Dataset Viewer
Auto-converted to Parquet
instance_id
stringlengths
12
53
patch
stringlengths
264
37.7k
repo
stringlengths
8
49
base_commit
stringlengths
40
40
hints_text
stringclasses
114 values
test_patch
stringlengths
224
315k
problem_statement
stringlengths
40
10.4k
version
stringclasses
1 value
FAIL_TO_PASS
sequencelengths
1
4.94k
PASS_TO_PASS
sequencelengths
0
6.23k
created_at
stringlengths
25
25
__index_level_0__
int64
4.13k
6.41k
networkx__networkx-2713
diff --git a/networkx/algorithms/community/quality.py b/networkx/algorithms/community/quality.py index 7de690af7..e04ff260d 100644 --- a/networkx/algorithms/community/quality.py +++ b/networkx/algorithms/community/quality.py @@ -114,7 +114,10 @@ def inter_community_edges(G, partition): # for block in partition)) # return sum(1 for u, v in G.edges() if aff[u] != aff[v]) # - return nx.quotient_graph(G, partition, create_using=nx.MultiGraph()).size() + if G.is_directed(): + return nx.quotient_graph(G, partition, create_using=nx.MultiDiGraph()).size() + else: + return nx.quotient_graph(G, partition, create_using=nx.MultiGraph()).size() def inter_community_non_edges(G, partition): diff --git a/networkx/algorithms/simple_paths.py b/networkx/algorithms/simple_paths.py index 763fa24d7..a2ef79671 100644 --- a/networkx/algorithms/simple_paths.py +++ b/networkx/algorithms/simple_paths.py @@ -333,7 +333,6 @@ def shortest_simple_paths(G, source, target, weight=None): for path in listA: if path[:i] == root: ignore_edges.add((path[i - 1], path[i])) - ignore_nodes.add(root[-1]) try: length, spur = shortest_path_func(G, root[-1], target, ignore_nodes=ignore_nodes, @@ -343,6 +342,7 @@ def shortest_simple_paths(G, source, target, weight=None): listB.push(root_length + length, path) except nx.NetworkXNoPath: pass + ignore_nodes.add(root[-1]) if listB: path = listB.pop() @@ -447,6 +447,8 @@ def _bidirectional_pred_succ(G, source, target, ignore_nodes=None, ignore_edges= succ is a dictionary of successors from w to the target. """ # does BFS from both source and target and meets in the middle + if ignore_nodes and (source in ignore_nodes or target in ignore_nodes): + raise nx.NetworkXNoPath("No path between %s and %s." % (source, target)) if target == source: return ({target: None}, {source: None}, source) @@ -605,6 +607,8 @@ def _bidirectional_dijkstra(G, source, target, weight='weight', shortest_path shortest_path_length """ + if ignore_nodes and (source in ignore_nodes or target in ignore_nodes): + raise nx.NetworkXNoPath("No path between %s and %s." % (source, target)) if source == target: return (0, [source])
networkx/networkx
9f6c9cd6a561d41192bc29f14fd9bc16bcaad919
diff --git a/networkx/algorithms/community/tests/test_quality.py b/networkx/algorithms/community/tests/test_quality.py index 0c5b94c5a..79ce7e7f6 100644 --- a/networkx/algorithms/community/tests/test_quality.py +++ b/networkx/algorithms/community/tests/test_quality.py @@ -12,6 +12,7 @@ module. """ from __future__ import division +from nose.tools import assert_equal from nose.tools import assert_almost_equal import networkx as nx @@ -19,6 +20,7 @@ from networkx import barbell_graph from networkx.algorithms.community import coverage from networkx.algorithms.community import modularity from networkx.algorithms.community import performance +from networkx.algorithms.community.quality import inter_community_edges class TestPerformance(object): @@ -61,3 +63,17 @@ def test_modularity(): assert_almost_equal(-16 / (14 ** 2), modularity(G, C)) C = [{0, 1, 2}, {3, 4, 5}] assert_almost_equal((35 * 2) / (14 ** 2), modularity(G, C)) + + +def test_inter_community_edges_with_digraphs(): + G = nx.complete_graph(2, create_using = nx.DiGraph()) + partition = [{0}, {1}] + assert_equal(inter_community_edges(G, partition), 2) + + G = nx.complete_graph(10, create_using = nx.DiGraph()) + partition = [{0}, {1, 2}, {3, 4, 5}, {6, 7, 8, 9}] + assert_equal(inter_community_edges(G, partition), 70) + + G = nx.cycle_graph(4, create_using = nx.DiGraph()) + partition = [{0, 1}, {2, 3}] + assert_equal(inter_community_edges(G, partition), 2) diff --git a/networkx/algorithms/tests/test_simple_paths.py b/networkx/algorithms/tests/test_simple_paths.py index e29255c32..4c701e487 100644 --- a/networkx/algorithms/tests/test_simple_paths.py +++ b/networkx/algorithms/tests/test_simple_paths.py @@ -220,6 +220,40 @@ def test_directed_weighted_shortest_simple_path(): cost = this_cost +def test_weighted_shortest_simple_path_issue2427(): + G = nx.Graph() + G.add_edge('IN', 'OUT', weight = 2) + G.add_edge('IN', 'A', weight = 1) + G.add_edge('IN', 'B', weight = 2) + G.add_edge('B', 'OUT', weight = 2) + assert_equal(list(nx.shortest_simple_paths(G, 'IN', 'OUT', weight = "weight")), + [['IN', 'OUT'], ['IN', 'B', 'OUT']]) + G = nx.Graph() + G.add_edge('IN', 'OUT', weight = 10) + G.add_edge('IN', 'A', weight = 1) + G.add_edge('IN', 'B', weight = 1) + G.add_edge('B', 'OUT', weight = 1) + assert_equal(list(nx.shortest_simple_paths(G, 'IN', 'OUT', weight = "weight")), + [['IN', 'B', 'OUT'], ['IN', 'OUT']]) + + +def test_directed_weighted_shortest_simple_path_issue2427(): + G = nx.DiGraph() + G.add_edge('IN', 'OUT', weight = 2) + G.add_edge('IN', 'A', weight = 1) + G.add_edge('IN', 'B', weight = 2) + G.add_edge('B', 'OUT', weight = 2) + assert_equal(list(nx.shortest_simple_paths(G, 'IN', 'OUT', weight = "weight")), + [['IN', 'OUT'], ['IN', 'B', 'OUT']]) + G = nx.DiGraph() + G.add_edge('IN', 'OUT', weight = 10) + G.add_edge('IN', 'A', weight = 1) + G.add_edge('IN', 'B', weight = 1) + G.add_edge('B', 'OUT', weight = 1) + assert_equal(list(nx.shortest_simple_paths(G, 'IN', 'OUT', weight = "weight")), + [['IN', 'B', 'OUT'], ['IN', 'OUT']]) + + def test_weight_name(): G = nx.cycle_graph(7) nx.set_edge_attributes(G, 1, 'weight') @@ -303,6 +337,38 @@ def test_bidirectional_shortest_path_restricted_directed_cycle(): ) +def test_bidirectional_shortest_path_ignore(): + G = nx.Graph() + nx.add_path(G, [1, 2]) + nx.add_path(G, [1, 3]) + nx.add_path(G, [1, 4]) + assert_raises( + nx.NetworkXNoPath, + _bidirectional_shortest_path, + G, + 1, 2, + ignore_nodes=[1], + ) + assert_raises( + nx.NetworkXNoPath, + _bidirectional_shortest_path, + G, + 1, 2, + ignore_nodes=[2], + ) + G = nx.Graph() + nx.add_path(G, [1, 3]) + nx.add_path(G, [1, 4]) + nx.add_path(G, [3, 2]) + assert_raises( + nx.NetworkXNoPath, + _bidirectional_shortest_path, + G, + 1, 2, + ignore_nodes=[1, 2], + ) + + def validate_path(G, s, t, soln_len, path): assert_equal(path[0], s) assert_equal(path[-1], t) @@ -362,3 +428,30 @@ def test_bidirectional_dijkstra_no_path(): nx.add_path(G, [1, 2, 3]) nx.add_path(G, [4, 5, 6]) path = _bidirectional_dijkstra(G, 1, 6) + + +def test_bidirectional_dijkstra_ignore(): + G = nx.Graph() + nx.add_path(G, [1, 2, 10]) + nx.add_path(G, [1, 3, 10]) + assert_raises( + nx.NetworkXNoPath, + _bidirectional_dijkstra, + G, + 1, 2, + ignore_nodes=[1], + ) + assert_raises( + nx.NetworkXNoPath, + _bidirectional_dijkstra, + G, + 1, 2, + ignore_nodes=[2], + ) + assert_raises( + nx.NetworkXNoPath, + _bidirectional_dijkstra, + G, + 1, 2, + ignore_nodes=[1, 2], + )
inter_community_non_edges ignore directionality Hi, I think the function: nx.algorithms.community.quality.inter_community_non_edges() does not work properly for directed graph. It always return the non-edge of a undirected graph, basically halving the number of edges. This mean that the performance function (nx.algorithms.community.performance) will never by higher than 50% for a directed graph. I'm using version '2.0.dev_20170801111157', python 3.5.1 Best, Nicolas
0.0
[ "networkx/algorithms/community/tests/test_quality.py::TestPerformance::test_bad_partition", "networkx/algorithms/community/tests/test_quality.py::TestPerformance::test_good_partition", "networkx/algorithms/community/tests/test_quality.py::TestCoverage::test_bad_partition", "networkx/algorithms/community/tests/test_quality.py::TestCoverage::test_good_partition", "networkx/algorithms/community/tests/test_quality.py::test_modularity", "networkx/algorithms/community/tests/test_quality.py::test_inter_community_edges_with_digraphs", "networkx/algorithms/tests/test_simple_paths.py::TestIsSimplePath::test_empty_list", "networkx/algorithms/tests/test_simple_paths.py::TestIsSimplePath::test_trivial_path", "networkx/algorithms/tests/test_simple_paths.py::TestIsSimplePath::test_trivial_nonpath", "networkx/algorithms/tests/test_simple_paths.py::TestIsSimplePath::test_simple_path", "networkx/algorithms/tests/test_simple_paths.py::TestIsSimplePath::test_non_simple_path", "networkx/algorithms/tests/test_simple_paths.py::TestIsSimplePath::test_cycle", "networkx/algorithms/tests/test_simple_paths.py::TestIsSimplePath::test_missing_node", "networkx/algorithms/tests/test_simple_paths.py::TestIsSimplePath::test_directed_path", "networkx/algorithms/tests/test_simple_paths.py::TestIsSimplePath::test_directed_non_path", "networkx/algorithms/tests/test_simple_paths.py::TestIsSimplePath::test_directed_cycle", "networkx/algorithms/tests/test_simple_paths.py::TestIsSimplePath::test_multigraph", "networkx/algorithms/tests/test_simple_paths.py::TestIsSimplePath::test_multidigraph", "networkx/algorithms/tests/test_simple_paths.py::test_all_simple_paths", "networkx/algorithms/tests/test_simple_paths.py::test_all_simple_paths_cutoff", "networkx/algorithms/tests/test_simple_paths.py::test_all_simple_paths_multigraph", "networkx/algorithms/tests/test_simple_paths.py::test_all_simple_paths_multigraph_with_cutoff", "networkx/algorithms/tests/test_simple_paths.py::test_all_simple_paths_directed", "networkx/algorithms/tests/test_simple_paths.py::test_all_simple_paths_empty", "networkx/algorithms/tests/test_simple_paths.py::test_hamiltonian_path", "networkx/algorithms/tests/test_simple_paths.py::test_cutoff_zero", "networkx/algorithms/tests/test_simple_paths.py::test_source_missing", "networkx/algorithms/tests/test_simple_paths.py::test_target_missing", "networkx/algorithms/tests/test_simple_paths.py::test_shortest_simple_paths", "networkx/algorithms/tests/test_simple_paths.py::test_shortest_simple_paths_directed", "networkx/algorithms/tests/test_simple_paths.py::test_Greg_Bernstein", "networkx/algorithms/tests/test_simple_paths.py::test_weighted_shortest_simple_path", "networkx/algorithms/tests/test_simple_paths.py::test_directed_weighted_shortest_simple_path", "networkx/algorithms/tests/test_simple_paths.py::test_weighted_shortest_simple_path_issue2427", "networkx/algorithms/tests/test_simple_paths.py::test_directed_weighted_shortest_simple_path_issue2427", "networkx/algorithms/tests/test_simple_paths.py::test_weight_name", "networkx/algorithms/tests/test_simple_paths.py::test_ssp_source_missing", "networkx/algorithms/tests/test_simple_paths.py::test_ssp_target_missing", "networkx/algorithms/tests/test_simple_paths.py::test_ssp_multigraph", "networkx/algorithms/tests/test_simple_paths.py::test_bidirectional_shortest_path_restricted_cycle", "networkx/algorithms/tests/test_simple_paths.py::test_bidirectional_shortest_path_restricted_wheel", "networkx/algorithms/tests/test_simple_paths.py::test_bidirectional_shortest_path_restricted_directed_cycle", "networkx/algorithms/tests/test_simple_paths.py::test_bidirectional_shortest_path_ignore", "networkx/algorithms/tests/test_simple_paths.py::test_bidirectional_dijksta_restricted", "networkx/algorithms/tests/test_simple_paths.py::test_bidirectional_dijkstra_no_path", "networkx/algorithms/tests/test_simple_paths.py::test_bidirectional_dijkstra_ignore" ]
[]
2017-10-15 17:09:15+00:00
4,131
networkx__networkx-3822
diff --git a/networkx/generators/random_graphs.py b/networkx/generators/random_graphs.py index e4f2c569d..745f64e4d 100644 --- a/networkx/generators/random_graphs.py +++ b/networkx/generators/random_graphs.py @@ -1000,6 +1000,11 @@ def random_lobster(n, p1, p2, seed=None): leaf nodes. A caterpillar is a tree that reduces to a path graph when pruning all leaf nodes; setting `p2` to zero produces a caterpillar. + This implementation iterates on the probabilities `p1` and `p2` to add + edges at levels 1 and 2, respectively. Graphs are therefore constructed + iteratively with uniform randomness at each level rather than being selected + uniformly at random from the set of all possible lobsters. + Parameters ---------- n : int @@ -1011,19 +1016,29 @@ def random_lobster(n, p1, p2, seed=None): seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. + + Raises + ------ + NetworkXError + If `p1` or `p2` parameters are >= 1 because the while loops would never finish. """ + p1, p2 = abs(p1), abs(p2) + if any([p >= 1 for p in [p1, p2]]): + raise nx.NetworkXError("Probability values for `p1` and `p2` must both be < 1.") + # a necessary ingredient in any self-respecting graph library llen = int(2 * seed.random() * n + 0.5) L = path_graph(llen) # build caterpillar: add edges to path graph with probability p1 current_node = llen - 1 for n in range(llen): - if seed.random() < p1: # add fuzzy caterpillar parts + while seed.random() < p1: # add fuzzy caterpillar parts current_node += 1 L.add_edge(n, current_node) - if seed.random() < p2: # add crunchy lobster bits + cat_node = current_node + while seed.random() < p2: # add crunchy lobster bits current_node += 1 - L.add_edge(current_node - 1, current_node) + L.add_edge(cat_node, current_node) return L # voila, un lobster!
networkx/networkx
a4d024c54f06d17d2f9ab26595a0b20ed6858f5c
diff --git a/networkx/generators/tests/test_random_graphs.py b/networkx/generators/tests/test_random_graphs.py index f958dceab..8f2d68415 100644 --- a/networkx/generators/tests/test_random_graphs.py +++ b/networkx/generators/tests/test_random_graphs.py @@ -91,7 +91,38 @@ class TestGeneratorsRandom: constructor = [(10, 20, 0.8), (20, 40, 0.8)] G = random_shell_graph(constructor, seed) + def is_caterpillar(g): + """ + A tree is a caterpillar iff all nodes of degree >=3 are surrounded + by at most two nodes of degree two or greater. + ref: http://mathworld.wolfram.com/CaterpillarGraph.html + """ + deg_over_3 = [n for n in g if g.degree(n) >= 3] + for n in deg_over_3: + nbh_deg_over_2 = [nbh for nbh in g.neighbors(n) if g.degree(nbh) >= 2] + if not len(nbh_deg_over_2) <= 2: + return False + return True + + def is_lobster(g): + """ + A tree is a lobster if it has the property that the removal of leaf + nodes leaves a caterpillar graph (Gallian 2007) + ref: http://mathworld.wolfram.com/LobsterGraph.html + """ + non_leafs = [n for n in g if g.degree(n) > 1] + return is_caterpillar(g.subgraph(non_leafs)) + G = random_lobster(10, 0.1, 0.5, seed) + assert max([G.degree(n) for n in G.nodes()]) > 3 + assert is_lobster(G) + pytest.raises(NetworkXError, random_lobster, 10, 0.1, 1, seed) + pytest.raises(NetworkXError, random_lobster, 10, 1, 1, seed) + pytest.raises(NetworkXError, random_lobster, 10, 1, 0.5, seed) + + # docstring says this should be a caterpillar + G = random_lobster(10, 0.1, 0.0, seed) + assert is_caterpillar(G) # difficult to find seed that requires few tries seq = random_powerlaw_tree_sequence(10, 3, seed=14, tries=1)
Wrong random_lobster implementation? Hi, it seems that [networkx.random_lobster's implementation logic](https://github.com/networkx/networkx/blob/4e9771f04192e94a5cbdd71249a983d124a56593/networkx/generators/random_graphs.py#L1009) is not aligned with the common definition as given in [wolfram mathworld](http://mathworld.wolfram.com/LobsterGraph.html) or [Wikipedia](https://en.wikipedia.org/wiki/List_of_graphs#Lobster). For example, it can not produce the simplest lobster graph examples such as ![lobster_example](https://www.researchgate.net/profile/Dr_Nasreen_Khan/publication/256292297/figure/fig5/AS:669566174756876@1536648424468/A-diameter-2-lobster-graph.png).
