title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Learning to Succeed while Teaching to Fail: Privacy in Closed Machine Learning Systems
Security, privacy, and fairness have become critical in the era of data science and machine learning. More and more we see that achieving universally secure, private, and fair systems is practically impossible. We have seen for example how generative adversarial networks can be used to learn about the expected private training data; how the exploitation of additional data can reveal private information in the original one; and how what looks like unrelated features can teach us about each other. Confronted with this challenge, in this paper we open a new line of research, where the security, privacy, and fairness is learned and used in a closed environment. The goal is to ensure that a given entity (e.g., the company or the government), trusted to infer certain information with our data, is blocked from inferring protected information from it. For example, a hospital might be allowed to produce diagnosis on the patient (the positive task), without being able to infer the gender of the subject (negative task). Similarly, a company can guarantee that internally it is not using the provided data for any undesired task, an important goal that is not contradicting the virtually impossible challenge of blocking everybody from the undesired task. We design a system that learns to succeed on the positive task while simultaneously fail at the negative one, and illustrate this with challenging cases where the positive task is actually harder than the negative one being blocked. Fairness, to the information in the negative task, is often automatically obtained as a result of this proposed approach. The particular framework and examples open the door to security, privacy, and fairness in very important closed scenarios, ranging from private data accumulation companies like social networks to law-enforcement and hospitals.
Unbiasing Truncated Backpropagation Through Time
Truncated Backpropagation Through Time (truncated BPTT) is a widespread method for learning recurrent computational graphs. Truncated BPTT keeps the computational benefits of Backpropagation Through Time (BPTT) while relieving the need for a complete backtrack through the whole data sequence at every step. However, truncation favors short-term dependencies: the gradient estimate of truncated BPTT is biased, so that it does not benefit from the convergence guarantees from stochastic gradient theory. We introduce Anticipated Reweighted Truncated Backpropagation (ARTBP), an algorithm that keeps the computational benefits of truncated BPTT, while providing unbiasedness. ARTBP works by using variable truncation lengths together with carefully chosen compensation factors in the backpropagation equation. We check the viability of ARTBP on two tasks. First, a simple synthetic task where careful balancing of temporal dependencies at different scales is needed: truncated BPTT displays unreliable performance, and in worst case scenarios, divergence, while ARTBP converges reliably. Second, on Penn Treebank character-level language modelling, ARTBP slightly outperforms truncated BPTT.
Matching neural paths: transfer from recognition to correspondence search
Many machine learning tasks require finding per-part correspondences between objects. In this work we focus on low-level correspondences - a highly ambiguous matching problem. We propose to use a hierarchical semantic representation of the objects, coming from a convolutional neural network, to solve this ambiguity. Training it for low-level correspondence prediction directly might not be an option in some domains where the ground-truth correspondences are hard to obtain. We show how transfer from recognition can be used to avoid such training. Our idea is to mark parts as "matching" if their features are close to each other at all the levels of convolutional feature hierarchy (neural paths). Although the overall number of such paths is exponential in the number of layers, we propose a polynomial algorithm for aggregating all of them in a single backward pass. The empirical validation is done on the task of stereo correspondence and demonstrates that we achieve competitive results among the methods which do not use labeled target domain data.
The Marginal Value of Adaptive Gradient Methods in Machine Learning
Adaptive optimization methods, which perform local optimization with a metric constructed from the history of iterates, are becoming increasingly popular for training deep neural networks. Examples include AdaGrad, RMSProp, and Adam. We show that for simple overparameterized problems, adaptive methods often find drastically different solutions than gradient descent (GD) or stochastic gradient descent (SGD). We construct an illustrative binary classification problem where the data is linearly separable, GD and SGD achieve zero test error, and AdaGrad, Adam, and RMSProp attain test errors arbitrarily close to half. We additionally study the empirical generalization capability of adaptive methods on several state-of-the-art deep learning models. We observe that the solutions found by adaptive methods generalize worse (often significantly worse) than SGD, even when these solutions have better training performance. These results suggest that practitioners should reconsider the use of adaptive methods to train neural networks.
Efficient and principled score estimation with Nystr\"om kernel exponential families
We propose a fast method with statistical guarantees for learning an exponential family density model where the natural parameter is in a reproducing kernel Hilbert space, and may be infinite-dimensional. The model is learned by fitting the derivative of the log density, the score, thus avoiding the need to compute a normalization constant. Our approach improves the computational efficiency of an earlier solution by using a low-rank, Nystr\"om-like solution. The new solution retains the consistency and convergence rates of the full-rank solution (exactly in Fisher distance, and nearly in other distances), with guarantees on the degree of cost and storage reduction. We evaluate the method in experiments on density estimation and in the construction of an adaptive Hamiltonian Monte Carlo sampler. Compared to an existing score learning approach using a denoising autoencoder, our estimator is empirically more data-efficient when estimating the score, runs faster, and has fewer parameters (which can be tuned in a principled and interpretable way), in addition to providing statistical guarantees.
Detecting Adversarial Image Examples in Deep Networks with Adaptive Noise Reduction
Recently, many studies have demonstrated deep neural network (DNN) classifiers can be fooled by the adversarial example, which is crafted via introducing some perturbations into an original sample. Accordingly, some powerful defense techniques were proposed. However, existing defense techniques often require modifying the target model or depend on the prior knowledge of attacks. In this paper, we propose a straightforward method for detecting adversarial image examples, which can be directly deployed into unmodified off-the-shelf DNN models. We consider the perturbation to images as a kind of noise and introduce two classic image processing techniques, scalar quantization and smoothing spatial filter, to reduce its effect. The image entropy is employed as a metric to implement an adaptive noise reduction for different kinds of images. Consequently, the adversarial example can be effectively detected by comparing the classification results of a given sample and its denoised version, without referring to any prior knowledge of attacks. More than 20,000 adversarial examples against some state-of-the-art DNN models are used to evaluate the proposed method, which are crafted with different attack techniques. The experiments show that our detection method can achieve a high overall F1 score of 96.39% and certainly raises the bar for defense-aware attacks.
Better Text Understanding Through Image-To-Text Transfer
Generic text embeddings are successfully used in a variety of tasks. However, they are often learnt by capturing the co-occurrence structure from pure text corpora, resulting in limitations of their ability to generalize. In this paper, we explore models that incorporate visual information into the text representation. Based on comprehensive ablation studies, we propose a conceptually simple, yet well performing architecture. It outperforms previous multimodal approaches on a set of well established benchmarks. We also improve the state-of-the-art results for image-related text datasets, using orders of magnitude less data.
Continual Learning in Generative Adversarial Nets
Developments in deep generative models have allowed for tractable learning of high-dimensional data distributions. While the employed learning procedures typically assume that training data is drawn i.i.d. from the distribution of interest, it may be desirable to model distinct distributions which are observed sequentially, such as when different classes are encountered over time. Although conditional variations of deep generative models permit multiple distributions to be modeled by a single network in a disentangled fashion, they are susceptible to catastrophic forgetting when the distributions are encountered sequentially. In this paper, we adapt recent work in reducing catastrophic forgetting to the task of training generative adversarial networks on a sequence of distinct distributions, enabling continual generative modeling.
Ridesourcing Car Detection by Transfer Learning
Ridesourcing platforms like Uber and Didi are getting more and more popular around the world. However, unauthorized ridesourcing activities taking advantages of the sharing economy can greatly impair the healthy development of this emerging industry. As the first step to regulate on-demand ride services and eliminate black market, we design a method to detect ridesourcing cars from a pool of cars based on their trajectories. Since licensed ridesourcing car traces are not openly available and may be completely missing in some cities due to legal issues, we turn to transferring knowledge from public transport open data, i.e, taxis and buses, to ridesourcing detection among ordinary vehicles. We propose a two-stage transfer learning framework. In Stage 1, we take taxi and bus data as input to learn a random forest (RF) classifier using trajectory features shared by taxis/buses and ridesourcing/other cars. Then, we use the RF to label all the candidate cars. In Stage 2, leveraging the subset of high confident labels from the previous stage as input, we further learn a convolutional neural network (CNN) classifier for ridesourcing detection, and iteratively refine RF and CNN, as well as the feature set, via a co-training process. Finally, we use the resulting ensemble of RF and CNN to identify the ridesourcing cars in the candidate pool. Experiments on real car, taxi and bus traces show that our transfer learning framework, with no need of a pre-labeled ridesourcing dataset, can achieve similar accuracy as the supervised learning methods.
Reinforcement Learning with a Corrupted Reward Channel
No real-world reward function is perfect. Sensory errors and software bugs may result in RL agents observing higher (or lower) rewards than they should. For example, a reinforcement learning agent may prefer states where a sensory error gives it the maximum reward, but where the true reward is actually small. We formalise this problem as a generalised Markov Decision Problem called Corrupt Reward MDP. Traditional RL methods fare poorly in CRMDPs, even under strong simplifying assumptions and when trying to compensate for the possibly corrupt rewards. Two ways around the problem are investigated. First, by giving the agent richer data, such as in inverse reinforcement learning and semi-supervised reinforcement learning, reward corruption stemming from systematic sensory errors may sometimes be completely managed. Second, by using randomisation to blunt the agent's optimisation, reward corruption can be partially managed under some assumptions.
Continuous State-Space Models for Optimal Sepsis Treatment - a Deep Reinforcement Learning Approach
Sepsis is a leading cause of mortality in intensive care units (ICUs) and costs hospitals billions annually. Treating a septic patient is highly challenging, because individual patients respond very differently to medical interventions and there is no universally agreed-upon treatment for sepsis. Understanding more about a patient's physiological state at a given time could hold the key to effective treatment policies. In this work, we propose a new approach to deduce optimal treatment policies for septic patients by using continuous state-space models and deep reinforcement learning. Learning treatment policies over continuous spaces is important, because we retain more of the patient's physiological information. Our model is able to learn clinically interpretable treatment policies, similar in important aspects to the treatment policies of physicians. Evaluating our algorithm on past ICU patient data, we find that our model could reduce patient mortality in the hospital by up to 3.6% over observed clinical policies, from a baseline mortality of 13.7%. The learned treatment policies could be used to aid intensive care clinicians in medical decision making and improve the likelihood of patient survival.
