title
stringlengths
7
246
abstract
stringlengths
6
3.31k
A Distance Oriented Kalman Filter Particle Swarm Optimizer Applied to Multi-Modality Image Registration
In this paper we describe improvements to the particle swarm optimizer (PSO) made by inclusion of an unscented Kalman filter to guide particle motion. We demonstrate the effectiveness of the unscented Kalman filter PSO by comparing it with the original PSO algorithm and its variants designed to improve performance. The PSOs were tested firstly on a number of common synthetic benchmarking functions, and secondly applied to a practical three-dimensional image registration problem. The proposed methods displayed better performances for 4 out of 8 benchmark functions, and reduced the target registration errors by at least 2mm when registering down-sampled benchmark brain images. Our methods also demonstrated an ability to align images featuring motion related artefacts which all other methods failed to register. These new PSO methods provide a novel, efficient mechanism to integrate prior knowledge into each iteration of the optimization process, which can enhance the accuracy and speed of convergence in the application of medical image registration.
MLtuner: System Support for Automatic Machine Learning Tuning
MLtuner automatically tunes settings for training tunables (such as the learning rate, the momentum, the mini-batch size, and the data staleness bound) that have a significant impact on large-scale machine learning (ML) performance. Traditionally, these tunables are set manually, which is unsurprisingly error-prone and difficult to do without extensive domain knowledge. MLtuner uses efficient snapshotting, branching, and optimization-guided online trial-and-error to find good initial settings as well as to re-tune settings during execution. Experiments show that MLtuner can robustly find and re-tune tunable settings for a variety of ML applications, including image classification (for 3 models and 2 datasets), video classification, and matrix factorization. Compared to state-of-the-art ML auto-tuning approaches, MLtuner is more robust for large problems and over an order of magnitude faster.
Semi-Blind Spatially-Variant Deconvolution in Optical Microscopy with Local Point Spread Function Estimation By Use Of Convolutional Neural Networks
We present a semi-blind, spatially-variant deconvolution technique aimed at optical microscopy that combines a local estimation step of the point spread function (PSF) and deconvolution using a spatially variant, regularized Richardson-Lucy algorithm. To find the local PSF map in a computationally tractable way, we train a convolutional neural network to perform regression of an optical parametric model on synthetically blurred image patches. We deconvolved both synthetic and experimentally-acquired data, and achieved an improvement of image SNR of 1.00 dB on average, compared to other deconvolution algorithms.
Natural Gradient Deep Q-learning
We present a novel algorithm to train a deep Q-learning agent using natural-gradient techniques. We compare the original deep Q-network (DQN) algorithm to its natural-gradient counterpart, which we refer to as NGDQN, on a collection of classic control domains. Without employing target networks, NGDQN significantly outperforms DQN without target networks, and performs no worse than DQN with target networks, suggesting that NGDQN stabilizes training and can help reduce the need for additional hyperparameter tuning. We also find that NGDQN is less sensitive to hyperparameter optimization relative to DQN. Together these results suggest that natural-gradient techniques can improve value-function optimization in deep reinforcement learning.
Explanation Methods in Deep Learning: Users, Values, Concerns and Challenges
Issues regarding explainable AI involve four components: users, laws & regulations, explanations and algorithms. Together these components provide a context in which explanation methods can be evaluated regarding their adequacy. The goal of this chapter is to bridge the gap between expert users and lay users. Different kinds of users are identified and their concerns revealed, relevant statements from the General Data Protection Regulation are analyzed in the context of Deep Neural Networks (DNNs), a taxonomy for the classification of existing explanation methods is introduced, and finally, the various classes of explanation methods are analyzed to verify if user concerns are justified. Overall, it is clear that (visual) explanations can be given about various aspects of the influence of the input on the output. However, it is noted that explanation methods or interfaces for lay users are missing and we speculate which criteria these methods / interfaces should satisfy. Finally it is noted that two important concerns are difficult to address with explanation methods: the concern about bias in datasets that leads to biased DNNs, as well as the suspicion about unfair outcomes.
DeepGauge: Multi-Granularity Testing Criteria for Deep Learning Systems
Deep learning (DL) defines a new data-driven programming paradigm that constructs the internal system logic of a crafted neuron network through a set of training data. We have seen wide adoption of DL in many safety-critical scenarios. However, a plethora of studies have shown that the state-of-the-art DL systems suffer from various vulnerabilities which can lead to severe consequences when applied to real-world applications. Currently, the testing adequacy of a DL system is usually measured by the accuracy of test data. Considering the limitation of accessible high quality test data, good accuracy performance on test data can hardly provide confidence to the testing adequacy and generality of DL systems. Unlike traditional software systems that have clear and controllable logic and functionality, the lack of interpretability in a DL system makes system analysis and defect detection difficult, which could potentially hinder its real-world deployment. In this paper, we propose DeepGauge, a set of multi-granularity testing criteria for DL systems, which aims at rendering a multi-faceted portrayal of the testbed. The in-depth evaluation of our proposed testing criteria is demonstrated on two well-known datasets, five DL systems, and with four state-of-the-art adversarial attack techniques against DL. The potential usefulness of DeepGauge sheds light on the construction of more generic and robust DL systems.
Stacked Neural Networks for end-to-end ciliary motion analysis
Cilia are hairlike structures protruding from nearly every cell in the body. Diseases known as ciliopathies, where cilia function is disrupted, can result in a wide spectrum of disorders. However, most techniques for assessing ciliary motion rely on manual identification and tracking of cilia; this process is laborious and error-prone, and does not scale well. Even where automated ciliary motion analysis tools exist, their applicability is limited. Here, we propose an end-to-end computational machine learning pipeline that automatically identifies regions of cilia from videos, extracts patches of cilia, and classifies patients as exhibiting normal or abnormal ciliary motion. In particular, we demonstrate how convolutional LSTM are able to encode complex features while remaining sensitive enough to differentiate between a variety of motion patterns. Our framework achieves 90% with only a few hundred training epochs. We find that the combination of segmentation and classification networks in a single pipeline yields performance comparable to existing computational pipelines, while providing the additional benefit of an end-to-end, fully-automated analysis toolbox for ciliary motion.
Meta Reinforcement Learning with Latent Variable Gaussian Processes
Learning from small data sets is critical in many practical applications where data collection is time consuming or expensive, e.g., robotics, animal experiments or drug design. Meta learning is one way to increase the data efficiency of learning algorithms by generalizing learned concepts from a set of training tasks to unseen, but related, tasks. Often, this relationship between tasks is hard coded or relies in some other way on human expertise. In this paper, we frame meta learning as a hierarchical latent variable model and infer the relationship between tasks automatically from data. We apply our framework in a model-based reinforcement learning setting and show that our meta-learning model effectively generalizes to novel tasks by identifying how new tasks relate to prior ones from minimal data. This results in up to a 60% reduction in the average interaction time needed to solve tasks compared to strong baselines.
Leave-one-out Approach for Matrix Completion: Primal and Dual Analysis
In this paper, we introduce a powerful technique based on Leave-one-out analysis to the study of low-rank matrix completion problems. Using this technique, we develop a general approach for obtaining fine-grained, entrywise bounds for iterative stochastic procedures in the presence of probabilistic dependency. We demonstrate the power of this approach in analyzing two of the most important algorithms for matrix completion: (i) the non-convex approach based on Projected Gradient Descent (PGD) for a rank-constrained formulation, also known as the Singular Value Projection algorithm, and (ii) the convex relaxation approach based on nuclear norm minimization (NNM). Using this approach, we establish the first convergence guarantee for the original form of PGD without regularization or sample splitting}, and in particular shows that it converges linearly in the infinity norm. For NNM, we use this approach to study a fictitious iterative procedure that arises in the dual analysis. Our results show that \NNM recovers an $ d $-by-$ d $ rank-$ r $ matrix with $\mathcal{O}(\mu r \log(\mu r) d \log d )$ observed entries. This bound has optimal dependence on the matrix dimension and is independent of the condition number. To the best of our knowledge, this is the first sample complexity result for a tractable matrix completion algorithm that satisfies these two properties simultaneously.
Generating Multi-Agent Trajectories using Programmatic Weak Supervision
We study the problem of training sequential generative models for capturing coordinated multi-agent trajectory behavior, such as offensive basketball gameplay. When modeling such settings, it is often beneficial to design hierarchical models that can capture long-term coordination using intermediate variables. Furthermore, these intermediate variables should capture interesting high-level behavioral semantics in an interpretable and manipulatable way. We present a hierarchical framework that can effectively learn such sequential generative models. Our approach is inspired by recent work on leveraging programmatically produced weak labels, which we extend to the spatiotemporal regime. In addition to synthetic settings, we show how to instantiate our framework to effectively model complex interactions between basketball players and generate realistic multi-agent trajectories of basketball gameplay over long time periods. We validate our approach using both quantitative and qualitative evaluations, including a user study comparison conducted with professional sports analysts.
Online Learning: Sufficient Statistics and the Burkholder Method
We uncover a fairly general principle in online learning: If regret can be (approximately) expressed as a function of certain "sufficient statistics" for the data sequence, then there exists a special Burkholder function that 1) can be used algorithmically to achieve the regret bound and 2) only depends on these sufficient statistics, not the entire data sequence, so that the online strategy is only required to keep the sufficient statistics in memory. This characterization is achieved by bringing the full power of the Burkholder Method --- originally developed for certifying probabilistic martingale inequalities --- to bear on the online learning setting. To demonstrate the scope and effectiveness of the Burkholder method, we develop a novel online strategy for matrix prediction that attains a regret bound corresponding to the variance term in matrix concentration inequalities. We also present a linear-time/space prediction strategy for parameter free supervised learning with linear classes and general smooth norms.
Dynamic Filtering with Large Sampling Field for ConvNets
We propose a dynamic filtering strategy with large sampling field for ConvNets (LS-DFN), where the position-specific kernels learn from not only the identical position but also multiple sampled neighbor regions. During sampling, residual learning is introduced to ease training and an attention mechanism is applied to fuse features from different samples. Such multiple samples enlarge the kernels' receptive fields significantly without requiring more parameters. While LS-DFN inherits the advantages of DFN, namely avoiding feature map blurring by position-wise kernels while keeping translation invariance, it also efficiently alleviates the overfitting issue caused by much more parameters than normal CNNs. Our model is efficient and can be trained end-to-end via standard back-propagation. We demonstrate the merits of our LS-DFN on both sparse and dense prediction tasks involving object detection, semantic segmentation, and flow estimation. Our results show LS-DFN enjoys stronger recognition abilities in object detection and semantic segmentation tasks on VOC benchmark and sharper responses in flow estimation on FlyingChairs dataset compared to strong baselines.
