title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Fitting a Simplicial Complex using a Variation of k-means
We give a simple and effective two stage algorithm for approximating a point cloud $\mathcal{S}\subset\mathbb{R}^m$ by a simplicial complex $K$. The first stage is an iterative fitting procedure that generalizes k-means clustering, while the second stage involves deleting redundant simplices. A form of dimension reduction of $\mathcal{S}$ is obtained as a consequence.
Concatenated image completion via tensor augmentation and completion
This paper proposes a novel framework called concatenated image completion via tensor augmentation and completion (ICTAC), which recovers missing entries of color images with high accuracy. Typical images are second- or third-order tensors (2D/3D) depending if they are grayscale or color, hence tensor completion algorithms are ideal for their recovery. The proposed framework performs image completion by concatenating copies of a single image that has missing entries into a third-order tensor, applying a dimensionality augmentation technique to the tensor, utilizing a tensor completion algorithm for recovering its missing entries, and finally extracting the recovered image from the tensor. The solution relies on two key components that have been recently proposed to take advantage of the tensor train (TT) rank: A tensor augmentation tool called ket augmentation (KA) that represents a low-order tensor by a higher-order tensor, and the algorithm tensor completion by parallel matrix factorization via tensor train (TMac-TT), which has been demonstrated to outperform state-of-the-art tensor completion algorithms. Simulation results for color image recovery show the clear advantage of our framework against current state-of-the-art tensor completion algorithms.
Fast Algorithms for Segmented Regression
We study the fixed design segmented regression problem: Given noisy samples from a piecewise linear function $f$, we want to recover $f$ up to a desired accuracy in mean-squared error. Previous rigorous approaches for this problem rely on dynamic programming (DP) and, while sample efficient, have running time quadratic in the sample size. As our main contribution, we provide new sample near-linear time algorithms for the problem that -- while not being minimax optimal -- achieve a significantly better sample-time tradeoff on large datasets compared to the DP approach. Our experimental evaluation shows that, compared with the DP approach, our algorithms provide a convergence rate that is only off by a factor of $2$ to $4$, while achieving speedups of three orders of magnitude.
Fifty Shades of Ratings: How to Benefit from a Negative Feedback in Top-N Recommendations Tasks
Conventional collaborative filtering techniques treat a top-n recommendations problem as a task of generating a list of the most relevant items. This formulation, however, disregards an opposite - avoiding recommendations with completely irrelevant items. Due to that bias, standard algorithms, as well as commonly used evaluation metrics, become insensitive to negative feedback. In order to resolve this problem we propose to treat user feedback as a categorical variable and model it with users and items in a ternary way. We employ a third-order tensor factorization technique and implement a higher order folding-in method to support online recommendations. The method is equally sensitive to entire spectrum of user ratings and is able to accurately predict relevant items even from a negative only feedback. Our method may partially eliminate the need for complicated rating elicitation process as it provides means for personalized recommendations from the very beginning of an interaction with a recommender system. We also propose a modification of standard metrics which helps to reveal unwanted biases and account for sensitivity to a negative feedback. Our model achieves state-of-the-art quality in standard recommendation tasks while significantly outperforming other methods in the cold-start "no-positive-feedback" scenarios.
Neural Semantic Encoders
We present a memory augmented neural network for natural language understanding: Neural Semantic Encoders. NSE is equipped with a novel memory update rule and has a variable sized encoding memory that evolves over time and maintains the understanding of input sequences through read}, compose and write operations. NSE can also access multiple and shared memories. In this paper, we demonstrated the effectiveness and the flexibility of NSE on five different natural language tasks: natural language inference, question answering, sentence classification, document sentiment analysis and machine translation where NSE achieved state-of-the-art performance when evaluated on publically available benchmarks. For example, our shared-memory model showed an encouraging result on neural machine translation, improving an attention-based baseline by approximately 1.0 BLEU.
Random projections of random manifolds
Interesting data often concentrate on low dimensional smooth manifolds inside a high dimensional ambient space. Random projections are a simple, powerful tool for dimensionality reduction of such data. Previous works have studied bounds on how many projections are needed to accurately preserve the geometry of these manifolds, given their intrinsic dimensionality, volume and curvature. However, such works employ definitions of volume and curvature that are inherently difficult to compute. Therefore such theory cannot be easily tested against numerical simulations to understand the tightness of the proven bounds. We instead study typical distortions arising in random projections of an ensemble of smooth Gaussian random manifolds. We find explicitly computable, approximate theoretical bounds on the number of projections required to accurately preserve the geometry of these manifolds. Our bounds, while approximate, can only be violated with a probability that is exponentially small in the ambient dimension, and therefore they hold with high probability in cases of practical interest. Moreover, unlike previous work, we test our theoretical bounds against numerical experiments on the actual geometric distortions that typically occur for random projections of random smooth manifolds. We find our bounds are tighter than previous results by several orders of magnitude.
DeepQA: Improving the estimation of single protein model quality with deep belief networks
Protein quality assessment (QA) by ranking and selecting protein models has long been viewed as one of the major challenges for protein tertiary structure prediction. Especially, estimating the quality of a single protein model, which is important for selecting a few good models out of a large model pool consisting of mostly low-quality models, is still a largely unsolved problem. We introduce a novel single-model quality assessment method DeepQA based on deep belief network that utilizes a number of selected features describing the quality of a model from different perspectives, such as energy, physio-chemical characteristics, and structural information. The deep belief network is trained on several large datasets consisting of models from the Critical Assessment of Protein Structure Prediction (CASP) experiments, several publicly available datasets, and models generated by our in-house ab initio method. Our experiment demonstrate that deep belief network has better performance compared to Support Vector Machines and Neural Networks on the protein model quality assessment problem, and our method DeepQA achieves the state-of-the-art performance on CASP11 dataset. It also outperformed two well-established methods in selecting good outlier models from a large set of models of mostly low quality generated by ab initio modeling methods. DeepQA is a useful tool for protein single model quality assessment and protein structure prediction. The source code, executable, document and training/test datasets of DeepQA for Linux is freely available to non-commercial users at http://cactus.rnet.missouri.edu/DeepQA/.
A Theoretical Analysis of the BDeu Scores in Bayesian Network Structure Learning
In Bayesian network structure learning (BNSL), we need the prior probability over structures and parameters. If the former is the uniform distribution, the latter determines the correctness of BNSL. In this paper, we compare BDeu (Bayesian Dirichlet equivalent uniform) and Jeffreys' prior w.r.t. their consistency. When we seek a parent set $U$ of a variable $X$, we require regularity that if $H(X|U)\leq H(X|U')$ and $U\subsetneq U'$, then $U$ should be chosen rather than $U'$. We prove that the BDeu scores violate the property and cause fatal situations in BNSL. This is because for the BDeu scores, for any sample size $n$,there exists a probability in the form $P(X,Y,Z)={P(XZ)P(YZ)}/{P(Z)}$ such that the probability of deciding that $X$ and $Y$ are not conditionally independent given $Z$ is more than a half. For Jeffreys' prior, the false-positive probability uniformly converges to zero without depending on any parameter values, and no such an inconvenience occurs.
Channel Selection Algorithm for Cognitive Radio Networks with Heavy-Tailed Idle Times
We consider a multichannel Cognitive Radio Network (CRN), where secondary users sequentially sense channels for opportunistic spectrum access. In this scenario, the Channel Selection Algorithm (CSA) allows secondary users to find a vacant channel with the minimal number of channel switches. Most of the existing CSA literature assumes exponential ON-OFF time distribution for primary users (PU) channel occupancy pattern. This exponential assumption might be helpful to get performance bounds; but not useful to evaluate the performance of CSA under realistic conditions. An in-depth analysis of independent spectrum measurement traces reveals that wireless channels have typically heavy-tailed PU OFF times. In this paper, we propose an extension to the Predictive CSA framework and its generalization for heavy tailed PU OFF time distribution, which represents realistic scenarios. In particular, we calculate the probability of channel being idle for hyper-exponential OFF times to use in CSA. We implement our proposed CSA framework in a wireless test-bed and comprehensively evaluate its performance by recreating the realistic PU channel occupancy patterns. The proposed CSA shows significant reduction in channel switches and energy consumption as compared to Predictive CSA which always assumes exponential PU ON-OFF times.Through our work, we show the impact of the PU channel occupancy pattern on the performance of CSA in multichannel CRN.
Neural Tree Indexers for Text Understanding
Recurrent neural networks (RNNs) process input text sequentially and model the conditional transition between word tokens. In contrast, the advantages of recursive networks include that they explicitly model the compositionality and the recursive structure of natural language. However, the current recursive architecture is limited by its dependence on syntactic tree. In this paper, we introduce a robust syntactic parsing-independent tree structured model, Neural Tree Indexers (NTI) that provides a middle ground between the sequential RNNs and the syntactic treebased recursive models. NTI constructs a full n-ary tree by processing the input text with its node function in a bottom-up fashion. Attention mechanism can then be applied to both structure and node function. We implemented and evaluated a binarytree model of NTI, showing the model achieved the state-of-the-art performance on three different NLP tasks: natural language inference, answer sentence selection, and sentence classification, outperforming state-of-the-art recurrent and recursive neural networks.
Learning from Conditional Distributions via Dual Embeddings
Many machine learning tasks, such as learning with invariance and policy evaluation in reinforcement learning, can be characterized as problems of learning from conditional distributions. In such problems, each sample $x$ itself is associated with a conditional distribution $p(z|x)$ represented by samples $\{z_i\}_{i=1}^M$, and the goal is to learn a function $f$ that links these conditional distributions to target values $y$. These learning problems become very challenging when we only have limited samples or in the extreme case only one sample from each conditional distribution. Commonly used approaches either assume that $z$ is independent of $x$, or require an overwhelmingly large samples from each conditional distribution. To address these challenges, we propose a novel approach which employs a new min-max reformulation of the learning from conditional distribution problem. With such new reformulation, we only need to deal with the joint distribution $p(z,x)$. We also design an efficient learning algorithm, Embedding-SGD, and establish theoretical sample complexity for such problems. Finally, our numerical experiments on both synthetic and real-world datasets show that the proposed approach can significantly improve over the existing algorithms.
Automatic Environmental Sound Recognition: Performance versus Computational Cost
In the context of the Internet of Things (IoT), sound sensing applications are required to run on embedded platforms where notions of product pricing and form factor impose hard constraints on the available computing power. Whereas Automatic Environmental Sound Recognition (AESR) algorithms are most often developed with limited consideration for computational cost, this article seeks which AESR algorithm can make the most of a limited amount of computing power by comparing the sound classification performance em as a function of its computational cost. Results suggest that Deep Neural Networks yield the best ratio of sound classification accuracy across a range of computational costs, while Gaussian Mixture Models offer a reasonable accuracy at a consistently small cost, and Support Vector Machines stand between both in terms of compromise between accuracy and computational cost.
