title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Coordinate Descent with Arbitrary Sampling I: Algorithms and Complexity
We study the problem of minimizing the sum of a smooth convex function and a convex block-separable regularizer and propose a new randomized coordinate descent method, which we call ALPHA. Our method at every iteration updates a random subset of coordinates, following an arbitrary distribution. No coordinate descent methods capable to handle an arbitrary sampling have been studied in the literature before for this problem. ALPHA is a remarkably flexible algorithm: in special cases, it reduces to deterministic and randomized methods such as gradient descent, coordinate descent, parallel coordinate descent and distributed coordinate descent -- both in nonaccelerated and accelerated variants. The variants with arbitrary (or importance) sampling are new. We provide a complexity analysis of ALPHA, from which we deduce as a direct corollary complexity bounds for its many variants, all matching or improving best known bounds.
Coordinate Descent with Arbitrary Sampling II: Expected Separable Overapproximation
The design and complexity analysis of randomized coordinate descent methods, and in particular of variants which update a random subset (sampling) of coordinates in each iteration, depends on the notion of expected separable overapproximation (ESO). This refers to an inequality involving the objective function and the sampling, capturing in a compact way certain smoothness properties of the function in a random subspace spanned by the sampled coordinates. ESO inequalities were previously established for special classes of samplings only, almost invariably for uniform samplings. In this paper we develop a systematic technique for deriving these inequalities for a large class of functions and for arbitrary samplings. We demonstrate that one can recover existing ESO results using our general approach, which is based on the study of eigenvalues associated with samplings and the data describing the function.
Complex support vector machines regression for robust channel estimation in LTE downlink system
In this paper, the problem of channel estimation for LTE Downlink system in the environment of high mobility presenting non-Gaussian impulse noise interfering with reference signals is faced. The estimation of the frequency selective time varying multipath fading channel is performed by using a channel estimator based on a nonlinear complex Support Vector Machine Regression (SVR) which is applied to Long Term Evolution (LTE) downlink. The estimation algorithm makes use of the pilot signals to estimate the total frequency response of the highly selective fading multipath channel. Thus, the algorithm maps trained data into a high dimensional feature space and uses the structural risk minimization principle to carry out the regression estimation for the frequency response function of the fading channel. The obtained results show the effectiveness of the proposed method which has better performance than the conventional Least Squares (LS) and Decision Feedback methods to track the variations of the fading multipath channel.
Improving Persian Document Classification Using Semantic Relations between Words
With the increase of information, document classification as one of the methods of text mining, plays vital role in many management and organizing information. Document classification is the process of assigning a document to one or more predefined category labels. Document classification includes different parts such as text processing, term selection, term weighting and final classification. The accuracy of document classification is very important. Thus improvement in each part of classification should lead to better results and higher precision. Term weighting has a great impact on the accuracy of the classification. Most of the existing weighting methods exploit the statistical information of terms in documents and do not consider semantic relations between words. In this paper, an automated document classification system is presented that uses a novel term weighting method based on semantic relations between terms. To evaluate the proposed method, three standard Persian corpuses are used. Experiment results show 2 to 4 percent improvement in classification accuracy compared with the best previous designed system for Persian documents.
Improving approximate RPCA with a k-sparsity prior
A process centric view of robust PCA (RPCA) allows its fast approximate implementation based on a special form o a deep neural network with weights shared across all layers. However, empirically this fast approximation to RPCA fails to find representations that are parsemonious. We resolve these bad local minima by relaxing the elementwise L1 and L2 priors and instead utilize a structure inducing k-sparsity prior. In a discriminative classification task the newly learned representations outperform these from the original approximate RPCA formulation significantly.
Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels
We consider the problem of improving the efficiency of randomized Fourier feature maps to accelerate training and testing speed of kernel methods on large datasets. These approximate feature maps arise as Monte Carlo approximations to integral representations of shift-invariant kernel functions (e.g., Gaussian kernel). In this paper, we propose to use Quasi-Monte Carlo (QMC) approximations instead, where the relevant integrands are evaluated on a low-discrepancy sequence of points as opposed to random point sets as in the Monte Carlo approach. We derive a new discrepancy measure called box discrepancy based on theoretical characterizations of the integration error with respect to a given sequence. We then propose to learn QMC sequences adapted to our setting based on explicit box discrepancy minimization. Our theoretical analyses are complemented with empirical results that demonstrate the effectiveness of classical and adaptive QMC techniques for this problem.
Fast, simple and accurate handwritten digit classification by training shallow neural network classifiers with the 'extreme learning machine' algorithm
Recent advances in training deep (multi-layer) architectures have inspired a renaissance in neural network use. For example, deep convolutional networks are becoming the default option for difficult tasks on large datasets, such as image and speech recognition. However, here we show that error rates below 1% on the MNIST handwritten digit benchmark can be replicated with shallow non-convolutional neural networks. This is achieved by training such networks using the 'Extreme Learning Machine' (ELM) approach, which also enables a very rapid training time (~10 minutes). Adding distortions, as is common practise for MNIST, reduces error rates even further. Our methods are also shown to be capable of achieving less than 5.5% error rates on the NORB image database. To achieve these results, we introduce several enhancements to the standard ELM algorithm, which individually and in combination can significantly improve performance. The main innovation is to ensure each hidden-unit operates only on a randomly sized and positioned patch of each image. This form of random `receptive field' sampling of the input ensures the input weight matrix is sparse, with about 90% of weights equal to zero. Furthermore, combining our methods with a small number of iterations of a single-batch backpropagation method can significantly reduce the number of hidden-units required to achieve a particular performance. Our close to state-of-the-art results for MNIST and NORB suggest that the ease of use and accuracy of the ELM algorithm for designing a single-hidden-layer neural network classifier should cause it to be given greater consideration either as a standalone method for simpler problems, or as the final classification stage in deep neural networks applied to more difficult problems.
A simple coding for cross-domain matching with dimension reduction via spectral graph embedding
Data vectors are obtained from multiple domains. They are feature vectors of images or vector representations of words. Domains may have different numbers of data vectors with different dimensions. These data vectors from multiple domains are projected to a common space by linear transformations in order to search closely related vectors across domains. We would like to find projection matrices to minimize distances between closely related data vectors. This formulation of cross-domain matching is regarded as an extension of the spectral graph embedding to multi-domain setting, and it includes several multivariate analysis methods of statistics such as multiset canonical correlation analysis, correspondence analysis, and principal component analysis. Similar approaches are very popular recently in pattern recognition and vision. In this paper, instead of proposing a novel method, we will introduce an embarrassingly simple idea of coding the data vectors for explaining all the above mentioned approaches. A data vector is concatenated with zero vectors from all other domains to make an augmented vector. The cross-domain matching is solved by applying the single-domain version of spectral graph embedding to these augmented vectors of all the domains. An interesting connection to the classical associative memory model of neural networks is also discussed by noticing a coding for association. A cross-validation method for choosing the dimension of the common space and a regularization parameter will be discussed in an illustrative numerical example.
Spy vs. Spy: Rumor Source Obfuscation
Anonymous messaging platforms, such as Secret and Whisper, have emerged as important social media for sharing one's thoughts without the fear of being judged by friends, family, or the public. Further, such anonymous platforms are crucial in nations with authoritarian governments; the right to free expression and sometimes the personal safety of the author of the message depend on anonymity. Whether for fear of judgment or personal endangerment, it is crucial to keep anonymous the identity of the user who initially posted a sensitive message. In this paper, we consider an adversary who observes a snapshot of the spread of a message at a certain time. Recent advances in rumor source detection shows that the existing messaging protocols are vulnerable against such an adversary. We introduce a novel messaging protocol, which we call adaptive diffusion, and show that it spreads the messages fast and achieves a perfect obfuscation of the source when the underlying contact network is an infinite regular tree: all users with the message are nearly equally likely to have been the origin of the message. Experiments on a sampled Facebook network show that it effectively hides the location of the source even when the graph is finite, irregular and has cycles. We further consider a stronger adversarial model where a subset of colluding users track the reception of messages. We show that the adaptive diffusion provides a strong protection of the anonymity of the source even under this scenario.
An ADMM algorithm for solving a proximal bound-constrained quadratic program
We consider a proximal operator given by a quadratic function subject to bound constraints and give an optimization algorithm using the alternating direction method of multipliers (ADMM). The algorithm is particularly efficient to solve a collection of proximal operators that share the same quadratic form, or if the quadratic program is the relaxation of a binary quadratic problem.
Disjunctive Normal Networks
Artificial neural networks are powerful pattern classifiers; however, they have been surpassed in accuracy by methods such as support vector machines and random forests that are also easier to use and faster to train. Backpropagation, which is used to train artificial neural networks, suffers from the herd effect problem which leads to long training times and limit classification accuracy. We use the disjunctive normal form and approximate the boolean conjunction operations with products to construct a novel network architecture. The proposed model can be trained by minimizing an error function and it allows an effective and intuitive initialization which solves the herd-effect problem associated with backpropagation. This leads to state-of-the art classification accuracy and fast training times. In addition, our model can be jointly optimized with convolutional features in an unified structure leading to state-of-the-art results on computer vision problems with fast convergence rates. A GPU implementation of LDNN with optional convolutional features is also available
Accurate and Conservative Estimates of MRF Log-likelihood using Reverse Annealing
Markov random fields (MRFs) are difficult to evaluate as generative models because computing the test log-probabilities requires the intractable partition function. Annealed importance sampling (AIS) is widely used to estimate MRF partition functions, and often yields quite accurate results. However, AIS is prone to overestimate the log-likelihood with little indication that anything is wrong. We present the Reverse AIS Estimator (RAISE), a stochastic lower bound on the log-likelihood of an approximation to the original MRF model. RAISE requires only the same MCMC transition operators as standard AIS. Experimental results indicate that RAISE agrees closely with AIS log-probability estimates for RBMs, DBMs, and DBNs, but typically errs on the side of underestimating, rather than overestimating, the log-likelihood.
Breaking the Curse of Dimensionality with Convex Neural Networks
We consider neural networks with a single hidden layer and non-decreasing homogeneous activa-tion functions like the rectified linear units. By letting the number of hidden units grow unbounded and using classical non-Euclidean regularization tools on the output weights, we provide a detailed theoretical analysis of their generalization performance, with a study of both the approximation and the estimation errors. We show in particular that they are adaptive to unknown underlying linear structures, such as the dependence on the projection of the input variables onto a low-dimensional subspace. Moreover, when using sparsity-inducing norms on the input weights, we show that high-dimensional non-linear variable selection may be achieved, without any strong assumption regarding the data and with a total number of variables potentially exponential in the number of ob-servations. In addition, we provide a simple geometric interpretation to the non-convex problem of addition of a new unit, which is the core potentially hard computational element in the framework of learning from continuously many basis functions. We provide simple conditions for convex relaxations to achieve the same generalization error bounds, even when constant-factor approxi-mations cannot be found (e.g., because it is NP-hard such as for the zero-homogeneous activation function). We were not able to find strong enough convex relaxations and leave open the existence or non-existence of polynomial-time algorithms.
