title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Learning the Dimensionality of Hidden Variables
A serious problem in learning probabilistic models is the presence of hidden variables. These variables are not observed, yet interact with several of the observed variables. Detecting hidden variables poses two problems: determining the relations to other variables in the model and determining the number of states of the hidden variable. In this paper, we address the latter problem in the context of Bayesian networks. We describe an approach that utilizes a score-based agglomerative state-clustering. As we show, this approach allows us to efficiently evaluate models with a range of cardinalities for the hidden variable. We show how to extend this procedure to deal with multiple interacting hidden variables. We demonstrate the effectiveness of this approach by evaluating it on synthetic and real-life data. We show that our approach learns models with hidden variables that generalize better and have better structure than previous approaches.
Multivariate Information Bottleneck
The Information bottleneck method is an unsupervised non-parametric data organization technique. Given a joint distribution P(A,B), this method constructs a new variable T that extracts partitions, or clusters, over the values of A that are informative about B. The information bottleneck has already been applied to document classification, gene expression, neural code, and spectral analysis. In this paper, we introduce a general principled framework for multivariate extensions of the information bottleneck method. This allows us to consider multiple systems of data partitions that are inter-related. Our approach utilizes Bayesian networks for specifying the systems of clusters and what information each captures. We show that this construction provides insight about bottleneck variations and enables us to characterize solutions of these variations. We also present a general framework for iterative algorithms for constructing solutions, and apply it to several examples.
Discovering Multiple Constraints that are Frequently Approximately Satisfied
Some high-dimensional data.sets can be modelled by assuming that there are many different linear constraints, each of which is Frequently Approximately Satisfied (FAS) by the data. The probability of a data vector under the model is then proportional to the product of the probabilities of its constraint violations. We describe three methods of learning products of constraints using a heavy-tailed probability distribution for the violations.
Estimating Well-Performing Bayesian Networks using Bernoulli Mixtures
A novel method for estimating Bayesian network (BN) parameters from data is presented which provides improved performance on test data. Previous research has shown the value of representing conditional probability distributions (CPDs) via neural networks(Neal 1992), noisy-OR gates (Neal 1992, Diez 1993)and decision trees (Friedman and Goldszmidt 1996).The Bernoulli mixture network (BMN) explicitly represents the CPDs of discrete BN nodes as mixtures of local distributions,each having a different set of parents.This increases the space of possible structures which can be considered,enabling the CPDs to have finer-grained dependencies.The resulting estimation procedure induces a modelthat is better able to emulate the underlying interactions occurring in the data than conventional conditional Bernoulli network models.The results for artificially generated data indicate that overfitting is best reduced by restricting the complexity of candidate mixture substructures local to each node. Furthermore, mixtures of very simple substructures can perform almost as well as more complex ones.The BMN is also applied to data collected from an online adventure game with an application to keyhole plan recognition. The results show that the BMN-based model brings a dramatic improvement in performance over a conventional BN model.
Improved learning of Bayesian networks
The search space of Bayesian Network structures is usually defined as Acyclic Directed Graphs (DAGs) and the search is done by local transformations of DAGs. But the space of Bayesian Networks is ordered by DAG Markov model inclusion and it is natural to consider that a good search policy should take this into account. First attempt to do this (Chickering 1996) was using equivalence classes of DAGs instead of DAGs itself. This approach produces better results but it is significantly slower. We present a compromise between these two approaches. It uses DAGs to search the space in such a way that the ordering by inclusion is taken into account. This is achieved by repetitive usage of local moves within the equivalence class of DAGs. We show that this new approach produces better results than the original DAGs approach without substantial change in time complexity. We present empirical results, within the framework of heuristic search and Markov Chain Monte Carlo, provided through the Alarm dataset.
Classifier Learning with Supervised Marginal Likelihood
It has been argued that in supervised classification tasks, in practice it may be more sensible to perform model selection with respect to some more focused model selection score, like the supervised (conditional) marginal likelihood, than with respect to the standard marginal likelihood criterion. However, for most Bayesian network models, computing the supervised marginal likelihood score takes exponential time with respect to the amount of observed data. In this paper, we consider diagnostic Bayesian network classifiers where the significant model parameters represent conditional distributions for the class variable, given the values of the predictor variables, in which case the supervised marginal likelihood can be computed in linear time with respect to the data. As the number of model parameters grows in this case exponentially with respect to the number of predictors, we focus on simple diagnostic models where the number of relevant predictors is small, and suggest two approaches for applying this type of models in classification. The first approach is based on mixtures of simple diagnostic models, while in the second approach we apply the small predictor sets of the simple diagnostic models for augmenting the Naive Bayes classifier.
Iterative Markov Chain Monte Carlo Computation of Reference Priors and Minimax Risk
We present an iterative Markov chainMonte Carlo algorithm for computingreference priors and minimax risk forgeneral parametric families. Ourapproach uses MCMC techniques based onthe Blahut-Arimoto algorithm forcomputing channel capacity ininformation theory. We give astatistical analysis of the algorithm,bounding the number of samples requiredfor the stochastic algorithm to closelyapproximate the deterministic algorithmin each iteration. Simulations arepresented for several examples fromexponential families. Although we focuson applications to reference priors andminimax risk, the methods and analysiswe develop are applicable to a muchbroader class of optimization problemsand iterative algorithms.
A Bayesian Multiresolution Independence Test for Continuous Variables
In this paper we present a method ofcomputing the posterior probability ofconditional independence of two or morecontinuous variables from data,examined at several resolutions. Ourapproach is motivated by theobservation that the appearance ofcontinuous data varies widely atvarious resolutions, producing verydifferent independence estimatesbetween the variablesinvolved. Therefore, it is difficultto ascertain independence withoutexamining data at several carefullyselected resolutions. In our paper, weaccomplish this using the exactcomputation of the posteriorprobability of independence, calculatedanalytically given a resolution. Ateach examined resolution, we assume amultinomial distribution with Dirichletpriors for the discretized tableparameters, and compute the posteriorusing Bayesian integration. Acrossresolutions, we use a search procedureto approximate the Bayesian integral ofprobability over an exponential numberof possible histograms. Our methodgeneralizes to an arbitrary numbervariables in a straightforward manner.The test is suitable for Bayesiannetwork learning algorithms that useindependence tests to infer the networkstructure, in domains that contain anymix of continuous, ordinal andcategorical variables.
Expectation Propagation for approximate Bayesian inference
This paper presents a new deterministic approximation technique in Bayesian networks. This method, "Expectation Propagation", unifies two previous techniques: assumed-density filtering, an extension of the Kalman filter, and loopy belief propagation, an extension of belief propagation in Bayesian networks. All three algorithms try to recover an approximate distribution which is close in KL divergence to the true distribution. Loopy belief propagation, because it propagates exact belief states, is useful for a limited class of belief networks, such as those which are purely discrete. Expectation Propagation approximates the belief states by only retaining certain expectations, such as mean and variance, and iterates until these expectations are consistent throughout the network. This makes it applicable to hybrid networks with discrete and continuous nodes. Expectation Propagation also extends belief propagation in the opposite direction - it can propagate richer belief states that incorporate correlations between nodes. Experiments with Gaussian mixture models show Expectation Propagation to be convincingly better than methods with similar computational cost: Laplace's method, variational Bayes, and Monte Carlo. Expectation Propagation also provides an efficient algorithm for training Bayes point machine classifiers.
Probabilistic Models for Unified Collaborative and Content-Based Recommendation in Sparse-Data Environments
Recommender systems leverage product and community information to target products to consumers. Researchers have developed collaborative recommenders, content-based recommenders, and (largely ad-hoc) hybrid systems. We propose a unified probabilistic framework for merging collaborative and content-based recommendations. We extend Hofmann's [1999] aspect model to incorporate three-way co-occurrence data among users, items, and item content. The relative influence of collaboration data versus content data is not imposed as an exogenous parameter, but rather emerges naturally from the given data sources. Global probabilistic models coupled with standard Expectation Maximization (EM) learning algorithms tend to drastically overfit in sparse-data situations, as is typical in recommendation applications. We show that secondary content information can often be used to overcome sparsity. Experiments on data from the ResearchIndex library of Computer Science publications show that appropriate mixture models incorporating secondary data produce significantly better quality recommenders than k-nearest neighbors (k-NN). Global probabilistic models also allow more general inferences than local methods like k-NN.
Symmetric Collaborative Filtering Using the Noisy Sensor Model
Collaborative filtering is the process of making recommendations regarding the potential preference of a user, for example shopping on the Internet, based on the preference ratings of the user and a number of other users for various items. This paper considers collaborative filtering based on explicitmulti-valued ratings. To evaluate the algorithms, weconsider only {em pure} collaborative filtering, using ratings exclusively, and no other information about the people or items.Our approach is to predict a user's preferences regarding a particularitem by using other people who rated that item and other items ratedby the user as noisy sensors. The noisy sensor model uses Bayes' theorem to compute the probability distribution for the user'srating of a new item. We give two variant models: in one, we learn a{em classical normal linear regression} model of how users rate items; in another,we assume different users rate items the same, but the accuracy of thesensors needs to be learned. We compare these variant models withstate-of-the-art techniques and show how they are significantly better,whether a user has rated only two items or many. We reportempirical results using the EachMovie database footnote{http://research.compaq.com/SRC/eachmovie/} of movie ratings. Wealso show that by considering items similarity along with theusers similarity, the accuracy of the prediction increases.
