zeroMN's picture
Upload 517 files
8d88d9b verified
import { GoogleGenerativeAI, HarmBlockThreshold, HarmCategory } from "@google/generative-ai";
import type { Content, Part, SafetySetting, TextPart } from "@google/generative-ai";
import { z } from "zod";
import type { Message, MessageFile } from "$lib/types/Message";
import type { TextGenerationStreamOutput } from "@huggingface/inference";
import type { Endpoint } from "../endpoints";
import { createImageProcessorOptionsValidator, makeImageProcessor } from "../images";
import type { ImageProcessorOptions } from "../images";
import { env } from "$env/dynamic/private";
export const endpointGenAIParametersSchema = z.object({
weight: z.number().int().positive().default(1),
model: z.any(),
type: z.literal("genai"),
apiKey: z.string().default(env.GOOGLE_GENAI_API_KEY),
safetyThreshold: z
.enum([
HarmBlockThreshold.HARM_BLOCK_THRESHOLD_UNSPECIFIED,
HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
HarmBlockThreshold.BLOCK_NONE,
HarmBlockThreshold.BLOCK_ONLY_HIGH,
])
.optional(),
multimodal: z
.object({
image: createImageProcessorOptionsValidator({
supportedMimeTypes: ["image/png", "image/jpeg", "image/webp"],
preferredMimeType: "image/webp",
// The 4 / 3 compensates for the 33% increase in size when converting to base64
maxSizeInMB: (5 / 4) * 3,
maxWidth: 4096,
maxHeight: 4096,
}),
})
.default({}),
});
export function endpointGenAI(input: z.input<typeof endpointGenAIParametersSchema>): Endpoint {
const { model, apiKey, safetyThreshold, multimodal } = endpointGenAIParametersSchema.parse(input);
const genAI = new GoogleGenerativeAI(apiKey);
const safetySettings = safetyThreshold
? Object.keys(HarmCategory)
.filter((cat) => cat !== HarmCategory.HARM_CATEGORY_UNSPECIFIED)
.reduce((acc, val) => {
acc.push({
category: val as HarmCategory,
threshold: safetyThreshold,
});
return acc;
}, [] as SafetySetting[])
: undefined;
return async ({ messages, preprompt, generateSettings }) => {
const parameters = { ...model.parameters, ...generateSettings };
const generativeModel = genAI.getGenerativeModel({
model: model.id ?? model.name,
safetySettings,
generationConfig: {
maxOutputTokens: parameters?.max_new_tokens ?? 4096,
stopSequences: parameters?.stop,
temperature: parameters?.temperature ?? 1,
},
});
let systemMessage = preprompt;
if (messages[0].from === "system") {
systemMessage = messages[0].content;
messages.shift();
}
const genAIMessages = await Promise.all(
messages.map(async ({ from, content, files }: Omit<Message, "id">): Promise<Content> => {
return {
role: from === "user" ? "user" : "model",
parts: [
...(await Promise.all(
(files ?? []).map((file) => fileToImageBlock(file, multimodal.image))
)),
{ text: content },
],
};
})
);
const result = await generativeModel.generateContentStream({
contents: genAIMessages,
systemInstruction:
systemMessage && systemMessage.trim() !== ""
? {
role: "system",
parts: [{ text: systemMessage }],
}
: undefined,
});
let tokenId = 0;
return (async function* () {
let generatedText = "";
for await (const data of result.stream) {
if (!data?.candidates?.length) break; // Handle case where no candidates are present
const candidate = data.candidates[0];
if (!candidate.content?.parts?.length) continue; // Skip if no parts are present
const firstPart = candidate.content.parts.find((part) => "text" in part) as
| TextPart
| undefined;
if (!firstPart) continue; // Skip if no text part is found
const content = firstPart.text;
generatedText += content;
const output: TextGenerationStreamOutput = {
token: {
id: tokenId++,
text: content,
logprob: 0,
special: false,
},
generated_text: null,
details: null,
};
yield output;
}
const output: TextGenerationStreamOutput = {
token: {
id: tokenId++,
text: "",
logprob: 0,
special: true,
},
generated_text: generatedText,
details: null,
};
yield output;
})();
};
}
async function fileToImageBlock(
file: MessageFile,
opts: ImageProcessorOptions<"image/png" | "image/jpeg" | "image/webp">
): Promise<Part> {
const processor = makeImageProcessor(opts);
const { image, mime } = await processor(file);
return {
inlineData: {
mimeType: mime,
data: image.toString("base64"),
},
};
}
export default endpointGenAI;