaRAG enables the model to monitor, evaluate, and plan its response strategies, enhancing its introspective reasoning abilities. Through a three-step metacognitive regulation pipeline, the model can identify inadequacies in initial cognitive responses and fixes them. Empirical evaluations show that MetaRAG significantly outperforms existing methods.
[ "cs.CL", "cs.IR" ]
false
2402.11628
2024-02-18T16:03:04Z
Discrete Neural Algorithmic Reasoning
[ "Gleb Rodionov", "Liudmila Prokhorenkova" ]
Neural algorithmic reasoning aims to capture computations with neural networks via learning the models to imitate the execution of classical algorithms. While common architectures are expressive enough to contain the correct model in the weights space, current neural reasoners are struggling to generalize well on out-of-distribution data. On the other hand, classical computations are not affected by distribution shifts as they can be described as transitions between discrete computational states. In this work, we propose to force neural reasoners to maintain the execution trajectory as a combination of finite predefined states. Trained with supervision on the algorithm's state transitions, such models are able to perfectly align with the original algorithm. To show this, we evaluate our approach on the SALSA-CLRS benchmark, where we get perfect test scores for all tasks. Moreover, the proposed architectural choice allows us to prove the correctness of the learned algorithms for any test data.
[ "cs.LG", "cs.CL" ]
false
2402.11671
2024-02-18T18:20:57Z
Autocorrect for Estonian texts: final report from project EKTB25
[ "Agnes Luhtaru", "Martin Vainikko", "Krista Liin", "Kais Allkivi-Metsoja", "Jaagup Kippar", "Pille Eslon", "Mark Fishel" ]
The project was funded in 2021-2023 by the National Programme of Estonian Language Technology. Its main aim was to develop spelling and grammar correction tools for the Estonian language. The main challenge was the very small amount of available error correction data needed for such development. To mitigate this, (1) we annotated more correction data for model training and testing, (2) we tested transfer-learning, i.e. retraining machine learning models created for other tasks, so as not to depend solely on correction data, (3) we compared the developed method and model with alternatives, including large language models. We also developed automatic evaluation, which can calculate the accuracy and yield of corrections by error category, so that the effectiveness of different methods can be compared in detail. There has been a breakthrough in large language models during the project: GPT4, a commercial language model with Estonian-language support, has been created. We took into account the existence of the model when adjusting plans and in the report we present a comparison with the ability of GPT4 to improve the Estonian language text. The final results show that the approach we have developed provides better scores than GPT4 and the result is usable but not entirely reliable yet. The report also contains ideas on how GPT4 and other major language models can be implemented in the future, focusing on open-source solutions. All results of this project are open-data/open-source, with licenses that allow them to be used for purposes including commercial ones.
[ "cs.CL", "cs.AI" ]
false
2402.11684
2024-02-18T19:26:49Z
ALLaVA: Harnessing GPT4V-synthesized Data for A Lite Vision-Language Model
[ "Guiming Hardy Chen", "Shunian Chen", "Ruifei Zhang", "Junying Chen", "Xiangbo Wu", "Zhiyi Zhang", "Zhihong Chen", "Jianquan Li", "Xiang Wan", "Benyou Wang" ]
Recent advancements in Large Vision-Language Models (LVLMs) have enabled processing of multimodal inputs in language models but require significant computational resources for deployment, especially in edge devices. This study aims to bridge the performance gap between traditional-scale LVLMs and resource-friendly lite versions by adopting high-quality training data. To do this, a synthetic dataset is created by leveraging GPT-4V's ability to generate detailed captions, complex reasoning instructions and detailed answers from images. The resulted model trained with our data, ALLaVA, achieves competitive performance on 12 benchmarks up to 3B LVLMs. This work highlights the feasibility of adopting high-quality data in crafting more efficient LVLMs. Our online demo is available at \url{https://allava.freedomai.cn}.
[ "cs.CL", "cs.AI" ]
false
2402.11709
2024-02-18T21:13:05Z
GNNavi: Navigating the Information Flow in Large Language Models by Graph Neural Network
[ "Shuzhou Yuan", "Ercong Nie", "Michael Färber", "Helmut Schmid", "Hinrich Schütze" ]
Large Language Models (LLMs) exhibit strong In-Context Learning (ICL) capabilities when prompts with demonstrations are applied to them. However, fine-tuning still remains crucial to further enhance their adaptability. Prompt-based fine-tuning proves to be an effective fine-tuning method in low-data scenarios, but high demands on computing resources limit its practicality. We address this issue by introducing a prompt-based parameter-efficient fine-tuning (PEFT) approach. GNNavi leverages insights into ICL's information flow dynamics, which indicates that label words act in prompts as anchors for information propagation. GNNavi employs a Graph Neural Network (GNN) layer to precisely guide the aggregation and distribution of information flow during the processing of prompts by hardwiring the desired information flow into the GNN. Our experiments on text classification tasks with GPT-2 and Llama2 shows GNNavi surpasses standard prompt-based fine-tuning methods in few-shot settings by updating just 0.2% to 0.5% of parameters. We compare GNNavi with prevalent PEFT approaches, such as prefix tuning, LoRA and Adapter in terms of performance and efficiency. Our analysis reveals that GNNavi enhances information flow and ensures a clear aggregation process.
[ "cs.CL", "cs.AI" ]
false
2402.11723
2024-02-18T22:27:42Z
Shaping Human-AI Collaboration: Varied Scaffolding Levels in Co-writing with Language Models
[ "Paramveer S. Dhillon", "Somayeh Molaei", "Jiaqi Li", "Maximilian Golub", "Shaochun Zheng", "Lionel P. Robert" ]
Advances in language modeling have paved the way for novel human-AI co-writing experiences. This paper explores how varying levels of scaffolding from large language models (LLMs) shape the co-writing process. Employing a within-subjects field experiment with a Latin square design, we asked participants (N=131) to respond to argumentative writing prompts under three randomly sequenced conditions: no AI assistance (control), next-sentence suggestions (low scaffolding), and next-paragraph suggestions (high scaffolding). Our findings reveal a U-shaped impact of scaffolding on writing quality and productivity (words/time). While low scaffolding did not significantly improve writing quality or productivity, high scaffolding led to significant improvements, especially benefiting non-regular writers and less tech-savvy users. No significant cognitive burden was observed while using the scaffolded writing tools, but a moderate decrease in text ownership and satisfaction was noted. Our results have broad implications for the design of AI-powered writing tools, including the need for personalized scaffolding mechanisms.
[ "cs.HC", "cs.CL" ]
false
2402.11417
2024-02-18T01:20:00Z
LoRETTA: Low-Rank Economic Tensor-Train Adaptation for Ultra-Low-Parameter Fine-Tuning of Large Language Models
[ "Yifan Yang", "Jiajun Zhou", "Ngai Wong", "Zheng Zhang" ]
Various parameter-efficient fine-tuning (PEFT) techniques have been proposed to enable computationally efficient fine-tuning while maintaining model performance. However, existing PEFT methods are still limited by the growing number of trainable parameters with the rapid deployment of Large Language Models (LLMs). To address this challenge, we present LoRETTA, an ultra-parameter-efficient framework that significantly reduces trainable parameters through tensor-train decomposition. Specifically, we propose two methods, named {LoRETTA}$_{adp}$ and {LoRETTA}$_{rep}$. The former employs tensorized adapters, offering a high-performance yet lightweight approach for the fine-tuning of LLMs. The latter emphasizes fine-tuning via weight parameterization with a set of small tensor factors. LoRETTA achieves comparable or better performance than most widely used PEFT methods with up to $100\times$ fewer parameters on the LLaMA-2-7B models. Furthermore, empirical results demonstrate that the proposed method effectively improves training efficiency, enjoys better multi-task learning performance, and enhances the anti-overfitting capability. Plug-and-play codes built upon the Huggingface framework and PEFT library will be released.
[ "cs.CL", "cs.AI", "cs.LG" ]
false
2402.11441
2024-02-18T03:36:26Z
InfuserKI: Enhancing Large Language Models with Knowledge Graphs via Infuser-Guided Knowledge Integration
[ "Fali Wang", "Runxue Bao", "Suhang Wang", "Wenchao Yu", "Yanchi Liu", "Wei Cheng", "Haifeng Chen" ]
Though Large Language Models (LLMs) have shown remarkable open-generation capabilities across diverse domains, they struggle with knowledge-intensive tasks. To alleviate this issue, knowledge integration methods have been proposed to enhance LLMs with domain-specific knowledge graphs using external modules. However, they suffer from data inefficiency as they require both known and unknown knowledge for fine-tuning. Thus, we study a novel problem of integrating unknown knowledge into LLMs efficiently without unnecessary overlap of known knowledge. Injecting new knowledge poses the risk of forgetting previously acquired knowledge. To tackle this, we propose a novel Infuser-Guided Knowledge Integration (InfuserKI) framework that utilizes transformer internal states to determine whether to enhance the original LLM output with additional information, thereby effectively mitigating knowledge forgetting. Evaluations on the UMLS-2.5k and MetaQA domain knowledge graphs demonstrate that InfuserKI can effectively acquire new knowledge and outperform state-of-the-art baselines by 9% and 6%, respectively, in reducing knowledge forgetting.
[ "cs.CL", "cs.AI", "cs.LG" ]
false
2402.11469
2024-02-18T05:58:25Z
A Curious Case of Searching for the Correlation between Training Data and Adversarial Robustness of Transformer Textual Models
[ "Cuong Dang", "Dung D. Le", "Thai Le" ]
Existing works have shown that fine-tuned textual transformer models achieve state-of-the-art prediction performances but are also vulnerable to adversarial text perturbations. Traditional adversarial evaluation is often done \textit{only after} fine-tuning the models and ignoring the training data. In this paper, we want to prove that there is also a strong correlation between training data and model robustness. To this end, we extract 13 different features representing a wide range of input fine-tuning corpora properties and use them to predict the adversarial robustness of the fine-tuned models. Focusing mostly on encoder-only transformer models BERT and RoBERTa with additional results for BART, ELECTRA and GPT2, we provide diverse evidence to support our argument. First, empirical analyses show that (a) extracted features can be used with a lightweight classifier such as Random Forest to effectively predict the attack success rate and (b) features with the most influence on the model robustness have a clear correlation with the robustness. Second, our framework can be used as a fast and effective additional tool for robustness evaluation since it (a) saves 30x-193x runtime compared to the traditional technique, (b) is transferable across models, (c) can be used under adversarial training, and (d) robust to statistical randomness. Our code will be publicly available.
[ "cs.LG", "cs.CL", "cs.CR" ]
false
2402.11485
2024-02-18T07:24:34Z
LEIA: Facilitating Cross-Lingual Knowledge Transfer in Language Models with Entity-based Data Augmentation
[ "Ikuya Yamada", "Ryokan Ri" ]
Adapting English-based large language models (LLMs) to other languages has become increasingly popular due to the efficiency and potential of cross-lingual transfer. However, existing language adaptation methods often overlook the benefits of cross-lingual supervision. In this study, we introduce LEIA, a language adaptation tuning method that utilizes Wikipedia entity names aligned across languages. This method involves augmenting the target language corpus with English entity names and training the model using left-to-right language modeling. We assess LEIA on diverse question answering datasets using 7B-parameter LLMs, demonstrating significant performance gains across various non-English languages. The source code is available at https://github.com/studio-ousia/leia.
[ "cs.CL", "cs.AI", "cs.LG" ]
false
2402.11569
2024-02-18T12:33:54Z
Developing Autonomous Robot-Mediated Behavior Coaching Sessions with Haru
[ "Matouš Jelínek", "Eric Nichols", "Randy Gomez" ]
This study presents an empirical investigation into the design and impact of autonomous dialogues in human-robot interaction for behavior change coaching. We focus on the use of Haru, a tabletop social robot, and explore the implementation of the Tiny Habits method for fostering positive behavior change. The core of our study lies in developing a fully autonomous dialogue system that maximizes Haru's emotional expressiveness and unique personality. Our methodology involved iterative design and extensive testing of the dialogue system, ensuring it effectively embodied the principles of the Tiny Habits method while also incorporating strategies for trust-raising and trust-dampening. The effectiveness of the final version of the dialogue was evaluated in an experimental study with human participants (N=12). The results indicated a significant improvement in perceptions of Haru's liveliness, interactivity, and neutrality. Additionally, our study contributes to the broader understanding of dialogue design in social robotics, offering practical insights for future developments in the field.