Policy Improvement for POMDPs Using Normalized Importance Sampling
We present a new method for estimating the expected return of a POMDP from experience. The method does not assume any knowledge of the POMDP and allows the experience to be gathered from an arbitrary sequence of policies. The return is estimated for any new policy of the POMDP. We motivate the estimator from function-approximation and importance sampling points-of-view and derive its theoretical properties. Although the estimator is biased, it has low variance and the bias is often irrelevant when the estimator is used for pair-wise comparisons. We conclude by extending the estimator to policies with memory and compare its performance in a greedy search algorithm to REINFORCE algorithms showing an order of magnitude reduction in the number of trials required.
Maximum Likelihood Bounded Tree-Width Markov Networks
Chow and Liu (1968) studied the problem of learning a maximumlikelihood Markov tree. We generalize their work to more complexMarkov networks by considering the problem of learning a maximumlikelihood Markov network of bounded complexity. We discuss howtree-width is in many ways the appropriate measure of complexity andthus analyze the problem of learning a maximum likelihood Markovnetwork of bounded tree-width.Similar to the work of Chow and Liu, we are able to formalize thelearning problem as a combinatorial optimization problem on graphs. Weshow that learning a maximum likelihood Markov network of boundedtree-width is equivalent to finding a maximum weight hypertree. Thisequivalence gives rise to global, integer-programming based,approximation algorithms with provable performance guarantees, for thelearning problem. This contrasts with heuristic local-searchalgorithms which were previously suggested (e.g. by Malvestuto 1991).The equivalence also allows us to study the computational hardness ofthe learning problem. We show that learning a maximum likelihoodMarkov network of bounded tree-width is NP-hard, and discuss thehardness of approximation.
The Optimal Reward Baseline for Gradient-Based Reinforcement Learning
There exist a number of reinforcement learning algorithms which learnby climbing the gradient of expected reward. Their long-runconvergence has been proved, even in partially observableenvironments with non-deterministic actions, and without the need fora system model. However, the variance of the gradient estimator hasbeen found to be a significant practical problem. Recent approacheshave discounted future rewards, introducing a bias-variance trade-offinto the gradient estimate. We incorporate a reward baseline into thelearning system, and show that it affects variance without introducingfurther bias. In particular, as we approach the zero-bias,high-variance parameterization, the optimal (or variance minimizing)constant reward baseline is equal to the long-term average expectedreward. Modified policy-gradient algorithms are presented, and anumber of experiments demonstrate their improvement over previous work.
Cross-covariance modelling via DAGs with hidden variables
DAG models with hidden variables present many difficulties that are not present when all nodes are observed. In particular, fully observed DAG models are identified and correspond to well-defined sets ofdistributions, whereas this is not true if nodes are unobserved. Inthis paper we characterize exactly the set of distributions given by a class of one-dimensional Gaussian latent variable models. These models relate two blocks of observed variables, modeling only the cross-covariance matrix. We describe the relation of this model to the singular value decomposition of the cross-covariance matrix. We show that, although the model is underidentified, useful information may be extracted. We further consider an alternative parametrization in which one latent variable is associated with each block. Our analysis leads to some novel covariance equivalence results for Gaussian hidden variable models.
Belief Optimization for Binary Networks: A Stable Alternative to Loopy Belief Propagation
We present a novel inference algorithm for arbitrary, binary, undirected graphs. Unlike loopy belief propagation, which iterates fixed point equations, we directly descend on the Bethe free energy. The algorithm consists of two phases, first we update the pairwise probabilities, given the marginal probabilities at each unit,using an analytic expression. Next, we update the marginal probabilities, given the pairwise probabilities by following the negative gradient of the Bethe free energy. Both steps are guaranteed to decrease the Bethe free energy, and since it is lower bounded, the algorithm is guaranteed to converge to a local minimum. We also show that the Bethe free energy is equal to the TAP free energy up to second order in the weights. In experiments we confirm that when belief propagation converges it usually finds identical solutions as our belief optimization method. However, in cases where belief propagation fails to converge, belief optimization continues to converge to reasonable beliefs. The stable nature of belief optimization makes it ideally suited for learning graphical models from data.
Statistical Modeling in Continuous Speech Recognition (CSR)(Invited Talk)
Automatic continuous speech recognition (CSR) is sufficiently mature that a variety of real world applications are now possible including large vocabulary transcription and interactive spoken dialogues. This paper reviews the evolution of the statistical modelling techniques which underlie current-day systems, specifically hidden Markov models (HMMs) and N-grams. Starting from a description of the speech signal and its parameterisation, the various modelling assumptions and their consequences are discussed. It then describes various techniques by which the effects of these assumptions can be mitigated. Despite the progress that has been made, the limitations of current modelling techniques are still evident. The paper therefore concludes with a brief review of some of the more fundamental modelling work now in progress.
Using Temporal Data for Making Recommendations
We treat collaborative filtering as a univariate time series estimation problem: given a user's previous votes, predict the next vote. We describe two families of methods for transforming data to encode time order in ways amenable to off-the-shelf classification and density estimation tools, and examine the results of using these approaches on several real-world data sets. The improvements in predictive accuracy we realize recommend the use of other predictive algorithms that exploit the temporal order of data.
Planning by Prioritized Sweeping with Small Backups
Efficient planning plays a crucial role in model-based reinforcement learning. Traditionally, the main planning operation is a full backup based on the current estimates of the successor states. Consequently, its computation time is proportional to the number of successor states. In this paper, we introduce a new planning backup that uses only the current value of a single successor state and has a computation time independent of the number of successor states. This new backup, which we call a small backup, opens the door to a new class of model-based reinforcement learning methods that exhibit much finer control over their planning process than traditional methods. We empirically demonstrate that this increased flexibility allows for more efficient planning by showing that an implementation of prioritized sweeping based on small backups achieves a substantial performance improvement over classical implementations.
Robust subspace clustering
Subspace clustering refers to the task of finding a multi-subspace representation that best fits a collection of points taken from a high-dimensional space. This paper introduces an algorithm inspired by sparse subspace clustering (SSC) [In IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2009) 2790-2797] to cluster noisy data, and develops some novel theory demonstrating its correctness. In particular, the theory uses ideas from geometric functional analysis to show that the algorithm can accurately recover the underlying subspaces under minimal requirements on their orientation, and on the number of samples per subspace. Synthetic as well as real data experiments complement our theoretical study, illustrating our approach and demonstrating its effectiveness.
Learning to Optimize Via Posterior Sampling
This paper considers the use of a simple posterior sampling algorithm to balance between exploration and exploitation when learning to optimize actions such as in multi-armed bandit problems. The algorithm, also known as Thompson Sampling, offers significant advantages over the popular upper confidence bound (UCB) approach, and can be applied to problems with finite or infinite action spaces and complicated relationships among action rewards. We make two theoretical contributions. The first establishes a connection between posterior sampling and UCB algorithms. This result lets us convert regret bounds developed for UCB algorithms into Bayesian regret bounds for posterior sampling. Our second theoretical contribution is a Bayesian regret bound for posterior sampling that applies broadly and can be specialized to many model classes. This bound depends on a new notion we refer to as the eluder dimension, which measures the degree of dependence among action rewards. Compared to UCB algorithm Bayesian regret bounds for specific model classes, our general bound matches the best available for linear models and is stronger than the best available for generalized linear models. Further, our analysis provides insight into performance advantages of posterior sampling, which are highlighted through simulation results that demonstrate performance surpassing recently proposed UCB algorithms.
Robust Text Detection in Natural Scene Images
Text detection in natural scene images is an important prerequisite for many content-based image analysis tasks. In this paper, we propose an accurate and robust method for detecting texts in natural scene images. A fast and effective pruning algorithm is designed to extract Maximally Stable Extremal Regions (MSERs) as character candidates using the strategy of minimizing regularized variations. Character candidates are grouped into text candidates by the ingle-link clustering algorithm, where distance weights and threshold of the clustering algorithm are learned automatically by a novel self-training distance metric learning algorithm. The posterior probabilities of text candidates corresponding to non-text are estimated with an character classifier; text candidates with high probabilities are then eliminated and finally texts are identified with a text classifier. The proposed system is evaluated on the ICDAR 2011 Robust Reading Competition dataset; the f measure is over 76% and is significantly better than the state-of-the-art performance of 71%. Experimental results on a publicly available multilingual dataset also show that our proposed method can outperform the other competitive method with the f measure increase of over 9 percent. Finally, we have setup an online demo of our proposed scene text detection system at http://kems.ustb.edu.cn/learning/yin/dtext.
Functional Regularized Least Squares Classi cation with Operator-valued Kernels
Although operator-valued kernels have recently received increasing interest in various machine learning and functional data analysis problems such as multi-task learning or functional regression, little attention has been paid to the understanding of their associated feature spaces. In this paper, we explore the potential of adopting an operator-valued kernel feature space perspective for the analysis of functional data. We then extend the Regularized Least Squares Classification (RLSC) algorithm to cover situations where there are multiple functions per observation. Experiments on a sound recognition problem show that the proposed method outperforms the classical RLSC algorithm.
Multiple functional regression with both discrete and continuous covariates
In this paper we present a nonparametric method for extending functional regression methodology to the situation where more than one functional covariate is used to predict a functional response. Borrowing the idea from Kadri et al. (2010a), the method, which support mixed discrete and continuous explanatory variables, is based on estimating a function-valued function in reproducing kernel Hilbert spaces by virtue of positive operator-valued kernels.
