title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Deep API Programmer: Learning to Program with APIs
We present DAPIP, a Programming-By-Example system that learns to program with APIs to perform data transformation tasks. We design a domain-specific language (DSL) that allows for arbitrary concatenations of API outputs and constant strings. The DSL consists of three family of APIs: regular expression-based APIs, lookup APIs, and transformation APIs. We then present a novel neural synthesis algorithm to search for programs in the DSL that are consistent with a given set of examples. The search algorithm uses recently introduced neural architectures to encode input-output examples and to model the program search in the DSL. We show that synthesis algorithm outperforms baseline methods for synthesizing programs on both synthetic and real-world benchmarks.
Cross-media Similarity Metric Learning with Unified Deep Networks
As a highlighting research topic in the multimedia area, cross-media retrieval aims to capture the complex correlations among multiple media types. Learning better shared representation and distance metric for multimedia data is important to boost the cross-media retrieval. Motivated by the strong ability of deep neural network in feature representation and comparison functions learning, we propose the Unified Network for Cross-media Similarity Metric (UNCSM) to associate cross-media shared representation learning with distance metric in a unified framework. First, we design a two-pathway deep network pretrained with contrastive loss, and employ double triplet similarity loss for fine-tuning to learn the shared representation for each media type by modeling the relative semantic similarity. Second, the metric network is designed for effectively calculating the cross-media similarity of the shared representation, by modeling the pairwise similar and dissimilar constraints. Compared to the existing methods which mostly ignore the dissimilar constraints and only use sample distance metric as Euclidean distance separately, our UNCSM approach unifies the representation learning and distance metric to preserve the relative similarity as well as embrace more complex similarity functions for further improving the cross-media retrieval accuracy. The experimental results show that our UNCSM approach outperforms 8 state-of-the-art methods on 4 widely-used cross-media datasets.
Learning a collaborative multiscale dictionary based on robust empirical mode decomposition
Dictionary learning is a challenge topic in many image processing areas. The basic goal is to learn a sparse representation from an overcomplete basis set. Due to combining the advantages of generic multiscale representations with learning based adaptivity, multiscale dictionary representation approaches have the power in capturing structural characteristics of natural images. However, existing multiscale learning approaches still suffer from three main weaknesses: inadaptability to diverse scales of image data, sensitivity to noise and outliers, difficulty to determine optimal dictionary structure. In this paper, we present a novel multiscale dictionary learning paradigm for sparse image representations based on an improved empirical mode decomposition. This powerful data-driven analysis tool for multi-dimensional signal can fully adaptively decompose the image into multiscale oscillating components according to intrinsic modes of data self. This treatment can obtain a robust and effective sparse representation, and meanwhile generates a raw base dictionary at multiple geometric scales and spatial frequency bands. This dictionary is refined by selecting optimal oscillating atoms based on frequency clustering. In order to further enhance sparsity and generalization, a tolerance dictionary is learned using a coherence regularized model. A fast proximal scheme is developed to optimize this model. The multiscale dictionary is considered as the product of oscillating dictionary and tolerance dictionary. Experimental results demonstrate that the proposed learning approach has the superior performance in sparse image representations as compared with several competing methods. We also show the promising results in image denoising application.
Optimizing Differentiable Relaxations of Coreference Evaluation Metrics
Coreference evaluation metrics are hard to optimize directly as they are non-differentiable functions, not easily decomposable into elementary decisions. Consequently, most approaches optimize objectives only indirectly related to the end goal, resulting in suboptimal performance. Instead, we propose a differentiable relaxation that lends itself to gradient-based optimisation, thus bypassing the need for reinforcement learning or heuristic modification of cross-entropy. We show that by modifying the training objective of a competitive neural coreference system, we obtain a substantial gain in performance. This suggests that our approach can be regarded as a viable alternative to using reinforcement learning or more computationally expensive imitation learning.
Liquid Splash Modeling with Neural Networks
This paper proposes a new data-driven approach to model detailed splashes for liquid simulations with neural networks. Our model learns to generate small-scale splash detail for the fluid-implicit-particle method using training data acquired from physically parametrized, high resolution simulations. We use neural networks to model the regression of splash formation using a classifier together with a velocity modifier. For the velocity modification, we employ a heteroscedastic model. We evaluate our method for different spatial scales, simulation setups, and solvers. Our simulation results demonstrate that our model significantly improves visual fidelity with a large amount of realistic droplet formation and yields splash detail much more efficiently than finer discretizations.
On Generalized Bellman Equations and Temporal-Difference Learning
We consider off-policy temporal-difference (TD) learning in discounted Markov decision processes, where the goal is to evaluate a policy in a model-free way by using observations of a state process generated without executing the policy. To curb the high variance issue in off-policy TD learning, we propose a new scheme of setting the $\lambda$-parameters of TD, based on generalized Bellman equations. Our scheme is to set $\lambda$ according to the eligibility trace iterates calculated in TD, thereby easily keeping these traces in a desired bounded range. Compared with prior work, this scheme is more direct and flexible, and allows much larger $\lambda$ values for off-policy TD learning with bounded traces. As to its soundness, using Markov chain theory, we prove the ergodicity of the joint state-trace process under nonrestrictive conditions, and we show that associated with our scheme is a generalized Bellman equation (for the policy to be evaluated) that depends on both the evolution of $\lambda$ and the unique invariant probability measure of the state-trace process. These results not only lead immediately to a characterization of the convergence behavior of least-squares based implementation of our scheme, but also prepare the ground for further analysis of gradient-based implementations.
Lean From Thy Neighbor: Stochastic & Adversarial Bandits in a Network
An individual's decisions are often guided by those of his or her peers, i.e., neighbors in a social network. Presumably, being privy to the experiences of others aids in learning and decision making, but how much advantage does an individual gain by observing her neighbors? Such problems make appearances in sociology and economics and, in this paper, we present a novel model to capture such decision-making processes and appeal to the classical multi-armed bandit framework to analyze it. Each individual, in addition to her own actions, can observe the actions and rewards obtained by her neighbors, and can use all of this information in order to minimize her own regret. We provide algorithms for this setting, both for stochastic and adversarial bandits, and show that their regret smoothly interpolates between the regret in the classical bandit setting and that of the full-information setting as a function of the neighbors' exploration. In the stochastic setting the additional information must simply be incorporated into the usual estimation of the rewards, while in the adversarial setting this is attained by constructing a new unbiased estimator for the rewards and appropriately bounding the amount of additional information provided by the neighbors. These algorithms are optimal up to log factors; despite the fact that the agents act independently and selfishly, this implies that it is an approximate Nash equilibria for all agents to use our algorithms. Further, we show via empirical simulations that our algorithms, often significantly, outperform existing algorithms that one could apply to this setting.
Hierarchic Kernel Recursive Least-Squares
We present a new kernel-based algorithm for modeling evenly distributed multidimensional datasets that does not rely on input space sparsification. The presented method reorganizes the typical single-layer kernel-based model into a deep hierarchical structure, such that the weights of a kernel model over each dimension are modeled over its adjacent dimension. We show that modeling weights in the suggested structure leads to significant computational speedup and improved modeling accuracy.
On the Gap Between Strict-Saddles and True Convexity: An Omega(log d) Lower Bound for Eigenvector Approximation
We prove a \emph{query complexity} lower bound on rank-one principal component analysis (PCA). We consider an oracle model where, given a symmetric matrix $M \in \mathbb{R}^{d \times d}$, an algorithm is allowed to make $T$ \emph{exact} queries of the form $w^{(i)} = Mv^{(i)}$ for $i \in \{1,\dots,T\}$, where $v^{(i)}$ is drawn from a distribution which depends arbitrarily on the past queries and measurements $\{v^{(j)},w^{(j)}\}_{1 \le j \le i-1}$. We show that for a small constant $\epsilon$, any adaptive, randomized algorithm which can find a unit vector $\widehat{v}$ for which $\widehat{v}^{\top}M\widehat{v} \ge (1-\epsilon)\|M\|$, with even small probability, must make $T = \Omega(\log d)$ queries. In addition to settling a widely-held folk conjecture, this bound demonstrates a fundamental gap between convex optimization and "strict-saddle" non-convex optimization of which PCA is a canonical example: in the former, first-order methods can have dimension-free iteration complexity, whereas in PCA, the iteration complexity of gradient-based methods must necessarily grow with the dimension. Our argument proceeds via a reduction to estimating the rank-one spike in a deformed Wigner model. We establish lower bounds for this model by developing a "truncated" analogue of the $\chi^2$ Bayes-risk lower bound of Chen et al.
Asynchronous Parallel Empirical Variance Guided Algorithms for the Thresholding Bandit Problem
This paper considers the multi-armed thresholding bandit problem -- identifying all arms whose expected rewards are above a predefined threshold via as few pulls (or rounds) as possible -- proposed by Locatelli et al. [2016] recently. Although the proposed algorithm in Locatelli et al. [2016] achieves the optimal round complexity in a certain sense, there still remain unsolved issues. This paper proposes an asynchronous parallel thresholding algorithm and its parameter-free version to improve the efficiency and the applicability. On one hand, the proposed two algorithms use the empirical variance to guide the pull decision at each round, and significantly improve the round complexity of the "optimal" algorithm when all arms have bounded high order moments. The proposed algorithms can be proven to be optimal. On the other hand, most bandit algorithms assume that the reward can be observed immediately after the pull or the next decision would not be made before all rewards are observed. Our proposed asynchronous parallel algorithms allow making the choice of the next pull with unobserved rewards from earlier pulls, which avoids such an unrealistic assumption and significantly improves the identification process. Our theoretical analysis justifies the effectiveness and the efficiency of proposed asynchronous parallel algorithms.
Deep Learning for Photoacoustic Tomography from Sparse Data
The development of fast and accurate image reconstruction algorithms is a central aspect of computed tomography. In this paper, we investigate this issue for the sparse data problem in photoacoustic tomography (PAT). We develop a direct and highly efficient reconstruction algorithm based on deep learning. In our approach image reconstruction is performed with a deep convolutional neural network (CNN), whose weights are adjusted prior to the actual image reconstruction based on a set of training data. The proposed reconstruction approach can be interpreted as a network that uses the PAT filtered backprojection algorithm for the first layer, followed by the U-net architecture for the remaining layers. Actual image reconstruction with deep learning consists in one evaluation of the trained CNN, which does not require time consuming solution of the forward and adjoint problems. At the same time, our numerical results demonstrate that the proposed deep learning approach reconstructs images with a quality comparable to state of the art iterative approaches for PAT from sparse data.