Domain Adaptation with Randomized Expectation Maximization
Domain adaptation (DA) is the task of classifying an unlabeled dataset (target) using a labeled dataset (source) from a related domain. The majority of successful DA methods try to directly match the distributions of the source and target data by transforming the feature space. Despite their success, state of the art methods based on this approach are either involved or unable to directly scale to data with many features. This article shows that domain adaptation can be successfully performed by using a very simple randomized expectation maximization (EM) method. We consider two instances of the method, which involve logistic regression and support vector machine, respectively. The underlying assumption of the proposed method is the existence of a good single linear classifier for both source and target domain. The potential limitations of this assumption are alleviated by the flexibility of the method, which can directly incorporate deep features extracted from a pre-trained deep neural network. The resulting algorithm is strikingly easy to implement and apply. We test its performance on 36 real-life adaptation tasks over text and image data with diverse characteristics. The method achieves state-of-the-art results, competitive with those of involved end-to-end deep transfer-learning methods.
Learning Robotic Assembly from CAD
In this work, motivated by recent manufacturing trends, we investigate autonomous robotic assembly. Industrial assembly tasks require contact-rich manipulation skills, which are challenging to acquire using classical control and motion planning approaches. Consequently, robot controllers for assembly domains are presently engineered to solve a particular task, and cannot easily handle variations in the product or environment. Reinforcement learning (RL) is a promising approach for autonomously acquiring robot skills that involve contact-rich dynamics. However, RL relies on random exploration for learning a control policy, which requires many robot executions, and often gets trapped in locally suboptimal solutions. Instead, we posit that prior knowledge, when available, can improve RL performance. We exploit the fact that in modern assembly domains, geometric information about the task is readily available via the CAD design files. We propose to leverage this prior knowledge by guiding RL along a geometric motion plan, calculated using the CAD data. We show that our approach effectively improves over traditional control approaches for tracking the motion plan, and can solve assembly tasks that require high precision, even without accurate state estimation. In addition, we propose a neural network architecture that can learn to track the motion plan, and generalize the assembly controller to changes in the object positions.
Graph-based regularization for regression problems with alignment and highly-correlated designs
Sparse models for high-dimensional linear regression and machine learning have received substantial attention over the past two decades. Model selection, or determining which features or covariates are the best explanatory variables, is critical to the interpretability of a learned model. Much of the current literature assumes that covariates are only mildly correlated. However, in many modern applications covariates are highly correlated and do not exhibit key properties (such as the restricted eigenvalue condition, restricted isometry property, or other related assumptions). This work considers a high-dimensional regression setting in which a graph governs both correlations among the covariates and the similarity among regression coefficients -- meaning there is \emph{alignment} between the covariates and regression coefficients. Using side information about the strength of correlations among features, we form a graph with edge weights corresponding to pairwise covariances. This graph is used to define a graph total variation regularizer that promotes similar weights for correlated features. This work shows how the proposed graph-based regularization yields mean-squared error guarantees for a broad range of covariance graph structures. These guarantees are optimal for many specific covariance graphs, including block and lattice graphs. Our proposed approach outperforms other methods for highly-correlated design in a variety of experiments on synthetic data and real biochemistry data.
Efficient Recurrent Neural Networks using Structured Matrices in FPGAs
Recurrent Neural Networks (RNNs) are becoming increasingly important for time series-related applications which require efficient and real-time implementations. The recent pruning based work ESE suffers from degradation of performance/energy efficiency due to the irregular network structure after pruning. We propose block-circulant matrices for weight matrix representation in RNNs, thereby achieving simultaneous model compression and acceleration. We aim to implement RNNs in FPGA with highest performance and energy efficiency, with certain accuracy requirement (negligible accuracy degradation). Experimental results on actual FPGA deployments shows that the proposed framework achieves a maximum energy efficiency improvement of 35.7$\times$ compared with ESE.
Product Characterisation towards Personalisation: Learning Attributes from Unstructured Data to Recommend Fashion Products
In this paper, we describe a solution to tackle a common set of challenges in e-commerce, which arise from the fact that new products are continually being added to the catalogue. The challenges involve properly personalising the customer experience, forecasting demand and planning the product range. We argue that the foundational piece to solve all of these problems is having consistent and detailed information about each product, information that is rarely available or consistent given the multitude of suppliers and types of products. We describe in detail the architecture and methodology implemented at ASOS, one of the world's largest fashion e-commerce retailers, to tackle this problem. We then show how this quantitative understanding of the products can be leveraged to improve recommendations in a hybrid recommender system approach.
Inference in Probabilistic Graphical Models by Graph Neural Networks
A fundamental computation for statistical inference and accurate decision-making is to compute the marginal probabilities or most probable states of task-relevant variables. Probabilistic graphical models can efficiently represent the structure of such complex data, but performing these inferences is generally difficult. Message-passing algorithms, such as belief propagation, are a natural way to disseminate evidence amongst correlated variables while exploiting the graph structure, but these algorithms can struggle when the conditional dependency graphs contain loops. Here we use Graph Neural Networks (GNNs) to learn a message-passing algorithm that solves these inference tasks. We first show that the architecture of GNNs is well-matched to inference tasks. We then demonstrate the efficacy of this inference approach by training GNNs on a collection of graphical models and showing that they substantially outperform belief propagation on loopy graphs. Our message-passing algorithms generalize out of the training set to larger graphs and graphs with different structure.
Causal Inference on Discrete Data via Estimating Distance Correlations
In this paper, we deal with the problem of inferring causal directions when the data is on discrete domain. By considering the distribution of the cause $P(X)$ and the conditional distribution mapping cause to effect $P(Y|X)$ as independent random variables, we propose to infer the causal direction via comparing the distance correlation between $P(X)$ and $P(Y|X)$ with the distance correlation between $P(Y)$ and $P(X|Y)$. We infer "$X$ causes $Y$" if the dependence coefficient between $P(X)$ and $P(Y|X)$ is smaller. Experiments are performed to show the performance of the proposed method.
Gradient Descent with Random Initialization: Fast Global Convergence for Nonconvex Phase Retrieval
This paper considers the problem of solving systems of quadratic equations, namely, recovering an object of interest $\mathbf{x}^{\natural}\in\mathbb{R}^{n}$ from $m$ quadratic equations/samples $y_{i}=(\mathbf{a}_{i}^{\top}\mathbf{x}^{\natural})^{2}$, $1\leq i\leq m$. This problem, also dubbed as phase retrieval, spans multiple domains including physical sciences and machine learning. We investigate the efficiency of gradient descent (or Wirtinger flow) designed for the nonconvex least squares problem. We prove that under Gaussian designs, gradient descent --- when randomly initialized --- yields an $\epsilon$-accurate solution in $O\big(\log n+\log(1/\epsilon)\big)$ iterations given nearly minimal samples, thus achieving near-optimal computational and sample complexities at once. This provides the first global convergence guarantee concerning vanilla gradient descent for phase retrieval, without the need of (i) carefully-designed initialization, (ii) sample splitting, or (iii) sophisticated saddle-point escaping schemes. All of these are achieved by exploiting the statistical models in analyzing optimization algorithms, via a leave-one-out approach that enables the decoupling of certain statistical dependency between the gradient descent iterates and the data.
Unsupervised Representation Learning by Predicting Image Rotations
Over the last years, deep convolutional neural networks (ConvNets) have transformed the field of computer vision thanks to their unparalleled capacity to learn high level semantic image features. However, in order to successfully learn those features, they usually require massive amounts of manually labeled data, which is both expensive and impractical to scale. Therefore, unsupervised semantic feature learning, i.e., learning without requiring manual annotation effort, is of crucial importance in order to successfully harvest the vast amount of visual data that are available today. In our work we propose to learn image features by training ConvNets to recognize the 2d rotation that is applied to the image that it gets as input. We demonstrate both qualitatively and quantitatively that this apparently simple task actually provides a very powerful supervisory signal for semantic feature learning. We exhaustively evaluate our method in various unsupervised feature learning benchmarks and we exhibit in all of them state-of-the-art performance. Specifically, our results on those benchmarks demonstrate dramatic improvements w.r.t. prior state-of-the-art approaches in unsupervised representation learning and thus significantly close the gap with supervised feature learning. For instance, in PASCAL VOC 2007 detection task our unsupervised pre-trained AlexNet model achieves the state-of-the-art (among unsupervised methods) mAP of 54.4% that is only 2.4 points lower from the supervised case. We get similarly striking results when we transfer our unsupervised learned features on various other tasks, such as ImageNet classification, PASCAL classification, PASCAL segmentation, and CIFAR-10 classification. The code and models of our paper will be published on: https://github.com/gidariss/FeatureLearningRotNet .
Estimating defectiveness of source code: A predictive model using GitHub content
Two key contributions presented in this paper are: i) A method for building a dataset containing source code features extracted from source files taken from Open Source Software (OSS) and associated bug reports, ii) A predictive model for estimating defectiveness of a given source code. These artifacts can be useful for building tools and techniques pertaining to several automated software engineering areas such as bug localization, code review, and recommendation and program repair. In order to achieve our goal, we first extract coding style information (e.g. related to programming language constructs used in the source code) for source code files present on GitHub. Then the information available in bug reports (if any) associated with these source code files are extracted. Thus fetched un(/ semi)-structured information is then transformed into a structured knowledge base. We considered more than 30400 source code files from 20 different GitHub repositories with about 14950 associated bug reports across 4 bug tracking portals. The source code files considered are written in four programming languages (viz., C, C++, Java, and Python) and belong to different types of applications. A machine learning (ML) model for estimating the defectiveness of a given input source code is then trained using the knowledge base. In order to pick the best ML model, we evaluated 8 different ML algorithms such as Random Forest, K Nearest Neighbour and SVM with around 50 parameter configurations to compare their performance on our tasks. One of our findings shows that best K-fold (with k=5) cross-validation results are obtained with the NuSVM technique that gives a mean F1 score of 0.914.
Some Theoretical Properties of GANs
Generative Adversarial Networks (GANs) are a class of generative algorithms that have been shown to produce state-of-the art samples, especially in the domain of image creation. The fundamental principle of GANs is to approximate the unknown distribution of a given data set by optimizing an objective function through an adversarial game between a family of generators and a family of discriminators. In this paper, we offer a better theoretical understanding of GANs by analyzing some of their mathematical and statistical properties. We study the deep connection between the adversarial principle underlying GANs and the Jensen-Shannon divergence, together with some optimality characteristics of the problem. An analysis of the role of the discriminator family via approximation arguments is also provided. In addition, taking a statistical point of view, we study the large sample properties of the estimated distribution and prove in particular a central limit theorem. Some of our results are illustrated with simulated examples.
