title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Optimal Learners for Multiclass Problems
The fundamental theorem of statistical learning states that for binary classification problems, any Empirical Risk Minimization (ERM) learning rule has close to optimal sample complexity. In this paper we seek for a generic optimal learner for multiclass prediction. We start by proving a surprising result: a generic optimal multiclass learner must be improper, namely, it must have the ability to output hypotheses which do not belong to the hypothesis class, even though it knows that all the labels are generated by some hypothesis from the class. In particular, no ERM learner is optimal. This brings back the fundmamental question of "how to learn"? We give a complete answer to this question by giving a new analysis of the one-inclusion multiclass learner of Rubinstein et al (2006) showing that its sample complexity is essentially optimal. Then, we turn to study the popular hypothesis class of generalized linear classifiers. We derive optimal learners that, unlike the one-inclusion algorithm, are computationally efficient. Furthermore, we show that the sample complexity of these learners is better than the sample complexity of the ERM rule, thus settling in negative an open question due to Collins (2005).
Functional Bandits
We introduce the functional bandit problem, where the objective is to find an arm that optimises a known functional of the unknown arm-reward distributions. These problems arise in many settings such as maximum entropy methods in natural language processing, and risk-averse decision-making, but current best-arm identification techniques fail in these domains. We propose a new approach, that combines functional estimation and arm elimination, to tackle this problem. This method achieves provably efficient performance guarantees. In addition, we illustrate this method on a number of important functionals in risk management and information theory, and refine our generic theoretical results in those cases.
A Canonical Semi-Deterministic Transducer
We prove the existence of a canonical form for semi-deterministic transducers with incomparable sets of output strings. Based on this, we develop an algorithm which learns semi-deterministic transducers given access to translation queries. We also prove that there is no learning algorithm for semi-deterministic transducers that uses only domain knowledge.
Learning from networked examples
Many machine learning algorithms are based on the assumption that training examples are drawn independently. However, this assumption does not hold anymore when learning from a networked sample because two or more training examples may share some common objects, and hence share the features of these shared objects. We show that the classic approach of ignoring this problem potentially can have a harmful effect on the accuracy of statistics, and then consider alternatives. One of these is to only use independent examples, discarding other information. However, this is clearly suboptimal. We analyze sample error bounds in this networked setting, providing significantly improved results. An important component of our approach is formed by efficient sample weighting schemes, which leads to novel concentration inequalities.
Structural Return Maximization for Reinforcement Learning
Batch Reinforcement Learning (RL) algorithms attempt to choose a policy from a designer-provided class of policies given a fixed set of training data. Choosing the policy which maximizes an estimate of return often leads to over-fitting when only limited data is available, due to the size of the policy class in relation to the amount of data available. In this work, we focus on learning policy classes that are appropriately sized to the amount of data available. We accomplish this by using the principle of Structural Risk Minimization, from Statistical Learning Theory, which uses Rademacher complexity to identify a policy class that maximizes a bound on the return of the best policy in the chosen policy class, given the available data. Unlike similar batch RL approaches, our bound on return requires only extremely weak assumptions on the true system.
Sharp Finite-Time Iterated-Logarithm Martingale Concentration
We give concentration bounds for martingales that are uniform over finite times and extend classical Hoeffding and Bernstein inequalities. We also demonstrate our concentration bounds to be optimal with a matching anti-concentration inequality, proved using the same method. Together these constitute a finite-time version of the law of the iterated logarithm, and shed light on the relationship between it and the central limit theorem.
Selecting Near-Optimal Approximate State Representations in Reinforcement Learning
We consider a reinforcement learning setting introduced in (Maillard et al., NIPS 2011) where the learner does not have explicit access to the states of the underlying Markov decision process (MDP). Instead, she has access to several models that map histories of past interactions to states. Here we improve over known regret bounds in this setting, and more importantly generalize to the case where the models given to the learner do not contain a true model resulting in an MDP representation but only approximations of it. We also give improved error bounds for state aggregation.
FastMMD: Ensemble of Circular Discrepancy for Efficient Two-Sample Test
The maximum mean discrepancy (MMD) is a recently proposed test statistic for two-sample test. Its quadratic time complexity, however, greatly hampers its availability to large-scale applications. To accelerate the MMD calculation, in this study we propose an efficient method called FastMMD. The core idea of FastMMD is to equivalently transform the MMD with shift-invariant kernels into the amplitude expectation of a linear combination of sinusoid components based on Bochner's theorem and Fourier transform (Rahimi & Recht, 2007). Taking advantage of sampling of Fourier transform, FastMMD decreases the time complexity for MMD calculation from $O(N^2 d)$ to $O(L N d)$, where $N$ and $d$ are the size and dimension of the sample set, respectively. Here $L$ is the number of basis functions for approximating kernels which determines the approximation accuracy. For kernels that are spherically invariant, the computation can be further accelerated to $O(L N \log d)$ by using the Fastfood technique (Le et al., 2013). The uniform convergence of our method has also been theoretically proved in both unbiased and biased estimates. We have further provided a geometric explanation for our method, namely ensemble of circular discrepancy, which facilitates us to understand the insight of MMD, and is hopeful to help arouse more extensive metrics for assessing two-sample test. Experimental results substantiate that FastMMD is with similar accuracy as exact MMD, while with faster computation speed and lower variance than the existing MMD approximation methods.
Policy Gradients for CVaR-Constrained MDPs
We study a risk-constrained version of the stochastic shortest path (SSP) problem, where the risk measure considered is Conditional Value-at-Risk (CVaR). We propose two algorithms that obtain a locally risk-optimal policy by employing four tools: stochastic approximation, mini batches, policy gradients and importance sampling. Both the algorithms incorporate a CVaR estimation procedure, along the lines of Bardou et al. [2009], which in turn is based on Rockafellar-Uryasev's representation for CVaR and utilize the likelihood ratio principle for estimating the gradient of the sum of one cost function (objective of the SSP) and the gradient of the CVaR of the sum of another cost function (in the constraint of SSP). The algorithms differ in the manner in which they approximate the CVaR estimates/necessary gradients - the first algorithm uses stochastic approximation, while the second employ mini-batches in the spirit of Monte Carlo methods. We establish asymptotic convergence of both the algorithms. Further, since estimating CVaR is related to rare-event simulation, we incorporate an importance sampling based variance reduction scheme into our proposed algorithms.
Two-Stage Metric Learning
In this paper, we present a novel two-stage metric learning algorithm. We first map each learning instance to a probability distribution by computing its similarities to a set of fixed anchor points. Then, we define the distance in the input data space as the Fisher information distance on the associated statistical manifold. This induces in the input data space a new family of distance metric with unique properties. Unlike kernelized metric learning, we do not require the similarity measure to be positive semi-definite. Moreover, it can also be interpreted as a local metric learning algorithm with well defined distance approximation. We evaluate its performance on a number of datasets. It outperforms significantly other metric learning methods and SVM.
Adaptive Contract Design for Crowdsourcing Markets: Bandit Algorithms for Repeated Principal-Agent Problems
Crowdsourcing markets have emerged as a popular platform for matching available workers with tasks to complete. The payment for a particular task is typically set by the task's requester, and may be adjusted based on the quality of the completed work, for example, through the use of "bonus" payments. In this paper, we study the requester's problem of dynamically adjusting quality-contingent payments for tasks. We consider a multi-round version of the well-known principal-agent model, whereby in each round a worker makes a strategic choice of the effort level which is not directly observable by the requester. In particular, our formulation significantly generalizes the budget-free online task pricing problems studied in prior work. We treat this problem as a multi-armed bandit problem, with each "arm" representing a potential contract. To cope with the large (and in fact, infinite) number of arms, we propose a new algorithm, AgnosticZooming, which discretizes the contract space into a finite number of regions, effectively treating each region as a single arm. This discretization is adaptively refined, so that more promising regions of the contract space are eventually discretized more finely. We analyze this algorithm, showing that it achieves regret sublinear in the time horizon and substantially improves over non-adaptive discretization (which is the only competing approach in the literature). Our results advance the state of art on several different topics: the theory of crowdsourcing markets, principal-agent problems, multi-armed bandits, and dynamic pricing.
Approximate Policy Iteration Schemes: A Comparison
We consider the infinite-horizon discounted optimal control problem formalized by Markov Decision Processes. We focus on several approximate variations of the Policy Iteration algorithm: Approximate Policy Iteration, Conservative Policy Iteration (CPI), a natural adaptation of the Policy Search by Dynamic Programming algorithm to the infinite-horizon case (PSDP$_\infty$), and the recently proposed Non-Stationary Policy iteration (NSPI(m)). For all algorithms, we describe performance bounds, and make a comparison by paying a particular attention to the concentrability constants involved, the number of iterations and the memory required. Our analysis highlights the following points: 1) The performance guarantee of CPI can be arbitrarily better than that of API/API($\alpha$), but this comes at the cost of a relative---exponential in $\frac{1}{\epsilon}$---increase of the number of iterations. 2) PSDP$_\infty$ enjoys the best of both worlds: its performance guarantee is similar to that of CPI, but within a number of iterations similar to that of API. 3) Contrary to API that requires a constant memory, the memory needed by CPI and PSDP$_\infty$ is proportional to their number of iterations, which may be problematic when the discount factor $\gamma$ is close to 1 or the approximation error $\epsilon$ is close to $0$; we show that the NSPI(m) algorithm allows to make an overall trade-off between memory and performance. Simulations with these schemes confirm our analysis.
Accelerating Minibatch Stochastic Gradient Descent using Stratified Sampling
Stochastic Gradient Descent (SGD) is a popular optimization method which has been applied to many important machine learning tasks such as Support Vector Machines and Deep Neural Networks. In order to parallelize SGD, minibatch training is often employed. The standard approach is to uniformly sample a minibatch at each step, which often leads to high variance. In this paper we propose a stratified sampling strategy, which divides the whole dataset into clusters with low within-cluster variance; we then take examples from these clusters using a stratified sampling technique. It is shown that the convergence rate can be significantly improved by the algorithm. Encouraging experimental results confirm the effectiveness of the proposed method.