Enriching Word Vectors with Subword Information
Continuous word representations, trained on large unlabeled corpora are useful for many natural language processing tasks. Popular models that learn such representations ignore the morphology of words, by assigning a distinct vector to each word. This is a limitation, especially for languages with large vocabularies and many rare words. In this paper, we propose a new approach based on the skipgram model, where each word is represented as a bag of character $n$-grams. A vector representation is associated to each character $n$-gram; words being represented as the sum of these representations. Our method is fast, allowing to train models on large corpora quickly and allows us to compute word representations for words that did not appear in the training data. We evaluate our word representations on nine different languages, both on word similarity and analogy tasks. By comparing to recently proposed morphological word representations, we show that our vectors achieve state-of-the-art performance on these tasks.
Guided Policy Search as Approximate Mirror Descent
Guided policy search algorithms can be used to optimize complex nonlinear policies, such as deep neural networks, without directly computing policy gradients in the high-dimensional parameter space. Instead, these methods use supervised learning to train the policy to mimic a "teacher" algorithm, such as a trajectory optimizer or a trajectory-centric reinforcement learning method. Guided policy search methods provide asymptotic local convergence guarantees by construction, but it is not clear how much the policy improves within a small, finite number of iterations. We show that guided policy search algorithms can be interpreted as an approximate variant of mirror descent, where the projection onto the constraint manifold is not exact. We derive a new guided policy search algorithm that is simpler and provides appealing improvement and convergence guarantees in simplified convex and linear settings, and show that in the more general nonlinear setting, the error in the projection step can be bounded. We provide empirical results on several simulated robotic navigation and manipulation tasks that show that our method is stable and achieves similar or better performance when compared to prior guided policy search methods, with a simpler formulation and fewer hyperparameters.
On the efficient representation and execution of deep acoustic models
In this paper we present a simple and computationally efficient quantization scheme that enables us to reduce the resolution of the parameters of a neural network from 32-bit floating point values to 8-bit integer values. The proposed quantization scheme leads to significant memory savings and enables the use of optimized hardware instructions for integer arithmetic, thus significantly reducing the cost of inference. Finally, we propose a "quantization aware" training process that applies the proposed scheme during network training and find that it allows us to recover most of the loss in accuracy introduced by quantization. We validate the proposed techniques by applying them to a long short-term memory-based acoustic model on an open-ended large vocabulary speech recognition task.
Learning Social Circles in Ego Networks based on Multi-View Social Graphs
In social network analysis, automatic social circle detection in ego-networks is becoming a fundamental and important task, with many potential applications such as user privacy protection or interest group recommendation. So far, most studies have focused on addressing two questions, namely, how to detect overlapping circles and how to detect circles using a combination of network structure and network node attributes. This paper asks an orthogonal research question, that is, how to detect circles based on network structures that are (usually) described by multiple views? Our investigation begins with crawling ego-networks from Twitter and employing classic techniques to model their structures by six views, including user relationships, user interactions and user content. We then apply both standard and our modified multi-view spectral clustering techniques to detect social circles in these ego-networks. Based on extensive automatic and manual experimental evaluations, we deliver two major findings: first, multi-view clustering techniques perform better than common single-view clustering techniques, which only use one view or naively integrate all views for detection, second, the standard multi-view clustering technique is less robust than our modified technique, which selectively transfers information across views based on an assumption that sparse network structures are (potentially) incomplete. In particular, the second finding makes us believe a direct application of standard clustering on potentially incomplete networks may yield biased results. We lightly examine this issue in theory, where we derive an upper bound for such bias by integrating theories of spectral clustering and matrix perturbation, and discuss how it may be affected by several network characteristics.
Shesop Healthcare: Stress and influenza classification using support vector machine kernel
Shesop is an integrated system to make human lives more easily and to help people in terms of healthcare. Stress and influenza classification is a part of Shesop's application for a healthcare devices such as smartwatch, polar and fitbit. The main objective of this paper is to classify a new data and inform whether you are stress, depressed, caught by influenza or not. We will use the heart rate data taken for months in Bandung, analyze the data and find the Heart rate variance that constantly related with the stress and flu level. After we found the variable, we will use the variable as an input to the support vector machine learning. We will use the lagrangian and kernel technique to transform 2D data into 3D data so we can use the linear classification in 3D space. In the end, we could use the machine learning's result to classify new data and get the final result immediately: stress or not, influenza or not.
Exploiting Multi-modal Curriculum in Noisy Web Data for Large-scale Concept Learning
Learning video concept detectors automatically from the big but noisy web data with no additional manual annotations is a novel but challenging area in the multimedia and the machine learning community. A considerable amount of videos on the web are associated with rich but noisy contextual information, such as the title, which provides weak annotations or labels about the video content. To leverage the big noisy web labels, this paper proposes a novel method called WEbly-Labeled Learning (WELL), which is established on the state-of-the-art machine learning algorithm inspired by the learning process of human. WELL introduces a number of novel multi-modal approaches to incorporate meaningful prior knowledge called curriculum from the noisy web videos. To investigate this problem, we empirically study the curriculum constructed from the multi-modal features of the videos collected from YouTube and Flickr. The efficacy and the scalability of WELL have been extensively demonstrated on two public benchmarks, including the largest multimedia dataset and the largest manually-labeled video set. The comprehensive experimental results demonstrate that WELL outperforms state-of-the-art studies by a statically significant margin on learning concepts from noisy web video data. In addition, the results also verify that WELL is robust to the level of noisiness in the video data. Notably, WELL trained on sufficient noisy web labels is able to achieve a comparable accuracy to supervised learning methods trained on the clean manually-labeled data.
Learning to Decode Linear Codes Using Deep Learning
A novel deep learning method for improving the belief propagation algorithm is proposed. The method generalizes the standard belief propagation algorithm by assigning weights to the edges of the Tanner graph. These edges are then trained using deep learning techniques. A well-known property of the belief propagation algorithm is the independence of the performance on the transmitted codeword. A crucial property of our new method is that our decoder preserved this property. Furthermore, this property allows us to learn only a single codeword instead of exponential number of code-words. Improvements over the belief propagation algorithm are demonstrated for various high density parity check codes.
Inferring solutions of differential equations using noisy multi-fidelity data
For more than two centuries, solutions of differential equations have been obtained either analytically or numerically based on typically well-behaved forcing and boundary conditions for well-posed problems. We are changing this paradigm in a fundamental way by establishing an interface between probabilistic machine learning and differential equations. We develop data-driven algorithms for general linear equations using Gaussian process priors tailored to the corresponding integro-differential operators. The only observables are scarce noisy multi-fidelity data for the forcing and solution that are not required to reside on the domain boundary. The resulting predictive posterior distributions quantify uncertainty and naturally lead to adaptive solution refinement via active learning. This general framework circumvents the tyranny of numerical discretization as well as the consistency and stability issues of time-integration, and is scalable to high-dimensions.
Robust Automated Human Activity Recognition and its Application to Sleep Research
Human Activity Recognition (HAR) is a powerful tool for understanding human behaviour. Applying HAR to wearable sensors can provide new insights by enriching the feature set in health studies, and enhance the personalisation and effectiveness of health, wellness, and fitness applications. Wearable devices provide an unobtrusive platform for user monitoring, and due to their increasing market penetration, feel intrinsic to the wearer. The integration of these devices in daily life provide a unique opportunity for understanding human health and wellbeing. This is referred to as the "quantified self" movement. The analyses of complex health behaviours such as sleep, traditionally require a time-consuming manual interpretation by experts. This manual work is necessary due to the erratic periodicity and persistent noisiness of human behaviour. In this paper, we present a robust automated human activity recognition algorithm, which we call RAHAR. We test our algorithm in the application area of sleep research by providing a novel framework for evaluating sleep quality and examining the correlation between the aforementioned and an individual's physical activity. Our results improve the state-of-the-art procedure in sleep research by 15 percent for area under ROC and by 30 percent for F1 score on average. However, application of RAHAR is not limited to sleep analysis and can be used for understanding other health problems such as obesity, diabetes, and cardiac diseases.
Learning Unitary Operators with Help From u(n)
A major challenge in the training of recurrent neural networks is the so-called vanishing or exploding gradient problem. The use of a norm-preserving transition operator can address this issue, but parametrization is challenging. In this work we focus on unitary operators and describe a parametrization using the Lie algebra $\mathfrak{u}(n)$ associated with the Lie group $U(n)$ of $n \times n$ unitary matrices. The exponential map provides a correspondence between these spaces, and allows us to define a unitary matrix using $n^2$ real coefficients relative to a basis of the Lie algebra. The parametrization is closed under additive updates of these coefficients, and thus provides a simple space in which to do gradient descent. We demonstrate the effectiveness of this parametrization on the problem of learning arbitrary unitary operators, comparing to several baselines and outperforming a recently-proposed lower-dimensional parametrization. We additionally use our parametrization to generalize a recently-proposed unitary recurrent neural network to arbitrary unitary matrices, using it to solve standard long-memory tasks.
Piecewise convexity of artificial neural networks
Although artificial neural networks have shown great promise in applications including computer vision and speech recognition, there remains considerable practical and theoretical difficulty in optimizing their parameters. The seemingly unreasonable success of gradient descent methods in minimizing these non-convex functions remains poorly understood. In this work we offer some theoretical guarantees for networks with piecewise affine activation functions, which have in recent years become the norm. We prove three main results. Firstly, that the network is piecewise convex as a function of the input data. Secondly, that the network, considered as a function of the parameters in a single layer, all others held constant, is again piecewise convex. Finally, that the network as a function of all its parameters is piecewise multi-convex, a generalization of biconvexity. From here we characterize the local minima and stationary points of the training objective, showing that they minimize certain subsets of the parameter space. We then analyze the performance of two optimization algorithms on multi-convex problems: gradient descent, and a method which repeatedly solves a number of convex sub-problems. We prove necessary convergence conditions for the first algorithm and both necessary and sufficient conditions for the second, after introducing regularization to the objective. Finally, we remark on the remaining difficulty of the global optimization problem. Under the squared error objective, we show that by varying the training data, a single rectifier neuron admits local minima arbitrarily far apart, both in objective value and parameter space.
Distributed Graph Clustering by Load Balancing
Graph clustering is a fundamental computational problem with a number of applications in algorithm design, machine learning, data mining, and analysis of social networks. Over the past decades, researchers have proposed a number of algorithmic design methods for graph clustering. However, most of these methods are based on complicated spectral techniques or convex optimisation, and cannot be applied directly for clustering many networks that occur in practice, whose information is often collected on different sites. Designing a simple and distributed clustering algorithm is of great interest, and has wide applications for processing big datasets. In this paper we present a simple and distributed algorithm for graph clustering: for a wide class of graphs that are characterised by a strong cluster-structure, our algorithm finishes in a poly-logarithmic number of rounds, and recovers a partition of the graph close to an optimal partition. The main component of our algorithm is an application of the random matching model of load balancing, which is a fundamental protocol in distributed computing and has been extensively studied in the past 20 years. Hence, our result highlights an intrinsic and interesting connection between graph clustering and load balancing. At a technical level, we present a purely algebraic result characterising the early behaviours of load balancing processes for graphs exhibiting a cluster-structure. We believe that this result can be further applied to analyse other gossip processes, such as rumour spreading and averaging processes.