Multi-view Metric Learning in Vector-valued Kernel Spaces
We consider the problem of metric learning for multi-view data and present a novel method for learning within-view as well as between-view metrics in vector-valued kernel spaces, as a way to capture multi-modal structure of the data. We formulate two convex optimization problems to jointly learn the metric and the classifier or regressor in kernel feature spaces. An iterative three-step multi-view metric learning algorithm is derived from the optimization problems. In order to scale the computation to large training sets, a block-wise Nystr{\"o}m approximation of the multi-view kernel matrix is introduced. We justify our approach theoretically and experimentally, and show its performance on real-world datasets against relevant state-of-the-art methods.
Efficient Sampling and Structure Learning of Bayesian Networks
Bayesian networks are probabilistic graphical models widely employed to understand dependencies in high dimensional data, and even to facilitate causal discovery. Learning the underlying network structure, which is encoded as a directed acyclic graph (DAG) is highly challenging mainly due to the vast number of possible networks in combination with the acyclicity constraint. Efforts have focussed on two fronts: constraint-based methods that perform conditional independence tests to exclude edges and score and search approaches which explore the DAG space with greedy or MCMC schemes. Here we synthesise these two fields in a novel hybrid method which reduces the complexity of MCMC approaches to that of a constraint-based method. Individual steps in the MCMC scheme only require simple table lookups so that very long chains can be efficiently obtained. Furthermore, the scheme includes an iterative procedure to correct for errors from the conditional independence tests. The algorithm offers markedly superior performance to alternatives, particularly because DAGs can also be sampled from the posterior distribution, enabling full Bayesian model averaging for much larger Bayesian networks.
Scalable Generalized Dynamic Topic Models
Dynamic topic models (DTMs) model the evolution of prevalent themes in literature, online media, and other forms of text over time. DTMs assume that word co-occurrence statistics change continuously and therefore impose continuous stochastic process priors on their model parameters. These dynamical priors make inference much harder than in regular topic models, and also limit scalability. In this paper, we present several new results around DTMs. First, we extend the class of tractable priors from Wiener processes to the generic class of Gaussian processes (GPs). This allows us to explore topics that develop smoothly over time, that have a long-term memory or are temporally concentrated (for event detection). Second, we show how to perform scalable approximate inference in these models based on ideas around stochastic variational inference and sparse Gaussian processes. This way we can train a rich family of DTMs to massive data. Our experiments on several large-scale datasets show that our generalized model allows us to find interesting patterns that were not accessible by previous approaches.
An Unsupervised Multivariate Time Series Kernel Approach for Identifying Patients with Surgical Site Infection from Blood Samples
A large fraction of the electronic health records consists of clinical measurements collected over time, such as blood tests, which provide important information about the health status of a patient. These sequences of clinical measurements are naturally represented as time series, characterized by multiple variables and the presence of missing data, which complicate analysis. In this work, we propose a surgical site infection detection framework for patients undergoing colorectal cancer surgery that is completely unsupervised, hence alleviating the problem of getting access to labelled training data. The framework is based on powerful kernels for multivariate time series that account for missing data when computing similarities. Our approach show superior performance compared to baselines that have to resort to imputation techniques and performs comparable to a supervised classification baseline.
Multiple Models for Recommending Temporal Aspects of Entities
Entity aspect recommendation is an emerging task in semantic search that helps users discover serendipitous and prominent information with respect to an entity, of which salience (e.g., popularity) is the most important factor in previous work. However, entity aspects are temporally dynamic and often driven by events happening over time. For such cases, aspect suggestion based solely on salience features can give unsatisfactory results, for two reasons. First, salience is often accumulated over a long time period and does not account for recency. Second, many aspects related to an event entity are strongly time-dependent. In this paper, we study the task of temporal aspect recommendation for a given entity, which aims at recommending the most relevant aspects and takes into account time in order to improve search experience. We propose a novel event-centric ensemble ranking method that learns from multiple time and type-dependent models and dynamically trades off salience and recency characteristics. Through extensive experiments on real-world query logs, we demonstrate that our method is robust and achieves better effectiveness than competitive baselines.
Crowd-Machine Collaboration for Item Screening
In this paper we describe how crowd and machine classifier can be efficiently combined to screen items that satisfy a set of predicates. We show that this is a recurring problem in many domains, present machine-human (hybrid) algorithms that screen items efficiently and estimate the gain over human-only or machine-only screening in terms of performance and cost.
An Exercise Fatigue Detection Model Based on Machine Learning Methods
This study proposes an exercise fatigue detection model based on real-time clinical data which includes time domain analysis, frequency domain analysis, detrended fluctuation analysis, approximate entropy, and sample entropy. Furthermore, this study proposed a feature extraction method which is combined with an analytical hierarchy process to analyze and extract critical features. Finally, machine learning algorithms were adopted to analyze the data of each feature for the detection of exercise fatigue. The practical experimental results showed that the proposed exercise fatigue detection model and feature extraction method could precisely detect the level of exercise fatigue, and the accuracy of exercise fatigue detection could be improved up to 98.65%.
Resilient Monotone Sequential Maximization
Applications in machine learning, optimization, and control require the sequential selection of a few system elements, such as sensors, data, or actuators, to optimize the system performance across multiple time steps. However, in failure-prone and adversarial environments, sensors get attacked, data get deleted, and actuators fail. Thence, traditional sequential design paradigms become insufficient and, in contrast, resilient sequential designs that adapt against system-wide attacks, deletions, or failures become important. In general, resilient sequential design problems are computationally hard. Also, even though they often involve objective functions that are monotone and (possibly) submodular, no scalable approximation algorithms are known for their solution. In this paper, we provide the first scalable algorithm, that achieves the following characteristics: system-wide resiliency, i.e., the algorithm is valid for any number of denial-of-service attacks, deletions, or failures; adaptiveness, i.e., at each time step, the algorithm selects system elements based on the history of inflicted attacks, deletions, or failures; and provable approximation performance, i.e., the algorithm guarantees for monotone objective functions a solution close to the optimal. We quantify the algorithm's approximation performance using a notion of curvature for monotone (not necessarily submodular) set functions. Finally, we support our theoretical analyses with simulated experiments, by considering a control-aware sensor scheduling scenario, namely, sensing-constrained robot navigation.
Stochastic Learning under Random Reshuffling with Constant Step-sizes
In empirical risk optimization, it has been observed that stochastic gradient implementations that rely on random reshuffling of the data achieve better performance than implementations that rely on sampling the data uniformly. Recent works have pursued justifications for this behavior by examining the convergence rate of the learning process under diminishing step-sizes. This work focuses on the constant step-size case and strongly convex loss function. In this case, convergence is guaranteed to a small neighborhood of the optimizer albeit at a linear rate. The analysis establishes analytically that random reshuffling outperforms uniform sampling by showing explicitly that iterates approach a smaller neighborhood of size $O(\mu^2)$ around the minimizer rather than $O(\mu)$. Furthermore, we derive an analytical expression for the steady-state mean-square-error performance of the algorithm, which helps clarify in greater detail the differences between sampling with and without replacement. We also explain the periodic behavior that is observed in random reshuffling implementations.
An Overview on Application of Machine Learning Techniques in Optical Networks
Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions.
Information Theoretic Interpretation of Deep learning
We interpret part of the experimental results of Shwartz-Ziv and Tishby [2017]. Inspired by these results, we established a conjecture of the dynamics of the machinary of deep neural network. This conjecture can be used to explain the counterpart result by Saxe et al. [2018].
Adversarial Defense based on Structure-to-Signal Autoencoders
Adversarial attack methods have demonstrated the fragility of deep neural networks. Their imperceptible perturbations are frequently able fool classifiers into potentially dangerous misclassifications. We propose a novel way to interpret adversarial perturbations in terms of the effective input signal that classifiers actually use. Based on this, we apply specially trained autoencoders, referred to as S2SNets, as defense mechanism. They follow a two-stage training scheme: first unsupervised, followed by a fine-tuning of the decoder, using gradients from an existing classifier. S2SNets induce a shift in the distribution of gradients propagated through them, stripping them from class-dependent signal. We analyze their robustness against several white-box and gray-box scenarios on the large ImageNet dataset. Our approach reaches comparable resilience in white-box attack scenarios as other state-of-the-art defenses in gray-box scenarios. We further analyze the relationships of AlexNet, VGG 16, ResNet 50 and Inception v3 in adversarial space, and found that VGG 16 is the easiest to fool, while perturbations from ResNet 50 are the most transferable.
Boosting Random Forests to Reduce Bias; One-Step Boosted Forest and its Variance Estimate
In this paper we propose using the principle of boosting to reduce the bias of a random forest prediction in the regression setting. From the original random forest fit we extract the residuals and then fit another random forest to these residuals. We call the sum of these two random forests a \textit{one-step boosted forest}. We show with simulated and real data that the one-step boosted forest has a reduced bias compared to the original random forest. The paper also provides a variance estimate of the one-step boosted forest by an extension of the infinitesimal Jackknife estimator. Using this variance estimate we can construct prediction intervals for the boosted forest and we show that they have good coverage probabilities. Combining the bias reduction and the variance estimate we show that the one-step boosted forest has a significant reduction in predictive mean squared error and thus an improvement in predictive performance. When applied on datasets from the UCI database, one-step boosted forest performs better than random forest and gradient boosting machine algorithms. Theoretically we can also extend such a boosting process to more than one step and the same principles outlined in this paper can be used to find variance estimates for such predictors. Such boosting will reduce bias even further but it risks over-fitting and also increases the computational burden.
Monocular Depth Estimation by Learning from Heterogeneous Datasets
Depth estimation provides essential information to perform autonomous driving and driver assistance. Especially, Monocular Depth Estimation is interesting from a practical point of view, since using a single camera is cheaper than many other options and avoids the need for continuous calibration strategies as required by stereo-vision approaches. State-of-the-art methods for Monocular Depth Estimation are based on Convolutional Neural Networks (CNNs). A promising line of work consists of introducing additional semantic information about the traffic scene when training CNNs for depth estimation. In practice, this means that the depth data used for CNN training is complemented with images having pixel-wise semantic labels, which usually are difficult to annotate (e.g. crowded urban images). Moreover, so far it is common practice to assume that the same raw training data is associated with both types of ground truth, i.e., depth and semantic labels. The main contribution of this paper is to show that this hard constraint can be circumvented, i.e., that we can train CNNs for depth estimation by leveraging the depth and semantic information coming from heterogeneous datasets. In order to illustrate the benefits of our approach, we combine KITTI depth and Cityscapes semantic segmentation datasets, outperforming state-of-the-art results on Monocular Depth Estimation.
