title
stringlengths
7
246
abstract
stringlengths
6
3.31k
A Fast Noniterative Algorithm for Compressive Sensing Using Binary Measurement Matrices
In this paper we present a new algorithm for compressive sensing that makes use of binary measurement matrices and achieves exact recovery of ultra sparse vectors, in a single pass and without any iterations. Due to its noniterative nature, our algorithm is hundreds of times faster than $\ell_1$-norm minimization, and methods based on expander graphs, both of which require multiple iterations. Our algorithm can accommodate nearly sparse vectors, in which case it recovers index set of the largest components, and can also accommodate burst noise measurements. Compared to compressive sensing methods that are guaranteed to achieve exact recovery of all sparse vectors, our method requires fewer measurements However, methods that achieve statistical recovery, that is, recovery of almost all but not all sparse vectors, can require fewer measurements than our method.
Time Series Anomaly Detection; Detection of anomalous drops with limited features and sparse examples in noisy highly periodic data
Google uses continuous streams of data from industry partners in order to deliver accurate results to users. Unexpected drops in traffic can be an indication of an underlying issue and may be an early warning that remedial action may be necessary. Detecting such drops is non-trivial because streams are variable and noisy, with roughly regular spikes (in many different shapes) in traffic data. We investigated the question of whether or not we can predict anomalies in these data streams. Our goal is to utilize Machine Learning and statistical approaches to classify anomalous drops in periodic, but noisy, traffic patterns. Since we do not have a large body of labeled examples to directly apply supervised learning for anomaly classification, we approached the problem in two parts. First we used TensorFlow to train our various models including DNNs, RNNs, and LSTMs to perform regression and predict the expected value in the time series. Secondly we created anomaly detection rules that compared the actual values to predicted values. Since the problem requires finding sustained anomalies, rather than just short delays or momentary inactivity in the data, our two detection methods focused on continuous sections of activity rather than just single points. We tried multiple combinations of our models and rules and found that using the intersection of our two anomaly detection methods proved to be an effective method of detecting anomalies on almost all of our models. In the process we also found that not all data fell within our experimental assumptions, as one data stream had no periodicity, and therefore no time based model could predict it.
Deep Incremental Boosting
This paper introduces Deep Incremental Boosting, a new technique derived from AdaBoost, specifically adapted to work with Deep Learning methods, that reduces the required training time and improves generalisation. We draw inspiration from Transfer of Learning approaches to reduce the start-up time to training each incremental Ensemble member. We show a set of experiments that outlines some preliminary results on some common Deep Learning datasets and discuss the potential improvements Deep Incremental Boosting brings to traditional Ensemble methods in Deep Learning.
Eigenvalue Decay Implies Polynomial-Time Learnability for Neural Networks
We consider the problem of learning function classes computed by neural networks with various activations (e.g. ReLU or Sigmoid), a task believed to be computationally intractable in the worst-case. A major open problem is to understand the minimal assumptions under which these classes admit provably efficient algorithms. In this work we show that a natural distributional assumption corresponding to {\em eigenvalue decay} of the Gram matrix yields polynomial-time algorithms in the non-realizable setting for expressive classes of networks (e.g. feed-forward networks of ReLUs). We make no assumptions on the structure of the network or the labels. Given sufficiently-strong polynomial eigenvalue decay, we obtain {\em fully}-polynomial time algorithms in {\em all} the relevant parameters with respect to square-loss. Milder decay assumptions also lead to improved algorithms. This is the first purely distributional assumption that leads to polynomial-time algorithms for networks of ReLUs, even with one hidden layer. Further, unlike prior distributional assumptions (e.g., the marginal distribution is Gaussian), eigenvalue decay has been observed in practice on common data sets.
OpenML Benchmarking Suites
Machine learning research depends on objectively interpretable, comparable, and reproducible algorithm benchmarks. We advocate the use of curated, comprehensive suites of machine learning tasks to standardize the setup, execution, and reporting of benchmarks. We enable this through software tools that help to create and leverage these benchmarking suites. These are seamlessly integrated into the OpenML platform, and accessible through interfaces in Python, Java, and R. OpenML benchmarking suites (a) are easy to use through standardized data formats, APIs, and client libraries; (b) come with extensive meta-information on the included datasets; and (c) allow benchmarks to be shared and reused in future studies. We then present a first, carefully curated and practical benchmarking suite for classification: the OpenML Curated Classification benchmarking suite 2018 (OpenML-CC18). Finally, we discuss use cases and applications which demonstrate the usefulness of OpenML benchmarking suites and the OpenML-CC18 in particular.
Sparse Coding and Autoencoders
In "Dictionary Learning" one tries to recover incoherent matrices $A^* \in \mathbb{R}^{n \times h}$ (typically overcomplete and whose columns are assumed to be normalized) and sparse vectors $x^* \in \mathbb{R}^h$ with a small support of size $h^p$ for some $0 <p < 1$ while having access to observations $y \in \mathbb{R}^n$ where $y = A^*x^*$. In this work we undertake a rigorous analysis of whether gradient descent on the squared loss of an autoencoder can solve the dictionary learning problem. The "Autoencoder" architecture we consider is a $\mathbb{R}^n \rightarrow \mathbb{R}^n$ mapping with a single ReLU activation layer of size $h$. Under very mild distributional assumptions on $x^*$, we prove that the norm of the expected gradient of the standard squared loss function is asymptotically (in sparse code dimension) negligible for all points in a small neighborhood of $A^*$. This is supported with experimental evidence using synthetic data. We also conduct experiments to suggest that $A^*$ is a local minimum. Along the way we prove that a layer of ReLU gates can be set up to automatically recover the support of the sparse codes. This property holds independent of the loss function. We believe that it could be of independent interest.
Direct-Manipulation Visualization of Deep Networks
The recent successes of deep learning have led to a wave of interest from non-experts. Gaining an understanding of this technology, however, is difficult. While the theory is important, it is also helpful for novices to develop an intuitive feel for the effect of different hyperparameters and structural variations. We describe TensorFlow Playground, an interactive, open sourced visualization that allows users to experiment via direct manipulation rather than coding, enabling them to quickly build an intuition about neural nets.
Training Support Vector Machines using Coresets
We present a novel coreset construction algorithm for solving classification tasks using Support Vector Machines (SVMs) in a computationally efficient manner. A coreset is a weighted subset of the original data points that provably approximates the original set. We show that coresets of size polylogarithmic in $n$ and polynomial in $d$ exist for a set of $n$ input points with $d$ features and present an $(\epsilon,\delta)$-FPRAS for constructing coresets for scalable SVM training. Our method leverages the insight that data points are often redundant and uses an importance sampling scheme based on the sensitivity of each data point to construct coresets efficiently. We evaluate the performance of our algorithm in accelerating SVM training against real-world data sets and compare our algorithm to state-of-the-art coreset approaches. Our empirical results show that our approach outperforms a state-of-the-art coreset approach and uniform sampling in enabling computational speedups while achieving low approximation error.
IoT Data Analytics Using Deep Learning
Deep learning is a popular machine learning approach which has achieved a lot of progress in all traditional machine learning areas. Internet of thing (IoT) and Smart City deployments are generating large amounts of time-series sensor data in need of analysis. Applying deep learning to these domains has been an important topic of research. The Long-Short Term Memory (LSTM) network has been proven to be well suited for dealing with and predicting important events with long intervals and delays in the time series. LTSM networks have the ability to maintain long-term memory. In an LTSM network, a stacked LSTM hidden layer also makes it possible to learn a high level temporal feature without the need of any fine tuning and preprocessing which would be required by other techniques. In this paper, we construct a long-short term memory (LSTM) recurrent neural network structure, use the normal time series training set to build the prediction model. And then we use the predicted error from the prediction model to construct a Gaussian naive Bayes model to detect whether the original sample is abnormal. This method is called LSTM-Gauss-NBayes for short. We use three real-world data sets, each of which involve long-term time-dependence or short-term time-dependence, even very weak time dependence. The experimental results show that LSTM-Gauss-NBayes is an effective and robust model.
Image Quality Assessment Guided Deep Neural Networks Training
For many computer vision problems, the deep neural networks are trained and validated based on the assumption that the input images are pristine (i.e., artifact-free). However, digital images are subject to a wide range of distortions in real application scenarios, while the practical issues regarding image quality in high level visual information understanding have been largely ignored. In this paper, in view of the fact that most widely deployed deep learning models are susceptible to various image distortions, the distorted images are involved for data augmentation in the deep neural network training process to learn a reliable model for practical applications. In particular, an image quality assessment based label smoothing method, which aims at regularizing the label distribution of training images, is further proposed to tune the objective functions in learning the neural network. Experimental results show that the proposed method is effective in dealing with both low and high quality images in the typical image classification task.
Leveraging Sparse and Dense Feature Combinations for Sentiment Classification
Neural networks are one of the most popular approaches for many natural language processing tasks such as sentiment analysis. They often outperform traditional machine learning models and achieve the state-of-art results on most tasks. However, many existing deep learning models are complex, difficult to train and provide a limited improvement over simpler methods. We propose a simple, robust and powerful model for sentiment classification. This model outperforms many deep learning models and achieves comparable results to other deep learning models with complex architectures on sentiment analysis datasets. We publish the code online.
Gradient Methods for Submodular Maximization
In this paper, we study the problem of maximizing continuous submodular functions that naturally arise in many learning applications such as those involving utility functions in active learning and sensing, matrix approximations and network inference. Despite the apparent lack of convexity in such functions, we prove that stochastic projected gradient methods can provide strong approximation guarantees for maximizing continuous submodular functions with convex constraints. More specifically, we prove that for monotone continuous DR-submodular functions, all fixed points of projected gradient ascent provide a factor $1/2$ approximation to the global maxima. We also study stochastic gradient and mirror methods and show that after $\mathcal{O}(1/\epsilon^2)$ iterations these methods reach solutions which achieve in expectation objective values exceeding $(\frac{\text{OPT}}{2}-\epsilon)$. An immediate application of our results is to maximize submodular functions that are defined stochastically, i.e. the submodular function is defined as an expectation over a family of submodular functions with an unknown distribution. We will show how stochastic gradient methods are naturally well-suited for this setting, leading to a factor $1/2$ approximation when the function is monotone. In particular, it allows us to approximately maximize discrete, monotone submodular optimization problems via projected gradient descent on a continuous relaxation, directly connecting the discrete and continuous domains. Finally, experiments on real data demonstrate that our projected gradient methods consistently achieve the best utility compared to other continuous baselines while remaining competitive in terms of computational effort.
Sentiment Analysis by Joint Learning of Word Embeddings and Classifier
Word embeddings are representations of individual words of a text document in a vector space and they are often use- ful for performing natural language pro- cessing tasks. Current state of the art al- gorithms for learning word embeddings learn vector representations from large corpora of text documents in an unsu- pervised fashion. This paper introduces SWESA (Supervised Word Embeddings for Sentiment Analysis), an algorithm for sentiment analysis via word embeddings. SWESA leverages document label infor- mation to learn vector representations of words from a modest corpus of text doc- uments by solving an optimization prob- lem that minimizes a cost function with respect to both word embeddings as well as classification accuracy. Analysis re- veals that SWESA provides an efficient way of estimating the dimension of the word embeddings that are to be learned. Experiments on several real world data sets show that SWESA has superior per- formance when compared to previously suggested approaches to word embeddings and sentiment analysis tasks.