A Triclustering Approach for Time Evolving Graphs
This paper introduces a novel technique to track structures in time evolving graphs. The method is based on a parameter free approach for three-dimensional co-clustering of the source vertices, the target vertices and the time. All these features are simultaneously segmented in order to build time segments and clusters of vertices whose edge distributions are similar and evolve in the same way over the time segments. The main novelty of this approach lies in that the time segments are directly inferred from the evolution of the edge distribution between the vertices, thus not requiring the user to make an a priori discretization. Experiments conducted on a synthetic dataset illustrate the good behaviour of the technique, and a study of a real-life dataset shows the potential of the proposed approach for exploratory data analysis.
BliStr: The Blind Strategymaker
BliStr is a system that automatically develops strategies for E prover on a large set of problems. The main idea is to interleave (i) iterated low-timelimit local search for new strategies on small sets of similar easy problems with (ii) higher-timelimit evaluation of the new strategies on all problems. The accumulated results of the global higher-timelimit runs are used to define and evolve the notion of "similar easy problems", and to control the selection of the next strategy to be improved. The technique was used to significantly strengthen the set of E strategies used by the MaLARea, PS-E, E-MaLeS, and E systems in the CASC@Turing 2012 competition, particularly in the Mizar division. Similar improvement was obtained on the problems created from the Flyspeck corpus.
Robust High Dimensional Sparse Regression and Matching Pursuit
We consider high dimensional sparse regression, and develop strategies able to deal with arbitrary -- possibly, severe or coordinated -- errors in the covariance matrix $X$. These may come from corrupted data, persistent experimental errors, or malicious respondents in surveys/recommender systems, etc. Such non-stochastic error-in-variables problems are notoriously difficult to treat, and as we demonstrate, the problem is particularly pronounced in high-dimensional settings where the primary goal is {\em support recovery} of the sparse regressor. We develop algorithms for support recovery in sparse regression, when some number $n_1$ out of $n+n_1$ total covariate/response pairs are {\it arbitrarily (possibly maliciously) corrupted}. We are interested in understanding how many outliers, $n_1$, we can tolerate, while identifying the correct support. To the best of our knowledge, neither standard outlier rejection techniques, nor recently developed robust regression algorithms (that focus only on corrupted response variables), nor recent algorithms for dealing with stochastic noise or erasures, can provide guarantees on support recovery. Perhaps surprisingly, we also show that the natural brute force algorithm that searches over all subsets of $n$ covariate/response pairs, and all subsets of possible support coordinates in order to minimize regression error, is remarkably poor, unable to correctly identify the support with even $n_1 = O(n/k)$ corrupted points, where $k$ is the sparsity. This is true even in the basic setting we consider, where all authentic measurements and noise are independent and sub-Gaussian. In this setting, we provide a simple algorithm -- no more computationally taxing than OMP -- that gives stronger performance guarantees, recovering the support with up to $n_1 = O(n/(\sqrt{k} \log p))$ corrupted points, where $p$ is the dimension of the signal to be recovered.
A comparison of SVM and RVM for Document Classification
Document classification is a task of assigning a new unclassified document to one of the predefined set of classes. The content based document classification uses the content of the document with some weighting criteria to assign it to one of the predefined classes. It is a major task in library science, electronic document management systems and information sciences. This paper investigates document classification by using two different classification techniques (1) Support Vector Machine (SVM) and (2) Relevance Vector Machine (RVM). SVM is a supervised machine learning technique that can be used for classification task. In its basic form, SVM represents the instances of the data into space and tries to separate the distinct classes by a maximum possible wide gap (hyper plane) that separates the classes. On the other hand RVM uses probabilistic measure to define this separation space. RVM uses Bayesian inference to obtain succinct solution, thus RVM uses significantly fewer basis functions. Experimental studies on three standard text classification datasets reveal that although RVM takes more training time, its classification is much better as compared to SVM.
Unsupervised Feature Learning for low-level Local Image Descriptors
Unsupervised feature learning has shown impressive results for a wide range of input modalities, in particular for object classification tasks in computer vision. Using a large amount of unlabeled data, unsupervised feature learning methods are utilized to construct high-level representations that are discriminative enough for subsequently trained supervised classification algorithms. However, it has never been \emph{quantitatively} investigated yet how well unsupervised learning methods can find \emph{low-level representations} for image patches without any additional supervision. In this paper we examine the performance of pure unsupervised methods on a low-level correspondence task, a problem that is central to many Computer Vision applications. We find that a special type of Restricted Boltzmann Machines (RBMs) performs comparably to hand-crafted descriptors. Additionally, a simple binarization scheme produces compact representations that perform better than several state-of-the-art descriptors.
Matrix Approximation under Local Low-Rank Assumption
Matrix approximation is a common tool in machine learning for building accurate prediction models for recommendation systems, text mining, and computer vision. A prevalent assumption in constructing matrix approximations is that the partially observed matrix is of low-rank. We propose a new matrix approximation model where we assume instead that the matrix is only locally of low-rank, leading to a representation of the observed matrix as a weighted sum of low-rank matrices. We analyze the accuracy of the proposed local low-rank modeling. Our experiments show improvements in prediction accuracy in recommendation tasks.
Learning Graphical Model Parameters with Approximate Marginal Inference
Likelihood based-learning of graphical models faces challenges of computational-complexity and robustness to model mis-specification. This paper studies methods that fit parameters directly to maximize a measure of the accuracy of predicted marginals, taking into account both model and inference approximations at training time. Experiments on imaging problems suggest marginalization-based learning performs better than likelihood-based approximations on difficult problems where the model being fit is approximate in nature.
Efficient Learning of Domain-invariant Image Representations
We present an algorithm that learns representations which explicitly compensate for domain mismatch and which can be efficiently realized as linear classifiers. Specifically, we form a linear transformation that maps features from the target (test) domain to the source (training) domain as part of training the classifier. We optimize both the transformation and classifier parameters jointly, and introduce an efficient cost function based on misclassification loss. Our method combines several features previously unavailable in a single algorithm: multi-class adaptation through representation learning, ability to map across heterogeneous feature spaces, and scalability to large datasets. We present experiments on several image datasets that demonstrate improved accuracy and computational advantages compared to previous approaches.
The Expressive Power of Word Embeddings
We seek to better understand the difference in quality of the several publicly released embeddings. We propose several tasks that help to distinguish the characteristics of different embeddings. Our evaluation of sentiment polarity and synonym/antonym relations shows that embeddings are able to capture surprisingly nuanced semantics even in the absence of sentence structure. Moreover, benchmarking the embeddings shows great variance in quality and characteristics of the semantics captured by the tested embeddings. Finally, we show the impact of varying the number of dimensions and the resolution of each dimension on the effective useful features captured by the embedding space. Our contributions highlight the importance of embeddings for NLP tasks and the effect of their quality on the final results.
Auto-pooling: Learning to Improve Invariance of Image Features from Image Sequences
Learning invariant representations from images is one of the hardest challenges facing computer vision. Spatial pooling is widely used to create invariance to spatial shifting, but it is restricted to convolutional models. In this paper, we propose a novel pooling method that can learn soft clustering of features from image sequences. It is trained to improve the temporal coherence of features, while keeping the information loss at minimum. Our method does not use spatial information, so it can be used with non-convolutional models too. Experiments on images extracted from natural videos showed that our method can cluster similar features together. When trained by convolutional features, auto-pooling outperformed traditional spatial pooling on an image classification task, even though it does not use the spatial topology of features.
Barnes-Hut-SNE
The paper presents an O(N log N)-implementation of t-SNE -- an embedding technique that is commonly used for the visualization of high-dimensional data in scatter plots and that normally runs in O(N^2). The new implementation uses vantage-point trees to compute sparse pairwise similarities between the input data objects, and it uses a variant of the Barnes-Hut algorithm - an algorithm used by astronomers to perform N-body simulations - to approximate the forces between the corresponding points in the embedding. Our experiments show that the new algorithm, called Barnes-Hut-SNE, leads to substantial computational advantages over standard t-SNE, and that it makes it possible to learn embeddings of data sets with millions of objects.
Multi-agent learning using Fictitious Play and Extended Kalman Filter
Decentralised optimisation tasks are important components of multi-agent systems. These tasks can be interpreted as n-player potential games: therefore game-theoretic learning algorithms can be used to solve decentralised optimisation tasks. Fictitious play is the canonical example of these algorithms. Nevertheless fictitious play implicitly assumes that players have stationary strategies. We present a novel variant of fictitious play where players predict their opponents' strategies using Extended Kalman filters and use their predictions to update their strategies. We show that in 2 by 2 games with at least one pure Nash equilibrium and in potential games where players have two available actions, the proposed algorithm converges to the pure Nash equilibrium. The performance of the proposed algorithm was empirically tested, in two strategic form games and an ad-hoc sensor network surveillance problem. The proposed algorithm performs better than the classic fictitious play algorithm in these games and therefore improves the performance of game-theoretical learning in decentralised optimisation.
The Diagonalized Newton Algorithm for Nonnegative Matrix Factorization
Non-negative matrix factorization (NMF) has become a popular machine learning approach to many problems in text mining, speech and image processing, bio-informatics and seismic data analysis to name a few. In NMF, a matrix of non-negative data is approximated by the low-rank product of two matrices with non-negative entries. In this paper, the approximation quality is measured by the Kullback-Leibler divergence between the data and its low-rank reconstruction. The existence of the simple multiplicative update (MU) algorithm for computing the matrix factors has contributed to the success of NMF. Despite the availability of algorithms showing faster convergence, MU remains popular due to its simplicity. In this paper, a diagonalized Newton algorithm (DNA) is proposed showing faster convergence while the implementation remains simple and suitable for high-rank problems. The DNA algorithm is applied to various publicly available data sets, showing a substantial speed-up on modern hardware.