Error Estimation for Randomized Least-Squares Algorithms via the Bootstrap
Over the course of the past decade, a variety of randomized algorithms have been proposed for computing approximate least-squares (LS) solutions in large-scale settings. A longstanding practical issue is that, for any given input, the user rarely knows the actual error of an approximate solution (relative to the exact solution). Likewise, it is difficult for the user to know precisely how much computation is needed to achieve the desired error tolerance. Consequently, the user often appeals to worst-case error bounds that tend to offer only qualitative guidance. As a more practical alternative, we propose a bootstrap method to compute a posteriori error estimates for randomized LS algorithms. These estimates permit the user to numerically assess the error of a given solution, and to predict how much work is needed to improve a "preliminary" solution. In addition, we provide theoretical consistency results for the method, which are the first such results in this context (to the best of our knowledge). From a practical standpoint, the method also has considerable flexibility, insofar as it can be applied to several popular sketching algorithms, as well as a variety of error metrics. Moreover, the extra step of error estimation does not add much cost to an underlying sketching algorithm. Finally, we demonstrate the effectiveness of the method with empirical results.
Stacked Cross Attention for Image-Text Matching
In this paper, we study the problem of image-text matching. Inferring the latent semantic alignment between objects or other salient stuff (e.g. snow, sky, lawn) and the corresponding words in sentences allows to capture fine-grained interplay between vision and language, and makes image-text matching more interpretable. Prior work either simply aggregates the similarity of all possible pairs of regions and words without attending differentially to more and less important words or regions, or uses a multi-step attentional process to capture limited number of semantic alignments which is less interpretable. In this paper, we present Stacked Cross Attention to discover the full latent alignments using both image regions and words in a sentence as context and infer image-text similarity. Our approach achieves the state-of-the-art results on the MS-COCO and Flickr30K datasets. On Flickr30K, our approach outperforms the current best methods by 22.1% relatively in text retrieval from image query, and 18.2% relatively in image retrieval with text query (based on Recall@1). On MS-COCO, our approach improves sentence retrieval by 17.8% relatively and image retrieval by 16.6% relatively (based on Recall@1 using the 5K test set). Code has been made available at: https://github.com/kuanghuei/SCAN.
Similar Elements and Metric Labeling on Complete Graphs
We consider a problem that involves finding similar elements in a collection of sets. The problem is motivated by applications in machine learning and pattern recognition. We formulate the similar elements problem as an optimization and give an efficient approximation algorithm that finds a solution within a factor of 2 of the optimal. The similar elements problem is a special case of the metric labeling problem and we also give an efficient 2-approximation algorithm for the metric labeling problem on complete graphs.
Incremental Learning-to-Learn with Statistical Guarantees
In learning-to-learn the goal is to infer a learning algorithm that works well on a class of tasks sampled from an unknown meta distribution. In contrast to previous work on batch learning-to-learn, we consider a scenario where tasks are presented sequentially and the algorithm needs to adapt incrementally to improve its performance on future tasks. Key to this setting is for the algorithm to rapidly incorporate new observations into the model as they arrive, without keeping them in memory. We focus on the case where the underlying algorithm is ridge regression parameterized by a positive semidefinite matrix. We propose to learn this matrix by applying a stochastic strategy to minimize the empirical error incurred by ridge regression on future tasks sampled from the meta distribution. We study the statistical properties of the proposed algorithm and prove non-asymptotic bounds on its excess transfer risk, that is, the generalization performance on new tasks from the same meta distribution. We compare our online learning-to-learn approach with a state of the art batch method, both theoretically and empirically.
Clustering to Reduce Spatial Data Set Size
Traditionally it had been a problem that researchers did not have access to enough spatial data to answer pressing research questions or build compelling visualizations. Today, however, the problem is often that we have too much data. Spatially redundant or approximately redundant points may refer to a single feature (plus noise) rather than many distinct spatial features. We use a machine learning approach with density-based clustering to compress such spatial data into a set of representative features.
Seglearn: A Python Package for Learning Sequences and Time Series
Seglearn is an open-source python package for machine learning time series or sequences using a sliding window segmentation approach. The implementation provides a flexible pipeline for tackling classification, regression, and forecasting problems with multivariate sequence and contextual data. This package is compatible with scikit-learn and is listed under scikit-learn Related Projects. The package depends on numpy, scipy, and scikit-learn. Seglearn is distributed under the BSD 3-Clause License. Documentation includes a detailed API description, user guide, and examples. Unit tests provide a high degree of code coverage.
Extended depth-of-field in holographic image reconstruction using deep learning based auto-focusing and phase-recovery
Holography encodes the three dimensional (3D) information of a sample in the form of an intensity-only recording. However, to decode the original sample image from its hologram(s), auto-focusing and phase-recovery are needed, which are in general cumbersome and time-consuming to digitally perform. Here we demonstrate a convolutional neural network (CNN) based approach that simultaneously performs auto-focusing and phase-recovery to significantly extend the depth-of-field (DOF) in holographic image reconstruction. For this, a CNN is trained by using pairs of randomly de-focused back-propagated holograms and their corresponding in-focus phase-recovered images. After this training phase, the CNN takes a single back-propagated hologram of a 3D sample as input to rapidly achieve phase-recovery and reconstruct an in focus image of the sample over a significantly extended DOF. This deep learning based DOF extension method is non-iterative, and significantly improves the algorithm time-complexity of holographic image reconstruction from O(nm) to O(1), where n refers to the number of individual object points or particles within the sample volume, and m represents the focusing search space within which each object point or particle needs to be individually focused. These results highlight some of the unique opportunities created by data-enabled statistical image reconstruction methods powered by machine learning, and we believe that the presented approach can be broadly applicable to computationally extend the DOF of other imaging modalities.
Learning the Localization Function: Machine Learning Approach to Fingerprinting Localization
Considered as a data-driven approach, Fingerprinting Localization Solutions (FPSs) enjoy huge popularity due to their good performance and minimal environment information requirement. This papers addresses applications of artificial intelligence to solve two problems in Received Signal Strength Indicator (RSSI) based FPS, first the cumbersome training database construction and second the extrapolation of fingerprinting algorithm for similar buildings with slight environmental changes. After a concise overview of deep learning design techniques, two main techniques widely used in deep learning are exploited for the above mentioned issues namely data augmentation and transfer learning. We train a multi-layer neural network that learns the mapping from the observations to the locations. A data augmentation method is proposed to increase the training database size based on the structure of RSSI measurements and hence reducing effectively the amount of training data. Then it is shown experimentally how a model trained for a particular building can be transferred to a similar one by fine tuning with significantly smaller training numbers. The paper implicitly discusses the new guidelines to consider about deep learning designs when they are employed in a new application context.
Comparing Fixed and Adaptive Computation Time for Recurrent Neural Networks
Adaptive Computation Time for Recurrent Neural Networks (ACT) is one of the most promising architectures for variable computation. ACT adapts to the input sequence by being able to look at each sample more than once, and learn how many times it should do it. In this paper, we compare ACT to Repeat-RNN, a novel architecture based on repeating each sample a fixed number of times. We found surprising results, where Repeat-RNN performs as good as ACT in the selected tasks. Source code in TensorFlow and PyTorch is publicly available at https://imatge-upc.github.io/danifojo-2018-repeatrnn/
Boosted Density Estimation Remastered
There has recently been a steady increase in the number iterative approaches to density estimation. However, an accompanying burst of formal convergence guarantees has not followed; all results pay the price of heavy assumptions which are often unrealistic or hard to check. The Generative Adversarial Network (GAN) literature --- seemingly orthogonal to the aforementioned pursuit --- has had the side effect of a renewed interest in variational divergence minimisation (notably $f$-GAN). We show that by introducing a weak learning assumption (in the sense of the classical boosting framework) we are able to import some recent results from the GAN literature to develop an iterative boosted density estimation algorithm, including formal convergence results with rates, that does not suffer the shortcomings other approaches. We show that the density fit is an exponential family, and as part of our analysis obtain an improved variational characterisation of $f$-GAN.
Enforcing constraints for interpolation and extrapolation in Generative Adversarial Networks
We suggest ways to enforce given constraints in the output of a Generative Adversarial Network (GAN) generator both for interpolation and extrapolation (prediction). For the case of dynamical systems, given a time series, we wish to train GAN generators that can be used to predict trajectories starting from a given initial condition. In this setting, the constraints can be in algebraic and/or differential form. Even though we are predominantly interested in the case of extrapolation, we will see that the tasks of interpolation and extrapolation are related. However, they need to be treated differently. For the case of interpolation, the incorporation of constraints is built into the training of the GAN. The incorporation of the constraints respects the primary game-theoretic setup of a GAN so it can be combined with existing algorithms. However, it can exacerbate the problem of instability during training that is well-known for GANs. We suggest adding small noise to the constraints as a simple remedy that has performed well in our numerical experiments. The case of extrapolation (prediction) is more involved. During training, the GAN generator learns to interpolate a noisy version of the data and we enforce the constraints. This approach has connections with model reduction that we can utilize to improve the efficiency and accuracy of the training. Depending on the form of the constraints, we may enforce them also during prediction through a projection step. We provide examples of linear and nonlinear systems of differential equations to illustrate the various constructions.
Residual Networks: Lyapunov Stability and Convex Decomposition
While training error of most deep neural networks degrades as the depth of the network increases, residual networks appear to be an exception. We show that the main reason for this is the Lyapunov stability of the gradient descent algorithm: for an arbitrarily chosen step size, the equilibria of the gradient descent are most likely to remain stable for the parametrization of residual networks. We then present an architecture with a pair of residual networks to approximate a large class of functions by decomposing them into a convex and a concave part. Some parameters of this model are shown to change little during training, and this imperfect optimization prevents overfitting the data and leads to solutions with small Lipschitz constants, while providing clues about the generalization of other deep networks.
Speaker Clustering With Neural Networks And Audio Processing
Speaker clustering is the task of differentiating speakers in a recording. In a way, the aim is to answer "who spoke when" in audio recordings. A common method used in industry is feature extraction directly from the recording thanks to MFCC features, and by using well-known techniques such as Gaussian Mixture Models (GMM) and Hidden Markov Models (HMM). In this paper, we studied neural networks (especially CNN) followed by clustering and audio processing in the quest to reach similar accuracy to state-of-the-art methods.
Learning-based Model Predictive Control for Safe Exploration
Learning-based methods have been successful in solving complex control tasks without significant prior knowledge about the system. However, these methods typically do not provide any safety guarantees, which prevents their use in safety-critical, real-world applications. In this paper, we present a learning-based model predictive control scheme that can provide provable high-probability safety guarantees. To this end, we exploit regularity assumptions on the dynamics in terms of a Gaussian process prior to construct provably accurate confidence intervals on predicted trajectories. Unlike previous approaches, we do not assume that model uncertainties are independent. Based on these predictions, we guarantee that trajectories satisfy safety constraints. Moreover, we use a terminal set constraint to recursively guarantee the existence of safe control actions at every iteration. In our experiments, we show that the resulting algorithm can be used to safely and efficiently explore and learn about dynamic systems.