ZOO: Zeroth Order Optimization based Black-box Attacks to Deep Neural Networks without Training Substitute Models
Deep neural networks (DNNs) are one of the most prominent technologies of our time, as they achieve state-of-the-art performance in many machine learning tasks, including but not limited to image classification, text mining, and speech processing. However, recent research on DNNs has indicated ever-increasing concern on the robustness to adversarial examples, especially for security-critical tasks such as traffic sign identification for autonomous driving. Studies have unveiled the vulnerability of a well-trained DNN by demonstrating the ability of generating barely noticeable (to both human and machines) adversarial images that lead to misclassification. Furthermore, researchers have shown that these adversarial images are highly transferable by simply training and attacking a substitute model built upon the target model, known as a black-box attack to DNNs. Similar to the setting of training substitute models, in this paper we propose an effective black-box attack that also only has access to the input (images) and the output (confidence scores) of a targeted DNN. However, different from leveraging attack transferability from substitute models, we propose zeroth order optimization (ZOO) based attacks to directly estimate the gradients of the targeted DNN for generating adversarial examples. We use zeroth order stochastic coordinate descent along with dimension reduction, hierarchical attack and importance sampling techniques to efficiently attack black-box models. By exploiting zeroth order optimization, improved attacks to the targeted DNN can be accomplished, sparing the need for training substitute models and avoiding the loss in attack transferability. Experimental results on MNIST, CIFAR10 and ImageNet show that the proposed ZOO attack is as effective as the state-of-the-art white-box attack and significantly outperforms existing black-box attacks via substitute models.
Group-driven Reinforcement Learning for Personalized mHealth Intervention
Due to the popularity of smartphones and wearable devices nowadays, mobile health (mHealth) technologies are promising to bring positive and wide impacts on people's health. State-of-the-art decision-making methods for mHealth rely on some ideal assumptions. Those methods either assume that the users are completely homogenous or completely heterogeneous. However, in reality, a user might be similar with some, but not all, users. In this paper, we propose a novel group-driven reinforcement learning method for the mHealth. We aim to understand how to share information among similar users to better convert the limited user information into sharper learned RL policies. Specifically, we employ the K-means clustering method to group users based on their trajectory information similarity and learn a shared RL policy for each group. Extensive experiment results have shown that our method can achieve clear gains over the state-of-the-art RL methods for mHealth.
Rocket Launching: A Universal and Efficient Framework for Training Well-performing Light Net
Models applied on real time response task, like click-through rate (CTR) prediction model, require high accuracy and rigorous response time. Therefore, top-performing deep models of high depth and complexity are not well suited for these applications with the limitations on the inference time. In order to further improve the neural networks' performance given the time and computational limitations, we propose an approach that exploits a cumbersome net to help train the lightweight net for prediction. We dub the whole process rocket launching, where the cumbersome booster net is used to guide the learning of the target light net throughout the whole training process. We analyze different loss functions aiming at pushing the light net to behave similarly to the booster net, and adopt the loss with best performance in our experiments. We use one technique called gradient block to improve the performance of the light net and booster net further. Experiments on benchmark datasets and real-life industrial advertisement data present that our light model can get performance only previously achievable with more complex models.
Early Improving Recurrent Elastic Highway Network
To model time-varying nonlinear temporal dynamics in sequential data, a recurrent network capable of varying and adjusting the recurrence depth between input intervals is examined. The recurrence depth is extended by several intermediate hidden state units, and the weight parameters involved in determining these units are dynamically calculated. The motivation behind the paper lies on overcoming a deficiency in Recurrent Highway Networks and improving their performances which are currently at the forefront of RNNs: 1) Determining the appropriate number of recurrent depth in RHN for different tasks is a huge burden and just setting it to a large number is computationally wasteful with possible repercussion in terms of performance degradation and high latency. Expanding on the idea of adaptive computation time (ACT), with the use of an elastic gate in the form of a rectified exponentially decreasing function taking on as arguments as previous hidden state and input, the proposed model is able to evaluate the appropriate recurrent depth for each input. The rectified gating function enables the most significant intermediate hidden state updates to come early such that significant performance gain is achieved early. 2) Updating the weights from that of previous intermediate layer offers a richer representation than the use of shared weights across all intermediate recurrence layers. The weight update procedure is just an expansion of the idea underlying hypernetworks. To substantiate the effectiveness of the proposed network, we conducted three experiments: regression on synthetic data, human activity recognition, and language modeling on the Penn Treebank dataset. The proposed networks showed better performance than other state-of-the-art recurrent networks in all three experiments.
Reproducibility of Benchmarked Deep Reinforcement Learning Tasks for Continuous Control
Policy gradient methods in reinforcement learning have become increasingly prevalent for state-of-the-art performance in continuous control tasks. Novel methods typically benchmark against a few key algorithms such as deep deterministic policy gradients and trust region policy optimization. As such, it is important to present and use consistent baselines experiments. However, this can be difficult due to general variance in the algorithms, hyper-parameter tuning, and environment stochasticity. We investigate and discuss: the significance of hyper-parameters in policy gradients for continuous control, general variance in the algorithms, and reproducibility of reported results. We provide guidelines on reporting novel results as comparisons against baseline methods such that future researchers can make informed decisions when investigating novel methods.
Learning to Plan Chemical Syntheses
From medicines to materials, small organic molecules are indispensable for human well-being. To plan their syntheses, chemists employ a problem solving technique called retrosynthesis. In retrosynthesis, target molecules are recursively transformed into increasingly simpler precursor compounds until a set of readily available starting materials is obtained. Computer-aided retrosynthesis would be a highly valuable tool, however, past approaches were slow and provided results of unsatisfactory quality. Here, we employ Monte Carlo Tree Search (MCTS) to efficiently discover retrosynthetic routes. MCTS was combined with an expansion policy network that guides the search, and an "in-scope" filter network to pre-select the most promising retrosynthetic steps. These deep neural networks were trained on 12 million reactions, which represents essentially all reactions ever published in organic chemistry. Our system solves almost twice as many molecules and is 30 times faster in comparison to the traditional search method based on extracted rules and hand-coded heuristics. Finally after a 60 year history of computer-aided synthesis planning, chemists can no longer distinguish between routes generated by a computer system and real routes taken from the scientific literature. We anticipate that our method will accelerate drug and materials discovery by assisting chemists to plan better syntheses faster, and by enabling fully automated robot synthesis.
Sampling High Throughput Data for Anomaly Detection of Data-Base Activity
Data leakage and theft from databases is a dangerous threat to organizations. Data Security and Data Privacy protection systems (DSDP) monitor data access and usage to identify leakage or suspicious activities that should be investigated. Because of the high velocity nature of database systems, such systems audit only a portion of the vast number of transactions that take place. Anomalies are investigated by a Security Officer (SO) in order to choose the proper response. In this paper we investigate the effect of sampling methods based on the risk the transaction poses and propose a new method for "combined sampling" for capturing a more varied sample.
MHTN: Modal-adversarial Hybrid Transfer Network for Cross-modal Retrieval
Cross-modal retrieval has drawn wide interest for retrieval across different modalities of data. However, existing methods based on DNN face the challenge of insufficient cross-modal training data, which limits the training effectiveness and easily leads to overfitting. Transfer learning is for relieving the problem of insufficient training data, but it mainly focuses on knowledge transfer only from large-scale datasets as single-modal source domain to single-modal target domain. Such large-scale single-modal datasets also contain rich modal-independent semantic knowledge that can be shared across different modalities. Besides, large-scale cross-modal datasets are very labor-consuming to collect and label, so it is significant to fully exploit the knowledge in single-modal datasets for boosting cross-modal retrieval. This paper proposes modal-adversarial hybrid transfer network (MHTN), which to the best of our knowledge is the first work to realize knowledge transfer from single-modal source domain to cross-modal target domain, and learn cross-modal common representation. It is an end-to-end architecture with two subnetworks: (1) Modal-sharing knowledge transfer subnetwork is proposed to jointly transfer knowledge from a large-scale single-modal dataset in source domain to all modalities in target domain with a star network structure, which distills modal-independent supplementary knowledge for promoting cross-modal common representation learning. (2) Modal-adversarial semantic learning subnetwork is proposed to construct an adversarial training mechanism between common representation generator and modality discriminator, making the common representation discriminative for semantics but indiscriminative for modalities to enhance cross-modal semantic consistency during transfer process. Comprehensive experiments on 4 widely-used datasets show its effectiveness and generality.
Collaborative Filtering using Denoising Auto-Encoders for Market Basket Data
Recommender systems (RS) help users navigate large sets of items in the search for "interesting" ones. One approach to RS is Collaborative Filtering (CF), which is based on the idea that similar users are interested in similar items. Most model-based approaches to CF seek to train a machine-learning/data-mining model based on sparse data; the model is then used to provide recommendations. While most of the proposed approaches are effective for small-size situations, the combinatorial nature of the problem makes it impractical for medium-to-large instances. In this work we present a novel approach to CF that works by training a Denoising Auto-Encoder (DAE) on corrupted baskets, i.e., baskets from which one or more items have been removed. The DAE is then forced to learn to reconstruct the original basket given its corrupted input. Due to recent advancements in optimization and other technologies for training neural-network models (such as DAE), the proposed method results in a scalable and practical approach to CF. The contribution of this work is twofold: (1) to identify missing items in observed baskets and, thus, directly providing a CF model; and, (2) to construct a generative model of baskets which may be used, for instance, in simulation analysis or as part of a more complex analytical method.
Distance and Similarity Measures Effect on the Performance of K-Nearest Neighbor Classifier -- A Review
The K-nearest neighbor (KNN) classifier is one of the simplest and most common classifiers, yet its performance competes with the most complex classifiers in the literature. The core of this classifier depends mainly on measuring the distance or similarity between the tested examples and the training examples. This raises a major question about which distance measures to be used for the KNN classifier among a large number of distance and similarity measures available? This review attempts to answer this question through evaluating the performance (measured by accuracy, precision and recall) of the KNN using a large number of distance measures, tested on a number of real-world datasets, with and without adding different levels of noise. The experimental results show that the performance of KNN classifier depends significantly on the distance used, and the results showed large gaps between the performances of different distances. We found that a recently proposed non-convex distance performed the best when applied on most datasets comparing to the other tested distances. In addition, the performance of the KNN with this top performing distance degraded only about $20\%$ while the noise level reaches $90\%$, this is true for most of the distances used as well. This means that the KNN classifier using any of the top $10$ distances tolerate noise to a certain degree. Moreover, the results show that some distances are less affected by the added noise comparing to other distances.
Graph Classification via Deep Learning with Virtual Nodes
Learning representation for graph classification turns a variable-size graph into a fixed-size vector (or matrix). Such a representation works nicely with algebraic manipulations. Here we introduce a simple method to augment an attributed graph with a virtual node that is bidirectionally connected to all existing nodes. The virtual node represents the latent aspects of the graph, which are not immediately available from the attributes and local connectivity structures. The expanded graph is then put through any node representation method. The representation of the virtual node is then the representation of the entire graph. In this paper, we use the recently introduced Column Network for the expanded graph, resulting in a new end-to-end graph classification model dubbed Virtual Column Network (VCN). The model is validated on two tasks: (i) predicting bio-activity of chemical compounds, and (ii) finding software vulnerability from source code. Results demonstrate that VCN is competitive against well-established rivals.
Theoretical Foundation of Co-Training and Disagreement-Based Algorithms
Disagreement-based approaches generate multiple classifiers and exploit the disagreement among them with unlabeled data to improve learning performance. Co-training is a representative paradigm of them, which trains two classifiers separately on two sufficient and redundant views; while for the applications where there is only one view, several successful variants of co-training with two different classifiers on single-view data instead of two views have been proposed. For these disagreement-based approaches, there are several important issues which still are unsolved, in this article we present theoretical analyses to address these issues, which provides a theoretical foundation of co-training and disagreement-based approaches.