Submultiplicative Glivenko-Cantelli and Uniform Convergence of Revenues
In this work we derive a variant of the classic Glivenko-Cantelli Theorem, which asserts uniform convergence of the empirical Cumulative Distribution Function (CDF) to the CDF of the underlying distribution. Our variant allows for tighter convergence bounds for extreme values of the CDF. We apply our bound in the context of revenue learning, which is a well-studied problem in economics and algorithmic game theory. We derive sample-complexity bounds on the uniform convergence rate of the empirical revenues to the true revenues, assuming a bound on the $k$th moment of the valuations, for any (possibly fractional) $k>1$. For uniform convergence in the limit, we give a complete characterization and a zero-one law: if the first moment of the valuations is finite, then uniform convergence almost surely occurs; conversely, if the first moment is infinite, then uniform convergence almost never occurs.
Personalized and Private Peer-to-Peer Machine Learning
The rise of connected personal devices together with privacy concerns call for machine learning algorithms capable of leveraging the data of a large number of agents to learn personalized models under strong privacy requirements. In this paper, we introduce an efficient algorithm to address the above problem in a fully decentralized (peer-to-peer) and asynchronous fashion, with provable convergence rate. We show how to make the algorithm differentially private to protect against the disclosure of information about the personal datasets, and formally analyze the trade-off between utility and privacy. Our experiments show that our approach dramatically outperforms previous work in the non-private case, and that under privacy constraints, we can significantly improve over models learned in isolation.
Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation
Recent work has shown that state-of-the-art classifiers are quite brittle, in the sense that a small adversarial change of an originally with high confidence correctly classified input leads to a wrong classification again with high confidence. This raises concerns that such classifiers are vulnerable to attacks and calls into question their usage in safety-critical systems. We show in this paper for the first time formal guarantees on the robustness of a classifier by giving instance-specific lower bounds on the norm of the input manipulation required to change the classifier decision. Based on this analysis we propose the Cross-Lipschitz regularization functional. We show that using this form of regularization in kernel methods resp. neural networks improves the robustness of the classifier without any loss in prediction performance.
Efficiently applying attention to sequential data with the Recurrent Discounted Attention unit
Recurrent Neural Networks architectures excel at processing sequences by modelling dependencies over different timescales. The recently introduced Recurrent Weighted Average (RWA) unit captures long term dependencies far better than an LSTM on several challenging tasks. The RWA achieves this by applying attention to each input and computing a weighted average over the full history of its computations. Unfortunately, the RWA cannot change the attention it has assigned to previous timesteps, and so struggles with carrying out consecutive tasks or tasks with changing requirements. We present the Recurrent Discounted Attention (RDA) unit that builds on the RWA by additionally allowing the discounting of the past. We empirically compare our model to RWA, LSTM and GRU units on several challenging tasks. On tasks with a single output the RWA, RDA and GRU units learn much quicker than the LSTM and with better performance. On the multiple sequence copy task our RDA unit learns the task three times as quickly as the LSTM or GRU units while the RWA fails to learn at all. On the Wikipedia character prediction task the LSTM performs best but it followed closely by our RDA unit. Overall our RDA unit performs well and is sample efficient on a large variety of sequence tasks.
Bayesian Pool-based Active Learning With Abstention Feedbacks
We study pool-based active learning with abstention feedbacks, where a labeler can abstain from labeling a queried example with some unknown abstention rate. This is an important problem with many useful applications. We take a Bayesian approach to the problem and develop two new greedy algorithms that learn both the classification problem and the unknown abstention rate at the same time. These are achieved by simply incorporating the estimated abstention rate into the greedy criteria. We prove that both of our algorithms have near-optimality guarantees: they respectively achieve a ${(1-\frac{1}{e})}$ constant factor approximation of the optimal expected or worst-case value of a useful utility function. Our experiments show the algorithms perform well in various practical scenarios.
Clinical Intervention Prediction and Understanding using Deep Networks
Real-time prediction of clinical interventions remains a challenge within intensive care units (ICUs). This task is complicated by data sources that are noisy, sparse, heterogeneous and outcomes that are imbalanced. In this paper, we integrate data from all available ICU sources (vitals, labs, notes, demographics) and focus on learning rich representations of this data to predict onset and weaning of multiple invasive interventions. In particular, we compare both long short-term memory networks (LSTM) and convolutional neural networks (CNN) for prediction of five intervention tasks: invasive ventilation, non-invasive ventilation, vasopressors, colloid boluses, and crystalloid boluses. Our predictions are done in a forward-facing manner to enable "real-time" performance, and predictions are made with a six hour gap time to support clinically actionable planning. We achieve state-of-the-art results on our predictive tasks using deep architectures. We explore the use of feature occlusion to interpret LSTM models, and compare this to the interpretability gained from examining inputs that maximally activate CNN outputs. We show that our models are able to significantly outperform baselines in intervention prediction, and provide insight into model learning, which is crucial for the adoption of such models in practice.
The Prediction Advantage: A Universally Meaningful Performance Measure for Classification and Regression
We introduce the Prediction Advantage (PA), a novel performance measure for prediction functions under any loss function (e.g., classification or regression). The PA is defined as the performance advantage relative to the Bayesian risk restricted to knowing only the distribution of the labels. We derive the PA for well-known loss functions, including 0/1 loss, cross-entropy loss, absolute loss, and squared loss. In the latter case, the PA is identical to the well-known R-squared measure, widely used in statistics. The use of the PA ensures meaningful quantification of prediction performance, which is not guaranteed, for example, when dealing with noisy imbalanced classification problems. We argue that among several known alternative performance measures, PA is the best (and only) quantity ensuring meaningfulness for all noise and imbalance levels.
Selective Classification for Deep Neural Networks
Selective classification techniques (also known as reject option) have not yet been considered in the context of deep neural networks (DNNs). These techniques can potentially significantly improve DNNs prediction performance by trading-off coverage. In this paper we propose a method to construct a selective classifier given a trained neural network. Our method allows a user to set a desired risk level. At test time, the classifier rejects instances as needed, to grant the desired risk (with high probability). Empirical results over CIFAR and ImageNet convincingly demonstrate the viability of our method, which opens up possibilities to operate DNNs in mission-critical applications. For example, using our method an unprecedented 2% error in top-5 ImageNet classification can be guaranteed with probability 99.9%, and almost 60% test coverage.
Interpreting Blackbox Models via Model Extraction
Interpretability has become incredibly important as machine learning is increasingly used to inform consequential decisions. We propose to construct global explanations of complex, blackbox models in the form of a decision tree approximating the original model---as long as the decision tree is a good approximation, then it mirrors the computation performed by the blackbox model. We devise a novel algorithm for extracting decision tree explanations that actively samples new training points to avoid overfitting. We evaluate our algorithm on a random forest to predict diabetes risk and a learned controller for cart-pole. Compared to several baselines, our decision trees are both substantially more accurate and equally or more interpretable based on a user study. Finally, we describe several insights provided by our interpretations, including a causal issue validated by a physician.
An effective algorithm for hyperparameter optimization of neural networks
A major challenge in designing neural network (NN) systems is to determine the best structure and parameters for the network given the data for the machine learning problem at hand. Examples of parameters are the number of layers and nodes, the learning rates, and the dropout rates. Typically, these parameters are chosen based on heuristic rules and manually fine-tuned, which may be very time-consuming, because evaluating the performance of a single parametrization of the NN may require several hours. This paper addresses the problem of choosing appropriate parameters for the NN by formulating it as a box-constrained mathematical optimization problem, and applying a derivative-free optimization tool that automatically and effectively searches the parameter space. The optimization tool employs a radial basis function model of the objective function (the prediction accuracy of the NN) to accelerate the discovery of configurations yielding high accuracy. Candidate configurations explored by the algorithm are trained to a small number of epochs, and only the most promising candidates receive full training. The performance of the proposed methodology is assessed on benchmark sets and in the context of predicting drug-drug interactions, showing promising results. The optimization tool used in this paper is open-source.
Data-driven Random Fourier Features using Stein Effect
Large-scale kernel approximation is an important problem in machine learning research. Approaches using random Fourier features have become increasingly popular [Rahimi and Recht, 2007], where kernel approximation is treated as empirical mean estimation via Monte Carlo (MC) or Quasi-Monte Carlo (QMC) integration [Yang et al., 2014]. A limitation of the current approaches is that all the features receive an equal weight summing to 1. In this paper, we propose a novel shrinkage estimator from "Stein effect", which provides a data-driven weighting strategy for random features and enjoys theoretical justifications in terms of lowering the empirical risk. We further present an efficient randomized algorithm for large-scale applications of the proposed method. Our empirical results on six benchmark data sets demonstrate the advantageous performance of this approach over representative baselines in both kernel approximation and supervised learning tasks.
Convergence Analysis of Gradient EM for Multi-component Gaussian Mixture
In this paper, we study convergence properties of the gradient Expectation-Maximization algorithm \cite{lange1995gradient} for Gaussian Mixture Models for general number of clusters and mixing coefficients. We derive the convergence rate depending on the mixing coefficients, minimum and maximum pairwise distances between the true centers and dimensionality and number of components; and obtain a near-optimal local contraction radius. While there have been some recent notable works that derive local convergence rates for EM in the two equal mixture symmetric GMM, in the more general case, the derivations need structurally different and non-trivial arguments. We use recent tools from learning theory and empirical processes to achieve our theoretical results.
Deep Multi-instance Networks with Sparse Label Assignment for Whole Mammogram Classification
Mammogram classification is directly related to computer-aided diagnosis of breast cancer. Traditional methods rely on regions of interest (ROIs) which require great efforts to annotate. Inspired by the success of using deep convolutional features for natural image analysis and multi-instance learning (MIL) for labeling a set of instances/patches, we propose end-to-end trained deep multi-instance networks for mass classification based on whole mammogram without the aforementioned ROIs. We explore three different schemes to construct deep multi-instance networks for whole mammogram classification. Experimental results on the INbreast dataset demonstrate the robustness of proposed networks compared to previous work using segmentation and detection annotations.
Safe Model-based Reinforcement Learning with Stability Guarantees
Reinforcement learning is a powerful paradigm for learning optimal policies from experimental data. However, to find optimal policies, most reinforcement learning algorithms explore all possible actions, which may be harmful for real-world systems. As a consequence, learning algorithms are rarely applied on safety-critical systems in the real world. In this paper, we present a learning algorithm that explicitly considers safety, defined in terms of stability guarantees. Specifically, we extend control-theoretic results on Lyapunov stability verification and show how to use statistical models of the dynamics to obtain high-performance control policies with provable stability certificates. Moreover, under additional regularity assumptions in terms of a Gaussian process prior, we prove that one can effectively and safely collect data in order to learn about the dynamics and thus both improve control performance and expand the safe region of the state space. In our experiments, we show how the resulting algorithm can safely optimize a neural network policy on a simulated inverted pendulum, without the pendulum ever falling down.
