|
import { z } from "zod"; |
|
import type { Endpoint } from "../endpoints"; |
|
import { env } from "$env/dynamic/private"; |
|
import type { TextGenerationStreamOutput } from "@huggingface/inference"; |
|
import { createImageProcessorOptionsValidator } from "../images"; |
|
import { endpointMessagesToAnthropicMessages, addToolResults } from "./utils"; |
|
import { createDocumentProcessorOptionsValidator } from "../document"; |
|
import type { |
|
Tool, |
|
ToolCall, |
|
ToolInput, |
|
ToolInputFile, |
|
ToolInputFixed, |
|
ToolInputOptional, |
|
} from "$lib/types/Tool"; |
|
import type Anthropic from "@anthropic-ai/sdk"; |
|
import type { MessageParam } from "@anthropic-ai/sdk/resources/messages.mjs"; |
|
import directlyAnswer from "$lib/server/tools/directlyAnswer"; |
|
|
|
export const endpointAnthropicParametersSchema = z.object({ |
|
weight: z.number().int().positive().default(1), |
|
model: z.any(), |
|
type: z.literal("anthropic"), |
|
baseURL: z.string().url().default("https://api.anthropic.com"), |
|
apiKey: z.string().default(env.ANTHROPIC_API_KEY ?? "sk-"), |
|
defaultHeaders: z.record(z.string()).optional(), |
|
defaultQuery: z.record(z.string()).optional(), |
|
multimodal: z |
|
.object({ |
|
image: createImageProcessorOptionsValidator({ |
|
supportedMimeTypes: ["image/png", "image/jpeg", "image/webp"], |
|
preferredMimeType: "image/webp", |
|
|
|
maxSizeInMB: (5 / 4) * 3, |
|
maxWidth: 4096, |
|
maxHeight: 4096, |
|
}), |
|
document: createDocumentProcessorOptionsValidator({ |
|
supportedMimeTypes: ["application/pdf"], |
|
maxSizeInMB: 32, |
|
}), |
|
}) |
|
.default({}), |
|
}); |
|
|
|
export async function endpointAnthropic( |
|
input: z.input<typeof endpointAnthropicParametersSchema> |
|
): Promise<Endpoint> { |
|
const { baseURL, apiKey, model, defaultHeaders, defaultQuery, multimodal } = |
|
endpointAnthropicParametersSchema.parse(input); |
|
let Anthropic; |
|
try { |
|
Anthropic = (await import("@anthropic-ai/sdk")).default; |
|
} catch (e) { |
|
throw new Error("Failed to import @anthropic-ai/sdk", { cause: e }); |
|
} |
|
|
|
const anthropic = new Anthropic({ |
|
apiKey, |
|
baseURL, |
|
defaultHeaders, |
|
defaultQuery, |
|
}); |
|
|
|
return async ({ |
|
messages, |
|
preprompt, |
|
generateSettings, |
|
conversationId, |
|
tools = [], |
|
toolResults = [], |
|
}) => { |
|
let system = preprompt; |
|
if (messages?.[0]?.from === "system") { |
|
system = messages[0].content; |
|
} |
|
|
|
let tokenId = 0; |
|
if (tools.length === 0 && toolResults.length > 0) { |
|
const toolNames = new Set(toolResults.map((tool) => tool.call.name)); |
|
tools = Array.from(toolNames).map((name) => ({ |
|
name, |
|
description: "", |
|
inputs: [], |
|
})) as unknown as Tool[]; |
|
} |
|
|
|
const parameters = { ...model.parameters, ...generateSettings }; |
|
|
|
return (async function* () { |
|
const stream = anthropic.messages.stream({ |
|
model: model.id ?? model.name, |
|
tools: createAnthropicTools(tools), |
|
tool_choice: |
|
tools.length > 0 ? { type: "auto", disable_parallel_tool_use: false } : undefined, |
|
messages: addToolResults( |
|
await endpointMessagesToAnthropicMessages(messages, multimodal, conversationId), |
