title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Probabilistic Ensemble of Collaborative Filters
Collaborative filtering is an important technique for recommendation. Whereas it has been repeatedly shown to be effective in previous work, its performance remains unsatisfactory in many real-world applications, especially those where the items or users are highly diverse. In this paper, we explore an ensemble-based framework to enhance the capability of a recommender in handling diverse data. Specifically, we formulate a probabilistic model which integrates the items, the users, as well as the associations between them into a generative process. On top of this formulation, we further derive a progressive algorithm to construct an ensemble of collaborative filters. In each iteration, a new filter is derived from re-weighted entries and incorporated into the ensemble. It is noteworthy that while the algorithmic procedure of our algorithm is apparently similar to boosting, it is derived from an essentially different formulation and thus differs in several key technical aspects. We tested the proposed method on three large datasets, and observed substantial improvement over the state of the art, including L2Boost, an effective method based on boosting.
$\alpha$-Approximation Density-based Clustering of Multi-valued Objects
This submission has been removed by arXiv administrators due to copyright infringement.
The Elephant in the Room
We showcase a family of common failures of state-of-the art object detectors. These are obtained by replacing image sub-regions by another sub-image that contains a trained object. We call this "object transplanting". Modifying an image in this manner is shown to have a non-local impact on object detection. Slight changes in object position can affect its identity according to an object detector as well as that of other objects in the image. We provide some analysis and suggest possible reasons for the reported phenomena.
Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network
Because of their effectiveness in broad practical applications, LSTM networks have received a wealth of coverage in scientific journals, technical blogs, and implementation guides. However, in most articles, the inference formulas for the LSTM network and its parent, RNN, are stated axiomatically, while the training formulas are omitted altogether. In addition, the technique of "unrolling" an RNN is routinely presented without justification throughout the literature. The goal of this paper is to explain the essential RNN and LSTM fundamentals in a single document. Drawing from concepts in signal processing, we formally derive the canonical RNN formulation from differential equations. We then propose and prove a precise statement, which yields the RNN unrolling technique. We also review the difficulties with training the standard RNN and address them by transforming the RNN into the "Vanilla LSTM" network through a series of logical arguments. We provide all equations pertaining to the LSTM system together with detailed descriptions of its constituent entities. Albeit unconventional, our choice of notation and the method for presenting the LSTM system emphasizes ease of understanding. As part of the analysis, we identify new opportunities to enrich the LSTM system and incorporate these extensions into the Vanilla LSTM network, producing the most general LSTM variant to date. The target reader has already been exposed to RNNs and LSTM networks through numerous available resources and is open to an alternative pedagogical approach. A Machine Learning practitioner seeking guidance for implementing our new augmented LSTM model in software for experimentation and research will find the insights and derivations in this tutorial valuable as well.
Continuous Authentication of Smartphones Based on Application Usage
An empirical investigation of active/continuous authentication for smartphones is presented in this paper by exploiting users' unique application usage data, i.e., distinct patterns of use, modeled by a Markovian process. Variations of Hidden Markov Models (HMMs) are evaluated for continuous user verification, and challenges due to the sparsity of session-wise data, an explosion of states, and handling unforeseen events in the test data are tackled. Unlike traditional approaches, the proposed formulation does not depend on the top N-apps, rather uses the complete app-usage information to achieve low latency. Through experimentation, empirical assessment of the impact of unforeseen events, i.e., unknown applications and unforeseen observations, on user verification is done via a modified edit-distance algorithm for simple sequence matching. It is found that for enhanced verification performance, unforeseen events should be incorporated in the models by adopting smoothing techniques with HMMs. For validation, extensive experiments on two distinct datasets are performed. The marginal smoothing technique is the most effective for user verification in terms of equal error rate (EER) and with a sampling rate of 1/30s^{-1} and 30 minutes of historical data, and the method is capable of detecting an intrusion within ~2.5 minutes of application use.
Fuzzy Clustering to Identify Clusters at Different Levels of Fuzziness: An Evolutionary Multi-Objective Optimization Approach
Fuzzy clustering methods identify naturally occurring clusters in a dataset, where the extent to which different clusters are overlapped can differ. Most methods have a parameter to fix the level of fuzziness. However, the appropriate level of fuzziness depends on the application at hand. This paper presents Entropy $c$-Means (ECM), a method of fuzzy clustering that simultaneously optimizes two contradictory objective functions, resulting in the creation of fuzzy clusters with different levels of fuzziness. This allows ECM to identify clusters with different degrees of overlap. ECM optimizes the two objective functions using two multi-objective optimization methods, Non-dominated Sorting Genetic Algorithm II (NSGA-II), and Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D). We also propose a method to select a suitable trade-off clustering from the Pareto front. Experiments on challenging synthetic datasets as well as real-world datasets show that ECM leads to better cluster detection compared to the conventional fuzzy clustering methods as well as previously used multi-objective methods for fuzzy clustering.
The Effectiveness of Multitask Learning for Phenotyping with Electronic Health Records Data
Electronic phenotyping is the task of ascertaining whether an individual has a medical condition of interest by analyzing their medical record and is foundational in clinical informatics. Increasingly, electronic phenotyping is performed via supervised learning. We investigate the effectiveness of multitask learning for phenotyping using electronic health records (EHR) data. Multitask learning aims to improve model performance on a target task by jointly learning additional auxiliary tasks and has been used in disparate areas of machine learning. However, its utility when applied to EHR data has not been established, and prior work suggests that its benefits are inconsistent. We present experiments that elucidate when multitask learning with neural nets improves performance for phenotyping using EHR data relative to neural nets trained for a single phenotype and to well-tuned logistic regression baselines. We find that multitask neural nets consistently outperform single-task neural nets for rare phenotypes but underperform for relatively more common phenotypes. The effect size increases as more auxiliary tasks are added. Moreover, multitask learning reduces the sensitivity of neural nets to hyperparameter settings for rare phenotypes. Last, we quantify phenotype complexity and find that neural nets trained with or without multitask learning do not improve on simple baselines unless the phenotypes are sufficiently complex.
Linked Causal Variational Autoencoder for Inferring Paired Spillover Effects
Modeling spillover effects from observational data is an important problem in economics, business, and other fields of research. % It helps us infer the causality between two seemingly unrelated set of events. For example, if consumer spending in the United States declines, it has spillover effects on economies that depend on the U.S. as their largest export market. In this paper, we aim to infer the causation that results in spillover effects between pairs of entities (or units), we call this effect as \textit{paired spillover}. To achieve this, we leverage the recent developments in variational inference and deep learning techniques to propose a generative model called Linked Causal Variational Autoencoder (LCVA). Similar to variational autoencoders (VAE), LCVA incorporates an encoder neural network to learn the latent attributes and a decoder network to reconstruct the inputs. However, unlike VAE, LCVA treats the \textit{latent attributes as confounders that are assumed to affect both the treatment and the outcome of units}. Specifically, given a pair of units $u$ and $\bar{u}$, their individual treatment and outcomes, the encoder network of LCVA samples the confounders by conditioning on the observed covariates of $u$, the treatments of both $u$ and $\bar{u}$ and the outcome of $u$. Once inferred, the latent attributes (or confounders) of $u$ captures the spillover effect of $\bar{u}$ on $u$. Using a network of users from job training dataset (LaLonde (1986)) and co-purchase dataset from Amazon e-commerce domain, we show that LCVA is significantly more robust than existing methods in capturing spillover effects.
Exploiting Structure for Fast Kernel Learning
We propose two methods for exact Gaussian process (GP) inference and learning on massive image, video, spatial-temporal, or multi-output datasets with missing values (or "gaps") in the observed responses. The first method ignores the gaps using sparse selection matrices and a highly effective low-rank preconditioner is introduced to accelerate computations. The second method introduces a novel approach to GP training whereby response values are inferred on the gaps before explicitly training the model. We find this second approach to be greatly advantageous for the class of problems considered. Both of these novel approaches make extensive use of Kronecker matrix algebra to design massively scalable algorithms which have low memory requirements. We demonstrate exact GP inference for a spatial-temporal climate modelling problem with 3.7 million training points as well as a video reconstruction problem with 1 billion points.
A Panel Quantile Approach to Attrition Bias in Big Data: Evidence from a Randomized Experiment
This paper introduces a quantile regression estimator for panel data models with individual heterogeneity and attrition. The method is motivated by the fact that attrition bias is often encountered in Big Data applications. For example, many users sign-up for the latest program but few remain active users several months later, making the evaluation of such interventions inherently very challenging. Building on earlier work by Hausman and Wise (1979), we provide a simple identification strategy that leads to a two-step estimation procedure. In the first step, the coefficients of interest in the selection equation are consistently estimated using parametric or nonparametric methods. In the second step, standard panel quantile methods are employed on a subset of weighted observations. The estimator is computationally easy to implement in Big Data applications with a large number of subjects. We investigate the conditions under which the parameter estimator is asymptotically Gaussian and we carry out a series of Monte Carlo simulations to investigate the finite sample properties of the estimator. Lastly, using a simulation exercise, we apply the method to the evaluation of a recent Time-of-Day electricity pricing experiment inspired by the work of Aigner and Hausman (1980).
Code-division multiplexed resistive pulse sensor networks for spatio-temporal detection of particles in microfluidic devices
Spatial separation of suspended particles based on contrast in their physical or chemical properties forms the basis of various biological assays performed on lab-on-achip devices. To electronically acquire this information, we have recently introduced a microfluidic sensing platform, called Microfluidic CODES, which combines the resistive pulse sensing with the code division multiple access in multiplexing a network of integrated electrical sensors. In this paper, we enhance the multiplexing capacity of the Microfluidic CODES by employing sensors that generate non-orthogonal code waveforms and a new decoding algorithm that combines machine learning techniques with minimum mean-squared error estimation. As a proof of principle, we fabricated a microfluidic device with a network of 10 code-multiplexed sensors and characterized it using cells suspended in phosphate buffer saline solution.
Weighted AdaGrad with Unified Momentum
Integrating adaptive learning rate and momentum techniques into SGD leads to a large class of efficiently accelerated adaptive stochastic algorithms, such as Nadam, AccAdaGrad, \textit{etc}. In spite of their effectiveness in practice, there is still a large gap in their theories of convergences, especially in the difficult non-convex stochastic setting. To fill this gap, we propose \emph{weighted AdaGrad with unified momentum}, dubbed AdaUSM, which has the main characteristics that (1) it incorporates a unified momentum scheme which covers both the heavy ball momentum and the Nesterov accelerated gradient momentum; (2) it adopts a novel weighted adaptive learning rate that can unify the learning rates of AdaGrad, AccAdaGrad, Adam, and RMSProp. Moreover, when we take polynomially growing weights in AdaUSM, we obtain its $\mathcal{O}(\log(T)/\sqrt{T})$ convergence rate in the non-convex stochastic setting. We also show that the adaptive learning rates of Adam and RMSProp correspond to taking exponentially growing weights in AdaUSM, which thereby provides a new perspesctive for understanding Adam and RMSProp. Lastly, comparative experiments of AdaUSM against SGD with momentum, AdaGrad, AdaEMA, Adam, and AMSGrad on various deep learning models and datasets are also provided.
Hierarchical Block Sparse Neural Networks
Sparse deep neural networks(DNNs) are efficient in both memory and compute when compared to dense DNNs. But due to irregularity in computation of sparse DNNs, their efficiencies are much lower than that of dense DNNs on regular parallel hardware such as TPU. This inefficiency leads to poor/no performance benefits for sparse DNNs. Performance issue for sparse DNNs can be alleviated by bringing structure to the sparsity and leveraging it for improving runtime efficiency. But such structural constraints often lead to suboptimal accuracies. In this work, we jointly address both accuracy and performance of sparse DNNs using our proposed class of sparse neural networks called HBsNN (Hierarchical Block sparse Neural Networks). For a given sparsity, HBsNN models achieve better runtime performance than unstructured sparse models and better accuracy than highly structured sparse models.