Grounded Recurrent Neural Networks
In this work, we present the Grounded Recurrent Neural Network (GRNN), a recurrent neural network architecture for multi-label prediction which explicitly ties labels to specific dimensions of the recurrent hidden state (we call this process "grounding"). The approach is particularly well-suited for extracting large numbers of concepts from text. We apply the new model to address an important problem in healthcare of understanding what medical concepts are discussed in clinical text. Using a publicly available dataset derived from Intensive Care Units, we learn to label a patient's diagnoses and procedures from their discharge summary. Our evaluation shows a clear advantage to using our proposed architecture over a variety of strong baselines.
Hashing as Tie-Aware Learning to Rank
Hashing, or learning binary embeddings of data, is frequently used in nearest neighbor retrieval. In this paper, we develop learning to rank formulations for hashing, aimed at directly optimizing ranking-based evaluation metrics such as Average Precision (AP) and Normalized Discounted Cumulative Gain (NDCG). We first observe that the integer-valued Hamming distance often leads to tied rankings, and propose to use tie-aware versions of AP and NDCG to evaluate hashing for retrieval. Then, to optimize tie-aware ranking metrics, we derive their continuous relaxations, and perform gradient-based optimization with deep neural networks. Our results establish the new state-of-the-art for image retrieval by Hamming ranking in common benchmarks.
Towards Interrogating Discriminative Machine Learning Models
It is oftentimes impossible to understand how machine learning models reach a decision. While recent research has proposed various technical approaches to provide some clues as to how a learning model makes individual decisions, they cannot provide users with ability to inspect a learning model as a complete entity. In this work, we propose a new technical approach that augments a Bayesian regression mixture model with multiple elastic nets. Using the enhanced mixture model, we extract explanations for a target model through global approximation. To demonstrate the utility of our approach, we evaluate it on different learning models covering the tasks of text mining and image recognition. Our results indicate that the proposed approach not only outperforms the state-of-the-art technique in explaining individual decisions but also provides users with an ability to discover the vulnerabilities of a learning model.
MMD GAN: Towards Deeper Understanding of Moment Matching Network
Generative moment matching network (GMMN) is a deep generative model that differs from Generative Adversarial Network (GAN) by replacing the discriminator in GAN with a two-sample test based on kernel maximum mean discrepancy (MMD). Although some theoretical guarantees of MMD have been studied, the empirical performance of GMMN is still not as competitive as that of GAN on challenging and large benchmark datasets. The computational efficiency of GMMN is also less desirable in comparison with GAN, partially due to its requirement for a rather large batch size during the training. In this paper, we propose to improve both the model expressiveness of GMMN and its computational efficiency by introducing adversarial kernel learning techniques, as the replacement of a fixed Gaussian kernel in the original GMMN. The new approach combines the key ideas in both GMMN and GAN, hence we name it MMD GAN. The new distance measure in MMD GAN is a meaningful loss that enjoys the advantage of weak topology and can be optimized via gradient descent with relatively small batch sizes. In our evaluation on multiple benchmark datasets, including MNIST, CIFAR- 10, CelebA and LSUN, the performance of MMD-GAN significantly outperforms GMMN, and is competitive with other representative GAN works.
Multi-Task Learning for Contextual Bandits
Contextual bandits are a form of multi-armed bandit in which the agent has access to predictive side information (known as the context) for each arm at each time step, and have been used to model personalized news recommendation, ad placement, and other applications. In this work, we propose a multi-task learning framework for contextual bandit problems. Like multi-task learning in the batch setting, the goal is to leverage similarities in contexts for different arms so as to improve the agent's ability to predict rewards from contexts. We propose an upper confidence bound-based multi-task learning algorithm for contextual bandits, establish a corresponding regret bound, and interpret this bound to quantify the advantages of learning in the presence of high task (arm) similarity. We also describe an effective scheme for estimating task similarity from data, and demonstrate our algorithm's performance on several data sets.
Dictionary-based Monitoring of Premature Ventricular Contractions: An Ultra-Low-Cost Point-of-Care Service
While cardiovascular diseases (CVDs) are prevalent across economic strata, the economically disadvantaged population is disproportionately affected due to the high cost of traditional CVD management. Accordingly, developing an ultra-low-cost alternative, affordable even to groups at the bottom of the economic pyramid, has emerged as a societal imperative. Against this backdrop, we propose an inexpensive yet accurate home-based electrocardiogram(ECG) monitoring service. Specifically, we seek to provide point-of-care monitoring of premature ventricular contractions (PVCs), high frequency of which could indicate the onset of potentially fatal arrhythmia. Note that a traditional telecardiology system acquires the ECG, transmits it to a professional diagnostic centre without processing, and nearly achieves the diagnostic accuracy of a bedside setup, albeit at high bandwidth cost. In this context, we aim at reducing cost without significantly sacrificing reliability. To this end, we develop a dictionary-based algorithm that detects with high sensitivity the anomalous beats only which are then transmitted. We further compress those transmitted beats using class-specific dictionaries subject to suitable reconstruction/diagnostic fidelity. Such a scheme would not only reduce the overall bandwidth requirement, but also localising anomalous beats, thereby reducing physicians' burden. Finally, using Monte Carlo cross validation on MIT/BIH arrhythmia database, we evaluate the performance of the proposed system. In particular, with a sensitivity target of at most one undetected PVC in one hundred beats, and a percentage root mean squared difference less than 9% (a clinically acceptable level of fidelity), we achieved about 99.15% reduction in bandwidth cost, equivalent to 118-fold savings over traditional telecardiology.
Nonparametric Preference Completion
We consider the task of collaborative preference completion: given a pool of items, a pool of users and a partially observed item-user rating matrix, the goal is to recover the \emph{personalized ranking} of each user over all of the items. Our approach is nonparametric: we assume that each item $i$ and each user $u$ have unobserved features $x_i$ and $y_u$, and that the associated rating is given by $g_u(f(x_i,y_u))$ where $f$ is Lipschitz and $g_u$ is a monotonic transformation that depends on the user. We propose a $k$-nearest neighbors-like algorithm and prove that it is consistent. To the best of our knowledge, this is the first consistency result for the collaborative preference completion problem in a nonparametric setting. Finally, we demonstrate the performance of our algorithm with experiments on the Netflix and Movielens datasets.
Towards Understanding the Invertibility of Convolutional Neural Networks
Several recent works have empirically observed that Convolutional Neural Nets (CNNs) are (approximately) invertible. To understand this approximate invertibility phenomenon and how to leverage it more effectively, we focus on a theoretical explanation and develop a mathematical model of sparse signal recovery that is consistent with CNNs with random weights. We give an exact connection to a particular model of model-based compressive sensing (and its recovery algorithms) and random-weight CNNs. We show empirically that several learned networks are consistent with our mathematical analysis and then demonstrate that with such a simple theoretical framework, we can obtain reasonable re- construction results on real images. We also discuss gaps between our model assumptions and the CNN trained for classification in practical scenarios.
Bayesian Compression for Deep Learning
Compression and computational efficiency in deep learning have become a problem of great significance. In this work, we argue that the most principled and effective way to attack this problem is by adopting a Bayesian point of view, where through sparsity inducing priors we prune large parts of the network. We introduce two novelties in this paper: 1) we use hierarchical priors to prune nodes instead of individual weights, and 2) we use the posterior uncertainties to determine the optimal fixed point precision to encode the weights. Both factors significantly contribute to achieving the state of the art in terms of compression rates, while still staying competitive with methods designed to optimize for speed or energy efficiency.
Continual Learning with Deep Generative Replay
Attempts to train a comprehensive artificial intelligence capable of solving multiple tasks have been impeded by a chronic problem called catastrophic forgetting. Although simply replaying all previous data alleviates the problem, it requires large memory and even worse, often infeasible in real world applications where the access to past data is limited. Inspired by the generative nature of hippocampus as a short-term memory system in primate brain, we propose the Deep Generative Replay, a novel framework with a cooperative dual model architecture consisting of a deep generative model ("generator") and a task solving model ("solver"). With only these two models, training data for previous tasks can easily be sampled and interleaved with those for a new task. We test our methods in several sequential learning settings involving image classification tasks.
Stochastic Sequential Neural Networks with Structured Inference
Unsupervised structure learning in high-dimensional time series data has attracted a lot of research interests. For example, segmenting and labelling high dimensional time series can be helpful in behavior understanding and medical diagnosis. Recent advances in generative sequential modeling have suggested to combine recurrent neural networks with state space models (e.g., Hidden Markov Models). This combination can model not only the long term dependency in sequential data, but also the uncertainty included in the hidden states. Inheriting these advantages of stochastic neural sequential models, we propose a structured and stochastic sequential neural network, which models both the long-term dependencies via recurrent neural networks and the uncertainty in the segmentation and labels via discrete random variables. For accurate and efficient inference, we present a bi-directional inference network by reparamterizing the categorical segmentation and labels with the recent proposed Gumbel-Softmax approximation and resort to the Stochastic Gradient Variational Bayes. We evaluate the proposed model in a number of tasks, including speech modeling, automatic segmentation and labeling in behavior understanding, and sequential multi-objects recognition. Experimental results have demonstrated that our proposed model can achieve significant improvement over the state-of-the-art methods.
Open-Category Classification by Adversarial Sample Generation
In real-world classification tasks, it is difficult to collect training samples from all possible categories of the environment. Therefore, when an instance of an unseen class appears in the prediction stage, a robust classifier should be able to tell that it is from an unseen class, instead of classifying it to be any known category. In this paper, adopting the idea of adversarial learning, we propose the ASG framework for open-category classification. ASG generates positive and negative samples of seen categories in the unsupervised manner via an adversarial learning strategy. With the generated samples, ASG then learns to tell seen from unseen in the supervised manner. Experiments performed on several datasets show the effectiveness of ASG.