Extractive Summarization using Deep Learning
This paper proposes a text summarization approach for factual reports using a deep learning model. This approach consists of three phases: feature extraction, feature enhancement, and summary generation, which work together to assimilate core information and generate a coherent, understandable summary. We are exploring various features to improve the set of sentences selected for the summary, and are using a Restricted Boltzmann Machine to enhance and abstract those features to improve resultant accuracy without losing any important information. The sentences are scored based on those enhanced features and an extractive summary is constructed. Experimentation carried out on several articles demonstrates the effectiveness of the proposed approach. Source code available at: https://github.com/vagisha-nidhi/TextSummarizer
Actively Learning what makes a Discrete Sequence Valid
Deep learning techniques have been hugely successful for traditional supervised and unsupervised machine learning problems. In large part, these techniques solve continuous optimization problems. Recently however, discrete generative deep learning models have been successfully used to efficiently search high-dimensional discrete spaces. These methods work by representing discrete objects as sequences, for which powerful sequence-based deep models can be employed. Unfortunately, these techniques are significantly hindered by the fact that these generative models often produce invalid sequences. As a step towards solving this problem, we propose to learn a deep recurrent validator model. Given a partial sequence, our model learns the probability of that sequence occurring as the beginning of a full valid sequence. Thus this identifies valid versus invalid sequences and crucially it also provides insight about how individual sequence elements influence the validity of discrete objects. To learn this model we propose an approach inspired by seminal work in Bayesian active learning. On a synthetic dataset, we demonstrate the ability of our model to distinguish valid and invalid sequences. We believe this is a key step toward learning generative models that faithfully produce valid discrete objects.
SCNN: An Accelerator for Compressed-sparse Convolutional Neural Networks
Convolutional Neural Networks (CNNs) have emerged as a fundamental technology for machine learning. High performance and extreme energy efficiency are critical for deployments of CNNs in a wide range of situations, especially mobile platforms such as autonomous vehicles, cameras, and electronic personal assistants. This paper introduces the Sparse CNN (SCNN) accelerator architecture, which improves performance and energy efficiency by exploiting the zero-valued weights that stem from network pruning during training and zero-valued activations that arise from the common ReLU operator applied during inference. Specifically, SCNN employs a novel dataflow that enables maintaining the sparse weights and activations in a compressed encoding, which eliminates unnecessary data transfers and reduces storage requirements. Furthermore, the SCNN dataflow facilitates efficient delivery of those weights and activations to the multiplier array, where they are extensively reused. In addition, the accumulation of multiplication products are performed in a novel accumulator array. Our results show that on contemporary neural networks, SCNN can improve both performance and energy by a factor of 2.7x and 2.3x, respectively, over a comparably provisioned dense CNN accelerator.
Self-adaptive node-based PCA encodings
In this paper we propose an algorithm, Simple Hebbian PCA, and prove that it is able to calculate the principal component analysis (PCA) in a distributed fashion across nodes. It simplifies existing network structures by removing intralayer weights, essentially cutting the number of weights that need to be trained in half.
Learning from Noisy Label Distributions
In this paper, we consider a novel machine learning problem, that is, learning a classifier from noisy label distributions. In this problem, each instance with a feature vector belongs to at least one group. Then, instead of the true label of each instance, we observe the label distribution of the instances associated with a group, where the label distribution is distorted by an unknown noise. Our goals are to (1) estimate the true label of each instance, and (2) learn a classifier that predicts the true label of a new instance. We propose a probabilistic model that considers true label distributions of groups and parameters that represent the noise as hidden variables. The model can be learned based on a variational Bayesian method. In numerical experiments, we show that the proposed model outperforms existing methods in terms of the estimation of the true labels of instances.
Real-time Load Prediction with High Velocity Smart Home Data Stream
This paper addresses the use of smart-home sensor streams for continuous prediction of energy loads of individual households which participate as an agent in local markets. We introduces a new device level energy consumption dataset recorded over three years wich includes high resolution energy measurements from electrical devices collected within a pilot program. Using data from that pilot, we analyze the applicability of various machine learning mechanisms for continuous load prediction. Specifically, we address short-term load prediction that is required for load balancing in electrical micro-grids. We report on the prediction performance and the computational requirements of a broad range of prediction mechanisms. Furthermore we present an architecture and experimental evaluation when this prediction is applied in the stream.
Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks
Factorization Machines (FMs) are a supervised learning approach that enhances the linear regression model by incorporating the second-order feature interactions. Despite effectiveness, FM can be hindered by its modelling of all feature interactions with the same weight, as not all feature interactions are equally useful and predictive. For example, the interactions with useless features may even introduce noises and adversely degrade the performance. In this work, we improve FM by discriminating the importance of different feature interactions. We propose a novel model named Attentional Factorization Machine (AFM), which learns the importance of each feature interaction from data via a neural attention network. Extensive experiments on two real-world datasets demonstrate the effectiveness of AFM. Empirically, it is shown on regression task AFM betters FM with a $8.6\%$ relative improvement, and consistently outperforms the state-of-the-art deep learning methods Wide&Deep and DeepCross with a much simpler structure and fewer model parameters. Our implementation of AFM is publicly available at: https://github.com/hexiangnan/attentional_factorization_machine
Deep Learning the Ising Model Near Criticality
It is well established that neural networks with deep architectures perform better than shallow networks for many tasks in machine learning. In statistical physics, while there has been recent interest in representing physical data with generative modelling, the focus has been on shallow neural networks. A natural question to ask is whether deep neural networks hold any advantage over shallow networks in representing such data. We investigate this question by using unsupervised, generative graphical models to learn the probability distribution of a two-dimensional Ising system. Deep Boltzmann machines, deep belief networks, and deep restricted Boltzmann networks are trained on thermal spin configurations from this system, and compared to the shallow architecture of the restricted Boltzmann machine. We benchmark the models, focussing on the accuracy of generating energetic observables near the phase transition, where these quantities are most difficult to approximate. Interestingly, after training the generative networks, we observe that the accuracy essentially depends only on the number of neurons in the first hidden layer of the network, and not on other model details such as network depth or model type. This is evidence that shallow networks are more efficient than deep networks at representing physical probability distributions associated with Ising systems near criticality.
Machine Learning for Survival Analysis: A Survey
Accurately predicting the time of occurrence of an event of interest is a critical problem in longitudinal data analysis. One of the main challenges in this context is the presence of instances whose event outcomes become unobservable after a certain time point or when some instances do not experience any event during the monitoring period. Such a phenomenon is called censoring which can be effectively handled using survival analysis techniques. Traditionally, statistical approaches have been widely developed in the literature to overcome this censoring issue. In addition, many machine learning algorithms are adapted to effectively handle survival data and tackle other challenging problems that arise in real-world data. In this survey, we provide a comprehensive and structured review of the representative statistical methods along with the machine learning techniques used in survival analysis and provide a detailed taxonomy of the existing methods. We also discuss several topics that are closely related to survival analysis and illustrate several successful applications in various real-world application domains. We hope that this paper will provide a more thorough understanding of the recent advances in survival analysis and offer some guidelines on applying these approaches to solve new problems that arise in applications with censored data.
Guiding Network Analysis using Graph Slepians: An Illustration for the C. Elegans Connectome
Spectral approaches of network analysis heavily rely upon the eigendecomposition of the graph Laplacian. For instance, in graph signal processing, the Laplacian eigendecomposition is used to define the graph Fourier transform and then transpose signal processing operations to graphs by implementing them in the spectral domain. Here, we build on recent work that generalized Slepian functions to the graph setting. In particular, graph Slepians are band-limited graph signals with maximal energy concentration in a given subgraph. We show how this approach can be used to guide network analysis; i.e., we propose a visualization that reveals network organization of a subgraph, but while striking a balance with global network structure. These developments are illustrated for the structural connectome of the C. Elegans.
DeepFaceLIFT: Interpretable Personalized Models for Automatic Estimation of Self-Reported Pain
Previous research on automatic pain estimation from facial expressions has focused primarily on "one-size-fits-all" metrics (such as PSPI). In this work, we focus on directly estimating each individual's self-reported visual-analog scale (VAS) pain metric, as this is considered the gold standard for pain measurement. The VAS pain score is highly subjective and context-dependent, and its range can vary significantly among different persons. To tackle these issues, we propose a novel two-stage personalized model, named DeepFaceLIFT, for automatic estimation of VAS. This model is based on (1) Neural Network and (2) Gaussian process regression models, and is used to personalize the estimation of self-reported pain via a set of hand-crafted personal features and multi-task learning. We show on the benchmark dataset for pain analysis (The UNBC-McMaster Shoulder Pain Expression Archive) that the proposed personalized model largely outperforms the traditional, unpersonalized models: the intra-class correlation improves from a baseline performance of 19\% to a personalized performance of 35\% while also providing confidence in the model\textquotesingle s estimates -- in contrast to existing models for the target task. Additionally, DeepFaceLIFT automatically discovers the pain-relevant facial regions for each person, allowing for an easy interpretation of the pain-related facial cues.
Learning Graph While Training: An Evolving Graph Convolutional Neural Network
Convolution Neural Networks on Graphs are important generalization and extension of classical CNNs. While previous works generally assumed that the graph structures of samples are regular with unified dimensions, in many applications, they are highly diverse or even not well defined. Under some circumstances, e.g. chemical molecular data, clustering or coarsening for simplifying the graphs is hard to be justified chemically. In this paper, we propose a more general and flexible graph convolution network (EGCN) fed by batch of arbitrarily shaped data together with their evolving graph Laplacians trained in supervised fashion. Extensive experiments have been conducted to demonstrate the superior performance in terms of both the acceleration of parameter fitting and the significantly improved prediction accuracy on multiple graph-structured datasets.
Augmentor: An Image Augmentation Library for Machine Learning
The generation of artificial data based on existing observations, known as data augmentation, is a technique used in machine learning to improve model accuracy, generalisation, and to control overfitting. Augmentor is a software package, available in both Python and Julia versions, that provides a high level API for the expansion of image data using a stochastic, pipeline-based approach which effectively allows for images to be sampled from a distribution of augmented images at runtime. Augmentor provides methods for most standard augmentation practices as well as several advanced features such as label-preserving, randomised elastic distortions, and provides many helper functions for typical augmentation tasks used in machine learning.
VQS: Linking Segmentations to Questions and Answers for Supervised Attention in VQA and Question-Focused Semantic Segmentation
Rich and dense human labeled datasets are among the main enabling factors for the recent advance on vision-language understanding. Many seemingly distant annotations (e.g., semantic segmentation and visual question answering (VQA)) are inherently connected in that they reveal different levels and perspectives of human understandings about the same visual scenes --- and even the same set of images (e.g., of COCO). The popularity of COCO correlates those annotations and tasks. Explicitly linking them up may significantly benefit both individual tasks and the unified vision and language modeling. We present the preliminary work of linking the instance segmentations provided by COCO to the questions and answers (QAs) in the VQA dataset, and name the collected links visual questions and segmentation answers (VQS). They transfer human supervision between the previously separate tasks, offer more effective leverage to existing problems, and also open the door for new research problems and models. We study two applications of the VQS data in this paper: supervised attention for VQA and a novel question-focused semantic segmentation task. For the former, we obtain state-of-the-art results on the VQA real multiple-choice task by simply augmenting the multilayer perceptrons with some attention features that are learned using the segmentation-QA links as explicit supervision. To put the latter in perspective, we study two plausible methods and compare them to an oracle method assuming that the instance segmentations are given at the test stage.