Feature grouping from spatially constrained multiplicative interaction
We present a feature learning model that learns to encode relationships between images. The model is defined as a Gated Boltzmann Machine, which is constrained such that hidden units that are nearby in space can gate each other's connections. We show how frequency/orientation "columns" as well as topographic filter maps follow naturally from training the model on image pairs. The model also helps explain why square-pooling models yield feature groups with similar grouping properties. Experimental results on synthetic image transformations show that spatially constrained gating is an effective way to reduce the number of parameters and thereby to regularize a transformation-learning model.
Factorized Topic Models
In this paper we present a modification to a latent topic model, which makes the model exploit supervision to produce a factorized representation of the observed data. The structured parameterization separately encodes variance that is shared between classes from variance that is private to each class by the introduction of a new prior over the topic space. The approach allows for a more eff{}icient inference and provides an intuitive interpretation of the data in terms of an informative signal together with structured noise. The factorized representation is shown to enhance inference performance for image, text, and video classification.
Boltzmann Machines and Denoising Autoencoders for Image Denoising
Image denoising based on a probabilistic model of local image patches has been employed by various researchers, and recently a deep (denoising) autoencoder has been proposed by Burger et al. [2012] and Xie et al. [2012] as a good model for this. In this paper, we propose that another popular family of models in the field of deep learning, called Boltzmann machines, can perform image denoising as well as, or in certain cases of high level of noise, better than denoising autoencoders. We empirically evaluate the two models on three different sets of images with different types and levels of noise. Throughout the experiments we also examine the effect of the depth of the models. The experiments confirmed our claim and revealed that the performance can be improved by adding more hidden layers, especially when the level of noise is high.
Pushing Stochastic Gradient towards Second-Order Methods -- Backpropagation Learning with Transformations in Nonlinearities
Recently, we proposed to transform the outputs of each hidden neuron in a multi-layer perceptron network to have zero output and zero slope on average, and use separate shortcut connections to model the linear dependencies instead. We continue the work by firstly introducing a third transformation to normalize the scale of the outputs of each hidden neuron, and secondly by analyzing the connections to second order optimization methods. We show that the transformations make a simple stochastic gradient behave closer to second-order optimization methods and thus speed up learning. This is shown both in theory and with experiments. The experiments on the third transformation show that while it further increases the speed of learning, it can also hurt performance by converging to a worse local optimum, where both the inputs and outputs of many hidden neurons are close to zero.
A Semantic Matching Energy Function for Learning with Multi-relational Data
Large-scale relational learning becomes crucial for handling the huge amounts of structured data generated daily in many application domains ranging from computational biology or information retrieval, to natural language processing. In this paper, we present a new neural network architecture designed to embed multi-relational graphs into a flexible continuous vector space in which the original data is kept and enhanced. The network is trained to encode the semantics of these graphs in order to assign high probabilities to plausible components. We empirically show that it reaches competitive performance in link prediction on standard datasets from the literature.
Learnable Pooling Regions for Image Classification
Biologically inspired, from the early HMAX model to Spatial Pyramid Matching, pooling has played an important role in visual recognition pipelines. Spatial pooling, by grouping of local codes, equips these methods with a certain degree of robustness to translation and deformation yet preserving important spatial information. Despite the predominance of this approach in current recognition systems, we have seen little progress to fully adapt the pooling strategy to the task at hand. This paper proposes a model for learning task dependent pooling scheme -- including previously proposed hand-crafted pooling schemes as a particular instantiation. In our work, we investigate the role of different regularization terms showing that the smooth regularization term is crucial to achieve strong performance using the presented architecture. Finally, we propose an efficient and parallel method to train the model. Our experiments show improved performance over hand-crafted pooling schemes on the CIFAR-10 and CIFAR-100 datasets -- in particular improving the state-of-the-art to 56.29% on the latter.
How good is the Electricity benchmark for evaluating concept drift adaptation
In this correspondence, we will point out a problem with testing adaptive classifiers on autocorrelated data. In such a case random change alarms may boost the accuracy figures. Hence, we cannot be sure if the adaptation is working well.
Block Coordinate Descent for Sparse NMF
Nonnegative matrix factorization (NMF) has become a ubiquitous tool for data analysis. An important variant is the sparse NMF problem which arises when we explicitly require the learnt features to be sparse. A natural measure of sparsity is the L$_0$ norm, however its optimization is NP-hard. Mixed norms, such as L$_1$/L$_2$ measure, have been shown to model sparsity robustly, based on intuitive attributes that such measures need to satisfy. This is in contrast to computationally cheaper alternatives such as the plain L$_1$ norm. However, present algorithms designed for optimizing the mixed norm L$_1$/L$_2$ are slow and other formulations for sparse NMF have been proposed such as those based on L$_1$ and L$_0$ norms. Our proposed algorithm allows us to solve the mixed norm sparsity constraints while not sacrificing computation time. We present experimental evidence on real-world datasets that shows our new algorithm performs an order of magnitude faster compared to the current state-of-the-art solvers optimizing the mixed norm and is suitable for large-scale datasets.
An Efficient Sufficient Dimension Reduction Method for Identifying Genetic Variants of Clinical Significance
Fast and cheaper next generation sequencing technologies will generate unprecedentedly massive and highly-dimensional genomic and epigenomic variation data. In the near future, a routine part of medical record will include the sequenced genomes. A fundamental question is how to efficiently extract genomic and epigenomic variants of clinical utility which will provide information for optimal wellness and interference strategies. Traditional paradigm for identifying variants of clinical validity is to test association of the variants. However, significantly associated genetic variants may or may not be usefulness for diagnosis and prognosis of diseases. Alternative to association studies for finding genetic variants of predictive utility is to systematically search variants that contain sufficient information for phenotype prediction. To achieve this, we introduce concepts of sufficient dimension reduction and coordinate hypothesis which project the original high dimensional data to very low dimensional space while preserving all information on response phenotypes. We then formulate clinically significant genetic variant discovery problem into sparse SDR problem and develop algorithms that can select significant genetic variants from up to or even ten millions of predictors with the aid of dividing SDR for whole genome into a number of subSDR problems defined for genomic regions. The sparse SDR is in turn formulated as sparse optimal scoring problem, but with penalty which can remove row vectors from the basis matrix. To speed up computation, we develop the modified alternating direction method for multipliers to solve the sparse optimal scoring problem which can easily be implemented in parallel. To illustrate its application, the proposed method is applied to simulation data and the NHLBI's Exome Sequencing Project dataset
The Neural Representation Benchmark and its Evaluation on Brain and Machine
A key requirement for the development of effective learning representations is their evaluation and comparison to representations we know to be effective. In natural sensory domains, the community has viewed the brain as a source of inspiration and as an implicit benchmark for success. However, it has not been possible to directly test representational learning algorithms directly against the representations contained in neural systems. Here, we propose a new benchmark for visual representations on which we have directly tested the neural representation in multiple visual cortical areas in macaque (utilizing data from [Majaj et al., 2012]), and on which any computer vision algorithm that produces a feature space can be tested. The benchmark measures the effectiveness of the neural or machine representation by computing the classification loss on the ordered eigendecomposition of a kernel matrix [Montavon et al., 2011]. In our analysis we find that the neural representation in visual area IT is superior to visual area V4. In our analysis of representational learning algorithms, we find that three-layer models approach the representational performance of V4 and the algorithm in [Le et al., 2012] surpasses the performance of V4. Impressively, we find that a recent supervised algorithm [Krizhevsky et al., 2012] achieves performance comparable to that of IT for an intermediate level of image variation difficulty, and surpasses IT at a higher difficulty level. We believe this result represents a major milestone: it is the first learning algorithm we have found that exceeds our current estimate of IT representation performance. We hope that this benchmark will assist the community in matching the representational performance of visual cortex and will serve as an initial rallying point for further correspondence between representations derived in brains and machines.
Sparse Penalty in Deep Belief Networks: Using the Mixed Norm Constraint
Deep Belief Networks (DBN) have been successfully applied on popular machine learning tasks. Specifically, when applied on hand-written digit recognition, DBNs have achieved approximate accuracy rates of 98.8%. In an effort to optimize the data representation achieved by the DBN and maximize their descriptive power, recent advances have focused on inducing sparse constraints at each layer of the DBN. In this paper we present a theoretical approach for sparse constraints in the DBN using the mixed norm for both non-overlapping and overlapping groups. We explore how these constraints affect the classification accuracy for digit recognition in three different datasets (MNIST, USPS, RIMES) and provide initial estimations of their usefulness by altering different parameters such as the group size and overlap percentage.
Learning Features with Structure-Adapting Multi-view Exponential Family Harmoniums
We proposea graphical model for multi-view feature extraction that automatically adapts its structure to achieve better representation of data distribution. The proposed model, structure-adapting multi-view harmonium (SA-MVH) has switch parameters that control the connection between hidden nodes and input views, and learn the switch parameter while training. Numerical experiments on synthetic and a real-world dataset demonstrate the useful behavior of the SA-MVH, compared to existing multi-view feature extraction methods.