Circulant Binary Embedding
Binary embedding of high-dimensional data requires long codes to preserve the discriminative power of the input space. Traditional binary coding methods often suffer from very high computation and storage costs in such a scenario. To address this problem, we propose Circulant Binary Embedding (CBE) which generates binary codes by projecting the data with a circulant matrix. The circulant structure enables the use of Fast Fourier Transformation to speed up the computation. Compared to methods that use unstructured matrices, the proposed method improves the time complexity from $\mathcal{O}(d^2)$ to $\mathcal{O}(d\log{d})$, and the space complexity from $\mathcal{O}(d^2)$ to $\mathcal{O}(d)$ where $d$ is the input dimensionality. We also propose a novel time-frequency alternating optimization to learn data-dependent circulant projections, which alternatively minimizes the objective in original and Fourier domains. We show by extensive experiments that the proposed approach gives much better performance than the state-of-the-art approaches for fixed time, and provides much faster computation with no performance degradation for fixed number of bits.
Clustering, Hamming Embedding, Generalized LSH and the Max Norm
We study the convex relaxation of clustering and hamming embedding, focusing on the asymmetric case (co-clustering and asymmetric hamming embedding), understanding their relationship to LSH as studied by (Charikar 2002) and to the max-norm ball, and the differences between their symmetric and asymmetric versions.
Locally Boosted Graph Aggregation for Community Detection
Learning the right graph representation from noisy, multi-source data has garnered significant interest in recent years. A central tenet of this problem is relational learning. Here the objective is to incorporate the partial information each data source gives us in a way that captures the true underlying relationships. To address this challenge, we present a general, boosting-inspired framework for combining weak evidence of entity associations into a robust similarity metric. Building on previous work, we explore the extent to which different local quality measurements yield graph representations that are suitable for community detection. We present empirical results on a variety of datasets demonstrating the utility of this framework, especially with respect to real datasets where noise and scale present serious challenges. Finally, we prove a convergence theorem in an ideal setting and outline future research into other application domains.
Efficient Implementations of the Generalized Lasso Dual Path Algorithm
We consider efficient implementations of the generalized lasso dual path algorithm of Tibshirani and Taylor (2011). We first describe a generic approach that covers any penalty matrix D and any (full column rank) matrix X of predictor variables. We then describe fast implementations for the special cases of trend filtering problems, fused lasso problems, and sparse fused lasso problems, both with X=I and a general matrix X. These specialized implementations offer a considerable improvement over the generic implementation, both in terms of numerical stability and efficiency of the solution path computation. These algorithms are all available for use in the genlasso R package, which can be found in the CRAN repository.
On the Complexity of A/B Testing
A/B testing refers to the task of determining the best option among two alternatives that yield random outcomes. We provide distribution-dependent lower bounds for the performance of A/B testing that improve over the results currently available both in the fixed-confidence (or delta-PAC) and fixed-budget settings. When the distribution of the outcomes are Gaussian, we prove that the complexity of the fixed-confidence and fixed-budget settings are equivalent, and that uniform sampling of both alternatives is optimal only in the case of equal variances. In the common variance case, we also provide a stopping rule that terminates faster than existing fixed-confidence algorithms. In the case of Bernoulli distributions, we show that the complexity of fixed-budget setting is smaller than that of fixed-confidence setting and that uniform sampling of both alternatives -though not optimal- is advisable in practice when combined with an appropriate stopping criterion.
Rate of Convergence and Error Bounds for LSTD($\lambda$)
We consider LSTD($\lambda$), the least-squares temporal-difference algorithm with eligibility traces algorithm proposed by Boyan (2002). It computes a linear approximation of the value function of a fixed policy in a large Markov Decision Process. Under a $\beta$-mixing assumption, we derive, for any value of $\lambda \in (0,1)$, a high-probability estimate of the rate of convergence of this algorithm to its limit. We deduce a high-probability bound on the error of this algorithm, that extends (and slightly improves) that derived by Lazaric et al. (2012) in the specific case where $\lambda=0$. In particular, our analysis sheds some light on the choice of $\lambda$ with respect to the quality of the chosen linear space and the number of samples, that complies with simulations.
Learning with many experts: model selection and sparsity
Experts classifying data are often imprecise. Recently, several models have been proposed to train classifiers using the noisy labels generated by these experts. How to choose between these models? In such situations, the true labels are unavailable. Thus, one cannot perform model selection using the standard versions of methods such as empirical risk minimization and cross validation. In order to allow model selection, we present a surrogate loss and provide theoretical guarantees that assure its consistency. Next, we discuss how this loss can be used to tune a penalization which introduces sparsity in the parameters of a traditional class of models. Sparsity provides more parsimonious models and can avoid overfitting. Nevertheless, it has seldom been discussed in the context of noisy labels due to the difficulty in model selection and, therefore, in choosing tuning parameters. We apply these techniques to several sets of simulated and real data.
Effects of Sampling Methods on Prediction Quality. The Case of Classifying Land Cover Using Decision Trees
Clever sampling methods can be used to improve the handling of big data and increase its usefulness. The subject of this study is remote sensing, specifically airborne laser scanning point clouds representing different classes of ground cover. The aim is to derive a supervised learning model for the classification using CARTs. In order to measure the effect of different sampling methods on the classification accuracy, various experiments with varying types of sampling methods, sample sizes, and accuracy metrics have been designed. Numerical results for a subset of a large surveying project covering the lower Rhine area in Germany are shown. General conclusions regarding sampling design are drawn and presented.
Optimal Exploration-Exploitation in a Multi-Armed-Bandit Problem with Non-stationary Rewards
In a multi-armed bandit (MAB) problem a gambler needs to choose at each round of play one of K arms, each characterized by an unknown reward distribution. Reward realizations are only observed when an arm is selected, and the gambler's objective is to maximize his cumulative expected earnings over some given horizon of play T. To do this, the gambler needs to acquire information about arms (exploration) while simultaneously optimizing immediate rewards (exploitation); the price paid due to this trade off is often referred to as the regret, and the main question is how small can this price be as a function of the horizon length T. This problem has been studied extensively when the reward distributions do not change over time; an assumption that supports a sharp characterization of the regret, yet is often violated in practical settings. In this paper, we focus on a MAB formulation which allows for a broad range of temporal uncertainties in the rewards, while still maintaining mathematical tractability. We fully characterize the (regret) complexity of this class of MAB problems by establishing a direct link between the extent of allowable reward "variation" and the minimal achievable regret. Our analysis draws some connections between two rather disparate strands of literature: the adversarial and the stochastic MAB frameworks.
Adaptive Monte Carlo via Bandit Allocation
We consider the problem of sequentially choosing between a set of unbiased Monte Carlo estimators to minimize the mean-squared-error (MSE) of a final combined estimate. By reducing this task to a stochastic multi-armed bandit problem, we show that well developed allocation strategies can be used to achieve an MSE that approaches that of the best estimator chosen in retrospect. We then extend these developments to a scenario where alternative estimators have different, possibly stochastic costs. The outcome is a new set of adaptive Monte Carlo strategies that provide stronger guarantees than previous approaches while offering practical advantages.
Active Mining of Parallel Video Streams
The practicality of a video surveillance system is adversely limited by the amount of queries that can be placed on human resources and their vigilance in response. To transcend this limitation, a major effort under way is to include software that (fully or at least semi) automatically mines video footage, reducing the burden imposed to the system. Herein, we propose a semi-supervised incremental learning framework for evolving visual streams in order to develop a robust and flexible track classification system. Our proposed method learns from consecutive batches by updating an ensemble in each time. It tries to strike a balance between performance of the system and amount of data which needs to be labelled. As no restriction is considered, the system can address many practical problems in an evolving multi-camera scenario, such as concept drift, class evolution and various length of video streams which have not been addressed before. Experiments were performed on synthetic as well as real-world visual data in non-stationary environments, showing high accuracy with fairly little human collaboration.
Reducing Dueling Bandits to Cardinal Bandits
We present algorithms for reducing the Dueling Bandits problem to the conventional (stochastic) Multi-Armed Bandits problem. The Dueling Bandits problem is an online model of learning with ordinal feedback of the form "A is preferred to B" (as opposed to cardinal feedback like "A has value 2.5"), giving it wide applicability in learning from implicit user feedback and revealed and stated preferences. In contrast to existing algorithms for the Dueling Bandits problem, our reductions -- named $\Doubler$, $\MultiSbm$ and $\DoubleSbm$ -- provide a generic schema for translating the extensive body of known results about conventional Multi-Armed Bandit algorithms to the Dueling Bandits setting. For $\Doubler$ and $\MultiSbm$ we prove regret upper bounds in both finite and infinite settings, and conjecture about the performance of $\DoubleSbm$ which empirically outperforms the other two as well as previous algorithms in our experiments. In addition, we provide the first almost optimal regret bound in terms of second order terms, such as the differences between the values of the arms.
Efficient classification using parallel and scalable compressed model and Its application on intrusion detection
In order to achieve high efficiency of classification in intrusion detection, a compressed model is proposed in this paper which combines horizontal compression with vertical compression. OneR is utilized as horizontal com-pression for attribute reduction, and affinity propagation is employed as vertical compression to select small representative exemplars from large training data. As to be able to computationally compress the larger volume of training data with scalability, MapReduce based parallelization approach is then implemented and evaluated for each step of the model compression process abovementioned, on which common but efficient classification methods can be directly used. Experimental application study on two publicly available datasets of intrusion detection, KDD99 and CMDC2012, demonstrates that the classification using the compressed model proposed can effectively speed up the detection procedure at up to 184 times, most importantly at the cost of a minimal accuracy difference with less than 1% on average.
Improving offline evaluation of contextual bandit algorithms via bootstrapping techniques
In many recommendation applications such as news recommendation, the items that can be rec- ommended come and go at a very fast pace. This is a challenge for recommender systems (RS) to face this setting. Online learning algorithms seem to be the most straight forward solution. The contextual bandit framework was introduced for that very purpose. In general the evaluation of a RS is a critical issue. Live evaluation is of- ten avoided due to the potential loss of revenue, hence the need for offline evaluation methods. Two options are available. Model based meth- ods are biased by nature and are thus difficult to trust when used alone. Data driven methods are therefore what we consider here. Evaluat- ing online learning algorithms with past data is not simple but some methods exist in the litera- ture. Nonetheless their accuracy is not satisfac- tory mainly due to their mechanism of data re- jection that only allow the exploitation of a small fraction of the data. We precisely address this issue in this paper. After highlighting the limita- tions of the previous methods, we present a new method, based on bootstrapping techniques. This new method comes with two important improve- ments: it is much more accurate and it provides a measure of quality of its estimation. The latter is a highly desirable property in order to minimize the risks entailed by putting online a RS for the first time. We provide both theoretical and ex- perimental proofs of its superiority compared to state-of-the-art methods, as well as an analysis of the convergence of the measure of quality.