GANs for Biological Image Synthesis
In this paper, we propose a novel application of Generative Adversarial Networks (GAN) to the synthesis of cells imaged by fluorescence microscopy. Compared to natural images, cells tend to have a simpler and more geometric global structure that facilitates image generation. However, the correlation between the spatial pattern of different fluorescent proteins reflects important biological functions, and synthesized images have to capture these relationships to be relevant for biological applications. We adapt GANs to the task at hand and propose new models with casual dependencies between image channels that can generate multi-channel images, which would be impossible to obtain experimentally. We evaluate our approach using two independent techniques and compare it against sensible baselines. Finally, we demonstrate that by interpolating across the latent space we can mimic the known changes in protein localization that occur through time during the cell cycle, allowing us to predict temporal evolution from static images.
Learning Rich Geographical Representations: Predicting Colorectal Cancer Survival in the State of Iowa
Neural networks are capable of learning rich, nonlinear feature representations shown to be beneficial in many predictive tasks. In this work, we use these models to explore the use of geographical features in predicting colorectal cancer survival curves for patients in the state of Iowa, spanning the years 1989 to 2012. Specifically, we compare model performance using a newly defined metric -- area between the curves (ABC) -- to assess (a) whether survival curves can be reasonably predicted for colorectal cancer patients in the state of Iowa, (b) whether geographical features improve predictive performance, and (c) whether a simple binary representation or richer, spectral clustering-based representation perform better. Our findings suggest that survival curves can be reasonably estimated on average, with predictive performance deviating at the five-year survival mark. We also find that geographical features improve predictive performance, and that the best performance is obtained using richer, spectral analysis-elicited features.
Privacy-Enabled Biometric Search
Biometrics have a long-held hope of replacing passwords by establishing a non-repudiated identity and providing authentication with convenience. Convenience drives consumers toward biometrics-based access management solutions. Unlike passwords, biometrics cannot be script-injected; however, biometric data is considered highly sensitive due to its personal nature and unique association with users. Biometrics differ from passwords in that compromised passwords may be reset. Compromised biometrics offer no such relief. A compromised biometric offers unlimited risk in privacy (anyone can view the biometric) and authentication (anyone may use the biometric). Standards such as the Biometric Open Protocol Standard (BOPS) (IEEE 2410-2016) provide a detailed mechanism to authenticate biometrics based on pre-enrolled devices and a previous identity by storing the biometric in encrypted form. This paper describes a biometric-agnostic approach that addresses the privacy concerns of biometrics through the implementation of BOPS. Specifically, two novel concepts are introduced. First, a biometric is applied to a neural network to create a feature vector. This neural network alone can be used for one-to-one matching (authentication), but would require a search in linear time for the one-to-many case (identity lookup). The classifying algorithm described in this paper addresses this concern by producing normalized floating-point values for each feature vector. This allows authentication lookup to occur in up to polynomial time, allowing for search in encrypted biometric databases with speed, accuracy and privacy.
Deconvolutional Paragraph Representation Learning
Learning latent representations from long text sequences is an important first step in many natural language processing applications. Recurrent Neural Networks (RNNs) have become a cornerstone for this challenging task. However, the quality of sentences during RNN-based decoding (reconstruction) decreases with the length of the text. We propose a sequence-to-sequence, purely convolutional and deconvolutional autoencoding framework that is free of the above issue, while also being computationally efficient. The proposed method is simple, easy to implement and can be leveraged as a building block for many applications. We show empirically that compared to RNNs, our framework is better at reconstructing and correcting long paragraphs. Quantitative evaluation on semi-supervised text classification and summarization tasks demonstrate the potential for better utilization of long unlabeled text data.
Geometric Enclosing Networks
Training model to generate data has increasingly attracted research attention and become important in modern world applications. We propose in this paper a new geometry-based optimization approach to address this problem. Orthogonal to current state-of-the-art density-based approaches, most notably VAE and GAN, we present a fresh new idea that borrows the principle of minimal enclosing ball to train a generator G\left(\bz\right) in such a way that both training and generated data, after being mapped to the feature space, are enclosed in the same sphere. We develop theory to guarantee that the mapping is bijective so that its inverse from feature space to data space results in expressive nonlinear contours to describe the data manifold, hence ensuring data generated are also lying on the data manifold learned from training data. Our model enjoys a nice geometric interpretation, hence termed Geometric Enclosing Networks (GEN), and possesses some key advantages over its rivals, namely simple and easy-to-control optimization formulation, avoidance of mode collapsing and efficiently learn data manifold representation in a completely unsupervised manner. We conducted extensive experiments on synthesis and real-world datasets to illustrate the behaviors, strength and weakness of our proposed GEN, in particular its ability to handle multi-modal data and quality of generated data.
Scalable Joint Models for Reliable Uncertainty-Aware Event Prediction
Missing data and noisy observations pose significant challenges for reliably predicting events from irregularly sampled multivariate time series (longitudinal) data. Imputation methods, which are typically used for completing the data prior to event prediction, lack a principled mechanism to account for the uncertainty due to missingness. Alternatively, state-of-the-art joint modeling techniques can be used for jointly modeling the longitudinal and event data and compute event probabilities conditioned on the longitudinal observations. These approaches, however, make strong parametric assumptions and do not easily scale to multivariate signals with many observations. Our proposed approach consists of several key innovations. First, we develop a flexible and scalable joint model based upon sparse multiple-output Gaussian processes. Unlike state-of-the-art joint models, the proposed model can explain highly challenging structure including non-Gaussian noise while scaling to large data. Second, we derive an optimal policy for predicting events using the distribution of the event occurrence estimated by the joint model. The derived policy trades-off the cost of a delayed detection versus incorrect assessments and abstains from making decisions when the estimated event probability does not satisfy the derived confidence criteria. Experiments on a large dataset show that the proposed framework significantly outperforms state-of-the-art techniques in event prediction.
Active Orthogonal Matching Pursuit for Sparse Subspace Clustering
Sparse Subspace Clustering (SSC) is a state-of-the-art method for clustering high-dimensional data points lying in a union of low-dimensional subspaces. However, while $\ell_1$ optimization-based SSC algorithms suffer from high computational complexity, other variants of SSC, such as Orthogonal Matching Pursuit-based SSC (OMP-SSC), lose clustering accuracy in pursuit of improving time efficiency. In this letter, we propose a novel Active OMP-SSC, which improves clustering accuracy of OMP-SSC by adaptively updating data points and randomly dropping data points in the OMP process, while still enjoying the low computational complexity of greedy pursuit algorithms. We provide heuristic analysis of our approach, and explain how these two active steps achieve a better tradeoff between connectivity and separation. Numerical results on both synthetic data and real-world data validate our analyses and show the advantages of the proposed active algorithm.
Racing Thompson: an Efficient Algorithm for Thompson Sampling with Non-conjugate Priors
Thompson sampling has impressive empirical performance for many multi-armed bandit problems. But current algorithms for Thompson sampling only work for the case of conjugate priors since these algorithms require to infer the posterior, which is often computationally intractable when the prior is not conjugate. In this paper, we propose a novel algorithm for Thompson sampling which only requires to draw samples from a tractable distribution, so our algorithm is efficient even when the prior is non-conjugate. To do this, we reformulate Thompson sampling as an optimization problem via the Gumbel-Max trick. After that we construct a set of random variables and our goal is to identify the one with highest mean. Finally, we solve it with techniques in best arm identification.
StarCraft II: A New Challenge for Reinforcement Learning
This paper introduces SC2LE (StarCraft II Learning Environment), a reinforcement learning environment based on the StarCraft II game. This domain poses a new grand challenge for reinforcement learning, representing a more difficult class of problems than considered in most prior work. It is a multi-agent problem with multiple players interacting; there is imperfect information due to a partially observed map; it has a large action space involving the selection and control of hundreds of units; it has a large state space that must be observed solely from raw input feature planes; and it has delayed credit assignment requiring long-term strategies over thousands of steps. We describe the observation, action, and reward specification for the StarCraft II domain and provide an open source Python-based interface for communicating with the game engine. In addition to the main game maps, we provide a suite of mini-games focusing on different elements of StarCraft II gameplay. For the main game maps, we also provide an accompanying dataset of game replay data from human expert players. We give initial baseline results for neural networks trained from this data to predict game outcomes and player actions. Finally, we present initial baseline results for canonical deep reinforcement learning agents applied to the StarCraft II domain. On the mini-games, these agents learn to achieve a level of play that is comparable to a novice player. However, when trained on the main game, these agents are unable to make significant progress. Thus, SC2LE offers a new and challenging environment for exploring deep reinforcement learning algorithms and architectures.
BitNet: Bit-Regularized Deep Neural Networks
We present a novel optimization strategy for training neural networks which we call "BitNet". The parameters of neural networks are usually unconstrained and have a dynamic range dispersed over all real values. Our key idea is to limit the expressive power of the network by dynamically controlling the range and set of values that the parameters can take. We formulate this idea using a novel end-to-end approach that circumvents the discrete parameter space by optimizing a relaxed continuous and differentiable upper bound of the typical classification loss function. The approach can be interpreted as a regularization inspired by the Minimum Description Length (MDL) principle. For each layer of the network, our approach optimizes real-valued translation and scaling factors and arbitrary precision integer-valued parameters (weights). We empirically compare BitNet to an equivalent unregularized model on the MNIST and CIFAR-10 datasets. We show that BitNet converges faster to a superior quality solution. Additionally, the resulting model has significant savings in memory due to the use of integer-valued parameters.
Efficient Compression Technique for Sparse Sets
Recent technological advancements have led to the generation of huge amounts of data over the web, such as text, image, audio and video. Most of this data is high dimensional and sparse, for e.g., the bag-of-words representation used for representing text. Often, an efficient search for similar data points needs to be performed in many applications like clustering, nearest neighbour search, ranking and indexing. Even though there have been significant increases in computational power, a simple brute-force similarity-search on such datasets is inefficient and at times impossible. Thus, it is desirable to get a compressed representation which preserves the similarity between data points. In this work, we consider the data points as sets and use Jaccard similarity as the similarity measure. Compression techniques are generally evaluated on the following parameters --1) Randomness required for compression, 2) Time required for compression, 3) Dimension of the data after compression, and 4) Space required to store the compressed data. Ideally, the compressed representation of the data should be such, that the similarity between each pair of data points is preserved, while keeping the time and the randomness required for compression as low as possible. We show that the compression technique suggested by Pratap and Kulkarni also works well for Jaccard similarity. We present a theoretical proof of the same and complement it with rigorous experimentations on synthetic as well as real-world datasets. We also compare our results with the state-of-the-art "min-wise independent permutation", and show that our compression algorithm achieves almost equal accuracy while significantly reducing the compression time and the randomness.
Weighted parallel SGD for distributed unbalanced-workload training system
Stochastic gradient descent (SGD) is a popular stochastic optimization method in machine learning. Traditional parallel SGD algorithms, e.g., SimuParallel SGD, often require all nodes to have the same performance or to consume equal quantities of data. However, these requirements are difficult to satisfy when the parallel SGD algorithms run in a heterogeneous computing environment; low-performance nodes will exert a negative influence on the final result. In this paper, we propose an algorithm called weighted parallel SGD (WP-SGD). WP-SGD combines weighted model parameters from different nodes in the system to produce the final output. WP-SGD makes use of the reduction in standard deviation to compensate for the loss from the inconsistency in performance of nodes in the cluster, which means that WP-SGD does not require that all nodes consume equal quantities of data. We also analyze the theoretical feasibility of running two other parallel SGD algorithms combined with WP-SGD in a heterogeneous environment. The experimental results show that WP-SGD significantly outperforms the traditional parallel SGD algorithms on distributed training systems with an unbalanced workload.