RACE: Large-scale ReAding Comprehension Dataset From Examinations
We present RACE, a new dataset for benchmark evaluation of methods in the reading comprehension task. Collected from the English exams for middle and high school Chinese students in the age range between 12 to 18, RACE consists of near 28,000 passages and near 100,000 questions generated by human experts (English instructors), and covers a variety of topics which are carefully designed for evaluating the students' ability in understanding and reasoning. In particular, the proportion of questions that requires reasoning is much larger in RACE than that in other benchmark datasets for reading comprehension, and there is a significant gap between the performance of the state-of-the-art models (43%) and the ceiling human performance (95%). We hope this new dataset can serve as a valuable resource for research and evaluation in machine comprehension. The dataset is freely available at http://www.cs.cmu.edu/~glai1/data/race/ and the code is available at https://github.com/qizhex/RACE_AR_baselines.
Machine Learning and the Future of Realism
The preceding three decades have seen the emergence, rise, and proliferation of machine learning (ML). From half-recognised beginnings in perceptrons, neural nets, and decision trees, algorithms that extract correlations (that is, patterns) from a set of data points have broken free from their origin in computational cognition to embrace all forms of problem solving, from voice recognition to medical diagnosis to automated scientific research and driverless cars, and it is now widely opined that the real industrial revolution lies less in mobile phone and similar than in the maturation and universal application of ML. Among the consequences just might be the triumph of anti-realism over realism.
Deep Learning Based Regression and Multi-class Models for Acute Oral Toxicity Prediction with Automatic Chemical Feature Extraction
For quantitative structure-property relationship (QSPR) studies in chemoinformatics, it is important to get interpretable relationship between chemical properties and chemical features. However, the predictive power and interpretability of QSPR models are usually two different objectives that are difficult to achieve simultaneously. A deep learning architecture using molecular graph encoding convolutional neural networks (MGE-CNN) provided a universal strategy to construct interpretable QSPR models with high predictive power. Instead of using application-specific preset molecular descriptors or fingerprints, the models can be resolved using raw and pertinent features without manual intervention or selection. In this study, we developed acute oral toxicity (AOT) models of compounds using the MGE-CNN architecture as a case study. Three types of high-level predictive models: regression model (deepAOT-R), multi-classification model (deepAOT-C) and multi-task model (deepAOT-CR) for AOT evaluation were constructed. These models highly outperformed previously reported models. For the two external datasets containing 1673 (test set I) and 375 (test set II) compounds, the R2 and mean absolute error (MAE) of deepAOT-R on the test set I were 0.864 and 0.195, and the prediction accuracy of deepAOT-C was 95.5% and 96.3% on the test set I and II, respectively. The two external prediction accuracy of deepAOT-CR is 95.0% and 94.1%, while the R2 and MAE are 0.861 and 0.204 for test set I, respectively.
In-Datacenter Performance Analysis of a Tensor Processing Unit
Many architects believe that major improvements in cost-energy-performance must now come from domain-specific hardware. This paper evaluates a custom ASIC---called a Tensor Processing Unit (TPU)---deployed in datacenters since 2015 that accelerates the inference phase of neural networks (NN). The heart of the TPU is a 65,536 8-bit MAC matrix multiply unit that offers a peak throughput of 92 TeraOps/second (TOPS) and a large (28 MiB) software-managed on-chip memory. The TPU's deterministic execution model is a better match to the 99th-percentile response-time requirement of our NN applications than are the time-varying optimizations of CPUs and GPUs (caches, out-of-order execution, multithreading, multiprocessing, prefetching, ...) that help average throughput more than guaranteed latency. The lack of such features helps explain why, despite having myriad MACs and a big memory, the TPU is relatively small and low power. We compare the TPU to a server-class Intel Haswell CPU and an Nvidia K80 GPU, which are contemporaries deployed in the same datacenters. Our workload, written in the high-level TensorFlow framework, uses production NN applications (MLPs, CNNs, and LSTMs) that represent 95% of our datacenters' NN inference demand. Despite low utilization for some applications, the TPU is on average about 15X - 30X faster than its contemporary GPU or CPU, with TOPS/Watt about 30X - 80X higher. Moreover, using the GPU's GDDR5 memory in the TPU would triple achieved TOPS and raise TOPS/Watt to nearly 70X the GPU and 200X the CPU.
Random Walk Sampling for Big Data over Networks
It has been shown recently that graph signals with small total variation can be accurately recovered from only few samples if the sampling set satisfies a certain condition, referred to as the network nullspace property. Based on this recovery condition, we propose a sampling strategy for smooth graph signals based on random walks. Numerical experiments demonstrate the effectiveness of this approach for graph signals obtained from a synthetic random graph model as well as a real-world dataset.
A Novel Experimental Platform for In-Vessel Multi-Chemical Molecular Communications
This work presents a new multi-chemical experimental platform for molecular communication where the transmitter can release different chemicals. This platform is designed to be inexpensive and accessible, and it can be expanded to simulate different environments including the cardiovascular system and complex network of pipes in industrial complexes and city infrastructures. To demonstrate the capabilities of the platform, we implement a time-slotted binary communication system where a bit-0 is represented by an acid pulse, a bit-1 by a base pulse, and information is carried via pH signals. The channel model for this system, which is nonlinear and has long memories, is unknown. Therefore, we devise novel detection algorithms that use techniques from machine learning and deep learning to train a maximum-likelihood detector. Using these algorithms the bit error rate improves by an order of magnitude relative to the approach used in previous works. Moreover, our system achieves a data rate that is an order of magnitude higher than any of the previous molecular communication platforms.
Differential Evolution and Bayesian Optimisation for Hyper-Parameter Selection in Mixed-Signal Neuromorphic Circuits Applied to UAV Obstacle Avoidance
The Lobula Giant Movement Detector (LGMD) is a an identified neuron of the locust that detects looming objects and triggers its escape responses. Understanding the neural principles and networks that lead to these fast and robust responses can lead to the design of efficient facilitate obstacle avoidance strategies in robotic applications. Here we present a neuromorphic spiking neural network model of the LGMD driven by the output of a neuromorphic Dynamic Vision Sensor (DVS), which has been optimised to produce robust and reliable responses in the face of the constraints and variability of its mixed signal analogue-digital circuits. As this LGMD model has many parameters, we use the Differential Evolution (DE) algorithm to optimise its parameter space. We also investigate the use of Self-Adaptive Differential Evolution (SADE) which has been shown to ameliorate the difficulties of finding appropriate input parameters for DE. We explore the use of two biological mechanisms: synaptic plasticity and membrane adaptivity in the LGMD. We apply DE and SADE to find parameters best suited for an obstacle avoidance system on an unmanned aerial vehicle (UAV), and show how it outperforms state-of-the-art Bayesian optimisation used for comparison.
Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking
Traditional generative adversarial networks (GAN) and many of its variants are trained by minimizing the KL or JS-divergence loss that measures how close the generated data distribution is from the true data distribution. A recent advance called the WGAN based on Wasserstein distance can improve on the KL and JS-divergence based GANs, and alleviate the gradient vanishing, instability, and mode collapse issues that are common in the GAN training. In this work, we aim at improving on the WGAN by first generalizing its discriminator loss to a margin-based one, which leads to a better discriminator, and in turn a better generator, and then carrying out a progressive training paradigm involving multiple GANs to contribute to the maximum margin ranking loss so that the GAN at later stages will improve upon early stages. We call this method Gang of GANs (GoGAN). We have shown theoretically that the proposed GoGAN can reduce the gap between the true data distribution and the generated data distribution by at least half in an optimally trained WGAN. We have also proposed a new way of measuring GAN quality which is based on image completion tasks. We have evaluated our method on four visual datasets: CelebA, LSUN Bedroom, CIFAR-10, and 50K-SSFF, and have seen both visual and quantitative improvement over baseline WGAN.
Effective Warm Start for the Online Actor-Critic Reinforcement Learning based mHealth Intervention
Online reinforcement learning (RL) is increasingly popular for the personalized mobile health (mHealth) intervention. It is able to personalize the type and dose of interventions according to user's ongoing statuses and changing needs. However, at the beginning of online learning, there are usually too few samples to support the RL updating, which leads to poor performances. A delay in good performance of the online learning algorithms can be especially detrimental in the mHealth, where users tend to quickly disengage with the mHealth app. To address this problem, we propose a new online RL methodology that focuses on an effective warm start. The main idea is to make full use of the data accumulated and the decision rule achieved in a former study. As a result, we can greatly enrich the data size at the beginning of online learning in our method. Such case accelerates the online learning process for new users to achieve good performances not only at the beginning of online learning but also through the whole online learning process. Besides, we use the decision rules achieved in a previous study to initialize the parameter in our online RL model for new users. It provides a good initialization for the proposed online RL algorithm. Experiment results show that promising improvements have been achieved by our method compared with the state-of-the-art method.
Deep Relaxation: partial differential equations for optimizing deep neural networks
In this paper we establish a connection between non-convex optimization methods for training deep neural networks and nonlinear partial differential equations (PDEs). Relaxation techniques arising in statistical physics which have already been used successfully in this context are reinterpreted as solutions of a viscous Hamilton-Jacobi PDE. Using a stochastic control interpretation allows we prove that the modified algorithm performs better in expectation that stochastic gradient descent. Well-known PDE regularity results allow us to analyze the geometry of the relaxed energy landscape, confirming empirical evidence. The PDE is derived from a stochastic homogenization problem, which arises in the implementation of the algorithm. The algorithms scale well in practice and can effectively tackle the high dimensionality of modern neural networks.
Introspection: Accelerating Neural Network Training By Learning Weight Evolution
Neural Networks are function approximators that have achieved state-of-the-art accuracy in numerous machine learning tasks. In spite of their great success in terms of accuracy, their large training time makes it difficult to use them for various tasks. In this paper, we explore the idea of learning weight evolution pattern from a simple network for accelerating training of novel neural networks. We use a neural network to learn the training pattern from MNIST classification and utilize it to accelerate training of neural networks used for CIFAR-10 and ImageNet classification. Our method has a low memory footprint and is computationally efficient. This method can also be used with other optimizers to give faster convergence. The results indicate a general trend in the weight evolution during training of neural networks.