Geometric Mean Metric Learning
We revisit the task of learning a Euclidean metric from data. We approach this problem from first principles and formulate it as a surprisingly simple optimization problem. Indeed, our formulation even admits a closed form solution. This solution possesses several very attractive properties: (i) an innate geometric appeal through the Riemannian geometry of positive definite matrices; (ii) ease of interpretability; and (iii) computational speed several orders of magnitude faster than the widely used LMNN and ITML methods. Furthermore, on standard benchmark datasets, our closed-form solution consistently attains higher classification accuracy.
A Batch, Off-Policy, Actor-Critic Algorithm for Optimizing the Average Reward
We develop an off-policy actor-critic algorithm for learning an optimal policy from a training set composed of data from multiple individuals. This algorithm is developed with a view towards its use in mobile health.
Imitation Learning with Recurrent Neural Networks
We present a novel view that unifies two frameworks that aim to solve sequential prediction problems: learning to search (L2S) and recurrent neural networks (RNN). We point out equivalences between elements of the two frameworks. By complementing what is missing from one framework comparing to the other, we introduce a more advanced imitation learning framework that, on one hand, augments L2S s notion of search space and, on the other hand, enhances RNNs training procedure to be more robust to compounding errors arising from training on highly correlated examples.
A Semiparametric Model for Bayesian Reader Identification
We study the problem of identifying individuals based on their characteristic gaze patterns during reading of arbitrary text. The motivation for this problem is an unobtrusive biometric setting in which a user is observed during access to a document, but no specific challenge protocol requiring the user's time and attention is carried out. Existing models of individual differences in gaze control during reading are either based on simple aggregate features of eye movements, or rely on parametric density models to describe, for instance, saccade amplitudes or word fixation durations. We develop flexible semiparametric models of eye movements during reading in which densities are inferred under a Gaussian process prior centered at a parametric distribution family that is expected to approximate the true distribution well. An empirical study on reading data from 251 individuals shows significant improvements over the state of the art.
Generating Images Part by Part with Composite Generative Adversarial Networks
Image generation remains a fundamental problem in artificial intelligence in general and deep learning in specific. The generative adversarial network (GAN) was successful in generating high quality samples of natural images. We propose a model called composite generative adversarial network, that reveals the complex structure of images with multiple generators in which each generator generates some part of the image. Those parts are combined by alpha blending process to create a new single image. It can generate, for example, background and face sequentially with two generators, after training on face dataset. Training was done in an unsupervised way without any labels about what each generator should generate. We found possibilities of learning the structure by using this generative model empirically.
Multidimensional Dynamic Pricing for Welfare Maximization
We study the problem of a seller dynamically pricing $d$ distinct types of indivisible goods, when faced with the online arrival of unit-demand buyers drawn independently from an unknown distribution. The goods are not in limited supply, but can only be produced at a limited rate and are costly to produce. The seller observes only the bundle of goods purchased at each day, but nothing else about the buyer's valuation function. Our main result is a dynamic pricing algorithm for optimizing welfare (including the seller's cost of production) that runs in time and a number of rounds that are polynomial in $d$ and the approximation parameter. We are able to do this despite the fact that (i) the price-response function is not continuous, and even its fractional relaxation is a non-concave function of the prices, and (ii) the welfare is not observable to the seller. We derive this result as an application of a general technique for optimizing welfare over \emph{divisible} goods, which is of independent interest. When buyers have strongly concave, H\"older continuous valuation functions over $d$ divisible goods, we give a general polynomial time dynamic pricing technique. We are able to apply this technique to the setting of unit demand buyers despite the fact that in that setting the goods are not divisible, and the natural fractional relaxation of a unit demand valuation is not strongly concave. In order to apply our general technique, we introduce a novel price randomization procedure which has the effect of implicitly inducing buyers to "regularize" their valuations with a strongly concave function. Finally, we also extend our results to a limited-supply setting in which the number of copies of each good cannot be replenished.
Information-theoretical label embeddings for large-scale image classification
We present a method for training multi-label, massively multi-class image classification models, that is faster and more accurate than supervision via a sigmoid cross-entropy loss (logistic regression). Our method consists in embedding high-dimensional sparse labels onto a lower-dimensional dense sphere of unit-normed vectors, and treating the classification problem as a cosine proximity regression problem on this sphere. We test our method on a dataset of 300 million high-resolution images with 17,000 labels, where it yields considerably faster convergence, as well as a 7% higher mean average precision compared to logistic regression.
PRIIME: A Generic Framework for Interactive Personalized Interesting Pattern Discovery
The traditional frequent pattern mining algorithms generate an exponentially large number of patterns of which a substantial proportion are not much significant for many data analysis endeavors. Discovery of a small number of personalized interesting patterns from the large output set according to a particular user's interest is an important as well as challenging task. Existing works on pattern summarization do not solve this problem from the personalization viewpoint. In this work, we propose an interactive pattern discovery framework named PRIIME which identifies a set of interesting patterns for a specific user without requiring any prior input on the interestingness measure of patterns from the user. The proposed framework is generic to support discovery of the interesting set, sequence and graph type patterns. We develop a softmax classification based iterative learning algorithm that uses a limited number of interactive feedback from the user to learn her interestingness profile, and use this profile for pattern recommendation. To handle sequence and graph type patterns PRIIME adopts a neural net (NN) based unsupervised feature construction approach. We also develop a strategy that combines exploration and exploitation to select patterns for feedback. We show experimental results on several real-life datasets to validate the performance of the proposed method. We also compare with the existing methods of interactive pattern discovery to show that our method is substantially superior in performance. To portray the applicability of the framework, we present a case study from the real-estate domain.
Data-driven generation of spatio-temporal routines in human mobility
The generation of realistic spatio-temporal trajectories of human mobility is of fundamental importance in a wide range of applications, such as the developing of protocols for mobile ad-hoc networks or what-if analysis in urban ecosystems. Current generative algorithms fail in accurately reproducing the individuals' recurrent schedules and at the same time in accounting for the possibility that individuals may break the routine during periods of variable duration. In this article we present DITRAS (DIary-based TRAjectory Simulator), a framework to simulate the spatio-temporal patterns of human mobility. DITRAS operates in two steps: the generation of a mobility diary and the translation of the mobility diary into a mobility trajectory. We propose a data-driven algorithm which constructs a diary generator from real data, capturing the tendency of individuals to follow or break their routine. We also propose a trajectory generator based on the concept of preferential exploration and preferential return. We instantiate DITRAS with the proposed diary and trajectory generators and compare the resulting algorithm with real data and synthetic data produced by other generative algorithms, built by instantiating DITRAS with several combinations of diary and trajectory generators. We show that the proposed algorithm reproduces the statistical properties of real trajectories in the most accurate way, making a step forward the understanding of the origin of the spatio-temporal patterns of human mobility.
Indoor occupancy estimation from carbon dioxide concentration
This paper presents an indoor occupancy estimator with which we can estimate the number of real-time indoor occupants based on the carbon dioxide (CO2) measurement. The estimator is actually a dynamic model of the occupancy level. To identify the dynamic model, we propose the Feature Scaled Extreme Learning Machine (FS-ELM) algorithm, which is a variation of the standard Extreme Learning Machine (ELM) but is shown to perform better for the occupancy estimation problem. The measured CO2 concentration suffers from serious spikes. We find that pre-smoothing the CO2 data can greatly improve the estimation accuracy. In real applications, however, we cannot obtain the real-time globally smoothed CO2 data. We provide a way to use the locally smoothed CO2 data instead, which is real-time available. We introduce a new criterion, i.e. $x$-tolerance accuracy, to assess the occupancy estimator. The proposed occupancy estimator was tested in an office room with 24 cubicles and 11 open seats. The accuracy is up to 94 percent with a tolerance of four occupants.
Onsager-corrected deep learning for sparse linear inverse problems
Deep learning has gained great popularity due to its widespread success on many inference problems. We consider the application of deep learning to the sparse linear inverse problem encountered in compressive sensing, where one seeks to recover a sparse signal from a small number of noisy linear measurements. In this paper, we propose a novel neural-network architecture that decouples prediction errors across layers in the same way that the approximate message passing (AMP) algorithm decouples them across iterations: through Onsager correction. Numerical experiments suggest that our "learned AMP" network significantly improves upon Gregor and LeCun's "learned ISTA" network in both accuracy and complexity.
On the Identification and Mitigation of Weaknesses in the Knowledge Gradient Policy for Multi-Armed Bandits
The Knowledge Gradient (KG) policy was originally proposed for online ranking and selection problems but has recently been adapted for use in online decision making in general and multi-armed bandit problems (MABs) in particular. We study its use in a class of exponential family MABs and identify weaknesses, including a propensity to take actions which are dominated with respect to both exploitation and exploration. We propose variants of KG which avoid such errors. These new policies include an index heuristic which deploys a KG approach to develop an approximation to the Gittins index. A numerical study shows this policy to perform well over a range of MABs including those for which index policies are not optimal. While KG does not make dominated actions when bandits are Gaussian, it fails to be index consistent and appears not to enjoy a performance advantage over competitor policies when arms are correlated to compensate for its greater computational demands.
On the Modeling of Error Functions as High Dimensional Landscapes for Weight Initialization in Learning Networks
Next generation deep neural networks for classification hosted on embedded platforms will rely on fast, efficient, and accurate learning algorithms. Initialization of weights in learning networks has a great impact on the classification accuracy. In this paper we focus on deriving good initial weights by modeling the error function of a deep neural network as a high-dimensional landscape. We observe that due to the inherent complexity in its algebraic structure, such an error function may conform to general results of the statistics of large systems. To this end we apply some results from Random Matrix Theory to analyse these functions. We model the error function in terms of a Hamiltonian in N-dimensions and derive some theoretical results about its general behavior. These results are further used to make better initial guesses of weights for the learning algorithm.
Doubly Accelerated Methods for Faster CCA and Generalized Eigendecomposition
We study $k$-GenEV, the problem of finding the top $k$ generalized eigenvectors, and $k$-CCA, the problem of finding the top $k$ vectors in canonical-correlation analysis. We propose algorithms $\mathtt{LazyEV}$ and $\mathtt{LazyCCA}$ to solve the two problems with running times linearly dependent on the input size and on $k$. Furthermore, our algorithms are DOUBLY-ACCELERATED: our running times depend only on the square root of the matrix condition number, and on the square root of the eigengap. This is the first such result for both $k$-GenEV or $k$-CCA. We also provide the first gap-free results, which provide running times that depend on $1/\sqrt{\varepsilon}$ rather than the eigengap.
Predicting Branch Visits and Credit Card Up-selling using Temporal Banking Data
There is an abundance of temporal and non-temporal data in banking (and other industries), but such temporal activity data can not be used directly with classical machine learning models. In this work, we perform extensive feature extraction from the temporal user activity data in an attempt to predict user visits to different branches and credit card up-selling utilizing user information and the corresponding activity data, as part of \emph{ECML/PKDD Discovery Challenge 2016 on Bank Card Usage Analysis}. Our solution ranked \nth{4} for \emph{Task 1} and achieved an AUC of \textbf{$0.7056$} for \emph{Task 2} on public leaderboard.