Fixed effects testing in high-dimensional linear mixed models
Many scientific and engineering challenges -- ranging from pharmacokinetic drug dosage allocation and personalized medicine to marketing mix (4Ps) recommendations -- require an understanding of the unobserved heterogeneity in order to develop the best decision making-processes. In this paper, we develop a hypothesis test and the corresponding p-value for testing for the significance of the homogeneous structure in linear mixed models. A robust matching moment construction is used for creating a test that adapts to the size of the model sparsity. When unobserved heterogeneity at a cluster level is constant, we show that our test is both consistent and unbiased even when the dimension of the model is extremely high. Our theoretical results rely on a new family of adaptive sparse estimators of the fixed effects that do not require consistent estimation of the random effects. Moreover, our inference results do not require consistent model selection. We showcase that moment matching can be extended to nonlinear mixed effects models and to generalized linear mixed effects models. In numerical and real data experiments, we find that the developed method is extremely accurate, that it adapts to the size of the underlying model and is decidedly powerful in the presence of irrelevant covariates.
mAnI: Movie Amalgamation using Neural Imitation
Cross-modal data retrieval has been the basis of various creative tasks performed by Artificial Intelligence (AI). One such highly challenging task for AI is to convert a book into its corresponding movie, which most of the creative film makers do as of today. In this research, we take the first step towards it by visualizing the content of a book using its corresponding movie visuals. Given a set of sentences from a book or even a fan-fiction written in the same universe, we employ deep learning models to visualize the input by stitching together relevant frames from the movie. We studied and compared three different types of setting to match the book with the movie content: (i) Dialog model: using only the dialog from the movie, (ii) Visual model: using only the visual content from the movie, and (iii) Hybrid model: using the dialog and the visual content from the movie. Experiments on the publicly available MovieBook dataset shows the effectiveness of the proposed models.
Fault in your stars: An Analysis of Android App Reviews
Mobile app distribution platforms such as Google Play Store allow users to share their feedback about downloaded apps in the form of a review comment and a corresponding star rating. Typically, the star rating ranges from one to five stars, with one star denoting a high sense of dissatisfaction with the app and five stars denoting a high sense of satisfaction. Unfortunately, due to a variety of reasons, often the star rating provided by a user is inconsistent with the opinion expressed in the review. For example, consider the following review for the Facebook App on Android; "Awesome App". One would reasonably expect the rating for this review to be five stars, but the actual rating is one star! Such inconsistent ratings can lead to a deflated (or inflated) overall average rating of an app which can affect user downloads, as typically users look at the average star ratings while making a decision on downloading an app. Also, the app developers receive a biased feedback about the application that does not represent ground reality. This is especially significant for small apps with a few thousand downloads as even a small number of mismatched reviews can bring down the average rating drastically. In this paper, we conducted a study on this review-rating mismatch problem. We manually examined 8600 reviews from 10 popular Android apps and found that 20% of the ratings in our dataset were inconsistent with the review. Further, we developed three systems; two of which were based on traditional machine learning and one on deep learning to automatically identify reviews whose rating did not match with the opinion expressed in the review. Our deep learning system performed the best and had an accuracy of 92% in identifying the correct star rating to be associated with a given review.
Adaptive Threshold Sampling
Sampling is a fundamental problem in computer science and statistics. However, for a given task and stream, it is often not possible to choose good sampling probabilities in advance. We derive a general framework for adaptively changing the sampling probabilities via a collection of thresholds.In general, adaptive sampling procedures introduce dependence amongst the sampled points, making it difficult to compute expectations and ensure estimators are unbiased or consistent. Our framework address this issue and further shows when adaptive thresholds can be treated as if they were fixed thresholds which samples items independently. This makes our adaptive sampling schemes simple to apply as there is no need to create custom estimators for the sampling method. Using our framework, we derive new samplers that can address a broad range of new and existing problems including sampling with memory rather than sample size budgets, stratified samples, multiple objectives, distinct counting, and sliding windows. In particular, we design a sampling procedure for the top-K problem where, unlike in the heavy-hitter problem, the sketch size and sampling probabilities are adaptively chosen.
ANI-1: A data set of 20M off-equilibrium DFT calculations for organic molecules
One of the grand challenges in modern theoretical chemistry is designing and implementing approximations that expedite ab initio methods without loss of accuracy. Machine learning (ML), in particular neural networks, are emerging as a powerful approach to constructing various forms of transferable atomistic potentials. They have been successfully applied in a variety of applications in chemistry, biology, catalysis, and solid-state physics. However, these models are heavily dependent on the quality and quantity of data used in their fitting. Fitting highly flexible ML potentials comes at a cost: a vast amount of reference data is required to properly train these models. We address this need by providing access to a large computational DFT database, which consists of 20M conformations for 57,454 small organic molecules. We believe it will become a new standard benchmark for comparison of current and future methods in the ML potential community.
Neural Factorization Machines for Sparse Predictive Analytics
Many predictive tasks of web applications need to model categorical variables, such as user IDs and demographics like genders and occupations. To apply standard machine learning techniques, these categorical predictors are always converted to a set of binary features via one-hot encoding, making the resultant feature vector highly sparse. To learn from such sparse data effectively, it is crucial to account for the interactions between features. Factorization Machines (FMs) are a popular solution for efficiently using the second-order feature interactions. However, FM models feature interactions in a linear way, which can be insufficient for capturing the non-linear and complex inherent structure of real-world data. While deep neural networks have recently been applied to learn non-linear feature interactions in industry, such as the Wide&Deep by Google and DeepCross by Microsoft, the deep structure meanwhile makes them difficult to train. In this paper, we propose a novel model Neural Factorization Machine (NFM) for prediction under sparse settings. NFM seamlessly combines the linearity of FM in modelling second-order feature interactions and the non-linearity of neural network in modelling higher-order feature interactions. Conceptually, NFM is more expressive than FM since FM can be seen as a special case of NFM without hidden layers. Empirical results on two regression tasks show that with one hidden layer only, NFM significantly outperforms FM with a 7.3% relative improvement. Compared to the recent deep learning methods Wide&Deep and DeepCross, our NFM uses a shallower structure but offers better performance, being much easier to train and tune in practice.
Corrupt Bandits for Preserving Local Privacy
We study a variant of the stochastic multi-armed bandit (MAB) problem in which the rewards are corrupted. In this framework, motivated by privacy preservation in online recommender systems, the goal is to maximize the sum of the (unobserved) rewards, based on the observation of transformation of these rewards through a stochastic corruption process with known parameters. We provide a lower bound on the expected regret of any bandit algorithm in this corrupted setting. We devise a frequentist algorithm, KLUCB-CF, and a Bayesian algorithm, TS-CF and give upper bounds on their regret. We also provide the appropriate corruption parameters to guarantee a desired level of local privacy and analyze how this impacts the regret. Finally, we present some experimental results that confirm our analysis.
Data-driven Advice for Applying Machine Learning to Bioinformatics Problems
As the bioinformatics field grows, it must keep pace not only with new data but with new algorithms. Here we contribute a thorough analysis of 13 state-of-the-art, commonly used machine learning algorithms on a set of 165 publicly available classification problems in order to provide data-driven algorithm recommendations to current researchers. We present a number of statistical and visual comparisons of algorithm performance and quantify the effect of model selection and algorithm tuning for each algorithm and dataset. The analysis culminates in the recommendation of five algorithms with hyperparameters that maximize classifier performance across the tested problems, as well as general guidelines for applying machine learning to supervised classification problems.
The Mean and Median Criterion for Automatic Kernel Bandwidth Selection for Support Vector Data Description
Support vector data description (SVDD) is a popular technique for detecting anomalies. The SVDD classifier partitions the whole space into an inlier region, which consists of the region near the training data, and an outlier region, which consists of points away from the training data. The computation of the SVDD classifier requires a kernel function, and the Gaussian kernel is a common choice for the kernel function. The Gaussian kernel has a bandwidth parameter, whose value is important for good results. A small bandwidth leads to overfitting, and the resulting SVDD classifier overestimates the number of anomalies. A large bandwidth leads to underfitting, and the classifier fails to detect many anomalies. In this paper we present a new automatic, unsupervised method for selecting the Gaussian kernel bandwidth. The selected value can be computed quickly, and it is competitive with existing bandwidth selection methods.
Structure Learning of $H$-colorings
We study the structure learning problem for $H$-colorings, an important class of Markov random fields that capture key combinatorial structures on graphs, including proper colorings and independent sets, as well as spin systems from statistical physics. The learning problem is as follows: for a fixed (and known) constraint graph $H$ with $q$ colors and an unknown graph $G=(V,E)$ with $n$ vertices, given uniformly random $H$-colorings of $G$, how many samples are required to learn the edges of the unknown graph $G$? We give a characterization of $H$ for which the problem is identifiable for every $G$, i.e., we can learn $G$ with an infinite number of samples. We also show that there are identifiable constraint graphs for which one cannot hope to learn every graph $G$ efficiently. We focus particular attention on the case of proper vertex $q$-colorings of graphs of maximum degree $d$ where intriguing connections to statistical physics phase transitions appear. We prove that in the tree uniqueness region (when $q>d$) the problem is identifiable and we can learn $G$ in ${\rm poly}(d,q) \times O(n^2\log{n})$ time. In contrast for soft-constraint systems, such as the Ising model, the best possible running time is exponential in $d$. In the tree non-uniqueness region (when $q\leq d$) we prove that the problem is not identifiable and thus $G$ cannot be learned. Moreover, when $q<d-\sqrt{d} + \Theta(1)$ we prove that even learning an equivalent graph (any graph with the same set of $H$-colorings) is computationally hard---sample complexity is exponential in $n$ in the worst case. We further explore the connection between the efficiency/hardness of the structure learning problem and the uniqueness/non-uniqueness phase transition for general $H$-colorings and prove that under the well-known Dobrushin uniqueness condition, we can learn $G$ in ${\rm poly}(d,q)\times O(n^2\log{n})$ time.
Deep & Cross Network for Ad Click Predictions
Feature engineering has been the key to the success of many prediction models. However, the process is non-trivial and often requires manual feature engineering or exhaustive searching. DNNs are able to automatically learn feature interactions; however, they generate all the interactions implicitly, and are not necessarily efficient in learning all types of cross features. In this paper, we propose the Deep & Cross Network (DCN) which keeps the benefits of a DNN model, and beyond that, it introduces a novel cross network that is more efficient in learning certain bounded-degree feature interactions. In particular, DCN explicitly applies feature crossing at each layer, requires no manual feature engineering, and adds negligible extra complexity to the DNN model. Our experimental results have demonstrated its superiority over the state-of-art algorithms on the CTR prediction dataset and dense classification dataset, in terms of both model accuracy and memory usage.
Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation
In this work, we propose to apply trust region optimization to deep reinforcement learning using a recently proposed Kronecker-factored approximation to the curvature. We extend the framework of natural policy gradient and propose to optimize both the actor and the critic using Kronecker-factored approximate curvature (K-FAC) with trust region; hence we call our method Actor Critic using Kronecker-Factored Trust Region (ACKTR). To the best of our knowledge, this is the first scalable trust region natural gradient method for actor-critic methods. It is also a method that learns non-trivial tasks in continuous control as well as discrete control policies directly from raw pixel inputs. We tested our approach across discrete domains in Atari games as well as continuous domains in the MuJoCo environment. With the proposed methods, we are able to achieve higher rewards and a 2- to 3-fold improvement in sample efficiency on average, compared to previous state-of-the-art on-policy actor-critic methods. Code is available at https://github.com/openai/baselines
Revisiting revisits in trajectory recommendation
Trajectory recommendation is the problem of recommending a sequence of places in a city for a tourist to visit. It is strongly desirable for the recommended sequence to avoid loops, as tourists typically would not wish to revisit the same location. Given some learned model that scores sequences, how can we then find the highest-scoring sequence that is loop-free? This paper studies this problem, with three contributions. First, we detail three distinct approaches to the problem -- graph-based heuristics, integer linear programming, and list extensions of the Viterbi algorithm -- and qualitatively summarise their strengths and weaknesses. Second, we explicate how two ostensibly different approaches to the list Viterbi algorithm are in fact fundamentally identical. Third, we conduct experiments on real-world trajectory recommendation datasets to identify the tradeoffs imposed by each of the three approaches. Overall, our results indicate that a greedy graph-based heuristic offer excellent performance and runtime, leading us to recommend its use for removing loops at prediction time.
Learning Universal Adversarial Perturbations with Generative Models
Neural networks are known to be vulnerable to adversarial examples, inputs that have been intentionally perturbed to remain visually similar to the source input, but cause a misclassification. It was recently shown that given a dataset and classifier, there exists so called universal adversarial perturbations, a single perturbation that causes a misclassification when applied to any input. In this work, we introduce universal adversarial networks, a generative network that is capable of fooling a target classifier when it's generated output is added to a clean sample from a dataset. We show that this technique improves on known universal adversarial attacks.
Deep Learning at 15PF: Supervised and Semi-Supervised Classification for Scientific Data
This paper presents the first, 15-PetaFLOP Deep Learning system for solving scientific pattern classification problems on contemporary HPC architectures. We develop supervised convolutional architectures for discriminating signals in high-energy physics data as well as semi-supervised architectures for localizing and classifying extreme weather in climate data. Our Intelcaffe-based implementation obtains $\sim$2TFLOP/s on a single Cori Phase-II Xeon-Phi node. We use a hybrid strategy employing synchronous node-groups, while using asynchronous communication across groups. We use this strategy to scale training of a single model to $\sim$9600 Xeon-Phi nodes; obtaining peak performance of 11.73-15.07 PFLOP/s and sustained performance of 11.41-13.27 PFLOP/s. At scale, our HEP architecture produces state-of-the-art classification accuracy on a dataset with 10M images, exceeding that achieved by selections on high-level physics-motivated features. Our semi-supervised architecture successfully extracts weather patterns in a 15TB climate dataset. Our results demonstrate that Deep Learning can be optimized and scaled effectively on many-core, HPC systems.
Designing and building the mlpack open-source machine learning library
mlpack is an open-source C++ machine learning library with an emphasis on speed and flexibility. Since its original inception in 2007, it has grown to be a large project implementing a wide variety of machine learning algorithms, from standard techniques such as decision trees and logistic regression to modern techniques such as deep neural networks as well as other recently-published cutting-edge techniques not found in any other library. mlpack is quite fast, with benchmarks showing mlpack outperforming other libraries' implementations of the same methods. mlpack has an active community, with contributors from around the world---including some from PUST. This short paper describes the goals and design of mlpack, discusses how the open-source community functions, and shows an example usage of mlpack for a simple data science problem.
Learning Musical Relations using Gated Autoencoders
Music is usually highly structured and it is still an open question how to design models which can successfully learn to recognize and represent musical structure. A fundamental problem is that structurally related patterns can have very distinct appearances, because the structural relationships are often based on transformations of musical material, like chromatic or diatonic transposition, inversion, retrograde, or rhythm change. In this preliminary work, we study the potential of two unsupervised learning techniques - Restricted Boltzmann Machines (RBMs) and Gated Autoencoders (GAEs) - to capture pre-defined transformations from constructed data pairs. We evaluate the models by using the learned representations as inputs in a discriminative task where for a given type of transformation (e.g. diatonic transposition), the specific relation between two musical patterns must be recognized (e.g. an upward transposition of diatonic steps). Furthermore, we measure the reconstruction error of models when reconstructing musical transformed patterns. Lastly, we test the models in an analogy-making task. We find that it is difficult to learn musical transformations with the RBM and that the GAE is much more adequate for this task, since it is able to learn representations of specific transformations that are largely content-invariant. We believe these results show that models such as GAEs may provide the basis for more encompassing music analysis systems, by endowing them with a better understanding of the structures underlying music.
SMASH: One-Shot Model Architecture Search through HyperNetworks
Designing architectures for deep neural networks requires expert knowledge and substantial computation time. We propose a technique to accelerate architecture selection by learning an auxiliary HyperNet that generates the weights of a main model conditioned on that model's architecture. By comparing the relative validation performance of networks with HyperNet-generated weights, we can effectively search over a wide range of architectures at the cost of a single training run. To facilitate this search, we develop a flexible mechanism based on memory read-writes that allows us to define a wide range of network connectivity patterns, with ResNet, DenseNet, and FractalNet blocks as special cases. We validate our method (SMASH) on CIFAR-10 and CIFAR-100, STL-10, ModelNet10, and Imagenet32x32, achieving competitive performance with similarly-sized hand-designed networks. Our code is available at https://github.com/ajbrock/SMASH
PixelNN: Example-based Image Synthesis
We present a simple nearest-neighbor (NN) approach that synthesizes high-frequency photorealistic images from an "incomplete" signal such as a low-resolution image, a surface normal map, or edges. Current state-of-the-art deep generative models designed for such conditional image synthesis lack two important things: (1) they are unable to generate a large set of diverse outputs, due to the mode collapse problem. (2) they are not interpretable, making it difficult to control the synthesized output. We demonstrate that NN approaches potentially address such limitations, but suffer in accuracy on small datasets. We design a simple pipeline that combines the best of both worlds: the first stage uses a convolutional neural network (CNN) to maps the input to a (overly-smoothed) image, and the second stage uses a pixel-wise nearest neighbor method to map the smoothed output to multiple high-quality, high-frequency outputs in a controllable manner. We demonstrate our approach for various input modalities, and for various domains ranging from human faces to cats-and-dogs to shoes and handbags.
Unsupervised Heart-rate Estimation in Wearables With Liquid States and A Probabilistic Readout
Heart-rate estimation is a fundamental feature of modern wearable devices. In this paper we propose a machine intelligent approach for heart-rate estimation from electrocardiogram (ECG) data collected using wearable devices. The novelty of our approach lies in (1) encoding spatio-temporal properties of ECG signals directly into spike train and using this to excite recurrently connected spiking neurons in a Liquid State Machine computation model; (2) a novel learning algorithm; and (3) an intelligently designed unsupervised readout based on Fuzzy c-Means clustering of spike responses from a subset of neurons (Liquid states), selected using particle swarm optimization. Our approach differs from existing works by learning directly from ECG signals (allowing personalization), without requiring costly data annotations. Additionally, our approach can be easily implemented on state-of-the-art spiking-based neuromorphic systems, offering high accuracy, yet significantly low energy footprint, leading to an extended battery life of wearable devices. We validated our approach with CARLsim, a GPU accelerated spiking neural network simulator modeling Izhikevich spiking neurons with Spike Timing Dependent Plasticity (STDP) and homeostatic scaling. A range of subjects are considered from in-house clinical trials and public ECG databases. Results show high accuracy and low energy footprint in heart-rate estimation across subjects with and without cardiac irregularities, signifying the strong potential of this approach to be integrated in future wearable devices.
Efficient Use of Limited-Memory Accelerators for Linear Learning on Heterogeneous Systems
We propose a generic algorithmic building block to accelerate training of machine learning models on heterogeneous compute systems. Our scheme allows to efficiently employ compute accelerators such as GPUs and FPGAs for the training of large-scale machine learning models, when the training data exceeds their memory capacity. Also, it provides adaptivity to any system's memory hierarchy in terms of size and processing speed. Our technique is built upon novel theoretical insights regarding primal-dual coordinate methods, and uses duality gap information to dynamically decide which part of the data should be made available for fast processing. To illustrate the power of our approach we demonstrate its performance for training of generalized linear models on a large-scale dataset exceeding the memory size of a modern GPU, showing an order-of-magnitude speedup over existing approaches.
Robust Contextual Bandit via the Capped-$\ell_{2}$ norm
This paper considers the actor-critic contextual bandit for the mobile health (mHealth) intervention. The state-of-the-art decision-making methods in mHealth generally assume that the noise in the dynamic system follows the Gaussian distribution. Those methods use the least-square-based algorithm to estimate the expected reward, which is prone to the existence of outliers. To deal with the issue of outliers, we propose a novel robust actor-critic contextual bandit method for the mHealth intervention. In the critic updating, the capped-$\ell_{2}$ norm is used to measure the approximation error, which prevents outliers from dominating our objective. A set of weights could be achieved from the critic updating. Considering them gives a weighted objective for the actor updating. It provides the badly noised sample in the critic updating with zero weights for the actor updating. As a result, the robustness of both actor-critic updating is enhanced. There is a key parameter in the capped-$\ell_{2}$ norm. We provide a reliable method to properly set it by making use of one of the most fundamental definitions of outliers in statistics. Extensive experiment results demonstrate that our method can achieve almost identical results compared with the state-of-the-art methods on the dataset without outliers and dramatically outperform them on the datasets noised by outliers.
Large Margin Learning in Set to Set Similarity Comparison for Person Re-identification
Person re-identification (Re-ID) aims at matching images of the same person across disjoint camera views, which is a challenging problem in multimedia analysis, multimedia editing and content-based media retrieval communities. The major challenge lies in how to preserve similarity of the same person across video footages with large appearance variations, while discriminating different individuals. To address this problem, conventional methods usually consider the pairwise similarity between persons by only measuring the point to point (P2P) distance. In this paper, we propose to use deep learning technique to model a novel set to set (S2S) distance, in which the underline objective focuses on preserving the compactness of intra-class samples for each camera view, while maximizing the margin between the intra-class set and inter-class set. The S2S distance metric is consisted of three terms, namely the class-identity term, the relative distance term and the regularization term. The class-identity term keeps the intra-class samples within each camera view gathering together, the relative distance term maximizes the distance between the intra-class class set and inter-class set across different camera views, and the regularization term smoothness the parameters of deep convolutional neural network (CNN). As a result, the final learned deep model can effectively find out the matched target to the probe object among various candidates in the video gallery by learning discriminative and stable feature representations. Using the CUHK01, CUHK03, PRID2011 and Market1501 benchmark datasets, we extensively conducted comparative evaluations to demonstrate the advantages of our method over the state-of-the-art approaches.
Practical Block-wise Neural Network Architecture Generation
Convolutional neural networks have gained a remarkable success in computer vision. However, most usable network architectures are hand-crafted and usually require expertise and elaborate design. In this paper, we provide a block-wise network generation pipeline called BlockQNN which automatically builds high-performance networks using the Q-Learning paradigm with epsilon-greedy exploration strategy. The optimal network block is constructed by the learning agent which is trained sequentially to choose component layers. We stack the block to construct the whole auto-generated network. To accelerate the generation process, we also propose a distributed asynchronous framework and an early stop strategy. The block-wise generation brings unique advantages: (1) it performs competitive results in comparison to the hand-crafted state-of-the-art networks on image classification, additionally, the best network generated by BlockQNN achieves 3.54% top-1 error rate on CIFAR-10 which beats all existing auto-generate networks. (2) in the meanwhile, it offers tremendous reduction of the search space in designing networks which only spends 3 days with 32 GPUs, and (3) moreover, it has strong generalizability that the network built on CIFAR also performs well on a larger-scale ImageNet dataset.