Learning and Inference on Generative Adversarial Quantum Circuits
Quantum mechanics is inherently probabilistic in light of Born's rule. Using quantum circuits as probabilistic generative models for classical data exploits their superior expressibility and efficient direct sampling ability. However, training of quantum circuits can be more challenging compared to classical neural networks due to lack of efficient differentiable learning algorithm. We devise an adversarial quantum-classical hybrid training scheme via coupling a quantum circuit generator and a classical neural network discriminator together. After training, the quantum circuit generative model can infer missing data with quadratic speed up via amplitude amplification. We numerically simulate the learning and inference of generative adversarial quantum circuit using the prototypical Bars-and-Stripes dataset. Generative adversarial quantum circuits is a fresh approach to machine learning which may enjoy the practically useful quantum advantage on near-term quantum devices.
Model Approximation Using Cascade of Tree Decompositions
In this paper, we present a general, multistage framework for graphical model approximation using a cascade of models such as trees. In particular, we look at the problem of covariance matrix approximation for Gaussian distributions as linear transformations of tree models. This is a new way to decompose the covariance matrix. Here, we propose an algorithm which incorporates the Cholesky factorization method to compute the decomposition matrix and thus can approximate a simple graphical model using a cascade of the Cholesky factorization of the tree approximation transformations. The Cholesky decomposition enables us to achieve a tree structure factor graph at each cascade stage of the algorithm which facilitates the use of the message passing algorithm since the approximated graph has less loops compared to the original graph. The overall graph is a cascade of factor graphs with each factor graph being a tree. This is a different perspective on the approximation model, and algorithms such as Gaussian belief propagation can be used on this overall graph. Here, we present theoretical result that guarantees the convergence of the proposed model approximation using the cascade of tree decompositions. In the simulations, we look at synthetic and real data and measure the performance of the proposed framework by comparing the KL divergences.
Greedy Algorithms for Approximating the Diameter of Machine Learning Datasets in Multidimensional Euclidean Space
Finding the diameter of a dataset in multidimensional Euclidean space is a well-established problem, with well-known algorithms. However, most of the algorithms found in the literature do not scale well with large values of data dimension, so the time complexity grows exponentially in most cases, which makes these algorithms impractical. Therefore, we implemented 4 simple greedy algorithms to be used for approximating the diameter of a multidimensional dataset; these are based on minimum/maximum l2 norms, hill climbing search, Tabu search and Beam search approaches, respectively. The time complexity of the implemented algorithms is near-linear, as they scale near-linearly with data size and its dimensions. The results of the experiments (conducted on different machine learning data sets) prove the efficiency of the implemented algorithms and can therefore be recommended for finding the diameter to be used by different machine learning applications when needed.
Dropout is a special case of the stochastic delta rule: faster and more accurate deep learning
Multi-layer neural networks have lead to remarkable performance on many kinds of benchmark tasks in text, speech and image processing. Nonlinear parameter estimation in hierarchical models is known to be subject to overfitting and misspecification. One approach to these estimation and related problems (local minima, colinearity, feature discovery etc.) is called Dropout (Hinton, et al 2012, Baldi et al 2016). The Dropout algorithm removes hidden units according to a Bernoulli random variable with probability $p$ prior to each update, creating random "shocks" to the network that are averaged over updates. In this paper we will show that Dropout is a special case of a more general model published originally in 1990 called the Stochastic Delta Rule, or SDR (Hanson, 1990). SDR redefines each weight in the network as a random variable with mean $\mu_{w_{ij}}$ and standard deviation $\sigma_{w_{ij}}$. Each weight random variable is sampled on each forward activation, consequently creating an exponential number of potential networks with shared weights. Both parameters are updated according to prediction error, thus resulting in weight noise injections that reflect a local history of prediction error and local model averaging. SDR therefore implements a more sensitive local gradient-dependent simulated annealing per weight converging in the limit to a Bayes optimal network. Tests on standard benchmarks (CIFAR) using a modified version of DenseNet shows the SDR outperforms standard Dropout in test error by approx. $17\%$ with DenseNet-BC 250 on CIFAR-100 and approx. $12-14\%$ in smaller networks. We also show that SDR reaches the same accuracy that Dropout attains in 100 epochs in as few as 35 epochs.
How Complex is your classification problem? A survey on measuring classification complexity
Characteristics extracted from the training datasets of classification problems have proven to be effective predictors in a number of meta-analyses. Among them, measures of classification complexity can be used to estimate the difficulty in separating the data points into their expected classes. Descriptors of the spatial distribution of the data and estimates of the shape and size of the decision boundary are among the known measures for this characterization. This information can support the formulation of new data-driven pre-processing and pattern recognition techniques, which can in turn be focused on challenges highlighted by such characteristics of the problems. This paper surveys and analyzes measures which can be extracted from the training datasets in order to characterize the complexity of the respective classification problems. Their use in recent literature is also reviewed and discussed, allowing to prospect opportunities for future work in the area. Finally, descriptions are given on an R package named Extended Complexity Library (ECoL) that implements a set of complexity measures and is made publicly available.
Using Randomness to Improve Robustness of Machine-Learning Models Against Evasion Attacks
Machine learning models have been widely used in security applications such as intrusion detection, spam filtering, and virus or malware detection. However, it is well-known that adversaries are always trying to adapt their attacks to evade detection. For example, an email spammer may guess what features spam detection models use and modify or remove those features to avoid detection. There has been some work on making machine learning models more robust to such attacks. However, one simple but promising approach called {\em randomization} is underexplored. This paper proposes a novel randomization-based approach to improve robustness of machine learning models against evasion attacks. The proposed approach incorporates randomization into both model training time and model application time (meaning when the model is used to detect attacks). We also apply this approach to random forest, an existing ML method which already has some degree of randomness. Experiments on intrusion detection and spam filtering data show that our approach further improves robustness of random-forest method. We also discuss how this approach can be applied to other ML models.
Disease Progression Timeline Estimation for Alzheimer's Disease using Discriminative Event Based Modeling
Alzheimer's Disease (AD) is characterized by a cascade of biomarkers becoming abnormal, the pathophysiology of which is very complex and largely unknown. Event-based modeling (EBM) is a data-driven technique to estimate the sequence in which biomarkers for a disease become abnormal based on cross-sectional data. It can help in understanding the dynamics of disease progression and facilitate early diagnosis and prognosis. In this work we propose a novel discriminative approach to EBM, which is shown to be more accurate than existing state-of-the-art EBM methods. The method first estimates for each subject an approximate ordering of events. Subsequently, the central ordering over all subjects is estimated by fitting a generalized Mallows model to these approximate subject-specific orderings. We also introduce the concept of relative distance between events which helps in creating a disease progression timeline. Subsequently, we propose a method to stage subjects by placing them on the estimated disease progression timeline. We evaluated the proposed method on Alzheimer's Disease Neuroimaging Initiative (ADNI) data and compared the results with existing state-of-the-art EBM methods. We also performed extensive experiments on synthetic data simulating the progression of Alzheimer's disease. The event orderings obtained on ADNI data seem plausible and are in agreement with the current understanding of progression of AD. The proposed patient staging algorithm performed consistently better than that of state-of-the-art EBM methods. Event orderings obtained in simulation experiments were more accurate than those of other EBM methods and the estimated disease progression timeline was observed to correlate with the timeline of actual disease progression. The results of these experiments are encouraging and suggest that discriminative EBM is a promising approach to disease progression modeling.
Ensemble Kalman Inversion: A Derivative-Free Technique For Machine Learning Tasks
The standard probabilistic perspective on machine learning gives rise to empirical risk-minimization tasks that are frequently solved by stochastic gradient descent (SGD) and variants thereof. We present a formulation of these tasks as classical inverse or filtering problems and, furthermore, we propose an efficient, gradient-free algorithm for finding a solution to these problems using ensemble Kalman inversion (EKI). Applications of our approach include offline and online supervised learning with deep neural networks, as well as graph-based semi-supervised learning. The essence of the EKI procedure is an ensemble based approximate gradient descent in which derivatives are replaced by differences from within the ensemble. We suggest several modifications to the basic method, derived from empirically successful heuristics developed in the context of SGD. Numerical results demonstrate wide applicability and robustness of the proposed algorithm.
Machine Learning Promoting Extreme Simplification of Spectroscopy Equipment
The spectroscopy measurement is one of main pathways for exploring and understanding the nature. Today, it seems that racing artificial intelligence will remould its styles. The algorithms contained in huge neural networks are capable of substituting many of expensive and complex components of spectrum instruments. In this work, we presented a smart machine learning strategy on the measurement of absorbance curves, and also initially verified that an exceedingly-simplified equipment is sufficient to meet the needs for this strategy. Further, with its simplicity, the setup is expected to infiltrate into many scientific areas in versatile forms.
BooST: Boosting Smooth Trees for Partial Effect Estimation in Nonlinear Regressions
In this paper, we introduce a new machine learning (ML) model for nonlinear regression called the Boosted Smooth Transition Regression Trees (BooST), which is a combination of boosting algorithms with smooth transition regression trees. The main advantage of the BooST model is the estimation of the derivatives (partial effects) of very general nonlinear models. Therefore, the model can provide more interpretation about the mapping between the covariates and the dependent variable than other tree-based models, such as Random Forests. We present several examples with both simulated and real data.
LemmaTag: Jointly Tagging and Lemmatizing for Morphologically-Rich Languages with BRNNs
We present LemmaTag, a featureless neural network architecture that jointly generates part-of-speech tags and lemmas for sentences by using bidirectional RNNs with character-level and word-level embeddings. We demonstrate that both tasks benefit from sharing the encoding part of the network, predicting tag subcategories, and using the tagger output as an input to the lemmatizer. We evaluate our model across several languages with complex morphology, which surpasses state-of-the-art accuracy in both part-of-speech tagging and lemmatization in Czech, German, and Arabic.
This Time with Feeling: Learning Expressive Musical Performance
Music generation has generally been focused on either creating scores or interpreting them. We discuss differences between these two problems and propose that, in fact, it may be valuable to work in the space of direct $\it performance$ generation: jointly predicting the notes $\it and$ $\it also$ their expressive timing and dynamics. We consider the significance and qualities of the data set needed for this. Having identified both a problem domain and characteristics of an appropriate data set, we show an LSTM-based recurrent network model that subjectively performs quite well on this task. Critically, we provide generated examples. We also include feedback from professional composers and musicians about some of these examples.
Learning to Represent Bilingual Dictionaries
Bilingual word embeddings have been widely used to capture the similarity of lexical semantics in different human languages. However, many applications, such as cross-lingual semantic search and question answering, can be largely benefited from the cross-lingual correspondence between sentences and lexicons. To bridge this gap, we propose a neural embedding model that leverages bilingual dictionaries. The proposed model is trained to map the literal word definitions to the cross-lingual target words, for which we explore with different sentence encoding techniques. To enhance the learning process on limited resources, our model adopts several critical learning strategies, including multi-task learning on different bridges of languages, and joint learning of the dictionary model with a bilingual word embedding model. Experimental evaluation focuses on two applications. The results of the cross-lingual reverse dictionary retrieval task show our model's promising ability of comprehending bilingual concepts based on descriptions, and highlight the effectiveness of proposed learning strategies in improving performance. Meanwhile, our model effectively addresses the bilingual paraphrase identification problem and significantly outperforms previous approaches.
