title
stringlengths
7
246
abstract
stringlengths
6
3.31k
End-to-end Lung Nodule Detection in Computed Tomography
Computer aided diagnostic (CAD) system is crucial for modern med-ical imaging. But almost all CAD systems operate on reconstructed images, which were optimized for radiologists. Computer vision can capture features that is subtle to human observers, so it is desirable to design a CAD system op-erating on the raw data. In this paper, we proposed a deep-neural-network-based detection system for lung nodule detection in computed tomography (CT). A primal-dual-type deep reconstruction network was applied first to convert the raw data to the image space, followed by a 3-dimensional convolutional neural network (3D-CNN) for the nodule detection. For efficient network training, the deep reconstruction network and the CNN detector was trained sequentially first, then followed by one epoch of end-to-end fine tuning. The method was evaluated on the Lung Image Database Consortium image collection (LIDC-IDRI) with simulated forward projections. With 144 multi-slice fanbeam pro-jections, the proposed end-to-end detector could achieve comparable sensitivity with the reference detector, which was trained and applied on the fully-sampled image data. It also demonstrated superior detection performance compared to detectors trained on the reconstructed images. The proposed method is general and could be expanded to most detection tasks in medical imaging.
Computer activity learning from system call time series
Using a previously introduced similarity function for the stream of system calls generated by a computer, we engineer a program-in-execution classifier using deep learning methods. Tested on malware classification, it significantly outperforms current state of the art. We provide a series of performance measures and tests to demonstrate the capabilities, including measurements from production use. We show how the system scales linearly with the number of endpoints. With the system we estimate the total number of malware families created over the last 10 years as 3450, in line with reasonable economic constraints. The more limited rate for new malware families than previously acknowledged implies that machine learning malware classifiers risk being tested on their training set; we achieve F1 = 0.995 in a test carefully designed to mitigate this risk.
Bounding and Counting Linear Regions of Deep Neural Networks
We investigate the complexity of deep neural networks (DNN) that represent piecewise linear (PWL) functions. In particular, we study the number of linear regions, i.e. pieces, that a PWL function represented by a DNN can attain, both theoretically and empirically. We present (i) tighter upper and lower bounds for the maximum number of linear regions on rectifier networks, which are exact for inputs of dimension one; (ii) a first upper bound for multi-layer maxout networks; and (iii) a first method to perform exact enumeration or counting of the number of regions by modeling the DNN with a mixed-integer linear formulation. These bounds come from leveraging the dimension of the space defining each linear region. The results also indicate that a deep rectifier network can only have more linear regions than every shallow counterpart with same number of neurons if that number exceeds the dimension of the input.
Sequential Multi-Class Labeling in Crowdsourcing
We consider a crowdsourcing platform where workers' responses to questions posed by a crowdsourcer are used to determine the hidden state of a multi-class labeling problem. As workers may be unreliable, we propose to perform sequential questioning in which the questions posed to the workers are designed based on previous questions and answers. We propose a Partially-Observable Markov Decision Process (POMDP) framework to determine the best questioning strategy, subject to the crowdsourcer's budget constraint. As this POMDP formulation is in general intractable, we develop a suboptimal approach based on a $q$-ary Ulam-R\'enyi game. We also propose a sampling heuristic, which can be used in tandem with standard POMDP solvers, using our Ulam-R\'enyi strategy. We demonstrate through simulations that our approaches outperform a non-sequential strategy based on error correction coding and which does not utilize workers' previous responses.
Characterizing Sparse Connectivity Patterns in Neural Networks
We propose a novel way of reducing the number of parameters in the storage-hungry fully connected layers of a neural network by using pre-defined sparsity, where the majority of connections are absent prior to starting training. Our results indicate that convolutional neural networks can operate without any loss of accuracy at less than half percent classification layer connection density, or less than 5 percent overall network connection density. We also investigate the effects of pre-defining the sparsity of networks with only fully connected layers. Based on our sparsifying technique, we introduce the `scatter' metric to characterize the quality of a particular connection pattern. As proof of concept, we show results on CIFAR, MNIST and a new dataset on classifying Morse code symbols, which highlights some interesting trends and limits of sparse connection patterns.
Adaptive Bayesian Sampling with Monte Carlo EM
We present a novel technique for learning the mass matrices in samplers obtained from discretized dynamics that preserve some energy function. Existing adaptive samplers use Riemannian preconditioning techniques, where the mass matrices are functions of the parameters being sampled. This leads to significant complexities in the energy reformulations and resultant dynamics, often leading to implicit systems of equations and requiring inversion of high-dimensional matrices in the leapfrog steps. Our approach provides a simpler alternative, by using existing dynamics in the sampling step of a Monte Carlo EM framework, and learning the mass matrices in the M step with a novel online technique. We also propose a way to adaptively set the number of samples gathered in the E step, using sampling error estimates from the leapfrog dynamics. Along with a novel stochastic sampler based on Nos\'{e}-Poincar\'{e} dynamics, we use this framework with standard Hamiltonian Monte Carlo (HMC) as well as newer stochastic algorithms such as SGHMC and SGNHT, and show strong performance on synthetic and real high-dimensional sampling scenarios; we achieve sampling accuracies comparable to Riemannian samplers while being significantly faster.
Synthetic and Natural Noise Both Break Neural Machine Translation
Character-based neural machine translation (NMT) models alleviate out-of-vocabulary issues, learn morphology, and move us closer to completely end-to-end translation systems. Unfortunately, they are also very brittle and easily falter when presented with noisy data. In this paper, we confront NMT models with synthetic and natural sources of noise. We find that state-of-the-art models fail to translate even moderately noisy texts that humans have no trouble comprehending. We explore two approaches to increase model robustness: structure-invariant word representations and robust training on noisy texts. We find that a model based on a character convolutional neural network is able to simultaneously learn representations robust to multiple kinds of noise.
Optimality of Approximate Inference Algorithms on Stable Instances
Approximate algorithms for structured prediction problems---such as LP relaxations and the popular alpha-expansion algorithm (Boykov et al. 2001)---typically far exceed their theoretical performance guarantees on real-world instances. These algorithms often find solutions that are very close to optimal. The goal of this paper is to partially explain the performance of alpha-expansion and an LP relaxation algorithm on MAP inference in Ferromagnetic Potts models (FPMs). Our main results give stability conditions under which these two algorithms provably recover the optimal MAP solution. These theoretical results complement numerous empirical observations of good performance.
Regret Bounds and Regimes of Optimality for User-User and Item-Item Collaborative Filtering
We consider an online model for recommendation systems, with each user being recommended an item at each time-step and providing 'like' or 'dislike' feedback. Each user may be recommended a given item at most once. A latent variable model specifies the user preferences: both users and items are clustered into types. All users of a given type have identical preferences for the items, and similarly, items of a given type are either all liked or all disliked by a given user. We assume that the matrix encoding the preferences of each user type for each item type is randomly generated; in this way, the model captures structure in both the item and user spaces, the amount of structure depending on the number of each of the types. The measure of performance of the recommendation system is the expected number of disliked recommendations per user, defined as expected regret. We propose two algorithms inspired by user-user and item-item collaborative filtering (CF), modified to explicitly make exploratory recommendations, and prove performance guarantees in terms of their expected regret. For two regimes of model parameters, with structure only in item space or only in user space, we prove information-theoretic lower bounds on regret that match our upper bounds up to logarithmic factors. Our analysis elucidates system operating regimes in which existing CF algorithms are nearly optimal.
Social welfare and profit maximization from revealed preferences
Consider the seller's problem of finding optimal prices for her $n$ (divisible) goods when faced with a set of $m$ consumers, given that she can only observe their purchased bundles at posted prices, i.e., revealed preferences. We study both social welfare and profit maximization with revealed preferences. Although social welfare maximization is a seemingly non-convex optimization problem in prices, we show that (i) it can be reduced to a dual convex optimization problem in prices, and (ii) the revealed preferences can be interpreted as supergradients of the concave conjugate of valuation, with which subgradients of the dual function can be computed. We thereby obtain a simple subgradient-based algorithm for strongly concave valuations and convex cost, with query complexity $O(m^2/\epsilon^2)$, where $\epsilon$ is the additive difference between the social welfare induced by our algorithm and the optimum social welfare. We also study social welfare maximization under the online setting, specifically the random permutation model, where consumers arrive one-by-one in a random order. For the case where consumer valuations can be arbitrary continuous functions, we propose a price posting mechanism that achieves an expected social welfare up to an additive factor of $O(\sqrt{mn})$ from the maximum social welfare. Finally, for profit maximization (which may be non-convex in simple cases), we give nearly matching upper and lower bounds on the query complexity for separable valuations and cost (i.e., each good can be treated independently).
Flexpoint: An Adaptive Numerical Format for Efficient Training of Deep Neural Networks
Deep neural networks are commonly developed and trained in 32-bit floating point format. Significant gains in performance and energy efficiency could be realized by training and inference in numerical formats optimized for deep learning. Despite advances in limited precision inference in recent years, training of neural networks in low bit-width remains a challenging problem. Here we present the Flexpoint data format, aiming at a complete replacement of 32-bit floating point format training and inference, designed to support modern deep network topologies without modifications. Flexpoint tensors have a shared exponent that is dynamically adjusted to minimize overflows and maximize available dynamic range. We validate Flexpoint by training AlexNet, a deep residual network and a generative adversarial network, using a simulator implemented with the neon deep learning framework. We demonstrate that 16-bit Flexpoint closely matches 32-bit floating point in training all three models, without any need for tuning of model hyperparameters. Our results suggest Flexpoint as a promising numerical format for future hardware for training and inference.
Convolutional Normalizing Flows
Bayesian posterior inference is prevalent in various machine learning problems. Variational inference provides one way to approximate the posterior distribution, however its expressive power is limited and so is the accuracy of resulting approximation. Recently, there has a trend of using neural networks to approximate the variational posterior distribution due to the flexibility of neural network architecture. One way to construct flexible variational distribution is to warp a simple density into a complex by normalizing flows, where the resulting density can be analytically evaluated. However, there is a trade-off between the flexibility of normalizing flow and computation cost for efficient transformation. In this paper, we propose a simple yet effective architecture of normalizing flows, ConvFlow, based on convolution over the dimensions of random input vector. Experiments on synthetic and real world posterior inference problems demonstrate the effectiveness and efficiency of the proposed method.
High-order Tensor Completion for Data Recovery via Sparse Tensor-train Optimization
In this paper, we aim at the problem of tensor data completion. Tensor-train decomposition is adopted because of its powerful representation ability and linear scalability to tensor order. We propose an algorithm named Sparse Tensor-train Optimization (STTO) which considers incomplete data as sparse tensor and uses first-order optimization method to find the factors of tensor-train decomposition. Our algorithm is shown to perform well in simulation experiments at both low-order cases and high-order cases. We also employ a tensorization method to transform data to a higher-order form to enhance the performance of our algorithm. The results of image recovery experiments in various cases manifest that our method outperforms other completion algorithms. Especially when the missing rate is very high, e.g., 90\% to 99\%, our method is significantly better than the state-of-the-art methods.