Adversarial and Clean Data Are Not Twins
Adversarial attack has cast a shadow on the massive success of deep neural networks. Despite being almost visually identical to the clean data, the adversarial images can fool deep neural networks into wrong predictions with very high confidence. In this paper, however, we show that we can build a simple binary classifier separating the adversarial apart from the clean data with accuracy over 99%. We also empirically show that the binary classifier is robust to a second-round adversarial attack. In other words, it is difficult to disguise adversarial samples to bypass the binary classifier. Further more, we empirically investigate the generalization limitation which lingers on all current defensive methods, including the binary classifier approach. And we hypothesize that this is the result of intrinsic property of adversarial crafting algorithms.
Bayesian Hybrid Matrix Factorisation for Data Integration
We introduce a novel Bayesian hybrid matrix factorisation model (HMF) for data integration, based on combining multiple matrix factorisation methods, that can be used for in- and out-of-matrix prediction of missing values. The model is very general and can be used to integrate many datasets across different entity types, including repeated experiments, similarity matrices, and very sparse datasets. We apply our method on two biological applications, and extensively compare it to state-of-the-art machine learning and matrix factorisation models. For in-matrix predictions on drug sensitivity datasets we obtain consistently better performances than existing methods. This is especially the case when we increase the sparsity of the datasets. Furthermore, we perform out-of-matrix predictions on methylation and gene expression datasets, and obtain the best results on two of the three datasets, especially when the predictivity of datasets is high.
Larger is Better: The Effect of Learning Rates Enjoyed by Stochastic Optimization with Progressive Variance Reduction
In this paper, we propose a simple variant of the original stochastic variance reduction gradient (SVRG), where hereafter we refer to as the variance reduced stochastic gradient descent (VR-SGD). Different from the choices of the snapshot point and starting point in SVRG and its proximal variant, Prox-SVRG, the two vectors of each epoch in VR-SGD are set to the average and last iterate of the previous epoch, respectively. This setting allows us to use much larger learning rates or step sizes than SVRG, e.g., 3/(7L) for VR-SGD vs 1/(10L) for SVRG, and also makes our convergence analysis more challenging. In fact, a larger learning rate enjoyed by VR-SGD means that the variance of its stochastic gradient estimator asymptotically approaches zero more rapidly. Unlike common stochastic methods such as SVRG and proximal stochastic methods such as Prox-SVRG, we design two different update rules for smooth and non-smooth objective functions, respectively. In other words, VR-SGD can tackle non-smooth and/or non-strongly convex problems directly without using any reduction techniques such as quadratic regularizers. Moreover, we analyze the convergence properties of VR-SGD for strongly convex problems, which show that VR-SGD attains a linear convergence rate. We also provide the convergence guarantees of VR-SGD for non-strongly convex problems. Experimental results show that the performance of VR-SGD is significantly better than its counterparts, SVRG and Prox-SVRG, and it is also much better than the best known stochastic method, Katyusha.
Multimodal Prediction and Personalization of Photo Edits with Deep Generative Models
Professional-grade software applications are powerful but complicated$-$expert users can achieve impressive results, but novices often struggle to complete even basic tasks. Photo editing is a prime example: after loading a photo, the user is confronted with an array of cryptic sliders like "clarity", "temp", and "highlights". An automatically generated suggestion could help, but there is no single "correct" edit for a given image$-$different experts may make very different aesthetic decisions when faced with the same image, and a single expert may make different choices depending on the intended use of the image (or on a whim). We therefore want a system that can propose multiple diverse, high-quality edits while also learning from and adapting to a user's aesthetic preferences. In this work, we develop a statistical model that meets these objectives. Our model builds on recent advances in neural network generative modeling and scalable inference, and uses hierarchical structure to learn editing patterns across many diverse users. Empirically, we find that our model outperforms other approaches on this challenging multimodal prediction task.
Sparse Communication for Distributed Gradient Descent
We make distributed stochastic gradient descent faster by exchanging sparse updates instead of dense updates. Gradient updates are positively skewed as most updates are near zero, so we map the 99% smallest updates (by absolute value) to zero then exchange sparse matrices. This method can be combined with quantization to further improve the compression. We explore different configurations and apply them to neural machine translation and MNIST image classification tasks. Most configurations work on MNIST, whereas different configurations reduce convergence rate on the more complex translation task. Our experiments show that we can achieve up to 49% speed up on MNIST and 22% on NMT without damaging the final accuracy or BLEU.
Fast multi-output relevance vector regression
This paper aims to decrease the time complexity of multi-output relevance vector regression from O(VM^3) to O(V^3+M^3), where V is the number of output dimensions, M is the number of basis functions, and V<M. The experimental results demonstrate that the proposed method is more competitive than the existing method, with regard to computation time. MATLAB codes are available at http://www.mathworks.com/matlabcentral/fileexchange/49131.
Google's Cloud Vision API Is Not Robust To Noise
Google has recently introduced the Cloud Vision API for image analysis. According to the demonstration website, the API "quickly classifies images into thousands of categories, detects individual objects and faces within images, and finds and reads printed words contained within images." It can be also used to "detect different types of inappropriate content from adult to violent content." In this paper, we evaluate the robustness of Google Cloud Vision API to input perturbation. In particular, we show that by adding sufficient noise to the image, the API generates completely different outputs for the noisy image, while a human observer would perceive its original content. We show that the attack is consistently successful, by performing extensive experiments on different image types, including natural images, images containing faces and images with texts. For instance, using images from ImageNet dataset, we found that adding an average of 14.25% impulse noise is enough to deceive the API. Our findings indicate the vulnerability of the API in adversarial environments. For example, an adversary can bypass an image filtering system by adding noise to inappropriate images. We then show that when a noise filter is applied on input images, the API generates mostly the same outputs for restored images as for original images. This observation suggests that cloud vision API can readily benefit from noise filtering, without the need for updating image analysis algorithms.
Exploring Sparsity in Recurrent Neural Networks
Recurrent Neural Networks (RNN) are widely used to solve a variety of problems and as the quantity of data and the amount of available compute have increased, so have model sizes. The number of parameters in recent state-of-the-art networks makes them hard to deploy, especially on mobile phones and embedded devices. The challenge is due to both the size of the model and the time it takes to evaluate it. In order to deploy these RNNs efficiently, we propose a technique to reduce the parameters of a network by pruning weights during the initial training of the network. At the end of training, the parameters of the network are sparse while accuracy is still close to the original dense neural network. The network size is reduced by 8x and the time required to train the model remains constant. Additionally, we can prune a larger dense network to achieve better than baseline performance while still reducing the total number of parameters significantly. Pruning RNNs reduces the size of the model and can also help achieve significant inference time speed-up using sparse matrix multiply. Benchmarks show that using our technique model size can be reduced by 90% and speed-up is around 2x to 7x.
Does robustness imply tractability? A lower bound for planted clique in the semi-random model
We consider a robust analog of the planted clique problem. In this analog, a set $S$ of vertices is chosen and all edges in $S$ are included; then, edges between $S$ and the rest of the graph are included with probability $\frac{1}{2}$, while edges not touching $S$ are allowed to vary arbitrarily. For this semi-random model, we show that the information-theoretic threshold for recovery is $\tilde{\Theta}(\sqrt{n})$, in sharp contrast to the classical information-theoretic threshold of $\Theta(\log(n))$. This matches the conjectured computational threshold for the classical planted clique problem, and thus raises the intriguing possibility that, once we require robustness, there is no computational-statistical gap for planted clique. Our lower bound involves establishing a result regarding the KL divergence of a family of perturbed Bernoulli distributions, which may be of independent interest.
Does Neural Machine Translation Benefit from Larger Context?
We propose a neural machine translation architecture that models the surrounding text in addition to the source sentence. These models lead to better performance, both in terms of general translation quality and pronoun prediction, when trained on small corpora, although this improvement largely disappears when trained with a larger corpus. We also discover that attention-based neural machine translation is well suited for pronoun prediction and compares favorably with other approaches that were specifically designed for this task.
O$^2$TD: (Near)-Optimal Off-Policy TD Learning
Temporal difference learning and Residual Gradient methods are the most widely used temporal difference based learning algorithms; however, it has been shown that none of their objective functions is optimal w.r.t approximating the true value function $V$. Two novel algorithms are proposed to approximate the true value function $V$. This paper makes the following contributions: (1) A batch algorithm that can help find the approximate optimal off-policy prediction of the true value function $V$. (2) A linear computational cost (per step) near-optimal algorithm that can learn from a collection of off-policy samples. (3) A new perspective of the emphatic temporal difference learning which bridges the gap between off-policy optimality and off-policy stability.
VAE Learning via Stein Variational Gradient Descent
A new method for learning variational autoencoders (VAEs) is developed, based on Stein variational gradient descent. A key advantage of this approach is that one need not make parametric assumptions about the form of the encoder distribution. Performance is further enhanced by integrating the proposed encoder with importance sampling. Excellent performance is demonstrated across multiple unsupervised and semi-supervised problems, including semi-supervised analysis of the ImageNet data, demonstrating the scalability of the model to large datasets.
Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction
CTR prediction in real-world business is a difficult machine learning problem with large scale nonlinear sparse data. In this paper, we introduce an industrial strength solution with model named Large Scale Piece-wise Linear Model (LS-PLM). We formulate the learning problem with $L_1$ and $L_{2,1}$ regularizers, leading to a non-convex and non-smooth optimization problem. Then, we propose a novel algorithm to solve it efficiently, based on directional derivatives and quasi-Newton method. In addition, we design a distributed system which can run on hundreds of machines parallel and provides us with the industrial scalability. LS-PLM model can capture nonlinear patterns from massive sparse data, saving us from heavy feature engineering jobs. Since 2012, LS-PLM has become the main CTR prediction model in Alibaba's online display advertising system, serving hundreds of millions users every day.
HPSLPred: An Ensemble Multi-label Classifier for Human Protein Subcellular Location Prediction with Imbalanced Source
Predicting the subcellular localization of proteins is an important and challenging problem. Traditional experimental approaches are often expensive and time-consuming. Consequently, a growing number of research efforts employ a series of machine learning approaches to predict the subcellular location of proteins. There are two main challenges among the state-of-the-art prediction methods. First, most of the existing techniques are designed to deal with multi-class rather than multi-label classification, which ignores connections between multiple labels. In reality, multiple locations of particular proteins implies that there are vital and unique biological significances that deserve special focus and cannot be ignored. Second, techniques for handling imbalanced data in multi-label classification problems are necessary, but never employed. For solving these two issues, we have developed an ensemble multi-label classifier called HPSLPred, which can be applied for multi-label classification with an imbalanced protein source. For convenience, a user-friendly webserver has been established at http://server.malab.cn/HPSLPred.