Non-Stationary Spectral Kernels
We propose non-stationary spectral kernels for Gaussian process regression. We propose to model the spectral density of a non-stationary kernel function as a mixture of input-dependent Gaussian process frequency density surfaces. We solve the generalised Fourier transform with such a model, and present a family of non-stationary and non-monotonic kernels that can learn input-dependent and potentially long-range, non-monotonic covariances between inputs. We derive efficient inference using model whitening and marginalized posterior, and show with case studies that these kernels are necessary when modelling even rather simple time series, image or geospatial data with non-stationary characteristics.
Train longer, generalize better: closing the generalization gap in large batch training of neural networks
Background: Deep learning models are typically trained using stochastic gradient descent or one of its variants. These methods update the weights using their gradient, estimated from a small fraction of the training data. It has been observed that when using large batch sizes there is a persistent degradation in generalization performance - known as the "generalization gap" phenomena. Identifying the origin of this gap and closing it had remained an open problem. Contributions: We examine the initial high learning rate training phase. We find that the weight distance from its initialization grows logarithmically with the number of weight updates. We therefore propose a "random walk on random landscape" statistical model which is known to exhibit similar "ultra-slow" diffusion behavior. Following this hypothesis we conducted experiments to show empirically that the "generalization gap" stems from the relatively small number of updates rather than the batch size, and can be completely eliminated by adapting the training regime used. We further investigate different techniques to train models in the large-batch regime and present a novel algorithm named "Ghost Batch Normalization" which enables significant decrease in the generalization gap without increasing the number of updates. To validate our findings we conduct several additional experiments on MNIST, CIFAR-10, CIFAR-100 and ImageNet. Finally, we reassess common practices and beliefs concerning training of deep models and suggest they may not be optimal to achieve good generalization.
Beyond Parity: Fairness Objectives for Collaborative Filtering
We study fairness in collaborative-filtering recommender systems, which are sensitive to discrimination that exists in historical data. Biased data can lead collaborative-filtering methods to make unfair predictions for users from minority groups. We identify the insufficiency of existing fairness metrics and propose four new metrics that address different forms of unfairness. These fairness metrics can be optimized by adding fairness terms to the learning objective. Experiments on synthetic and real data show that our new metrics can better measure fairness than the baseline, and that the fairness objectives effectively help reduce unfairness.
Causal Effect Inference with Deep Latent-Variable Models
Learning individual-level causal effects from observational data, such as inferring the most effective medication for a specific patient, is a problem of growing importance for policy makers. The most important aspect of inferring causal effects from observational data is the handling of confounders, factors that affect both an intervention and its outcome. A carefully designed observational study attempts to measure all important confounders. However, even if one does not have direct access to all confounders, there may exist noisy and uncertain measurement of proxies for confounders. We build on recent advances in latent variable modeling to simultaneously estimate the unknown latent space summarizing the confounders and the causal effect. Our method is based on Variational Autoencoders (VAE) which follow the causal structure of inference with proxies. We show our method is significantly more robust than existing methods, and matches the state-of-the-art on previous benchmarks focused on individual treatment effects.
Learning with Average Top-k Loss
In this work, we introduce the {\em average top-$k$} (\atk) loss as a new aggregate loss for supervised learning, which is the average over the $k$ largest individual losses over a training dataset. We show that the \atk loss is a natural generalization of the two widely used aggregate losses, namely the average loss and the maximum loss, but can combine their advantages and mitigate their drawbacks to better adapt to different data distributions. Furthermore, it remains a convex function over all individual losses, which can lead to convex optimization problems that can be solved effectively with conventional gradient-based methods. We provide an intuitive interpretation of the \atk loss based on its equivalent effect on the continuous individual loss functions, suggesting that it can reduce the penalty on correctly classified data. We further give a learning theory analysis of \matk learning on the classification calibration of the \atk loss and the error bounds of \atk-SVM. We demonstrate the applicability of minimum average top-$k$ learning for binary classification and regression using synthetic and real datasets.
Multi-Level Variational Autoencoder: Learning Disentangled Representations from Grouped Observations
We would like to learn a representation of the data which decomposes an observation into factors of variation which we can independently control. Specifically, we want to use minimal supervision to learn a latent representation that reflects the semantics behind a specific grouping of the data, where within a group the samples share a common factor of variation. For example, consider a collection of face images grouped by identity. We wish to anchor the semantics of the grouping into a relevant and disentangled representation that we can easily exploit. However, existing deep probabilistic models often assume that the observations are independent and identically distributed. We present the Multi-Level Variational Autoencoder (ML-VAE), a new deep probabilistic model for learning a disentangled representation of a set of grouped observations. The ML-VAE separates the latent representation into semantically meaningful parts by working both at the group level and the observation level, while retaining efficient test-time inference. Quantitative and qualitative evaluations show that the ML-VAE model (i) learns a semantically meaningful disentanglement of grouped data, (ii) enables manipulation of the latent representation, and (iii) generalises to unseen groups.
Joint Distribution Optimal Transportation for Domain Adaptation
This paper deals with the unsupervised domain adaptation problem, where one wants to estimate a prediction function $f$ in a given target domain without any labeled sample by exploiting the knowledge available from a source domain where labels are known. Our work makes the following assumption: there exists a non-linear transformation between the joint feature/label space distributions of the two domain $\mathcal{P}_s$ and $\mathcal{P}_t$. We propose a solution of this problem with optimal transport, that allows to recover an estimated target $\mathcal{P}^f_t=(X,f(X))$ by optimizing simultaneously the optimal coupling and $f$. We show that our method corresponds to the minimization of a bound on the target error, and provide an efficient algorithmic solution, for which convergence is proved. The versatility of our approach, both in terms of class of hypothesis or loss functions is demonstrated with real world classification and regression problems, for which we reach or surpass state-of-the-art results.
Semi-supervised Learning with GANs: Manifold Invariance with Improved Inference
Semi-supervised learning methods using Generative Adversarial Networks (GANs) have shown promising empirical success recently. Most of these methods use a shared discriminator/classifier which discriminates real examples from fake while also predicting the class label. Motivated by the ability of the GANs generator to capture the data manifold well, we propose to estimate the tangent space to the data manifold using GANs and employ it to inject invariances into the classifier. In the process, we propose enhancements over existing methods for learning the inverse mapping (i.e., the encoder) which greatly improves in terms of semantic similarity of the reconstructed sample with the input sample. We observe considerable empirical gains in semi-supervised learning over baselines, particularly in the cases when the number of labeled examples is low. We also provide insights into how fake examples influence the semi-supervised learning procedure.
Audio-replay attack detection countermeasures
This paper presents the Speech Technology Center (STC) replay attack detection systems proposed for Automatic Speaker Verification Spoofing and Countermeasures Challenge 2017. In this study we focused on comparison of different spoofing detection approaches. These were GMM based methods, high level features extraction with simple classifier and deep learning frameworks. Experiments performed on the development and evaluation parts of the challenge dataset demonstrated stable efficiency of deep learning approaches in case of changing acoustic conditions. At the same time SVM classifier with high level features provided a substantial input in the efficiency of the resulting STC systems according to the fusion systems results.
Anti-spoofing Methods for Automatic SpeakerVerification System
Growing interest in automatic speaker verification (ASV)systems has lead to significant quality improvement of spoofing attackson them. Many research works confirm that despite the low equal er-ror rate (EER) ASV systems are still vulnerable to spoofing attacks. Inthis work we overview different acoustic feature spaces and classifiersto determine reliable and robust countermeasures against spoofing at-tacks. We compared several spoofing detection systems, presented so far,on the development and evaluation datasets of the Automatic SpeakerVerification Spoofing and Countermeasures (ASVspoof) Challenge 2015.Experimental results presented in this paper demonstrate that the useof magnitude and phase information combination provides a substantialinput into the efficiency of the spoofing detection systems. Also wavelet-based features show impressive results in terms of equal error rate. Inour overview we compare spoofing performance for systems based on dif-ferent classifiers. Comparison results demonstrate that the linear SVMclassifier outperforms the conventional GMM approach. However, manyresearchers inspired by the great success of deep neural networks (DNN)approaches in the automatic speech recognition, applied DNN in thespoofing detection task and obtained quite low EER for known and un-known type of spoofing attacks.
Flow-GAN: Combining Maximum Likelihood and Adversarial Learning in Generative Models
Adversarial learning of probabilistic models has recently emerged as a promising alternative to maximum likelihood. Implicit models such as generative adversarial networks (GAN) often generate better samples compared to explicit models trained by maximum likelihood. Yet, GANs sidestep the characterization of an explicit density which makes quantitative evaluations challenging. To bridge this gap, we propose Flow-GANs, a generative adversarial network for which we can perform exact likelihood evaluation, thus supporting both adversarial and maximum likelihood training. When trained adversarially, Flow-GANs generate high-quality samples but attain extremely poor log-likelihood scores, inferior even to a mixture model memorizing the training data; the opposite is true when trained by maximum likelihood. Results on MNIST and CIFAR-10 demonstrate that hybrid training can attain high held-out likelihoods while retaining visual fidelity in the generated samples.
Dense Transformer Networks
The key idea of current deep learning methods for dense prediction is to apply a model on a regular patch centered on each pixel to make pixel-wise predictions. These methods are limited in the sense that the patches are determined by network architecture instead of learned from data. In this work, we propose the dense transformer networks, which can learn the shapes and sizes of patches from data. The dense transformer networks employ an encoder-decoder architecture, and a pair of dense transformer modules are inserted into each of the encoder and decoder paths. The novelty of this work is that we provide technical solutions for learning the shapes and sizes of patches from data and efficiently restoring the spatial correspondence required for dense prediction. The proposed dense transformer modules are differentiable, thus the entire network can be trained. We apply the proposed networks on natural and biological image segmentation tasks and show superior performance is achieved in comparison to baseline methods.
Unsupervised Learning Layers for Video Analysis
This paper presents two unsupervised learning layers (UL layers) for label-free video analysis: one for fully connected layers, and the other for convolutional ones. The proposed UL layers can play two roles: they can be the cost function layer for providing global training signal; meanwhile they can be added to any regular neural network layers for providing local training signals and combined with the training signals backpropagated from upper layers for extracting both slow and fast changing features at layers of different depths. Therefore, the UL layers can be used in either pure unsupervised or semi-supervised settings. Both a closed-form solution and an online learning algorithm for two UL layers are provided. Experiments with unlabeled synthetic and real-world videos demonstrated that the neural networks equipped with UL layers and trained with the proposed online learning algorithm can extract shape and motion information from video sequences of moving objects. The experiments demonstrated the potential applications of UL layers and online learning algorithm to head orientation estimation and moving object localization.