Discriminative Clustering with Relative Constraints
We study the problem of clustering with relative constraints, where each constraint specifies relative similarities among instances. In particular, each constraint $(x_i, x_j, x_k)$ is acquired by posing a query: is instance $x_i$ more similar to $x_j$ than to $x_k$? We consider the scenario where answers to such queries are based on an underlying (but unknown) class concept, which we aim to discover via clustering. Different from most existing methods that only consider constraints derived from yes and no answers, we also incorporate don't know responses. We introduce a Discriminative Clustering method with Relative Constraints (DCRC) which assumes a natural probabilistic relationship between instances, their underlying cluster memberships, and the observed constraints. The objective is to maximize the model likelihood given the constraints, and in the meantime enforce cluster separation and cluster balance by also making use of the unlabeled instances. We evaluated the proposed method using constraints generated from ground-truth class labels, and from (noisy) human judgments from a user study. Experimental results demonstrate: 1) the usefulness of relative constraints, in particular when don't know answers are considered; 2) the improved performance of the proposed method over state-of-the-art methods that utilize either relative or pairwise constraints; and 3) the robustness of our method in the presence of noisy constraints, such as those provided by human judgement.
Detailed Derivations of Small-Variance Asymptotics for some Hierarchical Bayesian Nonparametric Models
In this note we provide detailed derivations of two versions of small-variance asymptotics for hierarchical Dirichlet process (HDP) mixture models and the HDP hidden Markov model (HDP-HMM, a.k.a. the infinite HMM). We include derivations for the probabilities of certain CRP and CRF partitions, which are of more general interest.
ModDrop: adaptive multi-modal gesture recognition
We present a method for gesture detection and localisation based on multi-scale and multi-modal deep learning. Each visual modality captures spatial information at a particular spatial scale (such as motion of the upper body or a hand), and the whole system operates at three temporal scales. Key to our technique is a training strategy which exploits: i) careful initialization of individual modalities; and ii) gradual fusion involving random dropping of separate channels (dubbed ModDrop) for learning cross-modality correlations while preserving uniqueness of each modality-specific representation. We present experiments on the ChaLearn 2014 Looking at People Challenge gesture recognition track, in which we placed first out of 17 teams. Fusing multiple modalities at several spatial and temporal scales leads to a significant increase in recognition rates, allowing the model to compensate for errors of the individual classifiers as well as noise in the separate channels. Futhermore, the proposed ModDrop training technique ensures robustness of the classifier to missing signals in one or several channels to produce meaningful predictions from any number of available modalities. In addition, we demonstrate the applicability of the proposed fusion scheme to modalities of arbitrary nature by experiments on the same dataset augmented with audio.
Maximum Margin Clustering for State Decomposition of Metastable Systems
When studying a metastable dynamical system, a prime concern is how to decompose the phase space into a set of metastable states. Unfortunately, the metastable state decomposition based on simulation or experimental data is still a challenge. The most popular and simplest approach is geometric clustering which is developed based on the classical clustering technique. However, the prerequisites of this approach are: (1) data are obtained from simulations or experiments which are in global equilibrium and (2) the coordinate system is appropriately selected. Recently, the kinetic clustering approach based on phase space discretization and transition probability estimation has drawn much attention due to its applicability to more general cases, but the choice of discretization policy is a difficult task. In this paper, a new decomposition method designated as maximum margin metastable clustering is proposed, which converts the problem of metastable state decomposition to a semi-supervised learning problem so that the large margin technique can be utilized to search for the optimal decomposition without phase space discretization. Moreover, several simulation examples are given to illustrate the effectiveness of the proposed method.
ACCAMS: Additive Co-Clustering to Approximate Matrices Succinctly
Matrix completion and approximation are popular tools to capture a user's preferences for recommendation and to approximate missing data. Instead of using low-rank factorization we take a drastically different approach, based on the simple insight that an additive model of co-clusterings allows one to approximate matrices efficiently. This allows us to build a concise model that, per bit of model learned, significantly beats all factorization approaches to matrix approximation. Even more surprisingly, we find that summing over small co-clusterings is more effective in modeling matrices than classic co-clustering, which uses just one large partitioning of the matrix. Following Occam's razor principle suggests that the simple structure induced by our model better captures the latent preferences and decision making processes present in the real world than classic co-clustering or matrix factorization. We provide an iterative minimization algorithm, a collapsed Gibbs sampler, theoretical guarantees for matrix approximation, and excellent empirical evidence for the efficacy of our approach. We achieve state-of-the-art results on the Netflix problem with a fraction of the model complexity.
Communication-Efficient Distributed Optimization of Self-Concordant Empirical Loss
We consider distributed convex optimization problems originated from sample average approximation of stochastic optimization, or empirical risk minimization in machine learning. We assume that each machine in the distributed computing system has access to a local empirical loss function, constructed with i.i.d. data sampled from a common distribution. We propose a communication-efficient distributed algorithm to minimize the overall empirical loss, which is the average of the local empirical losses. The algorithm is based on an inexact damped Newton method, where the inexact Newton steps are computed by a distributed preconditioned conjugate gradient method. We analyze its iteration complexity and communication efficiency for minimizing self-concordant empirical loss functions, and discuss the results for distributed ridge regression, logistic regression and binary classification with a smoothed hinge loss. In a standard setting for supervised learning, the required number of communication rounds of the algorithm does not increase with the sample size, and only grows slowly with the number of machines.
Consistent Classification Algorithms for Multi-class Non-Decomposable Performance Metrics
We study consistency of learning algorithms for a multi-class performance metric that is a non-decomposable function of the confusion matrix of a classifier and cannot be expressed as a sum of losses on individual data points; examples of such performance metrics include the macro F-measure popular in information retrieval and the G-mean metric used in class-imbalanced problems. While there has been much work in recent years in understanding the consistency properties of learning algorithms for `binary' non-decomposable metrics, little is known either about the form of the optimal classifier for a general multi-class non-decomposable metric, or about how these learning algorithms generalize to the multi-class case. In this paper, we provide a unified framework for analysing a multi-class non-decomposable performance metric, where the problem of finding the optimal classifier for the performance metric is viewed as an optimization problem over the space of all confusion matrices achievable under the given distribution. Using this framework, we show that (under a continuous distribution) the optimal classifier for a multi-class performance metric can be obtained as the solution of a cost-sensitive classification problem, thus generalizing several previous results on specific binary non-decomposable metrics. We then design a consistent learning algorithm for concave multi-class performance metrics that proceeds via a sequence of cost-sensitive classification problems, and can be seen as applying the conditional gradient (CG) optimization method over the space of feasible confusion matrices. To our knowledge, this is the first efficient learning algorithm (whose running time is polynomial in the number of classes) that is consistent for a large family of multi-class non-decomposable metrics. Our consistency proof uses a novel technique based on the convergence analysis of the CG method.
Sequence Modeling using Gated Recurrent Neural Networks
In this paper, we have used Recurrent Neural Networks to capture and model human motion data and generate motions by prediction of the next immediate data point at each time-step. Our RNN is armed with recently proposed Gated Recurrent Units which has shown promising results in some sequence modeling problems such as Machine Translation and Speech Synthesis. We demonstrate that this model is able to capture long-term dependencies in data and generate realistic motions.
A robust sub-linear time R-FFAST algorithm for computing a sparse DFT
The Fast Fourier Transform (FFT) is the most efficiently known way to compute the Discrete Fourier Transform (DFT) of an arbitrary n-length signal, and has a computational complexity of O(n log n). If the DFT X of the signal x has only k non-zero coefficients (where k < n), can we do better? In [1], we addressed this question and presented a novel FFAST (Fast Fourier Aliasing-based Sparse Transform) algorithm that cleverly induces sparse graph alias codes in the DFT domain, via a Chinese-Remainder-Theorem (CRT)-guided sub-sampling operation of the time-domain samples. The resulting sparse graph alias codes are then exploited to devise a fast and iterative onion-peeling style decoder that computes an n length DFT of a signal using only O(k) time-domain samples and O(klog k) computations. The FFAST algorithm is applicable whenever k is sub-linear in n (i.e. k = o(n)), but is obviously most attractive when k is much smaller than n. In this paper, we adapt the FFAST framework of [1] to the case where the time-domain samples are corrupted by a white Gaussian noise. In particular, we show that the extended noise robust algorithm R-FFAST computes an n-length k-sparse DFT X using O(klog ^3 n) noise-corrupted time-domain samples, in O(klog^4n) computations, i.e., sub-linear time complexity. While our theoretical results are for signals with a uniformly random support of the non-zero DFT coefficients and additive white Gaussian noise, we provide simulation results which demonstrates that the R-FFAST algorithm performs well even for signals like MR images, that have an approximately sparse Fourier spectrum with a non-uniform support for the dominant DFT coefficients.
Multi-Access Communications with Energy Harvesting: A Multi-Armed Bandit Model and the Optimality of the Myopic Policy
A multi-access wireless network with N transmitting nodes, each equipped with an energy harvesting (EH) device and a rechargeable battery of finite capacity, is studied. At each time slot (TS) a node is operative with a certain probability, which may depend on the availability of data, or the state of its channel. The energy arrival process at each node is modelled as an independent two-state Markov process, such that, at each TS, a node either harvests one unit of energy, or none. At each TS a subset of the nodes is scheduled by the access point (AP). The scheduling policy that maximises the total throughput is studied assuming that the AP does not know the states of either the EH processes or the batteries. The problem is identified as a restless multiarmed bandit (RMAB) problem, and an upper bound on the optimal scheduling policy is found. Under certain assumptions regarding the EH processes and the battery sizes, the optimality of the myopic policy (MP) is proven. For the general case, the performance of MP is compared numerically to the upper bound.