[ "cs.RO", "cs.AI", "cs.CL" ]
false
2402.11571
2024-02-18T12:35:52Z
Ain't Misbehavin' -- Using LLMs to Generate Expressive Robot Behavior in Conversations with the Tabletop Robot Haru
[ "Zining Wang", "Paul Reisert", "Eric Nichols", "Randy Gomez" ]
Social robots aim to establish long-term bonds with humans through engaging conversation. However, traditional conversational approaches, reliant on scripted interactions, often fall short in maintaining engaging conversations. This paper addresses this limitation by integrating large language models (LLMs) into social robots to achieve more dynamic and expressive conversations. We introduce a fully-automated conversation system that leverages LLMs to generate robot responses with expressive behaviors, congruent with the robot's personality. We incorporate robot behavior with two modalities: 1) a text-to-speech (TTS) engine capable of various delivery styles, and 2) a library of physical actions for the robot. We develop a custom, state-of-the-art emotion recognition model to dynamically select the robot's tone of voice and utilize emojis from LLM output as cues for generating robot actions. A demo of our system is available here. To illuminate design and implementation issues, we conduct a pilot study where volunteers chat with a social robot using our proposed system, and we analyze their feedback, conducting a rigorous error analysis of chat transcripts. Feedback was overwhelmingly positive, with participants commenting on the robot's empathy, helpfulness, naturalness, and entertainment. Most negative feedback was due to automatic speech recognition (ASR) errors which had limited impact on conversations. However, we observed a small class of errors, such as the LLM repeating itself or hallucinating fictitious information and human responses, that have the potential to derail conversations, raising important issues for LLM application.
[ "cs.RO", "cs.AI", "cs.CL" ]
false
2402.11639
2024-02-18T16:37:32Z
In-Context Learning with Transformers: Softmax Attention Adapts to Function Lipschitzness
[ "Liam Collins", "Advait Parulekar", "Aryan Mokhtari", "Sujay Sanghavi", "Sanjay Shakkottai" ]
A striking property of transformers is their ability to perform in-context learning (ICL), a machine learning framework in which the learner is presented with a novel context during inference implicitly through some data, and tasked with making a prediction in that context. As such that learner must adapt to the context without additional training. We explore the role of softmax attention in an ICL setting where each context encodes a regression task. We show that an attention unit learns a window that it uses to implement a nearest-neighbors predictor adapted to the landscape of the pretraining tasks. Specifically, we show that this window widens with decreasing Lipschitzness and increasing label noise in the pretraining tasks. We also show that on low-rank, linear problems, the attention unit learns to project onto the appropriate subspace before inference. Further, we show that this adaptivity relies crucially on the softmax activation and thus cannot be replicated by the linear activation often studied in prior theoretical analyses.
[ "cs.LG", "cs.AI", "cs.CL" ]
false
2402.11681
2024-02-18T19:11:58Z
Opening the black box of language acquisition
[ "Jérôme Michaud", "Anna Jon-and" ]
Recent advances in large language models using deep learning techniques have renewed interest on how languages can be learned from data. However, it is unclear whether or how these models represent grammatical information from the learned languages. In addition, the models must be pre-trained on large corpora before they can be used. In this work, we propose an alternative, more transparent and cognitively plausible architecture for learning language. Instead of using deep learning, our approach uses a minimal cognitive architecture based on sequence memory and chunking. The learning mechanism is based on the principles of reinforcement learning. We test our architecture on a number of natural-like toy languages. Results show that the model can learn these artificial languages from scratch and extract grammatical information that supports learning. Our study demonstrates the power of this simple architecture and stresses the importance of sequence memory as a key component of the language learning process. Since other animals do not seem to have a faithful sequence memory, this may explain why only humans have developed complex languages.
[ "cs.CL", "cs.NA", "math.NA" ]
false
2402.11728
2024-02-18T22:55:26Z
Numerical Claim Detection in Finance: A New Financial Dataset, Weak-Supervision Model, and Market Analysis
[ "Agam Shah", "Arnav Hiray", "Pratvi Shah", "Arkaprabha Banerjee", "Anushka Singh", "Dheeraj Eidnani", "Bhaskar Chaudhury", "Sudheer Chava" ]
In this paper, we investigate the influence of claims in analyst reports and earnings calls on financial market returns, considering them as significant quarterly events for publicly traded companies. To facilitate a comprehensive analysis, we construct a new financial dataset for the claim detection task in the financial domain. We benchmark various language models on this dataset and propose a novel weak-supervision model that incorporates the knowledge of subject matter experts (SMEs) in the aggregation function, outperforming existing approaches. Furthermore, we demonstrate the practical utility of our proposed model by constructing a novel measure ``optimism". Furthermore, we observed the dependence of earnings surprise and return on our optimism measure. Our dataset, models, and code will be made publicly (under CC BY 4.0 license) available on GitHub and Hugging Face.
[ "cs.CL", "cs.LG", "q-fin.CP" ]
false
2402.12408
2024-02-18T11:24:34Z
ModelGPT: Unleashing LLM's Capabilities for Tailored Model Generation
[ "Zihao Tang", "Zheqi Lv", "Shengyu Zhang", "Fei Wu", "Kun Kuang" ]
The rapid advancement of Large Language Models (LLMs) has revolutionized various sectors by automating routine tasks, marking a step toward the realization of Artificial General Intelligence (AGI). However, they still struggle to accommodate the diverse and specific needs of users and simplify the utilization of AI models for the average user. In response, we propose ModelGPT, a novel framework designed to determine and generate AI models specifically tailored to the data or task descriptions provided by the user, leveraging the capabilities of LLMs. Given user requirements, ModelGPT is able to provide tailored models at most 270x faster than the previous paradigms (e.g. all-parameter or LoRA finetuning). Comprehensive experiments on NLP, CV, and Tabular datasets attest to the effectiveness of our framework in making AI models more accessible and user-friendly. Our code is available at https://github.com/IshiKura-a/ModelGPT.
[ "cs.LG", "cs.AI", "cs.CL" ]
false
2402.14834
2024-02-18T05:40:33Z
MSynFD: Multi-hop Syntax aware Fake News Detection
[ "Liang Xiao", "Qi Zhang", "Chongyang Shi", "Shoujin Wang", "Usman Naseem", "Liang Hu" ]
The proliferation of social media platforms has fueled the rapid dissemination of fake news, posing threats to our real-life society. Existing methods use multimodal data or contextual information to enhance the detection of fake news by analyzing news content and/or its social context. However, these methods often overlook essential textual news content (articles) and heavily rely on sequential modeling and global attention to extract semantic information. These existing methods fail to handle the complex, subtle twists in news articles, such as syntax-semantics mismatches and prior biases, leading to lower performance and potential failure when modalities or social context are missing. To bridge these significant gaps, we propose a novel multi-hop syntax aware fake news detection (MSynFD) method, which incorporates complementary syntax information to deal with subtle twists in fake news. Specifically, we introduce a syntactical dependency graph and design a multi-hop subgraph aggregation mechanism to capture multi-hop syntax. It extends the effect of word perception, leading to effective noise filtering and adjacent relation enhancement. Subsequently, a sequential relative position-aware Transformer is designed to capture the sequential information, together with an elaborate keyword debiasing module to mitigate the prior bias. Extensive experimental results on two public benchmark datasets verify the effectiveness and superior performance of our proposed MSynFD over state-of-the-art detection models.
[ "cs.CL", "cs.AI", "cs.IR" ]
false
2402.14835
2024-02-18T07:15:03Z
MIKE: A New Benchmark for Fine-grained Multimodal Entity Knowledge Editing
[ "Jiaqi Li", "Miaozeng Du", "Chuanyi Zhang", "Yongrui Chen", "Nan Hu", "Guilin Qi", "Haiyun Jiang", "Siyuan Cheng", "Bozhong Tian" ]
Multimodal knowledge editing represents a critical advancement in enhancing the capabilities of Multimodal Large Language Models (MLLMs). Despite its potential, current benchmarks predominantly focus on coarse-grained knowledge, leaving the intricacies of fine-grained (FG) multimodal entity knowledge largely unexplored. This gap presents a notable challenge, as FG entity recognition is pivotal for the practical deployment and effectiveness of MLLMs in diverse real-world scenarios. To bridge this gap, we introduce MIKE, a comprehensive benchmark and dataset specifically designed for the FG multimodal entity knowledge editing. MIKE encompasses a suite of tasks tailored to assess different perspectives, including Vanilla Name Answering, Entity-Level Caption, and Complex-Scenario Recognition. In addition, a new form of knowledge editing, Multi-step Editing, is introduced to evaluate the editing efficiency. Through our extensive evaluations, we demonstrate that the current state-of-the-art methods face significant challenges in tackling our proposed benchmark, underscoring the complexity of FG knowledge editing in MLLMs. Our findings spotlight the urgent need for novel approaches in this domain, setting a clear agenda for future research and development efforts within the community.
[ "cs.CL", "cs.AI", "cs.LG" ]
false
2402.14836
2024-02-18T16:51:02Z
Stealthy Attack on Large Language Model based Recommendation
[ "Jinghao Zhang", "Yuting Liu", "Qiang Liu", "Shu Wu", "Guibing Guo", "Liang Wang" ]
Recently, the powerful large language models (LLMs) have been instrumental in propelling the progress of recommender systems (RS). However, while these systems have flourished, their susceptibility to security threats has been largely overlooked. In this work, we reveal that the introduction of LLMs into recommendation models presents new security vulnerabilities due to their emphasis on the textual content of items. We demonstrate that attackers can significantly boost an item's exposure by merely altering its textual content during the testing phase, without requiring direct interference with the model's training process. Additionally, the attack is notably stealthy, as it does not affect the overall recommendation performance and the modifications to the text are subtle, making it difficult for users and platforms to detect. Our comprehensive experiments across four mainstream LLM-based recommendation models demonstrate the superior efficacy and stealthiness of our approach. Our work unveils a significant security gap in LLM-based recommendation systems and paves the way for future research on protecting these systems.
[ "cs.CL", "cs.AI", "cs.IR" ]
false
2402.14837
2024-02-18T23:03:56Z
An Empirical Categorization of Prompting Techniques for Large Language Models: A Practitioner's Guide
[ "Oluwole Fagbohun", "Rachel M. Harrison", "Anton Dereventsov" ]
Due to rapid advancements in the development of Large Language Models (LLMs), programming these models with prompts has recently gained significant attention. However, the sheer number of available prompt engineering techniques creates an overwhelming landscape for practitioners looking to utilize these tools. For the most efficient and effective use of LLMs, it is important to compile a comprehensive list of prompting techniques and establish a standardized, interdisciplinary categorization framework. In this survey, we examine some of the most well-known prompting techniques from both academic and practical viewpoints and classify them into seven distinct categories. We present an overview of each category, aiming to clarify their unique contributions and showcase their practical applications in real-world examples in order to equip fellow practitioners with a structured framework for understanding and categorizing prompting techniques tailored to their specific domains. We believe that this approach will help simplify the complex landscape of prompt engineering and enable more effective utilization of LLMs in various applications. By providing practitioners with a systematic approach to prompt categorization, we aim to assist in navigating the intricacies of effective prompt design for conversational pre-trained LLMs and inspire new possibilities in their respective fields.
[ "cs.CL", "cs.AI", "cs.HC", "cs.LG" ]
false
2402.16880
2024-02-18T12:44:15Z
BESA: Pruning Large Language Models with Blockwise Parameter-Efficient Sparsity Allocation
[ "Peng Xu", "Wenqi Shao", "Mengzhao Chen", "Shitao Tang", "Kaipeng Zhang", "Peng Gao", "Fengwei An", "Yu Qiao", "Ping Luo" ]
Large language models (LLMs) have demonstrated outstanding performance in various tasks, such as text summarization, text question-answering, and etc. While their performance is impressive, the computational footprint due to their vast number of parameters can be prohibitive. Existing solutions such as SparseGPT and Wanda attempt to alleviate this issue through weight pruning. However, their layer-wise approach results in significant perturbation to the model's output and requires meticulous hyperparameter tuning, such as the pruning rate, which can adversely affect overall model performance. To address this, this paper introduces a novel LLM pruning technique dubbed blockwise parameter-efficient sparsity allocation (BESA) by applying a blockwise reconstruction loss. In contrast to the typical layer-wise pruning techniques, BESA is characterized by two distinctive attributes: i) it targets the overall pruning error with respect to individual transformer blocks, and ii) it allocates layer-specific sparsity in a differentiable manner, both of which ensure reduced performance degradation after pruning. Our experiments show that BESA achieves state-of-the-art performance, efficiently pruning LLMs like LLaMA1, and LLaMA2 with 7B to 70B parameters on a single A100 GPU in just five hours. Code is available at \href{https://github.com/OpenGVLab/LLMPrune-BESA}{here}.