Non-Autoregressive Neural Machine Translation
Existing approaches to neural machine translation condition each output word on previously generated outputs. We introduce a model that avoids this autoregressive property and produces its outputs in parallel, allowing an order of magnitude lower latency during inference. Through knowledge distillation, the use of input token fertilities as a latent variable, and policy gradient fine-tuning, we achieve this at a cost of as little as 2.0 BLEU points relative to the autoregressive Transformer network used as a teacher. We demonstrate substantial cumulative improvements associated with each of the three aspects of our training strategy, and validate our approach on IWSLT 2016 English-German and two WMT language pairs. By sampling fertilities in parallel at inference time, our non-autoregressive model achieves near-state-of-the-art performance of 29.8 BLEU on WMT 2016 English-Romanian.
Variational Walkback: Learning a Transition Operator as a Stochastic Recurrent Net
We propose a novel method to directly learn a stochastic transition operator whose repeated application provides generated samples. Traditional undirected graphical models approach this problem indirectly by learning a Markov chain model whose stationary distribution obeys detailed balance with respect to a parameterized energy function. The energy function is then modified so the model and data distributions match, with no guarantee on the number of steps required for the Markov chain to converge. Moreover, the detailed balance condition is highly restrictive: energy based models corresponding to neural networks must have symmetric weights, unlike biological neural circuits. In contrast, we develop a method for directly learning arbitrarily parameterized transition operators capable of expressing non-equilibrium stationary distributions that violate detailed balance, thereby enabling us to learn more biologically plausible asymmetric neural networks and more general non-energy based dynamical systems. The proposed training objective, which we derive via principled variational methods, encourages the transition operator to "walk back" in multi-step trajectories that start at data-points, as quickly as possible back to the original data points. We present a series of experimental results illustrating the soundness of the proposed approach, Variational Walkback (VW), on the MNIST, CIFAR-10, SVHN and CelebA datasets, demonstrating superior samples compared to earlier attempts to learn a transition operator. We also show that although each rapid training trajectory is limited to a finite but variable number of steps, our transition operator continues to generate good samples well past the length of such trajectories, thereby demonstrating the match of its non-equilibrium stationary distribution to the data distribution. Source Code: http://github.com/anirudh9119/walkback_nips17
Quality-Efficiency Trade-offs in Machine Learning for Text Processing
Data mining, machine learning, and natural language processing are powerful techniques that can be used together to extract information from large texts. Depending on the task or problem at hand, there are many different approaches that can be used. The methods available are continuously being optimized, but not all these methods have been tested and compared in a set of problems that can be solved using supervised machine learning algorithms. The question is what happens to the quality of the methods if we increase the training data size from, say, 100 MB to over 1 GB? Moreover, are quality gains worth it when the rate of data processing diminishes? Can we trade quality for time efficiency and recover the quality loss by just being able to process more data? We attempt to answer these questions in a general way for text processing tasks, considering the trade-offs involving training data size, learning time, and quality obtained. We propose a performance trade-off framework and apply it to three important text processing problems: Named Entity Recognition, Sentiment Analysis and Document Classification. These problems were also chosen because they have different levels of object granularity: words, paragraphs, and documents. For each problem, we selected several supervised machine learning algorithms and we evaluated the trade-offs of them on large publicly available data sets (news, reviews, patents). To explore these trade-offs, we use different data subsets of increasing size ranging from 50 MB to several GB. We also consider the impact of the data set and the evaluation technique. We find that the results do not change significantly and that most of the time the best algorithms is the fastest. However, we also show that the results for small data (say less than 100 MB) are different from the results for big data and in those cases the best algorithm is much harder to determine.
Sketching Linear Classifiers over Data Streams
We introduce a new sub-linear space sketch---the Weight-Median Sketch---for learning compressed linear classifiers over data streams while supporting the efficient recovery of large-magnitude weights in the model. This enables memory-limited execution of several statistical analyses over streams, including online feature selection, streaming data explanation, relative deltoid detection, and streaming estimation of pointwise mutual information. Unlike related sketches that capture the most frequently-occurring features (or items) in a data stream, the Weight-Median Sketch captures the features that are most discriminative of one stream (or class) compared to another. The Weight-Median Sketch adopts the core data structure used in the Count-Sketch, but, instead of sketching counts, it captures sketched gradient updates to the model parameters. We provide a theoretical analysis that establishes recovery guarantees for batch and online learning, and demonstrate empirical improvements in memory-accuracy trade-offs over alternative memory-budgeted methods, including count-based sketches and feature hashing.
Learning Overcomplete HMMs
We study the problem of learning overcomplete HMMs---those that have many hidden states but a small output alphabet. Despite having significant practical importance, such HMMs are poorly understood with no known positive or negative results for efficient learning. In this paper, we present several new results---both positive and negative---which help define the boundaries between the tractable and intractable settings. Specifically, we show positive results for a large subclass of HMMs whose transition matrices are sparse, well-conditioned, and have small probability mass on short cycles. On the other hand, we show that learning is impossible given only a polynomial number of samples for HMMs with a small output alphabet and whose transition matrices are random regular graphs with large degree. We also discuss these results in the context of learning HMMs which can capture long-term dependencies.
DeepRain: ConvLSTM Network for Precipitation Prediction using Multichannel Radar Data
Accurate rainfall forecasting is critical because it has a great impact on people's social and economic activities. Recent trends on various literatures show that Deep Learning (Neural Network) is a promising methodology to tackle many challenging tasks. In this study, we introduce a brand-new data-driven precipitation prediction model called DeepRain. This model predicts the amount of rainfall from weather radar data, which is three-dimensional and four-channel data, using convolutional LSTM (ConvLSTM). ConvLSTM is a variant of LSTM (Long Short-Term Memory) containing a convolution operation inside the LSTM cell. For the experiment, we used radar reflectivity data for a two-year period whose input is in a time series format in units of 6 min divided into 15 records. The output is the predicted rainfall information for the input data. Experimental results show that two-stacked ConvLSTM reduced RMSE by 23.0% compared to linear regression.
Multi-Player Bandits Revisited
Multi-player Multi-Armed Bandits (MAB) have been extensively studied in the literature, motivated by applications to Cognitive Radio systems. Driven by such applications as well, we motivate the introduction of several levels of feedback for multi-player MAB algorithms. Most existing work assume that sensing information is available to the algorithm. Under this assumption, we improve the state-of-the-art lower bound for the regret of any decentralized algorithms and introduce two algorithms, RandTopM and MCTopM, that are shown to empirically outperform existing algorithms. Moreover, we provide strong theoretical guarantees for these algorithms, including a notion of asymptotic optimality in terms of the number of selections of bad arms. We then introduce a promising heuristic, called Selfish, that can operate without sensing information, which is crucial for emerging applications to Internet of Things networks. We investigate the empirical performance of this algorithm and provide some first theoretical elements for the understanding of its behavior.
Sparse Attentive Backtracking: Long-Range Credit Assignment in Recurrent Networks
A major drawback of backpropagation through time (BPTT) is the difficulty of learning long-term dependencies, coming from having to propagate credit information backwards through every single step of the forward computation. This makes BPTT both computationally impractical and biologically implausible. For this reason, full backpropagation through time is rarely used on long sequences, and truncated backpropagation through time is used as a heuristic. However, this usually leads to biased estimates of the gradient in which longer term dependencies are ignored. Addressing this issue, we propose an alternative algorithm, Sparse Attentive Backtracking, which might also be related to principles used by brains to learn long-term dependencies. Sparse Attentive Backtracking learns an attention mechanism over the hidden states of the past and selectively backpropagates through paths with high attention weights. This allows the model to learn long term dependencies while only backtracking for a small number of time steps, not just from the recent past but also from attended relevant past states.
Interpreting Convolutional Neural Networks Through Compression
Convolutional neural networks (CNNs) achieve state-of-the-art performance in a wide variety of tasks in computer vision. However, interpreting CNNs still remains a challenge. This is mainly due to the large number of parameters in these networks. Here, we investigate the role of compression and particularly pruning filters in the interpretation of CNNs. We exploit our recently-proposed greedy structural compression scheme that prunes filters in a trained CNN. In our compression, the filter importance index is defined as the classification accuracy reduction (CAR) of the network after pruning that filter. The filters are then iteratively pruned based on the CAR index. We demonstrate the interpretability of CAR-compressed CNNs by showing that our algorithm prunes filters with visually redundant pattern selectivity. Specifically, we show the importance of shape-selective filters for object recognition, as opposed to color-selective filters. Out of top 20 CAR-pruned filters in AlexNet, 17 of them in the first layer and 14 of them in the second layer are color-selective filters. Finally, we introduce a variant of our CAR importance index that quantifies the importance of each image class to each CNN filter. We show that the most and the least important class labels present a meaningful interpretation of each filter that is consistent with the visualized pattern selectivity of that filter.
FADO: A Deterministic Detection/Learning Algorithm
This paper proposes and studies a detection technique for adversarial scenarios (dubbed deterministic detection). This technique provides an alternative detection methodology in case the usual stochastic methods are not applicable: this can be because the studied phenomenon does not follow a stochastic sampling scheme, samples are high-dimensional and subsequent multiple-testing corrections render results overly conservative, sample sizes are too low for asymptotic results (as e.g. the central limit theorem) to kick in, or one cannot allow for the small probability of failure inherent to stochastic approaches. This paper instead designs a method based on insights from machine learning and online learning theory: this detection algorithm - named Online FAult Detection (FADO) - comes with theoretical guarantees of its detection capabilities. A version of the margin is found to regulate the detection performance of FADO. A precise expression is derived for bounding the performance, and experimental results are presented assessing the influence of involved quantities. A case study of scene detection is used to illustrate the approach. The technology is closely related to the linear perceptron rule, inherits its computational attractiveness and flexibility towards various extensions.
Distributed Bayesian Piecewise Sparse Linear Models
The importance of interpretability of machine learning models has been increasing due to emerging enterprise predictive analytics, threat of data privacy, accountability of artificial intelligence in society, and so on. Piecewise linear models have been actively studied to achieve both accuracy and interpretability. They often produce competitive accuracy against state-of-the-art non-linear methods. In addition, their representations (i.e., rule-based segmentation plus sparse linear formula) are often preferred by domain experts. A disadvantage of such models, however, is high computational cost for simultaneous determinations of the number of "pieces" and cardinality of each linear predictor, which has restricted their applicability to middle-scale data sets. This paper proposes a distributed factorized asymptotic Bayesian (FAB) inference of learning piece-wise sparse linear models on distributed memory architectures. The distributed FAB inference solves the simultaneous model selection issue without communicating $O(N)$ data where N is the number of training samples and achieves linear scale-out against the number of CPU cores. Experimental results demonstrate that the distributed FAB inference achieves high prediction accuracy and performance scalability with both synthetic and benchmark data.
A Tutorial on Canonical Correlation Methods
Canonical correlation analysis is a family of multivariate statistical methods for the analysis of paired sets of variables. Since its proposition, canonical correlation analysis has for instance been extended to extract relations between two sets of variables when the sample size is insufficient in relation to the data dimensionality, when the relations have been considered to be non-linear, and when the dimensionality is too large for human interpretation. This tutorial explains the theory of canonical correlation analysis including its regularised, kernel, and sparse variants. Additionally, the deep and Bayesian CCA extensions are briefly reviewed. Together with the numerical examples, this overview provides a coherent compendium on the applicability of the variants of canonical correlation analysis. By bringing together techniques for solving the optimisation problems, evaluating the statistical significance and generalisability of the canonical correlation model, and interpreting the relations, we hope that this article can serve as a hands-on tool for applying canonical correlation methods in data analysis.