Familia: A Configurable Topic Modeling Framework for Industrial Text Engineering
In the last decade, a variety of topic models have been proposed for text engineering. However, except Probabilistic Latent Semantic Analysis (PLSA) and Latent Dirichlet Allocation (LDA), most of existing topic models are seldom applied or considered in industrial scenarios. This phenomenon is caused by the fact that there are very few convenient tools to support these topic models so far. Intimidated by the demanding expertise and labor of designing and implementing parameter inference algorithms, software engineers are prone to simply resort to PLSA/LDA, without considering whether it is proper for their problem at hand or not. In this paper, we propose a configurable topic modeling framework named Familia, in order to bridge the huge gap between academic research fruits and current industrial practice. Familia supports an important line of topic models that are widely applicable in text engineering scenarios. In order to relieve burdens of software engineers without knowledge of Bayesian networks, Familia is able to conduct automatic parameter inference for a variety of topic models. Simply through changing the data organization of Familia, software engineers are able to easily explore a broad spectrum of existing topic models or even design their own topic models, and find the one that best suits the problem at hand. With its superior extendability, Familia has a novel sampling mechanism that strikes balance between effectiveness and efficiency of parameter inference. Furthermore, Familia is essentially a big topic modeling framework that supports parallel parameter inference and distributed parameter storage. The utilities and necessity of Familia are demonstrated in real-life industrial applications. Familia would significantly enlarge software engineers' arsenal of topic models and pave the way for utilizing highly customized topic models in real-life problems.
Learning Multi-touch Conversion Attribution with Dual-attention Mechanisms for Online Advertising
In online advertising, the Internet users may be exposed to a sequence of different ad campaigns, i.e., display ads, search, or referrals from multiple channels, before led up to any final sales conversion and transaction. For both campaigners and publishers, it is fundamentally critical to estimate the contribution from ad campaign touch-points during the customer journey (conversion funnel) and assign the right credit to the right ad exposure accordingly. However, the existing research on the multi-touch attribution problem lacks a principled way of utilizing the users' pre-conversion actions (i.e., clicks), and quite often fails to model the sequential patterns among the touch points from a user's behavior data. To make it worse, the current industry practice is merely employing a set of arbitrary rules as the attribution model, e.g., the popular last-touch model assigns 100% credit to the final touch-point regardless of actual attributions. In this paper, we propose a Dual-attention Recurrent Neural Network (DARNN) for the multi-touch attribution problem. It learns the attribution values through an attention mechanism directly from the conversion estimation objective. To achieve this, we utilize sequence-to-sequence prediction for user clicks, and combine both post-view and post-click attribution patterns together for the final conversion estimation. To quantitatively benchmark attribution models, we also propose a novel yet practical attribution evaluation scheme through the proxy of budget allocation (under the estimated attributions) over ad channels. The experimental results on two real datasets demonstrate the significant performance gains of our attribution model against the state of the art.
Neural Network Encapsulation
A capsule is a collection of neurons which represents different variants of a pattern in the network. The routing scheme ensures only certain capsules which resemble lower counterparts in the higher layer should be activated. However, the computational complexity becomes a bottleneck for scaling up to larger networks, as lower capsules need to correspond to each and every higher capsule. To resolve this limitation, we approximate the routing process with two branches: a master branch which collects primary information from its direct contact in the lower layer and an aide branch that replenishes master based on pattern variants encoded in other lower capsules. Compared with previous iterative and unsupervised routing scheme, these two branches are communicated in a fast, supervised and one-time pass fashion. The complexity and runtime of the model are therefore decreased by a large margin. Motivated by the routing to make higher capsule have agreement with lower capsule, we extend the mechanism as a compensation for the rapid loss of information in nearby layers. We devise a feedback agreement unit to send back higher capsules as feedback. It could be regarded as an additional regularization to the network. The feedback agreement is achieved by comparing the optimal transport divergence between two distributions (lower and higher capsules). Such an add-on witnesses a unanimous gain in both capsule and vanilla networks. Our proposed EncapNet performs favorably better against previous state-of-the-arts on CIFAR10/100, SVHN and a subset of ImageNet.
Knowledge Graph Embedding with Entity Neighbors and Deep Memory Network
Knowledge Graph Embedding (KGE) aims to represent entities and relations of knowledge graph in a low-dimensional continuous vector space. Recent works focus on incorporating structural knowledge with additional information, such as entity descriptions, relation paths and so on. However, common used additional information usually contains plenty of noise, which makes it hard to learn valuable representation. In this paper, we propose a new kind of additional information, called entity neighbors, which contain both semantic and topological features about given entity. We then develop a deep memory network model to encode information from neighbors. Employing a gating mechanism, representations of structure and neighbors are integrated into a joint representation. The experimental results show that our model outperforms existing KGE methods utilizing entity descriptions and achieves state-of-the-art metrics on 4 datasets.
MARVIN: An Open Machine Learning Corpus and Environment for Automated Machine Learning Primitive Annotation and Execution
In this demo paper, we introduce the DARPA D3M program for automatic machine learning (ML) and JPL's MARVIN tool that provides an environment to locate, annotate, and execute machine learning primitives for use in ML pipelines. MARVIN is a web-based application and associated back-end interface written in Python that enables composition of ML pipelines from hundreds of primitives from the world of Scikit-Learn, Keras, DL4J and other widely used libraries. MARVIN allows for the creation of Docker containers that run on Kubernetes clusters within DARPA to provide an execution environment for automated machine learning. MARVIN currently contains over 400 datasets and challenge problems from a wide array of ML domains including routine classification and regression to advanced video/image classification and remote sensing.
Document Informed Neural Autoregressive Topic Models
Context information around words helps in determining their actual meaning, for example "networks" used in contexts of artificial neural networks or biological neuron networks. Generative topic models infer topic-word distributions, taking no or only little context into account. Here, we extend a neural autoregressive topic model to exploit the full context information around words in a document in a language modeling fashion. This results in an improved performance in terms of generalization, interpretability and applicability. We apply our modeling approach to seven data sets from various domains and demonstrate that our approach consistently outperforms stateof-the-art generative topic models. With the learned representations, we show on an average a gain of 9.6% (0.57 Vs 0.52) in precision at retrieval fraction 0.02 and 7.2% (0.582 Vs 0.543) in F1 for text categorization.
jLDADMM: A Java package for the LDA and DMM topic models
In this technical report, we present jLDADMM---an easy-to-use Java toolkit for conventional topic models. jLDADMM is released to provide alternatives for topic modeling on normal or short texts. It provides implementations of the Latent Dirichlet Allocation topic model and the one-topic-per-document Dirichlet Multinomial Mixture model (i.e. mixture of unigrams), using collapsed Gibbs sampling. In addition, jLDADMM supplies a document clustering evaluation to compare topic models. jLDADMM is open-source and available to download at: https://github.com/datquocnguyen/jLDADMM
Matrix Factorization on GPUs with Memory Optimization and Approximate Computing
Matrix factorization (MF) discovers latent features from observations, which has shown great promises in the fields of collaborative filtering, data compression, feature extraction, word embedding, etc. While many problem-specific optimization techniques have been proposed, alternating least square (ALS) remains popular due to its general applicability e.g. easy to handle positive-unlabeled inputs, fast convergence and parallelization capability. Current MF implementations are either optimized for a single machine or with a need of a large computer cluster but still are insufficient. This is because a single machine provides limited compute power for large-scale data while multiple machines suffer from the network communication bottleneck. To address the aforementioned challenge, accelerating ALS on graphics processing units (GPUs) is a promising direction. We propose the novel approach in enhancing the MF efficiency via both memory optimization and approximate computing. The former exploits GPU memory hierarchy to increase data reuse, while the later reduces unnecessary computing without hurting the convergence of learning algorithms. Extensive experiments on large-scale datasets show that our solution not only outperforms the competing CPU solutions by a large margin but also has a 2x-4x performance gain compared to the state-of-the-art GPU solutions. Our implementations are open-sourced and publicly available.
Neural Importance Sampling
We propose to use deep neural networks for generating samples in Monte Carlo integration. Our work is based on non-linear independent components estimation (NICE), which we extend in numerous ways to improve performance and enable its application to integration problems. First, we introduce piecewise-polynomial coupling transforms that greatly increase the modeling power of individual coupling layers. Second, we propose to preprocess the inputs of neural networks using one-blob encoding, which stimulates localization of computation and improves inference. Third, we derive a gradient-descent-based optimization for the KL and the $\chi^2$ divergence for the specific application of Monte Carlo integration with unnormalized stochastic estimates of the target distribution. Our approach enables fast and accurate inference and efficient sample generation independently of the dimensionality of the integration domain. We show its benefits on generating natural images and in two applications to light-transport simulation: first, we demonstrate learning of joint path-sampling densities in the primary sample space and importance sampling of multi-dimensional path prefixes thereof. Second, we use our technique to extract conditional directional densities driven by the product of incident illumination and the BSDF in the rendering equation, and we leverage the densities for path guiding. In all applications, our approach yields on-par or higher performance than competing techniques at equal sample count.
Ranking with Features: Algorithm and A Graph Theoretic Analysis
We consider the problem of ranking a set of items from pairwise comparisons in the presence of features associated with the items. Recent works have established that $O(n\log(n))$ samples are needed to rank well when there is no feature information present. However, this might be sub-optimal in the presence of associated features. We introduce a new probabilistic preference model called feature-Bradley-Terry-Luce (f-BTL) model that generalizes the standard BTL model to incorporate feature information. We present a new least squares based algorithm called fBTL-LS which we show requires much lesser than $O(n\log(n))$ pairs to obtain a good ranking -- precisely our new sample complexity bound is of $O(\alpha\log \alpha)$, where $\alpha$ denotes the number of `independent items' of the set, in general $\alpha << n$. Our analysis is novel and makes use of tools from classical graph matching theory to provide tighter bounds that sheds light on the true complexity of the ranking problem, capturing the item dependencies in terms of their feature representations. This was not possible with earlier matrix completion based tools used for this problem. We also prove an information theoretic lower bound on the required sample complexity for recovering the underlying ranking, which essentially shows the tightness of our proposed algorithms. The efficacy of our proposed algorithms are validated through extensive experimental evaluations on a variety of synthetic and real world datasets.
A Consistent Method for Learning OOMs from Asymptotically Stationary Time Series Data Containing Missing Values
In the traditional framework of spectral learning of stochastic time series models, model parameters are estimated based on trajectories of fully recorded observations. However, real-world time series data often contain missing values, and worse, the distributions of missingness events over time are often not independent of the visible process. Recently, a spectral OOM learning algorithm for time series with missing data was introduced and proved to be consistent, albeit under quite strong conditions. Here we refine the algorithm and prove that the original strong conditions can be very much relaxed. We validate our theoretical findings by numerical experiments, showing that the algorithm can consistently handle missingness patterns whose dynamic interacts with the visible process.