0.0
[ "networkx/generators/tests/test_random_graphs.py::TestGeneratorsRandom::test_random_graph" ]
[ "networkx/generators/tests/test_random_graphs.py::TestGeneratorsRandom::test_dual_barabasi_albert", "networkx/generators/tests/test_random_graphs.py::TestGeneratorsRandom::test_extended_barabasi_albert", "networkx/generators/tests/test_random_graphs.py::TestGeneratorsRandom::test_random_zero_regular_graph", "networkx/generators/tests/test_random_graphs.py::TestGeneratorsRandom::test_gnp", "networkx/generators/tests/test_random_graphs.py::TestGeneratorsRandom::test_gnm", "networkx/generators/tests/test_random_graphs.py::TestGeneratorsRandom::test_watts_strogatz_big_k", "networkx/generators/tests/test_random_graphs.py::TestGeneratorsRandom::test_random_kernel_graph" ]
2020-02-16 23:49:40+00:00
4,132
networkx__networkx-3848
diff --git a/networkx/algorithms/connectivity/cuts.py b/networkx/algorithms/connectivity/cuts.py index 846cd4729..dd59e3db9 100644 --- a/networkx/algorithms/connectivity/cuts.py +++ b/networkx/algorithms/connectivity/cuts.py @@ -281,7 +281,7 @@ def minimum_st_node_cut(G, s, t, flow_func=None, auxiliary=None, residual=None): if mapping is None: raise nx.NetworkXError('Invalid auxiliary digraph.') if G.has_edge(s, t) or G.has_edge(t, s): - return [] + return {} kwargs = dict(flow_func=flow_func, residual=residual, auxiliary=H) # The edge cut in the auxiliary digraph corresponds to the node cut in the
networkx/networkx
3f4f9c3379a5d70fc58852154aab7b1051ff96d6
diff --git a/networkx/algorithms/connectivity/tests/test_cuts.py b/networkx/algorithms/connectivity/tests/test_cuts.py index b98fbfa5e..257797a6f 100644 --- a/networkx/algorithms/connectivity/tests/test_cuts.py +++ b/networkx/algorithms/connectivity/tests/test_cuts.py @@ -268,7 +268,7 @@ def tests_minimum_st_node_cut(): G.add_nodes_from([0, 1, 2, 3, 7, 8, 11, 12]) G.add_edges_from([(7, 11), (1, 11), (1, 12), (12, 8), (0, 1)]) nodelist = minimum_st_node_cut(G, 7, 11) - assert(nodelist == []) + assert(nodelist == {}) def test_invalid_auxiliary():
`minimum_st_node_cut` returns empty list instead of set for adjacent nodes https://github.com/networkx/networkx/blob/3f4f9c3379a5d70fc58852154aab7b1051ff96d6/networkx/algorithms/connectivity/cuts.py#L284 Should read `return {}`. Was questioning my sanity for a bit there 😉
0.0
[ "networkx/algorithms/connectivity/tests/test_cuts.py::tests_minimum_st_node_cut" ]
[ "networkx/algorithms/connectivity/tests/test_cuts.py::test_articulation_points", "networkx/algorithms/connectivity/tests/test_cuts.py::test_brandes_erlebach_book", "networkx/algorithms/connectivity/tests/test_cuts.py::test_white_harary_paper", "networkx/algorithms/connectivity/tests/test_cuts.py::test_petersen_cutset", "networkx/algorithms/connectivity/tests/test_cuts.py::test_octahedral_cutset", "networkx/algorithms/connectivity/tests/test_cuts.py::test_icosahedral_cutset", "networkx/algorithms/connectivity/tests/test_cuts.py::test_node_cutset_exception", "networkx/algorithms/connectivity/tests/test_cuts.py::test_node_cutset_random_graphs", "networkx/algorithms/connectivity/tests/test_cuts.py::test_edge_cutset_random_graphs", "networkx/algorithms/connectivity/tests/test_cuts.py::test_empty_graphs", "networkx/algorithms/connectivity/tests/test_cuts.py::test_unbounded", "networkx/algorithms/connectivity/tests/test_cuts.py::test_missing_source", "networkx/algorithms/connectivity/tests/test_cuts.py::test_missing_target", "networkx/algorithms/connectivity/tests/test_cuts.py::test_not_weakly_connected", "networkx/algorithms/connectivity/tests/test_cuts.py::test_not_connected", "networkx/algorithms/connectivity/tests/test_cuts.py::tests_min_cut_complete", "networkx/algorithms/connectivity/tests/test_cuts.py::tests_min_cut_complete_directed", "networkx/algorithms/connectivity/tests/test_cuts.py::test_invalid_auxiliary", "networkx/algorithms/connectivity/tests/test_cuts.py::test_interface_only_source", "networkx/algorithms/connectivity/tests/test_cuts.py::test_interface_only_target" ]
2020-03-04 08:11:36+00:00
4,133
networkx__networkx-4066
diff --git a/networkx/relabel.py b/networkx/relabel.py index 737b5af3d..26f50d241 100644 --- a/networkx/relabel.py +++ b/networkx/relabel.py @@ -13,7 +13,7 @@ def relabel_nodes(G, mapping, copy=True): mapping : dictionary A dictionary with the old labels as keys and new labels as values. - A partial mapping is allowed. + A partial mapping is allowed. Mapping 2 nodes to a single node is allowed. copy : bool (optional, default=True) If True return a copy, or if False relabel the nodes in place. @@ -64,6 +64,27 @@ def relabel_nodes(G, mapping, copy=True): >>> list(H) [0, 1, 4] + In a multigraph, relabeling two or more nodes to the same new node + will retain all edges, but may change the edge keys in the process: + + >>> G = nx.MultiGraph() + >>> G.add_edge(0, 1, value="a") # returns the key for this edge + 0 + >>> G.add_edge(0, 2, value="b") + 0 + >>> G.add_edge(0, 3, value="c") + 0 + >>> mapping = {1: 4, 2: 4, 3: 4} + >>> H = nx.relabel_nodes(G, mapping, copy=True) + >>> print(H[0]) + {4: {0: {'value': 'a'}, 1: {'value': 'b'}, 2: {'value': 'c'}}} + + This works for in-place relabeling too: + + >>> G = nx.relabel_nodes(G, mapping, copy=False) + >>> print(G[0]) + {4: {0: {'value': 'a'}, 1: {'value': 'b'}, 2: {'value': 'c'}}} + Notes ----- Only the nodes specified in the mapping will be relabeled. @@ -77,6 +98,13 @@ def relabel_nodes(G, mapping, copy=True): graph is not possible in-place and an exception is raised. In that case, use copy=True. + If a relabel operation on a multigraph would cause two or more + edges to have the same source, target and key, the second edge must + be assigned a new key to retain all edges. The new key is set + to the lowest non-negative integer not already used as a key + for edges between these two nodes. Note that this means non-numeric + keys may be replaced by numeric keys. + See Also -------- convert_node_labels_to_integers @@ -136,6 +164,15 @@ def _relabel_inplace(G, mapping): (new if old == source else source, new, key, data) for (source, _, key, data) in G.in_edges(old, data=True, keys=True) ] + # Ensure new edges won't overwrite existing ones + seen = set() + for i, (source, target, key, data) in enumerate(new_edges): + if (target in G[source] and key in G[source][target]): + new_key = 0 if not isinstance(key, (int, float)) else key + while (new_key in G[source][target] or (target, new_key) in seen): + new_key += 1 + new_edges[i] = (source, target, new_key, data) + seen.add((target, new_key)) else: new_edges = [ (new, new if old == target else target, data) @@ -156,10 +193,25 @@ def _relabel_copy(G, mapping): H.add_nodes_from(mapping.get(n, n) for n in G) H._node.update((mapping.get(n, n), d.copy()) for n, d in G.nodes.items()) if G.is_multigraph(): - H.add_edges_from( + new_edges = [ (mapping.get(n1, n1), mapping.get(n2, n2), k, d.copy()) for (n1, n2, k, d) in G.edges(keys=True, data=True) - ) + ] + + # check for conflicting edge-keys + undirected = not G.is_directed() + seen_edges = set() + for i, (source, target, key, data) in enumerate(new_edges): + while (source, target, key) in seen_edges: + if not isinstance(key, (int, float)): + key = 0 + key += 1 + seen_edges.add((source, target, key)) + if undirected: + seen_edges.add((target, source, key)) + new_edges[i] = (source, target, key, data) + + H.add_edges_from(new_edges) else: H.add_edges_from( (mapping.get(n1, n1), mapping.get(n2, n2), d.copy())
networkx/networkx
5638e1ff3d01e21c7d950615a699eb1f99987b8d
diff --git a/networkx/tests/test_relabel.py b/networkx/tests/test_relabel.py index 9b8ad2998..909904bc9 100644 --- a/networkx/tests/test_relabel.py +++ b/networkx/tests/test_relabel.py @@ -183,3 +183,109 @@ class TestRelabel: G = nx.MultiDiGraph([(1, 1)]) G = nx.relabel_nodes(G, {1: 0}, copy=False) assert_nodes_equal(G.nodes(), [0]) + +# def test_relabel_multidigraph_inout_inplace(self): +# pass + def test_relabel_multidigraph_inout_merge_nodes(self): + for MG in (nx.MultiGraph, nx.MultiDiGraph): + for cc in (True, False): + G = MG([(0, 4), (1, 4), (4, 2), (4, 3)]) + G[0][4][0]["value"] = "a" + G[1][4][0]["value"] = "b" + G[4][2][0]["value"] = "c" + G[4][3][0]["value"] = "d" + G.add_edge(0, 4, key="x", value="e") + G.add_edge(4, 3, key="x", value="f") + mapping = {0: 9, 1: 9, 2: 9, 3: 9} + H = nx.relabel_nodes(G, mapping, copy=cc) + # No ordering on keys enforced + assert {"value": "a"} in H[9][4].values() + assert {"value": "b"} in H[9][4].values() + assert {"value": "c"} in H[4][9].values() + assert len(H[4][9]) == 3 if G.is_directed() else 6 + assert {"value": "d"} in H[4][9].values() + assert {"value": "e"} in H[9][4].values() + assert {"value": "f"} in H[4][9].values() + assert len(H[9][4]) == 3 if G.is_directed() else 6 + + def test_relabel_multigraph_merge_inplace(self): + G = nx.MultiGraph([(0, 1), (0, 2), (0, 3), (0, 1), (0, 2), (0, 3)]) + G[0][1][0]["value"] = "a" + G[0][2][0]["value"] = "b" + G[0][3][0]["value"] = "c" + mapping = {1: 4, 2: 4, 3: 4} + nx.relabel_nodes(G, mapping, copy=False) + # No ordering on keys enforced + assert {"value": "a"} in G[0][4].values() + assert {"value": "b"} in G[0][4].values() + assert {"value": "c"} in G[0][4].values() + + def test_relabel_multidigraph_merge_inplace(self): + G = nx.MultiDiGraph([(0, 1), (0, 2), (0, 3)]) + G[0][1][0]["value"] = "a" + G[0][2][0]["value"] = "b" + G[0][3][0]["value"] = "c" + mapping = {1: 4, 2: 4, 3: 4} + nx.relabel_nodes(G, mapping, copy=False) + # No ordering on keys enforced + assert {"value": "a"} in G[0][4].values() + assert {"value": "b"} in G[0][4].values() + assert {"value": "c"} in G[0][4].values() + + def test_relabel_multidigraph_inout_copy(self): + G = nx.MultiDiGraph([(0, 4), (1, 4), (4, 2), (4, 3)]) + G[0][4][0]["value"] = "a" + G[1][4][0]["value"] = "b" + G[4][2][0]["value"] = "c" + G[4][3][0]["value"] = "d" + G.add_edge(0, 4, key="x", value="e") + G.add_edge(4, 3, key="x", value="f") + mapping = {0: 9, 1: 9, 2: 9, 3: 9} + H = nx.relabel_nodes(G, mapping, copy=True) + # No ordering on keys enforced + assert {"value": "a"} in H[9][4].values() + assert {"value": "b"} in H[9][4].values() + assert {"value": "c"} in H[4][9].values() + assert len(H[4][9]) == 3 + assert {"value": "d"} in H[4][9].values() + assert {"value": "e"} in H[9][4].values() + assert {"value": "f"} in H[4][9].values() + assert len(H[9][4]) == 3 + + def test_relabel_multigraph_merge_copy(self): + G = nx.MultiGraph([(0, 1), (0, 2), (0, 3)]) + G[0][1][0]["value"] = "a" + G[0][2][0]["value"] = "b" + G[0][3][0]["value"] = "c" + mapping = {1: 4, 2: 4, 3: 4} + H = nx.relabel_nodes(G, mapping, copy=True) + assert {"value": "a"} in H[0][4].values() + assert {"value": "b"} in H[0][4].values() + assert {"value": "c"} in H[0][4].values() + + def test_relabel_multidigraph_merge_copy(self): + G = nx.MultiDiGraph([(0, 1), (0, 2), (0, 3)]) + G[0][1][0]["value"] = "a" + G[0][2][0]["value"] = "b" + G[0][3][0]["value"] = "c" + mapping = {1: 4, 2: 4, 3: 4} + H = nx.relabel_nodes(G, mapping, copy=True) + assert {"value": "a"} in H[0][4].values() + assert {"value": "b"} in H[0][4].values() + assert {"value": "c"} in H[0][4].values() + + def test_relabel_multigraph_nonnumeric_key(self): + for MG in (nx.MultiGraph, nx.MultiDiGraph): + for cc in (True, False): + G = nx.MultiGraph() + G.add_edge(0, 1, key="I", value="a") + G.add_edge(0, 2, key="II", value="b") + G.add_edge(0, 3, key="II", value="c") + mapping = {1: 4, 2: 4, 3: 4} + nx.relabel_nodes(G, mapping, copy=False) + assert {"value": "a"} in G[0][4].values() + assert {"value": "b"} in G[0][4].values() + assert {"value": "c"} in G[0][4].values() + assert 0 in G[0][4] + assert "I" in G[0][4] + assert "II" in G[0][4]
relabel_nodes on MultiGraphs does not preserve both edges when two nodes are replaced by one When the graph contains edges (0,1) and (0,2), and I relabel both 1 and 2 to 3, I expected two edges from (0,3) but only one node is preserved. Multi*Graph supports parallel edges between nodes and I expected it to preserve both edges when "merging" the two old nodes together. Tested on both networkx 2.4 and the latest version on master. ```python import networkx as nx G = nx.MultiDiGraph([(0,1),(0,2)]) G[0][1][0]["value"] = "a" G[0][2][0]["value"] = "b" print(G[0]) # Output: # {1: {0: {'value': 'a'}}, 2: {0: {'value': 'b'}}} mapping = {1:3, 2:3} nx.relabel_nodes(G, mapping, copy=False) print(G[0]) # Output: # {3: {0: {'value': 'b'}}} # Expected: # {3: {0: {'value': 'a'}, 1: {'value': 'b'}}} ```
0.0
[ "networkx/tests/test_relabel.py::TestRelabel::test_relabel_multidigraph_inout_merge_nodes", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_multigraph_merge_inplace", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_multidigraph_merge_inplace", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_multidigraph_inout_copy", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_multigraph_merge_copy", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_multidigraph_merge_copy", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_multigraph_nonnumeric_key" ]
[ "networkx/tests/test_relabel.py::TestRelabel::test_convert_node_labels_to_integers", "networkx/tests/test_relabel.py::TestRelabel::test_convert_to_integers2", "networkx/tests/test_relabel.py::TestRelabel::test_convert_to_integers_raise", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_nodes_copy", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_nodes_function", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_nodes_graph", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_nodes_orderedgraph", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_nodes_digraph", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_nodes_multigraph", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_nodes_multidigraph", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_isolated_nodes_to_same", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_nodes_missing", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_copy_name", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_toposort", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_selfloop" ]
2020-07-11 12:56:42+00:00
4,134
networkx__networkx-4125
diff --git a/networkx/readwrite/edgelist.py b/networkx/readwrite/edgelist.py index 72afe1a7c..5183071d1 100644 --- a/networkx/readwrite/edgelist.py +++ b/networkx/readwrite/edgelist.py @@ -270,7 +270,11 @@ def parse_edgelist( elif data is True: # no edge types specified try: # try to evaluate as dictionary - edgedata = dict(literal_eval(" ".join(d))) + if delimiter == ",": + edgedata_str = ",".join(d) + else: + edgedata_str = " ".join(d) + edgedata = dict(literal_eval(edgedata_str.strip())) except BaseException as e: raise TypeError( f"Failed to convert edge data ({d}) " f"to dictionary."
networkx/networkx
ab7429c62806f1242c36fb81c1b1d801b4cca7a3
diff --git a/networkx/readwrite/tests/test_edgelist.py b/networkx/readwrite/tests/test_edgelist.py index 2e1a2424f..31f214566 100644 --- a/networkx/readwrite/tests/test_edgelist.py +++ b/networkx/readwrite/tests/test_edgelist.py @@ -100,6 +100,48 @@ class TestEdgelist: G.edges(data=True), [(1, 2, {"weight": 2.0}), (2, 3, {"weight": 3.0})] ) + def test_read_edgelist_5(self): + s = b"""\ +# comment line +1 2 {'weight':2.0, 'color':'green'} +# comment line +2 3 {'weight':3.0, 'color':'red'} +""" + bytesIO = io.BytesIO(s) + G = nx.read_edgelist(bytesIO, nodetype=int, data=False) + assert_edges_equal(G.edges(), [(1, 2), (2, 3)]) + + bytesIO = io.BytesIO(s) + G = nx.read_edgelist(bytesIO, nodetype=int, data=True) + assert_edges_equal( + G.edges(data=True), + [ + (1, 2, {"weight": 2.0, "color": "green"}), + (2, 3, {"weight": 3.0, "color": "red"}), + ], + ) + + def test_read_edgelist_6(self): + s = b"""\ +# comment line +1, 2, {'weight':2.0, 'color':'green'} +# comment line +2, 3, {'weight':3.0, 'color':'red'} +""" + bytesIO = io.BytesIO(s) + G = nx.read_edgelist(bytesIO, nodetype=int, data=False, delimiter=",") + assert_edges_equal(G.edges(), [(1, 2), (2, 3)]) + + bytesIO = io.BytesIO(s) + G = nx.read_edgelist(bytesIO, nodetype=int, data=True, delimiter=",") + assert_edges_equal( + G.edges(data=True), + [ + (1, 2, {"weight": 2.0, "color": "green"}), + (2, 3, {"weight": 3.0, "color": "red"}), + ], + ) + def test_write_edgelist_1(self): fh = io.BytesIO() G = nx.OrderedGraph()
Parse edgelist bug When calling `parse_edgelist()` using comma delimiters, it will fail to parse correctly fro edges with multiple attributes. Ex. of bad edge: `1,2,{'test':1, 'test_other':2}` `parse_edgelist()` will recognize the comma in the braces as delimiter and try to split them up.
0.0
[ "networkx/readwrite/tests/test_edgelist.py::TestEdgelist::test_read_edgelist_6" ]
[ "networkx/readwrite/tests/test_edgelist.py::TestEdgelist::test_read_edgelist_1", "networkx/readwrite/tests/test_edgelist.py::TestEdgelist::test_read_edgelist_2", "networkx/readwrite/tests/test_edgelist.py::TestEdgelist::test_read_edgelist_3", "networkx/readwrite/tests/test_edgelist.py::TestEdgelist::test_read_edgelist_4", "networkx/readwrite/tests/test_edgelist.py::TestEdgelist::test_read_edgelist_5", "networkx/readwrite/tests/test_edgelist.py::TestEdgelist::test_write_edgelist_1", "networkx/readwrite/tests/test_edgelist.py::TestEdgelist::test_write_edgelist_2", "networkx/readwrite/tests/test_edgelist.py::TestEdgelist::test_write_edgelist_3", "networkx/readwrite/tests/test_edgelist.py::TestEdgelist::test_write_edgelist_4", "networkx/readwrite/tests/test_edgelist.py::TestEdgelist::test_unicode", "networkx/readwrite/tests/test_edgelist.py::TestEdgelist::test_latin1_issue", "networkx/readwrite/tests/test_edgelist.py::TestEdgelist::test_latin1", "networkx/readwrite/tests/test_edgelist.py::TestEdgelist::test_edgelist_graph", "networkx/readwrite/tests/test_edgelist.py::TestEdgelist::test_edgelist_digraph", "networkx/readwrite/tests/test_edgelist.py::TestEdgelist::test_edgelist_integers", "networkx/readwrite/tests/test_edgelist.py::TestEdgelist::test_edgelist_multigraph", "networkx/readwrite/tests/test_edgelist.py::TestEdgelist::test_edgelist_multidigraph" ]
2020-08-03 00:13:47+00:00
4,135
networkx__networkx-4246
diff --git a/networkx/algorithms/centrality/betweenness.py b/networkx/algorithms/centrality/betweenness.py index 0829d9b0b..6907f25b1 100644 --- a/networkx/algorithms/centrality/betweenness.py +++ b/networkx/algorithms/centrality/betweenness.py @@ -101,20 +101,20 @@ def betweenness_centrality( .. [1] Ulrik Brandes: A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology 25(2):163-177, 2001. - http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf + https://doi.org/10.1080/0022250X.2001.9990249 .. [2] Ulrik Brandes: On Variants of Shortest-Path Betweenness Centrality and their Generic Computation. Social Networks 30(2):136-145, 2008. - http://www.inf.uni-konstanz.de/algo/publications/b-vspbc-08.pdf + https://doi.org/10.1016/j.socnet.2007.11.001 .. [3] Ulrik Brandes and Christian Pich: Centrality Estimation in Large Networks. International Journal of Bifurcation and Chaos 17(7):2303-2318, 2007. - http://www.inf.uni-konstanz.de/algo/publications/bp-celn-06.pdf + https://dx.doi.org/10.1142/S0218127407018403 .. [4] Linton C. Freeman: A set of measures of centrality based on betweenness. Sociometry 40: 35–41, 1977 - http://moreno.ss.uci.edu/23.pdf + https://doi.org/10.2307/3033543 """ betweenness = dict.fromkeys(G, 0.0) # b[v]=0 for v in G if k is None: diff --git a/networkx/algorithms/euler.py b/networkx/algorithms/euler.py index 6f8283f27..52042580a 100644 --- a/networkx/algorithms/euler.py +++ b/networkx/algorithms/euler.py @@ -224,7 +224,7 @@ def has_eulerian_path(G): - at most one vertex has in_degree - out_degree = 1, - every other vertex has equal in_degree and out_degree, - and all of its vertices with nonzero degree belong to a - - single connected component of the underlying undirected graph. + single connected component of the underlying undirected graph. An undirected graph has an Eulerian path iff: - exactly zero or two vertices have odd degree, @@ -246,16 +246,28 @@ def has_eulerian_path(G): eulerian_path """ if G.is_directed(): + # Remove isolated nodes (if any) without altering the input graph + nodes_remove = [v for v in G if G.in_degree[v] == 0 and G.out_degree[v] == 0] + if nodes_remove: + G = G.copy() + G.remove_nodes_from(nodes_remove) + ins = G.in_degree outs = G.out_degree - semibalanced_ins = sum(ins(v) - outs(v) == 1 for v in G) - semibalanced_outs = sum(outs(v) - ins(v) == 1 for v in G) + unbalanced_ins = 0 + unbalanced_outs = 0 + for v in G: + if ins[v] - outs[v] == 1: + unbalanced_ins += 1 + elif outs[v] - ins[v] == 1: + unbalanced_outs += 1 + elif ins[v] != outs[v]: + return False + return ( - semibalanced_ins <= 1 - and semibalanced_outs <= 1 - and sum(G.in_degree(v) != G.out_degree(v) for v in G) <= 2 - and nx.is_weakly_connected(G) + unbalanced_ins <= 1 and unbalanced_outs <= 1 and nx.is_weakly_connected(G) ) + else: return sum(d % 2 == 1 for v, d in G.degree()) in (0, 2) and nx.is_connected(G) diff --git a/networkx/algorithms/minors.py b/networkx/algorithms/minors.py index 336fe254f..7958bceca 100644 --- a/networkx/algorithms/minors.py +++ b/networkx/algorithms/minors.py @@ -445,37 +445,36 @@ def contracted_nodes(G, u, v, self_loops=True, copy=True): not be the same as the edge keys for the old edges. This is natural because edge keys are unique only within each pair of nodes. + This function is also available as `identified_nodes`. + Examples -------- Contracting two nonadjacent nodes of the cycle graph on four nodes `C_4` yields the path graph (ignoring parallel edges):: - >>> G = nx.cycle_graph(4) - >>> M = nx.contracted_nodes(G, 1, 3) - >>> P3 = nx.path_graph(3) - >>> nx.is_isomorphic(M, P3) - True - - >>> G = nx.MultiGraph(P3) - >>> M = nx.contracted_nodes(G, 0, 2) - >>> M.edges - MultiEdgeView([(0, 1, 0), (0, 1, 1)]) - - >>> G = nx.Graph([(1, 2), (2, 2)]) - >>> H = nx.contracted_nodes(G, 1, 2, self_loops=False) - >>> list(H.nodes()) - [1] - >>> list(H.edges()) - [(1, 1)] - - See also + >>> G = nx.cycle_graph(4) + >>> M = nx.contracted_nodes(G, 1, 3) + >>> P3 = nx.path_graph(3) + >>> nx.is_isomorphic(M, P3) + True + + >>> G = nx.MultiGraph(P3) + >>> M = nx.contracted_nodes(G, 0, 2) + >>> M.edges + MultiEdgeView([(0, 1, 0), (0, 1, 1)]) + + >>> G = nx.Graph([(1, 2), (2, 2)]) + >>> H = nx.contracted_nodes(G, 1, 2, self_loops=False) + >>> list(H.nodes()) + [1] + >>> list(H.edges()) + [(1, 1)] + + See Also -------- contracted_edge quotient_graph - Notes - ----- - This function is also available as `identified_nodes`. """ # Copying has significant overhead and can be disabled if needed if copy: diff --git a/networkx/classes/function.py b/networkx/classes/function.py index d17e22f60..700cac158 100644 --- a/networkx/classes/function.py +++ b/networkx/classes/function.py @@ -576,23 +576,14 @@ def info(G, n=None): """ if n is None: - n_nodes = G.number_of_nodes() - n_edges = G.number_of_edges() - return "".join( - [ - type(G).__name__, - f" named '{G.name}'" if G.name else "", - f" with {n_nodes} nodes and {n_edges} edges", - ] - ) - else: - if n not in G: - raise nx.NetworkXError(f"node {n} not in graph") - info = "" # append this all to a string - info += f"Node {n} has the following properties:\n" - info += f"Degree: {G.degree(n)}\n" - info += "Neighbors: " - info += " ".join(str(nbr) for nbr in G.neighbors(n)) + return str(G) + if n not in G: + raise nx.NetworkXError(f"node {n} not in graph") + info = "" # append this all to a string + info += f"Node {n} has the following properties:\n" + info += f"Degree: {G.degree(n)}\n" + info += "Neighbors: " + info += " ".join(str(nbr) for nbr in G.neighbors(n)) return info diff --git a/networkx/classes/graph.py b/networkx/classes/graph.py index ae34047bc..8629ee808 100644 --- a/networkx/classes/graph.py +++ b/networkx/classes/graph.py @@ -370,20 +370,31 @@ class Graph: self.graph["name"] = s def __str__(self): - """Returns the graph name. + """Returns a short summary of the graph. Returns ------- - name : string - The name of the graph. + info : string + Graph information as provided by `nx.info` Examples -------- >>> G = nx.Graph(name="foo") >>> str(G) - 'foo' + "Graph named 'foo' with 0 nodes and 0 edges" + + >>> G = nx.path_graph(3) + >>> str(G) + 'Graph with 3 nodes and 2 edges' + """ - return self.name + return "".join( + [ + type(self).__name__, + f" named '{self.name}'" if self.name else "", + f" with {self.number_of_nodes()} nodes and {self.number_of_edges()} edges", + ] + ) def __iter__(self): """Iterate over the nodes. Use: 'for n in G'.