Comprehend DeepWalk as Matrix Factorization
Word2vec, as an efficient tool for learning vector representation of words has shown its effectiveness in many natural language processing tasks. Mikolov et al. issued Skip-Gram and Negative Sampling model for developing this toolbox. Perozzi et al. introduced the Skip-Gram model into the study of social network for the first time, and designed an algorithm named DeepWalk for learning node embedding on a graph. We prove that the DeepWalk algorithm is actually factoring a matrix M where each entry M_{ij} is logarithm of the average probability that node i randomly walks to node j in fix steps.
Passing Expectation Propagation Messages with Kernel Methods
We propose to learn a kernel-based message operator which takes as input all expectation propagation (EP) incoming messages to a factor node and produces an outgoing message. In ordinary EP, computing an outgoing message involves estimating a multivariate integral which may not have an analytic expression. Learning such an operator allows one to bypass the expensive computation of the integral during inference by directly mapping all incoming messages into an outgoing message. The operator can be learned from training data (examples of input and output messages) which allows automated inference to be made on any kind of factor that can be sampled.
Efficiently Discovering Frequent Motifs in Large-scale Sensor Data
While analyzing vehicular sensor data, we found that frequently occurring waveforms could serve as features for further analysis, such as rule mining, classification, and anomaly detection. The discovery of waveform patterns, also known as time-series motifs, has been studied extensively; however, available techniques for discovering frequently occurring time-series motifs were found lacking in either efficiency or quality: Standard subsequence clustering results in poor quality, to the extent that it has even been termed 'meaningless'. Variants of hierarchical clustering using techniques for efficient discovery of 'exact pair motifs' find high-quality frequent motifs, but at the cost of high computational complexity, making such techniques unusable for our voluminous vehicular sensor data. We show that good quality frequent motifs can be discovered using bounded spherical clustering of time-series subsequences, which we refer to as COIN clustering, with near linear complexity in time-series size. COIN clustering addresses many of the challenges that previously led to subsequence clustering being viewed as meaningless. We describe an end-to-end motif-discovery procedure using a sequence of pre and post-processing techniques that remove trivial-matches and shifted-motifs, which also plagued previous subsequence-clustering approaches. We demonstrate that our technique efficiently discovers frequent motifs in voluminous vehicular sensor data as well as in publicly available data sets.
Computational Feasibility of Clustering under Clusterability Assumptions
It is well known that most of the common clustering objectives are NP-hard to optimize. In practice, however, clustering is being routinely carried out. One approach for providing theoretical understanding of this seeming discrepancy is to come up with notions of clusterability that distinguish realistically interesting input data from worst-case data sets. The hope is that there will be clustering algorithms that are provably efficient on such 'clusterable' instances. In other words, hope that "Clustering is difficult only when it does not matter" (CDNM thesis, for short). We believe that to some extent this may indeed be the case. This paper provides a survey of recent papers along this line of research and a critical evaluation their results. Our bottom line conclusion is that that CDNM thesis is still far from being formally substantiated. We start by discussing which requirements should be met in order to provide formal support the validity of the CDNM thesis. In particular, we list some implied requirements for notions of clusterability. We then examine existing results in view of those requirements and outline some research challenges and open questions.
An Empirical Study of the L2-Boost technique with Echo State Networks
A particular case of Recurrent Neural Network (RNN) was introduced at the beginning of the 2000s under the name of Echo State Networks (ESNs). The ESN model overcomes the limitations during the training of the RNNs while introducing no significant disadvantages. Although the model presents some well-identified drawbacks when the parameters are not well initialised. The performance of an ESN is highly dependent on its internal parameters and pattern of connectivity of the hidden-hidden weights Often, the tuning of the network parameters can be hard and can impact in the accuracy of the models. In this work, we investigate the performance of a specific boosting technique (called L2-Boost) with ESNs as single predictors. The L2-Boost technique has been shown to be an effective tool to combine "weak" predictors in regression problems. In this study, we use an ensemble of random initialized ESNs (without control their parameters) as "weak" predictors of the boosting procedure. We evaluate our approach on five well-know time-series benchmark problems. Additionally, we compare this technique with a baseline approach that consists of averaging the prediction of an ensemble of ESNs.
The Learnability of Unknown Quantum Measurements
Quantum machine learning has received significant attention in recent years, and promising progress has been made in the development of quantum algorithms to speed up traditional machine learning tasks. In this work, however, we focus on investigating the information-theoretic upper bounds of sample complexity - how many training samples are sufficient to predict the future behaviour of an unknown target function. This kind of problem is, arguably, one of the most fundamental problems in statistical learning theory and the bounds for practical settings can be completely characterised by a simple measure of complexity. Our main result in the paper is that, for learning an unknown quantum measurement, the upper bound, given by the fat-shattering dimension, is linearly proportional to the dimension of the underlying Hilbert space. Learning an unknown quantum state becomes a dual problem to ours, and as a byproduct, we can recover Aaronson's famous result [Proc. R. Soc. A 463:3089-3144 (2007)] solely using a classical machine learning technique. In addition, other famous complexity measures like covering numbers and Rademacher complexities are derived explicitly. We are able to connect measures of sample complexity with various areas in quantum information science, e.g. quantum state/measurement tomography, quantum state discrimination and quantum random access codes, which may be of independent interest. Lastly, with the assistance of general Bloch-sphere representation, we show that learning quantum measurements/states can be mathematically formulated as a neural network. Consequently, classical ML algorithms can be applied to efficiently accomplish the two quantum learning tasks.
Evaluation of Predictive Data Mining Algorithms in Erythemato-Squamous Disease Diagnosis
A lot of time is spent searching for the most performing data mining algorithms applied in clinical diagnosis. The study set out to identify the most performing predictive data mining algorithms applied in the diagnosis of Erythemato-squamous diseases. The study used Naive Bayes, Multilayer Perceptron and J48 decision tree induction to build predictive data mining models on 366 instances of Erythemato-squamous diseases datasets. Also, 10-fold cross-validation and sets of performance metrics were used to evaluate the baseline predictive performance of the classifiers. The comparative analysis shows that the Naive Bayes performed best with accuracy of 97.4%, Multilayer Perceptron came out second with accuracy of 96.6%, and J48 came out the worst with accuracy of 93.5%. The evaluation of these classifiers on clinical datasets, gave an insight into the predictive ability of different data mining algorithms applicable in clinical diagnosis especially in the diagnosis of Erythemato-squamous diseases.
On Enhancing The Performance Of Nearest Neighbour Classifiers Using Hassanat Distance Metric
We showed in this work how the Hassanat distance metric enhances the performance of the nearest neighbour classifiers. The results demonstrate the superiority of this distance metric over the traditional and most-used distances, such as Manhattan distance and Euclidian distance. Moreover, we proved that the Hassanat distance metric is invariant to data scale, noise and outliers. Throughout this work, it is clearly notable that both ENN and IINC performed very well with the distance investigated, as their accuracy increased significantly by 3.3% and 3.1% respectively, with no significant advantage of the ENN over the IINC in terms of accuracy. Correspondingly, it can be noted from our results that there is no optimal algorithm that can solve all real-life problems perfectly; this is supported by the no-free-lunch theorem
Differential Search Algorithm-based Parametric Optimization of Fuzzy Generalized Eigenvalue Proximal Support Vector Machine
Support Vector Machine (SVM) is an effective model for many classification problems. However, SVM needs the solution of a quadratic program which require specialized code. In addition, SVM has many parameters, which affects the performance of SVM classifier. Recently, the Generalized Eigenvalue Proximal SVM (GEPSVM) has been presented to solve the SVM complexity. In real world applications data may affected by error or noise, working with this data is a challenging problem. In this paper, an approach has been proposed to overcome this problem. This method is called DSA-GEPSVM. The main improvements are carried out based on the following: 1) a novel fuzzy values in the linear case. 2) A new Kernel function in the nonlinear case. 3) Differential Search Algorithm (DSA) is reformulated to find near optimal values of the GEPSVM parameters and its kernel parameters. The experimental results show that the proposed approach is able to find the suitable parameter values, and has higher classification accuracy compared with some other algorithms.
A Deep-structured Conditional Random Field Model for Object Silhouette Tracking
In this work, we introduce a deep-structured conditional random field (DS-CRF) model for the purpose of state-based object silhouette tracking. The proposed DS-CRF model consists of a series of state layers, where each state layer spatially characterizes the object silhouette at a particular point in time. The interactions between adjacent state layers are established by inter-layer connectivity dynamically determined based on inter-frame optical flow. By incorporate both spatial and temporal context in a dynamic fashion within such a deep-structured probabilistic graphical model, the proposed DS-CRF model allows us to develop a framework that can accurately and efficiently track object silhouettes that can change greatly over time, as well as under different situations such as occlusion and multiple targets within the scene. Experiment results using video surveillance datasets containing different scenarios such as occlusion and multiple targets showed that the proposed DS-CRF approach provides strong object silhouette tracking performance when compared to baseline methods such as mean-shift tracking, as well as state-of-the-art methods such as context tracking and boosted particle filtering.
Hashing with binary autoencoders
An attractive approach for fast search in image databases is binary hashing, where each high-dimensional, real-valued image is mapped onto a low-dimensional, binary vector and the search is done in this binary space. Finding the optimal hash function is difficult because it involves binary constraints, and most approaches approximate the optimization by relaxing the constraints and then binarizing the result. Here, we focus on the binary autoencoder model, which seeks to reconstruct an image from the binary code produced by the hash function. We show that the optimization can be simplified with the method of auxiliary coordinates. This reformulates the optimization as alternating two easier steps: one that learns the encoder and decoder separately, and one that optimizes the code for each image. Image retrieval experiments, using precision/recall and a measure of code utilization, show the resulting hash function outperforms or is competitive with state-of-the-art methods for binary hashing.
Sparse Deep Stacking Network for Image Classification
Sparse coding can learn good robust representation to noise and model more higher-order representation for image classification. However, the inference algorithm is computationally expensive even though the supervised signals are used to learn compact and discriminative dictionaries in sparse coding techniques. Luckily, a simplified neural network module (SNNM) has been proposed to directly learn the discriminative dictionaries for avoiding the expensive inference. But the SNNM module ignores the sparse representations. Therefore, we propose a sparse SNNM module by adding the mixed-norm regularization (l1/l2 norm). The sparse SNNM modules are further stacked to build a sparse deep stacking network (S-DSN). In the experiments, we evaluate S-DSN with four databases, including Extended YaleB, AR, 15 scene and Caltech101. Experimental results show that our model outperforms related classification methods with only a linear classifier. It is worth noting that we reach 98.8% recognition accuracy on 15 scene.