Parallelization does not Accelerate Convex Optimization: Adaptivity Lower Bounds for Non-smooth Convex Minimization
In this paper we study the limitations of parallelization in convex optimization. A convenient approach to study parallelization is through the prism of \emph{adaptivity} which is an information theoretic measure of the parallel runtime of an algorithm [BS18]. Informally, adaptivity is the number of sequential rounds an algorithm needs to make when it can execute polynomially-many queries in parallel at every round. For combinatorial optimization with black-box oracle access, the study of adaptivity has recently led to exponential accelerations in parallel runtime and the natural question is whether dramatic accelerations are achievable for convex optimization. For the problem of minimizing a non-smooth convex function $f:[0,1]^n\to \mathbb{R}$ over the unit Euclidean ball, we give a tight lower bound that shows that even when $\texttt{poly}(n)$ queries can be executed in parallel, there is no randomized algorithm with $\tilde{o}(n^{1/3})$ rounds of adaptivity that has convergence rate that is better than those achievable with a one-query-per-round algorithm. A similar lower bound was obtained by Nemirovski [Nem94], however that result holds for the $\ell_{\infty}$-setting instead of $\ell_2$. In addition, we also show a tight lower bound that holds for Lipschitz and strongly convex functions. At the time of writing this manuscript we were not aware of Nemirovski's result. The construction we use is similar to the one in [Nem94], though our analysis is different. Due to the close relationship between this work and [Nem94], we view the research contribution of this manuscript limited and it should serve as an instructful approach to understanding lower bounds for parallel optimization.
Interpreting Recurrent and Attention-Based Neural Models: a Case Study on Natural Language Inference
Deep learning models have achieved remarkable success in natural language inference (NLI) tasks. While these models are widely explored, they are hard to interpret and it is often unclear how and why they actually work. In this paper, we take a step toward explaining such deep learning based models through a case study on a popular neural model for NLI. In particular, we propose to interpret the intermediate layers of NLI models by visualizing the saliency of attention and LSTM gating signals. We present several examples for which our methods are able to reveal interesting insights and identify the critical information contributing to the model decisions.
Adversarial Personalized Ranking for Recommendation
Item recommendation is a personalized ranking task. To this end, many recommender systems optimize models with pairwise ranking objectives, such as the Bayesian Personalized Ranking (BPR). Using matrix Factorization (MF) --- the most widely used model in recommendation --- as a demonstration, we show that optimizing it with BPR leads to a recommender model that is not robust. In particular, we find that the resultant model is highly vulnerable to adversarial perturbations on its model parameters, which implies the possibly large error in generalization. To enhance the robustness of a recommender model and thus improve its generalization performance, we propose a new optimization framework, namely Adversarial Personalized Ranking (APR). In short, our APR enhances the pairwise ranking method BPR by performing adversarial training. It can be interpreted as playing a minimax game, where the minimization of the BPR objective function meanwhile defends an adversary, which adds adversarial perturbations on model parameters to maximize the BPR objective function. To illustrate how it works, we implement APR on MF by adding adversarial perturbations on the embedding vectors of users and items. Extensive experiments on three public real-world datasets demonstrate the effectiveness of APR --- by optimizing MF with APR, it outperforms BPR with a relative improvement of 11.2% on average and achieves state-of-the-art performance for item recommendation. Our implementation is available at: https://github.com/hexiangnan/adversarial_personalized_ranking.
Outer Product-based Neural Collaborative Filtering
In this work, we contribute a new multi-layer neural network architecture named ONCF to perform collaborative filtering. The idea is to use an outer product to explicitly model the pairwise correlations between the dimensions of the embedding space. In contrast to existing neural recommender models that combine user embedding and item embedding via a simple concatenation or element-wise product, our proposal of using outer product above the embedding layer results in a two-dimensional interaction map that is more expressive and semantically plausible. Above the interaction map obtained by outer product, we propose to employ a convolutional neural network to learn high-order correlations among embedding dimensions. Extensive experiments on two public implicit feedback data demonstrate the effectiveness of our proposed ONCF framework, in particular, the positive effect of using outer product to model the correlations between embedding dimensions in the low level of multi-layer neural recommender model. The experiment codes are available at: https://github.com/duxy-me/ConvNCF
Multimodal Language Analysis with Recurrent Multistage Fusion
Computational modeling of human multimodal language is an emerging research area in natural language processing spanning the language, visual and acoustic modalities. Comprehending multimodal language requires modeling not only the interactions within each modality (intra-modal interactions) but more importantly the interactions between modalities (cross-modal interactions). In this paper, we propose the Recurrent Multistage Fusion Network (RMFN) which decomposes the fusion problem into multiple stages, each of them focused on a subset of multimodal signals for specialized, effective fusion. Cross-modal interactions are modeled using this multistage fusion approach which builds upon intermediate representations of previous stages. Temporal and intra-modal interactions are modeled by integrating our proposed fusion approach with a system of recurrent neural networks. The RMFN displays state-of-the-art performance in modeling human multimodal language across three public datasets relating to multimodal sentiment analysis, emotion recognition, and speaker traits recognition. We provide visualizations to show that each stage of fusion focuses on a different subset of multimodal signals, learning increasingly discriminative multimodal representations.
Sequence Labeling: A Practical Approach
We take a practical approach to solving sequence labeling problem assuming unavailability of domain expertise and scarcity of informational and computational resources. To this end, we utilize a universal end-to-end Bi-LSTM-based neural sequence labeling model applicable to a wide range of NLP tasks and languages. The model combines morphological, semantic, and structural cues extracted from data to arrive at informed predictions. The model's performance is evaluated on eight benchmark datasets (covering three tasks: POS-tagging, NER, and Chunking, and four languages: English, German, Dutch, and Spanish). We observe state-of-the-art results on four of them: CoNLL-2012 (English NER), CoNLL-2002 (Dutch NER), GermEval 2014 (German NER), Tiger Corpus (German POS-tagging), and competitive performance on the rest.
Unsupervised learning for cross-domain medical image synthesis using deformation invariant cycle consistency networks
Recently, the cycle-consistent generative adversarial networks (CycleGAN) has been widely used for synthesis of multi-domain medical images. The domain-specific nonlinear deformations captured by CycleGAN make the synthesized images difficult to be used for some applications, for example, generating pseudo-CT for PET-MR attenuation correction. This paper presents a deformation-invariant CycleGAN (DicycleGAN) method using deformable convolutional layers and new cycle-consistency losses. Its robustness dealing with data that suffer from domain-specific nonlinear deformations has been evaluated through comparison experiments performed on a multi-sequence brain MR dataset and a multi-modality abdominal dataset. Our method has displayed its ability to generate synthesized data that is aligned with the source while maintaining a proper quality of signal compared to CycleGAN-generated data. The proposed model also obtained comparable performance with CycleGAN when data from the source and target domains are alignable through simple affine transformations.
A Fourier View of REINFORCE
We show a connection between the Fourier spectrum of Boolean functions and the REINFORCE gradient estimator for binary latent variable models. We show that REINFORCE estimates (up to a factor) the degree-1 Fourier coefficients of a Boolean function. Using this connection we offer a new perspective on variance reduction in gradient estimation for latent variable models: namely, that variance reduction involves eliminating or reducing Fourier coefficients that do not have degree 1. We then use this connection to develop low-variance unbiased gradient estimators for binary latent variable models such as sigmoid belief networks. The estimator is based upon properties of the noise operator from Boolean Fourier theory and involves a sample-dependent baseline added to the REINFORCE estimator in a way that keeps the estimator unbiased. The baseline can be plugged into existing gradient estimators for further variance reduction.
Neural System Identification with Spike-triggered Non-negative Matrix Factorization
Neuronal circuits formed in the brain are complex with intricate connection patterns. Such complexity is also observed in the retina as a relatively simple neuronal circuit. A retinal ganglion cell receives excitatory inputs from neurons in previous layers as driving forces to fire spikes. Analytical methods are required that can decipher these components in a systematic manner. Recently a method termed spike-triggered non-negative matrix factorization (STNMF) has been proposed for this purpose. In this study, we extend the scope of the STNMF method. By using the retinal ganglion cell as a model system, we show that STNMF can detect various computational properties of upstream bipolar cells, including spatial receptive field, temporal filter, and transfer nonlinearity. In addition, we recover synaptic connection strengths from the weight matrix of STNMF. Furthermore, we show that STNMF can separate spikes of a ganglion cell into a few subsets of spikes where each subset is contributed by one presynaptic bipolar cell. Taken together, these results corroborate that STNMF is a useful method for deciphering the structure of neuronal circuits.
Large-Scale Learnable Graph Convolutional Networks
Convolutional neural networks (CNNs) have achieved great success on grid-like data such as images, but face tremendous challenges in learning from more generic data such as graphs. In CNNs, the trainable local filters enable the automatic extraction of high-level features. The computation with filters requires a fixed number of ordered units in the receptive fields. However, the number of neighboring units is neither fixed nor are they ordered in generic graphs, thereby hindering the applications of convolutional operations. Here, we address these challenges by proposing the learnable graph convolutional layer (LGCL). LGCL automatically selects a fixed number of neighboring nodes for each feature based on value ranking in order to transform graph data into grid-like structures in 1-D format, thereby enabling the use of regular convolutional operations on generic graphs. To enable model training on large-scale graphs, we propose a sub-graph training method to reduce the excessive memory and computational resource requirements suffered by prior methods on graph convolutions. Our experimental results on node classification tasks in both transductive and inductive learning settings demonstrate that our methods can achieve consistently better performance on the Cora, Citeseer, Pubmed citation network, and protein-protein interaction network datasets. Our results also indicate that the proposed methods using sub-graph training strategy are more efficient as compared to prior approaches.
A simulation study to distinguish prompt photon from $\pi^0$ and beam halo in a granular calorimeter using deep networks
In a hadron collider environment identification of prompt photons originating in a hard partonic scattering process and rejection of non-prompt photons coming from hadronic jets or from beam related sources, is the first step for study of processes with photons in final state. Photons coming from decay of $\pi_0$'s produced inside a hadronic jet and photons produced in catastrophic bremsstrahlung by beam halo muons are two major sources of non-prompt photons. In this paper the potential of deep learning methods for separating the prompt photons from beam halo and $\pi^0$'s in the electromagnetic calorimeter of a collider detector is investigated, using an approximate description of the CMS detector. It is shown that, using only calorimetric information as images with a Convolutional Neural Network, beam halo (and $\pi^{0}$) can be separated from photon with 99.96\% (97.7\%) background rejection for 99.00\% (90.0\%) signal efficiency which is much better than traditionally employed variables.
PAC Battling Bandits in the Plackett-Luce Model
We introduce the probably approximately correct (PAC) \emph{Battling-Bandit} problem with the Plackett-Luce (PL) subset choice model--an online learning framework where at each trial the learner chooses a subset of $k$ arms from a fixed set of $n$ arms, and subsequently observes a stochastic feedback indicating preference information of the items in the chosen subset, e.g., the most preferred item or ranking of the top $m$ most preferred items etc. The objective is to identify a near-best item in the underlying PL model with high confidence. This generalizes the well-studied PAC \emph{Dueling-Bandit} problem over $n$ arms, which aims to recover the \emph{best-arm} from pairwise preference information, and is known to require $O(\frac{n}{\epsilon^2} \ln \frac{1}{\delta})$ sample complexity \citep{Busa_pl,Busa_top}. We study the sample complexity of this problem under various feedback models: (1) Winner of the subset (WI), and (2) Ranking of top-$m$ items (TR) for $2\le m \le k$. We show, surprisingly, that with winner information (WI) feedback over subsets of size $2 \leq k \leq n$, the best achievable sample complexity is still $O\left( \frac{n}{\epsilon^2} \ln \frac{1}{\delta}\right)$, independent of $k$, and the same as that in the Dueling Bandit setting ($k=2$). For the more general top-$m$ ranking (TR) feedback model, we show a significantly smaller lower bound on sample complexity of $\Omega\bigg( \frac{n}{m\epsilon^2} \ln \frac{1}{\delta}\bigg)$, which suggests a multiplicative reduction by a factor ${m}$ owing to the additional information revealed from preferences among $m$ items instead of just $1$. We also propose two algorithms for the PAC problem with the TR feedback model with optimal (upto logarithmic factors) sample complexity guarantees, establishing the increase in statistical efficiency from exploiting rank-ordered feedback.