Sequence to sequence learning for unconstrained scene text recognition
In this work we present a state-of-the-art approach for unconstrained natural scene text recognition. We propose a cascade approach that incorporates a convolutional neural network (CNN) architecture followed by a long short term memory model (LSTM). The CNN learns visual features for the characters and uses them with a softmax layer to detect sequence of characters. While the CNN gives very good recognition results, it does not model relation between characters, hence gives rise to false positive and false negative cases (confusing characters due to visual similarities like "g" and "9", or confusing background patches with characters; either removing existing characters or adding non-existing ones) To alleviate these problems we leverage recent developments in LSTM architectures to encode contextual information. We show that the LSTM can dramatically reduce such errors and achieve state-of-the-art accuracy in the task of unconstrained natural scene text recognition. Moreover we manually remove all occurrences of the words that exist in the test set from our training set to test whether our approach will generalize to unseen data. We use the ICDAR 13 test set for evaluation and compare the results with the state of the art approaches [11, 18]. We finally present an application of the work in the domain of for traffic monitoring.
Supervised quantum gate "teaching" for quantum hardware design
We show how to train a quantum network of pairwise interacting qubits such that its evolution implements a target quantum algorithm into a given network subset. Our strategy is inspired by supervised learning and is designed to help the physical construction of a quantum computer which operates with minimal external classical control.
Streaming Recommender Systems
The increasing popularity of real-world recommender systems produces data continuously and rapidly, and it becomes more realistic to study recommender systems under streaming scenarios. Data streams present distinct properties such as temporally ordered, continuous and high-velocity, which poses tremendous challenges to traditional recommender systems. In this paper, we investigate the problem of recommendation with stream inputs. In particular, we provide a principled framework termed sRec, which provides explicit continuous-time random process models of the creation of users and topics, and of the evolution of their interests. A variational Bayesian approach called recursive meanfield approximation is proposed, which permits computationally efficient instantaneous on-line inference. Experimental results on several real-world datasets demonstrate the advantages of our sRec over other state-of-the-arts.
An ensemble of machine learning and anti-learning methods for predicting tumour patient survival rates
This paper primarily addresses a dataset relating to cellular, chemical and physical conditions of patients gathered at the time they are operated upon to remove colorectal tumours. This data provides a unique insight into the biochemical and immunological status of patients at the point of tumour removal along with information about tumour classification and post-operative survival. The relationship between severity of tumour, based on TNM staging, and survival is still unclear for patients with TNM stage 2 and 3 tumours. We ask whether it is possible to predict survival rate more accurately using a selection of machine learning techniques applied to subsets of data to gain a deeper understanding of the relationships between a patient's biochemical markers and survival. We use a range of feature selection and single classification techniques to predict the 5 year survival rate of TNM stage 2 and 3 patients which initially produces less than ideal results. The performance of each model individually is then compared with subsets of the data where agreement is reached for multiple models. This novel method of selective ensembling demonstrates that significant improvements in model accuracy on an unseen test set can be achieved for patients where agreement between models is achieved. Finally we point at a possible method to identify whether a patients prognosis can be accurately predicted or not.
Greedy bi-criteria approximations for $k$-medians and $k$-means
This paper investigates the following natural greedy procedure for clustering in the bi-criterion setting: iteratively grow a set of centers, in each round adding the center from a candidate set that maximally decreases clustering cost. In the case of $k$-medians and $k$-means, the key results are as follows. $\bullet$ When the method considers all data points as candidate centers, then selecting $\mathcal{O}(k\log(1/\varepsilon))$ centers achieves cost at most $2+\varepsilon$ times the optimal cost with $k$ centers. $\bullet$ Alternatively, the same guarantees hold if each round samples $\mathcal{O}(k/\varepsilon^5)$ candidate centers proportionally to their cluster cost (as with $\texttt{kmeans++}$, but holding centers fixed). $\bullet$ In the case of $k$-means, considering an augmented set of $n^{\lceil1/\varepsilon\rceil}$ candidate centers gives $1+\varepsilon$ approximation with $\mathcal{O}(k\log(1/\varepsilon))$ centers, the entire algorithm taking $\mathcal{O}(dk\log(1/\varepsilon)n^{1+\lceil1/\varepsilon\rceil})$ time, where $n$ is the number of data points in $\mathbb{R}^d$. $\bullet$ In the case of Euclidean $k$-medians, generating a candidate set via $n^{\mathcal{O}(1/\varepsilon^2)}$ executions of stochastic gradient descent with adaptively determined constraint sets will once again give approximation $1+\varepsilon$ with $\mathcal{O}(k\log(1/\varepsilon))$ centers in $dk\log(1/\varepsilon)n^{\mathcal{O}(1/\varepsilon^2)}$ time. Ancillary results include: guarantees for cluster costs based on powers of metrics; a brief, favorable empirical evaluation against $\texttt{kmeans++}$; data-dependent bounds allowing $1+\varepsilon$ in the first two bullets above, for example with $k$-medians over finite metric spaces.
Explaining Classification Models Built on High-Dimensional Sparse Data
Predictive modeling applications increasingly use data representing people's behavior, opinions, and interactions. Fine-grained behavior data often has different structure from traditional data, being very high-dimensional and sparse. Models built from these data are quite difficult to interpret, since they contain many thousands or even many millions of features. Listing features with large model coefficients is not sufficient, because the model coefficients do not incorporate information on feature presence, which is key when analysing sparse data. In this paper we introduce two alternatives for explaining predictive models by listing important features. We evaluate these alternatives in terms of explanation "bang for the buck,", i.e., how many examples' inferences are explained for a given number of features listed. The bottom line: (i) The proposed alternatives have double the bang-for-the-buck as compared to just listing the high-coefficient features, and (ii) interestingly, although they come from different sources and motivations, the two new alternatives provide strikingly similar rankings of important features.
Hierarchical Clustering of Asymmetric Networks
This paper considers networks where relationships between nodes are represented by directed dissimilarities. The goal is to study methods that, based on the dissimilarity structure, output hierarchical clusters, i.e., a family of nested partitions indexed by a connectivity parameter. Our construction of hierarchical clustering methods is built around the concept of admissible methods, which are those that abide by the axioms of value - nodes in a network with two nodes are clustered together at the maximum of the two dissimilarities between them - and transformation - when dissimilarities are reduced, the network may become more clustered but not less. Two particular methods, termed reciprocal and nonreciprocal clustering, are shown to provide upper and lower bounds in the space of admissible methods. Furthermore, alternative clustering methodologies and axioms are considered. In particular, modifying the axiom of value such that clustering in two-node networks occurs at the minimum of the two dissimilarities entails the existence of a unique admissible clustering method.
Uncovering Causality from Multivariate Hawkes Integrated Cumulants
We design a new nonparametric method that allows one to estimate the matrix of integrated kernels of a multivariate Hawkes process. This matrix not only encodes the mutual influences of each nodes of the process, but also disentangles the causality relationships between them. Our approach is the first that leads to an estimation of this matrix without any parametric modeling and estimation of the kernels themselves. A consequence is that it can give an estimation of causality relationships between nodes (or users), based on their activity timestamps (on a social network for instance), without knowing or estimating the shape of the activities lifetime. For that purpose, we introduce a moment matching method that fits the third-order integrated cumulants of the process. We show on numerical experiments that our approach is indeed very robust to the shape of the kernels, and gives appealing results on the MemeTracker database.
Admissible Hierarchical Clustering Methods and Algorithms for Asymmetric Networks
This paper characterizes hierarchical clustering methods that abide by two previously introduced axioms -- thus, denominated admissible methods -- and proposes tractable algorithms for their implementation. We leverage the fact that, for asymmetric networks, every admissible method must be contained between reciprocal and nonreciprocal clustering, and describe three families of intermediate methods. Grafting methods exchange branches between dendrograms generated by different admissible methods. The convex combination family combines admissible methods through a convex operation in the space of dendrograms, and thirdly, the semi-reciprocal family clusters nodes that are related by strong cyclic influences in the network. Algorithms for the computation of hierarchical clusters generated by reciprocal and nonreciprocal clustering as well as the grafting, convex combination, and semi-reciprocal families are derived using matrix operations in a dioid algebra. Finally, the introduced clustering methods and algorithms are exemplified through their application to a network describing the interrelation between sectors of the United States (U.S.) economy.
Excisive Hierarchical Clustering Methods for Network Data
We introduce two practical properties of hierarchical clustering methods for (possibly asymmetric) network data: excisiveness and linear scale preservation. The latter enforces imperviousness to change in units of measure whereas the former ensures local consistency of the clustering outcome. Algorithmically, excisiveness implies that we can reduce computational complexity by only clustering a data subset of interest while theoretically guaranteeing that the same hierarchical outcome would be observed when clustering the whole dataset. Moreover, we introduce the concept of representability, i.e. a generative model for describing clustering methods through the specification of their action on a collection of networks. We further show that, within a rich set of admissible methods, requiring representability is equivalent to requiring both excisiveness and linear scale preservation. Leveraging this equivalence, we show that all excisive and linear scale preserving methods can be factored into two steps: a transformation of the weights in the input network followed by the application of a canonical clustering method. Furthermore, their factorization can be used to show stability of excisive and linear scale preserving methods in the sense that a bounded perturbation in the input network entails a bounded perturbation in the clustering output.
Distributed Supervised Learning using Neural Networks
Distributed learning is the problem of inferring a function in the case where training data is distributed among multiple geographically separated sources. Particularly, the focus is on designing learning strategies with low computational requirements, in which communication is restricted only to neighboring agents, with no reliance on a centralized authority. In this thesis, we analyze multiple distributed protocols for a large number of neural network architectures. The first part of the thesis is devoted to a definition of the problem, followed by an extensive overview of the state-of-the-art. Next, we introduce different strategies for a relatively simple class of single layer neural networks, where a linear output layer is preceded by a nonlinear layer, whose weights are stochastically assigned in the beginning of the learning process. We consider both batch and sequential learning, with horizontally and vertically partitioned data. In the third part, we consider instead the more complex problem of semi-supervised distributed learning, where each agent is provided with an additional set of unlabeled training samples. We propose two different algorithms based on diffusion processes for linear support vector machines and kernel ridge regression. Subsequently, the fourth part extends the discussion to learning with time-varying data (e.g. time-series) using recurrent neural networks. We consider two different families of networks, namely echo state networks (extending the algorithms introduced in the second part), and spline adaptive filters. Overall, the algorithms presented throughout the thesis cover a wide range of possible practical applications, and lead the way to numerous future extensions, which are briefly summarized in the conclusive chapter.
Layer Normalization
Training state-of-the-art, deep neural networks is computationally expensive. One way to reduce the training time is to normalize the activities of the neurons. A recently introduced technique called batch normalization uses the distribution of the summed input to a neuron over a mini-batch of training cases to compute a mean and variance which are then used to normalize the summed input to that neuron on each training case. This significantly reduces the training time in feed-forward neural networks. However, the effect of batch normalization is dependent on the mini-batch size and it is not obvious how to apply it to recurrent neural networks. In this paper, we transpose batch normalization into layer normalization by computing the mean and variance used for normalization from all of the summed inputs to the neurons in a layer on a single training case. Like batch normalization, we also give each neuron its own adaptive bias and gain which are applied after the normalization but before the non-linearity. Unlike batch normalization, layer normalization performs exactly the same computation at training and test times. It is also straightforward to apply to recurrent neural networks by computing the normalization statistics separately at each time step. Layer normalization is very effective at stabilizing the hidden state dynamics in recurrent networks. Empirically, we show that layer normalization can substantially reduce the training time compared with previously published techniques.