Know Your Master: Driver Profiling-based Anti-theft Method
Although many anti-theft technologies are implemented, auto-theft is still increasing. Also, security vulnerabilities of cars can be used for auto-theft by neutralizing anti-theft system. This keyless auto-theft attack will be increased as cars adopt computerized electronic devices more. To detect auto-theft efficiently, we propose the driver verification method that analyzes driving patterns using measurements from the sensor in the vehicle. In our model, we add mechanical features of automotive parts that are excluded in previous works, but can be differentiated by drivers' driving behaviors. We design the model that uses significant features through feature selection to reduce the time cost of feature processing and improve the detection performance. Further, we enrich the feature set by deriving statistical features such as mean, median, and standard deviation. This minimizes the effect of fluctuation of feature values per driver and finally generates the reliable model. We also analyze the effect of the size of sliding window on performance to detect the time point when the detection becomes reliable and to inform owners the theft event as soon as possible. We apply our model with real driving and show the contribution of our work to the literature of driver identification.
Hot or not? Forecasting cellular network hot spots using sector performance indicators
To manage and maintain large-scale cellular networks, operators need to know which sectors underperform at any given time. For this purpose, they use the so-called hot spot score, which is the result of a combination of multiple network measurements and reflects the instantaneous overall performance of individual sectors. While operators have a good understanding of the current performance of a network and its overall trend, forecasting the performance of each sector over time is a challenging task, as it is affected by both regular and non-regular events, triggered by human behavior and hardware failures. In this paper, we study the spatio-temporal patterns of the hot spot score and uncover its regularities. Based on our observations, we then explore the possibility to use recent measurements' history to predict future hot spots. To this end, we consider tree-based machine learning models, and study their performance as a function of time, amount of past data, and prediction horizon. Our results indicate that, compared to the best baseline, tree-based models can deliver up to 14% better forecasts for regular hot spots and 153% better forecasts for non-regular hot spots. The latter brings strong evidence that, for moderate horizons, forecasts can be made even for sectors exhibiting isolated, non-regular behavior. Overall, our work provides insight into the dynamics of cellular sectors and their predictability. It also paves the way for more proactive network operations with greater forecasting horizons.
Large-Scale Online Semantic Indexing of Biomedical Articles via an Ensemble of Multi-Label Classification Models
Background: In this paper we present the approaches and methods employed in order to deal with a large scale multi-label semantic indexing task of biomedical papers. This work was mainly implemented within the context of the BioASQ challenge of 2014. Methods: The main contribution of this work is a multi-label ensemble method that incorporates a McNemar statistical significance test in order to validate the combination of the constituent machine learning algorithms. Some secondary contributions include a study on the temporal aspects of the BioASQ corpus (observations apply also to the BioASQ's super-set, the PubMed articles collection) and the proper adaptation of the algorithms used to deal with this challenging classification task. Results: The ensemble method we developed is compared to other approaches in experimental scenarios with subsets of the BioASQ corpus giving positive results. During the BioASQ 2014 challenge we obtained the first place during the first batch and the third in the two following batches. Our success in the BioASQ challenge proved that a fully automated machine-learning approach, which does not implement any heuristics and rule-based approaches, can be highly competitive and outperform other approaches in similar challenging contexts.
Unsupervised Learning by Predicting Noise
Convolutional neural networks provide visual features that perform remarkably well in many computer vision applications. However, training these networks requires significant amounts of supervision. This paper introduces a generic framework to train deep networks, end-to-end, with no supervision. We propose to fix a set of target representations, called Noise As Targets (NAT), and to constrain the deep features to align to them. This domain agnostic approach avoids the standard unsupervised learning issues of trivial solutions and collapsing of features. Thanks to a stochastic batch reassignment strategy and a separable square loss function, it scales to millions of images. The proposed approach produces representations that perform on par with state-of-the-art unsupervised methods on ImageNet and Pascal VOC.
A Study of Deep Learning Robustness Against Computation Failures
For many types of integrated circuits, accepting larger failure rates in computations can be used to improve energy efficiency. We study the performance of faulty implementations of certain deep neural networks based on pessimistic and optimistic models of the effect of hardware faults. After identifying the impact of hyperparameters such as the number of layers on robustness, we study the ability of the network to compensate for computational failures through an increase of the network size. We show that some networks can achieve equivalent performance under faulty implementations, and quantify the required increase in computational complexity.
Ranking to Learn: Feature Ranking and Selection via Eigenvector Centrality
In an era where accumulating data is easy and storing it inexpensive, feature selection plays a central role in helping to reduce the high-dimensionality of huge amounts of otherwise meaningless data. In this paper, we propose a graph-based method for feature selection that ranks features by identifying the most important ones into arbitrary set of cues. Mapping the problem on an affinity graph-where features are the nodes-the solution is given by assessing the importance of nodes through some indicators of centrality, in particular, the Eigen-vector Centrality (EC). The gist of EC is to estimate the importance of a feature as a function of the importance of its neighbors. Ranking central nodes individuates candidate features, which turn out to be effective from a classification point of view, as proved by a thoroughly experimental section. Our approach has been tested on 7 diverse datasets from recent literature (e.g., biological data and object recognition, among others), and compared against filter, embedded and wrappers methods. The results are remarkable in terms of accuracy, stability and low execution time.
Diagonal RNNs in Symbolic Music Modeling
In this paper, we propose a new Recurrent Neural Network (RNN) architecture. The novelty is simple: We use diagonal recurrent matrices instead of full. This results in better test likelihood and faster convergence compared to regular full RNNs in most of our experiments. We show the benefits of using diagonal recurrent matrices with popularly used LSTM and GRU architectures as well as with the vanilla RNN architecture, on four standard symbolic music datasets.
Investigating Recurrence and Eligibility Traces in Deep Q-Networks
Eligibility traces in reinforcement learning are used as a bias-variance trade-off and can often speed up training time by propagating knowledge back over time-steps in a single update. We investigate the use of eligibility traces in combination with recurrent networks in the Atari domain. We illustrate the benefits of both recurrent nets and eligibility traces in some Atari games, and highlight also the importance of the optimization used in the training.
Simultaneous Policy Learning and Latent State Inference for Imitating Driver Behavior
In this work, we propose a method for learning driver models that account for variables that cannot be observed directly. When trained on a synthetic dataset, our models are able to learn encodings for vehicle trajectories that distinguish between four distinct classes of driver behavior. Such encodings are learned without any knowledge of the number of driver classes or any objective that directly requires the models to learn encodings for each class. We show that driving policies trained with knowledge of latent variables are more effective than baseline methods at imitating the driver behavior that they are trained to replicate. Furthermore, we demonstrate that the actions chosen by our policy are heavily influenced by the latent variable settings that are provided to them.
A Large Self-Annotated Corpus for Sarcasm
We introduce the Self-Annotated Reddit Corpus (SARC), a large corpus for sarcasm research and for training and evaluating systems for sarcasm detection. The corpus has 1.3 million sarcastic statements -- 10 times more than any previous dataset -- and many times more instances of non-sarcastic statements, allowing for learning in both balanced and unbalanced label regimes. Each statement is furthermore self-annotated -- sarcasm is labeled by the author, not an independent annotator -- and provided with user, topic, and conversation context. We evaluate the corpus for accuracy, construct benchmarks for sarcasm detection, and evaluate baseline methods.
Learning to Fly by Crashing
How do you learn to navigate an Unmanned Aerial Vehicle (UAV) and avoid obstacles? One approach is to use a small dataset collected by human experts: however, high capacity learning algorithms tend to overfit when trained with little data. An alternative is to use simulation. But the gap between simulation and real world remains large especially for perception problems. The reason most research avoids using large-scale real data is the fear of crashes! In this paper, we propose to bite the bullet and collect a dataset of crashes itself! We build a drone whose sole purpose is to crash into objects: it samples naive trajectories and crashes into random objects. We crash our drone 11,500 times to create one of the biggest UAV crash dataset. This dataset captures the different ways in which a UAV can crash. We use all this negative flying data in conjunction with positive data sampled from the same trajectories to learn a simple yet powerful policy for UAV navigation. We show that this simple self-supervised model is quite effective in navigating the UAV even in extremely cluttered environments with dynamic obstacles including humans. For supplementary video see: https://youtu.be/u151hJaGKUo
Insensitive Stochastic Gradient Twin Support Vector Machine for Large Scale Problems
Stochastic gradient descent algorithm has been successfully applied on support vector machines (called PEGASOS) for many classification problems. In this paper, stochastic gradient descent algorithm is investigated to twin support vector machines for classification. Compared with PEGASOS, the proposed stochastic gradient twin support vector machines (SGTSVM) is insensitive on stochastic sampling for stochastic gradient descent algorithm. In theory, we prove the convergence of SGTSVM instead of almost sure convergence of PEGASOS. For uniformly sampling, the approximation between SGTSVM and twin support vector machines is also given, while PEGASOS only has an opportunity to obtain an approximation of support vector machines. In addition, the nonlinear SGTSVM is derived directly from its linear case. Experimental results on both artificial datasets and large scale problems show the stable performance of SGTSVM with a fast learning speed.
Effects of the optimisation of the margin distribution on generalisation in deep architectures
Despite being so vital to success of Support Vector Machines, the principle of separating margin maximisation is not used in deep learning. We show that minimisation of margin variance and not maximisation of the margin is more suitable for improving generalisation in deep architectures. We propose the Halfway loss function that minimises the Normalised Margin Variance (NMV) at the output of a deep learning models and evaluate its performance against the Softmax Cross-Entropy loss on the MNIST, smallNORB and CIFAR-10 datasets.
CNN based music emotion classification
Music emotion recognition (MER) is usually regarded as a multi-label tagging task, and each segment of music can inspire specific emotion tags. Most researchers extract acoustic features from music and explore the relations between these features and their corresponding emotion tags. Considering the inconsistency of emotions inspired by the same music segment for human beings, seeking for the key acoustic features that really affect on emotions is really a challenging task. In this paper, we propose a novel MER method by using deep convolutional neural network (CNN) on the music spectrograms that contains both the original time and frequency domain information. By the proposed method, no additional effort on extracting specific features required, which is left to the training procedure of the CNN model. Experiments are conducted on the standard CAL500 and CAL500exp dataset. Results show that, for both datasets, the proposed method outperforms state-of-the-art methods.