Global disease monitoring and forecasting with Wikipedia
Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data such as social media and search queries are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: access logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with $r^2$ up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.
Topic words analysis based on LDA model
Social network analysis (SNA), which is a research field describing and modeling the social connection of a certain group of people, is popular among network services. Our topic words analysis project is a SNA method to visualize the topic words among emails from Obama.com to accounts registered in Columbus, Ohio. Based on Latent Dirichlet Allocation (LDA) model, a popular topic model of SNA, our project characterizes the preference of senders for target group of receptors. Gibbs sampling is used to estimate topic and word distribution. Our training and testing data are emails from the carbon-free server Datagreening.com. We use parallel computing tool BashReduce for word processing and generate related words under each latent topic to discovers typical information of political news sending specially to local Columbus receptors. Running on two instances using paralleling tool BashReduce, our project contributes almost 30% speedup processing the raw contents, comparing with processing contents on one instance locally. Also, the experimental result shows that the LDA model applied in our project provides precision rate 53.96% higher than TF-IDF model finding target words, on the condition that appropriate size of topic words list is selected.
Logistic Regression: Tight Bounds for Stochastic and Online Optimization
The logistic loss function is often advocated in machine learning and statistics as a smooth and strictly convex surrogate for the 0-1 loss. In this paper we investigate the question of whether these smoothness and convexity properties make the logistic loss preferable to other widely considered options such as the hinge loss. We show that in contrast to known asymptotic bounds, as long as the number of prediction/optimization iterations is sub exponential, the logistic loss provides no improvement over a generic non-smooth loss function such as the hinge loss. In particular we show that the convergence rate of stochastic logistic optimization is bounded from below by a polynomial in the diameter of the decision set and the number of prediction iterations, and provide a matching tight upper bound. This resolves the COLT open problem of McMahan and Streeter (2012).
Methods and Models for Interpretable Linear Classification
We present an integer programming framework to build accurate and interpretable discrete linear classification models. Unlike existing approaches, our framework is designed to provide practitioners with the control and flexibility they need to tailor accurate and interpretable models for a domain of choice. To this end, our framework can produce models that are fully optimized for accuracy, by minimizing the 0--1 classification loss, and that address multiple aspects of interpretability, by incorporating a range of discrete constraints and penalty functions. We use our framework to produce models that are difficult to create with existing methods, such as scoring systems and M-of-N rule tables. In addition, we propose specially designed optimization methods to improve the scalability of our framework through decomposition and data reduction. We show that discrete linear classifiers can attain the training accuracy of any other linear classifier, and provide an Occam's Razor type argument as to why the use of small discrete coefficients can provide better generalization. We demonstrate the performance and flexibility of our framework through numerical experiments and a case study in which we construct a highly tailored clinical tool for sleep apnea diagnosis.
Distributed Representations of Sentences and Documents
Many machine learning algorithms require the input to be represented as a fixed-length feature vector. When it comes to texts, one of the most common fixed-length features is bag-of-words. Despite their popularity, bag-of-words features have two major weaknesses: they lose the ordering of the words and they also ignore semantics of the words. For example, "powerful," "strong" and "Paris" are equally distant. In this paper, we propose Paragraph Vector, an unsupervised algorithm that learns fixed-length feature representations from variable-length pieces of texts, such as sentences, paragraphs, and documents. Our algorithm represents each document by a dense vector which is trained to predict words in the document. Its construction gives our algorithm the potential to overcome the weaknesses of bag-of-words models. Empirical results show that Paragraph Vectors outperform bag-of-words models as well as other techniques for text representations. Finally, we achieve new state-of-the-art results on several text classification and sentiment analysis tasks.
Active Semi-Supervised Learning Using Sampling Theory for Graph Signals
We consider the problem of offline, pool-based active semi-supervised learning on graphs. This problem is important when the labeled data is scarce and expensive whereas unlabeled data is easily available. The data points are represented by the vertices of an undirected graph with the similarity between them captured by the edge weights. Given a target number of nodes to label, the goal is to choose those nodes that are most informative and then predict the unknown labels. We propose a novel framework for this problem based on our recent results on sampling theory for graph signals. A graph signal is a real-valued function defined on each node of the graph. A notion of frequency for such signals can be defined using the spectrum of the graph Laplacian matrix. The sampling theory for graph signals aims to extend the traditional Nyquist-Shannon sampling theory by allowing us to identify the class of graph signals that can be reconstructed from their values on a subset of vertices. This approach allows us to define a criterion for active learning based on sampling set selection which aims at maximizing the frequency of the signals that can be reconstructed from their samples on the set. Experiments show the effectiveness of our method.
Identification of functionally related enzymes by learning-to-rank methods
Enzyme sequences and structures are routinely used in the biological sciences as queries to search for functionally related enzymes in online databases. To this end, one usually departs from some notion of similarity, comparing two enzymes by looking for correspondences in their sequences, structures or surfaces. For a given query, the search operation results in a ranking of the enzymes in the database, from very similar to dissimilar enzymes, while information about the biological function of annotated database enzymes is ignored. In this work we show that rankings of that kind can be substantially improved by applying kernel-based learning algorithms. This approach enables the detection of statistical dependencies between similarities of the active cleft and the biological function of annotated enzymes. This is in contrast to search-based approaches, which do not take annotated training data into account. Similarity measures based on the active cleft are known to outperform sequence-based or structure-based measures under certain conditions. We consider the Enzyme Commission (EC) classification hierarchy for obtaining annotated enzymes during the training phase. The results of a set of sizeable experiments indicate a consistent and significant improvement for a set of similarity measures that exploit information about small cavities in the surface of enzymes.
A two-step learning approach for solving full and almost full cold start problems in dyadic prediction
Dyadic prediction methods operate on pairs of objects (dyads), aiming to infer labels for out-of-sample dyads. We consider the full and almost full cold start problem in dyadic prediction, a setting that occurs when both objects in an out-of-sample dyad have not been observed during training, or if one of them has been observed, but very few times. A popular approach for addressing this problem is to train a model that makes predictions based on a pairwise feature representation of the dyads, or, in case of kernel methods, based on a tensor product pairwise kernel. As an alternative to such a kernel approach, we introduce a novel two-step learning algorithm that borrows ideas from the fields of pairwise learning and spectral filtering. We show theoretically that the two-step method is very closely related to the tensor product kernel approach, and experimentally that it yields a slightly better predictive performance. Moreover, unlike existing tensor product kernel methods, the two-step method allows closed-form solutions for training and parameter selection via cross-validation estimates both in the full and almost full cold start settings, making the approach much more efficient and straightforward to implement.
Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications
Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.
Online Learning with Composite Loss Functions
We study a new class of online learning problems where each of the online algorithm's actions is assigned an adversarial value, and the loss of the algorithm at each step is a known and deterministic function of the values assigned to its recent actions. This class includes problems where the algorithm's loss is the minimum over the recent adversarial values, the maximum over the recent values, or a linear combination of the recent values. We analyze the minimax regret of this class of problems when the algorithm receives bandit feedback, and prove that when the minimum or maximum functions are used, the minimax regret is $\tilde \Omega(T^{2/3})$ (so called hard online learning problems), and when a linear function is used, the minimax regret is $\tilde O(\sqrt{T})$ (so called easy learning problems). Previously, the only online learning problem that was known to be provably hard was the multi-armed bandit with switching costs.
A Distributed Algorithm for Training Nonlinear Kernel Machines
This paper concerns the distributed training of nonlinear kernel machines on Map-Reduce. We show that a re-formulation of Nystr\"om approximation based solution which is solved using gradient based techniques is well suited for this, especially when it is necessary to work with a large number of basis points. The main advantages of this approach are: avoidance of computing the pseudo-inverse of the kernel sub-matrix corresponding to the basis points; simplicity and efficiency of the distributed part of the computations; and, friendliness to stage-wise addition of basis points. We implement the method using an AllReduce tree on Hadoop and demonstrate its value on a few large benchmark datasets.
A distributed block coordinate descent method for training $l_1$ regularized linear classifiers
Distributed training of $l_1$ regularized classifiers has received great attention recently. Most existing methods approach this problem by taking steps obtained from approximating the objective by a quadratic approximation that is decoupled at the individual variable level. These methods are designed for multicore and MPI platforms where communication costs are low. They are inefficient on systems such as Hadoop running on a cluster of commodity machines where communication costs are substantial. In this paper we design a distributed algorithm for $l_1$ regularization that is much better suited for such systems than existing algorithms. A careful cost analysis is used to support these points and motivate our method. The main idea of our algorithm is to do block optimization of many variables on the actual objective function within each computing node; this increases the computational cost per step that is matched with the communication cost, and decreases the number of outer iterations, thus yielding a faster overall method. Distributed Gauss-Seidel and Gauss-Southwell greedy schemes are used for choosing variables to update in each step. We establish global convergence theory for our algorithm, including Q-linear rate of convergence. Experiments on two benchmark problems show our method to be much faster than existing methods.
ESSP: An Efficient Approach to Minimizing Dense and Nonsubmodular Energy Functions
Many recent advances in computer vision have demonstrated the impressive power of dense and nonsubmodular energy functions in solving visual labeling problems. However, minimizing such energies is challenging. None of existing techniques (such as s-t graph cut, QPBO, BP and TRW-S) can individually do this well. In this paper, we present an efficient method, namely ESSP, to optimize binary MRFs with arbitrary pairwise potentials, which could be nonsubmodular and with dense connectivity. We also provide a comparative study of our approach and several recent promising methods. From our study, we make some reasonable recommendations of combining existing methods that perform the best in different situations for this challenging problem. Experimental results validate that for dense and nonsubmodular energy functions, the proposed approach can usually obtain lower energies than the best combination of other techniques using comparably reasonable time.