Consistent Kernel Density Estimation with Non-Vanishing Bandwidth
Consistency of the kernel density estimator requires that the kernel bandwidth tends to zero as the sample size grows. In this paper we investigate the question of whether consistency is possible when the bandwidth is fixed, if we consider a more general class of weighted KDEs. To answer this question in the affirmative, we introduce the fixed-bandwidth KDE (fbKDE), obtained by solving a quadratic program, and prove that it consistently estimates any continuous square-integrable density. We also establish rates of convergence for the fbKDE with radial kernels and the box kernel under appropriate smoothness assumptions. Furthermore, in an experimental study we demonstrate that the fbKDE compares favorably to the standard KDE and the previously proposed variable bandwidth KDE.
Exploring the Regularity of Sparse Structure in Convolutional Neural Networks
Sparsity helps reduce the computational complexity of deep neural networks by skipping zeros. Taking advantage of sparsity is listed as a high priority in next generation DNN accelerators such as TPU. The structure of sparsity, i.e., the granularity of pruning, affects the efficiency of hardware accelerator design as well as the prediction accuracy. Coarse-grained pruning creates regular sparsity patterns, making it more amenable for hardware acceleration but more challenging to maintain the same accuracy. In this paper we quantitatively measure the trade-off between sparsity regularity and prediction accuracy, providing insights in how to maintain accuracy while having more a more structured sparsity pattern. Our experimental results show that coarse-grained pruning can achieve a sparsity ratio similar to unstructured pruning without loss of accuracy. Moreover, due to the index saving effect, coarse-grained pruning is able to obtain a better compression ratio than fine-grained sparsity at the same accuracy threshold. Based on the recent sparse convolutional neural network accelerator (SCNN), our experiments further demonstrate that coarse-grained sparsity saves about 2x the memory references compared to fine-grained sparsity. Since memory reference is more than two orders of magnitude more expensive than arithmetic operations, the regularity of sparse structure leads to more efficient hardware design.
Proximity Variational Inference
Variational inference is a powerful approach for approximate posterior inference. However, it is sensitive to initialization and can be subject to poor local optima. In this paper, we develop proximity variational inference (PVI). PVI is a new method for optimizing the variational objective that constrains subsequent iterates of the variational parameters to robustify the optimization path. Consequently, PVI is less sensitive to initialization and optimization quirks and finds better local optima. We demonstrate our method on three proximity statistics. We study PVI on a Bernoulli factor model and sigmoid belief network with both real and synthetic data and compare to deterministic annealing (Katahira et al., 2008). We highlight the flexibility of PVI by designing a proximity statistic for Bayesian deep learning models such as the variational autoencoder (Kingma and Welling, 2014; Rezende et al., 2014). Empirically, we show that PVI consistently finds better local optima and gives better predictive performance.
Optimal Cooperative Inference
Cooperative transmission of data fosters rapid accumulation of knowledge by efficiently combining experiences across learners. Although well studied in human learning and increasingly in machine learning, we lack formal frameworks through which we may reason about the benefits and limitations of cooperative inference. We present such a framework. We introduce novel indices for measuring the effectiveness of probabilistic and cooperative information transmission. We relate our indices to the well-known Teaching Dimension in deterministic settings. We prove conditions under which optimal cooperative inference can be achieved, including a representation theorem that constrains the form of inductive biases for learners optimized for cooperative inference. We conclude by demonstrating how these principles may inform the design of machine learning algorithms and discuss implications for human and machine learning.
Modeling The Intensity Function Of Point Process Via Recurrent Neural Networks
Event sequence, asynchronously generated with random timestamp, is ubiquitous among applications. The precise and arbitrary timestamp can carry important clues about the underlying dynamics, and has lent the event data fundamentally different from the time-series whereby series is indexed with fixed and equal time interval. One expressive mathematical tool for modeling event is point process. The intensity functions of many point processes involve two components: the background and the effect by the history. Due to its inherent spontaneousness, the background can be treated as a time series while the other need to handle the history events. In this paper, we model the background by a Recurrent Neural Network (RNN) with its units aligned with time series indexes while the history effect is modeled by another RNN whose units are aligned with asynchronous events to capture the long-range dynamics. The whole model with event type and timestamp prediction output layers can be trained end-to-end. Our approach takes an RNN perspective to point process, and models its background and history effect. For utility, our method allows a black-box treatment for modeling the intensity which is often a pre-defined parametric form in point processes. Meanwhile end-to-end training opens the venue for reusing existing rich techniques in deep network for point process modeling. We apply our model to the predictive maintenance problem using a log dataset by more than 1000 ATMs from a global bank headquartered in North America.
Approximation and Convergence Properties of Generative Adversarial Learning
Generative adversarial networks (GAN) approximate a target data distribution by jointly optimizing an objective function through a "two-player game" between a generator and a discriminator. Despite their empirical success, however, two very basic questions on how well they can approximate the target distribution remain unanswered. First, it is not known how restricting the discriminator family affects the approximation quality. Second, while a number of different objective functions have been proposed, we do not understand when convergence to the global minima of the objective function leads to convergence to the target distribution under various notions of distributional convergence. In this paper, we address these questions in a broad and unified setting by defining a notion of adversarial divergences that includes a number of recently proposed objective functions. We show that if the objective function is an adversarial divergence with some additional conditions, then using a restricted discriminator family has a moment-matching effect. Additionally, we show that for objective functions that are strict adversarial divergences, convergence in the objective function implies weak convergence, thus generalizing previous results.
State Space Decomposition and Subgoal Creation for Transfer in Deep Reinforcement Learning
Typical reinforcement learning (RL) agents learn to complete tasks specified by reward functions tailored to their domain. As such, the policies they learn do not generalize even to similar domains. To address this issue, we develop a framework through which a deep RL agent learns to generalize policies from smaller, simpler domains to more complex ones using a recurrent attention mechanism. The task is presented to the agent as an image and an instruction specifying the goal. This meta-controller guides the agent towards its goal by designing a sequence of smaller subtasks on the part of the state space within the attention, effectively decomposing it. As a baseline, we consider a setup without attention as well. Our experiments show that the meta-controller learns to create subgoals within the attention.
Principled Hybrids of Generative and Discriminative Domain Adaptation
We propose a probabilistic framework for domain adaptation that blends both generative and discriminative modeling in a principled way. Under this framework, generative and discriminative models correspond to specific choices of the prior over parameters. This provides us a very general way to interpolate between generative and discriminative extremes through different choices of priors. By maximizing both the marginal and the conditional log-likelihoods, models derived from this framework can use both labeled instances from the source domain as well as unlabeled instances from both source and target domains. Under this framework, we show that the popular reconstruction loss of autoencoder corresponds to an upper bound of the negative marginal log-likelihoods of unlabeled instances, where marginal distributions are given by proper kernel density estimations. This provides a way to interpret the empirical success of autoencoders in domain adaptation and semi-supervised learning. We instantiate our framework using neural networks, and build a concrete model, DAuto. Empirically, we demonstrate the effectiveness of DAuto on text, image and speech datasets, showing that it outperforms related competitors when domain adaptation is possible.
Learning to Pour
Pouring is a simple task people perform daily. It is the second most frequently executed motion in cooking scenarios, after pick-and-place. We present a pouring trajectory generation approach, which uses force feedback from the cup to determine the future velocity of pouring. The approach uses recurrent neural networks as its building blocks. We collected the pouring demonstrations which we used for training. To test our approach in simulation, we also created and trained a force estimation system. The simulated experiments show that the system is able to generalize to single unseen element of the pouring characteristics.
Best-Choice Edge Grafting for Efficient Structure Learning of Markov Random Fields
Incremental methods for structure learning of pairwise Markov random fields (MRFs), such as grafting, improve scalability by avoiding inference over the entire feature space in each optimization step. Instead, inference is performed over an incrementally grown active set of features. In this paper, we address key computational bottlenecks that current incremental techniques still suffer by introducing best-choice edge grafting, an incremental, structured method that activates edges as groups of features in a streaming setting. The method uses a reservoir of edges that satisfy an activation condition, approximating the search for the optimal edge to activate. It also reorganizes the search space using search-history and structure heuristics. Experiments show a significant speedup for structure learning and a controllable trade-off between the speed and quality of learning.
Deriving Neural Architectures from Sequence and Graph Kernels
The design of neural architectures for structured objects is typically guided by experimental insights rather than a formal process. In this work, we appeal to kernels over combinatorial structures, such as sequences and graphs, to derive appropriate neural operations. We introduce a class of deep recurrent neural operations and formally characterize their associated kernel spaces. Our recurrent modules compare the input to virtual reference objects (cf. filters in CNN) via the kernels. Similar to traditional neural operations, these reference objects are parameterized and directly optimized in end-to-end training. We empirically evaluate the proposed class of neural architectures on standard applications such as language modeling and molecular graph regression, achieving state-of-the-art results across these applications.
A Clustering-based Consistency Adaptation Strategy for Distributed SDN Controllers
Distributed controllers are oftentimes used in large-scale SDN deployments where they run a myriad of network applications simultaneously. Such applications could have different consistency and availability preferences. These controllers need to communicate via east/west interfaces in order to synchronize their state information. The consistency and the availability of the distributed state information are governed by an underlying consistency model. Earlier, we suggested the use of adaptively-consistent controllers that can autonomously tune their consistency parameters in order to meet the performance requirements of a certain application. In this paper, we examine the feasibility of employing adaptive controllers that are built on-top of tunable consistency models similar to that of Apache Cassandra. We present an adaptation strategy that uses clustering techniques (sequential k-means and incremental k-means) in order to map a given application performance indicator into a feasible consistency level that can be used with the underlying tunable consistency model. In the cases that we modeled and tested, our results show that in the case of sequential k-means, with a reasonable number of clusters (>= 50), a plausible mapping (low RMSE) could be estimated between the application performance indicators and the consistency level indicator. In the case of incremental k-means, the results also showed that a plausible mapping (low RMSE) could be estimated using a similar number of clusters (>= 50) by using a small threshold (~$ 0.01).