Induction of Decision Trees based on Generalized Graph Queries
Usually, decision tree induction algorithms are limited to work with non relational data. Given a record, they do not take into account other objects attributes even though they can provide valuable information for the learning task. In this paper we present GGQ-ID3, a multi-relational decision tree learning algorithm that uses Generalized Graph Queries (GGQ) as predicates in the decision nodes. GGQs allow to express complex patterns (including cycles) and they can be refined step-by-step. Also, they can evaluate structures (not only single records) and perform Regular Pattern Matching. GGQ are built dynamically (pattern mining) during the GGQ-ID3 tree construction process. We will show how to use GGQ-ID3 to perform multi-relational machine learning keeping complexity under control. Finally, some real examples of automatically obtained classification trees and semantic patterns are shown. ----- Normalmente, los algoritmos de inducci\'on de \'arboles de decisi\'on trabajan con datos no relacionales. Dado un registro, no tienen en cuenta los atributos de otros objetos a pesar de que \'estos pueden proporcionar informaci\'on \'util para la tarea de aprendizaje. En este art\'iculo presentamos GGQ-ID3, un algoritmo de aprendizaje de \'arboles de decisiones multi-relacional que utiliza Generalized Graph Queries (GGQ) como predicados en los nodos de decisi\'on. Los GGQs permiten expresar patrones complejos (incluyendo ciclos) y pueden ser refinados paso a paso. Adem\'as, pueden evaluar estructuras (no solo registros) y llevar a cabo Regular Pattern Matching. En GGQ-ID3, los GGQ son construidos din\'amicamente (pattern mining) durante el proceso de construcci\'on del \'arbol. Adem\'as, se muestran algunos ejemplos reales de \'arboles de clasificaci\'on multi-relacionales y patrones sem\'anticos obtenidos autom\'aticamente.
LADDER: A Human-Level Bidding Agent for Large-Scale Real-Time Online Auctions
We present LADDER, the first deep reinforcement learning agent that can successfully learn control policies for large-scale real-world problems directly from raw inputs composed of high-level semantic information. The agent is based on an asynchronous stochastic variant of DQN (Deep Q Network) named DASQN. The inputs of the agent are plain-text descriptions of states of a game of incomplete information, i.e. real-time large scale online auctions, and the rewards are auction profits of very large scale. We apply the agent to an essential portion of JD's online RTB (real-time bidding) advertising business and find that it easily beats the former state-of-the-art bidding policy that had been carefully engineered and calibrated by human experts: during JD.com's June 18th anniversary sale, the agent increased the company's ads revenue from the portion by more than 50%, while the advertisers' ROI (return on investment) also improved significantly.
Statistical Latent Space Approach for Mixed Data Modelling and Applications
The analysis of mixed data has been raising challenges in statistics and machine learning. One of two most prominent challenges is to develop new statistical techniques and methodologies to effectively handle mixed data by making the data less heterogeneous with minimum loss of information. The other challenge is that such methods must be able to apply in large-scale tasks when dealing with huge amount of mixed data. To tackle these challenges, we introduce parameter sharing and balancing extensions to our recent model, the mixed-variate restricted Boltzmann machine (MV.RBM) which can transform heterogeneous data into homogeneous representation. We also integrate structured sparsity and distance metric learning into RBM-based models. Our proposed methods are applied in various applications including latent patient profile modelling in medical data analysis and representation learning for image retrieval. The experimental results demonstrate the models perform better than baseline methods in medical data and outperform state-of-the-art rivals in image dataset.
Nonnegative Restricted Boltzmann Machines for Parts-based Representations Discovery and Predictive Model Stabilization
The success of any machine learning system depends critically on effective representations of data. In many cases, it is desirable that a representation scheme uncovers the parts-based, additive nature of the data. Of current representation learning schemes, restricted Boltzmann machines (RBMs) have proved to be highly effective in unsupervised settings. However, when it comes to parts-based discovery, RBMs do not usually produce satisfactory results. We enhance such capacity of RBMs by introducing nonnegativity into the model weights, resulting in a variant called nonnegative restricted Boltzmann machine (NRBM). The NRBM produces not only controllable decomposition of data into interpretable parts but also offers a way to estimate the intrinsic nonlinear dimensionality of data, and helps to stabilize linear predictive models. We demonstrate the capacity of our model on applications such as handwritten digit recognition, face recognition, document classification and patient readmission prognosis. The decomposition quality on images is comparable with or better than what produced by the nonnegative matrix factorization (NMF), and the thematic features uncovered from text are qualitatively interpretable in a similar manner to that of the latent Dirichlet allocation (LDA). The stability performance of feature selection on medical data is better than RBM and competitive with NMF. The learned features, when used for classification, are more discriminative than those discovered by both NMF and LDA and comparable with those by RBM.
Accelerating recurrent neural network training using sequence bucketing and multi-GPU data parallelization
An efficient algorithm for recurrent neural network training is presented. The approach increases the training speed for tasks where a length of the input sequence may vary significantly. The proposed approach is based on the optimal batch bucketing by input sequence length and data parallelization on multiple graphical processing units. The baseline training performance without sequence bucketing is compared with the proposed solution for a different number of buckets. An example is given for the online handwriting recognition task using an LSTM recurrent neural network. The evaluation is performed in terms of the wall clock time, number of epochs, and validation loss value.
Learning to Transfer
Transfer learning borrows knowledge from a source domain to facilitate learning in a target domain. Two primary issues to be addressed in transfer learning are what and how to transfer. For a pair of domains, adopting different transfer learning algorithms results in different knowledge transferred between them. To discover the optimal transfer learning algorithm that maximally improves the learning performance in the target domain, researchers have to exhaustively explore all existing transfer learning algorithms, which is computationally intractable. As a trade-off, a sub-optimal algorithm is selected, which requires considerable expertise in an ad-hoc way. Meanwhile, it is widely accepted in educational psychology that human beings improve transfer learning skills of deciding what to transfer through meta-cognitive reflection on inductive transfer learning practices. Motivated by this, we propose a novel transfer learning framework known as Learning to Transfer (L2T) to automatically determine what and how to transfer are the best by leveraging previous transfer learning experiences. We establish the L2T framework in two stages: 1) we first learn a reflection function encrypting transfer learning skills from experiences; and 2) we infer what and how to transfer for a newly arrived pair of domains by optimizing the reflection function. Extensive experiments demonstrate the L2T's superiority over several state-of-the-art transfer learning algorithms and its effectiveness on discovering more transferable knowledge.
Multi-objective Contextual Multi-armed Bandit with a Dominant Objective
In this paper, we propose a new multi-objective contextual multi-armed bandit (MAB) problem with two objectives, where one of the objectives dominates the other objective. Unlike single-objective MAB problems in which the learner obtains a random scalar reward for each arm it selects, in the proposed problem, the learner obtains a random reward vector, where each component of the reward vector corresponds to one of the objectives and the distribution of the reward depends on the context that is provided to the learner at the beginning of each round. We call this problem contextual multi-armed bandit with a dominant objective (CMAB-DO). In CMAB-DO, the goal of the learner is to maximize its total reward in the non-dominant objective while ensuring that it maximizes its total reward in the dominant objective. In this case, the optimal arm given a context is the one that maximizes the expected reward in the non-dominant objective among all arms that maximize the expected reward in the dominant objective. First, we show that the optimal arm lies in the Pareto front. Then, we propose the multi-objective contextual multi-armed bandit algorithm (MOC-MAB), and define two performance measures: the 2-dimensional (2D) regret and the Pareto regret. We show that both the 2D regret and the Pareto regret of MOC-MAB are sublinear in the number of rounds. We also compare the performance of the proposed algorithm with other state-of-the-art methods in synthetic and real-world datasets. The proposed model and the algorithm have a wide range of real-world applications that involve multiple and possibly conflicting objectives ranging from wireless communication to medical diagnosis and recommender systems.
Data-Driven Tree Transforms and Metrics
We consider the analysis of high dimensional data given in the form of a matrix with columns consisting of observations and rows consisting of features. Often the data is such that the observations do not reside on a regular grid, and the given order of the features is arbitrary and does not convey a notion of locality. Therefore, traditional transforms and metrics cannot be used for data organization and analysis. In this paper, our goal is to organize the data by defining an appropriate representation and metric such that they respect the smoothness and structure underlying the data. We also aim to generalize the joint clustering of observations and features in the case the data does not fall into clear disjoint groups. For this purpose, we propose multiscale data-driven transforms and metrics based on trees. Their construction is implemented in an iterative refinement procedure that exploits the co-dependencies between features and observations. Beyond the organization of a single dataset, our approach enables us to transfer the organization learned from one dataset to another and to integrate several datasets together. We present an application to breast cancer gene expression analysis: learning metrics on the genes to cluster the tumor samples into cancer sub-types and validating the joint organization of both the genes and the samples. We demonstrate that using our approach to combine information from multiple gene expression cohorts, acquired by different profiling technologies, improves the clustering of tumor samples.
Semi-supervised Conditional GANs
We introduce a new model for building conditional generative models in a semi-supervised setting to conditionally generate data given attributes by adapting the GAN framework. The proposed semi-supervised GAN (SS-GAN) model uses a pair of stacked discriminators to learn the marginal distribution of the data, and the conditional distribution of the attributes given the data respectively. In the semi-supervised setting, the marginal distribution (which is often harder to learn) is learned from the labeled + unlabeled data, and the conditional distribution is learned purely from the labeled data. Our experimental results demonstrate that this model performs significantly better compared to existing semi-supervised conditional GAN models.
Analysing Soccer Games with Clustering and Conceptors
We present a new approach for identifying situations and behaviours, which we call "moves", from soccer games in the 2D simulation league. Being able to identify key situations and behaviours are useful capabilities for analysing soccer matches, anticipating opponent behaviours to aid selection of appropriate tactics, and also as a prerequisite for automatic learning of behaviours and policies. To support a wide set of strategies, our goal is to identify situations from data, in an unsupervised way without making use of pre-defined soccer specific concepts such as "pass" or "dribble". The recurrent neural networks we use in our approach act as a high-dimensional projection of the recent history of a situation on the field. Similar situations, i.e., with similar histories, are found by clustering of network states. The same networks are also used to learn so-called conceptors, that are lower-dimensional manifolds that describe trajectories through a high-dimensional state space that enable situation-specific predictions from the same neural network. With the proposed approach, we can segment games into sequences of situations that are learnt in an unsupervised way, and learn conceptors that are useful for the prediction of the near future of the respective situation.
A Data and Model-Parallel, Distributed and Scalable Framework for Training of Deep Networks in Apache Spark
Training deep networks is expensive and time-consuming with the training period increasing with data size and growth in model parameters. In this paper, we provide a framework for distributed training of deep networks over a cluster of CPUs in Apache Spark. The framework implements both Data Parallelism and Model Parallelism making it suitable to use for deep networks which require huge training data and model parameters which are too big to fit into the memory of a single machine. It can be scaled easily over a cluster of cheap commodity hardware to attain significant speedup and obtain better results making it quite economical as compared to farm of GPUs and supercomputers. We have proposed a new algorithm for training of deep networks for the case when the network is partitioned across the machines (Model Parallelism) along with detailed cost analysis and proof of convergence of the same. We have developed implementations for Fully-Connected Feedforward Networks, Convolutional Neural Networks, Recurrent Neural Networks and Long Short-Term Memory architectures. We present the results of extensive simulations demonstrating the speedup and accuracy obtained by our framework for different sizes of the data and model parameters with variation in the number of worker cores/partitions; thereby showing that our proposed framework can achieve significant speedup (upto 11X for CNN) and is also quite scalable.