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings
The blind application of machine learning runs the risk of amplifying biases present in data. Such a danger is facing us with word embedding, a popular framework to represent text data as vectors which has been used in many machine learning and natural language processing tasks. We show that even word embeddings trained on Google News articles exhibit female/male gender stereotypes to a disturbing extent. This raises concerns because their widespread use, as we describe, often tends to amplify these biases. Geometrically, gender bias is first shown to be captured by a direction in the word embedding. Second, gender neutral words are shown to be linearly separable from gender definition words in the word embedding. Using these properties, we provide a methodology for modifying an embedding to remove gender stereotypes, such as the association between between the words receptionist and female, while maintaining desired associations such as between the words queen and female. We define metrics to quantify both direct and indirect gender biases in embeddings, and develop algorithms to "debias" the embedding. Using crowd-worker evaluation as well as standard benchmarks, we empirically demonstrate that our algorithms significantly reduce gender bias in embeddings while preserving the its useful properties such as the ability to cluster related concepts and to solve analogy tasks. The resulting embeddings can be used in applications without amplifying gender bias.
CGMOS: Certainty Guided Minority OverSampling
Handling imbalanced datasets is a challenging problem that if not treated correctly results in reduced classification performance. Imbalanced datasets are commonly handled using minority oversampling, whereas the SMOTE algorithm is a successful oversampling algorithm with numerous extensions. SMOTE extensions do not have a theoretical guarantee during training to work better than SMOTE and in many instances their performance is data dependent. In this paper we propose a novel extension to the SMOTE algorithm with a theoretical guarantee for improved classification performance. The proposed approach considers the classification performance of both the majority and minority classes. In the proposed approach CGMOS (Certainty Guided Minority OverSampling) new data points are added by considering certainty changes in the dataset. The paper provides a proof that the proposed algorithm is guaranteed to work better than SMOTE for training data. Further experimental results on 30 real-world datasets show that CGMOS works better than existing algorithms when using 6 different classifiers.
e-Distance Weighted Support Vector Regression
We propose a novel support vector regression approach called e-Distance Weighted Support Vector Regression (e-DWSVR).e-DWSVR specifically addresses two challenging issues in support vector regression: first, the process of noisy data; second, how to deal with the situation when the distribution of boundary data is different from that of the overall data. The proposed e-DWSVR optimizes the minimum margin and the mean of functional margin simultaneously to tackle these two issues. In addition, we use both dual coordinate descent (CD) and averaged stochastic gradient descent (ASGD) strategies to make e-DWSVR scalable to large scale problems. We report promising results obtained by e-DWSVR in comparison with existing methods on several benchmark datasets.
On the Use of Sparse Filtering for Covariate Shift Adaptation
In this paper we formally analyse the use of sparse filtering algorithms to perform covariate shift adaptation. We provide a theoretical analysis of sparse filtering by evaluating the conditions required to perform covariate shift adaptation. We prove that sparse filtering can perform adaptation only if the conditional distribution of the labels has a structure explained by a cosine metric. To overcome this limitation, we propose a new algorithm, named periodic sparse filtering, and carry out the same theoretical analysis regarding covariate shift adaptation. We show that periodic sparse filtering can perform adaptation under the looser and more realistic requirement that the conditional distribution of the labels has a periodic structure, which may be satisfied, for instance, by user-dependent data sets. We experimentally validate our theoretical results on synthetic data. Moreover, we apply periodic sparse filtering to real-world data sets to demonstrate that this simple and computationally efficient algorithm is able to achieve competitive performances.
Interactive Learning from Multiple Noisy Labels
Interactive learning is a process in which a machine learning algorithm is provided with meaningful, well-chosen examples as opposed to randomly chosen examples typical in standard supervised learning. In this paper, we propose a new method for interactive learning from multiple noisy labels where we exploit the disagreement among annotators to quantify the easiness (or meaningfulness) of an example. We demonstrate the usefulness of this method in estimating the parameters of a latent variable classification model, and conduct experimental analyses on a range of synthetic and benchmark datasets. Furthermore, we theoretically analyze the performance of perceptron in this interactive learning framework.
Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction
Sparse support vector machine (SVM) is a popular classification technique that can simultaneously learn a small set of the most interpretable features and identify the support vectors. It has achieved great successes in many real-world applications. However, for large-scale problems involving a huge number of samples and ultra-high dimensional features, solving sparse SVMs remains challenging. By noting that sparse SVMs induce sparsities in both feature and sample spaces, we propose a novel approach, which is based on accurate estimations of the primal and dual optima of sparse SVMs, to simultaneously identify the inactive features and samples that are guaranteed to be irrelevant to the outputs. Thus, we can remove the identified inactive samples and features from the training phase, leading to substantial savings in the computational cost without sacrificing the accuracy. Moreover, we show that our method can be extended to multi-class sparse support vector machines. To the best of our knowledge, the proposed method is the \emph{first} \emph{static} feature and sample reduction method for sparse SVMs and multi-class sparse SVMs. Experiments on both synthetic and real data sets demonstrate that our approach significantly outperforms state-of-the-art methods and the speedup gained by our approach can be orders of magnitude.
Impact of Physical Activity on Sleep:A Deep Learning Based Exploration
The importance of sleep is paramount for maintaining physical, emotional and mental wellbeing. Though the relationship between sleep and physical activity is known to be important, it is not yet fully understood. The explosion in popularity of actigraphy and wearable devices, provides a unique opportunity to understand this relationship. Leveraging this information source requires new tools to be developed to facilitate data-driven research for sleep and activity patient-recommendations. In this paper we explore the use of deep learning to build sleep quality prediction models based on actigraphy data. We first use deep learning as a pure model building device by performing human activity recognition (HAR) on raw sensor data, and using deep learning to build sleep prediction models. We compare the deep learning models with those build using classical approaches, i.e. logistic regression, support vector machines, random forest and adaboost. Secondly, we employ the advantage of deep learning with its ability to handle high dimensional datasets. We explore several deep learning models on the raw wearable sensor output without performing HAR or any other feature extraction. Our results show that using a convolutional neural network on the raw wearables output improves the predictive value of sleep quality from physical activity, by an additional 8% compared to state-of-the-art non-deep learning approaches, which itself shows a 15% improvement over current practice. Moreover, utilizing deep learning on raw data eliminates the need for data pre-processing and simplifies the overall workflow to analyze actigraphy data for sleep and physical activity research.
Spatio-Temporal LSTM with Trust Gates for 3D Human Action Recognition
3D action recognition - analysis of human actions based on 3D skeleton data - becomes popular recently due to its succinctness, robustness, and view-invariant representation. Recent attempts on this problem suggested to develop RNN-based learning methods to model the contextual dependency in the temporal domain. In this paper, we extend this idea to spatio-temporal domains to analyze the hidden sources of action-related information within the input data over both domains concurrently. Inspired by the graphical structure of the human skeleton, we further propose a more powerful tree-structure based traversal method. To handle the noise and occlusion in 3D skeleton data, we introduce new gating mechanism within LSTM to learn the reliability of the sequential input data and accordingly adjust its effect on updating the long-term context information stored in the memory cell. Our method achieves state-of-the-art performance on 4 challenging benchmark datasets for 3D human action analysis.
An Actor-Critic Algorithm for Sequence Prediction
We present an approach to training neural networks to generate sequences using actor-critic methods from reinforcement learning (RL). Current log-likelihood training methods are limited by the discrepancy between their training and testing modes, as models must generate tokens conditioned on their previous guesses rather than the ground-truth tokens. We address this problem by introducing a \textit{critic} network that is trained to predict the value of an output token, given the policy of an \textit{actor} network. This results in a training procedure that is much closer to the test phase, and allows us to directly optimize for a task-specific score such as BLEU. Crucially, since we leverage these techniques in the supervised learning setting rather than the traditional RL setting, we condition the critic network on the ground-truth output. We show that our method leads to improved performance on both a synthetic task, and for German-English machine translation. Our analysis paves the way for such methods to be applied in natural language generation tasks, such as machine translation, caption generation, and dialogue modelling.
Deep nets for local manifold learning
The problem of extending a function $f$ defined on a training data $\mathcal{C}$ on an unknown manifold $\mathbb{X}$ to the entire manifold and a tubular neighborhood of this manifold is considered in this paper. For $\mathbb{X}$ embedded in a high dimensional ambient Euclidean space $\mathbb{R}^D$, a deep learning algorithm is developed for finding a local coordinate system for the manifold {\bf without eigen--decomposition}, which reduces the problem to the classical problem of function approximation on a low dimensional cube. Deep nets (or multilayered neural networks) are proposed to accomplish this approximation scheme by using the training data. Our methods do not involve such optimization techniques as back--propagation, while assuring optimal (a priori) error bounds on the output in terms of the number of derivatives of the target function. In addition, these methods are universal, in that they do not require a prior knowledge of the smoothness of the target function, but adjust the accuracy of approximation locally and automatically, depending only upon the local smoothness of the target function. Our ideas are easily extended to solve both the pre--image problem and the out--of--sample extension problem, with a priori bounds on the growth of the function thus extended.
A Cross-Entropy-based Method to Perform Information-based Feature Selection
From a machine learning point of view, identifying a subset of relevant features from a real data set can be useful to improve the results achieved by classification methods and to reduce their time and space complexity. To achieve this goal, feature selection methods are usually employed. These approaches assume that the data contains redundant or irrelevant attributes that can be eliminated. In this work, we propose a novel algorithm to manage the optimization problem that is at the foundation of the Mutual Information feature selection methods. Furthermore, our novel approach is able to estimate automatically the number of dimensions to retain. The quality of our method is confirmed by the promising results achieved on standard real data sets.
Higher-Order Factorization Machines
Factorization machines (FMs) are a supervised learning approach that can use second-order feature combinations even when the data is very high-dimensional. Unfortunately, despite increasing interest in FMs, there exists to date no efficient training algorithm for higher-order FMs (HOFMs). In this paper, we present the first generic yet efficient algorithms for training arbitrary-order HOFMs. We also present new variants of HOFMs with shared parameters, which greatly reduce model size and prediction times while maintaining similar accuracy. We demonstrate the proposed approaches on four different link prediction tasks.
A Statistical Test for Joint Distributions Equivalence
We provide a distribution-free test that can be used to determine whether any two joint distributions $p$ and $q$ are statistically different by inspection of a large enough set of samples. Following recent efforts from Long et al. [1], we rely on joint kernel distribution embedding to extend the kernel two-sample test of Gretton et al. [2] to the case of joint probability distributions. Our main result can be directly applied to verify if a dataset-shift has occurred between training and test distributions in a learning framework, without further assuming the shift has occurred only in the input, in the target or in the conditional distribution.