Reinforcement Learning and Nonparametric Detection of Game-Theoretic Equilibrium Play in Social Networks
This paper studies two important signal processing aspects of equilibrium behavior in non-cooperative games arising in social networks, namely, reinforcement learning and detection of equilibrium play. The first part of the paper presents a reinforcement learning (adaptive filtering) algorithm that facilitates learning an equilibrium by resorting to diffusion cooperation strategies in a social network. Agents form homophilic social groups, within which they exchange past experiences over an undirected graph. It is shown that, if all agents follow the proposed algorithm, their global behavior is attracted to the correlated equilibria set of the game. The second part of the paper provides a test to detect if the actions of agents are consistent with play from the equilibrium of a concave potential game. The theory of revealed preference from microeconomics is used to construct a non-parametric decision test and statistical test which only require the probe and associated actions of agents. A stochastic gradient algorithm is given to optimize the probe in real time to minimize the Type-II error probabilities of the detection test subject to specified Type-I error probability. We provide a real-world example using the energy market, and a numerical example to detect malicious agents in an online social network.
Efficient Online Relative Comparison Kernel Learning
Learning a kernel matrix from relative comparison human feedback is an important problem with applications in collaborative filtering, object retrieval, and search. For learning a kernel over a large number of objects, existing methods face significant scalability issues inhibiting the application of these methods to settings where a kernel is learned in an online and timely fashion. In this paper we propose a novel framework called Efficient online Relative comparison Kernel LEarning (ERKLE), for efficiently learning the similarity of a large set of objects in an online manner. We learn a kernel from relative comparisons via stochastic gradient descent, one query response at a time, by taking advantage of the sparse and low-rank properties of the gradient to efficiently restrict the kernel to lie in the space of positive semidefinite matrices. In addition, we derive a passive-aggressive online update for minimally satisfying new relative comparisons as to not disrupt the influence of previously obtained comparisons. Experimentally, we demonstrate a considerable improvement in speed while obtaining improved or comparable accuracy compared to current methods in the online learning setting.
ITCM: A Real Time Internet Traffic Classifier Monitor
The continual growth of high speed networks is a challenge for real-time network analysis systems. The real time traffic classification is an issue for corporations and ISPs (Internet Service Providers). This work presents the design and implementation of a real time flow-based network traffic classification system. The classifier monitor acts as a pipeline consisting of three modules: packet capture and pre-processing, flow reassembly, and classification with Machine Learning (ML). The modules are built as concurrent processes with well defined data interfaces between them so that any module can be improved and updated independently. In this pipeline, the flow reassembly function becomes the bottleneck of the performance. In this implementation, was used a efficient method of reassembly which results in a average delivery delay of 0.49 seconds, approximately. For the classification module, the performances of the K-Nearest Neighbor (KNN), C4.5 Decision Tree, Naive Bayes (NB), Flexible Naive Bayes (FNB) and AdaBoost Ensemble Learning Algorithm are compared in order to validate our approach.
Deep Autoencoders for Dimensionality Reduction of High-Content Screening Data
High-content screening uses large collections of unlabeled cell image data to reason about genetics or cell biology. Two important tasks are to identify those cells which bear interesting phenotypes, and to identify sub-populations enriched for these phenotypes. This exploratory data analysis usually involves dimensionality reduction followed by clustering, in the hope that clusters represent a phenotype. We propose the use of stacked de-noising auto-encoders to perform dimensionality reduction for high-content screening. We demonstrate the superior performance of our approach over PCA, Local Linear Embedding, Kernel PCA and Isomap.
Sparse Solutions to Nonnegative Linear Systems and Applications
We give an efficient algorithm for finding sparse approximate solutions to linear systems of equations with nonnegative coefficients. Unlike most known results for sparse recovery, we do not require {\em any} assumption on the matrix other than non-negativity. Our algorithm is combinatorial in nature, inspired by techniques for the set cover problem, as well as the multiplicative weight update method. We then present a natural application to learning mixture models in the PAC framework. For learning a mixture of $k$ axis-aligned Gaussians in $d$ dimensions, we give an algorithm that outputs a mixture of $O(k/\epsilon^3)$ Gaussians that is $\epsilon$-close in statistical distance to the true distribution, without any separation assumptions. The time and sample complexity is roughly $O(kd/\epsilon^3)^{d}$. This is polynomial when $d$ is constant -- precisely the regime in which known methods fail to identify the components efficiently. Given that non-negativity is a natural assumption, we believe that our result may find use in other settings in which we wish to approximately explain data using a small number of a (large) candidate set of components.
Less is More: Building Selective Anomaly Ensembles
Ensemble techniques for classification and clustering have long proven effective, yet anomaly ensembles have been barely studied. In this work, we tap into this gap and propose a new ensemble approach for anomaly mining, with application to event detection in temporal graphs. Our method aims to combine results from heterogeneous detectors with varying outputs, and leverage the evidence from multiple sources to yield better performance. However, trusting all the results may deteriorate the overall ensemble accuracy, as some detectors may fall short and provide inaccurate results depending on the nature of the data in hand. This suggests that being selective in which results to combine is vital in building effective ensembles---hence "less is more". In this paper we propose SELECT; an ensemble approach for anomaly mining that employs novel techniques to automatically and systematically select the results to assemble in a fully unsupervised fashion. We apply our method to event detection in temporal graphs, where SELECT successfully utilizes five base detectors and seven consensus methods under a unified ensemble framework. We provide extensive quantitative evaluation of our approach on five real-world datasets (four with ground truth), including Enron email communications, New York Times news corpus, and World Cup 2014 Twitter news feed. Thanks to its selection mechanism, SELECT yields superior performance compared to individual detectors alone, the full ensemble (naively combining all results), and an existing diversity-based ensemble.
Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering
Recently, the Frank-Wolfe optimization algorithm was suggested as a procedure to obtain adaptive quadrature rules for integrals of functions in a reproducing kernel Hilbert space (RKHS) with a potentially faster rate of convergence than Monte Carlo integration (and "kernel herding" was shown to be a special case of this procedure). In this paper, we propose to replace the random sampling step in a particle filter by Frank-Wolfe optimization. By optimizing the position of the particles, we can obtain better accuracy than random or quasi-Monte Carlo sampling. In applications where the evaluation of the emission probabilities is expensive (such as in robot localization), the additional computational cost to generate the particles through optimization can be justified. Experiments on standard synthetic examples as well as on a robot localization task indicate indeed an improvement of accuracy over random and quasi-Monte Carlo sampling.
HOG based Fast Human Detection
Objects recognition in image is one of the most difficult problems in computer vision. It is also an important step for the implementation of several existing applications that require high-level image interpretation. Therefore, there is a growing interest in this research area during the last years. In this paper, we present an algorithm for human detection and recognition in real-time, from images taken by a CCD camera mounted on a car-like mobile robot. The proposed technique is based on Histograms of Oriented Gradient (HOG) and SVM classifier. The implementation of our detector has provided good results, and can be used in robotics tasks.
Riemannian Metric Learning for Symmetric Positive Definite Matrices
Over the past few years, symmetric positive definite (SPD) matrices have been receiving considerable attention from computer vision community. Though various distance measures have been proposed in the past for comparing SPD matrices, the two most widely-used measures are affine-invariant distance and log-Euclidean distance. This is because these two measures are true geodesic distances induced by Riemannian geometry. In this work, we focus on the log-Euclidean Riemannian geometry and propose a data-driven approach for learning Riemannian metrics/geodesic distances for SPD matrices. We show that the geodesic distance learned using the proposed approach performs better than various existing distance measures when evaluated on face matching and clustering tasks.
A Gaussian Particle Filter Approach for Sensors to Track Multiple Moving Targets
In a variety of problems, the number and state of multiple moving targets are unknown and are subject to be inferred from their measurements obtained by a sensor with limited sensing ability. This type of problems is raised in a variety of applications, including monitoring of endangered species, cleaning, and surveillance. Particle filters are widely used to estimate target state from its prior information and its measurements that recently become available, especially for the cases when the measurement model and the prior distribution of state of interest are non-Gaussian. However, the problem of estimating number of total targets and their state becomes intractable when the number of total targets and the measurement-target association are unknown. This paper presents a novel Gaussian particle filter technique that combines Kalman filter and particle filter for estimating the number and state of total targets based on the measurement obtained online. The estimation is represented by a set of weighted particles, different from classical particle filter, where each particle is a Gaussian distribution instead of a point mass.
Learning a Fuzzy Hyperplane Fat Margin Classifier with Minimum VC dimension
The Vapnik-Chervonenkis (VC) dimension measures the complexity of a learning machine, and a low VC dimension leads to good generalization. The recently proposed Minimal Complexity Machine (MCM) learns a hyperplane classifier by minimizing an exact bound on the VC dimension. This paper extends the MCM classifier to the fuzzy domain. The use of a fuzzy membership is known to reduce the effect of outliers, and to reduce the effect of noise on learning. Experimental results show, that on a number of benchmark datasets, the the fuzzy MCM classifier outperforms SVMs and the conventional MCM in terms of generalization, and that the fuzzy MCM uses fewer support vectors. On several benchmark datasets, the fuzzy MCM classifier yields excellent test set accuracies while using one-tenth the number of support vectors used by SVMs.
Crowd-ML: A Privacy-Preserving Learning Framework for a Crowd of Smart Devices
Smart devices with built-in sensors, computational capabilities, and network connectivity have become increasingly pervasive. The crowds of smart devices offer opportunities to collectively sense and perform computing tasks in an unprecedented scale. This paper presents Crowd-ML, a privacy-preserving machine learning framework for a crowd of smart devices, which can solve a wide range of learning problems for crowdsensing data with differential privacy guarantees. Crowd-ML endows a crowdsensing system with an ability to learn classifiers or predictors online from crowdsensing data privately with minimal computational overheads on devices and servers, suitable for a practical and large-scale employment of the framework. We analyze the performance and the scalability of Crowd-ML, and implement the system with off-the-shelf smartphones as a proof of concept. We demonstrate the advantages of Crowd-ML with real and simulated experiments under various conditions.
Photonic Delay Systems as Machine Learning Implementations
Nonlinear photonic delay systems present interesting implementation platforms for machine learning models. They can be extremely fast, offer great degrees of parallelism and potentially consume far less power than digital processors. So far they have been successfully employed for signal processing using the Reservoir Computing paradigm. In this paper we show that their range of applicability can be greatly extended if we use gradient descent with backpropagation through time on a model of the system to optimize the input encoding of such systems. We perform physical experiments that demonstrate that the obtained input encodings work well in reality, and we show that optimized systems perform significantly better than the common Reservoir Computing approach. The results presented here demonstrate that common gradient descent techniques from machine learning may well be applicable on physical neuro-inspired analog computers.