networkx/networkx
2f0c56ffdc923c5fce04935447772ba9f68b69f9
diff --git a/networkx/algorithms/tests/test_euler.py b/networkx/algorithms/tests/test_euler.py index f136ab0ff..4a0905bc8 100644 --- a/networkx/algorithms/tests/test_euler.py +++ b/networkx/algorithms/tests/test_euler.py @@ -134,6 +134,22 @@ class TestHasEulerianPath: G = nx.path_graph(6, create_using=nx.DiGraph) assert nx.has_eulerian_path(G) + def test_has_eulerian_path_directed_graph(self): + # Test directed graphs and returns False + G = nx.DiGraph() + G.add_edges_from([(0, 1), (1, 2), (0, 2)]) + assert not nx.has_eulerian_path(G) + + def test_has_eulerian_path_isolated_node(self): + # Test directed graphs without isolated node returns True + G = nx.DiGraph() + G.add_edges_from([(0, 1), (1, 2), (2, 0)]) + assert nx.has_eulerian_path(G) + + # Test directed graphs with isolated node returns True + G.add_node(3) + assert nx.has_eulerian_path(G) + class TestFindPathStart: def testfind_path_start(self): diff --git a/networkx/classes/tests/historical_tests.py b/networkx/classes/tests/historical_tests.py index 8f53c4c53..c19396add 100644 --- a/networkx/classes/tests/historical_tests.py +++ b/networkx/classes/tests/historical_tests.py @@ -21,7 +21,6 @@ class HistoricalTests: def test_name(self): G = self.G(name="test") - assert str(G) == "test" assert G.name == "test" H = self.G() assert H.name == "" diff --git a/networkx/classes/tests/test_graph.py b/networkx/classes/tests/test_graph.py index 03902b092..e90f99510 100644 --- a/networkx/classes/tests/test_graph.py +++ b/networkx/classes/tests/test_graph.py @@ -182,9 +182,18 @@ class BaseAttrGraphTester(BaseGraphTester): G = self.Graph(name="") assert G.name == "" G = self.Graph(name="test") - assert G.__str__() == "test" assert G.name == "test" + def test_str_unnamed(self): + G = self.Graph() + G.add_edges_from([(1, 2), (2, 3)]) + assert str(G) == f"{type(G).__name__} with 3 nodes and 2 edges" + + def test_str_named(self): + G = self.Graph(name="foo") + G.add_edges_from([(1, 2), (2, 3)]) + assert str(G) == f"{type(G).__name__} named 'foo' with 3 nodes and 2 edges" + def test_graph_chain(self): G = self.Graph([(0, 1), (1, 2)]) DG = G.to_directed(as_view=True)
Issue with networkx.has_eulerian_path() This issue adds to #3976 There appears to be a problem with the `has_eulerian_path` function. It returns the wrong answer on this example: ``` test_graph = nx.DiGraph() test_graph.add_edges_from([(0, 1), (1,2), (0,2)]) print(nx.has_eulerian_path(test_graph)) print(list(nx.eulerian_path(test_graph))) ``` Output: ``` True [(0, 0), (0, 1), (1, 2)] ``` This directed graph does not have a Eulerian path, and, adding to #3976, the path returned by `eulerian_path` is not an actual Eulerian path, since it (1) does not include the edge `(0,2)` and (2) includes a self-loop `(0,0)` that is not in the graph. My hunch is that the problem is in this line: https://github.com/networkx/networkx/blob/3351206a3ce5b3a39bb2fc451e93ef545b96c95b/networkx/algorithms/euler.py#L256 I think changing that `2` to be `semibalanced_ins+semibalanced_outs` may do the trick, since the definition is >"...every _other_ vertex has equal in\_degree and out\_degree..." Going to see about fixing and adding this test. Appreciate any clues, ideas or tips.
0.0
[ "networkx/algorithms/tests/test_euler.py::TestHasEulerianPath::test_has_eulerian_path_directed_graph", "networkx/algorithms/tests/test_euler.py::TestHasEulerianPath::test_has_eulerian_path_isolated_node", "networkx/classes/tests/test_graph.py::TestGraph::test_str_unnamed", "networkx/classes/tests/test_graph.py::TestGraph::test_str_named" ]
[ "networkx/algorithms/tests/test_euler.py::TestIsEulerian::test_is_eulerian", "networkx/algorithms/tests/test_euler.py::TestIsEulerian::test_is_eulerian2", "networkx/algorithms/tests/test_euler.py::TestEulerianCircuit::test_eulerian_circuit_cycle", "networkx/algorithms/tests/test_euler.py::TestEulerianCircuit::test_eulerian_circuit_digraph", "networkx/algorithms/tests/test_euler.py::TestEulerianCircuit::test_multigraph", "networkx/algorithms/tests/test_euler.py::TestEulerianCircuit::test_multigraph_with_keys", "networkx/algorithms/tests/test_euler.py::TestEulerianCircuit::test_not_eulerian", "networkx/algorithms/tests/test_euler.py::TestIsSemiEulerian::test_is_semieulerian", "networkx/algorithms/tests/test_euler.py::TestHasEulerianPath::test_has_eulerian_path_cyclic", "networkx/algorithms/tests/test_euler.py::TestHasEulerianPath::test_has_eulerian_path_non_cyclic", "networkx/algorithms/tests/test_euler.py::TestFindPathStart::testfind_path_start", "networkx/algorithms/tests/test_euler.py::TestEulerianPath::test_eulerian_path", "networkx/algorithms/tests/test_euler.py::TestEulerize::test_disconnected", "networkx/algorithms/tests/test_euler.py::TestEulerize::test_null_graph", "networkx/algorithms/tests/test_euler.py::TestEulerize::test_null_multigraph", "networkx/algorithms/tests/test_euler.py::TestEulerize::test_on_empty_graph", "networkx/algorithms/tests/test_euler.py::TestEulerize::test_on_eulerian", "networkx/algorithms/tests/test_euler.py::TestEulerize::test_on_eulerian_multigraph", "networkx/algorithms/tests/test_euler.py::TestEulerize::test_on_complete_graph", "networkx/classes/tests/test_graph.py::TestGraph::test_contains", "networkx/classes/tests/test_graph.py::TestGraph::test_order", "networkx/classes/tests/test_graph.py::TestGraph::test_nodes", "networkx/classes/tests/test_graph.py::TestGraph::test_has_node", "networkx/classes/tests/test_graph.py::TestGraph::test_has_edge", "networkx/classes/tests/test_graph.py::TestGraph::test_neighbors", "networkx/classes/tests/test_graph.py::TestGraph::test_memory_leak", "networkx/classes/tests/test_graph.py::TestGraph::test_edges", "networkx/classes/tests/test_graph.py::TestGraph::test_degree", "networkx/classes/tests/test_graph.py::TestGraph::test_size", "networkx/classes/tests/test_graph.py::TestGraph::test_nbunch_iter", "networkx/classes/tests/test_graph.py::TestGraph::test_nbunch_iter_node_format_raise", "networkx/classes/tests/test_graph.py::TestGraph::test_selfloop_degree", "networkx/classes/tests/test_graph.py::TestGraph::test_selfloops", "networkx/classes/tests/test_graph.py::TestGraph::test_weighted_degree", "networkx/classes/tests/test_graph.py::TestGraph::test_name", "networkx/classes/tests/test_graph.py::TestGraph::test_graph_chain", "networkx/classes/tests/test_graph.py::TestGraph::test_copy", "networkx/classes/tests/test_graph.py::TestGraph::test_class_copy", "networkx/classes/tests/test_graph.py::TestGraph::test_fresh_copy", "networkx/classes/tests/test_graph.py::TestGraph::test_graph_attr", "networkx/classes/tests/test_graph.py::TestGraph::test_node_attr", "networkx/classes/tests/test_graph.py::TestGraph::test_node_attr2", "networkx/classes/tests/test_graph.py::TestGraph::test_edge_lookup", "networkx/classes/tests/test_graph.py::TestGraph::test_edge_attr", "networkx/classes/tests/test_graph.py::TestGraph::test_edge_attr2", "networkx/classes/tests/test_graph.py::TestGraph::test_edge_attr3", "networkx/classes/tests/test_graph.py::TestGraph::test_edge_attr4", "networkx/classes/tests/test_graph.py::TestGraph::test_to_undirected", "networkx/classes/tests/test_graph.py::TestGraph::test_to_directed", "networkx/classes/tests/test_graph.py::TestGraph::test_subgraph", "networkx/classes/tests/test_graph.py::TestGraph::test_selfloops_attr", "networkx/classes/tests/test_graph.py::TestGraph::test_pickle", "networkx/classes/tests/test_graph.py::TestGraph::test_data_input", "networkx/classes/tests/test_graph.py::TestGraph::test_adjacency", "networkx/classes/tests/test_graph.py::TestGraph::test_getitem", "networkx/classes/tests/test_graph.py::TestGraph::test_add_node", "networkx/classes/tests/test_graph.py::TestGraph::test_add_nodes_from", "networkx/classes/tests/test_graph.py::TestGraph::test_remove_node", "networkx/classes/tests/test_graph.py::TestGraph::test_remove_nodes_from", "networkx/classes/tests/test_graph.py::TestGraph::test_add_edge", "networkx/classes/tests/test_graph.py::TestGraph::test_add_edges_from", "networkx/classes/tests/test_graph.py::TestGraph::test_remove_edge", "networkx/classes/tests/test_graph.py::TestGraph::test_remove_edges_from", "networkx/classes/tests/test_graph.py::TestGraph::test_clear", "networkx/classes/tests/test_graph.py::TestGraph::test_clear_edges", "networkx/classes/tests/test_graph.py::TestGraph::test_edges_data", "networkx/classes/tests/test_graph.py::TestGraph::test_get_edge_data", "networkx/classes/tests/test_graph.py::TestGraph::test_update", "networkx/classes/tests/test_graph.py::TestEdgeSubgraph::test_correct_nodes", "networkx/classes/tests/test_graph.py::TestEdgeSubgraph::test_correct_edges", "networkx/classes/tests/test_graph.py::TestEdgeSubgraph::test_add_node", "networkx/classes/tests/test_graph.py::TestEdgeSubgraph::test_remove_node", "networkx/classes/tests/test_graph.py::TestEdgeSubgraph::test_node_attr_dict", "networkx/classes/tests/test_graph.py::TestEdgeSubgraph::test_edge_attr_dict", "networkx/classes/tests/test_graph.py::TestEdgeSubgraph::test_graph_attr_dict" ]
2020-10-08 20:32:04+00:00
4,136
networkx__networkx-4461
diff --git a/doc/reference/algorithms/approximation.rst b/doc/reference/algorithms/approximation.rst index 5b207d4fb..fe3dc53e0 100644 --- a/doc/reference/algorithms/approximation.rst +++ b/doc/reference/algorithms/approximation.rst @@ -107,3 +107,13 @@ Vertex Cover :toctree: generated/ min_weighted_vertex_cover + + +Max Cut +------- +.. automodule:: networkx.algorithms.approximation.maxcut +.. autosummary:: + :toctree: generated/ + + randomized_partitioning + one_exchange diff --git a/networkx/algorithms/approximation/__init__.py b/networkx/algorithms/approximation/__init__.py index 99e8340b4..631a2c353 100644 --- a/networkx/algorithms/approximation/__init__.py +++ b/networkx/algorithms/approximation/__init__.py @@ -20,3 +20,4 @@ from networkx.algorithms.approximation.ramsey import * from networkx.algorithms.approximation.steinertree import * from networkx.algorithms.approximation.vertex_cover import * from networkx.algorithms.approximation.treewidth import * +from networkx.algorithms.approximation.maxcut import * diff --git a/networkx/algorithms/approximation/maxcut.py b/networkx/algorithms/approximation/maxcut.py new file mode 100644 index 000000000..47e5c70ca --- /dev/null +++ b/networkx/algorithms/approximation/maxcut.py @@ -0,0 +1,111 @@ +import networkx as nx +from networkx.utils.decorators import py_random_state + +__all__ = ["randomized_partitioning", "one_exchange"] + + [email protected]_implemented_for("directed", "multigraph") +@py_random_state(1) +def randomized_partitioning(G, seed=None, p=0.5, weight=None): + """Compute a random partitioning of the graph nodes and its cut value. + + A partitioning is calculated by observing each node + and deciding to add it to the partition with probability `p`, + returning a random cut and its corresponding value (the + sum of weights of edges connecting different partitions). + + Parameters + ---------- + G : NetworkX graph + + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness<randomness>`. + + p : scalar + Probability for each node to be part of the first partition. + Should be in [0,1] + + weight : object + Edge attribute key to use as weight. If not specified, edges + have weight one. + + Returns + ------- + cut_size : scalar + Value of the minimum cut. + + partition : pair of node sets + A partitioning of the nodes that defines a minimum cut. + """ + cut = {node for node in G.nodes() if seed.random() < p} + cut_size = nx.algorithms.cut_size(G, cut, weight=weight) + partition = (cut, G.nodes - cut) + return cut_size, partition + + +def _swap_node_partition(cut, node): + return cut - {node} if node in cut else cut.union({node}) + + [email protected]_implemented_for("directed", "multigraph") +@py_random_state(2) +def one_exchange(G, initial_cut=None, seed=None, weight=None): + """Compute a partitioning of the graphs nodes and the corresponding cut value. + + Use a greedy one exchange strategy to find a locally maximal cut + and its value, it works by finding the best node (one that gives + the highest gain to the cut value) to add to the current cut + and repeats this process until no improvement can be made. + + Parameters + ---------- + G : networkx Graph + Graph to find a maximum cut for. + + initial_cut : set + Cut to use as a starting point. If not supplied the algorithm + starts with an empty cut. + + seed : integer, random_state, or None (default) + Indicator of random number generation state. + See :ref:`Randomness<randomness>`. + + weight : object + Edge attribute key to use as weight. If not specified, edges + have weight one. + + Returns + ------- + cut_value : scalar + Value of the maximum cut. + + partition : pair of node sets + A partitioning of the nodes that defines a maximum cut. + """ + if initial_cut is None: + initial_cut = set() + cut = set(initial_cut) + current_cut_size = nx.algorithms.cut_size(G, cut, weight=weight) + while True: + nodes = list(G.nodes()) + # Shuffling the nodes ensures random tie-breaks in the following call to max + seed.shuffle(nodes) + best_node_to_swap = max( + nodes, + key=lambda v: nx.algorithms.cut_size( + G, _swap_node_partition(cut, v), weight=weight + ), + default=None, + ) + potential_cut = _swap_node_partition(cut, best_node_to_swap) + potential_cut_size = nx.algorithms.cut_size(G, potential_cut, weight=weight) + + if potential_cut_size > current_cut_size: + cut = potential_cut + current_cut_size = potential_cut_size + else: + break + + partition = (cut, G.nodes - cut) + return current_cut_size, partition diff --git a/networkx/generators/classic.py b/networkx/generators/classic.py index 9968d20f7..b89aca3dc 100644 --- a/networkx/generators/classic.py +++ b/networkx/generators/classic.py @@ -188,7 +188,7 @@ def barbell_graph(m1, m2, create_using=None): return G -def binomial_tree(n): +def binomial_tree(n, create_using=None): """Returns the Binomial Tree of order n. The binomial tree of order 0 consists of a single node. A binomial tree of order k @@ -200,16 +200,21 @@ def binomial_tree(n): n : int Order of the binomial tree. + create_using : NetworkX graph constructor, optional (default=nx.Graph) + Graph type to create. If graph instance, then cleared before populated. + Returns ------- G : NetworkX graph A binomial tree of $2^n$ nodes and $2^n - 1$ edges. """ - G = nx.empty_graph(1) + G = nx.empty_graph(1, create_using) + N = 1 for i in range(n): - edges = [(u + N, v + N) for (u, v) in G.edges] + # Use G.edges() to ensure 2-tuples. G.edges is 3-tuple for MultiGraph + edges = [(u + N, v + N) for (u, v) in G.edges()] G.add_edges_from(edges) G.add_edge(0, N) N *= 2
networkx/networkx
f542e5fb92d12ec42570d14df867d144a9e8ba4f
diff --git a/networkx/algorithms/approximation/tests/test_maxcut.py b/networkx/algorithms/approximation/tests/test_maxcut.py new file mode 100644 index 000000000..897d25594 --- /dev/null +++ b/networkx/algorithms/approximation/tests/test_maxcut.py @@ -0,0 +1,82 @@ +import random + +import networkx as nx +from networkx.algorithms.approximation import maxcut + + +def _is_valid_cut(G, set1, set2): + union = set1.union(set2) + assert union == set(G.nodes) + assert len(set1) + len(set2) == G.number_of_nodes() + + +def _cut_is_locally_optimal(G, cut_size, set1): + # test if cut can be locally improved + for i, node in enumerate(set1): + cut_size_without_node = nx.algorithms.cut_size( + G, set1 - {node}, weight="weight" + ) + assert cut_size_without_node <= cut_size + + +def test_random_partitioning(): + G = nx.complete_graph(5) + _, (set1, set2) = maxcut.randomized_partitioning(G, seed=5) + _is_valid_cut(G, set1, set2) + + +def test_random_partitioning_all_to_one(): + G = nx.complete_graph(5) + _, (set1, set2) = maxcut.randomized_partitioning(G, p=1) + _is_valid_cut(G, set1, set2) + assert len(set1) == G.number_of_nodes() + assert len(set2) == 0 + + +def test_one_exchange_basic(): + G = nx.complete_graph(5) + random.seed(5) + for (u, v, w) in G.edges(data=True): + w["weight"] = random.randrange(-100, 100, 1) / 10 + + initial_cut = set(random.sample(G.nodes(), k=5)) + cut_size, (set1, set2) = maxcut.one_exchange( + G, initial_cut, weight="weight", seed=5 + ) + + _is_valid_cut(G, set1, set2) + _cut_is_locally_optimal(G, cut_size, set1) + + +def test_one_exchange_optimal(): + # Greedy one exchange should find the optimal solution for this graph (14) + G = nx.Graph() + G.add_edge(1, 2, weight=3) + G.add_edge(1, 3, weight=3) + G.add_edge(1, 4, weight=3) + G.add_edge(1, 5, weight=3) + G.add_edge(2, 3, weight=5) + + cut_size, (set1, set2) = maxcut.one_exchange(G, weight="weight", seed=5) + + _is_valid_cut(G, set1, set2) + _cut_is_locally_optimal(G, cut_size, set1) + # check global optimality + assert cut_size == 14 + + +def test_negative_weights(): + G = nx.complete_graph(5) + random.seed(5) + for (u, v, w) in G.edges(data=True): + w["weight"] = -1 * random.random() + + initial_cut = set(random.sample(G.nodes(), k=5)) + cut_size, (set1, set2) = maxcut.one_exchange(G, initial_cut, weight="weight") + + # make sure it is a valid cut + _is_valid_cut(G, set1, set2) + # check local optimality + _cut_is_locally_optimal(G, cut_size, set1) + # test that all nodes are in the same partition + assert len(set1) == len(G.nodes) or len(set2) == len(G.nodes) diff --git a/networkx/generators/tests/test_classic.py b/networkx/generators/tests/test_classic.py index c98eb8f5a..3ec36f0f9 100644 --- a/networkx/generators/tests/test_classic.py +++ b/networkx/generators/tests/test_classic.py @@ -138,10 +138,12 @@ class TestGeneratorClassic: assert_edges_equal(mb.edges(), b.edges()) def test_binomial_tree(self): - for n in range(0, 4): - b = nx.binomial_tree(n) - assert nx.number_of_nodes(b) == 2 ** n - assert nx.number_of_edges(b) == (2 ** n - 1) + graphs = (None, nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph) + for create_using in graphs: + for n in range(0, 4): + b = nx.binomial_tree(n, create_using) + assert nx.number_of_nodes(b) == 2 ** n + assert nx.number_of_edges(b) == (2 ** n - 1) def test_complete_graph(self): # complete_graph(m) is a connected graph with
Allow binomial_tree() to create directed graphs (via create_using parameter) `binomial_tree() ` doesn't seem to allow the `create_using` parameter to get passed and as a result, one can't create a directed binomial graph. This seem like a inadvertent omission and easy to fix. I will put in a PR to address this soon.