ZipNet-GAN: Inferring Fine-grained Mobile Traffic Patterns via a Generative Adversarial Neural Network
Large-scale mobile traffic analytics is becoming essential to digital infrastructure provisioning, public transportation, events planning, and other domains. Monitoring city-wide mobile traffic is however a complex and costly process that relies on dedicated probes. Some of these probes have limited precision or coverage, others gather tens of gigabytes of logs daily, which independently offer limited insights. Extracting fine-grained patterns involves expensive spatial aggregation of measurements, storage, and post-processing. In this paper, we propose a mobile traffic super-resolution technique that overcomes these problems by inferring narrowly localised traffic consumption from coarse measurements. We draw inspiration from image processing and design a deep-learning architecture tailored to mobile networking, which combines Zipper Network (ZipNet) and Generative Adversarial neural Network (GAN) models. This enables to uniquely capture spatio-temporal relations between traffic volume snapshots routinely monitored over broad coverage areas (`low-resolution') and the corresponding consumption at 0.05 km $^2$ level (`high-resolution') usually obtained after intensive computation. Experiments we conduct with a real-world data set demonstrate that the proposed ZipNet(-GAN) infers traffic consumption with remarkable accuracy and up to 100$\times$ higher granularity as compared to standard probing, while outperforming existing data interpolation techniques. To our knowledge, this is the first time super-resolution concepts are applied to large-scale mobile traffic analysis and our solution is the first to infer fine-grained urban traffic patterns from coarse aggregates.
Gaussian Lower Bound for the Information Bottleneck Limit
The Information Bottleneck (IB) is a conceptual method for extracting the most compact, yet informative, representation of a set of variables, with respect to the target. It generalizes the notion of minimal sufficient statistics from classical parametric statistics to a broader information-theoretic sense. The IB curve defines the optimal trade-off between representation complexity and its predictive power. Specifically, it is achieved by minimizing the level of mutual information (MI) between the representation and the original variables, subject to a minimal level of MI between the representation and the target. This problem is shown to be in general NP hard. One important exception is the multivariate Gaussian case, for which the Gaussian IB (GIB) is known to obtain an analytical closed form solution, similar to Canonical Correlation Analysis (CCA). In this work we introduce a Gaussian lower bound to the IB curve; we find an embedding of the data which maximizes its "Gaussian part", on which we apply the GIB. This embedding provides an efficient (and practical) representation of any arbitrary data-set (in the IB sense), which in addition holds the favorable properties of a Gaussian distribution. Importantly, we show that the optimal Gaussian embedding is bounded from above by non-linear CCA. This allows a fundamental limit for our ability to Gaussianize arbitrary data-sets and solve complex problems by linear methods.
Grafting for Combinatorial Boolean Model using Frequent Itemset Mining
This paper introduces the combinatorial Boolean model (CBM), which is defined as the class of linear combinations of conjunctions of Boolean attributes. This paper addresses the issue of learning CBM from labeled data. CBM is of high knowledge interpretability but na\"{i}ve learning of it requires exponentially large computation time with respect to data dimension and sample size. To overcome this computational difficulty, we propose an algorithm GRAB (GRAfting for Boolean datasets), which efficiently learns CBM within the $L_1$-regularized loss minimization framework. The key idea of GRAB is to reduce the loss minimization problem to the weighted frequent itemset mining, in which frequent patterns are efficiently computable. We employ benchmark datasets to empirically demonstrate that GRAB is effective in terms of computational efficiency, prediction accuracy and knowledge discovery.
Deep density networks and uncertainty in recommender systems
Building robust online content recommendation systems requires learning complex interactions between user preferences and content features. The field has evolved rapidly in recent years from traditional multi-arm bandit and collaborative filtering techniques, with new methods employing Deep Learning models to capture non-linearities. Despite progress, the dynamic nature of online recommendations still poses great challenges, such as finding the delicate balance between exploration and exploitation. In this paper we show how uncertainty estimations can be incorporated by employing them in an optimistic exploitation/exploration strategy for more efficient exploration of new recommendations. We provide a novel hybrid deep neural network model, Deep Density Networks (DDN), which integrates content-based deep learning models with a collaborative scheme that is able to robustly model and estimate uncertainty. Finally, we present online and offline results after incorporating DNN into a real world content recommendation system that serves billions of recommendations per day, and show the benefit of using DDN in practice.
Fault Detection of Broken Rotor Bar in LS-PMSM Using Random Forests
This paper proposes a new approach to diagnose broken rotor bar failure in a line start-permanent magnet synchronous motor (LS-PMSM) using random forests. The transient current signal during the motor startup was acquired from a healthy motor and a faulty motor with a broken rotor bar fault. We extracted 13 statistical time domain features from the startup transient current signal, and used these features to train and test a random forest to determine whether the motor was operating under normal or faulty conditions. For feature selection, we used the feature importances from the random forest to reduce the number of features to two features. The results showed that the random forest classifies the motor condition as healthy or faulty with an accuracy of 98.8% using all features and with an accuracy of 98.4% by using only the mean-index and impulsion features. The performance of the random forest was compared with a decision tree, Na\"ive Bayes classifier, logistic regression, linear ridge, and a support vector machine, with the random forest consistently having a higher accuracy than the other algorithms. The proposed approach can be used in industry for online monitoring and fault diagnostic of LS-PMSM motors and the results can be helpful for the establishment of preventive maintenance plans in factories.
Continuous DR-submodular Maximization: Structure and Algorithms
DR-submodular continuous functions are important objectives with wide real-world applications spanning MAP inference in determinantal point processes (DPPs), and mean-field inference for probabilistic submodular models, amongst others. DR-submodularity captures a subclass of non-convex functions that enables both exact minimization and approximate maximization in polynomial time. In this work we study the problem of maximizing non-monotone DR-submodular continuous functions under general down-closed convex constraints. We start by investigating geometric properties that underlie such objectives, e.g., a strong relation between (approximately) stationary points and global optimum is proved. These properties are then used to devise two optimization algorithms with provable guarantees. Concretely, we first devise a "two-phase" algorithm with $1/4$ approximation guarantee. This algorithm allows the use of existing methods for finding (approximately) stationary points as a subroutine, thus, harnessing recent progress in non-convex optimization. Then we present a non-monotone Frank-Wolfe variant with $1/e$ approximation guarantee and sublinear convergence rate. Finally, we extend our approach to a broader class of generalized DR-submodular continuous functions, which captures a wider spectrum of applications. Our theoretical findings are validated on synthetic and real-world problem instances.
Online Learning for Changing Environments using Coin Betting
A key challenge in online learning is that classical algorithms can be slow to adapt to changing environments. Recent studies have proposed "meta" algorithms that convert any online learning algorithm to one that is adaptive to changing environments, where the adaptivity is analyzed in a quantity called the strongly-adaptive regret. This paper describes a new meta algorithm that has a strongly-adaptive regret bound that is a factor of $\sqrt{\log(T)}$ better than other algorithms with the same time complexity, where $T$ is the time horizon. We also extend our algorithm to achieve a first-order (i.e., dependent on the observed losses) strongly-adaptive regret bound for the first time, to our knowledge. At its heart is a new parameter-free algorithm for the learning with expert advice (LEA) problem in which experts sometimes do not output advice for consecutive time steps (i.e., \emph{sleeping} experts). This algorithm is derived by a reduction from optimal algorithms for the so-called coin betting problem. Empirical results show that our algorithm outperforms state-of-the-art methods in both learning with expert advice and metric learning scenarios.
Unbounded cache model for online language modeling with open vocabulary
Recently, continuous cache models were proposed as extensions to recurrent neural network language models, to adapt their predictions to local changes in the data distribution. These models only capture the local context, of up to a few thousands tokens. In this paper, we propose an extension of continuous cache models, which can scale to larger contexts. In particular, we use a large scale non-parametric memory component that stores all the hidden activations seen in the past. We leverage recent advances in approximate nearest neighbor search and quantization algorithms to store millions of representations while searching them efficiently. We conduct extensive experiments showing that our approach significantly improves the perplexity of pre-trained language models on new distributions, and can scale efficiently to much larger contexts than previously proposed local cache models.
Moonshine: Distilling with Cheap Convolutions
Many engineers wish to deploy modern neural networks in memory-limited settings; but the development of flexible methods for reducing memory use is in its infancy, and there is little knowledge of the resulting cost-benefit. We propose structural model distillation for memory reduction using a strategy that produces a student architecture that is a simple transformation of the teacher architecture: no redesign is needed, and the same hyperparameters can be used. Using attention transfer, we provide Pareto curves/tables for distillation of residual networks with four benchmark datasets, indicating the memory versus accuracy payoff. We show that substantial memory savings are possible with very little loss of accuracy, and confirm that distillation provides student network performance that is better than training that student architecture directly on data.
Convex Optimization with Unbounded Nonconvex Oracles using Simulated Annealing
We consider the problem of minimizing a convex objective function $F$ when one can only evaluate its noisy approximation $\hat{F}$. Unless one assumes some structure on the noise, $\hat{F}$ may be an arbitrary nonconvex function, making the task of minimizing $F$ intractable. To overcome this, prior work has often focused on the case when $F(x)-\hat{F}(x)$ is uniformly-bounded. In this paper we study the more general case when the noise has magnitude $\alpha F(x) + \beta$ for some $\alpha, \beta > 0$, and present a polynomial time algorithm that finds an approximate minimizer of $F$ for this noise model. Previously, Markov chains, such as the stochastic gradient Langevin dynamics, have been used to arrive at approximate solutions to these optimization problems. However, for the noise model considered in this paper, no single temperature allows such a Markov chain to both mix quickly and concentrate near the global minimizer. We bypass this by combining "simulated annealing" with the stochastic gradient Langevin dynamics, and gradually decreasing the temperature of the chain in order to approach the global minimizer. As a corollary one can approximately minimize a nonconvex function that is close to a convex function; however, the closeness can deteriorate as one moves away from the optimum.
Safe Adaptive Importance Sampling
Importance sampling has become an indispensable strategy to speed up optimization algorithms for large-scale applications. Improved adaptive variants - using importance values defined by the complete gradient information which changes during optimization - enjoy favorable theoretical properties, but are typically computationally infeasible. In this paper we propose an efficient approximation of gradient-based sampling, which is based on safe bounds on the gradient. The proposed sampling distribution is (i) provably the best sampling with respect to the given bounds, (ii) always better than uniform sampling and fixed importance sampling and (iii) can efficiently be computed - in many applications at negligible extra cost. The proposed sampling scheme is generic and can easily be integrated into existing algorithms. In particular, we show that coordinate-descent (CD) and stochastic gradient descent (SGD) can enjoy significant a speed-up under the novel scheme. The proven efficiency of the proposed sampling is verified by extensive numerical testing.
Theoretical limitations of Encoder-Decoder GAN architectures
Encoder-decoder GANs architectures (e.g., BiGAN and ALI) seek to add an inference mechanism to the GANs setup, consisting of a small encoder deep net that maps data-points to their succinct encodings. The intuition is that being forced to train an encoder alongside the usual generator forces the system to learn meaningful mappings from the code to the data-point and vice-versa, which should improve the learning of the target distribution and ameliorate mode-collapse. It should also yield meaningful codes that are useful as features for downstream tasks. The current paper shows rigorously that even on real-life distributions of images, the encode-decoder GAN training objectives (a) cannot prevent mode collapse; i.e. the objective can be near-optimal even when the generated distribution has low and finite support (b) cannot prevent learning meaningless codes for data -- essentially white noise. Thus if encoder-decoder GANs do indeed work then it must be due to reasons as yet not understood, since the training objective can be low even for meaningless solutions.