Unsupervised Creation of Parameterized Avatars
We study the problem of mapping an input image to a tied pair consisting of a vector of parameters and an image that is created using a graphical engine from the vector of parameters. The mapping's objective is to have the output image as similar as possible to the input image. During training, no supervision is given in the form of matching inputs and outputs. This learning problem extends two literature problems: unsupervised domain adaptation and cross domain transfer. We define a generalization bound that is based on discrepancy, and employ a GAN to implement a network solution that corresponds to this bound. Experimentally, our method is shown to solve the problem of automatically creating avatars.
A Deep Learning Framework using Passive WiFi Sensing for Respiration Monitoring
This paper presents an end-to-end deep learning framework using passive WiFi sensing to classify and estimate human respiration activity. A passive radar test-bed is used with two channels where the first channel provides the reference WiFi signal, whereas the other channel provides a surveillance signal that contains reflections from the human target. Adaptive filtering is performed to make the surveillance signal source-data invariant by eliminating the echoes of the direct transmitted signal. We propose a novel convolutional neural network to classify the complex time series data and determine if it corresponds to a breathing activity, followed by a random forest estimator to determine breathing rate. We collect an extensive dataset to train the learning models and develop reference benchmarks for the future studies in the field. Based on the results, we conclude that deep learning techniques coupled with passive radars offer great potential for end-to-end human activity recognition.
Universal Adversarial Perturbations Against Semantic Image Segmentation
While deep learning is remarkably successful on perceptual tasks, it was also shown to be vulnerable to adversarial perturbations of the input. These perturbations denote noise added to the input that was generated specifically to fool the system while being quasi-imperceptible for humans. More severely, there even exist universal perturbations that are input-agnostic but fool the network on the majority of inputs. While recent work has focused on image classification, this work proposes attacks against semantic image segmentation: we present an approach for generating (universal) adversarial perturbations that make the network yield a desired target segmentation as output. We show empirically that there exist barely perceptible universal noise patterns which result in nearly the same predicted segmentation for arbitrary inputs. Furthermore, we also show the existence of universal noise which removes a target class (e.g., all pedestrians) from the segmentation while leaving the segmentation mostly unchanged otherwise.
Maximum Likelihood Estimation based on Random Subspace EDA: Application to Extrasolar Planet Detection
This paper addresses maximum likelihood (ML) estimation based model fitting in the context of extrasolar planet detection. This problem is featured by the following properties: 1) the candidate models under consideration are highly nonlinear; 2) the likelihood surface has a huge number of peaks; 3) the parameter space ranges in size from a few to dozens of dimensions. These properties make the ML search a very challenging problem, as it lacks any analytical or gradient based searching solution to explore the parameter space. A population based searching method, called estimation of distribution algorithm (EDA), is adopted to explore the model parameter space starting from a batch of random locations. EDA is featured by its ability to reveal and utilize problem structures. This property is desirable for characterizing the detections. However, it is well recognized that EDAs can not scale well to large scale problems, as it consists of iterative random sampling and model fitting procedures, which results in the well-known dilemma curse of dimensionality. A novel mechanism to perform EDAs in interactive random subspaces spanned by correlated variables is proposed and the hope is to alleviate the curse of dimensionality for EDAs by performing the operations of sampling and model fitting in lower dimensional subspaces. The effectiveness of the proposed algorithm is verified via both benchmark numerical studies and real data analysis.
End-to-End Multi-View Networks for Text Classification
We propose a multi-view network for text classification. Our method automatically creates various views of its input text, each taking the form of soft attention weights that distribute the classifier's focus among a set of base features. For a bag-of-words representation, each view focuses on a different subset of the text's words. Aggregating many such views results in a more discriminative and robust representation. Through a novel architecture that both stacks and concatenates views, we produce a network that emphasizes both depth and width, allowing training to converge quickly. Using our multi-view architecture, we establish new state-of-the-art accuracies on two benchmark tasks.
An Interpretable Knowledge Transfer Model for Knowledge Base Completion
Knowledge bases are important resources for a variety of natural language processing tasks but suffer from incompleteness. We propose a novel embedding model, \emph{ITransF}, to perform knowledge base completion. Equipped with a sparse attention mechanism, ITransF discovers hidden concepts of relations and transfer statistical strength through the sharing of concepts. Moreover, the learned associations between relations and concepts, which are represented by sparse attention vectors, can be interpreted easily. We evaluate ITransF on two benchmark datasets---WN18 and FB15k for knowledge base completion and obtains improvements on both the mean rank and Hits@10 metrics, over all baselines that do not use additional information.
Semi-supervised classification for dynamic Android malware detection
A growing number of threats to Android phones creates challenges for malware detection. Manually labeling the samples into benign or different malicious families requires tremendous human efforts, while it is comparably easy and cheap to obtain a large amount of unlabeled APKs from various sources. Moreover, the fast-paced evolution of Android malware continuously generates derivative malware families. These families often contain new signatures, which can escape detection when using static analysis. These practical challenges can also cause traditional supervised machine learning algorithms to degrade in performance. In this paper, we propose a framework that uses model-based semi-supervised (MBSS) classification scheme on the dynamic Android API call logs. The semi-supervised approach efficiently uses the labeled and unlabeled APKs to estimate a finite mixture model of Gaussian distributions via conditional expectation-maximization and efficiently detects malwares during out-of-sample testing. We compare MBSS with the popular malware detection classifiers such as support vector machine (SVM), $k$-nearest neighbor (kNN) and linear discriminant analysis (LDA). Under the ideal classification setting, MBSS has competitive performance with 98\% accuracy and very low false positive rate for in-sample classification. For out-of-sample testing, the out-of-sample test data exhibit similar behavior of retrieving phone information and sending to the network, compared with in-sample training set. When this similarity is strong, MBSS and SVM with linear kernel maintain 90\% detection rate while $k$NN and LDA suffer great performance degradation. When this similarity is slightly weaker, all classifiers degrade in performance, but MBSS still performs significantly better than other classifiers.
SAFS: A Deep Feature Selection Approach for Precision Medicine
In this paper, we propose a new deep feature selection method based on deep architecture. Our method uses stacked auto-encoders for feature representation in higher-level abstraction. We developed and applied a novel feature learning approach to a specific precision medicine problem, which focuses on assessing and prioritizing risk factors for hypertension (HTN) in a vulnerable demographic subgroup (African-American). Our approach is to use deep learning to identify significant risk factors affecting left ventricular mass indexed to body surface area (LVMI) as an indicator of heart damage risk. The results show that our feature learning and representation approach leads to better results in comparison with others.
Monte Carlo Tree Search with Sampled Information Relaxation Dual Bounds
Monte Carlo Tree Search (MCTS), most famously used in game-play artificial intelligence (e.g., the game of Go), is a well-known strategy for constructing approximate solutions to sequential decision problems. Its primary innovation is the use of a heuristic, known as a default policy, to obtain Monte Carlo estimates of downstream values for states in a decision tree. This information is used to iteratively expand the tree towards regions of states and actions that an optimal policy might visit. However, to guarantee convergence to the optimal action, MCTS requires the entire tree to be expanded asymptotically. In this paper, we propose a new technique called Primal-Dual MCTS that utilizes sampled information relaxation upper bounds on potential actions, creating the possibility of "ignoring" parts of the tree that stem from highly suboptimal choices. This allows us to prove that despite converging to a partial decision tree in the limit, the recommended action from Primal-Dual MCTS is optimal. The new approach shows significant promise when used to optimize the behavior of a single driver navigating a graph while operating on a ride-sharing platform. Numerical experiments on a real dataset of 7,000 trips in New Jersey suggest that Primal-Dual MCTS improves upon standard MCTS by producing deeper decision trees and exhibits a reduced sensitivity to the size of the action space.
Retrospective Higher-Order Markov Processes for User Trails
Users form information trails as they browse the web, checkin with a geolocation, rate items, or consume media. A common problem is to predict what a user might do next for the purposes of guidance, recommendation, or prefetching. First-order and higher-order Markov chains have been widely used methods to study such sequences of data. First-order Markov chains are easy to estimate, but lack accuracy when history matters. Higher-order Markov chains, in contrast, have too many parameters and suffer from overfitting the training data. Fitting these parameters with regularization and smoothing only offers mild improvements. In this paper we propose the retrospective higher-order Markov process (RHOMP) as a low-parameter model for such sequences. This model is a special case of a higher-order Markov chain where the transitions depend retrospectively on a single history state instead of an arbitrary combination of history states. There are two immediate computational advantages: the number of parameters is linear in the order of the Markov chain and the model can be fit to large state spaces. Furthermore, by providing a specific structure to the higher-order chain, RHOMPs improve the model accuracy by efficiently utilizing history states without risks of overfitting the data. We demonstrate how to estimate a RHOMP from data and we demonstrate the effectiveness of our method on various real application datasets spanning geolocation data, review sequences, and business locations. The RHOMP model uniformly outperforms higher-order Markov chains, Kneser-Ney regularization, and tensor factorizations in terms of prediction accuracy.
Fast Generation for Convolutional Autoregressive Models
Convolutional autoregressive models have recently demonstrated state-of-the-art performance on a number of generation tasks. While fast, parallel training methods have been crucial for their success, generation is typically implemented in a na\"{i}ve fashion where redundant computations are unnecessarily repeated. This results in slow generation, making such models infeasible for production environments. In this work, we describe a method to speed up generation in convolutional autoregressive models. The key idea is to cache hidden states to avoid redundant computation. We apply our fast generation method to the Wavenet and PixelCNN++ models and achieve up to $21\times$ and $183\times$ speedups respectively.
End-to-end representation learning for Correlation Filter based tracking
The Correlation Filter is an algorithm that trains a linear template to discriminate between images and their translations. It is well suited to object tracking because its formulation in the Fourier domain provides a fast solution, enabling the detector to be re-trained once per frame. Previous works that use the Correlation Filter, however, have adopted features that were either manually designed or trained for a different task. This work is the first to overcome this limitation by interpreting the Correlation Filter learner, which has a closed-form solution, as a differentiable layer in a deep neural network. This enables learning deep features that are tightly coupled to the Correlation Filter. Experiments illustrate that our method has the important practical benefit of allowing lightweight architectures to achieve state-of-the-art performance at high framerates.