0.0
[ "networkx/algorithms/approximation/tests/test_maxcut.py::test_random_partitioning", "networkx/algorithms/approximation/tests/test_maxcut.py::test_random_partitioning_all_to_one", "networkx/algorithms/approximation/tests/test_maxcut.py::test_one_exchange_basic", "networkx/algorithms/approximation/tests/test_maxcut.py::test_one_exchange_optimal", "networkx/algorithms/approximation/tests/test_maxcut.py::test_negative_weights", "networkx/generators/tests/test_classic.py::TestGeneratorClassic::test_balanced_tree", "networkx/generators/tests/test_classic.py::TestGeneratorClassic::test_balanced_tree_star", "networkx/generators/tests/test_classic.py::TestGeneratorClassic::test_balanced_tree_path", "networkx/generators/tests/test_classic.py::TestGeneratorClassic::test_full_rary_tree", "networkx/generators/tests/test_classic.py::TestGeneratorClassic::test_full_rary_tree_balanced", "networkx/generators/tests/test_classic.py::TestGeneratorClassic::test_full_rary_tree_path", "networkx/generators/tests/test_classic.py::TestGeneratorClassic::test_full_rary_tree_empty", "networkx/generators/tests/test_classic.py::TestGeneratorClassic::test_full_rary_tree_3_20", "networkx/generators/tests/test_classic.py::TestGeneratorClassic::test_barbell_graph", "networkx/generators/tests/test_classic.py::TestGeneratorClassic::test_binomial_tree", "networkx/generators/tests/test_classic.py::TestGeneratorClassic::test_complete_graph", "networkx/generators/tests/test_classic.py::TestGeneratorClassic::test_complete_digraph", "networkx/generators/tests/test_classic.py::TestGeneratorClassic::test_circular_ladder_graph", "networkx/generators/tests/test_classic.py::TestGeneratorClassic::test_circulant_graph", "networkx/generators/tests/test_classic.py::TestGeneratorClassic::test_cycle_graph", "networkx/generators/tests/test_classic.py::TestGeneratorClassic::test_dorogovtsev_goltsev_mendes_graph", "networkx/generators/tests/test_classic.py::TestGeneratorClassic::test_create_using", "networkx/generators/tests/test_classic.py::TestGeneratorClassic::test_empty_graph", "networkx/generators/tests/test_classic.py::TestGeneratorClassic::test_ladder_graph", "networkx/generators/tests/test_classic.py::TestGeneratorClassic::test_lollipop_graph", "networkx/generators/tests/test_classic.py::TestGeneratorClassic::test_null_graph", "networkx/generators/tests/test_classic.py::TestGeneratorClassic::test_path_graph", "networkx/generators/tests/test_classic.py::TestGeneratorClassic::test_star_graph", "networkx/generators/tests/test_classic.py::TestGeneratorClassic::test_trivial_graph", "networkx/generators/tests/test_classic.py::TestGeneratorClassic::test_turan_graph", "networkx/generators/tests/test_classic.py::TestGeneratorClassic::test_wheel_graph", "networkx/generators/tests/test_classic.py::TestGeneratorClassic::test_complete_0_partite_graph", "networkx/generators/tests/test_classic.py::TestGeneratorClassic::test_complete_1_partite_graph", "networkx/generators/tests/test_classic.py::TestGeneratorClassic::test_complete_2_partite_graph", "networkx/generators/tests/test_classic.py::TestGeneratorClassic::test_complete_multipartite_graph" ]
[]
2020-12-14 02:51:50+00:00
4,137
networkx__networkx-4667
diff --git a/networkx/algorithms/bipartite/matching.py b/networkx/algorithms/bipartite/matching.py index 279e01604..2059d6bdf 100644 --- a/networkx/algorithms/bipartite/matching.py +++ b/networkx/algorithms/bipartite/matching.py @@ -346,14 +346,14 @@ def _is_connected_by_alternating_path(G, v, matched_edges, unmatched_edges, targ will continue only through edges *not* in the given matching. """ - if along_matched: - edges = itertools.cycle([matched_edges, unmatched_edges]) - else: - edges = itertools.cycle([unmatched_edges, matched_edges]) visited = set() - stack = [(u, iter(G[u]), next(edges))] + # Follow matched edges when depth is even, + # and follow unmatched edges when depth is odd. + initial_depth = 0 if along_matched else 1 + stack = [(u, iter(G[u]), initial_depth)] while stack: - parent, children, valid_edges = stack[-1] + parent, children, depth = stack[-1] + valid_edges = matched_edges if depth % 2 else unmatched_edges try: child = next(children) if child not in visited: @@ -361,7 +361,7 @@ def _is_connected_by_alternating_path(G, v, matched_edges, unmatched_edges, targ if child in targets: return True visited.add(child) - stack.append((child, iter(G[child]), next(edges))) + stack.append((child, iter(G[child]), depth + 1)) except StopIteration: stack.pop() return False diff --git a/networkx/algorithms/tournament.py b/networkx/algorithms/tournament.py index 2205f5556..cedd2bc06 100644 --- a/networkx/algorithms/tournament.py +++ b/networkx/algorithms/tournament.py @@ -276,7 +276,6 @@ def is_reachable(G, s, t): tournaments." *Electronic Colloquium on Computational Complexity*. 2001. <http://eccc.hpi-web.de/report/2001/092/> - """ def two_neighborhood(G, v):
networkx/networkx
e03144e0780898fed4afa976fff86f2710aa5d40
diff --git a/networkx/algorithms/bipartite/tests/test_matching.py b/networkx/algorithms/bipartite/tests/test_matching.py index d4fcd9802..3c6cc35fd 100644 --- a/networkx/algorithms/bipartite/tests/test_matching.py +++ b/networkx/algorithms/bipartite/tests/test_matching.py @@ -180,6 +180,16 @@ class TestMatching: for u, v in G.edges(): assert u in vertex_cover or v in vertex_cover + def test_vertex_cover_issue_3306(self): + G = nx.Graph() + edges = [(0, 2), (1, 0), (1, 1), (1, 2), (2, 2)] + G.add_edges_from([((i, "L"), (j, "R")) for i, j in edges]) + + matching = maximum_matching(G) + vertex_cover = to_vertex_cover(G, matching) + for u, v in G.edges(): + assert u in vertex_cover or v in vertex_cover + def test_unorderable_nodes(self): a = object() b = object() diff --git a/networkx/algorithms/tests/test_tournament.py b/networkx/algorithms/tests/test_tournament.py index 8de6f7c3e..42a31f9be 100644 --- a/networkx/algorithms/tests/test_tournament.py +++ b/networkx/algorithms/tests/test_tournament.py @@ -1,132 +1,157 @@ """Unit tests for the :mod:`networkx.algorithms.tournament` module.""" from itertools import combinations - - +import pytest from networkx import DiGraph from networkx.algorithms.tournament import is_reachable from networkx.algorithms.tournament import is_strongly_connected from networkx.algorithms.tournament import is_tournament from networkx.algorithms.tournament import random_tournament from networkx.algorithms.tournament import hamiltonian_path +from networkx.algorithms.tournament import score_sequence +from networkx.algorithms.tournament import tournament_matrix +from networkx.algorithms.tournament import index_satisfying + + +def test_condition_not_satisfied(): + condition = lambda x: x > 0 + iter_in = [0] + assert index_satisfying(iter_in, condition) == 1 + + +def test_empty_iterable(): + condition = lambda x: x > 0 + with pytest.raises(ValueError): + index_satisfying([], condition) -class TestIsTournament: - """Unit tests for the :func:`networkx.tournament.is_tournament` - function. +def test_is_tournament(): + G = DiGraph() + G.add_edges_from([(0, 1), (1, 2), (2, 3), (3, 0), (1, 3), (0, 2)]) + assert is_tournament(G) + + +def test_self_loops(): + """A tournament must have no self-loops.""" + G = DiGraph() + G.add_edges_from([(0, 1), (1, 2), (2, 3), (3, 0), (1, 3), (0, 2)]) + G.add_edge(0, 0) + assert not is_tournament(G) + + +def test_missing_edges(): + """A tournament must not have any pair of nodes without at least + one edge joining the pair. """ + G = DiGraph() + G.add_edges_from([(0, 1), (1, 2), (2, 3), (3, 0), (1, 3)]) + assert not is_tournament(G) + - def test_is_tournament(self): - G = DiGraph() - G.add_edges_from([(0, 1), (1, 2), (2, 3), (3, 0), (1, 3), (0, 2)]) +def test_bidirectional_edges(): + """A tournament must not have any pair of nodes with greater + than one edge joining the pair. + + """ + G = DiGraph() + G.add_edges_from([(0, 1), (1, 2), (2, 3), (3, 0), (1, 3), (0, 2)]) + G.add_edge(1, 0) + assert not is_tournament(G) + + +def test_graph_is_tournament(): + for _ in range(10): + G = random_tournament(5) assert is_tournament(G) - def test_self_loops(self): - """A tournament must have no self-loops.""" - G = DiGraph() - G.add_edges_from([(0, 1), (1, 2), (2, 3), (3, 0), (1, 3), (0, 2)]) - G.add_edge(0, 0) - assert not is_tournament(G) - def test_missing_edges(self): - """A tournament must not have any pair of nodes without at least - one edge joining the pair. +def test_graph_is_tournament_seed(): + for _ in range(10): + G = random_tournament(5, seed=1) + assert is_tournament(G) - """ - G = DiGraph() - G.add_edges_from([(0, 1), (1, 2), (2, 3), (3, 0), (1, 3)]) - assert not is_tournament(G) - def test_bidirectional_edges(self): - """A tournament must not have any pair of nodes with greater - than one edge joining the pair. +def test_graph_is_tournament_one_node(): + G = random_tournament(1) + assert is_tournament(G) - """ - G = DiGraph() - G.add_edges_from([(0, 1), (1, 2), (2, 3), (3, 0), (1, 3), (0, 2)]) - G.add_edge(1, 0) - assert not is_tournament(G) +def test_graph_is_tournament_zero_node(): + G = random_tournament(0) + assert is_tournament(G) -class TestRandomTournament: - """Unit tests for the :func:`networkx.tournament.random_tournament` - function. - """ +def test_hamiltonian_empty_graph(): + path = hamiltonian_path(DiGraph()) + assert len(path) == 0 - def test_graph_is_tournament(self): - for n in range(10): - G = random_tournament(5) - assert is_tournament(G) - def test_graph_is_tournament_seed(self): - for n in range(10): - G = random_tournament(5, seed=1) - assert is_tournament(G) +def test_path_is_hamiltonian(): + G = DiGraph() + G.add_edges_from([(0, 1), (1, 2), (2, 3), (3, 0), (1, 3), (0, 2)]) + path = hamiltonian_path(G) + assert len(path) == 4 + assert all(v in G[u] for u, v in zip(path, path[1:])) -class TestHamiltonianPath: - """Unit tests for the :func:`networkx.tournament.hamiltonian_path` - function. +def test_hamiltonian_cycle(): + """Tests that :func:`networkx.tournament.hamiltonian_path` + returns a Hamiltonian cycle when provided a strongly connected + tournament. """ + G = DiGraph() + G.add_edges_from([(0, 1), (1, 2), (2, 3), (3, 0), (1, 3), (0, 2)]) + path = hamiltonian_path(G) + assert len(path) == 4 + assert all(v in G[u] for u, v in zip(path, path[1:])) + assert path[0] in G[path[-1]] - def test_path_is_hamiltonian(self): - G = DiGraph() - G.add_edges_from([(0, 1), (1, 2), (2, 3), (3, 0), (1, 3), (0, 2)]) - path = hamiltonian_path(G) - assert len(path) == 4 - assert all(v in G[u] for u, v in zip(path, path[1:])) - def test_hamiltonian_cycle(self): - """Tests that :func:`networkx.tournament.hamiltonian_path` - returns a Hamiltonian cycle when provided a strongly connected - tournament. +def test_score_sequence_edge(): + G = DiGraph([(0, 1)]) + assert score_sequence(G) == [0, 1] - """ - G = DiGraph() - G.add_edges_from([(0, 1), (1, 2), (2, 3), (3, 0), (1, 3), (0, 2)]) - path = hamiltonian_path(G) - assert len(path) == 4 - assert all(v in G[u] for u, v in zip(path, path[1:])) - assert path[0] in G[path[-1]] +def test_score_sequence_triangle(): + G = DiGraph([(0, 1), (1, 2), (2, 0)]) + assert score_sequence(G) == [1, 1, 1] -class TestReachability: - """Unit tests for the :func:`networkx.tournament.is_reachable` - function. - """ +def test_tournament_matrix(): + np = pytest.importorskip("numpy") + npt = pytest.importorskip("numpy.testing") + G = DiGraph([(0, 1)]) + m = tournament_matrix(G) + npt.assert_array_equal(m.todense(), np.array([[0, 1], [-1, 0]])) - def test_reachable_pair(self): - """Tests for a reachable pair of nodes.""" - G = DiGraph([(0, 1), (1, 2), (2, 0)]) - assert is_reachable(G, 0, 2) - def test_same_node_is_reachable(self): - """Tests that a node is always reachable from itself.""" - # G is an arbitrary tournament on ten nodes. - G = DiGraph(sorted(p) for p in combinations(range(10), 2)) - assert all(is_reachable(G, v, v) for v in G) +def test_reachable_pair(): + """Tests for a reachable pair of nodes.""" + G = DiGraph([(0, 1), (1, 2), (2, 0)]) + assert is_reachable(G, 0, 2) - def test_unreachable_pair(self): - """Tests for an unreachable pair of nodes.""" - G = DiGraph([(0, 1), (0, 2), (1, 2)]) - assert not is_reachable(G, 1, 0) +def test_same_node_is_reachable(): + """Tests that a node is always reachable from it.""" + # G is an arbitrary tournament on ten nodes. + G = DiGraph(sorted(p) for p in combinations(range(10), 2)) + assert all(is_reachable(G, v, v) for v in G) -class TestStronglyConnected: - """Unit tests for the - :func:`networkx.tournament.is_strongly_connected` function. - """ +def test_unreachable_pair(): + """Tests for an unreachable pair of nodes.""" + G = DiGraph([(0, 1), (0, 2), (1, 2)]) + assert not is_reachable(G, 1, 0) + + +def test_is_strongly_connected(): + """Tests for a strongly connected tournament.""" + G = DiGraph([(0, 1), (1, 2), (2, 0)]) + assert is_strongly_connected(G) - def test_is_strongly_connected(self): - """Tests for a strongly connected tournament.""" - G = DiGraph([(0, 1), (1, 2), (2, 0)]) - assert is_strongly_connected(G) - def test_not_strongly_connected(self): - """Tests for a tournament that is not strongly connected.""" - G = DiGraph([(0, 1), (0, 2), (1, 2)]) - assert not is_strongly_connected(G) +def test_not_strongly_connected(): + """Tests for a tournament that is not strongly connected.""" + G = DiGraph([(0, 1), (0, 2), (1, 2)]) + assert not is_strongly_connected(G)
hopcroft_karp_matching / to_vertex_cover bug `to_vertex_cover` must give the **minimum vertex cover** as documented. Wasn't it fixed in #2384 ? The following code gives random results: ```python import networkx as nx nodesU = ['r1','r2','r3','r4','r5','r6','r7','r8'] nodesV = ['c1','c2','c3','c4','c5','c6','c7','c8'] edges = [ ('r1','c2'),('r1','c4'),('r1','c5'),('r1','c8'), ('r2','c1'),('r2','c2'),('r2','c3'),('r2','c6'),('r2','c7'), ('r3','c4'),('r3','c5'), ('r4','c2'),('r4','c8'), ('r5','c2'),('r5','c8'), ('r6','c1'),('r6','c2'),('r6','c3'),('r6','c5'),('r6','c6'),('r6','c7'), ('r7','c2'),('r7','c8'), ('r8','c2'),('r8','c4')] G = nx.Graph() G.add_nodes_from(nodesU, bipartite=0) G.add_nodes_from(nodesV, bipartite=1) G.add_edges_from(edges) M = nx.bipartite.hopcroft_karp_matching(G, top_nodes = nodesU) print('matchings M = ', M) print('|M| = ', len(M)) K = nx.bipartite.to_vertex_cover(G, M, top_nodes = nodesU) print('minimum cover K = ', K) print('|K| = ', len(K)) ``` Here are the results of multiple runs: ``` matchings M = {'c1': 'r6', 'r7': 'c2', 'r5': 'c8', 'r1': 'c5', 'r8': 'c4', 'r6': 'c1', 'c5': 'r1', 'c8': 'r5', 'r2': 'c7', 'c7': 'r2', 'c2': 'r7', 'c4': 'r8'} |M| = 12 minimum cover K = {'c1', 'c5', 'c7', 'c2', 'c8', 'c4'} |K| = 6 matchings M = {'c6': 'r6', 'r6': 'c6', 'r1': 'c4', 'r4': 'c2', 'c3': 'r2', 'r5': 'c8', 'c5': 'r3', 'r3': 'c5', 'c8': 'r5', 'r2': 'c3', 'c4': 'r1', 'c2': 'r4'} |M| = 12 minimum cover K = {'c6', 'r6', 'c4', 'c5', 'c2', 'c3', 'c8', 'r2'} |K| = 8 matchings M = {'c8': 'r7', 'r7': 'c8', 'c1': 'r2', 'r3': 'c4', 'r6': 'c7', 'c5': 'r1', 'c2': 'r4', 'c7': 'r6', 'r4': 'c2', 'r2': 'c1', 'c4': 'r3', 'r1': 'c5'} |M| = 12 minimum cover K = {'r2', 'c8', 'c4', 'c2', 'c5'} |K| = 5 matchings M = {'r3': 'c4', 'r6': 'c1', 'r1': 'c5', 'c2': 'r7', 'r7': 'c2', 'c8': 'r5', 'r2': 'c7', 'c5': 'r1', 'r5': 'c8', 'c1': 'r6', 'c7': 'r2', 'c4': 'r3'} |M| = 12 minimum cover K = {'c8', 'c5', 'c7', 'r6', 'c2', 'c4'} |K| = 6 ``` I'm using networkx 2.2 on debian/python3 and windows miniconda3. The graph is from: [http://tryalgo.org/en/matching/2016/08/05/konig/](http://tryalgo.org/en/matching/2016/08/05/konig/) Also why `hopcroft_karp_matching` returns matchings and opposite edges ?