[ "cs.LG", "cs.AI", "cs.CL" ]
false
2403.00782
2024-02-18T10:28:18Z
Ploutos: Towards interpretable stock movement prediction with financial large language model
[ "Hanshuang Tong", "Jun Li", "Ning Wu", "Ming Gong", "Dongmei Zhang", "Qi Zhang" ]
Recent advancements in large language models (LLMs) have opened new pathways for many domains. However, the full potential of LLMs in financial investments remains largely untapped. There are two main challenges for typical deep learning-based methods for quantitative finance. First, they struggle to fuse textual and numerical information flexibly for stock movement prediction. Second, traditional methods lack clarity and interpretability, which impedes their application in scenarios where the justification for predictions is essential. To solve the above challenges, we propose Ploutos, a novel financial LLM framework that consists of PloutosGen and PloutosGPT. The PloutosGen contains multiple primary experts that can analyze different modal data, such as text and numbers, and provide quantitative strategies from different perspectives. Then PloutosGPT combines their insights and predictions and generates interpretable rationales. To generate accurate and faithful rationales, the training strategy of PloutosGPT leverage rearview-mirror prompting mechanism to guide GPT-4 to generate rationales, and a dynamic token weighting mechanism to finetune LLM by increasing key tokens weight. Extensive experiments show our framework outperforms the state-of-the-art methods on both prediction accuracy and interpretability.
[ "q-fin.ST", "cs.AI", "cs.CL" ]
false
2403.00784
2024-02-18T23:22:40Z
Utilizing BERT for Information Retrieval: Survey, Applications, Resources, and Challenges
[ "Jiajia Wang", "Jimmy X. Huang", "Xinhui Tu", "Junmei Wang", "Angela J. Huang", "Md Tahmid Rahman Laskar", "Amran Bhuiyan" ]
Recent years have witnessed a substantial increase in the use of deep learning to solve various natural language processing (NLP) problems. Early deep learning models were constrained by their sequential or unidirectional nature, such that they struggled to capture the contextual relationships across text inputs. The introduction of bidirectional encoder representations from transformers (BERT) leads to a robust encoder for the transformer model that can understand the broader context and deliver state-of-the-art performance across various NLP tasks. This has inspired researchers and practitioners to apply BERT to practical problems, such as information retrieval (IR). A survey that focuses on a comprehensive analysis of prevalent approaches that apply pretrained transformer encoders like BERT to IR can thus be useful for academia and the industry. In light of this, we revisit a variety of BERT-based methods in this survey, cover a wide range of techniques of IR, and group them into six high-level categories: (i) handling long documents, (ii) integrating semantic information, (iii) balancing effectiveness and efficiency, (iv) predicting the weights of terms, (v) query expansion, and (vi) document expansion. We also provide links to resources, including datasets and toolkits, for BERT-based IR systems. A key highlight of our survey is the comparison between BERT's encoder-based models and the latest generative Large Language Models (LLMs), such as ChatGPT, which rely on decoders. Despite the popularity of LLMs, we find that for specific tasks, finely tuned BERT encoders still outperform, and at a lower deployment cost. Finally, we summarize the comprehensive outcomes of the survey and suggest directions for future research in the area.
[ "cs.IR", "cs.AI", "cs.CL" ]
false
2403.15399
2024-02-18T07:35:01Z
ChatGPT in Linear Algebra: Strides Forward, Steps to Go
[ "Eli Bagno", "Thierry Dana-Picard", "Shulamit Reches" ]
As soon as a new technology emerges, the education community explores its affordances and the possibilities to apply it in education. In this paper, we analyze sessions with ChatGPT around topics in basic Linear Algebra. We reflect the process undertaken by the ChatGPT along the recent year in our area of interest, emphasising the vast improvement that has been done in grappling with Linear Algebra problems. In particular, the question whether this software can be a teaching assistant or even somehow replace the human teacher, is addressed. As of the time this paper is written, the answer is generally negative. For the small part where the answer can be positive, some reflections about an original instrumental genesis are given. Communication with the software gives the impression to talk to a human, and sometimes the question is whether the software understands the question or not. Therefore, the reader's attention is drawn to the fact that ChatGPT works on a statistical basis and not according to reflection and understanding.
[ "cs.CY", "cs.CL", "cs.LG" ]
false
2402.11656
2024-02-18T17:27:51Z
Integrating Pre-Trained Language Model with Physical Layer Communications
[ "Ju-Hyung Lee", "Dong-Ho Lee", "Joohan Lee", "Jay Pujara" ]
The burgeoning field of on-device AI communication, where devices exchange information directly through embedded foundation models, such as language models (LMs), requires robust, efficient, and generalizable communication frameworks. However, integrating these frameworks with existing wireless systems and effectively managing noise and bit errors pose significant challenges. In this work, we introduce a practical on-device AI communication framework, integrated with physical layer (PHY) communication functions, demonstrated through its performance on a link-level simulator. Our framework incorporates end-to-end training with channel noise to enhance resilience, incorporates vector quantized variational autoencoders (VQ-VAE) for efficient and robust communication, and utilizes pre-trained encoder-decoder transformers for improved generalization capabilities. Simulations, across various communication scenarios, reveal that our framework achieves a 50% reduction in transmission size while demonstrating substantial generalization ability and noise robustness under standardized 3GPP channel models.
[ "cs.IT", "cs.CL", "cs.LG", "eess.SP", "math.IT" ]
false
2402.11604
2024-02-18T14:42:47Z
Self-evolving Autoencoder Embedded Q-Network
[ "J. Senthilnath", "Bangjian Zhou", "Zhen Wei Ng", "Deeksha Aggarwal", "Rajdeep Dutta", "Ji Wei Yoon", "Aye Phyu Phyu Aung", "Keyu Wu", "Min Wu", "Xiaoli Li" ]
In the realm of sequential decision-making tasks, the exploration capability of a reinforcement learning (RL) agent is paramount for achieving high rewards through interactions with the environment. To enhance this crucial ability, we propose SAQN, a novel approach wherein a self-evolving autoencoder (SA) is embedded with a Q-Network (QN). In SAQN, the self-evolving autoencoder architecture adapts and evolves as the agent explores the environment. This evolution enables the autoencoder to capture a diverse range of raw observations and represent them effectively in its latent space. By leveraging the disentangled states extracted from the encoder generated latent space, the QN is trained to determine optimal actions that improve rewards. During the evolution of the autoencoder architecture, a bias-variance regulatory strategy is employed to elicit the optimal response from the RL agent. This strategy involves two key components: (i) fostering the growth of nodes to retain previously acquired knowledge, ensuring a rich representation of the environment, and (ii) pruning the least contributing nodes to maintain a more manageable and tractable latent space. Extensive experimental evaluations conducted on three distinct benchmark environments and a real-world molecular environment demonstrate that the proposed SAQN significantly outperforms state-of-the-art counterparts. The results highlight the effectiveness of the self-evolving autoencoder and its collaboration with the Q-Network in tackling sequential decision-making tasks.
[ "cs.LG" ]
false
2402.11722
2024-02-18T22:16:43Z
Invertible Fourier Neural Operators for Tackling Both Forward and Inverse Problems
[ "Da Long", "Shandian Zhe" ]
Fourier Neural Operator (FNO) is a popular operator learning method, which has demonstrated state-of-the-art performance across many tasks. However, FNO is mainly used in forward prediction, yet a large family of applications rely on solving inverse problems. In this paper, we propose an invertible Fourier Neural Operator (iFNO) that tackles both the forward and inverse problems. We designed a series of invertible Fourier blocks in the latent channel space to share the model parameters, efficiently exchange the information, and mutually regularize the learning for the bi-directional tasks. We integrated a variational auto-encoder to capture the intrinsic structures within the input space and to enable posterior inference so as to overcome challenges of illposedness, data shortage, noises, etc. We developed a three-step process for pre-training and fine tuning for efficient training. The evaluations on five benchmark problems have demonstrated the effectiveness of our approach.
[ "cs.LG" ]
false
2402.11740
2024-02-18T23:54:35Z
Extraction of nonlinearity in neural networks and model compression with Koopman operator
[ "Naoki Sugishita", "Kayo Kinjo", "Jun Ohkubo" ]
Nonlinearity plays a crucial role in deep neural networks. In this paper, we first investigate the degree to which the nonlinearity of the neural network is essential. For this purpose, we employ the Koopman operator, extended dynamic mode decomposition, and the tensor-train format. The results imply that restricted nonlinearity is enough for the classification of handwritten numbers. Then, we propose a model compression method for deep neural networks, which could be beneficial to handling large networks in resource-constrained environments. Leveraging the Koopman operator, the proposed method enables us to use linear algebra in the internal processing of neural networks. We numerically show that the proposed method performs comparably or better than conventional methods in highly compressed model settings for the handwritten number recognition task.
[ "cs.LG" ]
false
2402.11494
2024-02-18T07:49:22Z
Graph Out-of-Distribution Generalization via Causal Intervention
[ "Qitian Wu", "Fan Nie", "Chenxiao Yang", "Tianyi Bao", "Junchi Yan" ]
Out-of-distribution (OOD) generalization has gained increasing attentions for learning on graphs, as graph neural networks (GNNs) often exhibit performance degradation with distribution shifts. The challenge is that distribution shifts on graphs involve intricate interconnections between nodes, and the environment labels are often absent in data. In this paper, we adopt a bottom-up data-generative perspective and reveal a key observation through causal analysis: the crux of GNNs' failure in OOD generalization lies in the latent confounding bias from the environment. The latter misguides the model to leverage environment-sensitive correlations between ego-graph features and target nodes' labels, resulting in undesirable generalization on new unseen nodes. Built upon this analysis, we introduce a conceptually simple yet principled approach for training robust GNNs under node-level distribution shifts, without prior knowledge of environment labels. Our method resorts to a new learning objective derived from causal inference that coordinates an environment estimator and a mixture-of-expert GNN predictor. The new approach can counteract the confounding bias in training data and facilitate learning generalizable predictive relations. Extensive experiment demonstrates that our model can effectively enhance generalization with various types of distribution shifts and yield up to 27.4\% accuracy improvement over state-of-the-arts on graph OOD generalization benchmarks. Source codes are available at https://github.com/fannie1208/CaNet.
[ "cs.LG", "cs.SI" ]
false
2402.11495
2024-02-18T07:51:20Z
URLBERT:A Contrastive and Adversarial Pre-trained Model for URL Classification
[ "Yujie Li", "Yanbin Wang", "Haitao Xu", "Zhenhao Guo", "Zheng Cao", "Lun Zhang" ]
URLs play a crucial role in understanding and categorizing web content, particularly in tasks related to security control and online recommendations. While pre-trained models are currently dominating various fields, the domain of URL analysis still lacks specialized pre-trained models. To address this gap, this paper introduces URLBERT, the first pre-trained representation learning model applied to a variety of URL classification or detection tasks. We first train a URL tokenizer on a corpus of billions of URLs to address URL data tokenization. Additionally, we propose two novel pre-training tasks: (1) self-supervised contrastive learning tasks, which strengthen the model's understanding of URL structure and the capture of category differences by distinguishing different variants of the same URL; (2) virtual adversarial training, aimed at improving the model's robustness in extracting semantic features from URLs. Finally, our proposed methods are evaluated on tasks including phishing URL detection, web page classification, and ad filtering, achieving state-of-the-art performance. Importantly, we also explore multi-task learning with URLBERT, and experimental results demonstrate that multi-task learning model based on URLBERT exhibit equivalent effectiveness compared to independently fine-tuned models, showing the simplicity of URLBERT in handling complex task requirements. The code for our work is available at https://github.com/Davidup1/URLBERT.
[ "cs.CR", "cs.LG" ]
false
2402.11538
2024-02-18T10:38:34Z
PASCL: Supervised Contrastive Learning with Perturbative Augmentation for Particle Decay Reconstruction
[ "Junjian Lu", "Siwei Liu", "Dmitrii Kobylianski", "Etienne Dreyer", "Eilam Gross", "Shangsong Liang" ]
In high-energy physics, particles produced in collision events decay in a format of a hierarchical tree structure, where only the final decay products can be observed using detectors. However, the large combinatorial space of possible tree structures makes it challenging to recover the actual decay process given a set of final particles. To better analyse the hierarchical tree structure, we propose a graph-based deep learning model to infer the tree structure to reconstruct collision events. In particular, we use a compact matrix representation termed as lowest common ancestor generations (LCAG) matrix, to encode the particle decay tree structure. Then, we introduce a perturbative augmentation technique applied to node features, aiming to mimic experimental uncertainties and increase data diversity. We further propose a supervised graph contrastive learning algorithm to utilize the information of inter-particle relations from multiple decay processes. Extensive experiments show that our proposed supervised graph contrastive learning with perturbative augmentation (PASCL) method outperforms state-of-the-art baseline models on an existing physics-based dataset, significantly improving the reconstruction accuracy. This method provides a more effective training strategy for models with the same parameters and makes way for more accurate and efficient high-energy particle physics data analysis.