Multi-view (Joint) Probability Linear Discrimination Analysis for Multi-view Feature Verification
Multi-view feature has been proved to be very effective in many multimedia applications. However, the current back-end classifiers cannot make full use of such features. In this paper, we propose a method to model the multi-faceted information in the multi-view features explicitly and jointly. In our approach, the feature was modeled as a result derived by a generative multi-view (joint\footnotemark[1]) Probability Linear Discriminant Analysis (PLDA) model, which contains multiple kinds of latent variables. The usual PLDA model only considers one single label. However, in practical use, when using multi-task learned network as feature extractor, the extracted feature are always attached to several labels. This type of feature is called multi-view feature. With multi-view (joint) PLDA, we are able to explicitly build a model that can combine multiple heterogeneous information from the multi-view features. In verification step, we calculated the likelihood to describe whether the two features having consistent labels or not. This likelihood are used in the following decision-making. Experiments have been conducted on large scale verification task. On the public RSR2015 data corpus, the results showed that our approach can achieve 0.02\% EER and 0.09\% EER for impostor wrong and impostor correct cases respectively.
Every Untrue Label is Untrue in its Own Way: Controlling Error Type with the Log Bilinear Loss
Deep learning has become the method of choice in many application domains of machine learning in recent years, especially for multi-class classification tasks. The most common loss function used in this context is the cross-entropy loss, which reduces to the log loss in the typical case when there is a single correct response label. While this loss is insensitive to the identity of the assigned class in the case of misclassification, in practice it is often the case that some errors may be more detrimental than others. Here we present the bilinear-loss (and related log-bilinear-loss) which differentially penalizes the different wrong assignments of the model. We thoroughly test this method using standard models and benchmark image datasets. As one application, we show the ability of this method to better contain error within the correct super-class, in the hierarchically labeled CIFAR100 dataset, without affecting the overall performance of the classifier.
Knowledge Fusion via Embeddings from Text, Knowledge Graphs, and Images
We present a baseline approach for cross-modal knowledge fusion. Different basic fusion methods are evaluated on existing embedding approaches to show the potential of joining knowledge about certain concepts across modalities in a fused concept representation.
Learning to Acquire Information
We consider the problem of diagnosis where a set of simple observations are used to infer a potentially complex hidden hypothesis. Finding the optimal subset of observations is intractable in general, thus we focus on the problem of active diagnosis, where the agent selects the next most-informative observation based on the results of previous observations. We show that under the assumption of uniform observation entropy, one can build an implication model which directly predicts the outcome of the potential next observation conditioned on the results of past observations, and selects the observation with the maximum entropy. This approach enjoys reduced computation complexity by bypassing the complicated hypothesis space, and can be trained on observation data alone, learning how to query without knowledge of the hidden hypothesis.
Segmentation of the Proximal Femur from MR Images using Deep Convolutional Neural Networks
Magnetic resonance imaging (MRI) has been proposed as a complimentary method to measure bone quality and assess fracture risk. However, manual segmentation of MR images of bone is time-consuming, limiting the use of MRI measurements in the clinical practice. The purpose of this paper is to present an automatic proximal femur segmentation method that is based on deep convolutional neural networks (CNNs). This study had institutional review board approval and written informed consent was obtained from all subjects. A dataset of volumetric structural MR images of the proximal femur from 86 subject were manually-segmented by an expert. We performed experiments by training two different CNN architectures with multiple number of initial feature maps and layers, and tested their segmentation performance against the gold standard of manual segmentations using four-fold cross-validation. Automatic segmentation of the proximal femur achieved a high dice similarity score of 0.94$\pm$0.05 with precision = 0.95$\pm$0.02, and recall = 0.94$\pm$0.08 using a CNN architecture based on 3D convolution exceeding the performance of 2D CNNs. The high segmentation accuracy provided by CNNs has the potential to help bring the use of structural MRI measurements of bone quality into clinical practice for management of osteoporosis.
Softmax GAN
Softmax GAN is a novel variant of Generative Adversarial Network (GAN). The key idea of Softmax GAN is to replace the classification loss in the original GAN with a softmax cross-entropy loss in the sample space of one single batch. In the adversarial learning of $N$ real training samples and $M$ generated samples, the target of discriminator training is to distribute all the probability mass to the real samples, each with probability $\frac{1}{M}$, and distribute zero probability to generated data. In the generator training phase, the target is to assign equal probability to all data points in the batch, each with probability $\frac{1}{M+N}$. While the original GAN is closely related to Noise Contrastive Estimation (NCE), we show that Softmax GAN is the Importance Sampling version of GAN. We futher demonstrate with experiments that this simple change stabilizes GAN training.
Dynamic Graph Convolutional Networks
Many different classification tasks need to manage structured data, which are usually modeled as graphs. Moreover, these graphs can be dynamic, meaning that the vertices/edges of each graph may change during time. Our goal is to jointly exploit structured data and temporal information through the use of a neural network model. To the best of our knowledge, this task has not been addressed using these kind of architectures. For this reason, we propose two novel approaches, which combine Long Short-Term Memory networks and Graph Convolutional Networks to learn long short-term dependencies together with graph structure. The quality of our methods is confirmed by the promising results achieved.
ADMM Penalty Parameter Selection by Residual Balancing
Appropriate selection of the penalty parameter is crucial to obtaining good performance from the Alternating Direction Method of Multipliers (ADMM). While analytic results for optimal selection of this parameter are very limited, there is a heuristic method that appears to be relatively successful in a number of different problems. The contribution of this paper is to demonstrate that their is a potentially serious flaw in this heuristic approach, and to propose a modification that at least partially addresses it.
Robust Wirtinger Flow for Phase Retrieval with Arbitrary Corruption
We consider the robust phase retrieval problem of recovering the unknown signal from the magnitude-only measurements, where the measurements can be contaminated by both sparse arbitrary corruption and bounded random noise. We propose a new nonconvex algorithm for robust phase retrieval, namely Robust Wirtinger Flow to jointly estimate the unknown signal and the sparse corruption. We show that our proposed algorithm is guaranteed to converge linearly to the unknown true signal up to a minimax optimal statistical precision in such a challenging setting. Compared with existing robust phase retrieval methods, we achieve an optimal sample complexity of $O(n)$ in both noisy and noise-free settings. Thorough experiments on both synthetic and real datasets corroborate our theory.
Mutual Information, Neural Networks and the Renormalization Group
Physical systems differring in their microscopic details often display strikingly similar behaviour when probed at macroscopic scales. Those universal properties, largely determining their physical characteristics, are revealed by the powerful renormalization group (RG) procedure, which systematically retains "slow" degrees of freedom and integrates out the rest. However, the important degrees of freedom may be difficult to identify. Here we demonstrate a machine learning algorithm capable of identifying the relevant degrees of freedom and executing RG steps iteratively without any prior knowledge about the system. We introduce an artificial neural network based on a model-independent, information-theoretic characterization of a real-space RG procedure, performing this task. We apply the algorithm to classical statistical physics problems in one and two dimensions. We demonstrate RG flow and extract the Ising critical exponent. Our results demonstrate that machine learning techniques can extract abstract physical concepts and consequently become an integral part of theory- and model-building.
Deep Clustering via Joint Convolutional Autoencoder Embedding and Relative Entropy Minimization
Image clustering is one of the most important computer vision applications, which has been extensively studied in literature. However, current clustering methods mostly suffer from lack of efficiency and scalability when dealing with large-scale and high-dimensional data. In this paper, we propose a new clustering model, called DEeP Embedded RegularIzed ClusTering (DEPICT), which efficiently maps data into a discriminative embedding subspace and precisely predicts cluster assignments. DEPICT generally consists of a multinomial logistic regression function stacked on top of a multi-layer convolutional autoencoder. We define a clustering objective function using relative entropy (KL divergence) minimization, regularized by a prior for the frequency of cluster assignments. An alternating strategy is then derived to optimize the objective by updating parameters and estimating cluster assignments. Furthermore, we employ the reconstruction loss functions in our autoencoder, as a data-dependent regularization term, to prevent the deep embedding function from overfitting. In order to benefit from end-to-end optimization and eliminate the necessity for layer-wise pretraining, we introduce a joint learning framework to minimize the unified clustering and reconstruction loss functions together and train all network layers simultaneously. Experimental results indicate the superiority and faster running time of DEPICT in real-world clustering tasks, where no labeled data is available for hyper-parameter tuning.
Equivalence Between Policy Gradients and Soft Q-Learning
Two of the leading approaches for model-free reinforcement learning are policy gradient methods and $Q$-learning methods. $Q$-learning methods can be effective and sample-efficient when they work, however, it is not well-understood why they work, since empirically, the $Q$-values they estimate are very inaccurate. A partial explanation may be that $Q$-learning methods are secretly implementing policy gradient updates: we show that there is a precise equivalence between $Q$-learning and policy gradient methods in the setting of entropy-regularized reinforcement learning, that "soft" (entropy-regularized) $Q$-learning is exactly equivalent to a policy gradient method. We also point out a connection between $Q$-learning methods and natural policy gradient methods. Experimentally, we explore the entropy-regularized versions of $Q$-learning and policy gradients, and we find them to perform as well as (or slightly better than) the standard variants on the Atari benchmark. We also show that the equivalence holds in practical settings by constructing a $Q$-learning method that closely matches the learning dynamics of A3C without using a target network or $\epsilon$-greedy exploration schedule.
Bandit Structured Prediction for Neural Sequence-to-Sequence Learning
Bandit structured prediction describes a stochastic optimization framework where learning is performed from partial feedback. This feedback is received in the form of a task loss evaluation to a predicted output structure, without having access to gold standard structures. We advance this framework by lifting linear bandit learning to neural sequence-to-sequence learning problems using attention-based recurrent neural networks. Furthermore, we show how to incorporate control variates into our learning algorithms for variance reduction and improved generalization. We present an evaluation on a neural machine translation task that shows improvements of up to 5.89 BLEU points for domain adaptation from simulated bandit feedback.
Time Series Prediction for Graphs in Kernel and Dissimilarity Spaces
Graph models are relevant in many fields, such as distributed computing, intelligent tutoring systems or social network analysis. In many cases, such models need to take changes in the graph structure into account, i.e. a varying number of nodes or edges. Predicting such changes within graphs can be expected to yield important insight with respect to the underlying dynamics, e.g. with respect to user behaviour. However, predictive techniques in the past have almost exclusively focused on single edges or nodes. In this contribution, we attempt to predict the future state of a graph as a whole. We propose to phrase time series prediction as a regression problem and apply dissimilarity- or kernel-based regression techniques, such as 1-nearest neighbor, kernel regression and Gaussian process regression, which can be applied to graphs via graph kernels. The output of the regression is a point embedded in a pseudo-Euclidean space, which can be analyzed using subsequent dissimilarity- or kernel-based processing methods. We discuss strategies to speed up Gaussian Processes regression from cubic to linear time and evaluate our approach on two well-established theoretical models of graph evolution as well as two real data sets from the domain of intelligent tutoring systems. We find that simple regression methods, such as kernel regression, are sufficient to capture the dynamics in the theoretical models, but that Gaussian process regression significantly improves the prediction error for real-world data.