Evaluating Link Prediction Accuracy on Dynamic Networks with Added and Removed Edges
The task of predicting future relationships in a social network, known as link prediction, has been studied extensively in the literature. Many link prediction methods have been proposed, ranging from common neighbors to probabilistic models. Recent work by Yang et al. has highlighted several challenges in evaluating link prediction accuracy. In dynamic networks where edges are both added and removed over time, the link prediction problem is more complex and involves predicting both newly added and newly removed edges. This results in new challenges in the evaluation of dynamic link prediction methods, and the recommendations provided by Yang et al. are no longer applicable, because they do not address edge removal. In this paper, we investigate several metrics currently used for evaluating accuracies of dynamic link prediction methods and demonstrate why they can be misleading in many cases. We provide several recommendations on evaluating dynamic link prediction accuracy, including separation into two categories of evaluation. Finally we propose a unified metric to characterize link prediction accuracy effectively using a single number.
Seeing the Forest from the Trees in Two Looks: Matrix Sketching by Cascaded Bilateral Sampling
Matrix sketching is aimed at finding close approximations of a matrix by factors of much smaller dimensions, which has important applications in optimization and machine learning. Given a matrix A of size m by n, state-of-the-art randomized algorithms take O(m * n) time and space to obtain its low-rank decomposition. Although quite useful, the need to store or manipulate the entire matrix makes it a computational bottleneck for truly large and dense inputs. Can we sketch an m-by-n matrix in O(m + n) cost by accessing only a small fraction of its rows and columns, without knowing anything about the remaining data? In this paper, we propose the cascaded bilateral sampling (CABS) framework to solve this problem. We start from demonstrating how the approximation quality of bilateral matrix sketching depends on the encoding powers of sampling. In particular, the sampled rows and columns should correspond to the code-vectors in the ground truth decompositions. Motivated by this analysis, we propose to first generate a pilot-sketch using simple random sampling, and then pursue more advanced, "follow-up" sampling on the pilot-sketch factors seeking maximal encoding powers. In this cascading process, the rise of approximation quality is shown to be lower-bounded by the improvement of encoding powers in the follow-up sampling step, thus theoretically guarantees the algorithmic boosting property. Computationally, our framework only takes linear time and space, and at the same time its performance rivals the quality of state-of-the-art algorithms consuming a quadratic amount of resources. Empirical evaluations on benchmark data fully demonstrate the potential of our methods in large scale matrix sketching and related areas.
gvnn: Neural Network Library for Geometric Computer Vision
We introduce gvnn, a neural network library in Torch aimed towards bridging the gap between classic geometric computer vision and deep learning. Inspired by the recent success of Spatial Transformer Networks, we propose several new layers which are often used as parametric transformations on the data in geometric computer vision. These layers can be inserted within a neural network much in the spirit of the original spatial transformers and allow backpropagation to enable end-to-end learning of a network involving any domain knowledge in geometric computer vision. This opens up applications in learning invariance to 3D geometric transformation for place recognition, end-to-end visual odometry, depth estimation and unsupervised learning through warping with a parametric transformation for image reconstruction error.
A Non-Parametric Control Chart For High Frequency Multivariate Data
Support Vector Data Description (SVDD) is a machine learning technique used for single class classification and outlier detection. SVDD based K-chart was first introduced by Sun and Tsung for monitoring multivariate processes when underlying distribution of process parameters or quality characteristics depart from Normality. The method first trains a SVDD model on data obtained from stable or in-control operations of the process to obtain a threshold $R^2$ and kernel center a. For each new observation, its Kernel distance from the Kernel center a is calculated. The kernel distance is compared against the threshold $R^2$ to determine if the observation is within the control limits. The non-parametric K-chart provides an attractive alternative to the traditional control charts such as the Hotelling's $T^2$ charts when distribution of the underlying multivariate data is either non-normal or is unknown. But there are challenges when K-chart is deployed in practice. The K-chart requires calculating kernel distance of each new observation but there are no guidelines on how to interpret the kernel distance plot and infer about shifts in process mean or changes in process variation. This limits the application of K-charts in big-data applications such as equipment health monitoring, where observations are generated at a very high frequency. In this scenario, the analyst using the K-chart is inundated with kernel distance results at a very high frequency, generally without any recourse for detecting presence of any assignable causes of variation. We propose a new SVDD based control chart, called as $K_T$ chart, which addresses challenges encountered when using K-chart for big-data applications. The $K_T$ charts can be used to simultaneously track process variation and central tendency. We illustrate the successful use of $K_T$ chart using the Tennessee Eastman process data.
Deepr: A Convolutional Net for Medical Records
Feature engineering remains a major bottleneck when creating predictive systems from electronic medical records. At present, an important missing element is detecting predictive regular clinical motifs from irregular episodic records. We present Deepr (short for Deep record), a new end-to-end deep learning system that learns to extract features from medical records and predicts future risk automatically. Deepr transforms a record into a sequence of discrete elements separated by coded time gaps and hospital transfers. On top of the sequence is a convolutional neural net that detects and combines predictive local clinical motifs to stratify the risk. Deepr permits transparent inspection and visualization of its inner working. We validate Deepr on hospital data to predict unplanned readmission after discharge. Deepr achieves superior accuracy compared to traditional techniques, detects meaningful clinical motifs, and uncovers the underlying structure of the disease and intervention space.
On the Resistance of Nearest Neighbor to Random Noisy Labels
Nearest neighbor has always been one of the most appealing non-parametric approaches in machine learning, pattern recognition, computer vision, etc. Previous empirical studies partly shows that nearest neighbor is resistant to noise, yet there is a lack of deep analysis. This work presents the finite-sample and distribution-dependent bounds on the consistency of nearest neighbor in the random noise setting. The theoretical results show that, for asymmetric noises, k-nearest neighbor is robust enough to classify most data correctly, except for a handful of examples, whose labels are totally misled by random noises. For symmetric noises, however, k-nearest neighbor achieves the same consistent rate as that of noise-free setting, which verifies the resistance of k-nearest neighbor to random noisy labels. Motivated by the theoretical analysis, we propose the Robust k-Nearest Neighbor (RkNN) approach to deal with noisy labels. The basic idea is to make unilateral corrections to examples, whose labels are totally misled by random noises, and classify the others directly by utilizing the robustness of k-nearest neighbor. We verify the effectiveness of the proposed algorithm both theoretically and empirically.
Simultaneous Estimation of Noise Variance and Number of Peaks in Bayesian Spectral Deconvolution
The heuristic identification of peaks from noisy complex spectra often leads to misunderstanding of the physical and chemical properties of matter. In this paper, we propose a framework based on Bayesian inference, which enables us to separate multipeak spectra into single peaks statistically and consists of two steps. The first step is estimating both the noise variance and the number of peaks as hyperparameters based on Bayes free energy, which generally is not analytically tractable. The second step is fitting the parameters of each peak function to the given spectrum by calculating the posterior density, which has a problem of local minima and saddles since multipeak models are nonlinear and hierarchical. Our framework enables the escape from local minima or saddles by using the exchange Monte Carlo method and calculates Bayes free energy via the multiple histogram method. We discuss a simulation demonstrating how efficient our framework is and show that estimating both the noise variance and the number of peaks prevents overfitting, overpenalizing, and misunderstanding the precision of parameter estimation.
Adaptive Nonnegative Matrix Factorization and Measure Comparisons for Recommender Systems
The Nonnegative Matrix Factorization (NMF) of the rating matrix has shown to be an effective method to tackle the recommendation problem. In this paper we propose new methods based on the NMF of the rating matrix and we compare them with some classical algorithms such as the SVD and the regularized and unregularized non-negative matrix factorization approach. In particular a new algorithm is obtained changing adaptively the function to be minimized at each step, realizing a sort of dynamic prior strategy. Another algorithm is obtained modifying the function to be minimized in the NMF formulation by enforcing the reconstruction of the unknown ratings toward a prior term. We then combine different methods obtaining two mixed strategies which turn out to be very effective in the reconstruction of missing observations. We perform a thoughtful comparison of different methods on the basis of several evaluation measures. We consider in particular rating, classification and ranking measures showing that the algorithm obtaining the best score for a given measure is in general the best also when different measures are considered, lowering the interest in designing specific evaluation measures. The algorithms have been tested on different datasets, in particular the 1M, and 10M MovieLens datasets containing ratings on movies, the Jester dataset with ranting on jokes and Amazon Fine Foods dataset with ratings on foods. The comparison of the different algorithms, shows the good performance of methods employing both an explicit and an implicit regularization scheme. Moreover we can get a boost by mixed strategies combining a fast method with a more accurate one.
Learning Null Space Projections in Operational Space Formulation
In recent years, a number of tools have become available that recover the underlying control policy from constrained movements. However, few have explicitly considered learning the constraints of the motion and ways to cope with unknown environment. In this paper, we consider learning the null space projection matrix of a kinematically constrained system in the absence of any prior knowledge either on the underlying policy, the geometry, or dimensionality of the constraints. Our evaluations have demonstrated the effectiveness of the proposed approach on problems of differing dimensionality, and with different degrees of non-linearity.
The Price of Anarchy in Auctions
This survey outlines a general and modular theory for proving approximation guarantees for equilibria of auctions in complex settings. This theory complements traditional economic techniques, which generally focus on exact and optimal solutions and are accordingly limited to relatively stylized settings. We highlight three user-friendly analytical tools: smoothness-type inequalities, which immediately yield approximation guarantees for many auction formats of interest in the special case of complete information and deterministic strategies; extension theorems, which extend such guarantees to randomized strategies, no-regret learning outcomes, and incomplete-information settings; and composition theorems, which extend such guarantees from simpler to more complex auctions. Combining these tools yields tight worst-case approximation guarantees for the equilibria of many widely-used auction formats.
Hierarchical Multi-resolution Mesh Networks for Brain Decoding
We propose a new framework, called Hierarchical Multi-resolution Mesh Networks (HMMNs), which establishes a set of brain networks at multiple time resolutions of fMRI signal to represent the underlying cognitive process. The suggested framework, first, decomposes the fMRI signal into various frequency subbands using wavelet transforms. Then, a brain network, called mesh network, is formed at each subband by ensembling a set of local meshes. The locality around each anatomic region is defined with respect to a neighborhood system based on functional connectivity. The arc weights of a mesh are estimated by ridge regression formed among the average region time series. In the final step, the adjacency matrices of mesh networks obtained at different subbands are ensembled for brain decoding under a hierarchical learning architecture, called, fuzzy stacked generalization (FSG). Our results on Human Connectome Project task-fMRI dataset reflect that the suggested HMMN model can successfully discriminate tasks by extracting complementary information obtained from mesh arc weights of multiple subbands. We study the topological properties of the mesh networks at different resolutions using the network measures, namely, node degree, node strength, betweenness centrality and global efficiency; and investigate the connectivity of anatomic regions, during a cognitive task. We observe significant variations among the network topologies obtained for different subbands. We, also, analyze the diversity properties of classifier ensemble, trained by the mesh networks in multiple subbands and observe that the classifiers in the ensemble collaborate with each other to fuse the complementary information freed at each subband. We conclude that the fMRI data, recorded during a cognitive task, embed diverse information across the anatomic regions at each resolution.