The cost of fairness in classification
We study the problem of learning classifiers with a fairness constraint, with three main contributions towards the goal of quantifying the problem's inherent tradeoffs. First, we relate two existing fairness measures to cost-sensitive risks. Second, we show that for cost-sensitive classification and fairness measures, the optimal classifier is an instance-dependent thresholding of the class-probability function. Third, we show how the tradeoff between accuracy and fairness is determined by the alignment between the class-probabilities for the target and sensitive features. Underpinning our analysis is a general framework that casts the problem of learning with a fairness requirement as one of minimising the difference of two statistical risks.
Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent
Most distributed machine learning systems nowadays, including TensorFlow and CNTK, are built in a centralized fashion. One bottleneck of centralized algorithms lies on high communication cost on the central node. Motivated by this, we ask, can decentralized algorithms be faster than its centralized counterpart? Although decentralized PSGD (D-PSGD) algorithms have been studied by the control community, existing analysis and theory do not show any advantage over centralized PSGD (C-PSGD) algorithms, simply assuming the application scenario where only the decentralized network is available. In this paper, we study a D-PSGD algorithm and provide the first theoretical analysis that indicates a regime in which decentralized algorithms might outperform centralized algorithms for distributed stochastic gradient descent. This is because D-PSGD has comparable total computational complexities to C-PSGD but requires much less communication cost on the busiest node. We further conduct an empirical study to validate our theoretical analysis across multiple frameworks (CNTK and Torch), different network configurations, and computation platforms up to 112 GPUs. On network configurations with low bandwidth or high latency, D-PSGD can be up to one order of magnitude faster than its well-optimized centralized counterparts.
MagNet: a Two-Pronged Defense against Adversarial Examples
Deep learning has shown promising results on hard perceptual problems in recent years. However, deep learning systems are found to be vulnerable to small adversarial perturbations that are nearly imperceptible to human. Such specially crafted perturbations cause deep learning systems to output incorrect decisions, with potentially disastrous consequences. These vulnerabilities hinder the deployment of deep learning systems where safety or security is important. Attempts to secure deep learning systems either target specific attacks or have been shown to be ineffective. In this paper, we propose MagNet, a framework for defending neural network classifiers against adversarial examples. MagNet does not modify the protected classifier or know the process for generating adversarial examples. MagNet includes one or more separate detector networks and a reformer network. Different from previous work, MagNet learns to differentiate between normal and adversarial examples by approximating the manifold of normal examples. Since it does not rely on any process for generating adversarial examples, it has substantial generalization power. Moreover, MagNet reconstructs adversarial examples by moving them towards the manifold, which is effective for helping classify adversarial examples with small perturbation correctly. We discuss the intrinsic difficulty in defending against whitebox attack and propose a mechanism to defend against graybox attack. Inspired by the use of randomness in cryptography, we propose to use diversity to strengthen MagNet. We show empirically that MagNet is effective against most advanced state-of-the-art attacks in blackbox and graybox scenarios while keeping false positive rate on normal examples very low.
Investigation of Using VAE for i-Vector Speaker Verification
New system for i-vector speaker recognition based on variational autoencoder (VAE) is investigated. VAE is a promising approach for developing accurate deep nonlinear generative models of complex data. Experiments show that VAE provides speaker embedding and can be effectively trained in an unsupervised manner. LLR estimate for VAE is developed. Experiments on NIST SRE 2010 data demonstrate its correctness. Additionally, we show that the performance of VAE-based system in the i-vectors space is close to that of the diagonal PLDA. Several interesting results are also observed in the experiments with $\beta$-VAE. In particular, we found that for $\beta\ll 1$, VAE can be trained to capture the features of complex input data distributions in an effective way, which is hard to obtain in the standard VAE ($\beta=1$).
Classification of Quantitative Light-Induced Fluorescence Images Using Convolutional Neural Network
Images are an important data source for diagnosis and treatment of oral diseases. The manual classification of images may lead to misdiagnosis or mistreatment due to subjective errors. In this paper an image classification model based on Convolutional Neural Network is applied to Quantitative Light-induced Fluorescence images. The deep neural network outperforms other state of the art shallow classification models in predicting labels derived from three different dental plaque assessment scores. The model directly benefits from multi-channel representation of the images resulting in improved performance when, besides the Red colour channel, additional Green and Blue colour channels are used.
Asynchronous Parallel Bayesian Optimisation via Thompson Sampling
We design and analyse variations of the classical Thompson sampling (TS) procedure for Bayesian optimisation (BO) in settings where function evaluations are expensive, but can be performed in parallel. Our theoretical analysis shows that a direct application of the sequential Thompson sampling algorithm in either synchronous or asynchronous parallel settings yields a surprisingly powerful result: making $n$ evaluations distributed among $M$ workers is essentially equivalent to performing $n$ evaluations in sequence. Further, by modeling the time taken to complete a function evaluation, we show that, under a time constraint, asynchronously parallel TS achieves asymptotically lower regret than both the synchronous and sequential versions. These results are complemented by an experimental analysis, showing that asynchronous TS outperforms a suite of existing parallel BO algorithms in simulations and in a hyper-parameter tuning application in convolutional neural networks. In addition to these, the proposed procedure is conceptually and computationally much simpler than existing work for parallel BO.
Geometric Methods for Robust Data Analysis in High Dimension
Machine learning and data analysis now finds both scientific and industrial application in biology, chemistry, geology, medicine, and physics. These applications rely on large quantities of data gathered from automated sensors and user input. Furthermore, the dimensionality of many datasets is extreme: more details are being gathered about single user interactions or sensor readings. All of these applications encounter problems with a common theme: use observed data to make inferences about the world. Our work obtains the first provably efficient algorithms for Independent Component Analysis (ICA) in the presence of heavy-tailed data. The main tool in this result is the centroid body (a well-known topic in convex geometry), along with optimization and random walks for sampling from a convex body. This is the first algorithmic use of the centroid body and it is of independent theoretical interest, since it effectively replaces the estimation of covariance from samples, and is more generally accessible. This reduction relies on a non-linear transformation of samples from such an intersection of halfspaces (i.e. a simplex) to samples which are approximately from a linearly transformed product distribution. Through this transformation of samples, which can be done efficiently, one can then use an ICA algorithm to recover the vertices of the intersection of halfspaces. Finally, we again use ICA as an algorithmic primitive to construct an efficient solution to the widely-studied problem of learning the parameters of a Gaussian mixture model. Our algorithm again transforms samples from a Gaussian mixture model into samples which fit into the ICA model and, when processed by an ICA algorithm, result in recovery of the mixture parameters. Our algorithm is effective even when the number of Gaussians in the mixture grows polynomially with the ambient dimension
Filtering Variational Objectives
When used as a surrogate objective for maximum likelihood estimation in latent variable models, the evidence lower bound (ELBO) produces state-of-the-art results. Inspired by this, we consider the extension of the ELBO to a family of lower bounds defined by a particle filter's estimator of the marginal likelihood, the filtering variational objectives (FIVOs). FIVOs take the same arguments as the ELBO, but can exploit a model's sequential structure to form tighter bounds. We present results that relate the tightness of FIVO's bound to the variance of the particle filter's estimator by considering the generic case of bounds defined as log-transformed likelihood estimators. Experimentally, we show that training with FIVO results in substantial improvements over training the same model architecture with the ELBO on sequential data.
Implicit Regularization in Matrix Factorization
We study implicit regularization when optimizing an underdetermined quadratic objective over a matrix $X$ with gradient descent on a factorization of $X$. We conjecture and provide empirical and theoretical evidence that with small enough step sizes and initialization close enough to the origin, gradient descent on a full dimensional factorization converges to the minimum nuclear norm solution.
GXNOR-Net: Training deep neural networks with ternary weights and activations without full-precision memory under a unified discretization framework
There is a pressing need to build an architecture that could subsume these networks under a unified framework that achieves both higher performance and less overhead. To this end, two fundamental issues are yet to be addressed. The first one is how to implement the back propagation when neuronal activations are discrete. The second one is how to remove the full-precision hidden weights in the training phase to break the bottlenecks of memory/computation consumption. To address the first issue, we present a multi-step neuronal activation discretization method and a derivative approximation technique that enable the implementing the back propagation algorithm on discrete DNNs. While for the second issue, we propose a discrete state transition (DST) methodology to constrain the weights in a discrete space without saving the hidden weights. Through this way, we build a unified framework that subsumes the binary or ternary networks as its special cases, and under which a heuristic algorithm is provided at the website https://github.com/AcrossV/Gated-XNOR. More particularly, we find that when both the weights and activations become ternary values, the DNNs can be reduced to sparse binary networks, termed as gated XNOR networks (GXNOR-Nets) since only the event of non-zero weight and non-zero activation enables the control gate to start the XNOR logic operations in the original binary networks. This promises the event-driven hardware design for efficient mobile intelligence. We achieve advanced performance compared with state-of-the-art algorithms. Furthermore, the computational sparsity and the number of states in the discrete space can be flexibly modified to make it suitable for various hardware platforms.
Latent Geometry and Memorization in Generative Models
It can be difficult to tell whether a trained generative model has learned to generate novel examples or has simply memorized a specific set of outputs. In published work, it is common to attempt to address this visually, for example by displaying a generated example and its nearest neighbor(s) in the training set (in, for example, the L2 metric). As any generative model induces a probability density on its output domain, we propose studying this density directly. We first study the geometry of the latent representation and generator, relate this to the output density, and then develop techniques to compute and inspect the output density. As an application, we demonstrate that "memorization" tends to a density made of delta functions concentrated on the memorized examples. We note that without first understanding the geometry, the measurement would be essentially impossible to make.
Diagonal Rescaling For Neural Networks
We define a second-order neural network stochastic gradient training algorithm whose block-diagonal structure effectively amounts to normalizing the unit activations. Investigating why this algorithm lacks in robustness then reveals two interesting insights. The first insight suggests a new way to scale the stepsizes, clarifying popular algorithms such as RMSProp as well as old neural network tricks such as fanin stepsize scaling. The second insight stresses the practical importance of dealing with fast changes of the curvature of the cost.
Convergent Tree Backup and Retrace with Function Approximation
Off-policy learning is key to scaling up reinforcement learning as it allows to learn about a target policy from the experience generated by a different behavior policy. Unfortunately, it has been challenging to combine off-policy learning with function approximation and multi-step bootstrapping in a way that leads to both stable and efficient algorithms. In this work, we show that the \textsc{Tree Backup} and \textsc{Retrace} algorithms are unstable with linear function approximation, both in theory and in practice with specific examples. Based on our analysis, we then derive stable and efficient gradient-based algorithms using a quadratic convex-concave saddle-point formulation. By exploiting the problem structure proper to these algorithms, we are able to provide convergence guarantees and finite-sample bounds. The applicability of our new analysis also goes beyond \textsc{Tree Backup} and \textsc{Retrace} and allows us to provide new convergence rates for the GTD and GTD2 algorithms without having recourse to projections or Polyak averaging.