[ "hep-ph", "cs.LG" ]
false
2402.11565
2024-02-18T12:24:45Z
Continual Learning on Graphs: Challenges, Solutions, and Opportunities
[ "Xikun Zhang", "Dongjin Song", "Dacheng Tao" ]
Continual learning on graph data has recently attracted paramount attention for its aim to resolve the catastrophic forgetting problem on existing tasks while adapting the sequentially updated model to newly emerged graph tasks. While there have been efforts to summarize progress on continual learning research over Euclidean data, e.g., images and texts, a systematic review of progress in continual learning on graphs, a.k.a, continual graph learning (CGL) or lifelong graph learning, is still demanding. Graph data are far more complex in terms of data structures and application scenarios, making CGL task settings, model designs, and applications extremely challenging. To bridge the gap, we provide a comprehensive review of existing continual graph learning (CGL) algorithms by elucidating the different task settings and categorizing the existing methods based on their characteristics. We compare the CGL methods with traditional continual learning techniques and analyze the applicability of the traditional continual learning techniques to CGL tasks. Additionally, we review the benchmark works that are crucial to CGL research. Finally, we discuss the remaining challenges and propose several future directions. We will maintain an up-to-date GitHub repository featuring a comprehensive list of CGL algorithms, accessible at https://github.com/UConn-DSIS/Survey-of-Continual-Learning-on-Graphs.
[ "cs.LG", "cs.AI" ]
false
2402.11594
2024-02-18T14:12:15Z
Simplifying Hyperparameter Tuning in Online Machine Learning -- The spotRiverGUI
[ "Thomas Bartz-Beielstein" ]
Batch Machine Learning (BML) reaches its limits when dealing with very large amounts of streaming data. This is especially true for available memory, handling drift in data streams, and processing new, unknown data. Online Machine Learning (OML) is an alternative to BML that overcomes the limitations of BML. OML is able to process data in a sequential manner, which is especially useful for data streams. The `river` package is a Python OML-library, which provides a variety of online learning algorithms for classification, regression, clustering, anomaly detection, and more. The `spotRiver` package provides a framework for hyperparameter tuning of OML models. The `spotRiverGUI` is a graphical user interface for the `spotRiver` package. The `spotRiverGUI` releases the user from the burden of manually searching for the optimal hyperparameter setting. After the data is provided, users can compare different OML algorithms from the powerful `river` package in a convenient way and tune the selected algorithms very efficiently.
[ "cs.LG", "cs.AI", "90C26", "I.2.6; G.1.6" ]
false
2402.11654
2024-02-18T17:17:17Z
Model-Free $μ$-Synthesis: A Nonsmooth Optimization Perspective
[ "Darioush Keivan", "Xingang Guo", "Peter Seiler", "Geir Dullerud", "Bin Hu" ]
In this paper, we revisit model-free policy search on an important robust control benchmark, namely $\mu$-synthesis. In the general output-feedback setting, there do not exist convex formulations for this problem, and hence global optimality guarantees are not expected. Apkarian (2011) presented a nonconvex nonsmooth policy optimization approach for this problem, and achieved state-of-the-art design results via using subgradient-based policy search algorithms which generate update directions in a model-based manner. Despite the lack of convexity and global optimality guarantees, these subgradient-based policy search methods have led to impressive numerical results in practice. Built upon such a policy optimization persepctive, our paper extends these subgradient-based search methods to a model-free setting. Specifically, we examine the effectiveness of two model-free policy optimization strategies: the model-free non-derivative sampling method and the zeroth-order policy search with uniform smoothing. We performed an extensive numerical study to demonstrate that both methods consistently replicate the design outcomes achieved by their model-based counterparts. Additionally, we provide some theoretical justifications showing that convergence guarantees to stationary points can be established for our model-free $\mu$-synthesis under some assumptions related to the coerciveness of the cost function. Overall, our results demonstrate that derivative-free policy optimization offers a competitive and viable approach for solving general output-feedback $\mu$-synthesis problems in the model-free setting.
[ "math.OC", "cs.LG" ]
false
2402.11664
2024-02-18T17:55:59Z
Interpretable Short-Term Load Forecasting via Multi-Scale Temporal Decomposition
[ "Yuqi Jiang", "Yan Li", "Yize Chen" ]
Rapid progress in machine learning and deep learning has enabled a wide range of applications in the electricity load forecasting of power systems, for instance, univariate and multivariate short-term load forecasting. Though the strong capabilities of learning the non-linearity of the load patterns and the high prediction accuracy have been achieved, the interpretability of typical deep learning models for electricity load forecasting is less studied. This paper proposes an interpretable deep learning method, which learns a linear combination of neural networks that each attends to an input time feature. We also proposed a multi-scale time series decomposition method to deal with the complex time patterns. Case studies have been carried out on the Belgium central grid load dataset and the proposed model demonstrated better accuracy compared to the frequently applied baseline model. Specifically, the proposed multi-scale temporal decomposition achieves the best MSE, MAE and RMSE of 0.52, 0.57 and 0.72 respectively. As for interpretability, on one hand, the proposed method displays generalization capability. On the other hand, it can demonstrate not only the feature but also the temporal interpretability compared to other baseline methods. Besides, the global time feature interpretabilities are also obtained. Obtaining global feature interpretabilities allows us to catch the overall patterns, trends, and cyclicality in load data while also revealing the significance of various time-related features in forming the final outputs.
[ "cs.LG", "eess.SP" ]
false
2402.11737
2024-02-18T23:41:38Z
Compression Repair for Feedforward Neural Networks Based on Model Equivalence Evaluation
[ "Zihao Mo", "Yejiang Yang", "Shuaizheng Lu", "Weiming Xiang" ]
In this paper, we propose a method of repairing compressed Feedforward Neural Networks (FNNs) based on equivalence evaluation of two neural networks. In the repairing framework, a novel neural network equivalence evaluation method is developed to compute the output discrepancy between two neural networks. The output discrepancy can quantitatively characterize the output difference produced by compression procedures. Based on the computed output discrepancy, the repairing method first initializes a new training set for the compressed networks to narrow down the discrepancy between the two neural networks and improve the performance of the compressed network. Then, we repair the compressed FNN by re-training based on the training set. We apply our developed method to the MNIST dataset to demonstrate the effectiveness and advantages of our proposed repair method.
[ "cs.LG", "cs.AI" ]
false
2402.11410
2024-02-18T00:53:05Z
An Elementary Predictor Obtaining $2\sqrt{T}$ Distance to Calibration
[ "Eshwar Ram Arunachaleswaran", "Natalie Collina", "Aaron Roth", "Mirah Shi" ]
Blasiok et al. [2023] proposed distance to calibration as a natural measure of calibration error that unlike expected calibration error (ECE) is continuous. Recently, Qiao and Zheng [2024] gave a non-constructive argument establishing the existence of an online predictor that can obtain $O(\sqrt{T})$ distance to calibration in the adversarial setting, which is known to be impossible for ECE. They leave as an open problem finding an explicit, efficient algorithm. We resolve this problem and give an extremely simple, efficient, deterministic algorithm that obtains distance to calibration error at most $2\sqrt{T}$.
[ "cs.LG", "cs.DS", "stat.ML" ]
false
2402.11427
2024-02-18T02:19:02Z
OptEx: Expediting First-Order Optimization with Approximately Parallelized Iterations
[ "Yao Shu", "Jiongfeng Fang", "Ying Tiffany He", "Fei Richard Yu" ]
First-order optimization (FOO) algorithms are pivotal in numerous computational domains such as machine learning and signal denoising. However, their application to complex tasks like neural network training often entails significant inefficiencies due to the need for many sequential iterations for convergence. In response, we introduce first-order optimization expedited with approximately parallelized iterations (OptEx), the first framework that enhances the efficiency of FOO by leveraging parallel computing to mitigate its iterative bottleneck. OptEx employs kernelized gradient estimation to make use of gradient history for future gradient prediction, enabling parallelization of iterations -- a strategy once considered impractical because of the inherent iterative dependency in FOO. We provide theoretical guarantees for the reliability of our kernelized gradient estimation and the iteration complexity of SGD-based OptEx, confirming that estimation errors diminish to zero as historical gradients accumulate and that SGD-based OptEx enjoys an effective acceleration rate of $\Omega(\sqrt{N})$ over standard SGD given parallelism of N. We also use extensive empirical studies, including synthetic functions, reinforcement learning tasks, and neural network training across various datasets, to underscore the substantial efficiency improvements achieved by OptEx.
[ "cs.LG", "cs.AI", "stat.ML" ]
false
2402.11433
2024-02-18T02:55:19Z
Improved Indoor Localization with Machine Learning Techniques for IoT applications
[ "M. W. P. Maduranga" ]
The rise of the Internet of Things (IoT) and mobile internet applications has spurred interest in location-based services (LBS) for commercial, military, and social applications. While the global positioning system (GPS) dominates outdoor localization, its efficacy wanes indoors due to signal challenges. Indoor localization systems leverage wireless technologies like Wi-Fi, ZigBee, Bluetooth, UWB, selecting based on context. Received signal strength indicator (RSSI) technology, known for its accuracy and simplicity, is widely adopted. This study employs machine learning algorithms in three phases: supervised regressors, supervised classifiers, and ensemble methods for RSSI-based indoor localization. Additionally, it introduces a weighted least squares technique and pseudo-linear solution approach to address non-linear RSSI measurement equations by approximating them with linear equations. An experimental testbed, utilizing diverse wireless technologies and anchor nodes, is designed for data collection, employing IoT cloud architectures. Pre-processing involves investigating filters for data refinement before algorithm training. The study employs machine learning models like linear regression, polynomial regression, support vector regression, random forest regression, and decision tree regressor across various wireless technologies. These models estimate the geographical coordinates of a moving target node, and their performance is evaluated using metrics such as accuracy, root mean square errors, precision, recall, sensitivity, coefficient of determinant, and the f1-score. The experiment's outcomes provide insights into the effectiveness of different supervised machine learning techniques in terms of localization accuracy and robustness in indoor environments.
[ "cs.LG", "cs.NI", "eess.SP" ]
false
2402.11463
2024-02-18T05:35:01Z
Attractor Memory for Long-Term Time Series Forecasting: A Chaos Perspective
[ "Jiaxi Hu", "Yuehong Hu", "Wei Chen", "Ming Jin", "Shirui Pan", "Qingsong Wen", "Yuxuan Liang" ]
In long-term time series forecasting (LTSF) tasks, existing deep learning models overlook the crucial characteristic that discrete time series originate from underlying continuous dynamic systems, resulting in a lack of extrapolation and evolution capabilities. Recognizing the chaotic nature of real-world data, our model, \textbf{\textit{Attraos}}, incorporates chaos theory into LTSF, perceiving real-world time series as observations from unknown high-dimensional chaotic dynamic systems. Under the concept of attractor invariance, Attraos utilizes the proposed multi-scale dynamic memory unit to memorize historical dynamics structure and predicts by a frequency-enhanced local evolution strategy. Detailed theoretical analysis and abundant empirical evidence consistently show that Attraos outperforms various LTSF methods on mainstream LTSF datasets and chaotic datasets.
[ "cs.LG", "cs.AI", "nlin.CD" ]
false
2402.11472
2024-02-18T06:22:01Z
DDIPrompt: Drug-Drug Interaction Event Prediction based on Graph Prompt Learning
[ "Yingying Wang", "Yun Xiong", "Xixi Wu", "Xiangguo Sun", "Jiawei Zhang" ]
Recently, Graph Neural Networks have become increasingly prevalent in predicting adverse drug-drug interactions (DDI) due to their proficiency in modeling the intricate associations between atoms and functional groups within and across drug molecules. However, they are still hindered by two significant challenges: (1) the issue of highly imbalanced event distribution, which is a common but critical problem in medical datasets where certain interactions are vastly underrepresented. This imbalance poses a substantial barrier to achieving accurate and reliable DDI predictions. (2) the scarcity of labeled data for rare events, which is a pervasive issue in the medical field where rare yet potentially critical interactions are often overlooked or under-studied due to limited available data. In response, we offer DDIPrompt, an innovative panacea inspired by the recent advancements in graph prompting. Our framework aims to address these issues by leveraging the intrinsic knowledge from pre-trained models, which can be efficiently deployed with minimal downstream data. Specifically, to solve the first challenge, DDIPrompt employs augmented links between drugs, considering both structural and interactive proximity. It features a hierarchical pre-training strategy that comprehends intra-molecular structures and inter-molecular interactions, fostering a comprehensive and unbiased understanding of drug properties. For the second challenge, we implement a prototype-enhanced prompting mechanism during inference. This mechanism, refined by few-shot examples from each category, effectively harnesses the rich pre-training knowledge to enhance prediction accuracy, particularly for these rare but crucial interactions. Comprehensive evaluations on two benchmark datasets demonstrate the superiority of DDIPrompt, particularly in predicting rare DDI events.