Interpretable Time Series Classification using All-Subsequence Learning and Symbolic Representations in Time and Frequency Domains
The time series classification literature has expanded rapidly over the last decade, with many new classification approaches published each year. The research focus has mostly been on improving the accuracy and efficiency of classifiers, while their interpretability has been somewhat neglected. Classifier interpretability has become a critical constraint for many application domains and the introduction of the 'right to explanation' GDPR EU legislation in May 2018 is likely to further emphasize the importance of explainable learning algorithms. In this work we analyse the state-of-the-art for time series classification, and propose new algorithms that aim to maintain the classifier accuracy and efficiency, but keep interpretability as a key design constraint. We present new time series classification algorithms that advance the state-of-the-art by implementing the following three key ideas: (1) Multiple resolutions of symbolic approximations: we combine symbolic representations obtained using different parameters; (2) Multiple domain representations: we combine symbolic approximations in time (e.g., SAX) and frequency (e.g., SFA) domains; (3) Efficient navigation of a huge symbolic-words space: we adapt a symbolic sequence classifier named SEQL, to make it work with multiple domain representations (e.g., SAX-SEQL, SFA-SEQL), and use its greedy feature selection strategy to effectively filter the best features for each representation. We show that a multi-resolution multi-domain linear classifier, SAX-SFA-SEQL, achieves a similar accuracy to the state-of-the-art COTE ensemble, and to a recent deep learning method (FCN), but uses a fraction of the time required by either COTE or FCN. We discuss the accuracy, efficiency and interpretability of our proposed algorithms. To further analyse the interpretability aspect of our classifiers, we present a case study on an ecology benchmark.
Directed Policy Gradient for Safe Reinforcement Learning with Human Advice
Many currently deployed Reinforcement Learning agents work in an environment shared with humans, be them co-workers, users or clients. It is desirable that these agents adjust to people's preferences, learn faster thanks to their help, and act safely around them. We argue that most current approaches that learn from human feedback are unsafe: rewarding or punishing the agent a-posteriori cannot immediately prevent it from wrong-doing. In this paper, we extend Policy Gradient to make it robust to external directives, that would otherwise break the fundamentally on-policy nature of Policy Gradient. Our technique, Directed Policy Gradient (DPG), allows a teacher or backup policy to override the agent before it acts undesirably, while allowing the agent to leverage human advice or directives to learn faster. Our experiments demonstrate that DPG makes the agent learn much faster than reward-based approaches, while requiring an order of magnitude less advice.
Learning Explanations from Language Data
PatternAttribution is a recent method, introduced in the vision domain, that explains classifications of deep neural networks. We demonstrate that it also generates meaningful interpretations in the language domain.
Learning Discriminative Hashing Codes for Cross-Modal Retrieval based on Multi-view Features
Hashing techniques have been applied broadly in retrieval tasks due to their low storage requirements and high speed of processing. Many hashing methods based on a single view have been extensively studied for information retrieval. However, the representation capacity of a single view is insufficient and some discriminative information is not captured, which results in limited improvement. In this paper, we employ multiple views to represent images and texts for enriching the feature information. Our framework exploits the complementary information among multiple views to better learn the discriminative compact hash codes. A discrete hashing learning framework that jointly performs classifier learning and subspace learning is proposed to complete multiple search tasks simultaneously. Our framework includes two stages, namely a kernelization process and a quantization process. Kernelization aims to find a common subspace where multi-view features can be fused. The quantization stage is designed to learn discriminative unified hashing codes. Extensive experiments are performed on single-label datasets (WiKi and MMED) and multi-label datasets (MIRFlickr and NUS-WIDE) and the experimental results indicate the superiority of our method compared with the state-of-the-art methods.
Effective Unsupervised Author Disambiguation with Relative Frequencies
This work addresses the problem of author name homonymy in the Web of Science. Aiming for an efficient, simple and straightforward solution, we introduce a novel probabilistic similarity measure for author name disambiguation based on feature overlap. Using the researcher-ID available for a subset of the Web of Science, we evaluate the application of this measure in the context of agglomeratively clustering author mentions. We focus on a concise evaluation that shows clearly for which problem setups and at which time during the clustering process our approach works best. In contrast to most other works in this field, we are sceptical towards the performance of author name disambiguation methods in general and compare our approach to the trivial single-cluster baseline. Our results are presented separately for each correct clustering size as we can explain that, when treating all cases together, the trivial baseline and more sophisticated approaches are hardly distinguishable in terms of evaluation results. Our model shows state-of-the-art performance for all correct clustering sizes without any discriminative training and with tuning only one convergence parameter.
DFTerNet: Towards 2-bit Dynamic Fusion Networks for Accurate Human Activity Recognition
Deep Convolutional Neural Networks (DCNNs) are currently popular in human activity recognition applications. However, in the face of modern artificial intelligence sensor-based games, many research achievements cannot be practically applied on portable devices. DCNNs are typically resource-intensive and too large to be deployed on portable devices, thus this limits the practical application of complex activity detection. In addition, since portable devices do not possess high-performance Graphic Processing Units (GPUs), there is hardly any improvement in Action Game (ACT) experience. Besides, in order to deal with multi-sensor collaboration, all previous human activity recognition models typically treated the representations from different sensor signal sources equally. However, distinct types of activities should adopt different fusion strategies. In this paper, a novel scheme is proposed. This scheme is used to train 2-bit Convolutional Neural Networks with weights and activations constrained to {-0.5,0,0.5}. It takes into account the correlation between different sensor signal sources and the activity types. This model, which we refer to as DFTerNet, aims at producing a more reliable inference and better trade-offs for practical applications. Our basic idea is to exploit quantization of weights and activations directly in pre-trained filter banks and adopt dynamic fusion strategies for different activity types. Experiments demonstrate that by using dynamic fusion strategy can exceed the baseline model performance by up to ~5% on activity recognition like OPPORTUNITY and PAMAP2 datasets. Using the quantization method proposed, we were able to achieve performances closer to that of full-precision counterpart. These results were also verified using the UniMiB-SHAR dataset. In addition, the proposed method can achieve ~9x acceleration on CPUs and ~11x memory saving.
Affect Estimation in 3D Space Using Multi-Task Active Learning for Regression
Acquisition of labeled training samples for affective computing is usually costly and time-consuming, as affects are intrinsically subjective, subtle and uncertain, and hence multiple human assessors are needed to evaluate each affective sample. Particularly, for affect estimation in the 3D space of valence, arousal and dominance, each assessor has to perform the evaluations in three dimensions, which makes the labeling problem even more challenging. Many sophisticated machine learning approaches have been proposed to reduce the data labeling requirement in various other domains, but so far few have considered affective computing. This paper proposes two multi-task active learning for regression approaches, which select the most beneficial samples to label, by considering the three affect primitives simultaneously. Experimental results on the VAM corpus demonstrated that our optimal sample selection approaches can result in better estimation performance than random selection and several traditional single-task active learning approaches. Thus, they can help alleviate the data labeling problem in affective computing, i.e., better estimation performance can be obtained from fewer labeling queries.
Active Learning for Regression Using Greedy Sampling
Regression problems are pervasive in real-world applications. Generally a substantial amount of labeled samples are needed to build a regression model with good generalization ability. However, many times it is relatively easy to collect a large number of unlabeled samples, but time-consuming or expensive to label them. Active learning for regression (ALR) is a methodology to reduce the number of labeled samples, by selecting the most beneficial ones to label, instead of random selection. This paper proposes two new ALR approaches based on greedy sampling (GS). The first approach (GSy) selects new samples to increase the diversity in the output space, and the second (iGS) selects new samples to increase the diversity in both input and output spaces. Extensive experiments on 12 UCI and CMU StatLib datasets from various domains, and on 15 subjects on EEG-based driver drowsiness estimation, verified their effectiveness and robustness.
CT Super-resolution GAN Constrained by the Identical, Residual, and Cycle Learning Ensemble(GAN-CIRCLE)
Computed tomography (CT) is widely used in screening, diagnosis, and image-guided therapy for both clinical and research purposes. Since CT involves ionizing radiation, an overarching thrust of related technical research is development of novel methods enabling ultrahigh quality imaging with fine structural details while reducing the X-ray radiation. In this paper, we present a semi-supervised deep learning approach to accurately recover high-resolution (HR) CT images from low-resolution (LR) counterparts. Specifically, with the generative adversarial network (GAN) as the building block, we enforce the cycle-consistency in terms of the Wasserstein distance to establish a nonlinear end-to-end mapping from noisy LR input images to denoised and deblurred HR outputs. We also include the joint constraints in the loss function to facilitate structural preservation. In this deep imaging process, we incorporate deep convolutional neural network (CNN), residual learning, and network in network techniques for feature extraction and restoration. In contrast to the current trend of increasing network depth and complexity to boost the CT imaging performance, which limit its real-world applications by imposing considerable computational and memory overheads, we apply a parallel $1\times1$ CNN to compress the output of the hidden layer and optimize the number of layers and the number of filters for each convolutional layer. Quantitative and qualitative evaluations demonstrate that our proposed model is accurate, efficient and robust for super-resolution (SR) image restoration from noisy LR input images. In particular, we validate our composite SR networks on three large-scale CT datasets, and obtain promising results as compared to the other state-of-the-art methods.
Model Reduction with Memory and the Machine Learning of Dynamical Systems
The well-known Mori-Zwanzig theory tells us that model reduction leads to memory effect. For a long time, modeling the memory effect accurately and efficiently has been an important but nearly impossible task in developing a good reduced model. In this work, we explore a natural analogy between recurrent neural networks and the Mori-Zwanzig formalism to establish a systematic approach for developing reduced models with memory. Two training models-a direct training model and a dynamically coupled training model-are proposed and compared. We apply these methods to the Kuramoto-Sivashinsky equation and the Navier-Stokes equation. Numerical experiments show that the proposed method can produce reduced model with good performance on both short-term prediction and long-term statistical properties.
iNNvestigate neural networks!
In recent years, deep neural networks have revolutionized many application domains of machine learning and are key components of many critical decision or predictive processes. Therefore, it is crucial that domain specialists can understand and analyze actions and pre- dictions, even of the most complex neural network architectures. Despite these arguments neural networks are often treated as black boxes. In the attempt to alleviate this short- coming many analysis methods were proposed, yet the lack of reference implementations often makes a systematic comparison between the methods a major effort. The presented library iNNvestigate addresses this by providing a common interface and out-of-the- box implementation for many analysis methods, including the reference implementation for PatternNet and PatternAttribution as well as for LRP-methods. To demonstrate the versatility of iNNvestigate, we provide an analysis of image classifications for variety of state-of-the-art neural network architectures.
Connectivity-Driven Brain Parcellation via Consensus Clustering
We present two related methods for deriving connectivity-based brain atlases from individual connectomes. The proposed methods exploit a previously proposed dense connectivity representation, termed continuous connectivity, by first performing graph-based hierarchical clustering of individual brains, and subsequently aggregating the individual parcellations into a consensus parcellation. The search for consensus minimizes the sum of cluster membership distances, effectively estimating a pseudo-Karcher mean of individual parcellations. We assess the quality of our parcellations using (1) Kullback-Liebler and Jensen-Shannon divergence with respect to the dense connectome representation, (2) inter-hemispheric symmetry, and (3) performance of the simplified connectome in a biological sex classification task. We find that the parcellation based-atlas computed using a greedy search at a hierarchical depth 3 outperforms all other parcellation-based atlases as well as the standard Dessikan-Killiany anatomical atlas in all three assessments.