Combining Language and Vision with a Multimodal Skip-gram Model
We extend the SKIP-GRAM model of Mikolov et al. (2013a) by taking visual information into account. Like SKIP-GRAM, our multimodal models (MMSKIP-GRAM) build vector-based word representations by learning to predict linguistic contexts in text corpora. However, for a restricted set of words, the models are also exposed to visual representations of the objects they denote (extracted from natural images), and must predict linguistic and visual features jointly. The MMSKIP-GRAM models achieve good performance on a variety of semantic benchmarks. Moreover, since they propagate visual information to all words, we use them to improve image labeling and retrieval in the zero-shot setup, where the test concepts are never seen during model training. Finally, the MMSKIP-GRAM models discover intriguing visual properties of abstract words, paving the way to realistic implementations of embodied theories of meaning.
Scaling-up Empirical Risk Minimization: Optimization of Incomplete U-statistics
In a wide range of statistical learning problems such as ranking, clustering or metric learning among others, the risk is accurately estimated by $U$-statistics of degree $d\geq 1$, i.e. functionals of the training data with low variance that take the form of averages over $k$-tuples. From a computational perspective, the calculation of such statistics is highly expensive even for a moderate sample size $n$, as it requires averaging $O(n^d)$ terms. This makes learning procedures relying on the optimization of such data functionals hardly feasible in practice. It is the major goal of this paper to show that, strikingly, such empirical risks can be replaced by drastically computationally simpler Monte-Carlo estimates based on $O(n)$ terms only, usually referred to as incomplete $U$-statistics, without damaging the $O_{\mathbb{P}}(1/\sqrt{n})$ learning rate of Empirical Risk Minimization (ERM) procedures. For this purpose, we establish uniform deviation results describing the error made when approximating a $U$-process by its incomplete version under appropriate complexity assumptions. Extensions to model selection, fast rate situations and various sampling techniques are also considered, as well as an application to stochastic gradient descent for ERM. Finally, numerical examples are displayed in order to provide strong empirical evidence that the approach we promote largely surpasses more naive subsampling techniques.
Max-Cost Discrete Function Evaluation Problem under a Budget
We propose novel methods for max-cost Discrete Function Evaluation Problem (DFEP) under budget constraints. We are motivated by applications such as clinical diagnosis where a patient is subjected to a sequence of (possibly expensive) tests before a decision is made. Our goal is to develop strategies for minimizing max-costs. The problem is known to be NP hard and greedy methods based on specialized impurity functions have been proposed. We develop a broad class of \emph{admissible} impurity functions that admit monomials, classes of polynomials, and hinge-loss functions that allow for flexible impurity design with provably optimal approximation bounds. This flexibility is important for datasets when max-cost can be overly sensitive to "outliers." Outliers bias max-cost to a few examples that require a large number of tests for classification. We design admissible functions that allow for accuracy-cost trade-off and result in $O(\log n)$ guarantees of the optimal cost among trees with corresponding classification accuracy levels.
$\ell_0$ Sparsifying Transform Learning with Efficient Optimal Updates and Convergence Guarantees
Many applications in signal processing benefit from the sparsity of signals in a certain transform domain or dictionary. Synthesis sparsifying dictionaries that are directly adapted to data have been popular in applications such as image denoising, inpainting, and medical image reconstruction. In this work, we focus instead on the sparsifying transform model, and study the learning of well-conditioned square sparsifying transforms. The proposed algorithms alternate between a $\ell_0$ "norm"-based sparse coding step, and a non-convex transform update step. We derive the exact analytical solution for each of these steps. The proposed solution for the transform update step achieves the global minimum in that step, and also provides speedups over iterative solutions involving conjugate gradients. We establish that our alternating algorithms are globally convergent to the set of local minimizers of the non-convex transform learning problems. In practice, the algorithms are insensitive to initialization. We present results illustrating the promising performance and significant speed-ups of transform learning over synthesis K-SVD in image denoising.
Efficient Blind Compressed Sensing Using Sparsifying Transforms with Convergence Guarantees and Application to MRI
Natural signals and images are well-known to be approximately sparse in transform domains such as Wavelets and DCT. This property has been heavily exploited in various applications in image processing and medical imaging. Compressed sensing exploits the sparsity of images or image patches in a transform domain or synthesis dictionary to reconstruct images from undersampled measurements. In this work, we focus on blind compressed sensing, where the underlying sparsifying transform is a priori unknown, and propose a framework to simultaneously reconstruct the underlying image as well as the sparsifying transform from highly undersampled measurements. The proposed block coordinate descent type algorithms involve highly efficient optimal updates. Importantly, we prove that although the proposed blind compressed sensing formulations are highly nonconvex, our algorithms are globally convergent (i.e., they converge from any initialization) to the set of critical points of the objectives defining the formulations. These critical points are guaranteed to be at least partial global and partial local minimizers. The exact point(s) of convergence may depend on initialization. We illustrate the usefulness of the proposed framework for magnetic resonance image reconstruction from highly undersampled k-space measurements. As compared to previous methods involving the synthesis dictionary model, our approach is much faster, while also providing promising reconstruction quality.
Random Bits Regression: a Strong General Predictor for Big Data
To improve accuracy and speed of regressions and classifications, we present a data-based prediction method, Random Bits Regression (RBR). This method first generates a large number of random binary intermediate/derived features based on the original input matrix, and then performs regularized linear/logistic regression on those intermediate/derived features to predict the outcome. Benchmark analyses on a simulated dataset, UCI machine learning repository datasets and a GWAS dataset showed that RBR outperforms other popular methods in accuracy and robustness. RBR (available on https://sourceforge.net/projects/rbr/) is very fast and requires reasonable memories, therefore, provides a strong, robust and fast predictor in the big data era.
On Generalizing the C-Bound to the Multiclass and Multi-label Settings
The C-bound, introduced in Lacasse et al., gives a tight upper bound on the risk of a binary majority vote classifier. In this work, we present a first step towards extending this work to more complex outputs, by providing generalizations of the C-bound to the multiclass and multi-label settings.
An Improvement to the Domain Adaptation Bound in a PAC-Bayesian context
This paper provides a theoretical analysis of domain adaptation based on the PAC-Bayesian theory. We propose an improvement of the previous domain adaptation bound obtained by Germain et al. in two ways. We first give another generalization bound tighter and easier to interpret. Moreover, we provide a new analysis of the constant term appearing in the bound that can be of high interest for developing new algorithmic solutions.
Exploring the efficacy of molecular fragments of different complexity in computational SAR modeling
An important first step in computational SAR modeling is to transform the compounds into a representation that can be processed by predictive modeling techniques. This is typically a feature vector where each feature indicates the presence or absence of a molecular fragment. While the traditional approach to SAR modeling employed size restricted fingerprints derived from path fragments, much research in recent years focussed on mining more complex graph based fragments. Today, there seems to be a growing consensus in the data mining community that these more expressive fragments should be more useful. We question this consensus and show experimentally that fragments of low complexity, i.e. sequences, perform better than equally large sets of more complex ones, an effect we explain by pairwise correlation among fragments and the ability of a fragment set to encode compounds from different classes distinctly. The size restriction on these sets is based on ordering the fragments by class-correlation scores. In addition, we also evaluate the effects of using a significance value instead of a length restriction for path fragments and find a significant reduction in the number of features with little loss in performance.
Deep Learning with Nonparametric Clustering
Clustering is an essential problem in machine learning and data mining. One vital factor that impacts clustering performance is how to learn or design the data representation (or features). Fortunately, recent advances in deep learning can learn unsupervised features effectively, and have yielded state of the art performance in many classification problems, such as character recognition, object recognition and document categorization. However, little attention has been paid to the potential of deep learning for unsupervised clustering problems. In this paper, we propose a deep belief network with nonparametric clustering. As an unsupervised method, our model first leverages the advantages of deep learning for feature representation and dimension reduction. Then, it performs nonparametric clustering under a maximum margin framework -- a discriminative clustering model and can be trained online efficiently in the code space. Lastly model parameters are refined in the deep belief network. Thus, this model can learn features for clustering and infer model complexity in an unified framework. The experimental results show the advantage of our approach over competitive baselines.
Using Riemannian geometry for SSVEP-based Brain Computer Interface
Riemannian geometry has been applied to Brain Computer Interface (BCI) for brain signals classification yielding promising results. Studying electroencephalographic (EEG) signals from their associated covariance matrices allows a mitigation of common sources of variability (electronic, electrical, biological) by constructing a representation which is invariant to these perturbations. While working in Euclidean space with covariance matrices is known to be error-prone, one might take advantage of algorithmic advances in information geometry and matrix manifold to implement methods for Symmetric Positive-Definite (SPD) matrices. This paper proposes a comprehensive review of the actual tools of information geometry and how they could be applied on covariance matrices of EEG. In practice, covariance matrices should be estimated, thus a thorough study of all estimators is conducted on real EEG dataset. As a main contribution, this paper proposes an online implementation of a classifier in the Riemannian space and its subsequent assessment in Steady-State Visually Evoked Potential (SSVEP) experimentations.
Classification with Low Rank and Missing Data
We consider classification and regression tasks where we have missing data and assume that the (clean) data resides in a low rank subspace. Finding a hidden subspace is known to be computationally hard. Nevertheless, using a non-proper formulation we give an efficient agnostic algorithm that classifies as good as the best linear classifier coupled with the best low-dimensional subspace in which the data resides. A direct implication is that our algorithm can linearly (and non-linearly through kernels) classify provably as well as the best classifier that has access to the full data.
Hard to Cheat: A Turing Test based on Answering Questions about Images
Progress in language and image understanding by machines has sparkled the interest of the research community in more open-ended, holistic tasks, and refueled an old AI dream of building intelligent machines. We discuss a few prominent challenges that characterize such holistic tasks and argue for "question answering about images" as a particular appealing instance of such a holistic task. In particular, we point out that it is a version of a Turing Test that is likely to be more robust to over-interpretations and contrast it with tasks like grounding and generation of descriptions. Finally, we discuss tools to measure progress in this field.