[ "q-bio.BM", "cs.AI", "cs.LG" ]
false
2402.11552
2024-02-18T11:49:38Z
Empirical Density Estimation based on Spline Quasi-Interpolation with applications to Copulas clustering modeling
[ "Cristiano Tamborrino", "Antonella Falini", "Francesca Mazzia" ]
Density estimation is a fundamental technique employed in various fields to model and to understand the underlying distribution of data. The primary objective of density estimation is to estimate the probability density function of a random variable. This process is particularly valuable when dealing with univariate or multivariate data and is essential for tasks such as clustering, anomaly detection, and generative modeling. In this paper we propose the mono-variate approximation of the density using spline quasi interpolation and we applied it in the context of clustering modeling. The clustering technique used is based on the construction of suitable multivariate distributions which rely on the estimation of the monovariate empirical densities (marginals). Such an approximation is achieved by using the proposed spline quasi-interpolation, while the joint distributions to model the sought clustering partition is constructed with the use of copulas functions. In particular, since copulas can capture the dependence between the features of the data independently from the marginal distributions, a finite mixture copula model is proposed. The presented algorithm is validated on artificial and real datasets.
[ "stat.ML", "cs.LG", "cs.NA", "math.NA" ]
false
2402.11637
2024-02-18T16:34:12Z
Poisoning Federated Recommender Systems with Fake Users
[ "Ming Yin", "Yichang Xu", "Minghong Fang", "Neil Zhenqiang Gong" ]
Federated recommendation is a prominent use case within federated learning, yet it remains susceptible to various attacks, from user to server-side vulnerabilities. Poisoning attacks are particularly notable among user-side attacks, as participants upload malicious model updates to deceive the global model, often intending to promote or demote specific targeted items. This study investigates strategies for executing promotion attacks in federated recommender systems. Current poisoning attacks on federated recommender systems often rely on additional information, such as the local training data of genuine users or item popularity. However, such information is challenging for the potential attacker to obtain. Thus, there is a need to develop an attack that requires no extra information apart from item embeddings obtained from the server. In this paper, we introduce a novel fake user based poisoning attack named PoisonFRS to promote the attacker-chosen targeted item in federated recommender systems without requiring knowledge about user-item rating data, user attributes, or the aggregation rule used by the server. Extensive experiments on multiple real-world datasets demonstrate that PoisonFRS can effectively promote the attacker-chosen targeted item to a large portion of genuine users and outperform current benchmarks that rely on additional information about the system. We further observe that the model updates from both genuine and fake users are indistinguishable within the latent space.
[ "cs.CR", "cs.IR", "cs.LG" ]
false
2402.11650
2024-02-18T17:02:39Z
Theoretical foundations for programmatic reinforcement learning
[ "Guruprerana Shabadi", "Nathanaël Fijalkow", "Théo Matricon" ]
The field of Reinforcement Learning (RL) is concerned with algorithms for learning optimal policies in unknown stochastic environments. Programmatic RL studies representations of policies as programs, meaning involving higher order constructs such as control loops. Despite attracting a lot of attention at the intersection of the machine learning and formal methods communities, very little is known on the theoretical front about programmatic RL: what are good classes of programmatic policies? How large are optimal programmatic policies? How can we learn them? The goal of this paper is to give first answers to these questions, initiating a theoretical study of programmatic RL.
[ "cs.LG", "cs.LO", "cs.PL" ]
false
2402.11658
2024-02-18T17:32:53Z
Dynamic planning in hierarchical active inference
[ "Matteo Priorelli", "Ivilin Peev Stoianov" ]
By dynamic planning, we refer to the ability of the human brain to infer and impose motor trajectories related to cognitive decisions. A recent paradigm, active inference, brings fundamental insights into the adaptation of biological organisms, constantly striving to minimize prediction errors to restrict themselves to life-compatible states. Over the past years, many studies have shown how human and animal behavior could be explained in terms of an active inferential process -- either as discrete decision-making or continuous motor control -- inspiring innovative solutions in robotics and artificial intelligence. Still, the literature lacks a comprehensive outlook on how to effectively plan actions in changing environments. Setting ourselves the goal of modeling tool use, we delve into the topic of dynamic planning in active inference, keeping in mind two crucial aspects of biological goal-directed behavior: the capacity to understand and exploit affordances for object manipulation, and to learn the hierarchical interactions between the self and the environment, including other agents. We start from a simple unit and gradually describe more advanced structures, comparing recently proposed design choices and providing basic examples for each section. This study distances itself from traditional views centered on neural networks and reinforcement learning, and points toward a yet unexplored direction in active inference: hybrid representations in hierarchical models.
[ "cs.AI", "cs.LG", "cs.RO" ]
false
2402.11674
2024-02-18T18:33:48Z
A Fast Algorithm to Simulate Nonlinear Resistive Networks
[ "Benjamin Scellier" ]
In the quest for energy-efficient artificial intelligence systems, resistor networks are attracting interest as an alternative to conventional GPU-based neural networks. These networks leverage the physics of electrical circuits for inference and can be optimized with local training techniques such as equilibrium propagation. Despite their potential advantage in terms of power consumption, the challenge of efficiently simulating these resistor networks has been a significant bottleneck to assess their scalability, with current methods either being limited to linear networks or relying on realistic, yet slow circuit simulators like SPICE. Assuming ideal circuit elements, we introduce a novel approach for the simulation of nonlinear resistive networks, which we frame as a quadratic programming problem with linear inequality constraints, and which we solve using a fast, exact coordinate descent algorithm. Our simulation methodology significantly outperforms existing SPICE-based simulations, enabling the training of networks up to 325 times larger at speeds 150 times faster, resulting in a 50,000-fold improvement in the ratio of network size to epoch duration. Our approach, adaptable to other electrical components, can foster more rapid progress in the simulations of nonlinear electrical networks.
[ "cs.ET", "cond-mat.dis-nn", "cs.LG" ]
false
2402.11687
2024-02-18T19:35:30Z
Evaluating Efficacy of Model Stealing Attacks and Defenses on Quantum Neural Networks
[ "Satwik Kundu", "Debarshi Kundu", "Swaroop Ghosh" ]
Cloud hosting of quantum machine learning (QML) models exposes them to a range of vulnerabilities, the most significant of which is the model stealing attack. In this study, we assess the efficacy of such attacks in the realm of quantum computing. We conducted comprehensive experiments on various datasets with multiple QML model architectures. Our findings revealed that model stealing attacks can produce clone models achieving up to $0.9\times$ and $0.99\times$ clone test accuracy when trained using Top-$1$ and Top-$k$ labels, respectively ($k:$ num\_classes). To defend against these attacks, we leverage the unique properties of current noisy hardware and perturb the victim model outputs and hinder the attacker's training process. In particular, we propose: 1) hardware variation-induced perturbation (HVIP) and 2) hardware and architecture variation-induced perturbation (HAVIP). Although noise and architectural variability can provide up to $\sim16\%$ output obfuscation, our comprehensive analysis revealed that models cloned under noisy conditions tend to be resilient, suffering little to no performance degradation due to such obfuscations. Despite limited success with our defense techniques, this outcome has led to an important discovery: QML models trained on noisy hardwares are naturally resistant to perturbation or obfuscation-based defenses or attacks.
[ "quant-ph", "cs.CR", "cs.LG" ]
false
2402.11729
2024-02-18T23:01:28Z
Prospector Heads: Generalized Feature Attribution for Large Models & Data
[ "Gautam Machiraju", "Alexander Derry", "Arjun Desai", "Neel Guha", "Amir-Hossein Karimi", "James Zou", "Russ Altman", "Christopher Ré", "Parag Mallick" ]
Feature attribution, the ability to localize regions of the input data that are relevant for classification, is an important capability for machine learning models in scientific and biomedical domains. Current methods for feature attribution, which rely on "explaining" the predictions of end-to-end classifiers, suffer from imprecise feature localization and are inadequate for use with small sample sizes and high-dimensional datasets due to computational challenges. We introduce prospector heads, an efficient and interpretable alternative to explanation-based methods for feature attribution that can be applied to any encoder and any data modality. Prospector heads generalize across modalities through experiments on sequences (text), images (pathology), and graphs (protein structures), outperforming baseline attribution methods by up to 49 points in mean localization AUPRC. We also demonstrate how prospector heads enable improved interpretation and discovery of class-specific patterns in the input data. Through their high performance, flexibility, and generalizability, prospectors provide a framework for improving trust and transparency for machine learning models in complex domains.
[ "cs.LG", "cs.AI", "q-bio.QM" ]
false
2402.11736
2024-02-18T23:39:00Z
Monte Carlo with kernel-based Gibbs measures: Guarantees for probabilistic herding
[ "Martin Rouault", "Rémi Bardenet", "Mylène Maïda" ]
Kernel herding belongs to a family of deterministic quadratures that seek to minimize the worst-case integration error over a reproducing kernel Hilbert space (RKHS). In spite of strong experimental support, it has revealed difficult to prove that this worst-case error decreases at a faster rate than the standard square root of the number of quadrature nodes, at least in the usual case where the RKHS is infinite-dimensional. In this theoretical paper, we study a joint probability distribution over quadrature nodes, whose support tends to minimize the same worst-case error as kernel herding. We prove that it does outperform i.i.d. Monte Carlo, in the sense of coming with a tighter concentration inequality on the worst-case integration error. While not improving the rate yet, this demonstrates that the mathematical tools of the study of Gibbs measures can help understand to what extent kernel herding and its variants improve on computationally cheaper methods. Moreover, we provide early experimental evidence that a faster rate of convergence, though not worst-case, is likely.
[ "cs.LG", "math.PR", "stat.ML" ]
false
2402.11739
2024-02-18T23:49:18Z
A Transition System Abstraction Framework for Neural Network Dynamical System Models
[ "Yejiang Yang", "Zihao Mo", "Hoang-Dung Tran", "Weiming Xiang" ]
This paper proposes a transition system abstraction framework for neural network dynamical system models to enhance the model interpretability, with applications to complex dynamical systems such as human behavior learning and verification. To begin with, the localized working zone will be segmented into multiple localized partitions under the data-driven Maximum Entropy (ME) partitioning method. Then, the transition matrix will be obtained based on the set-valued reachability analysis of neural networks. Finally, applications to human handwriting dynamics learning and verification are given to validate our proposed abstraction framework, which demonstrates the advantages of enhancing the interpretability of the black-box model, i.e., our proposed framework is able to abstract a data-driven neural network model into a transition system, making the neural network model interpretable through verifying specifications described in Computational Tree Logic (CTL) languages.
[ "eess.SY", "cs.LG", "cs.SY" ]
false
2402.11826
2024-02-19T04:39:16Z
Unveiling the Depths: A Multi-Modal Fusion Framework for Challenging Scenarios
[ "Jialei Xu", "Xianming Liu", "Junjun Jiang", "Kui Jiang", "Rui Li", "Kai Cheng", "Xiangyang Ji" ]
Monocular depth estimation from RGB images plays a pivotal role in 3D vision. However, its accuracy can deteriorate in challenging environments such as nighttime or adverse weather conditions. While long-wave infrared cameras offer stable imaging in such challenging conditions, they are inherently low-resolution, lacking rich texture and semantics as delivered by the RGB image. Current methods focus solely on a single modality due to the difficulties to identify and integrate faithful depth cues from both sources. To address these issues, this paper presents a novel approach that identifies and integrates dominant cross-modality depth features with a learning-based framework. Concretely, we independently compute the coarse depth maps with separate networks by fully utilizing the individual depth cues from each modality. As the advantageous depth spreads across both modalities, we propose a novel confidence loss steering a confidence predictor network to yield a confidence map specifying latent potential depth areas. With the resulting confidence map, we propose a multi-modal fusion network that fuses the final depth in an end-to-end manner. Harnessing the proposed pipeline, our method demonstrates the ability of robust depth estimation in a variety of difficult scenarios. Experimental results on the challenging MS$^2$ and ViViD++ datasets demonstrate the effectiveness and robustness of our method.
[ "cs.CV" ]
false
2402.11831
2024-02-19T04:45:15Z
Rock Classification Based on Residual Networks
[ "Sining Zhoubian", "Yuyang Wang", "Zhihuan Jiang" ]
Rock Classification is an essential geological problem since it provides important formation information. However, exploration on this problem using convolutional neural networks is not sufficient. To tackle this problem, we propose two approaches using residual neural networks. We first adopt data augmentation methods to enlarge our dataset. By modifying kernel sizes, normalization methods and composition based on ResNet34, we achieve an accuracy of 70.1% on the test dataset, with an increase of 3.5% compared to regular Resnet34. Furthermore, using a similar backbone like BoTNet that incorporates multihead self attention, we additionally use internal residual connections in our model. This boosts the model's performance, achieving an accuracy of 73.7% on the test dataset. We also explore how the number of bottleneck transformer blocks may influence model performance. We discover that models with more than one bottleneck transformer block may not further improve performance. Finally, we believe that our approach can inspire future work related to this problem and our model design can facilitate the development of new residual model architectures.