0.0
[ "networkx/algorithms/bipartite/tests/test_matching.py::TestMatching::test_vertex_cover_issue_3306" ]
[ "networkx/algorithms/bipartite/tests/test_matching.py::TestMatching::test_issue_2127", "networkx/algorithms/bipartite/tests/test_matching.py::TestMatching::test_vertex_cover_issue_2384", "networkx/algorithms/bipartite/tests/test_matching.py::TestMatching::test_unorderable_nodes", "networkx/algorithms/bipartite/tests/test_matching.py::test_eppstein_matching", "networkx/algorithms/bipartite/tests/test_matching.py::TestMinimumWeightFullMatching::test_minimum_weight_full_matching_incomplete_graph", "networkx/algorithms/bipartite/tests/test_matching.py::TestMinimumWeightFullMatching::test_minimum_weight_full_matching_with_no_full_matching", "networkx/algorithms/bipartite/tests/test_matching.py::TestMinimumWeightFullMatching::test_minimum_weight_full_matching_square", "networkx/algorithms/bipartite/tests/test_matching.py::TestMinimumWeightFullMatching::test_minimum_weight_full_matching_smaller_left", "networkx/algorithms/bipartite/tests/test_matching.py::TestMinimumWeightFullMatching::test_minimum_weight_full_matching_smaller_top_nodes_right", "networkx/algorithms/bipartite/tests/test_matching.py::TestMinimumWeightFullMatching::test_minimum_weight_full_matching_smaller_right", "networkx/algorithms/bipartite/tests/test_matching.py::TestMinimumWeightFullMatching::test_minimum_weight_full_matching_negative_weights", "networkx/algorithms/bipartite/tests/test_matching.py::TestMinimumWeightFullMatching::test_minimum_weight_full_matching_different_weight_key", "networkx/algorithms/tests/test_tournament.py::test_condition_not_satisfied", "networkx/algorithms/tests/test_tournament.py::test_empty_iterable", "networkx/algorithms/tests/test_tournament.py::test_is_tournament", "networkx/algorithms/tests/test_tournament.py::test_self_loops", "networkx/algorithms/tests/test_tournament.py::test_missing_edges", "networkx/algorithms/tests/test_tournament.py::test_bidirectional_edges", "networkx/algorithms/tests/test_tournament.py::test_graph_is_tournament", "networkx/algorithms/tests/test_tournament.py::test_graph_is_tournament_seed", "networkx/algorithms/tests/test_tournament.py::test_graph_is_tournament_one_node", "networkx/algorithms/tests/test_tournament.py::test_graph_is_tournament_zero_node", "networkx/algorithms/tests/test_tournament.py::test_hamiltonian_empty_graph", "networkx/algorithms/tests/test_tournament.py::test_path_is_hamiltonian", "networkx/algorithms/tests/test_tournament.py::test_hamiltonian_cycle", "networkx/algorithms/tests/test_tournament.py::test_score_sequence_edge", "networkx/algorithms/tests/test_tournament.py::test_score_sequence_triangle", "networkx/algorithms/tests/test_tournament.py::test_tournament_matrix", "networkx/algorithms/tests/test_tournament.py::test_reachable_pair", "networkx/algorithms/tests/test_tournament.py::test_same_node_is_reachable", "networkx/algorithms/tests/test_tournament.py::test_unreachable_pair", "networkx/algorithms/tests/test_tournament.py::test_is_strongly_connected", "networkx/algorithms/tests/test_tournament.py::test_not_strongly_connected" ]
2021-03-11 07:17:35+00:00
4,138
networkx__networkx-4753
diff --git a/networkx/utils/misc.py b/networkx/utils/misc.py index 4caffbe18..bd58a4ed6 100644 --- a/networkx/utils/misc.py +++ b/networkx/utils/misc.py @@ -19,6 +19,30 @@ import uuid from itertools import tee, chain import networkx as nx +__all__ = [ + "is_string_like", + "iterable", + "empty_generator", + "flatten", + "make_list_of_ints", + "is_list_of_ints", + "make_str", + "generate_unique_node", + "default_opener", + "dict_to_numpy_array", + "dict_to_numpy_array1", + "dict_to_numpy_array2", + "is_iterator", + "arbitrary_element", + "consume", + "pairwise", + "groups", + "to_tuple", + "create_random_state", + "create_py_random_state", + "PythonRandomInterface", +] + # some cookbook stuff # used in deciding whether something is a bunch of nodes, edges, etc. diff --git a/networkx/utils/random_sequence.py b/networkx/utils/random_sequence.py index 7bd68c798..ad9b34a3c 100644 --- a/networkx/utils/random_sequence.py +++ b/networkx/utils/random_sequence.py @@ -7,6 +7,16 @@ import networkx as nx from networkx.utils import py_random_state +__all__ = [ + "powerlaw_sequence", + "zipf_rv", + "cumulative_distribution", + "discrete_sequence", + "random_weighted_sample", + "weighted_choice", +] + + # The same helpers for choosing random sequences from distributions # uses Python's random module # https://docs.python.org/3/library/random.html
networkx/networkx
63f550fef6712d5ea3ae09bbc341d696d65e55e3
diff --git a/networkx/utils/tests/test__init.py b/networkx/utils/tests/test__init.py new file mode 100644 index 000000000..ecbcce36d --- /dev/null +++ b/networkx/utils/tests/test__init.py @@ -0,0 +1,11 @@ +import pytest + + +def test_utils_namespace(): + """Ensure objects are not unintentionally exposed in utils namespace.""" + with pytest.raises(ImportError): + from networkx.utils import nx + with pytest.raises(ImportError): + from networkx.utils import sys + with pytest.raises(ImportError): + from networkx.utils import defaultdict, deque
`networkx.utils.misc` missing `__all__` The `misc` module in the `utils` package doesn't define an `__all__`. As a consequence, some non-networkx functionality including e.g. objects from `collections` and builtin modules are incorrectly exposed in the `networkx.utils` namespace, including networkx itself: ```python from networkx.utils import nx # yikes ```
0.0
[ "networkx/utils/tests/test__init.py::test_utils_namespace" ]
[]
2021-04-23 18:53:02+00:00
4,139
networkx__networkx-5287
diff --git a/networkx/algorithms/community/louvain.py b/networkx/algorithms/community/louvain.py index ba7153521..9ee9f51c4 100644 --- a/networkx/algorithms/community/louvain.py +++ b/networkx/algorithms/community/louvain.py @@ -185,6 +185,7 @@ def louvain_partitions( ) if new_mod - mod <= threshold: return + mod = new_mod graph = _gen_graph(graph, inner_partition) partition, inner_partition, improvement = _one_level( graph, m, partition, resolution, is_directed, seed diff --git a/networkx/readwrite/json_graph/tree.py b/networkx/readwrite/json_graph/tree.py index 2de2ca9b6..615907eeb 100644 --- a/networkx/readwrite/json_graph/tree.py +++ b/networkx/readwrite/json_graph/tree.py @@ -75,6 +75,8 @@ def tree_data(G, root, attrs=None, ident="id", children="children"): raise TypeError("G is not a tree.") if not G.is_directed(): raise TypeError("G is not directed.") + if not nx.is_weakly_connected(G): + raise TypeError("G is not weakly connected.") # NOTE: to be removed in 3.0 if attrs is not None:
networkx/networkx
0cc70051fa0a979b1f1eab4af5b6587a6ebf8334
diff --git a/networkx/algorithms/community/tests/test_louvain.py b/networkx/algorithms/community/tests/test_louvain.py index 81bde05b6..8f623fab1 100644 --- a/networkx/algorithms/community/tests/test_louvain.py +++ b/networkx/algorithms/community/tests/test_louvain.py @@ -110,3 +110,15 @@ def test_resolution(): partition3 = louvain_communities(G, resolution=2, seed=12) assert len(partition1) <= len(partition2) <= len(partition3) + + +def test_threshold(): + G = nx.LFR_benchmark_graph( + 250, 3, 1.5, 0.009, average_degree=5, min_community=20, seed=10 + ) + partition1 = louvain_communities(G, threshold=0.2, seed=2) + partition2 = louvain_communities(G, seed=2) + mod1 = modularity(G, partition1) + mod2 = modularity(G, partition2) + + assert mod1 < mod2 diff --git a/networkx/readwrite/json_graph/tests/test_tree.py b/networkx/readwrite/json_graph/tests/test_tree.py index bfbf18163..848edd0b1 100644 --- a/networkx/readwrite/json_graph/tests/test_tree.py +++ b/networkx/readwrite/json_graph/tests/test_tree.py @@ -35,6 +35,11 @@ def test_exceptions(): with pytest.raises(TypeError, match="is not directed."): G = nx.path_graph(3) tree_data(G, 0) + with pytest.raises(TypeError, match="is not weakly connected."): + G = nx.path_graph(3, create_using=nx.DiGraph) + G.add_edge(2, 0) + G.add_node(3) + tree_data(G, 0) with pytest.raises(nx.NetworkXError, match="must be different."): G = nx.MultiDiGraph() G.add_node(0)
`json_graph.tree_data` can cause maximum recursion depth error. <!-- If you have a general question about NetworkX, please use the discussions tab to create a new discussion --> <!--- Provide a general summary of the issue in the Title above --> ### Current Behavior <!--- Tell us what happens instead of the expected behavior --> Currently the algorithm compares the `n_nodes` with `n_edges` to check if `G` is a tree. https://github.com/networkx/networkx/blob/0cc70051fa0a979b1f1eab4af5b6587a6ebf8334/networkx/readwrite/json_graph/tree.py#L74-L75 This check can be bypassed with specific inputs and cause a recursion error. ### Expected Behavior <!--- Tell us what should happen --> The code should check whether there are cycles with `root` as the source and raise an exception. Another possible fix would be to check if the graph is not weakly connected. ### Steps to Reproduce <!--- Provide a minimal example that reproduces the bug --> ```Python3 >>> import networkx as nx >>> G = nx.DiGraph([(1, 2), (2, 3), (3, 1)]) >>> G.add_node(4) >>> data = nx.json_graph.tree_data(G, 1) RecursionError: maximum recursion depth exceeded ``` ### Environment <!--- Please provide details about your local environment --> Python version: 3.8.10 NetworkX version: 2.7rc1.dev0
0.0
[ "networkx/algorithms/community/tests/test_louvain.py::test_threshold", "networkx/readwrite/json_graph/tests/test_tree.py::test_exceptions" ]
[ "networkx/algorithms/community/tests/test_louvain.py::test_modularity_increase", "networkx/algorithms/community/tests/test_louvain.py::test_valid_partition", "networkx/algorithms/community/tests/test_louvain.py::test_partition", "networkx/algorithms/community/tests/test_louvain.py::test_none_weight_param", "networkx/algorithms/community/tests/test_louvain.py::test_quality", "networkx/algorithms/community/tests/test_louvain.py::test_multigraph", "networkx/algorithms/community/tests/test_louvain.py::test_resolution", "networkx/readwrite/json_graph/tests/test_tree.py::test_graph", "networkx/readwrite/json_graph/tests/test_tree.py::test_graph_attributes", "networkx/readwrite/json_graph/tests/test_tree.py::test_attrs_deprecation" ]
2022-01-28 11:20:36+00:00
4,140
networkx__networkx-5394
diff --git a/doc/developer/deprecations.rst b/doc/developer/deprecations.rst index 77d814532..a155ab765 100644 --- a/doc/developer/deprecations.rst +++ b/doc/developer/deprecations.rst @@ -114,3 +114,4 @@ Version 3.0 * In ``algorithms/distance_measures.py`` remove ``extrema_bounding``. * In ``utils/misc.py`` remove ``dict_to_numpy_array1`` and ``dict_to_numpy_array2``. * In ``utils/misc.py`` remove ``to_tuple``. +* In ``algorithms/matching.py``, remove parameter ``maxcardinality`` from ``min_weight_matching``. diff --git a/doc/release/release_dev.rst b/doc/release/release_dev.rst index 53b5562bb..dc6240670 100644 --- a/doc/release/release_dev.rst +++ b/doc/release/release_dev.rst @@ -46,6 +46,10 @@ Improvements API Changes ----------- +- [`#5394 <https://github.com/networkx/networkx/pull/5394>`_] + The function ``min_weight_matching`` no longer acts upon the parameter ``maxcardinality`` + because setting it to False would result in the min_weight_matching being no edges + at all. The only resonable option is True. The parameter will be removed completely in v3.0. Deprecations ------------ diff --git a/networkx/algorithms/matching.py b/networkx/algorithms/matching.py index 2a57e9a13..fda0b42cd 100644 --- a/networkx/algorithms/matching.py +++ b/networkx/algorithms/matching.py @@ -227,28 +227,49 @@ def is_perfect_matching(G, matching): @not_implemented_for("multigraph") @not_implemented_for("directed") -def min_weight_matching(G, maxcardinality=False, weight="weight"): +def min_weight_matching(G, maxcardinality=None, weight="weight"): """Computing a minimum-weight maximal matching of G. - Use reciprocal edge weights with the maximum-weight algorithm. + Use the maximum-weight algorithm with edge weights subtracted + from the maximum weight of all edges. A matching is a subset of edges in which no node occurs more than once. The weight of a matching is the sum of the weights of its edges. A maximal matching cannot add more edges and still be a matching. The cardinality of a matching is the number of matched edges. - This method replaces the weights with their reciprocal and - then runs :func:`max_weight_matching`. - Read the documentation of max_weight_matching for more information. + This method replaces the edge weights with 1 plus the maximum edge weight + minus the original edge weight. + + new_weight = (max_weight + 1) - edge_weight + + then runs :func:`max_weight_matching` with the new weights. + The max weight matching with these new weights corresponds + to the min weight matching using the original weights. + Adding 1 to the max edge weight keeps all edge weights positive + and as integers if they started as integers. + + You might worry that adding 1 to each weight would make the algorithm + favor matchings with more edges. But we use the parameter + `maxcardinality=True` in `max_weight_matching` to ensure that the + number of edges in the competing matchings are the same and thus + the optimum does not change due to changes in the number of edges. + + Read the documentation of `max_weight_matching` for more information. Parameters ---------- G : NetworkX graph Undirected graph - maxcardinality: bool, optional (default=False) - If maxcardinality is True, compute the maximum-cardinality matching - with minimum weight among all maximum-cardinality matchings. + maxcardinality: bool + .. deprecated:: 2.8 + The `maxcardinality` parameter will be removed in v3.0. + It doesn't make sense to set it to False when looking for + a min weight matching because then we just return no edges. + + If maxcardinality is True, compute the maximum-cardinality matching + with minimum weight among all maximum-cardinality matchings. weight: string, optional (default='weight') Edge data key corresponding to the edge weight. @@ -258,15 +279,25 @@ def min_weight_matching(G, maxcardinality=False, weight="weight"): ------- matching : set A minimal weight matching of the graph. + + See Also + -------- + max_weight_matching """ + if maxcardinality not in (True, None): + raise nx.NetworkXError( + "The argument maxcardinality does not make sense " + "in the context of minimum weight matchings." + "It is deprecated and will be removed in v3.0." + ) if len(G.edges) == 0: - return max_weight_matching(G, maxcardinality, weight) + return max_weight_matching(G, maxcardinality=True, weight=weight) G_edges = G.edges(data=weight, default=1) - min_weight = min(w for _, _, w in G_edges) + max_weight = 1 + max(w for _, _, w in G_edges) InvG = nx.Graph() - edges = ((u, v, 1 / (1 + w - min_weight)) for u, v, w in G_edges) + edges = ((u, v, max_weight - w) for u, v, w in G_edges) InvG.add_weighted_edges_from(edges, weight=weight) - return max_weight_matching(InvG, maxcardinality, weight) + return max_weight_matching(InvG, maxcardinality=True, weight=weight) @not_implemented_for("multigraph")
networkx/networkx
c39511522b272bf65b6a415169cd48d1bf3ff5c1
diff --git a/networkx/algorithms/tests/test_matching.py b/networkx/algorithms/tests/test_matching.py index ed436aada..1dcc69dc6 100644 --- a/networkx/algorithms/tests/test_matching.py +++ b/networkx/algorithms/tests/test_matching.py @@ -19,15 +19,13 @@ class TestMaxWeightMatching: assert nx.max_weight_matching(G) == set() assert nx.min_weight_matching(G) == set() - def test_trivial2(self): - """Self loop""" + def test_selfloop(self): G = nx.Graph() G.add_edge(0, 0, weight=100) assert nx.max_weight_matching(G) == set() assert nx.min_weight_matching(G) == set() - def test_trivial3(self): - """Single edge""" + def test_single_edge(self): G = nx.Graph() G.add_edge(0, 1) assert edges_equal( @@ -37,8 +35,7 @@ class TestMaxWeightMatching: nx.min_weight_matching(G), matching_dict_to_set({0: 1, 1: 0}) ) - def test_trivial4(self): - """Small graph""" + def test_two_path(self): G = nx.Graph() G.add_edge("one", "two", weight=10) G.add_edge("two", "three", weight=11) @@ -51,8 +48,7 @@ class TestMaxWeightMatching: matching_dict_to_set({"one": "two", "two": "one"}), ) - def test_trivial5(self): - """Path""" + def test_path(self): G = nx.Graph() G.add_edge(1, 2, weight=5) G.add_edge(2, 3, weight=11) @@ -70,8 +66,20 @@ class TestMaxWeightMatching: nx.min_weight_matching(G, 1), matching_dict_to_set({1: 2, 3: 4}) ) - def test_trivial6(self): - """Small graph with arbitrary weight attribute""" + def test_square(self): + G = nx.Graph() + G.add_edge(1, 4, weight=2) + G.add_edge(2, 3, weight=2) + G.add_edge(1, 2, weight=1) + G.add_edge(3, 4, weight=4) + assert edges_equal( + nx.max_weight_matching(G), matching_dict_to_set({1: 2, 3: 4}) + ) + assert edges_equal( + nx.min_weight_matching(G), matching_dict_to_set({1: 4, 2: 3}) + ) + + def test_edge_attribute_name(self): G = nx.Graph() G.add_edge("one", "two", weight=10, abcd=11) G.add_edge("two", "three", weight=11, abcd=10) @@ -85,7 +93,6 @@ class TestMaxWeightMatching: ) def test_floating_point_weights(self): - """Floating point weights""" G = nx.Graph() G.add_edge(1, 2, weight=math.pi) G.add_edge(2, 3, weight=math.exp(1)) @@ -99,7 +106,6 @@ class TestMaxWeightMatching: ) def test_negative_weights(self): - """Negative weights""" G = nx.Graph() G.add_edge(1, 2, weight=2) G.add_edge(1, 3, weight=-2)
min_weight_matching gives incorrect results <!-- If you have a general question about NetworkX, please use the discussions tab to create a new discussion --> <!--- Provide a general summary of the issue in the Title above --> Consider the following graph: ```python G = nx.Graph() G.add_edge(1, 4, weight=2) G.add_edge(2, 3, weight=2) G.add_edge(1, 2, weight=1) G.add_edge(3, 4, weight=4) nx.min_weight_matching(G) ``` ### Current Behavior <!--- Tell us what happens instead of the expected behavior --> The program returns `{(2, 1), (4, 3)}` ### Expected Behavior <!--- Tell us what should happen --> There are two maximal matchings in the graph, (1,2)(3,4) with weight 1+4=5, and (1,4)(2,3) with weight 2+2=4. The minimum weight maximal matching should be (1,4)(2,3) which has weight 4. ### Steps to Reproduce <!--- Provide a minimal example that reproduces the bug --> Run the code provided ### Environment <!--- Please provide details about your local environment --> Python version: 3.9 NetworkX version: 2.7.1 ### Additional context <!--- Add any other context about the problem here, screenshots, etc. --> From the documentation and the code, `min_weight_matching` is simply taking the reciprocal of the weights and uses `max_weight_matching`. This logic seems to be faulty in this example: 1/1+1/4>1/2+1/2.