A Parallel Way to Select the Parameters of SVM Based on the Ant Optimization Algorithm
A large number of experimental data shows that Support Vector Machine (SVM) algorithm has obvious advantages in text classification, handwriting recognition, image classification, bioinformatics, and some other fields. To some degree, the optimization of SVM depends on its kernel function and Slack variable, the determinant of which is its parameters $\delta$ and c in the classification function. That is to say,to optimize the SVM algorithm, the optimization of the two parameters play a huge role. Ant Colony Optimization (ACO) is optimization algorithm which simulate ants to find the optimal path.In the available literature, we mix the ACO algorithm and Parallel algorithm together to find a well parameters.
Modelling Data Dispersion Degree in Automatic Robust Estimation for Multivariate Gaussian Mixture Models with an Application to Noisy Speech Processing
The trimming scheme with a prefixed cutoff portion is known as a method of improving the robustness of statistical models such as multivariate Gaussian mixture models (MG- MMs) in small scale tests by alleviating the impacts of outliers. However, when this method is applied to real- world data, such as noisy speech processing, it is hard to know the optimal cut-off portion to remove the outliers and sometimes removes useful data samples as well. In this paper, we propose a new method based on measuring the dispersion degree (DD) of the training data to avoid this problem, so as to realise automatic robust estimation for MGMMs. The DD model is studied by using two different measures. For each one, we theoretically prove that the DD of the data samples in a context of MGMMs approximately obeys a specific (chi or chi-square) distribution. The proposed method is evaluated on a real-world application with a moderately-sized speaker recognition task. Experiments show that the proposed method can significantly improve the robustness of the conventional training method of GMMs for speaker recognition.
On the saddle point problem for non-convex optimization
A central challenge to many fields of science and engineering involves minimizing non-convex error functions over continuous, high dimensional spaces. Gradient descent or quasi-Newton methods are almost ubiquitously used to perform such minimizations, and it is often thought that a main source of difficulty for the ability of these local methods to find the global minimum is the proliferation of local minima with much higher error than the global minimum. Here we argue, based on results from statistical physics, random matrix theory, and neural network theory, that a deeper and more profound difficulty originates from the proliferation of saddle points, not local minima, especially in high dimensional problems of practical interest. Such saddle points are surrounded by high error plateaus that can dramatically slow down learning, and give the illusory impression of the existence of a local minimum. Motivated by these arguments, we propose a new algorithm, the saddle-free Newton method, that can rapidly escape high dimensional saddle points, unlike gradient descent and quasi-Newton methods. We apply this algorithm to deep neural network training, and provide preliminary numerical evidence for its superior performance.
Lipschitz Bandits: Regret Lower Bounds and Optimal Algorithms
We consider stochastic multi-armed bandit problems where the expected reward is a Lipschitz function of the arm, and where the set of arms is either discrete or continuous. For discrete Lipschitz bandits, we derive asymptotic problem specific lower bounds for the regret satisfied by any algorithm, and propose OSLB and CKL-UCB, two algorithms that efficiently exploit the Lipschitz structure of the problem. In fact, we prove that OSLB is asymptotically optimal, as its asymptotic regret matches the lower bound. The regret analysis of our algorithms relies on a new concentration inequality for weighted sums of KL divergences between the empirical distributions of rewards and their true distributions. For continuous Lipschitz bandits, we propose to first discretize the action space, and then apply OSLB or CKL-UCB, algorithms that provably exploit the structure efficiently. This approach is shown, through numerical experiments, to significantly outperform existing algorithms that directly deal with the continuous set of arms. Finally the results and algorithms are extended to contextual bandits with similarities.
Scalable Semidefinite Relaxation for Maximum A Posterior Estimation
Maximum a posteriori (MAP) inference over discrete Markov random fields is a fundamental task spanning a wide spectrum of real-world applications, which is known to be NP-hard for general graphs. In this paper, we propose a novel semidefinite relaxation formulation (referred to as SDR) to estimate the MAP assignment. Algorithmically, we develop an accelerated variant of the alternating direction method of multipliers (referred to as SDPAD-LR) that can effectively exploit the special structure of the new relaxation. Encouragingly, the proposed procedure allows solving SDR for large-scale problems, e.g., problems on a grid graph comprising hundreds of thousands of variables with multiple states per node. Compared with prior SDP solvers, SDPAD-LR is capable of attaining comparable accuracy while exhibiting remarkably improved scalability, in contrast to the commonly held belief that semidefinite relaxation can only been applied on small-scale MRF problems. We have evaluated the performance of SDR on various benchmark datasets including OPENGM2 and PIC in terms of both the quality of the solutions and computation time. Experimental results demonstrate that for a broad class of problems, SDPAD-LR outperforms state-of-the-art algorithms in producing better MAP assignment in an efficient manner.
Screening Tests for Lasso Problems
This paper is a survey of dictionary screening for the lasso problem. The lasso problem seeks a sparse linear combination of the columns of a dictionary to best match a given target vector. This sparse representation has proven useful in a variety of subsequent processing and decision tasks. For a given target vector, dictionary screening quickly identifies a subset of dictionary columns that will receive zero weight in a solution of the corresponding lasso problem. These columns can be removed from the dictionary prior to solving the lasso problem without impacting the optimality of the solution obtained. This has two potential advantages: it reduces the size of the dictionary, allowing the lasso problem to be solved with less resources, and it may speed up obtaining a solution. Using a geometrically intuitive framework, we provide basic insights for understanding useful lasso screening tests and their limitations. We also provide illustrative numerical studies on several datasets.
Convex Optimization: Algorithms and Complexity
This monograph presents the main complexity theorems in convex optimization and their corresponding algorithms. Starting from the fundamental theory of black-box optimization, the material progresses towards recent advances in structural optimization and stochastic optimization. Our presentation of black-box optimization, strongly influenced by Nesterov's seminal book and Nemirovski's lecture notes, includes the analysis of cutting plane methods, as well as (accelerated) gradient descent schemes. We also pay special attention to non-Euclidean settings (relevant algorithms include Frank-Wolfe, mirror descent, and dual averaging) and discuss their relevance in machine learning. We provide a gentle introduction to structural optimization with FISTA (to optimize a sum of a smooth and a simple non-smooth term), saddle-point mirror prox (Nemirovski's alternative to Nesterov's smoothing), and a concise description of interior point methods. In stochastic optimization we discuss stochastic gradient descent, mini-batches, random coordinate descent, and sublinear algorithms. We also briefly touch upon convex relaxation of combinatorial problems and the use of randomness to round solutions, as well as random walks based methods.
Unimodal Bandits: Regret Lower Bounds and Optimal Algorithms
We consider stochastic multi-armed bandits where the expected reward is a unimodal function over partially ordered arms. This important class of problems has been recently investigated in (Cope 2009, Yu 2011). The set of arms is either discrete, in which case arms correspond to the vertices of a finite graph whose structure represents similarity in rewards, or continuous, in which case arms belong to a bounded interval. For discrete unimodal bandits, we derive asymptotic lower bounds for the regret achieved under any algorithm, and propose OSUB, an algorithm whose regret matches this lower bound. Our algorithm optimally exploits the unimodal structure of the problem, and surprisingly, its asymptotic regret does not depend on the number of arms. We also provide a regret upper bound for OSUB in non-stationary environments where the expected rewards smoothly evolve over time. The analytical results are supported by numerical experiments showing that OSUB performs significantly better than the state-of-the-art algorithms. For continuous sets of arms, we provide a brief discussion. We show that combining an appropriate discretization of the set of arms with the UCB algorithm yields an order-optimal regret, and in practice, outperforms recently proposed algorithms designed to exploit the unimodal structure.
Predicting Online Video Engagement Using Clickstreams
In the nascent days of e-content delivery, having a superior product was enough to give companies an edge against the competition. With today's fiercely competitive market, one needs to be multiple steps ahead, especially when it comes to understanding consumers. Focusing on a large set of web portals owned and managed by a private communications company, we propose methods by which these sites' clickstream data can be used to provide a deep understanding of their visitors, as well as their interests and preferences. We further expand the use of this data to show that it can be effectively used to predict user engagement to video streams.
Gaussian Approximation of Collective Graphical Models
The Collective Graphical Model (CGM) models a population of independent and identically distributed individuals when only collective statistics (i.e., counts of individuals) are observed. Exact inference in CGMs is intractable, and previous work has explored Markov Chain Monte Carlo (MCMC) and MAP approximations for learning and inference. This paper studies Gaussian approximations to the CGM. As the population grows large, we show that the CGM distribution converges to a multivariate Gaussian distribution (GCGM) that maintains the conditional independence properties of the original CGM. If the observations are exact marginals of the CGM or marginals that are corrupted by Gaussian noise, inference in the GCGM approximation can be computed efficiently in closed form. If the observations follow a different noise model (e.g., Poisson), then expectation propagation provides efficient and accurate approximate inference. The accuracy and speed of GCGM inference is compared to the MCMC and MAP methods on a simulated bird migration problem. The GCGM matches or exceeds the accuracy of the MAP method while being significantly faster.
Approximate resilience, monotonicity, and the complexity of agnostic learning
A function $f$ is $d$-resilient if all its Fourier coefficients of degree at most $d$ are zero, i.e., $f$ is uncorrelated with all low-degree parities. We study the notion of $\mathit{approximate}$ $\mathit{resilience}$ of Boolean functions, where we say that $f$ is $\alpha$-approximately $d$-resilient if $f$ is $\alpha$-close to a $[-1,1]$-valued $d$-resilient function in $\ell_1$ distance. We show that approximate resilience essentially characterizes the complexity of agnostic learning of a concept class $C$ over the uniform distribution. Roughly speaking, if all functions in a class $C$ are far from being $d$-resilient then $C$ can be learned agnostically in time $n^{O(d)}$ and conversely, if $C$ contains a function close to being $d$-resilient then agnostic learning of $C$ in the statistical query (SQ) framework of Kearns has complexity of at least $n^{\Omega(d)}$. This characterization is based on the duality between $\ell_1$ approximation by degree-$d$ polynomials and approximate $d$-resilience that we establish. In particular, it implies that $\ell_1$ approximation by low-degree polynomials, known to be sufficient for agnostic learning over product distributions, is in fact necessary. Focusing on monotone Boolean functions, we exhibit the existence of near-optimal $\alpha$-approximately $\widetilde{\Omega}(\alpha\sqrt{n})$-resilient monotone functions for all $\alpha>0$. Prior to our work, it was conceivable even that every monotone function is $\Omega(1)$-far from any $1$-resilient function. Furthermore, we construct simple, explicit monotone functions based on ${\sf Tribes}$ and ${\sf CycleRun}$ that are close to highly resilient functions. Our constructions are based on a fairly general resilience analysis and amplification. These structural results, together with the characterization, imply nearly optimal lower bounds for agnostic learning of monotone juntas.