Generating Time-Based Label Refinements to Discover More Precise Process Models
Process mining is a research field focused on the analysis of event data with the aim of extracting insights related to dynamic behavior. Applying process mining techniques on data from smart home environments has the potential to provide valuable insights in (un)healthy habits and to contribute to ambient assisted living solutions. Finding the right event labels to enable the application of process mining techniques is however far from trivial, as simply using the triggering sensor as the label for sensor events results in uninformative models that allow for too much behavior (overgeneralizing). Refinements of sensor level event labels suggested by domain experts have been shown to enable discovery of more precise and insightful process models. However, there exists no automated approach to generate refinements of event labels in the context of process mining. In this paper we propose a framework for the automated generation of label refinements based on the time attribute of events, allowing us to distinguish behaviourally different instances of the same event type based on their time attribute. We show on a case study with real life smart home event data that using automatically generated refined labels in process discovery, we can find more specific, and therefore more insightful, process models. We observe that one label refinement could have an effect on the usefulness of other label refinements when used together. Therefore, we explore four strategies to generate useful combinations of multiple label refinements and evaluate those on three real life smart home event logs.
Stabilizing Training of Generative Adversarial Networks through Regularization
Deep generative models based on Generative Adversarial Networks (GANs) have demonstrated impressive sample quality but in order to work they require a careful choice of architecture, parameter initialization, and selection of hyper-parameters. This fragility is in part due to a dimensional mismatch or non-overlapping support between the model distribution and the data distribution, causing their density ratio and the associated f-divergence to be undefined. We overcome this fundamental limitation and propose a new regularization approach with low computational cost that yields a stable GAN training procedure. We demonstrate the effectiveness of this regularizer across several architectures trained on common benchmark image generation tasks. Our regularization turns GAN models into reliable building blocks for deep learning.
Approximate and Stochastic Greedy Optimization
We consider two greedy algorithms for minimizing a convex function in a bounded convex set: an algorithm by Jones [1992] and the Frank-Wolfe (FW) algorithm. We first consider approximate versions of these algorithms. For smooth convex functions, we give sufficient conditions for convergence, a unified analysis for the well-known convergence rate of O(1/k) together with a result showing that this rate is the best obtainable from the proof technique, and an equivalence result for the two algorithms. We also consider approximate stochastic greedy algorithms for minimizing expectations. We show that replacing the full gradient by a single stochastic gradient can fail even on smooth convex functions. We give a convergent approximate stochastic Jones algorithm and a convergent approximate stochastic FW algorithm for smooth convex functions. In addition, we give a convergent approximate stochastic FW algorithm for nonsmooth convex functions. Convergence rates for these algorithms are given and proved.
Multimodal Machine Learning: A Survey and Taxonomy
Our experience of the world is multimodal - we see objects, hear sounds, feel texture, smell odors, and taste flavors. Modality refers to the way in which something happens or is experienced and a research problem is characterized as multimodal when it includes multiple such modalities. In order for Artificial Intelligence to make progress in understanding the world around us, it needs to be able to interpret such multimodal signals together. Multimodal machine learning aims to build models that can process and relate information from multiple modalities. It is a vibrant multi-disciplinary field of increasing importance and with extraordinary potential. Instead of focusing on specific multimodal applications, this paper surveys the recent advances in multimodal machine learning itself and presents them in a common taxonomy. We go beyond the typical early and late fusion categorization and identify broader challenges that are faced by multimodal machine learning, namely: representation, translation, alignment, fusion, and co-learning. This new taxonomy will enable researchers to better understand the state of the field and identify directions for future research.
An Efficient Algorithm for Bayesian Nearest Neighbours
K-Nearest Neighbours (k-NN) is a popular classification and regression algorithm, yet one of its main limitations is the difficulty in choosing the number of neighbours. We present a Bayesian algorithm to compute the posterior probability distribution for k given a target point within a data-set, efficiently and without the use of Markov Chain Monte Carlo (MCMC) methods or simulation - alongside an exact solution for distributions within the exponential family. The central idea is that data points around our target are generated by the same probability distribution, extending outwards over the appropriate, though unknown, number of neighbours. Once the data is projected onto a distance metric of choice, we can transform the choice of k into a change-point detection problem, for which there is an efficient solution: we recursively compute the probability of the last change-point as we move towards our target, and thus de facto compute the posterior probability distribution over k. Applying this approach to both a classification and a regression UCI data-sets, we compare favourably and, most importantly, by removing the need for simulation, we are able to compute the posterior probability of k exactly and rapidly. As an example, the computational time for the Ripley data-set is a few milliseconds compared to a few hours when using a MCMC approach.
Human Trajectory Prediction using Spatially aware Deep Attention Models
Trajectory Prediction of dynamic objects is a widely studied topic in the field of artificial intelligence. Thanks to a large number of applications like predicting abnormal events, navigation system for the blind, etc. there have been many approaches to attempt learning patterns of motion directly from data using a wide variety of techniques ranging from hand-crafted features to sophisticated deep learning models for unsupervised feature learning. All these approaches have been limited by problems like inefficient features in the case of hand crafted features, large error propagation across the predicted trajectory and no information of static artefacts around the dynamic moving objects. We propose an end to end deep learning model to learn the motion patterns of humans using different navigational modes directly from data using the much popular sequence to sequence model coupled with a soft attention mechanism. We also propose a novel approach to model the static artefacts in a scene and using these to predict the dynamic trajectories. The proposed method, tested on trajectories of pedestrians, consistently outperforms previously proposed state of the art approaches on a variety of large scale data sets. We also show how our architecture can be naturally extended to handle multiple modes of movement (say pedestrians, skaters, bikers and buses) simultaneously.
Taste or Addiction?: Using Play Logs to Infer Song Selection Motivation
Online music services are increasing in popularity. They enable us to analyze people's music listening behavior based on play logs. Although it is known that people listen to music based on topic (e.g., rock or jazz), we assume that when a user is addicted to an artist, s/he chooses the artist's songs regardless of topic. Based on this assumption, in this paper, we propose a probabilistic model to analyze people's music listening behavior. Our main contributions are three-fold. First, to the best of our knowledge, this is the first study modeling music listening behavior by taking into account the influence of addiction to artists. Second, by using real-world datasets of play logs, we showed the effectiveness of our proposed model. Third, we carried out qualitative experiments and showed that taking addiction into account enables us to analyze music listening behavior from a new viewpoint in terms of how people listen to music according to the time of day, how an artist's songs are listened to by people, etc. We also discuss the possibility of applying the analysis results to applications such as artist similarity computation and song recommendation.
Learning Robust Features with Incremental Auto-Encoders
Automatically learning features, especially robust features, has attracted much attention in the machine learning community. In this paper, we propose a new method to learn non-linear robust features by taking advantage of the data manifold structure. We first follow the commonly used trick of the trade, that is learning robust features with artificially corrupted data, which are training samples with manually injected noise. Following the idea of the auto-encoder, we first assume features should contain much information to well reconstruct the input from its corrupted copies. However, merely reconstructing clean input from its noisy copies could make data manifold in the feature space noisy. To address this problem, we propose a new method, called Incremental Auto-Encoders, to iteratively denoise the extracted features. We assume the noisy manifold structure is caused by a diffusion process. Consequently, we reverse this specific diffusion process to further contract this noisy manifold, which results in an incremental optimization of model parameters . Furthermore, we show these learned non-linear features can be stacked into a hierarchy of features. Experimental results on real-world datasets demonstrate the proposed method can achieve better classification performances.
A Sampling Theory Perspective of Graph-based Semi-supervised Learning
Graph-based methods have been quite successful in solving unsupervised and semi-supervised learning problems, as they provide a means to capture the underlying geometry of the dataset. It is often desirable for the constructed graph to satisfy two properties: first, data points that are similar in the feature space should be strongly connected on the graph, and second, the class label information should vary smoothly with respect to the graph, where smoothness is measured using the spectral properties of the graph Laplacian matrix. Recent works have justified some of these smoothness conditions by showing that they are strongly linked to the semi-supervised smoothness assumption and its variants. In this work, we reinforce this connection by viewing the problem from a graph sampling theoretic perspective, where class indicator functions are treated as bandlimited graph signals (in the eigenvector basis of the graph Laplacian) and label prediction as a bandlimited reconstruction problem. Our approach involves analyzing the bandwidth of class indicator signals generated from statistical data models with separable and nonseparable classes. These models are quite general and mimic the nature of most real-world datasets. Our results show that in the asymptotic limit, the bandwidth of any class indicator is also closely related to the geometry of the dataset. This allows one to theoretically justify the assumption of bandlimitedness of class indicator signals, thereby providing a sampling theoretic interpretation of graph-based semi-supervised classification.
Towards meaningful physics from generative models
In several physical systems, important properties characterizing the system itself are theoretically related with specific degrees of freedom. Although standard Monte Carlo simulations provide an effective tool to accurately reconstruct the physical configurations of the system, they are unable to isolate the different contributions corresponding to different degrees of freedom. Here we show that unsupervised deep learning can become a valid support to MC simulation, coupling useful insights in the phases detection task with good reconstruction performance. As a testbed we consider the 2D XY model, showing that a deep neural network based on variational autoencoders can detect the continuous Kosterlitz-Thouless (KT) transitions, and that, if endowed with the appropriate constrains, they generate configurations with meaningful physical content.
Classification regions of deep neural networks
The goal of this paper is to analyze the geometric properties of deep neural network classifiers in the input space. We specifically study the topology of classification regions created by deep networks, as well as their associated decision boundary. Through a systematic empirical investigation, we show that state-of-the-art deep nets learn connected classification regions, and that the decision boundary in the vicinity of datapoints is flat along most directions. We further draw an essential connection between two seemingly unrelated properties of deep networks: their sensitivity to additive perturbations in the inputs, and the curvature of their decision boundary. The directions where the decision boundary is curved in fact remarkably characterize the directions to which the classifier is the most vulnerable. We finally leverage a fundamental asymmetry in the curvature of the decision boundary of deep nets, and propose a method to discriminate between original images, and images perturbed with small adversarial examples. We show the effectiveness of this purely geometric approach for detecting small adversarial perturbations in images, and for recovering the labels of perturbed images.