Neural system identification for large populations separating "what" and "where"
Neuroscientists classify neurons into different types that perform similar computations at different locations in the visual field. Traditional methods for neural system identification do not capitalize on this separation of 'what' and 'where'. Learning deep convolutional feature spaces that are shared among many neurons provides an exciting path forward, but the architectural design needs to account for data limitations: While new experimental techniques enable recordings from thousands of neurons, experimental time is limited so that one can sample only a small fraction of each neuron's response space. Here, we show that a major bottleneck for fitting convolutional neural networks (CNNs) to neural data is the estimation of the individual receptive field locations, a problem that has been scratched only at the surface thus far. We propose a CNN architecture with a sparse readout layer factorizing the spatial (where) and feature (what) dimensions. Our network scales well to thousands of neurons and short recordings and can be trained end-to-end. We evaluate this architecture on ground-truth data to explore the challenges and limitations of CNN-based system identification. Moreover, we show that our network model outperforms current state-of-the art system identification models of mouse primary visual cortex.
Tensor-Generative Adversarial Network with Two-dimensional Sparse Coding: Application to Real-time Indoor Localization
Localization technology is important for the development of indoor location-based services (LBS). Global Positioning System (GPS) becomes invalid in indoor environments due to the non-line-of-sight issue, so it is urgent to develop a real-time high-accuracy localization approach for smartphones. However, accurate localization is challenging due to issues such as real-time response requirements, limited fingerprint samples and mobile device storage. To address these problems, we propose a novel deep learning architecture: Tensor-Generative Adversarial Network (TGAN). We first introduce a transform-based 3D tensor to model fingerprint samples. Instead of those passive methods that construct a fingerprint database as a prior, our model applies artificial neural network with deep learning to train network classifiers and then gives out estimations. Then we propose a novel tensor-based super-resolution scheme using the generative adversarial network (GAN) that adopts sparse coding as the generator network and a residual learning network as the discriminator. Further, we analyze the performance of tensor-GAN and implement a trace-based localization experiment, which achieves better performance. Compared to existing methods for smartphones indoor positioning, that are energy-consuming and high demands on devices, TGAN can give out an improved solution in localization accuracy, response time and implementation complexity.
Neural Variational Inference and Learning in Undirected Graphical Models
Many problems in machine learning are naturally expressed in the language of undirected graphical models. Here, we propose black-box learning and inference algorithms for undirected models that optimize a variational approximation to the log-likelihood of the model. Central to our approach is an upper bound on the log-partition function parametrized by a function q that we express as a flexible neural network. Our bound makes it possible to track the partition function during learning, to speed-up sampling, and to train a broad class of hybrid directed/undirected models via a unified variational inference framework. We empirically demonstrate the effectiveness of our method on several popular generative modeling datasets.
Deep Learning and Model Predictive Control for Self-Tuning Mode-Locked Lasers
Self-tuning optical systems are of growing importance in technological applications such as mode-locked fiber lasers. Such self-tuning paradigms require {\em intelligent} algorithms capable of inferring approximate models of the underlying physics and discovering appropriate control laws in order to maintain robust performance for a given objective. In this work, we demonstrate the first integration of a {\em deep learning} (DL) architecture with {\em model predictive control} (MPC) in order to self-tune a mode-locked fiber laser. Not only can our DL-MPC algorithmic architecture approximate the unknown fiber birefringence, it also builds a dynamical model of the laser and appropriate control law for maintaining robust, high-energy pulses despite a stochastically drifting birefringence. We demonstrate the effectiveness of this method on a fiber laser which is mode-locked by nonlinear polarization rotation. The method advocated can be broadly applied to a variety of optical systems that require robust controllers.
Recurrent Autoregressive Networks for Online Multi-Object Tracking
The main challenge of online multi-object tracking is to reliably associate object trajectories with detections in each video frame based on their tracking history. In this work, we propose the Recurrent Autoregressive Network (RAN), a temporal generative modeling framework to characterize the appearance and motion dynamics of multiple objects over time. The RAN couples an external memory and an internal memory. The external memory explicitly stores previous inputs of each trajectory in a time window, while the internal memory learns to summarize long-term tracking history and associate detections by processing the external memory. We conduct experiments on the MOT 2015 and 2016 datasets to demonstrate the robustness of our tracking method in highly crowded and occluded scenes. Our method achieves top-ranked results on the two benchmarks.
On the Discrimination-Generalization Tradeoff in GANs
Generative adversarial training can be generally understood as minimizing certain moment matching loss defined by a set of discriminator functions, typically neural networks. The discriminator set should be large enough to be able to uniquely identify the true distribution (discriminative), and also be small enough to go beyond memorizing samples (generalizable). In this paper, we show that a discriminator set is guaranteed to be discriminative whenever its linear span is dense in the set of bounded continuous functions. This is a very mild condition satisfied even by neural networks with a single neuron. Further, we develop generalization bounds between the learned distribution and true distribution under different evaluation metrics. When evaluated with neural distance, our bounds show that generalization is guaranteed as long as the discriminator set is small enough, regardless of the size of the generator or hypothesis set. When evaluated with KL divergence, our bound provides an explanation on the counter-intuitive behaviors of testing likelihood in GAN training. Our analysis sheds lights on understanding the practical performance of GANs.
Block-Sparse Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are used in state-of-the-art models in domains such as speech recognition, machine translation, and language modelling. Sparsity is a technique to reduce compute and memory requirements of deep learning models. Sparse RNNs are easier to deploy on devices and high-end server processors. Even though sparse operations need less compute and memory relative to their dense counterparts, the speed-up observed by using sparse operations is less than expected on different hardware platforms. In order to address this issue, we investigate two different approaches to induce block sparsity in RNNs: pruning blocks of weights in a layer and using group lasso regularization to create blocks of weights with zeros. Using these techniques, we demonstrate that we can create block-sparse RNNs with sparsity ranging from 80% to 90% with small loss in accuracy. This allows us to reduce the model size by roughly 10x. Additionally, we can prune a larger dense network to recover this loss in accuracy while maintaining high block sparsity and reducing the overall parameter count. Our technique works with a variety of block sizes up to 32x32. Block-sparse RNNs eliminate overheads related to data storage and irregular memory accesses while increasing hardware efficiency compared to unstructured sparsity.
Learning to Imagine Manipulation Goals for Robot Task Planning
Prospection is an important part of how humans come up with new task plans, but has not been explored in depth in robotics. Predicting multiple task-level is a challenging problem that involves capturing both task semantics and continuous variability over the state of the world. Ideally, we would combine the ability of machine learning to leverage big data for learning the semantics of a task, while using techniques from task planning to reliably generalize to new environment. In this work, we propose a method for learning a model encoding just such a representation for task planning. We learn a neural net that encodes the $k$ most likely outcomes from high level actions from a given world. Our approach creates comprehensible task plans that allow us to predict changes to the environment many time steps into the future. We demonstrate this approach via application to a stacking task in a cluttered environment, where the robot must select between different colored blocks while avoiding obstacles, in order to perform a task. We also show results on a simple navigation task. Our algorithm generates realistic image and pose predictions at multiple points in a given task.
Metric Learning-based Generative Adversarial Network
Generative Adversarial Networks (GANs), as a framework for estimating generative models via an adversarial process, have attracted huge attention and have proven to be powerful in a variety of tasks. However, training GANs is well known for being delicate and unstable, partially caused by its sig- moid cross entropy loss function for the discriminator. To overcome such a problem, many researchers directed their attention on various ways to measure how close the model distribution and real distribution are and have applied dif- ferent metrics as their objective functions. In this paper, we propose a novel framework to train GANs based on distance metric learning and we call it Metric Learning-based Gener- ative Adversarial Network (MLGAN). The discriminator of MLGANs can dynamically learn an appropriate metric, rather than a static one, to measure the distance between generated samples and real samples. Afterwards, MLGANs update the generator under the newly learned metric. We evaluate our ap- proach on several representative datasets and the experimen- tal results demonstrate that MLGANs can achieve superior performance compared with several existing state-of-the-art approaches. We also empirically show that MLGANs could increase the stability of training GANs.
Approximate message passing for nonconvex sparse regularization with stability and asymptotic analysis
We analyse a linear regression problem with nonconvex regularization called smoothly clipped absolute deviation (SCAD) under an overcomplete Gaussian basis for Gaussian random data. We propose an approximate message passing (AMP) algorithm considering nonconvex regularization, namely SCAD-AMP, and analytically show that the stability condition corresponds to the de Almeida--Thouless condition in spin glass literature. Through asymptotic analysis, we show the correspondence between the density evolution of SCAD-AMP and the replica symmetric solution. Numerical experiments confirm that for a sufficiently large system size, SCAD-AMP achieves the optimal performance predicted by the replica method. Through replica analysis, a phase transition between replica symmetric (RS) and replica symmetry breaking (RSB) region is found in the parameter space of SCAD. The appearance of the RS region for a nonconvex penalty is a significant advantage that indicates the region of smooth landscape of the optimization problem. Furthermore, we analytically show that the statistical representation performance of the SCAD penalty is better than that of L1-based methods, and the minimum representation error under RS assumption is obtained at the edge of the RS/RSB phase. The correspondence between the convergence of the existing coordinate descent algorithm and RS/RSB transition is also indicated.
Fidelity-Weighted Learning
Training deep neural networks requires many training samples, but in practice training labels are expensive to obtain and may be of varying quality, as some may be from trusted expert labelers while others might be from heuristics or other sources of weak supervision such as crowd-sourcing. This creates a fundamental quality versus-quantity trade-off in the learning process. Do we learn from the small amount of high-quality data or the potentially large amount of weakly-labeled data? We argue that if the learner could somehow know and take the label-quality into account when learning the data representation, we could get the best of both worlds. To this end, we propose "fidelity-weighted learning" (FWL), a semi-supervised student-teacher approach for training deep neural networks using weakly-labeled data. FWL modulates the parameter updates to a student network (trained on the task we care about) on a per-sample basis according to the posterior confidence of its label-quality estimated by a teacher (who has access to the high-quality labels). Both student and teacher are learned from the data. We evaluate FWL on two tasks in information retrieval and natural language processing where we outperform state-of-the-art alternative semi-supervised methods, indicating that our approach makes better use of strong and weak labels, and leads to better task-dependent data representations.
Deep Fault Analysis and Subset Selection in Solar Power Grids
Non-availability of reliable and sustainable electric power is a major problem in the developing world. Renewable energy sources like solar are not very lucrative in the current stage due to various uncertainties like weather, storage, land use among others. There also exists various other issues like mis-commitment of power, absence of intelligent fault analysis, congestion, etc. In this paper, we propose a novel deep learning-based system for predicting faults and selecting power generators optimally so as to reduce costs and ensure higher reliability in solar power systems. The results are highly encouraging and they suggest that the approaches proposed in this paper have the potential to be applied successfully in the developing world.