Unbiased Bayes for Big Data: Paths of Partial Posteriors
A key quantity of interest in Bayesian inference are expectations of functions with respect to a posterior distribution. Markov Chain Monte Carlo is a fundamental tool to consistently compute these expectations via averaging samples drawn from an approximate posterior. However, its feasibility is being challenged in the era of so called Big Data as all data needs to be processed in every iteration. Realising that such simulation is an unnecessarily hard problem if the goal is estimation, we construct a computationally scalable methodology that allows unbiased estimation of the required expectations -- without explicit simulation from the full posterior. The scheme's variance is finite by construction and straightforward to control, leading to algorithms that are provably unbiased and naturally arrive at a desired error tolerance. This is achieved at an average computational complexity that is sub-linear in the size of the dataset and its free parameters are easy to tune. We demonstrate the utility and generality of the methodology on a range of common statistical models applied to large-scale benchmark and real-world datasets.
Dirichlet Process Parsimonious Mixtures for clustering
The parsimonious Gaussian mixture models, which exploit an eigenvalue decomposition of the group covariance matrices of the Gaussian mixture, have shown their success in particular in cluster analysis. Their estimation is in general performed by maximum likelihood estimation and has also been considered from a parametric Bayesian prospective. We propose new Dirichlet Process Parsimonious mixtures (DPPM) which represent a Bayesian nonparametric formulation of these parsimonious Gaussian mixture models. The proposed DPPM models are Bayesian nonparametric parsimonious mixture models that allow to simultaneously infer the model parameters, the optimal number of mixture components and the optimal parsimonious mixture structure from the data. We develop a Gibbs sampling technique for maximum a posteriori (MAP) estimation of the developed DPMM models and provide a Bayesian model selection framework by using Bayes factors. We apply them to cluster simulated data and real data sets, and compare them to the standard parsimonious mixture models. The obtained results highlight the effectiveness of the proposed nonparametric parsimonious mixture models as a good nonparametric alternative for the parametric parsimonious models.
A Proximal Approach for Sparse Multiclass SVM
Sparsity-inducing penalties are useful tools to design multiclass support vector machines (SVMs). In this paper, we propose a convex optimization approach for efficiently and exactly solving the multiclass SVM learning problem involving a sparse regularization and the multiclass hinge loss formulated by Crammer and Singer. We provide two algorithms: the first one dealing with the hinge loss as a penalty term, and the other one addressing the case when the hinge loss is enforced through a constraint. The related convex optimization problems can be efficiently solved thanks to the flexibility offered by recent primal-dual proximal algorithms and epigraphical splitting techniques. Experiments carried out on several datasets demonstrate the interest of considering the exact expression of the hinge loss rather than a smooth approximation. The efficiency of the proposed algorithms w.r.t. several state-of-the-art methods is also assessed through comparisons of execution times.
Multi-view learning for multivariate performance measures optimization
In this paper, we propose the problem of optimizing multivariate performance measures from multi-view data, and an effective method to solve it. This problem has two features: the data points are presented by multiple views, and the target of learning is to optimize complex multivariate performance measures. We propose to learn a linear discriminant functions for each view, and combine them to construct a overall multivariate mapping function for mult-view data. To learn the parameters of the linear dis- criminant functions of different views to optimize multivariate performance measures, we formulate a optimization problem. In this problem, we propose to minimize the complexity of the linear discriminant functions of each view, encourage the consistences of the responses of different views over the same data points, and minimize the upper boundary of a given multivariate performance measure. To optimize this problem, we employ the cutting-plane method in an iterative algorithm. In each iteration, we update a set of constrains, and optimize the mapping function parameter of each view one by one.
The Fast Convergence of Incremental PCA
We consider a situation in which we see samples in $\mathbb{R}^d$ drawn i.i.d. from some distribution with mean zero and unknown covariance A. We wish to compute the top eigenvector of A in an incremental fashion - with an algorithm that maintains an estimate of the top eigenvector in O(d) space, and incrementally adjusts the estimate with each new data point that arrives. Two classical such schemes are due to Krasulina (1969) and Oja (1983). We give finite-sample convergence rates for both.
PAC-Bayes with Minimax for Confidence-Rated Transduction
We consider using an ensemble of binary classifiers for transductive prediction, when unlabeled test data are known in advance. We derive minimax optimal rules for confidence-rated prediction in this setting. By using PAC-Bayes analysis on these rules, we obtain data-dependent performance guarantees without distributional assumptions on the data. Our analysis techniques are readily extended to a setting in which the predictor is allowed to abstain.
Understanding Kernel Ridge Regression: Common behaviors from simple functions to density functionals
Accurate approximations to density functionals have recently been obtained via machine learning (ML). By applying ML to a simple function of one variable without any random sampling, we extract the qualitative dependence of errors on hyperparameters. We find universal features of the behavior in extreme limits, including both very small and very large length scales, and the noise-free limit. We show how such features arise in ML models of density functionals.
Feature Selection based on Machine Learning in MRIs for Hippocampal Segmentation
Neurodegenerative diseases are frequently associated with structural changes in the brain. Magnetic Resonance Imaging (MRI) scans can show these variations and therefore be used as a supportive feature for a number of neurodegenerative diseases. The hippocampus has been known to be a biomarker for Alzheimer disease and other neurological and psychiatric diseases. However, it requires accurate, robust and reproducible delineation of hippocampal structures. Fully automatic methods are usually the voxel based approach, for each voxel a number of local features were calculated. In this paper we compared four different techniques for feature selection from a set of 315 features extracted for each voxel: (i) filter method based on the Kolmogorov-Smirnov test; two wrapper methods, respectively, (ii) Sequential Forward Selection and (iii) Sequential Backward Elimination; and (iv) embedded method based on the Random Forest Classifier on a set of 10 T1-weighted brain MRIs and tested on an independent set of 25 subjects. The resulting segmentations were compared with manual reference labelling. By using only 23 features for each voxel (sequential backward elimination) we obtained comparable state of-the-art performances with respect to the standard tool FreeSurfer.
Value Iteration with Options and State Aggregation
This paper presents a way of solving Markov Decision Processes that combines state abstraction and temporal abstraction. Specifically, we combine state aggregation with the options framework and demonstrate that they work well together and indeed it is only after one combines the two that the full benefit of each is realized. We introduce a hierarchical value iteration algorithm where we first coarsely solve subgoals and then use these approximate solutions to exactly solve the MDP. This algorithm solved several problems faster than vanilla value iteration.
Stochastic Gradient Based Extreme Learning Machines For Online Learning of Advanced Combustion Engines
In this article, a stochastic gradient based online learning algorithm for Extreme Learning Machines (ELM) is developed (SG-ELM). A stability criterion based on Lyapunov approach is used to prove both asymptotic stability of estimation error and stability in the estimated parameters suitable for identification of nonlinear dynamic systems. The developed algorithm not only guarantees stability, but also reduces the computational demand compared to the OS-ELM approach based on recursive least squares. In order to demonstrate the effectiveness of the algorithm on a real-world scenario, an advanced combustion engine identification problem is considered. The algorithm is applied to two case studies: An online regression learning for system identification of a Homogeneous Charge Compression Ignition (HCCI) Engine and an online classification learning (with class imbalance) for identifying the dynamic operating envelope of the HCCI Engine. The results indicate that the accuracy of the proposed SG-ELM is comparable to that of the state-of-the-art but adds stability and a reduction in computational effort.
Stochastic Local Interaction (SLI) Model: Interfacing Machine Learning and Geostatistics
Machine learning and geostatistics are powerful mathematical frameworks for modeling spatial data. Both approaches, however, suffer from poor scaling of the required computational resources for large data applications. We present the Stochastic Local Interaction (SLI) model, which employs a local representation to improve computational efficiency. SLI combines geostatistics and machine learning with ideas from statistical physics and computational geometry. It is based on a joint probability density function defined by an energy functional which involves local interactions implemented by means of kernel functions with adaptive local kernel bandwidths. SLI is expressed in terms of an explicit, typically sparse, precision (inverse covariance) matrix. This representation leads to a semi-analytical expression for interpolation (prediction), which is valid in any number of dimensions and avoids the computationally costly covariance matrix inversion.
Generalised Random Forest Space Overview
Assuming a view of the Random Forest as a special case of a nested ensemble of interchangeable modules, we construct a generalisation space allowing one to easily develop novel methods based on this algorithm. We discuss the role and required properties of modules at each level, especially in context of some already proposed RF generalisations.
Comment on "Clustering by fast search and find of density peaks"
In [1], a clustering algorithm was given to find the centers of clusters quickly. However, the accuracy of this algorithm heavily depend on the threshold value of d-c. Furthermore, [1] has not provided any efficient way to select the threshold value of d-c, that is, one can have to estimate the value of d_c depend on one's subjective experience. In this paper, based on the data field [2], we propose a new way to automatically extract the threshold value of d_c from the original data set by using the potential entropy of data field. For any data set to be clustered, the most reasonable value of d_c can be objectively calculated from the data set by using our proposed method. The same experiments in [1] are redone with our proposed method on the same experimental data set used in [1], the results of which shows that the problem to calculate the threshold value of d_c in [1] has been solved by using our method.
Regularized maximum correntropy machine
In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two chal- lenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.
Pairwise Constraint Propagation on Multi-View Data
This paper presents a graph-based learning approach to pairwise constraint propagation on multi-view data. Although pairwise constraint propagation has been studied extensively, pairwise constraints are usually defined over pairs of data points from a single view, i.e., only intra-view constraint propagation is considered for multi-view tasks. In fact, very little attention has been paid to inter-view constraint propagation, which is more challenging since pairwise constraints are now defined over pairs of data points from different views. In this paper, we propose to decompose the challenging inter-view constraint propagation problem into semi-supervised learning subproblems so that they can be efficiently solved based on graph-based label propagation. To the best of our knowledge, this is the first attempt to give an efficient solution to inter-view constraint propagation from a semi-supervised learning viewpoint. Moreover, since graph-based label propagation has been adopted for basic optimization, we develop two constrained graph construction methods for interview constraint propagation, which only differ in how the intra-view pairwise constraints are exploited. The experimental results in cross-view retrieval have shown the promising performance of our inter-view constraint propagation.
Information Theory and its Relation to Machine Learning
In this position paper, I first describe a new perspective on machine learning (ML) by four basic problems (or levels), namely, "What to learn?", "How to learn?", "What to evaluate?", and "What to adjust?". The paper stresses more on the first level of "What to learn?", or "Learning Target Selection". Towards this primary problem within the four levels, I briefly review the existing studies about the connection between information theoretical learning (ITL [1]) and machine learning. A theorem is given on the relation between the empirically-defined similarity measure and information measures. Finally, a conjecture is proposed for pursuing a unified mathematical interpretation to learning target selection.