Robustness of classifiers to universal perturbations: a geometric perspective
Deep networks have recently been shown to be vulnerable to universal perturbations: there exist very small image-agnostic perturbations that cause most natural images to be misclassified by such classifiers. In this paper, we propose the first quantitative analysis of the robustness of classifiers to universal perturbations, and draw a formal link between the robustness to universal perturbations, and the geometry of the decision boundary. Specifically, we establish theoretical bounds on the robustness of classifiers under two decision boundary models (flat and curved models). We show in particular that the robustness of deep networks to universal perturbations is driven by a key property of their curvature: there exists shared directions along which the decision boundary of deep networks is systematically positively curved. Under such conditions, we prove the existence of small universal perturbations. Our analysis further provides a novel geometric method for computing universal perturbations, in addition to explaining their properties.
Bayesian GAN
Generative adversarial networks (GANs) can implicitly learn rich distributions over images, audio, and data which are hard to model with an explicit likelihood. We present a practical Bayesian formulation for unsupervised and semi-supervised learning with GANs. Within this framework, we use stochastic gradient Hamiltonian Monte Carlo to marginalize the weights of the generator and discriminator networks. The resulting approach is straightforward and obtains good performance without any standard interventions such as feature matching, or mini-batch discrimination. By exploring an expressive posterior over the parameters of the generator, the Bayesian GAN avoids mode-collapse, produces interpretable and diverse candidate samples, and provides state-of-the-art quantitative results for semi-supervised learning on benchmarks including SVHN, CelebA, and CIFAR-10, outperforming DCGAN, Wasserstein GANs, and DCGAN ensembles.
Combinatorial Multi-Armed Bandits with Filtered Feedback
Motivated by problems in search and detection we present a solution to a Combinatorial Multi-Armed Bandit (CMAB) problem with both heavy-tailed reward distributions and a new class of feedback, filtered semibandit feedback. In a CMAB problem an agent pulls a combination of arms from a set $\{1,...,k\}$ in each round, generating random outcomes from probability distributions associated with these arms and receiving an overall reward. Under semibandit feedback it is assumed that the random outcomes generated are all observed. Filtered semibandit feedback allows the outcomes that are observed to be sampled from a second distribution conditioned on the initial random outcomes. This feedback mechanism is valuable as it allows CMAB methods to be applied to sequential search and detection problems where combinatorial actions are made, but the true rewards (number of objects of interest appearing in the round) are not observed, rather a filtered reward (the number of objects the searcher successfully finds, which must by definition be less than the number that appear). We present an upper confidence bound type algorithm, Robust-F-CUCB, and associated regret bound of order $\mathcal{O}(\ln(n))$ to balance exploration and exploitation in the face of both filtering of reward and heavy tailed reward distributions.
Discriminative Metric Learning with Deep Forest
A Discriminative Deep Forest (DisDF) as a metric learning algorithm is proposed in the paper. It is based on the Deep Forest or gcForest proposed by Zhou and Feng and can be viewed as a gcForest modification. The case of the fully supervised learning is studied when the class labels of individual training examples are known. The main idea underlying the algorithm is to assign weights to decision trees in random forest in order to reduce distances between objects from the same class and to increase them between objects from different classes. The weights are training parameters. A specific objective function which combines Euclidean and Manhattan distances and simplifies the optimization problem for training the DisDF is proposed. The numerical experiments illustrate the proposed distance metric algorithm.
Learning Causal Structures Using Regression Invariance
We study causal inference in a multi-environment setting, in which the functional relations for producing the variables from their direct causes remain the same across environments, while the distribution of exogenous noises may vary. We introduce the idea of using the invariance of the functional relations of the variables to their causes across a set of environments. We define a notion of completeness for a causal inference algorithm in this setting and prove the existence of such algorithm by proposing the baseline algorithm. Additionally, we present an alternate algorithm that has significantly improved computational and sample complexity compared to the baseline algorithm. The experiment results show that the proposed algorithm outperforms the other existing algorithms.
Anomaly Detection in a Digital Video Broadcasting System Using Timed Automata
This paper focuses on detecting anomalies in a digital video broadcasting (DVB) system from providers' perspective. We learn a probabilistic deterministic real timed automaton profiling benign behavior of encryption control in the DVB control access system. This profile is used as a one-class classifier. Anomalous items in a testing sequence are detected when the sequence is not accepted by the learned model.
Style Transfer from Non-Parallel Text by Cross-Alignment
This paper focuses on style transfer on the basis of non-parallel text. This is an instance of a broad family of problems including machine translation, decipherment, and sentiment modification. The key challenge is to separate the content from other aspects such as style. We assume a shared latent content distribution across different text corpora, and propose a method that leverages refined alignment of latent representations to perform style transfer. The transferred sentences from one style should match example sentences from the other style as a population. We demonstrate the effectiveness of this cross-alignment method on three tasks: sentiment modification, decipherment of word substitution ciphers, and recovery of word order.
Fisher GAN
Generative Adversarial Networks (GANs) are powerful models for learning complex distributions. Stable training of GANs has been addressed in many recent works which explore different metrics between distributions. In this paper we introduce Fisher GAN which fits within the Integral Probability Metrics (IPM) framework for training GANs. Fisher GAN defines a critic with a data dependent constraint on its second order moments. We show in this paper that Fisher GAN allows for stable and time efficient training that does not compromise the capacity of the critic, and does not need data independent constraints such as weight clipping. We analyze our Fisher IPM theoretically and provide an algorithm based on Augmented Lagrangian for Fisher GAN. We validate our claims on both image sample generation and semi-supervised classification using Fisher GAN.
Multiple Source Domain Adaptation with Adversarial Training of Neural Networks
While domain adaptation has been actively researched in recent years, most theoretical results and algorithms focus on the single-source-single-target adaptation setting. Naive application of such algorithms on multiple source domain adaptation problem may lead to suboptimal solutions. As a step toward bridging the gap, we propose a new generalization bound for domain adaptation when there are multiple source domains with labeled instances and one target domain with unlabeled instances. Compared with existing bounds, the new bound does not require expert knowledge about the target distribution, nor the optimal combination rule for multisource domains. Interestingly, our theory also leads to an efficient learning strategy using adversarial neural networks: we show how to interpret it as learning feature representations that are invariant to the multiple domain shifts while still being discriminative for the learning task. To this end, we propose two models, both of which we call multisource domain adversarial networks (MDANs): the first model optimizes directly our bound, while the second model is a smoothed approximation of the first one, leading to a more data-efficient and task-adaptive model. The optimization tasks of both models are minimax saddle point problems that can be optimized by adversarial training. To demonstrate the effectiveness of MDANs, we conduct extensive experiments showing superior adaptation performance on three real-world datasets: sentiment analysis, digit classification, and vehicle counting.
Multi-scale Online Learning and its Applications to Online Auctions
We consider revenue maximization in online auction/pricing problems. A seller sells an identical item in each period to a new buyer, or a new set of buyers. For the online posted pricing problem, we show regret bounds that scale with the best fixed price, rather than the range of the values. We also show regret bounds that are almost scale free, and match the offline sample complexity, when comparing to a benchmark that requires a lower bound on the market share. These results are obtained by generalizing the classical learning from experts and multi-armed bandit problems to their multi-scale versions. In this version, the reward of each action is in a different range, and the regret w.r.t. a given action scales with its own range, rather than the maximum range.
Stochastic Feedback Control of Systems with Unknown Nonlinear Dynamics
This paper studies the stochastic optimal control problem for systems with unknown dynamics. First, an open-loop deterministic trajectory optimization problem is solved without knowing the explicit form of the dynamical system. Next, a Linear Quadratic Gaussian (LQG) controller is designed for the nominal trajectory-dependent linearized system, such that under a small noise assumption, the actual states remain close to the optimal trajectory. The trajectory-dependent linearized system is identified using input-output experimental data consisting of the impulse responses of the nominal system. A computational example is given to illustrate the performance of the proposed approach.
MAT: A Multi-strength Adversarial Training Method to Mitigate Adversarial Attacks
Some recent works revealed that deep neural networks (DNNs) are vulnerable to so-called adversarial attacks where input examples are intentionally perturbed to fool DNNs. In this work, we revisit the DNN training process that includes adversarial examples into the training dataset so as to improve DNN's resilience to adversarial attacks, namely, adversarial training. Our experiments show that different adversarial strengths, i.e., perturbation levels of adversarial examples, have different working zones to resist the attack. Based on the observation, we propose a multi-strength adversarial training method (MAT) that combines the adversarial training examples with different adversarial strengths to defend adversarial attacks. Two training structures - mixed MAT and parallel MAT - are developed to facilitate the tradeoffs between training time and memory occupation. Our results show that MAT can substantially minimize the accuracy degradation of deep learning systems to adversarial attacks on MNIST, CIFAR-10, CIFAR-100, and SVHN.
Good Semi-supervised Learning that Requires a Bad GAN
Semi-supervised learning methods based on generative adversarial networks (GANs) obtained strong empirical results, but it is not clear 1) how the discriminator benefits from joint training with a generator, and 2) why good semi-supervised classification performance and a good generator cannot be obtained at the same time. Theoretically, we show that given the discriminator objective, good semisupervised learning indeed requires a bad generator, and propose the definition of a preferred generator. Empirically, we derive a novel formulation based on our analysis that substantially improves over feature matching GANs, obtaining state-of-the-art results on multiple benchmark datasets.
AMPNet: Asynchronous Model-Parallel Training for Dynamic Neural Networks
New types of machine learning hardware in development and entering the market hold the promise of revolutionizing deep learning in a manner as profound as GPUs. However, existing software frameworks and training algorithms for deep learning have yet to evolve to fully leverage the capability of the new wave of silicon. We already see the limitations of existing algorithms for models that exploit structured input via complex and instance-dependent control flow, which prohibits minibatching. We present an asynchronous model-parallel (AMP) training algorithm that is specifically motivated by training on networks of interconnected devices. Through an implementation on multi-core CPUs, we show that AMP training converges to the same accuracy as conventional synchronous training algorithms in a similar number of epochs, but utilizes the available hardware more efficiently even for small minibatch sizes, resulting in significantly shorter overall training times. Our framework opens the door for scaling up a new class of deep learning models that cannot be efficiently trained today.