Estimating Heterogeneous Causal Effects in the Presence of Irregular Assignment Mechanisms
This paper provides a link between causal inference and machine learning techniques - specifically, Classification and Regression Trees (CART) - in observational studies where the receipt of the treatment is not randomized, but the assignment to the treatment can be assumed to be randomized (irregular assignment mechanism). The paper contributes to the growing applied machine learning literature on causal inference, by proposing a modified version of the Causal Tree (CT) algorithm to draw causal inference from an irregular assignment mechanism. The proposed method is developed by merging the CT approach with the instrumental variable framework to causal inference, hence the name Causal Tree with Instrumental Variable (CT-IV). As compared to CT, the main strength of CT-IV is that it can deal more efficiently with the heterogeneity of causal effects, as demonstrated by a series of numerical results obtained on synthetic data. Then, the proposed algorithm is used to evaluate a public policy implemented by the Tuscan Regional Administration (Italy), which aimed at easing the access to credit for small firms. In this context, CT-IV breaks fresh ground for target-based policies, identifying interesting heterogeneous causal effects.
Visual Sensor Network Reconfiguration with Deep Reinforcement Learning
We present an approach for reconfiguration of dynamic visual sensor networks with deep reinforcement learning (RL). Our RL agent uses a modified asynchronous advantage actor-critic framework and the recently proposed Relational Network module at the foundation of its network architecture. To address the issue of sample inefficiency in current approaches to model-free reinforcement learning, we train our system in an abstract simulation environment that represents inputs from a dynamic scene. Our system is validated using inputs from a real-world scenario and preexisting object detection and tracking algorithms.
Fast, Better Training Trick -- Random Gradient
In this paper, we will show an unprecedented method to accelerate training and improve performance, which called random gradient (RG). This method can be easier to the training of any model without extra calculation cost, we use Image classification, Semantic segmentation, and GANs to confirm this method can improve speed which is training model in computer vision. The central idea is using the loss multiplied by a random number to random reduce the back-propagation gradient. We can use this method to produce a better result in Pascal VOC, Cifar, Cityscapes datasets.
Understanding training and generalization in deep learning by Fourier analysis
Background: It is still an open research area to theoretically understand why Deep Neural Networks (DNNs)---equipped with many more parameters than training data and trained by (stochastic) gradient-based methods---often achieve remarkably low generalization error. Contribution: We study DNN training by Fourier analysis. Our theoretical framework explains: i) DNN with (stochastic) gradient-based methods often endows low-frequency components of the target function with a higher priority during the training; ii) Small initialization leads to good generalization ability of DNN while preserving the DNN's ability to fit any function. These results are further confirmed by experiments of DNNs fitting the following datasets, that is, natural images, one-dimensional functions and MNIST dataset.
Simple Root Cause Analysis by Separable Likelihoods
Root Cause Analysis for Anomalies is challenging because of the trade-off between the accuracy and its explanatory friendliness, required for industrial applications. In this paper we propose a framework for simple and friendly RCA within the Bayesian regime under certain restrictions (that Hessian at the mode is diagonal, here referred to as \emph{separability}) imposed on the predictive posterior. We show that this assumption is satisfied for important base models, including Multinomal, Dirichlet-Multinomial and Naive Bayes. To demonstrate the usefulness of the framework, we embed it into the Bayesian Net and validate on web server error logs (real world data set).
Explaining the Unique Nature of Individual Gait Patterns with Deep Learning
Machine learning (ML) techniques such as (deep) artificial neural networks (DNN) are solving very successfully a plethora of tasks and provide new predictive models for complex physical, chemical, biological and social systems. However, in most cases this comes with the disadvantage of acting as a black box, rarely providing information about what made them arrive at a particular prediction. This black box aspect of ML techniques can be problematic especially in medical diagnoses, so far hampering a clinical acceptance. The present paper studies the uniqueness of individual gait patterns in clinical biomechanics using DNNs. By attributing portions of the model predictions back to the input variables (ground reaction forces and full-body joint angles), the Layer-Wise Relevance Propagation (LRP) technique reliably demonstrates which variables at what time windows of the gait cycle are most relevant for the characterisation of gait patterns from a certain individual. By measuring the time-resolved contribution of each input variable to the prediction of ML techniques such as DNNs, our method describes the first general framework that enables to understand and interpret non-linear ML methods in (biomechanical) gait analysis and thereby supplies a powerful tool for analysis, diagnosis and treatment of human gait.
Design Flow of Accelerating Hybrid Extremely Low Bit-width Neural Network in Embedded FPGA
Neural network accelerators with low latency and low energy consumption are desirable for edge computing. To create such accelerators, we propose a design flow for accelerating the extremely low bit-width neural network (ELB-NN) in embedded FPGAs with hybrid quantization schemes. This flow covers both network training and FPGA-based network deployment, which facilitates the design space exploration and simplifies the tradeoff between network accuracy and computation efficiency. Using this flow helps hardware designers to deliver a network accelerator in edge devices under strict resource and power constraints. We present the proposed flow by supporting hybrid ELB settings within a neural network. Results show that our design can deliver very high performance peaking at 10.3 TOPS and classify up to 325.3 image/s/watt while running large-scale neural networks for less than 5W using embedded FPGA. To the best of our knowledge, it is the most energy efficient solution in comparison to GPU or other FPGA implementations reported so far in the literature.
Hidden Fluid Mechanics: A Navier-Stokes Informed Deep Learning Framework for Assimilating Flow Visualization Data
We present hidden fluid mechanics (HFM), a physics informed deep learning framework capable of encoding an important class of physical laws governing fluid motions, namely the Navier-Stokes equations. In particular, we seek to leverage the underlying conservation laws (i.e., for mass, momentum, and energy) to infer hidden quantities of interest such as velocity and pressure fields merely from spatio-temporal visualizations of a passive scaler (e.g., dye or smoke), transported in arbitrarily complex domains (e.g., in human arteries or brain aneurysms). Our approach towards solving the aforementioned data assimilation problem is unique as we design an algorithm that is agnostic to the geometry or the initial and boundary conditions. This makes HFM highly flexible in choosing the spatio-temporal domain of interest for data acquisition as well as subsequent training and predictions. Consequently, the predictions made by HFM are among those cases where a pure machine learning strategy or a mere scientific computing approach simply cannot reproduce. The proposed algorithm achieves accurate predictions of the pressure and velocity fields in both two and three dimensional flows for several benchmark problems motivated by real-world applications. Our results demonstrate that this relatively simple methodology can be used in physical and biomedical problems to extract valuable quantitative information (e.g., lift and drag forces or wall shear stresses in arteries) for which direct measurements may not be possible.
Angular-Based Word Meta-Embedding Learning
Ensembling word embeddings to improve distributed word representations has shown good success for natural language processing tasks in recent years. These approaches either carry out straightforward mathematical operations over a set of vectors or use unsupervised learning to find a lower-dimensional representation. This work compares meta-embeddings trained for different losses, namely loss functions that account for angular distance between the reconstructed embedding and the target and those that account normalized distances based on the vector length. We argue that meta-embeddings are better to treat the ensemble set equally in unsupervised learning as the respective quality of each embedding is unknown for upstream tasks prior to meta-embedding. We show that normalization methods that account for this such as cosine and KL-divergence objectives outperform meta-embedding trained on standard $\ell_1$ and $\ell_2$ loss on \textit{defacto} word similarity and relatedness datasets and find it outperforms existing meta-learning strategies.
Large-Scale Study of Curiosity-Driven Learning
Reinforcement learning algorithms rely on carefully engineering environment rewards that are extrinsic to the agent. However, annotating each environment with hand-designed, dense rewards is not scalable, motivating the need for developing reward functions that are intrinsic to the agent. Curiosity is a type of intrinsic reward function which uses prediction error as reward signal. In this paper: (a) We perform the first large-scale study of purely curiosity-driven learning, i.e. without any extrinsic rewards, across 54 standard benchmark environments, including the Atari game suite. Our results show surprisingly good performance, and a high degree of alignment between the intrinsic curiosity objective and the hand-designed extrinsic rewards of many game environments. (b) We investigate the effect of using different feature spaces for computing prediction error and show that random features are sufficient for many popular RL game benchmarks, but learned features appear to generalize better (e.g. to novel game levels in Super Mario Bros.). (c) We demonstrate limitations of the prediction-based rewards in stochastic setups. Game-play videos and code are at https://pathak22.github.io/large-scale-curiosity/
RedSync : Reducing Synchronization Traffic for Distributed Deep Learning
Data parallelism has become a dominant method to scale Deep Neural Network (DNN) training across multiple nodes. Since synchronizing a large number of gradients of the local model can be a bottleneck for large-scale distributed training, compressing communication data has gained widespread attention recently. Among several recent proposed compression algorithms, Residual Gradient Compression (RGC) is one of the most successful approaches---it can significantly compress the transmitting message size (0.1\% of the gradient size) of each node and still achieve correct accuracy and the same convergence speed. However, the literature on compressing deep networks focuses almost exclusively on achieving good theoretical compression rate, while the efficiency of RGC in real distributed implementation has been less investigated. In this paper, we develop an RGC-based system that is able to reduce the end-to-end training time on real-world multi-GPU systems. Our proposed design called RedSync, which introduces a set of optimizations to reduce communication bandwidth requirement while introducing limited overhead. We evaluate the performance of RedSync on two different multiple GPU platforms, including 128 GPUs of a supercomputer and an 8-GPU server. Our test cases include image classification tasks on Cifar10 and ImageNet, and language modeling tasks on Penn Treebank and Wiki2 datasets. For DNNs featured with high communication to computation ratio, which have long been considered with poor scalability, RedSync brings significant performance improvements.
A Domain Guided CNN Architecture for Predicting Age from Structural Brain Images
Given the wide success of convolutional neural networks (CNNs) applied to natural images, researchers have begun to apply them to neuroimaging data. To date, however, exploration of novel CNN architectures tailored to neuroimaging data has been limited. Several recent works fail to leverage the 3D structure of the brain, instead treating the brain as a set of independent 2D slices. Approaches that do utilize 3D convolutions rely on architectures developed for object recognition tasks in natural 2D images. Such architectures make assumptions about the input that may not hold for neuroimaging. For example, existing architectures assume that patterns in the brain exhibit translation invariance. However, a pattern in the brain may have different meaning depending on where in the brain it is located. There is a need to explore novel architectures that are tailored to brain images. We present two simple modifications to existing CNN architectures based on brain image structure. Applied to the task of brain age prediction, our network achieves a mean absolute error (MAE) of 1.4 years and trains 30% faster than a CNN baseline that achieves a MAE of 1.6 years. Our results suggest that lessons learned from developing models on natural images may not directly transfer to neuroimaging tasks. Instead, there remains a large space of unexplored questions regarding model development in this area, whose answers may differ from conventional wisdom.
Murmur Detection Using Parallel Recurrent & Convolutional Neural Networks
In this article, we propose a novel technique for classification of the Murmurs in heart sound. We introduce a novel deep neural network architecture using parallel combination of the Recurrent Neural Network (RNN) based Bidirectional Long Short-Term Memory (BiLSTM) & Convolutional Neural Network (CNN) to learn visual and time-dependent characteristics of Murmur in PCG waveform. Set of acoustic features are presented to our proposed deep neural network to discriminate between Normal and Murmur class. The proposed method was evaluated on a large dataset using 5-fold cross-validation, resulting in a sensitivity and specificity of 96 +- 0.6 % , 100 +- 0 % respectively and F1 Score of 98 +- 0.3 %.