0.0
[ "networkx/algorithms/tests/test_matching.py::TestMaxWeightMatching::test_square" ]
[ "networkx/algorithms/tests/test_matching.py::TestMaxWeightMatching::test_trivial1", "networkx/algorithms/tests/test_matching.py::TestMaxWeightMatching::test_selfloop", "networkx/algorithms/tests/test_matching.py::TestMaxWeightMatching::test_single_edge", "networkx/algorithms/tests/test_matching.py::TestMaxWeightMatching::test_two_path", "networkx/algorithms/tests/test_matching.py::TestMaxWeightMatching::test_path", "networkx/algorithms/tests/test_matching.py::TestMaxWeightMatching::test_edge_attribute_name", "networkx/algorithms/tests/test_matching.py::TestMaxWeightMatching::test_floating_point_weights", "networkx/algorithms/tests/test_matching.py::TestMaxWeightMatching::test_negative_weights", "networkx/algorithms/tests/test_matching.py::TestMaxWeightMatching::test_s_blossom", "networkx/algorithms/tests/test_matching.py::TestMaxWeightMatching::test_s_t_blossom", "networkx/algorithms/tests/test_matching.py::TestMaxWeightMatching::test_nested_s_blossom", "networkx/algorithms/tests/test_matching.py::TestMaxWeightMatching::test_nested_s_blossom_relabel", "networkx/algorithms/tests/test_matching.py::TestMaxWeightMatching::test_nested_s_blossom_expand", "networkx/algorithms/tests/test_matching.py::TestMaxWeightMatching::test_s_blossom_relabel_expand", "networkx/algorithms/tests/test_matching.py::TestMaxWeightMatching::test_nested_s_blossom_relabel_expand", "networkx/algorithms/tests/test_matching.py::TestMaxWeightMatching::test_nasty_blossom1", "networkx/algorithms/tests/test_matching.py::TestMaxWeightMatching::test_nasty_blossom2", "networkx/algorithms/tests/test_matching.py::TestMaxWeightMatching::test_nasty_blossom_least_slack", "networkx/algorithms/tests/test_matching.py::TestMaxWeightMatching::test_nasty_blossom_augmenting", "networkx/algorithms/tests/test_matching.py::TestMaxWeightMatching::test_nasty_blossom_expand_recursively", "networkx/algorithms/tests/test_matching.py::TestMaxWeightMatching::test_wrong_graph_type", "networkx/algorithms/tests/test_matching.py::TestIsMatching::test_dict", "networkx/algorithms/tests/test_matching.py::TestIsMatching::test_empty_matching", "networkx/algorithms/tests/test_matching.py::TestIsMatching::test_single_edge", "networkx/algorithms/tests/test_matching.py::TestIsMatching::test_edge_order", "networkx/algorithms/tests/test_matching.py::TestIsMatching::test_valid_matching", "networkx/algorithms/tests/test_matching.py::TestIsMatching::test_invalid_input", "networkx/algorithms/tests/test_matching.py::TestIsMatching::test_selfloops", "networkx/algorithms/tests/test_matching.py::TestIsMatching::test_invalid_matching", "networkx/algorithms/tests/test_matching.py::TestIsMatching::test_invalid_edge", "networkx/algorithms/tests/test_matching.py::TestIsMaximalMatching::test_dict", "networkx/algorithms/tests/test_matching.py::TestIsMaximalMatching::test_valid", "networkx/algorithms/tests/test_matching.py::TestIsMaximalMatching::test_not_matching", "networkx/algorithms/tests/test_matching.py::TestIsMaximalMatching::test_not_maximal", "networkx/algorithms/tests/test_matching.py::TestIsPerfectMatching::test_dict", "networkx/algorithms/tests/test_matching.py::TestIsPerfectMatching::test_valid", "networkx/algorithms/tests/test_matching.py::TestIsPerfectMatching::test_valid_not_path", "networkx/algorithms/tests/test_matching.py::TestIsPerfectMatching::test_not_matching", "networkx/algorithms/tests/test_matching.py::TestIsPerfectMatching::test_maximal_but_not_perfect", "networkx/algorithms/tests/test_matching.py::TestMaximalMatching::test_valid_matching", "networkx/algorithms/tests/test_matching.py::TestMaximalMatching::test_single_edge_matching", "networkx/algorithms/tests/test_matching.py::TestMaximalMatching::test_self_loops", "networkx/algorithms/tests/test_matching.py::TestMaximalMatching::test_ordering", "networkx/algorithms/tests/test_matching.py::TestMaximalMatching::test_wrong_graph_type" ]
2022-03-15 22:32:49+00:00
4,141
networkx__networkx-5523
diff --git a/networkx/algorithms/planarity.py b/networkx/algorithms/planarity.py index 4d1441efc..8f4b29096 100644 --- a/networkx/algorithms/planarity.py +++ b/networkx/algorithms/planarity.py @@ -24,6 +24,18 @@ def check_planarity(G, counterexample=False): If the graph is planar `certificate` is a PlanarEmbedding otherwise it is a Kuratowski subgraph. + Examples + -------- + >>> G = nx.Graph([(0, 1), (0, 2)]) + >>> is_planar, P = nx.check_planarity(G) + >>> print(is_planar) + True + + When `G` is planar, a `PlanarEmbedding` instance is returned: + + >>> P.get_data() + {0: [1, 2], 1: [0], 2: [0]} + Notes ----- A (combinatorial) embedding consists of cyclic orderings of the incident @@ -716,6 +728,8 @@ class PlanarEmbedding(nx.DiGraph): The planar embedding is given by a `combinatorial embedding <https://en.wikipedia.org/wiki/Graph_embedding#Combinatorial_embedding>`_. + .. note:: `check_planarity` is the preferred way to check if a graph is planar. + **Neighbor ordering:** In comparison to a usual graph structure, the embedding also stores the @@ -761,6 +775,13 @@ class PlanarEmbedding(nx.DiGraph): For a half-edge (u, v) that is orientated such that u is below v then the face that belongs to (u, v) is to the right of this half-edge. + See Also + -------- + is _planar : + Preferred way to check if an existing graph is planar. + check_planarity : + A convenient way to create a `PlanarEmbedding`. If not planar, it returns a subgraph that shows this. + Examples -------- diff --git a/networkx/algorithms/similarity.py b/networkx/algorithms/similarity.py index d5f463536..2447a9dce 100644 --- a/networkx/algorithms/similarity.py +++ b/networkx/algorithms/similarity.py @@ -745,18 +745,30 @@ def optimize_edit_paths( N = len(pending_h) # assert Ce.C.shape == (M + N, M + N) - g_ind = [ - i - for i in range(M) - if pending_g[i][:2] == (u, u) - or any(pending_g[i][:2] in ((p, u), (u, p)) for p, q in matched_uv) - ] - h_ind = [ - j - for j in range(N) - if pending_h[j][:2] == (v, v) - or any(pending_h[j][:2] in ((q, v), (v, q)) for p, q in matched_uv) - ] + # only attempt to match edges after one node match has been made + # this will stop self-edges on the first node being automatically deleted + # even when a substitution is the better option + if matched_uv: + g_ind = [ + i + for i in range(M) + if pending_g[i][:2] == (u, u) + or any( + pending_g[i][:2] in ((p, u), (u, p), (p, p)) for p, q in matched_uv + ) + ] + h_ind = [ + j + for j in range(N) + if pending_h[j][:2] == (v, v) + or any( + pending_h[j][:2] in ((q, v), (v, q), (q, q)) for p, q in matched_uv + ) + ] + else: + g_ind = [] + h_ind = [] + m = len(g_ind) n = len(h_ind) @@ -782,9 +794,9 @@ def optimize_edit_paths( for p, q in matched_uv ): continue - if g == (u, u): + if g == (u, u) or any(g == (p, p) for p, q in matched_uv): continue - if h == (v, v): + if h == (v, v) or any(h == (q, q) for p, q in matched_uv): continue C[k, l] = inf diff --git a/networkx/algorithms/tree/recognition.py b/networkx/algorithms/tree/recognition.py index 5fbff544e..52da959b6 100644 --- a/networkx/algorithms/tree/recognition.py +++ b/networkx/algorithms/tree/recognition.py @@ -157,6 +157,21 @@ def is_forest(G): b : bool A boolean that is True if `G` is a forest. + Raises + ------ + NetworkXPointlessConcept + If `G` is empty. + + Examples + -------- + >>> G = nx.Graph() + >>> G.add_edges_from([(1, 2), (1, 3), (2, 4), (2, 5)]) + >>> nx.is_forest(G) + True + >>> G.add_edge(4, 1) + >>> nx.is_forest(G) + False + Notes ----- In another convention, a directed forest is known as a *polyforest* and @@ -198,6 +213,21 @@ def is_tree(G): b : bool A boolean that is True if `G` is a tree. + Raises + ------ + NetworkXPointlessConcept + If `G` is empty. + + Examples + -------- + >>> G = nx.Graph() + >>> G.add_edges_from([(1, 2), (1, 3), (2, 4), (2, 5)]) + >>> nx.is_tree(G) # n-1 edges + True + >>> G.add_edge(3, 4) + >>> nx.is_tree(G) # n edges + False + Notes ----- In another convention, a directed tree is known as a *polytree* and then diff --git a/networkx/utils/decorators.py b/networkx/utils/decorators.py index e8e4bff55..4e065c50b 100644 --- a/networkx/utils/decorators.py +++ b/networkx/utils/decorators.py @@ -464,6 +464,9 @@ class argmap: function constructs an object (like a file handle) that requires post-processing (like closing). + Note: try_finally decorators cannot be used to decorate generator + functions. + Examples -------- Most of these examples use `@argmap(...)` to apply the decorator to @@ -606,6 +609,38 @@ class argmap: # this code doesn't need to worry about closing the file print(file.read()) + Decorators with try_finally = True cannot be used with generator functions, + because the `finally` block is evaluated before the generator is exhausted:: + + @argmap(open_file, "file", try_finally=True) + def file_to_lines(file): + for line in file.readlines(): + yield line + + is equivalent to:: + + def file_to_lines_wrapped(file): + for line in file.readlines(): + yield line + + def file_to_lines_wrapper(file): + try: + file = open_file(file) + return file_to_lines_wrapped(file) + finally: + file.close() + + which behaves similarly to:: + + def file_to_lines_whoops(file): + file = open_file(file) + file.close() + for line in file.readlines(): + yield line + + because the `finally` block of `file_to_lines_wrapper` is executed before + the caller has a chance to exhaust the iterator. + Notes ----- An object of this class is callable and intended to be used when @@ -805,15 +840,8 @@ class argmap: argmap._lazy_compile """ - if inspect.isgeneratorfunction(f): - - def func(*args, __wrapper=None, **kwargs): - yield from argmap._lazy_compile(__wrapper)(*args, **kwargs) - - else: - - def func(*args, __wrapper=None, **kwargs): - return argmap._lazy_compile(__wrapper)(*args, **kwargs) + def func(*args, __wrapper=None, **kwargs): + return argmap._lazy_compile(__wrapper)(*args, **kwargs) # standard function-wrapping stuff func.__name__ = f.__name__ @@ -843,6 +871,14 @@ class argmap: # this is used to variously call self.assemble and self.compile func.__argmap__ = self + if hasattr(f, "__argmap__"): + func.__is_generator = f.__is_generator + else: + func.__is_generator = inspect.isgeneratorfunction(f) + + if self._finally and func.__is_generator: + raise nx.NetworkXError("argmap cannot decorate generators with try_finally") + return func __count = 0 @@ -1162,12 +1198,7 @@ class argmap: fname = cls._name(f) def_sig = f'def {fname}({", ".join(def_sig)}):' - if inspect.isgeneratorfunction(f): - _return = "yield from" - else: - _return = "return" - - call_sig = f"{_return} {{}}({', '.join(call_sig)})" + call_sig = f"return {{}}({', '.join(call_sig)})" return cls.Signature(fname, sig, def_sig, call_sig, names, npos, args, kwargs)
networkx/networkx
b79768389070c5533a5ae21afce15dd06cd2cff0
diff --git a/networkx/algorithms/tests/test_similarity.py b/networkx/algorithms/tests/test_similarity.py index c4fd17f12..9b620dece 100644 --- a/networkx/algorithms/tests/test_similarity.py +++ b/networkx/algorithms/tests/test_similarity.py @@ -894,3 +894,27 @@ class TestSimilarity: assert expected_paths == list(paths) assert expected_map == index_map + + def test_symmetry_with_custom_matching(self): + print("G2 is edge (a,b) and G3 is edge (a,a)") + print("but node order for G2 is (a,b) while for G3 it is (b,a)") + + a, b = "A", "B" + G2 = nx.Graph() + G2.add_nodes_from((a, b)) + G2.add_edges_from([(a, b)]) + G3 = nx.Graph() + G3.add_nodes_from((b, a)) + G3.add_edges_from([(a, a)]) + for G in (G2, G3): + for n in G: + G.nodes[n]["attr"] = n + for e in G.edges: + G.edges[e]["attr"] = e + match = lambda x, y: x == y + + print("Starting G2 to G3 GED calculation") + assert nx.graph_edit_distance(G2, G3, node_match=match, edge_match=match) == 1 + + print("Starting G3 to G2 GED calculation") + assert nx.graph_edit_distance(G3, G2, node_match=match, edge_match=match) == 1 diff --git a/networkx/utils/tests/test_decorators.py b/networkx/utils/tests/test_decorators.py index eee48fd48..3be29e549 100644 --- a/networkx/utils/tests/test_decorators.py +++ b/networkx/utils/tests/test_decorators.py @@ -380,29 +380,25 @@ class TestArgmap: # context exits are called in reverse assert container == ["c", "b", "a"] - def test_contextmanager_iterator(self): + def test_tryfinally_generator(self): container = [] - def contextmanager(x): - nonlocal container - return x, lambda: container.append(x) + def singleton(x): + return (x,) - @argmap(contextmanager, 0, 1, 2, try_finally=True) + with pytest.raises(nx.NetworkXError): + + @argmap(singleton, 0, 1, 2, try_finally=True) + def foo(x, y, z): + yield from (x, y, z) + + @argmap(singleton, 0, 1, 2) def foo(x, y, z): - yield from (x, y, z) + return x + y + z q = foo("a", "b", "c") - assert next(q) == "a" - assert container == [] - assert next(q) == "b" - assert container == [] - assert next(q) == "c" - assert container == [] - with pytest.raises(StopIteration): - next(q) - # context exits are called in reverse - assert container == ["c", "b", "a"] + assert q == ("a", "b", "c") def test_actual_vararg(self): @argmap(lambda x: -x, 4) @@ -485,7 +481,25 @@ finally: pass#""" ) - def nop(self): - print(foo.__argmap__.assemble(foo.__wrapped__)) - argmap._lazy_compile(foo) - print(foo._code) + def test_immediate_raise(self): + @not_implemented_for("directed") + def yield_nodes(G): + yield from G + + G = nx.Graph([(1, 2)]) + D = nx.DiGraph() + + # test first call (argmap is compiled and executed) + with pytest.raises(nx.NetworkXNotImplemented): + node_iter = yield_nodes(D) + + # test second call (argmap is only executed) + with pytest.raises(nx.NetworkXNotImplemented): + node_iter = yield_nodes(D) + + # ensure that generators still make generators + node_iter = yield_nodes(G) + next(node_iter) + next(node_iter) + with pytest.raises(StopIteration): + next(node_iter)
Update documentation for planar embedding Let's update the documentation to make it clear that the `check_planarity` function is the primary interface for the planar embedding tools. Also, the class `PlanarEmbedding` is tricky to make sure it maintains the planar data structure. People not familiar with those ideas should definitely start with the `check_planarity` function. See discussion in #5079
0.0
[ "networkx/utils/tests/test_decorators.py::TestArgmap::test_tryfinally_generator", "networkx/utils/tests/test_decorators.py::TestArgmap::test_immediate_raise" ]
[ "networkx/utils/tests/test_decorators.py::test_not_implemented_decorator", "networkx/utils/tests/test_decorators.py::test_not_implemented_decorator_key", "networkx/utils/tests/test_decorators.py::test_not_implemented_decorator_raise", "networkx/utils/tests/test_decorators.py::TestOpenFileDecorator::test_writer_arg0_str", "networkx/utils/tests/test_decorators.py::TestOpenFileDecorator::test_writer_arg0_fobj", "networkx/utils/tests/test_decorators.py::TestOpenFileDecorator::test_writer_arg0_pathlib", "networkx/utils/tests/test_decorators.py::TestOpenFileDecorator::test_writer_arg1_str", "networkx/utils/tests/test_decorators.py::TestOpenFileDecorator::test_writer_arg1_fobj", "networkx/utils/tests/test_decorators.py::TestOpenFileDecorator::test_writer_arg2default_str", "networkx/utils/tests/test_decorators.py::TestOpenFileDecorator::test_writer_arg2default_fobj", "networkx/utils/tests/test_decorators.py::TestOpenFileDecorator::test_writer_arg2default_fobj_path_none", "networkx/utils/tests/test_decorators.py::TestOpenFileDecorator::test_writer_arg4default_fobj", "networkx/utils/tests/test_decorators.py::TestOpenFileDecorator::test_writer_kwarg_str", "networkx/utils/tests/test_decorators.py::TestOpenFileDecorator::test_writer_kwarg_fobj", "networkx/utils/tests/test_decorators.py::TestOpenFileDecorator::test_writer_kwarg_path_none", "networkx/utils/tests/test_decorators.py::test_preserve_random_state", "networkx/utils/tests/test_decorators.py::test_random_state_string_arg_index", "networkx/utils/tests/test_decorators.py::test_py_random_state_string_arg_index", "networkx/utils/tests/test_decorators.py::test_random_state_invalid_arg_index", "networkx/utils/tests/test_decorators.py::test_py_random_state_invalid_arg_index", "networkx/utils/tests/test_decorators.py::TestArgmap::test_trivial_function", "networkx/utils/tests/test_decorators.py::TestArgmap::test_trivial_iterator", "networkx/utils/tests/test_decorators.py::TestArgmap::test_contextmanager", "networkx/utils/tests/test_decorators.py::TestArgmap::test_actual_vararg", "networkx/utils/tests/test_decorators.py::TestArgmap::test_signature_destroying_intermediate_decorator", "networkx/utils/tests/test_decorators.py::TestArgmap::test_actual_kwarg", "networkx/utils/tests/test_decorators.py::TestArgmap::test_nested_tuple", "networkx/utils/tests/test_decorators.py::TestArgmap::test_flatten", "networkx/utils/tests/test_decorators.py::TestArgmap::test_indent" ]
2022-04-12 17:38:58+00:00
4,142
networkx__networkx-5550
diff --git a/doc/reference/algorithms/planarity.rst b/doc/reference/algorithms/planarity.rst index cad00dc8e..03ded5fa8 100644 --- a/doc/reference/algorithms/planarity.rst +++ b/doc/reference/algorithms/planarity.rst @@ -7,5 +7,5 @@ Planarity :toctree: generated/ check_planarity -.. autoclass:: PlanarEmbedding - :members: \ No newline at end of file + is_planar + PlanarEmbedding diff --git a/networkx/algorithms/bridges.py b/networkx/algorithms/bridges.py index 959a67fec..eda4a4f6d 100644 --- a/networkx/algorithms/bridges.py +++ b/networkx/algorithms/bridges.py @@ -35,6 +35,9 @@ def bridges(G, root=None): NodeNotFound If `root` is not in the graph `G`. + NetworkXNotImplemented + If `G` is a directed graph. + Examples -------- The barbell graph with parameter zero has a single bridge: @@ -99,6 +102,9 @@ def has_bridges(G, root=None): NodeNotFound If `root` is not in the graph `G`. + NetworkXNotImplemented + If `G` is a directed graph. + Examples -------- The barbell graph with parameter zero has a single bridge:: @@ -158,6 +164,11 @@ def local_bridges(G, with_span=True, weight=None): The local bridges as an edge 2-tuple of nodes `(u, v)` or as a 3-tuple `(u, v, span)` when `with_span is True`. + Raises + ------ + NetworkXNotImplemented + If `G` is a directed graph or multigraph. + Examples -------- A cycle graph has every edge a local bridge with span N-1. diff --git a/networkx/algorithms/community/modularity_max.py b/networkx/algorithms/community/modularity_max.py index 264a0dc07..ca1cfb9e2 100644 --- a/networkx/algorithms/community/modularity_max.py +++ b/networkx/algorithms/community/modularity_max.py @@ -326,6 +326,8 @@ def greedy_modularity_communities( raise ValueError(f"best_n must be between 1 and {len(G)}. Got {best_n}.") if best_n < cutoff: raise ValueError(f"Must have best_n >= cutoff. Got {best_n} < {cutoff}") + if best_n == 1: + return [set(G)] else: best_n = G.number_of_nodes() if n_communities is not None: @@ -351,7 +353,19 @@ def greedy_modularity_communities( # continue merging communities until one of the breaking criteria is satisfied while len(communities) > cutoff: - dq = next(community_gen) + try: + dq = next(community_gen) + # StopIteration occurs when communities are the connected components + except StopIteration: + communities = sorted(communities, key=len, reverse=True) + # if best_n requires more merging, merge big sets for highest modularity + while len(communities) > best_n: + comm1, comm2, *rest = communities + communities = [comm1 ^ comm2] + communities.extend(rest) + return communities + + # keep going unless max_mod is reached or best_n says to merge more if dq < 0 and len(communities) <= best_n: break communities = next(community_gen) diff --git a/networkx/algorithms/covering.py b/networkx/algorithms/covering.py index 174044270..b2aeb82b5 100644 --- a/networkx/algorithms/covering.py +++ b/networkx/algorithms/covering.py @@ -12,36 +12,42 @@ __all__ = ["min_edge_cover", "is_edge_cover"] @not_implemented_for("directed") @not_implemented_for("multigraph") def min_edge_cover(G, matching_algorithm=None): - """Returns a set of edges which constitutes - the minimum edge cover of the graph. + """Returns the min cardinality edge cover of the graph as a set of edges. A smallest edge cover can be found in polynomial time by finding a maximum matching and extending it greedily so that all nodes - are covered. + are covered. This function follows that process. A maximum matching + algorithm can be specified for the first step of the algorithm. + The resulting set may return a set with one 2-tuple for each edge, + (the usual case) or with both 2-tuples `(u, v)` and `(v, u)` for + each edge. The latter is only done when a bipartite matching algorithm + is specified as `matching_algorithm`. Parameters ---------- G : NetworkX graph - An undirected bipartite graph. + An undirected graph. matching_algorithm : function - A function that returns a maximum cardinality matching in a - given bipartite graph. The function must take one input, the - graph ``G``, and