Fast Distributed Coordinate Descent for Non-Strongly Convex Losses
We propose an efficient distributed randomized coordinate descent method for minimizing regularized non-strongly convex loss functions. The method attains the optimal $O(1/k^2)$ convergence rate, where $k$ is the iteration counter. The core of the work is the theoretical study of stepsize parameters. We have implemented the method on Archer - the largest supercomputer in the UK - and show that the method is capable of solving a (synthetic) LASSO optimization problem with 50 billion variables.
Compressive Sampling Using EM Algorithm
Conventional approaches of sampling signals follow the celebrated theorem of Nyquist and Shannon. Compressive sampling, introduced by Donoho, Romberg and Tao, is a new paradigm that goes against the conventional methods in data acquisition and provides a way of recovering signals using fewer samples than the traditional methods use. Here we suggest an alternative way of reconstructing the original signals in compressive sampling using EM algorithm. We first propose a naive approach which has certain computational difficulties and subsequently modify it to a new approach which performs better than the conventional methods of compressive sampling. The comparison of the different approaches and the performance of the new approach has been studied using simulated data.
Off-Policy Shaping Ensembles in Reinforcement Learning
Recent advances of gradient temporal-difference methods allow to learn off-policy multiple value functions in parallel with- out sacrificing convergence guarantees or computational efficiency. This opens up new possibilities for sound ensemble techniques in reinforcement learning. In this work we propose learning an ensemble of policies related through potential-based shaping rewards. The ensemble induces a combination policy by using a voting mechanism on its components. Learning happens in real time, and we empirically show the combination policy to outperform the individual policies of the ensemble.
On Learning Where To Look
Current automatic vision systems face two major challenges: scalability and extreme variability of appearance. First, the computational time required to process an image typically scales linearly with the number of pixels in the image, therefore limiting the resolution of input images to thumbnail size. Second, variability in appearance and pose of the objects constitute a major hurdle for robust recognition and detection. In this work, we propose a model that makes baby steps towards addressing these challenges. We describe a learning based method that recognizes objects through a series of glimpses. This system performs an amount of computation that scales with the complexity of the input rather than its number of pixels. Moreover, the proposed method is potentially more robust to changes in appearance since its parameters are learned in a data driven manner. Preliminary experiments on a handwritten dataset of digits demonstrate the computational advantages of this approach.
Kernel Mean Shrinkage Estimators
A mean function in a reproducing kernel Hilbert space (RKHS), or a kernel mean, is central to kernel methods in that it is used by many classical algorithms such as kernel principal component analysis, and it also forms the core inference step of modern kernel methods that rely on embedding probability distributions in RKHSs. Given a finite sample, an empirical average has been used commonly as a standard estimator of the true kernel mean. Despite a widespread use of this estimator, we show that it can be improved thanks to the well-known Stein phenomenon. We propose a new family of estimators called kernel mean shrinkage estimators (KMSEs), which benefit from both theoretical justifications and good empirical performance. The results demonstrate that the proposed estimators outperform the standard one, especially in a "large d, small n" paradigm.
Descriptor Matching with Convolutional Neural Networks: a Comparison to SIFT
Latest results indicate that features learned via convolutional neural networks outperform previous descriptors on classification tasks by a large margin. It has been shown that these networks still work well when they are applied to datasets or recognition tasks different from those they were trained on. However, descriptors like SIFT are not only used in recognition but also for many correspondence problems that rely on descriptor matching. In this paper we compare features from various layers of convolutional neural nets to standard SIFT descriptors. We consider a network that was trained on ImageNet and another one that was trained without supervision. Surprisingly, convolutional neural networks clearly outperform SIFT on descriptor matching. This paper has been merged with arXiv:1406.6909
Node Classification in Uncertain Graphs
In many real applications that use and analyze networked data, the links in the network graph may be erroneous, or derived from probabilistic techniques. In such cases, the node classification problem can be challenging, since the unreliability of the links may affect the final results of the classification process. If the information about link reliability is not used explicitly, the classification accuracy in the underlying network may be affected adversely. In this paper, we focus on situations that require the analysis of the uncertainty that is present in the graph structure. We study the novel problem of node classification in uncertain graphs, by treating uncertainty as a first-class citizen. We propose two techniques based on a Bayes model and automatic parameter selection, and show that the incorporation of uncertainty in the classification process as a first-class citizen is beneficial. We experimentally evaluate the proposed approach using different real data sets, and study the behavior of the algorithms under different conditions. The results demonstrate the effectiveness and efficiency of our approach.
Learning to Generate Networks
We investigate the problem of learning to generate complex networks from data. Specifically, we consider whether deep belief networks, dependency networks, and members of the exponential random graph family can learn to generate networks whose complex behavior is consistent with a set of input examples. We find that the deep model is able to capture the complex behavior of small networks, but that no model is able capture this behavior for networks with more than a handful of nodes.
Asymmetric LSH (ALSH) for Sublinear Time Maximum Inner Product Search (MIPS)
We present the first provably sublinear time algorithm for approximate \emph{Maximum Inner Product Search} (MIPS). Our proposal is also the first hashing algorithm for searching with (un-normalized) inner product as the underlying similarity measure. Finding hashing schemes for MIPS was considered hard. We formally show that the existing Locality Sensitive Hashing (LSH) framework is insufficient for solving MIPS, and then we extend the existing LSH framework to allow asymmetric hashing schemes. Our proposal is based on an interesting mathematical phenomenon in which inner products, after independent asymmetric transformations, can be converted into the problem of approximate near neighbor search. This key observation makes efficient sublinear hashing scheme for MIPS possible. In the extended asymmetric LSH (ALSH) framework, we provide an explicit construction of provably fast hashing scheme for MIPS. The proposed construction and the extended LSH framework could be of independent theoretical interest. Our proposed algorithm is simple and easy to implement. We evaluate the method, for retrieving inner products, in the collaborative filtering task of item recommendations on Netflix and Movielens datasets.
LASS: a simple assignment model with Laplacian smoothing
We consider the problem of learning soft assignments of $N$ items to $K$ categories given two sources of information: an item-category similarity matrix, which encourages items to be assigned to categories they are similar to (and to not be assigned to categories they are dissimilar to), and an item-item similarity matrix, which encourages similar items to have similar assignments. We propose a simple quadratic programming model that captures this intuition. We give necessary conditions for its solution to be unique, define an out-of-sample mapping, and derive a simple, effective training algorithm based on the alternating direction method of multipliers. The model predicts reasonable assignments from even a few similarity values, and can be seen as a generalization of semisupervised learning. It is particularly useful when items naturally belong to multiple categories, as for example when annotating documents with keywords or pictures with tags, with partially tagged items, or when the categories have complex interrelations (e.g. hierarchical) that are unknown.
On the Optimal Solution of Weighted Nuclear Norm Minimization
In recent years, the nuclear norm minimization (NNM) problem has been attracting much attention in computer vision and machine learning. The NNM problem is capitalized on its convexity and it can be solved efficiently. The standard nuclear norm regularizes all singular values equally, which is however not flexible enough to fit real scenarios. Weighted nuclear norm minimization (WNNM) is a natural extension and generalization of NNM. By assigning properly different weights to different singular values, WNNM can lead to state-of-the-art results in applications such as image denoising. Nevertheless, so far the global optimal solution of WNNM problem is not completely solved yet due to its non-convexity in general cases. In this article, we study the theoretical properties of WNNM and prove that WNNM can be equivalently transformed into a quadratic programming problem with linear constraints. This implies that WNNM is equivalent to a convex problem and its global optimum can be readily achieved by off-the-shelf convex optimization solvers. We further show that when the weights are non-descending, the globally optimal solution of WNNM can be obtained in closed-form.
Online Linear Optimization via Smoothing
We present a new optimization-theoretic approach to analyzing Follow-the-Leader style algorithms, particularly in the setting where perturbations are used as a tool for regularization. We show that adding a strongly convex penalty function to the decision rule and adding stochastic perturbations to data correspond to deterministic and stochastic smoothing operations, respectively. We establish an equivalence between "Follow the Regularized Leader" and "Follow the Perturbed Leader" up to the smoothness properties. This intuition leads to a new generic analysis framework that recovers and improves the previous known regret bounds of the class of algorithms commonly known as Follow the Perturbed Leader.
An enhanced neural network based approach towards object extraction
The improvements in spectral and spatial resolution of the satellite images have facilitated the automatic extraction and identification of the features from satellite images and aerial photographs. An automatic object extraction method is presented for extracting and identifying the various objects from satellite images and the accuracy of the system is verified with regard to IRS satellite images. The system is based on neural network and simulates the process of visual interpretation from remote sensing images and hence increases the efficiency of image analysis. This approach obtains the basic characteristics of the various features and the performance is enhanced by the automatic learning approach, intelligent interpretation, and intelligent interpolation. The major advantage of the method is its simplicity and that the system identifies the features not only based on pixel value but also based on the shape, haralick features etc of the objects. Further the system allows flexibility for identifying the features within the same category based on size and shape. The successful application of the system verified its effectiveness and the accuracy of the system were assessed by ground truth verification.
A Bi-clustering Framework for Consensus Problems
We consider grouping as a general characterization for problems such as clustering, community detection in networks, and multiple parametric model estimation. We are interested in merging solutions from different grouping algorithms, distilling all their good qualities into a consensus solution. In this paper, we propose a bi-clustering framework and perspective for reaching consensus in such grouping problems. In particular, this is the first time that the task of finding/fitting multiple parametric models to a dataset is formally posed as a consensus problem. We highlight the equivalence of these tasks and establish the connection with the computational Gestalt program, that seeks to provide a psychologically-inspired detection theory for visual events. We also present a simple but powerful bi-clustering algorithm, specially tuned to the nature of the problem we address, though general enough to handle many different instances inscribed within our characterization. The presentation is accompanied with diverse and extensive experimental results in clustering, community detection, and multiple parametric model estimation in image processing applications.