Out of the Black Box: Properties of deep neural networks and their applications
Deep neural networks are powerful machine learning approaches that have exhibited excellent results on many classification tasks. However, they are considered as black boxes and some of their properties remain to be formalized. In the context of image recognition, it is still an arduous task to understand why an image is recognized or not. In this study, we formalize some properties shared by eight state-of-the-art deep neural networks in order to grasp the principles allowing a given deep neural network to classify an image. Our results, tested on these eight networks, show that an image can be sub-divided into several regions (patches) responding at different degrees of probability (local property). With the same patch, some locations in the image can answer two (or three) orders of magnitude higher than other locations (spatial property). Some locations are activators and others inhibitors (activation-inhibition property). The repetition of the same patch can increase (or decrease) the probability of recognition of an object (cumulative property). Furthermore, we propose a new approach called Deepception that exploits these properties to deceive a deep neural network. We obtain for the VGG-VDD-19 neural network a fooling ratio of 88\%. Thanks to our "Psychophysics" approach, no prior knowledge on the networks architectures is required.
Image Registration and Predictive Modeling: Learning the Metric on the Space of Diffeomorphisms
We present a method for metric optimization in the Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework, by treating the induced Riemannian metric on the space of diffeomorphisms as a kernel in a machine learning context. For simplicity, we choose the kernel Fischer Linear Discriminant Analysis (KLDA) as the framework. Optimizing the kernel parameters in an Expectation-Maximization framework, we define model fidelity via the hinge loss of the decision function. The resulting algorithm optimizes the parameters of the LDDMM norm-inducing differential operator as a solution to a group-wise registration and classification problem. In practice, this may lead to a biology-aware registration, focusing its attention on the predictive task at hand such as identifying the effects of disease. We first tested our algorithm on a synthetic dataset, showing that our parameter selection improves registration quality and classification accuracy. We then tested the algorithm on 3D subcortical shapes from the Schizophrenia cohort Schizconnect. Our Schizpohrenia-Control predictive model showed significant improvement in ROC AUC compared to baseline parameters.
Deep Morphing: Detecting bone structures in fluoroscopic X-ray images with prior knowledge
We propose approaches based on deep learning to localize objects in images when only a small training dataset is available and the images have low quality. That applies to many problems in medical image processing, and in particular to the analysis of fluoroscopic (low-dose) X-ray images, where the images have low contrast. We solve the problem by incorporating high-level information about the objects, which could be a simple geometrical model, like a circular outline, or a more complex statistical model. A simple geometrical representation can sufficiently describe some objects and only requires minimal labeling. Statistical shape models can be used to represent more complex objects. We propose computationally efficient two-stage approaches, which we call deep morphing, for both representations by fitting the representation to the output of a deep segmentation network.
Character-Level Language Modeling with Deeper Self-Attention
LSTMs and other RNN variants have shown strong performance on character-level language modeling. These models are typically trained using truncated backpropagation through time, and it is common to assume that their success stems from their ability to remember long-term contexts. In this paper, we show that a deep (64-layer) transformer model with fixed context outperforms RNN variants by a large margin, achieving state of the art on two popular benchmarks: 1.13 bits per character on text8 and 1.06 on enwik8. To get good results at this depth, we show that it is important to add auxiliary losses, both at intermediate network layers and intermediate sequence positions.
Visual Reasoning with Multi-hop Feature Modulation
Recent breakthroughs in computer vision and natural language processing have spurred interest in challenging multi-modal tasks such as visual question-answering and visual dialogue. For such tasks, one successful approach is to condition image-based convolutional network computation on language via Feature-wise Linear Modulation (FiLM) layers, i.e., per-channel scaling and shifting. We propose to generate the parameters of FiLM layers going up the hierarchy of a convolutional network in a multi-hop fashion rather than all at once, as in prior work. By alternating between attending to the language input and generating FiLM layer parameters, this approach is better able to scale to settings with longer input sequences such as dialogue. We demonstrate that multi-hop FiLM generation achieves state-of-the-art for the short input sequence task ReferIt --- on-par with single-hop FiLM generation --- while also significantly outperforming prior state-of-the-art and single-hop FiLM generation on the GuessWhat?! visual dialogue task.
Deep Learning Super-Resolution Enables Rapid Simultaneous Morphological and Quantitative Magnetic Resonance Imaging
Obtaining magnetic resonance images (MRI) with high resolution and generating quantitative image-based biomarkers for assessing tissue biochemistry is crucial in clinical and research applications. How- ever, acquiring quantitative biomarkers requires high signal-to-noise ratio (SNR), which is at odds with high-resolution in MRI, especially in a single rapid sequence. In this paper, we demonstrate how super-resolution can be utilized to maintain adequate SNR for accurate quantification of the T2 relaxation time biomarker, while simultaneously generating high- resolution images. We compare the efficacy of resolution enhancement using metrics such as peak SNR and structural similarity. We assess accuracy of cartilage T2 relaxation times by comparing against a standard reference method. Our evaluation suggests that SR can successfully maintain high-resolution and generate accurate biomarkers for accelerating MRI scans and enhancing the value of clinical and research MRI.
Multimodal Deep Neural Networks using Both Engineered and Learned Representations for Biodegradability Prediction
Deep learning algorithms excel at extracting patterns from raw data, and with large datasets, they have been very successful in computer vision and natural language applications. However, in other domains, large datasets on which to learn representations from may not exist. In this work, we develop a novel multimodal CNN-MLP neural network architecture that utilizes both domain-specific feature engineering as well as learned representations from raw data. We illustrate the effectiveness of such network designs in the chemical sciences, for predicting biodegradability. DeepBioD, a multimodal CNN-MLP network is more accurate than either standalone network designs, and achieves an error classification rate of 0.125 that is 27% lower than the current state-of-the-art. Thus, our work indicates that combining traditional feature engineering with representation learning can be effective, particularly in situations where labeled data is limited.
Risk-Sensitive Generative Adversarial Imitation Learning
We study risk-sensitive imitation learning where the agent's goal is to perform at least as well as the expert in terms of a risk profile. We first formulate our risk-sensitive imitation learning setting. We consider the generative adversarial approach to imitation learning (GAIL) and derive an optimization problem for our formulation, which we call it risk-sensitive GAIL (RS-GAIL). We then derive two different versions of our RS-GAIL optimization problem that aim at matching the risk profiles of the agent and the expert w.r.t. Jensen-Shannon (JS) divergence and Wasserstein distance, and develop risk-sensitive generative adversarial imitation learning algorithms based on these optimization problems. We evaluate the performance of our algorithms and compare them with GAIL and the risk-averse imitation learning (RAIL) algorithms in two MuJoCo and two OpenAI classical control tasks.
Kernel Flows: from learning kernels from data into the abyss
Learning can be seen as approximating an unknown function by interpolating the training data. Kriging offers a solution to this problem based on the prior specification of a kernel. We explore a numerical approximation approach to kernel selection/construction based on the simple premise that a kernel must be good if the number of interpolation points can be halved without significant loss in accuracy (measured using the intrinsic RKHS norm $\|\cdot\|$ associated with the kernel). We first test and motivate this idea on a simple problem of recovering the Green's function of an elliptic PDE (with inhomogeneous coefficients) from the sparse observation of one of its solutions. Next we consider the problem of learning non-parametric families of deep kernels of the form $K_1(F_n(x),F_n(x'))$ with $F_{n+1}=(I_d+\epsilon G_{n+1})\circ F_n$ and $G_{n+1} \in \operatorname{Span}\{K_1(F_n(x_i),\cdot)\}$. With the proposed approach constructing the kernel becomes equivalent to integrating a stochastic data driven dynamical system, which allows for the training of very deep (bottomless) networks and the exploration of their properties. These networks learn by constructing flow maps in the kernel and input spaces via incremental data-dependent deformations/perturbations (appearing as the cooperative counterpart of adversarial examples) and, at profound depths, they (1) can achieve accurate classification from only one data point per class (2) appear to learn archetypes of each class (3) expand distances between points that are in different classes and contract distances between points in the same class. For kernels parameterized by the weights of Convolutional Neural Networks, minimizing approximation errors incurred by halving random subsets of interpolation points, appears to outperform training (the same CNN architecture) with relative entropy and dropout.
Low Rank Regularization: A Review
Low rank regularization, in essence, involves introducing a low rank or approximately low rank assumption for matrix we aim to learn, which has achieved great success in many fields including machine learning, data mining and computer version. Over the last decade, much progress has been made in theories and practical applications. Nevertheless, the intersection between them is very slight. In order to construct a bridge between practical applications and theoretical research, in this paper we provide a comprehensive survey for low rank regularization. We first review several traditional machine learning models using low rank regularization, and then show their (or their variants) applications in solving practical issues, such as non-rigid structure from motion and image denoising. Subsequently, we summarize the regularizers and optimization methods that achieve great success in traditional machine learning tasks but are rarely seen in solving practical issues. Finally, we provide a discussion and comparison for some representative regularizers including convex and non-convex relaxations. Extensive experimental results demonstrate that non-convex regularizers can provide a large advantage over the nuclear norm, the regularizer widely used in solving practical issues.
Adaptive Sampling for Convex Regression
In this paper, we introduce the first principled adaptive-sampling procedure for learning a convex function in the $L_\infty$ norm, a problem that arises often in the behavioral and social sciences. We present a function-specific measure of complexity and use it to prove that, for each convex function $f_{\star}$, our algorithm nearly attains the information-theoretically optimal, function-specific error rate. We also corroborate our theoretical contributions with numerical experiments, finding that our method substantially outperforms passive, uniform sampling for favorable synthetic and data-derived functions in low-noise settings with large sampling budgets. Our results also suggest an idealized "oracle strategy", which we use to gauge the potential advance of any adaptive-sampling strategy over passive sampling, for any given convex function.
Text-to-Image-to-Text Translation using Cycle Consistent Adversarial Networks
Text-to-Image translation has been an active area of research in the recent past. The ability for a network to learn the meaning of a sentence and generate an accurate image that depicts the sentence shows ability of the model to think more like humans. Popular methods on text to image translation make use of Generative Adversarial Networks (GANs) to generate high quality images based on text input, but the generated images don't always reflect the meaning of the sentence given to the model as input. We address this issue by using a captioning network to caption on generated images and exploit the distance between ground truth captions and generated captions to improve the network further. We show extensive comparisons between our method and existing methods.
MT-VAE: Learning Motion Transformations to Generate Multimodal Human Dynamics
Long-term human motion can be represented as a series of motion modes---motion sequences that capture short-term temporal dynamics---with transitions between them. We leverage this structure and present a novel Motion Transformation Variational Auto-Encoders (MT-VAE) for learning motion sequence generation. Our model jointly learns a feature embedding for motion modes (that the motion sequence can be reconstructed from) and a feature transformation that represents the transition of one motion mode to the next motion mode. Our model is able to generate multiple diverse and plausible motion sequences in the future from the same input. We apply our approach to both facial and full body motion, and demonstrate applications like analogy-based motion transfer and video synthesis.
SciSports: Learning football kinematics through two-dimensional tracking data
SciSports is a Dutch startup company specializing in football analytics. This paper describes a joint research effort with SciSports, during the Study Group Mathematics with Industry 2018 at Eindhoven, the Netherlands. The main challenge that we addressed was to automatically process empirical football players' trajectories, in order to extract useful information from them. The data provided to us was two-dimensional positional data during entire matches. We developed methods based on Newtonian mechanics and the Kalman filter, Generative Adversarial Nets and Variational Autoencoders. In addition, we trained a discriminator network to recognize and discern different movement patterns of players. The Kalman-filter approach yields an interpretable model, in which a small number of player-dependent parameters can be fit; in theory this could be used to distinguish among players. The Generative-Adversarial-Nets approach appears promising in theory, and some initial tests showed an improvement with respect to the baseline, but the limits in time and computational power meant that we could not fully explore it. We also trained a Discriminator network to distinguish between two players based on their trajectories; after training, the network managed to distinguish between some pairs of players, but not between others. After training, the Variational Autoencoders generated trajectories that are difficult to distinguish, visually, from the data. These experiments provide an indication that deep generative models can learn the underlying structure and statistics of football players' trajectories. This can serve as a starting point for determining player qualities based on such trajectory data.