Inverse Reward Design
Autonomous agents optimize the reward function we give them. What they don't know is how hard it is for us to design a reward function that actually captures what we want. When designing the reward, we might think of some specific training scenarios, and make sure that the reward will lead to the right behavior in those scenarios. Inevitably, agents encounter new scenarios (e.g., new types of terrain) where optimizing that same reward may lead to undesired behavior. Our insight is that reward functions are merely observations about what the designer actually wants, and that they should be interpreted in the context in which they were designed. We introduce inverse reward design (IRD) as the problem of inferring the true objective based on the designed reward and the training MDP. We introduce approximate methods for solving IRD problems, and use their solution to plan risk-averse behavior in test MDPs. Empirical results suggest that this approach can help alleviate negative side effects of misspecified reward functions and mitigate reward hacking.
Stochastic Cubic Regularization for Fast Nonconvex Optimization
This paper proposes a stochastic variant of a classic algorithm---the cubic-regularized Newton method [Nesterov and Polyak 2006]. The proposed algorithm efficiently escapes saddle points and finds approximate local minima for general smooth, nonconvex functions in only $\mathcal{\tilde{O}}(\epsilon^{-3.5})$ stochastic gradient and stochastic Hessian-vector product evaluations. The latter can be computed as efficiently as stochastic gradients. This improves upon the $\mathcal{\tilde{O}}(\epsilon^{-4})$ rate of stochastic gradient descent. Our rate matches the best-known result for finding local minima without requiring any delicate acceleration or variance-reduction techniques.
Intriguing Properties of Adversarial Examples
It is becoming increasingly clear that many machine learning classifiers are vulnerable to adversarial examples. In attempting to explain the origin of adversarial examples, previous studies have typically focused on the fact that neural networks operate on high dimensional data, they overfit, or they are too linear. Here we argue that the origin of adversarial examples is primarily due to an inherent uncertainty that neural networks have about their predictions. We show that the functional form of this uncertainty is independent of architecture, dataset, and training protocol; and depends only on the statistics of the logit differences of the network, which do not change significantly during training. This leads to adversarial error having a universal scaling, as a power-law, with respect to the size of the adversarial perturbation. We show that this universality holds for a broad range of datasets (MNIST, CIFAR10, ImageNet, and random data), models (including state-of-the-art deep networks, linear models, adversarially trained networks, and networks trained on randomly shuffled labels), and attacks (FGSM, step l.l., PGD). Motivated by these results, we study the effects of reducing prediction entropy on adversarial robustness. Finally, we study the effect of network architectures on adversarial sensitivity. To do this, we use neural architecture search with reinforcement learning to find adversarially robust architectures on CIFAR10. Our resulting architecture is more robust to white \emph{and} black box attacks compared to previous attempts.
Learning Sparse Visual Representations with Leaky Capped Norm Regularizers
Sparsity inducing regularization is an important part for learning over-complete visual representations. Despite the popularity of $\ell_1$ regularization, in this paper, we investigate the usage of non-convex regularizations in this problem. Our contribution consists of three parts. First, we propose the leaky capped norm regularization (LCNR), which allows model weights below a certain threshold to be regularized more strongly as opposed to those above, therefore imposes strong sparsity and only introduces controllable estimation bias. We propose a majorization-minimization algorithm to optimize the joint objective function. Second, our study over monocular 3D shape recovery and neural networks with LCNR outperforms $\ell_1$ and other non-convex regularizations, achieving state-of-the-art performance and faster convergence. Third, we prove a theoretical global convergence speed on the 3D recovery problem. To the best of our knowledge, this is the first convergence analysis of the 3D recovery problem.
Un r\'esultat intrigant en commande sans mod\`ele
An elementary mathematical example proves, thanks to the Routh-Hurwitz criterion, a result that is intriguing with respect to today's practical understanding of model-free control, i.e., an "intelligent" proportional controller (iP) may turn to be more difficult to tune than an intelligent proportional-derivative one (iPD). The vast superiority of iPDs when compared to classic PIDs is shown via computer simulations. The introduction as well as the conclusion analyse model-free control in the light of recent advances.
LatentPoison - Adversarial Attacks On The Latent Space
Robustness and security of machine learning (ML) systems are intertwined, wherein a non-robust ML system (classifiers, regressors, etc.) can be subject to attacks using a wide variety of exploits. With the advent of scalable deep learning methodologies, a lot of emphasis has been put on the robustness of supervised, unsupervised and reinforcement learning algorithms. Here, we study the robustness of the latent space of a deep variational autoencoder (dVAE), an unsupervised generative framework, to show that it is indeed possible to perturb the latent space, flip the class predictions and keep the classification probability approximately equal before and after an attack. This means that an agent that looks at the outputs of a decoder would remain oblivious to an attack.
Clustering with feature selection using alternating minimization, Application to computational biology
This paper deals with unsupervised clustering with feature selection. The problem is to estimate both labels and a sparse projection matrix of weights. To address this combinatorial non-convex problem maintaining a strict control on the sparsity of the matrix of weights, we propose an alternating minimization of the Frobenius norm criterion. We provide a new efficient algorithm named K-sparse which alternates k-means with projection-gradient minimization. The projection-gradient step is a method of splitting type, with exact projection on the $\ell^1$ ball to promote sparsity. The convergence of the gradient-projection step is addressed, and a preliminary analysis of the alternating minimization is made. The Frobenius norm criterion converges as the number of iterates in Algorithm K-sparse goes to infinity. Experiments on Single Cell RNA sequencing datasets show that our method significantly improves the results of PCA k-means, spectral clustering, SIMLR, and Sparcl methods, and achieves a relevant selection of genes. The complexity of K-sparse is linear in the number of samples (cells), so that the method scales up to large datasets.
DLVM: A modern compiler infrastructure for deep learning systems
Deep learning software demands reliability and performance. However, many of the existing deep learning frameworks are software libraries that act as an unsafe DSL in Python and a computation graph interpreter. We present DLVM, a design and implementation of a compiler infrastructure with a linear algebra intermediate representation, algorithmic differentiation by adjoint code generation, domain-specific optimizations and a code generator targeting GPU via LLVM. Designed as a modern compiler infrastructure inspired by LLVM, DLVM is more modular and more generic than existing deep learning compiler frameworks, and supports tensor DSLs with high expressivity. With our prototypical staged DSL embedded in Swift, we argue that the DLVM system enables a form of modular, safe and performant frameworks for deep learning.
Recency-weighted Markovian inference
We describe a Markov latent state space (MLSS) model, where the latent state distribution is a decaying mixture over multiple past states. We present a simple sampling algorithm that allows to approximate such high-order MLSS with fixed time and memory costs.
Learning K-way D-dimensional Discrete Code For Compact Embedding Representations
Embedding methods such as word embedding have become pillars for many applications containing discrete structures. Conventional embedding methods directly associate each symbol with a continuous embedding vector, which is equivalent to applying linear transformation based on "one-hot" encoding of the discrete symbols. Despite its simplicity, such approach yields number of parameters that grows linearly with the vocabulary size and can lead to overfitting. In this work we propose a much more compact K-way D-dimensional discrete encoding scheme to replace the "one-hot" encoding. In "KD encoding", each symbol is represented by a $D$-dimensional code, and each of its dimension has a cardinality of $K$. The final symbol embedding vector can be generated by composing the code embedding vectors. To learn the semantically meaningful code, we derive a relaxed discrete optimization technique based on stochastic gradient descent. By adopting the new coding system, the efficiency of parameterization can be significantly improved (from linear to logarithmic), and this can also mitigate the over-fitting problem. In our experiments with language modeling, the number of embedding parameters can be reduced by 97\% while achieving similar or better performance.
Lower bounds over Boolean inputs for deep neural networks with ReLU gates
Motivated by the resurgence of neural networks in being able to solve complex learning tasks we undertake a study of high depth networks using ReLU gates which implement the function $x \mapsto \max\{0,x\}$. We try to understand the role of depth in such neural networks by showing size lowerbounds against such network architectures in parameter regimes hitherto unexplored. In particular we show the following two main results about neural nets computing Boolean functions of input dimension $n$, 1. We use the method of random restrictions to show almost linear, $\Omega(\epsilon^{2(1-\delta)}n^{1-\delta})$, lower bound for completely weight unrestricted LTF-of-ReLU circuits to match the Andreev function on at least $\frac{1}{2} +\epsilon$ fraction of the inputs for $\epsilon > \sqrt{2\frac{\log^{\frac {2}{2-\delta}}(n)}{n}}$ for any $\delta \in (0,\frac 1 2)$ 2. We use the method of sign-rank to show exponential in dimension lower bounds for ReLU circuits ending in a LTF gate and of depths upto $O(n^{\xi})$ with $\xi < \frac{1}{8}$ with some restrictions on the weights in the bottom most layer. All other weights in these circuits are kept unrestricted. This in turns also implies the same lowerbounds for LTF circuits with the same architecture and the same weight restrictions on their bottom most layer. Along the way we also show that there exists a $\mathbb{R}^ n\rightarrow \mathbb{R}$ Sum-of-ReLU-of-ReLU function which Sum-of-ReLU neural nets can never represent no matter how large they are allowed to be.
Dispersion for Data-Driven Algorithm Design, Online Learning, and Private Optimization
Data-driven algorithm design, that is, choosing the best algorithm for a specific application, is a crucial problem in modern data science. Practitioners often optimize over a parameterized algorithm family, tuning parameters based on problems from their domain. These procedures have historically come with no guarantees, though a recent line of work studies algorithm selection from a theoretical perspective. We advance the foundations of this field in several directions: we analyze online algorithm selection, where problems arrive one-by-one and the goal is to minimize regret, and private algorithm selection, where the goal is to find good parameters over a set of problems without revealing sensitive information contained therein. We study important algorithm families, including SDP-rounding schemes for problems formulated as integer quadratic programs, and greedy techniques for canonical subset selection problems. In these cases, the algorithm's performance is a volatile and piecewise Lipschitz function of its parameters, since tweaking the parameters can completely change the algorithm's behavior. We give a sufficient and general condition, dispersion, defining a family of piecewise Lipschitz functions that can be optimized online and privately, which includes the functions measuring the performance of the algorithms we study. Intuitively, a set of piecewise Lipschitz functions is dispersed if no small region contains many of the functions' discontinuities. We present general techniques for online and private optimization of the sum of dispersed piecewise Lipschitz functions. We improve over the best-known regret bounds for a variety of problems, prove regret bounds for problems not previously studied, and give matching lower bounds. We also give matching upper and lower bounds on the utility loss due to privacy. Moreover, we uncover dispersion in auction design and pricing problems.
Deep Learning for Real-time Gravitational Wave Detection and Parameter Estimation: Results with Advanced LIGO Data
The recent Nobel-prize-winning detections of gravitational waves from merging black holes and the subsequent detection of the collision of two neutron stars in coincidence with electromagnetic observations have inaugurated a new era of multimessenger astrophysics. To enhance the scope of this emergent field of science, we pioneered the use of deep learning with convolutional neural networks, that take time-series inputs, for rapid detection and characterization of gravitational wave signals. This approach, Deep Filtering, was initially demonstrated using simulated LIGO noise. In this article, we present the extension of Deep Filtering using real data from LIGO, for both detection and parameter estimation of gravitational waves from binary black hole mergers using continuous data streams from multiple LIGO detectors. We demonstrate for the first time that machine learning can detect and estimate the true parameters of real events observed by LIGO. Our results show that Deep Filtering achieves similar sensitivities and lower errors compared to matched-filtering while being far more computationally efficient and more resilient to glitches, allowing real-time processing of weak time-series signals in non-stationary non-Gaussian noise with minimal resources, and also enables the detection of new classes of gravitational wave sources that may go unnoticed with existing detection algorithms. This unified framework for data analysis is ideally suited to enable coincident detection campaigns of gravitational waves and their multimessenger counterparts in real-time.