Machine Learning in Falls Prediction; A cognition-based predictor of falls for the acute neurological in-patient population
Background Information: Falls are associated with high direct and indirect costs, and significant morbidity and mortality for patients. Pathological falls are usually a result of a compromised motor system, and/or cognition. Very little research has been conducted on predicting falls based on this premise. Aims: To demonstrate that cognitive and motor tests can be used to create a robust predictive tool for falls. Methods: Three tests of attention and executive function (Stroop, Trail Making, and Semantic Fluency), a measure of physical function (Walk-12), a series of questions (concerning recent falls, surgery and physical function) and demographic information were collected from a cohort of 323 patients at a tertiary neurological center. The principal outcome was a fall during the in-patient stay (n = 54). Data-driven, predictive modelling was employed to identify the statistical modelling strategies which are most accurate in predicting falls, and which yield the most parsimonious models of clinical relevance. Results: The Trail test was identified as the best predictor of falls. Moreover, addition of any others variables, to the results of the Trail test did not improve the prediction (Wilcoxon signed-rank p < .001). The best statistical strategy for predicting falls was the random forest (Wilcoxon signed-rank p < .001), based solely on results of the Trail test. Tuning of the model results in the following optimized values: 68% (+- 7.7) sensitivity, 90% (+- 2.3) specificity, with a positive predictive value of 60%, when the relevant data is available. Conclusion: Predictive modelling has identified a simple yet powerful machine learning prediction strategy based on a single clinical test, the Trail test. Predictive evaluation shows this strategy to be robust, suggesting predictive modelling and machine learning as the standard for future predictive tools.
Focused Model-Learning and Planning for Non-Gaussian Continuous State-Action Systems
We introduce a framework for model learning and planning in stochastic domains with continuous state and action spaces and non-Gaussian transition models. It is efficient because (1) local models are estimated only when the planner requires them; (2) the planner focuses on the most relevant states to the current planning problem; and (3) the planner focuses on the most informative and/or high-value actions. Our theoretical analysis shows the validity and asymptotic optimality of the proposed approach. Empirically, we demonstrate the effectiveness of our algorithm on a simulated multi-modal pushing problem.
Error-Resilient Machine Learning in Near Threshold Voltage via Classifier Ensemble
In this paper, we present the design of error-resilient machine learning architectures by employing a distributed machine learning framework referred to as classifier ensemble (CE). CE combines several simple classifiers to obtain a strong one. In contrast, centralized machine learning employs a single complex block. We compare the random forest (RF) and the support vector machine (SVM), which are representative techniques from the CE and centralized frameworks, respectively. Employing the dataset from UCI machine learning repository and architectural-level error models in a commercial 45 nm CMOS process, it is demonstrated that RF-based architectures are significantly more robust than SVM architectures in presence of timing errors due to process variations in near-threshold voltage (NTV) regions (0.3 V - 0.7 V). In particular, the RF architecture exhibits a detection accuracy (P_{det}) that varies by 3.2% while maintaining a median P_{det} > 0.9 at a gate level delay variation of 28.9% . In comparison, SVM exhibits a P_{det} that varies by 16.8%. Additionally, we propose an error weighted voting technique that incorporates the timing error statistics of the NTV circuit fabric to further enhance robustness. Simulation results confirm that the error weighted voting achieves a P_{det} that varies by only 1.4%, which is 12X lower compared to SVM.
Prediction of future hospital admissions - what is the tradeoff between specificity and accuracy?
Large amounts of electronic medical records collected by hospitals across the developed world offer unprecedented possibilities for knowledge discovery using computer based data mining and machine learning. Notwithstanding significant research efforts, the use of this data in the prediction of disease development has largely been disappointing. In this paper we examine in detail a recently proposed method which has in preliminary experiments demonstrated highly promising results on real-world data. We scrutinize the authors' claims that the proposed model is scalable and investigate whether the tradeoff between prediction specificity (i.e. the ability of the model to predict a wide number of different ailments) and accuracy (i.e. the ability of the model to make the correct prediction) is practically viable. Our experiments conducted on a data corpus of nearly 3,000,000 admissions support the authors' expectations and demonstrate that the high prediction accuracy is maintained well even when the number of admission types explicitly included in the model is increased to account for 98% of all admissions in the corpus. Thus several promising directions for future work are highlighted.
First Efficient Convergence for Streaming k-PCA: a Global, Gap-Free, and Near-Optimal Rate
We study streaming principal component analysis (PCA), that is to find, in $O(dk)$ space, the top $k$ eigenvectors of a $d\times d$ hidden matrix $\bf \Sigma$ with online vectors drawn from covariance matrix $\bf \Sigma$. We provide $\textit{global}$ convergence for Oja's algorithm which is popularly used in practice but lacks theoretical understanding for $k>1$. We also provide a modified variant $\mathsf{Oja}^{++}$ that runs $\textit{even faster}$ than Oja's. Our results match the information theoretic lower bound in terms of dependency on error, on eigengap, on rank $k$, and on dimension $d$, up to poly-log factors. In addition, our convergence rate can be made gap-free, that is proportional to the approximation error and independent of the eigengap. In contrast, for general rank $k$, before our work (1) it was open to design any algorithm with efficient global convergence rate; and (2) it was open to design any algorithm with (even local) gap-free convergence rate in $O(dk)$ space.
Product Offerings in Malicious Hacker Markets
Marketplaces specializing in malicious hacking products - including malware and exploits - have recently become more prominent on the darkweb and deepweb. We scrape 17 such sites and collect information about such products in a unified database schema. Using a combination of manual labeling and unsupervised clustering, we examine a corpus of products in order to understand their various categories and how they become specialized with respect to vendor and marketplace. This initial study presents how we effectively employed unsupervised techniques to this data as well as the types of insights we gained on various categories of malicious hacking products.
A Sensorimotor Reinforcement Learning Framework for Physical Human-Robot Interaction
Modeling of physical human-robot collaborations is generally a challenging problem due to the unpredictive nature of human behavior. To address this issue, we present a data-efficient reinforcement learning framework which enables a robot to learn how to collaborate with a human partner. The robot learns the task from its own sensorimotor experiences in an unsupervised manner. The uncertainty of the human actions is modeled using Gaussian processes (GP) to implement action-value functions. Optimal action selection given the uncertain GP model is ensured by Bayesian optimization. We apply the framework to a scenario in which a human and a PR2 robot jointly control the ball position on a plank based on vision and force/torque data. Our experimental results show the suitability of the proposed method in terms of fast and data-efficient model learning, optimal action selection under uncertainties and equal role sharing between the partners.
Using Kernel Methods and Model Selection for Prediction of Preterm Birth
We describe an application of machine learning to the problem of predicting preterm birth. We conduct a secondary analysis on a clinical trial dataset collected by the National In- stitute of Child Health and Human Development (NICHD) while focusing our attention on predicting different classes of preterm birth. We compare three approaches for deriving predictive models: a support vector machine (SVM) approach with linear and non-linear kernels, logistic regression with different model selection along with a model based on decision rules prescribed by physician experts for prediction of preterm birth. Our approach highlights the pre-processing methods applied to handle the inherent dynamics, noise and gaps in the data and describe techniques used to handle skewed class distributions. Empirical experiments demonstrate significant improvement in predicting preterm birth compared to past work.
Learning of Generalized Low-Rank Models: A Greedy Approach
Learning of low-rank matrices is fundamental to many machine learning applications. A state-of-the-art algorithm is the rank-one matrix pursuit (R1MP). However, it can only be used in matrix completion problems with the square loss. In this paper, we develop a more flexible greedy algorithm for generalized low-rank models whose optimization objective can be smooth or nonsmooth, general convex or strongly convex. The proposed algorithm has low per-iteration time complexity and fast convergence rate. Experimental results show that it is much faster than the state-of-the-art, with comparable or even better prediction performance.
CNN-based Patch Matching for Optical Flow with Thresholded Hinge Embedding Loss
Learning based approaches have not yet achieved their full potential in optical flow estimation, where their performance still trails heuristic approaches. In this paper, we present a CNN based patch matching approach for optical flow estimation. An important contribution of our approach is a novel thresholded loss for Siamese networks. We demonstrate that our loss performs clearly better than existing losses. It also allows to speed up training by a factor of 2 in our tests. Furthermore, we present a novel way for calculating CNN based features for different image scales, which performs better than existing methods. We also discuss new ways of evaluating the robustness of trained features for the application of patch matching for optical flow. An interesting discovery in our paper is that low-pass filtering of feature maps can increase the robustness of features created by CNNs. We proved the competitive performance of our approach by submitting it to the KITTI 2012, KITTI 2015 and MPI-Sintel evaluation portals where we obtained state-of-the-art results on all three datasets.
Improving Semantic Embedding Consistency by Metric Learning for Zero-Shot Classification
This paper addresses the task of zero-shot image classification. The key contribution of the proposed approach is to control the semantic embedding of images -- one of the main ingredients of zero-shot learning -- by formulating it as a metric learning problem. The optimized empirical criterion associates two types of sub-task constraints: metric discriminating capacity and accurate attribute prediction. This results in a novel expression of zero-shot learning not requiring the notion of class in the training phase: only pairs of image/attributes, augmented with a consistency indicator, are given as ground truth. At test time, the learned model can predict the consistency of a test image with a given set of attributes , allowing flexible ways to produce recognition inferences. Despite its simplicity, the proposed approach gives state-of-the-art results on four challenging datasets used for zero-shot recognition evaluation.
Network-Guided Biomarker Discovery
Identifying measurable genetic indicators (or biomarkers) of a specific condition of a biological system is a key element of precision medicine. Indeed it allows to tailor diagnostic, prognostic and treatment choice to individual characteristics of a patient. In machine learning terms, biomarker discovery can be framed as a feature selection problem on whole-genome data sets. However, classical feature selection methods are usually underpowered to process these data sets, which contain orders of magnitude more features than samples. This can be addressed by making the assumption that genetic features that are linked on a biological network are more likely to work jointly towards explaining the phenotype of interest. We review here three families of methods for feature selection that integrate prior knowledge in the form of networks.
Convolutional Neural Networks Analyzed via Convolutional Sparse Coding
Convolutional neural networks (CNN) have led to many state-of-the-art results spanning through various fields. However, a clear and profound theoretical understanding of the forward pass, the core algorithm of CNN, is still lacking. In parallel, within the wide field of sparse approximation, Convolutional Sparse Coding (CSC) has gained increasing attention in recent years. A theoretical study of this model was recently conducted, establishing it as a reliable and stable alternative to the commonly practiced patch-based processing. Herein, we propose a novel multi-layer model, ML-CSC, in which signals are assumed to emerge from a cascade of CSC layers. This is shown to be tightly connected to CNN, so much so that the forward pass of the CNN is in fact the thresholding pursuit serving the ML-CSC model. This connection brings a fresh view to CNN, as we are able to attribute to this architecture theoretical claims such as uniqueness of the representations throughout the network, and their stable estimation, all guaranteed under simple local sparsity conditions. Lastly, identifying the weaknesses in the above pursuit scheme, we propose an alternative to the forward pass, which is connected to deconvolutional, recurrent and residual networks, and has better theoretical guarantees.