Learning Eligibility in Cancer Clinical Trials using Deep Neural Networks
Interventional cancer clinical trials are generally too restrictive, and some patients are often excluded on the basis of comorbidity, past or concomitant treatments, or the fact that they are over a certain age. The efficacy and safety of new treatments for patients with these characteristics are, therefore, not defined. In this work, we built a model to automatically predict whether short clinical statements were considered inclusion or exclusion criteria. We used protocols from cancer clinical trials that were available in public registries from the last 18 years to train word-embeddings, and we constructed a~dataset of 6M short free-texts labeled as eligible or not eligible. A text classifier was trained using deep neural networks, with pre-trained word-embeddings as inputs, to predict whether or not short free-text statements describing clinical information were considered eligible. We additionally analyzed the semantic reasoning of the word-embedding representations obtained and were able to identify equivalent treatments for a type of tumor analogous with the drugs used to treat other tumors. We show that representation learning using {deep} neural networks can be successfully leveraged to extract the medical knowledge from clinical trial protocols for potentially assisting practitioners when prescribing treatments.
What do Deep Networks Like to See?
We propose a novel way to measure and understand convolutional neural networks by quantifying the amount of input signal they let in. To do this, an autoencoder (AE) was fine-tuned on gradients from a pre-trained classifier with fixed parameters. We compared the reconstructed samples from AEs that were fine-tuned on a set of image classifiers (AlexNet, VGG16, ResNet-50, and Inception~v3) and found substantial differences. The AE learns which aspects of the input space to preserve and which ones to ignore, based on the information encoded in the backpropagated gradients. Measuring the changes in accuracy when the signal of one classifier is used by a second one, a relation of total order emerges. This order depends directly on each classifier's input signal but it does not correlate with classification accuracy or network size. Further evidence of this phenomenon is provided by measuring the normalized mutual information between original images and auto-encoded reconstructions from different fine-tuned AEs. These findings break new ground in the area of neural network understanding, opening a new way to reason, debug, and interpret their results. We present four concrete examples in the literature where observations can now be explained in terms of the input signal that a model uses.
Structured Output Learning with Abstention: Application to Accurate Opinion Prediction
Motivated by Supervised Opinion Analysis, we propose a novel framework devoted to Structured Output Learning with Abstention (SOLA). The structure prediction model is able to abstain from predicting some labels in the structured output at a cost chosen by the user in a flexible way. For that purpose, we decompose the problem into the learning of a pair of predictors, one devoted to structured abstention and the other, to structured output prediction. To compare fully labeled training data with predictions potentially containing abstentions, we define a wide class of asymmetric abstention-aware losses. Learning is achieved by surrogate regression in an appropriate feature space while prediction with abstention is performed by solving a new pre-image problem. Thus, SOLA extends recent ideas about Structured Output Prediction via surrogate problems and calibration theory and enjoys statistical guarantees on the resulting excess risk. Instantiated on a hierarchical abstention-aware loss, SOLA is shown to be relevant for fine-grained opinion mining and gives state-of-the-art results on this task. Moreover, the abstention-aware representations can be used to competitively predict user-review ratings based on a sentence-level opinion predictor.
Gradient Descent Quantizes ReLU Network Features
Deep neural networks are often trained in the over-parametrized regime (i.e. with far more parameters than training examples), and understanding why the training converges to solutions that generalize remains an open problem. Several studies have highlighted the fact that the training procedure, i.e. mini-batch Stochastic Gradient Descent (SGD) leads to solutions that have specific properties in the loss landscape. However, even with plain Gradient Descent (GD) the solutions found in the over-parametrized regime are pretty good and this phenomenon is poorly understood. We propose an analysis of this behavior for feedforward networks with a ReLU activation function under the assumption of small initialization and learning rate and uncover a quantization effect: The weight vectors tend to concentrate at a small number of directions determined by the input data. As a consequence, we show that for given input data there are only finitely many, "simple" functions that can be obtained, independent of the network size. This puts these functions in analogy to linear interpolations (for given input data there are finitely many triangulations, which each determine a function by linear interpolation). We ask whether this analogy extends to the generalization properties - while the usual distribution-independent generalization property does not hold, it could be that for e.g. smooth functions with bounded second derivative an approximation property holds which could "explain" generalization of networks (of unbounded size) to unseen inputs.
Learning through deterministic assignment of hidden parameters
Supervised learning frequently boils down to determining hidden and bright parameters in a parameterized hypothesis space based on finite input-output samples. The hidden parameters determine the attributions of hidden predictors or the nonlinear mechanism of an estimator, while the bright parameters characterize how hidden predictors are linearly combined or the linear mechanism. In traditional learning paradigm, hidden and bright parameters are not distinguished and trained simultaneously in one learning process. Such an one-stage learning (OSL) brings a benefit of theoretical analysis but suffers from the high computational burden. To overcome this difficulty, a two-stage learning (TSL) scheme, featured by learning through deterministic assignment of hidden parameters (LtDaHP) was proposed, which suggests to deterministically generate the hidden parameters by using minimal Riesz energy points on a sphere and equally spaced points in an interval. We theoretically show that with such deterministic assignment of hidden parameters, LtDaHP with a neural network realization almost shares the same generalization performance with that of OSL. We also present a series of simulations and application examples to support the outperformance of LtDaHP
Deep Learning using Rectified Linear Units (ReLU)
We introduce the use of rectified linear units (ReLU) as the classification function in a deep neural network (DNN). Conventionally, ReLU is used as an activation function in DNNs, with Softmax function as their classification function. However, there have been several studies on using a classification function other than Softmax, and this study is an addition to those. We accomplish this by taking the activation of the penultimate layer $h_{n - 1}$ in a neural network, then multiply it by weight parameters $\theta$ to get the raw scores $o_{i}$. Afterwards, we threshold the raw scores $o_{i}$ by $0$, i.e. $f(o) = \max(0, o_{i})$, where $f(o)$ is the ReLU function. We provide class predictions $\hat{y}$ through argmax function, i.e. argmax $f(x)$.
Demystifying Deep Learning: A Geometric Approach to Iterative Projections
Parametric approaches to Learning, such as deep learning (DL), are highly popular in nonlinear regression, in spite of their extremely difficult training with their increasing complexity (e.g. number of layers in DL). In this paper, we present an alternative semi-parametric framework which foregoes the ordinarily required feedback, by introducing the novel idea of geometric regularization. We show that certain deep learning techniques such as residual network (ResNet) architecture are closely related to our approach. Hence, our technique can be used to analyze these types of deep learning. Moreover, we present preliminary results which confirm that our approach can be easily trained to obtain complex structures.
Deep Reinforcement Learning with Model Learning and Monte Carlo Tree Search in Minecraft
Deep reinforcement learning has been successfully applied to several visual-input tasks using model-free methods. In this paper, we propose a model-based approach that combines learning a DNN-based transition model with Monte Carlo tree search to solve a block-placing task in Minecraft. Our learned transition model predicts the next frame and the rewards one step ahead given the last four frames of the agent's first-person-view image and the current action. Then a Monte Carlo tree search algorithm uses this model to plan the best sequence of actions for the agent to perform. On the proposed task in Minecraft, our model-based approach reaches the performance comparable to the Deep Q-Network's, but learns faster and, thus, is more training sample efficient.
Towards Universal Representation for Unseen Action Recognition
Unseen Action Recognition (UAR) aims to recognise novel action categories without training examples. While previous methods focus on inner-dataset seen/unseen splits, this paper proposes a pipeline using a large-scale training source to achieve a Universal Representation (UR) that can generalise to a more realistic Cross-Dataset UAR (CD-UAR) scenario. We first address UAR as a Generalised Multiple-Instance Learning (GMIL) problem and discover 'building-blocks' from the large-scale ActivityNet dataset using distribution kernels. Essential visual and semantic components are preserved in a shared space to achieve the UR that can efficiently generalise to new datasets. Predicted UR exemplars can be improved by a simple semantic adaptation, and then an unseen action can be directly recognised using UR during the test. Without further training, extensive experiments manifest significant improvements over the UCF101 and HMDB51 benchmarks.
Locally Private Bayesian Inference for Count Models
We present a general method for privacy-preserving Bayesian inference in Poisson factorization, a broad class of models that includes some of the most widely used models in the social sciences. Our method satisfies limited precision local privacy, a generalization of local differential privacy, which we introduce to formulate privacy guarantees appropriate for sparse count data. We develop an MCMC algorithm that approximates the locally private posterior over model parameters given data that has been locally privatized by the geometric mechanism (Ghosh et al., 2012). Our solution is based on two insights: 1) a novel reinterpretation of the geometric mechanism in terms of the Skellam distribution (Skellam, 1946) and 2) a general theorem that relates the Skellam to the Bessel distribution (Yuan & Kalbfleisch, 2000). We demonstrate our method in two case studies on real-world email data in which we show that our method consistently outperforms the commonly-used naive approach, obtaining higher quality topics in text and more accurate link prediction in networks. On some tasks, our privacy-preserving method even outperforms non-private inference which conditions on the true data.
Attention, Learn to Solve Routing Problems!
The recently presented idea to learn heuristics for combinatorial optimization problems is promising as it can save costly development. However, to push this idea towards practical implementation, we need better models and better ways of training. We contribute in both directions: we propose a model based on attention layers with benefits over the Pointer Network and we show how to train this model using REINFORCE with a simple baseline based on a deterministic greedy rollout, which we find is more efficient than using a value function. We significantly improve over recent learned heuristics for the Travelling Salesman Problem (TSP), getting close to optimal results for problems up to 100 nodes. With the same hyperparameters, we learn strong heuristics for two variants of the Vehicle Routing Problem (VRP), the Orienteering Problem (OP) and (a stochastic variant of) the Prize Collecting TSP (PCTSP), outperforming a wide range of baselines and getting results close to highly optimized and specialized algorithms.
Group Normalization
Batch Normalization (BN) is a milestone technique in the development of deep learning, enabling various networks to train. However, normalizing along the batch dimension introduces problems --- BN's error increases rapidly when the batch size becomes smaller, caused by inaccurate batch statistics estimation. This limits BN's usage for training larger models and transferring features to computer vision tasks including detection, segmentation, and video, which require small batches constrained by memory consumption. In this paper, we present Group Normalization (GN) as a simple alternative to BN. GN divides the channels into groups and computes within each group the mean and variance for normalization. GN's computation is independent of batch sizes, and its accuracy is stable in a wide range of batch sizes. On ResNet-50 trained in ImageNet, GN has 10.6% lower error than its BN counterpart when using a batch size of 2; when using typical batch sizes, GN is comparably good with BN and outperforms other normalization variants. Moreover, GN can be naturally transferred from pre-training to fine-tuning. GN can outperform its BN-based counterparts for object detection and segmentation in COCO, and for video classification in Kinetics, showing that GN can effectively replace the powerful BN in a variety of tasks. GN can be easily implemented by a few lines of code in modern libraries.