Energy Storage Arbitrage in Real-Time Markets via Reinforcement Learning
In this paper, we derive a temporal arbitrage policy for storage via reinforcement learning. Real-time price arbitrage is an important source of revenue for storage units, but designing good strategies have proven to be difficult because of the highly uncertain nature of the prices. Instead of current model predictive or dynamic programming approaches, we use reinforcement learning to design an optimal arbitrage policy. This policy is learned through repeated charge and discharge actions performed by the storage unit through updating a value matrix. We design a reward function that does not only reflect the instant profit of charge/discharge decisions but also incorporate the history information. Simulation results demonstrate that our designed reward function leads to significant performance improvement compared with existing algorithms.
MarrNet: 3D Shape Reconstruction via 2.5D Sketches
3D object reconstruction from a single image is a highly under-determined problem, requiring strong prior knowledge of plausible 3D shapes. This introduces challenges for learning-based approaches, as 3D object annotations are scarce in real images. Previous work chose to train on synthetic data with ground truth 3D information, but suffered from domain adaptation when tested on real data. In this work, we propose MarrNet, an end-to-end trainable model that sequentially estimates 2.5D sketches and 3D object shape. Our disentangled, two-step formulation has three advantages. First, compared to full 3D shape, 2.5D sketches are much easier to be recovered from a 2D image; models that recover 2.5D sketches are also more likely to transfer from synthetic to real data. Second, for 3D reconstruction from 2.5D sketches, systems can learn purely from synthetic data. This is because we can easily render realistic 2.5D sketches without modeling object appearance variations in real images, including lighting, texture, etc. This further relieves the domain adaptation problem. Third, we derive differentiable projective functions from 3D shape to 2.5D sketches; the framework is therefore end-to-end trainable on real images, requiring no human annotations. Our model achieves state-of-the-art performance on 3D shape reconstruction.
EnergyNet: Energy-based Adaptive Structural Learning of Artificial Neural Network Architectures
We present E NERGY N ET , a new framework for analyzing and building artificial neural network architectures. Our approach adaptively learns the structure of the networks in an unsupervised manner. The methodology is based upon the theoretical guarantees of the energy function of restricted Boltzmann machines (RBM) of infinite number of nodes. We present experimental results to show that the final network adapts to the complexity of a given problem.
Learning Deep Mean Field Games for Modeling Large Population Behavior
We consider the problem of representing collective behavior of large populations and predicting the evolution of a population distribution over a discrete state space. A discrete time mean field game (MFG) is motivated as an interpretable model founded on game theory for understanding the aggregate effect of individual actions and predicting the temporal evolution of population distributions. We achieve a synthesis of MFG and Markov decision processes (MDP) by showing that a special MFG is reducible to an MDP. This enables us to broaden the scope of mean field game theory and infer MFG models of large real-world systems via deep inverse reinforcement learning. Our method learns both the reward function and forward dynamics of an MFG from real data, and we report the first empirical test of a mean field game model of a real-world social media population.
Learning Markov Chain in Unordered Dataset
The assumption that data samples are independently identically distributed is the backbone of many learning algorithms. Nevertheless, datasets often exhibit rich structure in practice, and we argue that there exist some unknown order within the data instances. In this technical report, we introduce OrderNet that can be used to extract the order of data instances in an unsupervised way. By assuming that the instances are sampled from a Markov chain, our goal is to learn the transitional operator of the underlying Markov chain, as well as the order by maximizing the generation probability under all possible data permutations. Specifically, we use neural network as a compact and soft lookup table to approximate the possibly huge, but discrete transition matrix. This strategy allows us to amortize the space complexity with a single model. Furthermore, this simple and compact representation also provides a short description to the dataset and generalizes to unseen instances as well. To ensure that the learned Markov chain is ergodic, we propose a greedy batch-wise permutation scheme that allows fast training. Empirically, we show that OrderNet is able to discover an order among data instances. We also extend the proposed OrderNet to one-shot recognition task and demonstrate favorable results.
Deep Hyperspherical Learning
Convolution as inner product has been the founding basis of convolutional neural networks (CNNs) and the key to end-to-end visual representation learning. Benefiting from deeper architectures, recent CNNs have demonstrated increasingly strong representation abilities. Despite such improvement, the increased depth and larger parameter space have also led to challenges in properly training a network. In light of such challenges, we propose hyperspherical convolution (SphereConv), a novel learning framework that gives angular representations on hyperspheres. We introduce SphereNet, deep hyperspherical convolution networks that are distinct from conventional inner product based convolutional networks. In particular, SphereNet adopts SphereConv as its basic convolution operator and is supervised by generalized angular softmax loss - a natural loss formulation under SphereConv. We show that SphereNet can effectively encode discriminative representation and alleviate training difficulty, leading to easier optimization, faster convergence and comparable (even better) classification accuracy over convolutional counterparts. We also provide some theoretical insights for the advantages of learning on hyperspheres. In addition, we introduce the learnable SphereConv, i.e., a natural improvement over prefixed SphereConv, and SphereNorm, i.e., hyperspherical learning as a normalization method. Experiments have verified our conclusions.
Learning Credible Models
In many settings, it is important that a model be capable of providing reasons for its predictions (i.e., the model must be interpretable). However, the model's reasoning may not conform with well-established knowledge. In such cases, while interpretable, the model lacks \textit{credibility}. In this work, we formally define credibility in the linear setting and focus on techniques for learning models that are both accurate and credible. In particular, we propose a regularization penalty, expert yielded estimates (EYE), that incorporates expert knowledge about well-known relationships among covariates and the outcome of interest. We give both theoretical and empirical results comparing our proposed method to several other regularization techniques. Across a range of settings, experiments on both synthetic and real data show that models learned using the EYE penalty are significantly more credible than those learned using other penalties. Applied to a large-scale patient risk stratification task, our proposed technique results in a model whose top features overlap significantly with known clinical risk factors, while still achieving good predictive performance.
Long-Term Online Smoothing Prediction Using Expert Advice
For the prediction with experts' advice setting, we construct forecasting algorithms that suffer loss not much more than any expert in the pool. In contrast to the standard approach, we investigate the case of long-term forecasting of time series and consider two scenarios. In the first one, at each step $t$ the learner has to combine the point forecasts of the experts issued for the time interval $[t+1, t+d]$ ahead. Our approach implies that at each time step experts issue point forecasts for arbitrary many steps ahead and then the learner (algorithm) combines these forecasts and the forecasts made earlier into one vector forecast for steps $[t+1,t+d]$. By combining past and the current long-term forecasts we obtain a smoothing mechanism that protects our algorithm from temporary trend changes, noise and outliers. In the second scenario, at each step $t$ experts issue a prediction function, and the learner has to combine these functions into the single one, which will be used for long-term time-series prediction. For each scenario, we develop an algorithm for combining experts forecasts and prove $O(\ln T)$ adversarial regret upper bound for both algorithms.
Information Directed Sampling for Stochastic Bandits with Graph Feedback
We consider stochastic multi-armed bandit problems with graph feedback, where the decision maker is allowed to observe the neighboring actions of the chosen action. We allow the graph structure to vary with time and consider both deterministic and Erd\H{o}s-R\'enyi random graph models. For such a graph feedback model, we first present a novel analysis of Thompson sampling that leads to tighter performance bound than existing work. Next, we propose new Information Directed Sampling based policies that are graph-aware in their decision making. Under the deterministic graph case, we establish a Bayesian regret bound for the proposed policies that scales with the clique cover number of the graph instead of the number of actions. Under the random graph case, we provide a Bayesian regret bound for the proposed policies that scales with the ratio of the number of actions over the expected number of observations per iteration. To the best of our knowledge, this is the first analytical result for stochastic bandits with random graph feedback. Finally, using numerical evaluations, we demonstrate that our proposed IDS policies outperform existing approaches, including adaptions of upper confidence bound, $\epsilon$-greedy and Exp3 algorithms.
Crafting Adversarial Examples For Speech Paralinguistics Applications
Computational paralinguistic analysis is increasingly being used in a wide range of cyber applications, including security-sensitive applications such as speaker verification, deceptive speech detection, and medical diagnostics. While state-of-the-art machine learning techniques, such as deep neural networks, can provide robust and accurate speech analysis, they are susceptible to adversarial attacks. In this work, we propose an end-to-end scheme to generate adversarial examples for computational paralinguistic applications by perturbing directly the raw waveform of an audio recording rather than specific acoustic features. Our experiments show that the proposed adversarial perturbation can lead to a significant performance drop of state-of-the-art deep neural networks, while only minimally impairing the audio quality.
A Separation Principle for Control in the Age of Deep Learning
We review the problem of defining and inferring a "state" for a control system based on complex, high-dimensional, highly uncertain measurement streams such as videos. Such a state, or representation, should contain all and only the information needed for control, and discount nuisance variability in the data. It should also have finite complexity, ideally modulated depending on available resources. This representation is what we want to store in memory in lieu of the data, as it "separates" the control task from the measurement process. For the trivial case with no dynamics, a representation can be inferred by minimizing the Information Bottleneck Lagrangian in a function class realized by deep neural networks. The resulting representation has much higher dimension than the data, already in the millions, but it is smaller in the sense of information content, retaining only what is needed for the task. This process also yields representations that are invariant to nuisance factors and having maximally independent components. We extend these ideas to the dynamic case, where the representation is the posterior density of the task variable given the measurements up to the current time, which is in general much simpler than the prediction density maintained by the classical Bayesian filter. Again this can be finitely-parametrized using a deep neural network, and already some applications are beginning to emerge. No explicit assumption of Markovianity is needed; instead, complexity trades off approximation of an optimal representation, including the degree of Markovianity.
Analysis of Dropout in Online Learning
Deep learning is the state-of-the-art in fields such as visual object recognition and speech recognition. This learning uses a large number of layers and a huge number of units and connections. Therefore, overfitting is a serious problem with it, and the dropout which is a kind of regularization tool is used. However, in online learning, the effect of dropout is not well known. This paper presents our investigation on the effect of dropout in online learning. We analyzed the effect of dropout on convergence speed near the singular point. Our results indicated that dropout is effective in online learning. Dropout tends to avoid the singular point for convergence speed near that point.
Multi-Relevance Transfer Learning
Transfer learning aims to faciliate learning tasks in a label-scarce target domain by leveraging knowledge from a related source domain with plenty of labeled data. Often times we may have multiple domains with little or no labeled data as targets waiting to be solved. Most existing efforts tackle target domains separately by modeling the `source-target' pairs without exploring the relatedness between them, which would cause loss of crucial information, thus failing to achieve optimal capability of knowledge transfer. In this paper, we propose a novel and effective approach called Multi-Relevance Transfer Learning (MRTL) for this purpose, which can simultaneously transfer different knowledge from the source and exploits the shared common latent factors between target domains. Specifically, we formulate the problem as an optimization task based on a collective nonnegative matrix tri-factorization framework. The proposed approach achieves both source-target transfer and target-target leveraging by sharing multiple decomposed latent subspaces. Further, an alternative minimization learning algorithm is developed with convergence guarantee. Empirical study validates the performance and effectiveness of MRTL compared to the state-of-the-art methods.
