zeroMN's picture
Upload 517 files
8d88d9b verified
import { z } from "zod";
import type { Endpoint } from "../endpoints";
import { env } from "$env/dynamic/private";
import type { TextGenerationStreamOutput } from "@huggingface/inference";
import { createImageProcessorOptionsValidator } from "../images";
import { endpointMessagesToAnthropicMessages, addToolResults } from "./utils";
import { createDocumentProcessorOptionsValidator } from "../document";
import type {
Tool,
ToolCall,
ToolInput,
ToolInputFile,
ToolInputFixed,
ToolInputOptional,
} from "$lib/types/Tool";
import type Anthropic from "@anthropic-ai/sdk";
import type { MessageParam } from "@anthropic-ai/sdk/resources/messages.mjs";
import directlyAnswer from "$lib/server/tools/directlyAnswer";
export const endpointAnthropicParametersSchema = z.object({
weight: z.number().int().positive().default(1),
model: z.any(),
type: z.literal("anthropic"),
baseURL: z.string().url().default("https://api.anthropic.com"),
apiKey: z.string().default(env.ANTHROPIC_API_KEY ?? "sk-"),
defaultHeaders: z.record(z.string()).optional(),
defaultQuery: z.record(z.string()).optional(),
multimodal: z
.object({
image: createImageProcessorOptionsValidator({
supportedMimeTypes: ["image/png", "image/jpeg", "image/webp"],
preferredMimeType: "image/webp",
// The 4 / 3 compensates for the 33% increase in size when converting to base64
maxSizeInMB: (5 / 4) * 3,
maxWidth: 4096,
maxHeight: 4096,
}),
document: createDocumentProcessorOptionsValidator({
supportedMimeTypes: ["application/pdf"],
maxSizeInMB: 32,
}),
})
.default({}),
});
export async function endpointAnthropic(
input: z.input<typeof endpointAnthropicParametersSchema>
): Promise<Endpoint> {
const { baseURL, apiKey, model, defaultHeaders, defaultQuery, multimodal } =
endpointAnthropicParametersSchema.parse(input);
let Anthropic;
try {
Anthropic = (await import("@anthropic-ai/sdk")).default;
} catch (e) {
throw new Error("Failed to import @anthropic-ai/sdk", { cause: e });
}
const anthropic = new Anthropic({
apiKey,
baseURL,
defaultHeaders,
defaultQuery,
});
return async ({
messages,
preprompt,
generateSettings,
conversationId,
tools = [],
toolResults = [],
}) => {
let system = preprompt;
if (messages?.[0]?.from === "system") {
system = messages[0].content;
}
let tokenId = 0;
if (tools.length === 0 && toolResults.length > 0) {
const toolNames = new Set(toolResults.map((tool) => tool.call.name));
tools = Array.from(toolNames).map((name) => ({
name,
description: "",
inputs: [],
})) as unknown as Tool[];
}
const parameters = { ...model.parameters, ...generateSettings };
return (async function* () {
const stream = anthropic.messages.stream({
model: model.id ?? model.name,
tools: createAnthropicTools(tools),
tool_choice:
tools.length > 0 ? { type: "auto", disable_parallel_tool_use: false } : undefined,
messages: addToolResults(
await endpointMessagesToAnthropicMessages(messages, multimodal, conversationId),
toolResults
) as MessageParam[],
max_tokens: parameters?.max_new_tokens,
temperature: parameters?.temperature,
top_p: parameters?.top_p,
top_k: parameters?.top_k,
stop_sequences: parameters?.stop,
system,
});
while (true) {
const result = await Promise.race([stream.emitted("text"), stream.emitted("end")]);
if (result === undefined) {
if ("tool_use" === stream.receivedMessages[0].stop_reason) {
// this should really create a new "Assistant" message with the tool id in it.
const toolCalls: ToolCall[] = stream.receivedMessages[0].content
.filter(
(block): block is Anthropic.Messages.ContentBlock & { type: "tool_use" } =>
block.type === "tool_use"
)
.map((block) => ({
name: block.name,
parameters: block.input as Record<string, string | number | boolean>,
id: block.id,
}));
yield {
token: { id: tokenId, text: "", logprob: 0, special: false, toolCalls },
generated_text: null,
details: null,
};
} else {
yield {
token: {
id: tokenId++,
text: "",
logprob: 0,
special: true,
},
generated_text: await stream.finalText(),
details: null,
} satisfies TextGenerationStreamOutput;
}
return;
}
// Text delta
yield {
token: {
id: tokenId++,
text: result as unknown as string,
special: false,
logprob: 0,
},
generated_text: null,
details: null,
} satisfies TextGenerationStreamOutput;
}
})();
};
}
function createAnthropicTools(tools: Tool[]): Anthropic.Messages.Tool[] {
return tools
.filter((tool) => tool.name !== directlyAnswer.name)
.map((tool) => {
const properties = tool.inputs.reduce((acc, input) => {
acc[input.name] = convertToolInputToJSONSchema(input);
return acc;
}, {} as Record<string, unknown>);
const required = tool.inputs
.filter((input) => input.paramType === "required")
.map((input) => input.name);
return {
name: tool.name,
description: tool.description,
input_schema: {
type: "object",
properties,
required: required.length > 0 ? required : undefined,
},
};
});
}
function convertToolInputToJSONSchema(input: ToolInput): Record<string, unknown> {
const baseSchema: Record<string, unknown> = {};
if ("description" in input) {
baseSchema["description"] = input.description || "";
}
switch (input.paramType) {
case "optional":
baseSchema["default"] = (input as ToolInputOptional).default;
break;
case "fixed":
baseSchema["const"] = (input as ToolInputFixed).value;
break;
}
if (input.type === "file") {
baseSchema["type"] = "string";
baseSchema["format"] = "binary";
baseSchema["mimeTypes"] = (input as ToolInputFile).mimeTypes;
} else {
switch (input.type) {
case "str":
baseSchema["type"] = "string";
break;
case "int":
baseSchema["type"] = "integer";
break;
case "float":
baseSchema["type"] = "number";
break;
case "bool":
baseSchema["type"] = "boolean";
break;
}
}
return baseSchema;
}