|
toolResults |
|
) as MessageParam[], |
|
max_tokens: parameters?.max_new_tokens, |
|
temperature: parameters?.temperature, |
|
top_p: parameters?.top_p, |
|
top_k: parameters?.top_k, |
|
stop_sequences: parameters?.stop, |
|
system, |
|
}); |
|
while (true) { |
|
const result = await Promise.race([stream.emitted("text"), stream.emitted("end")]); |
|
|
|
if (result === undefined) { |
|
if ("tool_use" === stream.receivedMessages[0].stop_reason) { |
|
|
|
const toolCalls: ToolCall[] = stream.receivedMessages[0].content |
|
.filter( |
|
(block): block is Anthropic.Messages.ContentBlock & { type: "tool_use" } => |
|
block.type === "tool_use" |
|
) |
|
.map((block) => ({ |
|
name: block.name, |
|
parameters: block.input as Record<string, string | number | boolean>, |
|
id: block.id, |
|
})); |
|
|
|
yield { |
|
token: { id: tokenId, text: "", logprob: 0, special: false, toolCalls }, |
|
generated_text: null, |
|
details: null, |
|
}; |
|
} else { |
|
yield { |
|
token: { |
|
id: tokenId++, |
|
text: "", |
|
logprob: 0, |
|
special: true, |
|
}, |
|
generated_text: await stream.finalText(), |
|
details: null, |
|
} satisfies TextGenerationStreamOutput; |
|
} |
|
|
|
return; |
|
} |
|
|
|
yield { |
|
token: { |
|
id: tokenId++, |
|
text: result as unknown as string, |
|
special: false, |
|
logprob: 0, |
|
}, |
|
generated_text: null, |
|
details: null, |
|
} satisfies TextGenerationStreamOutput; |
|
} |
|
})(); |
|
}; |
|
} |
|
|
|
function createAnthropicTools(tools: Tool[]): Anthropic.Messages.Tool[] { |
|
return tools |
|
.filter((tool) => tool.name !== directlyAnswer.name) |
|
.map((tool) => { |
|
const properties = tool.inputs.reduce((acc, input) => { |
|
acc[input.name] = convertToolInputToJSONSchema(input); |
|
return acc; |
|
}, {} as Record<string, unknown>); |
|
|
|
const required = tool.inputs |
|
.filter((input) => input.paramType === "required") |
|
.map((input) => input.name); |
|
|
|
return { |
|
name: tool.name, |
|
description: tool.description, |
|
input_schema: { |
|
type: "object", |
|
properties, |
|
required: required.length > 0 ? required : undefined, |
|
}, |
|
}; |
|
}); |
|
} |
|
|
|
function convertToolInputToJSONSchema(input: ToolInput): Record<string, unknown> { |
|
const baseSchema: Record<string, unknown> = {}; |
|
if ("description" in input) { |
|
baseSchema["description"] = input.description || ""; |
|
} |
|
switch (input.paramType) { |
|
case "optional": |
|
baseSchema["default"] = (input as ToolInputOptional).default; |
|
break; |
|
case "fixed": |
|
baseSchema["const"] = (input as ToolInputFixed).value; |
|
break; |
|
} |
|
|
|
if (input.type === "file") { |
|
baseSchema["type"] = "string"; |
|
baseSchema["format"] = "binary"; |
|
baseSchema["mimeTypes"] = (input as ToolInputFile).mimeTypes; |
|
} else { |
|
switch (input.type) { |
|
case "str": |
|
baseSchema["type"] = "string"; |
|
break; |
|
case "int": |
|
baseSchema["type"] = "integer"; |
|
break; |
|
case "float": |
|
baseSchema["type"] = "number"; |
|
break; |
|
case "bool": |
|
baseSchema["type"] = "boolean"; |
|
break; |
|
} |
|
} |
|
|
|
return baseSchema; |
|
} |
|
|