Performance Evaluation of Deep Learning Tools in Docker Containers
With the success of deep learning techniques in a broad range of application domains, many deep learning software frameworks have been developed and are being updated frequently to adapt to new hardware features and software libraries, which bring a big challenge for end users and system administrators. To address this problem, container techniques are widely used to simplify the deployment and management of deep learning software. However, it remains unknown whether container techniques bring any performance penalty to deep learning applications. The purpose of this work is to systematically evaluate the impact of docker container on the performance of deep learning applications. We first benchmark the performance of system components (IO, CPU and GPU) in a docker container and the host system and compare the results to see if there's any difference. According to our results, we find that computational intensive jobs, either running on CPU or GPU, have small overhead indicating docker containers can be applied to deep learning programs. Then we evaluate the performance of some popular deep learning tools deployed in a docker container and the host system. It turns out that the docker container will not cause noticeable drawbacks while running those deep learning tools. So encapsulating deep learning tool in a container is a feasible solution.
Data Fusion and Machine Learning Integration for Transformer Loss of Life Estimation
Rapid growth of machine learning methodologies and their applications offer new opportunity for improved transformer asset management. Accordingly, power system operators are currently looking for data-driven methods to make better-informed decisions in terms of network management. In this paper, machine learning and data fusion techniques are integrated to estimate transformer loss of life. Using IEEE Std. C57.91-2011, a data synthesis process is proposed based on hourly transformer loading and ambient temperature values. This synthesized data is employed to estimate transformer loss of life by using Adaptive Network-Based Fuzzy Inference System (ANFIS) and Radial Basis Function (RBF) network, which are further fused together with the objective of improving the estimation accuracy. Among various data fusion techniques, Ordered Weighted Averaging (OWA) and sequential Kalman filter are selected to fuse the output results of the estimated ANFIS and RBF. Simulation results demonstrate the merit and the effectiveness of the proposed method.
A random matrix analysis and improvement of semi-supervised learning for large dimensional data
This article provides an original understanding of the behavior of a class of graph-oriented semi-supervised learning algorithms in the limit of large and numerous data. It is demonstrated that the intuition at the root of these methods collapses in this limit and that, as a result, most of them become inconsistent. Corrective measures and a new data-driven parametrization scheme are proposed along with a theoretical analysis of the asymptotic performances of the resulting approach. A surprisingly close behavior between theoretical performances on Gaussian mixture models and on real datasets is also illustrated throughout the article, thereby suggesting the importance of the proposed analysis for dealing with practical data. As a result, significant performance gains are observed on practical data classification using the proposed parametrization.
Machine Learning Based Fast Power Integrity Classifier
In this paper, we proposed a new machine learning based fast power integrity classifier that quickly flags the EM/IR hotspots. We discussed the features to extract to describe the power grid, cell power density, routing impact and controlled collapse chip connection (C4) bumps, etc. The continuous and discontinuous cases are identified and treated using different machine learning models. Nearest neighbors, random forest and neural network models are compared to select the best performance candidates. Experiments are run on open source benchmark, and result is showing promising prediction accuracy.
Using Phone Sensors and an Artificial Neural Network to Detect Gait Changes During Drinking Episodes in the Natural Environment
Phone sensors could be useful in assessing changes in gait that occur with alcohol consumption. This study determined (1) feasibility of collecting gait-related data during drinking occasions in the natural environment, and (2) how gait-related features measured by phone sensors relate to estimated blood alcohol concentration (eBAC). Ten young adult heavy drinkers were prompted to complete a 5-step gait task every hour from 8pm to 12am over four consecutive weekends. We collected 3-xis accelerometer, gyroscope, and magnetometer data from phone sensors, and computed 24 gait-related features using a sliding window technique. eBAC levels were calculated at each time point based on Ecological Momentary Assessment (EMA) of alcohol use. We used an artificial neural network model to analyze associations between sensor features and eBACs in training (70% of the data) and validation and test (30% of the data) datasets. We analyzed 128 data points where both eBAC and gait-related sensor data was captured, either when not drinking (n=60), while eBAC was ascending (n=55) or eBAC was descending (n=13). 21 data points were captured at times when the eBAC was greater than the legal limit (0.08 mg/dl). Using a Bayesian regularized neural network, gait-related phone sensor features showed a high correlation with eBAC (Pearson's r > 0.9), and >95% of estimated eBAC would fall between -0.012 and +0.012 of actual eBAC. It is feasible to collect gait-related data from smartphone sensors during drinking occasions in the natural environment. Sensor-based features can be used to infer gait changes associated with elevated blood alcohol content.
Learning Non-overlapping Convolutional Neural Networks with Multiple Kernels
In this paper, we consider parameter recovery for non-overlapping convolutional neural networks (CNNs) with multiple kernels. We show that when the inputs follow Gaussian distribution and the sample size is sufficiently large, the squared loss of such CNNs is $\mathit{~locally~strongly~convex}$ in a basin of attraction near the global optima for most popular activation functions, like ReLU, Leaky ReLU, Squared ReLU, Sigmoid and Tanh. The required sample complexity is proportional to the dimension of the input and polynomial in the number of kernels and a condition number of the parameters. We also show that tensor methods are able to initialize the parameters to the local strong convex region. Hence, for most smooth activations, gradient descent following tensor initialization is guaranteed to converge to the global optimal with time that is linear in input dimension, logarithmic in precision and polynomial in other factors. To the best of our knowledge, this is the first work that provides recovery guarantees for CNNs with multiple kernels under polynomial sample and computational complexities.
Regret Minimization in Behaviorally-Constrained Zero-Sum Games
No-regret learning has emerged as a powerful tool for solving extensive-form games. This was facilitated by the counterfactual-regret minimization (CFR) framework, which relies on the instantiation of regret minimizers for simplexes at each information set of the game. We use an instantiation of the CFR framework to develop algorithms for solving behaviorally-constrained (and, as a special case, perturbed in the Selten sense) extensive-form games, which allows us to compute approximate Nash equilibrium refinements. Nash equilibrium refinements are motivated by a major deficiency in Nash equilibrium: it provides virtually no guarantees on how it will play in parts of the game tree that are reached with zero probability. Refinements can mend this issue, but have not been adopted in practice, mostly due to a lack of scalable algorithms. We show that, compared to standard algorithms, our method finds solutions that have substantially better refinement properties, while enjoying a convergence rate that is comparable to that of state-of-the-art algorithms for Nash equilibrium computation both in theory and practice.
Scalable Log Determinants for Gaussian Process Kernel Learning
For applications as varied as Bayesian neural networks, determinantal point processes, elliptical graphical models, and kernel learning for Gaussian processes (GPs), one must compute a log determinant of an $n \times n$ positive definite matrix, and its derivatives - leading to prohibitive $\mathcal{O}(n^3)$ computations. We propose novel $\mathcal{O}(n)$ approaches to estimating these quantities from only fast matrix vector multiplications (MVMs). These stochastic approximations are based on Chebyshev, Lanczos, and surrogate models, and converge quickly even for kernel matrices that have challenging spectra. We leverage these approximations to develop a scalable Gaussian process approach to kernel learning. We find that Lanczos is generally superior to Chebyshev for kernel learning, and that a surrogate approach can be highly efficient and accurate with popular kernels.
Fast Meta-Learning for Adaptive Hierarchical Classifier Design
We propose a new splitting criterion for a meta-learning approach to multiclass classifier design that adaptively merges the classes into a tree-structured hierarchy of increasingly difficult binary classification problems. The classification tree is constructed from empirical estimates of the Henze-Penrose bounds on the pairwise Bayes misclassification rates that rank the binary subproblems in terms of difficulty of classification. The proposed empirical estimates of the Bayes error rate are computed from the minimal spanning tree (MST) of the samples from each pair of classes. Moreover, a meta-learning technique is presented for quantifying the one-vs-rest Bayes error rate for each individual class from a single MST on the entire dataset. Extensive simulations on benchmark datasets show that the proposed hierarchical method can often be learned much faster than competing methods, while achieving competitive accuracy.
A Change-Detection based Framework for Piecewise-stationary Multi-Armed Bandit Problem
The multi-armed bandit problem has been extensively studied under the stationary assumption. However in reality, this assumption often does not hold because the distributions of rewards themselves may change over time. In this paper, we propose a change-detection (CD) based framework for multi-armed bandit problems under the piecewise-stationary setting, and study a class of change-detection based UCB (Upper Confidence Bound) policies, CD-UCB, that actively detects change points and restarts the UCB indices. We then develop CUSUM-UCB and PHT-UCB, that belong to the CD-UCB class and use cumulative sum (CUSUM) and Page-Hinkley Test (PHT) to detect changes. We show that CUSUM-UCB obtains the best known regret upper bound under mild assumptions. We also demonstrate the regret reduction of the CD-UCB policies over arbitrary Bernoulli rewards and Yahoo! datasets of webpage click-through rates.
DLPaper2Code: Auto-generation of Code from Deep Learning Research Papers
With an abundance of research papers in deep learning, reproducibility or adoption of the existing works becomes a challenge. This is due to the lack of open source implementations provided by the authors. Further, re-implementing research papers in a different library is a daunting task. To address these challenges, we propose a novel extensible approach, DLPaper2Code, to extract and understand deep learning design flow diagrams and tables available in a research paper and convert them to an abstract computational graph. The extracted computational graph is then converted into execution ready source code in both Keras and Caffe, in real-time. An arXiv-like website is created where the automatically generated designs is made publicly available for 5,000 research papers. The generated designs could be rated and edited using an intuitive drag-and-drop UI framework in a crowdsourced manner. To evaluate our approach, we create a simulated dataset with over 216,000 valid design visualizations using a manually defined grammar. Experiments on the simulated dataset show that the proposed framework provide more than $93\%$ accuracy in flow diagram content extraction.
SHOPPER: A Probabilistic Model of Consumer Choice with Substitutes and Complements
We develop SHOPPER, a sequential probabilistic model of shopping data. SHOPPER uses interpretable components to model the forces that drive how a customer chooses products; in particular, we designed SHOPPER to capture how items interact with other items. We develop an efficient posterior inference algorithm to estimate these forces from large-scale data, and we analyze a large dataset from a major chain grocery store. We are interested in answering counterfactual queries about changes in prices. We found that SHOPPER provides accurate predictions even under price interventions, and that it helps identify complementary and substitutable pairs of products.
Deep Neural Networks for Physics Analysis on low-level whole-detector data at the LHC
There has been considerable recent activity applying deep convolutional neural nets (CNNs) to data from particle physics experiments. Current approaches on ATLAS/CMS have largely focussed on a subset of the calorimeter, and for identifying objects or particular particle types. We explore approaches that use the entire calorimeter, combined with track information, for directly conducting physics analyses: i.e. classifying events as known-physics background or new-physics signals. We use an existing RPV-Supersymmetry analysis as a case study and explore CNNs on multi-channel, high-resolution sparse images: applied on GPU and multi-node CPU architectures (including Knights Landing (KNL) Xeon Phi nodes) on the Cori supercomputer at NERSC.