Deep Predictive Coding Networks
The quality of data representation in deep learning methods is directly related to the prior model imposed on the representations; however, generally used fixed priors are not capable of adjusting to the context in the data. To address this issue, we propose deep predictive coding networks, a hierarchical generative model that empirically alters priors on the latent representations in a dynamic and context-sensitive manner. This model captures the temporal dependencies in time-varying signals and uses top-down information to modulate the representation in lower layers. The centerpiece of our model is a novel procedure to infer sparse states of a dynamic model which is used for feature extraction. We also extend this feature extraction block to introduce a pooling function that captures locally invariant representations. When applied on a natural video data, we show that our method is able to learn high-level visual features. We also demonstrate the role of the top-down connections by showing the robustness of the proposed model to structured noise.
Metric-Free Natural Gradient for Joint-Training of Boltzmann Machines
This paper introduces the Metric-Free Natural Gradient (MFNG) algorithm for training Boltzmann Machines. Similar in spirit to the Hessian-Free method of Martens [8], our algorithm belongs to the family of truncated Newton methods and exploits an efficient matrix-vector product to avoid explicitely storing the natural gradient metric $L$. This metric is shown to be the expected second derivative of the log-partition function (under the model distribution), or equivalently, the variance of the vector of partial derivatives of the energy function. We evaluate our method on the task of joint-training a 3-layer Deep Boltzmann Machine and show that MFNG does indeed have faster per-epoch convergence compared to Stochastic Maximum Likelihood with centering, though wall-clock performance is currently not competitive.
Information Theoretic Learning with Infinitely Divisible Kernels
In this paper, we develop a framework for information theoretic learning based on infinitely divisible matrices. We formulate an entropy-like functional on positive definite matrices based on Renyi's axiomatic definition of entropy and examine some key properties of this functional that lead to the concept of infinite divisibility. The proposed formulation avoids the plug in estimation of density and brings along the representation power of reproducing kernel Hilbert spaces. As an application example, we derive a supervised metric learning algorithm using a matrix based analogue to conditional entropy achieving results comparable with the state of the art.
Stochastic Pooling for Regularization of Deep Convolutional Neural Networks
We introduce a simple and effective method for regularizing large convolutional neural networks. We replace the conventional deterministic pooling operations with a stochastic procedure, randomly picking the activation within each pooling region according to a multinomial distribution, given by the activities within the pooling region. The approach is hyper-parameter free and can be combined with other regularization approaches, such as dropout and data augmentation. We achieve state-of-the-art performance on four image datasets, relative to other approaches that do not utilize data augmentation.
Joint Training Deep Boltzmann Machines for Classification
We introduce a new method for training deep Boltzmann machines jointly. Prior methods of training DBMs require an initial learning pass that trains the model greedily, one layer at a time, or do not perform well on classification tasks. In our approach, we train all layers of the DBM simultaneously, using a novel training procedure called multi-prediction training. The resulting model can either be interpreted as a single generative model trained to maximize a variational approximation to the generalized pseudolikelihood, or as a family of recurrent networks that share parameters and may be approximately averaged together using a novel technique we call the multi-inference trick. We show that our approach performs competitively for classification and outperforms previous methods in terms of accuracy of approximate inference and classification with missing inputs.
Kernelized Locality-Sensitive Hashing for Semi-Supervised Agglomerative Clustering
Large scale agglomerative clustering is hindered by computational burdens. We propose a novel scheme where exact inter-instance distance calculation is replaced by the Hamming distance between Kernelized Locality-Sensitive Hashing (KLSH) hashed values. This results in a method that drastically decreases computation time. Additionally, we take advantage of certain labeled data points via distance metric learning to achieve a competitive precision and recall comparing to K-Means but in much less computation time.
Saturating Auto-Encoders
We introduce a simple new regularizer for auto-encoders whose hidden-unit activation functions contain at least one zero-gradient (saturated) region. This regularizer explicitly encourages activations in the saturated region(s) of the corresponding activation function. We call these Saturating Auto-Encoders (SATAE). We show that the saturation regularizer explicitly limits the SATAE's ability to reconstruct inputs which are not near the data manifold. Furthermore, we show that a wide variety of features can be learned when different activation functions are used. Finally, connections are established with the Contractive and Sparse Auto-Encoders.
Big Neural Networks Waste Capacity
This article exposes the failure of some big neural networks to leverage added capacity to reduce underfitting. Past research suggest diminishing returns when increasing the size of neural networks. Our experiments on ImageNet LSVRC-2010 show that this may be due to the fact there are highly diminishing returns for capacity in terms of training error, leading to underfitting. This suggests that the optimization method - first order gradient descent - fails at this regime. Directly attacking this problem, either through the optimization method or the choices of parametrization, may allow to improve the generalization error on large datasets, for which a large capacity is required.
Revisiting Natural Gradient for Deep Networks
We evaluate natural gradient, an algorithm originally proposed in Amari (1997), for learning deep models. The contributions of this paper are as follows. We show the connection between natural gradient and three other recently proposed methods for training deep models: Hessian-Free (Martens, 2010), Krylov Subspace Descent (Vinyals and Povey, 2012) and TONGA (Le Roux et al., 2008). We describe how one can use unlabeled data to improve the generalization error obtained by natural gradient and empirically evaluate the robustness of the algorithm to the ordering of the training set compared to stochastic gradient descent. Finally we extend natural gradient to incorporate second order information alongside the manifold information and provide a benchmark of the new algorithm using a truncated Newton approach for inverting the metric matrix instead of using a diagonal approximation of it.
Deep Learning for Detecting Robotic Grasps
We consider the problem of detecting robotic grasps in an RGB-D view of a scene containing objects. In this work, we apply a deep learning approach to solve this problem, which avoids time-consuming hand-design of features. This presents two main challenges. First, we need to evaluate a huge number of candidate grasps. In order to make detection fast, as well as robust, we present a two-step cascaded structure with two deep networks, where the top detections from the first are re-evaluated by the second. The first network has fewer features, is faster to run, and can effectively prune out unlikely candidate grasps. The second, with more features, is slower but has to run only on the top few detections. Second, we need to handle multimodal inputs well, for which we present a method to apply structured regularization on the weights based on multimodal group regularization. We demonstrate that our method outperforms the previous state-of-the-art methods in robotic grasp detection, and can be used to successfully execute grasps on two different robotic platforms.
Feature Learning in Deep Neural Networks - Studies on Speech Recognition Tasks
Recent studies have shown that deep neural networks (DNNs) perform significantly better than shallow networks and Gaussian mixture models (GMMs) on large vocabulary speech recognition tasks. In this paper, we argue that the improved accuracy achieved by the DNNs is the result of their ability to extract discriminative internal representations that are robust to the many sources of variability in speech signals. We show that these representations become increasingly insensitive to small perturbations in the input with increasing network depth, which leads to better speech recognition performance with deeper networks. We also show that DNNs cannot extrapolate to test samples that are substantially different from the training examples. If the training data are sufficiently representative, however, internal features learned by the DNN are relatively stable with respect to speaker differences, bandwidth differences, and environment distortion. This enables DNN-based recognizers to perform as well or better than state-of-the-art systems based on GMMs or shallow networks without the need for explicit model adaptation or feature normalization.
Learning New Facts From Knowledge Bases With Neural Tensor Networks and Semantic Word Vectors
Knowledge bases provide applications with the benefit of easily accessible, systematic relational knowledge but often suffer in practice from their incompleteness and lack of knowledge of new entities and relations. Much work has focused on building or extending them by finding patterns in large unannotated text corpora. In contrast, here we mainly aim to complete a knowledge base by predicting additional true relationships between entities, based on generalizations that can be discerned in the given knowledgebase. We introduce a neural tensor network (NTN) model which predicts new relationship entries that can be added to the database. This model can be improved by initializing entity representations with word vectors learned in an unsupervised fashion from text, and when doing this, existing relations can even be queried for entities that were not present in the database. Our model generalizes and outperforms existing models for this problem, and can classify unseen relationships in WordNet with an accuracy of 75.8%.
Two SVDs produce more focal deep learning representations
A key characteristic of work on deep learning and neural networks in general is that it relies on representations of the input that support generalization, robust inference, domain adaptation and other desirable functionalities. Much recent progress in the field has focused on efficient and effective methods for computing representations. In this paper, we propose an alternative method that is more efficient than prior work and produces representations that have a property we call focality -- a property we hypothesize to be important for neural network representations. The method consists of a simple application of two consecutive SVDs and is inspired by Anandkumar (2012).
Behavior Pattern Recognition using A New Representation Model
We study the use of inverse reinforcement learning (IRL) as a tool for the recognition of agents' behavior on the basis of observation of their sequential decision behavior interacting with the environment. We model the problem faced by the agents as a Markov decision process (MDP) and model the observed behavior of the agents in terms of forward planning for the MDP. We use IRL to learn reward functions and then use these reward functions as the basis for clustering or classification models. Experimental studies with GridWorld, a navigation problem, and the secretary problem, an optimal stopping problem, suggest reward vectors found from IRL can be a good basis for behavior pattern recognition problems. Empirical comparisons of our method with several existing IRL algorithms and with direct methods that use feature statistics observed in state-action space suggest it may be superior for recognition problems.
Training Neural Networks with Stochastic Hessian-Free Optimization
Hessian-free (HF) optimization has been successfully used for training deep autoencoders and recurrent networks. HF uses the conjugate gradient algorithm to construct update directions through curvature-vector products that can be computed on the same order of time as gradients. In this paper we exploit this property and study stochastic HF with gradient and curvature mini-batches independent of the dataset size. We modify Martens' HF for these settings and integrate dropout, a method for preventing co-adaptation of feature detectors, to guard against overfitting. Stochastic Hessian-free optimization gives an intermediary between SGD and HF that achieves competitive performance on both classification and deep autoencoder experiments.