Text2Shape: Generating Shapes from Natural Language by Learning Joint Embeddings
We present a method for generating colored 3D shapes from natural language. To this end, we first learn joint embeddings of freeform text descriptions and colored 3D shapes. Our model combines and extends learning by association and metric learning approaches to learn implicit cross-modal connections, and produces a joint representation that captures the many-to-many relations between language and physical properties of 3D shapes such as color and shape. To evaluate our approach, we collect a large dataset of natural language descriptions for physical 3D objects in the ShapeNet dataset. With this learned joint embedding we demonstrate text-to-shape retrieval that outperforms baseline approaches. Using our embeddings with a novel conditional Wasserstein GAN framework, we generate colored 3D shapes from text. Our method is the first to connect natural language text with realistic 3D objects exhibiting rich variations in color, texture, and shape detail. See video at https://youtu.be/zraPvRdl13Q
DOP: Deep Optimistic Planning with Approximate Value Function Evaluation
Research on reinforcement learning has demonstrated promising results in manifold applications and domains. Still, efficiently learning effective robot behaviors is very difficult, due to unstructured scenarios, high uncertainties, and large state dimensionality (e.g. multi-agent systems or hyper-redundant robots). To alleviate this problem, we present DOP, a deep model-based reinforcement learning algorithm, which exploits action values to both (1) guide the exploration of the state space and (2) plan effective policies. Specifically, we exploit deep neural networks to learn Q-functions that are used to attack the curse of dimensionality during a Monte-Carlo tree search. Our algorithm, in fact, constructs upper confidence bounds on the learned value function to select actions optimistically. We implement and evaluate DOP on different scenarios: (1) a cooperative navigation problem, (2) a fetching task for a 7-DOF KUKA robot, and (3) a human-robot handover with a humanoid robot (both in simulation and real). The obtained results show the effectiveness of DOP in the chosen applications, where action values drive the exploration and reduce the computational demand of the planning process while achieving good performance.
Understanding Measures of Uncertainty for Adversarial Example Detection
Measuring uncertainty is a promising technique for detecting adversarial examples, crafted inputs on which the model predicts an incorrect class with high confidence. But many measures of uncertainty exist, including predictive en- tropy and mutual information, each capturing different types of uncertainty. We study these measures, and shed light on why mutual information seems to be effective at the task of adversarial example detection. We highlight failure modes for MC dropout, a widely used approach for estimating uncertainty in deep models. This leads to an improved understanding of the drawbacks of current methods, and a proposal to improve the quality of uncertainty estimates using probabilistic model ensembles. We give illustrative experiments using MNIST to demonstrate the intuition underlying the different measures of uncertainty, as well as experiments on a real world Kaggle dogs vs cats classification dataset.
Linear model predictive safety certification for learning-based control
While it has been repeatedly shown that learning-based controllers can provide superior performance, they often lack of safety guarantees. This paper aims at addressing this problem by introducing a model predictive safety certification (MPSC) scheme for polytopic linear systems with additive disturbances. The scheme verifies safety of a proposed learning-based input and modifies it as little as necessary in order to keep the system within a given set of constraints. Safety is thereby related to the existence of a model predictive controller (MPC) providing a feasible trajectory towards a safe target set. A robust MPC formulation accounts for the fact that the model is generally uncertain in the context of learning, which allows proving constraint satisfaction at all times under the proposed MPSC strategy. The MPSC scheme can be used in order to expand any potentially conservative set of safe states for learning and we prove an iterative technique for enlarging the safe set. Finally, a practical data-based design procedure for MPSC is proposed using scenario optimization.
Neuronal Circuit Policies
We propose an effective way to create interpretable control agents, by re-purposing the function of a biological neural circuit model, to govern simulated and real world reinforcement learning (RL) test-beds. We model the tap-withdrawal (TW) neural circuit of the nematode, C. elegans, a circuit responsible for the worm's reflexive response to external mechanical touch stimulations, and learn its synaptic and neuronal parameters as a policy for controlling basic RL tasks. We also autonomously park a real rover robot on a pre-defined trajectory, by deploying such neuronal circuit policies learned in a simulated environment. For reconfiguration of the purpose of the TW neural circuit, we adopt a search-based RL algorithm. We show that our neuronal policies perform as good as deep neural network policies with the advantage of realizing interpretable dynamics at the cell level.
Unbiased scalable softmax optimization
Recent neural network and language models rely on softmax distributions with an extremely large number of categories. Since calculating the softmax normalizing constant in this context is prohibitively expensive, there is a growing literature of efficiently computable but biased estimates of the softmax. In this paper we propose the first unbiased algorithms for maximizing the softmax likelihood whose work per iteration is independent of the number of classes and datapoints (and no extra work is required at the end of each epoch). We show that our proposed unbiased methods comprehensively outperform the state-of-the-art on seven real world datasets.
Optimization of Smooth Functions with Noisy Observations: Local Minimax Rates
We consider the problem of global optimization of an unknown non-convex smooth function with zeroth-order feedback. In this setup, an algorithm is allowed to adaptively query the underlying function at different locations and receives noisy evaluations of function values at the queried points (i.e. the algorithm has access to zeroth-order information). Optimization performance is evaluated by the expected difference of function values at the estimated optimum and the true optimum. In contrast to the classical optimization setup, first-order information like gradients are not directly accessible to the optimization algorithm. We show that the classical minimax framework of analysis, which roughly characterizes the worst-case query complexity of an optimization algorithm in this setting, leads to excessively pessimistic results. We propose a local minimax framework to study the fundamental difficulty of optimizing smooth functions with adaptive function evaluations, which provides a refined picture of the intrinsic difficulty of zeroth-order optimization. We show that for functions with fast level set growth around the global minimum, carefully designed optimization algorithms can identify a near global minimizer with many fewer queries. For the special case of strongly convex and smooth functions, our implied convergence rates match the ones developed for zeroth-order convex optimization problems. At the other end of the spectrum, for worst-case smooth functions no algorithm can converge faster than the minimax rate of estimating the entire unknown function in the $\ell_\infty$-norm. We provide an intuitive and efficient algorithm that attains the derived upper error bounds.
End-to-End Learning for the Deep Multivariate Probit Model
The multivariate probit model (MVP) is a popular classic model for studying binary responses of multiple entities. Nevertheless, the computational challenge of learning the MVP model, given that its likelihood involves integrating over a multidimensional constrained space of latent variables, significantly limits its application in practice. We propose a flexible deep generalization of the classic MVP, the Deep Multivariate Probit Model (DMVP), which is an end-to-end learning scheme that uses an efficient parallel sampling process of the multivariate probit model to exploit GPU-boosted deep neural networks. We present both theoretical and empirical analysis of the convergence behavior of DMVP's sampling process with respect to the resolution of the correlation structure. We provide convergence guarantees for DMVP and our empirical analysis demonstrates the advantages of DMVP's sampling compared with standard MCMC-based methods. We also show that when applied to multi-entity modelling problems, which are natural DMVP applications, DMVP trains faster than classical MVP, by at least an order of magnitude, captures rich correlations among entities, and further improves the joint likelihood of entities compared with several competitive models.
Learning State Representations for Query Optimization with Deep Reinforcement Learning
Deep reinforcement learning is quickly changing the field of artificial intelligence. These models are able to capture a high level understanding of their environment, enabling them to learn difficult dynamic tasks in a variety of domains. In the database field, query optimization remains a difficult problem. Our goal in this work is to explore the capabilities of deep reinforcement learning in the context of query optimization. At each state, we build queries incrementally and encode properties of subqueries through a learned representation. The challenge here lies in the formation of the state transition function, which defines how the current subquery state combines with the next query operation (action) to yield the next state. As a first step in this direction, we focus the state representation problem and the formation of the state transition function. We describe our approach and show preliminary results. We further discuss how we can use the state representation to improve query optimization using reinforcement learning.
Classification of simulated radio signals using Wide Residual Networks for use in the search for extra-terrestrial intelligence
We describe a new approach and algorithm for the detection of artificial signals and their classification in the search for extraterrestrial intelligence (SETI). The characteristics of radio signals observed during SETI research are often most apparent when those signals are represented as spectrograms. Additionally, many observed signals tend to share the same characteristics, allowing for sorting of the signals into different classes. For this work, complex-valued time-series data were simulated to produce a corpus of 140,000 signals from seven different signal classes. A wide residual neural network was then trained to classify these signal types using the gray-scale 2D spectrogram representation of those signals. An average $F_1$ score of 95.11\% was attained when tested on previously unobserved simulated signals. We also report on the performance of the model across a range of signal amplitudes.
Generalization Challenges for Neural Architectures in Audio Source Separation
Recent work has shown that recurrent neural networks can be trained to separate individual speakers in a sound mixture with high fidelity. Here we explore convolutional neural network models as an alternative and show that they achieve state-of-the-art results with an order of magnitude fewer parameters. We also characterize and compare the robustness and ability of these different approaches to generalize under three different test conditions: longer time sequences, the addition of intermittent noise, and different datasets not seen during training. For the last condition, we create a new dataset, RealTalkLibri, to test source separation in real-world environments. We show that the acoustics of the environment have significant impact on the structure of the waveform and the overall performance of neural network models, with the convolutional model showing superior ability to generalize to new environments. The code for our study is available at https://github.com/ShariqM/source_separation.
SEGEN: Sample-Ensemble Genetic Evolutional Network Model
Deep learning, a rebranding of deep neural network research works, has achieved a remarkable success in recent years. With multiple hidden layers, deep learning models aim at computing the hierarchical feature representations of the observational data. Meanwhile, due to its severe disadvantages in data consumption, computational resources, parameter tuning costs and the lack of result explainability, deep learning has also suffered from lots of criticism. In this paper, we will introduce a new representation learning model, namely "Sample-Ensemble Genetic Evolutionary Network" (SEGEN), which can serve as an alternative approach to deep learning models. Instead of building one single deep model, based on a set of sampled sub-instances, SEGEN adopts a genetic-evolutionary learning strategy to build a group of unit models generations by generations. The unit models incorporated in SEGEN can be either traditional machine learning models or the recent deep learning models with a much "narrower" and "shallower" architecture. The learning results of each instance at the final generation will be effectively combined from each unit model via diffusive propagation and ensemble learning strategies. From the computational perspective, SEGEN requires far less data, fewer computational resources and parameter tuning efforts, but has sound theoretic interpretability of the learning process and results. Extensive experiments have been done on several different real-world benchmark datasets, and the experimental results obtained by SEGEN have demonstrated its advantages over the state-of-the-art representation learning models.
Fictitious GAN: Training GANs with Historical Models
Generative adversarial networks (GANs) are powerful tools for learning generative models. In practice, the training may suffer from lack of convergence. GANs are commonly viewed as a two-player zero-sum game between two neural networks. Here, we leverage this game theoretic view to study the convergence behavior of the training process. Inspired by the fictitious play learning process, a novel training method, referred to as Fictitious GAN, is introduced. Fictitious GAN trains the deep neural networks using a mixture of historical models. Specifically, the discriminator (resp. generator) is updated according to the best-response to the mixture outputs from a sequence of previously trained generators (resp. discriminators). It is shown that Fictitious GAN can effectively resolve some convergence issues that cannot be resolved by the standard training approach. It is proved that asymptotically the average of the generator outputs has the same distribution as the data samples.