[ "cs.CV" ]
false
2402.11840
2024-02-19T05:06:52Z
An Endoscopic Chisel: Intraoperative Imaging Carves 3D Anatomical Models
[ "Jan Emily Mangulabnan", "Roger D. Soberanis-Mukul", "Timo Teufel", "Manish Sahu", "Jose L. Porras", "S. Swaroop Vedula", "Masaru Ishii", "Gregory Hager", "Russell H. Taylor", "Mathias Unberath" ]
Purpose: Preoperative imaging plays a pivotal role in sinus surgery where CTs offer patient-specific insights of complex anatomy, enabling real-time intraoperative navigation to complement endoscopy imaging. However, surgery elicits anatomical changes not represented in the preoperative model, generating an inaccurate basis for navigation during surgery progression. Methods: We propose a first vision-based approach to update the preoperative 3D anatomical model leveraging intraoperative endoscopic video for navigated sinus surgery where relative camera poses are known. We rely on comparisons of intraoperative monocular depth estimates and preoperative depth renders to identify modified regions. The new depths are integrated in these regions through volumetric fusion in a truncated signed distance function representation to generate an intraoperative 3D model that reflects tissue manipulation. Results: We quantitatively evaluate our approach by sequentially updating models for a five-step surgical progression in an ex vivo specimen. We compute the error between correspondences from the updated model and ground-truth intraoperative CT in the region of anatomical modification. The resulting models show a decrease in error during surgical progression as opposed to increasing when no update is employed. Conclusion: Our findings suggest that preoperative 3D anatomical models can be updated using intraoperative endoscopy video in navigated sinus surgery. Future work will investigate improvements to monocular depth estimation as well as removing the need for external navigation systems. The resulting ability to continuously update the patient model may provide surgeons with a more precise understanding of the current anatomical state and paves the way toward a digital twin paradigm for sinus surgery.
[ "cs.CV" ]
false
2402.11843
2024-02-19T05:13:39Z
WildFake: A Large-scale Challenging Dataset for AI-Generated Images Detection
[ "Yan Hong", "Jianfu Zhang" ]
The extraordinary ability of generative models enabled the generation of images with such high quality that human beings cannot distinguish Artificial Intelligence (AI) generated images from real-life photographs. The development of generation techniques opened up new opportunities but concurrently introduced potential risks to privacy, authenticity, and security. Therefore, the task of detecting AI-generated imagery is of paramount importance to prevent illegal activities. To assess the generalizability and robustness of AI-generated image detection, we present a large-scale dataset, referred to as WildFake, comprising state-of-the-art generators, diverse object categories, and real-world applications. WildFake dataset has the following advantages: 1) Rich Content with Wild collection: WildFake collects fake images from the open-source community, enriching its diversity with a broad range of image classes and image styles. 2) Hierarchical structure: WildFake contains fake images synthesized by different types of generators from GANs, diffusion models, to other generative models. These key strengths enhance the generalization and robustness of detectors trained on WildFake, thereby demonstrating WildFake's considerable relevance and effectiveness for AI-generated detectors in real-world scenarios. Moreover, our extensive evaluation experiments are tailored to yield profound insights into the capabilities of different levels of generative models, a distinctive advantage afforded by WildFake's unique hierarchical structure.
[ "cs.CV" ]
false
2402.11849
2024-02-19T05:34:08Z
ComFusion: Personalized Subject Generation in Multiple Specific Scenes From Single Image
[ "Yan Hong", "Jianfu Zhang" ]
Recent advancements in personalizing text-to-image (T2I) diffusion models have shown the capability to generate images based on personalized visual concepts using a limited number of user-provided examples. However, these models often struggle with maintaining high visual fidelity, particularly in manipulating scenes as defined by textual inputs. Addressing this, we introduce ComFusion, a novel approach that leverages pretrained models generating composition of a few user-provided subject images and predefined-text scenes, effectively fusing visual-subject instances with textual-specific scenes, resulting in the generation of high-fidelity instances within diverse scenes. ComFusion integrates a class-scene prior preservation regularization, which leverages composites the subject class and scene-specific knowledge from pretrained models to enhance generation fidelity. Additionally, ComFusion uses coarse generated images, ensuring they align effectively with both the instance image and scene texts. Consequently, ComFusion maintains a delicate balance between capturing the essence of the subject and maintaining scene fidelity.Extensive evaluations of ComFusion against various baselines in T2I personalization have demonstrated its qualitative and quantitative superiority.
[ "cs.CV" ]
false
2402.11882
2024-02-19T06:43:25Z
NOTE: Notable generation Of patient Text summaries through Efficient approach based on direct preference optimization
[ "Imjin Ahn", "Hansle Gwon", "Young-Hak Kim", "Tae Joon Jun", "Sanghyun Park" ]
The discharge summary is a one of critical documents in the patient journey, encompassing all events experienced during hospitalization, including multiple visits, medications, tests, surgery/procedures, and admissions/discharge. Providing a summary of the patient's progress is crucial, as it significantly influences future care and planning. Consequently, clinicians face the laborious and resource-intensive task of manually collecting, organizing, and combining all the necessary data for a discharge summary. Therefore, we propose "NOTE", which stands for "Notable generation Of patient Text summaries through an Efficient approach based on direct preference optimization". NOTE is based on Medical Information Mart for Intensive Care- III dataset and summarizes a single hospitalization of a patient. Patient events are sequentially combined and used to generate a discharge summary for each hospitalization. In the present circumstances, large language models' application programming interfaces (LLMs' APIs) are widely available, but importing and exporting medical data presents significant challenges due to privacy protection policies in healthcare institutions. Moreover, to ensure optimal performance, it is essential to implement a lightweight model for internal server or program within the hospital. Therefore, we utilized DPO and parameter efficient fine tuning (PEFT) techniques to apply a fine-tuning method that guarantees superior performance. To demonstrate the practical application of the developed NOTE, we provide a webpage-based demonstration software. In the future, we will aim to deploy the software available for actual use by clinicians in hospital. NOTE can be utilized to generate various summaries not only discharge summaries but also throughout a patient's journey, thereby alleviating the labor-intensive workload of clinicians and aiming for increased efficiency.
[ "cs.CV", "J.3" ]
false
2402.11909
2024-02-19T07:48:29Z
One2Avatar: Generative Implicit Head Avatar For Few-shot User Adaptation
[ "Zhixuan Yu", "Ziqian Bai", "Abhimitra Meka", "Feitong Tan", "Qiangeng Xu", "Rohit Pandey", "Sean Fanello", "Hyun Soo Park", "Yinda Zhang" ]
Traditional methods for constructing high-quality, personalized head avatars from monocular videos demand extensive face captures and training time, posing a significant challenge for scalability. This paper introduces a novel approach to create high quality head avatar utilizing only a single or a few images per user. We learn a generative model for 3D animatable photo-realistic head avatar from a multi-view dataset of expressions from 2407 subjects, and leverage it as a prior for creating personalized avatar from few-shot images. Different from previous 3D-aware face generative models, our prior is built with a 3DMM-anchored neural radiance field backbone, which we show to be more effective for avatar creation through auto-decoding based on few-shot inputs. We also handle unstable 3DMM fitting by jointly optimizing the 3DMM fitting and camera calibration that leads to better few-shot adaptation. Our method demonstrates compelling results and outperforms existing state-of-the-art methods for few-shot avatar adaptation, paving the way for more efficient and personalized avatar creation.
[ "cs.CV" ]
false
2402.11913
2024-02-19T07:59:16Z
PhySU-Net: Long Temporal Context Transformer for rPPG with Self-Supervised Pre-training
[ "Marko Savic", "Guoying Zhao" ]
Remote photoplethysmography (rPPG) is a promising technology that consists of contactless measuring of cardiac activity from facial videos. Most recent approaches utilize convolutional networks with limited temporal modeling capability or ignore long temporal context. Supervised rPPG methods are also severely limited by scarce data availability. In this work, we propose PhySU-Net, the first long spatial-temporal map rPPG transformer network and a self-supervised pre-training strategy that exploits unlabeled data to improve our model. Our strategy leverages traditional methods and image masking to provide pseudo-labels for self-supervised pre-training. Our model is tested on two public datasets (OBF and VIPL-HR) and shows superior performance in supervised training. Furthermore, we demonstrate that our self-supervised pre-training strategy further improves our model's performance by leveraging representations learned from unlabeled data.
[ "cs.CV" ]
false
2402.11928
2024-02-19T08:17:13Z
Separating common from salient patterns with Contrastive Representation Learning
[ "Robin Louiset", "Edouard Duchesnay", "Antoine Grigis", "Pietro Gori" ]
Contrastive Analysis is a sub-field of Representation Learning that aims at separating common factors of variation between two datasets, a background (i.e., healthy subjects) and a target (i.e., diseased subjects), from the salient factors of variation, only present in the target dataset. Despite their relevance, current models based on Variational Auto-Encoders have shown poor performance in learning semantically-expressive representations. On the other hand, Contrastive Representation Learning has shown tremendous performance leaps in various applications (classification, clustering, etc.). In this work, we propose to leverage the ability of Contrastive Learning to learn semantically expressive representations well adapted for Contrastive Analysis. We reformulate it under the lens of the InfoMax Principle and identify two Mutual Information terms to maximize and one to minimize. We decompose the first two terms into an Alignment and a Uniformity term, as commonly done in Contrastive Learning. Then, we motivate a novel Mutual Information minimization strategy to prevent information leakage between common and salient distributions. We validate our method, called SepCLR, on three visual datasets and three medical datasets, specifically conceived to assess the pattern separation capability in Contrastive Analysis. Code available at https://github.com/neurospin-projects/2024_rlouiset_sep_clr.
[ "cs.CV" ]
false
2402.11957
2024-02-19T08:59:58Z
Event-Based Motion Magnification
[ "Yutian Chen", "Shi Guo", "Fangzheng Yu", "Feng Zhang", "Jinwei Gu", "Tianfan Xue" ]
Detecting and magnifying imperceptible high-frequency motions in real-world scenarios has substantial implications for industrial and medical applications. These motions are characterized by small amplitudes and high frequencies. Traditional motion magnification methods rely on costly high-speed cameras or active light sources, which limit the scope of their applications. In this work, we propose a dual-camera system consisting of an event camera and a conventional RGB camera for video motion magnification, containing temporally-dense information from the event stream and spatially-dense data from the RGB images. This innovative combination enables a broad and cost-effective amplification of high-frequency motions. By revisiting the physical camera model, we observe that estimating motion direction and magnitude necessitates the integration of event streams with additional image features. On this basis, we propose a novel deep network for event-based video motion magnification that addresses two primary challenges: firstly, the high frequency of motion induces a large number of interpolated frames (up to 80), which our network mitigates with a Second-order Recurrent Propagation module for better handling of long-term frame interpolations; and secondly, magnifying subtle motions is sensitive to noise, which we address by utilizing a temporal filter to amplify motion at specific frequencies and reduce noise impact. We demonstrate the effectiveness and accuracy of our dual-camera system and network through extensive experiments in magnifying small-amplitude, high-frequency motions, offering a cost-effective and flexible solution for motion detection and magnification.
[ "cs.CV" ]
false
2402.12004
2024-02-19T09:52:41Z
Direct Consistency Optimization for Compositional Text-to-Image Personalization
[ "Kyungmin Lee", "Sangkyung Kwak", "Kihyuk Sohn", "Jinwoo Shin" ]
Text-to-image (T2I) diffusion models, when fine-tuned on a few personal images, are able to generate visuals with a high degree of consistency. However, they still lack in synthesizing images of different scenarios or styles that are possible in the original pretrained models. To address this, we propose to fine-tune the T2I model by maximizing consistency to reference images, while penalizing the deviation from the pretrained model. We devise a novel training objective for T2I diffusion models that minimally fine-tunes the pretrained model to achieve consistency. Our method, dubbed \emph{Direct Consistency Optimization}, is as simple as regular diffusion loss, while significantly enhancing the compositionality of personalized T2I models. Also, our approach induces a new sampling method that controls the tradeoff between image fidelity and prompt fidelity. Lastly, we emphasize the necessity of using a comprehensive caption for reference images to further enhance the image-text alignment. We show the efficacy of the proposed method on the T2I personalization for subject, style, or both. In particular, our method results in a superior Pareto frontier to the baselines. Generated examples and codes are in our project page( https://dco-t2i.github.io/).