Automated Fabric Defect Inspection: A Survey of Classifiers
Quality control at each stage of production in textile industry has become a key factor to retaining the existence in the highly competitive global market. Problems of manual fabric defect inspection are lack of accuracy and high time consumption, where early and accurate fabric defect detection is a significant phase of quality control. Computer vision based, i.e. automated fabric defect inspection systems are thought by many researchers of different countries to be very useful to resolve these problems. There are two major challenges to be resolved to attain a successful automated fabric defect inspection system. They are defect detection and defect classification. In this work, we discuss different techniques used for automated fabric defect classification, then show a survey of classifiers used in automated fabric defect inspection systems, and finally, compare these classifiers by using performance metrics. This work is expected to be very useful for the researchers in the area of automated fabric defect inspection to understand and evaluate the many potential options in this field.
Coupled Item-based Matrix Factorization
The essence of the challenges cold start and sparsity in Recommender Systems (RS) is that the extant techniques, such as Collaborative Filtering (CF) and Matrix Factorization (MF), mainly rely on the user-item rating matrix, which sometimes is not informative enough for predicting recommendations. To solve these challenges, the objective item attributes are incorporated as complementary information. However, most of the existing methods for inferring the relationships between items assume that the attributes are "independently and identically distributed (iid)", which does not always hold in reality. In fact, the attributes are more or less coupled with each other by some implicit relationships. Therefore, in this pa-per we propose an attribute-based coupled similarity measure to capture the implicit relationships between items. We then integrate the implicit item coupling into MF to form the Coupled Item-based Matrix Factorization (CIMF) model. Experimental results on two open data sets demonstrate that CIMF outperforms the benchmark methods.
Efficient Model Learning for Human-Robot Collaborative Tasks
We present a framework for learning human user models from joint-action demonstrations that enables the robot to compute a robust policy for a collaborative task with a human. The learning takes place completely automatically, without any human intervention. First, we describe the clustering of demonstrated action sequences into different human types using an unsupervised learning algorithm. These demonstrated sequences are also used by the robot to learn a reward function that is representative for each type, through the employment of an inverse reinforcement learning algorithm. The learned model is then used as part of a Mixed Observability Markov Decision Process formulation, wherein the human type is a partially observable variable. With this framework, we can infer, either offline or online, the human type of a new user that was not included in the training set, and can compute a policy for the robot that will be aligned to the preference of this new user and will be robust to deviations of the human actions from prior demonstrations. Finally we validate the approach using data collected in human subject experiments, and conduct proof-of-concept demonstrations in which a person performs a collaborative task with a small industrial robot.
Multi-view Metric Learning for Multi-view Video Summarization
Traditional methods on video summarization are designed to generate summaries for single-view video records; and thus they cannot fully exploit the redundancy in multi-view video records. In this paper, we present a multi-view metric learning framework for multi-view video summarization that combines the advantages of maximum margin clustering with the disagreement minimization criterion. The learning framework thus has the ability to find a metric that best separates the data, and meanwhile to force the learned metric to maintain original intrinsic information between data points, for example geometric information. Facilitated by such a framework, a systematic solution to the multi-view video summarization problem is developed. To the best of our knowledge, it is the first time to address multi-view video summarization from the viewpoint of metric learning. The effectiveness of the proposed method is demonstrated by experiments.
The role of dimensionality reduction in linear classification
Dimensionality reduction (DR) is often used as a preprocessing step in classification, but usually one first fixes the DR mapping, possibly using label information, and then learns a classifier (a filter approach). Best performance would be obtained by optimizing the classification error jointly over DR mapping and classifier (a wrapper approach), but this is a difficult nonconvex problem, particularly with nonlinear DR. Using the method of auxiliary coordinates, we give a simple, efficient algorithm to train a combination of nonlinear DR and a classifier, and apply it to a RBF mapping with a linear SVM. This alternates steps where we train the RBF mapping and a linear SVM as usual regression and classification, respectively, with a closed-form step that coordinates both. The resulting nonlinear low-dimensional classifier achieves classification errors competitive with the state-of-the-art but is fast at training and testing, and allows the user to trade off runtime for classification accuracy easily. We then study the role of nonlinear DR in linear classification, and the interplay between the DR mapping, the number of latent dimensions and the number of classes. When trained jointly, the DR mapping takes an extreme role in eliminating variation: it tends to collapse classes in latent space, erasing all manifold structure, and lay out class centroids so they are linearly separable with maximum margin.
Fast and Robust Archetypal Analysis for Representation Learning
We revisit a pioneer unsupervised learning technique called archetypal analysis, which is related to successful data analysis methods such as sparse coding and non-negative matrix factorization. Since it was proposed, archetypal analysis did not gain a lot of popularity even though it produces more interpretable models than other alternatives. Because no efficient implementation has ever been made publicly available, its application to important scientific problems may have been severely limited. Our goal is to bring back into favour archetypal analysis. We propose a fast optimization scheme using an active-set strategy, and provide an efficient open-source implementation interfaced with Matlab, R, and Python. Then, we demonstrate the usefulness of archetypal analysis for computer vision tasks, such as codebook learning, signal classification, and large image collection visualization.
Automatic large-scale classification of bird sounds is strongly improved by unsupervised feature learning
Automatic species classification of birds from their sound is a computational tool of increasing importance in ecology, conservation monitoring and vocal communication studies. To make classification useful in practice, it is crucial to improve its accuracy while ensuring that it can run at big data scales. Many approaches use acoustic measures based on spectrogram-type data, such as the Mel-frequency cepstral coefficient (MFCC) features which represent a manually-designed summary of spectral information. However, recent work in machine learning has demonstrated that features learnt automatically from data can often outperform manually-designed feature transforms. Feature learning can be performed at large scale and "unsupervised", meaning it requires no manual data labelling, yet it can improve performance on "supervised" tasks such as classification. In this work we introduce a technique for feature learning from large volumes of bird sound recordings, inspired by techniques that have proven useful in other domains. We experimentally compare twelve different feature representations derived from the Mel spectrum (of which six use this technique), using four large and diverse databases of bird vocalisations, with a random forest classifier. We demonstrate that MFCCs are of limited power in this context, leading to worse performance than the raw Mel spectral data. Conversely, we demonstrate that unsupervised feature learning provides a substantial boost over MFCCs and Mel spectra without adding computational complexity after the model has been trained. The boost is particularly notable for single-label classification tasks at large scale. The spectro-temporal activations learned through our procedure resemble spectro-temporal receptive fields calculated from avian primary auditory forebrain.
Robust Temporally Coherent Laplacian Protrusion Segmentation of 3D Articulated Bodies
In motion analysis and understanding it is important to be able to fit a suitable model or structure to the temporal series of observed data, in order to describe motion patterns in a compact way, and to discriminate between them. In an unsupervised context, i.e., no prior model of the moving object(s) is available, such a structure has to be learned from the data in a bottom-up fashion. In recent times, volumetric approaches in which the motion is captured from a number of cameras and a voxel-set representation of the body is built from the camera views, have gained ground due to attractive features such as inherent view-invariance and robustness to occlusions. Automatic, unsupervised segmentation of moving bodies along entire sequences, in a temporally-coherent and robust way, has the potential to provide a means of constructing a bottom-up model of the moving body, and track motion cues that may be later exploited for motion classification. Spectral methods such as locally linear embedding (LLE) can be useful in this context, as they preserve "protrusions", i.e., high-curvature regions of the 3D volume, of articulated shapes, while improving their separation in a lower dimensional space, making them in this way easier to cluster. In this paper we therefore propose a spectral approach to unsupervised and temporally-coherent body-protrusion segmentation along time sequences. Volumetric shapes are clustered in an embedding space, clusters are propagated in time to ensure coherence, and merged or split to accommodate changes in the body's topology. Experiments on both synthetic and real sequences of dense voxel-set data are shown. This supports the ability of the proposed method to cluster body-parts consistently over time in a totally unsupervised fashion, its robustness to sampling density and shape quality, and its potential for bottom-up model construction
Stabilized Nearest Neighbor Classifier and Its Statistical Properties
The stability of statistical analysis is an important indicator for reproducibility, which is one main principle of scientific method. It entails that similar statistical conclusions can be reached based on independent samples from the same underlying population. In this paper, we introduce a general measure of classification instability (CIS) to quantify the sampling variability of the prediction made by a classification method. Interestingly, the asymptotic CIS of any weighted nearest neighbor classifier turns out to be proportional to the Euclidean norm of its weight vector. Based on this concise form, we propose a stabilized nearest neighbor (SNN) classifier, which distinguishes itself from other nearest neighbor classifiers, by taking the stability into consideration. In theory, we prove that SNN attains the minimax optimal convergence rate in risk, and a sharp convergence rate in CIS. The latter rate result is established for general plug-in classifiers under a low-noise condition. Extensive simulated and real examples demonstrate that SNN achieves a considerable improvement in CIS over existing nearest neighbor classifiers, with comparable classification accuracy. We implement the algorithm in a publicly available R package snn.
On the Computational Intractability of Exact and Approximate Dictionary Learning
The efficient sparse coding and reconstruction of signal vectors via linear observations has received a tremendous amount of attention over the last decade. In this context, the automated learning of a suitable basis or overcomplete dictionary from training data sets of certain signal classes for use in sparse representations has turned out to be of particular importance regarding practical signal processing applications. Most popular dictionary learning algorithms involve NP-hard sparse recovery problems in each iteration, which may give some indication about the complexity of dictionary learning but does not constitute an actual proof of computational intractability. In this technical note, we show that learning a dictionary with which a given set of training signals can be represented as sparsely as possible is indeed NP-hard. Moreover, we also establish hardness of approximating the solution to within large factors of the optimal sparsity level. Furthermore, we give NP-hardness and non-approximability results for a recent dictionary learning variation called the sensor permutation problem. Along the way, we also obtain a new non-approximability result for the classical sparse recovery problem from compressed sensing.