What Really is Deep Learning Doing?
Deep learning has achieved a great success in many areas, from computer vision to natural language processing, to game playing, and much more. Yet, what deep learning is really doing is still an open question. There are a lot of works in this direction. For example, [5] tried to explain deep learning by group renormalization, and [6] tried to explain deep learning from the view of functional approximation. In order to address this very crucial question, here we see deep learning from perspective of mechanical learning and learning machine (see [1], [2]). From this particular angle, we can see deep learning much better and answer with confidence: What deep learning is really doing? why it works well, how it works, and how much data is necessary for learning. We also will discuss advantages and disadvantages of deep learning at the end of this work.
Efficient-UCBV: An Almost Optimal Algorithm using Variance Estimates
We propose a novel variant of the UCB algorithm (referred to as Efficient-UCB-Variance (EUCBV)) for minimizing cumulative regret in the stochastic multi-armed bandit (MAB) setting. EUCBV incorporates the arm elimination strategy proposed in UCB-Improved \citep{auer2010ucb}, while taking into account the variance estimates to compute the arms' confidence bounds, similar to UCBV \citep{audibert2009exploration}. Through a theoretical analysis we establish that EUCBV incurs a \emph{gap-dependent} regret bound of {\scriptsize $O\left( \dfrac{K\sigma^2_{\max} \log (T\Delta^2 /K)}{\Delta}\right)$} after $T$ trials, where $\Delta$ is the minimal gap between optimal and sub-optimal arms; the above bound is an improvement over that of existing state-of-the-art UCB algorithms (such as UCB1, UCB-Improved, UCBV, MOSS). Further, EUCBV incurs a \emph{gap-independent} regret bound of {\scriptsize $O\left(\sqrt{KT}\right)$} which is an improvement over that of UCB1, UCBV and UCB-Improved, while being comparable with that of MOSS and OCUCB. Through an extensive numerical study we show that EUCBV significantly outperforms the popular UCB variants (like MOSS, OCUCB, etc.) as well as Thompson sampling and Bayes-UCB algorithms.
Alternating minimization for dictionary learning: Local Convergence Guarantees
We present theoretical guarantees for an alternating minimization algorithm for the dictionary learning/sparse coding problem. The dictionary learning problem is to factorize vector samples $y^{1},y^{2},\ldots, y^{n}$ into an appropriate basis (dictionary) $A^*$ and sparse vectors $x^{1*},\ldots,x^{n*}$. Our algorithm is a simple alternating minimization procedure that switches between $\ell_1$ minimization and gradient descent in alternate steps. Dictionary learning and specifically alternating minimization algorithms for dictionary learning are well studied both theoretically and empirically. However, in contrast to previous theoretical analyses for this problem, we replace a condition on the operator norm (that is, the largest magnitude singular value) of the true underlying dictionary $A^*$ with a condition on the matrix infinity norm (that is, the largest magnitude term). Our guarantees are under a reasonable generative model that allows for dictionaries with growing operator norms, and can handle an arbitrary level of overcompleteness, while having sparsity that is information theoretically optimal. We also establish upper bounds on the sample complexity of our algorithm.
Learning and Real-time Classification of Hand-written Digits With Spiking Neural Networks
We describe a novel spiking neural network (SNN) for automated, real-time handwritten digit classification and its implementation on a GP-GPU platform. Information processing within the network, from feature extraction to classification is implemented by mimicking the basic aspects of neuronal spike initiation and propagation in the brain. The feature extraction layer of the SNN uses fixed synaptic weight maps to extract the key features of the image and the classifier layer uses the recently developed NormAD approximate gradient descent based supervised learning algorithm for spiking neural networks to adjust the synaptic weights. On the standard MNIST database images of handwritten digits, our network achieves an accuracy of 99.80% on the training set and 98.06% on the test set, with nearly 7x fewer parameters compared to the state-of-the-art spiking networks. We further use this network in a GPU based user-interface system demonstrating real-time SNN simulation to infer digits written by different users. On a test set of 500 such images, this real-time platform achieves an accuracy exceeding 97% while making a prediction within an SNN emulation time of less than 100ms.
Provably Accurate Double-Sparse Coding
Sparse coding is a crucial subroutine in algorithms for various signal processing, deep learning, and other machine learning applications. The central goal is to learn an overcomplete dictionary that can sparsely represent a given input dataset. However, a key challenge is that storage, transmission, and processing of the learned dictionary can be untenably high if the data dimension is high. In this paper, we consider the double-sparsity model introduced by Rubinstein et al. (2010b) where the dictionary itself is the product of a fixed, known basis and a data-adaptive sparse component. First, we introduce a simple algorithm for double-sparse coding that can be amenable to efficient implementation via neural architectures. Second, we theoretically analyze its performance and demonstrate asymptotic sample complexity and running time benefits over existing (provable) approaches for sparse coding. To our knowledge, our work introduces the first computationally efficient algorithm for double-sparse coding that enjoys rigorous statistical guarantees. Finally, we support our analysis via several numerical experiments on simulated data, confirming that our method can indeed be useful in problem sizes encountered in practical applications.
Small-loss bounds for online learning with partial information
We consider the problem of adversarial (non-stochastic) online learning with partial information feedback, where at each round, a decision maker selects an action from a finite set of alternatives. We develop a black-box approach for such problems where the learner observes as feedback only losses of a subset of the actions that includes the selected action. When losses of actions are non-negative, under the graph-based feedback model introduced by Mannor and Shamir, we offer algorithms that attain the so called "small-loss" $o(\alpha L^{\star})$ regret bounds with high probability, where $\alpha$ is the independence number of the graph, and $L^{\star}$ is the loss of the best action. Prior to our work, there was no data-dependent guarantee for general feedback graphs even for pseudo-regret (without dependence on the number of actions, i.e. utilizing the increased information feedback). Taking advantage of the black-box nature of our technique, we extend our results to many other applications such as semi-bandits (including routing in networks), contextual bandits (even with an infinite comparator class), as well as learning with slowly changing (shifting) comparators. In the special case of classical bandit and semi-bandit problems, we provide optimal small-loss, high-probability guarantees of $\tilde{O}(\sqrt{dL^{\star}})$ for actual regret, where $d$ is the number of actions, answering open questions of Neu. Previous bounds for bandits and semi-bandits were known only for pseudo-regret and only in expectation. We also offer an optimal $\tilde{O}(\sqrt{\kappa L^{\star}})$ regret guarantee for fixed feedback graphs with clique-partition number at most $\kappa$.
Stochastic Deep Learning in Memristive Networks
We study the performance of stochastically trained deep neural networks (DNNs) whose synaptic weights are implemented using emerging memristive devices that exhibit limited dynamic range, resolution, and variability in their programming characteristics. We show that a key device parameter to optimize the learning efficiency of DNNs is the variability in its programming characteristics. DNNs with such memristive synapses, even with dynamic range as low as $15$ and only $32$ discrete levels, when trained based on stochastic updates suffer less than $3\%$ loss in accuracy compared to floating point software baseline. We also study the performance of stochastic memristive DNNs when used as inference engines with noise corrupted data and find that if the device variability can be minimized, the relative degradation in performance for the Stochastic DNN is better than that of the software baseline. Hence, our study presents a new optimization corner for memristive devices for building large noise-immune deep learning systems.
Poverty Prediction with Public Landsat 7 Satellite Imagery and Machine Learning
Obtaining detailed and reliable data about local economic livelihoods in developing countries is expensive, and data are consequently scarce. Previous work has shown that it is possible to measure local-level economic livelihoods using high-resolution satellite imagery. However, such imagery is relatively expensive to acquire, often not updated frequently, and is mainly available for recent years. We train CNN models on free and publicly available multispectral daytime satellite images of the African continent from the Landsat 7 satellite, which has collected imagery with global coverage for almost two decades. We show that despite these images' lower resolution, we can achieve accuracies that exceed previous benchmarks.
p-FP: Extraction, Classification, and Prediction of Website Fingerprints with Deep Learning
Recent advances in learning Deep Neural Network (DNN) architectures have received a great deal of attention due to their ability to outperform state-of-the-art classifiers across a wide range of applications, with little or no feature engineering. In this paper, we broadly study the applicability of deep learning to website fingerprinting. We show that unsupervised DNNs can be used to extract low-dimensional feature vectors that improve the performance of state-of-the-art website fingerprinting attacks. When used as classifiers, we show that they can match or exceed performance of existing attacks across a range of application scenarios, including fingerprinting Tor website traces, fingerprinting search engine queries over Tor, defeating fingerprinting defenses, and fingerprinting TLS-encrypted websites. Finally, we show that DNNs can be used to predict the fingerprintability of a website based on its contents, achieving 99% accuracy on a data set of 4500 website downloads.
Breast density classification with deep convolutional neural networks
Breast density classification is an essential part of breast cancer screening. Although a lot of prior work considered this problem as a task for learning algorithms, to our knowledge, all of them used small and not clinically realistic data both for training and evaluation of their models. In this work, we explore the limits of this task with a data set coming from over 200,000 breast cancer screening exams. We use this data to train and evaluate a strong convolutional neural network classifier. In a reader study, we find that our model can perform this task comparably to a human expert.
Communicative Capital for Prosthetic Agents
This work presents an overarching perspective on the role that machine intelligence can play in enhancing human abilities, especially those that have been diminished due to injury or illness. As a primary contribution, we develop the hypothesis that assistive devices, and specifically artificial arms and hands, can and should be viewed as agents in order for us to most effectively improve their collaboration with their human users. We believe that increased agency will enable more powerful interactions between human users and next generation prosthetic devices, especially when the sensorimotor space of the prosthetic technology greatly exceeds the conventional control and communication channels available to a prosthetic user. To more concretely examine an agency-based view on prosthetic devices, we propose a new schema for interpreting the capacity of a human-machine collaboration as a function of both the human's and machine's degrees of agency. We then introduce the idea of communicative capital as a way of thinking about the communication resources developed by a human and a machine during their ongoing interaction. Using this schema of agency and capacity, we examine the benefits and disadvantages of increasing the agency of a prosthetic limb. To do so, we present an analysis of examples from the literature where building communicative capital has enabled a progression of fruitful, task-directed interactions between prostheses and their human users. We then describe further work that is needed to concretely evaluate the hypothesis that prostheses are best thought of as agents. The agent-based viewpoint developed in this article significantly extends current thinking on how best to support the natural, functional use of increasingly complex prosthetic enhancements, and opens the door for more powerful interactions between humans and their assistive technologies.
Self-Supervised Intrinsic Image Decomposition
Intrinsic decomposition from a single image is a highly challenging task, due to its inherent ambiguity and the scarcity of training data. In contrast to traditional fully supervised learning approaches, in this paper we propose learning intrinsic image decomposition by explaining the input image. Our model, the Rendered Intrinsics Network (RIN), joins together an image decomposition pipeline, which predicts reflectance, shape, and lighting conditions given a single image, with a recombination function, a learned shading model used to recompose the original input based off of intrinsic image predictions. Our network can then use unsupervised reconstruction error as an additional signal to improve its intermediate representations. This allows large-scale unlabeled data to be useful during training, and also enables transferring learned knowledge to images of unseen object categories, lighting conditions, and shapes. Extensive experiments demonstrate that our method performs well on both intrinsic image decomposition and knowledge transfer.