return a dictionary mapping each node to its - mate. If not specified, + A function that returns a maximum cardinality matching for `G`. + The function must take one input, the graph `G`, and return + either a set of edges (with only one direction for the pair of nodes) + or a dictionary mapping each node to its mate. If not specified, + :func:`~networkx.algorithms.matching.max_weight_matching` is used. + Common bipartite matching functions include :func:`~networkx.algorithms.bipartite.matching.hopcroft_karp_matching` - will be used. Other possibilities include - :func:`~networkx.algorithms.bipartite.matching.eppstein_matching`, - or matching algorithms in the - :mod:`networkx.algorithms.matching` module. + or + :func:`~networkx.algorithms.bipartite.matching.eppstein_matching`. Returns ------- min_cover : set - It contains all the edges of minimum edge cover - in form of tuples. It contains both the edges `(u, v)` and `(v, u)` - for given nodes `u` and `v` among the edges of minimum edge cover. + A set of the edges in a minimum edge cover in the form of tuples. + It contains only one of the equivalent 2-tuples `(u, v)` and `(v, u)` + for each edge. If a bipartite method is used to compute the matching, + the returned set contains both the 2-tuples `(u, v)` and `(v, u)` + for each edge of a minimum edge cover. Notes ----- @@ -53,9 +59,13 @@ def min_edge_cover(G, matching_algorithm=None): is bounded by the worst-case running time of the function ``matching_algorithm``. - Minimum edge cover for bipartite graph can also be found using the - function present in :mod:`networkx.algorithms.bipartite.covering` + Minimum edge cover for `G` can also be found using the `min_edge_covering` + function in :mod:`networkx.algorithms.bipartite.covering` which is + simply this function with a default matching algorithm of + :func:`~networkx.algorithms.bipartite.matching.hopcraft_karp_matching` """ + if len(G) == 0: + return set() if nx.number_of_isolates(G) > 0: # ``min_cover`` does not exist as there is an isolated node raise nx.NetworkXException( @@ -66,11 +76,12 @@ def min_edge_cover(G, matching_algorithm=None): maximum_matching = matching_algorithm(G) # ``min_cover`` is superset of ``maximum_matching`` try: - min_cover = set( - maximum_matching.items() - ) # bipartite matching case returns dict + # bipartite matching algs return dict so convert if needed + min_cover = set(maximum_matching.items()) + bipartite_cover = True except AttributeError: min_cover = maximum_matching + bipartite_cover = False # iterate for uncovered nodes uncovered_nodes = set(G) - {v for u, v in min_cover} - {u for u, v in min_cover} for v in uncovered_nodes: @@ -82,7 +93,8 @@ def min_edge_cover(G, matching_algorithm=None): # multigraph.) u = arbitrary_element(G[v]) min_cover.add((u, v)) - min_cover.add((v, u)) + if bipartite_cover: + min_cover.add((v, u)) return min_cover diff --git a/networkx/algorithms/planarity.py b/networkx/algorithms/planarity.py index 4d1441efc..bc6ff2f0f 100644 --- a/networkx/algorithms/planarity.py +++ b/networkx/algorithms/planarity.py @@ -1,7 +1,39 @@ from collections import defaultdict import networkx as nx -__all__ = ["check_planarity", "PlanarEmbedding"] +__all__ = ["check_planarity", "is_planar", "PlanarEmbedding"] + + +def is_planar(G): + """Returns True if and only if `G` is planar. + + A graph is *planar* iff it can be drawn in a plane without + any edge intersections. + + Parameters + ---------- + G : NetworkX graph + + Returns + ------- + bool + Whether the graph is planar. + + Examples + -------- + >>> G = nx.Graph([(0, 1), (0, 2)]) + >>> nx.is_planar(G) + True + >>> nx.is_planar(nx.complete_graph(5)) + False + + See Also + -------- + check_planarity : + Check if graph is planar *and* return a `PlanarEmbedding` instance if True. + """ + + return check_planarity(G, counterexample=False)[0] def check_planarity(G, counterexample=False): @@ -24,6 +56,18 @@ def check_planarity(G, counterexample=False): If the graph is planar `certificate` is a PlanarEmbedding otherwise it is a Kuratowski subgraph. + Examples + -------- + >>> G = nx.Graph([(0, 1), (0, 2)]) + >>> is_planar, P = nx.check_planarity(G) + >>> print(is_planar) + True + + When `G` is planar, a `PlanarEmbedding` instance is returned: + + >>> P.get_data() + {0: [1, 2], 1: [0], 2: [0]} + Notes ----- A (combinatorial) embedding consists of cyclic orderings of the incident @@ -37,6 +81,11 @@ def check_planarity(G, counterexample=False): A counterexample is only generated if the corresponding parameter is set, because the complexity of the counterexample generation is higher. + See also + -------- + is_planar : + Check for planarity without creating a `PlanarEmbedding` or counterexample. + References ---------- .. [1] Ulrik Brandes: @@ -716,6 +765,8 @@ class PlanarEmbedding(nx.DiGraph): The planar embedding is given by a `combinatorial embedding <https://en.wikipedia.org/wiki/Graph_embedding#Combinatorial_embedding>`_. + .. note:: `check_planarity` is the preferred way to check if a graph is planar. + **Neighbor ordering:** In comparison to a usual graph structure, the embedding also stores the @@ -761,6 +812,15 @@ class PlanarEmbedding(nx.DiGraph): For a half-edge (u, v) that is orientated such that u is below v then the face that belongs to (u, v) is to the right of this half-edge. + See Also + -------- + is_planar : + Preferred way to check if an existing graph is planar. + + check_planarity : + A convenient way to create a `PlanarEmbedding`. If not planar, + it returns a subgraph that shows this. + Examples -------- diff --git a/networkx/algorithms/tournament.py b/networkx/algorithms/tournament.py index bace64bae..a002e022e 100644 --- a/networkx/algorithms/tournament.py +++ b/networkx/algorithms/tournament.py @@ -82,6 +82,13 @@ def is_tournament(G): bool Whether the given graph is a tournament graph. + Examples + -------- + >>> from networkx.algorithms import tournament + >>> G = nx.DiGraph([(0, 1), (1, 2), (2, 0)]) + >>> tournament.is_tournament(G) + True + Notes ----- Some definitions require a self-loop on each node, but that is not @@ -114,6 +121,13 @@ def hamiltonian_path(G): path : list A list of nodes which form a Hamiltonian path in `G`. + Examples + -------- + >>> from networkx.algorithms import tournament + >>> G = nx.DiGraph([(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]) + >>> tournament.hamiltonian_path(G) + [0, 1, 2, 3] + Notes ----- This is a recursive implementation with an asymptotic running time @@ -185,6 +199,13 @@ def score_sequence(G): list A sorted list of the out-degrees of the nodes of `G`. + Examples + -------- + >>> from networkx.algorithms import tournament + >>> G = nx.DiGraph([(1, 0), (1, 3), (0, 2), (0, 3), (2, 1), (3, 2)]) + >>> tournament.score_sequence(G) + [1, 1, 2, 2] + """ return sorted(d for v, d in G.out_degree()) @@ -260,6 +281,15 @@ def is_reachable(G, s, t): bool Whether there is a path from `s` to `t` in `G`. + Examples + -------- + >>> from networkx.algorithms import tournament + >>> G = nx.DiGraph([(1, 0), (1, 3), (1, 2), (2, 3), (2, 0), (3, 0)]) + >>> tournament.is_reachable(G, 1, 3) + True + >>> tournament.is_reachable(G, 3, 2) + False + Notes ----- Although this function is more theoretically efficient than the @@ -331,6 +361,16 @@ def is_strongly_connected(G): bool Whether the tournament is strongly connected. + Examples + -------- + >>> from networkx.algorithms import tournament + >>> G = nx.DiGraph([(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3), (3, 0)]) + >>> tournament.is_strongly_connected(G) + True + >>> G.remove_edge(1, 3) + >>> tournament.is_strongly_connected(G) + False + Notes ----- Although this function is more theoretically efficient than the diff --git a/networkx/algorithms/tree/recognition.py b/networkx/algorithms/tree/recognition.py index 52da959b6..88b2abe8b 100644 --- a/networkx/algorithms/tree/recognition.py +++ b/networkx/algorithms/tree/recognition.py @@ -96,6 +96,16 @@ def is_arborescence(G): b : bool A boolean that is True if `G` is an arborescence. + Examples + -------- + >>> G = nx.DiGraph([(0, 1), (0, 2), (2, 3), (3, 4)]) + >>> nx.is_arborescence(G) + True + >>> G.remove_edge(0, 1) + >>> G.add_edge(1, 2) # maximum in-degree is 2 + >>> nx.is_arborescence(G) + False + Notes ----- In another convention, an arborescence is known as a *tree*. @@ -125,6 +135,16 @@ def is_branching(G): b : bool A boolean that is True if `G` is a branching. + Examples + -------- + >>> G = nx.DiGraph([(0, 1), (1, 2), (2, 3), (3, 4)]) + >>> nx.is_branching(G) + True + >>> G.remove_edge(2, 3) + >>> G.add_edge(3, 1) # maximum in-degree is 2 + >>> nx.is_branching(G) + False + Notes ----- In another convention, a branching is also known as a *forest*.
networkx/networkx
1e5f0bde4cf4cbe4b65bf6e7be775a49556dcf23
diff --git a/networkx/algorithms/community/tests/test_modularity_max.py b/networkx/algorithms/community/tests/test_modularity_max.py index 784e4a97b..acdb19d64 100644 --- a/networkx/algorithms/community/tests/test_modularity_max.py +++ b/networkx/algorithms/community/tests/test_modularity_max.py @@ -44,6 +44,17 @@ def test_modularity_communities_categorical_labels(func): assert set(func(G)) == expected +def test_greedy_modularity_communities_components(): + # Test for gh-5530 + G = nx.Graph([(0, 1), (2, 3), (4, 5), (5, 6)]) + # usual case with 3 components + assert greedy_modularity_communities(G) == [{4, 5, 6}, {0, 1}, {2, 3}] + # best_n can make the algorithm continue even when modularity goes down + assert greedy_modularity_communities(G, best_n=3) == [{4, 5, 6}, {0, 1}, {2, 3}] + assert greedy_modularity_communities(G, best_n=2) == [{0, 1, 4, 5, 6}, {2, 3}] + assert greedy_modularity_communities(G, best_n=1) == [{0, 1, 2, 3, 4, 5, 6}] + + def test_greedy_modularity_communities_relabeled(): # Test for gh-4966 G = nx.balanced_tree(2, 2) @@ -306,7 +317,7 @@ def test_cutoff_parameter(): def test_best_n(): G = nx.barbell_graph(5, 3) - # Same result as without enforcing n_communities: + # Same result as without enforcing cutoff: best_n = 3 expected = [frozenset(range(5)), frozenset(range(8, 13)), frozenset(range(5, 8))] assert greedy_modularity_communities(G, best_n=best_n) == expected diff --git a/networkx/algorithms/tests/test_covering.py b/networkx/algorithms/tests/test_covering.py index 78487b734..40971963e 100644 --- a/networkx/algorithms/tests/test_covering.py +++ b/networkx/algorithms/tests/test_covering.py @@ -14,28 +14,44 @@ class TestMinEdgeCover: assert nx.min_edge_cover(G) == {(0, 0)} def test_graph_single_edge(self): - G = nx.Graph() - G.add_edge(0, 1) + G = nx.Graph([(0, 1)]) assert nx.min_edge_cover(G) in ({(0, 1)}, {(1, 0)}) + def test_graph_two_edge_path(self): + G = nx.path_graph(3) + min_cover = nx.min_edge_cover(G) + assert len(min_cover) == 2 + for u, v in G.edges: + assert (u, v) in min_cover or (v, u) in min_cover + def test_bipartite_explicit(self): G = nx.Graph() G.add_nodes_from([1, 2, 3, 4], bipartite=0) G.add_nodes_from(["a", "b", "c"], bipartite=1) G.add_edges_from([(1, "a"), (1, "b"), (2, "b"), (2, "c"), (3, "c"), (4, "a")]) + # Use bipartite method by prescribing the algorithm min_cover = nx.min_edge_cover( G, nx.algorithms.bipartite.matching.eppstein_matching ) - min_cover2 = nx.min_edge_cover(G) assert nx.is_edge_cover(G, min_cover) assert len(min_cover) == 8 + # Use the default method which is not specialized for bipartite + min_cover2 = nx.min_edge_cover(G) + assert nx.is_edge_cover(G, min_cover2) + assert len(min_cover2) == 4 - def test_complete_graph(self): + def test_complete_graph_even(self): G = nx.complete_graph(10) min_cover = nx.min_edge_cover(G) assert nx.is_edge_cover(G, min_cover) assert len(min_cover) == 5 + def test_complete_graph_odd(self): + G = nx.complete_graph(11) + min_cover = nx.min_edge_cover(G) + assert nx.is_edge_cover(G, min_cover) + assert len(min_cover) == 6 + class TestIsEdgeCover: """Tests for :func:`networkx.algorithms.is_edge_cover`"""
greedy_modularity_communities raises StopIteration for unconnected (?) graph <!--- Provide a general summary of the issue in the Title above --> After an update of `networkx` from 2.6.3 to 2.8, one of my tests suddenly failed with ``` Traceback (most recent call last): File "/usr/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "/usr/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/home/gereon/Develop/lexedata/src/lexedata/report/nonconcatenative_morphemes.py", line 159, in <module> networkx.algorithms.community.greedy_modularity_communities(graph), File "/home/gereon/.local/etc/lexedata/lib/python3.10/site-packages/networkx/algorithms/community/modularity_max.py", line 354, in greedy_modularity_communities dq = next(community_gen) StopIteration ``` It turns out that the internals of `greedy_modularity_communities` have changed, so the function doesn't work any more with unconnected graphs. ### Current Behavior <!--- Tell us what happens instead of the expected behavior --> `networkx.algorithms.community.greedy_modularity_communities` fails with undocumented error message for unconnected graphs, or graphs without edges ### Expected Behavior <!--- Tell us what should happen --> - Either document the requirement to have a connected graph with at least one edge and throw `ValueError` instead of `StopIteration` when it is not fulfilled, or run the graph through `nx.connected_components()` first. - If the graph has only one node and no edges, return that node. ### Steps to Reproduce <!--- Provide a minimal example that reproduces the bug --> ``` >>> G = nx.Graph() >>> G.add_edges_from([(0,1),(2,3)]) >>> greedy_modularity_communities(G) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/gereon/.local/etc/lexedata/lib/python3.10/site-packages/networkx/algorithms/community/modularity_max.py", line 354, in greedy_modularity_communities dq = next(community_gen) StopIteration ``` ``` >>> G = nx.Graph() >>> G.add_nodes_from([1]) >>> greedy_modularity_communities(G) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/gereon/.local/etc/lexedata/lib/python3.10/site-packages/networkx/algorithms/community/modularity_max.py", line 350, in greedy_modularity_communities communities = next(community_gen) File "/home/gereon/.local/etc/lexedata/lib/python3.10/site-packages/networkx/algorithms/community/modularity_max.py", line 79, in _greedy_modularity_communities_generator q0 = 1 / m ZeroDivisionError: division by zero ``` ### Environment <!--- Please provide details about your local environment --> Python version: 3.10.2 NetworkX version: 2.8
0.0
[ "networkx/algorithms/community/tests/test_modularity_max.py::test_greedy_modularity_communities_components", "networkx/algorithms/tests/test_covering.py::TestMinEdgeCover::test_graph_two_edge_path", "networkx/algorithms/tests/test_covering.py::TestMinEdgeCover::test_bipartite_explicit", "networkx/algorithms/tests/test_covering.py::TestMinEdgeCover::test_complete_graph_odd" ]
[ "networkx/algorithms/community/tests/test_modularity_max.py::test_modularity_communities[greedy_modularity_communities]", "networkx/algorithms/community/tests/test_modularity_max.py::test_modularity_communities[naive_greedy_modularity_communities]", "networkx/algorithms/community/tests/test_modularity_max.py::test_modularity_communities_categorical_labels[greedy_modularity_communities]", "networkx/algorithms/community/tests/test_modularity_max.py::test_modularity_communities_categorical_labels[naive_greedy_modularity_communities]", "networkx/algorithms/community/tests/test_modularity_max.py::test_greedy_modularity_communities_relabeled", "networkx/algorithms/community/tests/test_modularity_max.py::test_greedy_modularity_communities_directed", "networkx/algorithms/community/tests/test_modularity_max.py::test_modularity_communities_weighted[greedy_modularity_communities]", "networkx/algorithms/community/tests/test_modularity_max.py::test_modularity_communities_weighted[naive_greedy_modularity_communities]", "networkx/algorithms/community/tests/test_modularity_max.py::test_modularity_communities_floating_point", "networkx/algorithms/community/tests/test_modularity_max.py::test_modularity_communities_directed_weighted", "networkx/algorithms/community/tests/test_modularity_max.py::test_greedy_modularity_communities_multigraph", "networkx/algorithms/community/tests/test_modularity_max.py::test_greedy_modularity_communities_multigraph_weighted", "networkx/algorithms/community/tests/test_modularity_max.py::test_greed_modularity_communities_multidigraph", "networkx/algorithms/community/tests/test_modularity_max.py::test_greed_modularity_communities_multidigraph_weighted", "networkx/algorithms/community/tests/test_modularity_max.py::test_resolution_parameter_impact", "networkx/algorithms/community/tests/test_modularity_max.py::test_cutoff_parameter", "networkx/algorithms/community/tests/test_modularity_max.py::test_best_n", "networkx/algorithms/tests/test_covering.py::TestMinEdgeCover::test_empty_graph", "networkx/algorithms/tests/test_covering.py::TestMinEdgeCover::test_graph_with_loop", "networkx/algorithms/tests/test_covering.py::TestMinEdgeCover::test_graph_single_edge", "networkx/algorithms/tests/test_covering.py::TestMinEdgeCover::test_complete_graph_even", "networkx/algorithms/tests/test_covering.py::TestIsEdgeCover::test_empty_graph", "networkx/algorithms/tests/test_covering.py::TestIsEdgeCover::test_graph_with_loop", "networkx/algorithms/tests/test_covering.py::TestIsEdgeCover::test_graph_single_edge" ]
2022-04-17 20:42:01+00:00
4,143
networkx__networkx-5894
diff --git a/networkx/classes/graph.py b/networkx/classes/graph.py index ebbc8b535..47d5f81d9 100644 --- a/networkx/classes/graph.py +++ b/networkx/classes/graph.py @@ -41,6 +41,28 @@ class _CachedPropertyResetterAdj: del od["adj"] +class _CachedPropertyResetterNode: + """Data Descriptor class for _node that resets ``nodes`` cached_property when needed + + This assumes that the ``cached_property`` ``G.node`` should be reset whenever + ``G._node`` is set to a new value. + + This object sits on a class and ensures that any instance of that + class clears its cached property "nodes" whenever the underlying + instance attribute "_node" is set to a new object. It only affects + the set process of the obj._adj attribute. All get/del operations + act as they normally would. + + For info on Data Descriptors see: https://docs.python.org/3/howto/descriptor.html + """ + + def __set__(self, obj, value): + od = obj.__dict__ + od["_node"] = value + if "nodes" in od: + del od["nodes"] + + class Graph: """ Base class for undirected graphs. @@ -282,6 +304,7 @@ class Graph: """ _adj = _CachedPropertyResetterAdj() + _node = _CachedPropertyResetterNode() node_dict_factory = dict node_attr_dict_factory = dict
networkx/networkx
98060487ad192918cfc2415fc0b5c309ff2d3565
diff --git a/networkx/algorithms/shortest_paths/unweighted.py b/networkx/algorithms/shortest_paths/unweighted.py index 5363b24dc..9d1dff5b2 100644 --- a/networkx/algorithms/shortest_paths/unweighted.py +++ b/networkx/algorithms/shortest_paths/unweighted.py @@ -460,8 +460,7 @@ def all_pairs_shortest_path(G, cutoff=None): def predecessor(G, source, target=None, cutoff=None, return_seen=None): - """Returns dict of predecessors for the path from source to all nodes in G - + """Returns dict of predecessors for the path from source to all nodes in G. Parameters ---------- @@ -477,12 +476,23 @@ def predecessor(G, source, target=None, cutoff=None, return_seen=None): cutoff : integer, optional Depth to stop the search. Only paths of length <= cutoff are returned. + return_seen : bool, optional (default=None) + Whether to return a dictionary, keyed by node, of the level (number of + hops) to reach the node (as seen during breadth-first-search). Returns ------- pred : dictionary Dictionary, keyed by node, of predecessors in the shortest path. + + (pred, seen): tuple of dictionaries + If `return_seen` argument is set to `True`, then a tuple of dictionaries + is returned. The first element is the dictionary, keyed by node, of + predecessors in the shortest path. The second element is the dictionary, + keyed by node, of the level (number of hops) to reach the node (as seen + during breadth-first-search). + Examples -------- >>> G = nx.path_graph(4) @@ -490,6 +500,9 @@ def predecessor(G, source, target=None, cutoff=None, return_seen=None): [0, 1, 2, 3] >>> nx.predecessor(G, 0) {0: [], 1: [0], 2: [1], 3: [2]} + >>> nx.predecessor(G, 0, return_seen=True) + ({0: [], 1: [0], 2: [1], 3: [2]}, {0: 0, 1: 1, 2: 2, 3: 3}) + """ if source not in G: diff --git a/networkx/classes/tests/test_graph.py b/networkx/classes/tests/test_graph.py index ebaa04bbd..2adb159bf 100644 --- a/networkx/classes/tests/test_graph.py +++ b/networkx/classes/tests/test_graph.py @@ -178,6 +178,11 @@ class BaseGraphTester: G._adj = {} assert id(G.adj) != id(old_adj) + old_nodes = G.nodes + assert id(G.nodes) == id(old_nodes) + G._node = {} + assert id(G.nodes) != id(old_nodes) + def test_attributes_cached(self): G = self.K3.copy() assert id(G.nodes) == id(G.nodes)
