|
--- |
|
annotations_creators: [] |
|
language_creators: |
|
- crowdsourced |
|
- expert-generated |
|
language: |
|
- code |
|
license: |
|
- apache-2.0 |
|
multilinguality: |
|
- multilingual |
|
size_categories: |
|
- unknown |
|
source_datasets: [] |
|
task_categories: |
|
- text-generation |
|
task_ids: |
|
- language-modeling |
|
pretty_name: HumanEval-X |
|
--- |
|
|
|
# HumanEval-X |
|
|
|
## Dataset Description |
|
[HumanEval-X](https://github.com/THUDM/CodeGeeX) is a benchmark for evaluating the multilingual ability of code generative models. It consists of 820 high-quality human-crafted data samples (each with test cases) in Python, C++, Java, JavaScript, and Go, and can be used for various tasks, such as code generation and translation. |
|
|
|
## Languages |
|
|
|
The dataset contains coding problems in 5 programming languages: Python, C++, Java, JavaScript, and Go. |
|
|
|
## Dataset Structure |
|
To load the dataset you need to specify a subset among the 5 exiting languages `[python, cpp, go, java, js]`. By default `python` is loaded. |
|
|
|
```python |
|
from datasets import load_dataset |
|
load_dataset("THUDM/humaneval-x", "js") |
|
|
|
DatasetDict({ |
|
test: Dataset({ |
|
features: ['task_id', 'prompt', 'declaration', 'canonical_solution', 'test', 'example_test'], |
|
num_rows: 164 |
|
}) |
|
}) |
|
``` |
|
|
|
```python |
|
next(iter(data["test"])) |
|
{'task_id': 'JavaScript/0', |
|
'prompt': '/* Check if in given list of numbers, are any two numbers closer to each other than\n given threshold.\n >>> hasCloseElements([1.0, 2.0, 3.0], 0.5)\n false\n >>> hasCloseElements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\n true\n */\nconst hasCloseElements = (numbers, threshold) => {\n', |
|
'declaration': '\nconst hasCloseElements = (numbers, threshold) => {\n', |
|
'canonical_solution': ' for (let i = 0; i < numbers.length; i++) {\n for (let j = 0; j < numbers.length; j++) {\n if (i != j) {\n let distance = Math.abs(numbers[i] - numbers[j]);\n if (distance < threshold) {\n return true;\n }\n }\n }\n }\n return false;\n}\n\n', |
|
'test': 'const testHasCloseElements = () => {\n console.assert(hasCloseElements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) === true)\n console.assert(\n hasCloseElements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) === false\n )\n console.assert(hasCloseElements([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) === true)\n console.assert(hasCloseElements([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) === false)\n console.assert(hasCloseElements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) === true)\n console.assert(hasCloseElements([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) === true)\n console.assert(hasCloseElements([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) === false)\n}\n\ntestHasCloseElements()\n', |
|
'example_test': 'const testHasCloseElements = () => {\n console.assert(hasCloseElements([1.0, 2.0, 3.0], 0.5) === false)\n console.assert(\n hasCloseElements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) === true\n )\n}\ntestHasCloseElements()\n'} |
|
``` |
|
|
|
|
|
## Data Fields |
|
|
|
* ``task_id``: indicates the target language and ID of the problem. Language is one of ["Python", "Java", "JavaScript", "CPP", "Go"]. |
|
* ``prompt``: the function declaration and docstring, used for code generation. |
|
* ``declaration``: only the function declaration, used for code translation. |
|
* ``canonical_solution``: human-crafted example solutions. |
|
* ``test``: hidden test samples, used for evaluation. |
|
* ``example_test``: public test samples (appeared in prompt), used for evaluation. |
|
|
|
## Data Splits |
|
|
|
Each subset has one split: test. |
|
|
|
## Citation Information |
|
|
|
Refer to https://github.com/THUDM/CodeGeeX. |