Regularized Discriminant Embedding for Visual Descriptor Learning
Images can vary according to changes in viewpoint, resolution, noise, and illumination. In this paper, we aim to learn representations for an image, which are robust to wide changes in such environmental conditions, using training pairs of matching and non-matching local image patches that are collected under various environmental conditions. We present a regularized discriminant analysis that emphasizes two challenging categories among the given training pairs: (1) matching, but far apart pairs and (2) non-matching, but close pairs in the original feature space (e.g., SIFT feature space). Compared to existing work on metric learning and discriminant analysis, our method can better distinguish relevant images from irrelevant, but look-alike images.
Zero-Shot Learning Through Cross-Modal Transfer
This work introduces a model that can recognize objects in images even if no training data is available for the objects. The only necessary knowledge about the unseen categories comes from unsupervised large text corpora. In our zero-shot framework distributional information in language can be seen as spanning a semantic basis for understanding what objects look like. Most previous zero-shot learning models can only differentiate between unseen classes. In contrast, our model can both obtain state of the art performance on classes that have thousands of training images and obtain reasonable performance on unseen classes. This is achieved by first using outlier detection in the semantic space and then two separate recognition models. Furthermore, our model does not require any manually defined semantic features for either words or images.
The IBMAP approach for Markov networks structure learning
In this work we consider the problem of learning the structure of Markov networks from data. We present an approach for tackling this problem called IBMAP, together with an efficient instantiation of the approach: the IBMAP-HC algorithm, designed for avoiding important limitations of existing independence-based algorithms. These algorithms proceed by performing statistical independence tests on data, trusting completely the outcome of each test. In practice tests may be incorrect, resulting in potential cascading errors and the consequent reduction in the quality of the structures learned. IBMAP contemplates this uncertainty in the outcome of the tests through a probabilistic maximum-a-posteriori approach. The approach is instantiated in the IBMAP-HC algorithm, a structure selection strategy that performs a polynomial heuristic local search in the space of possible structures. We present an extensive empirical evaluation on synthetic and real data, showing that our algorithm outperforms significantly the current independence-based algorithms, in terms of data efficiency and quality of learned structures, with equivalent computational complexities. We also show the performance of IBMAP-HC in a real-world application of knowledge discovery: EDAs, which are evolutionary algorithms that use structure learning on each generation for modeling the distribution of populations. The experiments show that when IBMAP-HC is used to learn the structure, EDAs improve the convergence to the optimum.
Switched linear encoding with rectified linear autoencoders
Several recent results in machine learning have established formal connections between autoencoders---artificial neural network models that attempt to reproduce their inputs---and other coding models like sparse coding and K-means. This paper explores in depth an autoencoder model that is constructed using rectified linear activations on its hidden units. Our analysis builds on recent results to further unify the world of sparse linear coding models. We provide an intuitive interpretation of the behavior of these coding models and demonstrate this intuition using small, artificial datasets with known distributions.
Adaptive learning rates and parallelization for stochastic, sparse, non-smooth gradients
Recent work has established an empirically successful framework for adapting learning rates for stochastic gradient descent (SGD). This effectively removes all needs for tuning, while automatically reducing learning rates over time on stationary problems, and permitting learning rates to grow appropriately in non-stationary tasks. Here, we extend the idea in three directions, addressing proper minibatch parallelization, including reweighted updates for sparse or orthogonal gradients, improving robustness on non-smooth loss functions, in the process replacing the diagonal Hessian estimation procedure that may not always be available by a robust finite-difference approximation. The final algorithm integrates all these components, has linear complexity and is hyper-parameter free.
Discriminative Recurrent Sparse Auto-Encoders
We present the discriminative recurrent sparse auto-encoder model, comprising a recurrent encoder of rectified linear units, unrolled for a fixed number of iterations, and connected to two linear decoders that reconstruct the input and predict its supervised classification. Training via backpropagation-through-time initially minimizes an unsupervised sparse reconstruction error; the loss function is then augmented with a discriminative term on the supervised classification. The depth implicit in the temporally-unrolled form allows the system to exhibit all the power of deep networks, while substantially reducing the number of trainable parameters. From an initially unstructured network the hidden units differentiate into categorical-units, each of which represents an input prototype with a well-defined class; and part-units representing deformations of these prototypes. The learned organization of the recurrent encoder is hierarchical: part-units are driven directly by the input, whereas the activity of categorical-units builds up over time through interactions with the part-units. Even using a small number of hidden units per layer, discriminative recurrent sparse auto-encoders achieve excellent performance on MNIST.
Learning Output Kernels for Multi-Task Problems
Simultaneously solving multiple related learning tasks is beneficial under a variety of circumstances, but the prior knowledge necessary to correctly model task relationships is rarely available in practice. In this paper, we develop a novel kernel-based multi-task learning technique that automatically reveals structural inter-task relationships. Building over the framework of output kernel learning (OKL), we introduce a method that jointly learns multiple functions and a low-rank multi-task kernel by solving a non-convex regularization problem. Optimization is carried out via a block coordinate descent strategy, where each subproblem is solved using suitable conjugate gradient (CG) type iterative methods for linear operator equations. The effectiveness of the proposed approach is demonstrated on pharmacological and collaborative filtering data.
Reversible Jump MCMC Simulated Annealing for Neural Networks
We propose a novel reversible jump Markov chain Monte Carlo (MCMC) simulated annealing algorithm to optimize radial basis function (RBF) networks. This algorithm enables us to maximize the joint posterior distribution of the network parameters and the number of basis functions. It performs a global search in the joint space of the parameters and number of parameters, thereby surmounting the problem of local minima. We also show that by calibrating a Bayesian model, we can obtain the classical AIC, BIC and MDL model selection criteria within a penalized likelihood framework. Finally, we show theoretically and empirically that the algorithm converges to the modes of the full posterior distribution in an efficient way.
Dynamic Bayesian Multinets
In this work, dynamic Bayesian multinets are introduced where a Markov chain state at time t determines conditional independence patterns between random variables lying within a local time window surrounding t. It is shown how information-theoretic criterion functions can be used to induce sparse, discriminative, and class-conditional network structures that yield an optimal approximation to the class posterior probability, and therefore are useful for the classification task. Using a new structure learning heuristic, the resulting models are tested on a medium-vocabulary isolated-word speech recognition task. It is demonstrated that these discriminatively structured dynamic Bayesian multinets, when trained in a maximum likelihood setting using EM, can outperform both HMMs and other dynamic Bayesian networks with a similar number of parameters.
Variational Relevance Vector Machines
The Support Vector Machine (SVM) of Vapnik (1998) has become widely established as one of the leading approaches to pattern recognition and machine learning. It expresses predictions in terms of a linear combination of kernel functions centred on a subset of the training data, known as support vectors. Despite its widespread success, the SVM suffers from some important limitations, one of the most significant being that it makes point predictions rather than generating predictive distributions. Recently Tipping (1999) has formulated the Relevance Vector Machine (RVM), a probabilistic model whose functional form is equivalent to the SVM. It achieves comparable recognition accuracy to the SVM, yet provides a full predictive distribution, and also requires substantially fewer kernel functions. The original treatment of the RVM relied on the use of type II maximum likelihood (the `evidence framework') to provide point estimates of the hyperparameters which govern model sparsity. In this paper we show how the RVM can be formulated and solved within a completely Bayesian paradigm through the use of variational inference, thereby giving a posterior distribution over both parameters and hyperparameters. We demonstrate the practicality and performance of the variational RVM using both synthetic and real world examples.
Utilities as Random Variables: Density Estimation and Structure Discovery
Decision theory does not traditionally include uncertainty over utility functions. We argue that the a person's utility value for a given outcome can be treated as we treat other domain attributes: as a random variable with a density function over its possible values. We show that we can apply statistical density estimation techniques to learn such a density function from a database of partially elicited utility functions. In particular, we define a Bayesian learning framework for this problem, assuming the distribution over utilities is a mixture of Gaussians, where the mixture components represent statistically coherent subpopulations. We can also extend our techniques to the problem of discovering generalized additivity structure in the utility functions in the population. We define a Bayesian model selection criterion for utility function structure and a search procedure over structures. The factorization of the utilities in the learned model, and the generalization obtained from density estimation, allows us to provide robust estimates of utilities using a significantly smaller number of utility elicitation questions. We experiment with our technique on synthetic utility data and on a real database of utility functions in the domain of prenatal diagnosis.
Bayesian Classification and Feature Selection from Finite Data Sets
Feature selection aims to select the smallest subset of features for a specified level of performance. The optimal achievable classification performance on a feature subset is summarized by its Receiver Operating Curve (ROC). When infinite data is available, the Neyman- Pearson (NP) design procedure provides the most efficient way of obtaining this curve. In practice the design procedure is applied to density estimates from finite data sets. We perform a detailed statistical analysis of the resulting error propagation on finite alphabets. We show that the estimated performance curve (EPC) produced by the design procedure is arbitrarily accurate given sufficient data, independent of the size of the feature set. However, the underlying likelihood ranking procedure is highly sensitive to errors that reduces the probability that the EPC is in fact the ROC. In the worst case, guaranteeing that the EPC is equal to the ROC may require data sizes exponential in the size of the feature set. These results imply that in theory the NP design approach may only be valid for characterizing relatively small feature subsets, even when the performance of any given classifier can be estimated very accurately. We discuss the practical limitations for on-line methods that ensures that the NP procedure operates in a statistically valid region.