Learning Recommendations While Influencing Interests
Personalized recommendation systems (RS) are extensively used in many services. Many of these are based on learning algorithms where the RS uses the recommendation history and the user response to learn an optimal strategy. Further, these algorithms are based on the assumption that the user interests are rigid. Specifically, they do not account for the effect of learning strategy on the evolution of the user interests. In this paper we develop influence models for a learning algorithm that is used to optimally recommend websites to web users. We adapt the model of \cite{Ioannidis10} to include an item-dependent reward to the RS from the suggestions that are accepted by the user. For this we first develop a static optimisation scheme when all the parameters are known. Next we develop a stochastic approximation based learning scheme for the RS to learn the optimal strategy when the user profiles are not known. Finally, we describe several user-influence models for the learning algorithm and analyze their effect on the steady user interests and on the steady state optimal strategy as compared to that when the users are not influenced.
Bayesian Optimization with Expensive Integrands
We propose a Bayesian optimization algorithm for objective functions that are sums or integrals of expensive-to-evaluate functions, allowing noisy evaluations. These objective functions arise in multi-task Bayesian optimization for tuning machine learning hyperparameters, optimization via simulation, and sequential design of experiments with random environmental conditions. Our method is average-case optimal by construction when a single evaluation of the integrand remains within our evaluation budget. Achieving this one-step optimality requires solving a challenging value of information optimization problem, for which we provide a novel efficient discretization-free computational method. We also provide consistency proofs for our method in both continuum and discrete finite domains for objective functions that are sums. In numerical experiments comparing against previous state-of-the-art methods, including those that also leverage sum or integral structure, our method performs as well or better across a wide range of problems and offers significant improvements when evaluations are noisy or the integrand varies smoothly in the integrated variables.
Improving DNN Robustness to Adversarial Attacks using Jacobian Regularization
Deep neural networks have lately shown tremendous performance in various applications including vision and speech processing tasks. However, alongside their ability to perform these tasks with such high accuracy, it has been shown that they are highly susceptible to adversarial attacks: a small change in the input would cause the network to err with high confidence. This phenomenon exposes an inherent fault in these networks and their ability to generalize well. For this reason, providing robustness to adversarial attacks is an important challenge in networks training, which has led to extensive research. In this work, we suggest a theoretically inspired novel approach to improve the networks' robustness. Our method applies regularization using the Frobenius norm of the Jacobian of the network, which is applied as post-processing, after regular training has finished. We demonstrate empirically that it leads to enhanced robustness results with a minimal change in the original network's accuracy.
Determinantal Point Processes for Coresets
When faced with a data set too large to be processed all at once, an obvious solution is to retain only part of it. In practice this takes a wide variety of different forms, and among them "coresets" are especially appealing. A coreset is a (small) weighted sample of the original data that comes with the following guarantee: a cost function can be evaluated on the smaller set instead of the larger one, with low relative error. For some classes of problems, and via a careful choice of sampling distribution (based on the so-called "sensitivity" metric), iid random sampling has turned to be one of the most successful methods for building coresets efficiently. However, independent samples are sometimes overly redundant, and one could hope that enforcing diversity would lead to better performance. The difficulty lies in proving coreset properties in non-iid samples. We show that the coreset property holds for samples formed with determinantal point processes (DPP). DPPs are interesting because they are a rare example of repulsive point processes with tractable theoretical properties, enabling us to prove general coreset theorems. We apply our results to both the k-means and the linear regression problems, and give extensive empirical evidence that the small additional computational cost of DPP sampling comes with superior performance over its iid counterpart. Of independent interest, we also provide analytical formulas for the sensitivity in the linear regression and 1-means cases.
Alarm-Based Prescriptive Process Monitoring
Predictive process monitoring is concerned with the analysis of events produced during the execution of a process in order to predict the future state of ongoing cases thereof. Existing techniques in this field are able to predict, at each step of a case, the likelihood that the case will end up in an undesired outcome. These techniques, however, do not take into account what process workers may do with the generated predictions in order to decrease the likelihood of undesired outcomes. This paper proposes a framework for prescriptive process monitoring, which extends predictive process monitoring approaches with the concepts of alarms, interventions, compensations, and mitigation effects. The framework incorporates a parameterized cost model to assess the cost-benefit tradeoffs of applying prescriptive process monitoring in a given setting. The paper also outlines an approach to optimize the generation of alarms given a dataset and a set of cost model parameters. The proposed approach is empirically evaluated using a range of real-life event logs.
Speeding-up Object Detection Training for Robotics with FALKON
Latest deep learning methods for object detection provide remarkable performance, but have limits when used in robotic applications. One of the most relevant issues is the long training time, which is due to the large size and imbalance of the associated training sets, characterized by few positive and a large number of negative examples (i.e. background). Proposed approaches are based on end-to-end learning by back-propagation [22] or kernel methods trained with Hard Negatives Mining on top of deep features [8]. These solutions are effective, but prohibitively slow for on-line applications. In this paper we propose a novel pipeline for object detection that overcomes this problem and provides comparable performance, with a 60x training speedup. Our pipeline combines (i) the Region Proposal Network and the deep feature extractor from [22] to efficiently select candidate RoIs and encode them into powerful representations, with (ii) the FALKON [23] algorithm, a novel kernel-based method that allows fast training on large scale problems (millions of points). We address the size and imbalance of training data by exploiting the stochastic subsampling intrinsic into the method and a novel, fast, bootstrapping approach. We assess the effectiveness of the approach on a standard Computer Vision dataset (PASCAL VOC 2007 [5]) and demonstrate its applicability to a real robotic scenario with the iCubWorld Transformations [18] dataset.
Detecting Adversarial Perturbations with Saliency
In this paper we propose a novel method for detecting adversarial examples by training a binary classifier with both origin data and saliency data. In the case of image classification model, saliency simply explain how the model make decisions by identifying significant pixels for prediction. A model shows wrong classification output always learns wrong features and shows wrong saliency as well. Our approach shows good performance on detecting adversarial perturbations. We quantitatively evaluate generalization ability of the detector, showing that detectors trained with strong adversaries perform well on weak adversaries.
Causal Modeling of Dynamical Systems
Dynamical systems are widely used in science and engineering to model systems consisting of several interacting components. Often, they can be given a causal interpretation in the sense that they not only model the evolution of the states of the system's components over time, but also describe how their evolution is affected by external interventions on the system that perturb the dynamics. We introduce the formal framework of structural dynamical causal models (SDCMs) that explicates the causal semantics of the system's components as part of the model. SDCMs represent a dynamical system as a collection of stochastic processes and specify the basic causal mechanisms that govern the dynamics of each component as a structured system of random differential equations of arbitrary order. SDCMs extend the versatile causal modeling framework of structural causal models (SCMs), also known as structural equation models (SEMs), by explicitly allowing for time-dependence. An SDCM can be thought of as the stochastic-process version of an SCM, where the static random variables of the SCM are replaced by dynamic stochastic processes and their derivatives. We provide the foundations for a theory of SDCMs, by (i) formally defining SDCMs, their solutions, stochastic interventions, and a graphical representation; (ii) studying existence and uniqueness of the solutions for given initial conditions; (iii) providing Markov properties for SDCMs with initial conditions; (iv) discussing under which conditions SDCMs equilibrate to SCMs as time tends to infinity; (v) relating the properties of the SDCM to those of the equilibrium SCM. This correspondence enables one to leverage the wealth of statistical tools and discovery methods available for SCMs when studying the causal semantics of a large class of stochastic dynamical systems. The theory is illustrated with examples from different scientific domains.
Sentiment Analysis of Comments on Rohingya Movement with Support Vector Machine
The Rohingya Movement and Crisis caused a huge uproar in the political and economic state of Bangladesh. Refugee movement is a recurring event and a large amount of data in the form of opinions remains on social media such as Facebook, with very little analysis done on them.To analyse the comments based on all Rohingya related posts, we had to create and modify a classifier based on the Support Vector Machine algorithm. The code is implemented in python and uses scikit-learn library. A dataset on Rohingya analysis is not currently available so we had to use our own data set of 2500 positive and 2500 negative comments. We specifically used a support vector machine with linear kernel. A previous experiment was performed by us on the same dataset using the naive bayes algorithm, but that did not yield impressive results.
Exploring the Naturalness of Buggy Code with Recurrent Neural Networks
Statistical language models are powerful tools which have been used for many tasks within natural language processing. Recently, they have been used for other sequential data such as source code.(Ray et al., 2015) showed that it is possible train an n-gram source code language mode, and use it to predict buggy lines in code by determining "unnatural" lines via entropy with respect to the language model. In this work, we propose using a more advanced language modeling technique, Long Short-term Memory recurrent neural networks, to model source code and classify buggy lines based on entropy. We show that our method slightly outperforms an n-gram model in the buggy line classification task using AUC.
A high-bias, low-variance introduction to Machine Learning for physicists
Machine Learning (ML) is one of the most exciting and dynamic areas of modern research and application. The purpose of this review is to provide an introduction to the core concepts and tools of machine learning in a manner easily understood and intuitive to physicists. The review begins by covering fundamental concepts in ML and modern statistics such as the bias-variance tradeoff, overfitting, regularization, generalization, and gradient descent before moving on to more advanced topics in both supervised and unsupervised learning. Topics covered in the review include ensemble models, deep learning and neural networks, clustering and data visualization, energy-based models (including MaxEnt models and Restricted Boltzmann Machines), and variational methods. Throughout, we emphasize the many natural connections between ML and statistical physics. A notable aspect of the review is the use of Python Jupyter notebooks to introduce modern ML/statistical packages to readers using physics-inspired datasets (the Ising Model and Monte-Carlo simulations of supersymmetric decays of proton-proton collisions). We conclude with an extended outlook discussing possible uses of machine learning for furthering our understanding of the physical world as well as open problems in ML where physicists may be able to contribute. (Notebooks are available at https://physics.bu.edu/~pankajm/MLnotebooks.html )
The Convergence of Stochastic Gradient Descent in Asynchronous Shared Memory
Stochastic Gradient Descent (SGD) is a fundamental algorithm in machine learning, representing the optimization backbone for training several classic models, from regression to neural networks. Given the recent practical focus on distributed machine learning, significant work has been dedicated to the convergence properties of this algorithm under the inconsistent and noisy updates arising from execution in a distributed environment. However, surprisingly, the convergence properties of this classic algorithm in the standard shared-memory model are still not well-understood. In this work, we address this gap, and provide new convergence bounds for lock-free concurrent stochastic gradient descent, executing in the classic asynchronous shared memory model, against a strong adaptive adversary. Our results give improved upper and lower bounds on the "price of asynchrony" when executing the fundamental SGD algorithm in a concurrent setting. They show that this classic optimization tool can converge faster and with a wider range of parameters than previously known under asynchronous iterations. At the same time, we exhibit a fundamental trade-off between the maximum delay in the system and the rate at which SGD can converge, which governs the set of parameters under which this algorithm can still work efficiently.