Statistique et Big Data Analytics; Volum\'etrie, L'Attaque des Clones
This article assumes acquired the skills and expertise of a statistician in unsupervised (NMF, k-means, SVD) and supervised learning (regression, CART, random forest). What skills and knowledge do a statistician must acquire to reach the "Volume" scale of big data? After a quick overview of the different strategies available and especially of those imposed by Hadoop, the algorithms of some available learning methods are outlined in order to understand how they are adapted to the strong stresses of the Map-Reduce functionalities
Visualizing Random Forest with Self-Organising Map
Random Forest (RF) is a powerful ensemble method for classification and regression tasks. It consists of decision trees set. Although, a single tree is well interpretable for human, the ensemble of trees is a black-box model. The popular technique to look inside the RF model is to visualize a RF proximity matrix obtained on data samples with Multidimensional Scaling (MDS) method. Herein, we present a novel method based on Self-Organising Maps (SOM) for revealing intrinsic relationships in data that lay inside the RF used for classification tasks. We propose an algorithm to learn the SOM with the proximity matrix obtained from the RF. The visualization of RF proximity matrix with MDS and SOM is compared. What is more, the SOM learned with the RF proximity matrix has better classification accuracy in comparison to SOM learned with Euclidean distance. Presented approach enables better understanding of the RF and additionally improves accuracy of the SOM.
Proximal Reinforcement Learning: A New Theory of Sequential Decision Making in Primal-Dual Spaces
In this paper, we set forth a new vision of reinforcement learning developed by us over the past few years, one that yields mathematically rigorous solutions to longstanding important questions that have remained unresolved: (i) how to design reliable, convergent, and robust reinforcement learning algorithms (ii) how to guarantee that reinforcement learning satisfies pre-specified "safety" guarantees, and remains in a stable region of the parameter space (iii) how to design "off-policy" temporal difference learning algorithms in a reliable and stable manner, and finally (iv) how to integrate the study of reinforcement learning into the rich theory of stochastic optimization. In this paper, we provide detailed answers to all these questions using the powerful framework of proximal operators. The key idea that emerges is the use of primal dual spaces connected through the use of a Legendre transform. This allows temporal difference updates to occur in dual spaces, allowing a variety of important technical advantages. The Legendre transform elegantly generalizes past algorithms for solving reinforcement learning problems, such as natural gradient methods, which we show relate closely to the previously unconnected framework of mirror descent methods. Equally importantly, proximal operator theory enables the systematic development of operator splitting methods that show how to safely and reliably decompose complex products of gradients that occur in recent variants of gradient-based temporal difference learning. This key technical innovation makes it possible to finally design "true" stochastic gradient methods for reinforcement learning. Finally, Legendre transforms enable a variety of other benefits, including modeling sparsity and domain geometry. Our work builds extensively on recent work on the convergence of saddle-point algorithms, and on the theory of monotone operators.
Agnostic Learning of Disjunctions on Symmetric Distributions
We consider the problem of approximating and learning disjunctions (or equivalently, conjunctions) on symmetric distributions over $\{0,1\}^n$. Symmetric distributions are distributions whose PDF is invariant under any permutation of the variables. We give a simple proof that for every symmetric distribution $\mathcal{D}$, there exists a set of $n^{O(\log{(1/\epsilon)})}$ functions $\mathcal{S}$, such that for every disjunction $c$, there is function $p$, expressible as a linear combination of functions in $\mathcal{S}$, such that $p$ $\epsilon$-approximates $c$ in $\ell_1$ distance on $\mathcal{D}$ or $\mathbf{E}_{x \sim \mathcal{D}}[ |c(x)-p(x)|] \leq \epsilon$. This directly gives an agnostic learning algorithm for disjunctions on symmetric distributions that runs in time $n^{O( \log{(1/\epsilon)})}$. The best known previous bound is $n^{O(1/\epsilon^4)}$ and follows from approximation of the more general class of halfspaces (Wimmer, 2010). We also show that there exists a symmetric distribution $\mathcal{D}$, such that the minimum degree of a polynomial that $1/3$-approximates the disjunction of all $n$ variables is $\ell_1$ distance on $\mathcal{D}$ is $\Omega( \sqrt{n})$. Therefore the learning result above cannot be achieved via $\ell_1$-regression with a polynomial basis used in most other agnostic learning algorithms. Our technique also gives a simple proof that for any product distribution $\mathcal{D}$ and every disjunction $c$, there exists a polynomial $p$ of degree $O(\log{(1/\epsilon)})$ such that $p$ $\epsilon$-approximates $c$ in $\ell_1$ distance on $\mathcal{D}$. This was first proved by Blais et al. (2008) via a more involved argument.
Layered Logic Classifiers: Exploring the `And' and `Or' Relations
Designing effective and efficient classifier for pattern analysis is a key problem in machine learning and computer vision. Many the solutions to the problem require to perform logic operations such as `and', `or', and `not'. Classification and regression tree (CART) include these operations explicitly. Other methods such as neural networks, SVM, and boosting learn/compute a weighted sum on features (weak classifiers), which weakly perform the 'and' and 'or' operations. However, it is hard for these classifiers to deal with the 'xor' pattern directly. In this paper, we propose layered logic classifiers for patterns of complicated distributions by combining the `and', `or', and `not' operations. The proposed algorithm is very general and easy to implement. We test the classifiers on several typical datasets from the Irvine repository and two challenging vision applications, object segmentation and pedestrian detection. We observe significant improvements on all the datasets over the widely used decision stump based AdaBoost algorithm. The resulting classifiers have much less training complexity than decision tree based AdaBoost, and can be applied in a wide range of domains.
Supervised Dictionary Learning by a Variational Bayesian Group Sparse Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) with group sparsity constraints is formulated as a probabilistic graphical model and, assuming some observed data have been generated by the model, a feasible variational Bayesian algorithm is derived for learning model parameters. When used in a supervised learning scenario, NMF is most often utilized as an unsupervised feature extractor followed by classification in the obtained feature subspace. Having mapped the class labels to a more general concept of groups which underlie sparsity of the coefficients, what the proposed group sparse NMF model allows is incorporating class label information to find low dimensional label-driven dictionaries which not only aim to represent the data faithfully, but are also suitable for class discrimination. Experiments performed in face recognition and facial expression recognition domains point to advantages of classification in such label-driven feature subspaces over classification in feature subspaces obtained in an unsupervised manner.
Large Scale, Large Margin Classification using Indefinite Similarity Measures
Despite the success of the popular kernelized support vector machines, they have two major limitations: they are restricted to Positive Semi-Definite (PSD) kernels, and their training complexity scales at least quadratically with the size of the data. Many natural measures of similarity between pairs of samples are not PSD e.g. invariant kernels, and those that are implicitly or explicitly defined by latent variable models. In this paper, we investigate scalable approaches for using indefinite similarity measures in large margin frameworks. In particular we show that a normalization of similarity to a subset of the data points constitutes a representation suitable for linear classifiers. The result is a classifier which is competitive to kernelized SVM in terms of accuracy, despite having better training and test time complexities. Experimental results demonstrate that on CIFAR-10 dataset, the model equipped with similarity measures invariant to rigid and non-rigid deformations, can be made more than 5 times sparser while being more accurate than kernelized SVM using RBF kernels.
Futility Analysis in the Cross-Validation of Machine Learning Models
Many machine learning models have important structural tuning parameters that cannot be directly estimated from the data. The common tactic for setting these parameters is to use resampling methods, such as cross--validation or the bootstrap, to evaluate a candidate set of values and choose the best based on some pre--defined criterion. Unfortunately, this process can be time consuming. However, the model tuning process can be streamlined by adaptively resampling candidate values so that settings that are clearly sub-optimal can be discarded. The notion of futility analysis is introduced in this context. An example is shown that illustrates how adaptive resampling can be used to reduce training time. Simulation studies are used to understand how the potential speed--up is affected by parallel processing techniques.
Differentially Private Empirical Risk Minimization: Efficient Algorithms and Tight Error Bounds
In this paper, we initiate a systematic investigation of differentially private algorithms for convex empirical risk minimization. Various instantiations of this problem have been studied before. We provide new algorithms and matching lower bounds for private ERM assuming only that each data point's contribution to the loss function is Lipschitz bounded and that the domain of optimization is bounded. We provide a separate set of algorithms and matching lower bounds for the setting in which the loss functions are known to also be strongly convex. Our algorithms run in polynomial time, and in some cases even match the optimal non-private running time (as measured by oracle complexity). We give separate algorithms (and lower bounds) for $(\epsilon,0)$- and $(\epsilon,\delta)$-differential privacy; perhaps surprisingly, the techniques used for designing optimal algorithms in the two cases are completely different. Our lower bounds apply even to very simple, smooth function families, such as linear and quadratic functions. This implies that algorithms from previous work can be used to obtain optimal error rates, under the additional assumption that the contributions of each data point to the loss function is smooth. We show that simple approaches to smoothing arbitrary loss functions (in order to apply previous techniques) do not yield optimal error rates. In particular, optimal algorithms were not previously known for problems such as training support vector machines and the high-dimensional median.
An Easy to Use Repository for Comparing and Improving Machine Learning Algorithm Usage
The results from most machine learning experiments are used for a specific purpose and then discarded. This results in a significant loss of information and requires rerunning experiments to compare learning algorithms. This also requires implementation of another algorithm for comparison, that may not always be correctly implemented. By storing the results from previous experiments, machine learning algorithms can be compared easily and the knowledge gained from them can be used to improve their performance. The purpose of this work is to provide easy access to previous experimental results for learning and comparison. These stored results are comprehensive -- storing the prediction for each test instance as well as the learning algorithm, hyperparameters, and training set that were used. Previous results are particularly important for meta-learning, which, in a broad sense, is the process of learning from previous machine learning results such that the learning process is improved. While other experiment databases do exist, one of our focuses is on easy access to the data. We provide meta-learning data sets that are ready to be downloaded for meta-learning experiments. In addition, queries to the underlying database can be made if specific information is desired. We also differ from previous experiment databases in that our databases is designed at the instance level, where an instance is an example in a data set. We store the predictions of a learning algorithm trained on a specific training set for each instance in the test set. Data set level information can then be obtained by aggregating the results from the instances. The instance level information can be used for many tasks such as determining the diversity of a classifier or algorithmically determining the optimal subset of training instances for a learning algorithm.
BayesOpt: A Bayesian Optimization Library for Nonlinear Optimization, Experimental Design and Bandits
BayesOpt is a library with state-of-the-art Bayesian optimization methods to solve nonlinear optimization, stochastic bandits or sequential experimental design problems. Bayesian optimization is sample efficient by building a posterior distribution to capture the evidence and prior knowledge for the target function. Built in standard C++, the library is extremely efficient while being portable and flexible. It includes a common interface for C, C++, Python, Matlab and Octave.