Small Sample Learning in Big Data Era
As a promising area in artificial intelligence, a new learning paradigm, called Small Sample Learning (SSL), has been attracting prominent research attention in the recent years. In this paper, we aim to present a survey to comprehensively introduce the current techniques proposed on this topic. Specifically, current SSL techniques can be mainly divided into two categories. The first category of SSL approaches can be called "concept learning", which emphasizes learning new concepts from only few related observations. The purpose is mainly to simulate human learning behaviors like recognition, generation, imagination, synthesis and analysis. The second category is called "experience learning", which usually co-exists with the large sample learning manner of conventional machine learning. This category mainly focuses on learning with insufficient samples, and can also be called small data learning in some literatures. More extensive surveys on both categories of SSL techniques are introduced and some neuroscience evidences are provided to clarify the rationality of the entire SSL regime, and the relationship with human learning process. Some discussions on the main challenges and possible future research directions along this line are also presented.
NFFT meets Krylov methods: Fast matrix-vector products for the graph Laplacian of fully connected networks
The graph Laplacian is a standard tool in data science, machine learning, and image processing. The corresponding matrix inherits the complex structure of the underlying network and is in certain applications densely populated. This makes computations, in particular matrix-vector products, with the graph Laplacian a hard task. A typical application is the computation of a number of its eigenvalues and eigenvectors. Standard methods become infeasible as the number of nodes in the graph is too large. We propose the use of the fast summation based on the nonequispaced fast Fourier transform (NFFT) to perform the dense matrix-vector product with the graph Laplacian fast without ever forming the whole matrix. The enormous flexibility of the NFFT algorithm allows us to embed the accelerated multiplication into Lanczos-based eigenvalues routines or iterative linear system solvers and even consider other than the standard Gaussian kernels. We illustrate the feasibility of our approach on a number of test problems from image segmentation to semi-supervised learning based on graph-based PDEs. In particular, we compare our approach with the Nystr\"om method. Moreover, we present and test an enhanced, hybrid version of the Nystr\"om method, which internally uses the NFFT.
R-grams: Unsupervised Learning of Semantic Units in Natural Language
This paper investigates data-driven segmentation using Re-Pair or Byte Pair Encoding-techniques. In contrast to previous work which has primarily been focused on subword units for machine translation, we are interested in the general properties of such segments above the word level. We call these segments r-grams, and discuss their properties and the effect they have on the token frequency distribution. The proposed approach is evaluated by demonstrating its viability in embedding techniques, both in monolingual and multilingual test settings. We also provide a number of qualitative examples of the proposed methodology, demonstrating its viability as a language-invariant segmentation procedure.
Learning ReLU Networks on Linearly Separable Data: Algorithm, Optimality, and Generalization
Neural networks with REctified Linear Unit (ReLU) activation functions (a.k.a. ReLU networks) have achieved great empirical success in various domains. Nonetheless, existing results for learning ReLU networks either pose assumptions on the underlying data distribution being e.g. Gaussian, or require the network size and/or training size to be sufficiently large. In this context, the problem of learning a two-layer ReLU network is approached in a binary classification setting, where the data are linearly separable and a hinge loss criterion is adopted. Leveraging the power of random noise perturbation, this paper presents a novel stochastic gradient descent (SGD) algorithm, which can \emph{provably} train any single-hidden-layer ReLU network to attain global optimality, despite the presence of infinitely many bad local minima, maxima, and saddle points in general. This result is the first of its kind, requiring no assumptions on the data distribution, training/network size, or initialization. Convergence of the resultant iterative algorithm to a global minimum is analyzed by establishing both an upper bound and a lower bound on the number of non-zero updates to be performed. Moreover, generalization guarantees are developed for ReLU networks trained with the novel SGD leveraging classic compression bounds. These guarantees highlight a key difference (at least in the worst case) between reliably learning a ReLU network as well as a leaky ReLU network in terms of sample complexity. Numerical tests using both synthetic data and real images validate the effectiveness of the algorithm and the practical merits of the theory.
Improving Generalization via Scalable Neighborhood Component Analysis
Current major approaches to visual recognition follow an end-to-end formulation that classifies an input image into one of the pre-determined set of semantic categories. Parametric softmax classifiers are a common choice for such a closed world with fixed categories, especially when big labeled data is available during training. However, this becomes problematic for open-set scenarios where new categories are encountered with very few examples for learning a generalizable parametric classifier. We adopt a non-parametric approach for visual recognition by optimizing feature embeddings instead of parametric classifiers. We use a deep neural network to learn the visual feature that preserves the neighborhood structure in the semantic space, based on the Neighborhood Component Analysis (NCA) criterion. Limited by its computational bottlenecks, we devise a mechanism to use augmented memory to scale NCA for large datasets and very deep networks. Our experiments deliver not only remarkable performance on ImageNet classification for such a simple non-parametric method, but most importantly a more generalizable feature representation for sub-category discovery and few-shot recognition.
CosmoFlow: Using Deep Learning to Learn the Universe at Scale
Deep learning is a promising tool to determine the physical model that describes our universe. To handle the considerable computational cost of this problem, we present CosmoFlow: a highly scalable deep learning application built on top of the TensorFlow framework. CosmoFlow uses efficient implementations of 3D convolution and pooling primitives, together with improvements in threading for many element-wise operations, to improve training performance on Intel(C) Xeon Phi(TM) processors. We also utilize the Cray PE Machine Learning Plugin for efficient scaling to multiple nodes. We demonstrate fully synchronous data-parallel training on 8192 nodes of Cori with 77% parallel efficiency, achieving 3.5 Pflop/s sustained performance. To our knowledge, this is the first large-scale science application of the TensorFlow framework at supercomputer scale with fully-synchronous training. These enhancements enable us to process large 3D dark matter distribution and predict the cosmological parameters $\Omega_M$, $\sigma_8$ and n$_s$ with unprecedented accuracy.
Analyzing Inverse Problems with Invertible Neural Networks
In many tasks, in particular in natural science, the goal is to determine hidden system parameters from a set of measurements. Often, the forward process from parameter- to measurement-space is a well-defined function, whereas the inverse problem is ambiguous: one measurement may map to multiple different sets of parameters. In this setting, the posterior parameter distribution, conditioned on an input measurement, has to be determined. We argue that a particular class of neural networks is well suited for this task -- so-called Invertible Neural Networks (INNs). Although INNs are not new, they have, so far, received little attention in literature. While classical neural networks attempt to solve the ambiguous inverse problem directly, INNs are able to learn it jointly with the well-defined forward process, using additional latent output variables to capture the information otherwise lost. Given a specific measurement and sampled latent variables, the inverse pass of the INN provides a full distribution over parameter space. We verify experimentally, on artificial data and real-world problems from astrophysics and medicine, that INNs are a powerful analysis tool to find multi-modalities in parameter space, to uncover parameter correlations, and to identify unrecoverable parameters.
Quantifying the Influences on Probabilistic Wind Power Forecasts
In recent years, probabilistic forecasts techniques were proposed in research as well as in applications to integrate volatile renewable energy resources into the electrical grid. These techniques allow decision makers to take the uncertainty of the prediction into account and, therefore, to devise optimal decisions, e.g., related to costs and risks in the electrical grid. However, it was yet not studied how the input, such as numerical weather predictions, affects the model output of forecasting models in detail. Therefore, we examine the potential influences with techniques from the field of sensitivity analysis on three different black-box models to obtain insights into differences and similarities of these probabilistic models. The analysis shows a considerable number of potential influences in those models depending on, e.g., the predicted probability and the type of model. These effects motivate the need to take various influences into account when models are tested, analyzed, or compared. Nevertheless, results of the sensitivity analysis will allow us to select a model with advantages in the practical application.
A Survey on Methods and Theories of Quantized Neural Networks
Deep neural networks are the state-of-the-art methods for many real-world tasks, such as computer vision, natural language processing and speech recognition. For all its popularity, deep neural networks are also criticized for consuming a lot of memory and draining battery life of devices during training and inference. This makes it hard to deploy these models on mobile or embedded devices which have tight resource constraints. Quantization is recognized as one of the most effective approaches to satisfy the extreme memory requirements that deep neural network models demand. Instead of adopting 32-bit floating point format to represent weights, quantized representations store weights using more compact formats such as integers or even binary numbers. Despite a possible degradation in predictive performance, quantization provides a potential solution to greatly reduce the model size and the energy consumption. In this survey, we give a thorough review of different aspects of quantized neural networks. Current challenges and trends of quantized neural networks are also discussed.
An Overview and a Benchmark of Active Learning for Outlier Detection with One-Class Classifiers
Active learning methods increase classification quality by means of user feedback. An important subcategory is active learning for outlier detection with one-class classifiers. While various methods in this category exist, selecting one for a given application scenario is difficult. This is because existing methods rely on different assumptions, have different objectives, and often are tailored to a specific use case. All this calls for a comprehensive comparison, the topic of this article. This article starts with a categorization of the various methods. We then propose ways to evaluate active learning results. Next, we run extensive experiments to compare existing methods, for a broad variety of scenarios. Based on our results, we formulate guidelines on how to select active learning methods for outlier detection with one-class classifiers.
Parallel Statistical and Machine Learning Methods for Estimation of Physical Load
Several statistical and machine learning methods are proposed to estimate the type and intensity of physical load and accumulated fatigue . They are based on the statistical analysis of accumulated and moving window data subsets with construction of a kurtosis-skewness diagram. This approach was applied to the data gathered by the wearable heart monitor for various types and levels of physical activities, and for people with various physical conditions. The different levels of physical activities, loads, and fitness can be distinguished from the kurtosis-skewness diagram, and their evolution can be monitored. Several metrics for estimation of the instant effect and accumulated effect (physical fatigue) of physical loads were proposed. The data and results presented allow to extend application of these methods for modeling and characterization of complex human activity patterns, for example, to estimate the actual and accumulated physical load and fatigue, model the potential dangerous development, and give cautions and advice in real time.
Cache Telepathy: Leveraging Shared Resource Attacks to Learn DNN Architectures
Deep Neural Networks (DNNs) are fast becoming ubiquitous for their ability to attain good accuracy in various machine learning tasks. A DNN's architecture (i.e., its hyper-parameters) broadly determines the DNN's accuracy and performance, and is often confidential. Attacking a DNN in the cloud to obtain its architecture can potentially provide major commercial value. Further, attaining a DNN's architecture facilitates other, existing DNN attacks. This paper presents Cache Telepathy: a fast and accurate mechanism to steal a DNN's architecture using the cache side channel. Our attack is based on the insight that DNN inference relies heavily on tiled GEMM (Generalized Matrix Multiply), and that DNN architecture parameters determine the number of GEMM calls and the dimensions of the matrices used in the GEMM functions. Such information can be leaked through the cache side channel. This paper uses Prime+Probe and Flush+Reload to attack VGG and ResNet DNNs running OpenBLAS and Intel MKL libraries. Our attack is effective in helping obtain the architectures by very substantially reducing the search space of target DNN architectures. For example, for VGG using OpenBLAS, it reduces the search space from more than $10^{35}$ architectures to just 16.