On the difficulty of a distributional semantics of spoken language
In the domain of unsupervised learning most work on speech has focused on discovering low-level constructs such as phoneme inventories or word-like units. In contrast, for written language, where there is a large body of work on unsupervised induction of semantic representations of words, whole sentences and longer texts. In this study we examine the challenges of adapting these approaches from written to spoken language. We conjecture that unsupervised learning of the semantics of spoken language becomes feasible if we abstract from the surface variability. We simulate this setting with a dataset of utterances spoken by a realistic but uniform synthetic voice. We evaluate two simple unsupervised models which, to varying degrees of success, learn semantic representations of speech fragments. Finally we present inconclusive results on human speech, and discuss the challenges inherent in learning distributional semantic representations on unrestricted natural spoken language.
Trace your sources in large-scale data: one ring to find them all
An important preprocessing step in most data analysis pipelines aims to extract a small set of sources that explain most of the data. Currently used algorithms for blind source separation (BSS), however, often fail to extract the desired sources and need extensive cross-validation. In contrast, their rarely used probabilistic counterparts can get away with little cross-validation and are more accurate and reliable but no simple and scalable implementations are available. Here we present a novel probabilistic BSS framework (DECOMPOSE) that can be flexibly adjusted to the data, is extensible and easy to use, adapts to individual sources and handles large-scale data through algorithmic efficiency. DECOMPOSE encompasses and generalises many traditional BSS algorithms such as PCA, ICA and NMF and we demonstrate substantial improvements in accuracy and robustness on artificial and real data.
Byzantine Stochastic Gradient Descent
This paper studies the problem of distributed stochastic optimization in an adversarial setting where, out of the $m$ machines which allegedly compute stochastic gradients every iteration, an $\alpha$-fraction are Byzantine, and can behave arbitrarily and adversarially. Our main result is a variant of stochastic gradient descent (SGD) which finds $\varepsilon$-approximate minimizers of convex functions in $T = \tilde{O}\big( \frac{1}{\varepsilon^2 m} + \frac{\alpha^2}{\varepsilon^2} \big)$ iterations. In contrast, traditional mini-batch SGD needs $T = O\big( \frac{1}{\varepsilon^2 m} \big)$ iterations, but cannot tolerate Byzantine failures. Further, we provide a lower bound showing that, up to logarithmic factors, our algorithm is information-theoretically optimal both in terms of sampling complexity and time complexity.
Broad Learning for Healthcare
A broad spectrum of data from different modalities are generated in the healthcare domain every day, including scalar data (e.g., clinical measures collected at hospitals), tensor data (e.g., neuroimages analyzed by research institutes), graph data (e.g., brain connectivity networks), and sequence data (e.g., digital footprints recorded on smart sensors). Capability for modeling information from these heterogeneous data sources is potentially transformative for investigating disease mechanisms and for informing therapeutic interventions. Our works in this thesis attempt to facilitate healthcare applications in the setting of broad learning which focuses on fusing heterogeneous data sources for a variety of synergistic knowledge discovery and machine learning tasks. We are generally interested in computer-aided diagnosis, precision medicine, and mobile health by creating accurate user profiles which include important biomarkers, brain connectivity patterns, and latent representations. In particular, our works involve four different data mining problems with application to the healthcare domain: multi-view feature selection, subgraph pattern mining, brain network embedding, and multi-view sequence prediction.
From Shannon's Channel to Semantic Channel via New Bayes' Formulas for Machine Learning
A group of transition probability functions form a Shannon's channel whereas a group of truth functions form a semantic channel. By the third kind of Bayes' theorem, we can directly convert a Shannon's channel into an optimized semantic channel. When a sample is not big enough, we can use a truth function with parameters to produce the likelihood function, then train the truth function by the conditional sampling distribution. The third kind of Bayes' theorem is proved. A semantic information theory is simply introduced. The semantic information measure reflects Popper's hypothesis-testing thought. The Semantic Information Method (SIM) adheres to maximum semantic information criterion which is compatible with maximum likelihood criterion and Regularized Least Squares criterion. It supports Wittgenstein's view: the meaning of a word lies in its use. Letting the two channels mutually match, we obtain the Channels' Matching (CM) algorithm for machine learning. The CM algorithm is used to explain the evolution of the semantic meaning of natural language, such as "Old age". The semantic channel for medical tests and the confirmation measures of test-positive and test-negative are discussed. The applications of the CM algorithm to semi-supervised learning and non-supervised learning are simply introduced. As a predictive model, the semantic channel fits variable sources and hence can overcome class-imbalance problem. The SIM strictly distinguishes statistical probability and logical probability and uses both at the same time. This method is compatible with the thoughts of Bayes, Fisher, Shannon, Zadeh, Tarski, Davidson, Wittgenstein, and Popper.It is a competitive alternative to Bayesian inference.
Deep Learning Phase Segregation
Phase segregation, the process by which the components of a binary mixture spontaneously separate, is a key process in the evolution and design of many chemical, mechanical, and biological systems. In this work, we present a data-driven approach for the learning, modeling, and prediction of phase segregation. A direct mapping between an initially dispersed, immiscible binary fluid and the equilibrium concentration field is learned by conditional generative convolutional neural networks. Concentration field predictions by the deep learning model conserve phase fraction, correctly predict phase transition, and reproduce area, perimeter, and total free energy distributions up to 98% accuracy.
Pattern Analysis with Layered Self-Organizing Maps
This paper defines a new learning architecture, Layered Self-Organizing Maps (LSOMs), that uses the SOM and supervised-SOM learning algorithms. The architecture is validated with the MNIST database of hand-written digit images. LSOMs are similar to convolutional neural nets (covnets) in the way they sample data, but different in the way they represent features and learn. LSOMs analyze (or generate) image patches with maps of exemplars determined by the SOM learning algorithm rather than feature maps from filter-banks learned via backprop. LSOMs provide an alternative to features derived from covnets. Multi-layer LSOMs are trained bottom-up, without the use of backprop and therefore may be of interest as a model of the visual cortex. The results show organization at multiple levels. The algorithm appears to be resource efficient in learning, classifying and generating images. Although LSOMs can be used for classification, their validation accuracy for these exploratory runs was well below the state of the art. The goal of this article is to define the architecture and display the structures resulting from its application to the MNIST images.
Accelerating Learning in Constructive Predictive Frameworks with the Successor Representation
Here we propose using the successor representation (SR) to accelerate learning in a constructive knowledge system based on general value functions (GVFs). In real-world settings like robotics for unstructured and dynamic environments, it is infeasible to model all meaningful aspects of a system and its environment by hand due to both complexity and size. Instead, robots must be capable of learning and adapting to changes in their environment and task, incrementally constructing models from their own experience. GVFs, taken from the field of reinforcement learning (RL), are a way of modeling the world as predictive questions. One approach to such models proposes a massive network of interconnected and interdependent GVFs, which are incrementally added over time. It is reasonable to expect that new, incrementally added predictions can be learned more swiftly if the learning process leverages knowledge gained from past experience. The SR provides such a means of separating the dynamics of the world from the prediction targets and thus capturing regularities that can be reused across multiple GVFs. As a primary contribution of this work, we show that using SR-based predictions can improve sample efficiency and learning speed in a continual learning setting where new predictions are incrementally added and learned over time. We analyze our approach in a grid-world and then demonstrate its potential on data from a physical robot arm.
Datasheets for Datasets
The machine learning community currently has no standardized process for documenting datasets, which can lead to severe consequences in high-stakes domains. To address this gap, we propose datasheets for datasets. In the electronics industry, every component, no matter how simple or complex, is accompanied with a datasheet that describes its operating characteristics, test results, recommended uses, and other information. By analogy, we propose that every dataset be accompanied with a datasheet that documents its motivation, composition, collection process, recommended uses, and so on. Datasheets for datasets will facilitate better communication between dataset creators and dataset consumers, and encourage the machine learning community to prioritize transparency and accountability.
Style Tokens: Unsupervised Style Modeling, Control and Transfer in End-to-End Speech Synthesis
In this work, we propose "global style tokens" (GSTs), a bank of embeddings that are jointly trained within Tacotron, a state-of-the-art end-to-end speech synthesis system. The embeddings are trained with no explicit labels, yet learn to model a large range of acoustic expressiveness. GSTs lead to a rich set of significant results. The soft interpretable "labels" they generate can be used to control synthesis in novel ways, such as varying speed and speaking style - independently of the text content. They can also be used for style transfer, replicating the speaking style of a single audio clip across an entire long-form text corpus. When trained on noisy, unlabeled found data, GSTs learn to factorize noise and speaker identity, providing a path towards highly scalable but robust speech synthesis.
The Importance of Constraint Smoothness for Parameter Estimation in Computational Cognitive Modeling
Psychiatric neuroscience is increasingly aware of the need to define psychopathology in terms of abnormal neural computation. The central tool in this endeavour is the fitting of computational models to behavioural data. The most prominent example of this procedure is fitting reinforcement learning (RL) models to decision-making data collected from mentally ill and healthy subject populations. These models are generative models of the decision-making data themselves, and the parameters we seek to infer can be psychologically and neurobiologically meaningful. Currently, the gold standard approach to this inference procedure involves Monte-Carlo sampling, which is robust but computationally intensive---rendering additional procedures, such as cross-validation, impractical. Searching for point estimates of model parameters using optimization procedures remains a popular and interesting option. On a novel testbed simulating parameter estimation from a common RL task, we investigated the effects of smooth vs. boundary constraints on parameter estimation using interior point and deterministic direct search algorithms for optimization. Ultimately, we show that the use of boundary constraints can lead to substantial truncation effects. Our results discourage the use of boundary constraints for these applications.
Towards End-to-End Prosody Transfer for Expressive Speech Synthesis with Tacotron
We present an extension to the Tacotron speech synthesis architecture that learns a latent embedding space of prosody, derived from a reference acoustic representation containing the desired prosody. We show that conditioning Tacotron on this learned embedding space results in synthesized audio that matches the prosody of the reference signal with fine time detail even when the reference and synthesis speakers are different. Additionally, we show that a reference prosody embedding can be used to synthesize text that is different from that of the reference utterance. We define several quantitative and subjective metrics for evaluating prosody transfer, and report results with accompanying audio samples from single-speaker and 44-speaker Tacotron models on a prosody transfer task.