A Brief Survey of Deep Reinforcement Learning
Deep reinforcement learning is poised to revolutionise the field of AI and represents a step towards building autonomous systems with a higher level understanding of the visual world. Currently, deep learning is enabling reinforcement learning to scale to problems that were previously intractable, such as learning to play video games directly from pixels. Deep reinforcement learning algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of reinforcement learning, then progress to the main streams of value-based and policy-based methods. Our survey will cover central algorithms in deep reinforcement learning, including the deep $Q$-network, trust region policy optimisation, and asynchronous advantage actor-critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via reinforcement learning. To conclude, we describe several current areas of research within the field.
Electricity Theft Detection using Machine Learning
Non-technical losses (NTL) in electric power grids arise through electricity theft, broken electric meters or billing errors. They can harm the power supplier as well as the whole economy of a country through losses of up to 40% of the total power distribution. For NTL detection, researchers use artificial intelligence to analyse data. This work is about improving the extraction of more meaningful features from a data set. With these features, the prediction quality will increase.
Accelerating Kernel Classifiers Through Borders Mapping
Support vector machines (SVM) and other kernel techniques represent a family of powerful statistical classification methods with high accuracy and broad applicability. Because they use all or a significant portion of the training data, however, they can be slow, especially for large problems. Piecewise linear classifiers are similarly versatile, yet have the additional advantages of simplicity, ease of interpretation and, if the number of component linear classifiers is not too large, speed. Here we show how a simple, piecewise linear classifier can be trained from a kernel-based classifier in order to improve the classification speed. The method works by finding the root of the difference in conditional probabilities between pairs of opposite classes to build up a representation of the decision boundary. When tested on 17 different datasets, it succeeded in improving the classification speed of a SVM for 12 of them by up to two orders-of-magnitude. Of these, two were less accurate than a simple, linear classifier. The method is best suited to problems with continuum features data and smooth probability functions. Because the component linear classifiers are built up individually from an existing classifier, rather than through a simultaneous optimization procedure, the classifier is also fast to train.
A Deep Q-Network for the Beer Game: A Deep Reinforcement Learning algorithm to Solve Inventory Optimization Problems
The beer game is a widely used in-class game that is played in supply chain management classes to demonstrate the bullwhip effect. The game is a decentralized, multi-agent, cooperative problem that can be modeled as a serial supply chain network in which agents cooperatively attempt to minimize the total cost of the network even though each agent can only observe its own local information. Each agent chooses order quantities to replenish its stock. Under some conditions, a base-stock replenishment policy is known to be optimal. However, in a decentralized supply chain in which some agents (stages) may act irrationally (as they do in the beer game), there is no known optimal policy for an agent wishing to act optimally. We propose a machine learning algorithm, based on deep Q-networks, to optimize the replenishment decisions at a given stage. When playing alongside agents who follow a base-stock policy, our algorithm obtains near-optimal order quantities. It performs much better than a base-stock policy when the other agents use a more realistic model of human ordering behavior. Unlike most other algorithms in the literature, our algorithm does not have any limits on the beer game parameter values. Like any deep learning algorithm, training the algorithm can be computationally intensive, but this can be performed ahead of time; the algorithm executes in real time when the game is played. Moreover, we propose a transfer learning approach so that the training performed for one agent and one set of cost coefficients can be adapted quickly for other agents and costs. Our algorithm can be extended to other decentralized multi-agent cooperative games with partially observed information, which is a common type of situation in real-world supply chain problems.
Explaining Anomalies in Groups with Characterizing Subspace Rules
Anomaly detection has numerous applications and has been studied vastly. We consider a complementary problem that has a much sparser literature: anomaly description. Interpretation of anomalies is crucial for practitioners for sense-making, troubleshooting, and planning actions. To this end, we present a new approach called x-PACS (for eXplaining Patterns of Anomalies with Characterizing Subspaces), which "reverse-engineers" the known anomalies by identifying (1) the groups (or patterns) that they form, and (2) the characterizing subspace and feature rules that separate each anomalous pattern from normal instances. Explaining anomalies in groups not only saves analyst time and gives insight into various types of anomalies, but also draws attention to potentially critical, repeating anomalies. In developing x-PACS, we first construct a desiderata for the anomaly description problem. From a descriptive data mining perspective, our method exhibits five desired properties in our desiderata. Namely, it can unearth anomalous patterns (i) of multiple different types, (ii) hidden in arbitrary subspaces of a high dimensional space, (iii) interpretable by the analysts, (iv) different from normal patterns of the data, and finally (v) succinct, providing the shortest data description. Furthermore, x-PACS is highly parallelizable and scales linearly in terms of data size. No existing work on anomaly description satisfies all of these properties simultaneously. While not our primary goal, the anomalous patterns we find serve as interpretable "signatures" and can be used for detection. We show the effectiveness of x-PACS in explanation as well as detection on real-world datasets as compared to state-of-the-art.
Neural Networks Compression for Language Modeling
In this paper, we consider several compression techniques for the language modeling problem based on recurrent neural networks (RNNs). It is known that conventional RNNs, e.g, LSTM-based networks in language modeling, are characterized with either high space complexity or substantial inference time. This problem is especially crucial for mobile applications, in which the constant interaction with the remote server is inappropriate. By using the Penn Treebank (PTB) dataset we compare pruning, quantization, low-rank factorization, tensor train decomposition for LSTM networks in terms of model size and suitability for fast inference.
Stochastic Primal-Dual Proximal ExtraGradient Descent for Compositely Regularized Optimization
We consider a wide range of regularized stochastic minimization problems with two regularization terms, one of which is composed with a linear function. This optimization model abstracts a number of important applications in artificial intelligence and machine learning, such as fused Lasso, fused logistic regression, and a class of graph-guided regularized minimization. The computational challenges of this model are in two folds. On one hand, the closed-form solution of the proximal mapping associated with the composed regularization term or the expected objective function is not available. On the other hand, the calculation of the full gradient of the expectation in the objective is very expensive when the number of input data samples is considerably large. To address these issues, we propose a stochastic variant of extra-gradient type methods, namely \textsf{Stochastic Primal-Dual Proximal ExtraGradient descent (SPDPEG)}, and analyze its convergence property for both convex and strongly convex objectives. For general convex objectives, the uniformly average iterates generated by \textsf{SPDPEG} converge in expectation with $O(1/\sqrt{t})$ rate. While for strongly convex objectives, the uniformly and non-uniformly average iterates generated by \textsf{SPDPEG} converge with $O(\log(t)/t)$ and $O(1/t)$ rates, respectively. The order of the rate of the proposed algorithm is known to match the best convergence rate for first-order stochastic algorithms. Experiments on fused logistic regression and graph-guided regularized logistic regression problems show that the proposed algorithm performs very efficiently and consistently outperforms other competing algorithms.
Perceptual audio loss function for deep learning
PESQ and POLQA , are standards are standards for automated assessment of voice quality of speech as experienced by human beings. The predictions of those objective measures should come as close as possible to subjective quality scores as obtained in subjective listening tests. Wavenet is a deep neural network originally developed as a deep generative model of raw audio wave-forms. Wavenet architecture is based on dilated causal convolutions, which exhibit very large receptive fields. In this short paper we suggest using the Wavenet architecture, in particular its large receptive filed in order to learn PESQ algorithm. By doing so we can use it as a differentiable loss function for speech enhancement.
A Capacity Scaling Law for Artificial Neural Networks
We derive the calculation of two critical numbers predicting the behavior of perceptron networks. First, we derive the calculation of what we call the lossless memory (LM) dimension. The LM dimension is a generalization of the Vapnik--Chervonenkis (VC) dimension that avoids structured data and therefore provides an upper bound for perfectly fitting almost any training data. Second, we derive what we call the MacKay (MK) dimension. This limit indicates a 50% chance of not being able to train a given function. Our derivations are performed by embedding a neural network into Shannon's communication model which allows to interpret the two points as capacities measured in bits. We present a proof and practical experiments that validate our upper bounds with repeatable experiments using different network configurations, diverse implementations, varying activation functions, and several learning algorithms. The bottom line is that the two capacity points scale strictly linear with the number of weights. Among other practical applications, our result allows to compare and benchmark different neural network implementations independent of a concrete learning task. Our results provide insight into the capabilities and limits of neural networks and generate valuable know how for experimental design decisions.
Improving Deep Learning using Generic Data Augmentation
Deep artificial neural networks require a large corpus of training data in order to effectively learn, where collection of such training data is often expensive and laborious. Data augmentation overcomes this issue by artificially inflating the training set with label preserving transformations. Recently there has been extensive use of generic data augmentation to improve Convolutional Neural Network (CNN) task performance. This study benchmarks various popular data augmentation schemes to allow researchers to make informed decisions as to which training methods are most appropriate for their data sets. Various geometric and photometric schemes are evaluated on a coarse-grained data set using a relatively simple CNN. Experimental results, run using 4-fold cross-validation and reported in terms of Top-1 and Top-5 accuracy, indicate that cropping in geometric augmentation significantly increases CNN task performance.
Meta-Learning MCMC Proposals
Effective implementations of sampling-based probabilistic inference often require manually constructed, model-specific proposals. Inspired by recent progresses in meta-learning for training learning agents that can generalize to unseen environments, we propose a meta-learning approach to building effective and generalizable MCMC proposals. We parametrize the proposal as a neural network to provide fast approximations to block Gibbs conditionals. The learned neural proposals generalize to occurrences of common structural motifs across different models, allowing for the construction of a library of learned inference primitives that can accelerate inference on unseen models with no model-specific training required. We explore several applications including open-universe Gaussian mixture models, in which our learned proposals outperform a hand-tuned sampler, and a real-world named entity recognition task, in which our sampler yields higher final F1 scores than classical single-site Gibbs sampling.
nuts-flow/ml: data pre-processing for deep learning
Data preprocessing is a fundamental part of any machine learning application and frequently the most time-consuming aspect when developing a machine learning solution. Preprocessing for deep learning is characterized by pipelines that lazily load data and perform data transformation, augmentation, batching and logging. Many of these functions are common across applications but require different arrangements for training, testing or inference. Here we introduce a novel software framework named nuts-flow/ml that encapsulates common preprocessing operations as components, which can be flexibly arranged to rapidly construct efficient preprocessing pipelines for deep learning.
Evasion Attacks against Machine Learning at Test Time
In security-sensitive applications, the success of machine learning depends on a thorough vetting of their resistance to adversarial data. In one pertinent, well-motivated attack scenario, an adversary may attempt to evade a deployed system at test time by carefully manipulating attack samples. In this work, we present a simple but effective gradient-based approach that can be exploited to systematically assess the security of several, widely-used classification algorithms against evasion attacks. Following a recently proposed framework for security evaluation, we simulate attack scenarios that exhibit different risk levels for the classifier by increasing the attacker's knowledge of the system and her ability to manipulate attack samples. This gives the classifier designer a better picture of the classifier performance under evasion attacks, and allows him to perform a more informed model selection (or parameter setting). We evaluate our approach on the relevant security task of malware detection in PDF files, and show that such systems can be easily evaded. We also sketch some countermeasures suggested by our analysis.
General Backpropagation Algorithm for Training Second-order Neural Networks
The artificial neural network is a popular framework in machine learning. To empower individual neurons, we recently suggested that the current type of neurons could be upgraded to 2nd order counterparts, in which the linear operation between inputs to a neuron and the associated weights is replaced with a nonlinear quadratic operation. A single 2nd order neurons already has a strong nonlinear modeling ability, such as implementing basic fuzzy logic operations. In this paper, we develop a general backpropagation (BP) algorithm to train the network consisting of 2nd-order neurons. The numerical studies are performed to verify of the generalized BP algorithm.