Clustering based on the In-tree Graph Structure and Affinity Propagation
A recently proposed clustering method, called the Nearest Descent (ND), can organize the whole dataset into a sparsely connected graph, called the In-tree. This ND-based Intree structure proves able to reveal the clustering structure underlying the dataset, except one imperfect place, that is, there are some undesired edges in this In-tree which require to be removed. Here, we propose an effective way to automatically remove the undesired edges in In-tree via an effective combination of the In-tree structure with affinity propagation (AP). The key for the combination is to add edges between the reachable nodes in In-tree before using AP to remove the undesired edges. The experiments on both synthetic and real datasets demonstrate the effectiveness of the proposed method.
Deep Belief Nets for Topic Modeling
Applying traditional collaborative filtering to digital publishing is challenging because user data is very sparse due to the high volume of documents relative to the number of users. Content based approaches, on the other hand, is attractive because textual content is often very informative. In this paper we describe large-scale content based collaborative filtering for digital publishing. To solve the digital publishing recommender problem we compare two approaches: latent Dirichlet allocation (LDA) and deep belief nets (DBN) that both find low-dimensional latent representations for documents. Efficient retrieval can be carried out in the latent representation. We work both on public benchmarks and digital media content provided by Issuu, an online publishing platform. This article also comes with a newly developed deep belief nets toolbox for topic modeling tailored towards performance evaluation of the DBN model and comparisons to the LDA model.
Mathematical Language Processing: Automatic Grading and Feedback for Open Response Mathematical Questions
While computer and communication technologies have provided effective means to scale up many aspects of education, the submission and grading of assessments such as homework assignments and tests remains a weak link. In this paper, we study the problem of automatically grading the kinds of open response mathematical questions that figure prominently in STEM (science, technology, engineering, and mathematics) courses. Our data-driven framework for mathematical language processing (MLP) leverages solution data from a large number of learners to evaluate the correctness of their solutions, assign partial-credit scores, and provide feedback to each learner on the likely locations of any errors. MLP takes inspiration from the success of natural language processing for text data and comprises three main steps. First, we convert each solution to an open response mathematical question into a series of numerical features. Second, we cluster the features from several solutions to uncover the structures of correct, partially correct, and incorrect solutions. We develop two different clustering approaches, one that leverages generic clustering algorithms and one based on Bayesian nonparametrics. Third, we automatically grade the remaining (potentially large number of) solutions based on their assigned cluster and one instructor-provided grade per cluster. As a bonus, we can track the cluster assignment of each step of a multistep solution and determine when it departs from a cluster of correct solutions, which enables us to indicate the likely locations of errors to learners. We test and validate MLP on real-world MOOC data to demonstrate how it can substantially reduce the human effort required in large-scale educational platforms.
Structure Learning in Bayesian Networks of Moderate Size by Efficient Sampling
We study the Bayesian model averaging approach to learning Bayesian network structures (DAGs) from data. We develop new algorithms including the first algorithm that is able to efficiently sample DAGs according to the exact structure posterior. The DAG samples can then be used to construct estimators for the posterior of any feature. We theoretically prove good properties of our estimators and empirically show that our estimators considerably outperform the estimators from the previous state-of-the-art methods.
Statistical-mechanical analysis of pre-training and fine tuning in deep learning
In this paper, we present a statistical-mechanical analysis of deep learning. We elucidate some of the essential components of deep learning---pre-training by unsupervised learning and fine tuning by supervised learning. We formulate the extraction of features from the training data as a margin criterion in a high-dimensional feature-vector space. The self-organized classifier is then supplied with small amounts of labelled data, as in deep learning. Although we employ a simple single-layer perceptron model, rather than directly analyzing a multi-layer neural network, we find a nontrivial phase transition that is dependent on the number of unlabelled data in the generalization error of the resultant classifier. In this sense, we evaluate the efficacy of the unsupervised learning component of deep learning. The analysis is performed by the replica method, which is a sophisticated tool in statistical mechanics. We validate our result in the manner of deep learning, using a simple iterative algorithm to learn the weight vector on the basis of belief propagation.
Sparse Bayesian Learning for EEG Source Localization
Purpose: Localizing the sources of electrical activity from electroencephalographic (EEG) data has gained considerable attention over the last few years. In this paper, we propose an innovative source localization method for EEG, based on Sparse Bayesian Learning (SBL). Methods: To better specify the sparsity profile and to ensure efficient source localization, the proposed approach considers grouping of the electrical current dipoles inside human brain. SBL is used to solve the localization problem in addition with imposed constraint that the electric current dipoles associated with the brain activity are isotropic. Results: Numerical experiments are conducted on a realistic head model that is obtained by segmentation of MRI images of the head and includes four major components, namely the scalp, the skull, the cerebrospinal fluid (CSF) and the brain, with appropriate relative conductivity values. The results demonstrate that the isotropy constraint significantly improves the performance of SBL. In a noiseless environment, the proposed method was 1 found to accurately (with accuracy of >75%) locate up to 6 simultaneously active sources, whereas for SBL without the isotropy constraint, the accuracy of finding just 3 simultaneously active sources was <75%. Conclusions: Compared to the state-of-the-art algorithms, the proposed method is potentially more consistent in specifying the sparsity profile of human brain activity and is able to produce better source localization for EEG.
Microscopic Advances with Large-Scale Learning: Stochastic Optimization for Cryo-EM
Determining the 3D structures of biological molecules is a key problem for both biology and medicine. Electron Cryomicroscopy (Cryo-EM) is a promising technique for structure estimation which relies heavily on computational methods to reconstruct 3D structures from 2D images. This paper introduces the challenging Cryo-EM density estimation problem as a novel application for stochastic optimization techniques. Structure discovery is formulated as MAP estimation in a probabilistic latent-variable model, resulting in an optimization problem to which an array of seven stochastic optimization methods are applied. The methods are tested on both real and synthetic data, with some methods recovering reasonable structures in less than one epoch from a random initialization. Complex quasi-Newton methods are found to converge more slowly than simple gradient-based methods, but all stochastic methods are found to converge to similar optima. This method represents a major improvement over existing methods as it is significantly faster and is able to converge from a random initialization.
Robust Face Recognition by Constrained Part-based Alignment
Developing a reliable and practical face recognition system is a long-standing goal in computer vision research. Existing literature suggests that pixel-wise face alignment is the key to achieve high-accuracy face recognition. By assuming a human face as piece-wise planar surfaces, where each surface corresponds to a facial part, we develop in this paper a Constrained Part-based Alignment (CPA) algorithm for face recognition across pose and/or expression. Our proposed algorithm is based on a trainable CPA model, which learns appearance evidence of individual parts and a tree-structured shape configuration among different parts. Given a probe face, CPA simultaneously aligns all its parts by fitting them to the appearance evidence with consideration of the constraint from the tree-structured shape configuration. This objective is formulated as a norm minimization problem regularized by graph likelihoods. CPA can be easily integrated with many existing classifiers to perform part-based face recognition. Extensive experiments on benchmark face datasets show that CPA outperforms or is on par with existing methods for robust face recognition across pose, expression, and/or illumination changes.
Learning Invariants using Decision Trees
The problem of inferring an inductive invariant for verifying program safety can be formulated in terms of binary classification. This is a standard problem in machine learning: given a sample of good and bad points, one is asked to find a classifier that generalizes from the sample and separates the two sets. Here, the good points are the reachable states of the program, and the bad points are those that reach a safety property violation. Thus, a learned classifier is a candidate invariant. In this paper, we propose a new algorithm that uses decision trees to learn candidate invariants in the form of arbitrary Boolean combinations of numerical inequalities. We have used our algorithm to verify C programs taken from the literature. The algorithm is able to infer safe invariants for a range of challenging benchmarks and compares favorably to other ML-based invariant inference techniques. In particular, it scales well to large sample sets.
Relative Entailment Among Probabilistic Implications
We study a natural variant of the implicational fragment of propositional logic. Its formulas are pairs of conjunctions of positive literals, related together by an implicational-like connective; the semantics of this sort of implication is defined in terms of a threshold on a conditional probability of the consequent, given the antecedent: we are dealing with what the data analysis community calls confidence of partial implications or association rules. Existing studies of redundancy among these partial implications have characterized so far only entailment from one premise and entailment from two premises, both in the stand-alone case and in the case of presence of additional classical implications (this is what we call "relative entailment"). By exploiting a previously noted alternative view of the entailment in terms of linear programming duality, we characterize exactly the cases of entailment from arbitrary numbers of premises, again both in the stand-alone case and in the case of presence of additional classical implications. As a result, we obtain decision algorithms of better complexity; additionally, for each potential case of entailment, we identify a critical confidence threshold and show that it is, actually, intrinsic to each set of premises and antecedent of the conclusion.
Scalable Multi-Output Label Prediction: From Classifier Chains to Classifier Trellises
Multi-output inference tasks, such as multi-label classification, have become increasingly important in recent years. A popular method for multi-label classification is classifier chains, in which the predictions of individual classifiers are cascaded along a chain, thus taking into account inter-label dependencies and improving the overall performance. Several varieties of classifier chain methods have been introduced, and many of them perform very competitively across a wide range of benchmark datasets. However, scalability limitations become apparent on larger datasets when modeling a fully-cascaded chain. In particular, the methods' strategies for discovering and modeling a good chain structure constitutes a mayor computational bottleneck. In this paper, we present the classifier trellis (CT) method for scalable multi-label classification. We compare CT with several recently proposed classifier chain methods to show that it occupies an important niche: it is highly competitive on standard multi-label problems, yet it can also scale up to thousands or even tens of thousands of labels.
An Algebra to Merge Heterogeneous Classifiers
In distributed classification, each learner observes its environment and deduces a classifier. As a learner has only a local view of its environment, classifiers can be exchanged among the learners and integrated, or merged, to improve accuracy. However, the operation of merging is not defined for most classifiers. Furthermore, the classifiers that have to be merged may be of different types in settings such as ad-hoc networks in which several generations of sensors may be creating classifiers. We introduce decision spaces as a framework for merging possibly different classifiers. We formally study the merging operation as an algebra, and prove that it satisfies a desirable set of properties. The impact of time is discussed for the two main data mining settings. Firstly, decision spaces can naturally be used with non-stationary distributions, such as the data collected by sensor networks, as the impact of a model decays over time. Secondly, we introduce an approach for stationary distributions, such as homogeneous databases partitioned over different learners, which ensures that all models have the same impact. We also present a method that uses storage flexibly to achieve different types of decay for non-stationary distributions. Finally, we show that the algebraic approach developed for merging can also be used to analyze the behaviour of other operators.