Critical NetworkX 2.8.X bug with mutable cached_properties ### Current Behavior The `nodes()` method of a Graph is decorated with `@cached_property`.<br> This leads to the assumption that a Graph's `nodes()` method should return a static value.<br> This assumption is incorrect. Notably, the `@cached_property` decorator completely breaks `Graph.subgraph()`.<br> Trace: Graph.subgraph -> graphviews.subgraph_view -> [this line](https://github.com/networkx/networkx/blob/ead0e65bda59862e329f2e6f1da47919c6b07ca9/networkx/classes/graphviews.py#L149) prevents [this line](https://github.com/networkx/networkx/blob/ead0e65bda59862e329f2e6f1da47919c6b07ca9/networkx/classes/graphviews.py#L152) from functioning correctly Subgraphs are shown as containing the wrong nodes as a result, until `del G.nodes` is manually run.<br> This breaks things. ### Expected Behavior `@cached_property` decorators should not break functionality. ### Steps to Reproduce - Initialize a Graph, `G` - Populate `G` with node objects that are complex enough that the following inequality assertion will pass: `newG = nx.freeze(G.__class__()); newG._graph = G; newG.graph = G.graph; assert(newG.nodes()!=G.nodes)`. - Pick a subset of `G.nodes`, call this `subG_nodes` - `subgraph = G.subgraph(subG_nodes)` - In NetworkX 2.7, the nodes of `subgraph` will be a subset of the nodes of `G`. In NetworkX 2.8, the nodes of `subgraph` and the nodes of `G` will be a fully disjoint set. ### Environment <!--- Please provide details about your local environment --> Python version: 3.9.10 NetworkX version: 2.8.5 vs 2.7.0
0.0
[ "networkx/classes/tests/test_graph.py::TestGraph::test_cache_reset" ]
[ "networkx/classes/tests/test_graph.py::TestGraph::test_contains", "networkx/classes/tests/test_graph.py::TestGraph::test_order", "networkx/classes/tests/test_graph.py::TestGraph::test_nodes", "networkx/classes/tests/test_graph.py::TestGraph::test_none_node", "networkx/classes/tests/test_graph.py::TestGraph::test_has_node", "networkx/classes/tests/test_graph.py::TestGraph::test_has_edge", "networkx/classes/tests/test_graph.py::TestGraph::test_neighbors", "networkx/classes/tests/test_graph.py::TestGraph::test_memory_leak", "networkx/classes/tests/test_graph.py::TestGraph::test_edges", "networkx/classes/tests/test_graph.py::TestGraph::test_degree", "networkx/classes/tests/test_graph.py::TestGraph::test_size", "networkx/classes/tests/test_graph.py::TestGraph::test_nbunch_iter", "networkx/classes/tests/test_graph.py::TestGraph::test_nbunch_iter_node_format_raise", "networkx/classes/tests/test_graph.py::TestGraph::test_selfloop_degree", "networkx/classes/tests/test_graph.py::TestGraph::test_selfloops", "networkx/classes/tests/test_graph.py::TestGraph::test_attributes_cached", "networkx/classes/tests/test_graph.py::TestGraph::test_weighted_degree", "networkx/classes/tests/test_graph.py::TestGraph::test_name", "networkx/classes/tests/test_graph.py::TestGraph::test_str_unnamed", "networkx/classes/tests/test_graph.py::TestGraph::test_str_named", "networkx/classes/tests/test_graph.py::TestGraph::test_graph_chain", "networkx/classes/tests/test_graph.py::TestGraph::test_copy", "networkx/classes/tests/test_graph.py::TestGraph::test_class_copy", "networkx/classes/tests/test_graph.py::TestGraph::test_fresh_copy", "networkx/classes/tests/test_graph.py::TestGraph::test_graph_attr", "networkx/classes/tests/test_graph.py::TestGraph::test_node_attr", "networkx/classes/tests/test_graph.py::TestGraph::test_node_attr2", "networkx/classes/tests/test_graph.py::TestGraph::test_edge_lookup", "networkx/classes/tests/test_graph.py::TestGraph::test_edge_attr", "networkx/classes/tests/test_graph.py::TestGraph::test_edge_attr2", "networkx/classes/tests/test_graph.py::TestGraph::test_edge_attr3", "networkx/classes/tests/test_graph.py::TestGraph::test_edge_attr4", "networkx/classes/tests/test_graph.py::TestGraph::test_to_undirected", "networkx/classes/tests/test_graph.py::TestGraph::test_to_directed_as_view", "networkx/classes/tests/test_graph.py::TestGraph::test_to_undirected_as_view", "networkx/classes/tests/test_graph.py::TestGraph::test_directed_class", "networkx/classes/tests/test_graph.py::TestGraph::test_to_directed", "networkx/classes/tests/test_graph.py::TestGraph::test_subgraph", "networkx/classes/tests/test_graph.py::TestGraph::test_selfloops_attr", "networkx/classes/tests/test_graph.py::TestGraph::test_pickle", "networkx/classes/tests/test_graph.py::TestGraph::test_data_input", "networkx/classes/tests/test_graph.py::TestGraph::test_adjacency", "networkx/classes/tests/test_graph.py::TestGraph::test_getitem", "networkx/classes/tests/test_graph.py::TestGraph::test_add_node", "networkx/classes/tests/test_graph.py::TestGraph::test_add_nodes_from", "networkx/classes/tests/test_graph.py::TestGraph::test_remove_node", "networkx/classes/tests/test_graph.py::TestGraph::test_remove_nodes_from", "networkx/classes/tests/test_graph.py::TestGraph::test_add_edge", "networkx/classes/tests/test_graph.py::TestGraph::test_add_edges_from", "networkx/classes/tests/test_graph.py::TestGraph::test_remove_edge", "networkx/classes/tests/test_graph.py::TestGraph::test_remove_edges_from", "networkx/classes/tests/test_graph.py::TestGraph::test_clear", "networkx/classes/tests/test_graph.py::TestGraph::test_clear_edges", "networkx/classes/tests/test_graph.py::TestGraph::test_edges_data", "networkx/classes/tests/test_graph.py::TestGraph::test_get_edge_data", "networkx/classes/tests/test_graph.py::TestGraph::test_update", "networkx/classes/tests/test_graph.py::TestEdgeSubgraph::test_correct_nodes", "networkx/classes/tests/test_graph.py::TestEdgeSubgraph::test_correct_edges", "networkx/classes/tests/test_graph.py::TestEdgeSubgraph::test_add_node", "networkx/classes/tests/test_graph.py::TestEdgeSubgraph::test_remove_node", "networkx/classes/tests/test_graph.py::TestEdgeSubgraph::test_node_attr_dict", "networkx/classes/tests/test_graph.py::TestEdgeSubgraph::test_edge_attr_dict", "networkx/classes/tests/test_graph.py::TestEdgeSubgraph::test_graph_attr_dict" ]
2022-07-25 14:18:48+00:00
4,144
networkx__networkx-5903
diff --git a/networkx/relabel.py b/networkx/relabel.py index 35e71536a..65297d573 100644 --- a/networkx/relabel.py +++ b/networkx/relabel.py @@ -114,9 +114,13 @@ def relabel_nodes(G, mapping, copy=True): -------- convert_node_labels_to_integers """ - # you can pass a function f(old_label)->new_label + # you can pass a function f(old_label) -> new_label + # or a class e.g. str(old_label) -> new_label # but we'll just make a dictionary here regardless - if not hasattr(mapping, "__getitem__"): + # To allow classes, we check if __getitem__ is a bound method using __self__ + if not ( + hasattr(mapping, "__getitem__") and hasattr(mapping.__getitem__, "__self__") + ): m = {n: mapping(n) for n in G} else: m = mapping
networkx/networkx
28f78cfa9a386620ee1179582fda1db5ffc59f84
diff --git a/networkx/tests/test_relabel.py b/networkx/tests/test_relabel.py index 46b74482b..9a9db76eb 100644 --- a/networkx/tests/test_relabel.py +++ b/networkx/tests/test_relabel.py @@ -106,6 +106,12 @@ class TestRelabel: H = nx.relabel_nodes(G, mapping) assert nodes_equal(H.nodes(), [65, 66, 67, 68]) + def test_relabel_nodes_classes(self): + G = nx.empty_graph() + G.add_edges_from([(0, 1), (0, 2), (1, 2), (2, 3)]) + H = nx.relabel_nodes(G, str) + assert nodes_equal(H.nodes, ["0", "1", "2", "3"]) + def test_relabel_nodes_graph(self): G = nx.Graph([("A", "B"), ("A", "C"), ("B", "C"), ("C", "D")]) mapping = {"A": "aardvark", "B": "bear", "C": "cat", "D": "dog"}
`relabel_nodes` does not work for callables with `__getitem__` <!-- If you have a general question about NetworkX, please use the discussions tab to create a new discussion --> <!--- Provide a general summary of the issue in the Title above --> `relabel_nodes` accepts mappings in the form of functions. It differentiates function from mapping by testing`not hasattr(mapping, "__getitem__")`. This test is ambiguous for callables that do possess '__getitem__`, e.g. `str`. Would it be better to test `isinstance(mapping, typing.Mapping)` and document accordingly? ### Current Behavior <!--- Tell us what happens instead of the expected behavior --> ```python import networkx as nx G = nx.DiGraph() G.add_nodes_from([1, 2]) # works # nx.relabel_nodes(G, lambda x: str(x)) # error nx.relabel_nodes(G, str) ``` ``` Traceback (most recent call last): File "...\networkx_2_8_4_relabel_callable.py", line 10, in <module> nx.relabel_nodes(G, str) File "...\lib\site-packages\networkx\relabel.py", line 121, in relabel_nodes return _relabel_copy(G, m) File "...\lib\site-packages\networkx\relabel.py", line 193, in _relabel_copy H.add_nodes_from(mapping.get(n, n) for n in G) File "...\lib\site-packages\networkx\classes\digraph.py", line 519, in add_nodes_from for n in nodes_for_adding: File "...\lib\site-packages\networkx\relabel.py", line 193, in <genexpr> H.add_nodes_from(mapping.get(n, n) for n in G) AttributeError: type object 'str' has no attribute 'get' ``` ### Expected Behavior <!--- Tell us what should happen --> `relabel_nodes` works for callables. ### Steps to Reproduce <!--- Provide a minimal example that reproduces the bug --> See current behavior. ### Environment <!--- Please provide details about your local environment --> Python version: 3.9 NetworkX version: 2.8.5 ### Additional context <!--- Add any other context about the problem here, screenshots, etc. -->
0.0
[ "networkx/tests/test_relabel.py::TestRelabel::test_relabel_nodes_classes" ]
[ "networkx/tests/test_relabel.py::TestRelabel::test_convert_node_labels_to_integers", "networkx/tests/test_relabel.py::TestRelabel::test_convert_to_integers2", "networkx/tests/test_relabel.py::TestRelabel::test_convert_to_integers_raise", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_nodes_copy", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_nodes_function", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_nodes_graph", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_nodes_orderedgraph", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_nodes_digraph", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_nodes_multigraph", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_nodes_multidigraph", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_isolated_nodes_to_same", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_nodes_missing", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_copy_name", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_toposort", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_selfloop", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_multidigraph_inout_merge_nodes", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_multigraph_merge_inplace", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_multidigraph_merge_inplace", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_multidigraph_inout_copy", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_multigraph_merge_copy", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_multidigraph_merge_copy", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_multigraph_nonnumeric_key", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_circular", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_preserve_node_order_full_mapping_with_copy_true", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_preserve_node_order_full_mapping_with_copy_false", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_preserve_node_order_partial_mapping_with_copy_true", "networkx/tests/test_relabel.py::TestRelabel::test_relabel_preserve_node_order_partial_mapping_with_copy_false" ]
2022-07-29 02:02:29+00:00
4,145
networkx__networkx-5988
diff --git a/networkx/algorithms/dag.py b/networkx/algorithms/dag.py index 826b87ff6..d5e2735b1 100644 --- a/networkx/algorithms/dag.py +++ b/networkx/algorithms/dag.py @@ -1006,7 +1006,15 @@ def dag_longest_path(G, weight="weight", default_weight=1, topo_order=None): dist = {} # stores {v : (length, u)} for v in topo_order: us = [ - (dist[u][0] + data.get(weight, default_weight), u) + ( + dist[u][0] + + ( + max(data.values(), key=lambda x: x.get(weight, default_weight)) + if G.is_multigraph() + else data + ).get(weight, default_weight), + u, + ) for u, data in G.pred[v].items() ] @@ -1068,8 +1076,13 @@ def dag_longest_path_length(G, weight="weight", default_weight=1): """ path = nx.dag_longest_path(G, weight, default_weight) path_length = 0 - for (u, v) in pairwise(path): - path_length += G[u][v].get(weight, default_weight) + if G.is_multigraph(): + for u, v in pairwise(path): + i = max(G[u][v], key=lambda x: G[u][v][x].get(weight, default_weight)) + path_length += G[u][v][i].get(weight, default_weight) + else: + for (u, v) in pairwise(path): + path_length += G[u][v].get(weight, default_weight) return path_length
networkx/networkx
1ce75f0f3604abd0551fa9baf20c65c3747fb328
diff --git a/networkx/algorithms/tests/test_dag.py b/networkx/algorithms/tests/test_dag.py index 56f16c4f5..7ad6a77fe 100644 --- a/networkx/algorithms/tests/test_dag.py +++ b/networkx/algorithms/tests/test_dag.py @@ -60,6 +60,31 @@ class TestDagLongestPath: # this will raise NotImplementedError when nodes need to be ordered nx.dag_longest_path(G) + def test_multigraph_unweighted(self): + edges = [(1, 2), (2, 3), (2, 3), (3, 4), (4, 5), (1, 3), (1, 5), (3, 5)] + G = nx.MultiDiGraph(edges) + assert nx.dag_longest_path(G) == [1, 2, 3, 4, 5] + + def test_multigraph_weighted(self): + G = nx.MultiDiGraph() + edges = [ + (1, 2, 2), + (2, 3, 2), + (1, 3, 1), + (1, 3, 5), + (1, 3, 2), + ] + G.add_weighted_edges_from(edges) + assert nx.dag_longest_path(G) == [1, 3] + + def test_multigraph_weighted_default_weight(self): + G = nx.MultiDiGraph([(1, 2), (2, 3)]) # Unweighted edges + G.add_weighted_edges_from([(1, 3, 1), (1, 3, 5), (1, 3, 2)]) + + # Default value for default weight is 1 + assert nx.dag_longest_path(G) == [1, 3] + assert nx.dag_longest_path(G, default_weight=3) == [1, 2, 3] + class TestDagLongestPathLength: """Unit tests for computing the length of a longest path in a @@ -91,6 +116,23 @@ class TestDagLongestPathLength: G.add_weighted_edges_from(edges) assert nx.dag_longest_path_length(G) == 5 + def test_multigraph_unweighted(self): + edges = [(1, 2), (2, 3), (2, 3), (3, 4), (4, 5), (1, 3), (1, 5), (3, 5)] + G = nx.MultiDiGraph(edges) + assert nx.dag_longest_path_length(G) == 4 + + def test_multigraph_weighted(self): + G = nx.MultiDiGraph() + edges = [ + (1, 2, 2), + (2, 3, 2), + (1, 3, 1), + (1, 3, 5), + (1, 3, 2), + ] + G.add_weighted_edges_from(edges) + assert nx.dag_longest_path_length(G) == 5 + class TestDAG: @classmethod
Weighted MultiDiGraphs never use weights in dag_longest_path and dag_longest_path_length ### Current Behavior Given any MultiDiGraph, using dag_longest_path will always evaluate using the default_weight keyword argument. This is because dag_longest_path uses `G.pred[v].items()` to grab the data dictionary, but the data dictionary for a MultiDiGraph is embedded inside of another dictionary with the edge number as a key. When dag_longest_path calls `data.get(weight, default_weight)` on this, it will always raise a KeyError on weight and use default_weight instead. dag_longest_path_length also calls dict.get() on the wrong dictionary, making it return bad results for weighted MultiDiGraphs even if dag_longest_path returns the correct path. ### Expected Behavior A MultiDiGraph should either evaluate correctly using weights or raise a NotImplementedError. ### Steps to Reproduce ``` MDG = nx.MultiDiGraph([("A", "B", {"cost": 5}), ("B", "C", {"cost": 10}), ("A", "C", {"cost": 40})]) print(nx.dag_longest_path(MDG, weight="cost"), nx.dag_longest_path_length(MDG, weight="cost")) # prints ['A', 'B', 'C'] 2 # should be ['A', 'C'] 40 ``` Incorrect paths are especially noticeable when a weight key is given, but default_weight is set to 0, as it will always return a list containing only the starting node. ### Environment Python version: 3.10 NetworkX version: 2.8.5 ### Additional context I have a fix for this issue ready if you would like the functions to support MultiDiGraphs.
0.0
[ "networkx/algorithms/tests/test_dag.py::TestDagLongestPath::test_multigraph_weighted", "networkx/algorithms/tests/test_dag.py::TestDagLongestPath::test_multigraph_weighted_default_weight", "networkx/algorithms/tests/test_dag.py::TestDagLongestPathLength::test_multigraph_weighted" ]
[ "networkx/algorithms/tests/test_dag.py::TestDagLongestPath::test_empty", "networkx/algorithms/tests/test_dag.py::TestDagLongestPath::test_unweighted1", "networkx/algorithms/tests/test_dag.py::TestDagLongestPath::test_unweighted2", "networkx/algorithms/tests/test_dag.py::TestDagLongestPath::test_weighted", "networkx/algorithms/tests/test_dag.py::TestDagLongestPath::test_undirected_not_implemented", "networkx/algorithms/tests/test_dag.py::TestDagLongestPath::test_unorderable_nodes", "networkx/algorithms/tests/test_dag.py::TestDagLongestPath::test_multigraph_unweighted", "networkx/algorithms/tests/test_dag.py::TestDagLongestPathLength::test_unweighted", "networkx/algorithms/tests/test_dag.py::TestDagLongestPathLength::test_undirected_not_implemented", "networkx/algorithms/tests/test_dag.py::TestDagLongestPathLength::test_weighted", "networkx/algorithms/tests/test_dag.py::TestDagLongestPathLength::test_multigraph_unweighted", "networkx/algorithms/tests/test_dag.py::TestDAG::test_topological_sort1", "networkx/algorithms/tests/test_dag.py::TestDAG::test_is_directed_acyclic_graph", "networkx/algorithms/tests/test_dag.py::TestDAG::test_topological_sort2", "networkx/algorithms/tests/test_dag.py::TestDAG::test_topological_sort3", "networkx/algorithms/tests/test_dag.py::TestDAG::test_topological_sort4", "networkx/algorithms/tests/test_dag.py::TestDAG::test_topological_sort5", "networkx/algorithms/tests/test_dag.py::TestDAG::test_topological_sort6", "networkx/algorithms/tests/test_dag.py::TestDAG::test_all_topological_sorts_1", "networkx/algorithms/tests/test_dag.py::TestDAG::test_all_topological_sorts_2", "networkx/algorithms/tests/test_dag.py::TestDAG::test_all_topological_sorts_3", "networkx/algorithms/tests/test_dag.py::TestDAG::test_all_topological_sorts_4", "networkx/algorithms/tests/test_dag.py::TestDAG::test_all_topological_sorts_multigraph_1", "networkx/algorithms/tests/test_dag.py::TestDAG::test_all_topological_sorts_multigraph_2", "networkx/algorithms/tests/test_dag.py::TestDAG::test_ancestors", "networkx/algorithms/tests/test_dag.py::TestDAG::test_descendants", "networkx/algorithms/tests/test_dag.py::TestDAG::test_transitive_closure", "networkx/algorithms/tests/test_dag.py::TestDAG::test_reflexive_transitive_closure", "networkx/algorithms/tests/test_dag.py::TestDAG::test_transitive_closure_dag", "networkx/algorithms/tests/test_dag.py::TestDAG::test_transitive_reduction", "networkx/algorithms/tests/test_dag.py::TestDAG::test_antichains", "networkx/algorithms/tests/test_dag.py::TestDAG::test_lexicographical_topological_sort", "networkx/algorithms/tests/test_dag.py::TestDAG::test_lexicographical_topological_sort2", "networkx/algorithms/tests/test_dag.py::test_topological_generations", "networkx/algorithms/tests/test_dag.py::test_topological_generations_empty", "networkx/algorithms/tests/test_dag.py::test_topological_generations_cycle", "networkx/algorithms/tests/test_dag.py::test_is_aperiodic_cycle", "networkx/algorithms/tests/test_dag.py::test_is_aperiodic_cycle2", "networkx/algorithms/tests/test_dag.py::test_is_aperiodic_cycle3", "networkx/algorithms/tests/test_dag.py::test_is_aperiodic_cycle4", "networkx/algorithms/tests/test_dag.py::test_is_aperiodic_selfloop", "networkx/algorithms/tests/test_dag.py::test_is_aperiodic_raise", "networkx/algorithms/tests/test_dag.py::test_is_aperiodic_bipartite", "networkx/algorithms/tests/test_dag.py::test_is_aperiodic_rary_tree", "networkx/algorithms/tests/test_dag.py::test_is_aperiodic_disconnected", "networkx/algorithms/tests/test_dag.py::test_is_aperiodic_disconnected2", "networkx/algorithms/tests/test_dag.py::TestDagToBranching::test_single_root", "networkx/algorithms/tests/test_dag.py::TestDagToBranching::test_multiple_roots", "networkx/algorithms/tests/test_dag.py::TestDagToBranching::test_already_arborescence", "networkx/algorithms/tests/test_dag.py::TestDagToBranching::test_already_branching", "networkx/algorithms/tests/test_dag.py::TestDagToBranching::test_not_acyclic", "networkx/algorithms/tests/test_dag.py::TestDagToBranching::test_undirected", "networkx/algorithms/tests/test_dag.py::TestDagToBranching::test_multigraph", "networkx/algorithms/tests/test_dag.py::TestDagToBranching::test_multidigraph", "networkx/algorithms/tests/test_dag.py::test_ancestors_descendants_undirected", "networkx/algorithms/tests/test_dag.py::test_compute_v_structures_raise", "networkx/algorithms/tests/test_dag.py::test_compute_v_structures" ]
2022-09-17 21:14:45+00:00
4,146
End of preview. Expand in Data Studio

No dataset card yet

Downloads last month
49