Universal Compression of Envelope Classes: Tight Characterization via Poisson Sampling
The Poisson-sampling technique eliminates dependencies among symbol appearances in a random sequence. It has been used to simplify the analysis and strengthen the performance guarantees of randomized algorithms. Applying this method to universal compression, we relate the redundancies of fixed-length and Poisson-sampled sequences, use the relation to derive a simple single-letter formula that approximates the redundancy of any envelope class to within an additive logarithmic term. As a first application, we consider i.i.d. distributions over a small alphabet as a step-envelope class, and provide a short proof that determines the redundancy of discrete distributions over a small al- phabet up to the first order terms. We then show the strength of our method by applying the formula to tighten the existing bounds on the redundancy of exponential and power-law classes, in particular answering a question posed by Boucheron, Garivier and Gassiat.
Effect of Different Distance Measures on the Performance of K-Means Algorithm: An Experimental Study in Matlab
K-means algorithm is a very popular clustering algorithm which is famous for its simplicity. Distance measure plays a very important rule on the performance of this algorithm. We have different distance measure techniques available. But choosing a proper technique for distance calculation is totally dependent on the type of the data that we are going to cluster. In this paper an experimental study is done in Matlab to cluster the iris and wine data sets with different distance measures and thereby observing the variation of the performances shown.
Simultaneous Feature and Expert Selection within Mixture of Experts
A useful strategy to deal with complex classification scenarios is the "divide and conquer" approach. The mixture of experts (MOE) technique makes use of this strategy by joinly training a set of classifiers, or experts, that are specialized in different regions of the input space. A global model, or gate function, complements the experts by learning a function that weights their relevance in different parts of the input space. Local feature selection appears as an attractive alternative to improve the specialization of experts and gate function, particularly, for the case of high dimensional data. Our main intuition is that particular subsets of dimensions, or subspaces, are usually more appropriate to classify instances located in different regions of the input space. Accordingly, this work contributes with a regularized variant of MoE that incorporates an embedded process for local feature selection using $L1$ regularization, with a simultaneous expert selection. The experiments are still pending.
Using Local Alignments for Relation Recognition
This paper discusses the problem of marrying structural similarity with semantic relatedness for Information Extraction from text. Aiming at accurate recognition of relations, we introduce local alignment kernels and explore various possibilities of using them for this task. We give a definition of a local alignment (LA) kernel based on the Smith-Waterman score as a sequence similarity measure and proceed with a range of possibilities for computing similarity between elements of sequences. We show how distributional similarity measures obtained from unlabeled data can be incorporated into the learning task as semantic knowledge. Our experiments suggest that the LA kernel yields promising results on various biomedical corpora outperforming two baselines by a large margin. Additional series of experiments have been conducted on the data sets of seven general relation types, where the performance of the LA kernel is comparable to the current state-of-the-art results.
Learning to Act Greedily: Polymatroid Semi-Bandits
Many important optimization problems, such as the minimum spanning tree and minimum-cost flow, can be solved optimally by a greedy method. In this work, we study a learning variant of these problems, where the model of the problem is unknown and has to be learned by interacting repeatedly with the environment in the bandit setting. We formalize our learning problem quite generally, as learning how to maximize an unknown modular function on a known polymatroid. We propose a computationally efficient algorithm for solving our problem and bound its expected cumulative regret. Our gap-dependent upper bound is tight up to a constant and our gap-free upper bound is tight up to polylogarithmic factors. Finally, we evaluate our method on three problems and demonstrate that it is practical.
Generalization Bounds for Learning with Linear, Polygonal, Quadratic and Conic Side Knowledge
In this paper, we consider a supervised learning setting where side knowledge is provided about the labels of unlabeled examples. The side knowledge has the effect of reducing the hypothesis space, leading to tighter generalization bounds, and thus possibly better generalization. We consider several types of side knowledge, the first leading to linear and polygonal constraints on the hypothesis space, the second leading to quadratic constraints, and the last leading to conic constraints. We show how different types of domain knowledge can lead directly to these kinds of side knowledge. We prove bounds on complexity measures of the hypothesis space for quadratic and conic side knowledge, and show that these bounds are tight in a specific sense for the quadratic case.
Flip-Flop Sublinear Models for Graphs: Proof of Theorem 1
We prove that there is no class-dual for almost all sublinear models on graphs.
Semantic Composition and Decomposition: From Recognition to Generation
Semantic composition is the task of understanding the meaning of text by composing the meanings of the individual words in the text. Semantic decomposition is the task of understanding the meaning of an individual word by decomposing it into various aspects (factors, constituents, components) that are latent in the meaning of the word. We take a distributional approach to semantics, in which a word is represented by a context vector. Much recent work has considered the problem of recognizing compositions and decompositions, but we tackle the more difficult generation problem. For simplicity, we focus on noun-modifier bigrams and noun unigrams. A test for semantic composition is, given context vectors for the noun and modifier in a noun-modifier bigram ("red salmon"), generate a noun unigram that is synonymous with the given bigram ("sockeye"). A test for semantic decomposition is, given a context vector for a noun unigram ("snifter"), generate a noun-modifier bigram that is synonymous with the given unigram ("brandy glass"). With a vocabulary of about 73,000 unigrams from WordNet, there are 73,000 candidate unigram compositions for a bigram and 5,300,000,000 (73,000 squared) candidate bigram decompositions for a unigram. We generate ranked lists of potential solutions in two passes. A fast unsupervised learning algorithm generates an initial list of candidates and then a slower supervised learning algorithm refines the list. We evaluate the candidate solutions by comparing them to WordNet synonym sets. For decomposition (unigram to bigram), the top 100 most highly ranked bigrams include a WordNet synonym of the given unigram 50.7% of the time. For composition (bigram to unigram), the top 100 most highly ranked unigrams include a WordNet synonym of the given bigram 77.8% of the time.
Optimal CUR Matrix Decompositions
The CUR decomposition of an $m \times n$ matrix $A$ finds an $m \times c$ matrix $C$ with a subset of $c < n$ columns of $A,$ together with an $r \times n$ matrix $R$ with a subset of $r < m$ rows of $A,$ as well as a $c \times r$ low-rank matrix $U$ such that the matrix $C U R$ approximates the matrix $A,$ that is, $ || A - CUR ||_F^2 \le (1+\epsilon) || A - A_k||_F^2$, where $||.||_F$ denotes the Frobenius norm and $A_k$ is the best $m \times n$ matrix of rank $k$ constructed via the SVD. We present input-sparsity-time and deterministic algorithms for constructing such a CUR decomposition where $c=O(k/\epsilon)$ and $r=O(k/\epsilon)$ and rank$(U) = k$. Up to constant factors, our algorithms are simultaneously optimal in $c, r,$ and rank$(U)$.
Estimating Vector Fields on Manifolds and the Embedding of Directed Graphs
This paper considers the problem of embedding directed graphs in Euclidean space while retaining directional information. We model a directed graph as a finite set of observations from a diffusion on a manifold endowed with a vector field. This is the first generative model of its kind for directed graphs. We introduce a graph embedding algorithm that estimates all three features of this model: the low-dimensional embedding of the manifold, the data density and the vector field. In the process, we also obtain new theoretical results on the limits of "Laplacian type" matrices derived from directed graphs. The application of our method to both artificially constructed and real data highlights its strengths.
Improved graph Laplacian via geometric self-consistency
We address the problem of setting the kernel bandwidth used by Manifold Learning algorithms to construct the graph Laplacian. Exploiting the connection between manifold geometry, represented by the Riemannian metric, and the Laplace-Beltrami operator, we set the bandwidth by optimizing the Laplacian's ability to preserve the geometry of the data. Experiments show that this principled approach is effective and robust.
$l_1$-regularized Outlier Isolation and Regression
This paper proposed a new regression model called $l_1$-regularized outlier isolation and regression (LOIRE) and a fast algorithm based on block coordinate descent to solve this model. Besides, assuming outliers are gross errors following a Bernoulli process, this paper also presented a Bernoulli estimate model which, in theory, should be very accurate and robust due to its complete elimination of affections caused by outliers. Though this Bernoulli estimate is hard to solve, it could be approximately achieved through a process which takes LOIRE as an important intermediate step. As a result, the approximate Bernoulli estimate is a good combination of Bernoulli estimate's accuracy and LOIRE regression's efficiency with several simulations conducted to strongly verify this point. Moreover, LOIRE can be further extended to realize robust rank factorization which is powerful in recovering low-rank component from massive corruptions. Extensive experimental results showed that the proposed method outperforms state-of-the-art methods like RPCA and GoDec in the aspect of computation speed with a competitive performance.
Feature Selection for Linear SVM with Provable Guarantees
We give two provably accurate feature-selection techniques for the linear SVM. The algorithms run in deterministic and randomized time respectively. Our algorithms can be used in an unsupervised or supervised setting. The supervised approach is based on sampling features from support vectors. We prove that the margin in the feature space is preserved to within $\epsilon$-relative error of the margin in the full feature space in the worst-case. In the unsupervised setting, we also provide worst-case guarantees of the radius of the minimum enclosing ball, thereby ensuring comparable generalization as in the full feature space and resolving an open problem posed in Dasgupta et al. We present extensive experiments on real-world datasets to support our theory and to demonstrate that our method is competitive and often better than prior state-of-the-art, for which there are no known provable guarantees.
Convex Total Least Squares
We study the total least squares (TLS) problem that generalizes least squares regression by allowing measurement errors in both dependent and independent variables. TLS is widely used in applied fields including computer vision, system identification and econometrics. The special case when all dependent and independent variables have the same level of uncorrelated Gaussian noise, known as ordinary TLS, can be solved by singular value decomposition (SVD). However, SVD cannot solve many important practical TLS problems with realistic noise structure, such as having varying measurement noise, known structure on the errors, or large outliers requiring robust error-norms. To solve such problems, we develop convex relaxation approaches for a general class of structured TLS (STLS). We show both theoretically and experimentally, that while the plain nuclear norm relaxation incurs large approximation errors for STLS, the re-weighted nuclear norm approach is very effective, and achieves better accuracy on challenging STLS problems than popular non-convex solvers. We describe a fast solution based on augmented Lagrangian formulation, and apply our approach to an important class of biological problems that use population average measurements to infer cell-type and physiological-state specific expression levels that are very hard to measure directly.