[ "cs.CV" ]
false
2402.12043
2024-02-19T10:56:58Z
A Lightweight Parallel Framework for Blind Image Quality Assessment
[ "Qunyue Huang", "Bin Fang" ]
Existing blind image quality assessment (BIQA) methods focus on designing complicated networks based on convolutional neural networks (CNNs) or transformer. In addition, some BIQA methods enhance the performance of the model in a two-stage training manner. Despite the significant advancements, these methods remarkably raise the parameter count of the model, thus requiring more training time and computational resources. To tackle the above issues, we propose a lightweight parallel framework (LPF) for BIQA. First, we extract the visual features using a pre-trained feature extraction network. Furthermore, we construct a simple yet effective feature embedding network (FEN) to transform the visual features, aiming to generate the latent representations that contain salient distortion information. To improve the robustness of the latent representations, we present two novel self-supervised subtasks, including a sample-level category prediction task and a batch-level quality comparison task. The sample-level category prediction task is presented to help the model with coarse-grained distortion perception. The batch-level quality comparison task is formulated to enhance the training data and thus improve the robustness of the latent representations. Finally, the latent representations are fed into a distortion-aware quality regression network (DaQRN), which simulates the human vision system (HVS) and thus generates accurate quality scores. Experimental results on multiple benchmark datasets demonstrate that the proposed method achieves superior performance over state-of-the-art approaches. Moreover, extensive analyses prove that the proposed method has lower computational complexity and faster convergence speed.
[ "cs.CV" ]
false
2402.12099
2024-02-19T12:28:45Z
Human Video Translation via Query Warping
[ "Haiming Zhu", "Yangyang Xu", "Shengfeng He" ]
In this paper, we present QueryWarp, a novel framework for temporally coherent human motion video translation. Existing diffusion-based video editing approaches that rely solely on key and value tokens to ensure temporal consistency, which scarifies the preservation of local and structural regions. In contrast, we aim to consider complementary query priors by constructing the temporal correlations among query tokens from different frames. Initially, we extract appearance flows from source poses to capture continuous human foreground motion. Subsequently, during the denoising process of the diffusion model, we employ appearance flows to warp the previous frame's query token, aligning it with the current frame's query. This query warping imposes explicit constraints on the outputs of self-attention layers, effectively guaranteeing temporally coherent translation. We perform experiments on various human motion video translation tasks, and the results demonstrate that our QueryWarp framework surpasses state-of-the-art methods both qualitatively and quantitatively.
[ "cs.CV" ]
false
2402.12128
2024-02-19T13:24:46Z
3D Vascular Segmentation Supervised by 2D Annotation of Maximum Intensity Projection
[ "Zhanqiang Guo", "Zimeng Tan", "Jianjiang Feng", "Jie Zhou" ]
Vascular structure segmentation plays a crucial role in medical analysis and clinical applications. The practical adoption of fully supervised segmentation models is impeded by the intricacy and time-consuming nature of annotating vessels in the 3D space. This has spurred the exploration of weakly-supervised approaches that reduce reliance on expensive segmentation annotations. Despite this, existing weakly supervised methods employed in organ segmentation, which encompass points, bounding boxes, or graffiti, have exhibited suboptimal performance when handling sparse vascular structure. To alleviate this issue, we employ maximum intensity projection (MIP) to decrease the dimensionality of 3D volume to 2D image for efficient annotation, and the 2D labels are utilized to provide guidance and oversight for training 3D vessel segmentation model. Initially, we generate pseudo-labels for 3D blood vessels using the annotations of 2D projections. Subsequently, taking into account the acquisition method of the 2D labels, we introduce a weakly-supervised network that fuses 2D-3D deep features via MIP to further improve segmentation performance. Furthermore, we integrate confidence learning and uncertainty estimation to refine the generated pseudo-labels, followed by fine-tuning the segmentation network. Our method is validated on five datasets (including cerebral vessel, aorta and coronary artery), demonstrating highly competitive performance in segmenting vessels and the potential to significantly reduce the time and effort required for vessel annotation. Our code is available at: https://github.com/gzq17/Weakly-Supervised-by-MIP.
[ "cs.CV" ]
false
2402.12138
2024-02-19T13:38:15Z
Perceiving Longer Sequences With Bi-Directional Cross-Attention Transformers
[ "Markus Hiller", "Krista A. Ehinger", "Tom Drummond" ]
We present a novel bi-directional Transformer architecture (BiXT) which scales linearly with input size in terms of computational cost and memory consumption, but does not suffer the drop in performance or limitation to only one input modality seen with other efficient Transformer-based approaches. BiXT is inspired by the Perceiver architectures but replaces iterative attention with an efficient bi-directional cross-attention module in which input tokens and latent variables attend to each other simultaneously, leveraging a naturally emerging attention-symmetry between the two. This approach unlocks a key bottleneck experienced by Perceiver-like architectures and enables the processing and interpretation of both semantics (`what') and location (`where') to develop alongside each other over multiple layers -- allowing its direct application to dense and instance-based tasks alike. By combining efficiency with the generality and performance of a full Transformer architecture, BiXT can process longer sequences like point clouds or images at higher feature resolutions and achieves competitive performance across a range of tasks like point cloud part segmentation, semantic image segmentation and image classification.
[ "cs.CV" ]
false
2402.12184
2024-02-19T14:47:23Z
Colorizing Monochromatic Radiance Fields
[ "Yean Cheng", "Renjie Wan", "Shuchen Weng", "Chengxuan Zhu", "Yakun Chang", "Boxin Shi" ]
Though Neural Radiance Fields (NeRF) can produce colorful 3D representations of the world by using a set of 2D images, such ability becomes non-existent when only monochromatic images are provided. Since color is necessary in representing the world, reproducing color from monochromatic radiance fields becomes crucial. To achieve this goal, instead of manipulating the monochromatic radiance fields directly, we consider it as a representation-prediction task in the Lab color space. By first constructing the luminance and density representation using monochromatic images, our prediction stage can recreate color representation on the basis of an image colorization module. We then reproduce a colorful implicit model through the representation of luminance, density, and color. Extensive experiments have been conducted to validate the effectiveness of our approaches. Our project page: https://liquidammonia.github.io/color-nerf.
[ "cs.CV" ]
false
2402.12185
2024-02-19T14:48:23Z
ChartX & ChartVLM: A Versatile Benchmark and Foundation Model for Complicated Chart Reasoning
[ "Renqiu Xia", "Bo Zhang", "Hancheng Ye", "Xiangchao Yan", "Qi Liu", "Hongbin Zhou", "Zijun Chen", "Min Dou", "Botian Shi", "Junchi Yan", "Yu Qiao" ]
Recently, many versatile Multi-modal Large Language Models (MLLMs) have emerged continuously. However, their capacity to query information depicted in visual charts and engage in reasoning based on the queried contents remains under-explored. In this paper, to comprehensively and rigorously benchmark the ability of the off-the-shelf MLLMs in the chart domain, we construct ChartX, a multi-modal evaluation set covering 18 chart types, 7 chart tasks, 22 disciplinary topics, and high-quality chart data. Besides, we develop ChartVLM to offer a new perspective on handling multi-modal tasks that strongly depend on interpretable patterns, such as reasoning tasks in the field of charts or geometric images. We evaluate the chart-related ability of mainstream MLLMs and our ChartVLM on the proposed ChartX evaluation set. Extensive experiments demonstrate that ChartVLM surpasses both versatile and chart-related large models, achieving results comparable to GPT-4V. We believe that our study can pave the way for further exploration in creating a more comprehensive chart evaluation set and developing more interpretable multi-modal models. Both ChartX and ChartVLM are available at: https://github.com/UniModal4Reasoning/ChartVLM
[ "cs.CV" ]
false
2402.12238
2024-02-19T15:48:55Z
Mixed Gaussian Flow for Diverse Trajectory Prediction
[ "Jiahe Chen", "Jinkun Cao", "Dahua Lin", "Kris Kitani", "Jiangmiao Pang" ]
Existing trajectory prediction studies intensively leverage generative models. Normalizing flow is one of the genres with the advantage of being invertible to derive the probability density of predicted trajectories. However, mapping from a standard Gaussian by a flow-based model hurts the capacity to capture complicated patterns of trajectories, ignoring the under-represented motion intentions in the training data. To solve the problem, we propose a flow-based model to transform a mixed Gaussian prior into the future trajectory manifold. The model shows a better capacity for generating diverse trajectory patterns. Also, by associating each sub-Gaussian with a certain subspace of trajectories, we can generate future trajectories with controllable motion intentions. In such a fashion, the flow-based model is not encouraged to simply seek the most likelihood of the intended manifold anymore but a family of controlled manifolds with explicit interpretability. Our proposed method is demonstrated to show state-of-the-art performance in the quantitative evaluation of sampling well-aligned trajectories in top-M generated candidates. We also demonstrate that it can generate diverse, controllable, and out-of-distribution trajectories. Code is available at https://github.com/mulplue/MGF.
[ "cs.CV" ]
false
2402.12376
2024-02-19T18:59:07Z
FiT: Flexible Vision Transformer for Diffusion Model
[ "Zeyu Lu", "Zidong Wang", "Di Huang", "Chengyue Wu", "Xihui Liu", "Wanli Ouyang", "Lei Bai" ]
Nature is infinitely resolution-free. In the context of this reality, existing diffusion models, such as Diffusion Transformers, often face challenges when processing image resolutions outside of their trained domain. To overcome this limitation, we present the Flexible Vision Transformer (FiT), a transformer architecture specifically designed for generating images with unrestricted resolutions and aspect ratios. Unlike traditional methods that perceive images as static-resolution grids, FiT conceptualizes images as sequences of dynamically-sized tokens. This perspective enables a flexible training strategy that effortlessly adapts to diverse aspect ratios during both training and inference phases, thus promoting resolution generalization and eliminating biases induced by image cropping. Enhanced by a meticulously adjusted network structure and the integration of training-free extrapolation techniques, FiT exhibits remarkable flexibility in resolution extrapolation generation. Comprehensive experiments demonstrate the exceptional performance of FiT across a broad range of resolutions, showcasing its effectiveness both within and beyond its training resolution distribution. Repository available at https://github.com/whlzy/FiT.
[ "cs.CV" ]
true
2402.12377
2024-02-19T18:59:41Z
Binary Opacity Grids: Capturing Fine Geometric Detail for Mesh-Based View Synthesis
[ "Christian Reiser", "Stephan Garbin", "Pratul P. Srinivasan", "Dor Verbin", "Richard Szeliski", "Ben Mildenhall", "Jonathan T. Barron", "Peter Hedman", "Andreas Geiger" ]
While surface-based view synthesis algorithms are appealing due to their low computational requirements, they often struggle to reproduce thin structures. In contrast, more expensive methods that model the scene's geometry as a volumetric density field (e.g. NeRF) excel at reconstructing fine geometric detail. However, density fields often represent geometry in a "fuzzy" manner, which hinders exact localization of the surface. In this work, we modify density fields to encourage them to converge towards surfaces, without compromising their ability to reconstruct thin structures. First, we employ a discrete opacity grid representation instead of a continuous density field, which allows opacity values to discontinuously transition from zero to one at the surface. Second, we anti-alias by casting multiple rays per pixel, which allows occlusion boundaries and subpixel structures to be modelled without using semi-transparent voxels. Third, we minimize the binary entropy of the opacity values, which facilitates the extraction of surface geometry by encouraging opacity values to binarize towards the end of training. Lastly, we develop a fusion-based meshing strategy followed by mesh simplification and appearance model fitting. The compact meshes produced by our model can be rendered in real-time on mobile devices and achieve significantly higher view synthesis quality compared to existing mesh-based approaches.
[ "cs.CV" ]
true
2402.12519
2024-02-19T20:29:49Z
System Identification of Neural Systems: Going Beyond Images to Modelling Dynamics
[ "Mai Gamal", "Mohamed Rashad", "Eman Ehab", "Seif Eldawlatly", "Mennatullah Siam" ]
Vast literature has compared the recordings of biological neurons in the brain to deep neural networks. The ultimate goal is to interpret deep networks or to better understand and encode biological neural systems. Recently, there has been a debate on whether system identification is possible and how much it can tell us about the brain computation. System identification recognizes whether one model is more valid to represent the brain computation over another. Nonetheless, previous work did not consider the time aspect and how video and dynamics (e.g., motion) modelling in deep networks relate to these biological neural systems within a large-scale comparison. Towards this end, we propose a system identification study focused on comparing single image vs. video understanding models with respect to the visual cortex recordings. Our study encompasses two sets of experiments; a real environment setup and a simulated environment setup. The study also encompasses more than 30 models and, unlike prior works, we focus on convolutional vs. transformer-based, single vs. two-stream, and fully vs. self-supervised video understanding models. The goal is to capture a greater variety of architectures that model dynamics. As such, this signifies the first large-scale study of video understanding models from a neuroscience perspective. Our results in the simulated experiments, show that system identification can be attained to a certain level in differentiating image vs. video understanding models. Moreover, we provide key insights on how video understanding models predict visual cortex responses; showing video understanding better than image understanding models, convolutional models are better in the early-mid regions than transformer based except for multiscale transformers that are still good in predicting these regions, and that two-stream models are better than single stream.