Diagnostic Prediction Using Discomfort Drawings with IBTM
In this paper, we explore the possibility to apply machine learning to make diagnostic predictions using discomfort drawings. A discomfort drawing is an intuitive way for patients to express discomfort and pain related symptoms. These drawings have proven to be an effective method to collect patient data and make diagnostic decisions in real-life practice. A dataset from real-world patient cases is collected for which medical experts provide diagnostic labels. Next, we use a factorized multimodal topic model, Inter-Battery Topic Model (IBTM), to train a system that can make diagnostic predictions given an unseen discomfort drawing. The number of output diagnostic labels is determined by using mean-shift clustering on the discomfort drawing. Experimental results show reasonable predictions of diagnostic labels given an unseen discomfort drawing. Additionally, we generate synthetic discomfort drawings with IBTM given a diagnostic label, which results in typical cases of symptoms. The positive result indicates a significant potential of machine learning to be used for parts of the pain diagnostic process and to be a decision support system for physicians and other health care personnel.
Stochastic Frank-Wolfe Methods for Nonconvex Optimization
We study Frank-Wolfe methods for nonconvex stochastic and finite-sum optimization problems. Frank-Wolfe methods (in the convex case) have gained tremendous recent interest in machine learning and optimization communities due to their projection-free property and their ability to exploit structured constraints. However, our understanding of these algorithms in the nonconvex setting is fairly limited. In this paper, we propose nonconvex stochastic Frank-Wolfe methods and analyze their convergence properties. For objective functions that decompose into a finite-sum, we leverage ideas from variance reduction techniques for convex optimization to obtain new variance reduced nonconvex Frank-Wolfe methods that have provably faster convergence than the classical Frank-Wolfe method. Finally, we show that the faster convergence rates of our variance reduced methods also translate into improved convergence rates for the stochastic setting.
Mammalian Value Systems
Characterizing human values is a topic deeply interwoven with the sciences, humanities, art, and many other human endeavors. In recent years, a number of thinkers have argued that accelerating trends in computer science, cognitive science, and related disciplines foreshadow the creation of intelligent machines which meet and ultimately surpass the cognitive abilities of human beings, thereby entangling an understanding of human values with future technological development. Contemporary research accomplishments suggest sophisticated AI systems becoming widespread and responsible for managing many aspects of the modern world, from preemptively planning users' travel schedules and logistics, to fully autonomous vehicles, to domestic robots assisting in daily living. The extrapolation of these trends has been most forcefully described in the context of a hypothetical "intelligence explosion," in which the capabilities of an intelligent software agent would rapidly increase due to the presence of feedback loops unavailable to biological organisms. The possibility of superintelligent agents, or simply the widespread deployment of sophisticated, autonomous AI systems, highlights an important theoretical problem: the need to separate the cognitive and rational capacities of an agent from the fundamental goal structure, or value system, which constrains and guides the agent's actions. The "value alignment problem" is to specify a goal structure for autonomous agents compatible with human values. In this brief article, we suggest that recent ideas from affective neuroscience and related disciplines aimed at characterizing neurological and behavioral universals in the mammalian class provide important conceptual foundations relevant to describing human values. We argue that the notion of "mammalian value systems" points to a potential avenue for fundamental research in AI safety and AI ethics.
Efficient Hyperparameter Optimization of Deep Learning Algorithms Using Deterministic RBF Surrogates
Automatically searching for optimal hyperparameter configurations is of crucial importance for applying deep learning algorithms in practice. Recently, Bayesian optimization has been proposed for optimizing hyperparameters of various machine learning algorithms. Those methods adopt probabilistic surrogate models like Gaussian processes to approximate and minimize the validation error function of hyperparameter values. However, probabilistic surrogates require accurate estimates of sufficient statistics (e.g., covariance) of the error distribution and thus need many function evaluations with a sizeable number of hyperparameters. This makes them inefficient for optimizing hyperparameters of deep learning algorithms, which are highly expensive to evaluate. In this work, we propose a new deterministic and efficient hyperparameter optimization method that employs radial basis functions as error surrogates. The proposed mixed integer algorithm, called HORD, searches the surrogate for the most promising hyperparameter values through dynamic coordinate search and requires many fewer function evaluations. HORD does well in low dimensions but it is exceptionally better in higher dimensions. Extensive evaluations on MNIST and CIFAR-10 for four deep neural networks demonstrate HORD significantly outperforms the well-established Bayesian optimization methods such as GP, SMAC, and TPE. For instance, on average, HORD is more than 6 times faster than GP-EI in obtaining the best configuration of 19 hyperparameters.
Randomised Algorithm for Feature Selection and Classification
We here introduce a novel classification approach adopted from the nonlinear model identification framework, which jointly addresses the feature selection and classifier design tasks. The classifier is constructed as a polynomial expansion of the original attributes and a model structure selection process is applied to find the relevant terms of the model. The selection method progressively refines a probability distribution defined on the model structure space, by extracting sample models from the current distribution and using the aggregate information obtained from the evaluation of the population of models to reinforce the probability of extracting the most important terms. To reduce the initial search space, distance correlation filtering can be applied as a preprocessing technique. The proposed method is evaluated and compared to other well-known feature selection and classification methods on standard benchmark classification problems. The results show the effectiveness of the proposed method with respect to competitor methods both in terms of classification accuracy and model complexity. The obtained models have a simple structure, easily amenable to interpretation and analysis.
Kernel functions based on triplet comparisons
Given only information in the form of similarity triplets "Object A is more similar to object B than to object C" about a data set, we propose two ways of defining a kernel function on the data set. While previous approaches construct a low-dimensional Euclidean embedding of the data set that reflects the given similarity triplets, we aim at defining kernel functions that correspond to high-dimensional embeddings. These kernel functions can subsequently be used to apply any kernel method to the data set.
Attribute Learning for Network Intrusion Detection
Network intrusion detection is one of the most visible uses for Big Data analytics. One of the main problems in this application is the constant rise of new attacks. This scenario, characterized by the fact that not enough labeled examples are available for the new classes of attacks is hardly addressed by traditional machine learning approaches. New findings on the capabilities of Zero-Shot learning (ZSL) approach makes it an interesting solution for this problem because it has the ability to classify instances of unseen classes. ZSL has inherently two stages: the attribute learning and the inference stage. In this paper we propose a new algorithm for the attribute learning stage of ZSL. The idea is to learn new values for the attributes based on decision trees (DT). Our results show that based on the rules extracted from the DT a better distribution for the attribute values can be found. We also propose an experimental setup for the evaluation of ZSL on network intrusion detection (NID).
A Non-Parametric Learning Approach to Identify Online Human Trafficking
Human trafficking is among the most challenging law enforcement problems which demands persistent fight against from all over the globe. In this study, we leverage readily available data from the website "Backpage"-- used for classified advertisement-- to discern potential patterns of human trafficking activities which manifest online and identify most likely trafficking related advertisements. Due to the lack of ground truth, we rely on two human analysts --one human trafficking victim survivor and one from law enforcement, for hand-labeling the small portion of the crawled data. We then present a semi-supervised learning approach that is trained on the available labeled and unlabeled data and evaluated on unseen data with further verification of experts.
TopicResponse: A Marriage of Topic Modelling and Rasch Modelling for Automatic Measurement in MOOCs
This paper explores the suitability of using automatically discovered topics from MOOC discussion forums for modelling students' academic abilities. The Rasch model from psychometrics is a popular generative probabilistic model that relates latent student skill, latent item difficulty, and observed student-item responses within a principled, unified framework. According to scholarly educational theory, discovered topics can be regarded as appropriate measurement items if (1) students' participation across the discovered topics is well fit by the Rasch model, and if (2) the topics are interpretable to subject-matter experts as being educationally meaningful. Such Rasch-scaled topics, with associated difficulty levels, could be of potential benefit to curriculum refinement, student assessment and personalised feedback. The technical challenge that remains, is to discover meaningful topics that simultaneously achieve good statistical fit with the Rasch model. To address this challenge, we combine the Rasch model with non-negative matrix factorisation based topic modelling, jointly fitting both models. We demonstrate the suitability of our approach with quantitative experiments on data from three Coursera MOOCs, and with qualitative survey results on topic interpretability on a Discrete Optimisation MOOC.
Cognitive Science in the era of Artificial Intelligence: A roadmap for reverse-engineering the infant language-learner
During their first years of life, infants learn the language(s) of their environment at an amazing speed despite large cross cultural variations in amount and complexity of the available language input. Understanding this simple fact still escapes current cognitive and linguistic theories. Recently, spectacular progress in the engineering science, notably, machine learning and wearable technology, offer the promise of revolutionizing the study of cognitive development. Machine learning offers powerful learning algorithms that can achieve human-like performance on many linguistic tasks. Wearable sensors can capture vast amounts of data, which enable the reconstruction of the sensory experience of infants in their natural environment. The project of 'reverse engineering' language development, i.e., of building an effective system that mimics infant's achievements appears therefore to be within reach. Here, we analyze the conditions under which such a project can contribute to our scientific understanding of early language development. We argue that instead of defining a sub-problem or simplifying the data, computational models should address the full complexity of the learning situation, and take as input the raw sensory signals available to infants. This implies that (1) accessible but privacy-preserving repositories of home data be setup and widely shared, and (2) models be evaluated at different linguistic levels through a benchmark of psycholinguist tests that can be passed by machines and humans alike, (3) linguistically and psychologically plausible learning architectures be scaled up to real data using probabilistic/optimization principles from machine learning. We discuss the feasibility of this approach and present preliminary results.
Polynomial Networks and Factorization Machines: New Insights and Efficient Training Algorithms
Polynomial networks and factorization machines are two recently-proposed models that can efficiently use feature interactions in classification and regression tasks. In this paper, we revisit both models from a unified perspective. Based on this new view, we study the properties of both models and propose new efficient training algorithms. Key to our approach is to cast parameter learning as a low-rank symmetric tensor estimation problem, which we solve by multi-convex optimization. We demonstrate our approach on regression and recommender system tasks.
Exponentially fast convergence to (strict) equilibrium via hedging
Motivated by applications to data networks where fast convergence is essential, we analyze the problem of learning in generic N-person games that admit a Nash equilibrium in pure strategies. Specifically, we consider a scenario where players interact repeatedly and try to learn from past experience by small adjustments based on local - and possibly imperfect - payoff information. For concreteness, we focus on the so-called "hedge" variant of the exponential weights algorithm where players select an action with probability proportional to the exponential of the action's cumulative payoff over time. When players have perfect information on their mixed payoffs, the algorithm converges locally to a strict equilibrium and the rate of convergence is exponentially fast - of the order of $\mathcal{O}(\exp(-a\sum_{j=1}^{t}\gamma_{j}))$ where $a>0$ is a constant and $\gamma_{j}$ is the algorithm's step-size. In the presence of uncertainty, convergence requires a more conservative step-size policy, but with high probability, the algorithm remains locally convergent and achieves an exponential convergence rate.