A Bayesian alternative to mutual information for the hierarchical clustering of dependent random variables
The use of mutual information as a similarity measure in agglomerative hierarchical clustering (AHC) raises an important issue: some correction needs to be applied for the dimensionality of variables. In this work, we formulate the decision of merging dependent multivariate normal variables in an AHC procedure as a Bayesian model comparison. We found that the Bayesian formulation naturally shrinks the empirical covariance matrix towards a matrix set a priori (e.g., the identity), provides an automated stopping rule, and corrects for dimensionality using a term that scales up the measure as a function of the dimensionality of the variables. Also, the resulting log Bayes factor is asymptotically proportional to the plug-in estimate of mutual information, with an additive correction for dimensionality in agreement with the Bayesian information criterion. We investigated the behavior of these Bayesian alternatives (in exact and asymptotic forms) to mutual information on simulated and real data. An encouraging result was first derived on simulations: the hierarchical clustering based on the log Bayes factor outperformed off-the-shelf clustering techniques as well as raw and normalized mutual information in terms of classification accuracy. On a toy example, we found that the Bayesian approaches led to results that were similar to those of mutual information clustering techniques, with the advantage of an automated thresholding. On real functional magnetic resonance imaging (fMRI) datasets measuring brain activity, it identified clusters consistent with the established outcome of standard procedures. On this application, normalized mutual information had a highly atypical behavior, in the sense that it systematically favored very large clusters. These initial experiments suggest that the proposed Bayesian alternatives to mutual information are a useful new tool for hierarchical clustering.
Plug-and-play dual-tree algorithm runtime analysis
Numerous machine learning algorithms contain pairwise statistical problems at their core---that is, tasks that require computations over all pairs of input points if implemented naively. Often, tree structures are used to solve these problems efficiently. Dual-tree algorithms can efficiently solve or approximate many of these problems. Using cover trees, rigorous worst-case runtime guarantees have been proven for some of these algorithms. In this paper, we present a problem-independent runtime guarantee for any dual-tree algorithm using the cover tree, separating out the problem-dependent and the problem-independent elements. This allows us to just plug in bounds for the problem-dependent elements to get runtime guarantees for dual-tree algorithms for any pairwise statistical problem without re-deriving the entire proof. We demonstrate this plug-and-play procedure for nearest-neighbor search and approximate kernel density estimation to get improved runtime guarantees. Under mild assumptions, we also present the first linear runtime guarantee for dual-tree based range search.
Extreme Entropy Machines: Robust information theoretic classification
Most of the existing classification methods are aimed at minimization of empirical risk (through some simple point-based error measured with loss function) with added regularization. We propose to approach this problem in a more information theoretic way by investigating applicability of entropy measures as a classification model objective function. We focus on quadratic Renyi's entropy and connected Cauchy-Schwarz Divergence which leads to the construction of Extreme Entropy Machines (EEM). The main contribution of this paper is proposing a model based on the information theoretic concepts which on the one hand shows new, entropic perspective on known linear classifiers and on the other leads to a construction of very robust method competetitive with the state of the art non-information theoretic ones (including Support Vector Machines and Extreme Learning Machines). Evaluation on numerous problems spanning from small, simple ones from UCI repository to the large (hundreads of thousands of samples) extremely unbalanced (up to 100:1 classes' ratios) datasets shows wide applicability of the EEM in real life problems and that it scales well.
Optimizing affinity-based binary hashing using auxiliary coordinates
In supervised binary hashing, one wants to learn a function that maps a high-dimensional feature vector to a vector of binary codes, for application to fast image retrieval. This typically results in a difficult optimization problem, nonconvex and nonsmooth, because of the discrete variables involved. Much work has simply relaxed the problem during training, solving a continuous optimization, and truncating the codes a posteriori. This gives reasonable results but is quite suboptimal. Recent work has tried to optimize the objective directly over the binary codes and achieved better results, but the hash function was still learned a posteriori, which remains suboptimal. We propose a general framework for learning hash functions using affinity-based loss functions that uses auxiliary coordinates. This closes the loop and optimizes jointly over the hash functions and the binary codes so that they gradually match each other. The resulting algorithm can be seen as a corrected, iterated version of the procedure of optimizing first over the codes and then learning the hash function. Compared to this, our optimization is guaranteed to obtain better hash functions while being not much slower, as demonstrated experimentally in various supervised datasets. In addition, our framework facilitates the design of optimization algorithms for arbitrary types of loss and hash functions.
Deep Multimodal Learning for Audio-Visual Speech Recognition
In this paper, we present methods in deep multimodal learning for fusing speech and visual modalities for Audio-Visual Automatic Speech Recognition (AV-ASR). First, we study an approach where uni-modal deep networks are trained separately and their final hidden layers fused to obtain a joint feature space in which another deep network is built. While the audio network alone achieves a phone error rate (PER) of $41\%$ under clean condition on the IBM large vocabulary audio-visual studio dataset, this fusion model achieves a PER of $35.83\%$ demonstrating the tremendous value of the visual channel in phone classification even in audio with high signal to noise ratio. Second, we present a new deep network architecture that uses a bilinear softmax layer to account for class specific correlations between modalities. We show that combining the posteriors from the bilinear networks with those from the fused model mentioned above results in a further significant phone error rate reduction, yielding a final PER of $34.03\%$.
Sketch and Validate for Big Data Clustering
In response to the need for learning tools tuned to big data analytics, the present paper introduces a framework for efficient clustering of huge sets of (possibly high-dimensional) data. Building on random sampling and consensus (RANSAC) ideas pursued earlier in a different (computer vision) context for robust regression, a suite of novel dimensionality and set-reduction algorithms is developed. The advocated sketch-and-validate (SkeVa) family includes two algorithms that rely on K-means clustering per iteration on reduced number of dimensions and/or feature vectors: The first operates in a batch fashion, while the second sequential one offers computational efficiency and suitability with streaming modes of operation. For clustering even nonlinearly separable vectors, the SkeVa family offers also a member based on user-selected kernel functions. Further trading off performance for reduced complexity, a fourth member of the SkeVa family is based on a divergence criterion for selecting proper minimal subsets of feature variables and vectors, thus bypassing the need for K-means clustering per iteration. Extensive numerical tests on synthetic and real data sets highlight the potential of the proposed algorithms, and demonstrate their competitive performance relative to state-of-the-art random projection alternatives.
A Collaborative Kalman Filter for Time-Evolving Dyadic Processes
We present the collaborative Kalman filter (CKF), a dynamic model for collaborative filtering and related factorization models. Using the matrix factorization approach to collaborative filtering, the CKF accounts for time evolution by modeling each low-dimensional latent embedding as a multidimensional Brownian motion. Each observation is a random variable whose distribution is parameterized by the dot product of the relevant Brownian motions at that moment in time. This is naturally interpreted as a Kalman filter with multiple interacting state space vectors. We also present a method for learning a dynamically evolving drift parameter for each location by modeling it as a geometric Brownian motion. We handle posterior intractability via a mean-field variational approximation, which also preserves tractability for downstream calculations in a manner similar to the Kalman filter. We evaluate the model on several large datasets, providing quantitative evaluation on the 10 million Movielens and 100 million Netflix datasets and qualitative evaluation on a set of 39 million stock returns divided across roughly 6,500 companies from the years 1962-2014.
Bi-Objective Nonnegative Matrix Factorization: Linear Versus Kernel-Based Models
Nonnegative matrix factorization (NMF) is a powerful class of feature extraction techniques that has been successfully applied in many fields, namely in signal and image processing. Current NMF techniques have been limited to a single-objective problem in either its linear or nonlinear kernel-based formulation. In this paper, we propose to revisit the NMF as a multi-objective problem, in particular a bi-objective one, where the objective functions defined in both input and feature spaces are taken into account. By taking the advantage of the sum-weighted method from the literature of multi-objective optimization, the proposed bi-objective NMF determines a set of nondominated, Pareto optimal, solutions instead of a single optimal decomposition. Moreover, the corresponding Pareto front is studied and approximated. Experimental results on unmixing real hyperspectral images confirm the efficiency of the proposed bi-objective NMF compared with the state-of-the-art methods.
Bayesian Learning for Low-Rank matrix reconstruction
We develop latent variable models for Bayesian learning based low-rank matrix completion and reconstruction from linear measurements. For under-determined systems, the developed methods are shown to reconstruct low-rank matrices when neither the rank nor the noise power is known a-priori. We derive relations between the latent variable models and several low-rank promoting penalty functions. The relations justify the use of Kronecker structured covariance matrices in a Gaussian based prior. In the methods, we use evidence approximation and expectation-maximization to learn the model parameters. The performance of the methods is evaluated through extensive numerical simulations.
Consistency Analysis of Nearest Subspace Classifier
The Nearest subspace classifier (NSS) finds an estimation of the underlying subspace within each class and assigns data points to the class that corresponds to its nearest subspace. This paper mainly studies how well NSS can be generalized to new samples. It is proved that NSS is strongly consistent under certain assumptions. For completeness, NSS is evaluated through experiments on various simulated and real data sets, in comparison with some other linear model based classifiers. It is also shown that NSS can obtain effective classification results and is very efficient, especially for large scale data sets.
Between Pure and Approximate Differential Privacy
We show a new lower bound on the sample complexity of $(\varepsilon, \delta)$-differentially private algorithms that accurately answer statistical queries on high-dimensional databases. The novelty of our bound is that it depends optimally on the parameter $\delta$, which loosely corresponds to the probability that the algorithm fails to be private, and is the first to smoothly interpolate between approximate differential privacy ($\delta > 0$) and pure differential privacy ($\delta = 0$). Specifically, we consider a database $D \in \{\pm1\}^{n \times d}$ and its \emph{one-way marginals}, which are the $d$ queries of the form "What fraction of individual records have the $i$-th bit set to $+1$?" We show that in order to answer all of these queries to within error $\pm \alpha$ (on average) while satisfying $(\varepsilon, \delta)$-differential privacy, it is necessary that $$ n \geq \Omega\left( \frac{\sqrt{d \log(1/\delta)}}{\alpha \varepsilon} \right), $$ which is optimal up to constant factors. To prove our lower bound, we build on the connection between \emph{fingerprinting codes} and lower bounds in differential privacy (Bun, Ullman, and Vadhan, STOC'14). In addition to our lower bound, we give new purely and approximately differentially private algorithms for answering arbitrary statistical queries that improve on the sample complexity of the standard Laplace and Gaussian mechanisms for achieving worst-case accuracy guarantees by a logarithmic factor.