Experiments with Random Projection
Recent theoretical work has identified random projection as a promising dimensionality reduction technique for learning mixtures of Gausians. Here we summarize these results and illustrate them by a wide variety of experiments on synthetic and real data.
A Two-round Variant of EM for Gaussian Mixtures
Given a set of possible models (e.g., Bayesian network structures) and a data sample, in the unsupervised model selection problem the task is to choose the most accurate model with respect to the domain joint probability distribution. In contrast to this, in supervised model selection it is a priori known that the chosen model will be used in the future for prediction tasks involving more ``focused' predictive distributions. Although focused predictive distributions can be produced from the joint probability distribution by marginalization, in practice the best model in the unsupervised sense does not necessarily perform well in supervised domains. In particular, the standard marginal likelihood score is a criterion for the unsupervised task, and, although frequently used for supervised model selection also, does not perform well in such tasks. In this paper we study the performance of the marginal likelihood score empirically in supervised Bayesian network selection tasks by using a large number of publicly available classification data sets, and compare the results to those obtained by alternative model selection criteria, including empirical crossvalidation methods, an approximation of a supervised marginal likelihood measure, and a supervised version of Dawids prequential(predictive sequential) principle.The results demonstrate that the marginal likelihood score does NOT perform well FOR supervised model selection, WHILE the best results are obtained BY using Dawids prequential r napproach.
Minimum Message Length Clustering Using Gibbs Sampling
The K-Mean and EM algorithms are popular in clustering and mixture modeling, due to their simplicity and ease of implementation. However, they have several significant limitations. Both coverage to a local optimum of their respective objective functions (ignoring the uncertainty in the model space), require the apriori specification of the number of classes/clsuters, and are inconsistent. In this work we overcome these limitations by using the Minimum Message Length (MML) principle and a variation to the K-Means/EM observation assignment and parameter calculation scheme. We maintain the simplicity of these approaches while constructing a Bayesian mixture modeling tool that samples/searches the model space using a Markov Chain Monte Carlo (MCMC) sampler known as a Gibbs sampler. Gibbs sampling allows us to visit each model according to its posterior probability. Therefore, if the model space is multi-modal we will visit all models and not get stuck in local optima. We call our approach multiple chains at equilibrium (MCE) MML sampling.
Mix-nets: Factored Mixtures of Gaussians in Bayesian Networks With Mixed Continuous And Discrete Variables
Recently developed techniques have made it possible to quickly learn accurate probability density functions from data in low-dimensional continuous space. In particular, mixtures of Gaussians can be fitted to data very quickly using an accelerated EM algorithm that employs multiresolution kd-trees (Moore, 1999). In this paper, we propose a kind of Bayesian networks in which low-dimensional mixtures of Gaussians over different subsets of the domain's variables are combined into a coherent joint probability model over the entire domain. The network is also capable of modeling complex dependencies between discrete variables and continuous variables without requiring discretization of the continuous variables. We present efficient heuristic algorithms for automatically learning these networks from data, and perform comparative experiments illustrated how well these networks model real scientific data and synthetic data. We also briefly discuss some possible improvements to the networks, as well as possible applications.
Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks
Particle filters (PFs) are powerful sampling-based inference/learning algorithms for dynamic Bayesian networks (DBNs). They allow us to treat, in a principled way, any type of probability distribution, nonlinearity and non-stationarity. They have appeared in several fields under such names as "condensation", "sequential Monte Carlo" and "survival of the fittest". In this paper, we show how we can exploit the structure of the DBN to increase the efficiency of particle filtering, using a technique known as Rao-Blackwellisation. Essentially, this samples some of the variables, and marginalizes out the rest exactly, using the Kalman filter, HMM filter, junction tree algorithm, or any other finite dimensional optimal filter. We show that Rao-Blackwellised particle filters (RBPFs) lead to more accurate estimates than standard PFs. We demonstrate RBPFs on two problems, namely non-stationary online regression with radial basis function networks and robot localization and map building. We also discuss other potential application areas and provide references to some finite dimensional optimal filters.
Learning Graphical Models of Images, Videos and Their Spatial Transformations
Mixtures of Gaussians, factor analyzers (probabilistic PCA) and hidden Markov models are staples of static and dynamic data modeling and image and video modeling in particular. We show how topographic transformations in the input, such as translation and shearing in images, can be accounted for in these models by including a discrete transformation variable. The resulting models perform clustering, dimensionality reduction and time-series analysis in a way that is invariant to transformations in the input. Using the EM algorithm, these transformation-invariant models can be fit to static data and time series. We give results on filtering microscopy images, face and facial pose clustering, handwritten digit modeling and recognition, video clustering, object tracking, and removal of distractions from video sequences.
Being Bayesian about Network Structure
In many domains, we are interested in analyzing the structure of the underlying distribution, e.g., whether one variable is a direct parent of the other. Bayesian model-selection attempts to find the MAP model and use its structure to answer these questions. However, when the amount of available data is modest, there might be many models that have non-negligible posterior. Thus, we want compute the Bayesian posterior of a feature, i.e., the total posterior probability of all models that contain it. In this paper, we propose a new approach for this task. We first show how to efficiently compute a sum over the exponential number of networks that are consistent with a fixed ordering over network variables. This allows us to compute, for a given ordering, both the marginal probability of the data and the posterior of a feature. We then use this result as the basis for an algorithm that approximates the Bayesian posterior of a feature. Our approach uses a Markov Chain Monte Carlo (MCMC) method, but over orderings rather than over network structures. The space of orderings is much smaller and more regular than the space of structures, and has a smoother posterior `landscape'. We present empirical results on synthetic and real-life datasets that compare our approach to full model averaging (when possible), to MCMC over network structures, and to a non-Bayesian bootstrap approach.
Gaussian Process Networks
In this paper we address the problem of learning the structure of a Bayesian network in domains with continuous variables. This task requires a procedure for comparing different candidate structures. In the Bayesian framework, this is done by evaluating the {em marginal likelihood/} of the data given a candidate structure. This term can be computed in closed-form for standard parametric families (e.g., Gaussians), and can be approximated, at some computational cost, for some semi-parametric families (e.g., mixtures of Gaussians). We present a new family of continuous variable probabilistic networks that are based on {em Gaussian Process/} priors. These priors are semi-parametric in nature and can learn almost arbitrary noisy functional relations. Using these priors, we can directly compute marginal likelihoods for structure learning. The resulting method can discover a wide range of functional dependencies in multivariate data. We develop the Bayesian score of Gaussian Process Networks and describe how to learn them from data. We present empirical results on artificial data as well as on real-life domains with non-linear dependencies.
Inference for Belief Networks Using Coupling From the Past
Inference for belief networks using Gibbs sampling produces a distribution for unobserved variables that differs from the correct distribution by a (usually) unknown error, since convergence to the right distribution occurs only asymptotically. The method of "coupling from the past" samples from exactly the correct distribution by (conceptually) running dependent Gibbs sampling simulations from every possible starting state from a time far enough in the past that all runs reach the same state at time t=0. Explicitly considering every possible state is intractable for large networks, however. We propose a method for layered noisy-or networks that uses a compact, but often imprecise, summary of a set of states. This method samples from exactly the correct distribution, and requires only about twice the time per step as ordinary Gibbs sampling, but it may require more simulation steps than would be needed if chains were tracked exactly.
Dependency Networks for Collaborative Filtering and Data Visualization
We describe a graphical model for probabilistic relationships---an alternative to the Bayesian network---called a dependency network. The graph of a dependency network, unlike a Bayesian network, is potentially cyclic. The probability component of a dependency network, like a Bayesian network, is a set of conditional distributions, one for each node given its parents. We identify several basic properties of this representation and describe a computationally efficient procedure for learning the graph and probability components from data. We describe the application of this representation to probabilistic inference, collaborative filtering (the task of predicting preferences), and the visualization of acausal predictive relationships.
Feature Selection and Dualities in Maximum Entropy Discrimination
Incorporating feature selection into a classification or regression method often carries a number of advantages. In this paper we formalize feature selection specifically from a discriminative perspective of improving classification/regression accuracy. The feature selection method is developed as an extension to the recently proposed maximum entropy discrimination (MED) framework. We describe MED as a flexible (Bayesian) regularization approach that subsumes, e.g., support vector classification, regression and exponential family models. For brevity, we restrict ourselves primarily to feature selection in the context of linear classification/regression methods and demonstrate that the proposed approach indeed carries substantial improvements in practice. Moreover, we discuss and develop various extensions of feature selection, including the problem of dealing with example specific but unobserved degrees of freedom -- alignments or invariants.
Tractable Bayesian Learning of Tree Belief Networks
In this paper we present decomposable priors, a family of priors over structure and parameters of tree belief nets for which Bayesian learning with complete observations is tractable, in the sense that the posterior is also decomposable and can be completely determined analytically in polynomial time. This follows from two main results: First, we show that factored distributions over spanning trees in a graph can be integrated in closed form. Second, we examine priors over tree parameters and show that a set of assumptions similar to (Heckerman and al. 1995) constrain the tree parameter priors to be a compactly parameterized product of Dirichlet distributions. Beside allowing for exact Bayesian learning, these results permit us to formulate a new class of tractable latent variable models in which the likelihood of a data point is computed through an ensemble average over tree structures.