[ "cs.CV" ]
false
2402.12522
2024-02-19T20:33:46Z
An evaluation of Deep Learning based stereo dense matching dataset shift from aerial images and a large scale stereo dataset
[ "Teng Wu", "Bruno Vallet", "Marc Pierrot-Deseilligny", "Ewelina Rupnik" ]
Dense matching is crucial for 3D scene reconstruction since it enables the recovery of scene 3D geometry from image acquisition. Deep Learning (DL)-based methods have shown effectiveness in the special case of epipolar stereo disparity estimation in the computer vision community. DL-based methods depend heavily on the quality and quantity of training datasets. However, generating ground-truth disparity maps for real scenes remains a challenging task in the photogrammetry community. To address this challenge, we propose a method for generating ground-truth disparity maps directly from Light Detection and Ranging (LiDAR) and images to produce a large and diverse dataset for six aerial datasets across four different areas and two areas with different resolution images. We also introduce a LiDAR-to-image co-registration refinement to the framework that takes special precautions regarding occlusions and refrains from disparity interpolation to avoid precision loss. Evaluating 11 dense matching methods across datasets with diverse scene types, image resolutions, and geometric configurations, which are deeply investigated in dataset shift, GANet performs best with identical training and testing data, and PSMNet shows robustness across different datasets, and we proposed the best strategy for training with a limit dataset. We will also provide the dataset and training models; more information can be found at https://github.com/whuwuteng/Aerial_Stereo_Dataset.
[ "cs.CV" ]
false
2402.12536
2024-02-19T20:50:55Z
Designing High-Performing Networks for Multi-Scale Computer Vision
[ "Cédric Picron" ]
Since the emergence of deep learning, the computer vision field has flourished with models improving at a rapid pace on more and more complex tasks. We distinguish three main ways to improve a computer vision model: (1) improving the data aspect by for example training on a large, more diverse dataset, (2) improving the training aspect by for example designing a better optimizer, and (3) improving the network architecture (or network for short). In this thesis, we chose to improve the latter, i.e. improving the network designs of computer vision models. More specifically, we investigate new network designs for multi-scale computer vision tasks, which are tasks requiring to make predictions about concepts at different scales. The goal of these new network designs is to outperform existing baseline designs from the literature. Specific care is taken to make sure the comparisons are fair, by guaranteeing that the different network designs were trained and evaluated with the same settings. Code is publicly available at https://github.com/CedricPicron/DetSeg.
[ "cs.CV" ]
false
2402.11760
2024-02-19T01:17:52Z
Reinforcement Learning as a Parsimonious Alternative to Prediction Cascades: A Case Study on Image Segmentation
[ "Bharat Srikishan", "Anika Tabassum", "Srikanth Allu", "Ramakrishnan Kannan", "Nikhil Muralidhar" ]
Deep learning architectures have achieved state-of-the-art (SOTA) performance on computer vision tasks such as object detection and image segmentation. This may be attributed to the use of over-parameterized, monolithic deep learning architectures executed on large datasets. Although such architectures lead to increased accuracy, this is usually accompanied by a large increase in computation and memory requirements during inference. While this is a non-issue in traditional machine learning pipelines, the recent confluence of machine learning and fields like the Internet of Things has rendered such large architectures infeasible for execution in low-resource settings. In such settings, previous efforts have proposed decision cascades where inputs are passed through models of increasing complexity until desired performance is achieved. However, we argue that cascaded prediction leads to increased computational cost due to wasteful intermediate computations. To address this, we propose PaSeR (Parsimonious Segmentation with Reinforcement Learning) a non-cascading, cost-aware learning pipeline as an alternative to cascaded architectures. Through experimental evaluation on real-world and standard datasets, we demonstrate that PaSeR achieves better accuracy while minimizing computational cost relative to cascaded models. Further, we introduce a new metric IoU/GigaFlop to evaluate the balance between cost and performance. On the real-world task of battery material phase segmentation, PaSeR yields a minimum performance improvement of 174% on the IoU/GigaFlop metric with respect to baselines. We also demonstrate PaSeR's adaptability to complementary models trained on a noisy MNIST dataset, where it achieved a minimum performance improvement on IoU/GigaFlop of 13.4% over SOTA models. Code and data are available at https://github.com/scailab/paser .
[ "cs.LG", "cs.CV" ]
false
2402.11788
2024-02-19T02:31:36Z
MM-SurvNet: Deep Learning-Based Survival Risk Stratification in Breast Cancer Through Multimodal Data Fusion
[ "Raktim Kumar Mondol", "Ewan K. A. Millar", "Arcot Sowmya", "Erik Meijering" ]
Survival risk stratification is an important step in clinical decision making for breast cancer management. We propose a novel deep learning approach for this purpose by integrating histopathological imaging, genetic and clinical data. It employs vision transformers, specifically the MaxViT model, for image feature extraction, and self-attention to capture intricate image relationships at the patient level. A dual cross-attention mechanism fuses these features with genetic data, while clinical data is incorporated at the final layer to enhance predictive accuracy. Experiments on the public TCGA-BRCA dataset show that our model, trained using the negative log likelihood loss function, can achieve superior performance with a mean C-index of 0.64, surpassing existing methods. This advancement facilitates tailored treatment strategies, potentially leading to improved patient outcomes.
[ "cs.CV", "cs.AI" ]
false
2402.11812
2024-02-19T03:59:32Z
Interpretable Embedding for Ad-hoc Video Search
[ "Jiaxin Wu", "Chong-Wah Ngo" ]
Answering query with semantic concepts has long been the mainstream approach for video search. Until recently, its performance is surpassed by concept-free approach, which embeds queries in a joint space as videos. Nevertheless, the embedded features as well as search results are not interpretable, hindering subsequent steps in video browsing and query reformulation. This paper integrates feature embedding and concept interpretation into a neural network for unified dual-task learning. In this way, an embedding is associated with a list of semantic concepts as an interpretation of video content. This paper empirically demonstrates that, by using either the embedding features or concepts, considerable search improvement is attainable on TRECVid benchmarked datasets. Concepts are not only effective in pruning false positive videos, but also highly complementary to concept-free search, leading to large margin of improvement compared to state-of-the-art approaches.
[ "cs.CV", "cs.MM" ]
false
2402.11836
2024-02-19T04:58:40Z
DIO: Dataset of 3D Mesh Models of Indoor Objects for Robotics and Computer Vision Applications
[ "Nillan Nimal", "Wenbin Li", "Ronald Clark", "Sajad Saeedi" ]
The creation of accurate virtual models of real-world objects is imperative to robotic simulations and applications such as computer vision, artificial intelligence, and machine learning. This paper documents the different methods employed for generating a database of mesh models of real-world objects. These methods address the tedious and time-intensive process of manually generating the models using CAD software. Essentially, DSLR/phone cameras were employed to acquire images of target objects. These images were processed using a photogrammetry software known as Meshroom to generate a dense surface reconstruction of the scene. The result produced by Meshroom was edited and simplified using MeshLab, a mesh-editing software to produce the final model. Based on the obtained models, this process was effective in modelling the geometry and texture of real-world objects with high fidelity. An active 3D scanner was also utilized to accelerate the process for large objects. All generated models and captured images are made available on the website of the project.
[ "cs.RO", "cs.CV" ]
false
2402.11845
2024-02-19T05:15:13Z
Modularized Networks for Few-shot Hateful Meme Detection
[ "Rui Cao", "Roy Ka-Wei Lee", "Jing Jiang" ]
In this paper, we address the challenge of detecting hateful memes in the low-resource setting where only a few labeled examples are available. Our approach leverages the compositionality of Low-rank adaptation (LoRA), a widely used parameter-efficient tuning technique. We commence by fine-tuning large language models (LLMs) with LoRA on selected tasks pertinent to hateful meme detection, thereby generating a suite of LoRA modules. These modules are capable of essential reasoning skills for hateful meme detection. We then use the few available annotated samples to train a module composer, which assigns weights to the LoRA modules based on their relevance. The model's learnable parameters are directly proportional to the number of LoRA modules. This modularized network, underpinned by LLMs and augmented with LoRA modules, exhibits enhanced generalization in the context of hateful meme detection. Our evaluation spans three datasets designed for hateful meme detection in a few-shot learning context. The proposed method demonstrates superior performance to traditional in-context learning, which is also more computationally intensive during inference.We then use the few available annotated samples to train a module composer, which assigns weights to the LoRA modules based on their relevance. The model's learnable parameters are directly proportional to the number of LoRA modules. This modularized network, underpinned by LLMs and augmented with LoRA modules, exhibits enhanced generalization in the context of hateful meme detection. Our evaluation spans three datasets designed for hateful meme detection in a few-shot learning context. The proposed method demonstrates superior performance to traditional in-context learning, which is also more computationally intensive during inference.
[ "cs.CL", "cs.CV" ]
false
2402.11908
2024-02-19T07:48:25Z
Semantic Textual Similarity Assessment in Chest X-ray Reports Using a Domain-Specific Cosine-Based Metric
[ "Sayeh Gholipour Picha", "Dawood Al Chanti", "Alice Caplier" ]
Medical language processing and deep learning techniques have emerged as critical tools for improving healthcare, particularly in the analysis of medical imaging and medical text data. These multimodal data fusion techniques help to improve the interpretation of medical imaging and lead to increased diagnostic accuracy, informed clinical decisions, and improved patient outcomes. The success of these models relies on the ability to extract and consolidate semantic information from clinical text. This paper addresses the need for more robust methods to evaluate the semantic content of medical reports. Conventional natural language processing approaches and metrics are initially designed for considering the semantic context in the natural language domain and machine translation, often failing to capture the complex semantic meanings inherent in medical content. In this study, we introduce a novel approach designed specifically for assessing the semantic similarity between generated medical reports and the ground truth. Our approach is validated, demonstrating its efficiency in assessing domain-specific semantic similarity within medical contexts. By applying our metric to state-of-the-art Chest X-ray report generation models, we obtain results that not only align with conventional metrics but also provide more contextually meaningful scores in the considered medical domain.
[ "cs.CL", "cs.CV" ]
false
2402.11929
2024-02-19T08:17:21Z
DiLightNet: Fine-grained Lighting Control for Diffusion-based Image Generation
[ "Chong Zeng", "Yue Dong", "Pieter Peers", "Youkang Kong", "Hongzhi Wu", "Xin Tong" ]
This paper presents a novel method for exerting fine-grained lighting control during text-driven diffusion-based image generation. While existing diffusion models already have the ability to generate images under any lighting condition, without additional guidance these models tend to correlate image content and lighting. Moreover, text prompts lack the necessary expressional power to describe detailed lighting setups. To provide the content creator with fine-grained control over the lighting during image generation, we augment the text-prompt with detailed lighting information in the form of radiance hints, i.e., visualizations of the scene geometry with a homogeneous canonical material under the target lighting. However, the scene geometry needed to produce the radiance hints is unknown. Our key observation is that we only need to guide the diffusion process, hence exact radiance hints are not necessary; we only need to point the diffusion model in the right direction. Based on this observation, we introduce a three stage method for controlling the lighting during image generation. In the first stage, we leverage a standard pretrained diffusion model to generate a provisional image under uncontrolled lighting. Next, in the second stage, we resynthesize and refine the foreground object in the generated image by passing the target lighting to a refined diffusion model, named DiLightNet, using radiance hints computed on a coarse shape of the foreground object inferred from the provisional image. To retain the texture details, we multiply the radiance hints with a neural encoding of the provisional synthesized image before passing it to DiLightNet. Finally, in the third stage, we resynthesize the background to be consistent with the lighting on the foreground object. We demonstrate and validate our lighting controlled diffusion model on a variety of text prompts and lighting conditions.
[ "cs.CV", "cs.GR" ]
true
2402.11985
2024-02-19T09:30:05Z
Weakly Supervised Object Detection in Chest X-Rays with Differentiable ROI Proposal Networks and Soft ROI Pooling
[ "Philip Müller", "Felix Meissen", "Georgios Kaissis", "Daniel Rueckert" ]
Weakly supervised object detection (WSup-OD) increases the usefulness and interpretability of image classification algorithms without requiring additional supervision. The successes of multiple instance learning in this task for natural images, however, do not translate well to medical images due to the very different characteristics of their objects (i.e. pathologies). In this work, we propose Weakly Supervised ROI Proposal Networks (WSRPN), a new method for generating bounding box proposals on the fly using a specialized region of interest-attention (ROI-attention) module. WSRPN integrates well with classic backbone-head classification algorithms and is end-to-end trainable with only image-label supervision. We experimentally demonstrate that our new method outperforms existing methods in the challenging task of disease localization in chest X-ray images. Code: https://github.com/philip-mueller/wsrpn
[ "cs.CV", "cs.LG" ]
false