Making Neural Programming Architectures Generalize via Recursion
Empirically, neural networks that attempt to learn programs from data have exhibited poor generalizability. Moreover, it has traditionally been difficult to reason about the behavior of these models beyond a certain level of input complexity. In order to address these issues, we propose augmenting neural architectures with a key abstraction: recursion. As an application, we implement recursion in the Neural Programmer-Interpreter framework on four tasks: grade-school addition, bubble sort, topological sort, and quicksort. We demonstrate superior generalizability and interpretability with small amounts of training data. Recursion divides the problem into smaller pieces and drastically reduces the domain of each neural network component, making it tractable to prove guarantees about the overall system's behavior. Our experience suggests that in order for neural architectures to robustly learn program semantics, it is necessary to incorporate a concept like recursion.
Learned D-AMP: Principled Neural Network based Compressive Image Recovery
Compressive image recovery is a challenging problem that requires fast and accurate algorithms. Recently, neural networks have been applied to this problem with promising results. By exploiting massively parallel GPU processing architectures and oodles of training data, they can run orders of magnitude faster than existing techniques. However, these methods are largely unprincipled black boxes that are difficult to train and often-times specific to a single measurement matrix. It was recently demonstrated that iterative sparse-signal-recovery algorithms can be "unrolled" to form interpretable deep networks. Taking inspiration from this work, we develop a novel neural network architecture that mimics the behavior of the denoising-based approximate message passing (D-AMP) algorithm. We call this new network Learned D-AMP (LDAMP). The LDAMP network is easy to train, can be applied to a variety of different measurement matrices, and comes with a state-evolution heuristic that accurately predicts its performance. Most importantly, it outperforms the state-of-the-art BM3D-AMP and NLR-CS algorithms in terms of both accuracy and run time. At high resolutions, and when used with sensing matrices that have fast implementations, LDAMP runs over $50\times$ faster than BM3D-AMP and hundreds of times faster than NLR-CS.
Feature selection algorithm based on Catastrophe model to improve the performance of regression analysis
In this paper we introduce a new feature selection algorithm to remove the irrelevant or redundant features in the data sets. In this algorithm the importance of a feature is based on its fitting to the Catastrophe model. Akaike information crite- rion value is used for ranking the features in the data set. The proposed algorithm is compared with well-known RELIEF feature selection algorithm. Breast Cancer, Parkinson Telemonitoring data and Slice locality data sets are used to evaluate the model.
Batch-Expansion Training: An Efficient Optimization Framework
We propose Batch-Expansion Training (BET), a framework for running a batch optimizer on a gradually expanding dataset. As opposed to stochastic approaches, batches do not need to be resampled i.i.d. at every iteration, thus making BET more resource efficient in a distributed setting, and when disk-access is constrained. Moreover, BET can be easily paired with most batch optimizers, does not require any parameter-tuning, and compares favorably to existing stochastic and batch methods. We show that when the batch size grows exponentially with the number of outer iterations, BET achieves optimal $O(1/\epsilon)$ data-access convergence rate for strongly convex objectives. Experiments in parallel and distributed settings show that BET performs better than standard batch and stochastic approaches.
Robust, Deep and Inductive Anomaly Detection
PCA is a classical statistical technique whose simplicity and maturity has seen it find widespread use as an anomaly detection technique. However, it is limited in this regard by being sensitive to gross perturbations of the input, and by seeking a linear subspace that captures normal behaviour. The first issue has been dealt with by robust PCA, a variant of PCA that explicitly allows for some data points to be arbitrarily corrupted, however, this does not resolve the second issue, and indeed introduces the new issue that one can no longer inductively find anomalies on a test set. This paper addresses both issues in a single model, the robust autoencoder. This method learns a nonlinear subspace that captures the majority of data points, while allowing for some data to have arbitrary corruption. The model is simple to train and leverages recent advances in the optimisation of deep neural networks. Experiments on a range of real-world datasets highlight the model's effectiveness.
Convex Formulation of Multiple Instance Learning from Positive and Unlabeled Bags
Multiple instance learning (MIL) is a variation of traditional supervised learning problems where data (referred to as bags) are composed of sub-elements (referred to as instances) and only bag labels are available. MIL has a variety of applications such as content-based image retrieval, text categorization and medical diagnosis. Most of the previous work for MIL assume that the training bags are fully labeled. However, it is often difficult to obtain an enough number of labeled bags in practical situations, while many unlabeled bags are available. A learning framework called PU learning (positive and unlabeled learning) can address this problem. In this paper, we propose a convex PU learning method to solve an MIL problem. We experimentally show that the proposed method achieves better performance with significantly lower computational costs than an existing method for PU-MIL.
Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks
Matrix completion models are among the most common formulations of recommender systems. Recent works have showed a boost of performance of these techniques when introducing the pairwise relationships between users/items in the form of graphs, and imposing smoothness priors on these graphs. However, such techniques do not fully exploit the local stationarity structures of user/item graphs, and the number of parameters to learn is linear w.r.t. the number of users and items. We propose a novel approach to overcome these limitations by using geometric deep learning on graphs. Our matrix completion architecture combines graph convolutional neural networks and recurrent neural networks to learn meaningful statistical graph-structured patterns and the non-linear diffusion process that generates the known ratings. This neural network system requires a constant number of parameters independent of the matrix size. We apply our method on both synthetic and real datasets, showing that it outperforms state-of-the-art techniques.
Testing Symmetric Markov Chains from a Single Trajectory
Classical distribution testing assumes access to i.i.d. samples from the distribution that is being tested. We initiate the study of Markov chain testing, assuming access to a single trajectory of a Markov Chain. In particular, we observe a single trajectory X0,...,Xt,... of an unknown, symmetric, and finite state Markov Chain M. We do not control the starting state X0, and we cannot restart the chain. Given our single trajectory, the goal is to test whether M is identical to a model Markov Chain M0 , or far from it under an appropriate notion of difference. We propose a measure of difference between two Markov chains, motivated by the early work of Kazakos [Kaz78], which captures the scaling behavior of the total variation distance between trajectories sampled from the Markov chains as the length of these trajectories grows. We provide efficient testers and information-theoretic lower bounds for testing identity of symmetric Markov chains under our proposed measure of difference, which are tight up to logarithmic factors if the hitting times of the model chain M0 is O(n) in the size of the state space n.
Learning to Skim Text
Recurrent Neural Networks are showing much promise in many sub-areas of natural language processing, ranging from document classification to machine translation to automatic question answering. Despite their promise, many recurrent models have to read the whole text word by word, making it slow to handle long documents. For example, it is difficult to use a recurrent network to read a book and answer questions about it. In this paper, we present an approach of reading text while skipping irrelevant information if needed. The underlying model is a recurrent network that learns how far to jump after reading a few words of the input text. We employ a standard policy gradient method to train the model to make discrete jumping decisions. In our benchmarks on four different tasks, including number prediction, sentiment analysis, news article classification and automatic Q\&A, our proposed model, a modified LSTM with jumping, is up to 6 times faster than the standard sequential LSTM, while maintaining the same or even better accuracy.
Misspecified Linear Bandits
We consider the problem of online learning in misspecified linear stochastic multi-armed bandit problems. Regret guarantees for state-of-the-art linear bandit algorithms such as Optimism in the Face of Uncertainty Linear bandit (OFUL) hold under the assumption that the arms expected rewards are perfectly linear in their features. It is, however, of interest to investigate the impact of potential misspecification in linear bandit models, where the expected rewards are perturbed away from the linear subspace determined by the arms features. Although OFUL has recently been shown to be robust to relatively small deviations from linearity, we show that any linear bandit algorithm that enjoys optimal regret performance in the perfectly linear setting (e.g., OFUL) must suffer linear regret under a sparse additive perturbation of the linear model. In an attempt to overcome this negative result, we define a natural class of bandit models characterized by a non-sparse deviation from linearity. We argue that the OFUL algorithm can fail to achieve sublinear regret even under models that have non-sparse deviation.We finally develop a novel bandit algorithm, comprising a hypothesis test for linearity followed by a decision to use either the OFUL or Upper Confidence Bound (UCB) algorithm. For perfectly linear bandit models, the algorithm provably exhibits OFULs favorable regret performance, while for misspecified models satisfying the non-sparse deviation property, the algorithm avoids the linear regret phenomenon and falls back on UCBs sublinear regret scaling. Numerical experiments on synthetic data, and on recommendation data from the public Yahoo! Learning to Rank Challenge dataset, empirically support our findings.
A General Theory for Training Learning Machine
Though the deep learning is pushing the machine learning to a new stage, basic theories of machine learning are still limited. The principle of learning, the role of the a prior knowledge, the role of neuron bias, and the basis for choosing neural transfer function and cost function, etc., are still far from clear. In this paper, we present a general theoretical framework for machine learning. We classify the prior knowledge into common and problem-dependent parts, and consider that the aim of learning is to maximally incorporate them. The principle we suggested for maximizing the former is the design risk minimization principle, while the neural transfer function, the cost function, as well as pretreatment of samples, are endowed with the role for maximizing the latter. The role of the neuron bias is explained from a different angle. We develop a Monte Carlo algorithm to establish the input-output responses, and we control the input-output sensitivity of a learning machine by controlling that of individual neurons. Applications of function approaching and smoothing, pattern recognition and classification, are provided to illustrate how to train general learning machines based on our theory and algorithm. Our method may in addition induce new applications, such as the transductive inference.
Learning weakly supervised multimodal phoneme embeddings
Recent works have explored deep architectures for learning multimodal speech representation (e.g. audio and images, articulation and audio) in a supervised way. Here we investigate the role of combining different speech modalities, i.e. audio and visual information representing the lips movements, in a weakly supervised way using Siamese networks and lexical same-different side information. In particular, we ask whether one modality can benefit from the other to provide a richer representation for phone recognition in a weakly supervised setting. We introduce mono-task and multi-task methods for merging speech and visual modalities for phone recognition. The mono-task learning consists in applying a Siamese network on the concatenation of the two modalities, while the multi-task learning receives several different combinations of modalities at train time. We show that multi-task learning enhances discriminability for visual and multimodal inputs while minimally impacting auditory inputs. Furthermore, we present a qualitative analysis of the obtained phone embeddings, and show that cross-modal visual input can improve the discriminability of phonological features which are visually discernable (rounding, open/close, labial place of articulation), resulting in representations that are closer to abstract linguistic features than those based on audio only.