The Anchors Hierachy: Using the triangle inequality to survive high dimensional data
This paper is about metric data structures in high-dimensional or non-Euclidean space that permit cached sufficient statistics accelerations of learning algorithms. It has recently been shown that for less than about 10 dimensions, decorating kd-trees with additional "cached sufficient statistics" such as first and second moments and contingency tables can provide satisfying acceleration for a very wide range of statistical learning tasks such as kernel regression, locally weighted regression, k-means clustering, mixture modeling and Bayes Net learning. In this paper, we begin by defining the anchors hierarchy - a fast data structure and algorithm for localizing data based only on a triangle-inequality-obeying distance metric. We show how this, in its own right, gives a fast and effective clustering of data. But more importantly we show how it can produce a well-balanced structure similar to a Ball-Tree (Omohundro, 1991) or a kind of metric tree (Uhlmann, 1991; Ciaccia, Patella, & Zezula, 1997) in a way that is neither "top-down" nor "bottom-up" but instead "middle-out". We then show how this structure, decorated with cached sufficient statistics, allows a wide variety of statistical learning algorithms to be accelerated even in thousands of dimensions.
PEGASUS: A Policy Search Method for Large MDPs and POMDPs
We propose a new approach to the problem of searching a space of policies for a Markov decision process (MDP) or a partially observable Markov decision process (POMDP), given a model. Our approach is based on the following observation: Any (PO)MDP can be transformed into an "equivalent" POMDP in which all state transitions (given the current state and action) are deterministic. This reduces the general problem of policy search to one in which we need only consider POMDPs with deterministic transitions. We give a natural way of estimating the value of all policies in these transformed POMDPs. Policy search is then simply performed by searching for a policy with high estimated value. We also establish conditions under which our value estimates will be good, recovering theoretical results similar to those of Kearns, Mansour and Ng (1999), but with "sample complexity" bounds that have only a polynomial rather than exponential dependence on the horizon time. Our method applies to arbitrary POMDPs, including ones with infinite state and action spaces. We also present empirical results for our approach on a small discrete problem, and on a complex continuous state/continuous action problem involving learning to ride a bicycle.
Adaptive Importance Sampling for Estimation in Structured Domains
Sampling is an important tool for estimating large, complex sums and integrals over high dimensional spaces. For instance, important sampling has been used as an alternative to exact methods for inference in belief networks. Ideally, we want to have a sampling distribution that provides optimal-variance estimators. In this paper, we present methods that improve the sampling distribution by systematically adapting it as we obtain information from the samples. We present a stochastic-gradient-descent method for sequentially updating the sampling distribution based on the direct minization of the variance. We also present other stochastic-gradient-descent methods based on the minimizationof typical notions of distance between the current sampling distribution and approximations of the target, optimal distribution. We finally validate and compare the different methods empirically by applying them to the problem of action evaluation in influence diagrams.
Monte Carlo Inference via Greedy Importance Sampling
We present a new method for conducting Monte Carlo inference in graphical models which combines explicit search with generalized importance sampling. The idea is to reduce the variance of importance sampling by searching for significant points in the target distribution. We prove that it is possible to introduce search and still maintain unbiasedness. We then demonstrate our procedure on a few simple inference tasks and show that it can improve the inference quality of standard MCMC methods, including Gibbs sampling, Metropolis sampling, and Hybrid Monte Carlo. This paper extends previous work which showed how greedy importance sampling could be correctly realized in the one-dimensional case.
Combining Feature and Prototype Pruning by Uncertainty Minimization
We focus in this paper on dataset reduction techniques for use in k-nearest neighbor classification. In such a context, feature and prototype selections have always been independently treated by the standard storage reduction algorithms. While this certifying is theoretically justified by the fact that each subproblem is NP-hard, we assume in this paper that a joint storage reduction is in fact more intuitive and can in practice provide better results than two independent processes. Moreover, it avoids a lot of distance calculations by progressively removing useless instances during the feature pruning. While standard selection algorithms often optimize the accuracy to discriminate the set of solutions, we use in this paper a criterion based on an uncertainty measure within a nearest-neighbor graph. This choice comes from recent results that have proven that accuracy is not always the suitable criterion to optimize. In our approach, a feature or an instance is removed if its deletion improves information of the graph. Numerous experiments are presented in this paper and a statistical analysis shows the relevance of our approach, and its tolerance in the presence of noise.
Dynamic Trees: A Structured Variational Method Giving Efficient Propagation Rules
Dynamic trees are mixtures of tree structured belief networks. They solve some of the problems of fixed tree networks at the cost of making exact inference intractable. For this reason approximate methods such as sampling or mean field approaches have been used. However, mean field approximations assume a factorized distribution over node states. Such a distribution seems unlickely in the posterior, as nodes are highly correlated in the prior. Here a structured variational approach is used, where the posterior distribution over the non-evidential nodes is itself approximated by a dynamic tree. It turns out that this form can be used tractably and efficiently. The result is a set of update rules which can propagate information through the network to obtain both a full variational approximation, and the relevant marginals. The progagtion rules are more efficient than the mean field approach and give noticeable quantitative and qualitative improvement in the inference. The marginals calculated give better approximations to the posterior than loopy propagation on a small toy problem.
An Uncertainty Framework for Classification
We define a generalized likelihood function based on uncertainty measures and show that maximizing such a likelihood function for different measures induces different types of classifiers. In the probabilistic framework, we obtain classifiers that optimize the cross-entropy function. In the possibilistic framework, we obtain classifiers that maximize the interclass margin. Furthermore, we show that the support vector machine is a sub-class of these maximum-margin classifiers.
A Branch-and-Bound Algorithm for MDL Learning Bayesian Networks
This paper extends the work in [Suzuki, 1996] and presents an efficient depth-first branch-and-bound algorithm for learning Bayesian network structures, based on the minimum description length (MDL) principle, for a given (consistent) variable ordering. The algorithm exhaustively searches through all network structures and guarantees to find the network with the best MDL score. Preliminary experiments show that the algorithm is efficient, and that the time complexity grows slowly with the sample size. The algorithm is useful for empirically studying both the performance of suboptimal heuristic search algorithms and the adequacy of the MDL principle in learning Bayesian networks.
Model-Based Hierarchical Clustering
We present an approach to model-based hierarchical clustering by formulating an objective function based on a Bayesian analysis. This model organizes the data into a cluster hierarchy while specifying a complex feature-set partitioning that is a key component of our model. Features can have either a unique distribution in every cluster or a common distribution over some (or even all) of the clusters. The cluster subsets over which these features have such a common distribution correspond to the nodes (clusters) of the tree representing the hierarchy. We apply this general model to the problem of document clustering for which we use a multinomial likelihood function and Dirichlet priors. Our algorithm consists of a two-stage process wherein we first perform a flat clustering followed by a modified hierarchical agglomerative merging process that includes determining the features that will have common distributions over the merged clusters. The regularization induced by using the marginal likelihood automatically determines the optimal model structure including number of clusters, the depth of the tree and the subset of features to be modeled as having a common distribution at each node. We present experimental results on both synthetic data and a real document collection.
Variational Approximations between Mean Field Theory and the Junction Tree Algorithm
Recently, variational approximations such as the mean field approximation have received much interest. We extend the standard mean field method by using an approximating distribution that factorises into cluster potentials. This includes undirected graphs, directed acyclic graphs and junction trees. We derive generalized mean field equations to optimize the cluster potentials. We show that the method bridges the gap between the standard mean field approximation and the exact junction tree algorithm. In addition, we address the problem of how to choose the graphical structure of the approximating distribution. From the generalised mean field equations we derive rules to simplify the structure of the approximating distribution in advance without affecting the quality of the approximation. We also show how the method fits into some other variational approximations that are currently popular.
Efficient Sample Reuse in Policy Gradients with Parameter-based Exploration
The policy gradient approach is a flexible and powerful reinforcement learning method particularly for problems with continuous actions such as robot control. A common challenge in this scenario is how to reduce the variance of policy gradient estimates for reliable policy updates. In this paper, we combine the following three ideas and give a highly effective policy gradient method: (a) the policy gradients with parameter based exploration, which is a recently proposed policy search method with low variance of gradient estimates, (b) an importance sampling technique, which allows us to reuse previously gathered data in a consistent way, and (c) an optimal baseline, which minimizes the variance of gradient estimates with their unbiasedness being maintained. For the proposed method, we give theoretical analysis of the variance of gradient estimates and show its usefulness through extensive experiments.
Knowledge Matters: Importance of Prior Information for Optimization
We explore the effect of introducing prior information into the intermediate level of neural networks for a learning task on which all the state-of-the-art machine learning algorithms tested failed to learn. We motivate our work from the hypothesis that humans learn such intermediate concepts from other individuals via a form of supervision or guidance using a curriculum. The experiments we have conducted provide positive evidence in favor of this hypothesis. In our experiments, a two-tiered MLP architecture is trained on a dataset with 64x64 binary inputs images, each image with three sprites. The final task is to decide whether all the sprites are the same or one of them is different. Sprites are pentomino tetris shapes and they are placed in an image with different locations using scaling and rotation transformations. The first part of the two-tiered MLP is pre-trained with intermediate-level targets being the presence of sprites at each location, while the second part takes the output of the first part as input and predicts the final task's target binary event. The two-tiered MLP architecture, with a few tens of thousand examples, was able to learn the task perfectly, whereas all other algorithms (include unsupervised pre-training, but also traditional algorithms like SVMs, decision trees and boosting) all perform no better than chance. We hypothesize that the optimization difficulty involved when the intermediate pre-training is not performed is due to the {\em composition} of two highly non-linear tasks. Our findings are also consistent with hypotheses on cultural learning inspired by the observations of optimization problems with deep learning, presumably because of effective local minima.