Adversarial Neural Machine Translation
In this paper, we study a new learning paradigm for Neural Machine Translation (NMT). Instead of maximizing the likelihood of the human translation as in previous works, we minimize the distinction between human translation and the translation given by an NMT model. To achieve this goal, inspired by the recent success of generative adversarial networks (GANs), we employ an adversarial training architecture and name it as Adversarial-NMT. In Adversarial-NMT, the training of the NMT model is assisted by an adversary, which is an elaborately designed Convolutional Neural Network (CNN). The goal of the adversary is to differentiate the translation result generated by the NMT model from that by human. The goal of the NMT model is to produce high quality translations so as to cheat the adversary. A policy gradient method is leveraged to co-train the NMT model and the adversary. Experimental results on English$\rightarrow$French and German$\rightarrow$English translation tasks show that Adversarial-NMT can achieve significantly better translation quality than several strong baselines.
Naturalizing a Programming Language via Interactive Learning
Our goal is to create a convenient natural language interface for performing well-specified but complex actions such as analyzing data, manipulating text, and querying databases. However, existing natural language interfaces for such tasks are quite primitive compared to the power one wields with a programming language. To bridge this gap, we start with a core programming language and allow users to "naturalize" the core language incrementally by defining alternative, more natural syntax and increasingly complex concepts in terms of compositions of simpler ones. In a voxel world, we show that a community of users can simultaneously teach a common system a diverse language and use it to build hundreds of complex voxel structures. Over the course of three days, these users went from using only the core language to using the naturalized language in 85.9\% of the last 10K utterances.
Differentiable Scheduled Sampling for Credit Assignment
We demonstrate that a continuous relaxation of the argmax operation can be used to create a differentiable approximation to greedy decoding for sequence-to-sequence (seq2seq) models. By incorporating this approximation into the scheduled sampling training procedure (Bengio et al., 2015)--a well-known technique for correcting exposure bias--we introduce a new training objective that is continuous and differentiable everywhere and that can provide informative gradients near points where previous decoding decisions change their value. In addition, by using a related approximation, we demonstrate a similar approach to sampled-based training. Finally, we show that our approach outperforms cross-entropy training and scheduled sampling procedures in two sequence prediction tasks: named entity recognition and machine translation.
Probabilistic Vehicle Trajectory Prediction over Occupancy Grid Map via Recurrent Neural Network
In this paper, we propose an efficient vehicle trajectory prediction framework based on recurrent neural network. Basically, the characteristic of the vehicle's trajectory is different from that of regular moving objects since it is affected by various latent factors including road structure, traffic rules, and driver's intention. Previous state of the art approaches use sophisticated vehicle behavior model describing these factors and derive the complex trajectory prediction algorithm, which requires a system designer to conduct intensive model optimization for practical use. Our approach is data-driven and simple to use in that it learns complex behavior of the vehicles from the massive amount of trajectory data through deep neural network model. The proposed trajectory prediction method employs the recurrent neural network called long short-term memory (LSTM) to analyze the temporal behavior and predict the future coordinate of the surrounding vehicles. The proposed scheme feeds the sequence of vehicles' coordinates obtained from sensor measurements to the LSTM and produces the probabilistic information on the future location of the vehicles over occupancy grid map. The experiments conducted using the data collected from highway driving show that the proposed method can produce reasonably good estimate of future trajectory.
Using Global Constraints and Reranking to Improve Cognates Detection
Global constraints and reranking have not been used in cognates detection research to date. We propose methods for using global constraints by performing rescoring of the score matrices produced by state of the art cognates detection systems. Using global constraints to perform rescoring is complementary to state of the art methods for performing cognates detection and results in significant performance improvements beyond current state of the art performance on publicly available datasets with different language pairs and various conditions such as different levels of baseline state of the art performance and different data size conditions, including with more realistic large data size conditions than have been evaluated with in the past.
k-FFNN: A priori knowledge infused Feed-forward Neural Networks
Recurrent neural network (RNN) are being extensively used over feed-forward neural networks (FFNN) because of their inherent capability to capture temporal relationships that exist in the sequential data such as speech. This aspect of RNN is advantageous especially when there is no a priori knowledge about the temporal correlations within the data. However, RNNs require large amount of data to learn these temporal correlations, limiting their advantage in low resource scenarios. It is not immediately clear (a) how a priori temporal knowledge can be used in a FFNN architecture (b) how a FFNN performs when provided with this knowledge about temporal correlations (assuming available) during training. The objective of this paper is to explore k-FFNN, namely a FFNN architecture that can incorporate the a priori knowledge of the temporal relationships within the data sequence during training and compare k-FFNN performance with RNN in a low resource scenario. We evaluate the performance of k-FFNN and RNN by extensive experimentation on MediaEval 2016 audio data ("Emotional Impact of Movies" task). Experimental results show that the performance of k-FFNN is comparable to RNN, and in some scenarios k-FFNN performs better than RNN when temporal knowledge is injected into FFNN architecture. The main contributions of this paper are (a) fusing a priori knowledge into FFNN architecture to construct a k-FFNN and (b) analyzing the performance of k-FFNN with respect to RNN for different size of training data.
Diffusion geometry unravels the emergence of functional clusters in collective phenomena
Collective phenomena emerge from the interaction of natural or artificial units with a complex organization. The interplay between structural patterns and dynamics might induce functional clusters that, in general, are different from topological ones. In biological systems, like the human brain, the overall functionality is often favored by the interplay between connectivity and synchronization dynamics, with functional clusters that do not coincide with anatomical modules in most cases. In social, socio-technical and engineering systems, the quest for consensus favors the emergence of clusters. Despite the unquestionable evidence for mesoscale organization of many complex systems and the heterogeneity of their inter-connectivity, a way to predict and identify the emergence of functional modules in collective phenomena continues to elude us. Here, we propose an approach based on random walk dynamics to define the diffusion distance between any pair of units in a networked system. Such a metric allows to exploit the underlying diffusion geometry to provide a unifying framework for the intimate relationship between metastable synchronization, consensus and random search dynamics in complex networks, pinpointing the functional mesoscale organization of synthetic and biological systems.
Being Negative but Constructively: Lessons Learnt from Creating Better Visual Question Answering Datasets
Visual question answering (Visual QA) has attracted a lot of attention lately, seen essentially as a form of (visual) Turing test that artificial intelligence should strive to achieve. In this paper, we study a crucial component of this task: how can we design good datasets for the task? We focus on the design of multiple-choice based datasets where the learner has to select the right answer from a set of candidate ones including the target (\ie the correct one) and the decoys (\ie the incorrect ones). Through careful analysis of the results attained by state-of-the-art learning models and human annotators on existing datasets, we show that the design of the decoy answers has a significant impact on how and what the learning models learn from the datasets. In particular, the resulting learner can ignore the visual information, the question, or both while still doing well on the task. Inspired by this, we propose automatic procedures to remedy such design deficiencies. We apply the procedures to re-construct decoy answers for two popular Visual QA datasets as well as to create a new Visual QA dataset from the Visual Genome project, resulting in the largest dataset for this task. Extensive empirical studies show that the design deficiencies have been alleviated in the remedied datasets and the performance on them is likely a more faithful indicator of the difference among learning models. The datasets are released and publicly available via http://www.teds.usc.edu/website_vqa/.
An Aposteriorical Clusterability Criterion for $k$-Means++ and Simplicity of Clustering
We define the notion of a well-clusterable data set combining the point of view of the objective of $k$-means clustering algorithm (minimising the centric spread of data elements) and common sense (clusters shall be separated by gaps). We identify conditions under which the optimum of $k$-means objective coincides with a clustering under which the data is separated by predefined gaps. We investigate two cases: when the whole clusters are separated by some gap and when only the cores of the clusters meet some separation condition. We overcome a major obstacle in using clusterability criteria due to the fact that known approaches to clusterability checking had the disadvantage that they are related to the optimal clustering which is NP hard to identify. Compared to other approaches to clusterability, the novelty consists in the possibility of an a posteriori (after running $k$-means) check if the data set is well-clusterable or not. As the $k$-means algorithm applied for this purpose has polynomial complexity so does therefore the appropriate check. Additionally, if $k$-means++ fails to identify a clustering that meets clusterability criteria, with high probability the data is not well-clusterable.
A Neural Network model with Bidirectional Whitening
We present here a new model and algorithm which performs an efficient Natural gradient descent for Multilayer Perceptrons. Natural gradient descent was originally proposed from a point of view of information geometry, and it performs the steepest descent updates on manifolds in a Riemannian space. In particular, we extend an approach taken by the "Whitened neural networks" model. We make the whitening process not only in feed-forward direction as in the original model, but also in the back-propagation phase. Its efficacy is shown by an application of this "Bidirectional whitened neural networks" model to a handwritten character recognition data (MNIST data).
Semi-supervised Multitask Learning for Sequence Labeling
We propose a sequence labeling framework with a secondary training objective, learning to predict surrounding words for every word in the dataset. This language modeling objective incentivises the system to learn general-purpose patterns of semantic and syntactic composition, which are also useful for improving accuracy on different sequence labeling tasks. The architecture was evaluated on a range of datasets, covering the tasks of error detection in learner texts, named entity recognition, chunking and POS-tagging. The novel language modeling objective provided consistent performance improvements on every benchmark, without requiring any additional annotated or unannotated data.
Reinforcement Learning Based Dynamic Selection of Auxiliary Objectives with Preserving of the Best Found Solution
Efficiency of single-objective optimization can be improved by introducing some auxiliary objectives. Ideally, auxiliary objectives should be helpful. However, in practice, objectives may be efficient on some optimization stages but obstructive on others. In this paper we propose a modification of the EA+RL method which dynamically selects optimized objectives using reinforcement learning. The proposed modification prevents from losing the best found solution. We analysed the proposed modification and compared it with the EA+RL method and Random Local Search on XdivK, Generalized OneMax and LeadingOnes problems. The proposed modification outperforms the EA+RL method on all problem instances. It also outperforms the single objective approach on the most problem instances. We also provide detailed analysis of how different components of the considered algorithms influence efficiency of optimization. In addition, we present theoretical analysis of the proposed modification on the XdivK problem.